hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
fd670c6985f95fedf712bbbc341f0d34610c3cea
2,238
agda
Agda
Fields/FieldOfFractions/Setoid.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Fields/FieldOfFractions/Setoid.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Fields/FieldOfFractions/Setoid.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Rings.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations open import Rings.IntegralDomains.Definition open import Rings.IntegralDomains.Lemmas open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Fields.FieldOfFractions.Setoid {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where record fieldOfFractionsSet : Set (a ⊔ b) where field num : A denom : A .denomNonzero : (Setoid._∼_ S denom (Ring.0R R) → False) fieldOfFractionsSetoid : Setoid fieldOfFractionsSet Setoid._∼_ fieldOfFractionsSetoid (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 }) = Setoid._∼_ S (a * d) (b * c) Equivalence.reflexive (Setoid.eq fieldOfFractionsSetoid) {record { num = a ; denom = b ; denomNonzero = b!=0 }} = Ring.*Commutative R Equivalence.symmetric (Setoid.eq fieldOfFractionsSetoid) {record { num = a ; denom = b ; denomNonzero = b!=0 }} {record { num = c ; denom = d ; denomNonzero = d!=0 }} ad=bc = transitive (Ring.*Commutative R) (transitive (symmetric ad=bc) (Ring.*Commutative R)) where open Equivalence (Setoid.eq S) Equivalence.transitive (Setoid.eq fieldOfFractionsSetoid) {record { num = a ; denom = b ; denomNonzero = b!=0 }} {record { num = c ; denom = d ; denomNonzero = d!=0 }} {record { num = e ; denom = f ; denomNonzero = f!=0 }} ad=bc cf=de = p5 where open Setoid S open Ring R open Equivalence eq p : (a * d) * f ∼ (b * c) * f p = Ring.*WellDefined R ad=bc reflexive p2 : (a * f) * d ∼ b * (d * e) p2 = transitive (transitive (symmetric *Associative) (transitive (*WellDefined reflexive *Commutative) *Associative)) (transitive p (transitive (symmetric *Associative) (*WellDefined reflexive cf=de))) p3 : (a * f) * d ∼ (b * e) * d p3 = transitive p2 (transitive (*WellDefined reflexive *Commutative) *Associative) p4 : ((d ∼ 0R) → False) → ((a * f) ∼ (b * e)) p4 = cancelIntDom I (transitive *Commutative (transitive p3 *Commutative)) p5 : (a * f) ∼ (b * e) p5 = p4 λ t → exFalso (d!=0 t)
54.585366
260
0.652368
8b5769f0a179b60d6da56ce1dae951a5df1622ed
10,692
agda
Agda
Cubical/HITs/SetQuotients/Properties.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/HITs/SetQuotients/Properties.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{- Set quotients: -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.SetQuotients.Properties where open import Cubical.HITs.SetQuotients.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Relation.Binary.Base open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥; ∣_∣; squash) open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂) -- Type quotients private variable ℓ : Level A : Type ℓ R : A → A → Type ℓ B : A / R → Type ℓ C : A / R → A / R → Type ℓ D : A / R → A / R → A / R → Type ℓ elimEq/ : (Bprop : (x : A / R ) → isProp (B x)) {x y : A / R} (eq : x ≡ y) (bx : B x) (by : B y) → PathP (λ i → B (eq i)) bx by elimEq/ {B = B} Bprop {x = x} = J (λ y eq → ∀ bx by → PathP (λ i → B (eq i)) bx by) (λ bx by → Bprop x bx by) elimProp : ((x : A / R ) → isProp (B x)) → ((a : A) → B ( [ a ])) → (x : A / R) → B x elimProp Bprop f [ x ] = f x elimProp Bprop f (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 (λ x → isProp→isSet (Bprop x)) (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elimProp Bprop f elimProp Bprop f (eq/ a b r i) = elimEq/ Bprop (eq/ a b r) (f a) (f b) i elimProp2 : ((x y : A / R ) → isProp (C x y)) → ((a b : A) → C [ a ] [ b ]) → (x y : A / R) → C x y elimProp2 Cprop f = elimProp (λ x → isPropΠ (λ y → Cprop x y)) (λ x → elimProp (λ y → Cprop [ x ] y) (f x)) elimProp3 : ((x y z : A / R ) → isProp (D x y z)) → ((a b c : A) → D [ a ] [ b ] [ c ]) → (x y z : A / R) → D x y z elimProp3 Dprop f = elimProp (λ x → isPropΠ2 (λ y z → Dprop x y z)) (λ x → elimProp2 (λ y z → Dprop [ x ] y z) (f x)) -- lemma 6.10.2 in hott book []surjective : (x : A / R) → ∃[ a ∈ A ] [ a ] ≡ x []surjective = elimProp (λ x → squash) (λ a → ∣ a , refl ∣) elim : {B : A / R → Type ℓ} → ((x : A / R) → isSet (B x)) → (f : (a : A) → (B [ a ])) → ((a b : A) (r : R a b) → PathP (λ i → B (eq/ a b r i)) (f a) (f b)) → (x : A / R) → B x elim Bset f feq [ a ] = f a elim Bset f feq (eq/ a b r i) = feq a b r i elim Bset f feq (squash/ x y p q i j) = isOfHLevel→isOfHLevelDep 2 Bset (g x) (g y) (cong g p) (cong g q) (squash/ x y p q) i j where g = elim Bset f feq rec : {B : Type ℓ} (Bset : isSet B) (f : A → B) (feq : (a b : A) (r : R a b) → f a ≡ f b) → A / R → B rec Bset f feq [ a ] = f a rec Bset f feq (eq/ a b r i) = feq a b r i rec Bset f feq (squash/ x y p q i j) = Bset (g x) (g y) (cong g p) (cong g q) i j where g = rec Bset f feq rec2 : {B : Type ℓ} (Bset : isSet B) (f : A → A → B) (feql : (a b c : A) (r : R a b) → f a c ≡ f b c) (feqr : (a b c : A) (r : R b c) → f a b ≡ f a c) → A / R → A / R → B rec2 Bset f feql feqr = rec (isSetΠ (λ _ → Bset)) (λ a → rec Bset (f a) (feqr a)) (λ a b r → funExt (elimProp (λ _ → Bset _ _) (λ c → feql a b c r))) setQuotUniversalIso : {B : Type ℓ} (Bset : isSet B) → Iso (A / R → B) (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) Iso.fun (setQuotUniversalIso Bset) g = (λ a → g [ a ]) , λ a b r i → g (eq/ a b r i) Iso.inv (setQuotUniversalIso Bset) h = elim (λ x → Bset) (fst h) (snd h) Iso.rightInv (setQuotUniversalIso Bset) h = refl Iso.leftInv (setQuotUniversalIso Bset) g = funExt (λ x → PropTrunc.elim (λ sur → Bset (out (intro g) x) (g x)) (λ sur → cong (out (intro g)) (sym (snd sur)) ∙ (cong g (snd sur))) ([]surjective x)) where intro = Iso.fun (setQuotUniversalIso Bset) out = Iso.inv (setQuotUniversalIso Bset) setQuotUniversal : {B : Type ℓ} (Bset : isSet B) → (A / R → B) ≃ (Σ[ f ∈ (A → B) ] ((a b : A) → R a b → f a ≡ f b)) setQuotUniversal Bset = isoToEquiv (setQuotUniversalIso Bset) -- characterisation of binary functions/operations on set-quotients setQuotUniversal2Iso : {B : Type ℓ} (Bset : isSet B) → isRefl R → Iso (A / R → A / R → B) (Σ[ _∗_ ∈ (A → A → B) ] ((a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b')) Iso.fun (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) _∗/_ = _∗_ , h where _∗_ = λ a b → [ a ] ∗/ [ b ] h : (a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b' h a a' b b' ra rb = cong (_∗/ [ b ]) (eq/ _ _ ra) ∙ cong ([ a' ] ∗/_) (eq/ _ _ rb) Iso.inv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) (_∗_ , h) = rec2 Bset _∗_ hleft hright where hleft : ∀ a b c → R a b → (a ∗ c) ≡ (b ∗ c) hleft _ _ c r = h _ _ _ _ r (isReflR c) hright : ∀ a b c → R b c → (a ∗ b) ≡ (a ∗ c) hright a _ _ r = h _ _ _ _ (isReflR a) r Iso.rightInv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) (_∗_ , h) = Σ≡Prop (λ _ → isPropΠ4 λ _ _ _ _ → isPropΠ2 λ _ _ → Bset _ _) refl Iso.leftInv (setQuotUniversal2Iso {A = A} {R = R} {B = B} Bset isReflR) _∗/_ = funExt₂ (elimProp2 (λ _ _ → Bset _ _) λ _ _ → refl) setQuotUniversal2 : {B : Type ℓ} (Bset : isSet B) → isRefl R → (A / R → A / R → B) ≃ (Σ[ _∗_ ∈ (A → A → B) ] ((a a' b b' : A) → R a a' → R b b' → a ∗ b ≡ a' ∗ b')) setQuotUniversal2 Bset isReflR = isoToEquiv (setQuotUniversal2Iso Bset isReflR) -- corollary for binary operations -- TODO: prove truncated inverse for effective relations setQuotBinOp : isRefl R → (_∗_ : A → A → A) → (∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b')) → (A / R → A / R → A / R) setQuotBinOp isReflR _∗_ h = Iso.inv (setQuotUniversal2Iso squash/ isReflR) ((λ a b → [ a ∗ b ]) , λ _ _ _ _ ra rb → eq/ _ _ (h _ _ _ _ ra rb)) setQuotSymmBinOp : isRefl R → isTrans R → (_∗_ : A → A → A) → (∀ a b → a ∗ b ≡ b ∗ a) → (∀ a a' b → R a a' → R (a ∗ b) (a' ∗ b)) → (A / R → A / R → A / R) setQuotSymmBinOp {A = A} {R = R} isReflR isTransR _∗_ ∗-symm h = setQuotBinOp isReflR _∗_ h' where h' : ∀ a a' b b' → R a a' → R b b' → R (a ∗ b) (a' ∗ b') h' a a' b b' ra rb = isTransR _ _ _ (h a a' b ra) (transport (λ i → R (∗-symm b a' i) (∗-symm b' a' i)) (h b b' a' rb)) effective : (Rprop : isPropValued R) (Requiv : isEquivRel R) (a b : A) → [ a ] ≡ [ b ] → R a b effective {A = A} {R = R} Rprop (equivRel R/refl R/sym R/trans) a b p = transport aa≡ab (R/refl _) where helper : A / R → hProp _ helper = rec isSetHProp (λ c → (R a c , Rprop a c)) (λ c d cd → Σ≡Prop (λ _ → isPropIsProp) (hPropExt (Rprop a c) (Rprop a d) (λ ac → R/trans _ _ _ ac cd) (λ ad → R/trans _ _ _ ad (R/sym _ _ cd)))) aa≡ab : R a a ≡ R a b aa≡ab i = helper (p i) .fst isEquivRel→effectiveIso : isPropValued R → isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) (R a b) Iso.fun (isEquivRel→effectiveIso {R = R} Rprop Req a b) = effective Rprop Req a b Iso.inv (isEquivRel→effectiveIso {R = R} Rprop Req a b) = eq/ a b Iso.rightInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = Rprop a b _ _ Iso.leftInv (isEquivRel→effectiveIso {R = R} Rprop Req a b) _ = squash/ _ _ _ _ isEquivRel→isEffective : isPropValued R → isEquivRel R → isEffective R isEquivRel→isEffective Rprop Req a b = isoToIsEquiv (invIso (isEquivRel→effectiveIso Rprop Req a b)) discreteSetQuotients : Discrete A → isPropValued R → isEquivRel R → (∀ a₀ a₁ → Dec (R a₀ a₁)) → Discrete (A / R) discreteSetQuotients {A = A} {R = R} Adis Rprop Req Rdec = elim (λ a₀ → isSetΠ (λ a₁ → isProp→isSet (isPropDec (squash/ a₀ a₁)))) discreteSetQuotients' discreteSetQuotients'-eq where discreteSetQuotients' : (a : A) (y : A / R) → Dec ([ a ] ≡ y) discreteSetQuotients' a₀ = elim (λ a₁ → isProp→isSet (isPropDec (squash/ [ a₀ ] a₁))) dis dis-eq where dis : (a₁ : A) → Dec ([ a₀ ] ≡ [ a₁ ]) dis a₁ with Rdec a₀ a₁ ... | (yes p) = yes (eq/ a₀ a₁ p) ... | (no ¬p) = no λ eq → ¬p (effective Rprop Req a₀ a₁ eq ) dis-eq : (a b : A) (r : R a b) → PathP (λ i → Dec ([ a₀ ] ≡ eq/ a b r i)) (dis a) (dis b) dis-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → Dec ([ a₀ ] ≡ ab i)) (dis a) k) (λ k → isPropDec (squash/ _ _) _ _) (eq/ a b ab) (dis b) discreteSetQuotients'-eq : (a b : A) (r : R a b) → PathP (λ i → (y : A / R) → Dec (eq/ a b r i ≡ y)) (discreteSetQuotients' a) (discreteSetQuotients' b) discreteSetQuotients'-eq a b ab = J (λ b ab → ∀ k → PathP (λ i → (y : A / R) → Dec (ab i ≡ y)) (discreteSetQuotients' a) k) (λ k → funExt (λ x → isPropDec (squash/ _ _) _ _)) (eq/ a b ab) (discreteSetQuotients' b) -- Quotienting by the truncated relation is equivalent to quotienting by untruncated relation truncRelIso : Iso (A / R) (A / (λ a b → ∥ R a b ∥)) Iso.fun truncRelIso = rec squash/ [_] λ _ _ r → eq/ _ _ ∣ r ∣ Iso.inv truncRelIso = rec squash/ [_] λ _ _ → PropTrunc.rec (squash/ _ _) λ r → eq/ _ _ r Iso.rightInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl Iso.leftInv truncRelIso = elimProp (λ _ → squash/ _ _) λ _ → refl truncRelEquiv : A / R ≃ A / (λ a b → ∥ R a b ∥) truncRelEquiv = isoToEquiv truncRelIso -- Using this we can obtain a useful characterization of -- path-types for equivalence relations (not prop-valued) -- and their quotients isEquivRel→TruncIso : isEquivRel R → (a b : A) → Iso ([ a ] ≡ [ b ]) ∥ R a b ∥ isEquivRel→TruncIso {A = A} {R = R} Req a b = compIso (isProp→Iso (squash/ _ _) (squash/ _ _) (cong (Iso.fun truncRelIso)) (cong (Iso.inv truncRelIso))) (isEquivRel→effectiveIso (λ _ _ → PropTrunc.propTruncIsProp) ∥R∥eq a b) where open isEquivRel ∥R∥eq : isEquivRel λ a b → ∥ R a b ∥ reflexive ∥R∥eq a = ∣ reflexive Req a ∣ symmetric ∥R∥eq a b = PropTrunc.map (symmetric Req a b) transitive ∥R∥eq a b c = PropTrunc.map2 (transitive Req a b c)
42.094488
121
0.519641
7ca926cf57e7a8e6e5a59d173037e42277bf417c
2,639
agda
Agda
Constructive/Axiom/Properties/Transport.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Constructive/Axiom/Properties/Transport.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Constructive/Axiom/Properties/Transport.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
-- Transport properties {-# OPTIONS --without-K --safe --exact-split #-} module Constructive.Axiom.Properties.Transport where -- agda-stdlib open import Level renaming (suc to lsuc; zero to lzero) open import Data.Sum as Sum open import Data.Product as Prod open import Relation.Binary.PropositionalEquality open import Function.Base import Function.LeftInverse as LInv -- TODO use new packages import Function.Equality as Eq -- agda-misc open import Constructive.Common open import Constructive.Combinators open import Constructive.Axiom open import Constructive.Axiom.Properties.Base module Transport {a b p} {A : Set a} {B : Set b} (f : A → B) (g : B → A) (inv : ∀ x → f (g x) ≡ x) where private ∃Pf→∃P : {P : B → Set p} → ∃ (λ x → P (f x)) → ∃ P ∃Pf→∃P (x , Pfx) = (f x , Pfx) ∃P→∃Pf : {P : B → Set p} → ∃ P → ∃ (λ x → P (f x)) ∃P→∃Pf {P = P} (x , Px) = g x , subst P (sym (inv x)) Px ∃Qg→∃Q : {Q : A → Set p} → ∃ (λ x → Q (g x)) → ∃ Q ∃Qg→∃Q (x , Qgx) = g x , Qgx lpo-transport : LPO A p → LPO B p lpo-transport lpo P? = Sum.map ∃Pf→∃P (contraposition ∃P→∃Pf) $ lpo (DecU-map f P?) llpo-transport : LLPO A p → LLPO B p llpo-transport llpo P? Q? w = Sum.map (contraposition ∃P→∃Pf) (contraposition ∃P→∃Pf) $ llpo (DecU-map f P?) (DecU-map f Q?) (contraposition (Prod.map ∃Pf→∃P ∃Pf→∃P) w) wlpo-Alt-transport : WLPO-Alt A p → WLPO-Alt B p wlpo-Alt-transport wlpo-Alt P? = Sum.map (contraposition ∃P→∃Pf) (DN-map ∃Pf→∃P) $ wlpo-Alt (DecU-map f P?) wlpo-transport : WLPO A p → WLPO B p wlpo-transport = wlpo-Alt⇒wlpo ∘′ wlpo-Alt-transport ∘′ wlpo⇒wlpo-Alt mr-transport : MR A p → MR B p mr-transport mr P? ¬¬∃P = ∃Pf→∃P $ mr (DecU-map f P?) (DN-map ∃P→∃Pf ¬¬∃P) mp-transport : MP A p → MP B p mp-transport = mr⇒mp ∘′ mr-transport ∘′ mp⇒mr wmp-transport : WMP A p → WMP B p wmp-transport wmp {P = P} P? hyp = ∃Pf→∃P $ wmp (DecU-map f P?) λ Q? → Sum.map (DN-map ∃Qg→∃Q) (DN-map λ {(x , Px , ¬Qgx) → g x , (subst P (sym (inv x)) Px) , ¬Qgx }) $ hyp (DecU-map g Q?) mp⊎-transport : MP⊎ A p → MP⊎ B p mp⊎-transport mp⊎ P? Q? w = Sum.map (DN-map ∃Pf→∃P) (DN-map ∃Pf→∃P) $ mp⊎ (DecU-map f P?) (DecU-map f Q?) (contraposition (Prod.map (contraposition ∃P→∃Pf) (contraposition ∃P→∃Pf)) w) open Transport public module TransportByLeftInverse {a b p} {A : Set a} {B : Set b} (linv : B LInv.↞ A) = Transport {p = p} (LInv.LeftInverse.from linv Eq.⟨$⟩_) (LInv.LeftInverse.to linv Eq.⟨$⟩_) (LInv.LeftInverse.left-inverse-of linv)
33.405063
78
0.582039
03e17b1bdf2f9855874175b68dba45332dc5dc25
1,532
agda
Agda
eq.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
eq.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
eq.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
module eq where open import level ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- data _≡_ {ℓ} {A : Set ℓ} (x : A) : A → Set ℓ where refl : x ≡ x {-# BUILTIN EQUALITY _≡_ #-} ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 4 _≡_ ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- sym : ∀ {ℓ}{A : Set ℓ}{x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {ℓ}{A : Set ℓ}{x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl cong : ∀ {ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}(p : A → B) {x y : A} → x ≡ y → p x ≡ p y cong p refl = refl congf : ∀{l l' : Level}{A : Set l}{B : Set l'}{f f' : A → B}{b c : A} → f ≡ f' → b ≡ c → (f b) ≡ (f' c) congf refl refl = refl congf2 : ∀{l l' l'' : Level}{A : Set l}{B : Set l'}{C : Set l''}{f f' : A → B → C}{b c : A}{d e : B} → f ≡ f' → b ≡ c → d ≡ e → (f b d) ≡ (f' c e) congf2 refl refl refl = refl cong2 : ∀{i j k}{A : Set i}{B : Set j}{C : Set k}{a a' : A}{b b' : B} → (f : A → B → C) → a ≡ a' → b ≡ b' → f a b ≡ f a' b' cong2 f refl refl = refl cong3 : ∀{i j k l}{A : Set i}{B : Set j}{C : Set k}{D : Set l}{a a' : A}{b b' : B}{c c' : C} → (f : A → B → C → D) → a ≡ a' → b ≡ b' → c ≡ c' → f a b c ≡ f a' b' c' cong3 f refl refl refl = refl
28.90566
146
0.314621
43346b16b8577d32b64004abdebc2ff17ae17c44
32,237
agda
Agda
complexity/Pilot.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity/Pilot.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity/Pilot.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
open import Preliminaries open import Preorder-Max module Pilot where data CTp : Set where unit : CTp nat : CTp -- discrete natural numbers ♭nat, where we interpret ≤ as = _->c_ : CTp → CTp → CTp _×c_ : CTp → CTp → CTp list : CTp → CTp bool : CTp C : CTp rnat : CTp -- natural numbers with ≤ actually interpreted as ≤ -- represent a context as a list of types Ctx = List CTp -- de Bruijn indices (for free variables) data _∈_ : CTp → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ (τ :: Γ) iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ (τ1 :: Γ) rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') data _|-_ : Ctx → CTp → Set sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C _rs_ : ∀ {A B C} → rctx A B → sctx B C → sctx A C ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ subst : ∀ {Γ Γ' τ} → Γ' |- τ → sctx Γ Γ' → Γ |- τ _ss_ : ∀ {A B C} → sctx A B → sctx B C → sctx A C _sr_ : ∀ {A B C} → sctx A B → rctx B C → sctx A C data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set rename-var : ∀ {Γ Γ' τ} → rctx Γ Γ' → τ ∈ Γ' → τ ∈ Γ idr : ∀ {Γ} → rctx Γ Γ p∙ : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) Γ' p : ∀ {Γ τ} → rctx (τ :: Γ) Γ rename-var-ident : ∀ {Γ τ} → (x : τ ∈ Γ) → rename-var idr x == x rename-var-∙ : ∀ {A B C τ} → (r1 : rctx A B) (r2 : rctx B C) (x : τ ∈ C) → rename-var r1 (rename-var r2 x) == rename-var (r1 ∙rr r2) x ∙rr-assoc : ∀ {A B C D} → (r1 : rctx A B) (r2 : rctx B C) (r3 : rctx C D) → _==_ {_} {rctx A D} (r1 ∙rr (r2 ∙rr r3)) ((r1 ∙rr r2) ∙rr r3) extend-ren-comp-lemma : ∀ {Γ Γ' Γ'' τ τ'} → (x : τ ∈ τ' :: Γ'') (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') → Id {_} {_} ((r-extend ρ1 ∙rr r-extend ρ2) x) (r-extend (ρ1 ∙rr ρ2) x) extend-ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → Id {_} {rctx (τ :: Γ) (τ :: Γ'')} (r-extend ρ1 ∙rr r-extend ρ2) (r-extend (ρ1 ∙rr ρ2)) wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 s-extend : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') ids : ∀ {Γ} → sctx Γ Γ q∙ : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) Γ' lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ') q : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) svar : ∀ {Γ1 Γ2 τ} → sctx Γ1 Γ2 → τ ∈ Γ2 → Γ1 |- τ lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ')) lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem5' : ∀ {Γ Γ' τ1 τ2 τ3} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ'))) lem5 : ∀ {Γ τ1 τ2 τ3} → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ))) data _|-_ where unit : ∀ {Γ} → Γ |- unit 0C : ∀ {Γ} → Γ |- C 1C : ∀ {Γ}→ Γ |- C plusC : ∀ {Γ} → Γ |- C → Γ |- C → Γ |- C var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ z : ∀ {Γ} → Γ |- nat s : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (τ :: Γ)) |- τ → Γ |- τ lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->c τ) app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->c τ1) → Γ |- τ2 → Γ |- τ1 rz : ∀ {Γ} → Γ |- rnat rsuc : ∀ {Γ} → Γ |- rnat → Γ |- rnat rrec : ∀ {Γ τ} → Γ |- rnat → (Z' : Γ |- τ) → (S' : Γ |- (rnat ->c (τ ->c τ))) → (P : Z' ≤s (app (app S' rz) Z')) → Γ |- τ --→ (S' : (nat≤ :: (τ :: Γ)) |- τ) → (P : Z' ≤s subst S' (lem3' (lem3' ids Z') z')) (what we're doing is the same but just avoids termination problems) prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×c τ2) l-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ1 r-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ2 nil : ∀ {Γ τ} → Γ |- list τ _::c_ : ∀ {Γ τ} → Γ |- τ → Γ |- list τ → Γ |- list τ listrec : ∀ {Γ τ τ'} → Γ |- list τ → Γ |- τ' → (τ :: (list τ :: (τ' :: Γ))) |- τ' → Γ |- τ' true : ∀ {Γ} → Γ |- bool false : ∀ {Γ} → Γ |- bool data _≤s_ where refl-s : ∀ {Γ T} → {e : Γ |- T} → e ≤s e trans-s : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' plus-s : ∀ {Γ} → {e1 e2 n1 n2 : Γ |- C} → e1 ≤s n1 → e2 ≤s n2 → (plusC e1 e2) ≤s (plusC n1 n2) cong-refl : ∀ {Γ τ} {e e' : Γ |- τ} → e == e' → e ≤s e' +-unit-l : ∀ {Γ} {e : Γ |- C} → (plusC 0C e) ≤s e +-unit-l' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC 0C e) +-unit-r : ∀ {Γ} {e : Γ |- C} → (plusC e 0C) ≤s e +-unit-r' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 0C) +-assoc : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3) +-assoc' : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3) refl-+ : ∀ {Γ} {e0 e1 : Γ |- C} → (plusC e0 e1) ≤s (plusC e1 e0) cong-+ : ∀ {Γ} {e0 e1 e0' e1' : Γ |- C} → e0 ≤s e0' → e1 ≤s e1' → (plusC e0 e1) ≤s (plusC e0' e1') cong-lproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (l-proj e) ≤s (l-proj e') cong-rproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (r-proj e) ≤s (r-proj e') cong-app : ∀ {Γ τ τ'} {e e' : Γ |- (τ ->c τ')} {e1 : Γ |- τ} → e ≤s e' → (app e e1) ≤s (app e' e1) ren-cong : ∀ {Γ Γ' τ} {e1 e2 : Γ' |- τ} {ρ : rctx Γ Γ'} → e1 ≤s e2 → (ren e1 ρ) ≤s (ren e2 ρ) subst-cong : ∀ {Γ Γ' τ} {e1 e2 : Γ' |- τ} {Θ : sctx Γ Γ'} → e1 ≤s e2 → (subst e1 Θ) ≤s (subst e2 Θ) subst-cong2 : ∀ {Γ Γ' τ} {Θ Θ' : sctx Γ Γ'} {e : Γ' |- τ} → (∀ τ → (x : τ ∈ Γ') → Θ x ≤s Θ' x) → subst e Θ ≤s subst e Θ' cong-rec : ∀ {Γ τ} {e e' : Γ |- nat} {e0 : Γ |- τ} {e1 : (nat :: (τ :: Γ)) |- τ} → e ≤s e' → rec e e0 e1 ≤s rec e' e0 e1 cong-listrec : ∀ {Γ τ τ'} {e e' : Γ |- list τ} {e0 : Γ |- τ'} {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e ≤s e' → listrec e e0 e1 ≤s listrec e' e0 e1 lam-s : ∀ {Γ T T'} → {e : (T :: Γ) |- T'} → {e2 : Γ |- T} → subst e (q e2) ≤s app (lam e) e2 l-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} {e2 : Γ |- T2} → e1 ≤s (l-proj (prod e1 e2)) r-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} → {e2 : Γ |- T2} → e2 ≤s (r-proj (prod e1 e2)) rec-steps-z : ∀ {Γ T} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → e0 ≤s (rec z e0 e1) rec-steps-s : ∀ {Γ T} → {e : Γ |- nat} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → subst e1 (lem4 e (rec e e0 e1)) ≤s (rec (s e) e0 e1) listrec-steps-nil : ∀ {Γ τ τ'} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e0 ≤s (listrec nil e0 e1) listrec-steps-cons : ∀ {Γ τ τ'} → {h : Γ |- τ} {t : Γ |- list τ} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → subst e1 (lem5 h t (listrec t e0 e1)) ≤s (listrec (h ::c t) e0 e1) ren-comp-l : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (ren e ρ2) ρ1) ≤s (ren e (ρ1 ∙rr ρ2)) ren-comp-r : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren e (ρ1 ∙rr ρ2)) ≤s (ren (ren e ρ2) ρ1) subst-id-l : ∀ {Γ τ} → (e : Γ |- τ) → e ≤s subst e ids subst-id-r : ∀ {Γ τ} → (e : Γ |- τ) → subst e ids ≤s e subst-rs-l : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → ren (subst e Θ) ρ ≤s subst e (ρ rs Θ) subst-rs-r : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → subst e (ρ rs Θ) ≤s ren (subst e Θ) ρ subst-sr-l : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → (subst (ren e ρ) Θ) ≤s subst e (Θ sr ρ) subst-sr-r : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → subst e (Θ sr ρ) ≤s (subst (ren e ρ) Θ) subst-ss-l : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst e (Θ1 ss Θ2) ≤s subst (subst e Θ2) Θ1 subst-ss-r : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst (subst e Θ2) Θ1 ≤s subst e (Θ1 ss Θ2) subst-compose-l : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (subst e (s-extend Θ)) (q v) ≤s subst e (lem3' Θ v) subst-compose-r : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst e (lem3' Θ v) ≤s subst (subst e (s-extend Θ)) (q v) subst-compose2-l : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) ≤s subst e1 (lem4' Θ v1 v2) subst-compose2-r : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst e1 (lem4' Θ v1 v2) ≤s subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) subst-compose3-l : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst (subst e1 (lem4 v1 v2)) Θ ≤s subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3-r : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) ≤s subst (subst e1 (lem4 v1 v2)) Θ subst-compose4-l : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) ≤s subst e2 (lem4' Θ v' r) subst-compose4-r : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst e2 (lem4' Θ v' r) ≤s subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) subst-compose5-l : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) ≤s subst e (lem5' Θ v1 v2 v3) subst-compose5-r : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst e (lem5' Θ v1 v2 v3) ≤s subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) -- r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') r-extend ρ i0 = i0 r-extend ρ (iS x) = iS (ρ x) -- _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C ρ1 ∙rr ρ2 = ρ1 o ρ2 rename-var ρ a = ρ a idr x = x p∙ ρ = λ x → iS (ρ x) p = p∙ idr --free stuff rename-var-ident _ = Refl rename-var-∙ _ _ _ = Refl ∙rr-assoc r1 r2 r3 = Refl ren unit ρ = unit ren 0C ρ = 0C ren 1C ρ = 1C ren (plusC e e₁) ρ = plusC (ren e ρ) (ren e₁ ρ) ren (var x) ρ = var (ρ x) ren z ρ = z ren (s e) ρ = s (ren e ρ) ren (rec e e₁ e₂) ρ = rec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend ρ))) ren (lam e) ρ = lam (ren e (r-extend ρ)) ren (app e e₁) ρ = app (ren e ρ) (ren e₁ ρ) ren (prod e1 e2) ρ = prod (ren e1 ρ) (ren e2 ρ) ren (l-proj e) ρ = l-proj (ren e ρ) ren (r-proj e) ρ = r-proj (ren e ρ) ren nil ρ = nil ren (x ::c xs) ρ = ren x ρ ::c ren xs ρ ren true ρ = true ren false ρ = false ren (listrec e e₁ e₂) ρ = listrec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend (r-extend ρ)))) ren rz ρ = rz ren (rsuc e) ρ = rsuc (ren e ρ) ren (rrec e e₁ e₂ p) ρ = rrec (ren e ρ) (ren e₁ ρ) (ren e₂ ρ) (ren-cong p) extend-ren-comp-lemma i0 ρ1 ρ2 = Refl extend-ren-comp-lemma (iS x) ρ1 ρ2 = Refl extend-ren-comp ρ1 ρ2 = λ=i (λ τ → λ= (λ x → extend-ren-comp-lemma x ρ1 ρ2)) postulate ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (ren e ρ2) ρ1) == (ren e (ρ1 ∙rr ρ2)) {- ren-comp ρ1 ρ2 unit = Refl ren-comp ρ1 ρ2 0C = Refl ren-comp ρ1 ρ2 1C = Refl ren-comp ρ1 ρ2 (plusC e e₁) = ap2 plusC (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (var x) = ap var (rename-var-∙ ρ1 ρ2 x) ren-comp ρ1 ρ2 z = Refl ren-comp ρ1 ρ2 (s e) = ap s (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (rec e e₁ e₂) = ap3 rec (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) (ap (ren e₂) (ap r-extend (extend-ren-comp ρ1 ρ2) ∘ extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)) e₂) ren-comp ρ1 ρ2 (lam e) = ap lam ((ap (ren e) (extend-ren-comp ρ1 ρ2)) ∘ ren-comp (r-extend ρ1) (r-extend ρ2) e) ren-comp ρ1 ρ2 (app e e₁) = ap2 app (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (prod e e₁) = ap2 prod (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (l-proj e) = ap l-proj (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (r-proj e) = ap r-proj (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 nil = Refl ren-comp ρ1 ρ2 (e ::c e₁) = ap2 _::c_ (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) ren-comp ρ1 ρ2 (listrec e e₁ e₂) = ap3 listrec (ren-comp ρ1 ρ2 e) (ren-comp ρ1 ρ2 e₁) (ap (ren e₂) (ap r-extend (ap r-extend (extend-ren-comp ρ1 ρ2)) ∘ (ap r-extend (extend-ren-comp (r-extend ρ1) (r-extend ρ2)) ∘ extend-ren-comp (r-extend (r-extend ρ1)) (r-extend (r-extend ρ2)))) ∘ ren-comp (r-extend (r-extend (r-extend ρ1))) (r-extend (r-extend (r-extend ρ2))) e₂) ren-comp ρ1 ρ2 true = Refl ren-comp ρ1 ρ2 false = Refl ren-comp ρ1 ρ2 rz = Refl ren-comp ρ1 ρ2 (rs e) = ap rs (ren-comp ρ1 ρ2 e) ren-comp ρ1 ρ2 (rrec e e₁ e₂ p) = {!!} -} -- weakening a context wkn e = ren e iS --lem2 (addvar) s-extend Θ i0 = var i0 s-extend Θ (iS x) = wkn (Θ x) ids x = var x -- weakening with substitution q∙ Θ = λ x → wkn (Θ x) lem3' Θ e i0 = e lem3' Θ e (iS i) = Θ i --lem3 q e = lem3' ids e -- subst-var svar Θ i = q (Θ i) i0 lem4' Θ a b = lem3' (lem3' Θ b) a lem4 e1 e2 = lem4' ids e1 e2 lem5' Θ a b c = lem3' (lem3' (lem3' Θ c) b) a lem5 e1 e2 e3 = lem5' ids e1 e2 e3 subst unit Θ = unit subst 0C Θ = 0C subst 1C Θ = 1C subst (plusC e e₁) Θ = plusC (subst e Θ) (subst e₁ Θ) subst (var x) Θ = Θ x subst z Θ = z subst (s e) Θ = s (subst e Θ) subst (rec e e₁ e₂) Θ = rec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend Θ))) subst (lam e) Θ = lam (subst e (s-extend Θ)) subst (app e e₁) Θ = app (subst e Θ) (subst e₁ Θ) subst (prod e1 e2) Θ = prod (subst e1 Θ) (subst e2 Θ) subst (l-proj e) Θ = l-proj (subst e Θ) subst (r-proj e) Θ = r-proj (subst e Θ) subst nil Θ = nil subst (x ::c xs) Θ = subst x Θ ::c subst xs Θ subst true Θ = true subst false Θ = false subst (listrec e e₁ e₂) Θ = listrec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend (s-extend Θ)))) subst rz Θ = rz subst (rsuc e) Θ = rsuc (subst e Θ) subst (rrec e e₁ e₂ p) Θ = rrec (subst e Θ) (subst e₁ Θ) (subst e₂ Θ) (subst-cong p) subst1 : ∀ {Γ τ τ1} → Γ |- τ1 → (τ1 :: Γ) |- τ → Γ |- τ subst1 e e' = subst e' (q e) _rs_ ρ Θ x = ren (subst (var x) Θ) ρ _ss_ Θ1 Θ2 x = subst (subst (var x) Θ2) Θ1 _sr_ Θ ρ x = subst (ren (var x) ρ) Θ --free stuff {- svar-rs : ∀ {A B C τ} (ρ : rctx A B) (Θ : sctx B C) (x : τ ∈ C) → svar (ρ rs Θ) x == ren (svar Θ x) ρ svar-rs = λ ρ Θ x → Refl svar-ss : ∀ {A B C τ} (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ C) → svar (Θ1 ss Θ2) x == subst (svar Θ2 x) Θ1 svar-ss = λ Θ1 Θ2 x → Refl svar-sr : ∀ {A B C τ} (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ C) → svar Θ (rename-var ρ x) == svar (Θ sr ρ) x svar-sr = λ Θ ρ x → Refl svar-id : ∀ {Γ τ} → (x : τ ∈ Γ) → var x == svar ids x svar-id = λ x → Refl rsr-assoc : ∀ {A B C D} → (ρ1 : rctx A B) (Θ : sctx B C) (ρ2 : rctx C D) → Id {_} {sctx A D} ((ρ1 rs Θ) sr ρ2) (ρ1 rs (Θ sr ρ2)) rsr-assoc = λ ρ1 Θ ρ2 → Refl -} extend-id-once-lemma : ∀ {Γ τ τ'} → (x : τ ∈ τ' :: Γ) → _==_ {_} {τ' :: Γ |- τ} (ids {τ' :: Γ} {τ} x) (s-extend {Γ} {Γ} {τ'} (ids {Γ}) {τ} x) extend-id-once-lemma i0 = Refl extend-id-once-lemma (iS x) = Refl extend-id-once : ∀ {Γ τ} → Id {_} {sctx (τ :: Γ) (τ :: Γ)} (ids {τ :: Γ}) (s-extend ids) extend-id-once = λ=i (λ τ → λ= (λ x → extend-id-once-lemma x)) extend-id-twice : ∀ {Γ τ1 τ2} → Id {_} {sctx (τ1 :: τ2 :: Γ) (τ1 :: τ2 :: Γ)} (ids {τ1 :: τ2 :: Γ}) (s-extend (s-extend ids)) extend-id-twice = ap s-extend extend-id-once ∘ extend-id-once postulate subst-id : ∀ {Γ τ} (e : Γ |- τ) → e == subst e ids {- subst-id unit = Refl subst-id 0C = Refl subst-id 1C = Refl subst-id (plusC e e₁) = ap2 plusC (subst-id e) (subst-id e₁) subst-id (var x) = Refl subst-id z = Refl subst-id (s e) = ap s (subst-id e) subst-id (rec e e₁ e₂) = ap3 rec (subst-id e) (subst-id e₁) (ap (subst e₂) extend-id-twice ∘ subst-id e₂) subst-id (lam e) = ap lam (ap (subst e) extend-id-once ∘ subst-id e) subst-id (app e e₁) = ap2 app (subst-id e) (subst-id e₁) subst-id rz = Refl subst-id (rsuc e) = ap rsuc (subst-id e) subst-id (rrec e e₁ e₂ P) = {!!} subst-id (prod e e₁) = ap2 prod (subst-id e) (subst-id e₁) subst-id (l-proj e) = ap l-proj (subst-id e) subst-id (r-proj e) = ap r-proj (subst-id e) subst-id nil = Refl subst-id (e ::c e₁) = ap2 _::c_ (subst-id e) (subst-id e₁) subst-id true = Refl subst-id false = Refl subst-id (listrec e e₁ e₂) = ap3 listrec (subst-id e) (subst-id e₁) (ap (subst e₂) (ap s-extend (ap s-extend extend-id-once) ∘ extend-id-twice) ∘ subst-id e₂) -} extend-rs-once-lemma : ∀ {A B C τ τ'} → (x : τ ∈ τ' :: B) (ρ : rctx C A) (Θ : sctx A B) → _==_ {_} {τ' :: C |- τ} (_rs_ {τ' :: C} {τ' :: A} {τ' :: B} (r-extend {C} {A} {τ'} ρ) (s-extend {A} {B} {τ'} Θ) {τ} x) (s-extend {C} {B} {τ'} (_rs_ {C} {A} {B} ρ Θ) {τ} x) extend-rs-once-lemma i0 ρ Θ = Refl extend-rs-once-lemma (iS x) ρ Θ = ! (ren-comp iS ρ (Θ x)) ∘ ren-comp (r-extend ρ) iS (Θ x) {- extend-rs-once : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: C) (τ :: B)} (r-extend ρ rs s-extend Θ) (s-extend (ρ rs Θ)) extend-rs-once ρ Θ = λ=i (λ τ → λ= (λ x → extend-rs-once-lemma x ρ Θ)) extend-rs-twice : ∀ {A B C τ τ'} → (ρ : rctx C A) (Θ : sctx A B) → Id {_} {sctx (τ :: τ' :: C) (τ :: τ' :: B)} ((r-extend (r-extend ρ)) rs (s-extend (s-extend Θ))) ((s-extend (s-extend (ρ rs Θ)))) extend-rs-twice ρ Θ = ap s-extend (extend-rs-once ρ Θ) ∘ extend-rs-once (r-extend ρ) (s-extend Θ) subst-rs : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → ren (subst e Θ) ρ == subst e (ρ rs Θ) subst-rs ρ Θ unit = Refl subst-rs ρ Θ 0C = Refl subst-rs ρ Θ 1C = Refl subst-rs ρ Θ (plusC e e₁) = ap2 plusC (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (var x) = svar-rs ρ Θ x subst-rs ρ Θ z = Refl subst-rs ρ Θ (suc e) = ap suc (subst-rs ρ Θ e) subst-rs ρ Θ (rec e e₁ e₂) = ap3 rec (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) (ap (subst e₂) (extend-rs-twice ρ Θ) ∘ subst-rs (r-extend (r-extend ρ)) (s-extend (s-extend Θ)) e₂) subst-rs ρ Θ (lam e) = ap lam (ap (subst e) (extend-rs-once ρ Θ) ∘ subst-rs (r-extend ρ) (s-extend Θ) e) subst-rs ρ Θ (app e e₁) = ap2 app (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (prod e e₁) = ap2 prod (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ (l-proj e) = ap l-proj (subst-rs ρ Θ e) subst-rs ρ Θ (r-proj e) = ap r-proj (subst-rs ρ Θ e) subst-rs ρ Θ nil = Refl subst-rs ρ Θ (e ::c e₁) = ap2 _::c_ (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) subst-rs ρ Θ true = Refl subst-rs ρ Θ false = Refl subst-rs ρ Θ (listrec e e₁ e₂) = ap3 listrec (subst-rs ρ Θ e) (subst-rs ρ Θ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-rs-once ρ Θ)) ∘ extend-rs-twice (r-extend ρ) (s-extend Θ)) ∘ subst-rs (r-extend (r-extend (r-extend ρ))) (s-extend (s-extend (s-extend Θ))) e₂) extend-sr-once-lemma : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_sr_ Θ ρ) x) (_sr_ (s-extend Θ) (r-extend ρ) x) extend-sr-once-lemma Θ ρ i0 = Refl extend-sr-once-lemma Θ ρ (iS x) = Refl extend-sr-once : ∀ {A B C τ} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ :: A) (τ :: C)} (s-extend Θ sr r-extend ρ) (s-extend (Θ sr ρ)) extend-sr-once Θ ρ = λ=i (λ τ → λ= (λ x → ! (extend-sr-once-lemma Θ ρ x))) extend-sr-twice : ∀ {A B C τ τ'} → (Θ : sctx A B) (ρ : rctx B C) → Id {_} {sctx (τ' :: τ :: A) (τ' :: τ :: C)} (s-extend (s-extend Θ) sr r-extend (r-extend ρ)) (s-extend (s-extend (Θ sr ρ))) extend-sr-twice Θ ρ = ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ) sr-comp : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → (subst (ren e ρ) Θ) == subst e (Θ sr ρ) sr-comp Θ ρ unit = Refl sr-comp Θ ρ 0C = Refl sr-comp Θ ρ 1C = Refl sr-comp Θ ρ (plusC e e₁) = ap2 plusC (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (var x) = svar-sr Θ ρ x sr-comp Θ ρ z = Refl sr-comp Θ ρ (suc e) = ap suc (sr-comp Θ ρ e) sr-comp Θ ρ (rec e e₁ e₂) = ap3 rec (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) (ap (subst e₂) (ap s-extend (extend-sr-once Θ ρ) ∘ extend-sr-once (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend Θ)) (r-extend (r-extend ρ)) e₂) sr-comp Θ ρ (lam e) = ap lam (ap (subst e) (extend-sr-once Θ ρ) ∘ sr-comp (s-extend Θ) (r-extend ρ) e) sr-comp Θ ρ (app e e₁) = ap2 app (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (prod e e₁) = ap2 prod (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (l-proj e) = ap l-proj (sr-comp Θ ρ e) sr-comp Θ ρ (r-proj e) = ap r-proj (sr-comp Θ ρ e) sr-comp Θ ρ nil = Refl sr-comp Θ ρ (e ::c e₁) = ap2 _::c_ (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) sr-comp Θ ρ (listrec e e₁ e₂) = ap3 listrec (sr-comp Θ ρ e) (sr-comp Θ ρ e₁) (ap (subst e₂) (ap s-extend (ap s-extend (extend-sr-once Θ ρ)) ∘ extend-sr-twice (s-extend Θ) (r-extend ρ)) ∘ sr-comp (s-extend (s-extend (s-extend Θ))) (r-extend (r-extend (r-extend ρ))) e₂) sr-comp Θ ρ true = Refl sr-comp Θ ρ false = Refl extend-ss-once-lemma : ∀ {A B C τ τ'} → (Θ1 : sctx A B) (Θ2 : sctx B C) (x : τ ∈ τ' :: C) → _==_ {_} {τ' :: A |- τ} (s-extend (_ss_ Θ1 Θ2) x) (_ss_ (s-extend Θ1) (s-extend Θ2) x) extend-ss-once-lemma Θ1 Θ2 i0 = Refl extend-ss-once-lemma Θ1 Θ2 (iS x) = ! (sr-comp (s-extend Θ1) iS (Θ2 x)) ∘ rs-comp iS Θ1 (Θ2 x) extend-ss-once : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) → _==_ {_} {sctx (τ :: A) (τ :: C)} (s-extend (Θ1 ss Θ2)) ((s-extend Θ1) ss (s-extend Θ2)) extend-ss-once Θ1 Θ2 = λ=i (λ τ → λ= (λ x → extend-ss-once-lemma Θ1 Θ2 x)) subst-ss : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst e (Θ1 ss Θ2) == subst (subst e Θ2) Θ1 subst-ss Θ1 Θ2 unit = Refl subst-ss Θ1 Θ2 0C = Refl subst-ss Θ1 Θ2 1C = Refl subst-ss Θ1 Θ2 (plusC e e₁) = ap2 plusC (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (var x) = svar-ss Θ1 Θ2 x subst-ss Θ1 Θ2 z = Refl subst-ss Θ1 Θ2 (suc e) = ap suc (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (rec e e₁ e₂) = ap3 rec (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) (subst-ss (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) e₂ ∘ ap (subst e₂) (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2))) subst-ss Θ1 Θ2 (lam e) = ap lam (subst-ss (s-extend Θ1) (s-extend Θ2) e ∘ ap (subst e) (extend-ss-once Θ1 Θ2)) subst-ss Θ1 Θ2 (app e e₁) = ap2 app (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (prod e e₁) = ap2 prod (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 (l-proj e) = ap l-proj (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 (r-proj e) = ap r-proj (subst-ss Θ1 Θ2 e) subst-ss Θ1 Θ2 nil = Refl subst-ss Θ1 Θ2 (e ::c e₁) = ap2 _::c_ (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) subst-ss Θ1 Θ2 true = Refl subst-ss Θ1 Θ2 false = Refl subst-ss Θ1 Θ2 (listrec e e₁ e₂) = ap3 listrec (subst-ss Θ1 Θ2 e) (subst-ss Θ1 Θ2 e₁) (subst-ss (s-extend (s-extend (s-extend Θ1))) (s-extend (s-extend (s-extend Θ2))) e₂ ∘ ap (subst e₂) (extend-ss-once (s-extend (s-extend Θ1)) (s-extend (s-extend Θ2)) ∘ ap s-extend (extend-ss-once (s-extend Θ1) (s-extend Θ2) ∘ ap s-extend (extend-ss-once Θ1 Θ2)))) throw : ∀ {Γ Γ' τ} → sctx Γ (τ :: Γ') → sctx Γ Γ' throw Θ x = Θ (iS x) fuse1 : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (q v ss q∙ Θ) x == Θ x fuse1 v Θ x = subst (ren (Θ x) iS) (q v) =⟨ sr-comp (q v) iS (Θ x) ⟩ subst (Θ x) (q v sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) subst-compose-lemma-lemma : ∀ {Γ Γ' τ τ'} (v : Γ |- τ') (Θ : sctx Γ Γ') (x : τ ∈ τ' :: Γ') → _==_ {_} {Γ |- τ} (_ss_ (q v) (s-extend Θ) x) (lem3' Θ v x) subst-compose-lemma-lemma v Θ i0 = Refl subst-compose-lemma-lemma v Θ (iS x) = fuse1 v Θ x subst-compose-lemma : ∀ {Γ Γ' τ} (v : Γ |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ :: Γ')} ((q v) ss (s-extend Θ)) (lem3' Θ v) subst-compose-lemma v Θ = λ=i (λ τ → λ= (λ x → subst-compose-lemma-lemma v Θ x)) subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (subst e (s-extend Θ)) (q v) == subst e (lem3' Θ v) subst-compose Θ v e = ap (subst e) (subst-compose-lemma v Θ) ∘ (! (subst-ss (q v) (s-extend Θ) e)) fuse2 : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: Γ') → (lem4 v1 v2 ss throw (s-extend (s-extend Θ))) x == (lem3' Θ v2) x fuse2 v1 v2 Θ x = subst (ren (s-extend Θ x) iS) (lem4 v1 v2) =⟨ sr-comp (lem4 v1 v2) iS (s-extend Θ x) ⟩ subst (s-extend Θ x) (lem4 v1 v2 sr iS) =⟨ Refl ⟩ subst (s-extend Θ x) (lem3' ids v2) =⟨ subst-compose-lemma-lemma v2 Θ x ⟩ (lem3' Θ v2 x ∎) subst-compose2-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((lem4 v1 v2 ss s-extend (s-extend Θ)) x) (lem4' Θ v1 v2 x) subst-compose2-lemma-lemma v1 v2 e1 Θ i0 = Refl subst-compose2-lemma-lemma v1 v2 e1 Θ (iS x) = fuse2 v1 v2 Θ x subst-compose2-lemma : ∀ {Γ Γ' τ τ1 τ2} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (e1 : τ1 :: τ2 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (lem4 v1 v2 ss s-extend (s-extend Θ)) (lem4' Θ v1 v2) subst-compose2-lemma v1 v2 e1 Θ = λ=i (λ τ → λ= (λ x → subst-compose2-lemma-lemma v1 v2 e1 Θ x)) fuse3 : ∀ {Γ Γ' τ1 τ2 τ'} (Θ : sctx Γ Γ') (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) (x : τ' ∈ τ2 :: Γ') → subst (lem3' ids v2 x) Θ == lem3' Θ (subst v2 Θ) x fuse3 Θ v1 v2 i0 = Refl fuse3 Θ v1 v2 (iS x) = Refl subst-compose3-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ'} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) (x : τ' ∈ τ1 :: τ2 :: Γ') → _==_ {_} {_} ((Θ ss lem4 v1 v2) x) (lem4' Θ (subst v1 Θ) (subst v2 Θ) x) subst-compose3-lemma-lemma Θ e1 v1 v2 i0 = Refl subst-compose3-lemma-lemma Θ e1 v1 v2 (iS x) = fuse3 Θ v1 v2 x subst-compose3-lemma : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → _==_ {_} {sctx Γ (τ1 :: τ2 :: Γ')} (Θ ss lem4 v1 v2) (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3-lemma Θ e1 v1 v2 = λ=i (λ τ → λ= (λ x → subst-compose3-lemma-lemma Θ e1 v1 v2 x)) subst-compose2 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) == subst e1 (lem4' Θ v1 v2) subst-compose2 Θ e1 v1 v2 = ap (subst e1) (subst-compose2-lemma v1 v2 e1 Θ) ∘ ! (subst-ss (lem4 v1 v2) (s-extend (s-extend Θ)) e1) subst-compose3 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst (subst e1 (lem4 v1 v2)) Θ == subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3 Θ e1 v1 v2 = ap (subst e1) (subst-compose3-lemma Θ e1 v1 v2) ∘ ! (subst-ss Θ (lem4 v1 v2) e1) subst-compose4 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) == subst e2 (lem4' Θ v' r) subst-compose4 Θ v' r e2 = subst-compose2 Θ e2 v' r fuse4-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (Θ : sctx Γ Γ') (x : τ ∈ Γ') → (lem3' (lem3' ids v3) v2 ss q∙ (q∙ Θ)) x == Θ x fuse4-lemma v1 v2 v3 Θ x = subst (ren (wkn (Θ x)) iS) (lem3' (q v3) v2) =⟨ sr-comp (lem3' (q v3) v2) iS (wkn (Θ x)) ⟩ subst (wkn (Θ x)) (lem3' (q v3) v2 sr iS) =⟨ Refl ⟩ subst (ren (Θ x) iS) (lem3' (q v3) v2 sr iS) =⟨ sr-comp (lem3' (q v3) v2 sr iS) iS (Θ x) ⟩ subst (Θ x) ((lem3' (q v3) v2 sr iS) sr iS) =⟨ Refl ⟩ subst (Θ x) ids =⟨ ! (subst-id (Θ x)) ⟩ (Θ x ∎) fuse4 : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (Θ : sctx Γ Γ') (x : τ ∈ τ2 :: τ3 :: Γ') → subst (s-extend (s-extend Θ) x) (lem3' (lem3' ids v3) v2) == lem3' (lem3' Θ v3) v2 x fuse4 v1 v2 v3 Θ i0 = Refl fuse4 v1 v2 v3 Θ (iS i0) = Refl fuse4 v1 v2 v3 Θ (iS (iS x)) = subst (wkn (wkn (Θ x))) (lem3' (lem3' ids v3) v2) =⟨ subst-ss (lem3' (lem3' ids v3) v2) (q∙ (q∙ Θ)) (var x) ⟩ subst (var x) (lem3' (lem3' ids v3) v2 ss q∙ (q∙ Θ)) =⟨ fuse4-lemma v1 v2 v3 Θ x ⟩ subst (var x) Θ =⟨ Refl ⟩ (Θ x ∎) subst-compose5-lemma-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3 τ'} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (e1 : τ1 :: τ2 :: τ3 :: Γ' |- τ) (Θ : sctx Γ Γ') (x : τ' ∈ τ1 :: τ2 :: τ3 :: Γ') → _==_ {_} {_} ((lem5 v1 v2 v3 ss s-extend (s-extend (s-extend Θ))) x) (lem5' Θ v1 v2 v3 x) subst-compose5-lemma-lemma v1 v2 v3 e Θ i0 = Refl subst-compose5-lemma-lemma v1 v2 v3 e Θ (iS x) = (lem5 v1 v2 v3 ss s-extend (s-extend (s-extend Θ))) (iS x) =⟨ sr-comp (lem5 v1 v2 v3) iS (s-extend (s-extend Θ) x) ⟩ subst (s-extend (s-extend Θ) x) (lem3' (lem3' ids v3) v2) =⟨ fuse4 v1 v2 v3 Θ x ⟩ (lem3' (lem3' Θ v3) v2 x ∎) subst-compose5-lemma : ∀ {Γ Γ' τ τ1 τ2 τ3} (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) (e : τ1 :: τ2 :: τ3 :: Γ' |- τ) (Θ : sctx Γ Γ') → _==_ {_} {sctx Γ (τ1 :: τ2 :: τ3 :: Γ')} (lem5 v1 v2 v3 ss (s-extend (s-extend (s-extend Θ)))) (lem5' Θ v1 v2 v3) subst-compose5-lemma v1 v2 v3 e Θ = λ=i (λ τ → λ= (λ x → subst-compose5-lemma-lemma v1 v2 v3 e Θ x)) subst-compose5 : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) == subst e (lem5' Θ v1 v2 v3) subst-compose5 Θ e v1 v2 v3 = ap (subst e) (subst-compose5-lemma v1 v2 v3 e Θ) ∘ ! (subst-ss (lem5 v1 v2 v3) (s-extend (s-extend (s-extend Θ))) e) -} _+C_ : ∀ {Γ τ} → Γ |- C → Γ |- (C ×c τ)→ Γ |- (C ×c τ) c +C e = prod (plusC c (l-proj e)) (r-proj e) _trans_ : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' _trans_ = trans-s infixr 10 _trans_
