hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
43469d92f69a739af0d76a327909961e445ffa7a
2,918
agda
Agda
Cats/Trans/Iso.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Trans/Iso.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Trans/Iso.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Trans.Iso where open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Cats.Category.Base open import Cats.Functor using (Functor) open import Cats.Util.Simp using (simp!) open import Cats.Trans using (Trans ; component ; natural) import Cats.Category.Constructions.Iso as Iso open Functor open Iso.Build._≅_ module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where private module C = Category C module D = Category D open module D≅ = Iso.Build D using (_≅_) module ≅ = D≅.≅ open D.≈-Reasoning record NatIso (F G : Functor C D) : Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) where field iso : ∀ {c} → fobj F c ≅ fobj G c forth-natural : ∀ {c d} {f : c C.⇒ d} → forth iso D.∘ fmap F f D.≈ fmap G f D.∘ forth iso back-natural : ∀ {c d} {f : c C.⇒ d} → back iso D.∘ fmap G f D.≈ fmap F f D.∘ back iso back-natural {f = f} = begin back iso D.∘ fmap G f ≈⟨ D.∘-resp-r (D.≈.sym D.id-r) ⟩ back iso D.∘ fmap G f D.∘ D.id ≈⟨ D.∘-resp-r (D.∘-resp-r (D.≈.sym (forth-back iso))) ⟩ back iso D.∘ fmap G f D.∘ forth iso D.∘ back iso ≈⟨ simp! D ⟩ back iso D.∘ (fmap G f D.∘ forth iso) D.∘ back iso ≈⟨ D.∘-resp-r (D.∘-resp-l (D.≈.sym forth-natural)) ⟩ back iso D.∘ (forth iso D.∘ fmap F f) D.∘ back iso ≈⟨ simp! D ⟩ (back iso D.∘ (forth iso)) D.∘ fmap F f D.∘ back iso ≈⟨ D.∘-resp-l (back-forth iso) ⟩ D.id D.∘ fmap F f D.∘ back iso ≈⟨ D.id-l ⟩ fmap F f D.∘ back iso ∎ Forth : Trans F G Forth = record { component = λ _ → forth iso ; natural = forth-natural } Back : Trans G F Back = record { component = λ _ → back iso ; natural = back-natural } open NatIso public id : ∀ {F} → NatIso F F id = record { iso = ≅.refl ; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r) } sym : ∀ {F G} → NatIso F G → NatIso G F sym θ = record { iso = ≅.sym (iso θ) ; forth-natural = back-natural θ } _∘_ : ∀ {F G H} → NatIso G H → NatIso F G → NatIso F H _∘_ {F} {G} {H} θ ι = record { iso = ≅.trans (iso ι) (iso θ) ; forth-natural = λ {_} {_} {f} → begin (forth (iso θ) D.∘ forth (iso ι)) D.∘ fmap F f ≈⟨ D.assoc ⟩ forth (iso θ) D.∘ forth (iso ι) D.∘ fmap F f ≈⟨ D.∘-resp-r (forth-natural ι) ⟩ forth (iso θ) D.∘ fmap G f D.∘ forth (iso ι) ≈⟨ D.unassoc ⟩ (forth (iso θ) D.∘ fmap G f) D.∘ forth (iso ι) ≈⟨ D.∘-resp-l (forth-natural θ) ⟩ (fmap H f D.∘ forth (iso θ)) D.∘ forth (iso ι) ≈⟨ D.assoc ⟩ fmap H f D.∘ forth (iso θ) D.∘ forth (iso ι) ∎ }
26.770642
69
0.496573
ad30a61510cc057c6092345f220267d2f802d706
4,060
agda
Agda
test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Properties.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of general interleavings ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Ternary.Interleaving.Properties where open import Data.Nat open import Data.Nat.Properties using (+-suc) open import Data.List.Base hiding (_∷ʳ_) open import Data.List.Properties using (reverse-involutive) open import Data.List.Relation.Ternary.Interleaving hiding (map) open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; module ≡-Reasoning) open ≡-Reasoning ------------------------------------------------------------------------ -- length module _ {a b c l r} {A : Set a} {B : Set b} {C : Set c} {L : REL A C l} {R : REL B C r} where interleave-length : ∀ {as l r} → Interleaving L R l r as → length as ≡ length l + length r interleave-length [] = refl interleave-length (l ∷ˡ sp) = cong suc (interleave-length sp) interleave-length {as} {l} {r ∷ rs} (_ ∷ʳ sp) = begin length as ≡⟨ cong suc (interleave-length sp) ⟩ suc (length l + length rs) ≡⟨ sym $ +-suc _ _ ⟩ length l + length (r ∷ rs) ∎ ------------------------------------------------------------------------ -- _++_ ++⁺ : ∀ {as₁ as₂ l₁ l₂ r₁ r₂} → Interleaving L R as₁ l₁ r₁ → Interleaving L R as₂ l₂ r₂ → Interleaving L R (as₁ ++ as₂) (l₁ ++ l₂) (r₁ ++ r₂) ++⁺ [] sp₂ = sp₂ ++⁺ (l ∷ˡ sp₁) sp₂ = l ∷ˡ (++⁺ sp₁ sp₂) ++⁺ (r ∷ʳ sp₁) sp₂ = r ∷ʳ (++⁺ sp₁ sp₂) ++-disjoint : ∀ {as₁ as₂ l₁ r₂} → Interleaving L R l₁ [] as₁ → Interleaving L R [] r₂ as₂ → Interleaving L R l₁ r₂ (as₁ ++ as₂) ++-disjoint [] sp₂ = sp₂ ++-disjoint (l ∷ˡ sp₁) sp₂ = l ∷ˡ ++-disjoint sp₁ sp₂ ------------------------------------------------------------------------ -- map module _ {a b c d e f l r} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {E : Set e} {F : Set f} {L : REL A C l} {R : REL B C r} (f : E → A) (g : F → B) (h : D → C) where map⁺ : ∀ {as l r} → Interleaving (λ x z → L (f x) (h z)) (λ y z → R (g y) (h z)) l r as → Interleaving L R (map f l) (map g r) (map h as) map⁺ [] = [] map⁺ (l ∷ˡ sp) = l ∷ˡ map⁺ sp map⁺ (r ∷ʳ sp) = r ∷ʳ map⁺ sp map⁻ : ∀ {as l r} → Interleaving L R (map f l) (map g r) (map h as) → Interleaving (λ x z → L (f x) (h z)) (λ y z → R (g y) (h z)) l r as map⁻ {[]} {[]} {[]} [] = [] map⁻ {_ ∷ _} {[]} {_ ∷ _} (r ∷ʳ sp) = r ∷ʳ map⁻ sp map⁻ {_ ∷ _} {_ ∷ _} {[]} (l ∷ˡ sp) = l ∷ˡ map⁻ sp map⁻ {_ ∷ _} {_ ∷ _} {_ ∷ _} (l ∷ˡ sp) = l ∷ˡ map⁻ sp map⁻ {_ ∷ _} {_ ∷ _} {_ ∷ _} (r ∷ʳ sp) = r ∷ʳ map⁻ sp -- impossible cases needed until 2.6.0 map⁻ {[]} {_} {_ ∷ _} () map⁻ {[]} {_ ∷ _} {_} () map⁻ {_ ∷ _} {[]} {[]} () ------------------------------------------------------------------------ -- reverse module _ {a b c l r} {A : Set a} {B : Set b} {C : Set c} {L : REL A C l} {R : REL B C r} where reverseAcc⁺ : ∀ {as₁ as₂ l₁ l₂ r₁ r₂} → Interleaving L R l₁ r₁ as₁ → Interleaving L R l₂ r₂ as₂ → Interleaving L R (reverseAcc l₁ l₂) (reverseAcc r₁ r₂) (reverseAcc as₁ as₂) reverseAcc⁺ sp₁ [] = sp₁ reverseAcc⁺ sp₁ (l ∷ˡ sp₂) = reverseAcc⁺ (l ∷ˡ sp₁) sp₂ reverseAcc⁺ sp₁ (r ∷ʳ sp₂) = reverseAcc⁺ (r ∷ʳ sp₁) sp₂ reverse⁺ : ∀ {as l r} → Interleaving L R l r as → Interleaving L R (reverse l) (reverse r) (reverse as) reverse⁺ = reverseAcc⁺ [] reverse⁻ : ∀ {as l r} → Interleaving L R (reverse l) (reverse r) (reverse as) → Interleaving L R l r as reverse⁻ {as} {l} {r} sp with reverse⁺ sp ... | sp′ rewrite reverse-involutive as | reverse-involutive l | reverse-involutive r = sp′
37.592593
91
0.458621
30fc8abfbada8042e51a7bde5d4f63bc1cf984bf
9,360
agda
Agda
src/fot/FOTC/Program/GCD/Total/CommonDivisorATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/GCD/Total/CommonDivisorATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/GCD/Total/CommonDivisorATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- The gcd is a common divisor ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.GCD.Total.CommonDivisorATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Divisibility.By0 open import FOTC.Data.Nat.Divisibility.By0.PropertiesATP open import FOTC.Data.Nat.Induction.NonAcc.LexicographicATP open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.PropertiesATP open import FOTC.Program.GCD.Total.Definitions open import FOTC.Program.GCD.Total.GCD open import FOTC.Program.GCD.Total.TotalityATP ------------------------------------------------------------------------------ -- gcd 0 0 | 0. postulate gcd-00∣0 : gcd zero zero ∣ zero {-# ATP prove gcd-00∣0 #-} ------------------------------------------------------------------------------ -- Some cases of the gcd-∣₁. -- Some cases of the gcd-∣₁. -- We don't prove that -- -- gcd-∣₁ : ... → (gcd m n) ∣ m -- because this proof should be defined mutually recursive with the -- proof -- -- gcd-∣₂ : ... → (gcd m n) ∣ n. -- -- Therefore, instead of proving -- -- gcdCD : ... → CD m n (gcd m n) -- -- using these proofs (i.e. the conjunction of them), we proved it -- using well-founded induction. -- gcd 0 (succ n) ∣ 0. postulate gcd-0S-∣₁ : ∀ {n} → N n → gcd zero (succ₁ n) ∣ zero {-# ATP prove gcd-0S-∣₁ #-} -- gcd (succ₁ m) 0 ∣ succ₁ m. postulate gcd-S0-∣₁ : ∀ {n} → N n → gcd (succ₁ n) zero ∣ succ₁ n {-# ATP prove gcd-S0-∣₁ ∣-refl #-} -- gcd (succ₁ m) (succ₁ n) ∣ succ₁ m, when succ₁ m ≯ succ₁ n. postulate gcd-S≯S-∣₁ : ∀ {m n} → N m → N n → (gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m) → succ₁ m ≯ succ₁ n → gcd (succ₁ m) (succ₁ n) ∣ succ₁ m {-# ATP prove gcd-S≯S-∣₁ #-} -- gcd (succ₁ m) (succ₁ n) ∣ succ₁ m when succ₁ m > succ₁ n. {- Proof: 1. gcd (Sm ∸ Sn) Sn | (Sm ∸ Sn) IH 2. gcd (Sm ∸ Sn) Sn | Sn gcd-∣₂ 3. gcd (Sm ∸ Sn) Sn | (Sm ∸ Sn) + Sn m∣n→m∣o→m∣n+o 1,2 4. Sm > Sn Hip 5. gcd (Sm ∸ Sn) Sn | Sm arith-gcd-m>n₂ 3,4 6. gcd Sm Sn = gcd (Sm ∸ Sn) Sn gcd eq. 4 7. gcd Sm Sn | Sm subst 5,6 -} -- For the proof using the ATP we added the helper hypothesis: -- 1. gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n) + succ₁ n. -- 2. (succ₁ m ∸ succ₁ n) + succ₁ n ≡ succ₁ m. postulate gcd-S>S-∣₁-ah : ∀ {m n} → N m → N n → (gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n)) → (gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n) → succ₁ m > succ₁ n → gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n) + succ₁ n → ((succ₁ m ∸ succ₁ n) + succ₁ n ≡ succ₁ m) → gcd (succ₁ m) (succ₁ n) ∣ succ₁ m {-# ATP prove gcd-S>S-∣₁-ah #-} gcd-S>S-∣₁ : ∀ {m n} → N m → N n → (gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n)) → (gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n) → succ₁ m > succ₁ n → gcd (succ₁ m) (succ₁ n) ∣ succ₁ m gcd-S>S-∣₁ {m} {n} Nm Nn ih gcd-∣₂ Sm>Sn = gcd-S>S-∣₁-ah Nm Nn ih gcd-∣₂ Sm>Sn (x∣y→x∣z→x∣y+z gcd-Sm-Sn,Sn-N Sm-Sn-N (nsucc Nn) ih gcd-∣₂) (x>y→x∸y+y≡x (nsucc Nm) (nsucc Nn) Sm>Sn) where Sm-Sn-N : N (succ₁ m ∸ succ₁ n) Sm-Sn-N = ∸-N (nsucc Nm) (nsucc Nn) gcd-Sm-Sn,Sn-N : N (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) gcd-Sm-Sn,Sn-N = gcd-N Sm-Sn-N (nsucc Nn) ------------------------------------------------------------------------------ -- Some case of the gcd-∣₂. -- We don't prove that gcd-∣₂ : ... → gcd m n ∣ n. The reason is -- the same to don't prove gcd-∣₁ : ... → gcd m n ∣ m. -- gcd 0 (succ₁ n) ∣₂ succ₁ n. postulate gcd-0S-∣₂ : ∀ {n} → N n → gcd zero (succ₁ n) ∣ succ₁ n {-# ATP prove gcd-0S-∣₂ ∣-refl #-} -- gcd (succ₁ m) 0 ∣ 0. postulate gcd-S0-∣₂ : ∀ {m} → N m → gcd (succ₁ m) zero ∣ zero {-# ATP prove gcd-S0-∣₂ #-} -- gcd (succ₁ m) (succ₁ n) ∣ succ₁ n when succ₁ m ≯ succ₁ n. {- Proof: 1. gcd Sm (Sn ∸ Sm) | (Sn ∸ Sm) IH 2 gcd Sm (Sn ∸ Sm) | Sm gcd-∣₁ 3. gcd Sm (Sn ∸ Sm) | (Sn ∸ Sm) + Sm m∣n→m∣o→m∣n+o 1,2 4. Sm ≯ Sn Hip 5. gcd (Sm ∸ Sn) Sn | Sm arith-gcd-m≤n₂ 3,4 6. gcd Sm Sn = gcd Sm (Sn ∸ Sm) gcd eq. 4 7. gcd Sm Sn | Sn subst 5,6 -} -- For the proof using the ATP we added the helper hypothesis: -- 1. gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m) + succ₁ m. -- 2 (succ₁ n ∸ succ₁ m) + succ₁ m ≡ succ₁ n. postulate gcd-S≯S-∣₂-ah : ∀ {m n} → N m → N n → (gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m)) → (gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m) → succ₁ m ≯ succ₁ n → (gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m) + succ₁ m) → ((succ₁ n ∸ succ₁ m) + succ₁ m ≡ succ₁ n) → gcd (succ₁ m) (succ₁ n) ∣ succ₁ n {-# ATP prove gcd-S≯S-∣₂-ah #-} gcd-S≯S-∣₂ : ∀ {m n} → N m → N n → (gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m)) → (gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m) → succ₁ m ≯ succ₁ n → gcd (succ₁ m) (succ₁ n) ∣ succ₁ n gcd-S≯S-∣₂ {m} {n} Nm Nn ih gcd-∣₁ Sm≯Sn = gcd-S≯S-∣₂-ah Nm Nn ih gcd-∣₁ Sm≯Sn (x∣y→x∣z→x∣y+z gcd-Sm,Sn-Sm-N Sn-Sm-N (nsucc Nm) ih gcd-∣₁) (x≤y→y∸x+x≡y (nsucc Nm) (nsucc Nn) (x≯y→x≤y (nsucc Nm) (nsucc Nn) Sm≯Sn)) where Sn-Sm-N : N (succ₁ n ∸ succ₁ m) Sn-Sm-N = ∸-N (nsucc Nn) (nsucc Nm) gcd-Sm,Sn-Sm-N : N (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) gcd-Sm,Sn-Sm-N = gcd-N (nsucc Nm) (Sn-Sm-N) -- gcd (succ₁ m) (succ₁ n) ∣ succ₁ n when succ₁ m > succ₁ n. postulate gcd-S>S-∣₂ : ∀ {m n} → N m → N n → (gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n) → succ₁ m > succ₁ n → gcd (succ₁ m) (succ₁ n) ∣ succ₁ n {-# ATP prove gcd-S>S-∣₂ #-} ------------------------------------------------------------------------------ -- The gcd is CD. -- We will prove that gcdCD : ... → CD m n (gcd m n). -- The gcd 0 0 is CD. gcd-00-CD : CD zero zero (gcd zero zero) gcd-00-CD = gcd-00∣0 , gcd-00∣0 -- The gcd 0 (succ₁ n) is CD. gcd-0S-CD : ∀ {n} → N n → CD zero (succ₁ n) (gcd zero (succ₁ n)) gcd-0S-CD Nn = (gcd-0S-∣₁ Nn , gcd-0S-∣₂ Nn) -- The gcd (succ₁ m) 0 is CD. gcd-S0-CD : ∀ {m} → N m → CD (succ₁ m) zero (gcd (succ₁ m) zero) gcd-S0-CD Nm = (gcd-S0-∣₁ Nm , gcd-S0-∣₂ Nm) -- The gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is CD. gcd-S>S-CD : ∀ {m n} → N m → N n → (CD (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) → succ₁ m > succ₁ n → CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n)) gcd-S>S-CD {m} {n} Nm Nn acc Sm>Sn = (gcd-S>S-∣₁ Nm Nn acc-∣₁ acc-∣₂ Sm>Sn , gcd-S>S-∣₂ Nm Nn acc-∣₂ Sm>Sn) where acc-∣₁ : gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ (succ₁ m ∸ succ₁ n) acc-∣₁ = ∧-proj₁ acc acc-∣₂ : gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∣ succ₁ n acc-∣₂ = ∧-proj₂ acc -- The gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is CD. gcd-S≯S-CD : ∀ {m n} → N m → N n → (CD (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) → succ₁ m ≯ succ₁ n → CD (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n)) gcd-S≯S-CD {m} {n} Nm Nn acc Sm≯Sn = (gcd-S≯S-∣₁ Nm Nn acc-∣₁ Sm≯Sn , gcd-S≯S-∣₂ Nm Nn acc-∣₂ acc-∣₁ Sm≯Sn) where acc-∣₁ : gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ succ₁ m acc-∣₁ = ∧-proj₁ acc acc-∣₂ : gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∣ (succ₁ n ∸ succ₁ m) acc-∣₂ = ∧-proj₂ acc -- The gcd m n when m > n is CD. gcd-x>y-CD : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → CD o p (gcd o p)) → m > n → CD m n (gcd m n) gcd-x>y-CD nzero Nn _ 0>n = ⊥-elim (0>x→⊥ Nn 0>n) gcd-x>y-CD (nsucc Nm) nzero _ _ = gcd-S0-CD Nm gcd-x>y-CD (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn = gcd-S>S-CD Nm Nn ih Sm>Sn where -- Inductive hypothesis. ih : CD (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) ih = ah {succ₁ m ∸ succ₁ n} {succ₁ n} (∸-N (nsucc Nm) (nsucc Nn)) (nsucc Nn) ([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn) -- The gcd m n when m ≯ n is CD. gcd-x≯y-CD : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → CD o p (gcd o p)) → m ≯ n → CD m n (gcd m n) gcd-x≯y-CD nzero nzero _ _ = gcd-00-CD gcd-x≯y-CD nzero (nsucc Nn) _ _ = gcd-0S-CD Nn gcd-x≯y-CD (nsucc _) nzero _ Sm≯0 = ⊥-elim (S≯0→⊥ Sm≯0) gcd-x≯y-CD (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn = gcd-S≯S-CD Nm Nn ih Sm≯Sn where -- Inductive hypothesis. ih : CD (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) ih = ah {succ₁ m} {succ₁ n ∸ succ₁ m} (nsucc Nm) (∸-N (nsucc Nn) (nsucc Nm)) ([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn) -- The gcd is CD. gcdCD : ∀ {m n} → N m → N n → CD m n (gcd m n) gcdCD = Lexi-wfind A h where A : D → D → Set A i j = CD i j (gcd i j) h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) → A i j h Ni Nj ah = case (gcd-x>y-CD Ni Nj ah) (gcd-x≯y-CD Ni Nj ah) (x>y∨x≯y Ni Nj)
35.18797
79
0.501175
526aaadd7f8052db42893b783e583cecb8cb3ad4
8,339
agda
Agda
src/Categories/Category/Instance/Properties/Setoids/Extensive.agda
sergey-goncharov/agda-categories
e2d7596549e7840b521576f48746ac3c4560f126
[ "MIT" ]
null
null
null
src/Categories/Category/Instance/Properties/Setoids/Extensive.agda
sergey-goncharov/agda-categories
e2d7596549e7840b521576f48746ac3c4560f126
[ "MIT" ]
null
null
null
src/Categories/Category/Instance/Properties/Setoids/Extensive.agda
sergey-goncharov/agda-categories
e2d7596549e7840b521576f48746ac3c4560f126
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Properties.Setoids.Extensive where open import Level open import Data.Product using (Σ; proj₁; proj₂; _,_; Σ-syntax; _×_; -,_) open import Function.Equality using (Π) open import Relation.Binary using (Setoid; Rel) open import Categories.Category using (Category; _[_,_]) open import Categories.Category.Instance.Setoids open import Categories.Category.Extensive open import Categories.Category.Cocartesian open import Categories.Diagram.Pullback open import Categories.Category.Instance.Properties.Setoids.Limits.Canonical open import Categories.Category.Monoidal.Instance.Setoids open import Data.Sum.Relation.Binary.Pointwise open import Data.Unit.Polymorphic using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import Data.Sum.Base using ([_,_]′; _⊎_) open import Function.Equality as SΠ renaming (id to ⟶-id) open import Data.Product using (∃) open import Relation.Binary.PropositionalEquality using (_≡_; [_]; inspect) open Π module _ ℓ where private S = Setoids ℓ ℓ module S = Category S open Pullback Setoids-Extensive : (ℓ : Level) → Extensive (Setoids ℓ ℓ) Setoids-Extensive ℓ = record { cocartesian = record { initial = initial ; coproducts = coproducts } ; pullback₁ = λ f → pullback ℓ ℓ f i₁ ; pullback₂ = λ f → pullback ℓ ℓ f i₂ ; pullback-of-cp-is-cp = λ {C A B} f → record { [_,_] = λ g h → record { _⟨$⟩_ = copair-$ f g h ; cong = λ {z z′} → copair-cong f g h z z′ } ; inject₁ = λ {X g h z} eq → trans (isEquivalence {ℓ} X) (copair-inject₁ f g h z) (cong g eq) ; inject₂ = λ {X g h z} eq → trans (isEquivalence {ℓ} X) (copair-inject₂ f g h z) (cong h eq) ; unique = λ {X u g h} feq₁ feq₂ {z z′} eq → trans (isEquivalence {ℓ} X) (copair-unique f g h u z (λ {z} → feq₁ {z}) (λ {z} → feq₂ {z})) (cong u eq) } ; pullback₁-is-mono = λ _ _ eq x≈y → drop-inj₁ (eq x≈y) ; pullback₂-is-mono = λ _ _ eq x≈y → drop-inj₂ (eq x≈y) ; disjoint = λ {A B} → record { commute = λ { {()} _} ; universal = λ {C f g} eq → record { _⟨$⟩_ = λ z → conflict A B (f ⟨$⟩ z) (g ⟨$⟩ z) (eq (refl (isEquivalence {ℓ} C))) ; cong = λ z → tt } ; unique = λ _ _ _ → tt ; p₁∘universal≈h₁ = λ {C h₁ h₂ eq x y} x≈y → conflict A B (h₁ ⟨$⟩ x) (h₂ ⟨$⟩ y) (eq x≈y) ; p₂∘universal≈h₂ = λ {C h₁ h₂ eq x y} x≈y → conflict A B (h₁ ⟨$⟩ x) (h₂ ⟨$⟩ y) (eq x≈y) } } where open Cocartesian (Setoids-Cocartesian {ℓ} {ℓ}) open Relation.Binary.IsEquivalence open import Data.Sum using (inj₁; inj₂) open Setoid renaming (_≈_ to [_][_≈_]; Carrier to ∣_∣) using (isEquivalence) -- must be in the standard library. Maybe it is? conflict : ∀ {ℓ ℓ' ℓ''} (X Y : Setoid ℓ ℓ') {Z : Set ℓ''} (x : ∣ X ∣) (y : ∣ Y ∣) → [ ⊎-setoid X Y ][ inj₁ x ≈ inj₂ y ] → Z conflict X Y x y () module Diagram {A B C X : Setoid ℓ ℓ} (f : C ⟶ ⊎-setoid A B) (g : P (pullback ℓ ℓ f i₁) ⟶ X) (h : P (pullback ℓ ℓ f i₂) ⟶ X) where private A⊎B = ⊎-setoid A B A′ = P (pullback ℓ ℓ f i₁) B′ = P (pullback ℓ ℓ f i₂) refl-A = refl (isEquivalence A) refl-B = refl (isEquivalence B) refl-C = refl (isEquivalence C) refl-A⊎B = refl (isEquivalence A⊎B) reflexive-A⊎B = reflexive (isEquivalence A⊎B) sym-A = sym (isEquivalence A) sym-B = sym (isEquivalence B) sym-C = sym (isEquivalence C) sym-X = sym (isEquivalence X) sym-A⊎B = sym (isEquivalence A⊎B) trans-X = trans (isEquivalence X) trans-A⊎B = trans (isEquivalence A⊎B) -- copairing of g : A′ → X and h : B′ → X, resulting in C → X copair-$ : ∣ C ∣ → ∣ X ∣ copair-$ z with (f ⟨$⟩ z) | inspect (f ⟨$⟩_) z ... | inj₁ x | [ eq ] = g ⟨$⟩ record { elem₁ = z ; elem₂ = x ; commute = reflexive-A⊎B eq } ... | inj₂ y | [ eq ] = h ⟨$⟩ record { elem₁ = z ; elem₂ = y ; commute = reflexive-A⊎B eq } -- somewhat roundabout way to expand the definition of copair-$ z if f ⟨$⟩ z ≈ inj₁ x, -- in order to circumwent the pitfalls of the with-abstraction copair-$-i₁ : (x : ∣ A ∣) (z : ∣ C ∣) → (eq : [ A⊎B ][ f ⟨$⟩ z ≈ inj₁ x ]) → ∃ (λ v → [ X ][ copair-$ z ≈ g ⟨$⟩ v ] × [ C ][ FiberProduct.elem₁ v ≈ z ] × [ A ][ FiberProduct.elem₂ v ≈ x ]) copair-$-i₁ x z eq with (f ⟨$⟩ z) | inspect (f ⟨$⟩_) z ... | inj₁ x′ | [ eq′ ] = record { elem₁ = z ; elem₂ = x′ ; commute = reflexive-A⊎B eq′} , cong g (refl-C , refl-A) , refl-C , drop-inj₁ eq -- same for f ⟨$⟩ z ≈ inj₂ y copair-$-i₂ : (y : ∣ B ∣) (z : ∣ C ∣) → (eq : [ A⊎B ][ f ⟨$⟩ z ≈ inj₂ y ]) → ∃ (λ v → [ X ][ copair-$ z ≈ h ⟨$⟩ v ] × [ C ][ FiberProduct.elem₁ v ≈ z ] × [ B ][ FiberProduct.elem₂ v ≈ y ]) copair-$-i₂ y z eq with (f ⟨$⟩ z) | inspect (f ⟨$⟩_) z ... | inj₂ y′ | [ eq′ ] = record { elem₁ = z ; elem₂ = y′ ; commute = reflexive-A⊎B eq′} , cong h (refl-C , refl-B) , refl-C , drop-inj₂ eq case-f⟨$⟩z : (z : ∣ C ∣) → (∃ λ x → [ A⊎B ][ f ⟨$⟩ z ≈ inj₁ x ]) ⊎ (∃ λ y → [ A⊎B ][ f ⟨$⟩ z ≈ inj₂ y ]) case-f⟨$⟩z z with (f ⟨$⟩ z) ... | inj₁ x = inj₁ (x , refl-A⊎B) ... | inj₂ y = inj₂ (y , refl-A⊎B) copair-cong : (z z′ : ∣ C ∣) → (z≈z′ : [ C ][ z ≈ z′ ]) → [ X ][ copair-$ z ≈ copair-$ z′ ] copair-cong z z′ z≈z′ with (f ⟨$⟩ z) | inspect (_⟨$⟩_ f) z | (f ⟨$⟩ z′) | inspect (_⟨$⟩_ f) z′ ... | inj₁ x | [ eq ] | inj₁ x′ | [ eq′ ] = cong g (z≈z′ , drop-inj₁ (trans-A⊎B (sym-A⊎B (reflexive-A⊎B eq)) (trans-A⊎B (cong f z≈z′) (reflexive-A⊎B eq′)))) ... | inj₁ x | [ eq ] | inj₂ y | [ eq′ ] = conflict A B x y (trans-A⊎B (sym-A⊎B (reflexive-A⊎B eq)) (trans-A⊎B (cong f z≈z′) (reflexive-A⊎B eq′))) ... | inj₂ y | [ eq ] | inj₁ x | [ eq′ ] = conflict A B x y (trans-A⊎B (sym-A⊎B (reflexive-A⊎B eq′)) (trans-A⊎B (cong f (sym-C z≈z′)) (reflexive-A⊎B eq))) ... | inj₂ y | [ eq ] | inj₂ y′ | [ eq′ ] = cong h (z≈z′ , drop-inj₂ (trans-A⊎B (sym-A⊎B (reflexive-A⊎B eq)) (trans-A⊎B (cong f z≈z′) (reflexive-A⊎B eq′)))) copair-inject₁ : (z : FiberProduct f i₁) → [ X ][ copair-$ (FiberProduct.elem₁ z) ≈ g ⟨$⟩ z ] copair-inject₁ record { elem₁ = z ; elem₂ = x ; commute = eq } with case-f⟨$⟩z z ... | inj₁ _ with copair-$-i₁ x z eq ... | _ , eq₁ , eq₂ , eq₃ = trans-X eq₁ (cong g (eq₂ , eq₃)) copair-inject₁ record { elem₁ = z ; elem₂ = x ; commute = eq } | inj₂ (y , eq′) = conflict A B x y (trans-A⊎B (sym-A⊎B eq) eq′) copair-inject₂ : (z : FiberProduct f i₂) → [ X ][ copair-$ (FiberProduct.elem₁ z) ≈ h ⟨$⟩ z ] copair-inject₂ record { elem₁ = z ; elem₂ = y ; commute = eq } with case-f⟨$⟩z z ... | inj₂ _ with copair-$-i₂ y z eq ... | _ , eq₁ , eq₂ , eq₃ = trans-X eq₁ (cong h (eq₂ , eq₃)) copair-inject₂ record { elem₁ = z ; elem₂ = y ; commute = eq } | inj₁ (x , eq′) = conflict A B x y (trans-A⊎B (sym-A⊎B eq′) eq) copair-unique : (u : C ⟶ X) (z : ∣ C ∣) → [ A′ ⇨ X ][ u ∘ p₁ (pullback ℓ ℓ f i₁) ≈ g ] → [ B′ ⇨ X ][ u ∘ p₁ (pullback ℓ ℓ f i₂) ≈ h ] → [ X ][ copair-$ z ≈ u ⟨$⟩ z ] copair-unique u z feq₁ feq₂ with case-f⟨$⟩z z ... | inj₁ (x , eq) with copair-$-i₁ x z eq ... | z′ , eq₁ , eq₂ , _ = trans-X eq₁ (trans-X (sym-X (feq₁{z′} (refl-C , refl-A))) (cong u eq₂)) copair-unique u z feq₁ feq₂ | inj₂ (y , eq) with copair-$-i₂ y z eq ... | z′ , eq₁ , eq₂ , _ = trans-X eq₁ (trans-X (sym-X (feq₂{z′} (refl-C , refl-B))) (cong u eq₂)) open Diagram
49.343195
124
0.487349
048d52b32f4a2d39f25724b4e61baa45794587a7
20,153
agda
Agda
src/Circle/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Circle/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Circle/Erased.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The circle with an erased higher constructor ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- Partly following the HoTT book. -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining the circle uses path equality, but -- the supplied notion of equality is used for many other things. import Equality.Path as P module Circle.Erased {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) open import Prelude open import Bijection equality-with-J using (_↔_) open import Circle eq as C using (𝕊¹) open import Equality.Groupoid equality-with-J open import Equality.Path.Isomorphisms eq open import Equality.Path.Isomorphisms.Univalence eq open import Equivalence equality-with-J as Eq using (_≃_) import Equivalence P.equality-with-J as PE open import Erased.Cubical eq open import Function-universe equality-with-J hiding (id; _∘_) open import Group equality-with-J as G using (_≃ᴳ_) open import H-level equality-with-J open import H-level.Truncation.Propositional.Erased eq as T using (∥_∥ᴱ) open import H-level.Truncation.Propositional.One-step eq as O using (∥_∥¹) open import H-level.Truncation.Propositional.One-step.Erased eq as OE using (∥_∥¹ᴱ) open import Integer equality-with-J using (ℤ; +_; ℤ-group) open import Nat equality-with-J open import Pointed-type equality-with-J as PT using (_≃ᴮ_) open import Pointed-type.Homotopy-group eq private variable a p : Level A : Type p P : A → Type p b ℓ : A ------------------------------------------------------------------------ -- The type and some eliminators -- The circle. data 𝕊¹ᴱ : Type where base : 𝕊¹ᴱ @0 loopᴾ : base P.≡ base @0 loop : base ≡ base loop = _↔_.from ≡↔≡ loopᴾ -- A dependent eliminator, expressed using paths. elimᴾ : (P : 𝕊¹ᴱ → Type p) (b : P base) → @0 P.[ (λ i → P (loopᴾ i)) ] b ≡ b → (x : 𝕊¹ᴱ) → P x elimᴾ P b ℓ base = b elimᴾ P b ℓ (loopᴾ i) = ℓ i -- A non-dependent eliminator, expressed using paths. recᴾ : (b : A) → @0 b P.≡ b → 𝕊¹ᴱ → A recᴾ = elimᴾ _ -- A dependent eliminator. elim : (P : 𝕊¹ᴱ → Type p) (b : P base) → @0 subst P loop b ≡ b → (x : 𝕊¹ᴱ) → P x elim P b ℓ = elimᴾ P b (subst≡→[]≡ ℓ) -- A "computation" rule. @0 elim-loop : dcong (elim P b ℓ) loop ≡ ℓ elim-loop = dcong-subst≡→[]≡ (refl _) -- Every dependent function of type (x : 𝕊¹ᴱ) → P x can be expressed -- using elim. η-elim : {f : (x : 𝕊¹ᴱ) → P x} → f ≡ elim P (f base) (dcong f loop) η-elim {P = P} {f = f} = ⟨ext⟩ $ elim _ (refl _) (subst (λ x → f x ≡ elim P (f base) (dcong f loop) x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-dcong ⟩ trans (sym (dcong f loop)) (trans (cong (subst P loop) (refl _)) (dcong (elim P (f base) (dcong f loop)) loop)) ≡⟨ cong (trans (sym (dcong f loop))) $ trans (cong (flip trans _) $ cong-refl _) $ trans-reflˡ _ ⟩ trans (sym (dcong f loop)) (dcong (elim P (f base) (dcong f loop)) loop) ≡⟨ cong (trans (sym (dcong f loop))) elim-loop ⟩ trans (sym (dcong f loop)) (dcong f loop) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) -- A non-dependent eliminator. rec : (b : A) → @0 b ≡ b → 𝕊¹ᴱ → A rec b ℓ = recᴾ b (_↔_.to ≡↔≡ ℓ) -- A "computation" rule. @0 rec-loop : cong (rec b ℓ) loop ≡ ℓ rec-loop = cong-≡↔≡ (refl _) -- Every function from 𝕊¹ᴱ to A can be expressed using rec. η-rec : {f : 𝕊¹ᴱ → A} → f ≡ rec (f base) (cong f loop) η-rec {f = f} = ⟨ext⟩ $ elim _ (refl _) (subst (λ x → f x ≡ rec (f base) (cong f loop) x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong f loop)) (trans (refl _) (cong (rec (f base) (cong f loop)) loop)) ≡⟨ cong (trans (sym (cong f loop))) $ trans-reflˡ _ ⟩ trans (sym (cong f loop)) (cong (rec (f base) (cong f loop)) loop) ≡⟨ cong (trans (sym (cong f loop))) rec-loop ⟩ trans (sym (cong f loop)) (cong f loop) ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) ------------------------------------------------------------------------ -- Conversion functions -- In erased contexts 𝕊¹ is equivalent to 𝕊¹ᴱ. @0 𝕊¹≃𝕊¹ᴱ : 𝕊¹ ≃ 𝕊¹ᴱ 𝕊¹≃𝕊¹ᴱ = Eq.↔→≃ 𝕊¹→𝕊¹ᴱ 𝕊¹ᴱ→𝕊¹ (elim _ (refl _) (subst (λ x → 𝕊¹→𝕊¹ᴱ (𝕊¹ᴱ→𝕊¹ x) ≡ x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (𝕊¹→𝕊¹ᴱ ∘ 𝕊¹ᴱ→𝕊¹) loop)) (trans (refl _) (cong id loop)) ≡⟨ cong (trans _) $ trans (trans-reflˡ _) $ sym $ cong-id _ ⟩ trans (sym (cong (𝕊¹→𝕊¹ᴱ ∘ 𝕊¹ᴱ→𝕊¹) loop)) loop ≡⟨ cong (flip trans _) $ cong sym $ trans (sym $ cong-∘ _ _ _) $ trans (cong (cong 𝕊¹→𝕊¹ᴱ) rec-loop) $ C.rec-loop ⟩ trans (sym loop) loop ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎)) (C.elim _ (refl _) (subst (λ x → 𝕊¹ᴱ→𝕊¹ (𝕊¹→𝕊¹ᴱ x) ≡ x) C.loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (𝕊¹ᴱ→𝕊¹ ∘ 𝕊¹→𝕊¹ᴱ) C.loop)) (trans (refl _) (cong id C.loop)) ≡⟨ cong (trans _) $ trans (trans-reflˡ _) $ sym $ cong-id _ ⟩ trans (sym (cong (𝕊¹ᴱ→𝕊¹ ∘ 𝕊¹→𝕊¹ᴱ) C.loop)) C.loop ≡⟨ cong (flip trans _) $ cong sym $ trans (sym $ cong-∘ _ _ _) $ trans (cong (cong 𝕊¹ᴱ→𝕊¹) C.rec-loop) $ rec-loop ⟩ trans (sym C.loop) C.loop ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎)) where 𝕊¹→𝕊¹ᴱ = C.rec base loop 𝕊¹ᴱ→𝕊¹ = rec C.base C.loop -- In erased contexts there is a based equivalence between 𝕊¹ , C.base -- and 𝕊¹ᴱ , base. @0 𝕊¹≃ᴮ𝕊¹ᴱ : (𝕊¹ , C.base) ≃ᴮ (𝕊¹ᴱ , base) 𝕊¹≃ᴮ𝕊¹ᴱ = 𝕊¹≃𝕊¹ᴱ , refl _ -- The one-step truncation of the unit type is equivalent to 𝕊¹ᴱ. -- -- Paolo Capriotti informed me about the corresponding result without -- erasure. ∥⊤∥¹ᴱ≃𝕊¹ᴱ : ∥ ⊤ ∥¹ᴱ ≃ 𝕊¹ᴱ ∥⊤∥¹ᴱ≃𝕊¹ᴱ = _↔_.from ≃↔≃ $ PE.↔→≃ (OE.recᴾ λ where .OE.∣∣ʳ _ → base .OE.∣∣-constantʳ _ _ → loopᴾ) (recᴾ OE.∣ _ ∣ (OE.∣∣-constantᴾ _ _)) (elimᴾ _ P.refl (λ _ → P.refl)) (OE.elimᴾ λ where .OE.∣∣ʳ _ → P.refl .OE.∣∣-constantʳ _ _ _ → P.refl) ------------------------------------------------------------------------ -- The loop space of 𝕊¹ᴱ -- The function trans is commutative for the loop space of 𝕊¹ᴱ. trans-commutative : (p q : base ≡ base) → trans p q ≡ trans q p trans-commutative = flip $ Transitivity-commutative.commutative base _∙_ ∙-base base-∙ where _∙_ : 𝕊¹ᴱ → 𝕊¹ᴱ → 𝕊¹ᴱ x ∙ y = rec x (elim (λ x → x ≡ x) loop lemma x) y where @0 lemma : subst (λ x → x ≡ x) loop loop ≡ loop lemma = ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (refl _) base-∙ : ∀ x → x ∙ base ≡ x base-∙ _ = refl _ ∙-base : ∀ y → base ∙ y ≡ y ∙-base = elim _ (refl _) (subst (λ x → rec base loop x ≡ x) loop (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩ trans (sym (cong (rec base loop) loop)) (trans (refl _) (cong id loop)) ≡⟨ cong (trans _) $ trans-reflˡ _ ⟩ trans (sym (cong (rec base loop) loop)) (cong id loop) ≡⟨ cong₂ (trans ∘ sym) rec-loop (sym $ cong-id _) ⟩ trans (sym loop) loop ≡⟨ trans-symˡ _ ⟩∎ refl _ ∎) -- The loop space is equivalent to x ≡ x, for any x : 𝕊¹ᴱ. base≡base≃≡ : {x : 𝕊¹ᴱ} → (base ≡ base) ≃ (x ≡ x) base≡base≃≡ = elim (λ x → (base ≡ base) ≃ (x ≡ x)) Eq.id (Eq.lift-equality ext $ ⟨ext⟩ λ eq → _≃_.to (subst (λ x → (base ≡ base) ≃ (x ≡ x)) loop Eq.id) eq ≡⟨ cong (_$ eq) Eq.to-subst ⟩ subst (λ x → base ≡ base → x ≡ x) loop id eq ≡⟨ subst-→ ⟩ subst (λ x → x ≡ x) loop (subst (λ _ → base ≡ base) (sym loop) eq) ≡⟨ cong (subst (λ x → x ≡ x) loop) $ subst-const _ ⟩ subst (λ x → x ≡ x) loop eq ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) ( trans eq loop ≡⟨ trans-commutative _ _ ⟩∎ trans loop eq ∎) ⟩∎ eq ∎) _ -- In erased contexts the loop space of 𝕊¹ᴱ is equivalent to the type -- of integers. @0 base≡base≃ℤ : (base ≡ base) ≃ ℤ base≡base≃ℤ = base ≡ base ↝⟨ Eq.≃-≡ 𝕊¹≃𝕊¹ᴱ ⟩ C.base ≡ C.base ↝⟨ C.base≡base≃ℤ univ ⟩□ ℤ □ -- In erased contexts the fundamental group of 𝕊¹ᴱ is equivalent to -- the group of integers. @0 Fundamental-group≃ℤ : Fundamental-group (𝕊¹ᴱ , base) ≃ᴳ ℤ-group Fundamental-group≃ℤ = G.↝ᴳ-trans (G.≃ᴳ-sym $ ≃ᴮ→≃ᴳ _ _ 0 𝕊¹≃ᴮ𝕊¹ᴱ) (C.Fundamental-group≃ℤ univ) -- 𝕊¹ᴱ is a groupoid (in erased contexts). @0 𝕊¹ᴱ-groupoid : H-level 3 𝕊¹ᴱ 𝕊¹ᴱ-groupoid = $⟨ (λ {_ _ _ _} → C.𝕊¹-groupoid univ) ⟩ H-level 3 𝕊¹ ↝⟨ H-level-cong _ 3 𝕊¹≃𝕊¹ᴱ ⦂ (_ → _) ⟩□ H-level 3 𝕊¹ᴱ □ -- The type of endofunctions on 𝕊¹ᴱ is equivalent to -- ∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x). 𝕊¹ᴱ→𝕊¹ᴱ≃Σ𝕊¹ᴱ-Erased≡ : (𝕊¹ᴱ → 𝕊¹ᴱ) ≃ ∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x) 𝕊¹ᴱ→𝕊¹ᴱ≃Σ𝕊¹ᴱ-Erased≡ = Eq.↔→≃ to from to-from from-to where to : (𝕊¹ᴱ → 𝕊¹ᴱ) → ∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x) to f = f base , [ cong f loop ] from : (∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x)) → (𝕊¹ᴱ → 𝕊¹ᴱ) from (x , [ eq ]) = rec x eq to-from : ∀ p → to (from p) ≡ p to-from (x , [ eq ]) = cong (x ,_) ([ cong (rec x eq) loop ] ≡⟨ []-cong [ rec-loop ] ⟩∎ [ eq ] ∎) from-to : ∀ f → from (to f) ≡ f from-to f = rec (f base) (cong f loop) ≡⟨ sym η-rec ⟩∎ f ∎ -- The type of endofunctions on 𝕊¹ᴱ is equivalent to 𝕊¹ᴱ × Erased ℤ. 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ : (𝕊¹ᴱ → 𝕊¹ᴱ) ≃ (𝕊¹ᴱ × Erased ℤ) 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ = (𝕊¹ᴱ → 𝕊¹ᴱ) ↝⟨ 𝕊¹ᴱ→𝕊¹ᴱ≃Σ𝕊¹ᴱ-Erased≡ ⟩ (∃ λ (x : 𝕊¹ᴱ) → Erased (x ≡ x)) ↝⟨ (∃-cong λ _ → Erased-cong (inverse base≡base≃≡)) ⟩ 𝕊¹ᴱ × Erased (base ≡ base) ↝⟨ (∃-cong λ _ → Erased-cong base≡base≃ℤ) ⟩□ 𝕊¹ᴱ × Erased ℤ □ -- The forward direction of 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ maps the identity -- function to base , [ + 1 ]. 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ-id : _≃_.to 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ id ≡ (base , [ + 1 ]) 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ-id = _≃_.from-to 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ (rec base (cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) (trans (refl C.base) C.loop)) ≡⟨ cong (λ ([ ℓ ]) → rec base ℓ) $ []-cong [ lemma ] ⟩ rec base (cong id loop) ≡⟨ sym η-rec ⟩∎ id ∎) where @0 lemma : _ lemma = cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) (trans (refl C.base) C.loop) ≡⟨ cong (cong (_≃_.to 𝕊¹≃𝕊¹ᴱ)) $ trans-reflˡ _ ⟩ cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) C.loop ≡⟨ C.rec-loop ⟩ loop ≡⟨ cong-id _ ⟩∎ cong id loop ∎ -- The forward direction of 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ maps the constant -- function returning base to base , [ + 0 ]. 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ-const : _≃_.to 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ (const base) ≡ (base , [ + 0 ]) 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ-const = _≃_.from-to 𝕊¹ᴱ→𝕊¹ᴱ≃𝕊¹ᴱ×Erased-ℤ (rec base (cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) (refl C.base)) ≡⟨ cong (λ ([ ℓ ]) → rec base ℓ) $ []-cong [ lemma ] ⟩ rec base (cong (const base) loop) ≡⟨ sym η-rec ⟩∎ const base ∎) where @0 lemma : _ lemma = cong (_≃_.to 𝕊¹≃𝕊¹ᴱ) (refl C.base) ≡⟨ cong-refl _ ⟩ refl _ ≡⟨ sym $ cong-const _ ⟩∎ cong (const base) loop ∎ ------------------------------------------------------------------------ -- Some negative results -- The equality loop is not equal to refl base. loop≢refl : loop ≢ refl base loop≢refl = Stable-¬ [ loop ≡ refl base ↔⟨ inverse $ Eq.≃-≡ $ inverse $ Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ ⟩ cong (_≃_.from 𝕊¹≃𝕊¹ᴱ) loop ≡ cong (_≃_.from 𝕊¹≃𝕊¹ᴱ) (refl base) ↝⟨ trans (sym rec-loop) ∘ flip trans (cong-refl _) ⟩ C.loop ≡ refl C.base ↝⟨ C.loop≢refl ⟩□ ⊥ □ ] -- 𝕊¹ᴱ is not a set. ¬-𝕊¹ᴱ-set : ¬ Is-set 𝕊¹ᴱ ¬-𝕊¹ᴱ-set = Stable-¬ [ Is-set 𝕊¹ᴱ ↝⟨ H-level-cong _ 2 $ inverse 𝕊¹≃𝕊¹ᴱ ⟩ Is-set 𝕊¹ ↝⟨ C.¬-𝕊¹-set ⟩□ ⊥ □ ] -- It is not necessarily the case that the one-step truncation of a -- proposition is a proposition. ¬-Is-proposition-∥∥¹ᴱ : ¬ ({A : Type a} → Is-proposition A → Is-proposition ∥ A ∥¹ᴱ) ¬-Is-proposition-∥∥¹ᴱ {a = a} = Stable-¬ [ ({A : Type a} → Is-proposition A → Is-proposition ∥ A ∥¹ᴱ) ↝⟨ (implicit-∀-cong _ $ ∀-cong _ λ _ → H-level-cong _ 1 O.∥∥¹ᴱ≃∥∥¹) ⟩ ({A : Type a} → Is-proposition A → Is-proposition ∥ A ∥¹) ↝⟨ C.¬-Is-proposition-∥∥¹ ⟩□ ⊥ □ ] -- A function with the type of refl (for 𝕊¹ᴱ) that is not equal to -- refl. The function is available in erased contexts. @0 not-refl : (x : 𝕊¹ᴱ) → x ≡ x not-refl x = $⟨ C.not-refl (_≃_.from 𝕊¹≃𝕊¹ᴱ x) ⟩ _≃_.from 𝕊¹≃𝕊¹ᴱ x ≡ _≃_.from 𝕊¹≃𝕊¹ᴱ x ↝⟨ Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ ⟩□ x ≡ x □ -- The function not-refl is not equal to refl. not-refl≢refl : not-refl ≢ refl not-refl≢refl = Stable-¬ [ not-refl ≡ refl ↔⟨⟩ _≃_.to (Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) ∘ C.not-refl ∘ _≃_.from 𝕊¹≃𝕊¹ᴱ ≡ refl ↝⟨ flip trans (⟨ext⟩ lemma) ⟩ _≃_.to (Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) ∘ C.not-refl ∘ _≃_.from 𝕊¹≃𝕊¹ᴱ ≡ _≃_.to (Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) ∘ refl ∘ _≃_.from 𝕊¹≃𝕊¹ᴱ ↔⟨ (Eq.≃-≡ $ inverse $ Π-cong ext (inverse 𝕊¹≃𝕊¹ᴱ) λ _ → inverse $ Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) ⟩ C.not-refl ≡ refl ↝⟨ C.not-refl≢refl ⟩□ ⊥ □ ] where @0 lemma : _ lemma x = sym $ _≃_.from-to (Eq.≃-≡ $ Eq.inverse 𝕊¹≃𝕊¹ᴱ) (_≃_.from (Eq.≃-≡ $ Eq.inverse 𝕊¹≃𝕊¹ᴱ) (refl x) ≡⟨⟩ cong (_≃_.from 𝕊¹≃𝕊¹ᴱ) (refl x) ≡⟨ cong-refl _ ⟩∎ refl (_≃_.from 𝕊¹≃𝕊¹ᴱ x) ∎) -- For every universe level there is a type A such that -- (x : A) → x ≡ x is not a proposition. ¬-type-of-refl-propositional : ∃ λ (A : Type a) → ¬ Is-proposition ((x : A) → x ≡ x) ¬-type-of-refl-propositional {a = a} = ↑ _ 𝕊¹ᴱ , Stable-¬ [ Is-proposition ((x : ↑ _ 𝕊¹ᴱ) → x ≡ x) ↝⟨ (H-level-cong _ 1 $ Π-cong ext (↑-cong $ inverse 𝕊¹≃𝕊¹ᴱ) λ _ → inverse $ Eq.≃-≡ $ ↑-cong $ inverse 𝕊¹≃𝕊¹ᴱ) ⟩ Is-proposition ((x : ↑ _ 𝕊¹) → x ≡ x) ↝⟨ proj₂ C.¬-type-of-refl-propositional ⟩□ ⊥ □ ] -- Every value of type 𝕊¹ᴱ is merely equal to the base point (using -- ∥_∥ᴱ to express "merely"). -- -- A variant of this lemma was mentioned by Mike Shulman in a blog -- post (http://homotopytypetheory.org/2013/07/24/cohomology/). all-points-on-the-circle-are-merely-equal : (x : 𝕊¹ᴱ) → ∥ x ≡ base ∥ᴱ all-points-on-the-circle-are-merely-equal = elim _ T.∣ refl base ∣ (T.truncation-is-proposition _ _) -- Every value of type 𝕊¹ᴱ is not not equal to the base point. all-points-on-the-circle-are-¬¬-equal : (x : 𝕊¹ᴱ) → ¬ ¬ x ≡ base all-points-on-the-circle-are-¬¬-equal x = Stable-¬ [ x ≢ base ↔⟨ →-cong ext (inverse $ Eq.≃-≡ $ inverse 𝕊¹≃𝕊¹ᴱ) Eq.id ⟩ _≃_.from 𝕊¹≃𝕊¹ᴱ x ≢ C.base ↝⟨ C.all-points-on-the-circle-are-¬¬-equal _ ⟩□ ⊥ □ ] -- It is not the case that every value of type 𝕊¹ᴱ is equal to the -- base point. ¬-all-points-on-the-circle-are-equal : ¬ ((x : 𝕊¹ᴱ) → x ≡ base) ¬-all-points-on-the-circle-are-equal = Stable-¬ [ ((x : 𝕊¹ᴱ) → x ≡ base) ↔⟨ (Π-cong ext (inverse 𝕊¹≃𝕊¹ᴱ) λ _ → inverse $ Eq.≃-≡ $ Eq.inverse 𝕊¹≃𝕊¹ᴱ) ⟩ ((x : 𝕊¹) → x ≡ C.base) ↝⟨ C.¬-all-points-on-the-circle-are-equal ⟩□ ⊥ □ ] -- Double-negation shift for Type-valued predicates over 𝕊¹ᴱ does not -- hold in general. ¬-double-negation-shift : ¬ ({P : 𝕊¹ᴱ → Type} → ((x : 𝕊¹ᴱ) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹ᴱ) → P x)) ¬-double-negation-shift = Stable-¬ [ ({P : 𝕊¹ᴱ → Type} → ((x : 𝕊¹ᴱ) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹ᴱ) → P x)) ↔⟨ (implicit-Π-cong ext (→-cong₁ {k₂ = equivalence} ext $ inverse 𝕊¹≃𝕊¹ᴱ) λ _ → →-cong ext (inverse $ Π-cong ext 𝕊¹≃𝕊¹ᴱ λ _ → Eq.id) $ ¬-cong ext $ ¬-cong ext $ inverse $ Π-cong ext 𝕊¹≃𝕊¹ᴱ λ _ → Eq.id) ⟩ ({P : 𝕊¹ → Type} → ((x : 𝕊¹) → ¬ ¬ P x) → ¬ ¬ ((x : 𝕊¹) → P x)) ↝⟨ C.¬-double-negation-shift ⟩□ ⊥ □ ] -- H-level.Closure.proj₁-closure cannot be generalised by replacing -- the assumption ∀ a → B a with ∀ a → ∥ B a ∥ᴱ. -- -- A variant of this observation is due to Andrea Vezzosi. ¬-generalised-proj₁-closure : ¬ ({A : Type} {B : A → Type} → (∀ a → ∥ B a ∥ᴱ) → ∀ n → H-level n (Σ A B) → H-level n A) ¬-generalised-proj₁-closure generalised-proj₁-closure = $⟨ singleton-contractible _ ⟩ Contractible (Σ 𝕊¹ᴱ (_≡ base)) ↝⟨ generalised-proj₁-closure all-points-on-the-circle-are-merely-equal 0 ⟩ Contractible 𝕊¹ᴱ ↝⟨ ¬-𝕊¹ᴱ-set ∘ mono (zero≤ 2) ⟩□ ⊥ □ -- There is no based equivalence between 𝕊¹ᴱ and the product of 𝕊¹ᴱ -- with itself. 𝕊¹ᴱ≄ᴮ𝕊¹ᴱ×𝕊¹ᴱ : ¬ (𝕊¹ᴱ , base) ≃ᴮ ((𝕊¹ᴱ , base) PT.× (𝕊¹ᴱ , base)) 𝕊¹ᴱ≄ᴮ𝕊¹ᴱ×𝕊¹ᴱ = Stable-¬ [ (𝕊¹ᴱ , base) ≃ᴮ ((𝕊¹ᴱ , base) PT.× (𝕊¹ᴱ , base)) ↝⟨ PT.↝ᴮ-trans 𝕊¹≃ᴮ𝕊¹ᴱ ∘ flip PT.↝ᴮ-trans (PT.≃ᴮ-sym (𝕊¹≃ᴮ𝕊¹ᴱ PT.×-cong-≃ᴮ 𝕊¹≃ᴮ𝕊¹ᴱ)) ⟩ (𝕊¹ , C.base) ≃ᴮ ((𝕊¹ , C.base) PT.× (𝕊¹ , C.base)) ↝⟨ C.𝕊¹≄ᴮ𝕊¹×𝕊¹ ⟩□ ⊥ □ ] -- 𝕊¹ᴱ is not equivalent to 𝕊¹ᴱ × 𝕊¹ᴱ. 𝕊¹ᴱ≄𝕊¹ᴱ×𝕊¹ᴱ : ¬ 𝕊¹ᴱ ≃ (𝕊¹ᴱ × 𝕊¹ᴱ) 𝕊¹ᴱ≄𝕊¹ᴱ×𝕊¹ᴱ = Stable-¬ [ 𝕊¹ᴱ ≃ (𝕊¹ᴱ × 𝕊¹ᴱ) ↔⟨ Eq.≃-preserves ext (inverse 𝕊¹≃𝕊¹ᴱ) (inverse $ 𝕊¹≃𝕊¹ᴱ ×-cong 𝕊¹≃𝕊¹ᴱ) ⟩ 𝕊¹ ≃ (𝕊¹ × 𝕊¹) ↝⟨ C.𝕊¹≄𝕊¹×𝕊¹ ⟩□ ⊥ □ ]
38.459924
146
0.457252
5286267555d9f7c3b38f5a92395a218c48961793
37,348
agda
Agda
Cubical/Homotopy/HopfInvariant/Homomorphism.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:02.000Z
2022-02-05T01:25:02.000Z
Cubical/Homotopy/HopfInvariant/Homomorphism.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Homotopy/HopfInvariant/Homomorphism.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.HopfInvariant.Homomorphism where open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.Group.SuspensionMap open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.GradedCommutativity open import Cubical.ZCohomology.Gysin open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Nat renaming (_+_ to _+ℕ_ ; _·_ to _·ℕ_) open import Cubical.Data.Unit open import Cubical.Algebra.Group renaming (ℤ to ℤGroup ; Unit to UnitGroup) open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.Truncation open import Cubical.HITs.SetTruncation renaming (elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation -- The pushout describing the hopf invariant of the multiplication (∙Π) of -- two maps (S³⁺²ⁿ →∙ S²⁺ⁿ) C·Π : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → Type _ C·Π n f g = Pushout (λ _ → tt) (∙Π f g .fst) -- Another pushout, essentially the same, but starting with -- S³⁺²ⁿ ∨ S³⁺²ⁿ. This will be used to break up the hopf invariant -- of ∙Π f g. C* : ∀ n → (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → Type _ C* n f g = Pushout (λ _ → tt) (fst (∨→∙ f g)) -- The coequaliser of ∙Π and ∨→∙ θ : ∀ {ℓ} {A : Pointed ℓ} → Susp (fst A) → (Susp (fst A) , north) ⋁ (Susp (fst A) , north) θ north = inl north θ south = inr north θ {A = A} (merid a i₁) = ((λ i → inl ((merid a ∙ sym (merid (pt A))) i)) ∙∙ push tt ∙∙ λ i → inr ((merid a ∙ sym (merid (pt A))) i)) i₁ ∙Π≡∨→∘θ : ∀ n → (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → (x : _) → ∙Π f g .fst x ≡ (f ∨→ g) (θ {A = S₊∙ _} x) ∙Π≡∨→∘θ n f g north = sym (snd f) ∙Π≡∨→∘θ n f g south = sym (snd g) ∙Π≡∨→∘θ n f g (merid a i₁) j = main j i₁ where help : cong (f ∨→ g) (cong (θ {A = S₊∙ _}) (merid a)) ≡ (refl ∙∙ cong (fst f) (merid a ∙ sym (merid north)) ∙∙ snd f) ∙ (sym (snd g) ∙∙ cong (fst g) (merid a ∙ sym (merid north)) ∙∙ refl) help = cong-∙∙ (f ∨→ g) ((λ i → inl ((merid a ∙ sym (merid north)) i))) (push tt) (λ i → inr ((merid a ∙ sym (merid north)) i)) ∙∙ doubleCompPath≡compPath _ _ _ ∙∙ cong (cong (f ∨→ g) (λ i₂ → inl ((merid a ∙ (λ i₃ → merid north (~ i₃))) i₂)) ∙_) (sym (assoc _ _ _)) ∙∙ assoc _ _ _ ∙∙ cong₂ _∙_ refl (compPath≡compPath' _ _) main : PathP (λ i → snd f (~ i) ≡ snd g (~ i)) (λ i₁ → ∙Π f g .fst (merid a i₁)) λ i₁ → (f ∨→ g) (θ {A = S₊∙ _} (merid a i₁)) main = (λ i → ((λ j → snd f (~ i ∧ ~ j)) ∙∙ cong (fst f) (merid a ∙ sym (merid north)) ∙∙ snd f) ∙ (sym (snd g) ∙∙ cong (fst g) (merid a ∙ sym (merid north)) ∙∙ λ j → snd g (~ i ∧ j))) ▷ sym help private WedgeElim : ∀ {ℓ} (n : ℕ) {P : S₊∙ (3 +ℕ (n +ℕ n)) ⋁ S₊∙ (3 +ℕ (n +ℕ n)) → Type ℓ} → ((x : _) → isOfHLevel (3 +ℕ n) (P x)) → P (inl north) → (x : _) → P x WedgeElim n {P = P} x s (inl x₁) = sphereElim _ {A = P ∘ inl} (λ _ → isOfHLevelPlus' {n = n} (3 +ℕ n) (x _)) s x₁ WedgeElim n {P = P} x s (inr x₁) = sphereElim _ {A = P ∘ inr} (sphereElim _ (λ _ → isProp→isOfHLevelSuc ((suc (suc (n +ℕ n)))) (isPropIsOfHLevel (suc (suc (suc (n +ℕ n)))))) (subst (isOfHLevel ((3 +ℕ n) +ℕ n)) (cong P (push tt)) (isOfHLevelPlus' {n = n} (3 +ℕ n) (x _)))) (subst P (push tt) s) x₁ WedgeElim n {P = P} x s (push a j) = transp (λ i → P (push tt (i ∧ j))) (~ j) s H²C*≅ℤ : ∀ n → (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → GroupIso (coHomGr (2 +ℕ n) (C* n f g)) ℤGroup H²C*≅ℤ n f g = compGroupIso is (Hⁿ-Sⁿ≅ℤ (suc n)) where ∘inr : (coHom (2 +ℕ n) (C* n f g)) → coHom (2 +ℕ n) (S₊ (2 +ℕ n)) ∘inr = sMap λ f → f ∘ inr invMapPrim : (S₊ (2 +ℕ n) → coHomK (2 +ℕ n)) → C* n f g → coHomK (2 +ℕ n) invMapPrim h (inl x) = h (ptSn _) invMapPrim h (inr x) = h x invMapPrim h (push a i₁) = WedgeElim n {P = λ a → h north ≡ h (fst (∨→∙ f g) a)} (λ _ → isOfHLevelTrunc (4 +ℕ n) _ _) (cong h (sym (snd f))) a i₁ invMap : coHom (2 +ℕ n) (S₊ (2 +ℕ n)) → (coHom (2 +ℕ n) (C* n f g)) invMap = sMap invMapPrim ∘inrSect : (x : coHom (2 +ℕ n) (S₊ (2 +ℕ n))) → ∘inr (invMap x) ≡ x ∘inrSect = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ a → refl ∘inrRetr : (x : (coHom (2 +ℕ n) (C* n f g))) → invMap (∘inr x) ≡ x ∘inrRetr = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ h → cong ∣_∣₂ (funExt λ { (inl x) → cong h ((λ i → inr ((snd f) (~ i))) ∙ sym (push (inl north))) ; (inr x) → refl ; (push a i) → lem₁ h a i}) where lem₁ : (h : C* n f g → coHomK (2 +ℕ n)) (a : _) → PathP (λ i → invMapPrim (h ∘ inr) (push a i) ≡ h (push a i)) (cong h ((λ i → inr ((snd f) (~ i))) ∙ sym (push (inl north)))) refl lem₁ h = WedgeElim n (λ _ → isOfHLevelPathP (3 +ℕ n) (isOfHLevelTrunc (4 +ℕ n) _ _) _ _) lem₂ where lem₂ : PathP (λ i → invMapPrim (h ∘ inr) (push (inl north) i) ≡ h (push (inl north) i)) (cong h ((λ i → inr ((snd f) (~ i))) ∙ sym (push (inl north)))) refl lem₂ i j = h (hcomp (λ k → λ { (i = i1) → inr (fst f north) ; (j = i0) → inr (snd f (~ i)) ; (j = i1) → push (inl north) (i ∨ ~ k)}) (inr (snd f (~ i ∧ ~ j)))) is : GroupIso (coHomGr (2 +ℕ n) (C* n f g)) (coHomGr (2 +ℕ n) (S₊ (2 +ℕ n))) Iso.fun (fst is) = ∘inr Iso.inv (fst is) = invMap Iso.rightInv (fst is) = ∘inrSect Iso.leftInv (fst is) = ∘inrRetr snd is = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → refl) H⁴-C·Π : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → GroupIso (coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C·Π n f g)) ℤGroup H⁴-C·Π n f g = compGroupIso (transportCohomIso (cong (3 +ℕ_) (+-suc n n))) (Hopfβ-Iso n (∙Π f g)) H²-C·Π : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → GroupIso (coHomGr (2 +ℕ n) (C·Π n f g)) ℤGroup H²-C·Π n f g = Hopfα-Iso n (∙Π f g) H⁴-C* : ∀ n → (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → GroupIso (coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)) (DirProd ℤGroup ℤGroup) H⁴-C* n f g = compGroupIso (GroupEquiv→GroupIso (invGroupEquiv fstIso)) (compGroupIso (transportCohomIso (cong (2 +ℕ_) (+-suc n n))) (compGroupIso (Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n))))) (S₊∙ (suc (suc (suc (n +ℕ n))))) _) (GroupIsoDirProd (Hⁿ-Sⁿ≅ℤ _) (Hⁿ-Sⁿ≅ℤ _)))) where module Ms = MV _ _ _ (λ _ → tt) (fst (∨→∙ f g)) fstIso : GroupEquiv (coHomGr ((suc (suc (n +ℕ suc n)))) (S₊∙ (3 +ℕ (n +ℕ n)) ⋁ S₊∙ (3 +ℕ (n +ℕ n)))) (coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)) fst (fst fstIso) = Ms.d (suc (suc (n +ℕ suc n))) .fst snd (fst fstIso) = SES→isEquiv (sym (fst (GroupPath _ _) (isContr→≃Unit (isContrΣ (subst isContr (isoToPath (invIso (fst (Hⁿ-Unit≅0 _)))) isContrUnit) (λ _ → subst isContr (isoToPath (invIso (fst (Hⁿ-Sᵐ≅0 _ _ λ p → ¬lemHopf 0 ((λ _ → north) , refl) n n (cong suc (sym (+-suc n n)) ∙ p))))) isContrUnit)) , makeIsGroupHom λ _ _ → refl))) (GroupPath _ _ .fst (compGroupEquiv (invEquiv (isContr→≃Unit ((tt , tt) , (λ _ → refl))) , makeIsGroupHom λ _ _ → refl) (GroupEquivDirProd (GroupIso→GroupEquiv (invGroupIso (Hⁿ-Unit≅0 _))) (GroupIso→GroupEquiv (invGroupIso (Hⁿ-Sᵐ≅0 _ _ λ p → ¬lemHopf 0 ((λ _ → north) , refl) n (suc n) (cong (2 +ℕ_) (sym (+-suc n n)) ∙ p))))))) (Ms.Δ (suc (suc (n +ℕ suc n)))) (Ms.d (suc (suc (n +ℕ suc n)))) (Ms.i (suc (suc (suc (n +ℕ suc n))))) (Ms.Ker-d⊂Im-Δ _) (Ms.Ker-i⊂Im-d _) snd fstIso = Ms.d (suc (suc (n +ℕ suc n))) .snd module _ (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) where C·Π' = C·Π n f g -- The generators of the cohomology groups of C* and C·Π βₗ : coHom ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g) βₗ = Iso.inv (fst (H⁴-C* n f g)) (1 , 0) βᵣ : coHom ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g) βᵣ = Iso.inv (fst (H⁴-C* n f g)) (0 , 1) β·Π : coHom ((2 +ℕ n) +' (2 +ℕ n)) C·Π' β·Π = Iso.inv (fst (H⁴-C·Π n f g)) 1 α* : coHom (2 +ℕ n) (C* n f g) α* = Iso.inv (fst (H²C*≅ℤ n f g)) 1 -- They can be difficult to work with in this form. -- We give them simpler forms and prove that these are equivalent βᵣ'-fun : C* n f g → coHomK ((4 +ℕ (n +ℕ n))) βᵣ'-fun (inl x) = 0ₖ _ βᵣ'-fun (inr x) = 0ₖ _ βᵣ'-fun (push (inl x) i₁) = 0ₖ _ βᵣ'-fun (push (inr x) i₁) = Kn→ΩKn+1 _ ∣ x ∣ i₁ βᵣ'-fun (push (push a i₂) i₁) = Kn→ΩKn+10ₖ _ (~ i₂) i₁ βₗ'-fun : C* n f g → coHomK (4 +ℕ (n +ℕ n)) βₗ'-fun (inl x) = 0ₖ _ βₗ'-fun (inr x) = 0ₖ _ βₗ'-fun (push (inl x) i₁) = Kn→ΩKn+1 _ ∣ x ∣ i₁ βₗ'-fun (push (inr x) i₁) = 0ₖ _ βₗ'-fun (push (push a i₂) i₁) = Kn→ΩKn+10ₖ _ i₂ i₁ βₗ''-fun : coHom ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g) βₗ''-fun = subst (λ m → coHom m (C* n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) ∣ βₗ'-fun ∣₂ βᵣ''-fun : coHom ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g) βᵣ''-fun = subst (λ m → coHom m (C* n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) ∣ βᵣ'-fun ∣₂ private 0ₖ≡∨→ : (a : _) → 0ₖ (suc (suc n)) ≡ ∣ (f ∨→ g) a ∣ 0ₖ≡∨→ = WedgeElim _ (λ _ → isOfHLevelTrunc (4 +ℕ n) _ _) (cong ∣_∣ₕ (sym (snd f))) 0ₖ≡∨→-inr : 0ₖ≡∨→ (inr north) ≡ cong ∣_∣ₕ (sym (snd g)) 0ₖ≡∨→-inr = (λ j → transport (λ i → 0ₖ (2 +ℕ n) ≡ ∣ compPath-filler' (snd f) (sym (snd g)) (~ j) i ∣ₕ) λ i → ∣ snd f (~ i ∨ j) ∣ₕ) ∙ λ j → transp (λ i → 0ₖ (2 +ℕ n) ≡ ∣ snd g (~ i ∧ ~ j) ∣ₕ) j λ i → ∣ snd g (~ i ∨ ~ j) ∣ₕ α*'-fun : C* n f g → coHomK (2 +ℕ n) α*'-fun (inl x) = 0ₖ _ α*'-fun (inr x) = ∣ x ∣ α*'-fun (push a i₁) = 0ₖ≡∨→ a i₁ α*' : coHom (2 +ℕ n) (C* n f g) α*' = ∣ α*'-fun ∣₂ -- We also need the following three maps jₗ : HopfInvariantPush n (fst f) → C* n f g jₗ (inl x) = inl x jₗ (inr x) = inr x jₗ (push a i₁) = push (inl a) i₁ jᵣ : HopfInvariantPush n (fst g) → C* n f g jᵣ (inl x) = inl x jᵣ (inr x) = inr x jᵣ (push a i₁) = push (inr a) i₁ q : C·Π' → C* n f g q (inl x) = inl x q (inr x) = inr x q (push a i₁) = (push (θ a) ∙ λ i → inr (∙Π≡∨→∘θ n f g a (~ i))) i₁ α↦1 : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → Iso.fun (fst (H²C*≅ℤ n f g)) (α*' n f g) ≡ 1 α↦1 n f g = sym (cong (Iso.fun (fst (Hⁿ-Sⁿ≅ℤ (suc n)))) (Hⁿ-Sⁿ≅ℤ-nice-generator n)) ∙ Iso.rightInv (fst (Hⁿ-Sⁿ≅ℤ (suc n))) (pos 1) α≡ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → α* n f g ≡ α*' n f g α≡ n f g = sym (Iso.leftInv (fst (H²C*≅ℤ n f g)) _) ∙∙ cong (Iso.inv (fst (H²C*≅ℤ n f g))) lem ∙∙ Iso.leftInv (fst (H²C*≅ℤ n f g)) _ where lem : Iso.fun (fst (H²C*≅ℤ n f g)) (α* n f g) ≡ Iso.fun (fst (H²C*≅ℤ n f g)) (α*' n f g) lem = (Iso.rightInv (fst (H²C*≅ℤ n f g)) (pos 1)) ∙ sym (α↦1 n f g) q-α : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (q n f g) (α* n f g) ≡ Hopfα n (∙Π f g) q-α n f g = (λ i → coHomFun _ (q n f g) (α≡ n f g i)) ∙ sym (Iso.leftInv is _) ∙∙ cong (Iso.inv is) lem ∙∙ Iso.leftInv is _ where is = fst (Hopfα-Iso n (∙Π f g)) lem : Iso.fun is (coHomFun _ (q n f g) (α*' n f g)) ≡ Iso.fun is (Hopfα n (∙Π f g)) lem = sym (cong (Iso.fun (fst (Hⁿ-Sⁿ≅ℤ (suc n)))) (Hⁿ-Sⁿ≅ℤ-nice-generator n)) ∙∙ Iso.rightInv (fst (Hⁿ-Sⁿ≅ℤ (suc n))) (pos 1) ∙∙ sym (Hopfα-Iso-α n (∙Π f g)) βₗ≡ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → βₗ n f g ≡ βₗ''-fun n f g βₗ≡ n f g = cong (∨-d ∘ subber₂) (cong (Iso.inv (fst ((Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n))))) (S₊∙ (suc (suc (suc (n +ℕ n))))) (((suc (suc (n +ℕ n))))))))) help ∙ lem) ∙ funExt⁻ ∨-d∘subber ∣ wedgeGen ∣₂ ∙ cong subber₃ (sym βₗ'-fun≡) where ∨-d = MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (n +ℕ suc n))) .fst ∨-d' = MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (suc (n +ℕ n)))) .fst help : Iso.inv (fst (GroupIsoDirProd (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))) (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))))) (1 , 0) ≡ (∣ ∣_∣ ∣₂ , 0ₕ _) help = ΣPathP ((Hⁿ-Sⁿ≅ℤ-nice-generator _) , IsGroupHom.pres1 (snd (invGroupIso (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n))))))) subber₃ = subst (λ m → coHom m (C* n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) subber₂ = (subst (λ m → coHom m (S₊∙ (suc (suc (suc (n +ℕ n)))) ⋁ S₊∙ (suc (suc (suc (n +ℕ n)))))) (sym (cong (2 +ℕ_) (+-suc n n)))) ∨-d∘subber : ∨-d ∘ subber₂ ≡ subber₃ ∘ ∨-d' ∨-d∘subber = funExt (λ a → (λ j → transp (λ i → coHom ((suc ∘ suc ∘ suc) (+-suc n n (~ i ∧ j))) (C* n f g)) (~ j) (MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (+-suc n n j))) .fst (transp (λ i → coHom (2 +ℕ (+-suc n n (j ∨ ~ i))) (S₊∙ (suc (suc (suc (n +ℕ n)))) ⋁ S₊∙ (suc (suc (suc (n +ℕ n)))))) j a)))) wedgeGen : (S₊∙ (suc (suc (suc (n +ℕ n)))) ⋁ S₊∙ (suc (suc (suc (n +ℕ n)))) → coHomK (suc (suc (suc (n +ℕ n))))) wedgeGen (inl x) = ∣ x ∣ wedgeGen (inr x) = 0ₖ _ wedgeGen (push a i₁) = 0ₖ _ βₗ'-fun≡ : ∣ βₗ'-fun n f g ∣₂ ≡ ∨-d' ∣ wedgeGen ∣₂ βₗ'-fun≡ = cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push (inl x) i₁) → refl ; (push (inr x) i₁) j → Kn→ΩKn+10ₖ _ (~ j) i₁ ; (push (push a i₂) i₁) j → Kn→ΩKn+10ₖ _ (~ j ∧ i₂) i₁}) lem : Iso.inv (fst (Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n))))) (S₊∙ (suc (suc (suc (n +ℕ n))))) (((suc (suc (n +ℕ n))))))) (∣ ∣_∣ ∣₂ , 0ₕ _) ≡ ∣ wedgeGen ∣₂ lem = cong ∣_∣₂ (funExt λ { (inl x) → rUnitₖ (suc (suc (suc (n +ℕ n)))) ∣ x ∣ ; (inr x) → refl ; (push a i₁) → refl}) βᵣ≡ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → βᵣ n f g ≡ βᵣ''-fun n f g βᵣ≡ n f g = cong (∨-d ∘ subber₂) (cong (Iso.inv (fst (Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n))))) (S₊∙ (suc (suc (suc (n +ℕ n))))) (suc (suc (n +ℕ n)))))) help ∙ lem) ∙ funExt⁻ ∨-d∘subber ∣ wedgeGen ∣₂ ∙ cong (subber₃) (sym βᵣ'-fun≡) where ∨-d = MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (n +ℕ suc n))) .fst ∨-d' = MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (suc (n +ℕ n)))) .fst help : Iso.inv (fst (GroupIsoDirProd (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))) (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))))) (0 , 1) ≡ (0ₕ _ , ∣ ∣_∣ ∣₂) help = ΣPathP (IsGroupHom.pres1 (snd (invGroupIso (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))))) , (Hⁿ-Sⁿ≅ℤ-nice-generator _)) subber₃ = subst (λ m → coHom m (C* n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) subber₂ = (subst (λ m → coHom m (S₊∙ (suc (suc (suc (n +ℕ n)))) ⋁ S₊∙ (suc (suc (suc (n +ℕ n)))))) (sym (cong (2 +ℕ_) (+-suc n n)))) ∨-d∘subber : ∨-d ∘ subber₂ ≡ subber₃ ∘ ∨-d' ∨-d∘subber = funExt (λ a → (λ j → transp (λ i → coHom ((suc ∘ suc ∘ suc) (+-suc n n (~ i ∧ j))) (C* n f g)) (~ j) (MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (+-suc n n j))) .fst (transp (λ i → coHom (2 +ℕ (+-suc n n (j ∨ ~ i))) (S₊∙ (suc (suc (suc (n +ℕ n)))) ⋁ S₊∙ (suc (suc (suc (n +ℕ n)))))) j a)))) wedgeGen : (S₊∙ (suc (suc (suc (n +ℕ n)))) ⋁ S₊∙ (suc (suc (suc (n +ℕ n)))) → coHomK (suc (suc (suc (n +ℕ n))))) wedgeGen (inl x) = 0ₖ _ wedgeGen (inr x) = ∣ x ∣ wedgeGen (push a i₁) = 0ₖ _ lem : Iso.inv (fst ((Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n))))) (S₊∙ (suc (suc (suc (n +ℕ n))))) (suc (suc (n +ℕ n)))))) (0ₕ _ , ∣ ∣_∣ ∣₂) ≡ ∣ wedgeGen ∣₂ lem = cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → lUnitₖ (suc (suc (suc (n +ℕ n)))) ∣ x ∣ ; (push a i₁) → refl}) βᵣ'-fun≡ : ∣ βᵣ'-fun n f g ∣₂ ≡ ∨-d' ∣ wedgeGen ∣₂ βᵣ'-fun≡ = cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push (inl x) i₁) j → Kn→ΩKn+10ₖ _ (~ j) i₁ ; (push (inr x) i₁) → refl ; (push (push a i₂) i₁) j → Kn→ΩKn+10ₖ _ (~ j ∧ ~ i₂) i₁}) q-βₗ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (q n f g) (βₗ n f g) ≡ β·Π n f g q-βₗ n f g = cong (coHomFun _ (q n f g)) (βₗ≡ n f g) ∙ transportLem ∙ cong (subst (λ m → coHom m (C·Π' n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))) (sym (Iso.leftInv (fst (Hopfβ-Iso n (∙Π f g))) (Hopfβ n (∙Π f g))) ∙ cong (Iso.inv ((fst (Hopfβ-Iso n (∙Π f g))))) (Hopfβ↦1 n (∙Π f g))) where transportLem : coHomFun (suc (suc (suc (n +ℕ suc n)))) (q n f g) (βₗ''-fun n f g) ≡ subst (λ m → coHom m (C·Π' n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) (Hopfβ n (∙Π f g)) transportLem = natTranspLem ∣ βₗ'-fun n f g ∣₂ (λ m → coHomFun m (q n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) ∙ cong (subst (λ m → coHom m (C·Π' n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))) (cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a i₁) → push-lem a i₁})) where push-lem : (x : fst (S₊∙ (3 +ℕ (n +ℕ n)))) → PathP (λ i₁ → βₗ'-fun n f g ((push (θ x) ∙ λ i → inr (∙Π≡∨→∘θ n f g x (~ i))) i₁) ≡ MV.d-pre Unit (fst (S₊∙ (2 +ℕ n))) (fst (S₊∙ (3 +ℕ n +ℕ n))) (λ _ → tt) (fst (∙Π f g)) (3 +ℕ n +ℕ n) ∣_∣ (push x i₁)) (λ _ → βₗ'-fun n f g (q n f g (inl tt))) (λ _ → βₗ'-fun n f g (q n f g (inr (∙Π f g .fst x)))) push-lem x = flipSquare (cong-∙ (βₗ'-fun n f g) (push (θ x)) (λ i → inr (∙Π≡∨→∘θ n f g x (~ i))) ∙∙ sym (rUnit _) ∙∙ lem₁ x) where lem₁ : (x : _) → cong (βₗ'-fun n f g) (push (θ {A = S₊∙ _} x)) ≡ Kn→ΩKn+1 _ ∣ x ∣ lem₁ north = refl lem₁ south = sym (Kn→ΩKn+10ₖ _) ∙ cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n))))) (cong ∣_∣ₕ (merid north)) lem₁ (merid a j) k = merid-lem k j where p = pt (S₊∙ (suc (suc (n +ℕ n)))) merid-lem : PathP (λ k → Kn→ΩKn+1 _ ∣ north ∣ₕ ≡ (sym (Kn→ΩKn+10ₖ _) ∙ cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n))))) (cong ∣_∣ₕ (merid north))) k) (λ j → cong (βₗ'-fun n f g) (push (θ {A = S₊∙ _} (merid a j)))) (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a)) merid-lem = (cong-∙∙ (cong (βₗ'-fun n f g) ∘ push) (λ i₁ → inl ((merid a ∙ (sym (merid p))) i₁)) (push tt) ((λ i₁ → inr ((merid a ∙ (sym (merid p))) i₁))) ∙ sym (compPath≡compPath' _ _) ∙ cong (_∙ Kn→ΩKn+10ₖ _) (cong-∙ ((Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ)) (merid a) (sym (merid north))) ∙ sym (assoc _ _ _) ∙ cong (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a) ∙_) (sym (symDistr (sym ((Kn→ΩKn+10ₖ _))) (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n))))) (cong ∣_∣ₕ (merid north)))))) ◁ λ i j → compPath-filler (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a)) (sym (sym (Kn→ΩKn+10ₖ _) ∙ cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n))))) (cong ∣_∣ₕ (merid north)))) (~ i) j q-βᵣ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (q n f g) (βᵣ n f g) ≡ β·Π n f g q-βᵣ n f g = cong (coHomFun _ (q n f g)) (βᵣ≡ n f g) ∙ transportLem ∙ cong (subst (λ m → coHom m (C·Π' n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))) (sym (Iso.leftInv (fst (Hopfβ-Iso n (∙Π f g))) (Hopfβ n (∙Π f g))) ∙ cong (Iso.inv ((fst (Hopfβ-Iso n (∙Π f g))))) (Hopfβ↦1 n (∙Π f g))) where transportLem : coHomFun (suc (suc (suc (n +ℕ suc n)))) (q n f g) (βᵣ''-fun n f g) ≡ subst (λ m → coHom m (C·Π' n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) (Hopfβ n (∙Π f g)) transportLem = natTranspLem ∣ βᵣ'-fun n f g ∣₂ (λ m → coHomFun m (q n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) ∙ cong (subst (λ m → coHom m (C·Π' n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))) (cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a i₁) → push-lem a i₁})) where push-lem : (x : fst (S₊∙ (3 +ℕ (n +ℕ n)))) → PathP (λ i₁ → βᵣ'-fun n f g ((push (θ x) ∙ λ i → inr (∙Π≡∨→∘θ n f g x (~ i))) i₁) ≡ MV.d-pre Unit (fst (S₊∙ (2 +ℕ n))) (fst (S₊∙ (3 +ℕ n +ℕ n))) (λ _ → tt) (fst (∙Π f g)) (3 +ℕ n +ℕ n) ∣_∣ (push x i₁)) (λ _ → βᵣ'-fun n f g (q n f g (inl tt))) (λ _ → βᵣ'-fun n f g (q n f g (inr (∙Π f g .fst x)))) push-lem x = flipSquare (cong-∙ (βᵣ'-fun n f g) (push (θ x)) (λ i → inr (∙Π≡∨→∘θ n f g x (~ i))) ∙∙ sym (rUnit _) ∙∙ lem₁ x) where lem₁ : (x : _) → cong (βᵣ'-fun n f g) (push (θ {A = S₊∙ _} x)) ≡ Kn→ΩKn+1 _ ∣ x ∣ lem₁ north = sym (Kn→ΩKn+10ₖ _) lem₁ south = cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n))))) (cong ∣_∣ₕ (merid north)) lem₁ (merid a j) k = merid-lem k j where p = pt (S₊∙ (suc (suc (n +ℕ n)))) merid-lem : PathP (λ k → (Kn→ΩKn+10ₖ _) (~ k) ≡ (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n))))) (cong ∣_∣ₕ (merid north))) k) (λ j → cong (βᵣ'-fun n f g) (push (θ {A = S₊∙ _} (merid a j)))) (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a)) merid-lem = (cong-∙∙ (cong (βᵣ'-fun n f g) ∘ push) (λ i₁ → inl ((merid a ∙ (sym (merid p))) i₁)) (push tt) (λ i₁ → inr ((merid a ∙ (sym (merid p))) i₁)) ∙∙ (cong (sym (Kn→ΩKn+10ₖ _) ∙_) (cong-∙ (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a) (sym (merid (ptSn _))))) ∙∙ sym (doubleCompPath≡compPath _ _ _)) ◁ symP (doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a)) (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (sym (merid north)))) jₗ-α : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (jₗ n f g) (α* n f g) ≡ Hopfα n f jₗ-α n f g = cong (coHomFun _ (jₗ n f g)) (α≡ n f g) ∙ cong ∣_∣₂ (funExt (HopfInvariantPushElim n (fst f) (isOfHLevelPath ((suc (suc (suc (suc (n +ℕ n)))))) (isOfHLevelPlus' {n = n} (4 +ℕ n) (isOfHLevelTrunc (4 +ℕ n))) _ _) refl (λ _ → refl) λ j → refl)) jₗ-βₗ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (jₗ n f g) (βₗ n f g) ≡ subst (λ m → coHom m (HopfInvariantPush n (fst f))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) (Hopfβ n f) jₗ-βₗ n f g = cong (coHomFun _ (jₗ n f g)) (βₗ≡ n f g) ∙∙ natTranspLem ∣ βₗ'-fun n f g ∣₂ (λ m → coHomFun m (jₗ n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) ∙∙ cong (subst (λ m → coHom m (HopfInvariantPush n (fst f))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))) (cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a i₁) → refl})) jₗ-βᵣ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (jₗ n f g) (βᵣ n f g) ≡ 0ₕ _ jₗ-βᵣ n f g = cong (coHomFun _ (jₗ n f g)) (βᵣ≡ n f g) ∙∙ natTranspLem ∣ βᵣ'-fun n f g ∣₂ (λ m → coHomFun m (jₗ n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) ∙∙ cong (subst (λ m → coHom m (HopfInvariantPush n (fst f))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))) cool where cool : coHomFun (suc (suc (suc (suc (n +ℕ n))))) (jₗ n f g) ∣ βᵣ'-fun n f g ∣₂ ≡ 0ₕ _ cool = cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a i₁) → refl}) jᵣ-α : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (jᵣ n f g) (α* n f g) ≡ Hopfα n g jᵣ-α n f g = cong (coHomFun _ (jᵣ n f g)) (α≡ n f g) ∙ cong ∣_∣₂ (funExt (HopfInvariantPushElim n (fst g) (isOfHLevelPath ((suc (suc (suc (suc (n +ℕ n)))))) (isOfHLevelPlus' {n = n} (4 +ℕ n) (isOfHLevelTrunc (4 +ℕ n))) _ _) refl (λ _ → refl) (flipSquare (0ₖ≡∨→-inr n f g)))) jᵣ-βₗ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (jᵣ n f g) (βₗ n f g) ≡ 0ₕ _ jᵣ-βₗ n f g = cong (coHomFun _ (jᵣ n f g)) (βₗ≡ n f g) ∙∙ natTranspLem ∣ βₗ'-fun n f g ∣₂ (λ m → coHomFun m (jᵣ n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) ∙∙ cong (subst (λ m → coHom m (HopfInvariantPush n (fst f))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))) cool where cool : coHomFun (suc (suc (suc (suc (n +ℕ n))))) (jᵣ n f g) ∣ βₗ'-fun n f g ∣₂ ≡ 0ₕ _ cool = cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a i₁) → refl}) jᵣ-βᵣ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → coHomFun _ (jᵣ n f g) (βᵣ n f g) ≡ subst (λ m → coHom m (HopfInvariantPush n (fst g))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) (Hopfβ n g) jᵣ-βᵣ n f g = cong (coHomFun _ (jᵣ n f g)) (βᵣ≡ n f g) ∙∙ natTranspLem ∣ βᵣ'-fun n f g ∣₂ (λ m → coHomFun m (jᵣ n f g)) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) ∙∙ cong (subst (λ m → coHom m (HopfInvariantPush n (fst g))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))) (cong ∣_∣₂ (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a i₁) → refl})) genH²ⁿC* : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → gen₂-by (coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)) (βₗ n f g) (βᵣ n f g) genH²ⁿC* n f g = Iso-pres-gen₂ (DirProd ℤGroup ℤGroup) (coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)) (1 , 0) (0 , 1) gen₂ℤ×ℤ (invGroupIso (H⁴-C* n f g)) private H⁴C* : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → Group _ H⁴C* n f g = coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g) X : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → ℤ X n f g = (genH²ⁿC* n f g) (α* n f g ⌣ α* n f g) .fst .fst Y : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → ℤ Y n f g = (genH²ⁿC* n f g) (α* n f g ⌣ α* n f g) .fst .snd α*≡⌣ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → α* n f g ⌣ α* n f g ≡ ((X n f g) ℤ[ H⁴C* n f g ]· βₗ n f g) +ₕ ((Y n f g) ℤ[ H⁴C* n f g ]· βᵣ n f g) α*≡⌣ n f g = (genH²ⁿC* n f g) (α* n f g ⌣ α* n f g) .snd coHomFun⌣ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → (n : ℕ) (x y : coHom n B) → coHomFun _ f (x ⌣ y) ≡ coHomFun _ f x ⌣ coHomFun _ f y coHomFun⌣ f n = sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ _ _ → refl isHom-HopfInvariant : (n : ℕ) (f g : S₊∙ (suc (suc (suc (n +ℕ n)))) →∙ S₊∙ (suc (suc n))) → HopfInvariant n (∙Π f g) ≡ HopfInvariant n f + HopfInvariant n g isHom-HopfInvariant n f g = mainL ∙ sym (cong₂ _+_ f-id g-id) where eq₁ : (Hopfα n (∙Π f g)) ⌣ (Hopfα n (∙Π f g)) ≡ ((X n f g + Y n f g) ℤ[ coHomGr _ _ ]· (β·Π n f g)) eq₁ = cong (λ x → x ⌣ x) (sym (q-α n f g) ∙ cong (coHomFun (suc (suc n)) (q n f g)) (α≡ n f g)) ∙ cong ((coHomFun _) (q _ f g)) (cong (λ x → x ⌣ x) (sym (α≡ n f g)) ∙ α*≡⌣ n f g) ∙ IsGroupHom.pres· (coHomMorph _ (q n f g) .snd) _ _ ∙ cong₂ _+ₕ_ (homPresℤ· (coHomMorph _ (q n f g)) (βₗ n f g) (X n f g) ∙ cong (λ z → (X n f g) ℤ[ coHomGr _ _ ]· z) (q-βₗ n f g)) (homPresℤ· (coHomMorph _ (q n f g)) (βᵣ n f g) (Y n f g) ∙ cong (λ z → (Y n f g) ℤ[ coHomGr _ _ ]· z) (q-βᵣ n f g)) ∙ sym (distrℤ· (coHomGr _ _) (β·Π n f g) (X n f g) (Y n f g)) eq₂ : Hopfα n f ⌣ Hopfα n f ≡ (X n f g ℤ[ coHomGr _ _ ]· subst (λ m → coHom m (HopfInvariantPush n (fst f))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) (Hopfβ n f)) eq₂ = cong (λ x → x ⌣ x) (sym (jₗ-α n f g)) ∙∙ sym (coHomFun⌣ (jₗ n f g) _ _ _) ∙∙ cong (coHomFun _ (jₗ n f g)) (α*≡⌣ n f g) ∙∙ IsGroupHom.pres· (snd (coHomMorph _ (jₗ n f g))) _ _ ∙∙ cong₂ _+ₕ_ (homPresℤ· (coHomMorph _ (jₗ n f g)) (βₗ n f g) (X n f g)) (homPresℤ· (coHomMorph _ (jₗ n f g)) (βᵣ n f g) (Y n f g) ∙ cong (λ z → (Y n f g) ℤ[ coHomGr _ _ ]· z) (jₗ-βᵣ n f g)) ∙∙ cong₂ _+ₕ_ refl (rUnitℤ· (coHomGr _ _) (Y n f g)) ∙∙ (rUnitₕ _ _ ∙ cong (X n f g ℤ[ coHomGr _ _ ]·_) (jₗ-βₗ n f g)) eq₃ : Hopfα n g ⌣ Hopfα n g ≡ (Y n f g ℤ[ coHomGr _ _ ]· subst (λ m → coHom m (HopfInvariantPush n (fst f))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n n))) (Hopfβ n g)) eq₃ = cong (λ x → x ⌣ x) (sym (jᵣ-α n f g)) ∙∙ sym (coHomFun⌣ (jᵣ n f g) _ _ _) ∙∙ cong (coHomFun _ (jᵣ n f g)) (α*≡⌣ n f g) ∙∙ IsGroupHom.pres· (snd (coHomMorph _ (jᵣ n f g))) _ _ ∙∙ cong₂ _+ₕ_ (homPresℤ· (coHomMorph _ (jᵣ n f g)) (βₗ n f g) (X n f g) ∙ cong (λ z → (X n f g) ℤ[ coHomGr _ _ ]· z) (jᵣ-βₗ n f g)) (homPresℤ· (coHomMorph _ (jᵣ n f g)) (βᵣ n f g) (Y n f g)) ∙∙ cong₂ _+ₕ_ (rUnitℤ· (coHomGr _ _) (X n f g)) refl ∙∙ ((lUnitₕ _ _) ∙ cong (Y n f g ℤ[ coHomGr _ _ ]·_) (jᵣ-βᵣ n f g)) transpLem : ∀ {ℓ} {G : ℕ → Group ℓ} (n m : ℕ) (x : ℤ) (p : m ≡ n) (g : fst (G n)) → subst (fst ∘ G) p (x ℤ[ G m ]· subst (fst ∘ G) (sym p) g) ≡ (x ℤ[ G n ]· g) transpLem {G = G} n m x = J (λ n p → (g : fst (G n)) → subst (fst ∘ G) p (x ℤ[ G m ]· subst (fst ∘ G) (sym p) g) ≡ (x ℤ[ G n ]· g)) λ g → transportRefl _ ∙ cong (x ℤ[ G m ]·_) (transportRefl _) mainL : HopfInvariant n (∙Π f g) ≡ X n f g + Y n f g mainL = cong (Iso.fun (fst (Hopfβ-Iso n (∙Π f g)))) (cong (subst (λ x → coHom x (HopfInvariantPush n (fst (∙Π f g)))) λ i₁ → suc (suc (suc (+-suc n n i₁)))) eq₁) ∙∙ cong (Iso.fun (fst (Hopfβ-Iso n (∙Π f g)))) (transpLem {G = λ x → coHomGr x (HopfInvariantPush n (fst (∙Π f g)))} _ _ (X n f g + Y n f g) (λ i₁ → suc (suc (suc (+-suc n n i₁)))) (Iso.inv (fst (Hopfβ-Iso n (∙Π f g))) 1)) ∙∙ homPresℤ· (_ , snd (Hopfβ-Iso n (∙Π f g))) (Iso.inv (fst (Hopfβ-Iso n (∙Π f g))) 1) (X n f g + Y n f g) ∙∙ cong ((X n f g + Y n f g) ℤ[ ℤ , ℤGroup .snd ]·_) (Iso.rightInv ((fst (Hopfβ-Iso n (∙Π f g)))) 1) ∙∙ rUnitℤ·ℤ (X n f g + Y n f g) f-id : HopfInvariant n f ≡ X n f g f-id = cong (Iso.fun (fst (Hopfβ-Iso n f))) (cong (subst (λ x → coHom x (HopfInvariantPush n (fst f))) (λ i₁ → suc (suc (suc (+-suc n n i₁))))) eq₂) ∙ cong (Iso.fun (fst (Hopfβ-Iso n f))) (transpLem {G = λ x → coHomGr x (HopfInvariantPush n (fst f))} _ _ (X n f g) ((cong (suc ∘ suc ∘ suc) (+-suc n n))) (Hopfβ n f)) ∙ homPresℤ· (_ , snd (Hopfβ-Iso n f)) (Hopfβ n f) (X n f g) ∙ cong (X n f g ℤ[ ℤ , ℤGroup .snd ]·_) (Hopfβ↦1 n f) ∙ rUnitℤ·ℤ (X n f g) g-id : HopfInvariant n g ≡ Y n f g g-id = cong (Iso.fun (fst (Hopfβ-Iso n g))) (cong (subst (λ x → coHom x (HopfInvariantPush n (fst g))) (λ i₁ → suc (suc (suc (+-suc n n i₁))))) eq₃) ∙∙ cong (Iso.fun (fst (Hopfβ-Iso n g))) (transpLem {G = λ x → coHomGr x (HopfInvariantPush n (fst g))} _ _ (Y n f g) ((cong (suc ∘ suc ∘ suc) (+-suc n n))) (Hopfβ n g)) ∙∙ homPresℤ· (_ , snd (Hopfβ-Iso n g)) (Hopfβ n g) (Y n f g) ∙∙ cong (Y n f g ℤ[ ℤ , ℤGroup .snd ]·_) (Hopfβ↦1 n g) ∙∙ rUnitℤ·ℤ (Y n f g) GroupHom-HopfInvariant-π' : (n : ℕ) → GroupHom (π'Gr (suc (suc (n +ℕ n))) (S₊∙ (suc (suc n)))) ℤGroup fst (GroupHom-HopfInvariant-π' n) = HopfInvariant-π' n snd (GroupHom-HopfInvariant-π' n) = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 isSetℤ _ _) (isHom-HopfInvariant n)) GroupHom-HopfInvariant-π : (n : ℕ) → GroupHom (πGr (suc (suc (n +ℕ n))) (S₊∙ (suc (suc n)))) ℤGroup fst (GroupHom-HopfInvariant-π n) = HopfInvariant-π n snd (GroupHom-HopfInvariant-π n) = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 isSetℤ _ _) λ p q → cong (HopfInvariant-π' n) (IsGroupHom.pres· (snd (invGroupIso (π'Gr≅πGr (suc (suc (n +ℕ n))) (S₊∙ (suc (suc n)))))) ∣ p ∣₂ ∣ q ∣₂) ∙ IsGroupHom.pres· (GroupHom-HopfInvariant-π' n .snd) ∣ Ω→SphereMap _ p ∣₂ ∣ Ω→SphereMap _ q ∣₂)
42.20113
80
0.420558
0386e4b4e7d4a6c89022b876004d843387132727
18,809
agda
Agda
CaTT/Relation.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
2
2020-05-01T08:26:53.000Z
2020-05-20T00:41:09.000Z
CaTT/Relation.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
CaTT/Relation.agda
ThiBen/catt-formalization
ed45935b38d6a86fa662f561866140122ee3dcef
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import Prelude open import GSeTT.Syntax open import GSeTT.Rules open import GSeTT.Uniqueness-Derivations open import Sets ℕ eqdecℕ open import GSeTT.Dec-Type-Checking open import CaTT.Ps-contexts {- PS-contexts -} module CaTT.Relation where -- The relation ◃ generating cases data _,_◃₀_ Γ x y : Set₁ where ◃∂⁻ : ∀{A z} → Γ ⊢t (Var y) # (Var x ⇒[ A ] Var z) → Γ , x ◃₀ y ◃∂⁺ : ∀{A z} → Γ ⊢t (Var x) # (Var z ⇒[ A ] Var y) → Γ , x ◃₀ y -- Transitive closure : we associate on the right data _,_◃_ Γ x y : Set₁ where gen : Γ , x ◃₀ y → Γ , x ◃ y ◃T : ∀{z} → Γ , x ◃ z → Γ , z ◃₀ y → Γ , x ◃ y rel : ∀ Γ x y → Set₁ rel Γ x y = Γ , x ◃ y W◃₀ : ∀ {Γ x y z A} → (Γ :: (z , A)) ⊢C → Γ , x ◃₀ y → (Γ :: (z , A)) , x ◃₀ y W◃₀ Γ+⊢ (◃∂⁻ Γ⊢x) = ◃∂⁻ (wkt Γ⊢x Γ+⊢) W◃₀ Γ+⊢ (◃∂⁺ Γ⊢x) = ◃∂⁺ (wkt Γ⊢x Γ+⊢) W◃ : ∀ {Γ x y z A} → (Γ :: (z , A)) ⊢C → Γ , x ◃ y → (Γ :: (z , A)) , x ◃ y W◃ Γ+⊢ (gen x◃₀y) = gen (W◃₀ Γ+⊢ x◃₀y) W◃ Γ+⊢ (◃T x◃y y◃₀z) = ◃T (W◃ Γ+⊢ x◃y) (W◃₀ Γ+⊢ y◃₀z) WW◃ : ∀ {Γ x y z f A B} → ((Γ :: (z , A)) :: (f , B)) ⊢C → Γ , x ◃ y → ((Γ :: (z , A)) :: (f , B)) , x ◃ y WW◃ Γ+⊢@(cc Γ⊢ _ idp) x◃y = W◃ Γ+⊢ (W◃ Γ⊢ x◃y) ◃-trans : ∀ {Γ x y z} → Γ , x ◃ y → Γ , y ◃ z → Γ , x ◃ z ◃-trans x◃y (gen y◃₀z) = ◃T x◃y y◃₀z ◃-trans x◃y (◃T y◃z z◃₀w) = ◃T (◃-trans x◃y y◃z) z◃₀w -- TODO : Move at the right place x#A∈Γ→x∈Γ : ∀ {Γ x A} → x # A ∈ Γ → x ∈ Γ x#A∈Γ→x∈Γ {Γ :: (y , _)} (inl x#A∈Γ) = inl (x#A∈Γ→x∈Γ x#A∈Γ) x#A∈Γ→x∈Γ {Γ :: (y , _)} (inr (idp , idp)) = inr idp Γ⊢x:A→x∈Γ : ∀ {Γ x A} → Γ ⊢t (Var x) # A → x ∈ Γ Γ⊢x:A→x∈Γ (var _ x#A∈Γ) = x#A∈Γ→x∈Γ x#A∈Γ data _,_⟿_ : Pre-Ctx → ℕ → ℕ → Set₁ where -- y is an iterated target of x in Γ ∂⁺⟿ : ∀{Γ x a y A} → Γ ⊢t (Var x) # (Var a ⇒[ A ] Var y) → Γ , x ⟿ y x⟿∂⁺ : ∀{Γ x a y z A} → Γ ⊢t (Var x) # (Var a ⇒[ A ] Var y) → Γ , y ⟿ z → Γ , x ⟿ z W⟿ : ∀ {Γ x y z A} → (Γ :: (z , A)) ⊢C → Γ , x ⟿ y → (Γ :: (z , A)) , x ⟿ y W⟿ Γ+⊢ (∂⁺⟿ Γ⊢x) = ∂⁺⟿ (wkt Γ⊢x Γ+⊢) W⟿ Γ+⊢ (x⟿∂⁺ Γ⊢x x⟿y) = x⟿∂⁺ (wkt Γ⊢x Γ+⊢) (W⟿ Γ+⊢ x⟿y) WW⟿ : ∀ {Γ x y z w A B} → ((Γ :: (z , A)) :: (w , B)) ⊢C → Γ , x ⟿ y → ((Γ :: (z , A)) :: (w , B)) , x ⟿ y WW⟿ Γ++⊢@(cc Γ+⊢ _ idp) x⟿y = W⟿ Γ++⊢ (W⟿ Γ+⊢ x⟿y) ⟿→◃ : ∀ {Γ x y} → Γ , x ⟿ y → Γ , x ◃ y ⟿→◃ (∂⁺⟿ Γ⊢x) = gen (◃∂⁺ Γ⊢x) ⟿→◃ (x⟿∂⁺ Γ⊢x x⟿y) = ◃-trans (gen (◃∂⁺ Γ⊢x)) (⟿→◃ x⟿y) Γ++ : ∀ {Γ x A} → Γ ⊢ps x # A → Pre-Ctx Γ++ {Γ} {x} {A} _ = (Γ :: (length Γ , A)) :: (S (length Γ) , Var x ⇒[ A ] Var (length Γ)) //⟿ : ∀ {Γ Δ x y A a} → Γ ⊢t (Var x) # A → Δ ⊢t (Var y) # A → Γ , x ⟿ a → Δ , y ⟿ a //⟿ Γ⊢x Δ⊢y (∂⁺⟿ Γ⊢x') with unique-type Γ⊢x Γ⊢x' idp ... | idp = ∂⁺⟿ Δ⊢y //⟿ Γ⊢x Δ⊢y (x⟿∂⁺ Γ⊢x' x⟿a) with unique-type Γ⊢x Γ⊢x' idp ... | idp = x⟿∂⁺ Δ⊢y (//⟿ (Γ⊢tgt (Γ⊢t:A→Γ⊢A Γ⊢x)) (Γ⊢tgt (Γ⊢t:A→Γ⊢A Δ⊢y)) x⟿a) T⟿ : ∀ {Γ x y z} → Γ , x ⟿ y → Γ , y ⟿ z → Γ , x ⟿ z T⟿ (∂⁺⟿ Γ⊢x) y⟿z = x⟿∂⁺ Γ⊢x y⟿z T⟿ (x⟿∂⁺ Γ⊢x x⟿y) y⟿z = x⟿∂⁺ Γ⊢x (T⟿ x⟿y y⟿z) ⟿dim : ∀ {Γ x y A B} → Γ ⊢t Var x # A → Γ ⊢t Var y # B → Γ , x ⟿ y → dim B < dim A ⟿dim Γ⊢x:A Γ⊢y:B (∂⁺⟿ Γ⊢x) with unique-type Γ⊢x:A Γ⊢x idp | unique-type Γ⊢y:B (Γ⊢tgt(Γ⊢t:A→Γ⊢A Γ⊢x)) idp ... | idp | idp = n≤n _ ⟿dim Γ⊢x:A Γ⊢y:B (x⟿∂⁺ Γ⊢x z⟿y) with unique-type Γ⊢x:A Γ⊢x idp ... | idp = n≤m→n≤Sm (⟿dim (Γ⊢tgt(Γ⊢t:A→Γ⊢A Γ⊢x)) Γ⊢y:B z⟿y) 𝔻0-◃ : ∀ z → ¬ ((nil :: (0 , ∗)) , 0 ◃ z) 𝔻0-◃ z (gen (◃∂⁻ (var _ (inl ())))) 𝔻0-◃ z (gen (◃∂⁻ (var _ (inr ())))) 𝔻0-◃ z (gen (◃∂⁺ (var _ (inl ())))) 𝔻0-◃ z (gen (◃∂⁺ (var _ (inr ())))) 𝔻0-◃ z (◃T 0◃x _) = 𝔻0-◃ _ 0◃x 𝔻0-⟿ : ∀ z → ¬ ((nil :: (0 , ∗)) , 0 ⟿ z) 𝔻0-⟿ z (∂⁺⟿ (var _ (inl ()))) 𝔻0-⟿ z (∂⁺⟿ (var _ (inr ()))) 𝔻0-⟿ z (x⟿∂⁺ (var _ (inl ())) _) 𝔻0-⟿ z (x⟿∂⁺ (var _ (inr ())) _) n≮n : ∀ n → ¬ (n < n) n≮n n n<n = Sn≰n _ n<n ⟿-is-tgt : ∀ {Γ x y z A} → Γ ⊢t Var x # Var y ⇒[ A ] Var z → Γ , x ⟿ y → y == z ⟿-is-tgt Γ⊢x (∂⁺⟿ Γ⊢'x) with unique-type Γ⊢x Γ⊢'x idp ... | idp = idp ⟿-is-tgt Γ⊢x (x⟿∂⁺ Γ⊢'x y'⟿y) with unique-type Γ⊢x Γ⊢'x idp ... | idp = ⊥-elim (Sn≰n _ (⟿dim (Γ⊢tgt (Γ⊢t:A→Γ⊢A Γ⊢'x)) (Γ⊢src (Γ⊢t:A→Γ⊢A Γ⊢x)) y'⟿y)) no-loop : ∀{Γ x y z T a A} → Γ ⊢ps a # A → Γ ⊢t Var x # Var y ⇒[ T ] Var z → y ≠ z no-loop pss (var _ (inl ())) idp no-loop pss (var _ (inr ())) idp no-loop (psd Γ⊢psf) Γ⊢x idp = no-loop Γ⊢psf Γ⊢x idp no-loop (pse Γ⊢psb idp idp idp idp idp) (var _ (inl (inl x∈Γ))) idp = no-loop Γ⊢psb (var (Γ⊢psx:A→Γ⊢ Γ⊢psb) x∈Γ) idp no-loop (pse Γ⊢psb idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) idp = no-loop Γ⊢psb (Γ⊢psx:A→Γ⊢x:A Γ⊢psb) idp no-loop (pse Γ⊢psb idp idp idp idp idp) (var _ (inr (idp , idp))) idp = x∉ (Γ⊢psx:A→Γ⊢ Γ⊢psb) (n≤n _) (Γ⊢psx:A→Γ⊢x:A Γ⊢psb) dangling-is-not-a-source : ∀ {Γ x A} → Γ ⊢ps x # A → (∀ f z {B} → ¬ (Γ ⊢t Var f # Var x ⇒[ B ] Var z)) post-dangling-is-not-a-source : ∀ {Γ x A} → Γ ⊢ps x # A → (∀ {y B} f z → Γ , x ⟿ y → ¬ (Γ ⊢t (Var f) # Var y ⇒[ B ] Var z)) dangling-is-not-a-source pss _ _ (var _ (inl ())) dangling-is-not-a-source pss _ _ (var _ (inr ())) dangling-is-not-a-source {x = x} (psd Γ⊢ps) t u Γ⊢t = post-dangling-is-not-a-source Γ⊢ps t u (∂⁺⟿ (psvar Γ⊢ps)) Γ⊢t dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (var _ (inl (inl x∈Γ))) = x∉ (psv Γ⊢ps) (n≤Sn _) (Γ⊢src (Γ⊢t:A→Γ⊢A (var (psv Γ⊢ps) x∈Γ))) dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (var _ (inl (inr (idp , idp)))) = x∉ (psv Γ⊢ps) (n≤Sn _) (Γ⊢src (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps))) dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (var _ (inr (idp , idp))) = x∉ (psv Γ⊢ps) (n≤Sn _) (psvar Γ⊢ps) post-dangling-is-not-a-source pss t u x⟿y Γ⊢t = 𝔻0-⟿ _ x⟿y post-dangling-is-not-a-source (psd Γ⊢ps) t u x⟿y Γ⊢t = post-dangling-is-not-a-source Γ⊢ps t u (T⟿ (∂⁺⟿ (psvar Γ⊢ps)) x⟿y) Γ⊢t post-dangling-is-not-a-source Γ+⊢@(pse Γ⊢ps idp idp idp idp idp) t u (∂⁺⟿ Γ⊢Sl) Γ⊢t with unique-type Γ⊢Sl (psvar Γ+⊢) idp post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (∂⁺⟿ Γ⊢Sl) (var _ (inl (inl t∈Γ))) | idp = x∉ (psv Γ⊢ps) (n≤n _) (Γ⊢src (Γ⊢t:A→Γ⊢A (var (psv Γ⊢ps) t∈Γ))) post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (∂⁺⟿ Γ⊢Sl) (var _ (inl (inr (idp , idp)))) | idp = x∉ (psv Γ⊢ps) (n≤n _) (Γ⊢src (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps))) post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (∂⁺⟿ Γ⊢Sl) (var _ (inr (idp , idp))) | idp = x∉ (psv Γ⊢ps) (n≤n _) (psvar Γ⊢ps) post-dangling-is-not-a-source Γ+⊢@(pse Γ⊢ps idp idp idp idp idp) t u (x⟿∂⁺ Γ⊢Sl x⟿y) Γ⊢t with unique-type Γ⊢Sl (psvar Γ+⊢) idp post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (x⟿∂⁺ Γ⊢Sl x⟿y) (var Γ+⊢ (inl (inl t∈Γ))) | idp = post-dangling-is-not-a-source Γ⊢ps _ _ (//⟿ (var Γ+⊢ (inl (inr (idp , idp)))) (psvar Γ⊢ps) x⟿y) (var (psv Γ⊢ps) t∈Γ) post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (x⟿∂⁺ Γ⊢Sl x⟿y) (var Γ+⊢ (inl (inr (idp , idp)))) | idp with ⟿-is-tgt (var Γ+⊢ (inl (inr (idp , idp)))) x⟿y ... | idp = no-loop Γ⊢ps (psvar Γ⊢ps) idp post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (x⟿∂⁺ Γ⊢Sl x⟿y) (var Γ++⊢@(cc Γ+⊢ _ p) (inr (idp , idp))) | idp = n≮n _ (⟿dim (var Γ++⊢ (inl (inr (idp , idp)))) (wkt (wkt (psvar Γ⊢ps) Γ+⊢) Γ++⊢) x⟿y) ⊢psx-◃₀→⟿ : ∀ {Γ x a A} → Γ ⊢ps x # A → Γ , x ◃₀ a → Γ , x ⟿ a ⊢psx-◃₀→⟿ Γ⊢psx (◃∂⁻ Γ⊢a) = ⊥-elim (dangling-is-not-a-source Γ⊢psx _ _ Γ⊢a) ⊢psx-◃₀→⟿ Γ⊢psx (◃∂⁺ Γ⊢x) = ∂⁺⟿ Γ⊢x ⊢psx-◃₀→⟿+ : ∀ {Γ x y a A} → Γ ⊢ps x # A → Γ , x ⟿ y → Γ , y ◃₀ a → Γ , y ⟿ a ⊢psx-◃₀→⟿+ Γ⊢psx x⟿y (◃∂⁻ Γ⊢a) = ⊥-elim (post-dangling-is-not-a-source Γ⊢psx _ _ x⟿y Γ⊢a) ⊢psx-◃₀→⟿+ Γ⊢psx x⟿y (◃∂⁺ Γ⊢y) = ∂⁺⟿ Γ⊢y ⊢psx-◃→⟿ : ∀ {Γ x a A} → Γ ⊢ps x # A → Γ , x ◃ a → Γ , x ⟿ a ⊢psx-◃→⟿+ : ∀ {Γ x a b A} → Γ ⊢ps x # A → Γ , x ⟿ a → Γ , a ◃ b → Γ , a ⟿ b ⊢psx-◃→⟿ Γ⊢psx (gen x◃₀a) = ⊢psx-◃₀→⟿ Γ⊢psx x◃₀a ⊢psx-◃→⟿ Γ⊢psx (◃T x◃z z◃₀a) = T⟿ (⊢psx-◃→⟿ Γ⊢psx x◃z) (⊢psx-◃₀→⟿+ Γ⊢psx (⊢psx-◃→⟿ Γ⊢psx x◃z) z◃₀a) ⊢psx-◃→⟿+ Γ⊢psx x⟿y (gen y◃₀a) = ⊢psx-◃₀→⟿+ Γ⊢psx x⟿y y◃₀a ⊢psx-◃→⟿+ Γ⊢psx x⟿y (◃T y◃z z◃₀a) = T⟿ (⊢psx-◃→⟿+ Γ⊢psx x⟿y y◃z) (⊢psx-◃₀→⟿+ Γ⊢psx (T⟿ x⟿y (⊢psx-◃→⟿+ Γ⊢psx x⟿y y◃z)) z◃₀a) -- easy to finish, and follows the paper proof psx-◃-linear→ : ∀ {Γ x A} → Γ ⊢ps x # A → (∀ a b → a ∈ Γ → b ∈ Γ → (((Γ , a ◃ b) + (Γ , b ◃ a)) + (a == b))) psx-◃-linear→ pss .0 .0 (inr idp) (inr idp) = inr idp psx-◃-linear→ (psd Γ⊢psx) a b a∈Γ b∈Γ = psx-◃-linear→ Γ⊢psx a b a∈Γ b∈Γ psx-◃-linear→ Γ++⊢ps@(pse Γ⊢psx idp idp idp idp idp) a b (inl (inl a∈Γ)) (inl (inl b∈Γ)) with psx-◃-linear→ Γ⊢psx a b a∈Γ b∈Γ ... | inl (inl a◃b) = inl (inl (WW◃ (psv Γ++⊢ps) a◃b)) ... | inl (inr b◃a) = inl (inr (WW◃ (psv Γ++⊢ps) b◃a)) ... | inr idp = inr idp psx-◃-linear→ Γ++⊢ps@(pse {x = x} Γ⊢psx idp idp idp idp idp) a .(length _) (inl (inl a∈Γ)) (inl (inr idp)) with psx-◃-linear→ Γ⊢psx a x a∈Γ (Γ⊢x:A→x∈Γ (psvar Γ⊢psx)) -- a ∈ Γ , b = y ... | inl (inl a◃x) = inl (inl (◃-trans (WW◃ (psv Γ++⊢ps) a◃x) (◃T (gen (◃∂⁻ (psvar Γ++⊢ps))) ((◃∂⁺ (psvar Γ++⊢ps)))))) -- a ◃ x ... | inl (inr x◃a) = inl (inr (⟿→◃ (//⟿ (psvar Γ⊢psx) (var (psv Γ++⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿ Γ⊢psx x◃a)))) -- x ◃ a ... | inr idp = inl (inl (◃T (gen (◃∂⁻ (psvar Γ++⊢ps))) (◃∂⁺ (psvar Γ++⊢ps)))) -- a = x psx-◃-linear→ Γ++⊢ps@(pse {x = x} Γ⊢psx idp idp idp idp idp) a .(S (length _)) (inl (inl a∈Γ)) (inr idp) with psx-◃-linear→ Γ⊢psx a x a∈Γ (Γ⊢x:A→x∈Γ (psvar Γ⊢psx)) -- a ∈ Γ , b = f (**) ... | inl (inl a◃x) = inl (inl (◃T (WW◃ (psv Γ++⊢ps) a◃x) (◃∂⁻ (psvar Γ++⊢ps)))) -- a ◃ x ... | inl (inr x◃a) = inl (inr (⟿→◃ (x⟿∂⁺ (psvar Γ++⊢ps) (//⟿ (psvar Γ⊢psx) (var (psv Γ++⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿ Γ⊢psx x◃a))))) -- x ◃ a ... | inr idp = inl (inl (gen (◃∂⁻ (psvar Γ++⊢ps)))) -- a = x psx-◃-linear→ Γ++⊢ps@(pse {x = x} Γ⊢psx idp idp idp idp idp) .(length _) b (inl (inr idp)) (inl (inl b∈Γ)) with psx-◃-linear→ Γ⊢psx b x b∈Γ (Γ⊢x:A→x∈Γ (psvar Γ⊢psx)) -- a = y, b ∈ Γ ... | inl (inl b◃x) = inl (inr (◃-trans (WW◃ (psv Γ++⊢ps) b◃x) (◃T (gen (◃∂⁻ (psvar Γ++⊢ps))) (◃∂⁺ (psvar Γ++⊢ps))))) -- b ◃ x ... | inl (inr x◃b) = inl (inl (⟿→◃ (//⟿ (psvar Γ⊢psx) (var (psv Γ++⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿ Γ⊢psx x◃b)))) -- x ◃ b ... | inr idp = inl (inr (◃T (gen (◃∂⁻ (psvar Γ++⊢ps))) (◃∂⁺ (psvar Γ++⊢ps)))) -- b = x psx-◃-linear→ (pse Γ⊢psx idp idp idp idp idp) .(length _) .(length _) (inl (inr idp)) (inl (inr idp)) = inr idp psx-◃-linear→ Γ++⊢ps@(pse Γ⊢psx idp idp idp idp idp) .(length _) .(S (length _)) (inl (inr idp)) (inr idp) = inl (inr (gen (◃∂⁺ (psvar Γ++⊢ps)))) -- a = y, b = f psx-◃-linear→ Γ++⊢ps@(pse {x = x} Γ⊢psx idp idp idp idp idp) .(S (length _)) b (inr idp) (inl (inl b∈Γ)) with psx-◃-linear→ Γ⊢psx b x b∈Γ (Γ⊢x:A→x∈Γ (psvar Γ⊢psx)) -- a = f b ∈ Γ ... | inl (inl b◃x) = inl (inr (◃T (WW◃ (psv Γ++⊢ps) b◃x) (◃∂⁻ (psvar Γ++⊢ps)))) -- b ◃ x ... | inl (inr x◃b) = inl (inl (⟿→◃ (x⟿∂⁺ (psvar Γ++⊢ps) (//⟿ (psvar Γ⊢psx) (var (psv Γ++⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿ Γ⊢psx x◃b))))) -- x ◃ b ... | inr idp = inl (inr (gen (◃∂⁻ (psvar Γ++⊢ps)))) -- b = x psx-◃-linear→ Γ++⊢ps@(pse Γ⊢psx idp idp idp idp idp) .(S (length _)) .(length _) (inr idp) (inl (inr idp)) = inl (inl (gen (◃∂⁺ (psvar Γ++⊢ps)))) -- a = f, b = y psx-◃-linear→ (pse Γ⊢psx idp idp idp idp idp) .(S (length _)) .(S (length _)) (inr idp) (inr idp) = inr idp strengthen : ∀ {Γ x A y B} → (Γ :: (y , B)) ⊢t Var x # A → x ∈ Γ → Γ ⊢t Var x # A strengthen (var (cc Γ⊢ _ idp) (inl x#A∈Γ)) x∈Γ = var Γ⊢ x#A∈Γ strengthen (var (cc Γ⊢ _ idp) (inr (idp , idp))) x∈Γ = ⊥-elim (l∉ Γ⊢ (n≤n _) x∈Γ) strengthen+ : ∀ {Γ x A y B z C} → ((Γ :: (y , B)) :: (z , C)) ⊢t Var x # A → x ∈ Γ → Γ ⊢t Var x # A strengthen+ Γ++⊢x x∈Γ = strengthen (strengthen Γ++⊢x (inl x∈Γ)) x∈Γ ◃₀∈ : ∀ {Γ x a} → Γ , x ◃₀ a → a ∈ Γ ◃₀∈ (◃∂⁻ Γ⊢a) = Γ⊢x:A→x∈Γ Γ⊢a ◃₀∈ (◃∂⁺ Γ⊢x) = Γ⊢x:A→x∈Γ (Γ⊢tgt (Γ⊢t:A→Γ⊢A Γ⊢x)) ◃∈ : ∀ {Γ x a} → Γ , x ◃ a → a ∈ Γ ◃∈ (gen x◃₀a) = ◃₀∈ x◃₀a ◃∈ (◃T _ z◃₀x) = ◃₀∈ z◃₀x ∈◃₀ : ∀ {Γ x a} → Γ , x ◃₀ a → x ∈ Γ ∈◃₀ (◃∂⁻ Γ⊢a) = Γ⊢x:A→x∈Γ (Γ⊢src (Γ⊢t:A→Γ⊢A Γ⊢a)) ∈◃₀ (◃∂⁺ Γ⊢x) = Γ⊢x:A→x∈Γ Γ⊢x ∈◃ : ∀ {Γ x a} → Γ , x ◃ a → x ∈ Γ ∈◃ (gen x◃₀a) = ∈◃₀ x◃₀a ∈◃ (◃T x◃z _) = ∈◃ x◃z WWpsx : ∀ {Γ x A} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps ⊢t (Var x) # A WWpsx Γ⊢ps = wkt (wkt (psvar Γ⊢ps) (cc (psv Γ⊢ps) (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps)) idp)) (psv (pse Γ⊢ps idp idp idp idp idp)) dangling-◃₀ : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , S (length Γ) ◃₀ a → a == length Γ dangling-◃₀ Γ⊢ps (◃∂⁻ Γ⊢a) = ⊥-elim (dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ Γ⊢a) dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inl (inl Sl∈Γ)))) = ⊥-elim (l∉ (psv Γ⊢ps) (n≤Sn _) (x#A∈Γ→x∈Γ Sl∈Γ)) dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inl (inr (Sl=l , idp))))) = ⊥-elim (Sn≠n _ Sl=l) dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inr (_ , idp)))) = idp ◃₀-dangling : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃₀ S (length Γ) → a == x ◃₀-dangling Γ⊢ps (◃∂⁻ Γ+⊢Sl) with unique-type Γ+⊢Sl (psvar (pse Γ⊢ps idp idp idp idp idp)) idp ... | idp = idp ◃₀-dangling Γ⊢ps (◃∂⁺ (var x (inl (inl a∈Γ)))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤Sn _) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (var (psv Γ⊢ps) a∈Γ)))) ◃₀-dangling Γ⊢ps (◃∂⁺ (var x (inl (inr (idp , idp))))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤Sn _) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps)))) ◃₀-dangling Γ⊢ps (◃∂⁺ (var x (inr (idp , abs)))) = ⊥-elim (Sn≠n _ (=Var (snd (=⇒ abs)))) ◃₀-dangling-tgt : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃₀ length Γ → (a == S (length Γ)) + (Γ++ Γ⊢ps , a ◃₀ x) ◃₀-dangling-tgt Γ⊢ps (◃∂⁻ Γ+⊢l) with unique-type Γ+⊢l (var (psv (pse Γ⊢ps idp idp idp idp idp)) (inl (inr (idp , idp)))) idp ... | idp = inr (◃∂⁻ (WWpsx Γ⊢ps)) ◃₀-dangling-tgt Γ⊢ps (◃∂⁺ (var x (inl (inl a∈Γ)))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤n _) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (var (psv Γ⊢ps) a∈Γ)))) ◃₀-dangling-tgt Γ⊢ps (◃∂⁺ (var x (inl (inr (idp , idp))))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤n _) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps)))) ◃₀-dangling-tgt Γ⊢ps (◃∂⁺ (var x (inr (p , _)))) = inl p ◃-dangling : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃ S (length Γ) → (a == x) + (Γ++ Γ⊢ps , a ◃ x) ◃-dangling Γ⊢ps (gen x◃₀Sl) with ◃₀-dangling Γ⊢ps x◃₀Sl ... | idp = inl idp ◃-dangling Γ⊢ps (◃T a◃x x◃₀Sl) with ◃₀-dangling Γ⊢ps x◃₀Sl ... | idp = inr a◃x ◃-dangling-tgt : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃ length Γ → (a == S (length Γ) + (a == x)) + (Γ++ Γ⊢ps , a ◃ x) ◃-dangling-tgt Γ⊢ps (gen a◃₀l) with ◃₀-dangling-tgt Γ⊢ps a◃₀l ... | inl idp = inl (inl idp) ... | inr a◃₀x = inr (gen a◃₀x) ◃-dangling-tgt Γ⊢ps (◃T a◃z z◃₀l) with ◃₀-dangling-tgt Γ⊢ps z◃₀l ... | inl idp with ◃-dangling Γ⊢ps a◃z ... | inl idp = inl (inr idp) ... | inr a◃x = inr a◃x ◃-dangling-tgt Γ⊢ps (◃T a◃z z◃₀l) | inr z◃₀x = inr (◃T a◃z z◃₀x) strengthen-◃₀ : ∀ {Γ x A a b} → (Γ⊢ps : Γ ⊢ps x # A) → a ∈ Γ → b ∈ Γ → Γ++ Γ⊢ps , a ◃₀ b → Γ , a ◃₀ b strengthen-◃₀ Γ⊢ps a∈Γ b∈Γ (◃∂⁻ Γ⊢b) = ◃∂⁻ (strengthen+ Γ⊢b b∈Γ) strengthen-◃₀ Γ⊢ps a∈Γ b∈Γ (◃∂⁺ Γ⊢a) = ◃∂⁺ (strengthen+ Γ⊢a a∈Γ) -- useful particular case strengthen-◃₀-dangling : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , length Γ ◃₀ a → Γ , x ◃₀ a strengthen-◃₀-dangling Γ⊢ps (◃∂⁻ Γ⊢a) = ⊥-elim (post-dangling-is-not-a-source (pse Γ⊢ps idp idp idp idp idp) _ _ (∂⁺⟿ (psvar (pse Γ⊢ps idp idp idp idp idp))) Γ⊢a) strengthen-◃₀-dangling Γ⊢ps (◃∂⁺ (var _ (inl (inl l∈Γ)))) = ⊥-elim (l∉ (psv Γ⊢ps) (n≤n _) (x#A∈Γ→x∈Γ l∈Γ)) strengthen-◃₀-dangling Γ⊢ps (◃∂⁺ (var _ (inl (inr (_ , idp))))) = ◃∂⁺ (psvar Γ⊢ps) strengthen-◃₀-dangling Γ⊢ps (◃∂⁺ (var _ (inr (l=Sl , _)))) = ⊥-elim (Sn≠n _ (l=Sl ^)) ∈-dangling : ∀ {Γ x A} → Γ ⊢ps x # A → x ∈ Γ ∈-dangling Γ⊢ps = Γ⊢x:A→x∈Γ (psvar Γ⊢ps) ∈-dangling-◃₀ : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃₀ x → a ∈ Γ ∈-dangling-◃₀ Γ⊢ps (◃∂⁻ Γ+⊢x) with unique-type Γ+⊢x (WWpsx Γ⊢ps) idp ... | idp = Γ⊢x:A→x∈Γ (Γ⊢src (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps))) ∈-dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inl (inl a∈Γ)))) = x#A∈Γ→x∈Γ a∈Γ ∈-dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inl (inr (idp , idp))))) with unique-type (psvar Γ⊢ps) (Γ⊢tgt (Γ⊢t:A→Γ⊢A (psvar Γ⊢ps))) idp ... | () ∈-dangling-◃₀ Γ⊢ps (◃∂⁺ (var _ (inr (idp , idp)))) = ⊥-elim (x∉ (psv Γ⊢ps) (n≤n _) (psvar Γ⊢ps)) strengthen-dangling-◃₀ : ∀ {Γ x A a} → (Γ⊢ps : Γ ⊢ps x # A) → Γ++ Γ⊢ps , a ◃₀ x → Γ , a ◃₀ x strengthen-dangling-◃₀ Γ⊢ps a◃₀x = strengthen-◃₀ Γ⊢ps (∈-dangling-◃₀ Γ⊢ps a◃₀x) (∈-dangling Γ⊢ps) a◃₀x -- Not easy to find a way to express in a terminating way pse-◃-elim : ∀ {Γ x A a b} → (Γ⊢ps : Γ ⊢ps x # A) → a ∈ Γ → b ∈ Γ → Γ++ Γ⊢ps , a ◃ b → Γ , a ◃ b pse-◃-elim Γ⊢ps a∈Γ b∈Γ (gen a◃₀b) = gen (strengthen-◃₀ Γ⊢ps a∈Γ b∈Γ a◃₀b) pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T a◃z z◃₀b) with ◃∈ a◃z pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T a◃z z◃₀b) | inl (inl z∈Γ) = ◃T (pse-◃-elim Γ⊢ps a∈Γ z∈Γ a◃z) (strengthen-◃₀ Γ⊢ps z∈Γ b∈Γ z◃₀b) pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T (gen a◃₀l) l◃₀b) | inl (inr idp) with ◃₀-dangling-tgt Γ⊢ps a◃₀l ... | inl idp = ⊥-elim (l∉ (psv Γ⊢ps) (n≤Sn _) a∈Γ) ... | inr a◃₀x = ◃T (gen (strengthen-◃₀ Γ⊢ps a∈Γ (∈-dangling Γ⊢ps) a◃₀x)) (strengthen-◃₀-dangling Γ⊢ps l◃₀b) pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T (◃T a◃z z◃₀l) l◃₀b) | inl (inr idp) with ◃₀-dangling-tgt Γ⊢ps z◃₀l ... | inr z◃₀x = ◃T (◃T (pse-◃-elim Γ⊢ps a∈Γ (∈-dangling-◃₀ Γ⊢ps z◃₀x) a◃z) (strengthen-dangling-◃₀ Γ⊢ps z◃₀x)) (strengthen-◃₀-dangling Γ⊢ps l◃₀b) pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T (◃T (gen a◃₀Sl) Sl◃₀l) l◃₀b) | inl (inr idp) | inl idp with ◃₀-dangling Γ⊢ps a◃₀Sl ... | idp = gen (strengthen-◃₀-dangling Γ⊢ps l◃₀b) pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T (◃T (◃T a◃z z◃₀Sl) Sl◃₀l) l◃₀b) | inl (inr idp) | inl idp with ◃₀-dangling Γ⊢ps z◃₀Sl ... | idp = ◃T (pse-◃-elim Γ⊢ps a∈Γ (∈-dangling Γ⊢ps) a◃z) (strengthen-◃₀-dangling Γ⊢ps l◃₀b) pse-◃-elim Γ⊢ps a∈Γ b∈Γ (◃T a◃z z◃₀b) | inr idp with dangling-◃₀ Γ⊢ps z◃₀b ... | idp = ⊥-elim (l∉ (psv Γ⊢ps) (n≤n _) b∈Γ) psx-◃-linear← : ∀ {Γ z A} → Γ ⊢ps z # A → (∀ x → x ∈ Γ → ¬ (Γ , x ◃ x)) psx-◃-linear← pss .0 (inr idp) x◃x = 𝔻0-◃ 0 x◃x psx-◃-linear← (psd Γ⊢psz) x x∈Γ x◃x = psx-◃-linear← Γ⊢psz x x∈Γ x◃x psx-◃-linear← (pse Γ⊢psz idp idp idp idp idp) x (inl (inl x∈Γ)) x◃x = psx-◃-linear← Γ⊢psz x x∈Γ (pse-◃-elim Γ⊢psz x∈Γ x∈Γ x◃x) psx-◃-linear← Γ+⊢ps@(pse Γ⊢psz idp idp idp idp idp) x (inl (inr idp)) x◃x = ⊥-elim (Sn≰n _ (⟿dim (var (psv Γ+⊢ps) (inl (inr (idp , idp)))) (var (psv Γ+⊢ps) (inl (inr (idp , idp)))) (⊢psx-◃→⟿+ Γ+⊢ps (∂⁺⟿ (psvar Γ+⊢ps)) x◃x))) psx-◃-linear← Γ+⊢ps@(pse Γ⊢psz idp idp idp idp idp) x (inr idp) x◃x = ⊥-elim (Sn≰n _ (⟿dim (psvar Γ+⊢ps) (psvar Γ+⊢ps) (⊢psx-◃→⟿ Γ+⊢ps x◃x))) ◃-linear : Pre-Ctx → Set₁ ◃-linear Γ = ∀ x y → x ∈ Γ → y ∈ Γ → (x ≠ y) ↔ ((Γ , x ◃ y) + (Γ , y ◃ x)) ps-◃-linear : ∀ Γ → Γ ⊢ps → ◃-linear Γ fst (ps-◃-linear Γ (ps Γ⊢psz) x y x∈Γ y∈Γ) x≠y with psx-◃-linear→ Γ⊢psz x y x∈Γ y∈Γ ... | inl H = H ... | inr x=y = ⊥-elim (x≠y x=y) snd (ps-◃-linear Γ (ps Γ⊢psz) x .x x∈Γ y∈Γ) (inl x◃x) idp = psx-◃-linear← Γ⊢psz x x∈Γ x◃x snd (ps-◃-linear Γ (ps Γ⊢psz) x .x x∈Γ y∈Γ) (inr x◃x) idp = psx-◃-linear← Γ⊢psz x x∈Γ x◃x
61.668852
226
0.474507
591036d28bc6a8ae63745919444a7426ac8c1b10
5,334
agda
Agda
src/is-lib/InfSys/Container.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
4
2021-07-29T14:32:30.000Z
2022-01-24T14:38:47.000Z
src/is-lib/InfSys/Container.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
null
null
null
src/is-lib/InfSys/Container.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
null
null
null
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types --guardedness #-} open import Agda.Builtin.Equality open import Data.Product open import Data.Sum open import Data.Empty open import Data.Unit open import Level open import Size open import Codata.Thunk open import Relation.Unary using (_⊆_) open import Data.Container.Indexed module is-lib.InfSys.Container {𝓁}(U : Set 𝓁) where module ISCont {𝓁p} where ISCont : {𝓁c : Level} → Set _ ISCont {𝓁c} = Container U U 𝓁c 𝓁p ISContClosed : ∀{𝓁c 𝓁'}(is : ISCont {𝓁c}) → (U → Set 𝓁') → Set _ ISContClosed is P = (⟦ is ⟧ P ⊆ P) _↾_ : ∀{𝓁c 𝓁'} → ISCont {𝓁c} → (U → Set 𝓁') → ISCont {𝓁c ⊔ 𝓁'} (is ↾ P) .Command u = is .Command u × P u (is ↾ P) .Response (c , p) = is .Response c (is ↾ P) .next (c , p) r = is .next c r _∪_ : ∀{𝓁c 𝓁c'} → ISCont {𝓁c} → ISCont {𝓁c'} → ISCont {𝓁c ⊔ 𝓁c'} (is ∪ is') .Command u = is .Command u ⊎ is' .Command u (is ∪ is') .Response = [ is .Response , is' .Response ] (is ∪ is') .next = [ is .next , is' .next ] Ind⟦_⟧ = μ -- Coinductive interpretation record CoInd⟦_⟧ {𝓁c : Level}(is : ISCont {𝓁c}) (u : U) : Set (𝓁c ⊔ 𝓁p) where coinductive constructor cofold_ field unfold : ⟦ is ⟧ CoInd⟦ is ⟧ u -- Sized coinductive interpretation record CoInd⟦_⟧^ {𝓁c : Level}(is : ISCont {𝓁c}) (i : Size) (u : U) : Set (𝓁c ⊔ 𝓁p) where coinductive constructor cofold_ field unfold : {j : Size< i} → ⟦ is ⟧ (CoInd⟦ is ⟧^ j) u -- Sized coinductive interpretation (using Thunk) data SCoInd⟦_⟧ {𝓁c : Level}(is : ISCont {𝓁c}) (u : U) (i : Size) : Set (𝓁c ⊔ 𝓁p) where sfold : ⟦ is ⟧ (λ u → Thunk (SCoInd⟦ is ⟧ u) i) u → SCoInd⟦ is ⟧ u i FCoInd⟦_,_⟧ : ∀{𝓁c 𝓁c'} → (I : ISCont {𝓁c}) (C : ISCont {𝓁c'}) → U → Set _ FCoInd⟦ I , C ⟧ = CoInd⟦ I ↾ Ind⟦ I ∪ C ⟧ ⟧ module _ {𝓁c 𝓁'} (is : ISCont {𝓁c}) (P : U → Set 𝓁') (closed : ISContClosed is P) where open import Data.W.Indexed using (iter) ind[_] : Ind⟦ is ⟧ ⊆ P ind[_] = iter is closed module _ {𝓁c 𝓁'} (is : ISCont {𝓁c}) (P : U → Set 𝓁') (consistent : P ⊆ ⟦ is ⟧ P) where open CoInd⟦_⟧ coind[] : P ⊆ CoInd⟦ is ⟧ coind[] p .unfold .proj₁ = consistent p .proj₁ coind[] p .unfold .proj₂ r = coind[] (consistent p .proj₂ r) module _ {𝓁c 𝓁c' 𝓁'}(I : ISCont {𝓁c}) (C : ISCont {𝓁c'}) (P : U → Set 𝓁') (bounded : P ⊆ Ind⟦ I ∪ C ⟧) (consistent : P ⊆ ⟦ I ⟧ P) where open CoInd⟦_⟧ bounded-coind[] : P ⊆ FCoInd⟦ I , C ⟧ bounded-coind[] p .unfold .proj₁ .proj₁ = consistent p .proj₁ bounded-coind[] p .unfold .proj₁ .proj₂ = bounded p bounded-coind[] p .unfold .proj₂ r = bounded-coind[] (consistent p .proj₂ r) module Equivalence {𝓁p 𝓁P 𝓁P'} where open ISCont {𝓁p} open import is-lib.InfSys.Base {𝓁} as IS open IS.MetaRule open IS.IS {- Every IS is an EndoContainer -} C[_] : ∀{𝓁c 𝓁n} → IS {𝓁c} {𝓁p} {𝓁n} U → ISCont {𝓁 ⊔ 𝓁c ⊔ 𝓁n} C[ is ] .Command u = Σ[ rn ∈ is .Names ] Σ[ c ∈ is .rules rn .Ctx ] u ≡ is .rules rn .conclu c C[ is ] .Response (rn , c , refl) = is .rules rn .Pos c C[ is ] .next (rn , c , refl) r = is .rules rn .prems c r {- Every EndoContainer is an IS -} IS[_] : ∀{𝓁'} → ISCont {𝓁'} → IS {zero} {𝓁p} {𝓁 ⊔ 𝓁'} U IS[_] C .Names = Σ[ u ∈ U ] C .Command u IS[ C ] .rules (u , c) = record { Ctx = ⊤ ; Pos = λ _ → C .Response c ; prems = λ _ r → C .next c r ; conclu = λ _ → u } {- Equivalence -} isf-to-c : ∀{𝓁c 𝓁n} → {is : IS {𝓁c} {𝓁p} {𝓁n} U}{P : U → Set 𝓁P} → ISF[ is ] P ⊆ ⟦ C[ is ] ⟧ P isf-to-c (rn , c , refl , pr) = (rn , c , refl) , pr c-to-isf : ∀{𝓁'}{C : ISCont {𝓁'}}{P : U → Set 𝓁P} → ⟦ C ⟧ P ⊆ ISF[ IS[ C ] ] P c-to-isf (c , pr) = (_ , c) , tt , refl , pr ∪-IS-eq : ∀{𝓁c 𝓁n 𝓁n'}{is : IS {𝓁c} {𝓁p} {𝓁n} U}{is' : IS {𝓁c} {𝓁p} {𝓁n'} U}{P : U → Set 𝓁P} → ISF[ is IS.∪ is' ] P ⊆ ⟦ C[ is ] ISCont.∪ C[ is' ] ⟧ P ∪-IS-eq (inj₁ rn , c , refl , pr) = inj₁ (rn , c , refl) , pr ∪-IS-eq (inj₂ rn , c , refl , pr) = inj₂ (rn , c , refl) , pr ∪-C-eq : ∀{𝓁1 𝓁2}{c : ISCont {𝓁1}}{c' : ISCont {𝓁2}}{P : U → Set 𝓁P} → ⟦ c ISCont.∪ c' ⟧ P ⊆ ISF[ IS[ c ] IS.∪ IS[ c' ] ] P ∪-C-eq (inj₁ c , r) = inj₁ (_ , c) , tt , refl , r ∪-C-eq (inj₂ c , r) = inj₂ (_ , c) , tt , refl , r ⊓-IS-eq : ∀{𝓁c 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U}{P : U → Set 𝓁P}{P' : U → Set 𝓁P'} → ISF[ is ⊓ P ] P' ⊆ ⟦ C[ is ] ↾ P ⟧ P' ⊓-IS-eq (rn , (c , Pu) , refl , pr) = ((rn , c , refl) , Pu) , pr ↾-C-eq : ∀{𝓁c}{c : ISCont {𝓁c}}{P : U → Set 𝓁P}{P' : U → Set 𝓁P'} → ⟦ c ↾ P ⟧ P' ⊆ ISF[ IS[ c ] ⊓ P ] P' ↾-C-eq ((c , Pu) , r) = (_ , c) , (tt , Pu) , refl , r
38.652174
143
0.449944
380df9d2397cb003b492dfbef028ac030ea4956f
209
agda
Agda
test/Fail/Issue3090-rparen.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3090-rparen.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3090-rparen.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-05-27, issue #3090, reported by anka-213 -- Parser should not raise internal error for invalid symbol in name {-# BUILTIN NATURAL ) #-} -- Should fail with a parse error, not internal error
29.857143
68
0.722488
23042b00c90f1d74174c53c29e36a99e08a3993c
37
agda
Agda
test/Fail/Polarity-pragma-for-defined-name.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Polarity-pragma-for-defined-name.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Polarity-pragma-for-defined-name.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
A : Set₁ A = Set {-# POLARITY A #-}
7.4
18
0.486486
13b0d37c1110068e13511c1edabc1d246612df36
2,147
agda
Agda
Cubical/Foundations/Pointed/Base.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/Base.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/Base.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Data.Sigma open import Cubical.Foundations.Structure open import Cubical.Foundations.Structure using (typ) public open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism private variable ℓ ℓ' : Level Pointed : (ℓ : Level) → Type (ℓ-suc ℓ) Pointed ℓ = TypeWithStr ℓ (λ x → x) pt : ∀ {ℓ} (A∙ : Pointed ℓ) → typ A∙ pt = str Pointed₀ = Pointed ℓ-zero {- Pointed functions -} _→∙_ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ') _→∙_ A B = Σ[ f ∈ (typ A → typ B) ] f (pt A) ≡ pt B _→∙_∙ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') A →∙ B ∙ = (A →∙ B) , (λ x → pt B) , refl idfun∙ : ∀ {ℓ} (A : Pointed ℓ) → A →∙ A idfun∙ A = (λ x → x) , refl -- Pointed equivalences _≃∙_ : (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ') A ≃∙ B = Σ[ (f , p) ∈ A →∙ B ] isEquiv f ≃∙→≃ : {A : Pointed ℓ} {B : Pointed ℓ'} (f : A ≃∙ B) → typ A ≃ typ B ≃∙→≃ f = fst (fst f) , snd f idEquiv∙ : (A : Pointed ℓ) → A ≃∙ A idEquiv∙ (A , ⋆) = (idfun∙ (A , ⋆)) , record { equiv-proof = λ a → p a } where module _ (a : A) where p : isContr (Σ[ a' ∈ A ] a' ≡ a) p = isContrRespectEquiv (Σ-cong-equiv-snd (λ a₁ → isoToEquiv (iso sym sym (λ _ → refl) λ _ → refl))) (isContrSingl a) {- HIT allowing for pattern matching on pointed types -} data Pointer {ℓ} (A : Pointed ℓ) : Type ℓ where pt₀ : Pointer A ⌊_⌋ : typ A → Pointer A id : ⌊ pt A ⌋ ≡ pt₀ IsoPointedPointer : ∀ {ℓ} {A : Pointed ℓ} → Iso (typ A) (Pointer A) Iso.fun IsoPointedPointer = ⌊_⌋ Iso.inv (IsoPointedPointer {A = A}) pt₀ = pt A Iso.inv IsoPointedPointer ⌊ x ⌋ = x Iso.inv (IsoPointedPointer {A = A}) (id i) = pt A Iso.rightInv IsoPointedPointer pt₀ = id Iso.rightInv IsoPointedPointer ⌊ x ⌋ = refl Iso.rightInv IsoPointedPointer (id i) j = id (i ∧ j) Iso.leftInv IsoPointedPointer x = refl
30.239437
125
0.616209
4a082d2dbccc4bea95793310b4383b7513713c74
686
agda
Agda
test/Succeed/Issue1922.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1922.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1922.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Bool : Set where true false : Bool data Nat : Set where zero : Nat suc : Nat → Nat one : Nat one = suc zero two : Nat two = suc one data Fin : Nat → Set where zero : ∀{n} → Fin (suc n) suc : ∀{n} (i : Fin n) → Fin (suc n) --This part works as expected: s : ∀ n → (f : (k : Fin n) → Bool) → Fin (suc n) s n f = zero t1 : Fin two t1 = s one (λ { zero → true ; (suc ()) }) -- But Agda is not able to infer the 1 in this case: ttwo : Fin two ttwo = s _ (λ { zero → true ; (suc ()) }) -- Warning: -- _142 : Nat -- The problem gets worse when i add arguments to the ttwo function. This gives an error: t3 : Set → Fin two t3 A = s _ (λ { zero → true ; (suc ()) })
17.589744
89
0.565598
529bc807a19aec7ce946f4cacc59f8debc74e052
348
agda
Agda
src/Everything.agda
guilhermehas/crypto-agda
ac91e00abca9a26678d0cbc1bedecf8abef6b703
[ "MIT" ]
4
2020-02-13T16:56:47.000Z
2021-03-22T19:27:12.000Z
src/Everything.agda
guilhermehas/cripto-agda
ac91e00abca9a26678d0cbc1bedecf8abef6b703
[ "MIT" ]
1
2019-11-01T11:36:06.000Z
2019-11-03T14:31:16.000Z
src/Everything.agda
guilhermehas/cripto-agda
ac91e00abca9a26678d0cbc1bedecf8abef6b703
[ "MIT" ]
null
null
null
open import agdaExamples public open import Blockchain public open import Crypto public open import examples public open import lambdaCalculus open import Ledger public open import proofsTXTree public open import RawTransactions public open import RawTXTree public open import Transactions public open import TXTree public open import Utils public
26.769231
34
0.864943
1ee3b8b2ba48ca67657aff6c9e0a0d1e01bf8bf9
3,207
agda
Agda
src/FOmegaInt/Typing/Preservation.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
12
2017-06-13T16:05:35.000Z
2021-09-27T05:53:06.000Z
src/FOmegaInt/Typing/Preservation.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
1
2021-05-14T08:09:40.000Z
2021-05-14T08:54:39.000Z
src/FOmegaInt/Typing/Preservation.agda
Blaisorblade/f-omega-int-agda
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
[ "MIT" ]
2
2021-05-13T22:29:48.000Z
2021-05-14T10:25:05.000Z
------------------------------------------------------------------------ -- Subject reduction for typing in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} -- This module proves a variant of subject reduction (aka the -- "preservation" theorem) for term reduction in Fω with interval -- kinds. The subject reduction property proved here is weaker than -- the one typically found in the literature on other variants of Fω: -- subject reduction does not hold in arbitrary typing contexts in Fω -- with interval types because type variables of interval kind can be -- used to introduce arbitrary typing (in)equalities into the -- subtyping relation. In other words, subject reduction does not -- hold for full β-reduction as reductions under type abstractions are -- not safe in general. Note, however, that subject reduction does -- hold for arbitrary β-reductions in *types* (see `pres-Tp∈-→β*' in -- the Kinding.Declarative.Validity module for a proof). -- -- NOTE. Here we use the CBV evaluation strategy, but this is -- unnecessarily restrictive. Other evaluation strategies work so -- long as they do not allow reductions under type abstractions. -- -- Together with the "progress" theorem from Typing.Progress, subject -- reduction ensures type safety. For details, see e.g. -- -- * B. C. Pierce, TAPL (2002), pp. 95. -- -- * A. Wright and M. Felleisen, "A Syntactic Approach to Type -- Soundness" (1994). module FOmegaInt.Typing.Preservation where open import Data.Product using (_,_) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_) open import Relation.Binary.PropositionalEquality using (subst) open import Relation.Nullary.Negation using (contradiction) open import FOmegaInt.Syntax open import FOmegaInt.Typing open import FOmegaInt.Typing.Inversion open import FOmegaInt.Reduction.Cbv open import FOmegaInt.Reduction.Full open Syntax open TermCtx open Substitution using (_[_]; weaken-sub) open Typing open TypedSubstitution using (Tm∈-[]; <:-[]) -- Types of closed terms are preserved under single-step reduction. pres : ∀ {a b c} → [] ⊢Tm a ∈ c → a →v b → [] ⊢Tm b ∈ c pres (∈-var () _ _) pres (∈-∀-i k-kd a∈b) () pres (∈-→-i a∈* b∈c c∈*) () pres (∈-∀-e Λja∈Πkc b∈k) (cont-⊡ j a b) with Tm∈-gen Λja∈Πkc ... | ∈-∀-i j-kd a∈d Πjd<:Πkc = let k<∷j , d<:c = <:-∀-inv Πjd<:Πkc in ∈-⇑ (Tm∈-[] a∈d (∈-tp (∈-⇑ b∈k k<∷j))) (<:-[] d<:c (∈-tp b∈k)) pres (∈-∀-e a∈Πcd b∈c) (a→e ⊡ b) = ∈-∀-e (pres a∈Πcd a→e) b∈c pres (∈-→-e ƛea∈c⇒d v∈c) (cont-· e a v) with Tm∈-gen ƛea∈c⇒d ... | ∈-→-i e∈* a∈f e⇒f<:c⇒d = let c<:e , f<:d = <:-→-inv e⇒f<:c⇒d in ∈-⇑ (subst (_ ⊢Tm _ ∈_) (weaken-sub _) (Tm∈-[] a∈f (∈-tm (∈-⇑ v∈c c<:e)))) f<:d pres (∈-→-e a∈c⇒d b∈c) (a→e ·₁ b) = ∈-→-e (pres a∈c⇒d a→e) b∈c pres (∈-→-e a∈c⇒d b∈c) (v ·₂ b→e) = ∈-→-e a∈c⇒d (pres b∈c b→e) pres (∈-⇑ a∈c c<:d) a→b = ∈-⇑ (pres a∈c a→b) c<:d -- Weak preservation (aka subject reduction): types of closed terms -- are preserved under reduction. pres* : ∀ {a b c} → [] ⊢Tm a ∈ c → a →v* b → [] ⊢Tm b ∈ c pres* a∈c ε = a∈c pres* a∈d (a→b ◅ b→*c) = pres* (pres a∈d a→b) b→*c
42.76
80
0.618647
c595a1600fa3affd9c078bb951605eae73d5a95c
9,152
agda
Agda
Basic/Compiler/Test.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
8
2016-09-12T04:25:39.000Z
2020-02-02T10:01:52.000Z
Basic/Compiler/Test.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
null
null
null
Basic/Compiler/Test.agda
AndrasKovacs/SemanticsWithApplications
05200d60b4a4b2c6fa37806ced9247055d24db94
[ "MIT" ]
null
null
null
module Basic.Compiler.Test where open import Basic.AST open import Basic.Compiler.Code open import Basic.Compiler.Machine open import Basic.BigStep open import Data.Fin open import Data.Nat open import Data.Vec open import Data.Product open import Data.Bool open import Data.List open Basic.BigStep.Fac {- Just a sandbox for testing the interpreters in Compiler.Machine -} fac' : Code 3 fac' = 𝓒⟦ fac ⟧ˢ test = trace fac' [] (1 ∷ 0 ∷ 0 ∷ []) 1000 -- normal form of "test" -- (PUSH 0 ∷ -- STORE (suc zero) ∷ -- PUSH 1 ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , [] , 1 ∷ 0 ∷ 0 ∷ []) -- ∷ -- (STORE (suc zero) ∷ -- PUSH 1 ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , nat 0 ∷ [] , 1 ∷ 0 ∷ 0 ∷ []) -- ∷ -- (PUSH 1 ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , [] , 1 ∷ 0 ∷ 0 ∷ []) -- ∷ -- (STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , nat 1 ∷ [] , 1 ∷ 0 ∷ 0 ∷ []) -- ∷ -- (LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (FETCH zero ∷ -- FETCH (suc zero) ∷ -- LT ∷ -- BRANCH -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ []) -- (NOOP ∷ []) -- ∷ [] -- , [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (FETCH (suc zero) ∷ -- LT ∷ -- BRANCH -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ []) -- (NOOP ∷ []) -- ∷ [] -- , nat 1 ∷ [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (LT ∷ -- BRANCH -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ []) -- (NOOP ∷ []) -- ∷ [] -- , nat 0 ∷ nat 1 ∷ [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (BRANCH -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ []) -- (NOOP ∷ []) -- ∷ [] -- , bool true ∷ [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , nat 0 ∷ [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , nat 1 ∷ nat 0 ∷ [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , nat 1 ∷ [] , 1 ∷ 0 ∷ 1 ∷ []) -- ∷ -- (FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , nat 1 ∷ nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ [] -- , [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (FETCH zero ∷ -- FETCH (suc zero) ∷ -- LT ∷ -- BRANCH -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ []) -- (NOOP ∷ []) -- ∷ [] -- , [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (FETCH (suc zero) ∷ -- LT ∷ -- BRANCH -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ []) -- (NOOP ∷ []) -- ∷ [] -- , nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (LT ∷ -- BRANCH -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ []) -- (NOOP ∷ []) -- ∷ [] -- , nat 1 ∷ nat 1 ∷ [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (BRANCH -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ -- MUL ∷ -- STORE (suc (suc zero)) ∷ -- LOOP (FETCH zero ∷ FETCH (suc zero) ∷ LT ∷ []) -- (FETCH (suc zero) ∷ -- PUSH 1 ∷ -- ADD ∷ -- STORE (suc zero) ∷ -- FETCH (suc (suc zero)) ∷ -- FETCH (suc zero) ∷ MUL ∷ STORE (suc (suc zero)) ∷ []) -- ∷ []) -- (NOOP ∷ []) -- ∷ [] -- , bool false ∷ [] , 1 ∷ 1 ∷ 1 ∷ []) -- ∷ -- (NOOP ∷ [] , [] , 1 ∷ 1 ∷ 1 ∷ []) ∷ ([] , [] , 1 ∷ 1 ∷ 1 ∷ []) ∷ []
22.994975
70
0.442198
52b8d95462a20ebd0b6b67ac8e30023cde93173e
9,003
agda
Agda
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec3Done.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec3Done.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec3Done.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
{-# OPTIONS --type-in-type #-} -- yes, there will be some cheating in this lecture module Lec3Done where open import Lec1Done open import Lec2Done postulate extensionality : {S : Set}{T : S -> Set} {f g : (x : S) -> T x} -> ((x : S) -> f x == g x) -> f == g imp : {S : Set}{T : S -> Set}(f : (x : S) -> T x){x : S} -> T x imp f {x} = f x extensionality' : {S : Set}{T : S -> Set} {f g : {x : S} -> T x} -> ((x : S) -> f {x} == g {x}) -> _==_ {forall {x : S} -> T x} f g extensionality' {f = f}{g = g} q = refl imp =$= extensionality {f = \ x -> f {x}}{g = \ x -> g {x}} q _[QED] : {X : Set}(x : X) -> x == x x [QED] = refl x _=[_>=_ : {X : Set}(x : X){y z : X} -> x == y -> y == z -> x == z x =[ refl .x >= q = q _=<_]=_ : {X : Set}(x : X){y z : X} -> y == x -> y == z -> x == z x =< refl .x ]= q = q infixr 1 _=[_>=_ _=<_]=_ infixr 2 _[QED] record Category : Set where field -- two types of thing Obj : Set -- "objects" _~>_ : Obj -> Obj -> Set -- "arrows" or "morphisms" -- or "homomorphisms" -- two operations id~> : {T : Obj} -> T ~> T _>~>_ : {R S T : Obj} -> R ~> S -> S ~> T -> R ~> T -- three laws law-id~>>~> : {S T : Obj} (f : S ~> T) -> (id~> >~> f) == f law->~>id~> : {S T : Obj} (f : S ~> T) -> (f >~> id~>) == f law->~>>~> : {Q R S T : Obj} (f : Q ~> R)(g : R ~> S)(h : S ~> T) -> ((f >~> g) >~> h) == (f >~> (g >~> h)) assocn : {Q R R' S T : Obj} {f : Q ~> R} {g : R ~> S} {f' : Q ~> R'}{g' : R' ~> S} {h : S ~> T} -> (f >~> g) == (f' >~> g') -> (f >~> g >~> h) == (f' >~> g' >~> h) assocn {f = f} {g = g} {f' = f'} {g' = g'} {h = h} q = f >~> g >~> h =< law->~>>~> _ _ _ ]= (f >~> g) >~> h =[ refl _>~>_ =$= q =$= refl h >= (f' >~> g') >~> h =[ law->~>>~> _ _ _ >= f' >~> g' >~> h [QED] infixr 3 _>~>_ -- Sets and functions are the classic example of a category. SET : Category SET = record { Obj = Set ; _~>_ = \ S T -> S -> T ; id~> = id ; _>~>_ = _>>_ ; law-id~>>~> = \ f -> refl f ; law->~>id~> = \ f -> refl f ; law->~>>~> = \ f g h -> refl (f >> (g >> h)) } -- A PREORDER is a category where there is at most one arrow between -- any two objects. (So arrows are unique.) NAT->= : Category unique->= : (m n : Nat)(p q : m >= n) -> p == q unique->= m zero p q = refl <> unique->= zero (suc n) () q unique->= (suc m) (suc n) p q = unique->= m n p q NAT->= = record { Obj = Nat ; _~>_ = _>=_ ; id~> = \ {n} -> refl->= n ; _>~>_ = \ {m}{n}{p} m>=n n>=p -> trans->= m n p m>=n n>=p ; law-id~>>~> = \ {m}{n} m>=n -> unique->= m n _ _ ; law->~>id~> = \ {m}{n} m>=n -> unique->= m n _ _ ; law->~>>~> = \ {m}{n}{p}{q} m>n n>=p p>=q -> unique->= m q _ _ } where -- A MONOID is a category with Obj = One. -- The values in the monoid are the *arrows*. ONE-Nat : Category ONE-Nat = record { Obj = One ; _~>_ = \ _ _ -> Nat ; id~> = 0 ; _>~>_ = _+N_ ; law-id~>>~> = \ n -> zero-+N n ; law->~>id~> = \ n -> +N-zero n ; law->~>>~> = \ m n p -> assocLR-+N m n p } eqUnique : {X : Set}{x y : X}(p q : x == y) -> p == q eqUnique (refl x) (refl .x) = refl (refl x) -- A DISCRETE category is one where the only arrows are the identities. DISCRETE : (X : Set) -> Category DISCRETE X = record { Obj = X ; _~>_ = _==_ ; id~> = refl _ ; _>~>_ = \ { {x} (refl .x) (refl .x) -> refl x } ; law-id~>>~> = \ _ -> eqUnique _ _ ; law->~>id~> = \ _ -> eqUnique _ _ ; law->~>>~> = \ _ _ _ -> eqUnique _ _ } module FUNCTOR where open Category record _=>_ (C D : Category) : Set where -- "Functor from C to D" field -- two actions F-Obj : Obj C -> Obj D F-map : {S T : Obj C} -> _~>_ C S T -> _~>_ D (F-Obj S) (F-Obj T) -- two laws F-map-id~> : {T : Obj C} -> F-map (id~> C {T}) == id~> D {F-Obj T} F-map->~> : {R S T : Obj C}(f : _~>_ C R S)(g : _~>_ C S T) -> F-map (_>~>_ C f g) == _>~>_ D (F-map f) (F-map g) open FUNCTOR public postulate homework : {A : Set} -> A VEC : Nat -> SET => SET VEC n = record { F-Obj = \ X -> Vec X n ; F-map = homework ; F-map-id~> = homework ; F-map->~> = homework } VTAKE : Set -> NAT->= => SET VTAKE X = record { F-Obj = Vec X ; F-map = \ {m}{n} m>=n xs -> vTake m n m>=n xs ; F-map-id~> = \ {n} -> extensionality \ xs -> vTakeIdFact n xs ; F-map->~> = \ {m}{n}{p} m>=n n>=p -> extensionality \ xs -> vTakeCpFact m n p m>=n n>=p xs } ADD : Nat -> NAT->= => NAT->= ADD d = record { F-Obj = (d +N_) ; F-map = \ {m}{n} -> help d m n ; F-map-id~> = \ {n} -> unique->= (d +N n) (d +N n) _ _ ; F-map->~> = \ {m}{n}{p} x y -> unique->= (d +N m) (d +N p) _ _ } where help : (d m n : Nat) -> m >= n -> (d +N m) >= (d +N n) help zero m n m>=n = m>=n help (suc d) m n m>=n = help d m n m>=n Thing : {C D : Category}(F G : C => D) -> Set Thing {C}{D} (record { F-Obj = F-Obj ; F-map = F-map ; F-map-id~> = F-map-id~> ; F-map->~> = F-map->~> }) (record { F-Obj = G-Obj ; F-map = G-map ; F-map-id~> = G-map-id~> ; F-map->~> = G-map->~> }) = Sg (F-Obj == G-Obj) \ { (refl _) -> Sg (_==_ {forall {S T : Category.Obj C} → (C Category.~> S) T → (D Category.~> F-Obj S) (F-Obj T)} F-map G-map) \ { (refl _) -> _==_ {forall {T : Category.Obj C} → F-map (Category.id~> C {T}) == Category.id~> D} F-map-id~> G-map-id~> * _==_ {forall {R S T : Category.Obj C} (f : (C Category.~> R) S) (g : (C Category.~> S) T) → F-map ((C Category.>~> f) g) == (D Category.>~> F-map f) (F-map g)} F-map->~> G-map->~> }} Lemma : {C D : Category}{F G : C => D} -> Thing F G -> F == G Lemma (refl _ , (refl _ , (refl _ , refl _))) = refl _ CATEGORY : Category CATEGORY = record { Obj = Category ; _~>_ = _=>_ ; id~> = record { F-Obj = \ X -> X ; F-map = \ a -> a ; F-map-id~> = refl _ ; F-map->~> = \ _ _ -> refl _ } ; _>~>_ = \ {R}{S}{T} F G -> record { F-Obj = F-Obj F >> F-Obj G ; F-map = F-map F >> F-map G ; F-map-id~> = F-map G (F-map F (Category.id~> R)) =[ refl (F-map G) =$= F-map-id~> F >= F-map G (Category.id~> S) =[ F-map-id~> G >= Category.id~> T [QED] ; F-map->~> = \ f g -> F-map G (F-map F (Category._>~>_ R f g)) =[ refl (F-map G) =$= F-map->~> F f g >= F-map G (Category._>~>_ S (F-map F f) (F-map F g)) =[ F-map->~> G (F-map F f) (F-map F g) >= Category._>~>_ T (F-map G (F-map F f)) (F-map G (F-map F g)) [QED] } ; law-id~>>~> = \ F -> Lemma ((refl _) , ((refl _) , (extensionality' (\ x -> eqUnique _ _) , extensionality' (\ x -> extensionality' \ y -> extensionality' \ z -> extensionality \ f -> extensionality \ g -> eqUnique _ _)))) ; law->~>id~> = \ F -> Lemma ((refl _) , ((refl _) , (extensionality' (\ x -> eqUnique _ _) , extensionality' (\ x -> extensionality' \ y -> extensionality' \ z -> extensionality \ f -> extensionality \ g -> eqUnique _ _)))) ; law->~>>~> = \ F G H -> Lemma ((refl _) , ((refl _) , (extensionality' (\ x -> eqUnique _ _) , extensionality' (\ x -> extensionality' \ y -> extensionality' \ z -> extensionality \ f -> extensionality \ g -> eqUnique _ _)))) } where open _=>_
35.868526
83
0.354882
3882806bb942ef9e458bb9b2e1a5e36ae05aef44
5,247
agda
Agda
test/Succeed/Issue473-1606.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue473-1606.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue473-1606.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-07-07 continuation of issue 665 -- Jesper, 2015-12-18 some of these don't work anymore with the new unifier, -- but a few others that weren't accepted are now. {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.with.strip:10 #-} -- {-# OPTIONS -v tc.with.strip:60 -v tc.lhs:20 -v tc.lhs.unify:20 #-} postulate C : Set anything : C record I : Set where constructor c field {f} : C data Wrap : (i : I) → Set where wrap : ∀ {i} → Wrap i -- Test 0: first argument not given test0 : ∀ {j} → Wrap j → C test0 wrap with anything test0 wrap | z = z test0a : ∀ {j} → Wrap j → C test0a (wrap {c {x}}) with anything test0a wrap | z = z test0b : ∀ {j} → Wrap j → C test0b (wrap {c {_}}) with anything test0b wrap | z = z test0c : ∀ {j} → Wrap j → C test0c (wrap {c}) with anything test0c wrap | z = z test0d : ∀ {j} → Wrap j → C test0d (wrap {c {._}}) with anything test0d wrap | z = z test0e : ∀ {j} → Wrap j → C test0e (wrap .{c}) with anything test0e wrap | z = z test0f : ∀ {j} → Wrap j → C test0f (wrap .{c {_}}) with anything test0f wrap | z = z test00 : ∀ {j} → Wrap j → C test00 wrap with anything test00 {.c} wrap | z = z test00a : ∀ {j} → Wrap j → C test00a (wrap {c {x}}) with anything test00a {.c} wrap | z = z test00b : ∀ {j} → Wrap j → C test00b (wrap {c {_}}) with anything test00b {.c} wrap | z = z test00c : ∀ {j} → Wrap j → C test00c (wrap {c}) with anything test00c {.c} wrap | z = z test00d : ∀ {j} → Wrap j → C test00d (wrap {c {._}}) with anything test00d {.c} wrap | z = z test00e : ∀ {j} → Wrap j → C test00e (wrap .{c}) with anything test00e {.c} wrap | z = z test00f : ∀ {j} → Wrap j → C test00f (wrap .{c {_}}) with anything test00f {.c} wrap | z = z test000 : ∀ {j} → Wrap j → C test000 wrap with anything test000 .{c {_}} wrap | z = z test000a : ∀ {j} → Wrap j → C test000a (wrap {c {x}}) with anything test000a .{c {_}} wrap | z = z test000b : ∀ {j} → Wrap j → C test000b (wrap {c {_}}) with anything test000b .{c {_}} wrap | z = z test000c : ∀ {j} → Wrap j → C test000c (wrap {c}) with anything test000c .{c {_}} wrap | z = z test000d : ∀ {j} → Wrap j → C test000d (wrap {c {._}}) with anything test000d .{c {_}} wrap | z = z test000e : ∀ {j} → Wrap j → C test000e (wrap .{c}) with anything test000e .{c {_}} wrap | z = z test000f : ∀ {j} → Wrap j → C test000f (wrap .{c {_}}) with anything test000f .{c {_}} wrap | z = z -- Test 1: first argument is dot pattern test1a : ∀ {j} → Wrap j → C test1a .{c} (wrap {c {x}}) with anything test1a .{c} wrap | z = z test1b : ∀ {j} → Wrap j → C test1b .{c} (wrap {c {_}}) with anything test1b .{c} wrap | z = z test1c : ∀ {j} → Wrap j → C test1c .{c} (wrap {c}) with anything test1c .{c} wrap | z = z test11a : ∀ {j} → Wrap j → C test11a .{c} (wrap {c {x}}) with anything test11a wrap | z = z test11b : ∀ {j} → Wrap j → C test11b .{c} (wrap {c {_}}) with anything test11b wrap | z = z test11c : ∀ {j} → Wrap j → C test11c .{c} (wrap {c}) with anything test11c wrap | z = z test111a : ∀ {j} → Wrap j → C test111a (wrap {c {x}}) with anything test111a .{c} wrap | z = z test111b : ∀ {j} → Wrap j → C test111b (wrap {c {_}}) with anything test111b .{c} wrap | z = z test111c : ∀ {j} → Wrap j → C test111c (wrap {c}) with anything test111c .{c} wrap | z = z -- Test 2: First argument is record pattern test2a : ∀ {j} → Wrap j → C test2a {c} wrap with anything test2a {c} wrap | z = z test2b : ∀ {j} → Wrap j → C test2b {c} wrap with anything test2b wrap | z = z test2c : ∀ {j} → Wrap j → C test2c {c} (wrap {c}) with anything test2c {c} wrap | z = z test2d : ∀ {j} → Wrap j → C test2d {c} (wrap {c}) with anything test2d wrap | z = z test2e : ∀ {j} → Wrap j → C test2e {c} (wrap {c {._}}) with anything test2e {c} wrap | z = z test2f : ∀ {j} → Wrap j → C test2f {c} (wrap {c {._}}) with anything test2f wrap | z = z test2g : ∀ {j} → Wrap j → C test2g {c} (wrap {c {x}}) with anything test2g {c} wrap | z = z test2h : ∀ {j} → Wrap j → C test2h {c} (wrap {c {x}}) with anything test2h wrap | z = z test2i : ∀ {j} → Wrap j → C test2i {c} (wrap {c {_}}) with anything test2i {c} wrap | z = z test2j : ∀ {j} → Wrap j → C test2j {c} (wrap {c {_}}) with anything test2j wrap | z = z -- Test 3: First argument is record of dot pattern, second is record pattern test3a : ∀ {j} → Wrap j → C test3a {c {._}} wrap with anything test3a {c {._}} wrap | z = z test3b : ∀ {j} → Wrap j → C test3b {c {._}} wrap with anything test3b wrap | z = z test3c : ∀ {j} → Wrap j → C test3c {c {._}} (wrap {c}) with anything test3c {c {._}} wrap | z = z test3d : ∀ {j} → Wrap j → C test3d {c {._}} (wrap {c}) with anything test3d wrap | z = z test3e : ∀ {j} → Wrap j → C test3e {c {._}} (wrap {c {._}}) with anything test3e {c {._}} wrap | z = z test3f : ∀ {j} → Wrap j → C test3f {c {._}} (wrap {c {._}}) with anything test3f wrap | z = z test3g : ∀ {j} → Wrap j → C test3g {c {_}} (wrap {c {x}}) with anything test3g {c {_}} wrap | z = z test3h : ∀ {j} → Wrap j → C test3h {c {_}} (wrap {c {x}}) with anything test3h wrap | z = z test3i : ∀ {j} → Wrap j → C test3i {c {_}} (wrap {c {_}}) with anything test3i {c {_}} wrap | z = z test3j : ∀ {j} → Wrap j → C test3j {c {_}} (wrap {c {_}}) with anything test3j wrap | z = z
