hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
30ba881226548e8ca5953c8bc24d2c2238c0cf32
11,666
agda
Agda
src/Categories/Category/CartesianClosed.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/CartesianClosed.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/CartesianClosed.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.CartesianClosed {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Function using (_$_; flip) open import Data.Product using (Σ; _,_; uncurry) open import Categories.Category.BinaryProducts 𝒞 open import Categories.Category.Cartesian 𝒞 open import Categories.Category.Cartesian.Monoidal using (module CartesianMonoidal) open import Categories.Category.Monoidal.Closed using (Closed) open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Properties open import Categories.Object.Product 𝒞 hiding (repack≡id; repack∘; repack-cancel; up-to-iso; transport-by-iso) open import Categories.Object.Exponential 𝒞 hiding (repack) open import Categories.Object.Terminal using (Terminal) open import Categories.Morphism 𝒞 open import Categories.Morphism.Reasoning 𝒞 private module 𝒞 = Category 𝒞 open Category 𝒞 open HomReasoning open Equiv variable A B C : Obj f g h i : A ⇒ B -- Cartesian closed category -- is a category with all products and exponentials record CartesianClosed : Set (levelOfTerm 𝒞) where infixr 9 _^_ -- an alternative notation for exponential, which emphasizes its internal hom natural infixr 5 _⇨_ field cartesian : Cartesian exp : Exponential A B module exp {A B} = Exponential (exp {A} {B}) _^_ : Obj → Obj → Obj B ^ A = exp.B^A {A} {B} _⇨_ : Obj → Obj → Obj _⇨_ = flip _^_ private module cartesian = Cartesian cartesian open CartesianMonoidal cartesian using (A×⊤≅A) open BinaryProducts cartesian.products using (_×_; product; π₁; π₂; ⟨_,_⟩; project₁; project₂; η; ⟨⟩-cong₂; ⟨⟩∘; _⁂_; ⟨⟩-congˡ; first∘first; firstid; first; second; first↔second; second∘second; ⁂-cong₂; -×_) open Terminal cartesian.terminal using (⊤; !; !-unique₂; ⊤-id) B^A×A : ∀ B A → Product (B ^ A) A B^A×A B A = exp.product {A} {B} eval : Product.A×B (B^A×A B A) ⇒ B eval = exp.eval λg : C × A ⇒ B → C ⇒ B ^ A λg f = exp.λg product f λ-cong : f ≈ g → λg f ≈ λg g λ-cong eq = exp.λ-cong product eq _×id : (f : C ⇒ B ^ A) → C × A ⇒ [[ B^A×A B A ]] f ×id = [ product ⇒ exp.product ] f ×id β : eval ∘ λg f ×id ≈ f β = exp.β product η-exp : λg (eval ∘ f ×id) ≈ f η-exp = exp.η product λ-unique : eval ∘ f ×id ≈ g → f ≈ λg g λ-unique = exp.λ-unique product λ-unique₂ : eval ∘ f ×id ≈ eval ∘ g ×id → f ≈ g λ-unique₂ = exp.λ-unique′ product -- the annoying detail is that B^A×A is NOT the same as B ^ A × A, but they are isomorphic. -- make some infra so that the latter (which is more intuitive) can be used. B^A×A-iso : Product.A×B (B^A×A B A) ≅ B ^ A × A B^A×A-iso {B = B} {A = A} = record { from = repack exp.product product ; to = repack product exp.product ; iso = record { isoˡ = begin repack product exp.product ∘ repack exp.product product ≈⟨ [ exp.product ]⟨⟩∘ ⟩ [ exp.product ]⟨ π₁ ∘ repack exp.product product , π₂ ∘ repack exp.product product ⟩ ≈⟨ Product.⟨⟩-cong₂ exp.product project₁ project₂ ⟩ [ exp.product ]⟨ [ exp.product ]π₁ , [ exp.product ]π₂ ⟩ ≈⟨ Product.η exp.product ⟩ id ∎ ; isoʳ = begin repack exp.product product ∘ repack product exp.product ≈⟨ ⟨⟩∘ ⟩ ⟨ [ exp.product ]π₁ ∘ repack product exp.product , [ exp.product ]π₂ ∘ repack product exp.product ⟩ ≈⟨ ⟨⟩-cong₂ (Product.project₁ exp.product) (Product.project₂ exp.product) ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ id ∎ } } eval′ : B ^ A × A ⇒ B eval′ = eval ∘ to where open _≅_ B^A×A-iso λ-unique′ : eval′ ∘ (f ⁂ id) ≈ g → f ≈ λg g λ-unique′ eq = exp.λ-unique product (⟺ (pullʳ [ product ⇒ product ⇒ exp.product ]repack∘×) ○ eq) λ-unique₂′ : eval′ ∘ (f ⁂ id) ≈ eval′ ∘ (g ⁂ id) → f ≈ g λ-unique₂′ eq = (λ-unique′ eq) ○ ⟺ (λ-unique′ refl) β′ : eval′ ∘ (λg f ⁂ id) ≈ f β′ {f = f} = begin eval′ ∘ (λg f ⁂ id) ≈⟨ pullʳ [ product ⇒ product ⇒ exp.product ]repack∘× ⟩ eval ∘ λg f ×id ≈⟨ β ⟩ f ∎ η-exp′ : λg (eval′ ∘ (f ⁂ id)) ≈ f η-exp′ = sym (λ-unique′ refl) η-id′ : λg (eval′ {B = B} {A = A}) ≈ id η-id′ = sym (λ-unique′ (elimʳ (id×id product))) ⊤^A≅⊤ : ⊤ ^ A ≅ ⊤ ⊤^A≅⊤ = record { from = ! ; to = λg ! ; iso = record { isoˡ = λ-unique₂ !-unique₂ ; isoʳ = ⊤-id _ } } A^⊤≅A : A ^ ⊤ ≅ A A^⊤≅A = record { from = let open _≅_ A×⊤≅A in eval′ ∘ to ; to = let open _≅_ A×⊤≅A in λg from ; iso = record { isoˡ = λ-unique₂′ $ begin eval′ ∘ ((λg π₁ ∘ eval′ ∘ ⟨ id , ! ⟩) ⁂ id) ≈˘⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ ((λg π₁ ⁂ id) ∘ ((eval′ ∘ ⟨ id , ! ⟩) ⁂ id)) ≈⟨ pullˡ β′ ⟩ π₁ ∘ ((eval′ ∘ ⟨ id , ! ⟩) ⁂ id) ≈⟨ helper ⟩ eval′ ∘ (id ⁂ id) ∎ ; isoʳ = firstid ! $ begin ((eval′ ∘ ⟨ id , ! ⟩) ∘ λg π₁) ⁂ id ≈˘⟨ first∘first ⟩ (eval′ ∘ ⟨ id , ! ⟩ ⁂ id) ∘ (λg π₁ ⁂ id) ≈⟨ helper′ ⟩∘⟨refl ⟩ (⟨ id , ! ⟩ ∘ eval′) ∘ (λg π₁ ⁂ id) ≈⟨ pullʳ β′ ⟩ ⟨ id , ! ⟩ ∘ π₁ ≈⟨ ⟨⟩∘ ⟩ ⟨ id ∘ π₁ , ! ∘ π₁ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ !-unique₂ ⟩ ⟨ π₁ , π₂ ⟩ ≈⟨ η ⟩ id ∎ } } where helper = begin π₁ ∘ ((eval′ ∘ ⟨ id , ! ⟩) ⁂ id) ≈⟨ project₁ ⟩ (eval′ ∘ ⟨ id , ! ⟩) ∘ π₁ ≈⟨ pullʳ ⟨⟩∘ ⟩ eval′ ∘ ⟨ id ∘ π₁ , ! ∘ π₁ ⟩ ≈⟨ refl⟩∘⟨ ⟨⟩-congˡ !-unique₂ ⟩ eval′ ∘ (id ⁂ id) ∎ helper′ = let open _≅_ A×⊤≅A in begin (eval′ ∘ ⟨ id , ! ⟩) ⁂ id ≈⟨ introˡ isoˡ ⟩ (⟨ id , ! ⟩ ∘ π₁) ∘ ((eval′ ∘ ⟨ id , ! ⟩) ⁂ id) ≈⟨ pullʳ helper ⟩ ⟨ id , ! ⟩ ∘ (eval′ ∘ (id ⁂ id)) ≈⟨ refl⟩∘⟨ elimʳ (id×id product) ⟩ ⟨ id , ! ⟩ ∘ eval′ ∎ -- we use -⇨- to represent the bifunctor. -- -^- would generate a bifunctor of type Bifunctor 𝒞 𝒞.op 𝒞 which is not very typical. -⇨- : Bifunctor 𝒞.op 𝒞 𝒞 -⇨- = record { F₀ = uncurry _⇨_ ; F₁ = λ where (f , g) → λg (g ∘ eval′ ∘ second f) ; identity = λ-cong (identityˡ ○ (elimʳ (id×id product))) ○ η-id′ ; homomorphism = λ-unique₂′ helper ; F-resp-≈ = λ where (eq₁ , eq₂) → λ-cong (∘-resp-≈ eq₂ (∘-resp-≈ʳ (⁂-cong₂ refl eq₁))) } where helper : eval′ ∘ first (λg ((g ∘ f) ∘ eval′ ∘ second (h ∘ i))) ≈ eval′ ∘ first (λg (g ∘ eval′ ∘ second i) ∘ λg (f ∘ eval′ ∘ second h)) helper {g = g} {f = f} {h = h} {i = i} = begin eval′ ∘ first (λg ((g ∘ f) ∘ eval′ ∘ second (h ∘ i))) ≈⟨ β′ ⟩ (g ∘ f) ∘ eval′ ∘ second (h ∘ i) ≈˘⟨ refl⟩∘⟨ pullʳ second∘second ⟩ (g ∘ f) ∘ (eval′ ∘ second h) ∘ second i ≈⟨ center refl ⟩ g ∘ (f ∘ eval′ ∘ second h) ∘ second i ≈˘⟨ refl⟩∘⟨ pullˡ β′ ⟩ g ∘ eval′ ∘ first (λg (f ∘ eval′ ∘ second h)) ∘ second i ≈⟨ refl⟩∘⟨ pushʳ first↔second ⟩ g ∘ (eval′ ∘ second i) ∘ first (λg (f ∘ eval′ ∘ second h)) ≈⟨ sym-assoc ⟩ (g ∘ eval′ ∘ second i) ∘ first (λg (f ∘ eval′ ∘ second h)) ≈˘⟨ pullˡ β′ ⟩ eval′ ∘ first (λg (g ∘ eval′ ∘ second i)) ∘ first (λg (f ∘ eval′ ∘ second h)) ≈⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg (g ∘ eval′ ∘ second i) ∘ λg (f ∘ eval′ ∘ second h)) ∎ _⇨- : Obj → Endofunctor 𝒞 _⇨- = appˡ -⇨- -⇨_ : Obj → Functor 𝒞.op 𝒞 -⇨_ = appʳ -⇨- -- The cartesian closed structure induces a monoidal closed one: -- 𝒞 is cartesian monoidal closed. module CartesianMonoidalClosed (cartesianClosed : CartesianClosed) where open CartesianClosed cartesianClosed open CartesianMonoidal cartesian using (monoidal) open BinaryProducts (Cartesian.products cartesian) using (-×_; first; first∘first; second; first↔second; product) private A⇨[-×A] : Obj → Endofunctor 𝒞 A⇨[-×A] A = A ⇨- ∘F -× A module A⇨[-×A] {A} = Functor (A⇨[-×A] A) [A⇨-]×A : Obj → Endofunctor 𝒞 [A⇨-]×A A = -× A ∘F A ⇨- module [A⇨-]×A {A} = Functor ([A⇨-]×A A) closedMonoidal : Closed monoidal closedMonoidal = record { [-,-] = -⇨- ; adjoint = λ {A} → record { unit = ntHelper record { η = λ _ → λg id ; commute = λ f → λ-unique₂′ $ begin eval′ ∘ first (λg id ∘ f) ≈˘⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg id) ∘ first f ≈⟨ cancelˡ β′ ⟩ first f ≈˘⟨ cancelʳ β′ ⟩ (first f ∘ eval′) ∘ first (λg id) ≈˘⟨ ∘-resp-≈ʳ (elimʳ (id×id product)) ⟩∘⟨refl ⟩ (first f ∘ eval′ ∘ first id) ∘ first (λg id) ≈˘⟨ pullˡ β′ ⟩ eval′ ∘ first (A⇨[-×A].F₁ f) ∘ first (λg id) ≈⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (A⇨[-×A].F₁ f ∘ λg id) ∎ } ; counit = ntHelper record { η = λ _ → eval′ ; commute = λ f → begin eval′ ∘ [A⇨-]×A.F₁ f ≈⟨ β′ ⟩ f ∘ eval′ ∘ first id ≈⟨ refl⟩∘⟨ elimʳ (id×id product) ⟩ f ∘ eval′ ∎ } ; zig = β′ ; zag = λ-unique₂′ $ begin eval′ ∘ first (λg (eval′ ∘ eval′ ∘ second id) ∘ λg id) ≈˘⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg (eval′ ∘ eval′ ∘ second id)) ∘ first (λg id) ≈⟨ pullˡ β′ ⟩ (eval′ ∘ eval′ ∘ second id) ∘ first (λg id) ≈⟨ ∘-resp-≈ʳ (elimʳ (id×id product)) ⟩∘⟨refl ⟩ (eval′ ∘ eval′) ∘ first (λg id) ≈⟨ cancelʳ β′ ⟩ eval′ ≈˘⟨ elimʳ (id×id product) ⟩ eval′ ∘ first id ∎ } ; mate = λ {X Y} f → record { commute₁ = λ-unique₂′ $ begin eval′ ∘ first (λg (second f ∘ eval′ ∘ second id) ∘ λg id) ≈˘⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg (second f ∘ eval′ ∘ second id)) ∘ first (λg id) ≈⟨ pullˡ β′ ⟩ (second f ∘ eval′ ∘ second id) ∘ first (λg id) ≈⟨ ∘-resp-≈ʳ (elimʳ (id×id product)) ⟩∘⟨refl ⟩ (second f ∘ eval′) ∘ first (λg id) ≈⟨ cancelʳ β′ ⟩ second f ≈˘⟨ cancelˡ β′ ⟩ eval′ ∘ first (λg id) ∘ second f ≈⟨ pushʳ first↔second ⟩ (eval′ ∘ second f) ∘ first (λg id) ≈˘⟨ identityˡ ⟩∘⟨refl ⟩ (id ∘ eval′ ∘ second f) ∘ first (λg id) ≈˘⟨ pullˡ β′ ⟩ eval′ ∘ first (λg (id ∘ eval′ ∘ second f)) ∘ first (λg id) ≈⟨ refl⟩∘⟨ first∘first ⟩ eval′ ∘ first (λg (id ∘ eval′ ∘ second f) ∘ λg id) ∎ ; commute₂ = begin eval′ ∘ first (λg (id ∘ eval′ ∘ second f)) ≈⟨ β′ ⟩ id ∘ eval′ ∘ second f ≈⟨ identityˡ ⟩ eval′ ∘ second f ∎ } } open Closed closedMonoidal public
40.79021
123
0.468455
5206ea2c778c4fd845ecd782270323251943f540
104
agda
Agda
test/fail/Imports/ATP-A.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/fail/Imports/ATP-A.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
null
null
null
test/fail/Imports/ATP-A.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module Imports.ATP-A where postulate D : Set _≡_ : D → D → Set a b : D postulate p : a ≡ b
11.555556
26
0.548077
19961a68045d0d6b7bb88d939ce85957d0e3c4fc
351
agda
Agda
agda-stdlib-0.9/src/Data/Bool/Show.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/Bool/Show.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/Bool/Show.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Showing booleans ------------------------------------------------------------------------ module Data.Bool.Show where open import Data.Bool open import Data.String hiding (show) show : Bool → String show true = "true" show false = "false"
23.4
72
0.421652
5246085eff18e37ea57af89c3f20bca1d80b9197
718
agda
Agda
metatheory/test/StringLiteral.agda
wenkokke/plutus
684fa810c0ffdde68f11ff64a7b2eefd6f2fc8d2
[ "Apache-2.0" ]
3
2021-02-18T02:21:36.000Z
2022-01-31T20:20:05.000Z
metatheory/test/StringLiteral.agda
wenkokke/plutus
684fa810c0ffdde68f11ff64a7b2eefd6f2fc8d2
[ "Apache-2.0" ]
null
null
null
metatheory/test/StringLiteral.agda
wenkokke/plutus
684fa810c0ffdde68f11ff64a7b2eefd6f2fc8d2
[ "Apache-2.0" ]
null
null
null
module test.StringLiteral where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ -- plutus/plutus-core/test/data/stringLiteral.plc postulate str1 : ByteString {-# FOREIGN GHC import qualified Data.ByteString.Lazy.Char8 as BS #-} {-# COMPILE GHC str1 = BS.pack "4321758fabce1aa4780193f" #-} open import Relation.Binary.PropositionalEquality open import Agda.Builtin.TrustMe lemma1 : length str1 ≡ 23 lemma1 = primTrustMe open import Data.Nat lemma1' : BoundedB 100 str1 lemma1' rewrite lemma1 = gen _ _ _ stringLit : ∀{Γ} → Γ ⊢ con bytestring (size⋆ 100) stringLit = con (bytestring 100 str1 lemma1')
25.642857
69
0.764624
387d6b9597faed03459ec34aec86d745137bcdb9
5,865
agda
Agda
theorems/homotopy/EilenbergMacLane.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/EilenbergMacLane.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/EilenbergMacLane.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.HSpace renaming (HSpaceStructure to HSS) open import homotopy.Freudenthal open import homotopy.IterSuspensionStable open import homotopy.Pi2HSusp open import homotopy.EM1HSpace open import homotopy.EilenbergMacLane1 module homotopy.EilenbergMacLane where -- EM(G,n) when G is π₁(A,a₀) module EMImplicit {i} {X : Ptd i} (cA : is-connected 0 (de⊙ X)) (gA : has-level 1 (de⊙ X)) (H-X : HSS X) where private A = de⊙ X a₀ = pt X ⊙EM : (n : ℕ) → Ptd i ⊙EM O = ⊙Ω X ⊙EM (S n) = ⊙Trunc ⟨ S n ⟩ (⊙Susp^ n X) module _ (n : ℕ) where EM = de⊙ (⊙EM n) EM-level : (n : ℕ) → has-level ⟨ n ⟩ (EM n) EM-level O = gA a₀ a₀ EM-level (S n) = Trunc-level EM-conn : (n : ℕ) → is-connected ⟨ n ⟩ (EM (S n)) EM-conn n = Trunc-preserves-conn ⟨ S n ⟩ (transport (λ t → is-connected t (de⊙ (⊙Susp^ n X))) (+2+0 ⟨ n ⟩₋₂) (⊙Susp^-conn n cA)) {- π (S k) (EM (S n)) (embase (S n)) == π k (EM n) (embase n) where k > 0 and n = S (S n') -} module Stable (k n : ℕ) (indexing : S k ≤ S (S n)) where private SSn : ℕ SSn = S (S n) lte : ⟨ S k ⟩ ≤T ⟨ SSn ⟩ lte = ⟨⟩-monotone-≤ $ indexing Skle : S k ≤ (S n) *2 Skle = ≤-trans indexing (lemma n) where lemma : (n' : ℕ) → S (S n') ≤ (S n') *2 lemma O = inl idp lemma (S n') = ≤-trans (≤-ap-S (lemma n')) (inr ltS) private module SS = Susp^StableSucc X cA k (S n) Skle abstract stable : πS (S k) (⊙EM (S SSn)) ≃ᴳ πS k (⊙EM SSn) stable = πS (S k) (⊙EM (S SSn)) ≃ᴳ⟨ πS-Trunc-fuse-≤-iso _ _ _ (≤T-ap-S lte) ⟩ πS (S k) (⊙Susp^ SSn X) ≃ᴳ⟨ SS.stable ⟩ πS k (⊙Susp^ (S n) X) ≃ᴳ⟨ πS-Trunc-fuse-≤-iso _ _ _ lte ⁻¹ᴳ ⟩ πS k (⊙EM SSn) ≃ᴳ∎ module BelowDiagonal where π₁ : (n : ℕ) → πS 0 (⊙EM (S (S n))) ≃ᴳ 0ᴳ π₁ n = contr-iso-0ᴳ (πS 0 (⊙EM (S (S n)))) (connected-at-level-is-contr (raise-level-≤T (≤T-ap-S (≤T-ap-S (-2≤T ⟨ n ⟩₋₂))) (Trunc-level {n = 0})) (Trunc-preserves-conn 0 (path-conn (EM-conn (S n))))) -- some clutter here arises from the definition of <; -- any simple way to avoid this? πS-below : (k n : ℕ) → (S k < n) → πS k (⊙EM n) ≃ᴳ 0ᴳ πS-below 0 .2 ltS = π₁ 0 πS-below 0 .3 (ltSR ltS) = π₁ 1 πS-below 0 (S (S n)) (ltSR (ltSR _)) = π₁ n πS-below (S k) ._ ltS = πS-below k _ ltS ∘eᴳ Stable.stable k k (inr ltS) πS-below (S k) ._ (ltSR ltS) = πS-below k _ (ltSR ltS) ∘eᴳ Stable.stable k (S k) (inr (ltSR ltS)) πS-below (S k) ._ (ltSR (ltSR ltS)) = πS-below k _ (ltSR (ltSR ltS)) ∘eᴳ Stable.stable k (S (S k)) (inr (ltSR (ltSR ltS))) πS-below (S k) (S (S (S n))) (ltSR (ltSR (ltSR lt))) = πS-below k _ (<-cancel-S (ltSR (ltSR (ltSR lt)))) ∘eᴳ Stable.stable k n (inr (<-cancel-S (ltSR (ltSR (ltSR lt))))) module OnDiagonal where π₁ : πS 0 (⊙EM 1) ≃ᴳ πS 0 X π₁ = πS-Trunc-fuse-≤-iso 0 1 X ≤T-refl private module Π₂ = Pi2HSusp gA cA H-X π₂ : πS 1 (⊙EM 2) ≃ᴳ πS 0 X π₂ = Π₂.π₂-Susp ∘eᴳ πS-Trunc-fuse-≤-iso 1 2 (⊙Susp X) ≤T-refl πS-diag : (n : ℕ) → πS n (⊙EM (S n)) ≃ᴳ πS 0 X πS-diag 0 = π₁ πS-diag 1 = π₂ πS-diag (S (S n)) = πS-diag (S n) ∘eᴳ Stable.stable (S n) n ≤-refl module AboveDiagonal where πS-above : ∀ (k n : ℕ) → (n < S k) → πS k (⊙EM n) ≃ᴳ 0ᴳ πS-above k n lt = contr-iso-0ᴳ (πS k (⊙EM n)) (inhab-prop-is-contr [ idp^ (S k) ] (Trunc-preserves-level 0 (Ω^-level -1 (S k) _ (raise-level-≤T (lemma lt) (EM-level n))))) where lemma : {k n : ℕ} → n < k → ⟨ n ⟩ ≤T (⟨ k ⟩₋₂ +2+ -1) lemma ltS = inl (! (+2+-comm _ -1)) lemma (ltSR lt) = ≤T-trans (lemma lt) (inr ltS) module Spectrum where private module Π₂ = Pi2HSusp gA cA H-X spectrum0 : ⊙Ω (⊙EM 1) ⊙≃ ⊙EM 0 spectrum0 = ⊙Ω (⊙EM 1) ⊙≃⟨ ≃-to-⊙≃ (Trunc=-equiv _ _) idp ⟩ ⊙Trunc 0 (⊙Ω X) ⊙≃⟨ ≃-to-⊙≃ (unTrunc-equiv _ (gA a₀ a₀)) idp ⟩ ⊙Ω X ⊙≃∎ spectrum1 : ⊙Ω (⊙EM 2) ⊙≃ ⊙EM 1 spectrum1 = ⊙Ω (⊙EM 2) ⊙≃⟨ ≃-to-⊙≃ (Trunc=-equiv _ _) idp ⟩ ⊙Trunc 1 (⊙Ω (⊙Susp X)) ⊙≃⟨ Π₂.⊙main-lemma ⟩ X ⊙≃⟨ ≃-to-⊙≃ (unTrunc-equiv _ gA) idp ⊙⁻¹ ⟩ ⊙EM 1 ⊙≃∎ private sconn : (n : ℕ) → is-connected ⟨ S n ⟩ (de⊙ (⊙Susp^ (S n) X)) sconn n = transport (λ t → is-connected t (de⊙ (⊙Susp^ (S n) X))) (+2+0 ⟨ n ⟩₋₁) (⊙Susp^-conn (S n) cA) kle : (n : ℕ) → ⟨ S (S n) ⟩ ≤T ⟨ n ⟩ +2+ ⟨ n ⟩ kle O = inl idp kle (S n) = ≤T-trans (≤T-ap-S (kle n)) (≤T-trans (inl (! (+2+-βr ⟨ n ⟩ ⟨ n ⟩))) (inr ltS)) module FS (n : ℕ) = FreudenthalEquiv ⟨ n ⟩₋₁ ⟨ S (S n) ⟩ (kle n) (⊙Susp^ (S n) X) (sconn n) spectrumSS : (n : ℕ) → ⊙Ω (⊙EM (S (S (S n)))) ⊙≃ ⊙EM (S (S n)) spectrumSS n = ⊙Ω (⊙EM (S (S (S n)))) ⊙≃⟨ ≃-to-⊙≃ (Trunc=-equiv _ _) idp ⟩ ⊙Trunc ⟨ S (S n) ⟩ (⊙Ω (⊙Susp^ (S (S n)) X)) ⊙≃⟨ FS.⊙eq n ⊙⁻¹ ⟩ ⊙EM (S (S n)) ⊙≃∎ abstract spectrum : (n : ℕ) → ⊙Ω (⊙EM (S n)) ⊙≃ ⊙EM n spectrum 0 = spectrum0 spectrum 1 = spectrum1 spectrum (S (S n)) = spectrumSS n module EMExplicit {i} (G : AbGroup i) where module HSpace = EM₁HSpace G open EMImplicit EM₁-conn EM₁-level HSpace.H-⊙EM₁ public open BelowDiagonal public using (πS-below) πS-diag : (n : ℕ) → πS n (⊙EM (S n)) ≃ᴳ AbGroup.grp G πS-diag n = π₁-EM₁ (AbGroup.grp G) ∘eᴳ OnDiagonal.πS-diag n open AboveDiagonal public using (πS-above) open Spectrum public using (spectrum)
29.472362
71
0.482012
1e70f60cbfa946449563c4d70695119a698a03c4
8,570
agda
Agda
theorems/cw/cohomology/reconstructed/cochain/Complex.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cw/cohomology/reconstructed/cochain/Complex.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cw/cohomology/reconstructed/cochain/Complex.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.ChainComplex open import cohomology.Theory open import groups.KernelImage open import cw.CW module cw.cohomology.reconstructed.cochain.Complex {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cw.cohomology.WedgeOfCells OT import cw.cohomology.reconstructed.TipAndAugment OT as TAA import cw.cohomology.reconstructed.TipCoboundary OT as TC import cw.cohomology.reconstructed.HigherCoboundary OT as HC cochain-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) {m} → Dec (m ≤ n) → AbGroup i cochain-template ⊙skel (inr _) = Lift-abgroup {j = i} Unit-abgroup cochain-template ⊙skel {m = 0} (inl 0≤n) = TAA.C2×CX₀-abgroup (⊙cw-take 0≤n ⊙skel) 0 cochain-template ⊙skel {m = S m} (inl Sm≤n) = CXₙ/Xₙ₋₁-abgroup (⊙cw-take Sm≤n ⊙skel) (ℕ-to-ℤ (S m)) cochain-is-abelian-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) {m} m≤n? → is-abelian (AbGroup.grp (cochain-template ⊙skel {m} m≤n?)) cochain-is-abelian-template ⊙skel m≤n? = AbGroup.comm (cochain-template ⊙skel m≤n?) abstract private coboundary-first-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) → (0≤n : 0 ≤ n) (1≤n : 1 ≤ n) → ⊙cw-init (⊙cw-take 1≤n ⊙skel) == ⊙cw-take (≤-trans lteS 1≤n) ⊙skel → ⊙cw-take (≤-trans lteS 1≤n) ⊙skel == ⊙cw-take 0≤n ⊙skel → TAA.C2×CX₀ (⊙cw-take 0≤n ⊙skel) 0 →ᴳ CXₙ/Xₙ₋₁ (⊙cw-take 1≤n ⊙skel) 1 coboundary-first-template ⊙skel 0≤n 1≤n path₀ path₁ = TC.cw-co∂-head (⊙cw-take 1≤n ⊙skel) ∘ᴳ transport!ᴳ (λ ⊙skel → TAA.C2×CX₀ ⊙skel 0) (path₀ ∙ path₁) coboundary-higher-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) → {m : ℕ} (Sm≤n : S m ≤ n) (SSm≤n : S (S m) ≤ n) → ⊙cw-init (⊙cw-take SSm≤n ⊙skel) == ⊙cw-take (≤-trans lteS SSm≤n) ⊙skel → ⊙cw-take (≤-trans lteS SSm≤n) ⊙skel == ⊙cw-take Sm≤n ⊙skel → CXₙ/Xₙ₋₁ (⊙cw-take Sm≤n ⊙skel) (ℕ-to-ℤ (S m)) →ᴳ CXₙ/Xₙ₋₁ (⊙cw-take SSm≤n ⊙skel) (ℕ-to-ℤ (S (S m))) coboundary-higher-template ⊙skel {m} Sm≤n SSm≤n path₀ path₁ = HC.cw-co∂-last (⊙cw-take SSm≤n ⊙skel) ∘ᴳ transport!ᴳ (λ ⊙skel → CXₙ/Xₙ₋₁ ⊙skel (ℕ-to-ℤ (S m))) (path₀ ∙ path₁) coboundary-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) → {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n)) → AbGroup.grp (cochain-template ⊙skel m≤n?) →ᴳ AbGroup.grp (cochain-template ⊙skel Sm≤n?) coboundary-template ⊙skel _ (inr _) = cst-hom coboundary-template ⊙skel (inr m≰n) (inl Sm≤n) = ⊥-rec $ m≰n (≤-trans lteS Sm≤n) coboundary-template ⊙skel {m = 0} (inl 0≤n) (inl 1≤n) = coboundary-first-template ⊙skel 0≤n 1≤n (⊙cw-init-take 1≤n ⊙skel) (ap (λ 0≤n → ⊙cw-take 0≤n ⊙skel) (≤-has-all-paths (≤-trans lteS 1≤n) 0≤n)) coboundary-template ⊙skel {m = S m} (inl Sm≤n) (inl SSm≤n) = coboundary-higher-template ⊙skel Sm≤n SSm≤n (⊙cw-init-take SSm≤n ⊙skel) (ap (λ Sm≤n → ⊙cw-take Sm≤n ⊙skel) (≤-has-all-paths (≤-trans lteS SSm≤n) Sm≤n)) cochain-complex : ∀ {n} → ⊙Skeleton {i} n → CochainComplex i cochain-complex {n} ⊙skel = record {M} where module M where head : AbGroup i head = C-abgroup 0 (⊙Lift ⊙Bool) cochain : ℕ → AbGroup i cochain m = cochain-template ⊙skel (≤-dec m n) augment : C 0 (⊙Lift ⊙Bool) →ᴳ AbGroup.grp (cochain 0) augment = TAA.cw-coε (⊙cw-take (O≤ n) ⊙skel) coboundary : ∀ m → (AbGroup.grp (cochain m) →ᴳ AbGroup.grp (cochain (S m))) coboundary m = coboundary-template ⊙skel (≤-dec m n) (≤-dec (S m) n) {- Properties of coboundaries -} {- lemmas of paths -} private abstract path-lemma₀ : ∀ {n} (⊙skel : ⊙Skeleton {i} (S n)) {m} (m<n : m < n) (Sm<n : S m < n) → ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel) (≤-has-all-paths (≤-trans lteS (lteSR (inr Sm<n))) (lteSR (inr m<n))) == ap (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel)) (≤-has-all-paths (≤-trans lteS (inr Sm<n)) (inr m<n)) path-lemma₀ ⊙skel m<n Sm<n = ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel) (≤-has-all-paths (≤-trans lteS (lteSR (inr Sm<n))) (lteSR (inr m<n))) =⟨ ap (ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel)) (contr-has-all-paths _ _) ⟩ ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel) (ap (lteSR ∘ inr) (<-has-all-paths (<-trans ltS Sm<n) m<n)) =⟨ ∘-ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel) (lteSR ∘ inr) _ ⟩ ap (λ Sm<n → ⊙cw-take (lteSR (inr Sm<n)) ⊙skel) (<-has-all-paths (<-trans ltS Sm<n) m<n) =⟨ ap-∘ (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel)) inr _ ⟩ ap (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel)) (ap inr (<-has-all-paths (<-trans ltS Sm<n) m<n)) =⟨ ap (ap (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel))) (contr-has-all-paths _ _) ⟩ ap (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel)) (≤-has-all-paths (≤-trans lteS (inr Sm<n)) (inr m<n)) =∎ -- would be trivial with [≤-has-all-paths] defined with the set detection (issue #2003) path-lemma₁ : ∀ {n} (⊙skel : ⊙Skeleton {i} (S (S n))) → ap (λ n≤SSn → ⊙cw-take n≤SSn ⊙skel) (≤-has-all-paths (lteSR lteS) (lteSR lteS)) == ap (λ n≤Sn → ⊙cw-take n≤Sn (⊙cw-init ⊙skel)) (≤-has-all-paths lteS lteS) path-lemma₁ ⊙skel = ap (λ n≤SSn → ⊙cw-take n≤SSn ⊙skel) (≤-has-all-paths (lteSR lteS) (lteSR lteS)) =⟨ ap (ap (λ n≤SSn → ⊙cw-take n≤SSn ⊙skel)) (contr-has-all-paths _ _) ⟩ idp =⟨ ap (ap (λ n≤Sn → ⊙cw-take n≤Sn (⊙cw-init ⊙skel))) (contr-has-all-paths _ _) ⟩ ap (λ n≤Sn → ⊙cw-take n≤Sn (⊙cw-init ⊙skel)) (≤-has-all-paths lteS lteS) =∎ -- would be trivial with [≤-has-all-paths] defined with the set detection (issue #2003) path-lemma₂ : ∀ {n} (⊙skel : ⊙Skeleton {i} (S n)) → ap (λ n≤Sn → ⊙cw-take n≤Sn ⊙skel) (≤-has-all-paths lteS lteS) == idp path-lemma₂ ⊙skel = ap (λ n≤Sn → ⊙cw-take n≤Sn ⊙skel) (≤-has-all-paths lteS lteS) =⟨ ap (ap (λ n≤Sn → ⊙cw-take n≤Sn ⊙skel)) (contr-has-all-paths _ _) ⟩ idp =∎ {- properties of coboundary-template -} abstract {- lemmas of the first coboundary -} coboundary-first-template-descend-from-far : ∀ {n} (⊙skel : ⊙Skeleton {i} (S n)) 0<n 1<n → coboundary-template {n = S n} ⊙skel {0} (inl (lteSR (inr 0<n))) (inl (lteSR (inr 1<n))) == coboundary-template {n = n} (⊙cw-init ⊙skel) (inl (inr 0<n)) (inl (inr 1<n)) coboundary-first-template-descend-from-far ⊙skel 0<n 1<n = ap (coboundary-first-template ⊙skel (lteSR (inr 0<n)) (lteSR (inr 1<n)) (⊙cw-init-take (lteSR (inr 1<n)) ⊙skel)) (path-lemma₀ ⊙skel 0<n 1<n) coboundary-first-template-descend-from-two : ∀ (⊙skel : ⊙Skeleton {i} 2) → coboundary-template {n = 2} ⊙skel (inl (lteSR lteS)) (inl lteS) == coboundary-template {n = 1} (⊙cw-init ⊙skel) (inl lteS) (inl lteE) coboundary-first-template-descend-from-two ⊙skel = ap (coboundary-first-template ⊙skel (lteSR lteS) lteS idp) (path-lemma₁ ⊙skel) coboundary-first-template-β : ∀ (⊙skel : ⊙Skeleton {i} 1) → coboundary-template {n = 1} ⊙skel (inl lteS) (inl lteE) == TC.cw-co∂-head ⊙skel coboundary-first-template-β ⊙skel = group-hom= $ ap (GroupHom.f ∘ coboundary-first-template ⊙skel lteS lteE idp) (path-lemma₂ ⊙skel) {- lemmas of higher coboundaries -} coboundary-higher-template-descend-from-far : ∀ {n} (⊙skel : ⊙Skeleton {i} (S n)) {m} Sm<n SSm<n → coboundary-template {n = S n} ⊙skel {m = S m} (inl (lteSR (inr Sm<n))) (inl (lteSR (inr SSm<n))) == coboundary-template {n = n} (⊙cw-init ⊙skel) {m = S m} (inl (inr Sm<n)) (inl (inr SSm<n)) coboundary-higher-template-descend-from-far ⊙skel {m} Sm<n SSm<n = ap (coboundary-higher-template ⊙skel (lteSR (inr Sm<n)) (lteSR (inr SSm<n)) (⊙cw-init-take (lteSR (inr SSm<n)) ⊙skel)) (path-lemma₀ ⊙skel Sm<n SSm<n) coboundary-higher-template-descend-from-one-above : ∀ {n} (⊙skel : ⊙Skeleton {i} (S (S (S n)))) → coboundary-template {n = S (S (S n))} ⊙skel {m = S n} (inl (lteSR lteS)) (inl lteS) == coboundary-template {n = S (S n)} (⊙cw-init ⊙skel) {m = S n} (inl lteS) (inl lteE) coboundary-higher-template-descend-from-one-above ⊙skel = ap (coboundary-higher-template ⊙skel (lteSR lteS) lteS idp) (path-lemma₁ ⊙skel) coboundary-higher-template-β : ∀ {n} (⊙skel : ⊙Skeleton {i} (S (S n))) → coboundary-template {n = S (S n)} ⊙skel {m = S n} (inl lteS) (inl lteE) == HC.cw-co∂-last ⊙skel coboundary-higher-template-β ⊙skel = group-hom= $ ap (GroupHom.f ∘ coboundary-higher-template ⊙skel lteS lteE idp) (path-lemma₂ ⊙skel)
54.240506
124
0.578063
135230a1056a1bfe05451aa7e21d23817914c392
1,681
agda
Agda
Graphs/UnionGraph.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Graphs/UnionGraph.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Graphs/UnionGraph.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Functions.Definition open import Setoids.Setoids open import Setoids.DirectSum open import Setoids.Subset open import Graphs.Definition open import Sets.FinSet.Definition open import Sets.FinSet.Lemmas open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Sets.EquivalenceRelations open import Graphs.PathGraph module Graphs.UnionGraph where unionGraph : {a b c d e f : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) {W' : Set d} {W : Setoid {d} {e} W'} (H : Graph f W) → Graph (c ⊔ f) (directSumSetoid V W) Graph._<->_ (unionGraph {c = c} {f = f} G H) (inl v) (inl v2) = embedLevel {c} {f} (Graph._<->_ G v v2) Graph._<->_ (unionGraph G H) (inl v) (inr w) = False' Graph._<->_ (unionGraph G H) (inr w) (inl v) = False' Graph._<->_ (unionGraph {c = c} {f = f} G H) (inr w) (inr w2) = embedLevel {f} {c} (Graph._<->_ H w w2) Graph.noSelfRelation (unionGraph G H) (inl v) (v=v ,, _) = Graph.noSelfRelation G v v=v Graph.noSelfRelation (unionGraph G H) (inr w) (w=w ,, _) = Graph.noSelfRelation H w w=w Graph.symmetric (unionGraph G H) {inl x} {inl y} (x=y ,, _) = Graph.symmetric G x=y ,, record {} Graph.symmetric (unionGraph G H) {inr x} {inr y} (x=y ,, _) = Graph.symmetric H x=y ,, record {} Graph.wellDefined (unionGraph G H) {inl x} {inl y} {inl z} {inl w} (x=y ,, _) (y=z ,, _) (z=w ,, _) = Graph.wellDefined G x=y y=z z=w ,, record {} Graph.wellDefined (unionGraph G H) {inr x} {inr y} {inr z} {inr w} (x=y ,, _) (y=z ,, _) (z=w ,, _) = Graph.wellDefined H x=y y=z z=w ,, record {}
56.033333
174
0.654372
d118426f8f5a0856957f99009daafb49e55c83b6
3,122
agda
Agda
old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Functional hiding (Domain) import Structure.Logic.Classical.NaturalDeduction import Structure.Logic.Classical.SetTheory.ZFC module Structure.Logic.Classical.SetTheory.ZFC.FunctionSet {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ (_∈_ : Domain → Domain → Formula) ⦃ signature : _ ⦄ where open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic) open Structure.Logic.Classical.SetTheory.ZFC.Signature {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic ⦄ {_∈_} (signature) open import Structure.Logic.Classical.SetTheory.SetBoundedQuantification ⦃ classicLogic ⦄ (_∈_) open import Structure.Logic.Classical.SetTheory.ZFC.BinaryRelatorSet ⦃ classicLogic ⦄ (_∈_) ⦃ signature ⦄ -- The set s can be interpreted as a function. FunctionSet : Domain → Formula FunctionSet(s) = ∀ₗ(x ↦ Unique(y ↦ (x , y) ∈ s)) -- TODO: Maybe also define something that states ∀ₗ(x ↦ (x ∈ A) ↔ ∃ₗ(y ↦ (x , y) ∈ s)) so that a set representation of a function with domains becomes unique? But I think when (s ∈ (B ^ A)) is satisfied, this is implied? So try to prove that (FunctionSet(f) ∧ Total(A)(f) ∧ (the thing I mentioned earlier)) ↔ (f ∈ (B ^ A)) -- The set s can be interpreted as a function with a specified domain. -- The following describes the relation to the standard notation of functions: -- • ∀(x∊A)∀y. ((x,y) ∈ S) ⇔ (S(x) = y) Total : Domain → Domain → Formula Total(A)(s) = ∀ₛ(A)(x ↦ ∃ₗ(y ↦ (x , y) ∈ s)) Injective' : Domain → Formula Injective'(f) = ∀ₗ(y ↦ Unique(x ↦ (x , y) ∈ f)) Surjective' : Domain → Domain → Formula Surjective'(B)(f) = ∀ₛ(B)(y ↦ ∃ₗ(x ↦ (x , y) ∈ f)) Bijective' : Domain → Domain → Formula Bijective'(B)(f) = Injective'(f) ∧ Surjective'(B)(f) -- The set of total function sets. All sets which can be interpreted as a total function. _^_ : Domain → Domain → Domain B ^ A = filter(℘(A ⨯ B)) (f ↦ FunctionSet(f) ∧ Total(A)(f)) _→ₛₑₜ_ = swap _^_ ⊷ : Domain → Domain ⊷ = lefts ⊶ : Domain → Domain ⊶ = rights map' : Domain → Domain → Domain map' = rightsOfMany unmap' : Domain → Domain → Domain unmap' = leftsOfMany apply-set : Domain → Domain → Domain apply-set = rightsOf unapply-set : Domain → Domain → Domain unapply-set = leftsOf _∘'_ : Domain → Domain → Domain _∘'_ f g = filter((⊷ f) ⨯ (⊶ g)) (a ↦ ∃ₗ(x ↦ ∃ₗ(y ↦ ∃ₗ(a₁ ↦ ((a₁ , y) ∈ f) ∧ ((x , a₁) ∈ g)) ∧ (a ≡ (x , y))))) -- inv : Domain → Domain -- inv f = filter(?) (yx ↦ ∃ₗ(x ↦ ∃ₗ(y ↦ ((x , y) ∈ f) ∧ (yx ≡ (y , x))))) module Cardinality where -- Injection _≼_ : Domain → Domain → Formula _≼_ (a)(b) = ∃ₛ(a →ₛₑₜ b)(Injective') -- Surjection _≽_ : Domain → Domain → Formula _≽_ (a)(b) = ∃ₛ(a →ₛₑₜ b)(Surjective'(b)) -- Bijection _≍_ : Domain → Domain → Formula _≍_ (a)(b) = ∃ₛ(a →ₛₑₜ b)(Bijective'(b)) -- Strict injection _≺_ : Domain → Domain → Formula _≺_ A B = (A ≼ B) ∧ ¬(A ≍ B) -- Strict surjection _≻_ : Domain → Domain → Formula _≻_ A B = (A ≽ B) ∧ ¬(A ≍ B) -- TODO: Definition of a "cardinality object" requires ordinals, which requires axiom of choice -- # : Domain → Domain
35.885057
322
0.632607
298fb4ef2b780c3ed7d9b023dcba25f617d35094
7,720
agda
Agda
Cubical/Algebra/Polynomials/Multivariate/EquivCarac/A[X]X-A.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/Polynomials/Multivariate/EquivCarac/A[X]X-A.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/Polynomials/Multivariate/EquivCarac/A[X]X-A.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.Multivariate.EquivCarac.A[X]X-A where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.Data.FinData open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.QuotientRing open import Cubical.Algebra.Polynomials.Multivariate.Base open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR) open import Cubical.Algebra.CommRing.Instances.MultivariatePoly open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-notationZ open import Cubical.Relation.Nullary open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT private variable ℓ : Level ----------------------------------------------------------------------------- -- Functions module Properties-Equiv-QuotientXn-A (Ar@(A , Astr) : CommRing ℓ) where private A[X] : CommRing ℓ A[X] = A[X1,···,Xn] Ar 1 A[x] : Type ℓ A[x] = A[x1,···,xn] Ar 1 A[X]/X : CommRing ℓ A[X]/X = A[X1,···,Xn]/<Xkʲ> Ar 1 0 1 A[x]/x : Type ℓ A[x]/x = A[x1,···,xn]/<xkʲ> Ar 1 0 1 open CommRingStr Astr using () renaming ( 0r to 0A ; 1r to 1A ; _+_ to _+A_ ; -_ to -A_ ; _·_ to _·A_ ; +Assoc to +AAssoc ; +Identity to +AIdentity ; +Lid to +ALid ; +Rid to +ARid ; +Inv to +AInv ; +Linv to +ALinv ; +Rinv to +ARinv ; +Comm to +AComm ; ·Assoc to ·AAssoc ; ·Identity to ·AIdentity ; ·Lid to ·ALid ; ·Rid to ·ARid ; ·Rdist+ to ·ARdist+ ; ·Ldist+ to ·ALdist+ ; is-set to isSetA ) open CommRingStr (snd A[X] ) using () renaming ( 0r to 0PA ; 1r to 1PA ; _+_ to _+PA_ ; -_ to -PA_ ; _·_ to _·PA_ ; +Assoc to +PAAssoc ; +Identity to +PAIdentity ; +Lid to +PALid ; +Rid to +PARid ; +Inv to +PAInv ; +Linv to +PALinv ; +Rinv to +PARinv ; +Comm to +PAComm ; ·Assoc to ·PAAssoc ; ·Identity to ·PAIdentity ; ·Lid to ·PALid ; ·Rid to ·PARid ; ·Comm to ·PAComm ; ·Rdist+ to ·PARdist+ ; ·Ldist+ to ·PALdist+ ; is-set to isSetPA ) open CommRingStr (snd A[X]/X) using () renaming ( 0r to 0PAI ; 1r to 1PAI ; _+_ to _+PAI_ ; -_ to -PAI_ ; _·_ to _·PAI_ ; +Assoc to +PAIAssoc ; +Identity to +PAIIdentity ; +Lid to +PAILid ; +Rid to +PAIRid ; +Inv to +PAIInv ; +Linv to +PAILinv ; +Rinv to +PAIRinv ; +Comm to +PAIComm ; ·Assoc to ·PAIAssoc ; ·Identity to ·PAIIdentity ; ·Lid to ·PAILid ; ·Rid to ·PAIRid ; ·Rdist+ to ·PAIRdist+ ; ·Ldist+ to ·PAILdist+ ; is-set to isSetPAI ) open RingTheory ----------------------------------------------------------------------------- -- Direct sens A[x]→A : A[x] → A A[x]→A = Poly-Rec-Set.f _ _ _ isSetA 0A base-trad _+A_ +AAssoc +ARid +AComm base-neutral-eq base-add-eq where base-trad : _ base-trad (zero ∷ []) a = a base-trad (suc k ∷ []) a = 0A base-neutral-eq : _ base-neutral-eq (zero ∷ []) = refl base-neutral-eq (suc k ∷ []) = refl base-add-eq : _ base-add-eq (zero ∷ []) a b = refl base-add-eq (suc k ∷ []) a b = +ARid _ A[x]→A-pres1 : A[x]→A 1PA ≡ 1A A[x]→A-pres1 = refl A[x]→A-pres+ : (x y : A[x]) → (A[x]→A (x +PA y)) ≡ A[x]→A x +A A[x]→A y A[x]→A-pres+ x y = refl A[x]→A-pres· : (x y : A[x]) → (A[x]→A (x ·PA y)) ≡ A[x]→A x ·A A[x]→A y A[x]→A-pres· = Poly-Ind-Prop.f _ _ _ (λ x u v i y → isSetA _ _ (u y) (v y) i) (λ y → sym (0LeftAnnihilates (CommRing→Ring Ar) _)) (λ v a → Poly-Ind-Prop.f _ _ _ (λ _ → isSetA _ _) (sym (0RightAnnihilates (CommRing→Ring Ar) _)) (λ v' a' → base-eq a a' v v') (λ {U V} ind-U ind-V → cong₂ _+A_ ind-U ind-V ∙ sym (·ARdist+ _ _ _))) λ {U V} ind-U ind-V y → cong₂ _+A_ (ind-U y) (ind-V y) ∙ sym (·ALdist+ _ _ _) where base-eq : (a a' : A) → (v v' : Vec ℕ 1) → (A[x]→A (base v a ·PA base v' a')) ≡ A[x]→A (base v a) ·A A[x]→A (base v' a') base-eq a a' (zero ∷ []) (zero ∷ []) = refl base-eq a a' (zero ∷ []) (suc k' ∷ []) = sym (0RightAnnihilates (CommRing→Ring Ar) _) base-eq a a' (suc k ∷ []) (k' ∷ []) = sym (0LeftAnnihilates (CommRing→Ring Ar) _) A[X]→A : CommRingHom A[X] Ar fst A[X]→A = A[x]→A snd A[X]→A = makeIsRingHom A[x]→A-pres1 A[x]→A-pres+ A[x]→A-pres· A[x]→A-cancel : (k : Fin 1) → A[x]→A (<Xkʲ> Ar 1 0 1 k) ≡ 0A A[x]→A-cancel zero = refl A[X]/X→A : CommRingHom A[X]/X Ar A[X]/X→A = Quotient-FGideal-CommRing-CommRing.inducedHom A[X] Ar A[X]→A (<Xkʲ> Ar 1 0 1) A[x]→A-cancel A[x]/x→A : A[x]/x → A A[x]/x→A = fst A[X]/X→A ----------------------------------------------------------------------------- -- Converse sens A→A[x] : A → A[x] A→A[x] a = base (0 ∷ []) a A→A[x]-pres+ : (a a' : A) → A→A[x] (a +A a') ≡ A→A[x] a +PA A→A[x] a' A→A[x]-pres+ a a' = sym (base-poly+ (0 ∷ []) a a') A→A[x]/x : A → A[x]/x A→A[x]/x = [_] ∘ A→A[x] A→A[x]/x-pres+ : (a a' : A) → A→A[x]/x (a +A a') ≡ A→A[x]/x a +PAI A→A[x]/x a' A→A[x]/x-pres+ a a' = cong [_] (A→A[x]-pres+ a a') ----------------------------------------------------------------------------- -- Section sens e-sect : (a : A) → A[x]→A (A→A[x] a) ≡ a e-sect a = refl ----------------------------------------------------------------------------- -- Retraction sens open IsRing e-retr : (x : A[x]/x) → A→A[x]/x (A[x]/x→A x) ≡ x e-retr = SQ.elimProp (λ x → isSetPAI _ _) (Poly-Ind-Prop.f _ _ _ (λ x → isSetPAI _ _) (cong [_] (base-0P _)) (λ v a → base-eq a v) λ {U V} ind-U ind-V → cong [_] ((A→A[x]-pres+ _ _)) ∙ cong₂ _+PAI_ ind-U ind-V) where base-eq : (a : A) → (v : Vec ℕ 1) → A→A[x]/x (A[x]/x→A [ (base v a) ]) ≡ [ (base v a) ] base-eq a (zero ∷ []) = cong [_] refl base-eq a (suc k ∷ []) = eq/ (base (0 ∷ []) 0A) (base (suc k ∷ []) a) ∣ ((λ x → base (k ∷ []) (-A a)) , helper) ∣₁ where helper : _ helper = cong (λ X → X poly+ base (suc k ∷ []) (-A a)) (base-0P _) ∙ +PALid _ ∙ sym (+PARid _ ∙ cong₂ base (cong (λ X → X ∷ []) (+-suc _ _ ∙ +-zero _)) (·ARid _)) module _ (Ar@(A , Astr) : CommRing ℓ) where open Iso open Properties-Equiv-QuotientXn-A Ar Equiv-A[X]/X-A : CommRingEquiv (A[X1,···,Xn]/<Xkʲ> Ar 1 0 1) Ar fst Equiv-A[X]/X-A = isoToEquiv is where is : Iso (A[x1,···,xn]/<xkʲ> Ar 1 0 1) A fun is = A[x]/x→A inv is = A→A[x]/x rightInv is = e-sect leftInv is = e-retr snd Equiv-A[X]/X-A = snd A[X]/X→A Equiv-ℤ[X]/X-ℤ : RingEquiv (CommRing→Ring ℤ[X]/X) (CommRing→Ring ℤCR) Equiv-ℤ[X]/X-ℤ = Equiv-A[X]/X-A ℤCR
29.922481
131
0.479793
13735595825f6bbfc2b33e6c5a3d6411cb8ca387
400
agda
Agda
test/interaction/Issue800.agda
hborum/agda
aac88412199dd4cbcb041aab499d8a6b7e3f4a2e
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue800.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
null
null
null
test/interaction/Issue800.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2013-02-18 problem with 'with'-display, see also issue 295 -- {-# OPTIONS -v tc.with:50 #-} module Issue800 where data ⊤ : Set where tt : ⊤ data I⊤ : ⊤ → Set where itt : ∀ r → I⊤ r bug : ∀ l → ∀ k → I⊤ l → ⊤ bug .l k (itt l) with itt k ... | foo = {! foo!} {- Current rewriting: bug .l l (itt k) | itt .k = ? Desired rewriting: bug .l k (itt l) | itt .k = ? -}
18.181818
70
0.52
30a657e6267b5945a2f911eece2280e4c071af3e
2,624
agda
Agda
Cubical/Data/Fin/Base.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/Data/Fin/Base.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/Fin/Base.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Fin.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat using (ℕ; zero; suc) open import Cubical.Data.Nat.Order open import Cubical.Data.Sigma open import Cubical.Data.Sum using (_⊎_; _⊎?_; inl; inr) open import Cubical.Relation.Nullary -- Finite types. -- -- Currently it is most convenient to define these as a subtype of the -- natural numbers, because indexed inductive definitions don't behave -- well with cubical Agda. This definition also has some more general -- attractive properties, of course, such as easy conversion back to -- ℕ. Fin : ℕ → Type₀ Fin n = Σ[ k ∈ ℕ ] k < n private variable ℓ : Level k : ℕ fzero : Fin (suc k) fzero = (0 , suc-≤-suc zero-≤) -- It is easy, using this representation, to take the successor of a -- number as a number in the next largest finite type. fsuc : Fin k → Fin (suc k) fsuc (k , l) = (suc k , suc-≤-suc l) -- Conversion back to ℕ is trivial... toℕ : Fin k → ℕ toℕ = fst -- ... and injective. toℕ-injective : ∀{fj fk : Fin k} → toℕ fj ≡ toℕ fk → fj ≡ fk toℕ-injective {fj = fj} {fk} = Σ≡Prop (λ _ → m≤n-isProp) -- A case analysis helper for induction. fsplit : ∀(fj : Fin (suc k)) → (fzero ≡ fj) ⊎ (Σ[ fk ∈ Fin k ] fsuc fk ≡ fj) fsplit (0 , k<sn) = inl (toℕ-injective refl) fsplit (suc k , k<sn) = inr ((k , pred-≤-pred k<sn) , toℕ-injective refl) inject< : ∀ {m n} (m<n : m < n) → Fin m → Fin n inject< m<n (k , k<m) = k , <-trans k<m m<n -- Fin 0 is empty ¬Fin0 : ¬ Fin 0 ¬Fin0 (k , k<0) = ¬-<-zero k<0 -- The full inductive family eliminator for finite types. elim : ∀(P : ∀{k} → Fin k → Type ℓ) → (∀{k} → P {suc k} fzero) → (∀{k} {fn : Fin k} → P fn → P (fsuc fn)) → {k : ℕ} → (fn : Fin k) → P fn elim P fz fs {zero} = ⊥.rec ∘ ¬Fin0 elim P fz fs {suc k} fj = case fsplit fj return (λ _ → P fj) of λ { (inl p) → subst P p fz ; (inr (fk , p)) → subst P p (fs (elim P fz fs fk)) } any? : ∀ {n} {P : Fin n → Type ℓ} → (∀ i → Dec (P i)) → Dec (Σ (Fin n) P) any? {n = zero} {P = _} P? = no (λ (x , _) → ¬Fin0 x) any? {n = suc n} {P = P} P? = mapDec (λ { (inl P0) → fzero , P0 ; (inr (x , Px)) → fsuc x , Px } ) (λ n h → n (helper h)) (P? fzero ⊎? any? (P? ∘ fsuc)) where helper : Σ (Fin (suc n)) P → P fzero ⊎ Σ (Fin n) λ z → P (fsuc z) helper (x , Px) with fsplit x ... | inl x≡0 = inl (subst P (sym x≡0) Px) ... | inr (k , x≡sk) = inr (k , subst P (sym x≡sk) Px)
28.835165
73
0.585747
529f9679cdd258b1a93ad7970cdf7859a646f90c
1,910
agda
Agda
agda-stdlib/src/Codata/Delay/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Codata/Delay/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Codata/Delay/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of operations on the Delay type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Delay.Properties where open import Size import Data.Sum.Base as Sum open import Codata.Thunk using (Thunk; force) open import Codata.Conat open import Codata.Conat.Bisimilarity as Coℕ using (zero ; suc) open import Codata.Delay open import Codata.Delay.Bisimilarity open import Function open import Relation.Binary.PropositionalEquality as Eq using (_≡_) module _ {a} {A : Set a} where length-never : ∀ {i} → i Coℕ.⊢ length (never {A = A}) ≈ infinity length-never = suc λ where .force → length-never module _ {a b} {A : Set a} {B : Set b} where length-map : ∀ (f : A → B) da {i} → i Coℕ.⊢ length (map f da) ≈ length da length-map f (now a) = zero length-map f (later da) = suc λ where .force → length-map f (da .force) module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where length-zipWith : ∀ (f : A → B → C) da db {i} → i Coℕ.⊢ length (zipWith f da db) ≈ length da ⊔ length db length-zipWith f (now a) db = length-map (f a) db length-zipWith f da@(later _) (now b) = length-map (λ a → f a b) da length-zipWith f (later da) (later db) = suc λ where .force → length-zipWith f (da .force) (db .force) map-map-fusion : ∀ (f : A → B) (g : B → C) da {i} → i ⊢ map g (map f da) ≈ map (g ∘′ f) da map-map-fusion f g (now a) = now Eq.refl map-map-fusion f g (later da) = later λ where .force → map-map-fusion f g (da .force) map-unfold-fusion : ∀ (f : B → C) n (s : A) {i} → i ⊢ map f (unfold n s) ≈ unfold (Sum.map id f ∘′ n) s map-unfold-fusion f n s with n s ... | Sum.inj₁ s′ = later λ where .force → map-unfold-fusion f n s′ ... | Sum.inj₂ b = now Eq.refl
37.45098
86
0.57801
9a002968f50a0fb6b8bd8f9967ad28646545d03e
853
agda
Agda
notes/FOT/FOTC/Relation/Binary/Bisimilarity/Type.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Relation/Binary/Bisimilarity/Type.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Relation/Binary/Bisimilarity/Type.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- A stronger (maybe invalid) principle for ≈-coind ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Relation.Binary.Bisimilarity.Type where open import FOTC.Base open import FOTC.Base.List open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ -- A stronger (maybe invalid) principle for ≈-coind. postulate ≈-stronger-coind : ∀ (B : D → D → Set) {xs ys} → (B xs ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys') → B xs ys → xs ≈ ys
35.541667
78
0.415006
a0a77a822f43c297c91b6a5aa411f14a0ea49922
6,622
agda
Agda
Structure/Relator/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Relator/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Relator/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Relator.Proofs where import Data.Either as Either import Data.Tuple as Tuple open import Functional open import Function.Proofs open import Logic open import Logic.Propositional.Proofs.Structures open import Logic.Propositional open import Logic.Predicate import Lvl open import Structure.Function open import Structure.Operator open import Structure.Setoid open import Structure.Relator.Properties open import Structure.Relator open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ ℓₗ₄ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ : Lvl.Level private variable A B A₁ A₂ B₁ B₂ : Type{ℓ} [≡]-binaryRelator : ∀ ⦃ equiv : Equiv{ℓₗ}(A) ⦄ → BinaryRelator ⦃ equiv ⦄ (_≡_) BinaryRelator.substitution [≡]-binaryRelator {x₁} {y₁} {x₂} {y₂} xy1 xy2 x1x2 = y₁ 🝖-[ xy1 ]-sym x₁ 🝖-[ x1x2 ] x₂ 🝖-[ xy2 ] y₂ 🝖-end reflexive-binaryRelator-sub : ∀ ⦃ equiv : Equiv{ℓₗ}(A) ⦄ {_▫_ : A → A → Type{ℓ}} ⦃ refl : Reflexivity(_▫_) ⦄ ⦃ rel : BinaryRelator ⦃ equiv ⦄ (_▫_) ⦄ → ((_≡_) ⊆₂ (_▫_)) _⊆₂_.proof (reflexive-binaryRelator-sub {_▫_ = _▫_}) xy = substitute₂ᵣ(_▫_) xy (reflexivity(_▫_)) module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {f : A → B} ⦃ func : Function(f) ⦄ {P : B → Stmt{ℓₗ₃}} ⦃ rel : UnaryRelator(P) ⦄ where [∘]-unaryRelator : UnaryRelator(P ∘ f) [∘]-unaryRelator = [↔]-to-[←] relator-function₁ ([∘]-function ⦃ equiv-c = [↔]-equiv ⦄ ⦃ func-f = [↔]-to-[→] relator-function₁ rel ⦄) module _ ⦃ equiv-A₁ : Equiv{ℓₑ₁}(A₁) ⦄ ⦃ equiv-B₁ : Equiv{ℓₑ₂}(B₁) ⦄ ⦃ equiv-A₂ : Equiv{ℓₑ₃}(A₂) ⦄ ⦃ equiv-B₂ : Equiv{ℓₑ₄}(B₂) ⦄ {f : A₁ → A₂} ⦃ func-f : Function(f) ⦄ {g : B₁ → B₂} ⦃ func-g : Function(g) ⦄ {_▫_ : A₂ → B₂ → Stmt{ℓₗ}} ⦃ rel : BinaryRelator(_▫_) ⦄ where [∘]-binaryRelator : BinaryRelator(x ↦ y ↦ f(x) ▫ g(y)) BinaryRelator.substitution [∘]-binaryRelator xy1 xy2 = substitute₂(_▫_) (congruence₁(f) xy1) (congruence₁(g) xy2) module _ ⦃ equiv-A : Equiv{ℓₑ}(A) ⦄ {P : A → Stmt{ℓₗ₁}} ⦃ rel-P : UnaryRelator(P) ⦄ {▫ : Stmt{ℓₗ₁} → Stmt{ℓₗ₂}} ⦃ rel : Function ⦃ [↔]-equiv ⦄ ⦃ [↔]-equiv ⦄ ▫ ⦄ where unaryRelator-sub : UnaryRelator(▫ ∘ P) unaryRelator-sub = [∘]-unaryRelator ⦃ equiv-B = [↔]-equiv ⦄ ⦃ func = [↔]-to-[→] relator-function₁ rel-P ⦄ ⦃ rel = [↔]-to-[←] (relator-function₁ ⦃ [↔]-equiv ⦄) rel ⦄ module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {P : A → Stmt{ℓₗ₁}} ⦃ rel-P : UnaryRelator(P) ⦄ {Q : B → Stmt{ℓₗ₂}} ⦃ rel-Q : UnaryRelator(Q) ⦄ {_▫_ : Stmt{ℓₗ₁} → Stmt{ℓₗ₂} → Stmt{ℓₗ₃}} ⦃ rel : BinaryOperator ⦃ [↔]-equiv ⦄ ⦃ [↔]-equiv ⦄ ⦃ [↔]-equiv ⦄ (_▫_) ⦄ where binaryRelator-sub : BinaryRelator(x ↦ y ↦ P(x) ▫ Q(y)) binaryRelator-sub = [∘]-binaryRelator ⦃ equiv-A₂ = [↔]-equiv ⦄ ⦃ equiv-B₂ = [↔]-equiv ⦄ ⦃ func-f = [↔]-to-[→] relator-function₁ rel-P ⦄ ⦃ func-g = [↔]-to-[→] relator-function₁ rel-Q ⦄ ⦃ rel = [↔]-to-[←] (relator-function₂ ⦃ [↔]-equiv ⦄ ⦃ [↔]-equiv ⦄) rel ⦄ module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {P : A → Stmt{ℓₗ₁}} ⦃ rel-P : UnaryRelator(P) ⦄ {Q : B → Stmt{ℓₗ₂}} ⦃ rel-Q : UnaryRelator(Q) ⦄ where [→]-binaryRelator : BinaryRelator(x ↦ y ↦ (P(x) → Q(y))) [→]-binaryRelator = binaryRelator-sub{_▫_ = _→ᶠ_} [↔]-binaryRelator : BinaryRelator(x ↦ y ↦ (P(x) ↔ Q(y))) [↔]-binaryRelator = binaryRelator-sub{_▫_ = _↔_} [→]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : A → Stmt{ℓₗ₁}}{Q : A → Stmt{ℓₗ₂}} → ⦃ rel-P : UnaryRelator(P) ⦄ → ⦃ rel-Q : UnaryRelator(Q) ⦄ → UnaryRelator(\x → P(x) → Q(x)) UnaryRelator.substitution ([→]-unaryRelator {P = P}{Q = Q}) xy pxqx py = substitute₁(Q) xy (pxqx(substitute₁(P) (symmetry(_≡_) xy) py)) [∀]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : B → A → Stmt{ℓₗ₁}} → ⦃ rel-P : ∀{x} → UnaryRelator(P(x)) ⦄ → UnaryRelator(\y → ∀{x} → P(x)(y)) UnaryRelator.substitution ([∀]-unaryRelator {P = P}) {x} {a} xy px {b} = substitute₁ (P b) xy px [∃]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : B → A → Stmt{ℓₗ₁}} → ⦃ rel-P : ∀{x} → UnaryRelator(P(x)) ⦄ → UnaryRelator(\y → ∃(x ↦ P(x)(y))) UnaryRelator.substitution ([∃]-unaryRelator {P = P}) xy = [∃]-map-proof (substitute₁(P _) xy) instance const-unaryRelator : ∀{P : Stmt{ℓₗ₁}} → ⦃ _ : Equiv{ℓₗ}(A) ⦄ → UnaryRelator{A = A}(const P) UnaryRelator.substitution const-unaryRelator = const id [¬]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₂}(A) ⦄ {P : A → Stmt{ℓₗ₁}} → ⦃ rel-P : UnaryRelator(P) ⦄ → UnaryRelator(\x → ¬ P(x)) [¬]-unaryRelator {P = P} = [→]-unaryRelator [∧]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : A → Stmt{ℓₗ₁}}{Q : A → Stmt{ℓₗ₂}} → ⦃ rel-P : UnaryRelator(P) ⦄ → ⦃ rel-Q : UnaryRelator(Q) ⦄ → UnaryRelator(x ↦ P(x) ∧ Q(x)) UnaryRelator.substitution [∧]-unaryRelator xy = Tuple.map (substitute₁(_) xy) (substitute₁(_) xy) [∨]-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₃}(A) ⦄ {P : A → Stmt{ℓₗ₁}}{Q : A → Stmt{ℓₗ₂}} → ⦃ rel-P : UnaryRelator(P) ⦄ → ⦃ rel-Q : UnaryRelator(Q) ⦄ → UnaryRelator(x ↦ P(x) ∨ Q(x)) UnaryRelator.substitution [∨]-unaryRelator xy = Either.map (substitute₁(_) xy) (substitute₁(_) xy) binary-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₂}(A) ⦄ {P : A → A → Stmt{ℓₗ₁}} → ⦃ rel-P : BinaryRelator(P) ⦄ → UnaryRelator(P $₂_) UnaryRelator.substitution (binary-unaryRelator {P = P}) xy pxx = substitute₂(P) xy xy pxx binary-unaryRelatorₗ : ∀ ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ {_▫_ : A → B → Stmt{ℓₗ₃}} → ⦃ rel-P : BinaryRelator(_▫_) ⦄ → ∀{x} → UnaryRelator(x ▫_) UnaryRelator.substitution binary-unaryRelatorₗ xy x1x2 = substitute₂ _ (reflexivity(_≡_)) xy x1x2 binary-unaryRelatorᵣ : ∀ ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ {_▫_ : A → B → Stmt{ℓₗ₃}} → ⦃ rel-P : BinaryRelator(_▫_) ⦄ → ∀{x} → UnaryRelator(_▫ x) UnaryRelator.substitution binary-unaryRelatorᵣ xy x1x2 = substitute₂ _ xy (reflexivity(_≡_)) x1x2 binaryRelator-from-unaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₂}(A) ⦄ {_▫_ : A → A → Stmt{ℓₗ₁}} → ⦃ relₗ : ∀{x} → UnaryRelator(_▫ x) ⦄ → ⦃ relᵣ : ∀{x} → UnaryRelator(x ▫_) ⦄ → BinaryRelator(_▫_) BinaryRelator.substitution binaryRelator-from-unaryRelator xy1 xy2 = substitute₁ _ xy1 ∘ substitute₁ _ xy2 instance const-binaryRelator : ∀{P : Stmt{ℓₗ}} → ⦃ equiv-A : Equiv{ℓₗ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₗ₂}(B) ⦄ → BinaryRelator{A = A}{B = B}((const ∘ const) P) BinaryRelator.substitution const-binaryRelator = (const ∘ const) id -- TODO: Temporary until substitution is a specialization of congruence [¬]-binaryRelator : ∀ ⦃ _ : Equiv{ℓₗ₂}(A) ⦄ ⦃ _ : Equiv{ℓₗ₃}(B) ⦄ {P : A → B → Stmt{ℓₗ₁}} → ⦃ rel-P : BinaryRelator(P) ⦄ → BinaryRelator(\x y → ¬ P(x)(y)) BinaryRelator.substitution ([¬]-binaryRelator {P = P}) xy₁ xy₂ npx py = npx(substitute₂(P) (symmetry(_≡_) xy₁) (symmetry(_≡_) xy₂) py)
47.985507
182
0.60752
38c3919c242189b4a5dce1ca6bde8eabbfffb444
13,970
agda
Agda