55.200342
179
0.463567
19cf0d6eaf6fff40634c3b1235f8e7b7a187d0d7
852
agda
Agda
test/Succeed/ByeByeSet.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ByeByeSet.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ByeByeSet.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 'Set' is no longer a keyword but a primitive defined in -- 'Agda.Primitive'. It is imported by default but this can be -- disabled with a flag: {-# OPTIONS --no-import-sorts #-} -- By importing Agda.Primitive explicitly we can rename 'Set' to -- something else: open import Agda.Primitive renaming (Set to Type) -- Now 'Set' is no longer in scope: -- test₁ = Set -- Error message: Not in scope: Set -- Instead it is now called 'Type'. Note that suffixed versions -- 'Type₁', 'Type₂', ... work as expected, as does 'Type ℓ' for a -- level 'ℓ'! Foo : Type₁ Foo = Type Bar : ∀ ℓ → Type (lsuc ℓ) Bar ℓ = Type ℓ -- We can now redefine Set however we want: open import Agda.Builtin.Equality open import Agda.Builtin.Sigma IsSet : ∀ {ℓ} → Type ℓ → Type ℓ IsSet X = {x y : X} (p q : x ≡ y) → p ≡ q Set : ∀ ℓ → Type (lsuc ℓ) Set ℓ = Σ (Type ℓ) IsSet
25.818182
65
0.658451
2107c8d7278b114b27fd2424e0347693c2c70ddf
53
agda
Agda
test/Fail/Issue5781c.agda
sseefried/agda
6b13364d36eeb60d8ec15eaf8effe23c73401900
[ "BSD-2-Clause" ]
1
2022-03-05T00:25:14.000Z
2022-03-05T00:25:14.000Z
test/Fail/Issue5781c.agda
SNU-2D/agda
b5b3b1657556f720a7310cb7744edb1fac71eaf4
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Fail/Issue5781c.agda
SNU-2D/agda
b5b3b1657556f720a7310cb7744edb1fac71eaf4
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --profile=modules --profile=internal #-}
26.5
52
0.679245
1bb46e4993d7191ad0e3bca165cc068d5253c9e6
882
agda
Agda
test/Succeed/Issue3177.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3177.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3177.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Agda.Builtin.Equality postulate A : Set Phantom : A → Set Phantom _ = A postulate rigid : A → A mutual X : A → A → A → A X = _ Y : (x y : A) → Phantom x Y = _ -- This constraint triggers pruning of X in an attempt to remove the non-linearity. -- It doesn't get rid of the non-linearity but prunes x setting X x y z := Z y z, -- for a fresh meta Z. c₁ : (x y : A) → X x y y ≡ rigid y c₁ x y = refl -- Here we end up with Z y z == rigid (Y x y) which requires pruning x from Y. This -- fails due to the phantom dependency on x in the type of Y and the constraint is -- left unsolved. If we hadn't pruned x from X we could have solved this with -- X x y z := rigid (Y x y), turning the first constraint into rigid (Y x y) == rigid y, -- which is solved by Y x y := y. c₂ : (x y z : A) → X x y z ≡ rigid (Y x y) c₂ x y z = refl
26.727273
90
0.613379
30a47727b863603f919568406be5e91197a88056
8,423
agda
Agda
src/Tactic/Nat/Simpl/Lemmas.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
src/Tactic/Nat/Simpl/Lemmas.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
src/Tactic/Nat/Simpl/Lemmas.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
module Tactic.Nat.Simpl.Lemmas where open import Prelude open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Container.Bag open import Tactic.Nat.Auto open import Prelude.Nat.Properties open import Container.List.Properties open import Tactic.Nat.Auto.Lemmas product1-sound : ∀ xs → product1 xs ≡ productR xs product1-sound [] = refl product1-sound (x ∷ xs) rewrite sym (cong (λ x → foldl _*_ x xs) (mul-one-r x)) | foldl-assoc _*_ mul-assoc x 1 xs | foldl-foldr _*_ 1 mul-assoc add-zero-r mul-one-r xs = refl map-eq : ∀ {c b} {A : Set c} {B : Set b} (f g : A → B) → (∀ x → f x ≡ g x) → ∀ xs → map f xs ≡ map g xs map-eq f g f=g [] = refl map-eq f g f=g (x ∷ xs) rewrite f=g x | map-eq f g f=g xs = refl fst-*** : ∀ {a b} {A₁ A₂ : Set a} {B₁ B₂ : Set b} (f : A₁ → B₁) (g : A₂ → B₂) (p : A₁ × A₂) → fst ((f *** g) p) ≡ f (fst p) fst-*** f g (x , y) = refl snd-*** : ∀ {a b} {A₁ A₂ : Set a} {B₁ B₂ : Set b} (f : A₁ → B₁) (g : A₂ → B₂) (p : A₁ × A₂) → snd ((f *** g) p) ≡ g (snd p) snd-*** f g (x , y) = refl eta : ∀ {a b} {A : Set a} {B : Set b} (p : A × B) → p ≡ (fst p , snd p) eta (x , y) = refl private shuffle₁ : (a b c : Nat) → a + (b + c) ≡ b + (a + c) shuffle₁ a b c = auto module _ {Atom : Set} {{_ : Ord Atom}} where NFEqS : NF Atom × NF Atom → Env Atom → Set NFEqS (nf₁ , nf₂) ρ = ⟦ nf₁ ⟧ns ρ ≡ ⟦ nf₂ ⟧ns ρ NFEq : NF Atom × NF Atom → Env Atom → Set NFEq (nf₁ , nf₂) ρ = ⟦ nf₁ ⟧n ρ ≡ ⟦ nf₂ ⟧n ρ ts-sound : ∀ x (ρ : Env Atom) → ⟦ x ⟧ts ρ ≡ ⟦ x ⟧t ρ ts-sound (0 , x) ρ = mul-zero-r (product1 (map ρ x)) ts-sound (1 , x) ρ = product1-sound (map ρ x) ⟨≡⟩ʳ add-zero-r _ ts-sound (suc (suc i) , x) ρ rewrite sym (product1-sound (map ρ x)) = auto private et : Env Atom → Nat × Tm Atom → Nat et = flip ⟦_⟧t ets : Env Atom → Nat × Tm Atom → Nat ets = flip ⟦_⟧ts plus-nf : Nat → Env Atom → NF Atom → Nat plus-nf = λ a ρ xs → a + ⟦ xs ⟧n ρ ns-sound : ∀ nf (ρ : Env Atom) → ⟦ nf ⟧ns ρ ≡ ⟦ nf ⟧n ρ ns-sound [] ρ = refl ns-sound (x ∷ nf) ρ rewrite sym (foldl-map-fusion _+_ (ets ρ) (ets ρ x) nf) | ts-sound x ρ | map-eq (ets ρ) (et ρ) (flip ts-sound ρ) nf | sym (foldl-foldr _+_ 0 add-assoc (λ _ → refl) add-zero-r (map (et ρ) nf)) | sym (foldl-assoc _+_ add-assoc (et ρ x) 0 (map (et ρ) nf)) | add-zero-r (et ρ x) = refl private lem-sound : ∀ a b ρ f g (xs : NF Atom × NF Atom) → a + ⟦ fst ((f *** g) xs) ⟧n ρ ≡ b + ⟦ snd ((f *** g) xs) ⟧n ρ → a + ⟦ f (fst xs) ⟧n ρ ≡ b + ⟦ g (snd xs) ⟧n ρ lem-sound a b ρ f g xs H = cong (plus-nf a ρ) (fst-*** f g xs) ʳ⟨≡⟩ H ⟨≡⟩ cong (plus-nf b ρ) (snd-*** f g xs) cancel-sound′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) → a + ⟦ fst (cancel nf₁ nf₂) ⟧n ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧n ρ → a + ⟦ nf₁ ⟧n ρ ≡ b + ⟦ nf₂ ⟧n ρ cancel-sound′ a b [] [] ρ H = H cancel-sound′ a b [] (x ∷ nf₂) ρ H = H cancel-sound′ a b (x ∷ nf₁) [] ρ H = H cancel-sound′ a b ((i , x) ∷ nf₁) ((j , y) ∷ nf₂) ρ H with compare x y ... | less _ = add-assoc a _ _ ⟨≡⟩ cancel-sound′ (a + et ρ (i , x)) b nf₁ ((j , y) ∷ nf₂) ρ (add-assoc a _ _ ʳ⟨≡⟩ lem-sound a b ρ (_∷_ (i , x)) id (cancel nf₁ ((j , y) ∷ nf₂)) H) ... | greater _ = cancel-sound′ a (b + et ρ (j , y)) ((i , x) ∷ nf₁) nf₂ ρ (lem-sound a b ρ id (_∷_ (j , y)) (cancel ((i , x) ∷ nf₁) nf₂) H ⟨≡⟩ add-assoc b _ _) ⟨≡⟩ʳ add-assoc b _ _ cancel-sound′ a b ((i , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | equal refl with compare i j cancel-sound′ a b ((i , x) ∷ nf₁) ((.(suc k + i) , .x) ∷ nf₂) ρ H | equal refl | less (diff! k) = shuffle₁ a (et ρ (i , x)) _ ⟨≡⟩ cong (et ρ (i , x) +_) (cancel-sound′ a (b + et ρ (suc k , x)) nf₁ nf₂ ρ (lem-sound a b ρ id (_∷_ (suc k , x)) (cancel nf₁ nf₂) H ⟨≡⟩ add-assoc b _ _)) ⟨≡⟩ auto cancel-sound′ a b ((.(suc k + j) , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | equal refl | greater (diff! k) = sym (shuffle₁ b (et ρ (j , x)) _ ⟨≡⟩ cong (et ρ (j , x) +_) (sym (cancel-sound′ (a + et ρ (suc k , x)) b nf₁ nf₂ ρ (add-assoc a _ _ ʳ⟨≡⟩ lem-sound a b ρ (_∷_ (suc k , x)) id (cancel nf₁ nf₂) H))) ⟨≡⟩ auto) cancel-sound′ a b ((i , x) ∷ nf₁) ((.i , .x) ∷ nf₂) ρ H | equal refl | equal refl = shuffle₁ a (et ρ (i , x)) _ ⟨≡⟩ cong (et ρ (i , x) +_) (cancel-sound′ a b nf₁ nf₂ ρ H) ⟨≡⟩ shuffle₁ (et ρ (i , x)) b _ cancel-sound-s′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) → a + ⟦ fst (cancel nf₁ nf₂) ⟧ns ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧ns ρ → a + ⟦ nf₁ ⟧ns ρ ≡ b + ⟦ nf₂ ⟧ns ρ cancel-sound-s′ a b nf₁ nf₂ ρ eq = (a +_) $≡ ns-sound nf₁ ρ ⟨≡⟩ cancel-sound′ a b nf₁ nf₂ ρ ((a +_) $≡ ns-sound (fst (cancel nf₁ nf₂)) ρ ʳ⟨≡⟩ eq ⟨≡⟩ (b +_) $≡ ns-sound (snd (cancel nf₁ nf₂)) ρ) ⟨≡⟩ʳ (b +_) $≡ ns-sound nf₂ ρ cancel-sound : ∀ nf₁ nf₂ ρ → NFEqS (cancel nf₁ nf₂) ρ → NFEq (nf₁ , nf₂) ρ cancel-sound nf₁ nf₂ ρ H rewrite cong (λ p → NFEqS p ρ) (eta (cancel nf₁ nf₂)) = (cancel-sound′ 0 0 nf₁ nf₂ ρ (ns-sound (fst (cancel nf₁ nf₂)) ρ ʳ⟨≡⟩ H ⟨≡⟩ ns-sound (snd (cancel nf₁ nf₂)) ρ)) private prod : Env Atom → List Atom → Nat prod ρ x = productR (map ρ x) private lem-complete : ∀ a b ρ f g (xs : NF Atom × NF Atom) → a + ⟦ f (fst xs) ⟧n ρ ≡ b + ⟦ g (snd xs) ⟧n ρ → a + ⟦ fst ((f *** g) xs) ⟧n ρ ≡ b + ⟦ snd ((f *** g) xs) ⟧n ρ lem-complete a b ρ f g xs H = cong (plus-nf a ρ) (fst-*** f g xs) ⟨≡⟩ H ⟨≡⟩ʳ cong (plus-nf b ρ) (snd-*** f g xs) cancel-complete′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) → a + ⟦ nf₁ ⟧n ρ ≡ b + ⟦ nf₂ ⟧n ρ → a + ⟦ fst (cancel nf₁ nf₂) ⟧n ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧n ρ cancel-complete′ a b [] [] ρ H = H cancel-complete′ a b [] (x ∷ nf₂) ρ H = H cancel-complete′ a b (x ∷ nf₁) [] ρ H = H cancel-complete′ a b ((i , x) ∷ nf₁) ((j , y) ∷ nf₂) ρ H with compare x y ... | less lt = lem-complete a b ρ (_∷_ (i , x)) id (cancel nf₁ ((j , y) ∷ nf₂)) (add-assoc a _ _ ⟨≡⟩ cancel-complete′ (a + et ρ (i , x)) b nf₁ ((j , y) ∷ nf₂) ρ (add-assoc a _ _ ʳ⟨≡⟩ H)) ... | greater _ = lem-complete a b ρ id (_∷_ (j , y)) (cancel ((i , x) ∷ nf₁) nf₂) (cancel-complete′ a (b + et ρ (j , y)) ((i , x) ∷ nf₁) nf₂ ρ (H ⟨≡⟩ add-assoc b _ _) ⟨≡⟩ʳ add-assoc b _ _) cancel-complete′ a b ((i , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | equal refl with compare i j cancel-complete′ a b ((i , x) ∷ nf₁) ((.(suc (k + i)) , .x) ∷ nf₂) ρ H | equal refl | less (diff! k) = lem-complete a b ρ id (_∷_ (suc k , x)) (cancel nf₁ nf₂) (cancel-complete′ a (b + suc k * prod ρ x) nf₁ nf₂ ρ (add-inj₂ (i * prod ρ x) _ _ (shuffle₁ (i * prod ρ x) a _ ⟨≡⟩ H ⟨≡⟩ auto)) ⟨≡⟩ʳ add-assoc b _ _) cancel-complete′ a b ((.(suc (k + j)) , x) ∷ nf₁) ((j , .x) ∷ nf₂) ρ H | equal refl | greater (diff! k) = lem-complete a b ρ (_∷_ (suc k , x)) id (cancel nf₁ nf₂) (add-assoc a _ _ ⟨≡⟩ cancel-complete′ (a + suc k * prod ρ x) b nf₁ nf₂ ρ (add-inj₂ (j * prod ρ x) _ _ (sym (shuffle₁ (j * prod ρ x) b _ ⟨≡⟩ʳ auto ʳ⟨≡⟩ H)))) cancel-complete′ a b ((i , x) ∷ nf₁) ((.i , .x) ∷ nf₂) ρ H | equal refl | equal refl = cancel-complete′ a b nf₁ nf₂ ρ (add-inj₂ (i * prod ρ x) _ _ (shuffle₁ a (i * prod ρ x) _ ʳ⟨≡⟩ H ⟨≡⟩ shuffle₁ b (i * prod ρ x) _)) cancel-complete-s′ : ∀ a b nf₁ nf₂ (ρ : Env Atom) → a + ⟦ nf₁ ⟧ns ρ ≡ b + ⟦ nf₂ ⟧ns ρ → a + ⟦ fst (cancel nf₁ nf₂) ⟧ns ρ ≡ b + ⟦ snd (cancel nf₁ nf₂) ⟧ns ρ cancel-complete-s′ a b nf₁ nf₂ ρ eq = (a +_) $≡ ns-sound (fst (cancel nf₁ nf₂)) ρ ⟨≡⟩ cancel-complete′ a b nf₁ nf₂ ρ ((a +_) $≡ ns-sound nf₁ ρ ʳ⟨≡⟩ eq ⟨≡⟩ (b +_) $≡ ns-sound nf₂ ρ) ⟨≡⟩ʳ (b +_) $≡ ns-sound (snd (cancel nf₁ nf₂)) ρ cancel-complete : ∀ nf₁ nf₂ ρ → NFEq (nf₁ , nf₂) ρ → NFEqS (cancel nf₁ nf₂) ρ cancel-complete nf₁ nf₂ ρ H rewrite cong (λ p → NFEqS p ρ) (eta (cancel nf₁ nf₂)) = ns-sound (fst (cancel nf₁ nf₂)) ρ ⟨≡⟩ cancel-complete′ 0 0 nf₁ nf₂ ρ H ⟨≡⟩ʳ ns-sound (snd (cancel nf₁ nf₂)) ρ
41.905473
107
0.479164
1bbeeef16c12c18c8b63a0c645a8a0c659650a32
12,848
agda
Agda
core/lib/types/Paths.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/types/Paths.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/types/Paths.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics module lib.types.Paths where {- ! is an equivalence and works on ≠ -} module _ {i} {A : Type i} {x y : A} where !-equiv : (x == y) ≃ (y == x) !-equiv = equiv ! ! !-! !-! ≠-inv : (x ≠ y) → (y ≠ x) ≠-inv x≠y y=x = x≠y (! y=x) {- Pre- and post- concatenation are equivalences -} module _ {i} {A : Type i} {x y z : A} where pre∙-is-equiv : (p : x == y) → is-equiv (λ (q : y == z) → p ∙ q) pre∙-is-equiv p = is-eq (λ q → p ∙ q) (λ r → ! p ∙ r) f-g g-f where f-g : ∀ r → p ∙ ! p ∙ r == r f-g r = ! (∙-assoc p (! p) r) ∙ ap (λ s → s ∙ r) (!-inv-r p) g-f : ∀ q → ! p ∙ p ∙ q == q g-f q = ! (∙-assoc (! p) p q) ∙ ap (λ s → s ∙ q) (!-inv-l p) pre∙-equiv : (p : x == y) → (y == z) ≃ (x == z) pre∙-equiv p = ((λ q → p ∙ q) , pre∙-is-equiv p) post∙-is-equiv : (p : y == z) → is-equiv (λ (q : x == y) → q ∙ p) post∙-is-equiv p = is-eq (λ q → q ∙ p) (λ r → r ∙ ! p) f-g g-f where f-g : ∀ r → (r ∙ ! p) ∙ p == r f-g r = ∙-assoc r (! p) p ∙ ap (λ s → r ∙ s) (!-inv-l p) ∙ ∙-unit-r r g-f : ∀ q → (q ∙ p) ∙ ! p == q g-f q = ∙-assoc q p (! p) ∙ ap (λ s → q ∙ s) (!-inv-r p) ∙ ∙-unit-r q post∙-equiv : (p : y == z) → (x == y) ≃ (x == z) post∙-equiv p = ((λ q → q ∙ p) , post∙-is-equiv p) pre∙'-is-equiv : (p : x == y) → is-equiv (λ (q : y == z) → p ∙' q) pre∙'-is-equiv p = is-eq (λ q → p ∙' q) (λ r → ! p ∙' r) f-g g-f where f-g : ∀ r → p ∙' ! p ∙' r == r f-g r = ! (∙'-assoc p (! p) r) ∙ ap (λ s → s ∙' r) (!-inv'-r p) ∙ ∙'-unit-l r g-f : ∀ q → ! p ∙' p ∙' q == q g-f q = ! (∙'-assoc (! p) p q) ∙ ap (λ s → s ∙' q) (!-inv'-l p) ∙ ∙'-unit-l q pre∙'-equiv : (p : x == y) → (y == z) ≃ (x == z) pre∙'-equiv p = ((λ q → p ∙' q) , pre∙'-is-equiv p) post∙'-is-equiv : (p : y == z) → is-equiv (λ (q : x == y) → q ∙' p) post∙'-is-equiv p = is-eq (λ q → q ∙' p) (λ r → r ∙' ! p) f-g g-f where f-g : ∀ r → (r ∙' ! p) ∙' p == r f-g r = ∙'-assoc r (! p) p ∙ ap (λ s → r ∙' s) (!-inv'-l p) g-f : ∀ q → (q ∙' p) ∙' ! p == q g-f q = ∙'-assoc q p (! p) ∙ ap (λ s → q ∙' s) (!-inv'-r p) post∙'-equiv : (p : y == z) → (x == y) ≃ (x == z) post∙'-equiv p = ((λ q → q ∙' p) , post∙'-is-equiv p) module _ {i j} {A : Type i} {B : Type j} {f : A → B} {x y : A} {b : B} where ↓-app=cst-in : {p : x == y} {u : f x == b} {v : f y == b} → u == (ap f p ∙ v) → (u == v [ (λ x → f x == b) ↓ p ]) ↓-app=cst-in {p = idp} q = q ↓-app=cst-out : {p : x == y} {u : f x == b} {v : f y == b} → (u == v [ (λ x → f x == b) ↓ p ]) → u == (ap f p ∙ v) ↓-app=cst-out {p = idp} r = r ↓-app=cst-β : {p : x == y} {u : f x == b} {v : f y == b} → (q : u == (ap f p ∙ v)) → ↓-app=cst-out {p = p} (↓-app=cst-in q) == q ↓-app=cst-β {p = idp} q = idp ↓-app=cst-η : {p : x == y} {u : f x == b} {v : f y == b} → (q : u == v [ (λ x → f x == b) ↓ p ]) → ↓-app=cst-in (↓-app=cst-out q) == q ↓-app=cst-η {p = idp} q = idp ↓-app=cst-econv : {p : x == y} {u : f x == b} {v : f y == b} → (u == (ap f p ∙ v)) ≃ (u == v [ (λ x → f x == b) ↓ p ]) ↓-app=cst-econv {p = p} = equiv ↓-app=cst-in ↓-app=cst-out (↓-app=cst-η {p = p}) (↓-app=cst-β {p = p}) ↓-cst=app-in : {p : x == y} {u : b == f x} {v : b == f y} → (u ∙' ap f p) == v → (u == v [ (λ x → b == f x) ↓ p ]) ↓-cst=app-in {p = idp} q = q ↓-cst=app-out : {p : x == y} {u : b == f x} {v : b == f y} → (u == v [ (λ x → b == f x) ↓ p ]) → (u ∙' ap f p) == v ↓-cst=app-out {p = idp} r = r ↓-cst=app-econv : {p : x == y} {u : b == f x} {v : b == f y} → ((u ∙' ap f p) == v) ≃ (u == v [ (λ x → b == f x) ↓ p ]) ↓-cst=app-econv {p = idp} = equiv ↓-cst=app-in ↓-cst=app-out (λ _ → idp) (λ _ → idp) {- alternative versions -} module _ {i j} {A : Type i} {B : Type j} {f : A → B} {x y : A} {b : B} where ↓-app=cst-in' : {p : x == y} {u : f x == b} {v : f y == b} → u == (ap f p ∙' v) → (u == v [ (λ x → f x == b) ↓ p ]) ↓-app=cst-in' {p = idp} {v = idp} q = q ↓-app=cst-out' : {p : x == y} {u : f x == b} {v : f y == b} → (u == v [ (λ x → f x == b) ↓ p ]) → u == (ap f p ∙' v) ↓-app=cst-out' {p = idp} {v = idp} r = r ↓-app=cst-β' : {p : x == y} {u : f x == b} {v : f y == b} → (q : u == (ap f p ∙' v)) → ↓-app=cst-out' {p = p} {v = v} (↓-app=cst-in' q) == q ↓-app=cst-β' {p = idp} {v = idp} q = idp ↓-app=cst-η' : {p : x == y} {u : f x == b} {v : f y == b} → (q : u == v [ (λ x → f x == b) ↓ p ]) → ↓-app=cst-in' (↓-app=cst-out' q) == q ↓-app=cst-η' {p = idp} {v = idp} q = idp ↓-cst=app-in' : {p : x == y} {u : b == f x} {v : b == f y} → (u ∙ ap f p) == v → (u == v [ (λ x → b == f x) ↓ p ]) ↓-cst=app-in' {p = idp} {u = idp} q = q ↓-cst=app-out' : {p : x == y} {u : b == f x} {v : b == f y} → (u == v [ (λ x → b == f x) ↓ p ]) → (u ∙ ap f p) == v ↓-cst=app-out' {p = idp} {u = idp} r = r module _ {i} {A : Type i} where ↓-app=idf-in : {f : A → A} {x y : A} {p : x == y} {u : f x == x} {v : f y == y} → u ∙' p == ap f p ∙ v → u == v [ (λ z → f z == z) ↓ p ] ↓-app=idf-in {p = idp} q = q ↓-app=idf-out : {f : A → A} {x y : A} {p : x == y} {u : f x == x} {v : f y == y} → u == v [ (λ z → f z == z) ↓ p ] → u ∙' p == ap f p ∙ v ↓-app=idf-out {p = idp} q = q ↓-cst=idf-in : {a : A} {x y : A} {p : x == y} {u : a == x} {v : a == y} → (u ∙' p) == v → (u == v [ (λ x → a == x) ↓ p ]) ↓-cst=idf-in {p = idp} q = q ↓-cst=idf-in' : {a : A} {x y : A} {p : x == y} {u : a == x} {v : a == y} → (u ∙ p) == v → (u == v [ (λ x → a == x) ↓ p ]) ↓-cst=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ q ↓-idf=cst-in : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a} → u == p ∙ v → (u == v [ (λ x → x == a) ↓ p ]) ↓-idf=cst-in {p = idp} q = q ↓-idf=cst-out : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a} → (u == v [ (λ x → x == a) ↓ p ]) → u == p ∙ v ↓-idf=cst-out {p = idp} q = q ↓-idf=cst-in' : {a : A} {x y : A} {p : x == y} {u : x == a} {v : y == a} → u == p ∙' v → (u == v [ (λ x → x == a) ↓ p ]) ↓-idf=cst-in' {p = idp} q = q ∙ ∙'-unit-l _ ↓-idf=idf-in' : {x y : A} {p : x == y} {u : x == x} {v : y == y} → u ∙ p == p ∙' v → (u == v [ (λ x → x == x) ↓ p ]) ↓-idf=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ q ∙ ∙'-unit-l _ ↓-idf=idf-out' : {x y : A} {p : x == y} {u : x == x} {v : y == y} → (u == v [ (λ x → x == x) ↓ p ]) → u ∙ p == p ∙' v ↓-idf=idf-out' {p = idp} q = ∙-unit-r _ ∙ q ∙ ! (∙'-unit-l _) {- Nondependent identity type -} module _ {i j} {A : Type i} {B : Type j} {f g : A → B} where abstract ↓-='-in : ∀ {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u ∙' ap g p) == (ap f p ∙ v) → (u == v [ (λ x → f x == g x) ↓ p ]) ↓-='-in {p = idp} q = q ↓-='-out : ∀ {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u == v [ (λ x → f x == g x) ↓ p ]) → (u ∙' ap g p) == (ap f p ∙ v) ↓-='-out {p = idp} q = q ↓-='-in' : ∀ {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u ∙ ap g p) == (ap f p ∙' v) → (u == v [ (λ x → f x == g x) ↓ p ]) ↓-='-in' {p = idp} q = ! (∙-unit-r _) ∙ q ∙ (∙'-unit-l _) ↓-='-out' : ∀ {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u == v [ (λ x → f x == g x) ↓ p ]) → (u ∙ ap g p) == (ap f p ∙' v) ↓-='-out' {p = idp} q = (∙-unit-r _) ∙ q ∙ ! (∙'-unit-l _) ↓-='-in-=ₛ : ∀ {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → u ◃∙ ap g p ◃∎ =ₛ ap f p ◃∙ v ◃∎ → (u == v [ (λ x → f x == g x) ↓ p ]) ↓-='-in-=ₛ {p = idp} {u} (=ₛ-in q) = ! (∙-unit-r u) ∙ q ↓-='-out-=ₛ : ∀ {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} → (u == v [ (λ x → f x == g x) ↓ p ]) → u ◃∙ ap g p ◃∎ =ₛ ap f p ◃∙ v ◃∎ ↓-='-out-=ₛ {p = idp} {u} {v} q = u ◃∙ idp ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ u ◃∎ =ₛ₁⟨ q ⟩ v ◃∎ =ₛ⟨ 0 & 0 & contract ⟩ idp ◃∙ v ◃∎ ∎ₛ {- Identity type where the type is dependent -} module _ {i j} {A : Type i} {B : A → Type j} {f g : Π A B} where abstract private ◃idp' = ◃idp {B = B} idp▹' = idp▹ {B = B} ↓-=-in : {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → u ◃ apd f p == apd g p ▹ v → (u == v [ (λ x → g x == f x) ↓ p ]) ↓-=-in {p = idp} {u} {v} q = ! (◃idp' u) ∙ q ∙ idp▹' v ↓-=-out : {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (u == v [ (λ x → g x == f x) ↓ p ]) → u ◃ apd f p == apd g p ▹ v ↓-=-out {p = idp} {u} {v} q = (◃idp' u) ∙ q ∙ ! (idp▹' v) ↓-=-in-β : {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (q : u == v [ (λ x → g x == f x) ↓ p ]) → ↓-=-in (↓-=-out q) == q ↓-=-in-β {p = idp} {u} {v} q = ! (◃idp' u) ∙ (◃idp' u ∙ q ∙ ! (idp▹' v)) ∙ idp▹' v =⟨ ap (! (◃idp' u) ∙_) (∙-assoc (◃idp' u) (q ∙ ! (idp▹' v)) (idp▹' v)) ⟩ ! (◃idp' u) ∙ ◃idp' u ∙ (q ∙ ! (idp▹' v)) ∙ idp▹' v =⟨ ap (λ w → ! (◃idp' u) ∙ ◃idp' u ∙ w) (∙-assoc q (! (idp▹' v)) (idp▹' v)) ⟩ ! (◃idp' u) ∙ ◃idp' u ∙ (q ∙ ! (idp▹' v) ∙ idp▹' v) =⟨ ap (λ w → ! (◃idp' u) ∙ ◃idp' u ∙ (q ∙ w)) (!-inv-l (idp▹' v)) ⟩ ! (◃idp' u) ∙ ◃idp' u ∙ q ∙ idp =⟨ ap (λ w → ! (◃idp' u) ∙ ◃idp' u ∙ w) (∙-unit-r q) ⟩ ! (◃idp' u) ∙ ◃idp' u ∙ q =⟨ ! (∙-assoc (! (◃idp' u)) (◃idp' u) q) ⟩ (! (◃idp' u) ∙ ◃idp' u) ∙ q =⟨ ap (_∙ q) (!-inv-l (◃idp' u)) ⟩ q =∎ ↓-=-out-η : {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (q : u ◃ apd f p == apd g p ▹ v) → q == ↓-=-out (↓-=-in q) ↓-=-out-η {p = idp} {u} {v} q = ! $ ◃idp' u ∙ (! (◃idp' u) ∙ q ∙ idp▹' v) ∙ ! (idp▹' v) =⟨ ap (λ w → ◃idp' u ∙ w) (∙-assoc (! (◃idp' u)) (q ∙ idp▹' v) (! (idp▹' v))) ⟩ ◃idp' u ∙ ! (◃idp' u) ∙ (q ∙ idp▹' v) ∙ ! (idp▹' v) =⟨ ap (λ w → ◃idp' u ∙ ! (◃idp' u) ∙ w) (∙-assoc q (idp▹' v) (! (idp▹' v))) ⟩ ◃idp' u ∙ ! (◃idp' u) ∙ q ∙ idp▹' v ∙ ! (idp▹' v) =⟨ ap (λ w → ◃idp' u ∙ ! (◃idp' u) ∙ q ∙ w) (!-inv-r (idp▹' v)) ⟩ ◃idp' u ∙ ! (◃idp' u) ∙ q ∙ idp =⟨ ap (λ w → ◃idp' u ∙ ! (◃idp' u) ∙ w) (∙-unit-r q) ⟩ ◃idp' u ∙ ! (◃idp' u) ∙ q =⟨ ! (∙-assoc (◃idp' u) (! (◃idp' u)) q) ⟩ (◃idp' u ∙ ! (◃idp' u)) ∙ q =⟨ ap (_∙ q) (!-inv-r (◃idp' u)) ⟩ q =∎ ↓-=-in-is-equiv : {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → is-equiv (↓-=-in {p = p} {u = u} {v = v}) ↓-=-in-is-equiv = is-eq _ ↓-=-out ↓-=-in-β λ q → ! (↓-=-out-η q) ↓-=-equiv : {x y : A} {p : x == y} {u : g x == f x} {v : g y == f y} → (u ◃ apd f p == apd g p ▹ v) ≃ (u == v [ (λ x → g x == f x) ↓ p ]) ↓-=-equiv = ↓-=-in , ↓-=-in-is-equiv -- Dependent path in a type of the form [λ x → g (f x) == x] module _ {i j} {A : Type i} {B : Type j} (g : B → A) (f : A → B) where ↓-∘=idf-in' : {x y : A} {p : x == y} {u : g (f x) == x} {v : g (f y) == y} → ((ap g (ap f p) ∙' v) == (u ∙ p)) → (u == v [ (λ x → g (f x) == x) ↓ p ]) ↓-∘=idf-in' {p = idp} q = ! (∙-unit-r _) ∙ (! q) ∙ (∙'-unit-l _) -- WIP, derive it from more primitive principles -- ↓-∘=id-in f g {p = p} {u} {v} q = -- ↓-=-in (u ◃ apd (λ x → g (f x)) p =⟨ apd-∘ f g p |in-ctx (λ t → u ◃ t) ⟩ -- u ◃ ↓-apd-out _ f p (apdd g p (apd f p)) =⟨ apdd-cst (λ _ b → g b) p (ap f p) (! (apd-nd f p)) |in-ctx (λ t → u ◃ ↓-apd-out _ f p t) ⟩ -- u ◃ ↓-apd-out _ f p (apd (λ t → g (π₂ t)) (pair= p (apd f p))) =⟨ apd-∘ π₂ g (pair= p (apd f p)) |in-ctx (λ t → u ◃ ↓-apd-out _ f p t) ⟩ -- u ◃ ↓-apd-out _ f p (↓-apd-out _ π₂ (pair= p (apd f p)) (apdd g (pair= p (apd f p)) (apd π₂ (pair= p (apd f p))))) =⟨ {!!} ⟩ -- apd (λ x → x) p ▹ v ∎) -- module _ {i j} {A : Type i} {B : Type j} {x y z : A → B} where -- lhs : -- {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'} -- {r : y a == z a} {r' : y a' == z a'} -- (α : q == q' [ (λ a → x a == y a) ↓ p ]) -- (β : r ∙ ap z p == ap y p ∙' r') -- → (q ∙' r) ∙ ap z p == ap x p ∙' q' ∙' r' -- lhs = -- (q ∙' r) ∙ ap z p =⟨ ? ⟩ -- assoc -- q ∙' (r ∙ ap z p) =⟨ ? ⟩ -- β -- q ∙' (ap y p ∙' r') =⟨ ? ⟩ -- assoc -- (q ∙' ap y p) ∙' r' =⟨ ? ⟩ -- ∙ = ∙' -- (q ∙ ap y p) ∙' r' =⟨ ? ⟩ -- α -- (ap x p ∙' q') ∙' r' =⟨ ? ⟩ -- assoc -- ap x p ∙' q' ∙' r' ∎ -- thing : -- {a a' : A} {p : a == a'} {q : x a == y a} {q' : x a' == y a'} -- {r : y a == z a} {r' : y a' == z a'} -- (α : q == q' [ (λ a → x a == y a) ↓ p ]) -- (β : r ∙ ap z p == ap y p ∙' r') -- → (_∙'2ᵈ_ {r = r} {r' = r'} α (↓-='-in' β) == ↓-='-in' {!!}) -- thing = {!!}
38.011834
147
0.322696
7c18ea75d2def7a16365ddf4b875c080a1dee45f
184
agda
Agda
test/Succeed/Issue1681.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1681.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1681.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
id : Set → Set id A = A F : Set → Set → Set F _*_ = G where G : Set → Set G _*_ = id _*_ G : Set → Set → Set G _*_ = λ _*_ → id _*_ H : Set → Set → Set H = λ _*_ _*_ → id _*_
12.266667
22
0.461957
375d93b72f50896e3fa0c28f3b54a6a6dddea18f
1,100
agda
Agda
Data/Binary/Relations.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
1
2019-03-21T21:30:10.000Z
2019-03-21T21:30:10.000Z
Data/Binary/Relations.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
null
null
null
Data/Binary/Relations.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Data.Binary.Relations where open import Data.Binary.Relations.Raw open import Data.Binary.Definitions open import Data.Binary.Operations.Addition open import Relation.Binary open import Relation.Nullary import Data.Empty.Irrelevant as Irrel infix 4 _≤_ _<_ record _≤_ (x y : 𝔹) : Set where constructor ≤! field .proof : ⟅ I ⟆ x ≺ y record _<_ (x y : 𝔹) : Set where constructor <! field .proof : ⟅ O ⟆ x ≺ y _≤?_ : Decidable _≤_ x ≤? y with I ! x ≺? y (x ≤? y) | yes x₁ = yes (≤! x₁) (x ≤? y) | no x₁ = no λ p → Irrel.⊥-elim (x₁ (_≤_.proof p)) _<?_ : Decidable _<_ x <? y with O ! x ≺? y (x <? y) | yes x₁ = yes (<! x₁) (x <? y) | no x₁ = no λ p → Irrel.⊥-elim (x₁ (_<_.proof p)) <⇒≤ : ∀ {x y} → x < y → x ≤ y <⇒≤ {x} {y} x<y = ≤! (weaken x y (_<_.proof x<y)) ≤-trans : Transitive _≤_ ≤-trans {i} {j} {k} i≤j j≤k = ≤! (≺-trans I I i j k (_≤_.proof i≤j) (_≤_.proof j≤k)) <-trans : Transitive _<_ <-trans {i} {j} {k} i<j j<k = <! (≺-trans O O i j k (_<_.proof i<j) (_<_.proof j<k)) n≤m+n : ∀ x y → x ≤ y + x n≤m+n x y = ≤! (≺-add y x)
25
84
0.556364
fd7ad42679a3e4ad1d71fc37ca0c26d8b7791cf6
2,761
agda
Agda
theorems/cw/cohomology/reconstructed/cochain/ZerothGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cw/cohomology/reconstructed/cochain/ZerothGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cw/cohomology/reconstructed/cochain/ZerothGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.ChainComplex open import cohomology.Theory open import groups.KernelImage open import cw.CW module cw.cohomology.reconstructed.cochain.ZerothGroup {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT import cw.cohomology.reconstructed.TipCoboundary OT as TC import cw.cohomology.reconstructed.TipAndAugment OT as TAA open import cw.cohomology.reconstructed.Descending OT open import cw.cohomology.reconstructed.cochain.Complex OT import cw.cohomology.reconstructed.ZerothGroup OT as ZCG import cw.cohomology.reconstructed.ZerothGroupOnDiag OT as ZCGD private ≤-dec-has-all-paths : {m n : ℕ} → has-all-paths (Dec (m ≤ n)) ≤-dec-has-all-paths = prop-has-all-paths private abstract zeroth-cohomology-group-descend : ∀ {n} (⊙skel : ⊙Skeleton {i} (2 + n)) → cohomology-group (cochain-complex ⊙skel) 0 == cohomology-group (cochain-complex (⊙cw-init ⊙skel)) 0 zeroth-cohomology-group-descend {n = O} ⊙skel = ap (λ δ → Ker/Im δ (TAA.cw-coε (⊙cw-take (lteSR lteS) ⊙skel)) (TAA.C2×CX₀-is-abelian (⊙cw-take (lteSR lteS) ⊙skel) 0)) (coboundary-first-template-descend-from-two ⊙skel) zeroth-cohomology-group-descend {n = S n} ⊙skel = ap (λ δ → Ker/Im δ (TAA.cw-coε (⊙cw-take (inr (O<S (2 + n))) ⊙skel)) (TAA.C2×CX₀-is-abelian (⊙cw-take (inr (O<S (2 + n))) ⊙skel) 0)) (coboundary-first-template-descend-from-far ⊙skel (O<S (1 + n)) (<-+-l 1 (O<S n))) zeroth-cohomology-group-β : ∀ (⊙skel : ⊙Skeleton {i} 1) → cohomology-group (cochain-complex ⊙skel) 0 == Ker/Im (TC.cw-co∂-head ⊙skel) (TAA.cw-coε (⊙cw-init ⊙skel)) (TAA.C2×CX₀-is-abelian (⊙cw-init ⊙skel) 0) zeroth-cohomology-group-β ⊙skel = ap (λ δ → Ker/Im δ (TAA.cw-coε (⊙cw-init ⊙skel)) (TAA.C2×CX₀-is-abelian (⊙cw-init ⊙skel) 0)) (coboundary-first-template-β ⊙skel) abstract zeroth-cohomology-group : ∀ {n} (⊙skel : ⊙Skeleton {i} n) → ⊙has-cells-with-choice 0 ⊙skel i → C 0 ⊙⟦ ⊙skel ⟧ ≃ᴳ cohomology-group (cochain-complex ⊙skel) 0 zeroth-cohomology-group {n = 0} ⊙skel ac = ZCGD.C-cw-iso-ker/im ⊙skel ac zeroth-cohomology-group {n = 1} ⊙skel ac = coe!ᴳ-iso (zeroth-cohomology-group-β ⊙skel) ∘eᴳ ZCG.C-cw-iso-ker/im ⊙skel ac zeroth-cohomology-group {n = S (S n)} ⊙skel ac = coe!ᴳ-iso (zeroth-cohomology-group-descend ⊙skel) ∘eᴳ zeroth-cohomology-group (⊙cw-init ⊙skel) (⊙init-has-cells-with-choice ⊙skel ac) ∘eᴳ C-cw-descend-at-lower ⊙skel (O<S n) ac
42.476923
97
0.612821
211f33ce289751476104a61c87058cb0e9250017
910
agda
Agda
test/Fail/Issue3823.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue3823.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue3823.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2019-05-30, issue #3823 -- Named where module M should be in scope in rhs. -- This enables to use it in expressions like record{M}. -- Jesper, 2019-12-19, issue #4288 -- Moved to test/Fail because the fix caused a loop in the scope -- checker. open import Agda.Builtin.Equality record R : Set₂ where field A : Set₁ r : R r = record {M} module M where A = Set -- ERROR WAS: -- No module M in scope -- when scope checking record { M } test : r ≡ record {A = Set} test = refl -- Should succeed. -- Should also work with module parameters. s : Set₁ → R s B = record {L} module L where A = B -- With rewrite: postulate B : Set a b : B a≡b : a ≡ b P : B → Set record W : Set where field wrap : P b w : P a → W w p rewrite a≡b = record {N} module N where wrap = p -- Should also succeed in the presence of `rewrite`. module N' = N -- See issue #3824.
16.25
64
0.626374
191befb735309b0da163eeddb581260db0f6a5bc
4,220
agda
Agda
src/Fragment/Equational/FreeExtension/Properties.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
18
2021-06-15T15:45:39.000Z
2022-01-17T17:26:09.000Z
src/Fragment/Equational/FreeExtension/Properties.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
1
2021-06-16T09:44:31.000Z
2021-06-16T10:24:15.000Z
src/Fragment/Equational/FreeExtension/Properties.agda
yallop/agda-fragment
f2a6b1cf4bc95214bd075a155012f84c593b9496
[ "MIT" ]
3
2021-06-15T15:34:50.000Z
2021-06-16T08:04:31.000Z
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Equational.Theory module Fragment.Equational.FreeExtension.Properties (Θ : Theory) where open import Fragment.Algebra.Algebra (Σ Θ) using (Algebra) open import Fragment.Algebra.Homomorphism (Σ Θ) open import Fragment.Algebra.Free (Σ Θ) open import Fragment.Equational.Model Θ open import Fragment.Equational.Coproduct Θ open import Fragment.Equational.FreeExtension.Base Θ open import Fragment.Equational.FreeExtension.Synthetic Θ using (SynFrex) open import Level using (Level) open import Data.Nat using (ℕ) open import Data.Vec using (Vec) open import Relation.Binary using (Setoid) import Relation.Binary.Reasoning.Setoid as Reasoning private variable a ℓ₁ : Level module _ (X : FreeExtension) (Y : FreeExtension) (A : Model {a} {ℓ₁}) (n : ℕ) where open FreeExtension X renaming (_[_] to _[_]₁; _[_]-isFrex to _[_]₁-isFrex) open FreeExtension Y renaming (_[_] to _[_]₂; _[_]-isFrex to _[_]₂-isFrex) open IsCoproduct (A [ n ]₁-isFrex) renaming (inl to inl₁; inr to inr₁; _[_,_] to _[_,_]₁; commute₁ to commute₁₁; commute₂ to commute₂₁) open IsCoproduct (A [ n ]₂-isFrex) renaming (inl to inl₂; inr to inr₂; _[_,_] to _[_,_]₂; commute₁ to commute₁₂; commute₂ to commute₂₂) using () to : ∥ A [ n ]₂ ∥ₐ ⟿ ∥ A [ n ]₁ ∥ₐ to = (A [ n ]₁) [ inl₁ , inr₁ ]₂ from : ∥ A [ n ]₁ ∥ₐ ⟿ ∥ A [ n ]₂ ∥ₐ from = (A [ n ]₂) [ inl₂ , inr₂ ]₁ inv : to ⊙ from ≗ id inv = begin to ⊙ from ≈⟨ ≗-sym {f = (A [ n ]₁) [ inl₁ , inr₁ ]₁} {g = to ⊙ from} (universal {h = to ⊙ from} c₁ c₂) ⟩ (A [ n ]₁) [ inl₁ , inr₁ ]₁ ≈⟨ universal {h = id} (id-unitˡ {f = inl₁}) (id-unitˡ {f = inr₁}) ⟩ id ∎ where c₁ : (to ⊙ from) ⊙ inl₁ ≗ inl₁ c₁ = begin (to ⊙ from) ⊙ inl₁ ≈⟨ ⊙-assoc to from inl₁ ⟩ to ⊙ (from ⊙ inl₁) ≈⟨ ⊙-congˡ to (from ⊙ inl₁) inl₂ (commute₁₁ {f = inl₂} {g = inr₂}) ⟩ to ⊙ inl₂ ≈⟨ commute₁₂ {X = A [ n ]₁} {f = inl₁} {g = inr₁} ⟩ inl₁ ∎ where open Reasoning (∥ A ∥ₐ ⟿ ∥ A [ n ]₁ ∥ₐ /≗) c₂ : (to ⊙ from) ⊙ inr₁ ≗ inr₁ c₂ = begin (to ⊙ from) ⊙ inr₁ ≈⟨ ⊙-assoc to from inr₁ ⟩ to ⊙ (from ⊙ inr₁) ≈⟨ ⊙-congˡ to (from ⊙ inr₁) inr₂ (commute₂₁ {f = inl₂} {g = inr₂}) ⟩ to ⊙ inr₂ ≈⟨ commute₂₂ {X = A [ n ]₁} {f = inl₁} {g = inr₁} ⟩ inr₁ ∎ where open Reasoning (∥ J n ∥ₐ ⟿ ∥ A [ n ]₁ ∥ₐ /≗) open Reasoning (∥ A [ n ]₁ ∥ₐ ⟿ ∥ A [ n ]₁ ∥ₐ /≗) module _ (X : FreeExtension) (Y : FreeExtension) (A : Model {a} {ℓ₁}) (n : ℕ) where open FreeExtension X renaming (_[_] to _[_]₁) open FreeExtension Y renaming (_[_] to _[_]₂) iso : ∥ A [ n ]₁ ∥ₐ ≃ ∥ A [ n ]₂ ∥ₐ iso = record { _⃗ = to Y X A n ; _⃖ = from Y X A n ; invˡ = inv Y X A n ; invʳ = inv X Y A n } module _ (X : FreeExtension) (A : Model {a} {ℓ₁}) {n : ℕ} where open FreeExtension X open FreeExtension SynFrex renaming (_[_] to _[_]ₛ; _[_]-isFrex to _[_]ₛ-isFrex) open IsCoproduct (A [ n ]-isFrex) open IsCoproduct (A [ n ]ₛ-isFrex) renaming (_[_,_] to _[_,_]ₛ) using () open Setoid ∥ A [ n ] ∥/≈ renaming (_≈_ to _≋_) open Setoid ∥ A ∥/≈ using (_≈_) norm = to X SynFrex A n syn = from X SynFrex A n reduce : (θ : Env ∥ A ∥ₐ n) → ∥ A [ n ]ₛ ∥ₐ ⟿ ∥ A ∥ₐ reduce θ = A [ id , interp A θ ]ₛ module _ (Γ : Vec ∥ A ∥ n) where private θ : Env ∥ A ∥ₐ n θ = env {A = ∥ A ∥ₐ} Γ frexify : ∀ {lhs rhs : Term (BT ∥ A ∥ n)} → ∣ norm ∣ lhs ≋ ∣ norm ∣ rhs → ∣ reduce θ ∣ lhs ≈ ∣ reduce θ ∣ rhs frexify {lhs = lhs} {rhs = rhs} p = begin ∣ reduce θ ∣ lhs ≈⟨ Setoid.sym ∥ A ∥/≈ (∣ reduce θ ∣-cong (inv SynFrex X A n {x = lhs})) ⟩ ∣ reduce θ ∣ (∣ syn ∣ (∣ norm ∣ lhs)) ≈⟨ ∣ reduce θ ∣-cong (∣ syn ∣-cong p) ⟩ ∣ reduce θ ∣ (∣ syn ∣ (∣ norm ∣ rhs)) ≈⟨ ∣ reduce θ ∣-cong (inv SynFrex X A n {x = rhs}) ⟩ ∣ reduce θ ∣ rhs ∎ where open Reasoning ∥ A ∥/≈
30.359712
104
0.522038
d1f6e738163d85c6448a0e6d1f152b828bfe5c75
3,762
agda
Agda
Cubical/HITs/ListedFiniteSet/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/ListedFiniteSet/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/ListedFiniteSet/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.ListedFiniteSet.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sum as ⊎ using (_⊎_; inl; inr) open import Cubical.Functions.Logic private variable ℓ : Level A B : Type ℓ infixr 20 _∷_ -- infix 30 _∈_ infixr 5 _++_ data LFSet (A : Type ℓ) : Type ℓ where [] : LFSet A _∷_ : (x : A) → (xs : LFSet A) → LFSet A dup : ∀ x xs → x ∷ x ∷ xs ≡ x ∷ xs comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs trunc : isSet (LFSet A) -- Membership. -- -- Doing some proofs with equational reasoning adds an extra "_∙ refl" -- at the end. -- We might want to avoid it, or come up with a more clever equational reasoning. _∈_ : {A : Type ℓ} → A → LFSet A → hProp ℓ z ∈ [] = Lift ⊥.⊥ , isOfHLevelLift 1 isProp⊥ z ∈ (y ∷ xs) = (z ≡ₚ y) ⊔ (z ∈ xs) z ∈ dup x xs i = proof i where -- proof : z ∈ (x ∷ x ∷ xs) ≡ z ∈ (x ∷ xs) proof = z ≡ₚ x ⊔ (z ≡ₚ x ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ x) (z ∈ xs) ⟩ (z ≡ₚ x ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-idem (z ≡ₚ x)) ⟩ z ≡ₚ x ⊔ z ∈ xs ∎ z ∈ comm x y xs i = proof i where -- proof : z ∈ (x ∷ y ∷ xs) ≡ z ∈ (y ∷ x ∷ xs) proof = z ≡ₚ x ⊔ (z ≡ₚ y ⊔ z ∈ xs) ≡⟨ ⊔-assoc (z ≡ₚ x) (z ≡ₚ y) (z ∈ xs) ⟩ (z ≡ₚ x ⊔ z ≡ₚ y) ⊔ z ∈ xs ≡⟨ cong (_⊔ (z ∈ xs)) (⊔-comm (z ≡ₚ x) (z ≡ₚ y)) ⟩ (z ≡ₚ y ⊔ z ≡ₚ x) ⊔ z ∈ xs ≡⟨ sym (⊔-assoc (z ≡ₚ y) (z ≡ₚ x) (z ∈ xs)) ⟩ z ≡ₚ y ⊔ (z ≡ₚ x ⊔ z ∈ xs) ∎ x ∈ trunc xs ys p q i j = isSetHProp (x ∈ xs) (x ∈ ys) (cong (x ∈_) p) (cong (x ∈_) q) i j module Elim {ℓ} {B : LFSet A → Type ℓ} ([]* : B []) (_∷*_ : (x : A) {xs : LFSet A} → B xs → B (x ∷ xs)) (comm* : (x y : A) {xs : LFSet A} (b : B xs) → PathP (λ i → B (comm x y xs i)) (x ∷* (y ∷* b)) (y ∷* (x ∷* b))) (dup* : (x : A) {xs : LFSet A} (b : B xs) → PathP (λ i → B (dup x xs i)) (x ∷* (x ∷* b)) (x ∷* b)) (trunc* : (xs : LFSet A) → isSet (B xs)) where f : ∀ x → B x f [] = []* f (x ∷ xs) = x ∷* f xs f (dup x xs i) = dup* x (f xs) i f (comm x y xs i) = comm* x y (f xs) i f (trunc x y p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f x) (f y) (λ i → f (p i)) (λ i → f (q i)) (trunc x y p q) i j module Rec {ℓ} {B : Type ℓ} ([]* : B) (_∷*_ : (x : A) → B → B) (comm* : (x y : A) (xs : B) → (x ∷* (y ∷* xs)) ≡ (y ∷* (x ∷* xs))) (dup* : (x : A) (b : B) → (x ∷* (x ∷* b)) ≡ (x ∷* b)) (trunc* : isSet B) where f : LFSet A → B f = Elim.f []* (λ x xs → x ∷* xs) (λ x y b → comm* x y b) (λ x b → dup* x b) λ _ → trunc* module PropElim {ℓ} {B : LFSet A → Type ℓ} ([]* : B []) (_∷*_ : (x : A) {xs : LFSet A} → B xs → B (x ∷ xs)) (trunc* : (xs : LFSet A) → isProp (B xs)) where f : ∀ x → B x f = Elim.f []* _∷*_ (λ _ _ _ → isOfHLevel→isOfHLevelDep 1 trunc* _ _ _) (λ _ _ → isOfHLevel→isOfHLevelDep 1 trunc* _ _ _) λ xs → isProp→isSet (trunc* xs) _++_ : ∀ (xs ys : LFSet A) → LFSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) dup x xs i ++ ys = dup x (xs ++ ys) i comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j map : (A → B) → LFSet A → LFSet B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs map f (dup x xs i) = dup (f x) (map f xs) i map f (comm x y xs i) = comm (f x) (f y) (map f xs) i map f (trunc xs ys p q i j) = trunc (map f xs) (map f ys) (cong (map f) p) (cong (map f) q) i j disj-union : LFSet A → LFSet B → LFSet (A ⊎ B) disj-union xs ys = map ⊎.inl xs ++ map ⊎.inr ys
32.431034
90
0.45109
5e3a2aa49ae0ca7bd705722c9d6214f6d34fdfb6
71
agda
Agda
test/Fail/Sections-9.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Sections-9.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Sections-9.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
open import Common.Prelude ⟨_⟩_ : Bool → Bool → Bool ⟨ _ ⟩_ = λ b → b
14.2
26
0.591549
21a26aa5e2f8801a1be63515c361cc5424d68382
1,477
agda
Agda
test/succeed/CopatternTrailingImplicit.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/CopatternTrailingImplicit.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/CopatternTrailingImplicit.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
{-# OPTIONS --copatterns --sized-types #-} -- {-# OPTIONS -v tc.size.solve:30 #-} -- {-# OPTIONS -v term:40 -v term.proj:60 --show-implicit #-} -- Andreas, 2013-10-01 Make sure trailing implicit insertion -- works with copatterns module CopatternTrailingImplicit where import Common.Level open import Common.Size open import Common.Prelude -- Sized streams record Stream (A : Set) {i : Size} : Set where coinductive field head : A tail : {j : Size< i} → Stream A {j} open Stream -- Mapping over streams map : {A B : Set} (f : A → B) {i : Size} → Stream A {i} → Stream B {i} tail (map f {i} s) {j} = map f (tail s) head (map f s) = f (head s) -- Nats defined using map nats : {i : Size} → Stream Nat {i} head nats = 0 tail nats = map suc nats -- Before this patch, Agda would insert a {_} also in the `head' clause -- leading to a type error. -- 2013-10-12 works now also without manual {_} insertion -- (See TermCheck.introHiddenLambdas.) nats' : {i : Size} → Stream Nat {i} head nats' = 0 tail nats' = map suc nats' -- Before this latest patch, the termination checker would complain -- since it would not see the type of the hidden {j : Size< i} -- which is the argument to the recursive call. -- All this would not be an issue if Agda still eagerly introduced -- trailing hidden arguments on the LHS, but this has other -- drawbacks (Q: even with varying arity?): cannot have -- hidden lambdas on rhs (used to name trailing hiddens in with-clauses).
