hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8b198d221fd572fb9b871df00d9010a02161d6ef
| 193
|
agda
|
Agda
|
Cubical/Data/Vec.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/Data/Vec.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
Cubical/Data/Vec.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Vec where
open import Cubical.Data.Vec.Base public
open import Cubical.Data.Vec.Properties public
open import Cubical.Data.Vec.NAry public
| 27.571429
| 46
| 0.782383
|
8b2856ccb64254a925ec05178a01abc5d4e8045a
| 1,988
|
agda
|
Agda
|
test/Succeed/RecursiveInstanceSearchLevel.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/RecursiveInstanceSearchLevel.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/RecursiveInstanceSearchLevel.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --overlapping-instances #-}
module Succeed.RecursiveInstanceSearchLevel where
open import Common.Prelude
open import Common.Product
open import Common.Equality
-- Definition of truncation levels. We wrap the definition into a datatype in
-- order to be able to use instance search.
data has-level (n : Nat) (A : Set) : Set
has-level' : (n : Nat) (A : Set) → Set
data has-level n A where
c : has-level' n A → has-level n A
has-level' zero A = Σ A (λ a → (b : A) → a ≡ b)
has-level' (suc n) A = (a b : A) → has-level n (a ≡ b)
-- This one should not be declared as eligible by instance search or else we
-- will get unsolvable loops
postulate
higher-level : {n : Nat} {A : Set} {{_ : has-level n A}} → has-level (suc n) A
postulate
Trunc : Nat → Set → Set
instance
=-level : {n : Nat} {A : Set} {{_ : has-level (suc n) A}} {a b : A} → has-level n (a ≡ b)
=-level {{c f}} = f _ _
postulate
=-level-same : {n : Nat} {A : Set} {{_ : has-level n A}} {a b : A} → has-level n (a ≡ b)
postulate
Nat-level : has-level 2 Nat
Π-level : {n : Nat} {A : Set} {B : A → Set} {{_ : {a : A} → has-level n (B a)}} → has-level n ((a : A) → B a)
Πimp-level : {n : Nat} {A : Set} {B : A → Set} {{_ : {a : A} → has-level n (B a)}} → has-level n ({a : A} → B a)
Σ-level : {n : Nat} {A : Set} {B : A → Set} {{_ : has-level n A}} {{_ : {a : A} → has-level n (B a)}} → has-level n (Σ A B)
Trunc-level : {n : Nat} {A : Set} → has-level n (Trunc n A)
-- Used to check, using instance search, if some type has a given level
postulate
check-level : (n : Nat) (A : Set) {{_ : has-level n A}} → Set
test₁ : (A : Set) → Set
test₁ A = check-level 1 ((a b : Trunc 2 A) → (a , (b , 3)) ≡ (b , (a , 4)))
test₂ : (A : Set) → Set
test₂ A = check-level 2 ((a b : Trunc 2 A) → (a , (b , 3)) ≡ (b , (a , 4)))
-- -- To be fixed
-- test₃ : {n : Nat} {A : Set} {B : A → Set} {_ : {a : A} → has-level n (B a)} → Nat → has-level n ((a : A) → B a)
-- test₃ r = Π-level ⟨⟩
| 36.145455
| 127
| 0.55332
|
5e57ab1dfa0c39d8f88f8470b98336e7dfb68764
| 3,262
|
agda
|
Agda
|
RefactorAgdaEngine/ScopeParseTree.agda
|
omega12345/RefactorAgda
|
52d1034aed14c578c9e077fb60c3db1d0791416b
|
[
"BSD-3-Clause"
] | 5
|
2019-01-31T14:10:18.000Z
|
2019-05-03T10:03:36.000Z
|
RefactorAgdaEngine/ScopeParseTree.agda
|
omega12345/RefactorAgda
|
52d1034aed14c578c9e077fb60c3db1d0791416b
|
[
"BSD-3-Clause"
] | 3
|
2019-01-31T08:03:07.000Z
|
2019-02-05T12:53:36.000Z
|
RefactorAgdaEngine/ScopeParseTree.agda
|
omega12345/RefactorAgda
|
52d1034aed14c578c9e077fb60c3db1d0791416b
|
[
"BSD-3-Clause"
] | 1
|
2019-01-31T08:40:41.000Z
|
2019-01-31T08:40:41.000Z
|
-- This module is responsible for adding the missing scope information to the parse tree.
module ScopeParseTree where
open import ParseTree
open import Data.Empty
open import ScopeState
open import Data.List hiding (_++_)
open import Data.Product hiding (map)
open import Data.Fin
open import Data.Nat
open import Data.Sum
open import Data.String
open import Data.Bool
open import AgdaHelperFunctions
scopeSignature : TypeSignature -> ScopeType -> ScopeState TypeSignature
scopeExpr : Expr -> ScopeState Expr
scopeExpr (ident identifier₁) = do
-- first try to find identifier among already declared (simplification for constructor), then assume new declaration (simplification for parameter or out-of-file declaration)
inj₂ r <- try $ fillInIdentifier identifier₁
where _ -> do x <- addIdentifier identifier₁
return $ ident x
return $ ident r
scopeExpr (functionApp e e₁ {b} ) = do
r1 <- scopeExpr e
r2 <- scopeExpr e₁
return $ functionApp r1 r2 {b}
scopeExpr (namedArgument arg {b} {bef} {aft}) = do
x <- scopeSignature arg addVariableToType
return $ namedArgument x {b}{bef}{aft}
scopeExpr x = return x
scopeSignature (typeSignature funcName funcType) scopeT = do
newType <- saveAndReturnToScope $ scopeExpr funcType
addScope scopeT
newId <- addIdentifier funcName
return $ typeSignature newId newType
scopePragma : Pragma -> ScopeState Pragma
scopePragma (builtin concept definition) = do
x <- fillInIdentifier definition
return $ builtin concept x
scopePragma x = return x
scopeParseTree : ParseTree -> ScopeState ParseTree
scopeParseTree (signature signature₁ range₁) = do
x <- scopeSignature signature₁ addFuncToModule
return $ signature x range₁
scopeParseTree (functionDefinition definitionOf params body range₁) = do
newId <- fillInIdentifier definitionOf
x <- saveAndReturnToScope $ do
addScope funcDef
newParams <- mapState scopeExpr params
newBody <- scopeExpr body
return $ functionDefinition newId newParams newBody range₁
return x
scopeParseTree
(dataStructure dataName parameters indexInfo constructors range₁ {comments}) = do
addScope $ moduleDef dataName
newDataName <- addIdentifier dataName
( newParams , newIndex) , newCons <- saveAndReturnToScope $ do
newParams <- mapState (λ x -> scopeSignature x addVariableToType) parameters
newIndex <- scopeExpr indexInfo
newCons <- mapState (λ x -> scopeSignature x addFuncToModule) constructors
return ((newParams , newIndex) , newCons)
r <- mapState addContentReferenceToModuleTop newCons
return $ dataStructure newDataName newParams newIndex newCons range₁ {comments}
scopeParseTree (moduleName moduleName₁ range₁) = do
newMod <- addIdentifier moduleName₁
addScope $ moduleDef moduleName₁
return $ moduleName newMod range₁
scopeParseTree (pragma pragma₁ range₁) = do
x <- scopePragma pragma₁
return $ pragma x range₁
scopeParseTree x = return x
scopeParseTreeList : List ParseTree -> ScopeState (List ParseTree)
scopeParseTreeList program = do
--TODO: fix sloppy workaround
put newEnv
addIdentifier (identifier "Set" (λ _ -> before) 0 0 {true}{[]} {[]})
mapState scopeParseTree program
| 38.833333
| 176
| 0.746781
|
03167be9218af16266d35623bb626ad36ff5c0c1
| 3,137
|
agda
|
Agda
|
theorems/cohomology/InverseInSusp.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
theorems/cohomology/InverseInSusp.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
theorems/cohomology/InverseInSusp.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.ProductRepr
open import cohomology.Theory
open import homotopy.WedgeCofiber
{- For the cohomology group of a suspension ΣX, the group inverse has the
- explicit form Cⁿ(flip-susp) : Cⁿ(ΣX) → Cⁿ(ΣX).
-}
module cohomology.InverseInSusp {i} (CT : CohomologyTheory i)
(n : ℤ) {X : Ptd i} where
open CohomologyTheory CT
open import cohomology.Wedge CT n
private
module Subtract = SuspRec {C = de⊙ (⊙Susp X ⊙∨ ⊙Susp X)}
(winl south)
(winr south)
(λ x → ap winl (! (merid x)) ∙ wglue ∙ ap winr (merid x))
subtract = Subtract.f
⊙subtract : ⊙Susp X ⊙→ ⊙Susp X ⊙∨ ⊙Susp X
⊙subtract = (subtract , ! (ap winl (merid (pt X))))
projl-subtract : ∀ σ → projl (subtract σ) == Susp-flip σ
projl-subtract = Susp-elim idp idp $
↓-='-from-square ∘ vert-degen-square ∘ λ x →
ap-∘ projl subtract (merid x)
∙ ap (ap projl) (Subtract.merid-β x)
∙ ap-∙ projl (ap winl (! (merid x))) (wglue ∙ ap winr (merid x))
∙ ((∘-ap projl winl (! (merid x))
∙ ap-idf _)
∙2 (ap-∙ projl wglue (ap winr (merid x))
∙ (Projl.glue-β
∙2 (∘-ap projl winr (merid x) ∙ ap-cst _ _))))
∙ ∙-unit-r _
∙ ! (SuspFlip.merid-β x)
projr-subtract : ∀ σ → projr (subtract σ) == σ
projr-subtract = Susp-elim idp idp $
↓-∘=idf-in' projr subtract ∘ λ x →
ap (ap projr) (Subtract.merid-β x)
∙ ap-∙ projr (ap winl (! (merid x))) (wglue ∙ ap winr (merid x))
∙ ((∘-ap projr winl (! (merid x)) ∙ ap-cst _ _)
∙2 (ap-∙ projr wglue (ap winr (merid x))
∙ (Projr.glue-β
∙2 (∘-ap projr winr (merid x) ∙ ap-idf _))))
fold-subtract : ∀ σ → fold (subtract σ) == south
fold-subtract = Susp-elim idp idp $
↓-app=cst-in ∘ ! ∘ λ x →
∙-unit-r _
∙ ap-∘ fold subtract (merid x)
∙ ap (ap fold) (Subtract.merid-β x)
∙ ap-∙ fold (ap winl (! (merid x))) (wglue ∙ ap winr (merid x))
∙ ((∘-ap fold winl (! (merid x)) ∙ ap-idf _)
∙2 (ap-∙ fold wglue (ap winr (merid x))
∙ (Fold.glue-β
∙2 (∘-ap fold winr (merid x) ∙ ap-idf _))))
∙ !-inv-l (merid x)
abstract
cancel : ∀ x
→ GroupHom.f (×ᴳ-fanin (C-is-abelian n _) (C-fmap n (⊙Susp-flip X)) (idhom _)) (x , x)
== Cident n (⊙Susp X)
cancel x =
ap2 (Group.comp (C n (⊙Susp X)))
(! (CEl-fmap-base-indep n projl-subtract x))
(! (CEl-fmap-idf n x) ∙ ! (CEl-fmap-base-indep n projr-subtract x))
∙ (C-Wedge-in-comm-sqr' (⊙Susp X) (⊙Susp X) ⊙subtract □$ᴳ (x , x))
∙ ap (CEl-fmap n ⊙subtract)
( ap (GroupIso.g (C-Wedge (⊙Susp X) (⊙Susp X)) ∘ diag) (! (CEl-fmap-idf n x))
∙ (C-Wedge-rec-comm-sqr' (⊙Susp X) (⊙Susp X) (⊙idf _) (⊙idf _) □$ᴳ x))
∙ ∘-CEl-fmap n ⊙subtract ⊙fold x
∙ CEl-fmap-base-indep n (λ σ → fold-subtract σ ∙ ! (merid (pt X))) x
∙ CEl-fmap-cst n x
abstract
C-Susp-flip-is-inv : ∀ x → CEl-fmap n (⊙Susp-flip X) x == Group.inv (C n (⊙Susp X)) x
C-Susp-flip-is-inv x = ! (Group.inv-unique-l (C n (⊙Susp X)) _ x (cancel x))
| 36.905882
| 92
| 0.541919
|
5e6a9bd40a1ce226c9bd9e75a4189df01b684f53
| 1,341
|
agda
|
Agda
|
examples/outdated-and-incorrect/AIM6/Cat/Category.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/outdated-and-incorrect/AIM6/Cat/Category.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/outdated-and-incorrect/AIM6/Cat/Category.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Category where
open import Logic.Equivalence
open import Logic.Relations
open Equivalence using () renaming (_==_ to eq)
record Cat : Set2 where
field
Obj : Set1
_─→_ : Obj -> Obj -> Set
id : {A : Obj} -> A ─→ A
_∘_ : {A B C : Obj} -> B ─→ C -> A ─→ B -> A ─→ C
Eq : {A B : Obj} -> Equivalence (A ─→ B)
cong : {A B C : Obj}{f₁ f₂ : B ─→ C}{g₁ g₂ : A ─→ B} ->
eq Eq f₁ f₂ -> eq Eq g₁ g₂ -> eq Eq (f₁ ∘ g₁) (f₂ ∘ g₂)
idLeft : {A B : Obj}{f : A ─→ B} -> eq Eq (id ∘ f) f
idRight : {A B : Obj}{f : A ─→ B} -> eq Eq (f ∘ id) f
assoc : {A B C D : Obj}{f : C ─→ D}{g : B ─→ C}{h : A ─→ B} ->
eq Eq ((f ∘ g) ∘ h) (f ∘ (g ∘ h))
module Category (ℂ : Cat) where
private module CC = Cat ℂ
open CC public hiding (_─→_; _∘_)
private module Eq {A B : Obj} = Equivalence (Eq {A}{B})
open Eq public hiding (_==_)
infix 20 _==_
infixr 30 _─→_
infixr 90 _∘_
_─→_ = CC._─→_
_==_ : {A B : Obj} -> Rel (A ─→ B)
_==_ = Eq._==_
_∘_ : {A B C : Obj} -> B ─→ C -> A ─→ B -> A ─→ C
_∘_ = CC._∘_
congL : {A B C : Obj}{f₁ f₂ : B ─→ C}{g : A ─→ B} ->
f₁ == f₂ -> f₁ ∘ g == f₂ ∘ g
congL p = cong p refl
congR : {A B C : Obj}{f : B ─→ C}{g₁ g₂ : A ─→ B} ->
g₁ == g₂ -> f ∘ g₁ == f ∘ g₂
congR p = cong refl p
| 26.82
| 69
| 0.442953
|
d192851248f0d4bb7c3d73b5d4a4a810c6a66789
| 2,498
|
agda
|
Agda
|
Cubical/HITs/Rationals/QuoQ/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Rationals/QuoQ/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Rationals/QuoQ/Base.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Rationals.QuoQ.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Data.Nat as ℕ using (discreteℕ)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Sigma
open import Cubical.HITs.Ints.QuoInt
open import Cubical.HITs.SetQuotients as SetQuotient
using ([_]; eq/; discreteSetQuotients) renaming (_/_ to _//_) public
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base
open BinaryRelation
ℕ₊₁→ℤ : ℕ₊₁ → ℤ
ℕ₊₁→ℤ n = pos (ℕ₊₁→ℕ n)
private
ℕ₊₁→ℤ-hom : ∀ m n → ℕ₊₁→ℤ (m *₊₁ n) ≡ ℕ₊₁→ℤ m * ℕ₊₁→ℤ n
ℕ₊₁→ℤ-hom _ _ = refl
-- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book)
_∼_ : ℤ × ℕ₊₁ → ℤ × ℕ₊₁ → Type₀
(a , b) ∼ (c , d) = a * ℕ₊₁→ℤ d ≡ c * ℕ₊₁→ℤ b
ℚ : Type₀
ℚ = (ℤ × ℕ₊₁) // _∼_
isSetℚ : isSet ℚ
isSetℚ = SetQuotient.squash/
[_/_] : ℤ → ℕ₊₁ → ℚ
[ a / b ] = [ a , b ]
isEquivRel∼ : isEquivRel _∼_
isEquivRel.reflexive isEquivRel∼ (a , b) = refl
isEquivRel.symmetric isEquivRel∼ (a , b) (c , d) = sym
isEquivRel.transitive isEquivRel∼ (a , b) (c , d) (e , f) p q = *-injʳ _ _ _ r
where r = (a * ℕ₊₁→ℤ f) * ℕ₊₁→ℤ d ≡[ i ]⟨ *-comm a (ℕ₊₁→ℤ f) i * ℕ₊₁→ℤ d ⟩
(ℕ₊₁→ℤ f * a) * ℕ₊₁→ℤ d ≡⟨ sym (*-assoc (ℕ₊₁→ℤ f) a (ℕ₊₁→ℤ d)) ⟩
ℕ₊₁→ℤ f * (a * ℕ₊₁→ℤ d) ≡[ i ]⟨ ℕ₊₁→ℤ f * p i ⟩
ℕ₊₁→ℤ f * (c * ℕ₊₁→ℤ b) ≡⟨ *-assoc (ℕ₊₁→ℤ f) c (ℕ₊₁→ℤ b) ⟩
(ℕ₊₁→ℤ f * c) * ℕ₊₁→ℤ b ≡[ i ]⟨ *-comm (ℕ₊₁→ℤ f) c i * ℕ₊₁→ℤ b ⟩
(c * ℕ₊₁→ℤ f) * ℕ₊₁→ℤ b ≡[ i ]⟨ q i * ℕ₊₁→ℤ b ⟩
(e * ℕ₊₁→ℤ d) * ℕ₊₁→ℤ b ≡⟨ sym (*-assoc e (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b)) ⟩
e * (ℕ₊₁→ℤ d * ℕ₊₁→ℤ b) ≡[ i ]⟨ e * *-comm (ℕ₊₁→ℤ d) (ℕ₊₁→ℤ b) i ⟩
e * (ℕ₊₁→ℤ b * ℕ₊₁→ℤ d) ≡⟨ *-assoc e (ℕ₊₁→ℤ b) (ℕ₊₁→ℤ d) ⟩
(e * ℕ₊₁→ℤ b) * ℕ₊₁→ℤ d ∎
eq/⁻¹ : ∀ x y → Path ℚ [ x ] [ y ] → x ∼ y
eq/⁻¹ = SetQuotient.effective (λ _ _ → isSetℤ _ _) isEquivRel∼
discreteℚ : Discrete ℚ
discreteℚ = discreteSetQuotients (discreteΣ discreteℤ (λ _ → subst Discrete 1+Path discreteℕ))
(λ _ _ → isSetℤ _ _) isEquivRel∼ (λ _ _ → discreteℤ _ _)
-- Natural number and negative integer literals for ℚ
open import Cubical.Data.Nat.Literals public
instance
fromNatℚ : HasFromNat ℚ
fromNatℚ = record { Constraint = λ _ → Unit ; fromNat = λ n → [ pos n / 1 ] }
instance
fromNegℚ : HasFromNeg ℚ
fromNegℚ = record { Constraint = λ _ → Unit ; fromNeg = λ n → [ neg n / 1 ] }
| 32.441558
| 94
| 0.556045
|
d0401870df08f3145c2eb030684910a104de0455
| 633
|
agda
|
Agda
|
test/Compiler/simple/VecReverseIrr.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | 4
|
2017-02-24T16:53:22.000Z
|
2019-12-23T04:56:23.000Z
|
test/Compiler/simple/VecReverseIrr.agda
|
Blaisorblade/Agda
|
802a28aa8374f15fe9d011ceb80317fdb1ec0949
|
[
"BSD-3-Clause"
] | 6
|
2017-02-24T19:27:31.000Z
|
2017-02-24T19:38:17.000Z
|
test/Compiler/simple/VecReverseIrr.agda
|
Blaisorblade/Agda
|
802a28aa8374f15fe9d011ceb80317fdb1ec0949
|
[
"BSD-3-Clause"
] | 1
|
2022-03-12T11:39:14.000Z
|
2022-03-12T11:39:14.000Z
|
module _ where
open import Common.Prelude
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : ∀ ..{n} → A → Vec A n → Vec A (suc n)
sum : ∀ {n} → Vec Nat n → Nat
sum (x ∷ xs) = x + sum xs
sum [] = 0
foldl : ∀ {A} {B : Nat → Set} → (∀ ..{n} → B n → A → B (suc n)) → B 0 → ∀ ..{n} → Vec A n → B n
foldl {B = B} f z (x ∷ xs) = foldl {B = λ n → B (suc n)} f (f z x) xs
foldl f z [] = z
reverse : ∀ {A} ..{n} → Vec A n → Vec A n
reverse = foldl {B = Vec _} (λ xs x → x ∷ xs) []
downFrom : ∀ n → Vec Nat n
downFrom zero = []
downFrom (suc n) = n ∷ downFrom n
main : IO Unit
main = printNat (sum (reverse (downFrom 100000)))
| 24.346154
| 95
| 0.503949
|
2e7461e02d1eeda7242ed10c4f36acf7656f25f4
| 19
|
agda
|
Agda
|
test/Fail/A/B/M.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/A/B/M.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/A/B/M.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module A.B.M where
| 9.5
| 18
| 0.736842
|
a0e7c5927d0124eaf8be15534e6d029c252daf6d
| 5,138
|
agda
|
Agda
|
Data/Bin/Addition.agda
|
Rotsor/BinDivMod
|
09cc5104421e88da82f9fead5a43f0028f77810d
|
[
"Unlicense"
] | 1
|
2019-11-18T13:58:14.000Z
|
2019-11-18T13:58:14.000Z
|
Data/Bin/Addition.agda
|
Rotsor/BinDivMod
|
09cc5104421e88da82f9fead5a43f0028f77810d
|
[
"Unlicense"
] | null | null | null |
Data/Bin/Addition.agda
|
Rotsor/BinDivMod
|
09cc5104421e88da82f9fead5a43f0028f77810d
|
[
"Unlicense"
] | null | null | null |
module Data.Bin.Addition where
open import Data.List using ([]; _∷_)
open import Data.Bin using(addBits; addBitLists; addCarryToBitList)
open import Relation.Binary.PropositionalEquality
private
module PropEq = Relation.Binary.PropositionalEquality
open import Data.Fin using (zero; suc) renaming (toℕ to bitToℕ; _+_ to _+F_)
open import Data.Fin.Properties using (_+′_)
open import Data.Digit using (fromDigits)
open import Data.Product
import Data.Nat.Properties
open import Data.Bin.Bijection using (fromℕ-bijection)
module Solving where
open Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Algebra
-- open Algebra.Structures
open CommutativeSemiring Data.Nat.Properties.commutativeSemiring hiding (sym; refl)
open Data.Product
open Data.Nat.Properties.SemiringSolver
lem : ∀ {a b c as bs b' c' r}
→ c' * 2 + b' ≡ c + a + b
→ r ≡ c' + (as + bs)
→ b' + r * 2 ≡ c + (a + as * 2 + (b + bs * 2))
lem {a} {b} {c} {as} {bs} {b'} {c'} {r} eq1 eq2 =
begin
b' + r * 2
≡⟨ cong (λ x → b' + x * 2) eq2 ⟩
b' + (c' + (as + bs)) * 2
≡⟨ cong (λ x → b' + x) (proj₂ distrib 2 c' (as + bs)) ⟩
b' + (c' * 2 + (as + bs) * 2)
≡⟨ sym (+-assoc b' (c' * 2) ((as + bs) * 2)) ⟩
b' + c' * 2 + (as + bs) * 2
≡⟨ +-cong (+-comm b' (c' * 2)) refl ⟩
c' * 2 + b' + (as + bs) * 2
≡⟨ +-cong eq1 refl ⟩
c + a + b + (as + bs) * 2
≡⟨ solve 5 (λ a b c as bs →
c :+ a :+ b :+ (as :+ bs) :* con 2
:= c :+ (a :+ as :* con 2 :+ (b :+ bs :* con 2))
) refl a b c as bs ⟩
c + (a + as * 2 + (b + bs * 2))
∎
open import Data.Nat using () renaming (_+_ to _+_; _*_ to _*_)
open Data.Bin using (toℕ; toBits)
addBits-is-addition : ∀ {c a b} → bitToℕ (proj₁ (addBits c a b)) * 2 + bitToℕ (proj₂ (addBits c a b)) ≡ bitToℕ c + bitToℕ a + bitToℕ b
-- Brute force!!! (LOL)
addBits-is-addition {zero} {zero} {zero} = refl
addBits-is-addition {zero} {zero} {suc zero} = refl
addBits-is-addition {zero} {suc zero} {zero} = refl
addBits-is-addition {zero} {suc zero} {suc zero} = refl
addBits-is-addition {suc zero} {zero} {zero} = refl
addBits-is-addition {suc zero} {zero} {suc zero} = refl
addBits-is-addition {suc zero} {suc zero} {zero} = refl
addBits-is-addition {suc zero} {suc zero} {suc zero} = refl
addBits-is-addition {suc (suc ())}
addBits-is-addition {_} {suc (suc ())}
addBits-is-addition {_} {_} {suc (suc ())}
addCarryToBitLists-is-addition : ∀ c b → fromDigits (addCarryToBitList c b) ≡ bitToℕ c + fromDigits b
addCarryToBitLists-is-addition zero _ = refl
addCarryToBitLists-is-addition (suc zero) [] = refl
addCarryToBitLists-is-addition (suc zero) (zero ∷ t) = refl
addCarryToBitLists-is-addition (suc zero) (suc zero ∷ t) = cong (λ x → x * 2) (addCarryToBitLists-is-addition (suc zero) t)
addCarryToBitLists-is-addition (suc (suc ())) _
addCarryToBitLists-is-addition _ ((suc (suc ())) ∷ _)
open import Data.Nat.Properties using (isCommutativeSemiring)
open import Algebra.Structures
using (module IsCommutativeSemiring;
module IsCommutativeMonoid)
open IsCommutativeSemiring isCommutativeSemiring
using (+-isCommutativeMonoid)
open IsCommutativeMonoid +-isCommutativeMonoid using (identity; comm) renaming (∙-cong to +-cong)
addBitLists-is-addition : ∀ c a b → fromDigits (addBitLists c a b) ≡ bitToℕ c + (fromDigits a + fromDigits b)
addBitLists-is-addition c [] b = addCarryToBitLists-is-addition c b
addBitLists-is-addition c (a ∷ as) [] = trans (addCarryToBitLists-is-addition c (a ∷ as)) (+-cong {bitToℕ c} refl (sym (proj₂ identity (fromDigits (a ∷ as)))))
addBitLists-is-addition c (a ∷ as) (b ∷ bs) with addBits c a b | addBits-is-addition {c} {a} {b}
... | (c' , b') | abia with addBitLists c' as bs | addBitLists-is-addition c' as bs
... | r | ria = Solving.lem {bitToℕ a} {bitToℕ b} {bitToℕ c} {fromDigits as} {fromDigits bs} {bitToℕ b'} {bitToℕ c'} abia ria
open import Function.Inverse using (Inverse)
open import Function.Equality
open import Data.Bin.BitListBijection using () renaming (toℕ⟶ to bits-to-ℕ)
open import Data.Bin.Bijection using (Bits-inverse-Bin)
simplify-fromBits-to-ℕ : ∀ a → toℕ (Data.Bin.fromBits a) ≡ bits-to-ℕ ⟨$⟩ a
simplify-fromBits-to-ℕ a = Π.cong bits-to-ℕ (Inverse.left-inverse-of Bits-inverse-Bin a )
+-is-addition : ∀ a b → toℕ (Data.Bin._+_ a b) ≡ toℕ a + toℕ b
+-is-addition a b =
trans
(simplify-fromBits-to-ℕ (addBitLists zero (toBits a) (toBits b)))
(addBitLists-is-addition zero as bs)
where
as = toBits a
bs = toBits b
import Algebra.Lifting
open import Data.Nat using (ℕ)
open import Data.Bin using (Bin; 0#)
open import Algebra.Structures using (IsCommutativeMonoid)
private module Lifting = Algebra.Lifting _ _ fromℕ-bijection
is-commutativeMonoid : IsCommutativeMonoid _≡_ Data.Bin._+_ 0#
is-commutativeMonoid = lift-isCommutativeMonoid 0 +-isCommutativeMonoid
where
open Lifting.WithOp₂ _+_ Data.Bin._+_ +-is-addition
| 42.816667
| 161
| 0.63332
|
ad19a78ee4ad7ac71d0007a566c462fd7ea198c5
| 2,145
|
agda
|
Agda
|
lib/Haskell/Prim/Applicative.agda
|
flupe/agda2hs
|
4cb28f1b5032948b19b977b390fa260be292abf6
|
[
"MIT"
] | null | null | null |
lib/Haskell/Prim/Applicative.agda
|
flupe/agda2hs
|
4cb28f1b5032948b19b977b390fa260be292abf6
|
[
"MIT"
] | null | null | null |
lib/Haskell/Prim/Applicative.agda
|
flupe/agda2hs
|
4cb28f1b5032948b19b977b390fa260be292abf6
|
[
"MIT"
] | null | null | null |
module Haskell.Prim.Applicative where
open import Haskell.Prim
open import Haskell.Prim.Either
open import Haskell.Prim.Foldable
open import Haskell.Prim.Functor
open import Haskell.Prim.List
open import Haskell.Prim.Maybe
open import Haskell.Prim.Monoid
open import Haskell.Prim.Tuple
--------------------------------------------------
-- Applicative
record Applicative (f : Set → Set) : Set₁ where
infixl 4 _<*>_
field
pure : a → f a
_<*>_ : f (a → b) → f a → f b
overlap ⦃ super ⦄ : Functor f
_<*_ : f a → f b → f a
x <* y = const <$> x <*> y
_*>_ : f a → f b → f b
x *> y = const id <$> x <*> y
open Applicative ⦃ ... ⦄ public
instance
iApplicativeList : Applicative List
iApplicativeList .pure x = x ∷ []
iApplicativeList ._<*>_ fs xs = concatMap (λ f → map f xs) fs
iApplicativeMaybe : Applicative Maybe
iApplicativeMaybe .pure = Just
iApplicativeMaybe ._<*>_ (Just f) (Just x) = Just (f x)
iApplicativeMaybe ._<*>_ _ _ = Nothing
iApplicativeEither : Applicative (Either a)
iApplicativeEither .pure = Right
iApplicativeEither ._<*>_ (Right f) (Right x) = Right (f x)
iApplicativeEither ._<*>_ (Left e) _ = Left e
iApplicativeEither ._<*>_ _ (Left e) = Left e
iApplicativeFun : Applicative (λ b → a → b)
iApplicativeFun .pure = const
iApplicativeFun ._<*>_ f g x = f x (g x)
iApplicativeTuple₂ : ⦃ Monoid a ⦄ → Applicative (a ×_)
iApplicativeTuple₂ .pure x = mempty , x
iApplicativeTuple₂ ._<*>_ (a , f) (b , x) = a <> b , f x
iApplicativeTuple₃ : ⦃ Monoid a ⦄ → ⦃ Monoid b ⦄ → Applicative (a × b ×_)
iApplicativeTuple₃ .pure x = mempty , mempty , x
iApplicativeTuple₃ ._<*>_ (a , b , f) (a₁ , b₁ , x) = a <> a₁ , b <> b₁ , f x
iApplicativeTuple₄ : ⦃ Monoid a ⦄ → ⦃ Monoid b ⦄ → ⦃ Monoid c ⦄ →
Applicative (λ d → Tuple (a ∷ b ∷ c ∷ d ∷ []))
iApplicativeTuple₄ .pure x = mempty ∷ mempty ∷ mempty ∷ x ∷ []
iApplicativeTuple₄ ._<*>_ (a ∷ b ∷ c ∷ f ∷ []) (a₁ ∷ b₁ ∷ c₁ ∷ x ∷ []) =
a <> a₁ ∷ b <> b₁ ∷ c <> c₁ ∷ f x ∷ []
| 33
| 89
| 0.567366
|
196f91f523777791d6f9b80cd5795a5397cd6a91
| 10,744
|
agda
|
Agda
|
src/Up-to/Closure.agda
|
nad/up-to
|
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
|
[
"MIT"
] | null | null | null |
src/Up-to/Closure.agda
|
nad/up-to
|
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
|
[
"MIT"
] | null | null | null |
src/Up-to/Closure.agda
|
nad/up-to
|
b936ff85411baf3401ad85ce85d5ff2e9aa0ca14
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Closure properties for Compatible and Size-preserving
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Up-to.Closure where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude as P
open import Prelude.Size
open import Bijection equality-with-J using (_↔_)
open import Function-universe equality-with-J hiding (id; _∘_)
import Bisimilarity
open import Indexed-container hiding (Bisimilarity)
open import Indexed-container.Combinators hiding (id; _∘_)
open import Labelled-transition-system
import Labelled-transition-system.CCS
open import Relation
import Similarity
import Similarity.CCS as SC
open import Up-to
private
module CCS {ℓ} (Name : Type ℓ) where
open Labelled-transition-system.CCS Name public
open module B = Bisimilarity CCS public
open module S = Similarity CCS public using (Similarity)
------------------------------------------------------------------------
-- Closure properties for Compatible
-- The results in this section are closely related to
-- Proposition 6.3.21 in Pous and Sangiorgi's "Enhancements of the
-- bisimulation proof method".
-- The function flip Compatible F is closed under _⊗_, assuming that F
-- is monotone.
Compatible-⊗ :
∀ {ℓ} {I : Type ℓ} {C₁ C₂ : Container I I} {F : Trans ℓ I} →
Monotone F →
Compatible C₁ F → Compatible C₂ F → Compatible (C₁ ⊗ C₂) F
Compatible-⊗ {C₁ = C₁} {C₂} {F} mono comp₁ comp₂ {R = R} =
F (⟦ C₁ ⊗ C₂ ⟧ R) ⊆⟨ mono (⟦⊗⟧↔ _ C₁ C₂) ⟩
F (⟦ C₁ ⟧ R ∩ ⟦ C₂ ⟧ R) ⊆⟨ (λ x → mono proj₁ x , mono proj₂ x) ⟩
F (⟦ C₁ ⟧ R) ∩ F (⟦ C₂ ⟧ R) ⊆⟨ Σ-map comp₁ comp₂ ⟩
⟦ C₁ ⟧ (F R) ∩ ⟦ C₂ ⟧ (F R) ⊆⟨ _⇔_.from (⟦⊗⟧↔ _ C₁ C₂) ⟩∎
⟦ C₁ ⊗ C₂ ⟧ (F R) ∎
-- The function flip Compatible F is closed under reindex₁ f, assuming
-- that F is monotone and f-symmetric.
Compatible-reindex₁ :
∀ {ℓ} {I : Type ℓ} {C : Container I I} {F : Trans ℓ I} {f : I → I} →
Monotone F → Symmetric f F →
Compatible C F → Compatible (reindex₁ f C) F
Compatible-reindex₁ {C = C} {F} {f} mono hyp comp {R = R} =
F (⟦ reindex₁ f C ⟧ R) ⊆⟨ mono (⟦reindex₁⟧↔ _ C) ⟩
F (⟦ C ⟧ (R ∘ f)) ⊆⟨ comp ⟩
⟦ C ⟧ (F (R ∘ f)) ⊆⟨ map C (hyp _) ⟩
⟦ C ⟧ (F R ∘ f) ⊆⟨ _⇔_.from (⟦reindex₁⟧↔ _ C) ⟩∎
⟦ reindex₁ f C ⟧ (F R) ∎
-- The function flip Compatible F is closed under reindex₂ f, assuming
-- that F is f-symmetric.
Compatible-reindex₂ :
∀ {ℓ} {I : Type ℓ} {C : Container I I} {F : Trans ℓ I} {f : I → I} →
Symmetric f F →
Compatible C F → Compatible (reindex₂ f C) F
Compatible-reindex₂ {C = C} {F} {f} hyp comp {R = R} =
F (⟦ reindex₂ f C ⟧ R) ⊆⟨⟩
F (⟦ C ⟧ R ∘ f) ⊆⟨ hyp _ ⟩
F (⟦ C ⟧ R) ∘ f ⊆⟨ comp ⟩
⟦ C ⟧ (F R) ∘ f ⊆⟨ id ⟩∎
⟦ reindex₂ f C ⟧ (F R) ∎
-- The function flip Compatible F is closed under reindex f, assuming
-- that F is monotone and f-symmetric.
Compatible-reindex :
∀ {ℓ} {I : Type ℓ} {C : Container I I} {F : Trans ℓ I} {f : I → I} →
Monotone F → Symmetric f F →
Compatible C F → Compatible (reindex f C) F
Compatible-reindex {C = C} {F} {f} mono hyp =
Compatible C F ↝⟨ Compatible-reindex₁ mono hyp ⟩
Compatible (reindex₁ f C) F ↝⟨ Compatible-reindex₂ hyp ⟩
Compatible (reindex₂ f (reindex₁ f C)) F ↔⟨⟩
Compatible (reindex f C) F □
-- The function flip Compatible F is closed under _⟷_, assuming that F
-- is monotone and symmetric.
Compatible-⟷ :
∀ {ℓ} {I : Type ℓ}
{C₁ C₂ : Container (I × I) (I × I)} {F : Trans₂ ℓ I} →
Monotone F → Symmetric swap F →
Compatible C₁ F → Compatible C₂ F → Compatible (C₁ ⟷ C₂) F
Compatible-⟷ {C₁ = C₁} {C₂} {F} mono sym = curry (
Compatible C₁ F × Compatible C₂ F ↝⟨ Σ-map id (Compatible-reindex mono sym) ⟩
Compatible C₁ F × Compatible (reindex swap C₂) F ↝⟨ uncurry (Compatible-⊗ mono) ⟩
Compatible (C₁ ⊗ reindex swap C₂) F ↔⟨⟩
Compatible (C₁ ⟷ C₂) F □)
-- An instance of the result above: If F is monotone and symmetric,
-- and compatible for strong similarity for some LTS, then F is
-- compatible for strong bisimilarity for this LTS.
compatible-for-similarity→compatible-for-bisimilarity :
∀ {ℓ} {lts : LTS ℓ} {F} →
Monotone F → Symmetric swap F →
Compatible (Similarity.StepC lts) F →
Compatible (Bisimilarity.StepC lts) F
compatible-for-similarity→compatible-for-bisimilarity mono sym comp =
Compatible-⟷ mono sym comp comp
------------------------------------------------------------------------
-- Closure properties for Size-preserving
-- The function flip Size-preserving F is closed under reindex,
-- assuming that F is f-symmetric for an involutory function f.
--
-- Note that the assumptions are different from the ones asked for in
-- Compatible-reindex: monotonicity of F has been replaced by the
-- assumption that f is an involution.
Size-preserving-reindex :
∀ {ℓ} {I : Type ℓ} {C : Container I I} {F : Trans ℓ I} {f : I → I} →
f ∘ f ≡ id → Symmetric f F →
Size-preserving C F → Size-preserving (reindex f C) F
Size-preserving-reindex {C = C} {F} {f}
inv hyp pres {R = R} {i = i} R⊆ =
F R ⊆⟨ (λ {x} → subst (λ g → F (R ∘ g) x) (sym inv)) ⟩
F (R ∘ f ∘ f) ⊆⟨ hyp _ ⟩
F (R ∘ f) ∘ f ⊆⟨ pres (
R ∘ f ⊆⟨ R⊆ ⟩
ν (reindex f C) i ∘ f ⊆⟨ _⇔_.to (ν-reindex⇔ inv) ⟩
ν C i ∘ f ∘ f ⊆⟨ (λ {x} → subst (λ g → ν C i (g x)) inv) ⟩∎
ν C i ∎) ⟩
ν C i ∘ f ⊆⟨ _⇔_.from (ν-reindex⇔ inv) ⟩∎
ν (reindex f C) i ∎
-- Some negative results:
--
-- * For inhabited name types it is not in general the case that a
-- monotone and symmetric function F that is size-preserving for
-- similarity for CCS is also size-preserving for bisimilarity for
-- CCS.
--
-- * It is not in general the case that if F is monotone and
-- symmetric, and size-preserving for strong similarity for some
-- LTS, then F is size-preserving for strong bisimilarity for this
-- LTS.
--
-- * The function flip Size-preserving F is not closed under _⟷_ for
-- all F, not even those that are monotone and symmetric.
--
-- * Furthermore flip Size-preserving F is not closed under _⊗_ for
-- all F, not even those that are monotone.
¬-Size-preserving-⟷/⊗ :
∀ {ℓ} →
({Name : Type ℓ} →
let open CCS Name in
Name →
¬ ({F : Trans₂ ℓ (Proc ∞)} →
Monotone F → Symmetric swap F →
Size-preserving S.StepC F →
Size-preserving B.StepC F))
×
¬ (∀ {lts : LTS ℓ} {F} →
Monotone F → Symmetric swap F →
Size-preserving (Similarity.StepC lts) F →
Size-preserving (Bisimilarity.StepC lts) F)
×
¬ ({I : Type ℓ} {C₁ C₂ : Container (I × I) (I × I)}
{F : Trans₂ ℓ I} →
Monotone F → Symmetric swap F →
Size-preserving C₁ F → Size-preserving C₂ F →
Size-preserving (C₁ ⟷ C₂) F)
×
¬ ({I : Type ℓ} {C₁ C₂ : Container I I} {F : Trans ℓ I} →
Monotone F →
Size-preserving C₁ F → Size-preserving C₂ F →
Size-preserving (C₁ ⊗ C₂) F)
¬-Size-preserving-⟷/⊗ {ℓ} =
Lemmas.contradiction₂
, Lemmas.contradiction₃ (lift tt)
, Lemmas.contradiction₄ (lift tt)
, Lemmas.contradiction₅ (lift tt)
where
module Lemmas {Name : Type ℓ} (a : Name) where
open CCS Name public
≤≥≁ = SC.≤≥≁ a
m₁ = proj₁ ≤≥≁
m₂ = proj₁ (proj₂ ≤≥≁)
F : Trans₂ ℓ (Proc ∞)
F R = R ∪ (_≡ (m₁ , m₂)) ∪ (_≡ (m₂ , m₁))
mono : Monotone F
mono R⊆S = ⊎-map R⊆S id
symm : Symmetric swap F
symm R =
F (R ⁻¹) ⊆⟨⟩
R ⁻¹ ∪ (_≡ (m₁ , m₂)) ∪ (_≡ (m₂ , m₁)) ⊆⟨ ⊎-map id P.[ inj₂ ∘ lemma , inj₁ ∘ lemma ] ⟩
R ⁻¹ ∪ (_≡ (m₁ , m₂)) ⁻¹ ∪ (_≡ (m₂ , m₁)) ⁻¹ ⊆⟨ id ⟩∎
F R ⁻¹ ∎
where
lemma : {p₁ p₂ : Proc ∞ × Proc ∞} → p₁ ≡ swap p₂ → swap p₁ ≡ p₂
lemma refl = refl
pres : Size-preserving S.StepC F
pres {R = R} {i = i} R⊆ =
F R ⊆⟨⟩
R ∪ (_≡ (m₁ , m₂)) ∪ (_≡ (m₂ , m₁)) ⊆⟨ [ R⊆ , helper ] ⟩∎
Similarity i ∎
where
helper : ∀ {p} → p ≡ (m₁ , m₂) ⊎ p ≡ (m₂ , m₁) → Similarity i p
helper (inj₁ refl) = proj₁ (proj₂ (proj₂ ≤≥≁))
helper (inj₂ refl) = proj₁ (proj₂ (proj₂ (proj₂ ≤≥≁)))
contradiction =
Size-preserving B.StepC F ↝⟨ (λ hyp → _⇔_.to (monotone→⇔ _ mono) hyp) ⟩
F (Bisimilarity ∞) ⊆ Bisimilarity ∞ ↝⟨ _$ inj₂ (inj₁ refl) ⟩
m₁ ∼ m₂ ↝⟨ proj₂ (proj₂ (proj₂ (proj₂ ≤≥≁))) ⟩□
⊥ □
contradiction₂ =
({F : Trans₂ ℓ (Proc ∞)} →
Monotone F → Symmetric swap F →
Size-preserving S.StepC F →
Size-preserving B.StepC F) ↝⟨ (λ closed → closed mono symm pres) ⟩
Size-preserving B.StepC F ↝⟨ contradiction ⟩□
⊥ □
contradiction₃ =
(∀ {lts : LTS ℓ} {F} →
Monotone F → Symmetric swap F →
Size-preserving (Similarity.StepC lts) F →
Size-preserving (Bisimilarity.StepC lts) F) ↝⟨ (λ closed mono sym pres → closed mono sym pres) ⟩
({F : Trans₂ ℓ (Proc ∞)} →
Monotone F → Symmetric swap F →
Size-preserving S.StepC F →
Size-preserving B.StepC F) ↝⟨ contradiction₂ ⟩□
⊥ □
contradiction₄ =
({I : Type ℓ} {C₁ C₂ : Container (I × I) (I × I)}
{F : Trans₂ ℓ I} →
Monotone F → Symmetric swap F →
Size-preserving C₁ F → Size-preserving C₂ F →
Size-preserving (C₁ ⟷ C₂) F) ↝⟨ (λ closed mono symm pres → closed mono symm pres pres) ⟩
(∀ {lts : LTS ℓ} {F} →
Monotone F → Symmetric swap F →
Size-preserving (Similarity.StepC lts) F →
Size-preserving (Bisimilarity.StepC lts) F) ↝⟨ contradiction₃ ⟩□
⊥ □
contradiction₅ =
({I : Type ℓ} {C₁ C₂ : Container I I}
{F : Trans ℓ I} →
Monotone F →
Size-preserving C₁ F → Size-preserving C₂ F →
Size-preserving (C₁ ⊗ C₂) F) ↝⟨ (λ closed → closed mono pres) ⟩
(Size-preserving (reindex swap S.StepC) F →
Size-preserving B.StepC F) ↝⟨ _$ Size-preserving-reindex refl symm pres ⟩
Size-preserving B.StepC F ↝⟨ contradiction ⟩□
⊥ □
| 37.176471
| 117
| 0.534066
|
d1424370aabde231ee9f6a5ed62dcf90eb17eff5
| 11,628
|
agda
|
Agda
|
agda-stdlib/src/Data/List/Membership/Setoid/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/List/Membership/Setoid/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/List/Membership/Setoid/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to setoid list membership
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Membership.Setoid.Properties where
open import Algebra using (Op₂; Selective)
open import Data.Bool.Base using (true; false)
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.List.Base
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Relation.Unary.All as All using (All)
import Data.List.Relation.Unary.Any.Properties as Any
import Data.List.Membership.Setoid as Membership
import Data.List.Relation.Binary.Equality.Setoid as Equality
import Data.List.Relation.Unary.Unique.Setoid as Unique
open import Data.Nat.Base using (suc; z≤n; s≤s; _≤_; _<_)
open import Data.Nat.Properties using (≤-trans; n≤1+n)
open import Data.Product as Prod using (∃; _×_; _,_ ; ∃₂; proj₁)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Function using (_$_; flip; _∘_; id)
open import Relation.Binary as B hiding (Decidable)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Unary as U using (Decidable; Pred)
open import Relation.Nullary using (¬_; does; _because_; yes; no)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary.Negation using (¬?; contradiction)
open Setoid using (Carrier)
------------------------------------------------------------------------
-- Equality properties
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S
open Equality S
open Membership S
-- _∈_ respects the underlying equality
∈-resp-≈ : ∀ {xs} → (_∈ xs) Respects _≈_
∈-resp-≈ x≈y x∈xs = Any.map (trans (sym x≈y)) x∈xs
∉-resp-≈ : ∀ {xs} → (_∉ xs) Respects _≈_
∉-resp-≈ v≈w v∉xs w∈xs = v∉xs (∈-resp-≈ (sym v≈w) w∈xs)
∈-resp-≋ : ∀ {x} → (x ∈_) Respects _≋_
∈-resp-≋ = Any.lift-resp (flip trans)
∉-resp-≋ : ∀ {x} → (x ∉_) Respects _≋_
∉-resp-≋ xs≋ys v∉xs v∈ys = v∉xs (∈-resp-≋ (≋-sym xs≋ys) v∈ys)
------------------------------------------------------------------------
-- Irrelevance
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S
open Unique S
open Membership S
private
∉×∈⇒≉ : ∀ {x y xs} → All (y ≉_) xs → x ∈ xs → x ≉ y
∉×∈⇒≉ = All.lookupWith λ y≉z x≈z x≈y → y≉z (trans (sym x≈y) x≈z)
unique⇒irrelevant : B.Irrelevant _≈_ → ∀ {xs} → Unique xs → U.Irrelevant (_∈ xs)
unique⇒irrelevant ≈-irr _ (here p) (here q) =
P.cong here (≈-irr p q)
unique⇒irrelevant ≈-irr (_ ∷ u) (there p) (there q) =
P.cong there (unique⇒irrelevant ≈-irr u p q)
unique⇒irrelevant ≈-irr (≉s ∷ _) (here p) (there q) =
contradiction p (∉×∈⇒≉ ≉s q)
unique⇒irrelevant ≈-irr (≉s ∷ _) (there p) (here q) =
contradiction q (∉×∈⇒≉ ≉s p)
------------------------------------------------------------------------
-- mapWith∈
module _ {c₁ c₂ ℓ₁ ℓ₂} (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) where
open Setoid S₁ renaming (Carrier to A₁; _≈_ to _≈₁_; refl to refl₁)
open Setoid S₂ renaming (Carrier to A₂; _≈_ to _≈₂_; refl to refl₂)
open Equality S₁ using ([]; _∷_) renaming (_≋_ to _≋₁_)
open Equality S₂ using () renaming (_≋_ to _≋₂_)
open Membership S₁
mapWith∈-cong : ∀ {xs ys} → xs ≋₁ ys →
(f : ∀ {x} → x ∈ xs → A₂) →
(g : ∀ {y} → y ∈ ys → A₂) →
(∀ {x y} → x ≈₁ y → (x∈xs : x ∈ xs) (y∈ys : y ∈ ys) →
f x∈xs ≈₂ g y∈ys) →
mapWith∈ xs f ≋₂ mapWith∈ ys g
mapWith∈-cong [] f g cong = []
mapWith∈-cong (x≈y ∷ xs≋ys) f g cong =
cong x≈y (here refl₁) (here refl₁) ∷
mapWith∈-cong xs≋ys (f ∘ there) (g ∘ there)
(λ x≈y x∈xs y∈ys → cong x≈y (there x∈xs) (there y∈ys))
mapWith∈≗map : ∀ f xs → mapWith∈ xs (λ {x} _ → f x) ≋₂ map f xs
mapWith∈≗map f [] = []
mapWith∈≗map f (x ∷ xs) = refl₂ ∷ mapWith∈≗map f xs
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S
open Membership S
length-mapWith∈ : ∀ {a} {A : Set a} xs {f : ∀ {x} → x ∈ xs → A} →
length (mapWith∈ xs f) ≡ length xs
length-mapWith∈ [] = P.refl
length-mapWith∈ (x ∷ xs) = P.cong suc (length-mapWith∈ xs)
------------------------------------------------------------------------
-- map
module _ {c₁ c₂ ℓ₁ ℓ₂} (S₁ : Setoid c₁ ℓ₁) (S₂ : Setoid c₂ ℓ₂) where
open Setoid S₁ renaming (Carrier to A₁; _≈_ to _≈₁_; refl to refl₁)
open Setoid S₂ renaming (Carrier to A₂; _≈_ to _≈₂_)
private module M₁ = Membership S₁; open M₁ using (find) renaming (_∈_ to _∈₁_)
private module M₂ = Membership S₂; open M₂ using () renaming (_∈_ to _∈₂_)
∈-map⁺ : ∀ {f} → f Preserves _≈₁_ ⟶ _≈₂_ → ∀ {v xs} →
v ∈₁ xs → f v ∈₂ map f xs
∈-map⁺ pres x∈xs = Any.map⁺ (Any.map pres x∈xs)
∈-map⁻ : ∀ {v xs f} → v ∈₂ map f xs →
∃ λ x → x ∈₁ xs × v ≈₂ f x
∈-map⁻ x∈map = find (Any.map⁻ x∈map)
map-∷= : ∀ {f} (f≈ : f Preserves _≈₁_ ⟶ _≈₂_)
{xs x v} → (x∈xs : x ∈₁ xs) →
map f (x∈xs M₁.∷= v) ≡ ∈-map⁺ f≈ x∈xs M₂.∷= f v
map-∷= f≈ (here x≈y) = P.refl
map-∷= f≈ (there x∈xs) = P.cong (_ ∷_) (map-∷= f≈ x∈xs)
------------------------------------------------------------------------
-- _++_
module _ {c ℓ} (S : Setoid c ℓ) where
open Membership S using (_∈_)
open Setoid S
open Equality S using (_≋_; _∷_; ≋-refl)
∈-++⁺ˡ : ∀ {v xs ys} → v ∈ xs → v ∈ xs ++ ys
∈-++⁺ˡ = Any.++⁺ˡ
∈-++⁺ʳ : ∀ {v} xs {ys} → v ∈ ys → v ∈ xs ++ ys
∈-++⁺ʳ = Any.++⁺ʳ
∈-++⁻ : ∀ {v} xs {ys} → v ∈ xs ++ ys → (v ∈ xs) ⊎ (v ∈ ys)
∈-++⁻ = Any.++⁻
∈-insert : ∀ xs {ys v w} → v ≈ w → v ∈ xs ++ [ w ] ++ ys
∈-insert xs = Any.++-insert xs
∈-∃++ : ∀ {v xs} → v ∈ xs → ∃₂ λ ys zs → ∃ λ w →
v ≈ w × xs ≋ ys ++ [ w ] ++ zs
∈-∃++ (here px) = [] , _ , _ , px , ≋-refl
∈-∃++ (there {d} v∈xs) with ∈-∃++ v∈xs
... | hs , _ , _ , v≈v′ , eq = d ∷ hs , _ , _ , v≈v′ , refl ∷ eq
------------------------------------------------------------------------
-- concat
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S using (_≈_)
open Membership S using (_∈_)
open Equality S using (≋-setoid)
open Membership ≋-setoid using (find) renaming (_∈_ to _∈ₗ_)
∈-concat⁺ : ∀ {v xss} → Any (v ∈_) xss → v ∈ concat xss
∈-concat⁺ = Any.concat⁺
∈-concat⁻ : ∀ {v} xss → v ∈ concat xss → Any (v ∈_) xss
∈-concat⁻ = Any.concat⁻
∈-concat⁺′ : ∀ {v vs xss} → v ∈ vs → vs ∈ₗ xss → v ∈ concat xss
∈-concat⁺′ v∈vs = ∈-concat⁺ ∘ Any.map (flip (∈-resp-≋ S) v∈vs)
∈-concat⁻′ : ∀ {v} xss → v ∈ concat xss → ∃ λ xs → v ∈ xs × xs ∈ₗ xss
∈-concat⁻′ xss v∈c[xss] with find (∈-concat⁻ xss v∈c[xss])
... | xs , t , s = xs , s , t
------------------------------------------------------------------------
-- applyUpTo
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S using (_≈_; refl)
open Membership S using (_∈_)
∈-applyUpTo⁺ : ∀ f {i n} → i < n → f i ∈ applyUpTo f n
∈-applyUpTo⁺ f = Any.applyUpTo⁺ f refl
∈-applyUpTo⁻ : ∀ {v} f {n} → v ∈ applyUpTo f n →
∃ λ i → i < n × v ≈ f i
∈-applyUpTo⁻ = Any.applyUpTo⁻
------------------------------------------------------------------------
-- tabulate
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S using (_≈_; refl) renaming (Carrier to A)
open Membership S using (_∈_)
∈-tabulate⁺ : ∀ {n} {f : Fin n → A} i → f i ∈ tabulate f
∈-tabulate⁺ i = Any.tabulate⁺ i refl
∈-tabulate⁻ : ∀ {n} {f : Fin n → A} {v} →
v ∈ tabulate f → ∃ λ i → v ≈ f i
∈-tabulate⁻ = Any.tabulate⁻
------------------------------------------------------------------------
-- filter
module _ {c ℓ p} (S : Setoid c ℓ) {P : Pred (Carrier S) p}
(P? : Decidable P) (resp : P Respects (Setoid._≈_ S)) where
open Setoid S using (_≈_; sym)
open Membership S using (_∈_)
∈-filter⁺ : ∀ {v xs} → v ∈ xs → P v → v ∈ filter P? xs
∈-filter⁺ {xs = x ∷ _} (here v≈x) Pv with P? x
... | true because _ = here v≈x
... | false because [¬Px] = contradiction (resp v≈x Pv) (invert [¬Px])
∈-filter⁺ {xs = x ∷ _} (there v∈xs) Pv with does (P? x)
... | true = there (∈-filter⁺ v∈xs Pv)
... | false = ∈-filter⁺ v∈xs Pv
∈-filter⁻ : ∀ {v xs} → v ∈ filter P? xs → v ∈ xs × P v
∈-filter⁻ {xs = x ∷ xs} v∈f[x∷xs] with P? x
... | false because _ = Prod.map there id (∈-filter⁻ v∈f[x∷xs])
... | true because [Px] with v∈f[x∷xs]
... | here v≈x = here v≈x , resp (sym v≈x) (invert [Px])
... | there v∈fxs = Prod.map there id (∈-filter⁻ v∈fxs)
------------------------------------------------------------------------
-- derun and deduplicate
module _ {c ℓ r} (S : Setoid c ℓ) {R : Rel (Carrier S) r} (R? : B.Decidable R) where
open Setoid S using (_≈_)
open Membership S using (_∈_)
∈-derun⁺ : _≈_ Respectsʳ R → ∀ {xs z} → z ∈ xs → z ∈ derun R? xs
∈-derun⁺ ≈-resp-R z∈xs = Any.derun⁺ R? ≈-resp-R z∈xs
∈-deduplicate⁺ : _≈_ Respectsʳ (flip R) → ∀ {xs z} → z ∈ xs → z ∈ deduplicate R? xs
∈-deduplicate⁺ ≈-resp-R z∈xs = Any.deduplicate⁺ R? ≈-resp-R z∈xs
∈-derun⁻ : ∀ xs {z} → z ∈ derun R? xs → z ∈ xs
∈-derun⁻ xs z∈derun[R,xs] = Any.derun⁻ R? z∈derun[R,xs]
∈-deduplicate⁻ : ∀ xs {z} → z ∈ deduplicate R? xs → z ∈ xs
∈-deduplicate⁻ xs z∈dedup[R,xs] = Any.deduplicate⁻ R? z∈dedup[R,xs]
------------------------------------------------------------------------
-- length
module _ {c ℓ} (S : Setoid c ℓ) where
open Membership S using (_∈_)
∈-length : ∀ {x xs} → x ∈ xs → 1 ≤ length xs
∈-length (here px) = s≤s z≤n
∈-length (there x∈xs) = ≤-trans (∈-length x∈xs) (n≤1+n _)
------------------------------------------------------------------------
-- lookup
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S using (refl)
open Membership S using (_∈_)
∈-lookup : ∀ xs i → lookup xs i ∈ xs
∈-lookup (x ∷ xs) zero = here refl
∈-lookup (x ∷ xs) (suc i) = there (∈-lookup xs i)
------------------------------------------------------------------------
-- foldr
module _ {c ℓ} (S : Setoid c ℓ) {_•_ : Op₂ (Carrier S)} where
open Setoid S using (_≈_; refl; sym; trans)
open Membership S using (_∈_)
foldr-selective : Selective _≈_ _•_ → ∀ e xs →
(foldr _•_ e xs ≈ e) ⊎ (foldr _•_ e xs ∈ xs)
foldr-selective •-sel i [] = inj₁ refl
foldr-selective •-sel i (x ∷ xs) with •-sel x (foldr _•_ i xs)
... | inj₁ x•f≈x = inj₂ (here x•f≈x)
... | inj₂ x•f≈f with foldr-selective •-sel i xs
... | inj₁ f≈i = inj₁ (trans x•f≈f f≈i)
... | inj₂ f∈xs = inj₂ (∈-resp-≈ S (sym x•f≈f) (there f∈xs))
------------------------------------------------------------------------
-- _∷=_
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S
open Membership S
∈-∷=⁺-updated : ∀ {xs x v} (x∈xs : x ∈ xs) → v ∈ (x∈xs ∷= v)
∈-∷=⁺-updated (here px) = here refl
∈-∷=⁺-updated (there pxs) = there (∈-∷=⁺-updated pxs)
∈-∷=⁺-untouched : ∀ {xs x y v} (x∈xs : x ∈ xs) → (¬ x ≈ y) → y ∈ xs → y ∈ (x∈xs ∷= v)
∈-∷=⁺-untouched (here x≈z) x≉y (here y≈z) = contradiction (trans x≈z (sym y≈z)) x≉y
∈-∷=⁺-untouched (here x≈z) x≉y (there y∈xs) = there y∈xs
∈-∷=⁺-untouched (there x∈xs) x≉y (here y≈z) = here y≈z
∈-∷=⁺-untouched (there x∈xs) x≉y (there y∈xs) = there (∈-∷=⁺-untouched x∈xs x≉y y∈xs)
∈-∷=⁻ : ∀ {xs x y v} (x∈xs : x ∈ xs) → (¬ y ≈ v) → y ∈ (x∈xs ∷= v) → y ∈ xs
∈-∷=⁻ (here x≈z) y≉v (here y≈v) = contradiction y≈v y≉v
∈-∷=⁻ (here x≈z) y≉v (there y∈) = there y∈
∈-∷=⁻ (there x∈xs) y≉v (here y≈z) = here y≈z
∈-∷=⁻ (there x∈xs) y≉v (there y∈) = there (∈-∷=⁻ x∈xs y≉v y∈)
| 35.236364
| 89
| 0.489594
|
4b675c23c89d77dca54d323e404401c1f6e33ff3
| 2,153
|
agda
|
Agda
|
agda/PLRTree/Complete/Properties.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | 6
|
2015-05-21T12:50:35.000Z
|
2021-08-24T22:11:15.000Z
|
agda/PLRTree/Complete/Properties.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
agda/PLRTree/Complete/Properties.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
module PLRTree.Complete.Properties {A : Set} where
open import Data.Empty
open import Data.Sum renaming (_⊎_ to _∨_)
open import PLRTree {A}
open import PLRTree.Complete {A}
open import PLRTree.Equality {A}
open import PLRTree.Equality.Properties {A}
lemma-⋗-≃ : {t t' t'' : PLRTree} → t ⋗ t' → t' ≃ t'' → t ⋗ t''
lemma-⋗-≃ (⋗lf x) ≃lf = ⋗lf x
lemma-⋗-≃ (⋗nd x x' l≃r l'≃r' l⋗l') (≃nd .x' x'' _ l''≃r'' l'≃l'') = ⋗nd x x'' l≃r l''≃r'' (lemma-⋗-≃ l⋗l' l'≃l'')
lemma-≃-⋗ : {t t' t'' : PLRTree} → t ≃ t' → t ⋗ t'' → t' ⋗ t''
lemma-≃-⋗ ≃lf t⋗t'' = t⋗t''
lemma-≃-⋗ (≃nd x x' ≃lf ≃lf ≃lf) (⋗lf .x) = ⋗lf x'
lemma-≃-⋗ (≃nd x _ ≃lf (≃nd _ _ _ _ _) ()) (⋗lf .x)
lemma-≃-⋗ (≃nd x x' l≃r l'≃r' l≃l') (⋗nd .x x'' _ l''≃r'' l⋗l'') = ⋗nd x' x'' l'≃r' l''≃r'' (lemma-≃-⋗ l≃l' l⋗l'')
lemma-⋗* : {t t' t'' : PLRTree} → t ⋗ t' → t ⋗ t'' → t' ≃ t''
lemma-⋗* (⋗lf x) (⋗lf .x) = ≃lf
lemma-⋗* (⋗lf x) (⋗nd .x _ _ _ ())
lemma-⋗* (⋗nd x _ _ _ ()) (⋗lf .x)
lemma-⋗* (⋗nd x x' l≃r l'≃r' l⋗l') (⋗nd .x x'' _ l''≃r'' l'⋗l'') = ≃nd x' x'' l'≃r' l''≃r'' (lemma-⋗* l⋗l' l'⋗l'')
lemma-*⋗ : {t t' t'' : PLRTree} → t ⋗ t' → t'' ⋗ t' → t ≃ t''
lemma-*⋗ (⋗lf x) (⋗lf y) = ≃nd x y ≃lf ≃lf ≃lf
lemma-*⋗ (⋗nd x x' l≃r l'≃r' l⋗l') (⋗nd x'' .x' l''≃r'' _ l''⋗l') = ≃nd x x'' l≃r l''≃r'' (lemma-*⋗ l⋗l' l''⋗l')
lemma-⋗refl-⊥ : {t : PLRTree} → t ⋗ t → ⊥
lemma-⋗refl-⊥ (⋗nd x .x _ _ t⋗t)
with lemma-⋗refl-⊥ t⋗t
... | ()
lemma-⋙-⋗ : {t t' t'' : PLRTree} → t ⋙ t' → t ⋗ t'' → t' ⋘ t'' ∨ t' ≃ t''
lemma-⋙-⋗ (⋙p (⋗lf x)) (⋗lf .x) = inj₂ ≃lf
lemma-⋙-⋗ (⋙p (⋗nd x _ _ _ ())) (⋗lf .x)
lemma-⋙-⋗ (⋙p (⋗lf x)) (⋗nd .x _ _ _ ())
lemma-⋙-⋗ (⋙p (⋗nd x x' l≃r l'≃r' l⋗l')) (⋗nd .x x'' _ l''≃r'' l⋗l'') = inj₂ (≃nd x' x'' l'≃r' l''≃r'' (lemma-⋗* l⋗l' l⋗l''))
lemma-⋙-⋗ (⋙l x _ _ _ ()) (⋗lf .x)
lemma-⋙-⋗ (⋙l x x' l≃r l'⋘r' l⋗r') (⋗nd .x x'' _ l''≃r'' l⋗l'') = inj₁ (l⋘ x' x'' l'⋘r' l''≃r'' (lemma-⋗* l⋗r' l⋗l''))
lemma-⋙-⋗ (⋙r x x' ≃lf (⋙p ()) ≃lf) (⋗lf .x)
lemma-⋙-⋗ (⋙r x x' ≃lf (⋙l _ _ _ _ _) ()) (⋗lf .x)
lemma-⋙-⋗ (⋙r x x' ≃lf (⋙r _ _ _ _ _) ()) (⋗lf .x)
lemma-⋙-⋗ (⋙r x x' l≃r l'⋙r' l≃l') (⋗nd .x x'' _ l''≃r'' l⋗l'') = inj₁ (r⋘ x' x'' l'⋙r' l''≃r'' (lemma-≃-⋗ l≃l' l⋗l''))
| 42.215686
| 126
| 0.41477
|
9a8ffe895ae376fb2cdc98dabb02df73c2b8cb70
| 7,940
|
agda
|
Agda
|
complexity-drafts/Comp-lang.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 2
|
2016-04-26T20:22:22.000Z
|
2019-08-08T12:27:18.000Z
|
complexity-drafts/Comp-lang.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | 1
|
2020-03-23T08:39:04.000Z
|
2020-05-12T00:32:45.000Z
|
complexity-drafts/Comp-lang.agda
|
benhuds/Agda
|
2404a6ef2688f879bda89860bb22f77664ad813e
|
[
"MIT"
] | null | null | null |
{- Name: Bowornmet (Ben) Hudson
-- define the complexity language from the paper
-}
open import Preliminaries
open import Preorder-withmax
module Comp-lang where
-- define the complexity language from the paper
-- we want to focus on arrow, cross, and nat types
-- do I need unit types?
