hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
2221e38c5f302b043cf9231b157f42bd82c030d2
2,257
agda
Agda
src/Categories/Functor/Monoidal.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Functor/Monoidal.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Functor/Monoidal.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Monoidal where open import Level open import Data.Product using (Σ; _,_) open import Categories.Category open import Categories.Category.Product open import Categories.Category.Monoidal open import Categories.Functor hiding (id) open import Categories.NaturalTransformation hiding (id) private variable o ℓ e : Level C D : Category o ℓ e module _ (MC : Monoidal C) (MD : Monoidal D) where private module C = Category C module D = Category D module MC = Monoidal MC module MD = Monoidal MD record MonoidalFunctor : Set (levelOfTerm MC ⊔ levelOfTerm MD) where field F : Functor C D open Functor F public field ε : D [ MD.unit , F₀ MC.unit ] ⊗-homo : NaturalTransformation (MD.⊗ ∘F (F ⁂ F)) (F ∘F MC.⊗) module ⊗-homo = NaturalTransformation ⊗-homo -- coherence condition open D open MD open Commutation D field associativity : ∀ {X Y Z} → [ (F₀ X ⊗₀ F₀ Y) ⊗₀ F₀ Z ⇒ F₀ (X MC.⊗₀ Y MC.⊗₀ Z) ]⟨ ⊗-homo.η (X , Y) ⊗₁ id ⇒⟨ F₀ (X MC.⊗₀ Y) ⊗₀ F₀ Z ⟩ ⊗-homo.η (X MC.⊗₀ Y , Z) ⇒⟨ F₀ ((X MC.⊗₀ Y) MC.⊗₀ Z) ⟩ F₁ MC.associator.from ≈ associator.from ⇒⟨ F₀ X ⊗₀ F₀ Y ⊗₀ F₀ Z ⟩ id ⊗₁ ⊗-homo.η (Y , Z) ⇒⟨ F₀ X ⊗₀ F₀ (Y MC.⊗₀ Z) ⟩ ⊗-homo.η (X , Y MC.⊗₀ Z) ⟩ unitaryˡ : ∀ {X} → [ unit ⊗₀ F₀ X ⇒ F₀ X ]⟨ ε ⊗₁ id ⇒⟨ F₀ MC.unit ⊗₀ F₀ X ⟩ ⊗-homo.η (MC.unit , X) ⇒⟨ F₀ (MC.unit MC.⊗₀ X) ⟩ F₁ MC.unitorˡ.from ≈ unitorˡ.from ⟩ unitaryʳ : ∀ {X} → [ F₀ X ⊗₀ unit ⇒ F₀ X ]⟨ id ⊗₁ ε ⇒⟨ F₀ X ⊗₀ F₀ MC.unit ⟩ ⊗-homo.η (X , MC.unit) ⇒⟨ F₀ (X MC.⊗₀ MC.unit) ⟩ F₁ MC.unitorʳ.from ≈ unitorʳ.from ⟩
33.191176
101
0.435534
3881a435e75d21e014eee77d5cef2addfd4d3fdc
3,978
agda
Agda
a3.agda
felixwellen/adventOfCode
834bc9e291a76bdbcd58cbff9805161f1b1cfe71
[ "MIT" ]
null
null
null
a3.agda
felixwellen/adventOfCode
834bc9e291a76bdbcd58cbff9805161f1b1cfe71
[ "MIT" ]
null
null
null
a3.agda
felixwellen/adventOfCode
834bc9e291a76bdbcd58cbff9805161f1b1cfe71
[ "MIT" ]
null
null
null
{- Day 3, 1st part -} module a3 where open import Agda.Builtin.IO using (IO) open import Agda.Builtin.Unit using (⊤) open import Agda.Builtin.String using (String; primShowNat) open import Agda.Builtin.Equality open import Data.Nat open import Data.Bool open import Data.List hiding (lookup;allFin) renaming (map to mapList) open import Data.Vec open import Data.Fin hiding (_+_) open import Data.Maybe renaming (map to maybeMap) open import a3-input postulate putStrLn : String → IO ⊤ {-# FOREIGN GHC import qualified Data.Text as T #-} {-# COMPILE GHC putStrLn = putStrLn . T.unpack #-} -- helper showMaybeNat : Maybe ℕ → String showMaybeNat (just n) = primShowNat n showMaybeNat nothing = "nothing" data Bit : Set where one : Bit zero : Bit BitVec = Vec Bit Vecℕ→BitVec : {n : ℕ} → Vec ℕ n → Maybe (BitVec n) Vecℕ→BitVec [] = just [] Vecℕ→BitVec (x ∷ v) with Vecℕ→BitVec v ... | just v' with x ... | 0 = just (zero ∷ v') ... | 1 = just (one ∷ v') ... | suc (suc _) = nothing Vecℕ→BitVec (x ∷ v) | nothing = nothing findMostCommonBit : {n : ℕ} (index : Fin n) → List (BitVec n) → Bit findMostCommonBit {n = n} index input = iterate 0 0 input where iterate : (zeros : ℕ) (ones : ℕ) → List (BitVec n) → Bit iterate zeros ones [] = if zeros <ᵇ ones then one else zero iterate zeros ones (bitVec ∷ list) with lookup bitVec index ... | zero = iterate (1 + zeros) ones list ... | one = iterate zeros (1 + ones) list bitVecToℕ : {n : ℕ} → BitVec n → ℕ bitVecToℕ [] = 0 bitVecToℕ (zero ∷ v) = bitVecToℕ v bitVecToℕ {n = suc n} (one ∷ v) = 2 ^ n + (bitVecToℕ v) invertBitVec : {n : ℕ} → BitVec n → BitVec n invertBitVec [] = [] invertBitVec (zero ∷ v) = one ∷ invertBitVec v invertBitVec (one ∷ v) = zero ∷ invertBitVec v listMaybe : {A : Set} → List (Maybe A) → Maybe (List A) listMaybe [] = just [] listMaybe (just x ∷ list) with listMaybe list ... | just proccessedList = just (x ∷ proccessedList) ... | nothing = nothing listMaybe (nothing ∷ list) = nothing doTask : List (BitVec 12) → ℕ doTask input = gamma * epsilon where bitVecGamma = map (λ index → findMostCommonBit index input) (allFin 12) gamma : ℕ gamma = bitVecToℕ bitVecGamma epsilon = bitVecToℕ (invertBitVec bitVecGamma) main : IO ⊤ main = putStrLn (showMaybeNat ((maybeMap doTask) (listMaybe (mapList Vecℕ→BitVec input)))) private -- checks from the exercise text testInput : Maybe (List (BitVec 5)) testInput = listMaybe (mapList Vecℕ→BitVec ((0 ∷ 0 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷ (1 ∷ 1 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷ (1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ∷ (1 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷ (1 ∷ 0 ∷ 1 ∷ 0 ∷ 1 ∷ []) ∷ (0 ∷ 1 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷ (0 ∷ 0 ∷ 1 ∷ 1 ∷ 1 ∷ []) ∷ (1 ∷ 1 ∷ 1 ∷ 0 ∷ 0 ∷ []) ∷ (1 ∷ 0 ∷ 0 ∷ 0 ∷ 0 ∷ []) ∷ (1 ∷ 1 ∷ 0 ∷ 0 ∷ 1 ∷ []) ∷ (0 ∷ 0 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷ (0 ∷ 1 ∷ 0 ∷ 1 ∷ 0 ∷ []) ∷ [])) _ : maybeMap (findMostCommonBit Fin.zero) testInput ≡ just one _ = refl _ : maybeMap (findMostCommonBit (Fin.suc Fin.zero)) testInput ≡ just zero _ = refl _ : maybeMap (findMostCommonBit (Fin.suc (Fin.suc Fin.zero))) testInput ≡ just one _ = refl _ : maybeMap (findMostCommonBit (Fin.suc (Fin.suc (Fin.suc Fin.zero)))) testInput ≡ just one _ = refl _ : maybeMap (findMostCommonBit (fromℕ 4)) testInput ≡ just zero _ = refl -- test bitVecToℕ _ : bitVecToℕ (one ∷ zero ∷ one ∷ one ∷ zero ∷ []) ≡ 22 _ = refl _ : Vecℕ→BitVec (1 ∷ 0 ∷ 1 ∷ 1 ∷ 0 ∷ []) ≡ just (one ∷ zero ∷ one ∷ one ∷ zero ∷ []) _ = refl _ : Vecℕ→BitVec (1 ∷ 0 ∷ 1 ∷ 5 ∷ 0 ∷ []) ≡ nothing _ = refl
31.571429
94
0.538462
1ed7f786a85901ad4c75427a0f01d8d07191e3aa
156
agda
Agda
Bool.agda
mjhopkins/PowerOfPi
76743baacba0f07992bac5234ba8045d18706893
[ "Apache-2.0" ]
1
2018-07-25T13:12:15.000Z
2018-07-25T13:12:15.000Z
Bool.agda
mjhopkins/PowerOfPi
76743baacba0f07992bac5234ba8045d18706893
[ "Apache-2.0" ]
null
null
null
Bool.agda
mjhopkins/PowerOfPi
76743baacba0f07992bac5234ba8045d18706893
[ "Apache-2.0" ]
null
null
null
module Bool where data Bool : Set where true : Bool false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-}
15.6
27
0.608974
5ed898faf4b37460fd04e9075cd70db2ac2f5297
390
agda
Agda
test/interaction/Issue3110.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3110.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3110.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Unexpected context for generalized type #3110 postulate Nat : Set Fin : Nat → Set Foo : (n : Nat) → Fin n → Set private module M where variable n : Nat m : Fin _ postulate Bar : Foo n m → Set open M public using (Bar) variable n : Nat m : Fin _ l : Foo n m before : Bar l before {n} {m} {l} = {!C-c C-e!} after : Bar l after {n} {m} {l} = {!C-c C-e!}
13.448276
48
0.561538
a01e88b8e51d59dc94e3d6675506f82451fdcca7
127
agda
Agda
test/Fail/RecordPattern2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/RecordPattern2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/RecordPattern2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate A : Set record R : Set where field f : A record S : Set where field g : A test : R → A test record{g = a} = a
11.545455
22
0.598425
d1a05e7286f8dded99ed5d957001f5a1e61ddaef
2,397
agda
Agda
src/agda/FRP/JS/JSON.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
63
2015-04-20T21:47:00.000Z
2022-02-28T09:46:14.000Z
src/agda/FRP/JS/JSON.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
null
null
null
src/agda/FRP/JS/JSON.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
7
2016-11-07T21:50:58.000Z
2022-03-12T11:39:38.000Z
{-# OPTIONS --sized-types #-} open import FRP.JS.Bool using ( Bool ; true ; false ) renaming ( _≟_ to _≟b_ ) open import FRP.JS.Nat using ( ℕ ) open import FRP.JS.Float using ( ℝ ) renaming ( _≟_ to _≟n_ ) open import FRP.JS.String using ( String ) renaming ( _≟_ to _≟s_ ) open import FRP.JS.Array using ( Array ) renaming ( lookup? to alookup? ; _≟[_]_ to _≟a[_]_ ) open import FRP.JS.Object using ( Object ) renaming ( lookup? to olookup? ; _≟[_]_ to _≟o[_]_ ) open import FRP.JS.Maybe using ( Maybe ; just ; nothing ) open import FRP.JS.Size using ( Size ; ↑_ ) module FRP.JS.JSON where data JSON : {σ : Size} → Set where null : ∀ {σ} → JSON {σ} string : ∀ {σ} → String → JSON {σ} float : ∀ {σ} → ℝ → JSON {σ} bool : ∀ {σ} → Bool → JSON {σ} array : ∀ {σ} → Array (JSON {σ}) → JSON {↑ σ} object : ∀ {σ} → Object (JSON {σ}) → JSON {↑ σ} {-# COMPILED_JS JSON function(x,v) { if (x === null) { return v.null(null); } else if (x.constructor === String) { return v.string(null,x); } else if (x.constructor === Number) { return v.float(null,x); } else if (x.constructor === Boolean) { return v.bool(null,x); } else if (x.constructor === Array) { return v.array(null,x); } else { return v.object(null,x); } } #-} {-# COMPILED_JS null function() { return null; } #-} {-# COMPILED_JS string function() { return function(x) { return x; }; } #-} {-# COMPILED_JS float function() { return function(x) { return x; }; } #-} {-# COMPILED_JS bool function() { return function(x) { return x; }; } #-} {-# COMPILED_JS array function() { return function(x) { return x; }; } #-} {-# COMPILED_JS object function() { return function(x) { return x; }; } #-} postulate show : JSON → String parse : String → Maybe JSON {-# COMPILED_JS show JSON.stringify #-} {-# COMPILED_JS parse require("agda.box").handle(JSON.parse) #-} Key : Bool → Set Key true = String Key false = ℕ lookup? : ∀ {σ} → Maybe (JSON {↑ σ}) → ∀ {b} → Key b → Maybe (JSON {σ}) lookup? (just (object js)) {true} k = olookup? js k lookup? (just (array js)) {false} i = alookup? js i lookup? _ _ = nothing _≟_ : ∀ {σ τ} → JSON {σ} → JSON {τ} → Bool null ≟ null = true string s ≟ string t = s ≟s t float m ≟ float n = m ≟n n bool b ≟ bool c = b ≟b c array js ≟ array ks = js ≟a[ _≟_ ] ks object js ≟ object ks = js ≟o[ _≟_ ] ks _ ≟ _ = false
39.295082
95
0.584063
309d954a8377dcbe390fd55fed3585e48651c692
327
agda
Agda
archive/agda-3/src/Oscar/Class/Apply.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Apply.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Apply.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude module Oscar.Class.Apply where module _ (𝔉 : ∀ {𝔣} → Ø 𝔣 → Ø 𝔣) 𝔬₁ 𝔬₂ where 𝓪pply = ∀ {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂} → 𝔉 (𝔒₁ → 𝔒₂) → 𝔉 𝔒₁ → 𝔉 𝔒₂ record 𝓐pply : Ø ↑̂ (𝔬₁ ∙̂ 𝔬₂) where infixl 4 apply field apply : 𝓪pply syntax apply f x = f <*> x open 𝓐pply ⦃ … ⦄ public _<*>_ = apply
18.166667
63
0.553517
a0375ce7d7ac4e68781ff42b29dba42d6fe441d8
19,534
agda
Agda
agda/PLRTree/Insert/Complete.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/PLRTree/Insert/Complete.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/PLRTree/Insert/Complete.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module PLRTree.Insert.Complete {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.Empty open import Data.Sum renaming (_⊎_ to _∨_) open import PLRTree {A} open import PLRTree.Compound {A} open import PLRTree.Insert _≤_ tot≤ open import PLRTree.Insert.Properties _≤_ tot≤ open import PLRTree.Complete {A} open import PLRTree.Complete.Properties {A} open import PLRTree.Equality {A} open import PLRTree.Equality.Properties {A} lemma-≃-⊥ : {l : PLRTree}(x : A) → l ≃ insert x l → ⊥ lemma-≃-⊥ {leaf} _ () lemma-≃-⊥ {node perfect x' l' r'} x l≃lᵢ with tot≤ x x' | l' | r' | l≃lᵢ ... | inj₁ x≤x' | leaf | leaf | () ... | inj₁ x≤x' | leaf | node _ _ _ _ | () ... | inj₁ x≤x' | node _ _ _ _ | leaf | () ... | inj₁ x≤x' | node _ _ _ _ | node _ _ _ _ | () ... | inj₂ x'≤x | leaf | leaf | () ... | inj₂ x'≤x | leaf | node _ _ _ _ | () ... | inj₂ x'≤x | node _ _ _ _ | leaf | () ... | inj₂ x'≤x | node _ _ _ _ | node _ _ _ _ | () lemma-≃-⊥ {node left _ _ _} _ () lemma-≃-⊥ {node right _ _ _} _ () lemma-⋗-⊥ : {l : PLRTree}(x : A) → l ⋗ insert x l → ⊥ lemma-⋗-⊥ {leaf} _ () lemma-⋗-⊥ {node perfect x' l' r'} x l⋗lᵢ with tot≤ x x' | l' | r' | l⋗lᵢ ... | inj₁ x≤x' | leaf | leaf | () ... | inj₁ x≤x' | leaf | node _ _ _ _ | () ... | inj₁ x≤x' | node _ _ _ _ | leaf | () ... | inj₁ x≤x' | node _ _ _ _ | node _ _ _ _ | () ... | inj₂ x'≤x | leaf | leaf | () ... | inj₂ x'≤x | leaf | node _ _ _ _ | () ... | inj₂ x'≤x | node _ _ _ _ | leaf | () ... | inj₂ x'≤x | node _ _ _ _ | node _ _ _ _ | () lemma-⋗-⊥ {node left _ _ _} _ () lemma-⋗-⊥ {node right _ _ _} _ () lemma-⋙-⊥ : {l r : PLRTree}(x : A) → l ⋙ r → l ⋗ insert x r → ⊥ lemma-⋙-⊥ x (⋙p l⋗r) l⋗rᵢ = lemma-≃-⊥ x (lemma-⋗* l⋗r l⋗rᵢ) lemma-⋙-⊥ x (⋙l {l' = l''} y' y'' l'≃r' l''⋘r'' l'⋗r'') l⋗rᵢ with tot≤ x y'' ... | inj₁ x≤y'' with insert y'' l'' | lemma-insert-compound y'' l'' | l⋗rᵢ ... | node perfect _ _ _ | compound | () ... | node left _ _ _ | compound | () ... | node right _ _ _ | compound | () lemma-⋙-⊥ x (⋙l {l' = l''} y' y'' l'≃r' l''⋘r'' l'⋗r'') l⋗rᵢ | inj₂ y''≤x with insert x l'' | lemma-insert-compound x l'' | l⋗rᵢ ... | node perfect _ _ _ | compound | () ... | node left _ _ _ | compound | () ... | node right _ _ _ | compound | () lemma-⋙-⊥ x (⋙r {r' = r''} y' y'' l'≃r' l''⋙r'' l'≃l'') l⋗rᵢ with tot≤ x y'' ... | inj₁ x≤y'' with insert y'' r'' | lemma-insert-compound y'' r'' | l⋗rᵢ ... | node perfect _ _ _ | compound | ⋗nd .y' .x _ l''≃r''ᵢ l'⋗l'' = lemma-⋗refl-⊥ (lemma-⋗-≃ l'⋗l'' (sym≃ l'≃l'')) ... | node left _ _ _ | compound | () ... | node right _ _ _ | compound | () lemma-⋙-⊥ x (⋙r {r' = r''} y' y'' l'≃r' l''⋙r'' l'≃l'') l⋗rᵢ | inj₂ y''≤x with insert x r'' | lemma-insert-compound x r'' | l⋗rᵢ ... | node perfect _ _ _ | compound | ⋗nd .y' .y'' _ l''≃r''ᵢ l'⋗l'' = lemma-⋗refl-⊥ (lemma-⋗-≃ l'⋗l'' (sym≃ l'≃l'')) ... | node left _ _ _ | compound | () ... | node right _ _ _ | compound | () lemma-insert-≃ : {l r : PLRTree}{x : A} → Compound l → l ≃ r → insert x l ⋘ r lemma-insert-≃ {node perfect y l r} {node perfect y' l' r'} {x} compound (≃nd .y .y' l≃r l'≃r' l≃l') with tot≤ x y | l | r | l≃r | l' | l≃l' ... | inj₁ x≤y | leaf | leaf | ≃lf | leaf | ≃lf = r⋘ x y' (⋙p (⋗lf y)) l'≃r' (⋗lf y) ... | inj₁ x≤y | node perfect z₁ _ _ | node perfect z₂ _ _ | ≃nd .z₁ .z₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ | node perfect z₃ _ _ | ≃nd .z₁ .z₃ _ l₃≃r₃ l₁≃l₃ = l⋘ x y' (lemma-insert-≃ compound (≃nd z₁ z₂ l₁≃r₁ l₂≃r₂ l₁≃l₂)) l'≃r' (≃nd z₂ z₃ l₂≃r₂ l₃≃r₃ (trans≃ (sym≃ l₁≃l₂) l₁≃l₃)) ... | inj₂ y≤x | leaf | leaf | ≃lf | leaf | ≃lf = r⋘ y y' (⋙p (⋗lf x)) l'≃r' (⋗lf x) ... | inj₂ y≤x | node perfect z₁ _ _ | node perfect z₂ _ _ | ≃nd .z₁ .z₂ l₁≃r₁ l₂≃r₂ l₁≃l₂ | node perfect z₃ _ _ | ≃nd .z₁ .z₃ _ l₃≃r₃ l₁≃l₃ = l⋘ y y' (lemma-insert-≃ compound (≃nd z₁ z₂ l₁≃r₁ l₂≃r₂ l₁≃l₂)) l'≃r' (≃nd z₂ z₃ l₂≃r₂ l₃≃r₃ (trans≃ (sym≃ l₁≃l₂) l₁≃l₃)) lemma-insert-⋗' : {l r : PLRTree}(x : A) → l ⋗ r → Compound r → l ⋙ (insert x r) lemma-insert-⋗' x (⋗nd {l} {r} {l'} {r'} y y' l≃r l'≃r' l⋗l') compound with tot≤ x y' | l' | r' | l'≃r' | l | l⋗l' ... | inj₁ x≤y' | leaf | leaf | ≃lf | node perfect x₁ leaf leaf | ⋗lf .x₁ = ⋙r y x l≃r (⋙p (⋗lf y')) (≃nd x₁ y' ≃lf ≃lf ≃lf) ... | inj₁ x≤y' | node perfect x₃ l₃ r₃ | node perfect x₄ l₄ r₄ | ≃nd .x₃ .x₄ l₃≃r₃ l₄≃r₄ l₃≃l₄ | node perfect x₁ l₁ r₁ | ⋗nd .x₁ .x₃ l₁≃r₁ _ l₁⋗l₃ with tot≤ y' x₃ | l₃ | r₃ | l₃≃r₃ | l₁ | l₁⋗l₃ ... | inj₁ y'≤x₃ | leaf | leaf | ≃lf | node perfect x'₁ leaf leaf | ⋗lf .x'₁ with l₄ | l₃≃l₄ ... | leaf | ≃lf = let _l'ᵢ⋘r' = r⋘ y' x₄ (⋙p (⋗lf x₃)) l₄≃r₄ (⋗lf x₃) ; _l⋗r' = lemma-⋗-≃ (⋗nd x₁ y' l₁≃r₁ ≃lf (⋗lf x'₁)) (≃nd y' x₄ ≃lf l₄≃r₄ ≃lf) in ⋙l y x l≃r _l'ᵢ⋘r' _l⋗r' lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₁ x≤y' | node perfect x₃ _ _ | node perfect x₄ _ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ _ | inj₁ y'≤x₃ | node perfect x'₅ _ _ | node perfect x'₆ _ _ | ≃nd .x'₅ .x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ | node perfect x'₁ _ _ | ⋗nd .x'₁ .x'₅ l'₁≃r'₁ _ l'₁⋗l'₅ with lemma-⋙-⋗ (lemma-insert-⋗' x₃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) compound) (lemma-⋗-≃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆)) ... | inj₁ _l₃ᵢ⋘r₃ = let _l₁⋗l₃ = ⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅ ; _l₃≃r₃ = ≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ; _l'ᵢ⋘r' = l⋘ y' x₄ _l₃ᵢ⋘r₃ l₄≃r₄ (trans≃ (sym≃ _l₃≃r₃) l₃≃l₄) ; _l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ _l₃≃r₃ _l₁⋗l₃) (≃nd x₃ x₄ _l₃≃r₃ l₄≃r₄ l₃≃l₄) in ⋙l y x l≃r _l'ᵢ⋘r' _l⋗r' ... | inj₂ _l₃ᵢ≃r₃ with lemma-≃-⊥ x₃ (trans≃ (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ) (sym≃ _l₃ᵢ≃r₃)) ... | () lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₁ x≤y' | node perfect x₃ _ _ | node perfect x₄ l₄ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ l₁⋗l₃ | inj₂ x₃≤y' | leaf | leaf | ≃lf | node perfect x'₁ leaf leaf | ⋗lf .x'₁ with l₄ | l₃≃l₄ ... | leaf | ≃lf = let _l'ᵢ⋘r' = r⋘ x₃ x₄ (⋙p (⋗lf y')) l₄≃r₄ (⋗lf y') ; _l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ ≃lf (⋗lf x'₁)) (≃nd x₃ x₄ ≃lf l₄≃r₄ ≃lf) in ⋙l y x l≃r _l'ᵢ⋘r' _l⋗r' lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₁ x≤y' | node perfect x₃ _ _ | node perfect x₄ _ _ | ≃nd .x₃ .x₄ l₃≃r₃ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ l₁⋗l₃ | inj₂ x₃≤y' | node perfect x'₅ _ _ | node perfect x'₆ _ _ | ≃nd .x'₅ .x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ | node perfect x'₁ _ _ | ⋗nd .x'₁ .x'₅ l'₁≃r'₁ _ l'₁⋗l'₅ with lemma-⋙-⋗ (lemma-insert-⋗' y' (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) compound) (lemma-⋗-≃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆)) ... | inj₁ _l₃ᵢ⋘r₃ = let _l₁⋗l₃ = ⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅ ; _l₃≃r₃ = ≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ; _l'ᵢ⋘r' = l⋘ x₃ x₄ _l₃ᵢ⋘r₃ l₄≃r₄ (trans≃ (sym≃ _l₃≃r₃) l₃≃l₄) ; _l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ _l₃≃r₃ _l₁⋗l₃) (≃nd x₃ x₄ _l₃≃r₃ l₄≃r₄ l₃≃l₄) in ⋙l y x l≃r _l'ᵢ⋘r' _l⋗r' ... | inj₂ _l₃ᵢ≃r₃ with lemma-≃-⊥ y' (trans≃ (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ) (sym≃ _l₃ᵢ≃r₃)) ... | () lemma-insert-⋗' x (⋗nd y y' l≃r l'≃r' l⋗l') compound | inj₂ y'≤x | leaf | leaf | ≃lf | node perfect x₁ leaf leaf | ⋗lf .x₁ = ⋙r y y' l≃r (⋙p (⋗lf x)) (≃nd x₁ x ≃lf ≃lf ≃lf) lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₂ y'≤x | node perfect x₃ l₃ r₃ | node perfect x₄ l₄ _ | ≃nd .x₃ .x₄ l₃≃r₃ l₄≃r₄ l₃≃l₄ | node perfect x₁ l₁ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ l₁⋗l₃ with tot≤ x x₃ | l₃ | r₃ | l₃≃r₃ | l₁ | l₁⋗l₃ ... | inj₁ x≤x₃ | leaf | leaf | ≃lf | node perfect x'₁ leaf leaf | ⋗lf .x'₁ with l₄ | l₃≃l₄ ... | leaf | ≃lf = let _l'ᵢ⋘r' = r⋘ x x₄ (⋙p (⋗lf x₃)) l₄≃r₄ (⋗lf x₃) ; _l⋗r' = lemma-⋗-≃ (⋗nd x₁ x l₁≃r₁ ≃lf (⋗lf x'₁)) (≃nd x x₄ ≃lf l₄≃r₄ ≃lf) in ⋙l y y' l≃r _l'ᵢ⋘r' _l⋗r' lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₂ y'≤x | node perfect x₃ _ _ | node perfect x₄ _ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ _ | inj₁ x≤x₃ | node perfect x'₅ _ _ | node perfect x'₆ _ _ | ≃nd .x'₅ .x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ | node perfect x'₁ _ _ | ⋗nd .x'₁ .x'₅ l'₁≃r'₁ _ l'₁⋗l'₅ with lemma-⋙-⋗ (lemma-insert-⋗' x₃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) compound) (lemma-⋗-≃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆)) ... | inj₁ _l₃ᵢ⋘r₃ = let _l₁⋗l₃ = ⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅ ; _l₃≃r₃ = ≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ; _l'ᵢ⋘r' = l⋘ x x₄ _l₃ᵢ⋘r₃ l₄≃r₄ (trans≃ (sym≃ _l₃≃r₃) l₃≃l₄) ; _l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ _l₃≃r₃ _l₁⋗l₃) (≃nd x₃ x₄ _l₃≃r₃ l₄≃r₄ l₃≃l₄) in ⋙l y y' l≃r _l'ᵢ⋘r' _l⋗r' ... | inj₂ _l₃ᵢ≃r₃ with lemma-≃-⊥ x₃ (trans≃ (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ) (sym≃ _l₃ᵢ≃r₃)) ... | () lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₂ y'≤x | node perfect x₃ _ _ | node perfect x₄ l₄ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ _ | inj₂ x₃≤x | leaf | leaf | ≃lf | node perfect x'₁ leaf leaf | ⋗lf .x'₁ with l₄ | l₃≃l₄ ... | leaf | ≃lf = let _l'ᵢ⋘r' = r⋘ x₃ x₄ (⋙p (⋗lf x)) l₄≃r₄ (⋗lf x) ; _l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ ≃lf (⋗lf x'₁)) (≃nd x₃ x₄ ≃lf l₄≃r₄ ≃lf) in ⋙l y y' l≃r _l'ᵢ⋘r' _l⋗r' lemma-insert-⋗' x (⋗nd y y' l≃r _ _) compound | inj₂ y'≤x | node perfect x₃ _ _ | node perfect x₄ _ _ | ≃nd .x₃ .x₄ _ l₄≃r₄ l₃≃l₄ | node perfect x₁ _ _ | ⋗nd .x₁ .x₃ l₁≃r₁ _ _ | inj₂ x₃≤x | node perfect x'₅ _ _ | node perfect x'₆ _ _ | ≃nd .x'₅ .x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ | node perfect x'₁ _ _ | ⋗nd .x'₁ .x'₅ l'₁≃r'₁ _ l'₁⋗l'₅ with lemma-⋙-⋗ (lemma-insert-⋗' x (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) compound) (lemma-⋗-≃ (⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅) (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆)) ... | inj₁ _l₃ᵢ⋘r₃ = let _l₁⋗l₃ = ⋗nd x'₁ x'₅ l'₁≃r'₁ l'₅≃r'₅ l'₁⋗l'₅ ; _l₃≃r₃ = ≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆ ; _l'ᵢ⋘r' = l⋘ x₃ x₄ _l₃ᵢ⋘r₃ l₄≃r₄ (trans≃ (sym≃ _l₃≃r₃) l₃≃l₄) ; _l⋗r' = lemma-⋗-≃ (⋗nd x₁ x₃ l₁≃r₁ _l₃≃r₃ _l₁⋗l₃) (≃nd x₃ x₄ _l₃≃r₃ l₄≃r₄ l₃≃l₄) in ⋙l y y' l≃r _l'ᵢ⋘r' _l⋗r' ... | inj₂ _l₃ᵢ≃r₃ with lemma-≃-⊥ x (trans≃ (≃nd x'₅ x'₆ l'₅≃r'₅ l'₆≃r'₆ l'₅≃l'₆) (sym≃ _l₃ᵢ≃r₃)) ... | () lemma-insert-⋗ : {l r : PLRTree}(x : A) → l ⋗ r → l ⋙ (insert x r) ∨ l ≃ (insert x r) lemma-insert-⋗ x (⋗lf y) = inj₂ (≃nd y x ≃lf ≃lf ≃lf) lemma-insert-⋗ x (⋗nd y y' l≃r l'≃r' l⋗l') = inj₁ (lemma-insert-⋗' x (⋗nd y y' l≃r l'≃r' l⋗l') compound) mutual lemma-insert-⋘ : {l r : PLRTree}(x : A) → l ⋘ r → (insert x l) ⋘ r ∨ (insert x l) ⋗ r lemma-insert-⋘ x (x⋘ u v w) with tot≤ x u ... | inj₁ x≤u = inj₂ (⋗nd x w (≃nd v u ≃lf ≃lf ≃lf) ≃lf (⋗lf v)) ... | inj₂ u≤x = inj₂ (⋗nd u w (≃nd v x ≃lf ≃lf ≃lf) ≃lf (⋗lf v)) lemma-insert-⋘ x (l⋘ {l = l} y y' l⋘r l'≃r' r≃l') with tot≤ x y ... | inj₁ x≤y with insert y l | lemma-insert-compound y l | lemma-insert-⋘ y l⋘r ... | node left _ _ _ | compound | inj₁ lᵢ⋘r = inj₁ (l⋘ x y' lᵢ⋘r l'≃r' r≃l') ... | node left _ _ _ | compound | inj₂ () ... | node right _ _ _ | compound | inj₁ lᵢ⋙r = inj₁ (l⋘ x y' lᵢ⋙r l'≃r' r≃l') ... | node right _ _ _ | compound | inj₂ () ... | node perfect _ _ _ | compound | inj₂ lᵢ⋗r = inj₁ (r⋘ x y' (⋙p lᵢ⋗r) l'≃r' (lemma-⋗-≃ lᵢ⋗r r≃l')) ... | node perfect _ _ _ | compound | inj₁ () lemma-insert-⋘ x (l⋘ {l = l} y y' l⋘r l'≃r' r≃l') | inj₂ y≤x with insert x l | lemma-insert-compound x l | lemma-insert-⋘ x l⋘r ... | node left _ _ _ | compound | inj₁ lᵢ⋘r = inj₁ (l⋘ y y' lᵢ⋘r l'≃r' r≃l') ... | node left _ _ _ | compound | inj₂ () ... | node right _ _ _ | compound | inj₁ lᵢ⋘r = inj₁ (l⋘ y y' lᵢ⋘r l'≃r' r≃l') ... | node right _ _ _ | compound | inj₂ () ... | node perfect _ _ _ | compound | inj₂ lᵢ⋗r = inj₁ (r⋘ y y' (⋙p lᵢ⋗r) l'≃r' (lemma-⋗-≃ lᵢ⋗r r≃l')) ... | node perfect _ _ _ | compound | inj₁ () lemma-insert-⋘ x (r⋘ {r = r} y y' l⋙r l'≃r' l⋗l') with tot≤ x y ... | inj₁ x≤y with insert y r | lemma-insert-compound y r | lemma-insert-⋙ y l⋙r | lemma-⋙-⊥ y l⋙r ... | node left _ _ _ | compound | inj₁ l⋙rᵢ | _ = inj₁ (r⋘ x y' l⋙rᵢ l'≃r' l⋗l') ... | node left _ _ _ | compound | inj₂ () | _ ... | node right _ _ _ | compound | inj₁ l⋙rᵢ | _ = inj₁ (r⋘ x y' l⋙rᵢ l'≃r' l⋗l') ... | node right _ _ _ | compound | inj₂ () | _ ... | node perfect _ _ _ | compound | inj₂ l≃rᵢ | _ = inj₂ (⋗nd x y' l≃rᵢ l'≃r' l⋗l') ... | node perfect _ _ _ | compound | inj₁ (⋙p l⋗rᵢ) | lemma-⋙-⊥' with lemma-⋙-⊥' l⋗rᵢ ... | () lemma-insert-⋘ x (r⋘ {r = r} y y' l⋙r l'≃r' l⋗l') | inj₂ y'≤x with insert x r | lemma-insert-compound x r | lemma-insert-⋙ x l⋙r | lemma-⋙-⊥ x l⋙r ... | node left _ _ _ | compound | inj₁ l⋙rᵢ | _ = inj₁ (r⋘ y y' l⋙rᵢ l'≃r' l⋗l') ... | node left _ _ _ | compound | inj₂ () | _ ... | node right _ _ _ | compound | inj₁ l⋙rᵢ | _ = inj₁ (r⋘ y y' l⋙rᵢ l'≃r' l⋗l') ... | node right _ _ _ | compound | inj₂ () | _ ... | node perfect _ _ _ | compound | inj₂ l≃rᵢ | _ = inj₂ (⋗nd y y' l≃rᵢ l'≃r' l⋗l') ... | node perfect _ _ _ | compound | inj₁ (⋙p l⋗rᵢ) | lemma-⋙-⊥' with lemma-⋙-⊥' l⋗rᵢ ... | () lemma-insert-⋙ : {l r : PLRTree}(x : A) → l ⋙ r → l ⋙ (insert x r) ∨ l ≃ (insert x r) lemma-insert-⋙ x (⋙p l⋗r) = lemma-insert-⋗ x l⋗r lemma-insert-⋙ x (⋙l {l' = l'} y y' l≃r l'⋘r' l⋗r') with tot≤ x y' ... | inj₁ x≤y' with insert y' l' | lemma-insert-compound y' l' | lemma-insert-⋘ y' l'⋘r' ... | node left _ _ _ | compound | inj₁ l'ᵢ⋘r' = inj₁ (⋙l y x l≃r l'ᵢ⋘r' l⋗r') ... | node left _ _ _ | compound | inj₂ () ... | node right _ _ _ | compound | inj₁ l'ᵢ⋙r' = inj₁ (⋙l y x l≃r l'ᵢ⋙r' l⋗r') ... | node right _ _ _ | compound | inj₂ () ... | node perfect _ _ _ | compound | inj₂ l'ᵢ⋗r' = inj₁ (⋙r y x l≃r (⋙p l'ᵢ⋗r') (lemma-*⋗ l⋗r' l'ᵢ⋗r')) ... | node perfect _ _ _ | compound | inj₁ () lemma-insert-⋙ x (⋙l {l' = l'} y y' l≃r l'⋘r' l⋗r') | inj₂ y'≤x with insert x l' | lemma-insert-compound x l' | lemma-insert-⋘ x l'⋘r' ... | node left _ _ _ | compound | inj₁ l'ᵢ⋘r' = inj₁ (⋙l y y' l≃r l'ᵢ⋘r' l⋗r') ... | node left _ _ _ | compound | inj₂ () ... | node right _ _ _ | compound | inj₁ l'ᵢ⋘r' = inj₁ (⋙l y y' l≃r l'ᵢ⋘r' l⋗r') ... | node right _ _ _ | compound | inj₂ () ... | node perfect _ _ _ | compound | inj₂ l'ᵢ⋗r' = inj₁ (⋙r y y' l≃r (⋙p l'ᵢ⋗r') (lemma-*⋗ l⋗r' l'ᵢ⋗r')) ... | node perfect _ _ _ | compound | inj₁ () lemma-insert-⋙ x (⋙r {r' = r'} y y' l≃r l'⋙r' l≃l') with tot≤ x y' ... | inj₁ x≤y' with insert y' r' | lemma-insert-compound y' r' | lemma-insert-⋙ y' l'⋙r' | lemma-⋙-⊥ y' l'⋙r' ... | node left _ _ _ | compound | inj₁ l'⋙r'ᵢ | _ = inj₁ (⋙r y x l≃r l'⋙r'ᵢ l≃l') ... | node left _ _ _ | compound | inj₂ () | _ ... | node right _ _ _ | compound | inj₁ l'⋙r'ᵢ | _ = inj₁ (⋙r y x l≃r l'⋙r'ᵢ l≃l') ... | node right _ _ _ | compound | inj₂ () | _ ... | node perfect _ _ _ | compound | inj₂ l'≃r'ᵢ | _ = inj₂ (≃nd y x l≃r l'≃r'ᵢ l≃l') ... | node perfect _ _ _ | compound | inj₁ (⋙p l'⋗r'ᵢ) | lemma-⋙-⊥' with lemma-⋙-⊥' l'⋗r'ᵢ ... | () lemma-insert-⋙ x (⋙r {r' = r'} y y' l≃r l'⋙r' l≃l') | inj₂ y'≤x with insert x r' | lemma-insert-compound x r' | lemma-insert-⋙ x l'⋙r' | lemma-⋙-⊥ x l'⋙r' ... | node left _ _ _ | compound | inj₁ l'⋙r'ᵢ | _ = inj₁ (⋙r y y' l≃r l'⋙r'ᵢ l≃l') ... | node left _ _ _ | compound | inj₂ () | _ ... | node right _ _ _ | compound | inj₁ l'⋙r'ᵢ | _ = inj₁ (⋙r y y' l≃r l'⋙r'ᵢ l≃l') ... | node right _ _ _ | compound | inj₂ () | _ ... | node perfect _ _ _ | compound | inj₂ l'≃r'ᵢ | _ = inj₂ (≃nd y y' l≃r l'≃r'ᵢ l≃l') ... | node perfect _ _ _ | compound | inj₁ (⋙p l'⋗r'ᵢ) | lemma-⋙-⊥' with lemma-⋙-⊥' l'⋗r'ᵢ ... | () lemma-insert-complete : {t : PLRTree}(x : A) → Complete t → Complete (insert x t) lemma-insert-complete x leaf = perfect x leaf leaf ≃lf lemma-insert-complete x (perfect {l} {r} y cl cr l≃r) with tot≤ x y | l | r | l≃r | lemma-insert-complete y cl | lemma-insert-complete x cl ... | inj₁ x≤y | leaf | leaf | ≃lf | _ | _ = right x (perfect y cr cr ≃lf) cr (⋙p (⋗lf y)) ... | inj₁ x≤y | node perfect z' _ _ | node perfect z'' _ _ | ≃nd .z' .z'' l'≃r' l''≃r'' l'≃l'' | clᵢ | _ = left x clᵢ cr (lemma-insert-≃ compound (≃nd z' z'' l'≃r' l''≃r'' l'≃l'')) ... | inj₂ y≤x | leaf | leaf | ≃lf | _ | _ = right y (perfect x cr cr ≃lf) cr (⋙p (⋗lf x)) ... | inj₂ y≤x | node perfect z' _ _ | node perfect z'' _ _ | ≃nd .z' .z'' l'≃r' l''≃r'' l'≃l'' | _ | clᵢ = left y clᵢ cr (lemma-insert-≃ compound (≃nd z' z'' l'≃r' l''≃r'' l'≃l'')) lemma-insert-complete x (left {l} {r} y cl cr l⋘r) with tot≤ x y ... | inj₁ x≤y with insert y l | lemma-insert-complete y cl | lemma-insert-⋘ y l⋘r | lemma-insert-compound y l ... | node left _ _ _ | clᵢ | inj₁ lᵢ⋘r | compound = left x clᵢ cr lᵢ⋘r ... | node right _ _ _ | clᵢ | inj₁ lᵢ⋘r | compound = left x clᵢ cr lᵢ⋘r ... | node left _ _ _ | _ | inj₂ () | compound ... | node right _ _ _ | _ | inj₂ () | compound ... | node perfect _ _ _ | clᵢ | inj₂ lᵢ⋗r | compound = right x clᵢ cr (⋙p lᵢ⋗r) ... | node perfect x' l' r' | perfect .x' cl' cr' l'≃r' | inj₁ () | compound lemma-insert-complete x (left {l} {r} y cl cr l⋘r) | inj₂ y≤x with insert x l | lemma-insert-complete x cl | lemma-insert-⋘ x l⋘r | lemma-insert-compound x l ... | node left _ _ _ | clᵢ | inj₁ lᵢ⋘r | compound = left y clᵢ cr lᵢ⋘r ... | node right _ _ _ | clᵢ | inj₁ lᵢ⋘r | compound = left y clᵢ cr lᵢ⋘r ... | node left _ _ _ | _ | inj₂ () | compound ... | node right _ _ _ | _ | inj₂ () | compound ... | node perfect _ _ _ | clᵢ | inj₂ lᵢ⋗r | compound = right y clᵢ cr (⋙p lᵢ⋗r) ... | node perfect x' l' r' | perfect .x' cl' cr' l'≃r' | inj₁ () | compound lemma-insert-complete x (right {l} {r} y cl cr l⋙r) with tot≤ x y ... | inj₁ x≤y with insert y r | lemma-insert-complete y cr | lemma-insert-⋙ y l⋙r | lemma-insert-compound y r | lemma-⋙-⊥ y l⋙r ... | node left _ _ _ | crᵢ | inj₁ l⋙rᵢ | compound | _ = right x cl crᵢ l⋙rᵢ ... | node right _ _ _ | crᵢ | inj₁ l⋙rᵢ | compound | _ = right x cl crᵢ l⋙rᵢ ... | node left _ _ _ | _ | inj₂ () | compound | _ ... | node right _ _ _ | _ | inj₂ () | compound | _ ... | node perfect _ _ _ | crᵢ | inj₂ l≃rᵢ | compound | _ = perfect x cl crᵢ l≃rᵢ ... | node perfect x'' l'' r'' | perfect .x'' cl'' cr'' l''≃r'' | inj₁ (⋙p l⋗rᵢ) | compound | lemma-⋙-⊥' with lemma-⋙-⊥' l⋗rᵢ ... | () lemma-insert-complete x (right {l} {r} y cl cr l⋙r) | inj₂ y≤x with insert x r | lemma-insert-complete x cr | lemma-insert-⋙ x l⋙r | lemma-insert-compound x r | lemma-⋙-⊥ x l⋙r ... | node left _ _ _ | crᵢ | inj₁ l⋙rᵢ | compound | _ = right y cl crᵢ l⋙rᵢ ... | node right _ _ _ | crᵢ | inj₁ l⋙rᵢ | compound | _ = right y cl crᵢ l⋙rᵢ ... | node left _ _ _ | _ | inj₂ () | compound | _ ... | node right _ _ _ | _ | inj₂ () | compound | _ ... | node perfect _ _ _ | crᵢ | inj₂ l≃rᵢ | compound | _ = perfect y cl crᵢ l≃rᵢ ... | node perfect x'' l'' r'' | perfect .x'' cl'' cr'' l''≃r'' | inj₁ (⋙p l⋗rᵢ) | compound | lemma-⋙-⊥' with lemma-⋙-⊥' l⋗rᵢ ... | ()
63.836601
340
0.50041
d134905631a17b8205017df8243cd026520b1e73
336
agda
Agda
test/Fail/Errors/SnapshotSameDirectory.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Fail/Errors/SnapshotSameDirectory.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Fail/Errors/MissingSnapshotFile.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
-- See the .flags file. {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} postulate D : Set _≡_ : D → D → Set a b : D postulate p : a ≡ b {-# ATP axiom p #-} postulate foo : a ≡ b {-# ATP prove foo #-}
18.666667
42
0.488095
38b632d0a9230175bc9df6b176f685800d8ff9df
260
agda
Agda
test/Fail/ScopeIrrelevantRecordField.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/fail/ScopeIrrelevantRecordField.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/ScopeIrrelevantRecordField.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --no-irrelevant-projections #-} module ScopeIrrelevantRecordField where record Bla : Set1 where constructor mkBla field .bla0 bla1 .{bla2 bla3} {bla4 .bla5} : Set bla0' : Bla -> Set bla0' = Bla.bla0 -- should fail with bla0 not in scope
23.636364
55
0.7
d19830b7765e29cdd8d9547bb5e698fdd16f44fc
7,045
agda
Agda
Categories/Category/Equivalence.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Equivalence.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Category/Equivalence.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Category.Equivalence where -- Strong equivalence of categories. Same as ordinary equivalence in Cat. -- May not include everything we'd like to think of as equivalences, namely -- the full, faithful functors that are essentially surjective on objects. open import Level open import Relation.Binary using (IsEquivalence; Setoid) open import Categories.Adjoint.Equivalence open import Categories.Category import Categories.Morphism.Reasoning as MR import Categories.Morphism.Properties as MP open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties open import Categories.NaturalTransformation using (ntHelper; _∘ᵥ_; _∘ˡ_; _∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as NI using (NaturalIsomorphism ; unitorˡ; unitorʳ; associator; _ⓘᵥ_; _ⓘˡ_; _ⓘʳ_) renaming (sym to ≃-sym) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties private variable o ℓ e : Level C D E : Category o ℓ e record WeakInverse (F : Functor C D) (G : Functor D C) : Set (levelOfTerm F ⊔ levelOfTerm G) where field F∘G≈id : NaturalIsomorphism (F ∘F G) idF G∘F≈id : NaturalIsomorphism (G ∘F F) idF module F∘G≈id = NaturalIsomorphism F∘G≈id module G∘F≈id = NaturalIsomorphism G∘F≈id private module C = Category C module D = Category D module F = Functor F module G = Functor G -- adjoint equivalence F⊣G : ⊣Equivalence F G F⊣G = record { unit = ≃-sym G∘F≈id ; counit = let open D open HomReasoning open MR D open MP D in record { F⇒G = ntHelper record { η = λ X → F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ; commute = λ {X Y} f → begin (F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G.F₁ f))) ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))) ≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y) C.∘ G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ refl ⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G.F₁ f)) ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G.F₁ f C.∘ G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ refl ⟩∘⟨ F.homomorphism ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η Y ∘ (F.F₁ (G.F₁ f) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ center⁻¹ (F∘G≈id.⇒.commute f) refl ⟩ (f ∘ F∘G≈id.⇒.η X) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ assoc ⟩ f ∘ F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ∎ } ; F⇐G = ntHelper record { η = λ X → (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ; commute = λ {X Y} f → begin ((F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F∘G≈id.⇐.η Y) ∘ f ≈⟨ pullʳ (F∘G≈id.⇐.commute f) ⟩ (F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ∘ F∘G≈id.⇐.η X ≈⟨ center (⟺ F.homomorphism) ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y) C.∘ G.F₁ f) ∘ F∘G≈id.⇐.η X ≈⟨ refl ⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇐.commute (G.F₁ f)) ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G.F₁ (F.F₁ (G.F₁ f)) C.∘ G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X ≈⟨ refl ⟩∘⟨ F.homomorphism ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ≈⟨ center⁻¹ (F∘G≈id.⇒.commute _) refl ⟩ (F.F₁ (G.F₁ f) ∘ F∘G≈id.⇒.η (F.F₀ (G.F₀ X))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X ≈⟨ center refl ⟩ F.F₁ (G.F₁ f) ∘ (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ∎ } ; iso = λ X → Iso-∘ (Iso-∘ (Iso-swap (F∘G≈id.iso _)) ([ F ]-resp-Iso (G∘F≈id.iso _))) (F∘G≈id.iso X) } ; zig = λ {A} → let open D open HomReasoning open MR D in begin (F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ (F.F₀ A)))) ∘ F.F₁ (G∘F≈id.⇐.η A) ≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G∘F≈id.⇐.η A))) ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F.F₁ (G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A)) C.∘ G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ refl ⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G∘F≈id.⇐.η A)) ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇐.η A C.∘ G∘F≈id.⇒.η A) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ refl ⟩∘⟨ elimˡ ((F.F-resp-≈ (G∘F≈id.iso.isoˡ _)) ○ F.identity) ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ F∘G≈id.iso.isoʳ _ ⟩ id ∎ } module F⊣G = ⊣Equivalence F⊣G record StrongEquivalence {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C D G : Functor D C weak-inverse : WeakInverse F G open WeakInverse weak-inverse public refl : StrongEquivalence C C refl = record { F = idF ; G = idF ; weak-inverse = record { F∘G≈id = unitorˡ ; G∘F≈id = unitorˡ } } sym : StrongEquivalence C D → StrongEquivalence D C sym e = record { F = G ; G = F ; weak-inverse = record { F∘G≈id = G∘F≈id ; G∘F≈id = F∘G≈id } } where open StrongEquivalence e trans : StrongEquivalence C D → StrongEquivalence D E → StrongEquivalence C E trans {C = C} {D = D} {E = E} e e′ = record { F = e′.F ∘F e.F ; G = e.G ∘F e′.G ; weak-inverse = record { F∘G≈id = let module S = Setoid (NI.Functor-NI-setoid E E) in S.trans (S.trans (associator (e.G ∘F e′.G) e.F e′.F) (e′.F ⓘˡ (unitorˡ ⓘᵥ (e.F∘G≈id ⓘʳ e′.G) ⓘᵥ NI.sym (associator e′.G e.G e.F)))) e′.F∘G≈id ; G∘F≈id = let module S = Setoid (NI.Functor-NI-setoid C C) in S.trans (S.trans (associator (e′.F ∘F e.F) e′.G e.G) (e.G ⓘˡ (unitorˡ ⓘᵥ (e′.G∘F≈id ⓘʳ e.F) ⓘᵥ NI.sym (associator e.F e′.F e′.G)))) e.G∘F≈id } } where module e = StrongEquivalence e module e′ = StrongEquivalence e′ isEquivalence : ∀ {o ℓ e} → IsEquivalence (StrongEquivalence {o} {ℓ} {e}) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : ∀ o ℓ e → Setoid _ _ setoid o ℓ e = record { Carrier = Category o ℓ e ; _≈_ = StrongEquivalence ; isEquivalence = isEquivalence }
40.257143
125
0.489993
30e54c9f65815448b0e61499545369a36899f543
9,492
agda
Agda
Cubical/Algebra/ZariskiLattice/BasicOpens.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/ZariskiLattice/BasicOpens.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/ZariskiLattice/BasicOpens.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.ZariskiLattice.BasicOpens where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Localisation.InvertingElements open import Cubical.Algebra.CommAlgebra.Base open import Cubical.Algebra.CommAlgebra.Properties open import Cubical.Algebra.CommAlgebra.Localisation open import Cubical.Algebra.RingSolver.ReflectionSolving open import Cubical.Algebra.Semilattice open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level module Presheaf (A' : CommRing ℓ) where open CommRingStr (snd A') renaming (_·_ to _·r_ ; ·-comm to ·r-comm ; ·Assoc to ·rAssoc ; ·Lid to ·rLid ; ·Rid to ·rRid) open Exponentiation A' open CommRingTheory A' open isMultClosedSubset open CommAlgebraStr ⦃...⦄ private A = fst A' A[1/_] : A → CommAlgebra A' ℓ A[1/ x ] = AlgLoc.S⁻¹RAsCommAlg A' ([_ⁿ|n≥0] A' x) (powersFormMultClosedSubset _ _) A[1/_]ˣ : (x : A) → ℙ (fst A[1/ x ]) A[1/ x ]ˣ = (CommAlgebra→CommRing A[1/ x ]) ˣ _≼_ : A → A → Type ℓ x ≼ y = ∃[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y -- rad(x) ⊆ rad(y) -- ≼ is a pre-order: Refl≼ : isRefl _≼_ Refl≼ x = PT.∣ 1 , 1r , ·r-comm _ _ ∣ Trans≼ : isTrans _≼_ Trans≼ x y z = map2 Trans≼Σ where Trans≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] y ^ n ≡ a ·r z → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r z Trans≼Σ (n , a , p) (m , b , q) = n ·ℕ m , (a ^ m ·r b) , path where path : x ^ (n ·ℕ m) ≡ a ^ m ·r b ·r z path = x ^ (n ·ℕ m) ≡⟨ ^-rdist-·ℕ x n m ⟩ (x ^ n) ^ m ≡⟨ cong (_^ m) p ⟩ (a ·r y) ^ m ≡⟨ ^-ldist-· a y m ⟩ a ^ m ·r y ^ m ≡⟨ cong (a ^ m ·r_) q ⟩ a ^ m ·r (b ·r z) ≡⟨ ·rAssoc _ _ _ ⟩ a ^ m ·r b ·r z ∎ R : A → A → Type ℓ R x y = x ≼ y × y ≼ x -- rad(x) ≡ rad(y) RequivRel : isEquivRel R RequivRel .reflexive x = Refl≼ x , Refl≼ x RequivRel .symmetric _ _ Rxy = (Rxy .snd) , (Rxy .fst) RequivRel .transitive _ _ _ Rxy Ryz = Trans≼ _ _ _ (Rxy .fst) (Ryz .fst) , Trans≼ _ _ _ (Ryz .snd) (Rxy .snd) RpropValued : isPropValued R RpropValued x y = isProp× isPropPropTrunc isPropPropTrunc powerIs≽ : (x a : A) → x ∈ ([_ⁿ|n≥0] A' a) → a ≼ x powerIs≽ x a = map powerIs≽Σ where powerIs≽Σ : Σ[ n ∈ ℕ ] (x ≡ a ^ n) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] (a ^ n ≡ z ·r x) powerIs≽Σ (n , p) = n , 1r , sym p ∙ sym (·rLid _) module ≼ToLoc (x y : A) where private instance _ = snd A[1/ x ] lemma : x ≼ y → y ⋆ 1a ∈ A[1/ x ]ˣ -- y/1 ∈ A[1/x]ˣ lemma = PT.rec (A[1/ x ]ˣ (y ⋆ 1a) .snd) lemmaΣ where path1 : (y z : A) → 1r ·r (y ·r 1r ·r z) ·r 1r ≡ z ·r y path1 = solve A' path2 : (xn : A) → xn ≡ 1r ·r 1r ·r (1r ·r 1r ·r xn) path2 = solve A' lemmaΣ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → y ⋆ 1a ∈ A[1/ x ]ˣ lemmaΣ (n , z , p) = [ z , (x ^ n) , PT.∣ n , refl ∣ ] -- xⁿ≡zy → y⁻¹ ≡ z/xⁿ , eq/ _ _ ((1r , powersFormMultClosedSubset _ _ .containsOne) , (path1 _ _ ∙∙ sym p ∙∙ path2 _)) module ≼PowerToLoc (x y : A) (x≼y : x ≼ y) where private [yⁿ|n≥0] = [_ⁿ|n≥0] A' y instance _ = snd A[1/ x ] lemma : ∀ (s : A) → s ∈ [yⁿ|n≥0] → s ⋆ 1a ∈ A[1/ x ]ˣ lemma _ s∈[yⁿ|n≥0] = ≼ToLoc.lemma _ _ (Trans≼ _ y _ x≼y (powerIs≽ _ _ s∈[yⁿ|n≥0])) 𝓞ᴰ : A / R → CommAlgebra A' ℓ 𝓞ᴰ = rec→Gpd.fun isGroupoidCommAlgebra (λ a → A[1/ a ]) RCoh LocPathProp where RCoh : ∀ a b → R a b → A[1/ a ] ≡ A[1/ b ] RCoh a b (a≼b , b≼a) = fst (isContrS₁⁻¹R≡S₂⁻¹R (≼PowerToLoc.lemma _ _ b≼a) (≼PowerToLoc.lemma _ _ a≼b)) where open AlgLocTwoSubsets A' ([_ⁿ|n≥0] A' a) (powersFormMultClosedSubset _ _) ([_ⁿ|n≥0] A' b) (powersFormMultClosedSubset _ _) LocPathProp : ∀ a b → isProp (A[1/ a ] ≡ A[1/ b ]) LocPathProp a b = isPropS₁⁻¹R≡S₂⁻¹R where open AlgLocTwoSubsets A' ([_ⁿ|n≥0] A' a) (powersFormMultClosedSubset _ _) ([_ⁿ|n≥0] A' b) (powersFormMultClosedSubset _ _) -- The quotient A/R corresponds to the basic opens of the Zariski topology. -- Multiplication lifts to the quotient and corresponds to intersection -- of basic opens, i.e. we get a meet-semilattice with: _∧/_ : A / R → A / R → A / R _∧/_ = setQuotSymmBinOp (RequivRel .reflexive) (RequivRel .transitive) _·r_ ·r-comm ·r-lcoh where ·r-lcoh-≼ : (x y z : A) → x ≼ y → (x ·r z) ≼ (y ·r z) ·r-lcoh-≼ x y z = map ·r-lcoh-≼Σ where path : (x z a y zn : A) → x ·r z ·r (a ·r y ·r zn) ≡ x ·r zn ·r a ·r (y ·r z) path = solve A' ·r-lcoh-≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] (x ·r z) ^ n ≡ a ·r (y ·r z) ·r-lcoh-≼Σ (n , a , p) = suc n , (x ·r z ^ n ·r a) , (cong (x ·r z ·r_) (^-ldist-· _ _ _) ∙∙ cong (λ v → x ·r z ·r (v ·r z ^ n)) p ∙∙ path _ _ _ _ _) ·r-lcoh : (x y z : A) → R x y → R (x ·r z) (y ·r z) ·r-lcoh x y z Rxy = ·r-lcoh-≼ x y z (Rxy .fst) , ·r-lcoh-≼ y x z (Rxy .snd) BasicOpens : Semilattice ℓ BasicOpens = makeSemilattice [ 1r ] _∧/_ squash/ (elimProp3 (λ _ _ _ → squash/ _ _) λ _ _ _ → cong [_] (·rAssoc _ _ _)) (elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rRid _)) (elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rLid _)) (elimProp2 (λ _ _ → squash/ _ _) λ _ _ → cong [_] (·r-comm _ _)) (elimProp (λ _ → squash/ _ _) λ a → eq/ _ _ -- R a a² (∣ 1 , a , ·rRid _ ∣ , ∣ 2 , 1r , cong (a ·r_) (·rRid a) ∙ sym (·rLid _) ∣)) -- The induced partial order open MeetSemilattice BasicOpens renaming (_≤_ to _≼/_ ; IndPoset to BasicOpensAsPoset) -- coincides with our ≼ ≼/CoincidesWith≼ : ∀ (x y : A) → [ x ] ≼/ [ y ] ≡ x ≼ y ≼/CoincidesWith≼ x y = [ x ] ≼/ [ y ] -- ≡⟨ refl ⟩ [ x ·r y ] ≡ [ x ] ≡⟨ isoToPath (isEquivRel→effectiveIso RpropValued RequivRel _ _) ⟩ R (x ·r y) x ≡⟨ isoToPath Σ-swap-Iso ⟩ R x (x ·r y) ≡⟨ hPropExt (RpropValued _ _) isPropPropTrunc ·To≼ ≼To· ⟩ x ≼ y ∎ where x≼xy→x≼yΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y x≼xy→x≼yΣ (n , z , p) = n , (z ·r x) , p ∙ ·rAssoc _ _ _ ·To≼ : R x (x ·r y) → x ≼ y ·To≼ (x≼xy , _) = PT.map x≼xy→x≼yΣ x≼xy x≼y→x≼xyΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y) x≼y→x≼xyΣ (n , z , p) = suc n , z , cong (x ·r_) p ∙ ·-commAssocl _ _ _ ≼To· : x ≼ y → R x ( x ·r y) ≼To· x≼y = PT.map x≼y→x≼xyΣ x≼y , PT.∣ 1 , y , ·rRid _ ∙ ·r-comm _ _ ∣ open IsPoset open PosetStr Refl≼/ : isRefl _≼/_ Refl≼/ = BasicOpensAsPoset .snd .isPoset .is-refl Trans≼/ : isTrans _≼/_ Trans≼/ = BasicOpensAsPoset .snd .isPoset .is-trans -- The restrictions: ρᴰᴬ : (a b : A) → a ≼ b → isContr (CommAlgebraHom A[1/ b ] A[1/ a ]) ρᴰᴬ _ b a≼b = A[1/b]HasUniversalProp _ (≼PowerToLoc.lemma _ _ a≼b) where open AlgLoc A' ([_ⁿ|n≥0] A' b) (powersFormMultClosedSubset _ _) renaming (S⁻¹RHasAlgUniversalProp to A[1/b]HasUniversalProp) ρᴰᴬId : ∀ (a : A) (r : a ≼ a) → ρᴰᴬ a a r .fst ≡ idAlgHom ρᴰᴬId a r = ρᴰᴬ a a r .snd _ ρᴰᴬComp : ∀ (a b c : A) (l : a ≼ b) (m : b ≼ c) → ρᴰᴬ a c (Trans≼ _ _ _ l m) .fst ≡ ρᴰᴬ a b l .fst ∘a ρᴰᴬ b c m .fst ρᴰᴬComp a _ c l m = ρᴰᴬ a c (Trans≼ _ _ _ l m) .snd _ ρᴰ : (x y : A / R) → x ≼/ y → CommAlgebraHom (𝓞ᴰ y) (𝓞ᴰ x) ρᴰ = elimContr2 λ _ _ → isContrΠ λ [a]≼/[b] → ρᴰᴬ _ _ (transport (≼/CoincidesWith≼ _ _) [a]≼/[b]) ρᴰId : ∀ (x : A / R) (r : x ≼/ x) → ρᴰ x x r ≡ idAlgHom ρᴰId = SQ.elimProp (λ _ → isPropΠ (λ _ → isSetAlgebraHom _ _ _ _)) λ a r → ρᴰᴬId a (transport (≼/CoincidesWith≼ _ _) r) ρᴰComp : ∀ (x y z : A / R) (l : x ≼/ y) (m : y ≼/ z) → ρᴰ x z (Trans≼/ _ _ _ l m) ≡ ρᴰ x y l ∘a ρᴰ y z m ρᴰComp = SQ.elimProp3 (λ _ _ _ → isPropΠ2 (λ _ _ → isSetAlgebraHom _ _ _ _)) λ a b c _ _ → sym (ρᴰᴬ a c _ .snd _) ∙ ρᴰᴬComp a b c _ _
38.274194
95
0.533713
577fea15f745447d2e424edd31d7c4261e96afda
771
agda
Agda
LibraBFT/Impl/Consensus/TestUtils/MockSharedStorage.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Impl/Consensus/TestUtils/MockSharedStorage.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Impl/Consensus/TestUtils/MockSharedStorage.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Base.KVMap as Map open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.Prelude open import Optics.All module LibraBFT.Impl.Consensus.TestUtils.MockSharedStorage where new : ValidatorSet → MockSharedStorage new = mkMockSharedStorage Map.empty Map.empty Map.empty nothing nothing newObmWithLIWS : ValidatorSet → LedgerInfoWithSignatures → MockSharedStorage newObmWithLIWS vs obmLIWS = new vs & mssLis ∙~ Map.singleton (obmLIWS ^∙ liwsVersion) obmLIWS
30.84
111
0.761349
ad6db68ea9c8a20712e0c5ae47896270475e3210
1,690
agda
Agda
examples/examplesPaperJFP/Object.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/examplesPaperJFP/Object.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/examplesPaperJFP/Object.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module examplesPaperJFP.Object where open import Data.Product open import Data.String.Base open import examplesPaperJFP.NativeIOSafe open import examplesPaperJFP.BasicIO hiding (main) open import examplesPaperJFP.Console hiding (main) record Interface : Set₁ where field Method : Set Result : (m : Method) → Set open Interface public record Object (I : Interface) : Set where coinductive field objectMethod : (m : Method I) → Result I m × Object I open Object public record IOObject (Iᵢₒ : IOInterface) (I : Interface) : Set where coinductive field method : (m : Method I) → IO Iᵢₒ (Result I m × IOObject Iᵢₒ I) open IOObject public data CellMethod A : Set where get : CellMethod A put : A → CellMethod A CellResult : ∀{A} → CellMethod A → Set CellResult {A} get = A CellResult (put _) = Unit cellJ : (A : Set) → Interface Method (cellJ A) = CellMethod A Result (cellJ A) m = CellResult m CellC : Set CellC = IOObject ConsoleInterface (cellJ String) simpleCell : (s : String) → CellC force (method (simpleCell s) get) = exec′ (putStrLn ("getting (" ++ s ++ ")")) λ _ → delay (return′ (s , simpleCell s)) force (method (simpleCell s) (put x)) = exec′ (putStrLn ("putting (" ++ x ++ ")")) λ _ → delay (return′ (unit , simpleCell x)) {-# TERMINATING #-} program : IOConsole Unit force program = let c₁ = simpleCell "Start" in exec′ getLine λ{ nothing → return unit; (just s) → method c₁ (put s) >>= λ{ (_ , c₂) → method c₂ get >>= λ{ (s′ , _ ) → exec (putStrLn s′) λ _ → program }}} main : NativeIO Unit main = translateIOConsole program
25.223881
70
0.636686
1daf19588ffb675488827f52b9f415a69530341f
13,361
agda
Agda