28.960784
73
0.679756
21149a18e05d1a806bc9f49ec251495f16f1c0ab
1,198
agda
Agda
Nehemiah/Change/Derive.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Nehemiah/Change/Derive.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Nehemiah/Change/Derive.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Incrementalization as term-to-term transformation with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Change.Derive where open import Nehemiah.Syntax.Type open import Nehemiah.Syntax.Term open import Nehemiah.Change.Type open import Nehemiah.Change.Term open import Data.Integer import Parametric.Change.Derive Const ΔBase as Derive derive-const : Derive.Structure derive-const (intlit-const n) = intlit (+ 0) derive-const add-const = absV 4 (λ s ds t dt → add ds dt) derive-const minus-const = absV 2 (λ t dt → minus dt) derive-const empty-const = empty derive-const insert-const = absV 4 (λ s ds t dt → insert (s ⊕₍ int ₎ ds) (t ⊕₍ bag ₎ dt) ⊝ insert s t) derive-const union-const = absV 4 (λ s ds t dt → union ds dt) derive-const negate-const = absV 2 (λ t dt → negate dt) derive-const flatmap-const = absV 4 (λ s ds t dt → flatmap (s ⊕₍ int ⇒ bag ₎ ds) (t ⊕₍ bag ₎ dt) ⊝ flatmap s t) derive-const sum-const = absV 2 (λ t dt → sum dt) open Derive.Structure derive-const public
37.4375
78
0.607679
21200c2fe4acbc652abec946405bc20ea444f962
3,900
agda
Agda
Definition/LogicalRelation/Properties/Escape.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Properties/Escape.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Properties/Escape.agda
Vtec234/logrel-mltt
4746894adb5b8edbddc8463904ee45c2e9b29b69
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Escape {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Typed.Properties open import Definition.LogicalRelation open import Tools.Product import Tools.PropositionalEquality as PE -- Reducible types are well-formed. escape : ∀ {l Γ A} → Γ ⊩⟨ l ⟩ A → Γ ⊢ A escape (Uᵣ′ l′ l< ⊢Γ) = Uⱼ ⊢Γ escape (ℕᵣ [ ⊢A , ⊢B , D ]) = ⊢A escape (Emptyᵣ [ ⊢A , ⊢B , D ]) = ⊢A escape (Unitᵣ [ ⊢A , ⊢B , D ]) = ⊢A escape (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) = ⊢A escape (Bᵣ′ W F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) = ⊢A escape (emb 0<1 A) = escape A -- Reducible type equality respect the equality relation. escapeEq : ∀ {l Γ A B} → ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊢ A ≅ B escapeEq (Uᵣ′ l′ l< ⊢Γ) PE.refl = ≅-Urefl ⊢Γ escapeEq (ℕᵣ [ ⊢A , ⊢B , D ]) D′ = ≅-red D D′ ℕₙ ℕₙ (≅-ℕrefl (wf ⊢A)) escapeEq (Emptyᵣ [ ⊢A , ⊢B , D ]) D′ = ≅-red D D′ Emptyₙ Emptyₙ (≅-Emptyrefl (wf ⊢A)) escapeEq (Unitᵣ [ ⊢A , ⊢B , D ]) D′ = ≅-red D D′ Unitₙ Unitₙ (≅-Unitrefl (wf ⊢A)) escapeEq (ne′ K D neK K≡K) (ne₌ M D′ neM K≡M) = ≅-red (red D) (red D′) (ne neK) (ne neM) (~-to-≅ K≡M) escapeEq (Bᵣ′ W F G D ⊢F ⊢G A≡A [F] [G] G-ext) (B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) = ≅-red (red D) D′ ⟦ W ⟧ₙ ⟦ W ⟧ₙ A≡B escapeEq (emb 0<1 A) A≡B = escapeEq A A≡B -- Reducible terms are well-formed. escapeTerm : ∀ {l Γ A t} → ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ t ∷ A / [A] → Γ ⊢ t ∷ A escapeTerm (Uᵣ′ l′ l< ⊢Γ) (Uₜ A [ ⊢t , ⊢u , d ] typeA A≡A [A]) = ⊢t escapeTerm (ℕᵣ D) (ℕₜ n [ ⊢t , ⊢u , d ] t≡t prop) = conv ⊢t (sym (subset* (red D))) escapeTerm (Emptyᵣ D) (Emptyₜ e [ ⊢t , ⊢u , d ] t≡t prop) = conv ⊢t (sym (subset* (red D))) escapeTerm (Unitᵣ D) (Unitₜ e [ ⊢t , ⊢u , d ] prop) = conv ⊢t (sym (subset* (red D))) escapeTerm (ne′ K D neK K≡K) (neₜ k [ ⊢t , ⊢u , d ] nf) = conv ⊢t (sym (subset* (red D))) escapeTerm (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f [ ⊢t , ⊢u , d ] funcF f≡f [f] [f]₁) = conv ⊢t (sym (subset* (red D))) escapeTerm (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Σₜ p [ ⊢t , ⊢u , d ] pProd p≅p [fst] [snd]) = conv ⊢t (sym (subset* (red D))) escapeTerm (emb 0<1 A) t = escapeTerm A t -- Reducible term equality respect the equality relation. escapeTermEq : ∀ {l Γ A t u} → ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] → Γ ⊢ t ≅ u ∷ A escapeTermEq (Uᵣ′ l′ l< ⊢Γ) (Uₜ₌ A B d d′ typeA typeB A≡B [A] [B] [A≡B]) = ≅ₜ-red (id (Uⱼ ⊢Γ)) (redₜ d) (redₜ d′) Uₙ (typeWhnf typeA) (typeWhnf typeB) A≡B escapeTermEq (ℕᵣ D) (ℕₜ₌ k k′ d d′ k≡k′ prop) = let natK , natK′ = split prop in ≅ₜ-red (red D) (redₜ d) (redₜ d′) ℕₙ (naturalWhnf natK) (naturalWhnf natK′) k≡k′ escapeTermEq (Emptyᵣ D) (Emptyₜ₌ k k′ d d′ k≡k′ prop) = let natK , natK′ = esplit prop in ≅ₜ-red (red D) (redₜ d) (redₜ d′) Emptyₙ (ne natK) (ne natK′) k≡k′ escapeTermEq {l} {Γ} {A} {t} {u} (Unitᵣ D) (Unitₜ₌ ⊢t ⊢u) = let t≅u = ≅ₜ-η-unit ⊢t ⊢u A≡Unit = subset* (red D) in ≅-conv t≅u (sym A≡Unit) escapeTermEq (ne′ K D neK K≡K) (neₜ₌ k m d d′ (neNfₜ₌ neT neU t≡u)) = ≅ₜ-red (red D) (redₜ d) (redₜ d′) (ne neK) (ne neT) (ne neU) (~-to-≅ₜ t≡u) escapeTermEq (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g]) = ≅ₜ-red (red D) (redₜ d) (redₜ d′) Πₙ (functionWhnf funcF) (functionWhnf funcG) f≡g escapeTermEq (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Σₜ₌ p r d d′ pProd rProd p≅r [t] [u] [fstp] [fstr] [fst≡] [snd≡]) = ≅ₜ-red (red D) (redₜ d) (redₜ d′) Σₙ (productWhnf pProd) (productWhnf rProd) p≅r escapeTermEq (emb 0<1 A) t≡u = escapeTermEq A t≡u
41.935484
85
0.52641
1bccc0f6ce00a1e78170086228874228b0e4e897
2,002
agda
Agda
agda-stdlib/src/Data/Container/Indexed/FreeMonad.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Container/Indexed/FreeMonad.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Container/Indexed/FreeMonad.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- The free monad construction on indexed containers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --guardedness #-} module Data.Container.Indexed.FreeMonad where open import Level open import Function hiding (const) open import Category.Monad.Predicate open import Data.Container.Indexed open import Data.Container.Indexed.Combinator hiding (id; _∘_) open import Data.Empty open import Data.Sum.Base using (inj₁; inj₂) open import Data.Product open import Data.W.Indexed open import Relation.Unary open import Relation.Unary.PredicateTransformer open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------ infixl 9 _⋆C_ infix 9 _⋆_ _⋆C_ : ∀ {i o c r} {I : Set i} {O : Set o} → Container I O c r → Pred O c → Container I O _ _ C ⋆C X = const X ⊎ C _⋆_ : ∀ {ℓ} {O : Set ℓ} → Container O O ℓ ℓ → Pt O ℓ C ⋆ X = μ (C ⋆C X) pattern returnP x = (inj₁ x , _) pattern doP c k = (inj₂ c , k) inn : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {X} → ⟦ C ⟧ (C ⋆ X) ⊆ C ⋆ X inn (c , k) = sup (doP c k) rawPMonad : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} → RawPMonad {ℓ = ℓ} (_⋆_ C) rawPMonad {C = C} = record { return? = return ; _=<?_ = _=<<_ } where return : ∀ {X} → X ⊆ C ⋆ X return x = sup (inj₁ x , ⊥-elim ∘ lower) _=<<_ : ∀ {X Y} → X ⊆ C ⋆ Y → C ⋆ X ⊆ C ⋆ Y f =<< sup (returnP x) = f x f =<< sup (doP c k) = inn (c , λ r → f =<< k r) leaf : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {X : Pred O ℓ} → ⟦ C ⟧ X ⊆ C ⋆ X leaf (c , k) = inn (c , return? ∘ k) where open RawPMonad rawPMonad generic : ∀ {ℓ} {O : Set ℓ} {C : Container O O ℓ ℓ} {o} (c : Command C o) → o ∈ C ⋆ (⋃[ r ∶ Response C c ] { next C c r }) generic c = inn (c , λ r → return? (r , refl)) where open RawPMonad rawPMonad
29.014493
72
0.516484
5e02e4238913cd4ef871177b0e9af814e77b0ada
377
agda
Agda
test/Fail/Issue2854.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2854.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2854.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-11-19, issue #2854 -- Agda should not complain about "possibly empty type of sizes" -- if the SIZELT builtin is not bound. data Tree : Set₁ where node : {A : Set} (f : A → Tree) → Tree const : Tree → Tree const t = node λ x → t -- WAS: -- Failed to solve the following constraints: -- Is not empty type of sizes: _A_6 t -- Expected: -- Unsolved meta.
20.944444
64
0.657825
3548fab9eb62a332e63c3e4c294520af2e6251e0
1,714
agda
Agda
agda-stdlib/src/Data/Vec/Recursive/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Vec/Recursive/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Vec/Recursive/Categorical.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of vectors defined by recursion ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Recursive.Categorical where open import Agda.Builtin.Nat open import Data.Product hiding (map) open import Data.Vec.Recursive open import Function open import Category.Functor open import Category.Applicative open import Category.Monad ------------------------------------------------------------------------ -- Functor and applicative functor : ∀ {ℓ} n → RawFunctor {ℓ} (_^ n) functor n = record { _<$>_ = λ f → map f n } applicative : ∀ {ℓ} n → RawApplicative {ℓ} (_^ n) applicative n = record { pure = replicate n ; _⊛_ = ap n } ------------------------------------------------------------------------ -- Get access to other monadic functions module _ {f F} (App : RawApplicative {f} F) where open RawApplicative App sequenceA : ∀ {n A} → F A ^ n → F (A ^ n) sequenceA {0} _ = pure _ sequenceA {1} fa = fa sequenceA {2+ n} (fa , fas) = _,_ <$> fa ⊛ sequenceA fas mapA : ∀ {n a} {A : Set a} {B} → (A → F B) → A ^ n → F (B ^ n) mapA f = sequenceA ∘ map f _ forA : ∀ {n a} {A : Set a} {B} → A ^ n → (A → F B) → F (B ^ n) forA = flip mapA module _ {m M} (Mon : RawMonad {m} M) where private App = RawMonad.rawIApplicative Mon sequenceM : ∀ {n A} → M A ^ n → M (A ^ n) sequenceM = sequenceA App mapM : ∀ {n a} {A : Set a} {B} → (A → M B) → A ^ n → M (B ^ n) mapM = mapA App forM : ∀ {n a} {A : Set a} {B} → A ^ n → (A → M B) → M (B ^ n) forM = forA App
27.645161
72
0.483664
1a59a4035e2e7c576ce6ac5cc7788cb01c99ead6
138
agda
Agda
test/Succeed/LetInstance.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/LetInstance.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/LetInstance.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where postulate C : Set → Set A : Set i : C A foo : {X : Set} {{_ : C X}} → X bar : A bar = let instance z = i in foo
11.5
33
0.514493
d19485d0b5d390c6258b50110f5563f8182f56e9
5,511
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NaturalOrder/Left.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NaturalOrder/Left.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/Construct/NaturalOrder/Left.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Conversion of binary operators to binary relations via the left -- natural order. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary open import Algebra.FunctionProperties using (Op₂) module Relation.Binary.Construct.NaturalOrder.Left {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) (_∙_ : Op₂ A) where open import Algebra.FunctionProperties _≈_ open import Algebra.Structures _≈_ open import Data.Product using (_,_; _×_) open import Data.Sum using (inj₁; inj₂) open import Relation.Nullary using (¬_) import Relation.Binary.Reasoning.Setoid as EqReasoning open import Relation.Binary.Lattice using (Infimum) ------------------------------------------------------------------------ -- Definition infix 4 _≤_ _≤_ : Rel A ℓ x ≤ y = x ≈ (x ∙ y) ------------------------------------------------------------------------ -- Relational properties reflexive : IsMagma _∙_ → Idempotent _∙_ → _≈_ ⇒ _≤_ reflexive magma idem {x} {y} x≈y = begin x ≈⟨ sym (idem x) ⟩ x ∙ x ≈⟨ ∙-cong refl x≈y ⟩ x ∙ y ∎ where open IsMagma magma; open EqReasoning setoid refl : Symmetric _≈_ → Idempotent _∙_ → Reflexive _≤_ refl sym idem {x} = sym (idem x) antisym : IsEquivalence _≈_ → Commutative _∙_ → Antisymmetric _≈_ _≤_ antisym isEq comm {x} {y} x≤y y≤x = begin x ≈⟨ x≤y ⟩ x ∙ y ≈⟨ comm x y ⟩ y ∙ x ≈⟨ sym y≤x ⟩ y ∎ where open IsEquivalence isEq; open EqReasoning (record { isEquivalence = isEq }) total : Symmetric _≈_ → Transitive _≈_ → Selective _∙_ → Commutative _∙_ → Total _≤_ total sym trans sel comm x y with sel x y ... | inj₁ x∙y≈x = inj₁ (sym x∙y≈x) ... | inj₂ x∙y≈y = inj₂ (sym (trans (comm y x) x∙y≈y)) trans : IsSemigroup _∙_ → Transitive _≤_ trans semi {x} {y} {z} x≤y y≤z = begin x ≈⟨ x≤y ⟩ x ∙ y ≈⟨ ∙-cong S.refl y≤z ⟩ x ∙ (y ∙ z) ≈⟨ sym (assoc x y z) ⟩ (x ∙ y) ∙ z ≈⟨ ∙-cong (sym x≤y) S.refl ⟩ x ∙ z ∎ where open module S = IsSemigroup semi; open EqReasoning S.setoid respʳ : IsMagma _∙_ → _≤_ Respectsʳ _≈_ respʳ magma {x} {y} {z} y≈z x≤y = begin x ≈⟨ x≤y ⟩ x ∙ y ≈⟨ ∙-cong M.refl y≈z ⟩ x ∙ z ∎ where open module M = IsMagma magma; open EqReasoning M.setoid respˡ : IsMagma _∙_ → _≤_ Respectsˡ _≈_ respˡ magma {x} {y} {z} y≈z y≤x = begin z ≈⟨ sym y≈z ⟩ y ≈⟨ y≤x ⟩ y ∙ x ≈⟨ ∙-cong y≈z M.refl ⟩ z ∙ x ∎ where open module M = IsMagma magma; open EqReasoning M.setoid resp₂ : IsMagma _∙_ → _≤_ Respects₂ _≈_ resp₂ magma = respʳ magma , respˡ magma dec : Decidable _≈_ → Decidable _≤_ dec _≟_ x y = x ≟ (x ∙ y) module _ (semi : IsSemilattice _∙_) where private open module S = IsSemilattice semi open EqReasoning setoid x∙y≤x : ∀ x y → (x ∙ y) ≤ x x∙y≤x x y = begin x ∙ y ≈⟨ ∧-cong (sym (idem x)) S.refl ⟩ (x ∙ x) ∙ y ≈⟨ assoc x x y ⟩ x ∙ (x ∙ y) ≈⟨ comm x (x ∙ y) ⟩ (x ∙ y) ∙ x ∎ x∙y≤y : ∀ x y → (x ∙ y) ≤ y x∙y≤y x y = begin x ∙ y ≈⟨ ∧-cong S.refl (sym (idem y)) ⟩ x ∙ (y ∙ y) ≈⟨ sym (assoc x y y) ⟩ (x ∙ y) ∙ y ∎ ∙-presʳ-≤ : ∀ {x y} z → z ≤ x → z ≤ y → z ≤ (x ∙ y) ∙-presʳ-≤ {x} {y} z z≤x z≤y = begin z ≈⟨ z≤y ⟩ z ∙ y ≈⟨ ∧-cong z≤x S.refl ⟩ (z ∙ x) ∙ y ≈⟨ assoc z x y ⟩ z ∙ (x ∙ y) ∎ infimum : Infimum _≤_ _∙_ infimum x y = x∙y≤x x y , x∙y≤y x y , ∙-presʳ-≤ ------------------------------------------------------------------------ -- Structures isPreorder : IsBand _∙_ → IsPreorder _≈_ _≤_ isPreorder band = record { isEquivalence = isEquivalence ; reflexive = reflexive isMagma idem ; trans = trans isSemigroup } where open IsBand band hiding (reflexive; trans) isPartialOrder : IsSemilattice _∙_ → IsPartialOrder _≈_ _≤_ isPartialOrder semilattice = record { isPreorder = isPreorder isBand ; antisym = antisym isEquivalence comm } where open IsSemilattice semilattice isDecPartialOrder : IsSemilattice _∙_ → Decidable _≈_ → IsDecPartialOrder _≈_ _≤_ isDecPartialOrder semilattice _≟_ = record { isPartialOrder = isPartialOrder semilattice ; _≟_ = _≟_ ; _≤?_ = dec _≟_ } isTotalOrder : IsSemilattice _∙_ → Selective _∙_ → IsTotalOrder _≈_ _≤_ isTotalOrder latt sel = record { isPartialOrder = isPartialOrder latt ; total = total sym S.trans sel comm } where open module S = IsSemilattice latt isDecTotalOrder : IsSemilattice _∙_ → Selective _∙_ → Decidable _≈_ → IsDecTotalOrder _≈_ _≤_ isDecTotalOrder latt sel _≟_ = record { isTotalOrder = isTotalOrder latt sel ; _≟_ = _≟_ ; _≤?_ = dec _≟_ } ------------------------------------------------------------------------ -- Packages preorder : IsBand _∙_ → Preorder a ℓ ℓ preorder band = record { isPreorder = isPreorder band } poset : IsSemilattice _∙_ → Poset a ℓ ℓ poset latt = record { isPartialOrder = isPartialOrder latt } decPoset : IsSemilattice _∙_ → Decidable _≈_ → DecPoset a ℓ ℓ decPoset latt dec = record { isDecPartialOrder = isDecPartialOrder latt dec } totalOrder : IsSemilattice _∙_ → Selective _∙_ → TotalOrder a ℓ ℓ totalOrder latt sel = record { isTotalOrder = isTotalOrder latt sel } decTotalOrder : IsSemilattice _∙_ → Selective _∙_ → Decidable _≈_ → DecTotalOrder a ℓ ℓ decTotalOrder latt sel dec = record { isDecTotalOrder = isDecTotalOrder latt sel dec }
29.789189
84
0.565778
1bb126fd6ce8091e8c456c512e09f41199cf2a78
5,692
agda
Agda
agda/Music.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
28
2017-04-21T09:08:52.000Z
2022-03-04T18:04:07.000Z
agda/Music.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
1
2020-11-13T01:26:20.000Z
2020-11-17T00:58:55.000Z
agda/Music.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
3
2019-01-12T17:02:36.000Z
2020-11-10T04:04:40.000Z
{-# OPTIONS --erased-cubical --safe #-} module Music where open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_; _≤?_) open import Data.Integer using (ℤ; +_) open import Data.List using (List; foldr; []; _∷_; reverse; sum; map) open import Data.Product using (_×_; _,_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Vec using (Vec; []; _∷_; replicate; concat; zipWith; toList; _++_; foldr₁; take; drop) renaming (map to vmap) open import Function using (_∘_) open import Data.Nat.Properties using (<⇒≤) open import Relation.Nullary using (yes; no) open import Relation.Binary.PropositionalEquality using (sym; subst) open import Nat open import Note open import Pitch open import Interval -- A point in the music grid, which can either be a tone, -- a continuation of a previous tone, or a rest. data Point : Set where tone : Pitch → Point hold : Pitch → Point rest : Point data Melody (n : ℕ) : Set where melody : Vec Point n → Melody n unmelody : {n : ℕ} → Melody n → Vec Point n unmelody (melody ps) = ps infixr 5 _m++_ _m++_ : {m n : ℕ} → Melody m → Melody n → Melody (m + n) melody a m++ melody b = melody (a ++ b) note→melody : (n : Note) → Melody (noteDuration n) note→melody (tone zero p) = melody [] note→melody (tone (suc d) p) = melody (tone p ∷ replicate (hold p)) note→melody (rest _) = melody (replicate rest) notes→melody : (ns : List Note) → Melody (sum (map noteDuration ns)) notes→melody [] = melody [] notes→melody (n ∷ ns) = note→melody n m++ notes→melody ns pitches→melody : {n : ℕ} → (d : Duration) → (ps : Vec Pitch n) → Melody (n * d) pitches→melody d ps = melody (concat (vmap (unmelody ∘ note→melody ∘ tone d) ps)) -- Assumes melody is well-formed in that a held note has the -- same pitch as the note before it. -- Does not consolidate rests. melody→notes : {n : ℕ} → Melody n → List Note melody→notes (melody m) = (reverse ∘ mn 0 ∘ reverse ∘ toList) m where mn : ℕ → List Point → List Note -- c is the number of held points mn c [] = [] mn c (tone p ∷ ps) = tone (suc c) p ∷ mn 0 ps mn c (hold _ ∷ ps) = mn (suc c) ps mn c (rest ∷ ps) = rest 1 ∷ mn 0 ps transposePoint : ℤ → Point → Point transposePoint k (tone p) = tone (transposePitch k p) transposePoint k (hold p) = hold (transposePitch k p) transposePoint k rest = rest transposeMelody : {n : ℕ} → ℤ → Melody n → Melody n transposeMelody k = melody ∘ vmap (transposePoint k) ∘ unmelody data Chord (n : ℕ) : Set where chord : Vec Point n → Chord n unchord : {n : ℕ} → Chord n → Vec Point n unchord (chord ps) = ps -- We represent music as a v × d grid where v is the number of voices and d is the duration. -- The primary representation is as parallel melodies (counterpoint). data Counterpoint (v : ℕ) (d : ℕ): Set where cp : Vec (Melody d) v → Counterpoint v d uncp : {v d : ℕ} → Counterpoint v d → Vec (Melody d) v uncp (cp m) = m -- An alternative representation of music is as a series of chords (harmonic progression). data Harmony (v : ℕ) (d : ℕ): Set where harmony : Vec (Chord v) d → Harmony v d unharmony : {v d : ℕ} → Harmony v d → Vec (Chord v) d unharmony (harmony h) = h pitches→harmony : {n : ℕ} (d : Duration) → (ps : Vec Pitch n) → Harmony n d pitches→harmony zero ps = harmony [] pitches→harmony (suc d) ps = harmony (chord (vmap tone ps) ∷ replicate (chord (vmap hold ps))) pitchPair→Harmony : (d : Duration) → PitchPair → Harmony 2 d pitchPair→Harmony d (p , q) = pitches→harmony d (p ∷ q ∷ []) pitchInterval→Harmony : (d : Duration) → PitchInterval → Harmony 2 d pitchInterval→Harmony d = pitchPair→Harmony d ∘ pitchIntervalToPitchPair {- pitchIntervalsToCounterpoint : PitchInterval → Counterpoint pitchIntervalsToCounterpoint = pitchPairToCounterpoint ∘ pitchIntervalToPitchPair -} addEmptyVoice : {v d : ℕ} → Harmony v d → Harmony (suc v) d addEmptyVoice (harmony h) = harmony (vmap (chord ∘ (rest ∷_) ∘ unchord) h) infixl 5 _+H+_ _+H+_ : {v d d' : ℕ} → Harmony v d → Harmony v d' → Harmony v (d + d') h +H+ h' = harmony (unharmony h ++ unharmony h') foldIntoHarmony : {k n : ℕ} (ds : Vec Duration (suc k)) → (pss : Vec (Vec Pitch n) (suc k)) → Harmony n (foldr₁ _+_ ds) foldIntoHarmony (d ∷ []) (ps ∷ []) = pitches→harmony d ps foldIntoHarmony (d ∷ d' ∷ ds) (ps ∷ ps' ∷ pss) = (pitches→harmony d ps) +H+ (foldIntoHarmony (d' ∷ ds) (ps' ∷ pss)) -- matrix transposition mtranspose : {A : Set}{m n : ℕ} → Vec (Vec A n) m → Vec (Vec A m) n mtranspose [] = replicate [] mtranspose (xs ∷ xss) = zipWith _∷_ xs (mtranspose xss) counterpoint→harmony : {v d : ℕ} → Counterpoint v d → Harmony v d counterpoint→harmony = harmony ∘ vmap chord ∘ mtranspose ∘ vmap unmelody ∘ uncp harmony→counterpoint : {v d : ℕ} → Harmony v d → Counterpoint v d harmony→counterpoint = cp ∘ vmap melody ∘ mtranspose ∘ vmap unchord ∘ unharmony -- Fix length of a melody, either truncating or padding with rests fixLength : {m : ℕ} → (n : ℕ) → Melody m → Melody n fixLength {m} n (melody ns) with <-∨-≥ n m ... | inj₁ n<m = melody (take n (subst (Vec Point) (sym (m+n-m=n n m {<⇒≤ n<m})) ns)) ... | inj₂ m≤n = melody (subst (Vec Point) (m+n-m=n m n) (ns ++ replicate {n = n - m ⟨ m≤n ⟩} rest)) holdToTone : Point → Point holdToTone (tone p) = tone p holdToTone (hold p) = tone p holdToTone rest = rest firstHoldToTone : {n : ℕ} → Melody n → Melody n firstHoldToTone (melody []) = melody [] firstHoldToTone (melody (x ∷ xs)) = melody (holdToTone x ∷ xs) -- Drop points, but convert any held tones to tones. dropPoints : {n : ℕ} → (m : ℕ) → Melody (m + n) → Melody n dropPoints m = firstHoldToTone ∘ melody ∘ drop m ∘ unmelody
38.721088
130
0.64863
fd57bf68d08f0a0801d287a037339a6201acba4b
146
agda
Agda
test/Succeed/Issue1538.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1538.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1538.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ (A : Set) where open import Common.Prelude open import Common.Reflection macro foo : Tactic foo _ = returnTC _ bar : ⊤ bar = foo
11.230769
29
0.691781
432601d1160394503aa67634c352e03142bcdef2
4,369
agda
Agda
test/LibSucceed/InstanceArguments/13-implicitProofObligations.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LibSucceed/InstanceArguments/13-implicitProofObligations.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LibSucceed/InstanceArguments/13-implicitProofObligations.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --universe-polymorphism #-} module InstanceArguments.13-implicitProofObligations where module Imports where module L where open import Agda.Primitive public using (Level; _⊔_) renaming (lzero to zero; lsuc to suc) -- extract from Data.Unit record ⊤ : Set where constructor tt -- extract from Data.Empty data ⊥ : Set where ⊥-elim : ∀ {w} {Whatever : Set w} → ⊥ → Whatever ⊥-elim () -- extract from Function id : ∀ {a} {A : Set a} → A → A id x = x _$_ : ∀ {a b} {A : Set a} {B : A → Set b} → ((x : A) → B x) → ((x : A) → B x) f $ x = f x _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) -- extract from Data.Bool data Bool : Set where true : Bool false : Bool not : Bool → Bool not true = false not false = true T : Bool → Set T true = ⊤ T false = ⊥ -- extract from Relation.Nullary.Decidable and friends infix 3 ¬_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ P = P → ⊥ data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P ⌊_⌋ : ∀ {p} {P : Set p} → Dec P → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false False : ∀ {p} {P : Set p} → Dec P → Set False Q = T (not ⌊ Q ⌋) -- extract from Relation.Binary.PropositionalEquality data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl _≢′_ : ∀ {a} {A : Set a} → A → A → Set a x ≢′ y = ¬ (x ≡ y) -- wrapper to be able to use instance search data _≢_ {a} {A : Set a} (x y : A) : Set a where not-equal : x ≢′ y → x ≢ y -- extract from Data.Nat data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} pred : ℕ → ℕ pred zero = zero pred (suc n) = n infixl 6 _+_ _+_ : ℕ → ℕ → ℕ -- zero + n = n -- suc m + n = suc (m + n) zero + n = n suc m + n = suc (m + n) _*_ : ℕ → ℕ → ℕ zero * n = zero suc m * n = n + (m * n) _≟_ : (x y : ℕ) → Dec (x ≡ y) zero ≟ zero = yes refl suc m ≟ suc n with m ≟ n suc m ≟ suc .m | yes refl = yes refl suc m ≟ suc n | no prf = no (prf ∘ cong pred) zero ≟ suc n = no λ() suc m ≟ zero = no λ() -- extract from Data.Fin data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) -- A conversion: toℕ "n" = n. toℕ : ∀ {n} → Fin n → ℕ toℕ zero = 0 toℕ (suc i) = suc (toℕ i) -- extract from Data.Product record Σ {a b} (A : Set a) (B : A → Set b) : Set (a L.⊔ b) where constructor _,_ field proj₁ : A proj₂ : B proj₁ _×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a L.⊔ b) A × B = Σ A (λ (_ : A) → B) -- extract from Data.Nat.DivMod data DivMod : ℕ → ℕ → Set where result : {divisor : ℕ} (q : ℕ) (r : Fin divisor) → DivMod (toℕ r + (q * divisor)) divisor data DivMod' (dividend divisor : ℕ) : Set where result : (q : ℕ) (r : Fin divisor) (eq : dividend ≡ (toℕ r + (q * divisor))) → DivMod' dividend divisor postulate _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor _divMod'_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod' dividend divisor open Imports -- Begin of actual example! postulate d : ℕ d≢0 : d ≢ 0 -- d≢0' : d ≢ 0 fromWitnessFalse : ∀ {p} {P : Set p} {Q : Dec P} → ¬ P → False Q fromWitnessFalse {Q = yes p} ¬P = ⊥-elim $ ¬P p fromWitnessFalse {Q = no ¬p} ¬P = tt ⋯ : {A : Set} → {{v : A}} → A ⋯ {{v}} = v _divMod′_ : (dividend divisor : ℕ) {{ ≢0 : divisor ≢ 0 }} → ℕ × ℕ _divMod′_ a d {{not-equal p}} with _divMod_ a d { fromWitnessFalse p } _divMod′_ ._ d {{not-equal p}} | (result q r) = q , toℕ r _div′_ : (dividend divisor : ℕ) {{ ≢0 : divisor ≢ 0 }} → ℕ _div′_ a b {{_}} with a divMod′ b a div′ b | (q , _) = q --Agda can't resolve hiddens -- test : {d≢0 : False (d ≟ 0)} → ℕ -- test = 5 div d -- test2 : {{d≢0 : d ≢ 0}} → ℕ -- test2 = 5 div′ d test3 = 5 div 2 test4 = 5 div′ 2 where instance nz : 2 ≢ 0 nz = not-equal λ()
23.616216
70
0.49073
1b73c694290d1618e51c1cbd81ade4f211038340
1,643
agda
Agda
Setoids/Cardinality/Infinite/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Setoids/Cardinality/Infinite/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Setoids/Cardinality/Infinite/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Functions.Definition open import Numbers.Naturals.Definition open import Numbers.Naturals.Order open import Sets.FinSet.Definition open import Sets.FinSet.Lemmas open import Setoids.Setoids open import Setoids.Cardinality.Infinite.Definition open import Sets.Cardinality.Infinite.Lemmas open import Setoids.Subset open import Sets.EquivalenceRelations module Setoids.Cardinality.Infinite.Lemmas where finsetNotInfiniteSetoid : {n : ℕ} → InfiniteSetoid (reflSetoid (FinSet n)) → False finsetNotInfiniteSetoid {n} isInfinite = isInfinite n id (record { inj = record { wellDefined = id ; injective = id } ; surj = record { wellDefined = id ; surjective = λ {x} → x , refl } }) dedekindInfiniteImpliesInfiniteSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → DedekindInfiniteSetoid S → InfiniteSetoid S dedekindInfiniteImpliesInfiniteSetoid S record { inj = inj ; isInjection = isInj } zero f isBij with SetoidInvertible.inverse (setoidBijectiveImpliesInvertible isBij) (inj 0) ... | () dedekindInfiniteImpliesInfiniteSetoid {A = A} S record { inj = inj ; isInjection = isInj } (succ n) f isBij = noInjectionNToFinite {f = t} tInjective where t : ℕ → FinSet (succ n) t n = SetoidInvertible.inverse (setoidBijectiveImpliesInvertible isBij) (inj n) tInjective : Injection t tInjective pr = SetoidInjection.injective isInj (SetoidInjection.injective (SetoidBijection.inj (setoidInvertibleImpliesBijective (inverseInvertible (setoidBijectiveImpliesInvertible isBij)))) pr)
54.766667
200
0.772368
1b02fbfbac81799074fb464e0521f87b97b6383e
1,872
agda
Agda
old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module FunctionProofs where open FunctionSet ⦃ signature ⦄ [∃]-unrelatedᵣ-[→]ᵣ-inside-[∀ₛ] : ∀{D : Domain}{P : BinaryRelator} → Proof(∀ₗ(x ↦ ∃ₗ(y ↦ (x ∈ D) ⟶ P(x)(y))) ⟷ ∀ₛ(D)(x ↦ ∃ₗ(y ↦ P(x)(y)))) [∃]-unrelatedᵣ-[→]ᵣ-inside-[∀ₛ] {D}{P} = [↔]-with-[∀] ([∃]-unrelatedᵣ-[→]) [∀ₛ∃!]-to[∀ₛ∃] : ∀{P : BinaryRelator}{D : Domain} → Proof(∀ₛ(D)(x ↦ ∃ₗ!(y ↦ P(x)(y)))) → Proof(∀ₛ(D)(x ↦ ∃ₗ(y ↦ P(x)(y)))) [∀ₛ∃!]-to[∀ₛ∃] proof = ([∀ₛ]-intro(\{x} → xinD ↦ [∧].elimₗ([∀ₛ]-elim proof {x} xinD) )) -- The construction of a meta-function in the meta-logic from a function in the set theory fnset-witness : ∀{D} → (f : Domain) → ⦃ _ : Proof(Total(D)(f)) ⦄ → Function fnset-witness f ⦃ proof ⦄ = [∃]-fn-witness ⦃ [↔].elimₗ [∃]-unrelatedᵣ-[→]ᵣ-inside-[∀ₛ] (proof) ⦄ fnset-value : ∀{D} → (f : Domain) → ⦃ proof : Proof(Total(D)(f)) ⦄ → Proof(∀ₛ(D)(x ↦ (x , fnset-witness f(x)) ∈ f)) fnset-value{D} f ⦃ proof ⦄ = [∃]-fn-proof ⦃ [↔].elimₗ [∃]-unrelatedᵣ-[→]ᵣ-inside-[∀ₛ] (proof) ⦄ fnset-proof : ∀{D} → (f : Domain) → ⦃ _ : Proof(FunctionSet(f)) ⦄ → ⦃ total : Proof(Total(D)(f)) ⦄ → Proof(∀ₛ(D)(x ↦ ∀ₗ(y ↦ (fnset-witness{D} f ⦃ total ⦄ x ≡ y) ⟷ ((x , y) ∈ f)))) fnset-proof{D} f ⦃ function ⦄ ⦃ total ⦄ = ([∀ₛ]-intro(\{x} → x∈D ↦ ([∀].intro(\{y} → ([↔].intro (xy∈f ↦ ([→].elim ([∀].elim([∀].elim([∀].elim function{x}) {fnset-witness f(x)}) {y}) ([∧].intro ([∀ₛ]-elim(fnset-value f) {x} (x∈D)) (xy∈f) ) ) ) (fx≡y ↦ [≡].elimᵣ (fx≡y) ([∀ₛ]-elim (fnset-value(f)) {x} (x∈D)) ) ) )) )) [→ₛₑₜ]-witness : ∀{A B} → (f : Domain) → ⦃ _ : Proof(f ∈ (A →ₛₑₜ B)) ⦄ → Function [→ₛₑₜ]-witness f ⦃ proof ⦄ (x) = (fnset-witness f ⦃ [∧].elimᵣ([∧].elimᵣ([↔].elimᵣ ([∀].elim([∀].elim filter-membership)) (proof) )) ⦄ (x) )
36.705882
179
0.458868
379e358c297e1bc854f49efcbd187fcb7422748b
7,027
agda
Agda
Cubical/Algebra/CommAlgebra/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/CommAlgebra/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Algebra/CommAlgebra/Base.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Algebra.CommAlgebra.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra hiding (⟨_⟩a) private variable ℓ ℓ′ : Level record IsCommAlgebra (R : CommRing {ℓ}) {A : Type ℓ} (0a : A) (1a : A) (_+_ : A → A → A) (_·_ : A → A → A) (-_ : A → A) (_⋆_ : ⟨ R ⟩ → A → A) : Type ℓ where constructor iscommalgebra field isAlgebra : IsAlgebra (CommRing→Ring R) 0a 1a _+_ _·_ -_ _⋆_ ·-comm : (x y : A) → x · y ≡ y · x open IsAlgebra isAlgebra public record CommAlgebra (R : CommRing {ℓ}) : Type (ℓ-suc ℓ) where constructor commalgebra field Carrier : Type ℓ 0a : Carrier 1a : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _⋆_ : ⟨ R ⟩ → Carrier → Carrier isCommAlgebra : IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ open IsCommAlgebra isCommAlgebra public module _ {R : CommRing {ℓ}} where open CommRingStr (snd R) using (1r) renaming (_+_ to _+r_; _·_ to _·s_) ⟨_⟩a : CommAlgebra R → Type ℓ ⟨_⟩a = CommAlgebra.Carrier CommAlgebra→Algebra : (A : CommAlgebra R) → Algebra (CommRing→Ring R) CommAlgebra→Algebra (commalgebra Carrier _ _ _ _ _ _ (iscommalgebra isAlgebra ·-comm)) = algebra Carrier _ _ _ _ _ _ isAlgebra CommAlgebra→CommRing : (A : CommAlgebra R) → CommRing {ℓ} CommAlgebra→CommRing (commalgebra Carrier _ _ _ _ _ _ (iscommalgebra isAlgebra ·-comm)) = _ , commringstr _ _ _ _ _ (iscommring (IsAlgebra.isRing isAlgebra) ·-comm) CommAlgebraEquiv : (R S : CommAlgebra R) → Type ℓ CommAlgebraEquiv R S = AlgebraEquiv (CommAlgebra→Algebra R) (CommAlgebra→Algebra S) makeIsCommAlgebra : {A : Type ℓ} {0a 1a : A} {_+_ _·_ : A → A → A} { -_ : A → A} {_⋆_ : ⟨ R ⟩ → A → A} (isSet-A : isSet A) (+-assoc : (x y z : A) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : A) → x + 0a ≡ x) (+-rinv : (x : A) → x + (- x) ≡ 0a) (+-comm : (x y : A) → x + y ≡ y + x) (·-assoc : (x y z : A) → x · (y · z) ≡ (x · y) · z) (·-lid : (x : A) → 1a · x ≡ x) (·-ldist-+ : (x y z : A) → (x + y) · z ≡ (x · z) + (y · z)) (·-comm : (x y : A) → x · y ≡ y · x) (⋆-assoc : (r s : ⟨ R ⟩) (x : A) → (r ·s s) ⋆ x ≡ r ⋆ (s ⋆ x)) (⋆-ldist : (r s : ⟨ R ⟩) (x : A) → (r +r s) ⋆ x ≡ (r ⋆ x) + (s ⋆ x)) (⋆-rdist : (r : ⟨ R ⟩) (x y : A) → r ⋆ (x + y) ≡ (r ⋆ x) + (r ⋆ y)) (⋆-lid : (x : A) → 1r ⋆ x ≡ x) (⋆-lassoc : (r : ⟨ R ⟩) (x y : A) → (r ⋆ x) · y ≡ r ⋆ (x · y)) → IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ makeIsCommAlgebra {A} {0a} {1a} {_+_} {_·_} { -_} {_⋆_} isSet-A +-assoc +-rid +-rinv +-comm ·-assoc ·-lid ·-ldist-+ ·-comm ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc = iscommalgebra (makeIsAlgebra isSet-A +-assoc +-rid +-rinv +-comm ·-assoc (λ x → x · 1a ≡⟨ ·-comm _ _ ⟩ 1a · x ≡⟨ ·-lid _ ⟩ x ∎) ·-lid (λ x y z → x · (y + z) ≡⟨ ·-comm _ _ ⟩ (y + z) · x ≡⟨ ·-ldist-+ _ _ _ ⟩ (y · x) + (z · x) ≡⟨ cong (λ u → (y · x) + u) (·-comm _ _) ⟩ (y · x) + (x · z) ≡⟨ cong (λ u → u + (x · z)) (·-comm _ _) ⟩ (x · y) + (x · z) ∎) ·-ldist-+ ⋆-assoc ⋆-ldist ⋆-rdist ⋆-lid ⋆-lassoc λ r x y → r ⋆ (x · y) ≡⟨ cong (λ u → r ⋆ u) (·-comm _ _) ⟩ r ⋆ (y · x) ≡⟨ sym (⋆-lassoc _ _ _) ⟩ (r ⋆ y) · x ≡⟨ ·-comm _ _ ⟩ x · (r ⋆ y) ∎) ·-comm module CommAlgebraΣTheory (R : CommRing {ℓ}) where open AlgebraΣTheory (CommRing→Ring R) CommAlgebraAxioms : (A : Type ℓ) (s : RawAlgebraStructure A) → Type ℓ CommAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) = AlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) × ((x y : A) → x · y ≡ y · x) CommAlgebraStructure : Type ℓ → Type ℓ CommAlgebraStructure = AxiomsStructure RawAlgebraStructure CommAlgebraAxioms CommAlgebraΣ : Type (ℓ-suc ℓ) CommAlgebraΣ = TypeWithStr ℓ CommAlgebraStructure CommAlgebraEquivStr : StrEquiv CommAlgebraStructure ℓ CommAlgebraEquivStr = AxiomsEquivStr RawAlgebraEquivStr CommAlgebraAxioms isPropCommAlgebraAxioms : (A : Type ℓ) (s : RawAlgebraStructure A) → isProp (CommAlgebraAxioms A s) isPropCommAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_) = isPropΣ (isPropAlgebraAxioms A (_+_ , _·_ , 1a , _⋆_)) λ isAlgebra → isPropΠ2 λ _ _ → (isSetAlgebraΣ (A , _ , isAlgebra)) _ _ CommAlgebra→CommAlgebraΣ : CommAlgebra R → CommAlgebraΣ CommAlgebra→CommAlgebraΣ (commalgebra _ _ _ _ _ _ _ (iscommalgebra G C)) = _ , _ , Algebra→AlgebraΣ (algebra _ _ _ _ _ _ _ G) .snd .snd , C CommAlgebraΣ→CommAlgebra : CommAlgebraΣ → CommAlgebra R CommAlgebraΣ→CommAlgebra (_ , _ , G , C) = commalgebra _ _ _ _ _ _ _ (iscommalgebra (AlgebraΣ→Algebra (_ , _ , G) .Algebra.isAlgebra) C) CommAlgebraIsoCommAlgebraΣ : Iso (CommAlgebra R) CommAlgebraΣ CommAlgebraIsoCommAlgebraΣ = iso CommAlgebra→CommAlgebraΣ CommAlgebraΣ→CommAlgebra (λ _ → refl) (λ _ → refl) commAlgebraUnivalentStr : UnivalentStr CommAlgebraStructure CommAlgebraEquivStr commAlgebraUnivalentStr = axiomsUnivalentStr _ isPropCommAlgebraAxioms rawAlgebraUnivalentStr CommAlgebraΣPath : (A B : CommAlgebraΣ) → (A ≃[ CommAlgebraEquivStr ] B) ≃ (A ≡ B) CommAlgebraΣPath = SIP commAlgebraUnivalentStr CommAlgebraEquivΣ : (A B : CommAlgebra R) → Type ℓ CommAlgebraEquivΣ A B = CommAlgebra→CommAlgebraΣ A ≃[ CommAlgebraEquivStr ] CommAlgebra→CommAlgebraΣ B CommAlgebraPath : (A B : CommAlgebra R) → (CommAlgebraEquiv A B) ≃ (A ≡ B) CommAlgebraPath A B = CommAlgebraEquiv A B ≃⟨ isoToEquiv AlgebraEquivΣPath ⟩ CommAlgebraEquivΣ A B ≃⟨ CommAlgebraΣPath _ _ ⟩ CommAlgebra→CommAlgebraΣ A ≡ CommAlgebra→CommAlgebraΣ B ≃⟨ isoToEquiv (invIso (congIso CommAlgebraIsoCommAlgebraΣ)) ⟩ A ≡ B ■ CommAlgebraPath : (R : CommRing {ℓ}) → (A B : CommAlgebra R) → (CommAlgebraEquiv A B) ≃ (A ≡ B) CommAlgebraPath = CommAlgebraΣTheory.CommAlgebraPath
41.335294
104
0.548171
21b6968a3dbaa01299e50b406f3ed06f3d9dc7f1
2,393
agda
Agda
src/hott/level/closure/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
20
2015-06-12T12:20:17.000Z
2022-02-01T11:25:54.000Z
src/hott/level/closure/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/hott/level/closure/core.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module hott.level.closure.core where open import level open import decidable open import equality open import function.isomorphism.core -- open import function.isomorphism.properties open import sum open import hott.level.core open import hott.equivalence.core open import hott.univalence open import sets.nat.core open import sets.nat.ordering.leq.core open import sets.nat.ordering.leq.decide open import sets.empty open import sets.unit Σ-contr : ∀ {i j}{X : Set i}{Y : X → Set j} → contr X → ((x : X) → contr (Y x)) → contr (Σ X Y) Σ-contr {X = X}{Y = Y} (x₀ , cx) hY = (x₀ , proj₁ (hY x₀)) , λ { (x , y) → c x y } where c : (x : X)(y : Y x) → (x₀ , proj₁ (hY x₀)) ≡ (x , y) c x y = ap (λ x → (x , proj₁ (hY x))) (cx x) · ap (_,_ x) (proj₂ (hY x) y) ×-contr : ∀ {i j}{X : Set i}{Y : Set j} → contr X → contr Y → contr (X × Y) ×-contr hX hY = Σ-contr hX (λ _ → hY) unique-contr : ∀ {i}{A B : Set i} → contr A → contr B → A ≡ B unique-contr {i}{A}{B} hA hB = ≈⇒≡ (f , f-we) where f : A → B f _ = proj₁ hB f-we : weak-equiv f f-we b = ×-contr hA (h↑ hB _ _) h-≤ : ∀ {i n m}{X : Set i} → n ≤ m → h n X → h m X h-≤ {m = 0} z≤n hX = hX h-≤ {m = suc m} z≤n hX = λ x y → h-≤ {m = m} z≤n (h↑ hX x y) h-≤ (s≤s p) hX = λ x y → h-≤ p (hX x y) h! : ∀ {i n m}{X : Set i} → {p : True (n ≤? m)} → h n X → h m X h! {p = p} = h-≤ (witness p) abstract -- retractions preserve levels retract-level : ∀ {i j n} {X : Set i}{Y : Set j} → (f : X → Y)(g : Y → X) → ((y : Y) → f (g y) ≡ y) → h n X → h n Y retract-level {n = 0}{X}{Y} f g r (x , c) = (f x , c') where c' : (y : Y) → f x ≡ y c' y = ap f (c (g y)) · r y retract-level {n = suc n}{X}{Y} f g r hX = λ y y' → retract-level f' g' r' (hX (g y) (g y')) where f' : {y y' : Y} → g y ≡ g y' → y ≡ y' f' {y}{y'} p = sym (r y) · ap f p · r y' g' : {y y' : Y} → y ≡ y' → g y ≡ g y' g' = ap g r' : {y y' : Y}(p : y ≡ y') → f' (g' p) ≡ p r' {y}{.y} refl = ap (λ α → α · r y) (left-unit (sym (r y))) · right-inverse (r y) iso-level : ∀ {i j n}{X : Set i}{Y : Set j} → X ≅ Y → h n X → h n Y iso-level (iso f g H K) = retract-level f g K
28.152941
66
0.457167
35ff518bfcd7f10384bfba898b08740ea4528aa5
5,068
agda
Agda
Cubical/HITs/Ints/BiInvInt/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/BiInvInt/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
null
null
null
Cubical/HITs/Ints/BiInvInt/Properties.agda
RobertHarper/cubical
d13941587a58895b65f714f1ccc9c1f5986b109c
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Ints.BiInvInt.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Data.Nat hiding (_+_; +-comm) open import Cubical.Data.Int open import Cubical.Data.Bool open import Cubical.HITs.Ints.BiInvInt.Base -- addition _+ᴮ_ : BiInvInt → BiInvInt → BiInvInt m +ᴮ zero = m m +ᴮ suc n = suc (m +ᴮ n) m +ᴮ predr n = predr (m +ᴮ n) m +ᴮ predl n = predl (m +ᴮ n) m +ᴮ suc-predr n i = suc-predr (m +ᴮ n) i m +ᴮ predl-suc n i = predl-suc (m +ᴮ n) i -- properties of addition +ᴮ-assoc : ∀ l m n → (l +ᴮ m) +ᴮ n ≡ l +ᴮ (m +ᴮ n) +ᴮ-assoc l m zero i = l +ᴮ m +ᴮ-assoc l m (suc n) i = suc (+ᴮ-assoc l m n i) +ᴮ-assoc l m (predr n) i = predr (+ᴮ-assoc l m n i) +ᴮ-assoc l m (predl n) i = predl (+ᴮ-assoc l m n i) +ᴮ-assoc l m (suc-predr n i) j = suc-predr (+ᴮ-assoc l m n j) i +ᴮ-assoc l m (predl-suc n i) j = predl-suc (+ᴮ-assoc l m n j) i +ᴮ-unitʳ : ∀ n → n +ᴮ zero ≡ n +ᴮ-unitʳ n i = n +ᴮ-unitˡ : ∀ n → zero +ᴮ n ≡ n +ᴮ-unitˡ zero i = zero +ᴮ-unitˡ (suc n) i = suc (+ᴮ-unitˡ n i) +ᴮ-unitˡ (predr n) i = predr (+ᴮ-unitˡ n i) +ᴮ-unitˡ (predl n) i = predl (+ᴮ-unitˡ n i) +ᴮ-unitˡ (suc-predr n i) j = suc-predr (+ᴮ-unitˡ n j) i +ᴮ-unitˡ (predl-suc n i) j = predl-suc (+ᴮ-unitˡ n j) i -- TODO: a direct proof of commutatitivty -- (for now, we use Data.Int) fwd-+≡+ᴮ : ∀ m n → fwd (m + n) ≡ (fwd m) +ᴮ (fwd n) fwd-+≡+ᴮ m (pos zero) = refl fwd-+≡+ᴮ m (pos (suc n)) = fwd-sucInt (m +pos n) ∙ cong suc (fwd-+≡+ᴮ m (pos n)) fwd-+≡+ᴮ m (negsuc zero) = fwd-predInt m fwd-+≡+ᴮ m (negsuc (suc n)) = fwd-predInt (m +negsuc n) ∙ cong pred (fwd-+≡+ᴮ m (negsuc n)) +ᴮ≡+ : ∀ m n → m +ᴮ n ≡ fwd ((bwd m) + (bwd n)) +ᴮ≡+ m n = sym (fwd-+≡+ᴮ (bwd m) (bwd n) ∙ (λ i → (fwd-bwd m i) +ᴮ (fwd-bwd n i))) +ᴮ-comm : ∀ m n → m +ᴮ n ≡ n +ᴮ m +ᴮ-comm m n = +ᴮ≡+ m n ∙ cong fwd (+-comm (bwd m) (bwd n)) ∙ sym (+ᴮ≡+ n m) -- some of the lemmas needed for a direct proof +ᴮ-comm are corollaries of +ᴮ-comm suc-+ᴮ : ∀ m n → (suc m) +ᴮ n ≡ suc (m +ᴮ n) suc-+ᴮ m n = +ᴮ-comm (suc m) n ∙ (λ i → suc (+ᴮ-comm n m i)) -- suc-+ᴮ m zero i = suc m -- suc-+ᴮ m (suc n) i = suc (suc-+ᴮ m n i) -- suc-+ᴮ m (predr n) = cong predr (suc-+ᴮ m n) ∙ predr-suc (m +ᴮ n) ∙ sym (suc-predr (m +ᴮ n)) -- suc-+ᴮ m (predl n) = cong predl (suc-+ᴮ m n) ∙ predl-suc (m +ᴮ n) ∙ sym (suc-predl (m +ᴮ n)) -- suc-+ᴮ m (suc-predr n i) j = {!!} -- suc-+ᴮ m (predl-suc n i) j = {!!} predr-+ᴮ : ∀ m n → (predr m) +ᴮ n ≡ predr (m +ᴮ n) predr-+ᴮ m n = +ᴮ-comm (predr m) n ∙ (λ i → predr (+ᴮ-comm n m i)) predl-+ᴮ : ∀ m n → (predl m) +ᴮ n ≡ predl (m +ᴮ n) predl-+ᴮ m n = +ᴮ-comm (predl m) n ∙ (λ i → predl (+ᴮ-comm n m i)) -- +ᴮ-comm : ∀ m n → n +ᴮ m ≡ m +ᴮ n -- +ᴮ-comm m zero = +ᴮ-unitˡ m -- +ᴮ-comm m (suc n) = suc-+ᴮ n m ∙ cong suc (+ᴮ-comm m n) -- +ᴮ-comm m (predr n) = predr-+ᴮ n m ∙ cong predr (+ᴮ-comm m n) -- +ᴮ-comm m (predl n) = predl-+ᴮ n m ∙ cong predl (+ᴮ-comm m n) -- +ᴮ-comm m (suc-predr n i) j = {!!} -- +ᴮ-comm m (predl-suc n i) j = {!!} -- negation / subtraction -ᴮ_ : BiInvInt → BiInvInt -ᴮ zero = zero -ᴮ suc n = predl (-ᴮ n) -ᴮ predr n = suc (-ᴮ n) -ᴮ predl n = suc (-ᴮ n) -ᴮ suc-predr n i = predl-suc (-ᴮ n) i -ᴮ predl-suc n i = suc-predl (-ᴮ n) i _-ᴮ_ : BiInvInt → BiInvInt → BiInvInt m -ᴮ n = m +ᴮ (-ᴮ n) -- TODO: properties of negation -- +ᴮ-invˡ : ∀ n → (-ᴮ n) +ᴮ n ≡ zero -- +ᴮ-invˡ zero = refl -- +ᴮ-invˡ (suc n) = (λ i → suc (predl-+ᴮ (-ᴮ n) n i)) ∙ (λ i → suc-pred (+ᴮ-invˡ n i) i) -- +ᴮ-invˡ (predr n) = (λ i → predr (suc-+ᴮ (-ᴮ n) n i)) ∙ (λ i → predr-suc (+ᴮ-invˡ n i) i) -- +ᴮ-invˡ (predl n) = (λ i → predl (suc-+ᴮ (-ᴮ n) n i)) ∙ (λ i → predl-suc (+ᴮ-invˡ n i) i) -- +ᴮ-invˡ (suc-predr n i) j = {!!} -- +ᴮ-invˡ (predl-suc n i) j = {!!} -- +ᴮ-invʳ : ∀ n → n +ᴮ (-ᴮ n) ≡ zero -- +ᴮ-invʳ n = {!!} -- natural injections from ℕ posᴮ : ℕ → BiInvInt posᴮ zero = zero posᴮ (suc n) = suc (posᴮ n) negᴮ : ℕ → BiInvInt negᴮ zero = zero negᴮ (suc n) = pred (negᴮ n) -- absolute value and sign -- (Note that there doesn't appear to be any way around using -- bwd here! Any direct proof ends up doing the same work...) absᴮ : BiInvInt → ℕ absᴮ n = abs (bwd n) sgnᴮ : BiInvInt → Bool sgnᴮ n = sgn (bwd n) -- TODO: a direct definition of multiplication using +ᴮ-invˡ/ʳ -- (for now we use abs and sgn, as in agda's stdlib) _*ᴮ_ : BiInvInt → BiInvInt → BiInvInt m *ᴮ n = caseBool posᴮ negᴮ (sgnᴮ m and sgnᴮ n) (absᴮ m * absᴮ n) -- m *ᴮ zero = zero -- m *ᴮ suc n = (m *ᴮ n) +ᴮ m -- m *ᴮ predr n = (m *ᴮ n) -ᴮ m -- m *ᴮ predl n = (m *ᴮ n) -ᴮ m -- m *ᴮ suc-predr n i = ( +ᴮ-assoc (m *ᴮ n) (-ᴮ m) m -- ∙ cong ((m *ᴮ n) +ᴮ_) (+ᴮ-invˡ m) -- ∙ +ᴮ-unitʳ (m *ᴮ n)) i -- m *ᴮ predl-suc n i = ( +ᴮ-assoc (m *ᴮ n) m (-ᴮ m) -- ∙ cong ((m *ᴮ n) +ᴮ_) (+ᴮ-invʳ m) -- ∙ +ᴮ-unitʳ (m *ᴮ n)) i
34.013423
100
0.519732
358a48954ce55146b6e377989002c288ac2c6f7e
161
agda
Agda