data CTp : Set where
unit : CTp
nat : CTp
_->c_ : CTp → CTp → CTp
_×c_ : CTp → CTp → CTp
C : CTp
-- represent a context as a list of types
Ctx = List CTp
-- de Bruijn indices (for free variables)
data _∈_ : CTp → Ctx → Set where
i0 : ∀ {Γ τ}
→ τ ∈ (τ :: Γ)
iS : ∀ {Γ τ τ1}
→ τ ∈ Γ
→ τ ∈ (τ1 :: Γ)
data _|-_ : Ctx → CTp → Set where
unit : ∀ {Γ}
→ Γ |- unit
0C : ∀ {Γ}
→ Γ |- C
1C : ∀ {Γ}
→ Γ |- C
plusC : ∀ {Γ}
→ Γ |- C
→ Γ |- C
→ Γ |- C
var : ∀ {Γ τ}
→ τ ∈ Γ
→ Γ |- τ
z : ∀ {Γ}
→ Γ |- nat
suc : ∀ {Γ}
→ (e : Γ |- nat)
→ Γ |- nat
rec : ∀ {Γ τ}
→ Γ |- nat
→ Γ |- τ
→ (nat :: (τ :: Γ)) |- τ
→ Γ |- τ
lam : ∀ {Γ τ ρ}
→ (ρ :: Γ) |- τ
→ Γ |- (ρ ->c τ)
app : ∀ {Γ τ1 τ2}
→ Γ |- (τ2 ->c τ1)
→ Γ |- τ2
→ Γ |- τ1
prod : ∀ {Γ τ1 τ2}
→ Γ |- τ1
→ Γ |- τ2
→ Γ |- (τ1 ×c τ2)
l-proj : ∀ {Γ τ1 τ2}
→ Γ |- (τ1 ×c τ2)
→ Γ |- τ1
r-proj : ∀ {Γ τ1 τ2}
→ Γ |- (τ1 ×c τ2)
→ Γ |- τ2
_+C_ : ∀ {Γ τ} → Γ |- C → Γ |- (C ×c τ)→ Γ |- (C ×c τ)
c +C e = prod (plusC c (l-proj e)) (r-proj e)
------weakening and substitution lemmas
-- renaming function
rctx : Ctx → Ctx → Set
rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ
-- re: transferring variables in contexts
lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ')
lem1 d i0 = i0
lem1 d (iS x) = iS (d x)
-- renaming lemma
ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ
ren unit d = unit
ren 0C d = 0C
ren 1C d = 1C
ren (plusC e1 e2) d = plusC (ren e1 d) (ren e2 d)
ren (var x) d = var (d x)
ren z d = z
ren (suc e) d = suc (ren e d)
ren (rec e e0 e1) d = rec (ren e d) (ren e0 d) (ren e1 (lem1 (lem1 d)))
ren (lam e) d = lam (ren e (lem1 d))
ren (app e1 e2) d = app (ren e1 d) (ren e2 d)
ren (prod e1 e2) d = prod (ren e1 d) (ren e2 d)
ren (l-proj e) d = l-proj (ren e d)
ren (r-proj e) d = r-proj (ren e d)
-- substitution
sctx : Ctx → Ctx → Set
sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ
-- weakening a context
wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2
wkn e = ren e iS
-- weakening also works with substitution
wkn-s : ∀ {Γ τ1 Γ'} → sctx Γ Γ' → sctx (τ1 :: Γ) Γ'
wkn-s d = λ f → wkn (d f)
wkn-r : ∀ {Γ τ1 Γ'} → rctx Γ Γ' → rctx (τ1 :: Γ) Γ'
wkn-r d = λ x → iS (d x)
-- lem2 (need a lemma for subst like we did for renaming)
lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ')
lem2 d i0 = var i0
lem2 d (iS i) = wkn (d i)
-- another substitution lemma
lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ)
lem3 e i0 = e
lem3 e (iS i) = var i
lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ')
lem3' Θ e i0 = e
lem3' Θ e (iS i) = Θ i
-- one final lemma needed for the last stepping rule. Thank you Professor Licata!
lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ))
lem4 e1 e2 i0 = e1
lem4 e1 e2 (iS i0) = e2
lem4 e1 e2 (iS (iS i)) = var i
lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ'))
lem4' Θ a b i0 = a
lem4' Θ a b (iS i0) = b
lem4' Θ a b (iS (iS i)) = Θ i
-- the 'real' substitution lemma (if (x : τ') :: Γ |- (e : τ) and Γ |- (e : τ') , then Γ |- e[x -> e'] : τ)
subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ
subst d unit = unit
subst d 0C = 0C
subst d 1C = 1C
subst d (plusC e1 e2) = plusC (subst d e1) (subst d e2)
subst d (var x) = d x
subst d z = z
subst d (suc x) = suc (subst d x)
subst d (rec e e0 e1) = rec (subst d e) (subst d e0) (subst (lem2 (lem2 d)) e1)
subst d (lam e) = lam (subst (lem2 d) e)
subst d (app e1 e2) = app (subst d e1) (subst d e2)
subst d (prod e1 e2) = prod (subst d e1) (subst d e2)
subst d (l-proj e) = l-proj (subst d e)
subst d (r-proj e) = r-proj (subst d e)
postulate
subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) )
→ subst (lem3 v) (subst (lem2 Θ) e) == subst (lem3' Θ v) e
postulate
subst-compose2 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (n : Γ |- nat) (e1 : Γ' |- τ) (e2 : (nat :: (τ :: Γ')) |- τ)
→ subst (lem4 n (rec n (subst Θ e1) (subst (lem2 (lem2 Θ)) e2))) (subst (lem2 (lem2 Θ)) e2) ==
subst (lem4' Θ n (rec n (subst Θ e1) (subst (lem2 (lem2 Θ)) e2))) e2
postulate
subst-compose3 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2)
→ subst Θ (subst (lem4 v1 v2) e1) == subst (lem4' Θ (subst Θ v1) (subst Θ v2)) e1
postulate
subst-compose4 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ)
→ subst (lem4 v' r) (subst (lem2 (lem2 Θ)) e2) == subst (lem4' Θ v' r) e2
-------
-- define 'stepping' as a datatype (fig. 1 of proof)
data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set where
refl-s : ∀ {Γ T}
→ {e : Γ |- T}
→ e ≤s e
trans-s : ∀ {Γ T}
→ {e e' e'' : Γ |- T}
→ e ≤s e' → e' ≤s e''
→ e ≤s e''
plus-s : ∀ {Γ}
→ {e1 e2 n1 n2 : Γ |- C}
→ e1 ≤s n1 → e2 ≤s n2
→ (plusC e1 e2) ≤s (plusC n1 n2)
cong-refl : ∀ {Γ τ} {e e' : Γ |- τ} → e == e' → e ≤s e'
+-unit-l : ∀ {Γ} {e : Γ |- C} → (plusC 0C e) ≤s e
+-unit-l' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC 0C e)
+-unit-r : ∀ {Γ} {e : Γ |- C} → (plusC e 0C) ≤s e
+-unit-r' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 0C)
+-assoc : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3)
+-assoc' : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3)
refl-+ : ∀ {Γ} {e0 e1 : Γ |- C} → (plusC e0 e1) ≤s (plusC e1 e0)
cong-+ : ∀ {Γ} {e0 e1 e0' e1' : Γ |- C} → e0 ≤s e0' → e1 ≤s e1' → (plusC e0 e1) ≤s (plusC e0' e1')
cong-lproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (l-proj e) ≤s (l-proj e')
cong-rproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (r-proj e) ≤s (r-proj e')
cong-app : ∀ {Γ τ τ'} {e e' : Γ |- (τ ->c τ')} {e1 : Γ |- τ} → e ≤s e' → (app e e1) ≤s (app e' e1)
cong-rec : ∀ {Γ τ} {e e' : Γ |- nat} {e0 : Γ |- τ} {e1 : (nat :: (τ :: Γ)) |- τ}
→ e ≤s e'
→ rec e e0 e1 ≤s rec e' e0 e1
lam-s : ∀ {Γ T T'}
→ {e : (T :: Γ) |- T'}
→ {e2 : Γ |- T}
→ subst (lem3 e2) e ≤s app (lam e) e2
l-proj-s : ∀ {Γ T1 T2}
→ {e1 : Γ |- T1} {e2 : Γ |- T2}
→ e1 ≤s (l-proj (prod e1 e2))
r-proj-s : ∀ {Γ T1 T2}
→ {e1 : Γ |- T1} → {e2 : Γ |- T2}
→ e2 ≤s (r-proj (prod e1 e2))
rec-steps-s : ∀ {Γ T}
→ {e : Γ |- nat}
→ {e0 : Γ |- T}
→ {e1 : (nat :: (T :: Γ)) |- T}
→ subst (lem4 e (rec e e0 e1)) e1 ≤s (rec (suc e) e0 e1)
rec-steps-z : ∀ {Γ T}
→ {e0 : Γ |- T}
→ {e1 : (nat :: (T :: Γ)) |- T}
→ e0 ≤s (rec z e0 e1)
_trans_ : ∀ {Γ T}
→ {e e' e'' : Γ |- T}
→ e ≤s e' → e' ≤s e''
→ e ≤s e''
_trans_ = trans-s
infixr 10 _trans_
-------
-- interpret complexity types as preorders
[_]t : CTp → PREORDER
[ unit ]t = unit-p
[ nat ]t = Nat , nat-p
[ A ->c B ]t = [ A ]t ->p [ B ]t
[ A ×c B ]t = [ A ]t ×p [ B ]t
[ C ]t = Nat , nat-p
-- interpret contexts as preorders
[_]c : Ctx → PREORDER
[ [] ]c = unit-p
[ τ :: Γ ]c = [ τ ]t ×p [ Γ ]c
| 31.88755
| 116
| 0.420025
|
3d4b60fe14d2b6ae34d48fcacfd255392e8fa665
| 4,749
|
agda
|
Agda
|
Cubical/HITs/S2/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/HITs/S2/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/HITs/S2/Properties.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.HITs.S2.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.HITs.S1.Base
open import Cubical.HITs.S2.Base
open import Cubical.HITs.Susp
open import Cubical.Homotopy.Loopspace
S²ToSetElim : ∀ {ℓ} {A : S² → Type ℓ}
→ ((x : S²) → isSet (A x))
→ A base
→ (x : S²) → A x
S²ToSetElim set b base = b
S²ToSetElim set b (surf i j) =
isOfHLevel→isOfHLevelDep 2 set b b {a0 = refl} {a1 = refl} refl refl surf i j
-- Wedge connectivity lemmas for S² (binary maps 2-groupoids)
wedgeconFunS² : ∀ {ℓ} {P : S² → S² → Type ℓ}
→ ((x y : _) → isOfHLevel 4 (P x y))
→ (l : ((x : S²) → P x base))
→ (r : (x : S²) → P base x)
→ l base ≡ r base
→ (x y : _) → P x y
wedgeconFunS² {P = P} hlev l r p base y = r y
wedgeconFunS² {P = P} hlev l r p (surf i i₁) y = help y i i₁
where
help : (y : S²) → SquareP (λ i j → P (surf i j) y)
(λ _ → r y) (λ _ → r y)
(λ _ → r y) λ _ → r y
help =
S²ToSetElim (λ _ → isOfHLevelPathP' 2 (isOfHLevelPathP' 3 (hlev _ _) _ _) _ _)
λ w j → hcomp (λ k → λ { (j = i0) → p k
; (j = i1) → p k
; (w = i0) → p k
; (w = i1) → p k})
(l (surf w j))
wedgeconFunS²Id : ∀ {ℓ} {P : S² → S² → Type ℓ}
→ (h : ((x y : _) → isOfHLevel 4 (P x y)))
→ (l : ((x : S²) → P x base))
→ (r : (x : S²) → P base x)
→ (p : l base ≡ r base)
→ (x : S²) → wedgeconFunS² h l r p x base ≡ l x
wedgeconFunS²Id h l r p base = sym p
wedgeconFunS²Id h l r p (surf i j) k =
hcomp (λ w → λ {(i = i0) → p (~ k ∧ w)
; (i = i1) → p (~ k ∧ w)
; (j = i0) → p (~ k ∧ w)
; (j = i1) → p (~ k ∧ w)
; (k = i1) → l (surf i j)})
(l (surf i j))
S¹×S¹→S² : S¹ → S¹ → S²
S¹×S¹→S² base y = base
S¹×S¹→S² (loop i) base = base
S¹×S¹→S² (loop i) (loop j) = surf i j
invS² : S² → S²
invS² base = base
invS² (surf i j) = surf j i
S¹×S¹→S²-anticomm : (x y : S¹) → invS² (S¹×S¹→S² x y) ≡ S¹×S¹→S² y x
S¹×S¹→S²-anticomm base base = refl
S¹×S¹→S²-anticomm base (loop i) = refl
S¹×S¹→S²-anticomm (loop i) base = refl
S¹×S¹→S²-anticomm (loop i) (loop i₁) = refl
toSuspPresInvS² : (x : S²) → toSusp S²∙ (invS² x) ≡ sym (toSusp S²∙ x)
toSuspPresInvS² base =
rCancel (merid base) ∙∙ refl ∙∙ cong sym (sym (rCancel (merid base)))
toSuspPresInvS² (surf i j) k r =
hcomp (λ l → λ {(i = i0) → cc l k r
; (i = i1) → cc l k r
; (j = i0) → cc l k r
; (j = i1) → cc l k r
; (k = i0) → l1-fill j i r (~ l)
; (k = i1) → l1-fill i j (~ r) (~ l)
; (r = i0) → north
; (r = i1) → north})
(l1≡l2 k j i r)
where
cc : Cube {A = Susp S²} _ _ _ _ _ _
cc = doubleCompPath-filler
(rCancel (merid base)) refl (cong sym (sym (rCancel (merid base))))
l1-fill : (i j k r : I) → Susp S²
l1-fill i j k r =
hfill (λ r → λ {(i = i0) → rCancel (merid base) r k
; (i = i1) → rCancel (merid base) r k
; (j = i0) → rCancel (merid base) r k
; (j = i1) → rCancel (merid base) r k
; (k = i0) → north
; (k = i1) → north})
(inS (toSusp S²∙ (surf i j) k))
r
l1 : (Ω^ 3) (Susp∙ S²) .fst
l1 i j k = l1-fill i j k i1
l2 : (Ω^ 3) (Susp∙ S²) .fst
l2 i j k = l1 j i (~ k)
sym≡cong-sym-refl : ∀ {ℓ} {A : Type ℓ} {x : A} → sym≡cong-sym (λ _ _ → x) ≡ refl
sym≡cong-sym-refl {x = x} = transportRefl (λ _ _ _ → x)
l1≡l2 : l1 ≡ l2
l1≡l2 = sym (sym≡flipSquare (λ i j → l1 j i))
∙ ((λ _ i j k → l1 j (~ i) k)
∙ λ r i j k →
hcomp (λ l → λ {(i = i0) → north
; (i = i1) → north
; (j = i0) → sym≡cong-sym-refl {x = north} r (~ l) i k
; (j = i1) → sym≡cong-sym-refl {x = north} r (~ l) i k
; (k = i0) → north
; (k = i1) → north
; (r = i0) → sym≡cong-sym (λ i k → l1 j i k) (~ l) i k
; (r = i1) → l2 i j k})
(l2 i j k))
S¹×S¹→S²-sym : (x y : S¹) → toSusp S²∙ (S¹×S¹→S² x y) ≡ sym (toSusp S²∙ (S¹×S¹→S² y x))
S¹×S¹→S²-sym x y =
cong sym (sym (toSuspPresInvS² (S¹×S¹→S² x y)))
∙ cong (sym ∘ toSusp S²∙) (S¹×S¹→S²-anticomm x y)
| 35.440299
| 87
| 0.463255
|
0303c001aacb4ebc364a8616859103f8d9421f4e
| 342
|
agda
|
Agda
|
Cubical/Data/DiffInt/Base.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/Data/DiffInt/Base.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
Cubical/Data/DiffInt/Base.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.DiffInt.Base where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.SetQuotients.Base
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
rel : (ℕ × ℕ) → (ℕ × ℕ) → Type₀
rel (a₀ , b₀) (a₁ , b₁) = x ≡ y
where
x = a₀ + b₁
y = a₁ + b₀
ℤ = (ℕ × ℕ) / rel
| 19
| 42
| 0.640351
|
d11c1be61f1663ab5c0c9ea69cee3689bec29fed
| 424
|
agda
|
Agda
|
test/Succeed/Issue5545.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue5545.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue5545.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2021-09-06, issue #5545,
-- regression introduced by #5522 (fix for #5291).
--
-- Note: this test requires that there is no newline at the end of file.
-- So, it violates the whitespace requirement of fix-whitespace,
-- and needs to be an exception in the configuration of fix-whitespace.
{-# OPTIONS --allow-unsolved-metas #-}
-- No newline at end of file triggered "Unterminated {!" error.
_ : Set
_ = {! !}
| 32.615385
| 72
| 0.700472
|
5e604565ef449a0e64f91ff94f01063170b0634c
| 2,886
|
agda
|
Agda
|
PiQ/AuxLemmas.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
PiQ/AuxLemmas.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
PiQ/AuxLemmas.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
module PiQ.AuxLemmas where
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Sum
open import Data.Product
open import Data.Maybe
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import PiQ.Syntax
open import PiQ.Opsem
Lemma₁ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c' ∣ v' ∣ κ' ⟩◁
→ A ≡ C × B ≡ D
Lemma₁ ↦⃖₁ = refl , refl
Lemma₁ ↦⃖₂ = refl , refl
Lemma₁ ↦⃖ηₓ₁ = refl , refl
Lemma₁ ↦⃖εₓ = refl , refl
Lemma₂ : ∀ {A B v v' κ κ'} {c c' : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c' ∣ v' ∣ κ' ⟩◁
→ c ≡ c' × κ ≡ κ'
Lemma₂ ↦⃖₁ = refl , refl
Lemma₂ ↦⃖₂ = refl , refl
Lemma₂ ↦⃖ηₓ₁ = refl , refl
Lemma₂ ↦⃖εₓ = refl , refl
Lemma₃ : ∀ {A B v v' κ} {c : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁
→ base c ⊎ dual c ⊎ A ≡ B
Lemma₃ (↦⃖₁ {b = b}) = inj₁ b
Lemma₃ ↦⃖₂ = inj₂ (inj₂ refl)
Lemma₃ ↦⃖ηₓ₁ = inj₂ (inj₁ tt)
Lemma₃ ↦⃖εₓ = inj₂ (inj₁ tt)
Lemma₄ : ∀ {A v v' κ} {c : A ↔ A}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁
→ base c ⊎ c ≡ id↔
Lemma₄ (↦⃖₁ {b = b}) = inj₁ b
Lemma₄ ↦⃖₂ = inj₂ refl
Lemma₅ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D}
→ [ c ∣ v ∣ κ ]◁ ↦ [ c' ∣ v' ∣ κ' ]▷
→ A ≡ C × B ≡ D
Lemma₅ ↦η₊₁ = refl , refl
Lemma₅ ↦η₊₂ = refl , refl
Lemma₆ : ∀ {A B v v' κ κ'} {c c' : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ [ c' ∣ v' ∣ κ' ]▷
→ c ≡ c' × κ ≡ κ'
Lemma₆ ↦η₊₁ = refl , refl
Lemma₆ ↦η₊₂ = refl , refl
Lemma₇ : ∀ {A B v v' κ} {c : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ [ c ∣ v' ∣ κ ]▷
→ A ≡ 𝟘
Lemma₇ ↦η₊₁ = refl
Lemma₇ ↦η₊₂ = refl
Lemma₈ : ∀ {A B v κ} {c : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ ⊠
→ ¬ (base c)
Lemma₈ ↦⃖ηₓ₂ ()
Lemma₉ : ∀ {A B} {κ : Context} {v : ⟦ B ⟧} {v' : ⟦ A ⟧} {c : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁
→ [ c ∣ v ∣ κ ]◁ ↦ ⊠
→ ⊥
Lemma₉ r' r with Lemma₈ r
Lemma₉ (↦⃖₁ {b = b}) r | nb = nb b
Lemma₉ (↦⃖ηₓ₁ {eq = eq}) (↦⃖ηₓ₂ {neq = neq}) | _ = ⊥-elim (neq eq)
Lemma₁₀ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D}
→ ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c' ∣ v' ∣ κ' ]▷
→ (A ≡ C × B ≡ D)
Lemma₁₀ ↦⃗₁ = refl , refl
Lemma₁₀ ↦⃗₂ = refl , refl
Lemma₁₀ ↦⃗ηₓ = refl , refl
Lemma₁₀ ↦⃗εₓ₁ = refl , refl
Lemma₁₁ : ∀ {A B v v' κ κ'} {c c' : A ↔ B}
→ ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c' ∣ v' ∣ κ' ]▷
→ c ≡ c' × κ ≡ κ'
Lemma₁₁ ↦⃗₁ = refl , refl
Lemma₁₁ ↦⃗₂ = refl , refl
Lemma₁₁ ↦⃗ηₓ = refl , refl
Lemma₁₁ ↦⃗εₓ₁ = refl , refl
Lemma₁₂ : ∀ {A B v v' κ} {c : A ↔ B}
→ (r : ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ v' ∣ κ ]▷)
→ base c ⊎ dual c ⊎ A ≡ B
Lemma₁₂ (↦⃗₁ {b = b}) = inj₁ b
Lemma₁₂ ↦⃗₂ = inj₂ (inj₂ refl)
Lemma₁₂ ↦⃗ηₓ = inj₂ (inj₁ tt)
Lemma₁₂ ↦⃗εₓ₁ = inj₂ (inj₁ tt)
Lemma₁₃ : ∀ {A v v' κ} {c : A ↔ A}
→ (r : ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ v' ∣ κ ]▷)
→ base c ⊎ c ≡ id↔
Lemma₁₃ (↦⃗₁ {b = b}) = inj₁ b
Lemma₁₃ ↦⃗₂ = inj₂ refl
| 27.75
| 67
| 0.442827
|
adfe6d5f21762f6d5f167f86afc7fbcc08f6f754
| 747
|
agda
|
Agda
|
agda/BSTree.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | 6
|
2015-05-21T12:50:35.000Z
|
2021-08-24T22:11:15.000Z
|
agda/BSTree.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
agda/BSTree.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
module BSTree {A : Set}(_≤_ : A → A → Set) where
open import BTree {A}
data _⊴*_ : A → BTree → Set where
gelf : {x : A}
→ x ⊴* leaf
gend : {x y : A}{l r : BTree}
→ x ≤ y
→ x ⊴* l
→ x ⊴* (node y l r)
data _*⊴_ : BTree → A → Set where
lelf : {x : A}
→ leaf *⊴ x
lend : {x y : A}{l r : BTree}
→ y ≤ x
→ r *⊴ x
→ (node y l r) *⊴ x
data BSTree : BTree → Set where
slf : BSTree leaf
snd : {x : A}{l r : BTree}
→ BSTree l
→ BSTree r
→ l *⊴ x
→ x ⊴* r
→ BSTree (node x l r)
| 23.34375
| 49
| 0.317269
|
19d964a3e3e98438856158bc2cbe7d1ea0f22278
| 1,506
|
agda
|
Agda
|
theorems/cw/cohomology/AxiomaticIsoCellular.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
theorems/cw/cohomology/AxiomaticIsoCellular.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
theorems/cw/cohomology/AxiomaticIsoCellular.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cw.CW
open import cw.FinCW
open import cw.FinBoundary
open import cohomology.ChainComplex
open import cohomology.Theory
module cw.cohomology.AxiomaticIsoCellular (OT : OrdinaryTheory lzero) where
open OrdinaryTheory OT
open import cw.cohomology.cellular.ChainComplex
import cw.cohomology.reconstructed.cochain.Complex OT as RCC
open import cw.cohomology.ReconstructedCohomologyGroups OT
open import cw.cohomology.ReconstructedCochainsEquivCellularCochains OT
axiomatic-iso-cellular : ∀ m {n} (⊙fin-skel : ⊙FinSkeleton n)
→ C m ⊙⟦ ⊙⦉ ⊙fin-skel ⦊ ⟧
≃ᴳ cohomology-group
(cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(C2-abgroup 0))
m
axiomatic-iso-cellular m ⊙fin-skel =
C m ⊙⟦ ⊙⦉ ⊙fin-skel ⦊ ⟧
≃ᴳ⟨ reconstructed-cohomology-group m ⊙⦉ ⊙fin-skel ⦊
(⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero) ⟩
cohomology-group (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊) m
≃ᴳ⟨ frc-iso-fcc ⊙fin-skel m ⟩
cohomology-group
(cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊
(FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel))
(FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel))
(C2-abgroup 0))
m
≃ᴳ∎
| 38.615385
| 85
| 0.675299
|
22d694b9633a3da5a503439f497916890553fbb2
| 475
|
agda
|
Agda
|
Function/Reasoning.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Function/Reasoning.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Function/Reasoning.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --without-K --safe #-}
module Function.Reasoning where
open import Level
infixr 2 _⟨⟩⇒_ ⟨∙⟩⇒-syntax
⟨∙⟩⇒-syntax : ∀ (A : Type a) → (B → C) → (A → B) → A → C
⟨∙⟩⇒-syntax _ f g x = f (g x)
syntax ⟨∙⟩⇒-syntax A f g = A ⟨ g ⟩⇒ f
_⟨⟩⇒_ : ∀ (A : Type a) → (A → B) → A → B
_ ⟨⟩⇒ f = f
infix 2.5 _⇒∎
_⇒∎ : (A : Type a) → A → A
_⇒∎ _ x = x
infixr 1.5 [_]⇒_
[_]⇒_ : A → (A → B) → B
[ x ]⇒ f = f x
-- infix 2.5 _⇒[_]
-- _⇒[_] : (A : Type a) → A → A
-- _ ⇒[ x ] = x
| 16.964286
| 56
| 0.429474
|
9a73a6dbfb367b517e825b9ac607ebe43478c431
| 1,049
|
agda
|
Agda
|
Cubical/Algebra/CommMonoid/CommMonoidProd.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommMonoid/CommMonoidProd.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommMonoid/CommMonoidProd.agda
|
thomas-lamiaux/cubical
|
58c0b83bb0fed0dc683f3d29b1709effe51c1689
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommMonoid.CommMonoidProd where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Algebra.CommMonoid.Base
open CommMonoidStr
private
variable
ℓ ℓ' : Level
CommMonoidProd : CommMonoid ℓ → CommMonoid ℓ' → CommMonoid (ℓ-max ℓ ℓ')
CommMonoidProd M N = makeCommMonoid ε× _·×_ is-set× assoc× ·IdR× comm×
where
ε× : (fst M) × (fst N)
ε× = (ε (snd M)) , (ε (snd N))
_·×_ : (fst M) × (fst N) → (fst M) × (fst N) → (fst M) × (fst N)
(x₁ , x₂) ·× (y₁ , y₂) = (_·_ (snd M) x₁ y₁) , (_·_ (snd N) x₂ y₂)
is-set× : isSet ((fst M) × (fst N))
is-set× = isSet× (is-set (snd M)) (is-set (snd N))
assoc× : ∀ x y z → x ·× (y ·× z) ≡ (x ·× y) ·× z
assoc× _ _ _ = cong₂ (_,_) (·Assoc (snd M) _ _ _) (·Assoc (snd N) _ _ _)
·IdR× : ∀ x → x ·× ε× ≡ x
·IdR× _ = cong₂ (_,_) (·IdR (snd M) _) (·IdR (snd N) _)
comm× : ∀ x y → x ·× y ≡ y ·× x
comm× _ _ = cong₂ (_,_) (·Comm (snd M) _ _) (·Comm (snd N) _ _)
| 27.605263
| 74
| 0.56244
|
1944b479cb72eb23fb4f52a312b4cd5b0cf0e9c5
| 2,160
|
agda
|
Agda
|
Cubical/Categories/Instances/CommRings.agda
|
antoinevanmuylder/cubical
|
5b40df813434aa11631ac240409ca2c4d849453c
|
[
"MIT"
] | null | null | null |
Cubical/Categories/Instances/CommRings.agda
|
antoinevanmuylder/cubical
|
5b40df813434aa11631ac240409ca2c4d849453c
|
[
"MIT"
] | null | null | null |
Cubical/Categories/Instances/CommRings.agda
|
antoinevanmuylder/cubical
|
5b40df813434aa11631ac240409ca2c4d849453c
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.CommRings where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.FiberedProduct
open import Cubical.Algebra.CommRing.Instances.Unit
open import Cubical.Categories.Category
open import Cubical.Categories.Limits.Terminal
open import Cubical.Categories.Limits.Pullback
open Category hiding (_∘_)
open CommRingHoms
private
variable
ℓ : Level
CommRingsCategory : Category (ℓ-suc ℓ) ℓ
ob CommRingsCategory = CommRing _
Hom[_,_] CommRingsCategory = CommRingHom
id CommRingsCategory {R} = idCommRingHom R
_⋆_ CommRingsCategory {R} {S} {T} = compCommRingHom R S T
⋆IdL CommRingsCategory {R} {S} = compIdCommRingHom {R = R} {S}
⋆IdR CommRingsCategory {R} {S} = idCompCommRingHom {R = R} {S}
⋆Assoc CommRingsCategory {R} {S} {T} {U} = compAssocCommRingHom {R = R} {S} {T} {U}
isSetHom CommRingsCategory = isSetRingHom _ _
TerminalCommRing : Terminal {ℓ-suc ℓ-zero} CommRingsCategory
fst TerminalCommRing = UnitCommRing
fst (fst (snd TerminalCommRing y)) _ = tt
snd (fst (snd TerminalCommRing y)) = makeIsRingHom refl (λ _ _ → refl) (λ _ _ → refl)
snd (snd TerminalCommRing y) f = RingHom≡ (funExt (λ _ → refl))
open Pullback
{-
A x_C B -----> A
| |
| | α
| |
V V
B --------> C
β
-}
PullbackCommRing : Pullbacks {ℓ-suc ℓ} CommRingsCategory
pbOb (PullbackCommRing (cospan A C B α β)) = fiberedProduct A B C α β
pbPr₁ (PullbackCommRing (cospan A C B α β)) = fiberedProductPr₁ A B C α β
pbPr₂ (PullbackCommRing (cospan A C B α β)) = fiberedProductPr₂ A B C α β
pbCommutes (PullbackCommRing (cospan A C B α β)) = fiberedProductPr₁₂Commutes A B C α β
univProp (PullbackCommRing (cospan A C B α β)) {d = D} = fiberedProductUnivProp A B C α β D
| 34.83871
| 91
| 0.688889
|
5e84ac9ba593a8bca5669d4fb14fe4113ff8c958
| 180
|
agda
|
Agda
|
Cubical/HITs/Localization.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/HITs/Localization.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Localization.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Localization where
open import Cubical.HITs.Localization.Base public
open import Cubical.HITs.Localization.Properties public
| 25.714286
| 55
| 0.8
|
3001b51e6643bad7ff71d0c9a4c0b8e749fa4cc5
| 1,190
|
agda
|
Agda
|
Basic/Axiomatic/TotalImpliesPartial.agda
|
AndrasKovacs/SemanticsWithApplications
|
05200d60b4a4b2c6fa37806ced9247055d24db94
|
[
"MIT"
] | 8
|
2016-09-12T04:25:39.000Z
|
2020-02-02T10:01:52.000Z
|
Basic/Axiomatic/TotalImpliesPartial.agda
|
AndrasKovacs/SemanticsWithApplications
|
05200d60b4a4b2c6fa37806ced9247055d24db94
|
[
"MIT"
] | null | null | null |
Basic/Axiomatic/TotalImpliesPartial.agda
|
AndrasKovacs/SemanticsWithApplications
|
05200d60b4a4b2c6fa37806ced9247055d24db94
|
[
"MIT"
] | null | null | null |
module Basic.Axiomatic.TotalImpliesPartial where
open import Basic.AST
open import Basic.BigStep
open import Basic.Axiomatic.Total as T
renaming (〈_〉_〈_〉 to total〈_〉_〈_〉)
open import Basic.Axiomatic.Partial as P
renaming (〈_〉_〈_〉 to partial〈_〉_〈_〉) hiding (_==>_; _∧_)
open import Function
open import Data.Product
{-
The proof that total correctness implies partial correctness (exercise 6.33)
is fortunately really simple.
We already proved soundness and completeness for both systems, so instead of
trying to construct the partial proof directly from the total proof, we can
just take a detour and prove the analoguous implication about the *validity*
of triples.
-}
{-
The total validity of Hoare triples implies partial validity, if the language semantics is
deterministic.
-}
P==>wp→P==>wlp : ∀{n S}{P Q : State n → Set} → (P ==> wp S Q) → (P ==> wlp S Q)
P==>wp→P==>wlp pwp ps runS with pwp ps
... | _ , runS' , qs' rewrite deterministic runS runS' = qs'
{- And now we just do an excursion to semantics-land and then back -}
total→partial : ∀ {n S}{P Q : State n → Set} → total〈 P 〉 S 〈 Q 〉 → partial〈 P 〉 S 〈 Q 〉
total→partial = P.complete _ ∘ P==>wp→P==>wlp ∘ T.sound
| 34
| 90
| 0.706723
|
22aebabb4f316386ce387d994db4108d379bf107
| 14,709
|
agda
|
Agda
|
theorems/homotopy/PtdAdjoint.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
theorems/homotopy/PtdAdjoint.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
theorems/homotopy/PtdAdjoint.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
{- The pseudo-adjoint functors F,G : Ptd → Ptd
- It stops at composition and ignores
- all the higher associahedrons.
-}
module homotopy.PtdAdjoint where
record PtdFunctor i j : Type (lsucc (lmax i j)) where
field
obj : Ptd i → Ptd j
arr : {X Y : Ptd i} → X ⊙→ Y → obj X ⊙→ obj Y
id : (X : Ptd i) → arr (⊙idf X) == ⊙idf (obj X)
comp : {X Y Z : Ptd i} (g : Y ⊙→ Z) (f : X ⊙→ Y)
→ arr (g ⊙∘ f) == arr g ⊙∘ arr f
{- counit-unit description of F ⊣ G -}
record CounitUnitAdjoint {i j} (F : PtdFunctor i j) (G : PtdFunctor j i)
: Type (lsucc (lmax i j)) where
private
module F = PtdFunctor F
module G = PtdFunctor G
field
η : (X : Ptd i) → (X ⊙→ G.obj (F.obj X))
ε : (U : Ptd j) → (F.obj (G.obj U) ⊙→ U)
η-natural : {X Y : Ptd i} (h : X ⊙→ Y)
→ η Y ⊙∘ h == G.arr (F.arr h) ⊙∘ η X
ε-natural : {U V : Ptd j} (k : U ⊙→ V)
→ ε V ⊙∘ F.arr (G.arr k) == k ⊙∘ ε U
εF-Fη : (X : Ptd i) → ε (F.obj X) ⊙∘ F.arr (η X) == ⊙idf (F.obj X)
Gε-ηG : (U : Ptd j) → G.arr (ε U) ⊙∘ η (G.obj U) == ⊙idf (G.obj U)
{- hom-set isomorphism description of F ⊣ G -}
record HomAdjoint {i j} (F : PtdFunctor i j) (G : PtdFunctor j i)
: Type (lsucc (lmax i j)) where
private
module F = PtdFunctor F
module G = PtdFunctor G
field
eq : (X : Ptd i) (U : Ptd j) → (F.obj X ⊙→ U) ≃ (X ⊙→ G.obj U)
nat-dom : {X Y : Ptd i} (h : X ⊙→ Y) (U : Ptd j)
(r : F.obj Y ⊙→ U)
→ –> (eq Y U) r ⊙∘ h == –> (eq X U) (r ⊙∘ F.arr h)
nat-cod : (X : Ptd i) {U V : Ptd j} (k : U ⊙→ V)
(r : F.obj X ⊙→ U)
→ G.arr k ⊙∘ –> (eq X U) r == –> (eq X V) (k ⊙∘ r)
nat!-dom : {X Y : Ptd i} (h : X ⊙→ Y) (U : Ptd j)
(s : Y ⊙→ G.obj U)
→ <– (eq Y U) s ⊙∘ F.arr h == <– (eq X U) (s ⊙∘ h)
nat!-dom {X} {Y} h U s =
! (<–-inv-l (eq X U) (<– (eq Y U) s ⊙∘ F.arr h))
∙ ap (<– (eq X U)) (! (nat-dom h U (<– (eq Y U) s)))
∙ ap (λ w → <– (eq X U) (w ⊙∘ h)) (<–-inv-r (eq Y U) s)
nat!-cod : (X : Ptd i) {U V : Ptd j} (k : U ⊙→ V)
(s : X ⊙→ G.obj U)
→ k ⊙∘ <– (eq X U) s == <– (eq X V) (G.arr k ⊙∘ s)
nat!-cod X {U} {V} k s =
! (<–-inv-l (eq X V) (k ⊙∘ <– (eq X U) s))
∙ ap (<– (eq X V)) (! (nat-cod X k (<– (eq X U) s)))
∙ ap (λ w → <– (eq X V) (G.arr k ⊙∘ w)) (<–-inv-r (eq X U) s)
counit-unit-to-hom : ∀ {i j} {F : PtdFunctor i j} {G : PtdFunctor j i}
→ CounitUnitAdjoint F G → HomAdjoint F G
counit-unit-to-hom {i} {j} {F} {G} adj = record {
eq = eq;
nat-dom = nat-dom;
nat-cod = nat-cod}
where
module F = PtdFunctor F
module G = PtdFunctor G
open CounitUnitAdjoint adj
module _ (X : Ptd i) (U : Ptd j) where
into : F.obj X ⊙→ U → X ⊙→ G.obj U
into r = G.arr r ⊙∘ η X
out : X ⊙→ G.obj U → F.obj X ⊙→ U
out s = ε U ⊙∘ F.arr s
into-out : (s : X ⊙→ G.obj U) → into (out s) == s
into-out s =
G.arr (ε U ⊙∘ F.arr s) ⊙∘ η X
=⟨ G.comp (ε U) (F.arr s) |in-ctx (λ w → w ⊙∘ η X) ⟩
(G.arr (ε U) ⊙∘ G.arr (F.arr s)) ⊙∘ η X
=⟨ ⊙λ= $ ⊙∘-assoc (G.arr (ε U)) (G.arr (F.arr s)) (η X) ⟩
G.arr (ε U) ⊙∘ G.arr (F.arr s) ⊙∘ η X
=⟨ ! (η-natural s) |in-ctx (λ w → G.arr (ε U) ⊙∘ w) ⟩
G.arr (ε U) ⊙∘ η (G.obj U) ⊙∘ s
=⟨ ! $ ⊙λ= (⊙∘-assoc (G.arr (ε U)) (η (G.obj U)) s) ⟩
(G.arr (ε U) ⊙∘ η (G.obj U)) ⊙∘ s
=⟨ Gε-ηG U |in-ctx (λ w → w ⊙∘ s) ⟩
⊙idf (G.obj U) ⊙∘ s
=⟨ ⊙λ= $ ⊙∘-unit-l s ⟩
s ∎
out-into : (r : F.obj X ⊙→ U) → out (into r) == r
out-into r =
ε U ⊙∘ F.arr (G.arr r ⊙∘ η X)
=⟨ F.comp (G.arr r) (η X) |in-ctx (λ w → ε U ⊙∘ w) ⟩
ε U ⊙∘ F.arr (G.arr r) ⊙∘ F.arr (η X)
=⟨ ! $ ⊙λ= (⊙∘-assoc (ε U) (F.arr (G.arr r)) (F.arr (η X))) ⟩
(ε U ⊙∘ F.arr (G.arr r)) ⊙∘ F.arr (η X)
=⟨ ε-natural r |in-ctx (λ w → w ⊙∘ F.arr (η X)) ⟩
(r ⊙∘ ε (F.obj X)) ⊙∘ F.arr (η X)
=⟨ ⊙λ= $ ⊙∘-assoc r (ε (F.obj X)) (F.arr (η X)) ⟩
r ⊙∘ ε (F.obj X) ⊙∘ F.arr (η X)
=⟨ εF-Fη X |in-ctx (λ w → r ⊙∘ w) ⟩
r ∎
eq : (F.obj X ⊙→ U) ≃ (X ⊙→ G.obj U)
eq = equiv into out into-out out-into
nat-dom : {X Y : Ptd i} (h : X ⊙→ Y) (U : Ptd j)
(r : F.obj Y ⊙→ U)
→ –> (eq Y U) r ⊙∘ h == –> (eq X U) (r ⊙∘ F.arr h)
nat-dom {X} {Y} h U r =
(G.arr r ⊙∘ η Y) ⊙∘ h
=⟨ ⊙λ= $ ⊙∘-assoc (G.arr r) (η Y) h ⟩
G.arr r ⊙∘ η Y ⊙∘ h
=⟨ η-natural h |in-ctx (λ w → G.arr r ⊙∘ w) ⟩
G.arr r ⊙∘ G.arr (F.arr h) ⊙∘ η X
=⟨ ! $ ⊙λ= (⊙∘-assoc (G.arr r) (G.arr (F.arr h)) (η X)) ⟩
(G.arr r ⊙∘ G.arr (F.arr h)) ⊙∘ η X
=⟨ ! (G.comp r (F.arr h)) |in-ctx (λ w → w ⊙∘ η X) ⟩
G.arr (r ⊙∘ F.arr h) ⊙∘ η X ∎
nat-cod : (X : Ptd i) {U V : Ptd j} (k : U ⊙→ V)
(r : F.obj X ⊙→ U)
→ G.arr k ⊙∘ –> (eq X U) r == –> (eq X V) (k ⊙∘ r)
nat-cod X k r =
G.arr k ⊙∘ (G.arr r ⊙∘ η X)
=⟨ ! $ ⊙λ= (⊙∘-assoc (G.arr k) (G.arr r) (η X)) ⟩
(G.arr k ⊙∘ G.arr r) ⊙∘ η X
=⟨ ! (G.comp k r) |in-ctx (λ w → w ⊙∘ η X) ⟩
G.arr (k ⊙∘ r) ⊙∘ η X ∎
{- a right adjoint preserves products -}
module RightAdjoint× {i j} {F : PtdFunctor i j} {G : PtdFunctor j i}
(adj : HomAdjoint F G) (U V : Ptd j) where
private
module F = PtdFunctor F
module G = PtdFunctor G
module A = HomAdjoint adj
⊙into : G.obj (U ⊙× V) ⊙→ G.obj U ⊙× G.obj V
⊙into = ⊙fanout (G.arr ⊙fst) (G.arr ⊙snd)
⊙out : G.obj U ⊙× G.obj V ⊙→ G.obj (U ⊙× V)
⊙out = –> (A.eq (G.obj U ⊙× G.obj V) (U ⊙× V)) (⊙fanout (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst)
(<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd))
⊙into-out : ⊙into ⊙∘ ⊙out == ⊙idf (G.obj U ⊙× G.obj V)
⊙into-out =
⊙fanout (G.arr ⊙fst) (G.arr ⊙snd) ⊙∘ ⊙out
=⟨ ⊙fanout-pre∘ (G.arr ⊙fst) (G.arr ⊙snd) ⊙out ⟩
⊙fanout (G.arr ⊙fst ⊙∘ ⊙out) (G.arr ⊙snd ⊙∘ ⊙out)
=⟨ ap2 ⊙fanout
(A.nat-cod _ ⊙fst (⊙fanout (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst) (<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd))
∙ ap (–> (A.eq (G.obj U ⊙× G.obj V) U))
(⊙fst-fanout (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst) (<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd))
∙ <–-inv-r (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst)
(A.nat-cod _ ⊙snd (⊙fanout (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst) (<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd))
∙ ap (–> (A.eq (G.obj U ⊙× G.obj V) V))
(⊙snd-fanout (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst) (<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd))
∙ <–-inv-r (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd) ⟩
⊙fanout ⊙fst ⊙snd ∎
⊙out-into : ⊙out ⊙∘ ⊙into == ⊙idf _
⊙out-into =
–> (A.eq (G.obj U ⊙× G.obj V) (U ⊙× V)) (⊙fanout (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst) (<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd))
⊙∘ ⊙fanout (G.arr ⊙fst) (G.arr ⊙snd)
=⟨ A.nat-dom (⊙fanout (G.arr ⊙fst) (G.arr ⊙snd)) _
(⊙fanout (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst) (<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd)) ⟩
–> (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙fanout (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst) (<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd)
⊙∘ F.arr (⊙fanout (G.arr ⊙fst) (G.arr ⊙snd)))
=⟨ ⊙fanout-pre∘ (<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst) (<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd)
(F.arr (⊙fanout (G.arr ⊙fst) (G.arr ⊙snd)))
|in-ctx –> (A.eq _ _) ⟩
–> (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙fanout
(<– (A.eq (G.obj U ⊙× G.obj V) U) ⊙fst ⊙∘ F.arr (⊙fanout (G.arr ⊙fst) (G.arr ⊙snd)))
(<– (A.eq (G.obj U ⊙× G.obj V) V) ⊙snd ⊙∘ F.arr (⊙fanout (G.arr ⊙fst) (G.arr ⊙snd))))
=⟨ ap2 (λ f g → –> (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙fanout f g))
(A.nat!-dom (⊙fanout (G.arr ⊙fst) (G.arr ⊙snd)) _ ⊙fst
∙ ap (<– (A.eq (G.obj (U ⊙× V)) U)) (⊙fst-fanout (G.arr ⊙fst) (G.arr ⊙snd))
∙ ! (A.nat!-cod _ ⊙fst (⊙idf _)))
(A.nat!-dom (⊙fanout (G.arr ⊙fst) (G.arr ⊙snd)) _ ⊙snd
∙ ap (<– (A.eq (G.obj (U ⊙× V)) V)) (⊙snd-fanout (G.arr ⊙fst) (G.arr ⊙snd))
∙ ! (A.nat!-cod _ ⊙snd (⊙idf _))) ⟩
–> (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙fanout (⊙fst ⊙∘ <– (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙idf _))
(⊙snd ⊙∘ <– (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙idf _)))
=⟨ ap (–> (A.eq (G.obj (U ⊙× V)) (U ⊙× V))) (! (⊙fanout-pre∘ ⊙fst ⊙snd (<– (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙idf _)))) ⟩
–> (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙fanout ⊙fst ⊙snd ⊙∘ <– (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙idf _))
=⟨ ⊙λ= (⊙∘-unit-l _) |in-ctx –> (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) ⟩
–> (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (<– (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙idf _))
=⟨ <–-inv-r (A.eq (G.obj (U ⊙× V)) (U ⊙× V)) (⊙idf _) ⟩
⊙idf _ ∎
⊙eq : G.obj (U ⊙× V) ⊙≃ G.obj U ⊙× G.obj V
⊙eq = ≃-to-⊙≃ (equiv (fst ⊙into) (fst ⊙out)
(app= (ap fst ⊙into-out)) (app= (ap fst ⊙out-into)))
(snd ⊙into)
⊙path = ⊙ua ⊙eq
{- Using the equivalence in RightAdjoint× we get a binary
- "G.arr2" : (X × Y → Z) → (G X × G Y → G Z)
- and there is some kind of naturality wrt the (FX→Y)≃(X→GY) equivalence
- (use case: from ⊙ap we get ⊙ap2) -}
module RightAdjointBinary {i j} {F : PtdFunctor i j} {G : PtdFunctor j i}
(adj : HomAdjoint F G)
where
private
module F = PtdFunctor F
module G = PtdFunctor G
module A = HomAdjoint adj
module A× = RightAdjoint× adj
arr2 : {X Y Z : Ptd j}
→ X ⊙× Y ⊙→ Z → G.obj X ⊙× G.obj Y ⊙→ G.obj Z
arr2 {X} {Y} {Z} f = G.arr f ⊙∘ A×.⊙out X Y
nat-cod : {X : Ptd i} {Y Z W : Ptd j}
(r₁ : F.obj X ⊙→ Y) (r₂ : F.obj X ⊙→ Z)
(o : Y ⊙× Z ⊙→ W)
→ –> (A.eq X W) (o ⊙∘ ⊙fanout r₁ r₂)
== arr2 o ⊙∘ ⊙fanout (–> (A.eq X Y) r₁) (–> (A.eq X Z) r₂)
nat-cod {X} {Y} {Z} {W} r₁ r₂ o =
–> (A.eq X W) (o ⊙∘ ⊙fanout r₁ r₂)
=⟨ ! (A.nat-cod X o (⊙fanout r₁ r₂)) ⟩
G.arr o ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙fanout r₁ r₂)
=⟨ ! (A×.⊙out-into Y Z)
|in-ctx (λ w → (G.arr o ⊙∘ w) ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙fanout r₁ r₂)) ⟩
(G.arr o ⊙∘ (A×.⊙out Y Z ⊙∘ A×.⊙into Y Z))
⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙fanout r₁ r₂)
=⟨ ⊙∘-assoc-lemma (G.arr o) (A×.⊙out Y Z) (A×.⊙into Y Z)
(–> (A.eq X (Y ⊙× Z)) (⊙fanout r₁ r₂)) ⟩
arr2 o ⊙∘ A×.⊙into Y Z ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙fanout r₁ r₂)
=⟨ ⊙fanout-pre∘ (G.arr ⊙fst) (G.arr ⊙snd) (–> (A.eq X (Y ⊙× Z)) (⊙fanout r₁ r₂))
|in-ctx (λ w → arr2 o ⊙∘ w) ⟩
arr2 o ⊙∘ ⊙fanout (G.arr ⊙fst ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙fanout r₁ r₂))
(G.arr ⊙snd ⊙∘ –> (A.eq X (Y ⊙× Z)) (⊙fanout r₁ r₂))
=⟨ ap2 (λ w₁ w₂ → arr2 o ⊙∘ ⊙fanout w₁ w₂)
(A.nat-cod X ⊙fst (⊙fanout r₁ r₂)
∙ ap (–> (A.eq X Y)) (⊙fst-fanout r₁ r₂))
(A.nat-cod X ⊙snd (⊙fanout r₁ r₂)
∙ ap (–> (A.eq X Z)) (⊙snd-fanout r₁ r₂)) ⟩
arr2 o ⊙∘ ⊙fanout (–> (A.eq X Y) r₁) (–> (A.eq X Z) r₂) ∎
where
⊙∘-assoc-lemma : ∀ {i j k l m}
{X : Ptd i} {Y : Ptd j} {Z : Ptd k} {U : Ptd l} {V : Ptd m}
(k : U ⊙→ V) (h : Z ⊙→ U)
(g : Y ⊙→ Z) (f : X ⊙→ Y)
→ (k ⊙∘ (h ⊙∘ g)) ⊙∘ f == (k ⊙∘ h) ⊙∘ g ⊙∘ f
⊙∘-assoc-lemma (k , idp) (h , idp) (g , idp) (f , idp) = idp
{- a left adjoint preserves wedges -}
module LeftAdjoint∨ {i j} {F : PtdFunctor i j} {G : PtdFunctor j i}
(adj : HomAdjoint F G) (U V : Ptd i) where
private
module F = PtdFunctor F
module G = PtdFunctor G
module A = HomAdjoint adj
module Into = ⊙WedgeRec (F.arr ⊙winl) (F.arr ⊙winr)
⊙into : F.obj U ⊙∨ F.obj V ⊙→ F.obj (U ⊙∨ V)
⊙into = Into.⊙f
module OutHelp = ⊙WedgeRec
(–> (A.eq U (F.obj U ⊙∨ F.obj V)) ⊙winl)
(–> (A.eq V (F.obj U ⊙∨ F.obj V)) ⊙winr)
⊙out : F.obj (U ⊙∨ V) ⊙→ F.obj U ⊙∨ F.obj V
⊙out = <– (A.eq (U ⊙∨ V) (F.obj U ⊙∨ F.obj V)) OutHelp.⊙f
⊙into-out : ⊙into ⊙∘ ⊙out == ⊙idf (F.obj (U ⊙∨ V))
⊙into-out =
⊙into ⊙∘ ⊙out
=⟨ A.nat!-cod _ ⊙into (⊙Wedge-rec (–> (A.eq U (F.obj U ⊙∨ F.obj V)) ⊙winl)
(–> (A.eq V (F.obj U ⊙∨ F.obj V)) ⊙winr)) ⟩
<– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (G.arr ⊙into ⊙∘ ⊙Wedge-rec (–> (A.eq U (F.obj U ⊙∨ F.obj V)) ⊙winl)
(–> (A.eq V (F.obj U ⊙∨ F.obj V)) ⊙winr))
=⟨ ap (<– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V)))) $ ⊙λ= $
⊙Wedge-rec-post∘ (G.arr ⊙into)
(–> (A.eq U (F.obj U ⊙∨ F.obj V)) ⊙winl)
(–> (A.eq V (F.obj U ⊙∨ F.obj V)) ⊙winr) ⟩
<– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙Wedge-rec (G.arr ⊙into ⊙∘ –> (A.eq U (F.obj U ⊙∨ F.obj V)) ⊙winl)
(G.arr ⊙into ⊙∘ –> (A.eq V (F.obj U ⊙∨ F.obj V)) ⊙winr))
=⟨ ap2 (λ w₁ w₂ → <– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙Wedge-rec w₁ w₂))
(A.nat-cod _ ⊙into ⊙winl
∙ ap (–> (A.eq U (F.obj (U ⊙∨ V)))) (Into.⊙winl-β ∙ ! (⊙λ= $ ⊙∘-unit-l _))
∙ ! (A.nat-dom ⊙winl _ (⊙idf _)))
(A.nat-cod _ ⊙into ⊙winr
∙ ap (–> (A.eq V (F.obj (U ⊙∨ V)))) (Into.⊙winr-β ∙ ! (⊙λ= $ ⊙∘-unit-l _))
∙ ! (A.nat-dom ⊙winr _ (⊙idf _))) ⟩
<– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙Wedge-rec (–> (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙idf _) ⊙∘ ⊙winl)
(–> (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙idf _) ⊙∘ ⊙winr))
=⟨ ap (<– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V)))) $ ! $ ⊙λ= $
⊙Wedge-rec-post∘ (–> (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙idf _)) ⊙winl ⊙winr ⟩
<– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (–> (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙idf _) ⊙∘ ⊙Wedge-rec ⊙winl ⊙winr)
=⟨ ap (λ w → <– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (–> (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙idf _) ⊙∘ w))
⊙Wedge-rec-η ⟩
<– (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (–> (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙idf _))
=⟨ <–-inv-l (A.eq (U ⊙∨ V) (F.obj (U ⊙∨ V))) (⊙idf _) ⟩
⊙idf _ ∎
⊙out-into : ⊙out ⊙∘ ⊙into == ⊙idf _
⊙out-into =
⊙out ⊙∘ ⊙Wedge-rec (F.arr ⊙winl) (F.arr ⊙winr)
=⟨ ⊙λ= $ ⊙Wedge-rec-post∘ ⊙out (F.arr ⊙winl) (F.arr ⊙winr) ⟩
⊙Wedge-rec (⊙out ⊙∘ F.arr ⊙winl) (⊙out ⊙∘ F.arr ⊙winr)
=⟨ ap2 ⊙Wedge-rec
(A.nat!-dom ⊙winl _ (⊙Wedge-rec _ _)
∙ ap (<– (A.eq U (F.obj U ⊙∨ F.obj V))) OutHelp.⊙winl-β
∙ <–-inv-l (A.eq U (F.obj U ⊙∨ F.obj V)) ⊙winl)
(A.nat!-dom ⊙winr _ (⊙Wedge-rec _ _)
∙ ap (<– (A.eq V (F.obj U ⊙∨ F.obj V))) OutHelp.⊙winr-β
∙ <–-inv-l (A.eq V (F.obj U ⊙∨ F.obj V)) ⊙winr) ⟩
⊙Wedge-rec ⊙winl ⊙winr
=⟨ ⊙Wedge-rec-η ⟩
⊙idf _ ∎
⊙eq : F.obj U ⊙∨ F.obj V ⊙≃ F.obj (U ⊙∨ V)
⊙eq = ≃-to-⊙≃ (equiv (fst ⊙into) (fst ⊙out)
(app= (ap fst ⊙into-out)) (app= (ap fst ⊙out-into)))
(snd ⊙into)
⊙path = ⊙ua ⊙eq
| 42.511561
| 133
| 0.410429
|
22ffa3761b6bc980348448074087462e5e8cb6ba
| 3,212
|
agda
|
Agda
|
src/Categories/Category/Construction/Properties/EilenbergMoore.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Category/Construction/Properties/EilenbergMoore.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Category/Construction/Properties/EilenbergMoore.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Properties.EilenbergMoore where
open import Level
import Relation.Binary.PropositionalEquality.Core as ≡
open import Categories.Adjoint
open import Categories.Adjoint.Properties
open import Categories.Category
open import Categories.Functor using (Functor; _∘F_)
open import Categories.Functor.Equivalence
open import Categories.Monad
open import Categories.NaturalTransformation.Core renaming (id to idN)
open import Categories.Morphism.HeterogeneousIdentity
open import Categories.Adjoint.Construction.EilenbergMoore
open import Categories.Category.Construction.EilenbergMoore
private
variable
o ℓ e : Level
𝒞 𝒟 : Category o ℓ e
module _ {F : Functor 𝒞 𝒟} {G : Functor 𝒟 𝒞} (F⊣G : Adjoint F G) where
private
T : Monad 𝒞
T = adjoint⇒monad F⊣G
𝒞ᵀ : Category _ _ _
𝒞ᵀ = EilenbergMoore T
module 𝒞 = Category 𝒞
module 𝒟 = Category 𝒟
module 𝒞ᵀ = Category 𝒞ᵀ
open 𝒞.HomReasoning
module T = Monad T
module F = Functor F
module G = Functor G
open Adjoint F⊣G
open NaturalTransformation
-- Maclane's Comparison Functor
ComparisonF : Functor 𝒟 𝒞ᵀ
ComparisonF = record
{ F₀ = λ X → record
{ A = G.F₀ X
; action = G.F₁ (counit.η X)
; commute = commute (G ∘ˡ counit) (counit.η X)
; identity = zag
}
; F₁ = λ {A} {B} f → record
{ arr = G.F₁ f
; commute = begin
𝒞 [ G.F₁ f ∘ G.F₁ (counit.η A) ] ≈˘⟨ G.homomorphism ⟩
G.F₁ (𝒟 [ f ∘ (counit.η A) ]) ≈˘⟨ G.F-resp-≈ (counit.commute f) ⟩
G.F₁ (𝒟 [ counit.η B ∘ F.F₁ (G.F₁ f) ]) ≈⟨ G.homomorphism ⟩
𝒞 [ G.F₁ (counit.η B) ∘ G.F₁ (F.F₁ (G.F₁ f)) ] ∎
}
; identity = G.identity
; homomorphism = G.homomorphism
; F-resp-≈ = G.F-resp-≈
}
private
K = ComparisonF
module K = Functor K
module Gᵀ = Functor (Forgetful T)
module Fᵀ = Functor (Free T)
Comparison∘F≡Free : (ComparisonF ∘F F) ≡F Free T
Comparison∘F≡Free = record
{ eq₀ = λ X → ≡.refl
; eq₁ = λ {A} {B} f → begin
Module⇒.arr (𝒞ᵀ [ (hid 𝒞ᵀ ≡.refl) ∘ K.F₁ (F.F₁ f) ]) ≈⟨ hid-refl 𝒞ᵀ {A = K.F₀ (F.F₀ B)} ⟩∘⟨refl ⟩
Module⇒.arr (𝒞ᵀ [ 𝒞ᵀ.id ∘ K.F₁ (F.F₁ f) ]) ≈⟨ 𝒞.identityˡ {f = Module⇒.arr (K.F₁ (F.F₁ f))} ⟩
Module⇒.arr (K.F₁ (F.F₁ f)) ≈⟨ 𝒞.Equiv.refl ⟩
Module⇒.arr (Fᵀ.F₁ f) ≈˘⟨ 𝒞ᵀ.identityʳ {f = Fᵀ.F₁ f} ⟩
Module⇒.arr (𝒞ᵀ [ Fᵀ.F₁ f ∘ 𝒞ᵀ.id ]) ≈˘⟨ refl⟩∘⟨ hid-refl 𝒞ᵀ {A = Fᵀ.F₀ A} ⟩
Module⇒.arr (𝒞ᵀ [ Fᵀ.F₁ f ∘ (hid 𝒞ᵀ ≡.refl) ]) ∎
}
Forgetful∘ComparisonF≡G : (Forgetful T ∘F ComparisonF) ≡F G
Forgetful∘ComparisonF≡G = record
{ eq₀ = λ X → ≡.refl
; eq₁ = λ f → begin
𝒞 [ (hid 𝒞 ≡.refl) ∘ (Gᵀ.F₁ (K.F₁ f)) ] ≈⟨ hid-refl 𝒞 ⟩∘⟨refl ⟩
𝒞 [ 𝒞.id ∘ (Gᵀ.F₁ (K.F₁ f)) ] ≈⟨ 𝒞.identityˡ ⟩
(Gᵀ.F₁ (K.F₁ f)) ≈⟨ 𝒞.Equiv.refl ⟩
G.F₁ f ≈˘⟨ 𝒞.identityʳ ⟩
𝒞 [ G.F₁ f ∘ 𝒞.id ] ≈˘⟨ refl⟩∘⟨ hid-refl 𝒞 ⟩
𝒞 [ G.F₁ f ∘ (hid 𝒞 ≡.refl) ] ∎
}
| 33.113402
| 109
| 0.548257
|
c77c0dcbe4670b9346625325a91776d68e98b90a
| 196
|
agda
|
Agda
|
Cubical/Data/InfNat.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Data/InfNat.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Data/InfNat.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.InfNat where
open import Cubical.Data.InfNat.Base public
open import Cubical.Data.InfNat.Properties public
| 32.666667
| 67
| 0.770408
|
57e185e103a1e426d5bb3770498cbbfe19940863
| 469
|
agda
|
Agda
|
test/succeed/InstanceArgumentsConstraints.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
test/succeed/InstanceArgumentsConstraints.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
test/succeed/InstanceArgumentsConstraints.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --verbose tc.constr.findInScope:20 #-}
module InstanceArgumentsConstraints where
data Bool : Set where
true false : Bool
postulate A1 A2 B C : Set
a1 : A1
a2 : A2
someF : A1 → C
record Class (R : Bool → Set) : Set where
field f : (t : Bool) → R t
open Class {{...}}
class1 : Class (λ _ → A1)
class1 = record { f = λ _ → a1 }
class2 : Class (λ _ → A2)
class2 = record { f = λ _ → a2 }
test : C
test = someF (f true)
| 18.038462
| 50
| 0.573561
|
d1312dcecbb841265e486013ddd0f09af08453b1
| 6,381
|
agda
|
Agda
|
src/Categories/Adjoint/TwoSided.agda
|
turion/agda-categories
|
ad0f94b6cf18d8a448b844b021aeda58e833d152
|
[
"MIT"
] | 279
|
2019-06-01T14:36:40.000Z
|
2022-03-22T00:40:14.000Z
|
src/Categories/Adjoint/TwoSided.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 236
|
2019-06-01T14:53:54.000Z
|
2022-03-28T14:31:43.000Z
|
src/Categories/Adjoint/TwoSided.agda
|
seanpm2001/agda-categories
|
d9e4f578b126313058d105c61707d8c8ae987fa8
|
[
"MIT"
] | 64
|
2019-06-02T16:58:15.000Z
|
2022-03-14T02:00:59.000Z
|
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.TwoSided where
-- A "two sided" adjoint is an adjoint of two functors L and R where the
-- unit and counit are natural isomorphisms.