test/asset/agda-stdlib-1.0/Algebra/Structures.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Algebra/Structures.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Algebra/Structures.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Some algebraic structures (not packed up with sets, operations, -- etc.) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel; Setoid; IsEquivalence) -- The structures are parameterised by an equivalence relation module Algebra.Structures {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where open import Algebra.FunctionProperties _≈_ import Algebra.FunctionProperties.Consequences as Consequences open import Data.Product using (_,_; proj₁; proj₂) open import Level using (_⊔_) ------------------------------------------------------------------------ -- Semigroups record IsMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∙-cong : Congruent₂ ∙ open IsEquivalence isEquivalence public setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence } ∙-congˡ : LeftCongruent ∙ ∙-congˡ y≈z = ∙-cong refl y≈z ∙-congʳ : RightCongruent ∙ ∙-congʳ y≈z = ∙-cong y≈z refl record IsSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isMagma : IsMagma ∙ assoc : Associative ∙ open IsMagma isMagma public record IsBand (∙ : Op₂ A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ idem : Idempotent ∙ open IsSemigroup isSemigroup public record IsSemilattice (∧ : Op₂ A) : Set (a ⊔ ℓ) where field isBand : IsBand ∧ comm : Commutative ∧ open IsBand isBand public renaming (∙-cong to ∧-cong; ∙-congˡ to ∧-congˡ; ∙-congʳ to ∧-congʳ) ------------------------------------------------------------------------ -- Monoids record IsMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ identity : Identity ε ∙ open IsSemigroup isSemigroup public identityˡ : LeftIdentity ε ∙ identityˡ = proj₁ identity identityʳ : RightIdentity ε ∙ identityʳ = proj₂ identity record IsCommutativeMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isSemigroup : IsSemigroup ∙ identityˡ : LeftIdentity ε ∙ comm : Commutative ∙ open IsSemigroup isSemigroup public identityʳ : RightIdentity ε ∙ identityʳ = Consequences.comm+idˡ⇒idʳ setoid comm identityˡ identity : Identity ε ∙ identity = (identityˡ , identityʳ) isMonoid : IsMonoid ∙ ε isMonoid = record { isSemigroup = isSemigroup ; identity = identity } record IsIdempotentCommutativeMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isCommutativeMonoid : IsCommutativeMonoid ∙ ε idem : Idempotent ∙ open IsCommutativeMonoid isCommutativeMonoid public ------------------------------------------------------------------------ -- Groups record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where field isMonoid : IsMonoid _∙_ ε inverse : Inverse ε _⁻¹ _∙_ ⁻¹-cong : Congruent₁ _⁻¹ open IsMonoid isMonoid public infixl 7 _-_ _-_ : Op₂ A x - y = x ∙ (y ⁻¹) inverseˡ : LeftInverse ε _⁻¹ _∙_ inverseˡ = proj₁ inverse inverseʳ : RightInverse ε _⁻¹ _∙_ inverseʳ = proj₂ inverse uniqueˡ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → x ≈ (y ⁻¹) uniqueˡ-⁻¹ = Consequences.assoc+id+invʳ⇒invˡ-unique setoid ∙-cong assoc identity inverseʳ uniqueʳ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → y ≈ (x ⁻¹) uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique setoid ∙-cong assoc identity inverseˡ record IsAbelianGroup (∙ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where field isGroup : IsGroup ∙ ε ⁻¹ comm : Commutative ∙ open IsGroup isGroup public isCommutativeMonoid : IsCommutativeMonoid ∙ ε isCommutativeMonoid = record { isSemigroup = isSemigroup ; identityˡ = identityˡ ; comm = comm } ------------------------------------------------------------------------ -- Semirings record IsNearSemiring (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field +-isMonoid : IsMonoid + 0# *-isSemigroup : IsSemigroup * distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * open IsMonoid +-isMonoid public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ) open IsSemigroup *-isSemigroup public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; isMagma to *-isMagma ) record IsSemiringWithoutOne (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isSemigroup : IsSemigroup * distrib : * DistributesOver + zero : Zero 0# * open IsCommutativeMonoid +-isCommutativeMonoid public using () renaming ( isMonoid to +-isMonoid ; comm to +-comm ) zeroˡ : LeftZero 0# * zeroˡ = proj₁ zero zeroʳ : RightZero 0# * zeroʳ = proj₂ zero isNearSemiring : IsNearSemiring + * 0# isNearSemiring = record { +-isMonoid = +-isMonoid ; *-isSemigroup = *-isSemigroup ; distribʳ = proj₂ distrib ; zeroˡ = zeroˡ } open IsNearSemiring isNearSemiring public hiding (+-isMonoid; zeroˡ) record IsSemiringWithoutAnnihilatingZero (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field -- Note that these structures do have an additive unit, but this -- unit does not necessarily annihilate multiplication. +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isMonoid : IsMonoid * 1# distrib : * DistributesOver + distribˡ : * DistributesOverˡ + distribˡ = proj₁ distrib distribʳ : * DistributesOverʳ + distribʳ = proj₂ distrib open IsCommutativeMonoid +-isCommutativeMonoid public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; comm to +-comm ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; identity to *-identity ; identityˡ to *-identityˡ ; identityʳ to *-identityʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ) record IsSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# zero : Zero 0# * open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public isSemiringWithoutOne : IsSemiringWithoutOne + * 0# isSemiringWithoutOne = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isSemigroup = *-isSemigroup ; distrib = distrib ; zero = zero } open IsSemiringWithoutOne isSemiringWithoutOne public using ( isNearSemiring ; zeroˡ ; zeroʳ ) record IsCommutativeSemiringWithoutOne (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field isSemiringWithoutOne : IsSemiringWithoutOne + * 0# *-comm : Commutative * open IsSemiringWithoutOne isSemiringWithoutOne public record IsCommutativeSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isCommutativeMonoid : IsCommutativeMonoid + 0# *-isCommutativeMonoid : IsCommutativeMonoid * 1# distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * private module +-CM = IsCommutativeMonoid +-isCommutativeMonoid open module *-CM = IsCommutativeMonoid *-isCommutativeMonoid public using () renaming (comm to *-comm) distribˡ : * DistributesOverˡ + distribˡ = Consequences.comm+distrʳ⇒distrˡ +-CM.setoid +-CM.∙-cong *-comm distribʳ distrib : * DistributesOver + distrib = (distribˡ , distribʳ) zeroʳ : RightZero 0# * zeroʳ = Consequences.comm+zeˡ⇒zeʳ +-CM.setoid *-comm zeroˡ zero : Zero 0# * zero = (zeroˡ , zeroʳ) isSemiring : IsSemiring + * 0# 1# isSemiring = record { isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-CM.isMonoid ; distrib = distrib } ; zero = zero } open IsSemiring isSemiring public hiding ( distrib; distribʳ; distribˡ ; zero; zeroˡ; zeroʳ ; +-isCommutativeMonoid ) isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne + * 0# isCommutativeSemiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne ; *-comm = *-CM.comm } ------------------------------------------------------------------------ -- Rings record IsRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isAbelianGroup : IsAbelianGroup + 0# -_ *-isMonoid : IsMonoid * 1# distrib : * DistributesOver + open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; inverse to -‿inverse ; inverseˡ to -‿inverseˡ ; inverseʳ to -‿inverseʳ ; ⁻¹-cong to -‿cong ; comm to +-comm ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isCommutativeMonoid to +-isCommutativeMonoid ; isGroup to +-isGroup ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; ∙-cong to *-cong ; ∙-congˡ to *-congˡ ; ∙-congʳ to *-congʳ ; identity to *-identity ; identityˡ to *-identityˡ ; identityʳ to *-identityʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ) zeroˡ : LeftZero 0# * zeroˡ = Consequences.assoc+distribʳ+idʳ+invʳ⇒zeˡ setoid +-cong *-cong +-assoc (proj₂ distrib) +-identityʳ -‿inverseʳ zeroʳ : RightZero 0# * zeroʳ = Consequences.assoc+distribˡ+idʳ+invʳ⇒zeʳ setoid +-cong *-cong +-assoc (proj₁ distrib) +-identityʳ -‿inverseʳ zero : Zero 0# * zero = (zeroˡ , zeroʳ) isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-isMonoid ; distrib = distrib } isSemiring : IsSemiring + * 0# 1# isSemiring = record { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero ; zero = zero } open IsSemiring isSemiring public using (distribˡ; distribʳ; isNearSemiring; isSemiringWithoutOne) record IsCommutativeRing (+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isRing : IsRing + * - 0# 1# *-comm : Commutative * open IsRing isRing public *-isCommutativeMonoid : IsCommutativeMonoid * 1# *-isCommutativeMonoid = record { isSemigroup = *-isSemigroup ; identityˡ = *-identityˡ ; comm = *-comm } isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# isCommutativeSemiring = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isCommutativeMonoid = *-isCommutativeMonoid ; distribʳ = distribʳ ; zeroˡ = zeroˡ } open IsCommutativeSemiring isCommutativeSemiring public using ( isCommutativeSemiringWithoutOne ) ------------------------------------------------------------------------ -- Lattices -- Note that this record is not defined in terms of IsSemilattice -- because the idempotence laws of ∨ and ∧ can be derived from the -- absorption laws, which makes the corresponding "idem" fields -- redundant. The derived idempotence laws are stated and proved in -- Algebra.Properties.Lattice along with the fact that every lattice -- consists of two semilattices. record IsLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∨-comm : Commutative ∨ ∨-assoc : Associative ∨ ∨-cong : Congruent₂ ∨ ∧-comm : Commutative ∧ ∧-assoc : Associative ∧ ∧-cong : Congruent₂ ∧ absorptive : Absorptive ∨ ∧ open IsEquivalence isEquivalence public ∨-absorbs-∧ : ∨ Absorbs ∧ ∨-absorbs-∧ = proj₁ absorptive ∧-absorbs-∨ : ∧ Absorbs ∨ ∧-absorbs-∨ = proj₂ absorptive ∧-congˡ : LeftCongruent ∧ ∧-congˡ y≈z = ∧-cong refl y≈z ∧-congʳ : RightCongruent ∧ ∧-congʳ y≈z = ∧-cong y≈z refl ∨-congˡ : LeftCongruent ∨ ∨-congˡ y≈z = ∨-cong refl y≈z ∨-congʳ : RightCongruent ∨ ∨-congʳ y≈z = ∨-cong y≈z refl record IsDistributiveLattice (∨ ∧ : Op₂ A) : Set (a ⊔ ℓ) where field isLattice : IsLattice ∨ ∧ ∨-∧-distribʳ : ∨ DistributesOverʳ ∧ open IsLattice isLattice public record IsBooleanAlgebra (∨ ∧ : Op₂ A) (¬ : Op₁ A) (⊤ ⊥ : A) : Set (a ⊔ ℓ) where field isDistributiveLattice : IsDistributiveLattice ∨ ∧ ∨-complementʳ : RightInverse ⊤ ¬ ∨ ∧-complementʳ : RightInverse ⊥ ¬ ∧ ¬-cong : Congruent₁ ¬ open IsDistributiveLattice isDistributiveLattice public
28.222222
74
0.579599
2e714243fd3fc13c6d03b09a1d4a0a25dc89bc3c
1,157
agda
Agda
Categories/Monoidal/Braided.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
1
2018-12-29T21:51:57.000Z
2018-12-29T21:51:57.000Z
Categories/Monoidal/Braided.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
null
null
null
Categories/Monoidal/Braided.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --universe-polymorphism #-} module Categories.Monoidal.Braided where open import Level open import Level using (_⊔_) open import Categories.Category open import Categories.Bifunctor using (Bifunctor) open import Categories.NaturalIsomorphism open import Categories.NaturalTransformation using (_∘₁_) renaming (_≡_ to _≡ⁿ_) open import Categories.Monoidal.Helpers open import Categories.Monoidal.Braided.Helpers open import Categories.Monoidal record Braided {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) : Set (o ⊔ ℓ ⊔ e) where private module C = Category C private module M = Monoidal M open C hiding (id; identityˡ; identityʳ; assoc) open M open MonoidalHelperFunctors C ⊗ id open BraidedHelperFunctors C ⊗ id field braid : NaturalIsomorphism x⊗y y⊗x open Braiding identityˡ identityʳ assoc braid field -- NB: Triangle is redundant, proof coming soon... .hexagon₁ : (Hexagon1SideB ∘₁ (Hexagon1TopB ∘₁ Hexagon1TopA)) ≡ⁿ (Hexagon1BottomB ∘₁ (Hexagon1BottomA ∘₁ Hexagon1SideA)) .hexagon₂ : (Hexagon2SideB ∘₁ (Hexagon2TopB ∘₁ Hexagon2TopA)) ≡ⁿ (Hexagon2BottomB ∘₁ (Hexagon2BottomA ∘₁ Hexagon2SideA))
33.057143
124
0.751945
52424fd906612fc38f54e7623ef6b9b4cce06ad7
138
agda
Agda
src/higher/circle.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
20
2015-06-12T12:20:17.000Z
2022-02-01T11:25:54.000Z
src/higher/circle.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/higher/circle.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module higher.circle where open import higher.circle.core public open import higher.circle.properties public
23
43
0.782609
1afaeabbcc979a323e7e8eedaf0648c48c157833
355
agda
Agda
src/rtn.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
328
2018-09-14T20:06:09.000Z
2022-03-26T10:33:07.000Z
src/rtn.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
123
2018-09-17T10:53:20.000Z
2022-01-12T03:51:28.000Z
src/rtn.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
34
2018-09-17T11:51:36.000Z
2022-02-20T18:33:16.000Z
open import ial module rtn (gratr2-nt : Set) where gratr2-rule : Set gratr2-rule = maybe string × maybe string × maybe gratr2-nt × 𝕃 (gratr2-nt ⊎ char) record gratr2-rtn : Set where field start : gratr2-nt _eq_ : gratr2-nt → gratr2-nt → 𝔹 gratr2-start : gratr2-nt → 𝕃 gratr2-rule gratr2-return : maybe gratr2-nt → 𝕃 gratr2-rule
25.357143
83
0.667606
8bb35e8d0dbcdb57e8a62304811ae37afa3b0756
7,653
agda
Agda
core/lib/NType2.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/NType2.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
core/lib/NType2.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.Equivalence2 open import lib.Relation2 open import lib.types.Paths open import lib.types.Pi open import lib.types.Sigma open import lib.types.TLevel module lib.NType2 where module _ {i} {A : Type i} where abstract has-dec-onesided-eq-is-prop : {x : A} → is-prop (has-dec-onesided-eq x) has-dec-onesided-eq-is-prop {x = x} = inhab-to-prop-is-prop λ dec → Π-is-prop λ y → Dec-level (dec-onesided-eq-is-prop x dec y) has-dec-eq-is-prop : is-prop (has-dec-eq A) has-dec-eq-is-prop = Π-is-prop λ _ → has-dec-onesided-eq-is-prop module _ {i j} {A : Type i} {B : A → Type j} where abstract ↓-level : {a b : A} {p : a == b} {u : B a} {v : B b} {n : ℕ₋₂} → has-level (S n) (B b) → has-level n (u == v [ B ↓ p ]) ↓-level {p = idp} k = k _ _ ↓-preserves-level : {a b : A} {p : a == b} {u : B a} {v : B b} {n : ℕ₋₂} → has-level n (B b) → has-level n (u == v [ B ↓ p ]) ↓-preserves-level {p = idp} = =-preserves-level ↓-preserves-set : {a b : A} {p : a == b} {u : B a} {v : B b} → has-level 0 (B b) → has-level 0 (u == v [ B ↓ p ]) ↓-preserves-set = ↓-preserves-level prop-has-all-paths-↓ : {x y : A} {p : x == y} {u : B x} {v : B y} → (is-prop (B y) → u == v [ B ↓ p ]) prop-has-all-paths-↓ {p = idp} k = prop-has-all-paths k _ _ set-↓-has-all-paths-↓ : ∀ {k} {C : Type k} {x y : C → A} {p : (t : C) → x t == y t} {u : (t : C) → B (x t)} {v : (t : C) → B (y t)} {a b : C} {q : a == b} {α : u a == v a [ B ↓ p a ]} {β : u b == v b [ B ↓ p b ]} → (is-set (B (y a)) → α == β [ (λ t → u t == v t [ B ↓ p t ]) ↓ q ]) set-↓-has-all-paths-↓ {q = idp} = lemma _ where lemma : {x y : A} (p : x == y) {u : B x} {v : B y} {α β : u == v [ B ↓ p ]} → is-set (B y) → α == β lemma idp k = fst (k _ _ _ _) abstract -- Every map between contractible types is an equivalence contr-to-contr-is-equiv : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) → (is-contr A → is-contr B → is-equiv f) contr-to-contr-is-equiv f cA cB = is-eq f (λ _ → fst cA) (λ b → ! (snd cB _) ∙ snd cB b) (snd cA) is-contr-is-prop : ∀ {i} {A : Type i} → is-prop (is-contr A) is-contr-is-prop {A = A} = all-paths-is-prop (λ x y → pair= (snd x (fst y)) (↓-Π-cst-app-in (λ a → ↓-idf=cst-in' (lemma x (fst y) a (snd y a))))) where lemma : (x : is-contr A) (b a : A) (p : b == a) → snd x a == snd x b ∙' p lemma x b ._ idp = idp has-level-is-prop : ∀ {i} {n : ℕ₋₂} {A : Type i} → is-prop (has-level n A) has-level-is-prop {n = ⟨-2⟩} = is-contr-is-prop has-level-is-prop {n = S n} = Π-level (λ x → Π-level (λ y → has-level-is-prop)) is-prop-is-prop : ∀ {i} {A : Type i} → is-prop (is-prop A) is-prop-is-prop = has-level-is-prop is-set-is-prop : ∀ {i} {A : Type i} → is-prop (is-set A) is-set-is-prop = has-level-is-prop {- Subtypes. -} module _ {i j} {A : Type i} (P : SubtypeProp A j) where private module P = SubtypeProp P Subtype-level : ∀ {n : ℕ₋₂} → has-level (S n) A → has-level (S n) (Subtype P) Subtype-level p = Σ-level p (λ x → prop-has-level-S (P.level x)) Subtype= : (x y : Subtype P) → Type i Subtype= x y = fst x == fst y Subtype=-out : ∀ {x y : Subtype P} → Subtype= x y → x == y Subtype=-out p = pair= p (prop-has-all-paths-↓ (P.level _)) Subtype=-β : {x y : Subtype P} (p : Subtype= x y) → fst= (Subtype=-out {x = x} {y = y} p) == p Subtype=-β idp = fst=-β idp _ Subtype=-η : {x y : Subtype P} (p : x == y) → Subtype=-out (fst= p) == p Subtype=-η idp = ap (pair= idp) (contr-has-all-paths (P.level _ _ _) _ _) Subtype=-econv : (x y : Subtype P) → (Subtype= x y) ≃ (x == y) Subtype=-econv x y = equiv Subtype=-out fst= Subtype=-η Subtype=-β abstract Subtype-∙ : ∀ {x y z : Subtype P} (p : Subtype= x y) (q : Subtype= y z) → (Subtype=-out {x} {y} p ∙ Subtype=-out {y} {z} q) == Subtype=-out {x} {z} (p ∙ q) Subtype-∙ {x} {y} {z} p q = Subtype=-out p ∙ Subtype=-out q =⟨ Σ-∙ {p = p} {p' = q} (prop-has-all-paths-↓ (P.level (fst y))) (prop-has-all-paths-↓ (P.level (fst z))) ⟩ pair= (p ∙ q) (prop-has-all-paths-↓ {p = p} (P.level (fst y)) ∙ᵈ prop-has-all-paths-↓ (P.level (fst z))) =⟨ contr-has-all-paths (↓-level (P.level (fst z))) _ (prop-has-all-paths-↓ (P.level (fst z))) |in-ctx pair= (p ∙ q) ⟩ Subtype=-out (p ∙ q) =∎ -- Groupoids is-gpd : {i : ULevel} → Type i → Type i is-gpd = has-level 1 -- Type of all n-truncated types has-level-prop : ∀ {i} → ℕ₋₂ → SubtypeProp (Type i) i has-level-prop n = has-level n , λ _ → has-level-is-prop _-Type_ : (n : ℕ₋₂) (i : ULevel) → Type (lsucc i) n -Type i = Subtype (has-level-prop {i} n) hProp : (i : ULevel) → Type (lsucc i) hProp i = -1 -Type i hSet : (i : ULevel) → Type (lsucc i) hSet i = 0 -Type i _-Type₀ : (n : ℕ₋₂) → Type₁ n -Type₀ = n -Type lzero hProp₀ = hProp lzero hSet₀ = hSet lzero -- [n -Type] is an (n+1)-type abstract ≃-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → (has-level n A → has-level n B → has-level n (A ≃ B)) ≃-level {n = ⟨-2⟩} pA pB = ((cst (fst pB) , contr-to-contr-is-equiv _ pA pB) , (λ e → pair= (λ= (λ _ → snd pB _)) (from-transp is-equiv _ (fst (is-equiv-is-prop _ _))))) ≃-level {n = S n} pA pB = Σ-level (→-level pB) (λ _ → prop-has-level-S is-equiv-is-prop) ≃-is-set : ∀ {i j} {A : Type i} {B : Type j} → is-set A → is-set B → is-set (A ≃ B) ≃-is-set = ≃-level universe-=-level : ∀ {i} {n : ℕ₋₂} {A B : Type i} → (has-level n A → has-level n B → has-level n (A == B)) universe-=-level pA pB = equiv-preserves-level ua-equiv (≃-level pA pB) universe-=-is-set : ∀ {i} {A B : Type i} → (is-set A → is-set B → is-set (A == B)) universe-=-is-set = universe-=-level module _ {i} {n} where private prop : SubtypeProp {lsucc i} (Type i) i prop = has-level-prop n nType= : (A B : n -Type i) → Type (lsucc i) nType= = Subtype= prop nType=-out : {A B : n -Type i} → nType= A B → A == B nType=-out = Subtype=-out prop abstract nType=-β : {A B : n -Type i} (p : nType= A B) → fst= (nType=-out {A = A} {B = B} p) == p nType=-β = Subtype=-β prop nType=-η : {A B : n -Type i} (p : A == B) → nType=-out (fst= p) == p nType=-η = Subtype=-η prop nType=-econv : (A B : n -Type i) → (nType= A B) ≃ (A == B) nType=-econv = Subtype=-econv prop nType-∙ : {A B C : n -Type i} (p : nType= A B) (q : nType= B C) → (nType=-out {A = A} p ∙ nType=-out {A = B} q) == nType=-out {A = A} {B = C} (p ∙ q) nType-∙ = Subtype-∙ prop abstract _-Type-level_ : (n : ℕ₋₂) (i : ULevel) → has-level (S n) (n -Type i) (n -Type-level i) A B = equiv-preserves-level (nType=-econv A B) (universe-=-level (snd A) (snd B)) hProp-is-set : (i : ULevel) → is-set (hProp i) hProp-is-set i = -1 -Type-level i hSet-level : (i : ULevel) → has-level 1 (hSet i) hSet-level i = 0 -Type-level i {- The following two lemmas are in NType2 instead of NType because of cyclic dependencies -} module _ {i} {A : Type i} where abstract raise-level-<T : {m n : ℕ₋₂} → (m <T n) → has-level m A → has-level n A raise-level-<T ltS = raise-level _ raise-level-<T (ltSR lt) = raise-level _ ∘ raise-level-<T lt raise-level-≤T : {m n : ℕ₋₂} → (m ≤T n) → has-level m A → has-level n A raise-level-≤T (inl p) = transport (λ t → has-level t A) p raise-level-≤T (inr lt) = raise-level-<T lt
34.013333
115
0.519404
a0d1a92542f481b9b47bf5895efe094dbb23a051
827
agda
Agda
test/api/Issue1168.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/api/Issue1168.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/api/Issue1168.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
-- {-# OPTIONS -v 20 #-} -- {-# OPTIONS -v tc.polarity:30 #-} -- {-# OPTIONS -v tc.decl:30 #-} -- {-# OPTIONS -v tc.term:30 #-} -- {-# OPTIONS -v tc.conv.coerce:20 #-} -- {-# OPTIONS -v tc.signature:30 #-} -- {-# OPTIONS -v import.iface:100 #-} module Issue1168 where open import Agda.Primitive open import Agda.Builtin.Nat open import Agda.Builtin.Equality id : ∀{a} {A : Set a} → A → A id {A = A} a = a id2 : ∀{A : id Set} → id A → A id2 x = x plus0 : ∀ x → x + 0 ≡ x plus0 zero = refl plus0 (suc x) rewrite plus0 x = refl Identity : ∀{a} {A : Set a} (f : A → A) → Set a Identity f = ∀ x → f x ≡ x plus-0 : Identity (_+ 0) plus-0 = plus0 my-Fun : ∀{a b} (A : Set a) (F : A → Set b) → Set (a ⊔ b) my-Fun A F = (x : A) → F x syntax my-Fun A (λ x → B) = [ x ∷ A ]=> B my-id : [ A ∷ Set ]=> [ x ∷ A ]=> A my-id A x = x
21.763158
57
0.524788
043a388613eb1afe6150280f9ffe73ef73487bec
1,340
agda
Agda
src/LibraBFT/Impl/OBM/Util.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/OBM/Util.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/OBM/Util.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Impl.OBM.Rust.RustTypes open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import Util.Prelude module LibraBFT.Impl.OBM.Util where -- To tolerate f failures, cluster must contain at least n ≥ 3f + 1 nodes, -- where n − f nodes form a quorum, assuming 1 vote per node. -- Note: our Haskell implementation and our model of it support non-uniform voting power, -- that is NOT reflected in these functions, but is reflected in functions in ValidatorVerifier. numNodesNeededForNFailures : U64 -> U64 numNodesNeededForNFailures numFaultsAllowed = 3 * numFaultsAllowed + 1 checkBftAndRun : ∀ {names : Set} {b : Set} → U64 → List names → (U64 → List names → b) → Either ErrLog b checkBftAndRun numFailures authors f = if-dec length authors <? numNodesNeededForNFailures numFailures then Left fakeErr --(ErrL [ "checkBftAndRun: not enough authors for given number of failures" -- , show numFailures, show (length authors) ]) else pure (f numFailures authors)
44.666667
111
0.73806
d155cd11101f76197bb4c72c3a7a153ad3f18768
785
agda
Agda
src/Lambda/Simplified/Delay-monad/Virtual-machine.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
2
2020-05-21T22:59:18.000Z
2020-07-03T08:56:08.000Z
src/Lambda/Simplified/Delay-monad/Virtual-machine.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
src/Lambda/Simplified/Delay-monad/Virtual-machine.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A virtual machine ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Lambda.Simplified.Delay-monad.Virtual-machine where open import Equality.Propositional open import Prelude open import Monad equality-with-J open import Delay-monad open import Delay-monad.Monad open import Lambda.Simplified.Delay-monad.Interpreter open import Lambda.Simplified.Syntax open import Lambda.Simplified.Virtual-machine open Closure Code -- A functional semantics for the VM. exec : ∀ {i} → State → Delay (Maybe Value) i exec s with step s ... | continue s′ = later λ { .force → exec s′ } ... | done v = return (just v) ... | crash = return nothing
26.166667
72
0.592357
41016caf5a662e986166cce8b41908617ff86398
404
agda
Agda
test/asset/agda-stdlib-1.0/Data/Vec/All/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Vec/All/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Vec/All/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Unary.All.Properties directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.All.Properties where open import Data.Vec.Relation.Unary.All.Properties public
31.076923
72
0.477723
1abc1eda74d2cb0808d4d7bc2cc3c525e770f867
3,871
agda
Agda
prototyping/Luau/TypeCheck.agda
Libertus-Lab/luau
f1b46f4b967f11fabe666da1de0e71b225368260
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/Luau/TypeCheck.agda
sthagen/Roblox-luau
39fbd2146a379fb0878369b48764cd7e8772c0fb
[ "MIT" ]
null
null
null
prototyping/Luau/TypeCheck.agda
sthagen/Roblox-luau
39fbd2146a379fb0878369b48764cd7e8772c0fb
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Luau.TypeCheck where open import Agda.Builtin.Equality using (_≡_) open import FFI.Data.Either using (Either; Left; Right) open import FFI.Data.Maybe using (Maybe; just) open import Luau.ResolveOverloads using (resolve) open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··) open import Luau.Var using (Var) open import Luau.Addr using (Addr) open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ) open import Luau.Type using (Type; nil; unknown; number; boolean; string; _⇒_) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ) open import FFI.Data.Vector using (Vector) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Properties.DecSubtyping using (dec-subtyping) open import Properties.Product using (_×_; _,_) orUnknown : Maybe Type → Type orUnknown nothing = unknown orUnknown (just T) = T srcBinOp : BinaryOperator → Type srcBinOp + = number srcBinOp - = number srcBinOp * = number srcBinOp / = number srcBinOp < = number srcBinOp > = number srcBinOp == = unknown srcBinOp ~= = unknown srcBinOp <= = number srcBinOp >= = number srcBinOp ·· = string tgtBinOp : BinaryOperator → Type tgtBinOp + = number tgtBinOp - = number tgtBinOp * = number tgtBinOp / = number tgtBinOp < = boolean tgtBinOp > = boolean tgtBinOp == = boolean tgtBinOp ~= = boolean tgtBinOp <= = boolean tgtBinOp >= = boolean tgtBinOp ·· = string data _⊢ᴮ_∈_ : VarCtxt → Block yes → Type → Set data _⊢ᴱ_∈_ : VarCtxt → Expr yes → Type → Set data _⊢ᴮ_∈_ where done : ∀ {Γ} → --------------- Γ ⊢ᴮ done ∈ nil return : ∀ {M B T U Γ} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴮ B ∈ U → --------------------- Γ ⊢ᴮ return M ∙ B ∈ T local : ∀ {x M B T U V Γ} → Γ ⊢ᴱ M ∈ U → (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V → -------------------------------- Γ ⊢ᴮ local var x ∈ T ← M ∙ B ∈ V function : ∀ {f x B C T U V W Γ} → (Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V → (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W → ------------------------------------------------- Γ ⊢ᴮ function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B ∈ W data _⊢ᴱ_∈_ where nil : ∀ {Γ} → -------------------- Γ ⊢ᴱ (val nil) ∈ nil var : ∀ {x T Γ} → T ≡ orUnknown(Γ [ x ]ⱽ) → ---------------- Γ ⊢ᴱ (var x) ∈ T addr : ∀ {a Γ} T → ----------------- Γ ⊢ᴱ val(addr a) ∈ T number : ∀ {n Γ} → --------------------------- Γ ⊢ᴱ val(number n) ∈ number bool : ∀ {b Γ} → -------------------------- Γ ⊢ᴱ val(bool b) ∈ boolean string : ∀ {x Γ} → --------------------------- Γ ⊢ᴱ val(string x) ∈ string app : ∀ {M N T U Γ} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴱ N ∈ U → ---------------------------- Γ ⊢ᴱ (M $ N) ∈ (resolve T U) function : ∀ {f x B T U V Γ} → (Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V → ----------------------------------------------------- Γ ⊢ᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U) block : ∀ {b B T U Γ} → Γ ⊢ᴮ B ∈ U → ------------------------------------ Γ ⊢ᴱ (block var b ∈ T is B end) ∈ T binexp : ∀ {op Γ M N T U} → Γ ⊢ᴱ M ∈ T → Γ ⊢ᴱ N ∈ U → ---------------------------------- Γ ⊢ᴱ (binexp M op N) ∈ tgtBinOp op data ⊢ᴼ_ : Maybe(Object yes) → Set where nothing : --------- ⊢ᴼ nothing function : ∀ {f x T U V B} → (x ↦ T) ⊢ᴮ B ∈ V → ---------------------------------------------- ⊢ᴼ (just function f ⟨ var x ∈ T ⟩∈ U is B end) ⊢ᴴ_ : Heap yes → Set ⊢ᴴ H = ∀ a {O} → (H [ a ]ᴴ ≡ O) → (⊢ᴼ O) _⊢ᴴᴱ_▷_∈_ : VarCtxt → Heap yes → Expr yes → Type → Set (Γ ⊢ᴴᴱ H ▷ M ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴱ M ∈ T) _⊢ᴴᴮ_▷_∈_ : VarCtxt → Heap yes → Block yes → Type → Set (Γ ⊢ᴴᴮ H ▷ B ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴮ B ∈ T)
24.043478
246
0.484629
8b01fae9fdd139a3ec364fd9c0af9eff8be5694b
35
agda
Agda
test/LaTeXAndHTML/succeed/%41.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LaTeXAndHTML/succeed/%41.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LaTeXAndHTML/succeed/%41.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module %41 where A : Set₁ A = Set
7
16
0.628571
382280e6e83b50aa3aedf2c953473e64356b8f7e
961
agda
Agda
test/Fail/Issue2059i.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2059i.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2059i.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-06-26, issue #2059 reported by IanOrton -- An irrelevant parameter in a rewrite rule should still -- be bound by the lhs. {-# OPTIONS --rewriting #-} -- {-# OPTIONS -v tc.pos:10 #-} -- {-# OPTIONS -v tc.polarity:10 #-} open import Common.Equality open import Common.Bool data ⊥ : Set where ⊥-elim : ∀{a}{A : Set a} → .⊥ → A ⊥-elim () _∧_ : (a b : Bool) → Bool true ∧ b = b false ∧ _ = false obvious : (b b' : Bool) .(p : b ≡ b' → ⊥) → (b ∧ b') ≡ false obvious false b' notEq = refl obvious true false notEq = refl obvious true true notEq = ⊥-elim (notEq refl) {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE obvious #-} -- Should give error: -- obvious is not a legal rewrite rule, -- since the following variables are not bound by the left hand side: p -- when checking the pragma REWRITE obvious oops : (b : Bool) → b ∧ b ≡ false oops b = refl true≢false : true ≡ false → ⊥ true≢false () bot : ⊥ bot = true≢false (oops true)
21.355556
72
0.620187
039618c668be326ae990c69f6f6bae5aca099dc9
2,512
agda
Agda
agda-stdlib/src/Codata/Conat.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Codata/Conat.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Codata/Conat.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- The Conat type and some operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Conat where open import Size open import Codata.Thunk open import Data.Nat.Base using (ℕ ; zero ; suc) open import Relation.Nullary ------------------------------------------------------------------------ -- Definition and first values data Conat (i : Size) : Set where zero : Conat i suc : Thunk Conat i → Conat i infinity : ∀ {i} → Conat i infinity = suc λ where .force → infinity fromℕ : ℕ → Conat ∞ fromℕ zero = zero fromℕ (suc n) = suc λ where .force → fromℕ n ------------------------------------------------------------------------ -- Arithmetic operations pred : ∀ {i} {j : Size< i} → Conat i → Conat j pred zero = zero pred (suc n) = n .force infixl 6 _∸_ _+_ infixl 7 _*_ _∸_ : Conat ∞ → ℕ → Conat ∞ m ∸ zero = m m ∸ suc n = pred m ∸ n _ℕ+_ : ℕ → ∀ {i} → Conat i → Conat i zero ℕ+ n = n suc m ℕ+ n = suc λ where .force → m ℕ+ n _+ℕ_ : ∀ {i} → Conat i → ℕ → Conat i zero +ℕ n = fromℕ n suc m +ℕ n = suc λ where .force → (m .force) +ℕ n _+_ : ∀ {i} → Conat i → Conat i → Conat i zero + n = n suc m + n = suc λ where .force → (m .force) + n _*_ : ∀ {i} → Conat i → Conat i → Conat i m * zero = zero zero * n = zero suc m * suc n = suc λ where .force → n .force + (m .force * suc n) -- Max and Min infixl 6 _⊔_ infixl 7 _⊓_ _⊔_ : ∀ {i} → Conat i → Conat i → Conat i zero ⊔ n = n m ⊔ zero = m suc m ⊔ suc n = suc λ where .force → m .force ⊔ n .force _⊓_ : ∀ {i} → Conat i → Conat i → Conat i zero ⊓ n = zero m ⊓ zero = zero suc m ⊓ suc n = suc λ where .force → m .force ⊓ n .force ------------------------------------------------------------------------ -- Finiteness data Finite : Conat ∞ → Set where zero : Finite zero suc : ∀ {n} → Finite (n .force) → Finite (suc n) toℕ : ∀ {n} → Finite n → ℕ toℕ zero = zero toℕ (suc n) = suc (toℕ n) ¬Finite∞ : ¬ (Finite infinity) ¬Finite∞ (suc p) = ¬Finite∞ p ------------------------------------------------------------------------ -- Order wrt to Nat data _ℕ≤_ : ℕ → Conat ∞ → Set where zℕ≤n : ∀ {n} → zero ℕ≤ n sℕ≤s : ∀ {k n} → k ℕ≤ n .force → suc k ℕ≤ suc n _ℕ<_ : ℕ → Conat ∞ → Set k ℕ< n = suc k ℕ≤ n _ℕ≤infinity : ∀ k → k ℕ≤ infinity zero ℕ≤infinity = zℕ≤n suc k ℕ≤infinity = sℕ≤s (k ℕ≤infinity)
24.153846
72
0.472532
03aa341f6e05b1444481106d69c2dd334c6abd8a
12,088
agda
Agda
Cubical/HITs/PropositionalTruncation/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/HITs/PropositionalTruncation/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
Cubical/HITs/PropositionalTruncation/Properties.agda
Edlyr/cubical
5de11df25b79ee49d5c084fbbe6dfc66e4147a2e
[ "MIT" ]
null
null
null
{- This file contains: - Eliminator for propositional truncation -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.PropositionalTruncation.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation.Base private variable ℓ : Level A B C : Type ℓ ∥∥-isPropDep : (P : A → Type ℓ) → isOfHLevelDep 1 (λ x → ∥ P x ∥) ∥∥-isPropDep P = isOfHLevel→isOfHLevelDep 1 (λ _ → squash) rec : {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P rec Pprop f ∣ x ∣ = f x rec Pprop f (squash x y i) = Pprop (rec Pprop f x) (rec Pprop f y) i rec2 : {P : Type ℓ} → isProp P → (A → B → P) → ∥ A ∥ → ∥ B ∥ → P rec2 Pprop f ∣ x ∣ ∣ y ∣ = f x y rec2 Pprop f ∣ x ∣ (squash y z i) = Pprop (rec2 Pprop f ∣ x ∣ y) (rec2 Pprop f ∣ x ∣ z) i rec2 Pprop f (squash x y i) z = Pprop (rec2 Pprop f x z) (rec2 Pprop f y z) i -- Old version -- rec2 : ∀ {P : Type ℓ} → isProp P → (A → A → P) → ∥ A ∥ → ∥ A ∥ → P -- rec2 Pprop f = rec (isProp→ Pprop) (λ a → rec Pprop (f a)) elim : {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim Pprop f ∣ x ∣ = f x elim Pprop f (squash x y i) = isOfHLevel→isOfHLevelDep 1 Pprop (elim Pprop f x) (elim Pprop f y) (squash x y) i elim2 : {P : ∥ A ∥ → ∥ A ∥ → Type ℓ} (Bset : ((x y : ∥ A ∥) → isProp (P x y))) (f : (a b : A) → P ∣ a ∣ ∣ b ∣) (x y : ∥ A ∥) → P x y elim2 Pprop f = elim (λ _ → isPropΠ (λ _ → Pprop _ _)) (λ a → elim (λ _ → Pprop _ _) (f a)) elim3 : {P : ∥ A ∥ → ∥ A ∥ → ∥ A ∥ → Type ℓ} (Bset : ((x y z : ∥ A ∥) → isProp (P x y z))) (g : (a b c : A) → P (∣ a ∣) ∣ b ∣ ∣ c ∣) (x y z : ∥ A ∥) → P x y z elim3 Pprop g = elim2 (λ _ _ → isPropΠ (λ _ → Pprop _ _ _)) (λ a b → elim (λ _ → Pprop _ _ _) (g a b)) propTruncIsProp : isProp ∥ A ∥ propTruncIsProp x y = squash x y propTruncIdempotent≃ : isProp A → ∥ A ∥ ≃ A propTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isProp→isSet propTruncIsProp _ _) (λ _ → refl) propTruncIdempotent : isProp A → ∥ A ∥ ≡ A propTruncIdempotent hA = ua (propTruncIdempotent≃ hA) -- We could also define the eliminator using the recursor elim' : {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) → ((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a elim' {P = P} Pprop f a = rec (Pprop a) (λ x → transp (λ i → P (squash ∣ x ∣ a i)) i0 (f x)) a map : (A → B) → (∥ A ∥ → ∥ B ∥) map f = rec squash (∣_∣ ∘ f) map2 : (A → B → C) → (∥ A ∥ → ∥ B ∥ → ∥ C ∥) map2 f = rec (isPropΠ λ _ → squash) (map ∘ f) -- The propositional truncation can be eliminated into non-propositional -- types as long as the function used in the eliminator is 'coherently -- constant.' The details of this can be found in the following paper: -- -- https://arxiv.org/pdf/1411.2682.pdf module SetElim (Bset : isSet B) where Bset' : isSet' B Bset' = isSet→isSet' Bset rec→Set : (f : A → B) (kf : 2-Constant f) → ∥ A ∥ → B helper : (f : A → B) (kf : 2-Constant f) → (t u : ∥ A ∥) → rec→Set f kf t ≡ rec→Set f kf u rec→Set f kf ∣ x ∣ = f x rec→Set f kf (squash t u i) = helper f kf t u i helper f kf ∣ x ∣ ∣ y ∣ = kf x y helper f kf (squash t u i) v = Bset' (helper f kf t v) (helper f kf u v) (helper f kf t u) refl i helper f kf t (squash u v i) = Bset' (helper f kf t u) (helper f kf t v) refl (helper f kf u v) i kcomp : (f : ∥ A ∥ → B) → 2-Constant (f ∘ ∣_∣) kcomp f x y = cong f (squash ∣ x ∣ ∣ y ∣) Fset : isSet (A → B) Fset = isSetΠ (const Bset) Kset : (f : A → B) → isSet (2-Constant f) Kset f = isSetΠ (λ _ → isSetΠ (λ _ → isProp→isSet (Bset _ _))) setRecLemma : (f : ∥ A ∥ → B) → rec→Set (f ∘ ∣_∣) (kcomp f) ≡ f setRecLemma f i t = elim {P = λ t → rec→Set (f ∘ ∣_∣) (kcomp f) t ≡ f t} (λ t → Bset _ _) (λ x → refl) t i mkKmap : (∥ A ∥ → B) → Σ (A → B) 2-Constant mkKmap f = f ∘ ∣_∣ , kcomp f fib : (g : Σ (A → B) 2-Constant) → fiber mkKmap g fib (g , kg) = rec→Set g kg , refl eqv : (g : Σ (A → B) 2-Constant) → ∀ fi → fib g ≡ fi eqv g (f , p) = Σ≡Prop (λ f → isOfHLevelΣ 2 Fset Kset _ _) (cong (uncurry rec→Set) (sym p) ∙ setRecLemma f) trunc→Set≃ : (∥ A ∥ → B) ≃ (Σ (A → B) 2-Constant) trunc→Set≃ .fst = mkKmap trunc→Set≃ .snd .equiv-proof g = fib g , eqv g -- The strategy of this equivalence proof follows the paper more closely. -- It is used further down for the groupoid version, because the above -- strategy does not generalize so easily. e : B → Σ (A → B) 2-Constant e b = const b , λ _ _ → refl eval : A → (γ : Σ (A → B) 2-Constant) → B eval a₀ (g , _) = g a₀ e-eval : ∀ (a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , kg) i .fst a₁ = kg a₀ a₁ i e-eval a₀ (g , kg) i .snd a₁ a₂ = Bset' refl (kg a₁ a₂) (kg a₀ a₁) (kg a₀ a₂) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₁ : ∥ A ∥ → B ≃ Σ (A → B) 2-Constant preEquiv₁ t = e , rec (isPropIsEquiv e) e-isEquiv t preEquiv₂ : (∥ A ∥ → Σ (A → B) 2-Constant) ≃ Σ (A → B) 2-Constant preEquiv₂ = isoToEquiv (iso to const (λ _ → refl) retr) where to : (∥ A ∥ → Σ (A → B) 2-Constant) → Σ (A → B) 2-Constant to f .fst x = f ∣ x ∣ .fst x to f .snd x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd x y i retr : retract to const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd x y = Bset' (λ j → f (squash ∣ x ∣ ∣ y ∣ j) .snd x y j) (f t .snd x y) (λ j → f (squash ∣ x ∣ t j) .fst x) (λ j → f (squash ∣ y ∣ t j) .fst y) i trunc→Set≃₂ : (∥ A ∥ → B) ≃ Σ (A → B) 2-Constant trunc→Set≃₂ = compEquiv (equivΠCod preEquiv₁) preEquiv₂ open SetElim public using (rec→Set; trunc→Set≃) elim→Set : {P : ∥ A ∥ → Type ℓ} → (∀ t → isSet (P t)) → (f : (x : A) → P ∣ x ∣) → (kf : ∀ x y → PathP (λ i → P (squash ∣ x ∣ ∣ y ∣ i)) (f x) (f y)) → (t : ∥ A ∥) → P t elim→Set {A = A} {P = P} Pset f kf t = rec→Set (Pset t) g gk t where g : A → P t g x = transp (λ i → P (squash ∣ x ∣ t i)) i0 (f x) gk : 2-Constant g gk x y i = transp (λ j → P (squash (squash ∣ x ∣ ∣ y ∣ i) t j)) i0 (kf x y i) RecHProp : (P : A → hProp ℓ) (kP : ∀ x y → P x ≡ P y) → ∥ A ∥ → hProp ℓ RecHProp P kP = rec→Set isSetHProp P kP module GpdElim (Bgpd : isGroupoid B) where Bgpd' : isGroupoid' B Bgpd' = isGroupoid→isGroupoid' Bgpd module _ (f : A → B) (3kf : 3-Constant f) where open 3-Constant 3kf rec→Gpd : ∥ A ∥ → B pathHelper : (t u : ∥ A ∥) → rec→Gpd t ≡ rec→Gpd u triHelper₁ : (t u v : ∥ A ∥) → Square (pathHelper t u) (pathHelper t v) refl (pathHelper u v) triHelper₂ : (t u v : ∥ A ∥) → Square (pathHelper t v) (pathHelper u v) (pathHelper t u) refl rec→Gpd ∣ x ∣ = f x rec→Gpd (squash t u i) = pathHelper t u i pathHelper ∣ x ∣ ∣ y ∣ = link x y pathHelper (squash t u j) v = triHelper₂ t u v j pathHelper ∣ x ∣ (squash u v j) = triHelper₁ ∣ x ∣ u v j triHelper₁ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₁ x y z triHelper₁ (squash s t i) u v = Bgpd' (triHelper₁ s u v) (triHelper₁ t u v) (triHelper₂ s t u) (triHelper₂ s t v) (λ i → refl) (λ i → pathHelper u v) i triHelper₁ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₁ ∣ x ∣ t v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ x ∣ t u) (λ i → pathHelper ∣ x ∣ v) (λ i → refl) (triHelper₂ t u v) i triHelper₁ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₁ ∣ x ∣ ∣ y ∣ u) (triHelper₁ ∣ x ∣ ∣ y ∣ v) (λ i → link x y) (triHelper₁ ∣ x ∣ u v) (λ i → refl) (triHelper₁ ∣ y ∣ u v) i triHelper₂ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₂ x y z triHelper₂ (squash s t i) u v = Bgpd' (triHelper₂ s u v) (triHelper₂ t u v) (triHelper₂ s t v) (λ i → pathHelper u v) (triHelper₂ s t u) (λ i → refl) i triHelper₂ ∣ x ∣ (squash t u i) v = Bgpd' (triHelper₂ ∣ x ∣ t v) (triHelper₂ ∣ x ∣ u v) (λ i → pathHelper ∣ x ∣ v) (triHelper₂ t u v) (triHelper₁ ∣ x ∣ t u) (λ i → refl) i triHelper₂ ∣ x ∣ ∣ y ∣ (squash u v i) = Bgpd' (triHelper₂ ∣ x ∣ ∣ y ∣ u) (triHelper₂ ∣ x ∣ ∣ y ∣ v) (triHelper₁ ∣ x ∣ u v) (triHelper₁ ∣ y ∣ u v) (λ i → link x y) (λ i → refl) i preEquiv₁ : (∥ A ∥ → Σ (A → B) 3-Constant) ≃ Σ (A → B) 3-Constant preEquiv₁ = isoToEquiv (iso fn const (λ _ → refl) retr) where open 3-Constant fn : (∥ A ∥ → Σ (A → B) 3-Constant) → Σ (A → B) 3-Constant fn f .fst x = f ∣ x ∣ .fst x fn f .snd .link x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd .link x y i fn f .snd .coh₁ x y z i j = f (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) .snd .coh₁ x y z i j retr : retract fn const retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x retr f i t .snd .link x y j = f (squash (squash ∣ x ∣ ∣ y ∣ j) t i) .snd .link x y j retr f i t .snd .coh₁ x y z = Bgpd' (λ k j → f (cb k j i0) .snd .coh₁ x y z k j ) (λ k j → f (cb k j i1) .snd .coh₁ x y z k j) (λ k j → f (cb i0 j k) .snd .link x y j) (λ k j → f (cb i1 j k) .snd .link x z j) (λ _ → refl) (λ k j → f (cb j i1 k) .snd .link y z j) i where cb : I → I → I → ∥ _ ∥ cb i j k = squash (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) t k e : B → Σ (A → B) 3-Constant e b .fst _ = b e b .snd = record { link = λ _ _ _ → b ; coh₁ = λ _ _ _ _ _ → b } eval : A → Σ (A → B) 3-Constant → B eval a₀ (g , _) = g a₀ module _ where open 3-Constant e-eval : ∀(a₀ : A) γ → e (eval a₀ γ) ≡ γ e-eval a₀ (g , 3kg) i .fst x = 3kg .link a₀ x i e-eval a₀ (g , 3kg) i .snd .link x y = λ j → 3kg .coh₁ a₀ x y j i e-eval a₀ (g , 3kg) i .snd .coh₁ x y z = Bgpd' (λ _ _ → g a₀) (3kg .coh₁ x y z) (λ k j → 3kg .coh₁ a₀ x y j k) (λ k j → 3kg .coh₁ a₀ x z j k) (λ _ → refl) (λ k j → 3kg .coh₁ a₀ y z j k) i e-isEquiv : A → isEquiv (e {A = A}) e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl) preEquiv₂ : ∥ A ∥ → B ≃ Σ (A → B) 3-Constant preEquiv₂ t = e , rec (isPropIsEquiv e) e-isEquiv t trunc→Gpd≃ : (∥ A ∥ → B) ≃ Σ (A → B) 3-Constant trunc→Gpd≃ = compEquiv (equivΠCod preEquiv₂) preEquiv₁ open GpdElim using (rec→Gpd; trunc→Gpd≃) public squashᵗ : ∀(x y z : A) → Square (squash ∣ x ∣ ∣ y ∣) (squash ∣ x ∣ ∣ z ∣) refl (squash ∣ y ∣ ∣ z ∣) squashᵗ x y z i = squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) elim→Gpd : (P : ∥ A ∥ → Type ℓ) → (∀ t → isGroupoid (P t)) → (f : (x : A) → P ∣ x ∣) → (kf : ∀ x y → PathP (λ i → P (squash ∣ x ∣ ∣ y ∣ i)) (f x) (f y)) → (3kf : ∀ x y z → SquareP (λ i j → P (squashᵗ x y z i j)) (kf x y) (kf x z) refl (kf y z)) → (t : ∥ A ∥) → P t elim→Gpd {A = A} P Pgpd f kf 3kf t = rec→Gpd (Pgpd t) g 3kg t where g : A → P t g x = transp (λ i → P (squash ∣ x ∣ t i)) i0 (f x) open 3-Constant 3kg : 3-Constant g 3kg .link x y i = transp (λ j → P (squash (squash ∣ x ∣ ∣ y ∣ i) t j)) i0 (kf x y i) 3kg .coh₁ x y z i j = transp (λ k → P (squash (squashᵗ x y z i j) t k)) i0 (3kf x y z i j) RecHSet : (P : A → TypeOfHLevel ℓ 2) → 3-Constant P → ∥ A ∥ → TypeOfHLevel ℓ 2 RecHSet P 3kP = rec→Gpd (isOfHLevelTypeOfHLevel 2) P 3kP
31.978836
89
0.50091
d1bd7cbd060bef3bbe5ea5ac637870f2f0e2069c
6,998
agda
Agda
nicolai/thesis/Anonymous_Existence.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/thesis/Anonymous_Existence.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/thesis/Anonymous_Existence.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Sigma open import lib.NType2 open import Preliminaries open import Truncation_Level_Criteria module Anonymous_Existence_CollSplit where -- CHAPTER 4 -- SECTION 4.1 -- Lemma 4.1.2, part 1 constant-implies-path-constant : ∀ {i j} {X : Type i} {Y : Type j} → (f : X → Y) → (const f) → (x₁ x₂ : X) → const (ap f {x = x₁} {y = x₂}) constant-implies-path-constant {X = X} f c x₁ x₂ p₁ p₂ = claim-cor where claim : {x₃ x₄ : X} → {p : x₃ == x₄} → (ap f p) == ! (c x₃ x₃) ∙ (c x₃ x₄) claim {x₃} {p = idp} = ! (!-inv-l (c x₃ x₃)) claim-cor : ap f p₁ == ap f p₂ claim-cor = ap f p₁ =⟨ claim ⟩ ! (c x₁ x₁) ∙ (c x₁ x₂) =⟨ ! claim ⟩ ap f p₂ ∎ -- Lemma 4.1.2, part 2 constant-refl : ∀ {i j} {X : Type i} {Y : Type j} → (f : X → Y) → (const f) → (x : X) → (p : x == x) → ap f p == idp constant-refl f c x p = constant-implies-path-constant f c x x p idp -- todo: this is not in the library? -- We also need the following very simple lemma: ap-id-trivial : ∀ {i} {X : Type i} → {x₁ x₂ : X} → (p : x₁ == x₂) → ap (idf X) p == p ap-id-trivial idp = idp -- Main Lemma 4.1.1 needs a bit of preparation. fix : ∀ {i} {X : Type i} → (f : X → X) → Type i fix {X = X} f = Σ X λ x → x == f x -- let us give a name to the map X → fix f: to-fix : ∀ {i} {X : Type i} → (f : X → X) → (const f) → X → fix f to-fix f c x₀ = f x₀ , c _ _ -- the other direction is just projection: from-fix : ∀ {i} {X : Type i} → (f : X → X) → fix f → X from-fix f (x₀ , p₀) = x₀ -- let us structure the proof of the fixed point lemma a bit: module fixedpoint {i : ULevel} {X : Type i} (f : X → X) (c : const f) where -- let us show that (x , p) == (x , q) first module _ (x : X) (p q : x == f x) where t : x == x t = p ∙ ! q r : f x == f x r = ap f t r-is-triv : r == idp r-is-triv = constant-refl f c x t t' : x == x t' = ap (idf X) t t'-is-t : t' == t t'-is-t = ap-id-trivial t trans-t-p-is-q : transport (λ y → y == f y) t p == q trans-t-p-is-q = transport (λ y → y == f y) t p =⟨ transport-is-comp (idf X) f t p ⟩ ! t' ∙ p ∙ r =⟨ ap (λ s → ! s ∙ p ∙ r) t'-is-t ⟩ ! t ∙ p ∙ r =⟨ ! (∙-assoc (! t) _ _) ⟩ (! t ∙ p) ∙ r =⟨ ap (λ s → (! t ∙ p) ∙ s) r-is-triv ⟩ (! t ∙ p) ∙ idp =⟨ ∙-unit-r _ ⟩ ! t ∙ p =⟨ ap (λ s → s ∙ p) (!-∙ p (! q)) ⟩ (! (! q) ∙ ! p) ∙ p =⟨ ∙-assoc (! (! q)) _ _ ⟩ ! (! q) ∙ ! p ∙ p =⟨ ap (λ s → ! (! q) ∙ s) (!-inv-l p) ⟩ ! (! q) ∙ idp =⟨ ∙-unit-r _ ⟩ ! (! q) =⟨ !-! _ ⟩ q ∎ single-x-claim : (x , p) == (x , q) single-x-claim = pair= t (from-transp _ _ trans-t-p-is-q) -- Now, we can prove that (x₁ , p₁) and (x₂ , p₂) are always equal: fix-paths : has-all-paths (fix f) fix-paths (x₁ , p₁) (x₂ , p₂) = (x₁ , p₁) =⟨ pair= (p₁ ∙ c x₁ x₂ ∙ ! p₂) (from-transp _ (p₁ ∙ c x₁ x₂ ∙ ! p₂) idp) ⟩ (x₂ , _) =⟨ single-x-claim x₂ _ _ ⟩ (x₂ , p₂) ∎ -- finally, the proof of the fixed point lemma fixed-point : ∀ {i} {X : Type i} → (f : X → X) → (const f) → is-prop (fix f) fixed-point {X = X} f c = all-paths-is-prop (fixedpoint.fix-paths f c) -- Sattler's argument fixed-point-alt : ∀ {i} {X : Type i} → (f : X → X) → (const f) → is-prop (fix f) fixed-point-alt {X = X} f c = inhab-to-contr-is-prop inh→contr where inh→contr : fix f → is-contr (fix f) inh→contr (x₀ , p₀) = equiv-preserves-level {A = Σ X λ x → x == f x₀} {B = fix f} claim-Σ (pathto-is-contr _) where claim : (x : X) → (x == f x₀) ≃ (x == f x) claim x = (λ p → p ∙ c x₀ x) , post∙-is-equiv _ claim-Σ : (Σ X λ x → x == f x₀) ≃ fix f claim-Σ = equiv-Σ-snd claim --from here, we need truncation module with-weak-trunc where open wtrunc -- Corollary 4.1.3 -- let us define the following map: trunc-to-fix : ∀ {i} {X : Type i} → (fc : coll X) → ∣∣ X ∣∣ → fix (fst fc) trunc-to-fix (f , c) z = tr-rec (fixed-point f c) (to-fix f c) z coll→splitSup : ∀ {i} {X : Type i} → coll X → splitSup X coll→splitSup (f , c) = (from-fix f) ∘ trunc-to-fix (f , c) -- Theorem 4.1.4 coll↔splitSup : ∀ {i} {X : Type i} → coll X ↔ splitSup X coll↔splitSup {X = X} = coll→splitSup , splitSup→coll where splitSup→coll : splitSup X → coll X splitSup→coll hst = f , c where f = hst ∘ ∣_∣ c : const f c x₁ x₂ = f x₁ =⟨ idp ⟩ hst ∣ x₁ ∣ =⟨ ap hst (prop-has-all-paths tr-is-prop _ _) ⟩ hst ∣ x₂ ∣ =⟨ idp ⟩ f x₂ ∎ -- preparation for Statement 4.1.5 - we need to prove that -- f : X → X with an inhabitant of ∣∣ const f ∣∣ is enough -- to show that fix f is propositional. fixed-point-strong : ∀ {i} {X : Type i} → (f : X → X) → ∣∣ const f ∣∣ → is-prop (fix f) fixed-point-strong {X = X} f = tr-rec {X = const f} {P = is-prop(fix f)} is-prop-is-prop (fixed-point f) -- Statement 4.1.5 (we exclude the part which is already included in Theorem 4.1.4) -- to get an easy proof of the addendum, we structure it in the following way: module thm46 {i : ULevel} {X : Type i} where module _ (fhc : Σ (X → X) (λ f → ∣∣ const f ∣∣)) where f = fst fhc hc = snd fhc trunc-const-fix : ∣∣ X ∣∣ → ∣∣ const f ∣∣ → fix f trunc-const-fix z = tr-rec {X = const f} {P = fix f} (fixed-point-strong f hc) (λ c → trunc-to-fix (f , c) z) trunc-fix : ∣∣ X ∣∣ → fix f trunc-fix z = trunc-const-fix z hc g : X → X g = fst ∘ trunc-fix ∘ ∣_∣ g-const : const g g-const x₁ x₂ = ap (fst ∘ trunc-fix) (prop-has-all-paths tr-is-prop _ _) coll↔hideProof : ∀ {i} {X : Type i} → coll X ↔ Σ (X → X) (λ f → ∣∣ const f ∣∣) coll↔hideProof {X = X} = one , two where one : coll X → Σ (X → X) (λ f → ∣∣ const f ∣∣) one (f , c) = f , ∣ c ∣ two : (Σ (X → X) (λ f → ∣∣ const f ∣∣)) → coll X two fhc = thm46.g fhc , thm46.g-const fhc -- Statement 4.1.5 addendum merely-equal : ∀ {i} {X : Type i} → (fhc : Σ (X → X) (λ f → ∣∣ const f ∣∣)) → ∣∣ ((x : X) → fst fhc x == thm46.g fhc x) ∣∣ merely-equal {X = X} (f , hc) = tr-rec tr-is-prop (∣_∣ ∘ const-equal) hc where open thm46 const-equal : const f → (x : X) → f x == thm46.g (f , hc) x const-equal c x = f x =⟨ idp ⟩ fst (to-fix f c x) =⟨ ap fst (! (trunc-β _ _ x)) ⟩ fst (trunc-to-fix (f , c) ∣ x ∣) =⟨ ap fst (! (trunc-β _ _ c)) ⟩ fst (trunc-const-fix (f , hc) ∣ x ∣ ∣ c ∣) =⟨ ap (λ hc' → fst (trunc-const-fix (f , hc) ∣ x ∣ hc')) (prop-has-all-paths tr-is-prop _ _) ⟩ fst (trunc-const-fix (f , hc) ∣ x ∣ hc) =⟨ idp ⟩ fst (trunc-fix (f , hc) ∣ x ∣) =⟨ idp ⟩ g (f , hc) x ∎
39.536723
144
0.481566
13dcc9fd443005f7723679c182d80df9803136dd
23,462
agda
Agda