22.912664
76
0.576901
a0a80d4c38e4c530002c79fecb49a38f6be09432
9,532
agda
Agda
theorems/homotopy/Pi2HSuspCompose.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/Pi2HSuspCompose.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/Pi2HSuspCompose.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.HSpace renaming (HSpaceStructure to HSS) open import homotopy.Pi2HSusp open import homotopy.WedgeExtension open import lib.types.TwoSemiCategory open import lib.two-semi-categories.FundamentalCategory module homotopy.Pi2HSuspCompose {i} {X : Ptd i} {{_ : has-level 1 (de⊙ X)}} {{is-0-connected : is-connected 0 (de⊙ X)}} (H-X : HSS X) (H-X-assoc : associator H-X) (coh-assoc-unit-l-r-pentagon : coh-unit-l-r-pentagon H-X H-X-assoc) where private A = de⊙ X e = pt X open Pi2HSusp H-X public infixr 80 _∙₁_ _∙₁_ : {x y z : Susp A} → Trunc 1 (x == y) → Trunc 1 (y == z) → Trunc 1 (x == z) _∙₁_ {x} {y} {z} p q = _∙ₜ_ {A = Susp A} {ta = [ x ]} {tb = [ y ]} {tc = [ z ]} p q module _ {k} {B : Type k} where add-path-inverse-l : {x y z : B} → (p : x == y) (q : x == z) → p == (q ∙ ! q) ∙ p add-path-inverse-l p q = ap (_∙ p) (! (!-inv-r q)) add-path-inverse-r : {x y z : B} → (p : x == y) (r : y == z) → p == p ∙ (r ∙ ! r) add-path-inverse-r p r = ! (∙-unit-r p) ∙ ap (p ∙_) (! (!-inv-r r)) abstract add-path-inverse-coh : {x y : B} (p : x == x) (q : x == y) → add-path-inverse-r p q ◃∙ ap (_∙ (q ∙ ! q)) (add-path-inverse-l p q) ◃∙ ∙-assoc (q ∙ ! q) p (q ∙ ! q) ◃∎ =ₛ add-path-inverse-l p q ◃∙ ap ((q ∙ ! q) ∙_) (add-path-inverse-r p q) ◃∎ add-path-inverse-coh p idp = add-path-inverse-r p idp ◃∙ idp ◃∙ idp ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ add-path-inverse-r p idp ◃∙ idp ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ add-path-inverse-r p idp ◃∎ =ₛ₁⟨ ! (ap-idf (add-path-inverse-r p idp)) ⟩ ap (λ q → q) (add-path-inverse-r p idp) ◃∎ =ₛ⟨ 0 & 0 & contract ⟩ add-path-inverse-l p idp ◃∙ ap (λ q → q) (add-path-inverse-r p idp) ◃∎ ∎ₛ comp-l-seq : (a' : A) → η (μ e a') =-= η e ∙ η a' comp-l-seq a' = η (μ e a') =⟪ ap η (μ.unit-l a') ⟫ η a' =⟪ add-path-inverse-l (η a') (merid e) ⟫ η e ∙ η a' ∎∎ comp-l : (a' : A) → η (μ e a') == η e ∙ η a' comp-l a' = ↯ (comp-l-seq a') comp-r-seq : (a : A) → η (μ a e) =-= η a ∙ η e comp-r-seq a = η (μ a e) =⟪ ap η (μ.unit-r a) ⟫ η a =⟪ add-path-inverse-r (η a) (merid e) ⟫ η a ∙ η e ∎∎ comp-r : (a : A) → η (μ a e) == η a ∙ η e comp-r a = ↯ (comp-r-seq a) comp-lr-coh : comp-l e == comp-r e comp-lr-coh = ap2 (λ p₁ p₂ → ap η p₁ ∙ p₂) μ.coh (add-path-inverse-lr-coh (merid e)) where add-path-inverse-lr-coh : {B : Type i} {b b' : B} (p : b == b') → add-path-inverse-l (p ∙ ! p) p == add-path-inverse-r (p ∙ ! p) p add-path-inverse-lr-coh idp = idp comp-l₁ : (a' : A) → [ η (μ e a') ]₁ == [ η e ∙ η a' ]₁ comp-l₁ = ap [_]₁ ∘ comp-l comp-r₁ : (a : A) → [ η (μ a e) ]₁ == [ η a ∙ η e ]₁ comp-r₁ = ap [_]₁ ∘ comp-r comp-args : args {i} {i} {A} {e} {A} {e} comp-args = record { m = -1; n = -1; P = λ a a' → (Q a a' , ⟨⟩); f = comp-r₁; g = comp-l₁; p = ap (ap [_]₁) (! comp-lr-coh) } where Q : A → A → Type i Q a a' = [ η (μ a a' ) ]₁ == [ η a ∙ η a' ]₁ module Comp = WedgeExt {i} {i} {A} {e} {A} {e} comp-args comp : (a a' : A) → [ η (μ a a') ]₁ == [ η a ]₁ ∙₁ [ η a' ]₁ comp = Comp.ext comp-unit-l : (a' : A) → comp e a' == comp-l₁ a' comp-unit-l a' = Comp.β-r a' comp-unit-r : (a : A) → comp a e == comp-r₁ a comp-unit-r a = Comp.β-l a module CoherenceProof (a' : A) where P : A → A → Type i P a a'' = comp (μ a a') a'' ◃∙ ap (_∙₁ [ η a'' ]₁) (comp a a') ◃∙ ap [_]₁ (∙-assoc (η a) (η a') (η a'')) ◃∎ =ₛ ap ([_]₁ ∘ η) (H-X-assoc a a' a'') ◃∙ comp a (μ a' a'') ◃∙ ap ([ η a ]₁ ∙₁_) (comp a' a'') ◃∎ P-is-prop : ∀ a a'' → is-prop (P a a'') P-is-prop a a'' = =ₛ-level (Trunc-level {n = 1}) Q : A → A → hProp i Q a a'' = P a a'' , P-is-prop a a'' inner-coh : comp-r (μ e a') ◃∙ ap (_∙ η e) (comp-l a') ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ ap η (H-X-assoc e a' e) ◃∙ comp-l (μ a' e) ◃∙ ap (η e ∙_) (comp-r a') ◃∎ inner-coh = comp-r (μ e a') ◃∙ ap (_∙ η e) (comp-l a') ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ⟨ 0 & 1 & expand (comp-r-seq (μ e a')) ⟩ ap η (μ.unit-r (μ e a')) ◃∙ add-path-inverse-r (η (μ e a')) (merid e) ◃∙ ap (_∙ η e) (comp-l a') ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ⟨ 2 & 1 & ap-seq-∙ (_∙ η e) (comp-l-seq a') ⟩ ap η (μ.unit-r (μ e a')) ◃∙ add-path-inverse-r (η (μ e a')) (merid e) ◃∙ ap (_∙ η e) (ap η (μ.unit-l a')) ◃∙ ap (_∙ η e) (add-path-inverse-l (η a') (merid e)) ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ⟨ 1 & 2 & !ₛ $ homotopy-naturality-from-idf (_∙ η e) (λ r → add-path-inverse-r r (merid e)) (ap η (μ.unit-l a')) ⟩ ap η (μ.unit-r (μ e a')) ◃∙ ap η (μ.unit-l a') ◃∙ add-path-inverse-r (η a') (merid e) ◃∙ ap (_∙ η e) (add-path-inverse-l (η a') (merid e)) ◃∙ ∙-assoc (η e) (η a') (η e) ◃∎ =ₛ⟨ 2 & 3 & add-path-inverse-coh (η a') (merid e) ⟩ ap η (μ.unit-r (μ e a')) ◃∙ ap η (μ.unit-l a') ◃∙ add-path-inverse-l (η a') (merid e) ◃∙ ap (η e ∙_) (add-path-inverse-r (η a') (merid e)) ◃∎ =ₛ⟨ 0 & 2 & ap-seq-=ₛ η (coh-assoc-unit-l-r-pentagon a') ⟩ ap η (H-X-assoc e a' e) ◃∙ ap η (μ.unit-l (μ a' e)) ◃∙ ap η (μ.unit-r a') ◃∙ add-path-inverse-l (η a') (merid e) ◃∙ ap (η e ∙_) (add-path-inverse-r (η a') (merid e)) ◃∎ =ₛ⟨ 2 & 2 & homotopy-naturality-from-idf (η e ∙_) (λ v → add-path-inverse-l v (merid e)) (ap η (μ.unit-r a')) ⟩ ap η (H-X-assoc e a' e) ◃∙ ap η (μ.unit-l (μ a' e)) ◃∙ add-path-inverse-l (η (μ a' e)) (merid e) ◃∙ ap (η e ∙_) (ap η (μ.unit-r a')) ◃∙ ap (η e ∙_) (add-path-inverse-r (η a') (merid e)) ◃∎ =ₛ⟨ 3 & 2 & ∙-ap-seq (η e ∙_) (comp-r-seq a')⟩ ap η (H-X-assoc e a' e) ◃∙ ap η (μ.unit-l (μ a' e)) ◃∙ add-path-inverse-l (η (μ a' e)) (merid e) ◃∙ ap (η e ∙_) (comp-r a') ◃∎ =ₛ⟨ 1 & 2 & contract ⟩ ap η (H-X-assoc e a' e) ◃∙ comp-l (μ a' e) ◃∙ ap (η e ∙_) (comp-r a') ◃∎ ∎ₛ coh : P e e coh = comp (μ e a') e ◃∙ ap (_∙₁ [ η e ]₁) (comp e a') ◃∙ ap [_]₁ (∙-assoc (η e) (η a') (η e)) ◃∎ =ₛ₁⟨ 0 & 1 & comp-unit-r (μ e a') ⟩ comp-r₁ (μ e a') ◃∙ ap (_∙₁ [ η e ]₁) (comp e a') ◃∙ ap [_]₁ (∙-assoc (η e) (η a') (η e)) ◃∎ =ₛ₁⟨ 1 & 1 & step₂ ⟩ comp-r₁ (μ e a') ◃∙ ap [_]₁ (ap (_∙ η e) (comp-l a')) ◃∙ ap [_]₁ (∙-assoc (η e) (η a') (η e)) ◃∎ =ₛ⟨ 0 & 3 & ap-seq-=ₛ [_]₁ inner-coh ⟩ ap [_]₁ (ap η (H-X-assoc e a' e)) ◃∙ comp-l₁ (μ a' e) ◃∙ ap [_]₁ (ap (η e ∙_) (comp-r a')) ◃∎ =ₛ₁⟨ 0 & 1 & ∘-ap [_]₁ η (H-X-assoc e a' e) ⟩ ap ([_]₁ ∘ η) (H-X-assoc e a' e) ◃∙ comp-l₁ (μ a' e) ◃∙ ap [_]₁ (ap (η e ∙_) (comp-r a')) ◃∎ =ₛ₁⟨ 1 & 1 & ! (comp-unit-l (μ a' e)) ⟩ ap ([_]₁ ∘ η) (H-X-assoc e a' e) ◃∙ comp e (μ a' e) ◃∙ ap [_]₁ (ap (η e ∙_) (comp-r a')) ◃∎ =ₛ₁⟨ 2 & 1 & step₈ ⟩ ap ([_]₁ ∘ η) (H-X-assoc e a' e) ◃∙ comp e (μ a' e) ◃∙ ap ([ η e ]₁ ∙₁_) (comp a' e) ◃∎ ∎ₛ where step₂ : ap (_∙₁ [ η e ]₁) (comp e a') == ap [_]₁ (ap (_∙ η e) (comp-l a')) step₂ = ap (_∙₁ [ η e ]₁) (comp e a') =⟨ ap (ap (_∙₁ [ η e ]₁)) (comp-unit-l a') ⟩ ap (_∙₁ [ η e ]₁) (comp-l₁ a') =⟨ ∘-ap (_∙₁ [ η e ]₁) [_]₁ (comp-l a') ⟩ ap ([_]₁ ∘ (_∙ η e)) (comp-l a') =⟨ ap-∘ [_]₁ (_∙ η e) (comp-l a') ⟩ ap [_]₁ (ap (_∙ η e) (comp-l a')) =∎ step₈ : ap [_]₁ (ap (η e ∙_) (comp-r a')) == ap ([ η e ]₁ ∙₁_) (comp a' e) step₈ = ap [_]₁ (ap (η e ∙_) (comp-r a')) =⟨ ∘-ap [_]₁ (η e ∙_) (comp-r a') ⟩ ap (λ v → [ η e ∙ v ]₁) (comp-r a') =⟨ ap-∘ ([ η e ]₁ ∙₁_) [_]₁ (comp-r a') ⟩ ap ([ η e ]₁ ∙₁_) (comp-r₁ a') =⟨ ! (ap (ap ([ η e ]₁ ∙₁_)) (comp-unit-r a')) ⟩ ap ([ η e ]₁ ∙₁_) (comp a' e) =∎ abstract comp-coh : (a a' a'' : A) → comp (μ a a') a'' ◃∙ ap (λ v → v ∙₁ [ η a'' ]₁) (comp a a') ◃∙ ap [_]₁ (∙-assoc (η a) (η a') (η a'')) ◃∎ =ₛ ap ([_]₁ ∘ η) (H-X-assoc a a' a'') ◃∙ comp a (μ a' a'') ◃∙ ap (λ v → [ η a ] ∙₁ v) (comp a' a'') ◃∎ comp-coh a a' a'' = prop-over-connected {A = A} {a = e} {{is-0-connected}} (λ a → CoherenceProof.Q a' a a'') (prop-over-connected {A = A} {a = e} {{is-0-connected}} (λ a'' → CoherenceProof.Q a' e a'') (CoherenceProof.coh a') a'') a comp-functor : (pentagon : coh-assoc-pentagon H-X H-X-assoc) → TwoSemiFunctor (HSpace-2-semi-category H-X {{⟨⟩}} H-X-assoc pentagon) (=ₜ-fundamental-cat (Susp (de⊙ X))) comp-functor _ = record { F₀ = λ _ → [ north ] ; F₁ = λ x → [ η x ] ; pres-comp = comp ; pres-comp-coh = comp-coh }
33.801418
85
0.402014
8bf2952c7fdf2de79c4a0ba3844fe0f455a88335
2,883
agda
Agda
src/MJ/Syntax/Scoped.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
10
2017-11-17T17:10:36.000Z
2021-09-24T08:02:33.000Z
src/MJ/Syntax/Scoped.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2019-01-13T13:03:47.000Z
2020-10-14T13:41:58.000Z
src/MJ/Syntax/Scoped.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2021-12-28T17:38:05.000Z
2021-12-28T17:38:05.000Z
module MJ.Syntax.Scoped where open import Prelude open import Data.Maybe as Maybe using (Maybe; just) open import Data.Maybe.All as MayAll open import Data.Vec as Vec hiding (_∈_) open import Data.Star.Indexed open import Data.List open import Data.List.Properties.Extra open import Data.List.Prefix open import Data.List.Any open import Data.List.All as List∀ hiding (lookup) open import Data.List.All.Properties.Extra open import Relation.Binary.PropositionalEquality import Data.Vec.All as Vec∀ open Membership-≡ open import MJ.Types NativeBinOp = ℕ → ℕ → ℕ data Expr {n : ℕ} (Γ : Ctx c n) : Ty c → Set where new : (C : Fin c) → All (Expr Γ) (Class.constr (clookup C)) → Expr Γ (ref C) unit : Expr Γ void num : ℕ → Expr Γ int iop : NativeBinOp → (l r : Expr Γ int) → Expr Γ int call : ∀ {cid as b} → Expr Γ (ref cid) → Member Σ cid MTH (as , b) → All (Expr Γ) as → Expr Γ b var : (i : Fin n) → Expr Γ (lookup i Γ) get : ∀ {cid ty} → Expr Γ (ref cid) → Member Σ cid FLD ty → Expr Γ ty upcast : ∀ {c c'} → Σ ⊢ c <: c' → Expr Γ (ref c) → Expr Γ (ref c') data Cmd {n}(I : Ctx c n)(r : Ty c) : ∀ {m} → (O : Ctx c m) → Set where loc : ∀ a → Expr I a → Cmd I r (a ∷ I) asgn : ∀ (i : Fin n) → Expr I (lookup i I) → Cmd I r I set : ∀ {C a} → Expr I (ref C) → Member Σ C FLD a → Expr I a → Cmd I r I do : ∀ {a} → Expr I a → Cmd I r I ret : Expr I r → Cmd I r I Stmts : ∀ {n m}→ (Ctx c n) → Ty c → (Ctx c m) → Set Stmts I r O = Star ℕ (λ n m (I : Ctx c n) (O : Ctx c m) → Cmd I r O) I O data Body {n}(I : Ctx c n) : Ty c → Set where body : ∀ {m r}{O : Ctx c m} → Stmts I r O → Expr O r → Body I r -- mapping of namespace typings to the type of their implementation Def : ∀ {ns} → Fin c → typing ns c → Set -- methods have bodies Def {MTH} C (as , b) = Body (ref C ∷ (fromList as)) b -- fields have initializers Def {FLD} C a = Body (fromList (Class.constr (clookup C))) a record Implementation (cid : Fin c) : Set where constructor impl open Class (clookup cid) public field -- mapping construct arguments to super constructor arguments super-args : Maybe.All (λ p → All (Expr (fromList constr)) (Class.constr (clookup p))) parent -- definitions for all local members defs : ∀ ns → All (Def cid) (decls ns) -- implementation of a classtable record Impl : Set where field bodies : ∀ (cid : Fin c) → Implementation cid -- get member definition from a class getDef : ∀ {ns ty}→ (cid : Fin c) → (m : Member Σ cid ns ty) → Impl → Def (proj₁ m) ty getDef {ns = ns} cid (_ , refl , def) I with clookup cid | inspect clookup cid ... | C@(class parent constr decls) | [ refl ] with Impl.bodies I cid ... | impl _ defs = ∈-all def (defs ns) getDef cid (P' , super {pid = pid} p P<:P' , def) I = getDef pid (P' , P<:P' , def) I Prog : Ty c → Set Prog a = Impl × (Body [] a)
34.73494
86
0.610128
034e4c86817c034e57fbeaab49991c282c3212b9
183
agda
Agda
nat.agda
uedatakumi/nat
2f064f660d6f3ce5fc3e5b05e8f096fa4b26c717
[ "MIT" ]
1
2021-06-02T15:31:17.000Z
2021-06-02T15:31:17.000Z
nat.agda
uedatakumi/nat
2f064f660d6f3ce5fc3e5b05e8f096fa4b26c717
[ "MIT" ]
null
null
null
nat.agda
uedatakumi/nat
2f064f660d6f3ce5fc3e5b05e8f096fa4b26c717
[ "MIT" ]
null
null
null
module nat where data N : Set where zero : N suc : N -> N _+_ : N -> N -> N n + zero = n n + (suc m) = suc (n + m) _*_ : N -> N -> N n * zero = zero n * (suc m) = (m * n) + m
13.071429
25
0.437158
5e010c641fd706c74a3a17992f815cb5aaf6c889
2,854
agda
Agda
theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/ReconstructedCochainsIsoCellularCochains.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import homotopy.DisjointlyPointedSet open import cohomology.Theory open import cohomology.ChainComplex module cw.cohomology.ReconstructedCochainsIsoCellularCochains {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cw.cohomology.CellularChainComplex as CCC open import cw.cohomology.ReconstructedCochainComplex OT as RCC open import cw.cohomology.TipAndAugment OT open import cw.cohomology.WedgeOfCells OT private rcc-iso-ccc-nth : ∀ {n} (⊙skel : ⊙Skeleton n) {m} (m≤n : m ≤ n) → ⊙has-cells-with-choice 0 ⊙skel i → AbGroup.grp (RCC.cochain-template ⊙skel (inl m≤n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (inl m≤n))) (C2-abgroup 0) rcc-iso-ccc-nth ⊙skel {m = O} (inl idp) ac = FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ Πᴳ-emap-l (λ _ → C2 0) (separable-unite-equiv (⊙Skeleton.pt-dec ⊙skel)) ∘eᴳ Πᴳ₁-⊔-iso-×ᴳ {A = Unit} {B = MinusPoint (⊙cw-head ⊙skel)} (λ _ → C2 0) ⁻¹ᴳ ∘eᴳ ×ᴳ-emap (Πᴳ₁-Unit ⁻¹ᴳ) (CX₀-β ⊙skel 0 ac) rcc-iso-ccc-nth ⊙skel {m = S m} (inl idp) ac = FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ CXₙ/Xₙ₋₁-β-diag ⊙skel ac rcc-iso-ccc-nth ⊙skel {m = O} (inr ltS) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inl idp) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = S m} (inr ltS) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inl idp) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = O} (inr (ltSR lt)) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inr lt) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-nth ⊙skel {m = S m} (inr (ltSR lt)) ac = rcc-iso-ccc-nth (⊙cw-init ⊙skel) (inr lt) (⊙init-has-cells-with-choice ⊙skel ac) rcc-iso-ccc-above : ∀ {n} (⊙skel : ⊙Skeleton n) {m} (m≰n : ¬ (m ≤ n)) → AbGroup.grp (RCC.cochain-template ⊙skel (inr m≰n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (inr m≰n))) (C2-abgroup 0) rcc-iso-ccc-above ⊙skel _ = pre∘ᴳ-iso (C2-abgroup 0) lower-iso ∘eᴳ trivial-iso-Unit (hom₁-Unit-is-trivial (C2-abgroup 0)) ⁻¹ᴳ ∘eᴳ lower-iso rcc-iso-ccc : ∀ {n} (⊙skel : ⊙Skeleton n) (m : ℕ) → ⊙has-cells-with-choice 0 ⊙skel i → AbGroup.grp (RCC.cochain-template ⊙skel (≤-dec m n)) ≃ᴳ hom-group (AbGroup.grp (CCC.chain-template (⊙Skeleton.skel ⊙skel) (≤-dec m n))) (C2-abgroup 0) rcc-iso-ccc {n} ⊙skel m ac with ≤-dec m n rcc-iso-ccc ⊙skel m ac | inl m≤n = rcc-iso-ccc-nth ⊙skel m≤n ac rcc-iso-ccc ⊙skel m ac | inr m≰n = rcc-iso-ccc-above ⊙skel m≰n rhead-iso-chead : C2 0 ≃ᴳ hom-group ℤ-group (C2-abgroup 0) rhead-iso-chead = pre∘ᴳ-iso (C2-abgroup 0) ℤ-iso-FreeAbGroup-Unit ∘eᴳ FreeAbGroup-extend-iso (C2-abgroup 0) ∘eᴳ Πᴳ₁-Unit ⁻¹ᴳ
46.786885
101
0.633847
a01b1db1be2ee3247e091a328dfe1325ac0c0f68
3,385
agda
Agda
Cubical/HITs/Ints/DiffInt/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/DiffInt/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/DiffInt/Base.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Ints.DiffInt.Base where open import Cubical.Foundations.Prelude open import Cubical.HITs.SetQuotients open import Cubical.Foundations.Isomorphism open import Cubical.Data.Sigma open import Cubical.Data.Nat hiding (+-comm ; +-assoc) renaming (_+_ to _+ℕ_) open import Cubical.Data.Int rel : (ℕ × ℕ) → (ℕ × ℕ) → Type₀ rel (a₀ , b₀) (a₁ , b₁) = x ≡ y where x = a₀ +ℕ b₁ y = a₁ +ℕ b₀ ℤ = (ℕ × ℕ) / rel -- Proof of equivalence between Int and DiffInt private -- Prove all the identities for ℕ×ℕ first and use that to build to ℤ Int→ℕ×ℕ : Int → (ℕ × ℕ) Int→ℕ×ℕ (pos n) = ( n , zero ) Int→ℕ×ℕ (negsuc n) = ( zero , suc n ) ℕ×ℕ→Int : (ℕ × ℕ) → Int ℕ×ℕ→Int(n , m) = n ℕ- m relInt→ℕ×ℕ : ∀ m n → rel (Int→ℕ×ℕ (m ℕ- n)) (m , n) relInt→ℕ×ℕ zero zero = refl relInt→ℕ×ℕ zero (suc n) = refl relInt→ℕ×ℕ (suc m) zero = refl relInt→ℕ×ℕ (suc m) (suc n) = fst (Int→ℕ×ℕ (m ℕ- n)) +ℕ suc n ≡⟨ +-suc (fst (Int→ℕ×ℕ (m ℕ- n))) n ⟩ suc (fst (Int→ℕ×ℕ (m ℕ- n)) +ℕ n) ≡⟨ cong suc (relInt→ℕ×ℕ m n) ⟩ suc (m +ℕ snd (Int→ℕ×ℕ (m ℕ- n))) ∎ Int→ℕ×ℕ→Int : ∀ n → ℕ×ℕ→Int (Int→ℕ×ℕ n) ≡ n Int→ℕ×ℕ→Int (pos n) = refl Int→ℕ×ℕ→Int (negsuc n) = refl ℕ×ℕ→Int→ℕ×ℕ : ∀ p → rel (Int→ℕ×ℕ (ℕ×ℕ→Int p)) p ℕ×ℕ→Int→ℕ×ℕ (p₀ , p₁) = relInt→ℕ×ℕ p₀ p₁ -- Now build to ℤ using the above Int→ℤ : Int → ℤ Int→ℤ n = [ Int→ℕ×ℕ n ] ℤ→Int : ℤ → Int ℤ→Int [ z ] = ℕ×ℕ→Int z ℤ→Int(eq/ a b r i) = lemℤeq a b r i where lemℤeq : (a b : (ℕ × ℕ)) → rel a b → ℕ×ℕ→Int(a) ≡ ℕ×ℕ→Int(b) lemℤeq (a₀ , a₁) (b₀ , b₁) r = a₀ ℕ- a₁ ≡⟨ pos- a₀ a₁ ⟩ pos a₀ - pos a₁ ≡[ i ]⟨ ((pos a₀ - pos a₁) + -Cancel (pos b₁) (~ i)) ⟩ (pos a₀ - pos a₁) + (pos b₁ - pos b₁) ≡⟨ +-assoc (pos a₀ + (- pos a₁)) (pos b₁) (- pos b₁) ⟩ ((pos a₀ - pos a₁) + pos b₁) - pos b₁ ≡[ i ]⟨ +-assoc (pos a₀) (- pos a₁) (pos b₁) (~ i) + (- pos b₁) ⟩ (pos a₀ + ((- pos a₁) + pos b₁)) - pos b₁ ≡[ i ]⟨ (pos a₀ + +-comm (- pos a₁) (pos b₁) i) - pos b₁ ⟩ (pos a₀ + (pos b₁ - pos a₁)) - pos b₁ ≡[ i ]⟨ +-assoc (pos a₀) (pos b₁) (- pos a₁) i + (- pos b₁) ⟩ ((pos a₀ + pos b₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos+ a₀ b₁ (~ i) - pos a₁) - pos b₁ ⟩ (pos (a₀ +ℕ b₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos (r i) - pos a₁) - pos b₁ ⟩ (pos (b₀ +ℕ a₁) - pos a₁) - pos b₁ ≡[ i ]⟨ (pos+ b₀ a₁ i - pos a₁) - pos b₁ ⟩ ((pos b₀ + pos a₁) - pos a₁) - pos b₁ ≡[ i ]⟨ +-assoc (pos b₀) (pos a₁) (- pos a₁) (~ i) + (- pos b₁) ⟩ (pos b₀ + (pos a₁ - pos a₁)) - pos b₁ ≡[ i ]⟨ (pos b₀ + (-Cancel (pos a₁) i)) - pos b₁ ⟩ pos b₀ - pos b₁ ≡[ i ]⟨ pos- b₀ b₁ (~ i) ⟩ b₀ ℕ- b₁ ∎ ℤ→Int(squash/ x x₀ p q i j) = isSetInt (ℤ→Int x) (ℤ→Int x₀) (cong ℤ→Int p) (cong ℤ→Int q) i j Int→ℤ→Int : ∀ z → ℤ→Int (Int→ℤ z) ≡ z Int→ℤ→Int (pos n) = refl Int→ℤ→Int (negsuc n) = refl ℤ→Int→ℤ : ∀ z → Int→ℤ (ℤ→Int z) ≡ z ℤ→Int→ℤ = elimProp (λ z → squash/ (Int→ℤ (ℤ→Int z)) z) ℕ×ℕprf where ℕ×ℕprf : (a : ℕ × ℕ) → Int→ℤ (ℤ→Int [ a ]) ≡ [ a ] ℕ×ℕprf (a , b) = eq/ (Int→ℕ×ℕ (ℕ×ℕ→Int (a , b))) (a , b) (ℕ×ℕ→Int→ℕ×ℕ (a , b)) Int≡DiffInt : Int ≡ ℤ Int≡DiffInt = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int)
39.823529
122
0.472969
188f4db8129e78ed7816f013787372afd8ec8e2b
830
agda
Agda
test/fail/WithoutK3.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/fail/WithoutK3.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/fail/WithoutK3.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} module WithoutK3 where -- Homogeneous equality. data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x -- The J rule. J : {A : Set} (P : {x y : A} → x ≡ y → Set) → (∀ x → P (refl {x = x})) → ∀ {x y} (x≡y : x ≡ y) → P x≡y J P p refl = p _ -- Heterogeneous equality. data _≅_ {A : Set} (x : A) : {B : Set} → B → Set where refl : x ≅ x -- Substitutivity. subst : {A : Set} {x y : A} (P : A → Set) → x ≅ y → P x → P y subst P refl p = p -- The K rule. (The implementation is based on a construction in Conor -- McBride's PhD thesis.) K : {A : Set} {x : A} (P : {x : A} → x ≡ x → Set) → (∀ x → P (refl {x = x})) → ∀ {x} (p : x ≡ x) → P p K P p x≡x = J (λ {x y} (p : x ≡ y) → (x≡x : x ≡ x) → p ≅ x≡x → P x≡x) (λ x x≡x refl≅x≡x → subst P refl≅x≡x (p x)) x≡x x≡x refl
22.432432
70
0.462651
5ef0217bbdeec3cd8fc5b884248c15a6dded27dd
2,855
agda
Agda
src/Tactic/Reflection.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Tactic/Reflection.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Tactic/Reflection.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Tactic.Reflection where open import Prelude hiding (abs; _>>=_) renaming (_>>=′_ to _>>=_) open import Builtin.Reflection public open import Tactic.Reflection.DeBruijn public open import Tactic.Reflection.Telescope public open import Tactic.Reflection.Substitute public open import Tactic.Reflection.Free public open import Tactic.Reflection.Equality public open import Tactic.Reflection.Meta public open import Tactic.Reflection.Printf public hiding (formatError) set₀ : Type set₀ = agda-sort (lit 0) set! : Type set! = agda-sort unknown pattern var₀ x = var x [] pattern var₁ x a = var x (vArg a ∷ []) pattern var₂ x a b = var x (vArg a ∷ vArg b ∷ []) pattern var₃ x a b c = var x (vArg a ∷ vArg b ∷ vArg c ∷ []) pattern var₄ x a b c d = var x (vArg a ∷ vArg b ∷ vArg c ∷ vArg d ∷ []) pattern con₀ c = con c [] pattern con₁ c x = con c (vArg x ∷ []) pattern con₂ c x y = con c (vArg x ∷ vArg y ∷ []) pattern con₃ c x y z = con c (vArg x ∷ vArg y ∷ vArg z ∷ []) pattern con₄ c x y z u = con c (vArg x ∷ vArg y ∷ vArg z ∷ vArg u ∷ []) pattern def₀ f = def f [] pattern def₁ f x = def f (vArg x ∷ []) pattern def₂ f x y = def f (vArg x ∷ vArg y ∷ []) pattern def₃ f x y z = def f (vArg x ∷ vArg y ∷ vArg z ∷ []) pattern def₄ f x y z u = def f (vArg x ∷ vArg y ∷ vArg z ∷ vArg u ∷ []) infixr 4 _`→_ _`→ʰ_ _`→ⁱ_ _`→_ _`→ʰ_ _`→ⁱ_ : Type → Type → Type _`→_ a b = pi (vArg a) (abs "_" b) _`→ʰ_ a b = pi (hArg a) (abs "_" b) _`→ⁱ_ a b = pi (iArg a) (abs "_" b) `λ : Term → Term `λ b = lam visible (abs "_" b) infixl 9 _`∘_ _`∘_ : Term → Term → Term _`∘_ = def₂ (quote _∘_) infixr -20 _`$_ _`$_ : Term → Term → Term _`$_ = def₂ (quote _$_) _:′_ : Term → Type → TC Term _:′_ = checkType λ′ : ∀ {a} {A : Set a} → Arg Type → TC A → TC A λ′ = extendContext infix 2 _=′_ _=′_ : Term → Term → TC ⊤ _=′_ = unify on-goal : (Type → Tactic) → Tactic on-goal tac hole = inferNormalisedType hole >>= λ goal → tac goal hole forceFun : Type → TC Type forceFun a = do dom ← newMeta set! rng ← newMeta set! unify a (dom `→ weaken 1 rng) normalise a inferFunRange : Term → TC Type inferFunRange hole = unPi =<< forceFun =<< inferType hole where unPi : Type → TC Type unPi (pi _ (abs _ (meta x _))) = blockOnMeta! x unPi (pi _ (abs _ b)) = maybe (typeError ( strErr "Must be applied in a non-dependent function position" ∷ termErr b ∷ [])) pure $ strengthen 1 b unPi x = typeError (strErr "Invalid goal" ∷ termErr x ∷ []) macro runT : Tactic → Tactic runT t = t evalTC : ∀ {a} {A : Set a} → TC A → Tactic evalTC {A = A} c hole = do v ← c `v ← quoteTC v `A ← quoteTC A checkedHole ← checkType hole `A unify checkedHole `v macro evalT : ∀ {a} {A : Set a} → TC A → Tactic evalT = evalTC
29.132653
106
0.596848
57f3cef1a7ecdf58f2bc9b2e746589b8bf8f5f06
6,157
agda
Agda
Cubical/Homotopy/Group/Pi3S2.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Homotopy/Group/Pi3S2.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/Pi3S2.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} {- This file contains: 1. The iso π₃S²≅ℤ 2. A proof that π₃S² is generated by the Hopf map -} module Cubical.Homotopy.Group.Pi3S2 where open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Group.LES open import Cubical.Homotopy.Group.PinSn open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.HopfInvariant.HopfMap open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.HopfInvariant.Homomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open Iso open import Cubical.Foundations.Equiv open import Cubical.HITs.SetTruncation renaming (elim to sElim) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.S1 open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.Algebra.Group open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Unit open import Cubical.Algebra.Group.Instances.Int TotalHopf→∙S² : (Σ (S₊ 2) S¹Hopf , north , base) →∙ S₊∙ 2 fst TotalHopf→∙S² = fst snd TotalHopf→∙S² = refl IsoTotalSpaceJoin' : Iso (Σ (S₊ 2) S¹Hopf) (S₊ 3) IsoTotalSpaceJoin' = compIso hopfS¹.IsoTotalSpaceJoin (IsoSphereJoin 1 1) IsoFiberTotalHopfS¹ : Iso (fiber (fst TotalHopf→∙S²) north) S¹ fun IsoFiberTotalHopfS¹ ((x , y) , z) = subst S¹Hopf z y inv IsoFiberTotalHopfS¹ x = (north , x) , refl rightInv IsoFiberTotalHopfS¹ x = refl leftInv IsoFiberTotalHopfS¹ ((x , y) , z) = ΣPathP ((ΣPathP (sym z , (λ i → transp (λ j → S¹Hopf (z (~ i ∧ j))) i y))) , (λ j i → z (i ∨ ~ j))) IsoFiberTotalHopfS¹∙≡ : (fiber (fst TotalHopf→∙S²) north , (north , base) , refl) ≡ S₊∙ 1 IsoFiberTotalHopfS¹∙≡ = ua∙ (isoToEquiv IsoFiberTotalHopfS¹) refl private transportGroupEquiv : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (n : ℕ) (f : A →∙ B) → isEquiv (fst (πLES.A→B f n)) → isEquiv (fst (π'∘∙Hom n f)) transportGroupEquiv n f iseq = transport (λ i → isEquiv (fst (π∘∙A→B-PathP n f i))) iseq π₃S²≅π₃TotalHopf : GroupEquiv (πGr 2 (Σ (S₊ 2) S¹Hopf , north , base)) (πGr 2 (S₊∙ 2)) fst (fst π₃S²≅π₃TotalHopf) = fst (πLES.A→B TotalHopf→∙S² 2) snd (fst π₃S²≅π₃TotalHopf) = SES→isEquiv (isContr→≡UnitGroup (subst isContr (cong (π 3) (sym IsoFiberTotalHopfS¹∙≡)) (∣ refl ∣₂ , (sElim (λ _ → isSetPathImplicit) (λ p → cong ∣_∣₂ (isOfHLevelSuc 3 isGroupoidS¹ _ _ _ _ _ _ refl p)))))) (isContr→≡UnitGroup (subst isContr (cong (π 2) (sym IsoFiberTotalHopfS¹∙≡)) (∣ refl ∣₂ , (sElim (λ _ → isSetPathImplicit) (λ p → cong ∣_∣₂ (isGroupoidS¹ _ _ _ _ refl p)))))) (πLES.fib→A TotalHopf→∙S² 2) (πLES.A→B TotalHopf→∙S² 2) (πLES.B→fib TotalHopf→∙S² 1) (πLES.Ker-A→B⊂Im-fib→A TotalHopf→∙S² 2) (πLES.Ker-B→fib⊂Im-A→B TotalHopf→∙S² 1) snd π₃S²≅π₃TotalHopf = snd (πLES.A→B TotalHopf→∙S² 2) π'₃S²≅π'₃TotalHopf : GroupEquiv (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base)) (π'Gr 2 (S₊∙ 2)) fst (fst π'₃S²≅π'₃TotalHopf) = fst (π'∘∙Hom 2 TotalHopf→∙S²) snd (fst π'₃S²≅π'₃TotalHopf) = transportGroupEquiv 2 TotalHopf→∙S² (π₃S²≅π₃TotalHopf .fst .snd) snd π'₃S²≅π'₃TotalHopf = snd (π'∘∙Hom 2 TotalHopf→∙S²) πS³≅πTotalHopf : (n : ℕ) → GroupEquiv (π'Gr n (S₊∙ 3)) (π'Gr n (Σ (S₊ 2) S¹Hopf , north , base)) πS³≅πTotalHopf n = π'Iso n ((isoToEquiv (invIso (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)))) , refl) π₃S²≅ℤ : GroupEquiv (π'Gr 2 (S₊∙ 2)) ℤGroup π₃S²≅ℤ = compGroupEquiv (invGroupEquiv (compGroupEquiv (πS³≅πTotalHopf 2) π'₃S²≅π'₃TotalHopf)) (GroupIso→GroupEquiv (πₙ'Sⁿ≅ℤ 2)) -- We prove that the generator is the Hopf map π₃TotalHopf-gen' : π' 3 (Σ (Susp S¹) S¹Hopf , north , base) π₃TotalHopf-gen' = ∣ inv (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)) , refl ∣₂ πS³≅πTotalHopf-gen : fst (fst (πS³≅πTotalHopf 2)) ∣ idfun∙ _ ∣₂ ≡ π₃TotalHopf-gen' πS³≅πTotalHopf-gen = cong ∣_∣₂ (∘∙-idʳ (inv (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)) , refl)) πTotalHopf-gen : gen₁-by (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base)) ∣ inv (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)) , refl ∣₂ πTotalHopf-gen = subst (gen₁-by (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base))) πS³≅πTotalHopf-gen (Iso-pres-gen₁ (π'Gr 2 (S₊∙ 3)) (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base)) ∣ idfun∙ _ ∣₂ (πₙ'Sⁿ-gen-by-idfun 2) (GroupEquiv→GroupIso (πS³≅πTotalHopf 2))) πTotalHopf≅πS²-gen : fst (fst π'₃S²≅π'₃TotalHopf) π₃TotalHopf-gen' ≡ ∣ HopfMap' , refl ∣₂ πTotalHopf≅πS²-gen = cong ∣_∣₂ (ΣPathP (refl , (sym (rUnit refl)))) π₂S³-gen-by-HopfMap' : gen₁-by (π'Gr 2 (S₊∙ 2)) ∣ HopfMap' , refl ∣₂ π₂S³-gen-by-HopfMap' = subst (gen₁-by (π'Gr 2 (S₊∙ 2))) πTotalHopf≅πS²-gen (Iso-pres-gen₁ (π'Gr 2 (Σ (S₊ 2) S¹Hopf , north , base)) (π'Gr 2 (S₊∙ 2)) ∣ inv (compIso (hopfS¹.IsoTotalSpaceJoin) (IsoSphereJoin 1 1)) , refl ∣₂ πTotalHopf-gen (GroupEquiv→GroupIso π'₃S²≅π'₃TotalHopf)) π₂S³-gen-by-HopfMap : gen₁-by (π'Gr 2 (S₊∙ 2)) ∣ HopfMap ∣₂ π₂S³-gen-by-HopfMap = subst (gen₁-by (π'Gr 2 (S₊∙ 2))) (cong ∣_∣₂ (sym hopfMap≡HopfMap')) π₂S³-gen-by-HopfMap' -- As a consequence, we also get that the Hopf invariant determines -- an iso π₃S²≅ℤ hopfInvariantEquiv : GroupEquiv (π'Gr 2 (S₊∙ 2)) ℤGroup fst (fst hopfInvariantEquiv) = HopfInvariant-π' 0 snd (fst hopfInvariantEquiv) = GroupEquivℤ-isEquiv (invGroupEquiv π₃S²≅ℤ) ∣ HopfMap ∣₂ π₂S³-gen-by-HopfMap (GroupHom-HopfInvariant-π' 0) (abs→⊎ _ _ HopfInvariant-HopfMap) snd hopfInvariantEquiv = snd (GroupHom-HopfInvariant-π' 0)
35.796512
78
0.652266
a0422e3dd05c57a2dae2009004da9dad4844b0db
535
agda
Agda
test/interaction/Issue2291.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2291.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2291.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-11-03, issue #2291, reported by Aerate -- {-# OPTIONS -v interaction.helper:100 #-} {-# OPTIONS --guardedness #-} record Foo : Set where coinductive field one : Foo open Foo someFoo : Foo someFoo .one = {! {R} -> Foo.one R !} -- WAS: C-c C-h gives: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Translation/ConcreteToAbstract.hs:1248 -- NOW: -- Expected an argument of the form f e1 e2 .. en -- when checking that the expression ? has type Foo
25.47619
85
0.684112
528face292b3ad9b69329ad41ea632f03ae6604c
4,092
agda
Agda
Data/Row.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/Row.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/Row.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --allow-unsolved-metas --postfix-projections #-} module Data.Row where open import Prelude open import Data.Nat.Properties using (snotz) open import Data.Bool.Properties using (isPropT) infixr 5 _∷_ data Row (A : Type a) : Type a where [] : Row A _∷_ : A → Row A → Row A swap : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs record Alg {a p} (A : Type a) (P : Row A → Type p) : Type (a ℓ⊔ p) where constructor algebra field [_]_∷_⟨_⟩ : (x : A) → (xs : Row A) → (P⟨xs⟩ : P xs) → P (x ∷ xs) [_][] : P [] private _∷_⟨_⟩ = [_]_∷_⟨_⟩ Swap-Coh : Type _ Swap-Coh = ∀ x y xs (P⟨xs⟩ : P xs) → PathP (λ i → P (swap x y xs i)) (x ∷ (y ∷ xs) ⟨ y ∷ xs ⟨ P⟨xs⟩ ⟩ ⟩) (y ∷ (x ∷ xs) ⟨ x ∷ xs ⟨ P⟨xs⟩ ⟩ ⟩) open Alg infixr 2 ψ record ψ {a p} (A : Type a) (P : Row A → Type p) : Type (a ℓ⊔ p) where constructor elim field alg : Alg A P field swap-coh : Swap-Coh alg [_] : ∀ xs → P xs [ [] ] = [ alg ][] [ x ∷ xs ] = [ alg ] x ∷ xs ⟨ [ xs ] ⟩ [ swap x y xs i ] = swap-coh x y xs [ xs ] i syntax ψ ty (λ v → e) = ψ[ v ⦂ ty ] e open ψ record ψ-prop {a p} (A : Type a) (P : Row A → Type p) : Type (a ℓ⊔ p) where constructor elim-prop field p-alg : Alg A P is-prop : ∀ xs → isProp (P xs) prop-swap-coh : Swap-Coh p-alg prop-swap-coh x y xs P⟨xs⟩ = toPathP (is-prop _ (transp (λ i → P (swap x y xs i)) i0 _) _) to-elim : ψ A P to-elim = elim p-alg prop-swap-coh ∥_∥⇓ : ∀ xs → P xs ∥_∥⇓ = [ to-elim ] syntax ψ-prop ty (λ v → e) = ψ[ v ⦂ ty ]∥ e ∥ open ψ-prop foldr : (f : A → B → B) (n : B) (p : ∀ x y xs → f x (f y xs) ≡ f y (f x xs)) → Row A → B foldr f n p = [ elim (algebra (λ x _ xs → f x xs) n) (λ x y _ → p x y) ] length : Row A → ℕ length = foldr (const suc) zero λ _ _ _ → refl infixr 5 _∈_ _∉_ _∈_ : A → Row A → Type _ x ∈ xs = ∃ ys × (x ∷ ys ≡ xs) _∉_ : A → Row A → Type _ x ∉ xs = ¬ (x ∈ xs) union-alg : (ys : Row A) → ψ[ xs ⦂ A ] Row A [ union-alg ys .alg ] x ∷ xs ⟨ P⟨xs⟩ ⟩ = x ∷ P⟨xs⟩ [ union-alg ys .alg ][] = ys union-alg ys .swap-coh x y xs pxs = swap x y pxs _∪_ : Row A → Row A → Row A xs ∪ ys = [ union-alg ys ] xs open import Data.List using (List; _∷_; []) import Data.List as List unorder : List A → Row A unorder = List.foldr _∷_ [] infix 4 _↭_ _↭_ : List A → List A → Type _ xs ↭ ys = unorder xs ≡ unorder ys ↭-refl : {xs : List A} → xs ↭ xs ↭-refl = refl ↭-sym : {xs ys : List A} → xs ↭ ys → ys ↭ xs ↭-sym = sym ↭-trans : {xs ys zs : List A} → xs ↭ ys → ys ↭ zs → xs ↭ zs ↭-trans = _;_ ↭-swap : ∀ {x y : A} {xs} → x ∷ y ∷ xs ↭ y ∷ x ∷ xs ↭-swap = swap _ _ _ open import Relation.Nullary.Decidable.Logic module _ (_≟_ : Discrete A) where _⁻ : A → ψ[ xs ⦂ A ] Row A [ (x ⁻) .alg ] y ∷ xs ⟨ P⟨xs⟩ ⟩ = if does (x ≟ y) then xs else y ∷ P⟨xs⟩ [ (x ⁻) .alg ][] = [] (x ⁻) .swap-coh y z xs pxs with x ≟ y | x ≟ z (x ⁻) .swap-coh y z xs pxs | no _ | no _ = swap y z pxs (x ⁻) .swap-coh y z xs pxs | no _ | yes _ = refl (x ⁻) .swap-coh y z xs pxs | yes _ | no _ = refl (x ⁻) .swap-coh y z xs pxs | yes x≡y | yes x≡z = cong (Row._∷ xs) (sym x≡z ; x≡y) rem-cons : ∀ x xs → [ x ⁻ ] (x ∷ xs) ≡ xs rem-cons x xs with x ≟ x ... | yes _ = refl ... | no ¬p = ⊥-elim (¬p refl) rem-swap : ∀ x y xs → x ≢ y → x ∷ [ y ⁻ ] xs ≡ [ y ⁻ ] (x ∷ xs) rem-swap x y xs x≢y with y ≟ x rem-swap x y xs x≢y | yes x≡y = ⊥-elim (x≢y (sym x≡y)) rem-swap x y xs x≢y | no _ = refl ∷-inj : ∀ x xs ys → x ∷ xs ≡ x ∷ ys → xs ≡ ys ∷-inj x xs ys p with x ≟ x | cong [ x ⁻ ] p ∷-inj x xs ys p | yes _ | q = q ∷-inj x xs ys p | no ¬p | q = ⊥-elim (¬p refl) elem-push : ∀ x y (xs : Row A) → x ≢ y → x ∉ xs → x ∉ y ∷ xs elem-push x y xs x≢y x∉xs (ys , x∷ys≡y∷xs) = let q = rem-swap x y ys x≢y ; cong [ y ⁻ ] x∷ys≡y∷xs ; rem-cons y xs in x∉xs ([ y ⁻ ] ys , q) elem-alg : ∀ x → Alg A (λ xs → Dec (x ∈ xs)) [ elem-alg x ] y ∷ xs ⟨ P⟨xs⟩ ⟩ = disj (λ x≡y → (xs , cong (_∷ xs) x≡y)) (λ { (ys , x∷ys≡xs) → y ∷ ys , swap x y ys ; cong (y ∷_) x∷ys≡xs }) (elem-push x y xs) (x ≟ y) P⟨xs⟩ [ elem-alg x ][] = no (snotz ∘ cong length ∘ snd)
28.816901
175
0.495112
19db6bbf8b22364efec1253f6b68f8d2320e6a26
12,079
agda
Agda
Mockingbird/Forest/Birds.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
1
2022-02-28T23:44:42.000Z
2022-02-28T23:44:42.000Z
Mockingbird/Forest/Birds.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
Mockingbird/Forest/Birds.agda
splintah/combinatory-logic
df8bf877e60b3059532c54a247a36a3d83cd55b0
[ "MIT" ]
null
null
null
open import Mockingbird.Forest.Base using (Forest) module Mockingbird.Forest.Birds {b ℓ} (forest : Forest {b} {ℓ}) where open import Level using (_⊔_) open import Data.Product using (_×_; ∃-syntax) open import Relation.Unary using (Pred) open import Relation.Binary using (Rel) open Forest forest -- TODO: consider using implicit arguments in the predicates, e.g. -- IsMockingbird M = ∀ {x} → M ∙ x ≈ x ∙ x. IsComposition : (A B C : Bird) → Set (b ⊔ ℓ) IsComposition A B C = ∀ x → C ∙ x ≈ A ∙ (B ∙ x) -- A forest ‘has composition’ if for every two birds A and B there exists a bird -- C = A ∘ B such that C is the composition of A and B. record HasComposition : Set (b ⊔ ℓ) where infixr 6 _∘_ field _∘_ : (A B : Bird) → Bird isComposition : ∀ A B → IsComposition A B (A ∘ B) open HasComposition ⦃ ... ⦄ public IsMockingbird : Pred Bird (b ⊔ ℓ) IsMockingbird M = ∀ x → M ∙ x ≈ x ∙ x record HasMockingbird : Set (b ⊔ ℓ) where field M : Bird isMockingbird : IsMockingbird M open HasMockingbird ⦃ ... ⦄ public infix 4 _IsFondOf_ _IsFondOf_ : Rel Bird ℓ A IsFondOf B = A ∙ B ≈ B IsEgocentric : Pred Bird ℓ IsEgocentric A = A IsFondOf A Agree : (A B x : Bird) → Set ℓ Agree A B x = A ∙ x ≈ B ∙ x IsAgreeable : Pred Bird (b ⊔ ℓ) IsAgreeable A = ∀ B → ∃[ x ] Agree A B x Compatible : Rel Bird (b ⊔ ℓ) Compatible A B = ∃[ x ] ∃[ y ] (A ∙ x ≈ y) × (B ∙ y ≈ x) IsHappy : Pred Bird (b ⊔ ℓ) IsHappy A = Compatible A A IsNormal : Pred Bird (b ⊔ ℓ) IsNormal A = ∃[ x ] A IsFondOf x infix 4 _IsFixatedOn_ _IsFixatedOn_ : Rel Bird (b ⊔ ℓ) A IsFixatedOn B = ∀ x → A ∙ x ≈ B IsHopelesslyEgocentric : Pred Bird (b ⊔ ℓ) IsHopelesslyEgocentric A = A IsFixatedOn A IsKestrel : Pred Bird (b ⊔ ℓ) IsKestrel K = ∀ x y → (K ∙ x) ∙ y ≈ x -- Alternative definition: -- IsKestrel K = ∀ x → K ∙ x IsFixatedOn x record HasKestrel : Set (b ⊔ ℓ) where field K : Bird isKestrel : IsKestrel K open HasKestrel ⦃ ... ⦄ public IsIdentity : Pred Bird (b ⊔ ℓ) IsIdentity I = ∀ x → I ∙ x ≈ x record HasIdentity : Set (b ⊔ ℓ) where field I : Bird isIdentity : IsIdentity I open HasIdentity ⦃ ... ⦄ public IsLark : Pred Bird (b ⊔ ℓ) IsLark L = ∀ x y → (L ∙ x) ∙ y ≈ x ∙ (y ∙ y) record HasLark : Set (b ⊔ ℓ) where field L : Bird isLark : IsLark L IsSageBird : Pred Bird (b ⊔ ℓ) IsSageBird Θ = ∀ x → x IsFondOf (Θ ∙ x) open HasLark ⦃ ... ⦄ public record HasSageBird : Set (b ⊔ ℓ) where field Θ : Bird isSageBird : IsSageBird Θ IsBluebird : Pred Bird (b ⊔ ℓ) IsBluebird B = ∀ x y z → B ∙ x ∙ y ∙ z ≈ x ∙ (y ∙ z) open HasSageBird ⦃ ... ⦄ public record HasBluebird : Set (b ⊔ ℓ) where field B : Bird isBluebird : IsBluebird B open HasBluebird ⦃ ... ⦄ public IsDove : Pred Bird (b ⊔ ℓ) IsDove D = ∀ x y z w → D ∙ x ∙ y ∙ z ∙ w ≈ x ∙ y ∙ (z ∙ w) record HasDove : Set (b ⊔ ℓ) where field D : Bird isDove : IsDove D open HasDove ⦃ ... ⦄ public IsBlackbird : Pred Bird (b ⊔ ℓ) IsBlackbird B₁ = ∀ x y z w → B₁ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ (y ∙ z ∙ w) record HasBlackbird : Set (b ⊔ ℓ) where field B₁ : Bird isBlackbird : IsBlackbird B₁ open HasBlackbird ⦃ ... ⦄ public IsEagle : Pred Bird (b ⊔ ℓ) IsEagle E = ∀ x y z w v → E ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ y ∙ (z ∙ w ∙ v) record HasEagle : Set (b ⊔ ℓ) where field E : Bird isEagle : IsEagle E open HasEagle ⦃ ... ⦄ public IsBunting : Pred Bird (b ⊔ ℓ) IsBunting B₂ = ∀ x y z w v → B₂ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ (y ∙ z ∙ w ∙ v) record HasBunting : Set (b ⊔ ℓ) where field B₂ : Bird isBunting : IsBunting B₂ open HasBunting ⦃ ... ⦄ public IsDickcissel : Pred Bird (b ⊔ ℓ) IsDickcissel D₁ = ∀ x y z w v → D₁ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ y ∙ z ∙ (w ∙ v) record HasDickcissel : Set (b ⊔ ℓ) where field D₁ : Bird isDickcissel : IsDickcissel D₁ open HasDickcissel ⦃ ... ⦄ public IsBecard : Pred Bird (b ⊔ ℓ) IsBecard B₃ = ∀ x y z w → B₃ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ (y ∙ (z ∙ w)) record HasBecard : Set (b ⊔ ℓ) where field B₃ : Bird isBecard : IsBecard B₃ open HasBecard ⦃ ... ⦄ public IsDovekie : Pred Bird (b ⊔ ℓ) IsDovekie D₂ = ∀ x y z w v → D₂ ∙ x ∙ y ∙ z ∙ w ∙ v ≈ x ∙ (y ∙ z) ∙ (w ∙ v) record HasDovekie : Set (b ⊔ ℓ) where field D₂ : Bird isDovekie : IsDovekie D₂ open HasDovekie ⦃ ... ⦄ public IsBaldEagle : Pred Bird (b ⊔ ℓ) IsBaldEagle Ê = ∀ x y₁ y₂ y₃ z₁ z₂ z₃ → Ê ∙ x ∙ y₁ ∙ y₂ ∙ y₃ ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ (y₁ ∙ y₂ ∙ y₃) ∙ (z₁ ∙ z₂ ∙ z₃) record HasBaldEagle : Set (b ⊔ ℓ) where field Ê : Bird isBaldEagle : IsBaldEagle Ê open HasBaldEagle ⦃ ... ⦄ public IsWarbler : Pred Bird (b ⊔ ℓ) IsWarbler W = ∀ x y → W ∙ x ∙ y ≈ x ∙ y ∙ y record HasWarbler : Set (b ⊔ ℓ) where field W : Bird isWarbler : IsWarbler W open HasWarbler ⦃ ... ⦄ public IsCardinal : Pred Bird (b ⊔ ℓ) IsCardinal C = ∀ x y z → C ∙ x ∙ y ∙ z ≈ x ∙ z ∙ y record HasCardinal : Set (b ⊔ ℓ) where field C : Bird isCardinal : IsCardinal C open HasCardinal ⦃ ... ⦄ public IsThrush : Pred Bird (b ⊔ ℓ) IsThrush T = ∀ x y → T ∙ x ∙ y ≈ y ∙ x record HasThrush : Set (b ⊔ ℓ) where field T : Bird isThrush : IsThrush T open HasThrush ⦃ ... ⦄ public Commute : (x y : Bird) → Set ℓ Commute x y = x ∙ y ≈ y ∙ x IsRobin : Pred Bird (b ⊔ ℓ) IsRobin R = ∀ x y z → R ∙ x ∙ y ∙ z ≈ y ∙ z ∙ x record HasRobin : Set (b ⊔ ℓ) where field R : Bird isRobin : IsRobin R open HasRobin ⦃ ... ⦄ public IsFinch : Pred Bird (b ⊔ ℓ) IsFinch F = ∀ x y z → F ∙ x ∙ y ∙ z ≈ z ∙ y ∙ x record HasFinch : Set (b ⊔ ℓ) where field F : Bird isFinch : IsFinch F open HasFinch ⦃ ... ⦄ public IsVireo : Pred Bird (b ⊔ ℓ) IsVireo V = ∀ x y z → V ∙ x ∙ y ∙ z ≈ z ∙ x ∙ y record HasVireo : Set (b ⊔ ℓ) where field V : Bird isVireo : IsVireo V open HasVireo ⦃ ... ⦄ public IsCardinalOnceRemoved : Pred Bird (b ⊔ ℓ) IsCardinalOnceRemoved C* = ∀ x y z w → C* ∙ x ∙ y ∙ z ∙ w ≈ x ∙ y ∙ w ∙ z record HasCardinalOnceRemoved : Set (b ⊔ ℓ) where field C* : Bird isCardinalOnceRemoved : IsCardinalOnceRemoved C* open HasCardinalOnceRemoved ⦃ ... ⦄ public IsRobinOnceRemoved : Pred Bird (b ⊔ ℓ) IsRobinOnceRemoved R* = ∀ x y z w → R* ∙ x ∙ y ∙ z ∙ w ≈ x ∙ z ∙ w ∙ y record HasRobinOnceRemoved : Set (b ⊔ ℓ) where field R* : Bird isRobinOnceRemoved : IsRobinOnceRemoved R* open HasRobinOnceRemoved ⦃ ... ⦄ public IsFinchOnceRemoved : Pred Bird (b ⊔ ℓ) IsFinchOnceRemoved F* = ∀ x y z w → F* ∙ x ∙ y ∙ z ∙ w ≈ x ∙ w ∙ z ∙ y record HasFinchOnceRemoved : Set (b ⊔ ℓ) where field F* : Bird isFinchOnceRemoved : IsFinchOnceRemoved F* open HasFinchOnceRemoved ⦃ ... ⦄ public IsVireoOnceRemoved : Pred Bird (b ⊔ ℓ) IsVireoOnceRemoved V* = ∀ x y z w → V* ∙ x ∙ y ∙ z ∙ w ≈ x ∙ w ∙ y ∙ z record HasVireoOnceRemoved : Set (b ⊔ ℓ) where field V* : Bird isVireoOnceRemoved : IsVireoOnceRemoved V* open HasVireoOnceRemoved ⦃ ... ⦄ public IsCardinalTwiceRemoved : Pred Bird (b ⊔ ℓ) IsCardinalTwiceRemoved C** = ∀ x y z₁ z₂ z₃ → C** ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ y ∙ z₁ ∙ z₃ ∙ z₂ record HasCardinalTwiceRemoved : Set (b ⊔ ℓ) where field C** : Bird isCardinalTwiceRemoved : IsCardinalTwiceRemoved C** open HasCardinalTwiceRemoved ⦃ ... ⦄ public IsRobinTwiceRemoved : Pred Bird (b ⊔ ℓ) IsRobinTwiceRemoved R** = ∀ x y z₁ z₂ z₃ → R** ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ y ∙ z₂ ∙ z₃ ∙ z₁ record HasRobinTwiceRemoved : Set (b ⊔ ℓ) where field R** : Bird isRobinTwiceRemoved : IsRobinTwiceRemoved R** open HasRobinTwiceRemoved ⦃ ... ⦄ public IsFinchTwiceRemoved : Pred Bird (b ⊔ ℓ) IsFinchTwiceRemoved F** = ∀ x y z₁ z₂ z₃ → F** ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ y ∙ z₃ ∙ z₂ ∙ z₁ record HasFinchTwiceRemoved : Set (b ⊔ ℓ) where field F** : Bird isFinchTwiceRemoved : IsFinchTwiceRemoved F** open HasFinchTwiceRemoved ⦃ ... ⦄ public IsVireoTwiceRemoved : Pred Bird (b ⊔ ℓ) IsVireoTwiceRemoved V** = ∀ x y z₁ z₂ z₃ → V** ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈ x ∙ y ∙ z₃ ∙ z₁ ∙ z₂ record HasVireoTwiceRemoved : Set (b ⊔ ℓ) where field V** : Bird isVireoTwiceRemoved : IsVireoTwiceRemoved V** open HasVireoTwiceRemoved ⦃ ... ⦄ public IsQueerBird : Pred Bird (b ⊔ ℓ) IsQueerBird Q = ∀ x y z → Q ∙ x ∙ y ∙ z ≈ y ∙ (x ∙ z) record HasQueerBird : Set (b ⊔ ℓ) where field Q : Bird isQueerBird : IsQueerBird Q open HasQueerBird ⦃ ... ⦄ public IsQuixoticBird : Pred Bird (b ⊔ ℓ) IsQuixoticBird Q₁ = ∀ x y z → Q₁ ∙ x ∙ y ∙ z ≈ x ∙ (z ∙ y) record HasQuixoticBird : Set (b ⊔ ℓ) where field Q₁ : Bird isQuixoticBird : IsQuixoticBird Q₁ open HasQuixoticBird ⦃ ... ⦄ public IsQuizzicalBird : Pred Bird (b ⊔ ℓ) IsQuizzicalBird Q₂ = ∀ x y z → Q₂ ∙ x ∙ y ∙ z ≈ y ∙ (z ∙ x) record HasQuizzicalBird : Set (b ⊔ ℓ) where field Q₂ : Bird isQuizzicalBird : IsQuizzicalBird Q₂ open HasQuizzicalBird ⦃ ... ⦄ public IsQuirkyBird : Pred Bird (b ⊔ ℓ) IsQuirkyBird Q₃ = ∀ x y z → Q₃ ∙ x ∙ y ∙ z ≈ z ∙ (x ∙ y) record HasQuirkyBird : Set (b ⊔ ℓ) where field Q₃ : Bird isQuirkyBird : IsQuirkyBird Q₃ open HasQuirkyBird ⦃ ... ⦄ public IsQuackyBird : Pred Bird (b ⊔ ℓ) IsQuackyBird Q₄ = ∀ x y z → Q₄ ∙ x ∙ y ∙ z ≈ z ∙ (y ∙ x) record HasQuackyBird : Set (b ⊔ ℓ) where field Q₄ : Bird isQuackyBird : IsQuackyBird Q₄ open HasQuackyBird ⦃ ... ⦄ public IsGoldfinch : Pred Bird (b ⊔ ℓ) IsGoldfinch G = ∀ x y z w → G ∙ x ∙ y ∙ z ∙ w ≈ x ∙ w ∙ (y ∙ z) record HasGoldfinch : Set (b ⊔ ℓ) where field G : Bird isGoldfinch : IsGoldfinch G open HasGoldfinch ⦃ ... ⦄ public IsDoubleMockingbird : Pred Bird (b ⊔ ℓ) IsDoubleMockingbird M₂ = ∀ x y → M₂ ∙ x ∙ y ≈ x ∙ y ∙ (x ∙ y) record HasDoubleMockingbird : Set (b ⊔ ℓ) where field M₂ : Bird isDoubleMockingbird : IsDoubleMockingbird M₂ open HasDoubleMockingbird ⦃ ... ⦄ public IsConverseWarbler : Pred Bird (b ⊔ ℓ) IsConverseWarbler W′ = ∀ x y → W′ ∙ x ∙ y ≈ y ∙ x ∙ x record HasConverseWarbler : Set (b ⊔ ℓ) where field W′ : Bird isConverseWarbler : IsConverseWarbler W′ open HasConverseWarbler ⦃ ... ⦄ public IsWarblerOnceRemoved : Pred Bird (b ⊔ ℓ) IsWarblerOnceRemoved W* = ∀ x y z → W* ∙ x ∙ y ∙ z ≈ x ∙ y ∙ z ∙ z record HasWarblerOnceRemoved : Set (b ⊔ ℓ) where field W* : Bird isWarblerOnceRemoved : IsWarblerOnceRemoved W* open HasWarblerOnceRemoved ⦃ ... ⦄ public IsWarblerTwiceRemoved : Pred Bird (b ⊔ ℓ) IsWarblerTwiceRemoved W** = ∀ x y z w → W** ∙ x ∙ y ∙ z ∙ w ≈ x ∙ y ∙ z ∙ w ∙ w record HasWarblerTwiceRemoved : Set (b ⊔ ℓ) where field W** : Bird isWarblerTwiceRemoved : IsWarblerTwiceRemoved W** open HasWarblerTwiceRemoved ⦃ ... ⦄ public IsHummingbird : Pred Bird (b ⊔ ℓ) IsHummingbird H = ∀ x y z → H ∙ x ∙ y ∙ z ≈ x ∙ y ∙ z ∙ y record HasHummingbird : Set (b ⊔ ℓ) where field H : Bird isHummingbird : IsHummingbird H open HasHummingbird ⦃ ... ⦄ public IsStarling : Pred Bird (b ⊔ ℓ) IsStarling S = ∀ x y z → S ∙ x ∙ y ∙ z ≈ x ∙ z ∙ (y ∙ z) record HasStarling : Set (b ⊔ ℓ) where field S : Bird isStarling : IsStarling S open HasStarling ⦃ ... ⦄ public IsPhoenix : Pred Bird (b ⊔ ℓ) IsPhoenix Φ = ∀ x y z w → Φ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ (y ∙ w) ∙ (z ∙ w) record HasPhoenix : Set (b ⊔ ℓ) where field Φ : Bird isPhoenix : IsPhoenix Φ open HasPhoenix ⦃ ... ⦄ public IsPsiBird : Pred Bird (b ⊔ ℓ) IsPsiBird Ψ = ∀ x y z w → Ψ ∙ x ∙ y ∙ z ∙ w ≈ x ∙ (y ∙ z) ∙ (y ∙ w) record HasPsiBird : Set (b ⊔ ℓ) where field Ψ : Bird isPsiBird : IsPsiBird Ψ open HasPsiBird ⦃ ... ⦄ public IsTuringBird : Pred Bird (b ⊔ ℓ) IsTuringBird U = ∀ x y → U ∙ x ∙ y ≈ y ∙ (x ∙ x ∙ y) record HasTuringBird : Set (b ⊔ ℓ) where field U : Bird isTuringBird : IsTuringBird U open HasTuringBird ⦃ ... ⦄ public IsOwl : Pred Bird (b ⊔ ℓ) IsOwl O = ∀ x y → O ∙ x ∙ y ≈ y ∙ (x ∙ y) record HasOwl : Set (b ⊔ ℓ) where field O : Bird isOwl : IsOwl O open HasOwl ⦃ ... ⦄ public IsChoosy : Pred Bird (b ⊔ ℓ) IsChoosy A = ∀ x → A IsFondOf x → IsSageBird x IsJaybird : Pred Bird (b ⊔ ℓ) IsJaybird J = ∀ x y z w → J ∙ x ∙ y ∙ z ∙ w ≈ x ∙ y ∙ (x ∙ w ∙ z) record HasJaybird : Set (b ⊔ ℓ) where field J : Bird isJaybird : IsJaybird J open HasJaybird ⦃ ... ⦄ public
23.454369
113
0.601126
5269e3e844de9813469272fa76749d399736b380
233
agda
Agda
test/Succeed/Issue1719/Spans.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1719/Spans.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1719/Spans.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K --rewriting --confluence-check #-} module Issue1719.Spans where open import Issue1719.Common record Span : Set₁ where constructor span field A B C : Set f : C → A g : C → B open Span public
16.642857
58
0.660944
341becc5f31dc4bbf667e344fd8b715d970ff7a9
13,906
agda
Agda
Cubical/HITs/Hopf.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Hopf.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/Hopf.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Hopf where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Int open import Cubical.Data.Prod open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Susp open import Cubical.HITs.Join open import Cubical.HITs.Interval renaming ( zero to I0 ; one to I1 ) Border : (x : S¹) → (j : I) → Partial (j ∨ ~ j) (Σ Type₀ (λ T → T ≃ S¹)) Border x j (j = i0) = S¹ , rot x , rotIsEquiv x Border x j (j = i1) = S¹ , idEquiv S¹ -- Hopf fibration using SuspS¹ HopfSuspS¹ : SuspS¹ → Type₀ HopfSuspS¹ north = S¹ HopfSuspS¹ south = S¹ HopfSuspS¹ (merid x j) = Glue S¹ (Border x j) -- Hopf fibration using S² -- TODO : prove that it is equivalent to HopfSuspS¹ HopfS² : S² → Type₀ HopfS² base = S¹ HopfS² (surf i j) = Glue S¹ (λ { (i = i0) → _ , idEquiv S¹ ; (i = i1) → _ , idEquiv S¹ ; (j = i0) → _ , idEquiv S¹ ; (j = i1) → _ , _ , rotIsEquiv (loop i) } ) -- Hopf fibration using more direct definition of the rot equivalence -- TODO : prove that it is equivalent to HopfSuspS¹ HopfS²' : S² → Type₀ HopfS²' base = S¹ HopfS²' (surf i j) = Glue S¹ (λ { (i = i0) → _ , rotLoopEquiv i0 ; (i = i1) → _ , rotLoopEquiv i0 ; (j = i0) → _ , rotLoopEquiv i0 ; (j = i1) → _ , rotLoopEquiv i } ) -- Total space of the fibration TotalHopf : Type₀ TotalHopf = Σ SuspS¹ HopfSuspS¹ -- Forward direction filler-1 : I → (j : I) → (y : S¹) → Glue S¹ (Border y j) → join S¹ S¹ filler-1 i j y x = hfill (λ t → λ { (j = i0) → inl (rotInv-1 x y t) ; (j = i1) → inr x }) (inS (push ((unglue (j ∨ ~ j) x) * inv y) (unglue (j ∨ ~ j) x) j)) i TotalHopf→JoinS¹S¹ : TotalHopf → join S¹ S¹ TotalHopf→JoinS¹S¹ (north , x) = inl x TotalHopf→JoinS¹S¹ (south , x) = inr x TotalHopf→JoinS¹S¹ (merid y j , x) = filler-1 i1 j y x -- Backward direction JoinS¹S¹→TotalHopf : join S¹ S¹ → TotalHopf JoinS¹S¹→TotalHopf (inl x) = (north , x) JoinS¹S¹→TotalHopf (inr x) = (south , x) JoinS¹S¹→TotalHopf (push y x j) = (merid (inv y * x) j , glue (λ { (j = i0) → y ; (j = i1) → x }) (rotInv-2 x y j)) -- Now for the homotopies, we will need to fill squares indexed by x y : S¹ with value in S¹ -- Some will be extremeley tough, but happen to be easy when x = y = base -- therefore, we fill them for x = y = base and then use the connectedness of S¹ × S¹ and -- the discreteness of ΩS¹ to get general fillers. -- To proceed with that strategy, we first need a lemma : -- the sections of the trivial fibration λ (_ : S¹) (_ : S¹) → Int are constant -- this should be generalized to a constant fibration over a connected space with -- discrete fiber fibInt : S¹ → S¹ → Type₀ fibInt _ _ = Int S¹→HSet : (A : Type₀) (p : isSet A) (F : S¹ → A) (x : S¹) → F base ≡ F x S¹→HSet A p F base = refl {x = F base} S¹→HSet A p F (loop i) = f' i where f : PathP (λ i → F base ≡ F (loop i)) refl (cong F loop) f i = λ j → F (loop (i ∧ j)) L : cong F loop ≡ refl L = p (F base) (F base) (f i1) refl f' : PathP (λ i → F base ≡ F (loop i)) (refl {x = F base}) (refl {x = F base}) f' = transport (λ i → PathP (λ j → F base ≡ F (loop j)) refl (L i)) f constant-loop : (F : S¹ → S¹ → Int) → (x y : S¹) → F base base ≡ F x y constant-loop F x y = L0 ∙ L1 where p : isSet (S¹ → Int) p = hLevelPi 2 (λ _ → isSetInt) L : F base ≡ F x L = S¹→HSet (S¹ → Int) p F x L0 : F base base ≡ F x base L0 i = L i base L1 : F x base ≡ F x y L1 = S¹→HSet Int isSetInt (F x) y discretefib : (F : S¹ → S¹ → Type₀) → Type₀ discretefib F = (a : (x y : S¹) → F x y) → (b : (x y : S¹) → F x y) → (a base base ≡ b base base) → (x y : S¹) → a x y ≡ b x y discretefib-fibInt : discretefib fibInt discretefib-fibInt a b h x y i = hcomp (λ t → λ { (i = i0) → constant-loop a x y t ; (i = i1) → constant-loop b x y t }) (h i) -- first homotopy assocFiller-3-aux : I → I → I → I → S¹ assocFiller-3-aux x y j i = hfill (λ t → λ { (i = i0) → rotInv-1 (loop y) (loop (~ y) * loop x) t ; (i = i1) → rotInv-3 (loop y) (loop x) t ; (x = i0) (y = i0) → base ; (x = i0) (y = i1) → base ; (x = i1) (y = i0) → base ; (x = i1) (y = i1) → base }) (inS ((rotInv-2 (loop x) (loop y) i) * (inv (loop (~ y) * loop x)))) j -- assocFiller-3-endpoint is used only in the type of the next function, to specify the -- second endpoint. -- However, I only need the first endpoint, but I cannot specify only one of them as is. -- TODO : use cubical extension types when available to remove assocFiller-3-endpoint assocFiller-3-endpoint : (x : S¹) → (y : S¹) → y ≡ y assocFiller-3-endpoint base base i = base assocFiller-3-endpoint (loop x) base i = assocFiller-3-aux x i0 i1 i assocFiller-3-endpoint base (loop y) i = assocFiller-3-aux i0 y i1 i assocFiller-3-endpoint (loop x) (loop y) i = assocFiller-3-aux x y i1 i assocFiller-3 : (x : S¹) → (y : S¹) → PathP (λ j → rotInv-1 y (inv y * x) j ≡ rotInv-3 y x j) (λ i → ((rotInv-2 x y i) * (inv (inv y * x)))) (assocFiller-3-endpoint x y) assocFiller-3 base base j i = base assocFiller-3 (loop x) base j i = assocFiller-3-aux x i0 j i assocFiller-3 base (loop y) j i = assocFiller-3-aux i0 y j i assocFiller-3 (loop x) (loop y) j i = assocFiller-3-aux x y j i assoc-3 : (_ y : S¹) → basedΩS¹ y assoc-3 x y i = assocFiller-3 x y i1 i fibInt≡fibAssoc-3 : fibInt ≡ (λ _ y → basedΩS¹ y) fibInt≡fibAssoc-3 i = λ x y → basedΩS¹≡Int y (~ i) discretefib-fibAssoc-3 : discretefib (λ _ y → basedΩS¹ y) discretefib-fibAssoc-3 = transp (λ i → discretefib (fibInt≡fibAssoc-3 i)) i0 discretefib-fibInt assocConst-3 : (x y : S¹) → assoc-3 x y ≡ refl assocConst-3 x y = discretefib-fibAssoc-3 assoc-3 (λ _ _ → refl) refl x y assocSquare-3 : I → I → S¹ → S¹ → S¹ assocSquare-3 i j x y = hcomp (λ t → λ { (i = i0) → assocFiller-3 x y j i0 ; (i = i1) → assocFiller-3 x y j i1 ; (j = i0) → assocFiller-3 x y i0 i ; (j = i1) → assocConst-3 x y t i }) (assocFiller-3 x y j i) filler-3 : I → I → S¹ → S¹ → join S¹ S¹ filler-3 i j y x = hcomp (λ t → λ { (i = i0) → filler-1 t j (inv y * x) (glue (λ { (j = i0) → y ; (j = i1) → x }) (rotInv-2 x y j)) ; (i = i1) → push (rotInv-3 y x t) x j ; (j = i0) → inl (assocSquare-3 i t x y) ; (j = i1) → inr x }) (push ((rotInv-2 x y (i ∨ j)) * (inv (inv y * x))) (rotInv-2 x y (i ∨ j)) j) JoinS¹S¹→TotalHopf→JoinS¹S¹ : ∀ x → TotalHopf→JoinS¹S¹ (JoinS¹S¹→TotalHopf x) ≡ x JoinS¹S¹→TotalHopf→JoinS¹S¹ (inl x) i = inl x JoinS¹S¹→TotalHopf→JoinS¹S¹ (inr x) i = inr x JoinS¹S¹→TotalHopf→JoinS¹S¹ (push y x j) i = filler-3 i j y x -- Second homotopy -- This HIT is the total space of the Hopf fibration but the ends of SuspS¹ have not been -- glued together yet — which makes it into a cylinder. -- This allows to write compositions that do not properly match at the endpoints. However, -- I suspect it is unnecessary. TODO : do without PseudoHopf PseudoHopf : Type₀ PseudoHopf = (S¹ × Interval) × S¹ PseudoHopf-π1 : PseudoHopf → S¹ PseudoHopf-π1 ((y , _) , _) = y PseudoHopf-π2 : PseudoHopf → S¹ PseudoHopf-π2 (_ , x) = x assocFiller-4-aux : I → I → I → I → S¹ assocFiller-4-aux x y j i = hfill (λ t → λ { (i = i0) → ((inv (loop y * loop x * loop (~ y))) * (loop y * loop x)) * (rotInv-1 (loop x) (loop y) t) ; (i = i1) → (rotInv-4 (loop y) (loop y * loop x) (~ t)) * loop x ; (x = i0) (y = i0) → base ; (x = i0) (y = i1) → base ; (x = i1) (y = i0) → base ; (x = i1) (y = i1) → base }) (inS (rotInv-2 (loop y * loop x) (loop y * loop x * loop (~ y)) i)) j -- See assocFiller-3-endpoint -- TODO : use cubical extension types when available to remove assocFiller-4-endpoint assocFiller-4-endpoint : (x y : S¹) → basedΩS¹ (((inv (y * x * inv y)) * (y * x)) * x) assocFiller-4-endpoint base base i = base assocFiller-4-endpoint (loop x) base i = assocFiller-4-aux x i0 i1 i assocFiller-4-endpoint base (loop y) i = assocFiller-4-aux i0 y i1 i assocFiller-4-endpoint (loop x) (loop y) i = assocFiller-4-aux x y i1 i assocFiller-4 : (x y : S¹) → PathP (λ j → ((inv (y * x * inv y)) * (y * x)) * (rotInv-1 x y j) ≡ (rotInv-4 y (y * x) (~ j)) * x) (λ i → (rotInv-2 (y * x) (y * x * inv y) i)) (assocFiller-4-endpoint x y) assocFiller-4 base base j i = base assocFiller-4 (loop x) base j i = assocFiller-4-aux x i0 j i assocFiller-4 base (loop y) j i = assocFiller-4-aux i0 y j i assocFiller-4 (loop x) (loop y) j i = assocFiller-4-aux x y j i assoc-4 : (x y : S¹) → basedΩS¹ (((inv (y * x * inv y)) * (y * x)) * x) assoc-4 x y i = assocFiller-4 x y i1 i fibInt≡fibAssoc-4 : fibInt ≡ (λ x y → basedΩS¹ (((inv (y * x * inv y)) * (y * x)) * x)) fibInt≡fibAssoc-4 i = λ x y → basedΩS¹≡Int (((inv (y * x * inv y)) * (y * x)) * x) (~ i) discretefib-fibAssoc-4 : discretefib (λ x y → basedΩS¹ (((inv (y * x * inv y)) * (y * x)) * x)) discretefib-fibAssoc-4 = transp (λ i → discretefib (fibInt≡fibAssoc-4 i)) i0 discretefib-fibInt assocConst-4 : (x y : S¹) → assoc-4 x y ≡ refl assocConst-4 x y = discretefib-fibAssoc-4 assoc-4 (λ _ _ → refl) refl x y assocSquare-4 : I → I → S¹ → S¹ → S¹ assocSquare-4 i j x y = hcomp (λ t → λ { (i = i0) → assocFiller-4 x y j i0 ; (i = i1) → assocFiller-4 x y j i1 ; (j = i0) → assocFiller-4 x y i0 i ; (j = i1) → assocConst-4 x y t i }) (assocFiller-4 x y j i) filler-4-0 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf filler-4-0 i j y x = let x' = unglue (j ∨ ~ j) x in hfill (λ t → λ { (j = i0) → ((inv (y * x * inv y) * (y * x) , I0) , inv (y * x * inv y) * (y * x) * (rotInv-1 x y t)) ; (j = i1) → ((inv (x * inv y) * x , I1) , x) }) (inS ((inv (x' * inv y) * x' , seg j) , rotInv-2 x' (x' * inv y) j)) i filler-4-1 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf filler-4-1 i j y x = let x' = unglue (j ∨ ~ j) x in hfill (λ t → λ { (j = i0) → ((inv (y * x * inv y) * (y * x) , I0) , (rotInv-4 y (y * x) (~ t)) * x) ; (j = i1) → ((inv (x * inv y) * x , I1) , x) }) (inS ((inv (x' * inv y) * x' , seg j) , unglue (j ∨ ~ j) x)) i filler-4-2 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → TotalHopf filler-4-2 i j y x = let x' = unglue (j ∨ ~ j) x in hcomp (λ t → λ { (i = i0) → JoinS¹S¹→TotalHopf (filler-1 t j y x) ; (i = i1) → (merid (PseudoHopf-π1 (filler-4-0 t j y x)) j , glue (λ { (j = i0) → rotInv-1 x y t ; (j = i1) → x }) (PseudoHopf-π2 (filler-4-0 t j y x))) ; (j = i0) → (north , rotInv-1 x y t) ; (j = i1) → (south , x) }) (merid (inv (x' * inv y) * x') j , glue (λ { (j = i0) → y * x * inv y ; (j = i1) → x }) (rotInv-2 x' (x' * inv y) j)) filler-4-3 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf filler-4-3 i j y x = let x' = unglue (j ∨ ~ j) x in hcomp (λ t → λ { (i = i0) → filler-4-0 t j y x ; (i = i1) → filler-4-1 t j y x ; (j = i0) → ((inv (y * x * inv y) * (y * x) , I0) , assocSquare-4 i t x y) ; (j = i1) → ((inv (x * inv y) * x , I1) , x) }) ((inv (x' * inv y) * x' , seg j) , rotInv-2 x' (x' * inv y) (i ∨ j)) filler-4-4 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → PseudoHopf filler-4-4 i j y x = let x' = unglue (j ∨ ~ j) x in hcomp (λ t → λ { (i = i0) → filler-4-1 t j y x ; (i = i1) → ((y , seg j) , unglue (j ∨ ~ j) x) ; (j = i0) → ((rotInv-4 y (y * x) i , I0) , (rotInv-4 y (y * x) (i ∨ ~ t)) * x) ; (j = i1) → ((rotInv-4 y x i , I1) , x) }) ((rotInv-4 y x' i , seg j) , x') filler-4-5 : (_ j : I) → (y : S¹) → Glue S¹ (Border y j) → TotalHopf filler-4-5 i j y x = hcomp (λ t → λ { (i = i0) → filler-4-2 (~ t) j y x ; (i = i1) → (merid (PseudoHopf-π1 (filler-4-4 t j y x)) j , glue (λ { (j = i0) → x ; (j = i1) → x }) (PseudoHopf-π2 (filler-4-4 t j y x))) ; (j = i0) → (north , x) ; (j = i1) → (south , x) }) (merid (PseudoHopf-π1 (filler-4-3 i j y x)) j , glue (λ { (j = i0) → x ; (j = i1) → x }) (PseudoHopf-π2 (filler-4-3 i j y x))) TotalHopf→JoinS¹S¹→TotalHopf : ∀ x → JoinS¹S¹→TotalHopf (TotalHopf→JoinS¹S¹ x) ≡ x TotalHopf→JoinS¹S¹→TotalHopf (north , x) i = (north , x) TotalHopf→JoinS¹S¹→TotalHopf (south , x) i = (south , x) TotalHopf→JoinS¹S¹→TotalHopf (merid y j , x) i = filler-4-5 i j y x JoinS¹S¹≡TotalHopf : join S¹ S¹ ≡ TotalHopf JoinS¹S¹≡TotalHopf = isoToPath (iso JoinS¹S¹→TotalHopf TotalHopf→JoinS¹S¹ TotalHopf→JoinS¹S¹→TotalHopf JoinS¹S¹→TotalHopf→JoinS¹S¹) S³≡TotalHopf : S³ ≡ TotalHopf S³≡TotalHopf = S³≡joinS¹S¹ ∙ JoinS¹S¹≡TotalHopf
43.052632
115
0.523515
4ad8d6368987a67f703747de159893b8fe5a6556
442
agda
Agda
test/Fail/WithClausePatternMismatch.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/WithClausePatternMismatch.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/WithClausePatternMismatch.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-12-29 record ⊤ : Set where data P : ⊤ → Set where c : P record{} d : P record{} test : (x : ⊤) (p : P x) → Set test _ c with Set test _ d | z = ⊤ -- Expected error: with-clause pattern mismatch. -- The error should be printed nicely, like: -- -- With clause pattern d is not an instance of its parent pattern c -- when checking that the clause -- test _ c with Set -- test _ d | z = ⊤ -- has type (x : ⊤) → P x → Set
21.047619
67
0.61086
347e0675b1b10d28f874d0af7144637dd6e414e4
6,600
agda
Agda