-- A two sided adjoint is the underlying data to an Adjoint Equivalence
open import Level
open import Categories.Adjoint
open import Categories.Category.Core using (Category)
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.NaturalTransformation using (ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (_≃_; NaturalIsomorphism)
open import Categories.NaturalTransformation.NaturalIsomorphism.Properties
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e : Level
o′ ℓ′ e′ : Level
C D : Category o ℓ e
infix 5 _⊣⊢_
record _⊣⊢_ (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where
field
unit : idF ≃ (R ∘F L)
counit : (L ∘F R) ≃ idF
module unit = NaturalIsomorphism unit
module counit = NaturalIsomorphism counit
private
module C = Category C using (Obj; id; _∘_; _≈_; module HomReasoning)
module D = Category D using (Obj; id; _∘_; _≈_; module HomReasoning)
module L = Functor L using (₀; ₁; op; identity)
module R = Functor R using (₀; ₁; op; identity)
field
zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id
zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id
op₁ : R.op ⊣⊢ L.op
op₁ = record
{ unit = counit.op
; counit = unit.op
; zig = zag
; zag = zig
}
zag⁻¹ : {B : D.Obj} → unit.⇐.η (R.₀ B) C.∘ R.₁ (counit.⇐.η B) C.≈ C.id
zag⁻¹ {B} = begin
unit.⇐.η (R.₀ B) C.∘ R.₁ (counit.⇐.η B) ≈˘⟨ flip-fromʳ unit.FX≅GX zag ⟩∘⟨refl ⟩
R.₁ (counit.⇒.η B) C.∘ R.₁ (counit.⇐.η B) ≈⟨ [ R ]-resp-∘ (counit.iso.isoʳ B) ⟩
R.₁ D.id ≈⟨ R.identity ⟩
C.id ∎
where open C.HomReasoning
open MR C
zig⁻¹ : {A : C.Obj} → L.₁ (unit.⇐.η A) D.∘ counit.⇐.η (L.₀ A) D.≈ D.id
zig⁻¹ {A} = begin
L.₁ (unit.⇐.η A) D.∘ counit.⇐.η (L.₀ A) ≈˘⟨ refl⟩∘⟨ flip-fromˡ counit.FX≅GX zig ⟩
L.₁ (unit.⇐.η A) D.∘ L.₁ (unit.⇒.η A) ≈⟨ [ L ]-resp-∘ (unit.iso.isoˡ A) ⟩
L.₁ C.id ≈⟨ L.identity ⟩
D.id ∎
where open D.HomReasoning
open MR D
op₂ : R ⊣⊢ L
op₂ = record
{ unit = ≃.sym counit
; counit = ≃.sym unit
; zig = zag⁻¹
; zag = zig⁻¹
}
L⊣R : L ⊣ R
L⊣R = record
{ unit = unit.F⇒G
; counit = counit.F⇒G
; zig = zig
; zag = zag
}
module L⊣R = Adjoint L⊣R
open L⊣R hiding (unit; counit; zig; zag; op) public
R⊣L : R ⊣ L
R⊣L = record
{ unit = counit.F⇐G
; counit = unit.F⇐G
; zig = zag⁻¹
; zag = zig⁻¹
}
module R⊣L = Adjoint R⊣L
private
record WithZig (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where
field
unit : idF ≃ (R ∘F L)
counit : (L ∘F R) ≃ idF
private
module unit = NaturalIsomorphism unit
module counit = NaturalIsomorphism counit
module C = Category C using (Obj; id; _∘_; _≈_; module HomReasoning)
module D = Category D using (Obj; id; _∘_; _≈_; module HomReasoning)
module L = Functor L using (₀; ₁; op; identity)
module R = Functor R using (₀; ₁; op; identity; F-resp-≈)
field
zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id
zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id
zag {B} = F≃id⇒id (≃.sym unit) helper
where open C
open HomReasoning
helper : R.₁ (L.₁ (R.₁ (counit.⇒.η B) ∘ unit.⇒.η (R.₀ B))) ≈ id
helper = begin
R.₁ (L.₁ (R.₁ (counit.⇒.η B) ∘ unit.⇒.η (R.₀ B))) ≈⟨ Functor.homomorphism (R ∘F L) ⟩
R.₁ (L.₁ (R.₁ (counit.⇒.η B))) ∘ R.₁ (L.₁ (unit.⇒.η (R.₀ B))) ≈˘⟨ R.F-resp-≈ (F≃id-comm₁ counit) ⟩∘⟨refl ⟩
R.₁ (counit.⇒.η (L.₀ (R.₀ B))) ∘ R.₁ (L.₁ (unit.⇒.η (R.₀ B))) ≈⟨ [ R ]-resp-∘ zig ⟩
R.₁ D.id ≈⟨ R.identity ⟩
id ∎
record WithZag (L : Functor C D) (R : Functor D C) : Set (levelOfTerm L ⊔ levelOfTerm R) where
field
unit : idF ≃ (R ∘F L)
counit : (L ∘F R) ≃ idF
private
module unit = NaturalIsomorphism unit
module counit = NaturalIsomorphism counit
module C = Category C using (Obj; id; _∘_; _≈_; module HomReasoning)
module D = Category D using (Obj; id; _∘_; _≈_; module HomReasoning)
module L = Functor L using (₀; ₁; op; identity; F-resp-≈)
module R = Functor R using (₀; ₁; op; identity)
field
zag : ∀ {B : D.Obj} → R.₁ (counit.⇒.η B) C.∘ unit.⇒.η (R.₀ B) C.≈ C.id
zig : ∀ {A : C.Obj} → counit.⇒.η (L.₀ A) D.∘ L.₁ (unit.⇒.η A) D.≈ D.id
zig {A} = F≃id⇒id counit helper
where open D
open HomReasoning
helper : L.₁ (R.₁ (counit.⇒.η (L.₀ A) ∘ L.₁ (unit.⇒.η A))) ≈ id
helper = begin
L.₁ (R.₁ (counit.⇒.η (L.₀ A) ∘ L.₁ (unit.⇒.η A))) ≈⟨ Functor.homomorphism (L ∘F R) ⟩
(L.₁ (R.₁ (counit.⇒.η (L.₀ A))) ∘ L.₁ (R.₁ (L.₁ (unit.⇒.η A)))) ≈˘⟨ refl⟩∘⟨ L.F-resp-≈ (F≃id-comm₂ (≃.sym unit)) ⟩
L.₁ (R.₁ (counit.⇒.η (L.₀ A))) ∘ L.₁ (unit.⇒.η (R.₀ (L.₀ A))) ≈⟨ [ L ]-resp-∘ zag ⟩
L.₁ C.id ≈⟨ L.identity ⟩
id ∎
module _ {L : Functor C D} {R : Functor D C} where
withZig : WithZig L R → L ⊣⊢ R
withZig LR = record
{ unit = unit
; counit = counit
; zig = zig
; zag = zag
}
where open WithZig LR
withZag : WithZag L R → L ⊣⊢ R
withZag LR = record
{ unit = unit
; counit = counit
; zig = zig
; zag = zag
}
where open WithZag LR
id⊣⊢id : idF {C = C} ⊣⊢ idF
id⊣⊢id {C = C} = record
{ unit = ≃.sym ≃.unitor²
; counit = ≃.unitor²
; zig = identity²
; zag = identity²
}
where open Category C
| 34.122995
| 128
| 0.506034
|
1a22659c24196e266f3d4e01ee2fe52740ea1beb
| 652
|
agda
|
Agda
|
snoc.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
snoc.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
snoc.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
module snoc where
open import unit
open import empty
open import bool
open import product
data Snoc (A : Set) : Set where
[] : Snoc A
_::_ : Snoc A → A → Snoc A
infixl 6 _::_ _++_
[_] : {A : Set} → A → Snoc A
[ x ] = [] :: x
_++_ : {A : Set} → Snoc A → Snoc A → Snoc A
[] ++ l₂ = l₂
(l₁ :: x) ++ l₂ = (l₁ ++ l₂) :: x
member : {A : Set} → (A → A → 𝔹) → A → Snoc A → 𝔹
member _=A_ x (l :: y) with x =A y
... | tt = tt
... | ff = ff
member _=A_ x _ = ff
inPairSnocFst : {A B : Set} → (A → A → 𝔹) → A → Snoc (A × B) → Set
inPairSnocFst _=A_ x [] = ⊥
inPairSnocFst _=A_ x (l :: (a , _)) with x =A a
... | tt = ⊤
... | ff = inPairSnocFst _=A_ x l
| 20.375
| 66
| 0.504601
|
22480955c2d9f5ccae7a4f946d66ef6b13a776c7
| 339
|
agda
|
Agda
|
Cats/Util/SetoidReasoning.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | 24
|
2017-11-03T15:18:57.000Z
|
2021-08-06T05:00:46.000Z
|
Cats/Util/SetoidReasoning.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | null | null | null |
Cats/Util/SetoidReasoning.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | 1
|
2019-03-18T15:35:07.000Z
|
2019-03-18T15:35:07.000Z
|
{-# OPTIONS --without-K --safe #-}
module Cats.Util.SetoidReasoning where
open import Relation.Binary.Reasoning.MultiSetoid public
open import Relation.Binary using (Setoid)
module _ {c ℓ} (S : Setoid c ℓ) where
open Setoid S
triangle :
∀ m {x y}
→ x ≈ m
→ y ≈ m
→ x ≈ y
triangle m x≈m y≈m = trans x≈m (sym y≈m)
| 18.833333
| 56
| 0.631268
|
4bd982345eb69efd96087a6fb29b80172284b584
| 16,174
|
agda
|
Agda
|
agda/book/Programming_Language_Foundations_in_Agda/x01naturals.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | 36
|
2015-01-29T14:37:15.000Z
|
2021-07-30T06:55:03.000Z
|
agda/book/Programming_Language_Foundations_in_Agda/x01naturals.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | null | null | null |
agda/book/Programming_Language_Foundations_in_Agda/x01naturals.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | 8
|
2015-04-13T21:40:15.000Z
|
2021-09-21T15:58:10.000Z
|
module x01naturals where
{-
------------------------------------------------------------------------------
naturals : inductive datatype
definition as a pair of inference rules:
-- no assumptions
---------
zero : ℕ -- base case
m : ℕ -- assuming m is Natural
---------
suc m : ℕ -- inductive case : then suc m is also a Natural
in Agda:
-}
data ℕ : Set where
zero : ℕ -- base case
suc : ℕ → ℕ -- inductive case
-- #### Exercise Write out `7` in longhand.
seven : ℕ
seven = suc (suc (suc (suc (suc (suc (suc zero))))))
{-
inference rules consists of
- zero or more _judgments_ written above a horizontal line, called the _hypotheses_
- single judgment written below, called the _conclusion_
`Set` : the way in Agda of saying that it is a type
Inductive case defines natural numbers in terms of natural numbers.
Base case jump starts the process of induction.
## Philosophy and history
inductive def of nats is relatively recent
- 1888
Richard Dedekind's paper "_Was sind und was sollen die Zahlen?_"
(What are and what should be the numbers?)
- 1889
Giuseppe Peano's book "_Arithmetices principia, nova methodo exposita_"
(The principles of arithmetic presented by a new method)
------------------------------------------------------------------------------
## PRAGMA
the line
-}
{-# BUILTIN NATURAL ℕ #-}
{-
tells Agda that `ℕ` corresponds to the natural numbers
- pragma must be given a previously declared type (in this case `ℕ`)
- enables 0, 1, 2, ... shorthand
- enables efficient internal Haskell representation
## IMPORTS
To write equations that hold between terms involving natural numbers
import the definition of equality and notations for reasoning about equality
from the Agda standard library:
-}
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
{-
1st line : brings equality module into scope and gives it the name `Eq`.
2nd line : opens that module and adds names in `using` clause into scope.
3rd line : opens module that specifies operators to support reasoning about equivalence
and adds names in `using` clause into scope.
later will see their definitions in Chapter Equality
underbars indicate where terms appear
- `_≡_` and `_≡⟨⟩_` : terms on each side
- `begin_` is prefix : terms after
- : `_∎` : terms before
------------------------------------------------------------------------------
## operations on naturals are recursive functions
-}
-- ADDITION
_+_ : ℕ → ℕ → ℕ
zero + n = n -- base case : 0 + n ≡ n
(suc m) + n = suc (m + n) -- inductive case : (1 + m) + n ≡ 1 + (m + n) : associativity
{-
Inductive definition works because addition of larger numbers is defined
in terms of addition of smaller numbers : WELL FOUNDED
-}
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3 ≡⟨⟩ -- is shorthand for
(suc (suc zero)) + (suc (suc (suc zero))) ≡⟨⟩ -- inductive case
suc ((suc zero) + (suc (suc (suc zero)))) ≡⟨⟩ -- inductive case
suc (suc (zero + (suc (suc (suc zero))))) ≡⟨⟩ -- base case
suc (suc (suc (suc (suc zero)))) ≡⟨⟩ -- is longhand for
5
∎ -- ∎ is QED
-- equivalent
_ : 2 + 3 ≡ 5
_ =
begin
2 + 3 ≡⟨⟩
suc (1 + 3) ≡⟨⟩
suc (suc (0 + 3)) ≡⟨⟩
suc (suc 3) ≡⟨⟩
5
∎
-- A binary relation is said to be REFLEXIVE if every value relates to itself.
-- Evidence that a value is equal to itself is written `refl`
_ : 2 + 3 ≡ 5
_ = refl
{-
above derivations consist of
- a signature (written with a colon, `:`), giving a type
- a binding (written with an equal sign, `=`), giving a term of the given type.
the dummy name `_` can be reused
consists of a series of terms separated by `≡⟨⟩`.
duality of interpretation
- type as a proposition
- term as evidence (aka proof)
#### Exercise `+-example` Compute `3 + 4`
-}
_ : 3 + 4 ≡ 7
_ =
begin
3 + 4 ≡⟨⟩
suc (2 + 4) ≡⟨⟩
suc (suc (1 + 4)) ≡⟨⟩
suc (suc (suc (0 + 4))) ≡⟨⟩
suc (suc (suc 4)) ≡⟨⟩
7
∎
_ : 3 + 4 ≡ 7
_ = refl
{-
------------------------------------------------------------------------------
## MULTIPLICATION
-}
_*_ : ℕ → ℕ → ℕ
zero * n = zero -- 0 * n ≡ 0
(suc m) * n = n + (m * n) -- (1 + m) * n ≡ n + (m * n)
{-
computing `m * n` returns the sum of `m` copies of `n`.
2nd line because multiplication distributes over addition:
(m + n) * p ≡ (m * p) + (n * p)
We get the second equation from the third by
- taking `m` to be `1`
- `n` to be `m`
- `p` to be `n`
- then use fact that one is identity for multiplication, so
- `1 * n ≡ n`
WELL FOUNDED : _*_ of larger numbers is defined in terms of _*_ of smaller numbers
-}
_ : 2 * 3 ≡ 6
_ =
begin
2 * 3 ≡⟨⟩ -- inductive case
3 + (1 * 3) ≡⟨⟩ -- inductive case
3 + (3 + (0 * 3)) ≡⟨⟩ -- base case
3 + (3 + 0) ≡⟨⟩ -- simplify
6
∎
{-
#### Exercise `*-example` Compute `3 * 4`
-}
_ : 3 * 4 ≡ 12
_ =
begin
3 * 4 ≡⟨⟩
4 + (2 * 4) ≡⟨⟩
4 + (4 + (1 * 4)) ≡⟨⟩
4 + (4 + (4 + (0 * 4))) ≡⟨⟩ -- base case
4 + (4 + (4 + 0)) ≡⟨⟩ -- addition
12
∎
-- HC
_*hc_ : ℕ → ℕ → ℕ
n *hc zero = zero
n *hc (suc m) = (n *hc m) + n
_ : 2 *hc 3 ≡ 6
_ =
begin
2 *hc 3 ≡⟨⟩
(2 *hc 2) + 2 ≡⟨⟩
((2 *hc 1) + 2) + 2 ≡⟨⟩
(((2 *hc 0) + 2) + 2) + 2 ≡⟨⟩
(( 0 + 2) + 2) + 2 ≡⟨⟩
( 2 + 2) + 2 ≡⟨⟩
6
∎
{-
------------------------------------------------------------------------------
#### Exercise (recommended) Define EXPONENTIATION
-}
_^_ : ℕ → ℕ → ℕ
m ^ 0 = 1 -- m ^ 0 = 1
m ^ (suc n) = m * (m ^ n) -- m ^ (1 + n) = m * (m ^ n)
-- Check that `3 ^ 4` is `81`.
_ : 3 ^ 4 ≡ 81
_ = refl
_ : 2 ^ 3 ≡ 8
_ = refl
{-
------------------------------------------------------------------------------
## MONUS SUBTRACTION
uses pattern matching against both arguments:
-}
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
-- WELL FOUNDED : monus on bigger numbers is defined in terms of monus on smaller numbers.
_ =
begin
3 ∸ 2 ≡⟨⟩
2 ∸ 1 ≡⟨⟩
1 ∸ 0 ≡⟨⟩
1
∎
_ =
begin
2 ∸ 3 ≡⟨⟩
1 ∸ 2 ≡⟨⟩
0 ∸ 1 ≡⟨⟩
0
∎
{-
#### Exercise Compute `5 ∸ 3` and `3 ∸ 5`, reasoning as a chain of equations.
-}
_ =
begin
5 ∸ 3 ≡⟨⟩
4 ∸ 2 ≡⟨⟩
3 ∸ 1 ≡⟨⟩
2 ∸ 0 ≡⟨⟩
2
∎
_ =
begin
3 ∸ 5 ≡⟨⟩
2 ∸ 4 ≡⟨⟩
1 ∸ 3 ≡⟨⟩
0 ∸ 2 ≡⟨⟩
0
∎
{-
------------------------------------------------------------------------------
## PRECEDENCE
Application higher than operators : `suc m + n` means `(suc m) + n`
multiplication higher than addition : `n + m * n` means `n + (m * n)`
addition _associates to the left_ : `m + n + p` means `(m + n) + p`
declare precedence and associativity of infix operators
-}
infixl 6 _+_ _∸_
infixl 7 _*_
{-
`infixl` : associate to the left
`infixr` : associate to the right
`infix` : indicates that parentheses are required to disambiguate
------------------------------------------------------------------------------
## CURRYING
a function of two arguments in terms of
- a function of the first argument
- that returns a function of the second argument
Function arrows associate to the right : `ℕ → ℕ → ℕ` stands for `ℕ → (ℕ → ℕ)`
Application associates to the left : `_+_ 2 3` stands for `(_+_ 2) 3`
Named for Haskell Curry.
The idea actually appears in the _Begriffsschrift_ of Gottlob Frege, published in 1879.
------------------------------------------------------------------------------
## The story of creation, revisited
inductive definition defines naturals in terms of naturals
recursive definition defines addition in terms of addition
n : ℕ
--------------
zero + n = n
m + n = p
---------------------
(suc m) + n = suc p
------------------------------------------------------------------------------
## The story of creation, finitely {name=finite-creation}
SKIPPED
------------------------------------------------------------------------------
## Writing definitions interactively
_+_ : ℕ → ℕ → ℕ
m + n = ?
? : ask Agda to fill in
`C-c C-l`
? replaced:
_+_ : ℕ → ℕ → ℕ
m + n = { }0
empty braces : a "numbered" *hole*
Emacs will also create a window displaying the text
?0 : ℕ
to indicate that hole 0 is to be filled in with a term of type `ℕ`.
`C-c C-f` (for **f**orward) will move you into the next hole.
To define addition by recursion on the first argument:
cursor in hole : `C-c C-c` (for **c**ase).
prompt:
pattern variables to case (empty for split on result):
Type `m` : case split on `m`:
_+_ : ℕ → ℕ → ℕ
zero + n = { }0
suc m + n = { }1
window at the bottom type of each:
?0 : ℕ
?1 : ℕ
in hole 0 : `C-c C-,`
displays info on required type of hole, and what free variables are available:
Goal: ℕ
————————————————————————————————————————————————————————————
n : ℕ
suggests filling the hole with `n`
after hole filled in : `C-c C-space` : removes hole:
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = { }1
in hole 1 : `C-c C-,`
displays info
Goal: ℕ
————————————————————————————————————————————————————————————
n : ℕ
m : ℕ
in hole : `C-c C-r` (for **r**efine)
will fill in with a constructor (if there is a unique choice)
or tell you what constructors you might use, if there is a choice
Don't know which constructor to introduce of zero or suc
fill in hole with `suc ?` : `C-c C-space`
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc { }1
in new hole : `C-c C-,`
Goal: ℕ
————————————————————————————————————————————————————————————
n : ℕ
m : ℕ
fill hole with `m + n` : `C-c C-space`
complete the program:
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
------------------------------------------------------------------------------
## More pragmas
-}
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
{-# BUILTIN NATMINUS _∸_ #-}
{-
tells Agda correspondance between operators correspond and the usual ones.
Enables using corresponding Haskell operators on arbitrary-precision integer type.
------------------------------------------------------------------------------
#### Exercise `Bin` (stretch) {name=Bin} represent nat as bitstring
-}
data Bin : Set where
⟨⟩ : Bin
_O : Bin → Bin
_I : Bin → Bin
{-
bitstring 1011 (eleven) encoded as ⟨⟩ I O I I
or, with leading zeros, ⟨⟩ O O I O I I
define
inc : Bin → Bin
converts bitstring to bitstring for next higher number
-}
-- this definition has TWO forms of ZERO: '⟨⟩' and '⟨⟩ O'
-- will probably cause problems later on
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ I
inc (⟨⟩ O) = ⟨⟩ I
inc (⟨⟩ I) = ⟨⟩ I O
inc (b O) = b I
inc (b I) = (inc b) O
-- `IOII` eleven to `1100` twelve
_ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O
_ = refl
-- Confirm correct answer for the bitstrings encoding zero through four.
_ : inc (⟨⟩ O) ≡ ⟨⟩ I
_ = refl
_ : inc (⟨⟩ I) ≡ ⟨⟩ I O
_ = refl
_ : inc (⟨⟩ I O) ≡ ⟨⟩ I I
_ = refl
_ : inc (⟨⟩ I I) ≡ ⟨⟩ I O O
_ = refl
_ : inc (⟨⟩ I O O) ≡ ⟨⟩ I O I
_ = refl
{-
using above, define
to : ℕ → Bin
from : Bin → ℕ
`to` should not have leading zeros, except represent zero as `⟨⟩ O`
confirm for zero through four
-}
to : ℕ → Bin
to zero = ⟨⟩ O
to (suc m) = inc (to m)
from : Bin → ℕ
from ⟨⟩ = 0
from (b O) = 2 * from b
from (b I) = 2 * from b + 1
_ : from (⟨⟩ O) ≡ 0
_ = refl
_ : from (⟨⟩ I) ≡ 1
_ = refl
_ : from (⟨⟩ I O) ≡ 2
_ = refl
_ : from (⟨⟩ I I) ≡ 3
_ = refl
_ : from (⟨⟩ I O O) ≡ 4
_ = refl
_ : from (⟨⟩ I I O) ≡ 6
_ = refl
_ : to 0 ≡ (⟨⟩ O)
_ = refl
_ : to 1 ≡ (⟨⟩ I)
_ = refl
_ : to 2 ≡ (⟨⟩ I O)
_ = refl
_ : to 3 ≡ (⟨⟩ I I)
_ = refl
_ : to 4 ≡ (⟨⟩ I O O)
_ = refl
_ : to 6 ≡ (⟨⟩ I I O)
_ = refl
_ : from (to 12) ≡ 12
_ = refl
_ : to (from (⟨⟩ I I O O)) ≡ ⟨⟩ I I O O
_ = refl
-- 842 exercise : bin-+
_bin-+_ : Bin → Bin → Bin
⟨⟩ bin-+ ⟨⟩ = ⟨⟩
⟨⟩ bin-+ b = b
b bin-+ ⟨⟩ = b
(bl O) bin-+ (br O) = let r = bl bin-+ br in r O
(bl O) bin-+ (br I) = let r = bl bin-+ br in r I
(bl I) bin-+ (br O) = let r = bl bin-+ br in r I
(bl I) bin-+ (br I) = let r = bl bin-+ br in (inc r) O
_ : (⟨⟩) bin-+ (⟨⟩) ≡ (⟨⟩)
_ = refl
_ : (⟨⟩) bin-+ (⟨⟩ O) ≡ (⟨⟩ O)
_ = refl
_ : (⟨⟩ O) bin-+ (⟨⟩) ≡ (⟨⟩ O)
_ = refl
_ : (⟨⟩ O) bin-+ (⟨⟩ O) ≡ (⟨⟩ O)
_ = refl
_ : (⟨⟩ O) bin-+ (⟨⟩ I) ≡ (⟨⟩ I)
_ = refl
_ : (⟨⟩ I) bin-+ (⟨⟩ I) ≡ (⟨⟩ I O)
_ = refl
_ : (⟨⟩ I O) bin-+ (⟨⟩ I O) ≡ (⟨⟩ I O O)
_ = refl
_ : (⟨⟩ I I) bin-+ (⟨⟩ I I) ≡ (⟨⟩ I I O)
_ = refl
_ : (⟨⟩ I O I) bin-+ (⟨⟩ I) ≡ (⟨⟩ I I O)
_ = refl
_ : (⟨⟩ I I I) bin-+ (⟨⟩ I) ≡ (⟨⟩ I O O O)
_ = refl
------------------------------------------------------------------------------
-- hc exercise : explore two representation of ZERO
z1-bin-+ : ∀ (b1 b2 : Bin)
→ b1 ≡ ⟨⟩
→ b1 bin-+ b2 ≡ b2
z1-bin-+ b1 ⟨⟩ p -- (b1 bin-+ ⟨⟩) ≡ ⟨⟩
rewrite
p -- (⟨⟩ bin-+ ⟨⟩) ≡ ⟨⟩
-- ⟨⟩ ≡ ⟨⟩
= refl
z1-bin-+ b1 (⟨⟩ O) p -- (b1 bin-+ (⟨⟩ O)) ≡ (⟨⟩ O)
rewrite
p -- (⟨⟩ bin-+ (⟨⟩ O)) ≡ (⟨⟩ O)
-- (⟨⟩ O) ≡ (⟨⟩ O)
= refl
z1-bin-+ b1 (b O) p -- (b1 bin-+ (b O)) ≡ (b O)
rewrite
p -- (⟨⟩ bin-+ (b O)) ≡ (b O)
-- (b O) ≡ (b O)
= refl
z1-bin-+ b1 (b I) p -- (b1 bin-+ (b I)) ≡ (b I)
rewrite
p -- (⟨⟩ bin-+ (b I)) ≡ (b I)
-- (b I) ≡ (b I)
= refl
z-bin-+ : ∀ (b1 b2 : Bin)
→ b1 ≡ (⟨⟩ O)
→ b1 bin-+ b2 ≡ b2
z-bin-+ b1 ⟨⟩ p -- (b1 bin-+ ⟨⟩) ≡ ⟨⟩
rewrite
p -- ((⟨⟩ O) bin-+ ⟨⟩) ≡ ⟨⟩
-- (⟨⟩ O) ≡ ⟨⟩
= {!!}
z-bin-+ b1 (⟨⟩ O) p -- (b1 bin-+ (⟨⟩ O)) ≡ (⟨⟩ O)
rewrite
p -- ((⟨⟩ O) bin-+ (⟨⟩ O)) ≡ (⟨⟩ O)
-- (⟨⟩ O) ≡ (⟨⟩ O)
= refl
z-bin-+ b1 (b O) p -- (b1 bin-+ (b O)) ≡ (b O)
rewrite
p -- ((⟨⟩ O) bin-+ (b O)) ≡ (b O)
-- ((⟨⟩ bin-+ b) O) ≡ (b O)
= {!!}
z-bin-+ b1 (b I) p -- (b1 bin-+ (b I)) ≡ (b I)
rewrite
p -- ((⟨⟩ O) bin-+ (b I)) ≡ (b I)
-- ((⟨⟩ bin-+ b) I) ≡ (b I)
= {!!}
hc : ∀ (m n : ℕ) → from (to m bin-+ to n) ≡ m + n
hc zero n -- from (to zero bin-+ to n) ≡ zero + n
= {!!} -- from ( (⟨⟩ O) bin-+ to n) ≡ n
hc (suc m) n = {!!}
{-
------------------------------------------------------------------------------
## Standard library
where to find relevant definitions in the standard library
Naturals, constructors, operators :
import Data.Nat using (ℕ; zero; suc; _+_; _*_; _^_; _∸_)
https://agda.readthedocs.io/en/v2.6.1/language/pragmas.html
------------------------------------------------------------------------------
## Unicode
This chapter uses the following unicode:
char code name emacs
------------------------------------------------------
ℕ U+2115 DOUBLE-STRUCK CAPITAL N (\bN)
→ U+2192 RIGHTWARDS ARROW (\to, \r, \->)
∸ U+2238 DOT MINUS (\.-)
≡ U+2261 IDENTICAL TO (\==)
⟨ U+27E8 MATHEMATICAL LEFT ANGLE BRACKET (\<)
⟩ U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET (\>)
∎ U+220E END OF PROOF (\qed)
`\r` : variety of right arrows
`\l` : variety of left arrows
All the characters supported by `agda-mode`:
M-x agda-input-show-translations
To see how to input an existing specific Unicode character in an agda file,
move cursor to character
M-x quail-show-key
-}
| 23.961481
| 90
| 0.455917
|
193d04150ed4cffcaa58844c841b10f1cacdbcdb
| 5,267
|
agda
|
Agda
|
src/IntuitionisticLogic.agda
|
wenkokke/msla2014
|
b880cf25ed8e81b9a965ea9aad18377008d68a9f
|
[
"MIT"
] | 5
|
2018-11-17T23:04:39.000Z
|
2020-10-29T09:07:45.000Z
|
src/IntuitionisticLogic.agda
|
wenkokke/msla2014
|
b880cf25ed8e81b9a965ea9aad18377008d68a9f
|
[
"MIT"
] | null | null | null |
src/IntuitionisticLogic.agda
|
wenkokke/msla2014
|
b880cf25ed8e81b9a965ea9aad18377008d68a9f
|
[
"MIT"
] | null | null | null |
open import Level using (Level; _⊔_)
open import Function using (id; case_of_)
open import Data.Nat using (ℕ; suc)
open import Data.Fin using (Fin; suc; zero)
open import Data.Vec as Vec using (Vec) renaming (_∷_ to _,_; [] to ∅)
open import Data.List using (_∷_; [])
open import Data.List as List using (List; _++_) renaming (_∷_ to _,_; [] to ∅)
open import Data.Product as Product using (∃; _×_; _,_)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; sym; cong)
module IntuitionisticLogic (U : Set) (⟦_⟧ᵁ : U → Set) where
infix 30 _⊗_
infixr 20 _⇒_
data Type : Set where
el : (A : U) → Type
_⊗_ : Type → Type → Type
_⇒_ : Type → Type → Type
module Implicit where
infix 4 _⊢_
data _⊢_ : ∀ {k} (Γ : Vec Type k) (A : Type) → Set where
var : ∀ {k} {Γ : Vec Type k} (x : Fin k) → Γ ⊢ Vec.lookup x Γ
abs : ∀ {A B} {k} {Γ : Vec Type k} → A , Γ ⊢ B → Γ ⊢ A ⇒ B
app : ∀ {A B} {k} {Γ : Vec Type k} → Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B
pair : ∀ {A B} {k} {Γ : Vec Type k} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ⊗ B
case : ∀ {A B C} {k} {Γ : Vec Type k} → Γ ⊢ A ⊗ B → A , B , Γ ⊢ C → Γ ⊢ C
swap : ∀ {A B} {k} {Γ : Vec Type k} → Γ ⊢ A ⊗ B ⇒ B ⊗ A
swap = abs (case (var zero) (pair (var (suc zero)) (var zero)))
Vec-exch : ∀ {k} (i : Fin k) → Vec Type (suc k) → Vec Type (suc k)
Vec-exch zero (A , B , Γ) = B , A , Γ
Vec-exch (suc i) (A , Γ) = A , (Vec-exch i Γ)
lemma-var : ∀ {k} {Γ : Vec Type (suc k)} → ∀ i x → ∃ λ y → Vec.lookup x Γ ≡ Vec.lookup y (Vec-exch i Γ)
lemma-var {Γ = A , B , Γ} zero zero = suc zero , refl
lemma-var {Γ = A , B , Γ} zero (suc zero) = zero , refl
lemma-var {Γ = A , B , Γ} zero (suc (suc x)) = suc (suc x) , refl
lemma-var {Γ = A , Γ} (suc i) zero = zero , refl
lemma-var {Γ = A , Γ} (suc i) (suc x) = Product.map suc id (lemma-var {Γ = Γ} i x)
exch : ∀ {k} {Γ : Vec Type (suc k)} {A} → ∀ i → Γ ⊢ A → Vec-exch i Γ ⊢ A
exch {Γ = Γ} i (var x) with lemma-var {Γ = Γ} i x
exch {Γ = Γ} i (var x) | y , p rewrite p = var y
exch i (abs t) = abs (exch (suc i) t)
exch i (app s t) = app (exch i s) (exch i t)
exch i (pair s t) = pair (exch i s) (exch i t)
exch i (case s t) = case (exch i s) (exch (suc (suc i)) t)
module Explicit where
infix 4 _⊢_
data _⊢_ : ∀ (X : List Type) (A : Type) → Set where
var : ∀ {A} → A , ∅ ⊢ A
abs : ∀ {X A B} → A , X ⊢ B → X ⊢ A ⇒ B
app : ∀ {X Y A B} → X ⊢ A ⇒ B → Y ⊢ A → X ++ Y ⊢ B
pair : ∀ {X Y A B} → X ⊢ A → Y ⊢ B → X ++ Y ⊢ A ⊗ B
case : ∀ {X Y A B C} → X ⊢ A ⊗ B → A , B , Y ⊢ C → X ++ Y ⊢ C
weak : ∀ {X Y A} → X ⊢ A → X ++ Y ⊢ A
cont : ∀ {X A B} → A , A , X ⊢ B → A , X ⊢ B
exch : ∀ {X Y Z W A} → (X ++ Z) ++ (Y ++ W) ⊢ A
→ (X ++ Y) ++ (Z ++ W) ⊢ A
exch₀ : ∀ {X A B C} → B , A , X ⊢ C → A , B , X ⊢ C
exch₀ {X} {A} {B} = exch {∅} {A , ∅} {B , ∅} {X}
swap : ∀ {X A B} → X ⊢ A ⊗ B ⇒ B ⊗ A
swap {X} {A} {B} = abs (case var (exch₀ (pair var (weak {A , ∅} {X} var))))
record Reify {a b : Level} (A : Set a) (B : Set b) : Set (a ⊔ b) where
field
⟦_⟧ : A → B
instance
ReifyType : Reify Type Set
ReifyType = record { ⟦_⟧ = ⟦_⟧ }
where
⟦_⟧ : Type → Set
⟦ el A ⟧ = ⟦ A ⟧ᵁ
⟦ A ⊗ B ⟧ = ⟦ A ⟧ × ⟦ B ⟧
⟦ A ⇒ B ⟧ = ⟦ A ⟧ → ⟦ B ⟧
data Ctxt : ∀ (X : List Set) → Set₁ where
∅ : Ctxt ∅
_,_ : ∀ {A X} → A → Ctxt X → Ctxt (A , X)
open Reify {{...}} using (⟦_⟧)
instance
ReifyCtxt : Reify (List Type) (List Set)
ReifyCtxt = record { ⟦_⟧ = List.map ⟦_⟧ }
Ctxt-insert : {A : Type} {X Y : List Type} → ⟦ A ⟧ → Ctxt ⟦ X ++ Y ⟧ → Ctxt ⟦ X ++ (A , Y) ⟧
Ctxt-insert {A} {∅} {Y} A′ E = A′ , E
Ctxt-insert {A} {B , X} {Y} A′ (B′ , E) = B′ , Ctxt-insert {A} {X} {Y} A′ E
Ctxt-exch : {X Y Z W : List Type} → Ctxt ⟦ (X ++ Y) ++ (Z ++ W) ⟧ → Ctxt ⟦ (X ++ Z) ++ (Y ++ W) ⟧
Ctxt-exch {X = ∅} {Y = ∅} {Z} {W} E = E
Ctxt-exch {X = ∅} {Y = A , Y} {Z} {W} (A′ , E) = Ctxt-insert {A} {Z} {Y ++ W} A′ (Ctxt-exch {∅} {Y} {Z} {W} E)
Ctxt-exch {X = A , X} {Y} {Z} {W} (A′ , E) = A′ , Ctxt-exch {X} {Y} {Z} {W} E
Ctxt-split : {X Y : List Type} → Ctxt ⟦ X ++ Y ⟧ → Ctxt ⟦ X ⟧ × Ctxt ⟦ Y ⟧
Ctxt-split {∅} {Y} E = ∅ , E
Ctxt-split {A , X} {Y} (A′ , E) with Ctxt-split {X} {Y} E
... | Eˣ , Eʸ = ((A′ , Eˣ) , Eʸ)
reify : {A : Type} {X : List Type} → X ⊢ A → (Ctxt ⟦ X ⟧ → ⟦ A ⟧)
reify var (x , ∅) = x
reify (abs t) E = λ x → reify t (x , E)
reify (app s t) E with Ctxt-split E
... | Eˢ , Eᵗ = (reify s Eˢ) (reify t Eᵗ)
reify (pair s t) E with Ctxt-split E
... | Eˢ , Eᵗ = (reify s Eˢ , reify t Eᵗ)
reify (case s t) E with Ctxt-split E
... | Eˢ , Eᵗ = case reify s Eˢ of λ{ (x , y) → reify t (x , y , Eᵗ)}
reify (weak {X} s) E with Ctxt-split {X} E
... | Eˢ , Eᵗ = reify s Eˢ
reify (cont t) (x , E) = reify t (x , x , E)
reify (exch {X} {Y} {Z} {W} t) E = reify t (Ctxt-exch {X} {Y} {Z} {W} E)
[_] : {A : Type} {X : List Type} → X ⊢ A → (Ctxt ⟦ X ⟧ → ⟦ A ⟧)
[_] = reify
swap′ : ∀ {A B} → ⟦ A ⟧ × ⟦ B ⟧ → ⟦ B ⟧ × ⟦ A ⟧
swap′ {A} {B} = [ swap {∅} {A} {B} ] ∅
| 39.601504
| 112
| 0.440099
|
2937de776ba7cdf865469251288105d1a90d5252
| 678
|
agda
|
Agda
|
test/Fail/Issue2348-visible-instance.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue2348-visible-instance.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue2348-visible-instance.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2016-12-20, issue #2348, testing nameFirstIfHidden
-- {-# OPTIONS -v tc.proj.like:100 #-}
{-# OPTIONS --show-implicit #-} -- NEEDED
-- something projection-like
record Wrap (A : Set) : Set where
field out : A
proj-like : (A : Set) {{r : Wrap A}} → A
proj-like A {{r}} = Wrap.out r
-- display term with projection-like thing
postulate
B : Set
b : B
P : B → Set
p : P b
instance
w : Wrap B
ok = P (proj-like _ {{w}}) -- instance argument does not have to be named
test : P (proj-like B)
test = p -- triggers error message
-- Expected error:
-- b != Wrap.out w of type B
-- when checking that the expression p has type P (proj-like _ {{w}})
| 20.545455
| 74
| 0.620944
|
ad25f3219509764ef99f57ef4887910b33c50028
| 19,514
|
agda
|
Agda
|
src/AssocFree/STLambdaC/Exp.agda
|
agda/agda-assoc-free
|
08337fdb8375137a52cc9b3ade766305191b2394
|
[
"MIT"
] | 3
|
2016-11-22T11:48:31.000Z
|
2020-08-27T20:56:20.000Z
|
src/AssocFree/STLambdaC/Exp.agda
|
agda/agda-assoc-free
|
08337fdb8375137a52cc9b3ade766305191b2394
|
[
"MIT"
] | null | null | null |
src/AssocFree/STLambdaC/Exp.agda
|
agda/agda-assoc-free
|
08337fdb8375137a52cc9b3ade766305191b2394
|
[
"MIT"
] | 2
|
2018-03-03T04:39:31.000Z
|
2022-03-12T11:38:44.000Z
|
open import Function using () renaming ( _∘′_ to _∘_ )
open import Relation.Binary.PropositionalEquality using
( _≡_ ; refl ; sym ; cong ; cong₂ ; subst )
open import AssocFree.Util using ( subst-natural )
import AssocFree.STLambdaC.Typ
open Relation.Binary.PropositionalEquality.≡-Reasoning using ( begin_ ; _≡⟨_⟩_ ; _∎ )
module AssocFree.STLambdaC.Exp
(TConst : Set)
(Const : AssocFree.STLambdaC.Typ.Typ TConst → Set) where
open module Typ = AssocFree.STLambdaC.Typ TConst using
( Typ ; Var ; Ctxt ; const ; _⇝_
; [] ; [_] ; _++_ ; _∷_ ; _∈_ ; _≪_ ; _≫_ ; _⋙_ ; uniq ; singleton
; Case ; case ; inj₁ ; inj₂ ; inj₃ ; case-≪ ; case-≫ ; case-⋙
; Case₃ ; case₃ ; caseˡ ; caseʳ ; caseˡ₃ ; caseʳ₃ ; case⁻¹ ; case-iso )
-- Syntax
data Exp (Γ : Ctxt) : Typ → Set where
const : ∀ {T} → Const T → Exp Γ T
abs : ∀ T {U} → Exp (T ∷ Γ) U → Exp Γ (T ⇝ U)
app : ∀ {T U} → Exp Γ (T ⇝ U) → Exp Γ T → Exp Γ U
var : ∀ {T} → (T ∈ Γ) → Exp Γ T
-- Shorthand
var₀ : ∀ {Γ T} → Exp (T ∷ Γ) T
var₀ {Γ} {T} = var (singleton T ≪ Γ)
var₁ : ∀ {Γ T U} → Exp (U ∷ (T ∷ Γ)) T
var₁ {Γ} {T} {U} = var ([ U ] ≫ singleton T ≪ Γ)
var₂ : ∀ {Γ T U V} → Exp (V ∷ (U ∷ (T ∷ Γ))) T
var₂ {Γ} {T} {U} {V} = var ([ V ] ≫ [ U ] ≫ singleton T ≪ Γ)
-- Andreas Abel suggested defining substitution and renaming together, citing:
--
-- Conor McBride
-- Type Preserving Renaming and Substitution
--
-- Thorsten Altenkirch and Bernhard Reus
-- Monadic Presentations of Lambda Terms Using Generalized Inductive Types
--
-- http://www2.tcs.ifi.lmu.de/~abel/ParallelSubstitution.agda
-- The idea is to define two kinds, for expressions and variables,
-- such that the kind of variables is contained in the kind of
-- expressions (so admits recursion).
mutual
data Kind : Set where
var : Kind
exp : ∀ {k} → IsVar k → Kind
data IsVar : Kind → Set where
var : IsVar var
Thing : Kind → Ctxt → Typ → Set
Thing var Γ T = (T ∈ Γ)
Thing (exp var) Γ T = Exp Γ T
Substn : Kind → Ctxt → Ctxt → Set
Substn k Γ Δ = ∀ {T} → (T ∈ Δ) → Thing k Γ T
-- Convert between variables, things and expressions
thing : ∀ {k Γ T} → (T ∈ Γ) → Thing k Γ T
thing {var} x = x
thing {exp var} x = var x
expr : ∀ {k Γ T} → Thing k Γ T → Exp Γ T
expr {var} x = var x
expr {exp var} M = M
-- Extensional equivalence on substitutions (note: not assuming extensionality)
_≈_ : ∀ {k Γ Δ} → Substn k Γ Δ → Substn k Γ Δ → Set
ρ ≈ σ = ∀ {T} x → ρ {T} x ≡ σ {T} x
-- Identity substitution
id : ∀ {k} Γ → Substn k Γ Γ
id {var} Γ x = x
id {exp var} Γ x = var x
-- Product structure of substitutions
fst : ∀ Γ Δ → Substn var (Γ ++ Δ) Γ
fst Γ Δ x = x ≪ Δ
snd : ∀ Γ Δ → Substn var (Γ ++ Δ) Δ
snd Γ Δ x = Γ ≫ x
choose : ∀ {k Γ Δ E T} → Substn k Γ Δ → Substn k Γ E → (Case T Δ E) → Thing k Γ T
choose ρ σ (inj₁ x) = ρ x
choose ρ σ (inj₂ x) = σ x
_&&&_ : ∀ {k Γ Δ E} → Substn k Γ Δ → Substn k Γ E → Substn k Γ (Δ ++ E)
(ρ &&& σ) = choose ρ σ ∘ case _ _
-- Singleton substitution
⟨_⟩ : ∀ {k Γ T} → Thing k Γ T → Substn k Γ [ T ]
⟨ M ⟩ x = subst (Thing _ _) (uniq x) M
-- Cons on substitutions
_◁_ : ∀ {k Γ Δ T} → Thing k Γ T → Substn k Γ Δ → Substn k Γ (T ∷ Δ)
M ◁ σ = ⟨ M ⟩ &&& σ
-- Applying a substitution
mutual
substn+ : ∀ {k} B Γ Δ → Substn k Γ Δ → ∀ {T} → Exp (B ++ Δ) T → Exp (B ++ Γ) T
substn+ B Γ Δ σ (const c) = const c
substn+ B Γ Δ σ (abs T M) = abs T (substn+ (T ∷ B) Γ Δ σ M)
substn+ B Γ Δ σ (app M N) = app (substn+ B Γ Δ σ M) (substn+ B Γ Δ σ N)
substn+ B Γ Δ σ (var x) = expr (xsubstn+ B Γ Δ σ (case B Δ x))
xsubstn+ : ∀ {k} B Γ Δ → Substn k Γ Δ → ∀ {T} → (Case T B Δ) → Thing k (B ++ Γ) T
xsubstn+ B Γ Δ σ (inj₁ x) = thing (x ≪ Γ)
xsubstn+ {var} B Γ Δ σ (inj₂ x) = B ≫ σ x
xsubstn+ {exp var} B Γ Δ σ (inj₂ x) = substn+ [] (B ++ Γ) Γ (snd B Γ) (σ x) -- weaken* B (σ x)
-- Shorthands
substn* : ∀ {k Γ Δ} → Substn k Γ Δ → ∀ {T} → Exp Δ T → Exp Γ T
substn* {k} {Γ} {Δ} = substn+ [] Γ Δ
substn : ∀ {Γ T U} → Exp Γ T → Exp (T ∷ Γ) U → Exp Γ U
substn {Γ} M = substn* (M ◁ id Γ)
xweaken+ : ∀ B Γ Δ {T} → (T ∈ (B ++ Δ)) → (T ∈ (B ++ Γ ++ Δ))
xweaken+ B Γ Δ x = xsubstn+ B (Γ ++ Δ) Δ (snd Γ Δ) (case B Δ x)
weaken+ : ∀ B Γ Δ {T} → Exp (B ++ Δ) T → Exp (B ++ Γ ++ Δ) T
weaken+ B Γ Δ = substn+ B (Γ ++ Δ) Δ (snd Γ Δ)
weaken* : ∀ Γ {Δ T} → Exp Δ T → Exp (Γ ++ Δ) T
weaken* Γ {Δ} = weaken+ [] Γ Δ
weakens* : ∀ {Γ Δ} E → Substn (exp var) Γ Δ → Substn (exp var) (E ++ Γ) Δ
weakens* E σ x = weaken* E (σ x)
weaken*ʳ : ∀ {Γ} Δ {T} → Exp Γ T → Exp (Γ ++ Δ) T
weaken*ʳ {Γ} Δ = weaken+ Γ Δ []
weaken : ∀ {Γ} T {U} → Exp Γ U → Exp (T ∷ Γ) U
weaken T = weaken* [ T ]
-- Composition of substitutions
_⊔_ : Kind → Kind → Kind
k ⊔ var = k
k ⊔ exp var = exp var
_∙_ : ∀ {k l Γ Δ E} → Substn k Γ Δ → Substn l Δ E → Substn (k ⊔ l) Γ E
_∙_ {k} {var} ρ σ = ρ ∘ σ
_∙_ {k} {exp var} ρ σ = substn* ρ ∘ σ
-- Functorial action of ++ on substitutions
par : ∀ {k Γ Δ Φ Ψ T} → Substn k Γ Φ → Substn k Δ Ψ → (Case T Φ Ψ) → Thing k (Γ ++ Δ) T
par {var} {Γ} {Δ} ρ σ (inj₁ x) = ρ x ≪ Δ
par {var} {Γ} {Δ} ρ σ (inj₂ x) = Γ ≫ σ x
par {exp var} {Γ} {Δ} ρ σ (inj₁ x) = weaken*ʳ Δ (ρ x)
par {exp var} {Γ} {Δ} ρ σ (inj₂ x) = weaken* Γ (σ x)
_+++_ : ∀ {k Γ Δ Φ Ψ} → Substn k Γ Δ → Substn k Φ Ψ → Substn k (Γ ++ Φ) (Δ ++ Ψ)
(ρ +++ σ) = par ρ σ ∘ case _ _
-- Weakening a variable is a variable
weaken*-var : ∀ Γ {Δ T} (x : T ∈ Δ) →
weaken* Γ (var x) ≡ var (Γ ≫ x)
weaken*-var Γ {Δ} x = cong (expr ∘ xsubstn+ [] (Γ ++ Δ) Δ (snd Γ Δ)) (case-≫ [] x)
weaken*ʳ-var : ∀ {Γ} Δ {T} (x : T ∈ Γ) →
weaken*ʳ Δ (var x) ≡ var (x ≪ Δ)
weaken*ʳ-var {Γ} Δ x = cong (expr ∘ xsubstn+ Γ Δ [] (snd Δ [])) (case-≪ x [])
weaken+-var₀ : ∀ B Γ Δ {T} →
weaken+ (T ∷ B) Γ Δ (var₀ {B ++ Δ}) ≡ var₀ {B ++ Γ ++ Δ}
weaken+-var₀ B Γ Δ {T} =
cong (var ∘ xsubstn+ (T ∷ B) (Γ ++ Δ) Δ (snd Γ Δ)) (case-≪ (singleton T ≪ B) Δ)
-- Substitution respects extensional equality
substn+-cong : ∀ {k} B Γ Δ {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} M → substn+ B Γ Δ σ {T} M ≡ substn+ B Γ Δ ρ M
substn+-cong B Γ Δ σ≈ρ (const c) = refl
substn+-cong B Γ Δ σ≈ρ (abs T M) = cong (abs {B ++ Γ} T) (substn+-cong (T ∷ B) Γ Δ σ≈ρ M)
substn+-cong B Γ Δ σ≈ρ (app M N) = cong₂ app (substn+-cong B Γ Δ σ≈ρ M) (substn+-cong B Γ Δ σ≈ρ N)
substn+-cong B Γ Δ σ≈ρ (var x) = cong expr (xsubstn+-cong B Γ Δ σ≈ρ (case B Δ x)) where
xsubstn+-cong : ∀ {k} B Γ Δ {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} x → xsubstn+ B Γ Δ σ {T} x ≡ xsubstn+ B Γ Δ ρ x
xsubstn+-cong {var} B Γ Δ σ≈ρ (inj₁ x) = refl
xsubstn+-cong {exp var} B Γ Δ σ≈ρ (inj₁ x) = refl
xsubstn+-cong {var} B Γ Δ σ≈ρ (inj₂ x) = cong (_≫_ B) (σ≈ρ x)
xsubstn+-cong {exp var} B Γ Δ σ≈ρ (inj₂ x) = cong (substn+ [] (B ++ Γ) Γ (snd B Γ)) (σ≈ρ x)
substn*-cong : ∀ {k Γ Δ} {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} M → substn* σ {T} M ≡ substn* ρ M
substn*-cong {k} {Γ} {Δ} = substn+-cong [] Γ Δ
-- Identity of substitutions
xsubstn+-id : ∀ {k} B Γ {T} (x : Case T B Γ) →
expr (xsubstn+ B Γ Γ (id {k} Γ) x) ≡ var (case⁻¹ x)
xsubstn+-id {var} B Γ (inj₁ x) = refl
xsubstn+-id {exp var} B Γ (inj₁ x) = refl
xsubstn+-id {var} B Γ (inj₂ x) = refl
xsubstn+-id {exp var} B Γ (inj₂ x) = weaken*-var B x
substn+-id : ∀ {k} B Γ {T} (M : Exp (B ++ Γ) T) → substn+ B Γ Γ (id {k} Γ) M ≡ M
substn+-id B Γ (const c) = refl
substn+-id B Γ (abs T M) = cong (abs {B ++ Γ} T) (substn+-id (T ∷ B) Γ M)
substn+-id B Γ (app M N) = cong₂ app (substn+-id B Γ M) (substn+-id B Γ N)
substn+-id {k} B Γ (var x) =
begin
substn+ B Γ Γ (id {k} Γ) (var x)
≡⟨ xsubstn+-id {k} B Γ (case B Γ x) ⟩
var (case⁻¹ (case B Γ x))
≡⟨ cong var (case-iso B Γ x) ⟩
var x
∎
substn*-id : ∀ {k Γ T} (M : Exp Γ T) → substn* (id {k} Γ) M ≡ M
substn*-id {k} {Γ} = substn+-id [] Γ
weaken*-[] : ∀ {Γ T} (M : Exp Γ T) → weaken* [] M ≡ M
weaken*-[] M = substn*-id M
mutual
-- Composition of substitutions
substn+-∙ : ∀ {k l} B Γ Δ E (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (M : Exp (B ++ E) T) →
(substn+ B Γ Δ σ (substn+ B Δ E ρ M) ≡ substn+ B Γ E (σ ∙ ρ) M)
substn+-∙ B Γ Δ E ρ σ (const c) = refl
substn+-∙ B Γ Δ E ρ σ (abs T M) = cong (abs {B ++ Γ} T) (substn+-∙ (T ∷ B) Γ Δ E ρ σ M)
substn+-∙ B Γ Δ E ρ σ (app M N) = cong₂ app (substn+-∙ B Γ Δ E ρ σ M) (substn+-∙ B Γ Δ E ρ σ N)
substn+-∙ B Γ Δ E ρ σ (var x) = xsubstn+-∙ B Γ Δ E ρ σ (case B E x) where
xsubstn+-∙ : ∀ {k l} B Γ Δ E (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (x : Case T B E) →
(substn+ B Γ Δ σ (expr (xsubstn+ B Δ E ρ x)) ≡ expr (xsubstn+ B Γ E (σ ∙ ρ) x))
xsubstn+-∙ {k} {var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {var} {exp var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {exp var} {exp var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {var} {var} B Γ Δ E σ ρ (inj₂ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≫ B (ρ x))
xsubstn+-∙ {exp var} {var} B Γ Δ E σ ρ (inj₂ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≫ B (ρ x))
xsubstn+-∙ {var} {exp var} B Γ Δ E σ ρ (inj₂ x) =
begin
substn+ B Γ Δ σ (weaken* B (ρ x))
≡⟨ substn+* B Γ Δ σ (weaken* B (ρ x)) ⟩
substn* (id B +++ σ) (weaken* B (ρ x))
≡⟨ substn+-∙ [] (B ++ Γ) (B ++ Δ) Δ (id B +++ σ) (snd B Δ) (ρ x) ⟩
substn* ((id B +++ σ) ∙ snd B Δ) (ρ x)
≡⟨ substn*-cong (λ y → cong (par (id B) σ) (case-≫ B y)) (ρ x) ⟩
substn* (snd B Γ ∙ σ) (ρ x)
≡⟨ sym (substn+-∙ [] (B ++ Γ) Γ Δ (snd B Γ) σ (ρ x)) ⟩
weaken* B (substn* σ (ρ x))
∎
xsubstn+-∙ {exp var} {exp var} B Γ Δ E σ ρ (inj₂ x) =
begin
substn+ B Γ Δ σ (weaken* B (ρ x))
≡⟨ substn+* B Γ Δ σ (weaken* B (ρ x)) ⟩
substn* (id B +++ σ) (weaken* B (ρ x))
≡⟨ substn+-∙ [] (B ++ Γ) (B ++ Δ) Δ (id B +++ σ) (snd B Δ) (ρ x) ⟩
substn* ((id B +++ σ) ∙ snd B Δ) (ρ x)
≡⟨ substn*-cong (λ y → cong (par (id B) σ) (case-≫ B y))(ρ x) ⟩
substn* (snd B Γ ∙ σ) (ρ x)
≡⟨ sym (substn+-∙ [] (B ++ Γ) Γ Δ (snd B Γ) σ (ρ x)) ⟩
weaken* B (substn* σ (ρ x))
∎
substn*-∙ : ∀ {k l Γ Δ E} (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (M : Exp E T) →
(substn* σ (substn* ρ M) ≡ substn* (σ ∙ ρ) M)
substn*-∙ {k} {l} {Γ} {Δ} {E} = substn+-∙ [] Γ Δ E
-- Proof uses the fact that substn+ is an instance of substn*
substn++ : ∀ {k} A B Γ Δ (σ : Substn k Γ Δ) {T} (M : Exp (A ++ B ++ Δ) T) →
substn+ (A ++ B) Γ Δ σ M ≡ substn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) M
substn++ A B Γ Δ σ (const c) = refl
substn++ A B Γ Δ σ (abs T M) = cong (abs {A ++ B ++ Γ} T) (substn++ (T ∷ A) B Γ Δ σ M)
substn++ A B Γ Δ σ (app M N) = cong₂ app (substn++ A B Γ Δ σ M) (substn++ A B Γ Δ σ N)
substn++ A B Γ Δ σ (var x) = cong expr (begin
xsubstn+ (A ++ B) Γ Δ σ (case (A ++ B) Δ x)
≡⟨ cong (xsubstn+ (A ++ B) Γ Δ σ) (sym (caseˡ₃ A B Δ x)) ⟩
xsubstn+ (A ++ B) Γ Δ σ (caseˡ (case₃ A B Δ x))
≡⟨ xsubstn++ A B Γ Δ σ (case₃ A B Δ x) ⟩
xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (caseʳ (case₃ A B Δ x))
≡⟨ cong (xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ)) (caseʳ₃ A B Δ x) ⟩
xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (case A (B ++ Δ) x)
∎) where
xsubstn++ : ∀ {k} A B Γ Δ (σ : Substn k Γ Δ) {T} (x : Case₃ T A B Δ) →
xsubstn+ (A ++ B) Γ Δ σ (caseˡ x) ≡ xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (caseʳ x)
xsubstn++ A B Γ Δ σ (inj₁ x) = refl
xsubstn++ {var} A B Γ Δ σ (inj₂ x) = cong (λ X → A ≫ par (id B) σ X) (sym (case-≪ x Δ))
xsubstn++ {exp var} A B Γ Δ σ (inj₂ x) =
begin
var (A ≫ x ≪ Γ)
≡⟨ sym (weaken*-var A (x ≪ Γ)) ⟩
weaken* A (var (x ≪ Γ))
≡⟨ cong (weaken* A) (sym (weaken*ʳ-var Γ x)) ⟩
weaken* A (weaken*ʳ Γ (var x))
≡⟨ cong (weaken* A ∘ par (id B) σ) (sym (case-≪ x Δ)) ⟩
weaken* A ((id B +++ σ) (x ≪ Δ))
∎
xsubstn++ {var} A B Γ Δ σ (inj₃ x) = cong (λ X → A ≫ par (id B) σ X) (sym (case-≫ B x))
xsubstn++ {exp var} A B Γ Δ σ (inj₃ x) =
begin
weaken* (A ++ B) (σ x)
≡⟨ sym (substn*-∙ (snd A (B ++ Γ)) (snd B Γ) (σ x)) ⟩
weaken* A (weaken* B (σ x))
≡⟨ cong (weaken* A ∘ par (id B) σ) (sym (case-≫ B x)) ⟩
weaken* A ((id B +++ σ) (B ≫ x))
∎
substn+* : ∀ {k} B Γ Δ (σ : Substn k Γ Δ) {T} (M : Exp (B ++ Δ) T) →
substn+ B Γ Δ σ M ≡ substn* (id B +++ σ) M
substn+* = substn++ []
-- Weakening of weakening is weakening
weaken*-++ : ∀ A B Γ {T} (M : Exp Γ T) →
weaken* A (weaken* B M) ≡ weaken* (A ++ B) M
weaken*-++ A B Γ = substn*-∙ (snd A (B ++ Γ)) (snd B Γ)
-- Weakening commutes with weakening
weaken*-comm : ∀ A B Γ Δ {U} (M : Exp (B ++ Δ) U) →
weaken* A (weaken+ B Γ Δ M)
≡ weaken+ (A ++ B) Γ Δ (weaken* A M)
weaken*-comm A B Γ Δ M =
begin
weaken* A (weaken+ B Γ Δ M)
≡⟨ cong (substn* (snd A (B ++ Γ ++ Δ))) (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) M) ⟩
substn* (snd A (B ++ Γ ++ Δ)) (substn* (id B +++ snd Γ Δ) M)
≡⟨ substn*-∙ (snd A (B ++ Γ ++ Δ)) (id B +++ snd Γ Δ) M ⟩
substn* (snd A (B ++ Γ ++ Δ) ∙ (id B +++ snd Γ Δ)) M
≡⟨ substn*-cong lemma₂ M ⟩
substn* ((id (A ++ B) +++ snd Γ Δ) ∙ snd A (B ++ Δ)) M
≡⟨ sym (substn*-∙ (id (A ++ B) +++ snd Γ Δ) (snd A (B ++ Δ)) M) ⟩
substn* (id (A ++ B) +++ snd Γ Δ) (substn* (snd A (B ++ Δ)) M)
≡⟨ sym (substn+* (A ++ B) (Γ ++ Δ) Δ (snd Γ Δ) (substn* (snd A (B ++ Δ)) M)) ⟩
weaken+ (A ++ B) Γ Δ (weaken* A M)
∎ where
lemma₁ : ∀ {T} (x : Case T B Δ) →
snd A (B ++ Γ ++ Δ) (par (id B) (snd Γ Δ) x)
≡ (par (id (A ++ B)) (snd Γ Δ) (A ⋙ x))
lemma₁ (inj₁ x) = refl
lemma₁ (inj₂ x) = refl
lemma₂ : (snd A (B ++ Γ ++ Δ) ∙ (id B +++ snd Γ Δ)) ≈ ((id (A ++ B) +++ snd Γ Δ) ∙ snd A (B ++ Δ))
lemma₂ {T} x =
begin
snd A (B ++ Γ ++ Δ) (par (id B) (snd Γ Δ) (case B Δ x))
≡⟨ lemma₁ (case B Δ x) ⟩
par (id (A ++ B)) (snd Γ Δ) (A ⋙ (case B Δ x))
≡⟨ cong (par (id (A ++ B)) (snd Γ Δ)) (case-⋙ A B Δ x) ⟩
par (id (A ++ B)) (snd Γ Δ) (case (A ++ B) Δ (A ≫ x))
∎
weaken-comm : ∀ T B Γ Δ {U} (M : Exp (B ++ Δ) U) →
weaken T (weaken+ B Γ Δ M)
≡ weaken+ (T ∷ B) Γ Δ (weaken T M)
weaken-comm T = weaken*-comm [ T ]
-- Weakening distributes through susbtn
weaken-substn : ∀ B Γ Δ {T U} (M : Exp (B ++ Δ) T) (N : Exp (T ∷ B ++ Δ) U) →
substn (weaken+ B Γ Δ M) (weaken+ (T ∷ B) Γ Δ N)
≡ weaken+ B Γ Δ (substn M N)
weaken-substn B Γ Δ {T} M N = begin
substn (weaken+ B Γ Δ M) (weaken+ (T ∷ B) Γ Δ N)
≡⟨ cong₂ substn (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) M) (substn+* (T ∷ B) (Γ ++ Δ) Δ (snd Γ Δ) N) ⟩
substn (substn* (id B +++ snd Γ Δ) M) (substn* (id (T ∷ B) +++ snd Γ Δ) N)
≡⟨ substn*-∙ (substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) (id (T ∷ B) +++ snd Γ Δ) N ⟩
substn* ((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ)) N
≡⟨ substn*-cong lemma₂ N ⟩
substn* ((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ))) N
≡⟨ sym (substn*-∙ (id B +++ snd Γ Δ) (M ◁ id (B ++ Δ)) N) ⟩
substn* (id B +++ snd Γ Δ) (substn M N)
≡⟨ sym (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) (substn M N)) ⟩
weaken+ B Γ Δ (substn M N)
∎ where
lemma₁ : ∀ {S} (x : Case₃ S [ T ] B Δ) →
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ))
(par (id (T ∷ B)) (snd Γ Δ) (caseˡ x))
≡ substn* (id B +++ snd Γ Δ)
(choose ⟨ M ⟩ (id (B ++ Δ)) (caseʳ x))
lemma₁ (inj₁ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) (x ≪ B ≪ Γ ≪ Δ)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≪ x (B ++ Γ ++ Δ)) ⟩
⟨ substn* (id B +++ snd Γ Δ) M ⟩ x
≡⟨ subst-natural (uniq x) (substn* (id B +++ snd Γ Δ)) M ⟩
substn* (id B +++ snd Γ Δ) (⟨ M ⟩ x)
∎
lemma₁ (inj₂ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ([ T ] ≫ x ≪ Γ ≪ Δ)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≫ [ T ] (x ≪ Γ ≪ Δ)) ⟩
var (x ≪ Γ ≪ Δ)
≡⟨ cong (var ∘ par (id B) (snd Γ Δ)) (sym (case-≪ x Δ)) ⟩
var ((id B +++ snd Γ Δ) (x ≪ Δ))
≡⟨ cong (var ∘ xsubstn+ [] (B ++ Γ ++ Δ) (B ++ Δ) (id B +++ snd Γ Δ)) (sym (case-≫ [] (x ≪ Δ))) ⟩
substn* (id B +++ snd Γ Δ) (var (x ≪ Δ))
∎
lemma₁ (inj₃ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ([ T ] ≫ B ≫ Γ ≫ x)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≫ [ T ] (B ≫ Γ ≫ x)) ⟩
var (B ≫ Γ ≫ x)
≡⟨ cong (var ∘ par (id B) (snd Γ Δ)) (sym (case-≫ B x)) ⟩
var ((id B +++ snd Γ Δ) (B ≫ x))
≡⟨ cong (var ∘ xsubstn+ [] (B ++ Γ ++ Δ) (B ++ Δ) (id B +++ snd Γ Δ)) (sym (case-≫ [] (B ≫ x))) ⟩
substn* (id B +++ snd Γ Δ) (var (B ≫ x))
∎
lemma₂ : ((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ))
≈ ((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ)))
lemma₂ {S} x = begin
((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ)) x
≡⟨ cong (substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ) ∘ par (id (T ∷ B)) (snd Γ Δ))
(sym (caseˡ₃ [ T ] B Δ x)) ⟩
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ))
(par (id (T ∷ B)) (snd Γ Δ) (caseˡ (case₃ [ T ] B Δ x)))
≡⟨ lemma₁ (case₃ [ T ] B Δ x) ⟩
substn* (id B +++ snd Γ Δ)
(choose ⟨ M ⟩ (id (B ++ Δ)) (caseʳ (case₃ [ T ] B Δ x)))
≡⟨ cong (substn* (id B +++ snd Γ Δ) ∘ choose ⟨ M ⟩ (id (B ++ Δ)))
(caseʳ₃ [ T ] B Δ x) ⟩
((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ))) x
∎
-- Substitution into weakening discards the substitution
substn-weaken : ∀ {Γ T U} (M : Exp Γ U) (N : Exp Γ T) →
substn N (weaken T M) ≡ M
substn-weaken {Γ} {T} M N =
begin
substn N (weaken T M)
≡⟨ substn*-∙ (N ◁ id Γ) (snd [ T ] Γ) M ⟩
substn* ((N ◁ id Γ) ∙ snd [ T ] Γ) M
≡⟨ substn*-cong (λ x → cong (choose ⟨ N ⟩ (id Γ)) (case-≫ [ T ] x)) M ⟩
substn* (id Γ) M
≡⟨ substn*-id M ⟩
M
∎
-- Substitution + weakening respects ◁
substn*-◁ : ∀ Γ Δ E {T U} (M : Exp (T ∷ Γ) U) (N : Exp (E ++ Δ) T) (σ : Substn (exp var) Δ Γ) →
substn* (N ◁ weakens* E σ) M
≡ substn N (weaken+ [ T ] E Δ (substn+ [ T ] Δ Γ σ M))
substn*-◁ Γ Δ E {T} M N σ =
begin
substn* (N ◁ weakens* E σ) M
≡⟨ substn*-cong (λ x → lemma (case [ T ] Γ x)) M ⟩
substn* ((N ◁ id (E ++ Δ)) ∙ (id [ T ] +++ (snd E Δ ∙ σ))) M
≡⟨ sym (substn*-∙ (N ◁ id (E ++ Δ)) (id [ T ] +++ (snd E Δ ∙ σ)) M) ⟩
substn N (substn* (id [ T ] +++ (snd E Δ ∙ σ)) M)
≡⟨ cong (substn N) (sym (substn+* [ T ] (E ++ Δ) Γ (snd E Δ ∙ σ) M)) ⟩
substn N (substn+ [ T ] (E ++ Δ) Γ (snd E Δ ∙ σ) M)
≡⟨ cong (substn N) (sym (substn+-∙ [ T ] (E ++ Δ) Δ Γ (snd E Δ) σ M)) ⟩
substn N (weaken+ [ T ] E Δ (substn+ [ T ] Δ Γ σ M))
∎ where
lemma : ∀ {U} (x : Case U [ T ] Γ) →
choose ⟨ N ⟩ (weakens* E σ) x
≡ substn N (par (id [ T ]) (snd E Δ ∙ σ) x)
lemma (inj₁ x) =
begin
subst (Exp (E ++ Δ)) (uniq x) N
≡⟨ cong (choose ⟨ N ⟩ (id (E ++ Δ))) (sym (case-≪ x (E ++ Δ))) ⟩
(N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ)
≡⟨ sym (weaken*-[] ((N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ))) ⟩
weaken* [] ((N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ))
≡⟨ cong (xsubstn+ [] (E ++ Δ) ([ T ] ++ E ++ Δ) (N ◁ id (E ++ Δ)))
(sym (case-≫ [] (x ≪ E ≪ Δ))) ⟩
substn N (var (x ≪ E ≪ Δ))
≡⟨ cong (substn N) (sym (weaken*ʳ-var (E ++ Δ) x)) ⟩
substn N (weaken*ʳ (E ++ Δ) (var x))
∎
lemma (inj₂ x) = sym (substn-weaken (weaken* E (σ x)) N)
| 39.028
| 101
| 0.470688
|
1ed220e40c6aba94f6ec36d2ef48eb0dabf5862d
| 23,621
|
agda
|
Agda
|
src/meta-vars.agda
|
CarlOlson/cedille
|
f5ce42258b7d9bc66f75cd679c785d6133b82b58
|
[
"MIT"
] | null | null | null |
src/meta-vars.agda
|
CarlOlson/cedille
|
f5ce42258b7d9bc66f75cd679c785d6133b82b58
|
[
"MIT"
] | null | null | null |
src/meta-vars.agda
|
CarlOlson/cedille
|
f5ce42258b7d9bc66f75cd679c785d6133b82b58
|
[
"MIT"
] | null | null | null |
import cedille-options
open import general-util
module meta-vars (options : cedille-options.options) {mF : Set → Set} {{_ : monad mF}} where
open import lib
open import functions
open import cedille-types
open import constants
open import conversion
open import ctxt
open import is-free
open import rename
open import spans options {mF}
open import subst
open import syntax-util
open import to-string options
-- TODO propose adding these to the standard lib
module helpers where
-- src/spans.agda
_≫=spane_ : ∀ {A B : Set} → spanM (error-t A) → (A → spanM (error-t B)) → spanM (error-t B)
(s₁ ≫=spane f) = s₁ ≫=span
λ { (no-error x) → f x
; (yes-error x) → spanMr (yes-error x)}
-- sum.agda
is-inj₁ : ∀ {a b} {A : Set a} {B : Set b} → A ∨ B → 𝔹
is-inj₁ (inj₁ x) = tt
is-inj₁ (inj₂ y) = ff
open helpers
-- misc
----------------------------------------------------------------------
-- Meta-variables, prototypes, decorated types
-- ==================================================
record meta-var-sol (A : Set) : Set where
constructor mk-meta-var-sol
field
sol : A
src : checking-mode
data meta-var-sort : Set where
meta-var-tp : (k : kind) → (mtp : maybe $ meta-var-sol type) → meta-var-sort
meta-var-tm : (tp : type) → (mtm : maybe $ meta-var-sol term) → meta-var-sort
record meta-var : Set where
constructor meta-var-mk
field
name : string
sort : meta-var-sort
loc : span-location
open meta-var
pattern meta-var-mk-tp x k mtp l = meta-var-mk x (meta-var-tp k mtp) l
record meta-vars : Set where
constructor meta-vars-mk
field
order : 𝕃 var
varset : trie meta-var
open meta-vars
data prototype : Set where
proto-maybe : maybe type → prototype
proto-arrow : maybeErased → prototype → prototype
data decortype : Set where
decor-type : type → decortype
decor-arrow : maybeErased → type → decortype → decortype
decor-decor : maybeErased → posinfo → bvar → meta-var-sort → decortype → decortype
decor-stuck : type → prototype → decortype
decor-error : type → prototype → decortype
-- Simple definitions and accessors
-- --------------------------------------------------
meta-var-name : meta-var → var
meta-var-name X = meta-var.name X
meta-vars-get-varlist : meta-vars → 𝕃 var
meta-vars-get-varlist Xs = map (name ∘ snd) (trie-mappings (varset Xs))
meta-var-solved? : meta-var → 𝔹
meta-var-solved? (meta-var-mk n (meta-var-tp k nothing) _) = ff
meta-var-solved? (meta-var-mk n (meta-var-tp k (just _)) _) = tt
meta-var-solved? (meta-var-mk n (meta-var-tm tp nothing) _) = ff
meta-var-solved? (meta-var-mk n (meta-var-tm tp (just _)) _) = tt
meta-vars-empty : meta-vars
meta-vars-empty = meta-vars-mk [] empty-trie
meta-vars-empty? : meta-vars → 𝔹
meta-vars-empty? Xs = ~ (trie-nonempty (varset Xs ))
meta-vars-solved? : meta-vars → 𝔹
meta-vars-solved? Xs = trie-all meta-var-solved? (varset Xs)
meta-vars-filter : (meta-var → 𝔹) → meta-vars → meta-vars
meta-vars-filter f Xs =
meta-vars-mk or vs
where
vs = trie-filter f (varset Xs)
or = filter (trie-contains vs) (order Xs)
meta-var-sort-eq? : ctxt → (=S =T : meta-var-sort) → 𝔹
meta-var-sort-eq? Γ (meta-var-tp k₁ mtp₁) (meta-var-tp k₂ mtp₂)
with conv-kind Γ k₁ k₂
... | ff = ff
... | tt =
maybe-equal? sol-eq mtp₁ mtp₂
where
sol-eq : (sol₁ sol₂ : meta-var-sol type) → 𝔹
sol-eq (mk-meta-var-sol sol₁ src) (mk-meta-var-sol sol₂ src₁) =
conv-type Γ sol₁ sol₂
meta-var-sort-eq? _ _ _ = ff
-- TODO terms not supported
-- meta-var-sol-eq? (meta-var-tm tp mtm) (meta-var-tm tp₁ mtm₁) = {!!}
meta-var-equal? : ctxt → (X Y : meta-var) → 𝔹
meta-var-equal? Γ (meta-var-mk name₁ sol₁ _) (meta-var-mk name₂ sol₂ _) =
name₁ =string name₂ && meta-var-sort-eq? Γ sol₁ sol₂
meta-vars-equal? : ctxt → (Xs Ys : meta-vars) → 𝔹
meta-vars-equal? Γ Xs Ys =
trie-equal? (meta-var-equal? Γ) (meta-vars.varset Xs) (meta-vars.varset Ys)
meta-vars-lookup : meta-vars → var → maybe meta-var
meta-vars-lookup Xs x = trie-lookup (varset Xs) x
meta-vars-lookup-with-kind : meta-vars → var → maybe (meta-var × kind)
meta-vars-lookup-with-kind Xs x
with meta-vars-lookup Xs x
... | nothing = nothing
... | (just X@(meta-var-mk-tp _ k _ _)) = just $ X , k
... | (just X) = nothing
meta-var-set-src : meta-var → checking-mode → meta-var
meta-var-set-src (meta-var-mk-tp name₁ k (just sol) loc₁) m =
meta-var-mk-tp name₁ k (just (record sol { src = m })) loc₁
meta-var-set-src (meta-var-mk-tp name₁ k nothing loc₁) m =
meta-var-mk-tp name₁ k nothing loc₁
meta-var-set-src (meta-var-mk name₁ (meta-var-tm tp (just sol)) loc₁) m =
meta-var-mk name₁ (meta-var-tm tp (just (record sol { src = m }))) loc₁
meta-var-set-src (meta-var-mk name₁ (meta-var-tm tp nothing) loc₁) m
= meta-var-mk name₁ (meta-var-tm tp nothing) loc₁
meta-vars-lookup-kind : meta-vars → var → maybe kind
meta-vars-lookup-kind Xs x with meta-vars-lookup Xs x
... | nothing = nothing
... | (just (meta-var-mk-tp _ k _ _)) = just k
... | (just X) = nothing
-- conversion to types, terms, tks
-- --------------------------------------------------
meta-var-sort-to-tk : meta-var-sort → tk
meta-var-sort-to-tk (meta-var-tp k mtp) = Tkk k
meta-var-sort-to-tk (meta-var-tm tp mtm) = Tkt tp
meta-var-to-type : meta-var → maybe type
meta-var-to-type (meta-var-mk-tp x k (just tp) _) = just (meta-var-sol.sol tp)
meta-var-to-type (meta-var-mk-tp x k nothing _) = just (TpVar posinfo-gen x)
meta-var-to-type (meta-var-mk x (meta-var-tm tp mtm) _) = nothing
meta-var-to-term : meta-var → maybe term
meta-var-to-term (meta-var-mk-tp x k mtp _) = nothing
meta-var-to-term (meta-var-mk x (meta-var-tm tp (just tm)) _) = just (meta-var-sol.sol tm)
meta-var-to-term (meta-var-mk x (meta-var-tm tp nothing) _) = just (Var posinfo-gen x)
meta-var-to-type-unsafe : meta-var → type
meta-var-to-type-unsafe X
with meta-var-to-type X
... | just tp = tp
... | nothing = TpVar posinfo-gen (meta-var-name X)
meta-var-to-term-unsafe : meta-var → term
meta-var-to-term-unsafe X
with meta-var-to-term X
... | just tm = tm
... | nothing = Var posinfo-gen (meta-var-name X)
prototype-to-maybe : prototype → maybe type
prototype-to-maybe (proto-maybe mtp) = mtp
prototype-to-maybe (proto-arrow _ _) = nothing
prototype-to-checking : prototype → checking-mode
prototype-to-checking = maybe-to-checking ∘ prototype-to-maybe
decortype-to-type : decortype → type
decortype-to-type (decor-type tp) = tp
decortype-to-type (decor-arrow at tp dt) =
TpArrow tp at (decortype-to-type dt)
decortype-to-type (decor-decor b pi x sol dt) =
Abs pi b posinfo-gen x (meta-var-sort-to-tk sol) (decortype-to-type dt)
decortype-to-type (decor-stuck tp pt) = tp
decortype-to-type (decor-error tp pt) = tp
-- hnf for decortype
-- --------------------------------------------------
hnf-decortype : ctxt → unfolding → decortype → (is-head : 𝔹) → decortype
hnf-decortype Γ uf (decor-type tp) ish =
decor-type (hnf Γ uf tp ish)
hnf-decortype Γ uf (decor-arrow e? tp dt) ish =
decor-arrow e? (hnf Γ uf tp ff) (hnf-decortype Γ uf dt ff)
hnf-decortype Γ uf (decor-decor e? pi x sol dt) ish =
decor-decor e? pi x sol (hnf-decortype Γ uf dt ff)
hnf-decortype Γ uf dt@(decor-stuck _ _) ish = dt
hnf-decortype Γ uf (decor-error tp pt) ish =
decor-error (hnf Γ uf tp ff) pt
-- substitutions
-- --------------------------------------------------
substh-meta-var-sort : substh-ret-t meta-var-sort
substh-meta-var-sort Γ ρ σ (meta-var-tp k mtp) =
meta-var-tp (substh Γ ρ σ k) ((flip maybe-map) mtp λ sol →
record sol { sol = substh Γ ρ σ (meta-var-sol.sol sol) })
substh-meta-var-sort Γ ρ σ (meta-var-tm tp mtm) =
meta-var-tm (substh Γ ρ σ tp) (flip maybe-map mtm λ sol →
record sol { sol = substh Γ ρ σ (meta-var-sol.sol sol) })
subst-meta-var-sort : subst-ret-t meta-var-sort
subst-meta-var-sort Γ t x (meta-var-tp k mtp) =
meta-var-tp (subst Γ t x k) $ (flip maybe-map) mtp λ sol →
record sol { sol = subst Γ t x $ meta-var-sol.sol sol }
subst-meta-var-sort Γ t x (meta-var-tm tp mtm) =
meta-var-tm (subst Γ t x tp) $ (flip maybe-map) mtm λ where
(mk-meta-var-sol sol src) → mk-meta-var-sol (subst Γ t x sol) src
meta-vars-get-sub : meta-vars → trie type
meta-vars-get-sub Xs =
trie-catMaybe (trie-map meta-var-to-type (varset Xs))
meta-vars-subst-type' : (unfold : 𝔹) → ctxt → meta-vars → type → type
meta-vars-subst-type' u Γ Xs tp =
let tp' = substh Γ empty-renamectxt (meta-vars-get-sub Xs) tp in
if u then hnf Γ (unfolding-elab unfold-head) tp' tt else tp'
meta-vars-subst-type : ctxt → meta-vars → type → type
meta-vars-subst-type = meta-vars-subst-type' tt
meta-vars-subst-kind : ctxt → meta-vars → kind → kind
meta-vars-subst-kind Γ Xs k
= hnf Γ (unfolding-elab unfold-head)
(substh Γ empty-renamectxt (meta-vars-get-sub Xs) k)
tt
-- string and span helpers
-- --------------------------------------------------
meta-var-to-string : meta-var → strM
meta-var-to-string (meta-var-mk-tp name k nothing sl)
= strMetaVar name sl
≫str strAdd " : " ≫str to-stringh k
meta-var-to-string (meta-var-mk-tp name k (just tp) sl)
= strMetaVar name sl
≫str strAdd " : " ≫str to-stringh k
≫str strAdd " = " ≫str to-stringh (meta-var-sol.sol tp) -- tp
meta-var-to-string (meta-var-mk name (meta-var-tm tp nothing) sl)
= strMetaVar name sl
≫str strAdd " : " ≫str to-stringh tp
meta-var-to-string (meta-var-mk name (meta-var-tm tp (just tm)) sl)
= strMetaVar name sl
≫str strAdd " : " ≫str to-stringh tp
≫str strAdd " = " ≫str to-stringh (meta-var-sol.sol tm) -- tm
meta-vars-to-stringh : 𝕃 meta-var → strM
meta-vars-to-stringh []
= strEmpty
meta-vars-to-stringh (v :: [])
= meta-var-to-string v
meta-vars-to-stringh (v :: vs)
= meta-var-to-string v ≫str strAdd ", " ≫str meta-vars-to-stringh vs
meta-vars-to-string : meta-vars → strM
meta-vars-to-string Xs =
meta-vars-to-stringh
((flip map) (order Xs) λ x →
case trie-lookup (varset Xs) x of λ where
nothing →
meta-var-mk
(x ^ "-missing!") (meta-var-tp (Star posinfo-gen) nothing)
missing-span-location
(just X) → X)
prototype-to-string : prototype → strM
prototype-to-string (proto-maybe nothing) = strAdd "⁇"
prototype-to-string (proto-maybe (just tp)) = to-stringh tp
prototype-to-string (proto-arrow e? pt) =
strAdd "⁇" ≫str strAdd (arrowtype-to-string e?)
