hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
38f6a06370610af26b0777e5ed5f4221debf43f8
5,395
agda
Agda
Cubical/Algebra/DirectSum/DirectSumHIT/Properties.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/DirectSum/DirectSumHIT/Properties.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/Algebra/DirectSum/DirectSumHIT/Properties.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.DirectSum.DirectSumHIT.Properties where open import Cubical.Foundations.Prelude open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sigma open import Cubical.Relation.Nullary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.DirectSum.DirectSumHIT.Base private variable ℓ ℓ' : Level module AbGroupProperties (Idx : Type ℓ) (P : Idx → Type ℓ') (AGP : (r : Idx) → AbGroupStr (P r)) where inv : ⊕HIT Idx P AGP → ⊕HIT Idx P AGP inv = DS-Rec-Set.f Idx P AGP (⊕HIT Idx P AGP) trunc -- elements neutral (λ r a → base r (AbGroupStr.-_ (AGP r) a)) (λ xs ys → xs add ys) -- eq group (λ xs ys zs → addAssoc xs ys zs) (λ xs → addRid xs) (λ xs ys → addComm xs ys) -- eq base (λ r → let open AbGroupStr (AGP r) in let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in (cong (base r) inv1g) ∙ (base-neutral r)) (λ r a b → let open AbGroupStr (AGP r) in let open GroupTheory (P r , AbGroupStr→GroupStr (AGP r)) in ((base r (- a) add base r (- b)) ≡⟨ (base-add r (- a) (- b)) ⟩ base r ((- a) + (- b)) ≡⟨ (cong (base r) (sym (invDistr b a))) ⟩ base r (- (b + a)) ≡⟨ cong (base r) (cong (-_) (+Comm b a)) ⟩ base r (- (a + b)) ∎)) rinv : (z : ⊕HIT Idx P AGP) → z add (inv z) ≡ neutral rinv = DS-Ind-Prop.f Idx P AGP (λ z → z add (inv z) ≡ neutral) (λ _ → trunc _ _) -- elements (addRid neutral) (λ r a → let open AbGroupStr (AGP r) in ((base r a add base r (- a)) ≡⟨ base-add r a (- a) ⟩ base r (a + - a) ≡⟨ cong (base r) (+InvR a) ⟩ base r 0g ≡⟨ base-neutral r ⟩ neutral ∎)) (λ {x} {y} p q → (((x add y) add ((inv x) add (inv y))) ≡⟨ cong (λ X → X add ((inv x) add (inv y))) (addComm x y) ⟩ ((y add x) add (inv x add inv y)) ≡⟨ sym (addAssoc y x (inv x add inv y)) ⟩ (y add (x add (inv x add inv y))) ≡⟨ cong (λ X → y add X) (addAssoc x (inv x) (inv y)) ⟩ (y add ((x add inv x) add inv y)) ≡⟨ cong (λ X → y add (X add (inv y))) (p) ⟩ (y add (neutral add inv y)) ≡⟨ cong (λ X → y add X) (addComm neutral (inv y)) ⟩ (y add (inv y add neutral)) ≡⟨ cong (λ X → y add X) (addRid (inv y)) ⟩ (y add inv y) ≡⟨ q ⟩ neutral ∎)) module SubstLemma (Idx : Type ℓ) (G : Idx → Type ℓ') (Gstr : (r : Idx) → AbGroupStr (G r)) where open AbGroupStr subst0g : {l k : Idx} → (p : l ≡ k) → subst G p (0g (Gstr l)) ≡ 0g (Gstr k) subst0g {l} {k} p = J (λ k p → subst G p (0g (Gstr l)) ≡ 0g (Gstr k)) (transportRefl _) p subst+ : {l : Idx} → (a b : G l) → {k : Idx} → (p : l ≡ k) → Gstr k ._+_ (subst G p a) (subst G p b) ≡ subst G p (Gstr l ._+_ a b) subst+ {l} a b {k} p = J (λ k p → Gstr k ._+_ (subst G p a) (subst G p b) ≡ subst G p (Gstr l ._+_ a b)) (cong₂ (Gstr l ._+_) (transportRefl _) (transportRefl _) ∙ sym (transportRefl _)) p module DecIndec-BaseProperties (Idx : Type ℓ) (decIdx : Discrete Idx) (G : Idx → Type ℓ') (Gstr : (r : Idx) → AbGroupStr (G r)) where open AbGroupStr open SubstLemma Idx G Gstr πₖ : (k : Idx) → ⊕HIT Idx G Gstr → G k πₖ k = DS-Rec-Set.f _ _ _ _ (is-set (Gstr k)) (0g (Gstr k)) base-trad (_+_ (Gstr k)) (+Assoc (Gstr k)) (+IdR (Gstr k)) (+Comm (Gstr k)) base-neutral-eq base-add-eq where base-trad : (l : Idx) → (a : G l) → G k base-trad l a with decIdx l k ... | yes p = subst G p a ... | no ¬p = 0g (Gstr k) base-neutral-eq : _ base-neutral-eq l with decIdx l k ... | yes p = subst0g p ... | no ¬p = refl base-add-eq : _ base-add-eq l a b with decIdx l k ... | yes p = subst+ a b p ... | no ¬p = +IdR (Gstr k) _ πₖ-id : {k : Idx} → (a : G k) → πₖ k (base k a) ≡ a πₖ-id {k} a with decIdx k k ... | yes p = cong (λ X → subst G X a) (Discrete→isSet decIdx _ _ _ _) ∙ transportRefl _ ... | no ¬p = rec (¬p refl) πₖ-0g : {k l : Idx} → (a : G l) → (p : k ≡ l → ⊥) → πₖ k (base l a) ≡ 0g (Gstr k) πₖ-0g {k} {l} a ¬q with decIdx l k ... | yes p = rec (¬q (sym p)) ... | no ¬p = refl base-inj : {k : Idx} → {a b : G k} → base {AGP = Gstr} k a ≡ base k b → a ≡ b base-inj {k} {a} {b} p = sym (πₖ-id a) ∙ cong (πₖ k) p ∙ πₖ-id b base-≢ : {k : Idx} → {a : G k} → {l : Idx} → {b : G l} → (p : k ≡ l → ⊥) → base {AGP = Gstr} k a ≡ base {AGP = Gstr} l b → (a ≡ 0g (Gstr k)) × (b ≡ 0g (Gstr l)) base-≢ {k} {a} {l} {b} ¬p q = helper1 , helper2 where helper1 : a ≡ 0g (Gstr k) helper1 = sym (πₖ-id a) ∙ cong (πₖ k) q ∙ πₖ-0g b ¬p helper2 : b ≡ 0g (Gstr l) helper2 = sym (πₖ-id b) ∙ cong (πₖ l) (sym q) ∙ πₖ-0g a (λ x → ¬p (sym x))
38.262411
124
0.457461
21745cd3dd0658a48c528e6cfec7f08eedbaef17
12,046
agda
Agda
Agda/06-universes.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/06-universes.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
Agda/06-universes.agda
hemangandhi/HoTT-Intro
09c710bf9c31ba88be144cc950bd7bc19c22a934
[ "CC-BY-4.0" ]
null
null
null
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 06-universes where import 05-identity-types open 05-identity-types public -- Section 6.3 Pointed types -- Definition 6.3.1 UU-pt : (i : Level) → UU (lsuc i) UU-pt i = Σ (UU i) (λ X → X) type-UU-pt : {i : Level} → UU-pt i → UU i type-UU-pt = pr1 pt-UU-pt : {i : Level} (A : UU-pt i) → type-UU-pt A pt-UU-pt = pr2 -- Definition 6.3.2 _→*_ : {i j : Level} → UU-pt i → UU-pt j → UU-pt (i ⊔ j) A →* B = pair ( Σ (type-UU-pt A → type-UU-pt B) (λ f → Id (f (pt-UU-pt A)) (pt-UU-pt B))) ( pair ( const (type-UU-pt A) (type-UU-pt B) (pt-UU-pt B)) ( refl)) -- Definition 6.3.3 Ω : {i : Level} → UU-pt i → UU-pt i Ω A = pair (Id (pt-UU-pt A) (pt-UU-pt A)) refl -- Definition 6.3.4 iterated-loop-space : {i : Level} → ℕ → UU-pt i → UU-pt i iterated-loop-space zero-ℕ A = A iterated-loop-space (succ-ℕ n) A = Ω (iterated-loop-space n A) -- Section 6.4 Families and relations on the natural numbers -- Definition 6.4.1 Fin : ℕ → UU lzero Fin zero-ℕ = empty Fin (succ-ℕ n) = coprod (Fin n) unit -- Definition 6.4.2 -- Observational equality on the natural numbers Eq-ℕ : ℕ → (ℕ → UU lzero) Eq-ℕ zero-ℕ zero-ℕ = 𝟙 Eq-ℕ zero-ℕ (succ-ℕ n) = 𝟘 Eq-ℕ (succ-ℕ m) zero-ℕ = 𝟘 Eq-ℕ (succ-ℕ m) (succ-ℕ n) = Eq-ℕ m n -- Lemma 6.4.3 refl-Eq-ℕ : (n : ℕ) → Eq-ℕ n n refl-Eq-ℕ zero-ℕ = star refl-Eq-ℕ (succ-ℕ n) = refl-Eq-ℕ n succ-relation-ℕ : {i : Level} (R : ℕ → ℕ → UU i) → ℕ → ℕ → UU i succ-relation-ℕ R m n = R (succ-ℕ m) (succ-ℕ n) succ-reflexivity-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (n : ℕ) → succ-relation-ℕ R n n succ-reflexivity-ℕ R ρ n = ρ (succ-ℕ n) {- In the book we suggest that first the order of the variables should be swapped, in order to make the inductive hypothesis stronger. Agda's pattern matching mechanism allows us to bypass this step and give a more direct construction. -} least-reflexive-Eq-ℕ : {i : Level} (R : ℕ → ℕ → UU i) (ρ : (n : ℕ) → R n n) → (m n : ℕ) → Eq-ℕ m n → R m n least-reflexive-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ least-reflexive-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () least-reflexive-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = least-reflexive-Eq-ℕ (succ-relation-ℕ R) (succ-reflexivity-ℕ R ρ) m n e -- Exercises -- Exercise 6.1 {- In this exercise we were asked to show that the observational equality on ℕ is an equivalence relation. -} symmetric-Eq-ℕ : (m n : ℕ) → Eq-ℕ m n → Eq-ℕ n m symmetric-Eq-ℕ zero-ℕ zero-ℕ star = star symmetric-Eq-ℕ (succ-ℕ m) (succ-ℕ n) t = symmetric-Eq-ℕ m n t transitive-Eq-ℕ : (l m n : ℕ) → Eq-ℕ l m → Eq-ℕ m n → Eq-ℕ l n transitive-Eq-ℕ zero-ℕ zero-ℕ zero-ℕ p q = star transitive-Eq-ℕ (succ-ℕ l) (succ-ℕ m) (succ-ℕ n) p q = transitive-Eq-ℕ l m n p q -- Exercise 6.2 {- In this exercise we were asked to show that any function on the natural numbers preserves observational equality. The quick solution uses the fact that observational equality is the least reflexive relation. -} preserve_Eq-ℕ : (f : ℕ → ℕ) (n m : ℕ) → (Eq-ℕ n m) → (Eq-ℕ (f n) (f m)) preserve_Eq-ℕ f = least-reflexive-Eq-ℕ ( λ x y → Eq-ℕ (f x) (f y)) ( λ x → refl-Eq-ℕ (f x)) -- Exercise 6.3 {- In this exercise we were asked to construct the relations ≤ and < on the natural numbers, and show basic properties about them. -} -- Exercise 6.3(a) -- The definition of ≤ leq-ℕ : ℕ → ℕ → UU lzero leq-ℕ zero-ℕ m = unit leq-ℕ (succ-ℕ n) zero-ℕ = empty leq-ℕ (succ-ℕ n) (succ-ℕ m) = leq-ℕ n m _≤_ = leq-ℕ leq-zero-ℕ : (n : ℕ) → leq-ℕ zero-ℕ n leq-zero-ℕ n = star -- The definition of < le-ℕ : ℕ → ℕ → UU lzero le-ℕ m zero-ℕ = empty le-ℕ zero-ℕ (succ-ℕ m) = unit le-ℕ (succ-ℕ n) (succ-ℕ m) = le-ℕ n m _<_ = le-ℕ reflexive-leq-ℕ : (n : ℕ) → n ≤ n reflexive-leq-ℕ zero-ℕ = star reflexive-leq-ℕ (succ-ℕ n) = reflexive-leq-ℕ n anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n < n) anti-reflexive-le-ℕ zero-ℕ = ind-empty anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n transitive-leq-ℕ : (n m l : ℕ) → (n ≤ m) → (m ≤ l) → (n ≤ l) transitive-leq-ℕ zero-ℕ m l p q = star transitive-leq-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-leq-ℕ n m l p q transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l) transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-le-ℕ n m l p q succ-leq-ℕ : (n : ℕ) → leq-ℕ n (succ-ℕ n) succ-leq-ℕ zero-ℕ = star succ-leq-ℕ (succ-ℕ n) = succ-leq-ℕ n succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n) succ-le-ℕ zero-ℕ = star succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n anti-symmetric-leq-ℕ : (m n : ℕ) → leq-ℕ m n → leq-ℕ n m → Id m n anti-symmetric-leq-ℕ zero-ℕ zero-ℕ p q = refl anti-symmetric-leq-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-leq-ℕ m n p q) anti-symmetric-le-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ n m → Id m n anti-symmetric-le-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (anti-symmetric-le-ℕ m n p q) -- Exercise 6.5 {- In this exercise we were asked to construct observational equality on the booleans. This construction is analogous to, but simpler than, the construction of observational equality on the natural numbers. -} Eq-𝟚 : bool → bool → UU lzero Eq-𝟚 true true = unit Eq-𝟚 true false = empty Eq-𝟚 false true = empty Eq-𝟚 false false = unit reflexive-Eq-𝟚 : (x : bool) → Eq-𝟚 x x reflexive-Eq-𝟚 true = star reflexive-Eq-𝟚 false = star least-reflexive-Eq-𝟚 : {i : Level} (R : bool → bool → UU i) (ρ : (x : bool) → R x x) (x y : bool) → Eq-𝟚 x y → R x y least-reflexive-Eq-𝟚 R ρ true true p = ρ true least-reflexive-Eq-𝟚 R ρ true false p = ind-empty p least-reflexive-Eq-𝟚 R ρ false true p = ind-empty p least-reflexive-Eq-𝟚 R ρ false false p = ρ false -- Exercise 6.6 {- In this exercise we were asked to define the relations ≤ and < on the integers. As a criterion of correctness, we were then also asked to show that the type of all integers l satisfying k ≤ l satisfy the induction principle of the natural numbers. -} diff-ℤ : ℤ → ℤ → ℤ diff-ℤ k l = add-ℤ (neg-ℤ k) l is-non-negative-ℤ : ℤ → UU lzero is-non-negative-ℤ (inl x) = empty is-non-negative-ℤ (inr k) = unit leq-ℤ : ℤ → ℤ → UU lzero leq-ℤ k l = is-non-negative-ℤ (diff-ℤ k l) reflexive-leq-ℤ : (k : ℤ) → leq-ℤ k k reflexive-leq-ℤ k = tr is-non-negative-ℤ (inv (left-inverse-law-add-ℤ k)) star is-non-negative-succ-ℤ : (k : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ (succ-ℤ k) is-non-negative-succ-ℤ (inr (inl star)) p = star is-non-negative-succ-ℤ (inr (inr x)) p = star is-non-negative-add-ℤ : (k l : ℤ) → is-non-negative-ℤ k → is-non-negative-ℤ l → is-non-negative-ℤ (add-ℤ k l) is-non-negative-add-ℤ (inr (inl star)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inl star)) (inr (inr n)) p q = star is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inl star)) p q = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inl star)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inl star))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inl star)) star star) is-non-negative-add-ℤ (inr (inr zero-ℕ)) (inr (inr m)) star star = star is-non-negative-add-ℤ (inr (inr (succ-ℕ n))) (inr (inr m)) star star = is-non-negative-succ-ℤ ( add-ℤ (inr (inr n)) (inr (inr m))) ( is-non-negative-add-ℤ (inr (inr n)) (inr (inr m)) star star) triangle-diff-ℤ : (k l m : ℤ) → Id (add-ℤ (diff-ℤ k l) (diff-ℤ l m)) (diff-ℤ k m) triangle-diff-ℤ k l m = ( associative-add-ℤ (neg-ℤ k) l (diff-ℤ l m)) ∙ ( ap ( add-ℤ (neg-ℤ k)) ( ( inv (associative-add-ℤ l (neg-ℤ l) m)) ∙ ( ( ap (λ x → add-ℤ x m) (right-inverse-law-add-ℤ l)) ∙ ( left-unit-law-add-ℤ m)))) transitive-leq-ℤ : (k l m : ℤ) → leq-ℤ k l → leq-ℤ l m → leq-ℤ k m transitive-leq-ℤ k l m p q = tr is-non-negative-ℤ ( triangle-diff-ℤ k l m) ( is-non-negative-add-ℤ ( add-ℤ (neg-ℤ k) l) ( add-ℤ (neg-ℤ l) m) ( p) ( q)) succ-leq-ℤ : (k : ℤ) → leq-ℤ k (succ-ℤ k) succ-leq-ℤ k = tr is-non-negative-ℤ ( inv ( ( right-successor-law-add-ℤ (neg-ℤ k) k) ∙ ( ap succ-ℤ (left-inverse-law-add-ℤ k)))) ( star) leq-ℤ-succ-leq-ℤ : (k l : ℤ) → leq-ℤ k l → leq-ℤ k (succ-ℤ l) leq-ℤ-succ-leq-ℤ k l p = transitive-leq-ℤ k l (succ-ℤ l) p (succ-leq-ℤ l) is-positive-ℤ : ℤ → UU lzero is-positive-ℤ k = is-non-negative-ℤ (pred-ℤ k) le-ℤ : ℤ → ℤ → UU lzero le-ℤ (inl zero-ℕ) (inl x) = empty le-ℤ (inl zero-ℕ) (inr y) = unit le-ℤ (inl (succ-ℕ x)) (inl zero-ℕ) = unit le-ℤ (inl (succ-ℕ x)) (inl (succ-ℕ y)) = le-ℤ (inl x) (inl y) le-ℤ (inl (succ-ℕ x)) (inr y) = unit le-ℤ (inr x) (inl y) = empty le-ℤ (inr (inl star)) (inr (inl star)) = empty le-ℤ (inr (inl star)) (inr (inr x)) = unit le-ℤ (inr (inr x)) (inr (inl star)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr zero-ℕ)) (inr (inr (succ-ℕ y))) = unit le-ℤ (inr (inr (succ-ℕ x))) (inr (inr zero-ℕ)) = empty le-ℤ (inr (inr (succ-ℕ x))) (inr (inr (succ-ℕ y))) = le-ℤ (inr (inr x)) (inr (inr y)) -- Extra material -- We show that ℕ is an ordered semi-ring leq-eq-ℕ : {m m' n n' : ℕ} → Id m m' → Id n n' → leq-ℕ m n → leq-ℕ m' n' leq-eq-ℕ refl refl = id left-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ m k) (add-ℕ n k) left-law-leq-add-ℕ zero-ℕ m n = id left-law-leq-add-ℕ (succ-ℕ k) m n H = left-law-leq-add-ℕ k m n H right-law-leq-add-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (add-ℕ k m) (add-ℕ k n) right-law-leq-add-ℕ k m n H = leq-eq-ℕ ( commutative-add-ℕ m k) ( commutative-add-ℕ n k) ( left-law-leq-add-ℕ k m n H) preserves-leq-add-ℕ : {m m' n n' : ℕ} → leq-ℕ m m' → leq-ℕ n n' → leq-ℕ (add-ℕ m n) (add-ℕ m' n') preserves-leq-add-ℕ {m} {m'} {n} {n'} H K = transitive-leq-ℕ ( add-ℕ m n) ( add-ℕ m' n) ( add-ℕ m' n') ( left-law-leq-add-ℕ n m m' H) ( right-law-leq-add-ℕ m' n n' K) right-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ k m) (mul-ℕ k n) right-law-leq-mul-ℕ zero-ℕ m n H = star right-law-leq-mul-ℕ (succ-ℕ k) m n H = {!!} {- preserves-leq-add-ℕ { m = mul-ℕ k m} { m' = mul-ℕ k n} ( right-law-leq-mul-ℕ k m n H) H left-law-leq-mul-ℕ : (k m n : ℕ) → leq-ℕ m n → leq-ℕ (mul-ℕ m k) (mul-ℕ n k) left-law-leq-mul-ℕ k m n H = leq-eq-ℕ ( commutative-mul-ℕ k m) ( commutative-mul-ℕ k n) ( right-law-leq-mul-ℕ k m n H) -- We show that ℤ is an ordered ring {- leq-add-ℤ : (m k l : ℤ) → leq-ℤ k l → leq-ℤ (add-ℤ m k) (add-ℤ m l) leq-add-ℤ (inl zero-ℕ) k l H = {!!} leq-add-ℤ (inl (succ-ℕ x)) k l H = {!!} leq-add-ℤ (inr m) k l H = {!!} -} -- Section 5.5 Identity systems succ-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) → (m n : ℕ) → Eq-ℕ m n → UU i succ-fam-Eq-ℕ R m n e = R (succ-ℕ m) (succ-ℕ n) e succ-refl-fam-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) (ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → (n : ℕ) → (succ-fam-Eq-ℕ R n n (refl-Eq-ℕ n)) succ-refl-fam-Eq-ℕ R ρ n = ρ (succ-ℕ n) path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( m n : ℕ) (e : Eq-ℕ m n) → R m n e path-ind-Eq-ℕ R ρ zero-ℕ zero-ℕ star = ρ zero-ℕ path-ind-Eq-ℕ R ρ zero-ℕ (succ-ℕ n) () path-ind-Eq-ℕ R ρ (succ-ℕ m) zero-ℕ () path-ind-Eq-ℕ R ρ (succ-ℕ m) (succ-ℕ n) e = path-ind-Eq-ℕ (succ-fam-Eq-ℕ R) (succ-refl-fam-Eq-ℕ R ρ) m n e comp-path-ind-Eq-ℕ : {i : Level} (R : (m n : ℕ) → Eq-ℕ m n → UU i) ( ρ : (n : ℕ) → R n n (refl-Eq-ℕ n)) → ( n : ℕ) → Id (path-ind-Eq-ℕ R ρ n n (refl-Eq-ℕ n)) (ρ n) comp-path-ind-Eq-ℕ R ρ zero-ℕ = refl comp-path-ind-Eq-ℕ R ρ (succ-ℕ n) = comp-path-ind-Eq-ℕ (succ-fam-Eq-ℕ R) (succ-refl-fam-Eq-ℕ R ρ) n -} {- -- Graphs Gph : (i : Level) → UU (lsuc i) Gph i = Σ (UU i) (λ X → (X → X → (UU i))) -- Reflexive graphs rGph : (i : Level) → UU (lsuc i) rGph i = Σ (UU i) (λ X → Σ (X → X → (UU i)) (λ R → (x : X) → R x x)) -} -- Exercise 3.7 {- With the construction of the divisibility relation we open the door to basic number theory. -} divides : (d n : ℕ) → UU lzero divides d n = Σ ℕ (λ m → Eq-ℕ (mul-ℕ d m) n)
30.0399
79
0.584343
197f2cfcce91b1d4c0df9db971e5bf574a7af0c3
617
agda
Agda
test/Succeed/Issue1281.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1281.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1281.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --termination-depth=2 #-} module _ where open import Common.Prelude module A where mutual f : Nat → Nat f zero = zero f (suc zero) = suc zero f (suc (suc x)) = g x g : Nat → Nat g x = f (suc ?) -- This should not fail termination checking, -- as ? := x is a terminating instance. module B where mutual f : Nat → Nat f zero = zero f (suc zero) = suc zero f (suc (suc x)) = g ? g : Nat → Nat g x = f (suc x) -- This should not fail termination checking, -- as ? := x is a terminating instance.
16.236842
47
0.567261
386d0ac7d8cb669a2540e4e5cfecc101ad728a02
1,017
agda
Agda
test/Fail/Issue543a.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue543a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue543a.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, bug found 2011-12-31 {-# OPTIONS --irrelevant-projections #-} module Issue543a where import Common.Level import Common.Irrelevance open import Common.Equality data ⊥ : Set where record ⊤ : Set where constructor tt data Bool : Set where true false : Bool record Squash (A : Set) : Set where constructor squash field .unsquash : A open Squash -- ok: sqT≡sqF : squash true ≡ squash false sqT≡sqF = refl record Inhabited : Set1 where constructor inhabited field Type : Set elem : Type open Inhabited .bad1 : Inhabited bad1 = inhabited (true ≡ unsquash (squash true)) refl .bad2 : Inhabited bad2 = inhabited (unsquash (squash false) ≡ false) refl infixl 2 _∘_ _∘_ = trans -- this should not be provable!! .irrT≡F : true ≡ false irrT≡F = elem bad1 ∘ cong unsquash sqT≡sqF ∘ elem bad2 -- the rest is easy T : Bool → Set T true = ⊤ T false = ⊥ T≠F : true ≡ false → ⊥ T≠F p = subst T p tt .irr⊥ : ⊥ irr⊥ = T≠F irrT≡F rel⊥ : .⊥ → ⊥ rel⊥ () absurd : ⊥ absurd = rel⊥ irr⊥
15.646154
55
0.662734
1238a4771a4da0e0fb0c6bbf6cf0217d83a8ab1c
2,227
agda
Agda
cohomology/SuspAdjointLoopIso.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
cohomology/SuspAdjointLoopIso.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
cohomology/SuspAdjointLoopIso.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.PtdAdjoint open import homotopy.SuspAdjointLoop open import cohomology.WithCoefficients module cohomology.SuspAdjointLoopIso where module SuspAdjointLoopIso {i} where private hadj : HomAdjoint {i} {i} Σ⊣Ω.SuspFunctor Σ⊣Ω.LoopFunctor hadj = counit-unit-to-hom Σ⊣Ω.adj module A = HomAdjoint hadj module _ (X Y : Ptd i) where abstract pres-comp : (h₁ h₂ : fst (⊙Susp X ⊙→ ⊙Ω Y)) → –> (A.eq X (⊙Ω Y)) (⊙conc ⊙∘ ⊙×-in h₁ h₂) == ⊙conc ⊙∘ ⊙×-in (–> (A.eq X (⊙Ω Y)) h₁) (–> (A.eq X (⊙Ω Y)) h₂) pres-comp h₁ h₂ = B.nat-cod h₁ h₂ ⊙conc ∙ ap (λ w → w ⊙∘ ⊙×-in (–> (A.eq X (⊙Ω Y)) h₁) (–> (A.eq X (⊙Ω Y)) h₂)) arr2-lemma where module A× = RightAdjoint× hadj module B = RightAdjointBinary hadj ap2-lemma : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A × B → C) {r s : A × B} (p : r == s) → ap f p == ap2 (curry f) (ap fst p) (ap snd p) ap2-lemma f idp = idp ⊙ap2-lemma : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (f : fst (X ⊙× Y ⊙→ Z)) → ⊙ap f == ⊙ap2 f ⊙∘ ⊙×-in (⊙ap ⊙fst) (⊙ap ⊙snd) ⊙ap2-lemma (f , idp) = ⊙λ= (ap2-lemma f) idp arr2-lemma : B.arr2 ⊙conc == ⊙conc arr2-lemma = ⊙ap ⊙conc ⊙∘ A×.⊙out _ _ =⟨ ⊙ap2-lemma ⊙conc |in-ctx (λ w → w ⊙∘ A×.⊙out _ _) ⟩ (⊙ap2 ⊙conc ⊙∘ A×.⊙into _ _) ⊙∘ A×.⊙out _ _ =⟨ ⊙∘-assoc (⊙ap2 ⊙conc) (A×.⊙into _ _) (A×.⊙out _ _) ⟩ ⊙ap2 ⊙conc ⊙∘ (A×.⊙into _ _ ⊙∘ A×.⊙out _ _) =⟨ A×.⊙into-out _ _ |in-ctx (λ w → ⊙ap2 ⊙conc ⊙∘ w) ⟩ ⊙ap2 ⊙conc =⟨ ⊙ap2-conc-is-conc ⟩ ⊙conc ∎ iso : →Ω-Group (⊙Susp X) Y ≃ᴳ →Ω-Group X (⊙Ω Y) iso = Trunc-Group-iso (–> (A.eq X (⊙Ω Y))) pres-comp (snd (A.eq X (⊙Ω Y))) abstract nat-dom : {X Y : Ptd i} (f : fst (X ⊙→ Y)) (Z : Ptd i) → fst (iso X Z) ∘ᴳ →Ω-Group-dom-act (⊙susp-fmap f) Z == →Ω-Group-dom-act f (⊙Ω Z) ∘ᴳ fst (iso Y Z) nat-dom f Z = hom= _ _ $ λ= $ Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ g → ap [_] (! (A.nat-dom f (⊙Ω Z) g)))
34.261538
79
0.470139
37b2806292719dc215f5e6e6d7ad5d17c0f77719
8,166
agda
Agda
Algebra/Pregroup.agda
wenkokke/agda-pregroup
2cc4f28f23cc369d2582ad065739cabfa46ce799
[ "MIT" ]
1
2017-03-02T01:23:52.000Z
2017-03-02T01:23:52.000Z
Algebra/Pregroup.agda
pepijnkokke/Algebra.Pregroup
2cc4f28f23cc369d2582ad065739cabfa46ce799
[ "MIT" ]
null
null
null
Algebra/Pregroup.agda
pepijnkokke/Algebra.Pregroup
2cc4f28f23cc369d2582ad065739cabfa46ce799
[ "MIT" ]
null
null
null
open import Level using (Level; suc; zero; _⊔_) open import Function using (const) open import Algebra open import Algebra.Structures open import Algebra.OrderedMonoid open import Algebra.FunctionProperties as FunctionProperties using (Op₁; Op₂) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Relation.Binary open import Relation.Binary.PartialOrderReasoning as ≤-Reasoning using () module Algebra.Pregroup where -- Definition of the properties of left and right contraction and -- expansion for usage in the below definition of pregroups. module AdjointProperties {a ℓ} {A : Set a} (_≤_ : Rel A ℓ) (_∙_ : Op₂ A) (ε : A) where LeftContract : Op₁ A → Set _ LeftContract _ˡ = ∀ x → (x ˡ ∙ x) ≤ ε LeftExpand : Op₁ A → Set _ LeftExpand _ˡ = ∀ x → ε ≤ (x ∙ x ˡ) RightContract : Op₁ A → Set _ RightContract _ʳ = ∀ x → (x ∙ x ʳ) ≤ ε RightExpand : Op₁ A → Set _ RightExpand _ʳ = ∀ x → ε ≤ (x ʳ ∙ x) -- define shorthand notation for a term being the left/right adjoint -- of another term, which can be proven to be unique. _LeftAdjointOf_ : ∀ y x → Set _ _LeftAdjointOf_ y x = (y ∙ x) ≤ ε × ε ≤ (x ∙ y) _RightAdjointOf_ : ∀ y x → Set _ _RightAdjointOf_ y x = (x ∙ y) ≤ ε × ε ≤ (y ∙ x) -- Definition of a pregroup, which adds a left and a right adjoint to -- an ordered monoid. record IsPregroup {a ℓ₁ ℓ₂} {A : Set a} (≈ : Rel A ℓ₁) (≤ : Rel A ℓ₂) (∙ : Op₂ A) (ε : A) (ˡ : Op₁ A) (ʳ : Op₁ A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂) where open AdjointProperties ≤ ∙ ε field isOrderedMonoid : IsOrderedMonoid ≈ ≤ ∙ ε ˡ-cong : ˡ Preserves ≈ ⟶ ≈ ʳ-cong : ʳ Preserves ≈ ⟶ ≈ ˡ-contract : LeftContract ˡ ˡ-expand : LeftExpand ˡ ʳ-contract : RightContract ʳ ʳ-expand : RightExpand ʳ open IsOrderedMonoid isOrderedMonoid public open AdjointProperties ≤ ∙ ε public record Pregroup c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infixl 7 _∙_ infix 4 _≈_ infix 4 _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ _∙_ : Op₂ Carrier _ˡ : Op₁ Carrier _ʳ : Op₁ Carrier ε : Carrier isPregroup : IsPregroup _≈_ _≤_ _∙_ ε _ˡ _ʳ open IsPregroup isPregroup public private -- for usage with ≤-Reasoning poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open ≤-Reasoning poset -- for usage of substitutivity (which is not defined in IsPregroup) orderedMonoid : OrderedMonoid _ _ _ orderedMonoid = record { isOrderedMonoid = isOrderedMonoid } open OrderedMonoid orderedMonoid public using (substitutivity) ˡ-unique : ∀ {x y} → y LeftAdjointOf x → y ≈ x ˡ ˡ-unique {x} {y} (y-contract , y-expand) = antisym y≤xˡ xˡ≤y where y≤xˡ : y ≤ x ˡ y≤xˡ = begin y ≈⟨ sym (proj₂ identity y) ⟩ y ∙ ε ≤⟨ compatibility ≤-refl (ˡ-expand x) ⟩ y ∙ (x ∙ x ˡ) ≈⟨ sym (assoc y x (x ˡ)) ⟩ (y ∙ x) ∙ x ˡ ≤⟨ compatibility y-contract ≤-refl ⟩ ε ∙ x ˡ ≈⟨ proj₁ identity (x ˡ) ⟩ x ˡ ∎ xˡ≤y : x ˡ ≤ y xˡ≤y = begin x ˡ ≈⟨ sym (proj₂ identity (x ˡ)) ⟩ x ˡ ∙ ε ≤⟨ compatibility ≤-refl y-expand ⟩ x ˡ ∙ (x ∙ y) ≈⟨ sym (assoc (x ˡ) x y) ⟩ (x ˡ ∙ x) ∙ y ≤⟨ compatibility (ˡ-contract x) ≤-refl ⟩ ε ∙ y ≈⟨ proj₁ identity y ⟩ y ∎ ʳ-unique : ∀ {x y} → y RightAdjointOf x → y ≈ x ʳ ʳ-unique {x} {y} (y-contract , y-expand) = antisym y≤xʳ xʳ≤y where xʳ≤y : x ʳ ≤ y xʳ≤y = begin x ʳ ≈⟨ sym (proj₁ identity (x ʳ)) ⟩ ε ∙ x ʳ ≤⟨ compatibility y-expand ≤-refl ⟩ (y ∙ x) ∙ x ʳ ≈⟨ assoc y x (x ʳ) ⟩ y ∙ (x ∙ x ʳ) ≤⟨ compatibility ≤-refl (ʳ-contract x) ⟩ y ∙ ε ≈⟨ proj₂ identity y ⟩ y ∎ y≤xʳ : y ≤ x ʳ y≤xʳ = begin y ≈⟨ sym (proj₁ identity y) ⟩ ε ∙ y ≤⟨ compatibility (ʳ-expand x) ≤-refl ⟩ (x ʳ ∙ x) ∙ y ≈⟨ assoc (x ʳ) x y ⟩ x ʳ ∙ (x ∙ y) ≤⟨ compatibility ≤-refl y-contract ⟩ x ʳ ∙ ε ≈⟨ proj₂ identity (x ʳ) ⟩ x ʳ ∎ ˡ-identity : ε ˡ ≈ ε ˡ-identity = antisym εˡ≤ε ε≤εˡ where εˡ≤ε : ε ˡ ≤ ε εˡ≤ε = begin ε ˡ ≈⟨ sym (proj₂ identity (ε ˡ)) ⟩ ε ˡ ∙ ε ≤⟨ ˡ-contract ε ⟩ ε ∎ ε≤εˡ : ε ≤ ε ˡ ε≤εˡ = begin ε ≤⟨ ˡ-expand ε ⟩ ε ∙ ε ˡ ≈⟨ proj₁ identity (ε ˡ) ⟩ ε ˡ ∎ ʳ-identity : ε ʳ ≈ ε ʳ-identity = antisym εʳ≤ε ε≤εʳ where εʳ≤ε : ε ʳ ≤ ε εʳ≤ε = begin ε ʳ ≈⟨ sym (proj₁ identity (ε ʳ)) ⟩ ε ∙ ε ʳ ≤⟨ ʳ-contract ε ⟩ ε ∎ ε≤εʳ : ε ≤ ε ʳ ε≤εʳ = begin ε ≤⟨ ʳ-expand ε ⟩ ε ʳ ∙ ε ≈⟨ proj₂ identity (ε ʳ) ⟩ ε ʳ ∎ ˡ-distrib : ∀ x y → y ˡ ∙ x ˡ ≈ (x ∙ y) ˡ ˡ-distrib x y = ˡ-unique ([yˡxˡ][xy]≤ε , ε≤[xy][yˡxˡ]) where [yˡxˡ][xy]≤ε : (y ˡ ∙ x ˡ) ∙ (x ∙ y) ≤ ε [yˡxˡ][xy]≤ε = begin (y ˡ ∙ x ˡ) ∙ (x ∙ y) ≈⟨ sym (assoc (y ˡ ∙ x ˡ) x y) ⟩ ((y ˡ ∙ x ˡ) ∙ x) ∙ y ≈⟨ ∙-cong (assoc (y ˡ) (x ˡ) x) refl ⟩ (y ˡ ∙ (x ˡ ∙ x)) ∙ y ≤⟨ compatibility (compatibility ≤-refl (ˡ-contract x)) ≤-refl ⟩ y ˡ ∙ ε ∙ y ≈⟨ ∙-cong (proj₂ identity (y ˡ)) refl ⟩ y ˡ ∙ y ≤⟨ ˡ-contract y ⟩ ε ∎ ε≤[xy][yˡxˡ] : ε ≤ (x ∙ y) ∙ (y ˡ ∙ x ˡ) ε≤[xy][yˡxˡ] = begin ε ≤⟨ ˡ-expand x ⟩ x ∙ x ˡ ≈⟨ ∙-cong (sym (proj₂ identity x)) refl ⟩ x ∙ ε ∙ x ˡ ≤⟨ compatibility (compatibility ≤-refl (ˡ-expand y)) ≤-refl ⟩ (x ∙ (y ∙ y ˡ) ∙ x ˡ) ≈⟨ ∙-cong (sym (assoc x y (y ˡ))) refl ⟩ ((x ∙ y) ∙ y ˡ) ∙ x ˡ ≈⟨ assoc (x ∙ y) (y ˡ) (x ˡ) ⟩ (x ∙ y) ∙ (y ˡ ∙ x ˡ) ∎ ʳ-distrib : ∀ x y → y ʳ ∙ x ʳ ≈ (x ∙ y) ʳ ʳ-distrib x y = ʳ-unique ([xy][yʳxʳ]≤ε , ε≤[xy][yʳxʳ]) where [xy][yʳxʳ]≤ε : (x ∙ y) ∙ (y ʳ ∙ x ʳ) ≤ ε [xy][yʳxʳ]≤ε = begin (x ∙ y) ∙ (y ʳ ∙ x ʳ) ≈⟨ sym (assoc (x ∙ y) (y ʳ) (x ʳ)) ⟩ ((x ∙ y) ∙ y ʳ) ∙ x ʳ ≈⟨ ∙-cong (assoc x y (y ʳ)) refl ⟩ (x ∙ (y ∙ y ʳ) ∙ x ʳ) ≤⟨ compatibility (compatibility ≤-refl (ʳ-contract y)) ≤-refl ⟩ x ∙ ε ∙ x ʳ ≈⟨ ∙-cong (proj₂ identity x) refl ⟩ x ∙ x ʳ ≤⟨ ʳ-contract x ⟩ ε ∎ ε≤[xy][yʳxʳ] : ε ≤ (y ʳ ∙ x ʳ) ∙ (x ∙ y) ε≤[xy][yʳxʳ] = begin ε ≤⟨ ʳ-expand y ⟩ y ʳ ∙ y ≈⟨ ∙-cong refl (sym (proj₁ identity y)) ⟩ y ʳ ∙ (ε ∙ y) ≤⟨ compatibility ≤-refl (compatibility (ʳ-expand x) ≤-refl) ⟩ y ʳ ∙ ((x ʳ ∙ x) ∙ y) ≈⟨ ∙-cong refl (assoc (x ʳ) x y) ⟩ y ʳ ∙ (x ʳ ∙ (x ∙ y)) ≈⟨ sym (assoc (y ʳ) (x ʳ) (x ∙ y)) ⟩ (y ʳ ∙ x ʳ) ∙ (x ∙ y) ∎ ˡ-contra : ∀ {x y} → x ≤ y → y ˡ ≤ x ˡ ˡ-contra {x} {y} x≤y = begin y ˡ ≈⟨ sym (proj₂ identity (y ˡ)) ⟩ y ˡ ∙ ε ≤⟨ compatibility ≤-refl (ˡ-expand x) ⟩ y ˡ ∙ (x ∙ x ˡ) ≈⟨ sym (assoc (y ˡ) x (x ˡ)) ⟩ (y ˡ ∙ x) ∙ x ˡ ≤⟨ substitutivity x≤y ⟩ (y ˡ ∙ y) ∙ x ˡ ≤⟨ compatibility (ˡ-contract y) ≤-refl ⟩ ε ∙ x ˡ ≈⟨ proj₁ identity (x ˡ) ⟩ x ˡ ∎ ʳ-contra : ∀ {x y} → x ≤ y → y ʳ ≤ x ʳ ʳ-contra {x} {y} x≤y = begin y ʳ ≈⟨ sym (proj₁ identity (y ʳ)) ⟩ ε ∙ y ʳ ≤⟨ compatibility (ʳ-expand x) ≤-refl ⟩ (x ʳ ∙ x) ∙ y ʳ ≤⟨ substitutivity x≤y ⟩ (x ʳ ∙ y) ∙ y ʳ ≈⟨ assoc (x ʳ) y (y ʳ) ⟩ x ʳ ∙ (y ∙ y ʳ) ≤⟨ compatibility ≤-refl (ʳ-contract y) ⟩ x ʳ ∙ ε ≈⟨ proj₂ identity (x ʳ) ⟩ x ʳ ∎ ʳˡ-cancel : ∀ x → x ʳ ˡ ≈ x ʳˡ-cancel x = sym (ˡ-unique (ʳ-contract x , ʳ-expand x)) ˡʳ-cancel : ∀ x → x ˡ ʳ ≈ x ˡʳ-cancel x = sym (ʳ-unique (ˡ-contract x , ˡ-expand x))
33.195122
95
0.46314
3713d04b67aff16564da8a1e0d2861cec8497f5e
2,228
agda
Agda
agda-stdlib/src/Axiom/Extensionality/Propositional.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Axiom/Extensionality/Propositional.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Axiom/Extensionality/Propositional.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Results concerning function extensionality for propositional equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Axiom.Extensionality.Propositional where open import Function.Base open import Level using (Level; _⊔_; suc; lift) open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality.Core ------------------------------------------------------------------------ -- Function extensionality states that if two functions are -- propositionally equal for every input, then the functions themselves -- must be propositionally equal. Extensionality : (a b : Level) → Set _ Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g -- A variant for implicit function spaces. ExtensionalityImplicit : (a b : Level) → Set _ ExtensionalityImplicit a b = {A : Set a} {B : A → Set b} {f g : {x : A} → B x} → (∀ {x} → f {x} ≡ g {x}) → (λ {x} → f {x}) ≡ (λ {x} → g {x}) ------------------------------------------------------------------------ -- Properties -- If extensionality holds for a given universe level, then it also -- holds for lower ones. lower-extensionality : ∀ {a₁ b₁} a₂ b₂ → Extensionality (a₁ ⊔ a₂) (b₁ ⊔ b₂) → Extensionality a₁ b₁ lower-extensionality a₂ b₂ ext f≡g = cong (λ h → Level.lower ∘ h ∘ lift) $ ext (cong (lift {ℓ = b₂}) ∘ f≡g ∘ Level.lower {ℓ = a₂}) -- Functional extensionality implies a form of extensionality for -- Π-types. ∀-extensionality : ∀ {a b} → Extensionality a (suc b) → {A : Set a} (B₁ B₂ : A → Set b) → (∀ x → B₁ x ≡ B₂ x) → (∀ x → B₁ x) ≡ (∀ x → B₂ x) ∀-extensionality ext B₁ B₂ B₁≡B₂ with ext B₁≡B₂ ... | refl = refl -- Extensionality for explicit function spaces implies extensionality -- for implicit function spaces. implicit-extensionality : ∀ {a b} → Extensionality a b → ExtensionalityImplicit a b implicit-extensionality ext f≡g = cong _$- (ext (λ x → f≡g))
35.365079
74
0.530072
528511a0d14a983178803e4f449d4e35becada3c
782
agda
Agda
test/Succeed/ParenthesizedAlias.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/ParenthesizedAlias.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/ParenthesizedAlias.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-11-28 -- Aliases in parentheses should also parse. -- Parenthesized aliases are accepted in lets. -- With type annotation, parenthesized aliases are accepted in wheres. id0 : {A : Set} → A → A id0 {A} x = let z = y in z where y : A y = x id1 : {A : Set} → A → A id1 {A} x = let (z) = y in z where y : A (y) = x id2 : {A : Set} → A → A id2 {A} x = let ((z)) = y in z where y : A ((y)) = x works0 : {A : Set} → A → A works0 x = let z = y in z where y = x -- Without type annotation, parenthesized aliases should also be accepted in wheres. -- Should work: test1 : {A : Set} → A → A test1 x = let (z) = y in z where (y) = x -- Should work: test2 : {A : Set} → A → A test2 x = let ((z)) = y in z where ((y)) = x
17.772727
84
0.542199
cb8de75c462e3281d28c3085d5633902ac4e8754
3,730
agda
Agda
LibraBFT/Impl/Properties/Aux.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Properties/Aux.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Properties/Aux.agda
haroldcarr/bft-consensus-agda
34e4627855fb198665d0c98f377403a906ba75d7
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import LibraBFT.Prelude open import LibraBFT.Base.PKCS open import LibraBFT.Concrete.Obligations open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Util.Crypto open EpochConfig open import LibraBFT.Yasm.Yasm (ℓ+1 0ℓ) EpochConfig epochId authorsN ConcSysParms NodeId-PK-OK -- In this module, we will prove a structural property that any new signed message produced by an -- honest handler from a reachable state correctly identifies the sender, and is for a valid epoch -- of which that sender is a member. It is postulated for now, because the property does not yet -- hold for our fake implementation that does not actually comply. A proof outline and notes are -- included below, which we can finish once we do have a compliant implementation. module LibraBFT.Impl.Properties.Aux where -- This proof is complete except for pieces that are directly about the handlers. Our -- fake/simple handler does not yet obey the needed properties, so we can't finish this yet. impl-sps-avp : StepPeerState-AllValidParts -- In our fake/simple implementation, init and handling V and C msgs do not send any messages impl-sps-avp _ hpk (step-init ix) m∈outs part⊂m ver = ⊥-elim (¬Any[] m∈outs) impl-sps-avp _ hpk (step-msg {sndr , V vm} _ _) m∈outs _ _ = ⊥-elim (¬Any[] m∈outs) impl-sps-avp _ hpk (step-msg {sndr , C cm} _ _) m∈outs _ _ = ⊥-elim (¬Any[] m∈outs) -- These aren't true yet, because processProposalMsgM sends fake votes that don't follow the rules for ValidPartForPK impl-sps-avp preach hpk (step-msg {sndr , P pm} m∈pool ps≡) m∈outs v⊂m ver with m∈outs -- Handler sends at most one vote, so it can't be "there" ...| there {xs = xs} imp = ⊥-elim (¬Any[] imp) ...| here refl with v⊂m ...| vote∈qc vs∈qc rbld≈ qc∈m with qc∈m ...| xxx = {!x!} -- We will prove that votes represented in the SyncInfo of a -- proposal message were sent before, so these will be inj₂. -- This will be based on an invariant of the implementation, for -- example that the QCs included in the SyncInfo of a VoteMsg have -- been sent before. We will need to use hash injectivity and -- signature injectivity to ensure a different vote was not sent -- previously with the same signature. impl-sps-avp {pk = pk} {α = α} {st = st} preach hpk (step-msg {sndr , P pm} m∈pool ps≡) m∈outs v⊂m ver | here refl | vote∈vm {si} with MsgWithSig∈? {pk} {ver-signature ver} {msgPool st} ...| yes msg∈ = inj₂ msg∈ ...| no msg∉ = inj₁ ((mkValidSenderForPK {! epoch !} -- We will need an invariant that says the epoch -- used by a voter is "in range". (EC-lookup' (availEpochs st) {!!}) refl {! !} -- The implementation will need to check that the voter is a member of -- the epoch of the message it's sending. ) , msg∉)
61.147541
131
0.604558
0d2281c71c10ca617259b49a2213bcd5318e1872
2,635
agda
Agda
Syntax/Number.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Syntax/Number.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Syntax/Number.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Syntax.Number where import Lvl open import Logic.Propositional open import Numeral.Natural open import Type record Numeral {ℓ} (T : Type{ℓ}) : Typeω where field {restriction-ℓ} : Lvl.Level restriction : ℕ → Type{restriction-ℓ} num : (n : ℕ) → ⦃ _ : restriction(n) ⦄ → T open Numeral ⦃ ... ⦄ public using (num) {-# BUILTIN FROMNAT num #-} InfiniteNumeral = Numeral module InfiniteNumeral {ℓ} {T : Type{ℓ}} where intro : (ℕ → T) → InfiniteNumeral(T) Numeral.restriction-ℓ (intro(_)) = Lvl.𝟎 Numeral.restriction (intro(_)) _ = ⊤ Numeral.num (intro(f)) n ⦃ _ ⦄ = f(n) -- record InfiniteNumeral {ℓ} (T : Type{ℓ}) : Type{ℓ} where -- record InfiniteNumeral {ℓ} (T : Type{ℓ}) : Type{ℓ} where -- field -- num : ℕ → T -- instance -- Numeral-from-InfiniteNumeral : ∀{ℓ}{T} → ⦃ _ : InfiniteNumeral{ℓ}(T) ⦄ → Numeral{ℓ}(T) -- Numeral.restriction-ℓ ( Numeral-from-InfiniteNumeral ) = Lvl.𝟎 -- Numeral.restriction ( Numeral-from-InfiniteNumeral ) (_) = ⊤ -- num ⦃ Numeral-from-InfiniteNumeral ⦃ infNum ⦄ ⦄ (n) ⦃ _ ⦄ = InfiniteNumeral.num(infNum) (n) instance ℕ-InfiniteNumeral : InfiniteNumeral (ℕ) ℕ-InfiniteNumeral = InfiniteNumeral.intro(id) where id : ℕ → ℕ id x = x instance Level-InfiniteNumeral : InfiniteNumeral (Lvl.Level) Level-InfiniteNumeral = InfiniteNumeral.intro(f) where f : ℕ → Lvl.Level f(ℕ.𝟎) = Lvl.𝟎 f(ℕ.𝐒(n)) = Lvl.𝐒(f(n)) record NegativeNumeral {ℓ} (T : Type{ℓ}) : Typeω where field {restriction-ℓ} : Lvl.Level restriction : ℕ → Type{restriction-ℓ} num : (n : ℕ) → ⦃ _ : restriction(n) ⦄ → T open NegativeNumeral ⦃ ... ⦄ public using () renaming (num to -num) {-# BUILTIN FROMNEG -num #-} InfiniteNegativeNumeral = NegativeNumeral module InfiniteNegativeNumeral {ℓ} {T : Type{ℓ}} where intro : (ℕ → T) → InfiniteNegativeNumeral(T) NegativeNumeral.restriction-ℓ (intro(_)) = Lvl.𝟎 NegativeNumeral.restriction (intro(_)) _ = ⊤ NegativeNumeral.num (intro(f)) n ⦃ _ ⦄ = f(n) -- record InfiniteNegativeNumeral {ℓ} (T : Type{ℓ}) : Type{ℓ} where -- field -- num : ℕ → T -- open InfiniteNegativeNumeral ⦃ ... ⦄ public -- instance -- NegativeNumeral-from-InfiniteNegativeNumeral : ∀{ℓ}{T} → ⦃ _ : InfiniteNegativeNumeral{ℓ}(T) ⦄ → NegativeNumeral{ℓ}(T) -- NegativeNumeral.restriction-ℓ ( NegativeNumeral-from-InfiniteNegativeNumeral ) = Lvl.𝟎 -- NegativeNumeral.restriction ( NegativeNumeral-from-InfiniteNegativeNumeral ) (_) = ⊤ -- -num ⦃ NegativeNumeral-from-InfiniteNegativeNumeral ⦃ infNegNum ⦄ ⦄ (n) ⦃ _ ⦄ = InfiniteNegativeNumeral.num(infNegNum) (n)
35.608108
127
0.650095
21e9db07e1a8f32aa672875550a3d411f5c90c75
7,800
agda
Agda
test/asset/agda-stdlib-1.0/Data/Nat/Divisibility.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat/Divisibility.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Nat/Divisibility.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Divisibility ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.Divisibility where open import Algebra open import Data.Nat as Nat open import Data.Nat.DivMod open import Data.Nat.Properties open import Data.Nat.Solver open import Data.Fin using (Fin; zero; suc; toℕ) import Data.Fin.Properties as FP open import Data.Product open import Function open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Nullary import Relation.Nullary.Decidable as Dec open import Relation.Binary import Relation.Binary.Reasoning.PartialOrder as POR open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; trans; cong; cong₂; subst) open +-*-Solver ------------------------------------------------------------------------ -- m ∣ n is inhabited iff m divides n. Some sources, like Hardy and -- Wright's "An Introduction to the Theory of Numbers", require m to -- be non-zero. However, some things become a bit nicer if m is -- allowed to be zero. For instance, _∣_ becomes a partial order, and -- the gcd of 0 and 0 becomes defined. infix 4 _∣_ _∤_ record _∣_ (m n : ℕ) : Set where constructor divides field quotient : ℕ equality : n ≡ quotient * m open _∣_ using (quotient) public _∤_ : Rel ℕ _ m ∤ n = ¬ (m ∣ n) ------------------------------------------------------------------------ -- _∣_ is a partial order ∣⇒≤ : ∀ {m n} → m ∣ suc n → m ≤ suc n ∣⇒≤ (divides zero ()) ∣⇒≤ {m} {n} (divides (suc q) eq) = begin m ≤⟨ m≤m+n m (q * m) ⟩ suc q * m ≡⟨ sym eq ⟩ suc n ∎ where open ≤-Reasoning ∣-reflexive : _≡_ ⇒ _∣_ ∣-reflexive {n} refl = divides 1 (sym (*-identityˡ n)) ∣-refl : Reflexive _∣_ ∣-refl = ∣-reflexive refl ∣-trans : Transitive _∣_ ∣-trans (divides p refl) (divides q refl) = divides (q * p) (sym (*-assoc q p _)) ∣-antisym : Antisymmetric _≡_ _∣_ ∣-antisym {m} {0} _ (divides q eq) = trans eq (*-comm q 0) ∣-antisym {0} {n} (divides p eq) _ = sym (trans eq (*-comm p 0)) ∣-antisym {suc m} {suc n} (divides p eq₁) (divides q eq₂) = ≤-antisym (∣⇒≤ (divides p eq₁)) (∣⇒≤ (divides q eq₂)) ∣-isPreorder : IsPreorder _≡_ _∣_ ∣-isPreorder = record { isEquivalence = PropEq.isEquivalence ; reflexive = ∣-reflexive ; trans = ∣-trans } ∣-preorder : Preorder _ _ _ ∣-preorder = record { isPreorder = ∣-isPreorder } ∣-isPartialOrder : IsPartialOrder _≡_ _∣_ ∣-isPartialOrder = record { isPreorder = ∣-isPreorder ; antisym = ∣-antisym } poset : Poset _ _ _ poset = record { Carrier = ℕ ; _≈_ = _≡_ ; _≤_ = _∣_ ; isPartialOrder = ∣-isPartialOrder } module ∣-Reasoning = POR poset hiding (_≈⟨_⟩_) renaming (_≤⟨_⟩_ to _∣⟨_⟩_) ------------------------------------------------------------------------ -- Simple properties of _∣_ infix 10 1∣_ _∣0 1∣_ : ∀ n → 1 ∣ n 1∣ n = divides n (sym (*-identityʳ n)) _∣0 : ∀ n → n ∣ 0 n ∣0 = divides 0 refl n∣n : ∀ {n} → n ∣ n n∣n = ∣-refl n∣m*n : ∀ m {n} → n ∣ m * n n∣m*n m = divides m refl m∣m*n : ∀ {m} n → m ∣ m * n m∣m*n n = divides n (*-comm _ n) 0∣⇒≡0 : ∀ {n} → 0 ∣ n → n ≡ 0 0∣⇒≡0 {n} 0∣n = ∣-antisym (n ∣0) 0∣n ∣1⇒≡1 : ∀ {n} → n ∣ 1 → n ≡ 1 ∣1⇒≡1 {n} n∣1 = ∣-antisym n∣1 (1∣ n) ------------------------------------------------------------------------ -- Operators and divisibility module _ where open PropEq.≡-Reasoning ∣m⇒∣m*n : ∀ {i m} n → i ∣ m → i ∣ m * n ∣m⇒∣m*n {i} {m} n (divides q eq) = divides (q * n) $ begin m * n ≡⟨ cong (_* n) eq ⟩ q * i * n ≡⟨ *-assoc q i n ⟩ q * (i * n) ≡⟨ cong (q *_) (*-comm i n) ⟩ q * (n * i) ≡⟨ sym (*-assoc q n i) ⟩ q * n * i ∎ ∣n⇒∣m*n : ∀ {i} m {n} → i ∣ n → i ∣ m * n ∣n⇒∣m*n {i} m {n} (divides q eq) = divides (m * q) $ begin m * n ≡⟨ cong (m *_) eq ⟩ m * (q * i) ≡⟨ sym (*-assoc m q i) ⟩ m * q * i ∎ ∣m∣n⇒∣m+n : ∀ {i m n} → i ∣ m → i ∣ n → i ∣ m + n ∣m∣n⇒∣m+n (divides p refl) (divides q refl) = divides (p + q) (sym (*-distribʳ-+ _ p q)) ∣m+n∣m⇒∣n : ∀ {i m n} → i ∣ m + n → i ∣ m → i ∣ n ∣m+n∣m⇒∣n {i} {m} {n} (divides p m+n≡p*i) (divides q m≡q*i) = divides (p ∸ q) $ begin n ≡⟨ sym (m+n∸n≡m n m) ⟩ n + m ∸ m ≡⟨ cong (_∸ m) (+-comm n m) ⟩ m + n ∸ m ≡⟨ cong₂ _∸_ m+n≡p*i m≡q*i ⟩ p * i ∸ q * i ≡⟨ sym (*-distribʳ-∸ i p q) ⟩ (p ∸ q) * i ∎ ∣m∸n∣n⇒∣m : ∀ i {m n} → n ≤ m → i ∣ m ∸ n → i ∣ n → i ∣ m ∣m∸n∣n⇒∣m i {m} {n} n≤m (divides p m∸n≡p*i) (divides q n≡q*o) = divides (p + q) $ begin m ≡⟨ sym (m+n∸m≡n n≤m) ⟩ n + (m ∸ n) ≡⟨ +-comm n (m ∸ n) ⟩ m ∸ n + n ≡⟨ cong₂ _+_ m∸n≡p*i n≡q*o ⟩ p * i + q * i ≡⟨ sym (*-distribʳ-+ i p q) ⟩ (p + q) * i ∎ *-cong : ∀ {i j} k → i ∣ j → k * i ∣ k * j *-cong {i} {j} k (divides q j≡q*i) = divides q $ begin k * j ≡⟨ cong (_*_ k) j≡q*i ⟩ k * (q * i) ≡⟨ sym (*-assoc k q i) ⟩ (k * q) * i ≡⟨ cong (_* i) (*-comm k q) ⟩ (q * k) * i ≡⟨ *-assoc q k i ⟩ q * (k * i) ∎ /-cong : ∀ {i j} k → suc k * i ∣ suc k * j → i ∣ j /-cong {i} {j} k (divides q eq) = divides q (*-cancelʳ-≡ j (q * i) (begin j * (suc k) ≡⟨ *-comm j (suc k) ⟩ (suc k) * j ≡⟨ eq ⟩ q * ((suc k) * i) ≡⟨ cong (q *_) (*-comm (suc k) i) ⟩ q * (i * (suc k)) ≡⟨ sym (*-assoc q i (suc k)) ⟩ (q * i) * (suc k) ∎)) m%n≡0⇒n∣m : ∀ m n → m % (suc n) ≡ 0 → suc n ∣ m m%n≡0⇒n∣m m n eq = divides (m div (suc n)) (begin m ≡⟨ a≡a%n+[a/n]*n m n ⟩ m % (suc n) + m div (suc n) * (suc n) ≡⟨ cong₂ _+_ eq refl ⟩ m div (suc n) * (suc n) ∎) n∣m⇒m%n≡0 : ∀ m n → suc n ∣ m → m % (suc n) ≡ 0 n∣m⇒m%n≡0 m n (divides v eq) = begin m % (suc n) ≡⟨ cong (_% (suc n)) eq ⟩ (v * suc n) % (suc n) ≡⟨ kn%n≡0 v n ⟩ 0 ∎ m%n≡0⇔n∣m : ∀ m n → m % (suc n) ≡ 0 ⇔ suc n ∣ m m%n≡0⇔n∣m m n = equivalence (m%n≡0⇒n∣m m n) (n∣m⇒m%n≡0 m n) -- Divisibility is decidable. infix 4 _∣?_ _∣?_ : Decidable _∣_ zero ∣? zero = yes (0 ∣0) zero ∣? suc m = no ((λ()) ∘′ 0∣⇒≡0) suc n ∣? m = Dec.map (m%n≡0⇔n∣m m n) (m % (suc n) ≟ 0) ------------------------------------------------------------------------ -- DEPRECATED - please use new names as continuing support for the old -- names is not guaranteed. ∣-+ = ∣m∣n⇒∣m+n {-# WARNING_ON_USAGE ∣-+ "Warning: ∣-+ was deprecated in v0.14. Please use ∣m∣n⇒∣m+n instead." #-} ∣-∸ = ∣m+n∣m⇒∣n {-# WARNING_ON_USAGE ∣-∸ "Warning: ∣-∸ was deprecated in v0.14. Please use ∣m+n∣m⇒∣n instead." #-} ∣-* = n∣m*n {-# WARNING_ON_USAGE ∣-* "Warning: ∣-* was deprecated in v0.14. Please use n∣m*n instead." #-} nonZeroDivisor-lemma : ∀ m q (r : Fin (1 + m)) → toℕ r ≢ 0 → 1 + m ∤ toℕ r + q * (1 + m) nonZeroDivisor-lemma m zero r r≢zero (divides zero eq) = r≢zero $ begin toℕ r ≡⟨ sym (*-identityˡ (toℕ r)) ⟩ 1 * toℕ r ≡⟨ eq ⟩ 0 ∎ where open PropEq.≡-Reasoning nonZeroDivisor-lemma m zero r r≢zero (divides (suc q) eq) = i+1+j≰i m $ begin m + suc (q * suc m) ≡⟨ +-suc m (q * suc m) ⟩ suc (m + q * suc m) ≡⟨ sym eq ⟩ 1 * toℕ r ≡⟨ *-identityˡ (toℕ r) ⟩ toℕ r ≤⟨ FP.toℕ≤pred[n] r ⟩ m ∎ where open ≤-Reasoning nonZeroDivisor-lemma m (suc q) r r≢zero d = nonZeroDivisor-lemma m q r r≢zero (∣m+n∣m⇒∣n d' ∣-refl) where lem = solve 3 (λ m r q → r :+ (m :+ q) := m :+ (r :+ q)) refl (suc m) (toℕ r) (q * suc m) d' = subst (1 + m ∣_) lem d {-# WARNING_ON_USAGE nonZeroDivisor-lemma "Warning: nonZeroDivisor-lemma was deprecated in v0.17." #-}
30.350195
72
0.470641
8b3f4f03c40f75e9d2edfa6a4ee7b550495b5152
630
agda
Agda
Pi/Everything.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
Pi/Everything.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
Pi/Everything.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
module Pi.Everything where open import Pi.Syntax -- Syntax of Pi open import Pi.Opsem -- Abstract machine semantics of Pi open import Pi.AuxLemmas -- Some auxiliary lemmas about opsem for forward/backward deterministic proof open import Pi.NoRepeat -- Forward/backward deterministic lemmas and Non-repeating lemma open import Pi.Eval -- Evaluator for Pi open import Pi.Interp -- Big-step intepreter of Pi open import Pi.Invariants -- Some invariants about abstract machine semantics open import Pi.Properties -- Properties of Pi open import Pi.Examples -- Examples open import Pi.Category -- Pi Category
52.5
103
0.768254
2eb52a30b59fc0bc6a8b1e7b681795f93e6ce7dd
19,154
agda
Agda
test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Lemmas.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Lemmas.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/Fin/Substitution/Lemmas.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Substitution lemmas ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Substitution.Lemmas where import Category.Applicative.Indexed as Applicative open import Data.Fin.Substitution open import Data.Nat hiding (_⊔_) open import Data.Fin using (Fin; zero; suc; lift) open import Data.Vec import Data.Vec.Properties as VecProp open import Function as Fun using (_∘_; _$_) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; sym; cong; cong₂) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; ε; _◅_; _▻_) open PropEq.≡-Reasoning open import Level using (Level; _⊔_) open import Relation.Unary using (Pred) -- A lemma which does not refer to any substitutions. lift-commutes : ∀ {n} k j (x : Fin (j + (k + n))) → lift j suc (lift j (lift k suc) x) ≡ lift j (lift (suc k) suc) (lift j suc x) lift-commutes k zero x = refl lift-commutes k (suc j) zero = refl lift-commutes k (suc j) (suc x) = cong suc (lift-commutes k j x) -- The modules below prove a number of substitution lemmas, on the -- assumption that the underlying substitution machinery satisfies -- certain properties. record Lemmas₀ {ℓ : Level} (T : Pred ℕ ℓ) : Set ℓ where field simple : Simple T open Simple simple extensionality : ∀ {m n} {ρ₁ ρ₂ : Sub T m n} → (∀ x → lookup ρ₁ x ≡ lookup ρ₂ x) → ρ₁ ≡ ρ₂ extensionality {ρ₁ = []} {[]} hyp = refl extensionality {ρ₁ = t₁ ∷ ρ₁} { t₂ ∷ ρ₂} hyp with hyp zero extensionality {ρ₁ = t₁ ∷ ρ₁} {.t₁ ∷ ρ₂} hyp | refl = cong (_∷_ t₁) (extensionality (hyp ∘ suc)) id-↑⋆ : ∀ {n} k → id ↑⋆ k ≡ id {k + n} id-↑⋆ zero = refl id-↑⋆ (suc k) = begin (id ↑⋆ k) ↑ ≡⟨ cong _↑ (id-↑⋆ k) ⟩ id ↑ ∎ lookup-map-weaken-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} → lookup (map weaken ρ ↑⋆ k) x ≡ lookup ((ρ ↑) ↑⋆ k) (lift k suc x) lookup-map-weaken-↑⋆ zero x = refl lookup-map-weaken-↑⋆ (suc k) zero = refl lookup-map-weaken-↑⋆ (suc k) (suc x) {ρ} = begin lookup (map weaken (map weaken ρ ↑⋆ k)) x ≡⟨ VecProp.lookup-map x weaken (map weaken ρ ↑⋆ k) ⟩ weaken (lookup (map weaken ρ ↑⋆ k) x) ≡⟨ cong weaken (lookup-map-weaken-↑⋆ k x) ⟩ weaken (lookup ((ρ ↑) ↑⋆ k) (lift k suc x)) ≡⟨ sym $ VecProp.lookup-map (lift k suc x) weaken ((ρ ↑) ↑⋆ k) ⟩ lookup (map weaken ((ρ ↑) ↑⋆ k)) (lift k suc x) ∎ record Lemmas₁ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where field lemmas₀ : Lemmas₀ T open Lemmas₀ lemmas₀ open Simple simple field weaken-var : ∀ {n} {x : Fin n} → weaken (var x) ≡ var (suc x) lookup-map-weaken : ∀ {m n} x {y} {ρ : Sub T m n} → lookup ρ x ≡ var y → lookup (map weaken ρ) x ≡ var (suc y) lookup-map-weaken x {y} {ρ} hyp = begin lookup (map weaken ρ) x ≡⟨ VecProp.lookup-map x weaken ρ ⟩ weaken (lookup ρ x) ≡⟨ cong weaken hyp ⟩ weaken (var y) ≡⟨ weaken-var ⟩ var (suc y) ∎ mutual lookup-id : ∀ {n} (x : Fin n) → lookup id x ≡ var x lookup-id zero = refl lookup-id (suc x) = lookup-wk x lookup-wk : ∀ {n} (x : Fin n) → lookup wk x ≡ var (suc x) lookup-wk x = lookup-map-weaken x {ρ = id} (lookup-id x) lookup-↑⋆ : ∀ {m n} (f : Fin m → Fin n) {ρ : Sub T m n} → (∀ x → lookup ρ x ≡ var (f x)) → ∀ k x → lookup (ρ ↑⋆ k) x ≡ var (lift k f x) lookup-↑⋆ f hyp zero x = hyp x lookup-↑⋆ f hyp (suc k) zero = refl lookup-↑⋆ f {ρ = ρ} hyp (suc k) (suc x) = lookup-map-weaken x {ρ = ρ ↑⋆ k} (lookup-↑⋆ f hyp k x) lookup-lift-↑⋆ : ∀ {m n} (f : Fin n → Fin m) {ρ : Sub T m n} → (∀ x → lookup ρ (f x) ≡ var x) → ∀ k x → lookup (ρ ↑⋆ k) (lift k f x) ≡ var x lookup-lift-↑⋆ f hyp zero x = hyp x lookup-lift-↑⋆ f hyp (suc k) zero = refl lookup-lift-↑⋆ f {ρ = ρ} hyp (suc k) (suc x) = lookup-map-weaken (lift k f x) {ρ = ρ ↑⋆ k} (lookup-lift-↑⋆ f hyp k x) lookup-wk-↑⋆ : ∀ {n} k (x : Fin (k + n)) → lookup (wk ↑⋆ k) x ≡ var (lift k suc x) lookup-wk-↑⋆ = lookup-↑⋆ suc lookup-wk lookup-wk-↑⋆-↑⋆ : ∀ {n} k j (x : Fin (j + (k + n))) → lookup (wk ↑⋆ k ↑⋆ j) x ≡ var (lift j (lift k suc) x) lookup-wk-↑⋆-↑⋆ k = lookup-↑⋆ (lift k suc) (lookup-wk-↑⋆ k) lookup-sub-↑⋆ : ∀ {n t} k (x : Fin (k + n)) → lookup (sub t ↑⋆ k) (lift k suc x) ≡ var x lookup-sub-↑⋆ = lookup-lift-↑⋆ suc lookup-id open Lemmas₀ lemmas₀ public record Lemmas₂ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where field lemmas₁ : Lemmas₁ T application : Application T T open Lemmas₁ lemmas₁ subst : Subst T subst = record { simple = simple; application = application } open Subst subst field var-/ : ∀ {m n x} {ρ : Sub T m n} → var x / ρ ≡ lookup ρ x suc-/-sub : ∀ {n x} {t : T n} → var (suc x) / sub t ≡ var x suc-/-sub {x = x} {t} = begin var (suc x) / sub t ≡⟨ var-/ ⟩ lookup (sub t) (suc x) ≡⟨ refl ⟩ lookup id x ≡⟨ lookup-id x ⟩ var x ∎ lookup-⊙ : ∀ {m n k} x {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} → lookup (ρ₁ ⊙ ρ₂) x ≡ lookup ρ₁ x / ρ₂ lookup-⊙ x {ρ₁} {ρ₂} = VecProp.lookup-map x (λ t → t / ρ₂) ρ₁ lookup-⨀ : ∀ {m n} x (ρs : Subs T m n) → lookup (⨀ ρs) x ≡ var x /✶ ρs lookup-⨀ x ε = lookup-id x lookup-⨀ x (ρ ◅ ε) = sym var-/ lookup-⨀ x (ρ ◅ (ρ′ ◅ ρs′)) = begin lookup (⨀ (ρ ◅ ρs)) x ≡⟨ refl ⟩ lookup (⨀ ρs ⊙ ρ) x ≡⟨ lookup-⊙ x {ρ₁ = ⨀ (ρ′ ◅ ρs′)} ⟩ lookup (⨀ ρs) x / ρ ≡⟨ cong₂ _/_ (lookup-⨀ x (ρ′ ◅ ρs′)) refl ⟩ var x /✶ ρs / ρ ∎ where ρs = ρ′ ◅ ρs′ id-⊙ : ∀ {m n} {ρ : Sub T m n} → id ⊙ ρ ≡ ρ id-⊙ {ρ = ρ} = extensionality λ x → begin lookup (id ⊙ ρ) x ≡⟨ lookup-⊙ x {ρ₁ = id} ⟩ lookup id x / ρ ≡⟨ cong₂ _/_ (lookup-id x) refl ⟩ var x / ρ ≡⟨ var-/ ⟩ lookup ρ x ∎ lookup-wk-↑⋆-⊙ : ∀ {m n} k {x} {ρ : Sub T (k + suc m) n} → lookup (wk ↑⋆ k ⊙ ρ) x ≡ lookup ρ (lift k suc x) lookup-wk-↑⋆-⊙ k {x} {ρ} = begin lookup (wk ↑⋆ k ⊙ ρ) x ≡⟨ lookup-⊙ x {ρ₁ = wk ↑⋆ k} ⟩ lookup (wk ↑⋆ k) x / ρ ≡⟨ cong₂ _/_ (lookup-wk-↑⋆ k x) refl ⟩ var (lift k suc x) / ρ ≡⟨ var-/ ⟩ lookup ρ (lift k suc x) ∎ wk-⊙-sub′ : ∀ {n} {t : T n} k → wk ↑⋆ k ⊙ sub t ↑⋆ k ≡ id wk-⊙-sub′ {t = t} k = extensionality λ x → begin lookup (wk ↑⋆ k ⊙ sub t ↑⋆ k) x ≡⟨ lookup-wk-↑⋆-⊙ k ⟩ lookup (sub t ↑⋆ k) (lift k suc x) ≡⟨ lookup-sub-↑⋆ k x ⟩ var x ≡⟨ sym (lookup-id x) ⟩ lookup id x ∎ wk-⊙-sub : ∀ {n} {t : T n} → wk ⊙ sub t ≡ id wk-⊙-sub = wk-⊙-sub′ zero var-/-wk-↑⋆ : ∀ {n} k (x : Fin (k + n)) → var x / wk ↑⋆ k ≡ var (lift k suc x) var-/-wk-↑⋆ k x = begin var x / wk ↑⋆ k ≡⟨ var-/ ⟩ lookup (wk ↑⋆ k) x ≡⟨ lookup-wk-↑⋆ k x ⟩ var (lift k suc x) ∎ wk-↑⋆-⊙-wk : ∀ {n} k j → wk {n} ↑⋆ k ↑⋆ j ⊙ wk ↑⋆ j ≡ wk ↑⋆ j ⊙ wk ↑⋆ suc k ↑⋆ j wk-↑⋆-⊙-wk k j = extensionality λ x → begin lookup (wk ↑⋆ k ↑⋆ j ⊙ wk ↑⋆ j) x ≡⟨ lookup-⊙ x {ρ₁ = wk ↑⋆ k ↑⋆ j} ⟩ lookup (wk ↑⋆ k ↑⋆ j) x / wk ↑⋆ j ≡⟨ cong₂ _/_ (lookup-wk-↑⋆-↑⋆ k j x) refl ⟩ var (lift j (lift k suc) x) / wk ↑⋆ j ≡⟨ var-/-wk-↑⋆ j (lift j (lift k suc) x) ⟩ var (lift j suc (lift j (lift k suc) x)) ≡⟨ cong var (lift-commutes k j x) ⟩ var (lift j (lift (suc k) suc) (lift j suc x)) ≡⟨ sym (lookup-wk-↑⋆-↑⋆ (suc k) j (lift j suc x)) ⟩ lookup (wk ↑⋆ suc k ↑⋆ j) (lift j suc x) ≡⟨ sym var-/ ⟩ var (lift j suc x) / wk ↑⋆ suc k ↑⋆ j ≡⟨ cong₂ _/_ (sym (lookup-wk-↑⋆ j x)) refl ⟩ lookup (wk ↑⋆ j) x / wk ↑⋆ suc k ↑⋆ j ≡⟨ sym (lookup-⊙ x {ρ₁ = wk ↑⋆ j}) ⟩ lookup (wk ↑⋆ j ⊙ wk ↑⋆ suc k ↑⋆ j) x ∎ open Subst subst public hiding (simple; application) open Lemmas₁ lemmas₁ public record Lemmas₃ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where field lemmas₂ : Lemmas₂ T open Lemmas₂ lemmas₂ field /✶-↑✶ : ∀ {m n} (ρs₁ ρs₂ : Subs T m n) → (∀ k x → var x /✶ ρs₁ ↑✶ k ≡ var x /✶ ρs₂ ↑✶ k) → ∀ k t → t /✶ ρs₁ ↑✶ k ≡ t /✶ ρs₂ ↑✶ k /✶-↑✶′ : ∀ {m n} (ρs₁ ρs₂ : Subs T m n) → (∀ k → ⨀ (ρs₁ ↑✶ k) ≡ ⨀ (ρs₂ ↑✶ k)) → ∀ k t → t /✶ ρs₁ ↑✶ k ≡ t /✶ ρs₂ ↑✶ k /✶-↑✶′ ρs₁ ρs₂ hyp = /✶-↑✶ ρs₁ ρs₂ (λ k x → begin var x /✶ ρs₁ ↑✶ k ≡⟨ sym (lookup-⨀ x (ρs₁ ↑✶ k)) ⟩ lookup (⨀ (ρs₁ ↑✶ k)) x ≡⟨ cong (Fun.flip lookup x) (hyp k) ⟩ lookup (⨀ (ρs₂ ↑✶ k)) x ≡⟨ lookup-⨀ x (ρs₂ ↑✶ k) ⟩ var x /✶ ρs₂ ↑✶ k ∎) id-vanishes : ∀ {n} (t : T n) → t / id ≡ t id-vanishes = /✶-↑✶′ (ε ▻ id) ε id-↑⋆ zero ⊙-id : ∀ {m n} {ρ : Sub T m n} → ρ ⊙ id ≡ ρ ⊙-id {ρ = ρ} = begin map (λ t → t / id) ρ ≡⟨ VecProp.map-cong id-vanishes ρ ⟩ map Fun.id ρ ≡⟨ VecProp.map-id ρ ⟩ ρ ∎ open Lemmas₂ lemmas₂ public hiding (wk-⊙-sub′) record Lemmas₄ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where field lemmas₃ : Lemmas₃ T open Lemmas₃ lemmas₃ field /-wk : ∀ {n} {t : T n} → t / wk ≡ weaken t private ↑-distrib′ : ∀ {m n k} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} → (∀ t → t / ρ₂ / wk ≡ t / wk / ρ₂ ↑) → (ρ₁ ⊙ ρ₂) ↑ ≡ ρ₁ ↑ ⊙ ρ₂ ↑ ↑-distrib′ {ρ₁ = ρ₁} {ρ₂} hyp = begin (ρ₁ ⊙ ρ₂) ↑ ≡⟨ refl ⟩ var zero ∷ map weaken (ρ₁ ⊙ ρ₂) ≡⟨ cong₂ _∷_ (sym var-/) lemma ⟩ var zero / ρ₂ ↑ ∷ map weaken ρ₁ ⊙ ρ₂ ↑ ≡⟨ refl ⟩ ρ₁ ↑ ⊙ ρ₂ ↑ ∎ where lemma = begin map weaken (map (λ t → t / ρ₂) ρ₁) ≡⟨ sym (VecProp.map-∘ _ _ _) ⟩ map (λ t → weaken (t / ρ₂)) ρ₁ ≡⟨ VecProp.map-cong (λ t → begin weaken (t / ρ₂) ≡⟨ sym /-wk ⟩ t / ρ₂ / wk ≡⟨ hyp t ⟩ t / wk / ρ₂ ↑ ≡⟨ cong₂ _/_ /-wk refl ⟩ weaken t / ρ₂ ↑ ∎) ρ₁ ⟩ map (λ t → weaken t / ρ₂ ↑) ρ₁ ≡⟨ VecProp.map-∘ _ _ _ ⟩ map (λ t → t / ρ₂ ↑) (map weaken ρ₁) ∎ ↑⋆-distrib′ : ∀ {m n o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n o} → (∀ k t → t / ρ₂ ↑⋆ k / wk ≡ t / wk / ρ₂ ↑⋆ suc k) → ∀ k → (ρ₁ ⊙ ρ₂) ↑⋆ k ≡ ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k ↑⋆-distrib′ hyp zero = refl ↑⋆-distrib′ {ρ₁ = ρ₁} {ρ₂} hyp (suc k) = begin (ρ₁ ⊙ ρ₂) ↑⋆ suc k ≡⟨ cong _↑ (↑⋆-distrib′ hyp k) ⟩ (ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k) ↑ ≡⟨ ↑-distrib′ (hyp k) ⟩ ρ₁ ↑⋆ suc k ⊙ ρ₂ ↑⋆ suc k ∎ map-weaken : ∀ {m n} {ρ : Sub T m n} → map weaken ρ ≡ ρ ⊙ wk map-weaken {ρ = ρ} = begin map weaken ρ ≡⟨ VecProp.map-cong (λ _ → sym /-wk) ρ ⟩ map (λ t → t / wk) ρ ≡⟨ refl ⟩ ρ ⊙ wk ∎ private ⊙-wk′ : ∀ {m n} {ρ : Sub T m n} k → ρ ↑⋆ k ⊙ wk ↑⋆ k ≡ wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k ⊙-wk′ {ρ = ρ} k = sym (begin wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k ≡⟨ lemma ⟩ map weaken ρ ↑⋆ k ≡⟨ cong (λ ρ′ → ρ′ ↑⋆ k) map-weaken ⟩ (ρ ⊙ wk) ↑⋆ k ≡⟨ ↑⋆-distrib′ (λ k t → /✶-↑✶′ (ε ▻ wk ↑⋆ k ▻ wk) (ε ▻ wk ▻ wk ↑⋆ suc k) (wk-↑⋆-⊙-wk k) zero t) k ⟩ ρ ↑⋆ k ⊙ wk ↑⋆ k ∎) where lemma = extensionality λ x → begin lookup (wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k) x ≡⟨ lookup-wk-↑⋆-⊙ k ⟩ lookup (ρ ↑ ↑⋆ k) (lift k suc x) ≡⟨ sym (lookup-map-weaken-↑⋆ k x) ⟩ lookup (map weaken ρ ↑⋆ k) x ∎ ⊙-wk : ∀ {m n} {ρ : Sub T m n} → ρ ⊙ wk ≡ wk ⊙ ρ ↑ ⊙-wk = ⊙-wk′ zero wk-commutes : ∀ {m n} {ρ : Sub T m n} t → t / ρ / wk ≡ t / wk / ρ ↑ wk-commutes {ρ = ρ} = /✶-↑✶′ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ ρ ↑) ⊙-wk′ zero ↑⋆-distrib : ∀ {m n o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n o} → ∀ k → (ρ₁ ⊙ ρ₂) ↑⋆ k ≡ ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k ↑⋆-distrib = ↑⋆-distrib′ (λ _ → wk-commutes) /-⊙ : ∀ {m n k} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} t → t / ρ₁ ⊙ ρ₂ ≡ t / ρ₁ / ρ₂ /-⊙ {ρ₁ = ρ₁} {ρ₂} t = /✶-↑✶′ (ε ▻ ρ₁ ⊙ ρ₂) (ε ▻ ρ₁ ▻ ρ₂) ↑⋆-distrib zero t ⊙-assoc : ∀ {m n k o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} {ρ₃ : Sub T k o} → ρ₁ ⊙ (ρ₂ ⊙ ρ₃) ≡ (ρ₁ ⊙ ρ₂) ⊙ ρ₃ ⊙-assoc {ρ₁ = ρ₁} {ρ₂} {ρ₃} = begin map (λ t → t / ρ₂ ⊙ ρ₃) ρ₁ ≡⟨ VecProp.map-cong /-⊙ ρ₁ ⟩ map (λ t → t / ρ₂ / ρ₃) ρ₁ ≡⟨ VecProp.map-∘ _ _ _ ⟩ map (λ t → t / ρ₃) (map (λ t → t / ρ₂) ρ₁) ∎ map-weaken-⊙-sub : ∀ {m n} {ρ : Sub T m n} {t} → map weaken ρ ⊙ sub t ≡ ρ map-weaken-⊙-sub {ρ = ρ} {t} = begin map weaken ρ ⊙ sub t ≡⟨ cong₂ _⊙_ map-weaken refl ⟩ ρ ⊙ wk ⊙ sub t ≡⟨ sym ⊙-assoc ⟩ ρ ⊙ (wk ⊙ sub t) ≡⟨ cong (_⊙_ ρ) wk-⊙-sub ⟩ ρ ⊙ id ≡⟨ ⊙-id ⟩ ρ ∎ sub-⊙ : ∀ {m n} {ρ : Sub T m n} t → sub t ⊙ ρ ≡ ρ ↑ ⊙ sub (t / ρ) sub-⊙ {ρ = ρ} t = begin sub t ⊙ ρ ≡⟨ refl ⟩ t / ρ ∷ id ⊙ ρ ≡⟨ cong (_∷_ (t / ρ)) id-⊙ ⟩ t / ρ ∷ ρ ≡⟨ cong (_∷_ (t / ρ)) (sym map-weaken-⊙-sub) ⟩ t / ρ ∷ map weaken ρ ⊙ sub (t / ρ) ≡⟨ cong₂ _∷_ (sym var-/) refl ⟩ ρ ↑ ⊙ sub (t / ρ) ∎ suc-/-↑ : ∀ {m n} {ρ : Sub T m n} x → var (suc x) / ρ ↑ ≡ var x / ρ / wk suc-/-↑ {ρ = ρ} x = begin var (suc x) / ρ ↑ ≡⟨ var-/ ⟩ lookup (map weaken ρ) x ≡⟨ cong (Fun.flip lookup x) (map-weaken {ρ = ρ}) ⟩ lookup (ρ ⊙ wk) x ≡⟨ lookup-⊙ x {ρ₁ = ρ} ⟩ lookup ρ x / wk ≡⟨ cong₂ _/_ (sym var-/) refl ⟩ var x / ρ / wk ∎ open Lemmas₃ lemmas₃ public hiding (/✶-↑✶; /✶-↑✶′; wk-↑⋆-⊙-wk; lookup-wk-↑⋆-⊙; lookup-map-weaken-↑⋆) -- For an example of how AppLemmas can be used, see -- Data.Fin.Substitution.List. record AppLemmas {ℓ₁ ℓ₂} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where field application : Application T₁ T₂ lemmas₄ : Lemmas₄ T₂ open Application application using (_/_; _/✶_) open Lemmas₄ lemmas₄ using (id; _⊙_; wk; weaken; sub; _↑; ⨀) renaming (_/_ to _⊘_) field id-vanishes : ∀ {n} (t : T₁ n) → t / id ≡ t /-⊙ : ∀ {m n k} {ρ₁ : Sub T₂ m n} {ρ₂ : Sub T₂ n k} t → t / ρ₁ ⊙ ρ₂ ≡ t / ρ₁ / ρ₂ private module L₄ = Lemmas₄ lemmas₄ /-⨀ : ∀ {m n} t (ρs : Subs T₂ m n) → t / ⨀ ρs ≡ t /✶ ρs /-⨀ t ε = id-vanishes t /-⨀ t (ρ ◅ ε) = refl /-⨀ t (ρ ◅ (ρ′ ◅ ρs′)) = begin t / ⨀ ρs ⊙ ρ ≡⟨ /-⊙ t ⟩ t / ⨀ ρs / ρ ≡⟨ cong₂ _/_ (/-⨀ t (ρ′ ◅ ρs′)) refl ⟩ t /✶ ρs / ρ ∎ where ρs = ρ′ ◅ ρs′ ⨀→/✶ : ∀ {m n} (ρs₁ ρs₂ : Subs T₂ m n) → ⨀ ρs₁ ≡ ⨀ ρs₂ → ∀ t → t /✶ ρs₁ ≡ t /✶ ρs₂ ⨀→/✶ ρs₁ ρs₂ hyp t = begin t /✶ ρs₁ ≡⟨ sym (/-⨀ t ρs₁) ⟩ t / ⨀ ρs₁ ≡⟨ cong (_/_ t) hyp ⟩ t / ⨀ ρs₂ ≡⟨ /-⨀ t ρs₂ ⟩ t /✶ ρs₂ ∎ wk-commutes : ∀ {m n} {ρ : Sub T₂ m n} t → t / ρ / wk ≡ t / wk / ρ ↑ wk-commutes {ρ = ρ} = ⨀→/✶ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ ρ ↑) L₄.⊙-wk sub-commutes : ∀ {m n} {t′} {ρ : Sub T₂ m n} t → t / sub t′ / ρ ≡ t / ρ ↑ / sub (t′ ⊘ ρ) sub-commutes {t′ = t′} {ρ} = ⨀→/✶ (ε ▻ sub t′ ▻ ρ) (ε ▻ ρ ↑ ▻ sub (t′ ⊘ ρ)) (L₄.sub-⊙ t′) wk-sub-vanishes : ∀ {n t′} (t : T₁ n) → t / wk / sub t′ ≡ t wk-sub-vanishes {t′ = t′} = ⨀→/✶ (ε ▻ wk ▻ sub t′) ε L₄.wk-⊙-sub /-weaken : ∀ {m n} {ρ : Sub T₂ m n} t → t / map weaken ρ ≡ t / ρ / wk /-weaken {ρ = ρ} = ⨀→/✶ (ε ▻ map weaken ρ) (ε ▻ ρ ▻ wk) L₄.map-weaken open Application application public open L₄ public hiding (application; _⊙_; _/_; _/✶_; id-vanishes; /-⊙; wk-commutes) record Lemmas₅ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where field lemmas₄ : Lemmas₄ T private module L₄ = Lemmas₄ lemmas₄ appLemmas : AppLemmas T T appLemmas = record { application = L₄.application ; lemmas₄ = lemmas₄ ; id-vanishes = L₄.id-vanishes ; /-⊙ = L₄./-⊙ } open AppLemmas appLemmas public hiding (lemmas₄) ------------------------------------------------------------------------ -- Instantiations and code for facilitating instantiations -- Lemmas about variable substitutions (renamings). module VarLemmas where open VarSubst lemmas₃ : Lemmas₃ Fin lemmas₃ = record { lemmas₂ = record { lemmas₁ = record { lemmas₀ = record { simple = simple } ; weaken-var = refl } ; application = application ; var-/ = refl } ; /✶-↑✶ = λ _ _ hyp → hyp } private module L₃ = Lemmas₃ lemmas₃ lemmas₅ : Lemmas₅ Fin lemmas₅ = record { lemmas₄ = record { lemmas₃ = lemmas₃ ; /-wk = L₃.lookup-wk _ } } open Lemmas₅ lemmas₅ public hiding (lemmas₃) -- Lemmas about "term" substitutions. record TermLemmas (T : ℕ → Set) : Set₁ where field termSubst : TermSubst T open TermSubst termSubst field app-var : ∀ {T′} {lift : Lift T′ T} {m n x} {ρ : Sub T′ m n} → app lift (var x) ρ ≡ Lift.lift lift (lookup ρ x) /✶-↑✶ : ∀ {T₁ T₂} {lift₁ : Lift T₁ T} {lift₂ : Lift T₂ T} → let open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) in ∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) → (∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) → ∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k private module V = VarLemmas lemmas₃ : Lemmas₃ T lemmas₃ = record { lemmas₂ = record { lemmas₁ = record { lemmas₀ = record { simple = simple } ; weaken-var = λ {_ x} → begin var x /Var V.wk ≡⟨ app-var ⟩ var (lookup V.wk x) ≡⟨ cong var (V.lookup-wk x) ⟩ var (suc x) ∎ } ; application = Subst.application subst ; var-/ = app-var } ; /✶-↑✶ = /✶-↑✶ } private module L₃ = Lemmas₃ lemmas₃ lemmas₅ : Lemmas₅ T lemmas₅ = record { lemmas₄ = record { lemmas₃ = lemmas₃ ; /-wk = λ {_ t} → begin t / wk ≡⟨ /✶-↑✶ (ε ▻ wk) (ε ▻ V.wk) (λ k x → begin var x / wk ↑⋆ k ≡⟨ L₃.var-/-wk-↑⋆ k x ⟩ var (lift k suc x) ≡⟨ cong var (sym (V.var-/-wk-↑⋆ k x)) ⟩ var (lookup (V._↑⋆_ V.wk k) x) ≡⟨ sym app-var ⟩ var x /Var V._↑⋆_ V.wk k ∎) zero t ⟩ t /Var V.wk ≡⟨⟩ weaken t ∎ } } open Lemmas₅ lemmas₅ public hiding (lemmas₃)