Cubical/Data/DiffInt/Properties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/Data/DiffInt/Properties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/Data/DiffInt/Properties.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.DiffInt.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.DiffInt.Base open import Cubical.Data.Nat as ℕ using (suc; zero; isSetℕ; discreteℕ; ℕ) renaming (_+_ to _+ⁿ_; _·_ to _·ⁿ_) open import Cubical.Data.Sigma open import Cubical.Data.Bool open import Cubical.Data.Int as Int using (Int; sucInt) open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Relation.Binary.Base open import Cubical.Relation.Nullary open import Cubical.HITs.SetQuotients open BinaryRelation relIsEquiv : isEquivRel rel relIsEquiv = equivRel {A = ℕ × ℕ} relIsRefl relIsSym relIsTrans where open import Cubical.Data.Nat relIsRefl : isRefl rel relIsRefl (a0 , a1) = refl relIsSym : isSym rel relIsSym (a0 , a1) (b0 , b1) p = sym p relIsTrans : isTrans rel relIsTrans (a0 , a1) (b0 , b1) (c0 , c1) p0 p1 = inj-m+ {m = (b0 + b1)} ((b0 + b1) + (a0 + c1) ≡⟨ +-assoc (b0 + b1) a0 c1 ⟩ ((b0 + b1) + a0) + c1 ≡[ i ]⟨ +-comm b0 b1 i + a0 + c1 ⟩ ((b1 + b0) + a0) + c1 ≡[ i ]⟨ +-comm (b1 + b0) a0 i + c1 ⟩ (a0 + (b1 + b0)) + c1 ≡[ i ]⟨ +-assoc a0 b1 b0 i + c1 ⟩ (a0 + b1) + b0 + c1 ≡⟨ sym (+-assoc (a0 + b1) b0 c1) ⟩ (a0 + b1) + (b0 + c1) ≡⟨ cong (λ p → p . fst + p .snd) (transport ΣPath≡PathΣ (p0 , p1))⟩ (b0 + a1) + (c0 + b1) ≡⟨ sym (+-assoc b0 a1 (c0 + b1))⟩ b0 + (a1 + (c0 + b1)) ≡[ i ]⟨ b0 + (a1 + +-comm c0 b1 i) ⟩ b0 + (a1 + (b1 + c0)) ≡[ i ]⟨ b0 + +-comm a1 (b1 + c0) i ⟩ b0 + ((b1 + c0) + a1) ≡[ i ]⟨ b0 + +-assoc b1 c0 a1 (~ i) ⟩ b0 + (b1 + (c0 + a1)) ≡⟨ +-assoc b0 b1 (c0 + a1)⟩ (b0 + b1) + (c0 + a1) ∎ ) relIsProp : BinaryRelation.isPropValued rel relIsProp a b x y = isSetℕ _ _ _ _ discreteℤ : Discrete ℤ discreteℤ = discreteSetQuotients (discreteΣ discreteℕ λ _ → discreteℕ) relIsProp relIsEquiv (λ _ _ → discreteℕ _ _) isSetℤ : isSet ℤ isSetℤ = Discrete→isSet discreteℤ sucℤ' : ℕ × ℕ -> ℤ sucℤ' (a⁺ , a⁻) = [ suc a⁺ , a⁻ ] sucℤ'-respects-rel : (a b : ℕ × ℕ) → rel a b → sucℤ' a ≡ sucℤ' b sucℤ'-respects-rel a@(a⁺ , a⁻) b@(b⁺ , b⁻) a~b = eq/ (suc a⁺ , a⁻) (suc b⁺ , b⁻) λ i → suc (a~b i) sucℤ : ℤ -> ℤ sucℤ = elim {R = rel} {B = λ _ → ℤ} (λ _ → isSetℤ) sucℤ' sucℤ'-respects-rel predℤ' : ℕ × ℕ -> ℤ predℤ' (a⁺ , a⁻) = [ a⁺ , suc a⁻ ] ⟦_⟧ : Int -> ℤ ⟦_⟧ (Int.pos n) = [ n , 0 ] ⟦_⟧ (Int.negsuc n) = [ 0 , suc n ] fwd = ⟦_⟧ bwd' : ℕ × ℕ -> Int bwd' (zero , a⁻) = Int.neg a⁻ bwd' (suc a⁺ , a⁻) = sucInt (bwd' (a⁺ , a⁻)) rel-suc : ∀ a⁺ a⁻ → rel (a⁺ , a⁻) (suc a⁺ , suc a⁻) rel-suc a⁺ a⁻ = ℕ.+-suc a⁺ a⁻ bwd'-suc : ∀ a⁺ a⁻ → bwd' (a⁺ , a⁻) ≡ bwd' (suc a⁺ , suc a⁻) bwd'-suc zero zero = refl bwd'-suc zero (suc a⁻) = refl bwd'-suc (suc a⁺) a⁻ i = sucInt (bwd'-suc a⁺ a⁻ i) bwd'+ : ∀ m n → bwd' (m , m +ⁿ n) ≡ bwd' (0 , n) bwd'+ zero n = refl bwd'+ (suc m) n = sym (bwd'-suc m (m +ⁿ n)) ∙ bwd'+ m n bwd'-respects-rel : (a b : ℕ × ℕ) → rel a b → bwd' a ≡ bwd' b bwd'-respects-rel (zero , a⁻) ( b⁺ , b⁻) a~b = sym (bwd'+ b⁺ a⁻) ∙ (λ i → bwd' (b⁺ , a~b (~ i))) bwd'-respects-rel (suc a⁺ , a⁻) (zero , b⁻) a~b = (λ i → bwd' (suc a⁺ , a~b (~ i))) ∙ sym (bwd'-suc a⁺ (a⁺ +ⁿ b⁻)) ∙ bwd'+ a⁺ b⁻ bwd'-respects-rel (suc a⁺ , a⁻) (suc b⁺ , b⁻) a~b i = sucInt (bwd'-respects-rel (a⁺ , a⁻) (b⁺ , b⁻) (ℕ.inj-m+ {1} {a⁺ +ⁿ b⁻} {b⁺ +ⁿ a⁻} a~b) i) bwd : ℤ -> Int bwd = elim {R = rel} {B = λ _ → Int} (λ _ → Int.isSetInt) bwd' bwd'-respects-rel bwd-fwd : ∀ (x : Int) -> bwd (fwd x) ≡ x bwd-fwd (Int.pos zero) = refl bwd-fwd (Int.pos (suc n)) i = sucInt (bwd-fwd (Int.pos n) i) bwd-fwd (Int.negsuc n) = refl suc-⟦⟧ : ∀ x → sucℤ ⟦ x ⟧ ≡ ⟦ sucInt x ⟧ suc-⟦⟧ (Int.pos n) = refl suc-⟦⟧ (Int.negsuc zero) = eq/ {R = rel} (1 , 1) (0 , 0) refl suc-⟦⟧ (Int.negsuc (suc n)) = eq/ {R = rel} (1 , 2 +ⁿ n) (0 , 1 +ⁿ n) refl fwd-bwd' : (a : ℕ × ℕ) → fwd (bwd [ a ]) ≡ [ a ] fwd-bwd' a@(zero , zero) = refl fwd-bwd' a@(zero , suc a⁻) = refl fwd-bwd' a@(suc a⁺ , a⁻) = sym (suc-⟦⟧ (bwd [ a⁺ , a⁻ ])) ∙ (λ i → sucℤ (fwd-bwd' (a⁺ , a⁻) i)) fwd-bwd : ∀ (z : ℤ) -> fwd (bwd z) ≡ z fwd-bwd = elimProp {R = rel} (λ _ → isSetℤ _ _) fwd-bwd' Int≡ℤ : Int ≡ ℤ Int≡ℤ = isoToPath (iso fwd bwd fwd-bwd bwd-fwd) infix 8 -_ infixl 7 _·_ infixl 6 _+_ _+'_ : (a b : ℕ × ℕ) → ℤ (a⁺ , a⁻) +' (b⁺ , b⁻) = [ a⁺ +ⁿ b⁺ , a⁻ +ⁿ b⁻ ] private commˡⁿ : ∀ a b c → a +ⁿ b +ⁿ c ≡ a +ⁿ c +ⁿ b commˡⁿ a b c = sym (ℕ.+-assoc a b c) ∙ (λ i → a +ⁿ ℕ.+-comm b c i) ∙ ℕ.+-assoc a c b lem0 : ∀ a b c d → (a +ⁿ b) +ⁿ (c +ⁿ d) ≡ (a +ⁿ c) +ⁿ (b +ⁿ d) lem0 a b c d = ℕ.+-assoc (a +ⁿ b) c d ∙ (λ i → commˡⁿ a b c i +ⁿ d) ∙ sym (ℕ.+-assoc (a +ⁿ c) b d) +ⁿ-creates-rel-≡ : ∀ a⁺ a⁻ x → _≡_ {A = ℤ} [ a⁺ , a⁻ ] [ a⁺ +ⁿ x , a⁻ +ⁿ x ] +ⁿ-creates-rel-≡ a⁺ a⁻ x = eq/ (a⁺ , a⁻) (a⁺ +ⁿ x , a⁻ +ⁿ x) ((λ i → a⁺ +ⁿ ℕ.+-comm a⁻ x i) ∙ ℕ.+-assoc a⁺ x a⁻) +-respects-relʳ : (a b c : ℕ × ℕ) → rel a b → (a +' c) ≡ (b +' c) +-respects-relʳ a@(a⁺ , a⁻) b@(b⁺ , b⁻) c@(c⁺ , c⁻) p = eq/ {R = rel} (a⁺ +ⁿ c⁺ , a⁻ +ⁿ c⁻) (b⁺ +ⁿ c⁺ , b⁻ +ⁿ c⁻) ( (a⁺ +ⁿ c⁺) +ⁿ (b⁻ +ⁿ c⁻) ≡⟨ lem0 a⁺ c⁺ b⁻ c⁻ ⟩ (a⁺ +ⁿ b⁻) +ⁿ (c⁺ +ⁿ c⁻) ≡[ i ]⟨ p i +ⁿ (c⁺ +ⁿ c⁻) ⟩ (b⁺ +ⁿ a⁻) +ⁿ (c⁺ +ⁿ c⁻) ≡⟨ sym (lem0 b⁺ c⁺ a⁻ c⁻) ⟩ (b⁺ +ⁿ c⁺) +ⁿ (a⁻ +ⁿ c⁻) ∎) +-respects-relˡ : (a b c : ℕ × ℕ) → rel b c → (a +' b) ≡ (a +' c) +-respects-relˡ a@(a⁺ , a⁻) b@(b⁺ , b⁻) c@(c⁺ , c⁻) p = eq/ {R = rel} (a⁺ +ⁿ b⁺ , a⁻ +ⁿ b⁻) (a⁺ +ⁿ c⁺ , a⁻ +ⁿ c⁻) ( (a⁺ +ⁿ b⁺) +ⁿ (a⁻ +ⁿ c⁻) ≡⟨ lem0 a⁺ b⁺ a⁻ c⁻ ⟩ (a⁺ +ⁿ a⁻) +ⁿ (b⁺ +ⁿ c⁻) ≡[ i ]⟨ (a⁺ +ⁿ a⁻) +ⁿ p i ⟩ (a⁺ +ⁿ a⁻) +ⁿ (c⁺ +ⁿ b⁻) ≡⟨ sym (lem0 a⁺ c⁺ a⁻ b⁻) ⟩ (a⁺ +ⁿ c⁺) +ⁿ (a⁻ +ⁿ b⁻) ∎) _+''_ : ℤ → ℤ → ℤ _+''_ = rec2 {R = rel} {B = ℤ} φ _+'_ +-respects-relʳ +-respects-relˡ where abstract φ = isSetℤ -- normalization of isSetℤ explodes. Therefore we wrap this with expanded cases _+_ : ℤ → ℤ → ℤ x@([ _ ]) + y@([ _ ]) = x +'' y x@([ _ ]) + y@(eq/ _ _ _ _) = x +'' y x@(eq/ _ _ _ _) + y@([ _ ]) = x +'' y x@(eq/ _ _ _ _) + y@(eq/ _ _ _ _) = x +'' y x@(eq/ _ _ _ _) + y@(squash/ a b p q i j) = isSetℤ _ _ (cong (x +_) p) (cong (x +_) q) i j x@([ _ ]) + y@(squash/ a b p q i j) = isSetℤ _ _ (cong (x +_) p) (cong (x +_) q) i j x@(squash/ a b p q i j) + y = isSetℤ _ _ (cong (_+ y) p) (cong (_+ y) q) i j -'_ : ℕ × ℕ → ℤ -' (a⁺ , a⁻) = [ a⁻ , a⁺ ] neg-respects-rel'-≡ : (a b : ℕ × ℕ) → rel a b → (-' a) ≡ (-' b) neg-respects-rel'-≡ a@(a⁺ , a⁻) b@(b⁺ , b⁻) p = eq/ {R = rel} (a⁻ , a⁺) (b⁻ , b⁺) (ℕ.+-comm a⁻ b⁺ ∙ sym p ∙ ℕ.+-comm a⁺ b⁻) -_ : ℤ → ℤ -_ = rec {R = rel} {B = ℤ} isSetℤ -'_ neg-respects-rel'-≡ _·'_ : (a b : ℕ × ℕ) → ℤ (a⁺ , a⁻) ·' (b⁺ , b⁻) = [ a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻ , a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺ ] private lem1 : ∀ a b c d → (a +ⁿ b) +ⁿ (c +ⁿ d) ≡ (a +ⁿ d) +ⁿ (b +ⁿ c) lem1 a b c d = (λ i → (a +ⁿ b) +ⁿ ℕ.+-comm c d i) ∙ ℕ.+-assoc (a +ⁿ b) d c ∙ (λ i → commˡⁿ a b d i +ⁿ c) ∙ sym (ℕ.+-assoc (a +ⁿ d) b c) ·-respects-relʳ : (a b c : ℕ × ℕ) → rel a b → (a ·' c) ≡ (b ·' c) ·-respects-relʳ a@(a⁺ , a⁻) b@(b⁺ , b⁻) c@(c⁺ , c⁻) p = eq/ {R = rel} (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻ , a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) (b⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁻ , b⁺ ·ⁿ c⁻ +ⁿ b⁻ ·ⁿ c⁺) ( (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻) +ⁿ (b⁺ ·ⁿ c⁻ +ⁿ b⁻ ·ⁿ c⁺) ≡⟨ lem1 (a⁺ ·ⁿ c⁺) (a⁻ ·ⁿ c⁻) (b⁺ ·ⁿ c⁻) (b⁻ ·ⁿ c⁺) ⟩ (a⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁺) +ⁿ (a⁻ ·ⁿ c⁻ +ⁿ b⁺ ·ⁿ c⁻) ≡[ i ]⟨ ℕ.·-distribʳ a⁺ b⁻ c⁺ i +ⁿ ℕ.·-distribʳ a⁻ b⁺ c⁻ i ⟩ ((a⁺ +ⁿ b⁻) ·ⁿ c⁺) +ⁿ ((a⁻ +ⁿ b⁺) ·ⁿ c⁻) ≡[ i ]⟨ p i ·ⁿ c⁺ +ⁿ (ℕ.+-comm a⁻ b⁺ ∙ sym p ∙ ℕ.+-comm a⁺ b⁻) i ·ⁿ c⁻ ⟩ ((b⁺ +ⁿ a⁻) ·ⁿ c⁺) +ⁿ ((b⁻ +ⁿ a⁺) ·ⁿ c⁻) ≡[ i ]⟨ ℕ.·-distribʳ b⁺ a⁻ c⁺ (~ i) +ⁿ ℕ.·-distribʳ b⁻ a⁺ c⁻ (~ i) ⟩ (b⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁺) +ⁿ (b⁻ ·ⁿ c⁻ +ⁿ a⁺ ·ⁿ c⁻) ≡⟨ sym (lem1 (b⁺ ·ⁿ c⁺) (b⁻ ·ⁿ c⁻) (a⁺ ·ⁿ c⁻) (a⁻ ·ⁿ c⁺)) ⟩ (b⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁻) +ⁿ (a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) ∎) ·-respects-relˡ : (a b c : ℕ × ℕ) → rel b c → (a ·' b) ≡ (a ·' c) ·-respects-relˡ a@(a⁺ , a⁻) b@(b⁺ , b⁻) c@(c⁺ , c⁻) p = eq/ {R = rel} (a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻ , a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺) (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻ , a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) ( (a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻) +ⁿ (a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) ≡⟨ lem0 (a⁺ ·ⁿ b⁺) (a⁻ ·ⁿ b⁻) (a⁺ ·ⁿ c⁻) (a⁻ ·ⁿ c⁺) ⟩ (a⁺ ·ⁿ b⁺ +ⁿ a⁺ ·ⁿ c⁻) +ⁿ (a⁻ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ c⁺) ≡[ i ]⟨ ℕ.·-distribˡ a⁺ b⁺ c⁻ i +ⁿ ℕ.·-distribˡ a⁻ b⁻ c⁺ i ⟩ (a⁺ ·ⁿ (b⁺ +ⁿ c⁻)) +ⁿ (a⁻ ·ⁿ (b⁻ +ⁿ c⁺)) ≡[ i ]⟨ a⁺ ·ⁿ p i +ⁿ a⁻ ·ⁿ (ℕ.+-comm b⁻ c⁺ ∙ sym p ∙ ℕ.+-comm b⁺ c⁻) i ⟩ (a⁺ ·ⁿ (c⁺ +ⁿ b⁻)) +ⁿ (a⁻ ·ⁿ (c⁻ +ⁿ b⁺)) ≡[ i ]⟨ ℕ.·-distribˡ a⁺ c⁺ b⁻ (~ i) +ⁿ ℕ.·-distribˡ a⁻ c⁻ b⁺ (~ i) ⟩ (a⁺ ·ⁿ c⁺ +ⁿ a⁺ ·ⁿ b⁻) +ⁿ (a⁻ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ b⁺) ≡⟨ sym (lem0 (a⁺ ·ⁿ c⁺) (a⁻ ·ⁿ c⁻) (a⁺ ·ⁿ b⁻) (a⁻ ·ⁿ b⁺)) ⟩ (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻) +ⁿ (a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺) ∎) _·''_ : ℤ → ℤ → ℤ _·''_ = rec2 {R = rel} {B = ℤ} isSetℤ _·'_ ·-respects-relʳ ·-respects-relˡ -- normalization of isSetℤ explodes. Therefore we wrap this with expanded cases _·_ : ℤ → ℤ → ℤ x@([ _ ]) · y@([ _ ]) = x ·'' y x@([ _ ]) · y@(eq/ _ _ _ _) = x ·'' y x@(eq/ _ _ _ _) · y@([ _ ]) = x ·'' y x@(eq/ _ _ _ _) · y@(eq/ _ _ _ _) = x ·'' y x@(eq/ _ _ _ _) · y@(squash/ a b p q i j) = isSetℤ _ _ (cong (x ·_) p) (cong (x ·_) q) i j x@([ _ ]) · y@(squash/ a b p q i j) = isSetℤ _ _ (cong (x ·_) p) (cong (x ·_) q) i j x@(squash/ a b p q i j) · y = isSetℤ _ _ (cong (_· y) p) (cong (_· y) q) i j +-identityʳ : (x : ℤ) → x + 0 ≡ x +-identityʳ = elimProp {R = rel} (λ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) i → [ ℕ.+-comm a⁺ 0 i , ℕ.+-comm a⁻ 0 i ] } +-comm : (x y : ℤ) → x + y ≡ y + x +-comm = elimProp2 {R = rel} (λ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) i → [ ℕ.+-comm a⁺ b⁺ i , ℕ.+-comm a⁻ b⁻ i ] } +-inverseʳ : (x : ℤ) → x + (- x) ≡ 0 +-inverseʳ = elimProp {R = rel} (λ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) → eq/ {R = rel} (a⁺ +ⁿ a⁻ , a⁻ +ⁿ a⁺) (0 , 0) (ℕ.+-zero (a⁺ +ⁿ a⁻) ∙ ℕ.+-comm a⁺ a⁻) } +-assoc : (x y z : ℤ) → x + (y + z) ≡ x + y + z +-assoc = elimProp3 {R = rel} (λ _ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) (c⁺ , c⁻) i → [ ℕ.+-assoc a⁺ b⁺ c⁺ i , ℕ.+-assoc a⁻ b⁻ c⁻ i ] } ·-identityʳ : (x : ℤ) → x · 1 ≡ x ·-identityʳ = elimProp {R = rel} (λ _ → isSetℤ _ _) γ where γ : (a : ℕ × ℕ) → _ γ (a⁺ , a⁻) i = [ p i , q i ] where p : a⁺ ·ⁿ 1 +ⁿ a⁻ ·ⁿ 0 ≡ a⁺ p i = ℕ.+-comm (ℕ.·-identityʳ a⁺ i) (ℕ.0≡m·0 a⁻ (~ i)) i q : a⁺ ·ⁿ 0 +ⁿ a⁻ ·ⁿ 1 ≡ a⁻ q i = ℕ.0≡m·0 a⁺ (~ i) +ⁿ ℕ.·-identityʳ a⁻ i ·-comm : (x y : ℤ) → x · y ≡ y · x ·-comm = elimProp2 {R = rel} (λ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) i → [ ℕ.·-comm a⁺ b⁺ i +ⁿ ℕ.·-comm a⁻ b⁻ i , ℕ.+-comm (ℕ.·-comm a⁺ b⁻ i) (ℕ.·-comm a⁻ b⁺ i) i ] } ·-distribˡ : (x y z : ℤ) → x · (y + z) ≡ x · y + x · z ·-distribˡ = elimProp3 {R = rel} (λ _ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) (c⁺ , c⁻) → [ a⁺ ·ⁿ (b⁺ +ⁿ c⁺) +ⁿ a⁻ ·ⁿ (b⁻ +ⁿ c⁻) , a⁺ ·ⁿ (b⁻ +ⁿ c⁻) +ⁿ a⁻ ·ⁿ (b⁺ +ⁿ c⁺) ] ≡[ i ]⟨ [ ℕ.·-distribˡ a⁺ b⁺ c⁺ (~ i) +ⁿ ℕ.·-distribˡ a⁻ b⁻ c⁻ (~ i) , ℕ.·-distribˡ a⁺ b⁻ c⁻ (~ i) +ⁿ ℕ.·-distribˡ a⁻ b⁺ c⁺ (~ i) ] ⟩ [ (a⁺ ·ⁿ b⁺ +ⁿ a⁺ ·ⁿ c⁺) +ⁿ (a⁻ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ c⁻) , (a⁺ ·ⁿ b⁻ +ⁿ a⁺ ·ⁿ c⁻) +ⁿ (a⁻ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ c⁺) ] ≡[ i ]⟨ [ lem0 (a⁺ ·ⁿ b⁺) (a⁻ ·ⁿ b⁻) (a⁺ ·ⁿ c⁺) (a⁻ ·ⁿ c⁻) (~ i), lem0 (a⁺ ·ⁿ b⁻) (a⁺ ·ⁿ c⁻) (a⁻ ·ⁿ b⁺) (a⁻ ·ⁿ c⁺) i ] ⟩ [ a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻ +ⁿ (a⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ c⁻) , a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺ +ⁿ (a⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ c⁺) ] ∎ } ·-assoc : (x y z : ℤ) → x · (y · z) ≡ x · y · z ·-assoc = elimProp3 {R = rel} (λ _ _ _ → isSetℤ _ _) λ{ (a⁺ , a⁻) (b⁺ , b⁻) (c⁺ , c⁻) → [ a⁺ ·ⁿ (b⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁻) +ⁿ a⁻ ·ⁿ (b⁺ ·ⁿ c⁻ +ⁿ b⁻ ·ⁿ c⁺) , a⁺ ·ⁿ (b⁺ ·ⁿ c⁻ +ⁿ b⁻ ·ⁿ c⁺) +ⁿ a⁻ ·ⁿ (b⁺ ·ⁿ c⁺ +ⁿ b⁻ ·ⁿ c⁻) ] ≡[ i ]⟨ [ ℕ.·-distribˡ a⁺ (b⁺ ·ⁿ c⁺) (b⁻ ·ⁿ c⁻) (~ i) +ⁿ ℕ.·-distribˡ a⁻ (b⁺ ·ⁿ c⁻) (b⁻ ·ⁿ c⁺) (~ i) , ℕ.·-distribˡ a⁺ (b⁺ ·ⁿ c⁻) (b⁻ ·ⁿ c⁺) (~ i) +ⁿ ℕ.·-distribˡ a⁻ (b⁺ ·ⁿ c⁺) (b⁻ ·ⁿ c⁻) (~ i) ] ⟩ [ (a⁺ ·ⁿ (b⁺ ·ⁿ c⁺) +ⁿ a⁺ ·ⁿ (b⁻ ·ⁿ c⁻)) +ⁿ (a⁻ ·ⁿ (b⁺ ·ⁿ c⁻) +ⁿ a⁻ ·ⁿ (b⁻ ·ⁿ c⁺)) , (a⁺ ·ⁿ (b⁺ ·ⁿ c⁻) +ⁿ a⁺ ·ⁿ (b⁻ ·ⁿ c⁺)) +ⁿ (a⁻ ·ⁿ (b⁺ ·ⁿ c⁺) +ⁿ a⁻ ·ⁿ (b⁻ ·ⁿ c⁻)) ] ≡[ i ]⟨ [ (ℕ.·-assoc a⁺ b⁺ c⁺ i +ⁿ ℕ.·-assoc a⁺ b⁻ c⁻ i) +ⁿ (ℕ.·-assoc a⁻ b⁺ c⁻ i +ⁿ ℕ.·-assoc a⁻ b⁻ c⁺ i) , (ℕ.·-assoc a⁺ b⁺ c⁻ i +ⁿ ℕ.·-assoc a⁺ b⁻ c⁺ i) +ⁿ (ℕ.·-assoc a⁻ b⁺ c⁺ i +ⁿ ℕ.·-assoc a⁻ b⁻ c⁻ i) ] ⟩ [ (a⁺ ·ⁿ b⁺ ·ⁿ c⁺ +ⁿ a⁺ ·ⁿ b⁻ ·ⁿ c⁻) +ⁿ (a⁻ ·ⁿ b⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ b⁻ ·ⁿ c⁺) , (a⁺ ·ⁿ b⁺ ·ⁿ c⁻ +ⁿ a⁺ ·ⁿ b⁻ ·ⁿ c⁺) +ⁿ (a⁻ ·ⁿ b⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ b⁻ ·ⁿ c⁻) ] ≡[ i ]⟨ [ lem1 (a⁺ ·ⁿ b⁺ ·ⁿ c⁺) (a⁺ ·ⁿ b⁻ ·ⁿ c⁻) (a⁻ ·ⁿ b⁺ ·ⁿ c⁻) (a⁻ ·ⁿ b⁻ ·ⁿ c⁺) i , lem1 (a⁺ ·ⁿ b⁺ ·ⁿ c⁻) (a⁺ ·ⁿ b⁻ ·ⁿ c⁺) (a⁻ ·ⁿ b⁺ ·ⁿ c⁺) (a⁻ ·ⁿ b⁻ ·ⁿ c⁻) i ] ⟩ [ (a⁺ ·ⁿ b⁺ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ b⁻ ·ⁿ c⁺) +ⁿ (a⁺ ·ⁿ b⁻ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ b⁺ ·ⁿ c⁻) , (a⁺ ·ⁿ b⁺ ·ⁿ c⁻ +ⁿ a⁻ ·ⁿ b⁻ ·ⁿ c⁻) +ⁿ (a⁺ ·ⁿ b⁻ ·ⁿ c⁺ +ⁿ a⁻ ·ⁿ b⁺ ·ⁿ c⁺) ] ≡[ i ]⟨ [ ℕ.·-distribʳ (a⁺ ·ⁿ b⁺) (a⁻ ·ⁿ b⁻) c⁺ i +ⁿ ℕ.·-distribʳ (a⁺ ·ⁿ b⁻) (a⁻ ·ⁿ b⁺) c⁻ i , ℕ.·-distribʳ (a⁺ ·ⁿ b⁺) (a⁻ ·ⁿ b⁻) c⁻ i +ⁿ ℕ.·-distribʳ (a⁺ ·ⁿ b⁻) (a⁻ ·ⁿ b⁺) c⁺ i ] ⟩ [ (a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻) ·ⁿ c⁺ +ⁿ (a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺) ·ⁿ c⁻ , (a⁺ ·ⁿ b⁺ +ⁿ a⁻ ·ⁿ b⁻) ·ⁿ c⁻ +ⁿ (a⁺ ·ⁿ b⁻ +ⁿ a⁻ ·ⁿ b⁺) ·ⁿ c⁺ ] ∎ } private _ : Dec→Bool (discreteℤ [ (3 , 5) ] [ (4 , 6) ]) ≡ true _ = refl _ : Dec→Bool (discreteℤ [ (3 , 5) ] [ (4 , 7) ]) ≡ false _ = refl
46.716783
163
0.411122
41942a400ae45bab6f04d1d8f5ae106ae6e8bf81
575
agda
Agda
test/Succeed/Issue292-14.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue292-14.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue292-14.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2011-09-14 posted by Nisse -- Andreas: this failed since SubstHH for Telescopes was wrong. -- {-# OPTIONS --show-implicit -v tc.lhs.unify:15 #-} module Issue292-14 where data D : Set where d : D postulate T : D → D → Set data T′ (x y : D) : Set where c : T x y → T′ x y F : D → D → Set F x d = T′ x d -- blocking unfolding of F x y record [F] : Set where field x y : D f : F x y -- T′ x y works data _≡_ (x : [F]) : [F] → Set where refl : x ≡ x Foo : ∀ {x} {t₁ t₂ : T x d} → record { f = c t₁ } ≡ record { f = c t₂ } → Set₁ Foo refl = Set
20.535714
63
0.546087
3ddb12ebc6aa8b5b43b0ce8fba6c7ab4085700f9
836
agda
Agda
src/Everything.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
19
2018-05-16T08:08:51.000Z
2021-04-27T19:10:49.000Z
src/Everything.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
null
null
null
src/Everything.agda
andreasabel/ipl
9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a
[ "Unlicense" ]
2
2018-11-13T16:01:46.000Z
2021-02-25T20:39:03.000Z
-- Normalization by Evaluation for Intuitionistic Predicate Logic (IPL) module Everything where -- Imports from the standard library and simple definitions import Library -- Types and terms of IPL import Formulas import Derivations -- Beth model import TermModel import NfModel -- A variant where Cover : PSh → PSh import NfModelCaseTree -- Presented at ITC 2018-07-19 import NfModelCaseTreeConv -- A generalization to any CoverMonad which includes the -- continuation monad used in Danvy's algorithm import NfModelMonad import Consistency -- A monadic interpreter using shift/reset and an optimization import DanvyShiftReset import DanvyShiftResetLiftable -- SET-interpretation and soundness of NbE import Interpretation import NbeModel -- A general theory of sheaves over preorders import PresheavesAndSheaves
19.44186
71
0.801435
43287dfbbdcb28bf67cfc363d73923732b48aae3
4,747
agda
Agda
src/Categories/Functor/Monoidal.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Monoidal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Monoidal.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Monoidal where open import Level open import Data.Product using (Σ; _,_) open import Categories.Category open import Categories.Category.Product open import Categories.Category.Monoidal open import Categories.Functor hiding (id) open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.NaturalIsomorphism import Categories.Morphism as Mor private variable o o′ ℓ ℓ′ e e′ : Level module _ (C : MonoidalCategory o ℓ e) (D : MonoidalCategory o′ ℓ′ e′) where private module C = MonoidalCategory C module D = MonoidalCategory D open Mor D.U -- lax monoidal functor record IsMonoidalFunctor (F : Functor C.U D.U) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where open Functor F field ε : D.U [ D.unit , F₀ C.unit ] ⊗-homo : NaturalTransformation (D.⊗ ∘F (F ⁂ F)) (F ∘F C.⊗) module ⊗-homo = NaturalTransformation ⊗-homo -- coherence condition open D open Commutation D.U field associativity : ∀ {X Y Z} → [ (F₀ X ⊗₀ F₀ Y) ⊗₀ F₀ Z ⇒ F₀ (X C.⊗₀ Y C.⊗₀ Z) ]⟨ ⊗-homo.η (X , Y) ⊗₁ id ⇒⟨ F₀ (X C.⊗₀ Y) ⊗₀ F₀ Z ⟩ ⊗-homo.η (X C.⊗₀ Y , Z) ⇒⟨ F₀ ((X C.⊗₀ Y) C.⊗₀ Z) ⟩ F₁ C.associator.from ≈ associator.from ⇒⟨ F₀ X ⊗₀ F₀ Y ⊗₀ F₀ Z ⟩ id ⊗₁ ⊗-homo.η (Y , Z) ⇒⟨ F₀ X ⊗₀ F₀ (Y C.⊗₀ Z) ⟩ ⊗-homo.η (X , Y C.⊗₀ Z) ⟩ unitaryˡ : ∀ {X} → [ unit ⊗₀ F₀ X ⇒ F₀ X ]⟨ ε ⊗₁ id ⇒⟨ F₀ C.unit ⊗₀ F₀ X ⟩ ⊗-homo.η (C.unit , X) ⇒⟨ F₀ (C.unit C.⊗₀ X) ⟩ F₁ C.unitorˡ.from ≈ unitorˡ.from ⟩ unitaryʳ : ∀ {X} → [ F₀ X ⊗₀ unit ⇒ F₀ X ]⟨ id ⊗₁ ε ⇒⟨ F₀ X ⊗₀ F₀ C.unit ⟩ ⊗-homo.η (X , C.unit) ⇒⟨ F₀ (X C.⊗₀ C.unit) ⟩ F₁ C.unitorʳ.from ≈ unitorʳ.from ⟩ record MonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C.U D.U isMonoidal : IsMonoidalFunctor F open Functor F public open IsMonoidalFunctor isMonoidal public -- strong monoidal functor record IsStrongMonoidalFunctor (F : Functor C.U D.U) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where open Functor F field ε : D.unit ≅ F₀ C.unit ⊗-homo : D.⊗ ∘F (F ⁂ F) ≃ F ∘F C.⊗ module ε = _≅_ ε module ⊗-homo = NaturalIsomorphism ⊗-homo -- coherence condition open D open Commutation D.U field associativity : ∀ {X Y Z} → [ (F₀ X ⊗₀ F₀ Y) ⊗₀ F₀ Z ⇒ F₀ (X C.⊗₀ Y C.⊗₀ Z) ]⟨ ⊗-homo.⇒.η (X , Y) ⊗₁ id ⇒⟨ F₀ (X C.⊗₀ Y) ⊗₀ F₀ Z ⟩ ⊗-homo.⇒.η (X C.⊗₀ Y , Z) ⇒⟨ F₀ ((X C.⊗₀ Y) C.⊗₀ Z) ⟩ F₁ C.associator.from ≈ associator.from ⇒⟨ F₀ X ⊗₀ F₀ Y ⊗₀ F₀ Z ⟩ id ⊗₁ ⊗-homo.⇒.η (Y , Z) ⇒⟨ F₀ X ⊗₀ F₀ (Y C.⊗₀ Z) ⟩ ⊗-homo.⇒.η (X , Y C.⊗₀ Z) ⟩ unitaryˡ : ∀ {X} → [ unit ⊗₀ F₀ X ⇒ F₀ X ]⟨ ε.from ⊗₁ id ⇒⟨ F₀ C.unit ⊗₀ F₀ X ⟩ ⊗-homo.⇒.η (C.unit , X) ⇒⟨ F₀ (C.unit C.⊗₀ X) ⟩ F₁ C.unitorˡ.from ≈ unitorˡ.from ⟩ unitaryʳ : ∀ {X} → [ F₀ X ⊗₀ unit ⇒ F₀ X ]⟨ id ⊗₁ ε.from ⇒⟨ F₀ X ⊗₀ F₀ C.unit ⟩ ⊗-homo.⇒.η (X , C.unit) ⇒⟨ F₀ (X C.⊗₀ C.unit) ⟩ F₁ C.unitorʳ.from ≈ unitorʳ.from ⟩ isMonoidal : IsMonoidalFunctor F isMonoidal = record { ε = ε.from ; ⊗-homo = ⊗-homo.F⇒G ; associativity = associativity ; unitaryˡ = unitaryˡ ; unitaryʳ = unitaryʳ } record StrongMonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C.U D.U isStrongMonoidal : IsStrongMonoidalFunctor F open Functor F public open IsStrongMonoidalFunctor isStrongMonoidal public monoidalFunctor : MonoidalFunctor monoidalFunctor = record { F = F ; isMonoidal = isMonoidal }
35.162963
98
0.429745
d1c97a2ce6053c7a5b6190e81da9fa0b00ac8342
2,075
agda
Agda
Cubical/Data/Vec/Properties.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Data/Vec/Properties.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
null
null
null
Cubical/Data/Vec/Properties.agda
ByteBucket123/cubical
aeaa15fb846a3e8bda73635dc7462ae3813b4b1b
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.Data.Vec.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat open import Cubical.Data.Vec.Base open import Cubical.Data.FinData open import Cubical.Relation.Nullary private variable ℓ : Level A : Type ℓ -- This is really cool! -- Compare with: https://github.com/agda/agda-stdlib/blob/master/src/Data/Vec/Properties/WithK.agda#L32 ++-assoc : ∀ {m n k} (xs : Vec A m) (ys : Vec A n) (zs : Vec A k) → PathP (λ i → Vec A (+-assoc m n k (~ i))) ((xs ++ ys) ++ zs) (xs ++ ys ++ zs) ++-assoc {m = zero} [] ys zs = refl ++-assoc {m = suc m} (x ∷ xs) ys zs i = x ∷ ++-assoc xs ys zs i -- Equivalence between Fin n → A and Vec A n FinVec : (A : Type ℓ) (n : ℕ) → Type ℓ FinVec A n = Fin n → A FinVec→Vec : {n : ℕ} → FinVec A n → Vec A n FinVec→Vec {n = zero} xs = [] FinVec→Vec {n = suc _} xs = xs zero ∷ FinVec→Vec (λ x → xs (suc x)) Vec→FinVec : {n : ℕ} → Vec A n → FinVec A n Vec→FinVec xs f = lookup f xs FinVec→Vec→FinVec : {n : ℕ} (xs : FinVec A n) → Vec→FinVec (FinVec→Vec xs) ≡ xs FinVec→Vec→FinVec {n = zero} xs = funExt λ f → ⊥.rec (¬Fin0 f) FinVec→Vec→FinVec {n = suc n} xs = funExt goal where goal : (f : Fin (suc n)) → Vec→FinVec (xs zero ∷ FinVec→Vec (λ x → xs (suc x))) f ≡ xs f goal zero = refl goal (suc f) i = FinVec→Vec→FinVec (λ x → xs (suc x)) i f Vec→FinVec→Vec : {n : ℕ} (xs : Vec A n) → FinVec→Vec (Vec→FinVec xs) ≡ xs Vec→FinVec→Vec {n = zero} [] = refl Vec→FinVec→Vec {n = suc n} (x ∷ xs) i = x ∷ Vec→FinVec→Vec xs i FinVecIsoVec : (n : ℕ) → Iso (FinVec A n) (Vec A n) FinVecIsoVec n = iso FinVec→Vec Vec→FinVec Vec→FinVec→Vec FinVec→Vec→FinVec FinVec≃Vec : (n : ℕ) → FinVec A n ≃ Vec A n FinVec≃Vec n = isoToEquiv (FinVecIsoVec n) FinVec≡Vec : (n : ℕ) → FinVec A n ≡ Vec A n FinVec≡Vec n = ua (FinVec≃Vec n) isContrVec0 : isContr (Vec A 0) isContrVec0 = [] , λ { [] → refl }
31.923077
103
0.626506
034b6d4f1dcda6a5d3cd942d0720aec4949afc45
496
agda
Agda
test/fail/RecordConstructorsInErrorMessages.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/RecordConstructorsInErrorMessages.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/RecordConstructorsInErrorMessages.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- This file tests that record constructors are used in error -- messages, if possible. module RecordConstructorsInErrorMessages where record R : Set₁ where constructor con field {A} : Set f : A → A {B C} D {E} : Set g : B → C → E postulate A : Set r₁ : R r₂ : R r₂ = record { A = A ; f = λ x → x ; B = A ; C = A ; D = A ; g = λ x _ → x } data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x foo : r₁ ≡ r₂ foo = refl
15.030303
61
0.504032
4bbb29d51eeae6bf932e92594cc3e3d74d2d4b24
1,130
agda
Agda
src/sets/fin/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
20
2015-06-12T12:20:17.000Z
2022-02-01T11:25:54.000Z
src/sets/fin/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/sets/fin/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module sets.fin.core where open import decidable open import equality.core open import sets.empty open import sets.unit public open import sets.nat.core hiding (_≟_; pred) open import sets.empty data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} → Fin n → Fin (suc n) raise : ∀ {n} → Fin n → Fin (suc n) raise zero = zero raise (suc i) = suc (raise i) fin-disj : ∀ {n}(i : Fin n) → ¬ (zero ≡ suc i) fin-disj {n} i = J' P tt (suc i) where P : (i : Fin (suc n)) → zero ≡ i → Set P zero _ = ⊤ P (suc _) _ = ⊥ fin-suc-inj : ∀ {n} {i j : Fin n} → Fin.suc i ≡ suc j → i ≡ j fin-suc-inj {n}{i}{j} = J' P refl (suc j) where P : (j : Fin (suc n)) → Fin.suc i ≡ j → Set P zero _ = ⊤ P (suc j) _ = i ≡ j _≟_ : ∀ {n} → (i j : Fin n) → Dec (i ≡ j) _≟_ zero zero = yes refl _≟_ zero (suc i) = no (fin-disj i) _≟_ (suc i) zero = no (λ p → fin-disj i (sym p)) _≟_ {suc n} (suc i) (suc j) with i ≟ j ... | yes p = yes (ap suc p) ... | no a = no (λ p → a (fin-suc-inj p)) last-fin : {n : ℕ} → Fin (suc n) last-fin {zero} = zero last-fin {suc n} = suc last-fin
25.111111
61
0.538053
1e31af15ae24341e863925dcba5fd65a287a2a2c
498
agda
Agda
test/Succeed/Issue1221.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1221.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1221.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Common.Level open import Common.Reflection open import Common.Equality open import Common.Prelude postulate f : ∀ a → Set a pattern expectedType = pi (vArg (def (quote Level) [])) (abs "a" (sort (set (var 0 [])))) ok : ⊤ ok = _ notOk : String notOk = "not ok" macro isExpected : QName → Tactic isExpected x hole = bindTC (getType x) λ { expectedType → give (quoteTerm ok) hole ; t → give (quoteTerm notOk) hole } thm : ⊤ thm = isExpected f
17.172414
50
0.63253
2e70963423a3796f1dadd782955c18048267fc97
1,509
agda
Agda
agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Parameters.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Parameters.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Tactic/RingSolver/Core/Polynomial/Parameters.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Bundles of parameters for passing to the Ring Solver ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module packages up all the stuff that's passed to the other -- modules in a convenient form. module Tactic.RingSolver.Core.Polynomial.Parameters where open import Algebra.Bundles using (RawRing) open import Data.Bool.Base using (Bool; T) open import Function open import Level open import Relation.Unary open import Tactic.RingSolver.Core.AlmostCommutativeRing -- This record stores all the stuff we need for the coefficients: -- -- * A raw ring -- * A (decidable) predicate on "zeroeness" -- -- It's used for defining the operations on the Horner normal form. record RawCoeff ℓ₁ ℓ₂ : Set (suc (ℓ₁ ⊔ ℓ₂)) where field rawRing : RawRing ℓ₁ ℓ₂ isZero : RawRing.Carrier rawRing → Bool open RawRing rawRing public -- This record stores the full information we need for converting -- to the final ring. record Homomorphism ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Set (suc (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄)) where field from : RawCoeff ℓ₁ ℓ₂ to : AlmostCommutativeRing ℓ₃ ℓ₄ module Raw = RawCoeff from open AlmostCommutativeRing to public field morphism : Raw.rawRing -Raw-AlmostCommutative⟶ to open _-Raw-AlmostCommutative⟶_ morphism renaming (⟦_⟧ to ⟦_⟧ᵣ) public field Zero-C⟶Zero-R : ∀ x → T (Raw.isZero x) → 0# ≈ ⟦ x ⟧ᵣ
30.795918
72
0.650099
03aeee38b261b17dceda848f7fc71b4e08132a7a
3,517
agda
Agda
Cat.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
Cat.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
Cat.agda
clarkdm/CS410
523a8749f49c914bcd28402116dcbe79a78dbbf4
[ "CC0-1.0" ]
null
null
null
module Cat where open import Agda.Primitive open import CS410-Prelude open import CS410-Nat open import CS410-Monoid open import CS410-Vec record Cat {k}{l}(O : Set k)(_>>_ : O -> O -> Set l) : Set (lsuc (k ⊔ l)) where field -- OPERATIONS --------------------------------------------------------- iden : {X : O} -> X >> X comp : {R S T : O} -> S >> T -> R >> S -> R >> T -- KLUDGE ------------------------------------------------------------- Eq : {S T : O} -> S >> T -> S >> T -> Set l -- LAWS --------------------------------------------------------------- idenL : {S T : O}(f : S >> T) -> Eq (comp iden f) f idenR : {S T : O}(f : S >> T) -> Eq (comp f iden) f assoc : {Q R S T : O}(f : S >> T)(g : R >> S)(h : Q >> R) -> Eq (comp f (comp g h)) (comp (comp f g) h) SetCat : Cat Set (\ S T -> S -> T) SetCat = record { iden = id ; comp = _o_ ; Eq = \ f g -> forall x -> f x == g x ; idenL = λ {S} {T} f x → refl ; idenR = λ {S} {T} f x → refl ; assoc = λ {Q} {R} {S} {T} f g h x → refl } N>=Cat : Cat Nat _N>=_ N>=Cat = record { iden = \ {n} -> N>=refl n ; comp = \ {l}{m}{n} -> N>=trans l m n ; Eq = \ _ _ -> One ; idenL = λ {S} {T} f → <> ; idenR = λ {S} {T} f → <> ; assoc = λ {Q} {R} {S} {T} f g h → <> } where N>=refl : (n : Nat) -> n N>= n N>=refl zero = <> N>=refl (suc n) = N>=refl n N>=trans : forall l m n -> m N>= n -> l N>= m -> l N>= n N>=trans l m zero mn lm = <> N>=trans l zero (suc n) () lm N>=trans zero (suc m) (suc n) mn () N>=trans (suc l) (suc m) (suc n) mn lm = N>=trans l m n mn lm MonCat : forall {X} -> Monoid X -> Cat One \ _ _ -> X MonCat M = record { iden = e ; comp = op ; Eq = _==_ ; idenL = lunit ; idenR = runit ; assoc = assoc } where open Monoid M record Functor {k l}{ObjS : Set k}{_>S>_ : ObjS -> ObjS -> Set l} {m n}{ObjT : Set m}{_>T>_ : ObjT -> ObjT -> Set n} (CS : Cat ObjS _>S>_)(CT : Cat ObjT _>T>_) : Set (lsuc (k ⊔ l ⊔ m ⊔ n)) where open Cat field -- OPERATIONS --------------------------------------------------------- Map : ObjS -> ObjT map : {A B : ObjS} -> A >S> B -> Map A >T> Map B -- LAWS --------------------------------------------------------------- mapId : {A : ObjS} -> Eq CT (map (iden CS {A})) (iden CT {Map A}) mapComp : {A B C : ObjS}(f : B >S> C)(g : A >S> B) -> Eq CT (map (comp CS f g)) (comp CT (map f) (map g)) mapEq : {A B : ObjS}{f g : A >S> B} -> Eq CS f g -> Eq CT (map f) (map g) data List (X : Set) : Set where -- X scopes over the whole declaration... [] : List X -- ...so you can use it here... _::_ : X -> List X -> List X -- ...and here. infixr 3 _::_ listMap : {A B : Set} → (A → B) → List A → List B listMap f [] = [] listMap f (a :: as) = f a :: listMap f as list : Functor SetCat SetCat list = record { Map = List ; map = listMap ; mapId = {!!} ; mapComp = {!!} ; mapEq = {!!} } {- goo : Functor (MonCat +Mon) SetCat goo = ? -} hoo : (X : Set) -> Functor N>=Cat SetCat hoo X = record { Map = Vec X ; map = {!!} ; mapId = {!!} ; mapComp = {!!} ; mapEq = {!!} }
31.972727
79
0.381291
43ad8cd399399439fe0a0465b075ea40fb227a4f
3,552
agda
Agda
Agda/03-natural-numbers.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/03-natural-numbers.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/03-natural-numbers.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split #-} module 03-natural-numbers where import 02-pi open 02-pi public -- Section 3.1 The formal specification of the type of natural numbers data ℕ : UU lzero where zero-ℕ : ℕ succ-ℕ : ℕ → ℕ {- We define the numbers one-ℕ to ten-ℕ -} one-ℕ : ℕ one-ℕ = succ-ℕ zero-ℕ two-ℕ : ℕ two-ℕ = succ-ℕ one-ℕ three-ℕ : ℕ three-ℕ = succ-ℕ two-ℕ four-ℕ : ℕ four-ℕ = succ-ℕ three-ℕ five-ℕ : ℕ five-ℕ = succ-ℕ four-ℕ six-ℕ : ℕ six-ℕ = succ-ℕ five-ℕ seven-ℕ : ℕ seven-ℕ = succ-ℕ six-ℕ eight-ℕ : ℕ eight-ℕ = succ-ℕ seven-ℕ nine-ℕ : ℕ nine-ℕ = succ-ℕ eight-ℕ ten-ℕ : ℕ ten-ℕ = succ-ℕ nine-ℕ -- Remark 3.1.2 ind-ℕ : {i : Level} {P : ℕ → UU i} → P zero-ℕ → ((n : ℕ) → P n → P(succ-ℕ n)) → ((n : ℕ) → P n) ind-ℕ p0 pS zero-ℕ = p0 ind-ℕ p0 pS (succ-ℕ n) = pS n (ind-ℕ p0 pS n) -- Section 3.2 Addition on the natural numbers -- Definition 3.2.1 add-ℕ : ℕ → ℕ → ℕ add-ℕ x zero-ℕ = x add-ℕ x (succ-ℕ y) = succ-ℕ (add-ℕ x y) add-ℕ' : ℕ → ℕ → ℕ add-ℕ' m n = add-ℕ n m -- Exercises -- Exercise 3.1 min-ℕ : ℕ → (ℕ → ℕ) min-ℕ zero-ℕ n = zero-ℕ min-ℕ (succ-ℕ m) zero-ℕ = zero-ℕ min-ℕ (succ-ℕ m) (succ-ℕ n) = succ-ℕ (min-ℕ m n) max-ℕ : ℕ → (ℕ → ℕ) max-ℕ zero-ℕ n = n max-ℕ (succ-ℕ m) zero-ℕ = succ-ℕ m max-ℕ (succ-ℕ m) (succ-ℕ n) = succ-ℕ (max-ℕ m n) -- Exercise 3.2 mul-ℕ : ℕ → (ℕ → ℕ) mul-ℕ zero-ℕ n = zero-ℕ mul-ℕ (succ-ℕ m) n = add-ℕ (mul-ℕ m n) n -- Exercise 3.3 pow-ℕ : ℕ → (ℕ → ℕ) pow-ℕ m zero-ℕ = one-ℕ pow-ℕ m (succ-ℕ n) = mul-ℕ m (pow-ℕ m n) -- Exercise 3.4 factorial : ℕ → ℕ factorial zero-ℕ = one-ℕ factorial (succ-ℕ m) = mul-ℕ (succ-ℕ m) (factorial m) -- Exercise 3.5 _choose_ : ℕ → ℕ → ℕ zero-ℕ choose zero-ℕ = one-ℕ zero-ℕ choose succ-ℕ k = zero-ℕ (succ-ℕ n) choose zero-ℕ = one-ℕ (succ-ℕ n) choose (succ-ℕ k) = add-ℕ (n choose k) (n choose (succ-ℕ k)) -- Exercise 3.6 Fibonacci : ℕ → ℕ Fibonacci zero-ℕ = zero-ℕ Fibonacci (succ-ℕ zero-ℕ) = one-ℕ Fibonacci (succ-ℕ (succ-ℕ n)) = add-ℕ (Fibonacci n) (Fibonacci (succ-ℕ n)) {- The above definition of the Fibonacci sequence uses Agda's rather strong pattern matching definitions. Below, we will give a definition of the Fibonacci sequence in terms of ind-ℕ. In particular, the following is a solution that can be given in terms of the material in the book. The problem with defining the Fibonacci sequence using ind-ℕ, is that ind-ℕ doesn't give us a way to refer to both (F n) and (F (succ-ℕ n)). So, we have to give a workaround, where we store two values in the Fibonacci sequence at once. The basic idea is that we define a sequence of pairs of integers, which will be consecutive Fibonacci numbers. This would be a function of type ℕ → ℕ². Such a function is easy to give with induction, using the map ℕ² → ℕ² that takes a pair (m,n) to the pair (n,n+m). Starting the iteration with (0,1) we obtain the Fibonacci sequence by taking the first projection. However, we haven't defined cartesian products or booleans yet. Therefore we mimic the above idea, using ℕ → ℕ instead of ℕ². -} shift-one : ℕ → (ℕ → ℕ) → (ℕ → ℕ) shift-one n f = ind-ℕ n (λ x y → f x) shift-two : ℕ → ℕ → (ℕ → ℕ) → (ℕ → ℕ) shift-two m n f = shift-one m (shift-one n f) Fibo-zero-ℕ : ℕ → ℕ Fibo-zero-ℕ = shift-two zero-ℕ one-ℕ (const ℕ ℕ zero-ℕ) Fibo-succ-ℕ : (ℕ → ℕ) → (ℕ → ℕ) Fibo-succ-ℕ f = shift-two (f one-ℕ) (add-ℕ (f one-ℕ) (f zero-ℕ)) (λ x → f (succ-ℕ (succ-ℕ x))) Fibo-function : ℕ → ℕ → ℕ Fibo-function = ind-ℕ ( Fibo-zero-ℕ) ( λ n → Fibo-succ-ℕ) Fibo : ℕ → ℕ Fibo k = Fibo-function k zero-ℕ
23.064935
95
0.624155
df32c5a5f88ea231eafafeab25496a3779087ff7
22,381
agda
Agda
LibraBFT/Yasm/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Yasm/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Yasm/Properties.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types open import LibraBFT.Prelude open import LibraBFT.Lemmas import LibraBFT.Yasm.Base as LYB import LibraBFT.Yasm.System as LYS import LibraBFT.Yasm.Types as LYT -- This module provides some definitions and properties that facilitate -- proofs of properties about a distributed system modeled by Yasm.System -- paramaterized by some SystemParameters. module LibraBFT.Yasm.Properties (ℓ-PeerState : Level) (ℓ-VSFP : Level) (parms : LYB.SystemTypeParameters ℓ-PeerState) (iiah : LYB.SystemInitAndHandlers ℓ-PeerState parms) -- In addition to the parameters used by the rest of the system model, this module -- needs to relate Members to PKs and PeerIds, so that StepPeerState-AllValidParts -- can be defined. This enables the application to prove that honest peers sign -- new messages only for their own public key. The system model does not know that -- directly. -- A ValidPartForPK collects the assumptions about what a /part/ in the outputs of an honest verifier -- satisfies: (i) the epoch field is consistent with the existent epochs and (ii) the verifier is -- a member of the associated epoch config, and (iii) has the given PK in that epoch. (ValidSenderForPK : LYS.WithInitAndHandlers.ValidSenderForPK-type ℓ-PeerState ℓ-VSFP parms iiah) -- A valid part remains valid across state transitions (including cheat steps) (ValidSenderForPK-stable : LYS.WithInitAndHandlers.ValidSenderForPK-stable-type ℓ-PeerState ℓ-VSFP parms iiah ValidSenderForPK) where open LYB.SystemTypeParameters parms open LYB.SystemInitAndHandlers iiah open import LibraBFT.Yasm.Base open import LibraBFT.Yasm.System ℓ-PeerState ℓ-VSFP parms open WithInitAndHandlers iiah open import Util.FunctionOverride PeerId _≟PeerId_ -- A few handy properties for transporting information about whether a Signature is ∈BootstrapInfo to -- another type containing the same signature transp-∈BootstrapInfo₀ : ∀ {pk p1 p2} → (ver1 : WithVerSig {Part} ⦃ Part-sig ⦄ pk p1) → (ver2 : WithVerSig {Part} ⦃ Part-sig ⦄ pk p2) → ver-signature ver1 ≡ ver-signature ver2 → ∈BootstrapInfo bootstrapInfo (ver-signature ver1) → ∈BootstrapInfo bootstrapInfo (ver-signature ver2) transp-∈BootstrapInfo₀ ver1 ver2 sigs≡ init = subst (∈BootstrapInfo bootstrapInfo) sigs≡ init transp-¬∈BootstrapInfo₁ : ∀ {pk pool sig} → ¬ ∈BootstrapInfo bootstrapInfo sig → (mws : MsgWithSig∈ pk sig pool) → ¬ ∈BootstrapInfo bootstrapInfo (ver-signature (msgSigned mws)) transp-¬∈BootstrapInfo₁ ¬init mws rewrite sym (msgSameSig mws) = ¬init transp-¬∈BootstrapInfo₂ : ∀ {pk sig1 sig2 pool} → (mws1 : MsgWithSig∈ pk sig1 pool) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature (msgSigned mws1))) → (mws2 : MsgWithSig∈ pk sig2 pool) → sig2 ≡ sig1 → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature (msgSigned mws2))) transp-¬∈BootstrapInfo₂ mws1 ¬init mws2 refl = ¬subst {P = ∈BootstrapInfo bootstrapInfo} ¬init (trans (msgSameSig mws2) (sym (msgSameSig mws1))) ¬cheatForgeNew : ∀ {pid pk vsig st' outs m}{st : SystemState} → (sp : StepPeer st pid st' outs) → outs ≡ LYT.send m ∷ [] → (ic : isCheat sp) → Meta-Honest-PK pk → (mws : MsgWithSig∈ pk vsig ((pid , m) ∷ msgPool st)) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature (msgSigned mws))) → MsgWithSig∈ pk vsig (msgPool st) ¬cheatForgeNew {st = st} sc@(step-cheat isch) refl _ hpk mws ¬init with msg∈pool mws ...| there m∈pool = mkMsgWithSig∈ (msgWhole mws) (msgPart mws) (msg⊆ mws) (msgSender mws) m∈pool (msgSigned mws) (msgSameSig mws) ...| here m∈pool with cong proj₂ m∈pool ...| refl with isch (msg⊆ mws) (msgSigned mws) ¬init ...| inj₁ dis = ⊥-elim (hpk dis) ...| inj₂ mws' rewrite msgSameSig mws = mws' ¬cheatForgeNewSig : ∀ {p m sndr pid pk st' outs}{st : SystemState} → (r : ReachableSystemState st) → (sp : StepPeer st pid st' outs) → (ic : isCheat sp) → Meta-Honest-PK pk → (sig : WithVerSig pk p) → p ⊂MsgG m → (sndr , m) ∈ msgPool (StepPeer-post sp) → ¬ ∈BootstrapInfo bootstrapInfo (ver-signature sig) → MsgWithSig∈ pk (ver-signature sig) (msgPool st) ¬cheatForgeNewSig {p} {m} {sndr} r (step-cheat chConstraint) ic pkH sig p⊂m m∈pool ¬init with m∈pool ... | there m∈preSt = mkMsgWithSig∈ m p p⊂m sndr m∈preSt sig refl ... | here refl with chConstraint p⊂m sig ¬init ... | inj₁ dis = ⊥-elim (pkH dis) ... | inj₂ msv = msv ValidSenderForPK-stable-* : ∀{st : SystemState}{st' : SystemState} → ReachableSystemState st → Step* st st' → ∀{part α pk} → ValidSenderForPK st part α pk → ValidSenderForPK st' part α pk ValidSenderForPK-stable-* _ step-0 v = v ValidSenderForPK-stable-* r (step-s {pre = st''} st''reach x) {part} {α} {pk} v = ValidSenderForPK-stable (Step*-trans r st''reach) x (ValidSenderForPK-stable-* r st''reach v) -- We say that an implementation produces only valid parts iff all parts of every message in the -- output of a 'StepPeerState' are either: (i) a valid new part (i.e., the part is valid and no -- message with the same signature has been sent previously), or (ii) a message has been sent -- with the same signature. StepPeerState-AllValidParts : Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState) StepPeerState-AllValidParts = ∀{s m part pk outs}{α}{st : SystemState} → (r : ReachableSystemState st) → Meta-Honest-PK pk → (sps : StepPeerState α (msgPool st) (initialised st) (peerStates st α) (s , outs)) → LYT.send m ∈ outs → part ⊂MsgG m → (ver : WithVerSig pk part) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature ver)) -- Note that we require that α can send for the PK according to the *post* state. This allows -- sufficient generality to ensure that a peer can sign and send a message for an epoch even if -- it changed to the epoch in the same step. If this is too painful, we could require that the -- peer can sign for the PK already in the prestate, which would require, for example, -- initialising a peer to be a separate step from sending its first signed message, which in -- turn could preclude some valid implementations. → (ValidSenderForPK (StepPeer-post {pre = st} (step-honest sps)) part α pk × ¬ (MsgWithSig∈ pk (ver-signature ver) (msgPool st))) ⊎ MsgWithSig∈ pk (ver-signature ver) (msgPool st) -- A /part/ was introduced by a specific step when: IsValidNewPart : ∀{pre : SystemState}{post : SystemState} → Signature → PK → Step pre post → Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState) -- said step is a /step-peer/ and IsValidNewPart {pre} {post} sig pk (step-peer {pid = pid} pstep) -- the part has never been seen before = ReachableSystemState pre × ¬ ∈BootstrapInfo bootstrapInfo sig × ¬ (MsgWithSig∈ pk sig (msgPool pre)) × Σ (MsgWithSig∈ pk sig (msgPool (StepPeer-post pstep))) (λ m → msgSender m ≡ pid × initialised post pid ≡ initd × ValidSenderForPK post (msgPart m) (msgSender m) pk) mwsAndVspk-stable : ∀{st : SystemState}{st' : SystemState} → ReachableSystemState st → Step* st st' → ∀ {pk sig} → (mws : MsgWithSig∈ pk sig (msgPool st)) → initialised st (msgSender mws) ≡ initd → ValidSenderForPK st (msgPart mws) (msgSender mws) pk → Σ (MsgWithSig∈ pk sig (msgPool st')) λ mws' → ValidSenderForPK st' (msgPart mws') (msgSender mws') pk mwsAndVspk-stable {_} {st'} r tr {pk} {sig} mws ini vpk = MsgWithSig∈-Step* tr mws , subst₂ (λ p s → ValidSenderForPK st' p s pk) (MsgWithSig∈-Step*-part tr mws) (MsgWithSig∈-Step*-sender tr mws) (ValidSenderForPK-stable-* r tr vpk) -- When we can prove that the implementation provided by 'parms' at the -- top of this module satisfies 'StepPeerState-AllValidParts', we can -- prove a number of useful structural properties: -- TODO-2: Refactor into a file (LibraBFT.Yasm.Properties.Structural) later on -- if this grows too large. module Structural (sps-avp : StepPeerState-AllValidParts) where -- We can unwind the state and highlight the step where a part was -- originally sent. This 'unwind' function combined with Any-Step-elim -- enables a powerful form of reasoning. The 'honestVoteEpoch' below -- exemplifies this well. unwind : ∀{st : SystemState}(tr : ReachableSystemState st) → ∀{p m σ pk} → Meta-Honest-PK pk → p ⊂MsgG m → (σ , m) ∈ msgPool st → (ver : WithVerSig pk p) → ¬ ∈BootstrapInfo bootstrapInfo (ver-signature ver) → Any-Step (IsValidNewPart (ver-signature ver) pk) tr unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig ¬init with Any-++⁻ (actionsToSentMessages β outs) {msgPool pre} m∈sm ...| inj₂ furtherBack = step-there (unwind tr hpk p⊂m furtherBack sig ¬init) ...| inj₁ thisStep with sp ...| step-cheat isCheat with thisStep ...| here refl with isCheat p⊂m sig ¬init ...| inj₁ abs = ⊥-elim (hpk abs) ...| inj₂ sentb4 with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4) (transp-¬∈BootstrapInfo₁ ¬init sentb4) ...| res rewrite msgSameSig sentb4 = step-there res unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) hpk p⊂m m∈sm sig ¬init | inj₁ thisStep | step-honest x with senderMsgPair∈⇒send∈ outs thisStep ...| m∈outs , refl with sps-avp tr hpk x m∈outs p⊂m sig ¬init ...| inj₂ sentb4 with unwind tr {p = msgPart sentb4} hpk (msg⊆ sentb4) (msg∈pool sentb4) (msgSigned sentb4) (¬subst {P = ∈BootstrapInfo bootstrapInfo} ¬init (msgSameSig sentb4)) ...| res rewrite msgSameSig sentb4 = step-there res unwind (step-s tr (step-peer {pid = β} {outs = outs} {pre = pre} sp)) {p} hpk p⊂m m∈sm sig ¬init | inj₁ thisStep | step-honest x | m∈outs , refl | inj₁ (valid-part , notBefore) = step-here tr (tr , ¬init , notBefore , mws∈pool , refl , override-target-≡ , valid-part) where mws∈pool : MsgWithSig∈ _ (WithSig.signature Part-sig _ (isSigned sig)) (actionsToSentMessages β outs ++ msgPool pre) mws∈pool = MsgWithSig∈-++ˡ (mkMsgWithSig∈ _ _ p⊂m β thisStep sig refl) -- Unwind is inconvenient to use by itself because we have to do -- induction on Any-Step-elim. The 'honestPartValid' property below -- provides a fairly general result conveniently: for every part -- verifiable with an honest PK, there is a msg with the same -- signature that is valid for some pid. honestPartValid : ∀ {st} → ReachableSystemState st → ∀ {pk nm v sender} → Meta-Honest-PK pk → v ⊂MsgG nm → (sender , nm) ∈ msgPool st → (ver : WithVerSig pk v) → ¬ ∈BootstrapInfo bootstrapInfo (ver-signature ver) → Σ (MsgWithSig∈ pk (ver-signature ver) (msgPool st)) (λ msg → (ValidSenderForPK st (msgPart msg) (msgSender msg) pk)) honestPartValid {st} r {pk = pk} hpk v⊂m m∈pool ver ¬init -- We extract two pieces of important information from the place where the part 'v' -- was first sent: (a) there is a message with the same signature /in the current pool/ -- and (b) its epoch is less than e. = Any-Step-elim (λ { {st = step-peer {pid = pid} (step-honest sps)} (preReach , ¬init , ¬sentb4 , new , refl , ini , valid) tr → mwsAndVspk-stable (step-s preReach (step-peer (step-honest sps))) tr new ini valid ; {st = step-peer {pid = pid} {pre = pre} (step-cheat {pid} sps)} (preReach , ¬init , ¬sentb4 , new , refl , valid) tr → ⊥-elim (¬sentb4 (¬cheatForgeNew {st = pre} (step-cheat sps) refl unit hpk new (transp-¬∈BootstrapInfo₁ ¬init new))) }) (unwind r hpk v⊂m m∈pool ver ¬init) -- Unforgeability is also an important property stating that every part that is -- verified with an honest public key has either been sent by α or is a replay -- of another message sent before. ext-unforgeability' : ∀{α m part pk}{st : SystemState} → ReachableSystemState st -- If a message m has been sent by α, containing part → (α , m) ∈ msgPool st → part ⊂MsgG m -- And the part can be verified with an honest public key, → (sig : WithVerSig pk part) → ¬ ∈BootstrapInfo bootstrapInfo (ver-signature sig) → Meta-Honest-PK pk -- then either the part is a valid part by α (meaning that α can -- sign the part itself) or a message with the same signature has -- been sent previously. → ValidSenderForPK st part α pk ⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st) ext-unforgeability' {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig ¬init hpk with Any-++⁻ (actionsToSentMessages β outs) {msgPool pre} m∈sm ...| inj₂ furtherBack = MsgWithSig∈-++ʳ <⊎$> ⊎-map (ValidSenderForPK-stable st (step-peer sp)) id (ext-unforgeability' st furtherBack p⊆m sig ¬init hpk) ...| inj₁ thisStep with sp ...| step-cheat isCheat with thisStep ...| here refl with isCheat p⊆m sig ¬init ...| inj₁ abs = ⊥-elim (hpk abs) ...| inj₂ sentb4 = inj₂ (MsgWithSig∈-++ʳ sentb4) ext-unforgeability' {α = α} {m = m} {part = part} (step-s st (step-peer {pid = β} {outs = outs} {pre = pre} sp)) m∈sm p⊆m sig ¬init hpk | inj₁ thisStep | step-honest x with senderMsgPair∈⇒send∈ outs thisStep ...| m∈outs , refl = ⊎-map proj₁ MsgWithSig∈-++ʳ (sps-avp st hpk x m∈outs p⊆m sig ¬init) -- The ext-unforgeability' property can be collapsed in a single clause. -- TODO-2: so far, ext-unforgeability is used only to get a MsgWithSig∈ that is passed to -- msgWithSigSentByAuthor, which duplicates some of the reasoning in the proof of -- ext-unforgeability'; should these properties possibly be combined into one simpler proof? ext-unforgeability : ∀{α₀ m part pk}{st : SystemState} → ReachableSystemState st → (α₀ , m) ∈ msgPool st → part ⊂MsgG m → (sig : WithVerSig pk part) → ¬ ∈BootstrapInfo bootstrapInfo (ver-signature sig) → Meta-Honest-PK pk → MsgWithSig∈ pk (ver-signature sig) (msgPool st) ext-unforgeability {α₀} {m} {st = st} rst m∈sm p⊂m sig ¬init hpk with ext-unforgeability' rst m∈sm p⊂m sig ¬init hpk ...| inj₁ p = mkMsgWithSig∈ _ _ p⊂m α₀ m∈sm sig refl ...| inj₂ sentb4 = sentb4 msgWithSigSentByAuthor : ∀ {pk sig}{st : SystemState} → ReachableSystemState st → Meta-Honest-PK pk → (mws : MsgWithSig∈ pk sig (msgPool st)) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature (msgSigned mws))) → (Σ (MsgWithSig∈ pk sig (msgPool st)) λ mws' → ValidSenderForPK st (msgPart mws') (msgSender mws') pk) msgWithSigSentByAuthor step-0 _ () msgWithSigSentByAuthor {pk} {sig} (step-s {pre = pre} preach (step-peer theStep@(step-cheat cheatCons))) hpk mws ¬init with (¬cheatForgeNew theStep refl unit hpk mws ¬init) ...| mws' with msgWithSigSentByAuthor preach hpk mws' (transp-¬∈BootstrapInfo₂ mws ¬init (MsgWithSig∈-++ʳ mws') refl) ...| (mws'' , vpb'') = MsgWithSig∈-++ʳ mws'' , ValidSenderForPK-stable preach (step-peer theStep) vpb'' msgWithSigSentByAuthor (step-s {pre = pre} preach theStep@(step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws ¬init with Any-++⁻ (actionsToSentMessages pid outs) {msgPool pre} (msg∈pool mws) ...| inj₂ furtherBack with msgWithSigSentByAuthor preach hpk (MsgWithSig∈-transp mws furtherBack) ¬init ...| (mws' , vpb') = MsgWithSig∈-++ʳ mws' , ValidSenderForPK-stable preach theStep vpb' msgWithSigSentByAuthor (step-s {pre = pre} preach theStep@(step-peer {pid = pid} {outs = outs} (step-honest sps))) hpk mws ¬init | inj₁ thisStep with senderMsgPair∈⇒send∈ outs thisStep ...| m∈outs , refl with sps-avp preach hpk sps m∈outs (msg⊆ mws) (msgSigned mws) ¬init ...| inj₁ (vpbα₀ , _) = mws , vpbα₀ ...| inj₂ mws' with msgWithSigSentByAuthor preach hpk mws' (transp-¬∈BootstrapInfo₂ mws ¬init (MsgWithSig∈-++ʳ mws') (msgSameSig mws)) ...| (mws'' , vpb'') rewrite sym (msgSameSig mws) = MsgWithSig∈-++ʳ mws'' , ValidSenderForPK-stable preach theStep vpb'' newMsg⊎msgSentB4 : ∀ {pk v m pid sndr s' outs} {st : SystemState} → (r : ReachableSystemState st) → (stP : StepPeerState pid (msgPool st) (initialised st) (peerStates st pid) (s' , outs)) → Meta-Honest-PK pk → (sig : WithVerSig pk v) → ¬ (∈BootstrapInfo bootstrapInfo (ver-signature sig)) → v ⊂MsgG m → (sndr , m) ∈ msgPool (StepPeer-post {pre = st} (step-honest stP)) → ( LYT.send m ∈ outs × ValidSenderForPK (StepPeer-post {pre = st} (step-honest stP)) v pid pk × ¬ (MsgWithSig∈ pk (ver-signature sig) (msgPool st))) ⊎ MsgWithSig∈ pk (ver-signature sig) (msgPool st) newMsg⊎msgSentB4 {pk} {v} {m} {pid} {sndr} {s'} {outs} {st} r stP pkH sig ¬init v⊂m m∈post with Any-++⁻ (actionsToSentMessages pid outs) m∈post ...| inj₂ m∈preSt = inj₂ (mkMsgWithSig∈ m v v⊂m sndr m∈preSt sig refl) ...| inj₁ nm∈outs with senderMsgPair∈⇒send∈ outs nm∈outs ...| m∈outs , refl with sps-avp r pkH stP m∈outs v⊂m sig ¬init ...| inj₁ newVote = inj₁ (m∈outs , newVote) ...| inj₂ msb4 = inj₂ msb4 -- This could potentially be more general, for example covering the whole SystemState, rather than -- just one peer's state. However, this would put more burden on the user and is not required so -- far. CarrierProp : Set (1ℓ ℓ⊔ ℓ-PeerState) CarrierProp = Part → PeerState → Set module _ (P : CarrierProp) where record PropCarrier (pk : PK) (sig : Signature) (st : SystemState) : Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState) where constructor mkCarrier field carrStReach : ReachableSystemState st -- Enables use of invariants when proving that steps preserve carrProp carrSent : MsgWithSig∈ pk sig (msgPool st) carrInitd : initialised st (msgSender carrSent) ≡ initd carrValid : ValidSenderForPK st (msgPart carrSent) (msgSender carrSent) pk carrProp : P (msgPart carrSent) (peerStates st (msgSender carrSent)) open PropCarrier public PeerStepPreserves : Set (ℓ-VSFP ℓ⊔ ℓ+1 ℓ-PeerState) PeerStepPreserves = ∀ {ps' outs pk sig}{pre : SystemState} → (r : ReachableSystemState pre) → (pc : PropCarrier pk sig pre) → (sps : StepPeerState (msgSender (carrSent pc)) (msgPool pre) (initialised pre) (peerStates pre (msgSender (carrSent pc))) (ps' , outs)) → P (msgPart (carrSent pc)) ps' module _ (PSP : PeerStepPreserves) where Carrier-transp : ∀ {pk sig} {pre : SystemState}{post : SystemState} → (theStep : Step pre post) → PropCarrier pk sig pre → PropCarrier pk sig post Carrier-transp {pk} {pre = pre} {post} theStep@(step-peer {pid = pid} {st'} {pre = .pre} sps) pc@(mkCarrier r mws ini vpk prop) with step-s r theStep ...| postReach with sps ...| cheatStep@(step-cheat isch) = mkCarrier postReach (MsgWithSig∈-++ʳ mws) (trans (cong (λ f → f (msgSender mws)) (cheatStepDNMInitialised cheatStep unit)) ini) -- PeerStates not changed by cheat steps (ValidSenderForPK-stable {pre} r (step-peer cheatStep) vpk) (subst (λ ps → P (msgPart mws) (ps (msgSender mws))) (sym (cheatStepDNMPeerStates {pre = pre} (step-cheat isch) unit)) prop) ...| honStep@(step-honest {st = st} sps') with msgSender mws ≟PeerId pid ...| no neq = mkCarrier postReach (MsgWithSig∈-++ʳ mws) (trans (sym (override-target-≢ neq)) ini) (ValidSenderForPK-stable {pre} r (step-peer (step-honest sps')) vpk) (subst (λ ps → P (msgPart mws) ps) (override-target-≢ {f = peerStates pre} neq) prop) ...| yes refl = mkCarrier postReach (MsgWithSig∈-++ʳ mws) override-target-≡ (ValidSenderForPK-stable {part = msgPart mws} {pk = pk} r (step-peer honStep) vpk) (subst (λ ps → P (msgPart mws) ps) (sym override-target-≡) (PSP r pc sps'))
58.897368
164
0.602207
1948d78d3d75ef95a7e58544b7f29f14f73ea431
2,857
agda
Agda
src/Optics/Functorial.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Optics/Functorial.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Optics/Functorial.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Category.Functor open import Data.Maybe open import Function open import Level open import Relation.Binary.PropositionalEquality module Optics.Functorial where Lens' : (F : Set → Set) → RawFunctor F → Set → Set → Set Lens' F _ S A = (A → F A) → S → F S data Lens (S A : Set) : Set₁ where lens : ((F : Set → Set)(rf : RawFunctor F) → Lens' F rf S A) → Lens S A private cf : {A : Set} → RawFunctor {Level.zero} (const A) cf = record { _<$>_ = λ x x₁ → x₁ } if : RawFunctor {Level.zero} id if = record { _<$>_ = λ x x₁ → x x₁ } -- We can make lenses relatively painlessly without requiring reflection -- by providing getter and setter functions mkLens' : ∀ {A B : Set} → (B → A) → (B → A → B) → Lens B A mkLens' {A} {B} get set = lens (λ F rf f b → Category.Functor.RawFunctor._<$>_ {F = F} rf {A = A} {B = B} (set b) (f (get b))) -- Getter: -- this is typed as ^\. _^∙_ : ∀{S A} → S → Lens S A → A _^∙_ {_} {A} s (lens p) = p (const A) cf id s -- Setter: set : ∀{S A} → Lens S A → A → S → S set (lens p) a s = p id if (const a) s infixr 4 _∙~_ _∙~_ = set -- _|>_ is renamed to _&_ by Util.Prelude set? : ∀{S A} → Lens S (Maybe A) → A → S → S set? l a s = s |> l ∙~ just a infixr 4 _?~_ _?~_ = set? -- Modifier: over : ∀{S A} → Lens S A → (A → A) → S → S over (lens p) f s = p id if f s infixr 4 _%~_ _%~_ = over -- Composition infixr 30 _∙_ _∙_ : ∀{S A B} → Lens S A → Lens A B → Lens S B (lens p) ∙ (lens q) = lens (λ F rf x x₁ → p F rf (q F rf x) x₁) -- Relation between the same field of two states This most general form allows us to specify a -- Lens S A, a function A → B, and a relation between two B's, and holds iff the relation holds -- between the values yielded by applying the Lens to two S's and then applying the function to -- the results; more specific variants are provided below _[_]L_f=_at_ : ∀ {ℓ} {S A B : Set} → S → (B → B → Set ℓ) → S → (A → B) → Lens S A → Set ℓ s₁ [ _~_ ]L s₂ f= f at l = f (s₁ ^∙ l) ~ f (s₂ ^∙ l) _[_]L_at_ : ∀ {ℓ} {S A} → S → (A → A → Set ℓ) → S → Lens S A → Set ℓ s₁ [ _~_ ]L s₂ at l = _[_]L_f=_at_ s₁ _~_ s₂ id l infix 4 _≡L_f=_at_ _≡L_f=_at_ : ∀ {S A B : Set} → (s₁ s₂ : S) → (A → B) → Lens S A → Set s₁ ≡L s₂ f= f at l = _[_]L_f=_at_ s₁ _≡_ s₂ f l infix 4 _≡L_at_ _≡L_at_ : ∀ {S A} → (s₁ s₂ : S) → Lens S A → Set s₁ ≡L s₂ at l = _[_]L_f=_at_ s₁ _≡_ s₂ id l
30.72043
111
0.540077