Cubical/Foundations/Transport.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Foundations/Transport.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Foundations/Transport.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{- Basic theory about transport: - transport is invertible - transport is an equivalence ([transportEquiv]) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Transport where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Function using (_∘_) -- Direct definition of transport filler, note that we have to -- explicitly tell Agda that the type is constant (like in CHM) transpFill : ∀ {ℓ} {A : Type ℓ} (φ : I) (A : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ]) (u0 : outS (A i0)) → -------------------------------------- PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0) transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0 transport⁻ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → B → A transport⁻ p = transport (λ i → p (~ i)) subst⁻ : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} (B : A → Type ℓ') (p : x ≡ y) → B y → B x subst⁻ B p pa = transport⁻ (λ i → B (p i)) pa transport-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → A → p i) (λ x → x) (transport p) transport-fillerExt p i x = transport-filler p x i transport⁻-fillerExt : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → p i → A) (λ x → x) (transport⁻ p) transport⁻-fillerExt p i x = transp (λ j → p (i ∧ ~ j)) (~ i) x transport-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → p i → B) (transport p) (λ x → x) transport-fillerExt⁻ p = symP (transport⁻-fillerExt (sym p)) transport⁻-fillerExt⁻ : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → PathP (λ i → B → p i) (transport⁻ p) (λ x → x) transport⁻-fillerExt⁻ p = symP (transport-fillerExt (sym p)) transport⁻-filler : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) (x : B) → PathP (λ i → p (~ i)) x (transport⁻ p x) transport⁻-filler p x = transport-filler (λ i → p (~ i)) x transport⁻Transport : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (a : A) → transport⁻ p (transport p a) ≡ a transport⁻Transport p a j = transport⁻-fillerExt p (~ j) (transport-fillerExt p (~ j) a) transportTransport⁻ : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (b : B) → transport p (transport⁻ p b) ≡ b transportTransport⁻ p b j = transport-fillerExt⁻ p j (transport⁻-fillerExt⁻ p j b) -- Transport is an equivalence isEquivTransport : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → isEquiv (transport p) isEquivTransport {A = A} {B = B} p = transport (λ i → isEquiv (transport-fillerExt p i)) (idIsEquiv A) transportEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B transportEquiv p = (transport p , isEquivTransport p) substEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (p : A ≡ B) → P A ≃ P B substEquiv P p = (subst P p , isEquivTransport (λ i → P (p i))) liftEquiv : ∀ {ℓ ℓ'} {A B : Type ℓ} (P : Type ℓ → Type ℓ') (e : A ≃ B) → P A ≃ P B liftEquiv P e = substEquiv P (ua e) transpEquiv : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → ∀ i → p i ≃ B transpEquiv P i .fst = transp (λ j → P (i ∨ j)) i transpEquiv P i .snd = transp (λ k → isEquiv (transp (λ j → P (i ∨ (j ∧ k))) (i ∨ ~ k))) i (idIsEquiv (P i)) uaTransportη : ∀ {ℓ} {A B : Type ℓ} (P : A ≡ B) → ua (transportEquiv P) ≡ P uaTransportη P i j = Glue (P i1) λ where (j = i0) → P i0 , transportEquiv P (i = i1) → P j , transpEquiv P j (j = i1) → P i1 , idEquiv (P i1) pathToIso : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → Iso A B Iso.fun (pathToIso x) = transport x Iso.inv (pathToIso x) = transport⁻ x Iso.rightInv (pathToIso x) = transportTransport⁻ x Iso.leftInv (pathToIso x) = transport⁻Transport x isInjectiveTransport : ∀ {ℓ : Level} {A B : Type ℓ} {p q : A ≡ B} → transport p ≡ transport q → p ≡ q isInjectiveTransport {p = p} {q} α i = hcomp (λ j → λ { (i = i0) → secEq univalence p j ; (i = i1) → secEq univalence q j }) (invEq univalence ((λ a → α i a) , t i)) where t : PathP (λ i → isEquiv (λ a → α i a)) (pathToEquiv p .snd) (pathToEquiv q .snd) t = isProp→PathP (λ i → isPropIsEquiv (λ a → α i a)) _ _ transportUaInv : ∀ {ℓ} {A B : Type ℓ} (e : A ≃ B) → transport (ua (invEquiv e)) ≡ transport (sym (ua e)) transportUaInv e = cong transport (uaInvEquiv e) -- notice that transport (ua e) would reduce, thus an alternative definition using EquivJ can give -- refl for the case of idEquiv: -- transportUaInv e = EquivJ (λ _ e → transport (ua (invEquiv e)) ≡ transport (sym (ua e))) refl e isSet-subst : ∀ {ℓ ℓ′} {A : Type ℓ} {B : A → Type ℓ′} → (isSet-A : isSet A) → ∀ {a : A} → (p : a ≡ a) → (x : B a) → subst B p x ≡ x isSet-subst {B = B} isSet-A p x = subst (λ p′ → subst B p′ x ≡ x) (isSet-A _ _ refl p) (substRefl {B = B} x) -- substituting along a composite path is equivalent to substituting twice substComposite : ∀ {ℓ ℓ′} {A : Type ℓ} → (B : A → Type ℓ′) → {x y z : A} (p : x ≡ y) (q : y ≡ z) (u : B x) → subst B (p ∙ q) u ≡ subst B q (subst B p u) substComposite B p q Bx i = transport (cong B (compPath-filler' p q (~ i))) (transport-fillerExt (cong B p) i Bx) -- substitution commutes with morphisms in slices substCommSlice : ∀ {ℓ ℓ′} {A : Type ℓ} → (B C : A → Type ℓ′) → (F : ∀ i → B i → C i) → {x y : A} (p : x ≡ y) (u : B x) → subst C p (F x u) ≡ F y (subst B p u) substCommSlice B C F p Bx i = transport-fillerExt⁻ (cong C p) i (F _ (transport-fillerExt (cong B p) i Bx)) -- transporting over (λ i → B (p i) → C (p i)) divides the transport into -- transports over (λ i → C (p i)) and (λ i → B (p (~ i))) funTypeTransp : ∀ {ℓ ℓ'} {A : Type ℓ} (B C : A → Type ℓ') {x y : A} (p : x ≡ y) (f : B x → C x) → PathP (λ i → B (p i) → C (p i)) f (subst C p ∘ f ∘ subst B (sym p)) funTypeTransp B C {x = x} p f i b = transp (λ j → C (p (j ∧ i))) (~ i) (f (transp (λ j → B (p (i ∧ ~ j))) (~ i) b)) -- transports between loop spaces preserve path composition overPathFunct : ∀ {ℓ} {A : Type ℓ} {x y : A} (p q : x ≡ x) (P : x ≡ y) → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q overPathFunct p q = J (λ y P → transport (λ i → P i ≡ P i) (p ∙ q) ≡ transport (λ i → P i ≡ P i) p ∙ transport (λ i → P i ≡ P i) q) (transportRefl (p ∙ q) ∙ cong₂ _∙_ (sym (transportRefl p)) (sym (transportRefl q)))
44
113
0.539394
1e50dba5e509ca01d213aa27fc9724b63be8fbe5
181
agda
Agda
test/interaction/Issue3735.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3735.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3735.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Primitive variable a : Level postulate works : Set a → {a : Set} → a fails : Set a → {a : Set} → {!a!} module _ (A : Set a) (a : A) where x : A x = a
12.928571
35
0.535912
067c6c94975379ddebb37c740e31c212b3efddf9
887
agda
Agda
Constructive/Common.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Constructive/Common.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Constructive/Common.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe --exact-split #-} module Constructive.Common where open import Level open import Data.Product open import Data.Sum open import Function.Base open import Relation.Nullary infix 2 _<=>_ -- Logical equivalence _<=>_ : ∀ {a b} → Set a → Set b → Set (a ⊔ b) A <=> B = (A → B) × (B → A) module _ {a b} {A : Set a} {B : Set b} where mk<=> : (A → B) → (B → A) → A <=> B mk<=> = _,_ fwd : A <=> B → A → B fwd = proj₁ bwd : A <=> B → B → A bwd = proj₂ _∘<=>_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → B <=> C → A <=> B → A <=> C (f , g) ∘<=> (h , i) = f ∘ h , i ∘ g Stable : ∀ {a} → Set a → Set a Stable A = ¬ ¬ A → A Dec⊎ : ∀ {a} → Set a → Set a Dec⊎ A = A ⊎ ¬ A -- Unary decidable predicate DecU : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p) DecU P = ∀ x → P x ⊎ ¬ P x Inhabited : ∀ {a} → Set a → Set a Inhabited A = A
20.627907
56
0.487035
9a590a214ec53f91574dbe1b08b8f38570e65038
7,025
agda
Agda
Modules/PolynomialModule.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Modules/PolynomialModule.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Modules/PolynomialModule.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Sets.EquivalenceRelations open import LogicalFormulae open import Setoids.Setoids open import Rings.Definition open import Modules.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Lists.Lists open import Vectors open import Groups.Definition open import Orders.Total.Definition open import Groups.Homomorphisms.Definition open import Groups.Homomorphisms.Lemmas open import Rings.Homomorphisms.Definition module Modules.PolynomialModule {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where open Ring R open import Groups.Polynomials.Definition additiveGroup open import Groups.Polynomials.Group additiveGroup open import Rings.Polynomial.Multiplication R open import Rings.Polynomial.Evaluation R open import Rings.Polynomial.Ring R open import Rings.Lemmas polyRing polynomialRingModule : Module R abelianUnderlyingGroup (λ a b → _*P_ (polyInjection a) b) Module.dotWellDefined (polynomialRingModule) r=s t=u = Ring.*WellDefined polyRing (r=s ,, record {}) t=u Module.dotDistributesLeft (polynomialRingModule) {r} {s} {t} = Ring.*DistributesOver+ polyRing {polyInjection r} {s} {t} Module.dotDistributesRight (polynomialRingModule) {r} {s} {t} = Ring.*DistributesOver+' polyRing {polyInjection r} {polyInjection s} {t} Module.dotAssociative (polynomialRingModule) {r} {s} {t} = Equivalence.transitive (Setoid.eq naivePolySetoid) (Ring.*WellDefined polyRing m (Equivalence.reflexive (Setoid.eq naivePolySetoid) {t})) (Equivalence.symmetric (Setoid.eq naivePolySetoid) (Ring.*Associative polyRing {polyInjection r} {polyInjection s} {t})) where m : Setoid._∼_ naivePolySetoid ((r * s) :: []) ((r * s) :: (([] +P []) +P (0R :: []))) m = Equivalence.reflexive (Setoid.eq S) ,, (Equivalence.reflexive (Setoid.eq S) ,, record {}) Module.dotIdentity (polynomialRingModule) = Ring.identIsIdent polyRing open import Modules.Span polynomialRingModule polynomialBasis : ℕ → NaivePoly polynomialBasis zero = polyInjection 1R polynomialBasis (succ a) = 0R :: polynomialBasis a count : (n : ℕ) → Vec ℕ n count zero = [] count (succ n) = 0 ,- vecMap succ (count n) lemma : {d : _} {D : Set d} → (f : D → List A) → {n : ℕ} → (m : Vec D n) (r : Vec A n) → Setoid._∼_ naivePolySetoid (dot (vecMap (λ i → 0R :: f i) m) r) (0R :: dot (vecMap f m) r) lemma f [] [] = reflexive ,, record {} where open Setoid S open Equivalence eq lemma f (m ,- ms) (r ,- rs) rewrite refl {x = 0} = transitive (+WellDefined {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))} {_} {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))} (reflexive {(r * 0R) :: (((map (_*_ r) (f m)) +P []) +P (0R :: []))}) (lemma f ms rs)) (Equivalence.transitive (Setoid.eq S) (Group.identRight additiveGroup) (Ring.timesZero R) ,, +WellDefined {((map (_*_ r) (f m)) +P []) +P (0R :: [])} {dot (vecMap f ms) rs} {(r :: []) *P f m} {dot (vecMap f ms) rs} t (reflexive {dot (vecMap f ms) rs})) where open Setoid naivePolySetoid open Equivalence eq open Group polyGroup lemm : (v : List A) → polysEqual (map (_*_ r) v) ((r :: []) *P v) lemm [] = record {} lemm (x :: v) = Equivalence.reflexive (Setoid.eq S) ,, symmetric (transitive (+WellDefined {map (_*_ r) v +P []} {0R :: []} {_} {[]} reflexive (Equivalence.reflexive (Setoid.eq S) ,, record {})) (transitive (identRight {(map (_*_ r) v) +P []}) (identRight {map (_*_ r) v}))) t : ((map (_*_ r) (f m) +P []) +P (0R :: [])) ∼ ((r :: []) *P f m) t = transitive (+WellDefined {map (_*_ r) (f m) +P []} {0R :: []} {_} {[]} reflexive (Equivalence.reflexive (Setoid.eq S) ,, record {})) (transitive (identRight {map (_*_ r) (f m) +P []}) (transitive (identRight {map (_*_ r) (f m)}) (lemm (f m)))) identityMap : (v : List A) → Setoid._∼_ naivePolySetoid (dot (vecMap polynomialBasis (count (length v))) (listToVec v)) v identityMap [] = record {} identityMap (x :: v) rewrite vecMapCompose succ polynomialBasis (count (length v)) = transitive (+WellDefined {(x * 1R) :: Group.0G additiveGroup :: []} {dot (vecMap (λ i → Group.0G additiveGroup :: polynomialBasis i) (count (length v))) (listToVec v)} {(x * 1R) :: 0R :: []} {0R :: dot (vecMap polynomialBasis (count (length v))) (listToVec v)} (reflexive {(x * 1R) :: 0R :: []}) (lemma polynomialBasis (count (length v)) (listToVec v))) (Equivalence.transitive (Setoid.eq S) (Group.identRight additiveGroup) (Equivalence.transitive (Setoid.eq S) *Commutative identIsIdent) ,, transitive (+WellDefined {0R :: []} {dot (vecMap polynomialBasis (count (length v))) (listToVec v)} {[]} (Equivalence.reflexive (Setoid.eq S) ,, record {}) reflexive) (transitive identLeft (identityMap v))) where open Group polyGroup open Setoid naivePolySetoid open Equivalence eq polynomialBasisSpans : Spans polynomialBasis polynomialBasisSpans m = length m , ((count (length m) ,, listToVec m) , identityMap m) {- private indepWithZero : {n : ℕ} (rs : Vec ℕ n) (indicesDistinct : {a b : ℕ} → (a<n : a <N succ n) (b<n : b <N succ n) → vecIndex (0 ,- rs) a a<n ≡ vecIndex (0 ,- rs) b b<n → a ≡ b) (b : A) (bs : Vec A n) (dotZero : Setoid._∼_ naivePolySetoid (((b * 1R) :: 0R :: []) +P (dot (vecMap polynomialBasis rs) bs)) []) → (nonzero : {a : ℕ} → (a<n : a <N n) → 0 <N vecIndex rs a a<n) → Setoid._∼_ S 0R b && _=V_ additiveGroup (vecPure 0R) bs indepWithZero rs indicesDistinct b bs dotZero indicesNonzero = symmetric b=0 ,, {!!} where open Setoid S open Equivalence eq open Group additiveGroup t : (inducedFunction (((b * 1R) :: 0R :: []) +P (dot (vecMap polynomialBasis rs) bs)) 0R) ∼ 0R t = inducedFunctionWellDefined dotZero 0R u : ((inducedFunction ((b * 1R) :: 0R :: []) 0R) + inducedFunction (dot (vecMap polynomialBasis rs) bs) 0R) ∼ 0R u = transitive (symmetric (GroupHom.groupHom (RingHom.groupHom (inducedFunctionIsHom 0R)) {((b * 1R) :: 0R :: [])} {dot (vecMap polynomialBasis rs) bs})) t b=0 : b ∼ 0R b=0 = transitive (symmetric (transitive (+WellDefined (transitive (transitive (transitive (+WellDefined reflexive (transitive *Commutative timesZero)) identRight) *Commutative) identIsIdent) {!imageOfIdentityIsIdentity (RingHom.groupHom (inducedFunctionIsHom 0R))!}) (identRight {b}))) u polynomialBasisIndependent : Independent polynomialBasis polynomialBasisIndependent [] indicesDistinct [] dotZero = record {} polynomialBasisIndependent {succ n} (zero ,- rs) indicesDistinct (b ,- bs) dotZero = indepWithZero rs indicesDistinct b bs dotZero t where t : {a : ℕ} (a<n : a <N n) → 0 <N vecIndex rs a a<n t {a} a<n with TotalOrder.totality ℕTotalOrder 0 (vecIndex rs a a<n) t {a} a<n | inl (inl x) = x t {a} a<n | inr x with indicesDistinct {succ a} {0} (succPreservesInequality a<n) (succIsPositive n) (equalityCommutative x) ... | () polynomialBasisIndependent (succ r ,- rs) indicesDistinct (b ,- bs) dotZero = {!!} where rearr : {!!} rearr = {!!} -}
66.904762
784
0.661779
0b29014f06d4c653c84758eb7bd93f58f45435b5
2,176
agda
Agda
archive/agda-2/Oscar/Data/Term/AlphaConversion/internal.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-2/Oscar/Data/Term/AlphaConversion/internal.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-2/Oscar/Data/Term/AlphaConversion/internal.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
module Oscar.Data.Term.AlphaConversion.internal {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Data.Term FunctionName open import Oscar.Data.Equality open import Oscar.Data.Fin open import Oscar.Data.Vec open import Oscar.Function open import Oscar.Relation infixr 19 _◂_ _◂s_ mutual _◂_ : ∀ {m n} → m ⟨ Fin ⟩→ n → m ⟨ Term ⟩→ n _◂_ f (i 𝑥) = i (f 𝑥) _◂_ f leaf = leaf _◂_ f (τ₁ fork τ₂) = (f ◂ τ₁) fork (f ◂ τ₂) _◂_ f (function 𝑓 τs) = function 𝑓 (f ◂s τs) _◂s_ : ∀ {m n} → m ⟨ Fin ⟩→ n → ∀ {N} → m ⟨ Terms N ⟩→ n _◂s_ f [] = [] _◂s_ f (τ ∷ τs) = f ◂ τ ∷ f ◂s τs mutual ◂-identity : ∀ {m} (τ : Term m) → id ◂ τ ≡ τ ◂-identity (i _) = refl ◂-identity leaf = refl ◂-identity (τ₁ fork τ₂) rewrite ◂-identity τ₁ | ◂-identity τ₂ = refl ◂-identity (function 𝑓 τs) rewrite ◂s-identity τs = refl ◂s-identity : ∀ {N m} (τs : Terms N m) → id ◂s τs ≡ τs ◂s-identity [] = refl ◂s-identity (τ ∷ τs) rewrite ◂-identity τ | ◂s-identity τs = refl mutual ◂-associativity : ∀ {l m n} (f : l ⟨ Fin ⟩→ m) (g : m ⟨ Fin ⟩→ n) → (τ : Term l) → (g ∘ f) ◂ τ ≡ g ◂ f ◂ τ ◂-associativity _ _ (i _) = refl ◂-associativity _ _ leaf = refl ◂-associativity f g (τ₁ fork τ₂) rewrite ◂-associativity f g τ₁ | ◂-associativity f g τ₂ = refl ◂-associativity f g (function 𝑓 τs) rewrite ◂s-associativity f g τs = refl ◂s-associativity : ∀ {l m n} (f : l ⟨ Fin ⟩→ m) (g : m ⟨ Fin ⟩→ n) → ∀ {N} (x : Terms N l) → (g ∘ f) ◂s x ≡ g ◂s f ◂s x ◂s-associativity _ _ [] = refl ◂s-associativity f g (τ ∷ τs) rewrite ◂-associativity f g τ | ◂s-associativity f g τs = refl mutual ◂-extensionality : ∀ {m n} {f g : m ⟨ Fin ⟩→ n} → f ≡̇ g → f ◂_ ≡̇ g ◂_ ◂-extensionality f≡̇g (i 𝑥) rewrite f≡̇g 𝑥 = refl ◂-extensionality f≡̇g leaf = refl ◂-extensionality f≡̇g (τ₁ fork τ₂) rewrite ◂-extensionality f≡̇g τ₁ | ◂-extensionality f≡̇g τ₂ = refl ◂-extensionality f≡̇g (function 𝑓 τs) rewrite ◂s-extensionality f≡̇g τs = refl ◂s-extensionality : ∀ {m n} {f g : m ⟨ Fin ⟩→ n} → f ≡̇ g → ∀ {N} → _◂s_ f {N} ≡̇ _◂s_ g {N} ◂s-extensionality _ [] = refl ◂s-extensionality f≡̇g (τ ∷ τs) rewrite ◂-extensionality f≡̇g τ | ◂s-extensionality f≡̇g τs = refl
35.672131
121
0.581801
43edde66b34467fc61856e6a7b1ef060e0b5bb79
622
agda
Agda
src/Prelude/Decidable.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/Prelude/Decidable.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/Prelude/Decidable.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
module Prelude.Decidable where open import Prelude.Empty data Dec {a} (P : Set a) : Set a where yes : P → Dec P no : ¬ P → Dec P infix 0 ifYes_then_else_ ifNo_then_else_ ifYes_then_else_ : ∀ {a b} {A : Set a} {B : Set b} → Dec A → B → B → B ifYes yes _ then x else _ = x ifYes no _ then _ else y = y ifNo_then_else_ : ∀ {a b} {A : Set a} {B : Set b} → Dec A → B → B → B ifNo d then x else y = ifYes d then y else x FromDec : ∀ {a} {P : Set a} → Dec P → Set a FromDec {P = P} (yes _) = P FromDec {P = P} (no _) = ¬ P fromDec : ∀ {a} {P : Set a} (d : Dec P) → FromDec d fromDec (yes x) = x fromDec (no x) = x
24.88
70
0.57717
52019141956082c2664f08de064819e4cd25e6de
1,325
agda
Agda
src/Util/Encode.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Util/Encode.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/Util/Encode.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Util.ByteString open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module Util.Encode where -- An encoder for values of type A is -- an injective mapping of 'A's into 'ByteString's record Encoder {a}(A : Set a) : Set a where constructor mkEncoder field encode : A → ByteString encode-inj : ∀{a₁ a₂} → encode a₁ ≡ encode a₂ → a₁ ≡ a₂ open Encoder {{...}} public ≡-Encoder : ∀ {a} {A : Set a} → Encoder A → DecidableEquality A ≡-Encoder (mkEncoder enc enc-inj) x y with enc x ≟ByteString enc y ...| yes enc≡ = yes (enc-inj enc≡) ...| no neq = no (⊥-elim ∘ neq ∘ cong enc) postulate -- valid assumption instance encℕ : Encoder ℕ encBS : Encoder ByteString instance encFin : {n : ℕ} → Encoder (Fin n) encFin {n} = record { encode = encode ⦃ encℕ ⦄ ∘ toℕ ; encode-inj = toℕ-injective ∘ encode-inj ⦃ encℕ ⦄ } postulate -- TODO-2 decoder decode : ∀ {A : Set} → ByteString → Either String A
32.317073
111
0.608302
cbc712a7c7ce1e5ec83acfad635d471b2f9f2070
23,110
agda
Agda
Cubical/Algebra/Group/EilenbergMacLane/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/Group/EilenbergMacLane/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/Group/EilenbergMacLane/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Group.EilenbergMacLane.Properties where open import Cubical.Algebra.Group.EilenbergMacLane.Base renaming (elim to EM-elim) open import Cubical.Algebra.Group.EilenbergMacLane.WedgeConnectivity open import Cubical.Algebra.Group.EilenbergMacLane.GroupStructure open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Properties open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.AbGroup.TensorProduct open import Cubical.Algebra.AbGroup.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws renaming (assoc to ∙assoc) open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Foundations.Pointed open import Cubical.Foundations.Transport open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Loopspace open import Cubical.Functions.Morphism open import Cubical.Data.Sigma open import Cubical.Data.Nat hiding (_·_) open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec; elim to trElim) open import Cubical.HITs.EilenbergMacLane1 renaming (rec to EMrec) open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; rec2 to trRec2) open import Cubical.HITs.Susp private variable ℓ ℓ' ℓ'' : Level isConnectedEM₁ : (G : Group ℓ) → isConnected 2 (EM₁ G) isConnectedEM₁ G = ∣ embase ∣ , h where h : (y : hLevelTrunc 2 (EM₁ G)) → ∣ embase ∣ ≡ y h = trElim (λ y → isOfHLevelSuc 1 (isOfHLevelTrunc 2 ∣ embase ∣ y)) (elimProp G (λ x → isOfHLevelTrunc 2 ∣ embase ∣ ∣ x ∣) refl) module _ {G' : AbGroup ℓ} where private G = fst G' open AbGroupStr (snd G') renaming (_+_ to _+G_) isConnectedEM : (n : ℕ) → isConnected (suc n) (EM G' n) fst (isConnectedEM zero) = ∣ 0g ∣ snd (isConnectedEM zero) y = isOfHLevelTrunc 1 _ _ isConnectedEM (suc zero) = isConnectedEM₁ (AbGroup→Group G') fst (isConnectedEM (suc (suc n))) = ∣ 0ₖ _ ∣ snd (isConnectedEM (suc (suc n))) = trElim (λ _ → isOfHLevelTruncPath) (trElim (λ _ → isOfHLevelSuc (3 + n) (isOfHLevelTruncPath {n = (3 + n)})) (raw-elim G' (suc n) (λ _ → isOfHLevelTrunc (3 + n) _ _) refl)) module _ (Ĝ : Group ℓ) where private G = fst Ĝ open GroupStr (snd Ĝ) emloop-id : emloop 1g ≡ refl emloop-id = emloop 1g ≡⟨ rUnit (emloop 1g) ⟩ emloop 1g ∙ refl ≡⟨ cong (emloop 1g ∙_) (rCancel (emloop 1g) ⁻¹) ⟩ emloop 1g ∙ (emloop 1g ∙ (emloop 1g) ⁻¹) ≡⟨ ∙assoc _ _ _ ⟩ (emloop 1g ∙ emloop 1g) ∙ (emloop 1g) ⁻¹ ≡⟨ cong (_∙ emloop 1g ⁻¹) ((emloop-comp Ĝ 1g 1g) ⁻¹) ⟩ emloop (1g · 1g) ∙ (emloop 1g) ⁻¹ ≡⟨ cong (λ g → emloop {Group = Ĝ} g ∙ (emloop 1g) ⁻¹) (rid 1g) ⟩ emloop 1g ∙ (emloop 1g) ⁻¹ ≡⟨ rCancel (emloop 1g) ⟩ refl ∎ emloop-inv : (g : G) → emloop (inv g) ≡ (emloop g) ⁻¹ emloop-inv g = emloop (inv g) ≡⟨ rUnit (emloop (inv g)) ⟩ emloop (inv g) ∙ refl ≡⟨ cong (emloop (inv g) ∙_) (rCancel (emloop g) ⁻¹) ⟩ emloop (inv g) ∙ (emloop g ∙ (emloop g) ⁻¹) ≡⟨ ∙assoc _ _ _ ⟩ (emloop (inv g) ∙ emloop g) ∙ (emloop g) ⁻¹ ≡⟨ cong (_∙ emloop g ⁻¹) ((emloop-comp Ĝ (inv g) g) ⁻¹) ⟩ emloop (inv g · g) ∙ (emloop g) ⁻¹ ≡⟨ cong (λ h → emloop {Group = Ĝ} h ∙ (emloop g) ⁻¹) (invl g) ⟩ emloop 1g ∙ (emloop g) ⁻¹ ≡⟨ cong (_∙ (emloop g) ⁻¹) emloop-id ⟩ refl ∙ (emloop g) ⁻¹ ≡⟨ (lUnit ((emloop g) ⁻¹)) ⁻¹ ⟩ (emloop g) ⁻¹ ∎ isGroupoidEM₁ : isGroupoid (EM₁ Ĝ) isGroupoidEM₁ = emsquash --------- Ω (EM₁ G) ≃ G --------- {- since we write composition in diagrammatic order, and function composition in the other order, we need right multiplication here -} rightEquiv : (g : G) → G ≃ G rightEquiv g = isoToEquiv isom where isom : Iso G G isom .Iso.fun = _· g isom .Iso.inv = _· inv g isom .Iso.rightInv h = (h · inv g) · g ≡⟨ (assoc h (inv g) g) ⁻¹ ⟩ h · inv g · g ≡⟨ cong (h ·_) (invl g) ⟩ h · 1g ≡⟨ rid h ⟩ h ∎ isom .Iso.leftInv h = (h · g) · inv g ≡⟨ (assoc h g (inv g)) ⁻¹ ⟩ h · g · inv g ≡⟨ cong (h ·_) (invr g) ⟩ h · 1g ≡⟨ rid h ⟩ h ∎ compRightEquiv : (g h : G) → compEquiv (rightEquiv g) (rightEquiv h) ≡ rightEquiv (g · h) compRightEquiv g h = equivEq (funExt (λ x → (assoc x g h) ⁻¹)) CodesSet : EM₁ Ĝ → hSet ℓ CodesSet = EMrec Ĝ (isOfHLevelTypeOfHLevel 2) (G , is-set) RE REComp where RE : (g : G) → Path (hSet ℓ) (G , is-set) (G , is-set) RE g = Σ≡Prop (λ X → isPropIsOfHLevel {A = X} 2) (ua (rightEquiv g)) lemma₁ : (g h : G) → Square (ua (rightEquiv g)) (ua (rightEquiv (g · h))) refl (ua (rightEquiv h)) lemma₁ g h = invEq (Square≃doubleComp (ua (rightEquiv g)) (ua (rightEquiv (g · h))) refl (ua (rightEquiv h))) (ua (rightEquiv g) ∙ ua (rightEquiv h) ≡⟨ (uaCompEquiv (rightEquiv g) (rightEquiv h)) ⁻¹ ⟩ ua (compEquiv (rightEquiv g) (rightEquiv h)) ≡⟨ cong ua (compRightEquiv g h) ⟩ ua (rightEquiv (g · h)) ∎) REComp : (g h : G) → Square (RE g) (RE (g · h)) refl (RE h) REComp g h = ΣSquareSet (λ _ → isProp→isSet isPropIsSet) (lemma₁ g h) Codes : EM₁ Ĝ → Type ℓ Codes x = CodesSet x .fst encode : (x : EM₁ Ĝ) → embase ≡ x → Codes x encode x p = subst Codes p 1g decode : (x : EM₁ Ĝ) → Codes x → embase ≡ x decode = elimSet Ĝ (λ x → isOfHLevelΠ 2 (λ c → isGroupoidEM₁ (embase) x)) emloop λ g → ua→ λ h → emcomp h g decode-encode : (x : EM₁ Ĝ) (p : embase ≡ x) → decode x (encode x p) ≡ p decode-encode x p = J (λ y q → decode y (encode y q) ≡ q) (emloop (transport refl 1g) ≡⟨ cong emloop (transportRefl 1g) ⟩ emloop 1g ≡⟨ emloop-id ⟩ refl ∎) p encode-decode : (x : EM₁ Ĝ) (c : Codes x) → encode x (decode x c) ≡ c encode-decode = elimProp Ĝ (λ x → isOfHLevelΠ 1 (λ c → CodesSet x .snd _ _)) λ g → encode embase (decode embase g) ≡⟨ refl ⟩ encode embase (emloop g) ≡⟨ refl ⟩ transport (ua (rightEquiv g)) 1g ≡⟨ uaβ (rightEquiv g) 1g ⟩ 1g · g ≡⟨ lid g ⟩ g ∎ ΩEM₁Iso : Iso (Path (EM₁ Ĝ) embase embase) G Iso.fun ΩEM₁Iso = encode embase Iso.inv ΩEM₁Iso = emloop Iso.rightInv ΩEM₁Iso = encode-decode embase Iso.leftInv ΩEM₁Iso = decode-encode embase ΩEM₁≡ : (Path (EM₁ Ĝ) embase embase) ≡ G ΩEM₁≡ = isoToPath ΩEM₁Iso --------- Ω (EMₙ₊₁ G) ≃ EMₙ G --------- module _ {G : AbGroup ℓ} where open AbGroupStr (snd G) renaming (_+_ to _+G_ ; -_ to -G_ ; assoc to assocG) CODE : (n : ℕ) → EM G (suc (suc n)) → TypeOfHLevel ℓ (3 + n) CODE n = trElim (λ _ → isOfHLevelTypeOfHLevel (3 + n)) λ { north → EM G (suc n) , hLevelEM G (suc n) ; south → EM G (suc n) , hLevelEM G (suc n) ; (merid a i) → fib n a i} where fib : (n : ℕ) → (a : EM-raw G (suc n)) → Path (TypeOfHLevel _ (3 + n)) (EM G (suc n) , hLevelEM G (suc n)) (EM G (suc n) , hLevelEM G (suc n)) fib zero a = Σ≡Prop (λ _ → isPropIsOfHLevel 3) (isoToPath (addIso 1 a)) fib (suc n) a = Σ≡Prop (λ _ → isPropIsOfHLevel (4 + n)) (isoToPath (addIso (suc (suc n)) ∣ a ∣)) decode' : (n : ℕ) (x : EM G (suc (suc n))) → CODE n x .fst → 0ₖ (suc (suc n)) ≡ x decode' n = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ { north → f n ; south → g n ; (merid a i) → main a i} where f : (n : ℕ) → _ f n = σ-EM' n g : (n : ℕ) → EM G (suc n) → ∣ ptEM-raw ∣ ≡ ∣ south ∣ g n x = σ-EM' n x ∙ cong ∣_∣ₕ (merid ptEM-raw) lem₂ : (n : ℕ) (a x : _) → Path (Path (EM G (suc (suc n))) _ _) ((λ i → cong ∣_∣ₕ (σ-EM n x) i) ∙ sym (cong ∣_∣ₕ (σ-EM n a)) ∙ (λ i → ∣ merid a i ∣ₕ)) (g n (EM-raw→EM G (suc n) x)) lem₂ zero a x = cong (f zero x ∙_) (cong (_∙ cong ∣_∣ₕ (merid a)) (cong (cong ∣_∣ₕ) (symDistr (merid a) (sym (merid embase))) ∙ cong-∙ ∣_∣ₕ (merid embase) (sym (merid a))) ∙∙ sym (∙assoc _ _ _) ∙∙ cong (cong ∣_∣ₕ (merid embase) ∙_) (lCancel (cong ∣_∣ₕ (merid a))) ∙ sym (rUnit _)) lem₂ (suc n) a x = cong (f (suc n) ∣ x ∣ ∙_) ((cong (_∙ cong ∣_∣ₕ (merid a)) (cong (cong ∣_∣ₕ) (symDistr (merid a) (sym (merid north))) ∙ cong-∙ ∣_∣ₕ (merid north) (sym (merid a))) ∙∙ sym (∙assoc _ _ _) ∙∙ cong (cong ∣_∣ₕ (merid north) ∙_) (lCancel (cong ∣_∣ₕ (merid a))) ∙ sym (rUnit _))) lem : (n : ℕ) (x a : EM-raw G (suc n)) → f n (transport (sym (cong (λ x → CODE n x .fst) (cong ∣_∣ₕ (merid a)))) (EM-raw→EM G (suc n) x)) ≡ cong ∣_∣ₕ (σ-EM n x) ∙ sym (cong ∣_∣ₕ (σ-EM n a)) lem zero x a = (λ i → cong ∣_∣ₕ (merid (transportRefl x i -[ 1 ]ₖ a) ∙ sym (merid embase))) ∙∙ σ-EM'-hom zero x (-ₖ a) ∙∙ cong (f zero x ∙_) (σ-EM'-ₖ zero a) lem (suc n) x a = cong (f (suc n)) (λ i → transportRefl ∣ x ∣ i -[ 2 + n ]ₖ ∣ a ∣) ∙∙ σ-EM'-hom (suc n) ∣ x ∣ (-ₖ ∣ a ∣) ∙∙ cong (f (suc n) ∣ x ∣ ∙_) (σ-EM'-ₖ (suc n) ∣ a ∣) main : (a : _) → PathP (λ i → CODE n ∣ merid a i ∣ₕ .fst → 0ₖ (suc (suc n)) ≡ ∣ merid a i ∣ₕ) (f n) (g n) main a = toPathP (funExt (EM-elim _ (λ _ → isOfHLevelPathP (2 + (suc n)) (isOfHLevelTrunc (4 + n) _ _) _ _) λ x → ((λ i → transp (λ j → Path (EM G (2 + n)) ∣ ptEM-raw ∣ ∣ merid a (i ∨ j) ∣) i (compPath-filler (lem n x a i) (cong ∣_∣ₕ (merid a)) i) )) ∙∙ sym (∙assoc _ _ _) ∙∙ lem₂ n a x)) encode' : (n : ℕ) (x : EM G (suc (suc n))) → 0ₖ (suc (suc n)) ≡ x → CODE n x .fst encode' n x p = subst (λ x → CODE n x .fst) p (0ₖ (suc n)) decode'-encode' : (n : ℕ) (x : EM G (2 + n)) (p : 0ₖ (2 + n) ≡ x) → decode' n x (encode' n x p) ≡ p decode'-encode' zero x = J (λ x p → decode' 0 x (encode' 0 x p) ≡ p) (σ-EM'-0ₖ 0) decode'-encode' (suc n) x = J (λ x p → decode' (suc n) x (encode' (suc n) x p) ≡ p) (σ-EM'-0ₖ (suc n)) encode'-decode' : (n : ℕ) (x : _) → encode' n (0ₖ (suc (suc n))) (decode' n (0ₖ (suc (suc n))) x) ≡ x encode'-decode' zero x = cong (encode' zero (0ₖ 2)) (cong-∙ ∣_∣ₕ (merid x) (sym (merid embase))) ∙∙ substComposite (λ x → CODE zero x .fst) (cong ∣_∣ₕ (merid x)) (sym (cong ∣_∣ₕ (merid ptEM-raw))) embase ∙∙ (cong (subst (λ x₁ → CODE zero x₁ .fst) (λ i → ∣ merid embase (~ i) ∣ₕ)) (λ i → lUnitₖ 1 (transportRefl x i) i) ∙ (λ i → rUnitₖ 1 (transportRefl x i) i)) encode'-decode' (suc n) = trElim (λ _ → isOfHLevelTruncPath {n = 4 + n}) λ x → cong (encode' (suc n) (0ₖ (3 + n))) (cong-∙ ∣_∣ₕ (merid x) (sym (merid north))) ∙∙ substComposite (λ x → CODE (suc n) x .fst) (cong ∣_∣ₕ (merid x)) (sym (cong ∣_∣ₕ (merid ptEM-raw))) (0ₖ (2 + n)) ∙∙ cong (subst (λ x₁ → CODE (suc n) x₁ .fst) (λ i → ∣ merid ptEM-raw (~ i) ∣ₕ)) (λ i → lUnitₖ (2 + n) (transportRefl ∣ x ∣ₕ i) i) ∙ (λ i → rUnitₖ (2 + n) (transportRefl ∣ x ∣ₕ i) i) Iso-EM-ΩEM+1 : (n : ℕ) → Iso (EM G n) (typ (Ω (EM∙ G (suc n)))) Iso-EM-ΩEM+1 zero = invIso (ΩEM₁Iso (AbGroup→Group G)) Iso.fun (Iso-EM-ΩEM+1 (suc zero)) = decode' 0 (0ₖ 2) Iso.inv (Iso-EM-ΩEM+1 (suc zero)) = encode' 0 (0ₖ 2) Iso.rightInv (Iso-EM-ΩEM+1 (suc zero)) = decode'-encode' 0 (0ₖ 2) Iso.leftInv (Iso-EM-ΩEM+1 (suc zero)) = encode'-decode' 0 Iso.fun (Iso-EM-ΩEM+1 (suc (suc n))) = decode' (suc n) (0ₖ (3 + n)) Iso.inv (Iso-EM-ΩEM+1 (suc (suc n))) = encode' (suc n) (0ₖ (3 + n)) Iso.rightInv (Iso-EM-ΩEM+1 (suc (suc n))) = decode'-encode' (suc n) (0ₖ (3 + n)) Iso.leftInv (Iso-EM-ΩEM+1 (suc (suc n))) = encode'-decode' (suc n) EM≃ΩEM+1 : (n : ℕ) → EM G n ≃ typ (Ω (EM∙ G (suc n))) EM≃ΩEM+1 n = isoToEquiv (Iso-EM-ΩEM+1 n) -- Some properties of the isomorphism EM→ΩEM+1 : (n : ℕ) → EM G n → typ (Ω (EM∙ G (suc n))) EM→ΩEM+1 n = Iso.fun (Iso-EM-ΩEM+1 n) ΩEM+1→EM : (n : ℕ) → typ (Ω (EM∙ G (suc n))) → EM G n ΩEM+1→EM n = Iso.inv (Iso-EM-ΩEM+1 n) EM→ΩEM+1-0ₖ : (n : ℕ) → EM→ΩEM+1 n (0ₖ n) ≡ refl EM→ΩEM+1-0ₖ zero = emloop-1g _ EM→ΩEM+1-0ₖ (suc zero) = cong (cong ∣_∣ₕ) (rCancel (merid ptEM-raw)) EM→ΩEM+1-0ₖ (suc (suc n)) = cong (cong ∣_∣ₕ) (rCancel (merid ptEM-raw)) EM→ΩEM+1-hom : (n : ℕ) (x y : EM G n) → EM→ΩEM+1 n (x +[ n ]ₖ y) ≡ EM→ΩEM+1 n x ∙ EM→ΩEM+1 n y EM→ΩEM+1-hom zero x y = emloop-comp _ x y EM→ΩEM+1-hom (suc zero) x y = σ-EM'-hom zero x y EM→ΩEM+1-hom (suc (suc n)) x y = σ-EM'-hom (suc n) x y ΩEM+1→EM-hom : (n : ℕ) → (p q : typ (Ω (EM∙ G (suc n)))) → ΩEM+1→EM n (p ∙ q) ≡ (ΩEM+1→EM n p) +[ n ]ₖ (ΩEM+1→EM n q) ΩEM+1→EM-hom n = morphLemmas.isMorphInv (λ x y → x +[ n ]ₖ y) (_∙_) (EM→ΩEM+1 n) (EM→ΩEM+1-hom n) (ΩEM+1→EM n) (Iso.rightInv (Iso-EM-ΩEM+1 n)) (Iso.leftInv (Iso-EM-ΩEM+1 n)) ΩEM+1→EM-refl : (n : ℕ) → ΩEM+1→EM n refl ≡ 0ₖ n ΩEM+1→EM-refl zero = transportRefl 0g ΩEM+1→EM-refl (suc zero) = refl ΩEM+1→EM-refl (suc (suc n)) = refl EM→ΩEM+1∙ : (n : ℕ) → EM∙ G n →∙ Ω (EM∙ G (suc n)) EM→ΩEM+1∙ n .fst = EM→ΩEM+1 n EM→ΩEM+1∙ zero .snd = emloop-1g (AbGroup→Group G) EM→ΩEM+1∙ (suc zero) .snd = cong (cong ∣_∣ₕ) (rCancel (merid embase)) EM→ΩEM+1∙ (suc (suc n)) .snd = cong (cong ∣_∣ₕ) (rCancel (merid north)) EM≃ΩEM+1∙ : (n : ℕ) → EM∙ G n ≡ Ω (EM∙ G (suc n)) EM≃ΩEM+1∙ n = ua∙ (EM≃ΩEM+1 n) (EM→ΩEM+1-0ₖ n) isHomogeneousEM : (n : ℕ) → isHomogeneous (EM∙ G n) isHomogeneousEM n x = ua∙ (isoToEquiv (addIso n x)) (lUnitₖ n x) -- Some HLevel lemmas about function spaces (EM∙ G n →∙ EM∙ H m), mainly used for -- the cup product module _ where open AbGroupStr renaming (_+_ to comp) isContr-↓∙ : {G : AbGroup ℓ} {H : AbGroup ℓ'} (n : ℕ) → isContr (EM∙ G (suc n) →∙ EM∙ H n) fst (isContr-↓∙ {G = G} {H = H} zero) = (λ _ → 0g (snd H)) , refl snd (isContr-↓∙{G = G} {H = H} zero) (f , p) = Σ≡Prop (λ x → is-set (snd H) _ _) (funExt (raw-elim G 0 (λ _ → is-set (snd H) _ _) (sym p))) fst (isContr-↓∙ {G = G} {H = H} (suc n)) = (λ _ → 0ₖ (suc n)) , refl fst (snd (isContr-↓∙ {G = G} {H = H} (suc n)) f i) x = trElim {B = λ x → 0ₖ (suc n) ≡ fst f x} (λ _ → isOfHLevelPath (4 + n) (isOfHLevelSuc (3 + n) (hLevelEM H (suc n))) _ _) (raw-elim _ _ (λ _ → hLevelEM H (suc n) _ _) (sym (snd f))) x i snd (snd (isContr-↓∙ (suc n)) f i) j = snd f (~ i ∨ j) isContr-↓∙' : {G : AbGroup ℓ} {H : AbGroup ℓ'} (n : ℕ) → isContr ((EM-raw G (suc n) , ptEM-raw) →∙ EM∙ H n) isContr-↓∙' zero = isContr-↓∙ zero fst (isContr-↓∙' (suc n)) = (λ _ → 0ₖ (suc n)) , refl fst (snd (isContr-↓∙' {H = H} (suc n)) f i) x = raw-elim _ _ {A = λ x → 0ₖ (suc n) ≡ fst f x} (λ _ → hLevelEM H (suc n) _ _) (sym (snd f)) x i snd (snd (isContr-↓∙' (suc n)) f i) j = snd f (~ i ∨ j) isOfHLevel→∙EM : ∀ {ℓ} {A : Pointed ℓ} {G : AbGroup ℓ'} (n m : ℕ) → isOfHLevel (suc m) (A →∙ EM∙ G n) → isOfHLevel (suc (suc m)) (A →∙ EM∙ G (suc n)) isOfHLevel→∙EM {A = A} {G = G} n m hlev = step₃ where step₁ : isOfHLevel (suc m) (A →∙ Ω (EM∙ G (suc n))) step₁ = subst (isOfHLevel (suc m)) (λ i → A →∙ ua∙ {A = Ω (EM∙ G (suc n))} {B = EM∙ G n} (invEquiv (EM≃ΩEM+1 n)) (ΩEM+1→EM-refl n) (~ i)) hlev step₂ : isOfHLevel (suc m) (typ (Ω (A →∙ EM∙ G (suc n) ∙))) step₂ = isOfHLevelRetractFromIso (suc m) (invIso (invIso (ΩfunExtIso _ _))) step₁ step₃ : isOfHLevel (suc (suc m)) (A →∙ EM∙ G (suc n)) step₃ = isOfHLevelΩ→isOfHLevel m λ f → subst (λ x → isOfHLevel (suc m) (typ (Ω x))) (isHomogeneous→∙ (isHomogeneousEM (suc n)) f) step₂ isOfHLevel↑∙ : {G : AbGroup ℓ} {H : AbGroup ℓ'} → ∀ n m → isOfHLevel (2 + n) (EM∙ G (suc m) →∙ EM∙ H (suc (n + m))) isOfHLevel↑∙ zero m = isOfHLevel→∙EM m 0 (isContr→isProp (isContr-↓∙ m)) isOfHLevel↑∙ (suc n) m = isOfHLevel→∙EM (suc (n + m)) (suc n) (isOfHLevel↑∙ n m) isOfHLevel↑∙' : {G : AbGroup ℓ} {H : AbGroup ℓ'} → ∀ n m → isOfHLevel (2 + n) (EM-raw∙ G (suc m) →∙ EM∙ H (suc (n + m))) isOfHLevel↑∙' zero m = isOfHLevel→∙EM m 0 (isContr→isProp (isContr-↓∙' m)) isOfHLevel↑∙' (suc n) m = isOfHLevel→∙EM (suc (n + m)) (suc n) (isOfHLevel↑∙' n m) →∙EMPath : ∀ {ℓ} {G : AbGroup ℓ} (A : Pointed ℓ') (n : ℕ) → Ω (A →∙ EM∙ G (suc n) ∙) ≡ (A →∙ EM∙ G n ∙) →∙EMPath {G = G} A n = ua∙ (isoToEquiv (ΩfunExtIso A (EM∙ G (suc n)))) refl ∙ (λ i → (A →∙ EM≃ΩEM+1∙ {G = G} n (~ i) ∙)) private contr∙-lem : {G : AbGroup ℓ} {H : AbGroup ℓ'} {L : AbGroup ℓ''} (n m : ℕ) → isContr (EM∙ G (suc n) →∙ (EM∙ H (suc m) →∙ EM∙ L (suc (n + m)) ∙)) fst (contr∙-lem n m) = (λ _ → (λ _ → 0ₖ _) , refl), refl snd (contr∙-lem {G = G} {H = H} {L = L} n m) (f , p) = →∙Homogeneous≡ (isHomogeneous→∙ (isHomogeneousEM _)) (sym (funExt (help n f p))) where help : (n : ℕ) → (f : EM G (suc n) → EM∙ H (suc m) →∙ EM∙ L (suc (n + m))) → f (snd (EM∙ G (suc n))) ≡ snd (EM∙ H (suc m) →∙ EM∙ L (suc (n + m)) ∙) → (x : _) → (f x) ≡ ((λ _ → 0ₖ _) , refl) help zero f p = raw-elim G zero (λ _ → isOfHLevel↑∙ zero m _ _) p help (suc n) f p = trElim (λ _ → isOfHLevelPath (4 + n) (subst (λ x → isOfHLevel x (EM∙ H (suc m) →∙ EM∙ L (suc ((suc n) + m)))) (λ i → suc (suc (+-comm (suc n) 1 i))) (isOfHLevelPlus' {n = 1} (3 + n) (isOfHLevel↑∙ (suc n) m))) _ _) (raw-elim G (suc n) (λ _ → isOfHLevel↑∙ (suc n) m _ _) p) isOfHLevel↑∙∙ : {G : AbGroup ℓ} {H : AbGroup ℓ'} {L : AbGroup ℓ''} → ∀ n m l → isOfHLevel (2 + l) (EM∙ G (suc n) →∙ (EM∙ H (suc m) →∙ EM∙ L (suc (suc (l + n + m))) ∙)) isOfHLevel↑∙∙ {G = G} {H = H} {L = L} n m zero = isOfHLevelΩ→isOfHLevel 0 λ f → subst isProp (cong (λ x → typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso 1 (ΩfunExtIso _ _) h) where h : isProp (EM∙ G (suc n) →∙ (Ω (EM∙ H (suc m) →∙ EM∙ L (suc (suc (n + m))) ∙))) h = subst isProp (λ i → EM∙ G (suc n) →∙ (→∙EMPath {G = L} (EM∙ H (suc m)) (suc (n + m)) (~ i))) (isContr→isProp (contr∙-lem n m)) isOfHLevel↑∙∙ {G = G} {H = H} {L = L} n m (suc l) = isOfHLevelΩ→isOfHLevel (suc l) λ f → subst (isOfHLevel (2 + l)) (cong (λ x → typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso (2 + l) (ΩfunExtIso _ _) h) where h : isOfHLevel (2 + l) (EM∙ G (suc n) →∙ (Ω (EM∙ H (suc m) →∙ EM∙ L (suc (suc (suc (l + n + m)))) ∙))) h = subst (isOfHLevel (2 + l)) (λ i → EM∙ G (suc n) →∙ →∙EMPath {G = L} (EM∙ H (suc m)) (suc (suc (l + n + m))) (~ i)) (isOfHLevel↑∙∙ n m l) -- A homomorphism φ : G → H of AbGroups induces a homomorphism -- φ' : K(G,n) → K(H,n) inducedFun-EM-raw : {G' : AbGroup ℓ} {H' : AbGroup ℓ'} → AbGroupHom G' H' → ∀ n → EM-raw G' n → EM-raw H' n inducedFun-EM-raw f = elim+2 (fst f) (EMrec _ emsquash embase (λ g → emloop (fst f g)) λ g h → compPathR→PathP (sym (sym (lUnit _) ∙∙ cong (_∙ (sym (emloop (fst f h)))) (cong emloop (IsGroupHom.pres· (snd f) g h) ∙ emloop-comp _ (fst f g) (fst f h)) ∙∙ sym (∙assoc _ _ _) ∙∙ cong (emloop (fst f g) ∙_) (rCancel _) ∙∙ sym (rUnit _)))) (λ n ind → λ { north → north ; south → south ; (merid a i) → merid (ind a) i} ) inducedFun-EM-rawIso : {G' : AbGroup ℓ} {H' : AbGroup ℓ'} → AbGroupEquiv G' H' → ∀ n → Iso (EM-raw G' n) (EM-raw H' n) Iso.fun (inducedFun-EM-rawIso e n) = inducedFun-EM-raw (_ , (snd e)) n Iso.inv (inducedFun-EM-rawIso e n) = inducedFun-EM-raw (_ , isGroupHomInv e) n Iso.rightInv (inducedFun-EM-rawIso e n) = h n where h : (n : ℕ) → section (inducedFun-EM-raw (fst e .fst , snd e) n) (inducedFun-EM-raw (invEq (fst e) , isGroupHomInv e) n) h = elim+2 (secEq (fst e)) (elimSet _ (λ _ → emsquash _ _) refl (λ g → compPathR→PathP ((sym (cong₂ _∙_ (cong emloop (secEq (fst e) g)) (sym (lUnit _)) ∙ rCancel _))))) λ n p → λ { north → refl ; south → refl ; (merid a i) k → merid (p a k) i} Iso.leftInv (inducedFun-EM-rawIso e n) = h n where h : (n : ℕ) → retract (Iso.fun (inducedFun-EM-rawIso e n)) (Iso.inv (inducedFun-EM-rawIso e n)) h = elim+2 (retEq (fst e)) (elimSet _ (λ _ → emsquash _ _) refl (λ g → compPathR→PathP ((sym (cong₂ _∙_ (cong emloop (retEq (fst e) g)) (sym (lUnit _)) ∙ rCancel _))))) λ n p → λ { north → refl ; south → refl ; (merid a i) k → merid (p a k) i} Iso→EMIso : {G : AbGroup ℓ} {H : AbGroup ℓ'} → AbGroupEquiv G H → ∀ n → Iso (EM G n) (EM H n) Iso→EMIso is zero = inducedFun-EM-rawIso is zero Iso→EMIso is (suc zero) = inducedFun-EM-rawIso is 1 Iso→EMIso is (suc (suc n)) = mapCompIso (inducedFun-EM-rawIso is (suc (suc n))) EM⊗-commIso : {G : AbGroup ℓ} {H : AbGroup ℓ'} → ∀ n → Iso (EM (G ⨂ H) n) (EM (H ⨂ G) n) EM⊗-commIso {G = G} {H = H} = Iso→EMIso (GroupIso→GroupEquiv ⨂-commIso) EM⊗-assocIso : {G : AbGroup ℓ} {H : AbGroup ℓ'} {L : AbGroup ℓ''} → ∀ n → Iso (EM (G ⨂ (H ⨂ L)) n) (EM ((G ⨂ H) ⨂ L) n) EM⊗-assocIso = Iso→EMIso (GroupIso→GroupEquiv (GroupEquiv→GroupIso ⨂assoc))
42.796296
101
0.501817
341fe40b673875166055ca293c18f814759f5b99
1,000
agda
Agda
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/NativeIOSafe.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/NativeIOSafe.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/NativeIOSafe.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module NativeIOSafe where open import Data.Maybe.Base using (Maybe; nothing; just) public open import Data.String.Base using (String) public record Unit : Set where constructor unit {-# COMPILED_DATA Unit () () #-} postulate NativeIO : Set → Set nativeReturn : {A : Set} → A → NativeIO A _native>>=_ : {A B : Set} → NativeIO A → (A → NativeIO B) → NativeIO B {-# BUILTIN IO NativeIO #-} {-# COMPILED_TYPE NativeIO IO #-} -- IO.FFI.AgdaIO {-# COMPILED _native>>=_ (\_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b) #-} {-# COMPILED nativeReturn (\_ -> return :: a -> IO a) #-} postulate nativeGetLine : NativeIO (Maybe String) nativePutStrLn : String → NativeIO Unit {-# IMPORT Data.Text #-} {-# IMPORT System.IO.Error #-} {-# COMPILED nativePutStrLn (\ s -> putStrLn (Data.Text.unpack s)) #-} {-# COMPILED nativeGetLine (fmap (Just . Data.Text.pack) getLine `System.IO.Error.catchIOError` \ err -> if System.IO.Error.isEOFError err then return Nothing else ioError err) #-}
33.333333
180
0.651
43edc4ab94e45358cb68f1f0e07c898ec0d67cbf
43,113
agda
Agda
src/Quotient.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Quotient.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Quotient.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Quotients (set-quotients), defined using a higher inductive type ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- Partly following the HoTT book. -- -- Unlike the HoTT book, but following the cubical library (in which -- set quotients were implemented by Zesen Qian and Anders Mörtberg), -- the quotienting relations are not (always) required to be -- propositional. -- The module is parametrised by a notion of equality. The higher -- constructors of the HIT defining quotients use path equality, but -- the supplied notion of equality is used for many other things. import Equality.Path as P module Quotient {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where private open module D = P.Derived-definitions-and-properties eq hiding (elim) import H-level open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J using (_↔_) open import Equality.Decidable-UIP equality-with-J open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_) open import Equivalence-relation equality-with-J open import Erased.Cubical eq as E using (Erased; Erasedᴾ; Stable; Very-stable; Very-stable-≡) open import Function-universe equality-with-J as F hiding (_∘_; id) open import H-level.Closure equality-with-J import H-level.Truncation.Church equality-with-J as Trunc open import H-level.Truncation.Propositional eq as TruncP using (∥_∥; ∣_∣; Surjective; Axiom-of-countable-choice) open import Monad equality-with-J open import Preimage equality-with-J using (_⁻¹_) open import Quotient.Erased.Basics eq as QE using (_/ᴱ_) import Quotient.Families-of-equivalence-classes equality-with-J as Quotient open import Surjection equality-with-J using (_↠_) open import Univalence-axiom equality-with-J private module PH = H-level P.equality-with-J open module H = H-level equality-with-J private variable a a₁ a₂ b p r r₁ r₂ : Level k : Isomorphism-kind A A₁ A₂ B : Type a P : A → Type p R R₁ R₂ : A → A → Type r f x y : A ------------------------------------------------------------------------ -- Quotients -- The quotient type constructor. infix 5 _/_ data _/_ (A : Type a) (R : A → A → Type r) : Type (a ⊔ r) where [_] : A → A / R []-respects-relationᴾ : R x y → [ x ] P.≡ [ y ] /-is-setᴾ : P.Is-set (A / R) -- [_] respects the quotient relation. []-respects-relation : R x y → _≡_ {A = A / R} [ x ] [ y ] []-respects-relation = _↔_.from ≡↔≡ ∘ []-respects-relationᴾ -- Quotients are sets. /-is-set : Is-set (A / R) /-is-set = _↔_.from (H-level↔H-level 2) /-is-setᴾ -- An eliminator, expressed using paths. record Elimᴾ′ {A : Type a} {R : A → A → Type r} (P : A / R → Type p) : Type (a ⊔ r ⊔ p) where no-eta-equality field []ʳ : ∀ x → P [ x ] []-respects-relationʳ : (r : R x y) → P.[ (λ i → P ([]-respects-relationᴾ r i)) ] []ʳ x ≡ []ʳ y is-setʳ : {eq₁ eq₂ : x P.≡ y} {p : P x} {q : P y} (eq₃ : P.[ (λ i → P (eq₁ i)) ] p ≡ q) (eq₄ : P.[ (λ i → P (eq₂ i)) ] p ≡ q) → P.[ (λ i → P.[ (λ j → P (/-is-setᴾ eq₁ eq₂ i j)) ] p ≡ q) ] eq₃ ≡ eq₄ open Elimᴾ′ public elimᴾ′ : Elimᴾ′ P → (x : A / R) → P x elimᴾ′ {A = A} {R = R} {P = P} e = helper where module E′ = Elimᴾ′ e helper : (x : A / R) → P x helper [ x ] = E′.[]ʳ x helper ([]-respects-relationᴾ r i) = E′.[]-respects-relationʳ r i helper (/-is-setᴾ p q i j) = E′.is-setʳ (λ i → helper (p i)) (λ i → helper (q i)) i j -- A possibly more useful eliminator, expressed using paths. record Elimᴾ {A : Type a} {R : A → A → Type r} (P : A / R → Type p) : Type (a ⊔ r ⊔ p) where no-eta-equality field []ʳ : ∀ x → P [ x ] []-respects-relationʳ : (r : R x y) → P.[ (λ i → P ([]-respects-relationᴾ r i)) ] []ʳ x ≡ []ʳ y is-setʳ : ∀ x → P.Is-set (P x) open Elimᴾ public elimᴾ : Elimᴾ P → (x : A / R) → P x elimᴾ e = elimᴾ′ λ where .[]ʳ → E′.[]ʳ .[]-respects-relationʳ → E′.[]-respects-relationʳ .is-setʳ → P.heterogeneous-UIP E′.is-setʳ _ where module E′ = Elimᴾ e private -- One can define elimᴾ′ using elimᴾ. elimᴾ′₂ : Elimᴾ′ P → (x : A / R) → P x elimᴾ′₂ {P = P} e = elimᴾ λ where .[]ʳ → E′.[]ʳ .[]-respects-relationʳ → E′.[]-respects-relationʳ .is-setʳ x {y} {z} p q → $⟨ E′.is-setʳ p q ⟩ P.[ (λ i → P.[ (λ j → P (/-is-setᴾ P.refl P.refl i j)) ] y ≡ z) ] p ≡ q ↝⟨ P.subst (λ eq → P.[ (λ i → P.[ (λ j → P (eq i j)) ] y ≡ z) ] p ≡ q) (PH.mono₁ 2 /-is-setᴾ _ _) ⟩ P.[ (λ _ → P.[ (λ _ → P x) ] y ≡ z) ] p ≡ q ↔⟨⟩ p P.≡ q □ where module E′ = Elimᴾ′ e -- A non-dependent eliminator, expressed using paths. record Recᴾ {A : Type a} (R : A → A → Type r) (B : Type b) : Type (a ⊔ r ⊔ b) where no-eta-equality field []ʳ : A → B []-respects-relationʳ : (r : R x y) → []ʳ x P.≡ []ʳ y is-setʳ : P.Is-set B open Recᴾ public recᴾ : Recᴾ R B → A / R → B recᴾ r = elimᴾ λ where .[]ʳ → R.[]ʳ .[]-respects-relationʳ → R.[]-respects-relationʳ .is-setʳ _ → R.is-setʳ where module R = Recᴾ r -- An eliminator. record Elim {A : Type a} {R : A → A → Type r} (P : A / R → Type p) : Type (a ⊔ r ⊔ p) where no-eta-equality field []ʳ : ∀ x → P [ x ] []-respects-relationʳ : (r : R x y) → subst P ([]-respects-relation r) ([]ʳ x) ≡ []ʳ y is-setʳ : ∀ x → Is-set (P x) open Elim public elim : Elim P → (x : A / R) → P x elim e = elimᴾ λ where .[]ʳ → E′.[]ʳ .[]-respects-relationʳ → subst≡→[]≡ ∘ E′.[]-respects-relationʳ .is-setʳ → _↔_.to (H-level↔H-level 2) ∘ E′.is-setʳ where module E′ = Elim e -- A non-dependent eliminator. record Rec {A : Type a} (R : A → A → Type r) (B : Type b) : Type (a ⊔ r ⊔ b) where no-eta-equality field []ʳ : A → B []-respects-relationʳ : (r : R x y) → []ʳ x ≡ []ʳ y is-setʳ : Is-set B open Rec public rec : Rec R B → A / R → B rec r = recᴾ λ where .[]ʳ → R.[]ʳ .[]-respects-relationʳ → _↔_.to ≡↔≡ ∘ R.[]-respects-relationʳ .is-setʳ → _↔_.to (H-level↔H-level 2) R.is-setʳ where module R = Rec r -- A variant of elim that can be used if the motive composed with [_] -- is a family of propositions. -- -- I took the idea for this eliminator from Nicolai Kraus. record Elim-prop {A : Type a} {R : A → A → Type r} (P : A / R → Type p) : Type (a ⊔ r ⊔ p) where no-eta-equality field []ʳ : ∀ x → P [ x ] is-propositionʳ : ∀ x → Is-proposition (P [ x ]) open Elim-prop public elim-prop : Elim-prop P → (x : A / R) → P x elim-prop e = elim λ where .[]ʳ → E′.[]ʳ .[]-respects-relationʳ _ → E′.is-propositionʳ _ _ _ .is-setʳ → elim λ where .[]ʳ → mono₁ 1 ∘ E′.is-propositionʳ .[]-respects-relationʳ _ → H-level-propositional ext 2 _ _ .is-setʳ _ → mono₁ 1 (H-level-propositional ext 2) where module E′ = Elim-prop e -- A variant of rec that can be used if the motive is a proposition. record Rec-prop (A : Type a) (B : Type b) : Type (a ⊔ b) where no-eta-equality field []ʳ : A → B is-propositionʳ : Is-proposition B open Rec-prop public rec-prop : Rec-prop A B → A / R → B rec-prop r = elim-prop λ where .[]ʳ → R.[]ʳ .is-propositionʳ _ → R.is-propositionʳ where module R = Rec-prop r ------------------------------------------------------------------------ -- Conversion functions -- One can convert from quotients with erased higher constructors to -- quotients with regular higher constructors. /ᴱ→/ : A /ᴱ R → A / R /ᴱ→/ = QE.rec λ where .QE.[]ʳ → [_] .QE.[]-respects-relationʳ → []-respects-relation .QE.is-setʳ → /-is-set -- In an erased context quotients with erased higher constructors are -- equivalent to quotients with regular higher constructors. @0 /ᴱ≃/ : A /ᴱ R ≃ A / R /ᴱ≃/ {A = A} {R = R} = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = /ᴱ→/ ; from = rec λ @0 where .[]ʳ → QE.[_] .[]-respects-relationʳ → QE.[]-respects-relation .is-setʳ → QE./ᴱ-is-set } ; right-inverse-of = elim λ @0 where .[]ʳ _ → refl _ .[]-respects-relationʳ _ → /-is-set _ _ .is-setʳ _ → mono₁ 2 /-is-set } ; left-inverse-of = QE.elim λ where .QE.[]ʳ _ → refl _ .QE.[]-respects-relationʳ _ → QE./ᴱ-is-set _ _ .QE.is-setʳ _ → mono₁ 2 QE./ᴱ-is-set }) ------------------------------------------------------------------------ -- Some properties -- [_] is surjective. []-surjective : Surjective ([_] {R = R}) []-surjective = elim-prop λ where .[]ʳ x → ∣ x , refl _ ∣ .is-propositionʳ _ → TruncP.truncation-is-proposition -- QE.[_] is surjective. -- -- This result is not proved in Quotient.Erased, because that module -- uses --erased-cubical. []ᴱ-surjective : Surjective (QE.[_] {R = R}) []ᴱ-surjective = QE.elim-prop λ where .QE.[]ʳ x → ∣ x , refl _ ∣ .QE.is-propositionʳ _ → TruncP.truncation-is-proposition -- Some preservation lemmas. infix 5 _/-map-∥∥_ _/-map_ _/-cong-∥∥-↠_ _/-cong-↠_ _/-cong-∥∥_ _/-cong_ _/-map-∥∥_ : (A₁→A₂ : A₁ → A₂) → (∀ x y → ∥ R₁ x y ∥ → ∥ R₂ (A₁→A₂ x) (A₁→A₂ y) ∥) → A₁ / R₁ → A₂ / R₂ _/-map-∥∥_ {R₁ = R₁} {R₂ = R₂} A₁→A₂ R₁→R₂ = rec λ where .[]ʳ → [_] ∘ A₁→A₂ .is-setʳ → /-is-set .[]-respects-relationʳ {x = x} {y = y} → R₁ x y ↝⟨ ∣_∣ ⟩ ∥ R₁ x y ∥ ↝⟨ R₁→R₂ _ _ ⟩ ∥ R₂ (A₁→A₂ x) (A₁→A₂ y) ∥ ↝⟨ TruncP.rec /-is-set []-respects-relation ⟩□ [ A₁→A₂ x ] ≡ [ A₁→A₂ y ] □ _/-map_ : (A₁→A₂ : A₁ → A₂) → (∀ x y → R₁ x y → R₂ (A₁→A₂ x) (A₁→A₂ y)) → A₁ / R₁ → A₂ / R₂ A₁→A₂ /-map R₁→R₂ = A₁→A₂ /-map-∥∥ λ x y → TruncP.∥∥-map (R₁→R₂ x y) /-cong-∥∥-⇔ : (A₁⇔A₂ : A₁ ⇔ A₂) → (∀ x y → ∥ R₁ x y ∥ → ∥ R₂ (_⇔_.to A₁⇔A₂ x) (_⇔_.to A₁⇔A₂ y) ∥) → (∀ x y → ∥ R₂ x y ∥ → ∥ R₁ (_⇔_.from A₁⇔A₂ x) (_⇔_.from A₁⇔A₂ y) ∥) → A₁ / R₁ ⇔ A₂ / R₂ /-cong-∥∥-⇔ A₁⇔A₂ R₁→R₂ R₂→R₁ = record { to = _⇔_.to A₁⇔A₂ /-map-∥∥ R₁→R₂ ; from = _⇔_.from A₁⇔A₂ /-map-∥∥ R₂→R₁ } /-cong-⇔ : (A₁⇔A₂ : A₁ ⇔ A₂) → (∀ x y → R₁ x y → R₂ (_⇔_.to A₁⇔A₂ x) (_⇔_.to A₁⇔A₂ y)) → (∀ x y → R₂ x y → R₁ (_⇔_.from A₁⇔A₂ x) (_⇔_.from A₁⇔A₂ y)) → A₁ / R₁ ⇔ A₂ / R₂ /-cong-⇔ A₁⇔A₂ R₁→R₂ R₂→R₁ = /-cong-∥∥-⇔ A₁⇔A₂ (λ x y → TruncP.∥∥-map (R₁→R₂ x y)) (λ x y → TruncP.∥∥-map (R₂→R₁ x y)) _/-cong-∥∥-↠_ : (A₁↠A₂ : A₁ ↠ A₂) → (∀ x y → ∥ R₁ x y ∥ ⇔ ∥ R₂ (_↠_.to A₁↠A₂ x) (_↠_.to A₁↠A₂ y) ∥) → A₁ / R₁ ↠ A₂ / R₂ _/-cong-∥∥-↠_ {R₁ = R₁} {R₂ = R₂} A₁↠A₂ R₁⇔R₂ = record { logical-equivalence = /-cong-∥∥-⇔ (_↠_.logical-equivalence A₁↠A₂) (λ x y → _⇔_.to (R₁⇔R₂ x y)) (λ x y → ∥ R₂ x y ∥ ↝⟨ ≡⇒↝ _ (sym $ cong₂ (λ x y → ∥ R₂ x y ∥) (right-inverse-of x) (right-inverse-of y)) ⟩ ∥ R₂ (to (from x)) (to (from y)) ∥ ↝⟨ _⇔_.from (R₁⇔R₂ _ _) ⟩□ ∥ R₁ (from x) (from y) ∥ □) ; right-inverse-of = elim-prop λ where .[]ʳ x → [ to (from x) ] ≡⟨ cong [_] $ right-inverse-of x ⟩∎ [ x ] ∎ .is-propositionʳ _ → /-is-set } where open _↠_ A₁↠A₂ _/-cong-↠_ : (A₁↠A₂ : A₁ ↠ A₂) → (∀ x y → R₁ x y ⇔ R₂ (_↠_.to A₁↠A₂ x) (_↠_.to A₁↠A₂ y)) → A₁ / R₁ ↠ A₂ / R₂ A₁↠A₂ /-cong-↠ R₁⇔R₂ = A₁↠A₂ /-cong-∥∥-↠ λ x y → TruncP.∥∥-cong-⇔ (R₁⇔R₂ x y) _/-cong-∥∥_ : {A₁ : Type a₁} {A₂ : Type a₂} {R₁ : A₁ → A₁ → Type r₁} {R₂ : A₂ → A₂ → Type r₂} → (A₁↔A₂ : A₁ ↔[ k ] A₂) → (∀ x y → ∥ R₁ x y ∥ ⇔ ∥ R₂ (to-implication A₁↔A₂ x) (to-implication A₁↔A₂ y) ∥) → A₁ / R₁ ↔[ k ] A₂ / R₂ _/-cong-∥∥_ {k = k} {R₁ = R₁} {R₂ = R₂} A₁↔A₂′ R₁⇔R₂ = from-bijection (record { surjection = from-isomorphism A₁↔A₂ /-cong-∥∥-↠ λ x y → ∥ R₁ x y ∥ ↝⟨ R₁⇔R₂ x y ⟩ ∥ R₂ (to-implication A₁↔A₂′ x) (to-implication A₁↔A₂′ y) ∥ ↝⟨ ≡⇒↝ _ $ cong₂ (λ f g → ∥ R₂ (f x) (g y) ∥) (to-implication∘from-isomorphism k bijection) (to-implication∘from-isomorphism k bijection) ⟩□ ∥ R₂ (to x) (to y) ∥ □ ; left-inverse-of = elim-prop λ where .[]ʳ x → [ from (to x) ] ≡⟨ cong [_] $ left-inverse-of x ⟩∎ [ x ] ∎ .is-propositionʳ _ → /-is-set }) where A₁↔A₂ = from-isomorphism A₁↔A₂′ open _↔_ A₁↔A₂ _/-cong_ : {A₁ : Type a₁} {A₂ : Type a₂} {R₁ : A₁ → A₁ → Type r₁} {R₂ : A₂ → A₂ → Type r₂} → (A₁↔A₂ : A₁ ↔[ k ] A₂) → (∀ x y → R₁ x y ⇔ R₂ (to-implication A₁↔A₂ x) (to-implication A₁↔A₂ y)) → A₁ / R₁ ↔[ k ] A₂ / R₂ _/-cong_ A₁↔A₂ R₁⇔R₂ = A₁↔A₂ /-cong-∥∥ λ x y → TruncP.∥∥-cong-⇔ (R₁⇔R₂ x y) -- Quotienting by the propositional truncation of a relation is -- equivalent to quotienting by the relation itself. /-∥∥≃/ : A / (λ x y → ∥ R x y ∥) ≃ A / R /-∥∥≃/ {R = R} = F.id /-cong-∥∥ λ x y → ∥ ∥ R x y ∥ ∥ ↔⟨ TruncP.flatten ⟩□ ∥ R x y ∥ □ -- If the relation is a propositional equivalence relation, then it is -- equivalent to equality under [_] (assuming propositional -- extensionality). -- -- The basic structure of this proof is that of Proposition 2 in -- "Quotienting the Delay Monad by Weak Bisimilarity" by Chapman, -- Uustalu and Veltri. related≃[equal] : {R : A → A → Type r} → Propositional-extensionality r → Is-equivalence-relation R → (∀ {x y} → Is-proposition (R x y)) → ∀ {x y} → R x y ≃ _≡_ {A = A / R} [ x ] [ y ] related≃[equal] {A = A} {r = r} {R = R} prop-ext R-equiv R-prop {x = x} {y = y} = _↠_.from (Eq.≃↠⇔ R-prop /-is-set) (record { to = []-respects-relation ; from = λ [x]≡[y] → $⟨ reflexive ⟩ proj₁ (R′ x [ x ]) ↝⟨ ≡⇒→ (cong (proj₁ ∘ R′ x) [x]≡[y]) ⟩ proj₁ (R′ x [ y ]) ↝⟨ id ⟩□ R x y □ }) where open Is-equivalence-relation R-equiv lemma : ∀ {x y z} → R y z → (R x y , R-prop) ≡ (R x z , R-prop) lemma {x} {y} {z} = R y z ↝⟨ (λ r → record { to = flip transitive r ; from = flip transitive (symmetric r) }) ⟩ R x y ⇔ R x z ↔⟨ ⇔↔≡″ ext prop-ext ⟩□ (R x y , R-prop) ≡ (R x z , R-prop) □ R′ : A → A / R → Proposition r R′ x = rec λ where .[]ʳ y → R x y , R-prop .[]-respects-relationʳ → lemma .is-setʳ → Is-set-∃-Is-proposition ext prop-ext -- A variant of related≃[equal]. ∥related∥≃[equal] : {R : A → A → Type r} → Propositional-extensionality r → Is-equivalence-relation R → ∀ {x y} → ∥ R x y ∥ ≃ _≡_ {A = A / R} [ x ] [ y ] ∥related∥≃[equal] {A = A} {R = R} prop-ext R-equiv {x = x} {y = y} = ∥ R x y ∥ ↝⟨ related≃[equal] prop-ext (TruncP.∥∥-preserves-Is-equivalence-relation R-equiv) TruncP.truncation-is-proposition ⟩ _≡_ {A = A / λ x y → ∥ R x y ∥} [ x ] [ y ] ↝⟨ Eq.≃-≡ (inverse /-∥∥≃/) ⟩□ _≡_ {A = A / R} [ x ] [ y ] □ -- Quotienting with equality (for a set) amounts to the same thing as -- not quotienting at all. /≡↔ : Is-set A → A / _≡_ ↔ A /≡↔ A-set = record { surjection = record { logical-equivalence = record { from = [_] ; to = rec λ where .[]ʳ → id .[]-respects-relationʳ → id .is-setʳ → A-set } ; right-inverse-of = λ _ → refl _ } ; left-inverse-of = elim-prop λ where .[]ʳ _ → refl _ .is-propositionʳ _ → /-is-set } -- Quotienting with a trivial relation amounts to the same thing as -- using the propositional truncation. /trivial↔∥∥ : (∀ x y → R x y) → A / R ↔ ∥ A ∥ /trivial↔∥∥ {A = A} {R = R} trivial = record { surjection = record { logical-equivalence = record { from = TruncP.rec /-prop [_] ; to = rec-prop λ where .[]ʳ → ∣_∣ .is-propositionʳ → TruncP.truncation-is-proposition } ; right-inverse-of = TruncP.elim _ (λ _ → ⇒≡ 1 TruncP.truncation-is-proposition) (λ _ → refl _) } ; left-inverse-of = elim-prop λ where .[]ʳ _ → refl _ .is-propositionʳ _ → /-is-set } where /-prop : Is-proposition (A / R) /-prop = elim-prop λ where .[]ʳ x → elim-prop λ where .[]ʳ y → []-respects-relation (trivial x y) .is-propositionʳ _ → /-is-set .is-propositionʳ _ → Π-closure ext 1 λ _ → /-is-set -- The previous property gives us an alternative to -- constant-function≃∥inhabited∥⇒inhabited. constant-function↔∥inhabited∥⇒inhabited : Is-set B → (∃ λ (f : A → B) → Constant f) ↔ (∥ A ∥ → B) constant-function↔∥inhabited∥⇒inhabited {B = B} {A = A} B-set = (∃ λ (f : A → B) → Constant f) ↝⟨ record { surjection = record { logical-equivalence = record { to = λ { (f , c) → rec λ where .[]ʳ → f .[]-respects-relationʳ _ → c _ _ .is-setʳ → B-set } ; from = λ f → (f ∘ [_]) , (λ _ _ → cong f ([]-respects-relation _)) } ; right-inverse-of = λ f → ⟨ext⟩ $ elim λ where .[]ʳ _ → refl _ .[]-respects-relationʳ _ → B-set _ _ .is-setʳ _ → mono₁ 2 B-set } ; left-inverse-of = λ _ → Σ-≡,≡→≡ (refl _) ((Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → B-set) _ _) } ⟩ (A / (λ _ _ → ⊤) → B) ↝⟨ →-cong₁ ext (/trivial↔∥∥ _) ⟩□ (∥ A ∥ → B) □ private -- The two directions of the proposition above compute in the -- "right" way. Note that (at the time of writing) an analogue of -- the second property below fails to hold definitionally for -- constant-function≃∥inhabited∥⇒inhabited. to-constant-function↔∥inhabited∥⇒inhabited : (B-set : Is-set B) → _↔_.to (constant-function↔∥inhabited∥⇒inhabited B-set) f ∣ x ∣ ≡ proj₁ f x to-constant-function↔∥inhabited∥⇒inhabited _ = refl _ from-constant-function↔∥inhabited∥⇒inhabited : (B-set : Is-set B) → proj₁ (_↔_.from (constant-function↔∥inhabited∥⇒inhabited B-set) f) x ≡ f ∣ x ∣ from-constant-function↔∥inhabited∥⇒inhabited _ = refl _ -- The quotient type ⊤ / R is equivalent to ⊤. ⊤/≃ : ⊤ / R ≃ ⊤ ⊤/≃ = Eq.↔→≃ _ [_] refl (elim-prop λ where .is-propositionʳ _ → /-is-set .[]ʳ _ → refl _) -- If R is a propositional equivalence relation that is pointwise -- stable, then equality is very stable for A / R (assuming -- propositional extensionality). Very-stable-≡-/ : {R : A → A → Type r} → Propositional-extensionality r → Is-equivalence-relation R → (∀ x y → Is-proposition (R x y)) → (∀ x y → Stable (R x y)) → Very-stable-≡ (A / R) Very-stable-≡-/ {A = A} {R = R} prop-ext equiv prop s = elim-prop λ where .[]ʳ x → elim-prop λ where .[]ʳ y → $⟨ s _ _ ⟩ Stable (R x y) ↝⟨ flip E.Stable-proposition→Very-stable (prop _ _) ⟩ Very-stable (R x y) ↝⟨ E.Very-stable-cong _ (related≃[equal] prop-ext equiv (prop _ _)) ⟩□ Very-stable ([ x ] ≡ [ y ]) □ .is-propositionʳ _ → E.Very-stable-propositional ext .is-propositionʳ _ → Π-closure ext 1 λ _ → E.Very-stable-propositional ext private -- An alternative definition of the quotients from -- Quotient.Families-of-equivalence-classes. infix 5 _/′_ _/′_ : (A : Type a) → (A → A → Type a) → Type (lsuc a) _/′_ {a = a} A R = ∃ λ (P : A → Type a) → ∥ (∃ λ x → R x ≡ P) ∥ /↔/′ : A Quotient./ R ↔ A /′ R /↔/′ {A = A} {R = R} = A Quotient./ R ↔⟨⟩ (∃ λ (P : A → Type _) → Trunc.∥ (∃ λ x → R x ≡ P) ∥ 1 _) ↝⟨ (∃-cong λ _ → inverse $ TruncP.∥∥↔∥∥ lzero) ⟩ (∃ λ (P : A → Type _) → ∥ (∃ λ x → R x ≡ P) ∥) ↔⟨⟩ A /′ R □ [_]′ : A → A /′ R [_]′ = _↔_.to /↔/′ ∘ Quotient.