36.763916
117
0.435679
7c01c767383c44ce70d11d36c1501e79c8054043
2,961
agda
Agda
Lambda/Syntax.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
1
2021-02-13T14:48:45.000Z
2021-02-13T14:48:45.000Z
Lambda/Syntax.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
Lambda/Syntax.agda
nad/codata
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The syntax of, and a type system for, the untyped λ-calculus with -- constants ------------------------------------------------------------------------ module Lambda.Syntax where open import Codata.Musical.Notation open import Data.Nat open import Data.Fin hiding (_≤?_) open import Data.Vec open import Relation.Nullary.Decidable ------------------------------------------------------------------------ -- Terms -- Variables are represented using de Bruijn indices. infixl 9 _·_ data Tm (n : ℕ) : Set where con : (i : ℕ) → Tm n var : (x : Fin n) → Tm n ƛ : (t : Tm (suc n)) → Tm n _·_ : (t₁ t₂ : Tm n) → Tm n -- Convenient helper. vr : ∀ m {n} {m<n : True (suc m ≤? n)} → Tm n vr _ {m<n = m<n} = var (#_ _ {m<n = m<n}) ------------------------------------------------------------------------ -- Values, potentially with free variables module WHNF where data Value (n : ℕ) : Set where con : (i : ℕ) → Value n ƛ : (t : Tm (suc n)) → Value n ⌜_⌝ : ∀ {n} → Value n → Tm n ⌜ con i ⌝ = con i ⌜ ƛ t ⌝ = ƛ t ------------------------------------------------------------------------ -- Closure-based definition of values -- Environments and values. Defined in a module parametrised on the -- type of terms. module Closure (Tm : ℕ → Set) where mutual -- Environments. Env : ℕ → Set Env n = Vec Value n -- Values. Lambdas are represented using closures, so values do -- not contain any free variables. data Value : Set where con : (i : ℕ) → Value ƛ : ∀ {n} (t : Tm (suc n)) (ρ : Env n) → Value ------------------------------------------------------------------------ -- Type system (following Leroy and Grall) -- Recursive, simple types, defined coinductively. infixr 8 _⇾_ data Ty : Set where nat : Ty _⇾_ : (σ τ : ∞ Ty) → Ty -- Contexts. Ctxt : ℕ → Set Ctxt n = Vec Ty n -- Type system. infix 4 _⊢_∈_ data _⊢_∈_ {n} (Γ : Ctxt n) : Tm n → Ty → Set where con : ∀ {i} → Γ ⊢ con i ∈ nat var : ∀ {x} → Γ ⊢ var x ∈ lookup Γ x ƛ : ∀ {t σ τ} (t∈ : ♭ σ ∷ Γ ⊢ t ∈ ♭ τ) → Γ ⊢ ƛ t ∈ σ ⇾ τ _·_ : ∀ {t₁ t₂ σ τ} (t₁∈ : Γ ⊢ t₁ ∈ σ ⇾ τ) (t₂∈ : Γ ⊢ t₂ ∈ ♭ σ) → Γ ⊢ t₁ · t₂ ∈ ♭ τ ------------------------------------------------------------------------ -- Example -- A non-terminating term. ω : Tm 0 ω = ƛ (vr 0 · vr 0) Ω : Tm 0 Ω = ω · ω -- Ω is well-typed. Ω-well-typed : (τ : Ty) → [] ⊢ Ω ∈ τ Ω-well-typed τ = _·_ {σ = ♯ σ} {τ = ♯ τ} (ƛ (var · var)) (ƛ (var · var)) where σ = ♯ σ ⇾ ♯ τ -- A call-by-value fix-point combinator. Z : Tm 0 Z = ƛ (t · t) where t = ƛ (vr 1 · ƛ (vr 1 · vr 1 · vr 0)) -- This combinator is also well-typed. fix-well-typed : ∀ {σ τ} → [] ⊢ Z ∈ ♯ (♯ (σ ⇾ τ) ⇾ ♯ (σ ⇾ τ)) ⇾ ♯ (σ ⇾ τ) fix-well-typed = ƛ (_·_ {σ = υ} {τ = ♯ _} (ƛ (var · ƛ (var · var · var))) (ƛ (var · ƛ (var · var · var)))) where υ : ∞ Ty υ = ♯ (υ ⇾ ♯ _)
22.953488
72
0.437352
7c7c8ede4093135638fdb6356ad3b9a1bbef3934
1,716
agda
Agda
examples/AIM6/Path/Prelude.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/AIM6/Path/Prelude.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/AIM6/Path/Prelude.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Prelude where id : {A : Set} -> A -> A id x = x _·_ : {A B C : Set} -> (B -> C) -> (A -> B) -> (A -> C) f · g = \ x -> f (g x) flip : {A B C : Set} -> (A -> B -> C) -> B -> A -> C flip f x y = f y x Rel : Set -> Set1 Rel X = X -> X -> Set data False : Set where record True : Set where tt : True tt = _ ! : {A : Set} -> A -> True ! = _ data _==_ {A : Set}(x : A) : A -> Set where refl : x == x subst : {A : Set}(P : A -> Set){x y : A} -> x == y -> P y -> P x subst P refl p = p cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl sym : {A : Set}{x y : A} -> x == y -> y == x sym refl = refl trans : {A : Set}{x y z : A} -> x == y -> y == z -> x == z trans refl yz = yz data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B infixr 10 _,_ record Σ (A : Set)(B : A -> Set) : Set where field fst : A snd : B fst _,,_ : {A : Set}{B : A -> Set}(x : A) -> B x -> Σ A B x ,, y = record { fst = x; snd = y } private module Σp {A : Set}{B : A -> Set} = Σ {A}{B} open Σp public data _∨_ (A B : Set) : Set where inl : A -> A ∨ B inr : B -> A ∨ B data Bool : Set where false : Bool true : Bool IsTrue : Bool -> Set IsTrue false = False IsTrue true = True IsFalse : Bool -> Set IsFalse true = False IsFalse false = True data Inspect (b : Bool) : Set where itsTrue : IsTrue b -> Inspect b itsFalse : IsFalse b -> Inspect b inspect : (b : Bool) -> Inspect b inspect true = itsTrue _ inspect false = itsFalse _ data LeqBool : Rel Bool where ref : {b : Bool} -> LeqBool b b up : LeqBool false true One : Rel True One _ _ = True _[×]_ : {A B : Set} -> Rel A -> Rel B -> Rel (A × B) (R [×] S) (a₁ , b₁) (a₂ , b₂) = R a₁ a₂ × S b₁ b₂
19.280899
64
0.495338
373a1b5a5a279fff2b5955e1b4b08c03a053fd7b
1,224
agda
Agda
Prelude.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Prelude.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Prelude.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --safe --cubical #-} module Prelude where open import Level public open import Data.Sigma public open import Function.Fiber public open import Data.Empty public open import Data.Unit public open import Data.Nat public using (ℕ; suc; zero) open import Data.Bool public using (Bool; true; false; bool; if_then_else_; T; _and_; _or_; not; bool′) open import Data.Maybe public using (Maybe; just; nothing; maybe) open import HITs.PropositionalTruncation public using (∥_∥; ∣_∣) open import Function.Surjective public using (Surjective; SplitSurjective; _↠!_; _↠_) open import Data.Pi public open import Function.Isomorphism public open import Path public open import Function public open import Inspect public open import Relation.Nullary.Decidable public open import Relation.Nullary.Discrete public using (Discrete) open import Relation.Nullary.Discrete.Properties public using (Discrete→isSet) open import HLevels public open import Data.Sum public open import Equiv public open import Data.Lift public open import Function.Biconditional public open import Relation.Unary public open import Strict public open import Strict.Properties public open import Instance public open import WellFounded public
32.210526
78
0.805556
436840a66be8004afd0a1565fe8d24ae6263a05a
16,764
agda
Agda
Cubical/Data/BinNat/BinNat.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Data/BinNat/BinNat.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/BinNat/BinNat.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{- Binary natural numbers (Anders Mörtberg, Jan. 2019) This file defines two representations of binary numbers. We prove that they are equivalent to unary numbers and univalence is then used to transport both programs and properties between the representations. This is an example of how having computational univalence can be useful for practical programming. The first definition is [Binℕ] and the numbers are essentially lists of 0/1 with no trailing zeroes (in little-endian format). The main definitions and examples are: - Equivalence between Binℕ and ℕ ([Binℕ≃ℕ]) with an equality obtained using univalence ([Binℕ≡ℕ]). - Addition on Binℕ defined by transporting addition on ℕ to Binℕ ([_+Binℕ_]) along Binℕ≡ℕ together with a proof that addition on Binℕ is associative obtained by transporting the proof for ℕ ([+Binℕ-assoc]). - Functions testing whether a binary number is odd or even in O(1) ([oddBinℕ], [evenBinℕ]) and the corresponding functions for ℕ obtained by transport. Proof that odd numbers are not even transported from Binℕ to ℕ ([oddℕnotEvenℕ]). - An example of the structure identity principle for natural number structures ([NatImpl]). We first prove that Binℕ≡ℕ lifts to natural number structures ([NatImplℕ≡Binℕ]) and we then use this to transport "+-suc : m + suc n ≡ suc (m + n)" from ℕ to Binℕ ([+Binℕ-suc]). - An example of program/data refinement using the structure identity principle where we transport a property that is infeasible to prove by computation for ℕ ([propDoubleℕ]): 2^20 · 2^10 = 2^5 · (2^15 · 2^10) from the corresponding result on Binℕ which is proved instantly by refl ([propDoubleBinℕ]). These examples are inspired from an old cubicaltt formalization: https://github.com/mortberg/cubicaltt/blob/master/examples/binnat.ctt which itself is based on an even older cubical formalization (from 2014): https://github.com/simhu/cubical/blob/master/examples/binnat.cub The second representation is more non-standard and inspired by: https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red Only some of the experiments have been done for this representation, but it has the virtue of being a bit simpler to prove equivalent to ℕ. The same representation can be found in: http://www.cs.bham.ac.uk/~mhe/agda-new/BinaryNaturals.html -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.BinNat.BinNat where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Bool open import Cubical.Data.Empty open import Cubical.Relation.Nullary data Binℕ : Type₀ data Pos : Type₀ -- Binary natural numbers data Binℕ where binℕ0 : Binℕ binℕpos : Pos → Binℕ -- Positive binary numbers data Pos where x0 : Pos → Pos x1 : Binℕ → Pos pattern pos1 = x1 binℕ0 pattern x1-pos n = x1 (binℕpos n) -- Note on notation: -- We use "⇒" for functions that are equivalences (and therefore -- they don't preserve the numerical value where the ranges don't -- match, as with Binℕ⇒Pos). -- -- We use "→" for the opposite situation (numerical value is preserved, -- but the function is not necessarily an equivalence) Binℕ⇒Pos : Binℕ → Pos sucPos : Pos → Pos Binℕ⇒Pos binℕ0 = pos1 Binℕ⇒Pos (binℕpos n) = sucPos n sucPos (x0 ps) = x1-pos ps sucPos (x1 ps) = x0 (Binℕ⇒Pos ps) Binℕ→ℕ : Binℕ → ℕ Pos⇒ℕ : Pos → ℕ Pos→ℕ : Pos → ℕ Binℕ→ℕ binℕ0 = zero Binℕ→ℕ (binℕpos x) = Pos→ℕ x Pos→ℕ ps = suc (Pos⇒ℕ ps) Pos⇒ℕ (x0 ps) = suc (doubleℕ (Pos⇒ℕ ps)) Pos⇒ℕ (x1 ps) = doubleℕ (Binℕ→ℕ ps) posInd : {P : Pos → Type₀} → P pos1 → ((p : Pos) → P p → P (sucPos p)) → (p : Pos) → P p posInd {P} h1 hs ps = f ps where H : (p : Pos) → P (x0 p) → P (x0 (sucPos p)) H p hx0p = hs (x1-pos p) (hs (x0 p) hx0p) f : (ps : Pos) → P ps f pos1 = h1 f (x0 ps) = posInd (hs pos1 h1) H ps f (x1-pos ps) = hs (x0 ps) (posInd (hs pos1 h1) H ps) Binℕ⇒Pos⇒ℕ : (p : Binℕ) → Pos⇒ℕ (Binℕ⇒Pos p) ≡ Binℕ→ℕ p Binℕ⇒Pos⇒ℕ binℕ0 = refl Binℕ⇒Pos⇒ℕ (binℕpos (x0 p)) = refl Binℕ⇒Pos⇒ℕ (binℕpos (x1 x)) = λ i → suc (doubleℕ (Binℕ⇒Pos⇒ℕ x i)) Pos⇒ℕsucPos : (p : Pos) → Pos⇒ℕ (sucPos p) ≡ suc (Pos⇒ℕ p) Pos⇒ℕsucPos p = Binℕ⇒Pos⇒ℕ (binℕpos p) Pos→ℕsucPos : (p : Pos) → Pos→ℕ (sucPos p) ≡ suc (Pos→ℕ p) Pos→ℕsucPos p = cong suc (Binℕ⇒Pos⇒ℕ (binℕpos p)) ℕ⇒Pos : ℕ → Pos ℕ⇒Pos zero = pos1 ℕ⇒Pos (suc n) = sucPos (ℕ⇒Pos n) ℕ→Pos : ℕ → Pos ℕ→Pos zero = pos1 ℕ→Pos (suc n) = ℕ⇒Pos n Pos⇒ℕ⇒Pos : (p : Pos) → ℕ⇒Pos (Pos⇒ℕ p) ≡ p Pos⇒ℕ⇒Pos p = posInd refl hs p where hs : (p : Pos) → ℕ⇒Pos (Pos⇒ℕ p) ≡ p → ℕ⇒Pos (Pos⇒ℕ (sucPos p)) ≡ sucPos p hs p hp = ℕ⇒Pos (Pos⇒ℕ (sucPos p)) ≡⟨ cong ℕ⇒Pos (Pos⇒ℕsucPos p) ⟩ sucPos (ℕ⇒Pos (Pos⇒ℕ p)) ≡⟨ cong sucPos hp ⟩ sucPos p ∎ ℕ⇒Pos⇒ℕ : (n : ℕ) → Pos⇒ℕ (ℕ⇒Pos n) ≡ n ℕ⇒Pos⇒ℕ zero = refl ℕ⇒Pos⇒ℕ (suc n) = Pos⇒ℕ (ℕ⇒Pos (suc n)) ≡⟨ Pos⇒ℕsucPos (ℕ⇒Pos n) ⟩ suc (Pos⇒ℕ (ℕ⇒Pos n)) ≡⟨ cong suc (ℕ⇒Pos⇒ℕ n) ⟩ suc n ∎ ℕ→Binℕ : ℕ → Binℕ ℕ→Binℕ zero = binℕ0 ℕ→Binℕ (suc n) = binℕpos (ℕ⇒Pos n) ℕ→Binℕ→ℕ : (n : ℕ) → Binℕ→ℕ (ℕ→Binℕ n) ≡ n ℕ→Binℕ→ℕ zero = refl ℕ→Binℕ→ℕ (suc n) = cong suc (ℕ⇒Pos⇒ℕ n) Binℕ→ℕ→Binℕ : (n : Binℕ) → ℕ→Binℕ (Binℕ→ℕ n) ≡ n Binℕ→ℕ→Binℕ binℕ0 = refl Binℕ→ℕ→Binℕ (binℕpos p) = cong binℕpos (Pos⇒ℕ⇒Pos p) Binℕ≃ℕ : Binℕ ≃ ℕ Binℕ≃ℕ = isoToEquiv (iso Binℕ→ℕ ℕ→Binℕ ℕ→Binℕ→ℕ Binℕ→ℕ→Binℕ) -- Use univalence (in fact only "ua") to get an equality from the -- above equivalence Binℕ≡ℕ : Binℕ ≡ ℕ Binℕ≡ℕ = ua Binℕ≃ℕ sucBinℕ : Binℕ → Binℕ sucBinℕ x = binℕpos (Binℕ⇒Pos x) Binℕ→ℕsuc : (x : Binℕ) → suc (Binℕ→ℕ x) ≡ Binℕ→ℕ (sucBinℕ x) Binℕ→ℕsuc binℕ0 = refl Binℕ→ℕsuc (binℕpos x) = sym (Pos→ℕsucPos x) -- We can transport addition on ℕ to Binℕ _+Binℕ_ : Binℕ → Binℕ → Binℕ _+Binℕ_ = transport (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ -- Test: 4 + 1 = 5 private _ : binℕpos (x0 (x0 pos1)) +Binℕ binℕpos pos1 ≡ binℕpos (x1-pos (x0 pos1)) _ = refl -- It is easy to test if binary numbers are odd oddBinℕ : Binℕ → Bool oddBinℕ binℕ0 = false oddBinℕ (binℕpos (x0 _)) = false oddBinℕ (binℕpos (x1 _)) = true evenBinℕ : Binℕ → Bool evenBinℕ n = oddBinℕ (sucBinℕ n) -- And prove the following property (without induction) oddBinℕnotEvenBinℕ : (n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n) oddBinℕnotEvenBinℕ binℕ0 = refl oddBinℕnotEvenBinℕ (binℕpos (x0 x)) = refl oddBinℕnotEvenBinℕ (binℕpos (x1 x)) = refl -- It is also easy to define and prove the property for unary numbers, -- however the definition uses recursion and the proof induction private oddn : ℕ → Bool oddn zero = true oddn (suc x) = not (oddn x) evenn : ℕ → Bool evenn n = not (oddn n) oddnSuc : (n : ℕ) → oddn n ≡ not (evenn n) oddnSuc zero = refl oddnSuc (suc n) = cong not (oddnSuc n) -- So what we can do instead is to transport the odd test from Binℕ to -- ℕ along the equality oddℕ : ℕ → Bool oddℕ = transport (λ i → Binℕ≡ℕ i → Bool) oddBinℕ evenℕ : ℕ → Bool evenℕ = transport (λ i → Binℕ≡ℕ i → Bool) evenBinℕ -- We can then also transport the property oddℕnotEvenℕ : (n : ℕ) → oddℕ n ≡ not (evenℕ n) oddℕnotEvenℕ = let -- We first build a path from oddBinℕ to oddℕ. When i=1 this is -- "transp (λ j → Binℕ≡ℕ j → Bool) i0 oddBinℕ" (i.e. oddℕ) oddp : PathP (λ i → Binℕ≡ℕ i → Bool) oddBinℕ oddℕ oddp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) oddBinℕ -- We then build a path from evenBinℕ to evenℕ evenp : PathP (λ i → Binℕ≡ℕ i → Bool) evenBinℕ evenℕ evenp i = transp (λ j → Binℕ≡ℕ (i ∧ j) → Bool) (~ i) evenBinℕ in -- Then transport oddBinℕnotEvenBinℕ in a suitable equality type -- When i=0 this is "(n : Binℕ) → oddBinℕ n ≡ not (evenBinℕ n)" -- When i=1 this is "(n : ℕ) → oddℕ n ≡ not (evenℕ n)" transport (λ i → (n : Binℕ≡ℕ i) → oddp i n ≡ not (evenp i n)) oddBinℕnotEvenBinℕ -- We can do the same for natural numbers: -- First construct the path addp : PathP (λ i → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i) → Binℕ≡ℕ (~ i)) _+_ _+Binℕ_ addp i = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j) → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) _+_ -- Then transport associativity: +Binℕ-assoc : ∀ m n o → m +Binℕ (n +Binℕ o) ≡ (m +Binℕ n) +Binℕ o +Binℕ-assoc = transport (λ i → (m n o : Binℕ≡ℕ (~ i)) → addp i m (addp i n o) ≡ addp i (addp i m n) o) +-assoc -- We can also define what it means to be an implementation of natural -- numbers and use this to transport properties between different -- implementation of natural numbers. This can be seen as a special -- case of the structure identity principle: any property that holds -- for one structure also holds for an equivalent one. -- An implementation of natural numbers (i.e. a "natural number -- structure") has a zero and successor. record NatImpl (A : Type₀) : Type₀ where field z : A s : A → A open NatImpl NatImplℕ : NatImpl ℕ z NatImplℕ = zero s NatImplℕ = suc NatImplBinℕ : NatImpl Binℕ z NatImplBinℕ = binℕ0 s NatImplBinℕ = sucBinℕ -- Using the equality between binary and unary numbers we can get an -- equality between the two implementations of the NatImpl interface NatImplℕ≡Binℕ : PathP (λ i → NatImpl (Binℕ≡ℕ (~ i))) NatImplℕ NatImplBinℕ z (NatImplℕ≡Binℕ i) = transp (λ j → Binℕ≡ℕ (~ i ∨ ~ j)) (~ i) zero s (NatImplℕ≡Binℕ i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → sucBinℕ x }) -- We need to do use and hcomp to do and endpoint -- correction as "suc (unglue x)" connects "suc x" -- with "suc (Binℕ→ℕ x)" along i (which makes sense as -- x varies from ℕ to Binℕ along i), but we need -- something from "suc x" to "Binℕ→ℕ (sucBinℕ x)" for -- the glue to be well-formed (hcomp (λ j → λ { (i = i0) → suc x ; (i = i1) → Binℕ→ℕsuc x j }) (suc (unglue (i ∨ ~ i) x))) -- We then use this to transport +-suc from unary to binary numbers +Binℕ-suc : ∀ m n → m +Binℕ sucBinℕ n ≡ sucBinℕ (m +Binℕ n) +Binℕ-suc = transport (λ i → (m n : Binℕ≡ℕ (~ i)) → addp i m (NatImplℕ≡Binℕ i .s n) ≡ NatImplℕ≡Binℕ i .s (addp i m n)) +-suc -- Doubling experiment: we define a notion of "doubling structure" and -- transport a proof that is proved directly using refl for binary -- numbers to unary numbers. This is an example of program/data -- refinement: we can use univalence to prove properties about -- inefficient data-structures using efficient ones. -- Doubling structures record Double {ℓ} (A : Type ℓ) : Type (ℓ-suc ℓ) where field -- doubling function computing 2 · x double : A → A -- element to double elt : A open Double -- Compute: 2^n · x doubles : ∀ {ℓ} {A : Type ℓ} (D : Double A) → ℕ → A → A doubles D n x = iter n (double D) x Doubleℕ : Double ℕ double Doubleℕ = doubleℕ elt Doubleℕ = n1024 where -- 1024 = 2^8 · 2^2 = 2^10 n1024 : ℕ n1024 = doublesℕ 8 4 -- The doubling operation on binary numbers is O(1), while for unary -- numbers it is O(n). What is of course even more problematic is that -- we cannot handle very big unary natural numbers, but with binary -- there is no problem to represent very big numbers doubleBinℕ : Binℕ → Binℕ doubleBinℕ binℕ0 = binℕ0 doubleBinℕ (binℕpos x) = binℕpos (x0 x) DoubleBinℕ : Double Binℕ double DoubleBinℕ = doubleBinℕ elt DoubleBinℕ = bin1024 where -- 1024 = 2^10 = 10000000000₂ bin1024 : Binℕ bin1024 = binℕpos (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 (x0 pos1)))))))))) -- As these function don't commute strictly we have to prove it -- separately and insert it in the proof of DoubleBinℕ≡Doubleℕ below -- (just like we had to in NatImplℕ≡NatImplBinℕ Binℕ→ℕdouble : (x : Binℕ) → doubleℕ (Binℕ→ℕ x) ≡ Binℕ→ℕ (doubleBinℕ x) Binℕ→ℕdouble binℕ0 = refl Binℕ→ℕdouble (binℕpos x) = refl -- We use the equality between Binℕ and ℕ to get an equality of -- doubling structures DoubleBinℕ≡Doubleℕ : PathP (λ i → Double (Binℕ≡ℕ i)) DoubleBinℕ Doubleℕ double (DoubleBinℕ≡Doubleℕ i) = λ x → glue (λ { (i = i0) → doubleBinℕ x ; (i = i1) → doubleℕ x }) (hcomp (λ j → λ { (i = i0) → Binℕ→ℕdouble x j ; (i = i1) → doubleℕ x }) (doubleℕ (unglue (i ∨ ~ i) x))) elt (DoubleBinℕ≡Doubleℕ i) = transp (λ j → Binℕ≡ℕ (i ∨ ~ j)) i (Doubleℕ .elt) -- We can now use transport to prove a property that is too slow to -- check with unary numbers. We define the property we want to check -- as a record so that Agda does not try to unfold it eagerly. record propDouble {ℓ} {A : Type ℓ} (D : Double A) : Type ℓ where field -- 2^20 · e = 2^5 · (2^15 · e) proof : doubles D 20 (elt D) ≡ doubles D 5 (doubles D 15 (elt D)) open propDouble -- The property we want to prove takes too long to typecheck for ℕ: -- propDoubleℕ : propDouble Doubleℕ -- propDoubleℕ = refl -- With binary numbers it is instant propDoubleBinℕ : propDouble DoubleBinℕ proof propDoubleBinℕ = refl -- By transporting the proof along the equality we then get it for -- unary numbers propDoubleℕ : propDouble Doubleℕ propDoubleℕ = transport (λ i → propDouble (DoubleBinℕ≡Doubleℕ i)) propDoubleBinℕ -------------------------------------------------------------------------------- -- -- Alternative encoding of binary natural numbers inspired by: -- https://github.com/RedPRL/redtt/blob/master/library/cool/nats.red -- -- This representation makes the equivalence with ℕ a bit easier to -- prove, but the doubling example wouldn't work as nicely as we -- cannot define it as an O(1) operation data binnat : Type₀ where zero : binnat -- 0 consOdd : binnat → binnat -- 2·n + 1 consEven : binnat → binnat -- 2·{n+1} binnat→ℕ : binnat → ℕ binnat→ℕ zero = 0 binnat→ℕ (consOdd n) = suc (doubleℕ (binnat→ℕ n)) binnat→ℕ (consEven n) = suc (suc (doubleℕ (binnat→ℕ n))) suc-binnat : binnat → binnat suc-binnat zero = consOdd zero suc-binnat (consOdd n) = consEven n suc-binnat (consEven n) = consOdd (suc-binnat n) ℕ→binnat : ℕ → binnat ℕ→binnat zero = zero ℕ→binnat (suc n) = suc-binnat (ℕ→binnat n) binnat→ℕ-suc : (n : binnat) → binnat→ℕ (suc-binnat n) ≡ suc (binnat→ℕ n) binnat→ℕ-suc zero = refl binnat→ℕ-suc (consOdd n) = refl binnat→ℕ-suc (consEven n) = λ i → suc (doubleℕ (binnat→ℕ-suc n i)) ℕ→binnat→ℕ : (n : ℕ) → binnat→ℕ (ℕ→binnat n) ≡ n ℕ→binnat→ℕ zero = refl ℕ→binnat→ℕ (suc n) = (binnat→ℕ-suc (ℕ→binnat n)) ∙ (cong suc (ℕ→binnat→ℕ n)) suc-ℕ→binnat-double : (n : ℕ) → suc-binnat (ℕ→binnat (doubleℕ n)) ≡ consOdd (ℕ→binnat n) suc-ℕ→binnat-double zero = refl suc-ℕ→binnat-double (suc n) = λ i → suc-binnat (suc-binnat (suc-ℕ→binnat-double n i)) binnat→ℕ→binnat : (n : binnat) → ℕ→binnat (binnat→ℕ n) ≡ n binnat→ℕ→binnat zero = refl binnat→ℕ→binnat (consOdd n) = (suc-ℕ→binnat-double (binnat→ℕ n)) ∙ (cong consOdd (binnat→ℕ→binnat n)) binnat→ℕ→binnat (consEven n) = (λ i → suc-binnat (suc-ℕ→binnat-double (binnat→ℕ n) i)) ∙ (cong consEven (binnat→ℕ→binnat n)) ℕ≃binnat : ℕ ≃ binnat ℕ≃binnat = isoToEquiv (iso ℕ→binnat binnat→ℕ binnat→ℕ→binnat ℕ→binnat→ℕ) ℕ≡binnat : ℕ ≡ binnat ℕ≡binnat = ua ℕ≃binnat -- We can transport addition on ℕ to binnat _+binnat_ : binnat → binnat → binnat _+binnat_ = transport (λ i → ℕ≡binnat i → ℕ≡binnat i → ℕ≡binnat i) _+_ -- Test: 4 + 1 = 5 _ : consEven (consOdd zero) +binnat consOdd zero ≡ consOdd (consEven zero) _ = refl oddbinnat : binnat → Bool oddbinnat zero = false oddbinnat (consOdd _) = true oddbinnat (consEven _) = false oddℕ' : ℕ → Bool oddℕ' = transport (λ i → ℕ≡binnat (~ i) → Bool) oddbinnat -- The NatImpl example for this representation of binary numbers private NatImplbinnat : NatImpl binnat z NatImplbinnat = zero s NatImplbinnat = suc-binnat -- Note that the s case is a bit simpler as no end-point correction -- is necessary (things commute strictly) NatImplℕ≡NatImplbinnat : PathP (λ i → NatImpl (ℕ≡binnat i)) NatImplℕ NatImplbinnat z (NatImplℕ≡NatImplbinnat i) = transp (λ j → ℕ≡binnat (i ∨ ~ j)) i zero s (NatImplℕ≡NatImplbinnat i) = λ x → glue (λ { (i = i0) → suc x ; (i = i1) → suc-binnat x }) (suc-binnat (unglue (i ∨ ~ i) x)) oddSuc : (n : binnat) → oddbinnat n ≡ not (oddbinnat (suc-binnat n)) oddSuc zero = refl oddSuc (consOdd _) = refl oddSuc (consEven _) = refl oddℕSuc' : (n : ℕ) → oddℕ' n ≡ not (oddℕ' (suc n)) oddℕSuc' = let eq : (i : I) → ℕ≡binnat (~ i) → Bool eq i = transp (λ j → ℕ≡binnat (~ i ∨ ~ j) → Bool) (~ i) oddbinnat in transport (λ i → (n : ℕ≡binnat (~ i)) → eq i n ≡ not (eq i (NatImplℕ≡NatImplbinnat (~ i) .NatImpl.s n))) oddSuc
34.004057
104
0.645848
5209f31731741dbaca5638114dc572dc7d23cf22
67
agda
Agda
test/Succeed/Issue2487/Infective.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Succeed/Issue2487/Infective.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue2487/Infective.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --cubical --prop #-} module Issue2487.Infective where
16.75
32
0.701493
7cbf8000ab8ca91c9e2fbe658074d9b8a1489536
450
agda
Agda
zerepoch-metatheory/test/AddInteger.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
null
null
null
zerepoch-metatheory/test/AddInteger.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
null
null
null
zerepoch-metatheory/test/AddInteger.agda
Quantum-One-DLT/zerepoch
c8cf4619e6e496930c9092cf6d64493eff300177
[ "Apache-2.0" ]
2
2021-11-13T21:25:19.000Z
2022-02-21T16:38:59.000Z
module test.AddInteger where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ open import Agda.Builtin.Sigma -- zerepoch/zerepoch-core/test/data/addInteger.plc addI : ∀{Γ} → Γ ⊢ con integer (size⋆ 8) ⇒ con integer (size⋆ 8) ⇒ con integer (size⋆ 8) addI = ƛ (ƛ (builtin addInteger (λ { Z → size⋆ 8 ; (S ())}) (` (S Z) Σ., ` Z Σ., _)))
28.125
80
0.68
37dc86c2917f7967c9a994e9bab8646443922a1c
3,777
agda
Agda
src/Categories/Functor/Cartesian.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Cartesian.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Cartesian.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} -- A cartesian functor preserves products (of cartesian categories) module Categories.Functor.Cartesian where open import Level open import Categories.Category.BinaryProducts open import Categories.Category.Cartesian.Bundle using (CartesianCategory) open import Categories.Functor using (Functor; _∘F_) open import Categories.Functor.Properties import Categories.Object.Product as P import Categories.Object.Terminal as ⊤ import Categories.Morphism as M import Categories.Morphism.Reasoning as MR private variable o ℓ e o′ ℓ′ e′ : Level record IsCartesianF (C : CartesianCategory o ℓ e) (D : CartesianCategory o′ ℓ′ e′) (F : Functor (CartesianCategory.U C) (CartesianCategory.U D)) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module C = CartesianCategory C module D = CartesianCategory D open P D.U open M D.U open Functor F module PC = BinaryProducts C.products module PD = BinaryProducts D.products module TC = ⊤.Terminal C.terminal module TD = ⊤.Terminal D.terminal field F-resp-⊤ : ⊤.IsTerminal D.U (F₀ TC.⊤) F-resp-× : ∀ {A B} → IsProduct {P = F₀ (A PC.× B)} (F₁ PC.π₁) (F₁ PC.π₂) module F-resp-⊤ = ⊤.IsTerminal F-resp-⊤ module F-resp-× {A B} = IsProduct (F-resp-× {A} {B}) F-prod : ∀ A B → Product (F₀ A) (F₀ B) F-prod _ _ = IsProduct⇒Product F-resp-× module F-prod A B = Product (F-prod A B) F-resp-⟨⟩ : ∀ {A B X} → (f : X C.⇒ A) (g : X C.⇒ B) → PD.⟨ F₁ PC.π₁ , F₁ PC.π₂ ⟩ D.∘ F₁ PC.⟨ f , g ⟩ D.≈ PD.⟨ F₁ f , F₁ g ⟩ F-resp-⟨⟩ f g = begin PD.⟨ F₁ PC.π₁ , F₁ PC.π₂ ⟩ D.∘ F₁ PC.⟨ f , g ⟩ ≈⟨ PD.⟨⟩∘ ⟩ PD.⟨ F₁ PC.π₁ D.∘ F₁ PC.⟨ f , g ⟩ , F₁ PC.π₂ D.∘ F₁ PC.⟨ f , g ⟩ ⟩ ≈⟨ PD.⟨⟩-cong₂ ([ F ]-resp-∘ PC.project₁) ([ F ]-resp-∘ PC.project₂) ⟩ PD.⟨ F₁ f , F₁ g ⟩ ∎ where open D.HomReasoning ⊤-iso : F₀ TC.⊤ ≅ TD.⊤ ⊤-iso = ⊤.up-to-iso D.U (record { ⊤-is-terminal = F-resp-⊤ }) D.terminal module ⊤-iso = _≅_ ⊤-iso ×-iso : ∀ A B → F₀ (A PC.× B) ≅ F₀ A PD.× F₀ B ×-iso A B = record { from = PD.⟨ F₁ PC.π₁ , F₁ PC.π₂ ⟩ ; to = F-resp-×.⟨ PD.π₁ , PD.π₂ ⟩ ; iso = record { isoˡ = begin F-resp-×.⟨ PD.π₁ , PD.π₂ ⟩ D.∘ PD.⟨ F₁ PC.π₁ , F₁ PC.π₂ ⟩ ≈⟨ [ F-prod A B ]⟨⟩∘ ⟩ F-resp-×.⟨ PD.π₁ D.∘ _ , PD.π₂ D.∘ _ ⟩ ≈⟨ F-prod.⟨⟩-cong₂ A B PD.project₁ PD.project₂ ⟩ F-resp-×.⟨ F₁ PC.π₁ , F₁ PC.π₂ ⟩ ≈⟨ F-prod.η A B ⟩ D.id ∎ ; isoʳ = begin PD.⟨ F₁ PC.π₁ , F₁ PC.π₂ ⟩ D.∘ F-resp-×.⟨ PD.π₁ , PD.π₂ ⟩ ≈⟨ PD.⟨⟩∘ ⟩ PD.⟨ F₁ PC.π₁ D.∘ _ , F₁ PC.π₂ D.∘ _ ⟩ ≈⟨ PD.⟨⟩-cong₂ (F-prod.project₁ A B) (F-prod.project₂ A B) ⟩ PD.⟨ PD.π₁ , PD.π₂ ⟩ ≈⟨ PD.η ⟩ D.id ∎ } } where open D.HomReasoning module ×-iso A B = _≅_ (×-iso A B) F-resp-⟨⟩′ : ∀ {A B X} → (f : X C.⇒ A) (g : X C.⇒ B) → F₁ PC.⟨ f , g ⟩ D.≈ F-resp-×.⟨ F₁ f , F₁ g ⟩ F-resp-⟨⟩′ f g = begin F₁ PC.⟨ f , g ⟩ ≈⟨ switch-fromtoˡ (×-iso _ _) (F-resp-⟨⟩ f g) ⟩ ×-iso.to _ _ D.∘ PD.⟨ F₁ f , F₁ g ⟩ ≈⟨ ([ F-prod _ _ ]⟨⟩∘ ○ F-prod.⟨⟩-cong₂ _ _ PD.project₁ PD.project₂) ⟩ F-resp-×.⟨ F₁ f , F₁ g ⟩ ∎ where open MR D.U open D.HomReasoning record CartesianF (C : CartesianCategory o ℓ e) (D : CartesianCategory o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module C = CartesianCategory C module D = CartesianCategory D field F : Functor C.U D.U isCartesian : IsCartesianF C D F open Functor F public open IsCartesianF isCartesian public
38.151515
141
0.516812
1b63bbbb83dccc2c1639f98f95dacb1df43f09ff
1,931
agda
Agda
src/Lambda/Delay-monad/Interpreter.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
2
2020-05-21T22:59:18.000Z
2020-07-03T08:56:08.000Z
src/Lambda/Delay-monad/Interpreter.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
src/Lambda/Delay-monad/Interpreter.agda
nad/partiality-monad
f69749280969f9093e5e13884c6feb0ad2506eae
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A definitional interpreter ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Lambda.Delay-monad.Interpreter where open import Equality.Propositional open import Prelude open import Prelude.Size open import Maybe equality-with-J open import Monad equality-with-J open import Vec.Function equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity open import Delay-monad.Monad open import Lambda.Syntax hiding ([_]) open Closure Tm ------------------------------------------------------------------------ -- An interpreter monad -- The interpreter monad. M : ∀ {ℓ} → Size → Type ℓ → Type ℓ M i = MaybeT (λ A → Delay A i) -- A variant of the interpreter monad. M′ : ∀ {ℓ} → Size → Type ℓ → Type ℓ M′ i = MaybeT (λ A → Delay′ A i) -- A lifted variant of later. laterM : ∀ {i a} {A : Type a} → M′ i A → M i A run (laterM x) = later (run x) -- A lifted variant of weak bisimilarity. infix 4 _≈M_ _≈M_ : ∀ {a} {A : Type a} → M ∞ A → M ∞ A → Type a x ≈M y = run x ≈ run y ------------------------------------------------------------------------ -- The interpreter infix 10 _∙_ mutual ⟦_⟧ : ∀ {i n} → Tm n → Env n → M i Value ⟦ con i ⟧ ρ = return (con i) ⟦ var x ⟧ ρ = return (ρ x) ⟦ ƛ t ⟧ ρ = return (ƛ t ρ) ⟦ t₁ · t₂ ⟧ ρ = ⟦ t₁ ⟧ ρ >>= λ v₁ → ⟦ t₂ ⟧ ρ >>= λ v₂ → v₁ ∙ v₂ _∙_ : ∀ {i} → Value → Value → M i Value con i ∙ v₂ = fail ƛ t₁ ρ ∙ v₂ = laterM (⟦ t₁ ⟧′ (cons v₂ ρ)) ⟦_⟧′ : ∀ {i n} → Tm n → Env n → M′ i Value force (run (⟦ t ⟧′ ρ)) = run (⟦ t ⟧ ρ) ------------------------------------------------------------------------ -- An example -- The semantics of Ω is the non-terminating computation never. Ω-loops : ∀ {i} → [ i ] run (⟦ Ω ⟧ nil) ∼ never Ω-loops = later λ { .force → Ω-loops }
24.443038
72
0.472294
2105592114c3a8e94ecad73ce3e5775f81ddc517
4,769
agda
Agda
test/Succeed/Issue3399.agda
zliu41/agda
73405f70bced057d24dd4bf122d53f9548544aba
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3399.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3399.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} module _ where open import Agda.Primitive.Cubical renaming (primINeg to ~_; primIMax to _∨_; primIMin to _∧_) open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub open import Agda.Builtin.Cubical.Sub using () renaming (Sub to _[_↦_]; primSubOut to ouc) open import Agda.Primitive renaming (_⊔_ to ℓ-max) open import Agda.Builtin.Sigma transpFill : ∀ {ℓ} {A' : Set ℓ} (φ : I) (A : (i : I) → Set ℓ [ φ ↦ (\ _ → A') ]) → (u0 : ouc (A i0)) → PathP (λ i → ouc (A i)) u0 (primTransp (λ i → ouc (A i)) φ u0) transpFill φ A u0 i = primTransp (\ j → ouc (A (i ∧ j))) (~ i ∨ φ) u0 forward : (la : Level) (A : ∀ i → Set la) (r : I) → A r → A i1 forward la A r x = primTransp (\ i → A (i ∨ r)) r x -- gcomp^i A [ phi -> u ] u0 = hcomp^i A(1/i) [ phi -> forward A i u, ~ phi -> forward A 0 u ] (forward A 0 u0) gcomp : ∀ {l} (A : I → Set l) (φ : I) (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) -> A i1 gcomp A φ u u0 = primHComp {A = A i1} (\ i → \ { (φ = i1) → forward _ A i (u i itIsOne); (φ = i0) → forward _ A i0 (ouc u0) }) (forward _ A i0 (ouc u0)) -- private -- internalFiber : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) (y : B) → Set (ℓ-max ℓ ℓ') -- internalFiber {A = A} f y = Σ A \ x → y ≡ f x -- infix 4 _≃_ -- postulate -- _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ-max ℓ ℓ') -- equivFun : ∀ {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} → A ≃ B → A → B -- equivProof : ∀ {la lt} (T : Set la) (A : Set lt) → (w : T ≃ A) → (a : A) -- → ∀ ψ → (Partial ψ (internalFiber (equivFun w) a)) → internalFiber (equivFun w) a -- {-# BUILTIN EQUIV _≃_ #-} -- {-# BUILTIN EQUIVFUN equivFun #-} -- {-# BUILTIN EQUIVPROOF equivProof #-} -- -- This is a module so we can easily rename the primitives. -- module GluePrims where -- primitive -- primGlue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} -- → (T : Partial φ (Set ℓ')) → (e : PartialP φ (λ o → T o ≃ A)) -- → Set ℓ' -- prim^glue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} -- → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} -- → PartialP φ T → A → primGlue A T e -- prim^unglue : ∀ {ℓ ℓ'} {A : Set ℓ} {φ : I} -- → {T : Partial φ (Set ℓ')} → {e : PartialP φ (λ o → T o ≃ A)} -- → primGlue A T e → A -- -- Needed for transp in Glue. -- primFaceForall : (I → I) → I open import Agda.Builtin.Cubical.Glue public renaming ( prim^glue to glue ; prim^unglue to unglue) -- We uncurry Glue to make it a bit more pleasant to use Glue : ∀ {ℓ ℓ'} (A : Set ℓ) {φ : I} → (Te : Partial φ (Σ (Set ℓ') \ T → T ≃ A)) → Set ℓ' Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd) -- Here we test that hcomp and transp for Glue compute as expected. -- The current implementation in Agda.TypeChecking.Primitive does not -- guarantee that the terms are well-typed, so making sure that those -- primitives compute to some well-typed terms helps catching typing -- bugs. module TestHComp {ℓ ℓ'} (A : Set ℓ) {φ : I} (Te : Partial φ (Σ (Set ℓ') \ T → T ≃ A)) (ψ : I) (u : I → Partial ψ (Glue A Te)) (u0 : Sub (Glue A Te) ψ (u i0) ) where result : Glue A Te result = glue {φ = φ} (\ { (φ = i1) → primHComp {A = Te itIsOne .fst} u (primSubOut u0) }) (primHComp {A = A} (\ i → \ { (ψ = i1) → unglue {φ = φ} (u i itIsOne) ; (φ = i1) → equivFun (Te itIsOne .snd) (primHComp (\ j → \ { (ψ = i1) → u (i ∧ j) itIsOne ; (i = i0) → primSubOut u0 }) (primSubOut u0)) }) (unglue {φ = φ} (primSubOut u0))) test : primHComp {A = Glue A Te} {ψ} u (primSubOut u0) ≡ result test i = primHComp {A = Glue A Te} {ψ} u (primSubOut u0) module TestTransp {ℓ ℓ'} (A : Set ℓ) {φ : I} (Te : Partial φ (Σ (Set ℓ') \ T → T ≃ A)) (u0 : (Glue A Te)) where ψ = i0 a0 = unglue {φ = φ} u0 a1 = gcomp (\ _ → A) φ (\ { i (φ = i1) → equivFun (Te itIsOne .snd) (transpFill {A' = Te itIsOne .fst} ψ (\ i → inc (Te itIsOne .fst)) u0 i) }) (inc a0) pair : PartialP φ λ o → Helpers.fiber (Te o .snd .fst) a1 pair o = equivProof (Te o .fst) A (Te o .snd) a1 φ \ { (φ = i1) → _ , Helpers.refl } result : Glue A Te result = glue {φ = φ} (λ o → pair o .fst) (primHComp (\ { j (φ = i1) → pair itIsOne .snd j}) a1) test : primTransp (\ _ → Glue A Te) ψ u0 ≡ result test = Helpers.refl
44.570093
129
0.484588
378755eabb8bbadc32759a71b4edb23d46cdece2
3,952
agda
Agda
Cats/Displayed.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Displayed.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Displayed.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Displayed where open import Data.Product using (Σ ; Σ-syntax ; _,_) open import Level using (_⊔_ ; suc) open import Relation.Binary using (Setoid ; IsEquivalence ; Rel ; REL ; _Preserves₂_⟶_⟶_) open import Cats.Category record DisplayedCategory {lo la l≈} (C : Category lo la l≈) lo′ la′ l≈′ : Set (lo ⊔ la ⊔ l≈ ⊔ suc (lo′ ⊔ la′ ⊔ l≈′)) where infixr 9 _∘_ infix 4 _≈[_]_ infixr -1 _⇒[_]_ Base = C module Base = Category Base private module C = Category C field Obj : (c : C.Obj) → Set lo′ _⇒[_]_ : ∀ {a b} (a⁺ : Obj a) (f : a C.⇒ b) (b⁺ : Obj b) → Set la′ _≈[_]_ : ∀ {a b} {f g : a C.⇒ b} {a⁺ : Obj a} {b⁺ : Obj b} → a⁺ ⇒[ f ] b⁺ → f C.≈ g → a⁺ ⇒[ g ] b⁺ → Set l≈′ id : ∀ {a} {a⁺ : Obj a} → a⁺ ⇒[ C.id ] a⁺ _∘_ : ∀ {a b c} {a⁺ : Obj a} {b⁺ : Obj b} {c⁺ : Obj c} → {f : b C.⇒ c} {g : a C.⇒ b} → (f⁺ : b⁺ ⇒[ f ] c⁺) (g⁺ : a⁺ ⇒[ g ] b⁺) → a⁺ ⇒[ f C.∘ g ] c⁺ ≈-refl : ∀ {a b} {f : a C.⇒ b} {a⁺ : Obj a} {b⁺ : Obj b} {f⁺ : a⁺ ⇒[ f ] b⁺} → f⁺ ≈[ C.≈.refl ] f⁺ ≈-sym : ∀ {a b} {f g : a C.⇒ b} {f≈g : f C.≈ g} {a⁺ : Obj a} {b⁺ : Obj b} → {f⁺ : a⁺ ⇒[ f ] b⁺} {g⁺ : a⁺ ⇒[ g ] b⁺} → f⁺ ≈[ f≈g ] g⁺ → g⁺ ≈[ C.≈.sym f≈g ] f⁺ ≈-trans : ∀ {a b} → {f g h : a C.⇒ b} {f≈g : f C.≈ g} {g≈h : g C.≈ h} → {a⁺ : Obj a} {b⁺ : Obj b} → {f⁺ : a⁺ ⇒[ f ] b⁺} {g⁺ : a⁺ ⇒[ g ] b⁺} {h⁺ : a⁺ ⇒[ h ] b⁺} → f⁺ ≈[ f≈g ] g⁺ → g⁺ ≈[ g≈h ] h⁺ → f⁺ ≈[ C.≈.trans f≈g g≈h ] h⁺ ∘-resp : ∀ {a b c} {f g : b C.⇒ c} {h i : a C.⇒ b} → {f≈g : f C.≈ g} {h≈i : h C.≈ i} → {a⁺ : Obj a} {b⁺ : Obj b} {c⁺ : Obj c} → {f⁺ : b⁺ ⇒[ f ] c⁺} {g⁺ : b⁺ ⇒[ g ] c⁺} → {h⁺ : a⁺ ⇒[ h ] b⁺} {i⁺ : a⁺ ⇒[ i ] b⁺} → f⁺ ≈[ f≈g ] g⁺ → h⁺ ≈[ h≈i ] i⁺ → f⁺ ∘ h⁺ ≈[ C.∘-resp f≈g h≈i ] g⁺ ∘ i⁺ id-r : ∀ {a b} {f : a C.⇒ b} {a⁺ : Obj a} {b⁺ : Obj b} {f⁺ : a⁺ ⇒[ f ] b⁺} → f⁺ ∘ id ≈[ C.id-r ] f⁺ id-l : ∀ {a b} {f : a C.⇒ b} {a⁺ : Obj a} {b⁺ : Obj b} {f⁺ : a⁺ ⇒[ f ] b⁺} → id ∘ f⁺ ≈[ C.id-l ] f⁺ assoc : ∀ {a b c d} {f : c C.⇒ d} {g : b C.⇒ c} {h : a C.⇒ b} → {a⁺ : Obj a} {b⁺ : Obj b} {c⁺ : Obj c} {d⁺ : Obj d} → {f⁺ : c⁺ ⇒[ f ] d⁺} {g⁺ : b⁺ ⇒[ g ] c⁺} {h⁺ : a⁺ ⇒[ h ] b⁺} → (f⁺ ∘ g⁺) ∘ h⁺ ≈[ C.assoc ] f⁺ ∘ (g⁺ ∘ h⁺) module BuildTotal {lo la l≈} {C : Category lo la l≈} {lo′ la′ l≈′} (D : DisplayedCategory C lo′ la′ l≈′) where infixr 9 _∘_ infix 4 _≈_ infixr -1 _⇒_ private module C = Category C module D = DisplayedCategory D Obj : Set (lo ⊔ lo′) Obj = Σ[ c ∈ C.Obj ] D.Obj c _⇒_ : (a b : Obj) → Set (la ⊔ la′) (a , a⁺) ⇒ (b , b⁺) = Σ[ f ∈ a C.⇒ b ] (a⁺ D.⇒[ f ] b⁺) _≈_ : ∀ {a b} → Rel (a ⇒ b) (l≈ ⊔ l≈′) (f , f⁺) ≈ (g , g⁺) = Σ[ f≈g ∈ f C.≈ g ] f⁺ D.≈[ f≈g ] g⁺ id : ∀ {a} → a ⇒ a id = C.id , D.id _∘_ : ∀ {a b c} → b ⇒ c → a ⇒ b → a ⇒ c (f , f⁺) ∘ (g , g⁺) = (f C.∘ g) , (f⁺ D.∘ g⁺) equiv : ∀ {a b} → IsEquivalence (_≈_ {a} {b}) equiv = record { refl = C.≈.refl , D.≈-refl ; sym = λ where (f≈g , f⁺≈g⁺) → C.≈.sym f≈g , D.≈-sym f⁺≈g⁺ ; trans = λ where (f≈g , f⁺≈g⁺) (g≈h , g⁺≈h⁺) → C.≈.trans f≈g g≈h , D.≈-trans f⁺≈g⁺ g⁺≈h⁺ } ∘-resp : ∀ {a b c} → (_∘_ {a} {b} {c} Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_) ∘-resp (f≈g , f⁺≈g⁺) (h≈i , h⁺≈i⁺) = C.∘-resp f≈g h≈i , D.∘-resp f⁺≈g⁺ h⁺≈i⁺ id-r : ∀ {a b} {f : a ⇒ b} → f ∘ id ≈ f id-r = C.id-r , D.id-r id-l : ∀ {a b} {f : a ⇒ b} → id ∘ f ≈ f id-l = C.id-l , D.id-l assoc : ∀ {a b c d} {f : c ⇒ d} {g : b ⇒ c} {h : a ⇒ b} → (f ∘ g) ∘ h ≈ f ∘ (g ∘ h) assoc = C.assoc , D.assoc Total : Category (lo ⊔ lo′) (la ⊔ la′) (l≈ ⊔ l≈′) Total = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = ∘-resp ; id-r = id-r ; id-l = id-l ; assoc = assoc } open BuildTotal public using (Total)
27.830986
80
0.367915
7c77a2c22b5d71dc754fd6417bf5021c61d4b241
980
agda
Agda
Cats/Category/Sets.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Sets.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
Cats/Category/Sets.agda
alessio-b-zak/cats
a3b69911c4c6ec380ddf6a0f4510d3a755734b86
[ "MIT" ]
null
null
null
module Cats.Category.Sets where open import Data.Product using (Σ ; _×_ ; proj₁ ; proj₂) open import Level open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) open import Cats.Category.Base open import Cats.Util.Function open import Cats.Util.Logic.Constructive module _ {l} {A B : Set l} where infixr 4 _≈_ _≈_ : (f g : A → B) → Set l f ≈ g = ∀ x → f x ≡ g x equiv : IsEquivalence _≈_ equiv = record { refl = λ x → ≡.refl ; sym = λ eq x → ≡.sym (eq x) ; trans = λ eq₁ eq₂ x → ≡.trans (eq₁ x) (eq₂ x) } instance Sets : ∀ l → Category (suc l) l l Sets l = record { Obj = Set l ; _⇒_ = λ A B → A → B ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = λ {_} {_} {_} {f} eq₁ eq₂ x → ≡.trans (≡.cong f (eq₂ _)) (eq₁ _) ; id-r = λ _ → ≡.refl ; id-l = λ _ → ≡.refl ; assoc = λ _ → ≡.refl }
22.272727
74
0.554082
35be5232de773aaea4e48557a71b7576806d8793
45,196
agda
Agda
Agda/17-number-theory.agda
EgbertRijke/HoTT-Intro
0802dc8605fa709ff03773dcd3b25aa27a9691d2
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/17-number-theory.agda
EgbertRijke/HoTT-Intro
0802dc8605fa709ff03773dcd3b25aa27a9691d2
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/17-number-theory.agda
EgbertRijke/HoTT-Intro
0802dc8605fa709ff03773dcd3b25aa27a9691d2