Sets/FinSet/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Sets/FinSet/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Sets/FinSet/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Functions.Definition open import Functions.Lemmas open import LogicalFormulae open import Numbers.Naturals.Definition open import Numbers.Naturals.Order open import Sets.FinSet.Definition module Sets.FinSet.Lemmas where fneSymmetric : {n : ℕ} → {a b : FinSet (succ n)} → FinNotEquals a b → FinNotEquals b a fneSymmetric {.1} {.a1} {.b1} (fne2 a1 b1 (inl x)) = fne2 b1 a1 (inr x) fneSymmetric {.1} {.a1} {.b1} (fne2 a1 b1 (inr x)) = fne2 b1 a1 (inl x) fneSymmetric {.(succ (succ _))} {.fzero} {b} (fneN .fzero b (inl (inl (refl ,, snd)))) = fneN b fzero (inl (inr (snd ,, refl))) fneSymmetric {.(succ (succ _))} {a} {.fzero} (fneN a .fzero (inl (inr (fst ,, refl)))) = fneN fzero a (inl (inl (refl ,, fst))) fneSymmetric {.(succ (succ _))} {a} {b} (fneN a b (inr ((fst ,, snd) , record { one = o ; two = p ; three = q }))) = fneN b a (inr ((snd ,, fst) , record { one = p ; two = o ; three = fneSymmetric q })) private underlyingProof : {l m : _} {L : Set l} {pr : L → Set m} → (a : Sg L pr) → pr (underlying a) underlyingProof (a , b) = b finSetNotEquals : {n : ℕ} → {a b : FinSet (succ n)} → (a ≡ b → False) → FinNotEquals {n} a b finSetNotEquals {zero} {fzero} {fzero} pr = exFalso (pr refl) finSetNotEquals {zero} {fzero} {fsucc ()} pr finSetNotEquals {zero} {fsucc ()} {b} pr finSetNotEquals {succ zero} {fzero} {fzero} pr = exFalso (pr refl) finSetNotEquals {succ zero} {fzero} {fsucc fzero} pr = fne2 fzero (fsucc fzero) (inl (refl ,, refl)) finSetNotEquals {succ zero} {fzero} {fsucc (fsucc ())} pr finSetNotEquals {succ zero} {fsucc fzero} {fzero} pr = fne2 (fsucc fzero) fzero (inr (refl ,, refl)) finSetNotEquals {succ zero} {fsucc fzero} {fsucc fzero} pr = exFalso (pr refl) finSetNotEquals {succ zero} {fsucc fzero} {fsucc (fsucc ())} pr finSetNotEquals {succ zero} {fsucc (fsucc ())} finSetNotEquals {succ (succ n)} {fzero} {fzero} pr = exFalso (pr refl) finSetNotEquals {succ (succ n)} {fzero} {fsucc b} pr = fneN fzero (fsucc b) (inl (inl (refl ,, (b , refl)))) finSetNotEquals {succ (succ n)} {fsucc a} {fzero} pr = fneN (fsucc a) fzero (inl (inr ((a , refl) ,, refl))) finSetNotEquals {succ (succ n)} {fsucc a} {fsucc b} pr = fneN (fsucc a) (fsucc b) (inr ans) where q : a ≡ b → False q refl = pr refl t : FinNotEquals {succ n} a b t = finSetNotEquals {succ n} {a} {b} q ans : Sg (FinSet (succ (succ n)) && FinSet (succ (succ n))) (λ x → (fsucc a ≡ fsucc (_&&_.fst x)) & fsucc b ≡ fsucc (_&&_.snd x) & FinNotEquals (_&&_.fst x) (_&&_.snd x)) ans with t ans | fne2 .fzero .(fsucc fzero) (inl (refl ,, refl)) = (a ,, b) , record { one = refl ; two = refl ; three = fne2 fzero (fsucc fzero) (inl (refl ,, refl)) } ans | fne2 .(fsucc fzero) .fzero (inr (refl ,, refl)) = (a ,, b) , record { one = refl ; two = refl ; three = fne2 (fsucc fzero) fzero (inr (refl ,, refl)) } ans | fneN a b _ = (a ,, b) , record { one = refl ; two = refl ; three = t } fzeroNotFsucc : {n : ℕ} → {a : _} → fzero ≡ fsucc {succ n} a → False fzeroNotFsucc () finSetNotEqualsSame : {n : ℕ} → {a : FinSet (succ n)} → FinNotEquals a a → False finSetNotEqualsSame {.1} {fzero} (fne2 .fzero .fzero (inl (fst ,, ()))) finSetNotEqualsSame {.1} {fzero} (fne2 .fzero .fzero (inr (fst ,, ()))) finSetNotEqualsSame {.(succ (succ _))} {fzero} (fneN .fzero .fzero (inl (inl (refl ,, (a , ()))))) finSetNotEqualsSame {.(succ (succ _))} {fzero} (fneN .fzero .fzero (inl (inr ((a , ()) ,, refl)))) finSetNotEqualsSame {.(succ (succ _))} {fzero} (fneN .fzero .fzero (inr ((fst ,, snd) , record { one = () ; two = p ; three = q }))) finSetNotEqualsSame {.1} {fsucc a} (fne2 .(fsucc a) .(fsucc a) (inl (() ,, snd))) finSetNotEqualsSame {.1} {fsucc a} (fne2 .(fsucc a) .(fsucc a) (inr (() ,, snd))) finSetNotEqualsSame {.(succ (succ _))} {fsucc a} (fneN .(fsucc a) .(fsucc a) (inl (inl (() ,, snd)))) finSetNotEqualsSame {.(succ (succ _))} {fsucc a} (fneN .(fsucc a) .(fsucc a) (inl (inr (fst ,, ())))) finSetNotEqualsSame {.(succ (succ _))} {fsucc a} (fneN .(fsucc a) .(fsucc a) (inr ((.a ,, .a) , record { one = refl ; two = refl ; three = q }))) = finSetNotEqualsSame q finNotEqualsFsucc : {n : ℕ} → {a b : FinSet (succ n)} → FinNotEquals (fsucc a) (fsucc b) → FinNotEquals a b finNotEqualsFsucc {.0} {a} {b} (fne2 .(fsucc a) .(fsucc b) (inl (() ,, snd))) finNotEqualsFsucc {.0} {a} {b} (fne2 .(fsucc a) .(fsucc b) (inr (() ,, snd))) finNotEqualsFsucc {n} {a} {b} (fneN .(fsucc a) .(fsucc b) (inl (inl (() ,, snd)))) finNotEqualsFsucc {n} {a} {b} (fneN .(fsucc a) .(fsucc b) (inl (inr (fst ,, ())))) finNotEqualsFsucc {n} {a} {b} (fneN .(fsucc a) .(fsucc b) (inr ((fst ,, snd) , prf))) = identityOfIndiscernablesRight FinNotEquals ans (equalityCommutative b=snd) where a=fst : a ≡ fst a=fst = fsuccInjective (_&_&_.one prf) b=snd : b ≡ snd b=snd = fsuccInjective (_&_&_.two prf) ans : FinNotEquals a snd ans = identityOfIndiscernablesLeft FinNotEquals (_&_&_.three prf) (equalityCommutative a=fst) finSetNotEquals' : {n : ℕ} → {a b : FinSet (succ n)} → FinNotEquals a b → (a ≡ b → False) finSetNotEquals' {n} {a} {.a} fne refl = finSetNotEqualsSame fne finset0Empty : FinSet zero → False finset0Empty () finset1OnlyOne : (a b : FinSet 1) → a ≡ b finset1OnlyOne fzero fzero = refl finset1OnlyOne fzero (fsucc ()) finset1OnlyOne (fsucc ()) b intoSmaller : {n m : ℕ} → .(n <N m) → (FinSet n → FinSet m) intoSmaller {zero} {m} n<m = t where t : FinSet 0 → FinSet m t () intoSmaller {succ n} {zero} () intoSmaller {succ n} {succ m} n<m with intoSmaller (canRemoveSuccFrom<N n<m) intoSmaller {succ n} {succ m} n<m | prev = t where t : FinSet (succ n) → FinSet (succ m) t fzero = fzero t (fsucc arg) = fsucc (prev arg) intoSmallerInj : {n m : ℕ} → (n<m : n <N m) → Injection (intoSmaller n<m) intoSmallerInj {zero} {zero} (le x ()) intoSmallerInj {zero} {succ m} n<m = inj where t : FinSet 0 → FinSet (succ m) t () inj : {x y : FinSet zero} → intoSmaller (succIsPositive m) x ≡ intoSmaller (succIsPositive m) y → x ≡ y inj {()} {y} intoSmallerInj {succ n} {zero} () intoSmallerInj {succ n} {succ m} n<m with intoSmallerInj (canRemoveSuccFrom<N n<m) intoSmallerInj {succ n} {succ m} n<m | prevInj = inj where inj : Injection (intoSmaller n<m) inj {fzero} {fzero} pr = refl inj {fzero} {fsucc y} () inj {fsucc x} {fzero} () inj {fsucc x} {fsucc y} pr = applyEquality fsucc (prevInj (fsuccInjective pr)) toNat : {n : ℕ} → (a : FinSet n) → ℕ toNat {.(succ _)} fzero = 0 toNat {.(succ _)} (fsucc a) = succ (toNat a) toNatSmaller : {n : ℕ} → (a : FinSet n) → toNat a <N n toNatSmaller {zero} () toNatSmaller {succ n} fzero = succIsPositive n toNatSmaller {succ n} (fsucc a) = succPreservesInequality (toNatSmaller a) ofNat : {n : ℕ} → (m : ℕ) → .(m <N n) → FinSet n ofNat {zero} zero () ofNat {succ n} zero m<n = fzero ofNat {zero} (succ m) () ofNat {succ n} (succ m) m<n = fsucc (ofNat {n} m (canRemoveSuccFrom<N m<n)) ofNatInjective : {n : ℕ} → (x y : ℕ) → .(pr : x <N n) → .(pr2 : y <N n) → ofNat x pr ≡ ofNat y pr2 → x ≡ y ofNatInjective {zero} zero zero () y<n pr ofNatInjective {zero} zero (succ y) () y<n pr ofNatInjective {zero} (succ x) zero x<n () pr ofNatInjective {zero} (succ x) (succ y) () y<n pr ofNatInjective {succ n} zero zero x<n y<n pr = refl ofNatInjective {succ n} zero (succ y) x<n y<n () ofNatInjective {succ n} (succ x) zero x<n y<n () ofNatInjective {succ n} (succ x) (succ y) x<n y<n pr = applyEquality succ (ofNatInjective x y (canRemoveSuccFrom<N x<n) (canRemoveSuccFrom<N y<n) (fsuccInjective pr)) toNatInjective : {n : ℕ} → (x y : FinSet n) → toNat x ≡ toNat y → x ≡ y toNatInjective fzero fzero pr = refl toNatInjective (fsucc x) (fsucc y) pr = applyEquality fsucc (toNatInjective x y (succInjective pr)) toNatOfNat : {n : ℕ} → (a : ℕ) → (a<n : a <N n) → toNat (ofNat a a<n) ≡ a toNatOfNat {zero} zero (le x ()) toNatOfNat {zero} (succ a) (le x ()) toNatOfNat {succ n} zero a<n = refl toNatOfNat {succ n} (succ a) a<n = applyEquality succ (toNatOfNat a (canRemoveSuccFrom<N a<n)) intoSmallerLemm : {n m : ℕ} → {n<m : n <N (succ m)} → {m<sm : m <N succ m} → (b : FinSet n) → intoSmaller n<m b ≡ ofNat m m<sm → False intoSmallerLemm {.(succ _)} {m} {n<m} fzero pr with intoSmaller (canRemoveSuccFrom<N n<m) intoSmallerLemm {.(succ _)} {zero} {n<m} fzero refl | bl = zeroNeverGreater (canRemoveSuccFrom<N n<m) intoSmallerLemm {.(succ _)} {succ m} {n<m} fzero () | bl intoSmallerLemm {.(succ _)} {m} {n<m} (fsucc b) pr with inspect (intoSmaller (canRemoveSuccFrom<N n<m)) intoSmallerLemm {.(succ _)} {zero} {n<m} (fsucc b) pr | bl with≡ _ = zeroNeverGreater (canRemoveSuccFrom<N n<m) intoSmallerLemm {.(succ _)} {succ m} {n<m} {m<sm} (fsucc b) pr | bl with≡ p = intoSmallerLemm {n<m = canRemoveSuccFrom<N n<m} {m<sm = canRemoveSuccFrom<N m<sm} b (fsuccInjective pr) intoSmallerNotSurj : {n m : ℕ} → {n<m : n <N m} → Surjection (intoSmaller n<m) → False intoSmallerNotSurj {n} {zero} {le x ()} property intoSmallerNotSurj {zero} {succ zero} {n<m} property with property fzero ... | () , _ intoSmallerNotSurj {succ n} {succ zero} {n<m} property = zeroNeverGreater (canRemoveSuccFrom<N n<m) intoSmallerNotSurj {0} {succ (succ m)} {n<m} property with property fzero ... | () , _ intoSmallerNotSurj {succ n} {succ (succ m)} {n<m} property = problem where notHit : FinSet (succ (succ m)) notHit = ofNat (succ m) (le zero refl) hitting : Sg (FinSet (succ n)) (λ i → intoSmaller n<m i ≡ notHit) hitting = property notHit problem : False problem with hitting ... | a , pr = intoSmallerLemm {succ n} {succ m} {n<m} {le 0 refl} a pr finsetDecidableEquality : {n : ℕ} → (x y : FinSet n) → (x ≡ y) || ((x ≡ y) → False) finsetDecidableEquality fzero fzero = inl refl finsetDecidableEquality fzero (fsucc y) = inr λ () finsetDecidableEquality (fsucc x) fzero = inr λ () finsetDecidableEquality (fsucc x) (fsucc y) with finsetDecidableEquality x y finsetDecidableEquality (fsucc x) (fsucc y) | inl pr rewrite pr = inl refl finsetDecidableEquality (fsucc x) (fsucc y) | inr pr = inr (λ f → pr (fsuccInjective f)) subInjection : {n : ℕ} → {f : FinSet (succ (succ n)) → FinSet (succ (succ n))} → Injection f → (FinSet (succ n) → FinSet (succ n)) subInjection {n} {f} inj x with inspect (f (fsucc x)) subInjection {f = f} inj x | fzero with≡ _ with inspect (f fzero) subInjection {f = f} inj x | fzero with≡ pr | fzero with≡ pr2 = exFalso (fzeroNotFsucc (inj (transitivity pr2 (equalityCommutative pr)))) subInjection {f = f} inj x | fzero with≡ _ | fsucc bl with≡ _ = bl subInjection {f = f} inj x | fsucc bl with≡ _ = bl subInjIsInjective : {n : ℕ} → {f : FinSet (succ (succ n)) → FinSet (succ (succ n))} → (inj : Injection f) → Injection (subInjection inj) subInjIsInjective {f = f} inj {x} {y} pr with inspect (f (fsucc x)) subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ _ with inspect (f (fzero)) subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ pr1 | fzero with≡ pr2 = exFalso (fzeroNotFsucc (inj (transitivity pr2 (equalityCommutative pr1)))) subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ pr1 | fsucc bl with≡ _ with inspect (f (fsucc y)) subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ pr1 | fsucc bl with≡ _ | fzero with≡ x₁ with inspect (f (fzero)) subInjIsInjective {f = f} inj {x} {y} pr | fzero with≡ pr1 | fsucc bl with≡ _ | fzero with≡ x1 | fzero with≡ x2 = exFalso (fzeroNotFsucc (inj (transitivity x2 (equalityCommutative x1)))) subInjIsInjective {f = f} inj {x} {y} refl | fzero with≡ pr1 | fsucc .bl2 with≡ _ | fzero with≡ x1 | fsucc bl2 with≡ _ = fsuccInjective (inj (transitivity pr1 (equalityCommutative x1))) subInjIsInjective {f = f} inj {x} {y} refl | fzero with≡ pr1 | fsucc .bl2 with≡ pr2 | fsucc bl2 with≡ pr3 = exFalso (fzeroNotFsucc (inj (transitivity pr2 (equalityCommutative pr3)))) subInjIsInjective {f = f} inj {x} {y} pr | fsucc bl with≡ _ with inspect (f (fsucc y)) subInjIsInjective {f = f} inj {x} {y} pr | fsucc bl with≡ _ | fzero with≡ x₁ with inspect (f fzero) subInjIsInjective {f = f} inj {x} {y} pr | fsucc bl with≡ _ | fzero with≡ x1 | fzero with≡ x2 = exFalso (fzeroNotFsucc (inj (transitivity x2 (equalityCommutative x1)))) subInjIsInjective {f = f} inj {x} {y} refl | fsucc .bl2 with≡ x1 | fzero with≡ x₁ | fsucc bl2 with≡ x2 = exFalso (fzeroNotFsucc (inj (transitivity x2 (equalityCommutative x1)))) subInjIsInjective {f = f} inj {x} {y} refl | fsucc .y1 with≡ pr1 | fsucc y1 with≡ pr2 = fsuccInjective (inj (transitivity pr1 (equalityCommutative pr2))) onepointBij : (f : FinSet 1 → FinSet 1) → Bijection f Bijection.inj (onepointBij f) {x} {y} _ = finset1OnlyOne x y Bijection.surj (onepointBij f) fzero with inspect (f fzero) ... | fzero with≡ pr = fzero , pr ... | fsucc () with≡ _ Bijection.surj (onepointBij f) (fsucc ()) nopointBij : (f : FinSet 0 → FinSet 0) → Bijection f Bijection.inj (nopointBij f) {()} Bijection.surj (nopointBij f) () private flip : {n : ℕ} → (f : FinSet (succ n) → FinSet (succ n)) → FinSet (succ n) → FinSet (succ n) flip {n} f fzero = f fzero flip {n} f (fsucc a) with inspect (f fzero) flip {n} f (fsucc a) | fzero with≡ x = fsucc a flip {n} f (fsucc a) | fsucc y with≡ x with finsetDecidableEquality a y flip {n} f (fsucc a) | fsucc y with≡ x | inl a=y = fzero flip {n} f (fsucc a) | fsucc y with≡ x | inr a!=y = fsucc a flipSwapsF0 : {n : ℕ} → {f : FinSet (succ n) → FinSet (succ n)} → (flip f (f fzero)) ≡ fzero flipSwapsF0 {zero} {f} with inspect (f fzero) flipSwapsF0 {zero} {f} | fzero with≡ x rewrite x = x flipSwapsF0 {zero} {f} | fsucc () with≡ x flipSwapsF0 {succ n} {f = f} with inspect (f fzero) flipSwapsF0 {succ n} {f = f} | fzero with≡ pr rewrite pr = pr flipSwapsF0 {succ n} {f = f} | fsucc b with≡ pr rewrite pr = ans where ans : flip f (fsucc b) ≡ fzero ans with inspect (f fzero) ans | fzero with≡ x = exFalso (fzeroNotFsucc (transitivity (equalityCommutative x) pr)) ans | fsucc y with≡ x with finsetDecidableEquality b y ans | fsucc y with≡ x | inl b=y = refl ans | fsucc y with≡ x | inr b!=y = exFalso (b!=y (fsuccInjective (transitivity (equalityCommutative pr) x))) flipSwapsZero : {n : ℕ} → {f : FinSet (succ n) → FinSet (succ n)} → (flip f fzero) ≡ f fzero flipSwapsZero {n} {f} = refl flipMaintainsEverythingElse : {n : ℕ} → {f : FinSet (succ n) → FinSet (succ n)} → (x : FinSet n) → ((fsucc x ≡ f fzero) → False) → flip f (fsucc x) ≡ fsucc x flipMaintainsEverythingElse {n} {f} x x!=f0 with inspect (f fzero) flipMaintainsEverythingElse {n} {f} x x!=f0 | fzero with≡ pr = refl flipMaintainsEverythingElse {n} {f} x x!=f0 | fsucc bl with≡ pr with finsetDecidableEquality x bl flipMaintainsEverythingElse {n} {f} x x!=f0 | fsucc bl with≡ pr | inl x=bl = exFalso (x!=f0 (transitivity (applyEquality fsucc x=bl) (equalityCommutative pr))) flipMaintainsEverythingElse {n} {f} x x!=f0 | fsucc bl with≡ pr | inr x!=bl = refl bijFlip : {n : ℕ} → {f : FinSet (succ n) → FinSet (succ n)} → Bijection (flip f) bijFlip {zero} {f} = onepointBij (flip f) Bijection.inj (bijFlip {succ n} {f}) {fzero} {fzero} flx=fly = refl Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly with inspect (f fzero) Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly | fzero with≡ x rewrite x = exFalso (fzeroNotFsucc flx=fly) Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly | fsucc f0 with≡ x with finsetDecidableEquality y f0 Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly | fsucc f0 with≡ x | inl x₁ = exFalso (fzeroNotFsucc (transitivity (equalityCommutative flx=fly) x)) Bijection.inj (bijFlip {succ n} {f}) {fzero} {fsucc y} flx=fly | fsucc f0 with≡ x | inr pr = exFalso (pr (fsuccInjective (transitivity (equalityCommutative flx=fly) x))) Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly with inspect (f fzero) Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly | fzero with≡ pr = transitivity flx=fly pr Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly | fsucc f0 with≡ x₁ with finsetDecidableEquality x f0 Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly | fsucc f0 with≡ pr | inl x₂ = exFalso (fzeroNotFsucc (transitivity flx=fly pr)) Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fzero} flx=fly | fsucc f0 with≡ x1 | inr x!=f0 = exFalso (x!=f0 (fsuccInjective (transitivity flx=fly x1))) Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly with inspect (f fzero) Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fzero with≡ x₁ = flx=fly Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ with finsetDecidableEquality y f0 Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ | inl y=f0 with finsetDecidableEquality x f0 Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ | inl y=f0 | inl x=f0 = applyEquality fsucc (transitivity x=f0 (equalityCommutative y=f0)) Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} () | fsucc f0 with≡ x₁ | inl y=f0 | inr x!=f0 Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ | inr y!=f0 with finsetDecidableEquality x f0 Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} () | fsucc f0 with≡ x₁ | inr y!=f0 | inl x=f0 Bijection.inj (bijFlip {succ n} {f}) {fsucc x} {fsucc y} flx=fly | fsucc f0 with≡ x₁ | inr y!=f0 | inr x!=f0 = flx=fly Bijection.surj (bijFlip {succ n} {f}) fzero = f fzero , flipSwapsF0 {f = f} Bijection.surj (bijFlip {succ n} {f}) (fsucc b) with inspect (f fzero) Bijection.surj (bijFlip {succ n} {f}) (fsucc b) | fzero with≡ x = fsucc b , flipMaintainsEverythingElse {f = f} b λ pr → fzeroNotFsucc (transitivity (equalityCommutative x) (equalityCommutative pr)) Bijection.surj (bijFlip {succ n} {f}) (fsucc b) | fsucc y with≡ x with finsetDecidableEquality y b Bijection.surj (bijFlip {succ n} {f}) (fsucc b) | fsucc y with≡ x | inl y=b = fzero , transitivity x (applyEquality fsucc y=b) Bijection.surj (bijFlip {succ n} {f}) (fsucc b) | fsucc y with≡ x | inr y!=b = fsucc b , flipMaintainsEverythingElse {f = f} b λ pr → y!=b (fsuccInjective (transitivity (equalityCommutative x) (equalityCommutative pr))) injectionIsBijectionFinset : {n : ℕ} → {f : FinSet n → FinSet n} → Injection f → Bijection f injectionIsBijectionFinset {zero} {f} inj = record { inj = inj ; surj = λ () } injectionIsBijectionFinset {succ zero} {f} inj = record { inj = inj ; surj = ans } where ans : (b : FinSet (succ zero)) → Sg (FinSet (succ zero)) (λ a → f a ≡ b) ans fzero with inspect (f fzero) ans fzero | fzero with≡ x = fzero , x ans fzero | fsucc () with≡ x ans (fsucc ()) injectionIsBijectionFinset {succ (succ n)} {f} inj with injectionIsBijectionFinset {succ n} (subInjIsInjective inj) ... | sb = ans where subSurj : Surjection (subInjection inj) subSurj = Bijection.surj sb tweakedF : FinSet (succ (succ n)) → FinSet (succ (succ n)) tweakedF fzero = fzero tweakedF (fsucc x) = fsucc (subInjection inj x) tweakedBij : Bijection tweakedF Bijection.inj tweakedBij {fzero} {fzero} f'x=f'y = refl Bijection.inj tweakedBij {fzero} {fsucc y} () Bijection.inj tweakedBij {fsucc x} {fzero} () Bijection.inj tweakedBij {fsucc x} {fsucc y} f'x=f'y = applyEquality fsucc ((subInjIsInjective inj) (fsuccInjective f'x=f'y)) Bijection.surj tweakedBij fzero = fzero , refl Bijection.surj tweakedBij (fsucc b) with subSurj b ... | ans , prop = fsucc ans , applyEquality fsucc prop compBij : Bijection (λ i → flip f (tweakedF i)) compBij = bijectionComp tweakedBij bijFlip undoTweakMakesF : {x : FinSet (succ (succ n))} → flip f (tweakedF x) ≡ f x undoTweakMakesF {fzero} = refl undoTweakMakesF {fsucc x} with inspect (f fzero) undoTweakMakesF {fsucc x} | fzero with≡ x₁ with inspect (f (fsucc x)) undoTweakMakesF {fsucc x} | fzero with≡ x₁ | fzero with≡ x₂ with inspect (f fzero) undoTweakMakesF {fsucc x} | fzero with≡ x₁ | fzero with≡ x2 | fzero with≡ x3 = exFalso (fzeroNotFsucc (inj (transitivity x3 (equalityCommutative x2)))) undoTweakMakesF {fsucc x} | fzero with≡ x1 | fzero with≡ x2 | fsucc y with≡ x3 = exFalso (fzeroNotFsucc (inj (transitivity x1 (equalityCommutative x2)))) undoTweakMakesF {fsucc x} | fzero with≡ x1 | fsucc y with≡ x2 = equalityCommutative x2 undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ with inspect (f (fsucc x)) undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fzero with≡ x₂ with inspect (f fzero) undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fzero with≡ x2 | fzero with≡ x3 = exFalso (fzeroNotFsucc (inj (transitivity x3 (equalityCommutative x2)))) undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fzero with≡ x₂ | fsucc pr with≡ x₃ with finsetDecidableEquality pr y undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fzero with≡ x2 | fsucc pr with≡ x₃ | inl x₄ = equalityCommutative x2 undoTweakMakesF {fsucc x} | fsucc y with≡ x1 | fzero with≡ x₂ | fsucc pr with≡ x3 | inr pr!=y = exFalso (pr!=y (fsuccInjective (transitivity (equalityCommutative x3) x1))) undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fsucc thi with≡ x₂ with finsetDecidableEquality thi y undoTweakMakesF {fsucc x} | fsucc .thi with≡ x1 | fsucc thi with≡ x2 | inl refl = exFalso false where p : f fzero ≡ f (fsucc x) p = transitivity x1 (equalityCommutative x2) q : fzero ≡ fsucc x q = inj p false : False false = fzeroNotFsucc q undoTweakMakesF {fsucc x} | fsucc y with≡ x₁ | fsucc thi with≡ x2 | inr thi!=y = equalityCommutative x2 ans : Bijection f ans = bijectionPreservedUnderExtensionalEq compBij undoTweakMakesF pigeonhole : {n m : ℕ} → (m <N n) → {f : FinSet n → FinSet m} → Injection f → False pigeonhole {zero} {zero} () {f} property pigeonhole {zero} {succ m} () {f} property pigeonhole {succ n} {zero} m<n {f} property = finset0Empty (f fzero) pigeonhole {succ zero} {succ m} m<n {f} property with canRemoveSuccFrom<N m<n pigeonhole {succ zero} {succ m} m<n {f} property | le x () pigeonhole {succ (succ n)} {succ zero} m<n {f} property = fzeroNotFsucc (property (transitivity f0 (equalityCommutative f1))) where f0 : f (fzero) ≡ fzero f0 with inspect (f fzero) ... | fzero with≡ x = x ... | fsucc () with≡ _ f1 : f (fsucc fzero) ≡ fzero f1 with inspect (f (fsucc fzero)) ... | fzero with≡ x = x ... | fsucc () with≡ _ pigeonhole {succ (succ n)} {succ (succ m)} m<n {f} injF = intoSmallerNotSurj {_}{_} {m<n} surj where inj : Injection ((intoSmaller m<n) ∘ f) inj = injComp injF (intoSmallerInj m<n) bij : Bijection ((intoSmaller m<n) ∘ f) bij = injectionIsBijectionFinset inj surj : Surjection (intoSmaller m<n) surj = compSurjLeftSurj (Bijection.surj bij) --surjectionIsBijectionFinset : {n : ℕ} → {f : FinSet n → FinSet n} → Surjection f → Bijection f --surjectionIsBijectionFinset {zero} {f} surj = nopointBij f --surjectionIsBijectionFinset {succ zero} {f} surj = onepointBij f --surjectionIsBijectionFinset {succ (succ n)} {f} record { property = property } = {!!} ofNatToNat : {n : ℕ} → (a : FinSet n) → ofNat (toNat a) (toNatSmaller a) ≡ a ofNatToNat {zero} () ofNatToNat {succ n} fzero = refl ofNatToNat {succ n} (fsucc a) = applyEquality fsucc (ofNatToNat a)
62.233422
221
0.65182
52ad424e5c6b06c136aad24d77539c9dea0ab442
454
agda
Agda
test/Succeed/EtaContractToMillerPattern.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/EtaContractToMillerPattern.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/EtaContractToMillerPattern.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2011-04-05 module EtaContractToMillerPattern where data _==_ {A : Set}(a : A) : A -> Set where refl : a == a record Prod (A B : Set) : Set where constructor _,_ field fst : A snd : B open Prod postulate A B C : Set test : let X : (Prod A B -> C) -> (Prod A B -> C) X = _ in (x : Prod A B -> C) -> X (\ z -> x (fst z , snd z)) == x test x = refl -- eta contracts unification problem to X x = x
21.619048
49
0.530837
d19fe0599dedebce84a45fdbadc4f044064e0846
426
agda
Agda
part1/negation/irreflexive.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
1
2020-07-07T09:42:22.000Z
2020-07-07T09:42:22.000Z
part1/negation/irreflexive.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
part1/negation/irreflexive.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
module irreflexive where open import Data.Nat using (ℕ; zero; suc) open import Negation using (¬_) infix 4 _<_ data _<_ : ℕ → ℕ → Set where z<s : ∀ {n : ℕ} ------------ → zero < suc n s<s : ∀ {m n : ℕ} → m < n ------------- → suc m < suc n -- n が非反射律 ∀ n ∈ ℕ, ¬(n < n) を満たすことの証明 <-irreflexive : ∀ (n : ℕ) → ¬ (n < n) <-irreflexive zero () <-irreflexive (suc n) (s<s n<n) = <-irreflexive n n<n
19.363636
53
0.49061
3044004f66adc0053010d8b4016de52087a34aa3
1,947
agda
Agda
src/System/IO/Transducers/Bytes.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
10
2015-01-04T13:45:16.000Z
2021-09-15T04:35:41.000Z
src/System/IO/Transducers/Bytes.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
null
null
null
src/System/IO/Transducers/Bytes.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
2
2017-08-10T06:12:54.000Z
2022-03-12T11:40:23.000Z
open import Coinduction using ( ♯_ ) open import Data.Bool using ( Bool ; true ; false ; not ) open import Data.ByteString using ( null ) renaming ( span to #span ) open import Data.Natural using ( Natural ) open import Data.Product using ( _×_ ; _,_ ) open import Data.Word using ( Byte ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; _⟫_ ; π₁ ; π₂ ; _[&]_ ) open import System.IO.Transducers.Weight using ( weight ) open import System.IO.Transducers.Stateful using ( loop ) open import System.IO.Transducers.Session using ( ⟨_⟩ ; _&_ ; ¿ ; * ; _&*_ ) open import System.IO.Transducers.Strict using ( _⇛_ ) module System.IO.Transducers.Bytes where open System.IO.Transducers.Session public using ( Bytes ; Bytes' ) mutual span' : (Byte → Bool) → Bytes' ⇛ (Bytes & Bytes) span' φ x with #span φ x span' φ x | (x₁ , x₂) with null x₁ | null x₂ span' φ x | (x₁ , x₂) | true | true = inp (♯ span φ) span' φ x | (x₁ , x₂) | true | false = out false (out true (out x₂ done)) span' φ x | (x₁ , x₂) | false | true = out true (out x₁ (inp (♯ span φ))) span' φ x | (x₁ , x₂) | false | false = out true (out x₁ (out false (out true (out x₂ done)))) span : (Byte → Bool) → Bytes ⇛ (Bytes & Bytes) span φ false = out false (out false done) span φ true = inp (♯ span' φ) break : (Byte → Bool) → Bytes ⇛ (Bytes & Bytes) break φ = span (λ x → not (φ x)) mutual nonempty' : Bytes' & Bytes ⇛ ¿ Bytes & Bytes nonempty' x with null x nonempty' x | true = inp (♯ nonempty) nonempty' x | false = out true (out true (out x done)) nonempty : Bytes & Bytes ⇛ ¿ Bytes & Bytes nonempty true = inp (♯ nonempty') nonempty false = out false done split? : (Byte → Bool) → Bytes ⇒ (¿ Bytes & Bytes) split? φ = inp (♯ span φ) ⟫ π₂ {Bytes} ⟫ inp (♯ break φ) ⟫ inp (♯ nonempty) split : (Byte → Bool) → Bytes ⇒ * Bytes split φ = loop {Bytes} (split? φ) ⟫ π₁ bytes : Bytes ⇒ ⟨ Natural ⟩ bytes = weight
36.735849
96
0.626605
0325ae714671a739259624cafc9f048a26372ce0
809
agda
Agda
Cubical/Foundations/Pointed/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Foundations/Pointed/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Structure open import Cubical.Foundations.Structure using (typ) public open import Cubical.Foundations.GroupoidLaws Pointed : (ℓ : Level) → Type (ℓ-suc ℓ) Pointed ℓ = TypeWithStr ℓ (λ x → x) pt : ∀ {ℓ} (A∙ : Pointed ℓ) → typ A∙ pt = str Pointed₀ = Pointed ℓ-zero {- Pointed functions -} _→∙_ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ') _→∙_ A B = Σ[ f ∈ (typ A → typ B) ] f (pt A) ≡ pt B _→∙_∙ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') A →∙ B ∙ = (A →∙ B) , (λ x → pt B) , refl idfun∙ : ∀ {ℓ} (A : Pointed ℓ) → A →∙ A idfun∙ A = (λ x → x) , refl
28.892857
73
0.618047
5e70d56688ef61c7de448fb2ce972bd52a718393
2,184
agda
Agda
vendor/stdlib/src/Category/Monad/Partiality.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Category/Monad/Partiality.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Category/Monad/Partiality.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- The partiality monad ------------------------------------------------------------------------ module Category.Monad.Partiality where open import Coinduction open import Category.Monad open import Data.Nat open import Data.Bool -- The partiality monad. data _⊥ (A : Set) : Set where now : (x : A) → A ⊥ later : (x : ∞ (A ⊥)) → A ⊥ monad : RawMonad _⊥ monad = record { return = now ; _>>=_ = _>>=_ } where _>>=_ : ∀ {A B} → A ⊥ → (A → B ⊥) → B ⊥ now x >>= f = f x later x >>= f = later (♯ ♭ x >>= f) -- run x for n steps peels off at most n "later" constructors from x. run_for_steps : ∀ {A} → A ⊥ → ℕ → A ⊥ run now x for n steps = now x run later x for zero steps = later x run later x for suc n steps = run ♭ x for n steps -- Is the computation done? isNow : ∀ {A} → A ⊥ → Bool isNow (now x) = true isNow (later x) = false ------------------------------------------------------------------------ -- Productivity checker workaround -- The monad can be awkward to use, due to the limitations of guarded -- coinduction. The following code provides a (limited) workaround. infixl 1 _>>=_ data _⊥-prog : Set → Set₁ where now : ∀ {A} (x : A) → A ⊥-prog later : ∀ {A} (x : ∞₁ (A ⊥-prog)) → A ⊥-prog _>>=_ : ∀ {A B} (x : A ⊥-prog) (f : A → B ⊥-prog) → B ⊥-prog data _⊥-whnf : Set → Set₁ where now : ∀ {A} (x : A) → A ⊥-whnf later : ∀ {A} (x : A ⊥-prog) → A ⊥-whnf whnf : ∀ {A} → A ⊥-prog → A ⊥-whnf whnf (now x) = now x whnf (later x) = later (♭₁ x) whnf (x >>= f) with whnf x whnf (x >>= f) | now x′ = whnf (f x′) whnf (x >>= f) | later x′ = later (x′ >>= f) mutual value : ∀ {A} → A ⊥-whnf → A ⊥ value (now x) = now x value (later x) = later (♯ run x) run : ∀ {A} → A ⊥-prog → A ⊥ run x = value (whnf x) ------------------------------------------------------------------------ -- Examples module Examples where open import Relation.Nullary -- McCarthy's f91: f91′ : ℕ → ℕ ⊥-prog f91′ n with n ≤? 100 ... | yes _ = later (♯₁ (f91′ (11 + n) >>= f91′)) ... | no _ = now (n ∸ 10) f91 : ℕ → ℕ ⊥ f91 n = run (f91′ n)
24.266667
72
0.468407
1a7c130749c9b12ca483c231615717c043beb905
3,203
agda
Agda
Money.agda
neosimsim/money-typed
f875dfb5f191e6a4a041a8aa4d08f98acdc5ab53
[ "BSD-3-Clause" ]
null
null
null
Money.agda
neosimsim/money-typed
f875dfb5f191e6a4a041a8aa4d08f98acdc5ab53
[ "BSD-3-Clause" ]
null
null
null
Money.agda
neosimsim/money-typed
f875dfb5f191e6a4a041a8aa4d08f98acdc5ab53
[ "BSD-3-Clause" ]
null
null
null
module Money where import Agda.Builtin.IO as Builtin using (IO) import Data.Rational as ℚ using (_+_; _*_) open import Codata.Musical.Notation using (♯_) open import Data.Nat using (ℕ; suc) open import Data.Integer as ℤ using (+_) open import Data.List using (List; []; _∷_) open import Data.Rational as ℚ using (ℚ; 0ℚ; _/_) open import Data.String using (String) open import Data.Unit using (⊤) open import Function using (_∘_) renaming (_$_ to _$$_) open import IO using (putStrLn; IO; _>>_; run; sequence) open import Relation.Binary.PropositionalEquality using (_≡_; refl; _≢_) open import Relation.Binary using (Decidable) open import Relation.Nullary using (yes; no) open import Codata.Musical.Colist as Colist using (fromList) open Colist renaming (_∷_ to _::_) data Currency : Set where € : Currency £ : Currency $ : Currency ¥ : Currency data Money : Currency → Set where mkMoney : {c : Currency} → ℚ → Money c noMoney : Money $ noMoney = mkMoney (+ 0 / 1) _+_ : {c : Currency} → Money c → Money c → Money c mkMoney x₁ + mkMoney x₂ = mkMoney (x₁ ℚ.+ x₂) infix 30 _+_ _*_ : {c : Currency} → ℚ → Money c → Money c x * mkMoney y = mkMoney (x ℚ.* y) record SomeMoney : Set where field currency : Currency money : Money currency mkSomeMoney : Currency → ℚ → SomeMoney mkSomeMoney currency amount = record { currency = currency; money = mkMoney amount } record Trade : Set where constructor mkTrade field tPrice : SomeMoney tQty : ℚ data Equal? (c₁ c₂ : Currency) : Set where eq : c₁ ≡ c₂ → Equal? c₁ c₂ neq : c₁ ≢ c₂ → Equal? c₁ c₂ infix 4 _≟_ _≟_ : Decidable {A = Currency} _≡_ € ≟ € = yes refl € ≟ £ = no (λ ()) € ≟ $ = no (λ ()) € ≟ ¥ = no (λ ()) £ ≟ € = no (λ ()) £ ≟ £ = yes refl £ ≟ $ = no (λ ()) £ ≟ ¥ = no (λ ()) $ ≟ € = no (λ ()) $ ≟ £ = no (λ ()) $ ≟ $ = yes refl $ ≟ ¥ = no (λ ()) ¥ ≟ € = no (λ ()) ¥ ≟ £ = no (λ ()) ¥ ≟ $ = no (λ ()) ¥ ≟ ¥ = yes refl sumNotions : {c : Currency} → List Trade → Money c sumNotions [] = mkMoney 0ℚ sumNotions {c} (record { tPrice = record { currency = currency; money = money }; tQty = tQty } ∷ xs) with c ≟ currency ... | yes refl = (tQty * money) + sumNotions xs ... | no _ = sumNotions xs _/1 : ℕ → ℚ n /1 = + n / 1 testTrades : List Trade testTrades = mkTrade (mkSomeMoney £ (1 /1)) (100 /1) ∷ mkTrade (mkSomeMoney £ (2 /1)) (200 /1) ∷ mkTrade (mkSomeMoney $ (3 /1)) (300 /1) ∷ mkTrade (mkSomeMoney ¥ (5 /1)) (50 /1) ∷ [] open import Text.Printf using (printf) showℚ : ℚ → String showℚ record {numerator = n; denominator-1 = 0} = printf "%d" n showℚ record {numerator = n; denominator-1 = d} = printf "%d/%u" n (suc d) showCurrency : Currency → String showCurrency € = "€" showCurrency £ = "£" showCurrency $ = "$" showCurrency ¥ = "¥" showMoney : {c : Currency} → Money c → String showMoney {c} (mkMoney amount) = (printf "%s %s") (showCurrency c) (showℚ amount) main : Builtin.IO (Colist ⊤) main = run ∘ sequence ∘ fromList $$ putStrLn "Hello, World!" ∷ putStrLn (showMoney $$ sumNotions {€} testTrades) ∷ putStrLn (showMoney $$ sumNotions {£} testTrades) ∷ putStrLn (showMoney $$ sumNotions {$} testTrades) ∷ putStrLn (showMoney $$ sumNotions {¥} testTrades) ∷ []
27.612069
119
0.621917
13fac4ef0b1b08c0e6df0ec4084f8e6af184b34d
312
agda
Agda
test/Succeed/NoPatternMatching.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/NoPatternMatching.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/NoPatternMatching.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --no-pattern-matching #-} id : {A : Set} (x : A) → A id x = x const : {A B : Set} (x : A) (y : B) → A const x y = x happ : {A B C : Set} (f : A → B → C) (g : A → B) (x : A) → C happ f g x = f x (g x) K = const S = happ I : {A : Set} (x : A) → A I {A} = S K (K {B = A}) -- Mmh, pretty boring...
16.421053
60
0.423077
3033241692107d6a9b0fe7c7479f72fcf1f5631c
2,691
agda
Agda
Hazelnut-checks.agda
hazelgrove/agda-tfp16
86a755ca6749e080f9a03287e34d1cda889f1edb
[ "MIT" ]
2
2016-06-10T04:35:39.000Z
2016-06-10T04:35:42.000Z
Hazelnut-checks.agda
hazelgrove/agda-tfp16
86a755ca6749e080f9a03287e34d1cda889f1edb
[ "MIT" ]
null
null
null
Hazelnut-checks.agda
hazelgrove/agda-tfp16
86a755ca6749e080f9a03287e34d1cda889f1edb
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import List open import Hazelnut-core module Hazelnut-checks where ----------------------------------------------------------------------------- -- these theorems aren't listed in the draft, but have been discussed -- since submission. broadly speaking, they act as sanity checks on the -- rules. if these properties can't be proven for any extensions to the -- language, then the rules are not good. ----------------------------------------------------------------------------- -- movement doesn't change the term other than moving the focus around. moveerase : {e e' : ê} {δ : direction} {t : τ̇} → (e + move δ +>e e') → (e ◆e) == (e' ◆e) moveerase EMAscFirstChild = refl moveerase EMAscParent1 = refl moveerase EMAscParent2 = refl moveerase EMAscNextSib = refl moveerase EMAscPrevSib = refl moveerase EMLamFirstChild = refl moveerase EMLamParent = refl moveerase EMPlusFirstChild = refl moveerase EMPlusParent1 = refl moveerase EMPlusParent2 = refl moveerase EMPlusNextSib = refl moveerase EMPlusPrevSib = refl moveerase EMApFirstChild = refl moveerase EMApParent1 = refl moveerase EMApParent2 = refl moveerase EMApNextSib = refl moveerase EMApPrevSib = refl moveerase EMFHoleFirstChild = refl moveerase EMFHoleParent = refl -- describes lists of action whose semantics are composable data iterok : Set where -- iterates a list of actions that can be composed data iterate : iterok → ê → ê → Set where --constructability mutual constructable1 : {Γ : ·ctx} {e : ê} {t : τ̇} → (wt : Γ ⊢ (e ◆e) => t) → Σ[ αs ∈ iterok ] (Σ[ e' ∈ ê ] ((iterate αs (▹ <||> ◃) e') × ((e ◆e) == (e' ◆e)))) constructable1 = {!!} constructable2 : {Γ : ·ctx} {e : ê} {t : τ̇} → (wt : Γ ⊢ (e ◆e) <= t) → Σ[ αs ∈ iterok ] (Σ[ e' ∈ ê ] ((iterate αs (▹ <||> ◃) e') × ((e ◆e) == (e' ◆e)))) constructable2 = {!!} --reachability mutual reachable1 : {Γ : ·ctx} {e e' : ê} {t : τ̇} (wt : Γ ⊢ (e ◆e) <= t) → (wt' : Γ ⊢ (e' ◆e) <= t) → (p : (e ◆e) == (e' ◆e)) → Σ[ αs ∈ iterok ] (iterate αs e e') reachable1 = {!!} reachable2 : {Γ : ·ctx} {e e' : ê} {t : τ̇} (wt : Γ ⊢ (e ◆e) => t) → (wt' : Γ ⊢ (e' ◆e) => t) → (p : (e ◆e) == (e' ◆e)) → Σ[ αs ∈ iterok ] (iterate αs e e') reachable2 = {!!}
34.948052
79
0.487179
22c3ea751a6040242164aeac58b92775e89dd1fc
19,658
agda
Agda
core/lib/types/Wedge.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/types/Wedge.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/types/Wedge.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Paths open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFlattening open import lib.types.PushoutFmap open import lib.types.Sigma open import lib.types.Span open import lib.types.Unit -- Wedge of two pointed types is defined as a particular case of pushout module lib.types.Wedge where module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙∨-span : ⊙Span ⊙∨-span = ⊙span X Y ⊙Unit ⊙cst ⊙cst ⊙wedge-span = ⊙∨-span ∨-span : Span ∨-span = ⊙Span-to-Span ⊙∨-span wedge-span = ∨-span Wedge : Type (lmax i j) Wedge = Pushout wedge-span infix 80 _∨_ _∨_ = Wedge ⊙Wedge : Ptd (lmax i j) ⊙Wedge = ⊙Pushout ⊙wedge-span infix 80 _⊙∨_ _⊙∨_ = ⊙Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where winl : de⊙ X → X ∨ Y winl x = left x winr : de⊙ Y → X ∨ Y winr y = right y wglue : winl (pt X) == winr (pt Y) wglue = glue tt ⊙winl : X ⊙→ X ⊙∨ Y ⊙winl = (winl , idp) ⊙winr : Y ⊙→ X ⊙∨ Y ⊙winr = (winr , ! wglue) module WedgeElim {k} {P : X ∨ Y → Type k} (winl* : (x : de⊙ X) → P (winl x)) (winr* : (y : de⊙ Y) → P (winr y)) (glue* : winl* (pt X) == winr* (pt Y) [ P ↓ wglue ]) where private module M = PushoutElim winl* winr* (λ _ → glue*) f = M.f glue-β = M.glue-β unit ∨-elim = WedgeElim.f Wedge-elim = WedgeElim.f module WedgeRec {k} {C : Type k} (winl* : de⊙ X → C) (winr* : de⊙ Y → C) (glue* : winl* (pt X) == winr* (pt Y)) where private module M = PushoutRec {d = wedge-span X Y} winl* winr* (λ _ → glue*) f = M.f glue-β = M.glue-β unit ∨-rec = WedgeRec.f Wedge-rec = WedgeRec.f module ⊙WedgeRec {k} {Z : Ptd k} (g : X ⊙→ Z) (h : Y ⊙→ Z) where open WedgeRec (fst g) (fst h) (snd g ∙ ! (snd h)) public ⊙f : X ⊙∨ Y ⊙→ Z ⊙f = (f , snd g) ⊙winl-β : ⊙f ⊙∘ ⊙winl == g ⊙winl-β = idp ⊙winr-β : ⊙f ⊙∘ ⊙winr == h ⊙winr-β = ⊙λ=' (λ _ → idp) lemma where abstract lemma : snd (⊙f ⊙∘ ⊙winr) == snd h lemma = ap (_∙ snd g) (ap-! f wglue ∙ ap ! glue-β ∙ !-∙ (snd g) (! (snd h))) ∙ ∙-assoc (! (! (snd h))) (! (snd g)) (snd g) ∙ ap (! (! (snd h)) ∙_) (!-inv-l (snd g)) ∙ ∙-unit-r (! (! (snd h))) ∙ !-! (snd h) ⊙∨-rec = ⊙WedgeRec.⊙f ⊙Wedge-rec = ⊙WedgeRec.⊙f ⊙Wedge-rec-post∘ : ∀ {k l} {Z : Ptd k} {W : Ptd l} (k : Z ⊙→ W) (g : X ⊙→ Z) (h : Y ⊙→ Z) → k ⊙∘ ⊙Wedge-rec g h ⊙∼ ⊙Wedge-rec (k ⊙∘ g) (k ⊙∘ h) ⊙Wedge-rec-post∘ k g h = (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ⊙WedgeRec.glue-β (k ⊙∘ g) (k ⊙∘ h) ∙ lemma (fst k) (snd g) (snd h) (snd k) ∙ ! (ap (ap (fst k)) (⊙WedgeRec.glue-β g h)) ∙ ∘-ap (fst k) (fst (⊙Wedge-rec g h)) wglue)) , idp where lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z : A} {w : B} (p : x == z) (q : y == z) (r : f z == w) → (ap f p ∙ r) ∙ ! (ap f q ∙ r) == ap f (p ∙ ! q) lemma f idp idp idp = idp ⊙∨-rec-post∘ = ⊙Wedge-rec-post∘ ⊙Wedge-rec-η : ⊙Wedge-rec ⊙winl ⊙winr == ⊙idf (X ⊙∨ Y) ⊙Wedge-rec-η = ⊙λ=' (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ap-idf wglue ∙ ! (!-! wglue) ∙ ! (⊙WedgeRec.glue-β ⊙winl ⊙winr))) idp ⊙∨-rec-η = ⊙Wedge-rec-η add-wglue : de⊙ (X ⊙⊔ Y) → X ∨ Y add-wglue (inl x) = winl x add-wglue (inr y) = winr y ⊙add-wglue : X ⊙⊔ Y ⊙→ X ⊙∨ Y ⊙add-wglue = add-wglue , idp module Projl = ⊙WedgeRec (⊙idf X) (⊙cst {X = Y}) module Projr = ⊙WedgeRec (⊙cst {X = X}) (⊙idf Y) projl = Projl.f projr = Projr.f ⊙projl = Projl.⊙f ⊙projr = Projr.⊙f module WedgeToProduct = ⊙WedgeRec ((_, pt Y) , idp) ((pt X ,_), idp) ∨-⊙to-× : X ⊙∨ Y ⊙→ X ⊙× Y ∨-⊙to-× = WedgeToProduct.⊙f ∨-to-× : X ∨ Y → de⊙ (X ⊙× Y) ∨-to-× = WedgeToProduct.f ∨-to-×-glue-β : ap ∨-to-× wglue == idp ∨-to-×-glue-β = WedgeToProduct.glue-β abstract ↓-∨to×=cst-in : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)} → p == p' → p == p' [ (λ w → ∨-to-× w == (x , y)) ↓ wglue ] ↓-∨to×=cst-in {p' = idp} q = ↓-app=cst-in' (q ∙ ! WedgeToProduct.glue-β) ↓-∨to×=cst-out : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)} → p == p' [ (λ w → ∨-to-× w == (x , y)) ↓ wglue ] → p == p' ↓-∨to×=cst-out {p' = idp} q = ↓-app=cst-out' q ∙ WedgeToProduct.glue-β ↓-∨to×=cst-β : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)} (q : p == p') → ↓-∨to×=cst-out (↓-∨to×=cst-in q) == q ↓-∨to×=cst-β {p' = idp} idp = ap (_∙ WedgeToProduct.glue-β) (↓-app=cst-β' {p = wglue} (! WedgeToProduct.glue-β)) ∙ !-inv-l WedgeToProduct.glue-β ↓-∨to×=cst-η : ∀ {x y} {p p' : (pt X , pt Y) == (x , y)} (q : p == p' [ (λ w → ∨-to-× w == (x , y)) ↓ wglue ]) → ↓-∨to×=cst-in (↓-∨to×=cst-out q) == q ↓-∨to×=cst-η {p = p} {p' = idp} q = ap ↓-app=cst-in' ( ∙-assoc (↓-app=cst-out' q) WedgeToProduct.glue-β (! WedgeToProduct.glue-β) ∙ ap (↓-app=cst-out' q ∙_) (!-inv-r WedgeToProduct.glue-β) ∙ ∙-unit-r (↓-app=cst-out' q)) ∙ ↓-app=cst-η' q module Fold {i} {X : Ptd i} = ⊙WedgeRec (⊙idf X) (⊙idf X) fold = Fold.f ⊙fold = Fold.⊙f module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} (fX : X ⊙→ X') (fY : Y ⊙→ Y') where wedge-span-map : SpanMap (wedge-span X Y) (wedge-span X' Y') wedge-span-map = span-map (fst fX) (fst fY) (idf _) (comm-sqr λ _ → snd fX) (comm-sqr λ _ → snd fY) module WedgeFmap where private module M = PushoutFmap wedge-span-map f = M.f glue-β = M.glue-β unit ∨-fmap : X ∨ Y → X' ∨ Y' ∨-fmap = WedgeFmap.f ⊙∨-fmap : X ⊙∨ Y ⊙→ X' ⊙∨ Y' ⊙∨-fmap = ∨-fmap , ap winl (snd fX) Wedge-fmap = ∨-fmap ⊙Wedge-fmap = ⊙∨-fmap module _ {i₀ i₁ i₂ j₀ j₁ j₂} {X₀ : Ptd i₀} {X₁ : Ptd i₁} {X₂ : Ptd i₂} {Y₀ : Ptd j₀} {Y₁ : Ptd j₁} {Y₂ : Ptd j₂} where ∨-fmap-∘ : (gX : X₁ ⊙→ X₂) (fX : X₀ ⊙→ X₁) (gY : Y₁ ⊙→ Y₂) (fY : Y₀ ⊙→ Y₁) → ∨-fmap (gX ⊙∘ fX) (gY ⊙∘ fY) ∼ ∨-fmap gX gY ∘ ∨-fmap fX fY ∨-fmap-∘ (gX , idp) (fX , idp) (gY , idp) (fY , idp) = Pushout-fmap-∘ (wedge-span-map (gX , idp) (gY , idp)) (wedge-span-map (fX , idp) (fY , idp)) ⊙∨-fmap-∘ : (gX : X₁ ⊙→ X₂) (fX : X₀ ⊙→ X₁) (gY : Y₁ ⊙→ Y₂) (fY : Y₀ ⊙→ Y₁) → ⊙∨-fmap (gX ⊙∘ fX) (gY ⊙∘ fY) ⊙∼ ⊙∨-fmap gX gY ⊙∘ ⊙∨-fmap fX fY ⊙∨-fmap-∘ (gX , idp) (fX , idp) (gY , idp) (fY , idp) = ∨-fmap-∘ (gX , idp) (fX , idp) (gY , idp) (fY , idp) , idp Wedge-fmap-∘ = ∨-fmap-∘ ⊙Wedge-fmap-∘ = ⊙∨-fmap-∘ module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} (eqX : X ⊙≃ X') (eqY : Y ⊙≃ Y') where wedge-span-emap : SpanEquiv (wedge-span X Y) (wedge-span X' Y') wedge-span-emap = wedge-span-map (⊙–> eqX) (⊙–> eqY) , snd eqX , snd eqY , idf-is-equiv _ ∨-emap : X ∨ Y ≃ X' ∨ Y' ∨-emap = Pushout-emap wedge-span-emap ⊙∨-emap : X ⊙∨ Y ⊙≃ X' ⊙∨ Y' ⊙∨-emap = ≃-to-⊙≃ ∨-emap (ap winl (⊙–>-pt eqX)) Wedge-emap = ∨-emap ⊙Wedge-emap = ⊙∨-emap module _ {i i' j j' k} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} {Z : Ptd k} (winl* : X' ⊙→ Z) (winr* : Y' ⊙→ Z) (f : X ⊙→ X') (g : Y ⊙→ Y') where ⊙Wedge-rec-fmap : ⊙Wedge-rec winl* winr* ⊙∘ ⊙∨-fmap f g ⊙∼ ⊙Wedge-rec (winl* ⊙∘ f) (winr* ⊙∘ g) ⊙Wedge-rec-fmap = Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ! $ lemma₀ winl* winr* f g) , lemma₁ winl* winr* f where abstract lemma₀ : ∀ {X' Y' Z} (winl* : X' ⊙→ Z) (winr* : Y' ⊙→ Z) (f : X ⊙→ X') (g : Y ⊙→ Y') → ap (⊙WedgeRec.f winl* winr* ∘ ∨-fmap f g) wglue == ap (⊙WedgeRec.f (winl* ⊙∘ f) (winr* ⊙∘ g)) wglue lemma₀ (winl* , idp) (winr* , winr*-pt) (f , idp) (g , idp) = ap (Wedge-rec winl* winr* (! winr*-pt) ∘ ∨-fmap (f , idp) (g , idp)) wglue =⟨ ap-∘ (Wedge-rec winl* winr* (! winr*-pt)) (∨-fmap (f , idp) (g , idp)) wglue ⟩ ap (Wedge-rec winl* winr* (! winr*-pt)) (ap (∨-fmap (f , idp) (g , idp)) wglue) =⟨ ap (ap (Wedge-rec winl* winr* (! winr*-pt))) $ WedgeFmap.glue-β (f , idp) (g , idp) ⟩ ap (Wedge-rec winl* winr* (! winr*-pt)) wglue =⟨ WedgeRec.glue-β winl* winr* (! winr*-pt) ⟩ ! winr*-pt =⟨ ! $ WedgeRec.glue-β (winl* ∘ f) (winr* ∘ g) (! winr*-pt) ⟩ ap (Wedge-rec (winl* ∘ f) (winr* ∘ g) (! winr*-pt)) wglue =∎ lemma₁ : ∀ {X' Z} (winl* : X' ⊙→ Z) (winr* : Y' ⊙→ Z) (f : X ⊙→ X') → snd (⊙Wedge-rec winl* winr* ⊙∘ ⊙∨-fmap f g) == snd (⊙Wedge-rec (winl* ⊙∘ f) (winr* ⊙∘ g)) lemma₁ (f , idp) _ (winl* , idp) = idp ⊙∨-rec-fmap = ⊙Wedge-rec-fmap module _ {i i' j j'} {X : Ptd i} {X' : Ptd i'} {Y : Ptd j} {Y' : Ptd j'} (f : X ⊙→ X') (g : Y ⊙→ Y') where ⊙projl-fmap : ⊙projl ⊙∘ ⊙∨-fmap f g ⊙∼ ⊙Wedge-rec f ⊙cst ⊙projl-fmap = Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ! $ lemma₀ f g) , lemma₁ f g where abstract lemma₀ : ∀ {X' Y'} (f : X ⊙→ X') (g : Y ⊙→ Y') → ap (projl ∘ ∨-fmap f g) wglue == ap (⊙WedgeRec.f f ⊙cst) wglue lemma₀ (f , idp) (g , idp) = ap (projl ∘ ∨-fmap (f , idp) (g , idp)) wglue =⟨ ap-∘ projl (∨-fmap (f , idp) (g , idp)) wglue ⟩ ap projl (ap (∨-fmap (f , idp) (g , idp)) wglue) =⟨ ap (ap projl) (WedgeFmap.glue-β (f , idp) (g , idp)) ⟩ ap projl wglue =⟨ Projl.glue-β ⟩ idp =⟨ ! $ ⊙WedgeRec.glue-β (f , idp) ⊙cst ⟩ ap (⊙WedgeRec.f (f , idp) ⊙cst) wglue =∎ lemma₁ : ∀ {X' Y'} (f : X ⊙→ X') (g : Y ⊙→ Y') → snd (⊙projl ⊙∘ ⊙∨-fmap f g) == snd (⊙Wedge-rec {Y = Y} f ⊙cst) lemma₁ (f , idp) (g , idp) = idp ⊙projr-fmap : ⊙projr ⊙∘ ⊙∨-fmap f g ⊙∼ ⊙Wedge-rec ⊙cst g ⊙projr-fmap = Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ! $ lemma₀ f g) , lemma₁ f g where abstract lemma₀ : ∀ {X' Y'} (f : X ⊙→ X') (g : Y ⊙→ Y') → ap (projr ∘ ∨-fmap f g) wglue == ap (⊙WedgeRec.f ⊙cst g) wglue lemma₀ (f , idp) (g , idp) = ap (projr ∘ ∨-fmap (f , idp) (g , idp)) wglue =⟨ ap-∘ projr (∨-fmap (f , idp) (g , idp)) wglue ⟩ ap projr (ap (∨-fmap (f , idp) (g , idp)) wglue) =⟨ ap (ap projr) (WedgeFmap.glue-β (f , idp) (g , idp)) ⟩ ap projr wglue =⟨ Projr.glue-β ⟩ idp =⟨ ! $ ⊙WedgeRec.glue-β ⊙cst (g , idp) ⟩ ap (⊙WedgeRec.f ⊙cst (g , idp)) wglue =∎ lemma₁ : ∀ {X' Y'} (f : X ⊙→ X') (g : Y ⊙→ Y') → snd (⊙projr ⊙∘ ⊙∨-fmap f g) == snd (⊙Wedge-rec {X = X} ⊙cst g) lemma₁ (f , idp) (g , idp) = idp module _ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (f : X ⊙→ Z) (g : Y ⊙→ Z) where {- favonia: This is a special case, but still proved separately to make sure it has good computational content. (Maybe this is overkilling.) -} ⊙fold-fmap : ⊙fold ⊙∘ ⊙∨-fmap f g ⊙∼ ⊙Wedge-rec f g ⊙fold-fmap = Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ! $ lemma₀ f g) , lemma₁ f g where abstract lemma₀ : ∀ {Z} (f : X ⊙→ Z) (g : Y ⊙→ Z) → ap (⊙WedgeRec.f (⊙idf _) (⊙idf _) ∘ ∨-fmap f g) wglue == ap (⊙WedgeRec.f f g) wglue lemma₀ (f , idp) (g , g-pt) = ap (⊙WedgeRec.f (⊙idf _) (⊙idf _) ∘ ∨-fmap (f , idp) (g , g-pt)) wglue =⟨ ap-∘ (⊙WedgeRec.f (⊙idf _) (⊙idf _)) (∨-fmap (f , idp) (g , g-pt)) wglue ⟩ ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) (ap (∨-fmap (f , idp) (g , g-pt)) wglue) =⟨ ap (ap (⊙WedgeRec.f (⊙idf _) (⊙idf _))) (WedgeFmap.glue-β (f , idp) (g , g-pt)) ⟩ ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) (wglue ∙' ap winr (! g-pt)) =⟨ ap-∙' (⊙WedgeRec.f (⊙idf _) (⊙idf _)) wglue (ap winr (! g-pt)) ⟩ ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) wglue ∙' ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) (ap winr (! g-pt)) =⟨ ap2 _∙'_ (⊙WedgeRec.glue-β (⊙idf _) (⊙idf _)) ( ∘-ap (⊙WedgeRec.f (⊙idf _) (⊙idf _)) winr (! g-pt) ∙ ap-idf (! g-pt)) ⟩ idp ∙' ! g-pt =⟨ ∙'-unit-l (! g-pt) ⟩ ! g-pt =⟨ ! $ ⊙WedgeRec.glue-β (f , idp) (g , g-pt) ⟩ ap (⊙WedgeRec.f (f , idp) (g , g-pt) ) wglue =∎ lemma₁ : ∀ {Z} (f : X ⊙→ Z) (g : Y ⊙→ Z) → snd (⊙Wedge-rec (⊙idf _) (⊙idf _) ⊙∘ ⊙∨-fmap f g) == snd (⊙Wedge-rec f g) lemma₁ (f , idp) (g , g-pt) = idp module _ {i j k} (X : Ptd i) (Y : Ptd j) (Z : Ptd k) where module WedgeAssocInl = WedgeRec {C = X ∨ (Y ⊙∨ Z)} winl (winr ∘ winl) wglue module WedgeAssoc = WedgeRec {X = X ⊙∨ Y} WedgeAssocInl.f (winr ∘ winr) (wglue ∙ ap winr wglue) ∨-assoc : (X ⊙∨ Y) ∨ Z ≃ X ∨ (Y ⊙∨ Z) ∨-assoc = equiv to from to-from from-to where to : (X ⊙∨ Y) ∨ Z → X ∨ (Y ⊙∨ Z) to = WedgeAssoc.f module FromInr = WedgeRec {C = (X ⊙∨ Y) ∨ Z} (winl ∘ winr) winr (! (ap winl wglue) ∙ wglue) module From = WedgeRec {Y = Y ⊙∨ Z} (winl ∘ winl) FromInr.f (ap winl wglue) from : X ∨ (Y ⊙∨ Z) → (X ⊙∨ Y) ∨ Z from = From.f abstract to-from : ∀ x → to (from x) == x to-from = Wedge-elim (λ x → idp) (Wedge-elim (λ y → idp) (λ z → idp) $ ↓-='-in' $ ! $ ap (to ∘ FromInr.f) wglue =⟨ ap-∘ to FromInr.f wglue ⟩ ap to (ap FromInr.f wglue) =⟨ ap (ap to) FromInr.glue-β ⟩ ap to (! (ap winl wglue) ∙ wglue) =⟨ ap-∙ to (! (ap winl wglue)) wglue ⟩ ap to (! (ap winl wglue)) ∙ ap to wglue =⟨ _∙2_ (ap-! to (ap winl wglue) ∙ ap ! (∘-ap to winl wglue ∙ WedgeAssocInl.glue-β)) WedgeAssoc.glue-β ⟩ ! wglue ∙ wglue ∙ ap winr wglue =⟨ ! $ ∙-assoc (! wglue) wglue (ap winr wglue) ⟩ (! wglue ∙ wglue) ∙ ap winr wglue =⟨ ap (_∙ ap winr wglue) (!-inv-l wglue) ⟩ ap winr wglue =∎) (↓-∘=idf-in' to from (ap (ap to) From.glue-β ∙ ∘-ap to winl wglue ∙ WedgeAssocInl.glue-β)) from-to : ∀ x → from (to x) == x from-to = Wedge-elim (Wedge-elim (λ x → idp) (λ y → idp) $ ↓-='-in' $ ! $ ap-∘ from WedgeAssocInl.f wglue ∙ ap (ap from) WedgeAssocInl.glue-β ∙ From.glue-β) (λ z → idp) (↓-∘=idf-in' from to $ ap from (ap to wglue) =⟨ ap (ap from) WedgeAssoc.glue-β ⟩ ap from (wglue ∙ ap winr wglue) =⟨ ap-∙ from wglue (ap winr wglue) ⟩ ap from wglue ∙ ap from (ap winr wglue) =⟨ From.glue-β ∙2 (∘-ap from winr wglue ∙ FromInr.glue-β) ⟩ ap winl wglue ∙ ! (ap winl wglue) ∙ wglue =⟨ ! $ ∙-assoc (ap winl wglue) (! (ap winl wglue)) wglue ⟩ (ap winl wglue ∙ ! (ap winl wglue)) ∙ wglue =⟨ ap (_∙ wglue) (!-inv-r (ap winl wglue)) ⟩ wglue =∎) ⊙∨-assoc : (X ⊙∨ Y) ⊙∨ Z ⊙≃ X ⊙∨ (Y ⊙∨ Z) ⊙∨-assoc = ≃-to-⊙≃ ∨-assoc idp {- module _ {i₀ i₁ j₀ j₁ k₀ k₁} {X₀ : Ptd i₀} {Y₀ : Ptd j₀} {Z₀ : Ptd k₀} {X₁ : Ptd i₁} {Y₁ : Ptd j₁} {Z₁ : Ptd k₁} where ⊙∨-assoc-nat : ∀ (f : X₀ ⊙→ X₁) (g : Y₀ ⊙→ Y₁) (h : Z₀ ⊙→ Z₁) → ⊙–> (⊙∨-assoc X₁ Y₁ Z₁) ⊙∘ ⊙∨-fmap (⊙∨-fmap f g) h ⊙∼ ⊙∨-fmap f (⊙∨-fmap g h) ⊙∘ ⊙–> (⊙∨-assoc X₀ Y₀ Z₀) ⊙∨-assoc-nat (f , idp) (g , idp) (h , idp) = (Wedge-elim -- {P = –> (∨-assoc X₁ Y₁ Z₁) ∘ ∨-fmap (⊙∨-fmap f g) h ∼ ∨-fmap f (⊙∨-fmap g h) ∘ –> (∨-assoc X₀ Y₀ Z₀)} (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in' $ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp)) ∘ WedgeAssocInl.f X₀ Y₀ Z₀) wglue =⟨ ap-∘ (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (WedgeAssocInl.f X₀ Y₀ Z₀) wglue ⟩ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (ap (WedgeAssocInl.f X₀ Y₀ Z₀) wglue) =⟨ ap (ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp)))) (WedgeAssocInl.glue-β X₀ Y₀ Z₀) ⟩ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) wglue =⟨ WedgeFmap.glue-β (f , idp) (⊙∨-fmap (g , idp) (h , idp)) ⟩ wglue =⟨ ! $ WedgeAssocInl.glue-β X₁ Y₁ Z₁ ⟩ ap (WedgeAssocInl.f X₁ Y₁ Z₁) wglue =⟨ ! $ ap (ap (WedgeAssocInl.f X₁ Y₁ Z₁)) $ WedgeFmap.glue-β (f , idp) (g , idp) ⟩ ap (WedgeAssocInl.f X₁ Y₁ Z₁) (ap (∨-fmap (f , idp) (g , idp)) wglue) =⟨ ∘-ap (WedgeAssocInl.f X₁ Y₁ Z₁) (∨-fmap (f , idp) (g , idp)) wglue ⟩ ap (WedgeAssocInl.f X₁ Y₁ Z₁ ∘ ∨-fmap (f , idp) (g , idp)) wglue =∎)) (λ _ → idp) (↓-='-in' $ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp)) ∘ WedgeAssoc.f X₀ Y₀ Z₀) wglue =⟨ ap-∘ (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (WedgeAssoc.f X₀ Y₀ Z₀) wglue ⟩ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (ap (WedgeAssoc.f X₀ Y₀ Z₀) wglue) =⟨ ap (ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp)))) (WedgeAssoc.glue-β X₀ Y₀ Z₀) ⟩ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (wglue ∙ ap winr wglue) =⟨ ap-∙ (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) wglue (ap winr wglue) ⟩ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) wglue ∙ ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) (ap winr wglue) =⟨ ap2 _∙_ (WedgeFmap.glue-β (f , idp) (⊙∨-fmap (g , idp) (h , idp))) ( ∘-ap (∨-fmap (f , idp) (⊙∨-fmap (g , idp) (h , idp))) winr wglue ∙ ap-∘ winr (∨-fmap (g , idp) (h , idp)) wglue ∙ ap (ap winr) (WedgeFmap.glue-β (g , idp) (h , idp))) ⟩ wglue ∙ ap winr wglue =⟨ ! $ WedgeAssoc.glue-β X₁ Y₁ Z₁ ⟩ ap (WedgeAssoc.f X₁ Y₁ Z₁) wglue =⟨ ! $ ap (ap (WedgeAssoc.f X₁ Y₁ Z₁)) $ WedgeFmap.glue-β (⊙∨-fmap (f , idp) (g , idp)) (h , idp) ⟩ ap (WedgeAssoc.f X₁ Y₁ Z₁) (ap (∨-fmap (⊙∨-fmap (f , idp) (g , idp)) (h , idp)) wglue) =⟨ ∘-ap (WedgeAssoc.f X₁ Y₁ Z₁) (∨-fmap (⊙∨-fmap (f , idp) (g , idp)) (h , idp)) wglue ⟩ ap (WedgeAssoc.f X₁ Y₁ Z₁ ∘ ∨-fmap (⊙∨-fmap (f , idp) (g , idp)) (h , idp)) wglue =∎)) , idp -} module _ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (f : X ⊙→ W) (g : Y ⊙→ W) (h : Z ⊙→ W) where ⊙Wedge-rec-assoc : ⊙Wedge-rec (⊙Wedge-rec f g) h ⊙∼ ⊙Wedge-rec f (⊙Wedge-rec g h) ⊙∘ ⊙–> (⊙∨-assoc X Y Z) ⊙Wedge-rec-assoc = (Wedge-elim (Wedge-elim (λ x → idp) (λ y → idp) (↓-='-in' $ ap-∘ (⊙WedgeRec.f f (⊙Wedge-rec g h)) (WedgeAssocInl.f X Y Z) wglue ∙ ap (ap (⊙WedgeRec.f f (⊙Wedge-rec g h))) (WedgeAssocInl.glue-β X Y Z) ∙ ⊙WedgeRec.glue-β f (⊙Wedge-rec g h) ∙ ! (⊙WedgeRec.glue-β f g))) (λ z → idp) (↓-='-in' $ ap-∘ (⊙WedgeRec.f f (⊙Wedge-rec g h)) (WedgeAssoc.f X Y Z) wglue ∙ ap (ap (⊙WedgeRec.f f (⊙Wedge-rec g h))) (WedgeAssoc.glue-β X Y Z) ∙ ap-∙ (⊙WedgeRec.f f (⊙Wedge-rec g h)) wglue (ap winr wglue) ∙ _∙2_ (⊙WedgeRec.glue-β f (⊙Wedge-rec g h)) ( ∘-ap (⊙WedgeRec.f f (⊙Wedge-rec g h)) winr wglue ∙ ⊙WedgeRec.glue-β g h) ∙ ∙-assoc (snd f) (! (snd g)) (snd g ∙ ! (snd h)) ∙ ap (snd f ∙_) (! $ ∙-assoc (! (snd g)) (snd g) (! (snd h))) ∙ ap (λ p → snd f ∙ p ∙ ! (snd h)) (!-inv-l (snd g)) ∙ ! (⊙WedgeRec.glue-β (⊙Wedge-rec f g) h))) , idp ⊙∨-rec-assoc = ⊙Wedge-rec-assoc