[_] rec′ : {A : Type a} {R : A → A → Type a} → (∀ {x} → R x x) → (B : Type a) → Is-set B → (f : A → B) → (∀ {x y} → R x y → f x ≡ f y) → A /′ R → B rec′ refl B B-set f R⇒≡ = Quotient.rec ext refl B B-set f R⇒≡ ∘ _↔_.from /↔/′ elim-Prop′ : {A : Type a} {R : A → A → Type a} → Quotient.Strong-equivalence-with surjection R → (B : A /′ R → Type (lsuc a)) → (∀ x → Is-proposition (B [ x ]′)) → (f : ∀ x → B [ x ]′) → ∀ x → B x elim-Prop′ strong-equivalence B B-prop f x = subst B (_↔_.right-inverse-of /↔/′ _) $ Quotient.elim-Prop ext strong-equivalence (B ∘ _↔_.to /↔/′) B-prop f (_↔_.from /↔/′ x) -- If the relation is a propositional equivalence relation of a -- certain size, then the quotients defined above are isomorphic to -- families of equivalence relations, defined in a certain way -- (assuming univalence). /↔ : {A : Type a} {R : A → A → Type a} → Univalence a → Univalence lzero → Is-equivalence-relation R → (∀ {x y} → Is-proposition (R x y)) → A / R ↔ ∃ λ (P : A → Type a) → ∥ (∃ λ x → R x ≡ P) ∥ /↔ {a = a} {A = A} {R = R} univ univ₀ R-equiv R-prop = record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where R-is-strong-equivalence : Quotient.Strong-equivalence R R-is-strong-equivalence = Quotient.propositional-equivalence⇒strong-equivalence ext univ R-equiv (λ _ _ → R-prop) to : A / R → A /′ R to = rec λ where .[]ʳ → [_]′ .[]-respects-relationʳ {x = x} {y = y} → R x y ↝⟨ _≃_.to (Quotient.related↝[equal] ext R-is-strong-equivalence) ⟩ Quotient.[ x ] ≡ Quotient.[ y ] ↝⟨ cong (_↔_.to /↔/′) ⟩□ [ x ]′ ≡ [ y ]′ □ .is-setʳ → $⟨ (λ {_ _} → Quotient.quotient's-h-level-is-1-+-relation's-h-level ext univ univ₀ 1 (λ _ _ → R-prop)) ⟩ Is-set (A Quotient./ R) ↝⟨ H.respects-surjection (_↔_.surjection /↔/′) 2 ⟩□ Is-set (A /′ R) □ from : A /′ R → A / R from = rec′ (Is-equivalence-relation.reflexive R-equiv) _ /-is-set [_] []-respects-relation to∘from : ∀ x → to (from x) ≡ x to∘from = elim-Prop′ (Quotient.strong-equivalence⇒strong-equivalence-with R-is-strong-equivalence) _ (λ x → $⟨ (λ {_ _} → Quotient.quotient's-h-level-is-1-+-relation's-h-level ext univ univ₀ 1 λ _ _ → R-prop) ⟩ Is-set (A Quotient./ R) ↝⟨ H.respects-surjection (_↔_.surjection /↔/′) 2 ⟩ Is-set (A /′ R) ↝⟨ +⇒≡ {n = 1} ⟩□ Is-proposition (to (from [ x ]′) ≡ [ x ]′) □) (λ _ → refl _) from∘to : ∀ x → from (to x) ≡ x from∘to = elim-prop λ where .[]ʳ _ → refl _ .is-propositionʳ _ → /-is-set -- If the relation is a propositional equivalence relation of a -- certain size, then the definition of quotients given in -- Quotient.Families-of-equivalence-classes is isomorphic to the one -- given here (assuming univalence). /↔/ : {A : Type a} {R : A → A → Type a} → Univalence a → Univalence lzero → Is-equivalence-relation R → (R-prop : ∀ {x y} → Is-proposition (R x y)) → A Quotient./ R ↔ A / R /↔/ {a = a} {A = A} {R = R} univ univ₀ R-equiv R-prop = A Quotient./ R ↔⟨⟩ (∃ λ (P : A → Type a) → Trunc.∥ (∃ λ x → R x ≡ P) ∥ 1 (lsuc a)) ↝⟨ (∃-cong λ _ → inverse $ TruncP.∥∥↔∥∥ lzero) ⟩ (∃ λ (P : A → Type a) → ∥ (∃ λ x → R x ≡ P) ∥) ↝⟨ inverse $ /↔ univ univ₀ R-equiv R-prop ⟩□ A / R □ ------------------------------------------------------------------------ -- Various type formers commute with quotients -- _⊎_ commutes with quotients. ⊎/-comm : (A₁ ⊎ A₂) / (R₁ ⊎ᴾ R₂) ↔ A₁ / R₁ ⊎ A₂ / R₂ ⊎/-comm = record { surjection = record { logical-equivalence = record { to = rec λ where .[]ʳ → ⊎-map [_] [_] .is-setʳ → ⊎-closure 0 /-is-set /-is-set .[]-respects-relationʳ {x = inj₁ _} {y = inj₁ _} → cong inj₁ ∘ []-respects-relation .[]-respects-relationʳ {x = inj₂ _} {y = inj₂ _} → cong inj₂ ∘ []-respects-relation ; from = Prelude.[ rec (λ where .[]ʳ → [_] ∘ inj₁ .[]-respects-relationʳ → []-respects-relation .is-setʳ → /-is-set) , rec (λ where .[]ʳ → [_] ∘ inj₂ .[]-respects-relationʳ → []-respects-relation .is-setʳ → /-is-set) ] } ; right-inverse-of = Prelude.[ elim-prop (λ where .[]ʳ _ → refl _ .is-propositionʳ _ → ⊎-closure 0 /-is-set /-is-set) , elim-prop (λ where .[]ʳ _ → refl _ .is-propositionʳ _ → ⊎-closure 0 /-is-set /-is-set) ] } ; left-inverse-of = elim-prop λ where .[]ʳ → Prelude.[ (λ _ → refl _) , (λ _ → refl _) ] .is-propositionʳ _ → /-is-set } -- Maybe commutes with quotients. -- -- Chapman, Uustalu and Veltri mention a similar result in -- "Quotienting the Delay Monad by Weak Bisimilarity". Maybe/-comm : Maybe A / Maybeᴾ R ↔ Maybe (A / R) Maybe/-comm {A = A} {R = R} = Maybe A / Maybeᴾ R ↝⟨ ⊎/-comm ⟩ ⊤ / Trivial ⊎ A / R ↝⟨ /trivial↔∥∥ _ ⊎-cong F.id ⟩ ∥ ⊤ ∥ ⊎ A / R ↝⟨ TruncP.∥∥↔ (mono₁ 0 ⊤-contractible) ⊎-cong F.id ⟩□ Maybe (A / R) □ -- A simplification lemma for Maybe/-comm. Maybe/-comm-[] : _↔_.to Maybe/-comm ∘ [_] ≡ ⊎-map id ([_] {R = R}) Maybe/-comm-[] = _↔_.to Maybe/-comm ∘ [_] ≡⟨⟩ ⊎-map _ id ∘ ⊎-map _ id ∘ ⊎-map [_] [_] ≡⟨ cong (_∘ ⊎-map [_] [_]) ⊎-map-∘ ⟩ ⊎-map _ id ∘ ⊎-map [_] [_] ≡⟨ ⊎-map-∘ ⟩∎ ⊎-map id [_] ∎ where ⊎-map-∘ : ∀ {a₁ b₁ c₁} {A₁ : Type a₁} {B₁ : Type b₁} {C₁ : Type c₁} {a₂ b₂ c₂} {A₂ : Type a₂} {B₂ : Type b₂} {C₂ : Type c₂} {f₁ : B₁ → C₁} {g₁ : A₁ → B₁} {f₂ : B₂ → C₂} {g₂ : A₂ → B₂} → ⊎-map f₁ f₂ ∘ ⊎-map g₁ g₂ ≡ ⊎-map (f₁ ∘ g₁) (f₂ ∘ g₂) ⊎-map-∘ = ⟨ext⟩ Prelude.[ (λ _ → refl _) , (λ _ → refl _) ] -- Cartesian products commute with quotients, assuming that the two -- binary relations involved in the statement are reflexive. ×/-comm : (∀ {x} → R₁ x x) → (∀ {x} → R₂ x x) → (A₁ × A₂) / (R₁ ×ᴾ R₂) ≃ (A₁ / R₁ × A₂ / R₂) ×/-comm {R₁ = R₁} {R₂ = R₂} R₁-refl R₂-refl = Eq.↔→≃ (rec λ where .is-setʳ → ×-closure 2 /-is-set /-is-set .[]ʳ → Σ-map [_] [_] .[]-respects-relationʳ {x = x₁ , x₂} {y = y₁ , y₂} → R₁ x₁ y₁ × R₂ x₂ y₂ ↝⟨ Σ-map []-respects-relation []-respects-relation ⟩ [ x₁ ] ≡ [ y₁ ] × [ x₂ ] ≡ [ y₂ ] ↝⟨ uncurry (cong₂ _,_) ⟩□ ([ x₁ ] , [ x₂ ]) ≡ ([ y₁ ] , [ y₂ ]) □) (uncurry $ rec λ where .is-setʳ → Π-closure ext 2 λ _ → /-is-set .[]ʳ x → (x ,_) /-map λ y₁ y₂ → R₂ y₁ y₂ ↝⟨ R₁-refl ,_ ⟩□ R₁ x x × R₂ y₁ y₂ □ .[]-respects-relationʳ {x = x₁} {y = x₂} R₁x₁x₂ → ⟨ext⟩ $ elim-prop λ where .is-propositionʳ _ → /-is-set .[]ʳ y → [ (x₁ , y) ] ≡⟨ []-respects-relation (R₁x₁x₂ , R₂-refl) ⟩∎ [ (x₂ , y) ] ∎) (uncurry $ elim-prop λ where .is-propositionʳ _ → Π-closure ext 1 λ _ → ×-closure 2 /-is-set /-is-set .[]ʳ _ → elim-prop λ where .is-propositionʳ _ → ×-closure 2 /-is-set /-is-set .[]ʳ _ → refl _) (elim-prop λ where .is-propositionʳ _ → /-is-set .[]ʳ _ → refl _) -- The sigma type former commutes (kind of) with quotients, assuming -- that the second projections come from propositional types. Σ/-comm : {P : A / R → Type p} → (∀ {x} → Is-proposition (P x)) → Σ (A / R) P ↔ Σ A (P ∘ [_]) / (R on proj₁) Σ/-comm {A = A} {R = R} {P = P} P-prop = record { surjection = record { logical-equivalence = record { to = uncurry $ elim λ where .[]ʳ → curry [_] .[]-respects-relationʳ {x = x} {y = y} r → ⟨ext⟩ λ P[y] → subst (λ x → P x → Σ A (P ∘ [_]) / (R on proj₁)) ([]-respects-relation r) (curry [_] x) P[y] ≡⟨ subst-→-domain P {f = curry [_] _} ([]-respects-relation r) ⟩ [ (x , subst P (sym $ []-respects-relation r) P[y]) ] ≡⟨ []-respects-relation r ⟩∎ [ (y , P[y]) ] ∎ .is-setʳ _ → Π-closure ext 2 λ _ → /-is-set ; from = rec λ where .[]ʳ → Σ-map [_] id .is-setʳ → Σ-closure 2 /-is-set (λ _ → mono₁ 1 P-prop) .[]-respects-relationʳ {x = (x₁ , x₂)} {y = (y₁ , y₂)} → R x₁ y₁ ↝⟨ []-respects-relation ⟩ [ x₁ ] ≡ [ y₁ ] ↔⟨ ignore-propositional-component P-prop ⟩ ([ x₁ ] , x₂) ≡ ([ y₁ ] , y₂) □ } ; right-inverse-of = elim-prop λ where .[]ʳ _ → refl _ .is-propositionʳ _ → /-is-set } ; left-inverse-of = uncurry $ elim-prop λ where .[]ʳ _ _ → refl _ .is-propositionʳ _ → Π-closure ext 1 λ _ → Σ-closure 2 /-is-set (λ _ → mono₁ 1 P-prop) } -- Erased commutes with quotients if certain conditions hold. Erased/-comm : {@0 A : Type a} {@0 R : A → A → Type r} → @0 Is-set A → @0 (∀ {x y} → R x y → x ≡ y) → Erased A / Erasedᴾ R ≃ Erased (A / R) Erased/-comm {A = A} {R = R} set R→≡ = Eq.↔→≃ (rec λ where .is-setʳ → E.H-level-Erased 2 /-is-set .[]ʳ → E.map [_] .[]-respects-relationʳ E.[ Rxy ] → E.[]-cong E.[ []-respects-relation Rxy ]) (λ (E.[ x ]) → [ E.[ from′ x ] ]) (λ (E.[ x ]) → E.[]-cong E.[ flip (elim-prop {P = λ x → [ from′ x ] ≡ x}) x (λ @0 where .is-propositionʳ _ → /-is-set .[]ʳ _ → refl _) ]) (elim-prop λ where .is-propositionʳ _ → /-is-set .[]ʳ _ → refl _) where @0 from′ : A / R → A from′ = rec λ @0 where .is-setʳ → set .[]ʳ → id .[]-respects-relationʳ → R→≡ -- The type former λ X → ℕ → X commutes with quotients, assuming that -- the quotient relation is a propositional equivalence relation, and -- also assuming countable choice and propositional extensionality. -- -- This result is very similar to Proposition 5 in "Quotienting the -- Delay Monad by Weak Bisimilarity" by Chapman, Uustalu and Veltri. -- The forward component of the isomorphism. This component can be -- defined without any extra assumptions. ℕ→/-comm-to : (ℕ → A) / (ℕ →ᴾ R) → (ℕ → A / R) ℕ→/-comm-to = rec λ where .[]ʳ f n → [ f n ] .[]-respects-relationʳ r → ⟨ext⟩ ([]-respects-relation ∘ r) .is-setʳ → Π-closure ext 2 λ _ → /-is-set -- The isomorphism. ℕ→/-comm : {A : Type a} {R : A → A → Type r} → Axiom-of-countable-choice (a ⊔ r) → Propositional-extensionality r → Is-equivalence-relation R → (∀ {x y} → Is-proposition (R x y)) → (ℕ → A) / (ℕ →ᴾ R) ↔ (ℕ → A / R) ℕ→/-comm {A = A} {R = R} cc prop-ext R-equiv R-prop = record { surjection = record { logical-equivalence = record { to = ℕ→/-comm-to ; from = from unit } ; right-inverse-of = to∘from unit } ; left-inverse-of = from∘to unit } where [_]→ : (ℕ → A) → (ℕ → A / R) [ f ]→ n = [ f n ] -- A module that is introduced to ensure that []→-surjective is not -- in the same abstract block as the abstract definitions below. module Dummy where abstract []→-surjective : Surjective [_]→ []→-surjective f = $⟨ []-surjective ⟩ Surjective [_] ↝⟨ (λ surj → surj ∘ f) ⦂ (_ → _) ⟩ (∀ n → ∥ (∃ λ x → [ x ] ≡ f n) ∥) ↔⟨ TruncP.countable-choice-bijection cc ⟩ ∥ (∀ n → ∃ λ x → [ x ] ≡ f n) ∥ ↔⟨ TruncP.∥∥-cong ΠΣ-comm ⟩ ∥ (∃ λ g → ∀ n → [ g n ] ≡ f n) ∥ ↔⟨⟩ ∥ (∃ λ g → ∀ n → [ g ]→ n ≡ f n) ∥ ↔⟨ TruncP.∥∥-cong (∃-cong λ _ → Eq.extensionality-isomorphism ext) ⟩□ ∥ (∃ λ g → [ g ]→ ≡ f) ∥ □ open Dummy from₁ : ∀ f → [_]→ ⁻¹ f → ℕ→/-comm-to ⁻¹ f from₁ f (g , [g]→≡f) = [ g ] , (ℕ→/-comm-to [ g ] ≡⟨⟩ [ g ]→ ≡⟨ [g]→≡f ⟩∎ f ∎) from₁-constant : ∀ f → Constant (from₁ f) from₁-constant f (g₁ , [g₁]→≡f) (g₂ , [g₂]→≡f) = $⟨ (λ n → cong (_$ n) ( [ g₁ ]→ ≡⟨ [g₁]→≡f ⟩ f ≡⟨ sym [g₂]→≡f ⟩∎ [ g₂ ]→ ∎)) ⟩ (∀ n → [ g₁ ]→ n ≡ [ g₂ ]→ n) ↔⟨⟩ (∀ n → [ g₁ n ] ≡ [ g₂ n ]) ↔⟨ ∀-cong ext (λ _ → inverse $ related≃[equal] prop-ext R-equiv R-prop) ⟩ (∀ n → R (g₁ n) (g₂ n)) ↔⟨⟩ (ℕ →ᴾ R) g₁ g₂ ↝⟨ []-respects-relation ⟩ [ g₁ ] ≡ [ g₂ ] ↔⟨ ignore-propositional-component (Π-closure ext 2 λ _ → /-is-set) ⟩□ ([ g₁ ] , [g₁]→≡f) ≡ ([ g₂ ] , [g₂]→≡f) □ from₂ : Unit → ∀ f → ∥ [_]→ ⁻¹ f ∥ → ℕ→/-comm-to ⁻¹ f from₂ unit f = _≃_.to (TruncP.constant-function≃∥inhabited∥⇒inhabited (Σ-closure 2 /-is-set λ _ → mono₁ 1 (Π-closure ext 2 (λ _ → /-is-set)))) (from₁ f , from₁-constant f) unblock-from₂ : ∀ x f p → from₂ x f ∣ p ∣ ≡ from₁ f p unblock-from₂ unit _ _ = refl _ abstract from₃ : Unit → (f : ℕ → A / R) → ℕ→/-comm-to ⁻¹ f from₃ x f = from₂ x f ([]→-surjective f) from : Unit → (ℕ → A / R) → (ℕ → A) / (ℕ →ᴾ R) from x f = proj₁ (from₃ x f) to∘from : ∀ x f → ℕ→/-comm-to (from x f) ≡ f to∘from x f = proj₂ (from₃ x f) from∘to : ∀ x f → from x (ℕ→/-comm-to f) ≡ f from∘to x = elim-prop λ where .[]ʳ f → from x (ℕ→/-comm-to [ f ]) ≡⟨⟩ proj₁ (from₂ x [ f ]→ ([]→-surjective [ f ]→)) ≡⟨ cong (proj₁ ∘ from₂ x [ f ]→) $ TruncP.truncation-is-proposition _ _ ⟩ proj₁ (from₂ x [ f ]→ ∣ f , refl _ ∣) ≡⟨ cong proj₁ $ unblock-from₂ x _ (f , refl _) ⟩ proj₁ (from₁ [ f ]→ (f , refl _)) ≡⟨⟩ [ f ] ∎ .is-propositionʳ _ → /-is-set ------------------------------------------------------------------------ -- Quotient-like eliminators -- If there is a split surjection from a quotient type to some other -- type, then one can construct a quotient-like eliminator for the -- other type. -- -- This kind of construction is used in "Quotienting the Delay Monad -- by Weak Bisimilarity" by Chapman, Uustalu and Veltri. ↠-eliminator : (surj : A / R ↠ B) (P : B → Type p) (p-[] : ∀ x → P (_↠_.to surj [ x ])) → (∀ {x y} (r : R x y) → subst P (cong (_↠_.to surj) ([]-respects-relation r)) (p-[] x) ≡ p-[] y) → (∀ x → Is-set (P x)) → ∀ x → P x ↠-eliminator surj P p-[] ok P-set x = subst P (_↠_.right-inverse-of surj x) p′ where p′ : P (_↠_.to surj (_↠_.from surj x)) p′ = elim (λ where .[]ʳ → p-[] .[]-respects-relationʳ {x = x} {y = y} r → subst (P ∘ _↠_.to surj) ([]-respects-relation r) (p-[] x) ≡⟨ subst-∘ P (_↠_.to surj) ([]-respects-relation r) ⟩ subst P (cong (_↠_.to surj) ([]-respects-relation r)) (p-[] x) ≡⟨ ok r ⟩∎ p-[] y ∎ .is-setʳ _ → P-set _) (_↠_.from surj x) -- The eliminator "computes" in the "right" way for elements that -- satisfy a certain property. ↠-eliminator-[] : ∀ (surj : A / R ↠ B) (P : B → Type p) (p-[] : ∀ x → P (_↠_.to surj [ x ])) (ok : ∀ {x y} (r : R x y) → subst P (cong (_↠_.to surj) ([]-respects-relation r)) (p-[] x) ≡ p-[] y) (P-set : ∀ x → Is-set (P x)) x → _↠_.from surj (_↠_.to surj [ x ]) ≡ [ x ] → ↠-eliminator surj P p-[] ok P-set (_↠_.to surj [ x ]) ≡ p-[] x ↠-eliminator-[] {R = R} surj P p-[] ok P-set x hyp = subst P (_↠_.right-inverse-of surj (_↠_.to surj [ x ])) (elim e (_↠_.from surj (_↠_.to surj [ x ]))) ≡⟨ cong (λ p → subst P p (elim e _)) $ H.respects-surjection surj 2 /-is-set (_↠_.right-inverse-of surj (_↠_.to surj [ x ])) (cong (_↠_.to surj) hyp) ⟩ subst P (cong (_↠_.to surj) hyp) (elim e (_↠_.from surj (_↠_.to surj [ x ]))) ≡⟨ D.elim (λ {x y} p → subst P (cong (_↠_.to surj) p) (elim e x) ≡ elim e y) (λ y → subst P (cong (_↠_.to surj) (refl _)) (elim e y) ≡⟨ cong (λ p → subst P p (elim e _)) $ cong-refl (_↠_.to surj) ⟩ subst P (refl _) (elim e y) ≡⟨ subst-refl P _ ⟩∎ elim e y ∎) hyp ⟩ elim e [ x ] ≡⟨⟩ p-[] x ∎ where e = _ -- If there is a bijection from a quotient type to some other type, -- then one can also construct a quotient-like eliminator for the -- other type. ↔-eliminator : (bij : A / R ↔ B) (P : B → Type p) (p-[] : ∀ x → P (_↔_.to bij [ x ])) → (∀ {x y} (r : R x y) → subst P (cong (_↔_.to bij) ([]-respects-relation r)) (p-[] x) ≡ p-[] y) → (∀ x → Is-set (P x)) → ∀ x → P x ↔-eliminator bij = ↠-eliminator (_↔_.surjection bij) -- This latter eliminator always "computes" in the "right" way. ↔-eliminator-[] : ∀ (bij : A / R ↔ B) (P : B → Type p) (p-[] : ∀ x → P (_↔_.to bij [ x ])) (ok : ∀ {x y} (r : R x y) → subst P (cong (_↔_.to bij) ([]-respects-relation r)) (p-[] x) ≡ p-[] y) (P-set : ∀ x → Is-set (P x)) x → ↔-eliminator bij P p-[] ok P-set (_↔_.to bij [ x ]) ≡ p-[] x ↔-eliminator-[] bij P p-[] ok P-set x = ↠-eliminator-[] (_↔_.surjection bij) P p-[] ok P-set x (_↔_.left-inverse-of bij [ x ]) -- A quotient-like eliminator for functions of type ℕ → A / R, where R -- is a propositional equivalence relation. Defined using countable -- choice and propositional extensionality. -- -- This eliminator is taken from Corollary 1 in "Quotienting the Delay -- Monad by Weak Bisimilarity" by Chapman, Uustalu and Veltri. ℕ→/-elim : {A : Type a} {R : A → A → Type r} → Axiom-of-countable-choice (a ⊔ r) → Propositional-extensionality r → Is-equivalence-relation R → (∀ {x y} → Is-proposition (R x y)) → (P : (ℕ → A / R) → Type p) (p-[] : ∀ f → P (λ n → [ f n ])) → (∀ {f g} (r : (ℕ →ᴾ R) f g) → subst P (cong ℕ→/-comm-to ([]-respects-relation r)) (p-[] f) ≡ p-[] g) → (∀ f → Is-set (P f)) → ∀ f → P f ℕ→/-elim cc prop-ext R-equiv R-prop = ↔-eliminator (ℕ→/-comm cc prop-ext R-equiv R-prop) -- The eliminator "computes" in the "right" way. ℕ→/-elim-[] : ∀ {A : Type a} {R : A → A → Type r} (cc : Axiom-of-countable-choice (a ⊔ r)) (prop-ext : Propositional-extensionality r) (R-equiv : Is-equivalence-relation R) (R-prop : ∀ {x y} → Is-proposition (R x y)) (P : (ℕ → A / R) → Type p) (p-[] : ∀ f → P (λ n → [ f n ])) (ok : ∀ {f g} (r : (ℕ →ᴾ R) f g) → subst P (cong ℕ→/-comm-to ([]-respects-relation r)) (p-[] f) ≡ p-[] g) (P-set : ∀ f → Is-set (P f)) f → ℕ→/-elim cc prop-ext R-equiv R-prop P p-[] ok P-set (λ n → [ f n ]) ≡ p-[] f ℕ→/-elim-[] cc prop-ext R-equiv R-prop = ↔-eliminator-[] (ℕ→/-comm cc prop-ext R-equiv R-prop)
35.66005
144
0.450862
03669299c43ea45df30f48663b2af5943d0b80f4
2,088
agda
Agda
agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Binary/Disjoint/Setoid/Properties.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of disjoint lists (setoid equality) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Disjoint.Setoid.Properties where open import Data.List.Base open import Data.List.Relation.Binary.Disjoint.Setoid import Data.List.Relation.Unary.Any as Any open import Data.List.Relation.Unary.All as All open import Data.List.Relation.Unary.All.Properties using (¬Any⇒All¬) open import Data.List.Relation.Unary.Any.Properties using (++⁻) open import Data.Product using (_,_) open import Data.Sum.Base using (inj₁; inj₂) open import Relation.Binary open import Relation.Nullary using (¬_) ------------------------------------------------------------------------ -- Relational properties ------------------------------------------------------------------------ module _ {c ℓ} (S : Setoid c ℓ) where sym : Symmetric (Disjoint S) sym xs#ys (v∈ys , v∈xs) = xs#ys (v∈xs , v∈ys) ------------------------------------------------------------------------ -- Relationship with other predicates ------------------------------------------------------------------------ module _ {c ℓ} (S : Setoid c ℓ) where open Setoid S Disjoint⇒AllAll : ∀ {xs ys} → Disjoint S xs ys → All (λ x → All (λ y → ¬ x ≈ y) ys) xs Disjoint⇒AllAll xs#ys = All.map (¬Any⇒All¬ _) (All.tabulate (λ v∈xs v∈ys → xs#ys (Any.map reflexive v∈xs , v∈ys))) ------------------------------------------------------------------------ -- Introduction (⁺) and elimination (⁻) rules for list operations ------------------------------------------------------------------------ -- concat module _ {c ℓ} (S : Setoid c ℓ) where concat⁺ʳ : ∀ {vs xss} → All (Disjoint S vs) xss → Disjoint S vs (concat xss) concat⁺ʳ {xss = xs ∷ xss} (vs#xs ∷ vs#xss) (v∈vs , v∈xs++concatxss) with ++⁻ xs v∈xs++concatxss ... | inj₁ v∈xs = vs#xs (v∈vs , v∈xs) ... | inj₂ v∈xss = concat⁺ʳ vs#xss (v∈vs , v∈xss)
37.285714
78
0.478927
349dd4c4e896a1cc1416edba1cd2bc6e7fe40a83
414
agda
Agda
test/interaction/Issue1104.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1104.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1104.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
?bug : Set ?bug = ? -- Andreas, 2014-04-16 -- Issue 1104 reported by Fabien Renaud. -- Emacs mode got confused by identifiers containing -- -- Problem: {!!} is not turned into hole bug-- : Set bug-- = ? another : Set another = (-- Senfgurke ? {!!})-- Noch eine Senfgurke ? _:--_ : Set → Set → Set _:--_ = {!!} bla = let x = Set ;-- bla ? y = Set in Set bug? : Set bug? = {!!}
16.56
55
0.531401
9a23a27f7630a99bffb8ae427b523f870ad9a73c
1,392
agda
Agda
Definition/Typed/RedSteps.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/Typed/RedSteps.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/Typed/RedSteps.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} module Definition.Typed.RedSteps where open import Definition.Untyped open import Definition.Typed -- Concatenation of type reduction closures _⇨*_ : ∀ {Γ A B C r} → Γ ⊢ A ⇒* B ^ r → Γ ⊢ B ⇒* C ^ r → Γ ⊢ A ⇒* C ^ r id ⊢B ⇨* B⇒C = B⇒C (A⇒A′ ⇨ A′⇒B) ⇨* B⇒C = A⇒A′ ⇨ (A′⇒B ⇨* B⇒C) -- Concatenation of term reduction closures _⇨∷*_ : ∀ {Γ A t u v l} → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ u ⇒* v ∷ A ^ l → Γ ⊢ t ⇒* v ∷ A ^ l id ⊢u ⇨∷* u⇒v = u⇒v (t⇒t′ ⇨ t′⇒u) ⇨∷* u⇒v = t⇒t′ ⇨ (t′⇒u ⇨∷* u⇒v) -- Conversion of reduction closures conv* : ∀ {Γ A B t u l } → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t ⇒* u ∷ B ^ l conv* (id x) A≡B = id (conv x A≡B) conv* (x ⇨ d) A≡B = conv x A≡B ⇨ conv* d A≡B conv:* : ∀ {Γ A B t u l } → Γ ⊢ t :⇒*: u ∷ A ^ l → Γ ⊢ A ≡ B ^ [ ! , l ] → Γ ⊢ t :⇒*: u ∷ B ^ l conv:* [[ ⊢t , ⊢u , d ]] e = [[ (conv ⊢t e) , (conv ⊢u e) , (conv* d e) ]] -- Universe of reduction closures univ* : ∀ {Γ A B r l} → Γ ⊢ A ⇒* B ∷ (Univ r l) ^ next l → Γ ⊢ A ⇒* B ^ [ r , ι l ] univ* (id x) = id (univ x) univ* (x ⇨ A⇒B) = univ x ⇨ univ* A⇒B -- Application substitution of reduction closures app-subst* : ∀ {Γ A B t t′ a rA lA lB l} → Γ ⊢ t ⇒* t′ ∷ Π A ^ rA ° lA ▹ B ° lB ° l ^ ι l → Γ ⊢ a ∷ A ^ [ rA , ι lA ] → Γ ⊢ t ∘ a ^ l ⇒* t′ ∘ a ^ l ∷ B [ a ] ^ ι lB app-subst* (id x) a₁ = id (x ∘ⱼ a₁) app-subst* (x ⇨ t⇒t′) a₁ = app-subst x a₁ ⇨ app-subst* t⇒t′ a₁
37.621622
117
0.454741
5e42ba1ceece1ad240a38dc172131106c4794a4a
3,835
agda
Agda
LibraBFT/Abstract/Records/Extends.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Abstract/Records/Extends.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Abstract/Records/Extends.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Abstract.Types open import LibraBFT.Abstract.Types.EpochConfig open import LibraBFT.Lemmas open import LibraBFT.Prelude open WithAbsVote -- This module defines the notion of one Record r "extending" another -- Record r' (denoted r' ← r), ensuring rules about rounds and that r -- correctly identifies r' module LibraBFT.Abstract.Records.Extends (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 -- Most of the conditions in section 4.2 of the paper (see -- LibraBFT.Abstract.RecordChain.Properties) would be checked -- by the implementation to validate data received. -- -- In the Abstract model, however, we are only concerned with -- proving the properties; only round numbers and identifiers -- for previous records are actually critical to thm S5! data _←_ : Record → Record → Set where I←B : {b : Block} → 0 < getRound b → bPrevQC b ≡ nothing → I ← B b Q←B : {q : QC} {b : Block} → getRound q < getRound b → just (qCertBlockId q) ≡ bPrevQC b → Q q ← B b B←Q : {b : Block} {q : QC} → getRound q ≡ getRound b → bId b ≡ qCertBlockId q → B b ← Q q -- Equivalent records extend equivalent records (modulo injectivity -- failure of bId). ←-≈Rec : ∀{r₀ r₁ s₀ s₁} → (ext₀ : s₀ ← r₀) → (ext₁ : s₁ ← r₁) → r₀ ≈Rec r₁ → NonInjective-≡-preds ((s₀ ≡_) ∘ B) ((s₁ ≡_) ∘ B) bId ⊎ (s₀ ≈Rec s₁) ←-≈Rec (I←B x x₁) (I←B x₂ x₃) hyp = inj₂ eq-I ←-≈Rec (I←B x x₁) (Q←B x₂ x₃) (eq-B refl) = ⊥-elim (maybe-⊥ (sym x₃) x₁) ←-≈Rec (Q←B x x₁) (I←B x₂ x₃) (eq-B refl) = ⊥-elim (maybe-⊥ (sym x₁) x₃) ←-≈Rec (Q←B {q₀} x refl) (Q←B {q₁} x₂ refl) (eq-B refl) = inj₂ (eq-Q refl) -- Here is where we wouldn't be able to -- complete the proof if we required round equality -- in eq-Q ←-≈Rec (B←Q {b₀} x refl) (B←Q {b₁} w refl) (eq-Q refl) with b₀ ≟Block b₁ ...| no hb = inj₁ (((b₀ , b₁) , (λ x → hb x) , refl) , refl , refl) ...| yes prf = inj₂ (eq-B prf) ←-irrelevant : Irrelevant _←_ ←-irrelevant (I←B r₁ h₁) (I←B r₂ h₂) = cong₂ I←B (≤-irrelevant r₁ r₂) (≡-irrelevant h₁ h₂) ←-irrelevant (Q←B r₁ h₁) (Q←B r₂ h₂) = cong₂ Q←B (≤-irrelevant r₁ r₂) (≡-irrelevant h₁ h₂) ←-irrelevant (B←Q r₁ h₁) (B←Q r₂ h₂) = cong₂ B←Q (≡-irrelevant r₁ r₂) (≡-irrelevant h₁ h₂) ←-round-≤ : ∀{r₀ r₁} → r₀ ← r₁ → round r₀ ≤ round r₁ ←-round-≤ (I←B r h) = z≤n ←-round-≤ (Q←B r h) = <⇒≤ r ←-round-≤ (B←Q refl h) = ≤-refl ←←-round-< : ∀{r r₀ r₁} → r ← r₀ → r₀ ← r₁ → round r < round r₁ ←←-round-< (I←B r h) (B←Q refl _) = r ←←-round-< (Q←B r h) rr = ≤-trans r (←-round-≤ rr) ←←-round-< (B←Q refl h) (Q←B prf _) = prf -- LemmaS1, clause 2: injectivity of _←_ lemmaS1-2 : ∀{r₀ r₁ r₂ r₂'} → r₂ ≈Rec r₂' → r₀ ← r₂ → r₁ ← r₂' → uid r₀ ≡ uid r₁ lemmaS1-2 {i₀} {i₁} {b} hyp (I←B _ i₀←b) (I←B _ i₁←b) = refl lemmaS1-2 {q} {i} {b} (eq-B refl) (Q←B _ ()) (I←B _ refl) lemmaS1-2 {i} {q} {b} (eq-B refl) (I←B _ refl) (Q←B _ ()) lemmaS1-2 {q₀} {q₁} {b} (eq-B refl) (Q←B _ refl) (Q←B _ refl) = refl lemmaS1-2 {b₀} {b₁} {q} (eq-Q refl) (B←Q _ refl) (B←Q _ refl) = refl -- A better name for lemmaS1-2 ←-inj : ∀{r₀ r₁ r₂} → r₀ ← r₂ → r₁ ← r₂ → uid r₀ ≡ uid r₁ ←-inj = lemmaS1-2 ≈Rec-refl
37.598039
111
0.560104
52bcc327f48feefe2a0c8b654d0bd06bf40c6ef9
2,856
agda
Agda
agda-stdlib-0.9/src/Function.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Function.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Function.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Simple combinators working solely on and with functions ------------------------------------------------------------------------ module Function where open import Level infixr 9 _∘_ _∘′_ infixl 8 _ˢ_ infixl 1 _on_ infixl 1 _⟨_⟩_ infixr 0 _-[_]-_ _$_ infixl 0 _∋_ ------------------------------------------------------------------------ -- Types -- Unary functions on a given set. Fun₁ : ∀ {i} → Set i → Set i Fun₁ A = A → A -- Binary functions on a given set. Fun₂ : ∀ {i} → Set i → Set i Fun₂ A = A → A → A ------------------------------------------------------------------------ -- Functions _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) _∘′_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → C) → (A → B) → (A → C) f ∘′ g = _∘_ f g id : ∀ {a} {A : Set a} → A → A id x = x const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x = λ _ → x -- The S combinator. (Written infix as in Conor McBride's paper -- "Outrageous but Meaningful Coincidences: Dependent type-safe syntax -- and evaluation".) _ˢ_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : (x : A) → B x → Set c} → ((x : A) (y : B x) → C x y) → (g : (x : A) → B x) → ((x : A) → C x (g x)) f ˢ g = λ x → f x (g x) flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) flip f = λ y x → f x y -- Note that _$_ is right associative, like in Haskell. If you want a -- left associative infix application operator, use -- Category.Functor._<$>_, available from -- Category.Monad.Identity.IdentityMonad. _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) f $ x = f x _⟨_⟩_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y _on_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (B → B → C) → (A → B) → (A → A → C) _*_ on f = λ x y → f x * f y _-[_]-_ : ∀ {a b c d e} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {E : Set e} → (A → B → C) → (C → D → E) → (A → B → D) → (A → B → E) f -[ _*_ ]- g = λ x y → f x y * g x y -- In Agda you cannot annotate every subexpression with a type -- signature. This function can be used instead. _∋_ : ∀ {a} (A : Set a) → A → A A ∋ x = x -- Case expressions (to be used with pattern-matching lambdas, see -- README.Case). infix 0 case_return_of_ case_of_ case_return_of_ : ∀ {a b} {A : Set a} (x : A) (B : A → Set b) → ((x : A) → B x) → B x case x return B of f = f x case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = case x return _ of f
27.2
72
0.429272
3485aa2b780d2a9191cecbdd7399d2e22d385900
2,994
agda
Agda
agda-stdlib/src/Function/Nary/NonDependent.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Function/Nary/NonDependent.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Function/Nary/NonDependent.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Heterogeneous N-ary Functions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Nary.NonDependent where ------------------------------------------------------------------------ -- Concrete examples can be found in README.Nary. This file's comments -- are more focused on the implementation details and the motivations -- behind the design decisions. ------------------------------------------------------------------------ open import Level using (Level; 0ℓ; _⊔_; Lift) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Fin.Base using (Fin; zero; suc) open import Data.Product using (_×_; _,_) open import Data.Product.Nary.NonDependent open import Function.Base using (_∘′_; _$′_; const; flip) open import Relation.Unary using (IUniversal) open import Relation.Binary.PropositionalEquality private variable a b r : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Re-exporting the basic operations open import Function.Nary.NonDependent.Base public ------------------------------------------------------------------------ -- Additional operations on Levels ltabulate : ∀ n → (Fin n → Level) → Levels n ltabulate zero f = _ ltabulate (suc n) f = f zero , ltabulate n (f ∘′ suc) lreplicate : ∀ n → Level → Levels n lreplicate n ℓ = ltabulate n (const ℓ) 0ℓs : ∀[ Levels ] 0ℓs = lreplicate _ 0ℓ ------------------------------------------------------------------------ -- Congruence module _ n {ls} {as : Sets n ls} {R : Set r} (f : as ⇉ R) where private g : Product n as → R g = uncurryₙ n f -- Congruentₙ : ∀ n. ∀ a₁₁ a₁₂ ⋯ aₙ₁ aₙ₂ → -- a₁₁ ≡ a₁₂ → ⋯ → aₙ₁ ≡ aₙ₂ → -- f a₁₁ ⋯ aₙ₁ ≡ f a₁₂ ⋯ aₙ₂ Congruentₙ : Set (r Level.⊔ ⨆ n ls) Congruentₙ = ∀ {l r} → Equalₙ n l r ⇉ (g l ≡ g r) congₙ : Congruentₙ congₙ = curryₙ n (cong g ∘′ fromEqualₙ n) -- Congruence at a specific location module _ m n {ls ls'} {as : Sets m ls} {bs : Sets n ls'} (f : as ⇉ (A → bs ⇉ B)) where private g : Product m as → A → Product n bs → B g vs a ws = uncurryₙ n (uncurryₙ m f vs a) ws congAt : ∀ {vs ws a₁ a₂} → a₁ ≡ a₂ → g vs a₁ ws ≡ g vs a₂ ws congAt {vs} {ws} = cong (λ a → g vs a ws) ------------------------------------------------------------------------ -- Injectivity module _ n {ls} {as : Sets n ls} {R : Set r} (con : as ⇉ R) where -- Injectiveₙ : ∀ n. ∀ a₁₁ a₁₂ ⋯ aₙ₁ aₙ₂ → -- con a₁₁ ⋯ aₙ₁ ≡ con a₁₂ ⋯ aₙ₂ → -- a₁₁ ≡ a₁₂ × ⋯ × aₙ₁ ≡ aₙ₂ private c : Product n as → R c = uncurryₙ n con Injectiveₙ : Set (r Level.⊔ ⨆ n ls) Injectiveₙ = ∀ {l r} → c l ≡ c r → Product n (Equalₙ n l r) injectiveₙ : (∀ {l r} → c l ≡ c r → l ≡ r) → Injectiveₙ injectiveₙ con-inj eq = toEqualₙ n (con-inj eq)
30.242424
72
0.48831
8be1f36189d79d322c95c00b42a2d6f4f4798f03
1,745
agda
Agda
agda/Cardinality/Finite/SplitEnumerable/Isomorphism.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
4
2021-01-05T14:07:44.000Z
2021-01-05T15:32:14.000Z
agda/Cardinality/Finite/SplitEnumerable/Isomorphism.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Cardinality/Finite/SplitEnumerable/Isomorphism.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-01-05T14:05:30.000Z
2021-01-05T14:05:30.000Z
{-# OPTIONS --cubical --safe #-} module Cardinality.Finite.SplitEnumerable.Isomorphism where open import Prelude open import Container open import Container.List open import Data.Fin open import Container.Membership (ℕ , Fin) open import Path.Reasoning open import Data.Sigma.Properties open import Function.Surjective.Properties open import Data.Fin.Properties import Data.List.Membership as 𝕃 open import Container.List.Isomorphism open import Data.Nat.Properties open import Data.List using (_∷_; []; List) import Cardinality.Finite.SplitEnumerable.Container as ℒ import Cardinality.Finite.SplitEnumerable.Inductive as 𝕃 ∈ℒ⇒∈𝕃 : ∀ (x : A) (xs : ⟦ ℕ , Fin ⟧ A) → x ∈ xs → x 𝕃.∈ ℒ→𝕃 xs ∈ℒ⇒∈𝕃 x (suc l , xs) (f0 , p) = f0 , p ∈ℒ⇒∈𝕃 x (suc l , xs) (fs n , p) = 𝕃.push (∈ℒ⇒∈𝕃 x (l , xs ∘ fs) (n , p)) 𝕃⇔ℒ⟨ℰ!⟩ : 𝕃.ℰ! A ⇔ ℒ.ℰ! A 𝕃⇔ℒ⟨ℰ!⟩ .fun (sup , cov) = 𝕃→ℒ sup , cov 𝕃⇔ℒ⟨ℰ!⟩ .inv (sup , cov) = ℒ→𝕃 sup , λ x → ∈ℒ⇒∈𝕃 x sup (cov x) 𝕃⇔ℒ⟨ℰ!⟩ .rightInv (sup , cov) i .fst = 𝕃⇔ℒ .rightInv sup i 𝕃⇔ℒ⟨ℰ!⟩ .rightInv (sup , cov) i .snd x = ∈ℒ⇒∈𝕃-rightInv sup (cov x) i where ∈ℒ⇒∈𝕃-rightInv : ∀ xs x∈xs → PathP (λ i → x ∈ 𝕃⇔ℒ .rightInv xs i) (∈ℒ⇒∈𝕃 x xs x∈xs) x∈xs ∈ℒ⇒∈𝕃-rightInv (suc l , xs) (f0 , x∈xs) i = f0 , x∈xs ∈ℒ⇒∈𝕃-rightInv (suc l , xs) (fs n , x∈xs) i = let m , q = ∈ℒ⇒∈𝕃-rightInv (l , xs ∘ fs) (n , x∈xs) i in fs m , q 𝕃⇔ℒ⟨ℰ!⟩ .leftInv (sup , cov) i .fst = 𝕃⇔ℒ .leftInv sup i 𝕃⇔ℒ⟨ℰ!⟩ .leftInv (sup , cov) i .snd x = ∈ℒ⇒∈𝕃-leftInv sup (cov x) i where ∈ℒ⇒∈𝕃-leftInv : ∀ xs x∈xs → PathP (λ i → x 𝕃.∈ 𝕃→ℒ→𝕃 xs i) (∈ℒ⇒∈𝕃 x (𝕃→ℒ xs) x∈xs) x∈xs ∈ℒ⇒∈𝕃-leftInv (_ ∷ xs) (f0 , x∈xs) i = f0 , x∈xs ∈ℒ⇒∈𝕃-leftInv (_ ∷ xs) (fs n , x∈xs) i = let m , p = ∈ℒ⇒∈𝕃-leftInv xs (n , x∈xs) i in fs m , p
35.612245
72
0.590831
19dafdcdd0614f7859e24db6550d6fe19df173e9
7,891
agda
Agda
agda-stdlib/src/Algebra/Properties/CommutativeMonoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Algebra/Properties/CommutativeMonoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Algebra/Properties/CommutativeMonoid.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Some derivable properties ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Disabled to prevent warnings from deprecated Table {-# OPTIONS --warn=noUserWarning #-} open import Algebra.Bundles module Algebra.Properties.CommutativeMonoid {g₁ g₂} (M : CommutativeMonoid g₁ g₂) where open import Algebra.Operations.CommutativeMonoid M open import Algebra.Solver.CommutativeMonoid M open import Relation.Binary as B using (_Preserves_⟶_) open import Function open import Function.Equality using (_⟨$⟩_) open import Data.Product open import Data.Bool.Base using (Bool; true; false) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Fin.Base using (Fin; zero; suc) open import Data.List.Base as List using ([]; _∷_) import Data.Fin.Properties as FP open import Data.Fin.Permutation as Perm using (Permutation; Permutation′; _⟨$⟩ˡ_; _⟨$⟩ʳ_) open import Data.Fin.Permutation.Components as PermC open import Data.Table as Table open import Data.Table.Relation.Binary.Equality as TE using (_≗_) open import Data.Unit using (tt) import Data.Table.Properties as TP open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary as Nullary using (¬_; does; _because_) open import Relation.Nullary.Negation using (contradiction) open import Relation.Nullary.Decidable using (⌊_⌋; dec-true; dec-false) open import Relation.Nullary.Reflects using (invert) open CommutativeMonoid M renaming ( ε to 0# ; _∙_ to _+_ ; ∙-cong to +-cong ; ∙-congˡ to +-congˡ ; ∙-congʳ to +-congʳ ; identityˡ to +-identityˡ ; identityʳ to +-identityʳ ; assoc to +-assoc ; comm to +-comm ) open import Algebra.Definitions _≈_ open import Relation.Binary.Reasoning.Setoid setoid module _ {n} where open B.Setoid (TE.setoid setoid n) public using () renaming (_≈_ to _≋_) -- When summing over a function from a finite set, we can pull out any value and move it to the front. sumₜ-remove : ∀ {n} {i : Fin (suc n)} t → sumₜ t ≈ lookup t i + sumₜ (remove i t) sumₜ-remove {_} {zero} t = refl sumₜ-remove {suc n} {suc i} t′ = begin t₀ + ∑t ≈⟨ +-congˡ (sumₜ-remove t) ⟩ t₀ + (tᵢ + ∑t′) ≈⟨ solve 3 (λ x y z → x ⊕ (y ⊕ z) ⊜ y ⊕ (x ⊕ z)) refl t₀ tᵢ ∑t′ ⟩ tᵢ + (t₀ + ∑t′) ∎ where t = tail t′ t₀ = head t′ tᵢ = lookup t i ∑t = sumₜ t ∑t′ = sumₜ (remove i t) -- '_≈_' is a congruence over 'sumTable n'. sumₜ-cong-≈ : ∀ {n} → sumₜ {n} Preserves _≋_ ⟶ _≈_ sumₜ-cong-≈ {zero} p = refl sumₜ-cong-≈ {suc n} p = +-cong (p _) (sumₜ-cong-≈ (p ∘ suc)) -- '_≡_' is a congruence over 'sum n'. sumₜ-cong-≡ : ∀ {n} → sumₜ {n} Preserves _≗_ ⟶ _≡_ sumₜ-cong-≡ {zero} p = P.refl sumₜ-cong-≡ {suc n} p = P.cong₂ _+_ (p _) (sumₜ-cong-≡ (p ∘ suc)) -- If addition is idempotent on a particular value 'x', then summing over a -- nonzero number of copies of 'x' gives back 'x'. sumₜ-idem-replicate : ∀ n {x} → _+_ IdempotentOn x → sumₜ (replicate {n = suc n} x) ≈ x sumₜ-idem-replicate zero idem = +-identityʳ _ sumₜ-idem-replicate (suc n) {x} idem = begin x + (x + sumₜ (replicate {n = n} x)) ≈⟨ sym (+-assoc _ _ _) ⟩ (x + x) + sumₜ (replicate {n = n} x) ≈⟨ +-congʳ idem ⟩ x + sumₜ (replicate {n = n} x) ≈⟨ sumₜ-idem-replicate n idem ⟩ x ∎ -- The sum over the constantly zero function is zero. sumₜ-zero : ∀ n → sumₜ (replicate {n = n} 0#) ≈ 0# sumₜ-zero n = begin sumₜ (replicate {n = n} 0#) ≈⟨ sym (+-identityˡ _) ⟩ 0# + sumₜ (replicate {n = n} 0#) ≈⟨ sumₜ-idem-replicate n (+-identityˡ 0#) ⟩ 0# ∎ -- The '∑' operator distributes over addition. ∑-distrib-+ : ∀ n (f g : Fin n → Carrier) → ∑[ i < n ] (f i + g i) ≈ ∑[ i < n ] f i + ∑[ i < n ] g i ∑-distrib-+ zero f g = sym (+-identityˡ _) ∑-distrib-+ (suc n) f g = begin f₀ + g₀ + ∑fg ≈⟨ +-assoc _ _ _ ⟩ f₀ + (g₀ + ∑fg) ≈⟨ +-congˡ (+-congˡ (∑-distrib-+ n _ _)) ⟩ f₀ + (g₀ + (∑f + ∑g)) ≈⟨ solve 4 (λ a b c d → a ⊕ (c ⊕ (b ⊕ d)) ⊜ (a ⊕ b) ⊕ (c ⊕ d)) refl f₀ ∑f g₀ ∑g ⟩ (f₀ + ∑f) + (g₀ + ∑g) ∎ where f₀ = f zero g₀ = g zero ∑f = ∑[ i < n ] f (suc i) ∑g = ∑[ i < n ] g (suc i) ∑fg = ∑[ i < n ] (f (suc i) + g (suc i)) -- The '∑' operator commutes with itself. ∑-comm : ∀ n m (f : Fin n → Fin m → Carrier) → ∑[ i < n ] ∑[ j < m ] f i j ≈ ∑[ j < m ] ∑[ i < n ] f i j ∑-comm zero m f = sym (sumₜ-zero m) ∑-comm (suc n) m f = begin ∑[ j < m ] f zero j + ∑[ i < n ] ∑[ j < m ] f (suc i) j ≈⟨ +-congˡ (∑-comm n m _) ⟩ ∑[ j < m ] f zero j + ∑[ j < m ] ∑[ i < n ] f (suc i) j ≈⟨ sym (∑-distrib-+ m _ _) ⟩ ∑[ j < m ] (f zero j + ∑[ i < n ] f (suc i) j) ∎ -- Any permutation of a table has the same sum as the original. sumₜ-permute : ∀ {m n} t (π : Permutation m n) → sumₜ t ≈ sumₜ (permute π t) sumₜ-permute {zero} {zero} t π = refl sumₜ-permute {zero} {suc n} t π = contradiction π (Perm.refute λ()) sumₜ-permute {suc m} {zero} t π = contradiction π (Perm.refute λ()) sumₜ-permute {suc m} {suc n} t π = begin sumₜ t ≡⟨⟩ lookup t 0i + sumₜ (remove 0i t) ≡⟨ P.cong₂ _+_ (P.cong (lookup t) (P.sym (Perm.inverseʳ π))) P.refl ⟩ lookup πt (π ⟨$⟩ˡ 0i) + sumₜ (remove 0i t) ≈⟨ +-congˡ (sumₜ-permute (remove 0i t) (Perm.remove (π ⟨$⟩ˡ 0i) π)) ⟩ lookup πt (π ⟨$⟩ˡ 0i) + sumₜ (permute (Perm.remove (π ⟨$⟩ˡ 0i) π) (remove 0i t)) ≡⟨ P.cong₂ _+_ P.refl (sumₜ-cong-≡ (P.sym ∘ TP.remove-permute π 0i t)) ⟩ lookup πt (π ⟨$⟩ˡ 0i) + sumₜ (remove (π ⟨$⟩ˡ 0i) πt) ≈⟨ sym (sumₜ-remove (permute π t)) ⟩ sumₜ πt ∎ where 0i = zero πt = permute π t ∑-permute : ∀ {m n} f (π : Permutation m n) → ∑[ i < n ] f i ≈ ∑[ i < m ] f (π ⟨$⟩ʳ i) ∑-permute = sumₜ-permute ∘ tabulate -- If the function takes the same value at 'i' and 'j', then transposing 'i' and -- 'j' then selecting 'j' is the same as selecting 'i'. select-transpose : ∀ {n} t (i j : Fin n) → lookup t i ≈ lookup t j → ∀ k → (lookup (select 0# j t) ∘ PermC.transpose i j) k ≈ lookup (select 0# i t) k select-transpose _ i j e k with k FP.≟ i ... | true because _ rewrite dec-true (j FP.≟ j) P.refl = sym e ... | false because [k≢i] with k FP.≟ j ... | true because [k≡j] rewrite dec-false (i FP.≟ j) (invert [k≢i] ∘ P.trans (invert [k≡j]) ∘ P.sym) = refl ... | false because [k≢j] rewrite dec-false (k FP.≟ j) (invert [k≢j]) = refl -- Summing over a pulse gives you the single value picked out by the pulse. sumₜ-select : ∀ {n i} (t : Table Carrier n) → sumₜ (select 0# i t) ≈ lookup t i sumₜ-select {suc n} {i} t = begin sumₜ (select 0# i t) ≈⟨ sumₜ-remove {i = i} (select 0# i t) ⟩ lookup (select 0# i t) i + sumₜ (remove i (select 0# i t)) ≡⟨ P.cong₂ _+_ (TP.select-lookup t) (sumₜ-cong-≡ (TP.select-remove i t)) ⟩ lookup t i + sumₜ (replicate {n = n} 0#) ≈⟨ +-congˡ (sumₜ-zero n) ⟩ lookup t i + 0# ≈⟨ +-identityʳ _ ⟩ lookup t i ∎ -- Converting to a table then summing is the same as summing the original list sumₜ-fromList : ∀ xs → sumₜ (fromList xs) ≡ sumₗ xs sumₜ-fromList [] = P.refl sumₜ-fromList (x ∷ xs) = P.cong (_ +_) (sumₜ-fromList xs) -- Converting to a list then summing is the same as summing the original table sumₜ-toList : ∀ {n} (t : Table Carrier n) → sumₜ t ≡ sumₗ (toList t) sumₜ-toList {zero} _ = P.refl sumₜ-toList {suc n} _ = P.cong (_ +_) (sumₜ-toList {n} _)
41.973404
156
0.548219
13691d8be8bdf53698a63d63a907498e766e6eaf
982
agda
Agda
theorems/homotopy/CircleHSpace.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/CircleHSpace.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/CircleHSpace.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.HSpace module homotopy.CircleHSpace where ⊙S¹-hSpace : HSpaceStructure ⊙S¹ ⊙S¹-hSpace = hSpaceStructure μ μ-e-l μ-e-r μ-coh where turn-around : (x : S¹) → x == x turn-around = S¹-elim loop (↓-idf=idf-in' (∙=∙' loop loop)) module Mu = S¹Rec (idf S¹) (λ= turn-around) μ : S¹ → S¹ → S¹ μ = Mu.f μ-e-l : (x : S¹) → μ base x == x μ-e-l x = idp μ-e-r : (x : S¹) → μ x base == x μ-e-r = S¹-elim idp (↓-app=idf-in (idp ∙' loop =⟨ ∙'-unit-l loop ⟩ loop =⟨ idp ⟩ turn-around base =⟨ ! (app=-β turn-around base) ⟩ ap (λ z → z base) (λ= turn-around) =⟨ ! (Mu.loop-β |in-ctx (ap (λ z → z base))) ⟩ ap (λ z → z base) (ap μ loop) =⟨ ! (ap-∘ (λ z → z base) μ loop) ⟩ ap (λ z → μ z base) loop =⟨ ! (∙-unit-r _) ⟩ ap (λ z → μ z base) loop ∙ idp ∎)) μ-coh = idp
29.757576
88
0.479633
3469271934ce1ed70461a3855b62d2f508a6648b
6,167
agda
Agda
src/Categories/Diagram/Limit/Properties.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Diagram/Limit/Properties.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
src/Categories/Diagram/Limit/Properties.agda
glittershark/agda-categories
2128fab9e8d341364cbf784bb17c547bf73891de
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor module Categories.Diagram.Limit.Properties {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} where open import Function.Equality using (Π) open import Relation.Binary using (Setoid) open import Categories.Category.Instance.Setoids open import Categories.Diagram.Cone.Properties open import Categories.Functor.Hom open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; module ≃) open import Categories.Morphism.Reasoning C open import Categories.Morphism C import Categories.Category.Construction.Cones as Con import Categories.Diagram.Limit as Lim open Π open Hom C private module J = Category J module C = Category C open C variable X Y Z : Obj f g h : X ⇒ Y open HomReasoning -- Hom functor preserves limits in C module _ (W : Obj) {F : Functor J C} (lim : Lim.Limit F) where private module F = Functor F module LF = Lim F module CF = Con F module lim = LF.Limit lim open lim HomF : Functor J (Setoids ℓ e) HomF = Hom[ W ,-] ∘F F module LHomF = Lim HomF module CHomF = Con HomF hom-resp-limit : LHomF.Limit hom-resp-limit = record { terminal = record { ⊤ = ⊤ ; ! = ! ; !-unique = !-unique } } where ⊤ : CHomF.Cone ⊤ = record { N = hom-setoid {W} {apex} ; apex = record { ψ = λ X → record { _⟨$⟩_ = λ f → proj X ∘ f ; cong = ∘-resp-≈ʳ } ; commute = λ {X Y} f {h i} eq → begin F.F₁ f ∘ (proj X ∘ h) ∘ C.id ≈⟨ center⁻¹ (limit-commute f) identityʳ ⟩ proj Y ∘ h ≈⟨ refl⟩∘⟨ eq ⟩ proj Y ∘ i ∎ } } KW : (K : CHomF.Cone) → Setoid.Carrier (CHomF.Cone.N K) → CF.Cone KW K x = record { N = W ; apex = record { ψ = λ X → K.ψ X ⟨$⟩ x ; commute = λ f → ⟺ (∘-resp-≈ʳ identityʳ) ○ K.commute f (Setoid.refl K.N) } } where module K = CHomF.Cone K ! : ∀ {K : CHomF.Cone} → CHomF.Cones [ K , ⊤ ] ! {K} = record { arr = record { _⟨$⟩_ = λ x → rep (KW K x) ; cong = λ {x y} eq → LF.ψ-≈⇒rep-≈ W (CF.Cone.apex (KW K x)) (CF.Cone.apex (KW K y)) lim (λ A → cong (K.ψ A) eq) } ; commute = λ {X} {x y} eq → begin proj X ∘ rep (KW K x) ≈⟨ lim.commute ⟩ K.ψ X ⟨$⟩ x ≈⟨ cong (K.ψ X) eq ⟩ K.ψ X ⟨$⟩ y ∎ } where module K = CHomF.Cone K !-unique : ∀ {K : CHomF.Cone} (f : CHomF.Cones [ K , ⊤ ]) → CHomF.Cones [ ! ≈ f ] !-unique {K} f {x} {y} x≈y = begin rep (KW K x) ≈⟨ terminal.!-unique f′ ⟩ f.arr ⟨$⟩ x ≈⟨ cong f.arr x≈y ⟩ f.arr ⟨$⟩ y ∎ where module K = CHomF.Cone K module f = CHomF.Cone⇒ f f′ : CF.Cones [ KW K x , limit ] f′ = record { arr = f.arr ⟨$⟩ x ; commute = f.commute (Setoid.refl K.N) } -- natural isomorphisms respects limits module _ {F G : Functor J C} (F≃G : F ≃ G) where private module F = Functor F module G = Functor G module LF = Lim F module LG = Lim G open NaturalIsomorphism F≃G ≃-resp-lim : LF.Limit → LG.Limit ≃-resp-lim L = record { terminal = record { ⊤ = record { apex = record { ψ = λ j → ⇒.η j ∘ proj j ; commute = λ {X Y} f → begin G.F₁ f ∘ ⇒.η X ∘ proj X ≈⟨ pullˡ (⇒.sym-commute f) ⟩ (⇒.η Y ∘ F.F₁ f) ∘ proj X ≈⟨ pullʳ (limit-commute f) ⟩ ⇒.η Y ∘ proj Y ∎ } } ; ! = λ {A} → record { arr = rep (nat-map-Cone F⇐G A) ; commute = λ {j} → assoc ○ ⟺ (switch-tofromˡ (record { iso = iso j }) (⟺ commute)) } ; !-unique = λ {K} f → let module f = Con.Cone⇒ G f in terminal.!-unique record { arr = f.arr ; commute = λ {j} → switch-fromtoˡ (record { iso = iso j }) (sym-assoc ○ f.commute) } } } where open LF.Limit L ≃⇒Cone⇒ : ∀ (Lf : LF.Limit) (Lg : LG.Limit) → Con.Cones G [ LG.Limit.limit (≃-resp-lim Lf) , LG.Limit.limit Lg ] ≃⇒Cone⇒ Lf Lg = rep-cone (LG.Limit.limit (≃-resp-lim Lf)) where open LG.Limit Lg ≃⇒lim≅ : ∀ {F G : Functor J C} (F≃G : F ≃ G) (Lf : Lim.Limit F) (Lg : Lim.Limit G) → Lim.Limit.apex Lf ≅ Lim.Limit.apex Lg ≃⇒lim≅ {F = F} {G} F≃G Lf Lg = record { from = arr (≃⇒Cone⇒ F≃G Lf Lg) ; to = arr (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf) ; iso = record { isoˡ = Lf.terminal.⊤-id record { commute = λ {j} → begin Lf.proj j ∘ arr (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf) ∘ arr (≃⇒Cone⇒ F≃G Lf Lg) ≈⟨ pullˡ (⇒-commute (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf)) ⟩ (⇐.η j ∘ Lg.proj j) ∘ arr (≃⇒Cone⇒ F≃G Lf Lg) ≈⟨ pullʳ (⇒-commute (≃⇒Cone⇒ F≃G Lf Lg)) ⟩ ⇐.η j ∘ ⇒.η j ∘ Lf.proj j ≈⟨ cancelˡ (iso.isoˡ j) ⟩ Lf.proj j ∎ } ; isoʳ = Lg.terminal.⊤-id record { commute = λ {j} → begin Lg.proj j ∘ arr (≃⇒Cone⇒ F≃G Lf Lg) ∘ arr (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf) ≈⟨ pullˡ (⇒-commute (≃⇒Cone⇒ F≃G Lf Lg)) ⟩ (⇒.η j ∘ Lf.proj j) ∘ arr (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf) ≈⟨ pullʳ (⇒-commute (≃⇒Cone⇒ (≃.sym F≃G) Lg Lf)) ⟩ ⇒.η j ∘ ⇐.η j ∘ Lg.proj j ≈⟨ cancelˡ (iso.isoʳ j) ⟩ Lg.proj j ∎ } } } where open Con.Cone⇒ renaming (commute to ⇒-commute) module Lf = Lim.Limit Lf module Lg = Lim.Limit Lg open NaturalIsomorphism F≃G
35.039773
128
0.453543
43dd01afb286442db9f772571e3ddb38d8222184
1,762
agda
Agda
test/Fail/Issue3404.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3404.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3404.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-11-23, issue #3404, regression in Agda 2.5.4 -- -- The positivity checker judged postulates in mutual blocks -- as constants, since it found no uses of its arguments. -- -- The natural cure is to not unleash the positivity checker -- onto things that do not have a definition, such as postulates. open import Agda.Builtin.Nat open import Agda.Builtin.Equality cong : ∀{A B : Set} (f : A → B) {x y : A} (eq : x ≡ y) → f x ≡ f y cong f refl = refl trans : {A : Set} {a b c : A} → a ≡ b → b ≡ c → a ≡ c trans refl refl = refl module UnsolvedMeta where postulate A : Set mutual postulate B : A → Set -- Problem WAS: B is judged constant postulate f : (a : A) → B a g : (a : A) → B a g a = f _ -- WAS: yellow -- Should solve. -- False golfing: module Word64 where postulate Word64 : Set {-# BUILTIN WORD64 Word64 #-} primitive primWord64ToNat : Word64 → Nat mutual primitive primWord64FromNat : Nat → Word64 -- Before fix of #3404, positivity checker judged -- a primitive in a mutual block as constant. fromNatConst : ∀ x y → primWord64FromNat x ≡ primWord64FromNat y fromNatConst x y = refl -- Should fail with error like: -- -- x != y of type Nat -- when checking that the expression refl has type -- primWord64FromNat x ≡ primWord64FromNat y 0≡1 : 0 ≡ 1 0≡1 = cong primWord64ToNat (fromNatConst 0 1) -- Guillaume Brunerie's original example: mutual postulate 2^ : Nat → Nat -- If this function is deemed constant, 2^0 : 1 ≡ 2^ 0 -- then these equalities can be composed. 2^1 : 2^ 1 ≡ 2 bad : 1 ≡ 2 bad = trans 2^0 2^1 -- Should fail with error like: -- -- 1 != 0 of type Nat -- when checking that the expression 2^1 has type 2^ 0 ≡ 2
25.911765
73
0.643019
8bc7f756592962b0709bbc0daeed36815ea6c8ce
7,025
agda
Agda
test/Compiler/with-stdlib/dimensions.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/with-stdlib/dimensions.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
test/Compiler/with-stdlib/dimensions.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
null
null
null
-- Source: https://raw.githubusercontent.com/gallais/potpourri/master/agda/poc/dimensions/dimensions.agda -- Author: Original by gallais, modified for test suite by P. Hausmann module dimensions where open import Data.Nat as ℕ using (ℕ) open import Data.Nat.LCM open import Data.Nat.DivMod hiding (_/_) open import Data.Integer as ℤ using (ℤ ; +_) open import Data.Unit.Polymorphic using (⊤) open import Function open import Relation.Nullary.Decidable ------------------------------------------------ -- DIMENSIONS -- record { kilogram = x ; meter = y ; second = z } -- corresponds to the dimension: kg^x * m^y * s^z module Dimension where record dimension : Set where field kilogram : ℤ meter : ℤ second : ℤ open dimension public _*_ : (d e : dimension) → dimension d * e = record { kilogram = kilogram d ℤ.+ kilogram e ; meter = meter d ℤ.+ meter e ; second = second d ℤ.+ second e } _/_ : (d e : dimension) → dimension d / e = record { kilogram = kilogram d ℤ.- kilogram e ; meter = meter d ℤ.- meter e ; second = second d ℤ.- second e } open Dimension using (dimension ; kilogram ; meter ; second) kgram met sec : dimension kgram = record { kilogram = + 1 ; meter = + 0 ; second = + 0 } met = record { kilogram = + 0 ; meter = + 1 ; second = + 0 } sec = record { kilogram = + 0 ; meter = + 0 ; second = + 1 } ≠0-mult : ∀ (m n : ℕ) (hm : False (m ℕ.≟ 0)) (hn : False (n ℕ.≟ 0)) → False (m ℕ.* n ℕ.≟ 0) ≠0-mult ℕ.zero n () hn ≠0-mult m 0 hm () ≠0-mult (ℕ.suc m) (ℕ.suc n) hm hn = _ ------------------------------------------------ -- UNITS -- A unit is a dimension together with a coefficient -- 60 , _ # sec represents a minute (60 seconds) module Unit where infix 1 _,_#_ data unit : Set where _,_#_ : (n : ℕ) (hn : False (n ℕ.≟ 0)) (d : dimension) → unit coeff : (u : unit) → ℕ coeff (k , _ # _) = k coeff≠0 : (u : unit) → False (coeff u ℕ.≟ 0) coeff≠0 (k , hk # _) = hk _*_ : (u v : unit) → unit (k , hk # d) * (l , hl # e) = ( k ℕ.* l ) , (≠0-mult k l hk hl) # (d Dimension.* e) _/_ : (u v : unit) {≠0 : False (((coeff u) div (coeff v)) {coeff≠0 v} ℕ.≟ 0)} → unit _/_ (k , hk # d) (l , hl # e) {≠0} = (k div l) {hl} , ≠0 # (d Dimension./ e) open Unit using (unit ; _,_#_ ; coeff ; coeff≠0) ------------------------------------------------ -- VALUES -- Finally, values are natural numbers repackaged -- with a unit module Values where data [_] : (d : unit) → Set where ⟨_∶_⟩ : (value : ℕ) (d : unit) → [ d ] val : ∀ {d} → [ d ] → ℕ val ⟨ m ∶ _ ⟩ = m infix 3 _+_ infix 4 _*_ _/_ _+_ : ∀ {k hk l hl m hm} {d : dimension} (v₁ : [ k , hk # d ]) (v₂ : [ l , hl # d ]) → [ m , hm # d ] _+_ {k} {hk} {l} {hl} {m} {hm} ⟨ v₁ ∶ ._ ⟩ ⟨ v₂ ∶ ._ ⟩ = ⟨ ((k ℕ.* v₁ ℕ.+ l ℕ.* v₂) div m) {hm} ∶ _ ⟩ _:+_ : ∀ {k hk l hl} {d : dimension} (v₁ : [ k , hk # d ]) (v₂ : [ l , hl # d ]) → [ 1 , _ # d ] _:+_ = _+_ _*_ : ∀ {k hk l hl m hm} {d e : dimension} (vd : [ k , hk # d ]) (ve : [ l , hl # e ]) → [ m , hm # (d Dimension.* e) ] _*_ {k} {hk} {l} {hl} {m} {hm} ⟨ vd ∶ ._ ⟩ ⟨ ve ∶ ._ ⟩ = ⟨ ((k ℕ.* vd ℕ.* l ℕ.* ve) div m) {hm} ∶ _ ⟩ _:*_ : ∀ {k hk l hl} {d e : dimension} (vd : [ k , hk # d ]) (ve : [ l , hl # e ]) → [ 1 , _ # (d Dimension.* e) ] _:*_ = _*_ _/_ : ∀ {k hk l hl m hm} {d e : dimension} (vd : [ k , hk # d ]) (ve : [ l , hl # e ]) {≠0 : False (val ve ℕ.≟ 0)} → [ m , hm # (d Dimension./ e) ] _/_ {k} {hk} {l} {hl} {m} {hm} ⟨ vd ∶ ._ ⟩ ⟨ ve ∶ ._ ⟩ {≠0} = ⟨ ((k ℕ.* vd) div (l ℕ.* ve ℕ.* m)) {≠0-mult _ _ (≠0-mult _ _ hl ≠0) hm} ∶ _ ⟩ ↑ : ∀ {k hk l hl d} → [ k , hk # d ] → [ l , hl # d ] ↑ {k} {hk} {l} {hl} ⟨ v ∶ ._ ⟩ = ⟨ ((k ℕ.* v) div l) {hl} ∶ _ ⟩ open Values ------------------------------------------------ -- SI PREFIXES -- They are simply unit-modifying functions. infix 5 _**_ _**_ : (k : ℕ) {hk : False $ k ℕ.≟ 0} (d : dimension) → unit _**_ k {hk} d = k , hk # d centi : (u : unit) {≠0 : False (coeff u div 100 ℕ.≟ 0)} → unit centi (k , hk # d) {≠0} = _ , ≠0 # d deci : (u : unit) {≠0 : False (coeff u div 10 ℕ.≟ 0)} → unit deci (k , hk # d) {≠0} = _ , ≠0 # d deca hecto kilo : unit → unit deca (k , hk # d) = 10 ℕ.* k , ≠0-mult 10 k _ hk # d hecto (k , hk # d) = 100 ℕ.* k , ≠0-mult 100 k _ hk # d kilo (k , hk # d) = 1000 ℕ.* k , ≠0-mult 1000 k _ hk # d cst : unit cst = let dcst = record { kilogram = + 0 ; meter = + 0 ; second = + 0 } in 1 , _ # dcst infix 3 κ_ κ_ : (n : ℕ) → [ cst ] κ n = ⟨ n ∶ cst ⟩ ------------------------------------------------ -- EXAMPLES s min hr : unit s = 1 ** sec min = 60 ** sec hr = 60 ℕ.* 60 ** sec m : unit m = 1 ** met 1s : [ s ] 1s = ⟨ 1 ∶ s ⟩ 1min : [ min ] 1min = ⟨ 1 ∶ min ⟩ 1hr 2hr : [ min ] 1hr = ⟨ 60 ∶ min ⟩ 2hr = 1hr + 1hr 1min² : [ s Unit.* s ] 1min² = 1min * 1min 60km : [ kilo m ] 60km = ⟨ 60 ∶ kilo m ⟩ 60hm : [ hecto m ] 60hm = ⟨ 60 ∶ hecto m ⟩ 60hm/min : [ deca m Unit./ s ] 60hm/min = ⟨ 60 ∶ hecto m ⟩ / ⟨ 1 ∶ min ⟩ acc : unit acc = m Unit./ (s Unit.* s) spd : unit spd = m Unit./ s ------------------------------------------------ -- APPLICATION: -- free fall of a ball with an initial horizontal speed. record point : Set where field accx accy : [ acc ] vx vy : [ spd ] x y : [ m ] open point public g : [ acc ] g = ⟨ 10 ∶ _ ⟩ newton : ∀ (dt : [ s ]) (p : point) → point newton dt p = record { accx = accx p ; accy = accy p + g ; vx = vx p + (accx p :* dt) ; vy = vy p + (accy p :* dt) ; x = x p + (vx p :* dt) ; y = y p + (vy p :* dt) } ------------------------------------------------ -- TRACING -- the initial condition a point is in base : point base = record { accx = ⟨ 0 ∶ _ ⟩ ; accy = ⟨ 0 ∶ _ ⟩ ; vx = ⟨ 45 ∶ _ ⟩ ; vy = ⟨ 0 ∶ _ ⟩ ; x = ⟨ 0 ∶ _ ⟩ ; y = ⟨ 0 ∶ _ ⟩ } -- the consecutive steps of its fall open import Data.Vec as V using (Vec) throw : (n : ℕ) (dt : [ s ]) → point → Vec point (ℕ.suc n) throw ℕ.zero dt p = p V.∷ V.[] throw (ℕ.suc n) dt p = p V.∷ throw n dt (newton dt p) -- the display function generating the output open import Data.String renaming (_++_ to _+s+_) open import IO import IO.Primitive open import Codata.Musical.Colist open import Data.Nat.Show as Nat open import Level using (0ℓ) printPoint : point → IO {0ℓ} ⊤ printPoint p = putStrLn ((Nat.show (val (x p))) +s+ ";" +s+ Nat.show (val (y p))) main : IO.Primitive.IO ⊤ main = run (Colist.mapM printPoint (Codata.Musical.Colist.fromList trace) >> return _) where trace = V.toList $ throw 15 ⟨ 1 ∶ s ⟩ base
26.609848
105
0.455943
22f11e5d4db856fbe41b387b626c1fe95a4db081
5,186
agda
Agda
agda-stdlib/README/Inspect.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/README/Inspect.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/README/Inspect.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Explaining how to use the inspect idiom and elaborating on the way -- it is implemented in the standard library. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module README.Inspect where open import Data.Nat.Base open import Data.Nat.Properties open import Data.Product open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ -- Using inspect -- We start with the definition of a (silly) predicate: `Plus m n p` states -- that `m + n` is equal to `p` in a rather convoluted way. Crucially, it -- distinguishes two cases: whether `p` is 0 or not. Plus-eq : (m n p : ℕ) → Set Plus-eq m n zero = m ≡ 0 × n ≡ 0 Plus-eq m n p@(suc _) = m + n ≡ p -- A sensible lemma to prove of this predicate is that whenever `p` is literally -- `m + n` then `Plus m n p` holds. That is to say `∀ m n → Plus m n (m + n)`. -- To be able to prove `Plus-eq m n (m + n)`, we need `m + n` to have either -- the shape `zero` or `suc _` so that `Plus-eq` may reduce. -- We could follow the way `_+_` computes by mimicking the same splitting -- strategy, thus forcing `m + n` to reduce: plus-eq-+ : ∀ m n → Plus-eq m n (m + n) plus-eq-+ zero zero = refl , refl plus-eq-+ zero (suc n) = refl plus-eq-+ (suc m) n = refl -- Or we could attempt to compute `m + n` first and check whether the result -- is `zero` or `suc p`. By using `with m + n` and naming the result `p`, -- the goal will become `Plus-eq m n p`. We can further refine this definition -- by distinguishing two cases like so: -- plus-eq-with : ∀ m n → Plus-eq m n (m + n) -- plus-eq-with m n with m + n -- ... | zero = {!!} -- ... | suc p = {!!} -- The problem however is that we have abolutely lost the connection between the -- computation `m + n` and its result `p`. Which makes the two goals unprovable: -- 1. `m ≡ 0 × n ≡ 0`, with no assumption whatsoever -- 2. `m + n ≡ suc p`, with no assumption either -- By using the `with` construct, we have generated an auxiliary function that -- looks like this: -- `plus-eq-with-aux : ∀ m n p → Plus-eq m n p` -- when we would have wanted a more precise type of the form: -- `plus-eq-aux : ∀ m n p → m + n ≡ p → Plus-eq m n p`. -- This is where we can use `inspect`. By using `with f x | inspect f x`, -- we get both a `y` which is the result of `f x` and a proof that `f x ≡ y`. -- Splitting on the result of `m + n`, we get two cases: -- 1. `m ≡ 0 × n ≡ 0` under the assumption that `m + n ≡ zero` -- 2. `m + n ≡ suc p` under the assumption that `m + n ≡ suc p` -- The first one can be discharged using lemmas from Data.Nat.Properties and -- the second one is trivial. plus-eq-with : ∀ m n → Plus-eq m n (m + n) plus-eq-with m n with m + n | inspect (m +_) n ... | zero | [ m+n≡0 ] = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0 ... | suc p | [ m+n≡1+p ] = m+n≡1+p ------------------------------------------------------------------------ -- Understanding the implementation of inspect -- So why is it that we have to go through the record type `Reveal_·_is_` -- and the ̀inspect` function? The fact is: we don't have to if we write -- our own auxiliary lemma: plus-eq-aux : ∀ m n → Plus-eq m n (m + n) plus-eq-aux m n = aux m n (m + n) refl where aux : ∀ m n p → m + n ≡ p → Plus-eq m n p aux m n zero m+n≡0 = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0 aux m n (suc p) m+n≡1+p = m+n≡1+p -- The problem is that when we write ̀with f x | pr`, `with` decides to call `y` -- the result `f x` and to replace *all* of the occurences of `f x` in the type -- of `pr` with `y`. That is to say that if we were to write: -- plus-eq-naïve : ∀ m n → Plus-eq m n (m + n) -- plus-eq-naïve m n with m + n | refl {x = m + n} -- ... | p | eq = {!!} -- then `with` would abstract `m + n` as `p` on *both* sides of the equality -- proven by `refl` thus giving us the following goal with an extra, useless, -- assumption: -- 1. `Plus-eq m n p` under the assumption that `p ≡ p` -- So how does `inspect` work? The standard library uses a more general version -- of the following type and function: record MyReveal_·_is_ (f : ℕ → ℕ) (x y : ℕ) : Set where constructor [_] field eq : f x ≡ y my-inspect : ∀ f n → MyReveal f · n is (f n) my-inspect f n = [ refl ] -- Given that `inspect` has the type `∀ f n → Reveal f · n is (f n)`, when we -- write `with f n | inspect f n`, the only `f n` that can be abstracted in the -- type of `inspect f n` is the third argument to `Reveal_·_is_`. -- That is to say that the auxiliary definition generated looks like this: plus-eq-reveal : ∀ m n → Plus-eq m n (m + n) plus-eq-reveal m n = aux m n (m + n) (my-inspect (m +_) n) where aux : ∀ m n p → MyReveal (m +_) · n is p → Plus-eq m n p aux m n zero [ m+n≡0 ] = m+n≡0⇒m≡0 m m+n≡0 , m+n≡0⇒n≡0 m m+n≡0 aux m n (suc p) [ m+n≡1+p ] = m+n≡1+p -- At the cost of having to unwrap the constructor `[_]` around the equality -- we care about, we can keep relying on `with` and avoid having to roll out -- handwritten auxiliary definitions.