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split #-} module 17-number-theory where import 16-sets open 16-sets public -- Section 10.1 Decidability. {- Recall that a proposition P is decidable if P + (¬ P) holds. -} classical-Prop : (l : Level) → UU (lsuc l) classical-Prop l = Σ (UU-Prop l) (λ P → is-decidable (pr1 P)) is-decidable-leq-ℕ : (m n : ℕ) → is-decidable (leq-ℕ m n) is-decidable-leq-ℕ zero-ℕ zero-ℕ = inl star is-decidable-leq-ℕ zero-ℕ (succ-ℕ n) = inl star is-decidable-leq-ℕ (succ-ℕ m) zero-ℕ = inr id is-decidable-leq-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-leq-ℕ m n is-decidable-le-ℕ : (m n : ℕ) → is-decidable (le-ℕ m n) is-decidable-le-ℕ zero-ℕ zero-ℕ = inr id is-decidable-le-ℕ zero-ℕ (succ-ℕ n) = inl star is-decidable-le-ℕ (succ-ℕ m) zero-ℕ = inr id is-decidable-le-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-le-ℕ m n {- We show that if A is a proposition, then so is is-decidable A. -} is-prop-is-decidable : {l : Level} {A : UU l} → is-prop A → is-prop (is-decidable A) is-prop-is-decidable is-prop-A = is-prop-coprod intro-dn is-prop-A is-prop-neg {- Not every type is decidable. -} case-elim : {l1 l2 : Level} {A : UU l1} {B : UU l2} → ¬ B → coprod A B → A case-elim nb (inl a) = a case-elim nb (inr b) = ex-falso (nb b) simplify-not-all-2-element-types-decidable : {l : Level} → ((X : UU l) (p : type-trunc-Prop (bool ≃ X)) → is-decidable X) → ((X : UU l) (p : type-trunc-Prop (bool ≃ X)) → X) simplify-not-all-2-element-types-decidable d X p = case-elim ( map-universal-property-trunc-Prop ( dn-Prop' X) ( λ e → intro-dn (map-equiv e true)) ( p)) ( d X p) {- not-all-2-element-types-decidable : {l : Level} → ¬ ((X : UU l) (p : type-trunc-Prop (bool ≃ X)) → is-decidable X) not-all-2-element-types-decidable d = {!simplify-not-all-2-element-types-decidable d (raise _ bool) ?!} not-all-types-decidable : {l : Level} → ¬ ((X : UU l) → is-decidable X) not-all-types-decidable d = not-all-2-element-types-decidable (λ X p → d X) -} {- Types with decidable equality are closed under coproducts. -} has-decidable-equality-coprod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → has-decidable-equality A → has-decidable-equality B → has-decidable-equality (coprod A B) has-decidable-equality-coprod dec-A dec-B (inl x) (inl y) = functor-coprod ( ap inl) ( λ f p → f (inv-is-equiv (is-emb-inl _ _ x y) p)) ( dec-A x y) has-decidable-equality-coprod {A = A} {B = B} dec-A dec-B (inl x) (inr y) = inr ( λ p → inv-is-equiv ( is-equiv-map-raise _ empty) ( Eq-coprod-eq A B (inl x) (inr y) p)) has-decidable-equality-coprod {A = A} {B = B} dec-A dec-B (inr x) (inl y) = inr ( λ p → inv-is-equiv ( is-equiv-map-raise _ empty) ( Eq-coprod-eq A B (inr x) (inl y) p)) has-decidable-equality-coprod dec-A dec-B (inr x) (inr y) = functor-coprod ( ap inr) ( λ f p → f (inv-is-equiv (is-emb-inr _ _ x y) p)) ( dec-B x y) {- Decidable equality of Fin n. -} has-decidable-equality-empty : has-decidable-equality empty has-decidable-equality-empty () has-decidable-equality-unit : has-decidable-equality unit has-decidable-equality-unit star star = inl refl has-decidable-equality-Fin : (n : ℕ) → has-decidable-equality (Fin n) has-decidable-equality-Fin zero-ℕ = has-decidable-equality-empty has-decidable-equality-Fin (succ-ℕ n) = has-decidable-equality-coprod ( has-decidable-equality-Fin n) ( has-decidable-equality-unit) decidable-Eq-Fin : (n : ℕ) (i j : Fin n) → classical-Prop lzero decidable-Eq-Fin n i j = pair ( pair (Id i j) (is-set-Fin n i j)) ( has-decidable-equality-Fin n i j) {- Decidable equality of ℤ. -} has-decidable-equality-ℤ : has-decidable-equality ℤ has-decidable-equality-ℤ = has-decidable-equality-coprod has-decidable-equality-ℕ ( has-decidable-equality-coprod has-decidable-equality-unit has-decidable-equality-ℕ) {- Next, we show that types with decidable equality are sets. To see this, we will construct a fiberwise equivalence with the binary relation R that is defined by R x y := unit if (x = y), and empty otherwise. In order to define this relation, we first define a type family over ((x = y) + ¬(x = y)) that returns unit on the left and empty on the right. -} splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) → is-decidable (Id x y) → UU lzero splitting-decidable-equality A x y (inl p) = unit splitting-decidable-equality A x y (inr f) = empty is-prop-splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) → (t : is-decidable (Id x y)) → is-prop (splitting-decidable-equality A x y t) is-prop-splitting-decidable-equality A x y (inl p) = is-prop-unit is-prop-splitting-decidable-equality A x y (inr f) = is-prop-empty reflexive-splitting-decidable-equality : {l : Level} (A : UU l) (x : A) → (t : is-decidable (Id x x)) → splitting-decidable-equality A x x t reflexive-splitting-decidable-equality A x (inl p) = star reflexive-splitting-decidable-equality A x (inr f) = ind-empty {P = λ t → splitting-decidable-equality A x x (inr f)} (f refl) eq-splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) → (t : is-decidable (Id x y)) → splitting-decidable-equality A x y t → Id x y eq-splitting-decidable-equality A x y (inl p) t = p eq-splitting-decidable-equality A x y (inr f) t = ind-empty {P = λ s → Id x y} t is-set-has-decidable-equality : {l : Level} (A : UU l) → has-decidable-equality A → is-set A is-set-has-decidable-equality A d = is-set-prop-in-id ( λ x y → splitting-decidable-equality A x y (d x y)) ( λ x y → is-prop-splitting-decidable-equality A x y (d x y)) ( λ x → reflexive-splitting-decidable-equality A x (d x x)) ( λ x y → eq-splitting-decidable-equality A x y (d x y)) {- Closure of decidable types under retracts and equivalences. -} is-decidable-retract-of : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A retract-of B → is-decidable B → is-decidable A is-decidable-retract-of (pair i (pair r H)) (inl b) = inl (r b) is-decidable-retract-of (pair i (pair r H)) (inr f) = inr (f ∘ i) is-decidable-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} (is-equiv-f : is-equiv f) → is-decidable B → is-decidable A is-decidable-is-equiv {f = f} (pair (pair g G) (pair h H)) = is-decidable-retract-of (pair f (pair h H)) is-decidable-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) → is-decidable B → is-decidable A is-decidable-equiv e = is-decidable-is-equiv (is-equiv-map-equiv e) is-decidable-equiv' : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) → is-decidable A → is-decidable B is-decidable-equiv' e = is-decidable-equiv (inv-equiv e) has-decidable-equality-retract-of : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A retract-of B → has-decidable-equality B → has-decidable-equality A has-decidable-equality-retract-of (pair i (pair r H)) d x y = is-decidable-retract-of ( Id-retract-of-Id (pair i (pair r H)) x y) ( d (i x) (i y)) {- The well-ordering principle. -} is-minimal-element-ℕ : {l : Level} (P : ℕ → UU l) (n : ℕ) (p : P n) → UU l is-minimal-element-ℕ P n p = (m : ℕ) → P m → (leq-ℕ n m) minimal-element-ℕ : {l : Level} (P : ℕ → UU l) → UU l minimal-element-ℕ P = Σ ℕ (λ n → Σ (P n) (is-minimal-element-ℕ P n)) is-minimal-element-succ-ℕ : {l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) (m : ℕ) (pm : P (succ-ℕ m)) (is-min-m : is-minimal-element-ℕ (λ x → P (succ-ℕ x)) m pm) → ¬ (P zero-ℕ) → is-minimal-element-ℕ P (succ-ℕ m) pm is-minimal-element-succ-ℕ P d m pm is-min-m neg-p0 zero-ℕ p0 = ind-empty (neg-p0 p0) is-minimal-element-succ-ℕ P d zero-ℕ pm is-min-m neg-p0 (succ-ℕ n) psuccn = leq-zero-ℕ n is-minimal-element-succ-ℕ P d (succ-ℕ m) pm is-min-m neg-p0 (succ-ℕ n) psuccn = is-minimal-element-succ-ℕ (λ x → P (succ-ℕ x)) (λ x → d (succ-ℕ x)) m pm ( λ m → is-min-m (succ-ℕ m)) ( is-min-m zero-ℕ) ( n) ( psuccn) well-ordering-principle-succ-ℕ : {l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) (n : ℕ) (p : P (succ-ℕ n)) → is-decidable (P zero-ℕ) → minimal-element-ℕ (λ m → P (succ-ℕ m)) → minimal-element-ℕ P well-ordering-principle-succ-ℕ P d n p (inl p0) _ = pair zero-ℕ (pair p0 (λ m q → leq-zero-ℕ m)) well-ordering-principle-succ-ℕ P d n p (inr neg-p0) (pair m (pair pm is-min-m)) = pair ( succ-ℕ m) ( pair pm ( is-minimal-element-succ-ℕ P d m pm is-min-m neg-p0)) well-ordering-principle-ℕ : {l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) → Σ ℕ P → minimal-element-ℕ P well-ordering-principle-ℕ P d (pair zero-ℕ p) = pair zero-ℕ (pair p (λ m q → leq-zero-ℕ m)) well-ordering-principle-ℕ P d (pair (succ-ℕ n) p) = well-ordering-principle-succ-ℕ P d n p (d zero-ℕ) ( well-ordering-principle-ℕ ( λ m → P (succ-ℕ m)) ( λ m → d (succ-ℕ m)) ( pair n p)) -- Exercise 6.7 -- We prove that the induction principle for ℕ implies strong induction. -- We first prove some lemmas about inequality. is-prop-leq-ℕ : (m n : ℕ) → is-prop (leq-ℕ m n) is-prop-leq-ℕ zero-ℕ zero-ℕ = is-prop-unit is-prop-leq-ℕ zero-ℕ (succ-ℕ n) = is-prop-unit is-prop-leq-ℕ (succ-ℕ m) zero-ℕ = is-prop-empty is-prop-leq-ℕ (succ-ℕ m) (succ-ℕ n) = is-prop-leq-ℕ m n neg-succ-leq-ℕ : (n : ℕ) → ¬ (leq-ℕ (succ-ℕ n) n) neg-succ-leq-ℕ zero-ℕ = id neg-succ-leq-ℕ (succ-ℕ n) = neg-succ-leq-ℕ n leq-eq-left-ℕ : {m m' : ℕ} → Id m m' → (n : ℕ) → leq-ℕ m n → leq-ℕ m' n leq-eq-left-ℕ refl n = id leq-eq-right-ℕ : (m : ℕ) {n n' : ℕ} → Id n n' → leq-ℕ m n → leq-ℕ m n' leq-eq-right-ℕ m refl = id -- Now we begin with the proof of the theorem fam-strong-ind-ℕ : { l : Level} → (ℕ → UU l) → ℕ → UU l fam-strong-ind-ℕ P n = (m : ℕ) → (leq-ℕ m n) → P m -- We first take care of the zero case, with appropriate computation rule. zero-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → P zero-ℕ → fam-strong-ind-ℕ P zero-ℕ zero-strong-ind-ℕ P p0 zero-ℕ t = p0 zero-strong-ind-ℕ P p0 (succ-ℕ m) () eq-zero-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) (t : leq-ℕ zero-ℕ zero-ℕ) → Id (zero-strong-ind-ℕ P p0 zero-ℕ t) p0 eq-zero-strong-ind-ℕ P p0 t = refl -- Next, we take care of the successor case, with appropriate computation rule. {- In the successor case, we need to define a map fam-strong-ind-ℕ P k → fam-strong-ind-ℕ P (succ-ℕ k). The dependent function in the codomain is defined by case analysis, where the cases are that either m ≤ k or m = k+1. -} -- We use the following definition to get a map (m≤k+1) → coprod (m≤k) (m=k+1). cases-leq-succ-ℕ : {m n : ℕ} → leq-ℕ m (succ-ℕ n) → coprod (leq-ℕ m n) (Id m (succ-ℕ n)) cases-leq-succ-ℕ {zero-ℕ} {n} star = inl star cases-leq-succ-ℕ {succ-ℕ m} {zero-ℕ} p = inr (ap succ-ℕ (anti-symmetric-leq-ℕ m zero-ℕ p star)) cases-leq-succ-ℕ {succ-ℕ m} {succ-ℕ n} p = functor-coprod id (ap succ-ℕ) (cases-leq-succ-ℕ p) cases-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( (n : ℕ) → (fam-strong-ind-ℕ P n) → P (succ-ℕ n)) → ( n : ℕ) (H : fam-strong-ind-ℕ P n) → ( m : ℕ) ( c : coprod (leq-ℕ m n) (Id m (succ-ℕ n))) → P m cases-succ-strong-ind-ℕ P pS n H m (inl q) = H m q cases-succ-strong-ind-ℕ P pS n H .(succ-ℕ n) (inr refl) = pS n H succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) → (fam-strong-ind-ℕ P k) → (fam-strong-ind-ℕ P (succ-ℕ k)) succ-strong-ind-ℕ P pS k H m p = cases-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p) -- We use a similar case analysis to obtain the computation rule. {- exclusive-coprod-leq-eq-succ-ℕ : (m n : ℕ) → leq-ℕ m n → ¬ (Id m (succ-ℕ n)) exclusive-coprod-leq-eq-succ-ℕ zero-ℕ zero-ℕ star = {!Eq-eq-ℕ!} exclusive-coprod-leq-eq-succ-ℕ zero-ℕ (succ-ℕ n) p = {!!} exclusive-coprod-leq-eq-succ-ℕ (succ-ℕ m) (succ-ℕ n) p = {!!} is-prop'-coprod-leq-eq-succ : (m n : ℕ) → is-prop' (coprod (leq-ℕ m n) (Id m (succ-ℕ n))) is-prop'-coprod-leq-eq-succ m n = is-prop'-exclusive-coprod ( exclusive-coprod-leq-eq-succ-ℕ m n) ( is-prop'-is-prop (is-prop-leq-ℕ m n)) ( is-prop'-is-prop (is-set-ℕ m (succ-ℕ n))) tr-eq-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) ( n : ℕ) (H : fam-strong-ind-ℕ P n) ( m : ℕ) (p : leq-ℕ m (succ-ℕ n)) ( x : coprod (leq-ℕ m n) (Id m (succ-ℕ n))) (y : P m) → Id (succ-strong-ind-ℕ P pS n H m p) y → Id (cases-succ-strong-ind-ℕ P pS n H m x) y tr-eq-succ-strong-ind-ℕ P pS n H m p x y = tr ( λ t → Id (cases-succ-strong-ind-ℕ P pS n H m t) y) ( is-prop'-coprod-leq-eq-succ m n (cases-leq-succ-ℕ p) x) -} cases-htpy-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) (H : fam-strong-ind-ℕ P k) (m : ℕ) ( c : coprod (leq-ℕ m k) (Id m (succ-ℕ k))) → ( q : leq-ℕ m k) → Id ( cases-succ-strong-ind-ℕ P pS k H m c) ( H m q) cases-htpy-succ-strong-ind-ℕ P pS k H m (inl p) q = ap (H m) (is-prop'-is-prop (is-prop-leq-ℕ m k) p q) cases-htpy-succ-strong-ind-ℕ P pS k H m (inr α) q = ex-falso ( neg-succ-leq-ℕ k (leq-eq-left-ℕ α k q)) htpy-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) (H : fam-strong-ind-ℕ P k) (m : ℕ) ( p : leq-ℕ m (succ-ℕ k)) → ( q : leq-ℕ m k) → Id ( succ-strong-ind-ℕ P pS k H m p) ( H m q) htpy-succ-strong-ind-ℕ P pS k H m p q = cases-htpy-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p) q cases-eq-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) (H : fam-strong-ind-ℕ P k) ( c : coprod (leq-ℕ (succ-ℕ k) k) (Id (succ-ℕ k) (succ-ℕ k))) → Id ( (cases-succ-strong-ind-ℕ P pS k H (succ-ℕ k) c)) ( pS k H) cases-eq-succ-strong-ind-ℕ P pS k H (inl p) = ex-falso (neg-succ-leq-ℕ k p) cases-eq-succ-strong-ind-ℕ P pS k H (inr α) = ap ( (cases-succ-strong-ind-ℕ P pS k H (succ-ℕ k)) ∘ inr) ( is-prop'-is-prop (is-set-ℕ (succ-ℕ k) (succ-ℕ k)) α refl) eq-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( k : ℕ) (H : fam-strong-ind-ℕ P k) ( p : leq-ℕ (succ-ℕ k) (succ-ℕ k)) → Id ( (succ-strong-ind-ℕ P pS k H (succ-ℕ k) p)) ( pS k H) eq-succ-strong-ind-ℕ P pS k H p = cases-eq-succ-strong-ind-ℕ P pS k H (cases-leq-succ-ℕ p) {- Now that we have the base case and inductive step covered, we can proceed by induction. -} induction-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( fam-strong-ind-ℕ P zero-ℕ) → ( (k : ℕ) → (fam-strong-ind-ℕ P k) → (fam-strong-ind-ℕ P (succ-ℕ k))) → ( n : ℕ) → fam-strong-ind-ℕ P n induction-strong-ind-ℕ P q0 qS zero-ℕ = q0 induction-strong-ind-ℕ P q0 qS (succ-ℕ n) = qS n (induction-strong-ind-ℕ P q0 qS n) computation-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( q0 : fam-strong-ind-ℕ P zero-ℕ) → ( qS : (k : ℕ) → (fam-strong-ind-ℕ P k) → (fam-strong-ind-ℕ P (succ-ℕ k))) → ( n : ℕ) → Id ( induction-strong-ind-ℕ P q0 qS (succ-ℕ n)) ( qS n (induction-strong-ind-ℕ P q0 qS n)) computation-succ-strong-ind-ℕ P q0 qS n = refl {- However, to obtain the conclusion we need to make one more small step. -} conclusion-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( ( n : ℕ) → fam-strong-ind-ℕ P n) → (n : ℕ) → P n conclusion-strong-ind-ℕ P f n = f n n (reflexive-leq-ℕ n) {- We are finally ready to put things together and define strong-ind-ℕ. -} strong-ind-ℕ : { l : Level} → (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → P n strong-ind-ℕ P p0 pS = conclusion-strong-ind-ℕ P ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS)) {- The computation rule for the base case holds by definition. -} comp-zero-strong-ind-ℕ : { l : Level} → (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → Id (strong-ind-ℕ P p0 pS zero-ℕ) p0 comp-zero-strong-ind-ℕ P p0 pS = refl {- For the computation rule of the inductive step, we use our hard work. -} cases-leq-succ-reflexive-leq-ℕ : {n : ℕ} → Id (cases-leq-succ-ℕ {succ-ℕ n} {n} (reflexive-leq-ℕ n)) (inr refl) cases-leq-succ-reflexive-leq-ℕ {zero-ℕ} = refl cases-leq-succ-reflexive-leq-ℕ {succ-ℕ n} = ap (functor-coprod id (ap succ-ℕ)) cases-leq-succ-reflexive-leq-ℕ cases-eq-comp-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → ( α : ( m : ℕ) (p : leq-ℕ m n) → Id ( induction-strong-ind-ℕ P (zero-strong-ind-ℕ P p0) ( λ k z m₁ z₁ → cases-succ-strong-ind-ℕ P pS k z m₁ (cases-leq-succ-ℕ z₁)) n m p) ( strong-ind-ℕ P p0 pS m)) → ( m : ℕ) (p : leq-ℕ m (succ-ℕ n)) → ( q : coprod (leq-ℕ m n) (Id m (succ-ℕ n))) → Id ( succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) m p) ( strong-ind-ℕ P p0 pS m) cases-eq-comp-succ-strong-ind-ℕ P p0 pS n α m p (inl x) = ( htpy-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) m p x) ∙ ( α m x) cases-eq-comp-succ-strong-ind-ℕ P p0 pS n α .(succ-ℕ n) p (inr refl) = ( eq-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) n) ( p)) ∙ ( inv ( ap ( cases-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( λ k H m p₁ → cases-succ-strong-ind-ℕ P pS k H m (cases-leq-succ-ℕ p₁)) n) ( succ-ℕ n)) cases-leq-succ-reflexive-leq-ℕ)) eq-comp-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → ( m : ℕ) (p : leq-ℕ m n) → Id ( induction-strong-ind-ℕ P (zero-strong-ind-ℕ P p0) ( λ k z m₁ z₁ → cases-succ-strong-ind-ℕ P pS k z m₁ (cases-leq-succ-ℕ z₁)) n m p) ( strong-ind-ℕ P p0 pS m) eq-comp-succ-strong-ind-ℕ P p0 pS zero-ℕ zero-ℕ star = refl eq-comp-succ-strong-ind-ℕ P p0 pS zero-ℕ (succ-ℕ m) () eq-comp-succ-strong-ind-ℕ P p0 pS (succ-ℕ n) m p = cases-eq-comp-succ-strong-ind-ℕ P p0 pS n ( eq-comp-succ-strong-ind-ℕ P p0 pS n) m p ( cases-leq-succ-ℕ p) comp-succ-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → ( n : ℕ) → Id (strong-ind-ℕ P p0 pS (succ-ℕ n)) (pS n (λ m p → strong-ind-ℕ P p0 pS m)) comp-succ-strong-ind-ℕ P p0 pS n = ( eq-succ-strong-ind-ℕ P pS n ( induction-strong-ind-ℕ P ( zero-strong-ind-ℕ P p0) ( succ-strong-ind-ℕ P pS) ( n)) ( reflexive-leq-ℕ n)) ∙ ( ap ( pS n) ( eq-htpy ( λ m → eq-htpy ( λ p → eq-comp-succ-strong-ind-ℕ P p0 pS n m p)))) total-strong-ind-ℕ : { l : Level} (P : ℕ → UU l) (p0 : P zero-ℕ) → ( pS : (k : ℕ) → (fam-strong-ind-ℕ P k) → P (succ-ℕ k)) → Σ ( (n : ℕ) → P n) ( λ h → ( Id (h zero-ℕ) p0) × ( (n : ℕ) → Id (h (succ-ℕ n)) (pS n (λ m p → h m)))) total-strong-ind-ℕ P p0 pS = pair ( strong-ind-ℕ P p0 pS) ( pair ( comp-zero-strong-ind-ℕ P p0 pS) ( comp-succ-strong-ind-ℕ P p0 pS)) -- The Euclidean algorithm subtract-ℕ : ℕ → ℕ → ℕ subtract-ℕ zero-ℕ zero-ℕ = zero-ℕ subtract-ℕ zero-ℕ (succ-ℕ b) = zero-ℕ subtract-ℕ (succ-ℕ a) zero-ℕ = succ-ℕ a subtract-ℕ (succ-ℕ a) (succ-ℕ b) = subtract-ℕ a b leq-subtract-ℕ : (a b : ℕ) → leq-ℕ (subtract-ℕ a b) a leq-subtract-ℕ zero-ℕ zero-ℕ = star leq-subtract-ℕ zero-ℕ (succ-ℕ b) = star leq-subtract-ℕ (succ-ℕ a) zero-ℕ = reflexive-leq-ℕ a leq-subtract-ℕ (succ-ℕ a) (succ-ℕ b) = transitive-leq-ℕ (subtract-ℕ a b) a (succ-ℕ a) ( leq-subtract-ℕ a b) ( succ-leq-ℕ a) decide-order-ℕ : (a b : ℕ) → coprod (leq-ℕ b a) (le-ℕ a b) decide-order-ℕ zero-ℕ zero-ℕ = inl star decide-order-ℕ zero-ℕ (succ-ℕ b) = inr star decide-order-ℕ (succ-ℕ a) zero-ℕ = inl star decide-order-ℕ (succ-ℕ a) (succ-ℕ b) = decide-order-ℕ a b cases-gcd-euclid : ( a b : ℕ) ( F : (x : ℕ) (p : leq-ℕ x a) → ℕ → ℕ) ( G : (y : ℕ) (q : leq-ℕ y b) → ℕ) → ( coprod (leq-ℕ b a) (le-ℕ a b)) → ℕ cases-gcd-euclid a b F G (inl t) = F (subtract-ℕ a b) (leq-subtract-ℕ a b) (succ-ℕ b) cases-gcd-euclid a b F G (inr t) = G (subtract-ℕ b a) (leq-subtract-ℕ b a) succ-gcd-euclid : (a : ℕ) (F : (x : ℕ) → (leq-ℕ x a) → ℕ → ℕ) → ℕ → ℕ succ-gcd-euclid a F = strong-ind-ℕ ( λ x → ℕ) ( succ-ℕ a) ( λ b G → ind-coprod { A = leq-ℕ b a} { B = le-ℕ a b} ( λ x → ℕ) ( λ t → F (subtract-ℕ a b) (leq-subtract-ℕ a b) (succ-ℕ b)) ( λ t → G (subtract-ℕ b a) (leq-subtract-ℕ b a)) ( decide-order-ℕ a b)) comp-zero-succ-gcd-euclid : (a : ℕ) (F : (x : ℕ) → (leq-ℕ x a) → ℕ → ℕ) → Id (succ-gcd-euclid a F zero-ℕ) (succ-ℕ a) comp-zero-succ-gcd-euclid a F = comp-zero-strong-ind-ℕ ( λ x → ℕ) ( succ-ℕ a) ( λ b G → ind-coprod { A = leq-ℕ b a} { B = le-ℕ a b} ( λ x → ℕ) ( λ t → F (subtract-ℕ a b) (leq-subtract-ℕ a b) (succ-ℕ b)) ( λ t → G (subtract-ℕ b a) (leq-subtract-ℕ b a)) ( decide-order-ℕ a b)) comp-succ-succ-gcd-euclid : (a : ℕ) (F : (x : ℕ) → (leq-ℕ x a) → ℕ → ℕ) (b : ℕ) → Id (succ-gcd-euclid a F (succ-ℕ b)) ( ind-coprod { A = leq-ℕ b a} { B = le-ℕ a b} ( λ x → ℕ) ( λ t → F (subtract-ℕ a b) (leq-subtract-ℕ a b) (succ-ℕ b)) ( λ t → succ-gcd-euclid a F (subtract-ℕ b a)) ( decide-order-ℕ a b)) comp-succ-succ-gcd-euclid a F b = comp-succ-strong-ind-ℕ ( λ x → ℕ) ( succ-ℕ a) ( λ k z → ind-coprod (λ _ → ℕ) (λ x → F (subtract-ℕ a k) (leq-subtract-ℕ a k) (succ-ℕ k)) (λ y → z (subtract-ℕ k a) (leq-subtract-ℕ k a)) (decide-order-ℕ a k)) ( b) gcd-euclid : ℕ → ℕ → ℕ gcd-euclid = strong-ind-ℕ ( λ x → ℕ → ℕ) ( id) ( succ-gcd-euclid) comp-succ-gcd-euclid : (a : ℕ) → Id (gcd-euclid (succ-ℕ a)) (succ-gcd-euclid a (λ x p → gcd-euclid x)) comp-succ-gcd-euclid = comp-succ-strong-ind-ℕ (λ x → ℕ → ℕ) id succ-gcd-euclid -- Properties of the greatest common divisor left-zero-law-gcd-euclid : (gcd-euclid zero-ℕ) ~ id left-zero-law-gcd-euclid = htpy-eq (comp-zero-strong-ind-ℕ (λ x → ℕ → ℕ) id succ-gcd-euclid) right-zero-law-gcd-euclid : (a : ℕ) → Id (gcd-euclid a zero-ℕ) a right-zero-law-gcd-euclid zero-ℕ = refl right-zero-law-gcd-euclid (succ-ℕ a) = ( ap ( λ t → cases-succ-strong-ind-ℕ (λ x → ℕ → ℕ) succ-gcd-euclid a ( induction-strong-ind-ℕ ( λ x → ℕ → ℕ) ( zero-strong-ind-ℕ (λ x → ℕ → ℕ) (λ a₁ → a₁)) ( λ k H m p → cases-succ-strong-ind-ℕ (λ x → ℕ → ℕ) succ-gcd-euclid k H m (cases-leq-succ-ℕ p)) ( a)) ( succ-ℕ a) t zero-ℕ) cases-leq-succ-reflexive-leq-ℕ) ∙ ( comp-zero-succ-gcd-euclid a (λ x _ z → z)) is-prop-le-ℕ : (a b : ℕ) → is-prop (le-ℕ a b) is-prop-le-ℕ zero-ℕ zero-ℕ = is-prop-empty is-prop-le-ℕ zero-ℕ (succ-ℕ b) = is-prop-unit is-prop-le-ℕ (succ-ℕ a) zero-ℕ = is-prop-empty is-prop-le-ℕ (succ-ℕ a) (succ-ℕ b) = is-prop-le-ℕ a b is-prop'-le-ℕ : (a b : ℕ) → is-prop' (le-ℕ a b) is-prop'-le-ℕ a b = is-prop'-is-prop (is-prop-le-ℕ a b) {- left-lesser-law-gcd-euclid : (a b : ℕ) → (le-ℕ a b) → Id (gcd-euclid a b) (gcd-euclid a (subtract-ℕ b a)) left-lesser-law-gcd-euclid zero-ℕ (succ-ℕ b) H = refl left-lesser-law-gcd-euclid (succ-ℕ a) (succ-ℕ b) H = ( htpy-eq (comp-succ-gcd-euclid a) (succ-ℕ b)) ∙ {!!} -} {- ( (comp-succ-succ-gcd-euclid a (λ x t → gcd-euclid x) b) ∙ ( ( {!!} ∙ apd (λ t → (ind-coprod (λ x → ℕ) (λ t → gcd-euclid (subtract-ℕ a b) (succ-ℕ b)) (λ t → succ-gcd-euclid a (λ x t₁ → gcd-euclid x) (subtract-ℕ b a)) t)) (ap inr (is-prop'-le-ℕ a b {!!} {!!}))) ∙ {!!} {- ( inv (ap (λ t → cases-succ-strong-ind-ℕ (λ x → ℕ → ℕ) succ-gcd-euclid a (induction-strong-ind-ℕ (λ x → ℕ → ℕ) (zero-strong-ind-ℕ (λ x → ℕ → ℕ) (λ a₁ → a₁)) (λ k H₁ m p → cases-succ-strong-ind-ℕ (λ x → ℕ → ℕ) succ-gcd-euclid k H₁ m (cases-leq-succ-ℕ p)) a) (succ-ℕ a) t (subtract-ℕ (succ-ℕ b) (succ-ℕ a))) cases-leq-succ-reflexive-leq-ℕ))-})) -} -- We show that induction on ℕ implies ordinal induction. fam-ordinal-ind-ℕ : { l : Level} → (ℕ → UU l) → ℕ → UU l fam-ordinal-ind-ℕ P n = (m : ℕ) → (le-ℕ m n) → P m le-zero-ℕ : (m : ℕ) → (le-ℕ m zero-ℕ) → empty le-zero-ℕ zero-ℕ () le-zero-ℕ (succ-ℕ m) () zero-ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → fam-ordinal-ind-ℕ P zero-ℕ zero-ordinal-ind-ℕ P m t = ind-empty (le-zero-ℕ m t) le-one-ℕ : (n : ℕ) → le-ℕ (succ-ℕ n) one-ℕ → empty le-one-ℕ zero-ℕ () le-one-ℕ (succ-ℕ n) () transitive-le-ℕ' : (k l m : ℕ) → (le-ℕ k l) → (le-ℕ l (succ-ℕ m)) → le-ℕ k m transitive-le-ℕ' zero-ℕ zero-ℕ m () s transitive-le-ℕ' (succ-ℕ k) zero-ℕ m () s transitive-le-ℕ' zero-ℕ (succ-ℕ l) zero-ℕ star s = ind-empty (le-one-ℕ l s) transitive-le-ℕ' (succ-ℕ k) (succ-ℕ l) zero-ℕ t s = ind-empty (le-one-ℕ l s) transitive-le-ℕ' zero-ℕ (succ-ℕ l) (succ-ℕ m) star s = star transitive-le-ℕ' (succ-ℕ k) (succ-ℕ l) (succ-ℕ m) t s = transitive-le-ℕ' k l m t s succ-ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( (n : ℕ) → (fam-ordinal-ind-ℕ P n) → P n) → ( k : ℕ) → fam-ordinal-ind-ℕ P k → fam-ordinal-ind-ℕ P (succ-ℕ k) succ-ordinal-ind-ℕ P f k g m t = f m (λ m' t' → g m' (transitive-le-ℕ' m' m k t' t)) induction-ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( qS : (k : ℕ) → fam-ordinal-ind-ℕ P k → fam-ordinal-ind-ℕ P (succ-ℕ k)) ( n : ℕ) → fam-ordinal-ind-ℕ P n induction-ordinal-ind-ℕ P qS zero-ℕ = zero-ordinal-ind-ℕ P induction-ordinal-ind-ℕ P qS (succ-ℕ n) = qS n (induction-ordinal-ind-ℕ P qS n) conclusion-ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → (( n : ℕ) → fam-ordinal-ind-ℕ P n) → (n : ℕ) → P n conclusion-ordinal-ind-ℕ P f n = f (succ-ℕ n) n (succ-le-ℕ n) ordinal-ind-ℕ : { l : Level} (P : ℕ → UU l) → ( (n : ℕ) → (fam-ordinal-ind-ℕ P n) → P n) → ( n : ℕ) → P n ordinal-ind-ℕ P f = conclusion-ordinal-ind-ℕ P ( induction-ordinal-ind-ℕ P (succ-ordinal-ind-ℕ P f)) {- The Pigeon hole principle. -} {- First we write a function that counts the number of elements in a decidable subset of a finite set. -} count-Fin-succ-ℕ : {l : Level} (n : ℕ) (P : Fin (succ-ℕ n) → classical-Prop l) → ℕ → is-decidable (pr1 (pr1 (P (inr star)))) → ℕ count-Fin-succ-ℕ n P m (inl x) = succ-ℕ m count-Fin-succ-ℕ n P m (inr x) = m count-Fin : {l : Level} (n : ℕ) (P : Fin n → classical-Prop l) → ℕ count-Fin zero-ℕ P = zero-ℕ count-Fin (succ-ℕ n) P = count-Fin-succ-ℕ n P ( count-Fin n (P ∘ inl)) ( pr2 (P (inr star))) {- Next we prove the pigeonhole principle. -} max-Fin : (n : ℕ) → Fin (succ-ℕ n) max-Fin n = inr star contraction-Fin-one-ℕ : (t : Fin one-ℕ) → Id (inr star) t contraction-Fin-one-ℕ (inr star) = refl is-contr-Fin-one-ℕ : is-contr (Fin one-ℕ) is-contr-Fin-one-ℕ = pair (inr star) contraction-Fin-one-ℕ skip : (n : ℕ) → Fin (succ-ℕ n) → Fin n → Fin (succ-ℕ n) skip (succ-ℕ n) (inl i) (inl j) = inl (skip n i j) skip (succ-ℕ n) (inl i) (inr star) = inr star skip (succ-ℕ n) (inr star) j = inl j repeat : (n : ℕ) → Fin n → Fin (succ-ℕ n) → Fin n repeat (succ-ℕ n) (inl i) (inl j) = inl (repeat n i j) repeat (succ-ℕ n) (inl j) (inr star) = inr star repeat (succ-ℕ n) (inr star) (inl j) = j repeat (succ-ℕ n) (inr star) (inr star) = inr star repeat-repeat : (n : ℕ) (i j : Fin n) → ((repeat n i) ∘ (repeat (succ-ℕ n) (skip n (inl i) j))) ~ ((repeat n j) ∘ (repeat (succ-ℕ n) (skip n (inl j) i))) repeat-repeat zero-ℕ () j k repeat-repeat (succ-ℕ n) (inl i) (inl j) (inl k) = ap inl (repeat-repeat n i j k) repeat-repeat (succ-ℕ n) (inl i) (inl j) (inr star) = refl repeat-repeat (succ-ℕ n) (inl i) (inr star) (inr star) = refl repeat-repeat (succ-ℕ n) (inr star) (inl j) (inr star) = refl repeat-repeat (succ-ℕ n) (inr star) (inr star) (inl k) = refl repeat-repeat (succ-ℕ n) (inr star) (inr star) (inr star) = refl repeat-repeat (succ-ℕ zero-ℕ) (inl ()) (inr star) (inl k) repeat-repeat (succ-ℕ (succ-ℕ n)) (inl i) (inr star) (inl k) = refl repeat-repeat (succ-ℕ zero-ℕ) (inr star) (inl ()) (inl k) repeat-repeat (succ-ℕ (succ-ℕ n)) (inr star) (inl j) (inl k) = refl {- skip-repeat : (n : ℕ) (i : Fin n) → ((skip n (inl i)) ∘ (repeat n i)) ~ id skip-repeat (succ-ℕ n) (inl x) (inl y) = ap inl (skip-repeat n x y) skip-repeat (succ-ℕ n) (inl x) (inr star) = refl skip-repeat (succ-ℕ n) (inr star) (inl (inl x)) = ap inl {!ap (skip n) ?!} skip-repeat (succ-ℕ n) (inr star) (inl (inr star)) = {!!} skip-repeat (succ-ℕ n) (inr star) (inr star) = {!!} -} map-lift-Fin : (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) (i : Fin (succ-ℕ n)) (H : fib f i → empty) → Fin m → Fin n map-lift-Fin m n f (inl i) H = (repeat n i) ∘ (f ∘ inl) map-lift-Fin m (succ-ℕ n) f (inr star) H = ( repeat (succ-ℕ n) (max-Fin n)) ∘ ( f ∘ inl) map-lift-Fin zero-ℕ zero-ℕ f (inr star) H = ind-empty map-lift-Fin (succ-ℕ m) zero-ℕ f (inr star) H = ex-falso ( H (pair (inr star) (inv (contraction-Fin-one-ℕ (f (inr star)))))) {- is-lift-lift-Fin : (m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) (i : Fin (succ-ℕ n)) (H : fib f i → empty) → (f ∘ inl) ~ ((skip n i) ∘ (map-lift-Fin m n f i H)) is-lift-lift-Fin m n f (inl i) H x = {!!} is-lift-lift-Fin m n f (inr i) H x = {!!} -} -- The greatest common divisor {- First we show that mul-ℕ n is an embedding whenever n > 0. In order to do this, we have to show that add-ℕ n is injective. -} {- FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX is-injective-add-ℕ' : (n : ℕ) → is-injective is-set-ℕ is-set-ℕ (add-ℕ n) is-injective-add-ℕ' n k l p = is-injective-add-ℕ' n k l (((commutative-add-ℕ n k) ∙ ?) ∙ (commutative-add-ℕ l n)) is-emb-add-ℕ : (n : ℕ) → is-emb (add-ℕ n) is-emb-add-ℕ n = is-emb-is-injective is-set-ℕ is-set-ℕ (add-ℕ n) (is-injective-add-ℕ n) equiv-fib-add-fib-add-ℕ' : (m n : ℕ) → fib (add-ℕ' m) n ≃ fib (add-ℕ m) n equiv-fib-add-fib-add-ℕ' m n = equiv-tot (λ k → equiv-concat (commutative-add-ℕ m k) n) leq-fib-add-ℕ' : (m n : ℕ) → fib (add-ℕ' m) n → (leq-ℕ m n) leq-fib-add-ℕ' zero-ℕ n (pair k p) = leq-zero-ℕ n leq-fib-add-ℕ' (succ-ℕ m) (succ-ℕ n) (pair k p) = leq-fib-add-ℕ' m n (pair k (is-injective-succ-ℕ (add-ℕ k m) n p)) leq-fib-add-ℕ : (m n : ℕ) → fib (add-ℕ m) n → (leq-ℕ m n) leq-fib-add-ℕ m .m (pair zero-ℕ refl) = reflexive-leq-ℕ m leq-fib-add-ℕ m .(add-ℕ m (succ-ℕ k)) (pair (succ-ℕ k) refl) = transitive-leq-ℕ m (add-ℕ m k) (succ-ℕ (add-ℕ m k)) ( leq-fib-add-ℕ m (add-ℕ m k) (pair k refl)) ( succ-leq-ℕ (add-ℕ m k)) -} {- fib-add-leq-ℕ : (m n : ℕ) → (leq-ℕ m n) → fib (add-ℕ m) n fib-add-leq-ℕ zero-ℕ zero-ℕ star = pair zero-ℕ refl fib-add-leq-ℕ zero-ℕ (succ-ℕ n) star = {!!} fib-add-leq-ℕ (succ-ℕ m) (succ-ℕ n) p = {!!} {- fib-add-leq-ℕ zero-ℕ zero-ℕ H = pair zero-ℕ refl fib-add-leq-ℕ zero-ℕ (succ-ℕ n) H = pair (succ-ℕ n) refl fib-add-leq-ℕ (succ-ℕ m) (succ-ℕ n) H = pair ( pr1 (fib-add-leq-ℕ m n H)) ( ap succ-ℕ (pr2 (fib-add-leq-ℕ m n H))) -} is-equiv-leq-fib-add-ℕ : (m n : ℕ) → is-equiv (leq-fib-add-ℕ m n) is-equiv-leq-fib-add-ℕ m n = is-equiv-is-prop ( is-prop-map-is-emb _ (is-emb-add-ℕ m) n) ( is-prop-leq-ℕ m n) ( fib-add-leq-ℕ m n) is-equiv-fib-add-leq-ℕ : (m n : ℕ) → is-equiv (fib-add-leq-ℕ m n) is-equiv-fib-add-leq-ℕ m n = is-equiv-is-prop ( is-prop-leq-ℕ m n) ( is-prop-map-is-emb _ (is-emb-add-ℕ m) n) ( leq-fib-add-ℕ m n) -} is-emb-mul-ℕ : (n : ℕ) → is-emb (mul-ℕ' (succ-ℕ n)) is-emb-mul-ℕ n = is-emb-is-injective is-set-ℕ is-set-ℕ ( mul-ℕ' (succ-ℕ n)) ( is-injective-mul-ℕ n) {- FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX is-emb-mul-ℕ' : (n : ℕ) → (le-ℕ zero-ℕ n) → is-emb (λ m → mul-ℕ m n) is-emb-mul-ℕ' n t = is-emb-htpy' ( mul-ℕ n) ( λ m → mul-ℕ m n) ( commutative-mul-ℕ n) ( is-emb-mul-ℕ n) -} {- We conclude that the division relation is a property. -} {- FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX FIX is-prop-div-ℕ : (m n : ℕ) → (le-ℕ zero-ℕ m) → is-prop (div-ℕ m n) is-prop-div-ℕ (succ-ℕ m) n star = is-prop-map-is-emb ( λ z → mul-ℕ z (succ-ℕ m)) ( is-emb-mul-ℕ' (succ-ℕ m) star) n -} {- We now construct the division with remainder. -} le-mul-ℕ : (d n k : ℕ) → UU lzero le-mul-ℕ d n k = le-ℕ n (mul-ℕ k d) is-decidable-le-mul-ℕ : (d n k : ℕ) → is-decidable (le-mul-ℕ d n k) is-decidable-le-mul-ℕ d n k = is-decidable-le-ℕ n (mul-ℕ k d) order-preserving-succ-ℕ : (n n' : ℕ) → (leq-ℕ n n') → (leq-ℕ (succ-ℕ n) (succ-ℕ n')) order-preserving-succ-ℕ n n' H = H {- order-preserving-add-ℕ : (m n m' n' : ℕ) → (leq-ℕ m m') → (leq-ℕ n n') → (leq-ℕ (add-ℕ m n) (add-ℕ m' n')) order-preserving-add-ℕ = {!!} -} {- order-preserving-add-ℕ zero-ℕ zero-ℕ m' n' Hm Hn = star order-preserving-add-ℕ zero-ℕ (succ-ℕ n) zero-ℕ (succ-ℕ n') Hm Hn = Hn order-preserving-add-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ m') (succ-ℕ n') Hm Hn = leq-eq-right-ℕ n ( inv (right-successor-law-add-ℕ m' n')) ( order-preserving-add-ℕ zero-ℕ n (succ-ℕ m') n' Hm Hn) order-preserving-add-ℕ (succ-ℕ m) n (succ-ℕ m') n' Hm Hn = order-preserving-add-ℕ m n m' n' Hm Hn -} le-eq-right-ℕ : (m : ℕ) {n n' : ℕ} → Id n n' → le-ℕ m n' → le-ℕ m n le-eq-right-ℕ m refl = id {- le-add-ℕ : (m n : ℕ) → (leq-ℕ one-ℕ n) → le-ℕ m (add-ℕ m n) le-add-ℕ = {!!} {- le-add-ℕ zero-ℕ (succ-ℕ n) star = star le-add-ℕ (succ-ℕ m) (succ-ℕ n) star = le-add-ℕ m (succ-ℕ n) star -} le-mul-self-ℕ : (d n : ℕ) → (leq-ℕ one-ℕ d) → (leq-ℕ one-ℕ n) → le-mul-ℕ d n n le-mul-self-ℕ (succ-ℕ d) (succ-ℕ n) star star = le-eq-right-ℕ ( succ-ℕ n) ( right-successor-law-mul-ℕ (succ-ℕ n) d) ( le-add-ℕ (succ-ℕ n) (mul-ℕ (succ-ℕ n) d) {!leq-eq-right-ℕ !}) -} {- leq-multiple-ℕ : (n m : ℕ) → (leq-ℕ one-ℕ m) → leq-ℕ n (mul-ℕ n m) leq-multiple-ℕ n (succ-ℕ m) H = leq-eq-right-ℕ n ( inv (right-successor-law-mul-ℕ n m)) ( leq-fib-add-ℕ n (add-ℕ n (mul-ℕ n m)) (pair (mul-ℕ n m) refl)) least-factor-least-larger-multiple-ℕ : (d n : ℕ) → (leq-ℕ one-ℕ d) → minimal-element-ℕ (λ k → leq-ℕ n (mul-ℕ k d)) least-factor-least-larger-multiple-ℕ d n H = well-ordering-principle-ℕ ( λ k → leq-ℕ n (mul-ℕ k d)) ( λ k → is-decidable-leq-ℕ n (mul-ℕ k d)) ( pair n (leq-multiple-ℕ n d H)) factor-least-larger-multiple-ℕ : (d n : ℕ) → (leq-ℕ one-ℕ d) → ℕ factor-least-larger-multiple-ℕ d n H = pr1 (least-factor-least-larger-multiple-ℕ d n H) least-larger-multiple-ℕ : (d n : ℕ) → (leq-ℕ one-ℕ d) → ℕ least-larger-multiple-ℕ d n H = mul-ℕ (factor-least-larger-multiple-ℕ d n H) d leq-least-larger-multiple-ℕ : (d n : ℕ) (H : leq-ℕ one-ℕ d) → leq-ℕ n (least-larger-multiple-ℕ d n H) leq-least-larger-multiple-ℕ d n H = pr1 (pr2 (least-factor-least-larger-multiple-ℕ d n H)) is-minimal-least-larger-multiple-ℕ : (d n : ℕ) (H : leq-ℕ one-ℕ d) (k : ℕ) (K : leq-ℕ n (mul-ℕ k d)) → leq-ℕ (factor-least-larger-multiple-ℕ d n H) k is-minimal-least-larger-multiple-ℕ d n H = pr2 (pr2 (least-factor-least-larger-multiple-ℕ d n H)) -} {- is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ : (d n : ℕ) (H : leq-ℕ one-ℕ d) → is-decidable (Id (least-larger-multiple-ℕ d n H) n) → is-decidable (div-ℕ d n) is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ d n H (inl p) = inl (pair (factor-least-larger-multiple-ℕ d n H) p) is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ d n H (inr f) = inr (λ x → {!!}) is-decidable-div-ℕ' : (d n : ℕ) → (leq-ℕ one-ℕ d) → is-decidable (div-ℕ d n) is-decidable-div-ℕ' d n H = {!!} is-decidable-div-ℕ : (d n : ℕ) → is-decidable (div-ℕ d n) is-decidable-div-ℕ zero-ℕ zero-ℕ = inl (pair zero-ℕ refl) is-decidable-div-ℕ zero-ℕ (succ-ℕ n) = inr ( λ p → Eq-ℕ-eq {-zero-ℕ (succ-ℕ n)-} ((inv (right-zero-law-mul-ℕ (pr1 p))) ∙ (pr2 p))) is-decidable-div-ℕ (succ-ℕ d) n = is-decidable-div-ℕ' (succ-ℕ d) n (leq-zero-ℕ d) -} -- Operations on decidable bounded subsets of ℕ iterated-operation-ℕ : (strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) (base-value : ℕ) → ℕ iterated-operation-ℕ zero-ℕ μ e = e iterated-operation-ℕ (succ-ℕ b) μ e = μ (iterated-operation-ℕ b μ e) b iterated-sum-ℕ : (summand : ℕ → ℕ) (b : ℕ) → ℕ iterated-sum-ℕ f zero-ℕ = zero-ℕ iterated-sum-ℕ f (succ-ℕ b) = add-ℕ (iterated-sum-ℕ f b) (f (succ-ℕ b)) ranged-sum-ℕ : (summand : ℕ → ℕ) (l u : ℕ) → ℕ ranged-sum-ℕ f zero-ℕ u = iterated-sum-ℕ f u ranged-sum-ℕ f (succ-ℕ l) zero-ℕ = zero-ℕ ranged-sum-ℕ f (succ-ℕ l) (succ-ℕ u) = ranged-sum-ℕ (f ∘ succ-ℕ) l u succ-iterated-operation-fam-ℕ : { l : Level} ( P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) → ( predecessor-strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) → is-decidable (P predecessor-strict-upper-bound) → ℕ → ℕ succ-iterated-operation-fam-ℕ P is-decidable-P b μ (inl p) m = μ m b succ-iterated-operation-fam-ℕ P is-decidable-P b μ (inr f) m = m iterated-operation-fam-ℕ : { l : Level} (P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) → ( strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) (base-value : ℕ) → ℕ iterated-operation-fam-ℕ P d zero-ℕ μ e = e iterated-operation-fam-ℕ P d (succ-ℕ b) μ e = succ-iterated-operation-fam-ℕ P d b μ (d b) ( iterated-operation-fam-ℕ P d b μ e) Sum-fam-ℕ : { l : Level} (P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) → ( upper-bound : ℕ) ( summand : ℕ → ℕ) → ℕ Sum-fam-ℕ P d b f = iterated-operation-fam-ℕ P d (succ-ℕ b) (λ x y → add-ℕ x (f y)) zero-ℕ {- iterated-operation-fam-ℕ P is-decidable-P zero-ℕ is-bounded-P μ base-value = base-value iterated-operation-fam-ℕ P is-decidable-P (succ-ℕ b) is-bounded-P μ base-value = succ-iterated-operation-ℕ P is-decidable-P b is-bounded-P μ ( is-decidable-P b) ( iterated-operation-ℕ ( introduce-bound-on-fam-ℕ b P) ( is-decidable-introduce-bound-on-fam-ℕ b P is-decidable-P) ( b) ( is-bounded-introduce-bound-on-fam-ℕ b P) ( μ) ( base-value)) product-decidable-bounded-fam-ℕ : { l : Level} (P : ℕ → UU l) → ( is-decidable-P : (n : ℕ) → is-decidable (P n)) ( b : ℕ) ( is-bounded-P : is-bounded-fam-ℕ b P) → ℕ product-decidable-bounded-fam-ℕ P is-decidable-P b is-bounded-P = iterated-operation-ℕ P is-decidable-P b is-bounded-P mul-ℕ one-ℕ twenty-four-ℕ : ℕ twenty-four-ℕ = product-decidable-bounded-fam-ℕ ( λ x → le-ℕ x five-ℕ) ( λ x → is-decidable-le-ℕ x five-ℕ) ( five-ℕ) ( λ x → id) -} {- test-zero-twenty-four-ℕ : Id twenty-four-ℕ zero-ℕ test-zero-twenty-four-ℕ = refl test-twenty-four-ℕ : Id twenty-four-ℕ (factorial four-ℕ) test-twenty-four-ℕ = refl -} -- Exercises -- Exercise 10.? abstract has-decidable-equality-𝟚 : has-decidable-equality bool has-decidable-equality-𝟚 true true = inl refl has-decidable-equality-𝟚 true false = inr (Eq-𝟚-eq true false) has-decidable-equality-𝟚 false true = inr (Eq-𝟚-eq false true) has-decidable-equality-𝟚 false false = inl refl -- Exercise 10.? abstract has-decidable-equality-prod' : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (x x' : A) (y y' : B) → is-decidable (Id x x') → is-decidable (Id y y') → is-decidable (Id (pair x y) (pair x' y')) has-decidable-equality-prod' x x' y y' (inl p) (inl q) = inl (eq-pair-triv (pair p q)) has-decidable-equality-prod' x x' y y' (inl p) (inr g) = inr (λ h → g (ap pr2 h)) has-decidable-equality-prod' x x' y y' (inr f) (inl q) = inr (λ h → f (ap pr1 h)) has-decidable-equality-prod' x x' y y' (inr f) (inr g) = inr (λ h → f (ap pr1 h)) abstract has-decidable-equality-prod : {l1 l2 : Level} {A : UU l1} {B : UU l2} → has-decidable-equality A → has-decidable-equality B → has-decidable-equality (A × B) has-decidable-equality-prod dec-A dec-B (pair x y) (pair x' y') = has-decidable-equality-prod' x x' y y' (dec-A x x') (dec-B y y') {- bounds-fam-ℕ : {l : Level} (P : ℕ → UU l) → UU l bounds-fam-ℕ P = Σ ℕ (λ n → is-bounded-fam-ℕ n P) is-minimal-ℕ : {l : Level} (P : ℕ → UU l) → Σ ℕ P → UU l is-minimal-ℕ P (pair n p) = (t : Σ ℕ P) → leq-ℕ n (pr1 t) fam-succ-ℕ : {l : Level} → (ℕ → UU l) → (ℕ → UU l) fam-succ-ℕ P n = P (succ-ℕ n) is-decidable-fam-succ-ℕ : {l : Level} (P : ℕ → UU l) → ((n : ℕ) → is-decidable (P n)) → ((n : ℕ) → is-decidable (P (succ-ℕ n))) is-decidable-fam-succ-ℕ P d n = d (succ-ℕ n) min-is-bounded-not-zero-ℕ : {l : Level} (P : ℕ → UU l) → ((n : ℕ) → is-decidable (P n)) → Σ ℕ (λ n → is-bounded-fam-ℕ n P) → ¬ (P zero-ℕ) → Σ (Σ ℕ (fam-succ-ℕ P)) (is-minimal-ℕ (fam-succ-ℕ P)) → Σ (Σ ℕ P) (is-minimal-ℕ P) min-is-bounded-not-zero-ℕ P d b np0 t = {!!} min-is-bounded-ℕ : {l : Level} (P : ℕ → UU l) → ((n : ℕ) → is-decidable (P n)) → Σ ℕ (λ n → is-bounded-fam-ℕ n P) → Σ ℕ P → Σ (Σ ℕ P) (is-minimal-ℕ P) min-is-bounded-ℕ P d (pair zero-ℕ b) t = pair ( pair ( zero-ℕ) ( tr P (eq-zero-leq-zero-ℕ (pr1 t) (b (pr1 t) (pr2 t))) (pr2 t))) ( λ p → leq-zero-ℕ (pr1 p)) min-is-bounded-ℕ P d (pair (succ-ℕ n) b) t = ind-coprod ( λ (t : is-decidable (P zero-ℕ)) → Σ (Σ ℕ P) (is-minimal-ℕ P)) ( λ p0 → pair (pair zero-ℕ p0) (λ p → leq-zero-ℕ (pr1 p))) ( λ y → min-is-bounded-not-zero-ℕ P d (pair (succ-ℕ n) b) y ( min-is-bounded-ℕ ( fam-succ-ℕ P) ( is-decidable-fam-succ-ℕ P d) {!!} {!!})) ( d zero-ℕ) {- We show that every non-empty decidable subset of ℕ has a least element. -} least-ℕ : {l : Level} (P : ℕ → UU l) → Σ ℕ P → UU l least-ℕ P (pair n p) = (m : ℕ) → P m → leq-ℕ n m least-element-non-empty-decidable-subset-ℕ : {l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) → Σ ℕ P → Σ (Σ ℕ P) (least-ℕ P) least-element-non-empty-decidable-subset-ℕ P d (pair zero-ℕ p) = pair (pair zero-ℕ p) {!!} least-element-non-empty-decidable-subset-ℕ P d (pair (succ-ℕ n) p) = {!!} -} {- zero-Fin : (n : ℕ) → Fin (succ-ℕ n) zero-Fin zero-ℕ = inr star zero-Fin (succ-ℕ n) = inl (zero-Fin n) succ-Fin : (n : ℕ) → Fin n → Fin n succ-Fin (succ-ℕ n) (inr star) = zero-Fin n succ-Fin (succ-ℕ (succ-ℕ n)) (inl (inl x)) = inl (succ-Fin (succ-ℕ n) (inl x)) succ-Fin (succ-ℕ (succ-ℕ n)) (inl (inr star)) = inr star iterated-succ-Fin : (k : ℕ) → (n : ℕ) → Fin n → Fin n iterated-succ-Fin zero-ℕ n = id iterated-succ-Fin (succ-ℕ k) n = (succ-Fin n) ∘ (iterated-succ-Fin k n) quotient-ℕ-Fin : (n : ℕ) → Fin (succ-ℕ n) quotient-ℕ-Fin n = iterated-succ-Fin n (succ-ℕ n) (zero-Fin n) pred-Fin : (n : ℕ) → Fin n → Fin n pred-Fin (succ-ℕ zero-ℕ) (inr star) = inr star pred-Fin (succ-ℕ (succ-ℕ n)) (inl x) = {!!} pred-Fin (succ-ℕ (succ-ℕ n)) (inr star) = inl (inr star) add-Fin : (n : ℕ) → Fin n → Fin n → Fin n add-Fin (succ-ℕ n) (inl x) j = {!!} add-Fin (succ-ℕ n) (inr x) j = {!!} idempotent-succ-Fin : (n : ℕ) (i : Fin n) → Id (iterated-succ-Fin n n i) i idempotent-succ-Fin (succ-ℕ zero-ℕ) (inr star) = refl idempotent-succ-Fin (succ-ℕ (succ-ℕ n)) (inl x) = {!!} idempotent-succ-Fin (succ-ℕ (succ-ℕ n)) (inr x) = {!!} -} in-nat-ℤ : ℕ → ℤ in-nat-ℤ zero-ℕ = zero-ℤ in-nat-ℤ (succ-ℕ n) = in-pos n div-ℤ : (k l : ℤ) → UU lzero div-ℤ k l = Σ ℤ (λ x → Id (mul-ℤ x k) l) _≡_mod_ : (k l : ℤ) (n : ℕ) → UU lzero k ≡ l mod n = div-ℤ (in-nat-ℤ n) (add-ℤ k (neg-ℤ l)) -- From before is-even-ℕ : ℕ → UU lzero is-even-ℕ n = div-ℕ two-ℕ n is-prime : ℕ → UU lzero is-prime n = (one-ℕ < n) × ((m : ℕ) → (one-ℕ < m) → (div-ℕ m n) → Id m n) {- The Goldbach conjecture asserts that every even number above 2 is the sum of two primes. -} Goldbach-conjecture : UU lzero Goldbach-conjecture = ( n : ℕ) → (two-ℕ < n) → (is-even-ℕ n) → Σ ℕ (λ p → (is-prime p) × (Σ ℕ (λ q → (is-prime q) × Id (add-ℕ p q) n))) is-twin-prime : ℕ → UU lzero is-twin-prime n = (is-prime n) × (is-prime (succ-ℕ (succ-ℕ n))) {- The twin prime conjecture asserts that there are infinitely many twin primes. We assert that there are infinitely twin primes by asserting that for every n : ℕ there is a twin prime that is larger than n. -} Twin-prime-conjecture : UU lzero Twin-prime-conjecture = (n : ℕ) → Σ ℕ (λ p → (is-twin-prime p) × (leq-ℕ n p)) -- Exercise unit-classical-Prop : classical-Prop lzero unit-classical-Prop = pair unit-Prop (inl star) raise-unit-classical-Prop : (l : Level) → classical-Prop l raise-unit-classical-Prop l = pair ( pair ( raise l unit) ( is-prop-is-equiv' unit ( map-raise) ( is-equiv-map-raise l unit) ( is-prop-unit))) ( inl (map-raise star)) bool-classical-Prop : (l : Level) → classical-Prop l → bool bool-classical-Prop l (pair P (inl x)) = true bool-classical-Prop l (pair P (inr x)) = false {- classical-Prop-bool : (l : Level) → bool → classical-Prop l classical-Prop-bool l true = raise-unit-classical-Prop l classical-Prop-bool l false = {!!} -}
32.989781
103
0.580361
30b75b0b6f1c04f6b6ab21797eaa68f22ec7641a
4,570
agda
Agda
Cubical/Foundations/SIP.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Foundations/SIP.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Foundations/SIP.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
{- In this file we apply the cubical machinery to Martin Hötzel-Escardó's structure identity principle: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns -} {-# OPTIONS --safe #-} module Cubical.Foundations.SIP where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence renaming (ua-pathToEquiv to ua-pathToEquiv') open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Foundations.Structure public private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Level S : Type ℓ₁ → Type ℓ₂ -- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be -- a proposition. Indeed this type should correspond to the ways s and t can be identified -- as S-structures. This we call a standard notion of structure or SNS. -- We will use a different definition, but the two definitions are interchangeable. SNS : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) SNS {ℓ₁} S ι = ∀ {X : Type ℓ₁} (s t : S X) → ι (X , s) (X , t) (idEquiv X) ≃ (s ≡ t) -- We introduce the notation for structure preserving equivalences a -- bit differently, but this definition doesn't actually change from -- Escardó's notes. _≃[_]_ : (A : TypeWithStr ℓ₁ S) (ι : StrEquiv S ℓ₂) (B : TypeWithStr ℓ₁ S) → Type (ℓ-max ℓ₁ ℓ₂) A ≃[ ι ] B = Σ[ e ∈ typ A ≃ typ B ] (ι A B e) -- The following PathP version of SNS is a bit easier to work with -- for the proof of the SIP UnivalentStr : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) UnivalentStr {ℓ₁} S ι = {A B : TypeWithStr ℓ₁ S} (e : typ A ≃ typ B) → ι A B e ≃ PathP (λ i → S (ua e i)) (str A) (str B) -- A quick sanity-check that our definition is interchangeable with -- Escardó's. The direction SNS→UnivalentStr corresponds more or less -- to a dependent EquivJ formulation of Escardó's homomorphism-lemma. UnivalentStr→SNS : (S : Type ℓ₁ → Type ℓ₂) (ι : StrEquiv S ℓ₃) → UnivalentStr S ι → SNS S ι UnivalentStr→SNS S ι θ {X = X} s t = ι (X , s) (X , t) (idEquiv X) ≃⟨ θ (idEquiv X) ⟩ PathP (λ i → S (ua (idEquiv X) i)) s t ≃⟨ transportEquiv (λ j → PathP (λ i → S (uaIdEquiv {A = X} j i)) s t) ⟩ s ≡ t ■ SNS→UnivalentStr : (ι : StrEquiv S ℓ₃) → SNS S ι → UnivalentStr S ι SNS→UnivalentStr {S = S} ι θ {A = A} {B = B} e = EquivJ P C e (str A) (str B) where Y = typ B P : (X : Type _) → X ≃ Y → Type _ P X e' = (s : S X) (t : S Y) → ι (X , s) (Y , t) e' ≃ PathP (λ i → S (ua e' i)) s t C : (s t : S Y) → ι (Y , s) (Y , t) (idEquiv Y) ≃ PathP (λ i → S (ua (idEquiv Y) i)) s t C s t = ι (Y , s) (Y , t) (idEquiv Y) ≃⟨ θ s t ⟩ s ≡ t ≃⟨ transportEquiv (λ j → PathP (λ i → S (uaIdEquiv {A = Y} (~ j) i)) s t) ⟩ PathP (λ i → S (ua (idEquiv Y) i)) s t ■ TransportStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → Type (ℓ-max (ℓ-suc ℓ) ℓ₁) TransportStr {ℓ} {S = S} α = {X Y : Type ℓ} (e : X ≃ Y) (s : S X) → equivFun (α e) s ≡ subst S (ua e) s TransportStr→UnivalentStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → TransportStr α → UnivalentStr S (EquivAction→StrEquiv α) TransportStr→UnivalentStr {S = S} α τ {X , s} {Y , t} e = equivFun (α e) s ≡ t ≃⟨ pathToEquiv (cong (_≡ t) (τ e s)) ⟩ subst S (ua e) s ≡ t ≃⟨ invEquiv (PathP≃Path _ _ _) ⟩ PathP (λ i → S (ua e i)) s t ■ UnivalentStr→TransportStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → UnivalentStr S (EquivAction→StrEquiv α) → TransportStr α UnivalentStr→TransportStr {S = S} α θ e s = invEq (θ e) (transport-filler (cong S (ua e)) s) invTransportStr : {S : Type ℓ → Type ℓ₂} (α : EquivAction S) (τ : TransportStr α) {X Y : Type ℓ} (e : X ≃ Y) (t : S Y) → invEq (α e) t ≡ subst⁻ S (ua e) t invTransportStr {S = S} α τ e t = sym (transport⁻Transport (cong S (ua e)) (invEq (α e) t)) ∙∙ sym (cong (subst⁻ S (ua e)) (τ e (invEq (α e) t))) ∙∙ cong (subst⁻ S (ua e)) (retEq (α e) t) --- We can now define an invertible function --- --- sip : A ≃[ ι ] B → A ≡ B module _ {S : Type ℓ₁ → Type ℓ₂} {ι : StrEquiv S ℓ₃} (θ : UnivalentStr S ι) (A B : TypeWithStr ℓ₁ S) where sip : A ≃[ ι ] B → A ≡ B sip (e , p) i = ua e i , θ e .fst p i SIP : A ≃[ ι ] B ≃ (A ≡ B) SIP = sip , isoToIsEquiv (compIso (Σ-cong-iso (invIso univalenceIso) (equivToIso ∘ θ)) ΣPathIsoPathΣ) sip⁻ : A ≡ B → A ≃[ ι ] B sip⁻ = invEq SIP
36.56
99
0.61116
43aefb94d1eb82c794faf4184c1afafa793acf60
492
agda
Agda
homotopy/3x3/Commutes.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
homotopy/3x3/Commutes.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
homotopy/3x3/Commutes.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose import homotopy.3x3.To as To import homotopy.3x3.From as From open import homotopy.3x3.Common module homotopy.3x3.Commutes {i} (d : Span^2 {i}) where open Span^2 d open M using (Pushout^2) open To d open From d open import homotopy.3x3.FromTo open import homotopy.3x3.ToFrom abstract theorem : Pushout^2 d ≃ Pushout^2 (transpose d) theorem = equiv to from (to-from d) (from-to d)
22.363636
55
0.745935
1b5a91fbd70cc871eca61d3b37d6c88654aeeb8b
1,197
agda
Agda
test/Succeed/Issue1719/Common.agda
zgrannan/agda
5953ce337eb6b77b29ace7180478f49c541aea1c
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1719/Common.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1719/Common.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --without-K --rewriting #-} module Issue1719.Common where ofType : ∀ {i} (A : Set i) → A → A ofType A x = x syntax ofType A x = x :> A infixr 3 ofType postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i idr : ∀ {i} {A : Set i} {a : A} → a ↦ a {-# BUILTIN REWRITE _↦_ #-} infixr 3 _==_ data _==_ {i} {A : Set i} (a : A) : A → Set i where idp : a == a HetEq : ∀ {i} {A B : Set i} (e : A == B) (a : A) (b : B) → Set i HetEq idp a b = (a == b) PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {x y : A} (p : x == y) (u : B x) (v : B y) → Set j PathOver B idp u v = (u == v) syntax PathOver B p u v = u == v [ B ↓ p ] postulate PathOver-rewr : ∀ {i j} {A : Set i} {B : Set j} {x y : A} (p : x == y) (u v : B) → (PathOver (λ _ → B) p u v) ↦ (u == v) {-# REWRITE PathOver-rewr #-} -- Note that this is both [ap] and [apd], as a [PathOver] in a constant family -- reduces to the usual identity type. ap : ∀ {i j} {A : Set i} {B : A → Set j} (f : (a : A) → B a) {x y : A} → (p : x == y) → PathOver B p (f x) (f y) ap f idp = idp postulate ap-cst : ∀ {i j} {A : Set i} {B : Set j} (b : B) {x y : A} (p : x == y) → ap (λ _ → b) p ↦ idp {-# REWRITE ap-cst #-}
25.468085
84
0.472849
34fe70707e94df1032e8c55c7d467ac21d3fc0f8
1,443
agda
Agda
hott/equivalence/properties.agda
HoTT/M-types
beebe176981953ab48f37de5eb74557cfc5402f4
[ "BSD-3-Clause" ]
27
2015-04-14T15:47:03.000Z
2022-01-09T07:26:57.000Z
src/hott/equivalence/properties.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T14:32:16.000Z
2016-10-26T11:57:26.000Z
src/hott/equivalence/properties.agda
pcapriotti/agda-base
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
[ "BSD-3-Clause" ]
4
2015-02-02T12:17:00.000Z
2019-05-04T19:31:00.000Z
{-# OPTIONS --without-K #-} module hott.equivalence.properties where open import sum open import equality.core open import equality.calculus open import function.core open import function.isomorphism open import function.extensionality open import hott.equivalence.core open import hott.equivalence.alternative open import hott.univalence open import hott.level sym≈ : ∀ {i j}{X : Set i}{Y : Set j} → X ≈ Y → Y ≈ X sym≈ = ≅'⇒≈ ∘ sym≅' ∘ ≈⇒≅' -- being a weak equivalence is propositional we-h1 : ∀ {i j}{X : Set i}{Y : Set j} → (f : X → Y) → h 1 (weak-equiv f) we-h1 f = Π-level λ _ → contr-h1 _ apply≈-inj : ∀ {i j}{X : Set i}{Y : Set j} → injective (apply≈ {X = X}{Y = Y}) apply≈-inj {x = (f , w)}{.f , w'} refl = unapΣ (refl , h1⇒prop (we-h1 f) w w') abstract univ-sym≈ : ∀ {i}{X Y : Set i} → (w : X ≈ Y) → sym (≈⇒≡ w) ≡ ≈⇒≡ (sym≈ w) univ-sym≈ {i}{X}{Y} w = inverse-unique p q lem-inv where p : X ≡ Y p = ≈⇒≡ w q : Y ≡ X q = ≈⇒≡ (sym≈ w) p-β : coerce p ≡ apply≈ w p-β = uni-coherence w q-β : coerce q ≡ invert≈ w q-β = uni-coherence (sym≈ w) lem : coerce (p · q) ≡ coerce refl lem = coerce-hom p q · (ap (λ h → coerce q ∘ h) p-β · ap (λ h → h ∘ apply≈ w) q-β · funext (_≅_.iso₁ (≈⇒≅ w))) lem-inv : p · q ≡ refl lem-inv = iso⇒inj uni-iso (apply≈-inj lem)
24.87931
52
0.523909
0d2cfc25eeec28c616f54569f09e294a800720b9
2,111
agda
Agda
app/btls-certs.agda
semenov-vladyslav/asn1-agda
bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8
[ "MIT" ]
null
null
null
app/btls-certs.agda
semenov-vladyslav/asn1-agda
bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8
[ "MIT" ]
null
null
null
app/btls-certs.agda
semenov-vladyslav/asn1-agda
bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8
[ "MIT" ]
null
null
null
module btls-certs where open import Data.Word8 using (Word8) renaming (primWord8fromNat to to𝕎) open import Data.ByteString using (ByteString; Strict; Lazy; pack) open import Data.ByteString.Primitive using (∣List∣≡∣Strict∣) open import Data.ByteVec using (ByteVec) open import Data.Nat using (ℕ; zero; suc; _<_; z≤n; s≤s; _≤?_; _∸_) open import Data.Nat.DivMod using (_divMod_; result) open import Data.Fin using (Fin; toℕ) open import Data.Vec using (Vec; toList; tabulate) open import Data.List using (List; []; _∷_; length; _++_; take) open import Data.Product using (Σ; _,_; proj₁) open import Relation.Nullary using (Dec; yes; no) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans) import Data.ByteString.IO as BSIO open import IO open import Function using (_∘_) open import ASN1.Util using (base256) import ASN1.BER as BER import ASN1.X509 open import Bee2.Crypto.Belt using (beltHash) open import Bee2.Crypto.Bign using (Pri; Pub; Sig; bignCalcPubkey; bignSign2) b : ℕ → List Word8 b n = toList (tabulate {n} (to𝕎 ∘ toℕ)) b256 = b 256 x : (len : ℕ) → ℕ → Σ (List Word8) (λ l → len ≡ length l) x zero n = [] , refl x (suc len) n with n divMod 256 ... | result q r _ with x len q ... | ns , refl = (to𝕎 (toℕ r) ∷ ns) , refl mkPri : ℕ → Pri mkPri n with x 32 n ... | (ns , prf) = (pack ns) , sym (trans (∣List∣≡∣Strict∣ ns (p prf 32<2³¹)) (sym prf)) where p : ∀ {u v k} → (u≡v : u ≡ v) → u < k → v < k p refl u<k = u<k 32<2³¹ : 32 < _ 32<2³¹ = s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s ( s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s ( s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s ( s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s (s≤s ( s≤s z≤n)))))))))))))))))))))))))))))))) ca-pri : Pri ca-pri = mkPri 17 ca-pub : Pub ca-pub = bignCalcPubkey ca-pri sign : Pri → ByteString Strict → ByteString Strict sign pri = proj₁ ∘ bignSign2 pri ∘ beltHash ca-cert : ByteString Lazy ca-cert = BER.encode′ cert where open ASN1.X509.mkCert "issuer" "subject" "20170101000000Z" "20190101000000Z" (proj₁ ca-pub) (sign ca-pri) main = run (BSIO.writeBinaryFile "ca.pkc" ca-cert)
32.984375
107
0.645192
523feca90413ae1a158b72bb98f420972a7bade7
6,079
agda
Agda
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Algebra/RingSolver/CommRingHornerForms.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.CommRingHornerForms where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Int hiding (_+_ ; _·_ ; -_) open import Cubical.Data.FinData open import Cubical.Data.Vec open import Cubical.Data.Bool open import Cubical.Relation.Nullary.Base using (yes; no) open import Cubical.Algebra.RingSolver.Utility open import Cubical.Algebra.RingSolver.RawRing open import Cubical.Algebra.RingSolver.IntAsRawRing open import Cubical.Algebra.RingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ₐ) open import Cubical.Algebra.RingSolver.AlgebraExpression public private variable ℓ ℓ′ : Level {- This defines the type of multivariate Polynomials over the RawRing R. The construction is based on the algebraic fact R[X₀][X₁]⋯[Xₙ] ≅ R[X₀,⋯,Xₙ] BUT: Contrary to algebraic convetions, we will give 'Xₙ' the lowest index in the definition of 'Variable' below. So if 'Variable n R k' is identified with 'Xₖ', then the RawRing we construct should rather be denoted with R[Xₙ][Xₙ₋₁]⋯[X₀] or, to be precise about the evaluation order: (⋯((R[Xₙ])[Xₙ₋₁])⋯)[X₀] -} data IteratedHornerForms (A : RawAlgebra ℤAsRawRing ℓ) : ℕ → Type ℓ where const : ℤ → IteratedHornerForms A ℕ.zero 0H : {n : ℕ} → IteratedHornerForms A (ℕ.suc n) _·X+_ : {n : ℕ} → IteratedHornerForms A (ℕ.suc n) → IteratedHornerForms A n → IteratedHornerForms A (ℕ.suc n) {- The following function returns true, if there is some obvious reason that the Horner-Expression should be zero. Since Equality is undecidable in a general RawAlgebra, we cannot have a function that fully lives up to the name 'isZero'. -} module _ (A : RawAlgebra ℤAsRawRing ℓ) where open RawRing ℤAsRawRing isZero : {n : ℕ} → IteratedHornerForms A n → Bool isZero (const (pos ℕ.zero)) = true isZero (const (pos (ℕ.suc _))) = false isZero (const (negsuc _)) = false isZero 0H = true isZero (P ·X+ Q) = (isZero P) and (isZero Q) leftIsZero : {n : ℕ} (P : IteratedHornerForms A (ℕ.suc n)) (Q : IteratedHornerForms A n) → isZero (P ·X+ Q) ≡ true → isZero P ≡ true leftIsZero P Q isZeroSum with isZero P ... | true = refl ... | false = byBoolAbsurdity (fst (extractFromAnd _ _ isZeroSum)) rightIsZero : {n : ℕ} (P : IteratedHornerForms A (ℕ.suc n)) (Q : IteratedHornerForms A n) → isZero (P ·X+ Q) ≡ true → isZero Q ≡ true rightIsZero P Q isZeroSum with isZero Q ... | true = refl ... | false = byBoolAbsurdity (snd (extractFromAnd _ _ isZeroSum)) module IteratedHornerOperations (A : RawAlgebra ℤAsRawRing ℓ) where open RawRing ℤAsRawRing private 1H' : (n : ℕ) → IteratedHornerForms A n 1H' ℕ.zero = const 1r 1H' (ℕ.suc n) = 0H ·X+ 1H' n 0H' : (n : ℕ) → IteratedHornerForms A n 0H' ℕ.zero = const 0r 0H' (ℕ.suc n) = 0H 1ₕ : {n : ℕ} → IteratedHornerForms A n 1ₕ {n = n} = 1H' n 0ₕ : {n : ℕ} → IteratedHornerForms A n 0ₕ {n = n} = 0H' n X : (n : ℕ) (k : Fin n) → IteratedHornerForms A n X (ℕ.suc m) zero = 1ₕ ·X+ 0ₕ X (ℕ.suc m) (suc k) = 0ₕ ·X+ X m k _+ₕ_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n → IteratedHornerForms A n (const r) +ₕ (const s) = const (r + s) 0H +ₕ Q = Q (P ·X+ r) +ₕ 0H = P ·X+ r (P ·X+ r) +ₕ (Q ·X+ s) = let left = (P +ₕ Q) right = (r +ₕ s) in if ((isZero A left) and (isZero A right)) then 0ₕ else left ·X+ right -ₕ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n -ₕ (const x) = const (- x) -ₕ 0H = 0H -ₕ (P ·X+ Q) = (-ₕ P) ·X+ (-ₕ Q) _⋆_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A (ℕ.suc n) → IteratedHornerForms A (ℕ.suc n) _·ₕ_ : {n : ℕ} → IteratedHornerForms A n → IteratedHornerForms A n → IteratedHornerForms A n r ⋆ 0H = 0H r ⋆ (P ·X+ Q) = if (isZero A r) then 0ₕ else (r ⋆ P) ·X+ (r ·ₕ Q) const x ·ₕ const y = const (x · y) 0H ·ₕ Q = 0H (P ·X+ Q) ·ₕ S = let z = (P ·ₕ S) in if (isZero A z) then (Q ⋆ S) else (z ·X+ 0ₕ) +ₕ (Q ⋆ S) isZeroPresLeft⋆ : {n : ℕ} (r : IteratedHornerForms A n) (P : IteratedHornerForms A (ℕ.suc n)) → isZero A r ≡ true → isZero A (r ⋆ P) ≡ true isZeroPresLeft⋆ r 0H isZero-r = refl isZeroPresLeft⋆ r (P ·X+ Q) isZero-r with isZero A r ... | true = refl ... | false = byBoolAbsurdity isZero-r isZeroPresLeft·ₕ : {n : ℕ} (P Q : IteratedHornerForms A n) → isZero A P ≡ true → isZero A (P ·ₕ Q) ≡ true isZeroPresLeft·ₕ (const (pos ℕ.zero)) (const _) isZeroP = refl isZeroPresLeft·ₕ (const (pos (ℕ.suc n))) (const _) isZeroP = byBoolAbsurdity isZeroP isZeroPresLeft·ₕ (const (negsuc n)) (const _) isZeroP = byBoolAbsurdity isZeroP isZeroPresLeft·ₕ 0H Q isZeroP = refl isZeroPresLeft·ₕ (P ·X+ Q) S isZeroSum with isZero A (P ·ₕ S) ≟ true ... | no p = byBoolAbsurdity (sym notZeroProd ∙ isZeroProd) where notZeroProd = ¬true→false _ p isZeroP = extractFromAndLeft isZeroSum isZeroProd = isZeroPresLeft·ₕ P S isZeroP ... | yes p with isZero A (P ·ₕ S) ... | true = isZeroPresLeft⋆ Q S isZeroQ where isZeroQ = extractFromAndRight isZeroSum ... | false = byBoolAbsurdity p asRawRing : (n : ℕ) → RawRing ℓ RawRing.Carrier (asRawRing n) = IteratedHornerForms A n RawRing.0r (asRawRing n) = 0ₕ RawRing.1r (asRawRing n) = 1ₕ RawRing._+_ (asRawRing n) = _+ₕ_ RawRing._·_ (asRawRing n) = _·ₕ_ RawRing.- (asRawRing n) = -ₕ Variable : (n : ℕ) (R : RawAlgebra ℤAsRawRing ℓ′) (k : Fin n) → IteratedHornerForms R n Variable n R k = IteratedHornerOperations.X R n k Constant : (n : ℕ) (R : RawAlgebra ℤAsRawRing ℓ′) (r : ℤ) → IteratedHornerForms R n Constant ℕ.zero R r = const r Constant (ℕ.suc n) R r = IteratedHornerOperations.0ₕ R ·X+ Constant n R r
32.859459
87
0.616878
30e3ab5f83fc55505c3d78139f2b213a67a27163
335
agda
Agda
test/Fail/LevelUnification.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/LevelUnification.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/LevelUnification.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Level suc is not a constructor, and doesn't behave as one -- for unification. module LevelUnification where open import Common.Level data _≡_ {a}{A : Set a}(x : A) : ∀ {b}{B : Set b} → B → Set where refl : x ≡ x sym : ∀ a b (A : Set (lsuc a)) (B : Set (lsuc b)) (x : A) (y : B) → x ≡ y → y ≡ x sym a .a A .A x .x refl = refl
23.928571
81
0.567164
419c36a727202174e5b97de1f6e7c9448b3e40c2
483
agda
Agda
test/Succeed/Issue1203.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1203.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1203.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.conv.coerce:10 -v tc.conv.size:40 -v tc.size.solve:40 #-} -- Andreas, 2014-06-16 Coercion for sizes {-# OPTIONS --sized-types #-} open import Common.Size data Nat (i : Size) : Set where zero : Nat i suc : (j : Size< i) → Nat j → Nat i three : (i : Size) → Nat (↑ ↑ ↑ i) three i = suc _ (suc _ (suc i zero)) -- Should be ok, but we get the error: -- ∞ !=< i of type Size -- when checking that the expression _ has type Size< (↑ (↑ (↑ i))) -- Works now.