test/Succeed/Issue2487-1.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Succeed/Issue2487-1.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Succeed/Issue2487-1.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --safe --cubical-compatible --no-universe-polymorphism --no-sized-types --no-guardedness #-} module Issue2487-1 where import Issue2487.Coinfective
26.833333
104
0.757764
371bd65767e27d996f6c68a5c791dee5ac766c37
7,453
agda
Agda
src/System/IO/Transducers/Stateful.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
10
2015-01-04T13:45:16.000Z
2021-09-15T04:35:41.000Z
src/System/IO/Transducers/Stateful.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
null
null
null
src/System/IO/Transducers/Stateful.agda
ilya-fiveisky/agda-system-io
d06c219c7b7afc85aae3b1d4d66951b889aa7371
[ "MIT" ]
2
2017-08-10T06:12:54.000Z
2022-03-12T11:40:23.000Z
open import Coinduction using ( ∞ ; ♭ ; ♯_ ) open import Data.Bool using ( Bool ; true ; false ) open import Data.Nat using ( ℕ ; zero ; suc ) open import Data.Natural using ( Natural ; # ; % ; _+_ ) open import Data.Strict using ( Strict ; ! ) open import System.IO.Transducers.List using ( S⊆S&*T ) open import System.IO.Transducers.Lazy using ( _⇒_ ; inp ; out ; done ; out* ; _[&]_ ; _⟫_ ) open import System.IO.Transducers.Session using ( I ; Σ ; ⟨_⟩ ; _&_ ; ¿ ; * ; _&*_ ) open import System.IO.Transducers.Trace using ( [] ; _∷_ ; _≤_ ) module System.IO.Transducers.Stateful where -- We apply the usual state transformer construction -- for a premonoial category: morphisms -- from T to U with state S are just regular morphisms -- from T & S to U & S. -- We are particularly interested in the case where T is I -- and S is Bytes, since this collapses to Bytes ⇒ U & Bytes, -- that is, the type for a parser over a byte stream. -- The type Bytes ⇒ U & Bytes (or more generally * ⟨ B ⟩ ⇒ U & * ⟨ B ⟩) -- is the type of an iteratee returning U. -- Lookahead. -- Lookahead buffers up all input until some output is produced. -- If the output is (just x), then we discard the buffer, and -- continue with the process. If the output is nothing, then we -- return the buffer to the output stream and discard the process. lookahead¿' : ∀ {T S S'} → (S' ≤ S) → (S' ⇒ ¿ T & S) → (S' ⇒ ¿ T & S) lookahead¿' {T} as (inp F) = inp (♯ λ a → lookahead¿' {T} (a ∷ as) (♭ F a)) lookahead¿' {T} as (out true P) = out true P lookahead¿' {T} as (out false P) = out false (out* as done) lookahead¿' {T} as (done) = inp (♯ λ a → lookahead¿' {T} (a ∷ as) (out a done)) lookahead¿ : ∀ {T S} → (S ⇒ ¿ T & S) → (S ⇒ ¿ T & S) lookahead¿ {T} = lookahead¿' {T} [] lookahead*' : ∀ {T S S'} → (S' ≤ S) → (S' ⇒ * T & S) → (S' ⇒ * T & S) lookahead*' {T} as (inp F) = inp (♯ λ a → lookahead*' {T} (a ∷ as) (♭ F a)) lookahead*' {T} as (out true P) = out true P lookahead*' {T} as (out false P) = out false (out* as done) lookahead*' {T} as (done) = inp (♯ λ a → lookahead*' {T} (a ∷ as) (out a done)) lookahead* : ∀ {T S} → (S ⇒ * T & S) → (S ⇒ * T & S) lookahead* {T} = lookahead*' {T} [] -- Iteration structure. -- Deep breath. -- This is the trickiest bit of building a stateful transducer -- library. The idea is to turn a stateful transducer generating -- an optional U into a stateful transducer generating many Us. -- We transform the transducer P into one which runs P, then -- if P returns nothing, then loop P returns nothing and terminates, and -- if P returns (just x), then loop P finishes running P, then runs loop P again. -- For example, given a function nat? : ℤ → (Maybe ℕ) which -- such that nat? n = nothing if n < 0 and just n otherwise, -- we can define: -- loop (lookahead (inp (♯ λ n → out (nat? n) done))) : -- * ⟨ ℤ ⟩ ⇒ * ⟨ ℕ ⟩ & * ⟨ ℤ ⟩ -- This transducer will return the longest non-negative prefix -- of its input, for example on input just 2 ∷ just 5 ∷ just -3 ∷ ... -- it will produce output just 2 ∷ just 5 ∷ nothing ∷ just -3 ∷ ... mutual -- This is a remarkably obscure piece of code, given that all its doing is wiring... -- The n : ℕ parameter is the induction scheme that gets it all to pass the -- termination checker. When loop P is used properly, it is with a contracting -- P, that is one which produces stricly fewer S tokens than it consumes. -- Without the n parameter, loop P could produce infinite output if P isn't -- contracting. For example loop (out (just x) done) would just produce the stream -- (just x) ∷ (just x) ∷ ... without ever consuming any input. With the n parameter -- we keep track of how many tokens have been consumed. If we ever hit -- a loop where n==0, we just run P one last time, then terminate. -- For example, loop (out (just x) done) just produces the trace (just x) ∷ []. -- For efficiency, we also pass n around as a Natural, not just an ℕ. When we -- read input a, we add the weight of a onto n, strictly (in order to -- avoid potentially keeping a live), discard the previous ℕ and build a new ℕ. -- It would be nice to have an induction scheme for Natural. -- It would be a bit nicer to track statically which processes are contractions, -- and only allow loop P on contraction maps. -- Note that contractions come up in many contexts with treatments of recursion, -- for example in Plotkin uniformity, they're called strict maps. They're -- closely related to the notion of guarded recursion which is used in checking -- productivity of coinductive functions in Agda. -- TODO: Find a way to statically enforce contraction and non-expansion maps. -- Or alternatively, give in and allow coinductive output, -- and hence lose termination for transducers. -- TODO: Present this as a trace structure? Show that -- it has the expected properties on contracting morphisms. -- loop''' 0 P Q R is equivant to P ⟫ Q ⟫ (done ⟨&⟩ loop R) loop'''' : ∀ {T T' U S S'} → (Strict Natural) → (U ⇒ S) → (S ⇒ T' & S') → (S' ⇒ ¿ T & S') → (U ⇒ (T' &* T) & S') loop'''' {T} {T'} (! n) P Q R = loop''' {T} {T'} (% n) n P Q R loop''' : ∀ {T T' U S S'} → ℕ → Natural → (U ⇒ S) → (S ⇒ T' & S') → (S' ⇒ ¿ T & S') → (U ⇒ (T' &* T) & S') loop''' {T} {I} m n P Q R = loop' {T} m n (P ⟫ Q) R R loop''' {T} {Σ V F} {Σ W G} m n (inp P) (inp Q) R = inp (♯ λ a → loop'''' {T} {Σ V F} (! (n + W a)) (♭ P a) (inp Q) R) loop''' {T} {Σ V F} m n (out a P) (inp Q) R = loop''' {T} {Σ V F} m n P (♭ Q a) R loop''' {T} {Σ V F} {Σ W G} m n done (inp P) R = inp (♯ λ a → loop'''' {T} {Σ V F} (! (n + W a)) done (♭ P a) R) loop''' {T} {Σ V F} m n P (out b Q) R = out b (loop''' {T} {♭ F b} m n P Q R) loop''' {T} {Σ V F} {Σ W G} m n (inp P) done R = inp (♯ λ a → loop'''' {T} {Σ V F} (! (n + W a)) (♭ P a) done R) loop''' {T} {Σ V F} m n (out a P) done R = out a (loop''' {T} {♭ F a} m n P done R) loop''' {T} {Σ V F} m n done done R = inp (♯ λ a → out a (loop'''' {T} {♭ F a} (! (n + (V a))) done done R)) -- loop' 0 P Q R is equivalent to P ⟫ Q ⟫ loop R ⟨¿⟩ done loop'' : ∀ {T U S S'} → (Strict Natural) → (U ⇒ S) → (S ⇒ ¿ T & S') → (S' ⇒ ¿ T & S') → (U ⇒ * T & S') loop'' {T} (! n) P Q R = loop' {T} (% n) n P Q R loop' : ∀ {T U S S'} → ℕ → Natural → (U ⇒ S) → (S ⇒ ¿ T & S') → (S' ⇒ ¿ T & S') → (U ⇒ * T & S') loop' {T} {Σ V F} m n (inp P) (inp Q) R = inp (♯ λ a → loop'' {T} (! (n + V a)) (♭ P a) (inp Q) R) loop' {T} m n (out a P) (inp Q) R = loop' {T} m n P (♭ Q a) R loop' {T} {Σ V F} m n done (inp Q) R = inp (♯ λ a → loop'' {T} (! (n + V a)) done (♭ Q a) R) loop' {T} zero n P (out true Q) R = out true (P ⟫ Q ⟫ S⊆S&*T {T} [&] done) loop' {T} (suc m) n P (out true Q) R = out true (loop''' {T} {T} m n P Q R) loop' {T} m n P (out false Q) R = out false (P ⟫ Q) loop' {T} {Σ V F} m n (inp P) done R = inp (♯ λ a → loop'' {T} (! (n + V a)) (♭ P a) done R) loop' {T} m n (out a P) done R = loop' {T} m n P (out a done) R loop' {T} m n done done R = inp (♯ λ a → loop'' {T} (! (n + # 1)) done (out a done) R) loop : ∀ {T S} → (S ⇒ ¿ T & S) → (S ⇒ * T & S) loop {T} P = loop' {T} zero (# 0) done P P
54.007246
128
0.554139
30a1da5a26c251cb00dffa5d8bcbfbd70472354b
959
agda
Agda
Graphs/Complement.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Graphs/Complement.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Graphs/Complement.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --warning=error --safe --without-K #-} open import LogicalFormulae open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Functions.Definition open import Setoids.Setoids open import Setoids.Subset open import Graphs.Definition open import Sets.EquivalenceRelations module Graphs.Complement {a b c : _} {V' : Set a} {V : Setoid {a} {b} V'} (G : Graph c V) where open Graph G open Setoid V open Equivalence eq complement : Graph (b ⊔ c) V Graph._<->_ complement x y = ((x <-> y) → False) && ((x ∼ y) → False) Graph.noSelfRelation complement x (pr1 ,, pr2) = pr2 reflexive Graph.symmetric complement (x!-y ,, x!=y) = (λ pr → x!-y (Graph.symmetric G pr)) ,, λ pr → x!=y (Equivalence.symmetric eq pr) Graph.wellDefined complement x=y r=s (x!-r ,, x!=r) = (λ y-s → x!-r (wellDefined (Equivalence.symmetric eq x=y) (Equivalence.symmetric eq r=s) y-s)) ,, λ y=s → x!=r (transitive x=y (transitive y=s (Equivalence.symmetric eq r=s)))
43.590909
229
0.687174
3792920bc6c7e6954b6992f1f8a654b8772dff17
894
agda
Agda
Cubical/Algebra/RingSolver/NatAsAlmostRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/NatAsAlmostRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/NatAsAlmostRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.NatAsAlmostRing where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Algebra.RingSolver.AlmostRing open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup ℕAsAlmostRing : AlmostRing {ℓ-zero} ℕAsAlmostRing = almostring ℕ 0 1 _+_ _·_ (λ n → n) (isalmostring (ismonoid (issemigroup isSetℕ +-assoc) (λ n → (+-zero n) , refl)) (ismonoid (issemigroup isSetℕ ·-assoc) λ n → (·-identityʳ n) , (·-identityˡ n)) +-comm ·-comm (λ k l n → sym (·-distribˡ k l n) ) (λ k l n → sym (·-distribʳ k l n)) (λ _ _ → refl) (λ _ _ → refl) (λ _ → refl) λ x → sym (0≡m·0 x))
40.636364
99
0.5783
217444ea56b29d788c80f1502da1d7a864fce918
8,876
agda
Agda
Cubical/Experiments/EscardoSIP.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Experiments/EscardoSIP.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Experiments/EscardoSIP.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- This is a rather literal translation of Martin Hötzel-Escardó's structure identity principle into cubical Agda. See https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns All the needed preliminary results from the lecture notes are stated and proven in this file. It would be interesting to compare the proves with the one in Cubical.Foundations.SIP -} {-# OPTIONS --safe #-} module Cubical.Experiments.EscardoSIP where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Transport open import Cubical.Foundations.Structure open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma.Properties private variable ℓ ℓ' ℓ'' : Level S : Type ℓ → Type ℓ' -- We prove several useful equalities and equivalences between Σ-types all the proofs are taken from -- Martin Hötzel-Escardó's lecture notes. -- The next result is just a reformulation of pathSigma≡sigmaPath from Sigma.Properties. Σ-≡-≃ : {X : Type ℓ} {A : X → Type ℓ'} → (σ τ : Σ X A) → ((σ ≡ τ) ≃ (Σ[ p ∈ (σ .fst) ≡ (τ .fst) ] (subst A p (σ .snd) ≡ (τ .snd)))) Σ-≡-≃ {A = A} σ τ = invEquiv (ΣPathTransport≃PathΣ σ τ) -- This cubical proof is much shorter than in HoTT but requires that A, B live in the same universe. Σ-cong : {X : Type ℓ} {A B : X → Type ℓ'} → ((x : X) → (A x ≡ B x)) → (Σ X A ≡ Σ X B) Σ-cong {X = X} p i = Σ[ x ∈ X ] (p x i) -- Two lemmas for the more general formulation using equivalences NatΣ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''} → ((x : X) → (A x) → (B x)) → (Σ X A) → (Σ X B) NatΣ τ (x , a) = (x , τ x a) Σ-to-PathP : {X : Type ℓ} {A : X → Type ℓ'} {x : X} {a b : A x} → (a ≡ b) → PathP (λ i → Σ X A) (x , a) (x , b) Σ-to-PathP {x = x} p i = (x , p i) Σ-cong-≃ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''} → ((x : X) → (A x ≃ B x)) → (Σ X A ≃ Σ X B) Σ-cong-≃ {X = X} {A = A} {B = B} φ = isoToEquiv (iso (NatΣ f) (NatΣ g) NatΣ-ε NatΣ-η) where f : (x : X) → (A x) → (B x) f x = equivFun (φ x) g : (x : X) → (B x) → (A x) g x = equivFun (invEquiv (φ x)) η : (x : X) → (a : A x) → (g x) ((f x) a) ≡ a η x = secEq (invEquiv (φ x)) ε : (x : X) → (b : B x) → f x (g x b) ≡ b ε x = retEq (invEquiv (φ x)) NatΣ-η : (w : Σ X A) → NatΣ g (NatΣ f w) ≡ w NatΣ-η (x , a) = (x , g x (f x a)) ≡⟨ Σ-to-PathP (η x a) ⟩ (x , a) ∎ NatΣ-ε : (u : Σ X B) → NatΣ f (NatΣ g u) ≡ u NatΣ-ε (x , b) = (x , f x (g x b)) ≡⟨ Σ-to-PathP (ε x b) ⟩ (x , b) ∎ -- The next result is stated a bit awkwardly but is rather straightforward to prove. Σ-change-of-variable-Iso : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y) → (isHAEquiv f) → (Iso (Σ X (A ∘ f)) (Σ Y A)) Σ-change-of-variable-Iso {ℓ = ℓ} {ℓ' = ℓ'} {X = X} {Y = Y} {A = A} f isHAEquivf = iso φ ψ φψ ψφ where g : Y → X g = isHAEquiv.g isHAEquivf ε : (x : X) → (g (f x)) ≡ x ε = isHAEquiv.linv isHAEquivf η : (y : Y) → f (g y) ≡ y η = isHAEquiv.rinv isHAEquivf τ : (x : X) → cong f (ε x) ≡ η (f x) τ = isHAEquiv.com isHAEquivf φ : (Σ X (A ∘ f)) → (Σ Y A) φ (x , a) = (f x , a) ψ : (Σ Y A) → (Σ X (A ∘ f)) ψ (y , a) = (g y , subst A (sym (η y)) a) φψ : (z : (Σ Y A)) → φ (ψ z) ≡ z φψ (y , a) = ΣPathTransport→PathΣ _ _ (η y , transportTransport⁻ (λ i → A (η y i)) a) -- last term proves transp (λ i → A (η y i)) i0 (transp (λ i → A (η y (~ i))) i0 a) ≡ a ψφ : (z : (Σ X (A ∘ f))) → ψ (φ z) ≡ z ψφ (x , a) = ΣPathTransport→PathΣ _ _ (ε x , q) where b : A (f (g (f x))) b = (transp (λ i → A (η (f x) (~ i))) i0 a) q : transp (λ i → A (f (ε x i))) i0 (transp (λ i → A (η (f x) (~ i))) i0 a) ≡ a q = transp (λ i → A (f (ε x i))) i0 b ≡⟨ i ⟩ transp (λ i → A (η (f x) i)) i0 b ≡⟨ transportTransport⁻ (λ i → A (η (f x) i)) a ⟩ a ∎ where i : (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (η (f x) i)) i0 b) i = subst (λ p → (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (p i)) i0 b)) (τ x) refl -- Using the result above we can prove the following quite useful result. Σ-change-of-variable-≃ : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y) → (isEquiv f) → ((Σ X (A ∘ f)) ≃ (Σ Y A)) Σ-change-of-variable-≃ f isEquivf = isoToEquiv (Σ-change-of-variable-Iso f (equiv→HAEquiv (f , isEquivf) .snd)) -- A structure is a type-family S : Type ℓ → Type ℓ', i.e. for X : Type ℓ and s : S X, the pair (X , s) -- means that X is equipped with a S-structure, which is witnessed by s. -- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism. -- This will be implemented by a function ι -- that gives us for any two types with S-structure (X , s) and (Y , t) a family: -- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ'' -- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be -- a proposition. Indeed this type should correspond to the ways s and t can be identified -- as S-structures. This we call a standard notion of structure. SNS : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') → Type (ℓ-max (ℓ-max (ℓ-suc ℓ) ℓ') ℓ'') SNS {ℓ = ℓ} S ι = ∀ {X : (Type ℓ)} (s t : S X) → ((s ≡ t) ≃ ι (X , s) (X , t) (idEquiv X)) -- Escardo's ρ can actually be defined from this: ρ : {ι : StrEquiv S ℓ''} (θ : SNS S ι) (A : TypeWithStr ℓ S) → (ι A A (idEquiv (typ A))) ρ θ A = equivFun (θ (str A) (str A)) refl -- We introduce the notation a bit differently: _≃[_]_ : (A : TypeWithStr ℓ S) (ι : StrEquiv S ℓ'') (B : TypeWithStr ℓ S) → (Type (ℓ-max ℓ ℓ'')) A ≃[ ι ] B = Σ[ f ∈ ((typ A) ≃ (typ B)) ] (ι A B f) Id→homEq : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') → (ρ : (A : TypeWithStr ℓ S) → ι A A (idEquiv (typ A))) → (A B : TypeWithStr ℓ S) → A ≡ B → (A ≃[ ι ] B) Id→homEq S ι ρ A B p = J (λ y x → A ≃[ ι ] y) (idEquiv (typ A) , ρ A) p -- Use a PathP version of Escardó's homomorphism-lemma hom-lemma-dep : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) → (A B : TypeWithStr ℓ S) → (p : (typ A) ≡ (typ B)) → (PathP (λ i → S (p i)) (str A) (str B)) ≃ (ι A B (pathToEquiv p)) hom-lemma-dep S ι θ A B p = (J P (λ s → γ s) p) (str B) where P = (λ y x → (s : S y) → PathP (λ i → S (x i)) (str A) s ≃ ι A (y , s) (pathToEquiv x)) γ : (s : S (typ A)) → ((str A) ≡ s) ≃ ι A ((typ A) , s) (pathToEquiv refl) γ s = subst (λ f → ((str A) ≡ s) ≃ ι A ((typ A) , s) f) (sym pathToEquivRefl) (θ (str A) s) -- Define the inverse of Id→homEq directly. ua-lemma : (A B : Type ℓ) (e : A ≃ B) → (pathToEquiv (ua e)) ≡ e ua-lemma A B e = EquivJ (λ A f → (pathToEquiv (ua f)) ≡ f) (subst (λ r → pathToEquiv r ≡ idEquiv B) (sym uaIdEquiv) pathToEquivRefl) e homEq→Id : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) → (A B : TypeWithStr ℓ S) → (A ≃[ ι ] B) → A ≡ B homEq→Id S ι θ A B (f , φ) = ΣPathP (p , q) where p = ua f ψ : ι A B (pathToEquiv p) ψ = subst (λ g → ι A B g) (sym (ua-lemma (typ A) (typ B) f)) φ q : PathP (λ i → S (p i)) (str A) (str B) q = equivFun (invEquiv (hom-lemma-dep S ι θ A B p)) ψ -- Proof of the SIP: SIP : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) → (A B : TypeWithStr ℓ S) → ((A ≡ B) ≃ (A ≃[ ι ] B)) SIP S ι θ A B = (A ≡ B) ≃⟨ i ⟩ (Σ[ p ∈ (typ A) ≡ (typ B) ] PathP (λ i → S (p i)) (str A) (str B)) ≃⟨ ii ⟩ (Σ[ p ∈ (typ A) ≡ (typ B) ] (ι A B (pathToEquiv p))) ≃⟨ iii ⟩ (A ≃[ ι ] B) ■ where i = invEquiv ΣPath≃PathΣ ii = Σ-cong-≃ (hom-lemma-dep S ι θ A B) iii = Σ-change-of-variable-≃ pathToEquiv (equivIsEquiv univalence) -- A simple example: pointed types pointed-structure : Type ℓ → Type ℓ pointed-structure X = X Pointed-Type : Type (ℓ-suc ℓ) Pointed-Type {ℓ = ℓ} = Σ (Type ℓ) pointed-structure pointed-ι : (A B : Pointed-Type) → (A .fst) ≃ (B. fst) → Type ℓ pointed-ι (X , x) (Y , y) f = (equivFun f) x ≡ y pointed-is-sns : SNS {ℓ = ℓ} pointed-structure pointed-ι pointed-is-sns s t = idEquiv (s ≡ t) pointed-type-sip : (X Y : Type ℓ) (x : X) (y : Y) → (Σ[ f ∈ X ≃ Y ] (f .fst) x ≡ y) ≃ ((X , x) ≡ (Y , y)) pointed-type-sip X Y x y = invEquiv (SIP pointed-structure pointed-ι pointed-is-sns (X , x) (Y , y))
39.448889
115
0.509238
7ca3fab3c3da3daf66884841040b11e5455068ba
678
agda
Agda
test/Succeed/Issue1209-4.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1209-4.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1209-4.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- A variant of code reported by Andreas Abel (who suggested that this -- way to trigger the bug might have been due to NAD). {-# OPTIONS --guardedness --sized-types #-} open import Agda.Builtin.Sigma open import Agda.Builtin.Size data ⊥ : Set where record Delay (A : Set) : Set where coinductive constructor ♯ field ♭ : Σ A λ _ → ⊥ → Delay A -- Recursive in order to please the termination checker. open Delay data D : Size → Set where inn : ∀ i → Delay (D i) → D (↑ i) iter : ∀{i} → D i → ⊥ iter (inn i t) = iter (fst (♭ t)) -- Should be rejected by the termination checker. bla : Delay (D ∞) ♭ bla = inn ∞ bla , λ() false : ⊥ false = iter (fst (♭ bla))
21.1875
70
0.635693
3762f22361bcacb2502e5b34fe92814753bb52e0
1,679
agda
Agda
test/asset/agda-stdlib-1.0/Codata/Delay/Categorical.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
test/asset/agda-stdlib-1.0/Codata/Delay/Categorical.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Codata/Delay/Categorical.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of Delay ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Delay.Categorical where open import Codata.Delay open import Function open import Category.Functor open import Category.Applicative open import Category.Monad open import Data.These using (leftMost) functor : ∀ {i ℓ} → RawFunctor {ℓ} (λ A → Delay A i) functor = record { _<$>_ = λ f → map f } module Sequential where applicative : ∀ {i ℓ} → RawApplicative {ℓ} (λ A → Delay A i) applicative = record { pure = now ; _⊛_ = λ df da → bind df (λ f → map f da) } applicativeZero : ∀ {i ℓ} → RawApplicativeZero {ℓ} (λ A → Delay A i) applicativeZero = record { applicative = applicative ; ∅ = never } monad : ∀ {i ℓ} → RawMonad {ℓ} (λ A → Delay A i) monad = record { return = now ; _>>=_ = bind } monadZero : ∀ {i ℓ} → RawMonadZero {ℓ} (λ A → Delay A i) monadZero = record { monad = monad ; applicativeZero = applicativeZero } module Zippy where applicative : ∀ {i ℓ} → RawApplicative {ℓ} (λ A → Delay A i) applicative = record { pure = now ; _⊛_ = zipWith id } applicativeZero : ∀ {i ℓ} → RawApplicativeZero {ℓ} (λ A → Delay A i) applicativeZero = record { applicative = applicative ; ∅ = never } alternative : ∀ {i ℓ} → RawAlternative {ℓ} (λ A → Delay A i) alternative = record { applicativeZero = applicativeZero ; _∣_ = alignWith leftMost }
25.439394
72
0.550328
1d8f88719cd4918b54ee4cbc4cc38ef920c2392d
2,798
agda
Agda
src/Categories/Diagram/Equalizer.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Diagram/Equalizer.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
null
null
null
src/Categories/Diagram/Equalizer.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core using (Category) -- Equalizers in a Category C module Categories.Diagram.Equalizer {o ℓ e} (C : Category o ℓ e) where open Category C open HomReasoning open Equiv open import Level open import Data.Product as Σ open import Function using (_$_) open import Categories.Morphism C open import Categories.Morphism.Reasoning C private variable A B X : Obj h i j k : A ⇒ B record Equalizer (f g : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field {obj} : Obj arr : obj ⇒ A equality : f ∘ arr ≈ g ∘ arr equalize : ∀ {h : X ⇒ A} → f ∘ h ≈ g ∘ h → X ⇒ obj universal : ∀ {eq : f ∘ h ≈ g ∘ h} → h ≈ arr ∘ equalize eq unique : ∀ {eq : f ∘ h ≈ g ∘ h} → h ≈ arr ∘ i → i ≈ equalize eq unique′ : (eq eq′ : f ∘ h ≈ g ∘ h) → equalize eq ≈ equalize eq′ unique′ eq eq′ = unique universal id-equalize : id ≈ equalize equality id-equalize = unique (sym identityʳ) equalize-resp-≈ : ∀ {eq : f ∘ h ≈ g ∘ h} {eq′ : f ∘ i ≈ g ∘ i} → h ≈ i → equalize eq ≈ equalize eq′ equalize-resp-≈ {h = h} {i = i} {eq = eq} {eq′ = eq′} h≈i = unique $ begin i ≈˘⟨ h≈i ⟩ h ≈⟨ universal ⟩ arr ∘ equalize eq ∎ equalize-resp-≈′ : (eq : f ∘ h ≈ g ∘ h) → (eq′ : f ∘ i ≈ g ∘ i) → h ≈ i → j ≈ equalize eq → k ≈ equalize eq′ → j ≈ k equalize-resp-≈′ {j = j} {k = k} eq eq′ h≈i eqj eqk = begin j ≈⟨ eqj ⟩ equalize eq ≈⟨ equalize-resp-≈ h≈i ⟩ equalize eq′ ≈˘⟨ eqk ⟩ k ∎ equality-∘ : f ∘ arr ∘ h ≈ g ∘ arr ∘ h equality-∘ {h = h} = begin f ∘ arr ∘ h ≈⟨ pullˡ equality ⟩ (g ∘ arr) ∘ h ≈⟨ assoc ⟩ g ∘ arr ∘ h ∎ unique-diagram : arr ∘ h ≈ arr ∘ i → h ≈ i unique-diagram {h = h} {i = i} eq = begin h ≈⟨ unique (sym eq) ⟩ equalize (extendʳ equality) ≈˘⟨ unique refl ⟩ i ∎ Equalizer⇒Mono : (e : Equalizer h i) → Mono (Equalizer.arr e) Equalizer⇒Mono e f g eq = equalize-resp-≈′ equality-∘ equality-∘ eq (unique refl) (unique refl) where open Equalizer e up-to-iso : (e₁ e₂ : Equalizer h i) → Equalizer.obj e₁ ≅ Equalizer.obj e₂ up-to-iso e₁ e₂ = record { from = repack e₁ e₂ ; to = repack e₂ e₁ ; iso = record { isoˡ = repack-cancel e₂ e₁ ; isoʳ = repack-cancel e₁ e₂ } } where open Equalizer repack : (e₁ e₂ : Equalizer h i) → obj e₁ ⇒ obj e₂ repack e₁ e₂ = equalize e₂ (equality e₁) repack∘ : (e₁ e₂ e₃ : Equalizer h i) → repack e₂ e₃ ∘ repack e₁ e₂ ≈ repack e₁ e₃ repack∘ e₁ e₂ e₃ = unique e₃ (⟺ (glueTrianglesʳ (⟺ (universal e₃)) (⟺ (universal e₂)))) repack-cancel : (e₁ e₂ : Equalizer h i) → repack e₁ e₂ ∘ repack e₂ e₁ ≈ id repack-cancel e₁ e₂ = repack∘ e₂ e₁ e₂ ○ ⟺ (id-equalize e₂)
31.088889
91
0.546819
7c7d0a612997c647b0976ae4ed20f6e1bdf06798
485
agda
Agda
lib/types/Join.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Join.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Join.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Sigma open import lib.types.Span open import lib.types.Pointed open import lib.types.Pushout module lib.types.Join where module _ {i j} (A : Type i) (B : Type j) where *-span : Span *-span = span A B (A × B) fst snd _*_ : Type _ _*_ = Pushout *-span module _ {i j} (X : Ptd i) (Y : Ptd j) where *-⊙span : ⊙Span *-⊙span = ⊙span X Y (X ⊙× Y) ⊙fst ⊙snd _⊙*_ : Ptd _ _⊙*_ = ⊙Pushout *-⊙span
18.653846
46
0.604124
13a8c13c72868a81b07f982ea13ff9aa39483c45
2,241
agda
Agda
typed-elaboration.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
16
2018-03-12T14:32:03.000Z
2021-12-19T02:50:23.000Z
typed-elaboration.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
54
2017-06-29T20:53:34.000Z
2018-11-29T16:32:40.000Z
typed-elaboration.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
1
2019-09-13T18:20:02.000Z
2019-09-13T18:20:02.000Z
open import Nat open import Prelude open import core open import contexts open import lemmas-consistency open import lemmas-disjointness open import weakening module typed-elaboration where mutual typed-elaboration-synth : {Γ : tctx} {e : hexp} {τ : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇒ τ ~> d ⊣ Δ → Δ , Γ ⊢ d :: τ typed-elaboration-synth ESConst = TAConst typed-elaboration-synth (ESVar x₁) = TAVar x₁ typed-elaboration-synth (ESLam x₁ ex) = TALam x₁ (typed-elaboration-synth ex) typed-elaboration-synth (ESAp {Δ1 = Δ1} _ d x₁ x₂ x₃ x₄) with typed-elaboration-ana x₃ | typed-elaboration-ana x₄ ... | con1 , ih1 | con2 , ih2 = TAAp (TACast (weaken-ta-Δ1 d ih1) con1) (TACast (weaken-ta-Δ2 {Δ1 = Δ1} d ih2) con2) typed-elaboration-synth (ESEHole {Γ = Γ} {u = u}) = TAEHole (ctx-top ∅ u (Γ , ⦇-⦈) refl)(STAId (λ x τ z → z)) typed-elaboration-synth (ESNEHole {Γ = Γ} {τ = τ} {u = u} {Δ = Δ} (d1 , d2) ex) with typed-elaboration-synth ex ... | ih1 = TANEHole {Δ = Δ ,, (u , Γ , ⦇-⦈)} (ctx-top Δ u (Γ , ⦇-⦈) (d2 u (lem-domsingle _ _))) (weaken-ta-Δ1 (d1 , d2) ih1)(STAId (λ x τ₁ z → z)) typed-elaboration-synth (ESAsc x) with typed-elaboration-ana x ... | con , ih = TACast ih con typed-elaboration-ana : {Γ : tctx} {e : hexp} {τ τ' : htyp} {d : ihexp} {Δ : hctx} → Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ → (τ' ~ τ) × (Δ , Γ ⊢ d :: τ') typed-elaboration-ana (EALam x₁ MAHole ex) with typed-elaboration-ana ex ... | con , D = TCHole1 , TALam x₁ D typed-elaboration-ana (EALam x₁ MAArr ex) with typed-elaboration-ana ex ... | con , D = TCArr TCRefl con , TALam x₁ D typed-elaboration-ana (EASubsume x x₁ x₂ x₃) = ~sym x₃ , typed-elaboration-synth x₂ typed-elaboration-ana (EAEHole {Γ = Γ} {u = u}) = TCRefl , TAEHole (ctx-top ∅ u (Γ , _) refl) (STAId (λ x τ z → z)) typed-elaboration-ana (EANEHole {Γ = Γ} {u = u} {τ = τ} {Δ = Δ} (d1 , d2) x) with typed-elaboration-synth x ... | ih1 = TCRefl , TANEHole {Δ = Δ ,, (u , Γ , τ)} (ctx-top Δ u (Γ , τ) (d2 u (lem-domsingle _ _)) ) (weaken-ta-Δ1 (d1 , d2) ih1) (STAId (λ x₁ τ₁ z → z))
53.357143
159
0.566711
301b58d42e81b5aa3ddafc5fbc7db235ce4eddbc
1,698
agda
Agda
src/options-main.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/options-main.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/options-main.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
module options-main where import parse open import lib open import options-types import options module parsem = parse options.gratr2-nt ptr open parsem open parsem.pnoderiv options.rrs options.options-rtn open import run ptr open noderiv {- from run.agda -} process-start : start → string process-start s = "" process : Run → string process (ParseTree (parsed-start p) :: []) = process-start p process r = "Parsing failure (run with -" ^ "-showParsed).\n" putStrRunIf : 𝔹 → Run → IO ⊤ putStrRunIf tt r = putStr (Run-to-string r) >> putStr "\n" putStrRunIf ff r = return triv processArgs : (showRun : 𝔹) → (showParsed : 𝔹) → 𝕃 string → IO ⊤ processArgs showRun showParsed (input-filename :: []) = (readFiniteFile input-filename) >>= processText where processText : string → IO ⊤ processText x with runRtn (string-to-𝕃char x) processText x | s with s processText x | s | inj₁ cs = putStr "Characters left before failure : " >> putStr (𝕃char-to-string cs) >> putStr "\nCannot proceed to parsing.\n" processText x | s | inj₂ r with putStrRunIf showRun r | rewriteRun r processText x | s | inj₂ r | sr | r' with putStrRunIf showParsed r' processText x | s | inj₂ r | sr | r' | sr' = sr >> sr' >> putStr (process r') processArgs showRun showParsed ("--showRun" :: xs) = processArgs tt showParsed xs processArgs showRun showParsed ("--showParsed" :: xs) = processArgs showRun tt xs processArgs showRun showParsed (x :: xs) = putStr ("Unknown option " ^ x ^ "\n") processArgs showRun showParsed [] = putStr "Please run with the name of a file to process.\n" main : IO ⊤ main = getArgs >>= processArgs ff ff
39.488372
154
0.671378
1b202986808d0d0b17245dc46b6961338573e3de
889
agda
Agda
test/Succeed/Issue4880.agda
LaloHao/agda
7de768bb7bc65dbe1efa35c699cfa8b8f9510573
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4880.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4880.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2020-09-09, issue #4880 -- Parse all interleavings of hiding and irrelevance in non-dependent function space module Issue4880 (A B : Set) where postulate -- dependent -- * visible _ : A → (_ : B) → A _ : A → .(_ : B) → A _ : A → ..(_ : B) → A -- * hidden _ : A → {_ : B} → A _ : A → .{_ : B} → A _ : A → ..{_ : B} → A -- * instance _ : A → ⦃ _ : B ⦄ → A _ : A → .⦃ _ : B ⦄ → A _ : A → ..⦃ _ : B ⦄ → A -- non-dependent -- * visible _ : A → B → A _ : A → .B → A _ : A → ..B → A -- * visible, parenthesized _ : A → .(B) → A _ : A → ..(B) → A _ : A → (.B) → A _ : A → (..B) → A -- * hidden _ : A → {B} → A _ : A → .{B} → A _ : A → ..{B} → A _ : A → {.B} → A _ : A → {..B} → A -- * instance _ : A → ⦃ B ⦄ → A _ : A → .⦃ B ⦄ → A _ : A → ..⦃ B ⦄ → A _ : A → ⦃ .B ⦄ → A _ : A → ⦃ ..B ⦄ → A
20.674419
84
0.364454
377880bd1da9db89db9b253ce537d053f40358bd
2,269
agda
Agda
agda-stdlib/src/Relation/Binary/Properties/TotalOrder.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Properties/TotalOrder.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Properties/TotalOrder.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties satisfied by total orders ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Properties.TotalOrder {t₁ t₂ t₃} (T : TotalOrder t₁ t₂ t₃) where open TotalOrder T open import Data.Sum.Base using (inj₁; inj₂) import Relation.Binary.Construct.Converse as Converse import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as ToStrict import Relation.Binary.Properties.Poset poset as PosetProperties open import Relation.Binary.Consequences open import Relation.Nullary using (¬_) open import Relation.Nullary.Negation using (contradiction) ------------------------------------------------------------------------ -- Total orders are almost decidable total orders decTotalOrder : Decidable _≈_ → DecTotalOrder _ _ _ decTotalOrder ≟ = record { isDecTotalOrder = record { isTotalOrder = isTotalOrder ; _≟_ = ≟ ; _≤?_ = total+dec⟶dec reflexive antisym total ≟ } } ------------------------------------------------------------------------ -- _≥_ - the flipped relation is also a total order open PosetProperties public using ( _≥_ ; ≥-refl ; ≥-reflexive ; ≥-trans ; ≥-antisym ; ≥-isPreorder ; ≥-isPartialOrder ; ≥-preorder ; ≥-poset ) ≥-isTotalOrder : IsTotalOrder _≈_ _≥_ ≥-isTotalOrder = Converse.isTotalOrder isTotalOrder ≥-totalOrder : TotalOrder _ _ _ ≥-totalOrder = record { isTotalOrder = ≥-isTotalOrder } open TotalOrder ≥-totalOrder public using () renaming (total to ≥-total) ------------------------------------------------------------------------ -- _<_ - the strict version is a strict partial order -- Note that total orders can NOT be turned into strict total orders as -- in order to distinguish between the _≤_ and _<_ cases we must have -- decidable equality _≈_. open PosetProperties public using ( _<_ ; <-resp-≈ ; <-respʳ-≈ ; <-respˡ-≈ ; <-irrefl ; <-asym ; <-trans ; <-isStrictPartialOrder ; <-strictPartialOrder ; <⇒≉ ; ≤∧≉⇒< ; <⇒≱ ; ≤⇒≯ ) ≰⇒> : ∀ {x y} → ¬ (x ≤ y) → y < x ≰⇒> = ToStrict.≰⇒> Eq.sym reflexive total
25.494382
72
0.570736
219a1d1e330eb2b563e041a9ba404341efb25a32
6,004
agda
Agda
agda-stdlib/src/Data/Integer/Divisibility/Signed.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Integer/Divisibility/Signed.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Integer/Divisibility/Signed.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Alternative definition of divisibility without using modulus. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Integer.Divisibility.Signed where open import Function open import Data.Integer.Base open import Data.Integer.Properties open import Data.Integer.Divisibility as Unsigned using (divides) renaming (_∣_ to _∣ᵤ_) import Data.Nat.Base as ℕ import Data.Nat.Divisibility as ℕ import Data.Nat.Coprimality as ℕ import Data.Nat.Properties as ℕ import Data.Sign as S import Data.Sign.Properties as SProp open import Level open import Relation.Binary open import Relation.Binary.PropositionalEquality import Relation.Binary.Reasoning.Preorder as PreorderReasoning open import Relation.Nullary using (yes; no) import Relation.Nullary.Decidable as DEC ------------------------------------------------------------------------ -- Type infix 4 _∣_ record _∣_ (k z : ℤ) : Set where constructor divides field quotient : ℤ equality : z ≡ quotient * k open _∣_ using (quotient) public ------------------------------------------------------------------------ -- Conversion between signed and unsigned divisibility ∣ᵤ⇒∣ : ∀ {k i} → k ∣ᵤ i → k ∣ i ∣ᵤ⇒∣ {k} {i} (divides 0 eq) = divides (+ 0) (∣n∣≡0⇒n≡0 eq) ∣ᵤ⇒∣ {k} {i} (divides q@(ℕ.suc q') eq) with k ≟ + 0 ... | yes refl = divides (+ 0) (∣n∣≡0⇒n≡0 (trans eq (ℕ.*-zeroʳ q))) ... | no ¬k≠0 = divides ((S._*_ on sign) i k ◃ q) (◃-≡ sign-eq abs-eq) where k' = ℕ.suc (ℕ.pred ∣ k ∣) ikq' = sign i S.* sign k ◃ ℕ.suc q' sign-eq : sign i ≡ sign (((S._*_ on sign) i k ◃ q) * k) sign-eq = sym $ begin sign (((S._*_ on sign) i k ◃ ℕ.suc q') * k) ≡⟨ cong (λ m → sign (sign ikq' S.* sign k ◃ ∣ ikq' ∣ ℕ.* m)) (sym (ℕ.suc[pred[n]]≡n (¬k≠0 ∘ ∣n∣≡0⇒n≡0))) ⟩ sign (sign ikq' S.* sign k ◃ ∣ ikq' ∣ ℕ.* k') ≡⟨ cong (λ m → sign (sign ikq' S.* sign k ◃ m ℕ.* k')) (abs-◃ (sign i S.* sign k) (ℕ.suc q')) ⟩ sign (sign ikq' S.* sign k ◃ _) ≡⟨ sign-◃ (sign ikq' S.* sign k) (ℕ.pred ∣ k ∣ ℕ.+ q' ℕ.* k') ⟩ sign ikq' S.* sign k ≡⟨ cong (S._* sign k) (sign-◃ (sign i S.* sign k) q') ⟩ sign i S.* sign k S.* sign k ≡⟨ SProp.*-assoc (sign i) (sign k) (sign k) ⟩ sign i S.* (sign k S.* sign k) ≡⟨ cong (sign i S.*_) (SProp.s*s≡+ (sign k)) ⟩ sign i S.* S.+ ≡⟨ SProp.*-identityʳ (sign i) ⟩ sign i ∎ where open ≡-Reasoning abs-eq : ∣ i ∣ ≡ ∣ ((S._*_ on sign) i k ◃ q) * k ∣ abs-eq = sym $ begin ∣ ((S._*_ on sign) i k ◃ ℕ.suc q') * k ∣ ≡⟨ abs-◃ (sign ikq' S.* sign k) (∣ ikq' ∣ ℕ.* ∣ k ∣) ⟩ ∣ ikq' ∣ ℕ.* ∣ k ∣ ≡⟨ cong (ℕ._* ∣ k ∣) (abs-◃ (sign i S.* sign k) (ℕ.suc q')) ⟩ ℕ.suc q' ℕ.* ∣ k ∣ ≡⟨ sym eq ⟩ ∣ i ∣ ∎ where open ≡-Reasoning ∣⇒∣ᵤ : ∀ {k i} → k ∣ i → k ∣ᵤ i ∣⇒∣ᵤ {k} {i} (divides q eq) = divides ∣ q ∣ $′ begin ∣ i ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ q * k ∣ ≡⟨ abs-*-commute q k ⟩ ∣ q ∣ ℕ.* ∣ k ∣ ∎ where open ≡-Reasoning ------------------------------------------------------------------------ -- _∣_ is a preorder ∣-refl : Reflexive _∣_ ∣-refl = ∣ᵤ⇒∣ ℕ.∣-refl ∣-reflexive : _≡_ ⇒ _∣_ ∣-reflexive refl = ∣-refl ∣-trans : Transitive _∣_ ∣-trans i∣j j∣k = ∣ᵤ⇒∣ (ℕ.∣-trans (∣⇒∣ᵤ i∣j) (∣⇒∣ᵤ j∣k)) ∣-isPreorder : IsPreorder _≡_ _∣_ ∣-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ∣-reflexive ; trans = ∣-trans } ∣-preorder : Preorder _ _ _ ∣-preorder = record { isPreorder = ∣-isPreorder } ------------------------------------------------------------------------ -- Divisibility reasoning module ∣-Reasoning where private module Base = PreorderReasoning ∣-preorder open Base public hiding (step-∼; step-≈; step-≈˘) infixr 2 step-∣ step-∣ = Base.step-∼ syntax step-∣ x y∣z x∣y = x ∣⟨ x∣y ⟩ y∣z ------------------------------------------------------------------------ -- Other properties of _∣_ _∣?_ : Decidable _∣_ k ∣? m = DEC.map′ ∣ᵤ⇒∣ ∣⇒∣ᵤ (∣ k ∣ ℕ.∣? ∣ m ∣) 0∣⇒≡0 : ∀ {m} → + 0 ∣ m → m ≡ + 0 0∣⇒≡0 0|m = ∣n∣≡0⇒n≡0 (ℕ.0∣⇒≡0 (∣⇒∣ᵤ 0|m)) m∣∣m∣ : ∀ {m} → m ∣ (+ ∣ m ∣) m∣∣m∣ = ∣ᵤ⇒∣ ℕ.∣-refl ∣m∣∣m : ∀ {m} → (+ ∣ m ∣) ∣ m ∣m∣∣m = ∣ᵤ⇒∣ ℕ.∣-refl ∣m∣n⇒∣m+n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m + n ∣m∣n⇒∣m+n (divides q refl) (divides p refl) = divides (q + p) (sym (*-distribʳ-+ _ q p)) ∣m⇒∣-m : ∀ {i m} → i ∣ m → i ∣ - m ∣m⇒∣-m {i} {m} i∣m = ∣ᵤ⇒∣ $′ begin ∣ i ∣ ∣⟨ ∣⇒∣ᵤ i∣m ⟩ ∣ m ∣ ≡⟨ sym (∣-n∣≡∣n∣ m) ⟩ ∣ - m ∣ ∎ where open ℕ.∣-Reasoning ∣m∣n⇒∣m-n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m - n ∣m∣n⇒∣m-n i∣m i∣n = ∣m∣n⇒∣m+n i∣m (∣m⇒∣-m i∣n) ∣m+n∣m⇒∣n : ∀ {i m n} → i ∣ m + n → i ∣ m → i ∣ n ∣m+n∣m⇒∣n {i} {m} {n} i∣m+n i∣m = begin i ∣⟨ ∣m∣n⇒∣m-n i∣m+n i∣m ⟩ m + n - m ≡⟨ +-comm (m + n) (- m) ⟩ - m + (m + n) ≡⟨ sym (+-assoc (- m) m n) ⟩ - m + m + n ≡⟨ cong (_+ n) (+-inverseˡ m) ⟩ + 0 + n ≡⟨ +-identityˡ n ⟩ n ∎ where open ∣-Reasoning ∣m+n∣n⇒∣m : ∀ {i m n} → i ∣ m + n → i ∣ n → i ∣ m ∣m+n∣n⇒∣m {i} {m} {n} i|m+n i|n rewrite +-comm m n = ∣m+n∣m⇒∣n i|m+n i|n ∣n⇒∣m*n : ∀ {i} m {n} → i ∣ n → i ∣ m * n ∣n⇒∣m*n {i} m {n} (divides q eq) = divides (m * q) $′ begin m * n ≡⟨ cong (m *_) eq ⟩ m * (q * i) ≡⟨ sym (*-assoc m q i) ⟩ m * q * i ∎ where open ≡-Reasoning ∣m⇒∣m*n : ∀ {i m} n → i ∣ m → i ∣ m * n ∣m⇒∣m*n {i} {m} n i|m rewrite *-comm m n = ∣n⇒∣m*n {i} n {m} i|m *-monoʳ-∣ : ∀ k → (k *_) Preserves _∣_ ⟶ _∣_ *-monoʳ-∣ k i∣j = ∣ᵤ⇒∣ (Unsigned.*-monoʳ-∣ k (∣⇒∣ᵤ i∣j)) *-monoˡ-∣ : ∀ k → (_* k) Preserves _∣_ ⟶ _∣_ *-monoˡ-∣ k {i} {j} i∣j = ∣ᵤ⇒∣ (Unsigned.*-monoˡ-∣ k {i} {j} (∣⇒∣ᵤ i∣j)) *-cancelˡ-∣ : ∀ k {i j} → k ≢ + 0 → k * i ∣ k * j → i ∣ j *-cancelˡ-∣ k k≢0 = ∣ᵤ⇒∣ ∘ Unsigned.*-cancelˡ-∣ k k≢0 ∘ ∣⇒∣ᵤ *-cancelʳ-∣ : ∀ k {i j} → k ≢ + 0 → i * k ∣ j * k → i ∣ j *-cancelʳ-∣ k {i} {j} k≢0 = ∣ᵤ⇒∣ ∘′ Unsigned.*-cancelʳ-∣ k {i} {j} k≢0 ∘′ ∣⇒∣ᵤ
30.948454
78
0.448201
432adc982b5390270532742d10cb4fdea0751494
3,096
agda
Agda
agda/rummy.agda
piyush-kurur/sample-code
1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8
[ "Unlicense" ]
2
2017-06-19T12:34:08.000Z
2017-06-20T02:19:33.000Z
agda/rummy.agda
piyush-kurur/sample-code
1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8
[ "Unlicense" ]
1
2017-11-01T05:48:28.000Z
2017-11-01T05:48:28.000Z
agda/rummy.agda
piyush-kurur/sample-code
1062c0b81f8dbb664fcc9376ba13695f0ee7ebc8
[ "Unlicense" ]
null
null
null
module rummy where open import Data.Nat -- The suit type data Suit : Set where ♣ : Suit ♢ : Suit ♥ : Suit ♠ : Suit -- A card consists of a value and a suite. data Card : ℕ → Suit → Set where _of_ : (n : ℕ) (s : Suit) → Card n s -- Common names for cards A : ℕ; A = 1 K : ℕ; K = 13 Q : ℕ; Q = 12 J : ℕ; J = 11 -- -- The clubs suit -- A♣ : Card A ♣; A♣ = A of ♣ 2♣ : Card 2 ♣; 2♣ = 2 of ♣ 3♣ : Card 3 ♣; 3♣ = 3 of ♣ 4♣ : Card 4 ♣; 4♣ = 4 of ♣ 5♣ : Card 5 ♣; 5♣ = 5 of ♣ 6♣ : Card 6 ♣; 6♣ = 6 of ♣ 7♣ : Card 7 ♣; 7♣ = 7 of ♣ 8♣ : Card 8 ♣; 8♣ = 8 of ♣ 9♣ : Card 9 ♣; 9♣ = 9 of ♣ 10♣ : Card 10 ♣; 10♣ = 10 of ♣ J♣ : Card J ♣; J♣ = J of ♣ Q♣ : Card Q ♣; Q♣ = Q of ♣ K♣ : Card K ♣; K♣ = K of ♣ -- -- The diamond suit -- A♢ : Card A ♢; A♢ = A of ♢ 2♢ : Card 2 ♢; 2♢ = 2 of ♢ 3♢ : Card 3 ♢; 3♢ = 3 of ♢ 4♢ : Card 4 ♢; 4♢ = 4 of ♢ 5♢ : Card 5 ♢; 5♢ = 5 of ♢ 6♢ : Card 6 ♢; 6♢ = 6 of ♢ 7♢ : Card 7 ♢; 7♢ = 7 of ♢ 8♢ : Card 8 ♢; 8♢ = 8 of ♢ 9♢ : Card 9 ♢; 9♢ = 9 of ♢ 10♢ : Card 10 ♢; 10♢ = 10 of ♢ J♢ : Card J ♢; J♢ = J of ♢ Q♢ : Card Q ♢; Q♢ = Q of ♢ K♢ : Card K ♢; K♢ = K of ♢ -- -- The heart suit -- A♥ : Card A ♥; A♥ = A of ♥ 2♥ : Card 2 ♥; 2♥ = 2 of ♥ 3♥ : Card 3 ♥; 3♥ = 3 of ♥ 4♥ : Card 4 ♥; 4♥ = 4 of ♥ 5♥ : Card 5 ♥; 5♥ = 5 of ♥ 6♥ : Card 6 ♥; 6♥ = 6 of ♥ 7♥ : Card 7 ♥; 7♥ = 7 of ♥ 8♥ : Card 8 ♥; 8♥ = 8 of ♥ 9♥ : Card 9 ♥; 9♥ = 9 of ♥ 10♥ : Card 10 ♥; 10♥ = 10 of ♥ J♥ : Card J ♥; J♥ = J of ♥ Q♥ : Card Q ♥; Q♥ = Q of ♥ K♥ : Card K ♥; K♥ = K of ♥ -- -- The spade suit -- A♠ : Card A ♠; A♠ = A of ♠ 2♠ : Card 2 ♠; 2♠ = 2 of ♠ 3♠ : Card 3 ♠; 3♠ = 3 of ♠ 4♠ : Card 4 ♠; 4♠ = 4 of ♠ 5♠ : Card 5 ♠; 5♠ = 5 of ♠ 6♠ : Card 6 ♠; 6♠ = 6 of ♠ 7♠ : Card 7 ♠; 7♠ = 7 of ♠ 8♠ : Card 8 ♠; 8♠ = 8 of ♠ 9♠ : Card 9 ♠; 9♠ = 9 of ♠ 10♠ : Card 10 ♠; 10♠ = 10 of ♠ J♠ : Card J ♠; J♠ = J of ♠ Q♠ : Card Q ♠; Q♠ = Q of ♠ K♠ : Card K ♠; K♠ = K of ♠ -- A run of length ℓ. data Run (suit : Suit) : (start ℓ : ℕ) → Set where [] : {start : ℕ} → Run suit start 0 _,_ : {n ℓ : ℕ} → Card n suit → Run suit (1 + n) ℓ → Run suit n (1 + ℓ) -- A group of length ℓ. data Group : (value ℓ : ℕ) → Set where [] : {value : ℕ} → Group value 0 _,_ : {suit : Suit} {value ℓ : ℕ} → Card value suit → Group value ℓ → Group value (1 + ℓ) -- Some pretty functions for creating runs. You can create a run as -- follows: -- -- myrun = ⟨ A♣ , 2♣ , 3♣ ⟩ -- ⟨_ : {suit : Suit} {n ℓ : ℕ} → Run suit n ℓ → Run suit n ℓ ⟨ r = r _⟩ : {suit : Suit} {n : ℕ} → Card n suit → Run suit n 1 c ⟩ = c , [] -- Some pretty functions for creating groups. You can create a group -- group as follows: -- -- mygroup = ⟦ A♣ , A♥ , A♢ ⟧ -- ⟦_ : {value ℓ : ℕ} → Group value ℓ → Group value ℓ ⟦ g = g _⟧ : {suit : Suit} {n : ℕ} → Card n suit → Group n 1 c ⟧ = c , [] infixr 2 _⟩ _⟧ _,_ infixl 1 ⟨_ ⟦_ mygroup = ⟦ A♣ , A♣ , A♠ ⟧ myrun = ⟨ A♣ , 2♣ , 3♣ ⟩
21.061224
68
0.413437
37a6c27c12ae549f1f6abb337c6a125f886d7473
1,096
agda
Agda
Cubical/ZCohomology/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Base.agda
knrafto/cubical
f6771617374bfe65a7043d00731fed5a673aa729
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Base where open import Cubical.Data.Int.Base open import Cubical.Data.Nat.Base open import Cubical.Data.Sigma open import Cubical.Foundations.Pointed.Base open import Cubical.HITs.Nullification.Base open import Cubical.HITs.SetTruncation.Base open import Cubical.HITs.Sn.Base open import Cubical.HITs.Susp.Base open import Cubical.HITs.Truncation.Base private variable ℓ : Level A : Type ℓ --- Cohomology --- {- Types Kₙ from Brunerie 2016 -} coHomK : (n : ℕ) → Type₀ coHomK zero = Int coHomK (suc n) = ∥ S₊ (suc n) ∥ (2 + suc n) {- Cohomology -} coHom : (n : ℕ) → Type ℓ → Type ℓ coHom n A = ∥ (A → coHomK n) ∥₂ --- Reduced cohomology --- {- Pointed version of Kₙ -} coHomK-ptd : (n : ℕ) → Pointed (ℓ-zero) coHomK-ptd zero = coHomK zero , (pos 0) coHomK-ptd (suc n) = (coHomK (suc n) , ∣ north ∣) {- Reduced cohomology -} coHomRed : (n : ℕ) → (A : Pointed ℓ) → Type ℓ coHomRed n A = ∥ (A →∙ (coHomK-ptd n)) ∥₂ coHom-pt : (n : ℕ) → coHomK n coHom-pt zero = pos 0 coHom-pt (suc n) = ∣ north ∣
22.833333
50
0.660584
30247f1c71fc41f4646ba2b2580197b6d419e987
9,329
agda
Agda