43c5fc6e30173470001f2bc1851aebd66789574d
2,442
agda
Agda
examples/outdated-and-incorrect/Alonzo/BadPrintf2.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
examples/outdated-and-incorrect/Alonzo/BadPrintf2.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/Alonzo/BadPrintf2.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Printf2 where import AlonzoPrelude import PreludeList import PreludeShow import PreludeString import PreludeNat open AlonzoPrelude open PreludeList, hiding (_++_) open PreludeShow open PreludeString open PreludeNat data Unit : Set where unit : Unit data Format : Set where stringArg : Format natArg : Format intArg : Format floatArg : Format charArg : Format litChar : Char -> Format badFormat : Char -> Format data BadFormat (c:Char) : Set where format' : List Char -> List Format format' ('%' :: 's' :: fmt) = stringArg :: format' fmt format' ('%' :: 'n' :: fmt) = natArg :: format' fmt -- format' ('%' :: 'd' :: fmt) = intArg :: format' fmt format' ('%' :: 'f' :: fmt) = floatArg :: format' fmt format' ('%' :: 'c' :: fmt) = charArg :: format' fmt format' ('%' :: '%' :: fmt) = litChar '%' :: format' fmt format' ('%' :: c :: fmt) = badFormat c :: format' fmt format' (c :: fmt) = litChar c :: format' fmt format' [] = [] format : String -> List Format format s = format' (toList s) -- format : String -> List Format -- format = format' ∘ toList Printf' : List Format -> Set Printf' (stringArg :: fmt) = String × Printf' fmt Printf' (natArg :: fmt) = Nat × Printf' fmt Printf' (intArg :: fmt) = Int × Printf' fmt Printf' (floatArg :: fmt) = Float × Printf' fmt Printf' (charArg :: fmt) = Char × Printf' fmt Printf' (badFormat c :: fmt) = BadFormat c Printf' (litChar _ :: fmt) = Printf' fmt Printf' [] = Unit × Unit Printf : String -> Set Printf fmt = Printf' (format fmt) printf' : (fmt : List Format) -> Printf' fmt -> String printf' (stringArg :: fmt) < s | args > = s ++ printf' fmt args printf' (natArg :: fmt) < n | args > = showNat n ++ printf' fmt args printf' (intArg :: fmt) < n | args > = showInt n ++ printf' fmt args printf' (floatArg :: fmt) < x | args > = showFloat x ++ printf' fmt args printf' (charArg :: fmt) < c | args > = showChar c ++ printf' fmt args printf' (litChar c :: fmt) args = fromList (c :: []) ++ printf' fmt args printf' (badFormat _ :: fmt) () printf' [] < unit | unit > = "" -- printf' nil unit = "" printf : (fmt : String) -> Printf fmt -> String printf fmt = printf' (format fmt) testFormat : List Format testFormat = format "" testArgs : Printf' testFormat testArgs = < unit | unit > mainS : String mainS = printf "%s" < 42 | unit >
29.421687
76
0.593366
03a1c76dd9d39e1b86e9fc0b9ae05703171ba669
4,995
agda
Agda
CombinatoryLogic/Equality.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
1
2022-02-28T23:44:42.000Z
2022-02-28T23:44:42.000Z
CombinatoryLogic/Equality.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
CombinatoryLogic/Equality.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
-- Kapitel 1, Abschnitt D (Die Eigenschaften der Gleichheit) module CombinatoryLogic.Equality where open import Algebra.Definitions using (Congruent₂; LeftCongruent; RightCongruent) open import Data.Vec using (Vec; []; _∷_; foldr₁; lookup) open import Function using (_$_) open import Relation.Binary using (IsEquivalence; Setoid) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import CombinatoryLogic.Semantics open import CombinatoryLogic.Syntax private -- A lemma used in the proofs of Propositions 1 and 2. lemma-CQXX : ∀ {X} → ⊢ C ∙ Q ∙ X ∙ X lemma-CQXX {X} = let s₁ = ⊢ Π ∙ (W ∙ (C ∙ Q)) [ ax Q ] s₂ = ⊢ W ∙ (C ∙ Q) ∙ X [ Π s₁ ] s₃ = ⊢ Q ∙ (W ∙ (C ∙ Q) ∙ X) ∙ (C ∙ Q ∙ X ∙ X) [ W ] s₄ = ⊢ C ∙ Q ∙ X ∙ X [ Q₁ s₂ s₃ ] in s₄ -- Satz 1 prop₁ : ∀ {X} → ⊢ Q ∙ X ∙ X prop₁ {X} = s₆ where s₄ = ⊢ C ∙ Q ∙ X ∙ X [ lemma-CQXX ] s₅ = ⊢ Q ∙ (C ∙ Q ∙ X ∙ X) ∙ (Q ∙ X ∙ X) [ C ] s₆ = ⊢ Q ∙ X ∙ X [ Q₁ s₄ s₅ ] -- Satz 2 prop₂ : ∀ {X Y} → ⊢ Q ∙ X ∙ Y → ⊢ Q ∙ Y ∙ X prop₂ {X} {Y} ⊢QXY = s₅ where s₁ = ⊢ Q ∙ X ∙ Y [ ⊢QXY ] -- NOTE: Curry's proof contains a mistake: CQXX should be CQXY. s₂ = ⊢ Q ∙ (C ∙ Q ∙ X ∙ X) ∙ (C ∙ Q ∙ X ∙ Y) [ Q₂ {Z = C ∙ Q ∙ X} s₁ ] s₃ = ⊢ C ∙ Q ∙ X ∙ X [ lemma-CQXX ] -- NOTE: Curry's proof uses rule Q, but there is no such rule. s₄ = ⊢ C ∙ Q ∙ X ∙ Y [ Q₁ s₃ s₂ ] s₅ = ⊢ Q ∙ Y ∙ X [ Q₁ s₄ C ] -- Satz 3 prop₃ : ∀ {X Y Z} → ⊢ Q ∙ X ∙ Y → ⊢ Q ∙ Y ∙ Z → ⊢ Q ∙ X ∙ Z prop₃ {X} {Y} {Z} ⊢QXY ⊢QYZ = s₃ where s₁ = ⊢ Q ∙ Y ∙ Z [ ⊢QYZ ] s₂ = ⊢ Q ∙ (Q ∙ X ∙ Y) ∙ (Q ∙ X ∙ Z) [ Q₂ {Z = Q ∙ X} s₁ ] s₃ = ⊢ Q ∙ X ∙ Z [ Q₁ ⊢QXY s₂ ] -- Satz 4 prop₄ : ∀ {X Y Z} → ⊢ Q ∙ X ∙ Y → ⊢ Q ∙ (X ∙ Z) ∙ (Y ∙ Z) prop₄ {X} {Y} {Z} Hp = s₅ where p₁ = λ {X} → ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) ∙ (B ∙ (W ∙ K) ∙ X ∙ Z) [ C ] p₂ = λ {X} → ⊢ Q ∙ (B ∙ (W ∙ K) ∙ X ∙ Z) ∙ (W ∙ K ∙ (X ∙ Z)) [ B ] p₃ = λ {X} → ⊢ Q ∙ (W ∙ K ∙ (X ∙ Z)) ∙ (K ∙ (X ∙ Z) ∙ (X ∙ Z)) [ W ] p₄ = λ {X} → ⊢ Q ∙ (K ∙ (X ∙ Z) ∙ (X ∙ Z)) ∙ (X ∙ Z) [ K ] p₅ = λ {X} → ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) ∙ (X ∙ Z) [ prop₃ p₁ $ prop₃ p₂ $ prop₃ p₃ p₄ ] s₁ = ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ Y) [ Q₂ Hp ] s₂ = ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) ∙ (X ∙ Z) [ p₅ ] s₃ = ⊢ Q ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ Y) ∙ (Y ∙ Z) [ p₅ ] s₄ = ⊢ Q ∙ (X ∙ Z) ∙ (C ∙ (B ∙ (W ∙ K)) ∙ Z ∙ X) [ prop₂ s₂ ] s₅ = ⊢ Q ∙ (X ∙ Z) ∙ (Y ∙ Z) [ prop₃ s₄ $ prop₃ s₁ s₃ ] -- Satz 5 prop₅ : ∀ {X Y} → X ≡ Y → ⊢ Q ∙ X ∙ Y prop₅ {X} {Y} refl = prop₁ -- Satz 6 (first part) isEquivalence : IsEquivalence _≈_ isEquivalence = record { refl = prop₁ ; sym = prop₂ ; trans = prop₃ } setoid : Setoid _ _ setoid = record { Carrier = Combinator ; _≈_ = _≈_ ; isEquivalence = isEquivalence } module Reasoning where module ≈ = IsEquivalence isEquivalence import Relation.Binary.Reasoning.Base.Single _≈_ ≈.refl ≈.trans as Base open Base using (begin_; _∎) public infixr 2 _≈⟨⟩_ step-≈ step-≈˘ _≈⟨⟩_ : ∀ x {y} → x Base.IsRelatedTo y → x Base.IsRelatedTo y _ ≈⟨⟩ x≈y = x≈y step-≈ = Base.step-∼ syntax step-≈ x y≈z x≈y = x ≈⟨ x≈y ⟩ y≈z step-≈˘ : ∀ x {y z} → y Base.IsRelatedTo z → y ≈ x → x Base.IsRelatedTo z step-≈˘ x y∼z y≈x = x ≈⟨ ≈.sym y≈x ⟩ y∼z syntax step-≈˘ x y≈z y≈x = x ≈˘⟨ y≈x ⟩ y≈z -- Satz 6 (second part) cong : Congruent₂ _≈_ _∙_ cong {X} {X′} {Y} {Y′} ⊢X==X′ ⊢Y==Y′ = s₃ where s₁ = ⊢ X ∙ Y == X ∙ Y′ [ Q₂ ⊢Y==Y′ ] s₂ = ⊢ X ∙ Y′ == X′ ∙ Y′ [ prop₄ ⊢X==X′ ] s₃ = ⊢ X ∙ Y == X′ ∙ Y′ [ prop₃ s₁ s₂ ] -- congˡ and congʳ follow from cong, but are also just different names for -- Q₂ and prop₄, respectively. congˡ : LeftCongruent _≈_ _∙_ congˡ = Q₂ congʳ : RightCongruent _≈_ _∙_ congʳ = prop₄ -- TODO: Satz 7, 8 prop₉ : ∀ {X} → ⊢ I ∙ X == X prop₉ {X} = begin I ∙ X ≈⟨⟩ W ∙ K ∙ X ≈⟨ W ⟩ K ∙ X ∙ X ≈⟨ K ⟩ X ∎ where open Reasoning -- Note after the proof of Satz 9. S : Combinator S = B ∙ (B ∙ W) ∙ (B ∙ B ∙ C) prop-S : ∀ {X} {Y} {Z} → ⊢ S ∙ X ∙ Y ∙ Z == X ∙ Z ∙ (Y ∙ Z) prop-S {X} {Y} {Z} = begin S ∙ X ∙ Y ∙ Z ≈⟨⟩ B ∙ (B ∙ W) ∙ (B ∙ B ∙ C) ∙ X ∙ Y ∙ Z ≈⟨ congʳ $ congʳ B ⟩ B ∙ W ∙ (B ∙ B ∙ C ∙ X) ∙ Y ∙ Z ≈⟨ congʳ B ⟩ W ∙ (B ∙ B ∙ C ∙ X ∙ Y) ∙ Z ≈⟨ W ⟩ B ∙ B ∙ C ∙ X ∙ Y ∙ Z ∙ Z ≈⟨ congʳ $ congʳ $ congʳ B ⟩ B ∙ (C ∙ X) ∙ Y ∙ Z ∙ Z ≈⟨ congʳ B ⟩ C ∙ X ∙ (Y ∙ Z) ∙ Z ≈⟨ C ⟩ X ∙ Z ∙ (Y ∙ Z) ∎ where open Reasoning -- TODO: ⊢ B == S(KS)K, ⊢ C == S(BBS)(KK), ⊢ W == SS(SK), ⊢ I == SKK
35.678571
111
0.411612
433a56c7d531a89975bee3a4d67436a7d3190aef
16,607
agda
Agda
src/interactive-cmds.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
src/interactive-cmds.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
src/interactive-cmds.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
import cedille-options module interactive-cmds (options : cedille-options.options) where open import lib open import functions open import cedille-types open import conversion open import ctxt open import general-util open import monad-instances open import spans options {id} open import subst open import syntax-util open import to-string options open import toplevel-state options {IO} open import untyped-spans options {IO} open import parser open import rewriting open import rename open import classify options {id} import spans options {IO} as io-spans open import datatype-functions open import elaboration (record options {during-elaboration = ff}) open import elaboration-helpers (record options {during-elaboration = ff}) open import templates open import erase private {- Parsing -} ll-ind : ∀ {X : language-level → Set} → X ll-term → X ll-type → X ll-kind → (ll : language-level) → X ll ll-ind t T k ll-term = t ll-ind t T k ll-type = T ll-ind t T k ll-kind = k ll-lift : language-level → Set ll-lift = ⟦_⟧ ∘ ll-ind TERM TYPE KIND ll-ind' : ∀ {X : Σ language-level ll-lift → Set} → (s : Σ language-level ll-lift) → ((t : term) → X (ll-term , t)) → ((T : type) → X (ll-type , T)) → ((k : kind) → X (ll-kind , k)) → X s ll-ind' (ll-term , t) tf Tf kf = tf t ll-ind' (ll-type , T) tf Tf kf = Tf T ll-ind' (ll-kind , k) tf Tf kf = kf k ll-disambiguate : ctxt → term → maybe type ll-disambiguate Γ (Var pi x) = ctxt-lookup-type-var Γ x ≫=maybe λ _ → just (TpVar pi x) ll-disambiguate Γ (App t NotErased t') = ll-disambiguate Γ t ≫=maybe λ T → just (TpAppt T t') ll-disambiguate Γ (AppTp t T') = ll-disambiguate Γ t ≫=maybe λ T → just (TpApp T T') ll-disambiguate Γ (Lam pi KeptLambda pi' x (SomeClass atk) t) = ll-disambiguate (ctxt-tk-decl pi' x atk Γ) t ≫=maybe λ T → just (TpLambda pi pi' x atk T) ll-disambiguate Γ (Parens pi t pi') = ll-disambiguate Γ t ll-disambiguate Γ (Let pi _ d t) = ll-disambiguate (Γ' d) t ≫=maybe λ T → just (TpLet pi d T) where Γ' : defTermOrType → ctxt Γ' (DefTerm pi' x (SomeType T) t) = ctxt-term-def pi' localScope OpacTrans x (just t) T Γ Γ' (DefTerm pi' x NoType t) = ctxt-term-udef pi' localScope OpacTrans x t Γ Γ' (DefType pi' x k T) = ctxt-type-def pi' localScope OpacTrans x (just T) k Γ ll-disambiguate Γ t = nothing parse-string : (ll : language-level) → string → maybe (ll-lift ll) parse-string ll s = case ll-ind {λ ll → string → Either string (ll-lift ll)} parseTerm parseType parseKind ll s of λ {(Left e) → nothing; (Right e) → just e} ttk = "term, type, or kind" parse-err-msg : (failed-to-parse : string) → (as-a : string) → string parse-err-msg failed-to-parse "" = "Failed to parse \\\\\"" ^ failed-to-parse ^ "\\\\\"" parse-err-msg failed-to-parse as-a = "Failed to parse \\\\\"" ^ failed-to-parse ^ "\\\\\" as a " ^ as-a infixr 7 _≫nothing_ _-_!_≫parse_ _!_≫error_ _≫nothing_ : ∀{ℓ}{A : Set ℓ} → maybe A → maybe A → maybe A (nothing ≫nothing m₂) = m₂ (m₁ ≫nothing m₂) = m₁ _-_!_≫parse_ : ∀{A B : Set} → (string → maybe A) → string → (error-msg : string) → (A → string ⊎ B) → string ⊎ B (f - s ! e ≫parse f') = maybe-else (inj₁ (parse-err-msg s e)) f' (f s) _!_≫error_ : ∀{E A B : Set} → maybe A → E → (A → E ⊎ B) → E ⊎ B (just a ! e ≫error f) = f a (nothing ! e ≫error f) = inj₁ e parse-try : ∀ {X : Set} → ctxt → string → maybe (((ll : language-level) → ll-lift ll → X) → X) parse-try Γ s = maybe-map (λ t f → maybe-else (f ll-term t) (f ll-type) (ll-disambiguate Γ t)) (parse-string ll-term s) ≫nothing maybe-map (λ T f → f ll-type T) (parse-string ll-type s) ≫nothing maybe-map (λ k f → f ll-kind k) (parse-string ll-kind s) string-to-𝔹 : string → maybe 𝔹 string-to-𝔹 "tt" = just tt string-to-𝔹 "ff" = just ff string-to-𝔹 _ = nothing parse-ll : string → maybe language-level parse-ll "term" = just ll-term parse-ll "type" = just ll-type parse-ll "kind" = just ll-kind parse-ll _ = nothing {- Local Context -} record lci : Set where constructor mk-lci field ll : string; x : var; t : string; T : string; fn : string; pi : posinfo data 𝕃ₛ {ℓ} (A : Set ℓ) : Set ℓ where [_]ₛ : A → 𝕃ₛ A _::ₛ_ : A → 𝕃ₛ A → 𝕃ₛ A headₛ : ∀ {ℓ} {A : Set ℓ} → 𝕃ₛ A → A headₛ [ a ]ₛ = a headₛ (a ::ₛ as) = a 𝕃ₛ-to-𝕃 : ∀ {ℓ} {A : Set ℓ} → 𝕃ₛ A → 𝕃 A 𝕃ₛ-to-𝕃 [ a ]ₛ = [ a ] 𝕃ₛ-to-𝕃 (a ::ₛ as) = a :: 𝕃ₛ-to-𝕃 as merge-lcis-ctxt : ctxt → 𝕃 string → ctxt merge-lcis-ctxt c = foldl merge-lcis-ctxt' c ∘ (sort-lcis ∘ strings-to-lcis) where strings-to-lcis : 𝕃 string → 𝕃 lci strings-to-lcis ss = strings-to-lcis-h ss [] where strings-to-lcis-h : 𝕃 string → 𝕃 lci → 𝕃 lci strings-to-lcis-h (ll :: x :: t :: T :: fn :: pi :: tl) items = strings-to-lcis-h tl (mk-lci ll x t T fn pi :: items) strings-to-lcis-h _ items = items -- TODO: Local context information does not pass Δ information! -- When users are using BR-explorer to rewrite with the rec function, -- if they call it upon "μ' [SUBTERM] {...}", it won't work unless they say -- "μ'<rec/mu> [SUBTERM] {...}". decl-lci : posinfo → var → ctxt → ctxt decl-lci pi x (mk-ctxt (fn , mn , ps , q) ss is os Δ) = mk-ctxt (fn , mn , ps , trie-insert q x (pi % x , [])) ss is os Δ language-level-type-of : language-level → language-level language-level-type-of ll-term = ll-type language-level-type-of _ = ll-kind merge-lci-ctxt : lci → ctxt → ctxt merge-lci-ctxt (mk-lci ll v t T fn pi) Γ = maybe-else Γ (λ Γ → Γ) (parse-ll ll ≫=maybe λ ll → parse-string (language-level-type-of ll) T ≫=maybe h ll (parse-string ll t)) where h : (ll : language-level) → maybe (ll-lift ll) → ll-lift (language-level-type-of ll) → maybe ctxt h ll-term (just t) T = just (ctxt-term-def pi localScope OpacTrans v (just t) (qualif-type Γ T) Γ) h ll-type (just T) k = just (ctxt-type-def pi localScope OpacTrans v (just T) (qualif-kind Γ k) Γ) h ll-term nothing T = just (ctxt-term-decl pi v T Γ) h ll-type nothing k = just (ctxt-type-decl pi v k Γ) h _ _ _ = nothing merge-lcis-ctxt' : 𝕃ₛ lci → ctxt → ctxt merge-lcis-ctxt' ls Γ = let ls' = 𝕃ₛ-to-𝕃 ls in foldr (merge-lci-ctxt) (foldr (λ l → decl-lci (lci.pi l) (lci.x l)) Γ ls') ls' sort-eq : ∀ {ℓ} {A : Set ℓ} → (A → A → compare-t) → 𝕃 A → 𝕃 (𝕃ₛ A) sort-eq {_} {A} c = foldr insert [] where insert : A → 𝕃 (𝕃ₛ A) → 𝕃 (𝕃ₛ A) insert n [] = [ [ n ]ₛ ] insert n (a :: as) with c (headₛ a) n ...| compare-eq = n ::ₛ a :: as ...| compare-gt = [ n ]ₛ :: a :: as ...| compare-lt = a :: insert n as sort-lcis : 𝕃 lci → 𝕃 (𝕃ₛ lci) -- 𝕃 lci sort-lcis = sort-eq λ l₁ l₂ → compare (posinfo-to-ℕ $ lci.pi l₁) (posinfo-to-ℕ $ lci.pi l₂) {- sort-lcis = list-merge-sort.merge-sort lci λ l l' → posinfo-to-ℕ (lci.pi l) > posinfo-to-ℕ (lci.pi l') where import list-merge-sort -} get-local-ctxt : ctxt → (pos : ℕ) → (local-ctxt : 𝕃 string) → ctxt get-local-ctxt Γ @ (mk-ctxt (fn , mn , _) _ is _ Δ) pi = merge-lcis-ctxt (foldr (flip ctxt-clear-symbol ∘ fst) Γ (flip filter (trie-mappings is) λ {(x , ci , fn' , pi') → fn =string fn' && posinfo-to-ℕ pi' > pi})) {- Helpers -} qualif-ed : ∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ qualif-ed{TERM} = qualif-term qualif-ed{TYPE} = qualif-type qualif-ed{KIND} = qualif-kind qualif-ed Γ e = e step-reduce : ∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ step-reduce Γ t = let t' = erase t in maybe-else t' id (step-reduceh Γ t') where step-reduceh : ∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → maybe ⟦ ed ⟧ step-reduceh{TERM} Γ (Var pi x) = ctxt-lookup-term-var-def Γ (qualif-var Γ x) step-reduceh{TYPE} Γ (TpVar pi x) = ctxt-lookup-type-var-def Γ (qualif-var Γ x) step-reduceh{TERM} Γ (App (Lam pi b pi' x oc t) me t') = just (subst Γ t' x t) step-reduceh{TYPE} Γ (TpApp (TpLambda pi pi' x (Tkk _) T) T') = just (subst Γ T' x T) step-reduceh{TYPE} Γ (TpAppt (TpLambda pi pi' x (Tkt _) T) t) = just (subst Γ t x T) step-reduceh{TERM} Γ (App t me t') = step-reduceh Γ t ≫=maybe λ t → just (App t me t') step-reduceh{TYPE} Γ (TpApp T T') = step-reduceh Γ T ≫=maybe λ T → just (TpApp T T') step-reduceh{TYPE} Γ (TpAppt T t) = step-reduceh Γ T ≫=maybe λ T → just (TpAppt T t) step-reduceh{TERM} Γ (Lam pi b pi' x oc t) = step-reduceh (ctxt-var-decl x Γ) t ≫=maybe λ t → just (Lam pi b pi' x oc t) step-reduceh{TYPE} Γ (TpLambda pi pi' x atk T) = step-reduceh (ctxt-var-decl x Γ) T ≫=maybe λ T → just (TpLambda pi pi' x atk T) step-reduceh{TERM} Γ (Let pi _ (DefTerm pi' x ot t') t) = just (subst Γ t' x t) step-reduceh{TYPE} Γ (TpLet pi (DefTerm pi' x ot t) T) = just (subst Γ t x T) step-reduceh{TYPE} Γ (TpLet pi (DefType pi' x k T') T) = just (subst Γ T' x T) step-reduceh{TERM} Γ t @ (Mu _ _ _ _ _ _ _ _) = just $ hnf Γ unfold-head-one t tt step-reduceh{TERM} Γ t @ (Mu' _ _ _ _ _ _ _) = just $ hnf Γ unfold-head-one t tt step-reduceh Γ t = nothing parse-norm : string → maybe (∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧) parse-norm "all" = just λ Γ t → hnf Γ unfold-all t tt parse-norm "head" = just λ Γ t → hnf Γ unfold-head t tt parse-norm "once" = just λ Γ → step-reduce Γ ∘ erase parse-norm _ = nothing {- Command Executors -} normalize-cmd : ctxt → (str ll pi norm : string) → 𝕃 string → string ⊎ tagged-val normalize-cmd Γ str ll pi norm ls = parse-ll - ll ! "language-level" ≫parse λ ll' → string-to-ℕ - pi ! "natural number" ≫parse λ sp → parse-norm - norm ! "normalization method (all, head, once)" ≫parse λ norm → parse-string ll' - str ! ll ≫parse λ t → let Γ' = get-local-ctxt Γ sp ls in inj₂ (to-string-tag "" Γ' (norm Γ' (qualif-ed Γ' t))) normalize-prompt : ctxt → (str norm : string) → 𝕃 string → string ⊎ tagged-val normalize-prompt Γ str norm ls = parse-norm - norm ! "normalization method (all, head, once)" ≫parse λ norm → let Γ' = merge-lcis-ctxt Γ ls in parse-try Γ' - str ! ttk ≫parse λ f → f λ ll t → inj₂ (to-string-tag "" Γ' (norm Γ' (qualif-ed Γ' t))) erase-cmd : ctxt → (str ll pi : string) → 𝕃 string → string ⊎ tagged-val erase-cmd Γ str ll pi ls = parse-ll - ll ! "language-level" ≫parse λ ll' → string-to-ℕ - pi ! "natural number" ≫parse λ sp → parse-string ll' - str ! ll ≫parse λ t → let Γ' = get-local-ctxt Γ sp ls in inj₂ (to-string-tag "" Γ' (erase (qualif-ed Γ' t))) erase-prompt : ctxt → (str : string) → 𝕃 string → string ⊎ tagged-val erase-prompt Γ str ls = let Γ' = merge-lcis-ctxt Γ ls in parse-try Γ' - str ! ttk ≫parse λ f → f λ ll t → inj₂ (to-string-tag "" Γ' (erase (qualif-ed Γ' t))) private cmds-to-escaped-string : cmds → strM cmds-to-escaped-string (c :: cs) = cmd-to-string c $ strAdd "\\n\\n" ≫str cmds-to-escaped-string cs cmds-to-escaped-string [] = strEmpty data-cmd : ctxt → (encoding name ps is cs : string) → string ⊎ tagged-val data-cmd Γ encodingₛ x psₛ isₛ csₛ = string-to-𝔹 - encodingₛ ! "boolean" ≫parse λ encoding → parse-string ll-kind - psₛ ! "kind" ≫parse λ psₖ → parse-string ll-kind - isₛ ! "kind" ≫parse λ isₖ → parse-string ll-kind - csₛ ! "kind" ≫parse λ csₖ → let ps = map (λ {(Index x atk) → Decl posinfo-gen posinfo-gen Erased x atk posinfo-gen}) $ kind-to-indices Γ psₖ cs = map (λ {(Index x (Tkt T)) → Ctr posinfo-gen x T; (Index x (Tkk k)) → Ctr posinfo-gen x $ mtpvar "ErrorExpectedTypeNotKind"}) $ kind-to-indices empty-ctxt csₖ is = kind-to-indices (add-ctrs-to-ctxt cs $ add-params-to-ctxt ps Γ) isₖ picked-encoding = if encoding then mendler-encoding else mendler-simple-encoding defs = datatype-encoding.mk-defs picked-encoding Γ $ Data x ps is cs in inj₂ $ strRunTag "" Γ $ cmds-to-escaped-string $ fst defs br-cmd : ctxt → (str qed : string) → 𝕃 string → IO ⊤ br-cmd Γ str qed ls = let Γ' = merge-lcis-ctxt Γ ls in maybe-else (return (io-spans.spans-to-rope (io-spans.global-error "Parse error" nothing))) (λ s → s >>= return ∘ io-spans.spans-to-rope) (parse-try {maybe (IO io-spans.spans)} Γ' str ≫=maybe λ f → f λ where ll-term t → just (untyped-term-spans t Γ' io-spans.empty-spans >>= return ∘ (snd ∘ snd)) ll-type T → parse-string ll-term qed ≫=maybe λ q → case check-term q (just $ qualif-type Γ' T) Γ' empty-spans of λ where (triv , _ , ss @ (regular-spans nothing _)) → just (putStrLn "inhabited: Type inhabited" >> untyped-type-spans T Γ' io-spans.empty-spans >>= return ∘ (snd ∘ snd)) (triv , _ , _) → just (untyped-type-spans T Γ' io-spans.empty-spans >>= return ∘ (snd ∘ snd)) ll-kind k → just (untyped-kind-spans k Γ' io-spans.empty-spans >>= return ∘ (snd ∘ snd))) >>= putRopeLn conv-cmd : ctxt → (ll str1 str2 : string) → 𝕃 string → string ⊎ tagged-val conv-cmd Γ ll s1 s2 ls = parse-ll - ll ! "language-level" ≫parse λ ll' → parse-string ll' - s1 ! ll ≫parse λ t1 → parse-string ll' - s2 ! ll ≫parse λ t2 → let Γ' = merge-lcis-ctxt Γ ls; t2 = erase (qualif-ed Γ' t2) in if ll-ind {λ ll → ctxt → ll-lift ll → ll-lift ll → 𝔹} conv-term conv-type conv-kind ll' Γ' (qualif-ed Γ' t1) t2 then inj₂ (to-string-tag "" Γ' t2) else inj₁ "Inconvertible" rewrite-cmd : ctxt → (span-str : string) → (input-str : string) → (use-hnf : string) → (local-ctxt : 𝕃 string) → string ⊎ tagged-val rewrite-cmd Γ ss is hd ls = string-to-𝔹 - hd ! "boolean" ≫parse λ use-hnf → let Γ = merge-lcis-ctxt Γ ls in parse-try Γ - ss ! ttk ≫parse λ f → f λ ll ss → parse-try Γ - is ! ttk ≫parse λ f → (f λ where ll-term t → (case check-term t nothing Γ empty-spans of λ {(just T , _ , regular-spans nothing _) → just T; _ → nothing}) ! "Error when synthesizing a type for the input term" ≫error λ where (TpEq _ t₁ t₂ _) → inj₂ (t₁ , t₂) _ → inj₁ "Synthesized a non-equational type from the input term" ll-type (TpEq _ t₁ t₂ _) → inj₂ (t₁ , t₂) ll-type _ → inj₁ "Expected the input expression to be a term, but got a type" ll-kind _ → inj₁ "Expected the input expression to be a term, but got a kind") ≫=⊎ uncurry λ t₁ t₂ → let x = fresh-var "x" (ctxt-binds-var Γ) empty-renamectxt f = ll-ind {λ ll → ctxt → term → var → ll-lift ll → ll-lift ll} subst subst subst ll Γ t₂ x in case (ll-ind {λ ll → ll-lift ll → ctxt → 𝔹 → maybe stringset → term → term → var → ℕ → ll-lift ll × ℕ × ℕ} rewrite-term rewrite-type rewrite-kind ll (qualif-ed Γ ss) Γ use-hnf nothing (Beta posinfo-gen NoTerm NoTerm) t₁ x 0) of λ where (e , 0 , _) → inj₁ "No rewrites could be performed" (e , _ , _) → inj₂ (strRunTag "" Γ (to-stringh (erase (f e)) ≫str strAdd "§" ≫str strAdd x ≫str strAdd "§" ≫str to-stringh (erase e))) {- Commands -} tv-to-rope : string ⊎ tagged-val → rope tv-to-rope (inj₁ s) = [[ "{\"error\":\"" ]] ⊹⊹ [[ s ]] ⊹⊹ [[ "\"}" ]] tv-to-rope (inj₂ (_ , v , ts)) = [[ "{" ]] ⊹⊹ tagged-val-to-rope 0 ("value" , v , ts) ⊹⊹ [[ "}" ]] interactive-cmd-h : ctxt → 𝕃 string → string ⊎ tagged-val interactive-cmd-h Γ ("normalize" :: input :: ll :: sp :: norm :: lc) = normalize-cmd Γ input ll sp norm lc interactive-cmd-h Γ ("erase" :: input :: ll :: sp :: lc) = erase-cmd Γ input ll sp lc interactive-cmd-h Γ ("normalizePrompt" :: input :: norm :: lc) = normalize-prompt Γ input norm lc interactive-cmd-h Γ ("erasePrompt" :: input :: lc) = erase-prompt Γ input lc interactive-cmd-h Γ ("conv" :: ll :: ss :: is :: lc) = conv-cmd Γ ll ss is lc interactive-cmd-h Γ ("rewrite" :: ss :: is :: head :: lc) = rewrite-cmd Γ ss is head lc interactive-cmd-h Γ ("data" :: encoding :: x :: ps :: is :: cs :: []) = data-cmd Γ encoding x ps is cs interactive-cmd-h Γ cs = inj₁ ("Unknown interactive cmd: " ^ 𝕃-to-string (λ s → s) ", " cs) interactive-cmd : 𝕃 string → toplevel-state → IO ⊤ interactive-cmd ("br" :: input :: qed :: lc) ts = br-cmd (toplevel-state.Γ ts) input qed lc interactive-cmd ls ts = putRopeLn (tv-to-rope (interactive-cmd-h (toplevel-state.Γ ts) ls))
45.250681
188
0.590113
41968710a075acce19690e811738511e56cfb2e2
385
agda
Agda
tests/covered/ImplArg.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
3
2015-08-10T15:33:56.000Z
2018-12-06T17:24:25.000Z
tests/covered/ImplArg.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
tests/covered/ImplArg.agda
andrejtokarcik/agda-semantics
dc333ed142584cf52cc885644eed34b356967d8b
[ "MIT" ]
null
null
null
-- https://github.com/bitonic/tog/wiki/Implicit-Arguments -- aj s popisom checkingu od Andreasa Abela module ImplArg where data Nat : Set where zero : Nat suc : Nat -> Nat data Vec (A : Set) : Nat -> Set where vnil : Vec A zero vcons : {n : Nat} -> A -> Vec A n -> Vec A (suc n) Cons = {A : Set} (a : A) {n : Nat} -> Vec A n -> Vec A (suc n) cons : Cons cons a = vcons a
22.647059
62
0.6
2e43e1a375be7de453cce857b8f8936ce2732597
1,554
agda
Agda
Base/Equi.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
Base/Equi.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
Base/Equi.agda
DDOtten/M-types
5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import M-types.Base.Core open import M-types.Base.Sum open import M-types.Base.Prod open import M-types.Base.Eq module M-types.Base.Equi where Qinv : {X : Ty ℓ₀} {Y : Ty ℓ₁} → ∏[ f ∈ (X → Y)] Ty (ℓ-max ℓ₀ ℓ₁) Qinv {_} {_} {X} {Y} f = ∑[ g ∈ (Y → X) ] (∏[ x ∈ X ] g (f x) ≡ x) × (∏[ y ∈ Y ] f (g y) ≡ y) IsEqui : {X : Ty ℓ₀} {Y : Ty ℓ₁} → ∏[ f ∈ (X → Y) ] Ty (ℓ-max ℓ₀ ℓ₁) IsEqui {_} {_} {X} {Y} f = (∑[ g ∈ (Y → X) ] ∏[ x ∈ X ] g (f x) ≡ x) × (∑[ g ∈ (Y → X) ] ∏[ y ∈ Y ] f (g y) ≡ y) infixr 8 _≃_ _≃_ : ∏[ X ∈ Ty ℓ₀ ] ∏[ Y ∈ Ty ℓ₁ ] Ty (ℓ-max ℓ₀ ℓ₁) X ≃ Y = ∑[ f ∈ (X → Y) ] IsEqui f Qinv→IsEqui : {X : Ty ℓ₀} {Y : Ty ℓ₁} {f : X → Y} → Qinv f → IsEqui f Qinv→IsEqui (g , hom₀ , hom₁) = ((g , hom₀) , (g , hom₁)) IsEqui→Qinv : {X : Ty ℓ₀} {Y : Ty ℓ₁} {f : X → Y} → IsEqui f → Qinv f IsEqui→Qinv {_} {_} {_} {_} {f} ((g₀ , hom₀) , (g₁ , hom₁)) = ( g₀ , hom₀ , λ y → ap f (ap g₀ (hom₁ y)⁻¹ · hom₀ (g₁ y)) · hom₁ y ) inv : {X : Ty ℓ₀} {Y : Ty ℓ₁} → ∏[ equi ∈ X ≃ Y ] (Y → X) inv (fun , isEqui) = pr₀ (IsEqui→Qinv isEqui) hom₀ : {X : Ty ℓ₀} {Y : Ty ℓ₁} → ∏[ equi ∈ X ≃ Y ] ∏[ x ∈ X ] inv equi (fun equi x) ≡ x hom₀ (fun , isEqui) = pr₀ (pr₁ (IsEqui→Qinv isEqui)) hom₁ : {X : Ty ℓ₀} {Y : Ty ℓ₁} → ∏[ equi ∈ X ≃ Y ] ∏[ y ∈ Y ] fun equi (inv equi y) ≡ y hom₁ (fun , isEqui) = pr₁ (pr₁ (IsEqui→Qinv isEqui))
29.320755
65
0.413127
1eec886a840b27e77fec8ef6de42632bfafdf811
3,271
agda
Agda
src/Categories/Category/Monoidal/Symmetric.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Symmetric.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Symmetric.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal module Categories.Category.Monoidal.Symmetric {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where open import Level open import Data.Product using (Σ; _,_) open import Categories.Functor.Bifunctor open import Categories.Functor.Properties open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) open import Categories.Morphism C open import Categories.Morphism.Properties C open import Categories.Category.Monoidal.Braided M open Category C open Commutation private variable X Y Z : Obj -- symmetric monoidal category -- commutative braided monoidal category -- -- the reason why we define symmetric categories via braided monoidal categories could -- be not obvious, but it is the right definition: it requires again a redundant -- hexagon proof which allows achieves definitional equality of the opposite. record Symmetric : Set (levelOfTerm M) where field braided : Braided module braided = Braided braided open braided public private B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X B {X} {Y} = braiding.⇒.η (X , Y) field commutative : B {X} {Y} ∘ B {Y} {X} ≈ id braided-iso : X ⊗₀ Y ≅ Y ⊗₀ X braided-iso = record { from = B ; to = B ; iso = record { isoˡ = commutative ; isoʳ = commutative } } module braided-iso {X Y} = _≅_ (braided-iso {X} {Y}) private record Symmetric′ : Set (levelOfTerm M) where open Monoidal M field braiding : NaturalIsomorphism ⊗ (flip-bifunctor ⊗) module braiding = NaturalIsomorphism braiding private B : ∀ {X Y} → X ⊗₀ Y ⇒ Y ⊗₀ X B {X} {Y} = braiding.⇒.η (X , Y) field commutative : B {X} {Y} ∘ B {Y} {X} ≈ id hexagon : [ (X ⊗₀ Y) ⊗₀ Z ⇒ Y ⊗₀ Z ⊗₀ X ]⟨ B ⊗₁ id ⇒⟨ (Y ⊗₀ X) ⊗₀ Z ⟩ associator.from ⇒⟨ Y ⊗₀ X ⊗₀ Z ⟩ id ⊗₁ B ≈ associator.from ⇒⟨ X ⊗₀ Y ⊗₀ Z ⟩ B ⇒⟨ (Y ⊗₀ Z) ⊗₀ X ⟩ associator.from ⟩ braided-iso : X ⊗₀ Y ≅ Y ⊗₀ X braided-iso = record { from = B ; to = B ; iso = record { isoˡ = commutative ; isoʳ = commutative } } module braided-iso {X Y} = _≅_ (braided-iso {X} {Y}) -- we don't define [Symmetric] from [Braided] because we want to avoid asking -- [hexagon₂], which can readily be proven using the [hexagon] and [commutative]. braided : Braided braided = record { braiding = braiding ; hexagon₁ = hexagon ; hexagon₂ = λ {X Y Z} → Iso-≈ hexagon (Iso-∘ (Iso-∘ ([ -⊗ Y ]-resp-Iso braided-iso.iso) associator.iso) ([ X ⊗- ]-resp-Iso braided-iso.iso)) (Iso-∘ (Iso-∘ associator.iso braided-iso.iso) associator.iso) } symmetricHelper : Symmetric′ → Symmetric symmetricHelper S = record { braided = braided ; commutative = commutative } where open Symmetric′ S
28.443478
97
0.562519
5e97d4bf880da15b20d8163bf62b7ace73964090
234
agda
Agda
src/FRP/LTL/ISet/Empty.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
21
2015-07-02T20:25:05.000Z
2020-06-15T02:51:13.000Z
src/FRP/LTL/ISet/Empty.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
2
2015-03-01T07:01:31.000Z
2015-03-02T15:23:53.000Z
src/FRP/LTL/ISet/Empty.agda
agda/agda-frp-ltl
e88107d7d192cbfefd0a94505e6a5793afe1a7a5
[ "MIT" ]
3
2015-03-01T07:33:00.000Z
2022-03-12T11:39:04.000Z
open import Data.Product using ( _,_ ) open import Data.Empty using ( ⊥ ) open import FRP.LTL.ISet.Core using ( ISet ; [_] ; _,_ ) module FRP.LTL.ISet.Empty where F : ISet F = [ (λ i → ⊥) , (λ i j i~j → λ ()) , (λ i j i⊑j → λ ()) ]
26
59
0.57265
1ada383eb52dd269dc675f02a3598ba2040b6143
9,475
agda
Agda
Globular-TT/Dec-Type-Checking.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
Globular-TT/Dec-Type-Checking.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
Globular-TT/Dec-Type-Checking.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude import GSeTT.Rules import GSeTT.Typed-Syntax import Globular-TT.Syntax import Globular-TT.Rules {- Decidability of type cheking for the type theory for globular sets -} module Globular-TT.Dec-Type-Checking {l} (index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) (assumption : Globular-TT.Rules.well-founded index rule) (eqdec-index : eqdec index) where open import Globular-TT.Syntax index open import Globular-TT.Eqdec-syntax index eqdec-index open import Globular-TT.Rules index rule open import Globular-TT.CwF-Structure index rule dec-∈ : ∀ (n : ℕ) (A : Pre-Ty) (Γ : Pre-Ctx) → dec (n # A ∈ Γ) dec-∈ n A ⊘ = inr λ{()} dec-∈ n A (Γ ∙ x # B) with dec-∈ n A Γ ... | inl n∈Γ = inl (inl n∈Γ) ... | inr n∉Γ with eqdecℕ n x | eqdec-Ty A B ... | inl idp | inl idp = inl (inr (idp , idp)) ... | inr n≠x | _ = inr λ{(inl n∈Γ) → n∉Γ n∈Γ; (inr (idp , idp)) → n≠x idp} ... | inl idp | inr A≠B_ = inr λ{(inl n∈Γ) → n∉Γ n∈Γ; (inr (_ , A=B)) → A≠B A=B} {- Decidability in the fragment of the theory with only globular contexts -} -- termination is really tricky, and involves reasonning both on depth and dimension at the same time ! dec-G⊢T : ∀ (Γ : GSeTT.Typed-Syntax.Ctx) n A → dim A ≤ n → dec (GPre-Ctx (fst Γ) ⊢T A) dec-G⊢t : ∀ (Γ : GSeTT.Typed-Syntax.Ctx) n d A t → dim A ≤ n → depth t ≤ d → dec (GPre-Ctx (fst Γ) ⊢t t # A) dec-G⊢S : ∀ (Δ Γ : GSeTT.Typed-Syntax.Ctx) n d γ → dimC (GPre-Ctx (fst Γ)) ≤ n → depthS γ ≤ d → dec (GPre-Ctx (fst Δ) ⊢S γ > GPre-Ctx (fst Γ)) dec-G⊢T Γ _ ∗ _ = inl (ob (GCtx _ (snd Γ))) dec-G⊢T Γ (S n) (⇒ A t u) (S≤ i) with dec-G⊢T Γ n A i | dec-G⊢t Γ n _ A t i (n≤n _) | dec-G⊢t Γ n _ A u i (n≤n _) ... | inl Γ⊢A | inl Γ⊢t:A | inl Γ⊢u:A = inl (ar Γ⊢A Γ⊢t:A Γ⊢u:A) ... | inr Γ⊬A | _ | _ = inr λ{(ar Γ⊢A _ _) → Γ⊬A Γ⊢A} ... | inl _ | inr Γ⊬t:A | _ = inr λ{(ar _ Γ⊢t:A _) → Γ⊬t:A Γ⊢t:A} ... | inl _ | inl _ | inr Γ⊬u:A = inr λ{(ar _ _ Γ⊢u:A) → Γ⊬u:A Γ⊢u:A} dec-G⊢t Γ n _ A (Var x) _ (0≤ _) with dec-∈ x A (GPre-Ctx (fst Γ)) ... | inl x∈Γ = inl (var (GCtx _ (snd Γ)) x∈Γ) ... | inr x∉Γ = inr λ {(var _ x∈Γ) → x∉Γ x∈Γ} dec-G⊢t Γ n (S d) A (Tm-constructor i γ) dimA≤n (S≤ dγ≤d) with eqdec-Ty A (Ti i [ γ ]Pre-Ty ) ... | inr A≠Ti = inr λ{(tm _ _ idp) → A≠Ti idp} ... | inl idp with dec-G⊢T (fst (rule i)) n (Ti i) (=-≤ (dim[] _ _ ^) dimA≤n) ... | inr Ci⊬Ti = inr λ t → Ci⊬Ti (Γ⊢tm→Ci⊢Ti t) ... | inl Ci⊢Ti with dec-G⊢S Γ (fst (rule i)) n d γ (≤T (≤-= (assumption i Ci⊢Ti) (dim[] _ _ ^)) dimA≤n) -- dim Ci ≤ dim A dγ≤d -- depth γ ≤ d ... | inr Γ⊬γ = inr λ t → Γ⊬γ (Γ⊢tm→Γ⊢γ t) ... | inl Γ⊢γ = inl (tm Ci⊢Ti Γ⊢γ idp) dec-G⊢S Δ (nil , _) _ _ <> (0≤ _) _ = inl (es (GCtx _ (snd Δ))) dec-G⊢S Δ ((Γ :: _) , _) _ _ <> _ _ = inr λ {()} dec-G⊢S Δ (nil , _) _ _ < γ , x ↦ t > _ _ = inr λ {()} dec-G⊢S Δ ((Γ :: (y , A)) , Γ+⊢@(GSeTT.Rules.cc Γ⊢ Γ⊢A idp)) n d < γ , x ↦ t > dimΓ+≤n dγ+≤d with dec-G⊢S Δ (Γ , Γ⊢) n d γ (≤T (n≤max (dimC (GPre-Ctx Γ)) (dim (GPre-Ty A))) dimΓ+≤n) -- dim Γ ≤ n (≤T (n≤max (depthS γ) (depth t)) dγ+≤d) -- depth γ ≤ d | dec-G⊢t Δ n d ((GPre-Ty A) [ γ ]Pre-Ty) t ((≤T (=-≤ (dim[] _ _) (m≤max (dimC (GPre-Ctx Γ)) (dim (GPre-Ty A)))) dimΓ+≤n)) -- dim A[γ] ≤ n (≤T (m≤max (depthS γ) (depth t)) dγ+≤d) -- depth t ≤ d | eqdecℕ y x ... | inl Δ⊢γ:Γ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ:Γ (GCtx _ Γ+⊢) Δ⊢t idp) ... | inr Δ⊬γ:Γ | _ | _ = inr λ {(sc Δ⊢γ:Γ _ _ idp) → Δ⊬γ:Γ Δ⊢γ:Γ} ... | inl _ | inr Δ⊬t | _ = inr λ {(sc _ _ Δ⊢t idp) → Δ⊬t Δ⊢t} ... | inl _ | inl _ | inr n≠x = inr λ {(sc _ _ _ idp) → n≠x idp} {- Decidability of judgments for contexts, types, terms and substitution towards a glaobular context -} dec-⊢C : ∀ Γ → dec (Γ ⊢C) dec-⊢T : ∀ Γ A → dec (Γ ⊢T A) dec-⊢t : ∀ Γ A t → dec (Γ ⊢t t # A) dec-⊢S:G : ∀ Δ (Γ : GSeTT.Typed-Syntax.Ctx) γ → dec (Δ ⊢S γ > GPre-Ctx (fst Γ)) dec-⊢T Γ ∗ with dec-⊢C Γ ... | inl Γ⊢ = inl (ob Γ⊢) ... | inr Γ⊬ = inr λ {(ob Γ⊢) → Γ⊬ Γ⊢} dec-⊢T Γ (⇒ A t u) with dec-⊢T Γ A | dec-⊢t Γ A t | dec-⊢t Γ A u ... | inl Γ⊢A | inl Γ⊢t:A | inl Γ⊢u:A = inl (ar Γ⊢A Γ⊢t:A Γ⊢u:A) ... | inr Γ⊬A | _ | _ = inr λ {(ar Γ⊢A _ _) → Γ⊬A Γ⊢A} ... | inl _ | inr Γ⊬t:A | _ = inr λ {(ar _ Γ⊢t:A _) → Γ⊬t:A Γ⊢t:A} ... | inl _ | inl _ | inr Γ⊬u:A = inr λ {(ar _ _ Γ⊢u:A) → Γ⊬u:A Γ⊢u:A} dec-⊢t Γ A (Var x) with dec-⊢C Γ | dec-∈ x A Γ ... | inl Γ⊢ | inl x∈Γ = inl (var Γ⊢ x∈Γ) ... | inr Γ⊬ | _ = inr λ {(var Γ⊢ _) → Γ⊬ Γ⊢} ... | inl _ | inr x∉Γ = inr λ {(var _ x∈Γ) → x∉Γ x∈Γ} dec-⊢t Γ A (Tm-constructor i γ) with eqdec-Ty A (Ti i [ γ ]Pre-Ty) ... | inr A≠Ti = inr λ{(tm _ _ idp) → A≠Ti idp} ... | inl idp with dec-G⊢T (fst (rule i)) _ (Ti i) (n≤n _) | dec-⊢S:G Γ (fst (rule i)) γ ... | inl Ci⊢Ti | inl Γ⊢γ = inl (tm Ci⊢Ti Γ⊢γ idp) ... | inr Ci⊬Ti | _ = inr λ t → Ci⊬Ti (Γ⊢tm→Ci⊢Ti t) ... | inl _ | inr Γ⊬γ = inr λ t → Γ⊬γ (Γ⊢tm→Γ⊢γ t) dec-⊢C ⊘ = inl ec dec-⊢C (Γ ∙ n # A) with dec-⊢C Γ | dec-⊢T Γ A | eqdecℕ n (C-length Γ) ... | inl Γ⊢ | inl Γ⊢A | inl idp = inl (cc Γ⊢ Γ⊢A idp) ... | inr Γ⊬ | _ | _ = inr λ {(cc Γ⊢ _ idp) → Γ⊬ Γ⊢} ... | inl _ | inr Γ⊬A | _ = inr λ {(cc _ Γ⊢A idp) → Γ⊬A Γ⊢A} ... | inl _ | inl _ | inr n≠l = inr λ {(cc _ _ idp) → n≠l idp} dec-⊢S:G Δ (nil , _) <> with (dec-⊢C Δ) ... | inl Δ⊢ = inl (es Δ⊢) ... | inr Δ⊬ = inr λ{(es Δ⊢) → Δ⊬ Δ⊢} dec-⊢S:G Δ (nil , _) < γ , x ↦ x₁ > = inr λ{()} dec-⊢S:G Δ ((Γ :: _) , _) <> = inr λ{()} dec-⊢S:G Δ ((Γ :: (v , A)) , Γ+⊢@(GSeTT.Rules.cc Γ⊢ Γ⊢A idp)) < γ , x ↦ t > with dec-⊢S:G Δ (Γ , Γ⊢) γ | dec-⊢t Δ ((GPre-Ty A) [ γ ]Pre-Ty) t | eqdecℕ x (length Γ) ... | inl Δ⊢γ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ (GCtx _ Γ+⊢) Δ⊢t idp) ... | inr Δ⊬γ | _ | _ = inr λ{(sc Δ⊢γ _ _ idp) → Δ⊬γ Δ⊢γ} ... | inl _ | inr Δ⊬t | _ = inr λ{(sc _ _ Δ⊢t idp) → Δ⊬t Δ⊢t} ... | inl _ | inl _ | inr x≠x = inr λ{(sc _ _ _ idp) → x≠x idp} {- Decidability of substitution -} dec-⊢S : ∀ Δ Γ γ → dec (Δ ⊢S γ > Γ) dec-⊢S Δ ⊘ <> with (dec-⊢C Δ) ... | inl Δ⊢ = inl (es Δ⊢) ... | inr Δ⊬ = inr λ{(es Δ⊢) → Δ⊬ Δ⊢} dec-⊢S Δ ⊘ < γ , x ↦ x₁ > = inr λ{()} dec-⊢S Δ (Γ ∙ _ # _) <> = inr λ{()} dec-⊢S Δ (Γ ∙ v # A) < γ , x ↦ t > with dec-⊢S Δ Γ γ | dec-⊢C (Γ ∙ v # A) | dec-⊢t Δ (A [ γ ]Pre-Ty) t | eqdecℕ x v ... | inl Δ⊢γ | inl Γ+⊢ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ Γ+⊢ Δ⊢t idp) ... | inr Δ⊬γ | _ | _ | _ = inr λ{(sc Δ⊢γ _ _ idp) → Δ⊬γ Δ⊢γ} ... | inl _ | inr Γ+⊬ | _ | _ = inr λ{(sc _ Γ⊢ _ idp) → Γ+⊬ Γ⊢} ... | inl _ | inl _ | inr Δ⊬t | _ = inr λ{(sc _ _ Δ⊢t idp) → Δ⊬t Δ⊢t} ... | inl _ | inl _ | inl _ | inr x≠x = inr λ{(sc _ _ _ idp) → x≠x idp}
70.185185
196
0.344802
032a80c0de4f5d88c1e768ef05324a4e1f09703d
2,347
agda
Agda
src/CategoryTheory/Linear.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
4
2018-05-31T20:37:04.000Z
2022-01-04T09:33:48.000Z
src/CategoryTheory/Linear.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
src/CategoryTheory/Linear.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
module CategoryTheory.Linear where open import CategoryTheory.Categories open import CategoryTheory.Functor open import CategoryTheory.BCCCs open import CategoryTheory.Monad open import CategoryTheory.Instances.Kleisli module L {n} {ℂ : Category n} (ℂ-BCCC : BicartesianClosed ℂ) (Mo : Monad ℂ) where open Category ℂ open BicartesianClosed ℂ-BCCC open Monad Mo open Functor T renaming (omap to M ; fmap to M-f) Kl : Category n Kl = Kleisli ℂ Mo -- Linear product of two objects _⊛_ : (A B : obj) -> obj A ⊛ B = (A ⊗ M B) ⊕ (M A ⊗ B) ⊕ (A ⊗ B) -- First projection from linear product *π₁ : ∀{A B} -> A ⊛ B ~> M A *π₁ {A}{B} = [ η.at A ∘ π₁ ⁏ π₁ ⁏ η.at A ∘ π₁ ] -- Second projection from linear product *π₂ : ∀{A B} -> A ⊛ B ~> M B *π₂ {A}{B} = [ π₂ ⁏ η.at B ∘ π₂ ⁏ η.at B ∘ π₂ ] -- Type class for linear products of type A ⊛ B. Need to provide -- linear product of morphisms and product laws in order to establish -- that the linear product is a product in the Kleisli category of the monad. record LinearProduct (A B : obj) : Set (lsuc n) where infix 10 ⟪_,_⟫ field -- | Data -- Linear product ⟪_,_⟫ : ∀{L} -> (L ~> M A) -> (L ~> M B) -> (L ~> M (A ⊛ B)) -- | Laws *π₁-comm : ∀{L} -> {l₁ : L ~> M A} {l₂ : L ~> M B} -> (μ.at A ∘ M-f *π₁) ∘ ⟪ l₁ , l₂ ⟫ ≈ l₁ *π₂-comm : ∀{L} -> {l₁ : L ~> M A} {l₂ : L ~> M B} -> (μ.at B ∘ M-f *π₂) ∘ ⟪ l₁ , l₂ ⟫ ≈ l₂ ⊛-unique : ∀{P} {p₁ : P ~> M A} {p₂ : P ~> M B} {m : P ~> M A⊕B} -> (μ.at A ∘ M-f *π₁) ∘ m ≈ p₁ -> (μ.at B ∘ M-f *π₂) ∘ m ≈ p₂ -> ⟪ p₁ , p₂ ⟫ ≈ m Kl-⊛ : Product Kl A B Kl-⊛ = record { A⊗B = A ⊛ B ; π₁ = *π₁ ; π₂ = *π₂ ; ⟨_,_⟩ = ⟪_,_⟫ ; π₁-comm = *π₁-comm ; π₂-comm = *π₂-comm ; ⊗-unique = ⊛-unique } -- Type class for linear categories record Linear {n} {ℂ : Category n} (ℂ-BCCC : BicartesianClosed ℂ) (Mo : Monad ℂ) : Set (lsuc n) where open Category ℂ open L ℂ-BCCC Mo field linprod : ∀(A B : obj) -> LinearProduct A B open module Li {A} {B} = LinearProduct (linprod A B) public
33.056338
81
0.487431
31b1ef007ea97811c8be9e7d1dd1dd7cb4bea132
9,124
agda
Agda
src/TemporalOps/Delay.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
4
2018-05-31T20:37:04.000Z
2022-01-04T09:33:48.000Z
src/TemporalOps/Delay.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
src/TemporalOps/Delay.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
{- Delay operator. -} module TemporalOps.Delay where open import CategoryTheory.Categories open import CategoryTheory.Instances.Reactive open import CategoryTheory.Functor open import CategoryTheory.CartesianStrength open import TemporalOps.Common open import TemporalOps.Next open import Data.Nat.Properties using (+-identityʳ ; +-comm ; +-assoc ; +-suc) open import Relation.Binary.HeterogeneousEquality as ≅ using (_≅_ ; ≅-to-≡) import Relation.Binary.PropositionalEquality as ≡ open import Data.Product open import Data.Sum -- General iteration -- iter f n v = fⁿ(v) iter : (τ -> τ) -> ℕ -> τ -> τ iter F zero A = A iter F (suc n) A = F (iter F n A) -- Multi-step delay delay_by_ : τ -> ℕ -> τ delay A by zero = A delay A by suc n = ▹ (delay A by n) infix 67 delay_by_ -- || Lemmas for the delay operator -- Extra delay is cancelled out by extra waiting. delay-+ : ∀{A} -> (n l k : ℕ) -> delay A by (n + l) at (n + k) ≡ delay A by l at k delay-+ zero l k = refl delay-+ (suc n) = delay-+ n -- || Derived lemmas - they can all be expressed in terms of delay-+, -- || but they are given explicitly for simplicity. -- Delay by n is cancelled out by waiting n extra steps. delay-+-left0 : ∀{A} -> (n k : ℕ) -> delay A by n at (n + k) ≡ A at k delay-+-left0 zero k = refl delay-+-left0 (suc n) k = delay-+-left0 n k -- delay-+-left0 can be converted to delay-+ (heterogeneously). delay-+-left0-eq : ∀{A : τ} -> (n l : ℕ) -> Proof-≡ (delay-+-left0 {A} n l) (delay-+ {A} n 0 l) delay-+-left0-eq zero l v v′ pf = ≅-to-≡ pf delay-+-left0-eq (suc n) l = delay-+-left0-eq n l -- Extra delay by n steps is cancelled out by waiting for n steps. delay-+-right0 : ∀{A} -> (n l : ℕ) -> delay A by (n + l) at n ≡ delay A by l at 0 delay-+-right0 zero l = refl delay-+-right0 (suc n) l = delay-+-right0 n l -- Delaying by n is the same as delaying by (n + 0) delay-+0-left : ∀{A} -> (k n : ℕ) -> delay A by k at n ≡ delay A by (k + 0) at n delay-+0-left {A} k n rewrite +-identityʳ k = refl -- If the delay is greater than the wait amount, we get unit delay-⊤ : ∀{A} -> (n k : ℕ) -> ⊤ at n ≡ delay A by (n + suc k) at n delay-⊤ {A} n k = sym (delay-+-right0 n (suc k)) -- Associativity of arguments in the delay lemma delay-assoc-sym : ∀{A} (n k l j : ℕ) -> Proof-≅ (sym (delay-+ {A} n (k + l) (k + j))) (sym (delay-+ {A} (n + k) l j)) delay-assoc-sym zero zero l j v v′ pr = pr delay-assoc-sym zero (suc k) l j = delay-assoc-sym zero k l j delay-assoc-sym (suc n) k l j = delay-assoc-sym n k l j -- Functor instance for delay F-delay : ℕ -> Endofunctor ℝeactive F-delay k = record { omap = delay_by k ; fmap = fmap-delay k ; fmap-id = λ {_ n a} -> fmap-delay-id k {_} {n} {a} ; fmap-∘ = fmap-delay-∘ k ; fmap-cong = fmap-delay-cong k } where -- Lifting of delay fmap-delay : {A B : τ} -> (k : ℕ) -> A ⇴ B -> delay A by k ⇴ delay B by k fmap-delay zero f = f fmap-delay (suc k) f = Functor.fmap F-▹ (fmap-delay k f) -- Delay preserves identities fmap-delay-id : ∀ (k : ℕ) {A : τ} {n : ℕ} {a : (delay A by k) n} -> (fmap-delay k id at n) a ≡ a fmap-delay-id zero = refl fmap-delay-id (suc k) {A} {zero} = refl fmap-delay-id (suc k) {A} {suc n} = fmap-delay-id k {A} {n} -- Delay preserves composition fmap-delay-∘ : ∀ (k : ℕ) {A B C : τ} {g : B ⇴ C} {f : A ⇴ B} {n : ℕ} {a : (delay A by k) n} -> (fmap-delay k (g ∘ f) at n) a ≡ (fmap-delay k g ∘ fmap-delay k f at n) a fmap-delay-∘ zero = refl fmap-delay-∘ (suc k) {n = zero} = refl fmap-delay-∘ (suc k) {n = suc n} = fmap-delay-∘ k {n = n} -- Delay is congruent fmap-delay-cong : ∀ (k : ℕ) {A B : τ} {f f′ : A ⇴ B} -> ({n : ℕ} {a : A at n} -> f n a ≡ f′ n a) -> ({n : ℕ} {a : delay A by k at n} -> (fmap-delay k f at n) a ≡ (fmap-delay k f′ at n) a) fmap-delay-cong zero e = e fmap-delay-cong (suc k) e {zero} = refl fmap-delay-cong (suc k) e {suc n} = fmap-delay-cong k e -- || Lemmas for the interaction of fmap and delay-+ -- Lifted version of the delay-+ lemma -- Arguments have different types, so we need heterogeneous equality fmap-delay-+ : ∀ {A B : τ} {f : A ⇴ B} (n k l : ℕ) -> Fun-≅ (Functor.fmap (F-delay (n + k)) f at (n + l)) (Functor.fmap (F-delay k) f at l) fmap-delay-+ zero k l v .v ≅.refl = ≅.refl fmap-delay-+ (suc n) k l v v′ pf = fmap-delay-+ n k l v v′ pf -- Specialised version with v of type delay A by (n + k) at (n + l) -- Uses explicit rewrites and homogeneous equality fmap-delay-+-n+k : ∀ {A B : τ} {f : A ⇴ B} (n k l : ℕ) -> (v : delay A by (n + k) at (n + l)) -> rew (delay-+ n k l) ((Functor.fmap (F-delay (n + k)) f at (n + l)) v) ≡ (Functor.fmap (F-delay k) f at l) (rew (delay-+ n k l) v) fmap-delay-+-n+k {A} n k l v = ≅-to-rew-≡ (fmap-delay-+ n k l v v′ v≅v′) (delay-+ n k l) where v′ : delay A by k at l v′ = rew (delay-+ n k l) v v≅v′ : v ≅ v′ v≅v′ = rew-to-≅ (delay-+ n k l) -- Lifted delay lemma with delay-+-left0 fmap-delay-+-n+0 : ∀ {A B : τ} {f : A ⇴ B} (n l : ℕ) -> {v : delay A by n at (n + l)} -> rew (delay-+-left0 n l) ((Functor.fmap (F-delay n) f at (n + l)) v) ≡ f l (rew (delay-+-left0 n l) v) fmap-delay-+-n+0 {A} zero l = refl fmap-delay-+-n+0 {A} (suc n) l = fmap-delay-+-n+0 n l -- Specialised version with v of type delay A by k at l -- Uses explicit rewrites and homogeneous equality fmap-delay-+-k : ∀ {A B : τ} {f : A ⇴ B} (n k l : ℕ) ->(v : delay A by k at l) -> Functor.fmap (F-delay (n + k)) f (n + l) (rew (sym (delay-+ n k l)) v) ≡ rew (sym (delay-+ n k l)) (Functor.fmap (F-delay k) f l v) fmap-delay-+-k {A} {B} {f} n k l v = sym (≅-to-rew-≡ (≅.sym (fmap-delay-+ n k l v′ v v≅v′)) (sym (delay-+ n k l))) where v′ : delay A by (n + k) at (n + l) v′ = rew (sym (delay-+ n k l)) v v≅v′ : v′ ≅ v v≅v′ = ≅.sym (rew-to-≅ (sym (delay-+ n k l))) -- Delay is a Cartesian functor F-cart-delay : ∀ k -> CartesianFunctor (F-delay k) ℝeactive-cart ℝeactive-cart F-cart-delay k = record { u = u-delay k ; m = m-delay k ; m-nat₁ = m-nat₁-delay k ; m-nat₂ = m-nat₂-delay k ; associative = assoc-delay k ; unital-right = unit-right-delay k ; unital-left = λ {B} {n} {a} -> unit-left-delay k {B} {n} {a} } where open CartesianFunctor F-cart-▹ u-delay : ∀ k -> ⊤ ⇴ delay ⊤ by k u-delay zero = λ n _ → top.tt u-delay (suc k) zero top.tt = top.tt u-delay (suc k) (suc n) top.tt = u-delay k n top.tt m-delay : ∀ k (A B : τ) -> (delay A by k ⊗ delay B by k) ⇴ delay (A ⊗ B) by k m-delay zero A B = λ n x → x m-delay (suc k) A B = Functor.fmap F-▹ (m-delay k A B) ∘ m (delay A by k) (delay B by k) m-nat₁-delay : ∀ k {A B C : τ} (f : A ⇴ B) -> Functor.fmap (F-delay k) (f * id) ∘ m-delay k A C ≈ m-delay k B C ∘ Functor.fmap (F-delay k) f * id m-nat₁-delay zero f = refl m-nat₁-delay (suc k) f {zero} = refl m-nat₁-delay (suc k) f {suc n} = m-nat₁-delay k f m-nat₂-delay : ∀ k {A B C : τ} (f : A ⇴ B) -> Functor.fmap (F-delay k) (id * f) ∘ m-delay k C A ≈ m-delay k C B ∘ id * Functor.fmap (F-delay k) f m-nat₂-delay zero f = refl m-nat₂-delay (suc k) f {zero} = refl m-nat₂-delay (suc k) f {suc n} = m-nat₂-delay k f assoc-delay : ∀ k {A B C : τ} -> m-delay k A (B ⊗ C) ∘ id * m-delay k B C ∘ assoc-right ≈ Functor.fmap (F-delay k) assoc-right ∘ m-delay k (A ⊗ B) C ∘ m-delay k A B * id assoc-delay zero = refl assoc-delay (suc k) {A} {B} {C} {zero} = refl assoc-delay (suc k) {A} {B} {C} {suc n} = assoc-delay k unit-right-delay : ∀ k {A : τ} -> Functor.fmap (F-delay k) unit-right ∘ m-delay k A ⊤ ∘ (id * u-delay k) ≈ unit-right unit-right-delay zero {A} {n} = refl unit-right-delay (suc k) {A} {zero} = refl unit-right-delay (suc k) {A} {suc n} = unit-right-delay k unit-left-delay : ∀ k {B : τ} -> Functor.fmap (F-delay k) unit-left ∘ m-delay k ⊤ B ∘ (u-delay k * id) ≈ unit-left unit-left-delay zero = refl unit-left-delay (suc k) {B} {zero} = refl unit-left-delay (suc k) {B} {suc n} = unit-left-delay k m-delay-+-n+0 : ∀ {A B} k l {a b} -> (rew (delay-+-left0 k l) (CartesianFunctor.m (F-cart-delay k) A B (k + l) (a , b))) ≡ (rew (delay-+-left0 k l) a , rew (delay-+-left0 k l) b) m-delay-+-n+0 zero l = refl m-delay-+-n+0 (suc k) l = m-delay-+-n+0 k l m-delay-+-sym : ∀ {A B} k l m{a b} -> rew (sym (delay-+ k m l)) (CartesianFunctor.m (F-cart-delay m) A B l (a , b)) ≡ CartesianFunctor.m (F-cart-delay (k + m)) A B (k + l) ((rew (sym (delay-+ k m l)) a) , (rew (sym (delay-+ k m l)) b)) m-delay-+-sym zero l m = refl m-delay-+-sym (suc k) l m = m-delay-+-sym k l m
39.158798
95
0.536278
1ee8b52c3c76d22bc329446faccbf4527d45b045
1,133
agda
Agda
src/Categories/Category/Discrete.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Category/Discrete.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
null
null
null
src/Categories/Category/Discrete.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Discrete where open import Level open import Data.Unit open import Function open import Relation.Binary.PropositionalEquality as ≡ open import Categories.Category open import Categories.Functor Discrete : ∀ {a} (A : Set a) → Category a a a Discrete A = record { Obj = A ; _⇒_ = _≡_ ; _≈_ = _≡_ ; id = refl ; _∘_ = flip ≡.trans ; assoc = λ {_ _ _ _ g} → sym (trans-assoc g) ; sym-assoc = λ {_ _ _ _ g} → trans-assoc g ; identityˡ = λ {_ _ f} → trans-reflʳ f ; identityʳ = refl ; identity² = refl ; equiv = isEquivalence ; ∘-resp-≈ = λ where refl refl → refl } module _ {a o ℓ e} {A : Set a} (C : Category o ℓ e) where open Category C renaming (id to one) module _ (f : A → Obj) where lift-func : Functor (Discrete A) C lift-func = record { F₀ = f ; F₁ = λ { refl → one } ; identity = Equiv.refl ; homomorphism = λ { {_} {_} {_} {refl} {refl} → Equiv.sym identity² } ; F-resp-≈ = λ { {_} {_} {refl} refl → Equiv.refl } }
26.97619
76
0.556929
192c50dc5c3b5c3d7590d3c77a5ad4ac51948b8a
478
agda
Agda
test/fail/NoSizedTypes.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/NoSizedTypes.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/fail/NoSizedTypes.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{-# OPTIONS --no-sized-types #-} postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} weak : {i : Size} -> Nat {i} -> Nat {∞} weak x = x -- Should give error without sized types. -- .i != ∞ of type Size -- when checking that the expression x has type Nat
20.782609
52
0.552301
04a639e52b12ada9f9fb0e89b3ea113b1d0112d3
3,079
agda
Agda
src/STLC2/Kovacs/Normalisation/Experimental.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC2/Kovacs/Normalisation/Experimental.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC2/Kovacs/Normalisation/Experimental.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
module STLC2.Kovacs.Normalisation.Experimental where open import STLC2.Kovacs.NormalForm public -------------------------------------------------------------------------------- -- (Tyᴺ) infix 3 _⊩_ _⊩_ : 𝒞 → 𝒯 → Set Γ ⊩ ⎵ = Γ ⊢ⁿᶠ ⎵ Γ ⊩ A ⇒ B = ∀ {Γ′} → (η : Γ′ ⊇ Γ) (a : Γ′ ⊩ A) → Γ′ ⊩ B Γ ⊩ A ⩕ B = Γ ⊩ A × Γ ⊩ B Γ ⊩ ⫪ = ⊤ Γ ⊩ ⫫ = Γ ⊢ⁿᵉ ⫫ Γ ⊩ A ⩖ B = Γ ⊢ⁿᵉ A ⩖ B ⊎ (Γ ⊩ A ⊎ Γ ⊩ B) -- (Conᴺ ; ∙ ; _,_) infix 3 _⊩⋆_ data _⊩⋆_ : 𝒞 → 𝒞 → Set where ∅ : ∀ {Γ} → Γ ⊩⋆ ∅ _,_ : ∀ {Γ Ξ A} → (ρ : Γ ⊩⋆ Ξ) (a : Γ ⊩ A) → Γ ⊩⋆ Ξ , A -------------------------------------------------------------------------------- -- (Tyᴺₑ) acc : ∀ {A Γ Γ′} → Γ′ ⊇ Γ → Γ ⊩ A → Γ′ ⊩ A acc {⎵} η M = renⁿᶠ η M acc {A ⇒ B} η f = λ η′ a → f (η ○ η′) a acc {A ⩕ B} η s = acc η (proj₁ s) , acc η (proj₂ s) acc {⫪} η s = tt acc {⫫} η M = renⁿᵉ η M acc {A ⩖ B} η s = case⊎ s (λ M → renⁿᵉ η M) (λ t → case⊎ t (λ a → acc η a) (λ b → acc η b)) -- (Conᴺₑ) -- NOTE: _⬖_ = acc⋆ _⬖_ : ∀ {Γ Γ′ Ξ} → Γ ⊩⋆ Ξ → Γ′ ⊇ Γ → Γ′ ⊩⋆ Ξ ∅ ⬖ η = ∅ (ρ , a) ⬖ η = ρ ⬖ η , acc η a -------------------------------------------------------------------------------- mutual -- (qᴺ) reify : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ⁿᶠ A reify {⎵} M = M reify {A ⇒ B} f = ƛ (reify (f (wkₑ idₑ) (reflect 0))) reify {A ⩕ B} s = reify (proj₁ s) , reify (proj₂ s) reify {⫪} s = τ reify {⫫} M = ne M reify {A ⩖ B} s = elim⊎ s (λ M → ne M) (λ t → elim⊎ t (λ a → ι₁ (reify a)) (λ b → ι₂ (reify b))) -- (uᴺ) reflect : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ⊩ A reflect {⎵} M = ne M reflect {A ⇒ B} M = λ η a → reflect (renⁿᵉ η M ∙ reify a) reflect {A ⩕ B} M = reflect (π₁ M) , reflect (π₂ M) reflect {⫪} M = tt reflect {⫫} M = M reflect {A ⩖ B} M = inj₁ M -- (∈ᴺ) getᵥ : ∀ {Γ Ξ A} → Γ ⊩⋆ Ξ → Ξ ∋ A → Γ ⊩ A getᵥ (ρ , a) zero = a getᵥ (ρ , a) (suc i) = getᵥ ρ i -- (Tmᴺ) eval : ∀ {Γ Ξ A} → Γ ⊩⋆ Ξ → Ξ ⊢ A → Γ ⊩ A eval ρ (𝓋 i) = getᵥ ρ i eval ρ (ƛ M) = λ η a → eval (ρ ⬖ η , a) M eval ρ (M ∙ N) = eval ρ M idₑ (eval ρ N) eval ρ (M , N) = eval ρ M , eval ρ N eval ρ (π₁ M) = proj₁ (eval ρ M) eval ρ (π₂ M) = proj₂ (eval ρ M) eval ρ τ = tt eval ρ (φ M) = reflect (φ (eval ρ M)) eval ρ (ι₁ M) = inj₂ (inj₁ (eval ρ M)) eval ρ (ι₂ M) = inj₂ (inj₂ (eval ρ M)) eval ρ (M ⁇ N₁ ∥ N₂) = elim⊎ (eval ρ M) (λ M′ → reflect (M′ ⁇ reify (eval (ρ ⬖ wkₑ idₑ , reflect 0) N₁) ∥ reify (eval (ρ ⬖ wkₑ idₑ , reflect 0) N₂))) (λ t → elim⊎ t (λ a → eval (ρ , a) N₁) (λ b → eval (ρ , b) N₂)) -- (uᶜᴺ) idᵥ : ∀ {Γ} → Γ ⊩⋆ Γ idᵥ {∅} = ∅ idᵥ {Γ , A} = idᵥ ⬖ wkₑ idₑ , reflect 0 -- (nf) nf : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ⁿᶠ A nf M = reify (eval idᵥ M) --------------------------------------------------------------------------------