25.421053
78
0.590062
5287462ff6b5e7736f61a23779313fc7aa75e5a8
512
agda
Agda
test/Succeed/Issue1484.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1484.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1484.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2015-05-06 module Issue1484 where data ⊥ : Set where -- Smörgåsbord of legal absurd lambdas -- non-hidden abs esabs eabs eabs2 eabs3 : ⊥ → Set abs = λ() esabs = λ{ ()} eabs = λ{()} eabs2 = λ{(())} eabs3 = λ{((()))} -- hidden habs eshabs eshpabs eshpabs2 : {_ : ⊥} → Set habs = λ{} eshabs = λ{ {}} eshpabs = λ{ {()}} eshpabs2 = λ{ {(())}} -- instance iabs esiabs esipabs esipabs2 : {{_ : ⊥}} → Set iabs = λ{{}} esiabs = λ{ {{}}} esipabs = λ{ {{()}}} esipabs2 = λ{ {{(())}}}
14.222222
46
0.525391
2e9dedbb1f77dc92a93ea030e2d1ff432f1817db
3,160
agda
Agda
Sets/IterativeSet/Oper.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Sets/IterativeSet/Oper.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Sets/IterativeSet/Oper.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Sets.IterativeSet.Oper where import Lvl open import Data open import Data.Boolean open import Data.Boolean.Stmt open import Data.Either as Either using (_‖_) open import Data.Tuple as Tuple using () open import Functional open import Logic open import Numeral.Natural open import Relator.Equals using () renaming (_≡_ to Id ; [≡]-intro to intro) open import Sets.IterativeSet open import Syntax.Function open import Type.Dependent module _ where private variable {ℓ ℓ₁ ℓ₂} : Lvl.Level open Iset -- The empty set, consisting of no elements. -- Index is the empty type, which means that there are no objects pointing to elements in the set. ∅ : Iset{ℓ} ∅ = set{Index = Empty} empty -- The singleton set, consisting of one element. -- Index is the unit type, which means that there are a single object pointing to a single element in the set. singleton : Iset{ℓ} → Iset{ℓ} singleton = set{Index = Unit} ∘ const -- The pair set, consisting of two elements. -- Index is the boolean type, which means that there are two objects pointing to two elements in the set. pair : Iset{ℓ} → Iset{ℓ} → Iset{ℓ} pair A B = set{Index = Lvl.Up(Bool)} ((if_then B else A) ∘ Lvl.Up.obj) -- The union operator. -- Index(A ∪ B) is the either type of two indices, which means that both objects from the A and the B index point to elements in the set. _∪_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ} A ∪ B = set{Index = Index(A) ‖ Index(B)} (Either.map1 (elem(A)) (elem(B))) _,_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ} A , B = pair (singleton A) (pair A B) _⨯_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ} A ⨯ B = set{Index = Index(A) Tuple.⨯ Index(B)} \{(ia Tuple., ib) → (elem(A)(ia) , elem(B)(ib))} -- The big union operator. -- Index(⋃ A) is the dependent sum type of an Index(A) and the index of the element this index points to. ⋃ : Iset{ℓ} → Iset{ℓ} ⋃ A = set{Index = Σ(Index(A)) (ia ↦ Index(elem(A)(ia)))} (\{(intro ia i) → elem(elem(A)(ia))(i)}) indexFilter : (A : Iset{ℓ}) → (Index(A) → Stmt{ℓ}) → Iset{ℓ} indexFilter A P = set{Index = Σ(Index(A)) P} (elem(A) ∘ Σ.left) filter : (A : Iset{ℓ}) → (Iset{ℓ} → Stmt{ℓ}) → Iset{ℓ} filter{ℓ} A P = indexFilter A (P ∘ elem(A)) indexFilterBool : (A : Iset{ℓ}) → (Index(A) → Bool) → Iset{ℓ} indexFilterBool A f = indexFilter A (Lvl.Up ∘ IsTrue ∘ f) filterBool : (A : Iset{ℓ}) → (Iset{ℓ} → Bool) → Iset{ℓ} filterBool A f = indexFilterBool A (f ∘ elem(A)) mapSet : (Iset{ℓ} → Iset{ℓ}) → (Iset{ℓ} → Iset{ℓ}) mapSet f(A) = set{Index = Index(A)} (f ∘ elem(A)) -- The power set operator. -- Index(℘(A)) is a function type. An instance of such a function represents a subset, and essentially maps every element in A to a boolean which is interpreted as "in the subset of not". -- Note: This only works properly in a classical setting. Trying to use indexFilter instead result in universe level problems. ℘ : Iset{ℓ} → Iset{ℓ} ℘(A) = set{Index = Index(A) → Bool} (indexFilterBool A) -- The set of ordinal numbers of the first order. ω : Iset{ℓ} ω = set{Index = Lvl.Up ℕ} (N ∘ Lvl.Up.obj) where N : ℕ → Iset{ℓ} N(𝟎) = ∅ N(𝐒(n)) = N(n) ∪ singleton(N(n))
40
189
0.646203
1bfbc0cda3010c2978c2852809a99dfd4eece1f8
12,562
agda
Agda
lib/types/Pi.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/Pi.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Pi.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Paths module lib.types.Pi where abstract Π-level : ∀ {i j} {A : Type i} {B : A → Type j} {n : ℕ₋₂} → (((x : A) → has-level n (B x)) → has-level n (Π A B)) Π-level {n = ⟨-2⟩} p = ((λ x → fst (p x)) , (λ f → λ= (λ x → snd (p x) (f x)))) Π-level {n = S n} p = λ f g → equiv-preserves-level λ=-equiv (Π-level (λ x → p x (f x) (g x))) module _ {i j} {A : Type i} {B : A → Type j} where abstract Π-is-prop : ((x : A) → is-prop (B x)) → is-prop (Π A B) Π-is-prop = Π-level Π-is-set : ((x : A) → is-set (B x)) → is-set (Π A B) Π-is-set = Π-level module _ {i j} {A : Type i} {B : Type j} where abstract →-level : {n : ℕ₋₂} → (has-level n B → has-level n (A → B)) →-level p = Π-level (λ _ → p) →-is-set : is-set B → is-set (A → B) →-is-set = →-level →-is-prop : is-prop B → is-prop (A → B) →-is-prop = →-level {- Equivalences in a Π-type -} equiv-Π-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B} → is-equiv h → Π A (P ∘ h) ≃ Π B P equiv-Π-l {A = A} {B = B} P {h = h} e = equiv f g f-g g-f where w : A ≃ B w = (h , e) f : Π A (P ∘ h) → Π B P f u b = transport P (<–-inv-r w b) (u (<– w b)) g : Π B P → Π A (P ∘ h) g v a = v (–> w a) f-g : ∀ v → f (g v) == v f-g v = λ= λ b → to-transp (apd v (<–-inv-r w b)) g-f : ∀ u → g (f u) == u g-f u = λ= λ a → to-transp $ transport (λ p → u _ == _ [ P ↓ p ]) (is-equiv.adj e a) (↓-ap-in P (–> w) (apd u $ <–-inv-l w a)) equiv-Π-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} → (∀ x → B x ≃ C x) → Π A B ≃ Π A C equiv-Π-r {A = A} {B = B} {C = C} k = equiv f g f-g g-f where f : Π A B → Π A C f c x = –> (k x) (c x) g : Π A C → Π A B g d x = <– (k x) (d x) f-g : ∀ d → f (g d) == d f-g d = λ= (λ x → <–-inv-r (k x) (d x)) g-f : ∀ c → g (f c) == c g-f c = λ= (λ x → <–-inv-l (k x) (c x)) module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where equiv-Π : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Π A₀ B₀ ≃ Π A₁ B₁ equiv-Π u v = Π A₀ B₀ ≃⟨ equiv-Π-l _ (snd (u ⁻¹)) ⁻¹ ⟩ Π A₁ (B₀ ∘ <– u) ≃⟨ equiv-Π-r v ⟩ Π A₁ B₁ ≃∎ equiv-Π' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Π A₀ B₀ ≃ Π A₁ B₁ equiv-Π' u v = Π A₀ B₀ ≃⟨ equiv-Π-r v ⟩ Π A₀ (B₁ ∘ –> u) ≃⟨ equiv-Π-l _ (snd u) ⟩ Π A₁ B₁ ≃∎ {- Coversions between functions with implicit and explicit arguments -} expose-equiv : ∀ {i j} {A : Type i} {B : A → Type j} → ({x : A} → B x) ≃ ((x : A) → B x) expose-equiv = (λ f a → f {a}) , is-eq _ (λ f {a} → f a) (λ _ → idp) (λ _ → idp) {- Dependent paths in a Π-type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} where ↓-Π-in : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ pair= p q ]) → (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]) ↓-Π-in {p = idp} f = λ= (λ x → f (idp {a = x})) ↓-Π-out : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]) → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ pair= p q ]) ↓-Π-out {p = idp} q idp = app= q _ ↓-Π-β : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → (f : {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ pair= p q ]) → {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → ↓-Π-out (↓-Π-in f) q == f q ↓-Π-β {p = idp} f idp = app=-β (λ x → f (idp {a = x})) _ ↓-Π-η : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → (q : (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])) → ↓-Π-in (↓-Π-out q) == q ↓-Π-η {p = idp} q = ! (λ=-η q) ↓-Π-equiv : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')} → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ uncurry C ↓ pair= p q ]) ≃ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]) ↓-Π-equiv {p = idp} = equiv ↓-Π-in ↓-Π-out ↓-Π-η (λ u → <– (equiv-ap expose-equiv _ _) (λ= (λ t → <– (equiv-ap expose-equiv _ _) (λ= (λ t' → λ= (↓-Π-β u)))))) {- Dependent paths in a Π-type where the codomain is not dependent on anything Right now, this is defined in terms of the previous one. Maybe it’s a good idea, maybe not. -} module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} {x x' : A} {p : x == x'} {u : B x → C} {u' : B x' → C} where ↓-app→cst-in : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t') → (u == u' [ (λ x → B x → C) ↓ p ]) ↓-app→cst-in f = ↓-Π-in (λ q → ↓-cst-in (f q)) ↓-app→cst-out : (u == u' [ (λ x → B x → C) ↓ p ]) → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t') ↓-app→cst-out r q = ↓-cst-out (↓-Π-out r q) ↓-app→cst-β : (f : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t')) → {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → ↓-app→cst-out (↓-app→cst-in f) q == f q ↓-app→cst-β f q = ↓-app→cst-out (↓-app→cst-in f) q =⟨ idp ⟩ ↓-cst-out (↓-Π-out (↓-Π-in (λ qq → ↓-cst-in (f qq))) q) =⟨ ↓-Π-β (λ qq → ↓-cst-in (f qq)) q |in-ctx ↓-cst-out ⟩ ↓-cst-out (↓-cst-in {p = pair= p q} (f q)) =⟨ ↓-cst-β (pair= p q) (f q) ⟩ f q ∎ {- Dependent paths in an arrow type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {x x' : A} {p : x == x'} {u : B x → C x} {u' : B x' → C x'} where ↓-→-in : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ C ↓ p ]) → (u == u' [ (λ x → B x → C x) ↓ p ]) ↓-→-in f = ↓-Π-in (λ q → ↓-cst2-in p q (f q)) ↓-→-out : (u == u' [ (λ x → B x → C x) ↓ p ]) → ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ]) → u t == u' t' [ C ↓ p ]) ↓-→-out r q = ↓-cst2-out p q (↓-Π-out r q) {- Transport form of dependent path in an arrow type -} module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where ↓-→-from-transp : {x x' : A} {p : x == x'} {u : B x → C x} {u' : B x' → C x'} → transport C p ∘ u == u' ∘ transport B p → u == u' [ (λ x → B x → C x) ↓ p ] ↓-→-from-transp {p = idp} q = q ↓-→-to-transp : {x x' : A} {p : x == x'} {u : B x → C x} {u' : B x' → C x'} → u == u' [ (λ x → B x → C x) ↓ p ] → transport C p ∘ u == u' ∘ transport B p ↓-→-to-transp {p = idp} q = q -- Dependent paths in a Π-type where the domain is constant module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where ↓-cst→app-in : {x x' : A} {p : x == x'} {u : (b : B) → C x b} {u' : (b : B) → C x' b} → ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ]) → (u == u' [ (λ x → (b : B) → C x b) ↓ p ]) ↓-cst→app-in {p = idp} f = λ= f ↓-cst→app-out : {x x' : A} {p : x == x'} {u : (b : B) → C x b} {u' : (b : B) → C x' b} → (u == u' [ (λ x → (b : B) → C x b) ↓ p ]) → ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ]) ↓-cst→app-out {p = idp} q = app= q split-ap2 : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k} (f : Σ A B → C) {x y : A} (p : x == y) {u : B x} {v : B y} (q : u == v [ B ↓ p ]) → ap f (pair= p q) == ↓-app→cst-out (apd (curry f) p) q split-ap2 f idp idp = idp {- Interaction of [apd] with function composition. The basic idea is that [apd (g ∘ f) p == apd g (apd f p)] but the version here is well-typed. Note that we assume a propositional equality [r] between [apd f p] and [q]. -} apd-∘ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k} (g : {a : A} → Π (B a) (C a)) (f : Π A B) {x y : A} (p : x == y) {q : f x == f y [ B ↓ p ]} (r : apd f p == q) → apd (g ∘ f) p == ↓-apd-out C r (apd↓ g q) apd-∘ g f idp idp = idp {- When [g] is nondependent, it’s much simpler -} apd-∘' : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y) → apd (g ∘ f) p == ap↓ g (apd f p) apd-∘' g f idp = idp ∘'-apd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} (g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y) → ap↓ g (apd f p) == apd (g ∘ f) p ∘'-apd g f idp = idp {- And when [f] is nondependent, it’s also a bit simpler -} apd-∘'' : ∀ {i j k} {A : Type i} {B : Type j} {C : (b : B) → Type k} (g : Π B C) (f : A → B) {x y : A} (p : x == y) {q : f x == f y} (r : ap f p == q) → apd (g ∘ f) p == ↓-ap-out= C f p r (apd g q) --(apd↓ g q) apd-∘'' g f idp idp = idp {- 2-dimensional coherence conditions -} -- postulate -- lhs : -- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B} -- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} -- (k : (u ◃ apd g p) == (apd f p ▹ v)) -- (h : {a : A} → B a → C a) -- → ap h u ◃ apd (h ∘ g) p == ap↓ h (u ◃ apd g p) -- rhs : -- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B} -- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} -- (k : (u ◃ apd g p) == (apd f p ▹ v)) -- (h : {a : A} → B a → C a) -- → ap↓ h (apd f p ▹ v) == apd (h ∘ f) p ▹ ap h v -- ap↓-↓-=-in : -- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B} -- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y} -- (k : (u ◃ apd g p) == (apd f p ▹ v)) -- (h : {a : A} → B a → C a) -- → ap↓ (λ {a} → ap (h {a = a})) (↓-=-in {p = p} {u = u} {v = v} k) -- == ↓-=-in (lhs {f = f} {g = g} k h ∙ ap (ap↓ (λ {a} → h {a = a})) k -- ∙ rhs {f = f} {g = g} k h) {- Commutation of [ap↓ (ap h)] and [↓-swap!]. This is "just" J, but it’s not as easy as it seems. -} -- module Ap↓-swap! {i j k ℓ} {A : Type i} {B : Type j} {C : Type k} -- {D : Type ℓ} (h : C → D) (f : A → C) (g : B → C) -- {a a' : A} {p : a == a'} {b b' : B} {q : b == b'} -- (r : f a == g b') (s : f a' == g b) -- (t : r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ]) -- where -- lhs : ap h (ap f p ∙' s) == ap (h ∘ f) p ∙' ap h s -- lhs = ap-∙' h (ap f p) s ∙ (ap (λ u → u ∙' ap h s) (∘-ap h f p)) -- rhs : ap h (s ∙ ap g q) == ap h s ∙ ap (h ∘ g) q -- rhs = ap-∙ h s (ap g q) ∙ (ap (λ u → ap h s ∙ u) (∘-ap h g q)) -- β : ap↓ (ap h) (↓-swap! f g r s t) == -- lhs ◃ ↓-swap! (h ∘ f) (h ∘ g) (ap h r) (ap h s) (ap↓ (ap h) t ▹ rhs) -- β with a | a' | p | b | b' | q | r | s | t -- β | a | .a | idp | b | .b | idp | r | s | t = coh r s t where -- T : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → Type _ -- T r s t = -- ap (ap h) (∙'-unit-l s ∙ ! (∙-unit-r s) ∙ ! t) == -- (ap-∙' h idp s ∙ idp) -- ∙ -- (∙'-unit-l (ap h s) ∙ -- ! (∙-unit-r (ap h s)) ∙ -- ! -- (ap (ap h) t ∙' -- (ap-∙ h s idp ∙ idp))) -- coh' : {x x' : C} {r s : x == x'} (t : r == s) → T r s (t ∙ ! (∙-unit-r s)) -- coh' {r = idp} {s = .idp} idp = idp -- coh : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → T r s t -- coh r s t = transport (λ t → T r s t) (coh2 t (∙-unit-r s)) (coh' (t ∙ ∙-unit-r s)) where -- coh2 : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → (p ∙ q) ∙ ! q == p -- coh2 idp idp = idp -- module _ {i j k} {A : Type i} {B B' : Type j} {C : Type k} (f : A → C) (g' : B' → B) (g : B → C) where -- abc : {a a' : A} {p : a == a'} {c c' : B'} {q' : c == c'} {q : g' c == g' c'} -- (r : f a == g (g' c')) (s : f a' == g (g' c)) -- (t : q == ap g' q') -- (α : r == s ∙ ap g q [ (λ x → f x == g (g' c')) ↓ p ]) -- → {!(↓-swap! f g r s α ▹ ?) ∙'2ᵈ ?!} == ↓-swap! f (g ∘ g') {p = p} {q = q'} r s (α ▹ ap (λ u → s ∙ u) (ap (ap g) t ∙ ∘-ap g g' q')) -- abc = {!!} {- Functoriality of application and function extensionality -} ∙-app= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B} (α : f == g) (β : g == h) → α ∙ β == λ= (λ x → app= α x ∙ app= β x) ∙-app= idp β = λ=-η β ∙-λ= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B} (α : (x : A) → f x == g x) (β : (x : A) → g x == h x) → λ= α ∙ λ= β == λ= (λ x → α x ∙ β x) ∙-λ= α β = ∙-app= (λ= α) (λ= β) ∙ ap λ= (λ= (λ x → ap (λ w → w ∙ app= (λ= β) x) (app=-β α x) ∙ ap (λ w → α x ∙ w) (app=-β β x)))
36.411594
139
0.366821
d1bc19e731f762e475469ad6c287bd791b79e602
3,527
agda
Agda
src/fot/FOTC/Program/McCarthy91/AuxiliaryPropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Program/McCarthy91/AuxiliaryPropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Program/McCarthy91/AuxiliaryPropertiesATP.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Auxiliary properties of the McCarthy 91 function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.McCarthy91.AuxiliaryPropertiesATP where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesATP using ( x<y→y≤z→x<z ) open import FOTC.Data.Nat.PropertiesATP using ( +-N ; ∸-N ) open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP using ( x<x+1 ) open import FOTC.Program.McCarthy91.ArithmeticATP open import FOTC.Program.McCarthy91.McCarthy91 ------------------------------------------------------------------------------ --- Auxiliary properties postulate x>100→x<f₉₁-x+11 : ∀ {n} → N n → n > 100' → n < f₉₁ n + 11' {-# ATP prove x>100→x<f₉₁-x+11 +-N ∸-N x<y→y≤z→x<z x<x+1 x+1≤x∸10+11 #-} -- Case n ≡ 100 can be proved automatically postulate f₉₁-100 : f₉₁ 100' ≡ 91' {-# ATP prove f₉₁-100 100+11>100 100+11∸10>100 101≡100+11∸10 91≡100+11∸10∸10 #-} postulate f₉₁x+11<f₉₁x+11 : ∀ n → n ≯ 100' → f₉₁ (n + 11') < f₉₁ (f₉₁ (n + 11')) + 11' → f₉₁ (n + 11') < f₉₁ n + 11' {-# ATP prove f₉₁x+11<f₉₁x+11 #-} postulate f₉₁-x≯100-helper : ∀ m n → m ≯ 100' → f₉₁ (m + 11') ≡ n → f₉₁ n ≡ 91' → f₉₁ m ≡ 91' {-# ATP prove f₉₁-x≯100-helper #-} postulate f₉₁-110 : f₉₁ (99' + 11') ≡ 100' f₉₁-109 : f₉₁ (98' + 11') ≡ 99' f₉₁-108 : f₉₁ (97' + 11') ≡ 98' f₉₁-107 : f₉₁ (96' + 11') ≡ 97' f₉₁-106 : f₉₁ (95' + 11') ≡ 96' f₉₁-105 : f₉₁ (94' + 11') ≡ 95' f₉₁-104 : f₉₁ (93' + 11') ≡ 94' f₉₁-103 : f₉₁ (92' + 11') ≡ 93' f₉₁-102 : f₉₁ (91' + 11') ≡ 92' f₉₁-101 : f₉₁ (90' + 11') ≡ 91' {-# ATP prove f₉₁-110 99+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-109 98+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-108 97+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-107 96+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-106 95+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-105 94+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-104 93+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-103 92+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-102 91+11>100 x+11∸10≡Sx #-} {-# ATP prove f₉₁-101 90+11>100 x+11∸10≡Sx #-} postulate f₉₁-99 : f₉₁ 99' ≡ 91' f₉₁-98 : f₉₁ 98' ≡ 91' f₉₁-97 : f₉₁ 97' ≡ 91' f₉₁-96 : f₉₁ 96' ≡ 91' f₉₁-95 : f₉₁ 95' ≡ 91' f₉₁-94 : f₉₁ 94' ≡ 91' f₉₁-93 : f₉₁ 93' ≡ 91' f₉₁-92 : f₉₁ 92' ≡ 91' f₉₁-91 : f₉₁ 91' ≡ 91' f₉₁-90 : f₉₁ 90' ≡ 91' {-# ATP prove f₉₁-99 f₉₁-x≯100-helper f₉₁-110 f₉₁-100 #-} {-# ATP prove f₉₁-98 f₉₁-x≯100-helper f₉₁-109 f₉₁-99 #-} {-# ATP prove f₉₁-97 f₉₁-x≯100-helper f₉₁-108 f₉₁-98 #-} {-# ATP prove f₉₁-96 f₉₁-x≯100-helper f₉₁-107 f₉₁-97 #-} {-# ATP prove f₉₁-95 f₉₁-x≯100-helper f₉₁-106 f₉₁-96 #-} {-# ATP prove f₉₁-94 f₉₁-x≯100-helper f₉₁-105 f₉₁-95 #-} {-# ATP prove f₉₁-93 f₉₁-x≯100-helper f₉₁-104 f₉₁-94 #-} {-# ATP prove f₉₁-92 f₉₁-x≯100-helper f₉₁-103 f₉₁-93 #-} {-# ATP prove f₉₁-91 f₉₁-x≯100-helper f₉₁-102 f₉₁-92 #-} {-# ATP prove f₉₁-90 f₉₁-x≯100-helper f₉₁-101 f₉₁-91 #-} f₉₁-x≡y : ∀ {m n o} → f₉₁ m ≡ n → o ≡ m → f₉₁ o ≡ n f₉₁-x≡y h refl = h
37.126316
80
0.522257
8b7a9af97386d44ac7a9a47e00692133f891394d
7,682
agda
Agda
core/lib/groups/QuotientGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/groups/QuotientGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/groups/QuotientGroup.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Group open import lib.types.Sigma open import lib.types.Pi open import lib.types.Truncation open import lib.types.SetQuotient open import lib.groups.Homomorphism open import lib.groups.Subgroup open import lib.groups.SubgroupProp module lib.groups.QuotientGroup where module _ {i j} {G : Group i} (P : NormalSubgroupProp G j) where private module G = Group G module P = NormalSubgroupProp P infix 80 _⊙_ _⊙_ = G.comp quot-group-rel : Rel G.El j quot-group-rel g₁ g₂ = P.prop (G.diff g₁ g₂) quot-group-struct : GroupStructure (SetQuot quot-group-rel) quot-group-struct = record {M} where module M where ident : SetQuot quot-group-rel ident = q[ G.ident ] abstract inv-rel : ∀ {g₁ g₂ : G.El} (pg₁g₂⁻¹ : P.prop (G.diff g₁ g₂)) → q[ G.inv g₁ ] == q[ G.inv g₂ ] :> SetQuot quot-group-rel inv-rel {g₁} {g₂} pg₁g₂⁻¹ = ! $ quot-rel $ transport! (λ g → P.prop (G.inv g₂ ⊙ g)) (G.inv-inv g₁) $ P.comm g₁ (G.inv g₂) pg₁g₂⁻¹ inv : SetQuot quot-group-rel → SetQuot quot-group-rel inv = SetQuot-rec (λ g → q[ G.inv g ]) inv-rel abstract comp-rel-r : ∀ g₁ {g₂ g₂' : G.El} (pg₂g₂'⁻¹ : P.prop (G.diff g₂ g₂')) → q[ g₁ ⊙ g₂ ] == q[ g₁ ⊙ g₂' ] :> SetQuot quot-group-rel comp-rel-r g₁ {g₂} {g₂'} pg₂g₂'⁻¹ = quot-rel $ transport P.prop ( ap (_⊙ G.inv g₁) (! $ G.assoc g₁ g₂ (G.inv g₂')) ∙ G.assoc (g₁ ⊙ g₂) (G.inv g₂') (G.inv g₁) ∙ ap ((g₁ ⊙ g₂) ⊙_) (! $ G.inv-comp g₁ g₂')) (P.conj g₁ pg₂g₂'⁻¹) comp' : G.El → SetQuot quot-group-rel → SetQuot quot-group-rel comp' g₁ = SetQuot-rec (λ g₂ → q[ g₁ ⊙ g₂ ]) (comp-rel-r g₁) abstract comp-rel-l : ∀ {g₁ g₁' : G.El} (pg₁g₁'⁻¹ : P.prop (G.diff g₁ g₁')) g₂ → q[ g₁ ⊙ g₂ ] == q[ g₁' ⊙ g₂ ] :> SetQuot quot-group-rel comp-rel-l {g₁} {g₁'} pg₁g₁'⁻¹ g₂ = quot-rel $ transport! P.prop ( ap ((g₁ ⊙ g₂) ⊙_) (G.inv-comp g₁' g₂) ∙ ! (G.assoc (g₁ ⊙ g₂) (G.inv g₂) (G.inv g₁') ) ∙ ap (_⊙ G.inv g₁') ( G.assoc g₁ g₂ (G.inv g₂) ∙ ap (g₁ ⊙_) (G.inv-r g₂) ∙ G.unit-r g₁)) pg₁g₁'⁻¹ comp'-rel : ∀ {g₁ g₁' : G.El} (pg₁g₁'⁻¹ : P.prop (G.diff g₁ g₁')) → comp' g₁ == comp' g₁' comp'-rel pg₁g₁'⁻¹ = λ= $ SetQuot-elim (comp-rel-l pg₁g₁'⁻¹) (λ _ → prop-has-all-paths-↓) comp : SetQuot quot-group-rel → SetQuot quot-group-rel → SetQuot quot-group-rel comp = SetQuot-rec comp' comp'-rel abstract unit-l : ∀ g → comp ident g == g unit-l = SetQuot-elim (ap q[_] ∘ G.unit-l) (λ _ → prop-has-all-paths-↓) assoc : ∀ g₁ g₂ g₃ → comp (comp g₁ g₂) g₃ == comp g₁ (comp g₂ g₃) assoc = SetQuot-elim (λ g₁ → SetQuot-elim (λ g₂ → SetQuot-elim (λ g₃ → ap q[_] $ G.assoc g₁ g₂ g₃) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓)) (λ _ → prop-has-all-paths-↓) inv-l : ∀ g → comp (inv g) g == ident inv-l = SetQuot-elim (ap q[_] ∘ G.inv-l) (λ _ → prop-has-all-paths-↓) QuotGroup : Group (lmax i j) QuotGroup = group _ quot-group-struct {- helper functions -} module _ {i j} {G : Group i} {P : NormalSubgroupProp G j} where private module G = Group G module P = NormalSubgroupProp P infix 80 _⊙_ _⊙_ = G.comp q[_]ᴳ : G →ᴳ QuotGroup P q[_]ᴳ = group-hom q[_] λ _ _ → idp quot-relᴳ : ∀ {g₁ g₂} → P.prop (G.diff g₁ g₂) → q[ g₁ ] == q[ g₂ ] quot-relᴳ {g₁} {g₂} = quot-rel {R = quot-group-rel P} {a₁ = g₁} {a₂ = g₂} private abstract quot-group-rel-is-refl : is-refl (quot-group-rel P) quot-group-rel-is-refl g = transport! P.prop (G.inv-r g) P.ident quot-group-rel-is-sym : is-sym (quot-group-rel P) quot-group-rel-is-sym {g₁} {g₂} pg₁g₂⁻¹ = transport P.prop (G.inv-comp g₁ (G.inv g₂) ∙ ap (_⊙ G.inv g₁) (G.inv-inv g₂)) (P.inv pg₁g₂⁻¹) quot-group-rel-is-trans : is-trans (quot-group-rel P) quot-group-rel-is-trans {g₁} {g₂} {g₃} pg₁g₂⁻¹ pg₂g₃⁻¹ = transport P.prop ( G.assoc g₁ (G.inv g₂) (g₂ ⊙ G.inv g₃) ∙ ap (g₁ ⊙_) ( ! (G.assoc (G.inv g₂) g₂ (G.inv g₃)) ∙ ap (_⊙ G.inv g₃) (G.inv-l g₂) ∙ G.unit-l (G.inv g₃))) (P.comp pg₁g₂⁻¹ pg₂g₃⁻¹) quot-relᴳ-equiv : {g₁ g₂ : G.El} → P.prop (g₁ ⊙ G.inv g₂) ≃ (q[ g₁ ] == q[ g₂ ]) quot-relᴳ-equiv = quot-rel-equiv {R = quot-group-rel P} quot-group-rel-is-refl quot-group-rel-is-sym quot-group-rel-is-trans module QuotGroup {i j} {G : Group i} (P : NormalSubgroupProp G j) where grp = QuotGroup P open Group grp public module _ {i j k} {G : Group i} (P : SubgroupProp G j) (Q : NormalSubgroupProp G k) where quot-of-sub : NormalSubgroupProp (Subgroup P) k quot-of-sub = Q ∘nsubᴳ Subgroup.inject P {- interactions between quotients and subgroups (work in progress) -} {- So far not used. -- QuotGroup rel-over-sub ≃ᴳ Subgroup prop-over-quot module _ {i j k} {G : Group i} (Q : NormalSubgroupProp G j) (P : SubgroupProp G k) (prop-respects-quot : NormalSubgroupProp.subgrp-prop Q ⊆ᴳ P) where private module G = Group G module Q = NormalSubgroupProp Q module P = SubgroupProp P prop-over-quot : SubgroupProp (QuotGroup Q) k prop-over-quot = record {M; diff = λ {g₁} {g₂} → M.diff' g₁ g₂} where module M where module QG = Group (QuotGroup Q) private abstract prop'-rel : ∀ {g₁ g₂} (qg₁g₂⁻¹ : quot-group-rel Q g₁ g₂) → P.prop g₁ == P.prop g₂ prop'-rel {g₁} {g₂} qg₁g₂⁻¹ = ua $ equiv (λ pg₁ → transport P.prop ( ap (λ g → G.comp g g₁) (G.inv-comp g₁ (G.inv g₂)) ∙ G.assoc (G.inv (G.inv g₂)) (G.inv g₁) g₁ ∙ ap2 G.comp (G.inv-inv g₂) (G.inv-l g₁) ∙ G.unit-r g₂) (P.comp (P.inv pg₁g₂⁻¹) pg₁)) (λ pg₂ → transport P.prop ( G.assoc g₁ (G.inv g₂) g₂ ∙ ap (G.comp g₁) (G.inv-l g₂) ∙ G.unit-r g₁) (P.comp pg₁g₂⁻¹ pg₂)) (λ _ → prop-has-all-paths (P.level g₂) _ _) (λ _ → prop-has-all-paths (P.level g₁) _ _) where pg₁g₂⁻¹ : P.prop (G.diff g₁ g₂) pg₁g₂⁻¹ = prop-respects-quot (G.diff g₁ g₂) qg₁g₂⁻¹ prop' : Group.El (QuotGroup Q) → hProp k prop' = SetQuot-rec (hProp-is-set k) (λ g → P.prop g , P.level g) (nType=-out ∘ prop'-rel) prop : QG.El → Type k prop g' = fst (prop' g') abstract level : ∀ g' → is-prop (prop g') level g' = snd (prop' g') ident : prop q[ G.ident ] ident = P.ident abstract diff' : ∀ g₁' g₂' → prop g₁' → prop g₂' → prop (QG.diff g₁' g₂') diff' = SetQuot-elim {P = λ g₁' → ∀ g₂' → prop g₁' → prop g₂' → prop (QG.diff g₁' g₂')} (λ g₁' → Π-is-set λ g₂' → →-is-set $ →-is-set $ raise-level -1 (level (QG.diff g₁' g₂'))) (λ g₁ → SetQuot-elim (λ g₂' → →-is-set $ →-is-set $ raise-level -1 (level (QG.diff q[ g₁ ] g₂'))) (λ g₂ pg₁ pg₂ → P.diff pg₁ pg₂) (λ {_} {g₂} _ → prop-has-all-paths-↓ (→-is-prop $ →-is-prop $ level q[ G.diff g₁ g₂ ]))) (λ {_} {g₁} _ → prop-has-all-paths-↓ (Π-is-prop λ g₂' → →-is-prop $ →-is-prop $ level (QG.diff q[ g₁ ] g₂'))) -}
35.897196
119
0.525254
4deb622afcf0c357ffe691640063e401705c18d8
1,431
agda
Agda
src/LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Types/LedgerInfoWithSignatures.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} import LibraBFT.Impl.OBM.Crypto as Crypto open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.ImplShared.Consensus.Types open import Optics.All import Util.KVMap as Map open import Util.PKCS open import Util.Prelude module LibraBFT.Impl.Types.LedgerInfoWithSignatures where obmNewNoSigs : LedgerInfo → LedgerInfoWithSignatures obmNewNoSigs li = LedgerInfoWithSignatures∙new li Map.empty -- HC-TODO : refactor this and TimeoutCertificate addSignature : AccountAddress → Signature → LedgerInfoWithSignatures → LedgerInfoWithSignatures addSignature validator sig liws = case Map.lookup validator (liws ^∙ liwsSignatures) of λ where (just _) → liws nothing → liws & liwsSignatures ∙~ Map.kvm-insert-Haskell validator sig (liws ^∙ liwsSignatures) verifySignatures : LedgerInfoWithSignatures → ValidatorVerifier → Either ErrLog Unit verifySignatures self validator = withErrCtx' ("LedgerInfoWithSignatures" ∷ "verify" ∷ []) (ValidatorVerifier.batchVerifyAggregatedSignatures validator (self ^∙ liwsLedgerInfo) (self ^∙ liwsSignatures))
40.885714
111
0.773585
52312d2559489c7f358c85f8261d4f0d0dbe69de
21,439
agda
Agda
agda-stdlib/src/Data/List/Relation/Binary/BagAndSetEquality.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Binary/BagAndSetEquality.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Binary/BagAndSetEquality.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Bag and set equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.BagAndSetEquality where open import Algebra using (Idempotent; CommutativeMonoid) open import Algebra.Structures.Biased using (isCommutativeMonoidˡ) open import Category.Monad using (RawMonad) open import Data.Empty open import Data.Fin.Base open import Data.List.Base open import Data.List.Categorical using (monad; module MonadProperties) import Data.List.Properties as LP open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.List.Relation.Unary.Any.Properties open import Data.List.Membership.Propositional using (_∈_) open import Data.List.Relation.Binary.Subset.Propositional.Properties using (⊆-preorder) open import Data.Product as Prod hiding (map) import Data.Product.Function.Dependent.Propositional as Σ open import Data.Sum.Base as Sum hiding (map) open import Data.Sum.Properties open import Data.Sum.Function.Propositional using (_⊎-cong_) open import Data.Unit open import Function.Base open import Function.Equality using (_⟨$⟩_) import Function.Equivalence as FE open import Function.Inverse as Inv using (_↔_; Inverse; inverse) open import Function.Related as Related using (↔⇒; ⌊_⌋; ⌊_⌋→; ⇒→; K-refl; SK-sym) open import Function.Related.TypeIsomorphisms open import Level using (Lift) open import Relation.Binary import Relation.Binary.Reasoning.Setoid as EqR import Relation.Binary.Reasoning.Preorder as PreorderReasoning open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; _≗_; refl) open import Relation.Nullary open import Data.List.Membership.Propositional.Properties ------------------------------------------------------------------------ -- Definitions open Related public using (Kind; Symmetric-kind) renaming ( implication to subset ; reverse-implication to superset ; equivalence to set ; injection to subbag ; reverse-injection to superbag ; bijection to bag ) [_]-Order : Kind → ∀ {a} → Set a → Preorder _ _ _ [ k ]-Order A = Related.InducedPreorder₂ k {A = A} _∈_ [_]-Equality : Symmetric-kind → ∀ {a} → Set a → Setoid _ _ [ k ]-Equality A = Related.InducedEquivalence₂ k {A = A} _∈_ infix 4 _∼[_]_ _∼[_]_ : ∀ {a} {A : Set a} → List A → Kind → List A → Set _ _∼[_]_ {A = A} xs k ys = Preorder._∼_ ([ k ]-Order A) xs ys private module Eq {k a} {A : Set a} = Setoid ([ k ]-Equality A) module Ord {k a} {A : Set a} = Preorder ([ k ]-Order A) open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ}) module MP = MonadProperties ------------------------------------------------------------------------ -- Bag equality implies the other relations. bag-=⇒ : ∀ {k a} {A : Set a} {xs ys : List A} → xs ∼[ bag ] ys → xs ∼[ k ] ys bag-=⇒ xs≈ys = ↔⇒ xs≈ys ------------------------------------------------------------------------ -- "Equational" reasoning for _⊆_ along with an additional relatedness module ⊆-Reasoning where private module PreOrder {a} {A : Set a} = PreorderReasoning (⊆-preorder A) open PreOrder public hiding (step-≈; step-≈˘; step-∼) infixr 2 step-∼ step-⊆ infix 1 step-∈ step-⊆ = PreOrder.step-∼ step-∈ : ∀ {a} {A : Set a} x {xs ys : List A} → xs IsRelatedTo ys → x ∈ xs → x ∈ ys step-∈ x xs⊆ys x∈xs = (begin xs⊆ys) x∈xs step-∼ : ∀ {k a} {A : Set a} xs {ys zs : List A} → ys IsRelatedTo zs → xs ∼[ ⌊ k ⌋→ ] ys → xs IsRelatedTo zs step-∼ xs ys⊆zs xs≈ys = step-⊆ xs ys⊆zs (⇒→ xs≈ys) syntax step-∈ x xs⊆ys x∈xs = x ∈⟨ x∈xs ⟩ xs⊆ys syntax step-∼ xs ys⊆zs xs≈ys = xs ∼⟨ xs≈ys ⟩ ys⊆zs syntax step-⊆ xs ys⊆zs xs⊆ys = xs ⊆⟨ xs⊆ys ⟩ ys⊆zs ------------------------------------------------------------------------ -- Congruence lemmas ------------------------------------------------------------------------ -- _∷_ module _ {a k} {A : Set a} {x y : A} {xs ys} where ∷-cong : x ≡ y → xs ∼[ k ] ys → x ∷ xs ∼[ k ] y ∷ ys ∷-cong refl xs≈ys {y} = y ∈ x ∷ xs ↔⟨ SK-sym $ ∷↔ (y ≡_) ⟩ (y ≡ x ⊎ y ∈ xs) ∼⟨ (y ≡ x ∎) ⊎-cong xs≈ys ⟩ (y ≡ x ⊎ y ∈ ys) ↔⟨ ∷↔ (y ≡_) ⟩ y ∈ x ∷ ys ∎ where open Related.EquationalReasoning ------------------------------------------------------------------------ -- map module _ {ℓ k} {A B : Set ℓ} {f g : A → B} {xs ys} where map-cong : f ≗ g → xs ∼[ k ] ys → map f xs ∼[ k ] map g ys map-cong f≗g xs≈ys {x} = x ∈ map f xs ↔⟨ SK-sym $ map↔ ⟩ Any (λ y → x ≡ f y) xs ∼⟨ Any-cong (↔⇒ ∘ helper) xs≈ys ⟩ Any (λ y → x ≡ g y) ys ↔⟨ map↔ ⟩ x ∈ map g ys ∎ where open Related.EquationalReasoning helper : ∀ y → x ≡ f y ↔ x ≡ g y helper y = record { to = P.→-to-⟶ (λ x≡fy → P.trans x≡fy ( f≗g y)) ; from = P.→-to-⟶ (λ x≡gy → P.trans x≡gy (P.sym $ f≗g y)) ; inverse-of = record { left-inverse-of = λ { P.refl → P.trans-symʳ (f≗g y) } ; right-inverse-of = λ { P.refl → P.trans-symˡ (f≗g y) } } } ------------------------------------------------------------------------ -- _++_ module _ {a k} {A : Set a} {xs₁ xs₂ ys₁ ys₂ : List A} where ++-cong : xs₁ ∼[ k ] xs₂ → ys₁ ∼[ k ] ys₂ → xs₁ ++ ys₁ ∼[ k ] xs₂ ++ ys₂ ++-cong xs₁≈xs₂ ys₁≈ys₂ {x} = x ∈ xs₁ ++ ys₁ ↔⟨ SK-sym $ ++↔ ⟩ (x ∈ xs₁ ⊎ x ∈ ys₁) ∼⟨ xs₁≈xs₂ ⊎-cong ys₁≈ys₂ ⟩ (x ∈ xs₂ ⊎ x ∈ ys₂) ↔⟨ ++↔ ⟩ x ∈ xs₂ ++ ys₂ ∎ where open Related.EquationalReasoning ------------------------------------------------------------------------ -- concat module _ {a k} {A : Set a} {xss yss : List (List A)} where concat-cong : xss ∼[ k ] yss → concat xss ∼[ k ] concat yss concat-cong xss≈yss {x} = x ∈ concat xss ↔⟨ SK-sym concat↔ ⟩ Any (Any (x ≡_)) xss ∼⟨ Any-cong (λ _ → _ ∎) xss≈yss ⟩ Any (Any (x ≡_)) yss ↔⟨ concat↔ ⟩ x ∈ concat yss ∎ where open Related.EquationalReasoning ------------------------------------------------------------------------ -- _>>=_ module _ {ℓ k} {A B : Set ℓ} {xs ys} {f g : A → List B} where >>=-cong : xs ∼[ k ] ys → (∀ x → f x ∼[ k ] g x) → (xs >>= f) ∼[ k ] (ys >>= g) >>=-cong xs≈ys f≈g {x} = x ∈ (xs >>= f) ↔⟨ SK-sym >>=↔ ⟩ Any (λ y → x ∈ f y) xs ∼⟨ Any-cong (λ x → f≈g x) xs≈ys ⟩ Any (λ y → x ∈ g y) ys ↔⟨ >>=↔ ⟩ x ∈ (ys >>= g) ∎ where open Related.EquationalReasoning ------------------------------------------------------------------------ -- _⊛_ module _ {ℓ k} {A B : Set ℓ} {fs gs : List (A → B)} {xs ys} where ⊛-cong : fs ∼[ k ] gs → xs ∼[ k ] ys → (fs ⊛ xs) ∼[ k ] (gs ⊛ ys) ⊛-cong fs≈gs xs≈ys = >>=-cong fs≈gs λ f → >>=-cong xs≈ys λ x → _ ∎ where open Related.EquationalReasoning ------------------------------------------------------------------------ -- _⊗_ module _ {ℓ k} {A B : Set ℓ} {xs₁ xs₂ : List A} {ys₁ ys₂ : List B} where ⊗-cong : xs₁ ∼[ k ] xs₂ → ys₁ ∼[ k ] ys₂ → (xs₁ ⊗ ys₁) ∼[ k ] (xs₂ ⊗ ys₂) ⊗-cong xs₁≈xs₂ ys₁≈ys₂ = ⊛-cong (⊛-cong (Ord.refl {x = [ _,_ ]}) xs₁≈xs₂) ys₁≈ys₂ ------------------------------------------------------------------------ -- Other properties -- _++_ and [] form a commutative monoid, with either bag or set -- equality as the underlying equality. commutativeMonoid : ∀ {a} → Symmetric-kind → Set a → CommutativeMonoid _ _ commutativeMonoid {a} k A = record { Carrier = List A ; _≈_ = _∼[ ⌊ k ⌋ ]_ ; _∙_ = _++_ ; ε = [] ; isCommutativeMonoid = isCommutativeMonoidˡ record { isSemigroup = record { isMagma = record { isEquivalence = Eq.isEquivalence ; ∙-cong = ++-cong } ; assoc = λ xs ys zs → Eq.reflexive (LP.++-assoc xs ys zs) } ; identityˡ = λ xs {x} → x ∈ xs ∎ ; comm = λ xs ys {x} → x ∈ xs ++ ys ↔⟨ ++↔++ xs ys ⟩ x ∈ ys ++ xs ∎ } } where open Related.EquationalReasoning -- The only list which is bag or set equal to the empty list (or a -- subset or subbag of the list) is the empty list itself. empty-unique : ∀ {k a} {A : Set a} {xs : List A} → xs ∼[ ⌊ k ⌋→ ] [] → xs ≡ [] empty-unique {xs = []} _ = refl empty-unique {xs = _ ∷ _} ∷∼[] with ⇒→ ∷∼[] (here refl) ... | () -- _++_ is idempotent (under set equality). ++-idempotent : ∀ {a} {A : Set a} → Idempotent {A = List A} _∼[ set ]_ _++_ ++-idempotent {a} xs {x} = x ∈ xs ++ xs ∼⟨ FE.equivalence ([ id , id ]′ ∘ _⟨$⟩_ (Inverse.from $ ++↔)) (_⟨$⟩_ (Inverse.to $ ++↔) ∘ inj₁) ⟩ x ∈ xs ∎ where open Related.EquationalReasoning -- The list monad's bind distributes from the left over _++_. >>=-left-distributive : ∀ {ℓ} {A B : Set ℓ} (xs : List A) {f g : A → List B} → (xs >>= λ x → f x ++ g x) ∼[ bag ] (xs >>= f) ++ (xs >>= g) >>=-left-distributive {ℓ} xs {f} {g} {y} = y ∈ (xs >>= λ x → f x ++ g x) ↔⟨ SK-sym $ >>=↔ ⟩ Any (λ x → y ∈ f x ++ g x) xs ↔⟨ SK-sym (Any-cong (λ _ → ++↔) (_ ∎)) ⟩ Any (λ x → y ∈ f x ⊎ y ∈ g x) xs ↔⟨ SK-sym $ ⊎↔ ⟩ (Any (λ x → y ∈ f x) xs ⊎ Any (λ x → y ∈ g x) xs) ↔⟨ >>=↔ ⟨ _⊎-cong_ ⟩ >>=↔ ⟩ (y ∈ (xs >>= f) ⊎ y ∈ (xs >>= g)) ↔⟨ ++↔ ⟩ y ∈ (xs >>= f) ++ (xs >>= g) ∎ where open Related.EquationalReasoning -- The same applies to _⊛_. ⊛-left-distributive : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) xs₁ xs₂ → (fs ⊛ (xs₁ ++ xs₂)) ∼[ bag ] (fs ⊛ xs₁) ++ (fs ⊛ xs₂) ⊛-left-distributive {B = B} fs xs₁ xs₂ = begin fs ⊛ (xs₁ ++ xs₂) ≡⟨⟩ (fs >>= λ f → xs₁ ++ xs₂ >>= return ∘ f) ≡⟨ (MP.cong (refl {x = fs}) λ f → MP.right-distributive xs₁ xs₂ (return ∘ f)) ⟩ (fs >>= λ f → (xs₁ >>= return ∘ f) ++ (xs₂ >>= return ∘ f)) ≈⟨ >>=-left-distributive fs ⟩ (fs >>= λ f → xs₁ >>= return ∘ f) ++ (fs >>= λ f → xs₂ >>= return ∘ f) ≡⟨⟩ (fs ⊛ xs₁) ++ (fs ⊛ xs₂) ∎ where open EqR ([ bag ]-Equality B) private -- If x ∷ xs is set equal to x ∷ ys, then xs and ys are not -- necessarily set equal. ¬-drop-cons : ∀ {a} {A : Set a} {x : A} → ¬ (∀ {xs ys} → x ∷ xs ∼[ set ] x ∷ ys → xs ∼[ set ] ys) ¬-drop-cons {x = x} drop-cons with FE.Equivalence.to x∼[] ⟨$⟩ here refl where x,x≈x : (x ∷ x ∷ []) ∼[ set ] [ x ] x,x≈x = ++-idempotent [ x ] x∼[] : [ x ] ∼[ set ] [] x∼[] = drop-cons x,x≈x ... | () -- However, the corresponding property does hold for bag equality. drop-cons : ∀ {a} {A : Set a} {x : A} {xs ys} → x ∷ xs ∼[ bag ] x ∷ ys → xs ∼[ bag ] ys drop-cons {A = A} {x} {xs} {ys} x∷xs≈x∷ys = ⊎-left-cancellative (∼→⊎↔⊎ x∷xs≈x∷ys) (lemma x∷xs≈x∷ys) (lemma (SK-sym x∷xs≈x∷ys)) where -- TODO: Some of the code below could perhaps be exposed to users. -- List membership can be expressed as "there is an index which -- points to the element". ∈-index : ∀ {a} {A : Set a} {z} (xs : List A) → z ∈ xs ↔ ∃ λ i → z ≡ lookup xs i ∈-index {z = z} [] = z ∈ [] ↔⟨ SK-sym ⊥↔Any[] ⟩ ⊥ ↔⟨ SK-sym $ inverse (λ { (() , _) }) (λ ()) (λ { (() , _) }) (λ ()) ⟩ (∃ λ (i : Fin 0) → z ≡ lookup [] i) ∎ where open Related.EquationalReasoning ∈-index {z = z} (x ∷ xs) = z ∈ x ∷ xs ↔⟨ SK-sym (∷↔ _) ⟩ (z ≡ x ⊎ z ∈ xs) ↔⟨ K-refl ⊎-cong ∈-index xs ⟩ (z ≡ x ⊎ ∃ λ i → z ≡ lookup xs i) ↔⟨ SK-sym $ inverse (λ { (zero , p) → inj₁ p; (suc i , p) → inj₂ (i , p) }) (λ { (inj₁ p) → zero , p; (inj₂ (i , p)) → suc i , p }) (λ { (zero , _) → refl; (suc _ , _) → refl }) (λ { (inj₁ _) → refl; (inj₂ _) → refl }) ⟩ (∃ λ i → z ≡ lookup (x ∷ xs) i) ∎ where open Related.EquationalReasoning -- The index which points to the element. index-of : ∀ {a} {A : Set a} {z} {xs : List A} → z ∈ xs → Fin (length xs) index-of = proj₁ ∘ (Inverse.to (∈-index _) ⟨$⟩_) -- The type ∃ λ z → z ∈ xs is isomorphic to Fin n, where n is the -- length of xs. -- -- Thierry Coquand pointed out that (a variant of) this statement is -- a generalisation of the fact that singletons are contractible. Fin-length : ∀ {a} {A : Set a} (xs : List A) → (∃ λ z → z ∈ xs) ↔ Fin (length xs) Fin-length xs = (∃ λ z → z ∈ xs) ↔⟨ Σ.cong K-refl (∈-index xs) ⟩ (∃ λ z → ∃ λ i → z ≡ lookup xs i) ↔⟨ ∃∃↔∃∃ _ ⟩ (∃ λ i → ∃ λ z → z ≡ lookup xs i) ↔⟨ Σ.cong K-refl (inverse _ (λ _ → _ , refl) (λ { (_ , refl) → refl }) (λ _ → refl)) ⟩ (Fin (length xs) × Lift _ ⊤) ↔⟨ ×-identityʳ _ _ ⟩ Fin (length xs) ∎ where open Related.EquationalReasoning -- From this lemma we get that lists which are bag equivalent have -- related lengths. Fin-length-cong : ∀ {a} {A : Set a} {xs ys : List A} → xs ∼[ bag ] ys → Fin (length xs) ↔ Fin (length ys) Fin-length-cong {xs = xs} {ys} xs≈ys = Fin (length xs) ↔⟨ SK-sym $ Fin-length xs ⟩ ∃ (λ z → z ∈ xs) ↔⟨ Σ.cong K-refl xs≈ys ⟩ ∃ (λ z → z ∈ ys) ↔⟨ Fin-length ys ⟩ Fin (length ys) ∎ where open Related.EquationalReasoning -- The index-of function commutes with applications of certain -- inverses. index-of-commutes : ∀ {a} {A : Set a} {z : A} {xs ys} → (xs≈ys : xs ∼[ bag ] ys) (p : z ∈ xs) → index-of (Inverse.to xs≈ys ⟨$⟩ p) ≡ Inverse.to (Fin-length-cong xs≈ys) ⟨$⟩ index-of p index-of-commutes {z = z} {xs} {ys} xs≈ys p = index-of (to xs≈ys ⟨$⟩ p) ≡⟨ lemma z p ⟩ index-of (to xs≈ys ⟨$⟩ proj₂ (from (Fin-length xs) ⟨$⟩ (to (Fin-length xs) ⟨$⟩ (z , p)))) ≡⟨⟩ index-of (proj₂ (Prod.map id (to xs≈ys ⟨$⟩_) (from (Fin-length xs) ⟨$⟩ (to (Fin-length xs) ⟨$⟩ (z , p))))) ≡⟨⟩ to (Fin-length ys) ⟨$⟩ Prod.map id (to xs≈ys ⟨$⟩_) (from (Fin-length xs) ⟨$⟩ index-of p) ≡⟨⟩ to (Fin-length-cong xs≈ys) ⟨$⟩ index-of p ∎ where open P.≡-Reasoning open Inverse lemma : ∀ z p → index-of (to xs≈ys ⟨$⟩ p) ≡ index-of (to xs≈ys ⟨$⟩ proj₂ (from (Fin-length xs) ⟨$⟩ (to (Fin-length xs) ⟨$⟩ (z , p)))) lemma z p with to (Fin-length xs) ⟨$⟩ (z , p) | left-inverse-of (Fin-length xs) (z , p) lemma .(lookup xs i) .(from (∈-index xs) ⟨$⟩ (i , refl)) | i | refl = refl -- Bag equivalence isomorphisms preserve index equality. Note that -- this means that, even if the underlying equality is proof -- relevant, a bag equivalence isomorphism cannot map two distinct -- proofs, that point to the same position, to different positions. index-equality-preserved : ∀ {a} {A : Set a} {z : A} {xs ys} {p q : z ∈ xs} (xs≈ys : xs ∼[ bag ] ys) → index-of p ≡ index-of q → index-of (Inverse.to xs≈ys ⟨$⟩ p) ≡ index-of (Inverse.to xs≈ys ⟨$⟩ q) index-equality-preserved {p = p} {q} xs≈ys eq = index-of (Inverse.to xs≈ys ⟨$⟩ p) ≡⟨ index-of-commutes xs≈ys p ⟩ Inverse.to (Fin-length-cong xs≈ys) ⟨$⟩ index-of p ≡⟨ P.cong (Inverse.to (Fin-length-cong xs≈ys) ⟨$⟩_) eq ⟩ Inverse.to (Fin-length-cong xs≈ys) ⟨$⟩ index-of q ≡⟨ P.sym $ index-of-commutes xs≈ys q ⟩ index-of (Inverse.to xs≈ys ⟨$⟩ q) ∎ where open P.≡-Reasoning -- The old inspect idiom. inspect : ∀ {a} {A : Set a} (x : A) → ∃ (x ≡_) inspect x = x , refl -- A function is "well-behaved" if any "left" element which is the -- image of a "right" element is in turn not mapped to another -- "left" element. Well-behaved : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A ⊎ B → A ⊎ C) → Set _ Well-behaved f = ∀ {b a a′} → f (inj₂ b) ≡ inj₁ a → f (inj₁ a) ≢ inj₁ a′ -- The type constructor _⊎_ is left cancellative for certain -- well-behaved inverses. ⊎-left-cancellative : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : (A ⊎ B) ↔ (A ⊎ C)) → Well-behaved (Inverse.to f ⟨$⟩_) → Well-behaved (Inverse.from f ⟨$⟩_) → B ↔ C ⊎-left-cancellative {A = A} = λ inv to-hyp from-hyp → inverse (g (to inv ⟨$⟩_) to-hyp) (g (from inv ⟨$⟩_) from-hyp) (g∘g inv to-hyp from-hyp) (g∘g (SK-sym inv) from-hyp to-hyp) where open Inverse module _ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A ⊎ B → A ⊎ C) (hyp : Well-behaved f) where mutual g : B → C g b = g′ (inspect (f (inj₂ b))) g′ : ∀ {b} → ∃ (f (inj₂ b) ≡_) → C g′ (inj₂ c , _) = c g′ (inj₁ a , eq) = g″ eq (inspect (f (inj₁ a))) g″ : ∀ {a b} → f (inj₂ b) ≡ inj₁ a → ∃ (f (inj₁ a) ≡_) → C g″ _ (inj₂ c , _) = c g″ eq₁ (inj₁ _ , eq₂) = ⊥-elim $ hyp eq₁ eq₂ g∘g : ∀ {b c} {B : Set b} {C : Set c} (f : (A ⊎ B) ↔ (A ⊎ C)) → (to-hyp : Well-behaved (to f ⟨$⟩_)) → (from-hyp : Well-behaved (from f ⟨$⟩_)) → ∀ b → g (from f ⟨$⟩_) from-hyp (g (to f ⟨$⟩_) to-hyp b) ≡ b g∘g f to-hyp from-hyp b = g∘g′ where open P.≡-Reasoning g∘g′ : g (from f ⟨$⟩_) from-hyp (g (to f ⟨$⟩_) to-hyp b) ≡ b g∘g′ with inspect (to f ⟨$⟩ inj₂ b) g∘g′ | inj₂ c , eq₁ with inspect (from f ⟨$⟩ inj₂ c) g∘g′ | inj₂ c , eq₁ | inj₂ b′ , eq₂ = inj₂-injective ( inj₂ b′ ≡⟨ P.sym eq₂ ⟩ from f ⟨$⟩ inj₂ c ≡⟨ to-from f eq₁ ⟩ inj₂ b ∎) g∘g′ | inj₂ c , eq₁ | inj₁ a , eq₂ with inj₁ a ≡⟨ P.sym eq₂ ⟩ from f ⟨$⟩ inj₂ c ≡⟨ to-from f eq₁ ⟩ inj₂ b ∎ ... | () g∘g′ | inj₁ a , eq₁ with inspect (to f ⟨$⟩ inj₁ a) g∘g′ | inj₁ a , eq₁ | inj₁ a′ , eq₂ = ⊥-elim $ to-hyp eq₁ eq₂ g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ with inspect (from f ⟨$⟩ inj₂ c) g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ | inj₂ b′ , eq₃ with inj₁ a ≡⟨ P.sym $ to-from f eq₂ ⟩ from f ⟨$⟩ inj₂ c ≡⟨ eq₃ ⟩ inj₂ b′ ∎ ... | () g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ | inj₁ a′ , eq₃ with inspect (from f ⟨$⟩ inj₁ a′) g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ | inj₁ a′ , eq₃ | inj₁ a″ , eq₄ = ⊥-elim $ from-hyp eq₃ eq₄ g∘g′ | inj₁ a , eq₁ | inj₂ c , eq₂ | inj₁ a′ , eq₃ | inj₂ b′ , eq₄ = inj₂-injective ( let lemma = inj₁ a′ ≡⟨ P.sym eq₃ ⟩ from f ⟨$⟩ inj₂ c ≡⟨ to-from f eq₂ ⟩ inj₁ a ∎ in inj₂ b′ ≡⟨ P.sym eq₄ ⟩ from f ⟨$⟩ inj₁ a′ ≡⟨ P.cong ((from f ⟨$⟩_) ∘ inj₁) $ inj₁-injective lemma ⟩ from f ⟨$⟩ inj₁ a ≡⟨ to-from f eq₁ ⟩ inj₂ b ∎) -- Some final lemmas. ∼→⊎↔⊎ : ∀ {x : A} {xs ys} → x ∷ xs ∼[ bag ] x ∷ ys → ∀ {z} → (z ≡ x ⊎ z ∈ xs) ↔ (z ≡ x ⊎ z ∈ ys) ∼→⊎↔⊎ {x} {xs} {ys} x∷xs≈x∷ys {z} = (z ≡ x ⊎ z ∈ xs) ↔⟨ ∷↔ _ ⟩ z ∈ x ∷ xs ↔⟨ x∷xs≈x∷ys ⟩ z ∈ x ∷ ys ↔⟨ SK-sym (∷↔ _) ⟩ (z ≡ x ⊎ z ∈ ys) ∎ where open Related.EquationalReasoning lemma : ∀ {xs ys} (inv : x ∷ xs ∼[ bag ] x ∷ ys) {z} → Well-behaved (Inverse.to (∼→⊎↔⊎ inv {z}) ⟨$⟩_) lemma {xs} inv {b = z∈xs} {a = p} {a′ = q} hyp₁ hyp₂ with zero ≡⟨⟩ index-of {xs = x ∷ xs} (here p) ≡⟨⟩ index-of {xs = x ∷ xs} (to (∷↔ _) ⟨$⟩ inj₁ p) ≡⟨ P.cong (index-of ∘ (to (∷↔ (_ ≡_)) ⟨$⟩_)) $ P.sym $ to-from (∼→⊎↔⊎ inv) {x = inj₁ p} hyp₂ ⟩ index-of {xs = x ∷ xs} (to (∷↔ _) ⟨$⟩ (from (∼→⊎↔⊎ inv) ⟨$⟩ inj₁ q)) ≡⟨ P.cong index-of $ right-inverse-of (∷↔ _) (from inv ⟨$⟩ here q) ⟩ index-of {xs = x ∷ xs} (to (SK-sym inv) ⟨$⟩ here q) ≡⟨ index-equality-preserved (SK-sym inv) refl ⟩ index-of {xs = x ∷ xs} (to (SK-sym inv) ⟨$⟩ here p) ≡⟨ P.cong index-of $ P.sym $ right-inverse-of (∷↔ _) (from inv ⟨$⟩ here p) ⟩ index-of {xs = x ∷ xs} (to (∷↔ _) ⟨$⟩ (from (∼→⊎↔⊎ inv) ⟨$⟩ inj₁ p)) ≡⟨ P.cong (index-of ∘ (to (∷↔ (_ ≡_)) ⟨$⟩_)) $ to-from (∼→⊎↔⊎ inv) {x = inj₂ z∈xs} hyp₁ ⟩ index-of {xs = x ∷ xs} (to (∷↔ _) ⟨$⟩ inj₂ z∈xs) ≡⟨⟩ index-of {xs = x ∷ xs} (there z∈xs) ≡⟨⟩ suc (index-of {xs = xs} z∈xs) ∎ where open Inverse open P.≡-Reasoning ... | ()
38.147687
128
0.448855
215b3744b11d0787246c14e7982de37426b167e8
4,963
agda
Agda
another/Simple.agda
jaiyalas/ParametricLambda
ee174590136f7162af308502233e5317b009a858
[ "MIT" ]
2
2015-10-15T05:57:05.000Z
2015-10-15T05:57:52.000Z
another/Simple.agda
jaiyalas/haha
ee174590136f7162af308502233e5317b009a858
[ "MIT" ]
null
null
null
another/Simple.agda
jaiyalas/haha
ee174590136f7162af308502233e5317b009a858
[ "MIT" ]
null
null
null
module Simple where open import Data.Nat renaming (_≟_ to _≟ℕ_) open import Data.Fin hiding (_+_; inject) open import Data.String hiding (_++_) renaming (_≟_ to _≟S_) open import Relation.Nullary using (¬_; yes; no) open import Relation.Binary.PropositionalEquality using (refl; _≡_) open import Data.List open import Data.Sum using (_⊎_; inj₁; inj₂) FName : Set FName = String FNames : Set FNames = List FName data Expr : ℕ → Set where num : ∀ {n} → ℕ → Expr n bv : ∀ {n} → (i : Fin n) → Expr n fv : ∀ {n} → (x : FName) → Expr n ƛ : ∀ {n} → (e : Expr (suc n)) → Expr n _·_ : ∀ {n} → (f : Expr n) → (e : Expr n) → Expr n -- This idx indicates the amount of existence of lambda -- out of current express Expr0 : Set Expr0 = Expr zero ↓ℕ≠ℕ : ∀ {n m} {i : Fin m} → ¬ (suc n ≡ toℕ (suc i)) → ¬ (n ≡ toℕ i) ↓ℕ≠ℕ {n} {m} {i} sn≠si n≡i rewrite n≡i = sn≠si refl -- ↓ℕ≠ℕ {n} {m} {i} sn≠si n≡i with n≡i -- ↓ℕ≠ℕ sn≠si n≡i | refl = sn≠si refl ↓fin : ∀ {n} → (i : Fin (suc n)) → ¬ (n ≡ toℕ i) → Fin n ↓fin {zero} zero 0≠0 with 0≠0 refl ↓fin {zero} zero 0≠0 | () ↓fin {zero} (suc ()) 0≠n ↓fin {suc n} zero i≠0 = zero ↓fin {suc n} (suc i) sn≠si = suc (↓fin i (↓ℕ≠ℕ sn≠si)) ↑expr : ∀ {n} → Expr n → Expr (suc n) ↑expr (num i) = num i ↑expr (bv i) = bv (inject₁ i) -- inject₁ : ∀ {m} → Fin m → Fin (suc m) ↑expr (fv x) = fv x ↑expr (ƛ e) = ƛ (↑expr e) ↑expr (e · e₁) = ↑expr e · ↑expr e₁ {- substitution for bounded and free variable-} [_↦_] : ∀ n → Expr n → Expr (suc n) → Expr n [ m ↦ t ] (num i) = num i [ m ↦ t ] (bv i) with m ≟ℕ toℕ i ... | yes m=i = t ... | no m≠i = bv (↓fin i m≠i) [ m ↦ t ] (fv x) = fv x [ m ↦ t ] (ƛ e) = ƛ ([ suc m ↦ ↑expr t ] e) [ m ↦ t ] (e · e₁) = [ m ↦ t ] e · [ m ↦ t ] e₁ [_↤_] : ∀ n → FName → Expr n → Expr (suc n) [ m ↤ name ] (num x) = num x [ m ↤ name ] (bv i) = ↑expr (bv i) [ m ↤ name ] (fv x) with x ≟S name [ m ↤ name ] (fv x) | yes p = bv (fromℕ m) [ m ↤ name ] (fv x) | no ¬p = fv x [ m ↤ name ] (ƛ t) = ƛ ([ suc m ↤ name ] t) [ m ↤ name ] (t · t₁) = [ m ↤ name ] t · [ m ↤ name ] t₁ [_↝_] : ∀ {n} → FName → Expr n → Expr n → Expr n [ n ↝ t ] (num i) = num i [ n ↝ t ] (bv i) = bv i [ n ↝ t ] (fv x) with n ≟S x [ n ↝ t ] (fv x) | yes p = t [ n ↝ t ] (fv x) | no ¬p = fv x [ n ↝ t ] (ƛ x) = ƛ ([ n ↝ ↑expr t ] x) [ n ↝ t ] (x · y) = [ n ↝ t ] x · [ n ↝ t ] y _₀↦_ : Expr 1 → Expr 0 → Expr 0 m ₀↦ t = [ 0 ↦ t ] m _↦₀_ : FName → Expr 0 → Expr 1 name ↦₀ t = [ 0 ↤ name ] t _₀↤_ : Expr 0 → FName → Expr 1 t ₀↤ x = [ 0 ↤ x ] t _₀↝_ : Expr 1 → FName → Expr 0 x ₀↝ s = x ₀↦ (fv s) fvars : ∀ {n} → Expr n → FNames fvars (num x) = [] fvars (bv i) = [] fvars (fv x) = x ∷ [] fvars (ƛ f) = fvars f fvars (f · x) = fvars f ++ fvars x -- ############################## -- {- locally closed -} -- ############################## -- open import Data.List.Any as Any open Any.Membership-≡ using (_∈_; _∉_) open import Data.Product data LC : ∀ {n} → Expr n → Set where numᶜ : ∀ {n} → (i : ℕ) → LC {n} (num i) fvᶜ : ∀ {n} → (x : FName) → LC {n} (fv x) _·ᶜ_ : ∀ {n} {f x} → LC {n} f → LC {n} x → LC {n} (f · x) ƛᶜ : ∀ {e} → (ns : FNames) → ( ∀ {x} → x ∉ ns → LC {0} (e ₀↦ fv x) ) → LC {0} (ƛ e) postulate fresh-gen : FNames → FName postulate fresh-gen-spec : ∀ ns → fresh-gen ns ∉ ns genName : (ns : FNames) → ∃ (λ x → x ∉ ns) genName ns = fresh-gen ns , fresh-gen-spec ns orz : ∀ {e} {nn} → nn ↦₀ (e ₀↦ fv nn) ≡ e orz = {! !} foo : ∀ {nn} → (e : Expr 1) → LC {0} (e ₀↦ fv nn) → LC {1} e foo (num i) lcp = {! !} foo (bv i) lcp = {! !} foo (fv y) lcp = {! !} foo (ƛ e) lcp = {! !} foo (f · x) lcp = {! !} absᶜ : ∀ {e} → LC {0} (ƛ e) → LC {1} e absᶜ (ƛᶜ ns lcex) = {! !} where nn = proj₁ (genName ns) nn∉ns = proj₂ (genName ns) x = lcex {nn} nn∉ns appᶜ₁ : ∀ {n} {f x} → LC {n} (f · x) → LC {n} f appᶜ₁ (lcf ·ᶜ lcx) = lcf appᶜ₂ : ∀ {n} {f x} → LC {n} (f · x) → LC {n} x appᶜ₂ (lcf ·ᶜ lcx) = lcx lc? : ∀ {n} → (e : Expr n) → (LC {n} e ⊎ ¬ LC {n} e) lc? (num x) = inj₁ (numᶜ x) lc? (bv i) = inj₂ (λ ()) lc? (fv x) = inj₁ (fvᶜ x) lc? (ƛ e) with lc? e lc? (ƛ e) | inj₁ x = inj₁ {! !} lc? (ƛ e) | inj₂ y = inj₂ {! !} lc? (f · x) with lc? f | lc? x lc? (f · x) | inj₁ f' | inj₁ x' = inj₁ (f' ·ᶜ x') lc? (f · x) | inj₁ f' | inj₂ x' = inj₂ (λ p → x' (appᶜ₂ p)) lc? (f · x) | inj₂ f' | _ = inj₂ (λ p → f' (appᶜ₁ p)) -- ############################## -- {- value and semantics -} -- ############################## -- data Val : Expr0 → Set where num⁰ : ∀ n → Val (num n) ƛ⁰ : ∀ e → Val (ƛ e) var? : (e : Expr0) → (Val e ⊎ ¬ (Val e)) var? (num i) = inj₁ (num⁰ i) var? (bv i) = inj₂ (λ ()) var? (fv x) = inj₂ (λ ()) var? (ƛ x) = inj₁ (ƛ⁰ x) var? (x · y) = inj₂ (λ ()) -- don't know what the hell this shit is data _⟼_ : Expr 0 → Expr 0 → Set where app : ∀ {body para} → ((ƛ body) · para) ⟼ (body ₀↦ para)
26.972826
67
0.455571
fdd2db16347b9556dc8e0e12f513e763a68d375e
2,765
agda
Agda
TotalParserCombinators/Recogniser.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
TotalParserCombinators/Recogniser.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
TotalParserCombinators/Recogniser.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Recognisers built on top of the parsers ------------------------------------------------------------------------ -- Note that these recognisers are different from the ones in -- TotalRecognisers.LeftRecursion: these allow the use of fewer sharps. -- (Compare the examples in TotalRecognisers.LeftRecursion.Expression -- and TotalParserCombinators.Recogniser.Expression.) module TotalParserCombinators.Recogniser where open import Category.Monad open import Coinduction open import Data.Bool open import Data.List as List import Data.List.Categorical open import Data.Maybe open import Data.Unit open import Level open RawMonadPlus {f = zero} Data.List.Categorical.monadPlus using () renaming (_⊛_ to _⊛′_) open import TotalParserCombinators.Parser as Parser using (Parser; flatten); open Parser.Parser import TotalParserCombinators.Lib as Lib ------------------------------------------------------------------------ -- Helper function infixl 4 _·′_ _·′_ : (mb₁ mb₂ : Maybe (List ⊤)) → List ⊤ mb₁ ·′ nothing = [] mb₁ ·′ just b₂ = List.map _ (flatten mb₁) ⊛′ b₂ ------------------------------------------------------------------------ -- Recognisers infixl 50 _·_ infixl 5 _∣_ -- Recognisers. mutual -- The index is non-empty if the corresponding language contains the -- empty string (is nullable). data P (Tok : Set) : List ⊤ → Set₁ where -- Parsers can be turned into recognisers. lift : ∀ {R n} (p : Parser Tok R n) → P Tok (List.map _ n) -- Symmetric choice. _∣_ : ∀ {n₁ n₂} (p₁ : P Tok n₁) (p₂ : P Tok n₂) → P Tok (n₁ ++ n₂) -- Sequencing. _·_ : ∀ {n₁ n₂} (p₁ : ∞⟨ n₂ ⟩P Tok (flatten n₁)) (p₂ : ∞⟨ n₁ ⟩P Tok (flatten n₂)) → P Tok (n₁ ·′ n₂) -- Delayed if the index is /nothing/. ∞⟨_⟩P : Maybe (List ⊤) → Set → List ⊤ → Set₁ ∞⟨ nothing ⟩P Tok n = ∞ (P Tok n) ∞⟨ just _ ⟩P Tok n = P Tok n ------------------------------------------------------------------------ -- Helper function related to ∞⟨_⟩P -- Is the argument parser forced? If the result is just something, -- then it is. forced? : ∀ {Tok m n} → ∞⟨ m ⟩P Tok n → Maybe (List ⊤) forced? {m = m} _ = m ------------------------------------------------------------------------ -- The semantics of the recognisers is defined by translation ⟦_⟧ : ∀ {Tok n} (p : P Tok n) → Parser Tok ⊤ n ⟦ lift p ⟧ = _ <$> p ⟦ p₁ ∣ p₂ ⟧ = ⟦ p₁ ⟧ ∣ ⟦ p₂ ⟧ ⟦ p₁ · p₂ ⟧ with forced? p₁ | forced? p₂ ... | just xs | nothing = _ <$> ⟦ p₁ ⟧ ⊛ ♯ ⟦ ♭ p₂ ⟧ ... | just xs | just ys = _ <$> ⟦ p₁ ⟧ ⊛ ⟦ p₂ ⟧ ... | nothing | nothing = ♯ (_ <$> ⟦ ♭ p₁ ⟧) ⊛ ♯ ⟦ ♭ p₂ ⟧ ... | nothing | just ys = ♯ (_ <$> ⟦ ♭ p₁ ⟧) ⊛ ⟦ p₂ ⟧
30.722222
72
0.511031
fd78ec0894db6397f0da21b284deb61cd90afb9f
8,197
agda
Agda