37.44381
116
0.448469
1a276be7495fc14b1af17d24bcd328f9920e6f95
10,706
agda
Agda
core/lib/PathOver.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/PathOver.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
core/lib/PathOver.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Base open import lib.PathFunctor open import lib.PathGroupoid open import lib.Equivalence {- Structural lemmas about paths over paths The lemmas here have the form [↓-something-in] : introduction rule for the something [↓-something-out] : elimination rule for the something [↓-something-β] : β-reduction rule for the something [↓-something-η] : η-reduction rule for the something The possible somethings are: [cst] : constant fibration [cst2] : fibration constant in the second argument [cst2×] : fibration constant and nondependent in the second argument [ap] : the path below is of the form [ap f p] [fst×] : the fibration is [fst] (nondependent product) [snd×] : the fibration is [snd] (nondependent product) The rule of prime: The above lemmas should choose between [_∙_] and [_∙'_] in a way that, if the underlying path is [idp], then the entire lemma reduces to an identity function. Otherwise, the lemma would have the suffix [in'] or [out'], meaning that all the choices of [_∙_] or [_∙'_] are exactly the opposite ones. You can also go back and forth between dependent paths and homogeneous paths with a transport on one side with the functions [to-transp], [from-transp], [to-transp-β] [to-transp!], [from-transp!], [to-transp!-β] More lemmas about paths over paths are present in the lib.types.* modules (depending on the type constructor of the fibration) -} module lib.PathOver where {- Dependent paths in a constant fibration -} module _ {i j} {A : Type i} {B : Type j} where ↓-cst-in : {x y : A} {p : x == y} {u v : B} → u == v → u == v [ (λ _ → B) ↓ p ] ↓-cst-in {p = idp} q = q ↓-cst-out : {x y : A} {p : x == y} {u v : B} → u == v [ (λ _ → B) ↓ p ] → u == v ↓-cst-out {p = idp} q = q ↓-cst-β : {x y : A} (p : x == y) {u v : B} (q : u == v) → (↓-cst-out (↓-cst-in {p = p} q) == q) ↓-cst-β idp q = idp {- Interaction of [↓-cst-in] with [_∙_] -} ↓-cst-in-∙ : {x y z : A} (p : x == y) (q : y == z) {u v w : B} (p' : u == v) (q' : v == w) → ↓-cst-in {p = p ∙ q} (p' ∙ q') == ↓-cst-in {p = p} p' ∙ᵈ ↓-cst-in {p = q} q' ↓-cst-in-∙ idp idp idp idp = idp {- Interaction of [↓-cst-in] with [_∙'_] -} ↓-cst-in-∙' : {x y z : A} (p : x == y) (q : y == z) {u v w : B} (p' : u == v) (q' : v == w) → ↓-cst-in {p = p ∙' q} (p' ∙' q') == ↓-cst-in {p = p} p' ∙'ᵈ ↓-cst-in {p = q} q' ↓-cst-in-∙' idp idp idp idp = idp {- Introduction of an equality between [↓-cst-in]s (used to deduce the recursor from the eliminator in HIT with 2-paths) -} ↓-cst-in2 : {a a' : A} {u v : B} {p₀ : a == a'} {p₁ : a == a'} {q₀ q₁ : u == v} {q : p₀ == p₁} → q₀ == q₁ → (↓-cst-in {p = p₀} q₀ == ↓-cst-in {p = p₁} q₁ [ (λ p → u == v [ (λ _ → B) ↓ p ]) ↓ q ]) ↓-cst-in2 {p₀ = idp} {p₁ = .idp} {q₀} {q₁} {idp} k = k -- Dependent paths in a fibration constant in the second argument module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where ↓-cst2-in : {x y : A} (p : x == y) {b : C x} {c : C y} (q : b == c [ C ↓ p ]) {u : B x} {v : B y} → u == v [ B ↓ p ] → u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ] ↓-cst2-in idp idp r = r ↓-cst2-out : {x y : A} (p : x == y) {b : C x} {c : C y} (q : b == c [ C ↓ p ]) {u : B x} {v : B y} → u == v [ (λ xy → B (fst xy)) ↓ (pair= p q) ] → u == v [ B ↓ p ] ↓-cst2-out idp idp r = r -- Dependent paths in a fibration constant and non dependent in the -- second argument module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} where ↓-cst2×-in : {x y : A} (p : x == y) {b c : C} (q : b == c) {u : B x} {v : B y} → u == v [ B ↓ p ] → u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ] ↓-cst2×-in idp idp r = r ↓-cst2×-out : {x y : A} (p : x == y) {b c : C} (q : b == c) {u : B x} {v : B y} → u == v [ (λ xy → B (fst xy)) ↓ (pair×= p q) ] → u == v [ B ↓ p ] ↓-cst2×-out idp idp r = r -- Dependent paths in the universal fibration over the universe ↓-idf-out : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B} → u == v [ (λ x → x) ↓ p ] → coe p u == v ↓-idf-out idp = idf _ ↓-idf-in : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B} → coe p u == v → u == v [ (λ x → x) ↓ p ] ↓-idf-in idp = idf _ -- Dependent paths over [ap f p] module _ {i j k} {A : Type i} {B : Type j} (C : B → Type k) (f : A → B) where ↓-ap-in : {x y : A} {p : x == y} {u : C (f x)} {v : C (f y)} → u == v [ C ∘ f ↓ p ] → u == v [ C ↓ ap f p ] ↓-ap-in {p = idp} idp = idp ↓-ap-out : {x y : A} (p : x == y) {u : C (f x)} {v : C (f y)} → u == v [ C ↓ ap f p ] → u == v [ C ∘ f ↓ p ] ↓-ap-out idp idp = idp -- Dependent paths over [ap2 f p q] module _ {i j k l} {A : Type i} {B : Type j} {C : Type k} (D : C → Type l) (f : A → B → C) where ↓-ap2-in : {x y : A} {p : x == y} {w z : B} {q : w == z} {u : D (f x w)} {v : D (f y z)} → u == v [ D ∘ uncurry f ↓ pair×= p q ] → u == v [ D ↓ ap2 f p q ] ↓-ap2-in {p = idp} {q = idp} α = α ↓-ap2-out : {x y : A} {p : x == y} {w z : B} {q : w == z} {u : D (f x w)} {v : D (f y z)} → u == v [ D ↓ ap2 f p q ] → u == v [ D ∘ uncurry f ↓ pair×= p q ] ↓-ap2-out {p = idp} {q = idp} α = α apd↓ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} (f : {a : A} (b : B a) → C a b) {x y : A} {p : x == y} {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → f u == f v [ (λ xy → C (fst xy) (snd xy)) ↓ pair= p q ] apd↓ f {p = idp} idp = idp apd↓=apd : ∀ {i j} {A : Type i} {B : A → Type j} (f : (a : A) → B a) {x y : A} (p : x == y) → (apd f p == ↓-ap-out _ _ p (apd↓ {A = Unit} f {p = idp} p)) apd↓=apd f idp = idp -- Paths in the fibrations [fst] and [snd] module _ {i j} where ↓-fst×-out : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B') {u : A} {v : A'} → u == v [ fst ↓ pair×= p q ] → u == v [ (λ X → X) ↓ p ] ↓-fst×-out idp idp h = h ↓-snd×-in : {A A' : Type i} {B B' : Type j} (p : A == A') (q : B == B') {u : B} {v : B'} → u == v [ (λ X → X) ↓ q ] → u == v [ snd ↓ pair×= p q ] ↓-snd×-in idp idp h = h -- Mediating dependent paths with the transport version module _ {i j} {A : Type i} where from-transp : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (transport B p u == v) → (u == v [ B ↓ p ]) from-transp B idp idp = idp to-transp : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} → (u == v [ B ↓ p ]) → (transport B p u == v) to-transp {p = idp} idp = idp to-transp-β : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} (q : transport B p u == v) → to-transp (from-transp B p q) == q to-transp-β B idp idp = idp to-transp-η : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} (q : u == v [ B ↓ p ]) → from-transp B p (to-transp q) == q to-transp-η {p = idp} idp = idp to-transp-equiv : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (transport B p u == v) to-transp-equiv B p = equiv to-transp (from-transp B p) (to-transp-β B p) (to-transp-η) from-transp! : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == transport! B p v) → (u == v [ B ↓ p ]) from-transp! B idp idp = idp to-transp! : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} → (u == v [ B ↓ p ]) → (u == transport! B p v) to-transp! {p = idp} idp = idp to-transp!-β : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} (q : u == transport! B p v) → to-transp! (from-transp! B p q) == q to-transp!-β B idp idp = idp to-transp!-η : {B : A → Type j} {a a' : A} {p : a == a'} {u : B a} {v : B a'} (q : u == v [ B ↓ p ]) → from-transp! B p (to-transp! q) == q to-transp!-η {p = idp} idp = idp to-transp!-equiv : (B : A → Type j) {a a' : A} (p : a == a') {u : B a} {v : B a'} → (u == v [ B ↓ p ]) ≃ (u == transport! B p v) to-transp!-equiv B p = equiv to-transp! (from-transp! B p) (to-transp!-β B p) (to-transp!-η) {- Various other lemmas -} {- Used for defining the recursor from the eliminator for 1-HIT -} apd=cst-in : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a a' : A} {p : a == a'} {q : f a == f a'} → apd f p == ↓-cst-in q → ap f p == q apd=cst-in {p = idp} x = x ↓-apd-out : ∀ {i j k} {A : Type i} {B : A → Type j} (C : (a : A) → B a → Type k) {f : Π A B} {x y : A} {p : x == y} {q : f x == f y [ B ↓ p ]} (r : apd f p == q) {u : C x (f x)} {v : C y (f y)} → u == v [ uncurry C ↓ pair= p q ] → u == v [ (λ z → C z (f z)) ↓ p ] ↓-apd-out C {p = idp} idp idp = idp ↓-ap-out= : ∀ {i j k} {A : Type i} {B : Type j} (C : (b : B) → Type k) (f : A → B) {x y : A} (p : x == y) {q : f x == f y} (r : ap f p == q) {u : C (f x)} {v : C (f y)} → u == v [ C ↓ q ] → u == v [ (λ z → C (f z)) ↓ p ] ↓-ap-out= C f idp idp idp = idp -- No idea what that is to-transp-weird : ∀ {i j} {A : Type i} {B : A → Type j} {u v : A} {d : B u} {d' d'' : B v} {p : u == v} (q : d == d' [ B ↓ p ]) (r : transport B p d == d'') → (from-transp B p r ∙'ᵈ (! r ∙ to-transp q)) == q to-transp-weird {p = idp} idp idp = idp -- Something not really clear yet module _ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → C) (g : B → C) where ↓-swap : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) → (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) → (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ]) ↓-swap {p = idp} {q = idp} r s t = (! t) ∙ ∙'-unit-l s ∙ ! (∙-unit-r s) ↓-swap! : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) → (r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ]) → (ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) ↓-swap! {p = idp} {q = idp} r s t = ∙'-unit-l s ∙ ! (∙-unit-r s) ∙ (! t) ↓-swap-β : {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} (r : f a == g b') (s : f a' == g b) (t : ap f p ∙' s == r [ (λ x → f a == g x) ↓ q ]) → ↓-swap! r s (↓-swap r s t) == t ↓-swap-β {p = idp} {q = idp} r s t = coh (∙'-unit-l s) (∙-unit-r s) t where coh : ∀ {i} {X : Type i} {x y z t : X} (p : x == y) (q : z == y) (r : x == t) → p ∙ ! q ∙ ! (! r ∙ p ∙ ! q) == r coh idp idp idp = idp transp-↓ : ∀ {i j} {A : Type i} (P : A → Type j) {a₁ a₂ : A} (p : a₁ == a₂) (y : P a₂) → transport P (! p) y == y [ P ↓ p ] transp-↓ _ idp _ = idp transp-ap-↓ : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) (h : A → B) {a₁ a₂ : A} (p : a₁ == a₂) (y : P (h a₂)) → transport P (! (ap h p)) y == y [ P ∘ h ↓ p ] transp-ap-↓ _ _ idp _ = idp
34.647249
93
0.441341
0611058d4dba5379ad330dbf7deec75b6b811f6f
1,267
agda
Agda
Cats/Category/Fun/Facts.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Fun/Facts.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Fun/Facts.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Category.Fun.Facts where open import Cats.Category open import Cats.Category.Cat using (_≈_) open import Cats.Category.Fun using (Trans ; Fun ; ≈-intro ; ≈-elim) open import Cats.Functor using (Functor) open import Cats.Trans.Iso using (NatIso ; iso ; forth-natural ; back-natural) open import Level using (_⊔_) open Functor open Trans open Category._≅_ module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} {F G : Functor C D} where private module C = Category C module D = Category D open D.≈-Reasoning open Category (Fun C D) using (_≅_) NatIso→≅ : NatIso F G → F ≅ G NatIso→≅ i = record { forth = Forth i ; back = Back i ; back-forth = ≈-intro (back-forth (iso i)) ; forth-back = ≈-intro (forth-back (iso i)) } where open NatIso ≅→NatIso : F ≅ G → NatIso F G ≅→NatIso i = record { iso = λ {c} → record { forth = component (forth i) c ; back = component (back i) c ; back-forth = ≈-elim (back-forth i) ; forth-back = ≈-elim (forth-back i) } ; forth-natural = natural (forth i) } ≈→≅ : F ≈ G → F ≅ G ≈→≅ eq = NatIso→≅ eq ≅→≈ : F ≅ G → F ≈ G ≅→≈ i = ≅→NatIso i
21.844828
78
0.562747
a0a7c84b653976f1d841c01b66587da2827a2870
14,695
agda
Agda
Numbers/BinaryNaturals/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Numbers/BinaryNaturals/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Numbers/BinaryNaturals/Addition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Lists.Lists open import Numbers.Naturals.Semiring open import Numbers.Naturals.Naturals open import Numbers.Naturals.Order open import Numbers.BinaryNaturals.Definition open import Semirings.Definition open import Orders.Total.Definition module Numbers.BinaryNaturals.Addition where -- Define the monoid structure, and show that it's the same as ℕ's _+Binherit_ : BinNat → BinNat → BinNat a +Binherit b = NToBinNat (binNatToN a +N binNatToN b) _+B_ : BinNat → BinNat → BinNat [] +B b = b (x :: a) +B [] = x :: a (zero :: xs) +B (y :: ys) = y :: (xs +B ys) (one :: xs) +B (zero :: ys) = one :: (xs +B ys) (one :: xs) +B (one :: ys) = zero :: incr (xs +B ys) +BCommutative : (a b : BinNat) → a +B b ≡ b +B a +BCommutative [] [] = refl +BCommutative [] (x :: b) = refl +BCommutative (x :: a) [] = refl +BCommutative (zero :: as) (zero :: bs) rewrite +BCommutative as bs = refl +BCommutative (zero :: as) (one :: bs) rewrite +BCommutative as bs = refl +BCommutative (one :: as) (zero :: bs) rewrite +BCommutative as bs = refl +BCommutative (one :: as) (one :: bs) rewrite +BCommutative as bs = refl private +BIsInherited[] : (b : BinNat) (prB : b ≡ canonical b) → [] +Binherit b ≡ [] +B b +BIsInherited[] [] prB = refl +BIsInherited[] (zero :: b) prB = t where refine : (b : BinNat) → zero :: b ≡ canonical (zero :: b) → b ≡ canonical b refine b pr with canonical b refine b pr | x :: bl = ::Inj pr t : NToBinNat (0 +N binNatToN (zero :: b)) ≡ zero :: b t with TotalOrder.totality ℕTotalOrder 0 (binNatToN b) t | inl (inl pos) = transitivity (doubleIsBitShift (binNatToN b) pos) (applyEquality (zero ::_) (transitivity (binToBin b) (equalityCommutative (refine b prB)))) t | inl (inr ()) ... | inr eq with binNatToNZero b (equalityCommutative eq) ... | u with canonical b t | inr eq | u | [] = exFalso (bad b prB) where bad : (c : BinNat) → zero :: c ≡ [] → False bad c () t | inr eq | () | x :: bl +BIsInherited[] (one :: b) prB = ans where ans : NToBinNat (binNatToN (one :: b)) ≡ one :: b ans = transitivity (binToBin (one :: b)) (equalityCommutative prB) -- Show that the monoid structure of ℕ is the same as that of BinNat +BIsInherited : (a b : BinNat) (prA : a ≡ canonical a) (prB : b ≡ canonical b) → a +Binherit b ≡ a +B b +BinheritLemma : (a : BinNat) (b : BinNat) (prA : a ≡ canonical a) (prB : b ≡ canonical b) → incr (NToBinNat ((binNatToN a +N binNatToN b) +N ((binNatToN a +N binNatToN b) +N zero))) ≡ one :: (a +B b) +BIsInherited' : (a b : BinNat) → a +Binherit b ≡ canonical (a +B b) +BinheritLemma a b prA prB with TotalOrder.totality ℕTotalOrder 0 (binNatToN a +N binNatToN b) +BinheritLemma a b prA prB | inl (inl x) rewrite doubleIsBitShift (binNatToN a +N binNatToN b) x = applyEquality (one ::_) (+BIsInherited a b prA prB) +BinheritLemma a b prA prB | inr x with sumZeroImpliesSummandsZero (equalityCommutative x) +BinheritLemma a b prA prB | inr x | fst ,, snd = ans2 where bad : b ≡ [] bad = transitivity prB (binNatToNZero b snd) bad2 : a ≡ [] bad2 = transitivity prA (binNatToNZero a fst) ans2 : incr (NToBinNat ((binNatToN a +N binNatToN b) +N ((binNatToN a +N binNatToN b) +N zero))) ≡ one :: (a +B b) ans2 rewrite bad | bad2 = refl +BIsInherited [] b _ prB = +BIsInherited[] b prB +BIsInherited (x :: a) [] prA _ = transitivity (applyEquality NToBinNat (Semiring.commutative ℕSemiring (binNatToN (x :: a)) 0)) (transitivity (binToBin (x :: a)) (equalityCommutative prA)) +BIsInherited (zero :: as) (zero :: b) prA prB with TotalOrder.totality ℕTotalOrder 0 (binNatToN as +N binNatToN b) ... | inl (inl 0<) rewrite Semiring.commutative ℕSemiring (binNatToN as) 0 | Semiring.commutative ℕSemiring (binNatToN b) 0 | Semiring.+Associative ℕSemiring (binNatToN as +N binNatToN as) (binNatToN b) (binNatToN b) | equalityCommutative (Semiring.+Associative ℕSemiring (binNatToN as) (binNatToN as) (binNatToN b)) | Semiring.commutative ℕSemiring (binNatToN as) (binNatToN b) | Semiring.+Associative ℕSemiring (binNatToN as) (binNatToN b) (binNatToN as) | equalityCommutative (Semiring.+Associative ℕSemiring (binNatToN as +N binNatToN b) (binNatToN as) (binNatToN b)) | Semiring.commutative ℕSemiring 0 ((binNatToN as +N binNatToN b) +N (binNatToN as +N binNatToN b)) | equalityCommutative (Semiring.+Associative ℕSemiring (binNatToN as +N binNatToN b) (binNatToN as +N binNatToN b) 0) = transitivity (doubleIsBitShift (binNatToN as +N binNatToN b) (identityOfIndiscernablesRight _<N_ 0< (Semiring.commutative ℕSemiring (binNatToN b) _))) (applyEquality (zero ::_) (+BIsInherited as b (canonicalDescends as prA) (canonicalDescends b prB))) +BIsInherited (zero :: as) (zero :: b) prA prB | inl (inr ()) ... | inr p with sumZeroImpliesSummandsZero {binNatToN as} (equalityCommutative p) +BIsInherited (zero :: as) (zero :: b) prA prB | inr p | as=0 ,, b=0 rewrite as=0 | b=0 = exFalso ans where bad : (b : BinNat) → (pr : b ≡ canonical b) → (pr2 : binNatToN b ≡ 0) → b ≡ [] bad b pr pr2 = transitivity pr (binNatToNZero b pr2) t : b ≡ canonical b t with canonical b t | x :: bl = ::Inj prB u : b ≡ [] u = bad b t b=0 nono : {A : Set} → {a : A} → {as : List A} → a :: as ≡ [] → False nono () ans : False ans with inspect (canonical b) ans | [] with≡ x rewrite x = nono prB ans | (x₁ :: y) with≡ x = nono (transitivity (equalityCommutative x) (transitivity (equalityCommutative t) u)) +BIsInherited (zero :: as) (one :: b) prA prB rewrite Semiring.commutative ℕSemiring (binNatToN as +N (binNatToN as +N zero)) (succ (binNatToN b +N (binNatToN b +N zero))) | Semiring.commutative ℕSemiring (binNatToN b +N (binNatToN b +N zero)) (binNatToN as +N (binNatToN as +N zero)) | equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN b)) = +BinheritLemma as b (canonicalDescends as prA) (canonicalDescends b prB) +BIsInherited (one :: as) (zero :: bs) prA prB rewrite equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = +BinheritLemma as bs (canonicalDescends as prA) (canonicalDescends bs prB) +BIsInherited (one :: as) (one :: bs) prA prB rewrite Semiring.commutative ℕSemiring (binNatToN as +N (binNatToN as +N zero)) (succ (binNatToN bs +N (binNatToN bs +N zero))) | Semiring.commutative ℕSemiring (binNatToN bs +N (binNatToN bs +N zero)) (2 *N binNatToN as) | equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) | +BinheritLemma as bs (canonicalDescends as prA) (canonicalDescends bs prB) = refl +BIsInherited'[] : (b : BinNat) → [] +Binherit b ≡ canonical ([] +B b) +BIsInherited'[] [] = refl +BIsInherited'[] (zero :: b) with inspect (canonical b) +BIsInherited'[] (zero :: b) | [] with≡ pr rewrite binNatToNZero' b pr | pr = refl +BIsInherited'[] (zero :: b) | (x :: bl) with≡ pr rewrite pr = ans where contr : {a : _} {A : Set a} {l1 l2 : List A} → {x : A} → l1 ≡ [] → l1 ≡ x :: l2 → False contr {l1 = []} p1 () contr {l1 = x :: l1} () p2 ans : NToBinNat (binNatToN b +N (binNatToN b +N zero)) ≡ zero :: x :: bl ans with inspect (binNatToN b) ans | zero with≡ th rewrite th = exFalso (contr (binNatToNZero b th) pr) ans | succ th with≡ blah rewrite blah | doubleIsBitShift' th = applyEquality (zero ::_) (transitivity (equalityCommutative u) pr) where u : canonical b ≡ incr (NToBinNat th) u = transitivity (equalityCommutative (binToBin b)) (applyEquality NToBinNat blah) +BIsInherited'[] (one :: b) with inspect (binNatToN b) ... | zero with≡ pr rewrite pr = applyEquality (one ::_) (equalityCommutative (binNatToNZero b pr)) ... | (succ bl) with≡ pr = ans where u : NToBinNat (2 *N binNatToN b) ≡ zero :: canonical b u with doubleIsBitShift' bl ... | t = transitivity (identityOfIndiscernablesLeft _≡_ t (applyEquality (λ i → NToBinNat (2 *N i)) (equalityCommutative pr))) (applyEquality (zero ::_) (transitivity (applyEquality NToBinNat (equalityCommutative pr)) (binToBin b))) ans : incr (NToBinNat (binNatToN b +N (binNatToN b +N zero))) ≡ one :: canonical b ans = applyEquality incr u +BIsInherited' [] b = +BIsInherited'[] b +BIsInherited' (zero :: a) [] with inspect (binNatToN a) +BIsInherited' (zero :: a) [] | zero with≡ x rewrite x | binNatToNZero a x = refl +BIsInherited' (zero :: a) [] | succ y with≡ x rewrite x | Semiring.commutative ℕSemiring (y +N succ (y +N 0)) 0 = transitivity (doubleIsBitShift' y) (transitivity (applyEquality (λ i → (zero :: NToBinNat i)) (equalityCommutative x)) (transitivity (applyEquality (λ i → zero :: i) (binToBin a)) (canonicalAscends' {zero} a bad))) where bad : canonical a ≡ [] → False bad pr with transitivity (equalityCommutative x) (transitivity (equalityCommutative (binNatToNIsCanonical a)) (applyEquality binNatToN pr)) bad pr | () +BIsInherited' (one :: a) [] with inspect (binNatToN a) +BIsInherited' (one :: a) [] | 0 with≡ x rewrite x | binNatToNZero a x = refl +BIsInherited' (one :: a) [] | succ n with≡ x rewrite x | doubleIsBitShift' n = applyEquality incr {_} {zero :: canonical a} (transitivity {x = _} {NToBinNat (2 *N succ n)} bl (transitivity (doubleIsBitShift' n) (applyEquality (zero ::_) (transitivity (applyEquality NToBinNat (equalityCommutative x)) (binToBin a))))) where bl : incr (NToBinNat ((n +N succ (n +N 0)) +N 0)) ≡ NToBinNat (succ (n +N succ (n +N 0))) bl rewrite equalityCommutative x | Semiring.commutative ℕSemiring (n +N succ (n +N 0)) 0 = refl +BIsInherited' (zero :: as) (zero :: bs) rewrite equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = ans where ans : NToBinNat (2 *N (binNatToN as +N binNatToN bs)) ≡ canonical (zero :: (as +B bs)) ans with inspect (binNatToN as +N binNatToN bs) ans | zero with≡ x with sumZeroImpliesSummandsZero {binNatToN as} x ... | as=0 ,, bs=0 rewrite as=0 | bs=0 = foo where u : canonical (as +Binherit bs) ≡ [] u rewrite as=0 | bs=0 = refl foo : [] ≡ canonical (zero :: (as +B bs)) foo = transitivity (transitivity b (applyEquality (λ i → canonical (zero :: i)) (+BIsInherited' as bs))) (canonicalAscends'' {zero} (as +B bs)) where b : [] ≡ canonical (zero :: (as +Binherit bs)) b rewrite u = refl ans | succ y with≡ x rewrite x | doubleIsBitShift' y = transitivity (applyEquality (λ i → zero :: NToBinNat i) (equalityCommutative x)) ans2 where u : 0 <N binNatToN (as +B bs) u rewrite equalityCommutative (binNatToNIsCanonical (as +B bs)) | equalityCommutative (+BIsInherited' as bs) | x | nToN (succ y) = succIsPositive y ans2 : zero :: NToBinNat (binNatToN as +N binNatToN bs) ≡ canonical (zero :: (as +B bs)) ans2 rewrite +BIsInherited' as bs = canonicalAscends (as +B bs) u +BIsInherited' (zero :: as) (one :: bs) rewrite Semiring.commutative ℕSemiring (2 *N binNatToN as) (succ (2 *N binNatToN bs)) | Semiring.commutative ℕSemiring (2 *N binNatToN bs) (2 *N binNatToN as) | equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = ans2 where ans2 : incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs))) ≡ one :: canonical (as +B bs) ans2 with inspect (binNatToN as +N binNatToN bs) ans2 | zero with≡ x with sumZeroImpliesSummandsZero {binNatToN as} x ans2 | zero with≡ x | as=0 ,, bs=0 rewrite as=0 | bs=0 = applyEquality (one ::_) (transitivity t (+BIsInherited' as bs)) where t : [] ≡ as +Binherit bs t rewrite as=0 | bs=0 = refl ans2 | succ y with≡ x rewrite x | doubleIsBitShift' y = applyEquality (one ::_) (transitivity (applyEquality NToBinNat (equalityCommutative x)) (+BIsInherited' as bs)) +BIsInherited' (one :: as) (zero :: bs) rewrite equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = ans where ans : incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs))) ≡ one :: canonical (as +B bs) ans with inspect (binNatToN as +N binNatToN bs) ans | zero with≡ x with sumZeroImpliesSummandsZero {binNatToN as} x ... | as=0 ,, bs=0 rewrite as=0 | bs=0 = applyEquality (one ::_) (transitivity t (+BIsInherited' as bs)) where t : [] ≡ NToBinNat (binNatToN as +N binNatToN bs) t rewrite as=0 | bs=0 = refl ans | succ y with≡ x rewrite x | doubleIsBitShift' y = applyEquality (one ::_) (transitivity (applyEquality NToBinNat (equalityCommutative x)) (+BIsInherited' as bs)) +BIsInherited' (one :: as) (one :: bs) rewrite Semiring.commutative ℕSemiring (2 *N binNatToN as) (succ (2 *N binNatToN bs)) | Semiring.commutative ℕSemiring (2 *N binNatToN bs) (2 *N binNatToN as) | equalityCommutative (Semiring.+DistributesOver* ℕSemiring 2 (binNatToN as) (binNatToN bs)) = ans where ans : incr (incr (NToBinNat (2 *N (binNatToN as +N binNatToN bs)))) ≡ canonical (zero :: incr (as +B bs)) ans with inspect (binNatToN as +N binNatToN bs) ... | zero with≡ x with sumZeroImpliesSummandsZero {binNatToN as} x ans | zero with≡ x | as=0 ,, bs=0 rewrite as=0 | bs=0 = bar where u' : canonical (as +Binherit bs) ≡ [] u' rewrite as=0 | bs=0 = refl u : canonical (as +B bs) ≡ [] u rewrite equalityCommutative (+BIsInherited' as bs) = transitivity (NToBinNatIsCanonical (binNatToN as +N binNatToN bs)) u' t : canonical (incr (as +B bs)) ≡ one :: [] t rewrite incrPreservesCanonical' (as +B bs) | u = refl bar : zero :: one :: [] ≡ canonical (zero :: incr (as +B bs)) bar rewrite t = refl ans | succ y with≡ x rewrite x | doubleIsBitShift' y = transitivity (applyEquality (λ i → zero :: incr (NToBinNat i)) (equalityCommutative x)) ans2 where ans2 : zero :: incr (as +Binherit bs) ≡ canonical (zero :: incr (as +B bs)) ans2 rewrite +BIsInherited' as bs | equalityCommutative (incrPreservesCanonical' (as +B bs)) | canonicalAscends' {zero} (incr (as +B bs)) (incrNonzero (as +B bs)) = refl +BIsHom : (a b : BinNat) → binNatToN (a +B b) ≡ (binNatToN a) +N (binNatToN b) +BIsHom a b = transitivity (equalityCommutative (binNatToNIsCanonical (a +B b))) (transitivity (equalityCommutative (applyEquality binNatToN (+BIsInherited' a b))) (nToN _)) sumCanonical : (a b : BinNat) → canonical a ≡ a → canonical b ≡ b → canonical (a +B b) ≡ a +B b sumCanonical a b a=a b=b = transitivity (equalityCommutative (+BIsInherited' a b)) (+BIsInherited a b (equalityCommutative a=a) (equalityCommutative b=b))
70.649038
1,043
0.660088
58f14596118a77fd037f41983143702cf988c784
26,868
agda
Agda
src/Categories/Category/Monoidal/Interchange.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Interchange.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
src/Categories/Category/Monoidal/Interchange.agda
o1lo01ol1o/agda-categories
5fc007768264a270b8ff319570225986773da601
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Commutation) open import Categories.Category.Monoidal.Core using (Monoidal) -- The "four middle interchange" for monoidal categories. -- -- Aka the "interchange law" or "exchange law" (though those terms are -- more comonly used in the more general context of composition in -- 2-categories). module Categories.Category.Monoidal.Interchange {o ℓ e} {C : Category o ℓ e} where open import Level using (_⊔_) open import Data.Product using (_,_) import Categories.Category.Monoidal.Construction.Product as MonoidalProduct open import Categories.Category.Monoidal.Braided using (Braided) open import Categories.Category.Monoidal.Braided.Properties using (braiding-coherence; inv-Braided; inv-braiding-coherence) open import Categories.Category.Monoidal.Properties using (module Kelly's) import Categories.Category.Monoidal.Reasoning as MonoidalReasoning open import Categories.Category.Monoidal.Symmetric using (Symmetric) import Categories.Category.Monoidal.Utilities as MonoidalUtilities open import Categories.Category.Product using (_⁂_; assocˡ) open import Categories.Functor using (_∘F_) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; niHelper) open import Categories.Morphism C using (_≅_; module ≅) open import Categories.Morphism.IsoEquiv C using (module _≃_) open import Categories.Morphism.Reasoning C private module C = Category C open C open Commutation C private variable W W₁ W₂ X X₁ X₂ Y Y₁ Y₂ Z Z₁ Z₂ : Obj f g h i : X ⇒ Y -- An abstract definition of an interchange map with the minimal set -- of coherence laws required to make the tensor product ⊗ of C a -- monoidal functor. (See also Categories.Functor.Monoidal.Tensor.) record HasInterchange (M : Monoidal C) : Set (o ⊔ ℓ ⊔ e) where open Monoidal M open MonoidalUtilities.Shorthands M -- The "four middle interchange" for tensor products. field swapInner : ∀ {W X Y Z} → (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) module swapInner {W X Y Z} = _≅_ (swapInner {W} {X} {Y} {Z}) private i⇒ = swapInner.from i⇐ = swapInner.to -- Naturality and coherence laws of the interchange. field natural : i⇒ ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i) ≈ (f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ i⇒ assoc : [ ((X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⇒ (X₁ ⊗₀ (Y₁ ⊗₀ Z₁)) ⊗₀ (X₂ ⊗₀ (Y₂ ⊗₀ Z₂)) ]⟨ i⇒ ⊗₁ id ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⟩ i⇒ ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ Z₁) ⊗₀ ((X₂ ⊗₀ Y₂) ⊗₀ Z₂) ⟩ α⇒ ⊗₁ α⇒ ≈ α⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Y₂) ⊗₀ (Z₁ ⊗₀ Z₂)) ⟩ id ⊗₁ i⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Z₁) ⊗₀ (Y₂ ⊗₀ Z₂)) ⟩ i⇒ ⟩ unitˡ : [ unit ⊗₀ (X ⊗₀ Y) ⇒ (X ⊗₀ Y) ]⟨ λ⇐ ⊗₁ id ⇒⟨ (unit ⊗₀ unit) ⊗₀ (X ⊗₀ Y) ⟩ i⇒ ⇒⟨ (unit ⊗₀ X) ⊗₀ (unit ⊗₀ Y) ⟩ λ⇒ ⊗₁ λ⇒ ≈ λ⇒ ⟩ unitʳ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ (X ⊗₀ Y) ]⟨ id ⊗₁ λ⇐ ⇒⟨ (X ⊗₀ Y) ⊗₀ (unit ⊗₀ unit) ⟩ i⇒ ⇒⟨ (X ⊗₀ unit) ⊗₀ (Y ⊗₀ unit) ⟩ ρ⇒ ⊗₁ ρ⇒ ≈ ρ⇒ ⟩ -- The interchange is a natural isomorphism. naturalIso : ⊗ ∘F (⊗ ⁂ ⊗) ≃ ⊗ ∘F MonoidalProduct.⊗ M M naturalIso = niHelper (record { η = λ _ → i⇒ ; η⁻¹ = λ _ → i⇐ ; commute = λ _ → natural ; iso = λ _ → swapInner.iso }) -- Shorthands for composing and inverting isomorphisms. open ≅ using () renaming (refl to idᵢ; sym to _⁻¹) private infixr 9 _∘ᵢ_ _∘ᵢ_ = λ {X Y Z} f g → ≅.trans {X} {Y} {Z} g f -- Braided monoidal categories have an interchange map. module BraidedInterchange {M : Monoidal C} (B : Braided M) where open MonoidalReasoning M open MonoidalUtilities M open Braided B renaming (associator to α) open Shorthands -- Shorthands for braiding. private σ : X ⊗₀ Y ≅ Y ⊗₀ X σ = braiding.FX≅GX module σ {X Y} = _≅_ (σ {X} {Y}) σ⇒ = σ.from σ⇐ = σ.to -- The "four middle interchange" for braided tensor products. swapInner : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) swapInner = α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ (α ∘ᵢ σ ⊗ᵢ idᵢ ∘ᵢ α ⁻¹) ∘ᵢ α module swapInner {W X Y Z} = _≅_ (swapInner {W} {X} {Y} {Z}) private i⇒ = swapInner.from i⇐ = swapInner.to -- The interchange is a natural isomorphism. swapInner-natural : i⇒ ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i) ≈ (f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ i⇒ swapInner-natural {f = f} {g = g} {h = h} {i = i} = begin (α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i) ≈⟨ pullʳ (pullʳ assoc-commute-from) ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ f ⊗₁ g ⊗₁ (h ⊗₁ i) ∘ α⇒ ≈⟨ refl⟩∘⟨ extendʳ (parallel id-comm-sym (begin (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ g ⊗₁ (h ⊗₁ i) ≈⟨ pullʳ (pullʳ assoc-commute-to) ⟩ α⇒ ∘ σ⇒ ⊗₁ id ∘ (g ⊗₁ h) ⊗₁ i ∘ α⇐ ≈⟨ refl⟩∘⟨ extendʳ (parallel (braiding.⇒.commute _) id-comm-sym) ⟩ α⇒ ∘ (h ⊗₁ g) ⊗₁ i ∘ σ⇒ ⊗₁ id ∘ α⇐ ≈⟨ extendʳ assoc-commute-from ⟩ h ⊗₁ (g ⊗₁ i) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∎)) ⟩ α⇐ ∘ f ⊗₁ h ⊗₁ (g ⊗₁ i) ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ extendʳ assoc-commute-to ⟩ (f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∎ swapInner-naturalIsomorphism : ⊗ ∘F (⊗ ⁂ ⊗) ≃ ⊗ ∘F MonoidalProduct.⊗ M M swapInner-naturalIsomorphism = niHelper (record { η = λ _ → i⇒ ; η⁻¹ = λ _ → i⇐ ; commute = λ _ → swapInner-natural ; iso = λ _ → swapInner.iso }) -- Another version of the interchange that associates differently. -- -- Why are there two versions and what's the difference? The domain -- (X₁ ⊗ X₂) ⊗₀ (Y₁ ⊗ Y₂) and codomain (X₁ ⊗ Y₁) ⊗₀ (X₁ ⊗ Y₂) of the -- interchange map are perfectly symmetric/balanced. But in order to -- apply the braiding to the middle X₂ and Y₁, we need to -- re-associate and that breaks the symmetry. We must first -- re-associate the whole expression in one direction and then the -- larger subterm in the other. This can be done in two ways, -- associate to the right first, then to the left, resulting in X₁ ⊗ -- ((Y₂ ⊗₀ X₁) ⊗ Y₂), or vice versa, resulting in (X₁ ⊗ (Y₂ ⊗₀ X₁)) -- ⊗ Y₂. The choice is arbitrary and results in two distinct -- interchange maps that behave the same way (as witnessed by -- swapInner-coherent below). -- -- Why define both? Because the proofs of some coherence laws become -- easier when the core of the expression is associated in one -- direction vs. the other. For example swapInner-unitˡ is easier to -- prove for the second definition, while swapInner-unitʳ is easier -- to prove for the first; swapInner-assoc uses both. swapInner′ : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) swapInner′ = α ∘ᵢ (α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ σ ∘ᵢ α) ⊗ᵢ idᵢ ∘ᵢ α ⁻¹ module swapInner′ {W X Y Z} = _≅_ (swapInner′ {W} {X} {Y} {Z}) private j⇒ = swapInner′.from j⇐ = swapInner′.to -- Derived coherence laws. swapInner-coherent : [ (X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ⇒ (X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂) ]⟨ i⇒ ≈ j⇒ ⟩ swapInner-coherent = begin α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ id ⊗₁ α⇐ ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ conjugate-from α (idᵢ ⊗ᵢ α) (⟺ pentagon) ⟩ α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ∘ α⇐ ≈˘⟨ pullʳ (pullʳ (extendʳ (pushˡ assoc-commute-from))) ⟩ (α⇐ ∘ id ⊗₁ α⇒ ∘ α⇒ ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐ ≈⟨ pushʳ sym-assoc ⟩∘⟨refl ⟩ ((α⇐ ∘ id ⊗₁ α⇒ ∘ α⇒) ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐ ≈⟨ pushˡ (conjugate-from (α ⊗ᵢ idᵢ) α (assoc ○ pentagon)) ⟩∘⟨refl ⟩ (α⇒ ∘ α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐ ≈˘⟨ pushʳ (pushʳ (pushˡ split₁ˡ)) ⟩ α⇒ ∘ α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈˘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩ α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ∎ swapInner-assoc : [ ((X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⇒ (X₁ ⊗₀ (Y₁ ⊗₀ Z₁)) ⊗₀ (X₂ ⊗₀ (Y₂ ⊗₀ Z₂)) ]⟨ i⇒ ⊗₁ id ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⟩ i⇒ ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ Z₁) ⊗₀ ((X₂ ⊗₀ Y₂) ⊗₀ Z₂) ⟩ α⇒ ⊗₁ α⇒ ≈ α⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Y₂) ⊗₀ (Z₁ ⊗₀ Z₂)) ⟩ id ⊗₁ i⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Z₁) ⊗₀ (Y₂ ⊗₀ Z₂)) ⟩ i⇒ ⟩ swapInner-assoc = begin α⇒ ⊗₁ α⇒ ∘ i⇒ ∘ i⇒ ⊗₁ id ≈⟨ (begin α⇒ ⊗₁ α⇒ ≈⟨ serialize₂₁ ⟩ id ⊗₁ α⇒ ∘ α⇒ ⊗₁ id ≈⟨ refl⟩∘⟨ switch-fromtoˡ α (switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon) ⟩ id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ cancelˡ α.isoʳ ⟩∘⟨refl ⟩ id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ∘ α⇐) ∘ α⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ pullʳ inv-pentagon ⟩∘⟨refl ⟩ id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ ((α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ α⇐) ∘ α⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (id ⊗₁ α⇐) ∘ α⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ assoc-commute-from ⟩ id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ (id ⊗₁ id) ⊗₁ α⇐ ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩ id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒ ∎) ⟩∘⟨refl ⟩ (id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒) ∘ i⇒ ∘ i⇒ ⊗₁ id ≈˘⟨ pullˡ (pushˡ (⊗.identity ⟩⊗⟨refl ⟩∘⟨refl)) ⟩ ((id ⊗₁ id) ⊗₁ α⇒ ∘ α⇐) ∘ (id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒) ∘ (α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ i⇒ ⊗₁ id ≈⟨ ⟺ assoc-commute-to ⟩∘⟨ pullʳ (pullʳ (pushʳ (pushˡ (pushʳ (pushˡ split₂ˡ))))) ⟩ (α⇐ ∘ id ⊗₁ (id ⊗₁ α⇒)) ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ ((id ⊗₁ α⇐ ∘ α⇒) ∘ α⇐ ∘ id ⊗₁ α⇒) ∘ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ (α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id ≈⟨ pullʳ (refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ elimˡ (_≅_.isoˡ (α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ α))) ⟩ α⇐ ∘ id ⊗₁ (id ⊗₁ α⇒) ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ (α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id ≈⟨ refl⟩∘⟨ merge₂ sym-assoc ⟩∘⟨ pushʳ ((⟺ ⊗.identity ⟩⊗⟨refl) ⟩∘⟨refl ⟩∘⟨ split₁ˡ) ⟩ α⇐ ∘ id ⊗₁ ((id ⊗₁ α⇒ ∘ α⇒) ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ (α⇒ ∘ (id ⊗₁ id) ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ α⇐ ⊗₁ id ∘ (id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ extendʳ (pushˡ (switch-fromtoʳ (α ⊗ᵢ idᵢ) (assoc ○ pentagon))) ⟩∘⟨ extendʳ assoc-commute-from ⟩∘⟨refl ⟩ α⇐ ∘ id ⊗₁ ((α⇒ ∘ α⇒) ∘ (α⇐ ⊗₁ id ∘ α⇐ ⊗₁ id) ∘ α⇐) ∘ (id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ (α⇒ ∘ α⇒)) ∘ α⇐ ⊗₁ id ∘ (id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id ≈˘⟨ refl⟩∘⟨ refl⟩⊗⟨ pushʳ (refl⟩∘⟨ split₁ˡ ⟩∘⟨refl) ⟩∘⟨ pushʳ (extendʳ (switch-fromtoʳ (α ⊗ᵢ idᵢ) (assoc ○ pentagon))) ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ id ⊗₁ α⇒ ∘ α⇒ ∘ (id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ split₁ˡ ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ id ⊗₁ α⇒ ∘ α⇒ ∘ (id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐)) ⊗₁ id ∘ α⇒ ⊗₁ id ≈⟨ refl⟩∘⟨ merge₂ assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ assoc) ⟩∘⟨ refl⟩∘⟨ extendʳ assoc-commute-from ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ id ⊗₁ α⇒ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ∘ α⇒ ∘ α⇒ ⊗₁ id ≈⟨ refl⟩∘⟨ merge₂ (assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ assoc²')) ⟩∘⟨ refl⟩∘⟨ switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ∘ id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ merge₂ assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ (assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ assoc))) ⟩∘⟨ Equiv.refl ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ pushʳ (begin α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ (pushˡ split₂ˡ) ⟩ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ (id ⊗₁ α⇐ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (extendʳ assoc-commute-to ○ (refl⟩∘⟨ sym-assoc)) ⟩ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id ∘ (α⇐ ∘ (id ⊗₁ α⇐ ∘ α⇒)) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ (sym-assoc ○ (conjugate-to α (α ⊗ᵢ idᵢ) (sym-assoc ○ inv-pentagon))) ⟩∘⟨refl ⟩ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id ∘ (α⇒ ⊗₁ id ∘ α⇐) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈˘⟨ refl⟩∘⟨ split₁ Equiv.refl ⟩∘⟨ pushʳ (refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity ⟩∘⟨refl) ⟩ α⇒ ∘ ((α⇐ ∘ α⇐) ∘ id ⊗₁ σ⇒) ⊗₁ id ∘ α⇒ ⊗₁ id ∘ α⇐ ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇐ ≈⟨ refl⟩∘⟨ merge₁ assoc² ⟩∘⟨ extendʳ assoc-commute-to ⟩ α⇒ ∘ (α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘ α⇐ ∘ α⇐ ≈˘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩ α⇒ ∘ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘ α⇐ ∘ α⇐ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ (sym-assoc ○ inv-pentagon) ⟩ α⇒ ∘ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘ α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐ ≈⟨ refl⟩∘⟨ pullˡ (⟺ split₁ˡ ○ (assoc ⟩⊗⟨refl)) ⟩ α⇒ ∘ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐ ≈⟨ refl⟩∘⟨ (begin (α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ pushˡ (pushʳ sym-assoc) ⟩ (α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒ ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ (refl⟩∘⟨ extendʳ (pushʳ split₁ˡ)) ⟩ (α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ∘ (σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐ ≈⟨ pushʳ (switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon ⟩∘⟨ pushˡ split₁ˡ) ⟩ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ (id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒)) ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ⊗₁ id ∘ α⇐ ≈⟨ pushˡ (sym-assoc ○ (pullˡ (pullʳ assoc ⟩∘⟨refl))) ⟩ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇐) ∘ α⇒) ∘ α⇒ ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ⊗₁ id ∘ α⇐ ≈⟨ pullʳ (refl⟩∘⟨ extendʳ assoc-commute-from) ⟩ (α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇐) ∘ α⇒ ∘ σ⇒ ⊗₁ (id ⊗₁ id) ∘ α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ ⟺ split₂ˡ) ⟩∘⟨ refl⟩∘⟨ (refl⟩⊗⟨ ⊗.identity ⟩∘⟨ conjugate-from (idᵢ ⊗ᵢ (α ⁻¹)) (α ⁻¹) inv-pentagon) ⟩ (α⇐ ∘ α⇐ ∘ id ⊗₁ (σ⇒ ∘ α⇐)) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈˘⟨ extendʳ (sym-assoc ○ inv-pentagon) ⟩∘⟨refl ⟩ (α⇐ ⊗₁ id ∘ (α⇐ ∘ id ⊗₁ α⇐) ∘ id ⊗₁ (σ⇒ ∘ α⇐)) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈˘⟨ (refl⟩∘⟨ pushʳ split₂ˡ) ⟩∘⟨refl ⟩ (α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ σ⇒ ∘ α⇐)) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈˘⟨ pushˡ ((refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ (sym-assoc ○ hexagon₂ ○ assoc)) ⟩∘⟨refl) ⟩ ((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒)) ∘ α⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ pushˡ (pushʳ (pushʳ split₂ˡ)) ⟩∘⟨refl ⟩ ((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒ ⊗₁ id) ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ pushʳ (pushˡ split₂ˡ) ⟩∘⟨refl ⟩ (((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒ ⊗₁ id) ∘ id ⊗₁ α⇐) ∘ id ⊗₁ id ⊗₁ σ⇒ ∘ α⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ ((pushˡ (pushʳ assoc-commute-to) ⟩∘⟨ ⟺ assoc-commute-from) ○ (pullʳ sym-assoc)) ⟩∘⟨refl ⟩ ((α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ ((α⇐ ∘ id ⊗₁ α⇐) ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ σ⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ pullˡ (⟺ split₁ˡ ⟩∘⟨ conjugate-from α (idᵢ ⊗ᵢ α ∘ᵢ α) (⟺ (assoc ○ pentagon))) ⟩∘⟨refl ⟩ (((α⇐ ∘ id ⊗₁ σ⇒) ⊗₁ id ∘ α⇒ ⊗₁ id ∘ α⇐) ∘ (id ⊗₁ id) ⊗₁ σ⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ (pullˡ (⟺ split₁ˡ) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl) ⟩∘⟨refl ⟩ ((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ σ⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ extend² (⟺ serialize₂₁ ○ serialize₁₂) ⟩ ((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ σ⇒ ⊗₁ id) ∘ id ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ α⇒ ≈˘⟨ pushʳ (refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩ (((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐ ∘ σ⇒ ⊗₁ id ⊗₁ id) ∘ (id ⊗₁ id) ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ α⇒ ≈⟨ pushʳ assoc-commute-to ⟩∘⟨ extendʳ (⟺ assoc-commute-to) ⟩ ((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ (σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐) ∘ α⇐ ∘ id ⊗₁ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇒ ≈˘⟨ ((sym-assoc ○ sym-assoc) ⟩⊗⟨refl ○ split₁ˡ) ⟩∘⟨refl ⟩∘⟨ refl⟩∘⟨ split₂ˡ ⟩ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐) ∘ α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒) ≈˘⟨ extend² (sym-assoc ○ inv-pentagon) ⟩ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐ ⊗₁ id) ∘ (α⇐ ∘ id ⊗₁ α⇐) ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒) ≈˘⟨ split₁ˡ ⟩∘⟨ pushʳ split₂ˡ ⟩ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∎) ⟩⊗⟨refl ⟩∘⟨refl ⟩ α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒)) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐ ≈⟨ (refl⟩∘⟨ pushˡ ((sym-assoc ⟩⊗⟨refl) ○ split₁ˡ)) ⟩ α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ⊗₁ id ∘ (id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒)) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐ ≈⟨ (refl⟩∘⟨ split₁ˡ ⟩∘⟨ extendʳ (⟺ assoc-commute-to)) ○ pushʳ assoc ⟩ (α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id) ⊗₁ id) ∘ α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ id ⊗₁ α⇐ ≈⟨ pushˡ assoc-commute-from ⟩ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ id ⊗₁ α⇐ ≈˘⟨ refl⟩∘⟨ pullʳ (pullʳ (refl⟩∘⟨ split₂ˡ)) ⟩ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ≈˘⟨ pullʳ (pullˡ (conjugate-from (α ∘ᵢ α ⊗ᵢ idᵢ) α pentagon)) ⟩ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇐) ∘ id ⊗₁ α⇒ ∘ id ⊗₁ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ≈⟨ refl⟩⊗⟨ ⊗.identity ⟩∘⟨refl ⟩∘⟨ ⟺ split₂ˡ ⟩ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ≡⟨⟩ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒ ≈˘⟨ switch-fromtoʳ α (switch-fromtoˡ α (⟺ hexagon₁)) ⟩⊗⟨refl ⟩∘⟨refl ⟩∘⟨refl ⟩ (σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒ ∎) ⟩∘⟨refl ⟩ α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒) ∘ α⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ id ⊗₁ j⇒ ∘ α⇒ ∘ α⇒ ≈˘⟨ pullʳ (pullʳ (extendʳ assoc-commute-from)) ⟩ (α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ j⇒ ∘ α⇒ ≡⟨⟩ i⇒ ∘ (id ⊗₁ id) ⊗₁ j⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨ ⟺ swapInner-coherent ⟩∘⟨refl ⟩ i⇒ ∘ id ⊗₁ i⇒ ∘ α⇒ ∎ where inv-pentagon = λ {W X Y Z} → _≃_.to-≈ (pentagon-iso {W} {X} {Y} {Z}) swapInner-unitˡ : [ unit ⊗₀ (X ⊗₀ Y) ⇒ (X ⊗₀ Y) ]⟨ λ⇐ ⊗₁ id ⇒⟨ (unit ⊗₀ unit) ⊗₀ (X ⊗₀ Y) ⟩ i⇒ ⇒⟨ (unit ⊗₀ X) ⊗₀ (unit ⊗₀ Y) ⟩ λ⇒ ⊗₁ λ⇒ ≈ λ⇒ ⟩ swapInner-unitˡ = begin λ⇒ ⊗₁ λ⇒ ∘ i⇒ ∘ λ⇐ ⊗₁ id ≈⟨ refl⟩∘⟨ swapInner-coherent ⟩∘⟨ (Kelly₃′ ⟩⊗⟨refl) ⟩ λ⇒ ⊗₁ λ⇒ ∘ j⇒ ∘ ρ⇐ ⊗₁ id ≡⟨⟩ λ⇒ ⊗₁ λ⇒ ∘ (α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ ρ⇐ ⊗₁ id ≈⟨ pullˡ (pushˡ serialize₁₂) ⟩ (λ⇒ ⊗₁ id ∘ id ⊗₁ λ⇒ ∘ α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ ρ⇐ ⊗₁ id ≈⟨ (refl⟩∘⟨ (begin id ⊗₁ λ⇒ ∘ α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈⟨ pullˡ triangle ⟩ ρ⇒ ⊗₁ id ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈˘⟨ pushˡ split₁ˡ ⟩ (ρ⇒ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈⟨ (pullˡ Kelly₂′ ⟩⊗⟨refl ⟩∘⟨refl) ⟩ (id ⊗₁ ρ⇒ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈˘⟨ pushˡ split₂ˡ ⟩⊗⟨refl ⟩∘⟨refl ⟩ (id ⊗₁ (ρ⇒ ∘ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐ ≈⟨ (refl⟩⊗⟨ σ⁻¹-coherence ⟩∘⟨refl) ⟩⊗⟨refl ⟩∘⟨refl ⟩ (id ⊗₁ λ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐ ≈⟨ triangle ⟩⊗⟨refl ⟩∘⟨refl ⟩ (ρ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ≈˘⟨ assoc-commute-to ⟩ α⇐ ∘ ρ⇒ ⊗₁ (id ⊗₁ id) ∎)) ⟩∘⟨refl ⟩ (λ⇒ ⊗₁ id ∘ α⇐ ∘ ρ⇒ ⊗₁ (id ⊗₁ id)) ∘ ρ⇐ ⊗₁ id ≈⟨ (sym-assoc ○ (Kelly₁′ ⟩∘⟨ refl⟩⊗⟨ ⊗.identity)) ⟩∘⟨refl ⟩ (λ⇒ ∘ ρ⇒ ⊗₁ id) ∘ ρ⇐ ⊗₁ id ≈⟨ cancelʳ (_≅_.isoʳ (unitorʳ ⊗ᵢ idᵢ)) ⟩ λ⇒ ∎ where Kelly₁′ = ⟺ (switch-fromtoʳ α (Kelly's.coherence₁ M)) Kelly₂′ = ⟺ (switch-fromtoʳ α (Kelly's.coherence₂ M)) Kelly₃′ = _≃_.to-≈ (Kelly's.coherence-iso₃ M) σ⁻¹-coherence = inv-braiding-coherence (inv-Braided B) swapInner-unitʳ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ (X ⊗₀ Y) ]⟨ id ⊗₁ λ⇐ ⇒⟨ (X ⊗₀ Y) ⊗₀ (unit ⊗₀ unit) ⟩ i⇒ ⇒⟨ (X ⊗₀ unit) ⊗₀ (Y ⊗₀ unit) ⟩ ρ⇒ ⊗₁ ρ⇒ ≈ ρ⇒ ⟩ swapInner-unitʳ = begin ρ⇒ ⊗₁ ρ⇒ ∘ i⇒ ∘ id ⊗₁ λ⇐ ≡⟨⟩ ρ⇒ ⊗₁ ρ⇒ ∘ (α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ id ⊗₁ λ⇐ ≈⟨ pullˡ (pushˡ serialize₂₁) ⟩ (id ⊗₁ ρ⇒ ∘ ρ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ id ⊗₁ λ⇐ ≈⟨ (refl⟩∘⟨ (begin ρ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈˘⟨ pushˡ (switch-fromtoʳ α triangle) ⟩ id ⊗₁ λ⇒ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈˘⟨ pushˡ split₂ˡ ⟩ id ⊗₁ (λ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩⊗⟨ pullˡ (Kelly's.coherence₁ M) ⟩∘⟨refl ⟩ id ⊗₁ (λ⇒ ⊗₁ id ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈˘⟨ refl⟩⊗⟨ pushˡ split₁ˡ ⟩∘⟨refl ⟩ id ⊗₁ ((λ⇒ ∘ σ⇒) ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩⊗⟨ (braiding-coherence B ⟩⊗⟨refl ⟩∘⟨refl) ⟩∘⟨refl ⟩ id ⊗₁ (ρ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈˘⟨ refl⟩⊗⟨ switch-fromtoʳ α triangle ⟩∘⟨refl ⟩ id ⊗₁ (id ⊗₁ λ⇒) ∘ α⇒ ≈˘⟨ assoc-commute-from ⟩ α⇒ ∘ (id ⊗₁ id) ⊗₁ λ⇒ ∎)) ⟩∘⟨refl ⟩ (id ⊗₁ ρ⇒ ∘ α⇒ ∘ (id ⊗₁ id) ⊗₁ λ⇒) ∘ id ⊗₁ λ⇐ ≈⟨ (sym-assoc ○ (Kelly's.coherence₂ M ⟩∘⟨ ⊗.identity ⟩⊗⟨refl)) ⟩∘⟨refl ⟩ (ρ⇒ ∘ id ⊗₁ λ⇒) ∘ id ⊗₁ λ⇐ ≈⟨ cancelʳ (_≅_.isoʳ (idᵢ ⊗ᵢ unitorˡ)) ⟩ ρ⇒ ∎ swapInner-braiding : [ (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ⇒ (Y ⊗₀ Z) ⊗₀ (W ⊗₀ X) ]⟨ i⇒ ⇒⟨ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) ⟩ σ⇒ ⊗₁ σ⇒ ⇒⟨ (Y ⊗₀ W) ⊗₀ (Z ⊗₀ X) ⟩ i⇒ ≈ σ⇒ ⟩ swapInner-braiding = begin i⇒ ∘ σ⇒ ⊗₁ σ⇒ ∘ i⇒ ≡⟨⟩ i⇒ ∘ σ⇒ ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ swapInner-coherent ⟩∘⟨ pushˡ serialize₁₂ ⟩ j⇒ ∘ σ⇒ ⊗₁ id ∘ id ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈˘⟨ ((refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl) ○ assoc ⟩ ((α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ σ⇒ ⊗₁ (id ⊗₁ id)) ∘ (id ⊗₁ id) ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ pullʳ (pullʳ assoc-commute-to) ⟩∘⟨ extendʳ (⟺ assoc-commute-to) ⟩ (α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐) ∘ α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒) ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈˘⟨ (refl⟩∘⟨ pushˡ split₁ˡ) ⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ (α⇒ ∘ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐) ∘ α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ (refl⟩∘⟨ pullʳ (assoc ○ hexagon₁) ⟩⊗⟨refl ⟩∘⟨refl) ⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ (⟺ assoc ○ (pullˡ (assoc ○ hexagon₁))) ⟩∘⟨refl ⟩ (α⇒ ∘ (α⇐ ∘ α⇒ ∘ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ∘ α⇒) ∘ α⇐) ∘ α⇒ ≈⟨ (refl⟩∘⟨ cancelˡ α.isoˡ ⟩⊗⟨refl ⟩∘⟨refl) ⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ pullʳ (cancelʳ α.isoʳ) ⟩∘⟨refl ⟩ (α⇒ ∘ (σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒) ∘ α⇒ ≈⟨ extendʳ (pushʳ split₁ˡ) ⟩∘⟨ extendʳ (pushʳ split₂ˡ) ⟩ ((α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐) ∘ (α⇐ ∘ id ⊗₁ α⇒) ∘ id ⊗₁ σ⇒ ∘ α⇒ ≈˘⟨ extendʳ (pushʳ (pushʳ assoc)) ⟩ (α⇒ ∘ σ⇒ ⊗₁ id) ∘ (α⇒ ⊗₁ id ∘ (α⇐ ∘ α⇐) ∘ id ⊗₁ α⇒) ∘ id ⊗₁ σ⇒ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ switch-tofromˡ (α ⊗ᵢ idᵢ) (switch-tofromʳ (idᵢ ⊗ᵢ α) inv-pentagon) ⟩∘⟨refl ⟩ (α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ≈⟨ pullʳ (sym-assoc ○ pullˡ hexagon₂) ⟩ α⇒ ∘ ((α⇐ ∘ σ⇒) ∘ α⇐) ∘ α⇒ ≈⟨ (refl⟩∘⟨ cancelʳ α.isoˡ) ⟩ α⇒ ∘ (α⇐ ∘ σ⇒) ≈⟨ cancelˡ α.isoʳ ⟩ σ⇒ ∎ where inv-pentagon = _≃_.to-≈ pentagon-iso -- Braided monoidal categories have an interchange. hasInterchange : HasInterchange M hasInterchange = record { swapInner = swapInner ; natural = swapInner-natural ; assoc = swapInner-assoc ; unitˡ = swapInner-unitˡ ; unitʳ = swapInner-unitʳ } open HasInterchange hasInterchange public using (naturalIso) -- Extra identities that hold only for symmetric monoidal categories. module SymmetricInterchange {M : Monoidal C} (S : Symmetric M) where open MonoidalReasoning M open MonoidalUtilities M open Symmetric S renaming (associator to α) open Shorthands open BraidedInterchange braided public private i⇒ = swapInner.from i⇐ = swapInner.to σ⇒ = λ {X Y} → braiding.⇒.η (X , Y) σ⇐ = λ {X Y} → braiding.⇐.η (X , Y) swapInner-commutative : [ (X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ⇒ (X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ]⟨ i⇒ ⇒⟨ (X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂) ⟩ i⇒ ≈ id ⟩ swapInner-commutative = begin i⇒ ∘ i⇒ ≈⟨ pullʳ (cancelInner α.isoʳ) ⟩ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈˘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (∘-resp-≈ʳ sym-assoc ○ α[σ⊗1]α⁻¹.isoʳ) ⟩∘⟨refl ⟩ α⇐ ∘ id ⊗₁ id ∘ α⇒ ≈⟨ refl⟩∘⟨ ⊗.identity ⟩∘⟨refl ⟩ α⇐ ∘ id ∘ α⇒ ≈⟨ ∘-resp-≈ʳ identityˡ ○ α.isoˡ ⟩ id ∎ where module α[σ⊗1]α⁻¹ = _≅_ (α ∘ᵢ braided-iso ⊗ᵢ idᵢ ∘ᵢ α ⁻¹) swapInner-iso : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) swapInner-iso = record { from = i⇒ ; to = i⇒ ; iso = record { isoˡ = swapInner-commutative ; isoʳ = swapInner-commutative } } swapInner-braiding′ : [ (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ⇒ (Y ⊗₀ W) ⊗₀ (Z ⊗₀ X) ]⟨ i⇒ ⇒⟨ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) ⟩ σ⇒ ⊗₁ σ⇒ ≈ σ⇒ ⇒⟨ (Y ⊗₀ Z) ⊗₀ (W ⊗₀ X) ⟩ i⇒ ⟩ swapInner-braiding′ = switch-fromtoˡ swapInner-iso swapInner-braiding