38.992481
80
0.590629
526ea83158572f2e7d450e5df71f5d17ee1797a4
22,458
agda
Agda
F2.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
F2.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
F2.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
module F2 where open import Data.Empty open import Data.Unit open import Data.Sum hiding (map; [_,_]) open import Data.Product hiding (map; ,_) open import Function using (flip) open import Relation.Binary.Core using (IsEquivalence; Reflexive; Symmetric; Transitive) open import Relation.Binary open import Groupoid infix 2 _∎ -- equational reasoning infixr 2 _≡⟨_⟩_ -- equational reasoning --------------------------------------------------------------------------- -- Paths -- these are individual paths so to speak -- should we represent a path like swap+ as a family explicitly: -- swap+ : (x : A) -> x ⇛ swapF x -- I guess we can: swap+ : (x : A) -> case x of inj1 -> swap1 x else swap2 x {-- Use pointed types instead of singletons If A={x0,x1,x2}, 1/A has three values: (x0<-x0, x0<-x1, x0<-x2) (x1<-x0, x1<-x1, x1<-x2) (x2<-x0, x2<-x1, x2<-x2) It is a fake choice between x0, x1, and x2 (some negative information). You base yourself at x0 for example and enforce that any other value can be mapped to x0. So think of a value of type 1/A as an uncertainty about which value of A we have. It could be x0, x1, or x2 but at the end it makes no difference. There is no choice. You can manipulate a value of type 1/A (x0<-x0, x0<-x1, x0<-x2) by with a path to some arbitrary path to b0 for example: (b0<-x0<-x0, b0<-x0<-x1, b0<-x0<-x2) eta_3 will give (x0<-x0, x0<-x1, x0<-x2, x0) for example but any other combination is equivalent. epsilon_3 will take (x0<-x0, x0<-x1, x0<-x2) and one actual xi which is now certain; we can resolve our previous uncertainty by following the path from xi to x0 thus eliminating the fake choice we seemed to have. Explain connection to negative information. Knowing head or tails is 1 bits. Giving you a choice between heads and tails and then cooking this so that heads=tails takes away your choice. --} data _⇛_ : {A B : Set} → (x : A) → (y : B) → Set₁ where -- + unite₊⇛ : {A : Set} {x : A} → _⇛_ {⊥ ⊎ A} {A} (inj₂ x) x uniti₊⇛ : {A : Set} {x : A} → _⇛_ {A} {⊥ ⊎ A} x (inj₂ x) swap₁₊⇛ : {A B : Set} {x : A} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₁ x) (inj₂ x) swap₂₊⇛ : {A B : Set} {y : B} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₂ y) (inj₁ y) assocl₁₊⇛ : {A B C : Set} {x : A} → _⇛_ {A ⊎ (B ⊎ C)} {(A ⊎ B) ⊎ C} (inj₁ x) (inj₁ (inj₁ x)) assocl₂₁₊⇛ : {A B C : Set} {y : B} → _⇛_ {A ⊎ (B ⊎ C)} {(A ⊎ B) ⊎ C} (inj₂ (inj₁ y)) (inj₁ (inj₂ y)) assocl₂₂₊⇛ : {A B C : Set} {z : C} → _⇛_ {A ⊎ (B ⊎ C)} {(A ⊎ B) ⊎ C} (inj₂ (inj₂ z)) (inj₂ z) assocr₁₁₊⇛ : {A B C : Set} {x : A} → _⇛_ {(A ⊎ B) ⊎ C} {A ⊎ (B ⊎ C)} (inj₁ (inj₁ x)) (inj₁ x) assocr₁₂₊⇛ : {A B C : Set} {y : B} → _⇛_ {(A ⊎ B) ⊎ C} {A ⊎ (B ⊎ C)} (inj₁ (inj₂ y)) (inj₂ (inj₁ y)) assocr₂₊⇛ : {A B C : Set} {z : C} → _⇛_ {(A ⊎ B) ⊎ C} {A ⊎ (B ⊎ C)} (inj₂ z) (inj₂ (inj₂ z)) -- * unite⋆⇛ : {A : Set} {x : A} → _⇛_ {⊤ × A} {A} (tt , x) x uniti⋆⇛ : {A : Set} {x : A} → _⇛_ {A} {⊤ × A} x (tt , x) swap⋆⇛ : {A B : Set} {x : A} {y : B} → _⇛_ {A × B} {B × A} (x , y) (y , x) assocl⋆⇛ : {A B C : Set} {x : A} {y : B} {z : C} → _⇛_ {A × (B × C)} {(A × B) × C} (x , (y , z)) ((x , y) , z) assocr⋆⇛ : {A B C : Set} {x : A} {y : B} {z : C} → _⇛_ {(A × B) × C} {A × (B × C)} ((x , y) , z) (x , (y , z)) -- distributivity dist₁⇛ : {A B C : Set} {x : A} {z : C} → _⇛_ {(A ⊎ B) × C} {(A × C) ⊎ (B × C)} (inj₁ x , z) (inj₁ (x , z)) dist₂⇛ : {A B C : Set} {y : B} {z : C} → _⇛_ {(A ⊎ B) × C} {(A × C) ⊎ (B × C)} (inj₂ y , z) (inj₂ (y , z)) factor₁⇛ : {A B C : Set} {x : A} {z : C} → _⇛_ {(A × C) ⊎ (B × C)} {(A ⊎ B) × C} (inj₁ (x , z)) (inj₁ x , z) factor₂⇛ : {A B C : Set} {y : B} {z : C} → _⇛_ {(A × C) ⊎ (B × C)} {(A ⊎ B) × C} (inj₂ (y , z)) (inj₂ y , z) dist0⇛ : {A : Set} {• : ⊥} {x : A} → _⇛_ {⊥ × A} {⊥} (• , x) • factor0⇛ : {A : Set} {• : ⊥} {x : A} → _⇛_ {⊥} {⊥ × A} • (• , x) -- congruence id⇛ : {A : Set} → (x : A) → x ⇛ x sym⇛ : {A B : Set} {x : A} {y : B} → x ⇛ y → y ⇛ x trans⇛ : {A B C : Set} {x : A} {y : B} {z : C} → x ⇛ y → y ⇛ z → x ⇛ z plus₁⇛ : {A B C D : Set} {x : A} {z : C} → x ⇛ z → _⇛_ {A ⊎ B} {C ⊎ D} (inj₁ x) (inj₁ z) plus₂⇛ : {A B C D : Set} {y : B} {w : D} → y ⇛ w → _⇛_ {A ⊎ B} {C ⊎ D} (inj₂ y) (inj₂ w) times⇛ : {A B C D : Set} {x : A} {y : B} {z : C} {w : D} → x ⇛ z → y ⇛ w → _⇛_ {A × B} {C × D} (x , y) (z , w) -- permute -- for any given type, we should be able to generate permutations mapping any -- point to any other type -- Introduce equational reasoning syntax to simplify proofs _≡⟨_⟩_ : {A B C : Set} (x : A) {y : B} {z : C} → (x ⇛ y) → (y ⇛ z) → (x ⇛ z) _ ≡⟨ p ⟩ q = trans⇛ p q bydef : {A : Set} {x : A} → (x ⇛ x) bydef {A} {x} = id⇛ x _∎ : {A : Set} (x : A) → x ⇛ x _∎ x = id⇛ x data Singleton {A : Set} : A → Set where singleton : (x : A) → Singleton x mutual ap : {A B : Set} {x : A} {y : B} → x ⇛ y → Singleton x → Singleton y ap {.(⊥ ⊎ A)} {A} {.(inj₂ x)} {x} unite₊⇛ (singleton .(inj₂ x)) = singleton x ap uniti₊⇛ (singleton x) = singleton (inj₂ x) ap (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₁ x)) = singleton (inj₂ x) ap (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₂ y)) = singleton (inj₁ y) ap (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) = singleton (inj₁ (inj₁ x)) ap (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) = singleton (inj₁ (inj₂ y)) ap (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) = singleton (inj₂ z) ap (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) = singleton (inj₁ x) ap (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) = singleton (inj₂ (inj₁ y)) ap (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) = singleton (inj₂ (inj₂ z)) ap {.(⊤ × A)} {A} {.(tt , x)} {x} unite⋆⇛ (singleton .(tt , x)) = singleton x ap uniti⋆⇛ (singleton x) = singleton (tt , x) ap (swap⋆⇛ {A} {B} {x} {y}) (singleton .(x , y)) = singleton (y , x) ap (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) = singleton ((x , y) , z) ap (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) = singleton (x , (y , z)) ap (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) = singleton (inj₁ (x , z)) ap (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) = singleton (inj₂ (y , z)) ap (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) = singleton (inj₁ x , z) ap (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) = singleton (inj₂ y , z) ap {.(⊥ × A)} {.⊥} {.(• , x)} {•} (dist0⇛ {A} {.•} {x}) (singleton .(• , x)) = singleton • ap factor0⇛ (singleton ()) ap (id⇛ .x) (singleton x) = singleton x ap (sym⇛ c) (singleton x) = apI c (singleton x) ap (trans⇛ c₁ c₂) (singleton x) = ap c₂ (ap c₁ (singleton x)) ap (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ x)) with ap c (singleton x) ... | singleton .z = singleton (inj₁ z) ap (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ y)) with ap c (singleton y) ... | singleton .w = singleton (inj₂ w) ap (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(x , y)) with ap c₁ (singleton x) | ap c₂ (singleton y) ... | singleton .z | singleton .w = singleton (z , w) apI : {A B : Set} {x : A} {y : B} → x ⇛ y → Singleton y → Singleton x apI unite₊⇛ (singleton x) = singleton (inj₂ x) apI {A} {.(⊥ ⊎ A)} {x} uniti₊⇛ (singleton .(inj₂ x)) = singleton x apI (swap₁₊⇛ {A} {B} {x}) (singleton .(inj₂ x)) = singleton (inj₁ x) apI (swap₂₊⇛ {A} {B} {y}) (singleton .(inj₁ y)) = singleton (inj₂ y) apI (assocl₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ (inj₁ x))) = singleton (inj₁ x) apI (assocl₂₁₊⇛ {A} {B} {C} {y}) (singleton .(inj₁ (inj₂ y))) = singleton (inj₂ (inj₁ y)) apI (assocl₂₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ z)) = singleton (inj₂ (inj₂ z)) apI (assocr₁₁₊⇛ {A} {B} {C} {x}) (singleton .(inj₁ x)) = singleton (inj₁ (inj₁ x)) apI (assocr₁₂₊⇛ {A} {B} {C} {y}) (singleton .(inj₂ (inj₁ y))) = singleton (inj₁ (inj₂ y)) apI (assocr₂₊⇛ {A} {B} {C} {z}) (singleton .(inj₂ (inj₂ z))) = singleton (inj₂ z) apI unite⋆⇛ (singleton x) = singleton (tt , x) apI {A} {.(⊤ × A)} {x} uniti⋆⇛ (singleton .(tt , x)) = singleton x apI (swap⋆⇛ {A} {B} {x} {y}) (singleton .(y , x)) = singleton (x , y) apI (assocl⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .((x , y) , z)) = singleton (x , (y , z)) apI (assocr⋆⇛ {A} {B} {C} {x} {y} {z}) (singleton .(x , (y , z))) = singleton ((x , y) , z) apI (dist₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ (x , z))) = singleton (inj₁ x , z) apI (dist₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ (y , z))) = singleton (inj₂ y , z) apI (factor₁⇛ {A} {B} {C} {x} {z}) (singleton .(inj₁ x , z)) = singleton (inj₁ (x , z)) apI (factor₂⇛ {A} {B} {C} {y} {z}) (singleton .(inj₂ y , z)) = singleton (inj₂ (y , z)) apI dist0⇛ (singleton ()) apI {.⊥} {.(⊥ × A)} {•} (factor0⇛ {A} {.•} {x}) (singleton .(• , x)) = singleton • apI (id⇛ .x) (singleton x) = singleton x apI (sym⇛ c) (singleton x) = ap c (singleton x) apI {A} {B} {x} {y} (trans⇛ c₁ c₂) (singleton .y) = apI c₁ (apI c₂ (singleton y)) apI (plus₁⇛ {A} {B} {C} {D} {x} {z} c) (singleton .(inj₁ z)) with apI c (singleton z) ... | singleton .x = singleton (inj₁ x) apI (plus₂⇛ {A} {B} {C} {D} {y} {w} c) (singleton .(inj₂ w)) with apI c (singleton w) ... | singleton .y = singleton (inj₂ y) apI (times⇛ {A} {B} {C} {D} {x} {y} {z} {w} c₁ c₂) (singleton .(z , w)) with apI c₁ (singleton z) | apI c₂ (singleton w) ... | singleton .x | singleton .y = singleton (x , y) -- Path induction pathInd : (C : (A : Set) → (B : Set) → (x : A) → (y : B) → x ⇛ y → Set) → (c : (A : Set) → (x : A) → C A A x x (id⇛ x)) → -- add more cases, one for each constructor (A : Set) → (B : Set) → (x : A) → (y : B) → (p : x ⇛ y) → C A B x y p pathInd C c .(⊥ ⊎ B) B .(inj₂ y) y unite₊⇛ = {!!} pathInd C c A .(⊥ ⊎ A) x .(inj₂ x) uniti₊⇛ = {!!} pathInd C c .(A ⊎ B) .(B ⊎ A) .(inj₁ x) .(inj₂ x) (swap₁₊⇛ {A} {B} {x}) = {!!} pathInd C c .(A ⊎ B) .(B ⊎ A) .(inj₂ y) .(inj₁ y) (swap₂₊⇛ {A} {B} {y}) = {!!} pathInd C c .(A ⊎ B ⊎ C₁) .((A ⊎ B) ⊎ C₁) .(inj₁ x) .(inj₁ (inj₁ x)) (assocl₁₊⇛ {A} {B} {C₁} {x}) = {!!} pathInd C c .(A ⊎ B ⊎ C₁) .((A ⊎ B) ⊎ C₁) .(inj₂ (inj₁ y)) .(inj₁ (inj₂ y)) (assocl₂₁₊⇛ {A} {B} {C₁} {y}) = {!!} pathInd C c .(A ⊎ B ⊎ C₁) .((A ⊎ B) ⊎ C₁) .(inj₂ (inj₂ z)) .(inj₂ z) (assocl₂₂₊⇛ {A} {B} {C₁} {z}) = {!!} pathInd C c .((A ⊎ B) ⊎ C₁) .(A ⊎ B ⊎ C₁) .(inj₁ (inj₁ x)) .(inj₁ x) (assocr₁₁₊⇛ {A} {B} {C₁} {x}) = {!!} pathInd C c .((A ⊎ B) ⊎ C₁) .(A ⊎ B ⊎ C₁) .(inj₁ (inj₂ y)) .(inj₂ (inj₁ y)) (assocr₁₂₊⇛ {A} {B} {C₁} {y}) = {!!} pathInd C c .((A ⊎ B) ⊎ C₁) .(A ⊎ B ⊎ C₁) .(inj₂ z) .(inj₂ (inj₂ z)) (assocr₂₊⇛ {A} {B} {C₁} {z}) = {!!} pathInd C c .(Σ ⊤ (λ x₁ → B)) B .(tt , y) y unite⋆⇛ = {!!} pathInd C c A .(Σ ⊤ (λ x₁ → A)) x .(tt , x) uniti⋆⇛ = {!!} pathInd C c .(Σ A (λ x₁ → B)) .(Σ B (λ x₁ → A)) .(x , y) .(y , x) (swap⋆⇛ {A} {B} {x} {y}) = {!!} pathInd C c .(Σ A (λ x₁ → Σ B (λ x₂ → C₁))) .(Σ (Σ A (λ x₁ → B)) (λ x₁ → C₁)) .(x , y , z) .((x , y) , z) (assocl⋆⇛ {A} {B} {C₁} {x} {y} {z}) = {!!} pathInd C c .(Σ (Σ A (λ x₁ → B)) (λ x₁ → C₁)) .(Σ A (λ x₁ → Σ B (λ x₂ → C₁))) .((x , y) , z) .(x , y , z) (assocr⋆⇛ {A} {B} {C₁} {x} {y} {z}) = {!!} pathInd C c .(Σ (A ⊎ B) (λ x₁ → C₁)) .(Σ A (λ x₁ → C₁) ⊎ Σ B (λ x₁ → C₁)) .(inj₁ x , z) .(inj₁ (x , z)) (dist₁⇛ {A} {B} {C₁} {x} {z}) = {!!} pathInd C c .(Σ (A ⊎ B) (λ x₁ → C₁)) .(Σ A (λ x₁ → C₁) ⊎ Σ B (λ x₁ → C₁)) .(inj₂ y , z) .(inj₂ (y , z)) (dist₂⇛ {A} {B} {C₁} {y} {z}) = {!!} pathInd C c .(Σ A (λ x₁ → C₁) ⊎ Σ B (λ x₁ → C₁)) .(Σ (A ⊎ B) (λ x₁ → C₁)) .(inj₁ (x , z)) .(inj₁ x , z) (factor₁⇛ {A} {B} {C₁} {x} {z}) = {!!} pathInd C c .(Σ A (λ x₁ → C₁) ⊎ Σ B (λ x₁ → C₁)) .(Σ (A ⊎ B) (λ x₁ → C₁)) .(inj₂ (y , z)) .(inj₂ y , z) (factor₂⇛ {A} {B} {C₁} {y} {z}) = {!!} pathInd C c .(Σ ⊥ (λ x₁ → A)) .⊥ .(y , x) y (dist0⇛ {A} {.y} {x}) = {!!} pathInd C c .⊥ .(Σ ⊥ (λ x₁ → A)) x .(x , x₁) (factor0⇛ {A} {.x} {x₁}) = {!!} pathInd C c A .A x .x (id⇛ .x) = c A x pathInd C c A B x y (sym⇛ p) = {!!} pathInd C c A B x y (trans⇛ p p₁) = {!!} pathInd C c .(A ⊎ B) .(C₁ ⊎ D) .(inj₁ x) .(inj₁ z) (plus₁⇛ {A} {B} {C₁} {D} {x} {z} p) = {!!} pathInd C c .(A ⊎ B) .(C₁ ⊎ D) .(inj₂ y) .(inj₂ w) (plus₂⇛ {A} {B} {C₁} {D} {y} {w} p) = {!!} pathInd C c .(Σ A (λ x₁ → B)) .(Σ C₁ (λ x₁ → D)) .(x , y) .(z , w) (times⇛ {A} {B} {C₁} {D} {x} {y} {z} {w} p p₁) = {!!} ------------------------------------------------------------------------------ -- Now interpret a path (x ⇛ y) as a value of type (1/x , y) Recip : {A : Set} → (base : A) → (x : A) → Set₁ Recip {A} base = λ x → (x ⇛ base) η : {A : Set} {base : A} → ⊤ → Recip base × Singleton base η {A} {base} tt = (λ x → ? , singleton base) {-- If A={x0,x1,x2}, 1/A has three values: (x0<-x0, x0<-x1, x0<-x2) η : {A : Set} {x : A} → ⊤ → Recip x × Singleton x η {A} {x} tt = (id⇛ x , singleton x) ε : {A : Set} {x : A} → Recip x × Singleton x → ⊤ ε {A} {x} (rx , singleton .x) = tt -- makes no sense apr : {A B : Set} {x : A} {y : B} → (x ⇛ y) → Recip y → Recip x apr {A} {B} {x} {y} p ry = x ≡⟨ p ⟩ y ≡⟨ ry ⟩ y ≡⟨ sym⇛ p ⟩ x ∎ ε : {A B : Set} {x : A} {y : B} → Recip x → Singleton y → x ⇛ y ε rx (singleton y) = rx y pathV : {A B : Set} {x : A} {y : B} → (x ⇛ y) → Recip x × Singleton y pathV unite₊⇛ = {!!} pathV uniti₊⇛ = {!!} -- swap₁₊⇛ : {A B : Set} {x : A} → _⇛_ {A ⊎ B} {B ⊎ A} (inj₁ x) (inj₂ x) pathV (swap₁₊⇛ {A} {B} {x}) = ((λ x' → {!!}) , singleton (inj₂ x)) pathV swap₂₊⇛ = {!!} pathV assocl₁₊⇛ = {!!} pathV assocl₂₁₊⇛ = {!!} pathV assocl₂₂₊⇛ = {!!} pathV assocr₁₁₊⇛ = {!!} pathV assocr₁₂₊⇛ = {!!} pathV assocr₂₊⇛ = {!!} pathV unite⋆⇛ = {!!} pathV uniti⋆⇛ = {!!} pathV swap⋆⇛ = {!!} pathV assocl⋆⇛ = {!!} pathV assocr⋆⇛ = {!!} pathV dist₁⇛ = {!!} pathV dist₂⇛ = {!!} pathV factor₁⇛ = {!!} pathV factor₂⇛ = {!!} pathV dist0⇛ = {!!} pathV factor0⇛ = {!!} pathV {A} {.A} {x} (id⇛ .x) = {!!} pathV (sym⇛ p) = {!!} pathV (trans⇛ p p₁) = {!!} pathV (plus₁⇛ p) = {!!} pathV (plus₂⇛ p) = {!!} pathV (times⇛ p p₁) = {!!} data _⇛_ : {A B : Set} → (x : A) → (y : B) → Set₁ where ------------------------------------------------------------------------------ -- pi types with exactly one level of reciprocals -- interpretation of B1 types as 1-groupoids data B0 : Set where ZERO : B0 ONE : B0 PLUS0 : B0 → B0 → B0 TIMES0 : B0 → B0 → B0 ⟦_⟧₀ : B0 → Set ⟦ ZERO ⟧₀ = ⊥ ⟦ ONE ⟧₀ = ⊤ ⟦ PLUS0 b₁ b₂ ⟧₀ = ⟦ b₁ ⟧₀ ⊎ ⟦ b₂ ⟧₀ ⟦ TIMES0 b₁ b₂ ⟧₀ = ⟦ b₁ ⟧₀ × ⟦ b₂ ⟧₀ data B1 : Set where LIFT0 : B0 → B1 PLUS1 : B1 → B1 → B1 TIMES1 : B1 → B1 → B1 RECIP1 : B0 → B1 open 1Groupoid ⟦_⟧₁ : B1 → 1Groupoid ⟦ LIFT0 b0 ⟧₁ = discrete ⟦ b0 ⟧₀ ⟦ PLUS1 b₁ b₂ ⟧₁ = ⟦ b₁ ⟧₁ ⊎G ⟦ b₂ ⟧₁ ⟦ TIMES1 b₁ b₂ ⟧₁ = ⟦ b₁ ⟧₁ ×G ⟦ b₂ ⟧₁ ⟦ RECIP1 b0 ⟧₁ = {!!} -- allPaths (ı₀ b0) ı₁ : B1 → Set ı₁ b = set ⟦ b ⟧₁ test10 = ⟦ LIFT0 ONE ⟧₁ test11 = ⟦ LIFT0 (PLUS0 ONE ONE) ⟧₁ test12 = ⟦ RECIP1 (PLUS0 ONE ONE) ⟧₁ -- interpret isos as functors data _⟷₁_ : B1 → B1 → Set where -- + swap₊ : { b₁ b₂ : B1 } → PLUS1 b₁ b₂ ⟷₁ PLUS1 b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B1 } → PLUS b₁ (PLUS b₂ b₃) ⟷₁ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B1 } → PLUS (PLUS b₁ b₂) b₃ ⟷₁ PLUS b₁ (PLUS b₂ b₃) -- * unite⋆ : { b : B1 } → TIMES1 (LIFT0 ONE) b ⟷₁ b uniti⋆ : { b : B1 } → b ⟷₁ TIMES1 (LIFT0 ONE) b swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷₁ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷₁ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷₁ TIMES b₁ (TIMES b₂ b₃) -- * distributes over + dist : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷₁ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷₁ TIMES (PLUS b₁ b₂) b₃ -- congruence id⟷₁ : { b : B } → b ⟷₁ b sym : { b₁ b₂ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₁) _∘_ : { b₁ b₂ b₃ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₃) → (b₁ ⟷₁ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (PLUS b₁ b₂ ⟷₁ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (TIMES b₁ b₂ ⟷₁ TIMES b₃ b₄) η⋆ : (b : B0) → LIFT0 ONE ⟷₁ TIMES1 (LIFT0 b) (RECIP1 b) ε⋆ : (b : B0) → TIMES1 (LIFT0 b) (RECIP1 b) ⟷₁ LIFT0 ONE record 1-functor (A B : 1Groupoid) : Set where constructor 1F private module A = 1Groupoid A private module B = 1Groupoid B field F₀ : set A → set B F₁ : ∀ {X Y : set A} → A [ X , Y ] → B [ F₀ X , F₀ Y ] -- identity : ∀ {X} → B._≈_ (F₁ (A.id {X})) B.id -- F-resp-≈ : ∀ {X Y} {F G : A [ X , Y ]} → A._≈_ F G → B._≈_ (F₁ F) (F₁ G) open 1-functor public ipath : (b : B1) → ı₁ b → ı₁ b → Set ipath b x y = Path {ı₁ b} x y swap⊎ : {A B : Set} → A ⊎ B → B ⊎ A swap⊎ (inj₁ a) = inj₂ a swap⊎ (inj₂ b) = inj₁ b intro1⋆ : {b : B1} {x y : ı₁ b} → ipath b x y → ipath (TIMES1 (LIFT0 ONE) b) (tt , x) (tt , y) intro1⋆ (y ⇛ z) = (tt , y) ⇛ (tt , z) objη⋆ : (b : B0) → ı₁ (LIFT0 ONE) → ı₁ (TIMES1 (LIFT0 b) (RECIP1 b)) objη⋆ b tt = point b , point b objε⋆ : (b : B0) → ı₁ (TIMES1 (LIFT0 b) (RECIP1 b)) → ı₁ (LIFT0 ONE) objε⋆ b (x , y) = tt elim1∣₁ : (b : B1) → ı₁ (TIMES1 (LIFT0 ONE) b) → ı₁ b elim1∣₁ b (tt , x) = x intro1∣₁ : (b : B1) → ı₁ b → ı₁ (TIMES1 (LIFT0 ONE) b) intro1∣₁ b x = (tt , x) swapF : {b₁ b₂ : B1} → let G = ⟦ b₁ ⟧₁ ⊎G ⟦ b₂ ⟧₁ G' = ⟦ b₂ ⟧₁ ⊎G ⟦ b₁ ⟧₁ in {X Y : set G} → G [ X , Y ] → G' [ swap⊎ X , swap⊎ Y ] swapF {X = inj₁ _} {inj₁ _} f = f swapF {X = inj₁ _} {inj₂ _} () swapF {X = inj₂ _} {inj₁ _} () swapF {X = inj₂ _} {inj₂ _} f = f eta : (b : B0) → List (ipath (LIFT0 ONE)) → List (ipath (TIMES1 (LIFT0 b) (RECIP1 b))) -- note how the input list is not used at all! eta b _ = prod (λ a a' → _↝_ (a , tt) (a' , tt)) (elems0 b) (elems0 b) eps : (b : B0) → ipath (TIMES1 (LIFT0 b) (RECIP1 b)) → ipath (LIFT0 ONE) eps b0 (a ⇛ b) = tt ⇛ tt Funite⋆ : {b₁ : B1} → ∀ {X Y : set (discrete (ı₀ ONE) ×G ⟦ b₁ ⟧₁)} → DPath (proj₁ X) (proj₁ Y) × (_↝_ ⟦ b₁ ⟧₁) (proj₂ X) (proj₂ Y) → _↝_ ⟦ b₁ ⟧₁ (proj₂ X) (proj₂ Y) Funite⋆ {b₁} {tt , _} {tt , _} (reflD , y) = y Funiti⋆ : {b₁ : B1} → ∀ {X Y : set (discrete (ı₀ ONE) ×G ⟦ b₁ ⟧₁)} → _↝_ ⟦ b₁ ⟧₁ (proj₂ X) (proj₂ Y) → DPath (proj₁ X) (proj₁ Y) × (_↝_ ⟦ b₁ ⟧₁) (proj₂ X) (proj₂ Y) Funiti⋆ y = reflD , y mutual eval : {b₁ b₂ : B1} → (b₁ ⟷₁ b₂) → 1-functor ⟦ b₁ ⟧₁ ⟦ b₂ ⟧₁ eval (swap₊ {b₁} {b₂}) = 1F swap⊎ (λ {X Y} → swapF {b₁} {b₂} {X} {Y}) eval (unite⋆ {b}) = 1F (elim1∣₁ b) (Funite⋆ {b}) eval (uniti⋆ {b}) = 1F (intro1∣₁ b) (Funiti⋆ {b}) -- eval (η⋆ b) = F₁ (objη⋆ b) (eta b ) -- eval (ε⋆ b) = F₁ (objε⋆ b) (map (eps b)) evalB : {b₁ b₂ : B1} → (b₁ ⟷₁ b₂) → 1-functor ⟦ b₂ ⟧₁ ⟦ b₁ ⟧₁ evalB (swap₊ {b₁} {b₂}) = 1F swap⊎ ((λ {X Y} → swapF {b₂} {b₁} {X} {Y})) evalB (unite⋆ {b}) = 1F (intro1∣₁ b) (Funiti⋆ {b}) evalB (uniti⋆ {b}) = 1F (elim1∣₁ b) (Funite⋆ {b}) -- evalB (η⋆ b) = F₁ (objε⋆ b) (map (eps b)) -- evalB (ε⋆ b) = F₁ (objη⋆ b) (eta b) eval assocl₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷₁ PLUS (PLUS b₁ b₂) b₃ eval assocr₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷₁ PLUS b₁ (PLUS b₂ b₃) eval uniti⋆ = ? -- : { b : B } → b ⟷₁ TIMES ONE b eval swap⋆ = ? -- : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷₁ TIMES b₂ b₁ eval assocl⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷₁ TIMES (TIMES b₁ b₂) b₃ eval assocr⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷₁ TIMES b₁ (TIMES b₂ b₃) eval dist = ? -- : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷₁ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) eval factor = ? -- : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷₁ TIMES (PLUS b₁ b₂) b₃ eval id⟷₁ = ? -- : { b : B } → b ⟷₁ b eval (sym c) = ? -- : { b₁ b₂ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₁) eval (c₁ ∘ c₂) = ? -- : { b₁ b₂ b₃ : B } → (b₁ ⟷₁ b₂) → (b₂ ⟷₁ b₃) → (b₁ ⟷₁ b₃) eval (c₁ ⊕ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (PLUS b₁ b₂ ⟷₁ PLUS b₃ b₄) eval (c₁ ⊗ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷₁ b₃) → (b₂ ⟷₁ b₄) → (TIMES b₁ b₂ ⟷₁ TIMES b₃ b₄) -- lid⇛ : {A B : Set} {x : A} {y : B} → (trans⇛ (id⇛ x) (x ⇛ y)) ⇛ (x ⇛ y) -- lid⇛ {A} {B} {x} {y} = -- pathInd ? ap : {A B : Set} → (f : A → B) → {a a' : A} → Path a a' → Path (f a) (f a') ap f (a ⇛ a') = (f a) ⇛ (f a') _∙⇛_ : {A : Set} {a b c : A} → Path b c → Path a b → Path a c (b ⇛ c) ∙⇛ (a ⇛ .b) = a ⇛ c _⇚ : {A : Set} {a b : A} → Path a b → Path b a (x ⇛ y) ⇚ = y ⇛ x lid⇛ : {A : Set} {x y : A} (α : Path x y) → (id⇛ y ∙⇛ α) ≣⇛ α lid⇛ (x ⇛ y) = refl⇛ rid⇛ : {A : Set} {x y : A} (α : Path x y) → (α ∙⇛ id⇛ x) ≣⇛ α rid⇛ (x ⇛ y) = refl⇛ assoc⇛ : {A : Set} {w x y z : A} (α : Path y z) (β : Path x y) (δ : Path w x) → ((α ∙⇛ β) ∙⇛ δ) ≣⇛ (α ∙⇛ (β ∙⇛ δ)) assoc⇛ (y ⇛ z) (x ⇛ .y) (w ⇛ .x) = refl⇛ l⇚ : {A : Set} {x y : A} (α : Path x y) → ((α ⇚) ∙⇛ α) ≣⇛ id⇛ x l⇚ (x ⇛ y) = refl⇛ r⇚ : {A : Set} {x y : A} (α : Path x y) → (α ∙⇛ (α ⇚)) ≣⇛ id⇛ y r⇚ (x ⇛ y) = refl⇛ sym⇛ : {A : Set} {x y : A} {α β : Path x y} → α ≣⇛ β → β ≣⇛ α sym⇛ refl⇛ = refl⇛ trans⇛ : {A : Set} {x y : A} {α β δ : Path x y} → α ≣⇛ β → β ≣⇛ δ → α ≣⇛ δ trans⇛ refl⇛ refl⇛ = refl⇛ equiv≣⇛ : {A : Set} {x y : A} → IsEquivalence {_} {_} {Path x y} (_≣⇛_) equiv≣⇛ = record { refl = refl⇛; sym = sym⇛; trans = trans⇛ } resp≣⇛ : {A : Set} {x y z : A} {f h : Path y z} {g i : Path x y} → f ≣⇛ h → g ≣⇛ i → (f ∙⇛ g) ≣⇛ (h ∙⇛ i) resp≣⇛ refl⇛ refl⇛ = refl⇛ record 0-type : Set₁ where constructor G₀ field ∣_∣₀ : Set open 0-type public plus : 0-type → 0-type → 0-type plus t₁ t₂ = G₀ (∣ t₁ ∣₀ ⊎ ∣ t₂ ∣₀) times : 0-type → 0-type → 0-type times t₁ t₂ = G₀ (∣ t₁ ∣₀ × ∣ t₂ ∣₀) ⟦_⟧₀ : B0 → 0-type ⟦ ONE ⟧₀ = G₀ ⊤ ⟦ PLUS0 b₁ b₂ ⟧₀ = plus ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀ ⟦ TIMES0 b₁ b₂ ⟧₀ = times ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀ ı₀ : B0 → Set ı₀ b = ∣ ⟦ b ⟧₀ ∣₀ point : (b : B0) → ı₀ b point ONE = tt point (PLUS0 b _) = inj₁ (point b) point (TIMES0 b₀ b₁) = point b₀ , point b₁ allPaths : Set → 1Groupoid allPaths a = record { set = a ; _↝_ = Path ; _≈_ = _≣⇛_ ; id = λ {x} → id⇛ x ; _∘_ = _∙⇛_ ; _⁻¹ = _⇚ ; lneutr = lid⇛ ; rneutr = rid⇛ ; assoc = assoc⇛ ; linv = l⇚ ; rinv = r⇚ ; equiv = equiv≣⇛ ; ∘-resp-≈ = resp≣⇛} --}
38.854671
168
0.463309
ade3ad434d519e000814290ccd08b29df607e7b4
256
agda
Agda
Cubical/Codata/Stream/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Codata/Stream/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Codata/Stream/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-} module Cubical.Codata.Stream.Base where open import Cubical.Core.Everything record Stream (A : Type₀) : Type₀ where coinductive constructor _,_ field head : A tail : Stream A
21.333333
64
0.703125
2ea437b386146d14964e82ee16325f72116b996f
6,267
agda
Agda
agda/Util.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
28
2017-04-21T09:08:52.000Z
2022-03-04T18:04:07.000Z
agda/Util.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
1
2020-11-13T01:26:20.000Z
2020-11-17T00:58:55.000Z
agda/Util.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
3
2019-01-12T17:02:36.000Z
2020-11-10T04:04:40.000Z
{-# OPTIONS --erased-cubical --safe #-} module Util where open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_) open import Cubical.Foundations.Prelude using (refl; sym; _∙_; cong; transport; subst; funExt; transp; I; i0; i1) --open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.Univalence using (ua) open import Cubical.Foundations.Isomorphism using (iso; Iso; isoToPath; section; retract; isoToEquiv) open import Agda.Primitive using (Level) open import Data.Fin using (Fin; #_; toℕ; inject; fromℕ; fromℕ<; inject₁) renaming (zero to fz; suc to fsuc) open import Data.Bool using (Bool; true; false; if_then_else_) open import Data.Integer using (ℤ; +_; -[1+_]; _-_; ∣_∣; -_) open import Data.List using (List; concat; replicate; []; _∷_; _∷ʳ_; map; _++_; reverse) open import Data.Maybe using (Maybe; just; nothing) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _<ᵇ_; _≤ᵇ_; _≡ᵇ_; _<?_; _≟_; _∸_; _<_; s≤s; z≤n; _⊓_) open import Data.Nat.DivMod using (_mod_) open import Data.Nat.Properties using (≤-step; ≤-trans; ≤-refl) open import Data.Product using (_×_; _,_) open import Data.Vec using (Vec; _∷_; []; zip; last) renaming (concat to cat; replicate to rep; map to vmap; _∷ʳ_ to _v∷ʳ_) open import Relation.Nullary using (yes; no; ¬_) open import Relation.Nullary.Decidable using (False) open import Relation.Unary using (Pred; Decidable) infixr 9 _∘_ _∘_ : {ℓ : Level}{A : Type ℓ}{B : A → Type ℓ}{C : (a : A) → B a → Type ℓ} (g : {a : A} → (b : B a) → C a b) → (f : (a : A) → B a) → (a : A) → C a (f a) g ∘ f = λ x → g (f x) {-# INLINE _∘_ #-} repeat : {ℓ : Level} {A : Type ℓ} → (n : ℕ) → List A → List A repeat n = concat ∘ replicate n repeatV : {ℓ : Level} {A : Type ℓ} {k : ℕ} → (n : ℕ) → Vec A k → Vec A (n * k) repeatV n = cat ∘ rep {n = n} -- return index of first element that satisfies predicate or last element if none do findIndex : {a ℓ : Level} {A : Type a} {n : ℕ} {P : Pred A ℓ} → Decidable P → Vec A (suc n) → Fin (suc n) findIndex _ (x ∷ []) = # 0 findIndex P (x ∷ y ∷ ys) with P x ... | yes _ = # 0 ... | no _ = fsuc (findIndex P (y ∷ ys)) -- Returns a list of all adjacent pairs in the original list. pairs : {ℓ : Level} {A : Type ℓ} → List A → List (A × A) pairs [] = [] pairs (x ∷ []) = [] pairs (x ∷ y ∷ xs) = (x , y) ∷ pairs (y ∷ xs) -- Returns a list of all pairs in the original list. allPairs : {ℓ : Level} {A : Type ℓ} → List A → List (A × A) allPairs [] = [] allPairs (x ∷ xs) = map (x ,_) xs ++ allPairs xs -- Returns a singleton list of the pair of the first and last element if the list has at least 2 elements, -- or the empty list otherwise. firstLast : {ℓ : Level} {A : Type ℓ} → List A → List (A × A) firstLast [] = [] firstLast (x ∷ xs) with reverse xs ... | [] = [] ... | y ∷ ys = (x , y) ∷ [] -- Returns a list of all adjacent pairs in the original list, prepended by the pair of the first and last elements. ◯pairs : {ℓ : Level} {A : Type ℓ} → List A → List (A × A) ◯pairs xs = firstLast xs ++ pairs xs -- Returns a list of the first element paired with all later elements, in order. firstPairs : {ℓ : Level} {A : Type ℓ} → List A → List (A × A) firstPairs [] = [] firstPairs (x ∷ xs) = map (x ,_) xs -- Basic Boolean Filter and Elem filter : {ℓ : Level} {A : Type ℓ} → (A → Bool) → List A → List A filter f [] = [] filter f (x ∷ xs) = if f x then x ∷ filter f xs else filter f xs infix 4 _∈_via_ _∈_via_ : {ℓ : Level} {A : Type ℓ} → A → List A → (A → A → Bool) → Bool x ∈ [] via f = false x ∈ y ∷ ys via f = if f x y then true else x ∈ ys via f concatMaybe : {ℓ : Level} {A : Type ℓ} → List (Maybe A) → List A concatMaybe [] = [] concatMaybe (nothing ∷ xs) = concatMaybe xs concatMaybe (just x ∷ xs) = x ∷ concatMaybe xs listMin : {ℓ : Level} {A : Type ℓ} → (A → ℕ) → List A → Maybe A listMin f [] = nothing listMin f (x ∷ xs) with listMin f xs ... | nothing = just x ... | just y = if f x <ᵇ f y then just x else just y fins : (k : ℕ) → Vec (Fin k) k fins zero = [] fins (suc k) = fz ∷ vmap fsuc (fins k) fins' : (n : ℕ) → (k : Fin n) → Vec (Fin n) (toℕ k) fins' n k = vmap inject (fins (toℕ k)) finSuc : {n : ℕ} → Fin (suc n) → Fin (suc n) finSuc {n} m with suc (toℕ m) <? suc n ... | yes x = fromℕ< x ... | no _ = fz _+N_ : {n : ℕ} → Fin (suc n) → ℕ → Fin (suc n) a +N zero = a a +N suc b = finSuc a +N b ∣-∣helper : (n : ℕ) → ℕ → ℕ → ℕ ∣-∣helper n a b with a ≤ᵇ b ... | true = (b ∸ a) ⊓ ((n + a) ∸ b) ... | false = (a ∸ b) ⊓ ((n + b) ∸ a) ⟨_⟩∣_-_∣ : (n : ℕ) → Fin n → Fin n → ℕ ⟨_⟩∣_-_∣ n a b = ∣-∣helper n (toℕ a) (toℕ b) n∸k<n : (n k : ℕ) → (suc n) ∸ (suc k) < suc n n∸k<n zero zero = s≤s z≤n n∸k<n (suc n) zero = s≤s (n∸k<n n zero) n∸k<n zero (suc k) = s≤s z≤n n∸k<n (suc n) (suc k) = ≤-trans (n∸k<n n k) (≤-step ≤-refl) opposite' : ∀ {n} → Fin n → Fin n opposite' {suc n} fz = fz opposite' {suc n} (fsuc k) = fromℕ< (n∸k<n n (toℕ k)) -- opposite "i" = "n - i" (i.e. the additive inverse). opposite : ∀ {n} → Fin n → Fin n opposite {suc n} fz = fz opposite {suc n} (fsuc fz) = fromℕ n opposite {suc n} (fsuc (fsuc i)) = inject₁ (opposite (fsuc i)) _modℕ_ : (dividend : ℤ) (divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor ((+ n) modℕ d) {d≠0} = (n mod d) {d≠0} (-[1+ n ] modℕ d) {d≠0} = opposite ((suc n mod d) {d≠0}) zipWithIndex : {ℓ : Level} {A : Type ℓ} {k : ℕ} → Vec A k → Vec (Fin k × A) k zipWithIndex {k = k} = zip (fins k) iter : {ℓ : Level} {A : Type ℓ} → (A → A) → ℕ → A → List A iter f zero x = x ∷ [] iter f (suc n) x = x ∷ iter f n (f x) rotateLeft : {ℓ : Level} {A : Type ℓ} → List A → List A rotateLeft [] = [] rotateLeft (x ∷ xs) = xs ∷ʳ x rotateRight : {ℓ : Level} {A : Type ℓ} → List A → List A rotateRight = reverse ∘ rotateLeft ∘ reverse vrotateLeft : {ℓ : Level} {A : Type ℓ} {k : ℕ} → Vec A k → Vec A k vrotateLeft {k = zero} [] = [] vrotateLeft {k = suc k} (x ∷ xs) = xs v∷ʳ x vrotateRight : {ℓ : Level} {A : Type ℓ} {k : ℕ} → Vec A k → Vec A k vrotateRight {k = zero} [] = [] vrotateRight {k = suc k} xs@(_ ∷ ys) = last xs ∷ ys
38.685185
135
0.559598
22a0e92ae2a0de22e8cc2d134d9ed93cf56c4127
1,759
agda
Agda
agda-stdlib/src/Reflection/Argument/Information.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Reflection/Argument/Information.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Reflection/Argument/Information.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Argument information used in the reflection machinery ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Reflection.Argument.Information where open import Data.Product open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Reflection.Argument.Relevance as Relevance using (Relevance) open import Reflection.Argument.Visibility as Visibility using (Visibility) ------------------------------------------------------------------------ -- Re-exporting the builtins publically open import Agda.Builtin.Reflection public using (ArgInfo) open ArgInfo public ------------------------------------------------------------------------ -- Operations visibility : ArgInfo → Visibility visibility (arg-info v _) = v relevance : ArgInfo → Relevance relevance (arg-info _ r) = r ------------------------------------------------------------------------ -- Decidable equality arg-info-injective₁ : ∀ {v r v′ r′} → arg-info v r ≡ arg-info v′ r′ → v ≡ v′ arg-info-injective₁ refl = refl arg-info-injective₂ : ∀ {v r v′ r′} → arg-info v r ≡ arg-info v′ r′ → r ≡ r′ arg-info-injective₂ refl = refl arg-info-injective : ∀ {v r v′ r′} → arg-info v r ≡ arg-info v′ r′ → v ≡ v′ × r ≡ r′ arg-info-injective = < arg-info-injective₁ , arg-info-injective₂ > _≟_ : DecidableEquality ArgInfo arg-info v r ≟ arg-info v′ r′ = Dec.map′ (uncurry (cong₂ arg-info)) arg-info-injective (v Visibility.≟ v′ ×-dec r Relevance.≟ r′)
33.188679
84
0.567368
2e072aea4c2a6f62fab8474f63991b807dc16bec
16,835
agda
Agda
Cubical/HITs/S1/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/HITs/S1/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/HITs/S1/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{- Definition of the circle as a HIT with a proof that Ω(S¹) ≡ ℤ -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.S1.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Data.Nat hiding (_+_ ; _*_ ; +-assoc ; +-comm) open import Cubical.Data.Int data S¹ : Type₀ where base : S¹ loop : base ≡ base -- Check that transp is the identity function for S¹ module _ where transpS¹ : ∀ (φ : I) (u0 : S¹) → transp (λ _ → S¹) φ u0 ≡ u0 transpS¹ φ u0 = refl compS1 : ∀ (φ : I) (u : ∀ i → Partial φ S¹) (u0 : S¹ [ φ ↦ u i0 ]) → comp (λ _ → S¹) (\ i → u i) (outS u0) ≡ hcomp u (outS u0) compS1 φ u u0 = refl -- ΩS¹ ≡ Int helix : S¹ → Type₀ helix base = Int helix (loop i) = sucPathInt i ΩS¹ : Type₀ ΩS¹ = base ≡ base encode : ∀ x → base ≡ x → helix x encode x p = subst helix p (pos zero) winding : ΩS¹ → Int winding = encode base intLoop : Int → ΩS¹ intLoop (pos zero) = refl intLoop (pos (suc n)) = intLoop (pos n) ∙ loop intLoop (negsuc zero) = sym loop intLoop (negsuc (suc n)) = intLoop (negsuc n) ∙ sym loop decodeSquare : (n : Int) → PathP (λ i → base ≡ loop i) (intLoop (predInt n)) (intLoop n) decodeSquare (pos zero) i j = loop (i ∨ ~ j) decodeSquare (pos (suc n)) i j = hfill (λ k → λ { (j = i0) → base ; (j = i1) → loop k } ) (inS (intLoop (pos n) j)) i decodeSquare (negsuc n) i j = hfill (λ k → λ { (j = i0) → base ; (j = i1) → loop (~ k) }) (inS (intLoop (negsuc n) j)) (~ i) decode : (x : S¹) → helix x → base ≡ x decode base = intLoop decode (loop i) y j = let n : Int n = unglue (i ∨ ~ i) y in hcomp (λ k → λ { (i = i0) → intLoop (predSuc y k) j ; (i = i1) → intLoop y j ; (j = i0) → base ; (j = i1) → loop i }) (decodeSquare n i j) decodeEncode : (x : S¹) (p : base ≡ x) → decode x (encode x p) ≡ p decodeEncode x p = J (λ y q → decode y (encode y q) ≡ q) (λ _ → refl) p isSetΩS¹ : isSet ΩS¹ isSetΩS¹ p q r s j i = hcomp (λ k → λ { (i = i0) → decodeEncode base p k ; (i = i1) → decodeEncode base q k ; (j = i0) → decodeEncode base (r i) k ; (j = i1) → decodeEncode base (s i) k }) (decode base (isSetInt (winding p) (winding q) (cong winding r) (cong winding s) j i)) -- This proof does not rely on rewriting hcomp with empty systems in -- Int as ghcomp has been implemented! windingIntLoop : (n : Int) → winding (intLoop n) ≡ n windingIntLoop (pos zero) = refl windingIntLoop (pos (suc n)) = cong sucInt (windingIntLoop (pos n)) windingIntLoop (negsuc zero) = refl windingIntLoop (negsuc (suc n)) = cong predInt (windingIntLoop (negsuc n)) ΩS¹IsoInt : Iso ΩS¹ Int Iso.fun ΩS¹IsoInt = winding Iso.inv ΩS¹IsoInt = intLoop Iso.rightInv ΩS¹IsoInt = windingIntLoop Iso.leftInv ΩS¹IsoInt = decodeEncode base ΩS¹≡Int : ΩS¹ ≡ Int ΩS¹≡Int = isoToPath ΩS¹IsoInt -- intLoop and winding are group homomorphisms private intLoop-sucInt : (z : Int) → intLoop (sucInt z) ≡ intLoop z ∙ loop intLoop-sucInt (pos n) = refl intLoop-sucInt (negsuc zero) = sym (lCancel loop) intLoop-sucInt (negsuc (suc n)) = rUnit (intLoop (negsuc n)) ∙ (λ i → intLoop (negsuc n) ∙ lCancel loop (~ i)) ∙ assoc (intLoop (negsuc n)) (sym loop) loop intLoop-predInt : (z : Int) → intLoop (predInt z) ≡ intLoop z ∙ sym loop intLoop-predInt (pos zero) = lUnit (sym loop) intLoop-predInt (pos (suc n)) = rUnit (intLoop (pos n)) ∙ (λ i → intLoop (pos n) ∙ (rCancel loop (~ i))) ∙ assoc (intLoop (pos n)) loop (sym loop) intLoop-predInt (negsuc n) = refl intLoop-hom : (a b : Int) → (intLoop a) ∙ (intLoop b) ≡ intLoop (a + b) intLoop-hom a (pos zero) = sym (rUnit (intLoop a)) intLoop-hom a (pos (suc n)) = assoc (intLoop a) (intLoop (pos n)) loop ∙ (λ i → (intLoop-hom a (pos n) i) ∙ loop) ∙ sym (intLoop-sucInt (a + pos n)) intLoop-hom a (negsuc zero) = sym (intLoop-predInt a) intLoop-hom a (negsuc (suc n)) = assoc (intLoop a) (intLoop (negsuc n)) (sym loop) ∙ (λ i → (intLoop-hom a (negsuc n) i) ∙ (sym loop)) ∙ sym (intLoop-predInt (a + negsuc n)) winding-hom : (a b : ΩS¹) → winding (a ∙ b) ≡ (winding a) + (winding b) winding-hom a b i = hcomp (λ t → λ { (i = i0) → winding (decodeEncode base a t ∙ decodeEncode base b t) ; (i = i1) → windingIntLoop (winding a + winding b) t }) (winding (intLoop-hom (winding a) (winding b) i)) -- Commutativity comm-ΩS¹ : (p q : ΩS¹) → p ∙ q ≡ q ∙ p comm-ΩS¹ p q = sym (cong₂ (_∙_) (decodeEncode base p) (decodeEncode base q)) ∙ intLoop-hom (winding p) (winding q) ∙ cong intLoop (+-comm (winding p) (winding q)) ∙ sym (intLoop-hom (winding q) (winding p)) ∙ (cong₂ (_∙_) (decodeEncode base q) (decodeEncode base p)) -- Based homotopy group basedΩS¹ : (x : S¹) → Type₀ basedΩS¹ x = x ≡ x -- Proof that the homotopy group is actually independent on the basepoint -- first, give a quasi-inverse to the basechange basedΩS¹→ΩS¹ for any loop i -- (which does *not* match at endpoints) private ΩS¹→basedΩS¹-filler : I → I → ΩS¹ → I → S¹ ΩS¹→basedΩS¹-filler l i x j = hfill (λ t → λ { (j = i0) → loop (i ∧ t) ; (j = i1) → loop (i ∧ t) }) (inS (x j)) l basedΩS¹→ΩS¹-filler : (_ i : I) → basedΩS¹ (loop i) → I → S¹ basedΩS¹→ΩS¹-filler l i x j = hfill (λ t → λ { (j = i0) → loop (i ∧ (~ t)) ; (j = i1) → loop (i ∧ (~ t)) }) (inS (x j)) l ΩS¹→basedΩS¹ : (i : I) → ΩS¹ → basedΩS¹ (loop i) ΩS¹→basedΩS¹ i x j = ΩS¹→basedΩS¹-filler i1 i x j basedΩS¹→ΩS¹ : (i : I) → basedΩS¹ (loop i) → ΩS¹ basedΩS¹→ΩS¹ i x j = basedΩS¹→ΩS¹-filler i1 i x j basedΩS¹→ΩS¹→basedΩS¹ : (i : I) → (x : basedΩS¹ (loop i)) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) ≡ x basedΩS¹→ΩS¹→basedΩS¹ i x j k = hcomp (λ t → λ { (j = i1) → basedΩS¹→ΩS¹-filler (~ t) i x k ; (j = i0) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) k ; (k = i0) → loop (i ∧ (t ∨ (~ j))) ; (k = i1) → loop (i ∧ (t ∨ (~ j))) }) (ΩS¹→basedΩS¹-filler (~ j) i (basedΩS¹→ΩS¹ i x) k) ΩS¹→basedΩS¹→ΩS¹ : (i : I) → (x : ΩS¹) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) ≡ x ΩS¹→basedΩS¹→ΩS¹ i x j k = hcomp (λ t → λ { (j = i1) → ΩS¹→basedΩS¹-filler (~ t) i x k ; (j = i0) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) k ; (k = i0) → loop (i ∧ ((~ t) ∧ j)) ; (k = i1) → loop (i ∧ ((~ t) ∧ j)) }) (basedΩS¹→ΩS¹-filler (~ j) i (ΩS¹→basedΩS¹ i x) k) -- from the existence of our quasi-inverse, we deduce that the basechange is an equivalence -- for all loop i basedΩS¹→ΩS¹-isequiv : (i : I) → isEquiv (basedΩS¹→ΩS¹ i) basedΩS¹→ΩS¹-isequiv i = isoToIsEquiv (iso (basedΩS¹→ΩS¹ i) (ΩS¹→basedΩS¹ i) (ΩS¹→basedΩS¹→ΩS¹ i) (basedΩS¹→ΩS¹→basedΩS¹ i)) -- now extend the basechange so that both ends match -- (and therefore we get a basechange for any x : S¹) loop-conjugation : basedΩS¹→ΩS¹ i1 ≡ λ x → x loop-conjugation i x = let p = (doubleCompPath-elim loop x (sym loop)) ∙ (λ i → (lUnit loop i ∙ x) ∙ sym loop) in ((sym (decodeEncode base (basedΩS¹→ΩS¹ i1 x))) ∙ (λ t → intLoop (winding (p t))) ∙ (λ t → intLoop (winding-hom (intLoop (pos (suc zero)) ∙ x) (intLoop (negsuc zero)) t)) ∙ (λ t → intLoop ((winding-hom (intLoop (pos (suc zero))) x t) + (windingIntLoop (negsuc zero) t))) ∙ (λ t → intLoop (((windingIntLoop (pos (suc zero)) t) + (winding x)) + (negsuc zero))) ∙ (λ t → intLoop ((+-comm (pos (suc zero)) (winding x) t) + (negsuc zero))) ∙ (λ t → intLoop (+-assoc (winding x) (pos (suc zero)) (negsuc zero) (~ t))) ∙ (decodeEncode base x)) i refl-conjugation : basedΩS¹→ΩS¹ i0 ≡ λ x → x refl-conjugation i x j = hfill (λ t → λ { (j = i0) → base ; (j = i1) → base }) (inS (x j)) (~ i) basechange : (x : S¹) → basedΩS¹ x → ΩS¹ basechange base y = y basechange (loop i) y = hcomp (λ t → λ { (i = i0) → refl-conjugation t y ; (i = i1) → loop-conjugation t y }) (basedΩS¹→ΩS¹ i y) -- for any loop i, the old basechange is equal to the new one basedΩS¹→ΩS¹≡basechange : (i : I) → basedΩS¹→ΩS¹ i ≡ basechange (loop i) basedΩS¹→ΩS¹≡basechange i j y = hfill (λ t → λ { (i = i0) → refl-conjugation t y ; (i = i1) → loop-conjugation t y }) (inS (basedΩS¹→ΩS¹ i y)) j -- so for any loop i, the extended basechange is an equivalence basechange-isequiv-aux : (i : I) → isEquiv (basechange (loop i)) basechange-isequiv-aux i = transport (λ j → isEquiv (basedΩS¹→ΩS¹≡basechange i j)) (basedΩS¹→ΩS¹-isequiv i) -- as being an equivalence is contractible, basechange is an equivalence for all x : S¹ basechange-isequiv : (x : S¹) → isEquiv (basechange x) basechange-isequiv base = basechange-isequiv-aux i0 basechange-isequiv (loop i) = hcomp (λ t → λ { (i = i0) → basechange-isequiv-aux i0 ; (i = i1) → isPropIsEquiv (basechange base) (basechange-isequiv-aux i1) (basechange-isequiv-aux i0) t }) (basechange-isequiv-aux i) basedΩS¹≡ΩS¹' : (x : S¹) → basedΩS¹ x ≡ ΩS¹ basedΩS¹≡ΩS¹' x = ua (basechange x , basechange-isequiv x) basedΩS¹≡Int' : (x : S¹) → basedΩS¹ x ≡ Int basedΩS¹≡Int' x = (basedΩS¹≡ΩS¹' x) ∙ ΩS¹≡Int ---- Alternative proof of the same thing ----- toPropElim : ∀ {ℓ} {B : S¹ → Type ℓ} → ((s : S¹) → isProp (B s)) → B base → (s : S¹) → B s toPropElim isprop b base = b toPropElim isprop b (loop i) = isOfHLevel→isOfHLevelDep 1 isprop b b loop i isSetΩx : (x : S¹) → isSet (x ≡ x) isSetΩx = toPropElim (λ _ → isPropIsSet) isSetΩS¹ basechange2 : (x : S¹) → ΩS¹ → (x ≡ x) basechange2 base p = p basechange2 (loop i) p = hcomp (λ k → λ { (i = i0) → lUnit (rUnit p (~ k)) (~ k) ; (i = i1) → (cong ((sym loop) ∙_) (comm-ΩS¹ p loop) ∙ assoc (sym loop) loop p ∙ cong (_∙ p) (lCancel loop) ∙ sym (lUnit _)) k }) ((λ j → loop (~ j ∧ i)) ∙ p ∙ λ j → loop (j ∧ i)) basechange2⁻ : (x : S¹) → (x ≡ x) → ΩS¹ basechange2⁻ base p = p basechange2⁻ (loop i) p = hcomp (λ k → λ { (i = i0) → lUnit (rUnit p (~ k)) (~ k) ; (i = i1) → (cong (loop ∙_) (comm-ΩS¹ p (sym loop)) ∙ assoc loop (sym loop) p ∙ cong (_∙ p) (rCancel loop) ∙ sym (lUnit _)) k }) ((λ j → loop (i ∧ j)) ∙ p ∙ λ j → loop (i ∧ (~ j))) basechange2-sect : (x : S¹) → section (basechange2 x) (basechange2⁻ x) basechange2-sect = toPropElim (λ _ → isOfHLevelΠ 1 λ _ → isSetΩx _ _ _ ) λ _ → refl basechange2-retr : (x : S¹) → retract (basechange2 x) (basechange2⁻ x) basechange2-retr = toPropElim (λ s → isOfHLevelΠ 1 λ x → isSetΩx _ _ _) λ _ → refl basedΩS¹≡ΩS¹ : (x : S¹) → basedΩS¹ x ≡ ΩS¹ basedΩS¹≡ΩS¹ x = isoToPath (iso (basechange2⁻ x) (basechange2 x) (basechange2-retr x) (basechange2-sect x)) basedΩS¹≡Int : (x : S¹) → basedΩS¹ x ≡ Int basedΩS¹≡Int x = (basedΩS¹≡ΩS¹ x) ∙ ΩS¹≡Int -- baschange2⁻ is a morphism basechange2⁻-morph : (x : S¹) (p q : x ≡ x) → basechange2⁻ x (p ∙ q) ≡ basechange2⁻ x p ∙ basechange2⁻ x q basechange2⁻-morph = toPropElim {B = λ x → (p q : x ≡ x) → basechange2⁻ x (p ∙ q) ≡ basechange2⁻ x p ∙ basechange2⁻ x q} (λ _ → isPropΠ2 λ _ _ → isSetΩS¹ _ _) λ _ _ → refl -- Some tests module _ where private test-winding-pos : winding (intLoop (pos 5)) ≡ pos 5 test-winding-pos = refl test-winding-neg : winding (intLoop (negsuc 5)) ≡ negsuc 5 test-winding-neg = refl -- the inverse when S¹ is seen as a group inv : S¹ → S¹ inv base = base inv (loop i) = loop (~ i) invInvolutive : section inv inv invInvolutive base = refl invInvolutive (loop i) = refl invS¹Equiv : S¹ ≃ S¹ invS¹Equiv = isoToEquiv (iso inv inv invInvolutive invInvolutive) invS¹Path : S¹ ≡ S¹ invS¹Path = ua invS¹Equiv -- rot, used in the Hopf fibration rotLoop : (a : S¹) → a ≡ a rotLoop base = loop rotLoop (loop i) j = hcomp (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k)}) base rot : S¹ → S¹ → S¹ rot base x = x rot (loop i) x = rotLoop x i _*_ : S¹ → S¹ → S¹ a * b = rot a b infixl 30 _*_ -- rot i j = filler-rot i j i1 filler-rot : I → I → I → S¹ filler-rot i j = hfill (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k) }) (inS base) isPropFamS¹ : ∀ {ℓ} (P : S¹ → Type ℓ) (pP : (x : S¹) → isProp (P x)) (b0 : P base) → PathP (λ i → P (loop i)) b0 b0 isPropFamS¹ P pP b0 i = pP (loop i) (transp (λ j → P (loop (i ∧ j))) (~ i) b0) (transp (λ j → P (loop (i ∨ ~ j))) i b0) i rotIsEquiv : (a : S¹) → isEquiv (rot a) rotIsEquiv base = idIsEquiv S¹ rotIsEquiv (loop i) = isPropFamS¹ (λ x → isEquiv (rot x)) (λ x → isPropIsEquiv (rot x)) (idIsEquiv _) i -- more direct definition of the rot (loop i) equivalence rotLoopInv : (a : S¹) → PathP (λ i → rotLoop (rotLoop a (~ i)) i ≡ a) refl refl rotLoopInv a i j = homotopySymInv rotLoop a j i rotLoopEquiv : (i : I) → S¹ ≃ S¹ rotLoopEquiv i = isoToEquiv (iso (λ a → rotLoop a i) (λ a → rotLoop a (~ i)) (λ a → rotLoopInv a i) (λ a → rotLoopInv a (~ i))) -- some cancellation laws, used in the Hopf fibration private rotInv-aux-1 : I → I → I → I → S¹ rotInv-aux-1 j k i = hfill (λ l → λ { (k = i0) → (loop (i ∧ ~ l)) * loop j ; (k = i1) → loop j ; (i = i0) → (loop k * loop j) * loop (~ k) ; (i = i1) → loop (~ k ∧ ~ l) * loop j }) (inS ((loop (k ∨ i) * loop j) * loop (~ k))) rotInv-aux-2 : I → I → I → S¹ rotInv-aux-2 i j k = hcomp (λ l → λ { (k = i0) → inv (filler-rot (~ i) (~ j) l) ; (k = i1) → loop (j ∧ l) ; (i = i0) → filler-rot k j l ; (i = i1) → loop (j ∧ l) ; (j = i0) → loop (i ∨ k ∨ (~ l)) ; (j = i1) → loop ((i ∨ k) ∧ l) }) (base) rotInv-aux-3 : I → I → I → I → S¹ rotInv-aux-3 j k i = hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l ; (k = i1) → loop j ; (i = i0) → loop (k ∨ l) * loop j ; (i = i1) → loop k * (inv (loop (~ j) * loop k)) }) (inS (loop k * (inv (loop (~ j) * loop (k ∨ ~ i))))) rotInv-aux-4 : I → I → I → I → S¹ rotInv-aux-4 j k i = hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l ; (k = i1) → loop j ; (i = i0) → loop j * loop (k ∨ l) ; (i = i1) → (inv (loop (~ j) * loop k)) * loop k }) (inS ((inv (loop (~ j) * loop (k ∨ ~ i))) * loop k)) rotInv-1 : (a b : S¹) → b * a * inv b ≡ a rotInv-1 base base i = base rotInv-1 base (loop k) i = rotInv-aux-1 i0 k i i1 rotInv-1 (loop j) base i = loop j rotInv-1 (loop j) (loop k) i = rotInv-aux-1 j k i i1 rotInv-2 : (a b : S¹) → inv b * a * b ≡ a rotInv-2 base base i = base rotInv-2 base (loop k) i = rotInv-aux-1 i0 (~ k) i i1 rotInv-2 (loop j) base i = loop j rotInv-2 (loop j) (loop k) i = rotInv-aux-1 j (~ k) i i1 rotInv-3 : (a b : S¹) → b * (inv (inv a * b)) ≡ a rotInv-3 base base i = base rotInv-3 base (loop k) i = rotInv-aux-3 i0 k (~ i) i1 rotInv-3 (loop j) base i = loop j rotInv-3 (loop j) (loop k) i = rotInv-aux-3 j k (~ i) i1 rotInv-4 : (a b : S¹) → inv (b * inv a) * b ≡ a rotInv-4 base base i = base rotInv-4 base (loop k) i = rotInv-aux-4 i0 k (~ i) i1 rotInv-4 (loop j) base i = loop j rotInv-4 (loop j) (loop k) i = rotInv-aux-4 j k (~ i) i1
36.838074
101
0.528661
8b6ad690a6aa438f7597e49abf9dbc4f46191eac
3,087
agda
Agda
theorems/homotopy/SuspensionJoin.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/SuspensionJoin.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/SuspensionJoin.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT module homotopy.SuspensionJoin {i} (A : Type i) where {- To -} false, : A → Bool × A false, a = false , a true, : A → Bool × A true, a = true , a module To = SuspensionRec {i} (left false :> Bool * A) (left true) (λ a → glue (false, a) ∙ ! (glue (true, a))) to : Suspension A → (Bool * A) to = To.f {- From -} from : Bool * A → Suspension A from = From.f module _ where from-bool : Bool → Suspension A from-bool false = north from-bool true = south from-glue : (c : Bool × A) → from-bool (fst c) == south from-glue (false , a) = merid a from-glue (true , a) = idp module From = PushoutRec {d = *-span Bool A} from-bool (λ _ → south) from-glue {- ToFrom -} to-from : (c : Bool * A) → to (from c) == c to-from = Pushout-elim to-from-left (λ a → glue (true , a)) to-from-glue where to-from-left : (b : Bool) → to (from (left b)) == left b to-from-left false = idp to-from-left true = idp to-from-glue' : (b : Bool) (a : A) → ap to (ap from (glue (b , a))) ∙' glue (true , a) == to-from-left b ∙ glue (b , a) to-from-glue' true a = ap to (ap from (glue (true , a))) ∙' glue (true , a) =⟨ From.glue-β (true , a) |in-ctx (λ u → ap to u ∙' glue (true , a)) ⟩ idp ∙' glue (true , a) =⟨ ∙'-unit-l _ ⟩ glue (true , a) ∎ to-from-glue' false a = ap to (ap from (glue (false , a))) ∙' glue (true , a) =⟨ From.glue-β (false , a) |in-ctx (λ u → ap to u ∙' glue (true , a)) ⟩ ap to (merid a) ∙' glue (true , a) =⟨ To.merid-β a |in-ctx (λ u → u ∙' glue (true , a)) ⟩ (glue (false , a) ∙ ! (glue (true , a))) ∙' glue (true , a) =⟨ coh (glue (false , a)) (glue (true , a)) ⟩ glue (false , a) ∎ where coh : ∀ {i} {A : Type i} {a b c : A} (p : a == b) (q : c == b) → (p ∙ ! q) ∙' q == p coh idp idp = idp to-from-glue : (c : Bool × A) → to-from-left (fst c) == glue (true , snd c) [ (λ z → to (from z) == z) ↓ glue c ] to-from-glue c = ↓-∘=idf-in to from (uncurry to-from-glue' c) {- FromTo -} from-to : (c : Suspension A) → from (to c) == c from-to = Suspension-elim idp idp from-to-merid where from-to-merid' : (a : A) → ap from (ap to (merid a)) == merid a from-to-merid' a = ap from (ap to (merid a)) =⟨ To.merid-β a |in-ctx ap from ⟩ ap from (glue (false , a) ∙ ! (glue (true , a))) =⟨ ap-∙ from (glue (false , a)) (! (glue (true , a))) ⟩ ap from (glue (false , a)) ∙ ap from (! (glue (true , a))) =⟨ ap-! from (glue (true , a)) |in-ctx (λ u → ap from (glue (false , a)) ∙ u) ⟩ ap from (glue (false , a)) ∙ ! (ap from (glue (true , a))) =⟨ From.glue-β (false , a) |in-ctx (λ u → u ∙ ! (ap from (glue (true , a)))) ⟩ merid a ∙ ! (ap from (glue (true , a))) =⟨ From.glue-β (true , a) |in-ctx (λ u → merid a ∙ ! u) ⟩ merid a ∙ idp =⟨ ∙-unit-r _ ⟩ merid a ∎ from-to-merid : (a : A) → idp == idp [ (λ z → from (to z) == z) ↓ merid a ] from-to-merid a = ↓-∘=idf-in from to (from-to-merid' a) {- Conclusion -} e : Suspension A ≃ (Bool * A) e = equiv to from to-from from-to
35.895349
144
0.516683
526677ea2b52e1cba02866e0a10bce505207c3c4
491
agda
Agda
test/Fail/Issue631.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue631.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue631.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --show-implicit --show-irrelevant #-} -- {-# OPTIONS -v tc.conv.irr:20 -v tc.constr.findInScope:20 -v tc.meta:20 -v tc.conv.type:50 -v tc.conv.term:30 -v tc.conv.atom:50 -v tc.inj.use:20 #-} module Issue631 where import Common.Level -- for debug messages data Bool : Set where false true : Bool F : Bool → Set F true = Bool F false = Bool postulate BAD : ∀ {u} → F u Goal : Set score : .Goal → Set buggy : Set buggy = score _ -- {!!} -- should remain unsolved
22.318182
152
0.639511
9ad63527cd27cfc0bcec3ae29d8be5f1469bafcc
429
agda
Agda
test/bags.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
13
2017-05-01T16:45:41.000Z
2022-01-17T03:33:12.000Z
test/bags.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
18
2017-03-08T14:33:10.000Z
2017-12-18T16:34:21.000Z
test/bags.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
2
2017-03-30T16:41:56.000Z
2017-12-01T17:01:25.000Z
module bags where open import Data.PropFormula.Syntax 4 open import Data.PropFormula.SyntaxExperiment 4 public open import Data.Fin using (suc; zero; #_) open import Relation.Binary.PropositionalEquality using (_≡_) p : PropFormula p = Var (# 0) q : PropFormula q = Var (# 1) pq : PropFormula pq = p ∧ q qp : PropFormula qp = q ∧ p listpq : List PropFormula listpq = toList pq listqp : List PropFormula listqp = toList qp
17.16
61
0.734266
380ceea4c5be725383345e7440b04c32b0878f3d
1,843
agda
Agda
src/Selective/Examples/TestSelectiveReceive-calc.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
1
2019-10-29T09:30:26.000Z
2019-10-29T09:30:26.000Z
src/Selective/Examples/TestSelectiveReceive-calc.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
src/Selective/Examples/TestSelectiveReceive-calc.agda
Zalastax/singly-typed-actors
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
module Selective.Examples.TestSelectiveReceive-calc where open import Selective.ActorMonad open import Prelude open import Debug open import Data.Nat.Show using (show) UniqueTag = ℕ TagField = ValueType UniqueTag ℕ-ReplyMessage : MessageType ℕ-ReplyMessage = ValueType UniqueTag ∷ [ ValueType ℕ ]ˡ ℕ-Reply : InboxShape ℕ-Reply = [ ℕ-ReplyMessage ]ˡ ℕ×ℕ→ℕ-Message : MessageType ℕ×ℕ→ℕ-Message = ValueType UniqueTag ∷ ReferenceType ℕ-Reply ∷ ValueType ℕ ∷ [ ValueType ℕ ]ˡ Calculate : InboxShape Calculate = [ ℕ×ℕ→ℕ-Message ]ˡ Calculator : InboxShape Calculator = ℕ×ℕ→ℕ-Message ∷ [ ℕ×ℕ→ℕ-Message ]ˡ calculator-actor : ∀ {i} → ∞ActorM (↑ i) Calculator (Lift (lsuc lzero) ⊤) [] (λ _ → []) calculator-actor .force = receive ∞>>= λ { (Msg Z (tag ∷ _ ∷ n ∷ m ∷ [])) .force → Z ![t: Z ] (lift tag ∷ [ lift (n + m) ]ᵃ) ∞>> (do strengthen [] calculator-actor) ; (Msg (S Z) (tag ∷ _ ∷ n ∷ m ∷ [])) .force → (Z ![t: Z ] (lift tag ∷ ([ lift (n * m) ]ᵃ))) ∞>> (do (strengthen []) calculator-actor) ; (Msg (S (S ())) _) } TestBox : InboxShape TestBox = ℕ-Reply accept-tagged-ℕ : UniqueTag → MessageFilter TestBox accept-tagged-ℕ tag (Msg Z (tag' ∷ _)) = ⌊ tag ≟ tag' ⌋ accept-tagged-ℕ tag (Msg (S ()) _) calculator-test-actor : ∀{i} → ∞ActorM i TestBox (Lift (lsuc lzero) ℕ) [] (λ _ → []) calculator-test-actor = do spawn∞ calculator-actor self (S Z ![t: Z ] ((lift 0) ∷ (([ Z ]>: ⊆-refl) ∷ lift 32 ∷ [ lift 10 ]ᵃ))) (strengthen (⊆-suc ⊆-refl)) sm: Msg Z (_ ∷ n ∷ []) [ _ ] ← (selective-receive (accept-tagged-ℕ 0)) where sm: Msg (S ()) _ [ _ ] self (S Z ![t: S Z ] ((lift 0) ∷ (([ Z ]>: ⊆-refl) ∷ lift 32 ∷ [ lift 10 ]ᵃ))) strengthen (⊆-suc ⊆-refl) sm: Msg Z (_ ∷ m ∷ []) [ _ ] ← (selective-receive (accept-tagged-ℕ 0)) where sm: Msg (S ()) _ [ _ ] strengthen [] return m
28.796875
92
0.593055
8b7d5aa7ee9c89c94ec3b535c9312b326229ab34
659
agda
Agda
Cubical/HITs/Ints/HAEquivInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/HAEquivInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/HAEquivInt/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.HAEquivInt.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv.HalfAdjoint data HAEquivInt : Type₀ where zero : HAEquivInt suc : HAEquivInt -> HAEquivInt -- suc is a HAEquiv: pred : HAEquivInt -> HAEquivInt suc-pred : ∀ z -> suc (pred z) ≡ z pred-suc : ∀ z -> pred (suc z) ≡ z coh : ∀ z → (λ i → suc (pred-suc z i)) ≡ suc-pred (suc z) suc-haequiv : HAEquiv HAEquivInt HAEquivInt suc-haequiv = suc , record { g = pred ; sec = pred-suc ; ret = suc-pred ; com = coh } -- OPEN: prove HAEquivInt ≃ Int! See Experiments/HInt.agda
27.458333
85
0.670713
dffe39e28ee907893bd8a46b90aea9b52002346f
1,735
agda
Agda
src/SystemF/Substitutions/Types.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/SystemF/Substitutions/Types.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/SystemF/Substitutions/Types.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
module SystemF.Substitutions.Types where open import Prelude open import SystemF.Syntax.Type open import Data.Fin.Substitution open import Data.Star hiding (map) open import Data.Vec module TypeSubst where module TypeApp {T} (l : Lift T Type) where open Lift l hiding (var) infixl 8 _/_ _/_ : ∀ {m n} → Type m → Sub T m n → Type n tc c / σ = tc c tvar x / σ = lift (lookup x σ) (a →' b) / σ = (a / σ) →' (b / σ) (a ⟶ b) / σ = (a / σ) ⟶ (b / σ) ∀' a / σ = ∀' (a / σ ↑) open Application (record { _/_ = _/_ }) using (_/✶_) →'-/✶-↑✶ : ∀ k {m n a b} (ρs : Subs T m n) → (a →' b) /✶ ρs ↑✶ k ≡ (a /✶ ρs ↑✶ k) →' (b /✶ ρs ↑✶ k) →'-/✶-↑✶ k ε = refl →'-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (→'-/✶-↑✶ k ρs) refl ⟶-/✶-↑✶ : ∀ k {m n a b} (ρs : Subs T m n) → (a ⟶ b) /✶ ρs ↑✶ k ≡ (a /✶ ρs ↑✶ k) ⟶ (b /✶ ρs ↑✶ k) ⟶-/✶-↑✶ k ε = refl ⟶-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (⟶-/✶-↑✶ k ρs) refl ∀'-/✶-↑✶ : ∀ k {m n a} (ρs : Subs T m n) → (∀' a) /✶ ρs ↑✶ k ≡ ∀' (a /✶ ρs ↑✶ (1 + k)) ∀'-/✶-↑✶ k ε = refl ∀'-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (∀'-/✶-↑✶ k ρs) refl tc-/✶-↑✶ : ∀ k {c m n} (ρs : Subs T m n) → (tc c) /✶ ρs ↑✶ k ≡ tc c tc-/✶-↑✶ k ε = refl tc-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (tc-/✶-↑✶ k ρs) refl typeSubst : TermSubst Type typeSubst = record { var = tvar; app = TypeApp._/_ } open TermSubst typeSubst public hiding (var) infix 8 _[/_] -- Shorthand for single-variable type substitutions _[/_] : ∀ {n} → Type (suc n) → Type n → Type n a [/ b ] = a / sub b open TypeSubst public using () renaming (_/_ to _tp/tp_; _[/_] to _tp[/tp_]; weaken to tp-weaken)
29.913793
69
0.441499
5e6af3942ab4110874fbfe9365a8c2b54477b311
330
agda
Agda
test/Fail/TypeConstructorsWhichPreserveGuardedness4.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/TypeConstructorsWhichPreserveGuardedness4.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/TypeConstructorsWhichPreserveGuardedness4.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --guardedness-preserving-type-constructors #-} module TypeConstructorsWhichPreserveGuardedness4 where open import Common.Coinduction data Rec (A : ∞ Set) : Set where fold : ♭ A → Rec A D : Set D = Rec (♯ (D → D)) -- _·_ : D → D → D -- fold f · x = f x -- ω : D -- ω = fold (λ x → x · x) -- Ω : D -- Ω = ω · ω
15.714286
58
0.575758
5eb743dd3978e5db3cebb86a56369d94a0316c86
13,610
agda
Agda
Definition/Conversion/Transitivity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Conversion/Transitivity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Conversion/Transitivity.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Transitivity where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.RedSteps open import Definition.Conversion open import Definition.Conversion.Soundness open import Definition.Conversion.Stability open import Definition.Conversion.Whnf open import Definition.Conversion.Conversion open import Definition.Conversion.Reduction open import Definition.Conversion.Lift open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Injectivity import Definition.Typed.Consequences.Inequality as WF open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Substitution open import Definition.Typed.Consequences.NeTypeEq open import Definition.Typed.Consequences.SucCong open import Definition.Typed.Consequences.Inversion open import Definition.Typed.Consequences.Reduction open import Tools.Nat open import Tools.Product open import Tools.Empty import Tools.PropositionalEquality as PE mutual -- Transitivity of algorithmic equality of neutrals. trans~↑ : ∀ {t u v A B Γ} → Γ ⊢ t ~ u ↑ A → Γ ⊢ u ~ v ↑ B → Γ ⊢ t ~ v ↑ A × Γ ⊢ A ≡ B trans~↑ (var-refl x₁ x≡y) (var-refl x₂ x≡y₁) = var-refl x₁ (PE.trans x≡y x≡y₁) , neTypeEq (var _) x₁ (PE.subst (λ x → _ ⊢ var x ∷ _) (PE.sym x≡y) x₂) trans~↑ (app-cong t~u a<>b) (app-cong u~v b<>c) = let t~v , ΠFG≡ΠF′G′ = trans~↓ t~u u~v F≡F₁ , G≡G₁ = injectivity ΠFG≡ΠF′G′ a<>c = transConv↑Term F≡F₁ a<>b b<>c in app-cong t~v a<>c , substTypeEq G≡G₁ (soundnessConv↑Term a<>b) trans~↑ (fst-cong t~u) (fst-cong u~v) = let t~v , ΣFG≡ΣF′G′ = trans~↓ t~u u~v F≡F′ , _ = Σ-injectivity ΣFG≡ΣF′G′ in fst-cong t~v , F≡F′ trans~↑ (snd-cong t~u) (snd-cong u~v) = let t~v , ΣFG≡ΣF′G′ = trans~↓ t~u u~v F≡F′ , G≡G′ = Σ-injectivity ΣFG≡ΣF′G′ in snd-cong t~v , substTypeEq G≡G′ (soundness~↑ (fst-cong t~u)) trans~↑ (natrec-cong A<>B a₀<>b₀ aₛ<>bₛ t~u) (natrec-cong B<>C b₀<>c₀ bₛ<>cₛ u~v) = let ⊢Γ = wf (proj₁ (syntacticEqTerm (soundness~↓ t~u))) A≡B = soundnessConv↑ A<>B F[0]≡F₁[0] = substTypeEq A≡B (refl (zeroⱼ ⊢Γ)) ΠℕFs≡ΠℕF₁s = sucCong A≡B A<>C = transConv↑ A<>B B<>C a₀<>c₀ = transConv↑Term F[0]≡F₁[0] a₀<>b₀ b₀<>c₀ aₛ<>cₛ = transConv↑Term ΠℕFs≡ΠℕF₁s aₛ<>bₛ bₛ<>cₛ t~v , _ = trans~↓ t~u u~v in natrec-cong A<>C a₀<>c₀ aₛ<>cₛ t~v , substTypeEq A≡B (soundness~↓ t~u) trans~↑ (Emptyrec-cong A<>B t~u) (Emptyrec-cong B<>C u~v) = let A≡B = soundnessConv↑ A<>B A<>C = transConv↑ A<>B B<>C t~v , _ = trans~↓ t~u u~v in Emptyrec-cong A<>C t~v , A≡B -- Transitivity of algorithmic equality of neutrals with types in WHNF. trans~↓ : ∀ {t u v A B Γ} → Γ ⊢ t ~ u ↓ A → Γ ⊢ u ~ v ↓ B → Γ ⊢ t ~ v ↓ A × Γ ⊢ A ≡ B trans~↓ ([~] A₁ D whnfA k~l) ([~] A₂ D₁ whnfA₁ k~l₁) = let t~v , A≡B = trans~↑ k~l k~l₁ in [~] A₁ D whnfA t~v , trans (sym (subset* D)) (trans A≡B (subset* D₁)) -- Transitivity of algorithmic equality of types. transConv↑ : ∀ {A B C Γ} → Γ ⊢ A [conv↑] B → Γ ⊢ B [conv↑] C → Γ ⊢ A [conv↑] C transConv↑ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) ([↑] A″ B″ D₁ D″ whnfA″ whnfB″ A′<>B″) = [↑] A′ B″ D D″ whnfA′ whnfB″ (transConv↓ A′<>B′ (PE.subst (λ x → _ ⊢ x [conv↓] B″) (whrDet* (D₁ , whnfA″) (D′ , whnfB′)) A′<>B″)) transConv↑′ : ∀ {A B C Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↑] B → Δ ⊢ B [conv↑] C → Γ ⊢ A [conv↑] C transConv↑′ Γ≡Δ aConvB bConvC = transConv↑ aConvB (stabilityConv↑ (symConEq Γ≡Δ) bConvC) -- Transitivity of algorithmic equality of types in WHNF. transConv↓ : ∀ {A B C Γ} → Γ ⊢ A [conv↓] B → Γ ⊢ B [conv↓] C → Γ ⊢ A [conv↓] C transConv↓ (U-refl x) (U-refl x₁) = U-refl x transConv↓ (ℕ-refl x) (ℕ-refl x₁) = ℕ-refl x transConv↓ (Empty-refl x) (Empty-refl x₁) = Empty-refl x transConv↓ (Unit-refl x) (Unit-refl x₁) = Unit-refl x transConv↓ (ne x) (ne x₁) = let A~C , U≡U = trans~↓ x x₁ in ne A~C transConv↓ (Π-cong x x₁ x₂) (Π-cong x₃ x₄ x₅) = Π-cong x (transConv↑ x₁ x₄) (transConv↑′ (reflConEq (wf x) ∙ soundnessConv↑ x₁) x₂ x₅) transConv↓ (Σ-cong x x₁ x₂) (Σ-cong x₃ x₄ x₅) = Σ-cong x (transConv↑ x₁ x₄) (transConv↑′ (reflConEq (wf x) ∙ soundnessConv↑ x₁) x₂ x₅) -- Refutable cases transConv↓ (U-refl x) (ne ([~] A D whnfB ())) transConv↓ (ℕ-refl x) (ne ([~] A D whnfB ())) transConv↓ (Empty-refl x) (ne ([~] A D whnfB ())) transConv↓ (Π-cong x x₁ x₂) (ne ([~] A D whnfB ())) transConv↓ (Σ-cong x x₁ x₂) (ne ([~] A D whnfB ())) transConv↓ (ne ([~] A₁ D whnfB ())) (U-refl x₁) transConv↓ (ne ([~] A₁ D whnfB ())) (ℕ-refl x₁) transConv↓ (ne ([~] A₁ D whnfB ())) (Empty-refl x₁) transConv↓ (ne ([~] A₁ D whnfB ())) (Π-cong x₁ x₂ x₃) transConv↓ (ne ([~] A₁ D whnfB ())) (Σ-cong x₁ x₂ x₃) -- Transitivity of algorithmic equality of terms. transConv↑Term : ∀ {t u v A B Γ} → Γ ⊢ A ≡ B → Γ ⊢ t [conv↑] u ∷ A → Γ ⊢ u [conv↑] v ∷ B → Γ ⊢ t [conv↑] v ∷ A transConv↑Term A≡B ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) ([↑]ₜ B₂ t″ u″ D₁ d₁ d″ whnfB₁ whnft″ whnfu″ t<>u₁) = let B₁≡B₂ = trans (sym (subset* D)) (trans A≡B (subset* D₁)) d₁″ = conv* d″ (sym B₁≡B₂) d₁′ = conv* d′ B₁≡B₂ in [↑]ₜ B₁ t′ u″ D d d₁″ whnfB whnft′ whnfu″ (transConv↓Term B₁≡B₂ t<>u (PE.subst (λ x → _ ⊢ x [conv↓] u″ ∷ B₂) (whrDet*Term (d₁ , whnft″) (d₁′ , whnfu′)) t<>u₁)) transConv↑Term′ : ∀ {t u v A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B → Γ ⊢ t [conv↑] u ∷ A → Δ ⊢ u [conv↑] v ∷ B → Γ ⊢ t [conv↑] v ∷ A transConv↑Term′ Γ≡Δ A≡B tConvU uConvV = transConv↑Term A≡B tConvU (stabilityConv↑Term (symConEq Γ≡Δ) uConvV) -- Transitivity of algorithmic equality of terms in WHNF. transConv↓Term : ∀ {t u v A B Γ} → Γ ⊢ A ≡ B → Γ ⊢ t [conv↓] u ∷ A → Γ ⊢ u [conv↓] v ∷ B → Γ ⊢ t [conv↓] v ∷ A transConv↓Term A≡B (ℕ-ins x) (ℕ-ins x₁) = ℕ-ins (proj₁ (trans~↓ x x₁)) transConv↓Term A≡B (Empty-ins x) (Empty-ins x₁) = Empty-ins (proj₁ (trans~↓ x x₁)) transConv↓Term A≡B (Unit-ins t~u) uConvV = let _ , [t] , _ = syntacticEqTerm (soundness~↓ t~u) _ , tNe , _ = ne~↓ t~u _ , _ , [v] = syntacticEqTerm (soundnessConv↓Term uConvV) [v] = conv [v] (sym A≡B) _ , _ , vWhnf = whnfConv↓Term uConvV in η-unit [t] [v] (ne tNe) vWhnf transConv↓Term A≡B (ne-ins t u x x₁) (ne-ins t′ u′ x₂ x₃) = ne-ins t (conv u′ (sym A≡B)) x (proj₁ (trans~↓ x₁ x₃)) transConv↓Term A≡B (univ x x₁ x₂) (univ x₃ x₄ x₅) = univ x x₄ (transConv↓ x₂ x₅) transConv↓Term A≡B (zero-refl x) conv↓ = convConv↓Term (reflConEq x) (sym A≡B) ℕₙ conv↓ transConv↓Term A≡B conv↓ (zero-refl _) = conv↓ transConv↓Term A≡B (suc-cong x) (suc-cong x₁) = suc-cong (transConv↑Term A≡B x x₁) transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (η-eq x₅ x₆ y₂ y₃ x₇) = let F₁≡F , G₁≡G = injectivity A≡B in η-eq x₁ (conv x₆ (sym A≡B)) y y₃ (transConv↑Term′ (reflConEq (wfEq F₁≡F) ∙ F₁≡F) G₁≡G x₃ x₇) transConv↓Term A≡B (Σ-η ⊢p ⊢r pProd rProd fstConv sndConv) (Σ-η ⊢r′ ⊢q _ qProd fstConv′ sndConv′) = let F≡ , G≡ = Σ-injectivity A≡B Gfst≡ = substTypeEq G≡ (soundnessConv↑Term fstConv) in Σ-η ⊢p (conv ⊢q (sym A≡B)) pProd qProd (transConv↑Term F≡ fstConv fstConv′) (transConv↑Term Gfst≡ sndConv sndConv′) transConv↓Term A≡B (η-unit [t] [u] tUnit uUnit) uConvV = let _ , _ , [v] = syntacticEqTerm (soundnessConv↓Term uConvV) [v] = conv [v] (sym A≡B) _ , _ , vWhnf = whnfConv↓Term uConvV in η-unit [t] [v] tUnit vWhnf -- Refutable cases transConv↓Term A≡B (ℕ-ins x) (ne-ins t u x₂ x₃) = ⊥-elim (WF.ℕ≢ne x₂ A≡B) transConv↓Term A≡B (ℕ-ins x) (univ x₂ x₃ x₄) = ⊥-elim (WF.U≢ℕ (sym A≡B)) transConv↓Term A≡B (ℕ-ins x) (Empty-ins x₁) = ⊥-elim (WF.ℕ≢Emptyⱼ A≡B) transConv↓Term A≡B (ℕ-ins x) (Unit-ins x₁) = ⊥-elim (WF.ℕ≢Unitⱼ A≡B) transConv↓Term A≡B (ℕ-ins ([~] A D whnfB ())) (suc-cong x₂) transConv↓Term A≡B (ℕ-ins x) (η-eq x₃ x₄ y y₁ x₅) = ⊥-elim (WF.ℕ≢Π A≡B) transConv↓Term A≡B (ℕ-ins x₁) (Σ-η x₂ x₃ x₄ x₅ x₆ x₇) = ⊥-elim (WF.ℕ≢Σ A≡B) transConv↓Term A≡B (ℕ-ins x) (η-unit _ _ _ _) = ⊥-elim (WF.ℕ≢Unitⱼ A≡B) transConv↓Term A≡B (Empty-ins x) (ne-ins t u x₂ x₃) = ⊥-elim (WF.Empty≢neⱼ x₂ A≡B) transConv↓Term A≡B (Empty-ins x) (univ x₂ x₃ x₄) = ⊥-elim (WF.U≢Emptyⱼ (sym A≡B)) transConv↓Term A≡B (Empty-ins x₁) (ℕ-ins x) = ⊥-elim (WF.ℕ≢Emptyⱼ (sym A≡B)) transConv↓Term A≡B (Empty-ins x₁) (Unit-ins x) = ⊥-elim (WF.Empty≢Unitⱼ A≡B) transConv↓Term A≡B (Empty-ins ([~] A D whnfB ())) (suc-cong x₂) transConv↓Term A≡B (Empty-ins x) (η-eq x₃ x₄ y y₁ x₅) = ⊥-elim (WF.Empty≢Πⱼ A≡B) transConv↓Term A≡B (Empty-ins x₁) (Σ-η x₂ x₃ x₄ x₅ x₆ x₇) = ⊥-elim (WF.Empty≢Σⱼ A≡B) transConv↓Term A≡B (Empty-ins x₁) (η-unit _ _ _ _) = ⊥-elim (WF.Empty≢Unitⱼ A≡B) transConv↓Term A≡B (ne-ins t u x x₁) (ℕ-ins x₂) = ⊥-elim (WF.ℕ≢ne x (sym A≡B)) transConv↓Term A≡B (ne-ins t u x x₁) (Empty-ins x₂) = ⊥-elim (WF.Empty≢neⱼ x (sym A≡B)) transConv↓Term A≡B (ne-ins t u x x₁) (Unit-ins x₂) = ⊥-elim (WF.Unit≢neⱼ x (sym A≡B)) transConv↓Term A≡B (ne-ins t u x x₁) (univ x₃ x₄ x₅) = ⊥-elim (WF.U≢ne x (sym A≡B)) transConv↓Term A≡B (ne-ins t u x ([~] A D whnfB ())) (suc-cong x₃) transConv↓Term A≡B (ne-ins t u x x₁) (η-eq x₄ x₅ y y₁ x₆) = ⊥-elim (WF.Π≢ne x (sym A≡B)) transConv↓Term A≡B (ne-ins t u x x₁) (Σ-η x₅ x₆ x₇ x₈ x₉ x₁₀) = ⊥-elim (WF.Σ≢ne x (sym A≡B)) transConv↓Term A≡B (ne-ins t u x x₁) (η-unit _ _ _ _) = ⊥-elim (WF.Unit≢neⱼ x (sym A≡B)) transConv↓Term A≡B (univ x x₁ x₂) (ℕ-ins x₃) = ⊥-elim (WF.U≢ℕ A≡B) transConv↓Term A≡B (univ x x₁ x₂) (Empty-ins x₃) = ⊥-elim (WF.U≢Emptyⱼ A≡B) transConv↓Term A≡B (univ x x₁ x₂) (Unit-ins x₃) = ⊥-elim (WF.U≢Unitⱼ A≡B) transConv↓Term A≡B (univ x x₁ x₂) (ne-ins t u x₃ x₄) = ⊥-elim (WF.U≢ne x₃ A≡B) transConv↓Term A≡B (univ x x₁ x₂) (suc-cong x₃) = ⊥-elim (WF.U≢ℕ A≡B) transConv↓Term A≡B (univ x x₁ x₂) (η-eq x₄ x₅ y y₁ x₆) = ⊥-elim (WF.U≢Π A≡B) transConv↓Term A≡B (univ x₁ x₂ x₃) (Σ-η x₄ x₅ x₆ x₇ x₈ x₉) = ⊥-elim (WF.U≢Σ A≡B) transConv↓Term A≡B (univ x x₁ x₂) (η-unit _ _ _ _) = ⊥-elim (WF.U≢Unitⱼ A≡B) transConv↓Term A≡B (suc-cong x) (ℕ-ins ([~] A D whnfB ())) transConv↓Term A≡B (suc-cong x) (Empty-ins ([~] A D whnfB ())) transConv↓Term A≡B (suc-cong x) (ne-ins t u x₁ ([~] A D whnfB ())) transConv↓Term A≡B (suc-cong x) (univ x₁ x₂ x₃) = ⊥-elim (WF.U≢ℕ (sym A≡B)) transConv↓Term A≡B (suc-cong x) (η-eq x₂ x₃ y y₁ x₄) = ⊥-elim (WF.ℕ≢Π A≡B) transConv↓Term A≡B (suc-cong x₁) (Σ-η x₂ x₃ x₄ x₅ x₆ x₇) = ⊥-elim (WF.ℕ≢Σ A≡B) transConv↓Term A≡B (suc-cong x) (η-unit _ _ _ _) = ⊥-elim (WF.ℕ≢Unitⱼ A≡B) transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (ℕ-ins x₄) = ⊥-elim (WF.ℕ≢Π (sym A≡B)) transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (Empty-ins x₄) = ⊥-elim (WF.Empty≢Πⱼ (sym A≡B)) transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (Unit-ins _) = ⊥-elim (WF.Unit≢Πⱼ (sym A≡B)) transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (ne-ins t u x₄ x₅) = ⊥-elim (WF.Π≢ne x₄ A≡B) transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (univ x₄ x₅ x₆) = ⊥-elim (WF.U≢Π (sym A≡B)) transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (suc-cong x₄) = ⊥-elim (WF.ℕ≢Π (sym A≡B)) transConv↓Term A≡B (η-eq x₂ x₃ x₄ x₅ x₆) (Σ-η x₇ x₈ x₉ x₁₀ x₁₁ x₁₂) = ⊥-elim (WF.Π≢Σ A≡B) transConv↓Term A≡B (η-eq x₁ x₂ y y₁ x₃) (η-unit _ _ _ _) = ⊥-elim (WF.Unit≢Πⱼ (sym A≡B)) transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (ℕ-ins x₇) = ⊥-elim (WF.ℕ≢Σ (sym A≡B)) transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (Empty-ins x₇) = ⊥-elim (WF.Empty≢Σⱼ (sym A≡B)) transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (Unit-ins x₇) = ⊥-elim (WF.Unit≢Σⱼ (sym A≡B)) transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (ne-ins x₇ x₈ x₉ x₁₀) = ⊥-elim (WF.Σ≢ne x₉ A≡B) transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (univ x₇ x₈ x₉) = ⊥-elim (WF.U≢Σ (sym A≡B)) transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (suc-cong x₇) = ⊥-elim (WF.ℕ≢Σ (sym A≡B)) transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (η-eq x₈ x₉ x₁₀ x₁₁ x₁₂) = ⊥-elim (WF.Π≢Σ (sym A≡B)) transConv↓Term A≡B (Σ-η x₁ x₂ x₃ x₄ x₅ x₆) (η-unit x₇ x₈ x₉ x₁₀) = ⊥-elim (WF.Unit≢Σⱼ (sym A≡B)) -- Transitivity of algorithmic equality of types of the same context. transConv : ∀ {A B C Γ} → Γ ⊢ A [conv↑] B → Γ ⊢ B [conv↑] C → Γ ⊢ A [conv↑] C transConv A<>B B<>C = transConv↑ A<>B B<>C -- Transitivity of algorithmic equality of terms of the same context. transConvTerm : ∀ {t u v A Γ} → Γ ⊢ t [conv↑] u ∷ A → Γ ⊢ u [conv↑] v ∷ A → Γ ⊢ t [conv↑] v ∷ A transConvTerm t<>u u<>v = let t≡u = soundnessConv↑Term t<>u ⊢A , _ , _ = syntacticEqTerm t≡u in transConv↑Term (refl ⊢A) t<>u u<>v
48.262411
98
0.551065
0effa83c42c7f8a199c298b376605153a2b55009
2,083
agda
Agda
agda-stdlib-0.9/src/Induction.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Induction.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Induction.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- An abstraction of various forms of recursion/induction ------------------------------------------------------------------------ -- The idea underlying Induction.* comes from Epigram 1, see Section 4 -- of "The view from the left" by McBride and McKinna. -- Note: The types in this module can perhaps be easier to understand -- if they are normalised. Note also that Agda can do the -- normalisation for you. module Induction where open import Level open import Relation.Unary -- A RecStruct describes the allowed structure of recursion. The -- examples in Induction.Nat should explain what this is all about. RecStruct : ∀ {a} → Set a → (ℓ₁ ℓ₂ : Level) → Set _ RecStruct A ℓ₁ ℓ₂ = Pred A ℓ₁ → Pred A ℓ₂ -- A recursor builder constructs an instance of a recursion structure -- for a given input. RecursorBuilder : ∀ {a ℓ₁ ℓ₂} {A : Set a} → RecStruct A ℓ₁ ℓ₂ → Set _ RecursorBuilder Rec = ∀ P → Rec P ⊆′ P → Universal (Rec P) -- A recursor can be used to actually compute/prove something useful. Recursor : ∀ {a ℓ₁ ℓ₂} {A : Set a} → RecStruct A ℓ₁ ℓ₂ → Set _ Recursor Rec = ∀ P → Rec P ⊆′ P → Universal P -- And recursors can be constructed from recursor builders. build : ∀ {a ℓ₁ ℓ₂} {A : Set a} {Rec : RecStruct A ℓ₁ ℓ₂} → RecursorBuilder Rec → Recursor Rec build builder P f x = f x (builder P f x) -- We can repeat the exercise above for subsets of the type we are -- recursing over. SubsetRecursorBuilder : ∀ {a ℓ₁ ℓ₂ ℓ₃} {A : Set a} → Pred A ℓ₁ → RecStruct A ℓ₂ ℓ₃ → Set _ SubsetRecursorBuilder Q Rec = ∀ P → Rec P ⊆′ P → Q ⊆′ Rec P SubsetRecursor : ∀ {a ℓ₁ ℓ₂ ℓ₃} {A : Set a} → Pred A ℓ₁ → RecStruct A ℓ₂ ℓ₃ → Set _ SubsetRecursor Q Rec = ∀ P → Rec P ⊆′ P → Q ⊆′ P subsetBuild : ∀ {a ℓ₁ ℓ₂ ℓ₃} {A : Set a} {Q : Pred A ℓ₁} {Rec : RecStruct A ℓ₂ ℓ₃} → SubsetRecursorBuilder Q Rec → SubsetRecursor Q Rec subsetBuild builder P f x q = f x (builder P f x q)
35.305085
72
0.605857
3840c74d3e98adfddca92e1c59fff8e090ac3618
159
agda
Agda
slides/Slides.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
11
2015-06-02T14:05:20.000Z
2021-09-09T08:46:42.000Z
slides/Slides.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
null
null
null
slides/Slides.agda
larrytheliquid/generic-elim
832383d7adf37aa2364213fb0aeb67e9f61a248f
[ "MIT" ]
2
2016-05-02T08:56:15.000Z
2022-03-12T11:31:22.000Z
module Slides where import Background import OpenTheory import OpenTheory2 import ClosedTheory import ClosedTheory2 import ClosedTheory3 import ClosedTheory4
15.9
20
0.886792
a0eb8b07edb7c64f95a0fac655a867857d79a1d9
2,688
agda
Agda
examples/StateSized/cellStateDependent.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/StateSized/cellStateDependent.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/StateSized/cellStateDependent.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
{-# OPTIONS --postfix-projections #-} module StateSized.cellStateDependent where open import Data.Product open import Data.String.Base {- open import SizedIO.Object open import SizedIO.ConsoleObject -} open import SizedIO.Console hiding (main) open import SizedIO.Base open import NativeIO open import StateSizedIO.Object open import StateSizedIO.IOObject open import Size open import StateSizedIO.cellStateDependent {- I moved most into src/StateSizedIO/cellStateDependent.agda now the code doesn't work -} -- Program is another program program : IOConsole ∞ Unit program = let c₀ = cellPempty ∞ in exec getLine λ str → method c₀ (put str) >>= λ{ (_ , c₁) → -- empty method c₁ get >>= λ{ (str₁ , c₂) → -- full exec (putStrLn ("we got " ++ str₁)) λ _ → exec (putStrLn ("Second Round")) λ _ → exec getLine λ str₂ → method c₂ (put str₂) >>= λ{ (_ , c₃) → method c₃ get >>= λ{ (str₃ , c₄) → exec (putStrLn ("we got " ++ str₃) ) λ _ → return unit }}}} main : NativeIO Unit main = translateIOConsole program -- cellP is constructor for the consoleObject for interface (cellI String) {- cellPˢ : ∀{i} → CellCˢ i force (method cellPˢ (put x)) = {!!} -} {- cellP : ∀{i} (s : String) → CellC i force (method (cellP s) get) = exec' (putStrLn ("getting (" ++ s ++ ")")) λ _ → return (s , cellP s) force (method (cellP s) (put x)) = exec' (putStrLn ("putting (" ++ x ++ ")")) λ _ → return (_ , (cellP x)) -} {- -- cellI is the interface of the object of a simple cell cellI : (A : Set) → Interfaceˢ Method (cellI A) = CellMethodˢ A Result (cellI A) m = CellResultˢ m -- cellC is the type of consoleObjects with interface (cellI String) CellC : (i : Size) → Set CellC i = ConsoleObject i (cellI String) -} {- -- cellO is a program for a simple cell which -- when get is called writes "getting s" for the string s of the object -- and when putting s writes "putting s" for the string -- cellP is constructor for the consoleObject for interface (cellI String) cellP : ∀{i} (s : String) → CellC i force (method (cellP s) get) = exec' (putStrLn ("getting (" ++ s ++ ")")) λ _ → return (s , cellP s) force (method (cellP s) (put x)) = exec' (putStrLn ("putting (" ++ x ++ ")")) λ _ → return (_ , (cellP x)) -- Program is another program program : String → IOConsole ∞ Unit program arg = let c₀ = cellP "Start" in method c₀ get >>= λ{ (s , c₁) → exec1 (putStrLn s) >> method c₁ (put arg) >>= λ{ (_ , c₂) → method c₂ get >>= λ{ (s' , c₃) → exec1 (putStrLn s') }}} main : NativeIO Unit main = translateIOConsole (program "hello") -}
25.121495
74
0.624256
ada23fc138c1e66f317da46a6851e454c23a2e5e
2,628
agda
Agda
unused/Membership-old.agda
Zalastax/thesis
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
1
2018-02-02T16:44:43.000Z
2018-02-02T16:44:43.000Z
unused/Membership-old.agda
Zalastax/thesis
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
unused/Membership-old.agda
Zalastax/thesis
ae541df13d069df4eb1464f29fbaa9804aad439f
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- List membership and some related definitions open import Level using (Level; _⊔_) open import Relation.Binary open import Relation.Binary.List.Pointwise as ListEq using ([]; _∷_) open import Relation.Nullary open import Data.List open import Data.List.Any open import Function import Relation.Binary.InducedPreorders as Ind open import Data.Product as Prod using (∃; _×_; _,_) module Membership-old {c ℓ : Level} (S : Setoid c ℓ) where private open module S = Setoid S using (_≈_) renaming (Carrier to A) open module LS = Setoid (ListEq.setoid S) using () renaming (_≈_ to _≋_) -- If a predicate P respects the underlying equality then Any P -- respects the list equality. lift-resp : ∀ {p} {P : A → Set p} → P Respects _≈_ → Any P Respects _≋_ lift-resp resp [] () lift-resp resp (x≈y ∷ xs≈ys) (here px) = here (resp x≈y px) lift-resp resp (x≈y ∷ xs≈ys) (there pxs) = there (lift-resp resp xs≈ys pxs) -- List membership. infix 4 _∈_ _∉_ _∈_ : A → List A → Set _ x ∈ xs = Any (_≈_ x) xs _∉_ : A → List A → Set _ x ∉ xs = ¬ x ∈ xs -- Subsets. infix 4 _⊆_ _⊈_ _⊆_ : List A → List A → Set _ xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys _⊈_ : List A → List A → Set _ xs ⊈ ys = ¬ xs ⊆ ys -- Equality is respected by the predicate which is used to define -- _∈_. ∈-resp-≈ : ∀ {x} → (_≈_ x) Respects _≈_ ∈-resp-≈ = flip S.trans -- List equality is respected by _∈_. ∈-resp-list-≈ : ∀ {x} → _∈_ x Respects _≋_ ∈-resp-list-≈ = lift-resp ∈-resp-≈ -- _⊆_ is a preorder. ⊆-preorder : Preorder _ _ _ ⊆-preorder = Ind.InducedPreorder₂ (ListEq.setoid S) _∈_ ∈-resp-list-≈ module ⊆-Reasoning where import Relation.Binary.PreorderReasoning as PreR open PreR ⊆-preorder public renaming (_∼⟨_⟩_ to _⊆⟨_⟩_) infix 1 _∈⟨_⟩_ _∈⟨_⟩_ : ∀ x {xs ys} → x ∈ xs → xs IsRelatedTo ys → x ∈ ys x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs -- A variant of List.map. map-with-∈ : ∀ {b} {B : Set b} (xs : List A) → (∀ {x} → x ∈ xs → B) → List B map-with-∈ [] f = [] map-with-∈ (x ∷ xs) f = f (here S.refl) ∷ map-with-∈ xs (f ∘ there) -- Finds an element satisfying the predicate. find : ∀ {p} {P : A → Set p} {xs} → Any P xs → ∃ λ x → x ∈ xs × P x find (here px) = (_ , here S.refl , px) find (there pxs) = Prod.map id (Prod.map there id) (find pxs) lose : ∀ {p} {P : A → Set p} {x xs} → P Respects _≈_ → x ∈ xs → P x → Any P xs lose resp x∈xs px = Data.List.Any.map (flip resp px) x∈xs
28.565217
72
0.560883
2ff8a5d17995a697e9cfc6cdf4b1f0877a4371bc
1,882
agda
Agda
src/is-lib/InfSys/SCoinduction.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
4
2021-07-29T14:32:30.000Z
2022-01-24T14:38:47.000Z
src/is-lib/InfSys/SCoinduction.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
null
null
null
src/is-lib/InfSys/SCoinduction.agda
boystrange/FairSubtypingAgda
c4b78e70c3caf68d509f4360b9171d9f80ecb825
[ "MIT" ]
null
null
null
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types #-} open import Agda.Builtin.Equality open import Data.Product open import Size open import Codata.Thunk open import Level open import Relation.Unary using (_⊆_) module is-lib.InfSys.SCoinduction {𝓁} where private variable U : Set 𝓁 open import is-lib.InfSys.Base {𝓁} open import is-lib.InfSys.Induction {𝓁} open MetaRule open IS {- Coinductive interpretation -} data SCoInd⟦_⟧ {𝓁c 𝓁p 𝓁n : Level} (is : IS {𝓁c} {𝓁p} {𝓁n} U) : U → Size → Set (𝓁 ⊔ 𝓁c ⊔ 𝓁p ⊔ 𝓁n) where sfold : ∀{u i} → ISF[ is ] (λ u → Thunk (SCoInd⟦ is ⟧ u) i) u → SCoInd⟦ is ⟧ u i {- Coinduction Principle -} scoind[_] : ∀{𝓁c 𝓁p 𝓁n 𝓁'} → (is : IS {𝓁c} {𝓁p} {𝓁n} U) → (S : U → Set 𝓁') → S ⊆ ISF[ is ] S -- S is consistent → S ⊆ λ u → ∀{i} → SCoInd⟦ is ⟧ u i scoind[ is ] S cn Su with cn Su ... | rn , c , refl , pr = sfold (rn , c , refl , λ i → λ where .force → scoind[ is ] S cn (pr i)) {- Apply Rule -} apply-scoind : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → (rn : is .Names) → RClosed (is .rules rn) (λ u → ∀{i} → SCoInd⟦ is ⟧ u i) apply-scoind {is = is} rn = prefix⇒closed (is .rules rn) {P = λ u → ∀{i} → SCoInd⟦ is ⟧ u i } λ{(c , refl , pr) → sfold (rn , c , refl , λ i → λ where .force → pr i)} {- Postfix - Prefix -} scoind-postfix : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → (λ u → ∀{i} → SCoInd⟦ is ⟧ u i) ⊆ ISF[ is ] (λ u → ∀{i} → SCoInd⟦ is ⟧ u i) scoind-postfix p-scoind with p-scoind ... | sfold (rn , c , refl , pr) = rn , c , refl , λ i → (pr i) .force scoind-prefix : ∀{𝓁c 𝓁p 𝓁n}{is : IS {𝓁c} {𝓁p} {𝓁n} U} → ISF[ is ] (λ u → ∀{i} → SCoInd⟦ is ⟧ u i) ⊆ λ u → ∀{i} → SCoInd⟦ is ⟧ u i scoind-prefix (rn , c , refl , pr) = apply-scoind rn c pr
36.192308
142
0.519129
341fca72bd3662cc60cd77d143ddcb67c48ba7eb
21,877
agda
Agda
Cubical/Algebra/ZariskiLattice/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:28:39.000Z
2022-03-05T00:28:39.000Z
Cubical/Algebra/ZariskiLattice/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/ZariskiLattice/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.ZariskiLattice.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Powerset using (ℙ ; ⊆-refl-consequence) renaming (_∈_ to _∈ₚ_ ; subst-∈ to subst-∈ₚ) import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm ; ·-identityʳ to ·ℕ-rid) open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.BinomialThm open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.RadicalIdeal open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Localisation.InvertingElements open import Cubical.Algebra.CommAlgebra.Base open import Cubical.Algebra.CommAlgebra.Properties open import Cubical.Algebra.CommAlgebra.Localisation open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice open import Cubical.Algebra.DistLattice.Basis open import Cubical.Algebra.DistLattice.BigOps open import Cubical.Algebra.Matrix open import Cubical.Categories.Category.Base hiding (_[_,_]) open import Cubical.Categories.Functor open import Cubical.Categories.Instances.CommAlgebras open import Cubical.Categories.Instances.DistLattice open import Cubical.Categories.Instances.Semilattice open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level module ZarLat (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open Sum (CommRing→Ring R') open CommRingTheory R' open Exponentiation R' open BinomialThm R' open CommIdeal R' open RadicalIdeal R' open isCommIdeal open ProdFin R' private R = fst R' A = Σ[ n ∈ ℕ ] (FinVec R n) ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] _∼_ : A → A → Type (ℓ-suc ℓ) (_ , α) ∼ (_ , β) = √ ⟨ α ⟩ ≡ √ ⟨ β ⟩ ∼EquivRel : isEquivRel (_∼_) reflexive ∼EquivRel _ = refl symmetric ∼EquivRel _ _ = sym transitive ∼EquivRel _ _ _ = _∙_ ZL : Type (ℓ-suc ℓ) ZL = A / _∼_ 0z : ZL 0z = [ 0 , (λ ()) ] 1z : ZL 1z = [ 1 , (replicateFinVec 1 1r) ] _∨z_ : ZL → ZL → ZL _∨z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel) (λ (_ , α) (_ , β) → (_ , α ++Fin β)) (λ (_ , α) (_ , β) → cong √ (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α))) λ (_ , α) (_ , β) (_ , γ) α∼β → --need to show α∨γ ∼ β∨γ √ ⟨ α ++Fin γ ⟩ ≡⟨ cong √ (FGIdealAddLemma _ α γ) ⟩ √ (⟨ α ⟩ +i ⟨ γ ⟩) ≡⟨ sym (√+LContr _ _) ⟩ √ (√ ⟨ α ⟩ +i ⟨ γ ⟩) ≡⟨ cong (λ I → √ (I +i ⟨ γ ⟩)) α∼β ⟩ √ (√ ⟨ β ⟩ +i ⟨ γ ⟩) ≡⟨ √+LContr _ _ ⟩ √ (⟨ β ⟩ +i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ β γ)) ⟩ √ ⟨ β ++Fin γ ⟩ ∎ _∧z_ : ZL → ZL → ZL _∧z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel) (λ (_ , α) (_ , β) → (_ , α ··Fin β)) (λ (_ , α) (_ , β) → cong √ (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α))) λ (_ , α) (_ , β) (_ , γ) α∼β → --need to show α∧γ ∼ β∧γ √ ⟨ α ··Fin γ ⟩ ≡⟨ cong √ (FGIdealMultLemma _ α γ) ⟩ √ (⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ sym (√·LContr _ _) ⟩ √ (√ ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong (λ I → √ (I ·i ⟨ γ ⟩)) α∼β ⟩ √ (√ ⟨ β ⟩ ·i ⟨ γ ⟩) ≡⟨ √·LContr _ _ ⟩ √ (⟨ β ⟩ ·i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealMultLemma _ β γ)) ⟩ √ ⟨ β ··Fin γ ⟩ ∎ -- join axioms ∨zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∨z (𝔟 ∨z 𝔠) ≡ (𝔞 ∨z 𝔟) ∨z 𝔠 ∨zAssoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (cong √ (IdealAddAssoc _ _ _ _)) ∨zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∨z 𝔟 ≡ 𝔟 ∨z 𝔞 ∨zComm = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (cong √ (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α))) ∨zLid : ∀ (𝔞 : ZL) → 0z ∨z 𝔞 ≡ 𝔞 ∨zLid = SQ.elimProp (λ _ → squash/ _ _) λ _ → eq/ _ _ refl ∨zRid : ∀ (𝔞 : ZL) → 𝔞 ∨z 0z ≡ 𝔞 ∨zRid _ = ∨zComm _ _ ∙ ∨zLid _ -- -- meet axioms ∧zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∧z 𝔠) ≡ (𝔞 ∧z 𝔟) ∧z 𝔠 ∧zAssoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (√ ⟨ α ··Fin (β ··Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i ⟨ β ··Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i (⟨ β ⟩ ·i ⟨ γ ⟩)) ≡⟨ cong √ (·iAssoc _ _ _) ⟩ √ ((⟨ α ⟩ ·i ⟨ β ⟩) ·i ⟨ γ ⟩) ≡⟨ cong (λ x → √ (x ·i ⟨ γ ⟩)) (sym (FGIdealMultLemma _ _ _)) ⟩ √ (⟨ α ··Fin β ⟩ ·i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealMultLemma _ _ _)) ⟩ √ ⟨ (α ··Fin β) ··Fin γ ⟩ ∎) ∧zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z 𝔟 ≡ 𝔟 ∧z 𝔞 ∧zComm = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (cong √ (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α))) ∧zRid : ∀ (𝔞 : ZL) → 𝔞 ∧z 1z ≡ 𝔞 ∧zRid = SQ.elimProp (λ _ → squash/ _ _) λ (_ , α) → eq/ _ _ (cong √ (⟨ α ··Fin (replicateFinVec 1 1r) ⟩ ≡⟨ FGIdealMultLemma _ _ _ ⟩ ⟨ α ⟩ ·i ⟨ (replicateFinVec 1 1r) ⟩ ≡⟨ cong (⟨ α ⟩ ·i_) (contains1Is1 _ (indInIdeal _ _ zero)) ⟩ ⟨ α ⟩ ·i 1Ideal ≡⟨ ·iRid _ ⟩ ⟨ α ⟩ ∎)) -- absorption and distributivity ∧zAbsorb∨z : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z (𝔞 ∨z 𝔟) ≡ 𝔞 ∧zAbsorb∨z = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (√ ⟨ α ··Fin (α ++Fin β) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ α (α ++Fin β)) ⟩ √ (⟨ α ⟩ ·i ⟨ α ++Fin β ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ α β) ⟩ √ (⟨ α ⟩ ·i (⟨ α ⟩ +i ⟨ β ⟩)) ≡⟨ √·Absorb+ _ _ ⟩ √ ⟨ α ⟩ ∎) ∧zLDist∨z : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∨z 𝔠) ≡ (𝔞 ∧z 𝔟) ∨z (𝔞 ∧z 𝔠) ∧zLDist∨z = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (√ ⟨ α ··Fin (β ++Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i ⟨ β ++Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i (⟨ β ⟩ +i ⟨ γ ⟩)) ≡⟨ cong √ (·iRdist+i _ _ _) ⟩ -- L/R-dist are swapped -- in Lattices vs Rings √ (⟨ α ⟩ ·i ⟨ β ⟩ +i ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong₂ (λ x y → √ (x +i y)) (sym (FGIdealMultLemma _ _ _)) (sym (FGIdealMultLemma _ _ _)) ⟩ √ (⟨ α ··Fin β ⟩ +i ⟨ α ··Fin γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ _ _)) ⟩ √ ⟨ (α ··Fin β) ++Fin (α ··Fin γ) ⟩ ∎) ZariskiLattice : DistLattice (ℓ-suc ℓ) fst ZariskiLattice = ZL DistLatticeStr.0l (snd ZariskiLattice) = 0z DistLatticeStr.1l (snd ZariskiLattice) = 1z DistLatticeStr._∨l_ (snd ZariskiLattice) = _∨z_ DistLatticeStr._∧l_ (snd ZariskiLattice) = _∧z_ DistLatticeStr.isDistLattice (snd ZariskiLattice) = makeIsDistLattice∧lOver∨l squash/ ∨zAssoc ∨zRid ∨zComm ∧zAssoc ∧zRid ∧zComm ∧zAbsorb∨z ∧zLDist∨z module _ (R' : CommRing ℓ) (L' : DistLattice ℓ') where open CommRingStr (R' .snd) open RingTheory (CommRing→Ring R') open Sum (CommRing→Ring R') open CommRingTheory R' open Exponentiation R' open DistLatticeStr (L' .snd) renaming (is-set to isSetL) open Join L' open LatticeTheory (DistLattice→Lattice L') open Order (DistLattice→Lattice L') open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L')) open PosetReasoning IndPoset open PosetStr (IndPoset .snd) hiding (_≤_) private R = fst R' L = fst L' record IsZarMap (d : R → L) : Type (ℓ-max ℓ ℓ') where constructor iszarmap field pres0 : d 0r ≡ 0l pres1 : d 1r ≡ 1l ·≡∧ : ∀ x y → d (x · y) ≡ d x ∧l d y +≤∨ : ∀ x y → d (x + y) ≤ d x ∨l d y ∑≤⋁ : {n : ℕ} (U : FinVec R n) → d (∑ U) ≤ ⋁ λ i → d (U i) ∑≤⋁ {n = zero} U = ∨lRid _ ∙ pres0 ∑≤⋁ {n = suc n} U = d (∑ U) ≤⟨ ∨lIdem _ ⟩ d (U zero + ∑ (U ∘ suc)) ≤⟨ +≤∨ _ _ ⟩ d (U zero) ∨l d (∑ (U ∘ suc)) ≤⟨ ≤-∨LPres _ _ _ (∑≤⋁ (U ∘ suc)) ⟩ d (U zero) ∨l ⋁ (d ∘ U ∘ suc) ≤⟨ ∨lIdem _ ⟩ ⋁ (d ∘ U) ◾ d·LCancel : ∀ x y → d (x · y) ≤ d y d·LCancel x y = subst (λ a → a ≤ d y) (sym (·≡∧ x y)) (∧≤LCancelJoin _ _) linearCombination≤LCancel : {n : ℕ} (α β : FinVec R n) → d (linearCombination R' α β) ≤ ⋁ (d ∘ β) linearCombination≤LCancel α β = is-trans _ _ _ (∑≤⋁ (λ i → α i · β i)) (≤-⋁Ext _ _ λ i → d·LCancel (α i) (β i)) ZarMapIdem : ∀ (n : ℕ) (x : R) → d (x ^ (suc n)) ≡ d x ZarMapIdem zero x = ·≡∧ _ _ ∙∙ cong (d x ∧l_) pres1 ∙∙ ∧lRid _ ZarMapIdem (suc n) x = ·≡∧ _ _ ∙∙ cong (d x ∧l_) (ZarMapIdem n x) ∙∙ ∧lIdem _ ZarMapExpIneq : ∀ (n : ℕ) (x : R) → d x ≤ d (x ^ n) ZarMapExpIneq zero x = cong (d x ∨l_) pres1 ∙∙ 1lRightAnnihilates∨l _ ∙∙ sym pres1 ZarMapExpIneq (suc n) x = subst (λ y → d x ≤ y) (sym (ZarMapIdem _ x)) (∨lIdem _) -- the crucial lemma about "Zariski maps" open CommIdeal R' open RadicalIdeal R' open isCommIdeal private ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] ZarMapRadicalIneq : ∀ {n : ℕ} (α : FinVec R n) (x : R) → x ∈ √ ⟨ α ⟩ → d x ≤ ⋁ (d ∘ α) ZarMapRadicalIneq α x = PT.elim (λ _ → isSetL _ _) (uncurry (λ n → (PT.elim (λ _ → isSetL _ _) (uncurry (curriedHelper n))))) where curriedHelper : (n : ℕ) (β : FinVec R _) → x ^ n ≡ linearCombination R' β α → d x ≤ ⋁ (d ∘ α) curriedHelper n β xⁿ≡∑βα = d x ≤⟨ ZarMapExpIneq n x ⟩ d (x ^ n) ≤⟨ subst (λ y → y ≤ ⋁ (d ∘ α)) (sym (cong d xⁿ≡∑βα)) (linearCombination≤LCancel β α) ⟩ ⋁ (d ∘ α) ◾ module ZarLatUniversalProp (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open Sum (CommRing→Ring R') open CommRingTheory R' open Exponentiation R' open BinomialThm R' open CommIdeal R' open RadicalIdeal R' open isCommIdeal open ProdFin R' open ZarLat R' open IsZarMap private R = fst R' ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] D : R → ZL D x = [ 1 , replicateFinVec 1 x ] -- λ x → √⟨x⟩ isZarMapD : IsZarMap R' ZariskiLattice D pres0 isZarMapD = eq/ _ _ (cong √ (0FGIdeal _ ∙ sym (emptyFGIdeal _ _))) pres1 isZarMapD = refl ·≡∧ isZarMapD x y = cong {B = λ _ → ZL} (λ U → [ 1 , U ]) (Length1··Fin x y) +≤∨ isZarMapD x y = eq/ _ _ (cong √ (CommIdeal≡Char (inclOfFGIdeal _ 3Vec ⟨ 2Vec ⟩ 3Vec⊆2Vec) (inclOfFGIdeal _ 2Vec ⟨ 3Vec ⟩ 2Vec⊆3Vec))) where 2Vec = replicateFinVec 1 x ++Fin replicateFinVec 1 y 3Vec = replicateFinVec 1 (x + y) ++Fin (replicateFinVec 1 x ++Fin replicateFinVec 1 y) 3Vec⊆2Vec : ∀ (i : Fin 3) → 3Vec i ∈ ⟨ 2Vec ⟩ 3Vec⊆2Vec zero = ⟨ 2Vec ⟩ .snd .+Closed (indInIdeal _ _ zero) (indInIdeal _ _ (suc zero)) 3Vec⊆2Vec (suc zero) = indInIdeal _ _ zero 3Vec⊆2Vec (suc (suc zero)) = indInIdeal _ _ (suc zero) 2Vec⊆3Vec : ∀ (i : Fin 2) → 2Vec i ∈ ⟨ 3Vec ⟩ 2Vec⊆3Vec zero = indInIdeal _ _ (suc zero) 2Vec⊆3Vec (suc zero) = indInIdeal _ _ (suc (suc zero)) -- defintion of the universal property hasZarLatUniversalProp : (L : DistLattice ℓ') (D : R → fst L) → IsZarMap R' L D → Type _ hasZarLatUniversalProp {ℓ' = ℓ'} L D _ = ∀ (L' : DistLattice ℓ') (d : R → fst L') → IsZarMap R' L' d → ∃![ χ ∈ DistLatticeHom L L' ] (fst χ) ∘ D ≡ d isPropZarLatUniversalProp : (L : DistLattice ℓ') (D : R → fst L) (isZarMapD : IsZarMap R' L D) → isProp (hasZarLatUniversalProp L D isZarMapD) isPropZarLatUniversalProp L D isZarMapD = isPropΠ3 (λ _ _ _ → isPropIsContr) ZLHasUniversalProp : hasZarLatUniversalProp ZariskiLattice D isZarMapD ZLHasUniversalProp L' d isZarMapd = (χ , funExt χcomp) , χunique where open DistLatticeStr (snd L') renaming (is-set to isSetL) open LatticeTheory (DistLattice→Lattice L') open Join L' open IsLatticeHom L = fst L' χ : DistLatticeHom ZariskiLattice L' fst χ = SQ.rec isSetL (λ (_ , α) → ⋁ (d ∘ α)) λ (_ , α) (_ , β) → curriedHelper α β where curriedHelper : {n m : ℕ} (α : FinVec R n) (β : FinVec R m) → √ ⟨ α ⟩ ≡ √ ⟨ β ⟩ → ⋁ (d ∘ α) ≡ ⋁ (d ∘ β) curriedHelper α β √⟨α⟩≡√⟨β⟩ = is-antisym _ _ ineq1 ineq2 where open Order (DistLattice→Lattice L') open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L')) open PosetReasoning IndPoset open PosetStr (IndPoset .snd) hiding (_≤_) incl1 : √ ⟨ α ⟩ ⊆ √ ⟨ β ⟩ incl1 = ⊆-refl-consequence _ _ (cong fst √⟨α⟩≡√⟨β⟩) .fst ineq1 : ⋁ (d ∘ α) ≤ ⋁ (d ∘ β) ineq1 = ⋁IsMax (d ∘ α) (⋁ (d ∘ β)) λ i → ZarMapRadicalIneq isZarMapd β (α i) (√FGIdealCharLImpl α ⟨ β ⟩ incl1 i) incl2 : √ ⟨ β ⟩ ⊆ √ ⟨ α ⟩ incl2 = ⊆-refl-consequence _ _ (cong fst √⟨α⟩≡√⟨β⟩) .snd ineq2 : ⋁ (d ∘ β) ≤ ⋁ (d ∘ α) ineq2 = ⋁IsMax (d ∘ β) (⋁ (d ∘ α)) λ i → ZarMapRadicalIneq isZarMapd α (β i) (√FGIdealCharLImpl β ⟨ α ⟩ incl2 i) pres0 (snd χ) = refl pres1 (snd χ) = ∨lRid _ ∙ isZarMapd .pres1 pres∨l (snd χ) = elimProp2 (λ _ _ → isSetL _ _) (uncurry (λ n α → uncurry (curriedHelper n α))) where curriedHelper : (n : ℕ) (α : FinVec R n) (m : ℕ) (β : FinVec R m) → ⋁ (d ∘ (α ++Fin β)) ≡ ⋁ (d ∘ α) ∨l ⋁ (d ∘ β) curriedHelper zero α _ β = sym (∨lLid _) curriedHelper (suc n) α _ β = ⋁ (d ∘ (α ++Fin β)) ≡⟨ refl ⟩ d (α zero) ∨l ⋁ (d ∘ ((α ∘ suc) ++Fin β)) ≡⟨ cong (d (α zero) ∨l_) (curriedHelper _ (α ∘ suc) _ β) ⟩ d (α zero) ∨l (⋁ (d ∘ α ∘ suc) ∨l ⋁ (d ∘ β)) ≡⟨ ∨lAssoc _ _ _ ⟩ ⋁ (d ∘ α) ∨l ⋁ (d ∘ β) ∎ pres∧l (snd χ) = elimProp2 (λ _ _ → isSetL _ _) (uncurry (λ n α → uncurry (curriedHelper n α))) where -- have to repeat this one here so the termination checker won't complain oldHelper : (n : ℕ) (α : FinVec R n) (m : ℕ) (β : FinVec R m) → ⋁ (d ∘ (α ++Fin β)) ≡ ⋁ (d ∘ α) ∨l ⋁ (d ∘ β) oldHelper zero α _ β = sym (∨lLid _) oldHelper (suc n) α _ β = cong (d (α zero) ∨l_) (oldHelper _ (α ∘ suc) _ β) ∙ ∨lAssoc _ _ _ curriedHelper : (n : ℕ) (α : FinVec R n) (m : ℕ) (β : FinVec R m) → ⋁ (d ∘ (α ··Fin β)) ≡ ⋁ (d ∘ α) ∧l ⋁ (d ∘ β) curriedHelper zero α _ β = sym (0lLeftAnnihilates∧l _) curriedHelper (suc n) α _ β = ⋁ (d ∘ (α ··Fin β)) ≡⟨ refl ⟩ ⋁ (d ∘ ((λ j → α zero · β j) ++Fin ((α ∘ suc) ··Fin β))) ≡⟨ oldHelper _ (λ j → α zero · β j) _ ((α ∘ suc) ··Fin β) ⟩ ⋁ (d ∘ (λ j → α zero · β j)) ∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β)) ≡⟨ cong (_∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β))) (⋁Ext (λ j → isZarMapd .·≡∧ (α zero) (β j))) ⟩ ⋁ (λ j → d (α zero) ∧l d (β j)) ∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β)) ≡⟨ cong (_∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β))) (sym (⋁Meetrdist _ _)) ⟩ (d (α zero) ∧l ⋁ (d ∘ β)) ∨l ⋁ (d ∘ ((α ∘ suc) ··Fin β)) ≡⟨ cong ((d (α zero) ∧l ⋁ (d ∘ β)) ∨l_) (curriedHelper _ (α ∘ suc) _ β) ⟩ (d (α zero) ∧l ⋁ (d ∘ β)) ∨l (⋁ (d ∘ α ∘ suc) ∧l ⋁ (d ∘ β)) ≡⟨ sym (∧lRdist∨l _ _ _) ⟩ ⋁ (d ∘ α) ∧l ⋁ (d ∘ β) ∎ χcomp : ∀ (f : R) → χ .fst (D f) ≡ d f χcomp f = ∨lRid (d f) χunique : (y : Σ[ χ' ∈ DistLatticeHom ZariskiLattice L' ] fst χ' ∘ D ≡ d) → (χ , funExt χcomp) ≡ y χunique (χ' , χ'∘D≡d) = Σ≡Prop (λ _ → isSetΠ (λ _ → isSetL) _ _) (LatticeHom≡f _ _ (funExt (elimProp (λ _ → isSetL _ _) (uncurry uniqHelper)))) where uniqHelper : (n : ℕ) (α : FinVec R n) → fst χ [ n , α ] ≡ fst χ' [ n , α ] uniqHelper zero _ = sym (cong (λ α → fst χ' [ 0 , α ]) (funExt (λ ())) ∙ χ' .snd .pres0) uniqHelper (suc n) α = ⋁ (d ∘ α) ≡⟨ refl ⟩ d (α zero) ∨l ⋁ (d ∘ α ∘ suc) ≡⟨ cong (d (α zero) ∨l_) (uniqHelper n (α ∘ suc)) ⟩ -- the inductive step d (α zero) ∨l fst χ' [ n , α ∘ suc ] ≡⟨ cong (_∨l fst χ' [ n , α ∘ suc ]) (sym (funExt⁻ χ'∘D≡d (α zero))) ⟩ fst χ' (D (α zero)) ∨l fst χ' [ n , α ∘ suc ] ≡⟨ sym (χ' .snd .pres∨l _ _) ⟩ fst χ' (D (α zero) ∨z [ n , α ∘ suc ]) ≡⟨ cong (λ β → fst χ' [ suc n , β ]) (funExt (λ { zero → refl ; (suc i) → refl })) ⟩ fst χ' [ suc n , α ] ∎ -- the map induced by applying the universal property to the Zariski lattice -- itself is the identity hom ZLUniversalPropCorollary : ZLHasUniversalProp ZariskiLattice D isZarMapD .fst .fst ≡ idDistLatticeHom ZariskiLattice ZLUniversalPropCorollary = cong fst (ZLHasUniversalProp ZariskiLattice D isZarMapD .snd (idDistLatticeHom ZariskiLattice , refl)) -- An equivalent definition that doesn't bump up the unviverse level module SmallZarLat (R' : CommRing ℓ) where open CommRingStr (snd R') open CommIdeal R' open RadicalIdeal R' open ZarLat R' open Iso private R = fst R' A = Σ[ n ∈ ℕ ] (FinVec R n) ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] -- This is small! _≼_ : A → A → Type ℓ (_ , α) ≼ (_ , β) = ∀ i → α i ∈ √ ⟨ β ⟩ _∼'_ : A → A → Type ℓ α ∼' β = (α ≼ β) × (β ≼ α) -- lives in the same universe as R ZL' : Type ℓ ZL' = A / (_∼'_) IsoLarLatSmall : Iso ZL ZL' IsoLarLatSmall = relBiimpl→TruncIso ~→∼' ~'→∼ where ~→∼' : ∀ {a b : A} → a ∼ b → a ∼' b ~→∼' r = √FGIdealCharLImpl _ ⟨ _ ⟩ (λ x h → subst (λ p → x ∈ p) r h) , √FGIdealCharLImpl _ ⟨ _ ⟩ (λ x h → subst (λ p → x ∈ p) (sym r) h) ~'→∼ : ∀ {a b : A} → a ∼' b → a ∼ b ~'→∼ r = CommIdeal≡Char (√FGIdealCharRImpl _ ⟨ _ ⟩ (fst r)) (√FGIdealCharRImpl _ ⟨ _ ⟩ (snd r)) ZL≃ZL' : ZL ≃ ZL' ZL≃ZL' = isoToEquiv IsoLarLatSmall module BasicOpens (R' : CommRing ℓ) where open CommRingStr ⦃...⦄ open RingTheory (CommRing→Ring R') open CommIdeal R' open isCommIdeal open ZarLat R' open ZarLatUniversalProp R' open IsZarMap open Join ZariskiLattice open IsBasis private R = fst R' instance _ = snd R' ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] BasicOpens : ℙ ZL BasicOpens 𝔞 = (∃[ f ∈ R ] (D f ≡ 𝔞)) , isPropPropTrunc BO : Type (ℓ-suc ℓ) BO = Σ[ 𝔞 ∈ ZL ] (𝔞 ∈ₚ BasicOpens) basicOpensAreBasis : IsBasis ZariskiLattice BasicOpens contains1 basicOpensAreBasis = ∣ 1r , isZarMapD .pres1 ∣ ∧lClosed basicOpensAreBasis 𝔞 𝔟 = map2 λ (f , Df≡𝔞) (g , Dg≡𝔟) → (f · g) , isZarMapD .·≡∧ f g ∙ cong₂ (_∧z_) Df≡𝔞 Dg≡𝔟 ⋁Basis basicOpensAreBasis = elimProp (λ _ → isPropPropTrunc) Σhelper where Σhelper : (a : Σ[ n ∈ ℕ ] FinVec R n) → ∃[ n ∈ ℕ ] Σ[ α ∈ FinVec ZL n ] (∀ i → α i ∈ₚ BasicOpens) × (⋁ α ≡ [ a ]) Σhelper (n , α) = ∣ n , (D ∘ α) , (λ i → ∣ α i , refl ∣) , path ∣ where path : ⋁ (D ∘ α) ≡ [ n , α ] path = funExt⁻ (cong fst ZLUniversalPropCorollary) _ -- The structure presheaf on BO BOCat : Category (ℓ-suc ℓ) (ℓ-suc ℓ) BOCat = ΣPropCat (DistLatticeCategory ZariskiLattice) BasicOpens BasisStructurePShf : Functor (BOCat ^op) (CommAlgebrasCategory R') BasisStructurePShf = universalPShf (DistLatticeCategory ZariskiLattice) (λ 𝔞 → Σ[ f ∈ R ] (D f ≡ 𝔞)) -- the untruncated defining prop (λ (_ , f , _) → R[1/ f ]AsCommAlgebra) -- D(f) ↦ R[1/f] λ (𝔞 , f , p) (𝔟 , g , q) → contrHoms 𝔞 𝔟 f g p q where open PreSheafFromUniversalProp open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice ZariskiLattice)) open InvertingElementsBase R' contrHoms : (𝔞 𝔟 : ZL) (f g : R) (p : D f ≡ 𝔞) (q : D g ≡ 𝔟) → 𝔞 ≤ 𝔟 → isContr (CommAlgebraHom R[1/ g ]AsCommAlgebra R[1/ f ]AsCommAlgebra) contrHoms 𝔞 𝔟 f g p q 𝔞≤𝔟 = R[1/g]HasAlgUniversalProp R[1/ f ]AsCommAlgebra λ s s∈[gⁿ|n≥0] → subst-∈ₚ (R[1/ f ]AsCommRing ˣ) (sym (·Rid (s /1))) --can't apply the lemma directly as we get mult with 1 somewhere (RadicalLemma.toUnit R' f g f∈√⟨g⟩ s s∈[gⁿ|n≥0]) where open AlgLoc R' [ g ⁿ|n≥0] (powersFormMultClosedSubset g) renaming (S⁻¹RHasAlgUniversalProp to R[1/g]HasAlgUniversalProp) open S⁻¹RUniversalProp R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) using (_/1) open RadicalIdeal R' private instance _ = snd R[1/ f ]AsCommRing Df≤Dg : D f ≤ D g Df≤Dg = subst2 _≤_ (sym p) (sym q) 𝔞≤𝔟 radicalHelper : √ ⟨ replicateFinVec 1 f ++Fin replicateFinVec 1 g ⟩ ≡ √ ⟨ replicateFinVec 1 g ⟩ radicalHelper = isEquivRel→effectiveIso (λ _ _ → isSetCommIdeal _ _) ∼EquivRel _ _ .fun Df≤Dg f∈√⟨g⟩ : f ∈ √ ⟨ replicateFinVec 1 g ⟩ f∈√⟨g⟩ = subst (f ∈_) radicalHelper (∈→∈√ _ _ (indInIdeal _ _ zero))
37.332765
102
0.537642
9a98c291144800cf917ec0a337e0def54c0b5350
208
agda
Agda
test/fail/Issue481.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/Issue481.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue481.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- Andreas, 2012-10-18 module Issue481 where as = Set open import Common.Issue481ParametrizedModule as as -- as clause open import Common.Issue481ParametrizedModule as as as -- as clause, duplicate def.