Cubical/Algebra/ZariskiLattice/Base.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/ZariskiLattice/Base.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/ZariskiLattice/Base.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.ZariskiLattice.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm ; ·-identityʳ to ·ℕ-rid) open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Data.Unit open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.Ring.Properties open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.BinomialThm open import Cubical.Algebra.CommRing.Ideal open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.RadicalIdeal open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Semilattice open import Cubical.Algebra.Lattice open import Cubical.Algebra.DistLattice open import Cubical.Algebra.Matrix open import Cubical.HITs.SetQuotients as SQ open Iso open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level module ZarLat (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') open Sum (CommRing→Ring R') open CommRingTheory R' open Exponentiation R' open BinomialThm R' open CommIdeal R' open RadicalIdeal R' open isCommIdeal open ProdFin R' private R = fst R' A = Σ[ n ∈ ℕ ] (FinVec R n) ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] _∼_ : A → A → Type (ℓ-suc ℓ) (_ , α) ∼ (_ , β) = √ ⟨ α ⟩ ≡ √ ⟨ β ⟩ ∼EquivRel : isEquivRel (_∼_) reflexive ∼EquivRel _ = refl symmetric ∼EquivRel _ _ = sym transitive ∼EquivRel _ _ _ = _∙_ ZL : Type (ℓ-suc ℓ) ZL = A / _∼_ 0z : ZL 0z = [ 0 , (λ ()) ] 1z : ZL 1z = [ 1 , (replicateFinVec 1 1r) ] _∨z_ : ZL → ZL → ZL _∨z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel) (λ (_ , α) (_ , β) → (_ , α ++Fin β)) (λ (_ , α) (_ , β) → cong √ (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α))) λ (_ , α) (_ , β) (_ , γ) α∼β → --need to show α∨γ ∼ β∨γ √ ⟨ α ++Fin γ ⟩ ≡⟨ cong √ (FGIdealAddLemma _ α γ) ⟩ √ (⟨ α ⟩ +i ⟨ γ ⟩) ≡⟨ sym (√+LContr _ _) ⟩ √ (√ ⟨ α ⟩ +i ⟨ γ ⟩) ≡⟨ cong (λ I → √ (I +i ⟨ γ ⟩)) α∼β ⟩ √ (√ ⟨ β ⟩ +i ⟨ γ ⟩) ≡⟨ √+LContr _ _ ⟩ √ (⟨ β ⟩ +i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ β γ)) ⟩ √ ⟨ β ++Fin γ ⟩ ∎ _∧z_ : ZL → ZL → ZL _∧z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel) (λ (_ , α) (_ , β) → (_ , α ··Fin β)) (λ (_ , α) (_ , β) → cong √ (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α))) λ (_ , α) (_ , β) (_ , γ) α∼β → --need to show α∧γ ∼ β∧γ √ ⟨ α ··Fin γ ⟩ ≡⟨ cong √ (FGIdealMultLemma _ α γ) ⟩ √ (⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ sym (√·LContr _ _) ⟩ √ (√ ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong (λ I → √ (I ·i ⟨ γ ⟩)) α∼β ⟩ √ (√ ⟨ β ⟩ ·i ⟨ γ ⟩) ≡⟨ √·LContr _ _ ⟩ √ (⟨ β ⟩ ·i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealMultLemma _ β γ)) ⟩ √ ⟨ β ··Fin γ ⟩ ∎ -- join axioms ∨zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∨z (𝔟 ∨z 𝔠) ≡ (𝔞 ∨z 𝔟) ∨z 𝔠 ∨zAssoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (cong √ (IdealAddAssoc _ _ _ _)) ∨zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∨z 𝔟 ≡ 𝔟 ∨z 𝔞 ∨zComm = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (cong √ (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α))) ∨zLid : ∀ (𝔞 : ZL) → 0z ∨z 𝔞 ≡ 𝔞 ∨zLid = SQ.elimProp (λ _ → squash/ _ _) λ _ → eq/ _ _ refl ∨zRid : ∀ (𝔞 : ZL) → 𝔞 ∨z 0z ≡ 𝔞 ∨zRid _ = ∨zComm _ _ ∙ ∨zLid _ -- -- meet axioms ∧zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∧z 𝔠) ≡ (𝔞 ∧z 𝔟) ∧z 𝔠 ∧zAssoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (√ ⟨ α ··Fin (β ··Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i ⟨ β ··Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i (⟨ β ⟩ ·i ⟨ γ ⟩)) ≡⟨ cong √ (·iAssoc _ _ _) ⟩ √ ((⟨ α ⟩ ·i ⟨ β ⟩) ·i ⟨ γ ⟩) ≡⟨ cong (λ x → √ (x ·i ⟨ γ ⟩)) (sym (FGIdealMultLemma _ _ _)) ⟩ √ (⟨ α ··Fin β ⟩ ·i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealMultLemma _ _ _)) ⟩ √ ⟨ (α ··Fin β) ··Fin γ ⟩ ∎) ∧zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z 𝔟 ≡ 𝔟 ∧z 𝔞 ∧zComm = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (cong √ (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α))) ∧zRid : ∀ (𝔞 : ZL) → 𝔞 ∧z 1z ≡ 𝔞 ∧zRid = SQ.elimProp (λ _ → squash/ _ _) λ (_ , α) → eq/ _ _ (cong √ (⟨ α ··Fin (replicateFinVec 1 1r) ⟩ ≡⟨ FGIdealMultLemma _ _ _ ⟩ ⟨ α ⟩ ·i ⟨ (replicateFinVec 1 1r) ⟩ ≡⟨ cong (⟨ α ⟩ ·i_) (contains1Is1 _ (indInIdeal _ _ zero)) ⟩ ⟨ α ⟩ ·i 1Ideal ≡⟨ ·iRid _ ⟩ ⟨ α ⟩ ∎)) -- absorption and distributivity ∧zAbsorb∨z : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z (𝔞 ∨z 𝔟) ≡ 𝔞 ∧zAbsorb∨z = SQ.elimProp2 (λ _ _ → squash/ _ _) λ (_ , α) (_ , β) → eq/ _ _ (√ ⟨ α ··Fin (α ++Fin β) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ α (α ++Fin β)) ⟩ √ (⟨ α ⟩ ·i ⟨ α ++Fin β ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ α β) ⟩ √ (⟨ α ⟩ ·i (⟨ α ⟩ +i ⟨ β ⟩)) ≡⟨ √·Absorb+ _ _ ⟩ √ ⟨ α ⟩ ∎) ∧zLDist∨z : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∨z 𝔠) ≡ (𝔞 ∧z 𝔟) ∨z (𝔞 ∧z 𝔠) ∧zLDist∨z = SQ.elimProp3 (λ _ _ _ → squash/ _ _) λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (√ ⟨ α ··Fin (β ++Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i ⟨ β ++Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ _ _) ⟩ √ (⟨ α ⟩ ·i (⟨ β ⟩ +i ⟨ γ ⟩)) ≡⟨ cong √ (·iRdist+i _ _ _) ⟩ -- L/R-dist are swapped -- in Lattices vs Rings √ (⟨ α ⟩ ·i ⟨ β ⟩ +i ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong₂ (λ x y → √ (x +i y)) (sym (FGIdealMultLemma _ _ _)) (sym (FGIdealMultLemma _ _ _)) ⟩ √ (⟨ α ··Fin β ⟩ +i ⟨ α ··Fin γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ _ _)) ⟩ √ ⟨ (α ··Fin β) ++Fin (α ··Fin γ) ⟩ ∎) ZariskiLattice : DistLattice (ℓ-suc ℓ) fst ZariskiLattice = ZL DistLatticeStr.0l (snd ZariskiLattice) = 0z DistLatticeStr.1l (snd ZariskiLattice) = 1z DistLatticeStr._∨l_ (snd ZariskiLattice) = _∨z_ DistLatticeStr._∧l_ (snd ZariskiLattice) = _∧z_ DistLatticeStr.isDistLattice (snd ZariskiLattice) = makeIsDistLattice∧lOver∨l squash/ ∨zAssoc ∨zRid ∨zComm ∧zAssoc ∧zRid ∧zComm ∧zAbsorb∨z ∧zLDist∨z -- An equivalent definition that doesn't bump up the unviverse level module SmallZarLat (R' : CommRing ℓ) where open CommRingStr (snd R') open CommIdeal R' open RadicalIdeal R' open ZarLat R' open Iso private R = fst R' A = Σ[ n ∈ ℕ ] (FinVec R n) ⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal ⟨ V ⟩ = ⟨ V ⟩[ R' ] -- This is small! _≼_ : A → A → Type ℓ (_ , α) ≼ (_ , β) = ∀ i → α i ∈ √ ⟨ β ⟩ _∼'_ : A → A → Type ℓ α ∼' β = (α ≼ β) × (β ≼ α) -- lives in the same universe as R ZL' : Type ℓ ZL' = A / (_∼'_) IsoLarLatSmall : Iso ZL ZL' IsoLarLatSmall = relBiimpl→TruncIso ~→∼' ~'→∼ where ~→∼' : ∀ {a b : A} → a ∼ b → a ∼' b ~→∼' r = √FGIdealCharLImpl _ ⟨ _ ⟩ (λ x h → subst (λ p → x ∈ p) r h) , √FGIdealCharLImpl _ ⟨ _ ⟩ (λ x h → subst (λ p → x ∈ p) (sym r) h) ~'→∼ : ∀ {a b : A} → a ∼' b → a ∼ b ~'→∼ r = CommIdeal≡Char (√FGIdealCharRImpl _ ⟨ _ ⟩ (fst r)) (√FGIdealCharRImpl _ ⟨ _ ⟩ (snd r)) ZL≃ZL' : ZL ≃ ZL' ZL≃ZL' = isoToEquiv IsoLarLatSmall
36.110132
102
0.518482
1b70a3a797e8affb007b27e2e3c37106740ed8f0
2,189
agda
Agda
src/Implicits/Semantics/Preservation.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
4
2019-04-05T17:57:11.000Z
2021-05-07T04:08:41.000Z
src/Implicits/Semantics/Preservation.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
src/Implicits/Semantics/Preservation.agda
metaborg/ts.agda
7fe638b87de26df47b6437f5ab0a8b955384958d
[ "MIT" ]
null
null
null
open import Prelude module Implicits.Semantics.Preservation where open import Implicits.Syntax open import Implicits.WellTyped open import Implicits.Semantics.Type open import Implicits.Semantics.Context open import Implicits.Semantics.Lemmas open import Implicits.Semantics.RewriteContext open import Implicits.Semantics.Term open import SystemF.Everything as F using () module Preservation (_⊢ᵣ_ : ∀ {ν} → ICtx ν → Type ν → Set) (⟦_,_⟧r : ∀ {ν n} {K : Ktx ν n} {a} → (proj₂ K) ⊢ᵣ a → K# K → ∃ λ t → ⟦ proj₁ K ⟧ctx→ F.⊢ t ∈ ⟦ a ⟧tp→) where open TypingRules _⊢ᵣ_ open TermSemantics _⊢ᵣ_ ⟦_,_⟧r -- interpretation of well-typed terms in System F preserves type ⟦⟧-preserves-tp : ∀ {ν n} {K : Ktx ν n} {t a} → (wt-t : K ⊢ t ∈ a) → (m : K# K) → ⟦ proj₁ K ⟧ctx→ F.⊢ ⟦ wt-t , m ⟧ ∈ ⟦ a ⟧tp→ ⟦⟧-preserves-tp {K = K} (var x) m = subst-wt-var (sym $ lookup-⟦⟧ctx→ (proj₁ K) x) (F.var x) where subst-wt-var = subst (λ a → ⟦ proj₁ K ⟧ctx→ F.⊢ (F.var x) ∈ a) ⟦⟧-preserves-tp {K = K} {a = ∀' a} (Λ wt-e) m with ⟦⟧-preserves-tp wt-e (#tvar m) ... | ih = F.Λ (subst-wt-ctx (⟦weaken⟧ctx→ (proj₁ K)) ih) where subst-wt-ctx = subst (λ c → c F.⊢ ⟦ wt-e , #tvar m ⟧ ∈ ⟦ a ⟧tp→) ⟦⟧-preserves-tp (λ' a wt-e) m with ⟦⟧-preserves-tp wt-e (#var a m) ⟦⟧-preserves-tp (λ' a wt-e) m | ih = F.λ' ⟦ a ⟧tp→ ih ⟦⟧-preserves-tp {K = K} (_[_] {a = a} wt-tc b) m with ⟦⟧-preserves-tp wt-tc m ... | ih = subst-tp (sym $ ⟦a/sub⟧tp→ a b) (ih F.[ ⟦ b ⟧tp→ ]) where subst-tp = subst (λ c → ⟦ proj₁ K ⟧ctx→ F.⊢ ⟦ wt-tc [ b ] , m ⟧ ∈ c) ⟦⟧-preserves-tp (wt-f · wt-e) m with ⟦⟧-preserves-tp wt-f m | ⟦⟧-preserves-tp wt-e m ⟦⟧-preserves-tp (wt-f · wt-e) m | ih | y = ih F.· y ⟦⟧-preserves-tp (ρ {a = a} unamb-a wt-e) m with ⟦⟧-preserves-tp wt-e (#ivar a m) ⟦⟧-preserves-tp (ρ {a = a} unamb-a wt-e) m | ih = F.λ' ⟦ a ⟧tp→ ih ⟦⟧-preserves-tp (wt-r ⟨ e ⟩) m with ⟦⟧-preserves-tp wt-r m ⟦⟧-preserves-tp (wt-r ⟨ e ⟩) m | f-wt-r = f-wt-r F.· (proj₂ ⟦ e , m ⟧r) ⟦⟧-preserves-tp (wt-r with' wt-e ) m with ⟦⟧-preserves-tp wt-r m | ⟦⟧-preserves-tp wt-e m ⟦⟧-preserves-tp (wt-r with' wt-e ) m | f-wt-r | f-wt-e = f-wt-r F.· f-wt-e
46.574468
94
0.5619
1b42f2ffc35b424d03f6fa9dcba1385aec228af6
776
agda
Agda
Data/List/Sorting.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/List/Sorting.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/List/Sorting.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl open import Data.Boolean open import Type module Data.List.Sorting {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where open import Functional using (_∘₂_) open import Data.Boolean.Stmt open import Data.List import Data.List.Relation.Pairwise open import Data.List.Relation.Permutation open import Logic open Data.List.Relation.Pairwise using (empty ; single ; step) public Sorted = Data.List.Relation.Pairwise.AdjacentlyPairwise(IsTrue ∘₂ (_≤?_)) -- A sorting algorithm is a function that given a list, always return a sorted list which is a permutation of the original one. record SortingAlgorithm (f : List(T) → List(T)) : Stmt{Lvl.𝐒(ℓ)} where constructor intro field ⦃ sorts ⦄ : ∀{l} → Sorted(f(l)) ⦃ permutes ⦄ : ∀{l} → (f(l) permutes l)
33.73913
127
0.710052
1920a976046f38384f8624000f8128bea678d205
299
agda
Agda
test/Fail/Issue636.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue636.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue636.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2012-05-14, issue reported by Nisse -- {-# OPTIONS -v term:20 #-} {-# OPTIONS --guardedness #-} module Issue636 where open import Common.Coinduction data ⊥ : Set where data D : Set where c : ∞ D → D d : D d = c (♯ d) not-d : D → ⊥ not-d (c x) = not-d (♭ x) bad : ⊥ bad = not-d d
14.238095
47
0.578595
34beefd68a464bbe99fdee6835315735066cd336
5,050
agda
Agda
examples/Introduction/Built-in.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/Introduction/Built-in.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/Introduction/Built-in.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- This module introduces built-in types and primitive functions. module Introduction.Built-in where {- Agda supports four built-in types : - integers, - floating point numbers, - characters, and - strings. Note that strings are not defined as lists of characters (as is the case in Haskell). To use the built-in types they first have to be bound to Agda types. The reason for this is that there are no predefined names in Agda. -} -- To be able to use the built-in types we first introduce a new set for each -- built-in type. postulate Int : Set Float : Set Char : Set String : Set -- We can then bind the built-in types to these new sets using the BUILTIN -- pragma. {-# BUILTIN INTEGER Int #-} {-# BUILTIN FLOAT Float #-} {-# BUILTIN CHAR Char #-} {-# BUILTIN STRING String #-} pi : Float pi = 3.141593 forAll : Char forAll = '∀' hello : String hello = "Hello World!" -- There are no integer literals. Instead there are natural number literals. To -- use these you have to tell the type checker which type to use for natural -- numbers. data Nat : Set where zero : Nat suc : Nat -> Nat {-# BUILTIN NATURAL Nat #-} -- Now we can define fortyTwo : Nat fortyTwo = 42 -- To anything interesting with values of the built-in types we need functions -- to manipulate them. To this end Agda provides a set of primitive functions. -- To gain access to a primitive function one simply declares it. For instance, -- the function for floating point addition is called primFloatPlus. See below -- for a complete list of primitive functions. At the moment the name that you -- bring into scope is always the name of the primitive function. In the future -- we might allow a primitive function to be introduced with any name. module FloatPlus where -- We put it in a module to prevent it from clashing with -- the plus function in the complete list of primitive -- functions below. primitive primFloatPlus : Float -> Float -> Float twoPi = primFloatPlus pi pi -- Some primitive functions returns elements of non-primitive types. For -- instance, the integer comparison functions return booleans. To be able to -- use these functions we have to explain which type to use for booleans. data Bool : Set where false : Bool true : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} module FloatLess where primitive primFloatLess : Float -> Float -> Bool -- There are functions to convert a string to a list of characters, so we need -- to say which list type to use. data List (A : Set) : Set where nil : List A _::_ : A -> List A -> List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL nil #-} {-# BUILTIN CONS _::_ #-} module StringToList where primitive primStringToList : String -> List Char -- Below is a partial version of the complete list of primitive -- functions. primitive -- Integer functions primIntegerPlus : Int -> Int -> Int primIntegerMinus : Int -> Int -> Int primIntegerTimes : Int -> Int -> Int primIntegerDiv : Int -> Int -> Int -- partial primIntegerMod : Int -> Int -> Int -- partial primIntegerEquality : Int -> Int -> Bool primIntegerLess : Int -> Int -> Bool primIntegerAbs : Int -> Nat primNatToInteger : Nat -> Int primShowInteger : Int -> String -- Floating point functions primIntegerToFloat : Int -> Float primFloatPlus : Float -> Float -> Float primFloatMinus : Float -> Float -> Float primFloatTimes : Float -> Float -> Float primFloatNegate : Float -> Float primFloatDiv : Float -> Float -> Float primFloatLess : Float -> Float -> Bool primRound : Float -> Int primFloor : Float -> Int primCeiling : Float -> Int primExp : Float -> Float primLog : Float -> Float -- partial primSin : Float -> Float primCos : Float -> Float primTan : Float -> Float primASin : Float -> Float primACos : Float -> Float primATan : Float -> Float primATan2 : Float -> Float -> Float primShowFloat : Float -> String -- Character functions primCharEquality : Char -> Char -> Bool primIsLower : Char -> Bool primIsDigit : Char -> Bool primIsAlpha : Char -> Bool primIsSpace : Char -> Bool primIsAscii : Char -> Bool primIsLatin1 : Char -> Bool primIsPrint : Char -> Bool primIsHexDigit : Char -> Bool primToUpper : Char -> Char primToLower : Char -> Char primCharToNat : Char -> Nat primNatToChar : Nat -> Char -- partial primShowChar : Char -> String -- String functions primStringToList : String -> List Char primStringFromList : List Char -> String primStringAppend : String -> String -> String primStringEquality : String -> String -> Bool primShowString : String -> String
30.059524
81
0.646733
d11eb8b81cf384ae34c64b65f925297ed90da28a
276
agda
Agda
Data/PolyP.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/PolyP.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/PolyP.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe --guardedness #-} module Data.PolyP where open import Data.PolyP.RecursionSchemes public open import Data.PolyP.Universe public open import Data.PolyP.Composition public open import Data.PolyP.Types public open import Data.PolyP.Currying public
27.6
46
0.804348
348f81f7d54ac78d44738797cee4768415b9644c
877
agda
Agda
src/CategoryTheory/BCCCs.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
4
2018-05-31T20:37:04.000Z
2022-01-04T09:33:48.000Z
src/CategoryTheory/BCCCs.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
src/CategoryTheory/BCCCs.agda
DimaSamoz/temporal-type-systems
7d993ba55e502d5ef8707ca216519012121a08dd
[ "MIT" ]
null
null
null
-- Module for BCCs, CCCs and BCCCs module CategoryTheory.BCCCs where open import CategoryTheory.Categories open import CategoryTheory.BCCCs.Cartesian public open import CategoryTheory.BCCCs.Cocartesian public open import CategoryTheory.BCCCs.Closed public -- Bicartesian categories record Bicartesian {n} (ℂ : Category n) : Set (lsuc n) where field cart : Cartesian ℂ cocart : Cocartesian ℂ -- Cartesian closed categories record CartesianClosed {n} (ℂ : Category n) : Set (lsuc n) where field cart : Cartesian ℂ closed : Closed cart -- Bicartesian closed categories record BicartesianClosed {n} (ℂ : Category n) : Set (lsuc n) where field cart : Cartesian ℂ cocart : Cocartesian ℂ closed : Closed cart open Cartesian cart public open Cocartesian cocart public open Closed closed public
28.290323
66
0.710376
0da564c633f7b7288f6456a3926a86958081b620
2,110
agda
Agda
Cubical/HITs/GroupoidTruncation/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/GroupoidTruncation/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/HITs/GroupoidTruncation/Properties.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{- This file contains: - Properties of groupoid truncations -} {-# OPTIONS --safe #-} module Cubical.HITs.GroupoidTruncation.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.HITs.GroupoidTruncation.Base private variable ℓ : Level A : Type ℓ rec : ∀ {B : Type ℓ} → isGroupoid B → (A → B) → ∥ A ∥₃ → B rec gB f ∣ x ∣₃ = f x rec gB f (squash₃ x y p q r s i j k) = gB _ _ _ _ (λ m n → rec gB f (r m n)) (λ m n → rec gB f (s m n)) i j k elim : {B : ∥ A ∥₃ → Type ℓ} (bG : (x : ∥ A ∥₃) → isGroupoid (B x)) (f : (x : A) → B ∣ x ∣₃) (x : ∥ A ∥₃) → B x elim bG f (∣ x ∣₃) = f x elim bG f (squash₃ x y p q r s i j k) = isOfHLevel→isOfHLevelDep 3 bG _ _ _ _ (λ j k → elim bG f (r j k)) (λ j k → elim bG f (s j k)) (squash₃ x y p q r s) i j k elim2 : {B : ∥ A ∥₃ → ∥ A ∥₃ → Type ℓ} (gB : ((x y : ∥ A ∥₃) → isGroupoid (B x y))) (g : (a b : A) → B ∣ a ∣₃ ∣ b ∣₃) (x y : ∥ A ∥₃) → B x y elim2 gB g = elim (λ _ → isGroupoidΠ (λ _ → gB _ _)) (λ a → elim (λ _ → gB _ _) (g a)) elim3 : {B : (x y z : ∥ A ∥₃) → Type ℓ} (gB : ((x y z : ∥ A ∥₃) → isGroupoid (B x y z))) (g : (a b c : A) → B ∣ a ∣₃ ∣ b ∣₃ ∣ c ∣₃) (x y z : ∥ A ∥₃) → B x y z elim3 gB g = elim2 (λ _ _ → isGroupoidΠ (λ _ → gB _ _ _)) (λ a b → elim (λ _ → gB _ _ _) (g a b)) groupoidTruncIsGroupoid : isGroupoid ∥ A ∥₃ groupoidTruncIsGroupoid a b p q r s = squash₃ a b p q r s groupoidTruncIdempotent≃ : isGroupoid A → ∥ A ∥₃ ≃ A groupoidTruncIdempotent≃ {A = A} hA = isoToEquiv f where f : Iso ∥ A ∥₃ A Iso.fun f = rec hA (idfun A) Iso.inv f x = ∣ x ∣₃ Iso.rightInv f _ = refl Iso.leftInv f = elim (λ _ → isGroupoid→is2Groupoid groupoidTruncIsGroupoid _ _) (λ _ → refl) groupoidTruncIdempotent : isGroupoid A → ∥ A ∥₃ ≡ A groupoidTruncIdempotent hA = ua (groupoidTruncIdempotent≃ hA)
31.029412
94
0.569194
7cfd524e637cb54ec2f0075791766b70b5a632f5
923
agda
Agda
test/Succeed/EtaInductiveRecord.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/EtaInductiveRecord.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/EtaInductiveRecord.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2014-02-08 Andreas -- Eta-equality for records that are recursive via some data type -- {-# OPTIONS -v tc.pos.record:10 #-} module _ where open import Common.Equality module Nested where data List (A : Set) : Set where [] : List A _∷_ : (x : A)(xs : List A) → List A record Tree (A : Set) : Set where inductive constructor tree field elem : A subtrees : List (Tree A) open Tree test : ∀ {A} (t : Tree A) → t ≡ tree (elem t) (subtrees t) test t = refl -- we should have eta for Tree! module Mutual where mutual data TreeList (A : Set) : Set where [] : TreeList A _∷_ : (x : Tree A)(xs : TreeList A) → TreeList A record Tree (A : Set) : Set where inductive constructor tree field elem : A subtrees : TreeList A open Tree test : ∀ {A} (t : Tree A) → t ≡ tree (elem t) (subtrees t) test t = refl
20.065217
65
0.572048
346bdc0ed962f3f6f891116411ec811d770ffff1
3,182
agda
Agda
agda/SN.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
32
2017-05-22T14:33:27.000Z
2021-03-05T12:12:03.000Z
agda/SN.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
2
2018-02-14T16:42:36.000Z
2018-02-20T14:54:18.000Z
agda/SN.agda
ryanakca/strong-normalization
79d97481f3312c2d30a823c3b1bcb8ae871c2fe2
[ "Unlicense" ]
4
2017-11-10T16:44:52.000Z
2018-02-23T18:22:17.000Z
module SN where open import Library open import Syntax open import RenamingAndSubstitution -- Reduction data _↦_ {Γ} : ∀{a} (t t' : Tm Γ a) → Set where β : ∀{a b} {t : Tm (Γ , a) b} {u} → app (abs t) u ↦ sub0 t u abs : ∀{a b} {t t' : Tm (Γ , a) b} (r : t ↦ t') → abs t ↦ abs t' appl : ∀{a b} {t t' : Tm Γ (a ⇒ b)} {u} (r : t ↦ t') → app t u ↦ app t' u appr : ∀{a b} {t : Tm Γ (a ⇒ b)} {u u'} (r : u ↦ u') → app t u ↦ app t u' ren↦ : ∀{Γ Δ a} (ρ : Ren Γ Δ) {t t' : Tm Δ a} (r : t ↦ t') → ren ρ t ↦ ren ρ t' -- ren↦ {Γ} {Δ} {a} ρ {t} {t'} r = {!r!} ren↦ {Γ} {Δ} ρ β = {!!} ren↦ {Γ} {Δ} ρ (abs r) = abs (ren↦ (liftr ρ) r) ren↦ {Γ} {Δ} ρ (appl r) = {!!} ren↦ {Γ} {Δ} ρ (appr r) = {!!} ren↦inv : ∀{Γ Δ a} (ρ : Ren Γ Δ) (t : Tm Δ a) {t' : Tm Γ a} (r : ren ρ t ↦ t') → ∃ λ (u : Tm Δ a) → (t ↦ u) × (t' ≡ ren ρ u) ren↦inv ρ (var x) () ren↦inv ρ (app (abs t) t₁) β = sub0 t t₁ , β , {!refl!} ren↦inv ρ (abs t) (abs r) with ren↦inv (liftr ρ) t r ren↦inv ρ (abs t) (abs r) | u , r' , e = abs u , abs r' , cong abs e ren↦inv ρ (app t t₁) (appl r) with ren↦inv ρ t r ren↦inv ρ (app t t₁) (appl r) | u , r' , refl = app u t₁ , appl r' , refl ren↦inv ρ (app t t₁) (appr r) with ren↦inv ρ t₁ r ... | u , r' , refl = app t u , appr r' , refl -- Strongly normalizing terms data SN {Γ : Cxt} {a : Ty} (t : Tm Γ a) : Set where sn : (∀ t' (r : t ↦ t') → SN t') → SN t -- SN is closed under renaming renSN : ∀{Γ Δ a} (ρ : Ren Γ Δ) {t : Tm Δ a} (s : SN t) → SN (ren ρ t) renSN ρ (sn f) = sn λ _ r → case ren↦inv ρ _ r of λ{ (t'' , r' , refl) → renSN ρ (f t'' r') } -- Strong head reduction (weak head reduction that preserves SN under expansion) data _s↦_ {Γ} : ∀{a} (t t' : Tm Γ a) → Set where β : ∀{a b} {t : Tm (Γ , a) b} {u} (s : SN u) → app (abs t) u s↦ sub0 t u appl : ∀{a b} {t t' : Tm Γ (a ⇒ b)} {u} (r : t s↦ t') → app t u s↦ app t' u -- Strong head reduction is closed under renaming rens↦ : ∀{Γ Δ a} (ρ : Ren Γ Δ) {t t' : Tm Δ a} (r : t s↦ t') → ren ρ t s↦ ren ρ t' rens↦ ρ (β s) = {!β!} -- Need lemma: -- app (abs (ren (liftr ρ) .t)) (ren ρ .u) s↦ -- ren ρ (sub (subId , .u) .t)rens↦ ρ (appl r) = appl (rens↦ ρ r) -- SN is closed under strong head expansion s↦SN : ∀{Γ a}{t t' : Tm Γ a} (r : t s↦ t') (s : SN t') → SN t -- s↦SN r s = sn λ t' → λ{ β → {!!} ; (abs r') → {!!} ; (appl r') → {!!} ; (appr r') → {!!}} s↦SN (β s') s = sn (λ t' → λ{ β → s ; (appl (abs r)) → {!!} ; (appr r) → {!!}}) s↦SN (appl r) s = {!!} -- Reducibility: Kripke logical predicate Red : (a : Ty) {Γ : Cxt} (t : Tm Γ a) → Set Red ★ {Γ} t = SN t Red (a ⇒ b) {Γ} t = ∀{Γ'}(ρ : Ren Γ' Γ) u (s : Red a u) → Red b (app (ren ρ t) u) -- Reducibility is closed under renaming renRed : ∀{Γ Δ a} (ρ : Ren Γ Δ) {t : Tm Δ a} (p : Red a t) → Red a (ren ρ t) renRed {Γ} {Δ} {★} ρ {t} p = renSN ρ p renRed {Γ} {Δ} {a ⇒ b} ρ {t} p = λ ρ₁ u s → subst (λ z → Red b (app z u)) (rencomp ρ₁ ρ t) (p (renComp ρ₁ ρ) u s) -- Reducibility is closed under strong head expansion expRed : ∀{Γ a} {t t' : Tm Γ a} (r : t s↦ t') (p : Red a t') → Red a t expRed {Γ} {★} {t} {t'} r p = s↦SN r p expRed {Γ} {a ⇒ b} {t} {t'} r p ρ u s = expRed (appl {!!}) (p ρ u s)
37.880952
92
0.473287
1e38ac793e13e75cccf39948c8779d4b518e1e5e
357
agda
Agda
test/Succeed/Issue1552.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1552.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1552.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting --confluence-check #-} -- {-# OPTIONS -v rewriting:100 #-} postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i {-# BUILTIN REWRITE _↦_ #-} postulate Unit : Set tt : Unit module _ {i} (P : Unit → Set i) (tt* : P tt) where postulate Unit-elim : (x : Unit) → P x Unit-β : Unit-elim tt ↦ tt* {-# REWRITE Unit-β #-}
17.85
50
0.537815
3068da93d10bacba9fe4bcf79b488018e4f890ae
1,013
agda
Agda
agda/InsertSort/Impl1/Correctness/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/InsertSort/Impl1/Correctness/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/InsertSort/Impl1/Correctness/Order.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module InsertSort.Impl1.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.List open import Data.Sum open import InsertSort.Impl1 _≤_ tot≤ open import List.Sorted _≤_ lemma-insert-sorted : {xs : List A}(x : A) → Sorted xs → Sorted (insert x xs) lemma-insert-sorted {xs = .[]} x nils = singls x lemma-insert-sorted {xs = .([ y ])} x (singls y) with tot≤ x y ... | inj₁ x≤y = conss x≤y (singls y) ... | inj₂ y≤x = conss y≤x (singls x) lemma-insert-sorted x (conss {y} {z} {ys} y≤z szys) with tot≤ x y ... | inj₁ x≤y = conss x≤y (conss y≤z szys) ... | inj₂ y≤x with tot≤ x z | lemma-insert-sorted x szys ... | inj₁ x≤z | _ = conss y≤x (conss x≤z szys) ... | inj₂ z≤x | h = conss y≤z h theorem-insertSort-sorted : (xs : List A) → Sorted (insertSort xs) theorem-insertSort-sorted [] = nils theorem-insertSort-sorted (x ∷ xs) = lemma-insert-sorted x (theorem-insertSort-sorted xs)
32.677419
90
0.614018
374cba69cd7865a07d8118f9a2294b09084d61ab
14,693
agda
Agda
src/STLC/Coquand/Substitution.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC/Coquand/Substitution.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
src/STLC/Coquand/Substitution.agda
mietek/coquand-kovacs
bd626509948fbf8503ec2e31c1852e1ac6edcc79
[ "X11" ]
null
null
null
module STLC.Coquand.Substitution where open import STLC.Coquand.Renaming public open import Category -------------------------------------------------------------------------------- -- Substitutions infix 3 _⊢⋆_ data _⊢⋆_ : 𝒞 → 𝒞 → Set where ∅ : ∀ {Γ} → Γ ⊢⋆ ∅ _,_ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) (M : Γ ⊢ A) → Γ ⊢⋆ Ξ , A putₛ : ∀ {Ξ Γ} → (∀ {A} → Ξ ⊢ A → Γ ⊢ A) → Γ ⊢⋆ Ξ putₛ {∅} f = ∅ putₛ {Γ , A} f = putₛ (λ M → f (wk M)) , f 0 getₛ : ∀ {Γ Ξ A} → Γ ⊢⋆ Ξ → Ξ ∋ A → Γ ⊢ A getₛ (σ , M) zero = M getₛ (σ , M) (suc i) = getₛ σ i wkₛ : ∀ {A Γ Ξ} → Γ ⊢⋆ Ξ → Γ , A ⊢⋆ Ξ wkₛ ∅ = ∅ wkₛ (σ , M) = wkₛ σ , wk M liftₛ : ∀ {A Γ Ξ} → Γ ⊢⋆ Ξ → Γ , A ⊢⋆ Ξ , A liftₛ σ = wkₛ σ , 0 idₛ : ∀ {Γ} → Γ ⊢⋆ Γ idₛ {∅} = ∅ idₛ {Γ , A} = liftₛ idₛ sub : ∀ {Γ Ξ A} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A sub σ (𝓋 i) = getₛ σ i sub σ (ƛ M) = ƛ (sub (liftₛ σ) M) sub σ (M ∙ N) = sub σ M ∙ sub σ N cut : ∀ {Γ A B} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B cut M N = sub (idₛ , M) N -- NOTE: _●_ = sub⋆ _●_ : ∀ {Γ Ξ Φ} → Γ ⊢⋆ Ξ → Ξ ⊢⋆ Φ → Γ ⊢⋆ Φ σ₁ ● ∅ = ∅ σ₁ ● (σ₂ , M) = σ₁ ● σ₂ , sub σ₁ M -------------------------------------------------------------------------------- -- (wkgetₛ) natgetₛ : ∀ {Γ Ξ A B} → (σ : Γ ⊢⋆ Ξ) (i : Ξ ∋ A) → getₛ (wkₛ {B} σ) i ≡ (wk ∘ getₛ σ) i natgetₛ (σ , M) zero = refl natgetₛ (σ , M) (suc i) = natgetₛ σ i idgetₛ : ∀ {Γ A} → (i : Γ ∋ A) → getₛ idₛ i ≡ 𝓋 i idgetₛ zero = refl idgetₛ (suc i) = natgetₛ idₛ i ⦙ wk & idgetₛ i ⦙ 𝓋 & ( natgetᵣ idᵣ i ⦙ suc & idgetᵣ i ) idsub : ∀ {Γ A} → (M : Γ ⊢ A) → sub idₛ M ≡ M idsub (𝓋 i) = idgetₛ i idsub (ƛ M) = ƛ & idsub M idsub (M ∙ N) = _∙_ & idsub M ⊗ idsub N -------------------------------------------------------------------------------- ⌊_⌋ : ∀ {Γ Γ′} → Γ′ ∋⋆ Γ → Γ′ ⊢⋆ Γ ⌊ ∅ ⌋ = ∅ ⌊ η , i ⌋ = ⌊ η ⌋ , 𝓋 i -- NOTE: _◐_ = getₛ⋆ _◐_ : ∀ {Γ Ξ Ξ′} → Γ ⊢⋆ Ξ′ → Ξ′ ∋⋆ Ξ → Γ ⊢⋆ Ξ σ ◐ η = σ ● ⌊ η ⌋ -- NOTE: _◑_ = ren⋆ _◑_ : ∀ {Γ Γ′ Ξ} → Γ′ ∋⋆ Γ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ η ◑ σ = ⌊ η ⌋ ● σ ⌊get⌋ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) (i : Γ ∋ A) → getₛ ⌊ η ⌋ i ≡ 𝓋 (getᵣ η i) ⌊get⌋ (η , j) zero = refl ⌊get⌋ (η , j) (suc i) = ⌊get⌋ η i ⌊wk⌋ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) → wkₛ {A} ⌊ η ⌋ ≡ ⌊ wkᵣ η ⌋ ⌊wk⌋ ∅ = refl ⌊wk⌋ (η , i) = (wkₛ ⌊ η ⌋ ,_) & (𝓋 & natgetᵣ idᵣ i) ⦙ _,_ & ⌊wk⌋ η ⊗ 𝓋 ∘ suc & idgetᵣ i ⌊lift⌋ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) → liftₛ {A} ⌊ η ⌋ ≡ ⌊ liftᵣ η ⌋ ⌊lift⌋ η = (_, 0) & ⌊wk⌋ η ⌊id⌋ : ∀ {Γ} → idₛ {Γ} ≡ ⌊ idᵣ ⌋ ⌊id⌋ {∅} = refl ⌊id⌋ {Γ , A} = (_, 0) & ( wkₛ & ⌊id⌋ ⦙ ⌊wk⌋ idᵣ ) ⌊sub⌋ : ∀ {Γ Γ′ A} → (η : Γ′ ∋⋆ Γ) (M : Γ ⊢ A) → sub ⌊ η ⌋ M ≡ ren η M ⌊sub⌋ η (𝓋 i) = ⌊get⌋ η i ⌊sub⌋ η (ƛ M) = ƛ & ( (λ σ → sub σ M) & ⌊lift⌋ η ⦙ ⌊sub⌋ (liftᵣ η) M ) ⌊sub⌋ η (M ∙ N) = _∙_ & ⌊sub⌋ η M ⊗ ⌊sub⌋ η N ⌊○⌋ : ∀ {Γ Γ′ Γ″} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) → ⌊ η₁ ○ η₂ ⌋ ≡ ⌊ η₁ ⌋ ● ⌊ η₂ ⌋ ⌊○⌋ η₁ ∅ = refl ⌊○⌋ η₁ (η₂ , i) = _,_ & ⌊○⌋ η₁ η₂ ⊗ (⌊get⌋ η₁ i ⁻¹) -------------------------------------------------------------------------------- zap◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Γ ⊢ A) → (σ , M) ◐ wkᵣ η ≡ σ ◐ η zap◐ σ ∅ M = refl zap◐ σ (η , i) M = (_, getₛ σ i) & zap◐ σ η M rid◐ : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → σ ◐ idᵣ ≡ σ rid◐ ∅ = refl rid◐ (σ , M) = (_, M) & ( zap◐ σ idᵣ M ⦙ rid◐ σ ) -------------------------------------------------------------------------------- get◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (i : Ξ ∋ A) → getₛ (σ ◐ η) i ≡ (getₛ σ ∘ getᵣ η) i get◐ σ (η , j) zero = refl get◐ σ (η , j) (suc i) = get◐ σ η i wk◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) → wkₛ {A} (σ ◐ η) ≡ wkₛ σ ◐ η wk◐ σ ∅ = refl wk◐ σ (η , i) = _,_ & wk◐ σ η ⊗ (natgetₛ σ i ⁻¹) lift◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) → liftₛ {A} (σ ◐ η) ≡ liftₛ σ ◐ liftᵣ η lift◐ σ η = (_, 0) & ( wk◐ σ η ⦙ zap◐ (wkₛ σ) η 0 ⁻¹ ) wkrid◐ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) → wkₛ {A} σ ◐ idᵣ ≡ wkₛ σ wkrid◐ σ = wk◐ σ idᵣ ⁻¹ ⦙ wkₛ & rid◐ σ liftwkrid◐ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) → liftₛ {A} σ ◐ wkᵣ idᵣ ≡ wkₛ σ liftwkrid◐ σ = zap◐ (wkₛ σ) idᵣ 0 ⦙ wkrid◐ σ mutual sub◐ : ∀ {Γ Ξ Ξ′ A} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Ξ ⊢ A) → sub (σ ◐ η) M ≡ (sub σ ∘ ren η) M sub◐ σ η (𝓋 i) = get◐ σ η i sub◐ σ η (ƛ M) = ƛ & sublift◐ σ η M sub◐ σ η (M ∙ N) = _∙_ & sub◐ σ η M ⊗ sub◐ σ η N sublift◐ : ∀ {Γ Ξ Ξ′ A B} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Ξ , B ⊢ A) → sub (liftₛ {B} (σ ◐ η)) M ≡ (sub (liftₛ σ) ∘ ren (liftᵣ η)) M sublift◐ σ η M = (λ σ′ → sub σ′ M) & lift◐ σ η ⦙ sub◐ (liftₛ σ) (liftᵣ η) M subwk◐ : ∀ {Γ Ξ Ξ′ A B} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Ξ ⊢ A) → sub (wkₛ {B} (σ ◐ η)) M ≡ (sub (wkₛ σ) ∘ ren η) M subwk◐ σ η M = (λ σ′ → sub σ′ M) & wk◐ σ η ⦙ sub◐ (wkₛ σ) η M subliftwk◐ : ∀ {Γ Ξ Ξ′ A B} → (σ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (M : Ξ ⊢ A) → sub (wkₛ {B} (σ ◐ η)) M ≡ (sub (liftₛ σ) ∘ ren (wkᵣ η)) M subliftwk◐ σ η M = (λ σ′ → sub σ′ M) & ( wk◐ σ η ⦙ zap◐ (wkₛ σ) η 0 ⁻¹ ) ⦙ sub◐ (liftₛ σ) (wkᵣ η) M -------------------------------------------------------------------------------- zap◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (i : Γ′ ∋ A) → (η , i) ◑ wkₛ σ ≡ η ◑ σ zap◑ η ∅ i = refl zap◑ η (σ , j) i = _,_ & zap◑ η σ i ⊗ ( sub◐ (⌊ η ⌋ , 𝓋 i) (wkᵣ idᵣ) j ⁻¹ ⦙ (λ σ′ → sub σ′ j) & ( zap◐ ⌊ η ⌋ idᵣ (𝓋 i) ⦙ rid◐ ⌊ η ⌋ ) ) lid◑ : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → idᵣ ◑ σ ≡ σ lid◑ ∅ = refl lid◑ (σ , M) = _,_ & lid◑ σ ⊗ ( (λ σ′ → sub σ′ M) & ⌊id⌋ ⁻¹ ⦙ idsub M ) -------------------------------------------------------------------------------- zap● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Γ ⊢ A) → (σ₁ , M) ● wkₛ σ₂ ≡ σ₁ ● σ₂ zap● σ₁ ∅ M = refl zap● σ₁ (σ₂ , N) M = _,_ & zap● σ₁ σ₂ M ⊗ ( sub◐ (σ₁ , M) (wkᵣ idᵣ) N ⁻¹ ⦙ (λ σ′ → sub σ′ N) & ( zap◐ σ₁ idᵣ M ⦙ rid◐ σ₁ ) ) lid● : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → idₛ ● σ ≡ σ lid● ∅ = refl lid● (σ , M) = _,_ & lid● σ ⊗ idsub M rid● : ∀ {Γ Ξ} → (σ : Γ ⊢⋆ Ξ) → σ ● idₛ ≡ σ rid● σ = (σ ●_) & ⌊id⌋ ⦙ rid◐ σ -------------------------------------------------------------------------------- get◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (i : Ξ ∋ A) → getₛ (η ◑ σ) i ≡ (ren η ∘ getₛ σ) i get◑ η (σ , M) zero = ⌊sub⌋ η M get◑ η (σ , M) (suc i) = get◑ η σ i wk◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) → wkₛ {A} (η ◑ σ) ≡ wkᵣ η ◑ σ wk◑ η ∅ = refl wk◑ η (σ , M) = _,_ & wk◑ η σ ⊗ ( ren (wkᵣ idᵣ) & ⌊sub⌋ η M ⦙ ren○ (wkᵣ idᵣ) η M ⁻¹ ⦙ (λ η′ → ren η′ M) & wklid○ η ⦙ ⌊sub⌋ (wkᵣ η) M ⁻¹ ) lift◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) → liftₛ {A} (η ◑ σ) ≡ liftᵣ η ◑ liftₛ σ lift◑ η σ = (_, 0) & ( wk◑ η σ ⦙ zap● ⌊ wkᵣ η ⌋ σ 0 ⁻¹ ) wklid◑ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) → wkᵣ {A} idᵣ ◑ σ ≡ wkₛ σ wklid◑ σ = wk◑ idᵣ σ ⁻¹ ⦙ wkₛ & lid◑ σ liftwklid◑ : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) → (liftᵣ {A} idᵣ ◑ wkₛ σ) ≡ wkₛ σ liftwklid◑ σ = zap◑ (wkᵣ idᵣ) σ 0 ⦙ wklid◑ σ mutual sub◑ : ∀ {Γ Γ′ Ξ A} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ ⊢ A) → sub (η ◑ σ) M ≡ (ren η ∘ sub σ) M sub◑ η σ (𝓋 i) = get◑ η σ i sub◑ η σ (ƛ M) = ƛ & sublift◑ η σ M sub◑ η σ (M ∙ N) = _∙_ & sub◑ η σ M ⊗ sub◑ η σ N sublift◑ : ∀ {Γ Γ′ Ξ A B} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ , B ⊢ A) → sub (liftₛ {B} (η ◑ σ)) M ≡ (ren (liftᵣ η) ∘ sub (liftₛ σ)) M sublift◑ η σ M = (λ σ′ → sub σ′ M) & lift◑ η σ ⦙ sub◑ (liftᵣ η) (liftₛ σ) M subwk◑ : ∀ {Γ Γ′ Ξ A B} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ ⊢ A) → sub (wkₛ {B} (η ◑ σ)) M ≡ (ren (wkᵣ η) ∘ sub σ) M subwk◑ η σ M = (λ σ′ → sub σ′ M) & wk◑ η σ ⦙ sub◑ (wkᵣ η) σ M subliftwk◑ : ∀ {Γ Γ′ Ξ A B} → (η : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) (M : Ξ ⊢ A) → sub (wkₛ {B} (η ◑ σ)) M ≡ (ren (liftᵣ η) ∘ sub (wkₛ σ)) M subliftwk◑ η σ M = (λ σ′ → sub σ′ M) & ( wk◑ η σ ⦙ zap◑ (wkᵣ η) σ 0 ⁻¹ ) ⦙ sub◑ (liftᵣ η) (wkₛ σ) M -------------------------------------------------------------------------------- get● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (i : Φ ∋ A) → getₛ (σ₁ ● σ₂) i ≡ (sub σ₁ ∘ getₛ σ₂) i get● σ₁ (σ₂ , M) zero = refl get● σ₁ (σ₂ , M) (suc i) = get● σ₁ σ₂ i wk● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) → wkₛ {A} (σ₁ ● σ₂) ≡ wkₛ σ₁ ● σ₂ wk● σ₁ ∅ = refl wk● σ₁ (σ₂ , M) = _,_ & wk● σ₁ σ₂ ⊗ ( sub◑ (wkᵣ idᵣ) σ₁ M ⁻¹ ⦙ (λ σ′ → sub σ′ M) & wklid◑ σ₁ ) lift● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) → liftₛ {A} (σ₁ ● σ₂) ≡ liftₛ σ₁ ● liftₛ σ₂ lift● σ₁ σ₂ = (_, 0) & ( wk● σ₁ σ₂ ⦙ zap● (wkₛ σ₁) σ₂ 0 ⁻¹ ) wklid● : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) → wkₛ {A} idₛ ● σ ≡ wkₛ σ wklid● σ = wk● idₛ σ ⁻¹ ⦙ wkₛ & lid● σ wkrid● : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) → wkₛ {A} σ ● idₛ ≡ wkₛ σ wkrid● σ = wk● σ idₛ ⁻¹ ⦙ wkₛ & rid● σ liftwkrid● : ∀ {Γ Ξ A} → (σ : Γ ⊢⋆ Ξ) → liftₛ {A} σ ● wkₛ idₛ ≡ wkₛ σ liftwkrid● σ = zap● (wkₛ σ) idₛ 0 ⦙ wkrid● σ mutual sub● : ∀ {Γ Ξ Φ A} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A) → sub (σ₁ ● σ₂) M ≡ (sub σ₁ ∘ sub σ₂) M sub● σ₁ σ₂ (𝓋 i) = get● σ₁ σ₂ i sub● σ₁ σ₂ (ƛ M) = ƛ & sublift● σ₁ σ₂ M sub● σ₁ σ₂ (M ∙ N) = _∙_ & sub● σ₁ σ₂ M ⊗ sub● σ₁ σ₂ N sublift● : ∀ {Γ Ξ Φ A B} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ , B ⊢ A) → sub (liftₛ {B} (σ₁ ● σ₂)) M ≡ (sub (liftₛ σ₁) ∘ sub (liftₛ σ₂)) M sublift● σ₁ σ₂ M = (λ σ′ → sub σ′ M) & lift● σ₁ σ₂ ⦙ sub● (liftₛ σ₁) (liftₛ σ₂) M subwk● : ∀ {Γ Ξ Φ A B} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A) → sub (wkₛ {B} (σ₁ ● σ₂)) M ≡ (sub (wkₛ σ₁) ∘ sub σ₂) M subwk● σ₁ σ₂ M = (λ σ′ → sub σ′ M) & wk● σ₁ σ₂ ⦙ sub● (wkₛ σ₁) σ₂ M subliftwk● : ∀ {Γ Ξ Φ A B} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (M : Φ ⊢ A) → sub (wkₛ {B} (σ₁ ● σ₂)) M ≡ (sub (liftₛ σ₁) ∘ sub (wkₛ σ₂)) M subliftwk● σ₁ σ₂ M = (λ σ′ → sub σ′ M) & ( wk● σ₁ σ₂ ⦙ zap● (wkₛ σ₁) σ₂ 0 ⁻¹ ) ⦙ sub● (liftₛ σ₁) (wkₛ σ₂) M -------------------------------------------------------------------------------- comp◐○ : ∀ {Γ Ξ Ξ′ Ξ″} → (σ : Γ ⊢⋆ Ξ″) (η₁ : Ξ″ ∋⋆ Ξ′) (η₂ : Ξ′ ∋⋆ Ξ) → σ ◐ (η₁ ○ η₂) ≡ (σ ◐ η₁) ◐ η₂ comp◐○ σ η₁ ∅ = refl comp◐○ σ η₁ (η₂ , i) = _,_ & comp◐○ σ η₁ η₂ ⊗ (get◐ σ η₁ i ⁻¹) comp◑○ : ∀ {Γ Γ′ Γ″ Ξ} → (η₁ : Γ″ ∋⋆ Γ′) (η₂ : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ) → η₁ ◑ (η₂ ◑ σ) ≡ (η₁ ○ η₂) ◑ σ comp◑○ η₁ η₂ ∅ = refl comp◑○ η₁ η₂ (σ , M) = _,_ & comp◑○ η₁ η₂ σ ⊗ ( sub● ⌊ η₁ ⌋ ⌊ η₂ ⌋ M ⁻¹ ⦙ (λ σ′ → sub σ′ M) & ⌊○⌋ η₁ η₂ ⁻¹ ) comp◑◐ : ∀ {Γ Γ′ Ξ Ξ′} → (η₁ : Γ′ ∋⋆ Γ) (σ : Γ ⊢⋆ Ξ′) (η₂ : Ξ′ ∋⋆ Ξ) → η₁ ◑ (σ ◐ η₂) ≡ (η₁ ◑ σ) ◐ η₂ comp◑◐ η₁ σ ∅ = refl comp◑◐ η₁ σ (η₂ , i) = _,_ & comp◑◐ η₁ σ η₂ ⊗ ( ⌊sub⌋ η₁ (getₛ σ i) ⦙ get◑ η₁ σ i ⁻¹ ) comp◑● : ∀ {Γ Γ′ Ξ Φ} → (η : Γ′ ∋⋆ Γ) (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) → η ◑ (σ₁ ● σ₂) ≡ (η ◑ σ₁) ● σ₂ comp◑● η σ₁ ∅ = refl comp◑● η σ₁ (σ₂ , M) = _,_ & comp◑● η σ₁ σ₂ ⊗ (sub● ⌊ η ⌋ σ₁ M ⁻¹) comp●◐ : ∀ {Γ Ξ Φ Φ′} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ′) (η : Φ′ ∋⋆ Φ) → σ₁ ● (σ₂ ◐ η) ≡ (σ₁ ● σ₂) ◐ η comp●◐ σ₁ σ₂ ∅ = refl comp●◐ σ₁ σ₂ (η , i) = _,_ & comp●◐ σ₁ σ₂ η ⊗ (get● σ₁ σ₂ i ⁻¹) comp●◑ : ∀ {Γ Ξ Ξ′ Φ} → (σ₁ : Γ ⊢⋆ Ξ′) (η : Ξ′ ∋⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) → σ₁ ● (η ◑ σ₂) ≡ (σ₁ ◐ η) ● σ₂ comp●◑ σ₁ η ∅ = refl comp●◑ σ₁ η (σ₂ , M) = _,_ & comp●◑ σ₁ η σ₂ ⊗ (sub● σ₁ ⌊ η ⌋ M ⁻¹) -------------------------------------------------------------------------------- assoc● : ∀ {Γ Ξ Φ Ψ} → (σ₁ : Γ ⊢⋆ Ξ) (σ₂ : Ξ ⊢⋆ Φ) (σ₃ : Φ ⊢⋆ Ψ) → σ₁ ● (σ₂ ● σ₃) ≡ (σ₁ ● σ₂) ● σ₃ assoc● σ₁ σ₂ ∅ = refl assoc● σ₁ σ₂ (σ₃ , M) = _,_ & assoc● σ₁ σ₂ σ₃ ⊗ (sub● σ₁ σ₂ M ⁻¹) -------------------------------------------------------------------------------- 𝗦𝗧𝗟𝗖 : Category 𝒞 _⊢⋆_ 𝗦𝗧𝗟𝗖 = record { idₓ = idₛ ; _⋄_ = flip _●_ ; lid⋄ = rid● ; rid⋄ = lid● ; assoc⋄ = assoc● } subPsh : 𝒯 → Presheaf₀ 𝗦𝗧𝗟𝗖 subPsh A = record { Fₓ = _⊢ A ; F = sub ; idF = fext! idsub ; F⋄ = λ σ₁ σ₂ → fext! (sub● σ₂ σ₁) } --------------------------------------------------------------------------------
31.530043
80
0.277955
52db52fb312f69cacb39f55b86783605d19d1d2f
11,773
agda
Agda
Cubical/Data/Nat/Order.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Order.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Order.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --no-exact-split --safe #-} module Cubical.Data.Nat.Order where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sigma open import Cubical.Data.Sum as ⊎ open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Induction.WellFounded open import Cubical.Relation.Nullary infix 4 _≤_ _<_ _≥_ _>_ _≤_ : ℕ → ℕ → Type₀ m ≤ n = Σ[ k ∈ ℕ ] k + m ≡ n _<_ : ℕ → ℕ → Type₀ m < n = suc m ≤ n _≥_ : ℕ → ℕ → Type₀ m ≥ n = n ≤ m _>_ : ℕ → ℕ → Type₀ m > n = n < m data Trichotomy (m n : ℕ) : Type₀ where lt : m < n → Trichotomy m n eq : m ≡ n → Trichotomy m n gt : n < m → Trichotomy m n private variable k l m n : ℕ private witness-prop : ∀ j → isProp (j + m ≡ n) witness-prop {m} {n} j = isSetℕ (j + m) n m≤n-isProp : isProp (m ≤ n) m≤n-isProp {m} {n} (k , p) (l , q) = Σ≡Prop witness-prop lemma where lemma : k ≡ l lemma = inj-+m (p ∙ (sym q)) zero-≤ : 0 ≤ n zero-≤ {n} = n , +-zero n suc-≤-suc : m ≤ n → suc m ≤ suc n suc-≤-suc (k , p) = k , (+-suc k _) ∙ (cong suc p) ≤-+k : m ≤ n → m + k ≤ n + k ≤-+k {m} {k = k} (i , p) = i , +-assoc i m k ∙ cong (_+ k) p ≤-k+ : m ≤ n → k + m ≤ k + n ≤-k+ {m} {n} {k} = subst (_≤ k + n) (+-comm m k) ∘ subst (m + k ≤_) (+-comm n k) ∘ ≤-+k pred-≤-pred : suc m ≤ suc n → m ≤ n pred-≤-pred (k , p) = k , injSuc ((sym (+-suc k _)) ∙ p) ≤-refl : m ≤ m ≤-refl = 0 , refl ≤-suc : m ≤ n → m ≤ suc n ≤-suc (k , p) = suc k , cong suc p suc-< : suc m < n → m < n suc-< p = pred-≤-pred (≤-suc p) ≤-sucℕ : n ≤ suc n ≤-sucℕ = ≤-suc ≤-refl ≤-predℕ : predℕ n ≤ n ≤-predℕ {zero} = ≤-refl ≤-predℕ {suc n} = ≤-suc ≤-refl ≤-trans : k ≤ m → m ≤ n → k ≤ n ≤-trans {k} {m} {n} (i , p) (j , q) = i + j , l2 ∙ (l1 ∙ q) where l1 : j + i + k ≡ j + m l1 = (sym (+-assoc j i k)) ∙ (cong (j +_) p) l2 : i + j + k ≡ j + i + k l2 = cong (_+ k) (+-comm i j) ≤-antisym : m ≤ n → n ≤ m → m ≡ n ≤-antisym {m} (i , p) (j , q) = (cong (_+ m) l3) ∙ p where l1 : j + i + m ≡ m l1 = (sym (+-assoc j i m)) ∙ ((cong (j +_) p) ∙ q) l2 : j + i ≡ 0 l2 = m+n≡n→m≡0 l1 l3 : 0 ≡ i l3 = sym (snd (m+n≡0→m≡0×n≡0 l2)) ≤-+-≤ : m ≤ n → l ≤ k → m + l ≤ n + k ≤-+-≤ p q = ≤-trans (≤-+k p) (≤-k+ q) ≤-k+-cancel : k + m ≤ k + n → m ≤ n ≤-k+-cancel {k} {m} (l , p) = l , inj-m+ (sub k m ∙ p) where sub : ∀ k m → k + (l + m) ≡ l + (k + m) sub k m = +-assoc k l m ∙ cong (_+ m) (+-comm k l) ∙ sym (+-assoc l k m) ≤-+k-cancel : m + k ≤ n + k → m ≤ n ≤-+k-cancel {m} {k} {n} (l , p) = l , cancelled where cancelled : l + m ≡ n cancelled = inj-+m (sym (+-assoc l m k) ∙ p) ≤-·k : m ≤ n → m · k ≤ n · k ≤-·k {m} {n} {k} (d , r) = d · k , reason where reason : d · k + m · k ≡ n · k reason = d · k + m · k ≡⟨ ·-distribʳ d m k ⟩ (d + m) · k ≡⟨ cong (_· k) r ⟩ n · k ∎ <-k+-cancel : k + m < k + n → m < n <-k+-cancel {k} {m} {n} = ≤-k+-cancel ∘ subst (_≤ k + n) (sym (+-suc k m)) ¬-<-zero : ¬ m < 0 ¬-<-zero (k , p) = snotz ((sym (+-suc k _)) ∙ p) ¬m<m : ¬ m < m ¬m<m {m} = ¬-<-zero ∘ ≤-+k-cancel {k = m} ≤0→≡0 : n ≤ 0 → n ≡ 0 ≤0→≡0 {zero} ineq = refl ≤0→≡0 {suc n} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ : m ≤ n → (predℕ m) ≤ (predℕ n) predℕ-≤-predℕ {zero} {zero} ineq = ≤-refl predℕ-≤-predℕ {zero} {suc n} ineq = zero-≤ predℕ-≤-predℕ {suc m} {zero} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ {suc m} {suc n} ineq = pred-≤-pred ineq ¬m+n<m : ¬ m + n < m ¬m+n<m {m} {n} = ¬-<-zero ∘ <-k+-cancel ∘ subst (m + n <_) (sym (+-zero m)) <-weaken : m < n → m ≤ n <-weaken (k , p) = suc k , sym (+-suc k _) ∙ p ≤<-trans : l ≤ m → m < n → l < n ≤<-trans p = ≤-trans (suc-≤-suc p) <≤-trans : l < m → m ≤ n → l < n <≤-trans = ≤-trans <-trans : l < m → m < n → l < n <-trans p = ≤<-trans (<-weaken p) <-asym : m < n → ¬ n ≤ m <-asym m<n = ¬m<m ∘ <≤-trans m<n <-+k : m < n → m + k < n + k <-+k p = ≤-+k p <-k+ : m < n → k + m < k + n <-k+ {m} {n} {k} p = subst (λ km → km ≤ k + n) (+-suc k m) (≤-k+ p) <-+-< : m < n → k < l → m + k < n + l <-+-< m<n k<l = <-trans (<-+k m<n) (<-k+ k<l) <-+-≤ : m < n → k ≤ l → m + k < n + l <-+-≤ p q = <≤-trans (<-+k p) (≤-k+ q) <-·sk : m < n → m · suc k < n · suc k <-·sk {m} {n} {k} (d , r) = (d · suc k + k) , reason where reason : (d · suc k + k) + suc (m · suc k) ≡ n · suc k reason = (d · suc k + k) + suc (m · suc k) ≡⟨ sym (+-assoc (d · suc k) k _) ⟩ d · suc k + (k + suc (m · suc k)) ≡[ i ]⟨ d · suc k + +-suc k (m · suc k) i ⟩ d · suc k + suc m · suc k ≡⟨ ·-distribʳ d (suc m) (suc k) ⟩ (d + suc m) · suc k ≡⟨ cong (_· suc k) r ⟩ n · suc k ∎ ∸-≤ : ∀ m n → m ∸ n ≤ m ∸-≤ m zero = ≤-refl ∸-≤ zero (suc n) = ≤-refl ∸-≤ (suc m) (suc n) = ≤-trans (∸-≤ m n) (1 , refl) ≤-∸-+-cancel : m ≤ n → (n ∸ m) + m ≡ n ≤-∸-+-cancel {zero} {n} _ = +-zero _ ≤-∸-+-cancel {suc m} {zero} m≤n = ⊥.rec (¬-<-zero m≤n) ≤-∸-+-cancel {suc m} {suc n} m+1≤n+1 = +-suc _ _ ∙ cong suc (≤-∸-+-cancel (pred-≤-pred m+1≤n+1)) ≤-∸-suc : m ≤ n → suc (n ∸ m) ≡ suc n ∸ m ≤-∸-suc {zero} {n} m≤n = refl ≤-∸-suc {suc m} {zero} m≤n = ⊥.rec (¬-<-zero m≤n) ≤-∸-suc {suc m} {suc n} m+1≤n+1 = ≤-∸-suc (pred-≤-pred m+1≤n+1) left-≤-max : m ≤ max m n left-≤-max {zero} {n} = zero-≤ left-≤-max {suc m} {zero} = ≤-refl left-≤-max {suc m} {suc n} = suc-≤-suc left-≤-max right-≤-max : n ≤ max m n right-≤-max {zero} {m} = zero-≤ right-≤-max {suc n} {zero} = ≤-refl right-≤-max {suc n} {suc m} = suc-≤-suc right-≤-max min-≤-left : min m n ≤ m min-≤-left {zero} {n} = ≤-refl min-≤-left {suc m} {zero} = zero-≤ min-≤-left {suc m} {suc n} = suc-≤-suc min-≤-left min-≤-right : min m n ≤ n min-≤-right {zero} {n} = zero-≤ min-≤-right {suc m} {zero} = ≤-refl min-≤-right {suc m} {suc n} = suc-≤-suc min-≤-right ≤Dec : ∀ m n → Dec (m ≤ n) ≤Dec zero n = yes (n , +-zero _) ≤Dec (suc m) zero = no ¬-<-zero ≤Dec (suc m) (suc n) with ≤Dec m n ... | yes m≤n = yes (suc-≤-suc m≤n) ... | no m≰n = no λ m+1≤n+1 → m≰n (pred-≤-pred m+1≤n+1 ) <Dec : ∀ m n → Dec (m < n) <Dec m n = ≤Dec (suc m) n Trichotomy-suc : Trichotomy m n → Trichotomy (suc m) (suc n) Trichotomy-suc (lt m<n) = lt (suc-≤-suc m<n) Trichotomy-suc (eq m=n) = eq (cong suc m=n) Trichotomy-suc (gt n<m) = gt (suc-≤-suc n<m) _≟_ : ∀ m n → Trichotomy m n zero ≟ zero = eq refl zero ≟ suc n = lt (n , +-comm n 1) suc m ≟ zero = gt (m , +-comm m 1) suc m ≟ suc n = Trichotomy-suc (m ≟ n) <-split : m < suc n → (m < n) ⊎ (m ≡ n) <-split {n = zero} = inr ∘ snd ∘ m+n≡0→m≡0×n≡0 ∘ snd ∘ pred-≤-pred <-split {zero} {suc n} = λ _ → inl (suc-≤-suc zero-≤) <-split {suc m} {suc n} = ⊎.map suc-≤-suc (cong suc) ∘ <-split ∘ pred-≤-pred ≤-split : m ≤ n → (m < n) ⊎ (m ≡ n) ≤-split p = <-split (suc-≤-suc p) ≤→< : m ≤ n → ¬ m ≡ n → m < n ≤→< p q = case (≤-split p) of λ { (inl r) → r ; (inr r) → ⊥.rec (q r) } ≤-+-split : ∀ n m k → k ≤ n + m → (n ≤ k) ⊎ (m ≤ (n + m) ∸ k) ≤-+-split n m k k≤n+m with n ≟ k ... | eq p = inl (0 , p) ... | lt n<k = inl (<-weaken n<k) ... | gt k<n with m ≟ ((n + m) ∸ k) ... | eq p = inr (0 , p) ... | lt m<n+m∸k = inr (<-weaken m<n+m∸k) ... | gt n+m∸k<m = ⊥.rec (¬m<m (transport (λ i → ≤-∸-+-cancel k≤n+m i < +-comm m n i) (<-+-< n+m∸k<m k<n))) <-asym'-case : Trichotomy m n → ¬ m < n → n ≤ m <-asym'-case (lt p) q = ⊥.rec (q p) <-asym'-case (eq p) _ = _ , sym p <-asym'-case (gt p) _ = <-weaken p <-asym' : ¬ m < n → n ≤ m <-asym' = <-asym'-case (_≟_ _ _) private acc-suc : Acc _<_ n → Acc _<_ (suc n) acc-suc a = acc λ y y<sn → case <-split y<sn of λ { (inl y<n) → access a y y<n ; (inr y≡n) → subst _ (sym y≡n) a } <-wellfounded : WellFounded _<_ <-wellfounded zero = acc λ _ → ⊥.rec ∘ ¬-<-zero <-wellfounded (suc n) = acc-suc (<-wellfounded n) <→≢ : n < m → ¬ n ≡ m <→≢ {n} {m} p q = ¬m<m (subst (_< m) q p) module _ (b₀ : ℕ) (P : ℕ → Type₀) (base : ∀ n → n < suc b₀ → P n) (step : ∀ n → P n → P (suc b₀ + n)) where open WFI (<-wellfounded) private dichotomy : ∀ b n → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) dichotomy b n = case n ≟ b return (λ _ → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m)) of λ { (lt o) → inl o ; (eq p) → inr (0 , p ∙ sym (+-zero b)) ; (gt (m , p)) → inr (suc m , sym p ∙ +-suc m b ∙ +-comm (suc m) b) } dichotomy<≡ : ∀ b n → (n<b : n < b) → dichotomy b n ≡ inl n<b dichotomy<≡ b n n<b = case dichotomy b n return (λ d → d ≡ inl n<b) of λ { (inl x) → cong inl (m≤n-isProp x n<b) ; (inr (m , p)) → ⊥.rec (<-asym n<b (m , sym (p ∙ +-comm b m))) } dichotomy+≡ : ∀ b m n → (p : n ≡ b + m) → dichotomy b n ≡ inr (m , p) dichotomy+≡ b m n p = case dichotomy b n return (λ d → d ≡ inr (m , p)) of λ { (inl n<b) → ⊥.rec (<-asym n<b (m , +-comm m b ∙ sym p)) ; (inr (m' , q)) → cong inr (Σ≡Prop (λ x → isSetℕ n (b + x)) (inj-m+ {m = b} (sym q ∙ p))) } b = suc b₀ lemma₁ : ∀{x y z} → x ≡ suc z + y → y < x lemma₁ {y = y} {z} p = z , +-suc z y ∙ sym p subStep : (n : ℕ) → (∀ m → m < n → P m) → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) → P n subStep n _ (inl l) = base n l subStep n rec (inr (m , p)) = transport (cong P (sym p)) (step m (rec m (lemma₁ p))) wfStep : (n : ℕ) → (∀ m → m < n → P m) → P n wfStep n rec = subStep n rec (dichotomy b n) wfStepLemma₀ : ∀ n (n<b : n < b) rec → wfStep n rec ≡ base n n<b wfStepLemma₀ n n<b rec = cong (subStep n rec) (dichotomy<≡ b n n<b) wfStepLemma₁ : ∀ n rec → wfStep (b + n) rec ≡ step n (rec n (lemma₁ refl)) wfStepLemma₁ n rec = cong (subStep (b + n) rec) (dichotomy+≡ b n (b + n) refl) ∙ transportRefl _ +induction : ∀ n → P n +induction = induction wfStep +inductionBase : ∀ n → (l : n < b) → +induction n ≡ base n l +inductionBase n l = induction-compute wfStep n ∙ wfStepLemma₀ n l _ +inductionStep : ∀ n → +induction (b + n) ≡ step n (+induction n) +inductionStep n = induction-compute wfStep (b + n) ∙ wfStepLemma₁ n _ module <-Reasoning where -- TODO: would it be better to mirror the way it is done in the agda-stdlib? infixr 2 _<⟨_⟩_ _≤<⟨_⟩_ _≤⟨_⟩_ _<≤⟨_⟩_ _≡<⟨_⟩_ _≡≤⟨_⟩_ _<≡⟨_⟩_ _≤≡⟨_⟩_ _<⟨_⟩_ : ∀ k → k < n → n < m → k < m _ <⟨ p ⟩ q = <-trans p q _≤<⟨_⟩_ : ∀ k → k ≤ n → n < m → k < m _ ≤<⟨ p ⟩ q = ≤<-trans p q _≤⟨_⟩_ : ∀ k → k ≤ n → n ≤ m → k ≤ m _ ≤⟨ p ⟩ q = ≤-trans p q _<≤⟨_⟩_ : ∀ k → k < n → n ≤ m → k < m _ <≤⟨ p ⟩ q = <≤-trans p q _≡≤⟨_⟩_ : ∀ k → k ≡ l → l ≤ m → k ≤ m _ ≡≤⟨ p ⟩ q = subst (λ k → k ≤ _) (sym p) q _≡<⟨_⟩_ : ∀ k → k ≡ l → l < m → k < m _ ≡<⟨ p ⟩ q = _ ≡≤⟨ cong suc p ⟩ q _≤≡⟨_⟩_ : ∀ k → k ≤ l → l ≡ m → k ≤ m _ ≤≡⟨ p ⟩ q = subst (λ l → _ ≤ l) q p _<≡⟨_⟩_ : ∀ k → k < l → l ≡ m → k < m _ <≡⟨ p ⟩ q = _ ≤≡⟨ p ⟩ q -- Some lemmas about ∸ suc∸-fst : (n m : ℕ) → m < n → suc (n ∸ m) ≡ (suc n) ∸ m suc∸-fst zero zero p = refl suc∸-fst zero (suc m) p = ⊥.rec (¬-<-zero p) suc∸-fst (suc n) zero p = refl suc∸-fst (suc n) (suc m) p = (suc∸-fst n m (pred-≤-pred p)) n∸m≡0 : (n m : ℕ) → n < m → (n ∸ m) ≡ 0 n∸m≡0 zero zero p = refl n∸m≡0 (suc n) zero p = ⊥.rec (¬-<-zero p) n∸m≡0 zero (suc m) p = refl n∸m≡0 (suc n) (suc m) p = n∸m≡0 n m (pred-≤-pred p) n∸n≡0 : (n : ℕ) → n ∸ n ≡ 0 n∸n≡0 zero = refl n∸n≡0 (suc n) = n∸n≡0 n -- automation ≤-solver-type : (m n : ℕ) → Trichotomy m n → Type ≤-solver-type m n (lt p) = m ≤ n ≤-solver-type m n (eq p) = m ≤ n ≤-solver-type m n (gt p) = n < m ≤-solver-case : (m n : ℕ) → (p : Trichotomy m n) → ≤-solver-type m n p ≤-solver-case m n (lt p) = <-weaken p ≤-solver-case m n (eq p) = _ , p ≤-solver-case m n (gt p) = p ≤-solver : (m n : ℕ) → ≤-solver-type m n (m ≟ n) ≤-solver m n = ≤-solver-case m n (m ≟ n)
28.575243
96
0.458931
04bafb94ba90c4debc8181e0de4d78b3e392577b
8,392
agda
Agda
PiFrac/Eval.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
PiFrac/Eval.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
PiFrac/Eval.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