≫str prototype-to-string pt
decortype-to-string : decortype → strM
decortype-to-string (decor-type tp) =
strAdd "[" ≫str to-stringh tp ≫str strAdd "]"
decortype-to-string (decor-arrow e? tp dt) =
to-stringh tp
≫str strAdd (arrowtype-to-string e?)
≫str decortype-to-string dt
decortype-to-string (decor-decor e? pi x sol dt) =
strAdd (binder e? sol) ≫str meta-var-to-string (meta-var-mk x sol missing-span-location)
≫str strAdd " . " ≫str decortype-to-string dt
where
binder : maybeErased → meta-var-sort → string
binder Erased sol = "∀ "
binder Pi (meta-var-tm tp mtm) = "Π "
-- vv clause below "shouldn't" happen
binder Pi (meta-var-tp k mtp) = "∀ "
decortype-to-string (decor-stuck tp pt) =
strAdd "(" ≫str to-stringh tp ≫str strAdd " , " ≫str prototype-to-string pt ≫str strAdd ")"
decortype-to-string (decor-error tp pt) =
strAdd "([" ≫str (to-stringh tp) ≫str strAdd "] ‼ " ≫str prototype-to-string pt ≫str strAdd ")"
meta-vars-data-h : ctxt → string → kind ∨ (meta-var-sol type) → tagged-val
meta-vars-data-h Γ X (inj₁ k) =
strRunTag "meta-vars-intro" Γ
(strAdd (unqual-local X ^ " ") ≫str to-stringh k)
meta-vars-data-h Γ X (inj₂ sol) =
strRunTag "meta-vars-sol" Γ $
strAdd (unqual-local X ^ " ") ≫str
strAdd (checking-to-string (meta-var-sol.src sol) ^ " ") ≫str
(to-stringh ∘ meta-var-sol.sol $ sol)
meta-vars-data-all : ctxt → meta-vars → 𝕃 tagged-val
meta-vars-data-all Γ = foldr
(uncurry λ where
_ (meta-var-mk X (meta-var-tp kd nothing) loc) xs →
meta-vars-data-h Γ X (inj₁ kd) :: xs
_ (meta-var-mk X (meta-var-tp kd (just tp)) loc) xs →
meta-vars-data-h Γ X (inj₁ kd)
:: meta-vars-data-h Γ X (inj₂ tp) :: xs
_ _ xs → xs)
[] ∘ (trie-mappings ∘ meta-vars.varset)
meta-vars-intro-data : ctxt → meta-vars → 𝕃 tagged-val
meta-vars-intro-data Γ = map (h ∘ snd) ∘ (trie-mappings ∘ meta-vars.varset)
where
h : meta-var → tagged-val
h (meta-var-mk X (meta-var-tp kd mtp) loc) = meta-vars-data-h Γ X (inj₁ kd)
h (meta-var-mk X (meta-var-tm tp mtm) loc) =
meta-vars-data-h Γ X
(inj₂ (mk-meta-var-sol (TpVar posinfo-gen "unimplemented") untyped))
meta-vars-sol-data : ctxt → meta-vars → meta-vars → 𝕃 tagged-val
meta-vars-sol-data Γ Xsₒ Xsₙ = foldr (λ X xs → maybe-else xs (_:: xs) (h (snd X)))
[] (trie-mappings (meta-vars.varset Xsₙ))
where
h : meta-var → maybe tagged-val
h (meta-var-mk X (meta-var-tp kd (just tp)) loc) with trie-lookup (meta-vars.varset Xsₒ) X
...| just (meta-var-mk _ (meta-var-tp _ (just _)) _) = nothing
...| _ = just (meta-vars-data-h Γ X (inj₂ tp)
)
h (meta-var-mk X (meta-var-tp kd nothing) loc) = nothing
h (meta-var-mk X (meta-var-tm tp mtm) loc) =
just (meta-vars-data-h Γ X
(inj₂ (mk-meta-var-sol (TpVar posinfo-gen "unimplemented") untyped)))
meta-vars-check-type-mismatch : ctxt → string → type → meta-vars → type
→ 𝕃 tagged-val × err-m
meta-vars-check-type-mismatch Γ s tp Xs tp'
= (expected-type Γ tp :: [ type-data Γ tp'' ]) ,
(if conv-type Γ tp tp''
then nothing
else just ("The expected type does not match the "
^ s ^ " type."))
where tp'' = meta-vars-subst-type' ff Γ Xs tp'
meta-vars-check-type-mismatch-if : maybe type → ctxt → string → meta-vars
→ type → 𝕃 tagged-val × err-m
meta-vars-check-type-mismatch-if (just tp) Γ s Xs tp'
= meta-vars-check-type-mismatch Γ s tp Xs tp'
meta-vars-check-type-mismatch-if nothing Γ s Xs tp'
= [ type-data Γ tp″ ] , nothing
where
tp″ = meta-vars-subst-type' ff Γ Xs tp'
decortype-data : ctxt → decortype → tagged-val
decortype-data Γ dt = strRunTag "head decoration" Γ (decortype-to-string dt)
prototype-data : ctxt → prototype → tagged-val
prototype-data Γ pt = strRunTag "head prototype" Γ (prototype-to-string pt)
-- collecting, merging, matching
-- --------------------------------------------------
meta-var-fresh-t : (S : Set) → Set
meta-var-fresh-t S = meta-vars → var → span-location → S → meta-var
meta-var-fresh : meta-var-fresh-t meta-var-sort
meta-var-fresh Xs x sl sol
with rename-away-from (meta-var-pfx-str ^ x) (trie-contains (varset Xs)) empty-renamectxt
... | x' = meta-var-mk x' sol sl
meta-var-fresh-tp : meta-var-fresh-t (kind × maybe (meta-var-sol type))
meta-var-fresh-tp Xs x sl (k , msol) =
meta-var-fresh Xs x sl (meta-var-tp k msol)
meta-var-fresh-tm : meta-var-fresh-t (type × maybe (meta-var-sol term))
meta-var-fresh-tm Xs x sl (tp , mtm) = meta-var-fresh Xs x sl (meta-var-tm tp mtm)
private
meta-vars-set : meta-vars → meta-var → meta-vars
meta-vars-set Xs X = record Xs { varset = trie-insert (varset Xs) (name X) X }
-- add a meta-var
meta-vars-add : meta-vars → meta-var → meta-vars
meta-vars-add Xs X
= record (meta-vars-set Xs X) { order = (order Xs) ++ [ name X ] }
meta-vars-add* : meta-vars → 𝕃 meta-var → meta-vars
meta-vars-add* Xs [] = Xs
meta-vars-add* Xs (Y :: Ys) = meta-vars-add* (meta-vars-add Xs Y) Ys
meta-vars-from-list : 𝕃 meta-var → meta-vars
meta-vars-from-list Xs = meta-vars-add* meta-vars-empty Xs
meta-vars-remove : meta-vars → meta-var → meta-vars
meta-vars-remove (meta-vars-mk or vs) X =
let x = meta-var-name X
in meta-vars-mk (remove _=string_ x or) (trie-remove vs x)
meta-vars-in-type : meta-vars → type → meta-vars
meta-vars-in-type Xs tp =
(flip meta-vars-filter) Xs λ X →
are-free-in-type check-erased (trie-single (name X) triv) tp
meta-vars-unsolved : meta-vars → meta-vars
meta-vars-unsolved = meta-vars-filter λ where
(meta-var-mk x (meta-var-tp k mtp) _) → ~ isJust mtp
(meta-var-mk x (meta-var-tm tp mtm) _) → ~ isJust mtm
meta-vars-are-free-in-type : meta-vars → type → 𝔹
meta-vars-are-free-in-type Xs tp =
are-free-in-type check-erased (varset Xs) tp
-- Unfolding a type with meta-vars
-- ==================================================
-- ... in order to reveal a term or type application
-- "View" data structures
-- --------------------------------------------------
-- The decorated type is really an arrow
record is-tmabsd : Set where
constructor mk-tmabsd
field
is-tmabsd-dt : decortype
is-tmabsd-e? : maybeErased
is-tmabsd-var : var
is-tmabsd-dom : type
is-tmabsd-var-in-body : 𝔹
is-tmabsd-cod : decortype
open is-tmabsd public
is-tmabsd? = decortype ∨ is-tmabsd
pattern yes-tmabsd dt e? x dom occ cod = inj₂ (mk-tmabsd dt e? x dom occ cod)
pattern not-tmabsd tp = inj₁ tp
record is-tpabsd : Set where
constructor mk-tpabsd
field
is-tpabsd-dt : decortype
is-tpabsd-e? : maybeErased
is-tpabsd-var : var
is-tpabsd-kind : kind
is-tpabsd-sol : maybe type
is-tpabsd-body : decortype
open is-tpabsd public
is-tpabsd? = decortype ∨ is-tpabsd
pattern yes-tpabsd dt e? x k mtp dt' = inj₂ (mk-tpabsd dt e? x k mtp dt')
pattern not-tpabsd dt = inj₁ dt
{-# TERMINATING #-}
num-arrows-in-type : ctxt → type → ℕ
num-arrows-in-type Γ tp = nait Γ (hnf' Γ tp) 0 tt
where
hnf' : ctxt → type → type
hnf' Γ tp = hnf Γ (unfolding-elab unfold-head) tp tt
nait : ctxt → type → (acc : ℕ) → 𝔹 → ℕ
-- definitely another arrow
nait Γ (Abs _ _ _ _ (Tkk _) tp) acc uf = nait Γ tp acc ff
nait Γ (Abs _ _ _ _ (Tkt _) tp) acc uf = nait Γ tp (1 + acc) ff
nait Γ (TpArrow _ _ tp) acc uf = nait Γ tp (1 + acc) ff
-- definitely not another arrow
nait Γ (Iota _ _ _ _ _) acc uf = acc
nait Γ (Lft _ _ _ _ _) acc uf = acc
nait Γ (TpEq _ _ _ _) acc uf = acc
nait Γ (TpHole _) acc uf = acc
nait Γ (TpLambda _ _ _ _ _) acc uf = acc
nait Γ (TpVar x₁ x₂) acc tt = acc
nait Γ (TpApp tp₁ tp₂) acc tt = acc
nait Γ (TpAppt tp₁ x₁) acc tt = acc
-- not sure
nait Γ (NoSpans tp _) acc uf = nait Γ tp acc uf
nait Γ (TpLet _ (DefTerm _ x _ tm) tp) acc uf =
nait Γ (subst Γ tm x tp) acc uf
nait Γ (TpLet _ (DefType _ x _ tp-let) tp-in) acc uf =
nait Γ (subst Γ tp-let x tp-in) acc uf
nait Γ (TpParens _ tp _) acc uf = nait Γ tp acc uf
nait Γ tp acc ff = nait Γ (hnf' Γ tp) acc tt
-- Utilities for match-types in classify.agda
-- ==================================================
--
-- Match a type with meta-variables in it to one without
-- errors
-- --------------------------------------------------
match-error-data = string × 𝕃 tagged-val
match-error-t : ∀ {a} → Set a → Set a
match-error-t A = match-error-data ∨ A
pattern match-error e = inj₁ e
pattern match-ok a = inj₂ a
module meta-vars-match-errors where
-- boilerplate
match-error-msg = "Matching failed"
-- tagged values for error messages
match-lhs : {ed : exprd} → ctxt → ⟦ ed ⟧ → tagged-val
match-lhs = to-string-tag "expected lhs"
match-rhs : {ed : exprd} → ctxt → ⟦ ed ⟧ → tagged-val
match-rhs = to-string-tag "computed rhs"
the-meta-var : var → tagged-val
the-meta-var = strRunTag "the meta-var" empty-ctxt ∘ strAdd
the-solution : ctxt → type → tagged-val
the-solution = to-string-tag "the solution"
fst-snd-sol : {ed : exprd} → ctxt → (t₁ t₂ : ⟦ ed ⟧) → 𝕃 tagged-val
fst-snd-sol Γ t₁ t₂ =
to-string-tag "first solution" Γ t₁ :: [ to-string-tag "second solution" Γ t₂ ]
lhs-rhs : {ed : exprd} → ctxt → (t₁ t₂ : ⟦ ed ⟧) → 𝕃 tagged-val
lhs-rhs Γ t₁ t₂ = match-lhs Γ t₁ :: [ match-rhs Γ t₂ ]
-- error-data
e-solution-ineq : ctxt → (tp₁ tp₂ : type) → var → match-error-data
e-solution-ineq Γ tp₁ tp₂ X =
match-error-msg ^ " because it produced two incovertible solutions for a meta-variable"
, the-meta-var X :: fst-snd-sol Γ tp₁ tp₂
e-match-failure : match-error-data
e-match-failure =
"The expected argument type is not a (first-order) match of the computed type"
, []
e-matchk-failure : match-error-data
e-matchk-failure =
"The expected argument kind is not a (first-order) match of the computed kind"
, []
e-meta-scope : ctxt → (X tp : type) → match-error-data
-- e-meta-scope : ctxt → (x : var) → (tp₁ tp₂ : type) → match-error-data
e-meta-scope Γ X tp =
match-error-msg ^ " because the solution contains a bound variable of the computed argument type"
, to-string-tag "the meta var" Γ X :: [ to-string-tag "the solution" Γ tp ]
e-bad-sol-kind : ctxt → (X : var) → (sol : type) → match-error-data
e-bad-sol-kind Γ X sol =
"The meta-variable was matched to a type whose kind does not match its own"
, the-meta-var X :: [ the-solution Γ sol ]
open meta-vars-match-errors
-- meta-vars-match auxiliaries
-- --------------------------------------------------
local-vars = stringset
meta-vars-solve-tp : ctxt → meta-vars → var → type → checking-mode → match-error-t meta-vars
meta-vars-solve-tp Γ Xs x tp m with trie-lookup (varset Xs) x
... | nothing
= match-error $ x ^ " is not a meta-var!" , []
... | just (meta-var-mk _ (meta-var-tm tp' mtm) _)
= match-error $ x ^ " is a term meta-var!" , []
... | just (meta-var-mk-tp _ k nothing sl)
= match-ok (meta-vars-set Xs (meta-var-mk-tp x k (just (mk-meta-var-sol tp m)) sl))
... | just (meta-var-mk-tp _ k (just sol) _) =
let mk-meta-var-sol tp' src = sol in
err⊎-guard (~ conv-type Γ tp tp') (e-solution-ineq Γ tp tp x)
≫⊎ match-ok Xs
-- update the kinds of HO meta-vars with
-- solutions
meta-vars-update-kinds : ctxt → (Xs Xsₖ : meta-vars) → meta-vars
meta-vars-update-kinds Γ Xs Xsₖ =
record Xs { varset = (flip trie-map) (varset Xs) λ where
(meta-var-mk-tp x k mtp sl) → meta-var-mk-tp x (meta-vars-subst-kind Γ Xsₖ k) mtp sl
sol → sol
}
hnf-elab-if : {ed : exprd} → 𝔹 → ctxt → ⟦ ed ⟧ → 𝔹 → ⟦ ed ⟧
hnf-elab-if b Γ t b' = if b then hnf Γ (unfolding-elab unfold-head) t b' else t
-- Legacy for elaboration.agda
-- ==================================================
-- TODO: remove dependency and delete code
meta-vars-add-from-tpabs : ctxt → span-location → meta-vars → is-tpabs → meta-var × meta-vars
meta-vars-add-from-tpabs Γ sl Xs (mk-tpabs e? x k tp) =
let Y = meta-var-fresh-tp Xs x sl (k , nothing)
Xs' = meta-vars-add Xs Y
tp' = subst Γ (meta-var-to-type-unsafe Y) x tp
in Y , Xs'
{-# TERMINATING #-} -- subst of a meta-var does not increase distance to arrow
meta-vars-peel : ctxt → span-location → meta-vars → type → (𝕃 meta-var) × type
meta-vars-peel Γ sl Xs (Abs pi e? pi' x tk@(Tkk k) tp)
with meta-vars-add-from-tpabs Γ sl Xs (mk-tpabs e? x k tp)
... | (Y , Xs')
with subst Γ (meta-var-to-type-unsafe Y) x tp
... | tp' =
let ret = meta-vars-peel Γ sl Xs' tp' ; Ys = fst ret ; rtp = snd ret
in (Y :: Ys , rtp)
meta-vars-peel Γ sl Xs (NoSpans tp _) =
meta-vars-peel Γ sl Xs tp
meta-vars-peel Γ sl Xs (TpParens _ tp _) =
meta-vars-peel Γ sl Xs tp
meta-vars-peel Γ sl Xs tp = [] , tp
meta-vars-unfold-tpapp : ctxt → meta-vars → type → is-tpabs?
meta-vars-unfold-tpapp Γ Xs tp
with meta-vars-subst-type Γ Xs tp
... | Abs _ b _ x (Tkk k) tp' = yes-tpabs b x k tp'
... | tp' = not-tpabs tp'
meta-vars-unfold-tmapp : ctxt → span-location → meta-vars → type → 𝕃 meta-var × is-tmabs?
meta-vars-unfold-tmapp Γ sl Xs tp
with meta-vars-peel Γ sl Xs (meta-vars-subst-type Γ Xs tp)
... | Ys , Abs _ b _ x (Tkt dom) cod =
Ys , yes-tmabs b x dom (is-free-in check-erased x cod) cod
... | Ys , TpArrow dom e? cod =
Ys , yes-tmabs e? "_" dom ff cod
... | Ys , tp' = Ys , not-tmabs tp'
| 35.73525
| 101
| 0.630202
|
d133120730a5fd5d64dc7f5641da412c6b88a673
| 12,043
|
agda
|
Agda
|
setoid-cats/Category/Preorder.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
setoid-cats/Category/Preorder.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
setoid-cats/Category/Preorder.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- This file contains the definition of a preorder as a category with --
-- additional properties. --
------------------------------------------------------------------------
module Category.Preorder where
open import Level renaming (suc to lsuc)
open import Data.Empty
open import Setoid.Total
open import Category.Category
open import Equality.Eq
record PO {l : Level} : Set (lsuc l) where
field
-- The underlying category.
ℙ : Cat {l}
-- The preorder axiom.
POax : ∀{A B}{f g : el (Hom ℙ A B)} → ⟨ Hom ℙ A B ⟩[ f ≡ g ]
open PO public renaming (ℙ to po-cat)
-- A PO with 4 objects.
module 4PO where
-- The objects.
data 4Obj {l : Level} : Set l where
i₁ : 4Obj
i₂ : 4Obj
i₃ : 4Obj
i₄ : 4Obj
-- The PreHom.
data 4PHom {l : Level} : 4Obj {l} → 4Obj {l} → Set l where
id₁ : 4PHom i₁ i₁
f₁ : 4PHom i₁ i₂
f₂ : 4PHom i₁ i₃
id₂ : 4PHom i₂ i₂
f₃ : 4PHom i₂ i₄
id₃ : 4PHom i₃ i₃
f₄ : 4PHom i₃ i₄
f₅ : 4PHom i₁ i₄
id₄ : 4PHom i₄ i₄
-- The Hom.
4Hom : {l : Level} → 4Obj {l} → 4Obj {l} → Setoid {l}
4Hom i₁ i₁ = record { el = 4PHom i₁ i₁; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₁ i₂ = record { el = 4PHom i₁ i₂; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₁ i₃ = record { el = 4PHom i₁ i₃; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₁ i₄ = record { el = 4PHom i₁ i₄; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₂ i₂ = record { el = 4PHom i₂ i₂; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₂ i₄ = record { el = 4PHom i₂ i₄; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₃ i₃ = record { el = 4PHom i₃ i₃; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₃ i₄ = record { el = 4PHom i₃ i₄; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₄ i₄ = record { el = 4PHom i₄ i₄; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom _ _ = EmptySetoid
4Comp : {l : Level}{a b c : 4Obj {l}} → BinSetoidFun (4Hom a b) (4Hom b c) (4Hom a c)
4Comp {_} {i₁} {i₂} {i₁} = record { appT = λ x → record { appT = λ x₁ → id₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₁} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₂} {i₁} {i₂} = record { appT = λ x → record { appT = λ x₁ → id₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₁} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₂} {i₁} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₁} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₃} {i₂} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₁} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₃} {i₁} {i₃} = record { appT = λ x → record { appT = λ x₁ → id₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₁} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₁} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₂} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₁} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₁} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₃} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₁} {i₄} = record { appT = λ x → record { appT = λ x₁ → ⊥-poly-elim x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₄} {i₃} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₄} {i₂} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₄} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₃} {i₄} = record { appT = λ x → record { appT = λ x₁ → id₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₃} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₃} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₂} {i₄} = record { appT = λ x → record { appT = λ x₁ → id₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₂} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₂} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₃} {i₄} {i₃} = record { appT = λ x → record { appT = λ x₁ → id₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₄} {i₂} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₄} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₃} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₃} {i₂} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₃} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₂} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₂} {i₃} = record { appT = λ x → record { appT = λ x₁ → id₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₂} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₃} {i₄} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₄} {i₃} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₄} {i₂} = record { appT = λ x → record { appT = λ x₁ → id₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₄} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₃} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₃} {i₂} = record { appT = λ x → record { appT = λ x₁ → id₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₃} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₂} {i₂} {i₄} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₂} {i₃} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₂} {i₂} = record { appT = λ x → record { appT = λ x₁ → id₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₃} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₂} {i₄} {i₄} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₁} {i₄} {i₃} = record { appT = λ x → record { appT = λ x₁ → f₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₄} {i₂} = record { appT = λ x → record { appT = λ x₁ → f₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₄} {i₁} = record { appT = λ x → record { appT = λ x₁ → id₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₃} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₅; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₃} {i₂} = record { appT = λ x → record { appT = λ x₁ → f₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₃} {i₁} = record { appT = λ x → record { appT = λ x₁ → id₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₂} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₅; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₂} {i₃} = record { appT = λ x → record { appT = λ x₁ → f₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₂} {i₂} = record { appT = λ x → record { appT = λ x₁ → f₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₃} {i₃} = record { appT = λ x → record { appT = λ x₁ → f₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₄} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₅; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {l} {i₁} {i₁} {c} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refPf (eqRpf (4Hom i₁ c)) {x₂} }
4Comp {l} {i₂} {i₂} {c} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refPf (eqRpf (4Hom i₂ c)) {x₂} }
4Comp {l} {i₃} {i₃} {c} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refPf (eqRpf (4Hom i₃ c)) {x₂} }
4Comp {l} {i₄} {i₄} {c} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refPf (eqRpf (4Hom i₄ c)) {x₂} }
4Id : {l : Level}{A : 4Obj {l}} → el (4Hom A A)
4Id {_}{i₁} = id₁
4Id {_}{i₂} = id₂
4Id {_}{i₃} = id₃
4Id {_}{i₄} = id₄
4PO-ax : ∀{l}{A B : 4Obj {l}}{f g : el (4Hom A B)} → eq (4Hom A B) f g
4PO-ax {A = i₁} {i₁} {id₁} {id₁} = refl
4PO-ax {A = i₁} {i₂} {f₁} {f₁} = refl
4PO-ax {A = i₁} {i₃} {f₂} {f₂} = refl
4PO-ax {A = i₁} {i₄} {f₅} {f₅} = refl
4PO-ax {A = i₂} {i₂} {id₂} {id₂} = refl
4PO-ax {A = i₂} {i₄} {f₃} {f₃} = refl
4PO-ax {A = i₃} {i₃} {id₃} {id₃} = refl
4PO-ax {A = i₃} {i₄} {f₄} {f₄} = refl
4PO-ax {A = i₄} {i₄} {id₄} {id₄} = refl
4PO-ax {A = i₂} {i₁} {f} = ⊥-poly-elim f
4PO-ax {A = i₃} {i₁} {f} = ⊥-poly-elim f
4PO-ax {A = i₄} {i₁} {f} = ⊥-poly-elim f
4PO-ax {A = i₃} {i₂} {f} = ⊥-poly-elim f
4PO-ax {A = i₄} {i₂} {f} = ⊥-poly-elim f
4PO-ax {A = i₂} {i₃} {f} = ⊥-poly-elim f
4PO-ax {A = i₄} {i₃} {f} = ⊥-poly-elim f
4AssocPf : ∀{l}{A B C D : 4Obj {l}} {f : el (4Hom A B)} {g : el (4Hom B C)}{h : el (4Hom C D)}
→ ⟨ 4Hom A D ⟩[ f ○[ 4Comp {l} {A}{B}{D} ] (g ○[ 4Comp {l}{B}{C}{D} ] h) ≡ (f ○[ 4Comp {l} {A}{B}{C} ] g) ○[ 4Comp {l}{A}{C}{D} ] h ]
4AssocPf {l}{A}{B}{C}{D} {f}{g} = 4PO-ax {l} {A} {D}
4IdPF : {l : Level}{A B : 4Obj {l}} {f : el (4Hom A B)}
→ ⟨ 4Hom A B ⟩[ (4Id {l}{A}) ○[ 4Comp {l}{A}{A}{B} ] f ≡ f ○[ 4Comp {l}{A}{B}{B} ] (4Id {l}{B}) ]
4IdPF {l}{A}{B}{f} = 4PO-ax {l} {A} {B}
-- We have a category.
4cat : {l : Level} → Cat {l}
4cat {l} = record { Obj = 4Obj {l};
Hom = 4Hom;
comp = λ {A} {B} {C} → 4Comp {l} {A}{B}{C};
id = λ {A} → 4Id {l}{A};
assocPf = λ {A} {B} {C} {D} {f} {g} {h} → 4AssocPf {l}{A}{B}{C}{D}{f}{g}{h};
idPfCom = λ {A} {B} {f} → 4IdPF {l}{A}{B}{f};
idPf = λ {A} {B} {f} → 4PO-ax {l} {A} {B}}
-- We have a preorder.
4po : {l : Level} → PO {l}
4po {l} = record { ℙ = 4cat;
POax = λ {A} {B} {f} {g} → 4PO-ax {l} {A} {B} {f} {g} }
| 72.113772
| 150
| 0.47455
|
5ea33d09d727cb53460e9178794fe92df7e84cce
| 3,037
|
agda
|
Agda
|
core/lib/groups/CommutingSquare.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
core/lib/groups/CommutingSquare.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
core/lib/groups/CommutingSquare.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Sigma
open import lib.types.Group
open import lib.types.CommutingSquare
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
module lib.groups.CommutingSquare where
-- A new type to keep the parameters.
record CommSquareᴳ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
(φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁)
: Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) where
constructor comm-sqrᴳ
field
commutesᴳ : ∀ g₀ → GroupHom.f (ξH ∘ᴳ φ₀) g₀ == GroupHom.f (φ₁ ∘ᴳ ξG) g₀
infixr 0 _□$ᴳ_
_□$ᴳ_ = CommSquareᴳ.commutesᴳ
is-csᴳ-equiv : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ CommSquareᴳ φ₀ φ₁ ξG ξH → Type (lmax (lmax i₀ i₁) (lmax j₀ j₁))
is-csᴳ-equiv {ξG = ξG} {ξH} _ = is-equiv (GroupHom.f ξG) × is-equiv (GroupHom.f ξH)
CommSquareEquivᴳ : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
(φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁)
→ Type (lmax (lmax i₀ i₁) (lmax j₀ j₁))
CommSquareEquivᴳ φ₀ φ₁ ξG ξH = Σ (CommSquareᴳ φ₀ φ₁ ξG ξH) is-csᴳ-equiv
abstract
CommSquareᴳ-∘v : ∀ {i₀ i₁ i₂ j₀ j₁ j₂}
{G₀ : Group i₀} {G₁ : Group i₁} {G₂ : Group i₂}
{H₀ : Group j₀} {H₁ : Group j₁} {H₂ : Group j₂}
{φ : G₀ →ᴳ H₀} {ψ : G₁ →ᴳ H₁} {χ : G₂ →ᴳ H₂}
{ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
{μA : G₁ →ᴳ G₂} {μB : H₁ →ᴳ H₂}
→ CommSquareᴳ ψ χ μA μB
→ CommSquareᴳ φ ψ ξG ξH
→ CommSquareᴳ φ χ (μA ∘ᴳ ξG) (μB ∘ᴳ ξH)
CommSquareᴳ-∘v {ξG = ξG} {μB = μB} (comm-sqrᴳ □₁₂) (comm-sqrᴳ □₀₁) =
comm-sqrᴳ λ g₀ → ap (GroupHom.f μB) (□₀₁ g₀) ∙ □₁₂ (GroupHom.f ξG g₀)
CommSquareEquivᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ (cse : CommSquareEquivᴳ φ₀ φ₁ ξG ξH)
→ CommSquareEquivᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , fst (snd cse))) (GroupIso.g-hom (ξH , snd (snd cse)))
CommSquareEquivᴳ-inverse-v (comm-sqrᴳ cs , ise)
with CommSquareEquiv-inverse-v (comm-sqr cs , ise)
... | (comm-sqr cs' , ise') = cs'' , ise' where abstract cs'' = comm-sqrᴳ cs'
CommSquareᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ CommSquareᴳ φ₀ φ₁ ξG ξH
→ (ξG-ise : is-equiv (GroupHom.f ξG)) (ξH-ise : is-equiv (GroupHom.f ξH))
→ CommSquareᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , ξG-ise)) (GroupIso.g-hom (ξH , ξH-ise))
CommSquareᴳ-inverse-v cs ξG-ise ξH-ise = fst (CommSquareEquivᴳ-inverse-v (cs , ξG-ise , ξH-ise))
-- basic facts nicely represented in commuting squares
inv-hom-natural-comm-sqr : ∀ {i j} (G : AbGroup i) (H : AbGroup j)
(φ : AbGroup.grp G →ᴳ AbGroup.grp H)
→ CommSquareᴳ φ φ (inv-hom G) (inv-hom H)
inv-hom-natural-comm-sqr _ _ φ = comm-sqrᴳ λ g → ! (GroupHom.pres-inv φ g)
| 42.180556
| 102
| 0.609483
|
3dafd58f2f44ac463cf9631e5698efa0ffcc2e99
| 18,898
|
agda
|
Agda
|
Cubical/Foundations/GroupoidLaws.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 1
|
2022-03-05T00:28:39.000Z
|
2022-03-05T00:28:39.000Z
|
Cubical/Foundations/GroupoidLaws.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | null | null | null |
Cubical/Foundations/GroupoidLaws.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | null | null | null |
{-
This file proves the higher groupoid structure of types
for homogeneous and heterogeneous paths
-}
{-# OPTIONS --safe #-}
module Cubical.Foundations.GroupoidLaws where
open import Cubical.Foundations.Prelude
private
variable
ℓ : Level
A : Type ℓ
x y z w v : A
_⁻¹ : (x ≡ y) → (y ≡ x)
x≡y ⁻¹ = sym x≡y
infix 40 _⁻¹
-- homogeneous groupoid laws
symInvo : (p : x ≡ y) → p ≡ p ⁻¹ ⁻¹
symInvo p = refl
rUnit : (p : x ≡ y) → p ≡ p ∙ refl
rUnit p j i = compPath-filler p refl j i
-- The filler of left unit: lUnit-filler p =
-- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∨ i)))
-- (refl i) (λ j → compPath-filler refl p i j)) (λ k i → (p (~ k ∧ i ))) (lUnit p)
lUnit-filler : {x y : A} (p : x ≡ y) → I → I → I → A
lUnit-filler {x = x} p j k i =
hfill (λ j → λ { (i = i0) → x
; (i = i1) → p (~ k ∨ j )
; (k = i0) → p i
-- ; (k = i1) → compPath-filler refl p j i
}) (inS (p (~ k ∧ i ))) j
lUnit : (p : x ≡ y) → p ≡ refl ∙ p
lUnit p j i = lUnit-filler p i1 j i
symRefl : refl {x = x} ≡ refl ⁻¹
symRefl i = refl
compPathRefl : refl {x = x} ≡ refl ∙ refl
compPathRefl = rUnit refl
-- The filler of right cancellation: rCancel-filler p =
-- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∧ ~ i)))
-- (λ j → compPath-filler p (p ⁻¹) i j) (refl i)) (λ j i → (p (i ∧ ~ j))) (rCancel p)
rCancel-filler : ∀ {x y : A} (p : x ≡ y) → (k j i : I) → A
rCancel-filler {x = x} p k j i =
hfill (λ k → λ { (i = i0) → x
; (i = i1) → p (~ k ∧ ~ j)
-- ; (j = i0) → compPath-filler p (p ⁻¹) k i
; (j = i1) → x
}) (inS (p (i ∧ ~ j))) k
rCancel : (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl
rCancel {x = x} p j i = rCancel-filler p i1 j i
rCancel-filler' : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → (i j k : I) → A
rCancel-filler' {x = x} {y} p i j k =
hfill
(λ i → λ
{ (j = i1) → p (~ i ∧ k)
; (k = i0) → x
; (k = i1) → p (~ i)
})
(inS (p k))
(~ i)
rCancel' : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl
rCancel' p j k = rCancel-filler' p i0 j k
lCancel : (p : x ≡ y) → p ⁻¹ ∙ p ≡ refl
lCancel p = rCancel (p ⁻¹)
assoc : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) →
p ∙ q ∙ r ≡ (p ∙ q) ∙ r
assoc p q r k = (compPath-filler p q k) ∙ compPath-filler' q r (~ k)
-- heterogeneous groupoid laws
symInvoP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → symInvo (λ i → A i) j i) x y) p (symP (symP p))
symInvoP p = refl
rUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → rUnit (λ i → A i) j i) x y) p (compPathP p refl)
rUnitP p j i = compPathP-filler p refl j i
lUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → lUnit (λ i → A i) j i) x y) p (compPathP refl p)
lUnitP {A = A} {x = x} p k i =
comp (λ j → lUnit-filler (λ i → A i) j k i)
(λ j → λ { (i = i0) → x
; (i = i1) → p (~ k ∨ j )
; (k = i0) → p i
}) (p (~ k ∧ i ))
rCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → rCancel (λ i → A i) j i) x x) (compPathP p (symP p)) refl
rCancelP {A = A} {x = x} p j i =
comp (λ k → rCancel-filler (λ i → A i) k j i)
(λ k → λ { (i = i0) → x
; (i = i1) → p (~ k ∧ ~ j)
; (j = i1) → x
}) (p (i ∧ ~ j))
lCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → lCancel (λ i → A i) j i) y y) (compPathP (symP p) p) refl
lCancelP p = rCancelP (symP p)
assocP : {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1}
{C_i1 : Type ℓ} {C : (B i1) ≡ C_i1} {w : C i1} (p : PathP A x y) (q : PathP (λ i → B i) y z) (r : PathP (λ i → C i) z w) →
PathP (λ j → PathP (λ i → assoc (λ i → A i) B C j i) x w) (compPathP p (compPathP q r)) (compPathP (compPathP p q) r)
assocP {A = A} {B = B} {C = C} p q r k i =
comp (\ j' → hfill (λ j → λ {
(i = i0) → A i0
; (i = i1) → compPath-filler' (λ i₁ → B i₁) (λ i₁ → C i₁) (~ k) j })
(inS (compPath-filler (λ i₁ → A i₁) (λ i₁ → B i₁) k i)) j')
(λ j → λ
{ (i = i0) → p i0
; (i = i1) →
comp (\ j' → hfill ((λ l → λ
{ (j = i0) → B k
; (j = i1) → C l
; (k = i1) → C (j ∧ l)
})) (inS (B ( j ∨ k)) ) j')
(λ l → λ
{ (j = i0) → q k
; (j = i1) → r l
; (k = i1) → r (j ∧ l)
})
(q (j ∨ k))
})
(compPathP-filler p q k i)
-- Loic's code below
-- some exchange law for doubleCompPath and refl
invSides-filler : {x y z : A} (p : x ≡ y) (q : x ≡ z) → Square p (sym q) q (sym p)
invSides-filler {x = x} p q i j =
hcomp (λ k → λ { (i = i0) → p (k ∧ j)
; (i = i1) → q (~ j ∧ k)
; (j = i0) → q (i ∧ k)
; (j = i1) → p (~ i ∧ k)})
x
leftright : {ℓ : Level} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) →
(refl ∙∙ p ∙∙ q) ≡ (p ∙∙ q ∙∙ refl)
leftright p q i j =
hcomp (λ t → λ { (j = i0) → p (i ∧ (~ t))
; (j = i1) → q (t ∨ i) })
(invSides-filler q (sym p) (~ i) j)
-- equating doubleCompPath and a succession of two compPath
split-leftright : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) →
(p ∙∙ q ∙∙ r) ≡ (refl ∙∙ (p ∙∙ q ∙∙ refl) ∙∙ r)
split-leftright p q r j i =
hcomp (λ t → λ { (i = i0) → p (~ j ∧ ~ t)
; (i = i1) → r t })
(doubleCompPath-filler p q refl j i)
split-leftright' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) →
(p ∙∙ q ∙∙ r) ≡ (p ∙∙ (refl ∙∙ q ∙∙ r) ∙∙ refl)
split-leftright' p q r j i =
hcomp (λ t → λ { (i = i0) → p (~ t)
; (i = i1) → r (j ∨ t) })
(doubleCompPath-filler refl q r j i)
doubleCompPath-elim : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y)
(r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (p ∙ q) ∙ r
doubleCompPath-elim p q r = (split-leftright p q r) ∙ (λ i → (leftright p q (~ i)) ∙ r)
doubleCompPath-elim' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y)
(r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ p ∙ (q ∙ r)
doubleCompPath-elim' p q r = (split-leftright' p q r) ∙ (sym (leftright p (q ∙ r)))
cong-∙∙-filler : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x y z w : A}
(f : A → B) (p : w ≡ x) (q : x ≡ y) (r : y ≡ z)
→ I → I → I → B
cong-∙∙-filler {A = A} f p q r k j i =
hfill ((λ k → λ { (j = i1) → doubleCompPath-filler (cong f p) (cong f q) (cong f r) k i
; (j = i0) → f (doubleCompPath-filler p q r k i)
; (i = i0) → f (p (~ k))
; (i = i1) → f (r k) }))
(inS (f (q i)))
k
cong-∙∙ : ∀ {B : Type ℓ} (f : A → B) (p : w ≡ x) (q : x ≡ y) (r : y ≡ z)
→ cong f (p ∙∙ q ∙∙ r) ≡ (cong f p) ∙∙ (cong f q) ∙∙ (cong f r)
cong-∙∙ f p q r j i = cong-∙∙-filler f p q r i1 j i
cong-∙ : ∀ {B : Type ℓ} (f : A → B) (p : x ≡ y) (q : y ≡ z)
→ cong f (p ∙ q) ≡ (cong f p) ∙ (cong f q)
cong-∙ f p q = cong-∙∙ f refl p q
hcomp-unique : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) →
(h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ])
→ (hcomp u (outS u0) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ]
hcomp-unique {φ = φ} u u0 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1
; (i = i1) → outS (h2 k) })
(outS u0))
lid-unique : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) →
(h1 h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ])
→ (outS (h1 i1) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ]
lid-unique {φ = φ} u u0 h1 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1
; (i = i0) → outS (h1 k)
; (i = i1) → outS (h2 k) })
(outS u0))
transp-hcomp : ∀ {ℓ} (φ : I) {A' : Type ℓ}
(A : (i : I) → Type ℓ [ φ ↦ (λ _ → A') ]) (let B = \ (i : I) → outS (A i))
→ ∀ {ψ} (u : I → Partial ψ (B i0)) → (u0 : B i0 [ ψ ↦ u i0 ]) →
(transp (\ i → B i) φ (hcomp u (outS u0)) ≡ hcomp (\ i o → transp (\ i → B i) φ (u i o)) (transp (\ i → B i) φ (outS u0)))
[ ψ ↦ (\ { (ψ = i1) → (\ i → transp (\ i → B i) φ (u i1 1=1))}) ]
transp-hcomp φ A u u0 = inS (sym (outS (hcomp-unique
((\ i o → transp (\ i → B i) φ (u i o))) (inS (transp (\ i → B i) φ (outS u0)))
\ i → inS (transp (\ i → B i) φ (hfill u u0 i)))))
where
B = \ (i : I) → outS (A i)
hcomp-cong : ∀ {ℓ} {A : Type ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) →
(u' : I → Partial φ A) → (u0' : A [ φ ↦ u' i0 ]) →
(ueq : ∀ i → PartialP φ (\ o → u i o ≡ u' i o)) → (outS u0 ≡ outS u0') [ φ ↦ (\ { (φ = i1) → ueq i0 1=1}) ]
→ (hcomp u (outS u0) ≡ hcomp u' (outS u0')) [ φ ↦ (\ { (φ = i1) → ueq i1 1=1 }) ]
hcomp-cong u u0 u' u0' ueq 0eq = inS (\ j → hcomp (\ i o → ueq i o j) (outS 0eq j))
congFunct-filler : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x y z : A} (f : A → B) (p : x ≡ y) (q : y ≡ z)
→ I → I → I → B
congFunct-filler {x = x} f p q i j z =
hfill (λ k → λ { (i = i0) → f x
; (i = i1) → f (q k)
; (j = i0) → f (compPath-filler p q k i)})
(inS (f (p i)))
z
congFunct : ∀ {ℓ} {B : Type ℓ} (f : A → B) (p : x ≡ y) (q : y ≡ z) → cong f (p ∙ q) ≡ cong f p ∙ cong f q
congFunct f p q j i = congFunct-filler f p q i j i1
-- congFunct for dependent types
congFunct-dep : ∀ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {x y z : A} (f : (a : A) → B a) (p : x ≡ y) (q : y ≡ z)
→ PathP (λ i → PathP (λ j → B (compPath-filler p q i j)) (f x) (f (q i))) (cong f p) (cong f (p ∙ q))
congFunct-dep {B = B} {x = x} f p q i j = f (compPath-filler p q i j)
cong₂Funct : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} {B : Type ℓ'} (f : A → A → B) →
(p : x ≡ y) →
{u v : A} (q : u ≡ v) →
cong₂ f p q ≡ cong (λ x → f x u) p ∙ cong (f y) q
cong₂Funct {x = x} {y = y} f p {u = u} {v = v} q j i =
hcomp (λ k → λ { (i = i0) → f x u
; (i = i1) → f y (q k)
; (j = i0) → f (p i) (q (i ∧ k))})
(f (p i) u)
symDistr-filler : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → I → I → I → A
symDistr-filler {A = A} {z = z} p q i j k =
hfill (λ k → λ { (i = i0) → q (k ∨ j)
; (i = i1) → p (~ k ∧ j) })
(inS (invSides-filler q (sym p) i j))
k
symDistr : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → sym (p ∙ q) ≡ sym q ∙ sym p
symDistr p q i j = symDistr-filler p q j i i1
-- we can not write hcomp-isEquiv : {ϕ : I} → (p : I → Partial ϕ A) → isEquiv (λ (a : A [ ϕ ↦ p i0 ]) → hcomp p a)
-- due to size issues. But what we can write (compare to hfill) is:
hcomp-equivFillerSub : {ϕ : I} → (p : I → Partial ϕ A) → (a : A [ ϕ ↦ p i0 ])
→ (i : I)
→ A [ ϕ ∨ i ∨ ~ i ↦ (λ { (i = i0) → outS a
; (i = i1) → hcomp (λ i → p (~ i)) (hcomp p (outS a))
; (ϕ = i1) → p i0 1=1 }) ]
hcomp-equivFillerSub {ϕ = ϕ} p a i =
inS (hcomp (λ k → λ { (i = i1) → hfill (λ j → p (~ j)) (inS (hcomp p (outS a))) k
; (i = i0) → outS a
; (ϕ = i1) → p (~ k ∧ i) 1=1 })
(hfill p a i))
hcomp-equivFiller : {ϕ : I} → (p : I → Partial ϕ A) → (a : A [ ϕ ↦ p i0 ])
→ (i : I) → A
hcomp-equivFiller p a i = outS (hcomp-equivFillerSub p a i)
pentagonIdentity : (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) → (s : w ≡ v)
→
(assoc p q (r ∙ s) ∙ assoc (p ∙ q) r s)
≡
cong (p ∙_) (assoc q r s) ∙∙ assoc p (q ∙ r) s ∙∙ cong (_∙ s) (assoc p q r)
pentagonIdentity {x = x} {y} p q r s =
(λ i →
(λ j → cong (p ∙_) (assoc q r s) (i ∧ j))
∙∙ (λ j → lemma₀₀ i j ∙ lemma₀₁ i j)
∙∙ (λ j → lemma₁₀ i j ∙ lemma₁₁ i j)
)
where
lemma₀₀ : ( i j : I) → _ ≡ _
lemma₀₀ i j i₁ =
hcomp
(λ k → λ { (j = i0) → p i₁
; (i₁ = i0) → x
; (i₁ = i1) → hcomp
(λ k₁ → λ { (i = i0) → (q (j ∧ k))
; (k = i0) → y
; (j = i0) → y
; (j = i1)(k = i1) → r (k₁ ∧ i)})
(q (j ∧ k))
}) (p i₁)
lemma₀₁ : ( i j : I) → hcomp
(λ k → λ {(i = i0) → q j
; (j = i0) → y
; (j = i1) → r (k ∧ i)
})
(q j) ≡ _
lemma₀₁ i j i₁ = (hcomp
(λ k → λ { (j = i1) → hcomp
(λ k₁ → λ { (i₁ = i0) → r i
; (k = i0) → r i
; (i = i1) → s (k₁ ∧ k ∧ i₁)
; (i₁ = i1)(k = i1) → s k₁ })
(r ((i₁ ∧ k) ∨ i))
; (i₁ = i0) → compPath-filler q r i j
; (i₁ = i1) → hcomp
(λ k₁ → λ { (k = i0) → r i
; (k = i1) → s k₁
; (i = i1) → s (k ∧ k₁)})
(r (i ∨ k))})
(hfill
(λ k → λ { (j = i1) → r k
; (i₁ = i1) → r k
; (i₁ = i0)(j = i0) → y })
(inS (q (i₁ ∨ j))) i))
lemma₁₁ : ( i j : I) → (r (i ∨ j)) ≡ _
lemma₁₁ i j i₁ =
hcomp
(λ k → λ { (i = i1) → s (i₁ ∧ k)
; (j = i1) → s (i₁ ∧ k)
; (i₁ = i0) → r (i ∨ j)
; (i₁ = i1) → s k
}) (r (i ∨ j ∨ i₁))
lemma₁₀-back : I → I → I → _
lemma₁₀-back i j i₁ =
hcomp
(λ k → λ {
(i₁ = i0) → x
; (i₁ = i1) → hcomp
(λ k₁ → λ { (k = i0) → q (j ∨ ~ i)
; (k = i1) → r (k₁ ∧ j)
; (j = i0) → q (k ∨ ~ i)
; (j = i1) → r (k₁ ∧ k)
; (i = i0) → r (k ∧ j ∧ k₁)
})
(q (k ∨ j ∨ ~ i))
; (i = i0)(j = i0) → (p ∙ q) i₁
})
(hcomp
(λ k → λ { (i₁ = i0) → x
; (i₁ = i1) → q ((j ∨ ~ i ) ∧ k)
; (j = i0)(i = i1) → p i₁
})
(p i₁))
lemma₁₀-front : I → I → I → _
lemma₁₀-front i j i₁ =
(((λ _ → x) ∙∙ compPath-filler p q j ∙∙
(λ i₁ →
hcomp
(λ k → λ { (i₁ = i0) → q j
; (i₁ = i1) → r (k ∧ (j ∨ i))
; (j = i0)(i = i0) → q i₁
; (j = i1) → r (i₁ ∧ k)
})
(q (j ∨ i₁))
)) i₁)
compPath-filler-in-filler :
(p : _ ≡ y) → (q : _ ≡ _ )
→ _≡_ {A = Square (p ∙ q) (p ∙ q) (λ _ → x) (λ _ → z)}
(λ i j → hcomp
(λ i₂ →
λ { (j = i0) → x
; (j = i1) → q (i₂ ∨ ~ i)
; (i = i0) → (p ∙ q) j
})
(compPath-filler p q (~ i) j))
(λ _ → p ∙ q)
compPath-filler-in-filler p q z i j =
hcomp
(λ k → λ {
(j = i0) → p i0
; (j = i1) → q (k ∨ ~ i ∧ ~ z)
; (i = i0) → hcomp
(λ i₂ → λ {
(j = i0) → p i0
;(j = i1) → q ((k ∨ ~ z) ∧ i₂)
;(z = i1) (k = i0) → p j
})
(p j)
; (i = i1) → compPath-filler p (λ i₁ → q (k ∧ i₁)) k j
; (z = i0) → hfill
((λ i₂ → λ { (j = i0) → p i0
; (j = i1) → q (i₂ ∨ ~ i)
; (i = i0) → (p ∙ q) j
}))
(inS ((compPath-filler p q (~ i) j))) k
; (z = i1) → compPath-filler p q k j
})
(compPath-filler p q (~ i ∧ ~ z) j)
cube-comp₋₀₋ :
(c : I → I → I → A)
→ {a' : Square _ _ _ _}
→ (λ i i₁ → c i i0 i₁) ≡ a'
→ (I → I → I → A)
cube-comp₋₀₋ c p i j k =
hcomp
(λ l → λ {
(i = i0) → c i0 j k
;(i = i1) → c i1 j k
;(j = i0) → p l i k
;(j = i1) → c i i1 k
;(k = i0) → c i j i0
;(k = i1) → c i j i1
})
(c i j k)
cube-comp₀₋₋ :
(c : I → I → I → A)
→ {a' : Square _ _ _ _}
→ (λ i i₁ → c i0 i i₁) ≡ a'
→ (I → I → I → A)
cube-comp₀₋₋ c p i j k =
hcomp
(λ l → λ {
(i = i0) → p l j k
;(i = i1) → c i1 j k
;(j = i0) → c i i0 k
;(j = i1) → c i i1 k
;(k = i0) → c i j i0
;(k = i1) → c i j i1
})
(c i j k)
lemma₁₀-back' : _
lemma₁₀-back' k j i₁ =
(cube-comp₋₀₋ (lemma₁₀-back)
(compPath-filler-in-filler p q)) k j i₁
lemma₁₀ : ( i j : I) → _ ≡ _
lemma₁₀ i j i₁ =
(cube-comp₀₋₋ lemma₁₀-front (sym lemma₁₀-back')) i j i₁
-- misc.