18.909091
83
0.774038
31efed10b9830710a5d6ca0ec567ad0d8d918080
2,251
agda
Agda
Cubical/Data/SumFin/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Data/SumFin/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Data/SumFin/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Data.SumFin.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as ⊥ using (⊥) open import Cubical.Data.Unit using (tt) renaming (Unit to ⊤) public open import Cubical.Data.Sum using (_⊎_; inl; inr) public open import Cubical.Data.Nat hiding (elim) open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq private variable ℓ : Level k : ℕ Fin : ℕ → Type₀ Fin zero = ⊥ Fin (suc n) = ⊤ ⊎ (Fin n) pattern fzero = inl tt pattern fsuc n = inr n elim : (P : ∀ {k} → Fin k → Type ℓ) → (∀ {k} → P {suc k} fzero) → (∀ {k} {fn : Fin k} → P fn → P (fsuc fn)) → {k : ℕ} (fn : Fin k) → P fn elim P fz fs {zero} f0 = ⊥.rec f0 elim P fz fs {suc k} fzero = fz elim P fz fs {suc k} (fsuc fk) = fs (elim P fz fs fk) finj : Fin k → Fin (suc k) finj {suc k} fzero = fzero finj {suc k} (fsuc n) = fsuc (finj {k} n) flast : Fin (suc k) flast {k = 0} = fzero flast {k = suc k} = fsuc flast toℕ : Fin k → ℕ toℕ {suc k} (inl tt) = zero toℕ {suc k} (inr x) = suc (toℕ {k} x) toℕ-injective : {m n : Fin k} → toℕ m ≡ toℕ n → m ≡ n toℕ-injective {suc k} {fzero} {fzero} _ = refl toℕ-injective {suc k} {fzero} {fsuc x} p = ⊥.rec (znots p) toℕ-injective {suc k} {fsuc m} {fzero} p = ⊥.rec (snotz p) toℕ-injective {suc k} {fsuc m} {fsuc x} p = cong fsuc (toℕ-injective (injSuc p)) fromℕ : (n : ℕ) → Fin (suc k) fromℕ {k = 0} _ = fzero fromℕ {k = suc k} 0 = fzero fromℕ {k = suc k} (suc n) = fsuc (fromℕ n) -- Thus, Fin k is discrete discreteFin : Discrete (Fin k) discreteFin fj fk with discreteℕ (toℕ fj) (toℕ fk) ... | yes p = yes (toℕ-injective p) ... | no ¬p = no (λ p → ¬p (cong toℕ p)) isSetFin : isSet (Fin k) isSetFin = Discrete→isSet discreteFin -- Summation and multiplication totalSum : {k : ℕ} → (f : Fin k → ℕ) → ℕ totalSum {k = 0} _ = 0 totalSum {k = suc n} f = f (inl tt) + totalSum {k = n} (λ x → f (inr x)) totalProd : {k : ℕ} → (f : Fin k → ℕ) → ℕ totalProd {k = 0} _ = 1 totalProd {k = suc n} f = f (inl tt) · totalProd {k = n} (λ x → f (inr x)) totalSumConst : {m : ℕ} → (n : ℕ) → totalSum {k = m} (λ _ → n) ≡ m · n totalSumConst {m = 0} _ = refl totalSumConst {m = suc m} n i = n + totalSumConst {m = m} n i
27.790123
80
0.592625
226e3a7416adf21e2762fda210556bbbe85c97cb
617
agda
Agda
test/Succeed/UncurryMeta.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/UncurryMeta.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/UncurryMeta.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- It would be nice if this worked. The constraint we can't solve is -- P x y = ? (x, y) -- Solution: extend the notion of Miller patterns to include record -- constructions. -- -- Andreas, 2012-02-27 works now! (see issues 376 and 456) module UncurryMeta where data Unit : Set where unit : Unit record R : Set where constructor _,_ field x : Unit y : Unit data P : Unit -> Unit -> Set where mkP : forall x y -> P x y data D : (R -> Set) -> Set1 where d : {F : R -> Set} -> (forall x y -> F (x , y)) -> D F unD : {F : R -> Set} -> D F -> Unit unD (d _) = unit test : Unit test = unD (d mkP)
21.275862
68
0.594814
39f06e46238f667985dbc6014da7b7737b91e049
1,575
agda
Agda
examples/outdated-and-incorrect/Alonzo/PreludeNat.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Alonzo/PreludeNat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Alonzo/PreludeNat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module PreludeNat where open import AlonzoPrelude import PreludeBool as Bool open Bool infix 40 _==_ _<_ infixl 60 _+_ _-_ infixl 70 _*_ infixr 80 _^_ infix 100 _! _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) _-_ : Nat -> Nat -> Nat zero - m = zero suc n - zero = suc n suc n - suc m = n - m _*_ : Nat -> Nat -> Nat zero * m = zero suc n * m = m + n * m _^_ : Nat -> Nat -> Nat n ^ zero = 1 n ^ suc m = n * n ^ m _! : Nat -> Nat zero ! = 1 suc n ! = suc n * n ! {-# BUILTIN NATPLUS _+_ #-} {-# BUILTIN NATMINUS _-_ #-} {-# BUILTIN NATTIMES _*_ #-} divSuc : Nat -> Nat -> Nat divSuc zero _ = zero divSuc (suc n) m = 1 + divSuc (n - m) m modSuc : Nat -> Nat -> Nat modSuc zero _ = zero modSuc (suc n) m = modSuc (n - m) m {-# BUILTIN NATDIVSUC divSuc #-} {-# BUILTIN NATMODSUC modSuc #-} div : Nat -> Nat -> Nat div n zero = zero div n (suc m) = divSuc n m mod : Nat -> Nat -> Nat mod n zero = zero mod n (suc m) = modSuc n m gcd : Nat -> Nat -> Nat gcd a 0 = a gcd a b = gcd b (mod a b) lcm : Nat -> Nat -> Nat lcm a b = div (a * b) (gcd a b) _==_ : Nat -> Nat -> Bool zero == zero = true zero == suc _ = false suc _ == zero = false suc n == suc m = n == m _<_ : Nat -> Nat -> Bool n < zero = false zero < suc m = true suc n < suc m = n < m _≤_ : Nat -> Nat -> Bool n ≤ m = n < suc m _>_ = flip _<_ _≥_ = flip _≤_ even : Nat -> Bool even n = mod n 2 == 0 odd : Nat -> Bool odd n = mod n 2 == 1 _≡_ : Nat -> Nat -> Set n ≡ m = IsTrue (n == m) {-# BUILTIN NATEQUALS _==_ #-} {-# BUILTIN NATLESS _<_ #-}
16.935484
39
0.533333
8b8e00ba2bd05b0b5d77bf2d211e873781c90e05
6,244
agda
Agda
LibraBFT/Abstract/Properties.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Abstract/Properties.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Abstract/Properties.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Abstract.Types -- For each desired property (VotesOnce and LockedRoundRule), we have a -- module containing a Type that defines a property that an implementation -- should prove, and a proof that it implies the corresponding rule used by -- the abstract proofs. Then, we use those proofs to instantiate thmS5, -- and the use thmS5 to prove a number of correctness conditions. -- -- TODO-1: refactor this file to separate the definitions and proofs of -- VotesOnce and LockedRoundRule from their use in proving the correctness -- properties. module LibraBFT.Abstract.Properties (𝓔 : EpochConfig) (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (𝓥 : VoteEvidence 𝓔 UID) where open import LibraBFT.Abstract.Records 𝓔 UID _≟UID_ 𝓥 open import LibraBFT.Abstract.Records.Extends 𝓔 UID _≟UID_ 𝓥 open import LibraBFT.Abstract.RecordChain 𝓔 UID _≟UID_ 𝓥 import LibraBFT.Abstract.RecordChain.Assumptions 𝓔 UID _≟UID_ 𝓥 as StaticAssumptions open import LibraBFT.Abstract.System 𝓔 UID _≟UID_ 𝓥 open EpochConfig 𝓔 open import LibraBFT.Abstract.Obligations.VotesOnce 𝓔 UID _≟UID_ 𝓥 as VO open import LibraBFT.Abstract.Obligations.LockedRound 𝓔 UID _≟UID_ 𝓥 as LR -------------------------------------------------------------------------------------------- -- * A /ValidSysState/ is one in which both peer obligations are obeyed by honest peers * -- -------------------------------------------------------------------------------------------- record ValidSysState {ℓ}(𝓢 : AbsSystemState ℓ) : Set (ℓ+1 ℓ0 ℓ⊔ ℓ) where field vss-votes-once : VO.Type 𝓢 vss-locked-round : LR.Type 𝓢 open ValidSysState public -- And a valid system state offers the desired /CommitsDoNotConflict/ property -- and variants. module _ {ℓ}(𝓢 : AbsSystemState ℓ) (st-valid : ValidSysState 𝓢) where open AbsSystemState 𝓢 open All-InSys-props InSys import LibraBFT.Abstract.RecordChain.Properties 𝓔 UID _≟UID_ 𝓥 as Props CommitsDoNotConflict : ∀{q q'} → {rc : RecordChain (Q q)} → All-InSys rc → {rc' : RecordChain (Q q')} → All-InSys rc' → {b b' : Block} → CommitRule rc b → CommitRule rc' b' → NonInjective-≡ bId ⊎ ((B b) ∈RC rc' ⊎ (B b') ∈RC rc) CommitsDoNotConflict = Props.WithInvariants.thmS5 InSys (VO.proof 𝓢 (vss-votes-once st-valid)) (LR.proof 𝓢 (vss-locked-round st-valid)) -- When we are dealing with a /Complete/ AbsSystem, we can go a few steps -- further and prove that commits do not conflict even if we have only partial -- knowledge about Records represented in the system. module _ (∈QC⇒AllSent : Complete 𝓢) where -- For a /complete/ system we can go even further; if we have evidence that -- only the tip of the record chains is in the system, we can infer -- the rest of it is also in the system (or blockIDs are not injective). CommitsDoNotConflict' : ∀{q q'}{rc : RecordChain (Q q)}{rc' : RecordChain (Q q')}{b b' : Block} → InSys (Q q) → InSys (Q q') → CommitRule rc b → CommitRule rc' b' → NonInjective-≡ bId ⊎ ((B b) ∈RC rc' ⊎ (B b') ∈RC rc) CommitsDoNotConflict' {q} {q'} {step {r = B bb} rc b←q} {step {r = B bb'} rc' b←q'} {b} {b'} q∈sys q'∈sys cr cr' with bft-assumption (qVotes-C2 q) (qVotes-C2 q') ...| α , α∈qmem , α∈q'mem , hα with Any-sym (Any-map⁻ α∈qmem) | Any-sym (Any-map⁻ α∈q'mem) ...| α∈q | α∈q' with ∈QC⇒AllSent {q = q} hα α∈q q∈sys | ∈QC⇒AllSent {q = q'} hα α∈q' q'∈sys ...| ab , ab←q , arc , ais | ab' , ab←q' , arc' , ais' with RecordChain-irrelevant (step arc ab←q) (step rc b←q) | RecordChain-irrelevant (step arc' ab←q') (step rc' b←q') ...| inj₁ hb | _ = inj₁ hb ...| inj₂ _ | inj₁ hb = inj₁ hb ...| inj₂ arc≈rc | inj₂ arc'≈rc' with CommitsDoNotConflict (All-InSys-step ais ab←q q∈sys ) (All-InSys-step ais' ab←q' q'∈sys) (transp-CR (≈RC-sym arc≈rc ) cr ) (transp-CR (≈RC-sym arc'≈rc') cr') ...| inj₁ hb = inj₁ hb ...| inj₂ (inj₁ b∈arc') = inj₂ (inj₁ (transp-B∈RC arc'≈rc' b∈arc')) ...| inj₂ (inj₂ b'∈arc) = inj₂ (inj₂ (transp-B∈RC arc≈rc b'∈arc)) -- The final property is even stronger; it states that even if an observer -- has access only to suffixes of record chains that match the commit rule, -- we can still guarantee that b and b' are non-conflicting blocks. This -- will be important for showing that observers can have confidence in commit -- messages without participating in the protocol and without having access to -- all previously sent records. CommitsDoNotConflict'' : ∀{o o' q q'} → {rcf : RecordChainFrom o (Q q)} → {rcf' : RecordChainFrom o' (Q q')} → {b b' : Block} → InSys (Q q) → InSys (Q q') → CommitRuleFrom rcf b → CommitRuleFrom rcf' b' → NonInjective-≡ bId ⊎ Σ (RecordChain (Q q')) ((B b) ∈RC_) ⊎ Σ (RecordChain (Q q)) ((B b') ∈RC_) CommitsDoNotConflict'' {cb} {q = q} {q'} {rcf} {rcf'} q∈sys q'∈sys crf crf' with bft-assumption (qVotes-C2 q) (qVotes-C2 q') ...| α , α∈qmem , α∈q'mem , hα with Any-sym (Any-map⁻ α∈qmem) | Any-sym (Any-map⁻ α∈q'mem) ...| α∈q | α∈q' with ∈QC⇒AllSent {q = q} hα α∈q q∈sys | ∈QC⇒AllSent {q = q'} hα α∈q' q'∈sys ...| ab , ab←q , arc , ais | ab' , ab←q' , arc' , ais' with step arc ab←q | step arc' ab←q' ...| rcq | rcq' with crf⇒cr rcf rcq crf | crf⇒cr rcf' rcq' crf' ...| inj₁ hb | _ = inj₁ hb ...| inj₂ _ | inj₁ hb = inj₁ hb ...| inj₂ cr | inj₂ cr' with CommitsDoNotConflict' q∈sys q'∈sys cr cr' ...| inj₁ hb = inj₁ hb ...| inj₂ (inj₁ b∈arc') = inj₂ (inj₁ (rcq' , b∈arc')) ...| inj₂ (inj₂ b'∈arc) = inj₂ (inj₂ (rcq , b'∈arc))
45.576642
116
0.600737
ad3ef1ffeff506a426a15a212a89238145d3e7de
1,310
agda
Agda
Graphs/Colouring.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Graphs/Colouring.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Graphs/Colouring.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Functions.Definition open import Setoids.Setoids open import Setoids.Subset open import Graphs.Definition open import Sets.FinSet.Definition open import Numbers.Naturals.Semiring module Graphs.Colouring where Colouring : (n : ℕ) {a b c : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) → Set (a ⊔ c) Colouring n {V' = V'} G = {x y : V'} → (Graph._<->_ G x y) → FinSet n inheritColouring : {n : ℕ} {a b c : _} {V' : Set a} {V : Setoid {a} {b} V'} {G : Graph c V} → (k : Colouring n G) → {e : _} {pred : V' → Set e} {sub : subset V pred} {d : _} {_<->'_ : Rel {_} {d} (Sg V' pred)} (H : Subgraph G sub _<->'_) → Colouring n (subgraphIsGraph H) inheritColouring k H {v1 , _} {v2 , _} x-y = k (Subgraph.inherits H x-y) Monochromatic : {a b c : Level} {V' : Set a} {V : Setoid {a} {b} V'} {G : Graph c V} {n : ℕ} → (k : Colouring n G) → {d e : _} {pred : V' → Set d} {sub : subset V pred} {_<->'_ : Rel {_} {e} (Sg V' pred)} (H : Subgraph G sub _<->'_) → Set (a ⊔ d ⊔ e) Monochromatic {V' = V'} {n = n} k {pred = pred} {sub = sub} {_<->'_} H = Sg (FinSet n) (λ c → {x : Sg V' pred} {y : Sg V' pred} (edge : x <->' y) → (inheritColouring k H) edge ≡ c)
59.545455
271
0.581679
9a6e9064f4f7ad1dd7df4326be4fd5f03de35658
771
agda
Agda
index.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
index.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
index.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} {- Imports everything that is not imported by something else. This is not supposed to be used anywhere, this is just a simple way to do `make all' This file is intentionally named index.agda so that Agda will generate index.html. -} module index where -- import Spaces.IntervalProps -- import Algebra.F2NotCommutative import homotopy.LoopSpaceCircle import homotopy.HopfJunior import homotopy.Hopf import homotopy.CoverClassification import homotopy.AnyUniversalCoverIsPathSet import homotopy.PathSetIsInital -- import Spaces.LoopSpaceDecidableWedgeCircles -- import Homotopy.PullbackIsPullback -- import Homotopy.PushoutIsPushout -- import Homotopy.Truncation -- import Sets.QuotientUP -- import Spaces.PikSn -- import Homotopy.VanKampen
26.586207
70
0.81323
4bcce2845d9dc6c6386c5905defdfeffedee2f25
3,792
agda
Agda
Definition/Conversion/Soundness.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Conversion/Soundness.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/Conversion/Soundness.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Soundness where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Conversion open import Definition.Conversion.Whnf open import Definition.Typed.Consequences.InverseUniv open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.NeTypeEq open import Tools.Product import Tools.PropositionalEquality as PE mutual -- Algorithmic equality of neutrals is well-formed. soundness~↑ : ∀ {k l A Γ} → Γ ⊢ k ~ l ↑ A → Γ ⊢ k ≡ l ∷ A soundness~↑ (var-refl x x≡y) = PE.subst (λ y → _ ⊢ _ ≡ var y ∷ _) x≡y (refl x) soundness~↑ (app-cong k~l x₁) = app-cong (soundness~↓ k~l) (soundnessConv↑Term x₁) soundness~↑ (fst-cong x) = let p≡ = soundness~↓ x ⊢ΣFG = proj₁ (syntacticEqTerm p≡) ⊢F , ⊢G = syntacticΣ ⊢ΣFG in fst-cong ⊢F ⊢G p≡ soundness~↑ (snd-cong x) = let p≡ = soundness~↓ x ⊢ΣFG = proj₁ (syntacticEqTerm p≡) ⊢F , ⊢G = syntacticΣ ⊢ΣFG in snd-cong ⊢F ⊢G p≡ soundness~↑ (natrec-cong x₁ x₂ x₃ k~l) = natrec-cong (soundnessConv↑ x₁) (soundnessConv↑Term x₂) (soundnessConv↑Term x₃) (soundness~↓ k~l) soundness~↑ (Emptyrec-cong x₁ k~l) = Emptyrec-cong (soundnessConv↑ x₁) (soundness~↓ k~l) -- Algorithmic equality of neutrals in WHNF is well-formed. soundness~↓ : ∀ {k l A Γ} → Γ ⊢ k ~ l ↓ A → Γ ⊢ k ≡ l ∷ A soundness~↓ ([~] A₁ D whnfA k~l) = conv (soundness~↑ k~l) (subset* D) -- Algorithmic equality of types is well-formed. soundnessConv↑ : ∀ {A B Γ} → Γ ⊢ A [conv↑] B → Γ ⊢ A ≡ B soundnessConv↑ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) = trans (subset* D) (trans (soundnessConv↓ A′<>B′) (sym (subset* D′))) -- Algorithmic equality of types in WHNF is well-formed. soundnessConv↓ : ∀ {A B Γ} → Γ ⊢ A [conv↓] B → Γ ⊢ A ≡ B soundnessConv↓ (U-refl ⊢Γ) = refl (Uⱼ ⊢Γ) soundnessConv↓ (ℕ-refl ⊢Γ) = refl (ℕⱼ ⊢Γ) soundnessConv↓ (Empty-refl ⊢Γ) = refl (Emptyⱼ ⊢Γ) soundnessConv↓ (Unit-refl ⊢Γ) = refl (Unitⱼ ⊢Γ) soundnessConv↓ (ne x) = univ (soundness~↓ x) soundnessConv↓ (Π-cong F c c₁) = Π-cong F (soundnessConv↑ c) (soundnessConv↑ c₁) soundnessConv↓ (Σ-cong F c c₁) = Σ-cong F (soundnessConv↑ c) (soundnessConv↑ c₁) -- Algorithmic equality of terms is well-formed. soundnessConv↑Term : ∀ {a b A Γ} → Γ ⊢ a [conv↑] b ∷ A → Γ ⊢ a ≡ b ∷ A soundnessConv↑Term ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) = conv (trans (subset*Term d) (trans (soundnessConv↓Term t<>u) (sym (subset*Term d′)))) (sym (subset* D)) -- Algorithmic equality of terms in WHNF is well-formed. soundnessConv↓Term : ∀ {a b A Γ} → Γ ⊢ a [conv↓] b ∷ A → Γ ⊢ a ≡ b ∷ A soundnessConv↓Term (ℕ-ins x) = soundness~↓ x soundnessConv↓Term (Empty-ins x) = soundness~↓ x soundnessConv↓Term (Unit-ins x) = soundness~↓ x soundnessConv↓Term (ne-ins t u x x₁) = let _ , neA , _ = ne~↓ x₁ _ , t∷M , _ = syntacticEqTerm (soundness~↓ x₁) M≡A = neTypeEq neA t∷M t in conv (soundness~↓ x₁) M≡A soundnessConv↓Term (univ x x₁ x₂) = inverseUnivEq x (soundnessConv↓ x₂) soundnessConv↓Term (zero-refl ⊢Γ) = refl (zeroⱼ ⊢Γ) soundnessConv↓Term (suc-cong c) = suc-cong (soundnessConv↑Term c) soundnessConv↓Term (η-eq x x₁ y y₁ c) = let ⊢ΠFG = syntacticTerm x ⊢F , _ = syntacticΠ ⊢ΠFG in η-eq ⊢F x x₁ (soundnessConv↑Term c) soundnessConv↓Term (Σ-η ⊢p ⊢r pProd rProd fstConv sndConv) = let ⊢ΣFG = syntacticTerm ⊢p ⊢F , ⊢G = syntacticΣ ⊢ΣFG fst≡ = soundnessConv↑Term fstConv snd≡ = soundnessConv↑Term sndConv in Σ-η ⊢F ⊢G ⊢p ⊢r fst≡ snd≡ soundnessConv↓Term (η-unit [a] [b] aUnit bUnit) = η-unit [a] [b]
41.217391
84
0.622627
1e8ea17b7d0cf6ee69d78785268408233262d62b
193
agda
Agda
test/Fail/Issue1295.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1295.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1295.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-10-09, issue reported by jesper.cockx open import Common.Product pattern foo x = x , x -- Should complain about non-linearity. test : {A : Set} → A × A → A test (foo x) = x
19.3
54
0.663212
9af7c703cf8cad8037f9815b94307d4f31026bd9
1,601
agda
Agda
Cubical/Data/SumFin/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/SumFin/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/SumFin/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.SumFin.Base where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as ⊥ using (⊥) open import Cubical.Data.Unit using (tt) renaming (Unit to ⊤) public open import Cubical.Data.Sum using (_⊎_; inl; inr) public open import Cubical.Data.Nat hiding (elim) open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq private variable ℓ : Level k : ℕ Fin : ℕ → Type₀ Fin zero = ⊥ Fin (suc n) = ⊤ ⊎ (Fin n) pattern fzero = inl tt pattern fsuc n = inr n elim : (P : ∀ {k} → Fin k → Type ℓ) → (∀ {k} → P {suc k} fzero) → (∀ {k} {fn : Fin k} → P fn → P (fsuc fn)) → {k : ℕ} (fn : Fin k) → P fn elim P fz fs {zero} f0 = ⊥.rec f0 elim P fz fs {suc k} fzero = fz elim P fz fs {suc k} (fsuc fk) = fs (elim P fz fs fk) finj : Fin k → Fin (suc k) finj {suc k} fzero = fzero finj {suc k} (fsuc n) = fsuc (finj {k} n) toℕ : Fin k → ℕ toℕ {suc k} (inl tt) = zero toℕ {suc k} (inr x) = suc (toℕ {k} x) toℕ-injective : {m n : Fin k} → toℕ m ≡ toℕ n → m ≡ n toℕ-injective {suc k} {fzero} {fzero} _ = refl toℕ-injective {suc k} {fzero} {fsuc x} p = ⊥.rec (znots p) toℕ-injective {suc k} {fsuc m} {fzero} p = ⊥.rec (snotz p) toℕ-injective {suc k} {fsuc m} {fsuc x} p = cong fsuc (toℕ-injective (injSuc p)) -- Thus, Fin k is discrete discreteFin : Discrete (Fin k) discreteFin fj fk with discreteℕ (toℕ fj) (toℕ fk) ... | yes p = yes (toℕ-injective p) ... | no ¬p = no (λ p → ¬p (cong toℕ p)) isSetFin : isSet (Fin k) isSetFin = Discrete→isSet discreteFin
27.603448
80
0.619613
2e1cf51c68fda863d6c811bc4e10998c0f3871f6
4,706
agda
Agda
test/Succeed/Issue4032.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4032.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4032.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K --rewriting --confluence-check #-} open import Agda.Primitive using (Level; _⊔_; Setω; lzero; lsuc) module Issue4032 where infix 4 _≡_ data _≡_ {ℓ : Level} {A : Set ℓ} (a : A) : A → Set ℓ where refl : a ≡ a {-# BUILTIN REWRITE _≡_ #-} run : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → A → B run refl x = x nur : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → B → A nur refl x = x convert : ∀ {ℓ} {A B : Set ℓ} (p : A ≡ B) (a : A) → nur p (run p a) ≡ a convert refl a = refl trevnoc : ∀ {ℓ} {A B : Set ℓ} (p : A ≡ B) (b : B) → run p (nur p b) ≡ b trevnoc refl b = refl ap : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {a₁ a₂} → a₁ ≡ a₂ → f a₁ ≡ f a₂ ap f refl = refl transport : ∀ {a b} {A : Set a} (B : A → Set b) {x y : A} (p : x ≡ y) → B x → B y transport B p = run (ap B p) apD : ∀ {a b} {A : Set a} {B : A → Set b} (f : (x : A) → B x) {a₁ a₂} → (p : a₁ ≡ a₂) → transport B p (f a₁) ≡ f a₂ apD f refl = refl ap2 : ∀ {a b c} {A : Set a} {B : A → Set b} {C : Set c} (f : (x : A) → B x → C) {a₁ a₂} (pa : a₁ ≡ a₂) {b₁ b₂} → transport B pa b₁ ≡ b₂ → f a₁ b₁ ≡ f a₂ b₂ ap2 f refl refl = refl postulate fromIso : ∀ {ℓ} {A B : Set ℓ} (f : A → B) (g : B → A) (η : (x : A) → g (f x) ≡ x) (ε : (x : B) → f (g x) ≡ x) (τ : (x : A) → ap f (η x) ≡ ε (f x)) → A ≡ B postulate fromIso-refl : ∀ {ℓ} {A : Set ℓ} → fromIso {ℓ} {A} {A} (λ x → x) (λ x → x) (λ x → refl) (λ x → refl) (λ x → refl) ≡ refl {-# REWRITE fromIso-refl #-} J : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {a : A} (P : (b : A) → a ≡ b → Set ℓ₂) {b : A} (p : a ≡ b) → P a refl → P b p J R refl r = r module foo {-ℓ₁-} {ℓ} {Γ : Set ℓ{-₁-}} {xs ys : Γ} (ps : xs ≡ ys) (tA : Γ → Set ℓ) (tB : (γ : Γ) → tA γ → Set ℓ) where module pf where iso-f : ((a : tA xs) → (tB xs) a) → ((a : tA ys) → (tB ys) a) iso-f var1 var0 = run (ap2 tB ps (trevnoc (ap tA ps) var0)) (var1 (nur (ap tA ps) var0)) iso-g : ((a : tA ys) → (tB ys) a) → ((a : tA xs) → (tB xs) a) iso-g var1 var0 = nur (ap2 tB ps refl) (var1 (run (ap tA ps) var0)) iso-η : (var0 : _) → iso-g (iso-f var0) ≡ var0 iso-η var0 = J (λ ys (ps : xs ≡ ys) → (λ var1 → nur (ap2 tB ps refl) (run (ap2 tB ps (trevnoc (ap tA ps) (run (ap tA ps) var1))) (var0 (nur (ap tA ps) (run (ap tA ps) var1))))) ≡ var0) ps refl iso-ε : (var0 : _) → iso-f (iso-g var0) ≡ var0 iso-ε = J (λ ys (ps : xs ≡ ys) → (var0 : (a : tA ys) → tB ys a) → (λ var1 → run (ap2 tB ps (trevnoc (ap tA ps) var1)) (nur (ap2 tB ps refl) (var0 (run (ap tA ps) (nur (ap tA ps) var1))))) ≡ var0) ps (λ var0 → refl) iso-τ : (var0 : _) → ap iso-f (iso-η var0) ≡ iso-ε (iso-f var0) iso-τ var0 = J (λ ys (ps : xs ≡ ys) → ap (λ var1 var2 → run (ap2 tB ps (trevnoc (ap tA ps) var2)) (var1 (nur (ap tA ps) var2))) (J (λ ys₁ ps₁ → (λ var1 → nur (ap2 tB ps₁ refl) (run (ap2 tB ps₁ (trevnoc (ap tA ps₁) (run (ap tA ps₁) var1))) (var0 (nur (ap tA ps₁) (run (ap tA ps₁) var1))))) ≡ var0) ps refl) ≡ J (λ ys₁ ps₁ → (var1 : (a : tA ys₁) → tB ys₁ a) → (λ var2 → run (ap2 tB ps₁ (trevnoc (ap tA ps₁) var2)) (nur (ap2 tB ps₁ refl) (var1 (run (ap tA ps₁) (nur (ap tA ps₁) var2))))) ≡ var1) ps (λ var1 → refl) (λ var1 → run (ap2 tB ps (trevnoc (ap tA ps) var1)) (var0 (nur (ap tA ps) var1)))) ps refl open pf pf : ((a : tA xs) → (tB xs) a) ≡ ((a : tA ys) → (tB ys) a) pf = fromIso iso-f iso-g iso-η iso-ε iso-τ module bar {ℓ} {Γ : Set ℓ} {γ : Γ} {A : Γ → Set ℓ} {B : (γ : Γ) → A γ → Set ℓ} where g1 : ((a : A γ) → B γ a) → (a : A γ) → B γ a g2 : ((a : A γ) → B γ a) → (a : A γ) → B γ a g1 = foo.pf.iso-g {xs = γ} refl A B g2 = λ f x → f x pfg : g1 ≡ g2 pfg = refl baz : foo.pf {xs = γ} refl A B ≡ refl baz = pf where pf : fromIso {_} {(x : A γ) → B γ x} (λ f x → f x) g2 (foo.pf.iso-η refl A B) (foo.pf.iso-ε refl A B) (foo.pf.iso-τ refl A B) ≡ refl pf = refl {- WAS: refl != fromIso (foo.pf.iso-f refl A B) (foo.pf.iso-g refl A B) (foo.pf.iso-η refl A B) (foo.pf.iso-ε refl A B) (foo.pf.iso-τ refl A B) of type ((x : A γ) → B γ x) ≡ ((x : A γ) → B γ x) when checking that the expression pf has type foo.pf refl A B ≡ refl -}
39.881356
218
0.429664
d1d6b6e0839ef20fd77a84d9caeadca889881750
8,022
agda
Agda
src/Categories/Adjoint/Construction/Kleisli.agda
Trebor-Huang/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
5
2019-05-21T17:07:19.000Z
2019-05-22T03:54:24.000Z
src/Categories/Adjoint/Construction/Kleisli.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
null
null
null
src/Categories/Adjoint/Construction/Kleisli.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) open import Categories.Monad using (Monad) module Categories.Adjoint.Construction.Kleisli {o ℓ e} {C : Category o ℓ e} (M : Monad C) where open import Categories.Category.Construction.Kleisli using (Kleisli) open import Categories.Adjoint using (_⊣_) open import Categories.Functor using (Functor; _∘F_) open import Categories.Morphism using (Iso) open import Categories.Functor.Properties using ([_]-resp-square) open import Categories.NaturalTransformation.Core using (ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_) open import Categories.Morphism.Reasoning C private module C = Category C module M = Monad M open M.F open M using (module μ; module η) open C using (Obj; _⇒_; _∘_; _≈_; ∘-resp-≈ʳ; ∘-resp-≈ˡ; assoc; sym-assoc; identityˡ) open C.HomReasoning open C.Equiv Forgetful : Functor (Kleisli M) C Forgetful = record { F₀ = λ X → F₀ X ; F₁ = λ f → μ.η _ ∘ F₁ f ; identity = M.identityˡ ; homomorphism = λ {X Y Z} {f g} → begin μ.η Z ∘ F₁ ((μ.η Z ∘ F₁ g) ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩ μ.η Z ∘ F₁ (μ.η Z ∘ F₁ g) ∘ F₁ f ≈⟨ refl⟩∘⟨ homomorphism ⟩∘⟨refl ⟩ μ.η Z ∘ (F₁ (μ.η Z) ∘ F₁ (F₁ g)) ∘ F₁ f ≈⟨ pull-first M.assoc ⟩ (μ.η Z ∘ μ.η (F₀ Z)) ∘ F₁ (F₁ g) ∘ F₁ f ≈⟨ center (μ.commute g) ⟩ μ.η Z ∘ (F₁ g ∘ μ.η Y) ∘ F₁ f ≈⟨ pull-first refl ⟩ (μ.η Z ∘ F₁ g) ∘ μ.η Y ∘ F₁ f ∎ ; F-resp-≈ = λ eq → ∘-resp-≈ʳ (F-resp-≈ eq) } Free : Functor C (Kleisli M) Free = record { F₀ = λ X → X ; F₁ = λ f → η.η _ ∘ f ; identity = C.identityʳ ; homomorphism = λ {X Y Z} {f g} → begin η.η Z ∘ g ∘ f ≈⟨ sym-assoc ○ ⟺ identityˡ ⟩ C.id ∘ (η.η Z ∘ g) ∘ f ≈˘⟨ pull-first M.identityˡ ⟩ μ.η Z ∘ (F₁ (η.η Z) ∘ η.η Z ∘ g) ∘ f ≈⟨ refl⟩∘⟨ pushʳ (η.commute g) ⟩∘⟨refl ⟩ μ.η Z ∘ ((F₁ (η.η Z) ∘ F₁ g) ∘ η.η Y) ∘ f ≈˘⟨ center (∘-resp-≈ˡ homomorphism) ⟩ (μ.η Z ∘ F₁ (η.η Z ∘ g)) ∘ η.η Y ∘ f ∎ ; F-resp-≈ = ∘-resp-≈ʳ } FF≃F : Forgetful ∘F Free ≃ M.F FF≃F = record { F⇒G = ntHelper record { η = λ X → F₁ C.id ; commute = λ {X Y} f → begin F₁ C.id ∘ μ.η Y ∘ F₁ (η.η Y ∘ f) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ homomorphism ⟩ F₁ C.id ∘ μ.η Y ∘ F₁ (η.η Y) ∘ F₁ f ≈⟨ refl⟩∘⟨ cancelˡ M.identityˡ ⟩ F₁ C.id ∘ F₁ f ≈⟨ [ M.F ]-resp-square id-comm-sym ⟩ F₁ f ∘ F₁ C.id ∎ } ; F⇐G = ntHelper record { η = λ X → F₁ C.id ; commute = λ {X Y} f → begin F₁ C.id ∘ F₁ f ≈⟨ [ M.F ]-resp-square id-comm-sym ⟩ F₁ f ∘ F₁ C.id ≈˘⟨ cancelˡ M.identityˡ ⟩∘⟨refl ⟩ (μ.η Y ∘ F₁ (η.η Y) ∘ F₁ f) ∘ F₁ C.id ≈˘⟨ ∘-resp-≈ʳ homomorphism ⟩∘⟨refl ⟩ (μ.η Y ∘ F₁ (η.η Y ∘ f)) ∘ F₁ C.id ∎ } ; iso = λ X → record { isoˡ = elimˡ identity ○ identity ; isoʳ = elimˡ identity ○ identity } } Free⊣Forgetful : Free ⊣ Forgetful Free⊣Forgetful = record { unit = ntHelper record { η = η.η ; commute = λ {X Y} f → begin η.η Y ∘ f ≈⟨ η.commute f ⟩ F₁ f ∘ η.η X ≈˘⟨ cancelˡ M.identityˡ ⟩∘⟨refl ⟩ (μ.η Y ∘ F₁ (η.η Y) ∘ F₁ f) ∘ η.η X ≈˘⟨ ∘-resp-≈ʳ homomorphism ⟩∘⟨refl ⟩ (μ.η Y ∘ F₁ (η.η Y ∘ f)) ∘ η.η X ∎ } ; counit = ntHelper record { η = λ X → F₁ C.id ; commute = λ {X Y} f → begin (μ.η Y ∘ F₁ (F₁ C.id)) ∘ η.η (F₀ Y) ∘ μ.η Y ∘ F₁ f ≈⟨ elimʳ (F-resp-≈ identity ○ identity) ⟩∘⟨refl ⟩ μ.η Y ∘ η.η (F₀ Y) ∘ μ.η Y ∘ F₁ f ≈⟨ cancelˡ M.identityʳ ⟩ μ.η Y ∘ F₁ f ≈⟨ introʳ identity ⟩ (μ.η Y ∘ F₁ f) ∘ F₁ C.id ∎ } ; zig = λ {A} → begin (μ.η A ∘ F₁ (F₁ C.id)) ∘ η.η (F₀ A) ∘ η.η A ≈⟨ elimʳ (F-resp-≈ identity ○ identity) ⟩∘⟨refl ⟩ μ.η A ∘ η.η (F₀ A) ∘ η.η A ≈⟨ cancelˡ M.identityʳ ⟩ η.η A ∎ ; zag = λ {B} → begin (μ.η B ∘ F₁ (F₁ C.id)) ∘ η.η (F₀ B) ≈⟨ elimʳ (F-resp-≈ identity ○ identity) ⟩∘⟨refl ⟩ μ.η B ∘ η.η (F₀ B) ≈⟨ M.identityʳ ⟩ C.id ∎ } module KleisliExtension where κ : {A B : Obj} → (f : A ⇒ F₀ B) → F₀ A ⇒ F₀ B κ {_} {B} f = μ.η B ∘ F₁ f f-iso⇒Klf-iso : ∀ {A B : Obj} → (f : A ⇒ F₀ B) → (g : B ⇒ F₀ A) → Iso (Kleisli M) g f → Iso C (κ f) (κ g) f-iso⇒Klf-iso {A} {B} f g (record { isoˡ = isoˡ ; isoʳ = isoʳ }) = record { isoˡ = begin (μ.η A ∘ F₁ g) ∘ μ.η B ∘ F₁ f ≈⟨ center (sym (μ.commute g)) ⟩ μ.η A ∘ (μ.η (F₀ A) ∘ F₁ (F₁ g)) ∘ F₁ f ≈⟨ assoc²'' ○ pushˡ M.sym-assoc ⟩ μ.η A ∘ F₁ (μ.η A) ∘ F₁ (F₁ g) ∘ F₁ f ≈⟨ refl⟩∘⟨ sym trihom ⟩ μ.η A ∘ F₁ (μ.η A ∘ F₁ g ∘ f) ≈⟨ refl⟩∘⟨ F-resp-≈ sym-assoc ⟩ μ.η A ∘ F₁ ((μ.η A ∘ F₁ g) ∘ f) ≈⟨ refl⟩∘⟨ F-resp-≈ isoʳ ○ M.identityˡ ⟩ C.id ∎ ; isoʳ = begin (μ.η B ∘ F₁ f) ∘ μ.η A ∘ F₁ g ≈⟨ center (sym (μ.commute f)) ⟩ μ.η B ∘ (μ.η (F₀ B) ∘ F₁ (F₁ f)) ∘ F₁ g ≈⟨ assoc²'' ○ pushˡ M.sym-assoc ⟩ μ.η B ∘ F₁ (μ.η B) ∘ F₁ (F₁ f) ∘ F₁ g ≈⟨ refl⟩∘⟨ sym trihom ⟩ μ.η B ∘ F₁ (μ.η B ∘ F₁ f ∘ g) ≈⟨ refl⟩∘⟨ F-resp-≈ sym-assoc ⟩ μ.η B ∘ F₁ ((μ.η B ∘ F₁ f) ∘ g) ≈⟨ refl⟩∘⟨ F-resp-≈ isoˡ ○ M.identityˡ ⟩ C.id ∎ } where trihom : {X Y Z W : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {h : Z ⇒ W} → F₁ (h ∘ g ∘ f) ≈ F₁ h ∘ F₁ g ∘ F₁ f trihom {X} {Y} {Z} {W} {f} {g} {h} = begin F₁ (h ∘ g ∘ f) ≈⟨ homomorphism ⟩ F₁ h ∘ F₁ (g ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩ F₁ h ∘ F₁ g ∘ F₁ f ∎ Klf-iso⇒f-iso : ∀ {A B : Obj} → (f : A ⇒ F₀ B) → (g : B ⇒ F₀ A) → Iso C (κ f) (κ g) → Iso (Kleisli M) g f Klf-iso⇒f-iso {A} {B} f g record { isoˡ = isoˡ ; isoʳ = isoʳ } = record { isoˡ = begin (μ.η B ∘ F₁ f) ∘ g ≈⟨ introʳ M.identityʳ ⟩∘⟨refl ⟩ ((μ.η B ∘ F₁ f) ∘ (μ.η A ∘ η.η (F₀ A))) ∘ g ≈⟨ assoc ⟩∘⟨refl ○ assoc ○ refl⟩∘⟨ assoc ○ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩ μ.η B ∘ F₁ f ∘ (μ.η A) ∘ (η.η (F₀ A) ∘ g) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ η.commute g ⟩ μ.η B ∘ F₁ f ∘ μ.η A ∘ (F₁ g ∘ η.η B) ≈˘⟨ assoc ⟩∘⟨refl ○ assoc ○ refl⟩∘⟨ assoc ○ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩ ((μ.η B ∘ F₁ f) ∘ μ.η A ∘ F₁ g) ∘ η.η B ≈⟨ elimˡ isoʳ ⟩ η.η B ∎ ; isoʳ = begin (μ.η A ∘ F₁ g) ∘ f ≈⟨ introʳ M.identityʳ ⟩∘⟨refl ⟩ ((μ.η A ∘ F₁ g) ∘ (μ.η B ∘ η.η (F₀ B))) ∘ f ≈⟨ assoc ⟩∘⟨refl ○ assoc ○ refl⟩∘⟨ assoc ○ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩ μ.η A ∘ F₁ g ∘ (μ.η B) ∘ (η.η (F₀ B) ∘ f) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ η.commute f ⟩ μ.η A ∘ F₁ g ∘ μ.η B ∘ (F₁ f ∘ η.η A) ≈˘⟨ assoc ⟩∘⟨refl ○ assoc ○ refl⟩∘⟨ assoc ○ refl⟩∘⟨ refl⟩∘⟨ assoc ⟩ ((μ.η A ∘ F₁ g) ∘ μ.η B ∘ F₁ f) ∘ η.η A ≈⟨ elimˡ isoˡ ⟩ η.η A ∎ } kl-ext-compat : ∀ {A B X : Obj} → (f : A ⇒ F₀ B) → (g : B ⇒ F₀ X) → κ ((κ g) ∘ f) ≈ κ g ∘ κ f kl-ext-compat {A} {B} {X} f g = begin μ.η X ∘ F₁ ((μ.η X ∘ F₁ g) ∘ f) ≈⟨ refl⟩∘⟨ F-resp-≈ assoc ○ refl⟩∘⟨ trihom ⟩ μ.η X ∘ (F₁ (μ.η X) ∘ F₁ (F₁ g) ∘ F₁ f) ≈⟨ sym-assoc ⟩ (μ.η X ∘ F₁ (μ.η X)) ∘ F₁ (F₁ g) ∘ F₁ f ≈⟨ M.assoc ⟩∘⟨refl ⟩ (μ.η X ∘ μ.η (F₀ X)) ∘ F₁ (F₁ g) ∘ F₁ f ≈⟨ center (μ.commute g) ⟩ μ.η X ∘ (F₁ g ∘ μ.η B) ∘ F₁ f ≈⟨ sym-assoc ○ (sym-assoc ⟩∘⟨refl) ○ assoc ⟩ (μ.η X ∘ F₁ g) ∘ μ.η B ∘ F₁ f ∎ where trihom : {X Y Z W : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {h : Z ⇒ W} → F₁ (h ∘ g ∘ f) ≈ F₁ h ∘ F₁ g ∘ F₁ f trihom {X} {Y} {Z} {W} {f} {g} {h} = begin F₁ (h ∘ g ∘ f) ≈⟨ homomorphism ⟩ F₁ h ∘ F₁ (g ∘ f) ≈⟨ refl⟩∘⟨ homomorphism ⟩ F₁ h ∘ F₁ g ∘ F₁ f ∎
47.75
117
0.435677
299d7f63d93befa89651e3252e45f7a2d7800620
750
agda
Agda
test/fail/Test0.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
test/fail/Test0.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
test/fail/Test0.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import lib.Base module fail.Test0 where data Bool : Type₀ where true false : Bool module _ where private data #I : Type₀ where #zero : #I #one : #I I : Type₀ I = #I zero : I zero = #zero one : I one = #one postulate seg : zero == one I-elim : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one) (seg* : zero* == one* [ P ↓ seg ]) → Π I P I-elim zero* one* seg* #zero = zero* I-elim zero* one* seg* #one = one* postulate I-seg-β : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one) (seg* : zero* == one* [ P ↓ seg ]) → apd (I-elim zero* one* seg*) seg == seg* test : I → Bool test zero = true test one = false
17.857143
68
0.5
d1e1f8fb3638d523a0b9018fe52a27ca469c6cb9
3,817
agda
Agda
BasicIS4/Metatheory/DyadicGentzen-TarskiGluedDyadicGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIS4/Metatheory/DyadicGentzen-TarskiGluedDyadicGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIS4/Metatheory/DyadicGentzen-TarskiGluedDyadicGentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIS4.Metatheory.DyadicGentzen-TarskiGluedDyadicGentzen where open import BasicIS4.Syntax.DyadicGentzen public open import BasicIS4.Semantics.TarskiGluedDyadicGentzen public -- Internalisation of syntax as syntax representation in a particular model. module _ {{_ : Model}} where [_] : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ [⊢] A [ var i ] = [var] i [ lam t ] = [lam] [ t ] [ app t u ] = [app] [ t ] [ u ] [ mvar i ] = [mvar] i [ box t ] = [box] [ t ] [ unbox t u ] = [unbox] [ t ] [ u ] [ pair t u ] = [pair] [ t ] [ u ] [ fst t ] = [fst] [ t ] [ snd t ] = [snd] [ t ] [ unit ] = [unit] -- Soundness with respect to all models, or evaluation. -- FIXME postulate reifyʳ⋆ : ∀ {{_ : Model}} {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ [⊢]⋆ Ξ eval : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊨ A eval (var i) γ δ = lookup i γ eval (lam t) γ δ = λ ψ a → eval t (mono²⊩⋆ ψ γ , a) (mono²⊩⋆ ψ δ) eval (app {A} {B} t u) γ δ = _⟪$⟫_ {A} {B} (eval t γ δ) (eval u γ δ) eval (mvar i) γ δ = mlookup i δ eval (box t) γ δ = λ ψ → let δ′ = mono²⊩⋆ ψ δ in [mmulticut] (reifyʳ⋆ δ′) [ box t ] ⅋ eval t ∙ δ′ eval (unbox {A} {C} t u) γ δ = eval u γ (δ , λ ψ → let γ′ = mono²⊩⋆ ψ γ δ′ = mono²⊩⋆ ψ δ in [multicut²] (reifyʳ⋆ γ′) (reifyʳ⋆ δ′) [ t ] ⅋ ⟪↓⟫ (eval t γ′ δ′)) eval (pair t u) γ δ = eval t γ δ , eval u γ δ eval (fst t) γ δ = π₁ (eval t γ δ) eval (snd t) γ δ = π₂ (eval t γ δ) eval unit γ δ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { _⊩ᵅ_ = λ Π P → Π ⊢ α P ; mono²⊩ᵅ = mono²⊢ ; _[⊢]_ = _⊢_ ; mono²[⊢] = mono²⊢ ; [var] = var ; [lam] = lam ; [app] = app ; [mvar] = mvar ; [box] = box ; [unbox] = unbox ; [pair] = pair ; [fst] = fst ; [snd] = snd ; [unit] = unit } -- Soundness and completeness with respect to the canonical model. mutual reflectᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊩ A reflectᶜ {α P} t = t reflectᶜ {A ▻ B} t = λ ψ → let t′ = mono²⊢ ψ t in λ a → reflectᶜ (app t′ (reifyᶜ a)) reflectᶜ {□ A} t = λ ψ → let t′ = mono²⊢ ψ t in t′ ⅋ reflectᶜ (down t′) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reifyᶜ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊩ A → Γ ⁏ Δ ⊢ A reifyᶜ {α P} s = s reifyᶜ {A ▻ B} s = lam (reifyᶜ (s weak⊆²₁ (reflectᶜ {A} v₀))) reifyᶜ {□ A} s = syn (s refl⊆²) reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s)) reifyᶜ {⊤} s = unit reflectᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t reifyᶜ⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊩⋆ Ξ → Γ ⁏ Δ ⊢⋆ Ξ reifyᶜ⋆ {∅} ∙ = ∙ reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ Γ refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ mrefl⊩⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊩⋆ □⋆ Δ mrefl⊩⋆ = reflectᶜ⋆ mrefl⊢⋆ trans⊩⋆ : ∀ {Γ Γ′ Δ Δ′ Ξ} → Γ ⁏ Δ ⊩⋆ Γ′ ⧺ (□⋆ Δ′) → Γ′ ⁏ Δ′ ⊩⋆ Ξ → Γ ⁏ Δ ⊩⋆ Ξ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ Δ} → Γ ⁏ Δ ⊨ A → Γ ⁏ Δ ⊢ A quot s = reifyᶜ (s refl⊩⋆ mrefl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
30.055118
82
0.449044
303cf6f32457f7752b17c04b58f0fa85935bef89
2,189
agda
Agda
Cubical/Foundations/Pointed/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/Foundations/Pointed/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Pointed.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed.Base open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma Π∙ : ∀ {ℓ ℓ'} (A : Type ℓ) (B∙ : A → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') Π∙ A B∙ = (∀ a → typ (B∙ a)) , (λ a → pt (B∙ a)) Σ∙ : ∀ {ℓ ℓ'} (A∙ : Pointed ℓ) (B∙ : typ A∙ → Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') Σ∙ A∙ B∙ = (Σ[ a ∈ typ A∙ ] typ (B∙ a)) , (pt A∙ , pt (B∙ (pt A∙))) _×∙_ : ∀ {ℓ ℓ'} (A∙ : Pointed ℓ) (B∙ : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ') A∙ ×∙ B∙ = ((typ A∙) × (typ B∙)) , (pt A∙ , pt B∙) {- composition of pointed maps -} _∘∙_ : ∀ {ℓA ℓB ℓC} {A : Pointed ℓA} {B : Pointed ℓB} {C : Pointed ℓC} (g : B →∙ C) (f : A →∙ B) → (A →∙ C) (g , g∙) ∘∙ (f , f∙) = (λ x → g (f x)) , ((cong g f∙) ∙ g∙) {- pointed identity -} id∙ : ∀ {ℓA} (A : Pointed ℓA) → (A →∙ A) id∙ A = ((λ x → x) , refl) {- constant pointed map -} const∙ : ∀ {ℓA ℓB} (A : Pointed ℓA) (B : Pointed ℓB) → (A →∙ B) const∙ _ (_ , b) = (λ _ → b) , refl {- left identity law for pointed maps -} ∘∙-idˡ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → f ∘∙ id∙ A ≡ f ∘∙-idˡ (_ , f∙) = ΣPathP ( refl , (lUnit f∙) ⁻¹ ) {- right identity law for pointed maps -} ∘∙-idʳ : ∀ {ℓA ℓB} {A : Pointed ℓA} {B : Pointed ℓB} (f : A →∙ B) → id∙ B ∘∙ f ≡ f ∘∙-idʳ (_ , f∙) = ΣPathP ( refl , (rUnit f∙) ⁻¹ ) {- associativity for composition of pointed maps -} ∘∙-assoc : ∀ {ℓA ℓB ℓC ℓD} {A : Pointed ℓA} {B : Pointed ℓB} {C : Pointed ℓC} {D : Pointed ℓD} (h : C →∙ D) (g : B →∙ C) (f : A →∙ B) → (h ∘∙ g) ∘∙ f ≡ h ∘∙ (g ∘∙ f) ∘∙-assoc (h , h∙) (g , g∙) (f , f∙) = ΣPathP (refl , q) where q : (cong (h ∘ g) f∙) ∙ (cong h g∙ ∙ h∙) ≡ cong h (cong g f∙ ∙ g∙) ∙ h∙ q = ( (cong (h ∘ g) f∙) ∙ (cong h g∙ ∙ h∙) ≡⟨ refl ⟩ (cong h (cong g f∙)) ∙ (cong h g∙ ∙ h∙) ≡⟨ assoc (cong h (cong g f∙)) (cong h g∙) h∙ ⟩ (cong h (cong g f∙) ∙ cong h g∙) ∙ h∙ ≡⟨ cong (λ p → p ∙ h∙) ((cong-∙ h (cong g f∙) g∙) ⁻¹) ⟩ (cong h (cong g f∙ ∙ g∙) ∙ h∙) ∎ )
39.8
94
0.480128
120f2fb7fd3f587c6f832fea032f6584a074d72e
192
agda
Agda
test/Succeed/OmegaInOmega.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/OmegaInOmega.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/OmegaInOmega.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --omega-in-omega #-} open import Agda.Primitive test : Setω test = Setω record R : Setω where field A : ∀ {ℓ} → Set ℓ data Type : Setω where el : ∀ {ℓ} → Set ℓ → Type
13.714286
32
0.588542
355ceec5bdc36243a92bfcd48133bfff27ce1440
15,037
agda
Agda
Cubical/Homotopy/HopfInvariant/Brunerie.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Homotopy/HopfInvariant/Brunerie.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Homotopy/HopfInvariant/Brunerie.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- This file contains a proof of the fact that the Brunerie number, i.e. absolute value of the Hopf invariant of [e , e] : π₃S², is 2. Here, e is the generator of π₂S² and [_,_] denotes the Whitehead product. The proof follows Proposition 5.4.4. in Brunerie (2016) closely, but, for simplicity, considers only the case n = 2. -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.HopfInvariant.Brunerie where open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.Group.Pi4S3.BrunerieNumber open import Cubical.Homotopy.Group.Pi4S3.S3PushoutIso open import Cubical.Homotopy.Whitehead open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.SphereProduct open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.RingLaws open import Cubical.ZCohomology.RingStructure.GradedCommutativity open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Nat hiding (_+_) open import Cubical.Data.Unit open import Cubical.Data.Sum renaming (rec to ⊎rec) open import Cubical.HITs.Pushout open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.HITs.Join open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.Truncation open import Cubical.HITs.SetTruncation renaming (elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (map to pMap ; rec to pRec) open import Cubical.Algebra.Group open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Instances.Unit open Iso open IsGroupHom -- Some abstract versions of imported lemmas/definitions from -- ZCohomology.Groups.SphereProduct for faster type checking. abstract H²-genₗabs : coHom 2 (S₊ 2 × S₊ 2) H²-genₗabs = H²-S²×S²-genₗ H²-genᵣabs : coHom 2 (S₊ 2 × S₊ 2) H²-genᵣabs = H²-S²×S²-genᵣ Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs : (n m : ℕ) → GroupIso (coHomGr ((suc n) +' (suc m)) (S₊ (suc n) × S₊ (suc m))) ℤGroup Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs = Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs≡ : (n m : ℕ) → Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs n m ≡ Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ n m Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs≡ n m = refl Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣ : fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ) ≡ 1 Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣ = fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ) ≡⟨ cong (fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1))) (sym H²-S²≅H⁴-S²×S²⌣) ⟩ fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (fun (fst (H²-S²≅H⁴-S²×S²)) ∣ ∣_∣ₕ ∣₂) ≡⟨ speedUp ∣_∣ₕ ⟩ fun (fst (Hⁿ-Sⁿ≅ℤ 1)) ∣ ∣_∣ₕ ∣₂ ≡⟨ refl ⟩ -- Computation! :-) 1 ∎ where speedUp : (f : _) → fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (fun (fst (H²-S²≅H⁴-S²×S²)) ∣ f ∣₂) ≡ fun (fst (Hⁿ-Sⁿ≅ℤ 1)) ∣ f ∣₂ speedUp f i = fun (fst (Hⁿ-Sⁿ≅ℤ 1)) (leftInv (fst H²-S²≅H⁴-S²×S²) ∣ f ∣₂ i) -- Some abbreviations private inl' : S₊ 2 × S₊ 2 → Pushout⋁↪fold⋁ (S₊∙ 2) inl' = inl qHom : GroupHom (coHomGr 4 (Pushout⋁↪fold⋁ (S₊∙ 2))) (coHomGr 4 (S₊ 2 × S₊ 2)) qHom = coHomMorph 4 inl' qHomGen : (n : ℕ) → GroupHom (coHomGr n (Pushout⋁↪fold⋁ (S₊∙ 2))) (coHomGr n (S₊ 2 × S₊ 2)) qHomGen n = coHomMorph n inl' -- The type C and generator α, β in dim 2 and 4 respectively -- Recall, the goal is to prove that α ⌣ α = ±2 β CHopf : Type CHopf = HopfInvariantPush 0 fold∘W Hopfαfold∘W = Hopfα 0 (fold∘W , refl) Hopfβfold∘W = Hopfβ 0 (fold∘W , refl) -- Rewriting CHopf as our favourite pushout -- S²×S² ← S²∨S² → S² CHopfIso : Iso CHopf (Pushout⋁↪fold⋁ (S₊∙ 2)) CHopfIso = compIso (invIso (equivToIso (compEquiv (compEquiv pushoutSwitchEquiv (isoToEquiv (PushoutDistr.PushoutDistrIso fold⋁ W λ _ → tt))) pushoutSwitchEquiv))) (equivToIso Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁) -- Cohomology group version of the Iso coHomCHopfIso : (n : ℕ) → GroupIso (coHomGr n CHopf) (coHomGr n (Pushout⋁↪fold⋁ (S₊∙ 2))) coHomCHopfIso n = invGroupIso (coHomIso n CHopfIso) -- We instantiate Mayer-Vietoris for the pushout module MV-⋁↪-fold⋁ = MV _ _ (S₊∙ 2 ⋁ S₊∙ 2) ⋁↪ fold⋁ -- This give us an iso H⁴(S²×S² ← S²∨S² → S²) ≅ H⁴(S²×S²) isEquiv-qHom : GroupEquiv (coHomGr 4 (Pushout⋁↪fold⋁ (S₊∙ 2))) (coHomGr 4 (S₊ 2 × S₊ 2)) fst (fst isEquiv-qHom) = qHom .fst snd (fst isEquiv-qHom) = subst isEquiv (funExt (sElim (λ _ → isSetPathImplicit) (λ _ → refl))) (×UnitEquiv (isoToPath (invIso (fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p))))) _ isEquiv-i) where ×UnitEquiv : {A B C : Type} → Unit ≡ C → (f : A → B × C) → isEquiv f → isEquiv (fst ∘ f) ×UnitEquiv {A = A} {B = B} = J (λ C _ → (f : A → B × C) → isEquiv f → isEquiv (fst ∘ f)) λ f eq → record { equiv-proof = λ b → ((fst (fst (equiv-proof eq (b , tt)))) , cong fst (fst (equiv-proof eq (b , tt)) .snd)) , λ y → ΣPathP ((cong fst (equiv-proof eq (b , tt) .snd ((fst y) , ΣPathP ((snd y) , refl)))) , λ i j → equiv-proof eq (b , tt) .snd ((fst y) , ΣPathP ((snd y) , refl)) i .snd j .fst) } isEquiv-i : isEquiv (fst (MV-⋁↪-fold⋁.i 4)) isEquiv-i = SES→isEquiv (isContr→≡UnitGroup (isOfHLevelRetractFromIso 0 (compIso (fst (Hⁿ-⋁ (S₊∙ 2) (S₊∙ 2) 2)) (compIso (prodIso (fst (Hⁿ-Sᵐ≅0 2 1 λ p → snotz (cong predℕ p))) (fst (Hⁿ-Sᵐ≅0 2 1 λ p → snotz (cong predℕ p)))) rUnit×Iso)) isContrUnit)) ((isContr→≡UnitGroup (isOfHLevelRetractFromIso 0 (compIso (fst (Hⁿ-⋁ (S₊∙ 2) (S₊∙ 2) 3)) (compIso (prodIso (fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p))) (fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p)))) rUnit×Iso)) isContrUnit))) (MV-⋁↪-fold⋁.d 3) (MV-⋁↪-fold⋁.i 4) (MV-⋁↪-fold⋁.Δ 4) (MV-⋁↪-fold⋁.Ker-i⊂Im-d 3) (MV-⋁↪-fold⋁.Ker-Δ⊂Im-i 4) snd isEquiv-qHom = qHom .snd -- The goal now is reducing α ⌣ α = ±2 β to gₗ ⌣ gᵣ = e for -- gₗ, gᵣ generators of H²(S²×S²) ≅ ℤ × ℤ and e generator of -- H⁴(S²×S²) ≅ ℤ. This essentially just elementary linear algebra at -- this point. We do it for an arbitrary (well-behaved) iso -- H⁴(S²×S²) ≅ ℤ in order to speed up type checking. module BrunerieNumLem (is : GroupIso (coHomGr 4 (S₊ 2 × S₊ 2)) ℤGroup) (isEq : (fun (fst is) (H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ) ≡ 1)) where x = H²-S²×S²-genₗ y = H²-S²×S²-genᵣ α = Hopfαfold∘W β = Hopfβfold∘W α' : coHom 2 (Pushout⋁↪fold⋁ (S₊∙ 2)) α' = fun (fst (coHomCHopfIso 2)) α β' : coHom 4 (Pushout⋁↪fold⋁ (S₊∙ 2)) β' = fun (fst (coHomCHopfIso 4)) β rewriteEquation : (α' ⌣ α' ≡ β' +ₕ β') ⊎ (α' ⌣ α' ≡ -ₕ (β' +ₕ β')) → (α ⌣ α ≡ β +ₕ β) ⊎ (α ⌣ α ≡ -ₕ (β +ₕ β)) rewriteEquation (inl x) = inl ((λ i → leftInv (fst (coHomCHopfIso 2)) α (~ i) ⌣ leftInv (fst (coHomCHopfIso 2)) α (~ i)) ∙∙ cong (inv (fst (coHomCHopfIso 4))) x ∙∙ leftInv (fst (coHomCHopfIso 4)) (β +ₕ β)) rewriteEquation (inr x) = inr ((λ i → leftInv (fst (coHomCHopfIso 2)) α (~ i) ⌣ leftInv (fst (coHomCHopfIso 2)) α (~ i)) ∙∙ cong (inv (fst (coHomCHopfIso 4))) x ∙∙ leftInv (fst (coHomCHopfIso 4)) (-ₕ (β +ₕ β))) rewriteEquation2 : (qHom .fst β' ≡ x ⌣ y) ⊎ (qHom .fst β' ≡ -ₕ (x ⌣ y)) rewriteEquation2 = ⊎rec (λ p → inl (sym (leftInv (fst is) (qHom .fst β')) ∙∙ cong (inv (fst is)) (p ∙ sym isEq) ∙∙ leftInv (fst is) (x ⌣ y))) (λ p → inr (sym (leftInv (fst is) (qHom .fst β')) ∙∙ cong (inv (fst is)) (p ∙ sym (cong (GroupStr.inv (snd ℤGroup)) isEq)) ∙∙ (presinv (invGroupIso is .snd) (fun (fst is) (x ⌣ y)) ∙ cong -ₕ_ (leftInv (fst is) (x ⌣ y))))) eqs where grIso : GroupEquiv (coHomGr 4 (HopfInvariantPush 0 fold∘W)) ℤGroup grIso = compGroupEquiv (GroupIso→GroupEquiv (coHomCHopfIso 4)) (compGroupEquiv isEquiv-qHom (GroupIso→GroupEquiv is)) eqs : (fst (fst grIso) β ≡ 1) ⊎ (fst (fst grIso) β ≡ -1) eqs = groupEquivPresGen _ (GroupIso→GroupEquiv (Hopfβ-Iso 0 (fold∘W , refl))) β (inl (Hopfβ↦1 0 (fold∘W , refl))) grIso qpres⌣ : (x y : coHom 2 _) → fst qHom (x ⌣ y) ≡ fst (qHomGen 2) x ⌣ fst (qHomGen 2) y qpres⌣ = sElim2 (λ _ _ → isSetPathImplicit) λ _ _ → refl α'↦x+y : fst (qHomGen 2) α' ≡ x +ₕ y α'↦x+y = lem ((coHomFun 2 (inv CHopfIso) α)) refl where lem : (x' : coHom 2 (Pushout⋁↪fold⋁ (S₊∙ 2))) → coHomFun 2 inr x' ≡ ∣ ∣_∣ ∣₂ → fst (qHomGen 2) x' ≡ x +ₕ y lem = sElim (λ _ → isSetΠ λ _ → isSetPathImplicit) λ f p → Cubical.HITs.PropositionalTruncation.rec (squash₂ _ _) (λ r → cong ∣_∣₂ (funExt (uncurry (wedgeconFun 1 1 (λ _ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (λ x → cong f (push (inr x)) ∙∙ funExt⁻ r x ∙∙ refl) ((λ x → cong f (push (inl x)) ∙∙ funExt⁻ r x ∙∙ sym (rUnitₖ 2 ∣ x ∣ₕ))) (cong (_∙∙ funExt⁻ r north ∙∙ refl) (cong (cong f) λ j i → push (push tt j) i)))))) (fun PathIdTrunc₀Iso p) mainEq : ((fst qHom) (α' ⌣ α') ≡ qHom .fst (β' +ₕ β')) ⊎ ((fst qHom) (α' ⌣ α') ≡ qHom .fst (-ₕ (β' +ₕ β'))) mainEq = ⊎rec (λ id → inl (lem₁ ∙ lem₂ ∙ cong (λ x → x +ₕ x) (sym id) ∙ sym (pres· (snd qHom) β' β'))) (λ id → inr (lem₁ ∙ lem₂ ∙ ((sym (distLem (x ⌣ y)) ∙ cong -ₕ_ (cong (λ x → x +ₕ x) (sym id))) ∙ cong (-ₕ_) (pres· (snd qHom) β' β')) ∙ sym (presinv (snd qHom) (β' +ₕ β')))) rewriteEquation2 where triv⌣ : (a : S¹) → cong₂ (_⌣ₖ_ {n = 2} {m = 2}) (cong ∣_∣ₕ (merid a)) (cong ∣_∣ₕ (merid a)) ≡ λ _ → ∣ north ∣ₕ triv⌣ a = cong₂Funct (_⌣ₖ_ {n = 2} {m = 2}) (cong ∣_∣ₕ (merid a)) (cong ∣_∣ₕ (merid a)) ∙ sym (rUnit λ j → _⌣ₖ_ {n = 2} {m = 2} ∣ merid a j ∣ₕ ∣ north ∣) ∙ (λ i j → ⌣ₖ-0ₖ 2 2 ∣ merid a j ∣ₕ i) distLem : (x : coHom 4 (S₊ 2 × S₊ 2)) → -ₕ ((-ₕ x) +ₕ (-ₕ x)) ≡ x +ₕ x distLem = sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → cong -ₖ_ (sym (-distrₖ 4 (f x) (f x))) ∙ -ₖ^2 (f x +ₖ f x)) x⌣x≡0 : x ⌣ x ≡ 0ₕ 4 x⌣x≡0 = cong ∣_∣₂ (funExt (uncurry λ { north y → refl ; south y → refl ; (merid a i) y j → triv⌣ a j i})) y⌣y≡0 : y ⌣ y ≡ 0ₕ 4 y⌣y≡0 = cong ∣_∣₂ (funExt (uncurry λ { x north → refl ; x south → refl ; x (merid a i) j → triv⌣ a j i})) -ₕ'Id : (x : coHom 4 (S₊ 2 × S₊ 2)) → (-ₕ'^ 2 · 2) x ≡ x -ₕ'Id = sElim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → -ₖ'-gen-inl-left 2 2 tt (inl tt) (f x)) y⌣x≡x⌣y : y ⌣ x ≡ x ⌣ y y⌣x≡x⌣y = y ⌣ x ≡⟨ gradedComm'-⌣ 2 2 y x ⟩ (-ₕ'^ 2 · 2) (transport refl (x ⌣ y)) ≡⟨ -ₕ'Id (transport refl (x ⌣ y)) ⟩ transport refl (x ⌣ y) ≡⟨ transportRefl (x ⌣ y) ⟩ x ⌣ y ∎ lem₂ : (x +ₕ y) ⌣ (x +ₕ y) ≡ (x ⌣ y) +ₕ (x ⌣ y) lem₂ = (x +ₕ y) ⌣ (x +ₕ y) ≡⟨ leftDistr-⌣ 2 2 (x +ₕ y) x y ⟩ ((x +ₕ y) ⌣ x) +ₕ ((x +ₕ y) ⌣ y) ≡⟨ cong₂ _+ₕ_ (rightDistr-⌣ 2 2 x y x) (rightDistr-⌣ 2 2 x y y) ⟩ ((x ⌣ x +ₕ y ⌣ x)) +ₕ (x ⌣ y +ₕ y ⌣ y) ≡⟨ cong₂ _+ₕ_ (cong (_+ₕ y ⌣ x) x⌣x≡0 ∙ lUnitₕ 4 (y ⌣ x)) (cong (x ⌣ y +ₕ_) y⌣y≡0 ∙ rUnitₕ 4 (x ⌣ y)) ⟩ y ⌣ x +ₕ x ⌣ y ≡⟨ cong (_+ₕ (x ⌣ y)) y⌣x≡x⌣y ⟩ ((x ⌣ y) +ₕ (x ⌣ y)) ∎ lem₁ : (fst qHom) (α' ⌣ α') ≡ (x +ₕ y) ⌣ (x +ₕ y) lem₁ = fst qHom (α' ⌣ α') ≡⟨ refl ⟩ fst (qHomGen 2) α' ⌣ fst (qHomGen 2) α' ≡⟨ cong (λ x → x ⌣ x) α'↦x+y ⟩ ((x +ₕ y) ⌣ (x +ₕ y)) ∎ main⊎ : (HopfInvariant 0 (fold∘W , refl) ≡ 2) ⊎ (HopfInvariant 0 (fold∘W , refl) ≡ -2) main⊎ = ⊎rec (λ p → inl (lem₁ ∙ cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) p ∙ pres· (Hopfβ-Iso 0 (fold∘W , refl) .snd) β β ∙ cong (λ x → x + x) (Hopfβ↦1 0 (fold∘W , refl)))) (λ p → inr (lem₁ ∙ cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) p ∙ presinv (Hopfβ-Iso 0 (fold∘W , refl) .snd) (β +ₕ β) ∙ cong (GroupStr.inv (snd ℤGroup)) (pres· (Hopfβ-Iso 0 (fold∘W , refl) .snd) β β ∙ cong (λ x → x + x) (Hopfβ↦1 0 (fold∘W , refl))))) lem₂ where lem₁ : HopfInvariant 0 (fold∘W , refl) ≡ fun (fst (Hopfβ-Iso 0 (fold∘W , refl))) (α ⌣ α) lem₁ = cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) (transportRefl (α ⌣ α)) lem₂ : (α ⌣ α ≡ β +ₕ β) ⊎ (α ⌣ α ≡ -ₕ (β +ₕ β)) lem₂ = rewriteEquation (⊎rec (λ p → inl (sym (retEq (fst isEquiv-qHom) (α' ⌣ α')) ∙∙ cong (invEq (fst isEquiv-qHom)) p ∙∙ retEq (fst isEquiv-qHom) (β' +ₕ β'))) (λ p → inr ((sym (retEq (fst isEquiv-qHom) (α' ⌣ α')) ∙∙ cong (invEq (fst isEquiv-qHom)) p ∙∙ retEq (fst isEquiv-qHom) (-ₕ (β' +ₕ β'))))) mainEq) main : abs (HopfInvariant 0 (fold∘W , refl)) ≡ 2 main = ⊎→abs _ 2 main⊎ -- We instantiate the module Brunerie'≡2 : abs (HopfInvariant 0 (fold∘W , refl)) ≡ 2 Brunerie'≡2 = BrunerieNumLem.main (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1) Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣ -- We rewrite the it slightly, to get the definition of the Brunerie -- number in Brunerie (2016) Brunerie'≡Brunerie : [ ∣ idfun∙ (S₊∙ 2) ∣₂ ∣ ∣ idfun∙ (S₊∙ 2) ∣₂ ]π' ≡ ∣ fold∘W , refl ∣₂ Brunerie'≡Brunerie = cong ∣_∣₂ ([]≡[]₂ (idfun∙ (S₊∙ 2)) (idfun∙ (S₊∙ 2)) ) ∙ sym fold∘W≡Whitehead ∙ cong ∣_∣₂ (∘∙-idˡ (fold∘W , refl)) -- And we get the main result Brunerie≡2 : Brunerie ≡ 2 Brunerie≡2 = cong abs (cong (HopfInvariant-π' 0) Brunerie'≡Brunerie) ∙ Brunerie'≡2
37.405473
112
0.530092
41a622ad7d108b39857d47e57ea5238e325d5fda
6,150
agda
Agda