module PiFrac.Eval where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.List as L hiding (_∷_) open import Data.Maybe open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Function using (_∘_) open import PiFrac.Syntax open import PiFrac.Opsem open import PiFrac.NoRepeat -- Stuck states must be either of the form [ c ∣ v ∣ ☐ ] or ⊠ Stuck : ∀ {st} → is-stuck st → (Σ[ A ∈ 𝕌 ] Σ[ B ∈ 𝕌 ] Σ[ c ∈ A ↔ B ] Σ[ v ∈ ⟦ B ⟧ ] st ≡ [ c ∣ v ∣ ☐ ]) ⊎ st ≡ ⊠ Stuck {⟨ uniti₊l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ unite₊l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ swap₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocl₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocr₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ unite⋆l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ uniti⋆l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ swap⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocl⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocr⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ dist ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ factor ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ id↔ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₂)) Stuck {⟨ ηₓ v ∣ tt ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦η)) Stuck {⟨ εₓ v ∣ v' , ↻ ∣ κ ⟩} stuck with v ≟ v' ... | yes eq = ⊥-elim (stuck (_ , ↦ε₁ {eq = eq})) ... | no neq = ⊥-elim (stuck (_ , ↦ε₂ {neq = neq})) Stuck {⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₃)) Stuck {⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₄)) Stuck {⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₅)) Stuck {⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₆)) Stuck {[ c ∣ v ∣ ☐ ]} stuck = inj₁ (_ , _ , _ , _ , refl) Stuck {[ c ∣ v ∣ ☐⨾ c₂ • κ ]} stuck = ⊥-elim (stuck (_ , ↦₇)) Stuck {[ c ∣ v ∣ c₁ ⨾☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₀)) Stuck {[ c ∣ v ∣ ☐⊕ c₂ • κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₁)) Stuck {[ c ∣ v ∣ c₁ ⊕☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₂)) Stuck {[ c ∣ v ∣ ☐⊗[ c₂ , y ]• κ ]} stuck = ⊥-elim (stuck (_ , ↦₈)) Stuck {[ c ∣ v ∣ [ c₁ , x ]⊗☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₉)) Stuck {⊠} stuck = inj₂ refl -- Auxiliary function for forward evaluator ev : ∀ {A B κ} → (c : A ↔ B) (v : ⟦ A ⟧) → Σ[ v' ∈ ⟦ B ⟧ ] ⟨ c ∣ v ∣ κ ⟩ ↦* [ c ∣ v' ∣ κ ] ⊎ ⟨ c ∣ v ∣ κ ⟩ ↦* ⊠ ev uniti₊l v = inj₁ ((inj₂ v) , ↦₁ ∷ ◾) ev unite₊l (inj₂ y) = inj₁ (y , ↦₁ ∷ ◾) ev swap₊ (inj₁ v) = inj₁ (inj₂ v , (↦₁ ∷ ◾)) ev swap₊ (inj₂ v) = inj₁ (inj₁ v , (↦₁ ∷ ◾)) ev assocl₊ (inj₁ v) = inj₁ (inj₁ (inj₁ v) , (↦₁ ∷ ◾)) ev assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₁ (inj₂ v) , (↦₁ ∷ ◾)) ev assocl₊ (inj₂ (inj₂ v)) = inj₁ (inj₂ v , (↦₁ ∷ ◾)) ev assocr₊ (inj₁ (inj₁ v)) = inj₁ (inj₁ v , (↦₁ ∷ ◾)) ev assocr₊ (inj₁ (inj₂ v)) = inj₁ (inj₂ (inj₁ v) , (↦₁ ∷ ◾)) ev assocr₊ (inj₂ v) = inj₁ (inj₂ (inj₂ v) , (↦₁ ∷ ◾)) ev unite⋆l (tt , v) = inj₁ (v , (↦₁ ∷ ◾)) ev uniti⋆l v = inj₁ ((tt , v) , (↦₁ ∷ ◾)) ev swap⋆ (x , y) = inj₁ ((y , x) , (↦₁ ∷ ◾)) ev assocl⋆ (x , (y , z)) = inj₁ (((x , y) , z) , (↦₁ ∷ ◾)) ev assocr⋆ ((x , y) , z) = inj₁ ((x , (y , z)) , (↦₁ ∷ ◾)) ev dist (inj₁ x , z) = inj₁ (inj₁ (x , z) , (↦₁ ∷ ◾)) ev dist (inj₂ y , z) = inj₁ (inj₂ (y , z) , (↦₁ ∷ ◾)) ev factor (inj₁ (x , z)) = inj₁ ((inj₁ x , z) , (↦₁ ∷ ◾)) ev factor (inj₂ (y , z)) = inj₁ ((inj₂ y , z) , (↦₁ ∷ ◾)) ev id↔ v = inj₁ (v , (↦₂ ∷ ◾)) ev {κ = κ} (c₁ ⨾ c₂) v₁ with ev {κ = ☐⨾ c₂ • κ} c₁ v₁ ... | inj₁ (v₂ , c₁↦*) with ev {κ = c₁ ⨾☐• κ} c₂ v₂ ... | inj₁ (v₃ , c₂↦*) = inj₁ (v₃ , ((↦₃ ∷ c₁↦* ++↦ (↦₇ ∷ ◾)) ++↦ (c₂↦* ++↦ (↦₁₀ ∷ ◾)))) ... | inj₂ c₂↦* = inj₂ ((↦₃ ∷ c₁↦* ++↦ (↦₇ ∷ ◾)) ++↦ c₂↦*) ev {κ = κ} (c₁ ⨾ c₂) v₁ | inj₂ c₁↦* = inj₂ (↦₃ ∷ c₁↦*) ev {κ = κ} (c₁ ⊕ c₂) (inj₁ x) with ev {κ = ☐⊕ c₂ • κ} c₁ x ... | inj₁ (x' , c₁↦*) = inj₁ (inj₁ x' , ↦₄ ∷ c₁↦* ++↦ (↦₁₁ ∷ ◾)) ... | inj₂ c₁↦* = inj₂ (↦₄ ∷ c₁↦*) ev {κ = κ} (c₁ ⊕ c₂) (inj₂ y) with ev {κ = c₁ ⊕☐• κ} c₂ y ... | inj₁ (y' , c₂↦*) = inj₁ (inj₂ y' , ↦₅ ∷ c₂↦* ++↦ (↦₁₂ ∷ ◾)) ... | inj₂ c₂↦* = inj₂ (↦₅ ∷ c₂↦*) ev {κ = κ} (c₁ ⊗ c₂) (x , y) with ev {κ = ☐⊗[ c₂ , y ]• κ} c₁ x ... | inj₁ (x' , c₁↦*) with ev {κ = [ c₁ , x' ]⊗☐• κ} c₂ y ... | inj₁ (y' , c₂↦*) = inj₁ ((x' , y') , ((↦₆ ∷ c₁↦*) ++↦ ((↦₈ ∷ c₂↦*) ++↦ (↦₉ ∷ ◾)))) ... | inj₂ c₂↦* = inj₂ ((↦₆ ∷ c₁↦*) ++↦ (↦₈ ∷ c₂↦*)) ev {κ = κ} (c₁ ⊗ c₂) (x , y) | inj₂ c₁↦* = inj₂ (↦₆ ∷ c₁↦*) ev (ηₓ v) tt = inj₁ ((v , ↻) , (↦η ∷ ◾)) ev (εₓ v) (v' , ↻) with v ≟ v' ... | yes eq = inj₁ (tt , (↦ε₁ {eq = eq} ∷ ◾)) ... | no neq = inj₂ (↦ε₂ {neq = neq} ∷ ◾) -- Forward evaluator for PiFrac eval : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → Maybe ⟦ B ⟧ eval c v = [ just ∘ proj₁ , (λ _ → nothing) ]′ (ev {κ = ☐} c v) -- Forward evaluator which returns execution trace evalₜᵣ : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → List State evalₜᵣ c v = [ convert ∘ proj₂ , convert ]′ (ev {κ = ☐} c v) where convert : ∀ {st st'} → st ↦* st' → List State convert (◾ {st}) = st L.∷ [] convert (_∷_ {st} r rs) = st L.∷ convert rs -- Auxiliary function for backward evaluator evᵣₑᵥ : ∀ {A B κ} → (c : A ↔ B) (v : ⟦ B ⟧) → Σ[ v' ∈ ⟦ A ⟧ ] [ c ∣ v ∣ κ ] ↦ᵣₑᵥ* ⟨ c ∣ v' ∣ κ ⟩ ⊎ ∃[ A ] (∃[ v' ] (∃[ v'' ] (∃[ κ' ] (v' ≢ v'' × [ c ∣ v ∣ κ ] ↦ᵣₑᵥ* [ ηₓ {A} v' ∣ (v'' , ↻) ∣ κ' ])))) evᵣₑᵥ uniti₊l (inj₂ v) = inj₁ (v , (↦₁ ᵣₑᵥ ∷ ◾)) evᵣₑᵥ unite₊l v = inj₁ ((inj₂ v) , (↦₁ ᵣₑᵥ ∷ ◾)) evᵣₑᵥ swap₊ (inj₁ x) = inj₁ (inj₂ x , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ swap₊ (inj₂ y) = inj₁ (inj₁ y , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₁ (inj₁ x)) = inj₁ (inj₁ x , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₁ (inj₂ y)) = inj₁ (inj₂ (inj₁ y) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₂ z) = inj₁ (inj₂ (inj₂ z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₁ x) = inj₁ (inj₁ (inj₁ x) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₂ (inj₁ y)) = inj₁ (inj₁ (inj₂ y) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₂ (inj₂ z)) = inj₁ (inj₂ z , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ unite⋆l v = inj₁ ((tt , v) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ uniti⋆l (tt , v) = inj₁ (v , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ swap⋆ (x , y) = inj₁ ((y , x) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl⋆ ((x , y) , z) = inj₁ ((x , (y , z)) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr⋆ (x , (y , z)) = inj₁ (((x , y) , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ dist (inj₁ (x , z)) = inj₁ ((inj₁ x , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ dist (inj₂ (y , z)) = inj₁ ((inj₂ y , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ factor (inj₁ x , z) = inj₁ (inj₁ (x , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ factor (inj₂ y , z) = inj₁ (inj₂ (y , z) , (↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ id↔ v = inj₁ (v , (↦₂ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ {κ = κ} (c₁ ⨾ c₂) v₃ with evᵣₑᵥ {κ = c₁ ⨾☐• κ} c₂ v₃ ... | inj₁ (v₂ , rs) with evᵣₑᵥ {κ = ☐⨾ c₂ • κ} c₁ v₂ ... | inj₁ (v₁ , rs') = inj₁ (v₁ , ((↦₁₀ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₇ ᵣₑᵥ) ∷ ◾))) ++↦ᵣₑᵥ (rs' ++↦ᵣₑᵥ ((↦₃ ᵣₑᵥ) ∷ ◾))) ... | inj₂ (_ , _ , _ , _ , neq , rs') = inj₂ (_ , _ , _ , _ , neq , (((↦₁₀ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₇ ᵣₑᵥ) ∷ ◾))) ++↦ᵣₑᵥ rs')) evᵣₑᵥ (c₁ ⨾ c₂) v₃ | inj₂ (_ , _ , _ , _ , neq , rs) = inj₂ (_ , _ , _ , _ , neq , (((↦₁₀ ᵣₑᵥ) ∷ ◾) ++↦ᵣₑᵥ rs)) evᵣₑᵥ {κ = κ} (c₁ ⊕ c₂) (inj₁ x) with evᵣₑᵥ {κ = ☐⊕ c₂ • κ} c₁ x ... | inj₁ (x' , rs) = inj₁ (inj₁ x' , (↦₁₁ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₄ ᵣₑᵥ) ∷ ◾))) ... | inj₂ (_ , _ , _ , _ , neq , rs) = inj₂ (_ , _ , _ , _ , neq , (↦₁₁ ᵣₑᵥ) ∷ rs) evᵣₑᵥ {κ = κ} (c₁ ⊕ c₂) (inj₂ y) with evᵣₑᵥ {κ = c₁ ⊕☐• κ} c₂ y ... | inj₁ (y' , rs) = inj₁ (inj₂ y' , (↦₁₂ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₅ ᵣₑᵥ) ∷ ◾))) ... | inj₂ (_ , _ , _ , _ , neq , rs) = inj₂ (_ , _ , _ , _ , neq , (↦₁₂ ᵣₑᵥ) ∷ rs) evᵣₑᵥ {κ = κ} (c₁ ⊗ c₂) (x , y) with evᵣₑᵥ {κ = [ c₁ , x ]⊗☐• κ} c₂ y ... | inj₁ (y' , rs) with evᵣₑᵥ {κ = ☐⊗[ c₂ , y' ]• κ} c₁ x ... | inj₁ (x' , rs') = inj₁ ((x' , y') , (((↦₉ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₈ ᵣₑᵥ) ∷ ◾))) ++↦ᵣₑᵥ (rs' ++↦ᵣₑᵥ ((↦₆ ᵣₑᵥ) ∷ ◾)))) ... | inj₂ (_ , _ , _ , _ , neq , rs') = inj₂ (_ , _ , _ , _ , neq , (((↦₉ ᵣₑᵥ) ∷ (rs ++↦ᵣₑᵥ ((↦₈ ᵣₑᵥ) ∷ ◾))) ++↦ᵣₑᵥ rs')) evᵣₑᵥ (c₁ ⊗ c₂) (x , y) | inj₂ (_ , _ , _ , _ , neq , rs) = inj₂ (_ , _ , _ , _ , neq , ((↦₉ ᵣₑᵥ) ∷ rs)) evᵣₑᵥ (ηₓ v) (v' , ↻) with v ≟ v' ... | yes refl = inj₁ (tt , ((↦η ᵣₑᵥ) ∷ ◾)) ... | no neq = inj₂ (_ , _ , _ , _ , neq , ◾) evᵣₑᵥ (εₓ v) tt = inj₁ ((v , ↻) , ((↦ε₁ {eq = refl} ᵣₑᵥ) ∷ ◾)) -- Backward evaluator for Pi evalᵣₑᵥ : ∀ {A B} → (c : A ↔ B) → ⟦ B ⟧ → Maybe ⟦ A ⟧ evalᵣₑᵥ c v = [ just ∘ proj₁ , (λ _ → nothing) ]′ (evᵣₑᵥ {κ = ☐} c v)
54.141935
123
0.438275
1e4c83e6a38506f76c76d969a3ba260e2c7146b1
180
agda
Agda
test/Fail/Issue2446b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2446b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2446b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} module _ where open import Agda.Builtin.Equality -- Option --cubical implies --without-K uip : {A : Set} {x : A} (p : x ≡ x) → p ≡ refl uip refl = refl
20
46
0.616667
19f70dccc2d2e8d66cc5103fefe1bc46e41e7164
209
agda
Agda
test/Succeed/Issue4784.agda
AntoineAllioux/agda
68ec2312961776e415c99d2839e41a92ffe464db
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4784.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4784.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K #-} postulate A : Set B : A → Set @0 T : Set T = (@0 x : A) → B x _ : Set₁ _ = (@0 A : Set) → @0 A → (@0 x : A) → Set data D : Set₁ where @0 c : (@0 A : Set) → A → (x : A) → D
14.928571
42
0.421053
a090623f0948449392d80abeaa727efcdc9a2de0
307
agda
Agda
src/data/lib/prim/Agda/Builtin/Float/Properties.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2016-05-20T13:58:52.000Z
2016-05-20T13:58:52.000Z
src/data/lib/prim/Agda/Builtin/Float/Properties.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T15:49:15.000Z
2015-09-15T15:49:15.000Z
src/data/lib/prim/Agda/Builtin/Float/Properties.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness --no-subtyping #-} module Agda.Builtin.Float.Properties where open import Agda.Builtin.Float open import Agda.Builtin.Equality primitive primFloatToWord64Injective : ∀ a b → primFloatToWord64 a ≡ primFloatToWord64 b → a ≡ b
25.583333
88
0.723127
03014757dd1476190eb784c3f6d664e750355504
3,041
agda
Agda
test/Succeed/Issue1366.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1366.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1366.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-11-25, issue reported by Peter Divianski (divipp) {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc:10 #-} -- {-# OPTIONS -v tc.inj:49 #-} -- {-# OPTIONS -v tc.polarity:49 #-} -- {-# OPTIONS -v tc.lhs:40 #-} -- After loading the following Agda code, the last occurrence of 'one' is yellow. -- Remarks: -- Probably not an error, but it is against my expectation. -- The code was obtained by shrinking a more complex one. -- I guess that the lifting of the local function 'f' happens not as I expect it. -- The code is quite fragile, the any of following changes fix the problem: -- - using record ⊤ instead of data Unit -- - lifting 'f' to be a global function -- - replacing 'unit' by '_' in the definition of 'f' -- - giving the implicit argument {v = unit ∷ []} to g -- Tested with Agda 2.4.2.1 and with the development version of Agda on GitHub (20 Nov 2014) open import Common.Prelude using (Nat; zero; suc; Unit; unit) data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) -- n is forced -- Singleton type data Sg {A : Set} (x : A) : Set where sg : Sg x -- modified length function (counts till 1) nonNil : ∀ {n} → Vec Unit n → Nat nonNil [] = zero nonNil (i ∷ is) = suc (f i) where f : Unit → Nat f unit = zero g : ∀ {n} {v : Vec Unit n} → Sg (nonNil v) → Sg v g sg = sg one : Sg (suc zero) one = sg test : Sg (unit ∷ []) test = g one -- `one' is yellow, a meta coming from the forced n {- Analysis g :=> Sg (nonNil {_n} _v) -> Sg _v one :=> Sg (suc zero) suc zero =?= nonNil {_n} _v use injectivity _n := suc _n' _v := _∷_ {_nv} _i _is zero =?= f {_nv} {_i} {_is} _i using injectivity on f creates unsolved, because "forced" meta: inverting injective function _.f : ({.n : Nat} (i : Unit) (is : Vec Unit .n) → Unit → Nat) for zero (args = [$ {_32}, $ _33, $ _34, $ _33]) meta patterns [_35, _36, _37] perm = x0,x1,x2 -> x0,x1,x2 tel = {.n : Nat} (i : Unit) (is : Vec Unit .n) ps = [[]!{VarP ".n"}, []k(VarP "i"), []k(VarP "is"), []r(ConP Common.Prelude.Unit.unit(inductive)[] Nothing [])] inversion lhs = [$ {_35}, $ _36, $ _37, $ unit] rhs = [$ {_32}, $ _33, $ _34, $ _33] type = ({.n : Nat} (i : Unit) (is : Vec Unit .n) → Unit → Nat) a = ({.n : Nat} (i : Unit) (is : Vec Unit .n) → Unit → Nat) v = (_.f) arg1 = {_35} arg2 = {_32} -- Here, the equality check is skipped as n is "forced", so the -- assignment _35 := _32 does not happen a = ((i : Unit) (is : Vec Unit _35) → Unit → Nat) v = (_.f {_35}) arg1 = _36 arg2 = _33 term _36 := _33 term _36 := _33 solving _36 := _33 a = ((is : Vec Unit _35) → Unit → Nat) v = (_.f {_35} _33) arg1 = _37 arg2 = _34 term _37 := _34 term _37 := _34 solving _37 := _34 a = (Unit → Nat) v = (_.f {_35} _33 _34) arg1 = unit arg2 = _33 compareTerm unit == _33 : Unit term _33 := unit term _33 := unit solving _33 := unit compareTerm zero == (_.f {_32} unit _34 unit) : Nat -} -- Should work without unsolved metas.
29.240385
92
0.586649
35dffb9e40dfa72b817c39135a963ad46fe5ed62
814
agda
Agda
test/succeed/SizedQuicksort.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/SizedQuicksort.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/SizedQuicksort.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- 2014-04-24 module _ where open import Common.Size open import Common.Prelude using (Bool; true; false; if_then_else_) open import Common.Product -- sized lists data List A {i} : Set where [] : List A _∷_ : {i' : Size< i} (x : A) (xs : List A {i'}) → List A _++_ : ∀{A} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) partition : ∀{A i} (p : A → Bool) (l : List A {i}) → List A {i} × List A {i} partition p [] = [] , [] partition p (x ∷ xs) = let l , r = partition p xs in if p x then (x ∷ l , r) else (l , x ∷ r) module Sort {A : Set} (_≤_ : A → A → Bool) where quicksort : ∀{i} → List A {i} → List A quicksort [] = [] quicksort (x ∷ []) = x ∷ [] quicksort (x ∷ xs) = let x≤ , ≤x = partition (_≤_ x) xs in quicksort ≤x ++ (x ∷ quicksort x≤)
26.258065
76
0.519656
9a0f5d67026ba16684d6c0080155d6aed3064c3c
2,415
agda
Agda
Data/Mod.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
1
2019-10-07T17:36:42.000Z
2019-10-07T17:36:42.000Z
Data/Mod.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
Data/Mod.agda
esoeylemez/agda-simple
d9245e5a8b2e902781736de09bd17e81022f6f13
[ "BSD-3-Clause" ]
null
null
null
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <esz@posteo.de> module Data.Mod where open import Core open import Data.Int.Core hiding (module Props) import Data.Int.Core as ℤ open import Data.Nat.Core using (ℕ) import Data.Nat.Core as ℕ private module ℤP = ℤ.Props ModEq : ℕ → Equiv ℤ ModEq n = record { _≈_ = _≈_; refl = λ {x} → 0 , ℤP.+-right-inv x; sym = λ {x} {y} → sym' x y; trans = λ {x} {y} {z} → trans' x y z } where infix 4 _≈_ _≈_ : ℤ → ℤ → Set x ≈ y = ∃ (λ k → x - y ≡ k * pos n) sym' : ∀ x y → x ≈ y → y ≈ x sym' x y (k , p) = neg k , (begin y - x || sym (ℤP.neg-flip x y) :: neg (x - y) || cong neg p :: neg (k * pos n) || sym (ℤP.*-assoc -1 k (pos n)) :: neg k * pos n qed) where open Equiv (PropEq ℤ) trans' : ∀ x y z → x ≈ y → y ≈ z → x ≈ z trans' x y z (k1 , p1) (k2 , p2) = k1 + k2 , (begin x - z || cong (x +_) (sym (ℤP.+-left-id (neg z))) :: x + (0 - z) || cong (λ a → x + (a - z)) (sym (ℤP.+-left-inv y)) :: x + (neg y + y - z) || cong (x +_) (ℤP.+-assoc (neg y) y (neg z)) :: x + (neg y + (y - z)) || sym (ℤP.+-assoc x (neg y) (y + neg z)) :: x + neg y + (y - z) || cong2 _+_ p1 p2 :: k1 * pos n + k2 * pos n || sym (ℤP.*-+-right-dist k1 k2 (pos n)) :: (k1 + k2) * pos n qed) where open Equiv (PropEq ℤ) module Props (n : ℕ) where open Equiv (ModEq n) using (_≈_) open Equiv (PropEq ℤ) hiding (_≈_) +-cong : ∀ {x1 x2 y1 y2} → x1 ≈ x2 → y1 ≈ y2 → x1 + y1 ≈ x2 + y2 +-cong {x1} {x2} {y1} {y2} (k1 , p1) (k2 , p2) = k1 + k2 , (begin x1 + y1 - (x2 + y2) || ℤP.+-assoc x1 y1 _ :: x1 + (y1 - (x2 + y2)) || cong (x1 +_) ( y1 - (x2 + y2) || cong (y1 +_) (ℤP.*-+-left-dist -1 x2 y2) :: y1 + (neg x2 + neg y2) || sym (ℤP.+-assoc y1 (neg x2) (neg y2)) :: (y1 + neg x2 + neg y2) || cong (_+ neg y2) (ℤP.+-comm y1 (neg x2)) :: neg x2 + y1 + neg y2 || ℤP.+-assoc (neg x2) y1 _ :: neg x2 + (y1 + neg y2) qed) :: x1 + (neg x2 + (y1 + neg y2)) || sym (ℤP.+-assoc x1 (neg x2) _) :: x1 - x2 + (y1 - y2) || cong2 _+_ p1 p2 :: k1 * pos n + k2 * pos n || sym (ℤP.*-+-right-dist k1 k2 (pos n)) :: (k1 + k2) * pos n qed)
28.75
84
0.44265
203011ed06635edc7194ae5254616ee0cc46eeff
2,998
agda
Agda
src/Categories/NaturalTransformation/NaturalIsomorphism/Properties.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/NaturalTransformation/NaturalIsomorphism/Properties.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
null
null
null
src/Categories/NaturalTransformation/NaturalIsomorphism/Properties.agda
turion/agda-categories
ad0f94b6cf18d8a448b844b021aeda58e833d152
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.NaturalIsomorphism.Properties where open import Level open import Categories.Category open import Categories.Category.Instance.Setoids open import Categories.Functor renaming (id to idF) open import Categories.Functor.Construction.LiftSetoids open import Categories.NaturalTransformation.NaturalIsomorphism open import Categories.NaturalTransformation.Properties import Categories.Morphism as Mor import Categories.Morphism.Properties as Morₚ import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D : Category o ℓ e module _ {F G : Functor C D} (α : NaturalIsomorphism F G) where private module C = Category C open Category D open Mor D open Functor F open Functor G renaming (F₀ to G₀; F₁ to G₁) open NaturalIsomorphism α -- We can move equations along natural isomorphism. module _ {A B} {f g : A C.⇒ B} where push-eq : F₁ f ≈ F₁ g → G₁ f ≈ G₁ g push-eq hyp = MR.push-eq D FX≅GX (⇒.commute f) (⇒.commute g) hyp pull-eq : G₁ f ≈ G₁ g → F₁ f ≈ F₁ g pull-eq hyp = MR.push-eq D (≅.sym FX≅GX) (⇐.commute f) (⇐.commute g) hyp -- properties of natural isomorphisms over an endofunctor module _ {F : Endofunctor C} where private module C = Category C module F = Functor F module MC = Mor C module _ (α : F ≃ idF) where open C open HomReasoning open F open MC open MR C open Mor C open Morₚ C open NaturalIsomorphism α F≃id-comm₁ : ∀ {A} → ⇒.η (F₀ A) ≈ F₁ (⇒.η A) F≃id-comm₁ {A} = begin ⇒.η (F₀ A) ≈⟨ introʳ (F-resp-≈ (iso.isoˡ _) ○ identity) ⟩ ⇒.η (F₀ A) ∘ F₁ (⇐.η A ∘ ⇒.η A) ≈⟨ refl⟩∘⟨ homomorphism ⟩ ⇒.η (F₀ A) ∘ F₁ (⇐.η A) ∘ F₁ (⇒.η A) ≈⟨ cancelˡ (⇒.commute _ ○ iso.isoˡ _) ⟩ F₁ (⇒.η A) ∎ F≃id-comm₂ : ∀ {A} → ⇐.η (F₀ A) ≈ F₁ (⇐.η A) F≃id-comm₂ {A} = begin ⇐.η (F₀ A) ≈⟨ introˡ (F-resp-≈ (iso.isoˡ _) ○ identity) ⟩ F₁ (⇐.η A ∘ ⇒.η A) ∘ ⇐.η (F₀ A) ≈⟨ homomorphism ⟩∘⟨refl ⟩ (F₁ (⇐.η A) ∘ F₁ (⇒.η A)) ∘ ⇐.η (F₀ A) ≈⟨ cancelʳ (⟺ (⇐.commute _) ○ iso.isoˡ _) ⟩ F₁ (⇐.η A) ∎ F≃id⇒id : ∀ {A} {f : A ⇒ A} → F₁ f ≈ id → f ≈ id F≃id⇒id {A} {f} eq = Iso⇒Mono (Iso-swap (iso A)) _ _ helper where helper : ⇐.η A ∘ f ≈ ⇐.η A ∘ id helper = begin ⇐.η A ∘ f ≈⟨ ⇐.commute f ⟩ F₁ f ∘ ⇐.η A ≈⟨ eq ⟩∘⟨refl ⟩ id ∘ ⇐.η A ≈˘⟨ id-comm ⟩ ⇐.η A ∘ id ∎ -- unlift universe level module _ {c ℓ ℓ′ e} {F G : Functor C (Setoids c ℓ)} (α : LiftSetoids ℓ′ e ∘F F ≃ LiftSetoids ℓ′ e ∘F G) where open NaturalIsomorphism α unlift-≃ : F ≃ G unlift-≃ = record { F⇒G = unlift-nat F⇒G ; F⇐G = unlift-nat F⇐G ; iso = λ X → record { isoˡ = λ eq → lower (iso.isoˡ X (lift eq)) ; isoʳ = λ eq → lower (iso.isoʳ X (lift eq)) } }
31.229167
109
0.55437
0d1dd1d921c8d0957b3eae149425ffc660d8ec8e
769
agda
Agda
test/Succeed/Issue1952.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1952.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1952.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module _ where record Structure : Set1 where infixl 20 _×_ infix 8 _⟶_ infixl 20 _,_ infixr 40 _∘_ infix 5 _~_ field Type : Set _×_ : Type → Type → Type _⟶_ : Type → Type → Set _∘_ : ∀ {X Y Z} → Y ⟶ Z → X ⟶ Y → X ⟶ Z _,_ : ∀ {X A B} → X ⟶ A → X ⟶ B → X ⟶ A × B π₁ : ∀ {A B} → A × B ⟶ A π₂ : ∀ {A B} → A × B ⟶ B Op3 : ∀ {X} → X × X × X ⟶ X _~_ : ∀ {X Y} → X ⟶ Y → X ⟶ Y → Set record Map {{C : Structure}} {{D : Structure}} : Set1 where open Structure {{...}} field Ty⟦_⟧ : Structure.Type C → Structure.Type D Tm⟦_⟧ : ∀ {X A} → X ⟶ A → Ty⟦ X ⟧ ⟶ Ty⟦ A ⟧ ×-inv : ∀ {X A} → Ty⟦ X ⟧ × Ty⟦ A ⟧ ⟶ Ty⟦ X × A ⟧ ⟦Op3⟧ : ∀ {X} → Tm⟦ Op3 {X = X} ⟧ ∘ ×-inv ∘ (×-inv ∘ (π₁ ∘ π₁ , π₂ ∘ π₁) , π₂) ~ Op3
22.617647
88
0.418726
0dc711553662ff989fc327b4d531fbcb378c671d
8,508
agda
Agda
lib/types/PathSet.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/PathSet.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/PathSet.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.TLevel open import lib.types.Pi open import lib.types.Truncation -- This module is dedicated to [Trunc ⟨0⟩ (x == y)] module lib.types.PathSet where _=₀_ : ∀ {i} {A : Type i} → A → A → Type i _=₀_ x y = Trunc ⟨0⟩ (x == y) _=0_ : ∀ {i} {A : Type i} → A → A → Type i _=0_ = _=₀_ infix 8 _∙₀_ _∙₀'_ -- \.\0 _∙₀_ : ∀ {i} {A : Type i} {x y z : A} → x =₀ y → y =₀ z → x =₀ z _∙₀_ = Trunc-fmap2 _∙_ _∙₀'_ : ∀ {i} {A : Type i} {x y z : A} → x =₀ y → y =₀ z → x =₀ z _∙₀'_ = Trunc-fmap2 _∙'_ !₀ : ∀ {i} {A : Type i} {x y : A} → x =₀ y → y =₀ x !₀ = Trunc-fmap ! idp₀ : ∀ {i} {A : Type i} {a : A} → a =₀ a idp₀ = [ idp ] ap₀ : ∀ {i j} {A : Type i} {B : Type j} {x y : A} (f : A → B) → x =₀ y → f x =₀ f y ap₀ f = Trunc-rec Trunc-level ([_] ∘ ap f) coe₀ : ∀ {i} {A B : Type i} (_ : is-set B) (p : A =₀ B) → A → B coe₀ B-level = Trunc-rec (→-is-set B-level) coe transport₀ : ∀ {i j} {A : Type i} (B : A → Type j) {x y : A} (B-level : is-set (B y)) (p : x =₀ y) → (B x → B y) transport₀ B B-level p = coe₀ B-level (ap₀ B p) module _ {i} {A : Type i} where abstract ∙₀-unit-r : ∀ {x y : A} (q : x =₀ y) → (q ∙₀ idp₀) == q ∙₀-unit-r = Trunc-elim (λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ p → ap [_] $ ∙-unit-r p) ∙₀-unit-l : ∀ {x y : A} (q : x =₀ y) → (idp₀ ∙₀ q) == q ∙₀-unit-l = Trunc-elim (λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ _ → idp) ∙₀-assoc : {x y z t : A} (p : x =₀ y) (q : y =₀ z) (r : z =₀ t) → (p ∙₀ q) ∙₀ r == p ∙₀ (q ∙₀ r) ∙₀-assoc = Trunc-elim (λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ p → Trunc-elim (λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ q → Trunc-elim (λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ r → ap [_] $ ∙-assoc p q r))) !₀-inv-l : {x y : A} (p : x =₀ y) → (!₀ p) ∙₀ p == idp₀ !₀-inv-l = Trunc-elim (λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ p → ap [_] $ !-inv-l p) !₀-inv-r : {x y : A} (p : x =₀ y) → p ∙₀ (!₀ p) == idp₀ !₀-inv-r = Trunc-elim (λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ p → ap [_] $ !-inv-r p) ∙₀-ap₀ : ∀ {j} {B : Type j} (f : A → B) {x y z : A} (p : x =₀ y) (q : y =₀ z) → ap₀ f p ∙₀ ap₀ f q == ap₀ f (p ∙₀ q) ∙₀-ap₀ f = Trunc-elim (λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ p → Trunc-elim (λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ q → ap [_] $ ∙-ap f p q)) ap₀-∘ : ∀ {j k} {B : Type j} {C : Type k} (g : B → C) (f : A → B) {x y : A} (p : x =₀ y) → ap₀ (g ∘ f) p == ap₀ g (ap₀ f p) ap₀-∘ f g = Trunc-elim (λ _ → =-preserves-level ⟨0⟩ Trunc-level) (λ p → ap [_] $ ap-∘ f g p) coe₀-∙₀ : {B C : Type i} (B-level : is-set B) (C-level : is-set C) → (p : A =₀ B) (q : B =₀ C) (a : A) → coe₀ C-level (p ∙₀ q) a == coe₀ C-level q (coe₀ B-level p a) coe₀-∙₀ B-level C-level = Trunc-elim (λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ C-level) (λ p → Trunc-elim (λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ C-level) (λ q a → coe-∙ p q a)) trans₀-∙₀ : ∀ {j} {B : A → Type j} → (B-level : ∀ {a} → is-set (B a)) → {x y z : A} (p : x =₀ y) (q : y =₀ z) (b : B x) → transport₀ B B-level (p ∙₀ q) b == transport₀ B B-level q (transport₀ B B-level p b) trans₀-∙₀ B-level = Trunc-elim (λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ B-level) (λ p → Trunc-elim (λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ B-level) (λ q b → trans-∙ p q b)) trans₀-∙₀' : ∀ {j} {B : A → Type j} → (B-level : ∀ {a} → is-set (B a)) → {x y z : A} (p : x =₀ y) (q : y =₀ z) (b : B x) → transport₀ B B-level (p ∙₀' q) b == transport₀ B B-level q (transport₀ B B-level p b) trans₀-∙₀' B-level = Trunc-elim (λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ B-level) (λ p → Trunc-elim (λ _ → Π-is-set λ _ → =-preserves-level ⟨0⟩ B-level) (λ q b → trans-∙' p q b)) {- module _ {i} {A : Type i} where trans-id≡₀cst : {a b c : A} (p : b ≡ c) (q : b ≡₀ a) → transport (λ x → x ≡₀ a) p q ≡ proj (! p) ∘₀ q trans-id≡₀cst refl q = ! $ refl₀-left-unit q trans-cst≡₀id : {a b c : A} (p : b ≡ c) (q : a ≡₀ b) → transport (λ x → a ≡₀ x) p q ≡ q ∘₀ proj p trans-cst≡₀id refl q = ! $ refl₀-right-unit q module _ {i} {A : Set i} where homotopy₀-naturality : ∀ {j} {B : Set j} (f g : A → B) (p : (x : A) → f x ≡₀ g x) {x y : A} (q : x ≡₀ y) → ap₀ f q ∘₀ p y ≡ p x ∘₀ ap₀ g q homotopy₀-naturality f g p {x} {y} q = π₀-extend ⦃ λ q → ≡-is-set {x = ap₀ f q ∘₀ p y} {y = p x ∘₀ ap₀ g q} $ π₀-is-set (f x ≡ g y) ⦄ (lemma {x} {y}) q where lemma : ∀ {x y : A} (q : x ≡ y) → ap₀ f (proj q) ∘₀ p y ≡ p x ∘₀ ap₀ g (proj q) lemma refl = refl₀ ∘₀ p _ ≡⟨ refl₀-left-unit (p _) ⟩ p _ ≡⟨ ! $ refl₀-right-unit _ ⟩∎ p _ ∘₀ refl₀ ∎ -- Loop space commutes with truncation in the sense that -- τ n (Ω X) = Ω (τ (S n) X) -- (actually, this is true more generally for paths spaces and we need this -- level of generality to prove it) module _ {i} {n : ℕ₋₂} {A : Set i} where private to : (x y : A) → (τ n (x ≡ y)) → ((proj {n = S n} x) ≡ (proj y)) to x y = τ-extend-nondep ⦃ τ-is-truncated (S n) A _ _ ⦄ (ap proj) -- [truncated-path-space (proj x) (proj y)] is [τ n (x ≡ y)] truncated-path-space : (u v : τ (S n) A) → Type≤ n i truncated-path-space = τ-extend-nondep ⦃ →-is-truncated (S n) (Type≤-is-truncated n _) ⦄ (λ x → τ-extend-nondep ⦃ Type≤-is-truncated n _ ⦄ (λ y → τ n (x ≡ y) , τ-is-truncated n _)) -- We now extend [to] to the truncation of [A], and this is why we needed to -- first extend the return type of [to] to' : (u v : τ (S n) A) → (π₁ (truncated-path-space u v) → u ≡ v) to' = τ-extend ⦃ λ x → Π-is-truncated (S n) (λ a → Π-is-truncated (S n) (λ b → ≡-is-truncated (S n) (τ-is-truncated (S n) A)))⦄ (λ x → τ-extend ⦃ λ t → Π-is-truncated (S n) (λ a → ≡-is-truncated (S n) (τ-is-truncated (S n) A))⦄ (λ y → to x y)) from'-refl : (u : τ (S n) A) → (π₁ (truncated-path-space u u)) from'-refl = τ-extend ⦃ λ x → truncated-is-truncated-S n (π₂ (truncated-path-space x x))⦄ (λ x → proj refl) from' : (u v : τ (S n) A) → (u ≡ v → π₁ (truncated-path-space u v)) from' u .u refl = from'-refl u from : (x y : A) → (proj {n = S n} x ≡ proj y → τ n (x ≡ y)) from x y p = from' (proj x) (proj y) p from-to : (x y : A) (p : τ n (x ≡ y)) → from x y (to x y p) ≡ p from-to x y = τ-extend ⦃ λ _ → ≡-is-truncated n (τ-is-truncated n _)⦄ (from-to' x y) where from-to' : (x y : A) (p : x ≡ y) → from x y (to x y (proj p)) ≡ proj p from-to' x .x refl = refl to'-from' : (u v : τ (S n) A) (p : u ≡ v) → to' u v (from' u v p) ≡ p to'-from' x .x refl = to'-from'-refl x where to'-from'-refl : (u : τ (S n) A) → to' u u (from' u u refl) ≡ refl to'-from'-refl = τ-extend ⦃ λ _ → ≡-is-truncated (S n) (≡-is-truncated (S n) (τ-is-truncated (S n) A))⦄ (λ _ → refl) to-from : (x y : A) (p : proj {n = S n} x ≡ proj y) → to x y (from x y p) ≡ p to-from x y p = to'-from' (proj x) (proj y) p τ-path-equiv-path-τ-S : {x y : A} → τ n (x ≡ y) ≃ (proj {n = S n} x ≡ proj y) τ-path-equiv-path-τ-S {x} {y} = (to x y , iso-is-eq _ (from x y) (to-from x y) (from-to x y)) module _ where open import Homotopy.Connected abstract connected-has-connected-paths : is-connected (S n) A → (p q : A) → is-connected n (p ≡ q) connected-has-connected-paths conn p q = equiv-types-truncated ⟨-2⟩ (τ-path-equiv-path-τ-S ⁻¹) (contr-is-prop conn (proj p) (proj q)) connected-has-all-τ-paths : is-connected (S n) A → (p q : A) → τ n (p ≡ q) connected-has-all-τ-paths conn p q = π₁ $ connected-has-connected-paths conn p q -}
38.324324
100
0.461566
4bf19d54c99babd440f83b3ac712f847c9096ccb
2,138
agda
Agda
Fields/FieldOfFractions/Multiplication.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Fields/FieldOfFractions/Multiplication.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Fields/FieldOfFractions/Multiplication.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Rings.Definition open import Rings.IntegralDomains.Definition open import Setoids.Setoids open import Sets.EquivalenceRelations module Fields.FieldOfFractions.Multiplication {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where open import Fields.FieldOfFractions.Setoid I fieldOfFractionsTimes : fieldOfFractionsSet → fieldOfFractionsSet → fieldOfFractionsSet fieldOfFractionsTimes (record { num = a ; denom = b ; denomNonzero = b!=0 }) (record { num = c ; denom = d ; denomNonzero = d!=0 }) = record { num = a * c ; denom = b * d ; denomNonzero = ans } where open Setoid S open Ring R ans : ((b * d) ∼ Ring.0R R) → False ans pr with IntegralDomain.intDom I pr ans pr | f = exFalso (d!=0 (f b!=0)) fieldOfFractionsTimesWellDefined : {a b c d : fieldOfFractionsSet} → (Setoid._∼_ fieldOfFractionsSetoid a c) → (Setoid._∼_ fieldOfFractionsSetoid b d) → (Setoid._∼_ fieldOfFractionsSetoid (fieldOfFractionsTimes a b) (fieldOfFractionsTimes c d)) fieldOfFractionsTimesWellDefined {record { num = a ; denom = b }} {record { num = c ; denom = d }} {record { num = e ; denom = f }} {record { num = g ; denom = h }} af=be ch=dg = need where open Setoid S open Equivalence eq need : ((a * c) * (f * h)) ∼ ((b * d) * (e * g)) need = transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (symmetric (Ring.*Associative R)) reflexive) (transitive (Ring.*WellDefined R (Ring.*WellDefined R reflexive ch=dg) reflexive) (transitive (Ring.*Commutative R) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (Ring.*Commutative R) reflexive) (transitive (Ring.*WellDefined R af=be reflexive) (transitive (Ring.*Associative R) (transitive (Ring.*WellDefined R (transitive (symmetric (Ring.*Associative R)) (transitive (Ring.*WellDefined R reflexive (Ring.*Commutative R)) (Ring.*Associative R))) reflexive) (symmetric (Ring.*Associative R)))))))))))
71.266667
710
0.695042
37cda3f5f9593e08b8d3bbbdf01c862c65db9336
4,205
agda
Agda
test/interaction/Issue2076.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/Issue2076.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/interaction/Issue2076.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
-- Andrea(s), 2016-07-06, issue #2076 reported by Andrea -- This is to test printing of extended lambdas -- {-# OPTIONS -v tc.cc:60 -v tc.term.exlam:100 -v reify.clause:60 #-} postulate A : Set _,_ : A → A → A data Unit : Set where true : Unit bar : (p : A) (q : A) → Unit → A bar p q = aux where aux : Unit → A aux true = p , q foo : (p : A) (q : A) → Unit → A foo p q = \ { true → p , q} test : (a : A) → Unit → A test a = foo a a -- Normalize me! Expected: -- λ a → λ { true → a , a } -- From test/interaction/ExtendedLambdaCase.agda data Bool : Set where true false : Bool data Void : Set where module M {A : Set}(B : A → Set) where postulate Bar : (Bool → Bool) → Set Test : Set Test = (y : Bool) → M.Bar {Bool} (λ _ → Void) (λ { true → true ; false → false }) -- Normalize me! Expected: -- (y : Bool) → M.Bar (λ _ → Void) (λ { true → true ; false → false }) -- .extendedlambda1 y true = true -- .extendedlambda1 y false = false -- dropped args: [] -- hidden args: [] -- visible args: [y] -- Extended lambda inside parameterized module module PM (X : Set) where extlam : (p : A) (q : A) → Unit → A extlam p q = \ { true -> p , q} -- ConcreteDef extended lambda's implementation ".extendedlambda1" has type: -- Unit → A -- dropped args: [X] -- hidden args: [] -- visible args: [p, q] -- clauses before compilation .extendedlambda1 p₁ q₁ true = p₁ , q₁ -- , clauseTel = -- ExtendTel r(El {_getSort = Type (Max [ClosedLevel 1]), unEl = Sort (Type (Max []))}) (Abs "X" -- ExtendTel r(El {_getSort = Type (Max []), unEl = Def Issue2076.A []}) (Abs "p" -- ExtendTel r(El {_getSort = Type (Max []), unEl = Def Issue2076.A []}) (Abs "q" -- EmptyTel))) -- , namedClausePats = -- [r(X = VarP (DBPatVar {dbPatVarName = "X", dbPatVarIndex = 2})) -- ,r(p = VarP (DBPatVar {dbPatVarName = "p", dbPatVarIndex = 1})) -- ,r(q = VarP (DBPatVar {dbPatVarName = "q", dbPatVarIndex = 0})) -- ,r(x = ConP Issue2076.Unit.true(inductive)[] (ConPatternInfo {conPRecord = Nothing, conPType = Just r(El {_getSort = Type (Max []), unEl = Def Issue2076.Unit []})}) []) -- ] -- , clauseBody = Bind (Abs "h0" Bind (Abs "h1" Bind (Abs "h2" Body (Def Issue2076._,_ [Apply r(Var 1 []),Apply r(Var 0 [])])))) -- clauses before compilation -- , clauseTel = -- ExtendTel r(El {_getSort = Type (Max [ClosedLevel 1]), unEl = Sort (Type (Max []))}) (Abs "X" -- ExtendTel r(El {_getSort = Type (Max []), unEl = Def Issue2076.A []}) (Abs "p" -- ExtendTel r(El {_getSort = Type (Max []), unEl = Def Issue2076.A []}) (Abs "q" -- EmptyTel))) -- , namedClausePats = -- [r(X = VarP (DBPatVar {dbPatVarName = "X", dbPatVarIndex = 2})) -- ,r(p = VarP (DBPatVar {dbPatVarName = "p", dbPatVarIndex = 1})) -- ,r(q = VarP (DBPatVar {dbPatVarName = "q", dbPatVarIndex = 0}))] -- , clauseBody = Bind (Abs "h0" Bind (Abs "h1" Bind (Abs "h2" -- Body (Def Issue2076.PM..extendedlambda1 -- [Apply r(Var 2 []),Apply r(Var 1 []),Apply r(Var 0 [])])))) -- wrong printing -- clauses before compilation extlam p q = λ { q₁ true → p₁ , q₁ } inside : (a : A) → Unit → A inside a = extlam a a bla : (a : A) → {!!} bla a = {!inside a!} -- Normalization of `inside a` here should yield -- λ { true → a , a } ptest : (a : A) → Unit → A ptest a = PM.extlam Unit a a -- ptest should normalize to λ a → λ { true → a , a } module MM (Y : Set) where open PM Y public -- Normalizing MM.extlam should yield -- λ Y p q → λ { true → p , q } open MM Unit opentest : (a : A) → Unit → A opentest a = extlam a a -- opentest should normalize to λ a → λ { true → a , a } module Parent (Y : Set) where module Child (X : Set) where extlam2 : (p : A) (q : A) → Unit → A extlam2 p q = \ { true -> p , q} -- Normalizing Parent.Child.extlam2 should yield -- λ Y X p q → λ { true → p , q } open import Agda.Builtin.Nat data Vec (A : Set) : Nat → Set where [] : Vec A 0 _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) postulate h : (∀ {n} → Vec Nat n → Nat) → Nat f : Nat → Nat f n = h λ where [] → 0 (x ∷ xs) → n -- Normalising f should yield -- λ n → h (λ { [] → 0 ; (x ∷ xs) → n })
29.612676
175
0.566468
1ef8de03687edac624c588746be8e8fe7858aa93
5,101
agda
Agda
HT.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
4
2016-12-25T01:52:57.000Z
2021-03-22T00:28:03.000Z
HT.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
null
null
null
HT.agda
msullivan/godels-t
7412725cf27873b2b23f7e411a236a97dd99ef91
[ "MIT" ]
3
2015-04-26T11:39:14.000Z
2021-05-04T22:37:18.000Z
module HT where open import Prelude open import T open import SubstTheory open import DynTheory module HT where ---- Halting and Hereditary Termination -- An old comment about lhs-halt -- Mostly for fun, I didn't want to include "and it halts" as part -- of the definition of HT for arrows, and I didn't want to define -- it in terms of evaluating to a lambda and then substituting. -- This seems to require being able to generate an inhabitant of an -- arbitrary type as well as a proof that it is HT. The former is -- easy in T and we accomplish the latter by appealing to all-HT, -- although we could have also generated the proof along with the -- inhabitant. This all seems to be handwaved away when doing it on -- paper. Things get more unclear when in a system where not all -- types are inhabited; if we know that either a type is inhabited or -- it is not, then we are fine. But since we are constructive, we would -- get tripped up by a language like System F in which type inhabitability -- is undecidable. (Of course, the proof is easy to repair in a number of -- ways by modifying the definition of HT.) -- -- When I went to make the system deterministic, I found that I now depended -- on HT-halts in all-HT, which broke the previous proof technique. -- I decided that proving the inhabitant we construct is HT would be -- annoying, so I decided to not bother and went back to hanging onto the -- proof that arrows halt. -- Extract that the lhs must halt if its application to something halts. -- I think this isn't actually useful, though, since to use it we would -- need to be able to produce an argument to the function. {- lhs-halt : {A B : TTp} {e : TCExp (A ⇒ B)} {e' : TCExp A} → THalts (e $ e') → THalts e lhs-halt (halts eval-refl ()) lhs-halt (halts (eval-cons (step-app-l S1) E) val) with lhs-halt (halts E val) ... | halts E' val' = halts (eval-cons S1 E') val' lhs-halt (halts (eval-cons step-beta E) val) = halts eval-refl val-lam -} -- I think the induction principle for this datatype is the definition of -- HTω from http://www.cs.cmu.edu/~rwh/courses/typesys/hw3/hw3-handout.pdf data HTω : TNat → Set where HT-z : {e : TNat} → (E : e ~>* zero) → HTω e HT-s : {e e' : TNat} → (E : e ~>* suc e') → (HT : HTω e') → HTω e -- definition of hereditary termination HT : (A : TTp) → TCExp A → Set HT nat e = THalts e -- It is kind of ugly to have to hang on to the halting proof. HT (A ⇒ B) e = THalts e × ((e' : TCExp A) → HT A e' → HT B (e $ e')) -- proof that hereditary termination implies termination HT-halts : ∀{A} → (e : TCExp A) → HT A e → THalts e HT-halts {nat} e h = h HT-halts {A ⇒ B} _ (h , _) = h -- extend HT to substitutions HTΓ : (Γ : Ctx) → TSubst Γ [] → Set HTΓ Γ γ = ∀{A} (x : A ∈ Γ) -> HT A (γ x) emptyHTΓ : ∀{γ : TSubst [] []} -> HTΓ [] γ emptyHTΓ () extendHTΓ : ∀{Γ A} {e : TCExp A} {γ : TSubst Γ []} -> HTΓ Γ γ -> HT A e -> HTΓ (A :: Γ) (extendγ γ e) extendHTΓ η ht Z = ht extendHTΓ {_} {_} {e} {γ} η ht {B} (S n) = ID.coe1 (HT B) (extend-nofail-s γ e n) (η n) -- head expansion lemma head-expansion : ∀{A} {e e' : TCExp A} → (e ~>* e') → HT A e' → HT A e head-expansion {nat} eval (halts eval₁ val) = halts (eval-trans eval eval₁) val head-expansion {A ⇒ B} eval (halts eval' val , ht-logic) = halts (eval-trans eval eval') val , (λ e' ht → head-expansion (eval-compat step-app-l eval) (ht-logic e' ht)) -- the main theorem all-HT : ∀{Γ A} {γ : TSubst Γ []} → (e : TExp Γ A) → HTΓ Γ γ → HT A (ssubst γ e) all-HT (var x) η = η x all-HT (e₁ $ e₂) η with all-HT e₁ η ... | _ , HT₁ = HT₁ (ssubst _ e₂) (all-HT e₂ η) all-HT zero η = halts eval-refl val-zero all-HT (suc e) η with all-HT e η ... | halts eval val = halts (eval-compat step-suc eval) (val-suc val) all-HT {Γ} {A ⇒ B} {γ} (Λ e) η = (halts eval-refl val-lam) , lam-case where lam-case : (e' : TCExp A) → HT A e' → HT B (Λ (ssubst (liftγ γ) e) $ e') lam-case e' ht' with all-HT {γ = extendγ γ e'} e (extendHTΓ η ht') ... | ht with eval-step (step-beta {e = (ssubst (liftγ γ) e)}) ... | steps-full with combine-subst-noob γ e e' ... | eq = head-expansion steps-full (ID.coe1 (HT B) eq ht) all-HT {Γ} {A} {γ} (rec e e₀ es) η with all-HT e η ... | halts E val = head-expansion (eval-compat step-rec E) (inner val) where inner : {n : TNat} → TVal n → HT A (rec n (ssubst γ e₀) (ssubst (liftγ γ) es)) inner val-zero = head-expansion (eval-step step-rec-z) (all-HT e₀ η) inner (val-suc v) with all-HT es (extendHTΓ η (inner v)) ... | ht with eval-step (step-rec-s v) ... | steps with combine-subst-noob γ es _ ... | eq = head-expansion steps (ID.coe1 (HT A) eq ht) -- Prove that all programs in Gödel's System T halt. all-halt : ∀{A} → (e : TCExp A) → THalts e all-halt {A} e = HT-halts e (ID.coe1 (HT A) (subid e) (all-HT e (emptyHTΓ {emptyγ}))) open HT public
43.228814
88
0.610665
21597be39a8f4ce3046955c64fb3b34c0ec2ba20
2,892
agda
Agda
src/Data/Vec/Any.agda
tizmd/agda-vector-any
1a60f72b9ea1dd61845311ee97dc380aa542b874
[ "MIT" ]
null
null
null
src/Data/Vec/Any.agda
tizmd/agda-vector-any
1a60f72b9ea1dd61845311ee97dc380aa542b874
[ "MIT" ]
null
null
null
src/Data/Vec/Any.agda
tizmd/agda-vector-any
1a60f72b9ea1dd61845311ee97dc380aa542b874
[ "MIT" ]
null
null
null
module Data.Vec.Any {a} {A : Set a} where open import Level using (_⊔_) open import Relation.Nullary open import Data.Fin open import Data.Nat as ℕ hiding (_⊔_) open import Data.Vec as Vec using (Vec; _∷_; []) open import Relation.Unary renaming (_⊆_ to _⋐_) using (Decidable) open import Function.Inverse using (_↔_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_) import Relation.Binary.PropositionalEquality as P open import Relation.Nullary using (¬_; yes; no) import Relation.Nullary.Decidable as Dec open import Data.Empty using (⊥-elim) open import Data.Product using (∃ ; ,_ ) import Data.List.Any as ListAny data Any {p}(P : A → Set p) : ∀ {n} → Vec A n → Set (a ⊔ p) where here : ∀ {n x}{xs : Vec A n} → P x → Any P (x ∷ xs) there : ∀ {n x}{xs : Vec A n} → Any P xs → Any P (x ∷ xs) open Any public map : ∀ {p q} {P : A → Set p} {Q : A → Set q} {n} {xs : Vec A n} → P ⋐ Q → Any P xs → Any Q xs map g (here px) = here (g px) map g (there pxs) = there (map g pxs) tail : ∀ {p} {P : A → Set p}{x n} {xs : Vec A n} → ¬ P x → Any P (x ∷ xs) → Any P xs tail ¬px (here px) = ⊥-elim (¬px px) tail ¬px (there pxs) = pxs any : ∀ {p} {P : A → Set p} → Decidable P → ∀ {n} → Decidable (Any P {n}) any p [] = no λ() any p (x ∷ xs) with p x any p (x ∷ xs) | yes px = yes (here px) any p (x ∷ xs) | no ¬px = Dec.map′ there (tail ¬px) (any p xs) index : ∀ {p}{P : A → Set p}{n}{xs : Vec A n} → Any P xs → Fin n index (here px) = zero index (there pxs) = suc (index pxs) satisfied : ∀ {p}{P : A → Set p}{n}{xs : Vec A n} → Any P xs → ∃ P satisfied (here px) = , px satisfied (there pxs) = satisfied pxs Any↔ListAny : ∀ {p}{P : A → Set p}{n}{xs : Vec A n} → Any P xs ↔ ListAny.Any P (Vec.toList xs) Any↔ListAny {P = P} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = left-inverse ; right-inverse-of = right-inverse } } where to : ∀ {n}{xs : Vec A n} → Any P xs → ListAny.Any P (Vec.toList xs) to (here px) = ListAny.here px to (there pxs) = ListAny.there (to pxs) from : ∀ {n}{xs : Vec A n} → ListAny.Any P (Vec.toList xs) → Any P xs from {xs = []} () from {xs = x ∷ xs} (ListAny.here px) = here px from {xs = x ∷ xs} (ListAny.there pxs) = there (from pxs) left-inverse : ∀ {n}{xs : Vec A n}(p : Any P xs) → from (to p) P.≡ p left-inverse (here px) = P.refl left-inverse (there pxs) = P.cong there (left-inverse pxs) right-inverse : ∀ {n}{xs : Vec A n}(p : ListAny.Any P (Vec.toList xs)) → to (from p) P.≡ p right-inverse {xs = []} () right-inverse {xs = x ∷ xs} (ListAny.here px) = P.refl right-inverse {xs = x ∷ xs} (ListAny.there pxs) = P.cong ListAny.there (right-inverse pxs)
38.052632
96
0.554633
3559fbd514ceed955be15a364a3b8670e709407f
16,601
agda
Agda
LibraBFT/Impl/Consensus/SafetyRules/SafetyRules.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
4
2020-12-16T19:43:41.000Z
2021-12-18T19:24:05.000Z
LibraBFT/Impl/Consensus/SafetyRules/SafetyRules.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
72
2021-02-04T05:04:33.000Z
2022-03-25T05:36:11.000Z
LibraBFT/Impl/Consensus/SafetyRules/SafetyRules.agda
oracle/bft-consensus-agda
49f8b1b70823be805d84ffc3157c3b880edb1e92
[ "UPL-1.0" ]
6
2020-12-16T19:43:52.000Z
2022-02-18T01:04:32.000Z
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} ------------------------------------------------------------------------------ open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote import LibraBFT.Impl.Consensus.ConsensusTypes.VoteData as VoteData import LibraBFT.Impl.Consensus.SafetyRules.PersistentSafetyStorage as PersistentSafetyStorage import LibraBFT.Impl.OBM.Crypto as Crypto open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Types.BlockInfo as BlockInfo import LibraBFT.Impl.Types.EpochChangeProof as EpochChangeProof import LibraBFT.Impl.Types.ValidatorSigner as ValidatorSigner import LibraBFT.Impl.Types.ValidatorVerifier as ValidatorVerifier open import LibraBFT.Impl.Types.Verifier import LibraBFT.Impl.Types.Waypoint as Waypoint open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types import LibraBFT.ImplShared.Util.Crypto as Crypto open import LibraBFT.ImplShared.Util.Util open import LibraBFT.Prelude open import Optics.All ------------------------------------------------------------------------------ open import Data.String using (String) ------------------------------------------------------------------------------ module LibraBFT.Impl.Consensus.SafetyRules.SafetyRules where ------------------------------------------------------------------------------ new : PersistentSafetyStorage → Bool → Either ErrLog SafetyRules new persistentStorage exportConsensusKey = do pure $ mkSafetyRules persistentStorage exportConsensusKey nothing nothing ------------------------------------------------------------------------------ signer : SafetyRules → Either ErrLog ValidatorSigner signer self = maybeS (self ^∙ srValidatorSigner) (Left fakeErr {- error: signer not initialized -}) Right ------------------------------------------------------------------------------ extensionCheck : VoteProposal → Either ErrLog VoteData extensionCheck voteProposal = do let proposedBlock = voteProposal ^∙ vpBlock obmAEP = voteProposal ^∙ vpAccumulatorExtensionProof -- IMPL-TODO: verify .accumulator_extension_proof().verify ... in pure (VoteData.new (Block.genBlockInfo proposedBlock -- OBM-LBFT-DIFF: completely different (Crypto.obmHashVersion (obmAEP ^∙ aepObmNumLeaves)) (obmAEP ^∙ aepObmNumLeaves) (voteProposal ^∙ vpNextEpochState)) (proposedBlock ^∙ bQuorumCert ∙ qcCertifiedBlock)) ------------------------------------------------------------------------------ constructLedgerInfoM : Block → HashValue → LBFT (Either ErrLog LedgerInfo) constructLedgerInfoM proposedBlock consensusDataHash = do let block2 = proposedBlock ^∙ bRound block1 = proposedBlock ^∙ bQuorumCert ∙ qcCertifiedBlock ∙ biRound block0 = proposedBlock ^∙ bQuorumCert ∙ qcParentBlock ∙ biRound commit = (block0 + 1 == block1) ∧ (block1 + 1 == block2) commitInfo ← if commit then (do let c = proposedBlock ^∙ bQuorumCert ∙ qcParentBlock logInfo fakeInfo -- lSR (Info3ChainDetected proposedBlock c) pure c) else pure BlockInfo.empty ok (LedgerInfo∙new commitInfo consensusDataHash) ------------------------------------------------------------------------------ -- PREFERRED ROUND RULE (2nd VOTING RULE) : this avoids voting to commit a conflicting Block verifyAndUpdatePreferredRoundM : QuorumCert → SafetyData → LBFT (Either ErrLog SafetyData) verifyAndUpdatePreferredRoundM quorumCert safetyData = do let preferredRound = safetyData ^∙ sdPreferredRound oneChainRound = quorumCert ^∙ qcCertifiedBlock ∙ biRound twoChainRound = quorumCert ^∙ qcParentBlock ∙ biRound -- LBFT-ALGO v3:p6: "... votes in round k only if the QC inside the k proposal -- is at least" PreferredRound." ifD oneChainRound <? preferredRound then bail fakeErr -- error: incorrect preferred round, QC round does not match preferred round else do updated ← case (compare twoChainRound preferredRound) of λ where GT → do logInfo fakeInfo -- updated preferred round pure (safetyData & sdPreferredRound ∙~ twoChainRound) LT → do logInfo fakeInfo -- 2-chain round is lower than preferred round, but 1-chain is higher pure safetyData EQ → pure safetyData ok updated ------------------------------------------------------------------------------ verifyAuthorM : Maybe Author → LBFT (Either ErrLog Unit) verifyAuthorM author = do vs ← use (lSafetyRules ∙ srValidatorSigner) maybeS vs (bail fakeErr) {-(ErrL (here' ["srValidatorSigner", "Nothing"]))-} $ λ validatorSigner → maybeSD author (bail fakeErr) -- (ErrL (here' ["InvalidProposal", "No author found in the proposal"]))) (\a -> ifD validatorSigner ^∙ vsAuthor /= a then bail fakeErr -- (ErrL (here' ["InvalidProposal", "Proposal author is not validator signer"])) else ok unit) where here' : List String → List String here' t = "SafetyRules" ∷ "verifyAuthorM" ∷ t ------------------------------------------------------------------------------ verifyEpochM : Epoch → SafetyData → LBFT (Either ErrLog Unit) verifyEpochM epoch safetyData = ifD epoch /= safetyData ^∙ sdEpoch then bail fakeErr -- incorrect epoch else ok unit ------------------------------------------------------------------------------ -- INCREASING ROUND RULE (1st VOTING RULE) : ensures voting only ONCE per round verifyAndUpdateLastVoteRoundM : Round → SafetyData → LBFT (Either ErrLog SafetyData) verifyAndUpdateLastVoteRoundM round safetyData = -- LBFT-ALGO v3:p6 : "... votes in round k it if is higher than" LastVotedRound ifD round >? (safetyData ^∙ sdLastVotedRound) then ok (safetyData & sdLastVotedRound ∙~ round ) else bail fakeErr -- incorrect last vote round ------------------------------------------------------------------------------ verifyQcM : QuorumCert → LBFT (Either ErrLog Unit) verifyQcM qc = do validatorVerifier ← use (lRoundManager ∙ srValidatorVerifier) pure (QuorumCert.verify qc validatorVerifier) ∙^∙ withErrCtx ("InvalidQuorumCertificate" ∷ []) ------------------------------------------------------------------------------ consensusState : SafetyRules → ConsensusState consensusState self = ConsensusState∙new (self ^∙ srPersistentStorage ∙ pssSafetyData) (self ^∙ srPersistentStorage ∙ pssWaypoint) ------------------------------------------------------------------------------ -- ** NOTE: PAY PARTICULAR ATTENTION TO THIS FUNCTION ** -- ** Because : it is long with lots of branches, so easy to transcribe wrong. ** -- ** And if initialization is wrong, everything is wrong. ** initialize : SafetyRules → EpochChangeProof → Either ErrLog SafetyRules initialize self proof = do let waypoint = self ^∙ srPersistentStorage ∙ pssWaypoint lastLi ← withErrCtx' (here' ("EpochChangeProof.verify" ∷ [])) ( EpochChangeProof.verify proof waypoint) let ledgerInfo = lastLi ^∙ liwsLedgerInfo epochState ← maybeS (ledgerInfo ^∙ liNextEpochState) (Left fakeErr) -- ["last ledger info has no epoch state"] pure let currentEpoch = self ^∙ srPersistentStorage ∙ pssSafetyData ∙ sdEpoch if-dec currentEpoch <? epochState ^∙ esEpoch then (do waypoint' ← withErrCtx' (here' ("Waypoint.newEpochBoundary" ∷ [])) ( Waypoint.newEpochBoundary ledgerInfo) continue1 (self & srPersistentStorage ∙ pssWaypoint ∙~ waypoint' & srPersistentStorage ∙ pssSafetyData ∙~ SafetyData∙new (epochState ^∙ esEpoch) {-Round-} 0 {-Round-} 0 nothing) epochState) else continue1 self epochState where continue2 : SafetyRules → EpochState → Either ErrLog SafetyRules here' : List String → List String continue1 : SafetyRules → EpochState → Either ErrLog SafetyRules continue1 self1 epochState = continue2 (self1 & srEpochState ?~ epochState) epochState continue2 self2 epochState = do let author = self2 ^∙ srPersistentStorage ∙ pssAuthor maybeS (ValidatorVerifier.getPublicKey (epochState ^∙ esVerifier) author) (Left fakeErr) -- ["ValidatorNotInSet", lsA author] $ λ expectedKey → do let currKey = eitherS (signer self2) (const nothing) (just ∘ ValidatorSigner.publicKey_USE_ONLY_AT_INIT) grd‖ currKey == just expectedKey ≔ Right self2 ‖ self2 ^∙ srExportConsensusKey ≔ (do consensusKey ← withErrCtx' (here' ("ValidatorKeyNotFound" ∷ [])) (PersistentSafetyStorage.consensusKeyForVersion (self2 ^∙ srPersistentStorage) expectedKey) Right (self2 & srValidatorSigner ?~ ValidatorSigner∙new author consensusKey)) ‖ otherwise≔ Left fakeErr -- ["srExportConsensusKey", "False", "NOT IMPLEMENTED"] here' t = "SafetyRules" ∷ "initialize" ∷ t ------------------------------------------------------------------------------ constructAndSignVoteM-continue0 : VoteProposal → ValidatorSigner → LBFT (Either ErrLog Vote) constructAndSignVoteM-continue1 : VoteProposal → ValidatorSigner → Block → SafetyData → LBFT (Either ErrLog Vote) constructAndSignVoteM-continue2 : VoteProposal → ValidatorSigner → Block → SafetyData → LBFT (Either ErrLog Vote) constructAndSignVoteM : MaybeSignedVoteProposal → LBFT (Either ErrLog Vote) constructAndSignVoteM maybeSignedVoteProposal = do vs ← use (lSafetyRules ∙ srValidatorSigner) maybeS vs (bail fakeErr {- srValidatorSigner is nothing -}) λ validatorSigner → do let voteProposal = maybeSignedVoteProposal ^∙ msvpVoteProposal constructAndSignVoteM-continue0 voteProposal validatorSigner module constructAndSignVoteM-continue0 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) where step₀ : LBFT (Either ErrLog Vote) step₁ : SafetyData → LBFT (Either ErrLog Vote) proposedBlock = voteProposal ^∙ vpBlock step₀ = do safetyData0 ← use (lPersistentSafetyStorage ∙ pssSafetyData) verifyEpochM (proposedBlock ^∙ bEpoch) safetyData0 ∙?∙ λ _ → step₁ safetyData0 step₁ safetyData0 = do caseMD (safetyData0 ^∙ sdLastVote) of λ where (just vote) → ifD vote ^∙ vVoteData ∙ vdProposed ∙ biRound == proposedBlock ^∙ bRound then ok vote else constructAndSignVoteM-continue1 voteProposal validatorSigner proposedBlock safetyData0 nothing → constructAndSignVoteM-continue1 voteProposal validatorSigner proposedBlock safetyData0 constructAndSignVoteM-continue0 = constructAndSignVoteM-continue0.step₀ module constructAndSignVoteM-continue1 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) (proposedBlock : Block) (safetyData0 : SafetyData) where step₀ : LBFT (Either ErrLog Vote) step₁ : LBFT (Either ErrLog Vote) step₂ : ValidatorVerifier → LBFT (Either ErrLog Vote) step₃ : LBFT (Either ErrLog Vote) step₀ = verifyQcM (proposedBlock ^∙ bQuorumCert) ∙?∙ λ _ → step₁ step₁ = do validatorVerifier ← use (lRoundManager ∙ srValidatorVerifier) step₂ validatorVerifier step₂ validatorVerifier = pure (Block.validateSignature proposedBlock validatorVerifier) ∙?∙ λ _ → step₃ step₃ = verifyAndUpdatePreferredRoundM (proposedBlock ^∙ bQuorumCert) safetyData0 ∙?∙ constructAndSignVoteM-continue2 voteProposal validatorSigner proposedBlock constructAndSignVoteM-continue1 = constructAndSignVoteM-continue1.step₀ module constructAndSignVoteM-continue2 (voteProposal : VoteProposal) (validatorSigner : ValidatorSigner) (proposedBlock : Block) (safetyData : SafetyData) where step₀ : LBFT (Either ErrLog Vote) step₁ : SafetyData → LBFT (Either ErrLog Vote) step₂ : SafetyData → VoteData → LBFT (Either ErrLog Vote) step₃ : SafetyData → VoteData → Author → LedgerInfo → LBFT (Either ErrLog Vote) step₀ = verifyAndUpdateLastVoteRoundM (proposedBlock ^∙ bBlockData ∙ bdRound) safetyData ∙?∙ step₁ step₁ safetyData1 = do pssSafetyData-rm ∙= safetyData1 pure (extensionCheck voteProposal) ∙?∙ (step₂ safetyData1) step₂ safetyData1 voteData = do let author = validatorSigner ^∙ vsAuthor constructLedgerInfoM proposedBlock (Crypto.hashVD voteData) ∙^∙ withErrCtx ("" ∷ []) ∙?∙ (step₃ safetyData1 voteData author) step₃ safetyData1 voteData author ledgerInfo = do let signature = ValidatorSigner.sign validatorSigner ledgerInfo vote = Vote.newWithSignature voteData author ledgerInfo signature pssSafetyData-rm ∙= (safetyData1 & sdLastVote ?~ vote) logInfo fakeInfo -- InfoUpdateLastVotedRound ok vote constructAndSignVoteM-continue2 = constructAndSignVoteM-continue2.step₀ ------------------------------------------------------------------------------ signProposalM : BlockData → LBFT (Either ErrLog Block) signProposalM blockData = do vs ← use (lSafetyRules ∙ srValidatorSigner) maybeS vs (bail fakeErr) {-ErrL (here' ["srValidatorSigner", "Nothing"])-} $ λ validatorSigner → do safetyData ← use (lPersistentSafetyStorage ∙ pssSafetyData) verifyAuthorM (blockData ^∙ bdAuthor) ∙?∙ λ _ → verifyEpochM (blockData ^∙ bdEpoch) safetyData ∙?∙ λ _ → ifD blockData ^∙ bdRound ≤?ℕ safetyData ^∙ sdLastVotedRound then bail fakeErr -- {- ErrL (here' [ "InvalidProposal" -- , "Proposed round is not higher than last voted round " -- , lsR (blockData ^∙ bdRound), lsR (safetyData ^∙ sdLastVotedRound) ])-} else do verifyQcM (blockData ^∙ bdQuorumCert) ∙?∙ λ _ → verifyAndUpdatePreferredRoundM (blockData ^∙ bdQuorumCert) safetyData ∙?∙ λ safetyData1 → do pssSafetyData-rm ∙= safetyData1 let signature = ValidatorSigner.sign validatorSigner blockData ok (Block.newProposalFromBlockDataAndSignature blockData signature) where here' : List String → List String here' t = "SafetyRules" ∷ "signProposalM" ∷ t ------------------------------------------------------------------------------ signTimeoutM : Timeout → LBFT (Either ErrLog Signature) signTimeoutM timeout = do vs ← use (lSafetyRules ∙ srValidatorSigner) maybeS vs (bail fakeErr) {-"srValidatorSigner", "Nothing"-} $ λ validatorSigner → do safetyData ← use (lPersistentSafetyStorage ∙ pssSafetyData) verifyEpochM (timeout ^∙ toEpoch) safetyData ∙^∙ withErrCtx (here' []) ∙?∙ λ _ → do ifD‖ timeout ^∙ toRound ≤? safetyData ^∙ sdPreferredRound ≔ bail fakeErr --(ErrIncorrectPreferredRound (here []) (timeout ^∙ toRound) (safetyData ^∙ sdPreferredRound)) ‖ timeout ^∙ toRound <? safetyData ^∙ sdLastVotedRound ≔ bail fakeErr --(ErrIncorrectLastVotedRound (here []) (timeout ^∙ toRound) (safetyData ^∙ sdLastVotedRound)) ‖ timeout ^∙ toRound >? safetyData ^∙ sdLastVotedRound ≔ verifyAndUpdateLastVoteRoundM (timeout ^∙ toRound) safetyData ∙^∙ withErrCtx (here' []) ∙?∙ (λ safetyData1 → do pssSafetyData-rm ∙= safetyData1 logInfo fakeInfo -- (InfoUpdateLastVotedRound (timeout ^∙ toRound)) continue validatorSigner) ‖ otherwise≔ continue validatorSigner where continue : ValidatorSigner → LBFT (Either ErrLog Signature) continue validatorSigner = do let signature = ValidatorSigner.sign validatorSigner timeout ok signature here' : List String → List String here' t = "SafetyRules" ∷ "signTimeoutM" ∷ {-lsTO timeout ∷-} t