25.446281
80
0.337122
a0fa76304d5d357533359b5b064d71d8a179d036
17,638
agda
Agda
src/main-old.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/main-old.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/main-old.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
module main-old where import parse import run open import lib open import cedille-types -- for parser for Cedille source files import cedille module parsem = parse cedille.gratr2-nt ptr open parsem.pnoderiv cedille.rrs cedille.cedille-rtn module pr = run ptr open pr.noderiv {- from run.agda -} -- for parser for options files import options import options-types module parsem2 = parse options.gratr2-nt options-types.ptr module options-parse = parsem2.pnoderiv options.rrs options.options-rtn module pr2 = run options-types.ptr module options-run = pr2.noderiv -- for parser for Cedille comments & whitespace import cws import cws-types module parsem3 = parse cws.gratr2-nt cws-types.ptr module cws-parse = parsem3.pnoderiv cws.rrs cws.cws-rtn module pr3 = run cws.ptr module cws-run = pr3.noderiv --open import cedille-find --open import classify open import ctxt open import constants --open import conversion open import general-util open import process-cmd open import spans open import syntax-util open import to-string open import toplevel-state import interactive-cmds open import rkt opts : Set opts = options-types.opts {------------------------------------------------------------------------------- .cede support -------------------------------------------------------------------------------} dot-cedille-directory : string → string dot-cedille-directory dir = combineFileNames dir ".cedille" cede-filename : (ced-path : string) → string cede-filename ced-path = let dir = takeDirectory ced-path in let unit-name = base-filename (takeFileName ced-path) in combineFileNames (dot-cedille-directory dir) (unit-name ^ ".cede") -- .cede files are just a dump of the spans, prefixed by 'e' if there is an error write-cede-file : (ced-path : string) → (ie : include-elt) → IO ⊤ write-cede-file ced-path ie = -- putStrLn ("write-cede-file " ^ ced-path ^ " : " ^ contents) >> let dir = takeDirectory ced-path in createDirectoryIfMissing ff (dot-cedille-directory dir) >> writeFile (cede-filename ced-path) ((if (include-elt.err ie) then "e" else "") ^ (include-elt-spans-to-string ie)) -- we assume the cede file is known to exist at this point read-cede-file : (ced-path : string) → IO (𝔹 × string) read-cede-file ced-path = get-file-contents (cede-filename ced-path) >>= λ c → finish c where finish : maybe string → IO (𝔹 × string) finish nothing = return (tt , global-error-string ("Could not read the file " ^ cede-filename ced-path ^ ".")) finish (just ss) with string-to-𝕃char ss finish (just ss) | ('e' :: ss') = forceFileRead ss >> return (tt , 𝕃char-to-string ss') finish (just ss) | _ = forceFileRead ss >> return (ff , ss) add-cedille-extension : string → string add-cedille-extension x = x ^ "." ^ cedille-extension find-imported-file : (dirs : 𝕃 string) → (unit-name : string) → IO string find-imported-file [] unit-name = return (add-cedille-extension unit-name) -- assume the current directory if the unit is not found find-imported-file (dir :: dirs) unit-name = let e = combineFileNames dir (add-cedille-extension unit-name) in doesFileExist e >>= λ b → if b then return e else find-imported-file dirs unit-name -- return a list of pairs (i,p) where i is the import string in the file, and p is the full path for that imported file find-imported-files : (dirs : 𝕃 string) → (imports : 𝕃 string) → IO (𝕃 (string × string)) find-imported-files dirs (u :: us) = find-imported-file dirs u >>= λ p → find-imported-files dirs us >>= λ ps → return ((u , p) :: ps) find-imported-files dirs [] = return [] ced-file-up-to-date : (ced-path : string) → IO 𝔹 ced-file-up-to-date ced-path = let e = cede-filename ced-path in doesFileExist e >>= λ b → if b then fileIsOlder ced-path e else return ff paths-to-𝕃string : options-types.paths → 𝕃 string paths-to-𝕃string options-types.PathsNil = [] paths-to-𝕃string (options-types.PathsCons p ps) = p :: paths-to-𝕃string ps opts-get-include-path : opts → 𝕃 string opts-get-include-path options-types.OptsNil = [] opts-get-include-path (options-types.OptsCons (options-types.Lib ps) oo) = (paths-to-𝕃string ps) ++ opts-get-include-path oo opts-get-include-path (options-types.OptsCons options-types.NoCedeFiles oo) = opts-get-include-path oo opts-get-include-path (options-types.OptsCons options-types.NoRktFiles oo) = opts-get-include-path oo --opts-get-include-path (options-types.OptsCons _ oo) = opts-get-include-path oo {- see if "no-cede-files" is turned on in the options file -} opts-get-no-cede-files : opts → 𝔹 opts-get-no-cede-files options-types.OptsNil = ff opts-get-no-cede-files (options-types.OptsCons options-types.NoCedeFiles oo) = tt opts-get-no-cede-files (options-types.OptsCons options-types.NoRktFiles oo) = opts-get-no-cede-files oo opts-get-no-cede-files (options-types.OptsCons (options-types.Lib _) oo) = opts-get-no-cede-files oo {- see if "no-rkt-files" is turned on in the options file -} opts-get-no-rkt-files : opts → 𝔹 opts-get-no-rkt-files options-types.OptsNil = ff opts-get-no-rkt-files (options-types.OptsCons options-types.NoCedeFiles oo) = opts-get-no-rkt-files oo opts-get-no-rkt-files (options-types.OptsCons options-types.NoRktFiles oo) = tt opts-get-no-rkt-files (options-types.OptsCons (options-types.Lib _) oo) = opts-get-no-rkt-files oo {- reparse the given file, and update its include-elt in the toplevel-state appropriately -} reparse : toplevel-state → (filename : string) → IO toplevel-state reparse st filename = -- putStrLn ("reparsing " ^ filename) >> doesFileExist filename >>= λ b → (if b then (readFiniteFile filename >>= processText) else return (error-include-elt ("The file " ^ filename ^ " could not be opened for reading."))) >>= λ ie → return (set-include-elt st filename ie) where processText : string → IO include-elt processText x with string-to-𝕃char x processText x | s with runRtn s processText x | s | inj₁ cs = return (error-include-elt ("Parse error in file " ^ filename ^ " at position " ^ (ℕ-to-string (length s ∸ length cs)) ^ ".")) processText x | s | inj₂ r with rewriteRun r processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] with cws-parse.runRtn s processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] | inj₁ cs = return (error-include-elt ("This shouldn't happen in " ^ filename ^ " at position " ^ (ℕ-to-string (length s ∸ length cs)) ^ ".")) processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] | inj₂ r2 with cws-parse.rewriteRun r2 processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] | inj₂ r2 | cws-run.ParseTree (cws-types.parsed-start t2) :: [] = find-imported-files (toplevel-state.include-path st) (get-imports t) >>= λ deps → return (new-include-elt filename deps t t2) processText x | s | inj₂ r | ParseTree (parsed-start t) :: [] | inj₂ r2 | _ = return (error-include-elt ("Parse error in file " ^ filename ^ ".")) processText x | s | inj₂ r | _ = return (error-include-elt ("Parse error in file " ^ filename ^ ".")) add-spans-if-up-to-date : (up-to-date : 𝔹) → (use-cede-files : 𝔹) → (filename : string) → include-elt → IO include-elt add-spans-if-up-to-date up-to-date use-cede-files filename ie = if up-to-date && use-cede-files then (read-cede-file filename >>= finish) else return ie where finish : 𝔹 × string → IO include-elt finish (err , ss) = return (set-do-type-check-include-elt (set-spans-string-include-elt ie err ss) ff) {- make sure that the current ast and dependencies are stored in the toplevel-state, updating the state as needed. -} ensure-ast-deps : toplevel-state → (filename : string) → IO toplevel-state ensure-ast-deps s filename with get-include-elt-if s filename ensure-ast-deps s filename | nothing = let ucf = (toplevel-state.use-cede-files s) in reparse s filename >>= λ s → ced-file-up-to-date filename >>= λ up-to-date → add-spans-if-up-to-date up-to-date ucf filename (get-include-elt s filename) >>= λ ie → return (set-include-elt s filename ie) ensure-ast-deps s filename | just ie = let ucf = (toplevel-state.use-cede-files s) in ced-file-up-to-date filename >>= λ up-to-date → if up-to-date then (add-spans-if-up-to-date up-to-date (toplevel-state.use-cede-files s) filename (get-include-elt s filename) >>= λ ie → return (set-include-elt s filename ie)) else reparse s filename {- helper function for update-asts, which keeps track of the files we have seen so we avoid importing the same file twice, and also avoid following cycles in the import graph. -} {-# TERMINATING #-} update-astsh : stringset {- seen already -} → toplevel-state → (filename : string) → IO (stringset {- seen already -} × toplevel-state) update-astsh seen s filename = -- putStrLn ("update-astsh [filename = " ^ filename ^ "]") >> if stringset-contains seen filename then return (seen , s) else (ensure-ast-deps s filename >>= cont (stringset-insert seen filename)) where cont : stringset → toplevel-state → IO (stringset × toplevel-state) cont seen s with get-include-elt s filename cont seen s | ie with include-elt.deps ie cont seen s | ie | ds = proc seen s ds where proc : stringset → toplevel-state → 𝕃 string → IO (stringset × toplevel-state) proc seen s [] = if (list-any (get-do-type-check s) ds) then return (seen , set-include-elt s filename (set-do-type-check-include-elt ie tt)) else return (seen , s) proc seen s (d :: ds) = update-astsh seen s d >>= λ p → proc (fst p) (snd p) ds {- this function updates the ast associated with the given filename in the toplevel state. So if we do not have an up-to-date .cede file (i.e., there is no such file at all, or it is older than the given file), reparse the file. We do this recursively for all dependencies (i.e., imports) of the file. -} update-asts : toplevel-state → (filename : string) → IO toplevel-state update-asts s filename = update-astsh empty-stringset s filename >>= λ p → return (snd p) {- this function checks the given file (if necessary), updates .cede and .rkt files (again, if necessary), and replies on stdout if appropriate -} checkFile : toplevel-state → (filename : string) → (should-print-spans : 𝔹) → IO toplevel-state checkFile s filename should-print-spans = -- putStrLn ("checkFile " ^ filename) >> update-asts s filename >>= λ s → finish (process-file s filename) -- ignore-errors s filename) where reply : toplevel-state → IO ⊤ reply s with get-include-elt-if s filename reply s | nothing = putStrLn (global-error-string ("Internal error looking up information for file " ^ filename ^ ".")) reply s | just ie = if should-print-spans then putStrLn (include-elt-spans-to-string ie) else return triv finish : toplevel-state × mod-info → IO toplevel-state finish (s , m) with s finish (s , m) | mk-toplevel-state use-cede make-rkt ip mod is Γ = writeo mod >> reply s >> return (mk-toplevel-state use-cede make-rkt ip [] is (ctxt-set-current-mod Γ m)) where writeo : 𝕃 string → IO ⊤ writeo [] = return triv writeo (f :: us) = let ie = get-include-elt s f in (if use-cede then (write-cede-file f ie) else (return triv)) >> (if make-rkt then (write-rkt-file f (toplevel-state.Γ s) ie) else (return triv)) >> writeo us remove-dup-include-paths : 𝕃 string → 𝕃 string remove-dup-include-paths l = stringset-strings (stringset-insert* empty-stringset l) -- this is the function that handles requests (from the frontend) on standard input {-# TERMINATING #-} readCommandsFromFrontend : toplevel-state → IO ⊤ readCommandsFromFrontend s = getLine >>= λ input → let input-list : 𝕃 string input-list = (string-split (undo-escape-string input) delimiter) in (handleCommands input-list s) >>= λ s → readCommandsFromFrontend s where delimiter : char delimiter = '§' errorCommand : 𝕃 string → toplevel-state → IO toplevel-state errorCommand ls s = putStrLn (global-error-string "Invalid command sequence \"" ^ (𝕃-to-string (λ x → x) ", " ls) ^ "\".") >>= λ x → return s debugCommand : toplevel-state → IO toplevel-state debugCommand s = putStrLn (escape-string (toplevel-state-to-string s)) >>= λ x → return s checkCommand : 𝕃 string → toplevel-state → IO toplevel-state checkCommand (input :: []) s = canonicalizePath input >>= λ input-filename → checkFile (set-include-path s (remove-dup-include-paths (takeDirectory input-filename :: toplevel-state.include-path s))) input-filename tt {- should-print-spans -} checkCommand ls s = errorCommand ls s interactiveCommand : 𝕃 string → toplevel-state → IO toplevel-state interactiveCommand xs s = interactive-cmds.interactive-cmd xs s {- findCommand : 𝕃 string → toplevel-state → IO toplevel-state findCommand (symbol :: []) s = putStrLn (find-symbols-to-JSON symbol (toplevel-state-lookup-occurrences symbol s)) >>= λ x → return s findCommand _ s = errorCommand s -} handleCommands : 𝕃 string → toplevel-state → IO toplevel-state handleCommands ("check" :: xs) s = checkCommand xs s handleCommands ("debug" :: []) s = debugCommand s handleCommands ("interactive" :: xs) s = interactiveCommand xs s -- handleCommands ("find" :: xs) s = findCommand xs s handleCommands ls s = errorCommand ls s -- function to process command-line arguments processArgs : opts → 𝕃 string → IO ⊤ -- this is the case for when we are called with a single command-line argument, the name of the file to process processArgs oo (input-filename :: []) = canonicalizePath input-filename >>= λ input-filename → checkFile (new-toplevel-state (takeDirectory input-filename :: opts-get-include-path oo) (~ (opts-get-no-cede-files oo)) (~ (opts-get-no-rkt-files oo)) ) input-filename ff {- should-print-spans -} >>= finish input-filename where finish : string → toplevel-state → IO ⊤ finish input-filename s = let ie = get-include-elt s input-filename in if include-elt.err ie then (putStrLn (include-elt-spans-to-string ie)) else return triv -- this is the case where we will go into a loop reading commands from stdin, from the fronted processArgs oo [] = readCommandsFromFrontend (new-toplevel-state (opts-get-include-path oo) (~ (opts-get-no-cede-files oo)) (~ (opts-get-no-rkt-files oo))) -- all other cases are errors processArgs oo xs = putStrLn ("Run with the name of one file to process, or run with no command-line arguments and enter the\n" ^ "names of files one at a time followed by newlines (this is for the emacs mode).") -- helper function to try to parse the options file processOptions : string → string → (string ⊎ options-types.opts) processOptions filename s with string-to-𝕃char s ... | i with options-parse.runRtn i ... | inj₁ cs = inj₁ ("Parse error in file " ^ filename ^ " at position " ^ (ℕ-to-string (length i ∸ length cs)) ^ ".") ... | inj₂ r with options-parse.rewriteRun r ... | options-run.ParseTree (options-types.parsed-start (options-types.File oo)) :: [] = inj₂ oo ... | _ = inj₁ ("Parse error in file " ^ filename ^ ". ") -- read the ~/.cedille/options file readOptions : IO (string ⊎ options-types.opts) readOptions = getHomeDirectory >>= λ homedir → let homecedir = dot-cedille-directory homedir in let optsfile = combineFileNames homecedir options-file-name in createDirectoryIfMissing ff homecedir >> doesFileExist optsfile >>= λ b → if b then (readFiniteFile optsfile >>= λ f → return (processOptions optsfile f)) else (return (inj₂ options-types.OptsNil)) postulate initializeStdinToUTF8 : IO ⊤ setStdinNewlineMode : IO ⊤ {-# COMPILED initializeStdinToUTF8 System.IO.hSetEncoding System.IO.stdin System.IO.utf8 #-} {-# COMPILED setStdinNewlineMode System.IO.hSetNewlineMode System.IO.stdin System.IO.universalNewlineMode #-} -- main entrypoint for the backend main : IO ⊤ main = initializeStdoutToUTF8 >> initializeStdinToUTF8 >> setStdoutNewlineMode >> setStdinNewlineMode >> readOptions >>= next where next : string ⊎ options-types.opts → IO ⊤ next (inj₁ s) = putStrLn (global-error-string s) next (inj₂ oo) = getArgs >>= processArgs oo
49.824859
188
0.637884
8b6f41df7af223bc7659fddded1cf1ad6a9d9047
1,359
agda
Agda
archive/agda-1/Interpretation.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-1/Interpretation.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-1/Interpretation.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Interpretation where open import VariableName open import FunctionName open import PredicateName open import Element open import Elements open import TruthValue record Interpretation : Set where field μ⟦_⟧ : VariableName → Element 𝑓⟦_⟧ : FunctionName → Elements → Element 𝑃⟦_⟧ : PredicateName → Elements → TruthValue open Interpretation public open import OscarPrelude open import Term open import Delay open import Vector mutual τ⇑⟦_⟧ : Interpretation → {i : Size} → Term → Delay i Element τ⇑⟦ I ⟧ (variable 𝑥) = now $ μ⟦ I ⟧ 𝑥 τ⇑⟦ I ⟧ (function 𝑓 τs) = 𝑓⟦ I ⟧ 𝑓 ∘ ⟨_⟩ <$> τs⇑⟦ I ⟧ τs τs⇑⟦_⟧ : Interpretation → {i : Size} → (τs : Terms) → Delay i (Vector Element (arity τs)) τs⇑⟦ I ⟧ ⟨ ⟨ [] ⟩ ⟩ = now ⟨ [] ⟩ τs⇑⟦ I ⟧ ⟨ ⟨ τ ∷ τs ⟩ ⟩ = τ⇑⟦ I ⟧ τ >>= (λ t → τs⇑⟦ I ⟧ ⟨ ⟨ τs ⟩ ⟩ >>= λ ts → now ⟨ t ∷ vector ts ⟩) τs⇓⟦_⟧ : (I : Interpretation) → (τs : Terms) → τs⇑⟦ I ⟧ τs ⇓ τs⇓⟦ I ⟧ ⟨ ⟨ [] ⟩ ⟩ = _ , now⇓ τs⇓⟦ I ⟧ ⟨ ⟨ variable 𝑥 ∷ τs ⟩ ⟩ = _ , τs⇓⟦ I ⟧ ⟨ ⟨ τs ⟩ ⟩ ⇓>>=⇓ now⇓ τs⇓⟦ I ⟧ ⟨ ⟨ function 𝑓₁ τs₁ ∷ τs₂ ⟩ ⟩ = _ , τs⇓⟦ I ⟧ τs₁ ⇓>>=⇓ now⇓ >>=⇓ (τs⇓⟦ I ⟧ ⟨ ⟨ τs₂ ⟩ ⟩ ⇓>>=⇓ now⇓) τ⇓⟦_⟧ : (I : Interpretation) → (τ : Term) → τ⇑⟦ I ⟧ τ ⇓ τ⇓⟦ I ⟧ (variable 𝑥) = _ , now⇓ τ⇓⟦ I ⟧ (function 𝑓 τs) = _ , τs⇓⟦ I ⟧ τs ⇓>>=⇓ now⇓ τ⟦_⟧ : (I : Interpretation) → {i : Size} → (τ : Term) → Element τ⟦ I ⟧ τ = fst (τ⇓⟦ I ⟧ τ)
28.914894
102
0.538631
18db204ee459d244d3352f9fb864451465b18c7a
12,884
agda
Agda
theorems/homotopy/vankampen/CodeBP.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/vankampen/CodeBP.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/vankampen/CodeBP.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} {- Remember to keep CodeAP.agda in sync. -} open import HoTT import homotopy.RelativelyConstantToSetExtendsViaSurjection as SurjExt module homotopy.vankampen.CodeBP {i j k l} (span : Span {i} {j} {k}) {D : Type l} (h : D → Span.C span) (h-is-surj : is-surj h) where open Span span data precodeBB (b₀ : B) : B → Type (lmax (lmax (lmax i j) k) l) data precodeBA (b₀ : B) (a₁ : A) : Type (lmax (lmax (lmax i j) k) l) data precodeBB b₀ where pc-b : ∀ {b₁} (pB : b₀ =₀ b₁) → precodeBB b₀ b₁ pc-bab : ∀ d {b₁} (pc : precodeBA b₀ (f (h d))) (pB : g (h d) =₀ b₁) → precodeBB b₀ b₁ infix 66 pc-b syntax pc-b p = ⟧b p infixl 65 pc-bab syntax pc-bab d pcBA pB = pcBA ba⟦ d ⟧b pB data precodeBA b₀ a₁ where pc-bba : ∀ d (pc : precodeBB b₀ (g (h d))) (pA : f (h d) =₀ a₁) → precodeBA b₀ a₁ infixl 65 pc-bba syntax pc-bba d pcBB pA = pcBB bb⟦ d ⟧a pA data precodeBB-rel {b₀ : B} : {b₁ : B} → precodeBB b₀ b₁ → precodeBB b₀ b₁ → Type (lmax (lmax (lmax i j) k) l) data precodeBA-rel {b₀ : B} : {a₁ : A} → precodeBA b₀ a₁ → precodeBA b₀ a₁ → Type (lmax (lmax (lmax i j) k) l) data precodeBB-rel {b₀} where pcBBr-idp₀-idp₀ : ∀ {d} pcBB → precodeBB-rel (pcBB bb⟦ d ⟧a idp₀ ba⟦ d ⟧b idp₀) pcBB pcBBr-switch : ∀ {d₀ d₁ : D} pcBB (pC : h d₀ =₀ h d₁) → precodeBB-rel (pcBB bb⟦ d₀ ⟧a ap₀ f pC ba⟦ d₁ ⟧b idp₀) (pcBB bb⟦ d₀ ⟧a idp₀ ba⟦ d₀ ⟧b ap₀ g pC) pcBBr-cong : ∀ {d b₁ pcBA₁ pcBA₂} (r : precodeBA-rel pcBA₁ pcBA₂) (pB : g (h d) =₀ b₁) → precodeBB-rel (pcBA₁ ba⟦ d ⟧b pB) (pcBA₂ ba⟦ d ⟧b pB) data precodeBA-rel {b₀} where pcBAr-idp₀-idp₀ : ∀ {d} pcBA → precodeBA-rel (pcBA ba⟦ d ⟧b idp₀ bb⟦ d ⟧a idp₀) pcBA pcBAr-cong : ∀ {d a₁ pcBB₁ pcBB₂} (r : precodeBB-rel pcBB₁ pcBB₂) (pA : f (h d) =₀ a₁) → precodeBA-rel (pcBB₁ bb⟦ d ⟧a pA) (pcBB₂ bb⟦ d ⟧a pA) codeBB : B → B → Type (lmax (lmax (lmax i j) k) l) codeBB b₀ b₁ = SetQuot (precodeBB-rel {b₀} {b₁}) codeBA : B → A → Type (lmax (lmax (lmax i j) k) l) codeBA b₀ a₁ = SetQuot (precodeBA-rel {b₀} {a₁}) c-bba : ∀ {a₀} d {a₁} (pc : codeBB a₀ (g (h d))) (pA : f (h d) =₀ a₁) → codeBA a₀ a₁ c-bba d {a₁} c pA = SetQuot-rec SetQuot-is-set (λ pc → q[ pc-bba d pc pA ]) (λ r → quot-rel $ pcBAr-cong r pA) c c-bab : ∀ {a₀} d {b₁} (pc : codeBA a₀ (f (h d))) (pB : g (h d) =₀ b₁) → codeBB a₀ b₁ c-bab d {a₁} c pB = SetQuot-rec SetQuot-is-set (λ pc → q[ pc-bab d pc pB ]) (λ r → quot-rel $ pcBBr-cong r pB) c -- codeBP abstract pcBB-idp₀-idp₀-head : ∀ {d₀ b} (pB : g (h d₀) =₀ b) → q[ ⟧b idp₀ bb⟦ d₀ ⟧a idp₀ ba⟦ d₀ ⟧b pB ] == q[ ⟧b pB ] :> codeBB _ b pcBB-idp₀-idp₀-head {d₀} = Trunc-elim (λ _ → =-preserves-set SetQuot-is-set) lemma where lemma : ∀ {b} (pB : g (h d₀) == b) → q[ ⟧b idp₀ bb⟦ d₀ ⟧a idp₀ ba⟦ d₀ ⟧b [ pB ] ] == q[ ⟧b [ pB ] ] :> codeBB _ b lemma idp = quot-rel $ pcBBr-idp₀-idp₀ (⟧b idp₀) pcBA-prepend : ∀ {b₀} d₁ {b₂} → b₀ =₀ g (h d₁) → precodeBA (g (h d₁)) b₂ → precodeBA b₀ b₂ pcBB-prepend : ∀ {b₀} d₁ {a₂} → b₀ =₀ g (h d₁) → precodeBB (g (h d₁)) a₂ → precodeBB b₀ a₂ pcBA-prepend d₁ pB (pc-bba d pc pA) = pc-bba d (pcBB-prepend d₁ pB pc) pA pcBB-prepend d₁ pB (pc-b pB₁) = pc-bab d₁ (pc-bba d₁ (pc-b pB) idp₀) pB₁ pcBB-prepend d₁ pB (pc-bab d pc pB₁) = pc-bab d (pcBA-prepend d₁ pB pc) pB₁ abstract pcBA-prepend-idp₀ : ∀ {d₀ b₁} (pcBA : precodeBA (g (h d₀)) b₁) → q[ pcBA-prepend d₀ idp₀ pcBA ] == q[ pcBA ] :> codeBA (g (h d₀)) b₁ pcBB-prepend-idp₀ : ∀ {d₀ a₁} (pcBB : precodeBB (g (h d₀)) a₁) → q[ pcBB-prepend d₀ idp₀ pcBB ] == q[ pcBB ] :> codeBB (g (h d₀)) a₁ pcBA-prepend-idp₀ (pc-bba d pc pB) = pcBB-prepend-idp₀ pc |in-ctx λ c → c-bba d c pB pcBB-prepend-idp₀ (pc-b pB) = pcBB-idp₀-idp₀-head pB pcBB-prepend-idp₀ (pc-bab d pc pB) = pcBA-prepend-idp₀ pc |in-ctx λ c → c-bab d c pB transp-cBA-l : ∀ d {b₀ a₁} (p : g (h d) == b₀) (pcBA : precodeBA (g (h d)) a₁) → transport (λ x → codeBA x a₁) p q[ pcBA ] == q[ pcBA-prepend d [ ! p ] pcBA ] transp-cBA-l d idp pcBA = ! $ pcBA-prepend-idp₀ pcBA transp-cBB-l : ∀ d {b₀ b₁} (p : g (h d) == b₀) (pcBB : precodeBB (g (h d)) b₁) → transport (λ x → codeBB x b₁) p q[ pcBB ] == q[ pcBB-prepend d [ ! p ] pcBB ] transp-cBB-l d idp pcBB = ! $ pcBB-prepend-idp₀ pcBB transp-cBA-r : ∀ d {b₀ a₁} (p : f (h d) == a₁) (pcBA : precodeBA b₀ (f (h d))) → transport (λ x → codeBA b₀ x) p q[ pcBA ] == q[ pcBA ba⟦ d ⟧b idp₀ bb⟦ d ⟧a [ p ] ] transp-cBA-r d idp pcBA = ! $ quot-rel $ pcBAr-idp₀-idp₀ pcBA transp-cBB-r : ∀ d {b₀ b₁} (p : g (h d) == b₁) (pcBB : precodeBB b₀ (g (h d))) → transport (λ x → codeBB b₀ x) p q[ pcBB ] == q[ pcBB bb⟦ d ⟧a idp₀ ba⟦ d ⟧b [ p ] ] transp-cBB-r d idp pcBB = ! $ quot-rel $ pcBBr-idp₀-idp₀ pcBB module CodeBAEquivCodeBB (b₀ : B) where eqv-on-image : (d : D) → codeBA b₀ (f (h d)) ≃ codeBB b₀ (g (h d)) eqv-on-image d = equiv to from to-from from-to where to = λ c → c-bab d c idp₀ from = λ c → c-bba d c idp₀ abstract from-to : ∀ cBA → from (to cBA) == cBA from-to = SetQuot-elim (λ _ → =-preserves-set SetQuot-is-set) (λ pcBA → quot-rel (pcBAr-idp₀-idp₀ pcBA)) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _)) to-from : ∀ cBB → to (from cBB) == cBB to-from = SetQuot-elim (λ _ → =-preserves-set SetQuot-is-set) (λ pcBB → quot-rel (pcBBr-idp₀-idp₀ pcBB)) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _)) abstract eqv-is-const : ∀ d₁ d₂ (p : h d₁ == h d₂) → eqv-on-image d₁ == eqv-on-image d₂ [ (λ c → codeBA b₀ (f c) ≃ codeBB b₀ (g c)) ↓ p ] eqv-is-const d₁ d₂ p = ↓-Subtype-in (λ d → is-equiv-prop) $ ↓-→-from-transp $ λ= $ SetQuot-elim (λ _ → =-preserves-set SetQuot-is-set) (λ pcBA → transport (λ c → codeBB b₀ (g c)) p q[ pcBA ba⟦ d₁ ⟧b idp₀ ] =⟨ ap-∘ (codeBB b₀) g p |in-ctx (λ p → coe p q[ pcBA ba⟦ d₁ ⟧b idp₀ ]) ⟩ transport (codeBB b₀) (ap g p) q[ pcBA ba⟦ d₁ ⟧b idp₀ ] =⟨ transp-cBB-r d₁ (ap g p) (pcBA ba⟦ d₁ ⟧b idp₀) ⟩ q[ pcBA ba⟦ d₁ ⟧b idp₀ bb⟦ d₁ ⟧a idp₀ ba⟦ d₁ ⟧b [ ap g p ] ] =⟨ ! $ quot-rel $ pcBBr-switch (pcBA ba⟦ d₁ ⟧b idp₀) [ p ] ⟩ q[ pcBA ba⟦ d₁ ⟧b idp₀ bb⟦ d₁ ⟧a [ ap f p ] ba⟦ d₂ ⟧b idp₀ ] =⟨ ! $ transp-cBA-r d₁ (ap f p) pcBA |in-ctx (λ c → c-bab d₂ c idp₀) ⟩ c-bab d₂ (transport (codeBA b₀) (ap f p) q[ pcBA ]) idp₀ =⟨ ∘-ap (codeBA b₀) f p |in-ctx (λ p → coe p q[ pcBA ]) |in-ctx (λ c → c-bab d₂ c idp₀) ⟩ c-bab d₂ (transport (λ c → codeBA b₀ (f c)) p q[ pcBA ]) idp₀ =∎) (λ _ → prop-has-all-paths-↓ (SetQuot-is-set _ _)) module SE = SurjExt (λ c → ≃-is-set SetQuot-is-set SetQuot-is-set) h h-is-surj eqv-on-image eqv-is-const abstract eqv : ∀ c → codeBA b₀ (f c) ≃ codeBB b₀ (g c) eqv = SE.ext eqv-β : ∀ d → eqv (h d) == eqv-on-image d eqv-β = SE.β module CodeBP (b₀ : B) = PushoutRec (codeBA b₀) (codeBB b₀) (ua ∘ CodeBAEquivCodeBB.eqv b₀) codeBP : B → Pushout span → Type (lmax (lmax (lmax i j) k) l) codeBP = CodeBP.f abstract codeBP-level : ∀ {a₀ p₁} → is-set (codeBP a₀ p₁) codeBP-level {a₀} {p₁} = Pushout-elim {P = λ p₁ → is-set (codeBP a₀ p₁)} (λ a₁ → SetQuot-is-set) (λ b₁ → SetQuot-is-set) (λ c₁ → prop-has-all-paths-↓ is-set-is-prop) p₁ codeBP-is-set = codeBP-level abstract transp-cBP-glue : ∀ {b₀} d₁ (pcBA : precodeBA b₀ (f (h d₁))) → transport (codeBP b₀) (glue (h d₁)) q[ pcBA ] == q[ pcBA ba⟦ d₁ ⟧b idp₀ ] transp-cBP-glue {b₀} d₁ pcBA = transport (codeBP b₀) (glue (h d₁)) q[ pcBA ] =⟨ ap (λ e → coe e q[ pcBA ]) (CodeBP.glue-β b₀ (h d₁) ∙ ap ua (CodeBAEquivCodeBB.eqv-β b₀ d₁)) ⟩ coe (ua (CodeBAEquivCodeBB.eqv-on-image b₀ d₁)) q[ pcBA ] =⟨ coe-β (CodeBAEquivCodeBB.eqv-on-image b₀ d₁) q[ pcBA ] ⟩ q[ pcBA ba⟦ d₁ ⟧b idp₀ ] =∎ transp-cBP-!glue : ∀ {b₀} d₁ (pcBB : precodeBB b₀ (g (h d₁))) → transport (codeBP b₀) (! (glue (h d₁))) q[ pcBB ] == q[ pcBB bb⟦ d₁ ⟧a idp₀ ] transp-cBP-!glue {b₀} d₁ pcBB = transport (codeBP b₀) (! (glue (h d₁))) q[ pcBB ] =⟨ ap (λ e → coe e q[ pcBB ]) (ap-! (codeBP b₀) (glue (h d₁))) ∙ coe-! (ap (codeBP b₀) (glue (h d₁))) q[ pcBB ] ⟩ transport! (codeBP b₀) (glue (h d₁)) q[ pcBB ] =⟨ ap (λ e → coe! e q[ pcBB ]) (CodeBP.glue-β b₀ (h d₁) ∙ ap ua (CodeBAEquivCodeBB.eqv-β b₀ d₁)) ⟩ coe! (ua (CodeBAEquivCodeBB.eqv-on-image b₀ d₁)) q[ pcBB ] =⟨ coe!-β (CodeBAEquivCodeBB.eqv-on-image b₀ d₁) q[ pcBB ] ⟩ q[ pcBB bb⟦ d₁ ⟧a idp₀ ] =∎ -- code to path pcBA-to-path : ∀ {b₀ a₁} → precodeBA b₀ a₁ → right b₀ =₀ left a₁ :> Pushout span pcBB-to-path : ∀ {b₀ b₁} → precodeBB b₀ b₁ → right b₀ =₀ right b₁ :> Pushout span pcBA-to-path (pc-bba d pc pA) = pcBB-to-path pc ∙₀' !₀ [ glue (h d) ] ∙₀' ap₀ left pA pcBB-to-path (pc-b pB) = ap₀ right pB pcBB-to-path (pc-bab d pc pB) = pcBA-to-path pc ∙₀' [ glue (h d) ] ∙₀' ap₀ right pB abstract pcBA-to-path-rel : ∀ {b₀ a₁} {pcBA₀ pcBA₁ : precodeBA b₀ a₁} → precodeBA-rel pcBA₀ pcBA₁ → pcBA-to-path pcBA₀ == pcBA-to-path pcBA₁ pcBB-to-path-rel : ∀ {b₀ b₁} {pcBB₀ pcBB₁ : precodeBB b₀ b₁} → precodeBB-rel pcBB₀ pcBB₁ → pcBB-to-path pcBB₀ == pcBB-to-path pcBB₁ pcBA-to-path-rel (pcBAr-idp₀-idp₀ pcBA) = ∙₀'-assoc (pcBA-to-path pcBA) [ glue (h _) ] [ ! (glue (h _)) ] ∙ ap (λ p → pcBA-to-path pcBA ∙₀' [ p ]) (!-inv'-r (glue (h _))) ∙ ∙₀'-unit-r (pcBA-to-path pcBA) pcBA-to-path-rel (pcBAr-cong pcBB pA) = pcBB-to-path-rel pcBB |in-ctx _∙₀' !₀ [ glue (h _) ] ∙₀' ap₀ left pA pcBB-to-path-rel (pcBBr-idp₀-idp₀ pcBB) = ∙₀'-assoc (pcBB-to-path pcBB) [ ! (glue (h _)) ] [ glue (h _) ] ∙ ap (λ p → pcBB-to-path pcBB ∙₀' [ p ]) (!-inv'-l (glue (h _))) ∙ ∙₀'-unit-r (pcBB-to-path pcBB) pcBB-to-path-rel (pcBBr-switch pcBB pC) = ap (_∙₀' [ glue (h _) ]) (! (∙₀'-assoc (pcBB-to-path pcBB) [ ! (glue (h _)) ] (ap₀ left (ap₀ f pC)))) ∙ ∙₀'-assoc (pcBB-to-path pcBB ∙₀' [ ! (glue (h _)) ]) (ap₀ left (ap₀ f pC)) [ glue (h _) ] ∙ ap ((pcBB-to-path pcBB ∙₀' [ ! (glue (h _)) ]) ∙₀'_) (natural₀ pC) where natural : ∀ {c₀ c₁} (p : c₀ == c₁) → (ap left (ap f p) ∙' glue c₁) == (glue c₀ ∙' ap right (ap g p)) :> (left (f c₀) == right (g c₁) :> Pushout span) natural idp = ∙'-unit-l (glue _) natural₀ : ∀ {c₀ c₁} (p : c₀ =₀ c₁) → (ap₀ left (ap₀ f p) ∙₀' [ glue c₁ ]) == ([ glue c₀ ] ∙₀' ap₀ right (ap₀ g p)) :> (left (f c₀) =₀ right (g c₁) :> Pushout span) natural₀ = Trunc-elim (λ _ → =-preserves-set Trunc-level) (ap [_] ∘ natural) pcBB-to-path-rel (pcBBr-cong pcBA pB) = pcBA-to-path-rel pcBA |in-ctx _∙₀' [ glue (h _) ] ∙₀' ap₀ right pB decodeBA : ∀ {b₀ a₁} → codeBA b₀ a₁ → right b₀ =₀ left a₁ :> Pushout span decodeBB : ∀ {b₀ b₁} → codeBB b₀ b₁ → right b₀ =₀ right b₁ :> Pushout span decodeBA = SetQuot-rec Trunc-level pcBA-to-path pcBA-to-path-rel decodeBB = SetQuot-rec Trunc-level pcBB-to-path pcBB-to-path-rel abstract decodeBA-is-decodeBB : ∀ {b₀} c₁ → decodeBA {b₀} {f c₁} == decodeBB {b₀} {g c₁} [ (λ p₁ → codeBP b₀ p₁ → right b₀ =₀ p₁) ↓ glue c₁ ] decodeBA-is-decodeBB {b₀ = b₀} = SurjExt.ext (λ _ → ↓-preserves-level $ Π-is-set λ _ → Trunc-level) h h-is-surj (λ d₁ → ↓-→-from-transp $ λ= $ SetQuot-elim {P = λ cBA → transport (right b₀ =₀_) (glue (h d₁)) (decodeBA cBA) == decodeBB (transport (codeBP b₀) (glue (h d₁)) cBA)} (λ _ → =-preserves-set Trunc-level) (λ pcBA → transport (right b₀ =₀_) (glue (h d₁)) (pcBA-to-path pcBA) =⟨ transp₀-cst=₀idf [ glue (h d₁) ] (pcBA-to-path pcBA) ⟩ pcBA-to-path pcBA ∙₀' [ glue (h d₁) ] =⟨ ! $ ap (λ e → decodeBB (–> e q[ pcBA ])) (CodeBAEquivCodeBB.eqv-β b₀ d₁) ⟩ decodeBB (–> (CodeBAEquivCodeBB.eqv b₀ (h d₁)) q[ pcBA ]) =⟨ ! $ ap decodeBB (coe-β (CodeBAEquivCodeBB.eqv b₀ (h d₁)) q[ pcBA ]) ⟩ decodeBB (coe (ua (CodeBAEquivCodeBB.eqv b₀ (h d₁))) q[ pcBA ]) =⟨ ! $ ap (λ p → decodeBB (coe p q[ pcBA ])) (CodeBP.glue-β b₀ (h d₁)) ⟩ decodeBB (transport (codeBP b₀) (glue (h d₁)) q[ pcBA ]) =∎) (λ _ → prop-has-all-paths-↓ $ Trunc-level {n = 0} _ _)) (λ _ _ _ → prop-has-all-paths-↓ $ ↓-level $ Π-is-set λ _ → Trunc-level) decodeBP : ∀ {b₀ p₁} → codeBP b₀ p₁ → right b₀ =₀ p₁ decodeBP {p₁ = p₁} = Pushout-elim (λ a₁ → decodeBA) (λ b₁ → decodeBB) decodeBA-is-decodeBB p₁
47.718519
112
0.540748
8b973f9c44c456cf4e758d63532ab04004aba2ea
5,620
agda
Agda
Cubical/Algebra/CommRing/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:00.000Z
2022-03-05T00:29:00.000Z
Cubical/Algebra/CommRing/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.CommRing.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring.Base open Iso private variable ℓ ℓ' : Level record IsCommRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor iscommring field isRing : IsRing 0r 1r _+_ _·_ -_ ·Comm : (x y : R) → x · y ≡ y · x open IsRing isRing public record CommRingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor commringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isCommRing : IsCommRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsCommRing isCommRing public CommRing : ∀ ℓ → Type (ℓ-suc ℓ) CommRing ℓ = TypeWithStr ℓ CommRingStr makeIsCommRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) → IsCommRing 0r 1r _+_ _·_ -_ makeIsCommRing {_+_ = _+_} is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm = iscommring (makeIsRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid (λ x → ·-comm _ _ ∙ ·-rid x) ·-rdist-+ (λ x y z → ·-comm _ _ ∙∙ ·-rdist-+ z x y ∙∙ λ i → (·-comm z x i) + (·-comm z y i))) ·-comm makeCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) → CommRing ℓ makeCommRing 0r 1r _+_ _·_ -_ is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm = _ , commringstr _ _ _ _ _ (makeIsCommRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm) CommRingStr→RingStr : {A : Type ℓ} → CommRingStr A → RingStr A CommRingStr→RingStr (commringstr _ _ _ _ _ H) = ringstr _ _ _ _ _ (IsCommRing.isRing H) CommRing→Ring : CommRing ℓ → Ring ℓ CommRing→Ring (_ , commringstr _ _ _ _ _ H) = _ , ringstr _ _ _ _ _ (IsCommRing.isRing H) CommRingHom : (R : CommRing ℓ) (S : CommRing ℓ') → Type (ℓ-max ℓ ℓ') CommRingHom R S = RingHom (CommRing→Ring R) (CommRing→Ring S) IsCommRingEquiv : {A : Type ℓ} {B : Type ℓ'} (R : CommRingStr A) (e : A ≃ B) (S : CommRingStr B) → Type (ℓ-max ℓ ℓ') IsCommRingEquiv R e S = IsRingHom (CommRingStr→RingStr R) (e .fst) (CommRingStr→RingStr S) CommRingEquiv : (R : CommRing ℓ) (S : CommRing ℓ') → Type (ℓ-max ℓ ℓ') CommRingEquiv R S = Σ[ e ∈ (R .fst ≃ S .fst) ] IsCommRingEquiv (R .snd) e (S .snd) CommRingEquiv→CommRingHom : {A : CommRing ℓ} {B : CommRing ℓ'} → CommRingEquiv A B → CommRingHom A B CommRingEquiv→CommRingHom (e , eIsHom) = e .fst , eIsHom isPropIsCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsCommRing 0r 1r _+_ _·_ -_) isPropIsCommRing 0r 1r _+_ _·_ -_ (iscommring RR RC) (iscommring SR SC) = λ i → iscommring (isPropIsRing _ _ _ _ _ RR SR i) (isPropComm RC SC i) where isSetR : isSet _ isSetR = RR .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set isPropComm : isProp ((x y : _) → x · y ≡ y · x) isPropComm = isPropΠ2 λ _ _ → isSetR _ _ 𝒮ᴰ-CommRing : DUARel (𝒮-Univ ℓ) CommRingStr ℓ 𝒮ᴰ-CommRing = 𝒮ᴰ-Record (𝒮-Univ _) IsCommRingEquiv (fields: data[ 0r ∣ null ∣ pres0 ] data[ 1r ∣ null ∣ pres1 ] data[ _+_ ∣ bin ∣ pres+ ] data[ _·_ ∣ bin ∣ pres· ] data[ -_ ∣ autoDUARel _ _ ∣ pres- ] prop[ isCommRing ∣ (λ _ _ → isPropIsCommRing _ _ _ _ _) ]) where open CommRingStr open IsRingHom -- faster with some sharing null = autoDUARel (𝒮-Univ _) (λ A → A) bin = autoDUARel (𝒮-Univ _) (λ A → A → A → A) CommRingPath : (R S : CommRing ℓ) → CommRingEquiv R S ≃ (R ≡ S) CommRingPath = ∫ 𝒮ᴰ-CommRing .UARel.ua uaCommRing : {A B : CommRing ℓ} → CommRingEquiv A B → A ≡ B uaCommRing {A = A} {B = B} = equivFun (CommRingPath A B) isSetCommRing : ((R , str) : CommRing ℓ) → isSet R isSetCommRing (R , str) = str .CommRingStr.is-set isGroupoidCommRing : isGroupoid (CommRing ℓ) isGroupoidCommRing _ _ = isOfHLevelRespectEquiv 2 (CommRingPath _ _) (isSetRingEquiv _ _)
36.493506
115
0.555516
5eeabf3420c904053d139410b8ff1d08517e75e2
1,287
agda
Agda
src/Prelude/Char.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Prelude/Char.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Prelude/Char.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Prelude.Char where open import Prelude.Bool open import Prelude.Nat open import Prelude.Equality open import Prelude.Equality.Unsafe open import Prelude.Decidable open import Prelude.Function open import Prelude.Ord open import Agda.Builtin.Char open Agda.Builtin.Char public using (Char) isLower = primIsLower isDigit = primIsDigit isSpace = primIsSpace isAscii = primIsAscii isLatin1 = primIsLatin1 isPrint = primIsPrint isHexDigit = primIsHexDigit isAlpha = primIsAlpha toUpper = primToUpper toLower = primToLower isAlphaNum : Char → Bool isAlphaNum c = isAlpha c || isDigit c charToNat = primCharToNat natToChar = primNatToChar charToNat-inj : ∀ {x y} → charToNat x ≡ charToNat y → x ≡ y charToNat-inj {x} p with charToNat x charToNat-inj refl | ._ = unsafeEqual -- need to be strict in the proof! --- Equality -- eqChar : Char → Char → Bool eqChar = eqNat on charToNat instance EqChar : Eq Char _==_ {{EqChar}} x y with eqChar x y ... | false = no unsafeNotEqual ... | true = yes unsafeEqual -- Missing primitive isUpper isUpper : Char → Bool isUpper c = isNo (toLower c == c) --- Ord --- instance OrdChar : Ord Char OrdChar = OrdBy charToNat-inj OrdLawsChar : Ord/Laws Char OrdLawsChar = OrdLawsBy charToNat-inj
21.45
73
0.724942
41854654c0943b14c4ab3fdb35150f8fa0f3d669
6,917
agda
Agda
test/asset/agda-stdlib-1.0/Data/Integer/DivMod.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Integer/DivMod.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Integer/DivMod.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Integer division ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.DivMod where open import Data.Nat as ℕ using (ℕ) import Data.Nat.Properties as NProp import Data.Nat.DivMod as NDM import Data.Sign as S import Data.Sign.Properties as SProp open import Data.Integer as ℤ open import Data.Integer.Properties open import Data.Fin as Fin using (Fin) import Data.Fin.Properties as FProp open import Function open import Relation.Nullary.Decidable open import Relation.Binary.PropositionalEquality infixl 7 _divℕ_ _div_ _modℕ_ _mod_ _divℕ_ : (dividend : ℤ) (divisor : ℕ) {≢0 : False (divisor ℕ.≟ 0)} → ℤ (+ n divℕ d) {d≠0} = + (n NDM.div d) {d≠0} (-[1+ n ] divℕ d) {d≠0} with (ℕ.suc n NDM.divMod d) {d≠0} ... | NDM.result q Fin.zero eq = - (+ q) ... | NDM.result q (Fin.suc r) eq = -[1+ q ] _div_ : (dividend divisor : ℤ) {≢0 : False (∣ divisor ∣ ℕ.≟ 0)} → ℤ (n div d) {d≢0} = (sign d ◃ 1) ℤ.* (n divℕ ∣ d ∣) {d≢0} _modℕ_ : (dividend : ℤ) (divisor : ℕ) {≠0 : False (divisor ℕ.≟ 0)} → ℕ (+ n modℕ d) {d≠0} = (n NDM.% d) {d≠0} (-[1+ n ] modℕ d) {d≠0} with (ℕ.suc n NDM.divMod d) {d≠0} ... | NDM.result q Fin.zero eq = 0 ... | NDM.result q (Fin.suc r) eq = d ℕ.∸ ℕ.suc (Fin.toℕ r) _mod_ : (dividend divisor : ℤ) {≠0 : False (∣ divisor ∣ ℕ.≟ 0)} → ℕ (n mod d) {d≢0} = (n modℕ ∣ d ∣) {d≢0} n%ℕd<d : ∀ n d {d≢0} → (n modℕ d) {d≢0} ℕ.< d n%ℕd<d n ℕ.zero {()} n%ℕd<d (+ n) sd@(ℕ.suc d) = NDM.a%n<n n d n%ℕd<d -[1+ n ] sd@(ℕ.suc d) with ℕ.suc n NDM.divMod sd ... | NDM.result q Fin.zero eq = ℕ.s≤s ℕ.z≤n ... | NDM.result q (Fin.suc r) eq = ℕ.s≤s (NProp.n∸m≤n (Fin.toℕ r) d) n%d<d : ∀ n d {d≢0} → (n mod d) {d≢0} ℕ.< ℤ.∣ d ∣ n%d<d n (+ 0) {()} n%d<d n (+ ℕ.suc d) = n%ℕd<d n (ℕ.suc d) n%d<d n -[1+ d ] = n%ℕd<d n (ℕ.suc d) a≡a%ℕn+[a/ℕn]*n : ∀ n d {d≢0} → n ≡ + (n modℕ d) {d≢0} + (n divℕ d) {d≢0} * + d a≡a%ℕn+[a/ℕn]*n _ ℕ.zero {()} a≡a%ℕn+[a/ℕn]*n (+ n) sd@(ℕ.suc d) = let q = n NDM.div sd; r = n NDM.% sd in begin + n ≡⟨ cong +_ (NDM.a≡a%n+[a/n]*n n d) ⟩ + (r ℕ.+ q ℕ.* sd) ≡⟨ pos-+-commute r (q ℕ.* sd) ⟩ + r + + (q ℕ.* sd) ≡⟨ cong (_+_ (+ (+ n modℕ sd))) (sym (pos-distrib-* q sd)) ⟩ + r + + q * + sd ∎ where open ≡-Reasoning a≡a%ℕn+[a/ℕn]*n -[1+ n ] sd@(ℕ.suc d) with (ℕ.suc n) NDM.divMod (ℕ.suc d) ... | NDM.result q Fin.zero eq = begin -[1+ n ] ≡⟨ cong (-_ ∘′ +_) eq ⟩ - + (q ℕ.* sd) ≡⟨ cong -_ (sym (pos-distrib-* q sd)) ⟩ - (+ q * + sd) ≡⟨ neg-distribˡ-* (+ q) (+ sd) ⟩ - (+ q) * + sd ≡⟨ sym (+-identityˡ (- (+ q) * + sd)) ⟩ + 0 + - (+ q) * + sd ∎ where open ≡-Reasoning ... | NDM.result q (Fin.suc r) eq = begin let sd = ℕ.suc d; sr = ℕ.suc (Fin.toℕ r); sq = ℕ.suc q in -[1+ n ] ≡⟨ cong (-_ ∘′ +_) eq ⟩ - + (sr ℕ.+ q ℕ.* sd) ≡⟨ cong -_ (pos-+-commute sr (q ℕ.* sd)) ⟩ - (+ sr + + (q ℕ.* sd)) ≡⟨ neg-distrib-+ (+ sr) (+ (q ℕ.* sd)) ⟩ - + sr - + (q ℕ.* sd) ≡⟨ cong (_-_ (- + sr)) (sym (pos-distrib-* q sd)) ⟩ - + sr - (+ q) * (+ sd) ≡⟨⟩ - + sr - pred (+ sq) * (+ sd) ≡⟨ cong (_-_ (- + sr)) (*-distribʳ-+ (+ sd) (- + 1) (+ sq)) ⟩ - + sr - (- (+ 1) * + sd + (+ sq * + sd)) ≡⟨ cong (_+_ (- (+ sr))) (neg-distrib-+ (- (+ 1) * + sd) (+ sq * + sd)) ⟩ - + sr + (- (-[1+ 0 ] * + sd) + - (+ sq * + sd)) ≡⟨ cong₂ (λ p q → - + sr + (- p + q)) (-1*n≡-n (+ sd)) (neg-distribˡ-* (+ sq) (+ sd)) ⟩ - + sr + ((- - + sd) + -[1+ q ] * + sd) ≡⟨ sym (+-assoc (- + sr) (- - + sd) (-[1+ q ] * + sd)) ⟩ (+ sd - + sr) + -[1+ q ] * + sd ≡⟨ cong (_+ -[1+ q ] * + sd) (fin-inv d r) ⟩ + (sd ℕ.∸ sr) + -[1+ q ] * + sd ∎ where open ≡-Reasoning fin-inv : ∀ d (k : Fin d) → + (ℕ.suc d) - + ℕ.suc (Fin.toℕ k) ≡ + (d ℕ.∸ Fin.toℕ k) fin-inv (ℕ.suc n) Fin.zero = refl fin-inv (ℕ.suc n) (Fin.suc k) = ⊖-≥ {n} {Fin.toℕ k} (NProp.<⇒≤ (FProp.toℕ<n k)) [n/ℕd]*d≤n : ∀ n d {d≢0} → (n divℕ d) {d≢0} ℤ.* ℤ.+ d ℤ.≤ n [n/ℕd]*d≤n n ℕ.zero {()} [n/ℕd]*d≤n n (ℕ.suc d) = let q = n divℕ ℕ.suc d; r = n modℕ ℕ.suc d in begin q ℤ.* ℤ.+ (ℕ.suc d) ≤⟨ n≤m+n r ⟩ ℤ.+ r ℤ.+ q ℤ.* ℤ.+ (ℕ.suc d) ≡⟨ sym (a≡a%ℕn+[a/ℕn]*n n (ℕ.suc d)) ⟩ n ∎ where open ≤-Reasoning div-pos-is-divℕ : ∀ n d {d≢0} → (n div + d) {d≢0} ≡ (n divℕ d) {d≢0} div-pos-is-divℕ n ℕ.zero {()} div-pos-is-divℕ n (ℕ.suc d) = *-identityˡ (n divℕ ℕ.suc d) div-neg-is-neg-divℕ : ∀ n d {d≢0} {∣d∣≢0} → (n div (- ℤ.+ d)) {∣d∣≢0} ≡ - (n divℕ d) {d≢0} div-neg-is-neg-divℕ n ℕ.zero {()} div-neg-is-neg-divℕ n (ℕ.suc d) = -1*n≡-n (n divℕ ℕ.suc d) 0≤n⇒0≤n/ℕd : ∀ n d {d≢0} → + 0 ℤ.≤ n → + 0 ℤ.≤ (n divℕ d) {d≢0} 0≤n⇒0≤n/ℕd (+ n) d (+≤+ m≤n) = +≤+ ℕ.z≤n 0≤n⇒0≤n/d : ∀ n d {d≢0} → + 0 ℤ.≤ n → + 0 ℤ.≤ d → + 0 ℤ.≤ (n div d) {d≢0} 0≤n⇒0≤n/d n (+ d) {d≢0} 0≤n (+≤+ 0≤d) rewrite div-pos-is-divℕ n d {d≢0} = 0≤n⇒0≤n/ℕd n d 0≤n [n/d]*d≤n : ∀ n d {d≢0} → (n div d) {d≢0} ℤ.* d ℤ.≤ n [n/d]*d≤n n (+ 0) {()} [n/d]*d≤n n (+ ℕ.suc d) = begin let sd = ℕ.suc d in n div + sd * + sd ≡⟨ cong (_* (+ sd)) (div-pos-is-divℕ n sd) ⟩ n divℕ sd * + sd ≤⟨ [n/ℕd]*d≤n n sd ⟩ n ∎ where open ≤-Reasoning [n/d]*d≤n n -[1+ d ] = begin let sd = ℕ.suc d in n div (- + sd) * - + sd ≡⟨ cong (_* (- + sd)) (div-neg-is-neg-divℕ n sd) ⟩ - (n divℕ sd) * - + sd ≡⟨ sym (neg-distribˡ-* (n divℕ sd) (- + sd)) ⟩ - (n divℕ sd * - + sd) ≡⟨ neg-distribʳ-* (n divℕ sd) (- + sd) ⟩ n divℕ sd * + sd ≤⟨ [n/ℕd]*d≤n n sd ⟩ n ∎ where open ≤-Reasoning n<s[n/ℕd]*d : ∀ n d {d≢0} → n ℤ.< ℤ.suc ((n divℕ d) {d≢0}) ℤ.* ℤ.+ d n<s[n/ℕd]*d n ℕ.zero {()} n<s[n/ℕd]*d n sd@(ℕ.suc d) = begin suc n ≡⟨ cong suc (a≡a%ℕn+[a/ℕn]*n n sd) ⟩ suc (ℤ.+ r ℤ.+ q ℤ.* +sd) ≤⟨ +-monoˡ-< (q ℤ.* +sd) {ℤ.+ r} (ℤ.+≤+ (n%ℕd<d n sd)) ⟩ +sd ℤ.+ q ℤ.* +sd ≡⟨ sym ([1+m]*n≡n+m*n q +sd) ⟩ ℤ.suc q ℤ.* +sd ∎ where q = n divℕ sd; +sd = ℤ.+ sd; r = n modℕ sd open ≤-Reasoning a≡a%n+[a/n]*n : ∀ a n {≢0} → a ≡ + (a mod n) {≢0} + (a div n) {≢0} * n a≡a%n+[a/n]*n n (+ 0) {()} a≡a%n+[a/n]*n n (+ ℕ.suc d) = begin let sd = ℕ.suc d; r = n modℕ sd; q = n divℕ sd; qsd = q * + sd in n ≡⟨ a≡a%ℕn+[a/ℕn]*n n sd ⟩ + r + qsd ≡⟨ cong (λ p → + r + p * + sd) (sym (div-pos-is-divℕ n sd)) ⟩ + r + n div + sd * + sd ∎ where open ≡-Reasoning a≡a%n+[a/n]*n n -[1+ d ] = begin let sd = ℕ.suc d; r = n modℕ sd; q = n divℕ sd; qsd = q * + sd in n ≡⟨ a≡a%ℕn+[a/ℕn]*n n sd ⟩ + r + q * + sd ≡⟨⟩ + r + q * - -[1+ d ] ≡⟨ cong (_+_ (+ r)) (sym (neg-distribʳ-* q -[1+ d ])) ⟩ + r + - (q * -[1+ d ]) ≡⟨ cong (_+_ (+ r)) (neg-distribˡ-* q -[1+ d ]) ⟩ + r + - q * -[1+ d ] ≡⟨ cong (_+_ (+ r) ∘′ (_* -[1+ d ])) (sym (-1*n≡-n q)) ⟩ + r + n div -[1+ d ] * -[1+ d ] ∎ where open ≡-Reasoning
41.419162
90
0.431401
4aab197725fc3d963bcb4d4e3f8c37467bb6dac2
10,315
agda
Agda
Agda/localizations-rings.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/localizations-rings.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/localizations-rings.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split #-} module localizations-rings where import subrings open subrings public is-invertible-Ring : {l1 : Level} (R : Ring l1) (x : type-Ring R) → UU l1 is-invertible-Ring R = is-invertible-Monoid (multiplicative-monoid-Ring R) is-prop-is-invertible-Ring : {l1 : Level} (R : Ring l1) (x : type-Ring R) → is-prop (is-invertible-Ring R x) is-prop-is-invertible-Ring R = is-prop-is-invertible-Monoid (multiplicative-monoid-Ring R) -------------------------------------------------------------------------------- {- We introduce homomorphism that invert specific elements -} inverts-element-hom-Ring : {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (x : type-Ring R1) → (f : hom-Ring R1 R2) → UU l2 inverts-element-hom-Ring R1 R2 x f = is-invertible-Ring R2 (map-hom-Ring R1 R2 f x) is-prop-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) → is-prop (inverts-element-hom-Ring R S x f) is-prop-inverts-element-hom-Ring R S x f = is-prop-is-invertible-Ring S (map-hom-Ring R S f x) inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → type-Ring S inv-inverts-element-hom-Ring R S x f H = pr1 H is-left-inverse-inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → Id ( mul-Ring S ( inv-inverts-element-hom-Ring R S x f H) ( map-hom-Ring R S f x)) ( unit-Ring S) is-left-inverse-inv-inverts-element-hom-Ring R S x f H = pr1 (pr2 H) is-right-inverse-inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → Id ( mul-Ring S ( map-hom-Ring R S f x) ( inv-inverts-element-hom-Ring R S x f H)) ( unit-Ring S) is-right-inverse-inv-inverts-element-hom-Ring R S x f H = pr2 (pr2 H) inverts-element-comp-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (g : hom-Ring S T) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → inverts-element-hom-Ring R T x (comp-hom-Ring R S T g f) inverts-element-comp-hom-Ring R S T x g f H = pair ( map-hom-Ring S T g (inv-inverts-element-hom-Ring R S x f H)) ( pair ( ( inv ( preserves-mul-hom-Ring S T g ( inv-inverts-element-hom-Ring R S x f H) ( map-hom-Ring R S f x))) ∙ ( ( ap ( map-hom-Ring S T g) ( is-left-inverse-inv-inverts-element-hom-Ring R S x f H)) ∙ ( preserves-unit-hom-Ring S T g))) ( ( inv ( preserves-mul-hom-Ring S T g ( map-hom-Ring R S f x) ( inv-inverts-element-hom-Ring R S x f H))) ∙ ( ( ap ( map-hom-Ring S T g) ( is-right-inverse-inv-inverts-element-hom-Ring R S x f H)) ∙ ( preserves-unit-hom-Ring S T g)))) {- We state the universal property of the localization of a Ring at a single element x ∈ R. -} precomp-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → hom-Ring S T → Σ (hom-Ring R T) (inverts-element-hom-Ring R T x) precomp-universal-property-localization-Ring R S T x f H g = pair (comp-hom-Ring R S T g f) (inverts-element-comp-hom-Ring R S T x g f H) universal-property-localization-Ring : (l : Level) {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-localization-Ring l R S x f H = (T : Ring l) → is-equiv (precomp-universal-property-localization-Ring R S T x f H) unique-extension-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → is-contr (Σ (hom-Ring S T) (λ g → htpy-hom-Ring R T (comp-hom-Ring R S T g f) h)) unique-extension-universal-property-localization-Ring R S T x f H up-f h K = is-contr-equiv' ( fib (precomp-universal-property-localization-Ring R S T x f H) (pair h K)) ( equiv-tot ( λ g → ( equiv-htpy-hom-Ring-eq R T (comp-hom-Ring R S T g f) h) ∘e ( equiv-Eq-total-subtype-eq ( is-prop-inverts-element-hom-Ring R T x) ( precomp-universal-property-localization-Ring R S T x f H g) ( pair h K)))) ( is-contr-map-is-equiv (up-f T) (pair h K)) center-unique-extension-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → Σ (hom-Ring S T) (λ g → htpy-hom-Ring R T (comp-hom-Ring R S T g f) h) center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K = center ( unique-extension-universal-property-localization-Ring R S T x f H up-f h K) map-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → hom-Ring S T map-universal-property-localization-Ring R S T x f H up-f h K = pr1 ( center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K) htpy-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → (up-f : universal-property-localization-Ring l3 R S x f H) → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → htpy-hom-Ring R T (comp-hom-Ring R S T (map-universal-property-localization-Ring R S T x f H up-f h K) f) h htpy-universal-property-localization-Ring R S T x f H up-f h K = pr2 ( center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K) {- We show that the type of localizations of a ring R at an element x is contractible. -} is-equiv-up-localization-up-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (inverts-f : inverts-element-hom-Ring R S x f) → (g : hom-Ring R T) (inverts-g : inverts-element-hom-Ring R T x g) → (h : hom-Ring S T) (H : htpy-hom-Ring R T (comp-hom-Ring R S T h f) g) → ({l : Level} → universal-property-localization-Ring l R S x f inverts-f) → ({l : Level} → universal-property-localization-Ring l R T x g inverts-g) → is-iso-hom-Ring S T h is-equiv-up-localization-up-localization-Ring R S T x f inverts-f g inverts-g h H up-f up-g = {!is-iso-is-equiv-hom-Ring!} -------------------------------------------------------------------------------- {- We introduce homomorphisms that invert all elements of a subset of a ring -} inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) → (f : hom-Ring R S) → UU (l1 ⊔ l2 ⊔ l3) inverts-subset-hom-Ring R S P f = (x : type-Ring R) (p : type-Prop (P x)) → inverts-element-hom-Ring R S x f is-prop-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) → (f : hom-Ring R S) → is-prop (inverts-subset-hom-Ring R S P f) is-prop-inverts-subset-hom-Ring R S P f = is-prop-Π (λ x → is-prop-Π (λ p → is-prop-inverts-element-hom-Ring R S x f)) inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → type-Ring S inv-inverts-subset-hom-Ring R S P f H x p = inv-inverts-element-hom-Ring R S x f (H x p) is-left-inverse-inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → Id (mul-Ring S (inv-inverts-subset-hom-Ring R S P f H x p) (map-hom-Ring R S f x)) (unit-Ring S) is-left-inverse-inv-inverts-subset-hom-Ring R S P f H x p = is-left-inverse-inv-inverts-element-hom-Ring R S x f (H x p) is-right-inverse-inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → Id (mul-Ring S (map-hom-Ring R S f x) (inv-inverts-subset-hom-Ring R S P f H x p)) (unit-Ring S) is-right-inverse-inv-inverts-subset-hom-Ring R S P f H x p = is-right-inverse-inv-inverts-element-hom-Ring R S x f (H x p) inverts-subset-comp-hom-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (P : subset-Ring l4 R) (g : hom-Ring S T) (f : hom-Ring R S) → inverts-subset-hom-Ring R S P f → inverts-subset-hom-Ring R T P (comp-hom-Ring R S T g f) inverts-subset-comp-hom-Ring R S T P g f H x p = inverts-element-comp-hom-Ring R S T x g f (H x p) {- We state the universal property of the localization of a Ring at a subset of R. -} precomp-universal-property-localization-subset-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (P : subset-Ring l4 R) → (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) → hom-Ring S T → Σ (hom-Ring R T) (inverts-subset-hom-Ring R T P) precomp-universal-property-localization-subset-Ring R S T P f H g = pair (comp-hom-Ring R S T g f) (inverts-subset-comp-hom-Ring R S T P g f H) universal-property-localization-subset-Ring : (l : Level) {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) → inverts-subset-hom-Ring R S P f → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-localization-subset-Ring l R S P f H = (T : Ring l) → is-equiv (precomp-universal-property-localization-subset-Ring R S T P f H)
45.241228
122
0.619777
d18072d5e13904ade06c3ee413d8a32acfb05f51
10,462
agda
Agda