Categories/Morphism/Isomorphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Morphism/Isomorphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Morphism/Isomorphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Mainly *properties* of isomorphisms, and a lot of other things too -- TODO: split things up more semantically? module Categories.Morphism.Isomorphism {o ℓ e} (𝒞 : Category o ℓ e) where open import Level using (_⊔_) open import Function using (flip) open import Data.Product using (_,_) open import Relation.Binary using (Rel; _Preserves_⟶_; IsEquivalence) open import Relation.Binary.Construct.Closure.Transitive open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) import Categories.Category.Construction.Core as Core open import Categories.Category.Groupoid using (IsGroupoid) import Categories.Category.Groupoid.Properties as GroupoidProps import Categories.Morphism as Morphism import Categories.Morphism.Properties as MorphismProps import Categories.Morphism.IsoEquiv as IsoEquiv import Categories.Category.Construction.Path as Path open Core 𝒞 using (Core; Core-isGroupoid; CoreGroupoid) open Morphism 𝒞 open MorphismProps 𝒞 open IsoEquiv 𝒞 using (_≃_; ⌞_⌟) open Path 𝒞 import Categories.Morphism.Reasoning as MR open Category 𝒞 private module MCore where open IsGroupoid Core-isGroupoid public open GroupoidProps CoreGroupoid public open MorphismProps Core public open Morphism Core public open Path Core public variable A B C D E F : Obj open MCore using () renaming (_∘_ to _∘ᵢ_) public CommutativeIso = IsGroupoid.CommutativeSquare Core-isGroupoid -------------------- -- Also stuff about transitive closure ∘ᵢ-tc : A [ _≅_ ]⁺ B → A ≅ B ∘ᵢ-tc = MCore.∘-tc infix 4 _≃⁺_ _≃⁺_ : Rel (A [ _≅_ ]⁺ B) _ _≃⁺_ = MCore._≈⁺_ TransitiveClosure : Category _ _ _ TransitiveClosure = MCore.Path -------------------- -- some infrastructure setup in order to say something about morphisms and isomorphisms module _ where private data IsoPlus : A [ _⇒_ ]⁺ B → Set (o ⊔ ℓ ⊔ e) where [_] : {f : A ⇒ B} {g : B ⇒ A} → Iso f g → IsoPlus [ f ] _∼⁺⟨_⟩_ : ∀ A {f⁺ : A [ _⇒_ ]⁺ B} {g⁺ : B [ _⇒_ ]⁺ C} → IsoPlus f⁺ → IsoPlus g⁺ → IsoPlus (_ ∼⁺⟨ f⁺ ⟩ g⁺) open _≅_ ≅⁺⇒⇒⁺ : A [ _≅_ ]⁺ B → A [ _⇒_ ]⁺ B ≅⁺⇒⇒⁺ [ f ] = [ from f ] ≅⁺⇒⇒⁺ (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = _ ∼⁺⟨ ≅⁺⇒⇒⁺ f⁺ ⟩ ≅⁺⇒⇒⁺ f⁺′ reverse : A [ _≅_ ]⁺ B → B [ _≅_ ]⁺ A reverse [ f ] = [ ≅.sym f ] reverse (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = _ ∼⁺⟨ reverse f⁺′ ⟩ reverse f⁺ reverse⇒≅-sym : (f⁺ : A [ _≅_ ]⁺ B) → ∘ᵢ-tc (reverse f⁺) ≡ ≅.sym (∘ᵢ-tc f⁺) reverse⇒≅-sym [ f ] = ≡.refl reverse⇒≅-sym (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = ≡.cong₂ (Morphism.≅.trans 𝒞) (reverse⇒≅-sym f⁺′) (reverse⇒≅-sym f⁺) TransitiveClosure-groupoid : IsGroupoid TransitiveClosure TransitiveClosure-groupoid = record { _⁻¹ = reverse ; iso = λ {_ _ f⁺} → record { isoˡ = isoˡ′ f⁺ ; isoʳ = isoʳ′ f⁺ } } where open MCore.HomReasoning isoˡ′ : (f⁺ : A [ _≅_ ]⁺ B) → ∘ᵢ-tc (reverse f⁺) ∘ᵢ ∘ᵢ-tc f⁺ ≃ ≅.refl isoˡ′ f⁺ = begin ∘ᵢ-tc (reverse f⁺) ∘ᵢ ∘ᵢ-tc f⁺ ≡⟨ ≡.cong (_∘ᵢ ∘ᵢ-tc f⁺) (reverse⇒≅-sym f⁺) ⟩ ≅.sym (∘ᵢ-tc f⁺) ∘ᵢ ∘ᵢ-tc f⁺ ≈⟨ MCore.iso.isoˡ ⟩ ≅.refl ∎ isoʳ′ : (f⁺ : A [ _≅_ ]⁺ B) → ∘ᵢ-tc f⁺ ∘ᵢ ∘ᵢ-tc (reverse f⁺) ≃ ≅.refl isoʳ′ f⁺ = begin ∘ᵢ-tc f⁺ ∘ᵢ ∘ᵢ-tc (reverse f⁺) ≡⟨ ≡.cong (∘ᵢ-tc f⁺ ∘ᵢ_) (reverse⇒≅-sym f⁺) ⟩ ∘ᵢ-tc f⁺ ∘ᵢ ≅.sym (∘ᵢ-tc f⁺) ≈⟨ MCore.iso.isoʳ ⟩ ≅.refl ∎ from-∘ᵢ-tc : (f⁺ : A [ _≅_ ]⁺ B) → from (∘ᵢ-tc f⁺) ≡ ∘-tc (≅⁺⇒⇒⁺ f⁺) from-∘ᵢ-tc [ f ] = ≡.refl from-∘ᵢ-tc (_ ∼⁺⟨ f⁺ ⟩ f⁺′) = ≡.cong₂ _∘_ (from-∘ᵢ-tc f⁺′) (from-∘ᵢ-tc f⁺) ≅*⇒⇒*-cong : ≅⁺⇒⇒⁺ {A} {B} Preserves _≃⁺_ ⟶ _≈⁺_ ≅*⇒⇒*-cong {_} {_} {f⁺} {g⁺} f⁺≃⁺g⁺ = begin ∘-tc (≅⁺⇒⇒⁺ f⁺) ≡˘⟨ from-∘ᵢ-tc f⁺ ⟩ from (∘ᵢ-tc f⁺) ≈⟨ _≃_.from-≈ f⁺≃⁺g⁺ ⟩ from (∘ᵢ-tc g⁺) ≡⟨ from-∘ᵢ-tc g⁺ ⟩ ∘-tc (≅⁺⇒⇒⁺ g⁺) ∎ where open HomReasoning ≅-shift : ∀ {f⁺ : A [ _≅_ ]⁺ B} {g⁺ : B [ _≅_ ]⁺ C} {h⁺ : A [ _≅_ ]⁺ C} → (_ ∼⁺⟨ f⁺ ⟩ g⁺) ≃⁺ h⁺ → g⁺ ≃⁺ (_ ∼⁺⟨ reverse f⁺ ⟩ h⁺) ≅-shift {f⁺ = f⁺} {g⁺ = g⁺} {h⁺ = h⁺} eq = begin ∘ᵢ-tc g⁺ ≈⟨ introʳ (I.isoʳ f⁺) ⟩ ∘ᵢ-tc g⁺ ∘ᵢ (∘ᵢ-tc f⁺ ∘ᵢ ∘ᵢ-tc (reverse f⁺)) ≈⟨ pullˡ eq ⟩ ∘ᵢ-tc h⁺ ∘ᵢ ∘ᵢ-tc (reverse f⁺) ∎ where open MCore.HomReasoning open MR Core module I {A B} (f⁺ : A [ _≅_ ]⁺ B) = Morphism.Iso (IsGroupoid.iso TransitiveClosure-groupoid {f = f⁺}) lift : ∀ {f⁺ : A [ _⇒_ ]⁺ B} → IsoPlus f⁺ → A [ _≅_ ]⁺ B lift [ iso ] = [ record { from = _ ; to = _ ; iso = iso } ] lift (_ ∼⁺⟨ iso ⟩ iso′) = _ ∼⁺⟨ lift iso ⟩ lift iso′ reduce-lift : ∀ {f⁺ : A [ _⇒_ ]⁺ B} (f′ : IsoPlus f⁺) → from (∘ᵢ-tc (lift f′)) ≡ ∘-tc f⁺ reduce-lift [ f ] = ≡.refl reduce-lift (_ ∼⁺⟨ f′ ⟩ f″) = ≡.cong₂ _∘_ (reduce-lift f″) (reduce-lift f′) lift-cong : ∀ {f⁺ g⁺ : A [ _⇒_ ]⁺ B} (f′ : IsoPlus f⁺) (g′ : IsoPlus g⁺) → f⁺ ≈⁺ g⁺ → lift f′ ≃⁺ lift g′ lift-cong {_} {_} {f⁺} {g⁺} f′ g′ eq = ⌞ from-≈′ ⌟ where open HomReasoning from-≈′ : from (∘ᵢ-tc (lift f′)) ≈ from (∘ᵢ-tc (lift g′)) from-≈′ = begin from (∘ᵢ-tc (lift f′)) ≡⟨ reduce-lift f′ ⟩ ∘-tc f⁺ ≈⟨ eq ⟩ ∘-tc g⁺ ≡˘⟨ reduce-lift g′ ⟩ from (∘ᵢ-tc (lift g′)) ∎ lift-triangle : {f : A ⇒ B} {g : C ⇒ A} {h : C ⇒ B} {k : B ⇒ C} {i : B ⇒ A} {j : A ⇒ C} → f ∘ g ≈ h → (f′ : Iso f i) → (g′ : Iso g j) → (h′ : Iso h k) → lift (_ ∼⁺⟨ [ g′ ] ⟩ [ f′ ]) ≃⁺ lift [ h′ ] lift-triangle eq f′ g′ h′ = lift-cong (_ ∼⁺⟨ [ g′ ] ⟩ [ f′ ]) [ h′ ] eq lift-square : {f : A ⇒ B} {g : C ⇒ A} {h : D ⇒ B} {i : C ⇒ D} {j : D ⇒ C} {a : B ⇒ A} {b : A ⇒ C} {c : B ⇒ D} → f ∘ g ≈ h ∘ i → (f′ : Iso f a) → (g′ : Iso g b) → (h′ : Iso h c) → (i′ : Iso i j) → lift (_ ∼⁺⟨ [ g′ ] ⟩ [ f′ ]) ≃⁺ lift (_ ∼⁺⟨ [ i′ ] ⟩ [ h′ ]) lift-square eq f′ g′ h′ i′ = lift-cong (_ ∼⁺⟨ [ g′ ] ⟩ [ f′ ]) (_ ∼⁺⟨ [ i′ ] ⟩ [ h′ ]) eq lift-pentagon : {f : A ⇒ B} {g : C ⇒ A} {h : D ⇒ C} {i : E ⇒ B} {j : D ⇒ E} {l : E ⇒ D} {a : B ⇒ A} {b : A ⇒ C} {c : C ⇒ D} {d : B ⇒ E} → f ∘ g ∘ h ≈ i ∘ j → (f′ : Iso f a) → (g′ : Iso g b) → (h′ : Iso h c) → (i′ : Iso i d) → (j′ : Iso j l) → lift (_ ∼⁺⟨ _ ∼⁺⟨ [ h′ ] ⟩ [ g′ ] ⟩ [ f′ ]) ≃⁺ lift (_ ∼⁺⟨ [ j′ ] ⟩ [ i′ ]) lift-pentagon eq f′ g′ h′ i′ j′ = lift-cong (_ ∼⁺⟨ _ ∼⁺⟨ [ h′ ] ⟩ [ g′ ] ⟩ [ f′ ]) (_ ∼⁺⟨ [ j′ ] ⟩ [ i′ ]) eq module _ where open _≅_ -- projecting isomorphism commutations to morphism commutations project-triangle : {g : A ≅ B} {f : C ≅ A} {h : C ≅ B} → g ∘ᵢ f ≃ h → from g ∘ from f ≈ from h project-triangle = _≃_.from-≈ project-square : {g : A ≅ B} {f : C ≅ A} {i : D ≅ B} {h : C ≅ D} → g ∘ᵢ f ≃ i ∘ᵢ h → from g ∘ from f ≈ from i ∘ from h project-square = _≃_.from-≈ -- direct lifting from morphism commutations to isomorphism commutations lift-triangle′ : {f : A ≅ B} {g : C ≅ A} {h : C ≅ B} → from f ∘ from g ≈ from h → f ∘ᵢ g ≃ h lift-triangle′ = ⌞_⌟ lift-square′ : {f : A ≅ B} {g : C ≅ A} {h : D ≅ B} {i : C ≅ D} → from f ∘ from g ≈ from h ∘ from i → f ∘ᵢ g ≃ h ∘ᵢ i lift-square′ = ⌞_⌟ lift-pentagon′ : {f : A ≅ B} {g : C ≅ A} {h : D ≅ C} {i : E ≅ B} {j : D ≅ E} → from f ∘ from g ∘ from h ≈ from i ∘ from j → f ∘ᵢ g ∘ᵢ h ≃ i ∘ᵢ j lift-pentagon′ = ⌞_⌟ open MR Core open MCore using (_⁻¹) open MCore.HomReasoning open MR.GroupoidR _ Core-isGroupoid squares×≃⇒≃ : {f f′ : A ≅ B} {g : A ≅ C} {h : B ≅ D} {i i′ : C ≅ D} → CommutativeIso f g h i → CommutativeIso f′ g h i′ → i ≃ i′ → f ≃ f′ squares×≃⇒≃ sq₁ sq₂ eq = MCore.isos×≈⇒≈ eq helper₁ (MCore.≅.sym helper₂) sq₁ sq₂ where helper₁ = record { iso = MCore.iso } helper₂ = record { iso = MCore.iso } -- imagine a triangle prism, if all the sides and the top face commute, the bottom face commute. triangle-prism : {i′ : A ≅ B} {f′ : C ≅ A} {h′ : C ≅ B} {i : D ≅ E} {j : D ≅ A} {k : E ≅ B} {f : F ≅ D} {g : F ≅ C} {h : F ≅ E} → i′ ∘ᵢ f′ ≃ h′ → CommutativeIso i j k i′ → CommutativeIso f g j f′ → CommutativeIso h g k h′ → i ∘ᵢ f ≃ h triangle-prism {i′ = i′} {f′} {_} {i} {_} {k} {f} {g} {_} eq sq₁ sq₂ sq₃ = squares×≃⇒≃ glued sq₃ eq where glued : CommutativeIso (i ∘ᵢ f) g k (i′ ∘ᵢ f′) glued = sym (glue (sym sq₁) (sym sq₂)) elim-triangleˡ : {f : A ≅ B} {g : C ≅ A} {h : D ≅ C} {i : D ≅ B} {j : D ≅ A} → f ∘ᵢ g ∘ᵢ h ≃ i → f ∘ᵢ j ≃ i → g ∘ᵢ h ≃ j elim-triangleˡ perim tri = MCore.mono _ _ (perim ○ ⟺ tri) elim-triangleˡ′ : {f : A ≅ B} {g : C ≅ A} {h : D ≅ C} {i : D ≅ B} {j : C ≅ B} → f ∘ᵢ g ∘ᵢ h ≃ i → j ∘ᵢ h ≃ i → f ∘ᵢ g ≃ j elim-triangleˡ′ {f = f} {g} {h} {i} {j} perim tri = MCore.epi _ _ ( begin (f ∘ᵢ g) ∘ᵢ h ≈⟨ MCore.assoc ⟩ f ∘ᵢ g ∘ᵢ h ≈⟨ perim ⟩ i ≈˘⟨ tri ⟩ j ∘ᵢ h ∎ ) cut-squareʳ : {g : A ≅ B} {f : A ≅ C} {h : B ≅ D} {i : C ≅ D} {j : B ≅ C} → CommutativeIso g f h i → i ∘ᵢ j ≃ h → j ∘ᵢ g ≃ f cut-squareʳ {g = g} {f = f} {h = h} {i = i} {j = j} sq tri = begin j ∘ᵢ g ≈⟨ switch-fromtoˡ′ {f = i} {h = j} {k = h} tri ⟩∘⟨ refl ⟩ (i ⁻¹ ∘ᵢ h) ∘ᵢ g ≈⟨ MCore.assoc ⟩ i ⁻¹ ∘ᵢ h ∘ᵢ g ≈˘⟨ switch-fromtoˡ′ {f = i} {h = f} {k = h ∘ᵢ g} (sym sq) ⟩ f ∎
38.390947
120
0.473791
3754ae6f225756fb82bbf05e677c7971a81e7c81
1,051
agda
Agda
notes/type-classes/InstanceArguments.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/type-classes/InstanceArguments.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/type-classes/InstanceArguments.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From: On the Bright Side of Type Classes: Instances Arguments in -- Agda (ICFP'11). module InstanceArguments where open import Data.Bool.Base open import Data.Nat hiding ( equal ) renaming ( suc to succ ) -- Note: Agda doesn't have a primitive function primBoolEquality. boolEq : Bool → Bool → Bool boolEq true true = true boolEq false false = true {-# CATCHALL #-} boolEq _ _ = false natEq : ℕ → ℕ → Bool natEq zero zero = true natEq (succ m) (succ n) = natEq m n {-# CATCHALL #-} natEq _ _ = false record Eq (t : Set) : Set where field equal : t → t → Bool instance eqInstanceBool : Eq Bool eqInstanceBool = record { equal = boolEq } eqInstanceℕ : Eq ℕ eqInstanceℕ = record { equal = natEq } equal : {t : Set} → {{eqT : Eq t}} → t → t → Bool equal {{eqT}} = Eq.equal eqT test : Bool test = equal 5 3 ∨ equal true false
25.02381
67
0.61275
37844b6ea466a7ede5fda2a73512083f2456c41a
632
agda
Agda
test/Fail/Issue1428.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue1428.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/Issue1428.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2013-05-16, raised by Andrea 2015-02-10 open import Common.Size open import Common.Prelude data Wrap (A : SizeUniv) : SizeUniv where -- data Wrap (A : Set) : Set where wrap : A → Wrap A module M (f : ∀ i → Wrap (Size< i)) where test : ∀ i → Wrap (Size< i) → ⊥ test i (wrap j) = test j (f j) module N (pred : ∀ i → Size< i) where f = (λ i → wrap (pred i)) open M f loop : Size → ⊥ loop i = test i (f i) -- = test i (wrap (pred i)) -- = test (pred i) ((λ i → wrap (pred i)) (pred i)) -- = test (pred i) (wrap (pred (pred i))) -- = test (pred (pred i)) (wrap (pred (pred (pred i)))) -- = ...
23.407407
57
0.545886
9a9310aaa4506c8ae582f774e283ba60579865d1
3,284
agda
Agda
theorems/stash/cohomology/InverseInSusp.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/stash/cohomology/InverseInSusp.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/stash/cohomology/InverseInSusp.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.FunctionOver open import groups.ProductRepr open import cohomology.Theory open import cohomology.WedgeCofiber {- For the cohomology group of a suspension ΣX, the group inverse has the - explicit form Cⁿ(flip-susp) : Cⁿ(ΣX) → Cⁿ(ΣX). -} module cohomology.InverseInSusp {i} (CT : CohomologyTheory i) (n : ℤ) {X : Ptd i} where open CohomologyTheory CT open import cohomology.Functor CT open import cohomology.BaseIndependence CT open import cohomology.Wedge CT private module CW = CWedge n (⊙Susp X) (⊙Susp X) module Subtract = SuspRec {C = fst (⊙Susp X ⊙∨ ⊙Susp X)} (winl south) (winr south) (λ x → ap winl (! (merid x)) ∙ wglue ∙ ap winr (merid x)) subtract = Subtract.f ⊙subtract : ⊙Susp X ⊙→ ⊙Susp X ⊙∨ ⊙Susp X ⊙subtract = (subtract , ! (ap winl (merid (pt X)))) projl-subtract : ∀ σ → projl _ _ (subtract σ) == Susp-flip σ projl-subtract = Susp-elim idp idp $ ↓-='-from-square ∘ vert-degen-square ∘ λ x → ap-∘ (projl _ _) subtract (merid x) ∙ ap (ap (projl _ _)) (Subtract.merid-β x) ∙ ap-∙ (projl _ _) (ap winl (! (merid x))) (wglue ∙ ap winr (merid x)) ∙ ((∘-ap (projl _ _) winl (! (merid x)) ∙ ap-idf _) ∙2 (ap-∙ (projl _ _) wglue (ap winr (merid x)) ∙ (Projl.glue-β _ _ ∙2 (∘-ap (projl _ _) winr (merid x) ∙ ap-cst _ _)))) ∙ ∙-unit-r _ ∙ ! (FlipSusp.merid-β x) projr-subtract : ∀ σ → projr _ _ (subtract σ) == σ projr-subtract = Susp-elim idp idp $ ↓-∘=idf-in' (projr _ _) subtract ∘ λ x → ap (ap (projr _ _)) (Subtract.merid-β x) ∙ ap-∙ (projr _ _) (ap winl (! (merid x))) (wglue ∙ ap winr (merid x)) ∙ ((∘-ap (projr _ _) winl (! (merid x)) ∙ ap-cst _ _) ∙2 (ap-∙ (projr _ _) wglue (ap winr (merid x)) ∙ (Projr.glue-β _ _ ∙2 (∘-ap (projr _ _) winr (merid x) ∙ ap-idf _)))) fold-subtract : ∀ σ → fold (subtract σ) == south fold-subtract = Susp-elim idp idp $ ↓-app=cst-in ∘ ! ∘ λ x → ∙-unit-r _ ∙ ap-∘ fold subtract (merid x) ∙ ap (ap fold) (Subtract.merid-β x) ∙ ap-∙ fold (ap winl (! (merid x))) (wglue ∙ ap winr (merid x)) ∙ ((∘-ap fold winl (! (merid x)) ∙ ap-idf _) ∙2 (ap-∙ fold wglue (ap winr (merid x)) ∙ (Fold.glue-β ∙2 (∘-ap fold winr (merid x) ∙ ap-idf _)))) ∙ !-inv-l (merid x) cancel : ×ᴳ-fanin (C-is-abelian n _) (CF-hom n (⊙Susp-flip X)) (idhom _) ∘ᴳ ×ᴳ-diag == cst-hom cancel = ap2 (λ φ ψ → ×ᴳ-fanin (C-is-abelian n _) φ ψ ∘ᴳ ×ᴳ-diag) (! (CF-λ= n projl-subtract)) (! (CF-ident n) ∙ ! (CF-λ= n projr-subtract)) ∙ transport (λ {(G , φ , ψ) → φ ∘ᴳ ψ == cst-hom}) (pair= (CW.path) $ ↓-×-in (CW.Wedge-in-over ⊙subtract) (CW.⊙Wedge-rec-over (⊙idf _) (⊙idf _) ▹ ap2 ×ᴳ-fanout (CF-ident n) (CF-ident n))) (! (CF-comp n ⊙fold ⊙subtract) ∙ CF-λ= n (λ σ → fold-subtract σ ∙ ! (merid (pt X))) ∙ CF-cst n) C-Susp-flip-is-inv : CF-hom n (⊙Susp-flip X) == inv-hom (C n (⊙Susp X)) (C-is-abelian _ _) C-Susp-flip-is-inv = group-hom= $ λ= λ g → ! (Group.inv-unique-l (C n (⊙Susp X)) _ g (app= (ap GroupHom.f cancel) g))
36.087912
78
0.543544
7c815e955cbd70c0a5dd33efa94fe3416c980621
3,379
agda
Agda
Experiment/Omniscience.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Experiment/Omniscience.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Experiment/Omniscience.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe --exact-split #-} module Experiment.Omniscience where open import Level using () renaming (zero to lzero) open import Data.Nat using (ℕ; zero; suc; _≤_; _+_) open import Data.Nat.Properties using (≤-refl; +-identityʳ) open import Data.Product using (Σ; _,_; proj₁; proj₂; ∃; _×_) open import Data.Bool using (Bool; true; false; _∧_; not) open import Data.Bool.Properties using (∧-assoc; ∧-idem) open import Function.Base using (_$_) open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst; sym; _≢_; cong; module ≡-Reasoning) infix 5 _≤ᵇ_ _≤ᵇ_ : Bool → Bool → Bool false ≤ᵇ false = true true ≤ᵇ false = false false ≤ᵇ true = true true ≤ᵇ true = true x≤ᵇtrue≡true : ∀ x → x ≤ᵇ true ≡ true x≤ᵇtrue≡true false = refl x≤ᵇtrue≡true true = refl Decrease : (ℕ → Bool) → Set Decrease α = ∀ i → α (suc i) ≤ᵇ α i ≡ true ℕ∞ : Set ℕ∞ = Σ (ℕ → Bool) Decrease -- less n i ≡ true <=> n > i less : ℕ → ℕ → Bool less zero zero = false less zero (suc n) = false less (suc m) zero = true less (suc m) (suc n) = less m n less-decrease : ∀ n → Decrease (less n) less-decrease zero zero = refl less-decrease zero (suc i) = refl less-decrease (suc n) zero = x≤ᵇtrue≡true (less n 0) less-decrease (suc n) (suc i) = less-decrease n i toℕ∞ : ℕ → ℕ∞ toℕ∞ n = less n , less-decrease n _≈C_ : Rel (ℕ → Bool) lzero α ≈C β = ∀ i → α i ≡ β i _≈_ : Rel ℕ∞ lzero x ≈ y = proj₁ x ≈C proj₁ y _#C_ : Rel (ℕ → Bool) lzero α #C β = ∃ λ i → α i ≢ β i _#_ : Rel ℕ∞ lzero x # y = proj₁ x #C proj₁ y -- retract 𝓇 : (ℕ → Bool) → (ℕ → Bool) 𝓇 α zero = α 0 𝓇 α (suc n) = α (suc n) ∧ 𝓇 α n 𝓇-decrease : ∀ α → Decrease (𝓇 α) 𝓇-decrease α i = lemma (α (suc i)) (𝓇 α i) where lemma : ∀ x y → x ∧ y ≤ᵇ y ≡ true lemma false false = refl lemma false true = refl lemma true false = refl lemma true true = refl 𝓇-idem : ∀ α → 𝓇 (𝓇 α) ≈C 𝓇 α 𝓇-idem α zero = refl 𝓇-idem α (suc i) = begin (α (suc i) ∧ 𝓇 α i) ∧ 𝓇 (𝓇 α) i ≡⟨ cong (λ v → (α (suc i) ∧ 𝓇 α i) ∧ v) $ 𝓇-idem α i ⟩ (α (suc i) ∧ 𝓇 α i) ∧ 𝓇 α i ≡⟨ ∧-assoc (α (suc i)) (𝓇 α i) (𝓇 α i) ⟩ α (suc i) ∧ (𝓇 α i ∧ 𝓇 α i) ≡⟨ cong (λ v → α (suc i) ∧ v) $ ∧-idem (𝓇 α i) ⟩ α (suc i) ∧ 𝓇 α i ∎ where open ≡-Reasoning ⟦_⟧ : ℕ∞ → (ℕ → Bool) ⟦_⟧ = proj₁ private contraposition-Bool : ∀ {x y z} → (x ≡ z → y ≡ z) → y ≡ not z → x ≡ not z contraposition-Bool {false} {false} {true} f e = refl contraposition-Bool {false} {true} {false} f e = (λ ()) $ f refl contraposition-Bool {true} {false} {true} f e = (λ ()) $ f refl contraposition-Bool {true} {true} {false} f e = refl ≤ᵇ-to-fun : ∀ {x y} → x ≤ᵇ y ≡ true → x ≡ true → y ≡ true ≤ᵇ-to-fun {true} {true} _ _ = refl lemma-3-2-lemma : ∀ (x : ℕ∞) m n → ⟦ x ⟧ n ≡ false → ⟦ x ⟧ (m + n) ≡ false lemma-3-2-lemma x@(α , d) zero n αn≡false = αn≡false lemma-3-2-lemma x@(α , d) (suc m) n αn≡false = contraposition-Bool (≤ᵇ-to-fun (d (m + n))) (lemma-3-2-lemma x m n αn≡false) lemma-3-2 : ∀ (x : ℕ∞) n → ⟦ x ⟧ n ≡ false → ∃ λ k → k ≤ n × x ≈ toℕ∞ k lemma-3-2 x@(α , d) zero αn≡false = 0 , (≤-refl , f) where f : ∀ i → α i ≡ less 0 i f zero = αn≡false f (suc i) = subst (λ v → α (suc v) ≡ false) (+-identityʳ i) $ lemma-3-2-lemma x (suc i) 0 αn≡false lemma-3-2 (α , d) (suc n) αn≡false = {! !} -- α i ≡ less 0 i
29.12931
78
0.562592
5289f0cb2dc6365e3cf900f3773c6cf93c6878ef
3,137
agda
Agda
TypeTheory/Nat/Mono/Properties.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
TypeTheory/Nat/Mono/Properties.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
TypeTheory/Nat/Mono/Properties.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
open import TypeTheory.Nat.Mono.Structure module TypeTheory.Nat.Mono.Properties (nat : Nat) where open import Level renaming (zero to lzero; suc to lsuc) open import Data.Empty using (⊥) open import Data.Product using (Σ; _×_; _,_) open import Data.Sum open import Relation.Binary using (Rel) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_) open import Function.Base open Nat nat +-suc : ∀ m n → suc m + n ≡ suc (m + n) +-suc m n = rec-suc _ _ _ +-identityˡ : ∀ n → zero + n ≡ n +-identityˡ n = rec-zero _ _ +-identityʳ : ∀ n → n + zero ≡ n +-identityʳ n = ind (λ k → k + zero ≡ k) (+-identityˡ zero) (λ k k+z≡k → trans (+-suc k zero) (cong suc k+z≡k) ) n 1N+n≡sn : ∀ n → 1N + n ≡ suc n 1N+n≡sn n = begin suc zero + n ≡⟨ +-suc zero n ⟩ suc (zero + n) ≡⟨ cong suc (+-identityˡ n) ⟩ suc n ∎ where open ≡-Reasoning +-suc-comm : ∀ m n → suc m + n ≡ m + suc n +-suc-comm m n = ind (λ o → suc o + n ≡ o + suc n) (begin suc zero + n ≡⟨ 1N+n≡sn n ⟩ suc n ≡⟨ sym $ +-identityˡ (suc n) ⟩ zero + suc n ∎) (λ o so+n≡o+sn → begin suc (suc o) + n ≡⟨ +-suc (suc o) n ⟩ suc (suc o + n) ≡⟨ cong suc so+n≡o+sn ⟩ suc (o + suc n) ≡⟨ sym $ +-suc o (suc n) ⟩ suc o + suc n ∎) m where open ≡-Reasoning z≤n : ∀ n → zero ≤ n z≤n n = n , +-identityˡ n ≤-step : ∀ {m n} → m ≤ n → m ≤ suc n ≤-step {m} {n} (o , m+o≡n) = suc o , (begin m + suc o ≡⟨ sym $ +-suc-comm m o ⟩ suc m + o ≡⟨ +-suc m o ⟩ suc (m + o) ≡⟨ cong suc m+o≡n ⟩ suc n ∎) where open ≡-Reasoning ≤-refl : ∀ {n} → n ≤ n ≤-refl {n} = zero , +-identityʳ n s≤s : ∀ {m n} → m ≤ n → suc m ≤ suc n s≤s {m} {n} (o , m+o≡n) = o , trans (+-suc m o) (cong suc m+o≡n) s<s : ∀ {m n} → m < n → suc m < suc n s<s = s≤s z<s : ∀ n → zero < suc n z<s n = s≤s (z≤n n) n<sn : ∀ n → n < suc n n<sn n = ≤-refl {suc n} ≤⇒<∨≡ : ∀ {m n} → m ≤ n → m < n ⊎ m ≡ n ≤⇒<∨≡ {m} {n} (o , m+o≡n) = ind (λ k → m + k ≡ n → m < n ⊎ m ≡ n) (λ m+z≡n → inj₂ (trans (sym $ +-identityʳ m) m+z≡n)) (λ k _ m+sk≡n → inj₁ (k , (trans (+-suc-comm m k) m+sk≡n))) o m+o≡n data Order (m n : N) : Set where less : (m<n : m < n) → Order m n equal : (m≡n : m ≡ n) → Order m n greater : (m>n : m > n) → Order m n order? : ∀ m n → Order m n order? m₀ n₀ = ind (λ m → Order m n₀) order?-zero order?-suc m₀ where order?-zero : Order zero n₀ order?-zero = ind (Order zero) (equal refl) (λ _ _ → less (z<s _)) n₀ order?-suc : ∀ m → Order m n₀ → Order (suc m) n₀ order?-suc m (less sm≤n) with ≤⇒<∨≡ sm≤n ... | inj₁ sm<n = less sm<n ... | inj₂ sm≡n = equal sm≡n order?-suc m (equal refl) = greater (n<sn _) order?-suc m (greater m>n) = greater (≤-step m>n) -- indΔ : module _ (P : N → N → Set) where indΔ : P zero zero → (∀ n → P zero (suc n)) → (∀ m → P (suc m) zero) → (∀ m n → P m n → P (suc m) (suc n)) → ∀ m n → P m n indΔ Pzz Pzs Psz Pss m n with order? m n ... | less m<n = {! !} ... | equal m≡n = {! !} ... | greater m>n = {! !}
27.761062
72
0.491234
fd83fa80359e7e191d9107ae843c9e9e61e8c429
476
agda
Agda
test/Succeed/InferrableFields.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/InferrableFields.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/InferrableFields.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module InferrableFields where data ℕ : Set where zero : ℕ suc : ℕ → ℕ data Vec A : ℕ → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) record SomeVec A : Set where field n : ℕ unpack : Vec A n open SomeVec using (unpack) pack : ∀ {A n} → Vec A n -> SomeVec A pack xs = record { unpack = xs } data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x lemPack : ∀ {A}(xs : SomeVec A) → pack (unpack xs) ≡ xs lemPack xs = refl
18.307692
55
0.556723
9a5b7bb96fb84a2bd1c35f9243b60d9e414f50e6
5,279
agda
Agda
Cubical/HITs/Delooping/Two/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/Delooping/Two/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/Delooping/Two/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.Delooping.Two.Properties where open import Cubical.Functions.Involution open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Data.Bool open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.HITs.Delooping.Two.Base open import Cubical.HITs.PropositionalTruncation private variable ℓ : Level module Embed where isPropDepIsSet : isOfHLevelDep {ℓ' = ℓ} 1 isSet isPropDepIsSet = isOfHLevel→isOfHLevelDep 1 (λ _ → isPropIsSet) notSet : PathP (λ i → isSet (notEq i)) isSetBool isSetBool notSet = isPropDepIsSet isSetBool isSetBool notEq notNot² : Square notEq refl refl notEq notNot² = involPath² notnot notNotSet : SquareP (λ i j → isSet (notNot² i j)) notSet refl refl notSet notNotSet = isPropDep→isSetDep' isPropDepIsSet (involPath² notnot) notSet refl refl notSet Code : Bℤ₂ → hSet ℓ-zero Code = Elim.rec (Bool , isSetBool) (λ i → notEq i , notSet i) (λ i j → λ where .fst → notNot² i j .snd → notNotSet i j) (isOfHLevelTypeOfHLevel 2) El : Bℤ₂ → Type₀ El b = Code b .fst module BINARY where open import Cubical.Data.FinSet.Binary.Large sem : Bℤ₂ → Binary _ sem = Elim.rec Base Loop Loop² isGroupoidBinary loop? : Bool → base ≡ base loop? false = refl loop? true = loop Loop²-coh : (a b c : Bool) → Type₀ Loop²-coh false false false = Unit Loop²-coh false true true = Unit Loop²-coh true false true = Unit Loop²-coh true true false = Unit Loop²-coh _ _ _ = ⊥ rf : Bool ≡ Bool → Bool rf P = transport P false Loop²-coh-lemma₀ : ∀(p q r : Bool) → r ⊕ p ≡ q → Loop²-coh p q r Loop²-coh-lemma₀ false false false sq = _ Loop²-coh-lemma₀ false true true sq = _ Loop²-coh-lemma₀ true false true sq = _ Loop²-coh-lemma₀ true true false sq = _ Loop²-coh-lemma₀ false true false = false≢true Loop²-coh-lemma₀ false false true = true≢false Loop²-coh-lemma₀ true false false = true≢false Loop²-coh-lemma₀ true true true = false≢true Loop²-coh-lemma : ∀(P Q R : Bool ≡ Bool) → Square P Q refl R → Loop²-coh (rf P) (rf Q) (rf R) Loop²-coh-lemma P Q R sq = Loop²-coh-lemma₀ p q r eqn where p = rf P q = rf Q r = rf R open BoolReflection cmp : P ∙ R ≡ Q cmp i j = hcomp (λ k → λ where (i = i0) → compPath-filler P R k j (i = i1) → Q j (j = i0) → Bool (j = i1) → R (i ∨ k)) (sq i j) rcmp : ⊕-Path (r ⊕ p) ≡ ⊕-Path q rcmp = ⊕-Path (r ⊕ p) ≡[ i ]⟨ ⊕-comp p r (~ i) ⟩ ⊕-Path p ∙ ⊕-Path r ≡[ i ]⟨ ⊕-complete P (~ i) ∙ ⊕-complete R (~ i) ⟩ P ∙ R ≡⟨ cmp ⟩ Q ≡⟨ ⊕-complete Q ⟩ ⊕-Path q ∎ open Iso eqn : r ⊕ p ≡ q eqn = transport (λ i → reflectIso .leftInv (r ⊕ p) i ≡ reflectIso .leftInv q i) (cong (reflectIso .inv) rcmp) loop²? : ∀ p q r → Loop²-coh p q r → Square (loop? p) (loop? q) refl (loop? r) loop²? false false false _ = refl loop²? false true true _ = λ i j → loop (i ∧ j) loop²? true false true _ = loop² loop²? true true false _ = refl module _ (B : Type₀) where based : (P : Bool ≃ B) → Bℤ₂ based _ = base pull₀ : (P Q : Bool ≃ B) → Bool ≡ Bool pull₀ P Q i = hcomp (λ k → λ where (i = i0) → ua P (~ k) (i = i1) → ua Q (~ k)) B pull₁ : (P Q : Bool ≃ B) → Square (ua P) (ua Q) (pull₀ P Q) refl pull₁ P Q i j = hcomp (λ k → λ where (i = i0) → ua P (~ k ∨ j) (i = i1) → ua Q (~ k ∨ j) (j = i1) → B) B pull₂ : (P Q R : Bool ≃ B) → Square (pull₀ P Q) (pull₀ P R) refl (pull₀ Q R) pull₂ P Q R i j = hcomp (λ k → λ where (j = i0) → ua P (~ k) (i = i0) (j = i1) → ua Q (~ k) (i = i1) (j = i1) → ua R (~ k)) B pull₃ : (P Q R : Bool ≃ B) → Cube (pull₁ P Q) (pull₁ P R) (λ _ → ua P) (pull₁ Q R) (pull₂ P Q R) (λ _ _ → B) pull₃ P Q R i j k = hcomp (λ τ → λ where (j = i0) → ua P (~ τ ∨ k) (i = i0) (j = i1) → ua Q (~ τ ∨ k) (i = i1) (j = i1) → ua R (~ τ ∨ k) (k = i1) → B) B looped : (P Q : Bool ≃ B) → based P ≡ based Q looped P Q = loop? b where b : Bool b = rf (pull₀ P Q) looped² : (P Q R : Bool ≃ B) → Square (looped P Q) (looped P R) refl (looped Q R) looped² P Q R = loop²? pq pr qr pqr where pq = rf (pull₀ P Q) pr = rf (pull₀ P R) qr = rf (pull₀ Q R) pqr : Loop²-coh pq pr qr pqr = Loop²-coh-lemma (pull₀ P Q) (pull₀ P R) (pull₀ Q R) (pull₂ P Q R) syn : Binary _ → Bℤ₂ syn (B , tP) = rec→Gpd trunc (based B) 3k tP where open 3-Constant 3k : 3-Constant (based B) 3k .link = looped B 3k .coh₁ = looped² B
26.527638
77
0.536465
30e789da2d83487646d351ab3774903f20b53b9c
210
agda
Agda
test/interaction/Issue1516.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue1516.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Issue1516.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --copatterns #-} record U : Set where coinductive field out : U u : {A : Set} → U u = {!!} record Wrap (A : Set) : Set where field wrapped : A wrap : ∀{A}{a : A} → Wrap A wrap = {!!}
12.352941
33
0.52381
5ed93be5e246abcef2862380d836ff04c89e4eb0
1,341
agda
Agda
test/succeed/WithoutK.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T04:41:05.000Z
2019-11-27T04:41:05.000Z
test/succeed/WithoutK.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/WithoutK.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --universe-polymorphism #-} module WithoutK where open import Common.Level -- Propositional equality. data _≡_ {A : Set} : A → A → Set where refl : ∀ x → x ≡ x -- The J rule. J : {A : Set} (P : {x y : A} → x ≡ y → Set) → (∀ x → P (refl x)) → ∀ {x y} (x≡y : x ≡ y) → P x≡y J P p (refl x) = p x -- Christine Paulin-Mohring's version of the J rule. J′ : {A : Set} {x : A} (P : {y : A} → x ≡ y → Set) → P (refl x) → ∀ {y} (x≡y : x ≡ y) → P x≡y J′ P p (refl x) = p -- A variant of _≡_. data _≡′_ {A : Set} (x : A) : A → Set where refl : x ≡′ x -- We normalise before checking index well-formedness. const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A const x _ = x id : {A : Set} {x y : A} → const x y ≡′ const y x → x ≡′ y id refl = refl -- We can handle more complicated indices as well. data ⊥ : Set where data Bool : Set where true false : Bool true≢false : true ≡ false → ⊥ true≢false () data D : Set where c₀ : D c₂ : (i₁ i₂ : D) → D f : ∀ {x y z} → x ≡ y → c₂ y c₀ ≡ c₂ c₀ z → x ≡ z f x≡y (refl .(c₂ c₀ c₀)) = x≡y -- The indices can contain literals. data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} g : 2 ≡ 3 → 3 ≡ 5 g () h : ∀ {n} → 2 ≡ suc n → n ≡ 1 h (refl .2) = refl _
18.887324
58
0.507084
352bab198bdceb40ef94aa4f37075081fa856bd1
21,423
agda
Agda
Pin.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Pin.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Pin.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
module Pin where -- N-dimensional version of Pi -- open import Data.Fin open import Data.Nat open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Function renaming (_∘_ to _○_) open import Relation.Binary.PropositionalEquality using (module ≡-Reasoning) open ≡-Reasoning open import Algebra open import Data.Nat.Properties open CommutativeSemiring commutativeSemiring using (+-commutativeMonoid) open CommutativeMonoid +-commutativeMonoid using () renaming (comm to +-comm) --infix 4 _≡_ -- propositional equality --infixr 8 _∘_ -- path composition infixr 10 _◎_ infixr 30 _⟷_ infixr 9 _>>>_ -- infixr 30 _⟺_ ------------------------------------------------------------------------------ -- base types (or 0d types) are the usual finite types data T : Set where Zero : T One : T Plus : T → T → T Times : T → T → T -- Combinators on 0d types data _⟷_ : T → T → Set where unite₊ : { t : T } → Plus Zero t ⟷ t uniti₊ : { t : T } → t ⟷ Plus Zero t swap₊ : { t₁ t₂ : T } → Plus t₁ t₂ ⟷ Plus t₂ t₁ assocl₊ : { t₁ t₂ t₃ : T } → Plus t₁ (Plus t₂ t₃) ⟷ Plus (Plus t₁ t₂) t₃ assocr₊ : { t₁ t₂ t₃ : T } → Plus (Plus t₁ t₂) t₃ ⟷ Plus t₁ (Plus t₂ t₃) unite⋆ : { t : T } → Times One t ⟷ t uniti⋆ : { t : T } → t ⟷ Times One t swap⋆ : { t₁ t₂ : T } → Times t₁ t₂ ⟷ Times t₂ t₁ assocl⋆ : { t₁ t₂ t₃ : T } → Times t₁ (Times t₂ t₃) ⟷ Times (Times t₁ t₂) t₃ assocr⋆ : { t₁ t₂ t₃ : T } → Times (Times t₁ t₂) t₃ ⟷ Times t₁ (Times t₂ t₃) distz : { t : T } → Times Zero t ⟷ Zero factorz : { t : T } → Zero ⟷ Times Zero t dist : { t₁ t₂ t₃ : T } → Times (Plus t₁ t₂) t₃ ⟷ Plus (Times t₁ t₃) (Times t₂ t₃) factor : { t₁ t₂ t₃ : T } → Plus (Times t₁ t₃) (Times t₂ t₃) ⟷ Times (Plus t₁ t₂) t₃ id⟷ : { t : T } → t ⟷ t sym⟷ : { t₁ t₂ : T } → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) _◎_ : { t₁ t₂ t₃ : T } → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : { t₁ t₂ t₃ t₄ : T } → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (Plus t₁ t₂ ⟷ Plus t₃ t₄) _⊗_ : { t₁ t₂ t₃ t₄ : T } → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (Times t₁ t₂ ⟷ Times t₃ t₄) -- Semantics ⟦_⟧ : T → Set ⟦ Zero ⟧ = ⊥ ⟦ One ⟧ = ⊤ ⟦ Plus t1 t2 ⟧ = ⟦ t1 ⟧ ⊎ ⟦ t2 ⟧ ⟦ Times t1 t2 ⟧ = ⟦ t1 ⟧ × ⟦ t2 ⟧ mutual eval : {t₁ t₂ : T} → (t₁ ⟷ t₂) → ⟦ t₁ ⟧ → ⟦ t₂ ⟧ eval unite₊ (inj₁ ()) eval unite₊ (inj₂ v) = v eval uniti₊ v = inj₂ v eval swap₊ (inj₁ v) = inj₂ v eval swap₊ (inj₂ v) = inj₁ v eval assocl₊ (inj₁ v) = inj₁ (inj₁ v) eval assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) eval assocl₊ (inj₂ (inj₂ v)) = inj₂ v eval assocr₊ (inj₁ (inj₁ v)) = inj₁ v eval assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) eval assocr₊ (inj₂ v) = inj₂ (inj₂ v) eval unite⋆ (tt , v) = v eval uniti⋆ v = (tt , v) eval swap⋆ (v1 , v2) = (v2 , v1) eval assocl⋆ (v1 , (v2 , v3)) = ((v1 , v2) , v3) eval assocr⋆ ((v1 , v2) , v3) = (v1 , (v2 , v3)) eval distz (() , v) eval factorz () eval dist (inj₁ v1 , v3) = inj₁ (v1 , v3) eval dist (inj₂ v2 , v3) = inj₂ (v2 , v3) eval factor (inj₁ (v1 , v3)) = (inj₁ v1 , v3) eval factor (inj₂ (v2 , v3)) = (inj₂ v2 , v3) eval id⟷ v = v eval (sym⟷ c) v = evalB c v eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₁ v) = inj₁ (eval c₁ v) eval (c₁ ⊕ c₂) (inj₂ v) = inj₂ (eval c₂ v) eval (c₁ ⊗ c₂) (v₁ , v₂) = (eval c₁ v₁ , eval c₂ v₂) evalB : {t₁ t₂ : T} → (t₁ ⟷ t₂) → ⟦ t₂ ⟧ → ⟦ t₁ ⟧ evalB unite₊ v = inj₂ v evalB uniti₊ (inj₁ ()) evalB uniti₊ (inj₂ v) = v evalB swap₊ (inj₁ v) = inj₂ v evalB swap₊ (inj₂ v) = inj₁ v evalB assocl₊ (inj₁ (inj₁ v)) = inj₁ v evalB assocl₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) evalB assocl₊ (inj₂ v) = inj₂ (inj₂ v) evalB assocr₊ (inj₁ v) = inj₁ (inj₁ v) evalB assocr₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) evalB assocr₊ (inj₂ (inj₂ v)) = inj₂ v evalB unite⋆ v = (tt , v) evalB uniti⋆ (tt , v) = v evalB swap⋆ (v1 , v2) = (v2 , v1) evalB assocl⋆ ((v1 , v2) , v3) = (v1 , (v2 , v3)) evalB assocr⋆ (v1 , (v2 , v3)) = ((v1 , v2) , v3) evalB distz () evalB factorz (() , v) evalB dist (inj₁ (v1 , v3)) = (inj₁ v1 , v3) evalB dist (inj₂ (v2 , v3)) = (inj₂ v2 , v3) evalB factor (inj₁ v1 , v3) = inj₁ (v1 , v3) evalB factor (inj₂ v2 , v3) = inj₂ (v2 , v3) evalB id⟷ v = v evalB (sym⟷ c) v = eval c v evalB (c₁ ◎ c₂) v = evalB c₁ (evalB c₂ v) evalB (c₁ ⊕ c₂) (inj₁ v) = inj₁ (evalB c₁ v) evalB (c₁ ⊕ c₂) (inj₂ v) = inj₂ (evalB c₂ v) evalB (c₁ ⊗ c₂) (v₁ , v₂) = (evalB c₁ v₁ , evalB c₂ v₂) ------------------------------------------------------------------------------ -- N dimensional version data C : ℕ → Set where ZD : T → C 0 Node : {n : ℕ} → C n → C n → C (suc n) liftN : (n : ℕ) → (t : T) → C n liftN 0 t = ZD t liftN (suc n) t = Node (liftN n t) (liftN n Zero) zeroN : (n : ℕ) → C n zeroN n = liftN n Zero oneN : (n : ℕ) → C n oneN n = liftN n One plus : {n : ℕ} → C n → C n → C n plus (ZD t₁) (ZD t₂) = ZD (Plus t₁ t₂) plus (Node c₁ c₂) (Node c₁' c₂') = Node (plus c₁ c₁') (plus c₂ c₂') times : {m n : ℕ} → C m → C n → C (m + n) times (ZD t1) (ZD t2) = ZD (Times t1 t2) times (ZD t) (Node c1 c2) = Node (times (ZD t) c1) (times (ZD t) c2) times (Node c1 c2) c = Node (times c1 c) (times c2 c) -- Combinators on nd types data _⟺_ : {n : ℕ} → C n → C n → Set where baseC : {t₁ t₂ : T} → (t₁ ⟷ t₂) → ((ZD t₁) ⟺ (ZD t₂)) nodeC : {n : ℕ} {c₁ : C n} {c₂ : C n} {c₃ : C n} {c₄ : C n} → (c₁ ⟺ c₂) → (c₃ ⟺ c₄) → ((Node c₁ c₃) ⟺ (Node c₂ c₄)) zerolC : {n : ℕ} {c : C n} → ((Node c c) ⟺ (zeroN (suc n))) zerorC : {n : ℕ} {c : C n} → ((zeroN (suc n)) ⟺ (Node c c)) -- Def. 2.1 lists the conditions for J-graded bipermutative category mutual _>>>_ = seqF idN⟷ : {n : ℕ} {c : C n} → c ⟺ c idN⟷ {0} {ZD t} = baseC (id⟷ {t}) idN⟷ {suc n} {Node c₁ c₂} = nodeC (idN⟷ {n} {c₁}) (idN⟷ {n} {c₂}) symN⟷ : {n : ℕ} {c₁ c₂ : C n} → (c₁ ⟺ c₂) → (c₂ ⟺ c₁) symN⟷ (baseC f) = baseC (sym⟷ f) symN⟷ (nodeC f g) = nodeC (symN⟷ f) (symN⟷ g) symN⟷ (zerolC {n} {c}) = zerorC {n} {c} symN⟷ (zerorC {n} {c}) = zerolC {n} {c} seqF : {n : ℕ} {c₁ c₂ c₃ : C n} → (c₁ ⟺ c₂) → (c₂ ⟺ c₃) → (c₁ ⟺ c₃) seqF {0} (baseC f) (baseC g) = baseC (f ◎ g) seqF {suc n} (nodeC f g) (nodeC f' g') = nodeC (seqF f f') (seqF g g') seqF {suc n} (nodeC f g) zerolC = nodeC (seqF f {!!}) (seqF g {!!}) seqF {suc n} (nodeC f g) zerorC = {!!} seqF {suc n} zerolC (nodeC f g) = {!!} seqF {suc n} zerolC zerolC = {!!} seqF {suc n} zerolC zerorC = {!!} seqF {suc n} zerorC (nodeC f g) = {!!} seqF {suc n} zerorC zerolC = {!!} seqF {suc n} zerorC zerorC = {!!} {-- plusF : {n : ℕ} {c₁ c₂ c₃ c₄ : C n} → (c₁ ⟺ c₂) → (c₃ ⟺ c₄) → (plus c₁ c₃ ⟺ plus c₂ c₄) plusF (baseC f) (baseC g) = baseC (f ⊕ g) plusF (nodeC f) (nodeC g) = nodeC {!!} timesF : {m n : ℕ} {c₁ c₂ : C m} {c₃ c₄ : C n} → (c₁ ⟺ c₂) → (c₃ ⟺ c₄) → (times c₁ c₃ ⟺ times c₂ c₄) timesF (baseC f) (baseC g) = baseC (f ⊗ g) timesF (baseC f) (nodeC g) = nodeC {!!} {-- nodeC ( seqF (plusF (timesF (baseC f) idN⟷) idN⟷) ( seqF (seqF (plusF swapN⋆ swapN⋆) factorN) ( seqF (timesF idN⟷ g) ( seqF (seqF distN (plusF swapN⋆ swapN⋆)) ((plusF (timesF (baseC (sym⟷ f)) idN⟷) idN⟷)))))) --} timesF (nodeC f) (baseC g) = {!!} timesF (nodeC f) (nodeC g) = nodeC {!!} -- nodeC (timesF f₁ g) (timesF f₂ g) -- f : t1 <-> t2 -- g : c1 + c4 <=> c3 + c2 --?24 : plus (times (ZD t₁) c₁) (times (ZD t₂) c₄) ⟺ -- plus (times (ZD t₁) c₃) (times (ZD t₂) c₂) {-- plus (times (ZD t₁) c₁) (times (ZD t₂) c₄) ⟺ -> s1 plus (times (ZD t2) c₁) (times (ZD t₂) c₄) ⟺ -> s2 times (ZD t2) (plus c1 c4) -> s3 times (ZD t2) (plus c3 c2) -> s4 plus (times (ZD t2) c3) (times (ZD t2) c2) -> s5 plus (times (ZD t1) c3) (times (ZD t2) c2) --} uniteN₊ : {n : ℕ} {c : C n} → (plus (zeroN n) c) ⟺ c uniteN₊ {0} {ZD t} = baseC (unite₊ {t}) uniteN₊ {suc n} {Node c₁ c₂} = nodeC (seqF assocrN₊ (seqF (plusF idN⟷ swapN₊) assoclN₊)) unitiN₊ : {n : ℕ} {c : C n} → c ⟺ (plus (zeroN n) c) unitiN₊ {0} {ZD t} = baseC (uniti₊ {t}) unitiN₊ {suc n} {Node c₁ c₂} = nodeC (assoclN₊ >>> swapN₊ >>> (plusF idN⟷ swapN₊)) swapN₊ : { n : ℕ } { c₁ c₂ : C n } → plus c₁ c₂ ⟺ plus c₂ c₁ swapN₊ {0} {ZD t₁} {ZD t₂} = baseC (swap₊ {t₁} {t₂}) swapN₊ {suc n} {Node c₁ c₂} {Node c₁' c₂'} = nodeC (swapN₊ >>> (plusF swapN₊ swapN₊)) assoclN₊ : { n : ℕ } { c₁ c₂ c₃ : C n } → plus c₁ (plus c₂ c₃) ⟺ plus (plus c₁ c₂) c₃ assoclN₊ {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (assocl₊ {t₁} {t₂} {t₃}) assoclN₊ {suc n} {Node c₁ c₂} {Node c₃ c₄} {Node c₅ c₆} = nodeC (swapN₊ >>> (plusF assocrN₊ assoclN₊)) assocrN₊ : { n : ℕ } { c₁ c₂ c₃ : C n } → plus (plus c₁ c₂) c₃ ⟺ plus c₁ (plus c₂ c₃) assocrN₊ {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (assocr₊ {t₁} {t₂} {t₃}) assocrN₊ {suc n} {Node c₁ c₂} {Node c₃ c₄} {Node c₅ c₆} = nodeC (swapN₊ >>> (plusF assoclN₊ assocrN₊)) uniteN⋆ : {n : ℕ} {c : C n} → times (ZD One) c ⟺ c uniteN⋆ {0} {ZD t} = baseC (unite⋆ {t}) uniteN⋆ {suc n} {Node c₁ c₂} = nodeC {!!} unitiN⋆ : {n : ℕ} {c : C n} → c ⟺ times (ZD One) c unitiN⋆ {0} {ZD t} = baseC (uniti⋆ {t}) unitiN⋆ {suc n} {Node c₁ c₂} = nodeC {!!} -- Ugly hack or feature ??? times' : {m n : ℕ} → C n → C m → C (m + n) times' {m} {n} c₁ c₂ rewrite +-comm m n = times c₁ c₂ swapN⋆ : {m n : ℕ} {c₁ : C m} {c₂ : C n} → times c₁ c₂ ⟺ times' c₂ c₁ swapN⋆ {0} {0} {ZD t₁} {ZD t₂} = baseC (swap⋆ {t₁} {t₂}) swapN⋆ {0} {suc n} {ZD t} {Node c₁ c₂} = {!!} --nodeC (swapN⋆ {0} {n} {ZD t} {c₁}) (swapN⋆ {0} {n} {ZD t} {c₂}) swapN⋆ {suc m} {0} {Node c₁ c₂} {ZD t} = {!!} --nodeC (swapN⋆ {0} {n} {c₁} {ZD t}) (swapN⋆ {0} {n} {c₂} {ZD t}) swapN⋆ {suc m} {n} {Node c₁ c₂} {c} = {!!} --nodeC (swapN⋆ {m} {n} {c₁} {c}) (swapN⋆ {m} {n} {c₂} {c}) TODO : Set TODO = {!!} assoclN⋆ : {m n k : ℕ} {c₁ : C m} {c₂ : C n} {c₃ : C k} → TODO -- times c₁ (times c₂ c₃) ⟺ times (times c₁ c₂) c₃ assoclN⋆ = {!!} assocrN⋆ : { m n k : ℕ } { c₁ : C m } { c₂ : C n } { c₃ : C k } → TODO -- times (times c₁ c₂) c₃ ⟺ times c₁ (times c₂ c₃) assocrN⋆ = {!!} distzN : {m n : ℕ} {c : C n} → times (zeroN m) c ⟺ zeroN (m + n) distzN {0} {0} {ZD t} = baseC (distz {t}) distzN {0} {suc n} {Node c₁ c₂} = nodeC {!!} -- nodeC (distzN {0} {n} {c₁}) (distzN {0} {n} {c₂}) distzN {suc m} {n} {c} = nodeC {!!} -- nodeC (distzN {m} {n} {c}) (distzN {m} {n} {c}) factorzN : { m n : ℕ } { c : C n } → zeroN (m + n) ⟺ times (zeroN m) c factorzN {0} {0} {ZD t} = baseC (factorz {t}) factorzN {0} {suc n} {Node c₁ c₂} = nodeC {!!} -- nodeC (factorzN {0} {n} {c₁}) (factorzN {0} {n} {c₂}) factorzN {suc m} {n} {c} = nodeC {!!} -- nodeC (factorzN {m} {n} {c}) (factorzN {m} {n} {c}) distN : {m n : ℕ} {c₁ c₂ : C m} {c₃ : C n} → times (plus c₁ c₂) c₃ ⟺ plus (times c₁ c₃) (times c₂ c₃) distN {0} {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (dist {t₁} {t₂} {t₃}) distN {0} {suc n} {ZD t₁} {ZD t₂} {Node c₁ c₂} = nodeC {!!} -- nodeC -- (distN {0} {n} {ZD t₁} {ZD t₂} {c₁}) -- (distN {0} {n} {ZD t₁} {ZD t₂} {c₂}) distN {suc m} {n} {Node c₁ c₂} {Node c₃ c₄} {c} = nodeC {!!} -- nodeC -- ((distN {m} {n} {c₁} {c₃} {c})) -- ((distN {m} {n} {c₂} {c₄} {c})) factorN : {m n : ℕ} {c₁ c₂ : C m} {c₃ : C n} → plus (times c₁ c₃) (times c₂ c₃) ⟺ times (plus c₁ c₂) c₃ factorN {0} {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (factor {t₁} {t₂} {t₃}) factorN {0} {suc n} {ZD t₁} {ZD t₂} {Node c₁ c₂} = nodeC {!!} -- nodeC -- (factorN {0} {n} {ZD t₁} {ZD t₂} {c₁}) -- (factorN {0} {n} {ZD t₁} {ZD t₂} {c₂}) factorN {suc m} {n} {Node c₁ c₂} {Node c₃ c₄} {c} = nodeC {!!} -- nodeC -- ((factorN {m} {n} {c₁} {c₃} {c})) -- ((factorN {m} {n} {c₂} {c₄} {c})) --?25 : plus (times .c₁ .c₃) (times .c₆ .c₄) ⟺ -- plus (times .c₅ .c₃) (times .c₂ .c₄) {-- data _⟺_ : {n : ℕ} → C n → C n → Set where baseC : {t₁ t₂ : T} → (t₁ ⟷ t₂) → ((ZD t₁) ⟺ (ZD t₂)) nodeC : {n : ℕ} {c₁ : C n} {c₂ : C n} {c₃ : C n} {c₄ : C n} → (plus c₁ c₄ ⟺ plus c₃ c₂) → ((Node c₁ c₃) ⟺ (Node c₂ c₄)) --} -- eta/epsilon/trace ------------------------------------------------------------------------------ -- Semantics ⟦_⟧C : {n : ℕ} → C n → Set ⟦_⟧C (ZD t) = ⟦ t ⟧ ⟦_⟧C (Node c₁ c₂) = ⟦ c₁ ⟧C ⊎ ⟦ c₂ ⟧C evalC : {n : ℕ} {c₁ c₂ : C n} → (c₁ ⟺ c₂) → ⟦ c₁ ⟧C → ⟦ c₂ ⟧C evalC (baseC iso) v = eval iso v evalC (nodeC iso) (inj₁ v) = {!!} -- inj₁ (evalC iso v) evalC (nodeC iso) (inj₂ v) = {!!} -- inj₂ (evalC iso v) ------------------------------------------------------------------------------ -- Example -- Let's try a 3d program Bool : T Bool = Plus One One vtrue : ⟦ Bool ⟧ vtrue = inj₁ tt vfalse : ⟦ Bool ⟧ vfalse = inj₂ tt Bool² : T Bool² = Times Bool Bool Bool³ : T Bool³ = Times Bool² Bool cond : {t₁ t₂ : T} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → ((Times Bool t₁) ⟷ (Times Bool t₂)) cond f g = dist ◎ ((id⟷ ⊗ f) ⊕ (id⟷ ⊗ g)) ◎ factor controlled : {t : T} → (t ⟷ t) → ((Times Bool t) ⟷ (Times Bool t)) controlled f = cond f id⟷ cnot : Bool² ⟷ Bool² cnot = controlled swap₊ toffoli : Bool³ ⟷ Bool³ toffoli = assocr⋆ ◎ controlled cnot ◎ assocl⋆ test₁ : ⟦ Bool³ ⟧ test₁ = eval toffoli ((vtrue , vtrue) , vfalse) -- condN : {n : ℕ} {c₁ c₂ : C n} → (c₁ ⟺ c₂) → (c₁ ⟺ c₂) → ((times (ZD Bool) c₁) ⟺ (times (ZD Bool) c₂)) condN {n} {c₁} {c₂} f g = (seqF (distN {0} {n} {ZD One} {ZD One} {c₁}) (seqF (plusF {n} (timesF {0} {n} (idN⟷ {0} {ZD One}) f) (timesF {0} {n} (idN⟷ {0} {ZD One}) g)) (factorN {0} {n} {ZD One} {ZD One} {c₂}))) controlledN : {n : ℕ} {c : C n} → (c ⟺ c) → ((times (ZD Bool) c) ⟺ (times (ZD Bool) c)) controlledN f = condN f idN⟷ BoolN : (n : ℕ) → C n BoolN n = plus (oneN n) (oneN n) {-- Note: liftN 3 Bool is not quite the same as plus (oneN 3) (oneN 3) plus (oneN 3) (oneN 3) = Node (Node (Node (ZD (Plus One One)) (ZD (Plus Zero Zero))) (Node (ZD (Plus Zero Zero)) (ZD (Plus Zero Zero)))) (Node (Node (ZD (Plus Zero Zero)) (ZD (Plus Zero Zero))) (Node (ZD (Plus Zero Zero)) (ZD (Plus Zero Zero)))) liftN 3 Bool = Node (Node (Node (ZD (Plus One One)) (ZD Zero)) (Node (ZD Zero) (ZD Zero))) (Node (Node (ZD Zero) (ZD Zero)) (Node (ZD Zero) (ZD Zero))) --} cnotN : {n : ℕ} → ((times (ZD Bool) (BoolN n)) ⟺ (times (ZD Bool) (BoolN n))) cnotN {n} = controlledN {n} (swapN₊ {n} {oneN n} {oneN n}) -- Can't do toffoliN until we get all the products done --} ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ {-- CODE THAT TRIED TO KEEP PROOF THAT DIMENSIONS ARE EQUAL ------------------------------------------------------------------------------ -- Types indexed by dimension... n-dimensional cubes -- n-dimensional types represented as trees of depth n -- Silly lemmas that should be in the library somewhere suc-inj : {m n : ℕ} → suc m ≡ suc n → m ≡ n suc-inj {0} {0} refl = refl suc-inj {0} {suc i} () suc-inj {suc i} {suc .i} refl = refl data C : ℕ → Set where ZD : T → C 0 Node : {m n : ℕ} → C m → C n → (m ≡ n) → C (suc n) Lower : {n : ℕ} → (c₁ c₂ : C n) → (c₁ ≡ c₂) → C 0 zeroN : (n : ℕ) → C n zeroN 0 = ZD Zero zeroN (suc n) = Node (zeroN n) (zeroN n) refl plus : {m n : ℕ} → C m → C n → (m ≡ n) → C n plus (ZD _) (Node _ _ _) () plus (Node _ _ _) (ZD _) () plus (ZD t1) (ZD t2) refl = ZD (Plus t1 t2) plus {suc .m₂} {suc .m₂'} (Node {m₁} {m₂} c1 c2 p₁) (Node {m₁'} {m₂'} c1' c2' p₁') p = Node (plus c1 c1' q) (plus c2 c2' (suc-inj p)) p₁' where q = begin m₁ ≡⟨ p₁ ⟩ m₂ ≡⟨ suc-inj p ⟩ m₂' ≡⟨ sym p₁' ⟩ m₁' ∎ plus _ _ _ = {!!} times : {m n : ℕ} → C m → C n → C (m + n) times (ZD t1) (ZD t2) = ZD (Times t1 t2) times (ZD t) (Node c1 c2 p) = Node (times (ZD t) c1) (times (ZD t) c2) p times {n = n} (Node c1 c2 p) c = Node (times c1 c) (times c2 c) (cong (λ z → z + n) p) times _ _ = {!!} -- Combinators on nd types data _⟺_ : {m n : ℕ} → C m → C n → (m ≡ n) → Set where baseC : { t₁ t₂ : T } → (t₁ ⟷ t₂) → (_⟺_ (ZD t₁) (ZD t₂) refl) nodeC : {m n k l : ℕ} {c₁ : C m} {c₂ : C n} {c₃ : C k} {c₄ : C l} {p₁ : m ≡ n} {p₂ : k ≡ l} {p : k ≡ m} → (_⟺_ c₁ c₂ p₁) → (_⟺_ c₃ c₄ p₂) → (_⟺_ (Node c₁ c₃ (sym p)) (Node c₂ c₄ (trans (trans (sym p₁) (sym p)) p₂)) (cong suc p₂)) eta : {m : ℕ} {c : C m} → _⟺_ (ZD Zero) (Lower c c refl) refl -- Def. 2.1 lists the conditions for J-graded bipermutative category -- (0) -- the additive unit and assoc are implicit in the paper uniteN₊ : {m : ℕ} {c : C m} → _⟺_ (plus (zeroN m) c refl) c refl uniteN₊ {0} {ZD t} = baseC (unite₊ {t}) uniteN₊ {suc m} {Node {n} {.m} c₁ c₂ n≡m} = {!!} uniteN₊ {_} {_} = {!!} unitiN₊ : {m : ℕ} {c : C m} → _⟺_ c (plus (zeroN m) c refl) refl unitiN₊ {0} {ZD t} = baseC (uniti₊ {t}) unitiN₊ {suc m} {Node {n} {.m} c₁ c₂ n≡m} = {!!} -- nodeC (unitiN₊ {n} {c₁}) (unitiN₊ {n} {c₂}) unitiN₊ {_} {_} = {!!} assoclN₊ : { n : ℕ } { c₁ c₂ c₃ : C n } → plus c₁ (plus c₂ c₃) ⟺ plus (plus c₁ c₂) c₃ assoclN₊ {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (assocl₊ {t₁} {t₂} {t₃}) assoclN₊ {suc n} {Node c₁ c₂} {Node c₃ c₄} {Node c₅ c₆} = nodeC (assoclN₊ {n} {c₁} {c₃} {c₅}) (assoclN₊ {n} {c₂} {c₄} {c₆}) assocrN₊ : { n : ℕ } { c₁ c₂ c₃ : C n } → plus (plus c₁ c₂) c₃ ⟺ plus c₁ (plus c₂ c₃) assocrN₊ {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (assocr₊ {t₁} {t₂} {t₃}) assocrN₊ {suc n} {Node c₁ c₂} {Node c₃ c₄} {Node c₅ c₆} = nodeC (assocrN₊ {n} {c₁} {c₃} {c₅}) (assocrN₊ {n} {c₂} {c₄} {c₆}) -- (1) have times functor on objects -- define times functor on combinators -- timesF should satisfying assoc and unitality conditions... -- diagram on top of p.6 should commute timesF : { m n : ℕ } { c₁ : C m } { c₂ : C m } { c₃ : C n } { c₄ : C n } → (c₁ ⟺ c₂) → (c₃ ⟺ c₄) → (times c₁ c₃ ⟺ times c₂ c₄) timesF {0} {0} {ZD t₁} {ZD t₂} {ZD t₃} {ZD t₄} (baseC f) (baseC g) = baseC (_⊗_ {t₁} {t₃} {t₂} {t₄} f g) timesF {0} {suc n} {ZD t₁} {ZD t₂} {Node c₁ c₂} {Node c₃ c₄} (baseC f) (nodeC g₁ g₂) = nodeC (timesF (baseC f) g₁) (timesF (baseC f) g₂) timesF {suc m} {n} {Node c₁ c₂} {Node c₃ c₄} {c₅} {c₆} (nodeC f₁ f₂) g = nodeC (timesF f₁ g) (timesF f₂ g) -- (2) there is a unit object One of dimension 0 uniteN⋆ : {n : ℕ} {c : C n} → times (ZD One) c ⟺ c uniteN⋆ {0} {ZD t} = baseC (unite⋆ {t}) uniteN⋆ {suc n} {Node c₁ c₂} = nodeC (uniteN⋆ {n} {c₁}) (uniteN⋆ {n} {c₂}) unitiN⋆ : {n : ℕ} {c : C n} → c ⟺ times (ZD One) c unitiN⋆ {0} {ZD t} = baseC (uniti⋆ {t}) unitiN⋆ {suc n} {Node c₁ c₂} = nodeC (unitiN⋆ {n} {c₁}) (unitiN⋆ {n} {c₂}) -- (3) swap swapN⋆ : {m n : ℕ} {c₁ : C m} {c₂ : C n} → times c₁ c₂ ⟺ times c₂ c₁ swapN⋆ {0} {0} {ZD t₁} {ZD t₂} = baseC (swap⋆ {t₁} {t₂}) swapN⋆ = ? swapN₊ : { n : ℕ } { c₁ c₂ : C n } → plus c₁ c₂ ⟺ plus c₂ c₁ swapN₊ {0} {ZD t₁} {ZD t₂} = baseC (swap₊ {t₁} {t₂}) swapN₊ {suc n} {Node c₁ c₂} {Node c₁' c₂'} = nodeC (swapN₊ {n} {c₁} {c₁'}) (swapN₊ {n} {c₂} {c₂'}) distzN : {m n : ℕ} {c : C n} → times (zeroN m) c ⟺ zeroN (m + n) distzN {0} {0} {ZD t} = baseC (distz {t}) distzN {0} {suc n} {Node c₁ c₂} = nodeC (distzN {0} {n} {c₁}) (distzN {0} {n} {c₂}) distzN {suc m} {n} {c} = nodeC (distzN {m} {n} {c}) (distzN {m} {n} {c}) ------------------------------------------------------------------------------ assocl⋆ : { m n k : ℕ } { c₁ : C m } { c₂ : C n } { c₃ : C k } → times c₁ (times c₂ c₃) ⟺ times (times c₁ c₂) c₃ assocr⋆ : { m n k : ℕ } { c₁ : C m } { c₂ : C n } { c₃ : C k } → times (times c₁ c₂) c₃ ⟺ times c₁ (times c₂ c₃) distz : { m n : ℕ } { c : C n } → times (zeroN m) c ⟺ zeroN m factorz : { m n : ℕ } { c : C n } → zeroN m ⟺ times (zeroN m) c dist : { m n : ℕ } { c₁ c₂ : C m } { c₃ : C n } → times (plus c₁ c₂) c₃ ⟺ plus (times c₁ c₃) (times c₂ c₃) factor : { m n : ℕ } { c₁ c₂ : C m } { c₃ : C n } → plus (times c₁ c₃) (times c₂ c₃) ⟺ times (plus c₁ c₂) c₃ id⟷ : { n : ℕ } { c : C n } → c ⟺ c sym : { m n : ℕ } { c₁ : C m } { c₂ : C n } → (c₁ ⟺ c₂) → (c₂ ⟺ c₁) _◎_ : { m n k : ℕ } { c₁ : C m } { c₂ : C n } { c₃ : C k } → (c₁ ⟺ c₂) → (c₂ ⟺ c₃) → (c₁ ⟺ c₃) _⊕_ : { m n : ℕ } { c₁ c₃ : C m } { c₂ c₄ : C n } → (c₁ ⟺ c₂) → (c₃ ⟺ c₄) → (plus c₁ c₃ ⟺ plus c₂ c₄) ------------------------------------------------------------------------------ -- Semantics -- probably should have our own × ? -- should be a sum ! -- we have a value in one of the corners; not in all of them at once ⟦_⟧C : {n : ℕ} → C n → Set ⟦_⟧C (ZD t) = ⟦ t ⟧ ⟦_⟧C (Node c₁ c₂ _) = ⟦ c₁ ⟧C ⊎ ⟦ c₂ ⟧C ⟦_⟧C (Lower c₁ c₂ _) = ⊥ evalC : {n m : ℕ} {c₁ : C n} {c₂ : C m} {p : n ≡ m} → _⟺_ c₁ c₂ p → ⟦ c₁ ⟧C → ⟦ c₂ ⟧C evalC (baseC iso) v = eval iso v evalC (nodeC isoL isoR) (inj₁ v) = inj₁ (evalC isoL v) evalC (nodeC isoL isoR) (inj₂ v) = inj₂ (evalC isoR v) evalC _ _ = {!!} -- now add etas and epsilons... --}