47.028329
114
0.633576
37ed47d6376022b03efc61b827b59407be258059
4,680
agda
Agda
src/Categories/Category/CartesianClosed/Canonical.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/CartesianClosed/Canonical.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
src/Categories/Category/CartesianClosed/Canonical.agda
MirceaS/agda-categories
58e5ec015781be5413bdf968f7ec4fdae0ab4b21
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category) -- A "canonical" presentation of cartesian closed categories. -- -- This presentation is equivalent to the one in -- Categories.Category.CartesianClosed but it is easier to work with -- in some circumstances. -- -- Here, exponentials are not defined in terms of arbitrary products, -- but in terms of a family of "canonical" products. Since products -- are defined only up to isomorphism the choice of product does not -- matter for the property of being cartesian closed, but working with -- a fixed choice of representatives simplifies the constructions of -- some instances of CCCs (e.g. Cats). module Categories.Category.CartesianClosed.Canonical {o ℓ e} (𝒞 : Category o ℓ e) where open import Level using (levelOfTerm) open import Function using (flip) open import Categories.Category.Cartesian 𝒞 using (Cartesian) import Categories.Category.CartesianClosed 𝒞 as 𝒞-CC open import Categories.Object.Exponential 𝒞 using (Exponential) open import Categories.Object.Product 𝒞 open import Categories.Object.Terminal 𝒞 using (Terminal) open import Categories.Morphism.Reasoning 𝒞 private module 𝒞 = Category 𝒞 open Category 𝒞 open HomReasoning variable A B C : Obj f g h f₁ f₂ g₁ g₂ : A ⇒ B -- A (canonical) cartesian closed category is a category with all -- (canonical) products and exponentials -- -- This presentation is equivalent to the one in -- Categories.Category.CartesianClosed.CartesianClosed. record CartesianClosed : Set (levelOfTerm 𝒞) where infixr 7 _×_ infixr 9 _^_ infix 10 ⟨_,_⟩ field -- Canonical products ⊤ : Obj _×_ : Obj → Obj → Obj ! : A ⇒ ⊤ π₁ : A × B ⇒ A π₂ : A × B ⇒ B ⟨_,_⟩ : C ⇒ A → C ⇒ B → C ⇒ A × B !-unique : (f : A ⇒ ⊤) → ! ≈ f π₁-comp : π₁ ∘ ⟨ f , g ⟩ ≈ f π₂-comp : π₂ ∘ ⟨ f , g ⟩ ≈ g ⟨,⟩-unique : ∀ {f g} {h : C ⇒ A × B} → π₁ ∘ h ≈ f → π₂ ∘ h ≈ g → ⟨ f , g ⟩ ≈ h -- The above defines canonical finite products, making 𝒞 cartesian. ⊤-terminal : Terminal ⊤-terminal = record { !-unique = !-unique } ×-product : ∀ {A B} → Product A B ×-product {A} {B} = record { project₁ = π₁-comp; project₂ = π₂-comp; unique = ⟨,⟩-unique } isCartesian : Cartesian isCartesian = record { terminal = ⊤-terminal ; products = record { product = ×-product } } module cartesian = Cartesian isCartesian open cartesian public hiding (_×_; π₁; π₂; ⟨_,_⟩) renaming (⟨⟩-cong₂ to ⟨,⟩-resp-≈) field -- Canonical exponentials (w.r.t. the canonical products) _^_ : Obj → Obj → Obj eval : B ^ A × A ⇒ B curry : C × A ⇒ B → C ⇒ B ^ A eval-comp : eval ∘ (curry f ⁂ id) ≈ f curry-resp-≈ : f ≈ g → curry f ≈ curry g curry-unique : eval ∘ (f ⁂ id) ≈ g → f ≈ curry g -- The above defines canonical exponentials, making 𝒞 cartesian closed. -- -- NOTE: below we use "⊗" to indicate "non-canonical" products. ^-exponential : ∀ {A B} → Exponential A B ^-exponential {A} {B} = record { B^A = B ^ A ; product = ×-product ; eval = eval ; λg = λ C⊗A f → curry (f ∘ repack ×-product C⊗A) ; β = λ {C} C⊗A {g} → begin eval ∘ [ C⊗A ⇒ ×-product ] curry (g ∘ repack ×-product C⊗A) ×id ≈˘⟨ pullʳ [ ×-product ⇒ ×-product ]×∘⟨⟩ ⟩ (eval ∘ (curry (g ∘ repack ×-product C⊗A) ⁂ id)) ∘ repack C⊗A ×-product ≈⟨ eval-comp ⟩∘⟨refl ⟩ (g ∘ repack ×-product C⊗A) ∘ repack C⊗A ×-product ≈⟨ cancelʳ (repack∘repack≈id ×-product C⊗A) ⟩ g ∎ ; λ-unique = λ {C} C⊗A {g} {f} hyp → curry-unique (begin eval ∘ (f ⁂ id) ≈˘⟨ pullʳ [ C⊗A ⇒ ×-product ]×∘⟨⟩ ⟩ (eval ∘ [ C⊗A ⇒ ×-product ] f ×id) ∘ repack ×-product C⊗A ≈⟨ hyp ⟩∘⟨refl ⟩ g ∘ repack ×-product C⊗A ∎) } module Equivalence where open 𝒞-CC using () renaming (CartesianClosed to CartesianClosed′) -- The two presentations of CCCs are equivalent fromCanonical : CartesianClosed → CartesianClosed′ fromCanonical cc = record { cartesian = CartesianClosed.isCartesian cc ; exp = CartesianClosed.^-exponential cc } toCanonical : CartesianClosed′ → CartesianClosed toCanonical cc = record { ⊤ = ⊤ ; _×_ = _×_ ; ! = ! ; π₁ = π₁ ; π₂ = π₂ ; ⟨_,_⟩ = ⟨_,_⟩ ; !-unique = !-unique ; π₁-comp = project₁ ; π₂-comp = project₂ ; ⟨,⟩-unique = unique ; _^_ = _^_ ; eval = eval′ ; curry = λg ; eval-comp = β′ ; curry-resp-≈ = λ-cong ; curry-unique = λ-unique′ } where open CartesianClosed′ cc
28.711656
87
0.593162
7cac6d54bf13f83e300d8c1192fd499e2e903f5a
7,487
agda
Agda
Cubical/Algebra/Algebra/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/Algebra/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/Algebra/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.Algebra.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Data.Sigma open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Module open import Cubical.Algebra.Ring open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Group open import Cubical.Algebra.Monoid open import Cubical.Algebra.Algebra.Base open Iso private variable ℓ ℓ' ℓ'' ℓ''' : Level module AlgebraTheory (R : Ring ℓ) (A : Algebra R ℓ') where open RingStr (snd R) renaming (_+_ to _+r_ ; _·_ to _·r_) open AlgebraStr (A .snd) 0-actsNullifying : (x : ⟨ A ⟩) → 0r ⋆ x ≡ 0a 0-actsNullifying x = let idempotent-+ = 0r ⋆ x ≡⟨ cong (λ u → u ⋆ x) (sym (RingTheory.0Idempotent R)) ⟩ (0r +r 0r) ⋆ x ≡⟨ ⋆-ldist 0r 0r x ⟩ (0r ⋆ x) + (0r ⋆ x) ∎ in RingTheory.+Idempotency→0 (Algebra→Ring A) (0r ⋆ x) idempotent-+ ⋆Dist· : (x y : ⟨ R ⟩) (a b : ⟨ A ⟩) → (x ·r y) ⋆ (a · b) ≡ (x ⋆ a) · (y ⋆ b) ⋆Dist· x y a b = (x ·r y) ⋆ (a · b) ≡⟨ ⋆-rassoc _ _ _ ⟩ a · ((x ·r y) ⋆ b) ≡⟨ cong (a ·_) (⋆-assoc _ _ _) ⟩ a · (x ⋆ (y ⋆ b)) ≡⟨ sym (⋆-rassoc _ _ _) ⟩ x ⋆ (a · (y ⋆ b)) ≡⟨ sym (⋆-lassoc _ _ _) ⟩ (x ⋆ a) · (y ⋆ b) ∎ module AlgebraHoms {R : Ring ℓ} where open IsAlgebraHom idAlgebraHom : (A : Algebra R ℓ') → AlgebraHom A A fst (idAlgebraHom A) x = x pres0 (snd (idAlgebraHom A)) = refl pres1 (snd (idAlgebraHom A)) = refl pres+ (snd (idAlgebraHom A)) x y = refl pres· (snd (idAlgebraHom A)) x y = refl pres- (snd (idAlgebraHom A)) x = refl pres⋆ (snd (idAlgebraHom A)) r x = refl compIsAlgebraHom : {A : Algebra R ℓ'} {B : Algebra R ℓ''} {C : Algebra R ℓ'''} {g : ⟨ B ⟩ → ⟨ C ⟩} {f : ⟨ A ⟩ → ⟨ B ⟩} → IsAlgebraHom (B .snd) g (C .snd) → IsAlgebraHom (A .snd) f (B .snd) → IsAlgebraHom (A .snd) (g ∘ f) (C .snd) compIsAlgebraHom {g = g} {f} gh fh .pres0 = cong g (fh .pres0) ∙ gh .pres0 compIsAlgebraHom {g = g} {f} gh fh .pres1 = cong g (fh .pres1) ∙ gh .pres1 compIsAlgebraHom {g = g} {f} gh fh .pres+ x y = cong g (fh .pres+ x y) ∙ gh .pres+ (f x) (f y) compIsAlgebraHom {g = g} {f} gh fh .pres· x y = cong g (fh .pres· x y) ∙ gh .pres· (f x) (f y) compIsAlgebraHom {g = g} {f} gh fh .pres- x = cong g (fh .pres- x) ∙ gh .pres- (f x) compIsAlgebraHom {g = g} {f} gh fh .pres⋆ r x = cong g (fh .pres⋆ r x) ∙ gh .pres⋆ r (f x) compAlgebraHom : {A : Algebra R ℓ'} {B : Algebra R ℓ''} {C : Algebra R ℓ'''} → AlgebraHom A B → AlgebraHom B C → AlgebraHom A C compAlgebraHom f g .fst = g .fst ∘ f .fst compAlgebraHom f g .snd = compIsAlgebraHom (g .snd) (f .snd) syntax compAlgebraHom f g = g ∘a f compIdAlgebraHom : {A B : Algebra R ℓ'} (φ : AlgebraHom A B) → compAlgebraHom (idAlgebraHom A) φ ≡ φ compIdAlgebraHom φ = AlgebraHom≡ refl idCompAlgebraHom : {A B : Algebra R ℓ'} (φ : AlgebraHom A B) → compAlgebraHom φ (idAlgebraHom B) ≡ φ idCompAlgebraHom φ = AlgebraHom≡ refl compAssocAlgebraHom : {A B C D : Algebra R ℓ'} (φ : AlgebraHom A B) (ψ : AlgebraHom B C) (χ : AlgebraHom C D) → compAlgebraHom (compAlgebraHom φ ψ) χ ≡ compAlgebraHom φ (compAlgebraHom ψ χ) compAssocAlgebraHom _ _ _ = AlgebraHom≡ refl module AlgebraEquivs {R : Ring ℓ} where open IsAlgebraHom open AlgebraHoms compIsAlgebraEquiv : {A : Algebra R ℓ'} {B : Algebra R ℓ''} {C : Algebra R ℓ'''} {g : ⟨ B ⟩ ≃ ⟨ C ⟩} {f : ⟨ A ⟩ ≃ ⟨ B ⟩} → IsAlgebraEquiv (B .snd) g (C .snd) → IsAlgebraEquiv (A .snd) f (B .snd) → IsAlgebraEquiv (A .snd) (compEquiv f g) (C .snd) compIsAlgebraEquiv {g = g} {f} gh fh = compIsAlgebraHom {g = g .fst} {f .fst} gh fh compAlgebraEquiv : {A : Algebra R ℓ'} {B : Algebra R ℓ''} {C : Algebra R ℓ'''} → AlgebraEquiv A B → AlgebraEquiv B C → AlgebraEquiv A C fst (compAlgebraEquiv f g) = compEquiv (f .fst) (g .fst) snd (compAlgebraEquiv f g) = compIsAlgebraEquiv {g = g .fst} {f = f .fst} (g .snd) (f .snd) -- the Algebra version of uaCompEquiv module AlgebraUAFunctoriality {R : Ring ℓ} where open AlgebraStr open AlgebraEquivs Algebra≡ : (A B : Algebra R ℓ') → ( Σ[ p ∈ ⟨ A ⟩ ≡ ⟨ B ⟩ ] Σ[ q0 ∈ PathP (λ i → p i) (0a (snd A)) (0a (snd B)) ] Σ[ q1 ∈ PathP (λ i → p i) (1a (snd A)) (1a (snd B)) ] Σ[ r+ ∈ PathP (λ i → p i → p i → p i) (_+_ (snd A)) (_+_ (snd B)) ] Σ[ r· ∈ PathP (λ i → p i → p i → p i) (_·_ (snd A)) (_·_ (snd B)) ] Σ[ s- ∈ PathP (λ i → p i → p i) (-_ (snd A)) (-_ (snd B)) ] Σ[ s⋆ ∈ PathP (λ i → ⟨ R ⟩ → p i → p i) (_⋆_ (snd A)) (_⋆_ (snd B)) ] PathP (λ i → IsAlgebra R (q0 i) (q1 i) (r+ i) (r· i) (s- i) (s⋆ i)) (isAlgebra (snd A)) (isAlgebra (snd B))) ≃ (A ≡ B) Algebra≡ A B = isoToEquiv theIso where open Iso theIso : Iso _ _ fun theIso (p , q0 , q1 , r+ , r· , s- , s⋆ , t) i = p i , algebrastr (q0 i) (q1 i) (r+ i) (r· i) (s- i) (s⋆ i) (t i) inv theIso x = cong ⟨_⟩ x , cong (0a ∘ snd) x , cong (1a ∘ snd) x , cong (_+_ ∘ snd) x , cong (_·_ ∘ snd) x , cong (-_ ∘ snd) x , cong (_⋆_ ∘ snd) x , cong (isAlgebra ∘ snd) x rightInv theIso _ = refl leftInv theIso _ = refl caracAlgebra≡ : {A B : Algebra R ℓ'} (p q : A ≡ B) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracAlgebra≡ {A = A} {B = B} p q P = sym (transportTransport⁻ (ua (Algebra≡ A B)) p) ∙∙ cong (transport (ua (Algebra≡ A B))) helper ∙∙ transportTransport⁻ (ua (Algebra≡ A B)) q where helper : transport (sym (ua (Algebra≡ A B))) p ≡ transport (sym (ua (Algebra≡ A B))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _) λ _ → isOfHLevelPathP 1 (isPropIsAlgebra _ _ _ _ _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaCompAlgebraEquiv : {A B C : Algebra R ℓ'} (f : AlgebraEquiv A B) (g : AlgebraEquiv B C) → uaAlgebra (compAlgebraEquiv f g) ≡ uaAlgebra f ∙ uaAlgebra g uaCompAlgebraEquiv f g = caracAlgebra≡ _ _ ( cong ⟨_⟩ (uaAlgebra (compAlgebraEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ cong ⟨_⟩ (uaAlgebra f) ∙ cong ⟨_⟩ (uaAlgebra g) ≡⟨ sym (cong-∙ ⟨_⟩ (uaAlgebra f) (uaAlgebra g)) ⟩ cong ⟨_⟩ (uaAlgebra f ∙ uaAlgebra g) ∎)
43.783626
102
0.555897
351d4d726c1a69d13fe00f11ba41910949ebaf45
1,173
agda
Agda
old/Type/Functions/Inverse/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
old/Type/Functions/Inverse/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
old/Type/Functions/Inverse/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl open import Type module Type.Functions.Inverse.Proofs {ℓₗ : Lvl.Level}{ℓₒ₁}{ℓₒ₂} {X : Type{ℓₒ₁}} {Y : Type{ℓₒ₂}} where open import Function.Domains open import Relator.Equals open import Type.Functions {ℓₗ} open import Type.Functions.Inverse {ℓₗ} open import Type.Properties.Empty open import Type.Properties.Singleton {ℓₒ₁}{ℓₒ₂} postulate inv-bijective : ∀{f : X → Y} → ⦃ proof : Bijective(f) ⦄ → Bijective(inv f) -- inv-bijective {f} ⦃ Bijective.intro(proof) ⦄ private _≡₁_ = _≡_ {ℓₗ Lvl.⊔ ℓₒ₁} invᵣ-is-inverseᵣ : (f : X → Y) → ⦃ _ : Surjective(f) ⦄ → ∀{y} → (f(invᵣ f(y)) ≡ y) invᵣ-is-inverseᵣ f ⦃ Surjective.intro(proof) ⦄ {y} with proof{y} ... | ◊.intro ⦃ Unapply.intro _ ⦃ out ⦄ ⦄ = out inv-is-inverseᵣ : (f : X → Y) → ⦃ _ : Bijective(f) ⦄ → ∀{y} → (f(inv f(y)) ≡ y) inv-is-inverseᵣ f ⦃ Bijective.intro(proof) ⦄ {y} with proof{y} ... | IsUnit.intro (Unapply.intro _ ⦃ out ⦄) _ = out inv-is-inverseₗ : (f : X → Y) → ⦃ _ : Bijective(f) ⦄ → ∀{x} → (inv f(f(x)) ≡₁ x) inv-is-inverseₗ f ⦃ Bijective.intro(proof) ⦄ {x} with proof{f(x)} ... | IsUnit.intro _ uniqueness with uniqueness {Unapply.intro x ⦃ [≡]-intro ⦄} ... | [≡]-intro = [≡]-intro
35.545455
101
0.624041
521b24b60368f68bea4ee11eb0926f0d8aa14d1a
872
agda
Agda
src/BasicIO.agda
cruhland/agda-editor
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
[ "MIT" ]
null
null
null
src/BasicIO.agda
cruhland/agda-editor
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
[ "MIT" ]
null
null
null
src/BasicIO.agda
cruhland/agda-editor
c5ffd117f6d5a98f7c68a2a6b9be54a150c70945
[ "MIT" ]
null
null
null
module BasicIO where open import Agda.Builtin.IO public open import Data.Char open import Data.List {-# FOREIGN GHC import Control.Exception #-} {-# FOREIGN GHC import System.Environment #-} -- This is easier than using the IO functions in the standard library, -- but it's technically not as type-safe. And it bypasses the -- termination checker. postulate return : {A : Set} → A → IO A _>>_ : {A B : Set} → IO A → IO B → IO B _>>=_ : {A B : Set} → IO A → (A → IO B) → IO B fail : {A : Set} → List Char → IO A bracket : {A B C : Set} → IO A → (A → IO B) → (A → IO C) → IO C getArgs : IO (List (List Char)) {-# COMPILE GHC return = \_ -> return #-} {-# COMPILE GHC _>>_ = \_ _ -> (>>) #-} {-# COMPILE GHC _>>=_ = \_ _ -> (>>=) #-} {-# COMPILE GHC fail = \_ -> fail #-} {-# COMPILE GHC bracket = \ _ _ _ -> bracket #-} {-# COMPILE GHC getArgs = getArgs #-}
32.296296
70
0.586009
196f6bafc83aaa54033a2126c382be225a13bd64
7,513
agda
Agda
IPC/Syntax/Gentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
IPC/Syntax/Gentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
IPC/Syntax/Gentzen.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Intuitionistic propositional calculus. -- Gentzen-style formalisation of syntax. -- Simple terms. module IPC.Syntax.Gentzen where open import IPC.Syntax.Common public -- Derivations. infix 3 _⊢_ data _⊢_ (Γ : Cx Ty) : Ty → Set where var : ∀ {A} → A ∈ Γ → Γ ⊢ A lam : ∀ {A B} → Γ , A ⊢ B → Γ ⊢ A ▻ B app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B pair : ∀ {A B} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B fst : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ A snd : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ B unit : Γ ⊢ ⊤ boom : ∀ {C} → Γ ⊢ ⊥ → Γ ⊢ C inl : ∀ {A B} → Γ ⊢ A → Γ ⊢ A ∨ B inr : ∀ {A B} → Γ ⊢ B → Γ ⊢ A ∨ B case : ∀ {A B C} → Γ ⊢ A ∨ B → Γ , A ⊢ C → Γ , B ⊢ C → Γ ⊢ C infix 3 _⊢⋆_ _⊢⋆_ : Cx Ty → Cx Ty → Set Γ ⊢⋆ ∅ = 𝟙 Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A -- Monotonicity with respect to context inclusion. mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (lam t) = lam (mono⊢ (keep η) t) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u) mono⊢ η (fst t) = fst (mono⊢ η t) mono⊢ η (snd t) = snd (mono⊢ η t) mono⊢ η unit = unit mono⊢ η (boom t) = boom (mono⊢ η t) mono⊢ η (inl t) = inl (mono⊢ η t) mono⊢ η (inr t) = inr (mono⊢ η t) mono⊢ η (case t u v) = case (mono⊢ η t) (mono⊢ (keep η) u) (mono⊢ (keep η) v) mono⊢⋆ : ∀ {Γ″ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Γ″ → Γ′ ⊢⋆ Γ″ mono⊢⋆ {∅} η ∙ = ∙ mono⊢⋆ {Γ″ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t -- Shorthand for variables. v₀ : ∀ {A Γ} → Γ , A ⊢ A v₀ = var i₀ v₁ : ∀ {A B Γ} → Γ , A , B ⊢ A v₁ = var i₁ v₂ : ∀ {A B C Γ} → Γ , A , B , C ⊢ A v₂ = var i₂ -- Reflexivity. refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ refl⊢⋆ {∅} = ∙ refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀ -- Deduction theorem is built-in. lam⋆ : ∀ {Ξ Γ A} → Γ ⧺ Ξ ⊢ A → Γ ⊢ Ξ ▻⋯▻ A lam⋆ {∅} = I lam⋆ {Ξ , B} = lam⋆ {Ξ} ∘ lam lam⋆₀ : ∀ {Γ A} → Γ ⊢ A → ∅ ⊢ Γ ▻⋯▻ A lam⋆₀ {∅} = I lam⋆₀ {Γ , B} = lam⋆₀ ∘ lam -- Detachment theorem. det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B det t = app (mono⊢ weak⊆ t) v₀ det⋆ : ∀ {Ξ Γ A} → Γ ⊢ Ξ ▻⋯▻ A → Γ ⧺ Ξ ⊢ A det⋆ {∅} = I det⋆ {Ξ , B} = det ∘ det⋆ {Ξ} det⋆₀ : ∀ {Γ A} → ∅ ⊢ Γ ▻⋯▻ A → Γ ⊢ A det⋆₀ {∅} = I det⋆₀ {Γ , B} = det ∘ det⋆₀ -- Cut and multicut. cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B cut t u = app (lam u) t multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A multicut {∅} ∙ u = mono⊢ bot⊆ u multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t -- Transitivity. trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″ trans⊢⋆ {∅} ts ∙ = ∙ trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u -- Contraction. ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = lam (lam (app (app v₁ v₀) v₀)) cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B cont t = det (app ccont (lam (lam t))) -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = lam (lam (lam (app (app v₂ v₀) v₁))) exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C exch t = det (det (app cexch (lam (lam t)))) -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = lam (lam (lam (app v₂ (app v₁ v₀)))) comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C comp t u = det (app (app ccomp (lam t)) (lam u)) -- Useful theorems in combinatory form. ci : ∀ {A Γ} → Γ ⊢ A ▻ A ci = lam v₀ ck : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A ck = lam (lam v₁) cs : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) cpair : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A ∧ B cpair = lam (lam (pair v₁ v₀)) cfst : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ A cfst = lam (fst v₀) csnd : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ B csnd = lam (snd v₀) cboom : ∀ {C Γ} → Γ ⊢ ⊥ ▻ C cboom = lam (boom v₀) cinl : ∀ {A B Γ} → Γ ⊢ A ▻ A ∨ B cinl = lam (inl v₀) cinr : ∀ {A B Γ} → Γ ⊢ B ▻ A ∨ B cinr = lam (inr v₀) ccase : ∀ {A B C Γ} → Γ ⊢ A ∨ B ▻ (A ▻ C) ▻ (B ▻ C) ▻ C ccase = lam (lam (lam (case v₂ (det v₁) (det v₀)))) -- Closure under context concatenation. concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u) -- Substitution. [_≔_]_ : ∀ {A B Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢ B → Γ ∖ i ⊢ B [ i ≔ s ] var j with i ≟∈ j [ i ≔ s ] var .i | same = s [ i ≔ s ] var ._ | diff j = var j [ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t) [ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u) [ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u) [ i ≔ s ] fst t = fst ([ i ≔ s ] t) [ i ≔ s ] snd t = snd ([ i ≔ s ] t) [ i ≔ s ] unit = unit [ i ≔ s ] boom t = boom ([ i ≔ s ] t) [ i ≔ s ] inl t = inl ([ i ≔ s ] t) [ i ≔ s ] inr t = inr ([ i ≔ s ] t) [ i ≔ s ] case t u v = case ([ i ≔ s ] t) ([ pop i ≔ mono⊢ weak⊆ s ] u) ([ pop i ≔ mono⊢ weak⊆ s ] v) [_≔_]⋆_ : ∀ {Ξ A Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢⋆ Ξ → Γ ∖ i ⊢⋆ Ξ [_≔_]⋆_ {∅} i s ∙ = ∙ [_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t -- Convertibility. data _⋙_ {Γ : Cx Ty} : ∀ {A} → Γ ⊢ A → Γ ⊢ A → Set where refl⋙ : ∀ {A} → {t : Γ ⊢ A} → t ⋙ t trans⋙ : ∀ {A} → {t t′ t″ : Γ ⊢ A} → t ⋙ t′ → t′ ⋙ t″ → t ⋙ t″ sym⋙ : ∀ {A} → {t t′ : Γ ⊢ A} → t ⋙ t′ → t′ ⋙ t conglam⋙ : ∀ {A B} → {t t′ : Γ , A ⊢ B} → t ⋙ t′ → lam t ⋙ lam t′ congapp⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ▻ B} → {u u′ : Γ ⊢ A} → t ⋙ t′ → u ⋙ u′ → app t u ⋙ app t′ u′ congpair⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → {u u′ : Γ ⊢ B} → t ⋙ t′ → u ⋙ u′ → pair t u ⋙ pair t′ u′ congfst⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B} → t ⋙ t′ → fst t ⋙ fst t′ congsnd⋙ : ∀ {A B} → {t t′ : Γ ⊢ A ∧ B} → t ⋙ t′ → snd t ⋙ snd t′ congboom⋙ : ∀ {C} → {t t′ : Γ ⊢ ⊥} → t ⋙ t′ → boom {C = C} t ⋙ boom t′ conginl⋙ : ∀ {A B} → {t t′ : Γ ⊢ A} → t ⋙ t′ → inl {B = B} t ⋙ inl t′ conginr⋙ : ∀ {A B} → {t t′ : Γ ⊢ B} → t ⋙ t′ → inr {A = A} t ⋙ inr t′ congcase⋙ : ∀ {A B C} → {t t′ : Γ ⊢ A ∨ B} → {u u′ : Γ , A ⊢ C} → {v v′ : Γ , B ⊢ C} → t ⋙ t′ → u ⋙ u′ → v ⋙ v′ → case t u v ⋙ case t′ u′ v′ beta▻⋙ : ∀ {A B} → {t : Γ , A ⊢ B} → {u : Γ ⊢ A} → app (lam t) u ⋙ ([ top ≔ u ] t) eta▻⋙ : ∀ {A B} → {t : Γ ⊢ A ▻ B} → t ⋙ lam (app (mono⊢ weak⊆ t) v₀) beta∧₁⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B} → fst (pair t u) ⋙ t beta∧₂⋙ : ∀ {A B} → {t : Γ ⊢ A} → {u : Γ ⊢ B} → snd (pair t u) ⋙ u eta∧⋙ : ∀ {A B} → {t : Γ ⊢ A ∧ B} → t ⋙ pair (fst t) (snd t) eta⊤⋙ : ∀ {t : Γ ⊢ ⊤} → t ⋙ unit beta∨₁⋙ : ∀ {A B C} → {t : Γ ⊢ A} → {u : Γ , A ⊢ C} → {v : Γ , B ⊢ C} → case (inl t) u v ⋙ ([ top ≔ t ] u) beta∨₂⋙ : ∀ {A B C} → {t : Γ ⊢ B} → {u : Γ , A ⊢ C} → {v : Γ , B ⊢ C} → case (inr t) u v ⋙ ([ top ≔ t ] v) eta∨⋙ : ∀ {A B} → {t : Γ ⊢ A ∨ B} → t ⋙ case t (inl v₀) (inr v₀) -- TODO: What about commuting conversions for ∨? What about ⊥?
27.122744
101
0.361773
35584f1bff6b91bbec0dd0e9afb8b94c92cbcd69
300
agda
Agda
Math/NumberTheory/Summation/Nat.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
3
2020-04-07T17:49:42.000Z
2020-04-21T00:03:43.000Z
Math/NumberTheory/Summation/Nat.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
Math/NumberTheory/Summation/Nat.agda
rei1024/agda-misc
37200ea91d34a6603d395d8ac81294068303f577
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Math.NumberTheory.Summation.Nat where -- agda-stdlib open import Algebra open import Data.Nat.Properties -- agda-misc open import Math.NumberTheory.Summation.Generic -- DO NOT change this line open MonoidSummation (Semiring.+-monoid *-+-semiring) public
21.428571
60
0.76
376a1d61edbaa0ee0fc6ed47fb6dfb74b7758ace
10,037
agda
Agda
test/bugs/univ.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/bugs/univ.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/bugs/univ.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
{-# OPTIONS --disable-positivity-check #-} module univ where import Logic.ChainReasoning module Chain {A : Set} ( _==_ : A -> A -> Set) (refl : {x : A} -> x == x) (trans : {x y z : A} -> x == y -> y == z -> x == z) = Logic.ChainReasoning.Mono.Homogenous _==_ (\x -> refl) (\x y z -> trans) data N1 : Set where T : N1 data N0 : Set where data Sigma (A:Set)(B : A -> Set) : Set where Pair : (x:A) -> B x -> Sigma A B rel : Set -> Set1 rel A = A -> A -> Set pred : Set -> Set1 pred A = A -> Set Refl : {A:Set} -> rel A -> Set Refl {A} R = {x : A} -> R x x Sym : {A:Set} -> rel A -> Set Sym {A} R = {x y : A} -> R x y -> R y x Trans : {A:Set} -> rel A -> Set Trans {A} R = {x y z : A} -> R x y -> R y z -> R x z Map : (A:Set) -> rel A -> (B:Set) -> rel B -> pred (A -> B) Map A _R_ B _S_ f = {x y : A} -> x R y -> f x S f y postulate N : Set _=N_ : rel N refN : Refl _=N_ symN : Sym _=N_ transN : Trans _=N_ -- mutual inductive recursive definition of S and the functions _=S_, El, eq, and all the -- proofs on these functions mutual infix 40 _==_ _=S_ infixr 80 _<<_ data S : Set where nat : S pi : (A:S) -> (f:El A -> S) -> Map (El A) _==_ S _=S_ f -> S _=S'_ : rel S nat =S' nat = N1 nat =S' pi A f pf = N0 pi _ _ _ =S' nat = N0 pi A F pF =S' pi B G pG = Sigma (A =S B) \ A=B -> (x : El B) -> F (A=B << x) =S G x data _=S_ (A B : S) : Set where eqS : A =S' B -> A =S B El' : S -> Set El' nat = N El' (pi A F pF) = Sigma ((x : El A) -> El (F x)) \f -> {x y : El A}(x=y : x == y) -> f x == pF x=y << f y data El (A : S) : Set where el : El' A -> El A _=='_ : {A : S} -> rel (El A) _=='_ {nat} (el x) (el y) = x =N y _=='_ {pi A F pF} (el (Pair f pf)) (el (Pair g pg)) = (x : El A) -> f x == g x data _==_ {A : S}(x y : El A) : Set where eq : x ==' y -> x == y _<<_ : {A B : S} -> A =S B -> El B -> El A _<<_ {nat} {nat} p x = x _<<_ {pi A F pF} {pi B G pG} (eqS (Pair A=B F=G)) (el (Pair g pg)) = el (Pair f (\{x}{y} -> pf x y)) where B=A = symS A=B F=Gc : (x : El A) -> F x =S G (B=A << x) F=Gc x = transS (transS refS (symS (pF (castlem A=B (symS A=B) x)))) (F=G (symS A=B << x)) -- chain> F x -- === F (A=B << B=A << x) by symS (pF (castlem A=B B=A x)) -- === G (B=A << x) by F=G (B=A << x) -- where -- open module C = Chain _=S_ refS transS f : (x : El A) -> El (F x) f x = F=Gc x << g (B=A << x) pf : (x y : El A)(p : x == y) -> f x == pF p << f y pf x y x=y = trans fx=ccgy ccgy=cfy where cx = B=A << x cy = B=A << y cx=cy : cx == cy cx=cy = p<< B=A x=y cgy : El (G cx) cgy = pG cx=cy << g cy gx=gy : g cx == cgy gx=gy = pg cx=cy ccgy : El (F x) ccgy = F=Gc x << cgy fx=ccgy : f x == ccgy fx=ccgy = p<< (F=Gc x) gx=gy cfy : El (F x) cfy = pF x=y << f y ccgy=cfy : ccgy == cfy ccgy=cfy = castlem2 (F=Gc x) (pF x=y) (pG cx=cy) (F=Gc y) (g cy) p<< : {A B : S}(A=B : A =S B) -> Map (El B) _==_ (El A) _==_ (_<<_ A=B) p<< {nat}{nat} _ x=y = x=y p<< {pi A F pF} {pi B G pG} (eqS (Pair A=B F=G)) {el (Pair f pf)} {el (Pair g pg)} (eq f=g) = eq cf=cg where open module C = Logic.ChainReasoning.Mono.Homogenous _=S_ (\x -> refS) (\x y z -> transS) B=A = symS A=B F=Gc : (x : El A) -> F x =S G (B=A << x) F=Gc x = chain> F x === F (A=B << B=A << x) by symS (pF (castlem A=B B=A x)) === G (B=A << x) by F=G _ cf=cg : (x : El A) -> F=Gc x << f (B=A << x) == F=Gc x << g (B=A << x) cf=cg x = p<< (F=Gc x) (f=g (B=A << x)) p<< {nat} {pi _ _ _} (eqS ()) _ p<< {pi _ _ _} {nat} (eqS ()) _ refS : Refl _=S_ refS {nat} = eqS T refS {pi A F pF} = eqS (Pair refS \(x : El A) -> pF (castref refS x)) transS : Trans _=S_ transS {nat}{nat}{nat} p q = p transS {nat}{nat}{pi _ _ _} _ (eqS ()) transS {nat}{pi _ _ _}{_} (eqS ()) _ transS {pi _ _ _}{nat}{_} (eqS ()) _ transS {pi _ _ _}{pi _ _ _}{nat} _ (eqS ()) transS {pi A F pF}{pi B G pG}{pi C H pH} (eqS (Pair A=B F=G)) (eqS (Pair B=C G=H)) = eqS (Pair A=C F=H) where open module C = Chain _=S_ refS transS A=C = transS A=B B=C F=H : (x : El C) -> F (A=C << x) =S H x F=H x = chain> F (A=C << x) === F (A=B << B=C << x) by symS (pF (casttrans A=B B=C A=C x)) === G (B=C << x) by F=G (B=C << x) === H x by G=H x symS : Sym _=S_ symS {nat}{nat} p = p symS {pi _ _ _}{nat} (eqS ()) symS {nat}{pi _ _ _} (eqS ()) symS {pi A F pF}{pi B G pg} (eqS (Pair A=B F=G)) = eqS (Pair B=A G=F) where open module C = Chain _=S_ refS transS B=A = symS A=B G=F : (x : El A) -> G (B=A << x) =S F x G=F x = chain> G (B=A << x) === F (A=B << B=A << x) by symS (F=G (B=A << x)) === F x by pF (castlem A=B B=A x) pfi : {A B : S}(p q : A =S B)(x : El B) -> p << x == q << x pfi {nat}{nat} _ _ x = ref pfi {nat}{pi _ _ _} (eqS ()) _ _ pfi {pi _ _ _}{nat} (eqS ()) _ _ pfi {pi A F pF}{pi B G pG} (eqS (Pair A=B1 F=G1)) (eqS (Pair A=B2 F=G2)) (el (Pair f pf)) = eq f1=f2 where B=A1 = symS A=B1 B=A2 = symS A=B2 f1=f2 : (x : El A) -> _ << f (B=A1 << x) == _ << f (B=A2 << x) f1=f2 x = chain> _ << f (B=A1 << x) === _ << _ << f (B=A2 << x) by p<< _ lem2 === _ << f (B=A2 << x) by casttrans _ _ _ _ where open module C = Chain _==_ (ref {F x}) (trans {F x}) lem1 : B=A1 << x == B=A2 << x lem1 = pfi B=A1 B=A2 x lem2 : f (B=A1 << x) == _ << f (B=A2 << x) lem2 = pf lem1 castref : {A : S}(p : A =S A)(x : El A) -> p << x == x castref {nat} p x = ref castref {pi A F pF} (eqS (Pair A=A F=F)) (el (Pair f pf)) = eq cf=f where A=A' = symS A=A cf=f : (x : El A) -> _ << f (A=A' << x) == f x cf=f x = chain> Fx=Fcx << f (A=A' << x) === Fx=Fcx << _ << f x by p<< Fx=Fcx lem2 === refS << f x by casttrans _ _ _ (f x) === f x by castref _ (f x) where Fx=Fcx = _ open module C = Chain _==_ (ref {F x}) (trans {F x}) lem1 : A=A' << x == x lem1 = castref A=A' x lem2 : f (A=A' << x) == _ << f x lem2 = pf lem1 casttrans : {A B C : S}(A=B : A =S B)(B=C : B =S C)(A=C : A =S C)(x : El C) -> A=B << B=C << x == A=C << x casttrans {nat}{nat}{nat} _ _ _ x = ref casttrans {nat}{nat}{pi _ _ _} _ (eqS ()) _ _ casttrans {nat}{pi _ _ _}{_} (eqS ()) _ _ _ casttrans {pi _ _ _}{nat}{_} (eqS ()) _ _ _ casttrans {pi _ _ _}{pi _ _ _}{nat} _ (eqS ()) _ _ casttrans {pi A F pF}{pi B G pG}{pi C H pH} (eqS (Pair A=B F=G))(eqS (Pair B=C G=H))(eqS (Pair A=C F=H)) (el (Pair h ph)) = eq prf where B=A = symS A=B C=B = symS B=C C=A = symS A=C prf : (x : El A) -> _ << _ << h (C=B << B=A << x) == _ << h (C=A << x) prf x = chain> Fx=Gcx << Gcx=Hccx << h (C=B << B=A << x) === Fx=Hccx << h (C=B << B=A << x) by casttrans _ _ _ _ === Fx=Hccx << _ << h (C=A << x) by p<< _ (ph (casttrans C=B B=A C=A x)) === Fx=Hcx << h (C=A << x) by casttrans _ _ _ _ where Fx=Gcx = _ Gcx=Hccx = _ Fx=Hccx = transS (lemF=Gc A=B pF pG F=G _) (lemF=Gc B=C pG pH G=H _) Fx=Hcx = _ open module C = Chain _==_ (ref {F x}) (trans {F x}) lemF=Gc : {A B : S}(A=B : A =S B) {F : El A -> S}(pF : Map (El A) _==_ S _=S_ F) {G : El B -> S}(pG : Map (El B) _==_ S _=S_ G) (F=G : (x : El B) -> F (A=B << x) =S G x) (x : El A) -> F x =S G (symS A=B << x) lemF=Gc A=B {F} pF {G} pG F=G x = chain> F x === F (A=B << B=A << x) by symS (pF (castlem A=B B=A x)) === G (B=A << x) by F=G _ where open module C = Chain _=S_ refS transS B=A = symS A=B castlem : {A B : S}(p : A =S B)(q : B =S A)(x : El A) -> p << q << x == x castlem {A}{B} p q x = chain> p << q << x === refS << x by casttrans p q refS x === x by castref refS x where open module C = Chain _==_ (ref {A}) (trans {A}) castlem2 : {A B B' C : S}(A=B : A =S B)(A=B' : A =S B')(B=C : B =S C)(B'=C : B' =S C) (x : El C) -> A=B << B=C << x == A=B' << B'=C << x castlem2 {A} p p' q q' x = chain> p << q << x === transS p q << x by casttrans _ _ _ x === transS p' q' << x by pfi _ _ _ === p' << q' << x by sym (casttrans _ _ _ x) where open module C = Chain _==_ (ref {A}) (trans {A}) ref : {A:S} -> Refl {El A} _==_ ref {nat} {el n} = eq refN ref {pi A F pF}{el (Pair f pf)} = eq f=f where f=f : (x : El A) -> f x == f x f=f x = ref trans : {A:S} -> Trans {El A} _==_ trans {nat}{el x}{el y}{el z} (eq p) (eq q) = eq (transN p q) trans {pi A F pF}{el (Pair f pf)}{el (Pair g pg)}{el (Pair h ph)} (eq f=g)(eq g=h) = eq f=h where f=h : (x : El A) -> f x == h x f=h x = trans (f=g x) (g=h x) sym : {A:S} -> Sym {El A} _==_ sym {nat}{el x}{el y} (eq p) = eq (symN p) sym {pi A F pF}{el (Pair f pf)}{el (Pair g pg)} (eq f=g) = eq g=f where g=f : (x : El A) -> g x == f x g=f x = sym (f=g x)
30.883077
95
0.399323
236010f509616d05866b812877e743ce9bd1507c
227
agda
Agda
examples/ATPHint.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
examples/ATPHint.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
examples/ATPHint.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
-- The ATP pragma with the role <hint> can be used with functions. module ATPHint where postulate D : Set data _≡_ (x : D) : D → Set where refl : x ≡ x sym : ∀ {m n} → m ≡ n → n ≡ m sym refl = refl {-# ATP hint sym #-}
16.214286
66
0.585903
0d28dff3ae40258bb543b3046254c414b63f4c48
79
agda
Agda
examples/outdated-and-incorrect/Alonzo/PrintNat.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Alonzo/PrintNat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Alonzo/PrintNat.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module PrintNat where import PreludeShow open PreludeShow mainS = showNat 42
11.285714
21
0.822785
35e9c7d666401a3a803003196d562eda9027a19e
216
agda
Agda
Cubical/HITs/Truncation.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/Truncation.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation.agda
borsiemir/cubical
cefeb3669ffdaea7b88ae0e9dd258378418819ca
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Truncation where open import Cubical.HITs.Truncation.Base public open import Cubical.HITs.Truncation.Properties public import Cubical.HITs.Truncation.FromNegOne
27
53
0.810185
59eb2740be8beb0b25afd080cb0b0cda0d96df51
5,092
agda
Agda
lib/types/Group.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Group.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
lib/types/Group.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Pi module lib.types.Group where record GroupStructure {i} (El : Type i) --(El-level : has-level ⟨0⟩ El) : Type i where constructor group-structure field ident : El inv : El → El comp : El → El → El unitl : ∀ a → comp ident a == a unitr : ∀ a → comp a ident == a assoc : ∀ a b c → comp (comp a b) c == comp a (comp b c) invl : ∀ a → (comp (inv a) a) == ident invr : ∀ a → (comp a (inv a)) == ident record Group i : Type (lsucc i) where constructor group field El : Type i El-level : has-level ⟨0⟩ El group-struct : GroupStructure El open GroupStructure group-struct public ⊙El : Σ (Type i) (λ A → A) ⊙El = (El , ident) Group₀ : Type (lsucc lzero) Group₀ = Group lzero is-abelian : ∀ {i} → Group i → Type i is-abelian G = (a b : Group.El G) → Group.comp G a b == Group.comp G b a module _ where open GroupStructure abstract group-structure= : ∀ {i} {A : Type i} (pA : has-level ⟨0⟩ A) {id₁ id₂ : A} {inv₁ inv₂ : A → A} {comp₁ comp₂ : A → A → A} → ∀ {unitl₁ unitl₂} → ∀ {unitr₁ unitr₂} → ∀ {assoc₁ assoc₂} → ∀ {invr₁ invr₂} → ∀ {invl₁ invl₂} → (id₁ == id₂) → (inv₁ == inv₂) → (comp₁ == comp₂) → Path {A = GroupStructure A} (group-structure id₁ inv₁ comp₁ unitl₁ unitr₁ assoc₁ invl₁ invr₁) (group-structure id₂ inv₂ comp₂ unitl₂ unitr₂ assoc₂ invl₂ invr₂) group-structure= pA {id₁ = id₁} {inv₁ = inv₁} {comp₁ = comp₁} idp idp idp = ap5 (group-structure id₁ inv₁ comp₁) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → Π-level (λ _ → Π-level (λ _ → pA _ _)))) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) (prop-has-all-paths (Π-level (λ _ → pA _ _)) _ _) where ap5 : ∀ {j} {C D E F G H : Type j} {c₁ c₂ : C} {d₁ d₂ : D} {e₁ e₂ : E} {f₁ f₂ : F} {g₁ g₂ : G} (f : C → D → E → F → G → H) → (c₁ == c₂) → (d₁ == d₂) → (e₁ == e₂) → (f₁ == f₂) → (g₁ == g₂) → f c₁ d₁ e₁ f₁ g₁ == f c₂ d₂ e₂ f₂ g₂ ap5 f idp idp idp idp idp = idp ↓-group-structure= : ∀ {i} {A B : Type i} (A-level : has-level ⟨0⟩ A) {GS : GroupStructure A} {HS : GroupStructure B} (p : A == B) → (ident GS == ident HS [ (λ C → C) ↓ p ]) → (inv GS == inv HS [ (λ C → C → C) ↓ p ]) → (comp GS == comp HS [ (λ C → C → C → C) ↓ p ]) → GS == HS [ GroupStructure ↓ p ] ↓-group-structure= A-level idp = group-structure= A-level module _ {i} (G : Group i) where private open Group G _⊙_ = comp group-inv-unique-l : (g h : El) → (g ⊙ h == ident) → inv h == g group-inv-unique-l g h p = inv h =⟨ ! (unitl (inv h)) ⟩ ident ⊙ inv h =⟨ ! p |in-ctx (λ w → w ⊙ inv h) ⟩ (g ⊙ h) ⊙ inv h =⟨ assoc g h (inv h) ⟩ g ⊙ (h ⊙ inv h) =⟨ invr h |in-ctx (λ w → g ⊙ w) ⟩ g ⊙ ident =⟨ unitr g ⟩ g ∎ group-inv-unique-r : (g h : El) → (g ⊙ h == ident) → inv g == h group-inv-unique-r g h p = inv g =⟨ ! (unitr (inv g)) ⟩ inv g ⊙ ident =⟨ ! p |in-ctx (λ w → inv g ⊙ w) ⟩ inv g ⊙ (g ⊙ h) =⟨ ! (assoc (inv g) g h) ⟩ (inv g ⊙ g) ⊙ h =⟨ invl g |in-ctx (λ w → w ⊙ h) ⟩ ident ⊙ h =⟨ unitl h ⟩ h ∎ group-inv-ident : inv ident == ident group-inv-ident = group-inv-unique-l ident ident (unitl ident) group-inv-comp : (g₁ g₂ : El) → inv (g₁ ⊙ g₂) == inv g₂ ⊙ inv g₁ group-inv-comp g₁ g₂ = group-inv-unique-r (g₁ ⊙ g₂) (inv g₂ ⊙ inv g₁) $ (g₁ ⊙ g₂) ⊙ (inv g₂ ⊙ inv g₁) =⟨ assoc g₁ g₂ (inv g₂ ⊙ inv g₁) ⟩ g₁ ⊙ (g₂ ⊙ (inv g₂ ⊙ inv g₁)) =⟨ ! (assoc g₂ (inv g₂) (inv g₁)) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ ((g₂ ⊙ inv g₂) ⊙ inv g₁) =⟨ invr g₂ |in-ctx (λ w → g₁ ⊙ (w ⊙ inv g₁)) ⟩ g₁ ⊙ (ident ⊙ inv g₁) =⟨ unitl (inv g₁) |in-ctx (λ w → g₁ ⊙ w) ⟩ g₁ ⊙ inv g₁ =⟨ invr g₁ ⟩ ident ∎ group-inv-inv : (g : El) → inv (inv g) == g group-inv-inv g = group-inv-unique-r (inv g) g (invl g) group-cancel-l : (g : El) {h k : El} → g ⊙ h == g ⊙ k → h == k group-cancel-l g {h} {k} p = h =⟨ ! (unitl h) ⟩ ident ⊙ h =⟨ ap (λ w → w ⊙ h) (! (invl g)) ⟩ (inv g ⊙ g) ⊙ h =⟨ assoc (inv g) g h ⟩ inv g ⊙ (g ⊙ h) =⟨ ap (λ w → inv g ⊙ w) p ⟩ inv g ⊙ (g ⊙ k) =⟨ ! (assoc (inv g) g k) ⟩ (inv g ⊙ g) ⊙ k =⟨ ap (λ w → w ⊙ k) (invl g) ⟩ ident ⊙ k =⟨ unitl k ⟩ k ∎ group-cancel-r : (g : El) {h k : El} → h ⊙ g == k ⊙ g → h == k group-cancel-r g {h} {k} p = h =⟨ ! (unitr h) ⟩ h ⊙ ident =⟨ ap (λ w → h ⊙ w) (! (invr g)) ⟩ h ⊙ (g ⊙ inv g) =⟨ ! (assoc h g (inv g)) ⟩ (h ⊙ g) ⊙ inv g =⟨ ap (λ w → w ⊙ inv g) p ⟩ (k ⊙ g) ⊙ inv g =⟨ assoc k g (inv g) ⟩ k ⊙ (g ⊙ inv g) =⟨ ap (λ w → k ⊙ w) (invr g) ⟩ k ⊙ ident =⟨ unitr k ⟩ k ∎
36.113475
79
0.465632
a0a9173e15cbac47451a37938f53011897d99e13
325
agda
Agda
test/succeed/IndexInference.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/succeed/IndexInference.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/succeed/IndexInference.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
module IndexInference where data Nat : Set where zero : Nat suc : Nat -> Nat data Vec (A : Set) : Nat -> Set where [] : Vec A zero _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) infixr 40 _::_ -- The length of the vector can be inferred from the pattern. foo : Vec Nat _ -> Nat foo (a :: b :: c :: []) = c
19.117647
61
0.563077
8b46bd2149b15838629b2db02b33b0f5015f9316
1,206
agda
Agda
Data/List/Setoid.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/List/Setoid.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/List/Setoid.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Data.List.Setoid where import Lvl open import Data.List open import Data.List.Equiv open import Data.List.Relation.Quantification open import Logic.Propositional open import Structure.Operator open import Structure.Setoid open import Structure.Relator.Equivalence import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Type private variable ℓ ℓₑ ℓₚ : Lvl.Level private variable T : Type{ℓ} instance List-equiv : ⦃ Equiv{ℓₑ}(T) ⦄ → Equiv(List(T)) List-equiv = intro (AllElements₂(_≡_)) ⦃ intro ⦃ intro refl ⦄ ⦃ intro sym ⦄ ⦃ intro trans ⦄ ⦄ where refl : Names.Reflexivity(AllElements₂(_≡_)) refl{∅} = ∅ refl{x ⊰ l} = reflexivity(_≡_) ⊰ refl{l} sym : Names.Symmetry(AllElements₂(_≡_)) sym ∅ = ∅ sym (p ⊰ ps) = symmetry(_≡_) p ⊰ sym ps trans : Names.Transitivity(AllElements₂(_≡_)) trans ∅ ∅ = ∅ trans (p ⊰ ps) (q ⊰ qs) = (transitivity(_≡_) p q) ⊰ (trans ps qs) instance List-equiv-extensionality : ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Extensionality(List-equiv ⦃ equiv ⦄) List-equiv-extensionality ⦃ equiv ⦄ = intro ⦃ binaryOperator = intro(_⊰_) ⦄ (\{(p ⊰ _) → p}) (\{(_ ⊰ pl) → pl}) \()
33.5
117
0.657546
43e3d849151e016f0afb29e09f8fe2a588946efb
9,001
agda
Agda
Cubical/Structures/Relational/Auto.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/Structures/Relational/Auto.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Structures/Relational/Auto.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{- Macros (autoDesc, AutoStructure, AutoEquivStr, autoUnivalentStr) for automatically generating structure definitions. For example: autoDesc (λ (X : Type₀) → X → X × ℕ) ↦ function+ var (var , constant ℕ) We prefer to use the constant structure whenever possible, e.g., [autoDesc (λ (X : Type₀) → ℕ → ℕ)] is [constant (ℕ → ℕ)] rather than [function (constant ℕ) (constant ℕ)]. Writing [auto* (λ X → ⋯)] doesn't seem to work, but [auto* (λ (X : Type ℓ) → ⋯)] does. -} {-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Structures.Relational.Auto where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Sigma open import Cubical.Data.Nat open import Cubical.Data.List open import Cubical.Data.Bool open import Cubical.Data.Maybe open import Cubical.Structures.Relational.Macro as Macro import Agda.Builtin.Reflection as R -- Magic number private FUEL = 10000 -- Mark a constant type with a proof it is a set abstract Const[_] : ∀ {ℓ} → hSet ℓ → Type ℓ Const[ A ] = A .fst -- Some reflection utilities private _>>=_ = R.bindTC _<|>_ = R.catchTC _>>_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.TC A → R.TC B → R.TC B f >> g = f >>= λ _ → g infixl 4 _>>=_ _>>_ _<|>_ varg : ∀ {ℓ} {A : Type ℓ} → A → R.Arg A varg = R.arg (R.arg-info R.visible R.relevant) tLevel = R.def (quote Level) [] tType : R.Term → R.Term tType ℓ = R.def (quote Type) [ varg ℓ ] thSet : R.Term → R.Term thSet ℓ = R.def (quote hSet) [ varg ℓ ] tPosRelDesc : R.Term → R.Term tPosRelDesc ℓ = R.def (quote PosRelDesc) [ varg ℓ ] tRelDesc : R.Term → R.Term tRelDesc ℓ = R.def (quote RelDesc) [ varg ℓ ] func : (ℓ ℓ' : Level) → Type (ℓ-suc (ℓ-max ℓ ℓ')) func ℓ ℓ' = Type ℓ → Type ℓ' tStruct : R.Term → R.Term → R.Term tStruct ℓ ℓ' = R.def (quote func) (varg ℓ ∷ varg ℓ' ∷ []) newMeta = R.checkType R.unknown -- We try to build a descriptor by unifying the provided structure with combinators we're aware of. We -- redefine the structure combinators as the *Shape terms below so that we don't depend on the specific way -- these are defined in other files (order of implicit arguments and so on); the syntactic analysis that goes -- on here means that we would get mysterious errors if those changed. private constantShape : ∀ {ℓ'} (ℓ : Level) (A : hSet ℓ') → (Type ℓ → Type ℓ') constantShape _ A _ = Const[ A ] pointedShape : (ℓ : Level) → Type ℓ → Type ℓ pointedShape _ X = X productShape : ∀ {ℓ₀ ℓ₁} (ℓ : Level) → (Type ℓ → Type ℓ₀) → (Type ℓ → Type ℓ₁) → Type ℓ → Type (ℓ-max ℓ₀ ℓ₁) productShape _ A₀ A₁ X = A₀ X × A₁ X paramShape : ∀ {ℓ₀ ℓ'} (ℓ : Level) → Type ℓ' → (Type ℓ → Type ℓ₀) → Type ℓ → Type (ℓ-max ℓ' ℓ₀) paramShape _ A A₀ X = A → A₀ X functionShape : ∀ {ℓ₀ ℓ₁} (ℓ : Level) → (Type ℓ → Type ℓ₀) → (Type ℓ → Type ℓ₁) → Type ℓ → Type (ℓ-max ℓ₀ ℓ₁) functionShape _ A₀ A₁ X = A₀ X → A₁ X maybeShape : ∀ {ℓ₀} (ℓ : Level) → (Type ℓ → Type ℓ₀) → Type ℓ → Type ℓ₀ maybeShape _ A₀ X = Maybe (A₀ X) private -- Build transport structure descriptor from a function [t : Type ℓ → Type ℓ'] buildPosRelDesc : ℕ → R.Term → R.Term → R.Term → R.TC R.Term buildPosRelDesc zero ℓ ℓ' t = R.typeError (R.strErr "Ran out of fuel! at \n" ∷ R.termErr t ∷ []) buildPosRelDesc (suc fuel) ℓ ℓ' t = tryConstant t <|> tryPointed t <|> tryProduct t <|> tryMaybe t <|> R.typeError (R.strErr "Can't automatically generate a positive structure for\n" ∷ R.termErr t ∷ []) where tryConstant : R.Term → R.TC R.Term tryConstant t = newMeta (thSet ℓ') >>= λ A → R.unify t (R.def (quote constantShape) (varg ℓ ∷ varg A ∷ [])) >> R.returnTC (R.con (quote PosRelDesc.constant) (varg A ∷ [])) tryPointed : R.Term → R.TC R.Term tryPointed t = R.unify t (R.def (quote pointedShape) (varg ℓ ∷ [])) >> R.returnTC (R.con (quote PosRelDesc.var) []) tryProduct : R.Term → R.TC R.Term tryProduct t = newMeta tLevel >>= λ ℓ₀ → newMeta tLevel >>= λ ℓ₁ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → newMeta (tStruct ℓ ℓ₁) >>= λ A₁ → R.unify t (R.def (quote productShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >> buildPosRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → buildPosRelDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ → R.returnTC (R.con (quote PosRelDesc._,_) (varg d₀ ∷ varg d₁ ∷ [])) tryMaybe : R.Term → R.TC R.Term tryMaybe t = newMeta tLevel >>= λ ℓ₀ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → R.unify t (R.def (quote maybeShape) (varg ℓ ∷ varg A₀ ∷ [])) >> buildPosRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → R.returnTC (R.con (quote PosRelDesc.maybe) (varg d₀ ∷ [])) autoPosRelDesc' : R.Term → R.Term → R.TC Unit autoPosRelDesc' t hole = R.inferType hole >>= λ H → newMeta tLevel >>= λ ℓ → newMeta tLevel >>= λ ℓ' → R.unify (tPosRelDesc ℓ) H >> R.checkType t (tStruct ℓ ℓ') >> buildPosRelDesc FUEL ℓ ℓ' t >>= R.unify hole -- Build structure descriptor from a function [t : Type ℓ → Type ℓ'] buildRelDesc : ℕ → R.Term → R.Term → R.Term → R.TC R.Term buildRelDesc zero ℓ ℓ' t = R.typeError (R.strErr "Ran out of fuel! at \n" ∷ R.termErr t ∷ []) buildRelDesc (suc fuel) ℓ ℓ' t = tryConstant t <|> tryPointed t <|> tryProduct t <|> tryParam t <|> tryFunction t <|> tryMaybe t <|> R.typeError (R.strErr "Can't automatically generate a structure for\n" ∷ R.termErr t ∷ []) where tryConstant : R.Term → R.TC R.Term tryConstant t = newMeta (thSet ℓ') >>= λ A → R.unify t (R.def (quote constantShape) (varg ℓ ∷ varg A ∷ [])) >> R.returnTC (R.con (quote RelDesc.constant) (varg A ∷ [])) tryPointed : R.Term → R.TC R.Term tryPointed t = R.unify t (R.def (quote pointedShape) (varg ℓ ∷ [])) >> R.returnTC (R.con (quote RelDesc.var) []) tryProduct : R.Term → R.TC R.Term tryProduct t = newMeta tLevel >>= λ ℓ₀ → newMeta tLevel >>= λ ℓ₁ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → newMeta (tStruct ℓ ℓ₁) >>= λ A₁ → R.unify t (R.def (quote productShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >> buildRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → buildRelDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ → R.returnTC (R.con (quote RelDesc._,_) (varg d₀ ∷ varg d₁ ∷ [])) tryParam : R.Term → R.TC R.Term tryParam t = newMeta (tType R.unknown) >>= λ A → newMeta tLevel >>= λ ℓ₀ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → R.unify t (R.def (quote paramShape) (varg ℓ ∷ varg A ∷ varg A₀ ∷ [])) >> buildRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → R.returnTC (R.con (quote RelDesc.param) (varg A ∷ varg d₀ ∷ [])) tryFunction : R.Term → R.TC R.Term tryFunction t = newMeta tLevel >>= λ ℓ₀ → newMeta tLevel >>= λ ℓ₁ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → newMeta (tStruct ℓ ℓ₁) >>= λ A₁ → R.unify t (R.def (quote functionShape) (varg ℓ ∷ varg A₀ ∷ varg A₁ ∷ [])) >> buildPosRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → buildRelDesc fuel ℓ ℓ₁ A₁ >>= λ d₁ → R.returnTC (R.con (quote RelDesc.function+) (varg d₀ ∷ varg d₁ ∷ [])) tryMaybe : R.Term → R.TC R.Term tryMaybe t = newMeta tLevel >>= λ ℓ₀ → newMeta (tStruct ℓ ℓ₀) >>= λ A₀ → R.unify t (R.def (quote maybeShape) (varg ℓ ∷ varg A₀ ∷ [])) >> buildRelDesc fuel ℓ ℓ₀ A₀ >>= λ d₀ → R.returnTC (R.con (quote RelDesc.maybe) (varg d₀ ∷ [])) autoRelDesc' : R.Term → R.Term → R.TC Unit autoRelDesc' t hole = R.inferType hole >>= λ H → newMeta tLevel >>= λ ℓ → newMeta tLevel >>= λ ℓ' → R.unify (tRelDesc ℓ) H >> R.checkType t (tStruct ℓ ℓ') >> buildRelDesc FUEL ℓ ℓ' t >>= R.unify hole macro -- (Type ℓ → Type ℓ₁) → PosRelDesc ℓ autoPosRelDesc : R.Term → R.Term → R.TC Unit autoPosRelDesc = autoPosRelDesc' -- (S : Type ℓ → Type ℓ₁) → RelDesc ℓ autoRelDesc : R.Term → R.Term → R.TC Unit autoRelDesc = autoRelDesc' -- (S : Type ℓ → Type ℓ₁) → (Type ℓ → Type ℓ₁) -- Sanity check: should be the identity AutoStructure : R.Term → R.Term → R.TC Unit AutoStructure t hole = newMeta (tRelDesc R.unknown) >>= λ d → R.unify hole (R.def (quote RelMacroStructure) [ varg d ]) >> autoRelDesc' t d -- (S : Type ℓ → Type ℓ₁) → StrRel S _ AutoRelStr : R.Term → R.Term → R.TC Unit AutoRelStr t hole = newMeta (tRelDesc R.unknown) >>= λ d → R.unify hole (R.def (quote RelMacroRelStr) [ varg d ]) >> autoRelDesc' t d -- (S : Type ℓ → Type ℓ₁) → SuitableStrRel S (AutoStrRel S) autoSuitableRel : R.Term → R.Term → R.TC Unit autoSuitableRel t hole = newMeta (tRelDesc R.unknown) >>= λ d → R.unify hole (R.def (quote relMacroSuitableRel) [ varg d ]) >> autoRelDesc' t d -- (S : Type ℓ → Type ℓ₁) → StrRelMatchesEquiv (AutoRelStr S) (AutoEquivStr S) autoMatchesEquiv : R.Term → R.Term → R.TC Unit autoMatchesEquiv t hole = newMeta (tRelDesc R.unknown) >>= λ d → R.unify hole (R.def (quote relMacroMatchesEquiv) [ varg d ]) >> autoRelDesc' t d
35.718254
116
0.603266
ad665eab19827a4368e0063bbd2525af9b9848c7
213
agda
Agda
test/Fail/Erased-cubical-Open-public/Cubical.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Erased-cubical-Open-public/Cubical.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Erased-cubical-Open-public/Cubical.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} module Erased-cubical-Open-public.Cubical where -- It instantiates and exports code from -- Erased-cubical-Open-public.Erased. open import Erased-cubical-Open-public.Erased Set public
23.666667
56
0.769953
30435bded91d95ba8cd89facd35a5ddbce4d6e0f
7,494
agda
Agda
Examples/Expression.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Examples/Expression.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
Examples/Expression.agda
nad/pretty
b956803ba90b6c5f57bbbaab01bb18485d948492
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Simple expressions ------------------------------------------------------------------------ -- Several examples based on Matsuda and Wang's "FliPpr: A Prettier -- Invertible Printing System". {-# OPTIONS --guardedness #-} module Examples.Expression where open import Algebra open import Codata.Musical.Notation open import Data.List open import Data.List.Properties open import Data.Product open import Data.Unit open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) private module LM {A : Set} = Monoid (++-monoid A) open import Examples.Identifier import Grammar.Infinite as Grammar import Pretty open import Renderer open import Utilities -- Very simple expressions. module Expression₁ where data Expr : Set where one : Expr sub : Expr → Expr → Expr module _ where open Grammar mutual expr : Grammar Expr expr = term ∣ sub <$> ♯ expr <⊛ whitespace ⋆ <⊛ string′ "-" <⊛ whitespace ⋆ ⊛ term term : Grammar Expr term = one <$ string′ "1" ∣ string′ "(" ⊛> whitespace ⋆ ⊛> ♯ expr <⊛ whitespace ⋆ <⊛ string′ ")" open Pretty one-doc : Doc term one one-doc = left (<$ text) mutual expr-printer : Pretty-printer expr expr-printer one = left one-doc expr-printer (sub e₁ e₂) = group (right (<$> expr-printer e₁ <⊛-tt nest 2 line⋆ <⊛ text <⊛ space ⊛ nest 2 (term-printer e₂))) term-printer : Pretty-printer term term-printer one = one-doc term-printer e = right (text ⊛> nil-⋆ ⊛> expr-printer e <⊛ nil-⋆ <⊛ text) example : Expr example = sub (sub one one) (sub one one) test₁ : render 80 (expr-printer example) ≡ "1 - 1 - (1 - 1)" test₁ = refl test₂ : render 11 (expr-printer example) ≡ "1 - 1\n - (1 - 1)" test₂ = refl test₃ : render 8 (expr-printer example) ≡ "1 - 1\n - (1\n - 1)" test₃ = refl -- Expression₁.expr does not accept final whitespace. The grammar -- below does. module Expression₂ where open Expression₁ using (Expr; one; sub; example) module _ where open Grammar mutual expr : Grammar Expr expr = term ∣ sub <$> ♯ expr <⊛ symbol′ "-" ⊛ term term : Grammar Expr term = one <$ symbol′ "1" ∣ symbol′ "(" ⊛> ♯ expr <⊛ symbol′ ")" private -- A manual proof of Trailing-whitespace expr (included for -- illustrative purposes; not used below). Trailing-whitespace″ : ∀ {A} → Grammar A → Set₁ Trailing-whitespace″ g = ∀ {x s s₁ s₂} → x ∈ g · s₁ → s ∈ whitespace ⋆ · s₂ → x ∈ g · s₁ ++ s₂ tw′-whitespace : Trailing-whitespace′ (whitespace ⋆) tw′-whitespace ⋆-[]-sem w = _ , w tw′-whitespace (⋆-+-sem (⊛-sem {s₁ = s₁} (<$>-sem p) q)) w with tw′-whitespace q w ... | _ , r = _ , cast (P.sym $ LM.assoc s₁ _ _) (⋆-+-sem (⊛-sem (<$>-sem p) r)) tw″-symbol : ∀ {s} → Trailing-whitespace″ (symbol s) tw″-symbol (<⊛-sem {s₁ = s₁} p q) w = cast (P.sym $ LM.assoc s₁ _ _) (<⊛-sem p (proj₂ (tw′-whitespace q w))) tw″-term : Trailing-whitespace″ term tw″-term (left-sem (<$-sem p)) w = left-sem (<$-sem (tw″-symbol p w)) tw″-term (right-sem (<⊛-sem {s₁ = s₁} p q)) w = cast (P.sym $ LM.assoc s₁ _ _) (right-sem (<⊛-sem p (tw″-symbol q w))) tw″-expr : Trailing-whitespace″ expr tw″-expr (left-sem p) w = left-sem (tw″-term p w) tw″-expr (right-sem (⊛-sem {s₁ = s₁} p q)) w = cast (P.sym $ LM.assoc s₁ _ _) (right-sem (⊛-sem p (tw″-term q w))) tw-expr : Trailing-whitespace expr tw-expr (<⊛-sem p w) = tw″-expr p w open Pretty one-doc : Doc term one one-doc = left (<$ symbol) mutual expr-printer : Pretty-printer expr expr-printer one = left one-doc expr-printer (sub e₁ e₂) = group (right (<$> final-line 6 (expr-printer e₁) 2 <⊛ symbol-space ⊛ nest 2 (term-printer e₂))) term-printer : Pretty-printer term term-printer one = one-doc term-printer e = right (symbol ⊛> expr-printer e <⊛ symbol) test₁ : render 80 (expr-printer example) ≡ "1 - 1 - (1 - 1)" test₁ = refl test₂ : render 11 (expr-printer example) ≡ "1 - 1\n - (1 - 1)" test₂ = refl test₃ : render 8 (expr-printer example) ≡ "1 - 1\n - (1\n - 1)" test₃ = refl -- A somewhat larger expression example. module Expression₃ where -- Expressions. data Expr : Set where one : Expr sub : Expr → Expr → Expr div : Expr → Expr → Expr var : Identifier → Expr -- Precedences. data Prec : Set where ′5 ′6 ′7 : Prec module _ where open Grammar -- One expression grammar for each precedence level. expr : Prec → Grammar Expr expr ′5 = ♯ expr ′6 ∣ sub <$> ♯ expr ′5 <⊛ symbol′ "-" ⊛ ♯ expr ′6 expr ′6 = ♯ expr ′7 ∣ div <$> ♯ expr ′6 <⊛ symbol′ "/" ⊛ ♯ expr ′7 expr ′7 = one <$ symbol′ "1" ∣ var <$> identifier-w ∣ symbol′ "(" ⊛> ♯ expr ′5 <⊛ symbol′ ")" open Pretty -- Document for one. one-doc : Doc (expr ′7) one one-doc = left (left (<$ symbol)) -- Documents for variables. var-doc : ∀ x → Doc (expr ′7) (var x) var-doc x = left (right (<$> identifier-w-printer x)) -- Adds parentheses to a document. parens : ∀ {e} → Doc (expr ′5) e → Doc (expr ′7) e parens d = right (symbol ⊛> d <⊛ symbol) -- Adds parentheses only when necessary (when p₁ < p₂). parens-if[_<_] : ∀ p₁ p₂ {e} → Doc (expr p₁) e → Doc (expr p₂) e parens-if[ ′5 < ′5 ] = id parens-if[ ′5 < ′6 ] = left ∘ parens parens-if[ ′5 < ′7 ] = parens parens-if[ ′6 < ′5 ] = left parens-if[ ′6 < ′6 ] = id parens-if[ ′6 < ′7 ] = parens ∘ left parens-if[ ′7 < ′5 ] = left ∘ left parens-if[ ′7 < ′6 ] = left parens-if[ ′7 < ′7 ] = id mutual -- Pretty-printers. expr-printer : ∀ p → Pretty-printer (expr p) expr-printer p (sub e₁ e₂) = parens-if[ ′5 < p ] (sub-printer e₁ e₂) expr-printer p (div e₁ e₂) = parens-if[ ′6 < p ] (div-printer e₁ e₂) expr-printer p one = parens-if[ ′7 < p ] one-doc expr-printer p (var x) = parens-if[ ′7 < p ] (var-doc x) sub-printer : ∀ e₁ e₂ → Doc (expr ′5) (sub e₁ e₂) sub-printer e₁ e₂ = group (right (<$> final-line 10 (expr-printer ′5 e₁) 2 <⊛ symbol-space ⊛ nest 2 (expr-printer ′6 e₂))) div-printer : ∀ e₁ e₂ → Doc (expr ′6) (div e₁ e₂) div-printer e₁ e₂ = group (right (<$> final-line 10 (expr-printer ′6 e₁) 2 <⊛ symbol-space ⊛ nest 2 (expr-printer ′7 e₂))) -- Unit tests. example : Expr example = sub (div (var (str⁺ "x")) one) (sub one (var (str⁺ "y"))) test₁ : render 80 (expr-printer ′5 example) ≡ "x / 1 - (1 - y)" test₁ = refl test₂ : render 11 (expr-printer ′5 example) ≡ "x / 1\n - (1 - y)" test₂ = refl test₃ : render 8 (expr-printer ′5 example) ≡ "x / 1\n - (1\n - y)" test₃ = refl test₄ : render 11 (expr-printer ′6 example) ≡ "(x / 1\n - (1\n - y))" test₄ = refl test₅ : render 12 (expr-printer ′6 example) ≡ "(x / 1\n - (1 - y))" test₅ = refl