Algebra.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Algebra.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Algebra.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Algebra where open import Prelude module _ {a} {A : Type a} (_∙_ : A → A → A) where Associative : Type a Associative = ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) Commutative : Type _ Commutative = ∀ x y → x ∙ y ≡ y ∙ x Idempotent : Type _ Idempotent = ∀ x → x ∙ x ≡ x Identityˡ : (A → B → B) → A → Type _ Identityˡ _∙_ x = ∀ y → x ∙ y ≡ y Zeroˡ : (A → B → A) → A → Type _ Zeroˡ _∙_ x = ∀ y → x ∙ y ≡ x Zeroʳ : (A → B → B) → B → Type _ Zeroʳ _∙_ x = ∀ y → y ∙ x ≡ x Identityʳ : (A → B → A) → B → Type _ Identityʳ _∙_ x = ∀ y → y ∙ x ≡ y _Distributesʳ_ : (A → B → B) → (B → B → B) → Type _ _⊗_ Distributesʳ _⊕_ = ∀ x y z → x ⊗ (y ⊕ z) ≡ (x ⊗ y) ⊕ (x ⊗ z) _Distributesˡ_ : (B → A → B) → (B → B → B) → Type _ _⊗_ Distributesˡ _⊕_ = ∀ x y z → (x ⊕ y) ⊗ z ≡ (x ⊗ z) ⊕ (y ⊗ z) Cancellableˡ : (A → B → C) → A → Type _ Cancellableˡ _⊗_ c = ∀ x y → c ⊗ x ≡ c ⊗ y → x ≡ y Cancellableʳ : (A → B → C) → B → Type _ Cancellableʳ _⊗_ c = ∀ x y → x ⊗ c ≡ y ⊗ c → x ≡ y Cancellativeˡ : (A → B → C) → Type _ Cancellativeˡ _⊗_ = ∀ c → Cancellableˡ _⊗_ c Cancellativeʳ : (A → B → C) → Type _ Cancellativeʳ _⊗_ = ∀ c → Cancellableʳ _⊗_ c record Semigroup ℓ : Type (ℓsuc ℓ) where infixl 6 _∙_ field 𝑆 : Type ℓ _∙_ : 𝑆 → 𝑆 → 𝑆 assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) record Monoid ℓ : Type (ℓsuc ℓ) where infixl 6 _∙_ field 𝑆 : Type ℓ _∙_ : 𝑆 → 𝑆 → 𝑆 ε : 𝑆 assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) ε∙ : ∀ x → ε ∙ x ≡ x ∙ε : ∀ x → x ∙ ε ≡ x semigroup : Semigroup ℓ semigroup = record { 𝑆 = 𝑆; _∙_ = _∙_; assoc = assoc } record MonoidHomomorphism_⟶_ {ℓ₁ ℓ₂} (from : Monoid ℓ₁) (to : Monoid ℓ₂) : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where open Monoid from open Monoid to renaming ( 𝑆 to 𝑅 ; _∙_ to _⊙_ ; ε to ⓔ ) field f : 𝑆 → 𝑅 ∙-homo : ∀ x y → f (x ∙ y) ≡ f x ⊙ f y ε-homo : f ε ≡ ⓔ record Group ℓ : Type (ℓsuc ℓ) where field monoid : Monoid ℓ open Monoid monoid public field -_ : 𝑆 → 𝑆 ∙⁻ : ∀ x → x ∙ - x ≡ ε ⁻∙ : ∀ x → - x ∙ x ≡ ε open import Path.Reasoning cancelˡ : Cancellativeˡ _∙_ cancelˡ x y z p = y ≡˘⟨ ε∙ y ⟩ ε ∙ y ≡˘⟨ cong (_∙ y) (⁻∙ x) ⟩ (- x ∙ x) ∙ y ≡⟨ assoc (- x) x y ⟩ - x ∙ (x ∙ y) ≡⟨ cong (- x ∙_) p ⟩ - x ∙ (x ∙ z) ≡˘⟨ assoc (- x) x z ⟩ (- x ∙ x) ∙ z ≡⟨ cong (_∙ z) (⁻∙ x) ⟩ ε ∙ z ≡⟨ ε∙ z ⟩ z ∎ cancelʳ : Cancellativeʳ _∙_ cancelʳ x y z p = y ≡˘⟨ ∙ε y ⟩ y ∙ ε ≡˘⟨ cong (y ∙_) (∙⁻ x) ⟩ y ∙ (x ∙ - x) ≡˘⟨ assoc y x (- x) ⟩ (y ∙ x) ∙ - x ≡⟨ cong (_∙ - x) p ⟩ (z ∙ x) ∙ - x ≡⟨ assoc z x (- x) ⟩ z ∙ (x ∙ - x) ≡⟨ cong (z ∙_) (∙⁻ x) ⟩ z ∙ ε ≡⟨ ∙ε z ⟩ z ∎ record CommutativeMonoid ℓ : Type (ℓsuc ℓ) where field monoid : Monoid ℓ open Monoid monoid public field comm : Commutative _∙_ record Semilattice ℓ : Type (ℓsuc ℓ) where field commutativeMonoid : CommutativeMonoid ℓ open CommutativeMonoid commutativeMonoid public field idem : Idempotent _∙_ record NearSemiring ℓ : Type (ℓsuc ℓ) where infixl 6 _+_ infixl 7 _*_ field 𝑅 : Type ℓ _+_ : 𝑅 → 𝑅 → 𝑅 _*_ : 𝑅 → 𝑅 → 𝑅 1# : 𝑅 0# : 𝑅 +-assoc : Associative _+_ *-assoc : Associative _*_ 0+ : Identityˡ _+_ 0# +0 : Identityʳ _+_ 0# 1* : Identityˡ _*_ 1# *1 : Identityʳ _*_ 1# 0* : Zeroˡ _*_ 0# ⟨+⟩* : _*_ Distributesˡ _+_ record Semiring ℓ : Type (ℓsuc ℓ) where field nearSemiring : NearSemiring ℓ open NearSemiring nearSemiring public field +-comm : Commutative _+_ *0 : Zeroʳ _*_ 0# *⟨+⟩ : _*_ Distributesʳ _+_ record IdempotentSemiring ℓ : Type (ℓsuc ℓ) where field semiring : Semiring ℓ open Semiring semiring public field +-idem : Idempotent _+_ record CommutativeSemiring ℓ : Type (ℓsuc ℓ) where field semiring : Semiring ℓ open Semiring semiring public field *-comm : Commutative _*_ record LeftSemimodule {ℓ₁} (semiring : Semiring ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where open Semiring semiring public field semimodule : CommutativeMonoid ℓ₂ open CommutativeMonoid semimodule renaming (_∙_ to _∪_) public renaming (𝑆 to 𝑉 ; assoc to ∪-assoc ; ε∙ to ∅∪ ; ∙ε to ∪∅ ; ε to ∅ ) infixr 7 _⋊_ field _⋊_ : 𝑅 → 𝑉 → 𝑉 ⟨*⟩⋊ : ∀ x y z → (x * y) ⋊ z ≡ x ⋊ (y ⋊ z) ⟨+⟩⋊ : ∀ x y z → (x + y) ⋊ z ≡ (x ⋊ z) ∪ (y ⋊ z) ⋊⟨∪⟩ : _⋊_ Distributesʳ _∪_ 1⋊ : Identityˡ _⋊_ 1# 0⋊ : ∀ x → 0# ⋊ x ≡ ∅ ⋊∅ : ∀ x → x ⋊ ∅ ≡ ∅ record SemimoduleHomomorphism[_]_⟶_ {ℓ₁ ℓ₂ ℓ₃} (rng : Semiring ℓ₁) (from : LeftSemimodule rng ℓ₂) (to : LeftSemimodule rng ℓ₃) : Type (ℓ₁ ℓ⊔ ℓsuc (ℓ₂ ℓ⊔ ℓ₃)) where open Semiring rng open LeftSemimodule from using (_⋊_; monoid) open LeftSemimodule to using () renaming (_⋊_ to _⋊′_; monoid to monoid′) field mon-homo : MonoidHomomorphism monoid ⟶ monoid′ open MonoidHomomorphism_⟶_ mon-homo public field ⋊-homo : ∀ r x → f (r ⋊ x) ≡ r ⋊′ f x record StarSemiring ℓ : Type (ℓsuc ℓ) where field semiring : Semiring ℓ open Semiring semiring public field _⋆ : 𝑅 → 𝑅 star-iterʳ : ∀ x → x ⋆ ≡ 1# + x * x ⋆ star-iterˡ : ∀ x → x ⋆ ≡ 1# + x ⋆ * x _⁺ : 𝑅 → 𝑅 x ⁺ = x * x ⋆ record Functor ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field 𝐹 : Type ℓ₁ → Type ℓ₂ map : (A → B) → 𝐹 A → 𝐹 B map-id : map (id {ℓ₁} {A}) ≡ id map-comp : (f : B → C) → (g : A → B) → map (f ∘ g) ≡ map f ∘ map g record Applicative ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field functor : Functor ℓ₁ ℓ₂ open Functor functor public infixl 5 _<*>_ field pure : A → 𝐹 A _<*>_ : 𝐹 (A → B) → 𝐹 A → 𝐹 B map-ap : (f : A → B) → map f ≡ pure f <*>_ pure-homo : (f : A → B) → (x : A) → map f (pure x) ≡ pure (f x) <*>-interchange : (u : 𝐹 (A → B)) → (y : A) → u <*> pure y ≡ map (_$ y) u <*>-comp : (u : 𝐹 (B → C)) → (v : 𝐹 (A → B)) → (w : 𝐹 A) → pure _∘′_ <*> u <*> v <*> w ≡ u <*> (v <*> w) record IsMonad {ℓ₁} {ℓ₂} (𝐹 : Type ℓ₁ → Type ℓ₂) : Type (ℓsuc ℓ₁ ℓ⊔ ℓ₂) where infixl 1 _>>=_ field _>>=_ : 𝐹 A → (A → 𝐹 B) → 𝐹 B return : A → 𝐹 A >>=-idˡ : (f : A → 𝐹 B) → (x : A) → (return x >>= f) ≡ f x >>=-idʳ : (x : 𝐹 A) → (x >>= return) ≡ x >>=-assoc : (xs : 𝐹 A) (f : A → 𝐹 B) (g : B → 𝐹 C) → ((xs >>= f) >>= g) ≡ (xs >>= (λ x → f x >>= g)) record Monad ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field 𝐹 : Type ℓ₁ → Type ℓ₂ isMonad : IsMonad 𝐹 open IsMonad isMonad public record MonadHomomorphism_⟶_ {ℓ₁ ℓ₂ ℓ₃} (from : Monad ℓ₁ ℓ₂) (to : Monad ℓ₁ ℓ₃) : Type (ℓsuc ℓ₁ ℓ⊔ ℓ₂ ℓ⊔ ℓ₃) where module F = Monad from module T = Monad to field f : F.𝐹 A → T.𝐹 A >>=-homo : (xs : F.𝐹 A) (k : A → F.𝐹 B) → (f xs T.>>= (f ∘ k)) ≡ f (xs F.>>= k) return-homo : (x : A) → f (F.return x) ≡ T.return x record IsSetMonad {ℓ₁} {ℓ₂} (𝐹 : Type ℓ₁ → Type ℓ₂) : Type (ℓsuc ℓ₁ ℓ⊔ ℓ₂) where infixl 1 _>>=_ field _>>=_ : 𝐹 A → (A → 𝐹 B) → 𝐹 B return : A → 𝐹 A trunc : isSet A → isSet (𝐹 A) >>=-idˡ : isSet B → (f : A → 𝐹 B) → (x : A) → (return x >>= f) ≡ f x >>=-idʳ : isSet A → (x : 𝐹 A) → (x >>= return) ≡ x >>=-assoc : isSet C → (xs : 𝐹 A) (f : A → 𝐹 B) (g : B → 𝐹 C) → ((xs >>= f) >>= g) ≡ (xs >>= (λ x → f x >>= g)) record SetMonad ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field 𝐹 : Type ℓ₁ → Type ℓ₂ isSetMonad : IsSetMonad 𝐹 open IsSetMonad isSetMonad public record SetMonadHomomorphism_⟶_ {ℓ₁ ℓ₂ ℓ₃} (from : SetMonad ℓ₁ ℓ₂) (to : SetMonad ℓ₁ ℓ₃) : Type (ℓsuc ℓ₁ ℓ⊔ ℓ₂ ℓ⊔ ℓ₃) where module F = SetMonad from module T = SetMonad to field f : F.𝐹 A → T.𝐹 A >>=-homo : (xs : F.𝐹 A) (k : A → F.𝐹 B) → (f xs T.>>= (f ∘ k)) ≡ f (xs F.>>= k) return-homo : (x : A) → f (F.return x) ≡ T.return x record Alternative ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field applicative : Applicative ℓ₁ ℓ₂ open Applicative applicative public field 0# : 𝐹 A _<|>_ : 𝐹 A → 𝐹 A → 𝐹 A <|>-idˡ : (x : 𝐹 A) → 0# <|> x ≡ x <|>-idʳ : (x : 𝐹 A) → x <|> 0# ≡ x 0-annˡ : (x : 𝐹 A) → 0# <*> x ≡ 0# {B} <|>-distrib : (x y : 𝐹 (A → B)) → (z : 𝐹 A) → (x <|> y) <*> z ≡ (x <*> z) <|> (y <*> z) record MonadPlus ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field monad : Monad ℓ₁ ℓ₂ open Monad monad public field 0# : 𝐹 A _<|>_ : 𝐹 A → 𝐹 A → 𝐹 A <|>-idˡ : (x : 𝐹 A) → 0# <|> x ≡ x <|>-idʳ : (x : 𝐹 A) → x <|> 0# ≡ x 0-annˡ : (x : A → 𝐹 B) → (0# >>= x) ≡ 0# <|>-distrib : (x y : 𝐹 A) → (z : A → 𝐹 B) → ((x <|> y) >>= z) ≡ (x >>= z) <|> (y >>= z) Endo : Type a → Type a Endo A = A → A endoMonoid : ∀ {a} → Type a → Monoid a endoMonoid A .Monoid.𝑆 = Endo A endoMonoid A .Monoid.ε x = x endoMonoid A .Monoid._∙_ f g x = f (g x) endoMonoid A .Monoid.assoc _ _ _ = refl endoMonoid A .Monoid.ε∙ _ = refl endoMonoid A .Monoid.∙ε _ = refl record Foldable ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field 𝐹 : Type ℓ₁ → Type ℓ₂ open Monoid ⦃ ... ⦄ field foldMap : {A : Type ℓ₁} ⦃ _ : Monoid ℓ₁ ⦄ → (A → 𝑆) → 𝐹 A → 𝑆 foldr : {A B : Type ℓ₁} → (A → B → B) → B → 𝐹 A → B foldr f b xs = foldMap ⦃ endoMonoid _ ⦄ f xs b record GradedMonad {ℓ₁} (monoid : Monoid ℓ₁) ℓ₂ ℓ₃ : Type (ℓ₁ ℓ⊔ ℓsuc (ℓ₂ ℓ⊔ ℓ₃)) where open Monoid monoid field 𝐹 : 𝑆 → Type ℓ₂ → Type ℓ₃ pure : A → 𝐹 ε A _>>=_ : ∀ {x y} → 𝐹 x A → (A → 𝐹 y B) → 𝐹 (x ∙ y) B >>=-idˡ : ∀ {s} (f : A → 𝐹 s B) → (x : A) → (pure x >>= f) ≡[ i ≔ 𝐹 (ε∙ s i) B ]≡ (f x) >>=-idʳ : ∀ {s} (x : 𝐹 s A) → (x >>= pure) ≡[ i ≔ 𝐹 (∙ε s i) A ]≡ x >>=-assoc : ∀ {x y z} (xs : 𝐹 x A) (f : A → 𝐹 y B) (g : B → 𝐹 z C) → ((xs >>= f) >>= g) ≡[ i ≔ 𝐹 (assoc x y z i) C ]≡ (xs >>= (λ x → f x >>= g)) infixr 0 proven-bind proven-bind : ∀ {x y z} → 𝐹 x A → (A → 𝐹 y B) → (x ∙ y) ≡ z → 𝐹 z B proven-bind xs f proof = subst (flip 𝐹 _) proof (xs >>= f) syntax proven-bind xs f proof = xs >>=[ proof ] f infixr 0 proven-do proven-do : ∀ {x y z} → 𝐹 x A → (A → 𝐹 y B) → (x ∙ y) ≡ z → 𝐹 z B proven-do = proven-bind syntax proven-do xs (λ x → e) proof = x ← xs [ proof ] e map : ∀ {x} → (A → B) → 𝐹 x A → 𝐹 x B map f xs = xs >>=[ ∙ε _ ] (pure ∘ f) _<*>_ : ∀ {x y} → 𝐹 x (A → B) → 𝐹 y A → 𝐹 (x ∙ y) B fs <*> xs = fs >>= flip map xs _>>=ε_ : ∀ {x} → 𝐹 x A → (A → 𝐹 ε B) → 𝐹 x B xs >>=ε f = xs >>=[ ∙ε _ ] f
27.824468
148
0.48289
43a0924a6494fafb41bfbea1c1a6c8905ccff775
1,830
agda
Agda
Label.agda
elpinal/subtyping-agda
fca08c53394f72c63d1bd7260fabfd70f73040b3
[ "Apache-2.0" ]
10
2022-01-16T07:11:04.000Z
2022-01-17T17:17:26.000Z
Label.agda
elpinal/subtyping-agda
fca08c53394f72c63d1bd7260fabfd70f73040b3
[ "Apache-2.0" ]
null
null
null
Label.agda
elpinal/subtyping-agda
fca08c53394f72c63d1bd7260fabfd70f73040b3
[ "Apache-2.0" ]
1
2022-01-24T10:47:09.000Z
2022-01-24T10:47:09.000Z
{-# OPTIONS --cubical --safe #-} module Label where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude using (isProp; transport) open import Cubical.Data.Nat using (ℕ; zero; suc; isSetℕ) open import Cubical.Data.Nat.Order using (_<_; _≤_; ≤-refl; <-weaken; ≤<-trans; m≤n-isProp; <-asym) open import Cubical.Data.Maybe using (Maybe; nothing; just) open import Cubical.Data.Empty using () renaming (rec to ⊥-elim) Label : Set Label = ℕ data Record (A : Set) : Label -> Set where nil : forall {l} -> Record A l cons : forall {l} -> Record A l -> (l' : Label) -> A -> .(l < l') -> Record A l' data _∈_ {A : Set} (l₁ : Label) {l : Label} : Record A l -> Set where here : forall {l'} {r : Record A l'} {x lt} -> l₁ ≡ l -> l₁ ∈ cons r l x lt there : forall {l'} {r : Record A l'} {x lt} -> l₁ ∈ r -> l₁ ∈ cons r l x lt find : forall {A} {l} -> (l₁ : Label) -> (r : Record A l) -> l₁ ∈ r -> A find l₁ (cons _ _ x _) (here e) = x find l₁ (cons r _ _ _) (there l₁∈r) = find l₁ r l₁∈r ∈-implies-≤ : forall {A} {l l'} {r : Record A l'} -> l ∈ r -> l ≤ l' ∈-implies-≤ {l = l} (here e) = transport (λ i -> l ≤ e i) ≤-refl ∈-implies-≤ (there {lt = lt} l∈r) = <-weaken (≤<-trans (∈-implies-≤ l∈r) lt) l∈r-isProp : forall {A} l {l'} (r : Record A l') -> isProp (l ∈ r) l∈r-isProp l {l'} (cons _ _ _ _) (here {lt = a} e1) (here {lt = b} e2) = λ i -> here {lt = m≤n-isProp a b i} (isSetℕ l l' e1 e2 i) l∈r-isProp l (cons {l = l₁} r _ _ _) (here {lt = k} e) (there y) = ⊥-elim (<-asym k (transport (λ i -> e i ≤ l₁) (∈-implies-≤ y))) l∈r-isProp l (cons {l = l₁} r _ _ _) (there {lt = k} x) (here e) = ⊥-elim (<-asym k (transport (λ i -> e i ≤ l₁) (∈-implies-≤ x))) l∈r-isProp l (cons r _ _ _) (there {lt = k1} x) (there {lt = k2} y) = let a = l∈r-isProp l r x y in λ i → there {lt = m≤n-isProp k1 k2 i} (a i)
50.833333
143
0.562842
046db4e252b79bfed7551ff4edf5f3eb01ce9186
117
agda
Agda
test/interaction/Issue1842.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue1842.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue1842.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS -v interaction.case:65 #-} data Bool : Set where true false : Bool test : Bool → Bool test x = {!x!}
14.625
38
0.615385
520565ae25c850ee1bd6d726711cf8ff97480c64
2,384
agda
Agda
agda/Heapsort/Impl2/Correctness/Permutation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/Heapsort/Impl2/Correctness/Permutation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/Heapsort/Impl2/Correctness/Permutation.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module Heapsort.Impl2.Correctness.Permutation {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ hiding (forget) renaming (flatten to flatten') open import BBHeap.Compound _≤_ open import BBHeap.Drop _≤_ tot≤ trans≤ open import BBHeap.Drop.Properties _≤_ tot≤ trans≤ open import BBHeap.Heapify _≤_ tot≤ trans≤ open import BBHeap.Insert _≤_ tot≤ trans≤ open import BBHeap.Insert.Properties _≤_ tot≤ trans≤ open import BBHeap.Order _≤_ open import BBHeap.Order.Properties _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List open import Heapsort.Impl2 _≤_ tot≤ trans≤ open import List.Permutation.Base A open import List.Permutation.Base.Equivalence A open import OList _≤_ open import Order.Total _≤_ tot≤ lemma-flatten-flatten' : {b : Bound}(h : BBHeap b)(accₕ : Acc h) → forget (flatten h accₕ) ∼ flatten' h lemma-flatten-flatten' leaf _ = ∼[] lemma-flatten-flatten' (left {l = l} {r = r} b≤x l⋘r) (acc rs) = ∼x /head /head (trans∼ (lemma-flatten-flatten' (drop⋘ b≤x l⋘r) (rs (drop⋘ b≤x l⋘r) (lemma-drop≤′ (cl b≤x l⋘r)))) (lemma-drop⋘∼ b≤x l⋘r)) lemma-flatten-flatten' (right {l = l} {r = r} b≤x l⋙r) (acc rs) = ∼x /head /head (trans∼ (lemma-flatten-flatten' (drop⋙ b≤x l⋙r) (rs (drop⋙ b≤x l⋙r) (lemma-drop≤′ (cr b≤x l⋙r)))) (lemma-drop⋙∼ b≤x l⋙r)) lemma-flatten'-flatten : {b : Bound}(h : BBHeap b)(accₕ : Acc h) → (flatten' h) ∼ (forget (flatten h accₕ)) lemma-flatten'-flatten h tₕ = sym∼ (lemma-flatten-flatten' h tₕ) theorem-heapsort∼ : (xs : List A) → xs ∼ forget (heapsort xs) theorem-heapsort∼ [] = ∼[] theorem-heapsort∼ (x ∷ xs) = let h = heapify xs ; accₕ = ≺-wf h ; hᵢ = insert lebx h ; accₕᵢ = ≺-wf hᵢ ; xs∼fh = theorem-heapsort∼ xs ; fh∼f'h = lemma-flatten-flatten' h accₕ ; xs∼f'h = trans∼ xs∼fh fh∼f'h ; xxs∼xf'h = ∼x /head /head xs∼f'h ; xf'h∼f'hᵢ = lemma-insert∼ lebx h ; xxs∼f'hᵢ = trans∼ xxs∼xf'h xf'h∼f'hᵢ ; f'hᵢ∼fhᵢ = lemma-flatten'-flatten hᵢ accₕᵢ in trans∼ xxs∼f'hᵢ f'hᵢ∼fhᵢ
48.653061
202
0.574245
43853de0cae4f6ac6d710571383ecb4dbac973a5
659
agda
Agda
test/Fail/Issue2231.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue2231.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/Issue2231.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2016-10-01, issue #2231 -- The termination checker should not always see through abstract definitions. abstract data Nat : Set where zero' : Nat suc' : Nat → Nat -- abstract hides constructor nature of zero and suc. zero = zero' suc = suc' data D : Nat → Set where c1 : ∀ n → D n → D (suc n) c2 : ∀ n → D n → D n -- To see that this is terminating the termination checker has to look at the -- natural number index, which is in a dot pattern. f : ∀ n → D n → Nat f .(suc n) (c1 n d) = f n (c2 n (c2 n d)) f n (c2 .n d) = f n d -- Termination checking based on dot patterns should fail, -- since suc is abstract.
26.36
78
0.629742
1eb9e8a05172d10013f4fa9c8b1e6bba6d11a784
395
agda
Agda
test/Succeed/Issue1159.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1159.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1159.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-02-02, issues 480, 1159, 1811 data Unit : Set where unit : Unit -- To make it harder for Agda, we make constructor unit ambiguous. data Ambiguous : Set where unit : Ambiguous postulate f : ∀{A : Set} → (A → A) → A test : Unit test = f \{ unit → unit } -- Extended lambda checking should be postponed until -- type A has been instantiated to Unit. -- Should succeed.
19.75
66
0.673418
19ee748e216b6c81cded149d4c55f8038d56e70c
17,509
agda
Agda
old/Paths.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
old/Paths.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
old/Paths.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import Types open import Functions module Paths where -- Identity type infix 4 _≡_ -- \equiv data _≡_ {i} {A : Set i} (a : A) : A → Set i where refl : a ≡ a _==_ = _≡_ _≢_ : ∀ {i} {A : Set i} → (A → A → Set i) x ≢ y = ¬ (x ≡ y) -- -- This should not be provable -- K : {A : Set} → (x : A) → (p : x ≡ x) → p ≡ refl x -- K .x (refl x) = refl -- Composition and opposite of paths infixr 8 _∘_ -- \o _∘_ : ∀ {i} {A : Set i} {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) refl ∘ q = q -- Composition with the opposite definitional behaviour _∘'_ : ∀ {i} {A : Set i} {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) q ∘' refl = q ! : ∀ {i} {A : Set i} {x y : A} → (x ≡ y → y ≡ x) ! refl = refl -- Equational reasoning combinator infix 2 _∎ infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ {i} {A : Set i} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ p1 ⟩ p2 = p1 ∘ p2 _∎ : ∀ {i} {A : Set i} (x : A) → x ≡ x _∎ _ = refl -- Obsolete, for retrocompatibility only infixr 2 _≡⟨_⟩∎_ _≡⟨_⟩∎_ : ∀ {i} {A : Set i} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _≡⟨_⟩∎_ = _≡⟨_⟩_ -- Transport and ap ap : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) {x y : A} → (x ≡ y → f x ≡ f y) ap f refl = refl -- Make equational reasoning much more readable syntax ap f p = p |in-ctx f transport : ∀ {i j} {A : Set i} (P : A → Set j) {x y : A} → (x ≡ y → P x → P y) transport P refl t = t apd : ∀ {i j} {A : Set i} {P : A → Set j} (f : (a : A) → P a) {x y : A} → (p : x ≡ y) → transport P p (f x) ≡ f y apd f refl = refl apd! : ∀ {i j} {A : Set i} {P : A → Set j} (f : (a : A) → P a) {x y : A} → (p : x ≡ y) → f x ≡ transport P (! p) (f y) apd! f refl = refl -- Paths in Sigma types module _ {i j} {A : Set i} {P : A → Set j} where ap2 : ∀ {k} {Q : Set k} (f : (a : A) → P a → Q) {x y : A} (p : x ≡ y) {u : P x} {v : P y} (q : transport P p u ≡ v) → f x u ≡ f y v ap2 f refl refl = refl Σ-eq : {x y : A} (p : x ≡ y) {u : P x} {v : P y} (q : transport P p u ≡ v) → (x , u) ≡ (y , v) Σ-eq = ap2 _,_ -- Same as [Σ-eq] but with only one argument total-Σ-eq : {xu yv : Σ A P} (q : Σ (π₁ xu ≡ π₁ yv) (λ p → transport P p (π₂ xu) ≡ (π₂ yv))) → xu ≡ yv total-Σ-eq (p , q) = Σ-eq p q base-path : {x y : Σ A P} (p : x ≡ y) → π₁ x ≡ π₁ y base-path = ap π₁ trans-base-path : {x y : Σ A P} (p : x ≡ y) → transport P (base-path p) (π₂ x) ≡ π₂ y trans-base-path {_} {._} refl = refl fiber-path : {x y : Σ A P} (p : x ≡ y) → transport P (base-path p) (π₂ x) ≡ π₂ y fiber-path {x} {.x} refl = refl abstract base-path-Σ-eq : {x y : A} (p : x ≡ y) {u : P x} {v : P y} (q : transport P p u ≡ v) → base-path (Σ-eq p q) ≡ p base-path-Σ-eq refl refl = refl fiber-path-Σ-eq : {x y : A} (p : x ≡ y) {u : P x} {v : P y} (q : transport P p u ≡ v) → transport (λ t → transport P t u ≡ v) (base-path-Σ-eq p q) (fiber-path (Σ-eq p q)) ≡ q fiber-path-Σ-eq refl refl = refl Σ-eq-base-path-fiber-path : {x y : Σ A P} (p : x ≡ y) → Σ-eq (base-path p) (fiber-path p) ≡ p Σ-eq-base-path-fiber-path {x} {.x} refl = refl -- Some of the ∞-groupoid structure module _ {i} {A : Set i} where concat-assoc : {x y z t : A} (p : x ≡ y) (q : y ≡ z) (r : z ≡ t) → (p ∘ q) ∘ r ≡ p ∘ (q ∘ r) concat-assoc refl _ _ = refl -- [refl-left-unit] for _∘_ and [refl-right-unit] for _∘'_ are definitional refl-right-unit : {x y : A} (q : x ≡ y) → q ∘ refl ≡ q refl-right-unit refl = refl refl-left-unit : {x y : A} (q : x ≡ y) → refl ∘' q ≡ q refl-left-unit refl = refl opposite-left-inverse : {x y : A} (p : x ≡ y) → (! p) ∘ p ≡ refl opposite-left-inverse refl = refl opposite-right-inverse : {x y : A} (p : x ≡ y) → p ∘ (! p) ≡ refl opposite-right-inverse refl = refl -- This is useless in the presence of ap & equation reasioning combinators whisker-left : {x y z : A} (p : x ≡ y) {q r : y ≡ z} → (q ≡ r → p ∘ q ≡ p ∘ r) whisker-left p refl = refl -- This is useless in the presence of ap & equation reasioning combinators whisker-right : {x y z : A} (p : y ≡ z) {q r : x ≡ y} → (q ≡ r → q ∘ p ≡ r ∘ p) whisker-right p refl = refl anti-whisker-right : {x y z : A} (p : y ≡ z) {q r : x ≡ y} → (q ∘ p ≡ r ∘ p → q ≡ r) anti-whisker-right refl {q} {r} h = ! (refl-right-unit q) ∘ (h ∘ refl-right-unit r) anti-whisker-left : {x y z : A} (p : x ≡ y) {q r : y ≡ z} → (p ∘ q ≡ p ∘ r → q ≡ r) anti-whisker-left refl h = h -- [opposite-concat …] gives a result of the form [opposite (concat …) ≡ …], -- and so on opposite-concat : {x y z : A} (p : x ≡ y) (q : y ≡ z) → ! (p ∘ q) ≡ ! q ∘ ! p opposite-concat refl q = ! (refl-right-unit (! q)) concat-opposite : {x y z : A} (q : y ≡ z) (p : x ≡ y) → ! q ∘ ! p ≡ ! (p ∘ q) concat-opposite q refl = refl-right-unit (! q) opposite-opposite : {x y : A} (p : x ≡ y) → ! (! p) ≡ p opposite-opposite refl = refl -- Reduction rules for transport module _ {i} {A : Set i} where -- This first part is about transporting something in a known fibration. In -- the names, [x] represents the variable of the fibration, [a] is a constant -- term, [A] is a constant type, and [f] and [g] are constant functions. trans-id≡cst : {a b c : A} (p : b ≡ c) (q : b ≡ a) → transport (λ x → x ≡ a) p q ≡ (! p) ∘ q trans-id≡cst refl q = refl trans-cst≡id : {a b c : A} (p : b ≡ c) (q : a ≡ b) → transport (λ x → a ≡ x) p q ≡ q ∘ p trans-cst≡id refl q = ! (refl-right-unit q) trans-app≡app : ∀ {j} {B : Set j} (f g : A → B) {x y : A} (p : x ≡ y) (q : f x ≡ g x) → transport (λ x → f x ≡ g x) p q ≡ ! (ap f p) ∘ (q ∘ ap g p) trans-app≡app f g refl q = ! (refl-right-unit q) trans-move-app≡app : ∀ {j} {B : Set j} (f g : A → B) {x y : A} (p : x ≡ y) (q : f x ≡ g x) {r : f y ≡ g y} → (q ∘ ap g p ≡ ap f p ∘ r → transport (λ x → f x ≡ g x) p q ≡ r) trans-move-app≡app f g refl q h = ! (refl-right-unit q) ∘ h trans-cst≡app : ∀ {j} {B : Set j} (a : B) (f : A → B) {x y : A} (p : x ≡ y) (q : a ≡ f x) → transport (λ x → a ≡ f x) p q ≡ q ∘ ap f p trans-cst≡app a f refl q = ! (refl-right-unit q) trans-app≡cst : ∀ {j} {B : Set j} (f : A → B) (a : B) {x y : A} (p : x ≡ y) (q : f x ≡ a) → transport (λ x → f x ≡ a) p q ≡ ! (ap f p) ∘ q trans-app≡cst f a refl q = refl trans-id≡app : (f : A → A) {x y : A} (p : x ≡ y) (q : x ≡ f x) → transport (λ x → x ≡ f x) p q ≡ ! p ∘ (q ∘ ap f p) trans-id≡app f refl q = ! (refl-right-unit q) trans-app≡id : (f : A → A) {x y : A} (p : x ≡ y) (q : f x ≡ x) → transport (λ x → f x ≡ x) p q ≡ ! (ap f p) ∘ (q ∘ p) trans-app≡id f refl q = ! (refl-right-unit q) trans-id≡id : {x y : A} (p : x ≡ y) (q : x ≡ x) → transport (λ x → x ≡ x) p q ≡ ! p ∘ (q ∘ p) trans-id≡id refl q = ! (refl-right-unit _) trans-cst : ∀ {j} {B : Set j} {x y : A} (p : x ≡ y) (q : B) → transport (λ _ → B) p q ≡ q trans-cst refl q = refl trans-Π2 : ∀ {j k} (B : Set j) (P : (x : A) (y : B) → Set k) {b c : A} (p : b ≡ c) (q : (y : B) → P b y) (a : B) → transport (λ x → ((y : B) → P x y)) p q a ≡ transport (λ u → P u a) p (q a) trans-Π2 B P refl q a = refl trans-Π2-dep : ∀ {j k} (B : A → Set j) (P : (x : A) (y : B x) → Set k) {a₁ a₂ : A} (p : a₁ ≡ a₂) (q : (y : B a₁) → P a₁ y) (b : B a₂) → transport (λ x → ((y : B x) → P x y)) p q b ≡ transport (uncurry P) (! (Σ-eq (! p) $ refl)) (q (transport B (! p) b)) trans-Π2-dep B P refl q b = refl trans-→-trans : ∀ {j k} (B : A → Set j) (P : A → Set k) {b c : A} (p : b ≡ c) (q : B b → P b) (a : B b) → transport (λ x → B x → P x) p q (transport B p a) ≡ transport P p (q a) trans-→-trans B P refl q a = refl trans-→ : ∀ {j k} (B : A → Set j) (P : A → Set k) {b c : A} (p : b ≡ c) (q : B b → P b) (a : B c) → transport (λ x → B x → P x) p q a ≡ transport P p (q $ transport B (! p) a) trans-→ B P refl q a = refl -- This second part is about transporting something along a known path trans-diag : ∀ {j} (P : A → A → Set j) {x y : A} (p : x ≡ y) (q : P x x) → transport (λ x → P x x) p q ≡ transport (λ z → P z y) p (transport (P x) p q) trans-diag P refl q = refl trans-concat : ∀ {j} (P : A → Set j) {x y z : A} (p : y ≡ z) (q : x ≡ y) (u : P x) → transport P (q ∘ p) u ≡ transport P p (transport P q u) trans-concat P p refl u = refl compose-trans : ∀ {j} (P : A → Set j) {x y z : A} (p : y ≡ z) (q : x ≡ y) (u : P x) → transport P p (transport P q u) ≡ transport P (q ∘ p) u compose-trans P p refl u = refl trans-ap : ∀ {j k} {B : Set j} (P : B → Set k) (f : A → B) {x y : A} (p : x ≡ y) (u : P (f x)) → transport P (ap f p) u ≡ transport (P ◯ f) p u trans-ap P f refl u = refl -- Unreadable, should be removed trans-totalpath : ∀ {j k} (P : A → Set j) (Q : Σ A P → Set k) {x y : Σ A P} (p : π₁ x ≡ π₁ y) (q : transport P p (π₂ x) ≡ π₂ y) (f : (t : P (π₁ x)) → Q (π₁ x , t)) → transport Q (Σ-eq p q) (f (π₂ x)) ≡ transport (λ x' → Q (π₁ y , x')) q (transport (λ x' → (t : P x') → Q (x' , t)) p f (transport P p (π₂ x))) trans-totalpath P Q {(x₁ , x₂)} {(y₁ , y₂)} p q f = trans-totalpath' P Q {x₁} {y₁} {x₂} {y₂} p q f where trans-totalpath' : ∀ {j k} (P : A → Set j) (Q : Σ A P → Set k) {x₁ y₁ : A} {x₂ : P x₁} {y₂ : P y₁} (p : x₁ ≡ y₁) (q : transport P p (x₂) ≡ y₂) (f : (t : P x₁) → Q (x₁ , t)) → transport Q (Σ-eq p q) (f x₂) ≡ transport (λ x' → Q (y₁ , x')) q (transport (λ x' → (t : P x') → Q (x' , t)) p f (transport P p x₂)) trans-totalpath' P Q refl refl f = refl -- This third part is about various other convenient properties trans-trans-opposite : ∀ {j} (P : A → Set j) {x y : A} (p : x ≡ y) (u : P y) → transport P p (transport P (! p) u) ≡ u trans-trans-opposite P refl u = refl trans-opposite-trans : ∀ {j} (P : A → Set j) {x y : A} (p : x ≡ y) (u : P x) → transport P (! p) (transport P p u) ≡ u trans-opposite-trans P refl u = refl ap-dep-trivial : ∀ {j} {B : Set j} (f : A → B) {x y : A} (p : x ≡ y) → ap f p ≡ ! (trans-cst p (f x)) ∘ apd f p ap-dep-trivial f refl = refl homotopy-naturality : ∀ {j} {B : Set j} (f g : A → B) (p : (x : A) → f x ≡ g x) {x y : A} (q : x ≡ y) → ap f q ∘ p y ≡ p x ∘ ap g q homotopy-naturality f g p refl = ! (refl-right-unit _) homotopy-naturality-toid : (f : A -> A) (p : (x : A) → f x ≡ x) {x y : A} (q : x ≡ y) → ap f q ∘ p y ≡ p x ∘ q homotopy-naturality-toid f p refl = ! (refl-right-unit _) homotopy-naturality-fromid : (g : A -> A) (p : (x : A) → x ≡ g x) {x y : A} (q : x ≡ y) → q ∘ p y ≡ p x ∘ ap g q homotopy-naturality-fromid g p refl = ! (refl-right-unit _) opposite-ap : ∀ {j} {B : Set j} (f : A → B) {x y : A} (p : x ≡ y) → ! (ap f p) ≡ ap f (! p) opposite-ap f refl = refl ap-opposite : ∀ {j} {B : Set j} (f : A → B) {x y : A} (p : x ≡ y) → ap f (! p) ≡ ! (ap f p) ap-opposite f refl = refl concat-ap : ∀ {j} {B : Set j} (f : A → B) {x y z : A} (p : x ≡ y) (q : y ≡ z) → ap f p ∘ ap f q ≡ ap f (p ∘ q) concat-ap f refl _ = refl ap-concat : ∀ {j} {B : Set j} (f : A → B) {x y z : A} (p : x ≡ y) (q : y ≡ z) → ap f (p ∘ q) ≡ ap f p ∘ ap f q ap-concat f refl _ = refl compose-ap : ∀ {j k} {B : Set j} {C : Set k} (g : B → C) (f : A → B) {x y : A} (p : x ≡ y) → ap g (ap f p) ≡ ap (g ◯ f) p compose-ap f g refl = refl ap-compose : ∀ {j k} {B : Set j} {C : Set k} (g : B → C) (f : A → B) {x y : A} (p : x ≡ y) → ap (g ◯ f) p ≡ ap g (ap f p) ap-compose f g refl = refl ap-cst : ∀ {j} {B : Set j} (b : B) {x y : A} (p : x ≡ y) → ap (cst b) p ≡ refl ap-cst b refl = refl ap-id : {u v : A} (p : u ≡ v) → ap (id A) p ≡ p ap-id refl = refl app-trans : ∀ {j k} (B : A → Set j) (C : A → Set k) (f : ∀ x → B x → C x) {x y} (p : x ≡ y) (a : B x) → f y (transport B p a) ≡ transport C p (f x a) app-trans B C f refl a = refl -- Move functions -- These functions are used when the goal is to show that path is a -- concatenation of two other paths, and that you want to prove it by moving a -- path to the other side -- -- The first [left/right] is the side (with respect to ≡) where will be the -- path after moving (“after” means “after replacing the conclusion of the -- proposition by its premisse”), and the second [left/right] is the side -- (with respect to ∘) where the path is (and will still be) -- If you want to prove something of the form [p ≡ q ∘ r] by moving [q] or [r] -- to the left, use the functions move-left-on-left and move-left-on-right -- If you want to prove something of the form [p ∘ q ≡ r] by moving [p] or [q] -- to the right, use the functions move-right-on-left and move-right-on-right -- Add a [0] after [move] if the big path is constant, a [1] if the other -- small path is constant and then a [!] if the path you will move is an -- opposite. -- -- I’m not sure all of these functions are useful, but it can’t hurt to have -- them. move-left-on-left : {x y z : A} (p : x ≡ z) (q : x ≡ y) (r : y ≡ z) → ((! q) ∘ p ≡ r → p ≡ q ∘ r) move-left-on-left p refl r h = h move-left-on-right : {x y z : A} (p : x ≡ z) (q : x ≡ y) (r : y ≡ z) → (p ∘ (! r) ≡ q → p ≡ q ∘ r) move-left-on-right p q refl h = ! (refl-right-unit p) ∘ (h ∘ ! (refl-right-unit q)) move-right-on-left : {x y z : A} (p : x ≡ y) (q : y ≡ z) (r : x ≡ z) → (q ≡ (! p) ∘ r → p ∘ q ≡ r) move-right-on-left refl q r h = h move-right-on-right : {x y z : A} (p : x ≡ y) (q : y ≡ z) (r : x ≡ z) → (p ≡ r ∘ (! q) → p ∘ q ≡ r) move-right-on-right p refl r h = refl-right-unit p ∘ (h ∘ refl-right-unit r) move!-left-on-left : {x y z : A} (p : x ≡ z) (q : y ≡ x) (r : y ≡ z) → (q ∘ p ≡ r → p ≡ (! q) ∘ r) move!-left-on-left p refl r h = h move!-left-on-right : {x y z : A} (p : x ≡ z) (q : x ≡ y) (r : z ≡ y) → (p ∘ r ≡ q → p ≡ q ∘ (! r)) move!-left-on-right p q refl h = ! (refl-right-unit p) ∘ (h ∘ ! (refl-right-unit q)) move!-right-on-left : {x y z : A} (p : y ≡ x) (q : y ≡ z) (r : x ≡ z) → (q ≡ p ∘ r → (! p) ∘ q ≡ r) move!-right-on-left refl q r h = h move!-right-on-right : {x y z : A} (p : x ≡ y) (q : z ≡ y) (r : x ≡ z) → (p ≡ r ∘ q → p ∘ (! q) ≡ r) move!-right-on-right p refl r h = refl-right-unit p ∘ (h ∘ refl-right-unit r) move0-left-on-left : {x y : A} (q : x ≡ y) (r : y ≡ x) → (! q ≡ r → refl ≡ q ∘ r) move0-left-on-left refl r h = h move0-left-on-right : {x y : A} (q : x ≡ y) (r : y ≡ x) → (! r ≡ q → refl ≡ q ∘ r) move0-left-on-right q refl h = h ∘ ! (refl-right-unit q) move0-right-on-left : {x y : A} (p : x ≡ y) (q : y ≡ x) → (q ≡ ! p → p ∘ q ≡ refl) move0-right-on-left refl q h = h move0-right-on-right : {x y : A} (p : x ≡ y) (q : y ≡ x) → (p ≡ ! q → p ∘ q ≡ refl) move0-right-on-right p refl h = refl-right-unit p ∘ h move0!-left-on-left : {x y : A} (q : y ≡ x) (r : y ≡ x) → (q ≡ r → refl ≡ (! q) ∘ r) move0!-left-on-left refl r h = h move0!-left-on-right : {x y : A} (q : x ≡ y) (r : x ≡ y) → (r ≡ q → refl ≡ q ∘ (! r)) move0!-left-on-right q refl h = h ∘ ! (refl-right-unit q) move0!-right-on-left : {x y : A} (p : y ≡ x) (q : y ≡ x) → (q ≡ p → (! p) ∘ q ≡ refl) move0!-right-on-left refl q h = h move0!-right-on-right : {x y : A} (p : x ≡ y) (q : x ≡ y) → (p ≡ q → p ∘ (! q) ≡ refl) move0!-right-on-right p refl h = refl-right-unit p ∘ h move1-left-on-left : {x y : A} (p : x ≡ y) (q : x ≡ y) → ((! q) ∘ p ≡ refl → p ≡ q) move1-left-on-left p refl h = h move1-left-on-right : {x y : A} (p : x ≡ y) (r : x ≡ y) → (p ∘ (! r) ≡ refl → p ≡ r) move1-left-on-right p refl h = ! (refl-right-unit p) ∘ h move1-right-on-left : {x y : A} (p : x ≡ y) (r : x ≡ y) → (refl ≡ (! p) ∘ r → p ≡ r) move1-right-on-left refl r h = h move1-right-on-right : {x y : A} (q : x ≡ y) (r : x ≡ y) → (refl ≡ r ∘ (! q) → q ≡ r) move1-right-on-right refl r h = h ∘ refl-right-unit r move1!-left-on-left : {x y : A} (p : x ≡ y) (q : y ≡ x) → (q ∘ p ≡ refl → p ≡ ! q) move1!-left-on-left p refl h = h move1!-left-on-right : {x y : A} (p : x ≡ y) (r : y ≡ x) → (p ∘ r ≡ refl → p ≡ ! r) move1!-left-on-right p refl h = ! (refl-right-unit p) ∘ h move1!-right-on-left : {x y : A} (p : y ≡ x) (r : x ≡ y) → (refl ≡ p ∘ r → ! p ≡ r) move1!-right-on-left refl r h = h move1!-right-on-right : {x y : A} (q : y ≡ x) (r : x ≡ y) → (refl ≡ r ∘ q → ! q ≡ r) move1!-right-on-right refl r h = h ∘ refl-right-unit r move-transp-left : ∀ {j} (P : A → Set j) {x y : A} (u : P y) (p : x ≡ y) (v : P x) → transport P (! p) u ≡ v → u ≡ transport P p v move-transp-left P _ refl _ p = p move-transp-right : ∀ {j} (P : A → Set j) {x y : A} (p : y ≡ x) (u : P y) (v : P x) → u ≡ transport P (! p) v → transport P p u ≡ v move-transp-right P refl _ _ p = p move!-transp-left : ∀ {j} (P : A → Set j) {x y : A} (u : P y) (p : y ≡ x) (v : P x) → transport P p u ≡ v → u ≡ transport P (! p) v move!-transp-left P _ refl _ p = p move!-transp-right : ∀ {j} (P : A → Set j) {x y : A} (p : x ≡ y) (u : P y) (v : P x) → u ≡ transport P p v → transport P (! p) u ≡ v move!-transp-right P refl _ _ p = p
35.587398
83
0.4721
1acb6ac5c1a7d786d71be3b137491b01288e1fcc
691
agda
Agda
test/Succeed/Issue2422.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2422.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2422.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-01-21, issue #2422 overloading inherited projections -- {-# OPTIONS -v tc.proj.amb:100 #-} -- {-# OPTIONS -v tc.mod.apply:100 #-} postulate A : Set record R : Set where field f : A record S : Set where field r : R open R r public -- The inherited projection (in the eyes of the scope checker) S.f -- is actually a composition of projections R.f ∘ S.r -- s .S.f = s .S.r .R.f open R -- works without this open S test : S → A test s = f s -- f is not really a projection, but a composition of projections -- it would be nice if overloading is still allowed. -- Error WAS: -- Cannot resolve overloaded projection f because no matching candidate found
23.827586
77
0.672938
43f2470d19aec492fe80589ed4ceeff8eb0c919d
12,661
agda
Agda
agda/paper/2009-09-Algebra_of_programming_in_Agda/x.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/paper/2009-09-Algebra_of_programming_in_Agda/x.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/paper/2009-09-Algebra_of_programming_in_Agda/x.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module x where {- ------------------------------------------------------------------------------ Abstract Relational program derivation technique : - stepwise refining a relational spec to a program by algebraic rules. - program obtained is correct by construction Dependent type theory rich enough to express correctness properties verified by type checker. Library, Algebra of Programming in Agda (AoPA) - http://www.iis.sinica.edu.tw/~scm/2008/aopa/ - encodes relational derivations - A program is coupled with an algebraic derivation whose correctness is guaranteed by type system ------------------------------------------------------------------------------ 1 Introduction relational program derivation - specs are input-output relations that are stepwise refined by an algebra of programs. paper show how program derivation can be encoded in a type and its proof term. - case study using Curry-Howard isomorphism - modelled a many concepts that occur in relational program derivation including relational folds, relational division, and converse-of-a-function. - e.g., Minimum, is defined using division and intersection - e.g., greedy theorem proved using the universal property of minimum. - the theorem can be used to deal with a number of optimisation problems specified as folds. • to ensure termination with unfolds and hylomorphisms, enable programmer to model an unfold as the relational converse of a fold, but demand a proof of accessibility before it is refined to a functional unfold. ------------------------------------------------------------------------------ 2 Overview of Relational Program Derivation Merit of functional programming : programs can be manipulated by equational reasoning. Program derivation in Bird-Meertens style 1989b) typically start with a specification, as a function, that is obviously correct but not efficient. Algebraic identities are then applied, in successive steps, to show that the specification equals another functional program that is more efficient. Typical example : Maximum Segment Sum (Gries, 1989; Bird, 1989a), specification : max · map sum · segs where - segs produces all consecutive segments of the input list of numbers - map sum computes their summation - maximum is picked by max Specification can be shown, after transformation, to be equal a version using foldr (linear). In 90’s there was a trend in the program derivation community to move from functions to relations. - spec given in terms of an input/output relation - relation is refined to smaller, more deterministic relations in each step, - until obtaining a function Relational derivation advantages: - spec often more concise than corresponding functional specification - optimisation problems can be specified using relations generating all possible solutions - easier to talk about program inversion The catch: *must reason in terms of inequalities rather than equalities* denoted by R : B ← A - relation R from A to B - subset of set of pairs B × A - A function f is seen as a special case where (b, a) ∈ f and (b' , a) ∈ f implies b = b' converse R˘ : A ← B of R : B ← A - defined by (a, b) ∈ R ˘ if (b, a) ∈ R composition of two relations R : C ← B and S : B ← A - defined by: (c, a) ∈ R ◦ S if ∃b : (c, b) ∈ R ∧ (b, a) ∈ S power transpose ΛR of R : B ← A - is a function from A to P B (subsets of B) - ΛR a = { b | (b, a) ∈ R }. relation ∈ : A ← P A - maps a set to one of its arbitrary members - converse: ∋ : P A ← A product of two relations, R × S - defined by ((c, d), (a, b)) ∈ R × S if (c, a) ∈ R and (d, b) ∈ S -- step fun base input output foldr : (A → B → B) → B → List A → B generalisation to a relation, denote foldR input step relation base cases foldR R : B ← List A ← (B ← (A×B)) (set s : PB) -- relation mapping a list to one of its arbitrary subsequences subseq = foldR (cons ∪ outr) {[ ]} where cons (x, xs) = x :: xs -- cons keeps the current element outr (x, xs) = xs -- outr drops the current element Relational fold defined in terms of functional fold: foldR R s = ∈ ◦ foldr Λ(R ◦ (id " ∈)) s of type List A → P B that collects all the results in a set. step function Λ(R ◦ (id " ∈)) : has type (A × P B) → P B (id " ∈) : (A × B) ← (A × P B) : pairs current element with one of the results from previous step before passing the pair to R foldR R s satisfies the universal property: foldR R s = S ⇔ R ◦ (id " S) = S ◦ cons ∧ s = ΛS [ ] -- induction rule -- states that foldR R s is the unique fixed-point of the monotonic function λ X → (R ◦ (id " X) ◦ cons ˘) ∪ {(b, [ ]) | b ∈ s} -- computation rule -- foldR R s is also the least prefix-point, therefore foldR R s ⊆ S ⇐ R ◦ (id " S) ⊆ S ◦ cons ∧ s ⊆ ΛS [ ], R ◦ (id " foldR R s) ⊆ foldR R s ◦ cons ∧ s ⊆ Λ(foldR R s) [ ]. If an optimisation problem can be specified by generating all possible solutions using foldR or converse of foldR before picking the best one, Bird and de Moor (1997) gave a number of conditions under which the specification can be refined to a greedy algorithm, a dynamic programming algorithm, or something in-between. ------------------------------------------------------------------------------ 3 A Crash Course in Agda -} -- Fig. 2. Some examples of datatype definitions. data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A data ℕ : Set where zero : ℕ suc : ℕ → ℕ data _≤_ : ℕ → ℕ → Set where ≤-refl : {n : ℕ} → n ≤ n ≤-step : {m n : ℕ} → m ≤ n → m ≤ suc n _<_ : ℕ → ℕ → Set m < n = suc m ≤ n -- Fig. 3. An encoding of first-order intuitionistic logic in Agda. -- Truth : has one unique term — a record with no fields record ⊤ : Set where -- Falsity : type with no constructors therefore no inhabitants data ⊥ : Set where -- Disjunction : proof deduced either from a proof of P or a proof of Q data _⨄_ (A B : Set) : Set where inj1 : A → A ⨄ B inj2 : B → A ⨄ B -- Dependent Pair : type of 2nd may depend on the first component data Σ (A : Set)(B : A → Set) : Set where _,_ : (x : A) → (y : B x) → Σ A B proj₁ : ∀ {A B} → Σ A B → A proj₁ (x , y) = x proj₂ : ∀ {A B} → (p : Σ A B) → B (proj₁ p) proj₂ (x , y) = y -- Conjunction _×_ : (A B : Set) → Set A × B = Σ A (λ _ → B) -- Existential Quantification -- to prove the proposition ∃ P, where P is a predicate on terms of type A -- provide, in a pair, a witness w : A and a proof of P w. ∃ : {A : Set} (P : A → Set) → Set ∃ = Σ _ -- Universal Quantification -- of predicate P on type A is encoded as a dependent function type -- whose elements, given any x : A, must produce a proof of P x. -- Agda provides a short hand ∀ x → P x in place of (x : A) → P x when A can be inferred. -- Implication -- P → Q is represented as a function taking a proof of P to a proof of Q -- no new notation for it -- Predicates -- on type A are represented by A → Set. -- e.g., (λ n → zero < n) : N → Set -- is a predicate stating that a natural number is positive. {- 3.2 Identity Type term of type x ≡ y is proof x and y are equal -} data _≡_ {A : Set}(x : A) : A → Set where ≡-refl : x ≡ x -- REFLEXIVE : by definition -- SYMMETRIC ≡-sym : {A : Set}{x y : A} → x ≡ y → y ≡ x ≡-sym {A}{x}{.x} ≡-refl = ≡-refl -- TRANSITIVE ≡-trans : {A : Set}{x y z : A} → x ≡ y → y ≡ z → x ≡ z ≡-trans {A}{x}{.x}{z} ≡-refl x≡z = x≡z -- could replace x≡z with ≡-refl -- SUBSTITUTIVE — if x ≡ y, they are interchangeable in all contexts ≡-subst : {A : Set}(P : A → Set){x y : A} → x ≡ y → P x → P y ≡-subst P ≡-refl Px = Px ≡-cong : {A B : Set}(f : A → B){x y : A} → x ≡ y → f x ≡ f y ≡-cong f ≡-refl = ≡-refl {- ≡ NOT EXTENSIONAL Qquality of terms is checked by expanding them to normal forms. Problem comparing higher-order values: e.g., sum·map sum and sum · concat while defining the same function summing up a list of lists of numbers, are not “equal” under ≡ . Can define extensional equality for (non-dependent) functions on first-order values: -} _≐_ : {A B : Set} → (A → B) → (A → B) → Set f ≐ g = ∀ x → f x ≡ g x {- ≐ NOT SUBSTITUTIVE : congruence of ≐ has to be proved for each context. Refinement in preorder reasoning usually involves replacing terms in provably monotonic contexts. This is a significant overhead; but given that this overhead is incurred anyway, not having extensional equality is no extra trouble. 3.3 Preorder Reasoning To prove e1 ≡ e2 is to construct a term having that type. For any binary relation ∼ that is reflexive and transitive - for which one can construct terms ∼-refl and ∼-trans having the types described in above can derive a set of combinators, shown in Fig. 4, which enables one to construct a term of type e₁ ∼ en in algebraic style. -- Fig. 4. Combinators for preorder reasoning. infixr 2 _∼⟨_⟩_ infix 2 _∼∎ _∼⟨_⟩_ : {A : Set}(x : A){y z : A} → x ∼ y → y ∼ z → x ∼ z x ∼⟨ x∼y ⟩ y∼z = ∼-trans x∼y y∼z _∼∎ : {A : Set}(x : A) → x ∼ x x ∼∎ = ∼-refl implication as a relation: -} _⇒_ : Set → Set → Set P ⇒ Q = P → Q _⇐_ : Set → Set → Set P ⇐ Q = Q ⇒ P {- Reflexivity and transitivity of ⇐ , for example, can be simply given by ⇐-refl = id and ⇐-trans = · , where · is function composition. Therefore, they induce a pair of operators _⇐⟨_⟩_ and ⇐∎ for logical reasoning. Hierarchy of universes - Set, the type of small types, is in sort Set1 When instantiating ∼ in Fig. 4 to ⇐ : Set → Set → Set - notice that the type A : Set itself cannot be instantiated to Set, which is in Set1 We resolve this by using different module generators for different universes. More on this in Sect. 4.1. 3.4 Functional Derivation Since _≐_ is reflexive and transitive (not shown), it induces its preorder reasoning operators. Fig. 5 shows a proof of the universal property of foldr. The steps using ≡-refl are equivalences Agda proves by expanding definitions. The inductive hypothesis is established by a recursive call to foldr-universal. -} infix 3 _≡∎ infixr 2 _≡⟨⟩_ _≡⟨_⟩_ infix 1 begin_ begin_ : {A : Set} {x y : A} → x ≡ y → x ≡ y begin_ x≡y = x≡y _≡⟨⟩_ : {A : Set} (x {y} : A) → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y _≡⟨_⟩_ : {A : Set} (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ x≡y ⟩ y≡z = ≡-trans x≡y y≡z _≡∎ : {A : Set} (x : A) → x ≡ x _≡∎ _ = ≡-refl {- Fig. 5. Proving the universal property for foldr -} foldr : {A B : Set} → (A → B → B) → B → List A → B foldr f e [] = e foldr f e (x ∷ xs) = f x (foldr f e xs) {- https://www.cs.nott.ac.uk/~pszgmh/fold.pdf For finite lists, the universal property of fold can be stated as the following equivalence between two definitions for a function g that processes lists: g [] = v ⇔ g = fold f v g (x ∷ xs) = f x (g xs) right-to-left : substituting g = fold f v into the two equations for g gives recursive fold def left-to-right : two equations for g are the assumptions required to show that g = fold f v using a simple proof by induction on finite lists (Bird, 1998) universal property states that for finite lists the function fold f v is not just a solution to its defining equations, but the unique solution. Utility of universal property : makes explicit the two assumptions required for a certain pattern of inductive proof. For specific cases, by verifying the two assumptions (typically done without need for induction) can then appeal to the universal property to complete the inductive proof that g = fold f v. universal PROPERTY of fold : encapsulates a pattern of inductive proof concerning lists just as the fold OPERATOR : encapsulates a pattern of recursion for processing lists -} foldr-universal : ∀ {A B} (h : List A → B) f e → (h [] ≡ e) → (∀ x xs → h (x ∷ xs) ≡ f x (h xs)) → h ≐ foldr f e foldr-universal h f e base step [] = base foldr-universal h f e base step (x ∷ xs) = begin h (x ∷ xs) ≡⟨ step x xs ⟩ f x (h xs) ≡⟨ ≡-cong (f x) (foldr-universal h f e base step xs) ⟩ f x (foldr f e xs) ≡⟨ ≡-refl ⟩ foldr f e (x ∷ xs) ≡∎ {- -- Can use the universal property to prove the foldr-fusion theorem: _·_ : {A : Set} {B : A → Set} {C : (x : A) → B x → Set} → (f : {x : A} (y : B x) → C x y) → (g : (x : A) → B x) → (x : A) → C x (g x) (f · g) x = f (g x) -- TODO compile problems foldr-fusion : ∀ {A B C} (h : B → C) {f : A → B → B} {g : A → C → C} → {e : B} → (∀ x y → h (f x y) ≡ g x (h y)) → (h · foldr f e) ≐ (foldr g (h e)) foldr-fusion h {f} {g} e fuse = foldr-universal (h · foldr f e) g (h e) ≡-refl (λ x xs → fuse x (foldr f e xs)) -}
34.218919
98
0.6351
59156249d15f2b8fefa2bfb9520215d6565520a1
863
agda
Agda
Categories/Lan.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Lan.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Lan.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Lan where open import Level open import Categories.Category open import Categories.Functor hiding (_≡_) open import Categories.NaturalTransformation record Lan {o₀ ℓ₀ e₀} {o₁ ℓ₁ e₁} {o₂ ℓ₂ e₂} {A : Category o₀ ℓ₀ e₀} {B : Category o₁ ℓ₁ e₁} {C : Category o₂ ℓ₂ e₂} (F : Functor A B) (X : Functor A C) : Set (o₀ ⊔ ℓ₀ ⊔ e₀ ⊔ o₁ ⊔ ℓ₁ ⊔ e₁ ⊔ o₂ ⊔ ℓ₂ ⊔ e₂) where field L : Functor B C ε : NaturalTransformation X (L ∘ F) σ : (M : Functor B C) → (α : NaturalTransformation X (M ∘ F)) → NaturalTransformation L M .σ-unique : {M : Functor B C} → {α : NaturalTransformation X (M ∘ F)} → (σ′ : NaturalTransformation L M) → α ≡ (σ′ ∘ʳ F) ∘₁ ε → σ′ ≡ σ M α .commutes : (M : Functor B C) → (α : NaturalTransformation X (M ∘ F)) → α ≡ (σ M α ∘ʳ F) ∘₁ ε
41.095238
103
0.595597
c734b13e668d72691e952a9630abcef92ebe619d
5,279
agda
Agda
Cubical/Algebra/Group/GroupPath.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/Group/GroupPath.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/GroupPath.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
-- The SIP applied to groups {-# OPTIONS --safe #-} module Cubical.Algebra.Group.GroupPath where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.SIP open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Data.Sigma open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties private variable ℓ ℓ' ℓ'' : Level open Iso open GroupStr open IsGroupHom 𝒮ᴰ-Group : DUARel (𝒮-Univ ℓ) GroupStr ℓ 𝒮ᴰ-Group = 𝒮ᴰ-Record (𝒮-Univ _) IsGroupEquiv (fields: data[ _·_ ∣ autoDUARel _ _ ∣ pres· ] data[ 1g ∣ autoDUARel _ _ ∣ pres1 ] data[ inv ∣ autoDUARel _ _ ∣ presinv ] prop[ isGroup ∣ (λ _ _ → isPropIsGroup _ _ _) ]) where open GroupStr open IsGroupHom GroupPath : (M N : Group ℓ) → GroupEquiv M N ≃ (M ≡ N) GroupPath = ∫ 𝒮ᴰ-Group .UARel.ua -- TODO: Induced structure results are temporarily inconvenient while we transition between algebra -- representations module _ (G : Group ℓ) {A : Type ℓ} (m : A → A → A) (e : ⟨ G ⟩ ≃ A) (p· : ∀ x y → e .fst (G .snd ._·_ x y) ≡ m (e .fst x) (e .fst y)) where private module G = GroupStr (G .snd) FamilyΣ : Σ[ B ∈ Type ℓ ] (B → B → B) → Type ℓ FamilyΣ (B , n) = Σ[ e ∈ B ] Σ[ i ∈ (B → B) ] IsGroup e n i inducedΣ : FamilyΣ (A , m) inducedΣ = subst FamilyΣ (UARel.≅→≡ (autoUARel (Σ[ B ∈ Type ℓ ] (B → B → B))) (e , p·)) (G.1g , G.inv , G.isGroup) InducedGroup : Group ℓ InducedGroup .fst = A InducedGroup .snd ._·_ = m InducedGroup .snd .1g = inducedΣ .fst InducedGroup .snd .inv = inducedΣ .snd .fst InducedGroup .snd .isGroup = inducedΣ .snd .snd InducedGroupPath : G ≡ InducedGroup InducedGroupPath = GroupPath _ _ .fst (e , makeIsGroupHom p·) uaGroup : {G H : Group ℓ} → GroupEquiv G H → G ≡ H uaGroup {G = G} {H = H} = equivFun (GroupPath G H) -- Group-ua functoriality Group≡ : (G H : Group ℓ) → ( Σ[ p ∈ ⟨ G ⟩ ≡ ⟨ H ⟩ ] Σ[ q ∈ PathP (λ i → p i) (1g (snd G)) (1g (snd H)) ] Σ[ r ∈ PathP (λ i → p i → p i → p i) (_·_ (snd G)) (_·_ (snd H)) ] Σ[ s ∈ PathP (λ i → p i → p i) (inv (snd G)) (inv (snd H)) ] PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup (snd G)) (isGroup (snd H))) ≃ (G ≡ H) Group≡ G H = isoToEquiv theIso where theIso : Iso _ _ fun theIso (p , q , r , s , t) i = p i , groupstr (q i) (r i) (s i) (t i) inv theIso x = cong ⟨_⟩ x , cong (1g ∘ snd) x , cong (_·_ ∘ snd) x , cong (inv ∘ snd) x , cong (isGroup ∘ snd) x rightInv theIso _ = refl leftInv theIso _ = refl caracGroup≡ : {G H : Group ℓ} (p q : G ≡ H) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracGroup≡ {G = G} {H = H} p q P = sym (transportTransport⁻ (ua (Group≡ G H)) p) ∙∙ cong (transport (ua (Group≡ G H))) helper ∙∙ transportTransport⁻ (ua (Group≡ G H)) q where helper : transport (sym (ua (Group≡ G H))) p ≡ transport (sym (ua (Group≡ G H))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd H)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd H)) _ _) λ _ → isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaGroupId : (G : Group ℓ) → uaGroup (idGroupEquiv {G = G}) ≡ refl uaGroupId G = caracGroup≡ _ _ uaIdEquiv uaCompGroupEquiv : {F G H : Group ℓ} (f : GroupEquiv F G) (g : GroupEquiv G H) → uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( cong ⟨_⟩ (uaGroup (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ cong ⟨_⟩ (uaGroup f) ∙ cong ⟨_⟩ (uaGroup g) ≡⟨ sym (cong-∙ ⟨_⟩ (uaGroup f) (uaGroup g)) ⟩ cong ⟨_⟩ (uaGroup f ∙ uaGroup g) ∎) -- J-rule for GroupEquivs GroupEquivJ : {G : Group ℓ} (P : (H : Group ℓ) → GroupEquiv G H → Type ℓ') → P G idGroupEquiv → ∀ {H} e → P H e GroupEquivJ {G = G} P p {H} e = transport (λ i → P (GroupPath G H .fst e i) (transp (λ j → GroupEquiv G (GroupPath G H .fst e (i ∨ ~ j))) i e)) (subst (P G) (sym lem) p) where lem : transport (λ j → GroupEquiv G (GroupPath G H .fst e (~ j))) e ≡ idGroupEquiv lem = Σ≡Prop (λ _ → isPropIsGroupHom _ _) (Σ≡Prop (λ _ → isPropIsEquiv _) (funExt λ x → (λ i → fst (fst (fst e .snd .equiv-proof (transportRefl (fst (fst e) (transportRefl x i)) i)))) ∙ retEq (fst e) x))
35.911565
114
0.594241