43.057692
80
0.424222
03848c103252c2ab83db2291458bf18409840d74
15,050
agda
Agda
Cubical/Homotopy/HopfInvariant/Brunerie.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Homotopy/HopfInvariant/Brunerie.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Homotopy/HopfInvariant/Brunerie.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{- This file contains a proof of the fact that the Brunerie number, i.e. absolute value of the Hopf invariant of [e , e] : π₃S², is 2. Here, e is the generator of π₂S² and [_,_] denotes the Whitehead product. The proof follows Proposition 5.4.4. in Brunerie (2016) closely, but, for simplicity, considers only the case n = 2. -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.HopfInvariant.Brunerie where open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.Group.Pi4S3.BrunerieNumber open import Cubical.Homotopy.Group.Pi4S3.S3PushoutIso open import Cubical.Homotopy.Whitehead open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.SphereProduct open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.RingLaws open import Cubical.ZCohomology.RingStructure.GradedCommutativity open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Nat hiding (_+_) open import Cubical.Data.Unit open import Cubical.Data.Sum renaming (rec to ⊎rec) open import Cubical.HITs.Pushout open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.Join open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.Truncation open import Cubical.HITs.SetTruncation renaming (elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (map to pMap ; rec to pRec) open import Cubical.Algebra.Group open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Instances.Unit open Iso open IsGroupHom open PlusBis -- Some abstract versions of imported lemmas/definitions from -- ZCohomology.Groups.SphereProduct for faster type checking. abstract H²-genₗabs : coHom 2 (S₊ 2 × S₊ 2) H²-genₗabs = H²-S²×S²-genₗ H²-genᵣabs : coHom 2 (S₊ 2 × S₊ 2) H²-genᵣabs = H²-S²×S²-genᵣ Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs : (n m : ℕ) → GroupIso (coHomGr ((suc n) +' (suc m)) (S₊ (suc n) × S₊ (suc m))) ℤGroup Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs = Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs≡ : (n m : ℕ) → Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs n m ≡ Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ n m Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs≡ n m = refl Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣ : fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ) ≡ 1 Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣ = fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ) ≡⟨ cong (fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1))) (sym H²-S²≅H⁴-S²×S²⌣) ⟩ fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (fun (fst (H²-S²≅H⁴-S²×S²)) ∣ ∣_∣ₕ ∣₂) ≡⟨ speedUp ∣_∣ₕ ⟩ fun (fst (Hⁿ-Sⁿ≅ℤ 1)) ∣ ∣_∣ₕ ∣₂ ≡⟨ refl ⟩ -- Computation! :-) 1 ∎ where speedUp : (f : _) → fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (fun (fst (H²-S²≅H⁴-S²×S²)) ∣ f ∣₂) ≡ fun (fst (Hⁿ-Sⁿ≅ℤ 1)) ∣ f ∣₂ speedUp f i = fun (fst (Hⁿ-Sⁿ≅ℤ 1)) (leftInv (fst H²-S²≅H⁴-S²×S²) ∣ f ∣₂ i) -- Some abbreviations private inl' : S₊ 2 × S₊ 2 → Pushout⋁↪fold⋁ (S₊∙ 2) inl' = inl qHom : GroupHom (coHomGr 4 (Pushout⋁↪fold⋁ (S₊∙ 2))) (coHomGr 4 (S₊ 2 × S₊ 2)) qHom = coHomMorph 4 inl' qHomGen : (n : ℕ) → GroupHom (coHomGr n (Pushout⋁↪fold⋁ (S₊∙ 2))) (coHomGr n (S₊ 2 × S₊ 2)) qHomGen n = coHomMorph n inl' -- The type C and generator α, β in dim 2 and 4 respectively -- Recall, the goal is to prove that α ⌣ α = ±2 β CHopf : Type CHopf = HopfInvariantPush 0 fold∘W Hopfαfold∘W = Hopfα 0 (fold∘W , refl) Hopfβfold∘W = Hopfβ 0 (fold∘W , refl) -- Rewriting CHopf as our favourite pushout -- S²×S² ← S²∨S² → S² CHopfIso : Iso CHopf (Pushout⋁↪fold⋁ (S₊∙ 2)) CHopfIso = compIso (invIso (equivToIso (compEquiv (compEquiv pushoutSwitchEquiv (isoToEquiv (PushoutDistr.PushoutDistrIso fold⋁ W λ _ → tt))) pushoutSwitchEquiv))) (equivToIso Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁) -- Cohomology group version of the Iso coHomCHopfIso : (n : ℕ) → GroupIso (coHomGr n CHopf) (coHomGr n (Pushout⋁↪fold⋁ (S₊∙ 2))) coHomCHopfIso n = invGroupIso (coHomIso n CHopfIso) -- We instantiate Mayer-Vietoris for the pushout module MV-⋁↪-fold⋁ = MV _ _ (S₊∙ 2 ⋁ S₊∙ 2) ⋁↪ fold⋁ -- This give us an iso H⁴(S²×S² ← S²∨S² → S²) ≅ H⁴(S²×S²) isEquiv-qHom : GroupEquiv (coHomGr 4 (Pushout⋁↪fold⋁ (S₊∙ 2))) (coHomGr 4 (S₊ 2 × S₊ 2)) fst (fst isEquiv-qHom) = qHom .fst snd (fst isEquiv-qHom) = subst isEquiv (funExt (sElim (λ _ → isSetPathImplicit) (λ _ → refl))) (×UnitEquiv (isoToPath (invIso (fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p))))) _ isEquiv-i) where ×UnitEquiv : {A B C : Type} → Unit ≡ C → (f : A → B × C) → isEquiv f → isEquiv (fst ∘ f) ×UnitEquiv {A = A} {B = B} = J (λ C _ → (f : A → B × C) → isEquiv f → isEquiv (fst ∘ f)) λ f eq → record { equiv-proof = λ b → ((fst (fst (equiv-proof eq (b , tt)))) , cong fst (fst (equiv-proof eq (b , tt)) .snd)) , λ y → ΣPathP ((cong fst (equiv-proof eq (b , tt) .snd ((fst y) , ΣPathP ((snd y) , refl)))) , λ i j → equiv-proof eq (b , tt) .snd ((fst y) , ΣPathP ((snd y) , refl)) i .snd j .fst) } isEquiv-i : isEquiv (fst (MV-⋁↪-fold⋁.i 4)) isEquiv-i = SES→isEquiv (isContr→≡UnitGroup (isOfHLevelRetractFromIso 0 (compIso (fst (Hⁿ-⋁ (S₊∙ 2) (S₊∙ 2) 2)) (compIso (prodIso (fst (Hⁿ-Sᵐ≅0 2 1 λ p → snotz (cong predℕ p))) (fst (Hⁿ-Sᵐ≅0 2 1 λ p → snotz (cong predℕ p)))) rUnit×Iso)) isContrUnit)) ((isContr→≡UnitGroup (isOfHLevelRetractFromIso 0 (compIso (fst (Hⁿ-⋁ (S₊∙ 2) (S₊∙ 2) 3)) (compIso (prodIso (fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p))) (fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p)))) rUnit×Iso)) isContrUnit))) (MV-⋁↪-fold⋁.d 3) (MV-⋁↪-fold⋁.i 4) (MV-⋁↪-fold⋁.Δ 4) (MV-⋁↪-fold⋁.Ker-i⊂Im-d 3) (MV-⋁↪-fold⋁.Ker-Δ⊂Im-i 4) snd isEquiv-qHom = qHom .snd -- The goal now is reducing α ⌣ α = ±2 β to gₗ ⌣ gᵣ = e for -- gₗ, gᵣ generators of H²(S²×S²) ≅ ℤ × ℤ and e generator of -- H⁴(S²×S²) ≅ ℤ. This essentially just elementary linear algebra at -- this point. We do it for an arbitrary (well-behaved) iso -- H⁴(S²×S²) ≅ ℤ in order to speed up type checking. module BrunerieNumLem (is : GroupIso (coHomGr 4 (S₊ 2 × S₊ 2)) ℤGroup) (isEq : (fun (fst is) (H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ) ≡ 1)) where x = H²-S²×S²-genₗ y = H²-S²×S²-genᵣ α = Hopfαfold∘W β = Hopfβfold∘W α' : coHom 2 (Pushout⋁↪fold⋁ (S₊∙ 2)) α' = fun (fst (coHomCHopfIso 2)) α β' : coHom 4 (Pushout⋁↪fold⋁ (S₊∙ 2)) β' = fun (fst (coHomCHopfIso 4)) β rewriteEquation : (α' ⌣ α' ≡ β' +ₕ β') ⊎ (α' ⌣ α' ≡ -ₕ (β' +ₕ β')) → (α ⌣ α ≡ β +ₕ β) ⊎ (α ⌣ α ≡ -ₕ (β +ₕ β)) rewriteEquation (inl x) = inl ((λ i → leftInv (fst (coHomCHopfIso 2)) α (~ i) ⌣ leftInv (fst (coHomCHopfIso 2)) α (~ i)) ∙∙ cong (inv (fst (coHomCHopfIso 4))) x ∙∙ leftInv (fst (coHomCHopfIso 4)) (β +ₕ β)) rewriteEquation (inr x) = inr ((λ i → leftInv (fst (coHomCHopfIso 2)) α (~ i) ⌣ leftInv (fst (coHomCHopfIso 2)) α (~ i)) ∙∙ cong (inv (fst (coHomCHopfIso 4))) x ∙∙ leftInv (fst (coHomCHopfIso 4)) (-ₕ (β +ₕ β))) rewriteEquation2 : (qHom .fst β' ≡ x ⌣ y) ⊎ (qHom .fst β' ≡ -ₕ (x ⌣ y)) rewriteEquation2 = ⊎rec (λ p → inl (sym (leftInv (fst is) (qHom .fst β')) ∙∙ cong (inv (fst is)) (p ∙ sym isEq) ∙∙ leftInv (fst is) (x ⌣ y))) (λ p → inr (sym (leftInv (fst is) (qHom .fst β')) ∙∙ cong (inv (fst is)) (p ∙ sym (cong (GroupStr.inv (snd ℤGroup)) isEq)) ∙∙ (presinv (invGroupIso is .snd) (fun (fst is) (x ⌣ y)) ∙ cong -ₕ_ (leftInv (fst is) (x ⌣ y))))) eqs where grIso : GroupEquiv (coHomGr 4 (HopfInvariantPush 0 fold∘W)) ℤGroup grIso = compGroupEquiv (GroupIso→GroupEquiv (coHomCHopfIso 4)) (compGroupEquiv isEquiv-qHom (GroupIso→GroupEquiv is)) eqs : (fst (fst grIso) β ≡ 1) ⊎ (fst (fst grIso) β ≡ -1) eqs = groupEquivPresGen _ (GroupIso→GroupEquiv (Hopfβ-Iso 0 (fold∘W , refl))) β (inl (Hopfβ↦1 0 (fold∘W , refl))) grIso qpres⌣ : (x y : coHom 2 _) → fst qHom (x ⌣ y) ≡ fst (qHomGen 2) x ⌣ fst (qHomGen 2) y qpres⌣ = sElim2 (λ _ _ → isSetPathImplicit) λ _ _ → refl α'↦x+y : fst (qHomGen 2) α' ≡ x +ₕ y α'↦x+y = lem ((coHomFun 2 (inv CHopfIso) α)) refl where lem : (x' : coHom 2 (Pushout⋁↪fold⋁ (S₊∙ 2))) → coHomFun 2 inr x' ≡ ∣ ∣_∣ ∣₂ → fst (qHomGen 2) x' ≡ x +ₕ y lem = sElim (λ _ → isSetΠ λ _ → isSetPathImplicit) λ f p → Cubical.HITs.PropositionalTruncation.rec (squash₂ _ _) (λ r → cong ∣_∣₂ (funExt (uncurry (wedgeconFun 1 1 (λ _ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ x → cong f (push (inr x)) ∙∙ funExt⁻ r x ∙∙ refl) ((λ x → cong f (push (inl x)) ∙∙ funExt⁻ r x ∙∙ sym (rUnitₖ 2 ∣ x ∣ₕ))) (cong (_∙∙ funExt⁻ r north ∙∙ refl) (cong (cong f) λ j i → push (push tt j) i)))))) (fun PathIdTrunc₀Iso p) mainEq : ((fst qHom) (α' ⌣ α') ≡ qHom .fst (β' +ₕ β')) ⊎ ((fst qHom) (α' ⌣ α') ≡ qHom .fst (-ₕ (β' +ₕ β'))) mainEq = ⊎rec (λ id → inl (lem₁ ∙ lem₂ ∙ cong (λ x → x +ₕ x) (sym id) ∙ sym (pres· (snd qHom) β' β'))) (λ id → inr (lem₁ ∙ lem₂ ∙ ((sym (distLem (x ⌣ y)) ∙ cong -ₕ_ (cong (λ x → x +ₕ x) (sym id))) ∙ cong (-ₕ_) (pres· (snd qHom) β' β')) ∙ sym (presinv (snd qHom) (β' +ₕ β')))) rewriteEquation2 where triv⌣ : (a : S¹) → cong₂ (_⌣ₖ_ {n = 2} {m = 2}) (cong ∣_∣ₕ (merid a)) (cong ∣_∣ₕ (merid a)) ≡ λ _ → ∣ north ∣ₕ triv⌣ a = cong₂Funct (_⌣ₖ_ {n = 2} {m = 2}) (cong ∣_∣ₕ (merid a)) (cong ∣_∣ₕ (merid a)) ∙ sym (rUnit λ j → _⌣ₖ_ {n = 2} {m = 2} ∣ merid a j ∣ₕ ∣ north ∣) ∙ (λ i j → ⌣ₖ-0ₖ 2 2 ∣ merid a j ∣ₕ i) distLem : (x : coHom 4 (S₊ 2 × S₊ 2)) → -ₕ ((-ₕ x) +ₕ (-ₕ x)) ≡ x +ₕ x distLem = sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → cong -ₖ_ (sym (-distrₖ 4 (f x) (f x))) ∙ -ₖ^2 (f x +ₖ f x)) x⌣x≡0 : x ⌣ x ≡ 0ₕ 4 x⌣x≡0 = cong ∣_∣₂ (funExt (uncurry λ { north y → refl ; south y → refl ; (merid a i) y j → triv⌣ a j i})) y⌣y≡0 : y ⌣ y ≡ 0ₕ 4 y⌣y≡0 = cong ∣_∣₂ (funExt (uncurry λ { x north → refl ; x south → refl ; x (merid a i) j → triv⌣ a j i})) -ₕ'Id : (x : coHom 4 (S₊ 2 × S₊ 2)) → (-ₕ'^ 2 · 2) x ≡ x -ₕ'Id = sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → -ₖ'-gen-inl-left 2 2 tt (inl tt) (f x)) y⌣x≡x⌣y : y ⌣ x ≡ x ⌣ y y⌣x≡x⌣y = y ⌣ x ≡⟨ gradedComm'-⌣ 2 2 y x ⟩ (-ₕ'^ 2 · 2) (transport refl (x ⌣ y)) ≡⟨ -ₕ'Id (transport refl (x ⌣ y)) ⟩ transport refl (x ⌣ y) ≡⟨ transportRefl (x ⌣ y) ⟩ x ⌣ y ∎ lem₂ : (x +ₕ y) ⌣ (x +ₕ y) ≡ (x ⌣ y) +ₕ (x ⌣ y) lem₂ = (x +ₕ y) ⌣ (x +ₕ y) ≡⟨ leftDistr-⌣ 2 2 (x +ₕ y) x y ⟩ ((x +ₕ y) ⌣ x) +ₕ ((x +ₕ y) ⌣ y) ≡⟨ cong₂ _+ₕ_ (rightDistr-⌣ 2 2 x y x) (rightDistr-⌣ 2 2 x y y) ⟩ ((x ⌣ x +ₕ y ⌣ x)) +ₕ (x ⌣ y +ₕ y ⌣ y) ≡⟨ cong₂ _+ₕ_ (cong (_+ₕ y ⌣ x) x⌣x≡0 ∙ lUnitₕ 4 (y ⌣ x)) (cong (x ⌣ y +ₕ_) y⌣y≡0 ∙ rUnitₕ 4 (x ⌣ y)) ⟩ y ⌣ x +ₕ x ⌣ y ≡⟨ cong (_+ₕ (x ⌣ y)) y⌣x≡x⌣y ⟩ ((x ⌣ y) +ₕ (x ⌣ y)) ∎ lem₁ : (fst qHom) (α' ⌣ α') ≡ (x +ₕ y) ⌣ (x +ₕ y) lem₁ = fst qHom (α' ⌣ α') ≡⟨ refl ⟩ fst (qHomGen 2) α' ⌣ fst (qHomGen 2) α' ≡⟨ cong (λ x → x ⌣ x) α'↦x+y ⟩ ((x +ₕ y) ⌣ (x +ₕ y)) ∎ main⊎ : (HopfInvariant 0 (fold∘W , refl) ≡ 2) ⊎ (HopfInvariant 0 (fold∘W , refl) ≡ -2) main⊎ = ⊎rec (λ p → inl (lem₁ ∙ cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) p ∙ pres· (Hopfβ-Iso 0 (fold∘W , refl) .snd) β β ∙ cong (λ x → x + x) (Hopfβ↦1 0 (fold∘W , refl)))) (λ p → inr (lem₁ ∙ cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) p ∙ presinv (Hopfβ-Iso 0 (fold∘W , refl) .snd) (β +ₕ β) ∙ cong (GroupStr.inv (snd ℤGroup)) (pres· (Hopfβ-Iso 0 (fold∘W , refl) .snd) β β ∙ cong (λ x → x + x) (Hopfβ↦1 0 (fold∘W , refl))))) lem₂ where lem₁ : HopfInvariant 0 (fold∘W , refl) ≡ fun (fst (Hopfβ-Iso 0 (fold∘W , refl))) (α ⌣ α) lem₁ = cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) (transportRefl (α ⌣ α)) lem₂ : (α ⌣ α ≡ β +ₕ β) ⊎ (α ⌣ α ≡ -ₕ (β +ₕ β)) lem₂ = rewriteEquation (⊎rec (λ p → inl (sym (retEq (fst isEquiv-qHom) (α' ⌣ α')) ∙∙ cong (invEq (fst isEquiv-qHom)) p ∙∙ retEq (fst isEquiv-qHom) (β' +ₕ β'))) (λ p → inr ((sym (retEq (fst isEquiv-qHom) (α' ⌣ α')) ∙∙ cong (invEq (fst isEquiv-qHom)) p ∙∙ retEq (fst isEquiv-qHom) (-ₕ (β' +ₕ β'))))) mainEq) main : abs (HopfInvariant 0 (fold∘W , refl)) ≡ 2 main = ⊎→abs _ 2 main⊎ -- We instantiate the module Brunerie'≡2 : abs (HopfInvariant 0 (fold∘W , refl)) ≡ 2 Brunerie'≡2 = BrunerieNumLem.main (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1) Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣ -- We rewrite the it slightly, to get the definition of the Brunerie -- number in Brunerie (2016) Brunerie'≡Brunerie : [ ∣ idfun∙ (S₊∙ 2) ∣₂ ∣ ∣ idfun∙ (S₊∙ 2) ∣₂ ]π' ≡ ∣ fold∘W , refl ∣₂ Brunerie'≡Brunerie = cong ∣_∣₂ ([]≡[]₂ (idfun∙ (S₊∙ 2)) (idfun∙ (S₊∙ 2)) ) ∙ sym fold∘W≡Whitehead ∙ cong ∣_∣₂ (∘∙-idˡ (fold∘W , refl)) -- And we get the main result Brunerie≡2 : Brunerie ≡ 2 Brunerie≡2 = cong abs (cong (HopfInvariant-π' 0) Brunerie'≡Brunerie) ∙ Brunerie'≡2
37.344913
112
0.530365
0b9fc65cf5e0b2142464fe06146903cd2c5effd9
2,954
agda
Agda
src/Categories/Diagram/Equalizer.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Diagram/Equalizer.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Diagram/Equalizer.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) -- Equalizers in a Category C module Categories.Diagram.Equalizer {o ℓ e} (C : Category o ℓ e) where open Category C open HomReasoning open Equiv open import Level open import Data.Product as Σ open import Function using (_$_) open import Categories.Morphism C open import Categories.Morphism.Reasoning C private variable A B X : Obj h i j k : A ⇒ B record IsEqualizer {E} (arr : E ⇒ A) (f g : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field equality : f ∘ arr ≈ g ∘ arr equalize : ∀ {h : X ⇒ A} → f ∘ h ≈ g ∘ h → X ⇒ E universal : ∀ {eq : f ∘ h ≈ g ∘ h} → h ≈ arr ∘ equalize eq unique : ∀ {eq : f ∘ h ≈ g ∘ h} → h ≈ arr ∘ i → i ≈ equalize eq unique′ : (eq eq′ : f ∘ h ≈ g ∘ h) → equalize eq ≈ equalize eq′ unique′ eq eq′ = unique universal id-equalize : id ≈ equalize equality id-equalize = unique (sym identityʳ) equalize-resp-≈ : ∀ {eq : f ∘ h ≈ g ∘ h} {eq′ : f ∘ i ≈ g ∘ i} → h ≈ i → equalize eq ≈ equalize eq′ equalize-resp-≈ {h = h} {i = i} {eq = eq} {eq′ = eq′} h≈i = unique $ begin i ≈˘⟨ h≈i ⟩ h ≈⟨ universal ⟩ arr ∘ equalize eq ∎ equalize-resp-≈′ : (eq : f ∘ h ≈ g ∘ h) → (eq′ : f ∘ i ≈ g ∘ i) → h ≈ i → j ≈ equalize eq → k ≈ equalize eq′ → j ≈ k equalize-resp-≈′ {j = j} {k = k} eq eq′ h≈i eqj eqk = begin j ≈⟨ eqj ⟩ equalize eq ≈⟨ equalize-resp-≈ h≈i ⟩ equalize eq′ ≈˘⟨ eqk ⟩ k ∎ equality-∘ : f ∘ arr ∘ h ≈ g ∘ arr ∘ h equality-∘ {h = h} = begin f ∘ arr ∘ h ≈⟨ pullˡ equality ⟩ (g ∘ arr) ∘ h ≈⟨ assoc ⟩ g ∘ arr ∘ h ∎ unique-diagram : arr ∘ h ≈ arr ∘ i → h ≈ i unique-diagram {h = h} {i = i} eq = begin h ≈⟨ unique (sym eq) ⟩ equalize (extendʳ equality) ≈˘⟨ unique refl ⟩ i ∎ record Equalizer (f g : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field {obj} : Obj arr : obj ⇒ A isEqualizer : IsEqualizer arr f g open IsEqualizer isEqualizer public Equalizer⇒Mono : (e : Equalizer h i) → Mono (Equalizer.arr e) Equalizer⇒Mono e f g eq = equalize-resp-≈′ equality-∘ equality-∘ eq (unique refl) (unique refl) where open Equalizer e up-to-iso : (e₁ e₂ : Equalizer h i) → Equalizer.obj e₁ ≅ Equalizer.obj e₂ up-to-iso e₁ e₂ = record { from = repack e₁ e₂ ; to = repack e₂ e₁ ; iso = record { isoˡ = repack-cancel e₂ e₁ ; isoʳ = repack-cancel e₁ e₂ } } where open Equalizer repack : (e₁ e₂ : Equalizer h i) → obj e₁ ⇒ obj e₂ repack e₁ e₂ = equalize e₂ (equality e₁) repack∘ : (e₁ e₂ e₃ : Equalizer h i) → repack e₂ e₃ ∘ repack e₁ e₂ ≈ repack e₁ e₃ repack∘ e₁ e₂ e₃ = unique e₃ (⟺ (glueTrianglesʳ (⟺ (universal e₃)) (⟺ (universal e₂)))) repack-cancel : (e₁ e₂ : Equalizer h i) → repack e₁ e₂ ∘ repack e₂ e₁ ≈ id repack-cancel e₁ e₂ = repack∘ e₂ e₁ e₂ ○ ⟺ (id-equalize e₂)
31.094737
91
0.551794
d1f6908ea2209c507a5aa73e684b862edd5d5b63
1,751
agda
Agda
examples/examplesPaperJFP/loadAllOOAgdaPart2.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/examplesPaperJFP/loadAllOOAgdaPart2.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/examplesPaperJFP/loadAllOOAgdaPart2.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module examplesPaperJFP.loadAllOOAgdaPart2 where -- This is a continuation of the file loadAllOOAgdaPart1 -- giving the code from the ooAgda paper -- This file was split into two because of a builtin IO which -- makes loading files from part1 and part2 incompatible. -- Note that some files which are directly in the libary can be found -- in loadAllOOAgdaFilesAsInLibrary -- Sect 1 - 7 are in loadAllOOAgdaPart1.agda -- 8. State-Dependent Objects and IO -- 8.1 State-Dependent Interfaces import examplesPaperJFP.StatefulObject -- 8.2 State-Dependent Objects -- 8.2.1. Example of Use of Safe Stack import examplesPaperJFP.safeFibStackMachineObjectOriented -- 8.3 Reasoning About Stateful Objects import examplesPaperJFP.StackBisim -- 8.3.1. Bisimilarity -- 8.3.2. Verifying stack laws} -- 8.3.3. Bisimilarity of different stack implementations -- 8.4. State-Dependent IO import examplesPaperJFP.StateDependentIO -- 9. A Drawing Program in Agda -- code as in paper adapted to new Agda open import examplesPaperJFP.IOGraphicsLib -- code as in library see loadAllOOAgdaFilesAsInLibrary.agda -- open import SizedIO.IOGraphicsLib open import examplesPaperJFP.ExampleDrawingProgram -- 10. A Graphical User Interface using an Object -- 10.1. wxHaskell -- 10.2. A Library for Object-Based GUIs in Agda open import examplesPaperJFP.VariableList open import examplesPaperJFP.WxGraphicsLib open import examplesPaperJFP.VariableListForDispatchOnly -- 10.3 Example: A GUI controlling a Space Ship in Agda open import examplesPaperJFP.SpaceShipSimpleVar open import examplesPaperJFP.SpaceShipCell open import examplesPaperJFP.SpaceShipAdvanced -- 11. Related Work open import examplesPaperJFP.agdaCodeBrady -- 12. Conclusion -- Bibliography
26.530303
69
0.801256
524ffe052e9c73a3e79c828dd1131a61d78b350f
435
agda
Agda
negation.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
negation.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
negation.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
module negation where open import level open import empty ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 7 ¬ ---------------------------------------------------------------------- -- defined types ---------------------------------------------------------------------- ¬ : ∀{ℓ}(x : Set ℓ) → Set ℓ ¬ {ℓ} x = x → (⊥ {ℓ})
22.894737
70
0.2
1a96ef7860f5ac48f7b28f9e6ae82ec0378ef776
1,281
agda
Agda
Vectors.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
21
2015-07-30T01:25:12.000Z
2021-02-13T18:02:18.000Z
Vectors.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
3
2019-01-13T13:12:33.000Z
2019-05-29T09:50:26.000Z
Vectors.agda
jmchapman/Relative-Monads
74707d3538bf494f4bd30263d2f5515a84733865
[ "MIT" ]
1
2019-11-04T21:33:13.000Z
2019-11-04T21:33:13.000Z
record SemiRing : Set1 where field R : Set _+_ : R -> R -> R zero : R _*_ : R -> R -> R one : R module Vectors (S : SemiRing) where open SemiRing S open import Data.Nat renaming (ℕ to Nat; zero to z; _*_ to times; _+_ to plus) open import Data.Fin renaming (zero to z) hiding (_+_) open import RMonads open import Functors.Fin open import Data.Bool open import Function open import Relation.Binary.HeterogeneousEquality Vec : Nat -> Set Vec n = Fin n -> R Matrix : Nat -> Nat -> Set Matrix m n = Fin m -> Vec n -- unit delta : forall {n} -> Matrix n n delta i j = if feq i j then one else zero transpose : forall {m n} -> Matrix m n -> Matrix n m transpose A = λ j i -> A i j dot : forall {n} -> Vec n -> Vec n -> R dot {z} x y = zero dot {suc n} x y = (x z * y z) + dot (x ∘ suc) (y ∘ suc) mult : forall {m n} -> Matrix m n -> Vec m -> Vec n mult A x = λ j -> dot (transpose A j) x VecRMon : RMonad FinF VecRMon = rmonad Vec delta mult {!!} {!!} {!!} where {- lem : forall {n}(x : Vec n)(j : Fin n) -> dot (λ i → if feq i j then one else zero) x ≅ x j lem {z} x () lem {suc n} x z = {!lem {n} (x ∘ suc) !} lem {suc n} x (suc j) = {!!} -}
21.711864
95
0.539422
434efc7c2ca1a94e3fe7e6bf899c4debcbd66d92
20,073
agda
Agda
Cubical/Algebra/Structures.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Structures.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Algebra/Structures.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything module Cubical.Algebra.Structures {a} (A : Type a) where -- The file is divided into sections depending on the arities of the -- components of the algebraic structure. open import Cubical.Foundations.Prelude using (isSet; cong; _∙_) open import Cubical.Foundations.HLevels using (hSet) open import Cubical.Algebra.Base open import Cubical.Algebra.Definitions open import Cubical.Algebra.Properties open import Cubical.Data.Sigma using (_,_; fst; snd) open import Cubical.Data.Nat.Base renaming (zero to ℕ-zero; suc to ℕ-suc) open import Cubical.Data.Int.Base open import Cubical.Data.NatPlusOne.Base open import Cubical.Relation.Nullary using (¬_) open import Cubical.Relation.Binary.Reasoning.Equality _NotEqualTo_ : A → Type a _NotEqualTo_ z = Σ[ x ∈ A ] ¬ (x ≡ z) ------------------------------------------------------------------------ -- Algebra with 1 binary operation ------------------------------------------------------------------------ record IsMagma (_•_ : Op₂ A) : Type a where constructor ismagma field is-set : isSet A set : hSet a set = A , is-set record IsSemigroup (_•_ : Op₂ A) : Type a where constructor issemigroup field isMagma : IsMagma _•_ assoc : Associative _•_ open IsMagma isMagma public infixl 10 _^_ _^_ : A → ℕ₊₁ → A x ^ one = x x ^ (2+ n) = x • (x ^ 1+ n) record IsBand (_•_ : Op₂ A) : Type a where constructor isband field isSemigroup : IsSemigroup _•_ idem : Idempotent _•_ open IsSemigroup isSemigroup public record IsCommutativeSemigroup (_•_ : Op₂ A) : Type a where constructor iscommsemigroup field isSemigroup : IsSemigroup _•_ comm : Commutative _•_ open IsSemigroup isSemigroup public record IsSemilattice (_•_ : Op₂ A) : Type a where constructor issemilattice field isBand : IsBand _•_ comm : Commutative _•_ open IsBand isBand public record IsSelectiveMagma (_•_ : Op₂ A) : Type a where constructor isselmagma field isMagma : IsMagma _•_ sel : Selective _•_ open IsMagma isMagma public ------------------------------------------------------------------------ -- Algebra with 1 binary operation & 1 element ------------------------------------------------------------------------ record IsMonoid (_•_ : Op₂ A) (ε : A) : Type a where constructor ismonoid field isSemigroup : IsSemigroup _•_ identity : Identity ε _•_ open IsSemigroup isSemigroup public hiding (_^_) identityˡ : LeftIdentity ε _•_ identityˡ = fst identity identityʳ : RightIdentity ε _•_ identityʳ = snd identity ε-uniqueʳ : ∀ {e} → RightIdentity e _•_ → ε ≡ e ε-uniqueʳ idʳ = id-unique′ identityˡ idʳ ε-uniqueˡ : ∀ {e} → LeftIdentity e _•_ → e ≡ ε ε-uniqueˡ idˡ = id-unique′ idˡ identityʳ infixl 10 _^_ _^_ : A → ℕ → A _ ^ ℕ-zero = ε x ^ (ℕ-suc n) = x • (x ^ n) record IsCommutativeMonoid (_•_ : Op₂ A) (ε : A) : Type a where constructor iscommmonoid field isMonoid : IsMonoid _•_ ε comm : Commutative _•_ open IsMonoid isMonoid public isCommutativeSemigroup : IsCommutativeSemigroup _•_ isCommutativeSemigroup = record { isSemigroup = isSemigroup ; comm = comm } record IsIdempotentCommutativeMonoid (_•_ : Op₂ A) (ε : A) : Type a where constructor isidemcommmonoid field isCommutativeMonoid : IsCommutativeMonoid _•_ ε idem : Idempotent _•_ open IsCommutativeMonoid isCommutativeMonoid public -- Idempotent commutative monoids are also known as bounded lattices. -- Note that the BoundedLattice necessarily uses the notation inherited -- from monoids rather than lattices. IsBoundedLattice = IsIdempotentCommutativeMonoid pattern isboundedlattice = isidemcommmonoid module IsBoundedLattice {_•_ : Op₂ A} {ε : A} (isIdemCommMonoid : IsIdempotentCommutativeMonoid _•_ ε) = IsIdempotentCommutativeMonoid isIdemCommMonoid ------------------------------------------------------------------------ -- Algebra with 1 binary operation, 1 unary operation & 1 element ------------------------------------------------------------------------ record IsGroup (_•_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Type a where constructor isgroup field isMonoid : IsMonoid _•_ ε inverse : Inverse ε _⁻¹ _•_ open IsMonoid isMonoid public hiding (_^_) infixl 10 _^_ _^_ : A → ℤ → A x ^ pos ℕ-zero = ε x ^ pos (ℕ-suc n) = x • (x ^ pos n) x ^ negsuc ℕ-zero = x ⁻¹ x ^ negsuc (ℕ-suc n) = (x ⁻¹) • (x ^ negsuc n) -- Right division infixl 6 _/_ _/_ : Op₂ A x / y = x • (y ⁻¹) -- Left division infixr 6 _/ˡ_ _/ˡ_ : Op₂ A x /ˡ y = (x ⁻¹) • y inverseˡ : LeftInverse ε _⁻¹ _•_ inverseˡ = fst inverse inverseʳ : RightInverse ε _⁻¹ _•_ inverseʳ = snd inverse inv-uniqueʳ : ∀ x y → (x • y) ≡ ε → x ≡ (y ⁻¹) inv-uniqueʳ = assoc+id+invʳ⇒invʳ-unique assoc identity inverseʳ inv-uniqueˡ : ∀ x y → (x • y) ≡ ε → y ≡ (x ⁻¹) inv-uniqueˡ = assoc+id+invˡ⇒invˡ-unique assoc identity inverseˡ cancelˡ : LeftCancellative _•_ cancelˡ = assoc+idˡ+invˡ⇒cancelˡ assoc identityˡ inverseˡ cancelʳ : RightCancellative _•_ cancelʳ = assoc+idʳ+invʳ⇒cancelʳ assoc identityʳ inverseʳ record IsAbelianGroup (_+_ : Op₂ A) (ε : A) (-_ : Op₁ A) : Type a where constructor isabgroup field isGroup : IsGroup _+_ ε -_ comm : Commutative _+_ open IsGroup isGroup public hiding (_/ˡ_) renaming (_/_ to _-_; _^_ to _*_) isCommutativeMonoid : IsCommutativeMonoid _+_ ε isCommutativeMonoid = record { isMonoid = isMonoid ; comm = comm } open IsCommutativeMonoid isCommutativeMonoid public using (isCommutativeSemigroup) ------------------------------------------------------------------------ -- Algebra with 2 binary operations ------------------------------------------------------------------------ -- Note that `IsLattice` is not defined in terms of `IsSemilattice` -- because the idempotence laws of ⋀ and ⋁ can be derived from the -- absorption laws, which makes the corresponding "idem" fields -- redundant. The derived idempotence laws are stated and proved in -- `Algebra.Properties.Lattice` along with the fact that every lattice -- consists of two semilattices. record IsLattice (_⋀_ _⋁_ : Op₂ A) : Type a where constructor islattice field ⋀-comm : Commutative _⋀_ ⋀-assoc : Associative _⋀_ ⋁-comm : Commutative _⋁_ ⋁-assoc : Associative _⋁_ absorptive : Absorptive _⋀_ _⋁_ ⋀-absorbs-⋁ : _⋀_ Absorbs _⋁_ ⋀-absorbs-⋁ = fst absorptive ⋁-absorbs-⋀ : _⋁_ Absorbs _⋀_ ⋁-absorbs-⋀ = snd absorptive record IsDistributiveLattice (_⋀_ _⋁_ : Op₂ A) : Type a where constructor isdistrlattice field isLattice : IsLattice _⋀_ _⋁_ ⋀-distribʳ-⋁ : _⋀_ DistributesOverʳ _⋁_ open IsLattice isLattice public ------------------------------------------------------------------------ -- Algebra with 2 binary operations & 1 element ------------------------------------------------------------------------ record IsNearSemiring (_+_ _*_ : Op₂ A) (0# : A) : Type a where constructor isnearsemiring field +-isMonoid : IsMonoid _+_ 0# *-isSemigroup : IsSemigroup _*_ distribˡ : _*_ DistributesOverˡ _+_ zeroˡ : LeftZero 0# _*_ open IsMonoid +-isMonoid public renaming ( assoc to +-assoc ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; ε-uniqueˡ to 0#-uniqueˡ ; ε-uniqueʳ to 0#-uniqueʳ ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; _^_ to _**_ ) open IsSemigroup *-isSemigroup public using (_^_) renaming ( assoc to *-assoc ; isMagma to *-isMagma ) record IsSemiringWithoutOne (_+_ _*_ : Op₂ A) (0# : A) : Type a where constructor issemiringwo1 field +-isCommutativeMonoid : IsCommutativeMonoid _+_ 0# *-isSemigroup : IsSemigroup _*_ distrib : _*_ DistributesOver _+_ zero : Zero 0# _*_ open IsCommutativeMonoid +-isCommutativeMonoid public using () renaming ( comm to +-comm ; isMonoid to +-isMonoid ; isCommutativeSemigroup to +-isCommutativeSemigroup ) zeroˡ : LeftZero 0# _*_ zeroˡ = fst zero zeroʳ : RightZero 0# _*_ zeroʳ = snd zero distribˡ : _*_ DistributesOverˡ _+_ distribˡ = fst distrib distribʳ : _*_ DistributesOverʳ _+_ distribʳ = snd distrib isNearSemiring : IsNearSemiring _+_ _*_ 0# isNearSemiring = record { +-isMonoid = +-isMonoid ; *-isSemigroup = *-isSemigroup ; distribˡ = distribˡ ; zeroˡ = zeroˡ } open IsNearSemiring isNearSemiring public hiding (+-isMonoid; zeroˡ; *-isSemigroup; distribˡ) record IsCommutativeSemiringWithoutOne (_+_ _*_ : Op₂ A) (0# : A) : Type a where constructor iscommsemiringwo1 field isSemiringWithoutOne : IsSemiringWithoutOne _+_ _*_ 0# *-comm : Commutative _*_ open IsSemiringWithoutOne isSemiringWithoutOne public ------------------------------------------------------------------------ -- Algebra with 2 binary operations & 2 elements ------------------------------------------------------------------------ record IsSemiringWithoutAnnihilatingZero (_+_ _*_ : Op₂ A) (0# 1# : A) : Type a where constructor issemiringwoa0 field -- Note that these Algebra do have an additive unit, but this -- unit does not necessarily annihilate multiplication. +-isCommutativeMonoid : IsCommutativeMonoid _+_ 0# *-isMonoid : IsMonoid _*_ 1# distrib : _*_ DistributesOver _+_ distribˡ : _*_ DistributesOverˡ _+_ distribˡ = fst distrib distribʳ : _*_ DistributesOverʳ _+_ distribʳ = snd distrib open IsCommutativeMonoid +-isCommutativeMonoid public renaming ( assoc to +-assoc ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; ε-uniqueˡ to 0#-uniqueˡ ; ε-uniqueʳ to 0#-uniqueʳ ; comm to +-comm ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isCommutativeSemigroup to +-isCommutativeSemigroup ; _^_ to _**_ ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; identity to *-identity ; identityˡ to *-identityˡ ; identityʳ to *-identityʳ ; ε-uniqueˡ to 1#-uniqueˡ ; ε-uniqueʳ to 1#-uniqueʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ) record IsSemiring (_+_ _*_ : Op₂ A) (0# 1# : A) : Type a where constructor issemiring field isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _+_ _*_ 0# 1# zero : Zero 0# _*_ open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public isSemiringWithoutOne : IsSemiringWithoutOne _+_ _*_ 0# isSemiringWithoutOne = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isSemigroup = *-isSemigroup ; distrib = distrib ; zero = zero } open IsSemiringWithoutOne isSemiringWithoutOne public using ( isNearSemiring ; zeroˡ ; zeroʳ ) record IsCommutativeSemiring (_+_ _*_ : Op₂ A) (0# 1# : A) : Type a where constructor iscommsemiring field isSemiring : IsSemiring _+_ _*_ 0# 1# *-comm : Commutative _*_ open IsSemiring isSemiring public isCommutativeSemiringWithoutOne : IsCommutativeSemiringWithoutOne _+_ _*_ 0# isCommutativeSemiringWithoutOne = record { isSemiringWithoutOne = isSemiringWithoutOne ; *-comm = *-comm } *-isCommutativeSemigroup : IsCommutativeSemigroup _*_ *-isCommutativeSemigroup = record { isSemigroup = *-isSemigroup ; comm = *-comm } *-isCommutativeMonoid : IsCommutativeMonoid _*_ 1# *-isCommutativeMonoid = record { isMonoid = *-isMonoid ; comm = *-comm } ------------------------------------------------------------------------ -- Algebra with 2 binary operations, 1 unary operation & 2 elements ------------------------------------------------------------------------ record IsRing (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Type a where constructor isring field +-isAbelianGroup : IsAbelianGroup _+_ 0# -_ *-isMonoid : IsMonoid _*_ 1# distrib : _*_ DistributesOver _+_ open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc ; identity to +-identity ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; ε-uniqueˡ to 0#-uniqueˡ ; ε-uniqueʳ to 0#-uniqueʳ ; inverse to +-inverse ; inverseˡ to +-inverseˡ ; inverseʳ to +-inverseʳ ; inv-uniqueˡ to neg-uniqueˡ ; inv-uniqueʳ to neg-uniqueʳ ; cancelˡ to +-cancelˡ ; cancelʳ to +-cancelʳ ; comm to +-comm ; isMagma to +-isMagma ; isSemigroup to +-isSemigroup ; isMonoid to +-isMonoid ; isCommutativeMonoid to +-isCommutativeMonoid ; isCommutativeSemigroup to +-isCommutativeSemigroup ; isGroup to +-isGroup ; _*_ to _**_ ) open IsMonoid *-isMonoid public using () renaming ( assoc to *-assoc ; identity to *-identity ; identityˡ to *-identityˡ ; identityʳ to *-identityʳ ; ε-uniqueˡ to 1#-uniqueˡ ; ε-uniqueʳ to 1#-uniqueʳ ; isMagma to *-isMagma ; isSemigroup to *-isSemigroup ) distribˡ : _*_ DistributesOverˡ _+_ distribˡ = fst distrib distribʳ : _*_ DistributesOverʳ _+_ distribʳ = snd distrib zeroˡ : LeftZero 0# _*_ zeroˡ = assoc+distribʳ+idʳ+invʳ⇒zeˡ {_+_ = _+_} {_*_ = _*_} { -_} +-assoc distribʳ +-identityʳ +-inverseʳ zeroʳ : RightZero 0# _*_ zeroʳ = assoc+distribˡ+idʳ+invʳ⇒zeʳ {_+_ = _+_} {_*_ = _*_} { -_} +-assoc distribˡ +-identityʳ +-inverseʳ zero : Zero 0# _*_ zero = zeroˡ , zeroʳ isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _+_ _*_ 0# 1# isSemiringWithoutAnnihilatingZero = record { +-isCommutativeMonoid = +-isCommutativeMonoid ; *-isMonoid = *-isMonoid ; distrib = distrib } isSemiring : IsSemiring _+_ _*_ 0# 1# isSemiring = record { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero ; zero = zero } open IsSemiring isSemiring public using (isNearSemiring; isSemiringWithoutOne) record IsCommutativeRing (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Type a where constructor iscommring field isRing : IsRing _+_ _*_ -_ 0# 1# *-comm : Commutative _*_ open IsRing isRing public *-isCommutativeMonoid : IsCommutativeMonoid _*_ 1# *-isCommutativeMonoid = record { isMonoid = *-isMonoid ; comm = *-comm } isCommutativeSemiring : IsCommutativeSemiring _+_ _*_ 0# 1# isCommutativeSemiring = record { isSemiring = isSemiring ; *-comm = *-comm } open IsCommutativeSemiring isCommutativeSemiring public using ( isCommutativeSemiringWithoutOne ) record IsIntegralDomain {ℓ} (Cancellable : A → Type ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Type (ℓ-max a ℓ) where constructor isintegraldomain Cancellables : Type (ℓ-max a ℓ) Cancellables = Σ A Cancellable field isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1# *-cancelˡ : ∀ (x : Cancellables) {y z} → (x .fst) * y ≡ (x .fst) * z → y ≡ z open IsCommutativeRing isCommutativeRing public *-cancelʳ : ∀ {x y} (z : Cancellables) → x * (z .fst) ≡ y * (z .fst) → x ≡ y *-cancelʳ {x} {y} zᵖ@(z , _) eq = *-cancelˡ zᵖ ( z * x ≡⟨ *-comm z x ⟩ x * z ≡⟨ eq ⟩ y * z ≡⟨ *-comm y z ⟩ z * y ∎) record IsBooleanAlgebra (_⋀_ _⋁_ : Op₂ A) (¬_ : Op₁ A) (⊤ ⊥ : A) : Type a where constructor isbooleanalgebra field isDistributiveLattice : IsDistributiveLattice _⋀_ _⋁_ ⋀-identityʳ : RightIdentity ⊤ _⋀_ ⋁-identityʳ : RightIdentity ⊥ _⋁_ ⋀-complementʳ : RightInverse ⊥ ¬_ _⋀_ ⋁-complementʳ : RightInverse ⊤ ¬_ _⋁_ open IsDistributiveLattice isDistributiveLattice public ⋀-identityˡ : LeftIdentity ⊤ _⋀_ ⋀-identityˡ x = ⋀-comm _ _ ∙ ⋀-identityʳ x ⋀-identity : Identity ⊤ _⋀_ ⋀-identity = ⋀-identityˡ , ⋀-identityʳ ⋁-identityˡ : LeftIdentity ⊥ _⋁_ ⋁-identityˡ x = ⋁-comm _ _ ∙ ⋁-identityʳ x ⋁-identity : Identity ⊥ _⋁_ ⋁-identity = ⋁-identityˡ , ⋁-identityʳ ⋀-complementˡ : LeftInverse ⊥ ¬_ _⋀_ ⋀-complementˡ = comm+invʳ⇒invˡ ⋀-comm ⋀-complementʳ ⋀-complement : Inverse ⊥ ¬_ _⋀_ ⋀-complement = ⋀-complementˡ , ⋀-complementʳ ⋁-complementˡ : LeftInverse ⊤ ¬_ _⋁_ ⋁-complementˡ = comm+invʳ⇒invˡ ⋁-comm ⋁-complementʳ ⋁-complement : Inverse ⊤ ¬_ _⋁_ ⋁-complement = ⋁-complementˡ , ⋁-complementʳ ------------------------------------------------------------------------ -- Algebra with 2 binary operations, 2 unary operations & 2 elements ------------------------------------------------------------------------ -- The standard definition of division rings excludes the zero ring, but such a restriction is rarely important record IsDivisionRing {ℓ} (Invertible : A → Type ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (_⁻¹ : Σ A Invertible → A) (0# 1# : A) : Type (ℓ-max a ℓ) where constructor isdivring Invertibles : Type (ℓ-max a ℓ) Invertibles = Σ A Invertible field isRing : IsRing _+_ _*_ -_ 0# 1# *-inverseˡ : (x : Invertibles) → (x ⁻¹) * (x .fst) ≡ 1# *-inverseʳ : (x : Invertibles) → (x .fst) * (x ⁻¹) ≡ 1# open IsRing isRing public infixl 6 _/_ _/_ : A → Invertibles → A x / y = x * (y ⁻¹) infixr 6 _/ˡ_ _/ˡ_ : Invertibles → A → A x /ˡ y = (x ⁻¹) * y *-cancelˡ : ∀ (x : Invertibles) {y z} → (x .fst) * y ≡ (x .fst) * z → y ≡ z *-cancelˡ xᵖ@(x , _) {y} {z} eq = y ≡˘⟨ *-identityˡ y ⟩ 1# * y ≡˘⟨ cong (_* y) (*-inverseˡ xᵖ) ⟩ ((xᵖ ⁻¹) * x) * y ≡⟨ *-assoc (xᵖ ⁻¹) x y ⟩ (xᵖ ⁻¹) * (x * y) ≡⟨ cong ((xᵖ ⁻¹) *_) eq ⟩ (xᵖ ⁻¹) * (x * z) ≡˘⟨ *-assoc (xᵖ ⁻¹) x z ⟩ ((xᵖ ⁻¹) * x) * z ≡⟨ cong (_* z) (*-inverseˡ xᵖ) ⟩ 1# * z ≡⟨ *-identityˡ z ⟩ z ∎ *-cancelʳ : ∀ {x y} (z : Invertibles) → x * (z .fst) ≡ y * (z .fst) → x ≡ y *-cancelʳ {x} {y} zᵖ@(z , _) eq = x ≡˘⟨ *-identityʳ x ⟩ x * 1# ≡˘⟨ cong (x *_) (*-inverseʳ zᵖ) ⟩ x * (z * (zᵖ ⁻¹)) ≡˘⟨ *-assoc x z (zᵖ ⁻¹) ⟩ (x * z) * (zᵖ ⁻¹) ≡⟨ cong (_* (zᵖ ⁻¹)) eq ⟩ (y * z) * (zᵖ ⁻¹) ≡⟨ *-assoc y z (zᵖ ⁻¹) ⟩ y * (z * (zᵖ ⁻¹)) ≡⟨ cong (y *_) (*-inverseʳ zᵖ) ⟩ y * 1# ≡⟨ *-identityʳ y ⟩ y ∎ record IsField {ℓ} (Invertible : A → Type ℓ) (_+_ _*_ : Op₂ A) (-_ : Op₁ A) (_⁻¹ : Σ A Invertible → A) (0# 1# : A) : Type (ℓ-max a ℓ) where constructor isfield field isDivisionRing : IsDivisionRing Invertible _+_ _*_ -_ _⁻¹ 0# 1# *-comm : Commutative _*_ open IsDivisionRing isDivisionRing public hiding (_/ˡ_) isCommutativeRing : IsCommutativeRing _+_ _*_ -_ 0# 1# isCommutativeRing = record { isRing = isRing ; *-comm = *-comm } isIntegralDomain : IsIntegralDomain Invertible _+_ _*_ -_ 0# 1# isIntegralDomain = record { isCommutativeRing = isCommutativeRing ; *-cancelˡ = *-cancelˡ } open IsIntegralDomain isIntegralDomain public using (*-isCommutativeMonoid; isCommutativeSemiring; isCommutativeSemiringWithoutOne)
29.693787
146
0.581727
9ab5cc82a2636bb33b6f952052d337ce75a79c54
8,663
agda
Agda
src/Pushout.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Pushout.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Pushout.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Pushouts, defined using a HIT ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- This module follows the HoTT book rather closely. -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining pushouts uses path equality, but -- the supplied notion of equality is used for many other things. import Equality.Path as P module Pushout {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J hiding (id; _∘_) import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import Pointed-type equality-with-J using (Pointed-type) import Suspension eq as S private variable a b l ℓ m p r : Level A B : Type a S : A -- Spans. record Span l r m : Type (lsuc (l ⊔ r ⊔ m)) where field {Left} : Type l {Right} : Type r {Middle} : Type m left : Middle → Left right : Middle → Right -- Pushouts. data Pushout (S : Span l r m) : Type (l ⊔ r ⊔ m) where inl : Span.Left S → Pushout S inr : Span.Right S → Pushout S glueᴾ : (x : Span.Middle S) → inl (Span.left S x) P.≡ inr (Span.right S x) -- Glue. glue : (x : Span.Middle S) → _≡_ {A = Pushout S} (inl (Span.left S x)) (inr (Span.right S x)) glue x = _↔_.from ≡↔≡ (glueᴾ x) -- A dependent eliminator, expressed using paths. elimᴾ : {S : Span l r m} (open Span S) (P : Pushout S → Type p) (h₁ : (x : Left) → P (inl x)) (h₂ : (x : Right) → P (inr x)) → (∀ x → P.[ (λ i → P (glueᴾ x i)) ] h₁ (left x) ≡ h₂ (right x)) → (x : Pushout S) → P x elimᴾ P h₁ h₂ g = λ where (inl x) → h₁ x (inr x) → h₂ x (glueᴾ x i) → g x i -- A non-dependent eliminator. recᴾ : {S : Span l r m} (open Span S) (h₁ : Left → A) (h₂ : Right → A) → (∀ x → h₁ (left x) P.≡ h₂ (right x)) → Pushout S → A recᴾ = elimᴾ _ -- A dependent eliminator. elim : {S : Span l r m} (open Span S) (P : Pushout S → Type p) (h₁ : (x : Left) → P (inl x)) (h₂ : (x : Right) → P (inr x)) → (∀ x → subst P (glue x) (h₁ (left x)) ≡ h₂ (right x)) → (x : Pushout S) → P x elim P h₁ h₂ g = elimᴾ P h₁ h₂ (subst≡→[]≡ ∘ g) elim-glue : {S : Span l r m} (open Span S) {P : Pushout S → Type p} {h₁ : (x : Left) → P (inl x)} {h₂ : (x : Right) → P (inr x)} {g : ∀ x → subst P (glue x) (h₁ (left x)) ≡ h₂ (right x)} {x : Middle} → dcong (elim P h₁ h₂ g) (glue x) ≡ g x elim-glue = dcong-subst≡→[]≡ (refl _) -- A non-dependent eliminator. rec : {S : Span l r m} (open Span S) (h₁ : Left → A) (h₂ : Right → A) → (∀ x → h₁ (left x) ≡ h₂ (right x)) → Pushout S → A rec h₁ h₂ g = recᴾ h₁ h₂ (_↔_.to ≡↔≡ ∘ g) rec-glue : {S : Span l r m} (open Span S) {h₁ : Left → A} {h₂ : Right → A} {g : ∀ x → h₁ (left x) ≡ h₂ (right x)} {x : Middle} → cong (rec h₁ h₂ g) (glue x) ≡ g x rec-glue = cong-≡↔≡ (refl _) -- Cocones. Cocone : Span l r m → Type a → Type (a ⊔ l ⊔ r ⊔ m) Cocone S A = ∃ λ (left : Left → A) → ∃ λ (right : Right → A) → (x : Middle) → left (Span.left S x) ≡ right (Span.right S x) where open Span S using (Left; Right; Middle) -- Some projection functions for cocones. module Cocone (c : Cocone S A) where open Span S using (Left; Right; Middle) left : Left → A left = proj₁ c right : Right → A right = proj₁ (proj₂ c) left-left≡right-right : (x : Middle) → left (Span.left S x) ≡ right (Span.right S x) left-left≡right-right = proj₂ (proj₂ c) -- A universal property for pushouts. Pushout→↔Cocone : (Pushout S → A) ↔ Cocone S A Pushout→↔Cocone {S = S} {A = A} = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to-from } ; left-inverse-of = from-to } where open Span S to : (Pushout S → A) → Cocone S A to f = f ∘ inl , f ∘ inr , cong f ∘ glue from : Cocone S A → (Pushout S → A) from c = rec (Cocone.left c) (Cocone.right c) (Cocone.left-left≡right-right c) to-from : ∀ c → to (from c) ≡ c to-from c = cong (λ x → _ , _ , x) $ ⟨ext⟩ λ x → cong (from c) (glue x) ≡⟨ rec-glue ⟩∎ Cocone.left-left≡right-right c x ∎ from-to : ∀ f → from (to f) ≡ f from-to f = ⟨ext⟩ $ elim _ (λ _ → refl _) (λ _ → refl _) (λ x → subst (λ y → from (to f) y ≡ f y) (glue x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (from (to f)) (glue x))) (trans (refl _) (cong f (glue x))) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩ trans (sym (cong (from (to f)) (glue x))) (cong f (glue x)) ≡⟨ cong (λ eq → trans (sym eq) (cong f (glue x))) rec-glue ⟩ trans (sym (Cocone.left-left≡right-right (to f) x)) (cong f (glue x)) ≡⟨⟩ trans (sym (cong f (glue x))) (cong f (glue x)) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) -- Joins. Join : Type a → Type b → Type (a ⊔ b) Join A B = Pushout (record { Middle = A × B ; left = proj₁ ; right = proj₂ }) -- Join is symmetric. Join-symmetric : Join A B ≃ Join B A Join-symmetric = Eq.↔→≃ to to to-to to-to where to : Join A B → Join B A to = rec inr inl (sym ∘ glue ∘ swap) to-to : (x : Join A B) → to (to x) ≡ x to-to = elim _ (λ _ → refl _) (λ _ → refl _) (λ p → subst (λ x → to (to x) ≡ x) (glue p) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (to ∘ to) (glue p))) (trans (refl _) (cong id (glue p))) ≡⟨ cong₂ (trans ∘ sym) (sym $ cong-∘ _ _ _) (trans (trans-reflˡ _) $ sym $ cong-id _) ⟩ trans (sym (cong to (cong to (glue p)))) (glue p) ≡⟨ cong (flip trans _) $ cong (sym ∘ cong to) rec-glue ⟩ trans (sym (cong to (sym (glue (swap p))))) (glue p) ≡⟨ cong (flip trans _) $ cong sym $ cong-sym _ _ ⟩ trans (sym (sym (cong to (glue (swap p))))) (glue p) ≡⟨ cong (flip trans _) $ sym-sym _ ⟩ trans (cong to (glue (swap p))) (glue p) ≡⟨ cong (flip trans _) rec-glue ⟩ trans (sym (glue (swap (swap p)))) (glue p) ≡⟨⟩ trans (sym (glue p)) (glue p) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) -- The empty type is a right identity for Join. Join-⊥ʳ : Join A (⊥ {ℓ = ℓ}) ≃ A Join-⊥ʳ = Eq.↔→≃ (rec id ⊥-elim (λ { (_ , ()) })) inl refl (elim _ (λ _ → refl _) (λ ()) (λ { (_ , ()) })) -- The empty type is a left identity for Join. Join-⊥ˡ : Join (⊥ {ℓ = ℓ}) A ≃ A Join-⊥ˡ {A = A} = Join ⊥ A ↝⟨ Join-symmetric ⟩ Join A ⊥ ↝⟨ Join-⊥ʳ ⟩□ A □ -- Cones. Cone : {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b) Cone f = Pushout (record { Left = ⊤ ; right = f }) -- Wedges. Wedge : Pointed-type a → Pointed-type b → Type (a ⊔ b) Wedge (A , a) (B , b) = Pushout (record { Middle = ⊤ ; left = const a ; right = const b }) -- Smash products. Smash-product : Pointed-type a → Pointed-type b → Type (a ⊔ b) Smash-product PA@(A , a) PB@(B , b) = Cone f where f : Wedge PA PB → A × B f = rec (_, b) (a ,_) (λ _ → refl _) -- Suspensions. Susp : Type a → Type a Susp A = Pushout (record { Left = ⊤ ; Middle = A ; Right = ⊤ }) -- These suspensions are equivalent to the ones defined in Suspension. Susp≃Susp : Susp A ≃ S.Susp A Susp≃Susp = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to }) where to : Susp A → S.Susp A to = recᴾ (λ _ → S.north) (λ _ → S.south) S.meridianᴾ from : S.Susp A → Susp A from = S.recᴾ (inl _) (inr _) glueᴾ to∘from : ∀ x → to (from x) ≡ x to∘from = _↔_.from ≡↔≡ ∘ S.elimᴾ _ P.refl P.refl (λ a i _ → S.meridianᴾ a i) from∘to : ∀ x → from (to x) ≡ x from∘to = _↔_.from ≡↔≡ ∘ elimᴾ _ (λ _ → P.refl) (λ _ → P.refl) (λ a i _ → glueᴾ a i)
26.655385
138
0.503521
0389d61de892cd29057fec8c2f1d174b5e55bb43
445
agda
Agda
Cubical/Relation/Binary/Raw/Construct/Never.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Raw/Construct/Never.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Raw/Construct/Never.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Raw.Construct.Never where open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw open import Cubical.Relation.Binary.Raw.Construct.Constant open import Cubical.Data.Empty.Polymorphic using (⊥) ------------------------------------------------------------------------ -- Definition Never : ∀ {a ℓ} {A : Type a} → RawRel A ℓ Never = Const ⊥
29.666667
72
0.626966
fb2626f472ddc52d316b885344616ed80a2e10bc
4,559
agda
Agda
examples/outdated-and-incorrect/univ/proofs.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/univ/proofs.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/univ/proofs.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module proofs where open import univ open import cwf open import Base open import Nat open import help {- lem-id∘ : {Γ Δ : Con}(σ : Γ ─→ Δ) -> id ∘ σ == σ lem-id∘ (el < σ , pσ >) = eq \x -> ref lem-∘id : {Γ Δ : Con}(σ : Γ ─→ Δ) -> σ ∘ id == σ lem-∘id (el < σ , pσ >) = eq \x -> ref lem-∘assoc : {Γ Δ Θ Ξ : Con}(σ : Θ ─→ Ξ)(δ : Δ ─→ Θ)(θ : Γ ─→ Δ) -> (σ ∘ δ) ∘ θ == σ ∘ (δ ∘ θ) lem-∘assoc (el < σ , pσ >) (el < δ , pδ >) (el < θ , pθ >) = eq \x -> ref -} lem-/∘ : {Γ Δ Θ : Con}(A : Type Γ)(σ : Δ ─→ Γ)(δ : Θ ─→ Δ) -> A / σ ∘ δ =Ty A / σ / δ lem-/∘ A (el < _ , _ >) (el < _ , _ >) = eqTy \x -> refS {- lem-//id : {Γ : Con}{A : Type Γ}{u : Elem Γ A} -> u // id =El castElem lem-/id u lem-//id {Γ}{A}{elem (el < u , pu >)} = eqEl (eq prf) where prf : (x : El Γ) -> _ prf x = chain> u x === _ << u (refS << x) by pu (sym (ref<< x)) === _ << u (refS << x) by pfi _ _ _ where open module C11 = Chain _==_ (ref {_}) (trans {_}) lem-//∘ : {Γ Δ Θ : Con}{A : Type Γ}(u : Elem Γ A)(σ : Δ ─→ Γ)(δ : Θ ─→ Δ) -> u // σ ∘ δ =El castElem (lem-/∘ A σ δ) (u // σ // δ) lem-//∘ {Γ}{Δ}{Θ} (elem (el < u , pu >)) σ'@(el < σ , _ >) δ'@(el < δ , _ >) = eqEl (eq prf) where prf : (x : El Θ) -> _ prf x = chain> u (σ (δ x)) === _ << u (σ (δ (refS << x))) by pu (p─→ σ' (p─→ δ' (sym (ref<< x)))) === _ << u (σ (δ (refS << x))) by pfi _ _ _ where open module C12 = Chain _==_ (ref {_}) (trans {_}) lem-wk∘σ,,u : {Γ Δ : Con}{A : Type Γ}(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) -> wk ∘ (σ ,, u) == σ lem-wk∘σ,,u (el < σ , pσ >) (elem (el < u , pu >)) = eq \x -> ref lem-/wk∘σ,,u : {Γ Δ : Con}(A : Type Γ)(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) -> A / wk / (σ ,, u) =Ty A / σ lem-/wk∘σ,,u A (el < σ , pσ >) (elem (el < u , pu >)) = eqTy \x -> refS lem-vz/σ,,u : {Γ Δ : Con}{A : Type Γ}(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) -> vz // (σ ,, u) =El castElem (lem-/wk∘σ,,u A σ u) u lem-vz/σ,,u (el < σ , pσ >) (elem (el < u , pu >)) = eqEl (eq \x -> prf x) where prf : (x : El _) -> u x == _ << u (refS << x) prf x = chain> u x === _ << u (refS << x) by pu (sym (ref<< x)) === _ << u (refS << x) by pfi _ _ _ where open module C15 = Chain _==_ (ref {_}) (trans {_}) lem-σ,,u∘ : {Γ Δ Θ : Con}{A : Type Γ} (σ : Δ ─→ Γ)(u : Elem Δ (A / σ))(δ : Θ ─→ Δ) -> (σ ,, u) ∘ δ == (σ ∘ δ ,, castElem (lem-/∘ A σ δ) (u // δ)) lem-σ,,u∘ (el < σ , _ >) (elem (el < u , pu >)) δ'@(el < δ , _ >) = eq \x -> eq < ref , prf x > where prf : (x : El _) -> u (δ x) == _ << _ << u (δ (refS << x)) prf x = chain> u (δ x) === _ << u (δ (refS << x)) by pu (p─→ δ' (sym (ref<< x))) === _ << _ << u (δ (refS << x)) by sym (casttrans _ _ _ _) where open module C15 = Chain _==_ (ref {_}) (trans {_}) lem-wk,,vz : {Γ : Con}{A : Type Γ} -> (wk ,, vz) == id {Γ , A} lem-wk,,vz {Γ}{A} = eq prf where prf : (x : El (Γ , A)) -> _ prf (el < x , y >) = ref -} lem-Π/ : {Γ Δ : Con}{A : Type Γ}(B : Type (Γ , A))(σ : Δ ─→ Γ) -> Π A B / σ =Ty Π (A / σ) (B / (σ ∘ wk ,, castElem (lem-/∘ A σ wk) vz)) lem-Π/ B (el < σ , pσ >) = eqTy \x -> eqS < refS , (\y -> pFam B (eq < ref , prf x y >)) > where postulate prf : (x : El _)(y : El _) -> y == _ << _ << _ << _ << y -- prf x y = -- chain> y -- === _ << _ << y by sym (castref2 _ _ y) -- === _ << _ << _ << y by trans<< _ _ _ -- === _ << _ << _ << _ << y by trans<< _ _ _ -- where open module C16 = Chain _==_ (ref {_}) (trans {_}) {- lem-β : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)} (v : Elem (Γ , A) B)(u : Elem Γ A) -> (ƛ v) ∙ u =El v // [ u ] lem-β {Γ}{A}{B} (elem (el < v , pv >)) (elem (el < u , pu >)) = eqEl (eq \x -> prf x _ _) where prf : (x : El Γ)(q : _ =S _)(p : _ =S _) -> p << v (el < x , u x >) == v (el < x , q << u (refS << x) >) prf x q p = chain> p << v (el < x , u x >) === p << q0 << v (el < x , q1 << u (refS << x) >) by p<< p (pv (eqSnd (pu (sym (ref<< x))))) === q2 << v (el < x , q1 << u (refS << x) >) by sym (trans<< p q0 _) === q2 << q3 << v (el < x , q << u (refS << x) >) by p<< q2 (pv (eqSnd (pfi q1 q _))) === v (el < x , q << u (refS << x) >) by castref2 q2 q3 _ where open module C17 = Chain _==_ (ref {_}) (trans {_}) q0 = _ q1 = _ q2 = _ q3 = _ -}
36.18254
92
0.37596
ad16b0998653ede4fd2d68abc8c33af6e1c6e43b
78
agda
Agda
src/HelloWorld.agda
notogawa/agda-haskell-example
9ad77d2aed8f950151e009135a9dfc02bc32ce65
[ "BSD-3-Clause" ]
5
2015-07-28T05:04:58.000Z
2017-11-07T01:35:46.000Z
src/HelloWorld.agda
notogawa/agda-haskell-example
9ad77d2aed8f950151e009135a9dfc02bc32ce65
[ "BSD-3-Clause" ]
null
null
null
src/HelloWorld.agda
notogawa/agda-haskell-example
9ad77d2aed8f950151e009135a9dfc02bc32ce65
[ "BSD-3-Clause" ]
null
null
null
module HelloWorld where open import IO main = run (putStrLn "Hello,World!")