∙∙lCancel-fill : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ (p : x ≡ y)
→ I → I → I → A
∙∙lCancel-fill p i j k =
hfill (λ k → λ { (i = i1) → p k
; (j = i0) → p k
; (j = i1) → p k})
(inS (p i0)) k
∙∙lCancel : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ (p : x ≡ y)
→ sym p ∙∙ refl ∙∙ p ≡ refl
∙∙lCancel p i j = ∙∙lCancel-fill p i j i1
| 37.947791
| 139
| 0.336173
|
ada608a85b5fe4e6ab027665dedb75fab42f9b32
| 2,728
|
agda
|
Agda
|
Cubical/Categories/NaturalTransformation.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/Categories/NaturalTransformation.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/Categories/NaturalTransformation.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical #-}
module Cubical.Categories.NaturalTransformation where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Categories.Functor
private
variable
ℓ𝒞 ℓ𝒞' ℓ𝒟 ℓ𝒟' : Level
module _ {𝒞 : Precategory ℓ𝒞 ℓ𝒞'} {𝒟 : Precategory ℓ𝒟 ℓ𝒟'} where
record NatTrans (F G : Functor 𝒞 𝒟) : Type (ℓ-max (ℓ-max ℓ𝒞 ℓ𝒞') (ℓ-max ℓ𝒟 ℓ𝒟')) where
open Precategory
open Functor
field
N-ob : (x : 𝒞 .ob) → 𝒟 .hom (F .F-ob x) (G .F-ob x)
N-hom : {x y : 𝒞 .ob} (f : 𝒞 .hom x y) → 𝒟 .seq (F .F-hom f) (N-ob y) ≡ 𝒟 .seq (N-ob x) (G .F-hom f)
open Precategory
open Functor
open NatTrans
id-trans : (F : Functor 𝒞 𝒟) → NatTrans F F
id-trans F .N-ob x = 𝒟 .idn (F .F-ob x)
id-trans F .N-hom f =
𝒟 .seq (F .F-hom f) (id-trans F .N-ob _)
≡⟨ 𝒟 .seq-ρ _ ⟩
F .F-hom f
≡⟨ sym (𝒟 .seq-λ _) ⟩
𝒟 .seq (𝒟 .idn (F .F-ob _)) (F .F-hom f)
∎
seq-trans : {F G H : Functor 𝒞 𝒟} (α : NatTrans F G) (β : NatTrans G H) → NatTrans F H
seq-trans α β .N-ob x = 𝒟 .seq (α .N-ob x) (β .N-ob x)
seq-trans {F} {G} {H} α β .N-hom f =
𝒟 .seq (F .F-hom f) (𝒟 .seq (α .N-ob _) (β .N-ob _))
≡⟨ sym (𝒟 .seq-α _ _ _) ⟩
𝒟 .seq (𝒟 .seq (F .F-hom f) (α .N-ob _)) (β .N-ob _)
≡[ i ]⟨ 𝒟 .seq (α .N-hom f i) (β .N-ob _) ⟩
𝒟 .seq (𝒟 .seq (α .N-ob _) (G .F-hom f)) (β .N-ob _)
≡⟨ 𝒟 .seq-α _ _ _ ⟩
𝒟 .seq (α .N-ob _) (𝒟 .seq (G .F-hom f) (β .N-ob _))
≡[ i ]⟨ 𝒟 .seq (α .N-ob _) (β .N-hom f i) ⟩
𝒟 .seq (α .N-ob _) (𝒟 .seq (β .N-ob _) (H .F-hom f))
≡⟨ sym (𝒟 .seq-α _ _ _) ⟩
𝒟 .seq (𝒟 .seq (α .N-ob _) (β .N-ob _)) (H .F-hom f)
∎
module _ ⦃ 𝒟-category : isCategory 𝒟 ⦄ {F G : Functor 𝒞 𝒟} {α β : NatTrans F G} where
open Precategory
open Functor
open NatTrans
make-nat-trans-path : α .N-ob ≡ β .N-ob → α ≡ β
make-nat-trans-path p i .N-ob = p i
make-nat-trans-path p i .N-hom f = rem i
where
rem : PathP (λ i → 𝒟 .seq (F .F-hom f) (p i _) ≡ 𝒟 .seq (p i _) (G .F-hom f)) (α .N-hom f) (β .N-hom f)
rem = toPathP (𝒟-category .homIsSet _ _ _ _)
module _ (𝒞 : Precategory ℓ𝒞 ℓ𝒞') (𝒟 : Precategory ℓ𝒟 ℓ𝒟') ⦃ _ : isCategory 𝒟 ⦄ where
open Precategory
open NatTrans
open Functor
FUNCTOR : Precategory (ℓ-max (ℓ-max ℓ𝒞 ℓ𝒞') (ℓ-max ℓ𝒟 ℓ𝒟')) (ℓ-max (ℓ-max ℓ𝒞 ℓ𝒞') (ℓ-max ℓ𝒟 ℓ𝒟'))
FUNCTOR .ob = Functor 𝒞 𝒟
FUNCTOR .hom = NatTrans
FUNCTOR .idn = id-trans
FUNCTOR .seq = seq-trans
FUNCTOR .seq-λ α = make-nat-trans-path λ i x → 𝒟 .seq-λ (α .N-ob x) i
FUNCTOR .seq-ρ α = make-nat-trans-path λ i x → 𝒟 .seq-ρ (α .N-ob x) i
FUNCTOR .seq-α α β γ = make-nat-trans-path λ i x → 𝒟 .seq-α (α .N-ob x) (β .N-ob x) (γ .N-ob x) i
| 34.1
| 111
| 0.538856
|
191cc1062204a983c1b2ab00868919a1a6b50168
| 435
|
agda
|
Agda
|
Categories/Diagram/Finite.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Categories/Diagram/Finite.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
Categories/Diagram/Finite.agda
|
rei1024/agda-categories
|
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Categories.Diagram.Finite where
open import Level
open import Categories.Category
open import Categories.Category.Finite renaming (Finite to FiniteC)
open import Categories.Functor
private
variable
o ℓ e : Level
J C : Category o ℓ e
record Finite (F : Functor J C) : Set (levelOfTerm F) where
field
finite : FiniteC J
open Functor F public
open FiniteC finite public
| 19.772727
| 67
| 0.731034
|
a0d6e821a5555e72da6c5df8bc93320528a3fcc0
| 117
|
agda
|
Agda
|
Cubical/Algebra/DistLattice.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Algebra/DistLattice.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Algebra/DistLattice.agda
|
FernandoLarrain/cubical
|
9acdecfa6437ec455568be4e5ff04849cc2bc13b
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.DistLattice where
open import Cubical.Algebra.DistLattice.Base public
| 23.4
| 51
| 0.786325
|
31a7e60031835e6d792a7ac3c0cf569978813ee0
| 2,607
|
agda
|
Agda
|
test/Succeed/AbstractCoinduction.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/AbstractCoinduction.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/AbstractCoinduction.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2016-10-03, re issue #2231
-- Testing whether the musical coinduction works fine in abstract blocks
{-# OPTIONS --guardedness #-}
module AbstractCoinduction where
infix 1000 ♯_
postulate
∞_ : ∀ {a} (A : Set a) → Set a
♯_ : ∀ {a} {A : Set a} → A → ∞ A
♭ : ∀ {a} {A : Set a} → ∞ A → A
{-# BUILTIN INFINITY ∞_ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
infixr 5 _≺_
abstract
------------------------------------------------------------------------
-- Streams
data Stream (A : Set) : Set where
_≺_ : (x : A) (xs : ∞ (Stream A)) -> Stream A
head : ∀ {A} -> Stream A -> A
head (x ≺ xs) = x
tail : ∀ {A} -> Stream A -> Stream A
tail (x ≺ xs) = ♭ xs
------------------------------------------------------------------------
-- Stream programs
infix 8 _∞
infixr 5 _⋎_
infix 4 ↓_
mutual
data Stream′ (A : Set) : Set1 where
_≺_ : (x : A) (xs : ∞ (StreamProg A)) -> Stream′ A
data StreamProg (A : Set) : Set1 where
↓_ : (xs : Stream′ A) -> StreamProg A
_∞' : (x : A) -> StreamProg A
_⋎'_ : (xs ys : StreamProg A) -> StreamProg A
_∞ : ∀ {A : Set} (x : A) -> StreamProg A
_∞ = _∞'
_⋎_ : ∀ {A : Set} (xs ys : StreamProg A) -> StreamProg A
_⋎_ = _⋎'_
head′ : ∀ {A} → Stream′ A → A
head′ (x ≺ xs) = x
tail′ : ∀ {A} → Stream′ A → StreamProg A
tail′ (x ≺ xs) = ♭ xs
P⇒′ : ∀ {A} -> StreamProg A -> Stream′ A
P⇒′ (↓ xs) = xs
P⇒′ (x ∞') = x ≺ ♯ (x ∞)
P⇒′ (xs ⋎' ys) with P⇒′ xs
P⇒′ (xs ⋎' ys) | xs′ = head′ xs′ ≺ ♯ (ys ⋎ tail′ xs′)
mutual
′⇒ : ∀ {A} -> Stream′ A -> Stream A
′⇒ (x ≺ xs) = x ≺ ♯ P⇒ (♭ xs)
P⇒ : ∀ {A} -> StreamProg A -> Stream A
P⇒ xs = ′⇒ (P⇒′ xs)
------------------------------------------------------------------------
-- Stream equality
infix 4 _≡_ _≈_ _≊_
data _≡_ {a : Set} (x : a) : a -> Set where
≡-refl : x ≡ x
data _≈_ {A} (xs ys : Stream A) : Set where
_≺_ : (x≡ : head xs ≡ head ys) (xs≈ : ∞ (tail xs ≈ tail ys)) ->
xs ≈ ys
_≊_ : ∀ {A} (xs ys : StreamProg A) -> Set
xs ≊ ys = P⇒ xs ≈ P⇒ ys
foo : ∀ {A : Set} (x : A) -> x ∞ ⋎ x ∞ ≊ x ∞
foo x = ≡-refl ≺ ♯ foo x
-- The first goal has goal type
-- head (′⇒ (x ≺ x ∞ ⋎ x ∞)) ≡ head (′⇒ (x ≺ x ∞)).
-- The normal form of the left-hand side is x, and the normal form of
-- the right-hand side is x (both according to Agda), but ≡-refl is
-- not accepted by the type checker:
-- x != head (′⇒ (P⇒′ (x ∞))) of type .A
-- when checking that the expression ≡-refl has type
-- (head (P⇒ (x ∞ ⋎ x ∞)) ≡ head (P⇒ (x ∞)))
| 24.828571
| 74
| 0.43575
|
a0aa219969b56b6e4b859b88342728640791c303
| 233
|
agda
|
Agda
|
stdlib-exts/Data/Empty/Instance.agda
|
WhatisRT/meta-cedille
|
62fa6f36e4555360d94041113749bbb6d291691c
|
[
"MIT"
] | 35
|
2019-06-13T07:44:50.000Z
|
2021-10-12T22:59:10.000Z
|
stdlib-exts/Data/Empty/Instance.agda
|
WhatisRT/meta-cedille
|
62fa6f36e4555360d94041113749bbb6d291691c
|
[
"MIT"
] | 10
|
2019-06-13T17:44:43.000Z
|
2020-04-25T15:29:17.000Z
|
stdlib-exts/Data/Empty/Instance.agda
|
WhatisRT/meta-cedille
|
62fa6f36e4555360d94041113749bbb6d291691c
|
[
"MIT"
] | 2
|
2019-06-27T23:12:48.000Z
|
2021-10-20T10:46:20.000Z
|
module Data.Empty.Instance where
open import Class.Equality
open import Class.Show
open import Data.Empty
instance
Empty-Eq : Eq ⊥
Empty-Eq = record { _≟_ = λ x () }
Empty-Show : Show ⊥
Empty-Show = record { show = λ () }
| 17.923077
| 37
| 0.669528
|
9abd0688f5a3250bec93cbd3461b5d7d74e69372
| 688
|
agda
|
Agda
|
Formalization/LambdaCalculus/Semantics/CallByValue.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Formalization/LambdaCalculus/Semantics/CallByValue.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Formalization/LambdaCalculus/Semantics/CallByValue.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Formalization.LambdaCalculus.Semantics.CallByValue where
import Lvl
open import Data
open import Formalization.LambdaCalculus
open import Formalization.LambdaCalculus.Semantics
open import Formalization.LambdaCalculus.SyntaxTransformation
open import Logic.Predicate
open import Numeral.Natural
open import Syntax.Number
open import Type
private variable d db : ℕ
private variable f t x : Term(d)
private variable body : Term(db)
private variable v vx : ∃(Value)
data _⇓_ : Term(d) → ∃(Value) → Type{0} where
value : ⦃ val : Value(t) ⦄ → (t ⇓ [∃]-intro t)
apply : (f ⇓ [∃]-intro(Abstract body)) → (x ⇓ vx) → (substituteVar0 ([∃]-witness vx) body ⇓ v) → (Apply f x ⇓ v)
| 32.761905
| 114
| 0.732558
|
41176879bb4b10b5327567b1c07effdff9df1c80
| 22,304
|
agda
|
Agda
|
agda/Text/Greek/SBLGNT/Jude.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 44
|
2015-05-29T14:48:51.000Z
|
2022-03-06T15:41:57.000Z
|
agda/Text/Greek/SBLGNT/Jude.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 13
|
2015-05-28T20:04:08.000Z
|
2020-09-07T11:58:38.000Z
|
agda/Text/Greek/SBLGNT/Jude.agda
|
scott-fleischman/GreekGrammar
|
915c46c27c7f8aad5907474d8484f2685a4cd6a7
|
[
"MIT"
] | 5
|
2015-02-27T22:34:13.000Z
|
2017-06-11T11:25:09.000Z
|
module Text.Greek.SBLGNT.Jude where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΙΟΥΔΑ : List (Word)
ΙΟΥΔΑ =
word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Jude.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.1"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Jude.1.1"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Jude.1.1"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.1"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Jude.1.1"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.1"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.1"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Jude.1.1"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Jude.1.1"
∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "Jude.1.1"
∷ word (τ ∷ ε ∷ τ ∷ η ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.1"
∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.1"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "Jude.1.2"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Jude.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.2"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Jude.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.2"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "Jude.1.2"
∷ word (π ∷ ∙λ ∷ η ∷ θ ∷ υ ∷ ν ∷ θ ∷ ε ∷ ί ∷ η ∷ []) "Jude.1.2"
∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.3"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.3"
∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ὴ ∷ ν ∷ []) "Jude.1.3"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Jude.1.3"
∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ε ∷ ι ∷ ν ∷ []) "Jude.1.3"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Jude.1.3"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Jude.1.3"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Jude.1.3"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.3"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.3"
∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ν ∷ []) "Jude.1.3"
∷ word (ἔ ∷ σ ∷ χ ∷ ο ∷ ν ∷ []) "Jude.1.3"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ι ∷ []) "Jude.1.3"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Jude.1.3"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Jude.1.3"
∷ word (ἐ ∷ π ∷ α ∷ γ ∷ ω ∷ ν ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Jude.1.3"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.3"
∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Jude.1.3"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ε ∷ ί ∷ σ ∷ ῃ ∷ []) "Jude.1.3"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.3"
∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.3"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Jude.1.3"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ι ∷ σ ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.4"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Jude.1.4"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Jude.1.4"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Jude.1.4"
∷ word (ο ∷ ἱ ∷ []) "Jude.1.4"
∷ word (π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Jude.1.4"
∷ word (π ∷ ρ ∷ ο ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.4"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Jude.1.4"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.4"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Jude.1.4"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Jude.1.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Jude.1.4"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.4"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ α ∷ []) "Jude.1.4"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.4"
∷ word (ἀ ∷ σ ∷ έ ∷ ∙λ ∷ γ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Jude.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Jude.1.4"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Jude.1.4"
∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ η ∷ ν ∷ []) "Jude.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.4"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.4"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.4"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Jude.1.4"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Jude.1.4"
∷ word (ἀ ∷ ρ ∷ ν ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.4"
∷ word (Ὑ ∷ π ∷ ο ∷ μ ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.5"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.5"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Jude.1.5"
∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Jude.1.5"
∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.5"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Jude.1.5"
∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Jude.1.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Jude.1.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Jude.1.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Jude.1.5"
∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Jude.1.5"
∷ word (ἐ ∷ κ ∷ []) "Jude.1.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Jude.1.5"
∷ word (Α ∷ ἰ ∷ γ ∷ ύ ∷ π ∷ τ ∷ ο ∷ υ ∷ []) "Jude.1.5"
∷ word (σ ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "Jude.1.5"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.5"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Jude.1.5"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.5"
∷ word (μ ∷ ὴ ∷ []) "Jude.1.5"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.5"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Jude.1.5"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.6"
∷ word (τ ∷ ε ∷ []) "Jude.1.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.6"
∷ word (μ ∷ ὴ ∷ []) "Jude.1.6"
∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Jude.1.6"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.6"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "Jude.1.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Jude.1.6"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ι ∷ π ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.6"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.6"
∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.6"
∷ word (ο ∷ ἰ ∷ κ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.6"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.6"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ς ∷ []) "Jude.1.6"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Jude.1.6"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.6"
∷ word (ἀ ∷ ϊ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.6"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Jude.1.6"
∷ word (ζ ∷ ό ∷ φ ∷ ο ∷ ν ∷ []) "Jude.1.6"
∷ word (τ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Jude.1.6"
∷ word (ὡ ∷ ς ∷ []) "Jude.1.7"
∷ word (Σ ∷ ό ∷ δ ∷ ο ∷ μ ∷ α ∷ []) "Jude.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.7"
∷ word (Γ ∷ ό ∷ μ ∷ ο ∷ ρ ∷ ρ ∷ α ∷ []) "Jude.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.7"
∷ word (α ∷ ἱ ∷ []) "Jude.1.7"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Jude.1.7"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Jude.1.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Jude.1.7"
∷ word (ὅ ∷ μ ∷ ο ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.7"
∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Jude.1.7"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.7"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.7"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.7"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Jude.1.7"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Jude.1.7"
∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Jude.1.7"
∷ word (π ∷ ρ ∷ ό ∷ κ ∷ ε ∷ ι ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.7"
∷ word (δ ∷ ε ∷ ῖ ∷ γ ∷ μ ∷ α ∷ []) "Jude.1.7"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Jude.1.7"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Jude.1.7"
∷ word (δ ∷ ί ∷ κ ∷ η ∷ ν ∷ []) "Jude.1.7"
∷ word (ὑ ∷ π ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.7"
∷ word (Ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Jude.1.8"
∷ word (μ ∷ έ ∷ ν ∷ τ ∷ ο ∷ ι ∷ []) "Jude.1.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.8"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Jude.1.8"
∷ word (ἐ ∷ ν ∷ υ ∷ π ∷ ν ∷ ι ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.8"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Jude.1.8"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Jude.1.8"
∷ word (μ ∷ ι ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.8"
∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Jude.1.8"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.8"
∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.8"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ς ∷ []) "Jude.1.8"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.8"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.8"
∷ word (ὁ ∷ []) "Jude.1.9"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.9"
∷ word (Μ ∷ ι ∷ χ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Jude.1.9"
∷ word (ὁ ∷ []) "Jude.1.9"
∷ word (ἀ ∷ ρ ∷ χ ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "Jude.1.9"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Jude.1.9"
∷ word (τ ∷ ῷ ∷ []) "Jude.1.9"
∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "Jude.1.9"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Jude.1.9"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ο ∷ []) "Jude.1.9"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.9"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Jude.1.9"
∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Jude.1.9"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Jude.1.9"
∷ word (ἐ ∷ τ ∷ ό ∷ ∙λ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Jude.1.9"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.9"
∷ word (ἐ ∷ π ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Jude.1.9"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Jude.1.9"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Jude.1.9"
∷ word (Ἐ ∷ π ∷ ι ∷ τ ∷ ι ∷ μ ∷ ή ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.9"
∷ word (σ ∷ ο ∷ ι ∷ []) "Jude.1.9"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Jude.1.9"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Jude.1.10"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.10"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Jude.1.10"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Jude.1.10"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Jude.1.10"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.10"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.10"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Jude.1.10"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.10"
∷ word (φ ∷ υ ∷ σ ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "Jude.1.10"
∷ word (ὡ ∷ ς ∷ []) "Jude.1.10"
∷ word (τ ∷ ὰ ∷ []) "Jude.1.10"
∷ word (ἄ ∷ ∙λ ∷ ο ∷ γ ∷ α ∷ []) "Jude.1.10"
∷ word (ζ ∷ ῷ ∷ α ∷ []) "Jude.1.10"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.10"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.10"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.10"
∷ word (φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.10"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Jude.1.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Jude.1.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Jude.1.11"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.11"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Jude.1.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.11"
∷ word (Κ ∷ ά ∷ ϊ ∷ ν ∷ []) "Jude.1.11"
∷ word (ἐ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.11"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.11"
∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ῃ ∷ []) "Jude.1.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.11"
∷ word (Β ∷ α ∷ ∙λ ∷ α ∷ ὰ ∷ μ ∷ []) "Jude.1.11"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ο ∷ ῦ ∷ []) "Jude.1.11"
∷ word (ἐ ∷ ξ ∷ ε ∷ χ ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.11"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.11"
∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ᾳ ∷ []) "Jude.1.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.11"
∷ word (Κ ∷ ό ∷ ρ ∷ ε ∷ []) "Jude.1.11"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Jude.1.11"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.12"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.12"
∷ word (ο ∷ ἱ ∷ []) "Jude.1.12"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.12"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Jude.1.12"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ α ∷ ι ∷ ς ∷ []) "Jude.1.12"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.12"
∷ word (σ ∷ π ∷ ι ∷ ∙λ ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "Jude.1.12"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ υ ∷ ω ∷ χ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.12"
∷ word (ἀ ∷ φ ∷ ό ∷ β ∷ ω ∷ ς ∷ []) "Jude.1.12"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.12"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.12"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ []) "Jude.1.12"
∷ word (ἄ ∷ ν ∷ υ ∷ δ ∷ ρ ∷ ο ∷ ι ∷ []) "Jude.1.12"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Jude.1.12"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Jude.1.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ φ ∷ ε ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Jude.1.12"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Jude.1.12"
∷ word (φ ∷ θ ∷ ι ∷ ν ∷ ο ∷ π ∷ ω ∷ ρ ∷ ι ∷ ν ∷ ὰ ∷ []) "Jude.1.12"
∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ α ∷ []) "Jude.1.12"
∷ word (δ ∷ ὶ ∷ ς ∷ []) "Jude.1.12"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "Jude.1.12"
∷ word (ἐ ∷ κ ∷ ρ ∷ ι ∷ ζ ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ []) "Jude.1.12"
∷ word (κ ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Jude.1.13"
∷ word (ἄ ∷ γ ∷ ρ ∷ ι ∷ α ∷ []) "Jude.1.13"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Jude.1.13"
∷ word (ἐ ∷ π ∷ α ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Jude.1.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Jude.1.13"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.13"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ α ∷ ς ∷ []) "Jude.1.13"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Jude.1.13"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.13"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Jude.1.13"
∷ word (ὁ ∷ []) "Jude.1.13"
∷ word (ζ ∷ ό ∷ φ ∷ ο ∷ ς ∷ []) "Jude.1.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.13"
∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.13"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Jude.1.13"
∷ word (τ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.13"
∷ word (Π ∷ ρ ∷ ο ∷ ε ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Jude.1.14"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.14"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Jude.1.14"
∷ word (ἕ ∷ β ∷ δ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Jude.1.14"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Jude.1.14"
∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "Jude.1.14"
∷ word (Ἑ ∷ ν ∷ ὼ ∷ χ ∷ []) "Jude.1.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Jude.1.14"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Jude.1.14"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Jude.1.14"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Jude.1.14"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.14"
∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Jude.1.14"
∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.14"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.15"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.15"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Jude.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Jude.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.15"
∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ ξ ∷ α ∷ ι ∷ []) "Jude.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.15"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.15"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Jude.1.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.15"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Jude.1.15"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.15"
∷ word (ὧ ∷ ν ∷ []) "Jude.1.15"
∷ word (ἠ ∷ σ ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.15"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Jude.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Jude.1.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.15"
∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Jude.1.15"
∷ word (ὧ ∷ ν ∷ []) "Jude.1.15"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Jude.1.15"
∷ word (κ ∷ α ∷ τ ∷ []) "Jude.1.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.15"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Jude.1.15"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.15"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.16"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.16"
∷ word (γ ∷ ο ∷ γ ∷ γ ∷ υ ∷ σ ∷ τ ∷ α ∷ ί ∷ []) "Jude.1.16"
∷ word (μ ∷ ε ∷ μ ∷ ψ ∷ ί ∷ μ ∷ ο ∷ ι ∷ ρ ∷ ο ∷ ι ∷ []) "Jude.1.16"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Jude.1.16"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Jude.1.16"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.16"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.16"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.16"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ []) "Jude.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.16"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Jude.1.16"
∷ word (ὑ ∷ π ∷ έ ∷ ρ ∷ ο ∷ γ ∷ κ ∷ α ∷ []) "Jude.1.16"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.16"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ α ∷ []) "Jude.1.16"
∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.16"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Jude.1.16"
∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.17"
∷ word (δ ∷ έ ∷ []) "Jude.1.17"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.17"
∷ word (μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Jude.1.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.17"
∷ word (ῥ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Jude.1.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.17"
∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ι ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Jude.1.17"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Jude.1.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.17"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "Jude.1.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.17"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Jude.1.17"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.17"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Jude.1.18"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Jude.1.18"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Jude.1.18"
∷ word (Ἐ ∷ π ∷ []) "Jude.1.18"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Jude.1.18"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Jude.1.18"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.18"
∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ῖ ∷ κ ∷ τ ∷ α ∷ ι ∷ []) "Jude.1.18"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Jude.1.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Jude.1.18"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Jude.1.18"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Jude.1.18"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Jude.1.18"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ι ∷ ῶ ∷ ν ∷ []) "Jude.1.18"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.19"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Jude.1.19"
∷ word (ο ∷ ἱ ∷ []) "Jude.1.19"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ ο ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.19"
∷ word (ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ο ∷ ί ∷ []) "Jude.1.19"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Jude.1.19"
∷ word (μ ∷ ὴ ∷ []) "Jude.1.19"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.19"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Jude.1.20"
∷ word (δ ∷ έ ∷ []) "Jude.1.20"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Jude.1.20"
∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.20"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.20"
∷ word (τ ∷ ῇ ∷ []) "Jude.1.20"
∷ word (ἁ ∷ γ ∷ ι ∷ ω ∷ τ ∷ ά ∷ τ ∷ ῃ ∷ []) "Jude.1.20"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.20"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Jude.1.20"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.20"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Jude.1.20"
∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Jude.1.20"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.20"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.21"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.21"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Jude.1.21"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Jude.1.21"
∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Jude.1.21"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Jude.1.21"
∷ word (τ ∷ ὸ ∷ []) "Jude.1.21"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "Jude.1.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.21"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Jude.1.21"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.21"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.21"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Jude.1.21"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.22"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Jude.1.22"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Jude.1.22"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ᾶ ∷ τ ∷ ε ∷ []) "Jude.1.22"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.22"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Jude.1.23"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.23"
∷ word (σ ∷ ῴ ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "Jude.1.23"
∷ word (ἐ ∷ κ ∷ []) "Jude.1.23"
∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Jude.1.23"
∷ word (ἁ ∷ ρ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.23"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Jude.1.23"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.23"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ᾶ ∷ τ ∷ ε ∷ []) "Jude.1.23"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.23"
∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "Jude.1.23"
∷ word (μ ∷ ι ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Jude.1.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.23"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Jude.1.23"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Jude.1.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Jude.1.23"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Jude.1.23"
∷ word (ἐ ∷ σ ∷ π ∷ ι ∷ ∙λ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Jude.1.23"
∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ []) "Jude.1.23"
∷ word (Τ ∷ ῷ ∷ []) "Jude.1.24"
∷ word (δ ∷ ὲ ∷ []) "Jude.1.24"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Jude.1.24"
∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "Jude.1.24"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Jude.1.24"
∷ word (ἀ ∷ π ∷ τ ∷ α ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.24"
∷ word (σ ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Jude.1.24"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Jude.1.24"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Jude.1.24"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Jude.1.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.24"
∷ word (ἀ ∷ μ ∷ ώ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Jude.1.24"
∷ word (ἐ ∷ ν ∷ []) "Jude.1.24"
∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Jude.1.24"
∷ word (μ ∷ ό ∷ ν ∷ ῳ ∷ []) "Jude.1.25"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Jude.1.25"
∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ι ∷ []) "Jude.1.25"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.25"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Jude.1.25"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Jude.1.25"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Jude.1.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.25"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Jude.1.25"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Jude.1.25"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Jude.1.25"
∷ word (μ ∷ ε ∷ γ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Jude.1.25"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Jude.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.25"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Jude.1.25"
∷ word (π ∷ ρ ∷ ὸ ∷ []) "Jude.1.25"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Jude.1.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Jude.1.25"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Jude.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.25"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Jude.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Jude.1.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Jude.1.25"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Jude.1.25"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Jude.1.25"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Jude.1.25"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Jude.1.25"
∷ []
| 47.455319
| 85
| 0.340253
|
38fb6dd3934f39c9129f29a8cbea7b2b55abbdf7
| 6,608
|
agda
|
Agda
|
src/Categories/Category/Cocartesian.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | 1
|
2021-04-18T18:21:47.000Z
|
2021-04-18T18:21:47.000Z
|
src/Categories/Category/Cocartesian.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | null | null | null |
src/Categories/Category/Cocartesian.agda
|
jaykru/agda-categories
|
a4053cf700bcefdf73b857c3352f1eae29382a60
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- BinaryCoproducts -- a category with all binary coproducts
-- Cocartesian -- a category with all coproducts
-- since most of the work is dual to Categories.Category.Cartesian, so the idea
-- in this module is to make use of duality
module Categories.Category.Cocartesian {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
private
module 𝒞 = Category 𝒞
open Category 𝒞
open HomReasoning
variable
A B C D : Obj
f g h i : A ⇒ B
open import Categories.Object.Initial 𝒞
open import Categories.Object.Coproduct 𝒞
open import Categories.Object.Duality 𝒞
open import Categories.Category.Monoidal
open import Categories.Category.Monoidal.Symmetric
open import Categories.Category.Cartesian 𝒞.op
open import Categories.Morphism 𝒞
open import Categories.Morphism.Properties 𝒞
open import Categories.Morphism.Duality 𝒞
open import Categories.Morphism.Reasoning 𝒞
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.Functor.Bifunctor
record BinaryCoproducts : Set (levelOfTerm 𝒞) where
infixr 6 _+_
infixr 7 _+₁_
field
coproduct : ∀ {A B} → Coproduct A B
module coproduct {A} {B} = Coproduct (coproduct {A} {B})
_+_ : Obj → Obj → Obj
A + B = coproduct.A+B {A} {B}
open coproduct
using (i₁; i₂; [_,_]; inject₁; inject₂; []-cong₂; ∘-distribˡ-[])
renaming (unique to +-unique; η to +-η; g-η to +-g-η)
public
module Dual where
op-binaryProducts : BinaryProducts
op-binaryProducts = record { product = Coproduct⇒coProduct coproduct }
module op-binaryProducts = BinaryProducts op-binaryProducts
open Dual
+-comm : A + B ≅ B + A
+-comm = op-≅⇒≅ (op-binaryProducts.×-comm)
+-assoc : A + B + C ≅ (A + B) + C
+-assoc = op-≅⇒≅ (op-binaryProducts.×-assoc)
_+₁_ : A ⇒ B → C ⇒ D → A + C ⇒ B + D
_+₁_ = op-binaryProducts._⁂_
open op-binaryProducts
using ()
renaming ( ⟨⟩-congʳ to []-congʳ
; ⟨⟩-congˡ to []-congˡ
; assocˡ to +-assocʳ
; assocʳ to +-assocˡ
; swap to +-swap
; first to +-first
; second to +-second
; π₁∘⁂ to +₁∘i₁
; π₂∘⁂ to +₁∘i₂
; ⁂-cong₂ to +₁-cong₂
; ⁂∘⟨⟩ to []∘+₁
; ⁂∘⁂ to +₁∘+₁
; ⟨⟩∘ to ∘[]
; first↔second to +-second↔first
; swap∘⁂ to +₁∘+-swap
; swap∘swap to +-swap∘swap
)
public
-- since op-×- has type Bifunctor 𝒞.op 𝒞.op 𝒞.op,
-- need to rewrap in order to type check
-+- : Bifunctor 𝒞 𝒞 𝒞
-+- = record
{ F₀ = op-×-.F₀
; F₁ = op-×-.F₁
; identity = op-×-.identity
; homomorphism = op-×-.homomorphism
; F-resp-≈ = op-×-.F-resp-≈
}
where op-×- = op-binaryProducts.-×-
module op-×- = Functor op-×-
-+_ : Obj → Functor 𝒞 𝒞
-+_ = appʳ -+-
_+- : Obj → Functor 𝒞 𝒞
_+- = appˡ -+-
record Cocartesian : Set (levelOfTerm 𝒞) where
field
initial : Initial
coproducts : BinaryCoproducts
module initial = Initial initial
module coproducts = BinaryCoproducts coproducts
open initial
renaming (! to ¡; !-unique to ¡-unique; !-unique₂ to ¡-unique₂)
public
open coproducts hiding (module Dual) public
module Dual where
open coproducts.Dual public
op-cartesian : Cartesian
op-cartesian = record
{ terminal = ⊥⇒op⊤ initial
; products = op-binaryProducts
}
module op-cartesian = Cartesian op-cartesian
-- The op-cartesian structure induces a monoidal one.
module CocartesianMonoidal (cocartesian : Cocartesian) where
open Cocartesian cocartesian
private module op-cartesianMonoidal = CartesianMonoidal Dual.op-cartesian
⊥+A≅A : ⊥ + A ≅ A
⊥+A≅A = op-≅⇒≅ (op-cartesianMonoidal.⊤×A≅A)
A+⊥≅A : A + ⊥ ≅ A
A+⊥≅A = op-≅⇒≅ (op-cartesianMonoidal.A×⊤≅A)
open op-cartesianMonoidal
using ()
-- both are natural isomorphism
renaming (⊤×--id to ⊥+--id; -×⊤-id to -+⊥-id)
public
+-monoidal : Monoidal 𝒞
+-monoidal = record
{ ⊗ = -+-
; unit = unit
; unitorˡ = ⊥+A≅A
; unitorʳ = A+⊥≅A
; associator = ≅.sym +-assoc
; unitorˡ-commute-from = ⟺ unitorˡ-commute-to
; unitorˡ-commute-to = ⟺ unitorˡ-commute-from
; unitorʳ-commute-from = ⟺ unitorʳ-commute-to
; unitorʳ-commute-to = ⟺ unitorʳ-commute-from
; assoc-commute-from = ⟺ assoc-commute-to
; assoc-commute-to = ⟺ assoc-commute-from
-- the proof idea of triangle is that the opposite triangle is obtained for free,
-- but notice that triangle and the opposite triangle form isomorphism.
; triangle = λ {X Y} →
Iso-≈ triangle
(Iso-∘ ([ X +- ]-resp-Iso (Iso-swap (iso ⊥+A≅A)))
(iso +-assoc))
([ -+ Y ]-resp-Iso (Iso-swap (iso A+⊥≅A)))
; pentagon = λ {X Y Z W} →
Iso-≈ pentagon
(Iso-∘ ([ X +- ]-resp-Iso (iso +-assoc))
(Iso-∘ (iso +-assoc)
([ -+ W ]-resp-Iso (iso +-assoc))))
(Iso-∘ (iso +-assoc) (iso +-assoc))
}
where open op-cartesianMonoidal
open _≅_
open Monoidal +-monoidal public
module CocartesianSymmetricMonoidal (cocartesian : Cocartesian) where
open Cocartesian cocartesian
open CocartesianMonoidal cocartesian
private
module op-cartesianSymmetricMonoidal =
CartesianSymmetricMonoidal Dual.op-cartesian
+-symmetric : Symmetric +-monoidal
+-symmetric = record
{ braided = record
{ braiding = record
{ F⇒G = record
{ η = λ _ → +-swap
; commute = λ _ → ⟺ +₁∘+-swap
; sym-commute = λ _ → +₁∘+-swap
}
; F⇐G = record
{ η = λ _ → +-swap
; commute = λ _ → ⟺ +₁∘+-swap
; sym-commute = λ _ → +₁∘+-swap
}
; iso = λ _ → iso +-comm
}
; hexagon₁ = braided.hexagon₂
; hexagon₂ = braided.hexagon₁
}
; commutative = commutative
}
where open op-cartesianSymmetricMonoidal
open _≅_
open Symmetric +-symmetric public
| 30.173516
| 86
| 0.551604
|
5ed910c456e0eeb1140f0c13750b3ea31d5143b0
| 59,404
|
agda
|
Agda
|
Definition/LogicalRelation/Substitution/Introductions/Pi.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2018-06-21T08:39:01.000Z
|
2022-01-17T16:13:53.000Z
|
Definition/LogicalRelation/Substitution/Introductions/Pi.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | null | null | null |
Definition/LogicalRelation/Substitution/Introductions/Pi.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2022-01-26T14:55:51.000Z
|
2022-02-15T19:42:19.000Z
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Pi {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Weakening using (_∷_⊆_ ; _•ₜ_)
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Weakening
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Weakening
open import Definition.LogicalRelation.Substitution.Properties
open import Definition.LogicalRelation.Substitution.MaybeEmbed
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Definition.LogicalRelation.Substitution.Introductions.Universe
open import Tools.Nat
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Empty using (⊥; ⊥-elim)
GappGen : ∀ {F G Γ rF lF lG rΠ l Δ σ ρ Δ₁}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
→ Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ^ [ rΠ , ι lG ] / [Γ] ∙ [F]
→ ∀ ⊢Δ [σ] a ([ρ] : ρ ∷ Δ₁ ⊆ Δ) (⊢Δ₁ : ⊢ Δ₁)
([a] : Δ₁ ⊩⟨ l ⟩ a ∷ subst (ρ •ₛ σ) F ^ [ rF , ι lF ]
/ proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))
→ Σ (Δ₁ ⊩⟨ l ⟩ subst (consSubst (ρ •ₛ σ) a) G ^ [ rΠ , ι lG ])
(λ [Aσ] →
{σ′ : Nat → Term} →
(Σ (Δ₁ ⊩ˢ tail σ′ ∷ Γ / [Γ] / ⊢Δ₁)
(λ [tailσ] →
Δ₁ ⊩⟨ l ⟩ head σ′ ∷ subst (tail σ′) F ^ [ rF , ι lF ] / proj₁ ([F] ⊢Δ₁ [tailσ]))) →
Δ₁ ⊩ˢ consSubst (ρ •ₛ σ) a ≡ σ′ ∷ Γ ∙ F ^ [ rF , ι lF ] /
[Γ] ∙ [F] / ⊢Δ₁ /
consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]) [F]
[a] →
Δ₁ ⊩⟨ l ⟩ subst (consSubst (ρ •ₛ σ) a) G ≡
subst σ′ G ^ [ rΠ , ι lG ] / [Aσ])
GappGen {F} {G} {Γ} {rF} {lF} {lG} {rΠ} {l} {Δ} {σ} {ρ} {Δ₁} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a] =
[G] {σ = consSubst (ρ •ₛ σ) a} ⊢Δ₁
(consSubstS {t = a} {A = F} [Γ] ⊢Δ₁
(wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
[F] [a])
Gapp : ∀ {F G Γ rF lF lG rΠ l Δ σ ρ Δ₁}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
→ Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ^ [ rΠ , ι lG ] / [Γ] ∙ [F]
→ ∀ ⊢Δ [σ] a ([ρ] : ρ ∷ Δ₁ ⊆ Δ) (⊢Δ₁ : ⊢ Δ₁)
([a] : Δ₁ ⊩⟨ l ⟩ a ∷ subst (ρ •ₛ σ) F ^ [ rF , ι lF ]
/ proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))
→ Δ₁ ⊩⟨ l ⟩ U.wk (lift ρ) (subst (liftSubst σ) G) [ a ] ^ [ rΠ , ι lG ]
Gapp {F} {G} {Γ} {rF} {lF} {lG} {rΠ} {l} {Δ} {σ} {ρ} {Δ₁} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a] =
irrelevance′ (PE.sym (singleSubstWkComp a σ G)) (proj₁ (GappGen {F} {G} {Γ} {rF} {lF} {lG} {rΠ} {l} {Δ} {σ} {ρ} {Δ₁} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]))
-- Validity of Π.
Πᵛ : ∀ {F G Γ rF lF lG rΠ lΠ l}
(lF≤ : lF ≤ lΠ)
(lG≤ : lG ≤ lΠ)
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
→ Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ^ [ rΠ , ι lG ] / [Γ] ∙ [F]
→ Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ]
Πᵛ {F} {G} {Γ} {rF} {lF} {lG} {rΠ} {lΠ} {l} lF≤ lG≤ [Γ] [F] [G] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let [F]σ {σ′} [σ′] = [F] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([F]σ [σ])
⊢F {σ′} [σ′] = escape (proj₁ ([F]σ {σ′} [σ′]))
⊢F≡F = escapeEq [σF] (reflEq [σF])
[G]σ {σ′} [σ′] = [G] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F [σ′])
(liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′])
⊢G {σ′} [σ′] = escape (proj₁ ([G]σ {σ′} [σ′]))
⊢G≡G = escapeEq (proj₁ ([G]σ [σ])) (reflEq (proj₁ ([G]σ [σ])))
⊢ΠF▹G = Πⱼ lF≤ ▹ lG≤ ▹ un-univ (⊢F [σ]) ▹ un-univ (⊢G [σ])
in Πᵣ′ rF lF lG lF≤ lG≤ (subst σ F) (subst (liftSubst σ) G)
(idRed:*: (univ ⊢ΠF▹G)) (⊢F [σ]) (⊢G [σ]) (≅-univ (≅ₜ-Π-cong lF≤ lG≤ (⊢F [σ]) (≅-un-univ ⊢F≡F) (≅-un-univ ⊢G≡G)))
(λ ρ ⊢Δ₁ → wk ρ ⊢Δ₁ [σF])
(λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] →
let [a]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))) [a]
in Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
(λ {ρ} {Δ₁} {a} {b} [ρ] ⊢Δ₁ [a] [b] [a≡b] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[a]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[b]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [b]
[a≡b]′ = irrelevanceEqTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a≡b]
in irrelevanceEq″
(PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp b σ G)) PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′))
(Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
(proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
([ρσ] , [b]′)
(reflSubst [Γ] ⊢Δ₁ [ρσ] , [a≡b]′)))
, (λ {σ′} [σ′] [σ≡σ′] →
let var0 = var (⊢Δ ∙ ⊢F [σ])
(PE.subst (λ x → 0 ∷ x ^ [ rF , ι lF ] ∈ (Δ ∙ subst σ F ^ [ rF , ι lF ]))
(wk-subst F) here)
[wk1σ] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ (⊢F [σ]) [σ′]
[wk1σ≡wk1σ′] = wk1SubstSEq [Γ] ⊢Δ (⊢F [σ]) [σ] [σ≡σ′]
[F][wk1σ] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ])
[F][wk1σ′] = proj₁ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ′])
var0′ = conv var0
(≅-eq (escapeEq [F][wk1σ]
(proj₂ ([F] (⊢Δ ∙ ⊢F [σ]) [wk1σ])
[wk1σ′] [wk1σ≡wk1σ′])))
in Π₌ _ _ (id (univ (Πⱼ lF≤ ▹ lG≤ ▹ un-univ (⊢F [σ′]) ▹ un-univ (⊢G [σ′]))))
(≅-univ (≅ₜ-Π-cong lF≤ lG≤ (⊢F [σ])
(≅-un-univ (escapeEq (proj₁ ([F] ⊢Δ [σ]))
(proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′])))
(≅-un-univ (escapeEq (proj₁ ([G]σ [σ])) (proj₂ ([G]σ [σ])
([wk1σ′] , neuTerm [F][wk1σ′] (var 0) var0′ (~-var var0′))
([wk1σ≡wk1σ′] , neuEqTerm [F][wk1σ]
(var 0) (var 0) var0 var0 (~-var var0)))))))
(λ ρ ⊢Δ₁ → wkEq ρ ⊢Δ₁ [σF] (proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]))
(λ {ρ} {Δ₁} {a} [ρ] ⊢Δ₁ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′]
[a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl (wk [ρ] ⊢Δ₁ [σF])
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[a]″ = convTerm₁ (proj₁ ([F] ⊢Δ₁ [ρσ]))
(proj₁ ([F] ⊢Δ₁ [ρσ′]))
(proj₂ ([F] ⊢Δ₁ [ρσ]) [ρσ′]
(wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]))
[a]′
[ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₁
(wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
(wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′])
[F] [a]′
in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp a σ′ G)) PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′))
(Gapp {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
(proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F] [G] ⊢Δ [σ] a [ρ] ⊢Δ₁ [a]′)
(wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′] , [a]″)
[ρσa≡ρσ′a])))
-- Validity of Π-congurence.
Π-congᵛ : ∀ {F G H E Γ rF lF lG rΠ lΠ l}
(lF≤ : lF ≤ lΠ)
(lG≤ : lG ≤ lΠ)
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([G] : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ^ [ rΠ , ι lG ] / [Γ] ∙ [F])
([H] : Γ ⊩ᵛ⟨ l ⟩ H ^ [ rF , ι lF ] / [Γ])
([E] : Γ ∙ H ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ E ^ [ rΠ , ι lG ] / [Γ] ∙ [H])
([F≡H] : Γ ⊩ᵛ⟨ l ⟩ F ≡ H ^ [ rF , ι lF ] / [Γ] / [F])
([G≡E] : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ≡ E ^ [ rΠ , ι lG ] / [Γ] ∙ [F] / [G])
→ Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ Π H ^ rF ° lF ▹ E ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ] / Πᵛ {F} {G} lF≤ lG≤ [Γ] [F] [G]
Π-congᵛ {F} {G} {H} {E} lF≤ lG≤ [Γ] [F] [G] [H] [E] [F≡H] [G≡E] {σ = σ} ⊢Δ [σ] =
let [ΠFG] = Πᵛ {F} {G} lF≤ lG≤ [Γ] [F] [G]
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
_ , Πᵣ rF′ lF' lG' lF≤ lG≤ F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
[σF] = proj₁ ([F] ⊢Δ [σ])
⊢σF = escape [σF]
[σG] = proj₁ ([G] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
⊢σH = escape (proj₁ ([H] ⊢Δ [σ]))
⊢σE = escape (proj₁ ([E] (⊢Δ ∙ ⊢σH) (liftSubstS {F = H} [Γ] ⊢Δ [H] [σ])))
⊢σF≡σH = escapeEq [σF] ([F≡H] ⊢Δ [σ])
⊢σG≡σE = escapeEq [σG] ([G≡E] (⊢Δ ∙ ⊢σF) (liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]))
in Π₌ (subst σ H)
(subst (liftSubst σ) E)
(id (univ (Πⱼ lF≤ ▹ lG≤ ▹ (un-univ ⊢σH) ▹ (un-univ ⊢σE))))
(≅-univ (≅ₜ-Π-cong lF≤ lG≤ ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE)))
(λ ρ ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ ρ [σ]
in irrelevanceEq″ (PE.sym (wk-subst F))
(PE.sym (wk-subst H)) PE.refl PE.refl
(proj₁ ([F] ⊢Δ₁ [ρσ]))
([F]′ ρ ⊢Δ₁)
([F≡H] ⊢Δ₁ [ρσ]))
(λ {ρ} {Δ} {a} [ρ] ⊢Δ₁ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[a]′ = irrelevanceTerm′ (wk-subst F) PE.refl PE.refl
([F]′ [ρ] ⊢Δ₁)
(proj₁ ([F] ⊢Δ₁ [ρσ])) [a]
[aρσ] = consSubstS {t = a} {A = F} [Γ] ⊢Δ₁ [ρσ] [F] [a]′
in irrelevanceEq″ (PE.sym (singleSubstWkComp a σ G))
(PE.sym (singleSubstWkComp a σ E)) PE.refl PE.refl
(proj₁ ([G] ⊢Δ₁ [aρσ]))
([G]′ [ρ] ⊢Δ₁ [a])
([G≡E] ⊢Δ₁ [aρσ])
)
-- Validity of Π as a term.
Πᵗᵛ₁ : ∀ {F G rF lF lG rΠ lΠ Γ} (lF≤ : lF ≤ lΠ) (lG≤ : lG ≤ lΠ) ([Γ] : ⊩ᵛ Γ)→
let l = ∞
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
[UΠ] = maybeEmbᵛ {A = Univ rΠ _} [Γ] (Uᵛ (proj₂ (levelBounded lΠ)) [Γ])
in
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([UG] : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [F])
→ Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ rF lF ^ [ ! , next lF ] / [Γ] / [UF]
→ Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ∷ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ})
→ ∀ {Δ σ} (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ)
→ Δ ⊩⟨ l ⟩ subst σ (Π F ^ rF ° lF ▹ G ° lG ° lΠ) ∷ subst σ (Univ rΠ lΠ) ^ [ ! , next lΠ ] / proj₁ ([UΠ] ⊢Δ [σ])
Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ¹} {Γ} lF≤ lG≤ [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let
l = ∞
lΠ = ¹
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
[UΠ] = maybeEmbᵛ {A = Univ rΠ _} [Γ] (Uᵛ (proj₂ (levelBounded lΠ)) [Γ])
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])))
[UG]σ = proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])
[Gₜ]σ = proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])
⊢Gₜ = escapeTerm [UG]σ [Gₜ]σ
⊢G≡Gₜ = escapeTermEq [UG]σ (reflEqTerm [UG]σ [Gₜ]σ)
[F]₀ = univᵛ {F} [Γ] lF≤ [UF] [Fₜ]
[UG]′ = S.irrelevance {A = Univ rΠ lG} {r = [ ! , next lG ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ})
[Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ rΠ lG} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {Δ} {σ} → [UG] {Δ} {σ})
(λ {Δ} {σ} → [UG]′ {Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) lG≤
(λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ})
[Guniv] = univᵛ {A = G} (_∙_ {A = F} [Γ] [F]₀) lG≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ]′
in Uₜ (Π subst σ F ^ rF ° lF ▹ subst (liftSubst σ) G ° lG ° lΠ) (idRedTerm:*: (Πⱼ lF≤ ▹ lG≤ ▹ ⊢Fₜ ▹ ⊢Gₜ)) Πₙ (≅ₜ-Π-cong lF≤ lG≤ ⊢F ⊢F≡Fₜ ⊢G≡Gₜ)
(λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let
⊢Fₜ' = Definition.Typed.Weakening.wkTerm [ρ] ⊢Δ₁ ⊢Fₜ
⊢Gₜ' = Definition.Typed.Weakening.wkTerm
(Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') ⊢Gₜ
[wkFₜ] = wkTerm [ρ] ⊢Δ₁ univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
[wkGₜ] = wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))
[⊢weakF≡Fₜ] = escapeTermEq (wk [ρ] ⊢Δ₁ univΔ)
(reflEqTerm (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ])
[⊢weakG≡Gₜ] = escapeTermEq (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])))
(reflEqTerm (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])))
(wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))))
[wkFₜ]Type : ∀ {ρ₁ Δ₂} [ρ₁] ⊢Δ₂ → Δ₂ ⊩⟨ ι ¹ ⟩ U.wk ρ₁ (U.wk ρ (subst σ F)) ^ [ rF , ι lF ]
[wkFₜ]Type = λ {ρ₁} {Δ₂} [ρ₁] ⊢Δ₂ → let [wkFₜ]Type = univEq (wk [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ))
(wkTerm [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ])
in maybeEmb′ lF≤ [wkFₜ]Type
in Πᵣ′ rF lF lG lF≤ lG≤ (U.wk ρ (subst σ F)) (U.wk (lift ρ) (subst (liftSubst σ) G))
(idRed:*: (univ (Πⱼ lF≤ ▹ lG≤ ▹ ⊢Fₜ' ▹ ⊢Gₜ')))
(univ ⊢Fₜ') (univ ⊢Gₜ') (≅-univ (≅ₜ-Π-cong lF≤ lG≤ (univ ⊢Fₜ') [⊢weakF≡Fₜ] [⊢weakG≡Gₜ]))
[wkFₜ]Type
(λ {ρ₁} {Δ₂} {a} [ρ₁] ⊢Δ₂ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ]
[a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a]
[Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′
in PE.subst (λ X → _ ⊩⟨ ι ¹ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp])
(λ {ρ₁} {Δ₂} {a} {b} [ρ₁] ⊢Δ₂ [a] [b] [a≡b] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ]
[a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a]
[b]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [b]
[a≡b]′ = irrelevanceEqTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a≡b]
[Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′
in irrelevanceEq″ (PE.trans (PE.sym (singleSubstWkComp a σ G)) (wk-comp-subst {a} ρ₁ ρ (subst (liftSubst σ) G)))
(PE.trans (PE.sym (singleSubstWkComp b σ G)) (wk-comp-subst {b} ρ₁ ρ (subst (liftSubst σ) G)))
PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ ))
(PE.subst (λ X → _ ⊩⟨ ι ¹ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp])
(proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ )
([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₂ [ρσ] , [a≡b]′))))
Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ⁰} {Γ} lF≤ lG≤ [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let
l = ∞
lΠ = ⁰
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
[UΠ] = maybeEmbᵛ {A = Univ rΠ _} [Γ] (Uᵛ (proj₂ (levelBounded lΠ)) [Γ])
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])))
[UG]σ = proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])
[Gₜ]σ = proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ])
⊢Gₜ = escapeTerm [UG]σ [Gₜ]σ
⊢G≡Gₜ = escapeTermEq [UG]σ (reflEqTerm [UG]σ [Gₜ]σ)
[F]₀ = univᵛ {F} [Γ] lF≤ [UF] [Fₜ]
[UG]′ = S.irrelevance {A = Univ rΠ lG} {r = [ ! , next lG ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ})
[Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ rΠ lG} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {Δ} {σ} → [UG] {Δ} {σ})
(λ {Δ} {σ} → [UG]′ {Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) lG≤
(λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ})
[Guniv] = univᵛ {A = G} (_∙_ {A = F} [Γ] [F]₀) lG≤ (λ {Δ} {σ} → [UG]′ {Δ} {σ}) [Gₜ]′
in Uₜ (Π subst σ F ^ rF ° lF ▹ subst (liftSubst σ) G ° lG ° lΠ) (idRedTerm:*: (Πⱼ lF≤ ▹ lG≤ ▹ ⊢Fₜ ▹ ⊢Gₜ)) Πₙ (≅ₜ-Π-cong lF≤ lG≤ ⊢F ⊢F≡Fₜ ⊢G≡Gₜ)
(λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let
⊢Fₜ' = Definition.Typed.Weakening.wkTerm [ρ] ⊢Δ₁ ⊢Fₜ
⊢Gₜ' = Definition.Typed.Weakening.wkTerm
(Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') ⊢Gₜ
[wkFₜ] = wkTerm [ρ] ⊢Δ₁ univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
[wkGₜ] = wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] {σ = liftSubst σ} (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))
[⊢weakF≡Fₜ] = escapeTermEq (wk [ρ] ⊢Δ₁ univΔ)
(reflEqTerm (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ])
[⊢weakG≡Gₜ] = escapeTermEq (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])))
(reflEqTerm (wk (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])))
(wkTerm (Definition.Typed.Weakening.lift [ρ]) (⊢Δ₁ ∙ univ ⊢Fₜ') (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ])) (proj₁ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]))))
[wkFₜ]Type : ∀ {ρ₁ Δ₂} [ρ₁] ⊢Δ₂ → Δ₂ ⊩⟨ ι ⁰ ⟩ U.wk ρ₁ (U.wk ρ (subst σ F)) ^ [ rF , ι lF ]
[wkFₜ]Type = λ {ρ₁} {Δ₂} [ρ₁] ⊢Δ₂ → let [wkFₜ]Type = univEq (wk [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ))
(wkTerm [ρ₁] ⊢Δ₂ (wk [ρ] ⊢Δ₁ univΔ) [wkFₜ])
in maybeEmb′ lF≤ [wkFₜ]Type
in Πᵣ′ rF lF lG lF≤ lG≤ (U.wk ρ (subst σ F)) (U.wk (lift ρ) (subst (liftSubst σ) G))
(idRed:*: (univ (Πⱼ lF≤ ▹ lG≤ ▹ ⊢Fₜ' ▹ ⊢Gₜ')))
(univ ⊢Fₜ') (univ ⊢Gₜ') (≅-univ (≅ₜ-Π-cong lF≤ lG≤ (univ ⊢Fₜ') [⊢weakF≡Fₜ] [⊢weakG≡Gₜ]))
[wkFₜ]Type
(λ {ρ₁} {Δ₂} {a} [ρ₁] ⊢Δ₂ [a] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ]
[a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a]
[Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′
in PE.subst (λ X → _ ⊩⟨ ι ⁰ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp])
(λ {ρ₁} {Δ₂} {a} {b} [ρ₁] ⊢Δ₂ [a] [b] [a≡b] →
let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₂ ([ρ₁] •ₜ [ρ]) [σ]
[a]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a]
[b]′ = irrelevanceTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [b]
[a≡b]′ = irrelevanceEqTerm′ (wk-subst2 {ρ} {ρ₁} {σ} F) PE.refl PE.refl ([wkFₜ]Type [ρ₁] ⊢Δ₂)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ])) [a≡b]
[Gapp] = Gapp {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′
in irrelevanceEq″ (PE.trans (PE.sym (singleSubstWkComp a σ G)) (wk-comp-subst {a} ρ₁ ρ (subst (liftSubst σ) G)))
(PE.trans (PE.sym (singleSubstWkComp b σ G)) (wk-comp-subst {b} ρ₁ ρ (subst (liftSubst σ) G)))
PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ ))
(PE.subst (λ X → _ ⊩⟨ ι ⁰ ⟩ X ^ _) (wk-comp-subst _ _ (subst (liftSubst σ) G)) [Gapp])
(proj₂ (GappGen {F = F} {G = G} {σ = σ} [Γ] [F]₀ [Guniv] ⊢Δ [σ] a ([ρ₁] •ₜ [ρ]) ⊢Δ₂ [a]′ )
([ρσ] , [b]′) (reflSubst [Γ] ⊢Δ₂ [ρσ] , [a≡b]′))))
Πᵗᵛ : ∀ {F G rF lF lG rΠ lΠ Γ} (lF≤ : lF ≤ lΠ) (lG≤ : lG ≤ lΠ) ([Γ] : ⊩ᵛ Γ)→
let l = ∞
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
[UΠ] = maybeEmbᵛ {A = Univ rΠ _} [Γ] (Uᵛ (proj₂ (levelBounded lΠ)) [Γ])
in
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([UG] : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [F])
→ Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ rF lF ^ [ ! , next lF ] / [Γ] / [UF]
→ Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ∷ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ})
→ Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ∷ Univ rΠ lΠ ^ [ ! , next lΠ ] / [Γ] / [UΠ]
Πᵗᵛ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ¹} {Γ} lF≤ lG≤ [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let l = ∞
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
in Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {¹} {Γ} lF≤ lG≤ [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ]
, (λ {σ′} [σ′] [σ≡σ′] →
let ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])))
[liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′]
[wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′]
var0 = conv (var (⊢Δ ∙ ⊢F)
(PE.subst (λ x → 0 ∷ x ^ [ rF , ι lF ] ∈ (Δ ∙ subst σ F ^ [ rF , ι lF ]))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ]))
(proj₂ ([F] (⊢Δ ∙ ⊢F) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ′])) (var 0)
var0 (~-var var0)
⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′]))
univΔ = proj₁ ([UF] ⊢Δ [σ])
univΔ′ = proj₁ ([UF] ⊢Δ [σ′])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ′ = escapeTerm univΔ′ (proj₁ ([Fₜ] ⊢Δ [σ′]))
⊢Gₜ′ = escapeTerm (proj₁ ([UG] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F′) [liftσ′]))
(proj₁ ([Gₜ] (⊢Δ ∙ ⊢F′) [liftσ′]))
⊢F≡F′ = escapeTermEq univΔ (proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′])
⊢G≡G′ = escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))
(proj₂ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′]))
[F]₀ = univᵛ {F} [Γ] lF≤ [UF] [Fₜ]
[UG]′ = S.irrelevance {A = Univ rΠ lG} {r = [ ! , next lG ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ})
[Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ rΠ lG} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {Δ} {σ} → [UG] {Δ} {σ})
(λ {Δ} {σ} → [UG]′ {Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) lG≤
(λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ})
[ΠFG-cong] = Π-congᵛ {F} {G} {F} {G} lF≤ lG≤ [Γ] [F]₀ [G]₀ [F]₀ [G]₀
(λ ⊢Δ₁ [σ]₁ → proj₂ ([F]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst [Γ] ⊢Δ₁ [σ]₁))
(λ {Δ₁} {σ₁} ⊢Δ₁ [σ]₁ → proj₂ ([G]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst {σ₁} ((_∙_ {A = F} [Γ] [F]₀)) ⊢Δ₁ [σ]₁))
[ΠFG]ᵗ = Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ¹} {Γ} lF≤ lG≤ [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ]
[ΠFG]ᵗ′ = Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ¹} {Γ} lF≤ lG≤ [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ′} ⊢Δ [σ′]
[ΠFG] = Πᵛ {F} {G} {Γ} {rF} {lF} {lG} {rΠ} {lΠ = ¹} lF≤ lG≤ [Γ] [F]₀ [G]₀
in Uₜ₌ [ΠFG]ᵗ
[ΠFG]ᵗ′
(≅ₜ-Π-cong lF≤ lG≤ ⊢F ⊢F≡F′ ⊢G≡G′)
(λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [ΠFG-cong]′ = [ΠFG-cong] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
X = irrelevanceEq″ (PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ¹)))
(PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ¹)))
PE.refl PE.refl
(proj₁ ([ΠFG] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))
(LogRel._⊩¹U_∷_^_/_.[t] [ΠFG]ᵗ [ρ] ⊢Δ₁)
[ΠFG-cong]′
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
_ , Πᵣ rF′ lF' lG' lF≤' lG≤' F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
[ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[σF]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ])
⊢σF₀ = escape [σF]₀
[σG]₀ = proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σF₀) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ]))
[ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′]
[σF′]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ′])
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₁ [ρσ′]))
⊢σE = escape (proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σH) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ′])))
univΔ₁ = proj₁ ([UF] ⊢Δ₁ [ρσ])
[ρσ≡ρσ′] = wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]
[σF≡σH] = univEqEq univΔ₁ [σF]₀ (proj₂ ([Fₜ] ⊢Δ₁ [ρσ]) [ρσ′] [ρσ≡ρσ′])
⊢σF≡σH = escapeEq [σF]₀ [σF≡σH]
[σF] = proj₁ ([F] ⊢Δ₁ [ρσ])
⊢σF = escape [σF]
liftσ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ]
[wk1σ] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ′]
var0 = conv (var (⊢Δ₁ ∙ ⊢σF)
(PE.subst (λ x → 0 ∷ x ^ [ rF , ι lF ] ∈ (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ rF , ι lF ]))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]))
(proj₂ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ₁ ⊢σF [ρσ] [ρσ≡ρσ′]))))
[liftσ′]′ : (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ rF , ι lF ]) ⊩ˢ liftSubst (ρ •ₛ σ′) ∷
Γ ∙ F ^ [ rF , ι lF ] / [Γ] ∙ [F] /
(⊢Δ₁ ∙ escape (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ′])) (var 0)
var0 (~-var var0)
liftσ′ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ′]
univΔ₁G = proj₁ ([UG] (⊢Δ₁ ∙ ⊢σF) liftσ)
[σG≡σE] = univEqEq univΔ₁G [σG]₀ (proj₂ ([Gₜ] {σ = liftSubst (ρ •ₛ σ)} (⊢Δ₁ ∙ ⊢σF) liftσ) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ₁ [F] [ρσ] [ρσ≡ρσ′]))
⊢σG≡σE = escapeEq [σG]₀ [σG≡σE]
X = Π₌ (subst (ρ •ₛ σ′) F)
(subst (liftSubst (ρ •ₛ σ′)) G)
(id (univ (Πⱼ lF≤ ▹ lG≤ ▹ (un-univ ⊢σH) ▹ (un-univ ⊢σE))))
((≅-univ (≅ₜ-Π-cong lF≤ lG≤ ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE))))
(λ {ρ₂} {Δ₂} [ρ₂] ⊢Δ₂ →
let
[ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]
[ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])
[σΠFG] = proj₁ ([ΠFG] ⊢Δ₁ [ρσ])
_ , Πᵣ rF′ lF' lG' lF≤' lG≤' F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
⊢ρσ₂F = escape [ρσ₂F]₀
[ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′]
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂])
[σF≡σH] = univEqEq univΔ₂ [ρσ₂F]₀ (proj₂ ([Fₜ] ⊢Δ₂ [ρσ₂]) [ρσ₂′]
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]))
in irrelevanceEq″ (PE.sym (wk-subst F))
(PE.sym (wk-subst F)) PE.refl PE.refl
[ρσ₂F]₀
([F]′ [ρ₂] ⊢Δ₂)
[σF≡σH])
(λ {ρ₂} {Δ₂} {a} [ρ₂] ⊢Δ₂ [a] →
let [ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]
[ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])
[σΠFG] = proj₁ ([ΠFG] ⊢Δ₁ [ρσ])
_ , Πᵣ rF′ lF' lG' lF≤' lG≤' F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
⊢ρσ₂F = escape [ρσ₂F]₀
[ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′]
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂])
[a]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ₂] ⊢Δ₂ [σF]₀)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])) [a]
[a]″ = convTerm₁ (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂]))
(proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
(proj₂ ([F]₀ ⊢Δ₂ [ρσ₂]) [ρσ₂′]
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]))
[a]′
[ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₂
(wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ])
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′])
[F]₀ [a]′
in irrelevanceEq″
(PE.sym (singleSubstWkComp a (ρ •ₛ σ) G))
(PE.sym (singleSubstWkComp a (ρ •ₛ σ′) G)) PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′))
(Gapp {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)
(proj₂ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)
([ρσ₂′] , [a]″)
[ρσa≡ρσ′a] ))
in irrelevanceEq″ (PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ¹)))
(PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ¹)))
PE.refl PE.refl
(proj₁ ([ΠFG] ⊢Δ₁ [ρσ]))
(LogRel._⊩¹U_∷_^_/_.[t] [ΠFG]ᵗ [ρ] ⊢Δ₁)
X))
Πᵗᵛ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ⁰} {Γ} lFΠ< lG≤ [Γ] [F] [UG] [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let l = ∞
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
in Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {⁰} {Γ} lFΠ< lG≤ [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ]
, (λ {σ′} [σ′] [σ≡σ′] →
let ⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ = escapeTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ]))
⊢F≡Fₜ = escapeTermEq univΔ (reflEqTerm univΔ (proj₁ ([Fₜ] ⊢Δ [σ])))
[liftσ′] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ′]
[wk1σ] = wk1SubstS [Γ] ⊢Δ ⊢F [σ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ ⊢F [σ′]
var0 = conv (var (⊢Δ ∙ ⊢F)
(PE.subst (λ x → 0 ∷ x ^ [ rF , ι lF ] ∈ (Δ ∙ subst σ F ^ [ rF , ι lF ]))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ]))
(proj₂ ([F] (⊢Δ ∙ ⊢F) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ ⊢F [σ] [σ≡σ′]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ ∙ ⊢F) [wk1σ′])) (var 0)
var0 (~-var var0)
⊢F′ = escape (proj₁ ([F] ⊢Δ [σ′]))
univΔ = proj₁ ([UF] ⊢Δ [σ])
univΔ′ = proj₁ ([UF] ⊢Δ [σ′])
[Fₜ]σ {σ′} [σ′] = [Fₜ] {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
⊢Fₜ′ = escapeTerm univΔ′ (proj₁ ([Fₜ] ⊢Δ [σ′]))
⊢Gₜ′ = escapeTerm (proj₁ ([UG] {σ = liftSubst σ′} (⊢Δ ∙ ⊢F′) [liftσ′]))
(proj₁ ([Gₜ] (⊢Δ ∙ ⊢F′) [liftσ′]))
⊢F≡F′ = escapeTermEq univΔ (proj₂ ([Fₜ] ⊢Δ [σ]) [σ′] [σ≡σ′])
⊢G≡G′ = escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))
(proj₂ ([Gₜ] (⊢Δ ∙ ⊢F) [liftσ]) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ [F] [σ] [σ≡σ′]))
[F]₀ = univᵛ {F} [Γ] lFΠ< [UF] [Fₜ]
[UG]′ = S.irrelevance {A = Univ rΠ lG} {r = [ ! , next lG ]} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀) (λ {Δ} {σ} → [UG] {Δ} {σ})
[Gₜ]′ = S.irrelevanceTerm {l′ = ∞} {A = Univ rΠ lG} {t = G}
(_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F]₀)
(λ {Δ} {σ} → [UG] {Δ} {σ})
(λ {Δ} {σ} → [UG]′ {Δ} {σ})
[Gₜ]
[G]₀ = univᵛ {G} (_∙_ {A = F} [Γ] [F]₀) lG≤
(λ {Δ} {σ} → [UG]′ {Δ} {σ}) (λ {Δ} {σ} → [Gₜ]′ {Δ} {σ})
[ΠFG-cong] = Π-congᵛ {F} {G} {F} {G} lFΠ< lG≤ [Γ] [F]₀ [G]₀ [F]₀ [G]₀
(λ ⊢Δ₁ [σ]₁ → proj₂ ([F]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst [Γ] ⊢Δ₁ [σ]₁))
(λ {Δ₁} {σ₁} ⊢Δ₁ [σ]₁ → proj₂ ([G]₀ ⊢Δ₁ [σ]₁) [σ]₁ (reflSubst {σ₁} ((_∙_ {A = F} [Γ] [F]₀)) ⊢Δ₁ [σ]₁))
[ΠFG]ᵗ = Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ⁰} {Γ} lFΠ< lG≤ [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ} ⊢Δ [σ]
[ΠFG]ᵗ′ = Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ⁰} {Γ} lFΠ< lG≤ [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [Fₜ] [Gₜ] {Δ = Δ} {σ = σ′} ⊢Δ [σ′]
[ΠFG] = Πᵛ {F} {G} {Γ} {rF} {lF} {lG} {rΠ} {lΠ = ⁰} lFΠ< lG≤ [Γ] [F]₀ [G]₀
in Uₜ₌ [ΠFG]ᵗ
[ΠFG]ᵗ′
(≅ₜ-Π-cong lFΠ< lG≤ ⊢F ⊢F≡F′ ⊢G≡G′)
(λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [ΠFG-cong]′ = [ΠFG-cong] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])
X = irrelevanceEq″ (PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ⁰)))
(PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ⁰)))
PE.refl PE.refl
(proj₁ ([ΠFG] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ])))
(LogRel._⊩¹U_∷_^_/_.[t] [ΠFG]ᵗ [ρ] ⊢Δ₁)
[ΠFG-cong]′
[σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ])
_ , Πᵣ rF′ lF' lG' lF≤' lG≤' F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
[ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
[σF]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ])
⊢σF₀ = escape [σF]₀
[σG]₀ = proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σF₀) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ]))
[ρσ′] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ′]
[σF′]₀ = proj₁ ([F]₀ ⊢Δ₁ [ρσ′])
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₁ [ρσ′]))
⊢σE = escape (proj₁ ([G]₀ (⊢Δ₁ ∙ ⊢σH) (liftSubstS {F = F} [Γ] ⊢Δ₁ [F]₀ [ρσ′])))
univΔ₁ = proj₁ ([UF] ⊢Δ₁ [ρσ])
[ρσ≡ρσ′] = wkSubstSEq [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ] [σ≡σ′]
[σF≡σH] = univEqEq univΔ₁ [σF]₀ (proj₂ ([Fₜ] ⊢Δ₁ [ρσ]) [ρσ′] [ρσ≡ρσ′])
⊢σF≡σH = escapeEq [σF]₀ [σF≡σH]
[σF] = proj₁ ([F] ⊢Δ₁ [ρσ])
⊢σF = escape [σF]
liftσ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ]
[wk1σ] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ]
[wk1σ′] = wk1SubstS [Γ] ⊢Δ₁ ⊢σF [ρσ′]
var0 = conv (var (⊢Δ₁ ∙ ⊢σF)
(PE.subst (λ x → 0 ∷ x ^ [ rF , ι lF ] ∈ (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ rF , ι lF ]))
(wk-subst F) here))
(≅-eq (escapeEq (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]))
(proj₂ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ]) [wk1σ′]
(wk1SubstSEq [Γ] ⊢Δ₁ ⊢σF [ρσ] [ρσ≡ρσ′]))))
[liftσ′]′ : (Δ₁ ∙ subst (ρ •ₛ σ) F ^ [ rF , ι lF ]) ⊩ˢ liftSubst (ρ •ₛ σ′) ∷
Γ ∙ F ^ [ rF , ι lF ] / [Γ] ∙ [F] /
(⊢Δ₁ ∙ escape (proj₁ ([F] ⊢Δ₁ (wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]))))
[liftσ′]′ = [wk1σ′]
, neuTerm (proj₁ ([F] (⊢Δ₁ ∙ ⊢σF) [wk1σ′])) (var 0)
var0 (~-var var0)
liftσ′ = liftSubstS {F = F} [Γ] ⊢Δ₁ [F] [ρσ′]
univΔ₁G = proj₁ ([UG] (⊢Δ₁ ∙ ⊢σF) liftσ)
[σG≡σE] = univEqEq univΔ₁G [σG]₀ (proj₂ ([Gₜ] {σ = liftSubst (ρ •ₛ σ)} (⊢Δ₁ ∙ ⊢σF) liftσ) [liftσ′]′
(liftSubstSEq {F = F} [Γ] ⊢Δ₁ [F] [ρσ] [ρσ≡ρσ′]))
⊢σG≡σE = escapeEq [σG]₀ [σG≡σE]
X = Π₌ (subst (ρ •ₛ σ′) F)
(subst (liftSubst (ρ •ₛ σ′)) G)
(id (univ (Πⱼ lFΠ< ▹ lG≤ ▹ (un-univ ⊢σH) ▹ (un-univ ⊢σE))))
((≅-univ (≅ₜ-Π-cong lFΠ< lG≤ ⊢σF (≅-un-univ ⊢σF≡σH) (≅-un-univ ⊢σG≡σE))))
(λ {ρ₂} {Δ₂} [ρ₂] ⊢Δ₂ →
let
[ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]
[ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])
[σΠFG] = proj₁ ([ΠFG] ⊢Δ₁ [ρσ])
_ , Πᵣ rF′ lF' lG' lF≤' lG≤' F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
⊢ρσ₂F = escape [ρσ₂F]₀
[ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′]
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂])
[σF≡σH] = univEqEq univΔ₂ [ρσ₂F]₀ (proj₂ ([Fₜ] ⊢Δ₂ [ρσ₂]) [ρσ₂′]
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]))
in irrelevanceEq″ (PE.sym (wk-subst F))
(PE.sym (wk-subst F)) PE.refl PE.refl
[ρσ₂F]₀
([F]′ [ρ₂] ⊢Δ₂)
[σF≡σH])
(λ {ρ₂} {Δ₂} {a} [ρ₂] ⊢Δ₂ [a] →
let [ρσ₂] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ]
[ρσ₂F]₀ = proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])
[σΠFG] = proj₁ ([ΠFG] ⊢Δ₁ [ρσ])
_ , Πᵣ rF′ lF' lG' lF≤' lG≤' F′ G′ D′ ⊢F′ ⊢G′ A≡A′ [F]′ [G]′ G-ext′ = extractMaybeEmb (Π-elim [σΠFG])
⊢ρσ₂F = escape [ρσ₂F]₀
[ρσ₂′] = wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ′]
⊢σH = escape (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
univΔ₂ = proj₁ ([UF] ⊢Δ₂ [ρσ₂])
[a]′ = irrelevanceTerm′
(wk-subst F) PE.refl PE.refl (wk [ρ₂] ⊢Δ₂ [σF]₀)
(proj₁ ([F]₀ ⊢Δ₂ [ρσ₂])) [a]
[a]″ = convTerm₁ (proj₁ ([F]₀ ⊢Δ₂ [ρσ₂]))
(proj₁ ([F]₀ ⊢Δ₂ [ρσ₂′]))
(proj₂ ([F]₀ ⊢Δ₂ [ρσ₂]) [ρσ₂′]
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′]))
[a]′
[ρσa≡ρσ′a] = consSubstSEq {t = a} {A = F} [Γ] ⊢Δ₂
(wkSubstS [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ])
(wkSubstSEq [Γ] ⊢Δ₁ ⊢Δ₂ [ρ₂] [ρσ] [ρσ≡ρσ′])
[F]₀ [a]′
in irrelevanceEq″
(PE.sym (singleSubstWkComp a (ρ •ₛ σ) G))
(PE.sym (singleSubstWkComp a (ρ •ₛ σ′) G)) PE.refl PE.refl
(proj₁ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′))
(Gapp {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)
(proj₂ (GappGen {F = F} {G = G} {σ = _} [Γ] [F]₀ [G]₀ ⊢Δ₁ [ρσ] a [ρ₂] ⊢Δ₂ [a]′)
([ρσ₂′] , [a]″)
[ρσa≡ρσ′a] ))
in irrelevanceEq″ (PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ⁰)))
(PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ⁰)))
PE.refl PE.refl
(proj₁ ([ΠFG] ⊢Δ₁ [ρσ]))
(LogRel._⊩¹U_∷_^_/_.[t] [ΠFG]ᵗ [ρ] ⊢Δ₁)
X))
-- Validity of Π-congurence as a term equality.