38f2e464a66d2a02a7e2bad8fb52b6971cb68246
8,952
agda
Agda
src/Structure-identity-principle.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Structure-identity-principle.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Structure-identity-principle.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Aczel's structure identity principle (for 1-categories), more or -- less as found in "Homotopy Type Theory: Univalent Foundations of -- Mathematics" (first edition) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Structure-identity-principle {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq using (_↔_; Σ-≡,≡↔≡) open import Category eq open Derived-definitions-and-properties eq open import Equality.Decidable-UIP eq open import Equivalence eq hiding (id; _∘_; inverse; lift-equality) open import Function-universe eq hiding (id) renaming (_∘_ to _⊚_) open import H-level eq open import H-level.Closure eq open import Logical-equivalence using (_⇔_) open import Prelude hiding (id) -- Standard notions of structure. record Standard-notion-of-structure {c₁ c₂} ℓ₁ ℓ₂ (C : Precategory c₁ c₂) : Type (c₁ ⊔ c₂ ⊔ lsuc (ℓ₁ ⊔ ℓ₂)) where open Precategory C field P : Obj → Type ℓ₁ H : ∀ {X Y} (p : P X) (q : P Y) → Hom X Y → Type ℓ₂ H-prop : ∀ {X Y} {p : P X} {q : P Y} (f : Hom X Y) → Is-proposition (H p q f) H-id : ∀ {X} {p : P X} → H p p id H-∘ : ∀ {X Y Z} {p : P X} {q : P Y} {r : P Z} {f g} → H p q f → H q r g → H p r (g ∙ f) H-antisymmetric : ∀ {X} (p q : P X) → H p q id → H q p id → p ≡ q -- P constructs sets. (The proof was suggested by Michael Shulman in -- a mailing list post.) P-set : ∀ A → Is-set (P A) P-set A = propositional-identity⇒set (λ p q → H p q id × H q p id) (λ _ _ → ×-closure 1 (H-prop id) (H-prop id)) (λ _ → H-id , H-id) (λ p q → uncurry (H-antisymmetric p q)) -- Two Str morphisms (see below) of equal type are equal if their -- first components are equal. lift-equality : {X Y : ∃ P} {f g : ∃ (H (proj₂ X) (proj₂ Y))} → proj₁ f ≡ proj₁ g → f ≡ g lift-equality eq = Σ-≡,≡→≡ eq (H-prop _ _ _) -- A derived precategory. Str : Precategory (c₁ ⊔ ℓ₁) (c₂ ⊔ ℓ₂) Str = record { precategory = ∃ P , (λ { (X , p) (Y , q) → ∃ (H p q) , Σ-closure 2 Hom-is-set (λ f → mono₁ 1 (H-prop f)) }) , (id , H-id) , (λ { (f , hf) (g , hg) → f ∙ g , H-∘ hg hf }) , lift-equality left-identity , lift-equality right-identity , lift-equality assoc } module Str = Precategory Str -- A rearrangement lemma. proj₁-≡→≅-¹ : ∀ {X Y} (X≡Y : X ≡ Y) → proj₁ (Str.≡→≅ X≡Y Str.¹) ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (cong proj₁ X≡Y) proj₁-≡→≅-¹ {X , p} = elim¹ (λ X≡Y → proj₁ (Str.≡→≅ X≡Y Str.¹) ≡ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (cong proj₁ X≡Y)) (proj₁ (Str.≡→≅ (refl (X , p)) Str.¹) ≡⟨ cong (proj₁ ∘ Str._¹) $ elim-refl (λ {X Y} _ → X Str.≅ Y) _ ⟩ proj₁ (Str.id {X = X , p}) ≡⟨⟩ id {X = X} ≡⟨ sym $ elim-refl (λ {X Y} _ → Hom X Y) _ ⟩ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (refl X) ≡⟨ cong (elim (λ {X Y} _ → Hom X Y) _) $ sym $ cong-refl proj₁ ⟩∎ elim (λ {X Y} _ → Hom X Y) (λ _ → id) (cong proj₁ (refl (X , p))) ∎) -- The structure identity principle states that the precategory Str is -- a category (assuming extensionality). -- -- The proof below is based on (but not quite identical to) the one in -- "Homotopy Type Theory: Univalent Foundations of Mathematics" (first -- edition). abstract structure-identity-principle : ∀ {c₁ c₂ ℓ₁ ℓ₂} → Extensionality (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂) → (C : Category c₁ c₂) → (S : Standard-notion-of-structure ℓ₁ ℓ₂ (Category.precategory C)) → ∀ {X Y} → Is-equivalence (Precategory.≡→≅ (Standard-notion-of-structure.Str S) {X} {Y}) structure-identity-principle ext C S = Str.≡→≅-equivalence-lemma ≡≃≅ ≡≃≅-refl where open Standard-notion-of-structure S module C = Category C -- _≡_ is pointwise equivalent to Str._≅_. module ≅HH≃≅ where to : ∀ {X Y} {p : P X} {q : P Y} → (∃ λ (f : X C.≅ Y) → H p q (f C.¹) × H q p (f C.⁻¹)) → (X , p) Str.≅ (Y , q) to ((f , f⁻¹ , f∙f⁻¹ , f⁻¹∙f) , Hf , Hf⁻¹) = (f , Hf) , (f⁻¹ , Hf⁻¹) , lift-equality f∙f⁻¹ , lift-equality f⁻¹∙f ≅HH≃≅ : ∀ {X Y} {p : P X} {q : P Y} → (∃ λ (f : X C.≅ Y) → H p q (f C.¹) × H q p (f C.⁻¹)) ≃ ((X , p) Str.≅ (Y , q)) ≅HH≃≅ {X} {Y} {p} {q} = ↔⇒≃ (record { surjection = record { logical-equivalence = record { to = ≅HH≃≅.to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where from : (X , p) Str.≅ (Y , q) → ∃ λ (f : X C.≅ Y) → H p q (f C.¹) × H q p (f C.⁻¹) from ((f , Hf) , (f⁻¹ , Hf⁻¹) , f∙f⁻¹ , f⁻¹∙f) = (f , f⁻¹ , cong proj₁ f∙f⁻¹ , cong proj₁ f⁻¹∙f) , Hf , Hf⁻¹ to∘from : ∀ p → ≅HH≃≅.to (from p) ≡ p to∘from ((f , Hf) , (f⁻¹ , Hf⁻¹) , f∙f⁻¹ , f⁻¹∙f) = cong₂ (λ f∙f⁻¹ f⁻¹∙f → (f , Hf) , (f⁻¹ , Hf⁻¹) , f∙f⁻¹ , f⁻¹∙f) (Str.Hom-is-set _ _) (Str.Hom-is-set _ _) from∘to : ∀ p → from (≅HH≃≅.to p) ≡ p from∘to ((f , f⁻¹ , f∙f⁻¹ , f⁻¹∙f) , Hf , Hf⁻¹) = cong₂ (λ f∙f⁻¹ f⁻¹∙f → (f , f⁻¹ , f∙f⁻¹ , f⁻¹∙f) , Hf , Hf⁻¹) (C.Hom-is-set _ _) (C.Hom-is-set _ _) module ≡≡≃≅HH where to : ∀ {X Y} {p : P X} {q : P Y} → (X≡Y : X ≡ Y) → subst P X≡Y p ≡ q → H p q (C.≡→≅ X≡Y C.¹) × H q p (C.≡→≅ X≡Y C.⁻¹) to {X} {p = p} X≡Y p≡q = elim¹ (λ X≡Y → ∀ {q} → subst P X≡Y p ≡ q → H p q (C.≡→≅ X≡Y C.¹) × H q p (C.≡→≅ X≡Y C.⁻¹)) (elim¹ (λ {q} _ → H p q (C.≡→≅ (refl X) C.¹) × H q p (C.≡→≅ (refl X) C.⁻¹)) ( subst (λ { (q , f) → H p q f }) (sym $ cong₂ _,_ (subst P (refl X) p ≡⟨ subst-refl P _ ⟩∎ p ∎) (C.≡→≅ (refl X) C.¹ ≡⟨ cong C._¹ C.≡→≅-refl ⟩∎ C.id ∎)) H-id , subst (λ { (q , f) → H q p f }) (sym $ cong₂ _,_ (subst P (refl X) p ≡⟨ subst-refl P _ ⟩∎ p ∎) (C.≡→≅ (refl X) C.⁻¹ ≡⟨ cong C._⁻¹ C.≡→≅-refl ⟩∎ C.id ∎)) H-id )) X≡Y p≡q to-refl : ∀ {X} {p : P X} → subst (λ f → H p p (f C.¹) × H p p (f C.⁻¹)) C.≡→≅-refl (to (refl X) (subst-refl P p)) ≡ (H-id , H-id) to-refl = cong₂ _,_ (H-prop _ _ _) (H-prop _ _ _) ≡≡≃≅HH : ∀ {X Y} {p : P X} {q : P Y} → (∃ λ (eq : X ≡ Y) → subst P eq p ≡ q) ≃ (∃ λ (f : X C.≅ Y) → H p q (f C.¹) × H q p (f C.⁻¹)) ≡≡≃≅HH {X} {p = p} {q} = Σ-preserves C.≡≃≅ λ X≡Y → _↔_.to (⇔↔≃ ext (P-set _) (×-closure 1 (H-prop _) (H-prop _))) (record { to = ≡≡≃≅HH.to X≡Y ; from = from X≡Y }) where from : ∀ X≡Y → H p q (C.≡→≅ X≡Y C.¹) × H q p (C.≡→≅ X≡Y C.⁻¹) → subst P X≡Y p ≡ q from X≡Y (H¹ , H⁻¹) = elim¹ (λ {Y} X≡Y → ∀ {q} → H p q (C.≡→≅ X≡Y C.¹) → H q p (C.≡→≅ X≡Y C.⁻¹) → subst P X≡Y p ≡ q) (λ {q} H¹ H⁻¹ → subst P (refl X) p ≡⟨ subst-refl P _ ⟩ p ≡⟨ H-antisymmetric p q (subst (H p q) (cong C._¹ C.≡→≅-refl) H¹) (subst (H q p) (cong C._⁻¹ C.≡→≅-refl) H⁻¹) ⟩∎ q ∎) X≡Y H¹ H⁻¹ ≡≃≅ : ∀ {X Y} {p : P X} {q : P Y} → _≡_ {A = ∃ P} (X , p) (Y , q) ≃ ((X , p) Str.≅ (Y , q)) ≡≃≅ = ≅HH≃≅ ⊚ ≡≡≃≅HH ⊚ ↔⇒≃ (inverse Σ-≡,≡↔≡) -- …and the proof maps reflexivity to the identity morphism. ≡≃≅-refl : ∀ {Xp} → _≃_.to ≡≃≅ (refl Xp) Str.¹ ≡ Str.id ≡≃≅-refl {X , p} = cong Str._¹ ( ≅HH≃≅.to (_≃_.to ≡≡≃≅HH (Σ-≡,≡←≡ (refl (_,_ {B = P} X p)))) ≡⟨ cong (≅HH≃≅.to ∘ _≃_.to ≡≡≃≅HH) $ Σ-≡,≡←≡-refl {B = P} ⟩ ≅HH≃≅.to (_≃_.to ≡≡≃≅HH (refl X , subst-refl P p)) ≡⟨⟩ ≅HH≃≅.to (C.≡→≅ (refl X) , ≡≡≃≅HH.to (refl X) (subst-refl P p)) ≡⟨ cong ≅HH≃≅.to $ Σ-≡,≡→≡ C.≡→≅-refl ≡≡≃≅HH.to-refl ⟩ ≅HH≃≅.to (C.id≅ , H-id , H-id) ≡⟨ refl _ ⟩∎ Str.id≅ ∎)
39.263158
137
0.402815
4367aa22bfa8b042b8e76ea90f8208854d950733
11,477
agda
Agda
core/lib/types/Group.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Group.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/types/Group.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Fin open import lib.types.Int open import lib.types.Nat open import lib.types.Pi module lib.types.Group where -- 1-approximation of groups without higher coherence conditions. record GroupStructure {i} (El : Type i) --(El-level : has-level 0 El) : Type i where constructor group-structure field ident : El inv : El → El comp : El → El → El unit-l : ∀ a → comp ident a == a assoc : ∀ a b c → comp (comp a b) c == comp a (comp b c) inv-l : ∀ a → (comp (inv a) a) == ident ⊙El : Ptd i ⊙El = ⊙[ El , ident ] private infix 80 _⊙_ _⊙_ = comp abstract inv-r : ∀ g → g ⊙ inv g == ident inv-r g = g ⊙ inv g =⟨ ! $ unit-l (g ⊙ inv g) ⟩ ident ⊙ (g ⊙ inv g) =⟨ ! $ inv-l (inv g) |in-ctx _⊙ (g ⊙ inv g) ⟩ (inv (inv g) ⊙ inv g) ⊙ (g ⊙ inv g) =⟨ assoc (inv (inv g)) (inv g) (g ⊙ inv g) ⟩ inv (inv g) ⊙ (inv g ⊙ (g ⊙ inv g)) =⟨ ! $ assoc (inv g) g (inv g) |in-ctx inv (inv g) ⊙_ ⟩ inv (inv g) ⊙ ((inv g ⊙ g) ⊙ inv g) =⟨ inv-l g |in-ctx (λ h → inv (inv g) ⊙ (h ⊙ inv g)) ⟩ inv (inv g) ⊙ (ident ⊙ inv g) =⟨ unit-l (inv g) |in-ctx inv (inv g) ⊙_ ⟩ inv (inv g) ⊙ inv g =⟨ inv-l (inv g) ⟩ ident =∎ unit-r : ∀ g → g ⊙ ident == g unit-r g = g ⊙ ident =⟨ ! (inv-l g) |in-ctx g ⊙_ ⟩ g ⊙ (inv g ⊙ g) =⟨ ! $ assoc g (inv g) g ⟩ (g ⊙ inv g) ⊙ g =⟨ inv-r g |in-ctx _⊙ g ⟩ ident ⊙ g =⟨ unit-l g ⟩ g =∎ inv-unique-l : (g h : El) → (g ⊙ h == ident) → inv h == g inv-unique-l g h p = inv h =⟨ ! (unit-l (inv h)) ⟩ ident ⊙ inv h =⟨ ! p |in-ctx (λ w → w ⊙ inv h) ⟩ (g ⊙ h) ⊙ inv h =⟨ assoc g h (inv h) ⟩ g ⊙ (h ⊙ inv h) =⟨ inv-r h |in-ctx (λ w → g ⊙ w) ⟩ g ⊙ ident =⟨ unit-r g ⟩ g =∎ inv-unique-r : (g h : El) → (g ⊙ h == ident) → inv g == h inv-unique-r g h p = inv g =⟨ ! (unit-r (inv g)) ⟩ inv g ⊙ ident =⟨ ! p |in-ctx (λ w → inv g ⊙ w) ⟩ inv g ⊙ (g ⊙ h) =⟨ ! (assoc (inv g) g h) ⟩ (inv g ⊙ g) ⊙ h =⟨ inv-l g |in-ctx (λ w → w ⊙ h) ⟩ ident ⊙ h =⟨ unit-l h ⟩ h =∎ inv-ident : inv ident == ident inv-ident = inv-unique-l ident ident (unit-l ident) inv-comp : (g₁ g₂ : El) → inv (g₁ ⊙ g₂) == inv g₂ ⊙ inv g₁ inv-comp g₁ g₂ = inv-unique-r (g₁ ⊙ g₂) (inv g₂ ⊙ inv g₁) $ (g₁ ⊙ g₂) ⊙ (inv g₂ ⊙ inv g₁) =⟨ assoc g₁ g₂ (inv g₂ ⊙ inv g₁) ⟩ g₁ ⊙ (g₂ ⊙ (inv g₂ ⊙ inv g₁)) =⟨ ! (assoc g₂ (inv g₂) (inv g₁)) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ ((g₂ ⊙ inv g₂) ⊙ inv g₁) =⟨ inv-r g₂ |in-ctx (λ w → g₁ ⊙ (w ⊙ inv g₁)) ⟩ g₁ ⊙ (ident ⊙ inv g₁) =⟨ unit-l (inv g₁) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ inv g₁ =⟨ inv-r g₁ ⟩ ident =∎ inv-inv : (g : El) → inv (inv g) == g inv-inv g = inv-unique-r (inv g) g (inv-l g) inv-is-inj : is-inj inv inv-is-inj g₁ g₂ p = ! (inv-inv g₁) ∙ ap inv p ∙ inv-inv g₂ cancel-l : (g : El) {h k : El} → g ⊙ h == g ⊙ k → h == k cancel-l g {h} {k} p = h =⟨ ! (unit-l h) ⟩ ident ⊙ h =⟨ ap (λ w → w ⊙ h) (! (inv-l g)) ⟩ (inv g ⊙ g) ⊙ h =⟨ assoc (inv g) g h ⟩ inv g ⊙ (g ⊙ h) =⟨ ap (λ w → inv g ⊙ w) p ⟩ inv g ⊙ (g ⊙ k) =⟨ ! (assoc (inv g) g k) ⟩ (inv g ⊙ g) ⊙ k =⟨ ap (λ w → w ⊙ k) (inv-l g) ⟩ ident ⊙ k =⟨ unit-l k ⟩ k =∎ cancel-r : (g : El) {h k : El} → h ⊙ g == k ⊙ g → h == k cancel-r g {h} {k} p = h =⟨ ! (unit-r h) ⟩ h ⊙ ident =⟨ ap (λ w → h ⊙ w) (! (inv-r g)) ⟩ h ⊙ (g ⊙ inv g) =⟨ ! (assoc h g (inv g)) ⟩ (h ⊙ g) ⊙ inv g =⟨ ap (λ w → w ⊙ inv g) p ⟩ (k ⊙ g) ⊙ inv g =⟨ assoc k g (inv g) ⟩ k ⊙ (g ⊙ inv g) =⟨ ap (λ w → k ⊙ w) (inv-r g) ⟩ k ⊙ ident =⟨ unit-r k ⟩ k =∎ conj : El → El → El conj g₁ g₂ = (g₁ ⊙ g₂) ⊙ inv g₁ abstract conj-ident-r : ∀ g → conj g ident == ident conj-ident-r g = ap (_⊙ inv g) (unit-r _) ∙ inv-r g {- NOT USED abstract conj-unit-l : ∀ g → conj ident g == g conj-unit-l g = ap2 _⊙_ (unit-l _) inv-ident ∙ unit-r _ conj-comp-l : ∀ g₁ g₂ g₃ → conj (g₁ ⊙ g₂) g₃ == conj g₁ (conj g₂ g₃) conj-comp-l g₁ g₂ g₃ = ((g₁ ⊙ g₂) ⊙ g₃) ⊙ inv (g₁ ⊙ g₂) =⟨ ap2 _⊙_ (assoc g₁ g₂ g₃) (inv-comp g₁ g₂) ⟩ (g₁ ⊙ (g₂ ⊙ g₃)) ⊙ (inv g₂ ⊙ inv g₁) =⟨ ! $ assoc (g₁ ⊙ (g₂ ⊙ g₃)) (inv g₂) (inv g₁) ⟩ ((g₁ ⊙ (g₂ ⊙ g₃)) ⊙ inv g₂) ⊙ inv g₁ =⟨ assoc g₁ (g₂ ⊙ g₃) (inv g₂) |in-ctx _⊙ inv g₁ ⟩ (g₁ ⊙ ((g₂ ⊙ g₃) ⊙ inv g₂)) ⊙ inv g₁ =∎ inv-conj : ∀ g₁ g₂ → inv (conj g₁ g₂) == conj g₁ (inv g₂) inv-conj g₁ g₂ = inv-comp (g₁ ⊙ g₂) (inv g₁) ∙ ap2 _⊙_ (inv-inv g₁) (inv-comp g₁ g₂) ∙ ! (assoc g₁ (inv g₂) (inv g₁)) -} exp : El → ℤ → El exp g (pos 0) = ident exp g (pos 1) = g exp g (pos (S (S n))) = comp g (exp g (pos (S n))) exp g (negsucc 0) = inv g exp g (negsucc (S n)) = comp (inv g) (exp g (negsucc n)) abstract exp-succ : ∀ g z → exp g (succ z) == comp g (exp g z) exp-succ g (pos 0) = ! (unit-r g) exp-succ g (pos 1) = idp exp-succ g (pos (S (S n))) = idp exp-succ g (negsucc 0) = ! (inv-r g) exp-succ g (negsucc (S n)) = ! (unit-l (exp g (negsucc n))) ∙ ap (λ h → comp h (exp g (negsucc n))) (! (inv-r g)) ∙ assoc g (inv g) (exp g (negsucc n)) exp-pred : ∀ g z → exp g (pred z) == comp (inv g) (exp g z) exp-pred g (pos 0) = ! (unit-r (inv g)) exp-pred g (pos 1) = ! (inv-l g) exp-pred g (pos (S (S n))) = ! (unit-l (exp g (pos (S n)))) ∙ ap (λ h → comp h (exp g (pos (S n)))) (! (inv-l g)) ∙ assoc (inv g) g (exp g (pos (S n))) exp-pred g (negsucc 0) = idp exp-pred g (negsucc (S n)) = idp exp-+ : ∀ g z₁ z₂ → exp g (z₁ ℤ+ z₂) == comp (exp g z₁) (exp g z₂) exp-+ g (pos 0) z₂ = ! (unit-l _) exp-+ g (pos 1) z₂ = exp-succ g z₂ exp-+ g (pos (S (S n))) z₂ = exp-succ g (pos (S n) ℤ+ z₂) ∙ ap (comp g) (exp-+ g (pos (S n)) z₂) ∙ ! (assoc g (exp g (pos (S n))) (exp g z₂)) exp-+ g (negsucc 0) z₂ = exp-pred g z₂ exp-+ g (negsucc (S n)) z₂ = exp-pred g (negsucc n ℤ+ z₂) ∙ ap (comp (inv g)) (exp-+ g (negsucc n) z₂) ∙ ! (assoc (inv g) (exp g (negsucc n)) (exp g z₂)) exp-ident : ∀ z → exp ident z == ident exp-ident (pos 0) = idp exp-ident (pos 1) = idp exp-ident (pos (S (S n))) = unit-l _ ∙ exp-ident (pos (S n)) exp-ident (negsucc 0) = inv-ident exp-ident (negsucc (S n)) = ap2 comp inv-ident (exp-ident (negsucc n)) ∙ unit-l _ diff : El → El → El diff g h = g ⊙ inv h abstract zero-diff-same : (g h : El) → diff g h == ident → g == h zero-diff-same g h p = inv-is-inj g h $ inv-unique-r g (inv h) p inv-diff : (g h : El) → inv (diff g h) == diff h g inv-diff g h = inv-comp g (inv h) ∙ ap (_⊙ inv g) (inv-inv h) sum : ∀ {I : ℕ} → (Fin I → El) → El sum {I = O} f = ident sum {I = S n} f = comp (sum (f ∘ Fin-S)) (f (n , ltS)) subsum-r : ∀ {j k} {I : ℕ} {A : Type j} {B : Type k} → (Fin I → Coprod A B) → (B → El) → El subsum-r p f = sum (λ x → ⊔-rec (λ _ → ident) f (p x)) record Group i : Type (lsucc i) where constructor group field El : Type i {{El-level}} : has-level 0 El group-struct : GroupStructure El open GroupStructure group-struct public Group₀ : Type (lsucc lzero) Group₀ = Group lzero is-abelian : ∀ {i} → Group i → Type i is-abelian G = (a b : Group.El G) → Group.comp G a b == Group.comp G b a AbGroup : ∀ i → Type (lsucc i) AbGroup i = Σ (Group i) is-abelian AbGroup₀ : Type (lsucc lzero) AbGroup₀ = AbGroup lzero module AbGroup {i} (G : AbGroup i) where grp = fst G comm = snd G open Group grp public abstract interchange : (g₁ g₂ g₃ g₄ : El) → comp (comp g₁ g₂) (comp g₃ g₄) == comp (comp g₁ g₃) (comp g₂ g₄) interchange g₁ g₂ g₃ g₄ = comp (comp g₁ g₂) (comp g₃ g₄) =⟨ assoc g₁ g₂ (comp g₃ g₄) ⟩ comp g₁ (comp g₂ (comp g₃ g₄)) =⟨ comm g₃ g₄ |in-ctx (λ g → (comp g₁ (comp g₂ g))) ⟩ comp g₁ (comp g₂ (comp g₄ g₃)) =⟨ ! (assoc g₂ g₄ g₃) |in-ctx comp g₁ ⟩ comp g₁ (comp (comp g₂ g₄) g₃) =⟨ comm (comp g₂ g₄) g₃ |in-ctx comp g₁ ⟩ comp g₁ (comp g₃ (comp g₂ g₄)) =⟨ ! (assoc g₁ g₃ (comp g₂ g₄)) ⟩ comp (comp g₁ g₃) (comp g₂ g₄) =∎ inv-comp' : ∀ g₁ g₂ → inv (comp g₁ g₂) == comp (inv g₁) (inv g₂) inv-comp' g₁ g₂ = inv-comp g₁ g₂ ∙ comm (inv g₂) (inv g₁) diff-comp : (g₁ g₂ g₃ g₄ : El) → diff (comp g₁ g₂) (comp g₃ g₄) == comp (diff g₁ g₃) (diff g₂ g₄) diff-comp g₁ g₂ g₃ g₄ = diff (comp g₁ g₂) (comp g₃ g₄) =⟨ ap (comp (comp g₁ g₂)) (inv-comp' g₃ g₄) ⟩ comp (comp g₁ g₂) (comp (inv g₃) (inv g₄)) =⟨ interchange g₁ g₂ (inv g₃) (inv g₄) ⟩ comp (diff g₁ g₃) (diff g₂ g₄) =∎ sum-comp : ∀ {I} (f g : Fin I → El) → sum (λ x → comp (f x) (g x)) == comp (sum f) (sum g) sum-comp {I = O} f g = ! (unit-l _) sum-comp {I = S I} f g = ap (λ x → comp x (comp (f (I , ltS)) (g (I , ltS)))) (sum-comp (f ∘ Fin-S) (g ∘ Fin-S)) ∙ interchange (sum (f ∘ Fin-S)) (sum (g ∘ Fin-S)) (f (I , ltS)) (g (I , ltS)) exp-comp : ∀ g₁ g₂ z → exp (comp g₁ g₂) z == comp (exp g₁ z) (exp g₂ z) exp-comp g₁ g₂ (pos O) = ! (unit-l _) exp-comp g₁ g₂ (pos (S O)) = idp exp-comp g₁ g₂ (pos (S (S n))) = ap (comp (comp g₁ g₂)) (exp-comp g₁ g₂ (pos (S n))) ∙ interchange g₁ g₂ (exp g₁ (pos (S n))) (exp g₂ (pos (S n))) exp-comp g₁ g₂ (negsucc O) = inv-comp' g₁ g₂ exp-comp g₁ g₂ (negsucc (S n)) = ap2 comp (inv-comp' g₁ g₂) (exp-comp g₁ g₂ (negsucc n)) ∙ interchange (inv g₁) (inv g₂) (exp g₁ (negsucc n)) (exp g₂ (negsucc n)) is-trivialᴳ : ∀ {i} (G : Group i) → Type i is-trivialᴳ G = ∀ g → g == Group.ident G contr-is-trivialᴳ : ∀ {i} (G : Group i) {{_ : is-contr (Group.El G)}} → is-trivialᴳ G contr-is-trivialᴳ G g = contr-has-all-paths _ _ {- group-structure= -} module _ where open GroupStructure abstract group-structure= : ∀ {i} {A : Type i} {{_ : is-set A}} {id₁ id₂ : A} {inv₁ inv₂ : A → A} {comp₁ comp₂ : A → A → A} → ∀ {unit-l₁ unit-l₂ assoc₁ assoc₂ inv-l₁ inv-l₂} → (id₁ == id₂) → (inv₁ == inv₂) → (comp₁ == comp₂) → Path {A = GroupStructure A} (group-structure id₁ inv₁ comp₁ unit-l₁ assoc₁ inv-l₁) (group-structure id₂ inv₂ comp₂ unit-l₂ assoc₂ inv-l₂) group-structure= {id₁ = id₁} {inv₁ = inv₁} {comp₁ = comp₁} idp idp idp = ap3 (group-structure id₁ inv₁ comp₁) (prop-has-all-paths _ _) (prop-has-all-paths _ _) (prop-has-all-paths _ _) ↓-group-structure= : ∀ {i} {A B : Type i} {{_ : has-level 0 A}} {GS : GroupStructure A} {HS : GroupStructure B} (p : A == B) → (ident GS == ident HS [ (λ C → C) ↓ p ]) → (inv GS == inv HS [ (λ C → C → C) ↓ p ]) → (comp GS == comp HS [ (λ C → C → C → C) ↓ p ]) → GS == HS [ GroupStructure ↓ p ] ↓-group-structure= idp = group-structure=
35.978056
97
0.469809
43cac2311917d4521e62c669b58257bd6a55cfeb
58,053
agda
Agda
agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftBase.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
3
2020-04-16T10:58:53.000Z
2020-07-01T03:59:31.000Z
agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftBase.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
null
null
null
agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftBase.agda
florence/esterel-calculus
4340bef3f8df42ab8167735d35a4cf56243a45cd
[ "MIT" ]
1
2020-04-15T20:02:49.000Z
2020-04-15T20:02:49.000Z
module Esterel.Lang.CanFunction.MergePotentialRuleLeftBase where open import utility renaming (_U̬_ to _∪_ ; _|̌_ to _-_) open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.CanFunction open import Esterel.Lang.CanFunction.Base open import Esterel.Lang.CanFunction.CanThetaContinuation open import Esterel.Lang.CanFunction.MergePotentialRuleCan open import Esterel.Context using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e) open import Esterel.Context.Properties using (plug ; unplug) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.CompletionCode as Code using () renaming (CompletionCode to Code) open import Esterel.Variable.Signal as Signal using (Signal ; _ₛ) open import Esterel.Variable.Shared as SharedVar using (SharedVar ; _ₛₕ) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open EvaluationContext1 open _≐_⟦_⟧e open import Data.Bool using (Bool ; not ; if_then_else_) open import Data.Empty using (⊥ ; ⊥-elim) open import Data.List using (List ; [] ; _∷_ ; _++_ ; map ; concatMap ; foldr) open import Data.List.Properties using (map-id) open import Data.List.Any using (Any ; any ; here ; there) open import Data.List.Any.Properties using (++⁻) renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ) open import Data.Maybe using (Maybe ; maybe ; just ; nothing) open import Data.Nat using (ℕ ; zero ; suc ; _≟_ ; _+_) open import Data.Nat.Properties.Simple using (+-comm) open import Data.Product using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Function using (_∘_ ; id ; _∋_) open import Relation.Nullary using (¬_ ; Dec ; yes ; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst ; module ≡-Reasoning) open ListSet Data.Nat._≟_ using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge ; set-subtract-notin ; set-remove ; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed ; set-subtract-[a]≡set-remove) open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM open ≡-Reasoning distinct'-S∷Ss⇒[S] : ∀ {xs S Ss} status → distinct' xs (S ∷ Ss) → distinct' xs (proj₁ (Dom [ (S ₛ) ↦ status ] )) distinct'-S∷Ss⇒[S] {xs} {S} {Ss} status xs≠S∷Ss S' S'∈xs S'∈[S] rewrite Env.sig-single-∈-eq (S' ₛ) (S ₛ) status S'∈[S] = xs≠S∷Ss S S'∈xs (here refl) canθₖ-mergeˡ-E-induction-base-par₁ : ∀ {E q E⟦nothin⟧∥q BV FV} sigs' S' r θ → E⟦nothin⟧∥q ≐ (epar₁ q ∷ E) ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧∥q BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → Canθₖ sigs' S' ((E ⟦ r ⟧e) ∥ q) θ ≡ concatMap (λ k → map (Code._⊔_ k) (Canₖ q θ)) (Canθₖ sigs' S' (E ⟦ r ⟧e) θ) canθₖ-mergeˡ-E-induction-base-par₁ [] S' r θ (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' = refl canθₖ-mergeˡ-E-induction-base-par₁ (nothing ∷ sigs') S' r θ (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' rewrite map-+-compose-suc S' (SigMap.keys sigs') = canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (depar₁ E⟦nothin⟧) cb FV≠sigs' canθₖ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.present ∷ sigs') S' r θ (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r (θ ← [S]-env-present (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') = refl canθₖ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.absent ∷ sigs') S' r θ (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r (θ ← [S]-env-absent (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') = refl canθₖ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) ∥ q) (θ ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r (θ ← [S]-env (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') = refl ... | no S'∉canθ-sigs'-E⟦r⟧∥q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S'] rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r (θ ← [S]-env-absent (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') = refl ... | yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S'] rewrite map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←[S'] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← [S]-env (S' ₛ)) (depar₁ dehole) (CBpar CBnothing cbq distinct-empty-left distinct-empty-left distinct-empty-left (λ _ ())) (dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs'))) (S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl)) S'∈canθ-sigs'-E⟦r⟧∥q-θ←[S'])) ... | no S'∉canθ-sigs'-E⟦r⟧∥q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧∥q-θ←[S'] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← [S]-env (S' ₛ)) (epar₁ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←[S'])) canθₖ-mergeˡ-E-induction-base-par₂ : ∀ {E q q∥E⟦nothin⟧ BV FV} sigs' S' r θ → q∥E⟦nothin⟧ ≐ (epar₂ q ∷ E) ⟦ nothin ⟧e → CorrectBinding q∥E⟦nothin⟧ BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → Canθₖ sigs' S' (q ∥ (E ⟦ r ⟧e)) θ ≡ concatMap (λ k → map (Code._⊔_ k) (Canθₖ sigs' S' (E ⟦ r ⟧e) θ)) (Canₖ q θ) canθₖ-mergeˡ-E-induction-base-par₂ [] S' r θ (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs' = refl canθₖ-mergeˡ-E-induction-base-par₂ (nothing ∷ sigs') S' r θ (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs' rewrite map-+-compose-suc S' (SigMap.keys sigs') = canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (depar₂ E⟦nothin⟧) cb FV≠sigs' canθₖ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.present ∷ sigs') S' r θ (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs' rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left dist'++ˡ (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r (θ ← [S]-env-present (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') = refl canθₖ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.absent ∷ sigs') S' r θ (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs' rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left dist'++ˡ (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r (θ ← [S]-env-absent (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') = refl canθₖ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs' with any (_≟_ S') (Canθₛ sigs' (suc S') (q ∥ (E ⟦ r ⟧e)) (θ ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env (S' ₛ)) q cbq (distinct'-to-left dist'++ˡ (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r (θ ← [S]-env (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') = refl ... | no S'∉canθ-sigs'-q∥E⟦r⟧-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S'] rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left dist'++ˡ (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r (θ ← [S]-env-absent (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') = refl ... | yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S'] rewrite map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←[S'] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← [S]-env (S' ₛ)) (depar₂ dehole) (CBpar cbq CBnothing distinct-empty-right distinct-empty-right distinct-empty-right (λ _ _ ())) (λ S' S'∈map-+-suc-S'-sigs' S'∈FVq++[] → FV≠sigs' S' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'∈FVq++[])) (there S'∈map-+-suc-S'-sigs')) (S' ₛ) (λ S'∈FVq++[] → FV≠sigs' S' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'∈FVq++[])) (here refl)) S'∈canθ-sigs'-q∥E⟦r⟧-θ←[S'])) ... | no S'∉canθ-sigs'-q∥E⟦r⟧-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] = ⊥-elim (S'∉canθ-sigs'-q∥E⟦r⟧-θ←[S'] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← [S]-env (S' ₛ)) (epar₂ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←[S'])) canθₖ-mergeˡ-E-induction-base-seq-notin : ∀ {E q E⟦nothin⟧>>q BV FV} sigs' S' r θ → E⟦nothin⟧>>q ≐ (eseq q ∷ E) ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧>>q BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → Code.nothin ∉ Canθₖ sigs' S' (E ⟦ r ⟧e) θ → Canθₖ sigs' S' ((E ⟦ r ⟧e) >> q) θ ≡ Canθₖ sigs' S' (E ⟦ r ⟧e) θ canθₖ-mergeˡ-E-induction-base-seq-notin {E} [] S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ) ... | no nothin∉can-E⟦r⟧-θ = refl ... | yes nothin∈can-E⟦r⟧-θ = ⊥-elim (nothin∉canθ-sigs'-E⟦r⟧-θ nothin∈can-E⟦r⟧-θ) canθₖ-mergeˡ-E-induction-base-seq-notin (nothing ∷ sigs') S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ rewrite map-+-compose-suc S' (SigMap.keys sigs') | canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r θ (deseq E⟦nothin⟧) cb FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ = refl canθₖ-mergeˡ-E-induction-base-seq-notin {E} (just Signal.present ∷ sigs') S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ rewrite map-+-compose-suc S' (SigMap.keys sigs') | canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r (θ ← [S]-env-present (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') nothin∉canθ-sigs'-E⟦r⟧-θ = refl canθₖ-mergeˡ-E-induction-base-seq-notin {E} (just Signal.absent ∷ sigs') S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ rewrite map-+-compose-suc S' (SigMap.keys sigs') | canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r (θ ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') nothin∉canθ-sigs'-E⟦r⟧-θ = refl canθₖ-mergeˡ-E-induction-base-seq-notin {E} {q} (just Signal.unknown ∷ sigs') S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) >> q) (θ ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] rewrite map-+-compose-suc S' (SigMap.keys sigs') | canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r (θ ← [S]-env (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') nothin∉canθ-sigs'-E⟦r⟧-θ = refl ... | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S'] rewrite map-+-compose-suc S' (SigMap.keys sigs') | canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r (θ ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') nothin∉canθ-sigs'-E⟦r⟧-θ = refl ... | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S'] rewrite map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←[S'] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← [S]-env (S' ₛ)) (deseq dehole) (CBseq CBnothing cbq distinct-empty-left) (dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs'))) (S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl)) S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'])) ... | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← [S]-env (S' ₛ)) (eseq q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←[S'])) canθₖ-mergeˡ-E-induction-base-seq-in : ∀ {E q E⟦nothin⟧>>q BV FV} sigs' S' r θ → E⟦nothin⟧>>q ≐ (eseq q ∷ E) ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧>>q BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → Code.nothin ∈ Canθₖ sigs' S' (E ⟦ r ⟧e) θ → Canθₖ sigs' S' ((E ⟦ r ⟧e) >> q) θ ≡ CodeSet.set-remove (Canθₖ sigs' S' (E ⟦ r ⟧e) θ) Code.nothin ++ Canₖ q θ canθₖ-mergeˡ-E-induction-base-seq-in {E} [] S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ) ... | no nothin∉can-E⟦r⟧-θ = ⊥-elim (nothin∉can-E⟦r⟧-θ nothin∈canθ-sigs'-E⟦r⟧-θ) ... | yes nothin∈can-E⟦r⟧-θ = refl canθₖ-mergeˡ-E-induction-base-seq-in (nothing ∷ sigs') S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ rewrite map-+-compose-suc S' (SigMap.keys sigs') | canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r θ (deseq E⟦nothin⟧) cb FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ = refl canθₖ-mergeˡ-E-induction-base-seq-in {E} {q} (just Signal.present ∷ sigs') S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r (θ ← [S]-env-present (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') nothin∈canθ-sigs'-E⟦r⟧-θ = refl canθₖ-mergeˡ-E-induction-base-seq-in {E} {q} (just Signal.absent ∷ sigs') S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r (θ ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') nothin∈canθ-sigs'-E⟦r⟧-θ = refl canθₖ-mergeˡ-E-induction-base-seq-in {E} {q} (just Signal.unknown ∷ sigs') S' r θ (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) >> q) (θ ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) (θ ← [S]-env (S' ₛ))) ... | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r (θ ← [S]-env (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') nothin∈canθ-sigs'-E⟦r⟧-θ = refl ... | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S'] rewrite +-comm S' 0 | map-+-compose-suc S' (SigMap.keys sigs') | can-irr θ ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r (θ ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs') nothin∈canθ-sigs'-E⟦r⟧-θ = refl ... | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S'] rewrite map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←[S'] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← [S]-env (S' ₛ)) (deseq dehole) (CBseq CBnothing cbq distinct-empty-left) (dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs'))) (S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl)) S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'])) ... | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← [S]-env (S' ₛ)) (eseq q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←[S'])) canθₛ-mergeˡ-E-induction-base-par₁ : ∀ {E q E⟦nothin⟧∥q BV FV} sigs' S' r θ θo → E⟦nothin⟧∥q ≐ (epar₁ q ∷ E) ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧∥q BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → ∀ S'' → S'' ∈ Canθₛ sigs' S' ((E ⟦ r ⟧e) ∥ q) (θ ← θo) → S'' ∈ Canθₛ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ S'' ∈ Canₛ q (θ ← θo) canθₛ-mergeˡ-E-induction-base-par₁ {E} [] S' r θ θo E⟦nothin⟧∥q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo with ++⁻ (Canₛ (E ⟦ r ⟧e) (θ ← θo)) S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ S''∈can-E⟦r⟧-θ←θo = inj₁ S''∈can-E⟦r⟧-θ←θo ... | inj₂ S''∈can-q-θ←θo = inj₂ S''∈can-q-θ←θo canθₛ-mergeˡ-E-induction-base-par₁ (nothing ∷ sigs') S' r θ θo E⟦nothin⟧∥q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo rewrite map-+-compose-suc S' (SigMap.keys sigs') = canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ θo E⟦nothin⟧∥q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.present ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] ... | inj₂ S''∈can-q-θ←θo←[S'↦present] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | Env.←-assoc θ θo ([S]-env-present (S' ₛ)) = inj₂ S''∈can-q-θ←θo←[S'↦present] canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.absent ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ S''∈can-q-θ←θo←[S'↦absent] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ S''∈can-q-θ←θo←[S'↦absent] canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) ∥ q) ((θ ← θo) ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ))) canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo | yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] ... | inj₂ S''∈can-q-θ←θo←[S'↦unknown] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | Env.←-assoc θ θo ([S]-env (S' ₛ)) = inj₂ S''∈can-q-θ←θo←[S'↦unknown] canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo | no S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ S''∈can-q-θ←θo←[S'↦absent] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ S''∈can-q-θ←θo←[S'↦absent] canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo | no S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (epar₁ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S])) canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbp cbq _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo | yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (depar₁ dehole) (CBpar CBnothing cbq distinct-empty-left distinct-empty-left distinct-empty-left (λ _ ())) (dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs'))) (S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl)) S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S])) canθₛ-mergeˡ-E-induction-base-par₂ : ∀ {E q q∥E⟦nothin⟧ BV FV} sigs' S' r θ θo → q∥E⟦nothin⟧ ≐ (epar₂ q ∷ E) ⟦ nothin ⟧e → CorrectBinding q∥E⟦nothin⟧ BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → ∀ S'' → S'' ∈ Canθₛ sigs' S' (q ∥ (E ⟦ r ⟧e)) (θ ← θo) → S'' ∈ Canθₛ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ S'' ∈ Canₛ q (θ ← θo) canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} [] S' r θ θo q∥E⟦nothin⟧ cb FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo with ++⁻ (Canₛ q (θ ← θo)) S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₂ S''∈can-E⟦r⟧-θ←θo = inj₁ S''∈can-E⟦r⟧-θ←θo ... | inj₁ S''∈can-q-θ←θo = inj₂ S''∈can-q-θ←θo canθₛ-mergeˡ-E-induction-base-par₂ (nothing ∷ sigs') S' r θ θo q∥E⟦nothin⟧ cb FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo rewrite map-+-compose-suc S' (SigMap.keys sigs') = canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ θo q∥E⟦nothin⟧ cb FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.present ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] ... | inj₂ S''∈can-q-θ←θo←[S'↦present] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left (dist'++ˡ) (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | Env.←-assoc θ θo ([S]-env-present (S' ₛ)) = inj₂ S''∈can-q-θ←θo←[S'↦present] canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.absent ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ S''∈can-q-θ←θo←[S'↦absent] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ˡ) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ S''∈can-q-θ←θo←[S'↦absent] canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo with any (_≟_ S') (Canθₛ sigs' (suc S') (q ∥ (E ⟦ r ⟧e)) ((θ ← θo) ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ))) canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo | yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] ... | inj₂ S''∈can-q-θ←θo←[S'↦unknown] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq (distinct'-to-left (dist'++ˡ) (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | Env.←-assoc θ θo ([S]-env (S' ₛ)) = inj₂ S''∈can-q-θ←θo←[S'↦unknown] canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo | no S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ S''∈can-q-θ←θo←[S'↦absent] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ˡ) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ S''∈can-q-θ←θo←[S'↦absent] canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo | no S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) = ⊥-elim (S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (epar₂ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S])) canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo | yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (depar₂ dehole) (CBpar cbq CBnothing distinct-empty-right distinct-empty-right distinct-empty-right (λ _ _ ())) (λ S''' S'''∈map-+-suc-S'-sigs' S'''∈FVq++[] → FV≠sigs' S''' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'''∈FVq++[])) (there S'''∈map-+-suc-S'-sigs')) (S' ₛ) (λ S'∈FVq++[] → FV≠sigs' S' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'∈FVq++[])) (here refl)) S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S])) canθₛ-mergeˡ-E-induction-base-seq : ∀ {E q E⟦nothin⟧>>q BV FV} sigs' S' r θ θo → E⟦nothin⟧>>q ≐ (eseq q ∷ E) ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧>>q BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → ∀ S'' → S'' ∈ Canθₛ sigs' S' ((E ⟦ r ⟧e) >> q) (θ ← θo) → S'' ∈ Canθₛ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ (S'' ∈ Canₛ q (θ ← θo) × Code.nothin ∈ Canθₖ sigs' S' (E ⟦ r ⟧e) (θ ← θo)) canθₛ-mergeˡ-E-induction-base-seq {E} {q} [] S' r θ θo E⟦nothin⟧>>q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) (θ ← θo)) ... | no nothin∉can-E⟦r⟧-θ←θo = inj₁ S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | yes nothin∈can-E⟦r⟧-θ←θo with ++⁻ (Canₛ (E ⟦ r ⟧e) (θ ← θo)) S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ S''∈can-E⟦r⟧-θ←θo = inj₁ S''∈can-E⟦r⟧-θ←θo ... | inj₂ S''∈can-q-θ←θo = inj₂ (S''∈can-q-θ←θo ,′ nothin∈can-E⟦r⟧-θ←θo) canθₛ-mergeˡ-E-induction-base-seq {E} {q} (nothing ∷ sigs') S' r θ θo E⟦nothin⟧>>q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo rewrite map-+-compose-suc S' (SigMap.keys sigs') = canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ θo E⟦nothin⟧>>q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.present ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] ... | inj₂ (S''∈can-q-θ←θo←[S'↦present] , nothin∈can-E⟦r⟧-θ←θo←[S'↦present]) rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | Env.←-assoc θ θo ([S]-env-present (S' ₛ)) = inj₂ (S''∈can-q-θ←θo←[S'↦present] , nothin∈can-E⟦r⟧-θ←θo←[S'↦present]) canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.absent ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ (S''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent]) rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ (S''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent]) canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) >> q) ((θ ← θo) ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ))) canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S'] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] ... | inj₂ (S''∈can-q-θ←θo←[S'↦unknown] , nothin∈can-E⟦r⟧-θ←θo←[S'↦unknown]) rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | Env.←-assoc θ θo ([S]-env (S' ₛ)) = inj₂ (S''∈can-q-θ←θo←[S'↦unknown] , nothin∈can-E⟦r⟧-θ←θo←[S'↦unknown]) canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S'] rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ (S''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent]) rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ (S''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent]) canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S'] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (eseq q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S'])) canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S'] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S'] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (deseq dehole) (CBseq CBnothing cbq distinct-empty-left) (dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs'))) (S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl)) S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'])) canθₛₕ-mergeˡ-E-induction-base-par₁ : ∀ {E q E⟦nothin⟧∥q BV FV} sigs' S' r θ θo → E⟦nothin⟧∥q ≐ (epar₁ q ∷ E) ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧∥q BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → ∀ s'' → s'' ∈ Canθₛₕ sigs' S' ((E ⟦ r ⟧e) ∥ q) (θ ← θo) → s'' ∈ Canθₛₕ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ s'' ∈ Canₛₕ q (θ ← θo) canθₛₕ-mergeˡ-E-induction-base-par₁ {E} [] S' r θ θo E⟦nothin⟧∥q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo with ++⁻ (Canₛₕ (E ⟦ r ⟧e) (θ ← θo)) s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ s''∈can-E⟦r⟧-θ←θo = inj₁ s''∈can-E⟦r⟧-θ←θo ... | inj₂ s''∈can-q-θ←θo = inj₂ s''∈can-q-θ←θo canθₛₕ-mergeˡ-E-induction-base-par₁ (nothing ∷ sigs') S' r θ θo E⟦nothin⟧∥q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo rewrite map-+-compose-suc S' (SigMap.keys sigs') = canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ θo E⟦nothin⟧∥q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.present ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] ... | inj₂ s''∈can-q-θ←θo←[S'↦present] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | Env.←-assoc θ θo ([S]-env-present (S' ₛ)) = inj₂ s''∈can-q-θ←θo←[S'↦present] canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.absent ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ s''∈can-q-θ←θo←[S'↦absent] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ s''∈can-q-θ←θo←[S'↦absent] canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) ∥ q) ((θ ← θo) ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ))) canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo | yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] ... | inj₂ s''∈can-q-θ←θo←[S'↦unknown] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | Env.←-assoc θ θo ([S]-env (S' ₛ)) = inj₂ s''∈can-q-θ←θo←[S'↦unknown] canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo | no S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ s''∈can-q-θ←θo←[S'↦absent] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ s''∈can-q-θ←θo←[S'↦absent] canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo | no S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (epar₁ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S])) canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbp cbq _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo | yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (depar₁ dehole) (CBpar CBnothing cbq distinct-empty-left distinct-empty-left distinct-empty-left (λ _ ())) (dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs'))) (S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl)) S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S])) canθₛₕ-mergeˡ-E-induction-base-par₂ : ∀ {E q q∥E⟦nothin⟧ BV FV} sigs' S' r θ θo → q∥E⟦nothin⟧ ≐ (epar₂ q ∷ E) ⟦ nothin ⟧e → CorrectBinding q∥E⟦nothin⟧ BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → ∀ s'' → s'' ∈ Canθₛₕ sigs' S' (q ∥ (E ⟦ r ⟧e)) (θ ← θo) → s'' ∈ Canθₛₕ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ s'' ∈ Canₛₕ q (θ ← θo) canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} [] S' r θ θo q∥E⟦nothin⟧ cb FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo with ++⁻ (Canₛₕ q (θ ← θo)) s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₂ s''∈can-E⟦r⟧-θ←θo = inj₁ s''∈can-E⟦r⟧-θ←θo ... | inj₁ s''∈can-q-θ←θo = inj₂ s''∈can-q-θ←θo canθₛₕ-mergeˡ-E-induction-base-par₂ (nothing ∷ sigs') S' r θ θo q∥E⟦nothin⟧ cb FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo rewrite map-+-compose-suc S' (SigMap.keys sigs') = canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ θo q∥E⟦nothin⟧ cb FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.present ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] ... | inj₂ s''∈can-q-θ←θo←[S'↦present] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left (dist'++ˡ) (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | Env.←-assoc θ θo ([S]-env-present (S' ₛ)) = inj₂ s''∈can-q-θ←θo←[S'↦present] canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.absent ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ s''∈can-q-θ←θo←[S'↦absent] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ˡ) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ s''∈can-q-θ←θo←[S'↦absent] canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo with any (_≟_ S') (Canθₛ sigs' (suc S') (q ∥ (E ⟦ r ⟧e)) ((θ ← θo) ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ))) canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo | yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] ... | inj₂ s''∈can-q-θ←θo←[S'↦unknown] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq (distinct'-to-left (dist'++ˡ) (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | Env.←-assoc θ θo ([S]-env (S' ₛ)) = inj₂ s''∈can-q-θ←θo←[S'↦unknown] canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo | no S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ s''∈can-q-θ←θo←[S'↦absent] rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ˡ) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ s''∈can-q-θ←θo←[S'↦absent] canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo | no S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) = ⊥-elim (S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (epar₂ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S])) canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo | yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (depar₂ dehole) (CBpar cbq CBnothing distinct-empty-right distinct-empty-right distinct-empty-right (λ _ _ ())) (λ s''' s'''∈map-+-suc-S'-sigs' s'''∈FVq++[] → FV≠sigs' s''' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} s'''∈FVq++[])) (there s'''∈map-+-suc-S'-sigs')) (S' ₛ) (λ S'∈FVq++[] → FV≠sigs' S' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'∈FVq++[])) (here refl)) S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S])) canθₛₕ-mergeˡ-E-induction-base-seq : ∀ {E q E⟦nothin⟧>>q BV FV} sigs' S' r θ θo → E⟦nothin⟧>>q ≐ (eseq q ∷ E) ⟦ nothin ⟧e → CorrectBinding E⟦nothin⟧>>q BV FV → distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) → ∀ s'' → s'' ∈ Canθₛₕ sigs' S' ((E ⟦ r ⟧e) >> q) (θ ← θo) → s'' ∈ Canθₛₕ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ (s'' ∈ Canₛₕ q (θ ← θo) × Code.nothin ∈ Canθₖ sigs' S' (E ⟦ r ⟧e) (θ ← θo)) canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} [] S' r θ θo E⟦nothin⟧>>q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) (θ ← θo)) ... | no nothin∉can-E⟦r⟧-θ←θo = inj₁ s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | yes nothin∈can-E⟦r⟧-θ←θo with ++⁻ (Canₛₕ (E ⟦ r ⟧e) (θ ← θo)) s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ s''∈can-E⟦r⟧-θ←θo = inj₁ s''∈can-E⟦r⟧-θ←θo ... | inj₂ s''∈can-q-θ←θo = inj₂ (s''∈can-q-θ←θo ,′ nothin∈can-E⟦r⟧-θ←θo) canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (nothing ∷ sigs') S' r θ θo E⟦nothin⟧>>q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo rewrite map-+-compose-suc S' (SigMap.keys sigs') = canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ θo E⟦nothin⟧>>q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.present ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] ... | inj₂ (s''∈can-q-θ←θo←[S'↦present] , nothin∈can-E⟦r⟧-θ←θo←[S'↦present]) rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.present FV≠sigs')) | Env.←-assoc θ θo ([S]-env-present (S' ₛ)) = inj₂ (s''∈can-q-θ←θo←[S'↦present] , nothin∈can-E⟦r⟧-θ←θo←[S'↦present]) canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.absent ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ (s''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent]) rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ (s''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent]) canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) >> q) ((θ ← θo) ← [S]-env (S' ₛ))) | any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ))) canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S'] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] ... | inj₂ (s''∈can-q-θ←θo←[S'↦unknown] , nothin∈can-E⟦r⟧-θ←θo←[S'↦unknown]) rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs')) | Env.←-assoc θ θo ([S]-env (S' ₛ)) = inj₂ (s''∈can-q-θ←θo←[S'↦unknown] , nothin∈can-E⟦r⟧-θ←θo←[S'↦unknown]) canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S'] rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') with canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo ... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] = inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] ... | inj₂ (s''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent]) rewrite +-comm S' 0 | can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq (distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp}) (distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs')) | Env.←-assoc θ θo ([S]-env-absent (S' ₛ)) = inj₂ (s''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent]) canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S'] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] (canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (eseq q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S'])) canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo (deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S'] rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ))) | map-+-compose-suc S' (SigMap.keys sigs') | +-comm S' 0 = ⊥-elim (S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S'] (canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ))) (deseq dehole) (CBseq CBnothing cbq distinct-empty-left) (dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs'))) (S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl)) S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S']))
52.631913
107
0.53384
d1345972aca5222273349cc82fd57c1e6f4774d0
827
agda
Agda
test/Succeed/Issue44.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue44.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue44.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.polarity:10 #-} module Issue44 where data Ty : Set where ι : Ty _⇒_ : Ty -> Ty -> Ty data Con : Set where ε : Con _<_ : Con -> Ty -> Con data Var : Con -> Ty -> Set where vZ : forall {Γ σ} -> Var (Γ < σ) σ vS : forall {Γ σ}{τ : Ty} -> Var Γ σ -> Var (Γ < τ) σ {- stren : forall {Γ σ} -> Var Γ σ -> Con stren (vZ {Γ}) = Γ stren (vS {τ = τ} v) = stren v < τ _/_ : forall Γ {σ} -> Var Γ σ -> Con Γ / v = stren v -} -- However if I make stren a local function: _/_ : forall Γ {σ} -> Var Γ σ -> Con Γ / v = stren v where stren : forall {Γ σ} -> Var Γ σ -> Con stren (vZ {Γ}) = Γ stren (vS {τ = τ} v) = stren v < τ thin : forall {Γ σ τ}(v : Var Γ σ) -> Var (Γ / v) τ -> Var Γ τ thin vZ v' = vS v' thin (vS v) vZ = vZ thin (vS v) (vS v') = vS (thin v v')
21.763158
62
0.512696
5ead6bdd2f5349deb0d75395fb035f6d6e81a6d6
28
agda
Agda
test/interaction/Issue3082.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3082.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3082.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
A : Set A = ? B : Set B = ?