34.167464
82
0.479205
033c4bd9c34ef79d2e436c19ad81fef9860f3e9e
3,378
agda
Agda
src/Categories/Functor/Monoidal/Symmetric.agda
bolt12/agda-categories
b813fa3e685eb4713bace6204b8084a343d549a3
[ "MIT" ]
1
2021-04-18T18:21:47.000Z
2021-04-18T18:21:47.000Z
src/Categories/Functor/Monoidal/Symmetric.agda
andrejbauer/agda-categories
d07746023503cc8f49670e309a6170dc4b404b95
[ "MIT" ]
null
null
null
src/Categories/Functor/Monoidal/Symmetric.agda
andrejbauer/agda-categories
d07746023503cc8f49670e309a6170dc4b404b95
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Monoidal.Structure using (SymmetricMonoidalCategory) module Categories.Functor.Monoidal.Symmetric {o o′ ℓ ℓ′ e e′} (C : SymmetricMonoidalCategory o ℓ e) (D : SymmetricMonoidalCategory o′ ℓ′ e′) where open import Level open import Data.Product using (_,_) open import Categories.Category using (module Commutation) open import Categories.Functor using (Functor) open import Categories.Functor.Monoidal open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) open NaturalIsomorphism private module C = SymmetricMonoidalCategory C module D = SymmetricMonoidalCategory D module Lax where -- Lax symmetric monoidal functors. record IsSymmetricMonoidalFunctor (F : Functor C.U D.U) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where open Functor F field isMonoidal : IsMonoidalFunctor C.monoidalCategory D.monoidalCategory F open IsMonoidalFunctor isMonoidal public open D open Commutation D.U -- coherence condition field braiding-compat : ∀ {X Y} → [ F₀ X ⊗₀ F₀ Y ⇒ F₀ (Y C.⊗₀ X) ]⟨ ⊗-homo.η (X , Y) ⇒⟨ F₀ (X C.⊗₀ Y) ⟩ F₁ (C.braiding.⇒.η (X , Y)) ≈ D.braiding.⇒.η (F₀ X , F₀ Y) ⇒⟨ F₀ Y ⊗₀ F₀ X ⟩ ⊗-homo.η (Y , X) ⟩ record SymmetricMonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C.U D.U isSymmetricMonoidal : IsSymmetricMonoidalFunctor F open Functor F public open IsSymmetricMonoidalFunctor isSymmetricMonoidal public monoidalFunctor : MonoidalFunctor C.monoidalCategory D.monoidalCategory monoidalFunctor = record { F = F ; isMonoidal = isMonoidal } module Strong where -- Strong symmetric monoidal functors. record IsSymmetricMonoidalFunctor (F : Functor C.U D.U) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where open Functor F field isStrongMonoidal : IsStrongMonoidalFunctor C.monoidalCategory D.monoidalCategory F open IsStrongMonoidalFunctor isStrongMonoidal public open D open Commutation D.U -- coherence condition field braiding-compat : ∀ {X Y} → [ F₀ X ⊗₀ F₀ Y ⇒ F₀ (Y C.⊗₀ X) ]⟨ ⊗-homo.⇒.η (X , Y) ⇒⟨ F₀ (X C.⊗₀ Y) ⟩ F₁ (C.braiding.⇒.η (X , Y)) ≈ D.braiding.⇒.η (F₀ X , F₀ Y) ⇒⟨ F₀ Y ⊗₀ F₀ X ⟩ ⊗-homo.⇒.η (Y , X) ⟩ isLaxSymmetricMonoidal : Lax.IsSymmetricMonoidalFunctor F isLaxSymmetricMonoidal = record { isMonoidal = isMonoidal ; braiding-compat = braiding-compat } record SymmetricMonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C.U D.U isSymmetricMonoidal : IsSymmetricMonoidalFunctor F open Functor F public open IsSymmetricMonoidalFunctor isSymmetricMonoidal public monoidalFunctor : StrongMonoidalFunctor C.monoidalCategory D.monoidalCategory monoidalFunctor = record { F = F ; isStrongMonoidal = isStrongMonoidal }
31.867925
80
0.588218
0b036aa6eb8d83aa9c7cccc401a3e22c6395318c
11,585
agda
Agda
Structure/Type/Identity/Proofs/Eliminator.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Type/Identity/Proofs/Eliminator.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Type/Identity/Proofs/Eliminator.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Type.Identity.Proofs.Eliminator where import Lvl open import Functional using (_→ᶠ_ ; id ; _on₂_ ; swap ; apply) open import Logic open import Logic.Propositional open import Logic.Propositional.Proofs.Structures open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Groupoid open import Structure.Setoid using (Equiv ; intro) renaming (_≡_ to _≡ₛ_) open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Structure.Relator.Properties.Proofs open import Structure.Relator open import Structure.Type.Identity open import Structure.Type.Identity.Proofs open import Syntax.Function open import Syntax.Transitivity open import Syntax.Type open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂ ℓₑ ℓₘₑ ℓₚ ℓₒ : Lvl.Level private variable T A B : Type{ℓ} private variable x y : T private variable Id _≡_ _▫_ : T → T → Stmt{ℓ} module Oper (Id : T → T → Type{ℓₑ}) ⦃ refl : Reflexivity(Id) ⦄ ⦃ identElim : IdentityEliminator{ℓₚ = ℓₑ}(Id) ⦄ where open Symmetry (identity-eliminator-to-symmetry {Id = Id}) using () renaming (proof to sym) public open Transitivity(identity-eliminator-to-transitivity {Id = Id}) using () renaming (proof to trans) public ftrans = identity-eliminator-to-flipped-transitivityᵣ ⦃ refl ⦄ ⦃ identElim ⦄ module Oper2 (Id : A → A → Type{ℓₑ}) ⦃ refl : Reflexivity(Id) ⦄ ⦃ identElim : IdentityEliminator{ℓₚ = ℓₚ}(Id) ⦄ where open Reflexivity (refl) using () renaming (proof to refl) public module _ (_▫_ : A → A → Type{ℓₚ}) ⦃ [▫]-refl : Reflexivity(_▫_) ⦄ where open _⊆₂_ identity-eliminator-to-reflexive-subrelation using () renaming (proof to sub) public module _ (_▫_ : B → B → Type{ℓₚ}) ⦃ [▫]-refl : Reflexivity(_▫_) ⦄ (f : A → B) where open _⊆₂_ (minimal-reflection-transport ⦃ minRefl = identity-eliminator-to-reflexive-subrelation ⦄ {_▫_ = _▫_} {f = f}) using () renaming (proof to transp) public module _ {Id : T → T → Type{ℓₑ}} ⦃ refle-T : Reflexivity(Id) ⦄ ⦃ identElim-T : IdentityEliminator(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ}} → T → T → Type{ℓₘₑ}} ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ where open Oper(Id) open Oper2{ℓₚ = ℓₑ}(Id) identity-eliminator-symmetry-of-refl : ∀{x} → (sym refl ≡ refl{x}) identity-eliminator-symmetry-of-refl = idElimOfIntro(Id)(_≡_) (\{x y} _ → (Id y x)) refl module _ {Id : T → T → Type{ℓₑ₁}} ⦃ refle-T : Reflexivity(Id) ⦄ ⦃ identElim-T : IdentityEliminator(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ₂}} → T → T → Type{ℓₘₑ}} ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ {_▫_ : T → T → Type{ℓₑ₂}} ⦃ refl-op : Reflexivity(_▫_) ⦄ where open Oper(Id) open Oper2{ℓₚ = ℓₑ₂}(Id) identity-eliminator-reflexive-subrelation-of-refl : ∀{x} → (sub(_▫_) refl ≡ reflexivity(_▫_){x}) identity-eliminator-reflexive-subrelation-of-refl = idElimOfIntro(Id)(_≡_) (\{x y} _ → (x ▫ y)) (reflexivity(_▫_)) module _ {Id : A → A → Type{ℓₑ₁}} ⦃ refle-A : Reflexivity(Id) ⦄ ⦃ identElim-A : IdentityEliminator(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ₂}} → T → T → Type{ℓₘₑ}} ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ {_▫_ : B → B → Type{ℓₑ₂}} ⦃ refle-B : Reflexivity(_▫_) ⦄ {f : A → B} where open Oper(Id) open Oper2{ℓₚ = ℓₑ₂}(Id) identity-eliminator-transport-of-refl : ∀{a} → (transp(_▫_)(f) (refl{a}) ≡ reflexivity(_▫_) {f(a)}) identity-eliminator-transport-of-refl {a} = identity-eliminator-reflexive-subrelation-of-refl {_≡_ = _≡_} {_▫_ = (_▫_) on₂ f} ⦃ on₂-reflexivity ⦄ {x = a} module _ {Id : T → T → Type{ℓₑ}} ⦃ refle-T : Reflexivity(Id) ⦄ ⦃ identElim-T : IdentityEliminator(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ}} → T → T → Type{ℓₘₑ}} ⦃ refle-eq : ∀{T : Type} → Reflexivity(_≡_ {T = T}) ⦄ ⦃ identElim-eq : ∀{T : Type} → IdentityEliminator{ℓₚ = ℓₘₑ}(_≡_ {T = T}) ⦄ ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ where open Oper(Id) open Oper2{ℓₚ = ℓₑ}(Id) instance _ = identity-eliminator-to-reflexive-subrelation identity-eliminator-flipped-transitivityᵣ-of-refl : ∀{x} → (ftrans refl refl ≡ refl{x}) identity-eliminator-flipped-transitivityᵣ-of-refl {z} = sub₂(_≡_)((_≡_) on₂ (apply refl)) ⦃ minimal-reflection-transport ⦄ identity-eliminator-transport-of-refl identity-eliminator-transitivity-of-refl : ∀{x} → (trans refl refl ≡ refl{x}) identity-eliminator-transitivity-of-refl = transitivity(_≡_) ⦃ identity-eliminator-to-transitivity ⦄ p identity-eliminator-flipped-transitivityᵣ-of-refl where p : trans refl refl ≡ ftrans refl refl p = sub₂(_≡_)((_≡_) on₂ (p ↦ identity-eliminator-to-flipped-transitivityᵣ p refl)) ⦃ minimal-reflection-transport ⦄ identity-eliminator-symmetry-of-refl module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ identElim-A : IdentityEliminator(Equiv._≡_ equiv-A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ {_≡_ : ∀{T : Type{ℓₑ₂}} → T → T → Type{ℓₘₑ}} ⦃ identElimOfIntro : IdentityEliminationOfIntro(Equiv._≡_ equiv-A)(_≡_) ⦄ where open Reflexivity(Equiv.reflexivity equiv-A) using () renaming (proof to refl-A) open Reflexivity(Equiv.reflexivity equiv-B) using () renaming (proof to refl-B) instance _ = identity-eliminator-to-reflexive-subrelation instance _ = minimal-reflection-to-function identity-eliminator-function-of-refl : ∀{f : A → B}{a} → (congruence₁(f) (refl-A {a}) ≡ refl-B {f(a)}) identity-eliminator-function-of-refl = identity-eliminator-transport-of-refl module _ ⦃ equiv-T : Equiv{ℓₑ₁}(T) ⦄ ⦃ identElim-T : IdentityEliminator(Equiv._≡_ equiv-T) ⦄ {_≡_ : ∀{T : Type{ℓₑ₂}} → T → T → Type{ℓₘₑ}} ⦃ refle-eq : ∀{T : Type} → Reflexivity(_≡_ {T = T}) ⦄ ⦃ identElim-eq : ∀{T : Type} → IdentityEliminator{ℓₚ = ℓₘₑ}(_≡_ {T = T}) ⦄ ⦃ identElimOfIntro : IdentityEliminationOfIntro(Equiv._≡_ equiv-T)(_≡_) ⦄ where open Reflexivity(Equiv.reflexivity equiv-T) using () renaming (proof to refl) instance _ = identity-eliminator-to-reflexive-subrelation instance _ = minimal-reflection-to-relator identity-eliminator-relator-of-refl : ∀{P : T → Stmt}{x}{p : P(x)} → (substitute₁(P) refl p ≡ p) identity-eliminator-relator-of-refl {p = p} = sub₂(_≡_)((_≡_) on₂ (apply p)) ⦃ minimal-reflection-transport ⦄ identity-eliminator-transport-of-refl module _ {Id : T → T → Type{ℓₑ}} ⦃ refle-T : Reflexivity(Id) ⦄ ⦃ identElim-T : ∀{ℓₚ} → IdentityEliminator{ℓₚ = ℓₚ}(Id) ⦄ -- ⦃ identElim₁-T : IdentityEliminator{ℓₚ = ℓₑ}(Id) ⦄ -- ⦃ identElim₂-T : IdentityEliminator{ℓₚ = ℓₘₑ}(Id) ⦄ -- ⦃ identElim₃-T : IdentityEliminator{ℓₚ = ℓₑ Lvl.⊔ ℓₘₑ}(Id) ⦄ {_≡_ : ∀{T : Type{ℓₑ}} → T → T → Type{ℓₘₑ}} ⦃ refle-eq : ∀{T : Type} → Reflexivity(_≡_ {T = T}) ⦄ ⦃ identElim-eq : ∀{T : Type} → IdentityEliminator{ℓₚ = ℓₘₑ}(_≡_ {T = T}) ⦄ -- TODO: Try to not have these and instead have the properties that are used ⦃ identElimOfIntro : IdentityEliminationOfIntro(Id)(_≡_) ⦄ where open Reflexivity (refle-T) using () renaming (proof to refl) open Symmetry (identity-eliminator-to-symmetry {Id = Id}) using () renaming (proof to sym) open Transitivity(identity-eliminator-to-transitivity {Id = Id}) using () renaming (proof to trans) instance _ = identity-eliminator-to-reflexive-subrelation instance _ = \{T} → identity-eliminator-to-symmetry {Id = _≡_ {T = T}} ⦃ refl = refle-eq ⦄ ⦃ identElim = identElim-eq ⦄ instance _ = \{T} → identity-eliminator-to-transitivity {Id = _≡_ {T = T}} ⦃ refl = refle-eq ⦄ ⦃ identElim = identElim-eq ⦄ instance _ = \{T} → Structure.Setoid.intro(_) ⦃ identity-eliminator-to-equivalence {Id = _≡_ {T = T}} ⦃ refl = refle-eq ⦄ ⦃ identElim = identElim-eq ⦄ ⦄ identity-eliminator-identityₗ : ∀{x y}{p : Id x y} → (trans refl p ≡ p) identity-eliminator-identityₗ {p = p} = idElim(Id) (p ↦ (trans refl p ≡ p)) identity-eliminator-transitivity-of-refl p identity-eliminator-identityᵣ : ∀{x y}{p : Id x y} → (trans p refl ≡ p) identity-eliminator-identityᵣ {p = p} = idElim(Id) (p ↦ (trans p refl ≡ p)) identity-eliminator-transitivity-of-refl p identity-eliminator-associativity : ∀{x y z w}{p : Id x y}{q : Id y z}{r : Id z w} → (trans (trans p q) r ≡ trans p (trans q r)) identity-eliminator-associativity {p = p} {q = q} {r = r} = idElim(Id) (p ↦ ∀ q r → (trans (trans p q) r ≡ trans p (trans q r))) (q ↦ r ↦ ( trans (trans refl q) r 🝖[ _≡_ ]-[ sub₂(_≡_)((_≡_) on₂ (expr ↦ trans expr r)) ⦃ identity-eliminator-to-reflexive-subrelation ⦃ refl = on₂-reflexivity ⦄ ⦄ identity-eliminator-identityₗ ] trans q r 🝖[ _≡_ ]-[ identity-eliminator-identityₗ ]-sym trans refl (trans q r) 🝖-end )) p q r identity-eliminator-inverseₗ : ∀{x y}{p : Id x y} → (trans (sym p) p ≡ refl) identity-eliminator-inverseₗ {p = p} = idElim(Id) (p ↦ trans (sym p) p ≡ refl) ( trans (sym refl) refl 🝖[ _≡_ ]-[ identity-eliminator-identityᵣ ] sym refl 🝖[ _≡_ ]-[ identity-eliminator-symmetry-of-refl ] refl 🝖-end ) p identity-eliminator-inverseᵣ : ∀{x y}{p : Id x y} → (trans p (sym p) ≡ refl) identity-eliminator-inverseᵣ {p = p} = idElim(Id) (p ↦ trans p (sym p) ≡ refl) ( trans refl (sym refl) 🝖[ _≡_ ]-[ identity-eliminator-identityₗ ] sym refl 🝖[ _≡_ ]-[ identity-eliminator-symmetry-of-refl ] refl 🝖-end ) p identity-eliminator-categorical-identityₗ : Morphism.Identityₗ{Obj = T} (\{x} → swap(trans{x})) (refl) identity-eliminator-categorical-identityₗ = Morphism.intro identity-eliminator-identityᵣ identity-eliminator-categorical-identityᵣ : Morphism.Identityᵣ{Obj = T} (\{x} → swap(trans{x})) (refl) identity-eliminator-categorical-identityᵣ = Morphism.intro identity-eliminator-identityₗ identity-eliminator-categorical-identity : Morphism.Identity{Obj = T} (\{x} → swap(trans{x})) (refl) identity-eliminator-categorical-identity = [∧]-intro identity-eliminator-categorical-identityₗ identity-eliminator-categorical-identityᵣ identity-eliminator-categorical-associativity : Morphism.Associativity{Obj = T} (\{x} → swap(trans{x})) identity-eliminator-categorical-associativity = Morphism.intro (symmetry(_≡_) identity-eliminator-associativity) identity-eliminator-categorical-inverterₗ : Polymorphism.Inverterₗ{Obj = T} (\{x} → swap(trans{x})) (refl) (sym) identity-eliminator-categorical-inverterₗ = Polymorphism.intro identity-eliminator-inverseᵣ identity-eliminator-categorical-inverterᵣ : Polymorphism.Inverterᵣ{Obj = T} (\{x} → swap(trans{x})) (refl) (sym) identity-eliminator-categorical-inverterᵣ = Polymorphism.intro identity-eliminator-inverseₗ identity-eliminator-categorical-inverter : Polymorphism.Inverter{Obj = T} (\{x} → swap(trans{x})) (refl) (sym) identity-eliminator-categorical-inverter = [∧]-intro identity-eliminator-categorical-inverterₗ identity-eliminator-categorical-inverterᵣ identity-eliminator-groupoid : Groupoid(Id) Groupoid._∘_ identity-eliminator-groupoid = swap(trans) Groupoid.id identity-eliminator-groupoid = refl Groupoid.inv identity-eliminator-groupoid = sym Groupoid.associativity identity-eliminator-groupoid = identity-eliminator-categorical-associativity Groupoid.identity identity-eliminator-groupoid = identity-eliminator-categorical-identity Groupoid.inverter identity-eliminator-groupoid = identity-eliminator-categorical-inverter Groupoid.binaryOperator identity-eliminator-groupoid = intro a where postulate a : ∀{a} → a -- TODO
52.184685
192
0.671731
37ed3aef5ef5a64c4e9fb76492018730a67b6477
12,400
agda
Agda
Cubical/ZCohomology/CohomologyRings/Unit.agda
xekoukou/cubical
b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc
[ "MIT" ]
null
null
null
Cubical/ZCohomology/CohomologyRings/Unit.agda
xekoukou/cubical
b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc
[ "MIT" ]
null
null
null
Cubical/ZCohomology/CohomologyRings/Unit.agda
xekoukou/cubical
b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.CohomologyRings.Unit where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_) open import Cubical.Data.Int open import Cubical.Data.Vec open import Cubical.Data.FinData open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int renaming (ℤGroup to ℤG) open import Cubical.Algebra.DirectSum.Base open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR) open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.QuotientRing open import Cubical.Algebra.Polynomials.Multivariate.Base renaming (base to baseP) open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.A[X]X-A open import Cubical.Algebra.CommRing.Instances.MultivariatePoly open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-notationZ open import Cubical.HITs.Truncation open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_) open import Cubical.HITs.PropositionalTruncation as PT open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.CohomologyRing open import Cubical.ZCohomology.Groups.Unit open Iso module Equiv-Unit-Properties where open CommRingStr (snd ℤCR) using () renaming ( 0r to 0ℤ ; 1r to 1ℤ ; _+_ to _+ℤ_ ; -_ to -ℤ_ ; _·_ to _·ℤ_ ; +Assoc to +ℤAssoc ; +Identity to +ℤIdentity ; +Lid to +ℤLid ; +Rid to +ℤRid ; +Inv to +ℤInv ; +Linv to +ℤLinv ; +Rinv to +ℤRinv ; +Comm to +ℤComm ; ·Assoc to ·ℤAssoc ; ·Identity to ·ℤIdentity ; ·Lid to ·ℤLid ; ·Rid to ·ℤRid ; ·Rdist+ to ·ℤRdist+ ; ·Ldist+ to ·ℤLdist+ ; is-set to isSetℤ ) open RingStr (snd (H*R Unit)) using () renaming ( 0r to 0H* ; 1r to 1H* ; _+_ to _+H*_ ; -_ to -H*_ ; _·_ to _cup_ ; +Assoc to +H*Assoc ; +Identity to +H*Identity ; +Lid to +H*Lid ; +Rid to +H*Rid ; +Inv to +H*Inv ; +Linv to +H*Linv ; +Rinv to +H*Rinv ; +Comm to +H*Comm ; ·Assoc to ·H*Assoc ; ·Identity to ·H*Identity ; ·Lid to ·H*Lid ; ·Rid to ·H*Rid ; ·Rdist+ to ·H*Rdist+ ; ·Ldist+ to ·H*Ldist+ ; is-set to isSetH* ) open CommRingStr (snd ℤ[X]) using () renaming ( 0r to 0Pℤ ; 1r to 1Pℤ ; _+_ to _+Pℤ_ ; -_ to -Pℤ_ ; _·_ to _·Pℤ_ ; +Assoc to +PℤAssoc ; +Identity to +PℤIdentity ; +Lid to +PℤLid ; +Rid to +PℤRid ; +Inv to +PℤInv ; +Linv to +PℤLinv ; +Rinv to +PℤRinv ; +Comm to +PℤComm ; ·Assoc to ·PℤAssoc ; ·Identity to ·PℤIdentity ; ·Lid to ·PℤLid ; ·Rid to ·PℤRid ; ·Rdist+ to ·PℤRdist+ ; ·Ldist+ to ·PℤLdist+ ; is-set to isSetPℤ ) open CommRingStr (snd ℤ[X]/X) using () renaming ( 0r to 0PℤI ; 1r to 1PℤI ; _+_ to _+PℤI_ ; -_ to -PℤI_ ; _·_ to _·PℤI_ ; +Assoc to +PℤIAssoc ; +Identity to +PℤIIdentity ; +Lid to +PℤILid ; +Rid to +PℤIRid ; +Inv to +PℤIInv ; +Linv to +PℤILinv ; +Rinv to +PℤIRinv ; +Comm to +PℤIComm ; ·Assoc to ·PℤIAssoc ; ·Identity to ·PℤIIdentity ; ·Lid to ·PℤILid ; ·Rid to ·PℤIRid ; ·Rdist+ to ·PℤIRdist+ ; ·Ldist+ to ·PℤILdist+ ; is-set to isSetPℤI ) ----------------------------------------------------------------------------- -- Direct Sens on ℤ[x] ℤ[x]→H*-Unit : ℤ[x] → H* Unit ℤ[x]→H*-Unit = Poly-Rec-Set.f _ _ _ isSetH* 0H* base-trad _+H*_ +H*Assoc +H*Rid +H*Comm base-neutral-eq base-add-eq where base-trad : _ base-trad (zero ∷ []) a = base zero (inv (fst H⁰-Unit≅ℤ) a) base-trad (suc n ∷ []) a = 0H* base-neutral-eq : _ base-neutral-eq (zero ∷ []) = base-neutral _ base-neutral-eq (suc n ∷ []) = refl base-add-eq : _ base-add-eq (zero ∷ []) a b = base-add _ _ _ base-add-eq (suc n ∷ []) a b = +H*Rid _ ℤ[x]→H*-Unit-pres1Pℤ : ℤ[x]→H*-Unit (1Pℤ) ≡ 1H* ℤ[x]→H*-Unit-pres1Pℤ = refl ℤ[x]→H*-Unit-pres+ : (x y : ℤ[x]) → ℤ[x]→H*-Unit (x +Pℤ y) ≡ ℤ[x]→H*-Unit x +H* ℤ[x]→H*-Unit y ℤ[x]→H*-Unit-pres+ x y = refl -- Proving the morphism on the cup product T0 : (z : ℤ) → coHom 0 Unit T0 = λ z → inv (fst H⁰-Unit≅ℤ) z T0g : IsGroupHom (ℤG .snd) (fst (invGroupIso H⁰-Unit≅ℤ) .fun) (coHomGr 0 Unit .snd) T0g = snd (invGroupIso H⁰-Unit≅ℤ) -- idea : control of the unfolding + simplification of T0 on the left pres·-base-case-00 : (a : ℤ) → (b : ℤ) → T0 (a ·ℤ b) ≡ (T0 a) ⌣ (T0 b) pres·-base-case-00 (pos zero) b = (IsGroupHom.pres1 T0g) pres·-base-case-00 (pos (suc n)) b = ((IsGroupHom.pres· T0g b (pos n ·ℤ b))) ∙ (cong (λ X → (T0 b) +ₕ X) (pres·-base-case-00 (pos n) b)) pres·-base-case-00 (negsuc zero) b = IsGroupHom.presinv T0g b pres·-base-case-00 (negsuc (suc n)) b = cong T0 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically ! ∙ IsGroupHom.pres· T0g (negsuc n ·ℤ b) (-ℤ b) ∙ cong₂ _+ₕ_ (pres·-base-case-00 (negsuc n) b) (IsGroupHom.presinv T0g b) pres·-base-case-int : (n : ℕ) → (a : ℤ) → (m : ℕ) → (b : ℤ) → ℤ[x]→H*-Unit (baseP (n ∷ []) a ·Pℤ baseP (m ∷ []) b) ≡ ℤ[x]→H*-Unit (baseP (n ∷ []) a) cup ℤ[x]→H*-Unit (baseP (m ∷ []) b) pres·-base-case-int zero a zero b = cong (base 0) (pres·-base-case-00 a b) pres·-base-case-int zero a (suc m) b = refl pres·-base-case-int (suc n) a m b = refl pres·-base-case-vec : (v : Vec ℕ 1) → (a : ℤ) → (v' : Vec ℕ 1) → (b : ℤ) → ℤ[x]→H*-Unit (baseP v a ·Pℤ baseP v' b) ≡ ℤ[x]→H*-Unit (baseP v a) cup ℤ[x]→H*-Unit (baseP v' b) pres·-base-case-vec (n ∷ []) a (m ∷ []) b = pres·-base-case-int n a m b ℤ[x]→H*-Unit-pres· : (x y : ℤ[x]) → ℤ[x]→H*-Unit (x ·Pℤ y) ≡ ℤ[x]→H*-Unit x cup ℤ[x]→H*-Unit y ℤ[x]→H*-Unit-pres· = Poly-Ind-Prop.f _ _ _ (λ x p q i y j → isSetH* _ _ (p y) (q y) i j) (λ y → refl) base-case λ {U V} ind-U ind-V y → cong₂ _+H*_ (ind-U y) (ind-V y) where base-case : _ base-case (n ∷ []) a = Poly-Ind-Prop.f _ _ _ (λ _ → isSetH* _ _) (sym (RingTheory.0RightAnnihilates (H*R Unit) _)) (λ v' b → pres·-base-case-vec (n ∷ []) a v' b) λ {U V} ind-U ind-V → (cong₂ _+H*_ ind-U ind-V) ∙ sym (·H*Rdist+ _ _ _) -- raising to the product ℤ[x]→H*-Unit-cancelX : (k : Fin 1) → ℤ[x]→H*-Unit (<X> k) ≡ 0H* ℤ[x]→H*-Unit-cancelX zero = refl ℤ[X]→H*-Unit : RingHom (CommRing→Ring ℤ[X]) (H*R Unit) fst ℤ[X]→H*-Unit = ℤ[x]→H*-Unit snd ℤ[X]→H*-Unit = makeIsRingHom ℤ[x]→H*-Unit-pres1Pℤ ℤ[x]→H*-Unit-pres+ ℤ[x]→H*-Unit-pres· ℤ[X]/X→H*R-Unit : RingHom (CommRing→Ring ℤ[X]/X) (H*R Unit) ℤ[X]/X→H*R-Unit = Quotient-FGideal-CommRing-Ring.f ℤ[X] (H*R Unit) ℤ[X]→H*-Unit <X> ℤ[x]→H*-Unit-cancelX ℤ[x]/x→H*-Unit : ℤ[x]/x → H* Unit ℤ[x]/x→H*-Unit = fst ℤ[X]/X→H*R-Unit ----------------------------------------------------------------------------- -- Converse Sens on ℤ[X] H*-Unit→ℤ[x] : H* Unit → ℤ[x] H*-Unit→ℤ[x] = DS-Rec-Set.f _ _ _ _ isSetPℤ 0Pℤ base-trad _+Pℤ_ +PℤAssoc +PℤRid +PℤComm base-neutral-eq base-add-eq where base-trad : (n : ℕ) → coHom n Unit → ℤ[x] base-trad zero a = baseP (0 ∷ []) (fun (fst H⁰-Unit≅ℤ) a) base-trad (suc n) a = 0Pℤ base-neutral-eq : _ base-neutral-eq zero = base-0P _ base-neutral-eq (suc n) = refl base-add-eq : _ base-add-eq zero a b = base-poly+ _ _ _ ∙ cong (baseP (0 ∷ [])) (sym (IsGroupHom.pres· (snd H⁰-Unit≅ℤ) a b)) base-add-eq (suc n) a b = +PℤRid _ H*-Unit→ℤ[x]-pres+ : (x y : H* Unit) → H*-Unit→ℤ[x] ( x +H* y) ≡ H*-Unit→ℤ[x] x +Pℤ H*-Unit→ℤ[x] y H*-Unit→ℤ[x]-pres+ x y = refl H*-Unit→ℤ[x]/x : H* Unit → ℤ[x]/x H*-Unit→ℤ[x]/x = [_] ∘ H*-Unit→ℤ[x] H*-Unit→ℤ[x]/x-pres+ : (x y : H* Unit) → H*-Unit→ℤ[x]/x (x +H* y) ≡ (H*-Unit→ℤ[x]/x x) +PℤI (H*-Unit→ℤ[x]/x y) H*-Unit→ℤ[x]/x-pres+ x y = cong [_] (H*-Unit→ℤ[x]-pres+ x y) ----------------------------------------------------------------------------- -- Section e-sect : (x : H* Unit) → ℤ[x]/x→H*-Unit (H*-Unit→ℤ[x]/x x) ≡ x e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _) refl base-case λ {U V} ind-U ind-V → cong ℤ[x]/x→H*-Unit (H*-Unit→ℤ[x]/x-pres+ U V) ∙ IsRingHom.pres+ (snd ℤ[X]/X→H*R-Unit) (H*-Unit→ℤ[x]/x U) (H*-Unit→ℤ[x]/x V) ∙ cong₂ _+H*_ ind-U ind-V where base-case : _ base-case zero a = cong (base 0) (leftInv (fst H⁰-Unit≅ℤ) a) base-case (suc n) a = (sym (base-neutral (suc n))) ∙ (cong (base (suc n)) ((isContr→isProp (isContrHⁿ-Unit n) _ a))) ----------------------------------------------------------------------------- -- Retraction e-retr : (x : ℤ[x]/x) → H*-Unit→ℤ[x]/x (ℤ[x]/x→H*-Unit x) ≡ x e-retr = SQ.elimProp (λ _ → isSetPℤI _ _) (Poly-Ind-Prop.f _ _ _ (λ _ → isSetPℤI _ _) refl base-case λ {U V} ind-U ind-V → cong₂ _+PℤI_ ind-U ind-V) where base-case : _ base-case (zero ∷ []) a = refl base-case (suc n ∷ []) a = eq/ 0Pℤ (baseP (suc n ∷ []) a) ∣ ((λ x → baseP (n ∷ []) (-ℤ a)) , foo) ∣₁ where foo : (0P poly+ baseP (suc n ∷ []) (- a)) ≡ (baseP (n +n 1 ∷ []) (- a · pos 1) poly+ 0P) foo = (0P poly+ baseP (suc n ∷ []) (- a)) ≡⟨ +PℤLid _ ⟩ baseP (suc n ∷ []) (- a) ≡⟨ cong₂ baseP (cong (λ X → X ∷ []) (sym ((+-suc n 0) ∙ (cong suc (+-zero n))))) (sym (·ℤRid _)) ⟩ baseP (n +n suc 0 ∷ []) (- a ·ℤ 1ℤ) ≡⟨ refl ⟩ baseP (n +n 1 ∷ []) (- a · pos 1) ≡⟨ sym (+PℤRid _) ⟩ (baseP (n +n 1 ∷ []) (- a · pos 1) poly+ 0P) ∎ ----------------------------------------------------------------------------- -- Computation of the Cohomology Ring module _ where open Equiv-Unit-Properties open RingEquivs Unit-CohomologyRingP : RingEquiv (CommRing→Ring ℤ[X]/X) (H*R Unit) fst Unit-CohomologyRingP = isoToEquiv is where is : Iso ℤ[x]/x (H* Unit) fun is = ℤ[x]/x→H*-Unit inv is = H*-Unit→ℤ[x]/x rightInv is = e-sect leftInv is = e-retr snd Unit-CohomologyRingP = snd ℤ[X]/X→H*R-Unit CohomologyRing-UnitP : RingEquiv (H*R Unit) (CommRing→Ring ℤ[X]/X) CohomologyRing-UnitP = invEquivRing Unit-CohomologyRingP Unit-CohomologyRingℤ : RingEquiv (CommRing→Ring ℤCR) (H*R Unit) Unit-CohomologyRingℤ = compRingEquiv (invEquivRing Equiv-ℤ[X]/X-ℤ) Unit-CohomologyRingP CohomologyRing-Unitℤ : RingEquiv (H*R Unit) (CommRing→Ring ℤCR) CohomologyRing-Unitℤ = compRingEquiv CohomologyRing-UnitP Equiv-ℤ[X]/X-ℤ
36.578171
122
0.495
4de68e2faab2d10633fe3d38b09cca2e210f24ae
507
agda
Agda
test/Fail/NotStronglyRigidOccurrence.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NotStronglyRigidOccurrence.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NotStronglyRigidOccurrence.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2011-04-15 module NotStronglyRigidOccurrence where data Nat : Set where zero : Nat suc : Nat -> Nat data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a -- Jason C. Read, PhD thesis, p. 109 test : (k : Nat) -> let X : (Nat -> Nat) -> Nat X = _ in (f : Nat -> Nat) -> X f ≡ suc (f (X (\ x -> k))) test k f = refl -- {a = suc (f (suc k))} -- leads to _30 : _22 k f ≡ suc (f (_22 k (λ x → k))) -- this should give yellow, because above solution for _22 exists
26.684211
65
0.534517
57b9cbf386c5a8aecf4df8f1497eee247150560c
2,702
agda
Agda
Cubical/Algebra/DirectSum/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/DirectSum/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/DirectSum/Properties.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.DirectSum.Properties where open import Cubical.Foundations.Prelude open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.DirectSum.Base private variable ℓ ℓ' : Level module _ (Idx : Type ℓ) (P : Idx → Type ℓ') (AGP : (r : Idx) → AbGroupStr (P r)) where inv : ⊕ Idx P AGP → ⊕ Idx P AGP inv = DS-Rec-Set.f Idx P AGP (⊕ Idx P AGP) trunc -- elements neutral (λ r a → base r (AbGroupStr.-_ (AGP r) a)) (λ xs ys → xs add ys) -- eq group (λ xs ys zs → addAssoc xs ys zs) (λ xs → addRid xs) (λ xs ys → addComm xs ys) -- eq base (λ r → let open AbGroupStr (AGP r) in let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in (cong (base r) inv1g) ∙ (base-neutral r)) (λ r a b → let open AbGroupStr (AGP r) in let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in ((base r (- a) add base r (- b)) ≡⟨ (base-add r (- a) (- b)) ⟩ base r ((- a) + (- b)) ≡⟨ (cong (base r) (sym (invDistr b a))) ⟩ base r (- (b + a)) ≡⟨ cong (base r) (cong (-_) (comm b a)) ⟩ base r (- (a + b)) ∎)) rinv : (z : ⊕ Idx P AGP) → z add (inv z) ≡ neutral rinv = DS-Ind-Prop.f Idx P AGP (λ z → z add (inv z) ≡ neutral) (λ _ → trunc _ _) -- elements (addRid neutral) (λ r a → let open AbGroupStr (AGP r) in ((base r a add base r (- a)) ≡⟨ base-add r a (- a) ⟩ base r (a + - a) ≡⟨ cong (base r) (invr a) ⟩ base r 0g ≡⟨ base-neutral r ⟩ neutral ∎)) (λ {x} {y} p q → (((x add y) add ((inv x) add (inv y))) ≡⟨ cong (λ X → X add ((inv x) add (inv y))) (addComm x y) ⟩ ((y add x) add (inv x add inv y)) ≡⟨ sym (addAssoc y x (inv x add inv y)) ⟩ (y add (x add (inv x add inv y))) ≡⟨ cong (λ X → y add X) (addAssoc x (inv x) (inv y)) ⟩ (y add ((x add inv x) add inv y)) ≡⟨ cong (λ X → y add (X add (inv y))) (p) ⟩ (y add (neutral add inv y)) ≡⟨ cong (λ X → y add X) (addComm neutral (inv y)) ⟩ (y add (inv y add neutral)) ≡⟨ cong (λ X → y add X) (addRid (inv y)) ⟩ (y add inv y) ≡⟨ q ⟩ neutral ∎))
47.403509
124
0.42487
7cb6e7a2ec4050300c66c3eac10aff42573f9ad5
1,084
agda
Agda
src/Bee2/Crypto/Belt.agda
semenov-vladyslav/bee2-agda
22682afc8d488e3812307e104785d2b8dc8b9d4a
[ "MIT" ]
null
null
null
src/Bee2/Crypto/Belt.agda
semenov-vladyslav/bee2-agda
22682afc8d488e3812307e104785d2b8dc8b9d4a
[ "MIT" ]
null
null
null
src/Bee2/Crypto/Belt.agda
semenov-vladyslav/bee2-agda
22682afc8d488e3812307e104785d2b8dc8b9d4a
[ "MIT" ]
null
null
null
module Bee2.Crypto.Belt where open import Data.ByteString open import Data.ByteVec open import Data.Nat using (ℕ) open import Data.Product using (_,_) open import Agda.Builtin.TrustMe using (primTrustMe) import Bee2.Crypto.Defs open Bee2.Crypto.Defs open Bee2.Crypto.Defs using (Hash) public {-# FOREIGN GHC import qualified Bee2.Crypto.Belt #-} {-# FOREIGN GHC import qualified Data.ByteString #-} Password = ByteString Strict Salt = ByteString Strict Key = ByteVec {Strict} 32 Header = ByteVec {Strict} 16 Kek = ByteVec {Strict} 32 {-# FOREIGN GHC import qualified Bee2.Crypto.Belt #-} postulate primBeltPBKDF : ByteString Strict → SizeT → ByteString Strict → ByteString Strict primBeltHash : ByteString Strict → ByteString Strict {-# COMPILE GHC primBeltPBKDF = ( Bee2.Crypto.Belt.beltPBKDF'bs ) #-} {-# COMPILE GHC primBeltHash = ( Bee2.Crypto.Belt.beltHash'bs ) #-} beltPBKDF : Password → ℕ → Salt → Kek beltPBKDF p n s = (primBeltPBKDF p (SizeFromℕ n) s) , primTrustMe beltHash : ByteString Strict → Hash beltHash bs = primBeltHash bs , primTrustMe
29.297297
83
0.740775
21de6a27822a7905ee15413c8d4ec418ee106a60
393
agda
Agda
test/interaction/MetaNameSuggestion.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/MetaNameSuggestion.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/MetaNameSuggestion.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-09-12 -- -- Underscores should also get meaningful names -- (not just metas from omitted hidden arguments) -- {-# OPTIONS -v tc.meta.name:100 #-} postulate F : (A : Set) → Set G : {B : Set} → Set test1 : Set test1 = F _ -- name of this meta should be _A_0 test2 : Set test2 = G -- creates meta _B_1 test3 : Set test3 = G {_} -- name of this meta should be _B_2
17.086957
49
0.633588
03aa8e3fb48c5468326ef3ac5d9e9759de2bd571
4,702
agda
Agda
agda-stdlib-0.9/src/Relation/Unary.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Relation/Unary.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Relation/Unary.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Unary relations ------------------------------------------------------------------------ module Relation.Unary where open import Data.Empty open import Function open import Data.Unit hiding (setoid) open import Data.Product open import Data.Sum open import Level open import Relation.Nullary open import Relation.Binary using (Setoid; IsEquivalence) ------------------------------------------------------------------------ -- Unary relations Pred : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ suc ℓ) Pred A ℓ = A → Set ℓ ------------------------------------------------------------------------ -- Unary relations can be seen as sets -- I.e., they can be seen as subsets of the universe of discourse. module _ {a} {A : Set a} -- The universe of discourse. where -- Set membership. infix 4 _∈_ _∉_ _∈_ : ∀ {ℓ} → A → Pred A ℓ → Set _ x ∈ P = P x _∉_ : ∀ {ℓ} → A → Pred A ℓ → Set _ x ∉ P = ¬ x ∈ P -- The empty set. ∅ : Pred A zero ∅ = λ _ → ⊥ -- The property of being empty. Empty : ∀ {ℓ} → Pred A ℓ → Set _ Empty P = ∀ x → x ∉ P ∅-Empty : Empty ∅ ∅-Empty x () -- The universe, i.e. the subset containing all elements in A. U : Pred A zero U = λ _ → ⊤ -- The property of being universal. Universal : ∀ {ℓ} → Pred A ℓ → Set _ Universal P = ∀ x → x ∈ P U-Universal : Universal U U-Universal = λ _ → _ -- Set complement. ∁ : ∀ {ℓ} → Pred A ℓ → Pred A ℓ ∁ P = λ x → x ∉ P ∁∅-Universal : Universal (∁ ∅) ∁∅-Universal = λ x x∈∅ → x∈∅ ∁U-Empty : Empty (∁ U) ∁U-Empty = λ x x∈∁U → x∈∁U _ -- P ⊆ Q means that P is a subset of Q. _⊆′_ is a variant of _⊆_. infix 4 _⊆_ _⊇_ _⊆′_ _⊇′_ _⊆_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊆ Q = ∀ {x} → x ∈ P → x ∈ Q _⊆′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ⊆′ Q = ∀ x → x ∈ P → x ∈ Q _⊇_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _ Q ⊇ P = P ⊆ Q _⊇′_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _ Q ⊇′ P = P ⊆′ Q ∅-⊆ : ∀ {ℓ} → (P : Pred A ℓ) → ∅ ⊆ P ∅-⊆ P () ⊆-U : ∀ {ℓ} → (P : Pred A ℓ) → P ⊆ U ⊆-U P _ = _ -- Positive version of non-disjointness, dual to inclusion. infix 4 _≬_ _≬_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Set _ P ≬ Q = ∃ λ x → x ∈ P × x ∈ Q -- Set union. infixr 6 _∪_ _∪_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ∪ Q = λ x → x ∈ P ⊎ x ∈ Q -- Set intersection. infixr 7 _∩_ _∩_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ∩ Q = λ x → x ∈ P × x ∈ Q -- Implication. infixl 8 _⇒_ _⇒_ : ∀ {ℓ₁ ℓ₂} → Pred A ℓ₁ → Pred A ℓ₂ → Pred A _ P ⇒ Q = λ x → x ∈ P → x ∈ Q -- Infinitary union and intersection. infix 9 ⋃ ⋂ ⋃ : ∀ {ℓ i} (I : Set i) → (I → Pred A ℓ) → Pred A _ ⋃ I P = λ x → Σ[ i ∈ I ] P i x syntax ⋃ I (λ i → P) = ⋃[ i ∶ I ] P ⋂ : ∀ {ℓ i} (I : Set i) → (I → Pred A ℓ) → Pred A _ ⋂ I P = λ x → (i : I) → P i x syntax ⋂ I (λ i → P) = ⋂[ i ∶ I ] P ------------------------------------------------------------------------ -- Unary relation combinators infixr 2 _⟨×⟩_ infixr 2 _⟨⊙⟩_ infixr 1 _⟨⊎⟩_ infixr 0 _⟨→⟩_ infixl 9 _⟨·⟩_ infixr 9 _⟨∘⟩_ infixr 2 _//_ _\\_ _⟨×⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _ (P ⟨×⟩ Q) (x , y) = x ∈ P × y ∈ Q _⟨⊙⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → Pred A ℓ₁ → Pred B ℓ₂ → Pred (A × B) _ (P ⟨⊙⟩ Q) (x , y) = x ∈ P ⊎ y ∈ Q _⟨⊎⟩_ : ∀ {a b ℓ} {A : Set a} {B : Set b} → Pred A ℓ → Pred B ℓ → Pred (A ⊎ B) _ P ⟨⊎⟩ Q = [ P , Q ] _⟨→⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} → Pred A ℓ₁ → Pred B ℓ₂ → Pred (A → B) _ (P ⟨→⟩ Q) f = P ⊆ Q ∘ f _⟨·⟩_ : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} (P : Pred A ℓ₁) (Q : Pred B ℓ₂) → (P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ Q ∘ uncurry (flip _$_) (P ⟨·⟩ Q) (p , f) = f p -- Converse. _~ : ∀ {a b ℓ} {A : Set a} {B : Set b} → Pred (A × B) ℓ → Pred (B × A) ℓ P ~ = P ∘ swap -- Composition. _⟨∘⟩_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} → Pred (A × B) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × C) _ (P ⟨∘⟩ Q) (x , z) = ∃ λ y → (x , y) ∈ P × (y , z) ∈ Q -- Post and pre-division. _//_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} → Pred (A × C) ℓ₁ → Pred (B × C) ℓ₂ → Pred (A × B) _ (P // Q) (x , y) = Q ∘ _,_ y ⊆ P ∘ _,_ x _\\_ : ∀ {a b c ℓ₁ ℓ₂} {A : Set a} {B : Set b} {C : Set c} → Pred (A × C) ℓ₁ → Pred (A × B) ℓ₂ → Pred (B × C) _ P \\ Q = (P ~ // Q ~) ~ ------------------------------------------------------------------------ -- Properties of unary relations Decidable : ∀ {a ℓ} {A : Set a} (P : Pred A ℓ) → Set _ Decidable P = ∀ x → Dec (P x)
23.277228
72
0.425776
03ae2bf644e537c8157405977077995eac6567b9
260
agda
Agda
test/Succeed/Issue2297.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2297.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2297.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
record R : Set₁ where field A : Set module _ (r : R) where open R r data D : Set where c : A → D data P : D → Set where d : (x : A) → P (c x) postulate f : D → A g : (x : D) → P x → D g x (d y) with Set g x (d y) | _ = x
11.818182
25
0.446154
2189ead71accf171dce5d74df4f20567f9249da1
336
agda
Agda
test/Common/Size.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Common/Size.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Common/Size.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --without-K #-} ------------------------------------------------------------------------ -- From the Agda standard library -- -- Sizes for Agda's sized types ------------------------------------------------------------------------ module Common.Size where open import Agda.Builtin.Size public renaming (SizeU to SizeUniv)
30.545455
72
0.41369
fdd9d93e923ab90712f828caba3cc42b93d31e08
6,828
agda
Agda
src/Generic/Test/Data/List.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
30
2016-07-19T21:10:54.000Z
2022-02-05T10:19:38.000Z
src/Generic/Test/Data/List.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
9
2017-04-06T18:58:09.000Z
2022-01-04T15:43:14.000Z
src/Generic/Test/Data/List.agda
iblech/Generic
380554b20e0991290d1864ddf81f0587ec1647ed
[ "MIT" ]
4
2017-07-17T07:23:39.000Z
2021-01-27T12:57:09.000Z