Π-congᵗᵛ : ∀ {F G H E rF lF lG rΠ lΠ Γ} (lF≤ : lF ≤ lΠ) (lG≤ : lG ≤ lΠ) ([Γ] : ⊩ᵛ Γ) →
let l = ∞
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
[UΠ] = maybeEmbᵛ {A = Univ rΠ _} [Γ] (Uᵛ (proj₂ (levelBounded lΠ)) [Γ])
in
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([H] : Γ ⊩ᵛ⟨ l ⟩ H ^ [ rF , ι lF ] / [Γ])
([UG] : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [F])
([UE] : Γ ∙ H ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [H])
([F]ₜ : Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ rF lF ^ [ ! , next lF ] / [Γ] / [UF])
([G]ₜ : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ∷ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [F] / (λ {Δ} {σ} → [UG] {Δ} {σ}))
([H]ₜ : Γ ⊩ᵛ⟨ l ⟩ H ∷ Univ rF lF ^ [ ! , next lF ] / [Γ] / [UF])
([E]ₜ : Γ ∙ H ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ E ∷ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [H] / (λ {Δ} {σ} → [UE] {Δ} {σ}))
([F≡H]ₜ : Γ ⊩ᵛ⟨ l ⟩ F ≡ H ∷ Univ rF lF ^ [ ! , next lF ] / [Γ] / [UF])
([G≡E]ₜ : Γ ∙ F ^ [ rF , ι lF ] ⊩ᵛ⟨ l ⟩ G ≡ E ∷ Univ rΠ lG ^ [ ! , next lG ] / [Γ] ∙ [F]
/ (λ {Δ} {σ} → [UG] {Δ} {σ}))
→ Γ ⊩ᵛ⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ Π H ^ rF ° lF ▹ E ° lG ° lΠ ∷ Univ rΠ lΠ ^ [ ! , next lΠ ] / [Γ] / [UΠ]
Π-congᵗᵛ {F} {G} {H} {E} {rF} {lF} {lG} {rΠ} {lΠ = ¹} {Γ}
lF≤ lG≤ [Γ] [F] [H] [UG] [UE] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ {Δ} {σ} ⊢Δ [σ] =
let l = ∞
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
[ΠFG]ᵗ = Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ¹} {Γ} lF≤ lG≤ [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [F]ₜ [G]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ]
[ΠHE]ᵗ = Πᵗᵛ₁ {H} {E} {rF} {lF} {lG} {rΠ} {lΠ = ¹} {Γ} lF≤ lG≤ [Γ] [H] (λ {Δ} {σ} → [UE] {Δ} {σ}) [H]ₜ [E]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ]
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[G] = maybeEmbᵛ {A = G} (_∙_ {A = F} [Γ] [F]) (univᵛ {G} (_∙_ {A = F} [Γ] [F]) lG≤ (λ {Δ} {σ} → [UG] {Δ} {σ}) [G]ₜ)
[E] = maybeEmbᵛ {A = E} (_∙_ {A = H} [Γ] [H]) (univᵛ {E} (_∙_ {A = H} [Γ] [H]) lG≤ (λ {Δ} {σ} → [UE] {Δ} {σ}) [E]ₜ)
[F≡H] = univEqᵛ {F} {H} [Γ] [UF] [F] [F≡H]ₜ
[G≡E] = univEqᵛ {G} {E} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [UG] {Δ} {σ}) [G] [G≡E]ₜ
in Uₜ₌ [ΠFG]ᵗ [ΠHE]ᵗ (≅ₜ-Π-cong lF≤ lG≤ ⊢F (escapeTermEq univΔ ([F≡H]ₜ ⊢Δ [σ]))
(escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))
([G≡E]ₜ (⊢Δ ∙ ⊢F) [liftσ])))
λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
X = Π-congᵛ {F} {G} {H} {E} {Γ} {rF} {lF} {lG} {rΠ} {¹}
lF≤ lG≤ [Γ] [F] [G] [H] [E] [F≡H] [G≡E] ⊢Δ₁ [ρσ]
in irrelevanceEq″ (PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ¹)))
(PE.sym (wk-subst (Π H ^ rF ° lF ▹ E ° lG ° ¹))) PE.refl PE.refl
(proj₁ (Πᵛ {F} {G} lF≤ lG≤ [Γ] [F] [G] ⊢Δ₁ [ρσ])) (LogRel._⊩¹U_∷_^_/_.[t] [ΠFG]ᵗ [ρ] ⊢Δ₁) X
Π-congᵗᵛ {F} {G} {H} {E} {rF} {lF} {lG} {rΠ} {lΠ = ⁰} {Γ}
lF≤ lG≤ [Γ] [F] [H] [UG] [UE] [F]ₜ [G]ₜ [H]ₜ [E]ₜ [F≡H]ₜ [G≡E]ₜ {Δ} {σ} ⊢Δ [σ] =
let l = ∞
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
[ΠFG]ᵗ = Πᵗᵛ₁ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ = ⁰} {Γ} lF≤ lG≤ [Γ] [F] (λ {Δ} {σ} → [UG] {Δ} {σ}) [F]ₜ [G]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ]
[ΠHE]ᵗ = Πᵗᵛ₁ {H} {E} {rF} {lF} {lG} {rΠ} {lΠ = ⁰} {Γ} lF≤ lG≤ [Γ] [H] (λ {Δ} {σ} → [UE] {Δ} {σ}) [H]ₜ [E]ₜ {Δ = Δ} {σ = σ} ⊢Δ [σ]
⊢F = escape (proj₁ ([F] ⊢Δ [σ]))
[liftσ] = liftSubstS {F = F} [Γ] ⊢Δ [F] [σ]
univΔ = proj₁ ([UF] ⊢Δ [σ])
[Fₜ]σ {σ′} [σ′] = [F]ₜ {σ = σ′} ⊢Δ [σ′]
[σF] = proj₁ ([Fₜ]σ [σ])
[G] = maybeEmbᵛ {A = G} (_∙_ {A = F} [Γ] [F]) (univᵛ {G} (_∙_ {A = F} [Γ] [F]) lG≤ (λ {Δ} {σ} → [UG] {Δ} {σ}) [G]ₜ)
[E] = maybeEmbᵛ {A = E} (_∙_ {A = H} [Γ] [H]) (univᵛ {E} (_∙_ {A = H} [Γ] [H]) lG≤ (λ {Δ} {σ} → [UE] {Δ} {σ}) [E]ₜ)
[F≡H] = univEqᵛ {F} {H} [Γ] [UF] [F] [F≡H]ₜ
[G≡E] = univEqᵛ {G} {E} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → [UG] {Δ} {σ}) [G] [G≡E]ₜ
in Uₜ₌ [ΠFG]ᵗ [ΠHE]ᵗ (≅ₜ-Π-cong lF≤ lG≤ ⊢F (escapeTermEq univΔ ([F≡H]ₜ ⊢Δ [σ]))
(escapeTermEq (proj₁ ([UG] (⊢Δ ∙ ⊢F) [liftσ]))
([G≡E]ₜ (⊢Δ ∙ ⊢F) [liftσ])))
λ {ρ} {Δ₁} [ρ] ⊢Δ₁ → let [ρσ] = wkSubstS [Γ] ⊢Δ ⊢Δ₁ [ρ] [σ]
X = Π-congᵛ {F} {G} {H} {E} {Γ} {rF} {lF} {lG} {rΠ} {⁰}
lF≤ lG≤ [Γ] [F] [G] [H] [E] [F≡H] [G≡E] ⊢Δ₁ [ρσ]
in irrelevanceEq″ (PE.sym (wk-subst (Π F ^ rF ° lF ▹ G ° lG ° ⁰)))
(PE.sym (wk-subst (Π H ^ rF ° lF ▹ E ° lG ° ⁰))) PE.refl PE.refl
(proj₁ (Πᵛ {F} {G} lF≤ lG≤ [Γ] [F] [G] ⊢Δ₁ [ρσ])) (LogRel._⊩¹U_∷_^_/_.[t] [ΠFG]ᵗ [ρ] ⊢Δ₁) X
-- Validity of non-dependent function types.
▹▹ᵛ : ∀ {F G rF lF lG rΠ lΠ Γ l}
(lF< : lF ≤ lΠ)
(lG< : lG ≤ lΠ)
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ G ^ [ rΠ , ι lG ] / [Γ]
→ Γ ⊩ᵛ⟨ l ⟩ F ^ rF ° lF ▹▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ]
▹▹ᵛ {F} {G} lF< lG< [Γ] [F] [G] =
Πᵛ {F} {wk1 G} lF< lG< [Γ] [F] (wk1ᵛ {G} {F} [Γ] [F] [G])
-- Validity of non-dependent function type congurence.
▹▹-congᵛ : ∀ {F F′ G G′ rF lF lG rΠ lΠ Γ l}
(lF≤ : lF ≤ lΠ)
(lG≤ : lG ≤ lΠ)
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ ^ [ rF , ι lF ] / [Γ])
([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ ^ [ rF , ι lF ] / [Γ] / [F])
([G] : Γ ⊩ᵛ⟨ l ⟩ G ^ [ rΠ , ι lG ] / [Γ])
([G′] : Γ ⊩ᵛ⟨ l ⟩ G′ ^ [ rΠ , ι lG ] / [Γ])
([G≡G′] : Γ ⊩ᵛ⟨ l ⟩ G ≡ G′ ^ [ rΠ , ι lG ] / [Γ] / [G])
→ Γ ⊩ᵛ⟨ l ⟩ F ^ rF ° lF ▹▹ G ° lG ° lΠ ≡ F′ ^ rF ° lF ▹▹ G′ ° lG ° lΠ ^ [ rΠ , ι lΠ ] / [Γ] / ▹▹ᵛ {F} {G} lF≤ lG≤ [Γ] [F] [G]
▹▹-congᵛ {F} {F′} {G} {G′} lF< lG< [Γ] [F] [F′] [F≡F′] [G] [G′] [G≡G′] =
Π-congᵛ {F} {wk1 G} {F′} {wk1 G′} lF< lG< [Γ]
[F] (wk1ᵛ {G} {F} [Γ] [F] [G])
[F′] (wk1ᵛ {G′} {F′} [Γ] [F′] [G′])
[F≡F′] (wk1Eqᵛ {G} {G′} {F} [Γ] [F] [G] [G≡G′])
▹▹ᵗᵛ : ∀ {F G rF lF lG rΠ lΠ Γ} (lF≤ : lF ≤ lΠ) (lG≤ : lG ≤ lΠ) ([Γ] : ⊩ᵛ Γ)→
let l = ∞
[UF] = maybeEmbᵛ {A = Univ rF _} [Γ] (Uᵛ (proj₂ (levelBounded lF)) [Γ])
[UΠ] = maybeEmbᵛ {A = Univ rΠ _} [Γ] (Uᵛ (proj₂ (levelBounded lΠ)) [Γ])
in
([F] : Γ ⊩ᵛ⟨ l ⟩ F ^ [ rF , ι lF ] / [Γ])
([UG] : Γ ⊩ᵛ⟨ l ⟩ Univ rΠ lG ^ [ ! , next lG ] / [Γ])
→ Γ ⊩ᵛ⟨ l ⟩ F ∷ Univ rF lF ^ [ ! , next lF ] / [Γ] / [UF]
→ Γ ⊩ᵛ⟨ l ⟩ G ∷ Univ rΠ lG ^ [ ! , next lG ] / [Γ] / (λ {Δ} {σ} → [UG] {Δ} {σ})
→ Γ ⊩ᵛ⟨ l ⟩ F ^ rF ° lF ▹▹ G ° lG ° lΠ ∷ Univ rΠ lΠ ^ [ ! , next lΠ ] / [Γ] / [UΠ]
▹▹ᵗᵛ {F} {G} {rF} {lF} {lG} {rΠ} {lΠ} lF< lG< [Γ] [F] [UG] [Fₜ] [Gₜ] =
let [UG]′ = maybeEmbᵛ {A = Univ rΠ _} [Γ] (Uᵛ (proj₂ (levelBounded lG)) [Γ])
[Gₜ]′ = wk1ᵗᵛ {F} {G} {[ rF , ι lF ]} {rΠ} {lG} [Γ] [F] (S.irrelevanceTerm {A = Univ _ _} {t = G} [Γ] [Γ] [UG] [UG]′ [Gₜ])
[wUG] = maybeEmbᵛ {A = Univ rΠ _} (_∙_ {A = F} [Γ] [F]) (λ {Δ} {σ} → Uᵛ (proj₂ (levelBounded lG)) (_∙_ {A = F} [Γ] [F]) {Δ} {σ})
[wUG]′ = wk1ᵛ {Univ _ _ } {F} [Γ] [F] [UG]
in Πᵗᵛ {F} {wk1 G} lF< lG< [Γ] [F] (λ {Δ} {σ} → [wUG]′ {Δ} {σ}) [Fₜ]
(S.irrelevanceTerm {A = Univ _ _} {t = wk1 G} (_∙_ {A = F} [Γ] [F]) (_∙_ {A = F} [Γ] [F])
(λ {Δ} {σ} → [wUG] {Δ} {σ}) (λ {Δ} {σ} → [wUG]′ {Δ} {σ}) [Gₜ]′)
| 75.194937
| 186
| 0.300653
|
1ee1475dc2e3885f09093d4ca7b6189f3bbf5140
| 462
|
agda
|
Agda
|
core/lib/types/Smash.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/types/Smash.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | null | null | null |
core/lib/types/Smash.agda
|
mikeshulman/HoTT-Agda
|
e7d663b63d89f380ab772ecb8d51c38c26952dbb
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Cofiber
open import lib.types.Sigma
open import lib.types.Wedge
module lib.types.Smash {i j} (X : Ptd i) (Y : Ptd j) where
module ∨In× = WedgeRec {X = X} {Y = Y}
(λ x → (x , pt Y)) (λ y → (pt X , y)) idp
∨-in-× = ∨In×.f
∨-⊙in-× : X ⊙∨ Y ⊙→ X ⊙× Y
∨-⊙in-× = (∨In×.f , idp)
⊙Smash : Ptd (lmax i j)
⊙Smash = ⊙Cofiber ∨-⊙in-×
Smash = de⊙ ⊙Smash
_∧_ = Smash
_⊙∧_ = ⊙Smash
| 18.48
| 58
| 0.558442
|
9a0fd484e6058e3f6213c55224f5111028ee577b
| 212
|
agda
|
Agda
|
test/interaction/GiveSize.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/interaction/GiveSize.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
test/interaction/GiveSize.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
-- {-# OPTIONS -v tc.meta:30 #-}
{-# OPTIONS --sized-types #-}
module GiveSize where
postulate Size : Set
postulate ∞ : Size
{-# BUILTIN SIZE Size #-}
-- {-# BUILTIN SIZEINF ∞ #-}
id : Size → Size
id i = {!i!}
| 17.666667
| 32
| 0.584906
|
06ddf6321e479a88c2e78f073d0cd886bee1e977
| 3,996
|
agda
|
Agda
|
agda-stdlib/src/Data/Nat/Base.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/Nat/Base.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/Nat/Base.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Natural numbers, basic types and operations
------------------------------------------------------------------------
-- See README.Data.Nat for examples of how to use and reason about
-- naturals.
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Base where
open import Level using (0ℓ)
open import Relation.Binary
open import Relation.Binary.Core
open import Agda.Builtin.Equality
open import Relation.Nullary using (¬_)
------------------------------------------------------------------------
-- The types
open import Agda.Builtin.Nat public
using (zero; suc) renaming (Nat to ℕ)
------------------------------------------------------------------------
-- Standard ordering relations
open import Agda.Builtin.Nat public
using () renaming (_==_ to _≡ᵇ_; _<_ to _<ᵇ_)
infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≮_ _≱_ _≯_
data _≤_ : Rel ℕ 0ℓ where
z≤n : ∀ {n} → zero ≤ n
s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n
_<_ : Rel ℕ 0ℓ
m < n = suc m ≤ n
_≥_ : Rel ℕ 0ℓ
m ≥ n = n ≤ m
_>_ : Rel ℕ 0ℓ
m > n = n < m
_≰_ : Rel ℕ 0ℓ
a ≰ b = ¬ a ≤ b
_≮_ : Rel ℕ 0ℓ
a ≮ b = ¬ a < b
_≱_ : Rel ℕ 0ℓ
a ≱ b = ¬ a ≥ b
_≯_ : Rel ℕ 0ℓ
a ≯ b = ¬ a > b
------------------------------------------------------------------------
-- Arithmetic
open import Agda.Builtin.Nat public
using (_+_; _*_) renaming (_-_ to _∸_)
pred : ℕ → ℕ
pred zero = zero
pred (suc n) = n
infixl 7 _⊓_
infixl 6 _+⋎_ _⊔_
-- Argument-swapping addition. Used by Data.Vec._⋎_.
_+⋎_ : ℕ → ℕ → ℕ
zero +⋎ n = n
suc m +⋎ n = suc (n +⋎ m)
-- Max.
_⊔_ : ℕ → ℕ → ℕ
zero ⊔ n = n
suc m ⊔ zero = suc m
suc m ⊔ suc n = suc (m ⊔ n)
-- Min.
_⊓_ : ℕ → ℕ → ℕ
zero ⊓ n = zero
suc m ⊓ zero = zero
suc m ⊓ suc n = suc (m ⊓ n)
-- Division by 2, rounded downwards.
⌊_/2⌋ : ℕ → ℕ
⌊ 0 /2⌋ = 0
⌊ 1 /2⌋ = 0
⌊ suc (suc n) /2⌋ = suc ⌊ n /2⌋
-- Division by 2, rounded upwards.
⌈_/2⌉ : ℕ → ℕ
⌈ n /2⌉ = ⌊ suc n /2⌋
-- Naïve exponentiation
_^_ : ℕ → ℕ → ℕ
x ^ zero = 1
x ^ suc n = x * x ^ n
-- Distance
∣_-_∣ : ℕ → ℕ → ℕ
∣ zero - y ∣ = y
∣ x - zero ∣ = x
∣ suc x - suc y ∣ = ∣ x - y ∣
------------------------------------------------------------------------
-- The following, alternative definition of _≤_ is more suitable for
-- well-founded induction (see Induction.Nat).
infix 4 _≤′_ _<′_ _≥′_ _>′_
data _≤′_ (m : ℕ) : ℕ → Set where
≤′-refl : m ≤′ m
≤′-step : ∀ {n} (m≤′n : m ≤′ n) → m ≤′ suc n
_<′_ : Rel ℕ 0ℓ
m <′ n = suc m ≤′ n
_≥′_ : Rel ℕ 0ℓ
m ≥′ n = n ≤′ m
_>′_ : Rel ℕ 0ℓ
m >′ n = n <′ m
------------------------------------------------------------------------
-- Another alternative definition of _≤_.
record _≤″_ (m n : ℕ) : Set where
constructor less-than-or-equal
field
{k} : ℕ
proof : m + k ≡ n
infix 4 _≤″_ _<″_ _≥″_ _>″_
_<″_ : Rel ℕ 0ℓ
m <″ n = suc m ≤″ n
_≥″_ : Rel ℕ 0ℓ
m ≥″ n = n ≤″ m
_>″_ : Rel ℕ 0ℓ
m >″ n = n <″ m
------------------------------------------------------------------------
-- Useful for induction when you have an upper bound.
data _≤‴_ : ℕ → ℕ → Set where
≤‴-refl : ∀{m} → m ≤‴ m
≤‴-step : ∀{m n} → suc m ≤‴ n → m ≤‴ n
infix 4 _≤‴_ _<‴_ _≥‴_ _>‴_
_<‴_ : Rel ℕ 0ℓ
m <‴ n = suc m ≤‴ n
_≥‴_ : Rel ℕ 0ℓ
m ≥‴ n = n ≤‴ m
_>‴_ : Rel ℕ 0ℓ
m >‴ n = n <‴ m
------------------------------------------------------------------------
-- A comparison view. Taken from "View from the left"
-- (McBride/McKinna); details may differ.
data Ordering : Rel ℕ 0ℓ where
less : ∀ m k → Ordering m (suc (m + k))
equal : ∀ m → Ordering m m
greater : ∀ m k → Ordering (suc (m + k)) m
compare : ∀ m n → Ordering m n
compare zero zero = equal zero
compare (suc m) zero = greater zero m
compare zero (suc n) = less zero n
compare (suc m) (suc n) with compare m n
... | less m k = less (suc m) k
... | equal m = equal (suc m)
... | greater n k = greater (suc n) k
| 20.921466
| 72
| 0.444695
|
03f778c25227b2704c20d7240576f207fc049d22
| 182
|
agda
|
Agda
|
test/Succeed/Issue1614a.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1614a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1614a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- New NO_POSITIVITY_CHECK pragma for data definitions and mutual
-- blocks
-- Skipping a single data definition.
{-# NO_POSITIVITY_CHECK #-}
data D : Set where
lam : (D → D) → D
| 22.75
| 65
| 0.703297
|
1ec8f02d230f320306ad828c4785110dfc2c0f9b
| 331
|
agda
|
Agda
|
Cats/Category/Constructions/Epi.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
Cats/Category/Constructions/Epi.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
Cats/Category/Constructions/Epi.agda
|
alessio-b-zak/cats
|
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
|
[
"MIT"
] | null | null | null |
module Cats.Category.Constructions.Epi where
open import Level
open import Cats.Category.Base
module Build {lo la l≈} (Cat : Category lo la l≈) where
private open module Cat = Category Cat
open Cat.≈-Reasoning
IsEpi : ∀ {A B} → A ⇒ B → Set (lo ⊔ la ⊔ l≈)
IsEpi {A} {B} f = ∀ {C} {g h : B ⇒ C} → g ∘ f ≈ h ∘ f → g ≈ h
| 22.066667
| 63
| 0.60423
|
5e724e710a4b9e274a425f4d8b2dba8bae3bba01
| 12,149
|
agda
|
Agda
|
agda-stdlib/src/Reflection/Term.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Reflection/Term.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Reflection/Term.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Terms used in the reflection machinery
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Reflection.Term where
open import Data.List.Base hiding (_++_)
import Data.List.Properties as Lₚ
open import Data.Nat as ℕ using (ℕ; zero; suc)
open import Data.Product
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Reflection.Abstraction
open import Reflection.Argument
open import Reflection.Argument.Information using (visibility)
import Reflection.Argument.Visibility as Visibility; open Visibility.Visibility
import Reflection.Literal as Literal
import Reflection.Meta as Meta
open import Reflection.Name as Name using (Name)
import Reflection.Pattern as Pattern
open import Relation.Nullary
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Re-exporting the builtin type and constructors
open import Agda.Builtin.Reflection as Builtin public
using (Sort; Type; Term; Clause)
open Sort public
open Term public renaming (agda-sort to sort)
open Clause public
------------------------------------------------------------------------
-- Handy synonyms
Clauses : Set
Clauses = List Clause
-- Pattern synonyms for more compact presentation
pattern vLam s t = lam visible (abs s t)
pattern hLam s t = lam hidden (abs s t)
pattern iLam s t = lam instance′ (abs s t)
pattern Π[_∶_]_ s a ty = pi a (abs s ty)
pattern vΠ[_∶_]_ s a ty = Π[ s ∶ (vArg a) ] ty
pattern hΠ[_∶_]_ s a ty = Π[ s ∶ (hArg a) ] ty
pattern iΠ[_∶_]_ s a ty = Π[ s ∶ (iArg a) ] ty
----------------------------------------------------------------------
-- Utility functions
getName : Term → Maybe Name
getName (con c args) = just c
getName (def f args) = just f
getName _ = nothing
-- "n ⋯⟅∷⟆ xs" prepends "n" visible unknown arguments to the list of
-- arguments. Useful when constructing the list of arguments for a
-- function with initial inferable arguments.
infixr 5 _⋯⟨∷⟩_
_⋯⟨∷⟩_ : ℕ → Args Term → Args Term
zero ⋯⟨∷⟩ xs = xs
suc i ⋯⟨∷⟩ xs = unknown ⟨∷⟩ (i ⋯⟨∷⟩ xs)
{-# INLINE _⋯⟨∷⟩_ #-}
-- "n ⋯⟅∷⟆ xs" prepends "n" hidden unknown arguments to the list of
-- arguments. Useful when constructing the list of arguments for a
-- function with initial implicit arguments.
infixr 5 _⋯⟅∷⟆_
_⋯⟅∷⟆_ : ℕ → Args Term → Args Term
zero ⋯⟅∷⟆ xs = xs
suc i ⋯⟅∷⟆ xs = unknown ⟅∷⟆ (i ⋯⟅∷⟆ xs)
{-# INLINE _⋯⟅∷⟆_ #-}
------------------------------------------------------------------------
-- Decidable equality
clause-injective₁ : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → ps ≡ ps′
clause-injective₁ refl = refl
clause-injective₂ : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → b ≡ b′
clause-injective₂ refl = refl
clause-injective : ∀ {ps ps′ b b′} → clause ps b ≡ clause ps′ b′ → ps ≡ ps′ × b ≡ b′
clause-injective = < clause-injective₁ , clause-injective₂ >
absurd-clause-injective : ∀ {ps ps′} → absurd-clause ps ≡ absurd-clause ps′ → ps ≡ ps′
absurd-clause-injective refl = refl
infix 4 _≟-AbsTerm_ _≟-AbsType_ _≟-ArgTerm_ _≟-ArgType_ _≟-Args_
_≟-Clause_ _≟-Clauses_ _≟_
_≟-Sort_
_≟-AbsTerm_ : DecidableEquality (Abs Term)
_≟-AbsType_ : DecidableEquality (Abs Type)
_≟-ArgTerm_ : DecidableEquality (Arg Term)
_≟-ArgType_ : DecidableEquality (Arg Type)
_≟-Args_ : DecidableEquality (Args Term)
_≟-Clause_ : DecidableEquality Clause
_≟-Clauses_ : DecidableEquality Clauses
_≟_ : DecidableEquality Term
_≟-Sort_ : DecidableEquality Sort
-- Decidable equality 'transformers'
-- We need to inline these because the terms are not sized so termination
-- would not obvious if we were to use higher-order functions such as
-- Data.List.Properties' ≡-dec
abs s a ≟-AbsTerm abs s′ a′ = unAbs-dec (a ≟ a′)
abs s a ≟-AbsType abs s′ a′ = unAbs-dec (a ≟ a′)
arg i a ≟-ArgTerm arg i′ a′ = unArg-dec (a ≟ a′)
arg i a ≟-ArgType arg i′ a′ = unArg-dec (a ≟ a′)
[] ≟-Args [] = yes refl
(x ∷ xs) ≟-Args (y ∷ ys) = Lₚ.∷-dec (x ≟-ArgTerm y) (xs ≟-Args ys)
[] ≟-Args (_ ∷ _) = no λ()
(_ ∷ _) ≟-Args [] = no λ()
[] ≟-Clauses [] = yes refl
(x ∷ xs) ≟-Clauses (y ∷ ys) = Lₚ.∷-dec (x ≟-Clause y) (xs ≟-Clauses ys)
[] ≟-Clauses (_ ∷ _) = no λ()
(_ ∷ _) ≟-Clauses [] = no λ()
clause ps b ≟-Clause clause ps′ b′ =
Dec.map′ (uncurry (cong₂ clause)) clause-injective (ps Pattern.≟s ps′ ×-dec b ≟ b′)
absurd-clause ps ≟-Clause absurd-clause ps′ =
Dec.map′ (cong absurd-clause) absurd-clause-injective (ps Pattern.≟s ps′)
clause _ _ ≟-Clause absurd-clause _ = no λ()
absurd-clause _ ≟-Clause clause _ _ = no λ()
var-injective₁ : ∀ {x x′ args args′} → var x args ≡ var x′ args′ → x ≡ x′
var-injective₁ refl = refl
var-injective₂ : ∀ {x x′ args args′} → var x args ≡ var x′ args′ → args ≡ args′
var-injective₂ refl = refl
var-injective : ∀ {x x′ args args′} → var x args ≡ var x′ args′ → x ≡ x′ × args ≡ args′
var-injective = < var-injective₁ , var-injective₂ >
con-injective₁ : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → c ≡ c′
con-injective₁ refl = refl
con-injective₂ : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → args ≡ args′
con-injective₂ refl = refl
con-injective : ∀ {c c′ args args′} → con c args ≡ con c′ args′ → c ≡ c′ × args ≡ args′
con-injective = < con-injective₁ , con-injective₂ >
def-injective₁ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′
def-injective₁ refl = refl
def-injective₂ : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → args ≡ args′
def-injective₂ refl = refl
def-injective : ∀ {f f′ args args′} → def f args ≡ def f′ args′ → f ≡ f′ × args ≡ args′
def-injective = < def-injective₁ , def-injective₂ >
meta-injective₁ : ∀ {x x′ args args′} → meta x args ≡ meta x′ args′ → x ≡ x′
meta-injective₁ refl = refl
meta-injective₂ : ∀ {x x′ args args′} → meta x args ≡ meta x′ args′ → args ≡ args′
meta-injective₂ refl = refl
meta-injective : ∀ {x x′ args args′} → meta x args ≡ meta x′ args′ → x ≡ x′ × args ≡ args′
meta-injective = < meta-injective₁ , meta-injective₂ >
lam-injective₁ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′
lam-injective₁ refl = refl
lam-injective₂ : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → t ≡ t′
lam-injective₂ refl = refl
lam-injective : ∀ {v v′ t t′} → lam v t ≡ lam v′ t′ → v ≡ v′ × t ≡ t′
lam-injective = < lam-injective₁ , lam-injective₂ >
pat-lam-injective₁ : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → cs ≡ cs′
pat-lam-injective₁ refl = refl
pat-lam-injective₂ : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → args ≡ args′
pat-lam-injective₂ refl = refl
pat-lam-injective : ∀ {cs cs′ args args′} → pat-lam cs args ≡ pat-lam cs′ args′ → cs ≡ cs′ × args ≡ args′
pat-lam-injective = < pat-lam-injective₁ , pat-lam-injective₂ >
pi-injective₁ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′
pi-injective₁ refl = refl
pi-injective₂ : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₂ ≡ t₂′
pi-injective₂ refl = refl
pi-injective : ∀ {t₁ t₁′ t₂ t₂′} → pi t₁ t₂ ≡ pi t₁′ t₂′ → t₁ ≡ t₁′ × t₂ ≡ t₂′
pi-injective = < pi-injective₁ , pi-injective₂ >
sort-injective : ∀ {x y} → sort x ≡ sort y → x ≡ y
sort-injective refl = refl
lit-injective : ∀ {x y} → lit x ≡ lit y → x ≡ y
lit-injective refl = refl
set-injective : ∀ {x y} → set x ≡ set y → x ≡ y
set-injective refl = refl
slit-injective : ∀ {x y} → Sort.lit x ≡ lit y → x ≡ y
slit-injective refl = refl
var x args ≟ var x′ args′ =
Dec.map′ (uncurry (cong₂ var)) var-injective (x ℕ.≟ x′ ×-dec args ≟-Args args′)
con c args ≟ con c′ args′ =
Dec.map′ (uncurry (cong₂ con)) con-injective (c Name.≟ c′ ×-dec args ≟-Args args′)
def f args ≟ def f′ args′ =
Dec.map′ (uncurry (cong₂ def)) def-injective (f Name.≟ f′ ×-dec args ≟-Args args′)
meta x args ≟ meta x′ args′ =
Dec.map′ (uncurry (cong₂ meta)) meta-injective (x Meta.≟ x′ ×-dec args ≟-Args args′)
lam v t ≟ lam v′ t′ =
Dec.map′ (uncurry (cong₂ lam)) lam-injective (v Visibility.≟ v′ ×-dec t ≟-AbsTerm t′)
pat-lam cs args ≟ pat-lam cs′ args′ =
Dec.map′ (uncurry (cong₂ pat-lam)) pat-lam-injective (cs ≟-Clauses cs′ ×-dec args ≟-Args args′)
pi t₁ t₂ ≟ pi t₁′ t₂′ =
Dec.map′ (uncurry (cong₂ pi)) pi-injective (t₁ ≟-ArgType t₁′ ×-dec t₂ ≟-AbsType t₂′)
sort s ≟ sort s′ = Dec.map′ (cong sort) sort-injective (s ≟-Sort s′)
lit l ≟ lit l′ = Dec.map′ (cong lit) lit-injective (l Literal.≟ l′)
unknown ≟ unknown = yes refl
var x args ≟ con c args′ = no λ()
var x args ≟ def f args′ = no λ()
var x args ≟ lam v t = no λ()
var x args ≟ pi t₁ t₂ = no λ()
var x args ≟ sort _ = no λ()
var x args ≟ lit _ = no λ()
var x args ≟ meta _ _ = no λ()
var x args ≟ unknown = no λ()
con c args ≟ var x args′ = no λ()
con c args ≟ def f args′ = no λ()
con c args ≟ lam v t = no λ()
con c args ≟ pi t₁ t₂ = no λ()
con c args ≟ sort _ = no λ()
con c args ≟ lit _ = no λ()
con c args ≟ meta _ _ = no λ()
con c args ≟ unknown = no λ()
def f args ≟ var x args′ = no λ()
def f args ≟ con c args′ = no λ()
def f args ≟ lam v t = no λ()
def f args ≟ pi t₁ t₂ = no λ()
def f args ≟ sort _ = no λ()
def f args ≟ lit _ = no λ()
def f args ≟ meta _ _ = no λ()
def f args ≟ unknown = no λ()
lam v t ≟ var x args = no λ()
lam v t ≟ con c args = no λ()
lam v t ≟ def f args = no λ()
lam v t ≟ pi t₁ t₂ = no λ()
lam v t ≟ sort _ = no λ()
lam v t ≟ lit _ = no λ()
lam v t ≟ meta _ _ = no λ()
lam v t ≟ unknown = no λ()
pi t₁ t₂ ≟ var x args = no λ()
pi t₁ t₂ ≟ con c args = no λ()
pi t₁ t₂ ≟ def f args = no λ()
pi t₁ t₂ ≟ lam v t = no λ()
pi t₁ t₂ ≟ sort _ = no λ()
pi t₁ t₂ ≟ lit _ = no λ()
pi t₁ t₂ ≟ meta _ _ = no λ()
pi t₁ t₂ ≟ unknown = no λ()
sort _ ≟ var x args = no λ()
sort _ ≟ con c args = no λ()
sort _ ≟ def f args = no λ()
sort _ ≟ lam v t = no λ()
sort _ ≟ pi t₁ t₂ = no λ()
sort _ ≟ lit _ = no λ()
sort _ ≟ meta _ _ = no λ()
sort _ ≟ unknown = no λ()
lit _ ≟ var x args = no λ()
lit _ ≟ con c args = no λ()
lit _ ≟ def f args = no λ()
lit _ ≟ lam v t = no λ()
lit _ ≟ pi t₁ t₂ = no λ()
lit _ ≟ sort _ = no λ()
lit _ ≟ meta _ _ = no λ()
lit _ ≟ unknown = no λ()
meta _ _ ≟ var x args = no λ()
meta _ _ ≟ con c args = no λ()
meta _ _ ≟ def f args = no λ()
meta _ _ ≟ lam v t = no λ()
meta _ _ ≟ pi t₁ t₂ = no λ()
meta _ _ ≟ sort _ = no λ()
meta _ _ ≟ lit _ = no λ()
meta _ _ ≟ unknown = no λ()
unknown ≟ var x args = no λ()
unknown ≟ con c args = no λ()
unknown ≟ def f args = no λ()
unknown ≟ lam v t = no λ()
unknown ≟ pi t₁ t₂ = no λ()
unknown ≟ sort _ = no λ()
unknown ≟ lit _ = no λ()
unknown ≟ meta _ _ = no λ()
pat-lam _ _ ≟ var x args = no λ()
pat-lam _ _ ≟ con c args = no λ()
pat-lam _ _ ≟ def f args = no λ()
pat-lam _ _ ≟ lam v t = no λ()
pat-lam _ _ ≟ pi t₁ t₂ = no λ()
pat-lam _ _ ≟ sort _ = no λ()
pat-lam _ _ ≟ lit _ = no λ()
pat-lam _ _ ≟ meta _ _ = no λ()
pat-lam _ _ ≟ unknown = no λ()
var x args ≟ pat-lam _ _ = no λ()
con c args ≟ pat-lam _ _ = no λ()
def f args ≟ pat-lam _ _ = no λ()
lam v t ≟ pat-lam _ _ = no λ()
pi t₁ t₂ ≟ pat-lam _ _ = no λ()
sort _ ≟ pat-lam _ _ = no λ()
lit _ ≟ pat-lam _ _ = no λ()
meta _ _ ≟ pat-lam _ _ = no λ()
unknown ≟ pat-lam _ _ = no λ()
set t ≟-Sort set t′ = Dec.map′ (cong set) set-injective (t ≟ t′)
lit n ≟-Sort lit n′ = Dec.map′ (cong lit) slit-injective (n ℕ.≟ n′)
unknown ≟-Sort unknown = yes refl
set _ ≟-Sort lit _ = no λ()
set _ ≟-Sort unknown = no λ()
lit _ ≟-Sort set _ = no λ()
lit _ ≟-Sort unknown = no λ()
unknown ≟-Sort set _ = no λ()
unknown ≟-Sort lit _ = no λ()
| 36.593373
| 105
| 0.570088
|
1c3260ba57cb4256532dcd6fbd8b2d5d24d55e2b
| 229
|
agda
|
Agda
|
test/Succeed/RelevanceSubtyping.agda
|
vlopezj/agda
|
ff4d89e75970cf27599fb9f572bd43c9455cbb56
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Succeed/RelevanceSubtyping.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/RelevanceSubtyping.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
-- Andreas, 2012-09-13
module RelevanceSubtyping where
-- this naturally type-checks:
one : {A B : Set} → (.A → B) → A → B
one f x = f x
-- this type-checks because of subtyping
one' : {A B : Set} → (.A → B) → A → B
one' f = f
| 20.818182
| 40
| 0.58952
|
1e1d3ac31ffed8cfe39f198c7bfbb81363dc8ba2
| 2,678
|
agda
|
Agda
|
agda/MorePropAlgebra/Properties/Group.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | 3
|
2020-07-31T18:15:26.000Z
|
2022-02-19T12:15:21.000Z
|
agda/MorePropAlgebra/Properties/Group.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | null | null | null |
agda/MorePropAlgebra/Properties/Group.agda
|
mchristianl/synthetic-reals
|
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts #-}
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Function.Base using (_∋_)
import Cubical.Algebra.Group as Std
-- import Cubical.Structures.Group.Properties
open import MorePropAlgebra.Bundles
module MorePropAlgebra.Properties.Group {ℓ} (assumptions : Group {ℓ}) where
open Group assumptions renaming (Carrier to G)
import MorePropAlgebra.Properties.Monoid
module Monoid'Properties = MorePropAlgebra.Properties.Monoid (record { Group assumptions }) -- how does this even work without renaming?
module Monoid' = Monoid (record { Group assumptions })
( Monoid') = Monoid ∋ (record { Group assumptions })
stdIsGroup : Std.IsGroup 0g _+_ (-_)
stdIsGroup .Std.IsGroup.isMonoid = Monoid'Properties.stdIsMonoid
stdIsGroup .Std.IsGroup.inverse = is-inverse
stdGroup : Std.Group {ℓ}
stdGroup = record { Group assumptions ; isGroup = stdIsGroup }
module GroupLemmas' = Std.GroupLemmas stdGroup
-- module GroupLemmas (G : Group {ℓ}) where
-- open Group G public
-- abstract
-- simplL : (a : Carrier) {b c : Carrier} → a + b ≡ a + c → b ≡ c
-- simplR : {a b : Carrier} (c : Carrier) → a + c ≡ b + c → a ≡ b
-- invInvo : (a : Carrier) → - (- a) ≡ a
-- invId : - 0g ≡ 0g
-- idUniqueL : {e : Carrier} (x : Carrier) → e + x ≡ x → e ≡ 0g
-- idUniqueR : (x : Carrier) {e : Carrier} → x + e ≡ x → e ≡ 0g
-- invUniqueL : {g h : Carrier} → g + h ≡ 0g → g ≡ - h
-- invUniqueR : {g h : Carrier} → g + h ≡ 0g → h ≡ - g
-- invDistr : (a b : Carrier) → - (a + b) ≡ - b - a
-- private
-- simplR = GroupLemmas.simplR G
abstract
invUniqueL : {g h : G} → g + h ≡ 0g → g ≡ - h
invUniqueL {g} {h} p = GroupLemmas'.simplR h (p ∙ sym (is-invl h))
-- ported from `Algebra.Properties.Group`
private
right-helper : ∀ x y → y ≡ - x + (x + y)
right-helper x y = (
y ≡⟨ sym (snd (is-identity y)) ⟩
0g + y ≡⟨ cong₂ _+_ (sym (snd (is-inverse x))) refl ⟩
((- x) + x) + y ≡⟨ sym (is-assoc (- x) x y) ⟩
(- x) + (x + y) ∎)
-- alternative:
-- follows from uniqueness of -
-- (a + -a) ≡ 0
-- ∃! b . a + b = 0
-- show that a is an additive inverse of - a then it must be THE additive inverse of - a and has to be called - - a which is a by uniqueness
-involutive : ∀ x → - - x ≡ x
-involutive x = (
(- (- x)) ≡⟨ sym (fst (is-identity _)) ⟩
(- (- x)) + 0g ≡⟨ cong₂ _+_ refl (sym (snd (is-inverse _))) ⟩
(- (- x)) + (- x + x) ≡⟨ sym (right-helper (- x) x) ⟩
x ∎)
| 39.970149
| 144
| 0.558999
|
9a2b124bed86aa312bef0696f2fd8ec2629d76fc
| 380
|
agda
|
Agda
|
test/Succeed/Issue2858-EvenOdd.agda
|
AntoineAllioux/agda
|
68ec2312961776e415c99d2839e41a92ffe464db
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/Issue2858-EvenOdd.agda
|
AntoineAllioux/agda
|
68ec2312961776e415c99d2839e41a92ffe464db
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/Issue2858-EvenOdd.agda
|
AntoineAllioux/agda
|
68ec2312961776e415c99d2839e41a92ffe464db
|
[
"BSD-3-Clause"
] | null | null | null |
data Nat : Set where
zero : Nat
suc : Nat → Nat
interleaved mutual
data Even : Nat → Set
data Odd : Nat → Set
-- base cases: 0 is Even, 1 is Odd
constructor
even-zero : Even zero
odd-one : Odd (suc zero)
-- step case: suc switches the even/odd-ness
constructor
even-suc : ∀ {n} → Odd n → Even (suc n)
odd-suc : ∀ {n} → Even n → Odd (suc n)
| 20
| 46
| 0.586842
|
2fd98ceb26bf6e6b2dfda1d170f82e441792b2a7
| 537
|
agda
|
Agda
|
test/fail/SizedTypesScopeExtrusion.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
test/fail/SizedTypesScopeExtrusion.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/fail/SizedTypesScopeExtrusion.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
{-# OPTIONS --sized-types #-}
module SizedTypesScopeExtrusion where
postulate
Size : Set
_^ : Size -> Size
∞ : Size
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZESUC _^ #-}
{-# BUILTIN SIZEINF ∞ #-}
data Nat : {size : Size} -> Set where
zero : {size : Size} -> Nat {size ^}
suc : {size : Size} -> Nat {size} -> Nat {size ^}
data Empty : Set where
data Unit : Set where
unit : Unit
Zero : (i : Size) -> Nat {i} -> Set
Zero ._ zero = Unit
Zero ._ (suc _) = Empty
bla : Set
bla = (x : Nat) -> (i : Size) -> Zero i x
| 18.517241
| 52
| 0.558659
|
a054bd4333c22e7d1f46c0eec9eadcbe4373bad5
| 4,503
|
agda
|
Agda
|
src/cpnd1/nodcap/NF/Expand.agda
|
wenkokke/nodcap
|
fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2
|
[
"MIT"
] | 4
|
2018-09-05T08:58:11.000Z
|
2019-09-24T20:16:35.000Z
|
src/cpnd1/nodcap/NF/Expand.agda
|
pepijnkokke/nodcap
|
fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2
|
[
"MIT"
] | null | null | null |
src/cpnd1/nodcap/NF/Expand.agda
|
pepijnkokke/nodcap
|
fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2
|
[
"MIT"
] | 1
|
2018-09-05T08:58:13.000Z
|
2018-09-05T08:58:13.000Z
|
open import Algebra
open import Data.Nat as ℕ using (ℕ; suc; zero)
open import Data.Pos as ℕ⁺
open import Data.List as L using (List; []; _∷_; _++_)
open import Data.List.Any as LA using (Any; here; there)
open import Data.List.Any.BagAndSetEquality as B
open import Data.Product as PR using (∃; _×_; _,_; proj₁; proj₂)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_$_; flip)
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse as I using ()
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)
open import Data.Environment
open import nodcap.Base
open import nodcap.NF.Typing
module nodcap.NF.Expand where
open I.Inverse using (to; from)
private module ++ {a} {A : Set a} = Monoid (L.monoid A)
{-# TERMINATING #-}
-- Lemma:
-- We can expand an instance of ?[ n ] A into n repetitions of A,
-- by induction on n.
--
-- Problematic calls:
-- * in the recursive call under cont, the index n is split as
-- n₁ + n₂, for which we have n₁, n₂ < n, but not definitionally.
mutual
expand : {Γ : Environment} {A : Type} {n : ℕ⁺} →
⊢ⁿᶠ ?[ n ] A ∷ Γ →
--------------------
⊢ⁿᶠ replicate⁺ n A ++ Γ
expand (mk?₁ x) = x
expand (cont {Γ} {A} {m} {n} x)
= P.subst (λ Δ → ⊢ⁿᶠ Δ ++ Γ) (replicate⁺-++-commute m n)
$ P.subst ⊢ⁿᶠ_ (P.sym (++.assoc (replicate⁺ m A) (replicate⁺ n A) Γ))
$ exch (swp [] (replicate⁺ m A) (replicate⁺ n A))
$ expand {n = n}
$ exch (fwd [] (replicate⁺ m A))
$ expand {n = m} x
expand {Γ} {A} {n} (exch b x)
= exch (B.++-cong {xs₁ = replicate⁺ n A} I.id (del-from b (here P.refl)))
$ expandIn (from b ⟨$⟩ here P.refl) x
expandIn : {Γ : Environment} {A : Type} {n : ℕ⁺} (i : ?[ n ] A ∈ Γ) →
⊢ⁿᶠ Γ →
----------------------------
⊢ⁿᶠ replicate⁺ n A ++ Γ - i
expandIn (here P.refl) x = expand x
expandIn {_} {A} {n} (there i) (send {Γ} {Δ} x h)
with split Γ i
... | inj₁ (j , p) rewrite p
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ replicate⁺ n A) (Γ - j) Δ)
$ flip send h
$ exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there j) x
... | inj₂ (j , p) rewrite p
= exch (swp [] (replicate⁺ n A) (_ ∷ Γ))
$ send x
$ exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there j) h
expandIn {Γ} {A} {n} (there i) (recv x)
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ recv
$ exch (swp [] (_ ∷ _ ∷ []) (replicate⁺ n A))
$ expandIn (there (there i)) x
expandIn {Γ} {A} {n} (there i) (sel₁ x)
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ sel₁
$ exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there i) x
expandIn {Γ} {A} {n} (there i) (sel₂ x)
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ sel₂
$ exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there i) x
expandIn {Γ} {A} {n} (there i) (case x h)
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ case
( exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there i) x )
( exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there i) h )
expandIn (there ()) halt
expandIn {Γ} {A} {n} (there i) (wait x)
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ wait
$ expandIn i x
expandIn {Γ} {A} {n} (there i) loop
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ loop
expandIn {Γ} {A} {n} (there i) (mk?₁ x)
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ mk?₁
$ exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there i) x
expandIn {Γ} {A} {n} (there i) (mk!₁ x)
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ mk!₁
$ exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there i) x
expandIn {Γ} {A} {n} (there i) (cont x)
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ cont
$ exch (swp [] (_ ∷ _ ∷ []) (replicate⁺ n A))
$ expandIn (there (there i)) x
expandIn {_} {A} {n} (there i) (pool {Γ} {Δ} x y)
with split Γ i
... | inj₁ (j , p) rewrite p
= exch (swp [] (replicate⁺ n A) (_ ∷ []))
$ P.subst ⊢ⁿᶠ_ (++.assoc (_ ∷ replicate⁺ n A) (Γ - j) Δ)
$ flip pool y
$ exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there j) x
... | inj₂ (j , p) rewrite p
= exch (swp [] (replicate⁺ n A) (_ ∷ Γ))
$ pool x
$ exch (swp [] (_ ∷ []) (replicate⁺ n A))
$ expandIn (there j) y
expandIn {Γ} {A} {n} i (exch b x)
= exch (B.++-cong {xs₁ = replicate⁺ n A} I.id (del-from b i))
$ expandIn (from b ⟨$⟩ i) x
| 34.374046
| 77
| 0.514546
|
5edc0a66c5ba822281f697fd6402be082df1b71f
| 30
|
agda
|
Agda
|
Categories/Coend.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 98
|
2015-04-15T14:57:33.000Z
|
2022-03-08T05:20:36.000Z
|
Categories/Coend.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | 19
|
2015-05-23T06:47:10.000Z
|
2019-08-09T16:31:40.000Z
|
Categories/Coend.agda
|
p-pavel/categories
|
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
|
[
"BSD-3-Clause"
] | 23
|
2015-02-05T13:03:09.000Z
|
2021-11-11T13:50:56.000Z
|
module Categories.Coend where
| 15
| 29
| 0.866667
|
30418ea41bee20539c7224c7a02fd09af25adfb9
| 686
|
agda
|
Agda
|
test/succeed/TestQuote.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/succeed/TestQuote.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | null | null | null |
test/succeed/TestQuote.agda
|
masondesu/agda
|
70c8a575c46f6a568c7518150a1a64fcd03aa437
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module TestQuote where
{- test of reflection, implementing a trivial prover. -}
open import Common.Reflect
open import Common.Prelude
open import Common.Level
_==_ : Term → Term → Bool
def x [] == def y [] = primQNameEquality x y
_ == _ = false
data Thm : Set where
triv : Thm
`Thm = def (quote Thm) []
⟦_⟧ : Term → Set
⟦ goal ⟧ with goal == `Thm
... | true = Thm
... | false = ⊥
Hyp : Term → Set → Set
Hyp goal A with goal == `Thm
... | true = ⊤
... | false = A
solve : (goal : Term) → Hyp goal ⟦ goal ⟧ → ⟦ goal ⟧
solve goal h with goal == `Thm
... | true = triv
... | false = h
test₁ : Thm
test₁ = quoteGoal t in solve t _
| 19.6
| 56
| 0.561224
|
586c4247a18256a57e9997f155cde8d104165842
| 547
|
agda
|
Agda
|
src/decidable.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 20
|
2015-06-12T12:20:17.000Z
|
2022-02-01T11:25:54.000Z
|
src/decidable.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T14:32:16.000Z
|
2016-10-26T11:57:26.000Z
|
src/decidable.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T12:17:00.000Z
|
2019-05-04T19:31:00.000Z
|
{-# OPTIONS --without-K #-}
module decidable where
open import level
open import sets.empty using (⊥; ¬_)
open import sets.unit using (⊤; tt)
-- Decidable relations.