5.6
7
0.357143
5e6bd7cecc022cd241762354fa152b1dc17fa54c
278
agda
Agda
test/Pragmas.agda
JonathanBrouwer/agda2hs
dcf63cc7ce51a325a97ac58bdd0aeace24c08b15
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
test/Pragmas.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
test/Pragmas.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module Pragmas where -- Check that Haskell code is parsed with the correct language pragmas {-# FOREIGN AGDA2HS {-# LANGUAGE TupleSections #-} {-# LANGUAGE LambdaCase #-} #-} {-# FOREIGN AGDA2HS foo :: Bool -> a -> (a, Int) foo = \ case False -> (, 0) True -> (, 1) #-}
17.375
70
0.618705
193dcfbc7d4617fef94fd1553b9764f9c9efbf4c
1,340
agda
Agda
test/Fail/TerminationRecordPatternListAppend.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Fail/TerminationRecordPatternListAppend.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/TerminationRecordPatternListAppend.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- 2010-10-06 Andreas module TerminationRecordPatternListAppend where data Empty : Set where record Unit : Set where constructor unit data Bool : Set where true false : Bool T : Bool -> Set T true = Unit T false = Empty -- Thorsten suggests on the Agda list thread "Coinductive families" -- to encode lists as records record List (A : Set) : Set where inductive constructor list field isCons : Bool head : T isCons -> A tail : T isCons -> List A open List public -- if the record constructor list was counted as structural increase -- Thorsten's function would not be rejected -- UPDATE: and indeed it's not. Safe because we don't translate away -- non-eta record patterns. append : {A : Set} -> List A -> List A -> List A append (list true h t) l' = list true h (\ _ -> append (t _) l') append (list false _ _) l' = l' -- but translating away the record pattern produces something -- that is in any case rejected by the termination checker append1 : {A : Set} -> List A -> List A -> List A append1 {A} l' l = append1' (isCons l') (head l') (tail l') l where append1' : (isCons : Bool) (head : T isCons -> A) (tail : T isCons -> List A) -> List A -> List A append1' true h t l = list true h \ _ -> append1 (t _) l append1' false h t l = l
27.916667
68
0.638806
3d4af1906cc1430e93c6293b5dad74b04b4f7801
1,490
agda
Agda
Cats/Category/Discrete.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Category/Discrete.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Category/Discrete.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; trans ; subst ; cong ) module Cats.Category.Discrete {li} {I : Set li} (I-set : ∀ {i j : I} (p q : i ≡ j) → p ≡ q) where open import Data.Product using (Σ-syntax ; _,_ ; proj₁ ; proj₂) open import Data.Unit using (⊤) open import Level open import Cats.Category.Base open import Cats.Functor using (Functor) Obj : Set li Obj = I data _⇒_ : Obj → Obj → Set li where id : ∀ {A} → A ⇒ A ⇒-contr : ∀ {A B} (f : A ⇒ B) → Σ[ p ∈ A ≡ B ] (subst (_⇒ B) p f ≡ id) ⇒-contr id = refl , refl ⇒-contr′ : ∀ {A} (f : A ⇒ A) → f ≡ id ⇒-contr′ f with ⇒-contr f ... | A≡A , f≡id rewrite I-set A≡A refl = f≡id ⇒-prop : ∀ {A B} (f g : A ⇒ B) → f ≡ g ⇒-prop {A} {B} id g = sym (⇒-contr′ g) _∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C id ∘ id = id Discrete : Category li li zero Discrete = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = λ _ _ → ⊤ ; id = id ; _∘_ = _∘_ ; equiv = _ ; ∘-resp = _ ; id-r = _ ; id-l = _ ; assoc = _ } functor : ∀ {lo la l≈} {C : Category lo la l≈} → (I → Category.Obj C) → Functor Discrete C functor {C = C} f = record { fobj = f ; fmap = fmap ; fmap-resp = λ {A} {B} {g} {h} _ → C.≈.reflexive (cong fmap (⇒-prop g h)) ; fmap-id = C.≈.refl ; fmap-∘ = λ { {f = id} {id} → C.id-l } } where module C = Category C fmap : ∀ {A B} (g : A ⇒ B) → f A C.⇒ f B fmap id = C.id
20.135135
78
0.497987
31ed25b9fa8973cafc749e904058ca84c5cd6234
341
agda
Agda
test/Succeed/Issue5191.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue5191.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue5191.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- This code is closely based on code due to Andy Morris. data _≡⁰_ {A : Set} (@0 x : A) : @0 A → Set where refl : x ≡⁰ x data _≡ʷ_ {A : Set} (@ω x : A) : @ω A → Set where refl : x ≡ʷ x works : ∀ {A} {@0 x y : A} → x ≡⁰ y → x ≡ʷ y works refl = refl also-works : ∀ {A} {@0 x y : A} → x ≡⁰ y → x ≡ʷ y also-works {x = x} refl = refl {x = x}
31
63
0.513196
4300b3edfe49b8b7f97511fd93bc10ed118a075b
421
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/SetoidReasoning.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/SetoidReasoning.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/SetoidReasoning.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Reasoning.MultiSetoid module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.SetoidReasoning where open import Relation.Binary.Reasoning.MultiSetoid public
32.384615
72
0.505938
1c63ca1bc8905f7ebedb9bb852c31905aeca7a32
2,777
agda
Agda
Cubical/Algebra/NatSolver/HornerForms.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/NatSolver/HornerForms.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/NatSolver/HornerForms.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.NatSolver.HornerForms where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat hiding (isZero) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool using (Bool; true; false; if_then_else_) private variable ℓ : Level {- This defines the type of multivariate Polynomials over ℕ. The construction is based on the algebraic fact ℕ[X₀][X₁]⋯[Xₙ] ≅ ℕ[X₀,⋯,Xₙ] BUT: Contrary to algebraic convetions, we will give 'Xₙ' the lowest index in the definition of 'Variable' below. So if 'Variable n k' is identified with 'Xₖ', what we construct should rather be denoted with ℕ[Xₙ][Xₙ₋₁]⋯[X₀] or, to be precise about the evaluation order: (⋯((ℕ[Xₙ])[Xₙ₋₁])⋯)[X₀] -} data IteratedHornerForms : ℕ → Type ℓ-zero where const : ℕ → IteratedHornerForms ℕ.zero 0H : {n : ℕ} → IteratedHornerForms (ℕ.suc n) _·X+_ : {n : ℕ} → IteratedHornerForms (ℕ.suc n) → IteratedHornerForms n → IteratedHornerForms (ℕ.suc n) eval : {n : ℕ} (P : IteratedHornerForms n) → Vec ℕ n → ℕ eval (const r) [] = r eval 0H (_ ∷ _) = 0 eval (P ·X+ Q) (x ∷ xs) = (eval P (x ∷ xs)) · x + eval Q xs module IteratedHornerOperations where private 1H' : (n : ℕ) → IteratedHornerForms n 1H' ℕ.zero = const 1 1H' (ℕ.suc n) = 0H ·X+ 1H' n 0H' : (n : ℕ) → IteratedHornerForms n 0H' ℕ.zero = const 0 0H' (ℕ.suc n) = 0H 1ₕ : {n : ℕ} → IteratedHornerForms n 1ₕ {n = n} = 1H' n 0ₕ : {n : ℕ} → IteratedHornerForms n 0ₕ {n = n} = 0H' n X : (n : ℕ) (k : Fin n) → IteratedHornerForms n X (ℕ.suc m) zero = 1ₕ ·X+ 0ₕ X (ℕ.suc m) (suc k) = 0ₕ ·X+ X m k _+ₕ_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms n → IteratedHornerForms n (const r) +ₕ (const s) = const (r + s) 0H +ₕ Q = Q (P ·X+ r) +ₕ 0H = P ·X+ r (P ·X+ r) +ₕ (Q ·X+ s) = (P +ₕ Q) ·X+ (r +ₕ s) isZero : {n : ℕ} → IteratedHornerForms (ℕ.suc n) → Bool isZero 0H = true isZero (P ·X+ P₁) = false _⋆_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms (ℕ.suc n) → IteratedHornerForms (ℕ.suc n) _·ₕ_ : {n : ℕ} → IteratedHornerForms n → IteratedHornerForms n → IteratedHornerForms n r ⋆ 0H = 0H r ⋆ (P ·X+ Q) = (r ⋆ P) ·X+ (r ·ₕ Q) const x ·ₕ const y = const (x · y) 0H ·ₕ Q = 0H (P ·X+ Q) ·ₕ S = let z = (P ·ₕ S) in if (isZero z) then (Q ⋆ S) else (z ·X+ 0ₕ) +ₕ (Q ⋆ S) Variable : (n : ℕ) (k : Fin n) → IteratedHornerForms n Variable n k = IteratedHornerOperations.X n k Constant : (n : ℕ) (r : ℕ) → IteratedHornerForms n Constant ℕ.zero r = const r Constant (ℕ.suc n) r = IteratedHornerOperations.0ₕ ·X+ Constant n r
27.49505
75
0.592006
439d235139ea839162478e6c8b49e6e37412370a
5,240
agda
Agda
core/lib/cubical/SquareOver.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/cubical/SquareOver.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/cubical/SquareOver.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathGroupoid open import lib.PathOver open import lib.cubical.Square module lib.cubical.SquareOver where SquareOver : ∀ {i j} {A : Type i} (B : A → Type j) {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁} (q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]) (q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]) (q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]) (q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]) → Type j SquareOver B ids = Square apd-square : ∀ {i j} {A : Type i} {B : A → Type j} (f : Π A B) {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → SquareOver B sq (apd f p₀₋) (apd f p₋₀) (apd f p₋₁) (apd f p₁₋) apd-square f ids = ids ↓-=-to-squareover : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → u == v [ (λ z → f z == g z) ↓ p ] → SquareOver B vid-square u (apd f p) (apd g p) v ↓-=-to-squareover {p = idp} idp = hid-square ↓-=-from-squareover : ∀ {i j} {A : Type i} {B : A → Type j} {f g : Π A B} {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → SquareOver B vid-square u (apd f p) (apd g p) v → u == v [ (λ z → f z == g z) ↓ p ] ↓-=-from-squareover {p = idp} sq = horiz-degen-path sq squareover-cst-in : ∀ {i j} {A : Type i} {B : Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq : Square p₀₋ p₋₀ p₋₁ p₁₋} {b₀₀ b₀₁ b₁₀ b₁₁ : B} {q₀₋ : b₀₀ == b₀₁} {q₋₀ : b₀₀ == b₁₀} {q₋₁ : b₀₁ == b₁₁} {q₁₋ : b₁₀ == b₁₁} (sq' : Square q₀₋ q₋₀ q₋₁ q₁₋) → SquareOver (λ _ → B) sq (↓-cst-in q₀₋) (↓-cst-in q₋₀) (↓-cst-in q₋₁) (↓-cst-in q₁₋) squareover-cst-in {sq = ids} sq' = sq' ↓↓-from-squareover : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k} {x y : C → A} {u : (c : C) → B (x c)} {v : (c : C) → B (y c)} {p : (c : C) → x c == y c} {c₁ c₂ : C} {q : c₁ == c₂} {α : u c₁ == v c₁ [ B ↓ p c₁ ]} {β : u c₂ == v c₂ [ B ↓ p c₂ ]} → SquareOver B (natural-square p q) α (↓-ap-in _ _ (apd u q)) (↓-ap-in _ _ (apd v q)) β → α == β [ (λ c → u c == v c [ B ↓ p c ]) ↓ q ] ↓↓-from-squareover {q = idp} sq = lemma sq where lemma : ∀ {i j} {A : Type i} {B : A → Type j} {x y : A} {u : B x} {v : B y} {p : x == y} {α β : u == v [ B ↓ p ]} → SquareOver B hid-square α idp idp β → α == β lemma {p = idp} sq = horiz-degen-path sq ↓↓-to-squareover : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k} {x y : C → A} {u : (c : C) → B (x c)} {v : (c : C) → B (y c)} {p : (c : C) → x c == y c} {c₁ c₂ : C} {q : c₁ == c₂} {α : u c₁ == v c₁ [ B ↓ p c₁ ]} {β : u c₂ == v c₂ [ B ↓ p c₂ ]} → α == β [ (λ c → u c == v c [ B ↓ p c ]) ↓ q ] → SquareOver B (natural-square p q) α (↓-ap-in _ _ (apd u q)) (↓-ap-in _ _ (apd v q)) β ↓↓-to-squareover {q = idp} r = lemma r where lemma : ∀ {i j} {A : Type i} {B : A → Type j} {x y : A} {u : B x} {v : B y} {p : x == y} {α β : u == v [ B ↓ p ]} → α == β → SquareOver B hid-square α idp idp β lemma {p = idp} r = horiz-degen-square r infixr 80 _∙v↓⊡_ _∙h↓⊡_ _↓⊡v∙_ _↓⊡h∙_ _∙h↓⊡_ : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq : Square p₀₋ p₋₀ p₋₁ p₁₋} {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁} {q₀₋ q₀₋' : b₀₀ == b₀₁ [ B ↓ p₀₋ ]} {q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]} {q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]} {q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]} → q₀₋ == q₀₋' → SquareOver B sq q₀₋' q₋₀ q₋₁ q₁₋ → SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋ _∙h↓⊡_ {sq = ids} = _∙h⊡_ _∙v↓⊡_ : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq : Square p₀₋ p₋₀ p₋₁ p₁₋} {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁} {q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]} {q₋₀ q₋₀' : b₀₀ == b₁₀ [ B ↓ p₋₀ ]} {q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]} {q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]} → q₋₀ == q₋₀' → SquareOver B sq q₀₋ q₋₀' q₋₁ q₁₋ → SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋ _∙v↓⊡_ {sq = ids} = _∙v⊡_ _↓⊡v∙_ : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq : Square p₀₋ p₋₀ p₋₁ p₁₋} {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁} {q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]} {q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]} {q₋₁ q₋₁' : b₀₁ == b₁₁ [ B ↓ p₋₁ ]} {q₁₋ : b₁₀ == b₁₁ [ B ↓ p₁₋ ]} → SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋ → q₋₁ == q₋₁' → SquareOver B sq q₀₋ q₋₀ q₋₁' q₁₋ _↓⊡v∙_ {sq = ids} = _⊡v∙_ _↓⊡h∙_ : ∀ {i j} {A : Type i} {B : A → Type j} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq : Square p₀₋ p₋₀ p₋₁ p₁₋} {b₀₀ : B a₀₀} {b₀₁ : B a₀₁} {b₁₀ : B a₁₀} {b₁₁ : B a₁₁} {q₀₋ : b₀₀ == b₀₁ [ B ↓ p₀₋ ]} {q₋₀ : b₀₀ == b₁₀ [ B ↓ p₋₀ ]} {q₋₁ : b₀₁ == b₁₁ [ B ↓ p₋₁ ]} {q₁₋ q₁₋' : b₁₀ == b₁₁ [ B ↓ p₁₋ ]} → SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋ → q₁₋ == q₁₋' → SquareOver B sq q₀₋ q₋₀ q₋₁ q₁₋' _↓⊡h∙_ {sq = ids} = _⊡h∙_
41.259843
77
0.447519
436170396f94e19be3baf0d60cec6ee4af88e65e
7,993
agda
Agda
Data/List/Permute.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/List/Permute.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/List/Permute.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical #-} module Data.List.Permute where open import Prelude open import Data.Nat open import Data.Nat.Properties using (_≤ᴮ_) infixr 5 _∹_∷_ data Premuted {a} (A : Type a) : Type a where [] : Premuted A _∹_∷_ : ℕ → A → Premuted A → Premuted A mutual merge : Premuted A → Premuted A → Premuted A merge [] = id merge (n ∹ x ∷ xs) = mergeˡ n x (merge xs) mergeˡ : ℕ → A → (Premuted A → Premuted A) → Premuted A → Premuted A mergeˡ i x xs [] = i ∹ x ∷ xs [] mergeˡ i x xs (j ∹ y ∷ ys) = merge⁺ i x xs j y ys (i ≤ᴮ j) merge⁺ : ℕ → A → (Premuted A → Premuted A) → ℕ → A → Premuted A → Bool → Premuted A merge⁺ i x xs j y ys true = i ∹ x ∷ xs ((j ∸ i) ∹ y ∷ ys) merge⁺ i x xs j y ys false = j ∹ y ∷ mergeˡ ((i ∸ j) ∸ 1) x xs ys merge-idʳ : (xs : Premuted A) → merge xs [] ≡ xs merge-idʳ [] = refl merge-idʳ (i ∹ x ∷ xs) = cong (i ∹ x ∷_) (merge-idʳ xs) open import Algebra ≤≡-trans : ∀ x y z → (x ≤ᴮ y) ≡ true → (y ≤ᴮ z) ≡ true → (x ≤ᴮ z) ≡ true ≤≡-trans zero y z p₁ p₂ = refl ≤≡-trans (suc x) zero z p₁ p₂ = ⊥-elim (subst (bool ⊤ ⊥) p₁ tt) ≤≡-trans (suc x) (suc y) zero p₁ p₂ = ⊥-elim (subst (bool ⊤ ⊥) p₂ tt) ≤≡-trans (suc x) (suc y) (suc z) p₁ p₂ = ≤≡-trans x y z p₁ p₂ <≡-trans : ∀ x y z → (x ≤ᴮ y) ≡ false → (y ≤ᴮ z) ≡ false → (x ≤ᴮ z) ≡ false <≡-trans zero y z p₁ p₂ = ⊥-elim (subst (bool ⊥ ⊤) p₁ tt) <≡-trans (suc x) zero z p₁ p₂ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) <≡-trans (suc x) (suc y) zero p₁ p₂ = p₂ <≡-trans (suc x) (suc y) (suc z) p₁ p₂ = <≡-trans x y z p₁ p₂ ≤≡-sub : ∀ i j k → (j ≤ᴮ k) ≡ true → (j ∸ i ≤ᴮ k ∸ i) ≡ true ≤≡-sub zero j k p = p ≤≡-sub (suc i) zero k p = refl ≤≡-sub (suc i) (suc j) zero p = ⊥-elim (subst (bool ⊤ ⊥) p tt) ≤≡-sub (suc i) (suc j) (suc k) p = ≤≡-sub i j k p ≥≡-sub : ∀ i j k → (j ≤ᴮ k) ≡ false → (i ≤ᴮ k) ≡ true → (j ∸ i ≤ᴮ k ∸ i) ≡ false ≥≡-sub i zero k p _ = ⊥-elim (subst (bool ⊥ ⊤) p tt) ≥≡-sub zero (suc j) k p _ = p ≥≡-sub (suc i) (suc j) zero p p₂ = ⊥-elim (subst (bool ⊤ ⊥) p₂ tt) ≥≡-sub (suc i) (suc j) (suc k) p p₂ = ≥≡-sub i j k p p₂ <≡-sub : ∀ i j k → (i ≤ᴮ j) ≡ false → (j ≤ᴮ k) ≡ false → (i ∸ k ∸ 1 ≤ᴮ j ∸ k ∸ 1) ≡ false <≡-sub zero j k p _ = ⊥-elim (subst (bool ⊥ ⊤) p tt) <≡-sub (suc i) zero k p p₂ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) <≡-sub (suc i) (suc j) zero p p₂ = p <≡-sub (suc i) (suc j) (suc k) p p₂ = <≡-sub i j k p p₂ >≡-sub : ∀ i j k → (i ≤ᴮ j) ≡ true → (j ≤ᴮ k) ≡ false → (i ≤ᴮ k) ≡ false → (i ∸ k ∸ 1 ≤ᴮ j ∸ k ∸ 1) ≡ true >≡-sub i zero k p₁ p₂ p₃ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) >≡-sub zero (suc j) k p₁ p₂ p₃ = ⊥-elim (subst (bool ⊥ ⊤) p₃ tt) >≡-sub (suc i) (suc j) zero p₁ p₂ p₃ = p₁ >≡-sub (suc i) (suc j) (suc k) p₁ p₂ p₃ = >≡-sub i j k p₁ p₂ p₃ zero-sub : ∀ n → zero ∸ n ≡ zero zero-sub zero = refl zero-sub (suc n) = refl ≤-sub-id : ∀ i j k → (i ≤ᴮ j) ≡ true → k ∸ i ∸ (j ∸ i) ≡ k ∸ j ≤-sub-id zero j k p = refl ≤-sub-id (suc i) zero k p = ⊥-elim (subst (bool ⊤ ⊥) p tt) ≤-sub-id (suc i) (suc j) zero p = zero-sub (j ∸ i) ≤-sub-id (suc i) (suc j) (suc k) p = ≤-sub-id i j k p lemma₁ : ∀ i j k → (j ≤ᴮ k) ≡ false → i ∸ k ∸ 1 ∸ (j ∸ k ∸ 1) ∸ 1 ≡ i ∸ j ∸ 1 lemma₁ zero j k _ = cong (λ zk → zk ∸ 1 ∸ (j ∸ k ∸ 1) ∸ 1) (zero-sub k) ; cong (_∸ 1) (zero-sub (j ∸ k ∸ 1)) ; sym (cong (_∸ 1) (zero-sub j)) lemma₁ (suc i) zero k p₂ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) lemma₁ (suc i) (suc j) zero p₂ = refl lemma₁ (suc i) (suc j) (suc k) p₂ = lemma₁ i j k p₂ lemma₂ : ∀ i j k → (i ≤ᴮ j) ≡ true → (j ≤ᴮ k) ≡ false → (i ≤ᴮ k) ≡ false → j ∸ i ≡ j ∸ k ∸ 1 ∸ (i ∸ k ∸ 1) lemma₂ i zero k p₁ p₂ p₃ = ⊥-elim (subst (bool ⊥ ⊤) p₂ tt) lemma₂ zero (suc j) k p₁ p₂ p₃ = ⊥-elim (subst (bool ⊥ ⊤) p₃ tt) lemma₂ (suc i) (suc j) zero p₁ p₂ p₃ = refl lemma₂ (suc i) (suc j) (suc k) p₁ p₂ p₃ = lemma₂ i j k p₁ p₂ p₃ {-# TERMINATING #-} merge-assoc : Associative (merge {A = A}) merge-assoc [] ys zs = refl merge-assoc (i ∹ x ∷ xs) [] zs = cong (flip merge zs) (merge-idʳ (i ∹ x ∷ xs)) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) [] = merge-idʳ (merge (i ∹ x ∷ xs) (j ∹ y ∷ ys)) ; sym (cong (merge (i ∹ x ∷ xs)) (merge-idʳ (j ∹ y ∷ ys))) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) with merge-assoc xs (j ∸ i ∹ y ∷ ys) (k ∸ i ∹ z ∷ zs) | merge-assoc (i ∸ k ∸ 1 ∹ x ∷ xs) (j ∸ k ∸ 1 ∹ y ∷ ys) zs | (merge-assoc (i ∸ j ∸ 1 ∹ x ∷ xs) ys (k ∸ j ∹ z ∷ zs)) | i ≤ᴮ j | inspect (i ≤ᴮ_) j | j ≤ᴮ k | inspect (j ≤ᴮ_) k merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | r | _ | _ | true | 〖 ij 〗 | true | 〖 jk 〗 = cong (merge⁺ i x (merge (merge xs (j ∸ i ∹ y ∷ ys))) k z zs) (≤≡-trans i j k ij jk) ; cong (i ∹ x ∷_) (r ; cong (merge xs) (cong (merge⁺ (j ∸ i) y (merge ys) (k ∸ i) z zs) (≤≡-sub i j k jk) ; cong (λ kij → j ∸ i ∹ y ∷ merge ys (kij ∹ z ∷ zs)) (≤-sub-id i j k ij))) ; cong (merge⁺ i x (merge xs) j y (merge ys (k ∸ j ∹ z ∷ zs))) (sym ij) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | _ | r | _ | false | 〖 ij 〗 | false | 〖 jk 〗 = cong (merge⁺ j y (merge (mergeˡ (i ∸ j ∸ 1) x (merge xs) ys)) k z zs ) jk ; cong (k ∹ z ∷_) (cong (λ s → mergeˡ (j ∸ k ∸ 1) y (merge (mergeˡ s x (merge xs) ys)) zs) (sym (lemma₁ i j k jk)) ; cong (λ s → merge (merge⁺ (i ∸ k ∸ 1) x (merge xs) (j ∸ k ∸ 1) y ys s) zs) (sym (<≡-sub i j k ij jk)) ; r) ; cong (merge⁺ i x (merge xs) k z (mergeˡ (j ∸ k ∸ 1) y (merge ys) zs)) (sym (<≡-trans i j k ij jk)) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | _ | _ | r | false | 〖 ij 〗 | true | 〖 jk 〗 = cong (merge⁺ j y (merge (mergeˡ (i ∸ j ∸ 1) x (merge xs) ys)) k z zs) jk ; cong (j ∹ y ∷_) r ; cong (merge⁺ i x (merge xs) j y (merge ys (k ∸ j ∹ z ∷ zs))) (sym ij) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | _ | _ | _ | true | ij | false | jk with i ≤ᴮ k | inspect (i ≤ᴮ_) k merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | _ | r | _ | true | 〖 ij 〗 | false | 〖 jk 〗 | false | 〖 ik 〗 = cong (k ∹ z ∷_) ((cong (λ s → mergeˡ (i ∸ k ∸ 1) x (merge (merge xs (s ∹ y ∷ ys))) zs) (lemma₂ i j k ij jk ik) ; cong (λ c → merge (merge⁺ (i ∸ k ∸ 1) x (merge xs) (j ∸ k ∸ 1) y ys c) zs) (sym (>≡-sub i j k ij jk ik ))) ; r ) merge-assoc (i ∹ x ∷ xs) (j ∹ y ∷ ys) (k ∹ z ∷ zs) | r | _ | _ | true | 〖 ij 〗 | false | 〖 jk 〗 | true | 〖 ik 〗 = cong (i ∹ x ∷_) (r ; cong (merge xs) (cong (merge⁺ (j ∸ i) y (merge ys) (k ∸ i) z zs) (≥≡-sub i j k jk ik) ; cong (λ s → k ∸ i ∹ z ∷ mergeˡ s y (merge ys) zs) (cong (_∸ 1) (≤-sub-id i k j ik)) )) open import Data.List index : List ℕ → List A → List (Premuted A) index _ [] = [] index [] (x ∷ xs) = (0 ∹ x ∷ []) ∷ index [] xs index (i ∷ is) (x ∷ xs) = (i ∹ x ∷ []) ∷ index is xs unindex : Premuted A → List A unindex [] = [] unindex (_ ∹ x ∷ xs) = x ∷ unindex xs open import TreeFold shuffle : List ℕ → List A → List A shuffle is = unindex ∘ treeFold merge [] ∘ index is open import Data.List.Syntax e : List ℕ e = shuffle [ 0 , 1 , 0 ] [ 1 , 2 , 3 ]
58.343066
278
0.423621
41bb1d998689d06e5622e14406f52e3c859ae8fc
495
agda
Agda
test/Fail/Issue2892.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2892.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2892.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Equality test : (A : Set) (x y : A) → x ≡ y → Set test A .y y refl with A test A .y y refl | X = ? -- Jesper, 2018-12-03, issue #2892: -- Error message is: -- Ill-typed pattern after with abstraction: y -- (perhaps you can replace it by `_`?) -- when checking that the clause ;Issue2892.with-14 A X y = ? has type -- (A w : Set) (x : w) → Set -- Implementing the suggestion makes the code typecheck, so this -- behaviour is at least not obviously wrong.
30.9375
73
0.642424
52399363274a264466d29c9337e9b631a5c71160
420
agda
Agda
test/Fail/Issue1445-3.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1445-3.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1445-3.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite data Unit : Set where unit : Unit Foo : Unit → Set Foo unit = Unit Bar : Unit → Unit → Set Bar unit = Foo bar : ∀ x y → Bar x y ≡ Unit bar unit unit = refl {-# REWRITE bar #-} test : ∀ x y → Bar x y test _ _ = unit works : ∀ x → Foo x works x = test unit x
16.153846
46
0.654762
1379018306c7bd8e16c1d6f60b1cb5784ab72b57
979
agda
Agda
test/interaction/Issue2751.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/interaction/Issue2751.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Issue2751.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2017-10-06, issue #2751 -- Highlighting for unsolved constraints module _ where open import Agda.Builtin.Size module UnsolvedSizeConstraints where mutual data D (i : Size) (A : Set) : Set where c : D′ i A → D i A record D′ (i : Size) (A : Set) : Set where inductive field size : Size< i force : D size A open D′ Map : (F : Set → Set) → Set₁ Map F = {A B : Set} → F A → F B mutual map-D : ∀ {i} → Map (D i) map-D (c xs) = c (map-D′ xs) map-D′ : ∀ {i} → Map (D′ i) size (map-D′ t) = size t force (map-D′ {i} t) = map-D {i = i} (force t) -- correct is i = size t -- Problem WAS: no highlighting for unsolved constraints. -- Now: yellow highlighting in last expression. module UnsolvedLevelConstraints where mutual l = _ data D {a} (A : Set a) : Set l where c : A → D A -- highlighted data E (A : Set l) : Set1 where c : A → E A -- highlighted
19.979592
79
0.552605
1e1537136e6cb01decf8eafdd9e180ce0a5ed8ee
2,782
agda
Agda
src/Categories/Adjoint/Construction/Adjunctions.agda
tetrapharmakon/agda-categories
cfa6aefd3069d4db995191b458c886edcfba8294
[ "MIT" ]
null
null
null
src/Categories/Adjoint/Construction/Adjunctions.agda
tetrapharmakon/agda-categories
cfa6aefd3069d4db995191b458c886edcfba8294
[ "MIT" ]
null
null
null
src/Categories/Adjoint/Construction/Adjunctions.agda
tetrapharmakon/agda-categories
cfa6aefd3069d4db995191b458c886edcfba8294
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category.Core using (Category) open import Categories.Category open import Categories.Monad module Categories.Adjoint.Construction.Adjunctions {o ℓ e} {C : Category o ℓ e} (M : Monad C) where open Category C open import Categories.Adjoint open import Categories.Functor open import Categories.Morphism open import Categories.Functor.Properties open import Categories.NaturalTransformation.Core open import Categories.NaturalTransformation.NaturalIsomorphism -- using (_≃_; unitorʳ; unitorˡ) open import Categories.Morphism.Reasoning as MR open import Categories.Tactic.Category -- three things: -- 1. the category of adjunctions splitting a given Monad -- 2. the proof that EM(M) is the terminal object here -- 3. the proof that KL(M) is the initial object here record SplitObj : Set (suc o ⊔ suc ℓ ⊔ suc e) where field D : Category o ℓ e F : Functor C D G : Functor D C adj : F ⊣ G eqM : G ∘F F ≃ Monad.F M record Split⇒ (X Y : SplitObj) : Set (suc o ⊔ suc ℓ ⊔ suc e) where constructor Splitc⇒ private module X = SplitObj X module Y = SplitObj Y field H : Functor X.D Y.D HF≃F' : H ∘F X.F ≃ Y.F G'H≃G : Y.G ∘F H ≃ X.G Split : Monad C → Category _ _ _ Split M = record { Obj = SplitObj ; _⇒_ = Split⇒ ; _≈_ = λ U V → Split⇒.H U ≃ Split⇒.H V ; id = split-id ; _∘_ = comp ; assoc = λ { {f = f} {g = g} {h = h} → associator (Split⇒.H f) (Split⇒.H g) (Split⇒.H h) } ; sym-assoc = λ { {f = f} {g = g} {h = h} → sym-associator (Split⇒.H f) (Split⇒.H g) (Split⇒.H h) } ; identityˡ = unitorˡ ; identityʳ = unitorʳ ; identity² = unitor² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = _ⓘₕ_ } where open NaturalTransformation split-id : {A : SplitObj} → Split⇒ A A split-id = record { H = Categories.Functor.id ; HF≃F' = unitorˡ ; G'H≃G = unitorʳ } comp : {A B X : SplitObj} → Split⇒ B X → Split⇒ A B → Split⇒ A X comp {A = A} {B = B} {X = X} (Splitc⇒ Hᵤ HF≃F'ᵤ G'H≃Gᵤ) (Splitc⇒ Hᵥ HF≃F'ᵥ G'H≃Gᵥ) = record { H = Hᵤ ∘F Hᵥ ; HF≃F' = HF≃F'ᵤ ⓘᵥ (Hᵤ ⓘˡ HF≃F'ᵥ) ⓘᵥ associator (SplitObj.F A) Hᵥ Hᵤ ; G'H≃G = G'H≃Gᵥ ⓘᵥ (G'H≃Gᵤ ⓘʳ Hᵥ) ⓘᵥ sym-associator Hᵥ Hᵤ (SplitObj.G X) } open import Categories.Object.Terminal (Split M) open import Categories.Object.Initial (Split M) open import Categories.Category.Construction.EilenbergMoore open import Categories.Category.Construction.Kleisli EM-object : SplitObj EM-object = record { D = {! EilenbergMoore M !} ; F = {! !} ; G = {! !} ; adj = {! !} ; eqM = {! !} } EM-terminal : IsTerminal EM-object EM-terminal = {! !}
31.258427
101
0.614666
a0bc20a02967ecfb0a705e8bb96c270f00e4d051
1,408
agda
Agda
Structure/Sets/Relator.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Sets/Relator.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Sets/Relator.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Sets.Relator where open import Functional import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate import Structure.Sets.Names as Names open import Type private variable ℓ ℓₗ ℓᵣ ℓᵣₑₗ : Lvl.Level private variable S Sₗ Sᵣ E Eₗ Eᵣ : Type{ℓ} private variable _∈ₗ_ : E → Sₗ → Stmt{ℓₗ} private variable _∈ᵣ_ : E → Sᵣ → Stmt{ℓᵣ} module _ (_∈ₗ_ : E → Sₗ → Stmt{ℓₗ}) (_∈ᵣ_ : E → Sᵣ → Stmt{ℓᵣ}) where record SetEqualityRelation (_≡_ : Sₗ → Sᵣ → Stmt{ℓᵣₑₗ}) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓᵣₑₗ} where constructor intro field membership : Names.SetEqualityMembership(_∈ₗ_)(_∈ᵣ_)(_≡_) record SubsetRelation (_⊆_ : Sₗ → Sᵣ → Stmt{ℓᵣₑₗ}) : Type{Lvl.of(E) Lvl.⊔ Lvl.of(Sₗ) Lvl.⊔ Lvl.of(Sᵣ) Lvl.⊔ ℓₗ Lvl.⊔ ℓᵣ Lvl.⊔ ℓᵣₑₗ} where constructor intro field membership : Names.SubsetMembership(_∈ₗ_)(_∈ᵣ_)(_⊆_) module _ ⦃ eq : ∃(SetEqualityRelation(_∈ₗ_)(_∈ᵣ_){ℓᵣₑₗ}) ⦄ where open ∃(eq) using () renaming (witness to _≡_) public open SetEqualityRelation([∃]-proof eq) using () renaming (membership to [≡]-membership) public _≢_ = (¬_) ∘₂ (_≡_) module _ ⦃ subset : ∃(SubsetRelation(_∈ₗ_)(_∈ᵣ_){ℓᵣ}) ⦄ where open ∃(subset) using () renaming (witness to _⊆_) public open SubsetRelation([∃]-proof subset) using () renaming (membership to [⊆]-membership) public open Names.From-[⊆] (_⊆_) public
40.228571
144
0.676847
433d951b5d1f4a0abedd0f7804fa38a6d10d1436
690
agda
Agda
test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda
KDr2/agda
98c9382a59f707c2c97d75919e389fc2a783ac75
[ "BSD-2-Clause" ]
null
null
null
test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda
KDr2/agda
98c9382a59f707c2c97d75919e389fc2a783ac75
[ "BSD-2-Clause" ]
null
null
null
test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda
KDr2/agda
98c9382a59f707c2c97d75919e389fc2a783ac75
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module InstanceArguments.09-higherOrderClasses where open import Effect.Applicative open import Effect.Monad open import Effect.Monad.Indexed open import Function lift : ∀ {a b c} {A : Set a} {C : Set c} {B : A → Set b} → ({{x : A}} → B x) → (f : C → A) → {{x : C}} → B (f x) lift m f {{x}} = m {{f x}} monadToApplicative : ∀ {l} {M : Set l → Set l} → RawMonad M → RawApplicative M monadToApplicative = RawIMonad.rawIApplicative liftAToM : ∀ {l} {V : Set l} {M : Set l → Set l} → ({{appM : RawApplicative M}} → M V) → {{monadM : RawMonad M}} → M V liftAToM app {{x}} = lift (λ {{appM}} → app {{appM}}) monadToApplicative {{x}}
34.5
88
0.602899
9a128fbfd6fe7f1b3bc640ede1af71b50defcbb8
25,183
agda
Agda
Cubical/Foundations/HLevels.agda
fabianmasato/cubical
d5030a9c89070255fc575add4e9f37b97e6a0c0c
[ "MIT" ]
null
null
null
Cubical/Foundations/HLevels.agda
fabianmasato/cubical
d5030a9c89070255fc575add4e9f37b97e6a0c0c
[ "MIT" ]
null
null
null
Cubical/Foundations/HLevels.agda
fabianmasato/cubical
d5030a9c89070255fc575add4e9f37b97e6a0c0c
[ "MIT" ]
null
null
null
{- Basic theory about h-levels/n-types: - Basic properties of isContr, isProp and isSet (definitions are in Prelude) - Hedberg's theorem can be found in Cubical/Relation/Nullary/DecidableEq -} {-# OPTIONS --safe #-} module Cubical.Foundations.HLevels where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence using (ua ; univalenceIso) open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-zero; +-comm) HLevel : Type₀ HLevel = ℕ private variable ℓ ℓ' ℓ'' ℓ''' ℓ'''' ℓ''''' : Level A : Type ℓ B : A → Type ℓ C : (x : A) → B x → Type ℓ D : (x : A) (y : B x) → C x y → Type ℓ E : (x : A) (y : B x) → (z : C x y) → D x y z → Type ℓ w x y z : A n : HLevel isOfHLevel : HLevel → Type ℓ → Type ℓ isOfHLevel 0 A = isContr A isOfHLevel 1 A = isProp A isOfHLevel (suc (suc n)) A = (x y : A) → isOfHLevel (suc n) (x ≡ y) isOfHLevelFun : (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isOfHLevelFun n f = ∀ b → isOfHLevel n (fiber f b) isOfHLevelΩ→isOfHLevel : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → ((x : A) → isOfHLevel (suc n) (x ≡ x)) → isOfHLevel (2 + n) A isOfHLevelΩ→isOfHLevel zero hΩ x y = J (λ y p → (q : x ≡ y) → p ≡ q) (hΩ x refl) isOfHLevelΩ→isOfHLevel (suc n) hΩ x y = J (λ y p → (q : x ≡ y) → isOfHLevel (suc n) (p ≡ q)) (hΩ x refl) TypeOfHLevel : ∀ ℓ → HLevel → Type (ℓ-suc ℓ) TypeOfHLevel ℓ n = TypeWithStr ℓ (isOfHLevel n) hProp hSet hGroupoid h2Groupoid : ∀ ℓ → Type (ℓ-suc ℓ) hProp ℓ = TypeOfHLevel ℓ 1 hSet ℓ = TypeOfHLevel ℓ 2 hGroupoid ℓ = TypeOfHLevel ℓ 3 h2Groupoid ℓ = TypeOfHLevel ℓ 4 -- lower h-levels imply higher h-levels isOfHLevelSuc : (n : HLevel) → isOfHLevel n A → isOfHLevel (suc n) A isOfHLevelSuc 0 = isContr→isProp isOfHLevelSuc 1 = isProp→isSet isOfHLevelSuc (suc (suc n)) h a b = isOfHLevelSuc (suc n) (h a b) isSet→isGroupoid : isSet A → isGroupoid A isSet→isGroupoid = isOfHLevelSuc 2 isGroupoid→is2Groupoid : isGroupoid A → is2Groupoid A isGroupoid→is2Groupoid = isOfHLevelSuc 3 isOfHLevelPlus : (m : HLevel) → isOfHLevel n A → isOfHLevel (m + n) A isOfHLevelPlus zero hA = hA isOfHLevelPlus (suc m) hA = isOfHLevelSuc _ (isOfHLevelPlus m hA) isContr→isOfHLevel : (n : HLevel) → isContr A → isOfHLevel n A isContr→isOfHLevel zero cA = cA isContr→isOfHLevel (suc n) cA = isOfHLevelSuc _ (isContr→isOfHLevel n cA) isProp→isOfHLevelSuc : (n : HLevel) → isProp A → isOfHLevel (suc n) A isProp→isOfHLevelSuc zero pA = pA isProp→isOfHLevelSuc (suc n) pA = isOfHLevelSuc _ (isProp→isOfHLevelSuc n pA) isOfHLevelPlus' : (m : HLevel) → isOfHLevel m A → isOfHLevel (m + n) A isOfHLevelPlus' {n = n} 0 = isContr→isOfHLevel n isOfHLevelPlus' {n = n} 1 = isProp→isOfHLevelSuc n isOfHLevelPlus' {n = n} (suc (suc m)) hA a₀ a₁ = isOfHLevelPlus' (suc m) (hA a₀ a₁) -- hlevel of path types isProp→isContrPath : isProp A → (x y : A) → isContr (x ≡ y) isProp→isContrPath h x y = h x y , isProp→isSet h x y _ isContr→isContrPath : isContr A → (x y : A) → isContr (x ≡ y) isContr→isContrPath cA = isProp→isContrPath (isContr→isProp cA) isOfHLevelPath' : (n : HLevel) → isOfHLevel (suc n) A → (x y : A) → isOfHLevel n (x ≡ y) isOfHLevelPath' 0 = isProp→isContrPath isOfHLevelPath' (suc n) h x y = h x y isOfHLevelPath'⁻ : (n : HLevel) → ((x y : A) → isOfHLevel n (x ≡ y)) → isOfHLevel (suc n) A isOfHLevelPath'⁻ zero h x y = h x y .fst isOfHLevelPath'⁻ (suc n) h = h isOfHLevelPath : (n : HLevel) → isOfHLevel n A → (x y : A) → isOfHLevel n (x ≡ y) isOfHLevelPath 0 h x y = isContr→isContrPath h x y isOfHLevelPath (suc n) h x y = isOfHLevelSuc n (isOfHLevelPath' n h x y) -- h-level of isOfHLevel isPropIsOfHLevel : (n : HLevel) → isProp (isOfHLevel n A) isPropIsOfHLevel 0 = isPropIsContr isPropIsOfHLevel 1 = isPropIsProp isPropIsOfHLevel (suc (suc n)) f g i a b = isPropIsOfHLevel (suc n) (f a b) (g a b) i isPropIsSet : isProp (isSet A) isPropIsSet = isPropIsOfHLevel 2 isPropIsGroupoid : isProp (isGroupoid A) isPropIsGroupoid = isPropIsOfHLevel 3 isPropIs2Groupoid : isProp (is2Groupoid A) isPropIs2Groupoid = isPropIsOfHLevel 4 TypeOfHLevel≡ : (n : HLevel) {X Y : TypeOfHLevel ℓ n} → ⟨ X ⟩ ≡ ⟨ Y ⟩ → X ≡ Y TypeOfHLevel≡ n = Σ≡Prop (λ _ → isPropIsOfHLevel n) -- hlevels are preserved by retracts (and consequently equivalences) isContrRetract : ∀ {B : Type ℓ} → (f : A → B) (g : B → A) → (h : retract f g) → (v : isContr B) → isContr A fst (isContrRetract f g h (b , p)) = g b snd (isContrRetract f g h (b , p)) x = (cong g (p (f x))) ∙ (h x) isPropRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isProp B → isProp A isPropRetract f g h p x y i = hcomp (λ j → λ { (i = i0) → h x j ; (i = i1) → h y j}) (g (p (f x) (f y) i)) isSetRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isSet B → isSet A isSetRetract f g h set x y p q i j = hcomp (λ k → λ { (i = i0) → h (p j) k ; (i = i1) → h (q j) k ; (j = i0) → h x k ; (j = i1) → h y k}) (g (set (f x) (f y) (cong f p) (cong f q) i j)) isGroupoidRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isGroupoid B → isGroupoid A isGroupoidRetract f g h grp x y p q P Q i j k = hcomp ((λ l → λ { (i = i0) → h (P j k) l ; (i = i1) → h (Q j k) l ; (j = i0) → h (p k) l ; (j = i1) → h (q k) l ; (k = i0) → h x l ; (k = i1) → h y l})) (g (grp (f x) (f y) (cong f p) (cong f q) (cong (cong f) P) (cong (cong f) Q) i j k)) is2GroupoidRetract : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → is2Groupoid B → is2Groupoid A is2GroupoidRetract f g h grp x y p q P Q R S i j k l = hcomp (λ r → λ { (i = i0) → h (R j k l) r ; (i = i1) → h (S j k l) r ; (j = i0) → h (P k l) r ; (j = i1) → h (Q k l) r ; (k = i0) → h (p l) r ; (k = i1) → h (q l) r ; (l = i0) → h x r ; (l = i1) → h y r}) (g (grp (f x) (f y) (cong f p) (cong f q) (cong (cong f) P) (cong (cong f) Q) (cong (cong (cong f)) R) (cong (cong (cong f)) S) i j k l)) isOfHLevelRetract : (n : HLevel) {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isOfHLevel n B → isOfHLevel n A isOfHLevelRetract 0 = isContrRetract isOfHLevelRetract 1 = isPropRetract isOfHLevelRetract 2 = isSetRetract isOfHLevelRetract 3 = isGroupoidRetract isOfHLevelRetract 4 = is2GroupoidRetract isOfHLevelRetract (suc (suc (suc (suc (suc n))))) f g h ofLevel x y p q P Q R S = isOfHLevelRetract (suc n) (cong (cong (cong (cong f)))) (λ s i j k l → hcomp (λ r → λ { (i = i0) → h (R j k l) r ; (i = i1) → h (S j k l) r ; (j = i0) → h (P k l) r ; (j = i1) → h (Q k l) r ; (k = i0) → h (p l) r ; (k = i1) → h (q l) r ; (l = i0) → h x r ; (l = i1) → h y r}) (g (s i j k l))) (λ s i j k l m → hcomp (λ n → λ { (i = i1) → s j k l m ; (j = i0) → h (R k l m) (i ∨ n) ; (j = i1) → h (S k l m) (i ∨ n) ; (k = i0) → h (P l m) (i ∨ n) ; (k = i1) → h (Q l m) (i ∨ n) ; (l = i0) → h (p m) (i ∨ n) ; (l = i1) → h (q m) (i ∨ n) ; (m = i0) → h x (i ∨ n) ; (m = i1) → h y (i ∨ n) }) (h (s j k l m) i)) (ofLevel (f x) (f y) (cong f p) (cong f q) (cong (cong f) P) (cong (cong f) Q) (cong (cong (cong f)) R) (cong (cong (cong f)) S)) isOfHLevelRetractFromIso : {A : Type ℓ} {B : Type ℓ'} (n : HLevel) → Iso A B → isOfHLevel n B → isOfHLevel n A isOfHLevelRetractFromIso n e hlev = isOfHLevelRetract n (Iso.fun e) (Iso.inv e) (Iso.leftInv e) hlev isOfHLevelRespectEquiv : {A : Type ℓ} {B : Type ℓ'} → (n : HLevel) → A ≃ B → isOfHLevel n A → isOfHLevel n B isOfHLevelRespectEquiv n eq = isOfHLevelRetract n (invEq eq) (eq .fst) (secEq eq) isContrRetractOfConstFun : {A : Type ℓ} {B : Type ℓ'} (b₀ : B) → Σ[ f ∈ (B → A) ] ((x : A) → (f ∘ (λ _ → b₀)) x ≡ x) → isContr A fst (isContrRetractOfConstFun b₀ ret) = ret .fst b₀ snd (isContrRetractOfConstFun b₀ ret) y = ret .snd y -- h-level of dependent path types isOfHLevelPathP' : {A : I → Type ℓ} (n : HLevel) → isOfHLevel (suc n) (A i1) → (x : A i0) (y : A i1) → isOfHLevel n (PathP A x y) isOfHLevelPathP' {A = A} n h x y = isOfHLevelRetractFromIso n (PathPIsoPath _ x y) (isOfHLevelPath' n h _ _) isOfHLevelPathP : {A : I → Type ℓ} (n : HLevel) → isOfHLevel n (A i1) → (x : A i0) (y : A i1) → isOfHLevel n (PathP A x y) isOfHLevelPathP {A = A} n h x y = isOfHLevelRetractFromIso n (PathPIsoPath _ x y) (isOfHLevelPath n h _ _) -- Fillers for cubes from h-level isSet→isSet' : isSet A → isSet' A isSet→isSet' Aset _ _ _ _ = toPathP (Aset _ _ _ _) isSet'→isSet : isSet' A → isSet A isSet'→isSet {A = A} Aset' x y p q = Aset' p q refl refl isSet→SquareP : {A : I → I → Type ℓ} (isSet : (i j : I) → isSet (A i j)) {a₀₀ : A i0 i0} {a₀₁ : A i0 i1} (a₀₋ : PathP (λ j → A i0 j) a₀₀ a₀₁) {a₁₀ : A i1 i0} {a₁₁ : A i1 i1} (a₁₋ : PathP (λ j → A i1 j) a₁₀ a₁₁) (a₋₀ : PathP (λ i → A i i0) a₀₀ a₁₀) (a₋₁ : PathP (λ i → A i i1) a₀₁ a₁₁) → SquareP A a₀₋ a₁₋ a₋₀ a₋₁ isSet→SquareP isset a₀₋ a₁₋ a₋₀ a₋₁ = PathPIsoPath _ _ _ .Iso.inv (isOfHLevelPathP' 1 (isset _ _) _ _ _ _ ) isGroupoid→isGroupoid' : isGroupoid A → isGroupoid' A isGroupoid→isGroupoid' {A = A} Agpd a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ = PathPIsoPath (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋ .Iso.inv (isGroupoid→isPropSquare _ _ _ _ _ _) where isGroupoid→isPropSquare : {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → isProp (Square a₀₋ a₁₋ a₋₀ a₋₁) isGroupoid→isPropSquare a₀₋ a₁₋ a₋₀ a₋₁ = isOfHLevelRetractFromIso 1 (PathPIsoPath (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋) (Agpd _ _ _ _) isGroupoid'→isGroupoid : isGroupoid' A → isGroupoid A isGroupoid'→isGroupoid Agpd' x y p q r s = Agpd' r s refl refl refl refl -- h-level of Σ-types isContrΣ : isContr A → ((x : A) → isContr (B x)) → isContr (Σ A B) isContrΣ {A = A} {B = B} (a , p) q = let h : (x : A) (y : B x) → (q x) .fst ≡ y h x y = (q x) .snd y in (( a , q a .fst) , ( λ x i → p (x .fst) i , h (p (x .fst) i) (transp (λ j → B (p (x .fst) (i ∨ ~ j))) i (x .snd)) i)) isContrΣ′ : (ca : isContr A) → isContr (B (fst ca)) → isContr (Σ A B) isContrΣ′ ca cb = isContrΣ ca (λ x → subst _ (snd ca x) cb) section-Σ≡Prop : (pB : (x : A) → isProp (B x)) {u v : Σ A B} → section (Σ≡Prop pB {u} {v}) (cong fst) section-Σ≡Prop {A = A} pB {u} {v} p j i = (p i .fst) , isProp→PathP (λ i → isOfHLevelPath 1 (pB (fst (p i))) (Σ≡Prop pB {u} {v} (cong fst p) i .snd) (p i .snd) ) refl refl i j isEquiv-Σ≡Prop : (pB : (x : A) → isProp (B x)) {u v : Σ A B} → isEquiv (Σ≡Prop pB {u} {v}) isEquiv-Σ≡Prop {A = A} pB {u} {v} = isoToIsEquiv (iso (Σ≡Prop pB) (cong fst) (section-Σ≡Prop pB) (λ _ → refl)) isPropΣ : isProp A → ((x : A) → isProp (B x)) → isProp (Σ A B) isPropΣ pA pB t u = Σ≡Prop pB (pA (t .fst) (u .fst)) isOfHLevelΣ : ∀ n → isOfHLevel n A → ((x : A) → isOfHLevel n (B x)) → isOfHLevel n (Σ A B) isOfHLevelΣ 0 = isContrΣ isOfHLevelΣ 1 = isPropΣ isOfHLevelΣ {B = B} (suc (suc n)) h1 h2 x y = isOfHLevelRetractFromIso (suc n) (invIso (IsoΣPathTransportPathΣ _ _)) (isOfHLevelΣ (suc n) (h1 (fst x) (fst y)) λ x → h2 _ _ _) isSetΣ : isSet A → ((x : A) → isSet (B x)) → isSet (Σ A B) isSetΣ = isOfHLevelΣ 2 isGroupoidΣ : isGroupoid A → ((x : A) → isGroupoid (B x)) → isGroupoid (Σ A B) isGroupoidΣ = isOfHLevelΣ 3 is2GroupoidΣ : is2Groupoid A → ((x : A) → is2Groupoid (B x)) → is2Groupoid (Σ A B) is2GroupoidΣ = isOfHLevelΣ 4 -- h-level of × isProp× : {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → isProp (A × B) isProp× pA pB = isPropΣ pA (λ _ → pB) isProp×2 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} → isProp A → isProp B → isProp C → isProp (A × B × C) isProp×2 pA pB pC = isProp× pA (isProp× pB pC) isProp×3 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} → isProp A → isProp B → isProp C → isProp D → isProp (A × B × C × D) isProp×3 pA pB pC pD = isProp×2 pA pB (isProp× pC pD) isProp×4 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} {E : Type ℓ''''} → isProp A → isProp B → isProp C → isProp D → isProp E → isProp (A × B × C × D × E) isProp×4 pA pB pC pD pE = isProp×3 pA pB pC (isProp× pD pE) isProp×5 : {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} {E : Type ℓ''''} {F : Type ℓ'''''} → isProp A → isProp B → isProp C → isProp D → isProp E → isProp F → isProp (A × B × C × D × E × F) isProp×5 pA pB pC pD pE pF = isProp×4 pA pB pC pD (isProp× pE pF) isOfHLevel× : ∀ {A : Type ℓ} {B : Type ℓ'} n → isOfHLevel n A → isOfHLevel n B → isOfHLevel n (A × B) isOfHLevel× n hA hB = isOfHLevelΣ n hA (λ _ → hB) isSet× : ∀ {A : Type ℓ} {B : Type ℓ'} → isSet A → isSet B → isSet (A × B) isSet× = isOfHLevel× 2 isGroupoid× : ∀ {A : Type ℓ} {B : Type ℓ'} → isGroupoid A → isGroupoid B → isGroupoid (A × B) isGroupoid× = isOfHLevel× 3 is2Groupoid× : ∀ {A : Type ℓ} {B : Type ℓ'} → is2Groupoid A → is2Groupoid B → is2Groupoid (A × B) is2Groupoid× = isOfHLevel× 4 -- h-level of Π-types isOfHLevelΠ : ∀ n → ((x : A) → isOfHLevel n (B x)) → isOfHLevel n ((x : A) → B x) isOfHLevelΠ 0 h = (λ x → fst (h x)) , λ f i y → snd (h y) (f y) i isOfHLevelΠ 1 h f g i x = (h x) (f x) (g x) i isOfHLevelΠ 2 h f g F G i j z = h z (f z) (g z) (funExt⁻ F z) (funExt⁻ G z) i j isOfHLevelΠ 3 h f g p q P Q i j k z = h z (f z) (g z) (funExt⁻ p z) (funExt⁻ q z) (cong (λ f → funExt⁻ f z) P) (cong (λ f → funExt⁻ f z) Q) i j k isOfHLevelΠ 4 h f g p q P Q R S i j k l z = h z (f z) (g z) (funExt⁻ p z) (funExt⁻ q z) (cong (λ f → funExt⁻ f z) P) (cong (λ f → funExt⁻ f z) Q) (cong (cong (λ f → funExt⁻ f z)) R) (cong (cong (λ f → funExt⁻ f z)) S) i j k l isOfHLevelΠ (suc (suc (suc (suc (suc n))))) h f g p q P Q R S = isOfHLevelRetract (suc n) (cong (cong (cong funExt⁻))) (cong (cong (cong funExt))) (λ _ → refl) (isOfHLevelΠ (suc (suc (suc (suc n)))) (λ x → h x (f x) (g x)) (funExt⁻ p) (funExt⁻ q) (cong funExt⁻ P) (cong funExt⁻ Q) (cong (cong funExt⁻) R) (cong (cong funExt⁻) S)) isPropΠ : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x) isPropΠ = isOfHLevelΠ 1 isPropΠ2 : (h : (x : A) (y : B x) → isProp (C x y)) → isProp ((x : A) (y : B x) → C x y) isPropΠ2 h = isPropΠ λ x → isPropΠ λ y → h x y isPropΠ3 : (h : (x : A) (y : B x) (z : C x y) → isProp (D x y z)) → isProp ((x : A) (y : B x) (z : C x y) → D x y z) isPropΠ3 h = isPropΠ λ x → isPropΠ λ y → isPropΠ λ z → h x y z isPropΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isProp (E x y z w)) → isProp ((x : A) (y : B x) (z : C x y) (w : D x y z) → E x y z w) isPropΠ4 h = isPropΠ λ _ → isPropΠ3 λ _ → h _ _ isPropImplicitΠ : (h : (x : A) → isProp (B x)) → isProp ({x : A} → B x) isPropImplicitΠ h f g i {x} = h x (f {x}) (g {x}) i isPropImplicitΠ2 : (h : (x : A) (y : B x) → isProp (C x y)) → isProp ({x : A} {y : B x} → C x y) isPropImplicitΠ2 h = isPropImplicitΠ (λ x → isPropImplicitΠ (λ y → h x y)) isProp→ : {A : Type ℓ} {B : Type ℓ'} → isProp B → isProp (A → B) isProp→ pB = isPropΠ λ _ → pB isSetΠ : ((x : A) → isSet (B x)) → isSet ((x : A) → B x) isSetΠ = isOfHLevelΠ 2 isSetΠ2 : (h : (x : A) (y : B x) → isSet (C x y)) → isSet ((x : A) (y : B x) → C x y) isSetΠ2 h = isSetΠ λ x → isSetΠ λ y → h x y isSetΠ3 : (h : (x : A) (y : B x) (z : C x y) → isSet (D x y z)) → isSet ((x : A) (y : B x) (z : C x y) → D x y z) isSetΠ3 h = isSetΠ λ x → isSetΠ λ y → isSetΠ λ z → h x y z isGroupoidΠ : ((x : A) → isGroupoid (B x)) → isGroupoid ((x : A) → B x) isGroupoidΠ = isOfHLevelΠ 3 isGroupoidΠ2 : (h : (x : A) (y : B x) → isGroupoid (C x y)) → isGroupoid ((x : A) (y : B x) → C x y) isGroupoidΠ2 h = isGroupoidΠ λ _ → isGroupoidΠ λ _ → h _ _ isGroupoidΠ3 : (h : (x : A) (y : B x) (z : C x y) → isGroupoid (D x y z)) → isGroupoid ((x : A) (y : B x) (z : C x y) → D x y z) isGroupoidΠ3 h = isGroupoidΠ λ _ → isGroupoidΠ2 λ _ → h _ _ isGroupoidΠ4 : (h : (x : A) (y : B x) (z : C x y) (w : D x y z) → isGroupoid (E x y z w)) → isGroupoid ((x : A) (y : B x) (z : C x y) (w : D x y z) → E x y z w) isGroupoidΠ4 h = isGroupoidΠ λ _ → isGroupoidΠ3 λ _ → h _ _ is2GroupoidΠ : ((x : A) → is2Groupoid (B x)) → is2Groupoid ((x : A) → B x) is2GroupoidΠ = isOfHLevelΠ 4 isOfHLevelΠ⁻ : ∀ {A : Type ℓ} {B : Type ℓ'} n → isOfHLevel n (A → B) → (A → isOfHLevel n B) isOfHLevelΠ⁻ 0 h x = fst h x , λ y → funExt⁻ (snd h (const y)) x isOfHLevelΠ⁻ 1 h x y z = funExt⁻ (h (const y) (const z)) x isOfHLevelΠ⁻ (suc (suc n)) h x y z = isOfHLevelΠ⁻ (suc n) (isOfHLevelRetractFromIso (suc n) funExtIso (h _ _)) x -- h-level of A ≃ B and A ≡ B isOfHLevel≃ : ∀ n {A : Type ℓ} {B : Type ℓ'} → (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≃ B) isOfHLevel≃ zero {A = A} {B = B} hA hB = isContr→Equiv hA hB , contr where contr : (y : A ≃ B) → isContr→Equiv hA hB ≡ y contr y = Σ≡Prop isPropIsEquiv (funExt (λ a → snd hB (fst y a))) isOfHLevel≃ (suc n) {A = A} {B = B} hA hB = isOfHLevelΣ (suc n) (isOfHLevelΠ _ λ _ → hB) (λ f → isProp→isOfHLevelSuc n (isPropIsEquiv f)) isOfHLevel≡ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≡ B) isOfHLevel≡ n hA hB = isOfHLevelRetractFromIso n univalenceIso (isOfHLevel≃ n hA hB) isOfHLevel⁺≃ₗ : ∀ n {A : Type ℓ} {B : Type ℓ'} → isOfHLevel (suc n) A → isOfHLevel (suc n) (A ≃ B) isOfHLevel⁺≃ₗ zero pA e = isOfHLevel≃ 1 pA (isOfHLevelRespectEquiv 1 e pA) e isOfHLevel⁺≃ₗ (suc n) hA e = isOfHLevel≃ m hA (isOfHLevelRespectEquiv m e hA) e where m = suc (suc n) isOfHLevel⁺≃ᵣ : ∀ n {A : Type ℓ} {B : Type ℓ'} → isOfHLevel (suc n) B → isOfHLevel (suc n) (A ≃ B) isOfHLevel⁺≃ᵣ zero pB e = isOfHLevel≃ 1 (isPropRetract (e .fst) (invEq e) (retEq e) pB) pB e isOfHLevel⁺≃ᵣ (suc n) hB e = isOfHLevel≃ m (isOfHLevelRetract m (e .fst) (invEq e) (retEq e) hB) hB e where m = suc (suc n) isOfHLevel⁺≡ₗ : ∀ n → {A B : Type ℓ} → isOfHLevel (suc n) A → isOfHLevel (suc n) (A ≡ B) isOfHLevel⁺≡ₗ zero pA P = isOfHLevel≡ 1 pA (subst isProp P pA) P isOfHLevel⁺≡ₗ (suc n) hA P = isOfHLevel≡ m hA (subst (isOfHLevel m) P hA) P where m = suc (suc n) isOfHLevel⁺≡ᵣ : ∀ n → {A B : Type ℓ} → isOfHLevel (suc n) B → isOfHLevel (suc n) (A ≡ B) isOfHLevel⁺≡ᵣ zero pB P = isOfHLevel≡ 1 (subst⁻ isProp P pB) pB P isOfHLevel⁺≡ᵣ (suc n) hB P = isOfHLevel≡ m (subst⁻ (isOfHLevel m) P hB) hB P where m = suc (suc n) -- h-level of TypeOfHLevel isPropHContr : isProp (TypeOfHLevel ℓ 0) isPropHContr x y = Σ≡Prop (λ _ → isPropIsContr) (isOfHLevel≡ 0 (x .snd) (y .snd) .fst) isOfHLevelTypeOfHLevel : ∀ n → isOfHLevel (suc n) (TypeOfHLevel ℓ n) isOfHLevelTypeOfHLevel zero = isPropHContr isOfHLevelTypeOfHLevel (suc n) (X , a) (Y , b) = isOfHLevelRetract (suc n) (cong fst) (Σ≡Prop λ _ → isPropIsOfHLevel (suc n)) (section-Σ≡Prop λ _ → isPropIsOfHLevel (suc n)) (isOfHLevel≡ (suc n) a b) isSetHProp : isSet (hProp ℓ) isSetHProp = isOfHLevelTypeOfHLevel 1 -- h-level of lifted type isOfHLevelLift : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} → isOfHLevel n A → isOfHLevel n (Lift {j = ℓ'} A) isOfHLevelLift n = isOfHLevelRetract n lower lift λ _ → refl ---------------------------- -- More consequences of isProp and isContr inhProp→isContr : A → isProp A → isContr A inhProp→isContr x h = x , h x extend : isContr A → (∀ φ → (u : Partial φ A) → Sub A φ u) extend (x , p) φ u = inS (hcomp (λ { j (φ = i1) → p (u 1=1) j }) x) isContrPartial→isContr : ∀ {ℓ} {A : Type ℓ} → (extend : ∀ φ → Partial φ A → A) → (∀ u → u ≡ (extend i1 λ { _ → u})) → isContr A isContrPartial→isContr {A = A} extend law = ex , λ y → law ex ∙ (λ i → Aux.v y i) ∙ sym (law y) where ex = extend i0 empty module Aux (y : A) (i : I) where φ = ~ i ∨ i u : Partial φ A u = λ { (i = i0) → ex ; (i = i1) → y } v = extend φ u -- Dependent h-level over a type isOfHLevelDep : HLevel → {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') isOfHLevelDep 0 {A = A} B = {a : A} → Σ[ b ∈ B a ] ({a' : A} (b' : B a') (p : a ≡ a') → PathP (λ i → B (p i)) b b') isOfHLevelDep 1 {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) (p : a0 ≡ a1) → PathP (λ i → B (p i)) b0 b1 isOfHLevelDep (suc (suc n)) {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) → isOfHLevelDep (suc n) {A = a0 ≡ a1} (λ p → PathP (λ i → B (p i)) b0 b1) isOfHLevel→isOfHLevelDep : (n : HLevel) → {A : Type ℓ} {B : A → Type ℓ'} (h : (a : A) → isOfHLevel n (B a)) → isOfHLevelDep n {A = A} B isOfHLevel→isOfHLevelDep 0 h {a} = (h a .fst , λ b' p → isProp→PathP (λ i → isContr→isProp (h (p i))) (h a .fst) b') isOfHLevel→isOfHLevelDep 1 h = λ b0 b1 p → isProp→PathP (λ i → h (p i)) b0 b1 isOfHLevel→isOfHLevelDep (suc (suc n)) {A = A} {B} h {a0} {a1} b0 b1 = isOfHLevel→isOfHLevelDep (suc n) (λ p → helper a1 p b1) where helper : (a1 : A) (p : a0 ≡ a1) (b1 : B a1) → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1) helper a1 p b1 = J (λ a1 p → ∀ b1 → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1)) (λ _ → h _ _ _) p b1 isContrDep→isPropDep : isOfHLevelDep 0 B → isOfHLevelDep 1 B isContrDep→isPropDep {B = B} Bctr {a0 = a0} b0 b1 p i = comp (λ k → B (p (i ∧ k))) (λ k → λ where (i = i0) → Bctr .snd b0 refl k (i = i1) → Bctr .snd b1 p k) (c0 .fst) where c0 = Bctr {a0} isPropDep→isSetDep : isOfHLevelDep 1 B → isOfHLevelDep 2 B isPropDep→isSetDep {B = B} Bprp b0 b1 b2 b3 p i j = comp (λ k → B (p (i ∧ k) (j ∧ k))) (λ k → λ where (j = i0) → Bprp b0 b0 refl k (i = i0) → Bprp b0 (b2 j) (λ k → p i0 (j ∧ k)) k (i = i1) → Bprp b0 (b3 j) (λ k → p k (j ∧ k)) k (j = i1) → Bprp b0 b1 (λ k → p (i ∧ k) (j ∧ k)) k) b0 isOfHLevelDepSuc : (n : HLevel) → isOfHLevelDep n B → isOfHLevelDep (suc n) B isOfHLevelDepSuc 0 = isContrDep→isPropDep isOfHLevelDepSuc 1 = isPropDep→isSetDep isOfHLevelDepSuc (suc (suc n)) Blvl b0 b1 = isOfHLevelDepSuc (suc n) (Blvl b0 b1) isPropDep→isSetDep' : isOfHLevelDep 1 B → {p : w ≡ x} {q : y ≡ z} {r : w ≡ y} {s : x ≡ z} → {tw : B w} {tx : B x} {ty : B y} {tz : B z} → (sq : Square p q r s) → (tp : PathP (λ i → B (p i)) tw tx) → (tq : PathP (λ i → B (q i)) ty tz) → (tr : PathP (λ i → B (r i)) tw ty) → (ts : PathP (λ i → B (s i)) tx tz) → SquareP (λ i j → B (sq i j)) tp tq tr ts isPropDep→isSetDep' {B = B} Bprp {p} {q} {r} {s} {tw} sq tp tq tr ts i j = comp (λ k → B (sq (i ∧ k) (j ∧ k))) (λ k → λ where (i = i0) → Bprp tw (tp j) (λ k → p (k ∧ j)) k (i = i1) → Bprp tw (tq j) (λ k → sq (i ∧ k) (j ∧ k)) k (j = i0) → Bprp tw (tr i) (λ k → r (k ∧ i)) k (j = i1) → Bprp tw (ts i) (λ k → sq (k ∧ i) (j ∧ k)) k) tw isOfHLevelΣ' : ∀ n → isOfHLevel n A → isOfHLevelDep n B → isOfHLevel n (Σ A B) isOfHLevelΣ' 0 Actr Bctr .fst = (Actr .fst , Bctr .fst) isOfHLevelΣ' 0 Actr Bctr .snd (x , y) i = Actr .snd x i , Bctr .snd y (Actr .snd x) i isOfHLevelΣ' 1 Alvl Blvl (w , y) (x , z) i .fst = Alvl w x i isOfHLevelΣ' 1 Alvl Blvl (w , y) (x , z) i .snd = Blvl y z (Alvl w x) i isOfHLevelΣ' {A = A} {B = B} (suc (suc n)) Alvl Blvl (w , y) (x , z) = isOfHLevelRetract (suc n) (λ p → (λ i → p i .fst) , λ i → p i .snd) ΣPathP (λ x → refl) (isOfHLevelΣ' (suc n) (Alvl w x) (Blvl y z))
39.348438
150
0.532582
ad427e47db742b99c9084f315ed3e6dc7cdad518
14,950
agda
Agda
PointedTypes.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
PointedTypes.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