module Generic.Test.Data.List where module _ where open import Generic.Main as Main hiding ([]; _∷_) renaming (List to StdList) infixr 5 _∷_ _∷′_ List : ∀ {α} -> Set α -> Set α List = readData StdList pattern [] = #₀ lrefl pattern _∷_ x xs = !#₁ (relv x , xs , lrefl) _∷′_ : ∀ {α} {A : Set α} -> A -> List A -> List A _∷′_ = _∷_ elimList : ∀ {α π} {A : Set α} -> (P : List A -> Set π) -> (∀ {xs} x -> P xs -> P (x ∷ xs)) -> P [] -> ∀ xs -> P xs elimList P f z [] = z elimList P f z (x ∷ xs) = f x (elimList P f z xs) toStdList : ∀ {α} {A : Set α} -> List A -> StdList A toStdList xs = guncoerce xs -- The entire content of `Data.List.Base` (modulo `Generic.Test.Data.Maybe` instead of -- `Data.Maybe.Base` and _∷_ was renamed to _∷′_ in some places) open import Data.Nat.Base using (ℕ; zero; suc; _+_; _*_) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Data.Bool.Base using (Bool; false; true; not; _∧_; _∨_; if_then_else_) open import Generic.Test.Data.Maybe open import Data.Product as Prod using (_×_; _,_) open import Function infixr 5 _++_ [_] : ∀ {a} {A : Set a} → A → List A [ x ] = x ∷ [] _++_ : ∀ {a} {A : Set a} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) -- Snoc. infixl 5 _∷ʳ_ _∷ʳ_ : ∀ {a} {A : Set a} → List A → A → List A xs ∷ʳ x = xs ++ [ x ] null : ∀ {a} {A : Set a} → List A → Bool null [] = true null (x ∷ xs) = false -- * List transformations map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs replicate : ∀ {a} {A : Set a} → (n : ℕ) → A → List A replicate zero x = [] replicate (suc n) x = x ∷ replicate n x zipWith : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A → B → C) → List A → List B → List C zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys zipWith f _ _ = [] zip : ∀ {a b} {A : Set a} {B : Set b} → List A → List B → List (A × B) zip = zipWith (_,_) intersperse : ∀ {a} {A : Set a} → A → List A → List A intersperse x [] = [] intersperse x (y ∷ []) = [ y ] intersperse x (y ∷ z ∷ zs) = y ∷ x ∷ intersperse x (z ∷ zs) -- * Reducing lists (folds) foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → B foldr c n [] = n foldr c n (x ∷ xs) = c x (foldr c n xs) foldl : ∀ {a b} {A : Set a} {B : Set b} → (A → B → A) → A → List B → A foldl c n [] = n foldl c n (x ∷ xs) = foldl c (c n x) xs -- ** Special folds concat : ∀ {a} {A : Set a} → List (List A) → List A concat = foldr _++_ [] concatMap : ∀ {a b} {A : Set a} {B : Set b} → (A → List B) → List A → List B concatMap f = concat ∘ map f and : List Bool → Bool and = foldr _∧_ true or : List Bool → Bool or = foldr _∨_ false any : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool any p = or ∘ map p all : ∀ {a} {A : Set a} → (A → Bool) → List A → Bool all p = and ∘ map p sum : List ℕ → ℕ sum = foldr _+_ 0 product : List ℕ → ℕ product = foldr _*_ 1 length : ∀ {a} {A : Set a} → List A → ℕ length = foldr (λ _ → suc) 0 import Data.List.Base reverse : ∀ {a} {A : Set a} → List A → List A reverse = foldl (λ rev x → x ∷′ rev) [] -- * Building lists -- ** Scans scanr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → List B scanr f e [] = e ∷ [] scanr f e (x ∷ xs) with scanr f e xs ... | [] = [] -- dead branch ... | y ∷ ys = f x y ∷ y ∷ ys scanl : ∀ {a b} {A : Set a} {B : Set b} → (A → B → A) → A → List B → List A scanl f e [] = e ∷ [] scanl f e (x ∷ xs) = e ∷ scanl f (f e x) xs -- ** Unfolding -- Unfold. Uses a measure (a natural number) to ensure termination. unfold : ∀ {a b} {A : Set a} (B : ℕ → Set b) (f : ∀ {n} → B (suc n) → Maybe (A × B n)) → ∀ {n} → B n → List A unfold B f {n = zero} s = [] unfold B f {n = suc n} s with f s ... | nothing = [] ... | just (x , s') = x ∷ unfold B f s' -- downFrom 3 = 2 ∷ 1 ∷ 0 ∷ []. downFrom : ℕ → List ℕ downFrom n = unfold Singleton f (wrap n) where data Singleton : ℕ → Set where wrap : (n : ℕ) → Singleton n f : ∀ {n} → Singleton (suc n) → Maybe (ℕ × Singleton n) f {n} (wrap .(suc n)) = just (n , wrap n) -- ** Conversions fromMaybe : ∀ {a} {A : Set a} → Maybe A → List A fromMaybe (just x) = [ x ] fromMaybe nothing = [] -- * Sublists -- ** Extracting sublists take : ∀ {a} {A : Set a} → ℕ → List A → List A take zero xs = [] take (suc n) [] = [] take (suc n) (x ∷ xs) = x ∷ take n xs drop : ∀ {a} {A : Set a} → ℕ → List A → List A drop zero xs = xs drop (suc n) [] = [] drop (suc n) (x ∷ xs) = drop n xs splitAt : ∀ {a} {A : Set a} → ℕ → List A → (List A × List A) splitAt zero xs = ([] , xs) splitAt (suc n) [] = ([] , []) splitAt (suc n) (x ∷ xs) with splitAt n xs ... | (ys , zs) = (x ∷ ys , zs) takeWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A takeWhile p [] = [] takeWhile p (x ∷ xs) with p x ... | true = x ∷ takeWhile p xs ... | false = [] dropWhile : ∀ {a} {A : Set a} → (A → Bool) → List A → List A dropWhile p [] = [] dropWhile p (x ∷ xs) with p x ... | true = dropWhile p xs ... | false = x ∷ xs span : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A) span p [] = ([] , []) span p (x ∷ xs) with p x ... | true = Prod.map (_∷′_ x) id (span p xs) ... | false = ([] , x ∷ xs) break : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A) break p = span (not ∘ p) inits : ∀ {a} {A : Set a} → List A → List (List A) inits [] = [] ∷ [] inits (x ∷ xs) = [] ∷ map (_∷′_ x) (inits xs) tails : ∀ {a} {A : Set a} → List A → List (List A) tails [] = [] ∷ [] tails (x ∷ xs) = (x ∷ xs) ∷ tails xs infixl 5 _∷ʳ'_ data InitLast {a} {A : Set a} : List A → Set a where []ʳ : InitLast [] _∷ʳ'_ : (xs : List A) (x : A) → InitLast (xs ∷ʳ x) initLast : ∀ {a} {A : Set a} (xs : List A) → InitLast xs initLast [] = []ʳ initLast (x ∷ xs) with initLast xs initLast (x ∷ .[]) | []ʳ = [] ∷ʳ' x initLast (x ∷ .(ys ∷ʳ y)) | ys ∷ʳ' y = (x ∷ ys) ∷ʳ' y -- * Searching lists -- ** Searching with a predicate -- A generalised variant of filter. gfilter : ∀ {a b} {A : Set a} {B : Set b} → (A → Maybe B) → List A → List B gfilter p [] = [] gfilter p (x ∷ xs) with p x ... | just y = y ∷ gfilter p xs ... | nothing = gfilter p xs filter : ∀ {a} {A : Set a} → (A → Bool) → List A → List A filter p = gfilter (λ x → if p x then just′ x else nothing) partition : ∀ {a} {A : Set a} → (A → Bool) → List A → (List A × List A) partition p [] = ([] , []) partition p (x ∷ xs) with p x | partition p xs ... | true | (ys , zs) = (x ∷ ys , zs) ... | false | (ys , zs) = (ys , x ∷ zs)
26.88189
86
0.485062
4b0977bc42e41cf1089893a5e3a4b6087dfc2eb7
663
agda
Agda
test/fail/WhyWeNeedUntypedLambda.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/fail/WhyWeNeedUntypedLambda.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
null
null
null
test/fail/WhyWeNeedUntypedLambda.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{- 2010-09-28 Andreas, see issue 336 -} module WhyWeNeedUntypedLambda where IdT = ({A : Set} -> A -> A) data _==_ {A : Set2}(a : A) : A -> Set where refl : a == a -- Untyped lambda succeeds, because checking \ x -> x : X is postponed, -- then the solution X = IdT is found, and upon revisiting the tc problem -- a hidden lambda \ {A} is inserted. foo : ({X : Set1} -> X -> X == IdT -> Set) -> Set foo k = k (\ x -> x) refl -- succeeds {- -- Typed lambda fails, because \ (x : _) -> x has inferred type ?A -> ?A -- but then unification with IdT fails. foo' : ({X : Set1} -> X -> X == IdT -> Set) -> Set foo' k = k (\ (x : _) -> x) refl -- fails -}
30.136364
73
0.561086
52bb8cbc2ea2f680d81c432d70a3a430807e28a9
2,878
agda
Agda
src/Tactic/Nat/Simpl.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Tactic/Nat/Simpl.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
src/Tactic/Nat/Simpl.agda
jespercockx/agda-prelude
1984cf0341835b2f7bfe678098bd57cfe16ea11f
[ "MIT" ]
null
null
null
module Tactic.Nat.Simpl where open import Prelude hiding (abs) open import Builtin.Reflection open import Tactic.Reflection.Quote open import Tactic.Reflection open import Tactic.Nat.Reflect open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Tactic.Nat.Auto open import Tactic.Nat.Auto.Lemmas open import Tactic.Nat.Simpl.Lemmas module _ {Atom : Set} {{_ : Eq Atom}} {{_ : Ord Atom}} where ExpEq : Exp Atom × Exp Atom → Env Atom → Set ExpEq (e₁ , e₂) ρ = ⟦ e₁ ⟧e ρ ≡ ⟦ e₂ ⟧e ρ CancelEq : Exp Atom × Exp Atom → Env Atom → Set CancelEq (e₁ , e₂) ρ = NFEqS (cancel (norm e₁) (norm e₂)) ρ ⟦_⟧h : List (Exp Atom × Exp Atom) → Env Atom → Set ⟦ [] ⟧h ρ = ⊥ ⟦ h ∷ [] ⟧h ρ = ExpEq h ρ ⟦ h ∷ g ⟧h ρ = ExpEq h ρ → ⟦ g ⟧h ρ ⟦_⟧hs : List (Exp Atom × Exp Atom) → Env Atom → Set ⟦ [] ⟧hs ρ = ⊥ ⟦ h ∷ [] ⟧hs ρ = CancelEq h ρ ⟦ h ∷ g ⟧hs ρ = CancelEq h ρ → ⟦ g ⟧hs ρ simplifyEq : ∀ eq (ρ : Env Atom) → CancelEq eq ρ → ExpEq eq ρ simplifyEq (e₁ , e₂) ρ H = liftNFEq e₁ e₂ ρ (cancel-sound (norm e₁) (norm e₂) ρ H) complicateEq : ∀ eq ρ → ExpEq eq ρ → CancelEq eq ρ complicateEq (e₁ , e₂) ρ H = cancel-complete (norm e₁) (norm e₂) ρ (unliftNFEq e₁ e₂ ρ H) simplifyH : ∀ goal ρ → ⟦ goal ⟧hs ρ → ⟦ goal ⟧h ρ simplifyH [] ρ () simplifyH (h ∷ []) ρ H = simplifyEq h ρ H simplifyH (h ∷ h₂ ∷ g) ρ H = λ H₁ → simplifyH (h₂ ∷ g) ρ $ H (complicateEq h ρ H₁) simplify-tactic : {x y : Nat} → x ≡ y → Type → TC Term simplify-tactic {x} {y} prf g = do `x ← quoteTC x `y ← quoteTC y `prf ← quoteTC prf let h = def₂ (quote _≡_) `x `y t = pi (vArg h) (abs "_" (weaken 1 g)) just (goal , Γ) ← termToHyps t where nothing → typeError (strErr "Invalid goal" ∷ termErr t ∷ []) pure $ def (quote flip) $ vArg (def (quote simplifyH) ( vArg (` goal) ∷ vArg (quotedEnv Γ) ∷ [] )) ∷ vArg `prf ∷ [] assumed-tactic : {x y : Nat} → x ≡ y → Type → TC Term assumed-tactic {x} {y} prf g = do `x ← withNormalisation true $ quoteTC x `y ← withNormalisation true $ quoteTC y `prf ← quoteTC prf let h = def (quote _≡_) (hArg unknown ∷ hArg (def₀ (quote Nat)) ∷ vArg `x ∷ vArg `y ∷ []) let t = pi (vArg h) (abs "_" (weaken 1 g)) just (goal , Γ) ← termToHyps t where nothing → typeError (strErr "Invalid goal" ∷ termErr t ∷ []) pure $ def (quote simplifyH) ( vArg (` goal) ∷ vArg (quotedEnv Γ) ∷ vArg (def (quote id) []) ∷ vArg `prf ∷ [] ) macro follows-from : {x y : Nat} → x ≡ y → Tactic follows-from prf hole = do goal ← inferNormalisedType hole unify hole =<< assumed-tactic prf goal simplify : {x y : Nat} → x ≡ y → Tactic simplify prf hole = do goal ← inferNormalisedType hole unify hole =<< simplify-tactic prf goal
33.465116
91
0.569145
301afa6cd2bbe60f513a7d8db28be577b54ade0a
1,616
agda
Agda
benchmark/proj/Record.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
benchmark/proj/Record.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
benchmark/proj/Record.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --type-in-type #-} module Record where infixr 2 _,_ record Σ (A : Set)(B : A → Set) : Set where constructor _,_ field fst : A snd : B fst open Σ data ⊤ : Set where tt : ⊤ ∃ : {A : Set}(B : A → Set) → Set ∃ B = Σ _ B infix 10 _≡_ data _≡_ {A : Set}(a : A) : {B : Set} → B → Set where refl : a ≡ a trans : ∀ {A B C}{a : A}{b : B}{c : C} → a ≡ b → b ≡ c → a ≡ c trans refl p = p sym : ∀ {A B}{a : A}{b : B} → a ≡ b → b ≡ a sym refl = refl resp : ∀ {A}{B : A → Set}{a a' : A} → (f : (a : A) → B a) → a ≡ a' → f a ≡ f a' resp f refl = refl Cat : Set Cat = ∃ λ (Obj : Set) → ∃ λ (Hom : Obj → Obj → Set) → ∃ λ (id : ∀ X → Hom X X) → ∃ λ (_○_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z) → ∃ λ (idl : ∀ {X Y}{f : Hom X Y} → (id Y ○ f) ≡ f) → ∃ λ (idr : ∀ {X Y}{f : Hom X Y} → (f ○ id X) ≡ f) → ∃ λ (assoc : ∀ {W X Y Z}{f : Hom W X}{g : Hom X Y}{h : Hom Y Z} → ((h ○ g) ○ f) ≡ (h ○ (g ○ f))) → ⊤ Obj : (C : Cat) → Set Obj C = fst C Hom : (C : Cat) → Obj C → Obj C → Set Hom C = fst (snd C) id : (C : Cat) → ∀ X → Hom C X X id C = fst (snd (snd C)) comp : (C : Cat) → ∀ {X Y Z} → Hom C Y Z → Hom C X Y → Hom C X Z comp C = fst (snd (snd (snd C))) idl : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C (id C Y) f ≡ f idl C = fst (snd (snd (snd (snd C)))) idr : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C f (id C X) ≡ f idr C = fst (snd (snd (snd (snd (snd C))))) assoc : (C : Cat) → ∀ {W X Y Z}{f : Hom C W X}{g : Hom C X Y}{h : Hom C Y Z} → comp C (comp C h g) f ≡ comp C h (comp C g f) assoc C = fst (snd (snd (snd (snd (snd (snd C))))))
24.484848
78
0.430074
37731c1139048a044f97db448332804b65aae03b
250
agda
Agda
test/Fail/Imports/Issue958.agda
MxmUrw/agda
6ede01fa854c5472e54f7d1799ca2c08ed316129
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Imports/Issue958.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Imports/Issue958.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Imports.Issue958 where postulate FunctorOps : Set module FunctorOps (ops : FunctorOps) where postulate map : Set postulate IsFunctor : Set module IsFunctor (fun : IsFunctor) where postulate ops : FunctorOps open FunctorOps ops public
20.833333
42
0.78
52abbf0a3954df8b86bbb3346ce596121de683bd
81
agda
Agda
test/fail/ClashingModuleImport.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/fail/ClashingModuleImport.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/ClashingModuleImport.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module ClashingModuleImport where X = TODO--I-haven't-fully-understood-this-one
20.25
45
0.802469
35f836b1ec451466051406c0a235a535c6331933
4,909
agda
Agda
setoid-cats/Category/Subcategory.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Category/Subcategory.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Category/Subcategory.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
--------------------------------------------------------------- -- This file contains the definitions of several versions of -- -- subcategories. -- --------------------------------------------------------------- module Category.Subcategory where open import Level open import Data.Product open import Setoid.Total open import Relation.Relation open import Category.Category open Setoid open SetoidFun open Pred open Subcarrier open EqRel open Cat -- Categorical Predicate: A predicate on objects, and morphisms such -- that the latter is closed under identities and composition. record CatPred {l : Level} (ℂ : Cat {l}) : Set (lsuc l) where field oinc : Obj ℂ → Set l minc : ∀{A B} → oinc A → oinc B → Pred {l} (Hom ℂ A B) cp-idPf : ∀{A} → {p : oinc A} → pf (minc p p) (id ℂ {A}) cp-compPf : ∀{A B C} → (op₁ : (oinc A)) → (op₂ : (oinc B)) → (op₃ : (oinc C)) → {f : el (Hom ℂ A B)} → {g : el (Hom ℂ B C)} → (pf (minc op₁ op₂) f) → (pf (minc op₂ op₃) g) → (pf (minc op₁ op₃) (f ○[ comp ℂ ] g)) open CatPred -- Subcategories: -- The restriction of a category ℂ to the category determined by the -- categorical predicate P. Note that the objects of this category -- are pairs of an object and a proof that the object belongs in the -- category, and morphisms are similarly defined but using setoid -- predicates. subcatPred : {l : Level}{ℂ : Cat {l}} → (P : CatPred ℂ) → Cat {l} subcatPred {_}{ℂ} P = record { Obj = Σ[ x ∈ Obj ℂ ]( oinc P x) ; Hom = λ AP BP → let A = proj₁ AP B = proj₁ BP op₁ = proj₂ AP op₂ = proj₂ BP in Subsetoid (Hom ℂ A B) (minc P op₁ op₂) ; comp = λ {AP}{BP}{CP} → let A = proj₁ AP B = proj₁ BP C = proj₁ CP op₁ = proj₂ AP op₂ = proj₂ BP op₃ = proj₂ CP in record { appT = λ x → record { appT = λ x₁ → record { subel = (subel x) ○[ comp ℂ ] (subel x₁) ; insub = cp-compPf P op₁ op₂ op₃ (insub x) (insub x₁) } ; extT = λ {y} {z} x₂ → eq-comp-right {_}{ℂ}{A}{B}{C}{subel x}{subel y}{subel z} x₂ } ; extT = λ {f₁}{f₂} pf g₂ → extT (comp ℂ) pf (subel g₂) } ; id = λ {AP} → let A = proj₁ AP A-op = proj₂ AP in record { subel = id ℂ ; insub = cp-idPf P {_}{A-op} } ; assocPf = assocPf ℂ ; idPfCom = idPfCom ℂ ; idPf = idPf ℂ } -- Subcategories using subsetoids. subcat : {l : Level} → (ℂ : Cat {l})(O : Set l) → (oinc : O → Obj ℂ) → (minc : ∀{A B} → Pred {l} (Hom ℂ (oinc A) (oinc B))) → (∀{A} → pf (minc {A}{A}) (id ℂ {oinc A})) → (∀{A B C} → {f : el (Hom ℂ (oinc A) (oinc B))} → {g : el (Hom ℂ (oinc B) (oinc C))} → (pf minc f) → (pf minc g) → (pf minc (f ○[ comp ℂ ] g))) → Cat {l} subcat ℂ O oinc minc idPF compPF = record { Obj = O; Hom = λ A B → Subsetoid (Hom ℂ (oinc A) (oinc B)) (minc {A}{B}); comp = λ {A} {B} {C} → record { appT = λ x → record { appT = λ x₁ → record { subel = (subel x) ○[ comp ℂ ] (subel x₁); insub = compPF {f = subel x}{subel x₁} (insub x) (insub x₁) }; extT = λ {y}{z} p → extT (appT (comp ℂ {oinc A}{oinc B}{oinc C}) (subel x)) {subel y}{subel z} p }; extT = λ {y}{z} x₁ x₂ → extT (comp ℂ {oinc A} {oinc B} {oinc C}) x₁ (subel x₂) }; id = λ {A} → record { subel = id ℂ {oinc A}; insub = idPF {A} }; assocPf = assocPf ℂ; idPf = idPf ℂ; idPfCom = idPfCom ℂ } -- An alternate definition of a subcategory where the predicate is not -- a setoid predicate. subcat-pred : {l : Level} → (ℂ : Cat {l})(O : Set l) → (oinc : O → Obj ℂ) → (minc : ∀{A B} → el (Hom ℂ (oinc A) (oinc B)) → Set l) → (∀{A} → minc (id ℂ {oinc A})) → (∀{A B C} → {f : el (Hom ℂ (oinc A) (oinc B))} → {g : el (Hom ℂ (oinc B) (oinc C))} → (minc f) → (minc g) → (minc (f ○[ comp ℂ ] g))) → Cat {l} subcat-pred ℂ O oinc minc idPF compPF = record { Obj = O; Hom = λ A B → ↓Setoid (Hom ℂ (oinc A) (oinc B)) (minc {A}{B}); comp = λ {A} {B} {C} → ↓BinSetoidFun (comp ℂ) compPF; id = (id ℂ , idPF); assocPf = assocPf ℂ; idPf = idPf ℂ; idPfCom = idPfCom ℂ}
37.189394
126
0.440823
52cc1c736c66b6a0b92a74e6a892d2bbeaf0a99d
846
agda
Agda
agda-stdlib/src/Data/String.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/String.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/String.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Strings ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.String where open import Data.Vec.Base as Vec using (Vec) open import Data.Char as Char using (Char) open import Function.Base ------------------------------------------------------------------------ -- Re-export contents of base, and decidability of equality open import Data.String.Base public open import Data.String.Properties using (_≈?_; _≟_; _<?_; _==_) public ------------------------------------------------------------------------ -- Operations toVec : (s : String) → Vec Char (length s) toVec s = Vec.fromList (toList s) fromVec : ∀ {n} → Vec Char n → String fromVec = fromList ∘ Vec.toList
29.172414
72
0.460993
d169417458750cfaf1cdebc195640492eb2aaa5b
125
agda
Agda
test/Succeed/Issue794a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue794a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue794a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module Issue794a where open import Common.Prelude open import Common.MAlonzo postulate A : Set id : .A → A → A id x y = y
12.5
26
0.712
21aa6afd0816832a4f8b795d90b50f940b6f62e6
2,157
agda
Agda
agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Relation/Binary/Indexed/Heterogeneous/Construct/At.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Instantiates indexed binary structures at an index to the equivalent -- non-indexed structures. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Indexed.Heterogeneous.Construct.At where open import Relation.Binary open import Relation.Binary.Indexed.Heterogeneous hiding (IsEquivalence; Setoid) ------------------------------------------------------------------------ -- Structures module _ {a i} {I : Set i} {A : I → Set a} where isEquivalence : ∀ {ℓ} {_≈_ : IRel A ℓ} → IsIndexedEquivalence A _≈_ → (index : I) → IsEquivalence (_≈_ {index}) isEquivalence isEq index = record { refl = refl ; sym = sym ; trans = trans } where open IsIndexedEquivalence isEq isPreorder : ∀ {ℓ₁ ℓ₂} {_≈_ : IRel A ℓ₁} {_∼_ : IRel A ℓ₂} → IsIndexedPreorder A _≈_ _∼_ → (index : I) → IsPreorder (_≈_ {index}) _∼_ isPreorder isPreorder index = record { isEquivalence = isEquivalence O.isEquivalence index ; reflexive = O.reflexive ; trans = O.trans } where module O = IsIndexedPreorder isPreorder ------------------------------------------------------------------------ -- Bundles module _ {a i} {I : Set i} where setoid : ∀ {ℓ} → IndexedSetoid I a ℓ → I → Setoid a ℓ setoid S index = record { Carrier = S.Carrier index ; _≈_ = S._≈_ ; isEquivalence = isEquivalence S.isEquivalence index } where module S = IndexedSetoid S preorder : ∀ {ℓ₁ ℓ₂} → IndexedPreorder I a ℓ₁ ℓ₂ → I → Preorder a ℓ₁ ℓ₂ preorder O index = record { Carrier = O.Carrier index ; _≈_ = O._≈_ ; _∼_ = O._∼_ ; isPreorder = isPreorder O.isPreorder index } where module O = IndexedPreorder O ------------------------------------------------------------------------ -- Some useful shorthand infix notation module _ {a i} {I : Set i} where _atₛ_ : ∀ {ℓ} → IndexedSetoid I a ℓ → I → Setoid a ℓ _atₛ_ = setoid
31.26087
73
0.514604
1b06b8f4994a112dc1c9b0aedd89e5aa13332380
142
agda
Agda
test/Succeed/Issue794.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue794.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue794.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module Issue794 where open import Common.Prelude open import Common.MAlonzo postulate A : Set record R : Set where id : A → A id x = x
12.909091
26
0.711268
1bc53938be4c17d8c0c758258456c9314a778160
1,436
agda
Agda
src/AssocFree/STLambdaC/NF.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
3
2016-11-22T11:48:31.000Z
2020-08-27T20:56:20.000Z
src/AssocFree/STLambdaC/NF.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
null
null
null
src/AssocFree/STLambdaC/NF.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
2
2018-03-03T04:39:31.000Z
2022-03-12T11:38:44.000Z
import AssocFree.STLambdaC.Typ import AssocFree.STLambdaC.Exp module AssocFree.STLambdaC.NF (TConst : Set) (Const : AssocFree.STLambdaC.Typ.Typ TConst → Set) where open module Typ = AssocFree.STLambdaC.Typ TConst using ( Typ ; Ctxt ; const ; _⇝_ ; [_] ; [] ; _∷_ ; _++_ ; case ; singleton ; _≪_ ) open module Exp = AssocFree.STLambdaC.Exp TConst Const using ( Exp ; const ; abs ; app ; var ; var₀ ; weaken+ ; weaken* ; xweaken+ ) mutual -- Normal forms data Atom {Γ : Ctxt} {T : Typ} : Exp Γ T → Set where const : ∀ c → Atom (const c) var : ∀ x → Atom (var x) app : ∀ {U M} {N : Exp Γ U} → Atom M → NF N → Atom (app M N) data NF {Γ : Ctxt} : ∀ {T} → Exp Γ T → Set where atom : ∀ {C} {M : Exp Γ (const C)} → Atom M → NF M abs : ∀ T {U} {M : Exp (T ∷ Γ) U} → NF M → NF (abs {Γ} T M) -- Shorthand atom₀ : ∀ {Γ T} → Atom (var₀ {Γ} {T}) atom₀ {Γ} {T} = var (singleton T ≪ Γ) -- Weakening mutual aweaken+ : ∀ B Γ Δ {T M} → Atom M → Atom (weaken+ B Γ Δ {T} M) aweaken+ B Γ Δ (const c) = const c aweaken+ B Γ Δ (app M N) = app (aweaken+ B Γ Δ M) (nweaken+ B Γ Δ N) aweaken+ B Γ Δ (var x) = var (xweaken+ B Γ Δ x) nweaken+ : ∀ B Γ Δ {T M} → NF M → NF (weaken+ B Γ Δ {T} M) nweaken+ B Γ Δ (atom N) = atom (aweaken+ B Γ Δ N) nweaken+ B Γ Δ (abs T N) = abs T (nweaken+ (T ∷ B) Γ Δ N) aweaken* : ∀ Γ {Δ T M} → Atom M → Atom (weaken* Γ {Δ} {T} M) aweaken* Γ {Δ} = aweaken+ [] Γ Δ
29.306122
79
0.555014
2194e050743f459faff1cd91cb1b9e4836417dee
6,538
agda
Agda
agda/Data/List/Relation/Unary.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
4
2021-01-05T14:07:44.000Z
2021-01-05T15:32:14.000Z
agda/Data/List/Relation/Unary.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Data/List/Relation/Unary.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-01-05T14:05:30.000Z
2021-01-05T14:05:30.000Z
{-# OPTIONS --cubical --safe #-} module Data.List.Relation.Unary where open import Prelude open import Data.List.Base open import Data.Fin open import Relation.Nullary open import Data.Sum private variable p : Level module Inductive◇ where data ◇ {A : Type a} (P : A → Type p) : List A → Type (a ℓ⊔ p) where here : ∀ {x xs} → P x → ◇ P (x ∷ xs) there : ∀ {x xs} → ◇ P xs → ◇ P (x ∷ xs) ◇ : (P : A → Type p) → List A → Type _ ◇ P xs = ∃[ i ] P (xs ! i) ◇! : (P : A → Type p) → List A → Type _ ◇! P xs = isContr (◇ P xs) module Exists {a} {A : Type a} {p} (P : A → Type p) where push : ∀ {x xs} → ◇ P xs → ◇ P (x ∷ xs) push (n , p) = fs n , p pull : ∀ {x xs} → ¬ P x → ◇ P (x ∷ xs) → ◇ P xs pull ¬Px (f0 , p) = ⊥-elim (¬Px p) pull ¬Px (fs n , p) = n , p uncons : ∀ {x xs} → ◇ P (x ∷ xs) → P x ⊎ ◇ P xs uncons (f0 , p) = inl p uncons (fs x , p) = inr (x , p) infixr 5 _++◇_ _◇++_ _++◇_ : ∀ {xs} ys → ◇ P xs → ◇ P (ys ++ xs) [] ++◇ ys = ys (x ∷ xs) ++◇ ys = push (xs ++◇ ys) _◇++_ : ∀ xs → ◇ P xs → ∀ {ys} → ◇ P (xs ++ ys) _◇++_ (x ∷ xs) (f0 , ∃Pxs) = f0 , ∃Pxs _◇++_ (x ∷ xs) (fs n , ∃Pxs) = push (xs ◇++ (n , ∃Pxs)) push! : ∀ {x xs} → ¬ P x → ◇! P xs → ◇! P (x ∷ xs) push! ¬Px x∈!xs .fst = push (x∈!xs .fst) push! ¬Px x∈!xs .snd (f0 , px) = ⊥-elim (¬Px px) push! ¬Px x∈!xs .snd (fs n , y∈xs) i = push (x∈!xs .snd (n , y∈xs) i) pull! : ∀ {x xs} → ¬ P x → ◇! P (x ∷ xs) → ◇! P xs pull! ¬Px ((f0 , px ) , uniq) = ⊥-elim (¬Px px) pull! ¬Px ((fs n , x∈xs ) , uniq) .fst = (n , x∈xs) pull! ¬Px ((fs n , x∈xs ) , uniq) .snd (m , x∈xs′) i = pull ¬Px (uniq (fs m , x∈xs′ ) i) here! : ∀ {x xs} → isContr (P x) → ¬ ◇ P xs → ◇! P (x ∷ xs) here! Px p∉xs .fst = f0 , Px .fst here! Px p∉xs .snd (f0 , p∈xs) i .fst = f0 here! Px p∉xs .snd (f0 , p∈xs) i .snd = Px .snd p∈xs i here! Px p∉xs .snd (fs n , p∈xs) = ⊥-elim (p∉xs (n , p∈xs)) module _ (P? : ∀ x → Dec (P x)) where open import Relation.Nullary.Decidable.Logic ◇? : ∀ xs → Dec (◇ P xs) ◇? [] = no λ () ◇? (x ∷ xs) = ⟦yes ⟦l f0 ,_ ,r push ⟧ ,no uncons ⟧ (P? x || ◇? xs) ◻ : (P : A → Type p) → List A → Type _ ◻ P xs = ∀ i → P (xs ! i) module Forall {a} {A : Type a} {p} (P : A → Type p) where push : ∀ {x xs} → P x → ◻ P xs → ◻ P (x ∷ xs) push Px Pxs f0 = Px push Px Pxs (fs n) = Pxs n uncons : ∀ {x xs} → ◻ P (x ∷ xs) → P x × ◻ P xs uncons Pxs = Pxs f0 , Pxs ∘ fs pull : ∀ {x xs} → ◻ P (x ∷ xs) → ◻ P xs pull = snd ∘ uncons _++◇_ : ∀ xs {ys} → ◻ P (xs ++ ys) → ◻ P ys [] ++◇ xs⊆P = xs⊆P (x ∷ xs) ++◇ xs⊆P = xs ++◇ (xs⊆P ∘ fs) _◇++_ : ∀ xs {ys} → ◻ P (xs ++ ys) → ◻ P xs ([] ◇++ xs⊆P) () ((x ∷ xs) ◇++ xs⊆P) f0 = xs⊆P f0 ((x ∷ xs) ◇++ xs⊆P) (fs n) = (xs ◇++ pull xs⊆P) n both : ∀ xs {ys} → ◻ P xs → ◻ P ys → ◻ P (xs ++ ys) both [] xs⊆P ys⊆P = ys⊆P both (x ∷ xs) xs⊆P ys⊆P f0 = xs⊆P f0 both (x ∷ xs) xs⊆P ys⊆P (fs i) = both xs (pull xs⊆P) ys⊆P i empty : ◻ P [] empty () module _ where open import Relation.Nullary.Decidable.Logic ◻? : (∀ x → Dec (P x)) → ∀ xs → Dec (◻ P xs) ◻? P? [] = yes λ () ◻? P? (x ∷ xs) = ⟦yes uncurry push ,no uncons ⟧ (P? x && ◻? P? xs) module Forall-NotExists {a} {A : Type a} {p} (P : A → Type p) where open import Relation.Nullary.Stable open import Data.Empty.Properties open Forall P ¬P = ¬_ ∘ P module ∃¬ = Exists ¬P ∀⇒¬∃¬ : ∀ xs → ◻ P xs → ¬ (◇ ¬P xs) ∀⇒¬∃¬ (x ∷ xs) xs⊆P (f0 , ∃¬P∈xs) = ∃¬P∈xs(xs⊆P f0) ∀⇒¬∃¬ (x ∷ xs) xs⊆P (fs n , ∃¬P∈xs) = ∀⇒¬∃¬ xs (xs⊆P ∘ fs) (n , ∃¬P∈xs) module _ (stable : ∀ {x} → Stable (P x)) where ¬∃¬⇒∀ : ∀ xs → ¬ (◇ ¬P xs) → ◻ P xs ¬∃¬⇒∀ (x ∷ xs) ¬∃¬P∈xs f0 = stable (¬∃¬P∈xs ∘ (f0 ,_)) ¬∃¬⇒∀ (x ∷ xs) ¬∃¬P∈xs (fs n) = ¬∃¬⇒∀ xs (¬∃¬P∈xs ∘ ∃¬.push) n leftInv′ : ∀ (prop : ∀ {x} → isProp (P x)) xs → (x : ◻ P xs) → ¬∃¬⇒∀ xs (∀⇒¬∃¬ xs x) ≡ x leftInv′ prop [] x i () leftInv′ prop (x ∷ xs) xs⊆P i f0 = prop (stable λ ¬p → ¬p (xs⊆P f0)) (xs⊆P f0) i leftInv′ prop (x ∷ xs) xs⊆P i (fs n) = leftInv′ prop xs (pull xs⊆P) i n ∀⇔¬∃¬ : ∀ (prop : ∀ {x} → isProp (P x)) xs → ◻ P xs ⇔ (¬ ◇ ¬P xs) ∀⇔¬∃¬ _ xs .fun = ∀⇒¬∃¬ xs ∀⇔¬∃¬ _ xs .inv = ¬∃¬⇒∀ xs ∀⇔¬∃¬ p xs .leftInv = leftInv′ p xs ∀⇔¬∃¬ _ xs .rightInv x = isProp¬ _ _ x module Exists-NotForall {a} {A : Type a} {p} (P : A → Type p) where open Exists P ¬P = ¬_ ∘ P module ∀¬ = Forall ¬P ∃⇒¬∀¬ : ∀ xs → ◇ P xs → ¬ ◻ ¬P xs ∃⇒¬∀¬ (x ∷ xs) (f0 , P∈xs) xs⊆P = xs⊆P f0 P∈xs ∃⇒¬∀¬ (x ∷ xs) (fs n , P∈xs) xs⊆P = ∃⇒¬∀¬ xs (n , P∈xs) (xs⊆P ∘ fs) module _ (P? : ∀ x → Dec (P x)) where ¬∀¬⇒∃ : ∀ xs → ¬ ◻ ¬P xs → ◇ P xs ¬∀¬⇒∃ [] ¬xs⊆¬P = ⊥-elim (¬xs⊆¬P λ ()) ¬∀¬⇒∃ (x ∷ xs) ¬xs⊆¬P with P? x ¬∀¬⇒∃ (x ∷ xs) ¬xs⊆¬P | yes p = f0 , p ¬∀¬⇒∃ (x ∷ xs) ¬xs⊆¬P | no ¬p = push (¬∀¬⇒∃ xs (¬xs⊆¬P ∘ ∀¬.push ¬p)) module Congruence {p q} (P : A → Type p) (Q : B → Type q) {f : A → B} (f↑ : ∀ {x} → P x → Q (f x)) where cong-◇ : ∀ xs → ◇ P xs → ◇ Q (map f xs) cong-◇ (x ∷ xs) (f0 , P∈xs) = f0 , f↑ P∈xs cong-◇ (x ∷ xs) (fs n , P∈xs) = Exists.push Q (cong-◇ xs (n , P∈xs)) ◇-concat : ∀ (P : A → Type p) xs → ◇ (◇ P) xs → ◇ P (concat xs) ◇-concat P (x ∷ xs) (f0 , ps) = Exists._◇++_ P x ps ◇-concat P (x ∷ xs) (fs n , ps) = Exists._++◇_ P x (◇-concat P xs (n , ps)) ◻-concat : ∀ (P : A → Type p) xs → ◻ (◻ P) xs → ◻ P (concat xs) ◻-concat P [] xs⊆P () ◻-concat P (x ∷ xs) xs⊆P = Forall.both P x (xs⊆P f0) (◻-concat P xs (xs⊆P ∘ fs)) module Search {A : Type a} where data Result {p} (P : A → Type p) (xs : List A) : Bool → Type (a ℓ⊔ p) where all′ : ◻ P xs → Result P xs true except′ : ◇ (¬_ ∘ P) xs → Result P xs false record Found {p} (P : A → Type p) (xs : List A) : Type (a ℓ⊔ p) where field found? : Bool result : Result P xs found? open Found public pattern all ps = record { found? = true ; result = all′ ps } pattern except ¬p = record { found? = false ; result = except′ ¬p } module _ {p} {P : A → Type p} (P? : ∀ x → Dec (P x)) where search : ∀ xs → Found P xs search [] = all λ () search (x ∷ xs) = search′ x xs (P? x) (search xs) where search′ : ∀ x xs → Dec (P x) → Found P xs → Found P (x ∷ xs) search′ x xs Px Pxs .found? = Px .does and Pxs .found? search′ x xs (no ¬p) Pxs .result = except′ (f0 , ¬p) search′ x xs (yes p) (except ¬p) .result = except′ (Exists.push (¬_ ∘ P) ¬p) search′ x xs (yes p) (all ps) .result = all′ (Forall.push P p ps)
34.230366
92
0.44402
13bdb874caca60e0436cd801c8172ed14a9bc745
726
agda
Agda
agda-stdlib/src/Data/Nat/Binary/Induction.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Nat/Binary/Induction.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Nat/Binary/Induction.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Induction over _<_ for ℕᵇ. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Binary.Induction where open import Data.Nat.Binary.Base open import Data.Nat.Binary.Properties open import Data.Nat.Base as ℕ using (ℕ) import Data.Nat.Induction as ℕ open import Induction.WellFounded ------------------------------------------------------------------------ -- _<_ is wellFounded <-wellFounded : WellFounded _<_ <-wellFounded x = Subrelation.accessible <⇒<ℕ toℕ[x]-acc where toℕ[x]-acc = InverseImage.accessible toℕ (ℕ.<-wellFounded (toℕ x))
30.25
72
0.512397
43b605ba6176f2f50165213f11a8344aa454ad32
1,465
agda
Agda
test/Fail/Issue1271.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue1271.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Fail/Issue1271.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, issue reported by Matteo Acerbi, 2014-09-04. -- Short summary: x = c x is not impossible for coinductive constructors c, -- so x should not be considered a strictly rigid occurrence in (c x). -- Matteo: -- In the following I cannot understand what justifies the absurd pattern -- in the definition of ¬id≡In: as νId is coinductive, elaboration of the -- no-cycles check to eliminators should not be possible (as far as I know). -- Any two inhabitants of νId are bisimilar, but it seems that current -- pattern matching makes it inconsistent to assume that bisimilarity -- implies equality for νId, which *might* upset some. :-) {-# OPTIONS --copatterns #-} -- False and equality. ⊥ = (X : Set) → X data _≡_ {A : Set}(x : A) : A → Set where <> : x ≡ x -- The cofixpoint of the identity functor. record νId : Set where coinductive constructor In field Out : νId open νId -- The "only" inhabitant of νId. tt : νId Out tt = tt -- x ≡ In x is considered absurd. ¬id≡In : {x : νId} → x ≡ In x → ⊥ ¬id≡In () -- _≈_ is bisimilarity for elements of νId. record _≈νId_ (x y : νId) : Set where coinductive field step : Out x ≈νId Out y open _≈νId_ -- Any two elements are bisimilar. trivial-≈νId : ∀ {x y} → x ≈νId y step trivial-≈νId = trivial-≈νId -- For νId it is not consistent to assume that bisimilarity implies -- equality. problem? : (ext : ∀ {x y} → x ≈νId y → x ≡ y) → ⊥ problem? ext = ¬id≡In {tt} (ext trivial-≈νId)
24.830508
76
0.668942
34bc3e0d6d6708380d5655b2e2f321cfb0a9ec70
2,261
agda
Agda
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Rational.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Rational.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Rational.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Data.Rational where import Data.Bool as Bool import Data.Nat as Nat import Data.Integer as Int open Int renaming ( _*_ to _*'_ ; _+_ to _+'_ ; -_ to -'_ ; _-_ to _-'_ ; !_! to !_!' ; _==_ to _=='_ ; _≤_ to _≤'_ ; _≥_ to _≥'_ ; _>_ to _>'_ ; _<_ to _<'_ ) open Nat using (Nat; zero; suc) open Bool infix 40 _==_ _<_ _>_ _≤_ _≥_ infixl 60 _+_ _-_ infixl 70 _%'_ _%_ _/_ _*_ infixr 80 _^_ infix 90 -_ data Rational : Set where _%'_ : Int -> Int -> Rational numerator : Rational -> Int numerator (n %' d) = n denominator : Rational -> Int denominator (n %' d) = d _%_ : Int -> Int -> Rational neg n % neg m = pos (suc n) % pos (suc m) pos 0 % neg m = pos 0 %' pos 1 pos (suc n) % neg m = neg n % pos (suc m) x % y = div x z %' div y z where z = gcd x y fromInt : Int -> Rational fromInt x = x %' pos 1 fromNat : Nat -> Rational fromNat x = fromInt (pos x) _+_ : Rational -> Rational -> Rational (a %' b) + (c %' d) = (a *' d +' c *' b) % (b *' d) -_ : Rational -> Rational - (a %' b) = -' a %' b _-_ : Rational -> Rational -> Rational a - b = a + (- b) _/_ : Rational -> Rational -> Rational (a %' b) / (c %' d) = (a *' d) % (b *' c) _*_ : Rational -> Rational -> Rational (a %' b) * (c %' d) = (a *' c) % (b *' d) recip : Rational -> Rational recip (a %' b) = b %' a _^_ : Rational -> Int -> Rational q ^ neg n = recip q ^ pos (suc n) q ^ pos zero = fromNat 1 q ^ pos (suc n) = q * q ^ pos n !_! : Rational -> Rational ! a %' b ! = pos ! a !' %' pos ! b !' round : Rational -> Int round (a %' b) = div (a +' div b (pos 2)) b _==_ : Rational -> Rational -> Bool (a %' b) == (c %' d) = a *' d ==' b *' c _<_ : Rational -> Rational -> Bool (a %' b) < (c %' d) = a *' d <' b *' c _>_ : Rational -> Rational -> Bool (a %' b) > (c %' d) = a *' d >' b *' c _≤_ : Rational -> Rational -> Bool (a %' b) ≤ (c %' d) = a *' d ≤' b *' c _≥_ : Rational -> Rational -> Bool (a %' b) ≥ (c %' d) = a *' d ≥' b *' c max : Rational -> Rational -> Rational max a b = if a < b then b else a min : Rational -> Rational -> Rational min a b = if a < b then a else b
22.166667
51
0.476338
03b718ce4e35e8b69c34b456a17a3f4552bfbfbe
212
agda
Agda
src/Calf/Types/Nat.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
29
2021-07-14T03:18:28.000Z
2022-03-22T20:35:11.000Z
src/Calf/Types/Nat.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
null
null
null
src/Calf/Types/Nat.agda
jonsterling/agda-calf
e51606f9ca18d8b4cf9a63c2d6caa2efc5516146
[ "Apache-2.0" ]
2
2021-10-06T10:28:24.000Z
2022-01-29T08:12:01.000Z
{-# OPTIONS --without-K --prop --rewriting #-} module Calf.Types.Nat where open import Calf.Prelude open import Calf.Metalanguage open import Data.Nat using (ℕ; zero; suc) public nat : tp pos nat = U (meta ℕ)
19.272727
48
0.712264
34c77fc7f97893289fb803277c0db3d3655b12c3
465
agda
Agda
test/asset/agda-stdlib-1.0/Relation/Binary/EqReasoning.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/EqReasoning.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Relation/Binary/EqReasoning.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Reasoning.Setoid module directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.EqReasoning {s₁ s₂} (S : Setoid s₁ s₂) where open import Relation.Binary.Reasoning.Setoid S public
31
72
0.513978
ad9aa1f41c9676b1dc21aeb2f86b8d32b31a3319
6,683
agda
Agda
Univalence/OldUnivalence/TypeEquivalences.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/OldUnivalence/TypeEquivalences.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/OldUnivalence/TypeEquivalences.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module TypeEquivalences where open import Data.Empty open import Data.Unit open import Data.Unit.Core open import Data.Nat renaming (_⊔_ to _⊔ℕ_) open import Data.Sum renaming (map to _⊎→_) open import Data.Product renaming (map to _×→_) open import Function renaming (_∘_ to _○_) -- explicit using to show how little of HoTT is needed open import SimpleHoTT using (refl; ap; ap2) open import Equivalences ------------------------------------------------------------------------------ -- Type Equivalences -- for each type combinator, define two functions that are inverses, and -- establish an equivalence. These are all in the 'semantic space' with -- respect to Pi combinators. -- swap₊ swap₊ : {A B : Set} → A ⊎ B → B ⊎ A swap₊ (inj₁ a) = inj₂ a swap₊ (inj₂ b) = inj₁ b swapswap₊ : {A B : Set} → swap₊ ○ swap₊ {A} {B} ∼ id swapswap₊ (inj₁ a) = refl (inj₁ a) swapswap₊ (inj₂ b) = refl (inj₂ b) swap₊equiv : {A B : Set} → (A ⊎ B) ≃ (B ⊎ A) swap₊equiv = (swap₊ , equiv₁ (mkqinv swap₊ swapswap₊ swapswap₊)) -- unite₊ and uniti₊ unite₊ : {A : Set} → ⊥ ⊎ A → A unite₊ (inj₁ ()) unite₊ (inj₂ y) = y uniti₊ : {A : Set} → A → ⊥ ⊎ A uniti₊ a = inj₂ a uniti₊∘unite₊ : {A : Set} → uniti₊ ○ unite₊ ∼ id {A = ⊥ ⊎ A} uniti₊∘unite₊ (inj₁ ()) uniti₊∘unite₊ (inj₂ y) = refl (inj₂ y) -- this is so easy, Agda can figure it out by itself (see below) unite₊∙uniti₊ : {A : Set} → unite₊ ○ uniti₊ ∼ id {A = A} unite₊∙uniti₊ = refl unite₊equiv : {A : Set} → (⊥ ⊎ A) ≃ A unite₊equiv = (unite₊ , mkisequiv uniti₊ refl uniti₊ uniti₊∘unite₊) uniti₊equiv : {A : Set} → A ≃ (⊥ ⊎ A) uniti₊equiv = uniti₊ , mkisequiv unite₊ uniti₊∘unite₊ unite₊ unite₊∙uniti₊ -- unite⋆ and uniti⋆ unite⋆ : {A : Set} → ⊤ × A → A unite⋆ (tt , x) = x uniti⋆ : {A : Set} → A → ⊤ × A uniti⋆ x = tt , x uniti⋆∘unite⋆ : {A : Set} → uniti⋆ ○ unite⋆ ∼ id {A = ⊤ × A} uniti⋆∘unite⋆ (tt , x) = refl (tt , x) unite⋆equiv : {A : Set} → (⊤ × A) ≃ A unite⋆equiv = unite⋆ , mkisequiv uniti⋆ refl uniti⋆ uniti⋆∘unite⋆ uniti⋆equiv : {A : Set} → A ≃ (⊤ × A) uniti⋆equiv = uniti⋆ , mkisequiv unite⋆ uniti⋆∘unite⋆ unite⋆ refl -- swap⋆ swap⋆ : {A B : Set} → A × B → B × A swap⋆ (a , b) = (b , a) swapswap⋆ : {A B : Set} → swap⋆ ○ swap⋆ ∼ id {A = A × B} swapswap⋆ (a , b) = refl (a , b) swap⋆equiv : {A B : Set} → (A × B) ≃ (B × A) swap⋆equiv = swap⋆ , mkisequiv swap⋆ swapswap⋆ swap⋆ swapswap⋆ -- assocl₊ and assocr₊ assocl₊ : {A B C : Set} → (A ⊎ (B ⊎ C)) → ((A ⊎ B) ⊎ C) assocl₊ (inj₁ a) = inj₁ (inj₁ a) assocl₊ (inj₂ (inj₁ b)) = inj₁ (inj₂ b) assocl₊ (inj₂ (inj₂ c)) = inj₂ c assocr₊ : {A B C : Set} → ((A ⊎ B) ⊎ C) → (A ⊎ (B ⊎ C)) assocr₊ (inj₁ (inj₁ a)) = inj₁ a assocr₊ (inj₁ (inj₂ b)) = inj₂ (inj₁ b) assocr₊ (inj₂ c) = inj₂ (inj₂ c) assocl₊∘assocr₊ : {A B C : Set} → assocl₊ ○ assocr₊ ∼ id {A = ((A ⊎ B) ⊎ C)} assocl₊∘assocr₊ (inj₁ (inj₁ a)) = refl (inj₁ (inj₁ a)) assocl₊∘assocr₊ (inj₁ (inj₂ b)) = refl (inj₁ (inj₂ b)) assocl₊∘assocr₊ (inj₂ c) = refl (inj₂ c) assocr₊∘assocl₊ : {A B C : Set} → assocr₊ ○ assocl₊ ∼ id {A = (A ⊎ (B ⊎ C))} assocr₊∘assocl₊ (inj₁ a) = refl (inj₁ a) assocr₊∘assocl₊ (inj₂ (inj₁ b)) = refl (inj₂ (inj₁ b)) assocr₊∘assocl₊ (inj₂ (inj₂ c)) = refl (inj₂ (inj₂ c)) assocl₊equiv : {A B C : Set} → (A ⊎ (B ⊎ C)) ≃ ((A ⊎ B) ⊎ C) assocl₊equiv = assocl₊ , mkisequiv assocr₊ assocl₊∘assocr₊ assocr₊ assocr₊∘assocl₊ assocr₊equiv : {A B C : Set} → ((A ⊎ B) ⊎ C) ≃ (A ⊎ (B ⊎ C)) assocr₊equiv = assocr₊ , mkisequiv assocl₊ assocr₊∘assocl₊ assocl₊ assocl₊∘assocr₊ -- assocl⋆ and assocr⋆ assocl⋆ : {A B C : Set} → (A × (B × C)) → ((A × B) × C) assocl⋆ (a , (b , c)) = ((a , b) , c) assocr⋆ : {A B C : Set} → ((A × B) × C) → (A × (B × C)) assocr⋆ ((a , b) , c) = (a , (b , c)) assocl⋆∘assocr⋆ : {A B C : Set} → assocl⋆ ○ assocr⋆ ∼ id {A = ((A × B) × C)} assocl⋆∘assocr⋆ x = refl x assocr⋆∘assocl⋆ : {A B C : Set} → assocr⋆ ○ assocl⋆ ∼ id {A = (A × (B × C))} assocr⋆∘assocl⋆ x = refl x assocl⋆equiv : {A B C : Set} → (A × (B × C)) ≃ ((A × B) × C) assocl⋆equiv = assocl⋆ , mkisequiv assocr⋆ assocl⋆∘assocr⋆ assocr⋆ assocr⋆∘assocl⋆ assocr⋆equiv : {A B C : Set} → ((A × B) × C) ≃ (A × (B × C)) assocr⋆equiv = assocr⋆ , mkisequiv assocl⋆ assocr⋆∘assocl⋆ assocl⋆ assocl⋆∘assocr⋆ -- distz and factorz distz : { A : Set} → (⊥ × A) → ⊥ distz (() , _) factorz : {A : Set} → ⊥ → (⊥ × A) factorz () distz∘factorz : {A : Set} → distz ○ factorz {A} ∼ id distz∘factorz () factorz∘distz : {A : Set} → factorz {A} ○ distz ∼ id factorz∘distz (() , proj₂) distzequiv : {A : Set} → (⊥ × A) ≃ ⊥ distzequiv {A} = distz , mkisequiv factorz (distz∘factorz {A}) factorz factorz∘distz factorzequiv : {A : Set} → ⊥ ≃ (⊥ × A) factorzequiv {A} = factorz , mkisequiv distz factorz∘distz distz (distz∘factorz {A}) -- dist and factor dist : {A B C : Set} → ((A ⊎ B) × C) → (A × C) ⊎ (B × C) dist (inj₁ x , c) = inj₁ (x , c) dist (inj₂ y , c) = inj₂ (y , c) factor : {A B C : Set} → (A × C) ⊎ (B × C) → ((A ⊎ B) × C) factor (inj₁ (a , c)) = inj₁ a , c factor (inj₂ (b , c)) = inj₂ b , c dist∘factor : {A B C : Set} → dist {A} {B} {C} ○ factor ∼ id dist∘factor (inj₁ x) = refl (inj₁ x) dist∘factor (inj₂ y) = refl (inj₂ y) factor∘dist : {A B C : Set} → factor {A} {B} {C} ○ dist ∼ id factor∘dist (inj₁ x , c) = refl (inj₁ x , c) factor∘dist (inj₂ y , c) = refl (inj₂ y , c) distequiv : {A B C : Set} → ((A ⊎ B) × C) ≃ ((A × C) ⊎ (B × C)) distequiv = dist , mkisequiv factor dist∘factor factor factor∘dist factorequiv : {A B C : Set} → ((A × C) ⊎ (B × C)) ≃ ((A ⊎ B) × C) factorequiv = factor , (mkisequiv dist factor∘dist dist dist∘factor) -- ⊕ _⊎∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} → (α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) → (f ⊎→ g) ○ (finv ⊎→ ginv) ∼ id {A = C ⊎ D} _⊎∼_ α β (inj₁ x) = ap inj₁ (α x) _⊎∼_ α β (inj₂ y) = ap inj₂ (β y) path⊎ : {A B C D : Set} → A ≃ C → B ≃ D → (A ⊎ B) ≃ (C ⊎ D) path⊎ (fp , eqp) (fq , eqq) = Data.Sum.map fp fq , mkisequiv (P.g ⊎→ Q.g) (P.α ⊎∼ Q.α) (P.h ⊎→ Q.h) (P.β ⊎∼ Q.β) where module P = isequiv eqp module Q = isequiv eqq -- ⊗ _×∼_ : {A B C D : Set} {f : A → C} {finv : C → A} {g : B → D} {ginv : D → B} → (α : f ○ finv ∼ id) → (β : g ○ ginv ∼ id) → (f ×→ g) ○ (finv ×→ ginv) ∼ id {A = C × D} _×∼_ α β (x , y) = ap2 _,_ (α x) (β y) path× : {A B C D : Set} → A ≃ C → B ≃ D → (A × B) ≃ (C × D) path× {A} {B} {C} {D} (fp , eqp) (fq , eqq) = Data.Product.map fp fq , mkisequiv (P.g ×→ Q.g) (_×∼_ {A} {B} {C} {D} {fp} {P.g} {fq} {Q.g} P.α Q.α) (P.h ×→ Q.h) (_×∼_ {C} {D} {A} {B} {P.h} {fp} {Q.h} {fq} P.β Q.β) where module P = isequiv eqp module Q = isequiv eqq idequiv : {A : Set} → A ≃ A idequiv = id≃
30.377273
78
0.525662
22648cd63d1de3a6957823f9a4b8efdd055c4ba8
663
agda
Agda
test/Succeed/HeterogeneousRewriting.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/HeterogeneousRewriting.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/HeterogeneousRewriting.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --rewriting #-} open import Agda.Primitive postulate _↦_ : ∀{i j}{A : Set i}{B : Set j} → A → B → Set (i ⊔ j) {-# BUILTIN REWRITE _↦_ #-} -- currently fails a sanity check postulate resize : ∀{i j} → Set i → Set j resize-id : ∀{i} {j} {A : Set i} → resize {i} {j} A ↦ A {-# REWRITE resize-id #-} -- Impredicative quantification Forall : ∀{i} (F : Set i → Set) → Set Forall {i} F = resize ((X : Set i) → F X) -- Example: Impredicative encoding of natural numbers Nat = Forall λ X → (X → X) → X → X zero : Nat zero X s z = z suc : Nat → Nat suc n X s z = s (n X s z) -- requires impredicativity: id : Nat → Nat id n = n Nat suc zero
18.942857
62
0.576169
1e1d195b720187fba3bef56baa7e8eeb566b5217
1,584
agda
Agda
test/Succeed/Issue2354.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue2354.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2354.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andreas, 2016-12-22, issue #2354 -- Interaction between size solver, constraint solver, and instance search. -- The instance search fails initially because of a non rigid meta. -- Before freezing, there is another attempt. -- The instance search succeeds and instantiates the meta for M. -- Then, a size constraint is solved which had blocked a term. -- Finally the blocking constraint can be resolved. -- Thus, we need to -- * wake constraints -- * solve size constraints -- * wake constraints again. -- In principle, there could be many alternations needed!? -- {-# OPTIONS -v tc.meta:30 -v tc.instance:30 -v tc.constr:50 -v tc.size:30 -v tc.decl:10 #-} -- {-# OPTIONS -v tc.instance:30 -v tc.decl:20 #-} -- {-# OPTIONS -v tc.instance.rigid:100 -v tc.instance:70 -v tc.size:30 #-} -- {-# OPTIONS -v tc.term.con:50 #-} {-# BUILTIN SIZEUNIV SizeU #-} {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZELT Size<_ #-} {-# BUILTIN SIZESUC ↑_ #-} {-# BUILTIN SIZEINF ∞ #-} record ⊤ : Set where constructor tt record RawMonad (M : Set → Set) : Set₁ where field return : ∀{A} → A → M A mutual data Delay (i : Size) (A : Set) : Set where now : A → Delay i A later : Delay∞ i A → Delay i A record Delay∞ (i : Size) (A : Set) : Set where coinductive field force : ∀ {j : Size< i} → Delay j A instance RawMonad-Delay : ∀ {i} → RawMonad (Delay i) RawMonad-Delay = record { return = Delay.now } open RawMonad {{...}} test : ∀ {i} → Delay i ⊤ test {i} = return tt -- Solution: return {{RawMonad-Delay {i}}} tt -- Should find solution!