data Dec {i} (P : Set i) : Set i where
yes : ( p : P) → Dec P
no : (¬p : ¬ P) → Dec P
True : ∀ {i}{P : Set i} → Dec P → Set lzero
True (yes _) = ⊤
True (no _) = ⊥
witness : ∀ {i}{P : Set i}{d : Dec P} → True d → P
witness {d = yes x} _ = x
witness {d = no _} ()
decide : ∀ {i} {P : Set i} {d : Dec P} → P → True d
decide {d = yes p} = λ _ → tt
decide {d = no f} = f
| 21.038462
| 51
| 0.533821
|
5e420a29792ec0331859067a10e9a087f5ff6055
| 8,466
|
agda
|
Agda
|
archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution1.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution1.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-2/Oscar/Data/Term/internal/SubstituteAndSubstitution1.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
module Oscar.Data.Term.internal.SubstituteAndSubstitution1 {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Equality
open import Oscar.Data.Equality.properties
open import Oscar.Data.Fin
open import Oscar.Data.Nat
open import Oscar.Data.Term FunctionName
open import Oscar.Data.Vec
open import Oscar.Function
infix 19 _◃_ _◃s_
mutual
_◃_ : ∀ {m n} → (f : m ⊸ n) → Term m → Term n
σ̇ ◃ i 𝑥 = σ̇ 𝑥
_ ◃ leaf = leaf
σ̇ ◃ (τl fork τr) = (σ̇ ◃ τl) fork (σ̇ ◃ τr)
σ̇ ◃ (function fn τs) = function fn (σ̇ ◃s τs) where
_◃s_ : ∀ {m n} → m ⊸ n → ∀ {N} → Vec (Term m) N → Vec (Term n) N
f ◃s [] = []
f ◃s (t ∷ ts) = f ◃ t ∷ f ◃s ts
_◇_ : ∀ {m n} → m ⊸ n → ∀ {l} → l ⊸ m → l ⊸ n
_◇_ f g = (f ◃_) ∘ g
mutual
◃-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → f ◃_ ≡̇ g ◃_
◃-extensionality p (i x) = p x
◃-extensionality p leaf = refl
◃-extensionality p (s fork t) = cong₂ _fork_ (◃-extensionality p s) (◃-extensionality p t)
◃-extensionality p (function fn ts) = cong (function fn) (◃s-extensionality p ts)
◃s-extensionality : ∀ {m n} {f g : m ⊸ n} → f ≡̇ g → ∀ {N} → _◃s_ f {N} ≡̇ _◃s_ g
◃s-extensionality p [] = refl
◃s-extensionality p (t ∷ ts) = cong₂ _∷_ (◃-extensionality p t) (◃s-extensionality p ts)
mutual
◃-associativity : ∀ {l m} (f : l ⊸ m) {n} (g : m ⊸ n) → (g ◇ f) ◃_ ≡̇ (g ◃_) ∘ (f ◃_)
◃-associativity _ _ (i _) = refl
◃-associativity _ _ leaf = refl
◃-associativity _ _ (τ₁ fork τ₂) = cong₂ _fork_ (◃-associativity _ _ τ₁) (◃-associativity _ _ τ₂)
◃-associativity f g (function fn ts) = cong (function fn) (◃s-associativity f g ts)
◃s-associativity : ∀ {l m n} (f : l ⊸ m) (g : m ⊸ n) → ∀ {N} → (_◃s_ (g ◇ f) {N}) ≡̇ (g ◃s_) ∘ (f ◃s_)
◃s-associativity _ _ [] = refl
◃s-associativity _ _ (τ ∷ τs) = cong₂ _∷_ (◃-associativity _ _ τ) (◃s-associativity _ _ τs)
◇-associativity : ∀ {k l} (f : k ⊸ l) {m} (g : l ⊸ m) {n} (h : m ⊸ n) → (h ◇ g) ◇ f ≡̇ h ◇ (g ◇ f)
◇-associativity f g h x rewrite ◃-associativity g h (f x) = refl
◇-extensionality : ∀ {l m} {f₁ f₂ : l ⊸ m} → f₁ ≡̇ f₂ → ∀ {n} {g₁ g₂ : m ⊸ n} → g₁ ≡̇ g₂ → g₁ ◇ f₁ ≡̇ g₂ ◇ f₂
◇-extensionality {f₂ = f₂} f₁≡̇f₂ g₁≡̇g₂ x rewrite f₁≡̇f₂ x = ◃-extensionality g₁≡̇g₂ (f₂ x)
open import Oscar.Category.Semigroupoid
SemigroupoidSubstitution : Semigroupoid _ _ _
Semigroupoid.⋆ SemigroupoidSubstitution = _
Semigroupoid._⇒_ SemigroupoidSubstitution m n = Fin m ⇒ Term n
Semigroupoid._∙_ SemigroupoidSubstitution = _◇_
Semigroupoid.associativity SemigroupoidSubstitution = ◇-associativity
Semigroupoid.extensionality SemigroupoidSubstitution = ◇-extensionality
open import Oscar.Category.Semifunctor
SemifunctorSubstitution : Semifunctor _ _ _ _ _ _
Semifunctor.semigroupoid₁ SemifunctorSubstitution = SemigroupoidSubstitution
Semifunctor.semigroupoid₂ SemifunctorSubstitution = SemigroupoidFunction Term
Semifunctor.μ SemifunctorSubstitution = id
Semifunctor.𝔣 SemifunctorSubstitution = _◃_
Semifunctor.extensionality SemifunctorSubstitution = ◃-extensionality
Semifunctor.preservativity SemifunctorSubstitution = ◃-associativity
ε : ∀ {m} → m ⊸ m
ε = i
mutual
◃-identity : ∀ {m} (t : Term m) → ε ◃ t ≡ t
◃-identity (i x) = refl
◃-identity leaf = refl
◃-identity (s fork t) = cong₂ _fork_ (◃-identity s) (◃-identity t)
◃-identity (function fn ts) = cong (function fn) (◃s-identity ts)
◃s-identity : ∀ {N m} (t : Vec (Term m) N) → ε ◃s t ≡ t
◃s-identity [] = refl
◃s-identity (t ∷ ts) = cong₂ _∷_ (◃-identity t) (◃s-identity ts)
◇-left-identity : ∀ {m n} (f : m ⊸ n) → ε ◇ f ≡̇ f
◇-left-identity f = ◃-identity ∘ f
◇-right-identity : ∀ {m n} (f : m ⊸ n) → f ◇ ε ≡̇ f
◇-right-identity _ _ = refl
open import Oscar.Category.Category
CategorySubstitution : Category _ _ _
Category.semigroupoid CategorySubstitution = SemigroupoidSubstitution
Category.ε CategorySubstitution = ε
Category.left-identity CategorySubstitution = {!!}
Category.right-identity CategorySubstitution {x} {y} {f} x₁ = ◇-right-identity f x₁
test-right-id = {!Category.right-identity CategorySubstitution!}
-- open import Oscar.Property.Associativity
-- open import Oscar.Property.Equivalence
-- open import Oscar.Property.Extensionality₂
-- instance
-- AssociativitySubstitutionComposition : Associativity _◇_ _≡̇_
-- Associativity.associativity AssociativitySubstitutionComposition = ◇-associativity
-- ExtensionalityS◇ : ExtensionalitySemigroupoid _◇_ _≡̇_
-- ExtensionalitySemigroupoid.extensionalitySemigroupoid ExtensionalityS◇ g₁≡̇g₂ {_} {_} {f₂} f₁≡̇f₂ x rewrite f₁≡̇f₂ x = ◃-extensionality g₁≡̇g₂ (f₂ x)
-- -- instance
-- -- Extensionality₂≡̇◇⋆ : ∀ {x y z} → Extensionality₂⋆ _≡̇_ _≡̇_ (λ ‵ → _≡̇_ ‵) ((y ⊸ z → x ⊸ y → x ⊸ z) ∋ λ ` → _◇_ `) (λ ` → _◇_ `)
-- -- Extensionality₂⋆.extensionality* Extensionality₂≡̇◇⋆ g₁≡̇g₂ {_} {f₂} f₁≡̇f₂ x rewrite f₁≡̇f₂ x = ◃-extensionality g₁≡̇g₂ (f₂ x)
-- -- -- Extensionality₂≡̇◇ : ∀ {x y z} → Extensionality₂ _≡̇_ _≡̇_ (λ ‵ → _≡̇_ ‵) (λ {yz} → _◇_ {y} {z} yz {x}) (λ {_} {yz} → yz ◇_)
-- -- -- Extensionality₂.extensionality₂ Extensionality₂≡̇◇ {g₁} {g₂} g₁≡̇g₂ {f₁} {f₂} f₁≡̇f₂ x rewrite f₁≡̇f₂ x = ◃-extensionality g₁≡̇g₂ (f₂ x)
-- instance
-- SemigroupoidSubstitution : Semigroupoid _ _ _
-- Semigroupoid.⋆ SemigroupoidSubstitution = _
-- Semigroupoid._⇒_ SemigroupoidSubstitution = _⊸_
-- Semigroupoid._≋_ SemigroupoidSubstitution = _≡̇_
-- Semigroupoid._∙_ SemigroupoidSubstitution = _◇_
-- instance
-- Associativity-∘ : ∀ {𝔬} {⋆ : Set 𝔬} {f} {F : ⋆ → Set f} →
-- Associativity (λ {y} {z} g {x} f₁ x₁ → g (f₁ x₁))
-- (λ {x} {y} f₁ g → (x₁ : F x) → f₁ x₁ ≡ g x₁)
-- Associativity.associativity Associativity-∘ _ _ _ _ = refl
-- ExtensionalityS∘ : ∀ {𝔬} {⋆ : Set 𝔬} {f} {F : ⋆ → Set f} → ExtensionalitySemigroupoid (λ g f → {!(λ {_} → g) ∘ f!}) (_≡̇_ {B = F})
-- ExtensionalityS∘ = {!!}
-- -- Extensionality₂-≡̇ : ∀ {𝔬} {⋆ : Set 𝔬} {f} {F : ⋆ → Set f} {x y z : ⋆} →
-- -- Extensionality₂ {_} {F _ → _} {_} {λ _ → F _ → _}
-- -- (λ f₁ g → (x₁ : F y) → _≡_ (f₁ x₁) (g x₁)) {_}
-- -- {λ {w} _ → F _ → _} {_} {λ {w} {x₁} _ → F x → F y} {f}
-- -- (λ {w} {x₁} f₁ g → (x₂ : F x) → _≡_ {f} {F y} (f₁ x₂) (g x₂)) {f}
-- -- {λ {w} {y₁} _ → F x → F z} {f} {λ {w} {x₁} {y₁} _ → F x → F z} {f}
-- -- (λ {w} {x₁} {y₁} ′ {z₁} g →
-- -- (x₂ : F x) → _≡_ (′ x₂) (g x₂))
-- -- (λ {yz} f₁ x₂ → yz (f₁ x₂))
-- -- (λ {_} {yz} f₁ x₁ → yz (f₁ x₁))
-- -- Extensionality₂.extensionality₂ Extensionality₂-≡̇ w≡̇x y≡̇z f rewrite y≡̇z f = w≡̇x _
-- SemigroupoidIndexedFunction : ∀ {𝔬} {⋆ : Set 𝔬} {f} (F : ⋆ → Set f) → Semigroupoid _ _ _
-- Semigroupoid.⋆ (SemigroupoidIndexedFunction F) = _
-- Semigroupoid._⇒_ (SemigroupoidIndexedFunction F) m n = F m → F n
-- Semigroupoid._≋_ (SemigroupoidIndexedFunction F) = _≡̇_
-- Semigroupoid._∙_ (SemigroupoidIndexedFunction F) g f = g ∘ f
-- Semigroupoid.′associativity (SemigroupoidIndexedFunction F) = it
-- Semigroupoid.′extensionality₂ (SemigroupoidIndexedFunction F) = {!!} -- Extensionality₂-≡̇ {F = F}
-- open import Oscar.Property.Extensionality
-- instance
-- ex : ∀ {x y} →
-- Extensionality (λ f g →
-- (x₁ : Fin x) →
-- _≡_ (f x₁) (g x₁))
-- (λ {x₁} ‵ {y₁} g →
-- (x₂ : Term x) →
-- _≡_ {𝔣} {Term y} (‵ x₂) (g x₂))
-- _◃_ _◃_
-- Extensionality.extensionality ex = ◃-extensionality
-- open import Oscar.Property.Preservativity
-- instance
-- pres : ∀ {x y z} →
-- Preservativity {𝔣}
-- {Fin y → Term z} {𝔣}
-- {λ _ → Fin x → Term y} {𝔣}
-- {λ x₁ _ → Fin x → Term z}
-- (λ ‵ g x₁ → _◃_ {y} {z} ‵ (g x₁)) {𝔣}
-- {Term y →
-- Term z}
-- {𝔣}
-- {λ _ →
-- Term x →
-- Term y}
-- {𝔣}
-- {λ x₁ _ →
-- Term x →
-- Term z}
-- (λ ‵ f x₁ → ‵ (f x₁)) {𝔣}
-- (λ {x₁} {y₁} f g →
-- (x₂ : Term x) →
-- _≡_ {𝔣} {Term z} (f x₂) (g x₂))
-- (_◃_ {y} {z}) (λ {x₁} → _◃_ {x} {y}) (λ {x₁} {y₁} → _◃_ {x} {z})
-- Preservativity.preservativity pres ρ₂ ρ₁ t = ◃-associativity' t ρ₁ ρ₂
-- semifunctor : Semifunctor _ _ _ _ _ _
-- Semifunctor.semigroupoid₁ semifunctor = SemigroupoidSubstitution
-- Semifunctor.semigroupoid₂ semifunctor = SemigroupoidIndexedFunction Term
-- Semifunctor.μ semifunctor = id
-- Semifunctor.𝔣 semifunctor = _◃_
| 39.560748
| 154
| 0.581384
|
c7821d378f1a71faf459edc174b7a8a921838d12
| 1,667
|
agda
|
Agda
|
src/System/IO/Transducers/IO.agda
|
ilya-fiveisky/agda-system-io
|
d06c219c7b7afc85aae3b1d4d66951b889aa7371
|
[
"MIT"
] | 10
|
2015-01-04T13:45:16.000Z
|
2021-09-15T04:35:41.000Z
|
src/System/IO/Transducers/IO.agda
|
ilya-fiveisky/agda-system-io
|
d06c219c7b7afc85aae3b1d4d66951b889aa7371
|
[
"MIT"
] | null | null | null |
src/System/IO/Transducers/IO.agda
|
ilya-fiveisky/agda-system-io
|
d06c219c7b7afc85aae3b1d4d66951b889aa7371
|
[
"MIT"
] | 2
|
2017-08-10T06:12:54.000Z
|
2022-03-12T11:40:23.000Z
|
{-# OPTIONS --no-termination-check #-}
-- TODO: switch the termination checker back on.
open import Coinduction using ( ∞ ; ♭ ; ♯_ )
open import Data.Bool using ( Bool ; true ; false )
open import Data.Maybe using ( Maybe ; just ; nothing )
open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ )
open import Data.Product using ( ∃ ; _,_ )
open import Data.ByteString using ( ByteString ; strict ; null )
open import System.IO using ( IO ; Command ; return ; _>>_ ; _>>=_ ; skip ; getBytes ; putBytes ; commit )
open import System.IO.Transducers.Lazy using ( _⇒_ ; _⤇_ ; inp ; out ; done ; ι⁻¹ )
open import System.IO.Transducers.Session using ( I ; Σ ; Bytes )
open import System.IO.Transducers.Strict using ( _⇛_ )
module System.IO.Transducers.IO where
infixl 5 _$_
postulate
IOError : Set
_catch_ : ∀ {A} → (IO A) → (IOError → (IO A)) → (IO A)
{-# COMPILED_TYPE IOError IOError #-}
{-# COMPILED _catch_ (\ _ -> catch) #-}
_$_ : ∀ {A V F T} → (Σ {A} V F ⤇ T) → (a : A) → (♭ F a ⤇ T)
inp P $ a = ♭ P a
out b P $ a = out b (P $ a)
getBytes? : IO (Maybe (ByteString strict))
getBytes? = (getBytes >>= λ x → return (just x)) catch (λ e → return nothing)
runI : (I ⤇ Bytes) → Command
runI (out true (out x P)) = putBytes x >> commit >> runI P
runI (out false P) = skip
mutual
run? : (Bytes ⤇ Bytes) → (Maybe (ByteString strict)) → Command
run? P (just b) = run' (P $ true $ b)
run? P nothing = runI (P $ false)
run' : (Bytes ⤇ Bytes) → Command
run' (out true (out b P)) = putBytes b >> commit >> run' P
run' (out false P) = skip
run' P = getBytes? >>= run? P
run : (Bytes ⇒ Bytes) → Command
run P = run' (ι⁻¹ P)
| 34.020408
| 106
| 0.602879
|
19c29a94e773c659e0e3550e921ddea456233e05
| 2,581
|
agda
|
Agda
|
src/Model/Stream.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | 5
|
2021-04-13T21:31:17.000Z
|
2021-06-26T06:37:31.000Z
|
src/Model/Stream.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | null | null | null |
src/Model/Stream.agda
|
JLimperg/msc-thesis-code
|
104cddc6b65386c7e121c13db417aebfd4b7a863
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
module Model.Stream where
open import Model.Size as MS using
( Size ; Sizes ; _≤_ ; _<_ ; ≤-IsProp ; ≤-trans ; nat )
open import Model.Type.Core
open import Util.HoTT.FunctionalExtensionality
open import Util.HoTT.HLevel
open import Util.Prelude
import Data.Nat.Properties as ℕ
open Size
Colist : Size → Set
Colist n = ∀ m → nat m ≤ n → ℕ
abstract
Colist-≡⁺ : ∀ {n} {xs ys : Colist n}
→ (∀ m m≤n → xs m m≤n ≡ ys m m≤n)
→ xs ≡ ys
Colist-≡⁺ eq = funext λ m → funext λ m≤n → eq m m≤n
Colist-≡⁻ : ∀ {n} {xs ys : Colist n}
→ xs ≡ ys
→ ∀ m m≤n₀ m≤n₁ → xs m m≤n₀ ≡ ys m m≤n₁
Colist-≡⁻ {xs = xs} refl m m≤n₀ m≤n₁ = cong (xs m) (≤-IsProp _ _)
Colist-IsSet : ∀ {n} → IsSet (Colist n)
Colist-IsSet = ∀-IsSet λ m → ∀-IsSet λ m≤n → ℕ.≡-irrelevant
castColist : ∀ {n m} → n ≤ m → Colist m → Colist n
castColist n≤m xs k k≤n = xs k go
where abstract go = ≤-trans k≤n n≤m
Stream : ⟦Type⟧ Sizes
Stream = record
{ ObjHSet = λ n → HLevel⁺ (Colist n) Colist-IsSet
; eqHProp = λ {n} {n′} _ xs ys
→ ∀-HProp ℕ λ m → ∀-HProp (nat m ≤ n) λ m≤n → ∀-HProp (nat m ≤ n′) λ m≤n′
→ HLevel⁺ (xs m m≤n ≡ ys m m≤n′) ℕ.≡-irrelevant
; eq-refl = λ x m m≤n m≤n′ → cong (x m) (≤-IsProp _ _)
}
cons : ∀ {n} → ℕ → (∀ m → m < n → Colist m) → Colist n
cons x xs zero _ = x
cons x xs (suc k) Sk≤n = xs (nat k) go k MS.≤-refl
where abstract go = MS.Sn≤m→n<m Sk≤n
head : ∀ {n} → Colist n → ℕ
head xs = xs 0 MS.0≤n
tail : ∀ {n} → Colist n → ∀ m → m < n → Colist m
tail xs m m<n k k≤m = xs (suc k) go
where abstract go = MS.n<m→Sn≤m (MS.≤→<→< k≤m m<n)
abstract
cons-≡⁺ : ∀ {n n′ i i′ is is′}
→ i ≡ i′
→ (∀ m (m<n : m < n) (m<n′ : m < n′) k k≤m
→ is m m<n k k≤m ≡ is′ m m<n′ k k≤m)
→ ∀ m m<n m<n′
→ cons i is m m<n ≡ cons i′ is′ m m<n′
cons-≡⁺ i≡i′ is≡is′ zero m<n₀ m<n₁ = i≡i′
cons-≡⁺ {is′ = is′} i≡i′ is≡is′ (suc m) m<n m<n′
= trans (is≡is′ (nat m) (MS.Sn≤m→n<m m<n) (MS.Sn≤m→n<m m<n′) m MS.≤-refl)
(cong (λ p → is′ _ p _ _) (MS.<-IsProp _ _))
head-≡⁺ : ∀ {n n′ is is′}
→ (∀ m (m≤n : nat m ≤ n) (m≤n′ : nat m ≤ n′) → is m m≤n ≡ is′ m m≤n′)
→ head is ≡ head is′
head-≡⁺ is≡is′ = is≡is′ 0 MS.0≤n MS.0≤n
tail-≡⁺ : ∀ {n n′ is is′}
→ (∀ m (m≤n : nat m ≤ n) (m≤n′ : nat m ≤ n′)
→ is m m≤n ≡ is′ m m≤n′)
→ ∀ m m′ m<n m′<n′ k k≤m k≤m′
→ tail is m m<n k k≤m ≡ tail is′ m′ m′<n′ k k≤m′
tail-≡⁺ {is′ = is′} is≡is′ m m′ m<n m′<n′ k k≤m k≤m′
= trans (is≡is′ (suc k) _ (MS.n<m→Sn≤m (MS.≤→<→< k≤m′ m′<n′)))
(cong (is′ (suc k)) (≤-IsProp _ _))
| 27.457447
| 79
| 0.496707
|
03d5881b8b1194f2b27a29fe135248dfdde7e6ab
| 3,870
|
agda
|
Agda
|
OutsideIn/TypeSchema.agda
|
liamoc/outside-in
|
fc1fc1bba2af95806d9075296f9ed1074afa4c24
|
[
"BSD-3-Clause"
] | 2
|
2015-09-14T05:22:15.000Z
|
2020-11-19T14:30:07.000Z
|
OutsideIn/TypeSchema.agda
|
liamoc/outside-in
|
fc1fc1bba2af95806d9075296f9ed1074afa4c24
|
[
"BSD-3-Clause"
] | null | null | null |
OutsideIn/TypeSchema.agda
|
liamoc/outside-in
|
fc1fc1bba2af95806d9075296f9ed1074afa4c24
|
[
"BSD-3-Clause"
] | null | null | null |
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn.TypeSchema(x : X) where
open X(x)
open import Data.Vec hiding (_>>=_)
data NameType : Set where
Regular : NameType
Datacon : ℕ → NameType
data TypeSchema ( n : Set) : NameType → Set where
∀′_·_⇒_ : (v : ℕ) → QConstraint (n ⨁ v) → Type (n ⨁ v) → TypeSchema n Regular
DC∀′_,_·_⇒_⟶_ : (a b : ℕ){l : ℕ} → QConstraint ((n ⨁ a) ⨁ b)
→ Vec (Type ((n ⨁ a) ⨁ b)) l → n → TypeSchema n (Datacon l)
DC∀_·_⟶_ : (a : ℕ){l : ℕ} → Vec (Type (n ⨁ a)) l → n → TypeSchema n (Datacon l)
private
module PlusN-f n = Functor (Monad.is-functor (PlusN-is-monad {n}))
module Vec-f {n} = Functor (vec-is-functor {n})
module Type-f = Functor (type-is-functor)
module QC-f = Functor (qconstraint-is-functor)
private
fmap-schema : {A B : Set}{x : NameType} → (A → B) → TypeSchema A x → TypeSchema B x
fmap-schema f (∀′ n · Q ⇒ τ) = ∀′ n · QC-f.map (pn.map f) Q ⇒ Type-f.map (pn.map f) τ
where module pn = PlusN-f n
fmap-schema f (DC∀′ a , b · Q ⇒ τs ⟶ K) = DC∀′ a , b · QC-f.map (pb.map (pa.map f)) Q
⇒ map (Type-f.map (pb.map (pa.map f))) τs
⟶ f K
where module pa = PlusN-f a
module pb = PlusN-f b
fmap-schema f (DC∀ a · τs ⟶ K) = DC∀ a · map (Type-f.map (pa.map f)) τs ⟶ f K
where module pa = PlusN-f a
fmap-schema-id : {A : Set}{x : NameType} {f : A → A}
→ isIdentity f → isIdentity (fmap-schema {A}{A}{x} f)
fmap-schema-id isid {∀′ n · Q ⇒ τ} = cong₂ (∀′_·_⇒_ n) (QC-f.identity (pn.identity isid))
(Type-f.identity (pn.identity isid))
where module pn = PlusN-f n
fmap-schema-id isid {DC∀′ a , b · Q ⇒ τs ⟶ K}
= cong₃ (DC∀′_,_·_⇒_⟶_ a b)
(QC-f.identity (pb.identity (pa.identity isid)))
(Vec-f.identity (Type-f.identity (pb.identity (pa.identity isid))))
isid
where module pa = PlusN-f a
module pb = PlusN-f b
fmap-schema-id isid {DC∀ a · τs ⟶ K}
= cong₂ (DC∀_·_⟶_ a)
(Vec-f.identity (Type-f.identity (pa.identity isid)))
isid
where module pa = PlusN-f a
fmap-schema-comp : {A B C : Set}{s : NameType} {f : A → B} {g : B → C} {x : TypeSchema A s}
→ fmap-schema (g ∘ f) x ≡ fmap-schema g (fmap-schema f x)
fmap-schema-comp {x = ∀′ n · Q ⇒ τ} = cong₂ (∀′_·_⇒_ n)
(Functor.composite (qconstraint-is-functor ∘f pnf))
(Functor.composite (type-is-functor ∘f pnf))
where pnf = Monad.is-functor (PlusN-is-monad {n})
fmap-schema-comp {x = DC∀′ a , b · Q ⇒ τs ⟶ K}
= cong₃ (DC∀′_,_·_⇒_⟶_ a b)
(Functor.composite (qconstraint-is-functor ∘f pbf ∘f paf ))
(Functor.composite (vec-is-functor ∘f type-is-functor ∘f pbf ∘f paf))
refl
where module pa = PlusN-f a
module pb = PlusN-f b
paf = Monad.is-functor (PlusN-is-monad {a})
pbf = Monad.is-functor (PlusN-is-monad {b})
fmap-schema-comp {x = DC∀ a · τs ⟶ K}
= cong₂ (DC∀_·_⟶_ a)
(Functor.composite (vec-is-functor ∘f type-is-functor ∘f paf))
refl
where module pa = PlusN-f a
paf = Monad.is-functor (PlusN-is-monad {a})
type-schema-is-functor : ∀{s} → Functor (λ x → TypeSchema x s)
type-schema-is-functor = record { map = fmap-schema
; identity = fmap-schema-id
; composite = fmap-schema-comp
}
| 46.071429
| 100
| 0.488372
|
4316c120e0d249ae12910919aff69c37a3304d08
| 1,796
|
agda
|
Agda
|
test/Succeed/Issue1271a.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1271a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1271a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Empty, unit and equality.
⊥ = (X : Set) → X
⊤ = (X : Set) → X → X
data _≡_ {l}{A : Set l}(x : A) : A → Set l where
<> : x ≡ x
-- The fixpoint of the identity functor as a data definition.
module Data where
data μId : Set where
In : μId → μId
-- μId can be proved empty. Here are both a direct proof and one that
-- relies on the eliminator for μId.
¬μId : μId → ⊥
¬μId (In x) = ¬μId x
μId-elim : ∀ {l}(P : μId → Set l) → (∀ x → P x → P (In x)) → ∀ x → P x
μId-elim P m (In x) = m x (μId-elim P m x)
¬Id' : μId → ⊥
¬Id' = μId-elim (λ _ → ⊥) (λ _ p → p)
-- To prove ∀ x → ¬ (x ≡ In x) it is enough to call ¬μId (or ¬μId'): the
-- equality proof is not inspected.
¬id≡In-empty : ∀ {x} → x ≡ In x → ⊥
¬id≡In-empty {x} _ = ¬μId x -- or ¬Id' x
-- Alternatively, one could use an absurd pattern which relies on the
-- presence of a cycle.
¬id≡In-pm : ∀ {x} → x ≡ In x → ⊥
¬id≡In-pm ()
-- The case of inductive records is a bit different. Here is the fixpoint
-- of the identity functor as an inductive record definition.
module Record where
record μId : Set where
inductive; pattern
constructor In
field Out : μId
open μId
-- It does not seem possible to prove Record.μId empty, as Agda does not
-- consider the following definitions as terminating.
-- EDIT: it does now.
¬μId : μId → ⊥
¬μId (In x) = ¬μId x
μId-elim : ∀ {l}(P : μId → Set l) → (∀ x → P x → P (In x)) → ∀ x → P x
μId-elim P m (In x) = m x (μId-elim P m x)
¬Id' : μId → ⊥
¬Id' = μId-elim (λ _ → ⊥) (λ _ p → p)
¬id≡In-empty : ∀ {x} → x ≡ In x → ⊥
¬id≡In-empty {x} _ = ¬μId x -- or ¬Id' x
-- However, we can still use an absurd pattern as in Data.¬id≡In-pm.
¬id≡In-pm : ∀ {x} → x ≡ In x → ⊥
¬id≡In-pm ()
-- This should not be possible.
| 24.27027
| 74
| 0.55902
|
5effdaab03d73e764cfa7d863eabc0577bf62731
| 2,949
|
agda
|
Agda
|
Cubical/Categories/Category/Base.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 301
|
2018-10-17T18:00:24.000Z
|
2022-03-24T02:10:47.000Z
|
Cubical/Categories/Category/Base.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 584
|
2018-10-15T09:49:02.000Z
|
2022-03-30T12:09:17.000Z
|
Cubical/Categories/Category/Base.agda
|
hyleIndex/cubical
|
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
|
[
"MIT"
] | 134
|
2018-11-16T06:11:03.000Z
|
2022-03-23T16:22:13.000Z
|
{-# OPTIONS --safe #-}
module Cubical.Categories.Category.Base where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
private
variable
ℓ ℓ' : Level
-- Precategories
record Precategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
-- no-eta-equality ; NOTE: need eta equality for `opop`
field
ob : Type ℓ
Hom[_,_] : ob → ob → Type ℓ'
id : ∀ x → Hom[ x , x ]
_⋆_ : ∀ {x y z} (f : Hom[ x , y ]) (g : Hom[ y , z ]) → Hom[ x , z ]
-- TODO: change these to implicit argument
⋆IdL : ∀ {x y : ob} (f : Hom[ x , y ]) → (id x) ⋆ f ≡ f
⋆IdR : ∀ {x y} (f : Hom[ x , y ]) → f ⋆ (id y) ≡ f
⋆Assoc : ∀ {u v w x} (f : Hom[ u , v ]) (g : Hom[ v , w ]) (h : Hom[ w , x ]) → (f ⋆ g) ⋆ h ≡ f ⋆ (g ⋆ h)
-- composition: alternative to diagramatic order
_∘_ : ∀ {x y z} (g : Hom[ y , z ]) (f : Hom[ x , y ]) → Hom[ x , z ]
g ∘ f = f ⋆ g
open Precategory
-- Helpful syntax/notation
_[_,_] : (C : Precategory ℓ ℓ') → (x y : C .ob) → Type ℓ'
_[_,_] = Hom[_,_]
-- needed to define this in order to be able to make the subsequence syntax declaration
seq' : ∀ (C : Precategory ℓ ℓ') {x y z} (f : C [ x , y ]) (g : C [ y , z ]) → C [ x , z ]
seq' = _⋆_
infixl 15 seq'
syntax seq' C f g = f ⋆⟨ C ⟩ g
-- composition
comp' : ∀ (C : Precategory ℓ ℓ') {x y z} (g : C [ y , z ]) (f : C [ x , y ]) → C [ x , z ]
comp' = _∘_
infixr 16 comp'
syntax comp' C g f = g ∘⟨ C ⟩ f
-- Categories
record isCategory (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
field
isSetHom : ∀ {x y} → isSet (C [ x , y ])
-- Isomorphisms and paths in precategories
record CatIso {C : Precategory ℓ ℓ'} (x y : C .Precategory.ob) : Type ℓ' where
constructor catiso
field
mor : C [ x , y ]
inv : C [ y , x ]
sec : inv ⋆⟨ C ⟩ mor ≡ C .id y
ret : mor ⋆⟨ C ⟩ inv ≡ C .id x
pathToIso : {C : Precategory ℓ ℓ'} (x y : C .ob) (p : x ≡ y) → CatIso {C = C} x y
pathToIso {C = C} x y p = J (λ z _ → CatIso x z) (catiso (C .id x) idx (C .⋆IdL idx) (C .⋆IdL idx)) p
where
idx = C .id x
-- Univalent Categories
record isUnivalent (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
field
univ : (x y : C .ob) → isEquiv (pathToIso {C = C} x y)
-- package up the univalence equivalence
univEquiv : ∀ (x y : C .ob) → (x ≡ y) ≃ (CatIso x y)
univEquiv x y = (pathToIso {C = C} x y) , (univ x y)
-- The function extracting paths from category-theoretic isomorphisms.
CatIsoToPath : {x y : C .ob} (p : CatIso x y) → x ≡ y
CatIsoToPath {x = x} {y = y} p =
equivFun (invEquiv (univEquiv x y)) p
open isUnivalent public
-- Opposite Categories
_^op : Precategory ℓ ℓ' → Precategory ℓ ℓ'
(C ^op) .ob = C .ob
(C ^op) .Hom[_,_] x y = C .Hom[_,_] y x
(C ^op) .id = C .id
(C ^op) ._⋆_ f g = C ._⋆_ g f
(C ^op) .⋆IdL = C .⋆IdR
(C ^op) .⋆IdR = C .⋆IdL
(C ^op) .⋆Assoc f g h = sym (C .⋆Assoc _ _ _)
open isCategory public
| 27.560748
| 109
| 0.550017
|
8bbce78e661551632322dd60b8ce4d64173fbe76
| 6,581
|
agda
|
Agda
|
src/Categories/NaturalTransformation/NaturalIsomorphism.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/NaturalTransformation/NaturalIsomorphism.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/NaturalTransformation/NaturalIsomorphism.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Categories.NaturalTransformation.NaturalIsomorphism where
open import Level
open import Data.Product using (_×_; _,_; map; zip)
open import Function using (flip)
open import Categories.Category
open import Categories.Functor as ℱ renaming (id to idF)
import Categories.NaturalTransformation as NT
open NT hiding (id)
import Categories.Morphism as Morphism
import Categories.Morphism.Properties as Morphismₚ
import Categories.Morphism.Reasoning as MR
open import Categories.Functor.Properties
open import Relation.Binary
private
variable
o ℓ e o′ ℓ′ e′ : Level
B C D E : Category o ℓ e
record NaturalIsomorphism {C : Category o ℓ e}
{D : Category o′ ℓ′ e′}
(F G : Functor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where
private
module F = Functor F
module G = Functor G
field
F⇒G : NaturalTransformation F G
F⇐G : NaturalTransformation G F
module ⇒ = NaturalTransformation F⇒G
module ⇐ = NaturalTransformation F⇐G
field
iso : ∀ X → Morphism.Iso D (⇒.η X) (⇐.η X)
module iso X = Morphism.Iso (iso X)
open Morphism D
FX≅GX : ∀ {X} → F.F₀ X ≅ G.F₀ X
FX≅GX {X} = record
{ from = _
; to = _
; iso = iso X
}
op : NaturalIsomorphism G.op F.op
op = record
{ F⇒G = ⇒.op
; F⇐G = ⇐.op
; iso = λ X → record
{ isoˡ = iso.isoʳ X
; isoʳ = iso.isoˡ X
}
}
op′ : NaturalIsomorphism F.op G.op
op′ = record
{ F⇒G = ⇐.op
; F⇐G = ⇒.op
; iso = λ X → record
{ isoˡ = iso.isoˡ X
; isoʳ = iso.isoʳ X
}
}
-- This helper definition lets us specify only one of the commuting
-- squares and have the other one derived.
record NIHelper {C : Category o ℓ e}
{D : Category o′ ℓ′ e′}
(F G : Functor C D) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
open Functor F using (F₀; F₁)
open Functor G using () renaming (F₀ to G₀; F₁ to G₁)
open Category D
field
η : ∀ X → D [ F₀ X , G₀ X ]
η⁻¹ : ∀ X → D [ G₀ X , F₀ X ]
commute : ∀ {X Y} (f : C [ X , Y ]) → η Y ∘ F₁ f ≈ G₁ f ∘ η X
iso : ∀ X → Morphism.Iso D (η X) (η⁻¹ X)
niHelper : ∀ {F G : Functor C D} → NIHelper F G → NaturalIsomorphism F G
niHelper {D = D} {F = F} {G = G} α = record
{ F⇒G = ntHelper record { η = η ; commute = commute }
; F⇐G = ntHelper record
{ η = η⁻¹
; commute = λ {X Y} f → begin
η⁻¹ Y ∘ F₁ G f ≈˘⟨ cancelʳ (isoʳ (iso X)) ⟩
((η⁻¹ Y ∘ F₁ G f) ∘ η X) ∘ η⁻¹ X ≈˘⟨ pushʳ (commute f) ⟩∘⟨refl ⟩
(η⁻¹ Y ∘ (η Y ∘ F₁ F f)) ∘ η⁻¹ X ≈⟨ cancelˡ (isoˡ (iso Y)) ⟩∘⟨refl ⟩
F₁ F f ∘ η⁻¹ X ∎
}
; iso = iso
}
where
open Morphism.Iso
open NIHelper α
open Functor
open Category D
open HomReasoning
open MR D
open NaturalIsomorphism
infixr 9 _ⓘᵥ_ _ⓘₕ_ _ⓘˡ_ _ⓘʳ_
infix 4 _≃_
-- commonly used short-hand in CT for NaturalIsomorphism
_≃_ : (F G : Functor C D) → Set _
_≃_ = NaturalIsomorphism
_ⓘᵥ_ : {F G H : Functor C D} → G ≃ H → F ≃ G → F ≃ H
_ⓘᵥ_ {D = D} α β = record
{ F⇒G = F⇒G α ∘ᵥ F⇒G β
; F⇐G = F⇐G β ∘ᵥ F⇐G α
; iso = λ X → Iso-∘ (iso β X) (iso α X)
}
where open NaturalIsomorphism
open Morphismₚ D
_ⓘₕ_ : {H I : Functor D E} {F G : Functor C D} → H ≃ I → F ≃ G → (H ∘F F) ≃ (I ∘F G)
_ⓘₕ_ {E = E} {I = I} α β = record
{ F⇒G = F⇒G α ∘ₕ F⇒G β
; F⇐G = F⇐G α ∘ₕ F⇐G β
; iso = λ X → Iso-resp-≈ (Iso-∘ (iso α _) ([ I ]-resp-Iso (iso β X)))
E.Equiv.refl (commute (F⇐G α) (η (F⇐G β) X))
}
where open NaturalIsomorphism
open NaturalTransformation
module E = Category E
open E.Equiv
open Morphismₚ E
_ⓘˡ_ : {F G : Functor C D} → (H : Functor D E) → (η : F ≃ G) → H ∘F F ≃ H ∘F G
H ⓘˡ η = record
{ F⇒G = H ∘ˡ F⇒G η
; F⇐G = H ∘ˡ F⇐G η
; iso = λ X → [ H ]-resp-Iso (iso η X)
}
where open Functor H
_ⓘʳ_ : {F G : Functor C D} → (η : F ≃ G) → (K : Functor E C) → F ∘F K ≃ G ∘F K
η ⓘʳ K = record
{ F⇒G = F⇒G η ∘ʳ K
; F⇐G = F⇐G η ∘ʳ K
; iso = λ X → iso η (F₀ X)
}
where open Functor K
refl : Reflexive (NaturalIsomorphism {C = C} {D = D})
refl {D = D} = record
{ F⇒G = NT.id
; F⇐G = NT.id
; iso = λ _ → record
{ isoˡ = Category.identityˡ D
; isoʳ = Category.identityʳ D
}
}
sym : Symmetric (NaturalIsomorphism {C = C} {D = D})
sym {D = D} F≃G = record
{ F⇒G = F⇐G F≃G
; F⇐G = F⇒G F≃G
; iso = λ X →
let open Iso (iso F≃G X) in record
{ isoˡ = isoʳ
; isoʳ = isoˡ
}
}
where open Morphism D
trans : Transitive (NaturalIsomorphism {C = C} {D = D})
trans = flip _ⓘᵥ_
isEquivalence : {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → IsEquivalence (NaturalIsomorphism {C = C} {D = D})
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
module ≃ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} = IsEquivalence (isEquivalence {C = C} {D = D})
Functor-NI-setoid : (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Setoid _ _
Functor-NI-setoid C D = record
{ Carrier = Functor C D
; _≈_ = NaturalIsomorphism
; isEquivalence = isEquivalence
}
module LeftRightId (F : Functor C D) where
module D = Category D
iso-id-id : (X : Category.Obj C) → Morphism.Iso D {A = Functor.F₀ F X} D.id D.id
iso-id-id X = record { isoˡ = D.identityˡ ; isoʳ = D.identityʳ }
-- Left and Right and 'Central' Unitors, Natural Isomorphisms.
module _ {F : Functor C D} where
open Category.HomReasoning D
open Functor F
open LeftRightId F
open Category D
unitorˡ : ℱ.id ∘F F ≃ F
unitorˡ = record { F⇒G = id∘F⇒F ; F⇐G = F⇒id∘F ; iso = iso-id-id }
unitorʳ : F ∘F ℱ.id ≃ F
unitorʳ = record { F⇒G = F∘id⇒F ; F⇐G = F⇒F∘id ; iso = iso-id-id }
unitor² : {C : Category o ℓ e} → ℱ.id ∘F ℱ.id ≃ ℱ.id {C = C}
unitor² = record { F⇒G = id∘id⇒id ; F⇐G = id⇒id∘id ; iso = LeftRightId.iso-id-id ℱ.id }
-- associator
module _ (F : Functor B C) (G : Functor C D) (H : Functor D E) where
open Category.HomReasoning E
open Category E
open Functor
open LeftRightId (H ∘F (G ∘F F))
private
-- components of α
assocʳ : NaturalTransformation ((H ∘F G) ∘F F) (H ∘F (G ∘F F))
assocʳ = ntHelper record { η = λ _ → id ; commute = λ _ → MR.id-comm-sym E }
assocˡ : NaturalTransformation (H ∘F (G ∘F F)) ((H ∘F G) ∘F F)
assocˡ = ntHelper record { η = λ _ → id ; commute = λ _ → MR.id-comm-sym E }
associator : (H ∘F G) ∘F F ≃ H ∘F (G ∘F F)
associator = record { F⇒G = assocʳ ; F⇐G = assocˡ ; iso = iso-id-id }
| 27.767932
| 118
| 0.553107
|
d1d7b5a554c84bf3c79e6f36fd657c48a67c1817
| 2,198
|
agda
|
Agda
|
experimental/GlobularTypes.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 1
|
2021-06-30T00:17:55.000Z
|
2021-06-30T00:17:55.000Z
|
experimental/GlobularTypes.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
experimental/GlobularTypes.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --copatterns #-}
open import HoTT
module experimental.GlobularTypes where
{- Globular types as a coinductive record -}
record Glob (i : ULevel) : Type (suc i) where
coinductive
constructor glob
field
Ob : Type i
Hom : (a b : Ob) → Glob i
open Glob public
{- The terminal globular type -}
Unit-glob : Glob zero
Ob Unit-glob = Unit
Hom Unit-glob _ _ = Unit-glob
{- The tower of identity types -}
Id-glob : ∀ {i} (A : Type i) → Glob zero
Ob (Id-glob A) = A
Hom (Id-glob A) a b = Id-glob (a == b)
{- Bisimulation between globular types -}
record _~_ {i} (G H : Glob i) : Type (suc i) where
coinductive
constructor glob~
field
Ob= : Ob G == Ob H
Hom= : {a : Ob G} {a' : Ob H} (p : a == a' [ (λ x → x) ↓ Ob= ])
{b : Ob G} {b' : Ob H} (q : b == b' [ (λ x → x) ↓ Ob= ])
→ Hom G a b ~ Hom H a' b'
open _~_ public
=-to-~ : ∀ {i} {G H : Glob i} → G == H → G ~ H
Ob= (=-to-~ p) = ap Ob p
Hom= (=-to-~ p) q r =
=-to-~ (↓-app→cst-out (↓-→-out (apd Hom p)
(↓-ap-out _ Ob p q))
(↓-ap-out _ Ob p r))
-- The definition of [Hom= (=-to-~ p) q r] would/should just be
-- [=-to-~ (apd Hom p q r)] in infinite-dimensional type theory, but here we
-- need to add a lot of non-sense to make it type-check.
{-
We postulate that bisimilarity is equality, because this should be true.
-}
postulate
bisim-is-equiv : ∀ {i} {G H : Glob i} → is-equiv (=-to-~ :> (G == H → G ~ H))
bisim-equiv : ∀ {i} {G H : Glob i} → (G == H) ≃ (G ~ H)
bisim-equiv = (=-to-~ , bisim-is-equiv)
bisim : ∀ {i} {G H : Glob i} → (G ~ H) → G == H
bisim e = <– bisim-equiv e
{-
The type of globular types is the terminal coalgebra of the appropriate thing.
This is proved in the following two lemmas.
-}
Glob-corec : ∀ {i} {A : Type (suc i)} (Ob* : A → Type i)
(Hom* : (x : A) (a b : Ob* x) → A) → (A → Glob i)
Ob (Glob-corec Ob* Hom* x) = Ob* x
Hom (Glob-corec Ob* Hom* x) a b = Glob-corec Ob* Hom* (Hom* x a b)
eta : ∀ {i} {A : Type (suc i)} (Ob* : A → Type i)
(Hom* : (x : A) (a b : Ob* x) → A)
(f g : A → Glob i) (s : (x : A) → f x ~ g x) → f == g
eta Ob* Hom* f g s = funext (λ x → bisim (s x))
| 30.109589
| 79
| 0.534122
|
31995b9f2ea95922a7928e9120a732bca7b17a8e
| 9,303
|
agda
|
Agda
|
data/github.com/Saizan/miller/17637ec5267fac2f2072f8c5d5e2a82d11505a46/Injections.agda
|
ajnavarro/language-dataset
|
34e2980af98ff2ded500619edce3e0907a6e9050
|
[
"MIT"
] | 9
|
2018-08-07T11:54:33.000Z
|
2022-03-11T09:48:45.000Z
|
data/github.com/Saizan/miller/17637ec5267fac2f2072f8c5d5e2a82d11505a46/Injections.agda
|
ajnavarro/language-dataset
|
34e2980af98ff2ded500619edce3e0907a6e9050
|
[
"MIT"
] | 91
|
2019-11-11T15:41:26.000Z
|
2022-03-21T04:17:18.000Z
|
data/github.com/Saizan/miller/17637ec5267fac2f2072f8c5d5e2a82d11505a46/Injections.agda
|
ajnavarro/language-dataset
|
34e2980af98ff2ded500619edce3e0907a6e9050
|
[
"MIT"
] | 3
|
2019-11-13T12:44:41.000Z
|
2022-01-06T19:34:26.000Z
|
module Injections where
open import Data.Product
open import Relation.Nullary
open import Data.Empty
open import Data.Sum
open import Support.Equality
open ≡-Reasoning
open import Vars public
open import Injections.Type public
invert : ∀ {A : Set} {xs ys : List A} (i : Inj xs ys) → ∀ {t} (y : ys ∋ t) → Dec (∃ \ x → i $ x ≡ y)
invert [] y = no (λ { (() , _)})
invert ( z ∷ i [ pf ]) y with z ≅∋? y
invert (.y ∷ i [ pf ]) y | yes refl` = yes (zero , refl)
invert ( z ∷ i [ pf ]) y | no z≢y with invert i y
invert ( z ∷ i [ pf ]) y | no z≢y | yes (x , i$x≡y) = yes (suc x , i$x≡y)
invert ( z ∷ i [ pf ]) y | no z≢y | no ¬[i⁻¹y] = no (neither z≢y ¬[i⁻¹y])
where
neither : ∀ {t} {y : _ ∋ t} → ¬ z ≅∋ y → ¬ (∃ \ x → i $ x ≡ y) → ¬ Σ (_ ∷ _ ∋ _) (λ x → (z ∷ i [ pf ]) $ x ≡ y)
neither ¬1 ¬2 (zero , p) = ¬1 (refl , ≡-to-≅ p)
neither ¬1 ¬2 (suc x , p) = ¬2 (x , p)
abstract
_∘i_ : ∀ {A : Set}{xs ys zs : List A} → Inj ys zs → Inj xs ys → Inj xs zs
f ∘i g = quo (λ x x₁ → f $ (g $ x₁)) {λ x x₁ → injective g _ _ (injective f _ _ x₁)}
mutual
id-i : ∀ {A : Set}{xs : List A} → Inj xs xs
id-i = quo (\ _ x → x) {\ _ e → e}
Inj-thin : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> Inj xs (ys - v) → Inj xs ys
Inj-thin v f = quo (λ x x₁ → thin v x (f $ x₁)) {λ x x₁ → injective f _ _ (thin-inj v x₁)}
abstract
id-i$ : ∀ {A : Set}{xs : List A} -> ∀ {x}(v : xs ∋ x) -> id-i $ v ≡ v
id-i$ v = iso2 _ _ v
right-id : ∀ {A : Set}{xs ys : List A} → (i : Inj xs ys) → i ∘i id-i ≡ i
right-id i = begin quo (λ x z → i $ (id-i $ z)) ≡⟨ quo-ext (λ x v → cong (_$_ i) (iso2 _ _ v)) ⟩
quo (λ x → _$_ i) ≡⟨ iso1 i (λ x eq → injective i _ _ eq) ⟩
i ∎
left-id : ∀ {A : Set}{xs ys : List A} → (i : Inj xs ys) → id-i ∘i i ≡ i
left-id i = begin quo (λ x z → id-i $ (i $ z)) ≡⟨ quo-ext (λ x v → (iso2 _ _ (i $ v))) ⟩
quo (λ x → _$_ i) ≡⟨ iso1 i (λ x eq → injective i _ _ eq) ⟩
i ∎
apply-∘ : ∀ {A : Set}{xs ys zs : List A} → (j : Inj ys zs) → (i : Inj xs ys) → ∀ {x} {v : x ∈ xs} → (j ∘i i) $ v ≡ j $ (i $ v)
apply-∘ j i {x}{v} = iso2 _ _ v
assoc-∘i : ∀ {A : Set}{xs ys ws zs : List A} {f : Inj ws zs}{g : Inj _ ws}{h : Inj xs ys} → f ∘i (g ∘i h) ≡ (f ∘i g) ∘i h
assoc-∘i {f = f}{g = g}{h = h} = quo-ext λ x v →
begin f $ (quo (λ x₁ x₂ → g $ (h $ x₂)) $ v) ≡⟨ cong (_$_ f) (iso2 _ _ v) ⟩
f $ (g $ (h $ v)) ≡⟨ sym (iso2 _ _ (h $ v)) ⟩
quo (λ x₁ x₂ → f $ (g $ x₂)) $ (h $ v) ∎
cong-$ : ∀ {A : Set}{xs ys : List A} {f g : _} {inj1 inj2} → quo {_} {xs} {ys} f {inj1} ≡ quo g {inj2} → ∀ {s} (x : xs ∋ s) → f s x ≡ g s x
cong-$ {A} {xs} {ys} {f} {g} eq x = begin f _ x ≡⟨ sym (iso2 f _ x) ⟩
quo f $ x ≡⟨ cong (λ f₁ → f₁ $ x) eq ⟩
quo g $ x ≡⟨ iso2 g _ x ⟩
g _ x ∎
∘i-inj : ∀ {A : Set}{xs ys zs : List A} → (i : Inj ys zs) (j1 j2 : Inj xs ys) → (i ∘i j1) ≡ (i ∘i j2) → j1 ≡ j2
∘i-inj i j1 j2 eq = begin j1 ≡⟨ sym (iso1 j1 (λ x x₁ → injective j1 _ _ x₁)) ⟩
quo (λ x → _$_ j1) ≡⟨ quo-ext (λ x v → injective i _ _ (cong-$ eq v)) ⟩
quo (λ x → _$_ j2) ≡⟨ iso1 j2 (λ x x₁ → injective j2 _ _ x₁) ⟩
j2 ∎
Inj-thin-$ : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> (f : Inj xs (ys - v)) -> ∀ {y}(u : xs ∋ y) -> Inj-thin v f $ u ≡ thin v _ (f $ u)
Inj-thin-$ v f u = iso2 _ _ u
Inj-thin-inj : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> (f g : Inj xs (ys - v)) -> Inj-thin v f ≡ Inj-thin v g -> f ≡ g
Inj-thin-inj v f g eq = ext-$ f g (λ x v₁ → thin-inj v (cong-$ {inj1 = λ x₁ x₂ → injective f _ _ (thin-inj v x₂)} {inj2 = λ x₁ x₂ → injective g _ _ (thin-inj v x₂)} eq v₁)) -- XXX regression
Inj-thin-∘i : ∀ {A : Set}{x : A}{zs xs ys} → (v : ys ∋ x) -> (f : Inj xs (ys - v)) (m : Inj zs xs) -> Inj-thin v f ∘i m ≡ Inj-thin v (f ∘i m)
Inj-thin-∘i v f m = quo-ext (λ x v₁ → trans (iso2 _ _ (m $ v₁)) (cong (thin v x) (sym (iso2 _ _ v₁))))
v∉Inj-thinv : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> (f : Inj xs (ys - v)) -> v ∉ Inj-thin v f
v∉Inj-thinv v f = ∉Im$-∉ (λ x x₁ → thin v _ (f $ x₁)) v (λ b → x∉thinx v (f $ b))
test : ∀ {A : Set} {xs ys} → (f : ∀ (x : A) → x ∈ xs → x ∈ ys){inj1 inj2 : ∀ x → {i j : x ∈ xs} → f x i ≡ f x j → i ≡ j} → quo f {inj1} ≡ quo f {inj2}
test f = refl
weak : ∀ {A : Set}{x : A}{xs ys} → Inj xs ys → Inj xs (x ∷ ys)
weak f = Inj-thin zero f
apply-weakid : ∀ {A : Set}{xs : List A}{x y}(i : xs ∋ x) -> weak {x = y} id-i $ i ≡ suc i
apply-weakid i = begin
quo (λ x v → thin zero x (id-i $ v)) $ i ≡⟨ iso2 _ _ i ⟩
suc (id-i $ i) ≡⟨ cong suc (id-i$ i) ⟩
suc i ∎
_∷[]_ : ∀ {A : Set}{x : A}{xs ys} → (v : ys ∋ x) -> Inj xs (ys - v) → Inj (x ∷ xs) ys
v ∷[] f = v ∷ Inj-thin v f [ v∉Inj-thinv v f ]
cons : ∀ {A : Set}{x : A}{xs ys} → Inj xs ys → Inj (x ∷ xs) (x ∷ ys)
cons z = zero ∷[] z
abstract
cons-id : ∀ {A : Set}{x : A}{xs} -> cons id-i ≡ id-i {_} {x ∷ xs}
cons-id = cong-∷[] refl (quo-ext (λ x v → cong suc (id-i$ v)))
cons-∘i : ∀ {A : Set}{xs ys zs : List A}{x} → (j : Inj ys zs) → (i : Inj xs ys) → cons {A} {x} (j ∘i i) ≡ cons j ∘i cons i
cons-∘i j i = cong-∷[] refl (begin
quo (λ x z → suc (proj₁ (quo' (λ v v₁ → j $ (i $ v₁))) $ z))
≡⟨ quo-ext {injg = λ x x₁ → injective i _ _ (injective (weak j) _ _ x₁)} (λ x v →
begin suc (proj₁ (quo' (λ v₁ v₂ → j $ (i $ v₂))) $ v) ≡⟨ cong suc (iso2 _ _ v) ⟩
suc (j $ (i $ v)) ≡⟨ sym (iso2 _ _ (i $ v)) ⟩
quo (λ x₁ x₂ → suc (j $ x₂)) $ (i $ v) ∎) ⟩
quo (λ x v → cons j $ suc (i $ v)) ≡⟨ sym (quo-ext (λ x₁ v → cong (_$_ (cons j)) (iso2 (λ _ x → suc (i $ x)) _ v))) ⟩
quo (λ x v → cons j $ (quo (λ z x₁ → suc (i $ x₁)) $ v)) ∎)
∘-ext : ∀ {A : Set}{xs ys zs ws : List A} {f : Inj ys zs}{g : Inj xs ys}{f1 : Inj ws zs}{g1 : Inj xs ws} -> f ∘i g ≡ f1 ∘i g1
-> (∀ x (v : xs ∋ x) -> f $ (g $ v) ≡ f1 $ (g1 $ v))
∘-ext eq = (\ x v -> trans (sym (apply-∘ _ _)) (trans (cong (\ f -> f $ v) eq) ((apply-∘ _ _))))
ext-∘ : ∀ {A : Set}{xs ys zs ws : List A} {f : Inj ys zs}{g : Inj xs ys}{f1 : Inj ws zs}{g1 : Inj xs ws} ->
(∀ x (v : xs ∋ x) -> f $ (g $ v) ≡ f1 $ (g1 $ v)) -> f ∘i g ≡ f1 ∘i g1
ext-∘ eq = ext-$ _ _ (\ x v -> trans (apply-∘ _ _) (trans (eq x v) (sym (apply-∘ _ _))))
-- Transforming pointwise representations of universal morphisms into Inj ones.
Equ-universal-quote : ∀ {A : Set} {xs ys : List A} → (i j : Inj xs ys) → ∀ {E} → (e : Inj E xs) ->
(∀ a (y : xs ∋ a) -> i $ y ≡ j $ y -> ∃ \ z -> y ≡ e $ z) ->
{as : List A} (h : Inj as xs) → i ∘i h ≡ j ∘i h → Σ (Inj as E) (λ z → e ∘i z ≡ h )
Equ-universal-quote {A} {xs} {ys} i j {E} e c {as} h eq =
quo u {λ x {v} {w} eq1 → injective h v w (begin h $ v ≡⟨ proj₂ (f x v) ⟩
e $ u x v ≡⟨ cong (_$_ e) eq1 ⟩
e $ u x w ≡⟨ sym (proj₂ (f x w)) ⟩
h $ w ∎)}
, ext-$ (e ∘i quo u) h (λ x v → begin
(e ∘i quo u) $ v ≡⟨ apply-∘ _ _ ⟩
e $ (quo u $ v) ≡⟨ cong (_$_ e) (iso2 _ _ v) ⟩
e $ u x v ≡⟨ sym (proj₂ (f x v)) ⟩
h $ v ∎)
where
f : ∀ a (y : as ∋ a) -> ∃ \ z -> h $ y ≡ e $ z
f a y = c a (h $ y) (∘-ext eq a y)
u = (λ x v → proj₁ (f x v))
Pull-universal-quote : ∀ {A : Set} {X Y Z : List A} → (i : Inj X Z)(j : Inj Y Z) -> ∀ {P} -> (p₁ : Inj P X) (p₂ : Inj P Y)
-> (∀ (a : A) (y : Y ∋ a)(x : X ∋ a) -> i $ x ≡ j $ y -> (∃ \ z -> p₁ $ z ≡ x × p₂ $ z ≡ y))
-> ∀ {Q} -> (q₁ : Inj Q X) (q₂ : Inj Q Y) -> i ∘i q₁ ≡ j ∘i q₂ -> ∃ \ u -> q₁ ≡ p₁ ∘i u × q₂ ≡ p₂ ∘i u
Pull-universal-quote i j p₁ p₂ uni {Q} q₁ q₂ commutes =
quo u {λ x {v} {w} eq → injective q₁ v w (begin q₁ $ v ≡⟨ sym (proj₁ (proj₂ (f x v))) ⟩
p₁ $ u x v ≡⟨ cong (_$_ p₁) eq ⟩
p₁ $ u x w ≡⟨ proj₁ (proj₂ (f x w)) ⟩
q₁ $ w ∎)}
, ext-$ q₁ (p₁ ∘i quo u) (λ x v → begin
q₁ $ v ≡⟨ sym (proj₁ (proj₂ (f x v))) ⟩
p₁ $ u x v ≡⟨ cong (_$_ p₁) (sym (iso2 _ _ v)) ⟩
p₁ $ (quo u $ v) ≡⟨ sym (apply-∘ _ _) ⟩
(p₁ ∘i quo u) $ v ∎)
, ext-$ q₂ (p₂ ∘i quo u) (λ x v → begin
q₂ $ v ≡⟨ sym (proj₂ (proj₂ (f x v))) ⟩
p₂ $ u x v ≡⟨ cong (_$_ p₂) (sym (iso2 _ _ v)) ⟩
p₂ $ (quo u $ v) ≡⟨ sym (apply-∘ _ _) ⟩
(p₂ ∘i quo u) $ v ∎)
where
f : ∀ a (v : Q ∋ a) -> (∃ \ z -> p₁ $ z ≡ q₁ $ v × p₂ $ z ≡ q₂ $ v)
f a v = uni a (q₂ $ v) (q₁ $ v) (∘-ext commutes a v)
u : ∀ a (v : Q ∋ a) -> _
u a v = proj₁ (f a v)
| 54.723529
| 192
| 0.391272
|
38fc1ee9a3187199e4d3d15837a1fcdf7c8bef30
| 812
|
agda
|
Agda
|
vector-sort.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 29
|
2019-02-06T13:09:31.000Z
|
2022-03-04T15:05:12.000Z
|
vector-sort.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 8
|
2018-07-09T22:53:38.000Z
|
2022-03-22T03:43:34.000Z
|
vector-sort.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 17
|
2018-12-03T22:38:15.000Z
|
2021-11-28T20:13:21.000Z
|
module vector-sort where
open import level
open import bool
open import nat
open import product
open import vector
insert𝕍 : ∀{ℓ}{A : Set ℓ}{n : ℕ} → (_<_ : A → A → 𝔹) → (_≅_ : A → A → 𝔹) → A → 𝕍 A n → Σi ℕ (λ m → 𝕍 A (suc m))
insert𝕍 _<_ _≅_ x [] = , [ x ]𝕍
insert𝕍 _<_ _≅_ x (y :: ys) with x < y
... | tt = , x :: y :: ys
... | ff with x ≅ y
... | tt = , y :: ys
... | ff with (insert𝕍 _<_ _≅_ x ys)
... | , r = , y :: r
insertion-sort𝕍 : ∀{ℓ}{A : Set ℓ}{n : ℕ} → (_<_ : A → A → 𝔹) → (_≅_ : A → A → 𝔹) → 𝕍 A (suc n) → Σi ℕ (λ m → 𝕍 A (suc m))
insertion-sort𝕍 _ _ (x :: []) = , [ x ]𝕍
insertion-sort𝕍 _<_ _≅_ (x :: (y :: ys)) with insertion-sort𝕍 _<_ _≅_ (y :: ys)
... | , (z :: zs) = insert𝕍 _<_ _≅_ x (z :: zs)
test-insertion-sort𝕍 = insertion-sort𝕍 _<_ _=ℕ_ (3 :: 5 :: 2 :: 7 :: 1 :: 2 :: 3 :: 9 :: [])
| 33.833333
| 121
| 0.481527
|
38f4bb131355452d58f52377636ff87e9e407359
| 602
|
agda
|
Agda
|
test/Fail/TerminationAndUnivalence.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/TerminationAndUnivalence.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/TerminationAndUnivalence.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{- Jesper Cockx, 26-05-2014
Issue 1023
-}
{-# OPTIONS --without-K #-}
module TerminationAndUnivalence where
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
J : ∀ {a b} {A : Set a} {x : A} (P : (y : A) → x ≡ y → Set b) →
(p : P x refl) {y : A} (e : x ≡ y) → P y e
J P p refl = p
data ⊥ : Set where
data WOne : Set where
wrap : (⊥ → WOne) → WOne
FOne = ⊥ → WOne
f : WOne → FOne
f x ()
g : FOne → WOne
g x = wrap (λ ())
postulate iso : WOne ≡ FOne
noo : (X : Set) → (WOne ≡ X) → X → ⊥
noo .WOne refl (wrap x) = noo FOne iso x
absurd : ⊥
absurd = noo FOne iso (λ ())
| 16.722222
| 63
| 0.511628
|
5e4b9a49121371049ddb18f582ba4a75f868adc4
| 66
|
agda
|
Agda
|
test/Fail/MisformedTypeSignature.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/MisformedTypeSignature.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/MisformedTypeSignature.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module MisformedTypeSignature where
postulate A : Set
(f g) : A
| 11
| 35
| 0.742424
|
5e5a1b526cc2f95965bb3188f1cba506ec7d8c2f
| 690
|
agda
|
Agda
|
test/Succeed/Issue2553.agda
|
vlopezj/agda
|
ff4d89e75970cf27599fb9f572bd43c9455cbb56
|
[
"BSD-3-Clause"
] | 2
|
2019-10-29T09:40:30.000Z
|
2020-09-20T00:28:57.000Z
|
test/Succeed/Issue2553.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/Issue2553.agda
|
vikfret/agda
|
49ad0b3f0d39c01bc35123478b857e702b29fb9d
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
module _ where
id : (A B : Set₁) → (A → B) → A → B
id _ _ f = f
postulate
P : (A : Set₁) → A → Set₁
cong : (A B : Set₁) (f : A → B) (x : A) → P A x → P B (f x)
A : Set
record R₀ (B : Set) : Set₁ where
constructor mkR₀
no-eta-equality
field
proj₁ : Set
proj₂ : B
record R₁ (_ : Set) : Set₁ where
constructor mkR₁
eta-equality
field
p : R₀ A
X : Set
X = R₀.proj₁ p
record R₂ (r : R₁ A) : Set₁ where
constructor mkR₂
eta-equality
field
g : R₀ (R₁.X r)
should-succeed :
(r₁ : R₁ A) (r₂ : R₂ r₁) →
P (R₂ r₁) r₂ → P (R₀ (R₁.X r₁)) (R₂.g r₂)
should-succeed r₁ r₂ =
id (P _ _)
(P (R₀ (R₁.X r₁)) (R₂.g r₂))
(cong _ _ R₂.g _)
| 16.829268
| 61
| 0.523188
|
5e7516e0ac1cea734740ded9386701173ad014bb
| 1,262
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/AVL/Height.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/AVL/Height.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/AVL/Height.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Types and functions which are used to keep track of height
-- invariants in AVL Trees
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.AVL.Height where
open import Data.Nat.Base
open import Data.Fin using (Fin; zero; suc)
ℕ₂ = Fin 2
pattern 0# = zero
pattern 1# = suc zero
pattern ## = suc (suc ())
-- Addition.
infixl 6 _⊕_
_⊕_ : ℕ₂ → ℕ → ℕ
0# ⊕ n = n
1# ⊕ n = 1 + n
## ⊕ n
-- pred[ i ⊕ n ] = pred (i ⊕ n).
pred[_⊕_] : ℕ₂ → ℕ → ℕ
pred[ i ⊕ zero ] = 0
pred[ i ⊕ suc n ] = i ⊕ n
infix 4 _∼_⊔_
-- If i ∼ j ⊔ m, then the difference between i and j is at most 1,
-- and the maximum of i and j is m. _∼_⊔_ is used to record the
-- balance factor of the AVL trees, and also to ensure that the
-- absolute value of the balance factor is never more than 1.
data _∼_⊔_ : ℕ → ℕ → ℕ → Set where
∼+ : ∀ {n} → n ∼ 1 + n ⊔ 1 + n
∼0 : ∀ {n} → n ∼ n ⊔ n
∼- : ∀ {n} → 1 + n ∼ n ⊔ 1 + n
-- Some lemmas.
max∼ : ∀ {i j m} → i ∼ j ⊔ m → m ∼ i ⊔ m
max∼ ∼+ = ∼-
max∼ ∼0 = ∼0
max∼ ∼- = ∼0
∼max : ∀ {i j m} → i ∼ j ⊔ m → j ∼ m ⊔ m
∼max ∼+ = ∼0
∼max ∼0 = ∼0
∼max ∼- = ∼+
| 21.758621
| 72
| 0.466719
|
1e9f2edf8c32d0e0842f4fd9c5d07115380e78c9
| 3,155
|
agda
|
Agda
|
agda/Mergesort/Impl2/Correctness/Permutation.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | 6
|
2015-05-21T12:50:35.000Z
|
2021-08-24T22:11:15.000Z
|
agda/Mergesort/Impl2/Correctness/Permutation.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
agda/Mergesort/Impl2/Correctness/Permutation.agda
|
bgbianchi/sorting
|
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
|
[
"MIT"
] | null | null | null |
open import Relation.Binary.Core
module Mergesort.Impl2.Correctness.Permutation {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import Data.List
open import Data.Sum
open import List.Permutation.Base A
open import List.Permutation.Base.Concatenation A
open import List.Permutation.Base.Equivalence A
open import List.Properties A
open import LRTree {A}
open import Mergesort.Impl2 _≤_ tot≤
open import OList _≤_
lemma-merge'-empty : {b : Bound}(xs : OList b) → merge' xs (onil {b}) ≡ xs
lemma-merge'-empty onil = refl
lemma-merge'-empty (:< b≤x xs) = refl
mutual
lemma-merge' : {b : Bound}(xs ys : OList b) → (forget xs ++ forget ys) ∼ forget (merge' xs ys)
lemma-merge' onil ys = refl∼
lemma-merge' xs onil rewrite ++id (forget xs) | lemma-merge'-empty xs = refl∼
lemma-merge' (:< {x = x} b≤x xs) (:< {x = y} b≤y ys)
with tot≤ x y
... | inj₁ x≤y = ∼x /head /head (lemma-merge' xs (:< (lexy x≤y) ys))
... | inj₂ y≤x =
let f'xxsyf'ys∼yf'xxsf'ys = ∼x (lemma++/ {y} {forget (:< b≤x xs)}) /head refl∼ ;
yf'xxsf'ys∼yf'm'xxsys = ∼x /head /head (lemma-merge'xs (lexy y≤x) xs ys)
in trans∼ f'xxsyf'ys∼yf'xxsf'ys yf'xxsf'ys∼yf'm'xxsys
lemma-merge'xs : {b : Bound}{x : A} → (b≤x : LeB b (val x))(xs : OList (val x))(ys : OList b) → (forget (:< b≤x xs) ++ forget ys) ∼ forget (merge'xs b≤x xs ys)
lemma-merge'xs b≤x xs onil rewrite ++id (forget xs) | lemma-merge'-empty xs = refl∼
lemma-merge'xs {x = x} b≤x xs (:< {x = y} b≤y ys)
with tot≤ x y
... | inj₁ x≤y = ∼x /head /head (lemma-merge' xs (:< (lexy x≤y) ys))
... | inj₂ y≤x =
let f'xxsyf'ys∼yf'xxsf'ys = ∼x (lemma++/ {y} {forget (:< b≤x xs)}) /head refl∼ ;
yf'xxsf'ys∼yf'm'xxsys = ∼x /head /head (lemma-merge'xs (lexy y≤x) xs ys)
in trans∼ f'xxsyf'ys∼yf'xxsf'ys yf'xxsf'ys∼yf'm'xxsys
lemma-insert : (x : A)(t : LRTree) → (x ∷ flatten t) ∼ flatten (insert x t)
lemma-insert x empty = ∼x /head /head ∼[]
lemma-insert x (leaf y) = ∼x (/tail /head) /head (∼x /head /head ∼[])
lemma-insert x (node left l r) = lemma++∼r (lemma-insert x l)
lemma-insert x (node right l r) =
let xlr∼lxr = ∼x /head (lemma++/ {x} {flatten l}) refl∼ ;
lxr∼lrᵢ = lemma++∼l {flatten l} (lemma-insert x r)
in trans∼ xlr∼lxr lxr∼lrᵢ
lemma-deal : (xs : List A) → xs ∼ flatten (deal xs)
lemma-deal [] = ∼[]
lemma-deal (x ∷ xs) = trans∼ (∼x /head /head (lemma-deal xs)) (lemma-insert x (deal xs))
lemma-merge : (t : LRTree) → flatten t ∼ forget (merge t)
lemma-merge empty = ∼[]
lemma-merge (leaf x) = ∼x /head /head ∼[]
lemma-merge (node t l r) =
let flfr∼f'm'lf'm'r = lemma++∼ (lemma-merge l) (lemma-merge r) ;
f'm'lf'm'r∼m''m''lm''r = lemma-merge' (merge l) (merge r)
in trans∼ flfr∼f'm'lf'm'r f'm'lf'm'r∼m''m''lm''r
theorem-mergesort-∼ : (xs : List A) → xs ∼ (forget (mergesort xs))
theorem-mergesort-∼ xs = trans∼ (lemma-deal xs) (lemma-merge (deal xs))
| 46.397059
| 161
| 0.568938
|
9a900088f7028c65764f8b7c385af5d573969d4d
| 2,578
|
agda
|
Agda
|
misc/RecursiveDescent/InductiveWithFix.agda
|
yurrriq/parser-combinators
|
b396d35cc2cb7e8aea50b982429ee385f001aa88
|
[
"MIT"
] | 7
|
2016-12-13T05:23:14.000Z
|
2021-06-22T05:35:31.000Z
|
misc/RecursiveDescent/InductiveWithFix.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | 1
|
2018-01-22T22:21:41.000Z
|
2018-01-24T16:39:37.000Z
|
misc/RecursiveDescent/InductiveWithFix.agda
|
nad/parser-combinators
|
76774f54f466cfe943debf2da731074fe0c33644
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Terminating parser "combinator" interface
------------------------------------------------------------------------
module RecursiveDescent.InductiveWithFix where
open import RecursiveDescent.Index
import RecursiveDescent.InductiveWithFix.Internal as P
open P public using (Parser; Grammar; Lift; fresh; lift)
open import Data.List
open import Data.Bool
open import Data.Maybe
open import Data.Product.Record hiding (map)
import Data.Product as Prod
open import Data.Function
import Data.BoundedVec.Inefficient as BVec
------------------------------------------------------------------------
-- Run function for the parsers
parse : forall {tok nt i r}
-> Parser tok nt i r -> Grammar tok nt
-> List tok -> List (Prod._×_ r (List tok))
parse p g s = map (Prod.map id BVec.toList)
(P.parse g _ p (BVec.fromList s))
-- A variant which only returns parses which leave no remaining input.
parse-complete : forall {tok nt i r}
-> Parser tok nt i r -> Grammar tok nt
-> List tok -> List r
parse-complete p g s =
map Prod.proj₁ (filter (null ∘ Prod.proj₂) (parse p g s))
------------------------------------------------------------------------
-- Exported combinators
infix 60 !_
infixl 40 _∣_
infixl 10 _>>=_ _!>>=_
!_ : forall {tok nt e c r} ->
nt (e , c) r -> Parser tok nt (e , step c) r
!_ = P.!_
fix : forall {tok nt e c r}
-> Parser tok (Lift (e , step c) r nt) (e , c) r
-> Parser tok nt (e , step c) r
fix = P.fix
symbol : forall {tok nt} -> Parser tok nt 0I tok
symbol = P.symbol
return : forall {tok nt r} -> r -> Parser tok nt 1I r
return = P.ret
fail : forall {tok nt r} -> Parser tok nt 0I r
fail = P.fail
_>>=_ : forall {tok nt e₁ c₁ i₂ r₁ r₂} -> let i₁ = (e₁ , c₁) in
Parser tok nt i₁ r₁ ->
(r₁ -> Parser tok nt i₂ r₂) ->
Parser tok nt (i₁ ·I i₂) r₂
_>>=_ {e₁ = true } = P.bind₀
_>>=_ {e₁ = false} = P.bind₁
-- If the first parser is guaranteed to consume something, then the
-- second parser's index can depend on the result of the first parser.