PointedTypes.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module PointedTypes where open import Agda.Prim open import Data.Unit open import Data.Bool open import Data.Nat hiding (_⊔_) open import Data.Sum open import Data.Product open import Function open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- Pointed types -- We need pointed types because paths are ultimately between points. A path -- between false and 0 for example would be expressed as a path between -- (pt false) and (pt 0) which expand to •[ Bool , false ] and •[ ℕ , 0 ] -- First we define a pointed set as a carrier with a distinguished point record Set• (ℓ : Level) : Set (lsuc ℓ) where constructor •[_,_] field ∣_∣ : Set ℓ • : ∣_∣ open Set• public ⊤• : Set• lzero ⊤• = •[ ⊤ , tt ] _⊎•₁_ : {ℓ ℓ' : Level} → (A• : Set• ℓ) → (B• : Set• ℓ') → Set• (ℓ ⊔ ℓ') A• ⊎•₁ B• = •[ ∣ A• ∣ ⊎ ∣ B• ∣ , inj₁ (• A•) ] _⊎•₂_ : {ℓ ℓ' : Level} → (A• : Set• ℓ) → (B• : Set• ℓ') → Set• (ℓ ⊔ ℓ') A• ⊎•₂ B• = •[ ∣ A• ∣ ⊎ ∣ B• ∣ , inj₂ (• B•) ] _ו_ : {ℓ ℓ' : Level} → (A• : Set• ℓ) → (B• : Set• ℓ') → Set• (ℓ ⊔ ℓ') A• ו B• = •[ ∣ A• ∣ × ∣ B• ∣ , (• A• , • B•) ] test0 : Set• lzero test0 = •[ ℕ , 3 ] test1 : Set• (lsuc lzero) test1 = •[ Set , ℕ ] test2 : {ℓ ℓ' : Level} {A : Set ℓ} {B : Set ℓ'} {a : A} → Set• (ℓ ⊔ ℓ') test2 {ℓ} {ℓ'} {A} {B} {a} = •[ A ⊎ B , inj₁ a ] test3 : ∀ {ℓ} → Set• (lsuc (lsuc ℓ)) test3 {ℓ} = •[ Set (lsuc ℓ) , Set ℓ ] test4 : Set• lzero test4 = •[ (Bool → Bool) , not ] -- Now we focus on the points and move the carriers to the background pt : {ℓ : Level} {A : Set ℓ} → (a : A) → Set• ℓ pt {ℓ} {A} a = •[ A , a ] test5 : Set• lzero test5 = pt 3 test6 : Set• (lsuc lzero) test6 = pt ℕ test7 : {ℓ : Level} → Set• (lsuc (lsuc ℓ)) test7 {ℓ} = pt (Set ℓ) -- See: -- http://homotopytypetheory.org/2012/11/21/on-heterogeneous-equality/ beta : {ℓ : Level} {A : Set ℓ} {a : A} → • •[ A , a ] ≡ a beta {ℓ} {A} {a} = refl eta : {ℓ : Level} → (A• : Set• ℓ) → •[ ∣ A• ∣ , • A• ] ≡ A• eta {ℓ} A• = refl ------------------------------------------------------------------------------ -- Functions between pointed types; our focus is on how the functions affect -- the basepoint. We don't care what the functions do on the rest of the type. record _→•_ {ℓ ℓ' : Level} (A• : Set• ℓ) (B• : Set• ℓ') : Set (ℓ ⊔ ℓ') where field fun : ∣ A• ∣ → ∣ B• ∣ resp• : fun (• A•) ≡ • B• open _→•_ public id• : {ℓ : Level} {A• : Set• ℓ} → (A• →• A•) id• = record { fun = id ; resp• = refl } f1 : pt 2 →• pt 4 f1 = record { fun = suc ∘ suc ; resp• = refl } f2 : pt 2 →• pt 4 f2 = record { fun = λ x → 2 * x ; resp• = refl } -- composition of functions between pointed types _⊚_ : {ℓ₁ ℓ₂ ℓ₃ : Level} {A• : Set• ℓ₁} {B• : Set• ℓ₂} {C• : Set• ℓ₃} → (B• →• C•) → (A• →• B•) → (A• →• C•) h ⊚ g = record { fun = fun h ∘ fun g ; resp• = trans (cong (fun h) (resp• g)) (resp• h) } f3 : pt 4 →• pt 2 f3 = record { fun = pred ∘ pred ; resp• = refl } f1∘f3 : pt 4 →• pt 4 f1∘f3 = f1 ⊚ f3 -- two pointed functions are ∼ if they agree on the basepoints; we DON'T CARE -- what they do on the rest of the type. _∼•_ : {ℓ ℓ' : Level} {A• : Set• ℓ} {B• : Set• ℓ'} → (f• g• : A• →• B•) → Set ℓ' _∼•_ {ℓ} {ℓ'} {A•} {B•} f• g• = fun f• (• A•) ≡ fun g• (• A•) f1∼f2 : f1 ∼• f2 f1∼f2 = refl f1∘f3∼id : f1∘f3 ∼• id• f1∘f3∼id = refl -- quasi-inverses record qinv• {ℓ ℓ'} {A• : Set• ℓ} {B• : Set• ℓ'} (f• : A• →• B•) : Set (ℓ ⊔ ℓ') where constructor mkqinv• field g• : B• →• A• α• : (f• ⊚ g•) ∼• id• β• : (g• ⊚ f•) ∼• id• idqinv• : ∀ {ℓ} → {A• : Set• ℓ} → qinv• {ℓ} {ℓ} {A•} {A•} id• idqinv• = record { g• = id• ; α• = refl ; β• = refl } f1qinv : qinv• f1 f1qinv = record { g• = f3 ; α• = refl ; β• = refl } -- equivalences record isequiv• {ℓ ℓ'} {A• : Set• ℓ} {B• : Set• ℓ'} (f• : A• →• B•) : Set (ℓ ⊔ ℓ') where constructor mkisequiv• field g• : B• →• A• α• : (f• ⊚ g•) ∼• id• h• : B• →• A• β• : (h• ⊚ f•) ∼• id• equiv•₁ : ∀ {ℓ ℓ'} {A• : Set• ℓ} {B• : Set• ℓ'} {f• : A• →• B•} → qinv• f• → isequiv• f• equiv•₁ (mkqinv• qg qα qβ) = mkisequiv• qg qα qg qβ f1equiv : isequiv• f1 f1equiv = equiv•₁ f1qinv _≃•_ : ∀ {ℓ ℓ'} (A• : Set• ℓ) (B• : Set• ℓ') → Set (ℓ ⊔ ℓ') A ≃• B = Σ (A →• B) isequiv• idequiv• : ∀ {ℓ} {A• : Set• ℓ} → A• ≃• A• idequiv• = ( id• , equiv•₁ idqinv•) pt24equiv : pt 2 ≃• pt 4 pt24equiv = (f1 , f1equiv) ------------------------------------------------------------------------------ {-- old stuff which we might need again idright : {A B : Set} {a : A} {b : B} {p : •[ A , a ] ⇛ •[ B , b ]} → (trans⇛ p (id⇛ {B} {b})) 2⇛ p idright = 2Path id⇛ id⇛ idleft : {A B : Set} {a : A} {b : B} {p : •[ A , a ] ⇛ •[ B , b ]} → (trans⇛ (id⇛ {A} {a}) p) 2⇛ p idleft = 2Path id⇛ id⇛ assoc : {A B C D : Set} {a : A} {b : B} {c : C} {d : D} {p : •[ A , a ] ⇛ •[ B , b ]} {q : •[ B , b ] ⇛ •[ C , c ]} {r : •[ C , c ] ⇛ •[ D , d ]} → (trans⇛ p (trans⇛ q r)) 2⇛ (trans⇛ (trans⇛ p q) r) assoc = 2Path id⇛ id⇛ bifunctorid⋆ : {A B : Set} {a : A} {b : B} → (times⇛ (id⇛ {A} {a}) (id⇛ {B} {b})) 2⇛ (id⇛ {A × B} {(a , b)}) bifunctorid⋆ = 2Path id⇛ id⇛ bifunctorid₊₁ : {A B : Set} {a : A} → (plus₁⇛ {A} {B} {A} {B} (id⇛ {A} {a})) 2⇛ (id⇛ {A ⊎ B} {inj₁ a}) bifunctorid₊₁ = 2Path id⇛ id⇛ bifunctorid₊₂ : {A B : Set} {b : B} → (plus₂⇛ {A} {B} {A} {B} (id⇛ {B} {b})) 2⇛ (id⇛ {A ⊎ B} {inj₂ b}) bifunctorid₊₂ = 2Path id⇛ id⇛ bifunctorC⋆ : {A B C D E F : Set} {a : A} {b : B} {c : C} {d : D} {e : E} {f : F} {p : •[ A , a ] ⇛ •[ B , b ]} {q : •[ B , b ] ⇛ •[ C , c ]} {r : •[ D , d ] ⇛ •[ E , e ]} {s : •[ E , e ] ⇛ •[ F , f ]} → (trans⇛ (times⇛ p r) (times⇛ q s)) 2⇛ (times⇛ (trans⇛ p q) (trans⇛ r s)) bifunctorC⋆ = 2Path id⇛ id⇛ bifunctorC₊₁₁ : {A B C D E F : Set} {a : A} {b : B} {c : C} {p : •[ A , a ] ⇛ •[ B , b ]} {q : •[ B , b ] ⇛ •[ C , c ]} → (trans⇛ (plus₁⇛ {A} {D} {B} {E} p) (plus₁⇛ {B} {E} {C} {F} q)) 2⇛ (plus₁⇛ {A} {D} {C} {F} (trans⇛ p q)) bifunctorC₊₁₁ = 2Path id⇛ id⇛ bifunctorC₊₂₂ : {A B C D E F : Set} {d : D} {e : E} {f : F} {r : •[ D , d ] ⇛ •[ E , e ]} {s : •[ E , e ] ⇛ •[ F , f ]} → (trans⇛ (plus₂⇛ {A} {D} {B} {E} r) (plus₂⇛ {B} {E} {C} {F} s)) 2⇛ (plus₂⇛ {A} {D} {C} {F} (trans⇛ r s)) bifunctorC₊₂₂ = 2Path id⇛ id⇛ triangle : {A B : Set} {a : A} {b : B} → (trans⇛ (assocr⋆⇛ {A} {⊤} {B} {a} {tt} {b}) (times⇛ id⇛ unite⋆⇛)) 2⇛ (times⇛ (trans⇛ swap⋆⇛ unite⋆⇛) id⇛) triangle = 2Path id⇛ id⇛ -- Now interpret a path (x ⇛ y) as a value of type (1/x , y) Recip : {A : Set} → (x : • A) → Set₁ Recip {A} x = (x ⇛ x) η : {A : Set} {x : • A} → ⊤ → Recip x × • A η {A} {x} tt = (id⇛ x , x) lower : {A : Set} {x : • A} → x ⇛ x -> ⊤ lower c = tt -- The problem here is that we can't assert that y == x. ε : {A : Set} {x : • A} → Recip x × • A → ⊤ ε {A} {x} (rx , y) = lower (id⇛ ( ↑ (fun (ap rx) (focus y)) )) -- makes insufficient sense apr : {A B : Set} {x : • A} {y : • B} → (x ⇛ y) → Recip y → Recip x apr {A} {B} {x} {y} q ry = trans⇛ q (trans⇛ ry (sym⇛ q)) x ≡⟨ q ⟩ y ≡⟨ ry ⟩ y ≡⟨ sym⇛ q ⟩ x ∎ ε : {A B : Set} {x : A} {y : B} → Recip x → Singleton y → x ⇛ y ε rx (singleton y) = rx y pathV : {A B : Set} {x : A} {y : B} → (x ⇛ y) → Recip x × Singleton y pathV unite₊⇛ = {!!} pathV uniti₊⇛ = {!!} -- swap₁₊⇛ : {A B : Set} {x : A} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₁ x) (inj₂ x) pathV (swap₁₊⇛ {A} {B} {x}) = ((λ x' → {!!}) , singleton (inj₂ x)) pathV swap₂₊⇛ = {!!} pathV assocl₁₊⇛ = {!!} pathV assocl₂₁₊⇛ = {!!} pathV assocl₂₂₊⇛ = {!!} pathV assocr₁₁₊⇛ = {!!} pathV assocr₁₂₊⇛ = {!!} pathV assocr₂₊⇛ = {!!} pathV unite⋆⇛ = {!!} pathV uniti⋆⇛ = {!!} pathV swap⋆⇛ = {!!} pathV assocl⋆⇛ = {!!} pathV assocr⋆⇛ = {!!} pathV dist₁⇛ = {!!} pathV dist₂⇛ = {!!} pathV factor₁⇛ = {!!} pathV factor₂⇛ = {!!} pathV dist0⇛ = {!!} pathV factor0⇛ = {!!} pathV {A} {.A} {x} (id⇛ .x) = {!!} pathV (sym⇛ p) = {!!} pathV (trans⇛ p p₁) = {!!} pathV (plus₁⇛ p) = {!!} pathV (plus₂⇛ p) = {!!} pathV (times⇛ p p₁) = {!!} -- these are individual paths so to speak -- should we represent a path like swap+ as a family explicitly: -- swap+ : (x : A) -> x ⇛ swapF x -- I guess we can: swap+ : (x : A) -> case x of inj1 -> swap1 x else swap2 x If A={x0,x1,x2}, 1/A has three values: (x0<-x0, x0<-x1, x0<-x2) (x1<-x0, x1<-x1, x1<-x2) (x2<-x0, x2<-x1, x2<-x2) It is a fake choice between x0, x1, and x2 (some negative information). You base yourself at x0 for example and enforce that any other value can be mapped to x0. So think of a value of type 1/A as an uncertainty about which value of A we have. It could be x0, x1, or x2 but at the end it makes no difference. There is no choice. You can manipulate a value of type 1/A (x0<-x0, x0<-x1, x0<-x2) by with a path to some arbitrary path to b0 for example: (b0<-x0<-x0, b0<-x0<-x1, b0<-x0<-x2) eta_3 will give (x0<-x0, x0<-x1, x0<-x2, x0) for example but any other combination is equivalent. epsilon_3 will take (x0<-x0, x0<-x1, x0<-x2) and one actual xi which is now certain; we can resolve our previous uncertainty by following the path from xi to x0 thus eliminating the fake choice we seemed to have. Explain connection to negative information. Knowing head or tails is 1 bits. Giving you a choice between heads and tails and then cooking this so that heads=tails takes away your choice. -- transp⇛ : {A B : Set} {x y : • A} → -- (f : A → B) → x ⇛ y → ↑ (f (focus x)) ⇛ ↑ (f (focus y)) -- Morphism of pointed space: contains a path! record _⟶_ {A B : Set} (pA : • A) (pB : • B) : Set₁ where field fun : A → B eq : ↑ (fun (focus pA)) ⇛ pB open _⟶_ _○_ : {A B C : Set} {pA : • A} {pB : • B} {pC : • C} → pA ⟶ pB → pB ⟶ pC → pA ⟶ pC f ○ g = record { fun = λ x → (fun g) ((fun f) x) ; eq = trans⇛ (transp⇛ (fun g) (eq f)) (eq g)} mutual ap : {A B : Set} {x : • A} {y : • B} → x ⇛ y → x ⟶ y ap {y = y} unite₊⇛ = record { fun = λ { (inj₁ ()) ; (inj₂ x) → x } ; eq = id⇛ y } ap uniti₊⇛ (singleton x) = singleton (inj₂ x) ap (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₁ x)) = singleton (inj₂ x) ap (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₂ y)) = singleton (inj₁ y) ap (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) = singleton (inj₁ (inj₁ x)) ap (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) = singleton (inj₁ (inj₂ y)) ap (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) = singleton (inj₂ z) ap (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) = singleton (inj₁ x) ap (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) = singleton (inj₂ (inj₁ y)) ap (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) = singleton (inj₂ (inj₂ z)) ap {.(⊤ × A)} {A} {.(tt , x)} {x} unite⋆⇛ (singleton .(tt , x)) = singleton x ap uniti⋆⇛ (singleton x) = singleton (tt , x) ap (swap⋆⇛ {A} {B} {x} {y}) (singleton .(x , y)) = singleton (y , x) ap (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) = singleton ((x , y) , z) ap (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) = singleton (x , (y , z)) ap (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) = singleton (inj₁ (x , z)) ap (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) = singleton (inj₂ (y , z)) ap (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) = singleton (inj₁ x , z) ap (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) = singleton (inj₂ y , z) ap {.(⊥ × A)} {.⊥} {.(• , x)} {•} (dist0⇛ {A} {.•} {x}) (singleton .(• , x)) = singleton • ap factor0⇛ (singleton ()) ap {x = x} (id⇛ .x) = record { fun = λ x → x; eq = id⇛ x } ap (sym⇛ c) = apI c ap (trans⇛ c₁ c₂) = (ap c₁) ○ (ap c₂) ap (transp⇛ f a) = record { fun = λ x → x; eq = transp⇛ f a } ap (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ x)) with ap c (singleton x) ... | singleton .z = singleton (inj₁ z) ap (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ y)) with ap c (singleton y) ... | singleton .w = singleton (inj₂ w) ap (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(x , y)) with ap c₁ (singleton x) | ap c₂ (singleton y) ... | singleton .z | singleton .w = singleton (z , w) apI : {A B : Set} {x : • A} {y : • B} → x ⇛ y → y ⟶ x apI {y = y} unite₊⇛ = record { fun = inj₂; eq = id⇛ (↑ (inj₂ (focus y))) } apI {A} {.(⊥ ⊎ A)} {x} uniti₊⇛ (singleton .(inj₂ x)) = singleton x apI (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₂ x)) = singleton (inj₁ x) apI (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₁ y)) = singleton (inj₂ y) apI (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) = singleton (inj₁ x) apI (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) = singleton (inj₂ (inj₁ y)) apI (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) = singleton (inj₂ (inj₂ z)) apI (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) = singleton (inj₁ (inj₁ x)) apI (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) = singleton (inj₁ (inj₂ y)) apI (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) = singleton (inj₂ z) apI unite⋆⇛ (singleton x) = singleton (tt , x) apI {A} {.(⊤ × A)} {x} uniti⋆⇛ (singleton .(tt , x)) = singleton x apI (swap⋆⇛ {A} {B} {x} {y}) (singleton .(y , x)) = singleton (x , y) apI (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) = singleton (x , (y , z)) apI (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) = singleton ((x , y) , z) apI (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) = singleton (inj₁ x , z) apI (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) = singleton (inj₂ y , z) apI (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) = singleton (inj₁ (x , z)) apI (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) = singleton (inj₂ (y , z)) apI dist0⇛ (singleton ()) apI {.⊥} {.(⊥ × A)} {•} (factor0⇛ {A} {.•} {x}) (singleton .(• , x)) = singleton • apI {x = x} (id⇛ .x) = record { fun = λ x → x; eq = id⇛ x } apI (sym⇛ c) = ap c apI (trans⇛ c₁ c₂) = (apI c₂) ○ (apI c₁) apI (transp⇛ f a) = record { fun = λ x → x; eq = transp⇛ f (sym⇛ a) } apI (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ z)) with apI c (singleton z) ... | singleton .x = singleton (inj₁ x) apI (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ w)) with apI c (singleton w) ... | singleton .y = singleton (inj₂ y) apI (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(z , w)) with apI c₁ (singleton z) | apI c₂ (singleton w) ... | singleton .x | singleton .y = singleton (x , y) --}
33.520179
95
0.474515
1977ce11f672caeb90809a2d215417dee9b2af6c
1,334
agda
Agda
agda-stdlib-0.9/src/Data/List/Reverse.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/List/Reverse.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/List/Reverse.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Reverse view ------------------------------------------------------------------------ module Data.List.Reverse where open import Data.List open import Data.Nat import Data.Nat.Properties as Nat open import Induction.Nat open import Relation.Binary.PropositionalEquality -- If you want to traverse a list from the end, then you can use the -- reverse view of it. infixl 5 _∶_∶ʳ_ data Reverse {A : Set} : List A → Set where [] : Reverse [] _∶_∶ʳ_ : ∀ xs (rs : Reverse xs) (x : A) → Reverse (xs ∷ʳ x) reverseView : ∀ {A} (xs : List A) → Reverse xs reverseView {A} xs = <-rec Pred rev (length xs) xs refl where Pred : ℕ → Set Pred n = (xs : List A) → length xs ≡ n → Reverse xs lem : ∀ xs {x : A} → length xs <′ length (xs ∷ʳ x) lem [] = ≤′-refl lem (x ∷ xs) = Nat.s≤′s (lem xs) rev : (n : ℕ) → <-Rec Pred n → Pred n rev n rec xs eq with initLast xs rev n rec .[] eq | [] = [] rev .(length (xs ∷ʳ x)) rec .(xs ∷ʳ x) refl | xs ∷ʳ' x with rec (length xs) (lem xs) xs refl rev ._ rec .([] ∷ʳ x) refl | ._ ∷ʳ' x | [] = _ ∶ [] ∶ʳ x rev ._ rec .(ys ∷ʳ y ∷ʳ x) refl | ._ ∷ʳ' x | ys ∶ rs ∶ʳ y = _ ∶ (_ ∶ rs ∶ʳ y) ∶ʳ x
31.761905
72
0.484258
2e3476bd6d2283b733136aafc0ec8dd3ad9c3ca8
295
agda
Agda
test/Succeed/IndexOnBuiltin.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/IndexOnBuiltin.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/IndexOnBuiltin.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.conv:40 #-} module IndexOnBuiltin where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} data Fin : Nat -> Set where fz : {n : Nat} -> Fin (suc n) fs : {n : Nat} -> Fin n -> Fin (suc n) f : Fin 2 -> Fin 1 f fz = fz f (fs i) = i
16.388889
40
0.528814
1363685b97bfa7ead3003e729980e3dbd8c38919
22,950
agda
Agda
src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/SortList/Properties/Totality/OrdTreeI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Totality properties respect to OrdTree ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.SortList.Properties.Totality.OrdTreeI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.List.Type open import FOTC.Data.Nat.Type open import FOTC.Program.SortList.SortList open import FOTC.Program.SortList.Properties.Totality.BoolI open import FOTC.Program.SortList.Properties.Totality.TreeI ------------------------------------------------------------------------------ -- Subtrees -- If (node t₁ i t₂) is ordered then t₁ is ordered. leftSubTree-OrdTree : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → OrdTree (node t₁ i t₂) → OrdTree t₁ leftSubTree-OrdTree {t₁} {i} {t₂} Tt₁ Ni Tt₂ TOnode = ordTree t₁ ≡⟨ &&-list₂-t₁ (ordTree-Bool Tt₁) (&&-Bool (ordTree-Bool Tt₂) (&&-Bool (le-TreeItem-Bool Tt₁ Ni) (le-ItemTree-Bool Ni Tt₂))) (trans (sym (ordTree-node t₁ i t₂)) TOnode) ⟩ true ∎ -- If (node t₁ i t₂) is ordered then t₂ is ordered. rightSubTree-OrdTree : ∀ {t₁ i t₂} → Tree t₁ → N i → Tree t₂ → OrdTree (node t₁ i t₂) → OrdTree t₂ rightSubTree-OrdTree {t₁} {i} {t₂} Tt₁ Ni Tt₂ TOnode = ordTree t₂ ≡⟨ &&-list₂-t₁ (ordTree-Bool Tt₂) (&&-Bool (le-TreeItem-Bool Tt₁ Ni) (le-ItemTree-Bool Ni Tt₂)) (&&-list₂-t₂ (ordTree-Bool Tt₁) (&&-Bool (ordTree-Bool Tt₂) (&&-Bool (le-TreeItem-Bool Tt₁ Ni) (le-ItemTree-Bool Ni Tt₂))) (trans (sym (ordTree-node t₁ i t₂)) TOnode)) ⟩ true ∎ ------------------------------------------------------------------------------ -- Helper functions toTree-OrdTree-helper₁ : ∀ {i₁ i₂ t} → N i₁ → N i₂ → i₁ > i₂ → Tree t → ≤-TreeItem t i₁ → ≤-TreeItem (toTree · i₂ · t) i₁ toTree-OrdTree-helper₁ {i₁} {i₂} .{nil} Ni₁ Ni₂ i₁>i₂ tnil _ = le-TreeItem (toTree · i₂ · nil) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · nil) i₁ ≡ le-TreeItem t i₁) (toTree-nil i₂) refl ⟩ le-TreeItem (tip i₂) i₁ ≡⟨ le-TreeItem-tip i₂ i₁ ⟩ le i₂ i₁ ≡⟨ x<y→x≤y Ni₂ Ni₁ i₁>i₂ ⟩ true ∎ toTree-OrdTree-helper₁ {i₁} {i₂} Ni₁ Ni₂ i₁>i₂ (ttip {j} Nj) t≤i₁ = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where prf₁ : j > i₂ → ≤-TreeItem (toTree · i₂ · tip j) i₁ prf₁ j>i₂ = le-TreeItem (toTree · i₂ · tip j) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · tip j) i₁ ≡ le-TreeItem t i₁) (toTree-tip i₂ j) refl ⟩ le-TreeItem (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡⟨ subst (λ t → le-TreeItem (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡ le-TreeItem (if t then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁) (x>y→x≰y Nj Ni₂ j>i₂) refl ⟩ le-TreeItem (if false then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡⟨ subst (λ t → le-TreeItem (if false then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡ le-TreeItem t i₁) (if-false (node (tip i₂) j (tip j))) refl ⟩ le-TreeItem (node (tip i₂) j (tip j)) i₁ ≡⟨ le-TreeItem-node (tip i₂) j (tip j) i₁ ⟩ le-TreeItem (tip i₂) i₁ && le-TreeItem (tip j) i₁ ≡⟨ subst (λ t → le-TreeItem (tip i₂) i₁ && le-TreeItem (tip j) i₁ ≡ t && le-TreeItem (tip j) i₁) (le-TreeItem-tip i₂ i₁) refl ⟩ le i₂ i₁ && le-TreeItem (tip j) i₁ ≡⟨ subst (λ t → le i₂ i₁ && le-TreeItem (tip j) i₁ ≡ t && le-TreeItem (tip j) i₁) (x<y→x≤y Ni₂ Ni₁ i₁>i₂) refl ⟩ true && le-TreeItem (tip j) i₁ ≡⟨ subst (λ t → true && le-TreeItem (tip j) i₁ ≡ true && t) (le-TreeItem-tip j i₁) refl ⟩ true && le j i₁ ≡⟨ subst (λ t → true && le j i₁ ≡ true && t) -- j ≤ i₁ because by hypothesis we have (tip j) ≤ i₁. (trans (sym (le-TreeItem-tip j i₁)) t≤i₁) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ prf₂ : j ≤ i₂ → ≤-TreeItem (toTree · i₂ · tip j) i₁ prf₂ j≤i₂ = le-TreeItem (toTree · i₂ · tip j) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · tip j) i₁ ≡ le-TreeItem t i₁) (toTree-tip i₂ j) refl ⟩ le-TreeItem (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡⟨ subst (λ t → le-TreeItem (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡ le-TreeItem (if t then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁) j≤i₂ refl ⟩ le-TreeItem (if true then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡⟨ subst (λ t → le-TreeItem (if true then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) i₁ ≡ le-TreeItem t i₁) (if-true (node (tip j) i₂ (tip i₂))) refl ⟩ le-TreeItem (node (tip j) i₂ (tip i₂)) i₁ ≡⟨ le-TreeItem-node (tip j) i₂ (tip i₂) i₁ ⟩ le-TreeItem (tip j) i₁ && le-TreeItem (tip i₂) i₁ ≡⟨ subst (λ t → le-TreeItem (tip j) i₁ && le-TreeItem (tip i₂) i₁ ≡ t && le-TreeItem (tip i₂) i₁) (le-TreeItem-tip j i₁) refl ⟩ le j i₁ && le-TreeItem (tip i₂) i₁ ≡⟨ subst (λ t → le j i₁ && le-TreeItem (tip i₂) i₁ ≡ t && le-TreeItem (tip i₂) i₁) -- j ≤ i₁ because by hypothesis we have (tip j) ≤ i₁. (trans (sym (le-TreeItem-tip j i₁)) t≤i₁) refl ⟩ true && le-TreeItem (tip i₂) i₁ ≡⟨ subst (λ t → true && le-TreeItem (tip i₂) i₁ ≡ true && t) (le-TreeItem-tip i₂ i₁) refl ⟩ true && le i₂ i₁ ≡⟨ subst (λ t → true && le i₂ i₁ ≡ true && t) (x<y→x≤y Ni₂ Ni₁ i₁>i₂) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ toTree-OrdTree-helper₁ {i₁} {i₂} Ni₁ Ni₂ i₁>i₂ (tnode {t₁} {j} {t₂} Tt₁ Nj Tt₂) t≤i₁ = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where prf₁ : j > i₂ → ≤-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ prf₁ j>i₂ = le-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ ≡ le-TreeItem t i₁) (toTree-node i₂ t₁ j t₂) refl ⟩ le-TreeItem (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡⟨ subst (λ t → le-TreeItem (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡ le-TreeItem (if t then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁) (x>y→x≰y Nj Ni₂ j>i₂) refl ⟩ le-TreeItem (if false then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡⟨ subst (λ t → le-TreeItem (if false then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡ le-TreeItem t i₁) (if-false (node (toTree · i₂ · t₁) j t₂)) refl ⟩ le-TreeItem (node (toTree · i₂ · t₁) j t₂) i₁ ≡⟨ le-TreeItem-node (toTree · i₂ · t₁) j t₂ i₁ ⟩ le-TreeItem (toTree · i₂ · t₁) i₁ && le-TreeItem t₂ i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · t₁) i₁ && le-TreeItem t₂ i₁ ≡ t && le-TreeItem t₂ i₁) -- Inductive hypothesis. (toTree-OrdTree-helper₁ Ni₁ Ni₂ i₁>i₂ Tt₁ (&&-list₂-t₁ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁))) refl ⟩ true && le-TreeItem t₂ i₁ ≡⟨ subst (λ t → true && le-TreeItem t₂ i₁ ≡ true && t) -- t₂ ≤ i₁ because by hypothesis we have (node t₁ j t₂) ≤ i₁. (&&-list₂-t₂ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁)) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ prf₂ : j ≤ i₂ → ≤-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ prf₂ j≤i₂ = le-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ ≡⟨ subst (λ t → le-TreeItem (toTree · i₂ · node t₁ j t₂) i₁ ≡ le-TreeItem t i₁) (toTree-node i₂ t₁ j t₂) refl ⟩ le-TreeItem (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡⟨ subst (λ t → le-TreeItem (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡ le-TreeItem (if t then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁) (j≤i₂) refl ⟩ le-TreeItem (if true then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡⟨ subst (λ t → le-TreeItem (if true then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) i₁ ≡ le-TreeItem t i₁) (if-true (node t₁ j (toTree · i₂ · t₂))) refl ⟩ le-TreeItem (node t₁ j (toTree · i₂ · t₂)) i₁ ≡⟨ le-TreeItem-node t₁ j (toTree · i₂ · t₂) i₁ ⟩ le-TreeItem t₁ i₁ && le-TreeItem (toTree · i₂ · t₂) i₁ ≡⟨ subst (λ t → le-TreeItem t₁ i₁ && le-TreeItem (toTree · i₂ · t₂) i₁ ≡ t && le-TreeItem (toTree · i₂ · t₂) i₁) -- t₁ ≤ i₁ because by hypothesis we have (node t₁ j t₂) ≤ i₁. (&&-list₂-t₁ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁)) refl ⟩ true && le-TreeItem (toTree · i₂ · t₂) i₁ ≡⟨ subst (λ t → true && le-TreeItem (toTree · i₂ · t₂) i₁ ≡ true && t) -- Inductive hypothesis. (toTree-OrdTree-helper₁ Ni₁ Ni₂ i₁>i₂ Tt₂ (&&-list₂-t₂ (le-TreeItem-Bool Tt₁ Ni₁) (le-TreeItem-Bool Tt₂ Ni₁) (trans (sym (le-TreeItem-node t₁ j t₂ i₁)) t≤i₁))) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ ------------------------------------------------------------------------------ toTree-OrdTree-helper₂ : ∀ {i₁ i₂ t} → N i₁ → N i₂ → i₁ ≤ i₂ → Tree t → ≤-ItemTree i₁ t → ≤-ItemTree i₁ (toTree · i₂ · t) toTree-OrdTree-helper₂ {i₁} {i₂} .{nil} _ _ i₁≤i₂ tnil _ = le-ItemTree i₁ (toTree · i₂ · nil) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · nil) ≡ le-ItemTree i₁ t) (toTree-nil i₂) refl ⟩ le-ItemTree i₁ (tip i₂) ≡⟨ le-ItemTree-tip i₁ i₂ ⟩ le i₁ i₂ ≡⟨ i₁≤i₂ ⟩ true ∎ toTree-OrdTree-helper₂ {i₁} {i₂} Ni₁ Ni₂ i₁≤i₂ (ttip {j} Nj) i₁≤t = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where prf₁ : j > i₂ → ≤-ItemTree i₁ (toTree · i₂ · tip j) prf₁ j>i₂ = le-ItemTree i₁ (toTree · i₂ · tip j) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · tip j) ≡ le-ItemTree i₁ t) (toTree-tip i₂ j) refl ⟩ le-ItemTree i₁ (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡⟨ subst (λ t → le-ItemTree i₁ (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡ le-ItemTree i₁ (if t then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j)))) (x>y→x≰y Nj Ni₂ j>i₂) refl ⟩ le-ItemTree i₁ (if false then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡⟨ subst (λ t → le-ItemTree i₁ (if false then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡ le-ItemTree i₁ t) (if-false (node (tip i₂) j (tip j))) refl ⟩ le-ItemTree i₁ (node (tip i₂) j (tip j)) ≡⟨ le-ItemTree-node i₁ (tip i₂) j (tip j) ⟩ le-ItemTree i₁ (tip i₂) && le-ItemTree i₁ (tip j) ≡⟨ subst (λ t → le-ItemTree i₁ (tip i₂) && le-ItemTree i₁ (tip j) ≡ t && le-ItemTree i₁ (tip j)) (le-ItemTree-tip i₁ i₂) refl ⟩ le i₁ i₂ && le-ItemTree i₁ (tip j) ≡⟨ subst (λ t → le i₁ i₂ && le-ItemTree i₁ (tip j) ≡ t && le-ItemTree i₁ (tip j)) i₁≤i₂ refl ⟩ true && le-ItemTree i₁ (tip j) ≡⟨ subst (λ t → true && le-ItemTree i₁ (tip j) ≡ true && t) (le-ItemTree-tip i₁ j) refl ⟩ true && le i₁ j ≡⟨ subst (λ t → true && le i₁ j ≡ true && t) -- i₁ ≤ j because by hypothesis we have i₁ ≤ (tip j). (trans (sym (le-ItemTree-tip i₁ j)) i₁≤t) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ prf₂ : j ≤ i₂ → ≤-ItemTree i₁ (toTree · i₂ · tip j) prf₂ j≤i₂ = le-ItemTree i₁ (toTree · i₂ · tip j) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · tip j) ≡ le-ItemTree i₁ t) (toTree-tip i₂ j) refl ⟩ le-ItemTree i₁ (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡⟨ subst (λ t → le-ItemTree i₁ (if (le j i₂) then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡ le-ItemTree i₁ (if t then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j)))) j≤i₂ refl ⟩ le-ItemTree i₁ (if true then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡⟨ subst (λ t → le-ItemTree i₁ (if true then (node (tip j) i₂ (tip i₂)) else (node (tip i₂) j (tip j))) ≡ le-ItemTree i₁ t) (if-true (node (tip j) i₂ (tip i₂))) refl ⟩ le-ItemTree i₁ (node (tip j) i₂ (tip i₂)) ≡⟨ le-ItemTree-node i₁ (tip j) i₂ (tip i₂) ⟩ le-ItemTree i₁ (tip j) && le-ItemTree i₁ (tip i₂) ≡⟨ subst (λ t → le-ItemTree i₁ (tip j) && le-ItemTree i₁ (tip i₂) ≡ t && le-ItemTree i₁ (tip i₂)) (le-ItemTree-tip i₁ j) refl ⟩ le i₁ j && le-ItemTree i₁ (tip i₂) ≡⟨ subst (λ t → le i₁ j && le-ItemTree i₁ (tip i₂) ≡ t && le-ItemTree i₁ (tip i₂)) -- i₁ ≤ j because by hypothesis we have i₁ ≤ (tip j). (trans (sym (le-ItemTree-tip i₁ j)) i₁≤t) refl ⟩ true && le-ItemTree i₁ (tip i₂) ≡⟨ subst (λ t → true && le-ItemTree i₁ (tip i₂) ≡ true && t) (le-ItemTree-tip i₁ i₂) refl ⟩ true && le i₁ i₂ ≡⟨ subst (λ t → true && le i₁ i₂ ≡ true && t) i₁≤i₂ refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ toTree-OrdTree-helper₂ {i₁} {i₂} Ni₁ Ni₂ i₁≤i₂ (tnode {t₁} {j} {t₂} Tt₁ Nj Tt₂) i₁≤t = case prf₁ prf₂ (x>y∨x≤y Nj Ni₂) where prf₁ : j > i₂ → ≤-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) prf₁ j>i₂ = le-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) ≡ le-ItemTree i₁ t) (toTree-node i₂ t₁ j t₂) refl ⟩ le-ItemTree i₁ (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡⟨ subst (λ t → le-ItemTree i₁ (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡ le-ItemTree i₁ (if t then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂))) (x>y→x≰y Nj Ni₂ j>i₂) refl ⟩ le-ItemTree i₁ (if false then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡⟨ subst (λ t → le-ItemTree i₁ (if false then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡ le-ItemTree i₁ t) (if-false (node (toTree · i₂ · t₁) j t₂)) refl ⟩ le-ItemTree i₁ (node (toTree · i₂ · t₁) j t₂) ≡⟨ le-ItemTree-node i₁ (toTree · i₂ · t₁) j t₂ ⟩ le-ItemTree i₁ (toTree · i₂ · t₁) && le-ItemTree i₁ t₂ ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · t₁) && le-ItemTree i₁ t₂ ≡ t && le-ItemTree i₁ t₂) -- Inductive hypothesis. (toTree-OrdTree-helper₂ Ni₁ Ni₂ i₁≤i₂ Tt₁ (&&-list₂-t₁ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t))) refl ⟩ true && le-ItemTree i₁ t₂ ≡⟨ subst (λ t → true && le-ItemTree i₁ t₂ ≡ true && t) -- i₁ ≤ t₂ because by hypothesis we have i₁ ≤ (node t₁ j t₂). (&&-list₂-t₂ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t)) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎ prf₂ : j ≤ i₂ → ≤-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) prf₂ j≤i₂ = le-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) ≡⟨ subst (λ t → le-ItemTree i₁ (toTree · i₂ · node t₁ j t₂) ≡ le-ItemTree i₁ t) (toTree-node i₂ t₁ j t₂) refl ⟩ le-ItemTree i₁ (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡⟨ subst (λ t → le-ItemTree i₁ (if (le j i₂) then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡ le-ItemTree i₁ (if t then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂))) j≤i₂ refl ⟩ le-ItemTree i₁ (if true then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡⟨ subst (λ t → le-ItemTree i₁ (if true then (node t₁ j (toTree · i₂ · t₂)) else (node (toTree · i₂ · t₁) j t₂)) ≡ le-ItemTree i₁ t) (if-true (node t₁ j (toTree · i₂ · t₂))) refl ⟩ le-ItemTree i₁ (node t₁ j (toTree · i₂ · t₂)) ≡⟨ le-ItemTree-node i₁ t₁ j (toTree · i₂ · t₂) ⟩ le-ItemTree i₁ t₁ && le-ItemTree i₁ (toTree · i₂ · t₂) ≡⟨ subst (λ t → le-ItemTree i₁ t₁ && le-ItemTree i₁ (toTree · i₂ · t₂) ≡ t && le-ItemTree i₁ (toTree · i₂ · t₂)) -- i₁ ≤ t₁ because by hypothesis we have i₁ ≤ (node t₁ j t₂). (&&-list₂-t₁ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t)) refl ⟩ true && le-ItemTree i₁ (toTree · i₂ · t₂) ≡⟨ subst (λ t → true && le-ItemTree i₁ (toTree · i₂ · t₂) ≡ true && t) -- Inductive hypothesis. (toTree-OrdTree-helper₂ Ni₁ Ni₂ i₁≤i₂ Tt₂ (&&-list₂-t₂ (le-ItemTree-Bool Ni₁ Tt₁) (le-ItemTree-Bool Ni₁ Tt₂) (trans (sym (le-ItemTree-node i₁ t₁ j t₂)) i₁≤t))) refl ⟩ true && true ≡⟨ t&&x≡x true ⟩ true ∎
40.333919
80
0.414074
30d324d78e4d6bba8addb65cbc96075953e176b8
385
agda
Agda
test/Fail/WrongPrimitiveModality.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/WrongPrimitiveModality.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/WrongPrimitiveModality.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Agda.Builtin.Nat open import Agda.Builtin.Equality postulate String : Set {-# BUILTIN STRING String #-} primitive @0 ⦃ primShowNat ⦄ : Nat → String -- Wrong modality for primitive primShowNat -- Got: instance, erased -- Expected: visible, unrestricted -- when checking that the type of the primitive function primShowNat -- is Nat → String
20.263158
68
0.724675
03db1b2f073187f5d725615ee2c629ba930b67f0
634
agda
Agda
Cubical/Algebra/Group/Instances/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/Group/Instances/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/Group/Instances/Int.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.Int where open import Cubical.Foundations.Prelude open import Cubical.Data.Int renaming (ℤ to ℤType ; _+_ to _+ℤ_ ; _-_ to _-ℤ_; -_ to -ℤ_ ; _·_ to _·ℤ_) open import Cubical.Algebra.Group.Base open GroupStr ℤ : Group₀ fst ℤ = ℤType 1g (snd ℤ) = 0 _·_ (snd ℤ) = _+ℤ_ inv (snd ℤ) = _-ℤ_ 0 isGroup (snd ℤ) = isGroupℤ where abstract isGroupℤ : IsGroup (pos 0) _+ℤ_ (_-ℤ_ (pos 0)) isGroupℤ = makeIsGroup isSetℤ +Assoc (λ _ → refl) (+Comm 0) (λ x → +Comm x (pos 0 -ℤ x) ∙ minusPlus x 0) (λ x → minusPlus x 0)
28.818182
103
0.600946
8bc5ac8149ed115474b22540841f842ed00804be
258
agda
Agda
test/Succeed/RelevanceSubtyping.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:08:59.000Z
2021-06-14T11:08:59.000Z
test/Succeed/RelevanceSubtyping.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T15:49:15.000Z
2015-09-15T15:49:15.000Z
test/Succeed/RelevanceSubtyping.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2021-06-14T11:07:38.000Z
2021-06-14T11:07:38.000Z
{-# OPTIONS --subtyping #-} -- Andreas, 2012-09-13 module RelevanceSubtyping where -- this naturally type-checks: one : {A B : Set} → (.A → B) → A → B one f x = f x -- this type-checks because of subtyping one' : {A B : Set} → (.A → B) → A → B one' f = f
19.846154
40
0.585271
c792c7ef085894fcc34603160b1480b30e07a0fb
160
agda
Agda
test/succeed/PatternSynonymImports2.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/succeed/PatternSynonymImports2.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/PatternSynonymImports2.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module PatternSynonymImports2 where open import PatternSynonyms open import PatternSynonymImports myzero' = z myzero'' = myzero list2 : List _ list2 = 1 ∷ []
16
35
0.775
cb16a7eca93e62d2f0ce622188d0ed1140f3c17d
699
agda
Agda
Cubical/Data/Everything.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/Everything.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/Data/Everything.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Everything where import Cubical.Data.BinNat import Cubical.Data.Bool import Cubical.Data.Empty import Cubical.Data.Equality import Cubical.Data.Fin import Cubical.Data.Nat import Cubical.Data.Nat.Algebra import Cubical.Data.Nat.Order import Cubical.Data.NatMinusOne import Cubical.Data.NatMinusTwo import Cubical.Data.NatPlusOne import Cubical.Data.Int import Cubical.Data.Sum import Cubical.Data.Prod import Cubical.Data.Unit import Cubical.Data.Sigma import Cubical.Data.DiffInt import Cubical.Data.Group import Cubical.Data.HomotopyGroup import Cubical.Data.List import Cubical.Data.Graph import Cubical.Data.InfNat import Cubical.Data.Queue
25.888889
36
0.835479
1a36117405a1006a2789cf4e55b22b283f0c7643
1,257
agda
Agda
prototyping/Luau/Substitution.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
1
2022-02-11T21:30:17.000Z
2022-02-11T21:30:17.000Z
prototyping/Luau/Substitution.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
prototyping/Luau/Substitution.agda
FreakingBarbarians/luau
5187e64f88953f34785ffe58acd0610ee5041f5f
[ "MIT" ]
null
null
null
module Luau.Substitution where open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function⟨_⟩_end; _$_; block_is_end; local_←_; _∙_; done; function_⟨_⟩_end; return) open import Luau.Value using (Value; val) open import Luau.Var using (Var; _≡ⱽ_) open import Properties.Dec using (Dec; yes; no) _[_/_]ᴱ : Expr → Value → Var → Expr _[_/_]ᴮ : Block → Value → Var → Block var_[_/_]ᴱwhenever_ : ∀ {P} → Var → Value → Var → (Dec P) → Expr _[_/_]ᴮunless_ : ∀ {P} → Block → Value → Var → (Dec P) → Block nil [ v / x ]ᴱ = nil var y [ v / x ]ᴱ = var y [ v / x ]ᴱwhenever (x ≡ⱽ y) addr a [ v / x ]ᴱ = addr a (M $ N) [ v / x ]ᴱ = (M [ v / x ]ᴱ) $ (N [ v / x ]ᴱ) function⟨ y ⟩ C end [ v / x ]ᴱ = function⟨ y ⟩ C [ v / x ]ᴮunless (x ≡ⱽ y) end block b is C end [ v / x ]ᴱ = block b is C [ v / x ]ᴮ end (function f ⟨ y ⟩ C end ∙ B) [ v / x ]ᴮ = function f ⟨ y ⟩ (C [ v / x ]ᴮunless (x ≡ⱽ y)) end ∙ (B [ v / x ]ᴮunless (x ≡ⱽ f)) (local y ← M ∙ B) [ v / x ]ᴮ = local y ← (M [ v / x ]ᴱ) ∙ (B [ v / x ]ᴮunless (x ≡ⱽ y)) (return M ∙ B) [ v / x ]ᴮ = return (M [ v / x ]ᴱ) ∙ (B [ v / x ]ᴮ) done [ v / x ]ᴮ = done var y [ v / x ]ᴱwhenever yes p = val v var y [ v / x ]ᴱwhenever no p = var y B [ v / x ]ᴮunless yes p = B B [ v / x ]ᴮunless no p = B [ v / x ]ᴮ
40.548387
148
0.539379
4ba72218cc306d19d228f9e58c768fbafee358c8
1,753
agda
Agda
L0.agda
daherb/Agda-Montague
9f8bbff7248dbeb54919e03957daf9b35ec1ac23
[ "Artistic-2.0" ]
1
2020-12-18T11:56:24.000Z
2020-12-18T11:56:24.000Z
L0.agda
daherb/Agda-Montague
9f8bbff7248dbeb54919e03957daf9b35ec1ac23
[ "Artistic-2.0" ]
null
null
null
L0.agda
daherb/Agda-Montague
9f8bbff7248dbeb54919e03957daf9b35ec1ac23
[ "Artistic-2.0" ]
null
null
null
module L0 where open import Common -- Syntax data Name : Set where d n j m : Name data Pred1 : Set where M B : Pred1 data Pred2 : Set where K L : Pred2 data Expr : Set where _⦅_⦆ : Pred1 -> Name -> Expr _⦅_,_⦆ : Pred2 -> Name -> Name -> Expr ¬ : Expr -> Expr [_∧_] : Expr -> Expr -> Expr [_∨_] : Expr -> Expr -> Expr [_⇒_] : Expr -> Expr -> Expr [_⇔_] : Expr -> Expr -> Expr example1 : Expr example1 = [ K ⦅ d , j ⦆ ∧ M ⦅ d ⦆ ] example2 : Expr example2 = ¬ [ M ⦅ d ⦆ ∨ B ⦅ m ⦆ ] example3 : Expr example3 = [ L ⦅ n , j ⦆ ⇒ [ B ⦅ d ⦆ ∨ ¬ (K ⦅ m , m ⦆) ] ] example4 : Expr example4 = [ ¬ (¬ (¬ (B ⦅ n ⦆))) ⇔ ¬ (M ⦅ n ⦆) ] -- Semantics data Person : Set where Richard_Nixon : Person Noam_Chomsky : Person John_Mitchell : Person Muhammad_Ali : Person instance eqPerson : Eq Person -- _==_ ⦃ eqPerson ⦄ x y = isEq x y (refl {!x y!}) _==_ ⦃ eqPerson ⦄ Richard_Nixon Richard_Nixon = true _==_ ⦃ eqPerson ⦄ Noam_Chomsky Noam_Chomsky = true _==_ ⦃ eqPerson ⦄ John_Mitchell John_Mitchell = true _==_ ⦃ eqPerson ⦄ Muhammad_Ali Muhammad_Ali = true _==_ ⦃ eqPerson ⦄ _ _ = false _∈_ : {A : Set} {{_ : Eq A}} -> A -> PSet A -> Bool x ∈ ⦃⦄ = false x ∈ (x₁ :: xs) = (x == x₁) || (x ∈ xs) ⟦_⟧ₙ : Name -> Person ⟦ d ⟧ₙ = Richard_Nixon ⟦ n ⟧ₙ = Noam_Chomsky ⟦ j ⟧ₙ = John_Mitchell ⟦ m ⟧ₙ = Muhammad_Ali ⟦_⟧ₚ₁ : Pred1 -> PSet Person ⟦ x ⟧ₚ₁ = {!!} ⟦_⟧ₚ₂ : Pred2 -> PSet (Pair Person) ⟦ x ⟧ₚ₂ = {!!} ⟦_⟧ₑ : Expr -> Bool {-# TERMINATING #-} ⟦ x ⦅ x₁ ⦆ ⟧ₑ = ⟦ x₁ ⟧ₙ ∈ ⟦ x ⟧ₚ₁ ⟦ x ⦅ x₁ , x₂ ⦆ ⟧ₑ = < ⟦ x₁ ⟧ₙ , ⟦ x₂ ⟧ₙ > ∈ ⟦ x ⟧ₚ₂ ⟦ ¬ x ⟧ₑ = neg ⟦ x ⟧ₑ ⟦ [ x ∧ x₁ ] ⟧ₑ = ⟦ x ⟧ₑ && ⟦ x₁ ⟧ₑ ⟦ [ x ∨ x₁ ] ⟧ₑ = ⟦ x ⟧ₑ || ⟦ x₁ ⟧ₑ ⟦ [ x ⇒ x₁ ] ⟧ₑ = (neg ⟦ x₁ ⟧ₑ) || ⟦ x ⟧ₑ ⟦ [ x ⇔ x₁ ] ⟧ₑ = ⟦ [ x ⇒ x₁ ] ⟧ₑ && ⟦ [ x₁ ⇒ x ] ⟧ₑ
23.065789
58
0.509412
5216954232310dc5aa62648ceac3a4cada316838
399
agda
Agda
test/fail/SizedTypesRigidVarClash.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/fail/SizedTypesRigidVarClash.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/fail/SizedTypesRigidVarClash.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{-# OPTIONS --sized-types #-} module SizedTypesRigidVarClash where postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} inc : {i j : Size} -> Nat {i} -> Nat {j ^} inc x = suc x
19.95
52
0.541353
522453afc150c4a6d116a0244f27ceea53ab38f8
7,496
agda
Agda
canonical-boxed-forms.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
canonical-boxed-forms.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
canonical-boxed-forms.agda
hazelgrove/hazelnut-agda
a3640d7b0f76cdac193afd382694197729ed6d57
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import contexts open import dynamics-core open import canonical-value-forms module canonical-boxed-forms where canonical-boxed-forms-num : ∀{Δ d} → Δ , ∅ ⊢ d :: num → d boxedval → Σ[ n ∈ Nat ] (d == N n) canonical-boxed-forms-num (TAVar _) (BVVal ()) canonical-boxed-forms-num wt (BVVal v) = canonical-value-forms-num wt v -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for boxed values at arrow type data cbf-arr : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where CBFALam : ∀{Δ d τ1 τ2} → Σ[ x ∈ Nat ] Σ[ d' ∈ ihexp ] ((d == (·λ x ·[ τ1 ] d')) × (Δ , ■ (x , τ1) ⊢ d' :: τ2) ) → cbf-arr Δ d τ1 τ2 CBFACastArr : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ] ((d == (d' ⟨ τ1' ==> τ2' ⇒ τ1 ==> τ2 ⟩)) × (τ1' ==> τ2' ≠ τ1 ==> τ2) × (Δ , ∅ ⊢ d' :: τ1' ==> τ2') × (d' boxedval) ) → cbf-arr Δ d τ1 τ2 canonical-boxed-forms-arr : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d boxedval → cbf-arr Δ d τ1 τ2 canonical-boxed-forms-arr (TAVar x₁) (BVVal ()) canonical-boxed-forms-arr (TALam f wt) (BVVal v) = CBFALam (canonical-value-forms-arr (TALam f wt) v) canonical-boxed-forms-arr (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-arr (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-arr (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-arr (TACast wt x) (BVVal ()) canonical-boxed-forms-arr (TACast wt x) (BVArrCast x₁ bv) = CBFACastArr (_ , _ , _ , refl , x₁ , wt , bv) canonical-boxed-forms-arr (TAFailedCast x x₁ x₂ x₃) (BVVal ()) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for boxed values at sum type data cbf-sum : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where CBFSInl : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] ((d == (inl τ2 d')) × (Δ , ∅ ⊢ d' :: τ1) × (d boxedval) ) → cbf-sum Δ d τ1 τ2 CBFSInr : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] ((d == (inr τ1 d')) × (Δ , ∅ ⊢ d' :: τ2) × (d boxedval) ) → cbf-sum Δ d τ1 τ2 CBFSCastSum : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ] ((d == (d' ⟨ τ1' ⊕ τ2' ⇒ τ1 ⊕ τ2 ⟩)) × (τ1' ⊕ τ2' ≠ τ1 ⊕ τ2) × (Δ , ∅ ⊢ d' :: τ1' ⊕ τ2') × (d' boxedval) ) → cbf-sum Δ d τ1 τ2 canonical-boxed-forms-sum : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ⊕ τ2) → d boxedval → cbf-sum Δ d τ1 τ2 canonical-boxed-forms-sum (TAInl wt) x = CBFSInl (_ , refl , wt , x) canonical-boxed-forms-sum (TAInr wt) x = CBFSInr (_ , refl , wt , x) canonical-boxed-forms-sum (TACast wt x₁) (BVSumCast x bv) = CBFSCastSum (_ , _ , _ , refl , x , wt , bv) canonical-boxed-forms-sum (TAVar x₁) (BVVal ()) canonical-boxed-forms-sum (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-sum (TACase wt _ wt₁ _ wt₂) (BVVal ()) canonical-boxed-forms-sum (TAFst wt) (BVVal ()) canonical-boxed-forms-sum (TASnd wt) (BVVal ()) canonical-boxed-forms-sum (TAEHole x₁ x₂) (BVVal ()) canonical-boxed-forms-sum (TANEHole x₁ wt x₂) (BVVal ()) canonical-boxed-forms-sum (TACast wt x₁) (BVVal ()) canonical-boxed-forms-sum (TAFailedCast wt x₁ x₂ x₃) (BVVal ()) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for boxed values at product type data cbf-prod : (Δ : hctx) (d : ihexp) (τ1 τ2 : htyp) → Set where CBFPPair : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] ((d == ⟨ d1 , d2 ⟩) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 boxedval) × (d2 boxedval) ) → cbf-prod Δ d τ1 τ2 CBFPCastProd : ∀{Δ d τ1 τ2} → Σ[ d' ∈ ihexp ] Σ[ τ1' ∈ htyp ] Σ[ τ2' ∈ htyp ] ((d == (d' ⟨ τ1' ⊠ τ2' ⇒ τ1 ⊠ τ2 ⟩)) × (τ1' ⊠ τ2' ≠ τ1 ⊠ τ2) × (Δ , ∅ ⊢ d' :: τ1' ⊠ τ2') × (d' boxedval) ) → cbf-prod Δ d τ1 τ2 canonical-boxed-forms-prod : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ⊠ τ2) → d boxedval → cbf-prod Δ d τ1 τ2 canonical-boxed-forms-prod (TAPair wt wt₁) (BVVal (VPair x x₁)) = CBFPPair (_ , _ , refl , wt , wt₁ , BVVal x , BVVal x₁) canonical-boxed-forms-prod (TAPair wt wt₁) (BVPair bv bv₁) = CBFPPair (_ , _ , refl , wt , wt₁ , bv , bv₁) canonical-boxed-forms-prod (TACast wt x) (BVProdCast x₁ bv) = CBFPCastProd (_ , _ , _ , refl , x₁ , wt , bv) canonical-boxed-forms-hole : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇-⦈ → d boxedval → Σ[ d' ∈ ihexp ] Σ[ τ' ∈ htyp ] ((d == d' ⟨ τ' ⇒ ⦇-⦈ ⟩) × (τ' ground) × (Δ , ∅ ⊢ d' :: τ')) canonical-boxed-forms-hole (TAVar x₁) (BVVal ()) canonical-boxed-forms-hole (TAAp wt wt₁) (BVVal ()) canonical-boxed-forms-hole (TAEHole x x₁) (BVVal ()) canonical-boxed-forms-hole (TANEHole x wt x₁) (BVVal ()) canonical-boxed-forms-hole (TACast wt x) (BVVal ()) canonical-boxed-forms-hole (TACast wt x) (BVHoleCast x₁ bv) = _ , _ , refl , x₁ , wt canonical-boxed-forms-hole (TAFailedCast x x₁ x₂ x₃) (BVVal ()) canonical-boxed-forms-coverage : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d boxedval → τ ≠ num → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊕ τ2)) → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊠ τ2)) → τ ≠ ⦇-⦈ → ⊥ canonical-boxed-forms-coverage TANum bv nn na ns np nh = nn refl canonical-boxed-forms-coverage (TAPlus wt wt₁) bv nn na ns np nh = nn refl canonical-boxed-forms-coverage (TALam x wt) bv nn na ns np nh = na _ _ refl canonical-boxed-forms-coverage (TAAp wt wt₁) (BVVal ()) nn na ns np nh canonical-boxed-forms-coverage (TAInl wt) bv nn na ns np nh = ns _ _ refl canonical-boxed-forms-coverage (TAInr wt) bv nn na ns np nh = ns _ _ refl canonical-boxed-forms-coverage (TACase wt _ wt₁ _ wt₂) (BVVal ()) nn na ns np nh canonical-boxed-forms-coverage (TAEHole x x₁) (BVVal ()) nn na ns np nh canonical-boxed-forms-coverage (TANEHole x wt x₁) (BVVal ()) nn na ns np nh canonical-boxed-forms-coverage (TACast wt x) (BVArrCast x₁ bv) nn na ns np nh = na _ _ refl canonical-boxed-forms-coverage (TACast wt x) (BVSumCast x₁ bv) nn na ns np nh = ns _ _ refl canonical-boxed-forms-coverage (TACast wt x) (BVProdCast x₁ bv) nn na ns np nh = np _ _ refl canonical-boxed-forms-coverage (TACast wt x) (BVHoleCast x₁ bv) nn na ns np nh = nh refl canonical-boxed-forms-coverage (TAFailedCast wt x x₁ x₂) (BVVal ()) nn na ns np nh canonical-boxed-forms-coverage (TAPair wt wt₁) bv nn na ns np nh = np _ _ refl canonical-boxed-forms-coverage (TAFst wt) (BVVal ()) nn na ns np nh canonical-boxed-forms-coverage (TASnd wt) (BVVal ()) nn na ns np nh
46.85
123
0.509072
1e9ce33a4e48ba1dc49589d8d29cd5ff99fd7789
201
agda
Agda
test/Fail/Issue4748c.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Fail/Issue4748c.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Fail/Issue4748c.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} postulate A : Set B : A → Set -- fine record R₀ : Set where field @0 x : A @0 y : B x -- bad record R : Set where field @0 x : A y : B x
11.166667
36
0.512438
a07141485ea459985903d2f5681680e9a4678222
397
agda
Agda
test/Fail/PruneBadRigidDef.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/PruneBadRigidDef.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/PruneBadRigidDef.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2014-05-26 Andrea & Andreas -- hasBadRigids (in pruning) should reduce term before checking. open import Common.Equality postulate Fence : Set → Set id : ∀{a}{A : Set a}(x : A) → A id x = x test : let H : Set; H = _; M : Set → Set; M = _ in (A : Set) → H ≡ Fence (M (id A)) test A = refl -- Expected output: -- M remains unsolved, -- but H is solved by pruning the argument of M!
20.894737
64
0.612091
30ed477ee6026383b9a780150bb09e59ed98b025
181
agda
Agda
test/Succeed/Issue4833.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4833.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4833.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where abstract data Nat : Set where Zero : Nat Succ : Nat → Nat countDown : Nat → Nat countDown x with x ... | Zero = Zero ... | Succ n = countDown n
15.083333
28
0.58011
d190962ae0574b52f6c307cf9ed30cadc536c233
6,321
agda
Agda
Cubical/Algebra/Group/Subgroup.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/Group/Subgroup.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/Group/Subgroup.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{- This file contains basic theory about subgroups. The definition is the same as the first definition of subgroups in: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#subgroups-sip -} {-# OPTIONS --safe #-} module Cubical.Algebra.Group.Subgroup where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Powerset open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties private variable ℓ : Level -- We assume an ambient group module _ (G' : Group ℓ) where open GroupStr (snd G') private G = ⟨ G' ⟩ record isSubgroup (H : ℙ G) : Type ℓ where field id-closed : (1g ∈ H) op-closed : {x y : G} → x ∈ H → y ∈ H → x · y ∈ H inv-closed : {x : G} → x ∈ H → inv x ∈ H open isSubgroup Subgroup : Type (ℓ-suc ℓ) Subgroup = Σ[ H ∈ ℙ G ] isSubgroup H isPropIsSubgroup : (H : ℙ G) → isProp (isSubgroup H) id-closed (isPropIsSubgroup H h1 h2 i) = ∈-isProp H 1g (h1 .id-closed) (h2 .id-closed) i op-closed (isPropIsSubgroup H h1 h2 i) Hx Hy = ∈-isProp H _ (h1 .op-closed Hx Hy) (h2 .op-closed Hx Hy) i inv-closed (isPropIsSubgroup H h1 h2 i) Hx = ∈-isProp H _ (h1 .inv-closed Hx) (h2 .inv-closed Hx) i isSetSubgroup : isSet Subgroup isSetSubgroup = isSetΣ isSetℙ λ x → isProp→isSet (isPropIsSubgroup x) Subgroup→Group : Subgroup → Group ℓ Subgroup→Group (H , Hh) = makeGroup-right 1HG _·HG_ invHG isSetHG assocHG ridHG invrHG where HG = Σ[ x ∈ G ] ⟨ H x ⟩ isSetHG = isSetΣ is-set (λ x → isProp→isSet (H x .snd)) 1HG : HG 1HG = (1g , (id-closed Hh)) _·HG_ : HG → HG → HG (x , Hx) ·HG (y , Hy) = (x · y) , (op-closed Hh Hx Hy) invHG : HG → HG invHG (x , Hx) = inv x , inv-closed Hh Hx assocHG : (x y z : HG) → x ·HG (y ·HG z) ≡ (x ·HG y) ·HG z assocHG (x , Hx) (y , Hy) (z , Hz) = ΣPathP (assoc x y z , isProp→PathP (λ i → H (assoc x y z i) .snd) _ _) ridHG : (x : HG) → x ·HG 1HG ≡ x ridHG (x , Hx) = ΣPathP (rid x , isProp→PathP (λ i → H (rid x i) .snd) _ _) invrHG : (x : HG) → x ·HG invHG x ≡ 1HG invrHG (x , Hx) = ΣPathP (invr x , isProp→PathP (λ i → H (invr x i) .snd) _ _) ⟪_⟫ : {G' : Group ℓ} → Subgroup G' → ℙ (G' .fst) ⟪ H , _ ⟫ = H module _ {G' : Group ℓ} where open GroupStr (snd G') open isSubgroup open GroupTheory G' private G = ⟨ G' ⟩ isNormal : Subgroup G' → Type ℓ isNormal H = (g h : G) → h ∈ ⟪ H ⟫ → g · h · inv g ∈ ⟪ H ⟫ isPropIsNormal : (H : Subgroup G') → isProp (isNormal H) isPropIsNormal H = isPropΠ3 λ g h _ → ∈-isProp ⟪ H ⟫ (g · h · inv g) ·CommNormalSubgroup : (H : Subgroup G') (Hnormal : isNormal H) {x y : G} → x · y ∈ ⟪ H ⟫ → y · x ∈ ⟪ H ⟫ ·CommNormalSubgroup H Hnormal {x = x} {y = y} Hxy = subst-∈ ⟪ H ⟫ rem (Hnormal (inv x) (x · y) Hxy) where rem : inv x · (x · y) · inv (inv x) ≡ y · x rem = inv x · (x · y) · inv (inv x) ≡⟨ assoc _ _ _ ⟩ (inv x · x · y) · inv (inv x) ≡⟨ (λ i → assoc (inv x) x y i · invInv x i) ⟩ ((inv x · x) · y) · x ≡⟨ cong (λ z → (z · y) · x) (invl x) ⟩ (1g · y) · x ≡⟨ cong (_· x) (lid y) ⟩ y · x ∎ -- Examples of subgroups -- We can view all of G as a subset of itself groupSubset : ℙ G groupSubset x = (x ≡ x) , is-set x x isSubgroupGroup : isSubgroup G' groupSubset id-closed isSubgroupGroup = refl op-closed isSubgroupGroup _ _ = refl inv-closed isSubgroupGroup _ = refl groupSubgroup : Subgroup G' groupSubgroup = groupSubset , isSubgroupGroup -- The trivial subgroup trivialSubset : ℙ G trivialSubset x = (x ≡ 1g) , is-set x 1g isSubgroupTrivialGroup : isSubgroup G' trivialSubset id-closed isSubgroupTrivialGroup = refl op-closed isSubgroupTrivialGroup hx hy = cong (_· _) hx ∙∙ lid _ ∙∙ hy inv-closed isSubgroupTrivialGroup hx = cong inv hx ∙ inv1g trivialSubgroup : Subgroup G' trivialSubgroup = trivialSubset , isSubgroupTrivialGroup isNormalTrivialSubgroup : isNormal trivialSubgroup isNormalTrivialSubgroup g h h≡1 = (g · h · inv g) ≡⟨ (λ i → g · h≡1 i · inv g) ⟩ (g · 1g · inv g) ≡⟨ assoc _ _ _ ∙ cong (_· inv g) (rid g) ⟩ (g · inv g) ≡⟨ invr g ⟩ 1g ∎ NormalSubgroup : (G : Group ℓ) → Type _ NormalSubgroup G = Σ[ G ∈ Subgroup G ] isNormal G -- Can one get this to work with different universes for G and H? module _ {G H : Group ℓ} (ϕ : GroupHom G H) where open isSubgroup open GroupTheory private module G = GroupStr (snd G) module H = GroupStr (snd H) f = ϕ .fst module ϕ = IsGroupHom (ϕ .snd) imSubset : ℙ ⟨ H ⟩ imSubset x = isInIm ϕ x , isPropIsInIm ϕ x isSubgroupIm : isSubgroup H imSubset id-closed isSubgroupIm = ∣ G.1g , ϕ.pres1 ∣ op-closed isSubgroupIm = map2 λ { (x , hx) (y , hy) → x G.· y , ϕ.pres· x y ∙ λ i → hx i H.· hy i } inv-closed isSubgroupIm = map λ { (x , hx) → G.inv x , ϕ.presinv x ∙ cong H.inv hx } imSubgroup : Subgroup H imSubgroup = imSubset , isSubgroupIm imGroup : Group ℓ imGroup = Subgroup→Group _ imSubgroup kerSubset : ℙ ⟨ G ⟩ kerSubset x = isInKer ϕ x , isPropIsInKer ϕ x isSubgroupKer : isSubgroup G kerSubset id-closed isSubgroupKer = ϕ.pres1 op-closed isSubgroupKer {x} {y} hx hy = ϕ.pres· x y ∙∙ (λ i → hx i H.· hy i) ∙∙ H.rid _ inv-closed isSubgroupKer hx = ϕ.presinv _ ∙∙ cong H.inv hx ∙∙ inv1g H kerSubgroup : Subgroup G kerSubgroup = kerSubset , isSubgroupKer isNormalKer : isNormal kerSubgroup isNormalKer x y hy = f (x G.· y G.· G.inv x) ≡⟨ ϕ.pres· _ _ ⟩ f x H.· f (y G.· G.inv x) ≡⟨ cong (f x H.·_) (ϕ.pres· _ _) ⟩ f x H.· f y H.· f (G.inv x) ≡⟨ (λ i → f x H.· hy i H.· f (G.inv x)) ⟩ f x H.· (H.1g H.· f (G.inv x)) ≡⟨ cong (f x H.·_) (H.lid _) ⟩ f x H.· f (G.inv x) ≡⟨ cong (f x H.·_) (ϕ.presinv x) ⟩ f x H.· H.inv (f x) ≡⟨ H.invr _ ⟩ H.1g ∎
32.086294
92
0.592311
3d072e6d546861564967fcaa791219dff0e66365
2,545
agda
Agda
agda-stdlib/src/Relation/Binary/Construct/Add/Point/Equality.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Construct/Add/Point/Equality.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Construct/Add/Point/Equality.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- A pointwise lifting of a relation to incorporate an additional point. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module is designed to be used with -- Relation.Nullary.Construct.Add.Point open import Relation.Binary module Relation.Binary.Construct.Add.Point.Equality {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Level using (_⊔_) open import Function import Relation.Binary.PropositionalEquality as P open import Relation.Nullary hiding (Irrelevant) open import Relation.Nullary.Construct.Add.Point import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Definition data _≈∙_ : Rel (Pointed A) (a ⊔ ℓ) where ∙≈∙ : ∙ ≈∙ ∙ [_] : {k l : A} → k ≈ l → [ k ] ≈∙ [ l ] ------------------------------------------------------------------------ -- Relational properties [≈]-injective : ∀ {k l} → [ k ] ≈∙ [ l ] → k ≈ l [≈]-injective [ k≈l ] = k≈l ≈∙-refl : Reflexive _≈_ → Reflexive _≈∙_ ≈∙-refl ≈-refl {∙} = ∙≈∙ ≈∙-refl ≈-refl {[ k ]} = [ ≈-refl ] ≈∙-sym : Symmetric _≈_ → Symmetric _≈∙_ ≈∙-sym ≈-sym ∙≈∙ = ∙≈∙ ≈∙-sym ≈-sym [ x≈y ] = [ ≈-sym x≈y ] ≈∙-trans : Transitive _≈_ → Transitive _≈∙_ ≈∙-trans ≈-trans ∙≈∙ ∙≈z = ∙≈z ≈∙-trans ≈-trans [ x≈y ] [ y≈z ] = [ ≈-trans x≈y y≈z ] ≈∙-dec : Decidable _≈_ → Decidable _≈∙_ ≈∙-dec _≟_ ∙ ∙ = yes ∙≈∙ ≈∙-dec _≟_ ∙ [ l ] = no (λ ()) ≈∙-dec _≟_ [ k ] ∙ = no (λ ()) ≈∙-dec _≟_ [ k ] [ l ] = Dec.map′ [_] [≈]-injective (k ≟ l) ≈∙-irrelevant : Irrelevant _≈_ → Irrelevant _≈∙_ ≈∙-irrelevant ≈-irr ∙≈∙ ∙≈∙ = P.refl ≈∙-irrelevant ≈-irr [ p ] [ q ] = P.cong _ (≈-irr p q) ≈∙-substitutive : ∀ {ℓ} → Substitutive _≈_ ℓ → Substitutive _≈∙_ ℓ ≈∙-substitutive ≈-subst P ∙≈∙ = id ≈∙-substitutive ≈-subst P [ p ] = ≈-subst (P ∘′ [_]) p ------------------------------------------------------------------------ -- Structures ≈∙-isEquivalence : IsEquivalence _≈_ → IsEquivalence _≈∙_ ≈∙-isEquivalence ≈-isEquivalence = record { refl = ≈∙-refl refl ; sym = ≈∙-sym sym ; trans = ≈∙-trans trans } where open IsEquivalence ≈-isEquivalence ≈∙-isDecEquivalence : IsDecEquivalence _≈_ → IsDecEquivalence _≈∙_ ≈∙-isDecEquivalence ≈-isDecEquivalence = record { isEquivalence = ≈∙-isEquivalence isEquivalence ; _≟_ = ≈∙-dec _≟_ } where open IsDecEquivalence ≈-isDecEquivalence
32.628205
72
0.500982
8bd0ad40cf35779fc5d178edd013398feb764f4a
1,454
agda
Agda
agda-stdlib/src/Data/Vec/Bounded.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Vec/Bounded.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Vec/Bounded.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Bounded vectors ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Bounded where open import Level using (Level) open import Data.Nat.Base open import Data.Vec as Vec using (Vec) open import Function open import Relation.Binary using (_Preserves_⟶_) open import Relation.Unary using (Pred; Decidable) private variable a p : Level A : Set a ------------------------------------------------------------------------ -- Publicly re-export the contents of the base module open import Data.Vec.Bounded.Base public ------------------------------------------------------------------------ -- Additional operations lift : ∀ {f} → f Preserves _≤_ ⟶ _≤_ → (∀ {n} → Vec A n → Vec≤ A (f n)) → ∀ {n} → Vec≤ A n → Vec≤ A (f n) lift incr f (as , p) = ≤-cast (incr p) (f as) lift′ : (∀ {n} → Vec A n → Vec≤ A n) → (∀ {n} → Vec≤ A n → Vec≤ A n) lift′ = lift id ------------------------------------------------------------------------ -- Additional operations module _ {P : Pred A p} (P? : Decidable P) where filter : ∀ {n} → Vec≤ A n → Vec≤ A n filter = lift′ (Vec.filter P?) takeWhile : ∀ {n} → Vec≤ A n → Vec≤ A n takeWhile = lift′ (Vec.takeWhile P?) dropWhile : ∀ {n} → Vec≤ A n → Vec≤ A n dropWhile = lift′ (Vec.dropWhile P?)
27.433962
72
0.454608
d1efe7c1611fab46d2433f4df4626e57a317e2b0
215
agda
Agda
src/Generic/Test.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
30
2016-07-19T21:10:54.000Z
2022-02-05T10:19:38.000Z
src/Generic/Test.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
9
2017-04-06T18:58:09.000Z
2022-01-04T15:43:14.000Z
src/Generic/Test.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
4
2017-07-17T07:23:39.000Z
2021-01-27T12:57:09.000Z
module Generic.Test where import Generic.Test.Data import Generic.Test.DeriveEq import Generic.Test.Elim import Generic.Test.Eq import Generic.Test.Experiment import Generic.Test.ReadData import Generic.Test.Reify
21.5
30
0.846512
431cc9c8d68cb15c1bc77bc987c1c9abffe2b3b3
588
agda
Agda
test/Compiler/simple/CompilingCoinduction.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/simple/CompilingCoinduction.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/simple/CompilingCoinduction.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
null
null
null
module CompilingCoinduction where open import Common.Coinduction open import Common.Char open import Common.String data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () () #-} postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} {-# BUILTIN IO IO #-} {-# IMPORT Data.Text.IO #-} postulate putStrLn : ∞ String → IO Unit {-# COMPILED putStrLn Data.Text.IO.putStrLn #-} {-# COMPILED_UHC putStrLn (UHC.Agda.Builtins.primPutStrLn) #-} {-# COMPILED_JS putStrLn function(x) { return function(cb) { process.stdout.write(x(0) + "\n"); cb(0); }; } #-} main = putStrLn (♯ "a")
20.275862
111
0.668367
cbf14dd6a5fdd5c42b09974423fe85c9fc8027b6
163
agda
Agda
lib-safe.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
lib-safe.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
lib-safe.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module lib-safe where open import datatypes-safe public open import logic public open import thms public open import termination public open import error public
18.111111
33
0.834356