29.333333
94
0.636995
4350e0f776976a3839e95218c6fb4b6494b08d6e
4,687
agda
Agda
src/AssocFree/STLambdaC/Eval.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
3
2016-11-22T11:48:31.000Z
2020-08-27T20:56:20.000Z
src/AssocFree/STLambdaC/Eval.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
null
null
null
src/AssocFree/STLambdaC/Eval.agda
agda/agda-assoc-free
08337fdb8375137a52cc9b3ade766305191b2394
[ "MIT" ]
2
2018-03-03T04:39:31.000Z
2022-03-12T11:38:44.000Z
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; trans ; subst ; subst₂ ; cong ; cong₂ ) open import AssocFree.Util using ( δsubst₂ ) import AssocFree.STLambdaC.Typ import AssocFree.STLambdaC.Exp import AssocFree.STLambdaC.NF import AssocFree.STLambdaC.Redn module AssocFree.STLambdaC.Eval (TConst : Set) (Const : AssocFree.STLambdaC.Typ.Typ TConst → Set) where open Relation.Binary.PropositionalEquality.≡-Reasoning using ( begin_ ; _≡⟨_⟩_ ; _∎ ) open module Typ = AssocFree.STLambdaC.Typ TConst using ( Typ ; Ctxt ; const ; _⇝_ ; [_] ; [] ; _∷_ ; _++_ ; _∈_ ; uniq ; Case ; case ; inj₁ ; inj₂ ; case-≫ ; _≪_ ; _≫_ ) open module Exp = AssocFree.STLambdaC.Exp TConst Const using ( Exp ; exp ; const ; abs ; app ; var ; var₀ ; Substn ; substn+ ; substn* ; xsubstn+ ; weaken+ ; weaken* ; weakens* ; ⟨_⟩ ; choose ; _◁_ ; id ; weaken*-[] ; weaken*-++ ; substn*-◁ ; substn*-id ) open module NF = AssocFree.STLambdaC.NF TConst Const using ( Atom ; NF ; var ; const ; app ; abs ; atom ; atom₀ ; aweaken* ) open module Redn = AssocFree.STLambdaC.Redn TConst Const using ( _⇒_ ; _⇓ ; _⇓′ ; eta ; beta ; lhs ; atom ; nf ; redn ; tgt ; ⇓abs ; ⇓app ; rweaken* ) -- Values data cVal {Γ C} : Exp Γ (const C) → Set where atom : ∀ {M} → Atom M → cVal M redn : ∀ {M N} → (M ⇒ N) → cVal N → cVal M data fVal {Γ T U} (F : ∀ {Γ} → Exp Γ T → Set) (G : ∀ {Γ} → Exp Γ U → Set) : Exp Γ (T ⇝ U) → Set where fun : ∀ {M} → (∀ Δ → {N : Exp (Δ ++ Γ) T} → F N → G (app (weaken* Δ {Γ} M) N)) → fVal F G M redn : ∀ {M N} → (M ⇒ N) → fVal F G N → fVal F G M Val : ∀ {Γ T} → Exp Γ T → Set Val {Γ} {const C} M = cVal M Val {Γ} {T ⇝ U} M = fVal Val Val M -- Values are closed under reduction and application vredn : ∀ {Γ T} {M N : Exp Γ T} → (M ⇒ N) → Val N → Val M vredn {Γ} {const C} = redn vredn {Γ} {T ⇝ U} = redn vapp : ∀ {Γ T U} {M : Exp Γ (T ⇝ U)} {N : Exp Γ T} → Val M → Val N → Val (app M N) vapp {Γ} {T} {U} {M} {N} (fun f) W = subst (λ X → Val (app X N)) (weaken*-[] M) (f [] W) vapp (redn M⇒N V) W = vredn (lhs M⇒N) (vapp V W) -- Reification and reflection mutual reify : ∀ {Γ T} {M : Exp Γ T} → Val M → (M ⇓) reify {Γ} {const C} (atom N) = nf (atom N) reify {Γ} {const C} (redn M⇒N V) = redn M⇒N (reify V) reify {Γ} {T ⇝ U} {M} (fun f) = redn (eta M) (⇓abs {Γ} T (reify (f [ T ] (reflect (atom (atom₀ {Γ})))))) reify {Γ} {T ⇝ U} (redn M⇒N V) = redn M⇒N (reify V) reflect : ∀ {Γ T} {M : Exp Γ T} → (M ⇓′) → Val M reflect {Γ} {const C} (atom M) = atom M reflect {Γ} {T ⇝ U} (atom M) = fun (λ Δ V → reflect (⇓app (atom (aweaken* Δ M)) (reify V))) reflect (redn M⇒N N⇓) = vredn M⇒N (reflect N⇓) -- Value substitutions Vals : ∀ {Γ Δ} → Substn (exp var) Γ Δ → Set Vals {Γ} {Δ} σ = ∀ {T} (x : T ∈ Δ) → Val (σ x) ⟪_⟫ : ∀ {Γ T} {N : Exp Γ T} → Val N → Vals ⟨ N ⟩ ⟪ V ⟫ x = δsubst₂ (λ X Y → Val {T = X} Y) (uniq x) refl V vchoose : ∀ {Γ Δ E} {σ : Substn (exp var) Γ Δ} {τ : Substn (exp var) Γ E} → Vals σ → Vals τ → ∀ {T} (x : Case T Δ E) → Val (choose σ τ x) vchoose Vs Ws (inj₁ x) = Vs x vchoose Vs Ws (inj₂ x) = Ws x _◂_ : ∀ {Γ Δ T} {N : Exp Γ T} {σ : Substn (exp var) Γ Δ} → Val N → Vals σ → Vals (N ◁ σ) _◂_ {Γ} {Δ} {T} V Vs x = vchoose ⟪ V ⟫ Vs (case [ T ] Δ x) -- Weakening vweaken* : ∀ {Γ} Δ {U} {M : Exp Γ U} → Val M → Val (weaken* Δ M) vweaken* Δ {const C} (atom N) = atom (aweaken* Δ N) vweaken* Δ {const C} (redn M⇒N V) = redn (rweaken* Δ M⇒N) (vweaken* Δ V) vweaken* Δ {T ⇝ U} {M} (fun f) = fun (λ Φ {N} V → subst (λ X → Val (app X N)) (sym (weaken*-++ Φ Δ _ M)) (f (Φ ++ Δ) V)) vweaken* Δ {T ⇝ U} (redn M⇒N V) = redn (rweaken* Δ M⇒N) (vweaken* Δ V) vweakens* : ∀ {Γ Δ} E {σ : Substn (exp var) Γ Δ} → Vals σ → Vals (weakens* E σ) vweakens* E {σ} Vs x = vweaken* E (Vs x) -- Evaluation eval : ∀ {Γ Δ T} (M : Exp Γ T) → {σ : Substn (exp var) Δ Γ} → Vals σ → Val (substn* σ M) eval (const {T} c) Vs = reflect (atom (const c)) eval {Γ} {Δ} (var x) {σ} Vs = subst Val (begin σ x ≡⟨ sym (weaken*-[] (σ x)) ⟩ weaken* [] (σ x) ≡⟨ cong (xsubstn+ [] Δ Γ σ) (sym (case-≫ [] x)) ⟩ substn* σ (var x) ∎) (Vs x) eval {Γ} {Δ} (abs T M) {σ} Vs = fun (λ E {N} V → vredn (beta {E ++ Δ} (weaken+ [ T ] E Δ (substn+ [ T ] Δ Γ σ M)) N) (subst Val (substn*-◁ Γ Δ E M N σ) (eval M (V ◂ vweakens* E {σ} Vs)))) eval (app M N) Vs = vapp (eval M Vs) (eval N Vs) vid : ∀ Γ → Vals (id Γ) vid Γ x = reflect (atom (var x)) normalize : ∀ {Γ T} → (M : Exp Γ T) → (M ⇓) normalize {Γ} M = reify (subst Val (substn*-id M) (eval M (vid Γ))) normal : ∀ {Γ T} → Exp Γ T → Exp Γ T normal M = tgt (normalize M)
36.617188
125
0.529977
434f91df79e539328d325681ef3bb239db31da1b
7,164
agda
Agda
RedBlack.agda
xuanruiqi/dtp
c0c33dff4b114381561c011df4d5cf5da7a083f0
[ "MIT" ]
null
null
null
RedBlack.agda
xuanruiqi/dtp
c0c33dff4b114381561c011df4d5cf5da7a083f0
[ "MIT" ]
null
null
null
RedBlack.agda
xuanruiqi/dtp
c0c33dff4b114381561c011df4d5cf5da7a083f0
[ "MIT" ]
null
null
null
-- Copyright 2019, Xuanrui Qi -- Original algorithm by: Jacques Garrigue, Xuanrui Qi & Kazunari Tanaka open import Data.Nat hiding (compare) open import Data.Nat.Properties open import Relation.Binary import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; subst; sym; inspect; [_]) open Eq.≡-Reasoning open import Data.Product open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) module RedBlack {c r} {A : Set c} {_<_ : Rel A r} (isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_) where open IsStrictTotalOrder isStrictTotalOrder data Color : Set where Red : Color Black : Color incr-Black : ℕ → Color → ℕ incr-Black d Black = suc d incr-Black d Red = d color-valid : Color → Color → Set color-valid Red Red = ⊥ color-valid _ _ = ⊤ inv : Color → Color inv Red = Black inv Black = Red valid-*-Black : ∀ c → color-valid c Black valid-*-Black Red = tt valid-*-Black Black = tt data Tree : ℕ → Color → Set c where Leaf : Tree 0 Black Node : ∀ {d cₗ cᵣ} c → color-valid c cₗ → color-valid c cᵣ → Tree d cₗ → A → Tree d cᵣ → Tree (incr-Black d c) c RNode : ∀ {d} → Tree d Black → A → Tree d Black → Tree d Red RNode = Node Red tt tt BNode : ∀ {d cₗ cᵣ} → Tree d cₗ → A → Tree d cᵣ → Tree (suc d) Black BNode = Node Black tt tt -- Insertion algorithm data InsTree : ℕ → Color → Set c where Fix : ∀ {d} → Tree d Black → A → Tree d Black → A → Tree d Black → InsTree d Red T : ∀ {d c} cₚ → Tree d c → InsTree d cₚ InsTree-color : ∀ {d c} → InsTree d c → Color InsTree-color (Fix _ _ _ _ _) = Red InsTree-color (T _ _) = Black fix-color : ∀ {d c} → InsTree d c → Color fix-color (Fix _ _ _ _ _) = Black fix-color (T {c = c} _ _) = c fix-InsTree : ∀ {d c} → (t : InsTree d c) → Tree (incr-Black d (inv (InsTree-color t))) (fix-color t) fix-InsTree (Fix t₁ x t₂ y t₃) = BNode (RNode t₁ x t₂) y t₃ fix-InsTree (T _ t) = t balanceₗ : ∀ {d cₗ cᵣ} c → (l : InsTree d cₗ) → A → Tree d cᵣ → color-valid c (InsTree-color l) → color-valid c cᵣ → InsTree (incr-Black d c) c balanceₗ Black (Fix t₁ x t₂ y t₃) z t₄ _ _ = T Black (RNode (BNode t₁ x t₂) y (BNode t₃ z t₄)) balanceₗ Black (T _ l) v r _ _ = T Black (BNode l v r) balanceₗ {cᵣ = Black} Red (T _ (Node {cₗ = Black} {cᵣ = Black} Red _ _ t₁ x t₂)) y t₃ _ _ = Fix t₁ x t₂ y t₃ balanceₗ {cᵣ = Black} Red (T {c = Black} _ l) v r _ _ = T Red (RNode l v r) balanceᵣ : ∀ {d cₗ cᵣ} c → Tree d cₗ → A → (r : InsTree d cᵣ) → color-valid c cₗ → color-valid c (InsTree-color r) → InsTree (incr-Black d c) c balanceᵣ Black t₁ x (Fix t₂ y t₃ z t₄) _ _ = T Black (RNode (BNode t₁ x t₂) y (BNode t₃ z t₄)) balanceᵣ Black l v (T _ r) _ _ = T Black (BNode l v r) balanceᵣ {cₗ = Black} Red t₁ x (T _ (Node {cₗ = Black} {cᵣ = Black} Red _ _ t₂ y t₃)) _ _ = Fix t₁ x t₂ y t₃ balanceᵣ {cₗ = Black} Red l v (T {c = Black} _ r) _ _ = T Red (RNode l v r) ins : ∀ {d c} → A → Tree d c → InsTree d c ins x Leaf = T Black (RNode Leaf x Leaf) ins x (Node c _ _ l v r) with (compare x v) ins x (Node c _ _ l v r) | tri< x<v _ _ with ins x l | inspect (ins x) l ins x (Node Black _ validᵣ l v r) | _ | Fix _ _ _ _ _ | [ insₗ ] = balanceₗ Black (ins x l) v r tt tt ins x (Node c _ validᵣ l v r) | _ | T _ _ | [ insₗ ] = balanceₗ c (ins x l) v r validₗ validᵣ where validₗ = subst (λ t → color-valid c (InsTree-color t)) (sym insₗ) (valid-*-Black c) ins x t@(Node c _ _ l v r) | tri≈ _ x≡v _ = T _ t ins x (Node c _ _ l v r) | tri> _ _ x>v with ins x r | inspect (ins x) r ins x (Node Black validₗ _ l v r) | _ | Fix _ _ _ _ _ | [ insᵣ ] = balanceᵣ Black l v (ins x r) tt tt ins x (Node c validₗ _ l v r) | _ | T _ _ | [ insᵣ ] = balanceᵣ c l v (ins x r) validₗ validᵣ where validᵣ = subst (λ t → color-valid c (InsTree-color t)) (sym insᵣ) (valid-*-Black c) blacken : ∀ {d c} → Tree d c → Tree (incr-Black d (inv c)) Black blacken Leaf = Leaf blacken (Node Black _ _ l v r) = BNode l v r blacken (Node Red _ _ l v r) = BNode l v r insert : ∀ {d} → A → Tree d Black → ∃ (λ d' → Tree d' Black) insert {d = d} x t with ins x t ... | T {c = c} _ t' = (incr-Black d (inv c) , blacken t') -- Deletion algorithm data DelTree : ℕ → Color → Set c where Stay : ∀ {d c} cₚ → color-valid c (inv cₚ) → Tree d c → DelTree d cₚ Down : ∀ {d} → Tree d Black → DelTree (suc d) Black bal-right : ∀ {d cₗ cᵣ} c → Tree d cₗ → A → DelTree d cᵣ → color-valid c cₗ → color-valid c cᵣ → DelTree (incr-Black d c) c bal-right {cₗ = Black} Red l v (Stay {c = Black} _ _ r) _ _ = Stay Red tt (RNode l v r) bal-right {cₗ = Black} Red l v (Stay {c = Red} Red _ _) _ () bal-right Red (Node {cᵣ = Black} Black _ _ t₁ x t₂) y (Down t₃) _ _ = Stay Red tt (BNode t₁ x (RNode t₂ y t₃)) bal-right Red (Node {cᵣ = Red} Black _ _ t₁ x (Node _ _ _ t₂ y t₃)) z (Down t₄) _ _ = Stay Red tt (RNode (BNode t₁ x t₂) y (BNode t₃ z t₄)) bal-right Black l v (Stay _ _ r) _ _ = Stay Black tt (BNode l v r) bal-right Black (Node {cᵣ = Red} Black _ _ t₁ x (Node _ _ _ t₂ y t₃)) z (Down t₄) _ _ = Stay Black tt (BNode (BNode t₁ x t₂) y (BNode t₃ z t₄)) bal-right Black (Node {cₗ = Black} {cᵣ = Black} Red _ _ t₁ x (Node {cᵣ = Black} _ _ _ t₂ y t₃)) z (Down t₄) _ _ = Stay Black tt (BNode t₁ x (BNode t₂ y (RNode t₃ z t₄))) bal-right Black (Node {cₗ = Black} {cᵣ = Black} Red _ _ t₁ x (Node {cᵣ = Red} _ _ _ t₂ y (Node {cₗ = Black} {cᵣ = Black} _ _ _ t₃ z t₄))) w (Down t₅) _ _ = Stay Black tt (BNode t₁ x (RNode (BNode t₂ y t₃) z (BNode t₄ w t₅))) bal-right Black (Node {cᵣ = Black} Black _ _ t₁ x t₂) y (Down t₃) _ _ = Down (BNode t₁ x (RNode t₂ y t₃)) bal-left : ∀ {d cₗ cᵣ} c → DelTree d cₗ → A → Tree d cᵣ → color-valid c cₗ → color-valid c cᵣ → DelTree (incr-Black d c) c bal-left {cₗ = Black} {cᵣ = Black} Red (Stay {c = Black} _ _ l) v r _ _ = Stay Red tt (RNode l v r) bal-left {cₗ = Black} {cᵣ = Black} Red (Stay {c = Red} _ () l) v r _ _ bal-left {cₗ = Black} {cᵣ = Black} Red (Down t₁) x (Node {cₗ = Red} _ _ _ (Node {cₗ = Black} {cᵣ = Black} _ _ _ t₂ y t₃) z t₄) _ _ = Stay Red tt (RNode (BNode t₁ x t₂) y (BNode t₃ z t₄)) bal-left {cₗ = Black} {cᵣ = Black} Red (Down t₁) x (Node {cₗ = Black} _ _ _ t₂ y t₃) _ _ = Stay Red tt (BNode (RNode t₁ x t₂) y t₃) bal-left Black (Stay _ _ l) v r _ _ = Stay Black tt (BNode l v r) bal-left {cᵣ = Black} Black (Down t₁) x (Node {cₗ = Red} Black _ _ (Node {cₗ = Black} {cᵣ = Black} _ _ _ t₂ y t₃) z t₄) _ _ = Stay Black tt (BNode (BNode t₁ x t₂) y (BNode t₃ z t₄)) bal-left {cᵣ = Red} Black (Down t₁) x (Node {cₗ = Black} {cᵣ = Black} _ _ _ (Node {cₗ = Red} Black _ _ (Node {cₗ = Black} {cᵣ = Black} _ _ _ t₂ y t₃) z t₄) w t₅) _ _ = Stay Black tt (BNode (BNode t₁ x t₂) y (RNode (BNode t₃ z t₄) w t₅)) bal-left {cᵣ = Red} Black (Down t₁) x (Node {cₗ = Black} {cᵣ = Black} _ _ _ (Node {cₗ = Black} _ _ _ t₂ y t₃) z t₄) _ _ = Stay Black tt (BNode (BNode (RNode t₁ x t₂) y t₃) z t₄) bal-left {cᵣ = Black} Black (Down t₁) x (Node {cₗ = Black} _ _ _ t₂ y t₃) _ _ = Down (BNode (RNode t₁ x t₂) y t₃)
52.291971
169
0.59129
030ceb02f4681d84f9ba89efda2309b36fdf0359
2,773
agda
Agda
test/asset/agda-stdlib-1.0/Data/Vec/Properties/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Vec/Properties/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Vec/Properties/WithK.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Some Vec-related properties that depend on the K rule or make use -- of heterogeneous equality ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Vec.Properties.WithK where open import Data.Nat open import Data.Nat.Properties using (+-assoc) open import Data.Vec open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl) ------------------------------------------------------------------------ -- _[_]=_ module _ {a} {A : Set a} where []=-irrelevant : ∀ {n} {xs : Vec A n} {i x} → (p q : xs [ i ]= x) → p ≡ q []=-irrelevant here here = refl []=-irrelevant (there xs[i]=x) (there xs[i]=x') = P.cong there ([]=-irrelevant xs[i]=x xs[i]=x') ------------------------------------------------------------------------ -- _++_ module _ {a} {A : Set a} where ++-assoc : ∀ {m n k} (xs : Vec A m) (ys : Vec A n) (zs : Vec A k) → (xs ++ ys) ++ zs ≅ xs ++ (ys ++ zs) ++-assoc [] ys zs = refl ++-assoc {suc m} (x ∷ xs) ys zs = H.icong (Vec A) (+-assoc m _ _) (x ∷_) (++-assoc xs ys zs) ------------------------------------------------------------------------ -- foldr foldr-cong : ∀ {a b} {A : Set a} {B : ℕ → Set b} {f : ∀ {n} → A → B n → B (suc n)} {d} {C : ℕ → Set b} {g : ∀ {n} → A → C n → C (suc n)} {e} → (∀ {n x} {y : B n} {z : C n} → y ≅ z → f x y ≅ g x z) → d ≅ e → ∀ {n} (xs : Vec A n) → foldr B f d xs ≅ foldr C g e xs foldr-cong _ d≅e [] = d≅e foldr-cong f≅g d≅e (x ∷ xs) = f≅g (foldr-cong f≅g d≅e xs) ------------------------------------------------------------------------ -- foldl foldl-cong : ∀ {a b} {A : Set a} {B : ℕ → Set b} {f : ∀ {n} → B n → A → B (suc n)} {d} {C : ℕ → Set b} {g : ∀ {n} → C n → A → C (suc n)} {e} → (∀ {n x} {y : B n} {z : C n} → y ≅ z → f y x ≅ g z x) → d ≅ e → ∀ {n} (xs : Vec A n) → foldl B f d xs ≅ foldl C g e xs foldl-cong _ d≅e [] = d≅e foldl-cong f≅g d≅e (x ∷ xs) = foldl-cong f≅g (f≅g d≅e) xs ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 []=-irrelevance = []=-irrelevant {-# WARNING_ON_USAGE []=-irrelevance "Warning: []=-irrelevance was deprecated in v1.0. Please use []=-irrelevant instead." #-}
36.012987
72
0.390191
3099ee79ec04251a1268f41bcea382b0b9923c01
3,219
agda
Agda
Categories/Functor/Power/NaturalTransformation.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Functor/Power/NaturalTransformation.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Functor/Power/NaturalTransformation.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category module Categories.Functor.Power.NaturalTransformation {o ℓ e : Level} (C : Category o ℓ e) where open import Data.Nat using (ℕ) open import Data.Fin using (Fin; inject+; raise) open import Data.Sum using (_⊎_; [_,_]′; inj₁; inj₂) open import Function using () renaming (_∘_ to _∙_) open import Function using () renaming (_∘_ to _∙_) open import Data.Product using (_,_) import Categories.Functor.Power as Power module Pow = Power C open Pow open import Categories.Functor.Bifunctor using (Bifunctor) -- open import Categories.Functor.Bifunctor.NaturalTransformation renaming (id to idⁿ; _≡_ to _≡ⁿ_) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper; _∘ˡ_) open import Categories.Category.Product using (_※ⁿ_) open import Categories.Functor using (Functor; module Functor) flattenPⁿ : {D : Category o ℓ e} {m n : ℕ} {F G : Powerfunctor′ D (Fin m ⊎ Fin n)} (η : NaturalTransformation F G) → NaturalTransformation (flattenP F) (flattenP G) flattenPⁿ {m = m} {n} η = record { η = λ Xs → η.η (Xs ∙ pack) ; commute = λ fs → η.commute (fs ∙ pack) ; sym-commute = λ fs → η.sym-commute (fs ∙ pack) } where private module η = NaturalTransformation η pack = [ inject+ n , raise m ]′ reduceN′ : ∀ {i j : Level} {I : Set i} {J : Set j} {F F′ : Powerendo′ I} {G G′ : Powerendo′ J} (H : Bifunctor C C C) (φ : NaturalTransformation F F′) (γ : NaturalTransformation G G′) → NaturalTransformation (reduce′ H F G) (reduce′ H F′ G′) reduceN′ {I = I} {J} {F} {F′} {G} {G′} H φ γ = ntHelper record { η = my-η ; commute = λ {Xs Ys} → my-commute Xs Ys } where module C = Category C module F = Functor F module F′ = Functor F′ module G = Functor G module G′ = Functor G′ module φ = NaturalTransformation φ module γ = NaturalTransformation γ module H = Functor H module L = Functor (reduce′ H F G) module R = Functor (reduce′ H F′ G′) my-η : ∀ Xs → C [ L.F₀ Xs , R.F₀ Xs ] my-η Xs = H.F₁ ((φ.η (Xs ∙ inj₁)) , (γ.η (Xs ∙ inj₂))) my-commute : ∀ Xs Ys fs → C.CommutativeSquare (L.F₁ fs) (my-η Xs) (my-η Ys) (R.F₁ fs) my-commute Xs Ys fs = begin my-η Ys ∘ L.F₁ fs ≈˘⟨ H.homomorphism ⟩ H.F₁ ((φ.η _ ∘ F.F₁ _) , (γ.η _ ∘ G.F₁ _)) ≈⟨ H.F-resp-≈ ((φ.commute _) , (γ.commute _)) ⟩ H.F₁ ((F′.F₁ _ ∘ φ.η _) , (G′.F₁ _ ∘ γ.η _)) ≈⟨ H.homomorphism ⟩ R.F₁ fs ∘ my-η Xs ∎ where open C using (_∘_) open C.HomReasoning -- Giving the implicits below is not necessary, but makes typechecking faster reduceN : {m n : ℕ} {F F′ : Powerendo m} {G G′ : Powerendo n} (H : Bifunctor C C C) (φ : NaturalTransformation F F′) (γ : NaturalTransformation G G′) → NaturalTransformation (reduce H F G) (reduce H F′ G′) reduceN {F = f} {f′} {g} {g′} H φ γ = flattenPⁿ {F = reduce′ H f g} {G = reduce′ H f′ g′} (reduceN′ H φ γ) overlapN : {n : ℕ} {F F′ : Powerendo n} {G G′ : Powerendo n} (H : Bifunctor C C C) (φ : NaturalTransformation F F′) (γ : NaturalTransformation G G′) → NaturalTransformation (overlaps H F G) (overlaps H F′ G′) overlapN H φ γ = H ∘ˡ (φ ※ⁿ γ)
42.355263
126
0.623486
579bdfa14a96c5257e0ea4bf1b7aef48fa8664e8
12,028
agda
Agda
src/Tactic/Reflection/Reright.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
src/Tactic/Reflection/Reright.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
src/Tactic/Reflection/Reright.agda
lclem/agda-prelude
75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6
[ "MIT" ]
null
null
null
module Tactic.Reflection.Reright where open import Prelude hiding (abs) open import Container.Traversable open import Tactic.Reflection open import Tactic.Reflection.Match open import Tactic.Reflection.Replace open import Tactic.Reflection.Quote private {-# TERMINATING #-} reorderVars : List Nat → Term → Term reorderVars xs (var x args) = var (maybe x id (index xs x)) (fmap (reorderVars xs) <$> args) reorderVars xs (con c args) = con c ((fmap ∘ fmap) (reorderVars xs) args) reorderVars xs (def f args) = def f (fmap (reorderVars xs) <$> args) reorderVars xs (lam v t) = lam v (reorderVars (0 ∷ weaken 1 xs) <$> t) reorderVars xs (pat-lam cs args) = pat-lam (fmap (reorderVarsInClause xs) cs) ((fmap ∘ fmap) (reorderVars xs) args) where reorderVarsInClause : List Nat → Clause → Clause -- TODO reorder patterns? reorderVarsInClause xs (clause ps t) = (clause ps (reorderVars xs t)) reorderVarsInClause xs (absurd-clause ps) = (absurd-clause ps) reorderVars xs (pi a b) = pi (reorderVars xs <$> a) (reorderVars (0 ∷ weaken 1 xs) <$> b) reorderVars xs (agda-sort (set t)) = agda-sort (set (reorderVars xs t)) reorderVars xs (agda-sort (lit n)) = agda-sort (lit n) reorderVars xs (agda-sort unknown) = agda-sort unknown reorderVars xs (lit l) = lit l reorderVars xs (meta x args) = meta x $ (fmap ∘ fmap) (reorderVars xs) args reorderVars xs unknown = unknown {-# TERMINATING #-} freeDependencies : List (Arg Type) → Type → Maybe VarSet freeDependencies Γ x = foldr _∪_ (freeVars x) <$> mapM go (freeVars x) where _∪_ : VarSet → VarSet → VarSet -- REFACTOR this was stolen from Tactic.Reflection.Free [] ∪ ys = ys xs ∪ [] = xs (x ∷ xs) ∪ (y ∷ ys) with compare x y ... | (less _) = x ∷ (xs ∪ (y ∷ ys)) ... | (equal _) = x ∷ (xs ∪ ys) ... | (greater _) = y ∷ ((x ∷ xs) ∪ ys) go : Nat → Maybe VarSet go v = weaken (suc v) $ join $ freeDependencies (drop (suc v) Γ) <$> (unArg <$> index Γ v) .test-freeDependencies₁ : freeDependencies [] unknown ≡ just [] test-freeDependencies₁ = refl .test-freeDependencies₂ : freeDependencies (vArg (var₀ 0) ∷ vArg unknown ∷ []) (var₀ 0) ≡ just (0 ∷ 1 ∷ []) test-freeDependencies₂ = refl .test-freeDependencies₃ : freeDependencies (vArg (var₀ 0) ∷ vArg (var₀ 1) ∷ vArg unknown ∷ vArg unknown ∷ []) (var₀ 0) ≡ just (0 ∷ 1 ∷ 3 ∷ []) test-freeDependencies₃ = refl .test-freeDependencies₄ : freeDependencies (vArg (var₀ 0) ∷ vArg (var₀ 1) ∷ vArg unknown ∷ vArg unknown ∷ []) (var₀ 1) ≡ just (1 ∷ 3 ∷ []) test-freeDependencies₄ = refl .test-freeDependencies₅ : freeDependencies (vArg (var₀ 1) ∷ vArg unknown ∷ vArg unknown ∷ []) (var₀ 0) ≡ just (0 ∷ 2 ∷ []) test-freeDependencies₅ = refl .test-freeDependencies₆ : freeDependencies (vArg (var₀ 0) ∷ vArg (var₀ 1) ∷ vArg unknown ∷ vArg unknown ∷ []) (var₁ 0 (var₀ 1)) ≡ just (0 ∷ 1 ∷ 3 ∷ []) test-freeDependencies₆ = refl record Request : Set where field l≡r : Term A : Type L R : Type Γᶜ : List (Arg Type) 𝐺 : Type [iᶜ∣iᶜ∈FVᴬ] : VarSet [iᶜ∣iᶜ∈FVᴬ] = maybe [] id $ freeDependencies Γᶜ A -- TODO this is a hack; I don't expect freeDependencies will return 'nothing', but if it does, I hope(!) the rest of the computation will fail [iᶜ∣iᶜ∉FVᴬ] : VarSet [iᶜ∣iᶜ∉FVᴬ] = filter (not ∘ flip elem [iᶜ∣iᶜ∈FVᴬ]) (from 0 for (length Γᶜ)) record γᶜ' : Set where field iᶜ : Nat γᶜᵢ : Arg Type iᶜ∈FVᴬ : Bool iʷ : Nat γᶜᵢ∈Γʳ : Bool gᶜᵢ : Type gᶜᵢ = unArg γᶜᵢ Γᶜ' : List γᶜ' Γᶜ' = go 0 (length Γᶜ) Γᶜ where go : Nat → Nat → List (Arg Type) → List γᶜ' go iᶜ 0 _ = [] go iᶜ _ [] = [] go iᶜ (suc n) (γᶜᵢ ∷ Γᶜ) = γᶜᵢ' ∷ go (suc iᶜ) n (weaken 1 Γᶜ) where γᶜᵢ' = record { iᶜ = iᶜ ; γᶜᵢ = γᶜᵢ ; iᶜ∈FVᴬ = elem iᶜ [iᶜ∣iᶜ∈FVᴬ] ; iʷ = if elem iᶜ [iᶜ∣iᶜ∉FVᴬ] then (length (filter (_<? iᶜ) [iᶜ∣iᶜ∉FVᴬ])) else (length [iᶜ∣iᶜ∉FVᴬ] + (length (filter (_≤? iᶜ) [iᶜ∣iᶜ∈FVᴬ]))) ; γᶜᵢ∈Γʳ = let gᶜᵢ = unArg γᶜᵢ in (isNo $ weaken 1 gᶜᵢ == weaken 1 gᶜᵢ r[ unknown / L ]) && (isNo $ l≡r == var₀ iᶜ) } [iʷ∣γᶜᵢ∈Γʳ] : VarSet [iʷ∣γᶜᵢ∈Γʳ] = iʷ <$> filter γᶜᵢ∈Γʳ Γᶜ' where open γᶜ' [iʷ] : List Nat [iʷ] = iʷ <$> Γᶜ' where open γᶜ' subsetList : {A : Set} → List A → List Nat → Maybe (List A) subsetList xs is = traverse (index xs) is module _ where private Γʷ/ᶜ : Maybe (List (Arg Type)) Γʷ/ᶜ = go [iʷ] Γᶜ where go : List Nat → List (Arg Type) → Maybe (List (Arg Type)) go _ [] = just [] go [] _ = nothing go (iʷ ∷ [iʷ]) (γᶜᵢ ∷ Γᶜ) = _∷_ <$> (strengthen (suc iʷ) $ reorderVars [iʷ] <$> γᶜᵢ) <*> (go [iʷ] Γᶜ) Γʷ/ᴬ = join $ subsetList <$> Γʷ/ᶜ <*> pure [iᶜ∣iᶜ∈FVᴬ] Γʷ/⁻ᴬ = join $ subsetList <$> Γʷ/ᶜ <*> pure [iᶜ∣iᶜ∉FVᴬ] module _ where private Lʷ = reorderVars [iʷ] L Γʷ = caseF Γʷ' of _R[ var₀ (length [iᶜ∣iᶜ∉FVᴬ]) / Lʷ ] where Γʷ' : Maybe (List (Arg Type)) Γʷ' = _++_ <$> Γʷ/⁻ᴬ <*> (_∷_ <$> (strengthen (length [iᶜ∣iᶜ∉FVᴬ] + 1) $ hArg (reorderVars [iʷ] A)) <*> Γʷ/ᴬ) where 𝐺ʷ = reorderVars [iʷ] 𝐺 r[ var₀ (length [iᶜ∣iᶜ∉FVᴬ]) / Lʷ ] module _ where private Rʷ = reorderVars [iʷ] R gʳ : Maybe Type gʳ = join $ go <$> gʳ' <*> pure [iʷ∣γᶜᵢ∈Γʳ] <*> pure 𝐺ʷʳ where go : List (Arg Type) → List Nat → Type → Maybe Type go [] [] 𝐺 = just 𝐺 go (γʷ ∷ Γʷ) (iʷ ∷ iʷs) 𝐺 = go Γʷ iʷs $ pi (weaken (1 + iʷ) γʷ) $ abs "_" $ weaken 1 𝐺 r[ var₀ 0 / var₀ $ weaken 1 iʷ ] go _ _ _ = nothing gʳ' : Maybe (List (Arg Type)) gʳ' = join $ subsetList <$> (caseF Γʷ of _R[ Rʷ / var₀ (length [iᶜ∣iᶜ∉FVᴬ]) ]) <*> pure [iʷ∣γᶜᵢ∈Γʳ] 𝐺ʷʳ = 𝐺ʷ r[ Rʷ / var₀ (length [iᶜ∣iᶜ∉FVᴬ]) ] helper-type : Maybe Type helper-type = telPi <$> (_++_ <$> (reverse <$> Γʷ) <*> (_∷_ <$> (pure $ vArg (def₂ (quote _≡_) (var₀ (length [iᶜ∣iᶜ∉FVᴬ])) Rʷ)) <*> ([_] ∘ vArg <$> (weaken 1 <$> gʳ)))) <*> pure (weaken 2 𝐺ʷ) make-vars-from-args : List Nat → List (Arg Type) → Maybe (List (Arg Type)) make-vars-from-args [] [] = pure [] make-vars-from-args (i ∷ is) (x ∷ xs) = _∷_ <$> pure (var₀ i <$ x) <*> make-vars-from-args is xs make-vars-from-args _ _ = nothing defineHelper : Name → TC ⊤ defineHelper n = maybe (typeError ( strErr "error constructing helper function type, patterns, or term" ∷ strErr "\nhelper-type:" ∷ termErr (maybe unknown id helper-type) ∷ strErr "\n`helper-type:" ∷ termErr (` helper-type) ∷ strErr "\nhelper-patterns:" ∷ termErr (` helper-patterns) ∷ strErr "\nhelper-term:" ∷ termErr (maybe unknown id helper-term) ∷ strErr "\ngʳ:" ∷ termErr (` gʳ) ∷ strErr "\nΓʷ:" ∷ termErr (` Γʷ) ∷ strErr "\n𝐺ʷ:" ∷ termErr (` 𝐺ʷ) ∷ strErr "\nl≡r:" ∷ termErr (` l≡r) ∷ strErr "\nA:" ∷ termErr (` A) ∷ strErr "\nL:" ∷ termErr (` L) ∷ strErr "\nR:" ∷ termErr (` R) ∷ strErr "\nΓᶜ:" ∷ termErr (` Γᶜ) ∷ strErr "\n𝐺:" ∷ termErr (` 𝐺) ∷ strErr "\nΓʷ/ᴬ" ∷ termErr (` Γʷ/ᴬ) ∷ strErr "\nΓʷ/⁻ᴬ" ∷ termErr (` Γʷ/⁻ᴬ) ∷ strErr "\n[iᶜ∣iᶜ∈FVᴬ]" ∷ termErr (` [iᶜ∣iᶜ∈FVᴬ]) ∷ strErr "\n[iᶜ∣iᶜ∉FVᴬ]" ∷ termErr (` [iᶜ∣iᶜ∉FVᴬ]) ∷ strErr "\n[iʷ]" ∷ termErr (` [iʷ]) ∷ [] )) (λ {(helper-type , helper-patterns , helper-term) → catchTC (define (vArg n) helper-type [ clause helper-patterns helper-term ]) (typeError ( strErr "error defining helper function" ∷ strErr "\nhelper-type:" ∷ termErr helper-type ∷ strErr "\n`helper-type:" ∷ termErr (` helper-type) ∷ strErr "\nhelper-patterns:" ∷ termErr (` helper-patterns) ∷ strErr "\nhelper-term:" ∷ termErr helper-term ∷ strErr "\n`helper-term:" ∷ termErr (` helper-term) ∷ strErr "\ngʳ:" ∷ termErr (` gʳ) ∷ strErr "\nΓʷ:" ∷ termErr (` Γʷ) ∷ strErr "\n𝐺ʷ:" ∷ termErr (` 𝐺ʷ) ∷ strErr "\nl≡r:" ∷ termErr (` l≡r) ∷ strErr "\nA:" ∷ termErr (` A) ∷ strErr "\nL:" ∷ termErr (` L) ∷ strErr "\nR:" ∷ termErr (` R) ∷ strErr "\nΓᶜ:" ∷ termErr (` Γᶜ) ∷ strErr "\n𝐺:" ∷ termErr (` 𝐺) ∷ strErr "\nΓʷ/ᴬ" ∷ termErr (` Γʷ/ᴬ) ∷ strErr "\nΓʷ/⁻ᴬ" ∷ termErr (` Γʷ/⁻ᴬ) ∷ strErr "\n[iᶜ∣iᶜ∈FVᴬ]" ∷ termErr (` [iᶜ∣iᶜ∈FVᴬ]) ∷ strErr "\n[iᶜ∣iᶜ∉FVᴬ]" ∷ termErr (` [iᶜ∣iᶜ∉FVᴬ]) ∷ strErr "\n[iʷ]" ∷ termErr (` [iʷ]) ∷ [] )) }) (_,_ <$> helper-type <*> (_,_ <$> helper-patterns <*> helper-term)) where helper-patterns : Maybe (List (Arg Pattern)) helper-patterns = (λ pa w p-a pr → pa ++ w ∷ (p-a ++ pr)) <$> (telePat ∘ reverse <$> Γʷ/ᴬ) <*> just (hArg dot) <*> (telePat ∘ reverse <$> Γʷ/⁻ᴬ) <*> pure (vArg (con₀ (quote refl)) ∷ [ vArg (var "_") ]) helper-term : Maybe Term helper-term = do γʷs ← join $ subsetList <$> Γʷ <*> pure [iʷ∣γᶜᵢ∈Γʳ] iʷs ← make-vars-from-args [iʷ∣γᶜᵢ∈Γʳ] γʷs pure (var 0 (reverse (weaken 1 iʷs))) callHelper : Name → Tactic callHelper n hole = maybe (typeError [ strErr "error constructing helper call" ]) (unify hole) $ helper-call n where helper-call : Name → Maybe Term helper-call n = def n <$> (reverse <$> (_∷_ <$> pure (vArg l≡r) <*> Γʰ)) where Γʰ : Maybe $ List $ Arg Term Γʰ = (λ xs → take (length [iᶜ∣iᶜ∉FVᴬ]) xs ++ hArg unknown ∷ drop (length [iᶜ∣iᶜ∉FVᴬ]) xs) <$> (join $ make-vars-from-args <$> pure ([iᶜ∣iᶜ∉FVᴬ] ++ [iᶜ∣iᶜ∈FVᴬ]) <*> Γʰ') where Γʰ' : Maybe (List (Arg Type)) Γʰ' = _++_ <$> subsetList Γᶜ [iᶜ∣iᶜ∉FVᴬ] <*> subsetList Γᶜ [iᶜ∣iᶜ∈FVᴬ] inferGoal : Term → TC Type inferGoal hole = unPi =<< forceFun =<< inferType hole where unPi : Type → TC Type unPi (pi _ (abs _ (meta x _))) = blockOnMeta! x unPi (pi _ (abs _ b)) = maybe (typeError (strErr "error strengthening" ∷ termErr b ∷ [])) pure $ strengthen 1 b unPi x = typeError (strErr "goal is not a pi type" ∷ termErr x ∷ []) getRequest : Term → Term → TC Request getRequest l≡r hole = do L≡R ← inferType l≡r L≡R-matched ← maybe (typeError (strErr "not an equality" ∷ termErr l≡r ∷ termErr L≡R ∷ [])) pure $ match 3 (def (quote _≡_) (hArg unknown ∷ (hArg (var₀ 0)) ∷ (vArg (var₀ 1)) ∷ (vArg (var₀ 2)) ∷ [])) L≡R 𝐺 ← inferGoal hole Γᶜ ← getContext case L≡R-matched of λ { (A ∷ L ∷ R ∷ []) → pure $ record { l≡r = l≡r ; A = A ; L = L ; R = R ; Γᶜ = Γᶜ ; 𝐺 = 𝐺 } } macro reright : Term → Tactic reright l≡r hole = do q ← getRequest l≡r hole n ← freshName "reright" let open Request q defineHelper n callHelper n hole
47.354331
209
0.498088
7c45011ea3d36832d463288884ca2a84f7599a58
171
agda
Agda
test/interaction/Issue2287.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue2287.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue2287.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
record R : Set₁ where field A : Set {B} : Set {{C}} : Set open R r : R r = {!!} -- C-c C-c produced -- A r = {!!} -- B {r} = {!!} -- C {{r}} = {!!}
10.6875
21
0.345029
9ae7efc60b537b5a0d1dbc69b526a529300d9dfa
485
agda
Agda
agda-stdlib/src/Algebra/FunctionProperties/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Algebra/FunctionProperties/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Algebra/FunctionProperties/Core.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use `Algebra` or `Algebra.Core` -- instead. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Algebra.FunctionProperties.Core where {-# WARNING_ON_IMPORT "Algebra.FunctionProperties.Core was deprecated in v1.2. Use Algebra.Core instead." #-} open import Algebra.Core public
26.944444
72
0.517526
34622c93be234000908e38352a25ff6a87b7e7c8
846
agda
Agda
test/LaTeXAndHTML/succeed/Issue4580NegativeLiterals.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LaTeXAndHTML/succeed/Issue4580NegativeLiterals.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LaTeXAndHTML/succeed/Issue4580NegativeLiterals.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2020-04-12, issue #4580 -- Highlighting for builtins FROMNAT, FROMNEG, FROMSTRING open import Agda.Builtin.Nat open import Agda.Builtin.Equality record Number (A : Set) : Set where field fromNat : Nat → A record Negative (A : Set) : Set where field fromNeg : Nat → A open Number {{...}} public open Negative {{...}} public {-# BUILTIN FROMNAT fromNat #-} -- Should be highlighted. {-# BUILTIN FROMNEG fromNeg #-} -- Jump to definition should work. instance NumberNat : Number Nat NumberNat = record { fromNat = λ n → n } data Int : Set where pos : Nat → Int neg : Nat → Int instance NumberInt : Number Int NumberInt = record { fromNat = pos } NegativeInt : Negative Int NegativeInt = record { fromNeg = λ { zero → pos 0 ; (suc n) → neg n } } minusFive : Int minusFive = -5 thm : -5 ≡ neg 4 thm = refl
21.692308
73
0.664303
d1ee182aa35539c06fa4dd1f1995cb2c8ccd2c37
804
agda
Agda
Nat.agda
hazelgrove/agda-tfp16
86a755ca6749e080f9a03287e34d1cda889f1edb
[ "MIT" ]
2
2016-06-10T04:35:39.000Z
2016-06-10T04:35:42.000Z
Nat.agda
hazelgrove/agda-tfp16
86a755ca6749e080f9a03287e34d1cda889f1edb
[ "MIT" ]
null
null
null
Nat.agda
hazelgrove/agda-tfp16
86a755ca6749e080f9a03287e34d1cda889f1edb
[ "MIT" ]
null
null
null
open import Prelude module Nat where data Nat : Set where Z : Nat 1+ : Nat → Nat {-# BUILTIN NATURAL Nat #-} -- the succ operation is injective 1+inj : (x y : Nat) → (1+ x == 1+ y) → x == y 1+inj Z .0 refl = refl 1+inj (1+ x) .(1+ x) refl = refl -- equality of naturals is decidable. we represent this as computing a -- choice of units, with inl <> meaning that the naturals are indeed the -- same and inr <> that they are not. natEQ : (x y : Nat) → ((x == y) + ((x == y) → ⊥)) natEQ Z Z = Inl refl natEQ Z (1+ y) = Inr (λ ()) natEQ (1+ x) Z = Inr (λ ()) natEQ (1+ x) (1+ y) with natEQ x y natEQ (1+ x) (1+ .x) | Inl refl = Inl refl ... | Inr b = Inr (λ x₁ → b (1+inj x y x₁)) max : Nat → Nat → Nat max Z m = m max n Z = n max (1+ n) (1+ m) = max n m
26.8
74
0.534826