13
36
0.74359
1a6df4c66394435539f2e6639e27be43b8278948
5,011
agda
Agda
README.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
README.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
README.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module README where -- Formalization for "Decidability of Conversion for Type Theory in Type Theory" -- Git repository: https://github.com/mr-ohman/logrel-mltt ------------------ -- INTRODUCTION -- ------------------ -- A minimal library necessary for formalization: -- Embedding types into larger universes import Tools.Embedding -- The empty type and its elimination rule. import Tools.Empty -- The unit type. import Tools.Unit -- Sum type. import Tools.Sum -- Product type. import Tools.Product -- Identity function and composition. import Tools.Function -- Negation and decidability type. import Tools.Nullary -- Propositional equality and its properties. import Tools.PropositionalEquality -- Natural numbers and decidability of equality. import Tools.Nat --------------------------- -- LANGUAGE INTRODUCTION -- --------------------------- -- Syntax and semantics of weakening and substitution. import Definition.Untyped -- Propositional equality properties: Equalities between expressions, -- weakenings, substitutions and their combined composition. -- (These lemmas are not in the paper.) import Definition.Untyped.Properties -- Judgements: Typing rules, conversion, reduction rules -- and well-formed substitutions and respective equality. import Definition.Typed -- Well-formed context extraction and reduction properties. import Definition.Typed.Properties -- Well-formed weakening and its properties. import Definition.Typed.Weakening ------------------------------ -- KRIPKE LOGICAL RELATIONS -- ------------------------------ -- Generic equality relation definition. import Definition.Typed.EqualityRelation -- The judgemental instance of the generic equality. import Definition.Typed.EqRelInstance -- Logical relations definitions. import Definition.LogicalRelation -- Properties of logical relation: -- Reflexivity of the logical relation. import Definition.LogicalRelation.Properties.Reflexivity -- Escape lemma for the logical relation. import Definition.LogicalRelation.Properties.Escape -- Shape view of two or more types. import Definition.LogicalRelation.ShapeView -- Proof irrelevance for the logical relation. import Definition.LogicalRelation.Irrelevance -- Weakening of logical relation judgements. import Definition.LogicalRelation.Weakening -- Conversion of the logical relation. import Definition.LogicalRelation.Properties.Conversion -- Symmetry of the logical relation. import Definition.LogicalRelation.Properties.Symmetry -- Transitvity of the logical relation. import Definition.LogicalRelation.Properties.Transitivity -- Neutral introduction in the logical relation. import Definition.LogicalRelation.Properties.Neutral -- Weak head expansion of the logical relation. import Definition.LogicalRelation.Properties.Reduction -- Application in the logical relation. import Definition.LogicalRelation.Application -- Validity judgements definitions import Definition.LogicalRelation.Substitution -- Properties of validity judgements: -- Proof irrelevance for the validity judgements. import Definition.LogicalRelation.Substitution.Irrelevance -- Properties about valid substitutions: -- * Substitution well-formedness. -- * Substitution weakening. -- * Substitution lifting. -- * Identity substitution. -- * Reflexivity, symmetry and transitivity of substitution equality. import Definition.LogicalRelation.Substitution.Properties -- Single term substitution of validity judgements. import Definition.LogicalRelation.Substitution.Introductions.SingleSubst -- The fundamental theorem. import Definition.LogicalRelation.Fundamental -- Certain cases of the logical relation: -- Validity of Π-types. import Definition.LogicalRelation.Substitution.Introductions.Pi -- Validity of applications. import Definition.LogicalRelation.Substitution.Introductions.Application -- Validity of λ-terms. import Definition.LogicalRelation.Substitution.Introductions.Lambda -- Validity of natural recursion of natural numbers. import Definition.LogicalRelation.Substitution.Introductions.Natrec -- Reducibility of well-formedness. import Definition.LogicalRelation.Fundamental.Reducibility -- Consequences of the fundamental theorem: -- Canonicity of the system. import Definition.Typed.Consequences.Canonicity -- Injectivity of Π-types. import Definition.Typed.Consequences.Injectivity -- Syntactic validitiy of the system. import Definition.Typed.Consequences.Syntactic -- All types and terms fully reduce to WHNF. import Definition.Typed.Consequences.Reduction -- Strong equality of types. import Definition.Typed.Consequences.Equality -- Substiution in judgements and substitution composition. import Definition.Typed.Consequences.Substitution -- Uniqueness of the types of neutral terms. import Definition.Typed.Consequences.NeTypeEq -- Universe membership of types. import Definition.Typed.Consequences.InverseUniv -- Consistency of the type theory. import Definition.Typed.Consequences.Consistency
27.532967
80
0.790661
2eab347236c3aaeb4189029ba24e83a87031c4c5
747
agda
Agda
test/Succeed/Issue2827.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2827.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2827.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ (C Dummy : Set) where data Maybe : Set where nothing : Maybe IfJust : Maybe → Set → Set IfJust nothing P = P postulate qCtx : C inferRes : Maybe -- v-- Implicit is important here inferResBest : IfJust inferRes ({G : Maybe} → C) inferResBest with inferRes inferResBest | nothing = qCtx -- Error: Dummy != C when checking qCtx : C -- Test also with an existing implicit argument inferResBest₁ : {A : Set} → IfJust inferRes ({G : Maybe} → C) inferResBest₁ with inferRes inferResBest₁ | nothing = qCtx -- Error: Dummy != C when checking qCtx : C -- Make sure it does break down on underapplied clauses underapplied : Maybe → C underapplied with inferRes underapplied | nothing = λ _ → qCtx
26.678571
77
0.676037
5e26c417e47425324bfe84733fe98aecfd7eed53
417
agda
Agda
test/interaction/Long.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Long.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Long.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module Long where data Nat : Set where z : Nat s : (n : Nat) → Nat data Exp : Set where val : (n : Nat) → Exp throw : Exp data Maybe (A : Set) : Set where Just : A → Maybe A Nothing : Maybe A abstract s′ : Nat → Nat s′ = s eval : Exp → Maybe Nat eval (val n) = ? eval throw = ? data D : Nat → Set where d : D z foo : D {!!} foo = {!!} bar : D z bar = {!!} baz : Maybe {!!} baz = {!!}
11.914286
32
0.513189
040cfa56a89b548ce7f5ee554c2524b71a8f00e3
575
agda
Agda
test/Succeed/Positivity.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Positivity.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Positivity.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Positivity where data Nat : Set where zero : Nat suc : Nat -> Nat data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A data Tree : Set where node : List Tree -> Tree data Loop (A : Set) : Set where loop : Loop (Loop A) -> Loop A data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B data PList (A : Set) : Set where leaf : A -> PList A succ : PList (A × A) -> PList A data Bush (A : Set) : Set where nil : Bush A cons : A -> Bush (Bush A) -> Bush A F : Set -> Set F A = A data Ok : Set where ok : F Ok -> Ok
16.428571
37
0.542609
4b92e09ab3002be8c0dbddfc84e45374cf49fefc
8,624
agda
Agda
Definition/Typed/Consequences/Injectivity.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/Typed/Consequences/Injectivity.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Injectivity.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} module Definition.Typed.Consequences.Injectivity where open import Definition.Untyped hiding (wk) import Definition.Untyped as U open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Product import Tools.PropositionalEquality as PE -- Helper function of injectivity for specific reducible Π-types injectivity′ : ∀ {F G H E rF lF rH lH rΠ lG lE Γ lΠ l} ([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ^ rF ° lF ▹ G ° lG ° lΠ ^[ rΠ , lΠ ] ) → Γ ⊩⟨ l ⟩ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ Π H ^ rH ° lH ▹ E ° lE ° lΠ ^ [ rΠ , ι lΠ ] / Π-intr [ΠFG] → Γ ⊢ F ≡ H ^ [ rF , ι lF ] × rF PE.≡ rH × lF PE.≡ lH × lG PE.≡ lE × Γ ∙ F ^ [ rF , ι lF ] ⊢ G ≡ E ^ [ rΠ , ι lG ] injectivity′ {F₁} {G₁} {H} {E} {lF = lF₁} {rΠ = rΠ} {Γ = Γ} (noemb (Πᵣ ! lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = let F≡F₁ , rF≡rF₁ , lF≡lF₁ , G≡G₁ , lG≡lG₁ , _ = Π-PE-injectivity (whnfRed* (red D) Πₙ) H≡F′ , rH≡rF′ , lH≡lF′ , E≡G′ , lE≡lG′ , _ = Π-PE-injectivity (whnfRed* D′ Πₙ) ⊢Γ = wf ⊢F [F]₁ = [F] id ⊢Γ [F]′ = irrelevance′ (PE.trans (wk-id _) (PE.sym F≡F₁)) [F]₁ [x∷F] = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here) (refl (var (⊢Γ ∙ ⊢F) here)) [G]₁ = [G] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G]′ = PE.subst₂ (λ x y → _ ∙ y ^ _ ⊩⟨ _ ⟩ x ^ _) (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.sym F≡F₁) [G]₁ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]′ = irrelevanceEq″ (PE.trans (wk-id _) (PE.sym F≡F₁)) (PE.trans (wk-id _) (PE.sym H≡F′)) PE.refl PE.refl [F]₁ [F]′ [F≡H]₁ [G≡E]₁ = [G≡G′] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G≡E]′ = irrelevanceEqLift″ (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.trans (wkSingleSubstId _) (PE.sym E≡G′)) (PE.sym F≡F₁) [G]₁ [G]′ [G≡E]₁ in PE.subst (λ r → Γ ⊢ _ ≡ _ ^ [ r , ι lF₁ ] ) (PE.sym rF≡rF₁) (PE.subst (λ l → Γ ⊢ F₁ ≡ H ^ [ ! , l ] ) (PE.cong ι (PE.sym lF≡lF₁)) (escapeEq [F]′ [F≡H]′)) , ( PE.trans rF≡rF₁ (PE.sym rH≡rF′) , ( PE.trans lF≡lF₁ (PE.sym lH≡lF′) , ( PE.trans lG≡lG₁ (PE.sym lE≡lG′) , PE.subst (λ r → (_ ∙ _ ^ [ r , _ ] ) ⊢ _ ≡ _ ^ _) (PE.sym rF≡rF₁) (PE.subst (λ l → (Γ ∙ F₁ ^ [ ! , ι lF₁ ] ) ⊢ G₁ ≡ E ^ [ rΠ , l ]) (PE.cong ι (PE.sym lG≡lG₁)) (PE.subst (λ l → (Γ ∙ F₁ ^ [ ! , l ] ) ⊢ G₁ ≡ E ^ [ rΠ , ι lG ]) (PE.cong ι (PE.sym lF≡lF₁)) (escapeEq [G]′ [G≡E]′)))))) injectivity′ {F₁} {G₁} {H} {E} {lF = lF₁} {rΠ = rΠ} {Γ = Γ} (noemb (Πᵣ % lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = let F≡F₁ , rF≡rF₁ , lF≡lF₁ , G≡G₁ , lG≡lG₁ , _ = Π-PE-injectivity (whnfRed* (red D) Πₙ) H≡F′ , rH≡rF′ , lH≡lF′ , E≡G′ , lE≡lG′ , _ = Π-PE-injectivity (whnfRed* D′ Πₙ) ⊢Γ = wf ⊢F [F]₁ = [F] id ⊢Γ [F]′ = irrelevance′ (PE.trans (wk-id _) (PE.sym F≡F₁)) [F]₁ [x∷F] = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here) (proof-irrelevance (var (⊢Γ ∙ ⊢F) here) (var (⊢Γ ∙ ⊢F) here)) [G]₁ = [G] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G]′ = PE.subst₂ (λ x y → _ ∙ y ^ _ ⊩⟨ _ ⟩ x ^ _) (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.sym F≡F₁) [G]₁ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]′ = irrelevanceEq″ (PE.trans (wk-id _) (PE.sym F≡F₁)) (PE.trans (wk-id _) (PE.sym H≡F′)) PE.refl PE.refl [F]₁ [F]′ [F≡H]₁ [G≡E]₁ = [G≡G′] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G≡E]′ = irrelevanceEqLift″ (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.trans (wkSingleSubstId _) (PE.sym E≡G′)) (PE.sym F≡F₁) [G]₁ [G]′ [G≡E]₁ in PE.subst (λ r → Γ ⊢ _ ≡ _ ^ [ r , ι lF₁ ] ) (PE.sym rF≡rF₁) (PE.subst (λ l → Γ ⊢ F₁ ≡ H ^ [ % , l ] ) (PE.cong ι (PE.sym lF≡lF₁)) (escapeEq [F]′ [F≡H]′)) , ( PE.trans rF≡rF₁ (PE.sym rH≡rF′) , ( PE.trans lF≡lF₁ (PE.sym lH≡lF′) , ( PE.trans lG≡lG₁ (PE.sym lE≡lG′) , PE.subst (λ r → (_ ∙ _ ^ [ r , _ ] ) ⊢ _ ≡ _ ^ _) (PE.sym rF≡rF₁) (PE.subst (λ l → (Γ ∙ F₁ ^ [ % , ι lF₁ ] ) ⊢ G₁ ≡ E ^ [ rΠ , l ]) (PE.cong ι (PE.sym lG≡lG₁)) (PE.subst (λ l → (Γ ∙ F₁ ^ [ % , l ] ) ⊢ G₁ ≡ E ^ [ rΠ , ι lG ]) (PE.cong ι (PE.sym lF≡lF₁)) (escapeEq [G]′ [G≡E]′)))))) injectivity′ (emb emb< x) [ΠFG≡ΠHE] = injectivity′ x [ΠFG≡ΠHE] injectivity′ (emb ∞< x) [ΠFG≡ΠHE] = injectivity′ x [ΠFG≡ΠHE] -- Injectivity of Π injectivity : ∀ {Γ F G H E rF lF lH lG lE rH rΠ lΠ} → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ≡ Π H ^ rH ° lH ▹ E ° lE ° lΠ ^ [ rΠ , ι lΠ ] → Γ ⊢ F ≡ H ^ [ rF , ι lF ] × rF PE.≡ rH × lF PE.≡ lH × lG PE.≡ lE × Γ ∙ F ^ [ rF , ι lF ] ⊢ G ≡ E ^ [ rΠ , ι lG ] injectivity ⊢ΠFG≡ΠHE = let [ΠFG] , _ , [ΠFG≡ΠHE] = reducibleEq ⊢ΠFG≡ΠHE in injectivity′ (Π-elim [ΠFG]) (irrelevanceEq [ΠFG] (Π-intr (Π-elim [ΠFG])) [ΠFG≡ΠHE]) Uinjectivity′ : ∀ {Γ r₁ r₂ l₁ l₂ lU l} ([U] : Γ ⊩⟨ l ⟩U Univ r₁ l₁ ^ lU) → Γ ⊩⟨ l ⟩ Univ r₁ l₁ ≡ Univ r₂ l₂ ^ [ ! , lU ] / U-intr [U] → r₁ PE.≡ r₂ × l₁ PE.≡ l₂ Uinjectivity′ (noemb (Uᵣ r l′ l< eq d)) D = let A , B = Univ-PE-injectivity (whnfRed* D Uₙ) A' , B' = Univ-PE-injectivity (whnfRed* (red d) Uₙ) in (PE.trans A' (PE.sym A)) , (PE.trans B' (PE.sym B)) Uinjectivity′ (emb emb< a) b = Uinjectivity′ a b Uinjectivity′ (emb ∞< a) b = Uinjectivity′ a b Uinjectivity : ∀ {Γ r₁ r₂ l₁ l₂ lU} → Γ ⊢ Univ r₁ l₁ ≡ Univ r₂ l₂ ^ [ ! , lU ] → r₁ PE.≡ r₂ × l₁ PE.≡ l₂ Uinjectivity ⊢U≡U = let [U] , _ , [U≡U] = reducibleEq ⊢U≡U in Uinjectivity′ (U-elim [U]) (irrelevanceEq [U] (U-intr (U-elim [U])) [U≡U]) -- injectivity of ∃ ∃injectivity′ : ∀ {F G H E Γ l∃ l} ([∃FG] : Γ ⊩⟨ l ⟩∃ ∃ F ▹ G ^ l∃ ) → Γ ⊩⟨ l ⟩ ∃ F ▹ G ≡ ∃ H ▹ E ^ [ % , ι l∃ ] / ∃-intr [∃FG] → Γ ⊢ F ≡ H ^ [ % , ι l∃ ] × Γ ∙ F ^ [ % , ι l∃ ] ⊢ G ≡ E ^ [ % , ι l∃ ] ∃injectivity′ {F₁} {G₁} {H} {E} {Γ = Γ} (noemb (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = let F≡F₁ , G≡G₁ = ∃-PE-injectivity (whnfRed* (red D) ∃ₙ) H≡F′ , E≡G′ = ∃-PE-injectivity (whnfRed* D′ ∃ₙ) ⊢Γ = wf ⊢F [F]₁ = [F] id ⊢Γ [F]′ = irrelevance′ (PE.trans (wk-id _) (PE.sym F≡F₁)) [F]₁ [x∷F] = neuTerm ([F] (step id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here) (proof-irrelevance (var (⊢Γ ∙ ⊢F) here) (var (⊢Γ ∙ ⊢F) here)) [G]₁ = [G] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G]′ = PE.subst₂ (λ x y → _ ∙ y ^ _ ⊩⟨ _ ⟩ x ^ _) (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.sym F≡F₁) [G]₁ [F≡H]₁ = [F≡F′] id ⊢Γ [F≡H]′ = irrelevanceEq″ (PE.trans (wk-id _) (PE.sym F≡F₁)) (PE.trans (wk-id _) (PE.sym H≡F′)) PE.refl PE.refl [F]₁ [F]′ [F≡H]₁ [G≡E]₁ = [G≡G′] (step id) (⊢Γ ∙ ⊢F) [x∷F] [G≡E]′ = irrelevanceEqLift″ (PE.trans (wkSingleSubstId _) (PE.sym G≡G₁)) (PE.trans (wkSingleSubstId _) (PE.sym E≡G′)) (PE.sym F≡F₁) [G]₁ [G]′ [G≡E]₁ in escapeEq [F]′ [F≡H]′ , escapeEq [G]′ [G≡E]′ ∃injectivity′ (emb emb< x) [∃FG≡∃HE] = ∃injectivity′ x [∃FG≡∃HE] ∃injectivity′ (emb ∞< x) [∃FG≡∃HE] = ∃injectivity′ x [∃FG≡∃HE] -- Injectivity of ∃ ∃injectivity : ∀ {Γ F G H E l∃} → Γ ⊢ ∃ F ▹ G ≡ ∃ H ▹ E ^ [ % , ι l∃ ] → Γ ⊢ F ≡ H ^ [ % , ι l∃ ] × Γ ∙ F ^ [ % , ι l∃ ] ⊢ G ≡ E ^ [ % , ι l∃ ] ∃injectivity ⊢∃FG≡∃HE = let [∃FG] , _ , [∃FG≡∃HE] = reducibleEq ⊢∃FG≡∃HE in ∃injectivity′ (∃-elim [∃FG]) (irrelevanceEq [∃FG] (∃-intr (∃-elim [∃FG])) [∃FG≡∃HE])
47.384615
140
0.437384
03cd4e63c3a51daac1a65f8ed6c305acf8dc2424
328
agda
Agda
test/Succeed/Issue26.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue26.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue26.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- There was a bug where f (suc n) didn't reduce for neutral n. module Issue26 where data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} f : Nat -> Nat f 0 = 0 f (suc n) = f n data _==_ {A : Set}(x : A) : A -> Set where refl : x == x lem : (n : Nat) -> f (suc n) == f n lem n = refl
16.4
63
0.536585
d13d7c7dc90158a38568a0580d31c881b32f3d28
1,988
agda
Agda
LibraBFT/Concrete/Properties/LockedRound.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/Properties/LockedRound.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Concrete/Properties/LockedRound.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Handle sha256 sha256-cr open import LibraBFT.Concrete.System.Parameters open EpochConfig open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK -- This module contains placeholders for the future analog of the -- corresponding VotesOnce property. Defining the implementation -- obligation and proving that it is an invariant of an implementation -- is a substantial undertaking. We are working first on proving the -- simpler VotesOnce property to settle down the structural aspects -- before tackling the harder semantic issues. module LibraBFT.Concrete.Properties.LockedRound where -- TODO-3: define the implementation obligation ImplObligation₁ : Set ImplObligation₁ = Unit -- Next, we prove that given the necessary obligations, module Proof (sps-corr : StepPeerState-AllValidParts) (Impl-LR1 : ImplObligation₁) where -- Any reachable state satisfies the LR rule for any epoch in the system. module _ {e}(st : SystemState e)(r : ReachableSystemState st)(eid : Fin e) where -- Bring in 'unwind', 'ext-unforgeability' and friends open Structural sps-corr -- Bring in IntSystemState open import LibraBFT.Concrete.System sps-corr open PerState st r open PerEpoch eid open import LibraBFT.Concrete.Obligations.LockedRound 𝓔 (ConcreteVoteEvidence 𝓔) as LR postulate -- TODO-3: prove it lrr : LR.Type IntSystemState
40.571429
111
0.774648
5e2c42c81e6630e2435112b024656fde68b4d76c
412
agda
Agda
archive/agda-3/src/Oscar/Class/IsEquivalence.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/IsEquivalence.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/IsEquivalence.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class.Reflexivity open import Oscar.Class.Symmetry open import Oscar.Class.Transitivity module Oscar.Class.IsEquivalence where record IsEquivalence {𝔬} {𝔒 : Ø 𝔬} {ℓ} (_≈_ : 𝔒 → 𝔒 → Ø ℓ) : Ø 𝔬 ∙̂ ℓ where constructor ∁ field ⦃ `𝓡eflexivity ⦄ : Reflexivity.class _≈_ ⦃ `𝓢ymmetry ⦄ : Symmetry.class _≈_ ⦃ `𝓣ransitivity ⦄ : Transitivity.class _≈_
22.888889
47
0.68932
52fb06fae80e92039df97af7fdbb93888573d42d
34,925
agda
Agda
progress.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
1
2019-12-19T23:42:31.000Z
2019-12-19T23:42:31.000Z
progress.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
progress.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import List open import contexts open import core open import lemmas-env open import lemmas-progress open import decidability open import results-checks -- TODO we're forced to prove this weaker version, since the strong version is -- unprovable. That said, this weak version is still disappointing, so we -- should come up with some more thoerems to shore up its deficiencies - -- in particular, we should do something to mitigate the fact that an e -- may succeed for every even n and fail for every odd n -- - also, that evaluation may return different results for different n -- TODO complete, then delete -- e => r → ∀{n} e [n]=> r -- something similar for =>∅ ? -- (Σ[r] (e => r) ∧ e => ∅) → ⊥ -- ∀{k} → Σ[r] (e [k]=> r) ∨ e [k]=> ∅ module progress where progress : ∀{Δ Σ' Γ E e τ n} → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ e :: τ → -- Either there's some properly-typed result that e will eval to ... Σ[ r ∈ result ] Σ[ k ∈ constraints ] ( (E ⊢ e ⌊ ⛽⟨ n ⟩ ⌋⇒ r ⊣ k) ∧ Δ , Σ' ⊢ r ·: τ) -- ... or evaluation will have a constraint failure ∨ E ⊢ e ⌊ ⛽⟨ n ⟩ ⌋⇒∅ xc-progress : ∀{Δ Σ' r1 r2 τ n} → Δ , Σ' ⊢ r1 ·: τ → Δ , Σ' ⊢ r2 ·: τ → Σ[ k ∈ constraints ] Constraints⦃ r1 , r2 ⦄⌊ ⛽⟨ n ⟩ ⌋:= k ∨ Constraints⦃ r1 , r2 ⦄⌊ ⛽⟨ n ⟩ ⌋:=∅ xb-progress : ∀{Δ Σ' r ex τ n} → Δ , Σ' ⊢ r ·: τ → Δ , Σ' ⊢ ex :· τ → Σ[ k ∈ constraints ] (r ⇐ ex ⌊ ⛽⟨ n ⟩ ⌋:= k) ∨ r ⇐ ex ⌊ ⛽⟨ n ⟩ ⌋:=∅ rule-fails : {n↓ : Nat} {E : env} {r : result} {ex : ex} → Set rule-fails {n↓} {E} {r} {ex} = Σ[ c-j ∈ Nat ] Σ[ x-j ∈ Nat ] Σ[ e-j ∈ exp ] ( r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ 1+ n↓ ⟩ ⌋:=∅ ∨ Σ[ k1 ∈ constraints ] ( r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ 1+ n↓ ⟩ ⌋:= k1 ∧ (E ,, (x-j , C⁻[ c-j ] r)) ⊢ e-j ⌊ ⛽⟨ n↓ ⟩ ⌋⇒∅) ∨ Σ[ k1 ∈ constraints ] Σ[ k2 ∈ constraints ] Σ[ r-j ∈ result ] ( r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ 1+ n↓ ⟩ ⌋:= k1 ∧ (E ,, (x-j , C⁻[ c-j ] r)) ⊢ e-j ⌊ ⛽⟨ n↓ ⟩ ⌋⇒ r-j ⊣ k2 ∧ r-j ⇐ ex ⌊ ⛽⟨ n↓ ⟩ ⌋:=∅)) lemma-xb-progress-case : ∀{Δ Σ' E r rules ex τ n n↓} → (n == 1+ n↓) → (len : Nat) → (unchecked : rule ctx) → len == ∥ unchecked ∥ → (failed : (rule-fails {n↓} {E} {r} {ex}) ctx) → (∀{c rule} → (c , rule) ∈ unchecked → (c , rule) ∈ rules) → (∀{c c-j x-j e-j p-j} → (c , c-j , x-j , e-j , p-j) ∈ failed → c == c-j ∧ (c , |C x-j => e-j) ∈ rules) → (∀{c} → dom rules c → dom unchecked c ∨ dom failed c) → Δ , Σ' ⊢ [ E ]case r of⦃· rules ·⦄ ·: τ → Δ , Σ' ⊢ ex :· τ → ex ≠ ¿¿ → Σ[ k ∈ constraints ] ([ E ]case r of⦃· rules ·⦄ ⇐ ex ⌊ ⛽⟨ n ⟩ ⌋:= k) ∨ [ E ]case r of⦃· rules ·⦄ ⇐ ex ⌊ ⛽⟨ n ⟩ ⌋:=∅ progress {n = Z} Γ⊢E ta = Inl (_ , _ , ELimit , π2 (typ-inhabitance-pres Γ⊢E ta)) progress {n = 1+ n} Γ⊢E ta'@(TAFix ta) = Inl (_ , _ , EFix , TAFix Γ⊢E ta') progress {n = 1+ n} Γ⊢E (TAVar x∈Γ) with env-all-Γ Γ⊢E x∈Γ ... | _ , x∈E , ta = Inl (_ , _ , EVar x∈E , ta) progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) with progress Γ⊢E ta-arg ... | Inr arg-fails = Inr (EFAppArg arg-fails) ... | Inl (rarg , _ , arg-evals , ta-rarg) with progress Γ⊢E ta-f ... | Inr f-fails = Inr (EFAppFun f-fails) progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ([ E' ]fix f ⦇·λ x => ef ·⦈ , _ , f-evals , ta'@(TAFix Γ'⊢E' (TAFix ta-ef))) with progress {n = n} (EnvInd (EnvInd Γ'⊢E' ta') ta-rarg) ta-ef ... | Inr ef-fails = Inr (EFAppFixEval CF⛽ refl f-evals arg-evals ef-fails) ... | Inl (ref , _ , ef-evals , ta-ref) = Inl (_ , _ , EAppFix CF⛽ refl f-evals arg-evals ef-evals , ta-ref) progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ([ E' ]??[ u ] , _ , f-evals , ta-rf) = Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg) progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ((rf-f ∘ rf-arg) , _ , f-evals , ta-rf) = Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg) progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl (fst _ , _ , f-evals , ta-rf) = Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg) progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl (snd _ , _ , f-evals , ta-rf) = Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg) progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ([ E' ]case rf of⦃· rules ·⦄ , _ , f-evals , ta-rf) = Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg) progress {n = 1+ n} Γ⊢E (TAApp _ ta-f ta-arg) | Inl (rarg , _ , arg-evals , ta-rarg) | Inl ((C⁻[ _ ] _) , _ , f-evals , ta-rf) = Inl (_ , _ , EAppUnfinished f-evals (λ ()) arg-evals , TAApp ta-rf ta-rarg) progress {n = 1+ n} Γ⊢E TAUnit = Inl (_ , _ , EUnit , TAUnit) progress {n = 1+ n} Γ⊢E (TAPair _ ta1 ta2) with progress Γ⊢E ta1 ... | Inr fails = Inr (EFPair1 fails) ... | Inl (_ , _ , evals1 , ta-r1) with progress Γ⊢E ta2 ... | Inr fails = Inr (EFPair2 fails) ... | Inl (_ , _ , evals2 , ta-r2) = Inl (_ , _ , EPair evals1 evals2 , TAPair ta-r1 ta-r2) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) with progress Γ⊢E ta ... | Inr fails = Inr (EFFst fails) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl (⟨ r1 , r2 ⟩ , _ , evals , TAPair ta-r1 ta-r2) = Inl (_ , _ , EFst evals , ta-r1) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ([ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ , _ , evals , TAFix _ ()) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ((C⁻[ x ] q) , _ , evals , ta-r) = Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ([ x ]??[ x₁ ] , _ , evals , ta-r) = Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ((q ∘ q₁) , _ , evals , ta-r) = Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl (fst q , _ , evals , ta-r) = Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl (snd q , _ , evals , ta-r) = Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TAFst ta) | Inl ([ x ]case q of⦃· x₁ ·⦄ , _ , evals , ta-r) = Inl (_ , _ , EFstUnfinished evals (λ ()) , TAFst ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) with progress Γ⊢E ta ... | Inr fails = Inr (EFSnd fails) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl (⟨ r1 , r2 ⟩ , _ , evals , TAPair ta-r1 ta-r2) = Inl (_ , _ , ESnd evals , ta-r2) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ([ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ , _ , evals , TAFix _ ()) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ((C⁻[ x ] q) , _ , evals , ta-r) = Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ([ x ]??[ x₁ ] , _ , evals , ta-r) = Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ((q ∘ q₁) , _ , evals , ta-r) = Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl (fst q , _ , evals , ta-r) = Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl (snd q , _ , evals , ta-r) = Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r) progress {Δ} {Σ'} {E = E} {τ = τ} {1+ n} Γ⊢E (TASnd ta) | Inl ([ x ]case q of⦃· x₁ ·⦄ , _ , evals , ta-r) = Inl (_ , _ , ESndUnfinished evals (λ ()) , TASnd ta-r) progress {n = 1+ n} Γ⊢E (TACtor d∈Σ' c∈d ta) with progress Γ⊢E ta ... | Inr e-fails = Inr (EFCtor e-fails) ... | Inl (_ , _ , e-evals , ta-r) = Inl (_ , _ , ECtor e-evals , TACtor d∈Σ' c∈d ta-r) progress {Σ' = Σ'} {n = 1+ n} Γ⊢E (TACase d∈σ' e-ta cctx⊆rules h-rules) with progress Γ⊢E e-ta ... | Inr e-fails = Inr (EFMatchScrut e-fails) ... | Inl ([ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ , _ , e-evals , TAFix _ ()) ... | Inl ([ x ]??[ x₁ ] , _ , e-evals , ta-re) = Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form → let _ , _ , _ , c∈cctx , ec-ta = h-rules form in _ , c∈cctx , ec-ta)) ... | Inl ((re ∘ re₁) , _ , e-evals , ta-re) = Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form → let _ , _ , _ , c∈cctx , ec-ta = h-rules form in _ , c∈cctx , ec-ta)) ... | Inl (fst _ , _ , e-evals , ta-re) = Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form → let _ , _ , _ , c∈cctx , ec-ta = h-rules form in _ , c∈cctx , ec-ta)) ... | Inl (snd _ , _ , e-evals , ta-re) = Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form → let _ , _ , _ , c∈cctx , ec-ta = h-rules form in _ , c∈cctx , ec-ta)) ... | Inl ([ x ]case re of⦃· x₁ ·⦄ , _ , e-evals , ta-re) = Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form → let _ , _ , _ , c∈cctx , ec-ta = h-rules form in _ , c∈cctx , ec-ta)) ... | Inl ((C⁻[ _ ] _) , _ , e-evals , ta-re) = Inl (_ , _ , EMatchUnfinished e-evals (λ ()) , TACase d∈σ' Γ⊢E ta-re cctx⊆rules (λ form → let _ , _ , _ , c∈cctx , ec-ta = h-rules form in _ , c∈cctx , ec-ta)) ... | Inl ((C[ c ] re) , _ , e-evals , TACtor d∈'σ' c∈cctx' ta-re) rewrite ctxunicity d∈'σ' d∈σ' with π2 (cctx⊆rules (_ , c∈cctx')) ... | form with h-rules form ... | _ , _ , _ , c∈cctx , ec-ta rewrite ctxunicity c∈cctx c∈cctx' with progress {n = n} (EnvInd Γ⊢E ta-re) ec-ta ... | Inr ec-fails = Inr (EFMatchRule CF⛽ form e-evals ec-fails) ... | Inl (_ , _ , ec-evals , ta-rec) = Inl (_ , _ , EMatch CF⛽ form e-evals ec-evals , ta-rec) progress {n = 1+ n} Γ⊢E (TAHole u∈Δ) = Inl (_ , _ , EHole , TAHole u∈Δ Γ⊢E) progress {n = 1+ n} Γ⊢E (TAAsrt _ ta1 ta2) with progress Γ⊢E ta1 ... | Inr e1-fails = Inr (EFAsrtL e1-fails) ... | Inl (r1 , _ , e1-evals , ta-r1) with progress Γ⊢E ta2 ... | Inr e2-fails = Inr (EFAsrtR e2-fails) ... | Inl (r2 , _ , e2-evals , ta-r2) with xc-progress ta-r1 ta-r2 ... | Inl (_ , c-succ) = Inl (_ , _ , EAsrt e1-evals e2-evals c-succ , TAUnit) ... | Inr c-fail = Inr (EFAsrt e1-evals e2-evals c-fail) lemma-xc-no-coerce : ∀{Δ Σ' r1 r2 τ n} → Δ , Σ' ⊢ r1 ·: τ → Δ , Σ' ⊢ r2 ·: τ → r1 ≠ r2 → (∀{ex} → Coerce r1 := ex → ⊥) → r1 ≠ ⟨⟩ → (∀{r'1 r'2} → r1 ≠ ⟨ r'1 , r'2 ⟩) → (∀{c r} → r1 ≠ (C[ c ] r)) → Σ[ k ∈ constraints ] Constraints⦃ r1 , r2 ⦄⌊ ⛽⟨ n ⟩ ⌋:= k ∨ Constraints⦃ r1 , r2 ⦄⌊ ⛽⟨ n ⟩ ⌋:=∅ lemma-xc-no-coerce ta1 (TAFix x x₁) r1≠r2 no-coerce not-unit not-pair not-ctor = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ()) lemma-xc-no-coerce ta1 (TAApp ta2 ta3) r1≠r2 no-coerce not-unit not-pair not-ctor = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ()) lemma-xc-no-coerce ta1 TAUnit r1≠r2 no-coerce not-unit not-pair not-ctor with xb-progress ta1 TAUnit ... | Inl (_ , xb) = Inl (_ , (XCBackProp1 r1≠r2 (Inl not-pair) (Inl not-ctor) CoerceUnit xb)) ... | Inr xb-fails = Inr (XCFXB1 r1≠r2 (Inl not-pair) (Inl not-ctor) CoerceUnit xb-fails) lemma-xc-no-coerce ta1 ta2@(TAPair _ _) r1≠r2 no-coerce not-unit not-pair not-ctor with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ {c-r2 → nc (_ , c-r2)}) ... | Inl (_ , c-r2) with xb-progress ta1 (Coerce-preservation ta2 c-r2) ... | Inr xb-fails = Inr (XCFXB1 r1≠r2 (Inl not-pair) (Inl not-ctor) c-r2 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp1 r1≠r2 (Inl not-pair) (Inl not-ctor) c-r2 xb)) lemma-xc-no-coerce ta1 (TAFst ta2) r1≠r2 no-coerce not-unit not-pair not-ctor = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ()) lemma-xc-no-coerce ta1 (TASnd ta2) r1≠r2 no-coerce not-unit not-pair not-ctor = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ()) lemma-xc-no-coerce ta1 ta2@(TACtor _ _ _) r1≠r2 no-coerce not-unit not-pair not-ctor with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ {c-r2 → nc (_ , c-r2)}) ... | Inl (_ , c-r2) with xb-progress ta1 (Coerce-preservation ta2 c-r2) ... | Inr xb-fails = Inr (XCFXB1 r1≠r2 (Inl not-pair) (Inl not-ctor) c-r2 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp1 r1≠r2 (Inl not-pair) (Inl not-ctor) c-r2 xb)) lemma-xc-no-coerce ta1 (TAUnwrapCtor x x₁ ta2) r1≠r2 no-coerce not-unit not-pair not-ctor = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ()) lemma-xc-no-coerce ta1 (TACase x x₁ ta2 x₂ x₃) r1≠r2 no-coerce not-unit not-pair not-ctor = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ()) lemma-xc-no-coerce ta1 (TAHole x x₁) r1≠r2 no-coerce not-unit not-pair not-ctor = Inr (XCFNoCoerce r1≠r2 (Inl not-pair) (Inl not-ctor) no-coerce λ ()) xc-progress {r1 = r1} {r2} ta1 ta2 with result-==-dec r1 r2 ... | Inl refl = Inl (_ , XCExRefl) xc-progress {r1 = _} {_} ta1@(TAFix x x₁) ta2 | Inr r1≠r2 = lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ () xc-progress {r1 = _} {_} ta1@(TAApp _ _) ta2 | Inr r1≠r2 = lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ () xc-progress {r1 = _} {_} TAUnit ta2 | Inr r1≠r2 with xb-progress ta2 TAUnit ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inl (λ ())) (Inl (λ ())) CoerceUnit xb)) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inl (λ ())) (Inl (λ ())) CoerceUnit xb-fails) xc-progress (TAPair ta1a ta1b) (TAPair ta2a ta2b) | Inr r1≠r2 with xc-progress ta1a ta2a ... | Inr xca-fails = Inr (XCFPair1 xca-fails) ... | Inl (_ , xca) with xc-progress ta1b ta2b ... | Inr xcb-fails = Inr (XCFPair2 xcb-fails) ... | Inl (_ , xcb) = Inl (_ , XCPair r1≠r2 xca xcb) xc-progress ta1@(TAPair _ _) ta2@(TAApp _ _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TAPair _ _) ta2@(TAFst _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TAPair _ _) ta2@(TASnd _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TAPair _ _) ta2@(TAUnwrapCtor _ _ _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TAPair _ _) ta2@(TACase _ _ _ _ _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TAPair _ _) ta2@(TAHole _ _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TAFst _) ta2 | Inr r1≠r2 = lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ () xc-progress {r1 = _} {_} ta1@(TASnd _) ta2 | Inr r1≠r2 = lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ () xc-progress (TACtor {c = c1} d∈σ1 c1∈cctx ta1) (TACtor {c = c2} d∈σ2 c2∈cctx ta2) | Inr r1≠r2 with natEQ c1 c2 ... | Inr ne = Inr (XCFCtorMM ne) ... | Inl refl rewrite ctxunicity d∈σ1 d∈σ2 | ctxunicity c1∈cctx c2∈cctx with xc-progress ta1 ta2 ... | Inr xc-fails = Inr (XCFCtor xc-fails) ... | Inl (_ , xc) = Inl (_ , XCCtor (λ where refl → r1≠r2 refl) xc) xc-progress ta1@(TACtor _ _ _) ta2@(TAApp _ _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TACtor _ _ _) ta2@(TAFst _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TACtor _ _ _) ta2@(TASnd _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TACtor _ _ _) ta2@(TAUnwrapCtor _ _ _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TACtor _ _ _) ta2@(TACase _ _ _ _ _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress ta1@(TACtor _ _ _) ta2@(TAHole _ _) | Inr r1≠r2 with Coerce-dec ... | Inr nc = Inr (XCFNoCoerce r1≠r2 (Inr (λ ())) (Inr (λ ())) (λ {c-r1 → nc (_ , c-r1)}) λ ()) ... | Inl (_ , c-r1) with xb-progress ta2 (Coerce-preservation ta1 c-r1) ... | Inr xb-fails = Inr (XCFXB2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb-fails) ... | Inl (_ , xb) = Inl (_ , (XCBackProp2 r1≠r2 (Inr (λ ())) (Inr (λ ())) c-r1 xb)) xc-progress {r1 = _} {_} ta1@(TAUnwrapCtor _ _ _) ta2 | Inr r1≠r2 = lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ () xc-progress {r1 = _} {_} ta1@(TACase _ _ _ _ _) ta2 | Inr r1≠r2 = lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ () xc-progress {r1 = _} {_} ta1@(TAHole _ _) ta2 | Inr r1≠r2 = lemma-xc-no-coerce ta1 ta2 r1≠r2 (λ ()) (λ ()) (λ ()) λ () xb-progress {n = Z} _ _ = Inl (_ , XBLimit) xb-progress {ex = ex} {n = 1+ n} ta-r ta-ex with ex-¿¿-dec {ex} ... | Inl refl = Inl (_ , XBNone) xb-progress {n = 1+ n} ta-f@(TAFix Γ⊢E (TAFix ta-e)) (TAMap _ ta-v ta-ex) | Inr ne with progress {n = n} (EnvInd (EnvInd Γ⊢E ta-f) ta-v) ta-e ... | Inr fails = Inr (XBFFixEval CF⛽ refl fails) ... | Inl (_ , _ , evals , ta) with xb-progress {n = n} ta ta-ex ... | Inr fails = Inr (XBFFix CF⛽ refl evals fails) ... | Inl (_ , xb) = Inl (_ , XBFix CF⛽ refl evals xb) xb-progress (TAFix x (TAFix _)) TADC | Inr ne = Inl (_ , XBNone) xb-progress (TAApp {arg = v} ta-rf ta-rarg) ta-ex | Inr ne with value-dec {v} ... | Inr nv = Inr (XBFAppNonVal ne nv) ... | Inl val with xb-progress ta-rf (TAMap val ta-rarg ta-ex) ... | Inr fails = Inr (XBFApp ne val fails) ... | Inl (_ , xb) = Inl (_ , XBApp ne val xb) xb-progress TAUnit TAUnit | Inr ne = Inl (_ , XBUnit) xb-progress TAUnit TADC | Inr ne = Inl (_ , XBNone) xb-progress (TAPair ta-r1 ta-r2) (TAPair ta-ex1 ta-ex2) | Inr ne with xb-progress ta-r1 ta-ex1 ... | Inr fails = Inr (XBFPair1 fails) ... | Inl (_ , xb1) with xb-progress ta-r2 ta-ex2 ... | Inr fails = Inr (XBFPair2 fails) ... | Inl (_ , xb2) = Inl (_ , XBPair xb1 xb2) xb-progress (TAPair ta-r1 ta-r2) TADC | Inr ne = Inl (_ , XBNone) xb-progress (TAFst ta-r) ta-ex | Inr ne with xb-progress ta-r (TAPair ta-ex TADC) ... | Inr fails = Inr (XBFFst ne fails) ... | Inl (_ , xb) = Inl (_ , XBFst ne xb) xb-progress (TASnd ta-r) ta-ex | Inr ne with xb-progress ta-r (TAPair TADC ta-ex) ... | Inr fails = Inr (XBFSnd ne fails) ... | Inl (_ , xb) = Inl (_ , XBSnd ne xb) xb-progress (TACtor {c = c1} h1a h1b ta-r) (TACtor {c = c2} h2a h2b ta-ex) | Inr ne with natEQ c1 c2 ... | Inr ne' = Inr (XBFCtorMM ne') ... | Inl refl rewrite ctxunicity h1a h2a | ctxunicity h1b h2b with xb-progress ta-r ta-ex ... | Inr fails = Inr (XBFCtor fails) ... | Inl (_ , xb) = Inl (_ , XBCtor xb) xb-progress (TACtor x x₁ ta-r) TADC | Inr ne = Inl (_ , XBNone) xb-progress (TAUnwrapCtor h1 h2 ta-r) ta-ex | Inr ne with xb-progress ta-r (TACtor h1 h2 ta-ex) ... | Inr fails = Inr (XBFUnwrapCtor ne fails) ... | Inl (_ , xb) = Inl (_ , XBUnwrapCtor ne xb) xb-progress {n = 1+ n} ta-C@(TACase {rules = rules} x x₁ ta-r x₂ x₃) ta-ex | Inr ne = lemma-xb-progress-case {n = 1+ n} {n} refl ∥ rules ∥ rules refl ∅ (λ y → y) (λ ()) Inl ta-C ta-ex ne xb-progress (TAHole x x₁) TAUnit | Inr ne = Inl (_ , XBHole ne λ ()) xb-progress (TAHole x x₁) (TAPair ta-ex ta-ex₁) | Inr ne = Inl (_ , XBHole ne λ ()) xb-progress (TAHole x x₁) (TACtor x₂ x₃ ta-ex) | Inr ne = Inl (_ , XBHole ne λ ()) xb-progress (TAHole x x₁) TADC | Inr ne = Inl (_ , XBNone) xb-progress (TAHole x x₁) (TAMap x₂ x₃ ta-ex) | Inr ne = Inr XBFHole lemma-xb-progress-case {E = E} {r} {rules} {ex} {n = n} {n↓} refl Z [] len-unchecked failed unchecked-wf failed-wf exh ta-C ta-ex n¿¿ = Inr (XBFMatch CF⛽ n¿¿ all-failed) where all-failed : ∀{c-j x-j : Nat} {e-j : exp} → (c-j , |C x-j => e-j) ∈ rules → r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ n ⟩ ⌋:=∅ ∨ Σ[ k1 ∈ constraints ] ( r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ n ⟩ ⌋:= k1 ∧ (E ,, (x-j , C⁻[ c-j ] r)) ⊢ e-j ⌊ ⛽⟨ n↓ ⟩ ⌋⇒∅) ∨ Σ[ k1 ∈ constraints ] Σ[ k2 ∈ constraints ] Σ[ r-j ∈ result ] ( r ⇐ C[ c-j ] ¿¿ ⌊ ⛽⟨ n ⟩ ⌋:= k1 ∧ (E ,, (x-j , C⁻[ c-j ] r)) ⊢ e-j ⌊ ⛽⟨ n↓ ⟩ ⌋⇒ r-j ⊣ k2 ∧ r-j ⇐ ex ⌊ ⛽⟨ n↓ ⟩ ⌋:=∅) all-failed c-j∈rules with exh (_ , c-j∈rules) ... | Inl (_ , ()) ... | Inr ((c-j , x-j , e-j , p-j) , c-j∈f) with failed-wf c-j∈f ... | refl , c-j∈'rules with ctxunicity c-j∈rules c-j∈'rules ... | refl = p-j lemma-xb-progress-case {n = 1+ n↓} {n↓} refl (1+ len) unchecked len-unchecked failed unchecked-wf failed-wf exh ta-C@(TACase {rules = rules} d∈σ' Γ⊢E ta-r _ ta-rules) ta-ex n¿¿ with ctx-elim {Γ = unchecked} ... | Inl refl = abort (0≠1+n (! len-unchecked)) ... | Inr (c , |C x-j => e-j , unchecked' , refl , c#unchecked') with unchecked-wf (x,a∈Γ,,x,a {Γ = unchecked'}) ... | c∈rules with ta-rules c∈rules ... | _ , c∈cctx , ta-be with xb-progress ta-r (TACtor d∈σ' c∈cctx TADC) ... | Inr fails = lemma-xb-progress-case refl len unchecked' (1+inj (len-unchecked · ctx-decreasing c#unchecked')) (failed ,, (c , fail)) unchecked-wf' failed-wf' exh' ta-C ta-ex n¿¿ where fail = c , x-j , e-j , (Inl fails) unchecked-wf' : ∀{c' rule'} → (c' , rule') ∈ unchecked' → (c' , rule') ∈ rules unchecked-wf' {c' = c'} c'∈uc' with natEQ c c' ... | Inl refl = abort (c#unchecked' (_ , c'∈uc')) ... | Inr cne = unchecked-wf (x∈Γ→x∈Γ+ (flip cne) c'∈uc') failed-wf' : ∀{c' c-j' x-j' e-j' p-j'} → (c' , c-j' , x-j' , e-j' , p-j') ∈ (failed ,, (c , fail)) → c' == c-j' ∧ ((c' , (|C x-j' => e-j')) ∈ rules) failed-wf' {c' = c'} {c-j'} c'∈f+ with natEQ c c' ... | Inr cne = failed-wf (x∈Γ+→x∈Γ (flip cne) c'∈f+) ... | Inl refl with ctxunicity c'∈f+ (x,a∈Γ,,x,a {Γ = failed}) ... | refl = refl , c∈rules exh' : ∀{c'} → dom rules c' → dom unchecked' c' ∨ dom (failed ,, (c , fail)) c' exh' {c' = c'} c'∈rules with natEQ c c' ... | Inl refl = Inr (_ , x,a∈Γ,,x,a {Γ = failed}) ... | Inr cne with exh c'∈rules ... | Inl (_ , c'∈uc) = Inl (_ , (x∈Γ+→x∈Γ (flip cne) c'∈uc)) ... | Inr (_ , c'∈f) = Inr (_ , x∈Γ→x∈Γ+ (flip cne) c'∈f) ... | Inl (_ , xb-r) with progress {n = n↓} (EnvInd Γ⊢E (TAUnwrapCtor d∈σ' c∈cctx ta-r)) ta-be ... | Inr fails = lemma-xb-progress-case refl len unchecked' (1+inj (len-unchecked · ctx-decreasing c#unchecked')) (failed ,, (c , fail)) unchecked-wf' failed-wf' exh' ta-C ta-ex n¿¿ where fail = c , x-j , e-j , (Inr (Inl (_ , xb-r , fails))) unchecked-wf' : ∀{c' rule'} → (c' , rule') ∈ unchecked' → (c' , rule') ∈ rules unchecked-wf' {c' = c'} c'∈uc' with natEQ c c' ... | Inl refl = abort (c#unchecked' (_ , c'∈uc')) ... | Inr cne = unchecked-wf (x∈Γ→x∈Γ+ (flip cne) c'∈uc') failed-wf' : ∀{c' c-j' x-j' e-j' p-j'} → (c' , c-j' , x-j' , e-j' , p-j') ∈ (failed ,, (c , fail)) → c' == c-j' ∧ ((c' , (|C x-j' => e-j')) ∈ rules) failed-wf' {c' = c'} {c-j'} c'∈f+ with natEQ c c' ... | Inr cne = failed-wf (x∈Γ+→x∈Γ (flip cne) c'∈f+) ... | Inl refl with ctxunicity c'∈f+ (x,a∈Γ,,x,a {Γ = failed}) ... | refl = refl , c∈rules exh' : ∀{c'} → dom rules c' → dom unchecked' c' ∨ dom (failed ,, (c , fail)) c' exh' {c' = c'} c'∈rules with natEQ c c' ... | Inl refl = Inr (_ , x,a∈Γ,,x,a {Γ = failed}) ... | Inr cne with exh c'∈rules ... | Inl (_ , c'∈uc) = Inl (_ , (x∈Γ+→x∈Γ (flip cne) c'∈uc)) ... | Inr (_ , c'∈f) = Inr (_ , x∈Γ→x∈Γ+ (flip cne) c'∈f) ... | Inl (_ , _ , evals , ta-br) with xb-progress {n = n↓} ta-br ta-ex ... | Inr fails = lemma-xb-progress-case refl len unchecked' (1+inj (len-unchecked · ctx-decreasing c#unchecked')) (failed ,, (c , fail)) unchecked-wf' failed-wf' exh' ta-C ta-ex n¿¿ where fail = c , x-j , e-j , (Inr (Inr (_ , _ , _ , xb-r , evals , fails))) unchecked-wf' : ∀{c' rule'} → (c' , rule') ∈ unchecked' → (c' , rule') ∈ rules unchecked-wf' {c' = c'} c'∈uc' with natEQ c c' ... | Inl refl = abort (c#unchecked' (_ , c'∈uc')) ... | Inr cne = unchecked-wf (x∈Γ→x∈Γ+ (flip cne) c'∈uc') failed-wf' : ∀{c' c-j' x-j' e-j' p-j'} → (c' , c-j' , x-j' , e-j' , p-j') ∈ (failed ,, (c , fail)) → c' == c-j' ∧ ((c' , (|C x-j' => e-j')) ∈ rules) failed-wf' {c' = c'} {c-j'} c'∈f+ with natEQ c c' ... | Inr cne = failed-wf (x∈Γ+→x∈Γ (flip cne) c'∈f+) ... | Inl refl with ctxunicity c'∈f+ (x,a∈Γ,,x,a {Γ = failed}) ... | refl = refl , c∈rules exh' : ∀{c'} → dom rules c' → dom unchecked' c' ∨ dom (failed ,, (c , fail)) c' exh' {c' = c'} c'∈rules with natEQ c c' ... | Inl refl = Inr (_ , x,a∈Γ,,x,a {Γ = failed}) ... | Inr cne with exh c'∈rules ... | Inl (_ , c'∈uc) = Inl (_ , (x∈Γ+→x∈Γ (flip cne) c'∈uc)) ... | Inr (_ , c'∈f) = Inr (_ , x∈Γ→x∈Γ+ (flip cne) c'∈f) ... | Inl (_ , xb) = Inl (_ , (XBMatch CF⛽ n¿¿ c∈rules xb-r evals xb)) {- TODO delete - this strong version is unprovable module progress where progress : ∀{Δ Σ' Γ E e τ} → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ e :: τ → -- Either there's some properly-typed result that e will eval to -- for any beta reduction limit ... Σ[ r ∈ result ] ( Δ , Σ' ⊢ r ·: τ ∧ ∀{n} → Σ[ k ∈ constraints ] (E ⊢ e ⌊ ⛽⟨ n ⟩ ⌋⇒ r ⊣ k)) ∨ -- ... or evaluation will have a constraint failure for any -- beta reduction limit (∀{n} → E ⊢ e ⌊ ⛽⟨ n ⟩ ⌋⇒∅) progress Γ⊢E ta'@(TALam _ ta) = Inl (_ , TALam Γ⊢E ta' , (_ , EFun)) progress Γ⊢E ta'@(TAFix _ _ ta) = Inl (_ , TAFix Γ⊢E ta' , (_ , EFix)) progress Γ⊢E (TAVar x∈Γ) with env-all-Γ Γ⊢E x∈Γ ... | _ , x∈E , ta = Inl (_ , ta , (_ , EVar x∈E)) progress Γ⊢E (TAApp _ ta-f ta-arg) with progress Γ⊢E ta-arg ... | Inr arg-fails = Inr (EFAppArg arg-fails) ... | Inl (_ , ta-rarg , arg-evals) with progress Γ⊢E ta-f ... | Inr f-fails = Inr (EFAppFun f-fails) progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl (([ E' ]λ x => ef) , TALam Γ'⊢E' (TALam x#Γ' ta-ef) , f-evals) with progress (EnvInd Γ'⊢E' ta-rarg) ta-ef ... | q = {!!} progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ([ E' ]fix f ⦇·λ x => ef ·⦈ , ta-rf , f-evals) = {!!} progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ([ x ]??[ x₁ ] , ta-rf , f-evals) = {!!} progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ((rf ∘ rf₁) , ta-rf , f-evals) = {!!} progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ((get[ x th-of x₁ ] rf) , ta-rf , f-evals) = {!!} progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl ([ x ]case rf of⦃· x₁ ·⦄ , ta-rf , f-evals) = {!!} progress Γ⊢E (TAApp _ ta-f ta-arg) | Inl (_ , ta-rarg , arg-evals) | Inl (PF x , ta-rf , f-evals) = {!!} progress Γ⊢E (TATpl ∥es∥==∥τs∥ _ tas) = {!!} progress {Δ} {Σ'} {E = E} {τ = τ} Γ⊢E (TAGet {i = i} {len} {e} len==∥τs∥ i<∥τs∥ ta) with progress Γ⊢E ta ... | Inr e-fails = Inr (EFGet e-fails) ... | Inl (⟨ rs ⟩ , TATpl ∥rs∥==∥τs∥ tas , e-evals) = let i<∥rs∥ = tr (λ y → i < y) (! ∥rs∥==∥τs∥) i<∥τs∥ in Inl (_ , tas i<∥rs∥ i<∥τs∥ , _ , EGet (len==∥τs∥ · ! ∥rs∥==∥τs∥) i<∥rs∥ (π2 e-evals)) ... | Inl (([ x ]λ x₁ => x₂) , TALam _ () , e-evals) ... | Inl ([ x ]fix x₁ ⦇·λ x₂ => x₃ ·⦈ , TAFix _ () , e-evals) ... | Inl ([ x ]??[ x₁ ] , ta-r , e-evals) rewrite len==∥τs∥ = Inl (_ , TAGet i<∥τs∥ ta-r , _ , EGetUnfinished (π2 e-evals) λ ()) ... | Inl ((r ∘ r₁) , ta-r , e-evals) rewrite len==∥τs∥ = Inl (_ , TAGet i<∥τs∥ ta-r , _ , EGetUnfinished (π2 e-evals) λ ()) ... | Inl ((get[ x th-of x₁ ] r) , ta-r , e-evals) rewrite len==∥τs∥ = Inl (_ , TAGet i<∥τs∥ ta-r , _ , EGetUnfinished (π2 e-evals) λ ()) ... | Inl ([ x ]case r of⦃· x₁ ·⦄ , ta-r , e-evals) rewrite len==∥τs∥ = Inl (_ , TAGet i<∥τs∥ ta-r , _ , EGetUnfinished (π2 e-evals) λ ()) ... | Inl (PF x , TAPF () , e-evals) progress Γ⊢E (TACtor d∈Σ' c∈d ta) with progress Γ⊢E ta ... | Inl (_ , ta-r , e-evals) = Inl (_ , TACtor d∈Σ' c∈d ta-r , _ , ECtor (π2 e-evals)) ... | Inr e-fails = Inr (EFCtor e-fails) progress Γ⊢E (TACase x ta x₁ x₂) = {!!} progress Γ⊢E (TAHole u∈Δ) = Inl (_ , TAHole u∈Δ Γ⊢E , (_ , EHole)) progress Γ⊢E (TAPF ta) = Inl (_ , TAPF ta , (_ , EPF)) progress Γ⊢E (TAAsrt x ta ta₁) = {!!} -}
56.696429
178
0.478712
0425308326011f57c57df965c1c81f52baa4c101
12,284
agda
Agda
homotopy/JoinAssocCubical.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/JoinAssocCubical.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/JoinAssocCubical.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT {- A proof that (A * B) * C ≃ (C * B) * A, which combined with commutativity - proves associativity. - - Agda has a hard time compiling this but sometimes it succeeds. -} module homotopy.JoinAssocCubical where {- Square and cube lemmas. Some of these are probably generally useful -} private app=cst-square : ∀ {i j} {A : Type i} {B : Type j} {b : B} {f : A → B} (p : ∀ a → f a == b) {a₁ a₂ : A} (q : a₁ == a₂) → Square (p a₁) (ap f q) idp (p a₂) app=cst-square p idp = hid-square app=cst-square= : ∀ {i j} {A : Type i} {B : Type j} {b : B} {f : A → B} {p₁ p₂ : ∀ a → f a == b} (α : ∀ a → p₁ a == p₂ a) {a₁ a₂ : A} (q : a₁ == a₂) → Cube (app=cst-square p₁ q) (app=cst-square p₂ q) (horiz-degen-square $ α a₁) hid-square hid-square (horiz-degen-square $ α a₂) app=cst-square= α idp = y-degen-cube idp app=cst-square-β : ∀ {i j} {A : Type i} {B : Type j} {b : B} {f : A → B} (g : (a : A) → f a == b) {x y : A} (p : x == y) {sq : Square (g x) (ap f p) idp (g y)} → apd g p == ↓-app=cst-from-square sq → app=cst-square g p == sq app=cst-square-β g idp α = ! horiz-degen-square-idp ∙ ap horiz-degen-square α ∙ horiz-degen-square-β _ ap-∘-app=cst-square : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {b : B} {f : A → B} (h : B → C) (g : (a : A) → f a == b) {x y : A} (p : x == y) → Cube (app=cst-square (ap h ∘ g) p) (ap-square h (app=cst-square g p)) hid-square (horiz-degen-square $ ap-∘ h f p) ids hid-square ap-∘-app=cst-square h g idp = cube-shift-right (! ap-square-hid) $ cube-shift-top (! horiz-degen-square-idp) $ x-degen-cube idp cube-to-↓-rtriangle : ∀ {i j} {A : Type i} {B : Type j} {b₀ b₁ : A → B} {b : B} {p₀₁ : (a : A) → b₀ a == b₁ a} {p₀ : (a : A) → b₀ a == b} {p₁ : (a : A) → b₁ a == b} {x y : A} {q : x == y} {sqx : Square (p₀₁ x) (p₀ x) (p₁ x) idp} {sqy : Square (p₀₁ y) (p₀ y) (p₁ y) idp} → Cube sqx sqy (natural-square p₀₁ q) (app=cst-square p₀ q) (app=cst-square p₁ q) ids → sqx == sqy [ (λ z → Square (p₀₁ z) (p₀ z) (p₁ z) idp) ↓ q ] cube-to-↓-rtriangle {q = idp} cu = x-degen-cube-out cu {- approximately, [massage] describes the action of - [switch : (A * B) * C → (C * B) * A] on the level of squares -} private massage : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square (! p₀₋) (p₋₁ ∙ ! p₁₋) idp (! p₋₀) massage ids = ids massage-massage : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₀₁} (sq : Square p₀₋ p₋₀ idp p₁₋) → Cube (massage (massage sq)) sq (horiz-degen-square (!-! p₀₋)) (horiz-degen-square (!-! p₋₀)) ids (horiz-degen-square (!-! p₁₋)) massage-massage = square-bot-J (λ sq → Cube (massage (massage sq)) sq (horiz-degen-square (!-! _)) (horiz-degen-square (!-! _)) ids (horiz-degen-square (!-! _))) idc ap-square-massage : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀₀ a₀₁ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₀₁} (sq : Square p₀₋ p₋₀ idp p₁₋) → Cube (ap-square f (massage sq)) (massage (ap-square f sq)) (horiz-degen-square (ap-! f p₀₋)) (horiz-degen-square (ap-! f p₁₋)) ids (horiz-degen-square (ap-! f p₋₀)) ap-square-massage f = square-bot-J (λ sq → Cube (ap-square f (massage sq)) (massage (ap-square f sq)) (horiz-degen-square (ap-! f _)) (horiz-degen-square (ap-! f _)) ids (horiz-degen-square (ap-! f _))) idc massage-cube : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube (massage sq₋₋₀) (massage sq₋₋₁) (!□v sq₀₋₋) (sq₋₁₋ ⊡v !□v sq₁₋₋) vid-square (!□v sq₋₀₋) massage-cube idc = idc private module _ {i j k} {A : Type i} {B : Type j} {C : Type k} where {- Define an involutive map [switch] -} module SwitchLeft = PushoutRec {d = *-span A B} {D = (C * B) * A} (λ a → right a) (λ b → left (right b)) (λ {(a , b) → ! (glue (right b , a))}) switch-coh-fill : (a : A) (b : B) (c : C) → Σ (Square (! (glue (left c , a))) (ap SwitchLeft.f (glue (a , b))) idp (! (ap left (glue (c , b))))) (λ sq → Cube sq (massage $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) hid-square (horiz-degen-square (SwitchLeft.glue-β (a , b))) ids hid-square) switch-coh-fill a b c = fill-cube-left _ _ _ _ _ module SwitchCoh (c : C) = PushoutElim {d = *-span A B} {P = λ k → SwitchLeft.f k == left (left c)} (λ a → ! (glue (left c , a))) (λ b → ! (ap left (glue (c , b)))) (↓-app=cst-from-square ∘ λ {(a , b) → fst (switch-coh-fill a b c)}) module Switch = PushoutRec {d = *-span (A * B) C} {D = (C * B) * A} SwitchLeft.f (λ c → left (left c)) (λ {(k , c) → SwitchCoh.f c k}) switch = Switch.f module _ {i j k} {A : Type i} {B : Type j} {C : Type k} where {- Proof that [switch] is involutive. There are three squares involved: - one indexed by A × B, one indexed by A × C, and one by B × C. - These are related by a cube indexed by A × B × C. - We get the squares for free by defining the cube, as long as - we make sure the right faces are dependent on the right types. -} {- Three big square terms follow; unfortunately Agda can't figure out - what these have to be on its own. Don't worry about the defns. -} switch-inv-left-square : (a : A) (b : B) → Square idp (ap (switch {A = C} ∘ SwitchLeft.f) (glue (a , b))) (ap left (glue (a , b))) idp switch-inv-left-square a b = square-symmetry $ (horiz-degen-square (ap-∘ switch SwitchLeft.f (glue (a , b)))) ⊡h ap-square switch (horiz-degen-square (SwitchLeft.glue-β (a , b))) ⊡h horiz-degen-square (ap-! switch (glue (right b , a))) ⊡h !□v (!□h hid-square) ⊡h !□v (horiz-degen-square (Switch.glue-β (right b , a))) ⊡h !□v hid-square ⊡h horiz-degen-square (!-! _) switch-inv-coh-left : (c : C) (a : A) → Square idp (ap (switch {B = B}) (SwitchCoh.f c (left a))) (glue (left a , c)) idp switch-inv-coh-left c a = square-symmetry $ hid-square ⊡h ap-square switch hid-square ⊡h horiz-degen-square (ap-! switch (glue (left c , a))) ⊡h !□v (!□h hid-square) ⊡h !□v (horiz-degen-square (Switch.glue-β (left c , a))) ⊡h !□v hid-square ⊡h horiz-degen-square (!-! _) switch-inv-coh-right : (c : C) (b : B) → Square idp (ap (switch {C = A}) (SwitchCoh.f c (right b))) (glue (right b , c)) idp switch-inv-coh-right c b = square-symmetry $ hid-square ⊡h ap-square switch hid-square ⊡h horiz-degen-square (ap-! switch (ap left (glue (c , b)))) ⊡h !□v (!□h (horiz-degen-square (ap-∘ switch left (glue (c , b))))) ⊡h !□v hid-square ⊡h !□v (horiz-degen-square (SwitchLeft.glue-β (c , b))) ⊡h horiz-degen-square (!-! _) module SwitchInvLeft = PushoutElim {d = *-span A B} {P = λ k → switch {A = C} (switch (left k)) == left k} (λ a → idp) (λ b → idp) (↓-='-from-square ∘ uncurry switch-inv-left-square) {- In very small steps, build up the cube -} module Coh (a : A) (b : B) (c : C) where step₁ : Cube (app=cst-square (ap switch ∘ SwitchCoh.f c) (glue (a , b))) (ap-square switch (app=cst-square (SwitchCoh.f c) (glue (a , b)))) _ _ _ _ step₁ = ap-∘-app=cst-square switch (SwitchCoh.f c) (glue (a , b)) step₂ : Cube (ap-square switch (app=cst-square (SwitchCoh.f c) (glue (a , b)))) (ap-square switch $ massage $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) _ _ _ _ step₂ = cube-shift-left (! (ap (ap-square switch) (app=cst-square-β (SwitchCoh.f c) (glue (a , b)) (SwitchCoh.glue-β c (a , b))))) (ap-cube switch (snd (switch-coh-fill a b c))) step₃ : Cube (ap-square switch $ massage $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) (massage $ ap-square switch $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) _ _ _ _ step₃ = ap-square-massage switch (app=cst-square (λ j → glue (j , a)) (glue (c , b))) step₄ : Cube (massage $ ap-square switch $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) (massage $ app=cst-square (λ j → ap switch (glue (j , a))) (glue (c , b))) _ _ _ _ step₄ = massage-cube $ cube-!-x $ ap-∘-app=cst-square switch (λ j → glue (j , a)) (glue (c , b)) step₅ : Cube (massage $ app=cst-square (λ j → ap switch (glue (j , a))) (glue (c , b))) (massage $ app=cst-square (SwitchCoh.f a) (glue (c , b))) _ _ _ _ step₅ = massage-cube $ app=cst-square= (λ j → Switch.glue-β (j , a)) (glue (c , b)) step₆ : Cube (massage $ app=cst-square (SwitchCoh.f a) (glue (c , b))) (massage $ massage $ app=cst-square (λ k → glue (k , c)) (glue (a , b))) _ _ _ _ step₆ = massage-cube $ cube-shift-left (! (app=cst-square-β (SwitchCoh.f a) (glue (c , b)) (SwitchCoh.glue-β a (c , b)))) (snd (switch-coh-fill c b a)) step₇ : Cube (massage $ massage $ app=cst-square (λ k → glue {d = *-span (A * B) C} (k , c)) (glue (a , b))) (app=cst-square (λ k → glue (k , c)) (glue (a , b))) _ _ _ _ step₇ = massage-massage _ switch-inv-cube : Cube (switch-inv-coh-left c a) (switch-inv-coh-right c b) (switch-inv-left-square a b) (app=cst-square (ap switch ∘ SwitchCoh.f c) (glue (a , b))) (app=cst-square (λ k → glue (k , c)) (glue (a , b))) ids switch-inv-cube = cube-rotate-x→z $ step₁ ∙³x step₂ ∙³x step₃ ∙³x step₄ ∙³x step₅ ∙³x step₆ ∙³x step₇ module SwitchInvCoh (c : C) = PushoutElim {d = *-span A B} {P = λ k → Square (SwitchInvLeft.f k) (ap switch (SwitchCoh.f c k)) (glue (k , c)) idp} (switch-inv-coh-left c) (switch-inv-coh-right c) (cube-to-↓-rtriangle ∘ λ {(a , b) → cube-shift-back (! (natural-square-β SwitchInvLeft.f (glue (a , b)) (SwitchInvLeft.glue-β (a , b)))) (Coh.switch-inv-cube a b c)}) abstract switch-inv : (l : (A * B) * C) → switch (switch l) == l switch-inv = Pushout-elim SwitchInvLeft.f (λ c → idp) (↓-∘=idf-from-square switch switch ∘ λ {(k , c) → ap (ap switch) (Switch.glue-β (k , c)) ∙v⊡ SwitchInvCoh.f c k}) module _ {i j k} {A : Type i} {B : Type j} {C : Type k} where join-rearrange-equiv : (A * B) * C ≃ (C * B) * A join-rearrange-equiv = equiv switch switch switch-inv switch-inv join-rearrange-path : (A * B) * C == (C * B) * A join-rearrange-path = ua join-rearrange-equiv module _ {i j k} (X : Ptd i) (Y : Ptd j) (Z : Ptd k) where join-rearrange-⊙path : (X ⊙* Y) ⊙* Z == (Z ⊙* Y) ⊙* X join-rearrange-⊙path = ⊙ua join-rearrange-equiv (! (glue (left (snd Z), snd X)))
38.628931
79
0.503582
520acc88c581f4874f9233e6bd2b65d3f09f8eed
945
agda
Agda
src/API/Theorems.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
src/API/Theorems.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
src/API/Theorems.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
module API.Theorems where open import Algebra open import Algebra.Theorems open import API open import Prelude open import Reasoning -- vertices [x] == vertex x vertices-vertex : ∀ {A} {x : A} -> vertices [ x ] ≡ vertex x vertices-vertex = +identity >> reflexivity -- edge x y == clique [x, y] edge-clique : ∀ {A} {x y : A} -> edge x y ≡ clique (x :: [ y ]) edge-clique = symmetry (R *right-identity) -- vertices xs ⊆ clique xs vertices-clique : ∀ {A} {xs : List A} -> vertices xs ⊆ clique xs vertices-clique {_} {[]} = ⊆reflexivity vertices-clique {a} {_ :: t} = ⊆transitivity (⊆right-monotony (vertices-clique {a} {t})) ⊆connect -- clique (xs ++ ys) == connect (clique xs) (clique ys) connect-clique : ∀ {A} {xs ys : List A} -> clique (xs ++ ys) ≡ connect (clique xs) (clique ys) connect-clique {_} {[]} = symmetry *left-identity connect-clique {a} {_ :: t} = R (connect-clique {a} {t}) >> *associativity