src/fot/FOTC/Data/Nat/Induction/NonAcc/LexicographicATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Nat/Induction/NonAcc/LexicographicATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Nat/Induction/NonAcc/LexicographicATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Well-founded induction on the lexicographic order on natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B This module does not contain combined proofs, but it imports -- modules which contain combined proofs. module FOTC.Data.Nat.Induction.NonAcc.LexicographicATP where open import FOTC.Base open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ Lexi-wfind : (A : D → D → Set) → (∀ {m₁ n₁} → N m₁ → N n₁ → (∀ {m₂ n₂} → N m₂ → N n₂ → Lexi m₂ n₂ m₁ n₁ → A m₂ n₂) → A m₁ n₁) → ∀ {m n} → N m → N n → A m n Lexi-wfind A h Nm Nn = h Nm Nn (helper₂ Nm Nn) where helper₁ : ∀ {m n o} → N m → N n → N o → m < o → o < succ₁ n → m < n helper₁ {m} {n} {o} Nm Nn No m<o o<Sn = Sx≤y→x<y Nm Nn (≤-trans (nsucc Nm) No Nn (x<y→Sx≤y Nm No m<o) (Sx≤Sy→x≤y {o} {n} (x<y→Sx≤y No (nsucc Nn) o<Sn))) helper₂ : ∀ {m₁ n₁ m₂ n₂} → N m₁ → N n₁ → N m₂ → N n₂ → Lexi m₂ n₂ m₁ n₁ → A m₂ n₂ helper₂ Nm₁ Nn₂ nzero nzero 00<00 = h nzero nzero (λ Nm' Nn' m'n'<00 → ⊥-elim (xy<00→⊥ Nm' Nn' m'n'<00)) helper₂ nzero nzero (nsucc Nm₂) nzero Sm₂0<00 = ⊥-elim (Sxy₁<0y₂→⊥ Sm₂0<00) helper₂ (nsucc Nm₁) nzero (nsucc Nm₂) nzero Sm₂0<Sm₁0 = h (nsucc Nm₂) nzero (λ Nm' Nn' m'n'<Sm₂0 → helper₂ Nm₁ nzero Nm' Nn' (inj₁ (helper₁ Nm' Nm₁ (nsucc Nm₂) (x₁y<x₂0→x₁<x₂ Nn' m'n'<Sm₂0) (x₁y<x₂0→x₁<x₂ nzero Sm₂0<Sm₁0)))) helper₂ nzero (nsucc Nn₁) (nsucc Nm₂) nzero Sm₂0<0Sn₁ = ⊥-elim (Sxy₁<0y₂→⊥ Sm₂0<0Sn₁) helper₂ (nsucc Nm₁) (nsucc Nn₁) (nsucc Nm₂) nzero Sm₂0<Sm₁Sn₁ = h (nsucc Nm₂) nzero (λ Nm' Nn' m'n'<Sm₂0 → helper₂ (nsucc Nm₁) Nn₁ Nm' Nn' (inj₁ (case (λ Sm₂<Sm₁ → x<y→x<Sy Nm' Nm₁ (helper₁ Nm' Nm₁ (nsucc Nm₂) (x₁y<x₂0→x₁<x₂ Nn' m'n'<Sm₂0) Sm₂<Sm₁)) (λ Sm₂≡Sm₁∧0<Sn₁ → x<y→y≡z→x<z (x₁y<x₂0→x₁<x₂ Nn' m'n'<Sm₂0) (∧-proj₁ Sm₂≡Sm₁∧0<Sn₁)) Sm₂0<Sm₁Sn₁))) helper₂ nzero nzero nzero (nsucc Nn₂) 0Sn₂<00 = ⊥-elim (0Sx<00→⊥ 0Sn₂<00) helper₂ (nsucc {m₁} Nm₁) nzero nzero (nsucc Nn₂) 0Sn₂<Sm₁0 = h nzero (nsucc Nn₂) (λ Nm' Nn' m'n'<0Nn₂ → helper₂ Nm₁ (nsucc Nn₂) Nm' Nn' (case (λ m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0)) (λ m'≡0∧n'<Sn₂ → case (λ 0<m₁ → inj₁ (x≡y→y<z→x<z (∧-proj₁ m'≡0∧n'<Sn₂) 0<m₁)) (λ 0≡m₁ → inj₂ ((trans (∧-proj₁ m'≡0∧n'<Sn₂) 0≡m₁) , (∧-proj₂ m'≡0∧n'<Sn₂))) (x<Sy→x<y∨x≡y nzero Nm₁ 0<Sm₁)) m'n'<0Nn₂)) where 0<Sm₁ : zero < succ₁ m₁ 0<Sm₁ = x₁y<x₂0→x₁<x₂ (nsucc Nn₂) 0Sn₂<Sm₁0 helper₂ nzero (nsucc Nn₁) nzero (nsucc Nn₂) 0Sn₂<0Sn₁ = case (λ 0<0 → ⊥-elim (0<0→⊥ 0<0)) (λ 0≡0∧Sn₂<Sn₁ → h nzero (nsucc Nn₂) (λ Nm' Nn' m'n'<0Sn₂ → case (λ m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0)) (λ m'≡0∧n'<Sn₂ → helper₂ nzero Nn₁ Nm' Nn' (inj₂ (∧-proj₁ m'≡0∧n'<Sn₂ , helper₁ Nn' Nn₁ (nsucc Nn₂) (∧-proj₂ m'≡0∧n'<Sn₂) (∧-proj₂ 0≡0∧Sn₂<Sn₁)))) m'n'<0Sn₂)) 0Sn₂<0Sn₁ helper₂ (nsucc Nm₁) (nsucc Nn₁) nzero (nsucc Nn₂) 0Sn₂<Sm₁Sn₁ = h nzero (nsucc Nn₂) (λ Nm' Nn' m'n'<0Sn₂ → helper₂ (nsucc Nm₁) Nn₁ Nm' Nn' (case (λ m'<0 → ⊥-elim (x<0→⊥ Nm' m'<0)) (λ m'≡0∧n'<Sn₂ → case (λ 0<Sm₁ → inj₁ (x≡y→y<z→x<z (∧-proj₁ m'≡0∧n'<Sn₂) 0<Sm₁)) (λ 0≡Sn₂∧Sn₂<Sn₁ → ⊥-elim (0≢S (∧-proj₁ 0≡Sn₂∧Sn₂<Sn₁))) 0Sn₂<Sm₁Sn₁) m'n'<0Sn₂)) helper₂ nzero nzero (nsucc Nm₂) (nsucc Nn₂) Sm₂Sn₂<00 = ⊥-elim (xy<00→⊥ (nsucc Nm₂) (nsucc Nn₂) Sm₂Sn₂<00) helper₂ (nsucc {m₁} Nm₁) nzero (nsucc {m₂} Nm₂) (nsucc Nn₂) Sm₂Sn₂<Sm₁0 = h (nsucc Nm₂) (nsucc Nn₂) (λ Nm' Nn' m'n'<Sm₂Sn₂ → helper₂ Nm₁ (nsucc Nn₂) Nm' Nn' (case (λ m'<Sm₂ → inj₁ (helper₁ Nm' Nm₁ (nsucc Nm₂) m'<Sm₂ Sm₂<Sm₁)) (λ m'≡Sm₂∧n'<Sn₂ → case (λ m'<m₁ → inj₁ m'<m₁) (λ m'≡m₁ → inj₂ (m'≡m₁ , ∧-proj₂ m'≡Sm₂∧n'<Sn₂)) (x<Sy→x<y∨x≡y Nm' Nm₁ (x≡y→y<z→x<z (∧-proj₁ m'≡Sm₂∧n'<Sn₂) Sm₂<Sm₁))) m'n'<Sm₂Sn₂)) where Sm₂<Sm₁ : succ₁ m₂ < succ₁ m₁ Sm₂<Sm₁ = x₁y<x₂0→x₁<x₂ (nsucc Nn₂) Sm₂Sn₂<Sm₁0 helper₂ nzero (nsucc Nn₁) (nsucc Nm₂) (nsucc Nn₂) Sm₂Sn₂<0Sn₁ = ⊥-elim (Sxy₁<0y₂→⊥ Sm₂Sn₂<0Sn₁) helper₂ (nsucc Nm₁) (nsucc Nn₁) (nsucc Nm₂) (nsucc Nn₂) Sm₂Sn₂<Sm₁Sn₁ = h (nsucc Nm₂) (nsucc Nn₂) (λ Nm' Nn' m'n'<Sm₂Sn₂ → helper₂ (nsucc Nm₁) Nn₁ Nm' Nn' (case (λ Sm₂<Sm₁ → case (λ m'<Sm₂ → inj₁ (x<y→x<Sy Nm' Nm₁ (helper₁ Nm' Nm₁ (nsucc Nm₂) m'<Sm₂ Sm₂<Sm₁))) (λ m'≡Sm₂∧n'<Sn₂ → inj₁ (x≡y→y<z→x<z (∧-proj₁ m'≡Sm₂∧n'<Sn₂) Sm₂<Sm₁)) m'n'<Sm₂Sn₂) (λ Sm₂≡Sm₁∧Sn₂<Sn₁ → case (λ m'<Sm₂ → inj₁ (x<y→y≡z→x<z m'<Sm₂ (∧-proj₁ Sm₂≡Sm₁∧Sn₂<Sn₁))) (λ m'≡Sm₂∧n'<Sn₂ → inj₂ (trans (∧-proj₁ m'≡Sm₂∧n'<Sn₂) (∧-proj₁ Sm₂≡Sm₁∧Sn₂<Sn₁) , helper₁ Nn' Nn₁ (nsucc Nn₂) (∧-proj₂ m'≡Sm₂∧n'<Sn₂) (∧-proj₂ Sm₂≡Sm₁∧Sn₂<Sn₁))) m'n'<Sm₂Sn₂) Sm₂Sn₂<Sm₁Sn₁))
43.309859
104
0.454472
34465fe79c0e109897b948dc12bf5fcd7da33d59
6,838
agda
Agda
Cubical/Data/Fin/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Data/Fin/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
Cubical/Data/Fin/Properties.agda
ryanorendorff/cubical
c67854d2e11aafa5677e25a09087e176fafd3e43
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Fin.Properties where open import Cubical.Core.Everything open import Cubical.Functions.Embedding open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Fin.Base as Fin open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Empty as Empty open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Induction.WellFounded private variable a b ℓ : Level A : Type a -- Fin 0 is empty, and thus a proposition. isPropFin0 : isProp (Fin 0) isPropFin0 = Empty.rec ∘ ¬Fin0 -- Fin 1 has only one value. isContrFin1 : isContr (Fin 1) isContrFin1 = fzero , λ { (zero , _) → toℕ-injective refl ; (suc k , sk<1) → Empty.rec (¬-<-zero (pred-≤-pred sk<1)) } -- Regardless of k, Fin k is a set. isSetFin : ∀{k} → isSet (Fin k) isSetFin {k} = isSetΣ isSetℕ (λ _ → isProp→isSet m≤n-isProp) private subst-app : (B : A → Type b) (f : (x : A) → B x) {x y : A} (x≡y : x ≡ y) → subst B x≡y (f x) ≡ f y subst-app B f {x = x} = J (λ y e → subst B e (f x) ≡ f y) (substRefl {B = B} (f x)) -- Computation rules for the eliminator. module _ (P : ∀ {k} → Fin k → Type ℓ) (fz : ∀ {k} → P {suc k} fzero) (fs : ∀ {k} {fn : Fin k} → P fn → P (fsuc fn)) {k : ℕ} where elim-fzero : Fin.elim P fz fs {k = suc k} fzero ≡ fz elim-fzero = subst P (toℕ-injective _) fz ≡⟨ cong (λ p → subst P p fz) (isSetFin _ _ _ _) ⟩ subst P refl fz ≡⟨ substRefl {B = P} fz ⟩ fz ∎ elim-fsuc : (fk : Fin k) → Fin.elim P fz fs (fsuc fk) ≡ fs (Fin.elim P fz fs fk) elim-fsuc fk = subst P (toℕ-injective (λ _ → toℕ (fsuc fk′))) (fs (Fin.elim P fz fs fk′)) ≡⟨ cong (λ p → subst P p (fs (Fin.elim P fz fs fk′)) ) (isSetFin _ _ _ _) ⟩ subst P (cong fsuc fk′≡fk) (fs (Fin.elim P fz fs fk′)) ≡⟨ subst-app _ (λ fj → fs (Fin.elim P fz fs fj)) fk′≡fk ⟩ fs (Fin.elim P fz fs fk) ∎ where fk′ = fst fk , pred-≤-pred (snd (fsuc fk)) fk′≡fk : fk′ ≡ fk fk′≡fk = toℕ-injective refl -- Helper function for the reduction procedure below. -- -- If n = expand o k m, then n is congruent to m modulo k. expand : ℕ → ℕ → ℕ → ℕ expand 0 k m = m expand (suc o) k m = k + expand o k m expand≡ : ∀ k m o → expand o k m ≡ o * k + m expand≡ k m zero = refl expand≡ k m (suc o) = cong (k +_) (expand≡ k m o) ∙ +-assoc k (o * k) m -- Expand a pair. This is useful because the whole function is -- injective. expand× : ∀{k} → (Fin k × ℕ) → ℕ expand× {k} (f , o) = expand o k (toℕ f) private lemma₀ : ∀{k m n r} → r ≡ n → k + m ≡ n → k ≤ r lemma₀ {k = k} {m} p q = m , +-comm m k ∙ q ∙ sym p expand×Inj : ∀ k → {t1 t2 : Fin (suc k) × ℕ} → expand× t1 ≡ expand× t2 → t1 ≡ t2 expand×Inj k {f1 , zero} {f2 , zero} p i = toℕ-injective {fj = f1} {f2} p i , zero expand×Inj k {f1 , suc o1} {(r , r<sk) , zero} p = Empty.rec (<-asym r<sk (lemma₀ refl p)) expand×Inj k {(r , r<sk) , zero} {f2 , suc o2} p = Empty.rec (<-asym r<sk (lemma₀ refl (sym p))) expand×Inj k {f1 , suc o1} {f2 , suc o2} = cong (λ { (f , o) → (f , suc o) }) ∘ expand×Inj k {f1 , o1} {f2 , o2} ∘ inj-m+ {suc k} expand×Emb : ∀ k → isEmbedding (expand× {k}) expand×Emb 0 = Empty.rec ∘ ¬Fin0 ∘ fst expand×Emb (suc k) = injEmbedding (isSetΣ isSetFin (λ _ → isSetℕ)) isSetℕ (expand×Inj k) -- A Residue is a family of types representing evidence that a -- natural is congruent to a value of a finite type. Residue : ℕ → ℕ → Type₀ Residue k n = Σ[ tup ∈ Fin k × ℕ ] expand× tup ≡ n extract : ∀{k n} → Residue k n → Fin k extract = fst ∘ fst -- There is at most one canonical finite value congruent to each -- natural. isPropResidue : ∀ k n → isProp (Residue k n) isPropResidue k = isEmbedding→hasPropFibers (expand×Emb k) -- A value of a finite type is its own residue. Fin→Residue : ∀{k} → (f : Fin k) → Residue k (toℕ f) Fin→Residue f = (f , 0) , refl -- Fibers of numbers that differ by k are equivalent in a more obvious -- way than via the fact that they are propositions. Residue+k : (k n : ℕ) → Residue k n → Residue k (k + n) Residue+k k n ((f , o) , p) = (f , suc o) , cong (k +_) p Residue-k : (k n : ℕ) → Residue k (k + n) → Residue k n Residue-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl)) Residue-k k n ((f , suc o) , p) = ((f , o) , inj-m+ p) Residue+k-k : (k n : ℕ) → (R : Residue k (k + n)) → Residue+k k n (Residue-k k n R) ≡ R Residue+k-k k n (((r , r<k) , zero) , p) = Empty.rec (<-asym r<k (lemma₀ p refl)) Residue+k-k k n ((f , suc o) , p) = ΣProp≡ (λ tup → isSetℕ (expand× tup) (k + n)) refl Residue-k+k : (k n : ℕ) → (R : Residue k n) → Residue-k k n (Residue+k k n R) ≡ R Residue-k+k k n ((f , o) , p) = ΣProp≡ (λ tup → isSetℕ (expand× tup) n) refl private Residue≃ : ∀ k n → Residue k n ≃ Residue k (k + n) Residue≃ k n = Residue+k k n , isoToIsEquiv (iso (Residue+k k n) (Residue-k k n) (Residue+k-k k n) (Residue-k+k k n)) Residue≡ : ∀ k n → Residue k n ≡ Residue k (k + n) Residue≡ k n = ua (Residue≃ k n) -- For positive `k`, all `n` have a canonical residue mod `k`. module Reduce (k₀ : ℕ) where k : ℕ k = suc k₀ base : ∀ n (n<k : n < k) → Residue k n base n n<k = Fin→Residue (n , n<k) step : ∀ n → Residue k n → Residue k (k + n) step n = transport (Residue≡ k n) reduce : ∀ n → Residue k n reduce = +induction k₀ (Residue k) base step reduce≡ : ∀ n → transport (Residue≡ k n) (reduce n) ≡ reduce (k + n) reduce≡ n = sym (+inductionStep k₀ _ base step n) reduceP : ∀ n → PathP (λ i → Residue≡ k n i) (reduce n) (reduce (k + n)) reduceP n = toPathP (reduce≡ n) open Reduce using (reduce; reduce≡) public private lemma₅ : ∀ k n (R : Residue k n) → extract R ≡ extract (transport (Residue≡ k n) R) lemma₅ k n = sym ∘ cong extract ∘ uaβ (Residue≃ k n) -- The residue of n modulo k is the same as the residue of k + n. extract≡ : ∀ k n → extract (reduce k n) ≡ extract (reduce k (suc k + n)) extract≡ k n = lemma₅ (suc k) n (reduce k n) ∙ cong extract (Reduce.reduce≡ k n) isContrResidue : ∀{k n} → isContr (Residue (suc k) n) isContrResidue {k} {n} = inhProp→isContr (reduce k n) (isPropResidue (suc k) n) -- the modulo operator on ℕ _%_ : ℕ → ℕ → ℕ n % zero = n n % (suc k) = toℕ (extract (reduce k n)) n%k≡n[modk] : ∀ n k → Σ[ o ∈ ℕ ] o * k + n % k ≡ n n%k≡n[modk] n zero = zero , refl n%k≡n[modk] n (suc k) = o , sym (expand≡ _ _ o) ∙ reduce k n .snd where o = reduce k n .fst .snd n%sk<sk : (n k : ℕ) → (n % suc k) < suc k n%sk<sk n k = extract (reduce k n) .snd
31.657407
82
0.582042
4399a07c62dc148c5b35f55ae7b216cad2a76576
4,230
agda
Agda
Cubical/Codata/M.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Codata/M.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Codata/M.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe --guardedness #-} module Cubical.Codata.M where open import Cubical.Foundations.Prelude -- TODO move module Helpers where module _ {ℓ ℓ'} {A : Type ℓ} {x : A} (P : ∀ y → x ≡ y → Type ℓ') (d : P x refl) where -- A version with y as an explicit argument can be used to make Agda -- infer the family P. J' : ∀ y (p : x ≡ y) → P y p J' y p = J P d p lem-transp : ∀ {ℓ} {A : Type ℓ} (i : I) → (B : Type ℓ) (P : A ≡ B) → (p : P i) → PathP (\ j → P j) (transp (\ k → P (~ k ∧ i)) (~ i) p) (transp (\ k → P (k ∨ i)) i p) lem-transp {A = A} i = J' _ (\ p j → transp (\ _ → A) ((~ j ∧ ~ i) ∨ (j ∧ i)) p ) transp-over : ∀ {ℓ} (A : I → Type ℓ) (i j : I) → A i → A j transp-over A i k p = transp (\ j → A ((~ j ∧ i) ∨ (j ∧ k))) (~ i ∧ ~ k) p transp-over-1 : ∀ {ℓ} (A : I → Type ℓ) (i j : I) → A i → A j transp-over-1 A i k p = transp (\ j → A ((j ∨ i) ∧ (~ j ∨ k))) (i ∧ k) p compPathD : {ℓ ℓ' : _} {X : Type ℓ} (F : X → Type ℓ') {A B C : X} (P : A ≡ B) (Q : B ≡ C) → ∀ {x y z} → (\ i → F (P i)) [ x ≡ y ] → (\ i → F (Q i)) [ y ≡ z ] → (\ i → F ((P ∙ Q) i)) [ x ≡ z ] compPathD F {A = A} P Q {x} p q i = comp (\ j → F (hfill (λ j → \ { (i = i0) → A ; (i = i1) → Q j }) (inS (P i)) j)) (λ j → \ { (i = i0) → x; (i = i1) → q j }) (p i) open Helpers IxCont : ∀ {ℓ} -> Type ℓ → Type (ℓ-suc ℓ) IxCont {ℓ} X = Σ (X → Type ℓ) λ S → ∀ x → S x → X → Type ℓ ⟦_⟧ : ∀ {ℓ} {X : Type ℓ} → IxCont X → (X → Type ℓ) → (X → Type ℓ) ⟦ (S , P) ⟧ X x = Σ (S x) λ s → ∀ y → P x s y → X y record M {ℓ} {X : Type ℓ} (C : IxCont X) (x : X) : Type ℓ where -- Type₀ coinductive field head : C .fst x tails : ∀ y → C .snd x head y → M C y open M public module _ {ℓ} {X : Type ℓ} {C : IxCont X} where private F = ⟦ C ⟧ inM : ∀ x → F (M C) x → M C x inM x (head , tail) = record { head = head ; tails = tail } out : ∀ x → M C x → F (M C) x out x a = (a .head) , (a .tails) mapF : ∀ {A B} → (∀ x → A x → B x) → ∀ x → F A x → F B x mapF f x (s , t) = s , \ y p → f _ (t y p) unfold : ∀ {A} (α : ∀ x → A x → F A x) → ∀ x → A x → M C x unfold α x a .head = α x a .fst unfold α x a .tails y p = unfold α y (α x a .snd y p) -- We generalize the type to avoid upsetting --guardedness by -- transporting after the corecursive call. -- Recognizing hcomp/transp as guardedness-preserving could be a better solution. unfold-η' : ∀ {A} (α : ∀ x → A x → F A x) → (h : ∀ x → A x → M C x) → (∀ (x : X) (a : A x) → out x (h x a) ≡ mapF h x (α x a)) → ∀ (x : X) (a : A x) m → h x a ≡ m → m ≡ unfold α x a unfold-η' α h eq x a m eq' = let heq = cong head (sym eq') ∙ cong fst (eq x a) in \ where i .head → heq i i .tails y p → let p0 = (transp-over-1 (\ k → C .snd x (heq k) y) i i1 p) p1 = (transp-over (\ k → C .snd x (heq k) y) i i0 p) pe = lem-transp i _ (\ k → C .snd x (heq k) y) p tl = compPathD (λ p → C .snd x p y → M C y) (cong head (sym eq')) (cong fst (eq x a)) (cong (\ f → f .tails y) (sym eq')) (cong (\ f → f .snd y) (eq x a)) in unfold-η' α h eq y (α x a .snd y p0) (m .tails y p1) (sym (\ k → tl k (pe k))) i unfold-η : ∀ {A} (α : ∀ x → A x → F A x) → (h : ∀ x → A x → M C x) → (∀ (x : X) (a : A x) → out x (h x a) ≡ mapF h x (α x a)) → ∀ (x : X) (a : A x) → h x a ≡ unfold α x a unfold-η α h eq x a = unfold-η' α h eq x a _ refl
44.0625
137
0.362175
d0b329fcabecd17bc34ba8716e8d5d687d1c2dbd
961
agda
Agda
src/fot/FOTC/Data/Nat/List/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/Nat/List/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/Nat/List/PropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Properties related with lists of natural numbers ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Nat.List.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Nat.List open import FOTC.Data.List ------------------------------------------------------------------------------ ++-ListN : ∀ {ms ns} → ListN ms → ListN ns → ListN (ms ++ ns) ++-ListN {ns = ns} lnnil nsL = prf where postulate prf : ListN ([] ++ ns) {-# ATP prove prf #-} ++-ListN {ns = ns} (lncons {m} {ms} Nd LNms) LNns = prf (++-ListN LNms LNns) where postulate prf : ListN (ms ++ ns) → ListN ((m ∷ ms) ++ ns) {-# ATP prove prf #-}
35.592593
78
0.443288
0324fea1a84fd48e792a4a07b5f669f7406f138a
202
agda
Agda
examples/AIM5/PolyDep/Main.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM5/PolyDep/Main.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM5/PolyDep/Main.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Main where import PolyDepPrelude import Homogenous.Base import Homogenous.Equality import Homogenous.Reflexivity import Homogenous.Nat import Tools import Reflexivity import EqBase import TYPE
15.538462
29
0.866337
22a2e80c8608329a491c4aa3146cb5202e862d73
1,919
agda
Agda
src/Control/Comonad.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
src/Control/Comonad.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
src/Control/Comonad.agda
andreasabel/cubical
914f655c7c0417754c2ffe494d3f6ea7a357b1c3
[ "MIT" ]
null
null
null
-- Non-indexed (plain) monads in form of Kleisli triple, presented in point-free style. module Control.Comonad where open import Function using (id) renaming (_∘′_ to _∘_) open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Axiom.FunctionExtensionality open import Control.Functor record IsComonad (W : Set → Set) : Set₁ where -- Methods. field extract : ∀ {A } → W A → A extend : ∀ {A B} → (W A → B) → W A → W B -- Laws. field extend-β : ∀ {A B} {k : W A → B} → extract ∘ extend k ≡ k extend-η : ∀ {A} → extend {A = A} extract ≡ id extend-∘ : ∀ {A B C} {k : W A → B} {l : W B → C} → extend (l ∘ extend k) ≡ extend l ∘ extend k -- Comonadic composition. comComp : ∀ {A B C : Set} (l : W B → C) (k : W A → B) → (W A → C) comComp l k = l ∘ extend k -- Functoriality. isFunctor : IsFunctor W isFunctor = record { ops = record { map = map } ; laws = record { map-id = extend-η ; map-∘ = λ {A B C f g} → sym (map-∘-sym f g) } } where map : ∀ {A B} → (A → B) → W A → W B map f = extend (f ∘ extract) map-∘-sym : ∀ {A B C} (f : A → B) (g : B → C) → map g ∘ map f ≡ map (g ∘ f) map-∘-sym f g = begin map g ∘ map f ≡⟨⟩ extend (g ∘ extract) ∘ extend (f ∘ extract) ≡⟨ sym extend-∘ ⟩ extend (g ∘ extract ∘ extend (f ∘ extract)) ≡⟨ cong (λ z → extend (g ∘ z)) extend-β ⟩ extend (g ∘ f ∘ extract) ≡⟨⟩ map (g ∘ f) ∎ open IsFunctor isFunctor public -- Monads in Kleisli Triple presentation. record Comonad : Set₁ where constructor comonad field W : Set → Set W! : IsComonad W open IsComonad W! public -- Casting a Comonad to a Functor FunctorOfComonad : Comonad → Functor FunctorOfComonad WW = functor W isFunctor where open Comonad WW
24.922078
94
0.53778
5ebdb4891aeba5ea2d542daf61544891a560bb7c
1,263
agda
Agda
Examples/Lambda/Lambda.agda
LcicC/inference-systems-agda
b9043f99e4bf7211db4066a7a943401d127f0c8f
[ "MIT" ]
3
2022-03-10T15:53:47.000Z
2022-03-25T15:48:52.000Z
Examples/Lambda/Lambda.agda
LcicC/inference-systems-agda
b9043f99e4bf7211db4066a7a943401d127f0c8f
[ "MIT" ]
null
null
null
Examples/Lambda/Lambda.agda
LcicC/inference-systems-agda
b9043f99e4bf7211db4066a7a943401d127f0c8f
[ "MIT" ]
null
null
null
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems open import Data.Nat open import Data.Fin module Examples.Lambda.Lambda where {- Terms & Values -} data Term (n : ℕ) : Set where var : Fin n → Term n lambda : Term (suc n) → Term n app : Term n → Term n → Term n data Value : Set where lambda : Term 1 → Value term : Value → Term 0 term (lambda x) = lambda x {- Substitution -} ext : ∀{n m} → (Fin n → Fin m) → (Fin (suc n) → Fin (suc m)) ext f zero = zero ext f (suc n) = suc (f n) rename : ∀{n m} → (Fin n → Fin m) → (Term n → Term m) rename f (var x) = var (f x) rename f (lambda t) = lambda (rename (ext f) t) rename f (app t t₁) = app (rename f t) (rename f t₁) exts : ∀{n m} → (Fin n → Term m) → (Fin (suc n) → Term (suc m)) exts _ zero = var zero exts f (suc n) = rename suc (f n) subst : ∀{n m} → (Fin n → Term m) → (Term n → Term m) subst f (var x) = f x subst f (lambda t) = lambda (subst (exts f) t) subst f (app t t₁) = app (subst f t) (subst f t₁) subst-0 : ∀{n} → Term (suc n) → Term n → Term n subst-0 {n} t t₁ = subst {suc n}{n} f t where f : Fin (suc n) → Term n f zero = t₁ f (suc n) = var n
28.704545
80
0.518606
d16d57eea1074f5d7c33e9193a7427a058f5e55c
4,622
agda
Agda
theorems/homotopy/EilenbergMacLane1.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/homotopy/EilenbergMacLane1.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/homotopy/EilenbergMacLane1.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.EilenbergMacLane1 {i} (G : Group i) where private module G = Group G comp-equiv : ∀ g → G.El ≃ G.El comp-equiv g = equiv (λ x → G.comp x g) (λ x → G.comp x (G.inv g)) (λ x → G.assoc x (G.inv g) g ∙ ap (G.comp x) (G.inv-l g) ∙ G.unit-r x) (λ x → G.assoc x g (G.inv g) ∙ ap (G.comp x) (G.inv-r g) ∙ G.unit-r x) comp-equiv-id : comp-equiv G.ident == ide G.El comp-equiv-id = pair= (λ= G.unit-r) (prop-has-all-paths-↓ {B = is-equiv}) comp-equiv-comp : (g₁ g₂ : G.El) → comp-equiv (G.comp g₁ g₂) == (comp-equiv g₂ ∘e comp-equiv g₁) comp-equiv-comp g₁ g₂ = pair= (λ= (λ x → ! (G.assoc x g₁ g₂))) (prop-has-all-paths-↓ {B = is-equiv}) Ω-group : Group (lsucc i) Ω-group = Ω^S-group 0 ⊙[ (0 -Type i) , (G.El , G.El-level) ] Codes-hom : G →ᴳ Ω-group Codes-hom = group-hom (nType=-out ∘ ua ∘ comp-equiv) pres-comp where abstract pres-comp : ∀ g₁ g₂ → nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv (G.comp g₁ g₂))) == nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁)) ∙ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂)) pres-comp g₁ g₂ = nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv (G.comp g₁ g₂))) =⟨ comp-equiv-comp g₁ g₂ |in-ctx nType=-out ∘ ua ⟩ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂ ∘e comp-equiv g₁)) =⟨ ua-∘e (comp-equiv g₁) (comp-equiv g₂) |in-ctx nType=-out ⟩ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁) ∙ ua (comp-equiv g₂)) =⟨ ! $ nType-∙ {A = G.El , G.El-level} {B = G.El , G.El-level} {C = G.El , G.El-level} (ua (comp-equiv g₁)) (ua (comp-equiv g₂)) ⟩ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₁)) ∙ nType=-out {A = G.El , G.El-level} {B = G.El , G.El-level} (ua (comp-equiv g₂)) =∎ Codes : EM₁ G → 0 -Type i Codes = EM₁-rec {G = G} {C = 0 -Type i} (G.El , G.El-level) Codes-hom abstract ↓-Codes-loop : ∀ g g' → g' == G.comp g' g [ fst ∘ Codes ↓ emloop g ] ↓-Codes-loop g g' = ↓-ap-out fst Codes (emloop g) $ ↓-ap-out (idf _) fst (ap Codes (emloop g)) $ transport (λ w → g' == G.comp g' g [ idf _ ↓ ap fst w ]) (! (EM₁Rec.emloop-β (G.El , G.El-level) Codes-hom g)) $ transport (λ w → g' == G.comp g' g [ idf _ ↓ w ]) (! (fst=-β (ua $ comp-equiv g) _)) $ ↓-idf-ua-in (comp-equiv g) idp encode : {x : EM₁ G} → embase == x → fst (Codes x) encode α = transport (fst ∘ Codes) α G.ident encode-emloop : ∀ g → encode (emloop g) == g encode-emloop g = to-transp $ transport (λ x → G.ident == x [ fst ∘ Codes ↓ emloop g ]) (G.unit-l g) (↓-Codes-loop g G.ident) decode : {x : EM₁ G} → fst (Codes x) → embase == x decode {x} = EM₁-elim {P = λ x' → fst (Codes x') → embase == x'} emloop loop' (λ _ _ → prop-has-all-paths-↓ {{↓-level ⟨⟩}}) x where loop' : (g : G.El) → emloop == emloop [ (λ x' → fst (Codes x') → embase == x') ↓ emloop g ] loop' g = ↓-→-from-transp $ λ= $ λ y → transport (λ z → embase == z) (emloop g) (emloop y) =⟨ transp-cst=idf (emloop g) (emloop y) ⟩ emloop y ∙ emloop g =⟨ ! (emloop-comp y g) ⟩ emloop (G.comp y g) =⟨ ap emloop (! (to-transp (↓-Codes-loop g y))) ⟩ emloop (transport (λ z → fst (Codes z)) (emloop g) y) =∎ decode-encode : ∀ {x} (α : embase' G == x) → decode (encode α) == α decode-encode idp = emloop-ident {G = G} emloop-equiv : G.El ≃ (embase' G == embase) emloop-equiv = equiv emloop encode decode-encode encode-emloop Ω¹-EM₁ : Ω^S-group 0 (⊙EM₁ G) ≃ᴳ G Ω¹-EM₁ = ≃-to-≃ᴳ (emloop-equiv ⁻¹) (λ l₁ l₂ → <– (ap-equiv emloop-equiv _ _) $ emloop (encode (l₁ ∙ l₂)) =⟨ decode-encode (l₁ ∙ l₂) ⟩ l₁ ∙ l₂ =⟨ ! $ ap2 _∙_ (decode-encode l₁) (decode-encode l₂) ⟩ emloop (encode l₁) ∙ emloop (encode l₂) =⟨ ! $ emloop-comp (encode l₁) (encode l₂) ⟩ emloop (G.comp (encode l₁) (encode l₂)) =∎) π₁-EM₁ : πS 0 (⊙EM₁ G) ≃ᴳ G π₁-EM₁ = Ω¹-EM₁ ∘eᴳ unTrunc-iso (Ω^S-group-structure 0 (⊙EM₁ G))
40.54386
110
0.492211
43e3a3f804fe974134432a12706f9df093294e92
28,686
agda
Agda
FOLdisplay.agda
goodlyrottenapple/FOLdisplay
b4f3ce288633417ce309a0a1371ad0907a007b30
[ "MIT" ]
null
null
null
FOLdisplay.agda
goodlyrottenapple/FOLdisplay
b4f3ce288633417ce309a0a1371ad0907a007b30
[ "MIT" ]
null
null
null
FOLdisplay.agda
goodlyrottenapple/FOLdisplay
b4f3ce288633417ce309a0a1371ad0907a007b30
[ "MIT" ]
null
null
null
module FOLdisplay where open import Data.String using (String) open import Data.Empty open import Data.Nat open import Data.Product open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; cong; subst) open import Relation.Nullary open import Data.String using (String; _++_) -- open import Data.Fin -- open import Data.Fin.Subset open import Data.List.Base as List using (List; []; _∷_; [_]) -- open import Data.Bool using () renaming (_∨_ to _∨B_) Name : Set Name = String insert : ℕ → List ℕ → List ℕ insert n List.[] = n ∷ [] insert n (x ∷ l) with n ≟ x insert n (.n ∷ l) | yes refl = n ∷ l insert n (x ∷ l) | no n≠x with n ≤? x insert n (x ∷ l) | no n≠x | yes n<x = n ∷ x ∷ l insert n (x ∷ l) | no n≠x | no n>x = x ∷ insert n l sortRemDups : List ℕ → List ℕ sortRemDups [] = [] sortRemDups (x ∷ xs) = insert x (sortRemDups xs) union : List ℕ → List ℕ → List ℕ union [] ys = ys union (x ∷ xs) ys = insert x (union xs ys) remove : ℕ → List ℕ → List ℕ remove n [] = [] remove n (x ∷ xs) with n Data.Nat.≟ x remove n (.n ∷ xs) | yes refl = xs remove n (x ∷ xs) | no _ = x ∷ remove n xs remove-rewrite : ∀ x {xs} -> remove x (x ∷ xs) ≡ xs remove-rewrite x with x ≟ x remove-rewrite x | yes refl = refl remove-rewrite x | no x≠x = ⊥-elim (x≠x refl) -- xs \\ ys diff : List ℕ → List ℕ → List ℕ diff xs [] = xs diff xs (x ∷ ys) = diff (remove x xs) ys -- -- mutual -- data TermT : List ℕ -> Set where -- VarT : (n : ℕ) → TermT [ n ] -- ConstT : Name → TermT [] -- FunT : ∀ {xs} -> Name → (TermList xs) → TermT xs -- -- [[[_]]]T_ : List (Term × ℕ) → Term → Term -- data TermList : List ℕ -> Set where -- []T : TermList [] -- _∷T_ : ∀ {xs ys} (t : TermT xs) (ts : TermT ys) -> TermList (union xs ys) -- -- data SubstList : List ℕ -> Set where -- []S : SubstList [] -- _/_∷S_ : ∀ {xs ys} (t : TermT xs) (x : ℕ) (ts : TermT ys) -> SubstList (union xs (remove x ys)) data Term : Set where Var : ℕ → Term Const : Name → Term Fun : Name → List Term → Term -- [[_/_]]_ : Term → ℕ → Term → Term [[[_]]]_ : List (Term × ℕ) → Term → Term mutual data _⊢≡_ : Term → Term → Set where atom : ∀ {n} → Var n ⊢≡ Var n atomC : ∀ {n} → Const n ⊢≡ Const n funEq : ∀ {n arg1 arg2} → arg1 ≡ₗ arg2 → Fun n arg1 ⊢≡ Fun n arg2 -- subMon : ∀ {substs X Y} → X ⊢≡ Y → ([[[ substs ]]] X) ⊢≡ ([[[ substs ]]] Y) -- this rule is derivable sub[]R : ∀ {X Y} → X ⊢≡ Y → X ⊢≡ ([[[ [] ]]] Y) sub[]L : ∀ {X Y} → X ⊢≡ Y → ([[[ [] ]]] X) ⊢≡ Y subAtomEqR : ∀ {x t lst X} → X ⊢≡ ([[[ lst ]]] t) → X ⊢≡ ([[[ (t , x) ∷ lst ]]] (Var x)) subAtomEqL : ∀ {x t lst Y} → ([[[ lst ]]] t) ⊢≡ Y → ([[[ (t , x) ∷ lst ]]] (Var x)) ⊢≡ Y subAtomNeqR : ∀ {x y t lst X} → X ⊢≡ ([[[ lst ]]] (Var x)) → x ≢ y → X ⊢≡ ([[[ (t , y) ∷ lst ]]] (Var x)) subAtomNeqL : ∀ {x y t lst Y} → ([[[ lst ]]] (Var x)) ⊢≡ Y → x ≢ y → ([[[ (t , y) ∷ lst ]]] (Var x)) ⊢≡ Y subAtomCR : ∀ {n lst X} → X ⊢≡ (Const n) → X ⊢≡ ([[[ lst ]]] (Const n)) subAtomCL : ∀ {n lst Y} → (Const n) ⊢≡ Y → ([[[ lst ]]] (Const n)) ⊢≡ Y subFunR : ∀ {n arg lst X} → X ⊢≡ (Fun n (List.map ([[[_]]]_ lst) arg)) → X ⊢≡ ([[[ lst ]]] (Fun n arg)) subFunL : ∀ {n arg lst Y} → (Fun n (List.map ([[[_]]]_ lst) arg)) ⊢≡ Y → ([[[ lst ]]] (Fun n arg)) ⊢≡ Y subConsR : ∀ {lst lst' X Y} → X ⊢≡ ([[[ lst List.++ lst' ]]] Y) → X ⊢≡ ([[[ lst' ]]] ([[[ lst ]]] Y)) subConsL : ∀ {lst lst' X Y} → ([[[ lst List.++ lst' ]]] X) ⊢≡ Y → ([[[ lst' ]]] ([[[ lst ]]] X)) ⊢≡ Y data _≡ₗ_ : List Term → List Term → Set where []≡ : [] ≡ₗ [] _∷≡_ : {xs : List Term} {ys : List Term} {t1 t2 : Term} → t1 ⊢≡ t2 → xs ≡ₗ ys → (t1 ∷ xs) ≡ₗ (t2 ∷ ys) -- open import Data.Maybe using (Maybe; just; nothing; monad) -- -- open import Category.Monad using (RawMonad) -- open import Agda.Primitive as P -- -- open RawMonad (monad {P.lzero}) using (_>>=_;return) -- open Category.Monad.rawMonad open import Data.String using () renaming (_≟_ to _≟S_) data Term' : Set where Var' : ℕ → Term' Const' : Name → Term' Fun' : Name → List Term' → Term' mutual data TTerm : List ℕ -> Set where TVar : (n : ℕ) → TTerm [ n ] TConst : Name → TTerm [] TFun : ∀ {xs} -> Name → TTermList xs → TTerm xs data TTermList : List ℕ -> Set where []T : TTermList [] _∷T_ : ∀ {xs ys} (t : TTerm xs) (ts : TTermList ys) -> TTermList (union xs ys) open import Relation.Nullary.Decidable open import Relation.Binary.Core open import Data.List.Any as LAny open LAny.Membership-≡ ∈-∷-elim : ∀ {A : Set} {x : A} (y : A) xs -> ¬(x ≡ y) -> y ∈ x ∷ xs -> y ∈ xs ∈-∷-elim x [] x≠y (here refl) = ⊥-elim (x≠y refl) ∈-∷-elim y [] _ (there ()) ∈-∷-elim x (x₁ ∷ xs) x≠y (here refl) = ⊥-elim (x≠y refl) ∈-∷-elim y (x₁ ∷ xs) _ (there y∈x∷xs) = y∈x∷xs _∈ℕ?_ : Decidable {A = ℕ} (_∈_) x ∈ℕ? [] = no (λ ()) x ∈ℕ? (x' ∷ xs) with x ≟ x' x ∈ℕ? (.x ∷ xs) | yes refl = yes (here refl) x ∈ℕ? (x' ∷ xs) | no x≠x' with x ∈ℕ? xs x ∈ℕ? (x' ∷ xs) | no x≠x' | yes x∈xs = yes (there x∈xs) x ∈ℕ? (x' ∷ xs) | no x≠x' | no x∉xs = no (λ x∈x'∷xs → x∉xs (∈-∷-elim x xs (λ x'≡x → x≠x' (sym x'≡x)) x∈x'∷xs)) -- subTaux : List ℕ -> ℕ -> List ℕ -> List ℕ -- subTaux xs x ys with x ∈ℕ? ys -- subTaux xs x ys | yes _ = union xs (remove x ys) -- subTaux xs x ys | no _ = ys -- mutual -- subT : ∀ {ts ys} → TTerm ts → (x : ℕ) -> TTerm ys → TTerm (subTaux ts x ys) -- subT t x (TVar x') with x ≟ x' -- subT t .x' (TVar x') | yes refl rewrite remove-rewrite x' {[]} = {! t' !} -- ... | no _ = (TVar x') -- subT _ _ (TConst n) = TConst n -- subT t x (TFun n args) = TFun n (subTList t x args) -- -- subTList : ∀ {ts ys} → TTerm ts → (x : ℕ) -> TTermList ys → TTermList (subTaux ts x ys) -- subTList _ _ []T = []T -- subTList {ts} t x (_∷T_ {xs} {ys} a args) = rec -- where -- a' : TTerm (subTaux ts x xs) -- a' = subT t x a -- -- args' : TTermList (subTaux ts x ys) -- args' = subTList t x args -- -- ≡-subTaux : ∀ x xs ys -> subTaux ts x (union xs ys) ≡ union (subTaux ts x xs) (subTaux ts x ys) -- ≡-subTaux _ [] _ = refl -- ≡-subTaux x (x' ∷ xs) ys = {! !} -- -- rec : TTermList (subTaux ts x (union xs ys)) -- rec rewrite ≡-subTaux x xs ys = a' ∷T args' -- -- --subT x t' t ∷T subTList x t' l -- TTerm→Term : ∀ {xs} -> TTerm xs -> Term TTerm→Term (TVar n) = Var n TTerm→Term (TConst c) = Const c TTerm→Term (TFun n args) = Fun n (TTermList→ListTerm args) where TTermList→ListTerm : ∀ {xs} -> TTermList xs -> List Term TTermList→ListTerm []T = [] TTermList→ListTerm (_∷T_ {_} {ys} t ts) = (TTerm→Term t) ∷ (TTermList→ListTerm {ys} ts) mutual sub : ℕ → Term' → Term' → Term' sub x t' (Var' x') with x ≟ x' ... | yes _ = t' ... | no _ = (Var' x') sub x t' (Const' n) = Const' n sub x t' (Fun' n args) = Fun' n (subList x t' args) subList : ℕ → Term' → List Term' → List Term' subList x t' [] = [] subList x t' (t ∷ l) = sub x t' t ∷ subList x t' l mutual Term→Term' : Term → Term' Term→Term' (Var x) = Var' x Term→Term' (Const c) = Const' c Term→Term' (Fun n args) = Fun' n (LTerm→LTerm' args) Term→Term' ([[[ lst ]]] t) = STerm lst (Term→Term' t) LTerm→LTerm' : List Term → List Term' LTerm→LTerm' [] = [] LTerm→LTerm' (x ∷ l) = Term→Term' x ∷ LTerm→LTerm' l STerm : List (Term × ℕ) → Term' → Term' STerm [] t = t STerm ((t' , x) ∷ lst) t = STerm lst (sub x (Term→Term' t') t) mutual ⊢≡symm : ∀ {t1 t2 : Term} → t1 ⊢≡ t2 → t2 ⊢≡ t1 ⊢≡symm atom = atom ⊢≡symm atomC = atomC ⊢≡symm (funEq x) = funEq (≡ₗsymm x) ⊢≡symm (sub[]R {Y = Y} t1⊢≡t2) = sub[]L (⊢≡symm t1⊢≡t2) ⊢≡symm (sub[]L {X = X} t1⊢≡t2) = sub[]R (⊢≡symm t1⊢≡t2) ⊢≡symm (subAtomEqR {t = t} {lst} t1⊢≡t2) = subAtomEqL (⊢≡symm t1⊢≡t2) ⊢≡symm (subAtomEqL {t = t} {lst} t1⊢≡t2) = subAtomEqR (⊢≡symm t1⊢≡t2) ⊢≡symm (subAtomNeqR {x = x} t1⊢≡t2 x₁) = subAtomNeqL (⊢≡symm t1⊢≡t2) x₁ ⊢≡symm (subAtomNeqL {x = x} t1⊢≡t2 x₁) = subAtomNeqR (⊢≡symm t1⊢≡t2) x₁ ⊢≡symm (subAtomCR {n = n} t1⊢≡t2) = subAtomCL (⊢≡symm t1⊢≡t2) ⊢≡symm (subAtomCL t1⊢≡t2) = subAtomCR (⊢≡symm t1⊢≡t2) ⊢≡symm (subFunR t1⊢≡t2) = subFunL (⊢≡symm t1⊢≡t2) ⊢≡symm (subFunL t1⊢≡t2) = subFunR (⊢≡symm t1⊢≡t2) ⊢≡symm (subConsR t1⊢≡t2) = subConsL (⊢≡symm t1⊢≡t2) ⊢≡symm (subConsL t1⊢≡t2) = subConsR (⊢≡symm t1⊢≡t2) ≡ₗsymm : ∀ {arg1 arg2} → arg1 ≡ₗ arg2 → arg2 ≡ₗ arg1 ≡ₗsymm []≡ = []≡ ≡ₗsymm (x ∷≡ arg1≡ₗarg2) = (⊢≡symm x) ∷≡ (≡ₗsymm arg1≡ₗarg2) ≡-Fun-nm : ∀ {n n' args args'} → Fun' n args ≡ Fun' n' args' → n ≡ n' ≡-Fun-nm refl = refl ≡-Fun-args : ∀ {n args args'} → Fun' n args ≡ Fun' n args' → args ≡ args' ≡-Fun-args refl = refl Fun-args-≡ : ∀ {n args args'} → args ≡ args' → Fun' n args ≡ Fun' n args' Fun-args-≡ refl = refl substFun≡aux : ∀ {n} lst args → STerm lst (Fun' n args) ≡ Fun' n (List.map (STerm lst) args) substFun≡aux [] args = Fun-args-≡ (aux args) where aux : ∀ args → args ≡ List.map (STerm []) args aux [] = refl aux (a ∷ args) = cong (_∷_ a) (aux args) substFun≡aux {n} ((t , x) ∷ lst) args = PropEq.trans (substFun≡aux {n} lst (subList x (Term→Term' t) args)) (Fun-args-≡ (aux lst x t args)) where aux : ∀ lst x t args → List.map (STerm lst) (subList x (Term→Term' t) args) ≡ List.map (STerm ((t , x) ∷ lst)) args aux lst x t [] = refl aux lst x t (x' ∷ args) = cong (_∷_ (STerm lst (sub x (Term→Term' t) x'))) (aux lst x t args) substFun≡ : ∀ {n} args lst → Term→Term' ([[[ lst ]]] Fun n args) ≡ Fun' n (LTerm→LTerm' (List.map ([[[_]]]_ lst) args)) substFun≡ [] [] = refl substFun≡ [] (s ∷ lst) = substFun≡ [] lst substFun≡ (a ∷ args) [] = Fun-args-≡ (cong (_∷_ (Term→Term' a)) (LTerm[]Subst args)) where LTerm[]Subst : ∀ args → LTerm→LTerm' args ≡ LTerm→LTerm' (List.map ([[[_]]]_ []) args) LTerm[]Subst [] = refl LTerm[]Subst (a ∷ args) = cong (_∷_ (Term→Term' a)) (LTerm[]Subst args) substFun≡ (a ∷ args) ((t , x) ∷ lst) = PropEq.trans (substFun≡aux lst (subList x (Term→Term' t) (LTerm→LTerm' (a ∷ args)))) (Fun-args-≡ (aux (a ∷ args))) where aux : ∀ args {lst x t} → List.map (STerm lst) (subList x (Term→Term' t) (LTerm→LTerm' args)) ≡ LTerm→LTerm' (List.map ([[[_]]]_ ((t , x) ∷ lst)) args) aux [] = refl aux (a ∷ args) {lst} {x} {t} = cong (_∷_ (STerm lst (sub x (Term→Term' t) (Term→Term' a)))) (aux args) ++[]-id : ∀ {a} {A : Set a} (lst : List A) → lst List.++ [] ≡ lst ++[]-id [] = refl ++[]-id (x ∷ xs) = cong (_∷_ x) (++[]-id xs) substSubst≡ : ∀ {lst lst' t} → Term→Term' ([[[ lst ]]] ([[[ lst' ]]] t)) ≡ Term→Term' ([[[ lst' List.++ lst ]]] t) substSubst≡ {[]} {lst'} rewrite ++[]-id lst' = refl substSubst≡ {(t , x₂) ∷ lst} {[]} = refl substSubst≡ {(t , x) ∷ lst} {(t' , x') ∷ lst'} {t''} = substSubst≡ {(t , x) ∷ lst} {lst'} {[[[ [ (t' , x') ] ]]] t''} subsConst≡ : ∀ {lst c} → Term→Term' ([[[ lst ]]] (Const c)) ≡ Const' c subsConst≡ {[]} = refl subsConst≡ {_ ∷ lst} {c} = subsConst≡ {lst} {c} open import Data.List.Properties substTac : (t1 : Term) → (t2 : Term) → {_ : Term→Term' t1 ≡ Term→Term' t2} → t1 ⊢≡ t2 {-# TERMINATING #-} substTac (Var x) (Var .x) {refl} = atom substTac (Var _) (Const _) {()} substTac (Var _) (Fun _ _) {()} substTac (Const _) (Var _) {()} substTac (Const c) (Const .c) {refl} = atomC substTac (Const _) (Fun _ _) {()} substTac (Fun _ _) (Var _) {()} substTac (Fun _ _) (Const _) {()} substTac (Fun n args) (Fun n' args') with n ≟S n' substTac (Fun n []) (Fun .n []) | yes refl = funEq []≡ substTac (Fun n []) (Fun .n (_ ∷ _)) {()} | yes refl substTac (Fun n (x ∷ args)) (Fun .n []) {()} | yes refl substTac (Fun n (t ∷ args)) (Fun .n (t' ∷ args')) {eq} | yes refl with substTac t t' {proj₁ (∷-injective (≡-Fun-args eq))} | substTac (Fun n args) (Fun n args') {Fun-args-≡ (proj₂ (∷-injective (≡-Fun-args eq)))} substTac (Fun n (t ∷ args)) (Fun .n (t' ∷ args')) | yes refl | t⊢≡t' | funEq args≡ₗargs' = funEq (t⊢≡t' ∷≡ args≡ₗargs') substTac (Fun n args) (Fun n' args') {eq} | no ¬p = ⊥-elim (¬p (≡-Fun-nm eq)) substTac t1 ([[[ [] ]]] t2) {eq} = sub[]R (substTac t1 t2 {eq}) substTac t1 ([[[ (t , x') ∷ lst ]]] Var x) with x ≟ x' substTac t1 ([[[ (t , x') ∷ lst ]]] Var .x') {eq} | yes refl = subAtomEqR (substTac t1 ([[[ lst ]]] t) {eq' {x'} {Term→Term' t1} {t} {lst} eq}) -- agda doesnt like this call because it doesnt get structurally smaller, but its fine... where eq' : ∀ {x t t' lst} → t ≡ Term→Term' (([[[ (t' , x) ∷ lst ]]] Var x)) → t ≡ Term→Term' ([[[ lst ]]] t') eq' {x} refl with x ≟ x eq' {x} refl | yes _ = refl eq' {x} refl | no ¬p = ⊥-elim (¬p refl) substTac t1 ([[[ (t , x') ∷ lst ]]] Var x) {eq} | no ¬p = subAtomNeqR (substTac t1 ([[[ lst ]]] (Var x)) {eq' {x} {x'} {Term→Term' t1} {t} {lst} eq ¬p}) ¬p where eq' : ∀ {x x' t t' lst} → t ≡ Term→Term' (([[[ (t' , x') ∷ lst ]]] Var x)) → x ≢ x' → t ≡ Term→Term' ([[[ lst ]]] Var x) eq' {x} {x'} refl x≠x' with x' ≟ x eq' {x} {.x} refl x≠x' | yes refl = ⊥-elim (x≠x' refl) eq' {x} {x'} refl x≠x' | no ¬p = refl substTac t1 ([[[ x ∷ lst ]]] Const c) {eq} = subAtomCR (substTac t1 (Const c) {PropEq.trans eq (subsConst≡ {x ∷ lst} {c})}) substTac t1 ([[[ x ∷ lst ]]] Fun n args) {eq} = subFunR (substTac t1 (Fun n (List.map ([[[_]]]_ (x ∷ lst)) args)) {PropEq.trans eq (substFun≡ args (x ∷ lst))}) substTac t1 ([[[ x ∷ lst ]]] ([[[ lst' ]]] t2)) {eq} = subConsR (substTac t1 ([[[ lst' List.++ x ∷ lst ]]] t2) {PropEq.trans eq (substSubst≡ {x ∷ lst} {lst'} {t2})}) substTac ([[[ lst ]]] t1) t2 {eq} = ⊢≡symm (substTac t2 ([[[ lst ]]] t1) {sym eq}) -- adga doesn't like this, but it should be fine... ⊢≡-≡ : ∀ {X Y} → X ⊢≡ Y → Term→Term' X ≡ Term→Term' Y ⊢≡-≡ atom = refl ⊢≡-≡ atomC = refl ⊢≡-≡ (funEq x) = Fun-args-≡ (≡ₗ→≡ x) where ∷-≡ : ∀ {a} {A : Set a} {x y : A} {xs ys} → x ≡ y → xs ≡ ys → x ∷ xs ≡ y ∷ ys ∷-≡ refl refl = refl ≡ₗ→≡ : ∀ {arg1 arg2} → arg1 ≡ₗ arg2 → (LTerm→LTerm' arg1) ≡ (LTerm→LTerm' arg2) ≡ₗ→≡ []≡ = refl ≡ₗ→≡ (t1⊢≡t2 ∷≡ ≡ₗ) = ∷-≡ (⊢≡-≡ t1⊢≡t2) (≡ₗ→≡ ≡ₗ) ⊢≡-≡ (sub[]R X⊢≡Y) = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (sub[]L X⊢≡Y) = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomEqR {x} X⊢≡Y) with x ≟ x ⊢≡-≡ (subAtomEqR {x} X⊢≡Y) | yes p = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomEqR {x} X⊢≡Y) | no ¬p = ⊥-elim (¬p refl) ⊢≡-≡ (subAtomEqL {x} X⊢≡Y) with x ≟ x ⊢≡-≡ (subAtomEqL {x} X⊢≡Y) | yes p = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomEqL {x} X⊢≡Y) | no ¬p = ⊥-elim (¬p refl) ⊢≡-≡ (subAtomNeqR {x} {y} X⊢≡Y x₁) with y ≟ x ⊢≡-≡ (subAtomNeqR {x} {.x} X⊢≡Y x₁) | yes refl = ⊥-elim (x₁ refl) ⊢≡-≡ (subAtomNeqR {x} {y} X⊢≡Y x₁) | no ¬p = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomNeqL {x} {y} X⊢≡Y x₁) with y ≟ x ⊢≡-≡ (subAtomNeqL {x} {.x} X⊢≡Y x₁) | yes refl = ⊥-elim (x₁ refl) ⊢≡-≡ (subAtomNeqL {x} {y} X⊢≡Y x₁) | no ¬p = ⊢≡-≡ X⊢≡Y ⊢≡-≡ (subAtomCR {c} {lst} X⊢≡Y) = PropEq.trans (⊢≡-≡ X⊢≡Y) (sym (subsConst≡ {lst} {c})) ⊢≡-≡ (subAtomCL {c} {lst} X⊢≡Y) = PropEq.trans (subsConst≡ {lst} {c}) (⊢≡-≡ X⊢≡Y) ⊢≡-≡ (subFunR {n} {args} {lst} X⊢≡Y) = PropEq.trans (⊢≡-≡ X⊢≡Y) (sym (substFun≡ {n} args lst)) ⊢≡-≡ (subFunL {n} {args} {lst} X⊢≡Y) = PropEq.trans (substFun≡ {n} args lst) (⊢≡-≡ X⊢≡Y) ⊢≡-≡ (subConsR {lst} {lst'} {_} {Y} X⊢≡Y) = PropEq.trans (⊢≡-≡ X⊢≡Y) (sym (substSubst≡ {lst'} {lst} {Y})) ⊢≡-≡ (subConsL {lst} {lst'} {X} X⊢≡Y) = PropEq.trans (substSubst≡ {lst'} {lst} {X}) (⊢≡-≡ X⊢≡Y) mutual ⊢≡atom : ∀ {t} → t ⊢≡ t ⊢≡atom {Var x} = atom ⊢≡atom {Const x} = atomC ⊢≡atom {Fun x x₁} = funEq ≡ₗatom where ≡ₗatom : ∀ {xs} → xs ≡ₗ xs ≡ₗatom {[]} = []≡ ≡ₗatom {x ∷ xs} = ⊢≡atom ∷≡ ≡ₗatom ⊢≡atom {[[[ x ]]] t} = ⊢≡subMon ⊢≡atom ⊢≡subMon : ∀ {sub X Y} → X ⊢≡ Y → ([[[ sub ]]] X) ⊢≡ ([[[ sub ]]] Y) ⊢≡subMon {sub} {X} {Y} X⊢≡Y = substTac ([[[ sub ]]] X) ([[[ sub ]]] Y) {mon {sub} {Term→Term' X} {Term→Term' Y} (⊢≡-≡ X⊢≡Y)} where mon : ∀ {sub X Y} → X ≡ Y → STerm sub X ≡ STerm sub Y mon refl = refl -- data _∈_ : ℕ → List ℕ → Set where -- here : ∀ {x xs} → x ∈ (x ∷ xs) -- there : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs) -- -- data _⊆_ : List ℕ → List ℕ → Set where -- nil : ∀ {xs} → [] ⊆ xs -- cons : ∀ {x xs ys} → x ∈ ys → xs ⊆ ys → (x ∷ xs) ⊆ ys -- -- _∉_ : ℕ → List ℕ → Set -- n ∉ ns = ¬ (n ∈ ns) -- -- _⊈_ : List ℕ → List ℕ → Set -- xs ⊈ ys = ¬ (xs ⊆ ys) mutual FV : Term' → List ℕ FV (Var' x) = [ x ] FV (Const' _) = [] FV (Fun' _ args) = FVs args FVs : List Term' → List ℕ FVs [] = [] FVs (t ∷ ts) = union (FV t) (FVs ts) data Formula : List ℕ → Set where _⟨_⟩ : Name → ∀ {xs} (ts : TTermList xs) → Formula xs _∧_ : ∀ {ns} → Formula ns → Formula ns → Formula ns _∨_ : ∀ {ns} → Formula ns → Formula ns → Formula ns _⟶_ : ∀ {ns} → Formula ns → Formula ns → Formula ns ∘ : ∀ {ns} v → Formula ns → {v∉ : v ∉ ns} → Formula (insert v ns) -- [_/_] : ∀ {y ns} → Term → (x : ℕ) → {x∈ : x ∈ ns} → {y⊆ : y ⊆ ns} → {x≠y : [ x ] ≢ y} → Formula ns → Formula (remove x ns) -- [_//_] : ∀ {y ns} → Term y → (x : ℕ) → {x⊆ : x ∈ ns} → {y⊈ : y ⊈ ns} → {x≠y : [ x ] ≢ y} → Formula ns → Formula (union y (remove x ns)) All : ∀ {ns} v → Formula ns → Formula (remove v ns) Ex : ∀ {ns} v → Formula ns → Formula (remove v ns) data Structure : List ℕ → Set where ∣_∣ : ∀ {n} → Formula n → Structure n _,_ : ∀ {n m} → Structure n → Structure m → {n≡m : n ≡ m} -> Structure n _>>_ : ∀ {n m} → Structure n → Structure m → {n≡m : n ≡ m} → Structure n _<<_ : ∀ {n m} → Structure n → Structure m → {n≡m : n ≡ m} → Structure n I : ∀ {n} → Structure n ○ : ∀ {n} v → Structure n → {v∉ : v ∉ n} → Structure (insert v n) Q : ∀ {n} v → Structure n → Structure (remove v n) data _⊢_ : ∀ {n} → Structure n → Structure n → Set where atom : ∀ {n xs} {ts us : TTermList xs} → ∣ n ⟨ ts ⟩ ∣ ⊢ ∣ n ⟨ us ⟩ ∣ allR : ∀ {x n X Y} → Y ⊢ Q {n} x ∣ X ∣ → ------------------- Y ⊢ ∣ All {n} x X ∣ allL : ∀ {x n X Y} → ∣ Y ∣ ⊢ ∣ X ∣ → ------------------------------- ∣ All {n} x Y ∣ ⊢ Q {n} x ∣ X ∣ open import Data.Unit as Unit using (⊤) open import Data.Nat.Properties as Propℕ _≤'?_ : Decidable _≤′_ x ≤'? y with x ≤? y x ≤'? y | yes p = yes (≤⇒≤′ p) x ≤'? y | no ¬p = no (λ x₁ → ¬p (≤′⇒≤ x₁)) -- mutual -- data OList : Set where -- []O : OList -- _∷O_ : (x : ℕ) -> (xs : OList) -> {x< : isLess x xs} -> OList -- -- isLess : ℕ -> OList -> Set -- isLess x []O = ⊤ -- isLess x (y ∷O ol) with x ≤'? y -- isLess x (.x ∷O ol) | yes ≤′-refl = ⊥ -- isLess x (.(suc _) ∷O ol) | yes (≤′-step _) = ⊤ -- isLess x (y ∷O ol) | no _ = ⊥ -- -- -- -- mutual -- data IsLess : ℕ -> OList -> Set where -- nil : ∀ {x} -> IsLess x []O -- cons : ∀ {x x' xs} -> x < x' -> (x'<xs : IsLess x' xs) -> IsLess x ((x' ∷O xs) {IsLess→isLess x'<xs}) -- -- IsLess→isLess : ∀ {x xs} -> IsLess x xs -> isLess x xs -- IsLess→isLess nil = ⊤.tt -- IsLess→isLess {x} (cons {x' = x'} x<x' x<xs) with x ≤'? x' -- IsLess→isLess {x} (cons {_} {.x} x<x' x<xs) | yes ≤′-refl = contr x<x' -- where -- contr : ∀ {x} -> suc x ≤ x -> ⊥ -- contr {zero} () -- contr {suc x} (s≤s sx≤x) = contr sx≤x -- IsLess→isLess {x} (cons {_} {.(suc _)} x<x' x<xs) | yes (≤′-step p) = ⊤.tt -- IsLess→isLess {x} (cons {_} {x'} x<x' x<xs) | no ¬x≤′x' = ¬x≤′x' (≤⇒≤′ (sucx≤y→x≤y x<x')) -- where -- sucx≤y→x≤y : ∀ {x y} -> suc x ≤ y -> x ≤ y -- sucx≤y→x≤y {zero} sx≤y = z≤n -- sucx≤y→x≤y {suc x} (s≤s sx≤y) = s≤s (sucx≤y→x≤y sx≤y) -- -- open import Data.Sum -- -- -- isLess→IsLess : ∀ {x xs} -> isLess x xs -> IsLess x xs -- isLess→IsLess {x} {[]O} ⊤.tt = nil -- isLess→IsLess {x} {x' ∷O xs} x< with x ≤'? x' -- isLess→IsLess {.x'} {x' ∷O xs} () | yes ≤′-refl -- isLess→IsLess {x} {(.(suc _) ∷O xs) {sn<}} ⊤.tt | yes (≤′-step {n = n} x≤′n) = {!sn< !} -- where -- aux : x < suc n -- aux = {! sn< !} -- -- rec : IsLess (suc n) xs -- rec = isLess→IsLess sn< -- -- -- aux₂ : IsLess x ((suc n ∷O xs) {sn<}) -- aux₂ = cons aux rec -- -- isLess→IsLess {x} {x' ∷O xs} x< | no ¬p = {! !} mutual data OList : Set where []O : OList _∷O_ : (x : ℕ) -> (xs : OList) -> {x< : IsLess x xs} -> OList data IsLess : ℕ -> OList -> Set where base : ∀ {x} -> IsLess x []O step : ∀ {x x' xs} -> x < x' -> (x'<xs : IsLess x' xs) -> IsLess x ((x' ∷O xs) {x'<xs}) IsLess→< : ∀ {x x' xs x'<} -> IsLess x ((x' ∷O xs) {x'<}) -> x < x' IsLess→< (step x<x' _) = x<x' mutual insertO : ℕ -> OList -> OList insertO x []O = (x ∷O []O) {base} insertO x (x' ∷O xs) with x ≤'? x' insertO x ((.x ∷O xs) {x<}) | yes ≤′-refl = (x ∷O xs) {x<} insertO x ((.(suc _) ∷O xs) {x<}) | yes (≤′-step {n = x'} p) = (x ∷O (((suc x') ∷O xs) {x<})) {step (s≤s (≤′⇒≤ p)) x<} insertO x ((x' ∷O xs) {x'<}) | no x'<x = (x' ∷O insertO x xs) {insertO-lemma xs x'< x'<x} insertO-lemma : ∀ {x x'} xs -> IsLess x' xs -> ¬ x ≤′ x' -> IsLess x' (insertO x xs) insertO-lemma []O base ¬x≤′x' = step (≰⇒> (λ x≤x' → ¬x≤′x' (≤⇒≤′ x≤x'))) base insertO-lemma {x} {x'} (x'' ∷O xs) x'<xs x'<x with x ≤'? x'' insertO-lemma {.x''} {x'} ((x'' ∷O xs) {x''<}) x'<xs _ | yes ≤′-refl = step (IsLess→< x'<xs) x''< insertO-lemma {x} {x'} ((.(suc _) ∷O xs) {sn<xs}) x'<xs ¬x≤′x' | yes (≤′-step x≤′n) = step (≰⇒> (λ x≤x' → ¬x≤′x' (≤⇒≤′ x≤x'))) (step (s≤s (≤′⇒≤ x≤′n)) sn<xs) insertO-lemma {x} {x'} ((x'' ∷O xs) {x''<xs}) x'<xs _ | no x''<x = step (IsLess→< x'<xs) (insertO-lemma {x} {x''} xs x''<xs x''<x) data _∈O_ : ℕ -> OList -> Set where here : ∀ {x xs x<xs} -> x ∈O ((x ∷O xs) {x<xs}) there : ∀ {x y xs y<xs} -> x ∈O xs -> x ∈O ((y ∷O xs) {y<xs}) _∉O_ : ℕ -> OList -> Set x ∉O xs = ¬ (x ∈O xs) IsLess-remove : ∀ {x x'} xs {x'<xs} -> IsLess x ((x' ∷O xs) {x'<xs}) -> IsLess x xs IsLess-remove []O x<x∷xs = base IsLess-remove ((x'' ∷O xs) {x''<xs}) (step x<x' x'<x''∷xs) = step (<-trans x<x' (IsLess→< x'<x''∷xs)) x''<xs mutual removeO : ℕ -> OList -> OList removeO x []O = []O removeO x (x' ∷O xs) with x ≟ x' removeO x (.x ∷O xs) | yes refl = xs removeO x ((x' ∷O xs) {x'<xs}) | no ¬p = (x' ∷O removeO x xs) {removeO-lemma {x} {x'} xs x'<xs} removeO-lemma : ∀ {x x'} xs -> IsLess x' xs -> IsLess x' (removeO x xs) removeO-lemma []O x'<xs = base removeO-lemma {x} {x'} (x'' ∷O xs) x'<xs with x ≟ x'' removeO-lemma {.x''} {x'} (x'' ∷O xs) x<xs | yes refl = IsLess-remove xs x<xs removeO-lemma {x} {x'} ((x'' ∷O xs) {x''<xs}) x'<xs | no ¬p = step (IsLess→< x'<xs) (removeO-lemma {x} {x''} xs x''<xs) -- isLess : ℕ -> OList -> Set -- isLess x []O = ⊤ -- isLess x (y ∷O ol) with x ≤'? y -- isLess x (.x ∷O ol) | yes ≤′-refl = ⊥ -- isLess x (.(suc _) ∷O ol) | yes (≤′-step _) = ⊤ -- isLess x (y ∷O ol) | no _ = ⊥ -- -- smart constructor for OList _∷O'_ : (x : ℕ) -> (xs : OList) -> OList x ∷O' xs = insertO x xs testOList : OList testOList = 2 ∷O' (1 ∷O' (2 ∷O' []O)) data Formula' : OList → Set where -- _⟨_⟩ : Name → ∀ {xs} (ts : TTermList xs) → Formula xs _∧_ : ∀ {ns} → Formula' ns → Formula' ns → Formula' ns _∨_ : ∀ {ns} → Formula' ns → Formula' ns → Formula' ns _⟶_ : ∀ {ns} → Formula' ns → Formula' ns → Formula' ns ∘ : ∀ {ns} v → Formula' ns → {v∉ : v ∉O ns} → Formula' (insertO v ns) -- [_/_] : ∀ {y ns} → Term → (x : ℕ) → {x∈ : x ∈ ns} → {y⊆ : y ⊆ ns} → {x≠y : [ x ] ≢ y} → Formula ns → Formula (remove x ns) -- [_//_] : ∀ {y ns} → Term y → (x : ℕ) → {x⊆ : x ∈ ns} → {y⊈ : y ⊈ ns} → {x≠y : [ x ] ≢ y} → Formula ns → Formula (union y (remove x ns)) All : ∀ {ns} v → Formula' ns → Formula' (removeO v ns) Ex : ∀ {ns} v → Formula' ns → Formula' (removeO v ns) -- insert-reomve-id : ∀ {x n m} -> n ≡ m -> n ≡ insertO x (removeO x m) -- insert-reomve-id {x} {xs} refl = {! xs !} rem-inj : ∀ {n m} x -> n ≡ m -> remove x n ≡ remove x m rem-inj _ refl = refl data _⊢⟨_⟩_ : ∀ {n m} → Structure n → n ≡ m -> Structure m → Set where atom : ∀ {n xs n≡m} {ts us : TTermList xs} → ∣ n ⟨ ts ⟩ ∣ ⊢⟨ n≡m ⟩ ∣ n ⟨ us ⟩ ∣ allR : ∀ {x n m n≡m X} {Y : Structure m} → Y ⊢⟨ n≡m ⟩ Q {n} x ∣ X ∣ → ------------------- Y ⊢⟨ n≡m ⟩ ∣ All {n} x X ∣ allL : ∀ {x n m n≡m X} {Y : Formula m} → ∣ X ∣ ⊢⟨ n≡m ⟩ ∣ Y ∣ → ------------------------------- ∣ All {n} x X ∣ ⊢⟨ rem-inj x n≡m ⟩ Q {m} x ∣ Y ∣ IL : ∀ {n m n≡m} {X : Structure n} {Y : Structure m} → X ⊢⟨ n≡m ⟩ Y → ------------------- (I , X) {refl} ⊢⟨ n≡m ⟩ Y IL2 : ∀ {n m n≡m} {X : Structure n} {Y : Structure m} → (I , X) {refl} ⊢⟨ n≡m ⟩ Y → ------------------- X ⊢⟨ n≡m ⟩ Y IR : ∀ {n m n≡m} {X : Structure n} {Y : Structure m} → X ⊢⟨ n≡m ⟩ Y → ----------------- X ⊢⟨ n≡m ⟩ (Y , I) {refl} IR2 : ∀ {n m n≡m} {X : Structure n} {Y : Structure m} → X ⊢⟨ n≡m ⟩ (Y , I) {refl} → ----------------- X ⊢⟨ n≡m ⟩ Y ,>>disp : ∀ {n m n≡m} {Z : Structure n} {X Y : Structure m} → Z ⊢⟨ n≡m ⟩ (X , Y) {refl} → ----------------- (X >> Z) {sym n≡m} ⊢⟨ refl ⟩ Y ,>>disp2 : ∀ {n m n≡m} {Z : Structure n} {X Y : Structure m} → (X >> Z) {sym n≡m} ⊢⟨ refl ⟩ Y → ----------------- Z ⊢⟨ n≡m ⟩ (X , Y) {refl} ○IR : ∀ {x n m n≡m x∉m} {X : Structure n} → X ⊢⟨ n≡m ⟩ (I {insert x m}) → ----------------- X ⊢⟨ n≡m ⟩ ○ x (I {m}) {x∉m} ○IR2 : ∀ {x n m n≡m x∉m} {X : Structure n} → X ⊢⟨ n≡m ⟩ ○ x (I {m}) {x∉m} → ----------------- X ⊢⟨ n≡m ⟩ (I {insert x m}) -- ,<<disp : ∀ {n m n≡m} {X : Structure n} {Y Z : Structure m} → -- X ⊢⟨ n≡m ⟩ (Y , Z) {refl} → -- ----------------- -- (X >> Z) {n≡m} ⊢⟨ n≡m ⟩ Y -- ,<<disp2 : ∀ {n m n≡m} {X : Structure n} {Y Z : Structure m} → -- (X >> Z) {n≡m} ⊢⟨ n≡m ⟩ Y → -- ----------------- -- X ⊢⟨ n≡m ⟩ (Y , Z) {refl} rem-union-id : ∀ x -> remove x (union [ x ] []) ≡ [] rem-union-id x rewrite remove-rewrite x {[]} = refl test : ∀ x y {n} -> ∣ All x (n ⟨ (TVar x) ∷T []T ⟩) ∣ ⊢⟨ PropEq.trans (rem-union-id x) (sym (rem-union-id y)) ⟩ ∣ All y (n ⟨ (TVar y) ∷T []T ⟩) ∣ test x y = allR ? data Map : List ℕ → Set where nil : Map [] _/_:::_ : ∀ {xs} (x : ℕ) → String → Map xs → Map (x ∷ xs) _!!_ : List (ℕ × String) → ℕ → String [] !! _ = "not found" ((x , s) ∷ m) !! y with x ≟ y ... | yes _ = s ... | no _ = m !! y Term→Str : List (ℕ × String) → Term → String Term→Str m (Var x) = "\\textit{" ++ (m !! x) ++ "}" Term→Str m (Const s) = "\\textbf{" ++ s ++ "}" Term→Str m (Fun n args) = "" --"\\textbf{" ++ s ++ "}" -- Term→Str m ([[_/_]]_ _ _ _) = "" --"\\textbf{" ++ s ++ "}" Term→Str m ([[[_]]]_ _ _) = "" Formula→Str : ∀ {xs} → List (ℕ × String) → Formula xs → String Formula→Str m (n ⟨ args ⟩) = n ++ "(" ++ ")" --aux args ++ ")" -- where -- aux : List Term → String -- aux [] = "" -- aux (x ∷ []) = Term→Str m x -- aux (x ∷ (y ∷ args)) = Term→Str m x ++ ", " ++ aux (y ∷ args) Formula→Str m (f ∧ f₁) = Formula→Str m f ++ " \\land " ++ Formula→Str m f₁ Formula→Str m (f ∨ f₁) = Formula→Str m f ++ " \\lor " ++ Formula→Str m f₁ Formula→Str m (f ⟶ f₁) = Formula→Str m f ++ " \\leftarrow " ++ Formula→Str m f₁ Formula→Str m (∘ v f) = "\\circ_" ++ (m !! v) ++ Formula→Str m f -- Formula→Str m ([ y / x ] f) = "(" ++ Term→Str m y ++ "/" ++ (m !! x) ++ ") " ++ Formula→Str m f -- Formula→Str m ([ y // x ] f) = "(" ++ Term→Str m y ++ "//" ++ (m !! x) ++ ") " ++ Formula→Str m f Formula→Str m (All v f) = "\\forall " ++ (m !! v) ++ Formula→Str m f Formula→Str m (Ex v f) = "\\exists " ++ (m !! v) ++ Formula→Str m f Structure→Str : ∀ {xs} → List (ℕ × String) → Structure xs → String Structure→Str m ∣ x ∣ = Formula→Str m x Structure→Str m (s , s₁) = Structure→Str m s ++ " , " ++ Structure→Str m s₁ Structure→Str m (s >> s₁) = Structure→Str m s ++ " >> " ++ Structure→Str m s₁ Structure→Str m (s << s₁) = Structure→Str m s ++ " << " ++ Structure→Str m s₁ Structure→Str m I = "I" Structure→Str m (○ v s) = "\\bigcirc_" ++ (m !! v) ++ Structure→Str m s Structure→Str m (Q v s) = "Q " ++ (m !! v) ++ Structure→Str m s ⊢concl : ∀ {n} {xs ys : Structure n} → xs ⊢ ys → (Structure n × Structure n) ⊢concl {_} {xs} {ys} _ = xs , ys data ⊢List : Set where ⊢nil : ⊢List _⊢::_ : ∀ {n} {xs ys : Structure n} → xs ⊢ ys → ⊢List → ⊢List ⊢prems : ∀ {n} {xs ys : Structure n} → xs ⊢ ys → ⊢List ⊢prems atom = ⊢nil ⊢prems (allR xs⊢ys) = xs⊢ys ⊢:: ⊢nil ⊢prems (allL xs⊢ys) = xs⊢ys ⊢:: ⊢nil -- proof1 : ∀ {n} P (args : TList n) → ∣ P ⟨ args ⟩ ∣ ⊢ ∣ P ⟨ args ⟩ ∣ -- proof1 P args = atom -- -- proof : ∣ "P" ⟨ Var 0 ::: nil ⟩ ∣ ⊢ ∣ "P" ⟨ Var 0 ::: nil ⟩ ∣ -- proof = let (x , y) = ⊢concl (proof1 "P" (Var 0 ::: nil)) in {!Structure→Str [ (0 , "x") ] x !} ⊢→Str' : ∀ {n} {xs ys : Structure n} → List (ℕ × String) → xs ⊢ ys → String ⊢→Str' m xs⊢ys with ⊢concl xs⊢ys | ⊢prems xs⊢ys ⊢→Str' m xs⊢ys | xs , ys | prems = Structure→Str m xs ++ " \\vdash " ++ Structure→Str m ys where prems→Str : ⊢List → String prems→Str ⊢nil = "" prems→Str (x ⊢:: lst) = {! !} open import IO main = run (putStrLn "Hello, world!")
36.449809
172
0.482535
5209e0a166b0ed2d50e16b59a00f569cf1b6608b
2,420
agda
Agda
Graph/Walk/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Graph/Walk/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Graph/Walk/Properties.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
open import Type module Graph.Walk.Properties {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where open import Lang.Instance open import Logic import Lvl open import Graph{ℓ₁}{ℓ₂}(V) open import Graph.Walk{ℓ₁}{ℓ₂}{V} open import Relator.Equals.Proofs.Equiv open import Type.Properties.MereProposition module _ (_⟶_ : Graph) where -- `Passes edge walk` states that the walk `walk` contains the edge `edge`. -- In other words, there is a step in the walk which is `edge`. -- Note: Passes is a generalized containment relation for paths instead of lists. data Passes {v₁ v₂ : V} (edge : v₁ ⟶ v₂) : ∀{a b : V} → Walk(_⟶_) a b → Type{ℓ₁ Lvl.⊔ ℓ₂} where current : ∀{c}{rest : Walk(_⟶_) v₂ c} → Passes edge (Walk.prepend edge rest) skip : ∀{b c}{rest : Walk(_⟶_) b c} → Passes edge rest → ∀{a}{e : (a ⟶ b)} → Passes edge (Walk.prepend e rest) -- `Visits v walk` states that the walk `walk` visits the vertex `v`. -- In other words, one of the steps/edges in the walk mention the vertex v. data Visits (v : V) : ∀{a b : V} → Walk(_⟶_) a b → Type{ℓ₁ Lvl.⊔ ℓ₂} where current : ∀{b}{path : Walk(_⟶_) v b} → Visits v path skip : ∀{a b c}{e : (a ⟶ b)}{rest : Walk(_⟶_) b c} → Visits v rest → Visits v (Walk.prepend e rest) module _ {a b : V} (walk₁ : Walk(_⟶_) a b) {c d : V} (walk₂ : Walk(_⟶_) c d) where record Subwalk : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{v₁ v₂ : V}{edge : v₁ ⟶ v₂} → Passes edge walk₁ → Passes edge walk₂ module _ {_⟶_ : Graph} {a b : V} (walk : Walk(_⟶_) a b) where -- A walk that never visits the same edge twice. -- Note: Equality on edges must respect uniqueness. In other words, one edge must not have multiple constructions. record Trail : Type{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{v₁ v₂ : V}{edge : v₁ ⟶ v₂} → MereProposition(Passes(_⟶_) edge walk) -- A walk that never visits the same vertex twice. -- Also called "Simple path". -- Note: Equality on edges must respect uniqueness. In other words, one edge must not have multiple constructions. record Path : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{v : V} → MereProposition(Visits(_⟶_) v walk) path = inst-fn Path.proof -- A walk that visits every vertex in the graph. record Traceable : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{v : V} → Visits(_⟶_) v walk traceable = inst-fn Traceable.proof
46.538462
117
0.652479