_!>>=_ : forall {tok nt c₁ r₁ r₂} {i₂ : r₁ -> Index} ->
let i₁ = (false , c₁) in
Parser tok nt i₁ r₁ ->
((x : r₁) -> Parser tok nt (i₂ x) r₂) ->
Parser tok nt (i₁ ·I 1I) r₂
_!>>=_ = P.bind₁
_∣_ : forall {tok nt e₁ c₁ i₂ r} -> let i₁ = (e₁ , c₁) in
Parser tok nt i₁ r ->
Parser tok nt i₂ r ->
Parser tok nt (i₁ ∣I i₂) r
_∣_ {e₁ = true } = P.alt₀
_∣_ {e₁ = false} = P.alt₁ _
| 30.690476
| 72
| 0.54422
|
9a38acf5c9046902da96294c6b61c626f73e258f
| 365
|
agda
|
Agda
|
test/Succeed/Issue4769.agda
|
zliu41/agda
|
73405f70bced057d24dd4bf122d53f9548544aba
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue4769.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue4769.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2020-06-21, issue #4769
-- Name and hiding ignored in subsequent face constraint patterns.
-- Instead, we should throw a warning.
open import Agda.Primitive.Cubical
data S : Set where
base : S
foo : ∀ i j → Partial _ S
foo i j (i = i0) {{agdaDoesNotSeeThisName = (j = i1)}} = base
-- Expect: warning about name and "instance" flavor and argument.
| 26.071429
| 66
| 0.69863
|
4bbfc2140d501f07a783382670872d0d1784fbd2
| 2,372
|
agda
|
Agda
|
Cubical/Algebra/Group/Morphism.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/Morphism.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Group/Morphism.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Morphism where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Structure
open import Cubical.Algebra.Group.Base
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
-- The following definition of GroupHom and GroupEquiv are level-wise heterogeneous.
-- This allows for example to deduce that G ≡ F from a chain of isomorphisms
-- G ≃ H ≃ F, even if H does not lie in the same level as G and F.
isGroupHom : (G : Group {ℓ}) (H : Group {ℓ'}) (f : ⟨ G ⟩ → ⟨ H ⟩) → Type _
isGroupHom G H f = (x y : ⟨ G ⟩) → f (x G.+ y) ≡ (f x H.+ f y) where
module G = GroupStr (snd G)
module H = GroupStr (snd H)
record GroupHom (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor grouphom
field
fun : ⟨ G ⟩ → ⟨ H ⟩
isHom : isGroupHom G H fun
record GroupEquiv (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor groupequiv
field
eq : ⟨ G ⟩ ≃ ⟨ H ⟩
isHom : isGroupHom G H (equivFun eq)
hom : GroupHom G H
hom = grouphom (equivFun eq) isHom
open GroupHom
open GroupStr
η-hom : {G : Group {ℓ}} {H : Group {ℓ'}} → (a : GroupHom G H)
→ grouphom (fun a) (isHom a) ≡ a
fun (η-hom a i) = fun a
isHom (η-hom a i) = isHom a
η-equiv : {G : Group {ℓ}} {H : Group {ℓ'}} → (a : GroupEquiv G H)
→ groupequiv (GroupEquiv.eq a) (GroupEquiv.isHom a) ≡ a
GroupEquiv.eq (η-equiv a i) = GroupEquiv.eq a
GroupEquiv.isHom (η-equiv a i) = GroupEquiv.isHom a
×hom : {A : Group {ℓ}} {B : Group {ℓ'}} {C : Group {ℓ''}} {D : Group {ℓ'''}}
→ GroupHom A C → GroupHom B D → GroupHom (dirProd A B) (dirProd C D)
fun (×hom mf1 mf2) = map-× (fun mf1) (fun mf2)
isHom (×hom mf1 mf2) a b = ≡-× (isHom mf1 _ _) (isHom mf2 _ _)
isInIm : (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → ⟨ H ⟩ → Type (ℓ-max ℓ ℓ')
isInIm G H ϕ h = ∃[ g ∈ ⟨ G ⟩ ] ϕ .fun g ≡ h
isInKer : (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → ⟨ G ⟩ → Type ℓ'
isInKer G H ϕ g = ϕ .fun g ≡ 0g (snd H)
isSurjective : (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → Type (ℓ-max ℓ ℓ')
isSurjective G H ϕ = (x : ⟨ H ⟩) → isInIm G H ϕ x
isInjective : (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → Type (ℓ-max ℓ ℓ')
isInjective G H ϕ = (x : ⟨ G ⟩) → isInKer G H ϕ x → x ≡ 0g (snd G)
| 33.885714
| 84
| 0.596965
|
38e65ddf8b5cfa869a5dc916239b944440ec16ac
| 763
|
agda
|
Agda
|
030-semigroup.agda
|
mcmtroffaes/agda-proofs
|
76fe404b25210258810641cc6807feecf0ff8d6c
|
[
"MIT"
] | 2
|
2015-08-09T22:51:55.000Z
|
2016-08-17T16:15:42.000Z
|
030-semigroup.agda
|
mcmtroffaes/agda-proofs
|
76fe404b25210258810641cc6807feecf0ff8d6c
|
[
"MIT"
] | null | null | null |
030-semigroup.agda
|
mcmtroffaes/agda-proofs
|
76fe404b25210258810641cc6807feecf0ff8d6c
|
[
"MIT"
] | null | null | null |
module 030-semigroup where
-- We need equivalence.
open import 020-equivalence
-- Semigroups are basically a set with equality and some binary
-- operator which is associative and respects equality.
record SemiGroup
{M : Set}
(_==_ : M -> M -> Set)
(_*_ : M -> M -> M)
: Set1 where
field
equiv : Equivalence _==_
assoc : ∀ {r s t} -> ((r * s) * t) == (r * (s * t))
cong : ∀ {r s u v} -> (r == s) -> (u == v) -> (r * u) == (s * v)
-- The next line brings all fields and declarations of Equivalence
-- into this record's namespace so we can refer to them in an
-- unqualified way in proofs (for example, we can write "refl" for
-- "Equivalence.symm equiv" and so on).
open Equivalence equiv public
-- No theorems here yet.
| 26.310345
| 68
| 0.618611
|
8b7def68136f17fd31fe3f5045f376c3d4e44cf3
| 4,396
|
agda
|
Agda
|
theorems/cohomology/Torus.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
theorems/cohomology/Torus.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | null | null | null |
theorems/cohomology/Torus.agda
|
timjb/HoTT-Agda
|
66f800adef943afdf08c17b8ecfba67340fead5e
|
[
"MIT"
] | 1
|
2018-12-26T21:31:57.000Z
|
2018-12-26T21:31:57.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
{- Ordinary cohomology groups of the n-torus Tⁿ = (S¹)ⁿ.
- We have Cᵏ(Tⁿ) == C⁰(S⁰)^(n choose' k) where _choose'_ defined as below.
- This argument could give Cᵏ((Sᵐ)ⁿ) with a little more work. -}
module cohomology.Torus {i} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
open import cohomology.Sphere OT
open import cohomology.SphereProduct cohomology-theory
{- Almost n choose k, but with n choose' O = 0 for any n. -}
_choose'_ : ℕ → ℤ → ℕ
n choose' negsucc _ = 0
n choose' pos O = 0
n choose' pos (S O) = n
O choose' pos (S (S k)) = 0
S n choose' pos (S (S k)) = (n choose' (pos (S (S k)))) + (n choose' (pos (S k)))
_-⊙Torus : ℕ → Ptd₀
O -⊙Torus = ⊙Unit
(S n) -⊙Torus = ⊙S¹ ⊙× (n -⊙Torus)
C-nTorus : (k : ℤ) (n : ℕ)
→ C k (⊙Lift (n -⊙Torus)) ≃ᴳ C 0 (⊙Lift ⊙S⁰) ^ᴳ (n choose' k)
C-nTorus (negsucc k) O = lift-iso ∘eᴳ trivial-iso-0ᴳ (C-Unit (negsucc k))
C-nTorus (negsucc k) (S n) =
C (negsucc k) (⊙Lift (S n -⊙Torus))
≃ᴳ⟨ C-emap (negsucc k) (⊙lift-equiv ⊙∘e ⊙×-emap (⊙ide _) ⊙lower-equiv) ⟩
C (negsucc k) (⊙S¹ ⊙× ⊙Lift (n -⊙Torus))
≃ᴳ⟨ C-Sphere× (negsucc k) 1 (⊙Lift (n -⊙Torus)) ⟩
C (negsucc k) (⊙Lift ⊙S¹) ×ᴳ (C (negsucc k) (⊙Lift (n -⊙Torus)) ×ᴳ C (negsucc k) (⊙Susp (⊙Lift (n -⊙Torus))))
≃ᴳ⟨ ×ᴳ-emap (trivial-iso-0ᴳ (C-Sphere-≠-is-trivial (negsucc k) 1 (ℤ-negsucc≠pos _ _))) (idiso _) ⟩
0ᴳ ×ᴳ (C (negsucc k) (⊙Lift (n -⊙Torus)) ×ᴳ C (negsucc k) (⊙Susp (⊙Lift (n -⊙Torus))))
≃ᴳ⟨ ×ᴳ-unit-l _ ⟩
C (negsucc k) (⊙Lift (n -⊙Torus)) ×ᴳ C (negsucc k) (⊙Susp (⊙Lift (n -⊙Torus)))
≃ᴳ⟨ ×ᴳ-emap
(lower-iso ∘eᴳ C-nTorus (negsucc k) n)
(C-nTorus (negsucc (S k)) n ∘eᴳ C-Susp (negsucc (S k)) (⊙Lift (n -⊙Torus))) ⟩
0ᴳ ×ᴳ Lift-group 0ᴳ
≃ᴳ⟨ ×ᴳ-unit-l (Lift-group 0ᴳ) ⟩
Lift-group 0ᴳ
≃ᴳ∎
C-nTorus (pos O) O = lift-iso ∘eᴳ trivial-iso-0ᴳ (C-Unit 0)
C-nTorus (pos O) (S n) =
C 0 (⊙Lift (S n -⊙Torus))
≃ᴳ⟨ C-emap 0 (⊙lift-equiv ⊙∘e ⊙×-emap (⊙ide _) ⊙lower-equiv) ⟩
C 0 (⊙S¹ ⊙× ⊙Lift (n -⊙Torus))
≃ᴳ⟨ C-Sphere× 0 1 (⊙Lift (n -⊙Torus)) ⟩
C 0 (⊙Lift ⊙S¹) ×ᴳ (C 0 (⊙Lift (n -⊙Torus)) ×ᴳ C 0 (⊙Susp (⊙Lift (n -⊙Torus))))
≃ᴳ⟨ ×ᴳ-emap (trivial-iso-0ᴳ (C-Sphere-≠-is-trivial 0 1 (pos-≠ (ℕ-O≠S _)))) (idiso _) ⟩
0ᴳ ×ᴳ (C 0 (⊙Lift (n -⊙Torus)) ×ᴳ C 0 (⊙Susp (⊙Lift (n -⊙Torus))))
≃ᴳ⟨ ×ᴳ-unit-l _ ⟩
C 0 (⊙Lift (n -⊙Torus)) ×ᴳ C 0 (⊙Susp (⊙Lift (n -⊙Torus)))
≃ᴳ⟨ ×ᴳ-emap
(lower-iso ∘eᴳ C-nTorus 0 n)
(C-nTorus -1 n ∘eᴳ C-Susp -1 (⊙Lift (n -⊙Torus))) ⟩
0ᴳ ×ᴳ Lift-group 0ᴳ
≃ᴳ⟨ ×ᴳ-unit-l _ ⟩
Lift-group 0ᴳ
≃ᴳ∎
C-nTorus (pos (S O)) O = lift-iso ∘eᴳ trivial-iso-0ᴳ (C-Unit 1)
C-nTorus (pos (S O)) (S n) =
C 1 (⊙Lift (S n -⊙Torus))
≃ᴳ⟨ C-emap 1 (⊙lift-equiv ⊙∘e ⊙×-emap (⊙ide _) ⊙lower-equiv) ⟩
C 1 (⊙S¹ ⊙× ⊙Lift (n -⊙Torus))
≃ᴳ⟨ C-Sphere× 1 1 (⊙Lift (n -⊙Torus)) ⟩
C 1 (⊙Lift ⊙S¹) ×ᴳ (C 1 (⊙Lift (n -⊙Torus)) ×ᴳ C 1 (⊙Susp (⊙Lift (n -⊙Torus))))
≃ᴳ⟨ ×ᴳ-emap (C-Sphere-diag 1)
( ×ᴳ-unit-r _
∘eᴳ ×ᴳ-emap
(C-nTorus 1 n)
(lower-iso
∘eᴳ C-nTorus 0 n
∘eᴳ C-Susp 0 (⊙Lift (n -⊙Torus)))) ⟩
C 0 (⊙Lift ⊙S⁰) ×ᴳ (C 0 (⊙Lift ⊙S⁰) ^ᴳ n)
≃ᴳ∎
C-nTorus (pos (S (S k))) O = lift-iso ∘eᴳ trivial-iso-0ᴳ (C-Unit (pos (S (S k))))
C-nTorus (pos (S (S k))) (S n) =
C (pos (S (S k))) (⊙Lift (S n -⊙Torus))
≃ᴳ⟨ C-emap (pos (S (S k))) (⊙lift-equiv ⊙∘e ⊙×-emap (⊙ide _) ⊙lower-equiv) ⟩
C (pos (S (S k))) (⊙S¹ ⊙× ⊙Lift (n -⊙Torus))
≃ᴳ⟨ C-Sphere× (pos (S (S k))) 1 (⊙Lift (n -⊙Torus)) ⟩
C (pos (S (S k))) (⊙Lift ⊙S¹) ×ᴳ (C (pos (S (S k))) (⊙Lift (n -⊙Torus)) ×ᴳ C (pos (S (S k))) (⊙Susp (⊙Lift (n -⊙Torus))))
≃ᴳ⟨ ×ᴳ-emap (trivial-iso-0ᴳ (C-Sphere-≠-is-trivial (pos (S (S k))) 1 (pos-≠ (ℕ-S-≠ (ℕ-S≠O k))))) (idiso _) ⟩
0ᴳ ×ᴳ (C (pos (S (S k))) (⊙Lift (n -⊙Torus)) ×ᴳ C (pos (S (S k))) (⊙Susp (⊙Lift (n -⊙Torus))))
≃ᴳ⟨ ×ᴳ-unit-l _ ⟩
C (pos (S (S k))) (⊙Lift (n -⊙Torus)) ×ᴳ C (pos (S (S k))) (⊙Susp (⊙Lift (n -⊙Torus)))
≃ᴳ⟨ ×ᴳ-emap
(C-nTorus (pos (S (S k))) n)
(C-nTorus (pos (S k)) n ∘eᴳ C-Susp (pos (S k)) (⊙Lift (n -⊙Torus))) ⟩
(C 0 (⊙Lift ⊙S⁰) ^ᴳ (n choose' pos (S (S k)))) ×ᴳ (C 0 (⊙Lift ⊙S⁰) ^ᴳ (n choose' pos (S k)))
≃ᴳ⟨ ^ᴳ-+ (C 0 (⊙Lift ⊙S⁰)) (n choose' pos (S (S k))) (n choose' pos (S k)) ⁻¹ᴳ ⟩
C 0 (⊙Lift ⊙S⁰) ^ᴳ (S n choose' pos (S (S k)))
≃ᴳ∎
| 39.25
| 123
| 0.509782
|
0392137b5eb168a369cd5af4a14c501a074d5447
| 514
|
agda
|
Agda
|
test/Succeed/Issue3089.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue3089.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue3089.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
works : Nat → Nat
works 0 = 0
works x@(suc _) = x
forced-implicit : ∀ x {y} → x ≡ y → Nat
forced-implicit x .{x} refl = x
forced-instance : ∀ x {{y}} → x ≡ y → Nat
forced-instance x .{{x}} refl = x
fails : ∀ {x : Nat} → Nat
fails {0} = 0
fails x@{suc _} = x
forced-implicit' : ∀ x {y} → x ≡ y → Nat
forced-implicit' x x@.{_} refl = x
forced-instance' : ∀ x {{y}} → x ≡ y → Nat
forced-instance' x x@.{{_}} refl = x
| 21.416667
| 42
| 0.599222
|
192fbbd2aad22b623b06e3d848908e48559c5bef
| 1,456
|
agda
|
Agda
|
src/Fragment/Algebra/Free/Atoms.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 18
|
2021-06-15T15:45:39.000Z
|
2022-01-17T17:26:09.000Z
|
src/Fragment/Algebra/Free/Atoms.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 1
|
2021-06-16T09:44:31.000Z
|
2021-06-16T10:24:15.000Z
|
src/Fragment/Algebra/Free/Atoms.agda
|
yallop/agda-fragment
|
f2a6b1cf4bc95214bd075a155012f84c593b9496
|
[
"MIT"
] | 3
|
2021-06-15T15:34:50.000Z
|
2021-06-16T08:04:31.000Z
|
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Algebra.Free.Atoms where
open import Level using (Level; _⊔_)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Relation.Binary using (Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
private
variable
a ℓ : Level
module _ (A : Set a) where
data BT (n : ℕ) : Set a where
sta : A → BT n
dyn : Fin n → BT n
module _ (S : Setoid a ℓ) (n : ℕ) where
open Setoid S renaming (Carrier to A)
data _≍_ : BT A n → BT A n → Set (a ⊔ ℓ) where
sta : ∀ {x y} → x ≈ y → sta x ≍ sta y
dyn : ∀ {x y} → x ≡ y → dyn x ≍ dyn y
private
≍-refl : ∀ {x} → x ≍ x
≍-refl {sta _} = sta refl
≍-refl {dyn _} = dyn PE.refl
≍-sym : ∀ {x y} → x ≍ y → y ≍ x
≍-sym (sta x≈y) = sta (sym x≈y)
≍-sym (dyn x≡y) = dyn (PE.sym x≡y)
≍-trans : ∀ {x y z} → x ≍ y → y ≍ z → x ≍ z
≍-trans (sta x≈y) (sta y≈z) = sta (trans x≈y y≈z)
≍-trans (dyn x≡y) (dyn y≡z) = dyn (PE.trans x≡y y≡z)
≍-isEquivalence : IsEquivalence _≍_
≍-isEquivalence = record { refl = ≍-refl
; sym = ≍-sym
; trans = ≍-trans
}
Atoms : Setoid a (a ⊔ ℓ)
Atoms = record { Carrier = BT (Setoid.Carrier S) n
; _≈_ = _≍_
; isEquivalence = ≍-isEquivalence
}
| 26
| 67
| 0.50206
|
5e722121e2272374451f9aa4a4fb5a0076e9213c
| 265
|
agda
|
Agda
|
src/agda/FRP/JS/Main.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | 63
|
2015-04-20T21:47:00.000Z
|
2022-02-28T09:46:14.000Z
|
src/agda/FRP/JS/Main.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | null | null | null |
src/agda/FRP/JS/Main.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | 7
|
2016-11-07T21:50:58.000Z
|
2022-03-12T11:39:38.000Z
|
open import FRP.JS.RSet using ( ⟦_⟧ )
open import FRP.JS.Behaviour using ( Beh )
open import FRP.JS.DOM using ( DOM )
module FRP.JS.Main where
postulate
Main : Set
reactimate : ⟦ Beh DOM ⟧ → Main
{-# COMPILED_JS reactimate require("agda.frp").reactimate #-}
| 22.083333
| 61
| 0.69434
|
434e5fc51e963e882b363666bd5f5f99597abd23
| 185
|
agda
|
Agda
|
test/Fail/Prop-NoDisjointConstructors.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Prop-NoDisjointConstructors.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Prop-NoDisjointConstructors.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --prop #-}
data TestProp : Prop where
p₁ p₂ : TestProp
data _≡Prop_ {A : Prop} (x : A) : A → Set where
refl : x ≡Prop x
p₁≢p₂ : {P : Prop} → p₁ ≡Prop p₂ → P
p₁≢p₂ ()
| 16.818182
| 47
| 0.551351
|
ad751f8c8ea77f14aff5767303cf215b2d30a6b8
| 1,305
|
agda
|
Agda
|
test/js/TestList.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
test/js/TestList.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/js/TestList.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
open import Common.Prelude
open import TestHarness
open import TestBool using ( not; _∧_ ; _↔_ )
module TestList where
_++_ : ∀ {X} → List X → List X → List X
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
revApp : ∀ {X} → List X → List X → List X
revApp [] ys = ys
revApp (x ∷ xs) ys = revApp xs (x ∷ ys)
reverse : ∀ {X} → List X → List X
reverse xs = revApp xs []
_≟_ : List Bool → List Bool → Bool
[] ≟ [] = true
(x ∷ xs) ≟ (y ∷ ys) = (x ↔ y) ∧ (xs ≟ ys)
_ ≟ - = false
[tt] = true ∷ []
[ff] = false ∷ []
[tt,ff] = true ∷ [ff]
[ff,tt] = false ∷ [tt]
[ff,tt,ff] = false ∷ [tt,ff]
tests : Tests
tests _ = (
assert ([] ≟ []) "[]=[]" ,
assert (not ([tt] ≟ [ff])) "[tt]≠[ff]" ,
assert (([] ++ [tt]) ≟ [tt]) "[]++[tt]=[tt]" ,
assert (([tt] ++ []) ≟ [tt]) "[tt]++[]=[tt]" ,
assert (([tt] ++ [ff]) ≟ [tt,ff]) "[tt]++[ff]=[tt,ff]" ,
assert (([ff,tt] ++ [ff]) ≟ [ff,tt,ff]) "[ff,tt]++[ff]=[ff,tt,ff]" ,
assert (not (([ff] ++ [tt]) ≟ [tt,ff])) "[ff]++[tt]≠[tt,ff]" ,
assert (not (([tt] ++ [tt]) ≟ [tt,ff])) "[tt]++[tt]≠[tt,ff]" ,
assert (reverse [tt,ff] ≟ [ff,tt]) "rev[tt,ff]=[ff,tt]" ,
assert (reverse (reverse [tt,ff]) ≟ [tt,ff]) "rev(rev[tt,ff])=[tt,ff]" ,
assert (not (reverse [tt,ff] ≟ [tt,ff])) "rev[tt,ff]≠[tt,ff]"
)
| 31.071429
| 76
| 0.448276
|
a00b9d0dc9ccc2677ea193dd709efa1293f20952
| 6,938
|
agda
|
Agda
|
src/Implicits/Resolution/Infinite/Algorithm/Soundness.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | 4
|
2019-04-05T17:57:11.000Z
|
2021-05-07T04:08:41.000Z
|
src/Implicits/Resolution/Infinite/Algorithm/Soundness.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
src/Implicits/Resolution/Infinite/Algorithm/Soundness.agda
|
metaborg/ts.agda
|
7fe638b87de26df47b6437f5ab0a8b955384958d
|
[
"MIT"
] | null | null | null |
open import Prelude
module Implicits.Resolution.Infinite.Algorithm.Soundness where
open import Data.Vec hiding (_∈_)
open import Data.List hiding (map)
open import Data.List.Any hiding (tail)
open Membership-≡
open import Data.Bool
open import Data.Unit.Base
open import Data.Maybe as Maybe hiding (All)
open import Coinduction
open import Data.Fin.Substitution
open import Implicits.Syntax
open import Implicits.Substitutions
open import Implicits.Substitutions.MetaType
open import Implicits.Substitutions.Lemmas
open import Implicits.Syntax.Type.Unification
open import Implicits.Syntax.Type.Unification.Lemmas renaming (sound to mgu-sound)
open import Implicits.Resolution.Infinite.Resolution
open import Implicits.Resolution.Infinite.Algorithm
open import Implicits.Resolution.Termination
open Inductive
open import Induction.WellFounded
open import Category.Functor
open import Category.Monad.Partiality as P
open import Category.Monad.Partiality.All using (All; module Alternative)
open Alternative renaming (sound to AllP-sound)
private module MaybeFunctor {f} = RawFunctor (functor {f})
open import Extensions.Bool as B hiding (All)
open import Relation.Binary.PropositionalEquality as PEq using (_≡_)
module PR = P.Reasoning (PEq.isEquivalence {A = Bool})
private
module M = MetaTypeMetaSubst
postulate lem₄ : ∀ {m ν} (a : MetaType m (suc ν)) u us →
from-meta (((M.open-meta a) M./ (us M.↑)) M./ (M.sub u))
≡ (from-meta (a M./ (us M.↑tp))) tp[/tp from-meta u ]
open-↓-∀ : ∀ {ν m} {Δ : ICtx ν} (a : MetaType m (suc ν)) τ u us →
Δ ⊢ (from-meta ((open-meta a) M./ (u ∷ us))) ↓ τ →
Δ ⊢ (from-meta (∀' a M./ us)) ↓ τ
open-↓-∀ {Δ = Δ} a τ u us p = (i-tabs (from-meta u) (subst (λ v → Δ ⊢ v ↓ τ) (begin
from-meta (M._/_ (open-meta a) (u ∷ us))
≡⟨ cong (λ v → from-meta (M._/_ (open-meta a) v)) (sym $ us↑-⊙-sub-u≡u∷us u us) ⟩
from-meta ((open-meta a) M./ (us M.↑ M.⊙ (M.sub u)))
≡⟨ cong from-meta (/-⊙ (open-meta a)) ⟩
from-meta ((open-meta a) M./ us M.↑ M./ (M.sub u))
≡⟨ lem₄ a u us ⟩
from-meta (M._/_ a (us M.↑tp)) tp[/tp from-meta u ] ∎) p))
where open MetaTypeMetaLemmas hiding (subst)
mutual
delayed-resolve-sound : ∀ {ν} (Δ : ICtx ν) (a : Type ν) →
AllP (B.All (Δ ⊢ᵣ a)) (delayed-resolve Δ a)
delayed-resolve-sound Δ a = later (♯ (resolve'-sound Δ a))
resolve-context-sound : ∀ {ν m} (Δ : ICtx ν) (a : MetaType m ν) b {τ v} →
Maybe.All (λ u → Δ ⊢ from-meta (b M./ u) ↓ τ) v →
AllP (Maybe.All (λ u →
(Δ ⊢ from-meta (a M./ u) ⇒ from-meta (b M./ u) ↓ τ))
) (resolve-context Δ a v)
resolve-context-sound Δ a b {τ = τ} (just {x = u} px) = _
≅⟨ resolve-context-comp Δ a u ⟩P delayed-resolve-sound Δ (from-meta (M._/_ a u)) >>=-congP lem
where
lem : ∀ {v} → B.All (Δ ⊢ᵣ from-meta (a M./ u)) v →
AllP (Maybe.All (λ u → Δ ⊢ from-meta (a M./ u) ⇒ from-meta (b M./ u) ↓ τ)) (map-bool u v)
lem (true x) = now (just (i-iabs x px))
lem (false) = now nothing
resolve-context-sound Δ a b nothing = now nothing
match-u-sound : ∀ {ν m} (Δ : ICtx ν) τ (r : MetaType m ν) → (r-acc : m<-Acc r) →
AllP (Maybe.All (λ u → (Δ ⊢ from-meta (r M./ u) ↓ τ))) (match-u Δ τ r r-acc)
match-u-sound Δ τ (a ⇒ b) (acc rs) = _ ≅⟨ match-u-iabs-comp Δ τ a b rs ⟩P
match-u-sound Δ τ b (rs _ (b-m<-a⇒b a b)) >>=-congP resolve-context-sound Δ a b
match-u-sound Δ τ (∀' r) (acc rs) = _ ≅⟨ match-u-tabs-comp Δ τ r rs ⟩P
match-u-sound Δ τ (open-meta r) _ >>=-congP lem
where
lem : ∀ {v} → Maybe.All (λ u → Δ ⊢ from-meta (open-meta r M./ u) ↓ τ) v →
AllP (Maybe.All (λ u → Δ ⊢ ∀' (from-meta (r M./ u M.↑tp)) ↓ τ ))
((now ∘ (MaybeFunctor._<$>_ tail)) v)
lem (just {x = u ∷ us} px) = now (just (open-↓-∀ r τ u us px))
lem nothing = now nothing
match-u-sound Δ τ (simpl x) (acc rs) with mgu (simpl x) τ | mgu-sound (simpl x) τ
match-u-sound Δ τ (simpl x) (acc rs) | just us | just x/us≡τ =
now (just (subst (λ z → Δ ⊢ z ↓ τ) (sym x/us≡τ) (i-simp τ)))
match-u-sound Δ τ (simpl x) (acc rs) | nothing | nothing = now nothing
match-sound : ∀ {ν} (Δ : ICtx ν) τ r →
AllP (B.All (Δ ⊢ r ↓ τ)) (match Δ τ r)
match-sound Δ τ r = _
≅⟨ match-comp Δ τ r ⟩P
match-u-sound Δ τ (to-meta {zero} r) (m<-well-founded _) >>=-congP lem
where
eq : ∀ {ν} {a : Type ν} {s} → from-meta (to-meta {zero} a M./ s) ≡ a
eq {a = a} {s = []} = begin
from-meta (M._/_ (to-meta {zero} a) [])
≡⟨ cong (λ q → from-meta q) (MetaTypeMetaLemmas.id-vanishes (to-meta {zero} a)) ⟩
from-meta (to-meta {zero} a)
≡⟨ to-meta-zero-vanishes ⟩
a ∎
lem : ∀ {v} → Maybe.All (λ u → (Δ ⊢ from-meta ((to-meta {zero} r) M./ u) ↓ τ)) v →
AllP (B.All (Δ ⊢ r ↓ τ)) ((now ∘ is-just) v)
lem (just px) = now (true (subst (λ z → Δ ⊢ z ↓ τ) eq px))
lem nothing = now false
match1st-recover-sound : ∀ {ν b} x (Δ ρs : ICtx ν) τ → B.All (Δ ⊢ x ↓ τ) b →
AllP (B.All (∃₂ λ r (r∈Δ : r ∈ (x ∷ ρs)) → Δ ⊢ r ↓ τ))
(match1st-recover Δ ρs τ b)
match1st-recover-sound x Δ ρs τ (true p) = now (true (x , (here refl) , p))
match1st-recover-sound x Δ ρs τ false = _
≅⟨ PR.sym (right-identity refl (match1st Δ ρs τ)) ⟩P
match1st'-sound Δ ρs τ >>=-congP lem
where
lem : ∀ {v} → B.All (∃₂ λ r (r∈Δ : r ∈ ρs)→ Δ ⊢ r ↓ τ) v →
AllP (B.All (∃₂ λ r (r∈Δ : r ∈ x ∷ ρs) → Δ ⊢ r ↓ τ)) (now v)
lem (true (r , r∈ρs , p)) = now (true (r , (there r∈ρs) , p))
lem false = now false
-- {!match1st'-sound Δ ρs τ!}
match1st'-sound : ∀ {ν} (Δ ρs : ICtx ν) τ →
AllP (B.All (∃₂ λ r (r∈Δ : r ∈ ρs) → Δ ⊢ r ↓ τ)) (match1st Δ ρs τ)
match1st'-sound Δ [] τ = now false
match1st'-sound Δ (x ∷ ρs) τ = _
≅⟨ match1st-comp Δ x ρs τ ⟩P
match-sound Δ τ x >>=-congP match1st-recover-sound x Δ ρs τ
resolve'-sound : ∀ {ν} (Δ : ICtx ν) r → AllP (B.All (Δ ⊢ᵣ r)) (resolve Δ r)
resolve'-sound Δ (simpl x) = _
≅⟨ PR.sym (right-identity refl (match1st Δ Δ x)) ⟩P
match1st'-sound Δ Δ x >>=-congP (λ x → now (B.all-map x (λ{ (r , r∈Δ , p) → r-simp r∈Δ p })))
resolve'-sound Δ (a ⇒ b) = _
≅⟨ PR.sym (right-identity refl (resolve (a ∷ Δ) b)) ⟩P
resolve'-sound (a ∷ Δ) b >>=-congP (λ x → now (B.all-map x r-iabs))
resolve'-sound Δ (∀' r) = _
≅⟨ PR.sym (right-identity refl (resolve (ictx-weaken Δ) r)) ⟩P
resolve'-sound (ictx-weaken Δ) r >>=-congP (λ x → now (B.all-map x r-tabs))
-- Soundness means:
-- for all terminating runs of the algorithm we have a finite resolution proof.
sound : ∀ {ν} (Δ : ICtx ν) r → All (B.All (Δ ⊢ᵣ r)) (resolve Δ r)
sound Δ r = AllP-sound (resolve'-sound Δ r)
| 45.94702
| 101
| 0.556645
|
9aeb34eb5e2979f19e7a9dd3ce442d4c27b070f6
| 421
|
agda
|
Agda
|
test/Succeed/Issue796.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue796.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue796.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- 2013-02-21 Andreas
-- ensure that constructor-headedness works also for abstract things
module Issue796 where
data U : Set where
a b : U
data A : Set where
data B : Set where
abstract
A' B' : Set
A' = A
B' = B -- fails if changed to A.
[_] : U → Set
[_] a = A'
[_] b = B'
f : ∀ u → [ u ] → U
f u _ = u
postulate x : A'
zzz : U
zzz = f _ x
-- succeeds since [_] is constructor headed
| 14.517241
| 68
| 0.570071
|
9adfb361a2d0f41b8159365b6c35bdeabac1f5f0
| 381
|
agda
|
Agda
|
test/Fail/Issue4120-loop.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue4120-loop.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue4120-loop.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --prop --show-irrelevant #-}
open import Agda.Builtin.Equality
postulate
A : Set
P : Prop
f : P → A
g : A → P
{-# TERMINATING #-}
loop : A → A
loop y = loop y
mutual
X : A
X = _
test : ∀ y → X ≡ f (g (loop y))
test y = refl
-- The occurs check should not try to normalize the argument `loop y`
-- because it only appears in an irrelevant context.
| 15.875
| 69
| 0.606299
|
c7a637e152c27367377c135306675a14bf5cae9d
| 1,205
|
agda
|
Agda
|
test/succeed/ProjectionsPreserveGuardednessTrivialExample.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T04:41:05.000Z
|
2019-11-27T04:41:05.000Z
|
test/succeed/ProjectionsPreserveGuardednessTrivialExample.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/succeed/ProjectionsPreserveGuardednessTrivialExample.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
-- 2010-10-14
{-# OPTIONS --universe-polymorphism #-}
module ProjectionsPreserveGuardednessTrivialExample where
-- Coinduction is only available with universe polymorphism
postulate
Level : Set
zero : Level
suc : (i : Level) → Level
_⊔_ : Level → Level → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
infixl 6 _⊔_
-- Coinduction
infix 1000 ♯_
postulate
∞ : ∀ {a} (A : Set a) → Set a
♯_ : ∀ {a} {A : Set a} → A → ∞ A
♭ : ∀ {a} {A : Set a} → ∞ A → A
{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
-- Products
infixr 4 _,_
infixr 2 _×_
record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
syntax Σ A (λ x → B) = Σ[ x ∶ A ] B
_×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b)
A × B = Σ[ x ∶ A ] B
-- Streams
infixr 5 _∷_
data Stream (A : Set) : Set where
_∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A
mutual
repeat : {A : Set}(a : A) → Stream A
repeat a = a ∷ proj₂ (repeat' a)
repeat' : {A : Set}(a : A) → A × ∞ (Stream A)
repeat' a = a , ♯ repeat a
| 17.985075
| 62
| 0.542739
|
5e45ae12b939d0d04313f8a61154fe0098f26620
| 161
|
agda
|
Agda
|
test/Fail/Issue2583.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue2583.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue2583.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
data ⊥ : Set where
data Maybe : Set where
just : ⊥ → Maybe
nothing : Maybe
test : Set → Set
test x with nothing
test x | just ()
test x | nothing = test x
| 14.636364
| 25
| 0.63354
|
43586808667d944587f6dfaf416fa45b3434cc3a
| 5,356
|
agda
|
Agda
|
Cubical/Modalities/Modality.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/Modalities/Modality.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
Cubical/Modalities/Modality.agda
|
Rotsor/cubical
|
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Modalities.Modality where
{-
translated from
https://github.com/HoTT/HoTT-Agda/blob/master/core/lib/types/Modality.agda
-}
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
record Modality ℓ : Type (ℓ-suc ℓ) where
field
isModal : Type ℓ → Type ℓ
isModalIsProp : {A : Type ℓ} → isProp (isModal A)
◯ : Type ℓ → Type ℓ -- \ciO
◯-isModal : {A : Type ℓ} → isModal (◯ A)
η : {A : Type ℓ} → A → ◯ A
◯-elim : {A : Type ℓ} {B : ◯ A → Type ℓ}
(B-modal : (x : ◯ A) → isModal (B x))
→ ((x : A) → (B (η x))) → ((x : ◯ A) → B x)
◯-elim-β : {A : Type ℓ} {B : ◯ A → Type ℓ}
(B-modal : (x : ◯ A) → isModal (B x)) (f : (x : A) → (B (η x)))
→ (a : A) → ◯-elim B-modal f (η a) ≡ f a
◯-=-isModal : {A : Type ℓ} (x y : ◯ A) → isModal (x ≡ y)
◯-Types : Type (ℓ-suc ℓ)
◯-Types = Σ[ A ∈ Type ℓ ] isModal A
{- elimination rules -}
module ◯Elim {A : Type ℓ} {B : ◯ A → Type ℓ}
(B-modal : (x : ◯ A) → isModal (B x)) (η* : (x : A) → (B (η x))) where
f : (x : ◯ A) → B x
f = ◯-elim B-modal η*
η-β : (a : A) → ◯-elim B-modal η* (η a) ≡ η* a
η-β = ◯-elim-β B-modal η*
module ◯Rec {A : Type ℓ} {B : Type ℓ}
(B-modal : isModal B) (η* : A → B)
= ◯Elim (λ _ → B-modal) η*
◯-rec = ◯Rec.f
◯-rec-β = ◯Rec.η-β
{- functoriality -}
module ◯Fmap {A B : Type ℓ} (f : A → B) =
◯Rec ◯-isModal (η ∘ f)
◯-map = ◯Fmap.f
◯-map-β = ◯Fmap.η-β
◯-preservesEquiv : {A B : Type ℓ} (f : A → B) → isEquiv f → isEquiv (◯-map f)
◯-preservesEquiv f f-ise = isoToIsEquiv (iso _ (◯-map inv) to-from from-to) where
open Iso (equivToIso (f , f-ise))
abstract
to-from : ∀ ◯b → ◯-map f (◯-map inv ◯b) ≡ ◯b
to-from = ◯-elim
(λ ◯b → ◯-=-isModal (◯-map f (◯-map inv ◯b)) ◯b)
(λ b → cong (◯-map f) (◯-map-β inv b) ∙ ◯-map-β f (inv b) ∙ cong η (rightInv b))
from-to : ∀ ◯a → ◯-map inv (◯-map f ◯a) ≡ ◯a
from-to = ◯-elim
(λ ◯a → ◯-=-isModal (◯-map inv (◯-map f ◯a)) ◯a)
(λ a → cong (◯-map inv) (◯-map-β f a) ∙ ◯-map-β inv (f a) ∙ cong η (leftInv a))
◯-equiv : {A B : Type ℓ} → A ≃ B → ◯ A ≃ ◯ B
◯-equiv (f , f-ise) = ◯-map f , ◯-preservesEquiv f f-ise
{- equivalences preserve being modal -}
equivPreservesIsModal : {A B : Type ℓ} → A ≃ B → isModal A → isModal B
equivPreservesIsModal eq = fst (pathToEquiv (cong isModal (ua eq)))
{- modal types and [η] being an equivalence -}
isModalToIsEquiv : {A : Type ℓ} → isModal A → isEquiv (η {A})
isModalToIsEquiv {A} w = isoToIsEquiv (iso (η {A}) η-inv inv-l inv-r)
where η-inv : ◯ A → A
η-inv = ◯-rec w (idfun A)
abstract
inv-r : (a : A) → η-inv (η a) ≡ a
inv-r = ◯-rec-β w (idfun A)
inv-l : (a : ◯ A) → η (η-inv a) ≡ a
inv-l = ◯-elim (λ a₀ → ◯-=-isModal _ _)
(λ a₀ → cong η (inv-r a₀))
abstract
isEquivToIsModal : {A : Type ℓ} → isEquiv (η {A}) → isModal A
isEquivToIsModal {A} eq = equivPreservesIsModal (invEquiv (η , eq)) ◯-isModal
retractIsModal : {A B : Type ℓ} (w : isModal A)
(f : A → B) (g : B → A) (r : (b : B) → f (g b) ≡ b) →
isModal B
retractIsModal {A} {B} w f g r =
isEquivToIsModal
(isoToIsEquiv (iso η η-inv inv-l inv-r))
where η-inv : ◯ B → B
η-inv = f ∘ (◯-rec w g)
inv-r : (b : B) → η-inv (η b) ≡ b
inv-r b = cong f (◯-rec-β w g b) ∙ r b
inv-l : (b : ◯ B) → η (η-inv b) ≡ b
inv-l = ◯-elim (λ b → ◯-=-isModal _ _) (λ b → cong η (inv-r b))
{- function types with modal codomain are modal -}
abstract
Π-isModal : {A : Type ℓ} {B : A → Type ℓ}
(w : (a : A) → isModal (B a)) → isModal ((x : A) → B x)
Π-isModal {A} {B} w = retractIsModal {◯ _} {(x : A) → B x} ◯-isModal η-inv η r
where η-inv : ◯ ((x : A) → B x) → (x : A) → B x
η-inv φ' a = ◯-rec (w a) (λ φ → φ a) φ'
r : (φ : (x : A) → B x) → η-inv (η φ) ≡ φ
r φ = funExt (λ a → ◯-rec-β (w a) (λ φ₀ → φ₀ a) φ)
→-isModal : {A B : Type ℓ} → isModal B → isModal (A → B)
→-isModal w = Π-isModal (λ _ → w)
{- sigma types of a modal dependent type with modal base are modal -}
abstract
Σ-isModal : {A : Type ℓ} (B : A → Type ℓ)
→ isModal A → ((a : A) → isModal (B a))
→ isModal (Σ A B)
Σ-isModal {A} B A-modal B-modal =
retractIsModal {◯ (Σ A B)} {Σ A B} ◯-isModal η-inv η r
where h : ◯ (Σ A B) → A
h = ◯-rec A-modal fst
h-β : (x : Σ A B) → h (η x) ≡ fst x
h-β = ◯-rec-β A-modal fst
f : (j : I) → (x : Σ A B) → B (h-β x j)
f j x = transp (λ i → B (h-β x ((~ i) ∨ j))) j (snd x)
k : (y : ◯ (Σ A B)) → B (h y)
k = ◯-elim (B-modal ∘ h) (f i0)
η-inv : ◯ (Σ A B) → Σ A B
η-inv y = h y , k y
p : (x : Σ A B) → k (η x) ≡ f i0 x
p = ◯-elim-β (B-modal ∘ h) (f i0)
almost : (x : Σ A B) → (h (η x) , f i0 x) ≡ x
almost x i = h-β x i , f i x
r : (x : Σ A B) → η-inv (η x) ≡ x
r x = (λ i → h (η x) , p x i) ∙ (almost x)
| 32.26506
| 89
| 0.447535
|
5ed0c3335476cde35966ce46f6535bc2419b636f
| 461
|
agda
|
Agda
|
bool.agda
|
mrLSD/agda-emacs
|
2c92eb9520dc83f0258e43b4227ce281dfadaffe
|
[
"MIT"
] | null | null | null |
bool.agda
|
mrLSD/agda-emacs
|
2c92eb9520dc83f0258e43b4227ce281dfadaffe
|
[
"MIT"
] | null | null | null |
bool.agda
|
mrLSD/agda-emacs
|
2c92eb9520dc83f0258e43b4227ce281dfadaffe
|
[
"MIT"
] | null | null | null |
module bool where
------------------------
-- Datatypes
------------------------
data 𝔹 : Set where
true : 𝔹
false : 𝔹
----------------------
-- AND
----------------------
infixr 6 _∧_
_∧_ : 𝔹 → 𝔹 → 𝔹
true ∧ b = b
false ∧ b = false
---------------------
-- OR
---------------------
infixr 5 _∨_
_∨_ : 𝔹 → 𝔹 → 𝔹
true ∨ b = true
false ∨ b = b
--------------------
-- NEFATION
--------------------
infixr 7 ¬_
¬_ : 𝔹 → 𝔹
¬ true = false
¬ false = true
| 13.969697
| 24
| 0.327549
|
5e31433dab42d82a85b04acd0c8ef470999868fd
| 884
|
agda
|
Agda
|
vendor/stdlib/src/Foreign/Haskell.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 56
|
2015-01-20T02:11:42.000Z
|
2021-12-21T17:02:19.000Z
|
vendor/stdlib/src/Foreign/Haskell.agda
|
larrytheliquid/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 1
|
2022-03-12T12:17:51.000Z
|
2022-03-12T12:17:51.000Z
|
vendor/stdlib/src/Foreign/Haskell.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 3
|
2015-07-21T16:37:58.000Z
|
2022-03-12T11:54:10.000Z
|
------------------------------------------------------------------------
-- Types used (only) when calling out to Haskell via the FFI
------------------------------------------------------------------------
module Foreign.Haskell where
open import Coinduction
open import Data.Colist as C using ([]; _∷_)
------------------------------------------------------------------------
-- Simple types
-- A unit type.
data Unit : Set where
unit : Unit
{-# COMPILED_DATA Unit () () #-}
-- Potentially infinite lists.
infixr 5 _∷_
codata Colist (A : Set) : Set where
[] : Colist A
_∷_ : (x : A) (xs : Colist A) → Colist A
{-# COMPILED_DATA Colist [] [] (:) #-}
fromColist : ∀ {A} → C.Colist A → Colist A
fromColist [] = []
fromColist (x ∷ xs) = x ∷ fromColist (♭ xs)
toColist : ∀ {A} → Colist A → C.Colist A
toColist [] = []
toColist (x ∷ xs) = x ∷ ♯ toColist xs
| 23.891892
| 72
| 0.45362
|
0485f8716af69901ed9a257f3b996e0f40ca51a8
| 1,143
|
agda
|
Agda
|
nat-log.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
nat-log.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
nat-log.agda
|
heades/AUGL
|
b33c6a59d664aed46cac8ef77d34313e148fecc2
|
[
"MIT"
] | null | null | null |
module nat-log where
open import bool
open import eq
open import nat
open import nat-thms
open import nat-division
open import product
data log-result (x : ℕ)(b : ℕ) : Set where
pos-power : (e : ℕ) → (s : ℕ) → b pow e + s ≡ x → log-result x b
no-power : x < b ≡ tt → log-result x b
-- as a first version, we do not try to prove termination of this function
{-# NON_TERMINATING #-}
log : (x : ℕ) → (b : ℕ) → x =ℕ 0 ≡ ff → b =ℕ 0 ≡ ff → log-result x b
log x b p1 p2 with x ÷ b ! p2
log x b p1 p2 | 0 , r , u1 , u2 rewrite u1 = no-power u2
log x b p1 p2 | (suc q) , r , u1 , u2 with log (suc q) b refl p2
log x b p1 p2 | (suc q) , r , u1 , u2 | no-power u rewrite sym u1 =
pos-power 1 (b * q + r) lem
where lem : b * 1 + (b * q + r) ≡ b + q * b + r
lem rewrite *1{b} | *comm b q = +assoc b (q * b) r
log x b p1 p2 | (suc q) , r , u1 , u2 | pos-power e s u rewrite sym u1 =
pos-power (suc e) (b * s + r) lem
where lem : b * b pow e + (b * s + r) ≡ b + q * b + r
lem rewrite +assoc (b * b pow e) (b * s) r | sym (*distribl b (b pow e) s) | *comm b (b pow e + s) =
sym (cong (λ i → i * b + r) (sym u))
| 38.1
| 109
| 0.542432
|
31ae06f50dcc946b15b2fb26c2a3b410e52c30d7
| 1,175
|
agda
|
Agda
|
old/Homotopy/PointConnected.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
old/Homotopy/PointConnected.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
old/Homotopy/PointConnected.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K #-}
open import Base
{-
This file contains the lemma that
a point (1 -> A) has n-connected fibers
if A is (S n)-connected.
The other direction will be added whenever
it is needed.
-}
module Homotopy.PointConnected {i} (A : Set i) (a : A) where
open import Homotopy.Connected
open import Homotopy.Truncation
open import Homotopy.PathTruncation
point : unit {i} → A
point _ = a
abstract
point-has-connected-fibers : ∀ {n} →
is-connected (S n) A → has-connected-fibers n point
point-has-connected-fibers {n} A-is-conn a₂ = center [a≡a₂]n , path
where
[a≡a₂]n : τ n (a ≡ a₂)
[a≡a₂]n = connected-has-all-τ-paths A-is-conn a a₂
center : τ n (a ≡ a₂) → τ n (hfiber point a₂)
center = τ-extend-nondep ⦃ τ-is-truncated n _ ⦄
(λ shift → proj $ tt , shift)
path′ : ∀ f → proj f ≡ center [a≡a₂]n
path′ (tt , a≡a₂) = ap center $ contr-has-all-paths
(connected-has-connected-paths A-is-conn a a₂) (proj a≡a₂) [a≡a₂]n
path : ∀ f → f ≡ center [a≡a₂]n
path = τ-extend ⦃ λ _ → ≡-is-truncated n $ τ-is-truncated n _ ⦄ path′
| 28.658537
| 77
| 0.589787
|
8b595a714e96453efcf686669aa21f9dd0569ab9
| 7,128
|
agda
|
Agda
|
internal/well-typed-syntax-pre-interpreter.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 19
|
2015-07-17T17:53:30.000Z
|
2021-03-17T14:04:53.000Z
|
internal/well-typed-syntax-pre-interpreter.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 1
|
2015-07-17T20:20:43.000Z
|
2015-07-17T20:20:43.000Z
|
internal/well-typed-syntax-pre-interpreter.agda
|
JasonGross/lob
|
716129208eaf4fe3b5f629f95dde4254805942b3
|
[
"MIT"
] | 1
|
2015-07-17T18:53:37.000Z
|
2015-07-17T18:53:37.000Z
|
{-# OPTIONS --without-K #-}
module well-typed-syntax-pre-interpreter where
open import common public
open import well-typed-syntax
open import well-typed-syntax-helpers
max-level : Level
max-level = lsuc lzero
module inner
(context-pick-if' : ∀ ℓ (P : Context → Set ℓ)
(Γ : Context)
(dummy : P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’))
(val : P Γ) →
P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’))
(context-pick-if-refl' : ∀ ℓ P dummy val →
context-pick-if' ℓ P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’) dummy val ≡ val)
where
context-pick-if : ∀ {ℓ} {P : Context → Set ℓ}
{Γ : Context}
(dummy : P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’))
(val : P Γ) →
P (ε ▻ ‘Σ’ ‘Context’ ‘Typ’)
context-pick-if {P = P} dummy val = context-pick-if' _ P _ dummy val
context-pick-if-refl : ∀ {ℓ P dummy val} →
context-pick-if {ℓ} {P} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} dummy val ≡ val
context-pick-if-refl {P = P} = context-pick-if-refl' _ P _ _
private
dummy : Typ ε
dummy = ‘Context’
cast-helper : ∀ {X T A} {x : Term X} → A ≡ T → Term {ε} (T ‘’ x ‘→'’ A ‘’ x)
cast-helper refl = ‘λ∙’ ‘VAR₀’
cast'-proof : ∀ {T} → Term {ε} (context-pick-if {P = Typ} (W dummy) T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T
‘→'’ T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T)
cast'-proof {T} = cast-helper {‘Σ’ ‘Context’ ‘Typ’}
{context-pick-if {P = Typ} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} (W dummy) T}
{T} (sym (context-pick-if-refl {P = Typ} {dummy = W dummy}))
cast-proof : ∀ {T} → Term {ε} (T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T
‘→'’ context-pick-if {P = Typ} (W dummy) T ‘’ ‘existT’ ⌜ ε ▻ ‘Σ’ ‘Context’ ‘Typ’ ⌝c ⌜ T ⌝T)
cast-proof {T} = cast-helper {‘Σ’ ‘Context’ ‘Typ’} {T}
{context-pick-if {P = Typ} {ε ▻ ‘Σ’ ‘Context’ ‘Typ’} (W dummy) T}
(context-pick-if-refl {P = Typ} {dummy = W dummy})
‘idfun’ : ∀ {T} → Term {ε} (T ‘→'’ T)
‘idfun’ = ‘λ∙’ ‘VAR₀’
mutual
Context⇓ : (Γ : Context) → Set (lsuc max-level)
Typ⇓ : {Γ : Context} → Typ Γ → Context⇓ Γ → Set max-level
Context⇓ ε = ⊤
Context⇓ (Γ ▻ T) = Σ (Context⇓ Γ) (λ Γ' → Typ⇓ T Γ')
Typ⇓ (T₁ ‘’ x) Γ⇓ = Typ⇓ T₁ (Γ⇓ , Term⇓ x Γ⇓)
Typ⇓ (T₂ ‘’₁ a) (Γ⇓ , A⇓) = Typ⇓ T₂ ((Γ⇓ , Term⇓ a Γ⇓) , A⇓)
Typ⇓ (T₃ ‘’₂ a) ((Γ⇓ , A⇓) , B⇓) = Typ⇓ T₃ (((Γ⇓ , Term⇓ a Γ⇓) , A⇓) , B⇓)
Typ⇓ (T₃ ‘’₃ a) (((Γ⇓ , A⇓) , B⇓) , C⇓) = Typ⇓ T₃ ((((Γ⇓ , Term⇓ a Γ⇓) , A⇓) , B⇓) , C⇓)
Typ⇓ (W T₁) (Γ⇓ , _) = Typ⇓ T₁ Γ⇓
Typ⇓ (W1 T₂) ((Γ⇓ , A⇓) , B⇓) = Typ⇓ T₂ (Γ⇓ , B⇓)
Typ⇓ (W2 T₃) (((Γ⇓ , A⇓) , B⇓) , C⇓) = Typ⇓ T₃ ((Γ⇓ , B⇓) , C⇓)
Typ⇓ (T ‘→’ T₁) Γ⇓ = (T⇓ : Typ⇓ T Γ⇓) → Typ⇓ T₁ (Γ⇓ , T⇓)
Typ⇓ ‘Context’ Γ⇓ = Lifted Context
Typ⇓ ‘Typ’ (Γ⇓ , T⇓) = Lifted (Typ (lower T⇓))
Typ⇓ ‘Term’ (Γ⇓ , T⇓ , t⇓) = Lifted (Term (lower t⇓))
Typ⇓ (‘Σ’ T T₁) Γ⇓ = Σ (Typ⇓ T Γ⇓) (λ T⇓ → Typ⇓ T₁ (Γ⇓ , T⇓))
Term⇓ : ∀ {Γ : Context} {T : Typ Γ} → Term T → (Γ⇓ : Context⇓ Γ) → Typ⇓ T Γ⇓
Term⇓ (w t) (Γ⇓ , A⇓) = Term⇓ t Γ⇓
Term⇓ (‘λ∙’ t) Γ⇓ T⇓ = Term⇓ t (Γ⇓ , T⇓)
Term⇓ (t ‘’ₐ t₁) Γ⇓ = Term⇓ t Γ⇓ (Term⇓ t₁ Γ⇓)
Term⇓ ‘VAR₀’ (Γ⇓ , A⇓) = A⇓
Term⇓ (⌜ Γ ⌝c) Γ⇓ = lift Γ
Term⇓ (⌜ T ⌝T) Γ⇓ = lift T
Term⇓ (⌜ t ⌝t) Γ⇓ = lift t
Term⇓ ‘quote-term’ Γ⇓ (lift T⇓) = lift ⌜ T⇓ ⌝t
Term⇓ (‘quote-sigma’ {Γ₀} {Γ₁}) Γ⇓ (lift Γ , lift T) = lift (‘existT’ {Γ₁} ⌜ Γ ⌝c ⌜ T ⌝T)
Term⇓ ‘cast’ Γ⇓ T⇓ = lift (context-pick-if
{P = Typ}
{lower (Σ.proj₁ T⇓)}
(W dummy)
(lower (Σ.proj₂ T⇓)))
Term⇓ (SW t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp-weakenTyp1-VAR₀ t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (weakenTyp-tProd-inv t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (weakenTyp-weakenTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp1-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (weakenTyp1-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp2-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp1-substTyp-weakenTyp-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp1-substTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-weakenTyp-substTyp1-substTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp2-substTyp1-substTyp-weakenTyp-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp2-substTyp1-substTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp2-substTyp1-substTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (weakenTyp2-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-weakenTyp-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-weakenTyp1-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp1-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-substTyp-weakenTyp1-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp1-substTyp-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp-substTyp-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp-substTyp-weakenTyp1-inv t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp-weakenTyp1-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp3-substTyp2-substTyp1-substTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-substTyp2-substTyp1-substTyp-weakenTyp1 t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp1-substTyp-tProd t) Γ⇓ T⇓ = Term⇓ t Γ⇓ T⇓
Term⇓ (substTyp2-substTyp-substTyp-weakenTyp1-weakenTyp-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (substTyp1-substTyp-weakenTyp2-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (weakenTyp-weakenTyp1-weakenTyp t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ (beta-under-subst t) Γ⇓ = Term⇓ t Γ⇓
Term⇓ ‘proj₁'’ Γ⇓ (x , p) = x
Term⇓ ‘proj₂'’ (Γ⇓ , (x , p)) = p
Term⇓ (‘existT’ x p) Γ⇓ = Term⇓ x Γ⇓ , Term⇓ p Γ⇓
Term⇓ (f ‘‘’’ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘’ lower (Term⇓ x Γ⇓))
Term⇓ (f w‘‘’’ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘’ lower (Term⇓ x Γ⇓))
Term⇓ (f ‘‘→'’’ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘→'’ lower (Term⇓ x Γ⇓))
Term⇓ (f w‘‘→'’’ x) Γ⇓ = lift (lower (Term⇓ f Γ⇓) ‘→'’ lower (Term⇓ x Γ⇓))
Term⇓ (w→ x) Γ⇓ A⇓ = Term⇓ x (Σ.proj₁ Γ⇓) A⇓
Term⇓ w‘‘→'’’→‘‘→'’’ Γ⇓ T⇓ = T⇓
Term⇓ ‘‘→'’’→w‘‘→'’’ Γ⇓ T⇓ = T⇓
Term⇓ ‘tApp-nd’ Γ⇓ f⇓ x⇓ = lift (SW (lower f⇓ ‘’ₐ lower x⇓))
Term⇓ ⌜←'⌝ Γ⇓ T⇓ = T⇓
Term⇓ ⌜→'⌝ Γ⇓ T⇓ = T⇓
Term⇓ (‘‘fcomp-nd’’ {A} {B} {C}) Γ⇓ g⇓ f⇓ = lift (_‘∘’_ {ε} (lower g⇓) (lower f⇓))
Term⇓ (⌜‘’⌝ {B} {A} {b}) Γ⇓ = lift (‘λ∙’ {ε} (‘VAR₀’ {ε} {_‘’_ {ε} A b}))
Term⇓ (⌜‘’⌝' {B} {A} {b}) Γ⇓ = lift (‘λ∙’ {ε} (‘VAR₀’ {ε} {_‘’_ {ε} A b}))
Term⇓ (‘cast-refl’ {T}) Γ⇓ = lift (cast-proof {T})
Term⇓ (‘cast-refl'’ {T}) Γ⇓ = lift (cast'-proof {T})
Term⇓ (‘s→→’ {T} {B} {b} {c} {v}) Γ⇓ = lift (‘idfun’ {_‘’_ {ε} (lower (Term⇓ b tt (Term⇓ v Γ⇓))) (lower (Term⇓ c tt (Term⇓ v Γ⇓)))})
Term⇓ (‘s←←’ {T} {B} {b} {c} {v}) Γ⇓ = lift (‘idfun’ {_‘’_ {ε} (lower (Term⇓ b tt (Term⇓ v Γ⇓))) (lower (Term⇓ c tt (Term⇓ v Γ⇓)))})
| 51.280576
| 136
| 0.481341
|
a035eb088cef358b6d44920aa97c6435105e4fd6
| 1,060
|
agda
|
Agda
|
Cubical/HITs/Nullification/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Nullification/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Nullification/Base.agda
|
borsiemir/cubical
|
cefeb3669ffdaea7b88ae0e9dd258378418819ca
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Nullification.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.PathSplitEquiv
open isPathSplitEquiv
isNull : ∀ {ℓ ℓ'} (S : Type ℓ) (A : Type ℓ') → Type (ℓ-max ℓ ℓ')
isNull S A = isPathSplitEquiv (const {A = A} {B = S})
data Null {ℓ ℓ'} (S : Type ℓ) (A : Type ℓ') : Type (ℓ-max ℓ ℓ') where
∣_∣ : A → Null S A
-- the image of every map (S → Null S A) is contractible in Null S A
hub : (f : S → Null S A) → Null S A
spoke : (f : S → Null S A) (s : S) → hub f ≡ f s
-- the image of every map (S → x ≡ y) for x y : A is contractible in x ≡ y
≡hub : ∀ {x y} (p : S → x ≡ y) → x ≡ y
≡spoke : ∀ {x y} (p : S → x ≡ y) (s : S) → ≡hub p ≡ p s
isNull-Null : ∀ {ℓ ℓ'} {S : Type ℓ} {A : Type ℓ'} → isNull S (Null S A)
fst (sec isNull-Null) f = hub f
snd (sec isNull-Null) f i s = spoke f s i
fst (secCong isNull-Null x y) p i = ≡hub (funExt⁻ p) i
snd (secCong isNull-Null x y) p i j s = ≡spoke (funExt⁻ p) s i j
| 40.769231
| 76
| 0.583962
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.