36.346154
98
0.620106
19a91cb4927c49ec13974e9811c9a1fec42c3987
2,748
agda
Agda
Categories/Categories.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Categories.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Categories.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.Categories where open import Level open import Categories.Category open import Categories.Functor Categories : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) Categories o ℓ e = record { Obj = Category o ℓ e ; _⇒_ = Functor ; _≡_ = _≡_ ; _∘_ = _∘_ ; id = id ; assoc = λ {_} {_} {_} {_} {F} {G} {H} → assoc {F = F} {G} {H} ; identityˡ = λ {_} {_} {F} → identityˡ {F = F} ; identityʳ = λ {_} {_} {F} → identityʳ {F = F} ; equiv = λ {X} {Y} → equiv {C = X} {D = Y} ; ∘-resp-≡ = λ {_} {_} {_} {f} {h} {g} {i} → ∘-resp-≡ {F = f} {h} {g} {i} } {- module Agda where open import Category.Agda open import Category.Discrete D : ∀ o → Functor (Agda o) (Categories o o zero) D o = record { F₀ = Discrete ; F₁ = λ f → record { F₀ = λ x → f x ; F₁ = ≣-cong f ; identity = tt ; homomorphism = tt ; F-resp-≡ = λ _ → tt } ; identity = λ _ → refl tt ; homomorphism = λ _ → refl tt ; F-resp-≡ = F-resp-≡′ } where F-resp-≡′ : {A B : Set o} {F G : A → B} → (∀ x → F x ≣ G x) → ∀ {X Y : A} (f : X ≣ Y) → [ Discrete B ] ≣-cong F f ∼ ≣-cong G f F-resp-≡′ {A} {B} {F} {G} f {x} ≣-refl = helper {F = F} {G} (f x) where helper : {F G : A → B} → {p q : B} → p ≣ q → [ Discrete B ] ≣-refl {x = p} ∼ ≣-refl {x = q} helper ≣-refl = refl tt Ob : ∀ o → Functor (Categories o o zero) (Agda o) Ob o = record { F₀ = Category.Obj ; F₁ = Functor.F₀ ; identity = λ _ → ≣-refl ; homomorphism = λ _ → ≣-refl ; F-resp-≡ = λ {_} {_} {F} {G} → F-resp-≡′ {F = F} {G} } where F-resp-≡′ : {A B : Category o o zero} {F G : Functor A B} → ({X Y : Category.Obj A} (f : Category.Hom A X Y) → [ B ] Functor.F₁ F f ∼ Functor.F₁ G f) → ((x : Category.Obj A) → Functor.F₀ F x ≣ Functor.F₀ G x) F-resp-≡′ {A} {B} {F} {G} F∼G x = helper (F∼G (Category.id A {x})) where helper : ∀ {X Y} {p : Category.Hom B X X} {q : Category.Hom B Y Y} → [ B ] p ∼ q → X ≣ Y helper (refl q) = ≣-refl open import Category.Adjunction D⊣Ob : ∀ o → Adjunction (D o) (Ob o) D⊣Ob o = record { unit = record { η = λ _ x → x ; commute = λ _ _ → ≣-refl } ; counit = record { η = λ X → record { F₀ = λ x → x ; F₁ = counit-id′ {X} ; identity = IsEquivalence.refl (Category.equiv X) ; homomorphism = {!!} ; F-resp-≡ = {!!} } ; commute = {!!} } ; zig = {!!} ; zag = λ _ → ≣-refl } where counit-id′ : {X : Category o o zero} → {A B : Category.Obj X} → A ≣ B → Category.Hom X A B counit-id′ {X} ≣-refl = Category.id X -}
30.533333
130
0.467249
30d715821f429608ac859b8acb6d3f5c50f127b0
6,397
agda
Agda
src/Automata/Composition/Union.agda
armkeh/agda-computability
f6a6845a54aed7ecc6841ff5ad89643b553cbd77
[ "MIT" ]
null
null
null
src/Automata/Composition/Union.agda
armkeh/agda-computability
f6a6845a54aed7ecc6841ff5ad89643b553cbd77
[ "MIT" ]
null
null
null
src/Automata/Composition/Union.agda
armkeh/agda-computability
f6a6845a54aed7ecc6841ff5ad89643b553cbd77
[ "MIT" ]
null
null
null
module Automata.Composition.Union (Σ : Set) where -- Standard libraries imports ---------------------------------------- open import Data.Empty using (⊥ ; ⊥-elim) open import Data.Nat using (ℕ) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Product using (_,_) open import Data.Vec using (Vec ; [] ; _∷_) open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) ---------------------------------------------------------------------- -- Thesis imports ---------------------------------------------------- open import Automata.Nondeterministic ---------------------------------------------------------------------- _∪_ : (M : NDA Σ) → (N : NDA Σ) → NDA Σ ⟨ Q₁ , S₁ , F₁ , Δ₁ ⟩ ∪ ⟨ Q₂ , S₂ , F₂ , Δ₂ ⟩ = ⟨ Q , S , F , Δ ⟩ where Q : Set _ Q = Q₁ ⊎ Q₂ S : Q → Set _ S (inj₁ q) = S₁ q S (inj₂ q) = S₂ q F : Q → Set F (inj₁ q) = F₁ q F (inj₂ q) = F₂ q Δ : Q → Σ → Q → Set Δ (inj₁ q) c (inj₁ q′) = Δ₁ q c q′ Δ (inj₂ q) c (inj₂ q′) = Δ₂ q c q′ {-# CATCHALL #-} Δ _ _ _ = ⊥ -- No connections between the machines M-Δ*⇒M∪N-Δ* : {M N : NDA Σ} → let Q₁ = NDA.Q M Δ₁* = NDA.Δ* M Δ* = NDA.Δ* (M ∪ N) in (q : Q₁) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₁) → Δ₁* q xs q′ → Δ* (inj₁ q) xs (inj₁ q′) M-Δ*⇒M∪N-Δ* q [] .q refl = refl M-Δ*⇒M∪N-Δ* q (x ∷ xs) q′ (q₀ , Δ₁-q-x-q₀ , Δ₁*-q₀-xs-q′) = inj₁ q₀ , Δ₁-q-x-q₀ , M-Δ*⇒M∪N-Δ* q₀ xs q′ Δ₁*-q₀-xs-q′ N-Δ*⇒M∪N-Δ* : {M N : NDA Σ} → let Q₂ = NDA.Q N Δ₂* = NDA.Δ* N Δ* = NDA.Δ* (M ∪ N) in (q : Q₂) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₂) → Δ₂* q xs q′ → Δ* (inj₂ q) xs (inj₂ q′) N-Δ*⇒M∪N-Δ* q [] .q refl = refl N-Δ*⇒M∪N-Δ* q (x ∷ xs) q′ (q₀ , Δ₂-q-x-q₀ , Δ₂*-q₀-xs-q′) = inj₂ q₀ , Δ₂-q-x-q₀ , N-Δ*⇒M∪N-Δ* q₀ xs q′ Δ₂*-q₀-xs-q′ M∪N-Δ*⇒M-Δ* : {M N : NDA Σ} → let Q₁ = NDA.Q M Δ₁* = NDA.Δ* M Δ* = NDA.Δ* (M ∪ N) in (q : Q₁) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₁) → Δ* (inj₁ q) xs (inj₁ q′) → Δ₁* q xs q′ M∪N-Δ*⇒M-Δ* q [] .q refl = refl M∪N-Δ*⇒M-Δ* q (x ∷ xs) q′ (inj₁ q₀ , Δ-q-x-q₀ , Δ*-q₀-xs-q′) = q₀ , Δ-q-x-q₀ , M∪N-Δ*⇒M-Δ* q₀ xs q′ Δ*-q₀-xs-q′ M∪N-Δ*⇒N-Δ* : {M N : NDA Σ} → let Q₂ = NDA.Q N Δ₂* = NDA.Δ* N Δ* = NDA.Δ* (M ∪ N) in (q : Q₂) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₂) → Δ* (inj₂ q) xs (inj₂ q′) → Δ₂* q xs q′ M∪N-Δ*⇒N-Δ* q [] .q refl = refl M∪N-Δ*⇒N-Δ* q (x ∷ xs) q′ (inj₂ q₀ , Δ-q-x-q₀ , Δ*-q₀-xs-q′) = q₀ , Δ-q-x-q₀ , M∪N-Δ*⇒N-Δ* q₀ xs q′ Δ*-q₀-xs-q′ M∪N-Δ*-disconnectedˡ : {M N : NDA Σ} → let Q₁ = NDA.Q M Q₂ = NDA.Q N Δ* = NDA.Δ* (M ∪ N) in (q : Q₁) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₂) → ¬ (Δ* (inj₁ q) xs (inj₂ q′)) M∪N-Δ*-disconnectedˡ q (x ∷ xs) q′ (inj₁ q₀ , _ , Δ*-q₀-xs-q′) = M∪N-Δ*-disconnectedˡ q₀ xs q′ Δ*-q₀-xs-q′ M∪N-Δ*-disconnectedʳ : {M N : NDA Σ} → let Q₁ = NDA.Q M Q₂ = NDA.Q N Δ* = NDA.Δ* (M ∪ N) in (q : Q₂) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₁) → ¬ (Δ* (inj₂ q) xs (inj₁ q′)) M∪N-Δ*-disconnectedʳ q (x ∷ xs) q′ (inj₂ q₀ , _ , Δ*-q₀-xs-q′) = M∪N-Δ*-disconnectedʳ q₀ xs q′ Δ*-q₀-xs-q′ M-Accepts⇒M∪N-Accepts : {M N : NDA Σ} → {n : ℕ} → (xs : Vec Σ n) → NDA.Accepts M xs → NDA.Accepts (M ∪ N) xs M-Accepts⇒M∪N-Accepts [] (q , S-q , .q , F-q , refl) = inj₁ q , S-q , inj₁ q , F-q , refl M-Accepts⇒M∪N-Accepts (x ∷ xs) ( q , S-q -- The beginning state , q′ , F-q′ -- The ending state , q₀ , Δ₁-q-x-q₀ -- The first step , Δ₁*-q₀-xs-q′) = -- The remaining steps -- Translate to the union: (inj₁ q , S-q -- The beginning state , inj₁ q′ , F-q′ -- The ending state , inj₁ q₀ , Δ₁-q-x-q₀ -- The first step , M-Δ*⇒M∪N-Δ* q₀ xs q′ Δ₁*-q₀-xs-q′) -- The remaining steps (applying I.H.) N-Accepts⇒M∪N-Accepts : {M N : NDA Σ} → {n : ℕ} → (xs : Vec Σ n) → NDA.Accepts N xs → NDA.Accepts (M ∪ N) xs N-Accepts⇒M∪N-Accepts [] (q , S-q , .q , F-q , refl) = inj₂ q , S-q , inj₂ q , F-q , refl N-Accepts⇒M∪N-Accepts (x ∷ xs) ( q , S-q , q′ , F-q′ , q₀ , Δ-q-x-q₀ , Δ*-q₀-xs-q′) = ( inj₂ q , S-q , inj₂ q′ , F-q′ , inj₂ q₀ , Δ-q-x-q₀ , N-Δ*⇒M∪N-Δ* q₀ xs q′ Δ*-q₀-xs-q′ ) ---------------------------------------------------------------------- M∪N-Accepts⇒M-Accepts∨N-Accepts : {M N : NDA Σ} → {n : ℕ} → (xs : Vec Σ n) → NDA.Accepts (M ∪ N) xs → NDA.Accepts M xs ⊎ NDA.Accepts N xs -- Base cases. M∪N-Accepts⇒M-Accepts∨N-Accepts [] (inj₁ q , S-q , .(inj₁ q) , F-q , refl) = inj₁ (q , S-q , q , F-q , refl) M∪N-Accepts⇒M-Accepts∨N-Accepts [] (inj₂ q , S-q , .(inj₂ q) , F-q , refl) = inj₂ (q , S-q , q , F-q , refl) -- Induction step 1: both the start and final state are in M. M∪N-Accepts⇒M-Accepts∨N-Accepts (x ∷ xs) ( inj₁ q , S-q , inj₁ q′ , F-q′ , inj₁ q₀ , Δ-q-x-q₀ , Δ*-q₀-xs-q′) = inj₁ ( q , S-q , q′ , F-q′ , q₀ , Δ-q-x-q₀ , M∪N-Δ*⇒M-Δ* q₀ xs q′ Δ*-q₀-xs-q′) -- Induction step 2: both the start and final state are in N. M∪N-Accepts⇒M-Accepts∨N-Accepts (x ∷ xs) ( inj₂ q , S-q , inj₂ q′ , F-q′ , inj₂ q₀ , Δ-q-x-q₀ , Δ*-q₀-xs-q′) = inj₂ ( q , S-q , q′ , F-q′ , q₀ , Δ-q-x-q₀ , M∪N-Δ*⇒N-Δ* q₀ xs q′ Δ*-q₀-xs-q′) -- Unreachable cases: the proof of “Accepts (M ∪ N) xs” -- asserts M and N are connected. M∪N-Accepts⇒M-Accepts∨N-Accepts (x ∷ xs) (inj₁ q , _ , inj₂ q′ , _ , inj₁ q₀ , _ , Δ*-q₀-xs-q′) = ⊥-elim (M∪N-Δ*-disconnectedˡ q₀ xs q′ Δ*-q₀-xs-q′) M∪N-Accepts⇒M-Accepts∨N-Accepts (x ∷ xs) (inj₂ q , _ , inj₁ q′ , _ , inj₂ q₀ , _ , Δ*-q₀-xs-q′) = ⊥-elim (M∪N-Δ*-disconnectedʳ q₀ xs q′ Δ*-q₀-xs-q′) ----------------------------------------------------------------------
34.578378
81
0.401751
2ef0cc10a98e74390a5fa8f801b220633c38c2ed
790
agda
Agda
test/succeed/Issue292.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue292.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/Issue292.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- Fixed on AIM XIV 2011-09-09 AA, UN -- {-# OPTIONS -v tc.lhs.unify:50 #-} module Issue292 where data ⊥ : Set where infix 3 ¬_ ¬_ : Set → Set ¬ P = P → ⊥ infix 4 _≅_ data _≅_ {A : Set} (x : A) : ∀ {B : Set} → B → Set where refl : x ≅ x record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public data Bool : Set where true false : Bool data D : Bool -> Set where tt : D true ff : D false P : Set -> Set P S = Σ S (\s → s ≅ tt) pbool : P (D true) pbool = tt , refl ¬pbool2 : ¬ P (D false) ¬pbool2 ( ff , () ) -- Andreas, 2011-09-13 fix of fix: should work again {- WAS: expected error ff ≅ tt should be empty, but that's not obvious to me when checking that the clause ¬pbool2 (ff , ()) has type ¬ P (D false) -}
17.555556
56
0.582278
03313b33e091d7e9d71327b418fcfa7a2425b354
449
agda
Agda
Cats/Category/Presheaves.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Category/Presheaves.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Category/Presheaves.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Category.Presheaves where open import Level using (_⊔_ ; suc) open import Cats.Category open import Cats.Category.Fun using (Fun) open import Cats.Category.Op using (_ᵒᵖ) open import Cats.Category.Setoids using (Setoids) Presheaves : ∀ {lo la l≈} (C : Category lo la l≈) l l′ → Category (lo ⊔ la ⊔ l≈ ⊔ suc (l ⊔ l′)) (lo ⊔ la ⊔ l ⊔ l′) (lo ⊔ l ⊔ l′) Presheaves C l l′ = Fun (C ᵒᵖ) (Setoids l l′)
29.933333
75
0.650334
5e5b881e35232863c05deade2b1283c23ea8acb5
197
agda
Agda
Data/Bool/Truth.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/Bool/Truth.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/Bool/Truth.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --without-K --safe #-} module Data.Bool.Truth where open import Data.Empty open import Data.Unit open import Level open import Data.Bool.Base T : Bool → Type T true = ⊤ T false = ⊥
15.153846
34
0.695431
342e26ece44e074c961cc0fa467b4e010798d648
376
agda
Agda
test/fail/Issue619.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/fail/Issue619.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/fail/Issue619.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
import Common.Reflect data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data Bool : Set where true false : Bool data True : Set where true : True -- Should print names as "quote Bool.true" (making sure to disambiguate) -- and "quote false" rather than "Issue619.Bool.true/false" in error message. not-true : quote Bool.true ≡ quote Bool.false not-true = refl
22.117647
77
0.683511
5ee4851cfcf99d209bb4f1cf4ecfff0ab56ba03d
1,554
agda
Agda
agda/Text/Greek/SBLGNT.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
44
2015-05-29T14:48:51.000Z
2022-03-06T15:41:57.000Z
agda/Text/Greek/SBLGNT.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
13
2015-05-28T20:04:08.000Z
2020-09-07T11:58:38.000Z
agda/Text/Greek/SBLGNT.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
5
2015-02-27T22:34:13.000Z
2017-06-11T11:25:09.000Z
module Text.Greek.SBLGNT where open import Data.List open import Text.Greek.Bible open import Text.Greek.SBLGNT.Matt open import Text.Greek.SBLGNT.Mark open import Text.Greek.SBLGNT.Luke open import Text.Greek.SBLGNT.John open import Text.Greek.SBLGNT.Acts open import Text.Greek.SBLGNT.Rom open import Text.Greek.SBLGNT.1Cor open import Text.Greek.SBLGNT.2Cor open import Text.Greek.SBLGNT.Gal open import Text.Greek.SBLGNT.Eph open import Text.Greek.SBLGNT.Phil open import Text.Greek.SBLGNT.Col open import Text.Greek.SBLGNT.1Thess open import Text.Greek.SBLGNT.2Thess open import Text.Greek.SBLGNT.1Tim open import Text.Greek.SBLGNT.2Tim open import Text.Greek.SBLGNT.Titus open import Text.Greek.SBLGNT.Phlm open import Text.Greek.SBLGNT.Heb open import Text.Greek.SBLGNT.Jas open import Text.Greek.SBLGNT.1Pet open import Text.Greek.SBLGNT.2Pet open import Text.Greek.SBLGNT.1John open import Text.Greek.SBLGNT.2John open import Text.Greek.SBLGNT.3John open import Text.Greek.SBLGNT.Jude open import Text.Greek.SBLGNT.Rev books : List (List (Word)) books = ΚΑΤΑ-ΜΑΘΘΑΙΟΝ ∷ ΚΑΤΑ-ΜΑΡΚΟΝ ∷ ΚΑΤΑ-ΛΟΥΚΑΝ ∷ ΚΑΤΑ-ΙΩΑΝΝΗΝ ∷ ΠΡΑΞΕΙΣ-ΑΠΟΣΤΟΛΩΝ ∷ ΠΡΟΣ-ΡΩΜΑΙΟΥΣ ∷ ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Α ∷ ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Β ∷ ΠΡΟΣ-ΓΑΛΑΤΑΣ ∷ ΠΡΟΣ-ΕΦΕΣΙΟΥΣ ∷ ΠΡΟΣ-ΦΙΛΙΠΠΗΣΙΟΥΣ ∷ ΠΡΟΣ-ΚΟΛΟΣΣΑΕΙΣ ∷ ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Α ∷ ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Β ∷ ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Α ∷ ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Β ∷ ΠΡΟΣ-ΤΙΤΟΝ ∷ ΠΡΟΣ-ΦΙΛΗΜΟΝΑ ∷ ΠΡΟΣ-ΕΒΡΑΙΟΥΣ ∷ ΙΑΚΩΒΟΥ ∷ ΠΕΤΡΟΥ-Α ∷ ΠΕΤΡΟΥ-Β ∷ ΙΩΑΝΝΟΥ-Α ∷ ΙΩΑΝΝΟΥ-Β ∷ ΙΩΑΝΝΟΥ-Γ ∷ ΙΟΥΔΑ ∷ ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ ∷ []
24.666667
36
0.765766
52c10e931dc94459d132eda1454365a8a47ddb2a
4,462
agda
Agda
agda-stdlib/src/Text/Tabular/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Text/Tabular/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Text/Tabular/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Fancy display functions for List-based tables -- -- The functions in this module assume some (unenforced) invariants. -- If you cannot guarantee that your data respects these invariants, -- you should instead use Text.Tabular.List. ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module Text.Tabular.Base where open import Data.Bool.Base using (if_then_else_) open import Data.Char.Base using (Char) open import Data.List.Base as List using (List; []; _∷_; _?∷_; _++_; _∷ʳ?_; null; map; intersperse) open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe) open import Data.Nat.Base open import Data.String.Base as String using (String; fromChar; unlines; replicate; length) open import Function.Base open import Agda.Builtin.Equality open String using ( Alignment ; Left ; Center ; Right ) public record TabularLine : Set where field left : Maybe String cont : Maybe Char sep : String right : Maybe String open TabularLine record TabularConfig : Set where field top : Maybe TabularLine sep : Maybe TabularLine row : TabularLine bot : Maybe TabularLine open TabularConfig unicode : TabularConfig unicode .top = just λ where .left → just "┌" .cont → just '─' .sep → "┬" .right → just "┐" unicode .sep = just λ where .left → just "├" .cont → just '─' .sep → "┼" .right → just "┤" unicode .row = λ where .left → just "│" .cont → nothing .sep → "│" .right → just "│" unicode .bot = just λ where .left → just "└" .cont → just '─' .sep → "┴" .right → just "┘" ascii : TabularConfig ascii .top = just λ where .left → just "+" .cont → just '-' .sep → "-" .right → just "+" ascii .sep = just λ where .left → just "|" .cont → just '-' .sep → "+" .right → just "|" ascii .row = λ where .left → just "|" .cont → nothing .sep → "|" .right → just "|" ascii .bot = just λ where .left → just "+" .cont → just '-' .sep → "-" .right → just "+" compact : TabularConfig → TabularConfig compact c = record c { sep = nothing } private dropBorder : TabularLine → TabularLine dropBorder l = record l { left = nothing; right = nothing } noBorder : TabularConfig → TabularConfig noBorder c .top = nothing noBorder c .sep = Maybe.map dropBorder (c .sep) noBorder c .row = dropBorder (c .row) noBorder c .bot = nothing private space : TabularLine → TabularLine space l = let pad = maybe fromChar " " (l .cont) in λ where .left → Maybe.map (String._++ pad) (l .left) .cont → l .cont .sep → pad String.++ l .sep String.++ pad .right → Maybe.map (pad String.++_) (l .right) addSpace : TabularConfig → TabularConfig addSpace c .top = Maybe.map space (c .top) addSpace c .sep = Maybe.map space (c .sep) addSpace c .row = space (c .row) addSpace c .bot = Maybe.map space (c .bot) whitespace : TabularConfig whitespace .top = nothing whitespace .sep = nothing whitespace .row = λ where .left → nothing .cont → nothing .sep → " " .right → nothing whitespace .bot = nothing -- /!\ Invariants: -- * the table is presented as a list of rows -- * header has the same length as each one of the rows -- i.e. we have a rectangular table -- * all of the strings in a given column have the same length unsafeDisplay : TabularConfig → List (List String) → List String unsafeDisplay _ [] = [] unsafeDisplay c (header ∷ rows) = map String.concat $ th ++ (trs ∷ʳ? lbot) where cellsOf : Maybe Char → List String → List String cellsOf nothing = id cellsOf (just c) = map (λ cell → replicate (length cell) c) lineOf : TabularLine → List String → List String lineOf l xs = l .left ?∷ intersperse (l .sep) (cellsOf (l .cont) xs) ∷ʳ? l .right mlineOf : Maybe TabularLine → List String → Maybe (List String) mlineOf l xs = Maybe.map (λ l → lineOf l xs) l ltop : Maybe (List String) lsep : Maybe (List String) tr : List String → List String lbot : Maybe (List String) ltop = mlineOf (c. top) header lsep = mlineOf (c. sep) header tr = lineOf (c. row) lbot = mlineOf (c. bot) header th = ltop ?∷ tr header ∷ [] trs = if null rows then id else (maybe _∷_ id lsep) $ maybe intersperse id lsep $ map tr rows
26.559524
72
0.613178
1ea187bda3def386d77269c01888dfc30f15f716
1,247
agda
Agda
archive/agda-3/src/Oscar/Class/Injectivity/Vec.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Injectivity/Vec.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Injectivity/Vec.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class.Successor₀ open import Oscar.Class.Injectivity open import Oscar.Data.¶ open import Oscar.Data.Vec open import Oscar.Data.Proposequality import Oscar.Property.Thickandthin.FinFinProposequalityMaybeProposequality module Oscar.Class.Injectivity.Vec where instance 𝓘njection₂Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → 𝓘njection₂ (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) 𝓘njection₂Vec .𝓘njection₂.injection₂ = _,_ [𝓘njectivity₂,₀,₁]Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → [𝓘njectivity₂,₀,₁] (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) Proposequality Proposequality [𝓘njectivity₂,₀,₁]Vec = ∁ 𝓘njectivity₂,₀,₁Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → 𝓘njectivity₂,₀,₁ (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) Proposequality Proposequality 𝓘njectivity₂,₀,₁Vec .𝓘njectivity₂,₀,₁.injectivity₂,₀,₁ ∅ = ∅ [𝓘njectivity₂,₀,₂]Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → [𝓘njectivity₂,₀,₂] (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) Proposequality Proposequality [𝓘njectivity₂,₀,₂]Vec = ∁ 𝓘njectivity₂,₀,₂Vec : ∀ {N} {𝔭} {𝔓 : ¶ → Ø 𝔭} → 𝓘njectivity₂,₀,₂ (λ (x : 𝔓 N) (_ : Vec⟨ 𝔓 ⟩ N) → Vec⟨ 𝔓 ⟩ (⇑₀ N)) Proposequality Proposequality 𝓘njectivity₂,₀,₂Vec .𝓘njectivity₂,₀,₂.injectivity₂,₀,₂ ∅ = ∅
44.535714
149
0.635926
1a5fecbbd8f24dba85be9882a80052a07a2a1735
2,174
agda
Agda
src/System/IO/Transducers/UTF8.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
10
2015-01-04T13:45:16.000Z
2021-09-15T04:35:41.000Z
src/System/IO/Transducers/UTF8.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
null
null
null
src/System/IO/Transducers/UTF8.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
2
2017-08-10T06:12:54.000Z
2022-03-12T11:40:23.000Z
open import Coinduction using ( ♯_ ) open import Data.Bool using ( Bool ; true ; false ; not ) open import Data.ByteString using ( null ) open import Data.ByteString.UTF8 using ( fromString ) renaming ( span to #span ) open import Data.Natural using ( Natural ) open import Data.Product using ( _×_ ; _,_ ) open import Data.Char using ( Char ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; _⟫_ ; π₁ ; π₂ ; _[&]_ ) open import System.IO.Transducers.Weight using ( weight ) open import System.IO.Transducers.Stateful using ( loop ) open import System.IO.Transducers.Session using ( ⟨_⟩ ; _&_ ; ¿ ; * ; _&*_ ; Bytes ; Bytes' ; Strings ) open import System.IO.Transducers.Strict using ( _⇛_ ) module System.IO.Transducers.UTF8 where mutual -- TODO: span isn't doing the right thing when char boundaries fail to line up with bytestring boundaries span+ : (Char → Bool) → Bytes' ⇛ (Bytes & Bytes) span+ φ x with #span φ x span+ φ x | (x₁ , x₂) with null x₁ | null x₂ span+ φ x | (x₁ , x₂) | true | true = inp (♯ span φ) span+ φ x | (x₁ , x₂) | true | false = out false (out true (out x₂ done)) span+ φ x | (x₁ , x₂) | false | true = out true (out x₁ (inp (♯ span φ))) span+ φ x | (x₁ , x₂) | false | false = out true (out x₁ (out false (out true (out x₂ done)))) span : (Char → Bool) → Bytes ⇛ (Bytes & Bytes) span φ false = out false (out false done) span φ true = inp (♯ span+ φ) break : (Char → Bool) → Bytes ⇛ (Bytes & Bytes) break φ = span (λ x → not (φ x)) mutual nonempty+ : Bytes' & Bytes ⇛ ¿ Bytes & Bytes nonempty+ x with null x nonempty+ x | true = inp (♯ nonempty) nonempty+ x | false = out true (out true (out x done)) nonempty : Bytes & Bytes ⇛ ¿ Bytes & Bytes nonempty true = inp (♯ nonempty+) nonempty false = out false done split? : (Char → Bool) → Bytes ⇒ (¿ Bytes & Bytes) split? φ = inp (♯ span φ) ⟫ π₂ {Bytes} ⟫ inp (♯ break φ) ⟫ inp (♯ nonempty) split : (Char → Bool) → Bytes ⇒ * Bytes split φ = loop {Bytes} (split? φ) ⟫ π₁ -- TODO: decode encode : Strings ⇛ Bytes encode true = out true (inp (♯ λ s → out (fromString s) (inp (♯ encode)))) encode false = out false done
37.482759
107
0.634775
300b2523404c7481b8725c0b1be6c28a85692bd8
2,896
agda
Agda
bindings/stdlib/Light/Implementation/Standard/Relation/Decidable.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
1
2019-12-20T21:33:05.000Z
2019-12-20T21:33:05.000Z
bindings/stdlib/Light/Implementation/Standard/Relation/Decidable.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
null
null
null
bindings/stdlib/Light/Implementation/Standard/Relation/Decidable.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
null
null
null
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Standard.Relation.Decidable where open import Light.Variable.Sets import Light.Implementation.Standard.Data.Empty import Light.Implementation.Standard.Data.Unit open import Light.Library.Data.Empty as Empty using (Empty) open import Light.Library.Data.Unit as Unit using (Unit ; unit) open import Light.Library.Relation.Decidable using (Library ; Dependencies) instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation ; to‐witness = λ ⦃ a ⦄ → Implementation.to‐witness a ; to‐false‐witness = λ ⦃ a ⦄ → Implementation.to‐false‐witness a ; from‐witness = λ ⦃ a ⦄ → Implementation.from‐witness a ; from‐false‐witness = λ ⦃ a ⦄ → Implementation.from‐false‐witness a } where module Implementation where open import Relation.Nullary using (yes ; no) renaming (Dec to Decidable) public open Relation.Nullary using (does) open import Function using (_∘_) import Data.Bool as Boolean open import Function using (id) open import Relation.Nullary.Decidable renaming ( toWitness to to‐witness ; fromWitness to from‐witness ; toWitnessFalse to to‐false‐witness ; fromWitnessFalse to from‐false‐witness ) public open import Light.Implementation.Standard.Relation.Sets using (base) public ℓf = id if′_then_else_ : Decidable 𝕒 → 𝕓 → 𝕓 → 𝕓 if′_then_else_ = Boolean.if_then_else_ ∘ does if_then_else_ : ∀ (a : Decidable 𝕒) → (∀ ⦃ witness : 𝕒 ⦄ → 𝕓) → (∀ ⦃ witness : 𝕒 → Empty ⦄ → 𝕓) → 𝕓 if yes w then a else _ = a ⦃ witness = w ⦄ if no w then _ else a = a ⦃ witness = w ⦄ module Style where open import Relation.Nullary.Decidable using (True ; False) public open import Relation.Nullary.Negation using () renaming (¬? to ¬_) public open import Relation.Nullary.Product using () renaming (_×-dec_ to _∧_) public open import Relation.Nullary.Sum using () renaming (_⊎-dec_ to _∨_) public open import Relation.Nullary.Implication using () renaming (_→-dec_ to _⇢_) public true : Decidable Unit true = yes unit false : Decidable Empty false = no λ () style = record { Style }
42.588235
100
0.557666
344b77163f73c18e4a32fcbc49822240e82fa685
614
agda
Agda
examples/sinatra/Prelude.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
examples/sinatra/Prelude.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/sinatra/Prelude.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Prelude where infixr 50 _,_ infixl 40 _◄_ infix 30 _∈_ data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B data List (A : Set) : Set where ε : List A _◄_ : List A -> A -> List A data _∈_ {A : Set}(x : A) : List A -> Set where hd : forall {xs} -> x ∈ xs ◄ x tl : forall {y xs} -> x ∈ xs -> x ∈ xs ◄ y data Box {A : Set}(P : A -> Set) : List A -> Set where ⟨⟩ : Box P ε _◃_ : forall {xs x} -> Box P xs -> P x -> Box P (xs ◄ x) _!_ : {A : Set}{P : A -> Set}{xs : List A}{x : A} -> Box P xs -> x ∈ xs -> P x ⟨⟩ ! () (_ ◃ v) ! hd = v (ρ ◃ _) ! tl x = ρ ! x
21.172414
58
0.441368
5e069bc891730d505c3e215c2be5256afa192a40
911
agda
Agda
notes/FOT/FOTC/Data/Fun.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Data/Fun.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Data/Fun.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- An inductive predicate for representing functions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Fun where open import FOTC.Base ------------------------------------------------------------------------------ -- 2012-03-13. I don't see how we can distinguish between data -- elements and functions in FOTC. The following inductive predicate -- is true for any element d : D. data Fun : D → Set where fun : (f : D) → Fun f -- But using a λ-abstraction we could make a distinguish: postulate lam : (D → D) → D -- LTC-PCF λ-abstraction. data Fun₁ : D → Set where fun₁ : (f : D → D) → Fun₁ (lam f)
35.038462
78
0.465423
229146af0e1f89e9647baa0366c30c4f72729e16
8,115
agda
Agda
Cubical/Data/DescendingList/Strict/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/DescendingList/Strict/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/DescendingList/Strict/Properties.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Foundations.Everything module Cubical.Data.DescendingList.Strict.Properties (A : Type₀) (_>_ : A → A → Type₀) where open import Cubical.Data.DescendingList.Strict A _>_ open import Cubical.HITs.ListedFiniteSet as LFSet renaming (_∈_ to _∈ʰ_) import Cubical.Data.Empty as ⊥ open import Cubical.Relation.Nullary.DecidableEq open import Cubical.Relation.Nullary using (Dec; Discrete) renaming (¬_ to Type¬_) unsort : SDL → LFSet A unsort [] = [] unsort (cons x xs x>xs) = x ∷ unsort xs module _ where open import Cubical.Relation.Nullary data Tri (A B C : Type) : Type where tri-< : A → ¬ B → ¬ C → Tri A B C tri-≡ : ¬ A → B → ¬ C → Tri A B C tri-> : ¬ A → ¬ B → C → Tri A B C module IsoToLFSet (A-discrete : Discrete A) (>-isProp : ∀ {x y} → isProp (x > y)) (tri : ∀ x y → Tri (y > x) (x ≡ y) (x > y)) (>-trans : ∀ {x y z} → x > y → y > z → x > z) (>-irreflexive : ∀ {x} → Type¬ x > x) where Tri' : A → A → Type Tri' x y = Tri (y > x) (x ≡ y) (x > y) open import Cubical.Foundations.Logic open import Cubical.HITs.PropositionalTruncation as PropTrunc -- Membership is defined via `LFSet`. -- This computes just as well as a direct inductive definition, -- and additionally lets us use the extra `comm` and `dup` paths to prove -- things about membership. _∈ˡ_ : A → SDL → hProp ℓ-zero a ∈ˡ l = a ∈ʰ unsort l Memˡ : SDL → A → hProp ℓ-zero Memˡ l a = a ∈ˡ l Memʰ : LFSet A → A → hProp ℓ-zero Memʰ l a = a ∈ʰ l >ᴴ-trans : ∀ x y zs → x > y → y >ᴴ zs → x >ᴴ zs >ᴴ-trans x y [] x>y y>zs = >ᴴ[] >ᴴ-trans x y (cons z zs _) x>y (>ᴴcons y>z) = >ᴴcons (>-trans x>y y>z) ≡ₚ-sym : ∀ {A : Type} {x y : A} → [ x ≡ₚ y ] → [ y ≡ₚ x ] ≡ₚ-sym p = PropTrunc.rec squash (λ p → ∣ sym p ∣) p >-all : ∀ x l → x >ᴴ l → ∀ a → [ a ∈ˡ l ] → x > a >-all x (cons y zs y>zs) (>ᴴcons x>y) a a∈l = ⊔-elim (a ≡ₚ y) (a ∈ˡ zs) (λ _ → (x > a) , >-isProp {x} {a}) (λ a≡ₚy → substₚ (λ q → x > q , >-isProp) (≡ₚ-sym a≡ₚy) x>y) (λ a∈zs → >-all x zs (>ᴴ-trans x y zs x>y y>zs) a a∈zs) a∈l >-absent : ∀ x l → x >ᴴ l → [ ¬ (x ∈ˡ l) ] >-absent x l x>l x∈l = ⊥.rec (>-irreflexive (>-all x l x>l x x∈l)) >ᴴ-isProp : ∀ x xs → isProp (x >ᴴ xs) >ᴴ-isProp x _ >ᴴ[] >ᴴ[] = refl >ᴴ-isProp x _ (>ᴴcons p) (>ᴴcons q) = cong >ᴴcons (>-isProp p q) SDL-isSet : isSet SDL SDL-isSet = isSetDL.isSetDL A _>_ >-isProp A-discrete where open import Cubical.Data.DescendingList.Properties insert : A → SDL → SDL >ᴴinsert : {x y : A} {u : SDL} → y >ᴴ u → (y > x) → y >ᴴ insert x u insert x [] = cons x [] >ᴴ[] insert x (cons y zs good) with tri x y insert x (cons y zs good) | tri-< x<y _ _ = cons y (insert x zs) (>ᴴinsert good x<y) insert x (cons y zs good) | tri-≡ _ x≡y _ = cons y zs good insert x (cons y zs good) | tri-> _ _ x>y = cons x (cons y zs good) (>ᴴcons x>y) >ᴴinsert >ᴴ[] y>x = >ᴴcons y>x >ᴴinsert {x} (>ᴴcons {y} y>ys) y>x with tri x y >ᴴinsert {x} {y} (>ᴴcons {z} z>zs) y>x | tri-< _ _ e = >ᴴcons z>zs >ᴴinsert {x} (>ᴴcons {y} y>ys) y>x | tri-≡ _ _ e = >ᴴcons y>ys >ᴴinsert {x} (>ᴴcons {y} y>ys) y>x | tri-> _ _ _ = >ᴴcons y>x insert-correct : ∀ x ys → unsort (insert x ys) ≡ (x ∷ unsort ys) insert-correct x [] = refl insert-correct x (cons y zs y>zs) with tri x y ... | tri-< _ _ _ = y ∷ unsort (insert x zs) ≡⟨ (λ i → y ∷ (insert-correct x zs i)) ⟩ y ∷ x ∷ unsort zs ≡⟨ comm _ _ _ ⟩ x ∷ y ∷ unsort zs ∎ ... | tri-≡ _ x≡y _ = sym (dup y (unsort zs)) ∙ (λ i → (x≡y (~ i)) ∷ y ∷ unsort zs) ... | tri-> _ _ _ = refl insert-correct₂ : ∀ x y zs → unsort (insert x (insert y zs)) ≡ (x ∷ y ∷ unsort zs) insert-correct₂ x y zs = insert-correct x (insert y zs) ∙ cong (λ q → x ∷ q) (insert-correct y zs) abstract -- for some reason, making [exclude] non-abstract makes -- typechecking noticeably slower exclude : A → (A → hProp ℓ-zero) → (A → hProp ℓ-zero) exclude x h a = ¬ a ≡ₚ x ⊓ h a >-excluded : ∀ x xs → x >ᴴ xs → exclude x (Memʰ (x ∷ unsort xs)) ≡ Memˡ xs >-excluded x xs x>xs = funExt (λ a → ⇔toPath (to a) (from a)) where import Cubical.Data.Sigma as D import Cubical.Data.Sum as D from : ∀ a → [ a ∈ˡ xs ] → [ ¬ a ≡ₚ x ⊓ (a ≡ₚ x ⊔ a ∈ˡ xs) ] from a a∈xs = (PropTrunc.rec (snd ⊥) a≢x) D., inr a∈xs where a≢x : Type¬ (a ≡ x) a≢x = λ a≡x → (>-absent x xs x>xs (transport (λ i → [ a≡x i ∈ˡ xs ]) a∈xs )) to : ∀ a → [ ¬ a ≡ₚ x ⊓ (a ≡ₚ x ⊔ a ∈ˡ xs) ] → [ a ∈ˡ xs ] to a (a≢x D., x) = PropTrunc.rec (snd (a ∈ˡ xs)) (λ { (D.inl a≡x) → ⊥.rec (a≢x a≡x); (D.inr x) → x }) x cons-eq : ∀ x xs x>xs y ys y>ys → x ≡ y → xs ≡ ys → cons x xs x>xs ≡ cons y ys y>ys cons-eq x xs x>xs y ys y>ys x≡y xs≡ys i = cons (x≡y i) (xs≡ys i) (>ᴴ-isProp (x≡y i) (xs≡ys i) (transp (λ j → (x≡y (i ∧ j)) >ᴴ (xs≡ys) (i ∧ j)) (~ i) x>xs) (transp (λ j → (x≡y (i ∨ ~ j)) >ᴴ (xs≡ys) (i ∨ ~ j)) i y>ys) i) Memˡ-inj-cons : ∀ x xs x>xs y ys y>ys → x ≡ y → Memˡ (cons x xs x>xs) ≡ Memˡ (cons y ys y>ys) → Memˡ xs ≡ Memˡ ys Memˡ-inj-cons x xs x>xs y ys y>ys x≡y e = Memˡ xs ≡⟨ sym (>-excluded x xs x>xs) ⟩ exclude x (Memʰ (x ∷ unsort xs)) ≡⟨ (λ i → exclude (x≡y i) (e i)) ⟩ exclude y (Memʰ (y ∷ unsort ys)) ≡⟨ (>-excluded y ys y>ys) ⟩ Memˡ ys ∎ Memˡ-inj : ∀ l₁ l₂ → Memˡ l₁ ≡ Memˡ l₂ → l₁ ≡ l₂ Memˡ-inj [] [] eq = refl Memˡ-inj [] (cons y ys y>ys) eq = ⊥.rec (transport (λ i → [ eq (~ i) y ]) (inl ∣ refl ∣)) Memˡ-inj (cons y ys y>ys) [] eq = ⊥.rec (transport (λ i → [ eq i y ]) (inl ∣ refl ∣)) Memˡ-inj (cons x xs x>xs) (cons y ys y>ys) e = ⊔-elim (x ≡ₚ y) (x ∈ʰ unsort ys) (λ _ → ((cons x xs x>xs) ≡ (cons y ys y>ys)) , SDL-isSet _ _) (PropTrunc.rec (SDL-isSet _ _) with-x≡y) (⊥.rec ∘ x∉ys) (transport (λ i → [ e i x ]) (inl ∣ refl ∣)) where xxs = cons x xs x>xs x∉ys : [ ¬ x ∈ˡ ys ] x∉ys x∈ys = ⊥.rec (>-irreflexive y>y) where y>x : y > x y>x = (>-all y ys y>ys x x∈ys) y∈xxs : [ y ∈ˡ (cons x xs x>xs) ] y∈xxs = (transport (λ i → [ e (~ i) y ]) (inl ∣ refl ∣)) y>y : y > y y>y = >-all y xxs (>ᴴcons y>x) y y∈xxs with-x≡y : x ≡ y → (cons x xs x>xs) ≡ (cons y ys y>ys) with-x≡y x≡y = cons-eq x xs x>xs y ys y>ys x≡y r where r : xs ≡ ys r = Memˡ-inj _ _ (Memˡ-inj-cons x xs x>xs y ys y>ys x≡y e) unsort-inj : ∀ x y → unsort x ≡ unsort y → x ≡ y unsort-inj x y e = Memˡ-inj x y λ i a → a ∈ʰ (e i) insert-swap : (x y : A) (zs : SDL) → insert x (insert y zs) ≡ insert y (insert x zs) insert-swap x y zs = unsort-inj (insert x (insert y zs)) (insert y (insert x zs)) (unsort (insert x (insert y zs)) ≡⟨ (λ i → insert-correct₂ x y zs i) ⟩ x ∷ y ∷ unsort zs ≡⟨ (λ i → comm x y (unsort zs) i) ⟩ y ∷ x ∷ unsort zs ≡⟨ (λ i → insert-correct₂ y x zs (~ i)) ⟩ unsort (insert y (insert x zs)) ∎) insert-dup : (x : A) (ys : SDL) → insert x (insert x ys) ≡ insert x ys insert-dup x ys = unsort-inj (insert x (insert x ys)) (insert x ys) ( unsort (insert x (insert x ys)) ≡⟨ (λ i → insert-correct₂ x x ys i) ⟩ x ∷ x ∷ unsort ys ≡⟨ dup x (unsort ys) ⟩ x ∷ unsort ys ≡⟨ (λ i → insert-correct x ys (~ i)) ⟩ unsort (insert x ys) ∎ ) sort : LFSet A → SDL sort = LFSet.Rec.f [] insert insert-swap insert-dup SDL-isSet unsort∘sort : ∀ x → unsort (sort x) ≡ x unsort∘sort = LFSet.PropElim.f (λ x → unsort (sort x) ≡ x) refl (λ x {ys} ys-hyp → insert-correct x (sort ys) ∙ cong (λ q → x ∷ q) ys-hyp) (λ xs → trunc (unsort (sort xs)) xs) sort∘unsort : ∀ x → sort (unsort x) ≡ x sort∘unsort x = unsort-inj (sort (unsort x)) x (unsort∘sort (unsort x)) SDL-LFSet-iso : Iso SDL (LFSet A) SDL-LFSet-iso = (iso unsort sort unsort∘sort sort∘unsort) SDL≡LFSet : SDL ≡ LFSet A SDL≡LFSet = ua (isoToEquiv SDL-LFSet-iso)
36.390135
115
0.524707
43d93abc59bc66541e29e5e099089e0fe565b159
1,005
agda
Agda
Light/Library/Action.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
1
2019-12-20T21:33:05.000Z
2019-12-20T21:33:05.000Z
Light/Library/Action.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
null
null
null
Light/Library/Action.agda
zamfofex/lightlib
44b1c724f2de95d3a9effe87ca36ef9eca8b4756
[ "0BSD" ]
null
null
null
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Action where open import Light.Level using (Level ; Setω) open import Light.Library.Data.Unit as Unit using (Unit) open import Light.Library.Data.Natural as Natural using (ℕ) open import Light.Variable.Sets open import Light.Variable.Levels open import Light.Package using (Package) record Dependencies : Setω where field ⦃ unit‐package ⦄ : Package record { Unit } field ⦃ natural‐package ⦄ : Package record { Natural } record Library (dependencies : Dependencies) : Setω where field main‐ℓ : Level Action : Set aℓ → Set aℓ pure : 𝕒 → Action 𝕒 _>>=_ : Action 𝕒 → (𝕒 → Action 𝕓) → Action 𝕓 _>>_ : Action 𝕒 → Action 𝕓 → Action 𝕓 log : 𝕒 → Action Unit Main : Set main‐ℓ run : Action Unit → Main prompt : Action ℕ alert : 𝕒 → Action Unit open Library ⦃ ... ⦄ public
34.655172
79
0.623881
43460983d822c3bf8c912e334980fc67cad77b60
36
agda
Agda
test/interaction/Issue3428.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3428.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3428.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
kk : ∀ {ℓ} → Set ℓ kk = {!∀ B → B!}
12
18
0.305556
8b2bc41cf9f1d0cbedbddd083332139e699a3f7d
2,077
agda
Agda
lib/types/Span.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/Span.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Span.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi open import lib.types.Pointed module lib.types.Span where record Span {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where constructor span field A : Type i B : Type j C : Type k f : C → A g : C → B private span=-raw : ∀ {i j k} {A A' : Type i} (p : A == A') {B B' : Type j} (q : B == B') {C C' : Type k} (r : C == C') {f : C → A} {f' : C' → A'} (s : f == f' [ (λ CA → fst CA → snd CA) ↓ pair×= r p ]) {g : C → B} {g' : C' → B'} (t : g == g' [ (λ CB → fst CB → snd CB) ↓ pair×= r q ]) → (span A B C f g) == (span A' B' C' f' g') span=-raw idp idp idp idp idp = idp abstract span= : ∀ {i j k} {A A' : Type i} (p : A ≃ A') {B B' : Type j} (q : B ≃ B') {C C' : Type k} (r : C ≃ C') {f : C → A} {f' : C' → A'} (s : (a : C) → (–> p) (f a) == f' (–> r a)) {g : C → B} {g' : C' → B'} (t : (b : C) → (–> q) (g b) == g' (–> r b)) → (span A B C f g) == (span A' B' C' f' g') span= p q r {f} {f'} s {g} {g'} t = span=-raw (ua p) (ua q) (ua r) (↓-→-in (λ α → ↓-snd×-in (ua r) (ua p) (↓-idf-ua-in p ( s _ ∙ ap f' (↓-idf-ua-out r (↓-fst×-out (ua r) (ua p) α)))))) (↓-→-in (λ β → ↓-snd×-in (ua r) (ua q) (↓-idf-ua-in q ( t _ ∙ ap g' (↓-idf-ua-out r (↓-fst×-out (ua r) (ua q) β)))))) record ⊙Span {i j k : ULevel} : Type (lsucc (lmax (lmax i j) k)) where constructor ⊙span field X : Ptd i Y : Ptd j Z : Ptd k f : fst (Z ⊙→ X) g : fst (Z ⊙→ Y) ⊙span-out : ∀ {i j k} → ⊙Span {i} {j} {k} → Span {i} {j} {k} ⊙span-out (⊙span X Y Z f g) = span (fst X) (fst Y) (fst Z) (fst f) (fst g) {- Helper for path induction on pointed spans -} ⊙span-J : ∀ {i j k l} (P : ⊙Span {i} {j} {k} → Type l) → ({A : Type i} {B : Type j} {Z : Ptd k} (f : fst Z → A) (g : fst Z → B) → P (⊙span (A , f (snd Z)) (B , g (snd Z)) Z (f , idp) (g , idp))) → Π ⊙Span P ⊙span-J P t (⊙span (A , ._) (B , ._) Z (f , idp) (g , idp)) = t f g
32.968254
76
0.413577
52bfdc76e510bce52b4b9de76a2ace6664fe90f7
2,130
agda
Agda
nicolai/anonymousExistence/Sec6hasConstToDecEq.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
nicolai/anonymousExistence/Sec6hasConstToDecEq.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
nicolai/anonymousExistence/Sec6hasConstToDecEq.agda
nicolaikraus/HoTT-Agda
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import library.Basics hiding (Type ; Σ) open import library.types.Sigma open import library.types.Bool open import Sec2preliminaries open import Sec4hasConstToSplit module Sec6hasConstToDecEq where -- Lemma 6.1 hasConst-family-dec : {X : Type} → (x₁ x₂ : X) → ((x : X) → hasConst ((x₁ == x) + (x₂ == x))) → (x₁ == x₂) + ¬(x₁ == x₂) hasConst-family-dec {X} x₁ x₂ hasConst-fam = solution where f₋ : (x : X) → (x₁ == x) + (x₂ == x) → (x₁ == x) + (x₂ == x) f₋ x = fst (hasConst-fam x) E₋ : X → Type E₋ x = fix (f₋ x) E : Type E = Σ X λ x → (E₋ x) E-fst-determines-eq : (e₁ e₂ : E) → (fst e₁ == fst e₂) → e₁ == e₂ E-fst-determines-eq e₁ e₂ p = second-comp-triv (λ x → fixed-point (f₋ x) (snd (hasConst-fam x))) _ _ p r : Bool → E r true = x₁ , to-fix (f₋ x₁) (snd (hasConst-fam x₁)) (inl idp) r false = x₂ , to-fix (f₋ x₂) (snd (hasConst-fam x₂)) (inr idp) about-r : (r true == r false) ↔ (x₁ == x₂) about-r = (λ p → ap fst p) , (λ p → E-fst-determines-eq _ _ p) s : E → Bool s (_ , inl _ , _) = true s (_ , inr _ , _) = false s-section-of-r : (e : E) → r(s e) == e s-section-of-r (x , inl p , q) = E-fst-determines-eq _ _ p s-section-of-r (x , inr p , q) = E-fst-determines-eq _ _ p about-s : (e₁ e₂ : E) → (s e₁ == s e₂) ↔ (e₁ == e₂) about-s e₁ e₂ = one , two where one : (s e₁ == s e₂) → (e₁ == e₂) one p = e₁ =⟨ ! (s-section-of-r e₁) ⟩ r(s(e₁)) =⟨ ap r p ⟩ r(s(e₂)) =⟨ s-section-of-r e₂ ⟩ e₂ ∎ two : (e₁ == e₂) → (s e₁ == s e₂) two p = ap s p combine : (s (r true) == s (r false)) ↔ (x₁ == x₂) combine = (about-s _ _) ◎ about-r check-bool : (s (r true) == s (r false)) + ¬(s (r true) == s (r false)) check-bool = Bool-has-dec-eq _ _ solution : (x₁ == x₂) + ¬(x₁ == x₂) solution with check-bool solution | inl p = inl (fst combine p) solution | inr np = inr (λ p → np (snd combine p)) -- Theorem 6.2 all-hasConst→dec-eq : ((X : Type) → hasConst X) → (X : Type) → has-dec-eq X all-hasConst→dec-eq all-hasConst X x₁ x₂ = hasConst-family-dec x₁ x₂ (λ x → all-hasConst _)
31.323529
120
0.537559
ad3aa0042f83bc6938c3f8c07befbb203352e977
653
agda
Agda
Cats/Category/Setoids/Facts.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Category/Setoids/Facts.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Category/Setoids/Facts.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Category.Setoids.Facts where open import Cats.Category.Setoids.Facts.Exponential public using (hasExponentials) open import Cats.Category.Setoids.Facts.Initial public using (hasInitial) open import Cats.Category.Setoids.Facts.Limit public using (complete) open import Cats.Category.Setoids.Facts.Product public using (hasProducts ; hasBinaryProducts ; hasFiniteProducts) open import Cats.Category.Setoids.Facts.Terminal public using (hasTerminal) open import Cats.Category open import Cats.Category.Setoids using (Setoids) instance isCCC : ∀ {l} → IsCCC (Setoids l l) isCCC = record {}
27.208333
64
0.777948
a02e8ec3d1f5954329d9c4a60c4ea9a214a38fe7
1,482
agda
Agda
stdlib-exts/Monads/ExceptT.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
35
2019-06-13T07:44:50.000Z
2021-10-12T22:59:10.000Z
stdlib-exts/Monads/ExceptT.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
10
2019-06-13T17:44:43.000Z
2020-04-25T15:29:17.000Z
stdlib-exts/Monads/ExceptT.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
2
2019-06-27T23:12:48.000Z
2021-10-20T10:46:20.000Z
module Monads.ExceptT where open import Class.Monad open import Class.Monad.Except open import Class.Monad.State open import Class.MonadTrans open import Data.Sum open import Function open import Level private variable a : Level ExceptT : (M : Set a -> Set a) -> Set a -> Set a -> Set a ExceptT M E A = M (E ⊎ A) ExceptT-MonadTrans : {E : Set a} -> MonadTrans (λ (M : Set a -> Set a) -> ExceptT M E) ExceptT-MonadTrans = record { embed = λ x -> x >>= (return ∘ inj₂) } module _ {M : Set a -> Set a} {{_ : Monad M}} {E : Set a} where ExceptT-Monad : Monad (ExceptT M E) ExceptT-Monad = record { _>>=_ = helper ; return = λ x → (return $ inj₂ x) } where helper : ∀ {A B} -> ExceptT M E A -> (A -> ExceptT M E B) -> ExceptT M E B helper x f = x >>= λ { (inj₁ y) -> return $ inj₁ y ; (inj₂ y) -> f y } private throwError' : ∀ {A : Set a} -> E -> ExceptT M E A throwError' = return ∘ inj₁ catchError' : ∀ {A} -> ExceptT M E A -> (E -> ExceptT M E A) -> ExceptT M E A catchError' x f = x >>= λ { (inj₁ x) → f x ; (inj₂ y) → return {{ExceptT-Monad}} y } ExceptT-MonadExcept : MonadExcept (ExceptT M E) {{ExceptT-Monad}} E ExceptT-MonadExcept = record { throwError = throwError' ; catchError = catchError' } ExceptT-MonadState : ∀ {S} {{_ : MonadState M S}} -> MonadState (ExceptT M E) {{ExceptT-Monad}} S ExceptT-MonadState = record { get = embed {{ExceptT-MonadTrans}} get ; put = embed {{ExceptT-MonadTrans}} ∘ put }
34.465116
99
0.608637
19943cf29a26a04d930dfa91c5e0c79386a7db2c
429
agda
Agda
test/Succeed/ConstructorsInstance.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ConstructorsInstance.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ConstructorsInstance.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module ConstructorsInstance where record UnitRC : Set where instance constructor tt data UnitD : Set where instance tt : UnitD postulate fRC : {{_ : UnitRC}} → Set fD : {{_ : UnitD}} → Set tryRC : Set tryRC = fRC tryD : Set tryD = fD data D : Set where a : D instance b : D c : D postulate g : {{_ : D}} → Set -- This should work because instance search will choose [b] try2 : Set try2 = g
12.617647
59
0.620047
a038ce27028642f6c678c6aa0f0a747e8c3ce276
2,493
agda
Agda
vendor/stdlib/src/Relation/Unary.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
56
2015-01-20T02:11:42.000Z
2021-12-21T17:02:19.000Z
vendor/stdlib/src/Relation/Unary.agda
larrytheliquid/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
1
2022-03-12T12:17:51.000Z
2022-03-12T12:17:51.000Z
vendor/stdlib/src/Relation/Unary.agda
isabella232/Lemmachine
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
[ "MIT" ]
3
2015-07-21T16:37:58.000Z
2022-03-12T11:54:10.000Z
------------------------------------------------------------------------ -- Unary relations ------------------------------------------------------------------------ module Relation.Unary where open import Data.Empty open import Data.Function open import Data.Unit open import Data.Product open import Data.Sum open import Relation.Nullary ------------------------------------------------------------------------ -- Unary relations Pred : Set → Set₁ Pred a = a → Set ------------------------------------------------------------------------ -- Unary relations can be seen as sets -- I.e., they can be seen as subsets of the universe of discourse. private module Dummy {a : Set} -- The universe of discourse. where -- Set membership. infix 4 _∈_ _∉_ _∈_ : a → Pred a → Set x ∈ P = P x _∉_ : a → Pred a → Set x ∉ P = ¬ x ∈ P -- The empty set. ∅ : Pred a ∅ = λ _ → ⊥ -- The property of being empty. Empty : Pred a → Set Empty P = ∀ x → x ∉ P ∅-Empty : Empty ∅ ∅-Empty x () -- The universe, i.e. the subset containing all elements in a. U : Pred a U = λ _ → ⊤ -- The property of being universal. Universal : Pred a → Set Universal P = ∀ x → x ∈ P U-Universal : Universal U U-Universal = λ _ → _ -- Set complement. ∁ : Pred a → Pred a ∁ P = λ x → x ∉ P ∁∅-Universal : Universal (∁ ∅) ∁∅-Universal = λ x x∈∅ → x∈∅ ∁U-Empty : Empty (∁ U) ∁U-Empty = λ x x∈∁U → x∈∁U _ -- P ⊆ Q means that P is a subset of Q. _⊆′_ is a variant of _⊆_. infix 4 _⊆_ _⊇_ _⊆′_ _⊇′_ _⊆_ : Pred a → Pred a → Set P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q _⊆′_ : Pred a → Pred a → Set P ⊆′ Q = ∀ x → x ∈ P → x ∈ Q _⊇_ : Pred a → Pred a → Set Q ⊇ P = P ⊆ Q _⊇′_ : Pred a → Pred a → Set Q ⊇′ P = P ⊆′ Q ∅-⊆ : (P : Pred a) → ∅ ⊆ P ∅-⊆ P () ⊆-U : (P : Pred a) → P ⊆ U ⊆-U P _ = _ -- Set union. infixl 6 _∪_ _∪_ : Pred a → Pred a → Pred a P ∪ Q = λ x → x ∈ P ⊎ x ∈ Q -- Set intersection. infixl 7 _∩_ _∩_ : Pred a → Pred a → Pred a P ∩ Q = λ x → x ∈ P × x ∈ Q open Dummy public ------------------------------------------------------------------------ -- Unary relation combinators infixr 2 _⟨×⟩_ infixr 1 _⟨⊎⟩_ infixr 0 _⟨→⟩_ _⟨×⟩_ : ∀ {A B} → Pred A → Pred B → Pred (A × B) (P ⟨×⟩ Q) p = P (proj₁ p) × Q (proj₂ p) _⟨⊎⟩_ : ∀ {A B} → Pred A → Pred B → Pred (A ⊎ B) (P ⟨⊎⟩ Q) (inj₁ p) = P p (P ⟨⊎⟩ Q) (inj₂ q) = Q q _⟨→⟩_ : ∀ {A B} → Pred A → Pred B → Pred (A → B) (P ⟨→⟩ Q) f = P ⊆ Q ∘₀ f
19.176923
72
0.440032
1a2ff3bd724016bf1ae3061c76c5cd660c0a05a3
12,738
agda
Agda
Cubical/ZCohomology/Groups/Torus.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Groups/Torus.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Groups/Torus.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.Torus where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Groups.Connected open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.Groups.Prelims open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Univalence open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc) open import Cubical.Data.Nat open import Cubical.Data.Unit open import Cubical.Algebra.Group open import Cubical.HITs.Pushout open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2) hiding (map) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim2 to pElim2 ; ∣_∣ to ∣_∣₁) hiding (map) open import Cubical.HITs.Nullification open import Cubical.HITs.Truncation renaming (elim to trElim ; elim2 to trElim2 ; map to trMap ; rec to trRec) open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Loopspace open GroupHom open GroupIso -- The following section contains stengthened induction principles for cohomology groups of T². They are particularly useful for showing that -- that some Isos are morphisms. They make things type-check faster, but should probably not be used for computations. -- We first need some functions elimFunT² : (n : ℕ) (p q : typ (Ω (coHomK-ptd (suc n)))) → Square q q p p → S¹ × S¹ → coHomK (suc n) elimFunT² n p q P (base , base) = ∣ ptSn (suc n) ∣ elimFunT² n p q P (base , loop i) = q i elimFunT² n p q P (loop i , base) = p i elimFunT² n p q P (loop i , loop j) = P i j elimFunT²' : (n : ℕ) → Square (refl {ℓ-zero} {coHomK (suc n)} {∣ ptSn (suc n) ∣}) refl refl refl → S¹ × S¹ → coHomK (suc n) elimFunT²' n P (x , base) = ∣ ptSn (suc n) ∣ elimFunT²' n P (base , loop j) = ∣ ptSn (suc n) ∣ elimFunT²' n P (loop i , loop j) = P i j elimFunT²'≡elimFunT² : (n : ℕ) → (P : _) → elimFunT²' n P ≡ elimFunT² n refl refl P elimFunT²'≡elimFunT² n P i (base , base) = ∣ ptSn (suc n) ∣ elimFunT²'≡elimFunT² n P i (base , loop k) = ∣ ptSn (suc n) ∣ elimFunT²'≡elimFunT² n P i (loop j , base) = ∣ ptSn (suc n) ∣ elimFunT²'≡elimFunT² n P i (loop j , loop k) = P j k {- The first induction principle says that when proving a proposition for some x : Hⁿ(T²), n ≥ 1, it suffices to show that it holds for (elimFunT² p q P) for any paths p q : ΩKₙ, and square P : Square q q p p. This is useful because elimFunT² p q P (base , base) recudes to 0 -} coHomPointedElimT² : ∀ {ℓ} (n : ℕ) {B : coHom (suc n) (S¹ × S¹) → Type ℓ} → ((x : coHom (suc n) (S¹ × S¹)) → isProp (B x)) → ((p q : _) (P : _) → B ∣ elimFunT² n p q P ∣₂) → (x : coHom (suc n) (S¹ × S¹)) → B x coHomPointedElimT² n {B = B} isprop indp = coHomPointedElim _ (base , base) isprop λ f fId → subst B (cong ∣_∣₂ (funExt (λ { (base , base) → sym fId ; (base , loop i) j → helper f fId i1 i (~ j) ; (loop i , base) j → helper f fId i i1 (~ j) ; (loop i , loop j) k → helper f fId i j (~ k)}))) (indp (λ i → helper f fId i i1 i1) (λ i → helper f fId i1 i i1) λ i j → helper f fId i j i1) where helper : (f : S¹ × S¹ → coHomK (suc n)) → f (base , base) ≡ ∣ ptSn (suc n) ∣ → I → I → I → coHomK (suc n) helper f fId i j k = hfill (λ k → λ {(i = i0) → doubleCompPath-filler (sym fId) (cong f (λ i → (base , loop i))) fId k j ; (i = i1) → doubleCompPath-filler (sym fId) (cong f (λ i → (base , loop i))) fId k j ; (j = i0) → doubleCompPath-filler (sym fId) (cong f (λ i → (loop i , base))) fId k i ; (j = i1) → doubleCompPath-filler (sym fId) (cong f (λ i → (loop i , base))) fId k i}) (inS (f ((loop i) , (loop j)))) k private lem : ∀ {ℓ} (n : ℕ) {B : coHom (2 + n) (S¹ × S¹) → Type ℓ} → ((P : _) → B ∣ elimFunT² (suc n) refl refl P ∣₂) → (p : _) → (refl ≡ p) → (q : _) → (refl ≡ q) → (P : _) → B ∣ elimFunT² (suc n) p q P ∣₂ lem n {B = B} elimP p = J (λ p _ → (q : _) → (refl ≡ q) → (P : _) → B ∣ elimFunT² (suc n) p q P ∣₂) λ q → J (λ q _ → (P : _) → B ∣ elimFunT² (suc n) refl q P ∣₂) elimP {- When working with Hⁿ(T²) , n ≥ 2, we are, in the case described above, allowed to assume that any f : Hⁿ(T²) is elimFunT² n refl refl P -} coHomPointedElimT²' : ∀ {ℓ} (n : ℕ) {B : coHom (2 + n) (S¹ × S¹) → Type ℓ} → ((x : coHom (2 + n) (S¹ × S¹)) → isProp (B x)) → ((P : _) → B ∣ elimFunT² (suc n) refl refl P ∣₂) → (x : coHom (2 + n) (S¹ × S¹)) → B x coHomPointedElimT²' n {B = B} prop ind = coHomPointedElimT² (suc n) prop λ p q P → trRec (isProp→isOfHLevelSuc n (prop _)) (λ p-refl → trRec (isProp→isOfHLevelSuc n (prop _)) (λ q-refl → lem n {B = B} ind p (sym p-refl) q (sym q-refl) P) (isConnectedPath _ (isConnectedPathKn (suc n) _ _) q refl .fst)) (isConnectedPath _ (isConnectedPathKn (suc n) _ _) p refl .fst) {- A slight variation of the above which gives definitional equalities for all points (x , base) -} private coHomPointedElimT²'' : ∀ {ℓ} (n : ℕ) {B : coHom (2 + n) (S¹ × S¹) → Type ℓ} → ((x : coHom (2 + n) (S¹ × S¹)) → isProp (B x)) → ((P : _) → B ∣ elimFunT²' (suc n) P ∣₂) → (x : coHom (2 + n) (S¹ × S¹)) → B x coHomPointedElimT²'' n {B = B} prop ind = coHomPointedElimT²' n prop λ P → subst (λ x → B ∣ x ∣₂) (elimFunT²'≡elimFunT² (suc n) P) (ind P) --------- H⁰(T²) ------------ H⁰-T²≅ℤ : GroupIso (coHomGr 0 (S₊ 1 × S₊ 1)) intGroup H⁰-T²≅ℤ = H⁰-connected (base , base) λ (a , b) → pRec propTruncIsProp (λ id1 → pRec propTruncIsProp (λ id2 → ∣ ΣPathP (id1 , id2) ∣₁) (Sn-connected 0 b) ) (Sn-connected 0 a) --------- H¹(T²) ------------------------------- H¹-T²≅ℤ×ℤ : GroupIso (coHomGr 1 ((S₊ 1) × (S₊ 1))) (dirProd intGroup intGroup) H¹-T²≅ℤ×ℤ = theIso □ dirProdGroupIso (Hⁿ-Sⁿ≅ℤ 0) (H⁰-Sⁿ≅ℤ 0) where typIso : Iso _ _ typIso = setTruncIso (curryIso ⋄ codomainIso S1→K₁≡S1×Int ⋄ toProdIso) ⋄ setTruncOfProdIso theIso : GroupIso _ _ fun (map theIso) = Iso.fun (typIso) isHom (map theIso) = coHomPointedElimT² _ (λ _ → isPropΠ λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ pf qf Pf → coHomPointedElimT² _ (λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ pg qg Pg i → ∣ funExt (helperFst pf qf pg qg Pg Pf) i ∣₂ , ∣ funExt (helperSnd pf qf pg qg Pg Pf) i ∣₂ where module _ (pf qf pg qg : 0ₖ 1 ≡ 0ₖ 1) (Pg : Square qg qg pg pg) (Pf : Square qf qf pf pf) where helperFst : (x : S¹) → Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pf qf Pf (x , y) +ₖ elimFunT² 0 pg qg Pg (x , y)) .fst ≡ Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pf qf Pf (x , y)) .fst +ₖ Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pg qg Pg (x , y)) .fst helperFst base = refl helperFst (loop i) j = loopLem j i where loopLem : cong (λ x → Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pf qf Pf (x , y) +ₖ elimFunT² 0 pg qg Pg (x , y)) .fst) loop ≡ cong (λ x → Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pf qf Pf (x , y)) .fst +ₖ Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pg qg Pg (x , y)) .fst) loop loopLem = (λ i j → S¹map-id (pf j +ₖ pg j) i) ∙ (λ i j → S¹map-id (pf j) (~ i) +ₖ S¹map-id (pg j) (~ i)) helperSnd : (x : S¹) → Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pf qf Pf (x , y) +ₖ elimFunT² 0 pg qg Pg (x , y)) .snd ≡ Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pf qf Pf (x , y)) .snd +ℤ Iso.fun S1→K₁≡S1×Int (λ y → elimFunT² 0 pg qg Pg (x , y)) .snd helperSnd = toPropElim (λ _ → isSetInt _ _) ((λ i → winding (basechange2⁻ base λ j → S¹map (∙≡+₁ qf qg (~ i) j))) ∙∙ cong (winding ∘ basechange2⁻ base) (congFunct S¹map qf qg) ∙∙ (cong winding (basechange2⁻-morph base (cong S¹map qf) (cong S¹map qg)) ∙ winding-hom (basechange2⁻ base (cong S¹map qf)) (basechange2⁻ base (cong S¹map qg)))) inv theIso = Iso.inv typIso rightInv theIso = Iso.rightInv typIso leftInv theIso = Iso.leftInv typIso ----------------------- H²(T²) ------------------------------ open import Cubical.Foundations.Equiv H²-T²≅ℤ : GroupIso (coHomGr 2 (S₊ 1 × S₊ 1)) intGroup H²-T²≅ℤ = compGroupIso helper2 (Hⁿ-Sⁿ≅ℤ 0) where helper : Iso (∥ ((a : S¹) → coHomK 2) ∥₂ × ∥ ((a : S¹) → coHomK 1) ∥₂) (coHom 1 S¹) Iso.inv helper s = 0ₕ _ , s Iso.fun helper = snd Iso.leftInv helper _ = ΣPathP (isOfHLevelSuc 0 (isOfHLevelRetractFromIso 0 (GroupIso→Iso (Hⁿ-S¹≅0 0)) (isContrUnit)) _ _ , refl) Iso.rightInv helper _ = refl theIso : Iso (coHom 2 (S¹ × S¹)) (coHom 1 S¹) theIso = setTruncIso (curryIso ⋄ codomainIso S1→K2≡K2×K1 ⋄ toProdIso) ⋄ setTruncOfProdIso ⋄ helper helper2 : GroupIso (coHomGr 2 (S¹ × S¹)) (coHomGr 1 S¹) helper2 = Iso+Hom→GrIso theIso ( coHomPointedElimT²'' 0 (λ _ → isPropΠ λ _ → setTruncIsSet _ _) λ P → coHomPointedElimT²'' 0 (λ _ → setTruncIsSet _ _) λ Q → (λ i → ∣ (λ a → ΩKn+1→Kn 1 (transportRefl refl i ∙∙ cong (λ x → (elimFunT²' 1 P (a , x) +ₖ elimFunT²' 1 Q (a , x)) -ₖ ∣ north ∣) loop ∙∙ transportRefl refl i)) ∣₂) ∙∙ (λ i → ∣ (λ a → ΩKn+1→Kn 1 (rUnit (cong (λ x → rUnitₖ 2 (elimFunT²' 1 P (a , x) +ₖ elimFunT²' 1 Q (a , x)) i) loop) (~ i))) ∣₂) ∙∙ (λ i → ∣ (λ a → ΩKn+1→Kn 1 (∙≡+₂ 0 (cong (λ x → elimFunT²' 1 P (a , x)) loop) (cong (λ x → elimFunT²' 1 Q (a , x)) loop) (~ i))) ∣₂) ∙∙ (λ i → ∣ (λ a → ΩKn+1→Kn-hom 1 (cong (λ x → elimFunT²' 1 P (a , x)) loop) (cong (λ x → elimFunT²' 1 Q (a , x)) loop) i) ∣₂) ∙∙ (λ i → ∣ ((λ a → ΩKn+1→Kn 1 (rUnit (cong (λ x → rUnitₖ 2 (elimFunT²' 1 P (a , x)) (~ i)) loop) i) +ₖ ΩKn+1→Kn 1 (rUnit (cong (λ x → rUnitₖ 2 (elimFunT²' 1 Q (a , x)) (~ i)) loop) i))) ∣₂) ∙ (λ i → ∣ ((λ a → ΩKn+1→Kn 1 (transportRefl refl (~ i) ∙∙ cong (λ x → elimFunT²' 1 P (a , x) +ₖ ∣ north ∣) loop ∙∙ transportRefl refl (~ i)) +ₖ ΩKn+1→Kn 1 (transportRefl refl (~ i) ∙∙ cong (λ x → elimFunT²' 1 Q (a , x) +ₖ ∣ north ∣) loop ∙∙ transportRefl refl (~ i)))) ∣₂)) private to₂ : coHom 2 (S₊ 1 × S₊ 1) → Int to₂ = fun (map H²-T²≅ℤ) from₂ : Int → coHom 2 (S₊ 1 × S₊ 1) from₂ = inv H²-T²≅ℤ to₁ : coHom 1 (S₊ 1 × S₊ 1) → Int × Int to₁ = fun (map H¹-T²≅ℤ×ℤ) from₁ : Int × Int → coHom 1 (S₊ 1 × S₊ 1) from₁ = inv H¹-T²≅ℤ×ℤ to₀ : coHom 0 (S₊ 1 × S₊ 1) → Int to₀ = fun (map H⁰-T²≅ℤ) from₀ : Int → coHom 0 (S₊ 1 × S₊ 1) from₀ = inv H⁰-T²≅ℤ {- -- Compute fast: test : to₁ (from₁ (0 , 1) +ₕ from₁ (1 , 0)) ≡ (1 , 1) test = refl test2 : to₁ (from₁ (5 , 1) +ₕ from₁ (-2 , 3)) ≡ (3 , 4) test2 = refl -- Compute pretty fast test3 : to₂ (from₂ 1) ≡ 1 test3 = refl test4 : to₂ (from₂ 2) ≡ 2 test4 = refl test5 : to₂ (from₂ 3) ≡ 3 test5 = refl -- Compute, but slower test6 : to₂ (from₂ 0 +ₕ from₂ 0) ≡ 0 test6 = refl test6 : to₂ (from₂ 0 +ₕ from₂ 1) ≡ 1 test6 = refl -- Does not compute test7 : to₂ (from₂ 1 +ₕ from₂ 0) ≡ 1 test7 = refl -}
46.32
147
0.533914
19618846125ce393b585847bc61f77257573b920
425
agda
Agda
test/Fail/Issue1077.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1077.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1077.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-07-28, issue #1077 -- Agda's reconstruction of the top-level module can be confusing -- in case the user puts some illegal declarations before the -- top level module in error. foo = Set module Issue1077 where bar = Set -- WAS: accepted, creating modules Issue1077 and Issue1077.Issue1077 -- with Issue1077.foo and Issue1077.Issue1077.bar -- NOW: Error -- Illegal declarations before top-level module
25
68
0.755294
1e842938634c7b6ccbd0a017609fd36e183bf89f
1,355
agda
Agda
notes/FOT/FOTC/Data/Stream/TypeSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Data/Stream/TypeSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Data/Stream/TypeSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Definition of FOTC streams using the Agda co-inductive combinators ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Stream.TypeSL where open import Codata.Musical.Notation open import Data.Product renaming ( _×_ to _∧_ ) open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- We add 3 to the fixities of the Agda standard library 0.8.1 (see -- Data/List.agda). infixr 8 _∷_ data D : Set where _∷_ : D → D → D data Stream : D → Set where consS : ∀ x {xs} → ∞ (Stream xs) → Stream (x ∷ xs) Stream-out : ∀ {xs} → Stream xs → ∃ λ x' → ∃ λ xs' → Stream xs' ∧ xs ≡ x' ∷ xs' Stream-out (consS x' {xs'} Sxs') = x' , xs' , ♭ Sxs' , refl {-# NON_TERMINATING #-} Stream-coind : (A : D → Set) → (∀ {xs} → A xs → ∃ λ x' → ∃ λ xs' → xs ≡ x' ∷ xs' ∧ A xs') → ∀ {xs} → A xs → Stream xs Stream-coind A h Axs with h Axs ... | x' , xs' , prf₁ , Axs' = subst Stream (sym prf₁) prf₂ where prf₂ : Stream (x' ∷ xs') prf₂ = consS x' (♯ Stream-coind A h Axs')
32.261905
78
0.474539
1d6430c8e62015c24a861dfa9431415ec03c21cd
257
agda
Agda
test/bugs/Lambda.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/bugs/Lambda.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/bugs/Lambda.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- forcePi should be allowed to generate constraints module Lambda where data Bool : Set where true : Bool false : Bool T : Bool -> Set T true = Bool -> Bool T false = Bool id : {x : Bool} -> T x -> T x id y = y f : Bool -> Bool f = id (\x -> x)
13.526316
52
0.595331
5e9462060e2001bb14bc3e54774675319c92efb4
768
agda
Agda
models/Prob.agda
dataronio/epigram2
17b7858f51a35b3becb8433028c3f1ba25fbba9a
[ "MIT" ]
48
2016-01-09T17:36:19.000Z
2022-02-11T01:55:28.000Z
models/Prob.agda
seanwallawalla-forks/Epigram
a2064e63786cc8004cfc9ac7a0c89c2936f0b797
[ "MIT" ]
null
null
null
models/Prob.agda
seanwallawalla-forks/Epigram
a2064e63786cc8004cfc9ac7a0c89c2936f0b797
[ "MIT" ]
12
2016-08-14T21:36:35.000Z
2022-02-11T01:57:40.000Z
{-# OPTIONS --type-in-type #-} module Prob where open import DescTT mutual data Sch : Set where ty : (S : Set) -> Sch exPi : (s : Sch)(T : toType s -> Sch) -> Sch imPi : (S : Set)(T : S -> Sch) -> Sch toType : Sch -> Set toType (ty S) = S toType (exPi s T) = (x : toType s) -> toType (T x) toType (imPi S T) = (x : S) -> toType (T x) Args : Sch -> Set Args (ty _) = Unit Args (exPi s T) = Sigma (toType s) \ x -> Args (T x) Args (imPi S T) = Sigma S \ x -> Args (T x) postulate UId : Set Prp : Set Prf : Prp -> Set data Prob : Set where label : (u : UId)(s : Sch)(a : Args s) -> Prob patPi : (u : UId)(S : Set)(p : Prob) -> Prob hypPi : (p : Prp)(T : Prf p -> Prob) -> Prob recPi : (rec : Prob)(p : Prob) -> Prob
22.588235
52
0.514323
520841b7d5d06549b07ff7c2f5b25b4be908a75d
1,441
agda
Agda
Numeral/Natural/Oper/FlooredDivision.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/Oper/FlooredDivision.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/Oper/FlooredDivision.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.Oper.FlooredDivision where import Lvl open import Data open import Data.Boolean.Stmt open import Logic.Propositional.Theorems open import Numeral.Natural open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Comparisons.Proofs open import Numeral.Natural.Relation.Order open import Relator.Equals infixl 10100 _⌊/⌋_ -- Inductive definition of an algorithm for division. -- `[ d , b ] a' div b'` should be interpreted as following: -- `d` is the result of the algorithm that is being incremented as it runs. -- `b` is the predecessor of the original denominator. This is constant throughout the whole process. -- `a'` is the numerator. This is decremented as it runs. -- `b'` is the predecessor of the temporary denominator. This is decremented as it runs. -- By decrementing both `a'` and `b'`, and incrementing `d` when 'b`' reaches 0, it counts how many times `b` "fits into" `a`. -- Note: See Numeral.Natural.Oper.Modulo for a similiar algorithm used to determine the modulo. [_,_]_div_ : ℕ → ℕ → ℕ → ℕ → ℕ [ d , _ ] 𝟎 div _ = d [ d , b ] 𝐒(a') div 𝟎 = [ 𝐒(d) , b ] a' div b [ d , b ] 𝐒(a') div 𝐒(b') = [ d , b ] a' div b' {-# BUILTIN NATDIVSUCAUX [_,_]_div_ #-} -- Floored division operation. _⌊/⌋_ : ℕ → (m : ℕ) → .⦃ _ : IsTrue(positive?(m)) ⦄ → ℕ a ⌊/⌋ 𝐒(m) = [ 𝟎 , m ] a div m _⌊/⌋₀_ : ℕ → ℕ → ℕ _ ⌊/⌋₀ 𝟎 = 𝟎 a ⌊/⌋₀ 𝐒(m) = a ⌊/⌋ 𝐒(m) {-# INLINE _⌊/⌋₀_ #-}
38.945946
127
0.659264
139cb0004d1a393ebf2cf6222fe6510ad1418c37
3,365
agda
Agda
Common/UntypedContext.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
Common/UntypedContext.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
Common/UntypedContext.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module Common.UntypedContext where open import Common.Context public -- Naturals, as a projection of contexts. ᴺ⌊_⌋ : ∀ {U} → Cx U → ℕ ᴺ⌊ ∅ ⌋ = zero ᴺ⌊ Γ , A ⌋ = suc ᴺ⌊ Γ ⌋ -- Inversion principle for naturals. invsuc : ∀ {n n′} → ℕ.suc n ≡ suc n′ → n ≡ n′ invsuc refl = refl -- Finite naturals, or nameless untyped de Bruijn indices, as a projection of context membership. ⁱ⌊_⌋ : ∀ {U} {A : U} {Γ} → A ∈ Γ → Fin ᴺ⌊ Γ ⌋ ⁱ⌊ top ⌋ = zero ⁱ⌊ pop i ⌋ = suc ⁱ⌊ i ⌋ -- Preorder on naturals, as a projection of context inclusion. infix 3 _≤_ data _≤_ : ℕ → ℕ → Set where done : zero ≤ zero skip : ∀ {n n′} → n ≤ n′ → n ≤ suc n′ keep : ∀ {n n′} → n ≤ n′ → suc n ≤ suc n′ ≤⌊_⌋ : ∀ {U} {Γ Γ′ : Cx U} → Γ ⊆ Γ′ → ᴺ⌊ Γ ⌋ ≤ ᴺ⌊ Γ′ ⌋ ≤⌊ done ⌋ = done ≤⌊ skip η ⌋ = skip ≤⌊ η ⌋ ≤⌊ keep η ⌋ = keep ≤⌊ η ⌋ refl≤ : ∀ {n} → n ≤ n refl≤ {zero} = done refl≤ {suc n} = keep refl≤ trans≤ : ∀ {n n′ n″} → n ≤ n′ → n′ ≤ n″ → n ≤ n″ trans≤ η done = η trans≤ η (skip η′) = skip (trans≤ η η′) trans≤ (skip η) (keep η′) = skip (trans≤ η η′) trans≤ (keep η) (keep η′) = keep (trans≤ η η′) unskip≤ : ∀ {n n′} → suc n ≤ n′ → n ≤ n′ unskip≤ (skip η) = skip (unskip≤ η) unskip≤ (keep η) = skip η unkeep≤ : ∀ {n n′} → suc n ≤ suc n′ → n ≤ n′ unkeep≤ (skip η) = unskip≤ η unkeep≤ (keep η) = η weak≤ : ∀ {n} → n ≤ suc n weak≤ = skip refl≤ bot≤ : ∀ {n} → zero ≤ n bot≤ {zero} = done bot≤ {suc n} = skip bot≤ -- Monotonicity of finite naturals with respect to preorder on naturals. monoFin : ∀ {n n′} → n ≤ n′ → Fin n → Fin n′ monoFin done () monoFin (skip η) i = suc (monoFin η i) monoFin (keep η) zero = zero monoFin (keep η) (suc i) = suc (monoFin η i) reflmonoFin : ∀ {n} → (i : Fin n) → i ≡ monoFin refl≤ i reflmonoFin zero = refl reflmonoFin (suc i) = cong suc (reflmonoFin i) transmonoFin : ∀ {n n′ n″} → (η : n ≤ n′) (η′ : n′ ≤ n″) (i : Fin n) → monoFin η′ (monoFin η i) ≡ monoFin (trans≤ η η′) i transmonoFin done η′ () transmonoFin η (skip η′) i = cong suc (transmonoFin η η′ i) transmonoFin (skip η) (keep η′) i = cong suc (transmonoFin η η′ i) transmonoFin (keep η) (keep η′) zero = refl transmonoFin (keep η) (keep η′) (suc i) = cong suc (transmonoFin η η′ i) -- Addition of naturals, as a projection of context concatenation. _+_ : ℕ → ℕ → ℕ n + zero = n n + (suc n′) = suc (n + n′) id+₁ : ∀ {n} → n + zero ≡ n id+₁ = refl id+₂ : ∀ {n} → zero + n ≡ n id+₂ {zero} = refl id+₂ {suc n} = cong suc id+₂ weak≤+₁ : ∀ {n} n′ → n ≤ n + n′ weak≤+₁ zero = refl≤ weak≤+₁ (suc n′) = skip (weak≤+₁ n′) weak≤+₂ : ∀ {n n′} → n′ ≤ n + n′ weak≤+₂ {n} {zero} = bot≤ weak≤+₂ {n} {suc n′} = keep weak≤+₂ -- Subtraction of naturals, as a projection of context thinning. _-_ : (n : ℕ) → Fin n → ℕ zero - () suc n - zero = n suc n - suc i = suc (n - i) thin≤ : ∀ {n} → (i : Fin n) → n - i ≤ n thin≤ zero = weak≤ thin≤ (suc i) = keep (thin≤ i) -- Decidable equality of finite naturals. data _=Fin_ {n} (i : Fin n) : Fin n → Set where same : i =Fin i diff : (j : Fin (n - i)) → i =Fin monoFin (thin≤ i) j _≟Fin_ : ∀ {n} → (i j : Fin n) → i =Fin j zero ≟Fin zero = same zero ≟Fin suc j rewrite reflmonoFin j = diff j suc i ≟Fin zero = diff zero suc i ≟Fin suc j with i ≟Fin j suc i ≟Fin suc .i | same = same suc i ≟Fin suc ._ | diff j = diff (suc j)
25.300752
97
0.534324
413ff184849b348eb82f57f9e41d58bf8017ec31
4,391
agda
Agda
Numeral/Natural/Coprime/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Numeral/Natural/Coprime/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Numeral/Natural/Coprime/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Numeral.Natural.Coprime.Proofs where open import Functional open import Logic open import Logic.Classical open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Numeral.Finite open import Numeral.Natural open import Numeral.Natural.Coprime open import Numeral.Natural.Decidable open import Numeral.Natural.Function.GreatestCommonDivisor open import Numeral.Natural.Relation.Divisibility.Proofs open import Numeral.Natural.Oper open import Numeral.Natural.Prime open import Numeral.Natural.Prime.Proofs open import Numeral.Natural.Relation.Divisibility open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Structure.Relator.Properties open import Type.Properties.Decidable.Proofs open import Type private variable n x y d p : ℕ -- 1 is the only number coprime to itself because it does not have any divisors except for itself. Coprime-reflexivity-condition : Coprime(n)(n) ↔ (n ≡ 1) Coprime-reflexivity-condition {n} = [↔]-intro l (r{n}) where l : Coprime(n)(n) ← (n ≡ 1) Coprime.proof(l [≡]-intro) {a} a1 _ = [1]-only-divides-[1] (a1) r : ∀{n} → Coprime(n)(n) → (n ≡ 1) r {𝟎} (intro z1) = z1 Div𝟎 Div𝟎 r {𝐒(𝟎)} _ = [≡]-intro r {𝐒(𝐒(n))} (intro ssn1) = ssn1 {𝐒(𝐒(n))} divides-reflexivity divides-reflexivity instance Coprime-symmetry : Symmetry(Coprime) Coprime.proof(Symmetry.proof Coprime-symmetry (intro proof)) {n} nx ny = proof {n} ny nx -- The only number coprime to 0 is 1 because while all numbers divide 0, only 1 divides 1. Coprime-of-0-condition : ∀{x} → Coprime(0)(x) → (x ≡ 1) Coprime-of-0-condition {0} (intro n1) = n1 Div𝟎 Div𝟎 Coprime-of-0-condition {1} (intro n1) = [≡]-intro Coprime-of-0-condition {𝐒(𝐒(x))} (intro n1) = n1 Div𝟎 divides-reflexivity -- 1 is coprime to all numbers because only 1 divides 1. Coprime-of-1 : Coprime(1)(x) Coprime.proof (Coprime-of-1 {x}) {n} n1 nx = [1]-only-divides-[1] n1 Coprime-of-[+] : Coprime(x)(y) → Coprime(x)(x + y) Coprime.proof (Coprime-of-[+] {x}{y} (intro proof)) {n} nx nxy = proof {n} nx ([↔]-to-[→] (divides-without-[+] nxy) nx) -- Coprimality is obviously equivalent to the greatest common divisor being 1 by definition. Coprime-gcd : Coprime(x)(y) ↔ (gcd(x)(y) ≡ 1) Coprime-gcd = [↔]-transitivity ([↔]-intro l r) Gcd-gcd-value where l : Coprime(x)(y) ← Gcd(x)(y) 1 Coprime.proof (l p) nx ny = [1]-only-divides-[1] (Gcd.maximum₂ p nx ny) r : Coprime(x)(y) → Gcd(x)(y) 1 Gcd.divisor(r (intro coprim)) 𝟎 = [1]-divides Gcd.divisor(r (intro coprim)) (𝐒 𝟎) = [1]-divides Gcd.maximum(r (intro coprim)) dv with [≡]-intro ← coprim (dv 𝟎) (dv(𝐒 𝟎)) = [1]-divides -- A smaller number and a greater prime number is coprime. -- If the greater number is prime, then no smaller number will divide it except for 1, and greater numbers never divide smaller ones. -- Examples (y = 7): -- The prime factors of 7 is only itself (because it is prime). -- Then the only alternatives for x are: -- x ∈ {1,2,3,4,5,6} -- None of them is able to have 7 as a prime factor because it is greater: -- 1=1, 2=2, 3=3, 4=2⋅2, 5=5, 6=2⋅3 Coprime-of-Prime : (𝐒(x) < y) → Prime(y) → Coprime(𝐒(x))(y) Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny with prime-only-divisors prim ny Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny | [∨]-introₗ n1 = n1 Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny | [∨]-introᵣ [≡]-intro with () ← [≤]-to-[≯] lt ([≤]-without-[𝐒] (divides-upper-limit nx)) -- A prime number either divides a number or forms a coprime pair. -- If a prime number does not divide a number, then it cannot share any divisors because by definition, a prime only has 1 as a divisor. Prime-to-div-or-coprime : Prime(x) → ((x ∣ y) ∨ Coprime(x)(y)) Prime-to-div-or-coprime {y = y} (intro {x} prim) = [¬→]-disjunctive-formᵣ ⦃ decider-to-classical ⦄ (intro ∘ coprim) where coprim : (𝐒(𝐒(x)) ∤ y) → ∀{n} → (n ∣ 𝐒(𝐒(x))) → (n ∣ y) → (n ≡ 1) coprim nxy {𝟎} nx ny with () ← [0]-divides-not nx coprim nxy {𝐒 n} nx ny with prim nx ... | [∨]-introₗ [≡]-intro = [≡]-intro ... | [∨]-introᵣ [≡]-intro with () ← nxy ny divides-to-converse-coprime : ∀{x y z} → (x ∣ y) → Coprime(y)(z) → Coprime(x)(z) divides-to-converse-coprime xy (intro yz) = intro(nx ↦ nz ↦ yz (transitivity(_∣_) nx xy) nz)
47.728261
149
0.673195
1ac24f5806f9bf2b1396abc4a4361eee0c9392de
1,474
agda
Agda
out/CommGroup/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
out/CommGroup/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
out/CommGroup/Equality.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order equational theory was created from the following second-order syntax description: syntax CommGroup | CG type * : 0-ary term unit : * | ε add : * * -> * | _⊕_ l20 neg : * -> * | ⊖_ r40 theory (εU⊕ᴸ) a |> add (unit, a) = a (εU⊕ᴿ) a |> add (a, unit) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊖N⊕ᴸ) a |> add (neg (a), a) = unit (⊖N⊕ᴿ) a |> add (a, neg (a)) = unit (⊕C) a b |> add(a, b) = add(b, a) -} module CommGroup.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import CommGroup.Signature open import CommGroup.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution CG:Syn open import SOAS.Metatheory.SecondOrder.Equality CG:Syn private variable α β γ τ : *T Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ CG) α Γ → (𝔐 ▷ CG) α Γ → Set where εU⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ε ⊕ 𝔞 ≋ₐ 𝔞 ⊕A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊕ 𝔠 ≋ₐ 𝔞 ⊕ (𝔟 ⊕ 𝔠) ⊖N⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (⊖ 𝔞) ⊕ 𝔞 ≋ₐ ε ⊕C : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ 𝔟 ≋ₐ 𝔟 ⊕ 𝔞 open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning -- Derived equations εU⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ ε ≋ 𝔞 εU⊕ᴿ = tr (ax ⊕C with《 𝔞 ◃ ε 》) (ax εU⊕ᴸ with《 𝔞 》) ⊖N⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ (⊖ 𝔞) ≋ ε ⊖N⊕ᴿ = tr (ax ⊕C with《 𝔞 ◃ (⊖ 𝔞) 》) (ax ⊖N⊕ᴸ with《 𝔞 》)
24.566667
99
0.527815
52aaba0a71d0adeb83d41d54ba610aa7c54a6df2
7,670
agda
Agda
Cubical/Categories/NaturalTransformation/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:02.000Z
2022-02-05T01:25:02.000Z
Cubical/Categories/NaturalTransformation/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/NaturalTransformation/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.NaturalTransformation.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism renaming (iso to iIso) open import Cubical.Data.Sigma open import Cubical.Categories.Category open import Cubical.Categories.Functor.Base open import Cubical.Categories.Functor.Properties open import Cubical.Categories.Commutativity open import Cubical.Categories.Morphism renaming (isIso to isIsoC) private variable ℓA ℓA' ℓB ℓB' ℓC ℓC' ℓD ℓD' : Level module _ {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} where -- syntax for sequencing in category D infixl 15 _⋆ᴰ_ private _⋆ᴰ_ : ∀ {x y z} (f : D [ x , y ]) (g : D [ y , z ]) → D [ x , z ] f ⋆ᴰ g = f ⋆⟨ D ⟩ g open Category open Functor -- type aliases because it gets tedious typing it out all the time N-ob-Type : (F G : Functor C D) → Type _ N-ob-Type F G = (x : C .ob) → D [(F .F-ob x) , (G .F-ob x)] N-hom-Type : (F G : Functor C D) → N-ob-Type F G → Type _ N-hom-Type F G ϕ = {x y : C .ob} (f : C [ x , y ]) → (F .F-hom f) ⋆ᴰ (ϕ y) ≡ (ϕ x) ⋆ᴰ (G .F-hom f) record NatTrans (F G : Functor C D) : Type (ℓ-max (ℓ-max ℓC ℓC') ℓD') where constructor natTrans field -- components of the natural transformation N-ob : N-ob-Type F G -- naturality condition N-hom : N-hom-Type F G N-ob record NatIso (F G : Functor C D): Type (ℓ-max (ℓ-max ℓC ℓC') (ℓ-max ℓD ℓD')) where field trans : NatTrans F G open NatTrans trans field nIso : ∀ (x : C .ob) → isIsoC D (N-ob x) open isIsoC -- the three other commuting squares sqRL : ∀ {x y : C .ob} {f : C [ x , y ]} → F ⟪ f ⟫ ≡ (N-ob x) ⋆ᴰ G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv sqRL {x} {y} {f} = invMoveR (isIso→areInv (nIso y)) (N-hom f) sqLL : ∀ {x y : C .ob} {f : C [ x , y ]} → G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv ≡ (nIso x) .inv ⋆ᴰ F ⟪ f ⟫ sqLL {x} {y} {f} = invMoveL (isIso→areInv (nIso x)) (sym sqRL') where sqRL' : F ⟪ f ⟫ ≡ (N-ob x) ⋆ᴰ ( G ⟪ f ⟫ ⋆ᴰ (nIso y) .inv ) sqRL' = sqRL ∙ (D .⋆Assoc _ _ _) sqLR : ∀ {x y : C .ob} {f : C [ x , y ]} → G ⟪ f ⟫ ≡ (nIso x) .inv ⋆ᴰ F ⟪ f ⟫ ⋆ᴰ (N-ob y) sqLR {x} {y} {f} = invMoveR (symAreInv (isIso→areInv (nIso y))) sqLL open NatTrans open NatIso infix 10 NatTrans syntax NatTrans F G = F ⇒ G infix 9 NatIso syntax NatIso F G = F ≅ᶜ G -- c superscript to indicate that this is in the context of categories -- component of a natural transformation infix 30 _⟦_⟧ _⟦_⟧ : ∀ {F G : Functor C D} → F ⇒ G → (x : C .ob) → D [ F .F-ob x , G .F-ob x ] _⟦_⟧ = N-ob idTrans : (F : Functor C D) → NatTrans F F idTrans F .N-ob x = D .id idTrans F .N-hom f = (F .F-hom f) ⋆ᴰ (idTrans F .N-ob _) ≡⟨ D .⋆IdR _ ⟩ F .F-hom f ≡⟨ sym (D .⋆IdL _) ⟩ (D .id) ⋆ᴰ (F .F-hom f) ∎ syntax idTrans F = 1[ F ] -- vertical sequencing seqTrans : {F G H : Functor C D} (α : NatTrans F G) (β : NatTrans G H) → NatTrans F H seqTrans α β .N-ob x = (α .N-ob x) ⋆ᴰ (β .N-ob x) seqTrans {F} {G} {H} α β .N-hom f = (F .F-hom f) ⋆ᴰ ((α .N-ob _) ⋆ᴰ (β .N-ob _)) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ ((F .F-hom f) ⋆ᴰ (α .N-ob _)) ⋆ᴰ (β .N-ob _) ≡[ i ]⟨ (α .N-hom f i) ⋆ᴰ (β .N-ob _) ⟩ ((α .N-ob _) ⋆ᴰ (G .F-hom f)) ⋆ᴰ (β .N-ob _) ≡⟨ D .⋆Assoc _ _ _ ⟩ (α .N-ob _) ⋆ᴰ ((G .F-hom f) ⋆ᴰ (β .N-ob _)) ≡[ i ]⟨ (α .N-ob _) ⋆ᴰ (β .N-hom f i) ⟩ (α .N-ob _) ⋆ᴰ ((β .N-ob _) ⋆ᴰ (H .F-hom f)) ≡⟨ sym (D .⋆Assoc _ _ _) ⟩ ((α .N-ob _) ⋆ᴰ (β .N-ob _)) ⋆ᴰ (H .F-hom f) ∎ compTrans : {F G H : Functor C D} (β : NatTrans G H) (α : NatTrans F G) → NatTrans F H compTrans β α = seqTrans α β infixl 8 seqTrans syntax seqTrans α β = α ●ᵛ β -- vertically sequence natural transformations whose -- common functor is not definitional equal seqTransP : {F G G' H : Functor C D} (p : G ≡ G') → (α : NatTrans F G) (β : NatTrans G' H) → NatTrans F H seqTransP {F} {G} {G'} {H} p α β .N-ob x -- sequence morphisms with non-judgementally equal (co)domain = seqP {C = D} {p = Gx≡G'x} (α ⟦ x ⟧) (β ⟦ x ⟧) where Gx≡G'x : ∀ {x} → G ⟅ x ⟆ ≡ G' ⟅ x ⟆ Gx≡G'x {x} i = F-ob (p i) x seqTransP {F} {G} {G'} {H} p α β .N-hom {x = x} {y} f -- compose the two commuting squares -- 1. α's commuting square -- 2. β's commuting square, but extended to G since β is only G' ≡> H = compSq {C = D} (α .N-hom f) βSq where -- functor equality implies equality of actions on objects and morphisms Gx≡G'x : G ⟅ x ⟆ ≡ G' ⟅ x ⟆ Gx≡G'x i = F-ob (p i) x Gy≡G'y : G ⟅ y ⟆ ≡ G' ⟅ y ⟆ Gy≡G'y i = F-ob (p i) y Gf≡G'f : PathP (λ i → D [ Gx≡G'x i , Gy≡G'y i ]) (G ⟪ f ⟫) (G' ⟪ f ⟫) Gf≡G'f i = p i ⟪ f ⟫ -- components of β extended out to Gx and Gy respectively βx' = subst (λ a → D [ a , H ⟅ x ⟆ ]) (sym Gx≡G'x) (β ⟦ x ⟧) βy' = subst (λ a → D [ a , H ⟅ y ⟆ ]) (sym Gy≡G'y) (β ⟦ y ⟧) -- extensions are equal to originals βy'≡βy : PathP (λ i → D [ Gy≡G'y i , H ⟅ y ⟆ ]) βy' (β ⟦ y ⟧) βy'≡βy = symP (toPathP {A = λ i → D [ Gy≡G'y (~ i) , H ⟅ y ⟆ ]} refl) βx≡βx' : PathP (λ i → D [ Gx≡G'x (~ i) , H ⟅ x ⟆ ]) (β ⟦ x ⟧) βx' βx≡βx' = toPathP refl -- left wall of square left : PathP (λ i → D [ Gx≡G'x i , H ⟅ y ⟆ ]) (G ⟪ f ⟫ ⋆⟨ D ⟩ βy') (G' ⟪ f ⟫ ⋆⟨ D ⟩ β ⟦ y ⟧) left i = Gf≡G'f i ⋆⟨ D ⟩ βy'≡βy i -- right wall of square right : PathP (λ i → D [ Gx≡G'x (~ i) , H ⟅ y ⟆ ]) (β ⟦ x ⟧ ⋆⟨ D ⟩ H ⟪ f ⟫) (βx' ⋆⟨ D ⟩ H ⟪ f ⟫) right i = βx≡βx' i ⋆⟨ D ⟩ refl {x = H ⟪ f ⟫} i -- putting it all together βSq : G ⟪ f ⟫ ⋆⟨ D ⟩ βy' ≡ βx' ⋆⟨ D ⟩ H ⟪ f ⟫ βSq i = comp (λ k → D [ Gx≡G'x (~ k) , H ⟅ y ⟆ ]) (λ j → λ { (i = i0) → left (~ j) ; (i = i1) → right j }) (β .N-hom f i) module _ {F G : Functor C D} {α β : NatTrans F G} where open Category open Functor open NatTrans makeNatTransPath : α .N-ob ≡ β .N-ob → α ≡ β makeNatTransPath p i .N-ob = p i makeNatTransPath p i .N-hom f = rem i where rem : PathP (λ i → (F .F-hom f) ⋆ᴰ (p i _) ≡ (p i _) ⋆ᴰ (G .F-hom f)) (α .N-hom f) (β .N-hom f) rem = toPathP (D .isSetHom _ _ _ _) module _ {F F' G G' : Functor C D} {α : NatTrans F G} {β : NatTrans F' G'} where open Category open Functor open NatTrans makeNatTransPathP : ∀ (p : F ≡ F') (q : G ≡ G') → PathP (λ i → (x : C .ob) → D [ (p i) .F-ob x , (q i) .F-ob x ]) (α .N-ob) (β .N-ob) → PathP (λ i → NatTrans (p i) (q i)) α β makeNatTransPathP p q P i .N-ob = P i makeNatTransPathP p q P i .N-hom f = rem i where rem : PathP (λ i → ((p i) .F-hom f) ⋆ᴰ (P i _) ≡ (P i _) ⋆ᴰ ((q i) .F-hom f)) (α .N-hom f) (β .N-hom f) rem = toPathP (D .isSetHom _ _ _ _) module _ {B : Category ℓB ℓB'} {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} where open NatTrans -- whiskering -- αF _∘ˡ_ : ∀ {G H : Functor C D} (α : NatTrans G H) → (F : Functor B C) → NatTrans (G ∘F F) (H ∘F F) (_∘ˡ_ {G} {H} α F) .N-ob x = α ⟦ F ⟅ x ⟆ ⟧ (_∘ˡ_ {G} {H} α F) .N-hom f = (α .N-hom) _ -- Kβ _∘ʳ_ : ∀ (K : Functor C D) → {G H : Functor B C} (β : NatTrans G H) → NatTrans (K ∘F G) (K ∘F H) (_∘ʳ_ K {G} {H} β) .N-ob x = K ⟪ β ⟦ x ⟧ ⟫ (_∘ʳ_ K {G} {H} β) .N-hom f = preserveCommF {C = C} {D = D} {K} (β .N-hom f)
35.345622
102
0.494263
adee8eda95577cdb53a2b384459c2c8c4c03a4b4
681
agda
Agda
Rings/Primes/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Rings/Primes/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Rings/Primes/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Rings.Definition open import Rings.IntegralDomains.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Primes.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where open import Rings.Divisible.Definition R open Ring R open Setoid S open import Rings.Units.Definition R record Prime (x : A) : Set (a ⊔ b) where field isPrime : (r s : A) → (x ∣ (r * s)) → ((x ∣ r) → False) → (x ∣ s) nonzero : (x ∼ 0R) → False nonunit : Unit x → False
30.954545
152
0.653451
2ebb999f040658076f172ff72c93098a04fa9b90
9,519
agda
Agda
Cubical/Algebra/IntegerMatrix/Diagonalization.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/IntegerMatrix/Diagonalization.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/IntegerMatrix/Diagonalization.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{- This file contains a diagonalization procedure simpler than Smith normalization. For any matrix M, it provides two invertible matrices P, Q, one diagonal matrix D and an equality M = P·D·Q. The only difference from Smith is, the numbers in D are allowed to be arbitrary, instead of being consecutively divisible. But it is enough to establish important properties of finitely presented abelian groups. Also, it can be computed much more efficiently (than Smith, only). -} {-# OPTIONS --safe #-} module Cubical.Algebra.IntegerMatrix.Diagonalization where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Nat hiding (_·_) renaming (_+_ to _+ℕ_ ; +-assoc to +Assocℕ) open import Cubical.Data.Nat.Order open import Cubical.Data.Nat.Divisibility using (m∣n→m≤n) renaming (∣-trans to ∣ℕ-trans ; ∣-refl to ∣-reflℕ) open import Cubical.Data.Int hiding (_+_ ; _·_ ; _-_ ; -_ ; addEq) open import Cubical.Data.Int.Divisibility open import Cubical.Data.FinData open import Cubical.Data.Empty as Empty open import Cubical.Data.Unit as Unit open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.List open import Cubical.Algebra.Matrix open import Cubical.Algebra.Matrix.CommRingCoefficient open import Cubical.Algebra.Matrix.Elementaries open import Cubical.Algebra.IntegerMatrix.Base open import Cubical.Algebra.IntegerMatrix.Elementaries open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤ to ℤRing) open import Cubical.Relation.Nullary open import Cubical.Induction.WellFounded private variable m n k : ℕ open CommRingStr (ℤRing .snd) open Coefficient ℤRing open Sim open ElemTransformation ℤRing open ElemTransformationℤ open SwapPivot open RowsImproved open ColsImproved -- Sequence of non-zero integers isNonZero : List ℤ → Type isNonZero [] = Unit isNonZero (x ∷ xs) = (¬ x ≡ 0) × isNonZero xs isPropIsNonZero : (xs : List ℤ) → isProp (isNonZero xs) isPropIsNonZero [] = isPropUnit isPropIsNonZero (x ∷ xs) = isProp× (isPropΠ (λ _ → isProp⊥)) (isPropIsNonZero xs) NonZeroList : Type NonZeroList = Σ[ xs ∈ List ℤ ] isNonZero xs cons : (n : ℤ)(xs : NonZeroList) → ¬ n ≡ 0 → NonZeroList cons n (xs , _) _ .fst = n ∷ xs cons n ([] , _) p .snd = p , tt cons n (x ∷ xs , q) p .snd = p , q -- Smith normal matrix _+length_ : NonZeroList → ℕ → ℕ xs +length n = length (xs .fst) +ℕ n diagMat : (xs : List ℤ)(m n : ℕ) → Mat (length xs +ℕ m) (length xs +ℕ n) diagMat [] _ _ = 𝟘 diagMat (x ∷ xs) _ _ = x ⊕ diagMat xs _ _ diagMat⊕ : (a : ℤ)(xs : NonZeroList){m n : ℕ} → (p : ¬ a ≡ 0) → a ⊕ diagMat (xs .fst) m n ≡ diagMat (cons a xs p .fst) m n diagMat⊕ _ _ _ = refl -- Diagonal matrix with non-zero diagonal elements -- Notice that we allow non-square matrices. record isDiagonal (M : Mat m n) : Type where field divs : NonZeroList rowNull : ℕ colNull : ℕ rowEq : divs +length rowNull ≡ m colEq : divs +length colNull ≡ n matEq : PathP (λ t → Mat (rowEq t) (colEq t)) (diagMat (divs .fst) rowNull colNull) M open isDiagonal row col : {M : Mat m n} → isDiagonal M → ℕ row isNorm = isNorm .divs +length isNorm .rowNull col isNorm = isNorm .divs +length isNorm .colNull isDiagonal𝟘 : isDiagonal (𝟘 {m = m} {n = n}) isDiagonal𝟘 .divs = [] , tt isDiagonal𝟘 {m = m} .rowNull = m isDiagonal𝟘 {n = n} .colNull = n isDiagonal𝟘 .rowEq = refl isDiagonal𝟘 .colEq = refl isDiagonal𝟘 .matEq = refl isDiagonalEmpty : (M : Mat 0 n) → isDiagonal M isDiagonalEmpty _ .divs = [] , tt isDiagonalEmpty _ .rowNull = 0 isDiagonalEmpty {n = n} _ .colNull = n isDiagonalEmpty _ .rowEq = refl isDiagonalEmpty _ .colEq = refl isDiagonalEmpty _ .matEq = isContr→isProp isContrEmpty _ _ isDiagonalEmptyᵗ : (M : Mat m 0) → isDiagonal M isDiagonalEmptyᵗ _ .divs = [] , tt isDiagonalEmptyᵗ {m = m} _ .rowNull = m isDiagonalEmptyᵗ _ .colNull = 0 isDiagonalEmptyᵗ _ .rowEq = refl isDiagonalEmptyᵗ _ .colEq = refl isDiagonalEmptyᵗ _ .matEq = isContr→isProp isContrEmptyᵗ _ _ -- Induction step towards diagonalization data DivStatus (a : ℤ)(M : Mat (suc m) (suc n)) : Type where badCol : (i : Fin m)(p : ¬ a ∣ M (suc i) zero) → DivStatus a M badRow : (j : Fin n)(p : ¬ a ∣ M zero (suc j)) → DivStatus a M allDone : ((i : Fin m) → a ∣ M (suc i) zero) → ((j : Fin n) → a ∣ M zero (suc j)) → DivStatus a M divStatus : (a : ℤ)(M : Mat (suc m) (suc n)) → DivStatus a M divStatus a M = let col? = ∀Dec (λ i → a ∣ M (suc i) zero) (λ _ → dec∣ _ _) row? = ∀Dec (λ j → a ∣ M zero (suc j)) (λ _ → dec∣ _ _) in case col? return (λ _ → DivStatus a M) of λ { (inr p) → badCol (p .fst) (p .snd) ; (inl p) → case row? return (λ _ → DivStatus a M) of λ { (inr q) → badRow (q .fst) (q .snd) ; (inl q) → allDone p q }} record DiagStep (M : Mat (suc m) (suc n)) : Type where field sim : Sim M firstColClean : (i : Fin m) → sim .result (suc i) zero ≡ 0 firstRowClean : (j : Fin n) → sim .result zero (suc j) ≡ 0 nonZero : ¬ sim .result zero zero ≡ 0 open DiagStep simDiagStep : {M : Mat (suc m) (suc n)}(sim : Sim M) → DiagStep (sim .result) → DiagStep M simDiagStep simM diag .sim = compSim simM (diag .sim) simDiagStep _ diag .firstColClean = diag .firstColClean simDiagStep _ diag .firstRowClean = diag .firstRowClean simDiagStep _ diag .nonZero = diag .nonZero private diagStep-helper : (M : Mat (suc m) (suc n)) → (p : ¬ M zero zero ≡ 0)(h : Norm (M zero zero)) → (div? : DivStatus (M zero zero) M) → DiagStep M diagStep-helper M p (acc ind) (badCol i q) = let improved = improveRows M p normIneq = ind _ (stDivIneq p q (improved .div zero) (improved .div (suc i))) in simDiagStep (improved .sim) (diagStep-helper _ (improved .nonZero) normIneq (divStatus _ _)) diagStep-helper M p (acc ind) (badRow j q) = let improved = improveCols M p normIneq = ind _ (stDivIneq p q (improved .div zero) (improved .div (suc j))) in simDiagStep (improved .sim) (diagStep-helper _ (improved .nonZero) normIneq (divStatus _ _)) diagStep-helper M p (acc ind) (allDone div₁ div₂) = let improveColM = improveCols M p invCol = bézoutRows-inv _ p div₂ divCol = (λ i → transport (λ t → invCol t zero ∣ invCol t (suc i)) (div₁ i)) improveRowM = improveRows (improveColM .sim .result) (improveColM .nonZero) invCol = bézoutRows-inv _ (improveColM .nonZero) divCol in record { sim = compSim (improveColM .sim) (improveRowM .sim) ; firstColClean = improveRowM .vanish ; firstRowClean = (λ j → (λ t → invCol (~ t) (suc j)) ∙ improveColM .vanish j) ; nonZero = improveRowM .nonZero } diagStep-getStart : (M : Mat (suc m) (suc n)) → NonZeroOrNot M → DiagStep M ⊎ (M ≡ 𝟘) diagStep-getStart _ (allZero p) = inr p diagStep-getStart M (hereIs i j p) = let swapM = swapPivot i j M swapNonZero = (λ r → p (swapM .swapEq ∙ r)) diagM = diagStep-helper _ swapNonZero (<-wellfounded _) (divStatus _ _) in inl (simDiagStep (swapM .sim) diagM) diagStep : (M : Mat (suc m) (suc n)) → DiagStep M ⊎ (M ≡ 𝟘) diagStep _ = diagStep-getStart _ (findNonZero _) -- The diagonalization record Diag (M : Mat m n) : Type where field sim : Sim M isdiag : isDiagonal (sim .result) open Diag simDiag : {M : Mat m n}(sim : Sim M) → Diag (sim .result) → Diag M simDiag simM diag .sim = compSim simM (diag .sim) simDiag _ diag .isdiag = diag .isdiag diag𝟘 : Diag (𝟘 {m = m} {n = n}) diag𝟘 .sim = idSim _ diag𝟘 .isdiag = isDiagonal𝟘 diagEmpty : (M : Mat 0 n) → Diag M diagEmpty _ .sim = idSim _ diagEmpty M .isdiag = isDiagonalEmpty M diagEmptyᵗ : (M : Mat m 0) → Diag M diagEmptyᵗ _ .sim = idSim _ diagEmptyᵗ M .isdiag = isDiagonalEmptyᵗ M decompDiagStep : (M : Mat (suc m) (suc n))(step : DiagStep M) → step .sim .result ≡ step .sim .result zero zero ⊕ sucMat (step .sim .result) decompDiagStep M step t zero zero = step .sim .result zero zero decompDiagStep M step t zero (suc j) = step .firstRowClean j t decompDiagStep M step t (suc i) zero = step .firstColClean i t decompDiagStep M step t (suc i) (suc j) = step .sim .result (suc i) (suc j) consIsDiagonal : (a : ℤ)(M : Mat m n) → (p : ¬ a ≡ 0) → isDiagonal M → isDiagonal (a ⊕ M) consIsDiagonal a _ p diag .divs = cons a (diag .divs) p consIsDiagonal _ _ _ diag .rowNull = diag .rowNull consIsDiagonal _ _ _ diag .colNull = diag .colNull consIsDiagonal _ _ _ diag .rowEq = (λ t → suc (diag .rowEq t)) consIsDiagonal _ _ _ diag .colEq = (λ t → suc (diag .colEq t)) consIsDiagonal a _ _ diag .matEq = (λ t → a ⊕ diag .matEq t) diagReduction : (a : ℤ)(M : Mat m n) → (p : ¬ a ≡ 0) → Diag M → Diag (a ⊕ M) diagReduction a _ _ diag .sim = ⊕Sim a (diag .sim) diagReduction a _ p diag .isdiag = consIsDiagonal a _ p (diag .isdiag) -- The Existence of Diagonalization diagonalize : (M : Mat m n) → Diag M diagonalize {m = 0} = diagEmpty diagonalize {m = suc m} {n = 0} = diagEmptyᵗ diagonalize {m = suc m} {n = suc n} M = helper (diagStep _) where helper : DiagStep M ⊎ (M ≡ 𝟘) → Diag M helper (inr p) = subst Diag (sym p) diag𝟘 helper (inl stepM) = let sucM = sucMat (stepM .sim .result) diagM = diagReduction _ _ (stepM .nonZero) (diagonalize sucM) in simDiag (compSim (stepM .sim) (≡Sim (decompDiagStep _ stepM))) diagM
33.4
122
0.658262
43fb3dd079ddee5e344a43fe48590b814deaa3be
13,916
agda
Agda
src/Divergence.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
4
2021-07-29T14:32:30.000Z
2022-01-24T14:38:47.000Z
src/Divergence.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
null
null
null
src/Divergence.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
null
null
null
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness --sized-types #-} open import Data.Empty open import Data.Unit open import Data.Product open import Data.Maybe open import Data.Sum open import Data.List using (_++_; []; _∷_; _∷ʳ_; length) open import Data.List.Properties using (∷-injective) open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Unary using (_∈_; _⊆_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; subst; cong) open import Function.Base using (case_of_) open import Common module Divergence {ℙ : Set} (message : Message ℙ) where open import SessionType message open import Session message open import Trace message open import HasTrace message open import TraceSet message open import Transitions message open import Semantics message open import Subtyping message DivergeForward : SessionType -> SessionType -> Trace -> Set record _↑_ (T : SessionType) (S : SessionType) : Set where coinductive field trace : Trace with-trace : T HasTrace trace without-trace : ¬ S HasTrace trace divergence : DivergeForward T S trace DivergeForward T S φ = ∀{ψ x} (pre : ψ ⊑ φ) (tψx : T HasTrace (ψ ∷ʳ O x)) (sψx : S HasTrace (ψ ∷ʳ O x)) -> after tψx ↑ after sψx diverge-before-input : ∀{f g x} -> f x .force ↑ g x .force -> inp f ↑ inp g _↑_.trace (diverge-before-input {_} {_} {x} div) = I x ∷ _↑_.trace div _↑_.with-trace (diverge-before-input div) = inp-has-trace (_↑_.with-trace div) _↑_.without-trace (diverge-before-input div) = inp-has-no-trace (_↑_.without-trace div) _↑_.divergence (diverge-before-input div) none (_ , _ , step () _) _ _↑_.divergence (diverge-before-input div) (some le) (_ , tdef , step inp tr) (_ , sdef , step inp sr) = _↑_.divergence div le (_ , tdef , tr) (_ , sdef , sr) DivergeBackward : ∀{T S φ} -> T HasTrace φ -> S HasTrace φ -> Set DivergeBackward {_} {_} {φ} tφ sφ = ∀{ψ} (pre : ψ ⊑ φ) -> after (⊑-has-trace pre tφ) ↑ after (⊑-has-trace pre sφ) ⊑-diverge-backward : ∀{T S φ ψ} {tφ : T HasTrace φ} {sφ : S HasTrace φ} (pre : ψ ⊑ φ) -> DivergeBackward tφ sφ -> DivergeBackward (⊑-has-trace pre tφ) (⊑-has-trace pre sφ) ⊑-diverge-backward {_} {_} {_} {_} {tφ} {sφ} pre div pre' rewrite ⊑-tran-has-trace pre' pre tφ | ⊑-tran-has-trace pre' pre sφ = div (⊑-tran pre' pre) data DiscSet : SessionType -> SessionType -> Trace -> Set where inc : ∀{T S φ} (tφ : T HasTrace φ) (sφ : S HasTrace φ) (div←φ : DivergeBackward tφ sφ) -> DiscSet T S φ exc : ∀{T S φ ψ x} (eq : φ ≡ ψ ∷ʳ O x) (tψ : T HasTrace ψ) (sψ : S HasTrace ψ) (tφ : T HasTrace φ) (nsφ : ¬ S HasTrace φ) (div←ψ : DivergeBackward tψ sψ) -> DiscSet T S φ ⊑-proper : ∀{φ ψ α} -> φ ⊑ (ψ ∷ʳ α) -> φ ⊑ ψ ⊎ φ ≡ ψ ∷ʳ α ⊑-proper {[]} {[]} none = inj₁ none ⊑-proper {_ ∷ []} {[]} (some none) = inj₂ refl ⊑-proper {[]} {_ ∷ _} none = inj₁ none ⊑-proper {_} {_ ∷ _} (some pre) with ⊑-proper pre ... | inj₁ pre' = inj₁ (some pre') ... | inj₂ refl = inj₂ refl disc-set->closed : (T S : SessionType) -> PrefixClosed (DiscSet T S) disc-set->closed T S pre (inc tφ sφ div←φ) = inc (⊑-has-trace pre tφ) (⊑-has-trace pre sφ) (⊑-diverge-backward pre div←φ) disc-set->closed T S pre (exc refl tψ sψ tφ nsφ div←ψ) with ⊑-proper pre ... | inj₁ pre' = inc (⊑-has-trace pre' tψ) (⊑-has-trace pre' sψ) (⊑-diverge-backward pre' div←ψ) ... | inj₂ refl = exc refl tψ sψ tφ nsφ div←ψ input-lemma : ∀{φ x ψ χ y} -> φ ++ I x ∷ ψ ≡ χ ∷ʳ O y -> (φ ∷ʳ I x) ⊑ χ input-lemma {[]} {_} {_} {I x ∷ χ} refl = some none input-lemma {x ∷ φ} {_} {_} {[]} eq with ∷-injective eq ... | (_ , eq') = ⊥-elim (absurd-++-≡ eq') input-lemma {x ∷ φ} {_} {_} {y ∷ χ} eq with ∷-injective eq ... | (refl , eq'') = some (input-lemma eq'') disc-set-input : ∀{φ x ψ} {T S : SessionType} -> DiscSet T S (φ ++ I x ∷ ψ) -> T HasTrace (φ ∷ʳ I x) × S HasTrace (φ ∷ʳ I x) disc-set-input {φ} {x} {ψ} (inc tφ sφ div←φ) with ⊑-precong-++ {φ} {I x ∷ []} {I x ∷ ψ} (some none) ... | pre = ⊑-has-trace pre tφ , ⊑-has-trace pre sφ disc-set-input (exc eq tχ sχ _ _ _) with input-lemma eq ... | pre = ⊑-has-trace pre tχ , ⊑-has-trace pre sχ disc-set-output : ∀{φ x ψ} {T S : SessionType} -> DiscSet T S (φ ++ O x ∷ ψ) -> T HasTrace (φ ∷ʳ O x) disc-set-output {φ} {x} {ψ} (inc tφx sφx _) = let pre = ⊑-precong-++ {φ} {O x ∷ []} {O x ∷ ψ} (some none) in ⊑-has-trace pre tφx disc-set-output {φ} {x} {ψ} (exc _ _ _ tφx _ _) = let pre = ⊑-precong-++ {φ} {O x ∷ []} {O x ∷ ψ} (some none) in ⊑-has-trace pre tφx disc-set->coherent : (T S : SessionType) -> Coherent (DiscSet T S) disc-set->coherent T S ti to = let (ti[] , _) = disc-set-input ti in let to[] = disc-set-output to in ⊥-elim (coherent (sem-sound T) ti[] to[]) disc-set->semantics : (T S : SessionType) -> Semantics (DiscSet T S) closed (disc-set->semantics T S) = disc-set->closed T S coherent (disc-set->semantics T S) = disc-set->coherent T S disc-set-subset : ∀{T S} -> DiscSet T S ⊆ ⟦ T ⟧ disc-set-subset (inc tφ _ _) = tφ disc-set-subset (exc _ _ _ tφ _ _) = tφ disc-set-disjoint : ∀{T S φ} -> φ ∈ DiscSet T S -> ¬ S HasTrace φ -> ∃[ ψ ] ∃[ x ] (φ ≡ ψ ∷ʳ O x × S HasTrace ψ) disc-set-disjoint (inc _ sφ _) nsφ = ⊥-elim (nsφ sφ) disc-set-disjoint (exc eq _ sψ _ _ _) nsφ = _ , _ , eq , sψ -- --| BEGIN MAXIMAL TRACES |-- diverge-forward-input : ∀{f g x φ} -> DivergeForward (inp f) (inp g) (I x ∷ φ) -> DivergeForward (f x .force) (g x .force) φ diverge-forward-input div pre (_ , tdef , tr) (_ , sdef , sr) = div (some pre) (_ , tdef , step inp tr) (_ , sdef , step inp sr) diverge-forward-input' : ∀{f g x φ} -> DivergeForward (f x .force) (g x .force) φ -> DivergeForward (inp f) (inp g) (I x ∷ φ) diverge-forward-input' div none (_ , _ , step () _) (_ , _ , _) diverge-forward-input' div (some le) (_ , tdef , step inp tr) (_ , sdef , step inp sr) = div le (_ , tdef , tr) (_ , sdef , sr) diverge-forward-output : ∀{f g x φ} -> DivergeForward (out f) (out g) (O x ∷ φ) -> DivergeForward (f x .force) (g x .force) φ diverge-forward-output div pre (_ , tdef , tr) (_ , sdef , sr) = div (some pre) (_ , tdef , step (out (transitions+defined->defined tr tdef)) tr) (_ , sdef , step (out (transitions+defined->defined sr sdef)) sr) -- the next lemma says that if T ↑ S and φ is the trace that -- discriminates between them, then we have divergence along any -- common prefix of φ shared by both T and S diverge-forward->backward : ∀{T S φ ψ} (tφ : T HasTrace φ) (nsφ : ¬ S HasTrace φ) (div : DivergeForward T S φ) (pre : ψ ⊑ φ) (tψ : T HasTrace ψ) (sψ : S HasTrace ψ) -> DivergeBackward tψ sψ _↑_.trace (diverge-forward->backward tφ nsφ div pre tψ sψ none) = _ _↑_.with-trace (diverge-forward->backward tφ nsφ div pre tψ sψ none) = tφ _↑_.without-trace (diverge-forward->backward tφ nsφ div pre tψ sψ none) = nsφ _↑_.divergence (diverge-forward->backward tφ nsφ div pre tψ sψ none) = div diverge-forward->backward (_ , tdef , step inp tr) nsφ div (some pre) (_ , tdef' , step (inp {f}) tr') (_ , sdef , step (inp {g}) sr) (some pre') = diverge-forward->backward (_ , tdef , tr) (contraposition inp-has-trace nsφ) (diverge-forward-input {f} {g} div) pre (_ , tdef' , tr') (_ , sdef , sr) pre' diverge-forward->backward (_ , tdef , step (out _) tr) nsφ div (some pre) (_ , tdef' , step (out {f} _) tr') (_ , sdef , step (out {g} _) sr) (some pre') = diverge-forward->backward (_ , tdef , tr) (contraposition out-has-trace nsφ) (diverge-forward-output {f} {g} div) pre (_ , tdef' , tr') (_ , sdef , sr) pre' prefix-last-element : ∀{φ φ' ψ ψ' x y} -> φ ⊑ ψ -> φ ≡ φ' ++ O x ∷ [] -> ψ ≡ ψ' ∷ʳ O y -> ψ ≡ φ ⊎ φ ⊑ ψ' prefix-last-element none e1 e2 = inj₂ none prefix-last-element {φ' = []} {ψ' = []} (some pre) e1 e2 with ∷-injective e1 | ∷-injective e2 ... | (_ , e1') | (_ , e2') rewrite e1' | e2' = inj₁ refl prefix-last-element {φ' = []} {ψ' = x ∷ ψ'} (some _) e1 e2 with ∷-injective e1 | ∷-injective e2 ... | (eq1 , e1') | (eq2 , e2') rewrite eq1 | eq2 | e1' | e2' = inj₂ (some none) prefix-last-element {φ' = x ∷ φ'} {ψ' = []} (some pre) e1 e2 with ∷-injective e1 | ∷-injective e2 ... | (eq1 , e1') | (eq2 , e2') rewrite e1' | e2' = ⊥-elim (absurd-++-⊑ pre) prefix-last-element {φ' = x ∷ φ'} {ψ' = x₁ ∷ ψ'} (some pre) e1 e2 with ∷-injective e1 | ∷-injective e2 ... | (eq1 , e1') | (eq2 , e2') rewrite eq1 | eq2 with prefix-last-element pre e1' e2' ... | inj₁ eq rewrite eq = inj₁ refl ... | inj₂ pre' = inj₂ (some pre') disc-set-maximal-1 : ∀{T S φ} -> φ ∈ DiscSet T S -> ¬ S HasTrace φ -> φ ∈ Maximal (DiscSet T S) disc-set-maximal-1 dsφ nsφ with disc-set-disjoint dsφ nsφ ... | _ , _ , refl , sψ = maximal dsφ λ le ds' -> let _ , _ , eq , sψ' = disc-set-disjoint ds' (contraposition (⊑-has-trace le) nsφ) in case prefix-last-element le refl eq of λ { (inj₁ refl) → refl ; (inj₂ le') → ⊥-elim (contraposition (⊑-has-trace le') nsφ sψ') } has-trace-after : ∀{T φ ψ} (tφ : T HasTrace φ) -> after tφ HasTrace ψ -> T HasTrace (φ ++ ψ) has-trace-after (_ , _ , refl) tφψ = tφψ has-trace-after (_ , tdef , step inp tr) tφψ = inp-has-trace (has-trace-after (_ , tdef , tr) tφψ) has-trace-after (_ , tdef , step (out _) tr) tφψ = out-has-trace (has-trace-after (_ , tdef , tr) tφψ) has-no-trace-after : ∀{T φ ψ} (tφ : T HasTrace φ) -> ¬ after tφ HasTrace ψ -> ¬ T HasTrace (φ ++ ψ) has-no-trace-after (_ , _ , refl) tφ/nψ = tφ/nψ has-no-trace-after (_ , tdef , step inp tr) tφ/nψ = inp-has-no-trace (has-no-trace-after (_ , tdef , tr) tφ/nψ) has-no-trace-after (_ , tdef , step (out _) tr) tφ/nψ = out-has-no-trace (has-no-trace-after (_ , tdef , tr) tφ/nψ) append-diverge-backward : ∀{T S φ ψ} (tφ : T HasTrace φ) (sφ : S HasTrace φ) (tφ/ψ : after tφ HasTrace ψ) (sφ/ψ : after sφ HasTrace ψ) (div←φ : DivergeBackward tφ sφ) (divφ←ψ : DivergeBackward tφ/ψ sφ/ψ) -> DivergeBackward (has-trace-after tφ tφ/ψ) (has-trace-after sφ sφ/ψ) append-diverge-backward (_ , tdef , refl) (_ , sdef , refl) tφ/ψ sφ/ψ div←φ divφ←ψ pre = divφ←ψ pre append-diverge-backward (_ , tdef , step t tr) (_ , sdef , step s sr) tφ/ψ sφ/ψ div←φ divφ←ψ none = div←φ none append-diverge-backward (_ , tdef , step inp tr) (_ , sdef , step inp sr) tφ/ψ sφ/ψ div←φ divφ←ψ (some pre) = append-diverge-backward (_ , tdef , tr) (_ , sdef , sr) tφ/ψ sφ/ψ (λ pre -> div←φ (some pre)) divφ←ψ pre append-diverge-backward (_ , tdef , step (out _) tr) (_ , sdef , step (out _) sr) tφ/ψ sφ/ψ div←φ divφ←ψ (some pre) = append-diverge-backward (_ , tdef , tr) (_ , sdef , sr) tφ/ψ sφ/ψ (λ pre -> div←φ (some pre)) divφ←ψ pre append-snoc : ∀{φ ψ : Trace}{α : Action} -> φ ++ (ψ ∷ʳ α) ≡ (φ ++ ψ) ∷ʳ α append-snoc {[]} = refl append-snoc {β ∷ φ} = cong (β ∷_) (append-snoc {φ}) completion : ∀{φ T S} -> T <: S -> φ ∈ DiscSet T S -> (∃[ ψ ] (φ ⊏ ψ × ψ ∈ Maximal (DiscSet T S))) ⊎ (φ ∈ Maximal (DiscSet T S) × ¬ S HasTrace φ) completion {φ} sub (inc tφ sφ div←φ) with div←φ (⊑-refl _) ... | div rewrite ⊑-has-trace-after tφ | ⊑-has-trace-after sφ = let χ = _↑_.trace div in let tφ/χ = _↑_.with-trace div in let sφ/nχ = _↑_.without-trace div in let divφ→χ = _↑_.divergence div in let subφ = sub-after tφ sφ sub in let ψ , x , ψ⊑χ , tφ/ψ , sφ/ψ , tφ/ψx , sφ/nψx = sub-excluded subφ tφ/χ sφ/nχ in let tφψ = has-trace-after tφ tφ/ψ in let sφψ = has-trace-after sφ sφ/ψ in let tφψx = has-trace-after tφ tφ/ψx in let sφnψx = has-no-trace-after sφ sφ/nψx in let divφ←ψ = diverge-forward->backward tφ/χ sφ/nχ divφ→χ ψ⊑χ tφ/ψ sφ/ψ in let div←ψ = append-diverge-backward tφ sφ tφ/ψ sφ/ψ div←φ divφ←ψ in let ds = exc {_} {_} {φ ++ (ψ ∷ʳ O x)} {φ ++ ψ} {x} (append-snoc {φ} {ψ} {O x}) tφψ sφψ tφψx sφnψx div←ψ in inj₁ (φ ++ (ψ ∷ʳ O x) , ⊏-++ , disc-set-maximal-1 ds sφnψx) completion sub ds@(exc _ _ _ _ nsφ _) = inj₂ (disc-set-maximal-1 ds nsφ , nsφ) disc-set-maximal-2 : ∀{T S φ} -> T <: S -> φ ∈ Maximal (DiscSet T S) -> ¬ S HasTrace φ disc-set-maximal-2 sub (maximal dφ F) sφ with completion sub dφ ... | inj₁ (ψ , φ⊏ψ , maximal dψ _) = ⊏->≢ φ⊏ψ (sym (F (⊏->⊑ φ⊏ψ) dψ)) ... | inj₂ (_ , nsφ) = nsφ sφ --| END MAXIMAL TRACES |-- -- Sia R il session type determinato da disc-set T S quando T ↑ -- S. L'obiettivo è dimostrare che R |- T e ¬ R |- S -- -- R |- T -- -- Ogni riduzione di (R # T) può essere completata a (R' # T') in -- cui Win R' e Defined T' -- -- Siccome le tracce di R sono incluse in quelle di T, basta -- dimostrare che ogni traccia di R può essere completata, cioè che -- ogni traccia di disc-set T S è prefisso di una traccia completa -- di disc-set T S. -- -- ∀ φ ∈ R => ∃ ψ : φ ++ ψ ∈ Maximal R -- -- ¬ R |- S -- -- Dimostrare che ogni traccia completa di R non è una traccia di S. -- -- Maximal R ∩ ⟦ S ⟧ ≡ ∅
43.352025
158
0.615982
2282e1017923041a2ad2186e11e44a17efde8659
8,754
agda
Agda
src/Tree-sort/Full.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Tree-sort/Full.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Tree-sort/Full.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A correct implementation of tree sort ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- The algorithm and the treatment of ordering information is taken -- from Conor McBride's talk "Pivotal pragmatism". -- The module is parametrised by a total relation. open import Equality open import Prelude hiding (id; _∘_; lower) module Tree-sort.Full {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) {A : Type} (le : A → A → Type) (total : ∀ x y → le x y ⊎ le y x) where open Derived-definitions-and-properties eq open import Bag-equivalence eq using () renaming (Any to AnyL) open import Bijection eq using (_↔_) open import Function-universe eq hiding (Kind; module Kind) open import List eq ------------------------------------------------------------------------ -- Extending the order with new minimum and maximum elements -- A extended with a new minimum and maximum. data Extended : Type where min max : Extended [_] : (x : A) → Extended infix 4 _≤_ _≤_ : Extended → Extended → Type min ≤ y = ⊤ [ x ] ≤ [ y ] = le x y x ≤ max = ⊤ _ ≤ _ = ⊥ -- A pair of ordering constraints (written as a record type to aid -- type inference). infix 4 _,_ record _≤[_]≤_ (l : Extended) (x : A) (u : Extended) : Type where constructor _,_ field lower : l ≤ [ x ] upper : [ x ] ≤ u ------------------------------------------------------------------------ -- Ordered lists data Ordered-list (l u : Extended) : Type where nil : (l≤u : l ≤ u) → Ordered-list l u cons : (x : A) (xs : Ordered-list [ x ] u) (l≤x : l ≤ [ x ]) → Ordered-list l u -- Conversion to ordinary lists. to-list : ∀ {l u} → Ordered-list l u → List A to-list (nil l≤u) = [] to-list (cons x xs l≤x) = x ∷ to-list xs ------------------------------------------------------------------------ -- Unbalanced binary search trees infix 5 node syntax node x lx xu = lx -[ x ]- xu data Search-tree (l u : Extended) : Type where leaf : (l≤u : l ≤ u) → Search-tree l u node : (x : A) (lx : Search-tree l [ x ]) (xu : Search-tree [ x ] u) → Search-tree l u -- Any. AnyT : ∀ {l u} → (A → Type) → Search-tree l u → Type AnyT P (leaf _) = ⊥ AnyT P (node x l r) = AnyT P l ⊎ P x ⊎ AnyT P r ------------------------------------------------------------------------ -- An ad-hoc universe consisting of lists, ordered lists and search -- trees -- The purpose of this universe is to allow overloading of Any, _∈_ -- and _≈-bag_. -- Codes. data Kind : Type where list ordered-list search-tree : Kind -- Index type. -- -- Note that Agda infers values of type ⊤ automatically. Index : Kind → Type Index list = ⊤ Index _ = Extended -- Interpretation. ⟦_⟧ : (k : Kind) → (Index k → Index k → Type) ⟦ list ⟧ _ _ = List A ⟦ ordered-list ⟧ l u = Ordered-list l u ⟦ search-tree ⟧ l u = Search-tree l u -- Any. Any : ∀ {k l u} → (A → Type) → (⟦ k ⟧ l u → Type) Any {list} = AnyL Any {ordered-list} = λ P → AnyL P ∘ to-list Any {search-tree} = AnyT -- Membership. infix 4 _∈_ _∈_ : ∀ {k l u} → A → ⟦ k ⟧ l u → Type x ∈ xs = Any (λ y → x ≡ y) xs -- Bag equivalence. infix 4 _≈-bag_ _≈-bag_ : ∀ {k₁ k₂ l₁ u₁ l₂ u₂} → ⟦ k₁ ⟧ l₁ u₁ → ⟦ k₂ ⟧ l₂ u₂ → Type xs ≈-bag ys = ∀ z → z ∈ xs ↔ z ∈ ys ------------------------------------------------------------------------ -- Singleton trees singleton : ∀ {l u} (x : A) → l ≤[ x ]≤ u → Search-tree l u singleton x (l≤x , x≤u) = leaf l≤x -[ x ]- leaf x≤u -- Any lemma for singleton. Any-singleton : ∀ (P : A → Type) {l u x} (l≤x≤u : l ≤[ x ]≤ u) → Any P (singleton x l≤x≤u) ↔ P x Any-singleton P {x = x} l≤x≤u = Any P (singleton x l≤x≤u) ↔⟨⟩ ⊥ ⊎ P x ⊎ ⊥ ↔⟨ ⊎-left-identity ⟩ P x ⊎ ⊥ ↔⟨ ⊎-right-identity ⟩ P x □ ------------------------------------------------------------------------ -- Insertion into a search tree insert : ∀ {l u} (x : A) → Search-tree l u → l ≤[ x ]≤ u → Search-tree l u insert x (leaf _) l≤x≤u = singleton x l≤x≤u insert x (ly -[ y ]- yu) (l≤x , x≤u) with total x y ... | inj₁ x≤y = insert x ly (l≤x , x≤y) -[ y ]- yu ... | inj₂ y≤x = ly -[ y ]- insert x yu (y≤x , x≤u) -- Any lemma for insert. Any-insert : ∀ (P : A → Type) {l u} x t (l≤x≤u : l ≤[ x ]≤ u) → Any P (insert x t l≤x≤u) ↔ P x ⊎ Any P t Any-insert P {l} {u} x (leaf l≤u) l≤x≤u = Any P (singleton x l≤x≤u) ↔⟨ Any-singleton P l≤x≤u ⟩ P x ↔⟨ inverse ⊎-right-identity ⟩ P x ⊎ ⊥ ↔⟨⟩ P x ⊎ Any P (leaf {l = l} {u = u} l≤u) □ Any-insert P x (ly -[ y ]- yu) (l≤x , x≤u) with total x y ... | inj₁ x≤y = Any P (insert x ly (l≤x , x≤y)) ⊎ P y ⊎ Any P yu ↔⟨ Any-insert P x ly (l≤x , x≤y) ⊎-cong id ⟩ (P x ⊎ Any P ly) ⊎ P y ⊎ Any P yu ↔⟨ inverse ⊎-assoc ⟩ P x ⊎ Any P ly ⊎ P y ⊎ Any P yu □ ... | inj₂ y≤x = Any P ly ⊎ P y ⊎ Any P (insert x yu (y≤x , x≤u)) ↔⟨ id ⊎-cong id ⊎-cong Any-insert P x yu (y≤x , x≤u) ⟩ Any P ly ⊎ P y ⊎ P x ⊎ Any P yu ↔⟨ lemma _ _ _ _ ⟩ P x ⊎ Any P ly ⊎ P y ⊎ Any P yu □ where -- The following lemma is easy to prove automatically (for -- instance by using a ring solver). lemma : (A B C D : Type) → A ⊎ B ⊎ C ⊎ D ↔ C ⊎ A ⊎ B ⊎ D lemma A B C D = A ⊎ B ⊎ C ⊎ D ↔⟨ id ⊎-cong ⊎-assoc ⟩ A ⊎ (B ⊎ C) ⊎ D ↔⟨ id ⊎-cong ⊎-comm ⊎-cong id ⟩ A ⊎ (C ⊎ B) ⊎ D ↔⟨ ⊎-assoc ⟩ (A ⊎ C ⊎ B) ⊎ D ↔⟨ ⊎-assoc ⊎-cong id ⟩ ((A ⊎ C) ⊎ B) ⊎ D ↔⟨ (⊎-comm ⊎-cong id) ⊎-cong id ⟩ ((C ⊎ A) ⊎ B) ⊎ D ↔⟨ inverse ⊎-assoc ⊎-cong id ⟩ (C ⊎ A ⊎ B) ⊎ D ↔⟨ inverse ⊎-assoc ⟩ C ⊎ (A ⊎ B) ⊎ D ↔⟨ id ⊎-cong inverse ⊎-assoc ⟩ C ⊎ A ⊎ B ⊎ D □ ------------------------------------------------------------------------ -- Turning an unordered list into a search tree to-search-tree : List A → Search-tree min max to-search-tree = foldr (λ x t → insert x t _) (leaf _) -- No elements are added or removed. to-search-tree-lemma : ∀ xs → to-search-tree xs ≈-bag xs to-search-tree-lemma [] = λ z → z ∈ leaf {l = min} {u = max} _ ↔⟨⟩ z ∈ [] □ to-search-tree-lemma (x ∷ xs) = λ z → z ∈ insert x (to-search-tree xs) _ ↔⟨ Any-insert (λ x → z ≡ x) _ _ _ ⟩ z ≡ x ⊎ z ∈ to-search-tree xs ↔⟨ id ⊎-cong to-search-tree-lemma xs z ⟩ z ∈ x ∷ xs □ ------------------------------------------------------------------------ -- Appending two ordered lists with an extra element in between infixr 5 append syntax append x lx xu = lx -⁅ x ⁆- xu append : ∀ {l u} (x : A) → Ordered-list l [ x ] → Ordered-list [ x ] u → Ordered-list l u nil l≤x -⁅ x ⁆- xu = cons x xu l≤x cons y yx l≤y -⁅ x ⁆- xu = cons y (yx -⁅ x ⁆- xu) l≤y -- Any lemma for append. Any-append : ∀ (P : A → Type) {l u} x (lx : Ordered-list l [ x ]) (xu : Ordered-list [ x ] u) → Any P (lx -⁅ x ⁆- xu) ↔ Any P lx ⊎ P x ⊎ Any P xu Any-append P x (nil l≤x) xu = P x ⊎ Any P xu ↔⟨ inverse ⊎-left-identity ⟩ ⊥ ⊎ P x ⊎ Any P xu □ Any-append P x (cons y yx l≤y) xu = P y ⊎ Any P (append x yx xu) ↔⟨ id ⊎-cong Any-append P x yx xu ⟩ P y ⊎ Any P yx ⊎ P x ⊎ Any P xu ↔⟨ ⊎-assoc ⟩ (P y ⊎ Any P yx) ⊎ P x ⊎ Any P xu □ ------------------------------------------------------------------------ -- Inorder flattening of a tree flatten : ∀ {l u} → Search-tree l u → Ordered-list l u flatten (leaf l≤u) = nil l≤u flatten (l -[ x ]- r) = flatten l -⁅ x ⁆- flatten r -- Flatten does not add or remove any elements. flatten-lemma : ∀ {l u} (t : Search-tree l u) → flatten t ≈-bag t flatten-lemma {l} {u} (leaf l≤u) = λ z → z ∈ nil {l = l} {u = u} l≤u ↔⟨⟩ z ∈ leaf {l = l} {u = u} l≤u □ flatten-lemma (l -[ x ]- r) = λ z → z ∈ flatten l -⁅ x ⁆- flatten r ↔⟨ Any-append (λ x → z ≡ x) _ _ _ ⟩ z ∈ flatten l ⊎ z ≡ x ⊎ z ∈ flatten r ↔⟨ flatten-lemma l z ⊎-cong id ⊎-cong flatten-lemma r z ⟩ z ∈ l ⊎ z ≡ x ⊎ z ∈ r ↔⟨⟩ z ∈ l -[ x ]- r □ ------------------------------------------------------------------------ -- Sorting -- Sorts a list. tree-sort : List A → Ordered-list min max tree-sort = flatten ∘ to-search-tree -- The result is a permutation of the input. tree-sort-permutes : ∀ xs → tree-sort xs ≈-bag xs tree-sort-permutes xs = λ z → z ∈ tree-sort xs ↔⟨⟩ z ∈ flatten (to-search-tree xs) ↔⟨ flatten-lemma (to-search-tree xs) _ ⟩ z ∈ to-search-tree xs ↔⟨ to-search-tree-lemma xs _ ⟩ z ∈ xs □
31.717391
106
0.465844