26.956835
75
0.531759
352f0b57a955868d9ff4e3985cbe0d5375a54ee1
1,225
agda
Agda
Cubical/Categories/Limits/BinCoproduct.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Categories/Limits/BinCoproduct.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/Limits/BinCoproduct.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
-- Binary coproducts {-# OPTIONS --safe #-} module Cubical.Categories.Limits.BinCoproduct where open import Cubical.Categories.Category.Base open import Cubical.Data.Sigma.Base open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.HITs.PropositionalTruncation.Base private variable ℓ ℓ' : Level module _ (C : Category ℓ ℓ') where open Category C module _ {x y x+y : ob} (i₁ : Hom[ x , x+y ]) (i₂ : Hom[ y , x+y ]) where isBinCoproduct : Type (ℓ-max ℓ ℓ') isBinCoproduct = ∀ {z : ob} (f₁ : Hom[ x , z ]) (f₂ : Hom[ y , z ]) → ∃![ f ∈ Hom[ x+y , z ] ] (i₁ ⋆ f ≡ f₁) × (i₂ ⋆ f ≡ f₂) isPropIsBinCoproduct : isProp (isBinCoproduct) isPropIsBinCoproduct = isPropImplicitΠ (λ _ → isPropΠ2 (λ _ _ → isPropIsContr)) record BinCoproduct (x y : ob) : Type (ℓ-max ℓ ℓ') where field binCoprodOb : ob binCoprodInj₁ : Hom[ x , binCoprodOb ] binCoprodInj₂ : Hom[ y , binCoprodOb ] univProp : isBinCoproduct binCoprodInj₁ binCoprodInj₂ BinCoproducts : Type (ℓ-max ℓ ℓ') BinCoproducts = (x y : ob) → BinCoproduct x y hasBinCoproducts : Type (ℓ-max ℓ ℓ') hasBinCoproducts = ∥ BinCoproducts ∥
27.840909
83
0.647347
adabd33a1e0f4a06c87d63d7466615009b4b61b3
2,808
agda
Agda
Cubical/Codata/M/AsLimit/M/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Codata/M/AsLimit/M/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Codata/M/AsLimit/M/Properties.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --guardedness --safe #-} module Cubical.Codata.M.AsLimit.M.Properties where open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.Data.Nat as ℕ using (ℕ ; suc ; _+_ ) open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv using (_≃_) open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Functions.Embedding open import Cubical.Codata.M.AsLimit.helper open import Cubical.Codata.M.AsLimit.M.Base open import Cubical.Codata.M.AsLimit.Container -- in-fun and out-fun are inverse open Iso in-inverse-out : ∀ {ℓ} {S : Container ℓ} → (in-fun {S = S} ∘ out-fun {S = S}) ≡ idfun (M S) in-inverse-out {S = S} = subst (λ inv → in-fun {S = S} ∘ inv ≡ idfun (M S)) idpath def where -- substituting refl makes type-checking work a lot faster, but introduces a transport -- TODO (2020-05-23): revisit this at some point to see if it's still needed in future versions of agda def : (in-fun {S = S} ∘ inv (shift-iso S)) ≡ idfun (M S) def = funExt (rightInv (shift-iso S)) idpath : inv (shift-iso S) ≡ out-fun {S = S} idpath = refl out-inverse-in : ∀ {ℓ} {S : Container ℓ} → (out-fun {S = S} ∘ in-fun {S = S}) ≡ idfun (P₀ S (M S)) out-inverse-in {S = S} = subst (λ fun → out-fun {S = S} ∘ fun ≡ idfun (P₀ S (M S))) idpath def where def : (out-fun {S = S} ∘ fun (shift-iso S)) ≡ idfun (P₀ S (M S)) def = funExt (leftInv (shift-iso S)) idpath : fun (shift-iso S) ≡ in-fun {S = S} idpath = refl in-out-id : ∀ {ℓ} {S : Container ℓ} -> ∀ {x y : M S} → (in-fun (out-fun x) ≡ in-fun (out-fun y)) ≡ (x ≡ y) in-out-id {x = x} {y} i = (in-inverse-out i x) ≡ (in-inverse-out i y) -- constructor properties in-inj : ∀ {ℓ} {S : Container ℓ} {Z : Type ℓ} → ∀ {f g : Z → P₀ S (M S)} → (in-fun ∘ f ≡ in-fun ∘ g) ≡ (f ≡ g) in-inj {ℓ} {S = S} {Z = Z} {f = f} {g = g} = iso→fun-Injection-Path {ℓ = ℓ} {A = P₀ S (M S)} {B = M S} {C = Z} (shift-iso S) {f = f} {g = g} out-inj : ∀ {ℓ} {S : Container ℓ} {Z : Type ℓ} → ∀ {f g : Z → M S} → (out-fun ∘ f ≡ out-fun ∘ g) ≡ (f ≡ g) out-inj {ℓ} {S = S} {Z = Z} {f = f} {g = g} = iso→inv-Injection-Path {ℓ = ℓ} {A = P₀ S (M S)} {B = M S} {C = Z} (shift-iso S) {f = f} {g = g} in-inj-x : ∀ {ℓ} {S : Container ℓ} → ∀ {x y : P₀ S (M S)} → (in-fun x ≡ in-fun y) ≡ (x ≡ y) in-inj-x {ℓ} {S = S} {x = x} {y} = iso→fun-Injection-Path-x (shift-iso S) {x} {y} out-inj-x : ∀ {ℓ} {S : Container ℓ} → ∀ {x y : M S} → (out-fun x ≡ out-fun y) ≡ (x ≡ y) out-inj-x {ℓ} {S = S} {x = x} {y} = iso→inv-Injection-Path-x (shift-iso S) {x} {y}
45.290323
141
0.606838
fd361f3417af492ad7c98ed2d66faa4c9d1f6ff6
9,103
agda
Agda
core/lib/groups/GroupProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
core/lib/groups/GroupProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
core/lib/groups/GroupProduct.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Bool open import lib.types.Group open import lib.types.Nat open import lib.types.Pi open import lib.types.Sigma open import lib.types.Coproduct open import lib.types.Truncation open import lib.groups.Homomorphism open import lib.groups.Isomorphism open import lib.groups.SubgroupProp open import lib.groups.Lift open import lib.groups.Unit module lib.groups.GroupProduct where {- binary product -} ×-group-struct : ∀ {i j} {A : Type i} {B : Type j} (GS : GroupStructure A) (HS : GroupStructure B) → GroupStructure (A × B) ×-group-struct {A = A} {B = B} GS HS = record {M} where module G = GroupStructure GS module H = GroupStructure HS module M where ident : A × B ident = G.ident , H.ident inv : A × B → A × B inv (g , h) = G.inv g , H.inv h comp : A × B → A × B → A × B comp (g₁ , h₁) (g₂ , h₂) = G.comp g₁ g₂ , H.comp h₁ h₂ abstract unit-l : ∀ ab → comp ident ab == ab unit-l (g , h) = pair×= (G.unit-l g) (H.unit-l h) assoc : ∀ ab₁ ab₂ ab₃ → comp (comp ab₁ ab₂) ab₃ == comp ab₁ (comp ab₂ ab₃) assoc (g₁ , h₁) (g₂ , h₂) (g₃ , h₃) = pair×= (G.assoc g₁ g₂ g₃) (H.assoc h₁ h₂ h₃) inv-l : ∀ ab → comp (inv ab) ab == ident inv-l (g , h) = pair×= (G.inv-l g) (H.inv-l h) infix 80 _×ᴳˢ_ _×ᴳˢ_ = ×-group-struct infix 80 _×ᴳ_ _×ᴳ_ : ∀ {i j} → Group i → Group j → Group (lmax i j) _×ᴳ_ (group A A-struct) (group B B-struct) = group (A × B) (×-group-struct A-struct B-struct) {- general product -} Π-group-struct : ∀ {i j} {I : Type i} {A : I → Type j} (FS : (i : I) → GroupStructure (A i)) → GroupStructure (Π I A) Π-group-struct FS = record { ident = ident ∘ FS; inv = λ f i → inv (FS i) (f i); comp = λ f g i → comp (FS i) (f i) (g i); unit-l = λ f → (λ= (λ i → unit-l (FS i) (f i))); assoc = λ f g h → (λ= (λ i → assoc (FS i) (f i) (g i) (h i))); inv-l = λ f → (λ= (λ i → inv-l (FS i) (f i)))} where open GroupStructure Πᴳ : ∀ {i j} (I : Type i) (F : I → Group j) → Group (lmax i j) Πᴳ I F = group (Π I (El ∘ F)) {{Π-level (λ i → El-level (F i))}} -- TODO: how to get instance search to work? (Π-group-struct (group-struct ∘ F)) where open Group {- functorial behavior of [Πᴳ] -} Πᴳ-emap-r : ∀ {i j k} (I : Type i) {F : I → Group j} {G : I → Group k} → (∀ i → F i ≃ᴳ G i) → Πᴳ I F ≃ᴳ Πᴳ I G Πᴳ-emap-r I {F} {G} iso = ≃-to-≃ᴳ (Π-emap-r (GroupIso.f-equiv ∘ iso)) (λ f g → λ= λ i → GroupIso.pres-comp (iso i) (f i) (g i)) {- the product of abelian groups is abelian -} ×ᴳ-is-abelian : ∀ {i j} (G : Group i) (H : Group j) → is-abelian G → is-abelian H → is-abelian (G ×ᴳ H) ×ᴳ-is-abelian G H aG aH (g₁ , h₁) (g₂ , h₂) = pair×= (aG g₁ g₂) (aH h₁ h₂) ×ᴳ-abgroup : ∀ {i j} → AbGroup i → AbGroup j → AbGroup (lmax i j) ×ᴳ-abgroup (G , aG) (H , aH) = G ×ᴳ H , ×ᴳ-is-abelian G H aG aH Πᴳ-is-abelian : ∀ {i j} {I : Type i} {F : I → Group j} → (∀ i → is-abelian (F i)) → is-abelian (Πᴳ I F) Πᴳ-is-abelian aF f₁ f₂ = λ= (λ i → aF i (f₁ i) (f₂ i)) {- defining a homomorphism into a product -} ×ᴳ-fanout : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k} → (G →ᴳ H) → (G →ᴳ K) → (G →ᴳ H ×ᴳ K) ×ᴳ-fanout (group-hom h h-comp) (group-hom k k-comp) = group-hom (fanout h k) (λ x y → pair×= (h-comp x y) (k-comp x y)) Πᴳ-fanout : ∀ {i j k} {I : Type i} {G : Group j} {F : I → Group k} → ((i : I) → G →ᴳ F i) → (G →ᴳ Πᴳ I F) Πᴳ-fanout h = group-hom (λ x i → GroupHom.f (h i) x) (λ x y → λ= (λ i → GroupHom.pres-comp (h i) x y)) {- projection homomorphisms -} ×ᴳ-fst : ∀ {i j} {G : Group i} {H : Group j} → (G ×ᴳ H →ᴳ G) ×ᴳ-fst = group-hom fst (λ _ _ → idp) ×ᴳ-snd : ∀ {i j} {G : Group i} {H : Group j} → (G ×ᴳ H →ᴳ H) ×ᴳ-snd = group-hom snd (λ _ _ → idp) ×ᴳ-snd-is-surj : ∀ {i j} {G : Group i} {H : Group j} → is-surjᴳ (×ᴳ-snd {G = G} {H = H}) ×ᴳ-snd-is-surj {G = G} h = [ (Group.ident G , h) , idp ] Πᴳ-proj : ∀ {i j} {I : Type i} {F : I → Group j} (i : I) → (Πᴳ I F →ᴳ F i) Πᴳ-proj i = group-hom (λ f → f i) (λ _ _ → idp) {- injection homomorphisms -} module _ {i j} {G : Group i} {H : Group j} where ×ᴳ-inl : G →ᴳ G ×ᴳ H ×ᴳ-inl = ×ᴳ-fanout (idhom G) cst-hom ×ᴳ-inr : H →ᴳ G ×ᴳ H ×ᴳ-inr = ×ᴳ-fanout (cst-hom {H = G}) (idhom H) ×ᴳ-diag : ∀ {i} {G : Group i} → (G →ᴳ G ×ᴳ G) ×ᴳ-diag = ×ᴳ-fanout (idhom _) (idhom _) {- when G is abelian, we can define a map H×K → G as a sum of maps - H → G and K → G (that is, the product behaves as a sum) -} module _ {i j k} {G : Group i} {H : Group j} {K : Group k} (G-abelian : is-abelian G) where private module G = AbGroup (G , G-abelian) module H = Group H module K = Group K ×ᴳ-fanin : (H →ᴳ G) → (K →ᴳ G) → (H ×ᴳ K →ᴳ G) ×ᴳ-fanin φ ψ = group-hom (λ {(h , k) → G.comp (φ.f h) (ψ.f k)}) lemma where module φ = GroupHom φ module ψ = GroupHom ψ abstract lemma : preserves-comp (Group.comp (H ×ᴳ K)) G.comp (λ {(h , k) → G.comp (φ.f h) (ψ.f k)}) lemma (h₁ , k₁) (h₂ , k₂) = G.comp (φ.f (H.comp h₁ h₂)) (ψ.f (K.comp k₁ k₂)) =⟨ φ.pres-comp h₁ h₂ |in-ctx (λ w → G.comp w (ψ.f (K.comp k₁ k₂))) ⟩ G.comp (G.comp (φ.f h₁) (φ.f h₂)) (ψ.f (K.comp k₁ k₂)) =⟨ ψ.pres-comp k₁ k₂ |in-ctx (λ w → G.comp (G.comp (φ.f h₁) (φ.f h₂)) w) ⟩ G.comp (G.comp (φ.f h₁) (φ.f h₂)) (G.comp (ψ.f k₁) (ψ.f k₂)) =⟨ G.interchange (φ.f h₁) (φ.f h₂) (ψ.f k₁) (ψ.f k₂) ⟩ G.comp (G.comp (φ.f h₁) (ψ.f k₁)) (G.comp (φ.f h₂) (ψ.f k₂)) =∎ abstract ×ᴳ-fanin-η : ∀ {i j} (G : Group i) (H : Group j) (aGH : is-abelian (G ×ᴳ H)) → ∀ gh → gh == GroupHom.f (×ᴳ-fanin {G = G ×ᴳ H} aGH ×ᴳ-inl ×ᴳ-inr) gh ×ᴳ-fanin-η G H aGH (g , h) = ! (pair×= (Group.unit-r G g) (Group.unit-l H h)) ×ᴳ-fanin-pre∘ : ∀ {i j k l} {G : Group i} {H : Group j} {K : Group k} {L : Group l} (aK : is-abelian K) (aL : is-abelian L) (φ : K →ᴳ L) (ψ : G →ᴳ K) (χ : H →ᴳ K) → ∀ kh → GroupHom.f (×ᴳ-fanin aL (φ ∘ᴳ ψ) (φ ∘ᴳ χ)) kh == GroupHom.f (φ ∘ᴳ ×ᴳ-fanin aK ψ χ) kh ×ᴳ-fanin-pre∘ aK aL φ ψ χ (g , h) = ! (GroupHom.pres-comp φ (GroupHom.f ψ g) (GroupHom.f χ h)) {- define a homomorphism [G₁ × G₂ → H₁ × H₂] from homomorphisms - [G₁ → H₁] and [G₂ → H₂] -} ×ᴳ-fmap : ∀ {i j k l} {G₁ : Group i} {G₂ : Group j} {H₁ : Group k} {H₂ : Group l} → (G₁ →ᴳ H₁) → (G₂ →ᴳ H₂) → (G₁ ×ᴳ G₂ →ᴳ H₁ ×ᴳ H₂) ×ᴳ-fmap {G₁ = G₁} {G₂} {H₁} {H₂} φ ψ = group-hom (×-fmap φ.f ψ.f) lemma where module φ = GroupHom φ module ψ = GroupHom ψ abstract lemma : preserves-comp (Group.comp (G₁ ×ᴳ G₂)) (Group.comp (H₁ ×ᴳ H₂)) (λ {(h₁ , h₂) → (φ.f h₁ , ψ.f h₂)}) lemma (h₁ , h₂) (h₁' , h₂') = pair×= (φ.pres-comp h₁ h₁') (ψ.pres-comp h₂ h₂') ×ᴳ-emap : ∀ {i j k l} {G₁ : Group i} {G₂ : Group j} {H₁ : Group k} {H₂ : Group l} → (G₁ ≃ᴳ H₁) → (G₂ ≃ᴳ H₂) → (G₁ ×ᴳ G₂ ≃ᴳ H₁ ×ᴳ H₂) ×ᴳ-emap (φ , φ-is-equiv) (ψ , ψ-is-equiv) = ×ᴳ-fmap φ ψ , ×-isemap φ-is-equiv ψ-is-equiv {- equivalences in Πᴳ -} Πᴳ-emap-l : ∀ {i j k} {A : Type i} {B : Type j} (F : B → Group k) → (e : A ≃ B) → Πᴳ A (F ∘ –> e) ≃ᴳ Πᴳ B F Πᴳ-emap-l {A = A} {B = B} F e = ≃-to-≃ᴳ (Π-emap-l (Group.El ∘ F) e) lemma where abstract lemma = λ f g → λ= λ b → transp-El-pres-comp F (<–-inv-r e b) (f (<– e b)) (g (<– e b)) {- 0ᴳ is a unit for product -} ×ᴳ-unit-l : ∀ {i} (G : Group i) → 0ᴳ ×ᴳ G ≃ᴳ G ×ᴳ-unit-l _ = ×ᴳ-snd {G = 0ᴳ} , is-eq snd (λ g → (unit , g)) (λ _ → idp) (λ _ → idp) ×ᴳ-unit-r : ∀ {i} (G : Group i) → G ×ᴳ 0ᴳ ≃ᴳ G ×ᴳ-unit-r _ = ×ᴳ-fst , is-eq fst (λ g → (g , unit)) (λ _ → idp) (λ _ → idp) {- A product Πᴳ indexed by Bool is the same as a binary product -} module _ {i j k} {A : Type i} {B : Type j} (F : A ⊔ B → Group k) where Πᴳ₁-⊔-iso-×ᴳ : Πᴳ (A ⊔ B) F ≃ᴳ Πᴳ A (F ∘ inl) ×ᴳ Πᴳ B (F ∘ inr) Πᴳ₁-⊔-iso-×ᴳ = ≃-to-≃ᴳ (Π₁-⊔-equiv-× (Group.El ∘ F)) (λ _ _ → idp) {- Commutativity of ×ᴳ -} ×ᴳ-comm : ∀ {i j} (H : Group i) (K : Group j) → H ×ᴳ K ≃ᴳ K ×ᴳ H ×ᴳ-comm H K = group-hom (λ {(h , k) → (k , h)}) (λ _ _ → idp) , is-eq _ (λ {(k , h) → (h , k)}) (λ _ → idp) (λ _ → idp) {- Associativity of ×ᴳ -} ×ᴳ-assoc : ∀ {i j k} (G : Group i) (H : Group j) (K : Group k) → ((G ×ᴳ H) ×ᴳ K) ≃ᴳ (G ×ᴳ (H ×ᴳ K)) ×ᴳ-assoc G H K = group-hom (λ {((g , h) , k) → (g , (h , k))}) (λ _ _ → idp) , is-eq _ (λ {(g , (h , k)) → ((g , h) , k)}) (λ _ → idp) (λ _ → idp) module _ {i} where infixl 80 _^ᴳ_ _^ᴳ_ : Group i → ℕ → Group i H ^ᴳ O = Lift-group {j = i} 0ᴳ H ^ᴳ (S n) = H ×ᴳ (H ^ᴳ n) ^ᴳ-+ : (H : Group i) (m n : ℕ) → H ^ᴳ (m + n) ≃ᴳ (H ^ᴳ m) ×ᴳ (H ^ᴳ n) ^ᴳ-+ H O n = ×ᴳ-emap (lift-iso {G = 0ᴳ}) (idiso (H ^ᴳ n)) ∘eᴳ ×ᴳ-unit-l (H ^ᴳ n) ⁻¹ᴳ ^ᴳ-+ H (S m) n = ×ᴳ-assoc H (H ^ᴳ m) (H ^ᴳ n) ⁻¹ᴳ ∘eᴳ ×ᴳ-emap (idiso H) (^ᴳ-+ H m n) module _ where Πᴳ-is-trivial : ∀ {i j} (I : Type i) (F : I → Group j) → (∀ (i : I) → is-trivialᴳ (F i)) → is-trivialᴳ (Πᴳ I F) Πᴳ-is-trivial I F F-is-trivial = λ f → λ= λ i → F-is-trivial i (f i) module _ {j} {F : Unit → Group j} where Πᴳ₁-Unit : Πᴳ Unit F ≃ᴳ F unit Πᴳ₁-Unit = ≃-to-≃ᴳ Π₁-Unit (λ _ _ → idp)
36.854251
109
0.509832
0d9688bb9573c684b5d6f5911aa9ece2ac7c88b1
1,195
agda
Agda
test/succeed/Issue1147.agda
larrytheliquid/agda
477c8c37f948e6038b773409358fd8f38395f827
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/Issue1147.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
null
null
null
test/succeed/Issue1147.agda
masondesu/agda
70c8a575c46f6a568c7518150a1a64fcd03aa437
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- 2014-05-26 Andrea & Andreas, AIM XIX -- Too eager pruning module succeed.Issue1147 where open import Common.Equality open import Common.Product open import Common.Prelude postulate A : Set if_then_else1_ : ∀ {A : Set1} → Bool → A → A → A if true then t else1 f = t if false then t else1 f = f test1 : let H : Set; H = _; M : Bool -> Set → Set; M = _ in {z : Set} → H ≡ (M true z) × M ≡ (\ b z → if b then A else1 z) test1 = refl , refl test2 : let H : Set; H = _; M : (Bool -> Bool) -> Set → Set; M = _ in {z : Set} → H ≡ (M (\ _ -> true) z) × M ≡ (\ b z → if b true then A else1 z) test2 = refl , refl test3 : let H : Set; H = _; M : (Bool × Bool) -> Set → Set; M = _ in {z : Set} {b : Bool} → H ≡ (M (true , b) z) × M ≡ (\ b z → if proj₁ b then A else1 z) test3 = refl , refl -- Also for defined functions fun : Bool → Bool fun true = true fun false = false works4 : let H : Set; H = _; M : (Bool -> Bool) -> Set → Set; M = _ in {z : Set} → M ≡ (\ b z → if b true then A else1 z) × H ≡ (M fun z) works4 = refl , refl test4 : let H : Set; H = _; M : (Bool -> Bool) -> Set → Set; M = _ in {z : Set} → H ≡ (M fun z) × M ≡ (\ b z → if b true then A else1 z) test4 = refl , refl
31.447368
154
0.554812
211d10afce5b8e5ebb7a24f17ae2bb8fc67eb27d
7,647
agda
Agda
agda/Counterpoint.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
28
2017-04-21T09:08:52.000Z
2022-03-04T18:04:07.000Z
agda/Counterpoint.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
1
2020-11-13T01:26:20.000Z
2020-11-17T00:58:55.000Z
agda/Counterpoint.agda
halfaya/MusicTools
04896c61b603d46011b7d718fcb47dd756e66021
[ "MIT" ]
3
2019-01-12T17:02:36.000Z
2020-11-10T04:04:40.000Z
{-# OPTIONS --cubical --safe #-} -- First and second species counterpoint module Counterpoint where open import Data.Bool using (Bool; true; false; if_then_else_; _∨_; _∧_; not) open import Data.Fin using (Fin; #_) open import Data.Integer using (+_) open import Data.List using (List; []; _∷_; mapMaybe; map; zip; _++_; concatMap) open import Data.Maybe using (Maybe; just; nothing) open import Data.Nat using (suc; _+_; _<ᵇ_; compare; _∸_; ℕ; zero) renaming (_≡ᵇ_ to _==_) open import Data.Product using (_×_; _,_; proj₁; proj₂; uncurry) open import Data.Vec using ([]; _∷_; Vec; lookup; drop; reverse) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Music open import Note open import Pitch open import Interval open import Util using (pairs) ------------------------------------------------ -- First species -- Beginning must be the 1st, 5th, or 8th data BeginningError : Set where not158 : PitchInterval → BeginningError checkBeginning : PitchInterval → Maybe BeginningError checkBeginning pi@(_ , i) = if ((i == per1) ∨ (i == per5) ∨ (i == per8)) then nothing else just (not158 pi) ------------------------------------------------ -- Intervals in middle bars must be consonant and non-unison data IntervalError : Set where dissonant : Upi → IntervalError unison : Pitch → IntervalError intervalCheck : PitchInterval → Maybe IntervalError intervalCheck (p , i) with isConsonant i | isUnison i intervalCheck (p , i) | false | _ = just (dissonant i) intervalCheck (p , i) | _ | true = just (unison p) intervalCheck (p , i) | _ | _ = nothing checkIntervals : List PitchInterval → List IntervalError checkIntervals = mapMaybe intervalCheck ------------------------------------------------ -- Perfect intervals must not approached by parallel or similar motion data Motion : Set where contrary : Motion parallel : Motion similar : Motion oblique : Motion motion : PitchInterval → PitchInterval → Motion motion (p , i) (q , j) = let p' = p + i; q' = q + j in if i == j then parallel else (if (p == q) ∨ (p' == q') then oblique else (if p <ᵇ q then (if p' <ᵇ q' then similar else contrary) else (if p' <ᵇ q' then contrary else similar))) data MotionError : Set where parallel : PitchInterval → PitchInterval → MotionError similar : PitchInterval → PitchInterval → MotionError motionCheck : PitchInterval → PitchInterval → Maybe MotionError motionCheck i1 i2 with motion i1 i2 | isPerfect (proj₂ i2) motionCheck i1 i2 | contrary | _ = nothing motionCheck i1 i2 | oblique | _ = nothing motionCheck i1 i2 | parallel | false = nothing motionCheck i1 i2 | parallel | true = just (parallel i1 i2) motionCheck i1 i2 | similar | false = nothing motionCheck i1 i2 | similar | true = just (similar i1 i2) checkMotion : List PitchInterval → List MotionError checkMotion = mapMaybe (uncurry motionCheck) ∘ pairs ------------------------------------------------ -- Ending must be the 1st or 8th approached by a cadence data EndingError : Set where not18 : PitchInterval → EndingError not27 : PitchInterval → EndingError tooShort : List PitchInterval → EndingError endingCheck : PitchInterval → PitchInterval → Maybe EndingError endingCheck pi1@(p , i) (q , 0) = if ((p + 1 == q) ∧ (i == min3)) then nothing else just (not27 pi1) endingCheck pi1@(p , i) (q , 12) = if ((q + 2 == p) ∧ (i == maj6) ∨ (p + 1 == q) ∧ (i == min10)) then nothing else just (not27 pi1) endingCheck pi1 pi2 = just (not18 pi2) checkEnding : List PitchInterval → PitchInterval → Maybe EndingError checkEnding [] _ = just (tooShort []) checkEnding (p ∷ []) q = endingCheck p q checkEnding (p ∷ ps) q = checkEnding ps q ------------------------------------------------ -- Correct first species counterpoint record FirstSpecies : Set where constructor firstSpecies field firstBar : PitchInterval middleBars : List PitchInterval lastBar : PitchInterval beginningOk : checkBeginning firstBar ≡ nothing intervalsOk : checkIntervals middleBars ≡ [] motionOk : checkMotion (firstBar ∷ middleBars) ≡ [] -- no need to include the last bar, -- since endingOK guarantees contrary motion in the ending endingOk : checkEnding middleBars lastBar ≡ nothing ------------------------------------------------ -- Second Species PitchInterval2 : Set PitchInterval2 = Pitch × Upi × Upi strongBeat : PitchInterval2 → PitchInterval strongBeat (p , i , _) = p , i weakBeat : PitchInterval2 → PitchInterval weakBeat (p , _ , i) = p , i expandPitchInterval2 : PitchInterval2 → List PitchInterval expandPitchInterval2 (p , i , j) = (p , i) ∷ (p , j) ∷ [] expandPitchIntervals2 : List PitchInterval2 → List PitchInterval expandPitchIntervals2 = concatMap expandPitchInterval2 ------------------------------------------------ -- Beginning must be the 5th or 8th data BeginningError2 : Set where not58 : PitchInterval → BeginningError2 checkBeginning2 : PitchInterval → Maybe BeginningError2 checkBeginning2 pi@(_ , i) = if ((i == per5) ∨ (i == per8)) then nothing else just (not58 pi) checkEnding2 : List PitchInterval2 → PitchInterval → Maybe EndingError checkEnding2 [] _ = just (tooShort []) checkEnding2 (p ∷ []) q = endingCheck (weakBeat p) q checkEnding2 (_ ∷ p ∷ ps) q = checkEnding2 (p ∷ ps) q ------------------------------------------------ -- Strong beats must be consonant and non-unison checkStrongBeats : List PitchInterval2 → List IntervalError checkStrongBeats = checkIntervals ∘ map strongBeat ------------------------------------------------ -- Weak beats may be dissonant or unison checkWeakBeat : PitchInterval2 → Pitch → Maybe IntervalError checkWeakBeat (p , i , j) q with isConsonant j | isUnison j checkWeakBeat (p , i , j) q | false | _ = if isPassingTone (secondPitch (p , i)) (secondPitch (p , j)) q then nothing else just (dissonant j) checkWeakBeat (p , i , j) q | _ | true = if isOppositeStep (secondPitch (p , i)) (secondPitch (p , j)) q then nothing else just (unison p) checkWeakBeat (p , i , j) q | _ | _ = nothing checkWeakBeats : List PitchInterval2 → Pitch → List IntervalError checkWeakBeats [] p = [] checkWeakBeats pis@(_ ∷ qis) p = mapMaybe (uncurry checkWeakBeat) (zip pis (map (λ {(q , i , j) → proj₂ (pitchIntervalToPitchPair (q , i))}) qis ++ (p ∷ []))) ------------------------------------------------ -- Perfect intervals on strong beats must not be approached by parallel or similar motion checkMotion2 : List PitchInterval → List MotionError checkMotion2 [] = [] checkMotion2 (_ ∷ []) = [] checkMotion2 (p ∷ q ∷ ps) = checkMotion (p ∷ q ∷ []) ++ checkMotion2 ps ------------------------------------------------ -- Correct second species counterpoint record SecondSpecies : Set where constructor secondSpecies field firstBar : PitchInterval -- require counterpont to start with a rest, which is preferred middleBars : List PitchInterval2 lastBar : PitchInterval -- require counterpoint to end with only a single whole note, which is preferred beginningOk : checkBeginning2 firstBar ≡ nothing strongBeatsOk : checkStrongBeats middleBars ≡ [] weakBeatsOk : checkWeakBeats middleBars (secondPitch lastBar) ≡ [] motionOk : checkMotion2 (firstBar ∷ (expandPitchIntervals2 middleBars)) ≡ [] endingOk : checkEnding2 middleBars lastBar ≡ nothing
35.901408
114
0.637505
d108b1f6920e9b6c83fef46ae592d657cf710e6c
2,266
agda
Agda
Cubical/Categories/Instances/Cospan.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Categories/Instances/Cospan.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/Instances/Cospan.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.Cospan where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category open import Cubical.Data.Unit open import Cubical.Data.Empty open Category data 𝟛 : Type ℓ-zero where ⓪ : 𝟛 ① : 𝟛 ② : 𝟛 CospanCat : Category ℓ-zero ℓ-zero CospanCat .ob = 𝟛 CospanCat .Hom[_,_] ⓪ ① = Unit CospanCat .Hom[_,_] ② ① = Unit CospanCat .Hom[_,_] ⓪ ⓪ = Unit CospanCat .Hom[_,_] ① ① = Unit CospanCat .Hom[_,_] ② ② = Unit CospanCat .Hom[_,_] _ _ = ⊥ CospanCat ._⋆_ {x = ⓪} {⓪} {⓪} f g = tt CospanCat ._⋆_ {x = ①} {①} {①} f g = tt CospanCat ._⋆_ {x = ②} {②} {②} f g = tt CospanCat ._⋆_ {x = ⓪} {①} {①} f g = tt CospanCat ._⋆_ {x = ②} {①} {①} f g = tt CospanCat ._⋆_ {x = ⓪} {⓪} {①} f g = tt CospanCat ._⋆_ {x = ②} {②} {①} f g = tt CospanCat .id {⓪} = tt CospanCat .id {①} = tt CospanCat .id {②} = tt CospanCat .⋆IdL {⓪} {①} _ = refl CospanCat .⋆IdL {②} {①} _ = refl CospanCat .⋆IdL {⓪} {⓪} _ = refl CospanCat .⋆IdL {①} {①} _ = refl CospanCat .⋆IdL {②} {②} _ = refl CospanCat .⋆IdR {⓪} {①} _ = refl CospanCat .⋆IdR {②} {①} _ = refl CospanCat .⋆IdR {⓪} {⓪} _ = refl CospanCat .⋆IdR {①} {①} _ = refl CospanCat .⋆IdR {②} {②} _ = refl CospanCat .⋆Assoc {⓪} {⓪} {⓪} {⓪} _ _ _ = refl CospanCat .⋆Assoc {⓪} {⓪} {⓪} {①} _ _ _ = refl CospanCat .⋆Assoc {⓪} {⓪} {①} {①} _ _ _ = refl CospanCat .⋆Assoc {⓪} {①} {①} {①} _ _ _ = refl CospanCat .⋆Assoc {①} {①} {①} {①} _ _ _ = refl CospanCat .⋆Assoc {②} {②} {②} {②} _ _ _ = refl CospanCat .⋆Assoc {②} {②} {②} {①} _ _ _ = refl CospanCat .⋆Assoc {②} {②} {①} {①} _ _ _ = refl CospanCat .⋆Assoc {②} {①} {①} {①} _ _ _ = refl CospanCat .isSetHom {⓪} {⓪} = isSetUnit CospanCat .isSetHom {⓪} {①} = isSetUnit CospanCat .isSetHom {①} {①} = isSetUnit CospanCat .isSetHom {②} {①} = isSetUnit CospanCat .isSetHom {②} {②} = isSetUnit -- makes it easier to write functors into CospanCat isPropHomCospanCat : (x y : ob CospanCat) → isProp (CospanCat [ x , y ]) isPropHomCospanCat ⓪ ⓪ = isPropUnit isPropHomCospanCat ⓪ ① = isPropUnit isPropHomCospanCat ⓪ ② = isProp⊥ isPropHomCospanCat ① ⓪ = isProp⊥ isPropHomCospanCat ① ① = isPropUnit isPropHomCospanCat ① ② = isProp⊥ isPropHomCospanCat ② ⓪ = isProp⊥ isPropHomCospanCat ② ① = isPropUnit isPropHomCospanCat ② ② = isPropUnit
29.051282
72
0.635481
031cbdd612986c833417fd431dd22355fe964d89
213
agda
Agda
Cubical/HITs/S3/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/HITs/S3/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/HITs/S3/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.S3.Base where open import Cubical.Foundations.Prelude data S³ : Type₀ where base : S³ surf : PathP (λ j → PathP (λ i → base ≡ base) refl refl) refl refl
21.3
68
0.680751
8b16fc86c9b0fb489e90f433feb65372bb660cdb
3,261
agda
Agda
agda-stdlib/src/Data/Maybe/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/Maybe/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/Maybe/Base.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- The Maybe type and some operations ------------------------------------------------------------------------ -- The definitions in this file are reexported by Data.Maybe. {-# OPTIONS --without-K --safe #-} module Data.Maybe.Base where open import Level open import Data.Bool.Base using (Bool; true; false; not) open import Data.Unit.Base using (⊤) open import Data.These.Base using (These; this; that; these) open import Data.Product as Prod using (_×_; _,_) open import Function.Base open import Relation.Nullary.Reflects open import Relation.Nullary private variable a b c : Level A : Set a B : Set b C : Set c ------------------------------------------------------------------------ -- Definition data Maybe (A : Set a) : Set a where nothing : Maybe A just : (x : A) → Maybe A ------------------------------------------------------------------------ -- Some operations boolToMaybe : Bool → Maybe ⊤ boolToMaybe true = just _ boolToMaybe false = nothing is-just : Maybe A → Bool is-just (just _) = true is-just nothing = false is-nothing : Maybe A → Bool is-nothing = not ∘ is-just decToMaybe : Dec A → Maybe A decToMaybe ( true because [a]) = just (invert [a]) decToMaybe (false because _ ) = nothing -- A dependent eliminator. maybe : ∀ {A : Set a} {B : Maybe A → Set b} → ((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x maybe j n (just x) = j x maybe j n nothing = n -- A non-dependent eliminator. maybe′ : (A → B) → B → Maybe A → B maybe′ = maybe -- A defaulting mechanism fromMaybe : A → Maybe A → A fromMaybe = maybe′ id -- A safe variant of "fromJust". If the value is nothing, then the -- return type is the unit type. module _ {a} {A : Set a} where From-just : Maybe A → Set a From-just (just _) = A From-just nothing = Lift a ⊤ from-just : (x : Maybe A) → From-just x from-just (just x) = x from-just nothing = _ -- Functoriality: map map : (A → B) → Maybe A → Maybe B map f = maybe (just ∘ f) nothing -- Applicative: ap ap : Maybe (A → B) → Maybe A → Maybe B ap nothing = const nothing ap (just f) = map f -- Monad: bind infixl 1 _>>=_ _>>=_ : Maybe A → (A → Maybe B) → Maybe B nothing >>= f = nothing just a >>= f = f a -- Alternative: <∣> _<∣>_ : Maybe A → Maybe A → Maybe A just x <∣> my = just x nothing <∣> my = my ------------------------------------------------------------------------ -- Aligning and zipping alignWith : (These A B → C) → Maybe A → Maybe B → Maybe C alignWith f (just a) (just b) = just (f (these a b)) alignWith f (just a) nothing = just (f (this a)) alignWith f nothing (just b) = just (f (that b)) alignWith f nothing nothing = nothing zipWith : (A → B → C) → Maybe A → Maybe B → Maybe C zipWith f (just a) (just b) = just (f a b) zipWith _ _ _ = nothing align : Maybe A → Maybe B → Maybe (These A B) align = alignWith id zip : Maybe A → Maybe B → Maybe (A × B) zip = zipWith _,_ ------------------------------------------------------------------------ -- Injections. thisM : A → Maybe B → These A B thisM a = maybe′ (these a) (this a) thatM : Maybe A → B → These A B thatM = maybe′ these that
23.977941
72
0.544618
35c35b0463274eede2b9b837f1b9e6965c4a502d
8,855
agda
Agda
misc/RecursiveDescent/Hybrid/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
misc/RecursiveDescent/Hybrid/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
misc/RecursiveDescent/Hybrid/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A library of parser combinators ------------------------------------------------------------------------ -- This module also provides examples of parsers for which the indices -- cannot be inferred. module RecursiveDescent.Hybrid.Lib where open import RecursiveDescent.Hybrid import RecursiveDescent.Hybrid.Type as Type open import RecursiveDescent.Index open import Utilities open import Data.Nat hiding (_≟_) open import Data.Vec using (Vec; []; _∷_) open import Data.Vec1 using (Vec₁; []; _∷_; map₀₁) open import Data.List using (List; []; _∷_; foldr; reverse) open import Data.Product.Record hiding (_×_) open import Data.Product using (_×_) renaming (_,_ to pair) open import Data.Bool hiding (_≟_) open import Data.Function open import Data.Maybe open import Data.Unit hiding (_≟_) open import Data.Bool.Properties as Bool import Data.Char as Char open Char using (Char; _==_) open import Algebra private module BCS = CommutativeSemiring Bool.commutativeSemiring-∨-∧ open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality using (refl) ------------------------------------------------------------------------ -- Applicative functor parsers -- We could get these for free with better library support. infixl 50 _⊛_ _⊛!_ _<⊛_ _⊛>_ _<$>_ _<$_ _⊗_ _⊗!_ _⊛_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ (r₁ -> r₂) -> Parser tok nt i₂ r₁ -> Parser tok nt _ r₂ p₁ ⊛ p₂ = p₁ >>= \f -> p₂ >>= \x -> return (f x) -- A variant: If the second parser does not accept the empty string, -- then neither does the combination. (This is immediate for the first -- parser, but for the second one a small lemma is needed, hence this -- variant.) _⊛!_ : forall {tok nt i₁ c₂ r₁ r₂} -> Parser tok nt i₁ (r₁ -> r₂) -> Parser tok nt (false , c₂) r₁ -> Parser tok nt (false , _) r₂ _⊛!_ {i₁ = i₁} p₁ p₂ = cast (BCS.*-comm (proj₁ i₁) false) refl (p₁ ⊛ p₂) _<$>_ : forall {tok nt i r₁ r₂} -> (r₁ -> r₂) -> Parser tok nt i r₁ -> Parser tok nt _ r₂ f <$> x = return f ⊛ x _<⊛_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ r₁ x <⊛ y = const <$> x ⊛ y _⊛>_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ r₂ x ⊛> y = flip const <$> x ⊛ y _<$_ : forall {tok nt i r₁ r₂} -> r₁ -> Parser tok nt i r₂ -> Parser tok nt _ r₁ x <$ y = const x <$> y _⊗_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ (r₁ × r₂) p₁ ⊗ p₂ = pair <$> p₁ ⊛ p₂ _⊗!_ : forall {tok nt i₁ c₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt (false , c₂) r₂ -> Parser tok nt (false , _) (r₁ × r₂) p₁ ⊗! p₂ = pair <$> p₁ ⊛! p₂ ------------------------------------------------------------------------ -- Parsing sequences infix 55 _⋆ _+ -- Not accepted by the productivity checker: -- mutual -- _⋆ : forall {tok r d} -> -- Parser tok (false , d) r -> -- Parser tok _ (List r) -- p ⋆ ~ return [] ∣ p + -- _+ : forall {tok r d} -> -- Parser tok (false , d) r -> -- Parser tok _ (List r) -- p + ~ _∷_ <$> p ⊛ p ⋆ -- By inlining some definitions we can show that the definitions are -- productive, though. The following definitions have also been -- simplified: mutual _⋆ : forall {tok nt r d} -> Parser tok nt (false , d) r -> Parser tok nt _ (List r) p ⋆ ~ Type.alt _ _ (return []) (p +) _+ : forall {tok nt r d} -> Parser tok nt (false , d) r -> Parser tok nt _ (List r) p + ~ Type._!>>=_ p \x -> Type._?>>=_ (p ⋆) \xs -> return (x ∷ xs) -- p sepBy sep parses one or more ps separated by seps. _sepBy_ : forall {tok nt r r' i d} -> Parser tok nt i r -> Parser tok nt (false , d) r' -> Parser tok nt _ (List r) p sepBy sep = _∷_ <$> p ⊛ (sep ⊛> p) ⋆ -- Note that the index of atLeast is only partly inferred; the -- recursive structure of atLeast-index is given manually. atLeast-index : Corners -> ℕ -> Index atLeast-index c zero = _ atLeast-index c (suc n) = _ -- At least n occurrences of p. atLeast : forall {tok nt c r} (n : ℕ) -> Parser tok nt (false , c) r -> Parser tok nt (atLeast-index c n) (List r) atLeast zero p = p ⋆ atLeast (suc n) p = _∷_ <$> p ⊛ atLeast n p -- Chains at least n occurrences of op, in an a-associative -- manner. The ops are surrounded by ps. chain≥ : forall {tok nt c₁ i₂ r} (n : ℕ) -> Assoc -> Parser tok nt (false , c₁) r -> Parser tok nt i₂ (r -> r -> r) -> Parser tok nt _ r chain≥ n a p op = chain≥-combine a <$> p ⊛ atLeast n (op ⊗! p) -- exactly n p parses n occurrences of p. exactly-index : Index -> ℕ -> Index exactly-index i zero = _ exactly-index i (suc n) = _ exactly : forall {tok nt i r} n -> Parser tok nt i r -> Parser tok nt (exactly-index i n) (Vec r n) exactly zero p = return [] exactly (suc n) p = _∷_ <$> p ⊛ exactly n p -- A function with a similar type: sequence : forall {tok nt i r n} -> Vec₁ (Parser tok nt i r) n -> Parser tok nt (exactly-index i n) (Vec r n) sequence [] = return [] sequence (p ∷ ps) = _∷_ <$> p ⊛ sequence ps -- p between ps parses p repeatedly, between the elements of ps: -- ∙ between (x ∷ y ∷ z ∷ []) ≈ x ∙ y ∙ z. between-corners : Corners -> ℕ -> Corners between-corners c′ zero = _ between-corners c′ (suc n) = _ _between_ : forall {tok nt i r c′ r′ n} -> Parser tok nt i r -> Vec₁ (Parser tok nt (false , c′) r′) (suc n) -> Parser tok nt (false , between-corners c′ n) (Vec r n) p between (x ∷ []) = [] <$ x p between (x ∷ y ∷ xs) = _∷_ <$> (x ⊛> p) ⊛ (p between (y ∷ xs)) ------------------------------------------------------------------------ -- N-ary variants of _∣_ -- choice ps parses one of the elements in ps. choice-corners : Corners -> ℕ -> Corners choice-corners c zero = _ choice-corners c (suc n) = _ choice : forall {tok nt c r n} -> Vec₁ (Parser tok nt (false , c) r) n -> Parser tok nt (false , choice-corners c n) r choice [] = fail choice (p ∷ ps) = p ∣ choice ps -- choiceMap f xs ≈ choice (map f xs), but avoids use of Vec₁ and -- fromList. choiceMap-corners : forall {a} -> (a -> Corners) -> List a -> Corners choiceMap-corners c [] = _ choiceMap-corners c (x ∷ xs) = _ choiceMap : forall {tok nt r a} {c : a -> Corners} -> ((x : a) -> Parser tok nt (false , c x) r) -> (xs : List a) -> Parser tok nt (false , choiceMap-corners c xs) r choiceMap f [] = fail choiceMap f (x ∷ xs) = f x ∣ choiceMap f xs ------------------------------------------------------------------------ -- sat and friends sat : forall {tok nt r} -> (tok -> Maybe r) -> Parser tok nt (0I ·I 1I) r sat {tok} {nt} {r} p = symbol !>>= \c -> ok (p c) where okIndex : Maybe r -> Index okIndex nothing = _ okIndex (just _) = _ ok : (x : Maybe r) -> Parser tok nt (okIndex x) r ok nothing = fail ok (just x) = return x sat' : forall {tok nt} -> (tok -> Bool) -> Parser tok nt _ ⊤ sat' p = sat (boolToMaybe ∘ p) any : forall {tok nt} -> Parser tok nt _ tok any = sat just ------------------------------------------------------------------------ -- Token parsers module Token (a : DecSetoid) where open DecSetoid a using (_≟_) renaming (carrier to tok) -- Parses a given token (or, really, a given equivalence class of -- tokens). sym : forall {nt} -> tok -> Parser tok nt _ tok sym x = sat p where p : tok -> Maybe tok p y with x ≟ y ... | yes _ = just y ... | no _ = nothing -- Parses a sequence of tokens. string : forall {nt n} -> Vec tok n -> Parser tok nt _ (Vec tok n) string cs = sequence (map₀₁ sym cs) ------------------------------------------------------------------------ -- Character parsers digit : forall {nt} -> Parser Char nt _ ℕ digit = 0 <$ sym '0' ∣ 1 <$ sym '1' ∣ 2 <$ sym '2' ∣ 3 <$ sym '3' ∣ 4 <$ sym '4' ∣ 5 <$ sym '5' ∣ 6 <$ sym '6' ∣ 7 <$ sym '7' ∣ 8 <$ sym '8' ∣ 9 <$ sym '9' where open Token Char.decSetoid number : forall {nt} -> Parser Char nt _ ℕ number = toNum <$> digit + where toNum = foldr (\n x -> 10 * x + n) 0 ∘ reverse -- whitespace recognises an incomplete but useful list of whitespace -- characters. whitespace : forall {nt} -> Parser Char nt _ ⊤ whitespace = sat' isSpace where isSpace = \c -> (c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r')
29.615385
72
0.534613
341cc6a0a009aa465d19718e09e8558e0ad673b9
18,282
agda
Agda
Cubical/HITs/S1/Base.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/HITs/S1/Base.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
Cubical/HITs/S1/Base.agda
mchristianl/cubical
cc6ad25d5ffbe4f20ea7020474f266d24b97caa0
[ "MIT" ]
null
null
null
{- Definition of the circle as a HIT with a proof that Ω(S¹) ≡ ℤ -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.S1.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.HLevels open import Cubical.Foundations.Path open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Data.Nat hiding (_+_ ; _·_ ; +-assoc ; +-comm) open import Cubical.Data.Int data S¹ : Type₀ where base : S¹ loop : base ≡ base -- Check that transp is the identity function for S¹ module _ where transpS¹ : ∀ (φ : I) (u0 : S¹) → transp (λ _ → S¹) φ u0 ≡ u0 transpS¹ φ u0 = refl compS1 : ∀ (φ : I) (u : ∀ i → Partial φ S¹) (u0 : S¹ [ φ ↦ u i0 ]) → comp (λ _ → S¹) (\ i → u i) (outS u0) ≡ hcomp u (outS u0) compS1 φ u u0 = refl -- ΩS¹ ≡ Int helix : S¹ → Type₀ helix base = Int helix (loop i) = sucPathInt i ΩS¹ : Type₀ ΩS¹ = base ≡ base encode : ∀ x → base ≡ x → helix x encode x p = subst helix p (pos zero) winding : ΩS¹ → Int winding = encode base intLoop : Int → ΩS¹ intLoop (pos zero) = refl intLoop (pos (suc n)) = intLoop (pos n) ∙ loop intLoop (negsuc zero) = sym loop intLoop (negsuc (suc n)) = intLoop (negsuc n) ∙ sym loop decodeSquare : (n : Int) → PathP (λ i → base ≡ loop i) (intLoop (predInt n)) (intLoop n) decodeSquare (pos zero) i j = loop (i ∨ ~ j) decodeSquare (pos (suc n)) i j = hfill (λ k → λ { (j = i0) → base ; (j = i1) → loop k } ) (inS (intLoop (pos n) j)) i decodeSquare (negsuc n) i j = hfill (λ k → λ { (j = i0) → base ; (j = i1) → loop (~ k) }) (inS (intLoop (negsuc n) j)) (~ i) decode : (x : S¹) → helix x → base ≡ x decode base = intLoop decode (loop i) y j = let n : Int n = unglue (i ∨ ~ i) y in hcomp (λ k → λ { (i = i0) → intLoop (predSuc y k) j ; (i = i1) → intLoop y j ; (j = i0) → base ; (j = i1) → loop i }) (decodeSquare n i j) decodeEncode : (x : S¹) (p : base ≡ x) → decode x (encode x p) ≡ p decodeEncode x p = J (λ y q → decode y (encode y q) ≡ q) (λ _ → refl) p isSetΩS¹ : isSet ΩS¹ isSetΩS¹ p q r s j i = hcomp (λ k → λ { (i = i0) → decodeEncode base p k ; (i = i1) → decodeEncode base q k ; (j = i0) → decodeEncode base (r i) k ; (j = i1) → decodeEncode base (s i) k }) (decode base (isSetInt (winding p) (winding q) (cong winding r) (cong winding s) j i)) -- This proof does not rely on rewriting hcomp with empty systems in -- Int as ghcomp has been implemented! windingIntLoop : (n : Int) → winding (intLoop n) ≡ n windingIntLoop (pos zero) = refl windingIntLoop (pos (suc n)) = cong sucInt (windingIntLoop (pos n)) windingIntLoop (negsuc zero) = refl windingIntLoop (negsuc (suc n)) = cong predInt (windingIntLoop (negsuc n)) ΩS¹IsoInt : Iso ΩS¹ Int Iso.fun ΩS¹IsoInt = winding Iso.inv ΩS¹IsoInt = intLoop Iso.rightInv ΩS¹IsoInt = windingIntLoop Iso.leftInv ΩS¹IsoInt = decodeEncode base ΩS¹≡Int : ΩS¹ ≡ Int ΩS¹≡Int = isoToPath ΩS¹IsoInt -- intLoop and winding are group homomorphisms private intLoop-sucInt : (z : Int) → intLoop (sucInt z) ≡ intLoop z ∙ loop intLoop-sucInt (pos n) = refl intLoop-sucInt (negsuc zero) = sym (lCancel loop) intLoop-sucInt (negsuc (suc n)) = rUnit (intLoop (negsuc n)) ∙ (λ i → intLoop (negsuc n) ∙ lCancel loop (~ i)) ∙ assoc (intLoop (negsuc n)) (sym loop) loop intLoop-predInt : (z : Int) → intLoop (predInt z) ≡ intLoop z ∙ sym loop intLoop-predInt (pos zero) = lUnit (sym loop) intLoop-predInt (pos (suc n)) = rUnit (intLoop (pos n)) ∙ (λ i → intLoop (pos n) ∙ (rCancel loop (~ i))) ∙ assoc (intLoop (pos n)) loop (sym loop) intLoop-predInt (negsuc n) = refl intLoop-hom : (a b : Int) → (intLoop a) ∙ (intLoop b) ≡ intLoop (a + b) intLoop-hom a (pos zero) = sym (rUnit (intLoop a)) intLoop-hom a (pos (suc n)) = assoc (intLoop a) (intLoop (pos n)) loop ∙ (λ i → (intLoop-hom a (pos n) i) ∙ loop) ∙ sym (intLoop-sucInt (a + pos n)) intLoop-hom a (negsuc zero) = sym (intLoop-predInt a) intLoop-hom a (negsuc (suc n)) = assoc (intLoop a) (intLoop (negsuc n)) (sym loop) ∙ (λ i → (intLoop-hom a (negsuc n) i) ∙ (sym loop)) ∙ sym (intLoop-predInt (a + negsuc n)) winding-hom : (a b : ΩS¹) → winding (a ∙ b) ≡ (winding a) + (winding b) winding-hom a b i = hcomp (λ t → λ { (i = i0) → winding (decodeEncode base a t ∙ decodeEncode base b t) ; (i = i1) → windingIntLoop (winding a + winding b) t }) (winding (intLoop-hom (winding a) (winding b) i)) -- Commutativity comm-ΩS¹ : (p q : ΩS¹) → p ∙ q ≡ q ∙ p comm-ΩS¹ p q = sym (cong₂ (_∙_) (decodeEncode base p) (decodeEncode base q)) ∙ intLoop-hom (winding p) (winding q) ∙ cong intLoop (+-comm (winding p) (winding q)) ∙ sym (intLoop-hom (winding q) (winding p)) ∙ (cong₂ (_∙_) (decodeEncode base q) (decodeEncode base p)) -- Based homotopy group basedΩS¹ : (x : S¹) → Type₀ basedΩS¹ x = x ≡ x -- Proof that the homotopy group is actually independent on the basepoint -- first, give a quasi-inverse to the basechange basedΩS¹→ΩS¹ for any loop i -- (which does *not* match at endpoints) private ΩS¹→basedΩS¹-filler : I → I → ΩS¹ → I → S¹ ΩS¹→basedΩS¹-filler l i x j = hfill (λ t → λ { (j = i0) → loop (i ∧ t) ; (j = i1) → loop (i ∧ t) }) (inS (x j)) l basedΩS¹→ΩS¹-filler : (_ i : I) → basedΩS¹ (loop i) → I → S¹ basedΩS¹→ΩS¹-filler l i x j = hfill (λ t → λ { (j = i0) → loop (i ∧ (~ t)) ; (j = i1) → loop (i ∧ (~ t)) }) (inS (x j)) l ΩS¹→basedΩS¹ : (i : I) → ΩS¹ → basedΩS¹ (loop i) ΩS¹→basedΩS¹ i x j = ΩS¹→basedΩS¹-filler i1 i x j basedΩS¹→ΩS¹ : (i : I) → basedΩS¹ (loop i) → ΩS¹ basedΩS¹→ΩS¹ i x j = basedΩS¹→ΩS¹-filler i1 i x j basedΩS¹→ΩS¹→basedΩS¹ : (i : I) → (x : basedΩS¹ (loop i)) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) ≡ x basedΩS¹→ΩS¹→basedΩS¹ i x j k = hcomp (λ t → λ { (j = i1) → basedΩS¹→ΩS¹-filler (~ t) i x k ; (j = i0) → ΩS¹→basedΩS¹ i (basedΩS¹→ΩS¹ i x) k ; (k = i0) → loop (i ∧ (t ∨ (~ j))) ; (k = i1) → loop (i ∧ (t ∨ (~ j))) }) (ΩS¹→basedΩS¹-filler (~ j) i (basedΩS¹→ΩS¹ i x) k) ΩS¹→basedΩS¹→ΩS¹ : (i : I) → (x : ΩS¹) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) ≡ x ΩS¹→basedΩS¹→ΩS¹ i x j k = hcomp (λ t → λ { (j = i1) → ΩS¹→basedΩS¹-filler (~ t) i x k ; (j = i0) → basedΩS¹→ΩS¹ i (ΩS¹→basedΩS¹ i x) k ; (k = i0) → loop (i ∧ ((~ t) ∧ j)) ; (k = i1) → loop (i ∧ ((~ t) ∧ j)) }) (basedΩS¹→ΩS¹-filler (~ j) i (ΩS¹→basedΩS¹ i x) k) -- from the existence of our quasi-inverse, we deduce that the basechange is an equivalence -- for all loop i basedΩS¹→ΩS¹-isequiv : (i : I) → isEquiv (basedΩS¹→ΩS¹ i) basedΩS¹→ΩS¹-isequiv i = isoToIsEquiv (iso (basedΩS¹→ΩS¹ i) (ΩS¹→basedΩS¹ i) (ΩS¹→basedΩS¹→ΩS¹ i) (basedΩS¹→ΩS¹→basedΩS¹ i)) -- now extend the basechange so that both ends match -- (and therefore we get a basechange for any x : S¹) loop-conjugation : basedΩS¹→ΩS¹ i1 ≡ λ x → x loop-conjugation i x = let p = (doubleCompPath-elim loop x (sym loop)) ∙ (λ i → (lUnit loop i ∙ x) ∙ sym loop) in ((sym (decodeEncode base (basedΩS¹→ΩS¹ i1 x))) ∙ (λ t → intLoop (winding (p t))) ∙ (λ t → intLoop (winding-hom (intLoop (pos (suc zero)) ∙ x) (intLoop (negsuc zero)) t)) ∙ (λ t → intLoop ((winding-hom (intLoop (pos (suc zero))) x t) + (windingIntLoop (negsuc zero) t))) ∙ (λ t → intLoop (((windingIntLoop (pos (suc zero)) t) + (winding x)) + (negsuc zero))) ∙ (λ t → intLoop ((+-comm (pos (suc zero)) (winding x) t) + (negsuc zero))) ∙ (λ t → intLoop (+-assoc (winding x) (pos (suc zero)) (negsuc zero) (~ t))) ∙ (decodeEncode base x)) i refl-conjugation : basedΩS¹→ΩS¹ i0 ≡ λ x → x refl-conjugation i x j = hfill (λ t → λ { (j = i0) → base ; (j = i1) → base }) (inS (x j)) (~ i) basechange : (x : S¹) → basedΩS¹ x → ΩS¹ basechange base y = y basechange (loop i) y = hcomp (λ t → λ { (i = i0) → refl-conjugation t y ; (i = i1) → loop-conjugation t y }) (basedΩS¹→ΩS¹ i y) -- for any loop i, the old basechange is equal to the new one basedΩS¹→ΩS¹≡basechange : (i : I) → basedΩS¹→ΩS¹ i ≡ basechange (loop i) basedΩS¹→ΩS¹≡basechange i j y = hfill (λ t → λ { (i = i0) → refl-conjugation t y ; (i = i1) → loop-conjugation t y }) (inS (basedΩS¹→ΩS¹ i y)) j -- so for any loop i, the extended basechange is an equivalence basechange-isequiv-aux : (i : I) → isEquiv (basechange (loop i)) basechange-isequiv-aux i = transport (λ j → isEquiv (basedΩS¹→ΩS¹≡basechange i j)) (basedΩS¹→ΩS¹-isequiv i) -- as being an equivalence is contractible, basechange is an equivalence for all x : S¹ basechange-isequiv : (x : S¹) → isEquiv (basechange x) basechange-isequiv base = basechange-isequiv-aux i0 basechange-isequiv (loop i) = hcomp (λ t → λ { (i = i0) → basechange-isequiv-aux i0 ; (i = i1) → isPropIsEquiv (basechange base) (basechange-isequiv-aux i1) (basechange-isequiv-aux i0) t }) (basechange-isequiv-aux i) basedΩS¹≡ΩS¹' : (x : S¹) → basedΩS¹ x ≡ ΩS¹ basedΩS¹≡ΩS¹' x = ua (basechange x , basechange-isequiv x) basedΩS¹≡Int' : (x : S¹) → basedΩS¹ x ≡ Int basedΩS¹≡Int' x = (basedΩS¹≡ΩS¹' x) ∙ ΩS¹≡Int ---- Alternative proof of the same thing ----- toPropElim : ∀ {ℓ} {B : S¹ → Type ℓ} → ((s : S¹) → isProp (B s)) → B base → (s : S¹) → B s toPropElim isprop b base = b toPropElim isprop b (loop i) = isOfHLevel→isOfHLevelDep 1 isprop b b loop i toPropElim2 : ∀ {ℓ} {B : S¹ → S¹ → Type ℓ} → ((s t : S¹) → isProp (B s t)) → B base base → (s t : S¹) → B s t toPropElim2 isprop b base base = b toPropElim2 isprop b base (loop i) = isProp→PathP (λ i → isprop base (loop i)) b b i toPropElim2 isprop b (loop i) base = isProp→PathP (λ i → isprop (loop i) base) b b i toPropElim2 {B = B} isprop b (loop i) (loop j) = isSet→SquareP (λ _ _ → isOfHLevelSuc 1 (isprop _ _)) (isProp→PathP (λ i₁ → isprop base (loop i₁)) b b) (isProp→PathP (λ i₁ → isprop base (loop i₁)) b b) (isProp→PathP (λ i₁ → isprop (loop i₁) base) b b) (isProp→PathP (λ i₁ → isprop (loop i₁) base) b b) i j toSetElim2 : ∀ {ℓ} {B : S¹ → S¹ → Type ℓ} → ((s t : S¹) → isSet (B s t)) → (x : B base base) → PathP (λ i → B base (loop i)) x x → PathP (λ i → B (loop i) base) x x → (s t : S¹) → B s t toSetElim2 isset b right left base base = b toSetElim2 isset b right left base (loop i) = right i toSetElim2 isset b right left (loop i) base = left i toSetElim2 isset b right left (loop i) (loop j) = isSet→SquareP (λ _ _ → isset _ _) right right left left i j isSetΩx : (x : S¹) → isSet (x ≡ x) isSetΩx = toPropElim (λ _ → isPropIsSet) isSetΩS¹ basechange2 : (x : S¹) → ΩS¹ → (x ≡ x) basechange2 base p = p basechange2 (loop i) p = hcomp (λ k → λ { (i = i0) → lUnit (rUnit p (~ k)) (~ k) ; (i = i1) → (cong ((sym loop) ∙_) (comm-ΩS¹ p loop) ∙ assoc (sym loop) loop p ∙ cong (_∙ p) (lCancel loop) ∙ sym (lUnit _)) k }) ((λ j → loop (~ j ∧ i)) ∙ p ∙ λ j → loop (j ∧ i)) basechange2⁻ : (x : S¹) → (x ≡ x) → ΩS¹ basechange2⁻ base p = p basechange2⁻ (loop i) p = hcomp (λ k → λ { (i = i0) → lUnit (rUnit p (~ k)) (~ k) ; (i = i1) → (cong (loop ∙_) (comm-ΩS¹ p (sym loop)) ∙ assoc loop (sym loop) p ∙ cong (_∙ p) (rCancel loop) ∙ sym (lUnit _)) k }) ((λ j → loop (i ∧ j)) ∙ p ∙ λ j → loop (i ∧ (~ j))) basechange2-sect : (x : S¹) → section (basechange2 x) (basechange2⁻ x) basechange2-sect = toPropElim (λ _ → isOfHLevelΠ 1 λ _ → isSetΩx _ _ _ ) λ _ → refl basechange2-retr : (x : S¹) → retract (basechange2 x) (basechange2⁻ x) basechange2-retr = toPropElim (λ s → isOfHLevelΠ 1 λ x → isSetΩx _ _ _) λ _ → refl basedΩS¹≡ΩS¹ : (x : S¹) → basedΩS¹ x ≡ ΩS¹ basedΩS¹≡ΩS¹ x = isoToPath (iso (basechange2⁻ x) (basechange2 x) (basechange2-retr x) (basechange2-sect x)) basedΩS¹≡Int : (x : S¹) → basedΩS¹ x ≡ Int basedΩS¹≡Int x = (basedΩS¹≡ΩS¹ x) ∙ ΩS¹≡Int -- baschange2⁻ is a morphism basechange2⁻-morph : (x : S¹) (p q : x ≡ x) → basechange2⁻ x (p ∙ q) ≡ basechange2⁻ x p ∙ basechange2⁻ x q basechange2⁻-morph = toPropElim {B = λ x → (p q : x ≡ x) → basechange2⁻ x (p ∙ q) ≡ basechange2⁻ x p ∙ basechange2⁻ x q} (λ _ → isPropΠ2 λ _ _ → isSetΩS¹ _ _) λ _ _ → refl -- Some tests module _ where private test-winding-pos : winding (intLoop (pos 5)) ≡ pos 5 test-winding-pos = refl test-winding-neg : winding (intLoop (negsuc 5)) ≡ negsuc 5 test-winding-neg = refl -- the inverse when S¹ is seen as a group invLooper : S¹ → S¹ invLooper base = base invLooper (loop i) = loop (~ i) invInvolutive : section invLooper invLooper invInvolutive base = refl invInvolutive (loop i) = refl invS¹Equiv : S¹ ≃ S¹ invS¹Equiv = isoToEquiv theIso where theIso : Iso S¹ S¹ Iso.fun theIso = invLooper Iso.inv theIso = invLooper Iso.rightInv theIso = invInvolutive Iso.leftInv theIso = invInvolutive invS¹Path : S¹ ≡ S¹ invS¹Path = ua invS¹Equiv -- rot, used in the Hopf fibration rotLoop : (a : S¹) → a ≡ a rotLoop base = loop rotLoop (loop i) j = hcomp (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k)}) base rot : S¹ → S¹ → S¹ rot base x = x rot (loop i) x = rotLoop x i _*_ : S¹ → S¹ → S¹ a * b = rot a b infixl 30 _*_ -- rot i j = filler-rot i j i1 filler-rot : I → I → I → S¹ filler-rot i j = hfill (λ k → λ { (i = i0) → loop (j ∨ ~ k) ; (i = i1) → loop (j ∧ k) ; (j = i0) → loop (i ∨ ~ k) ; (j = i1) → loop (i ∧ k) }) (inS base) isPropFamS¹ : ∀ {ℓ} (P : S¹ → Type ℓ) (pP : (x : S¹) → isProp (P x)) (b0 : P base) → PathP (λ i → P (loop i)) b0 b0 isPropFamS¹ P pP b0 i = pP (loop i) (transp (λ j → P (loop (i ∧ j))) (~ i) b0) (transp (λ j → P (loop (i ∨ ~ j))) i b0) i rotIsEquiv : (a : S¹) → isEquiv (rot a) rotIsEquiv base = idIsEquiv S¹ rotIsEquiv (loop i) = isPropFamS¹ (λ x → isEquiv (rot x)) (λ x → isPropIsEquiv (rot x)) (idIsEquiv _) i -- more direct definition of the rot (loop i) equivalence rotLoopInv : (a : S¹) → PathP (λ i → rotLoop (rotLoop a (~ i)) i ≡ a) refl refl rotLoopInv a i j = homotopySymInv rotLoop a j i rotLoopEquiv : (i : I) → S¹ ≃ S¹ rotLoopEquiv i = isoToEquiv (iso (λ a → rotLoop a i) (λ a → rotLoop a (~ i)) (λ a → rotLoopInv a i) (λ a → rotLoopInv a (~ i))) -- some cancellation laws, used in the Hopf fibration private rotInv-aux-1 : I → I → I → I → S¹ rotInv-aux-1 j k i = hfill (λ l → λ { (k = i0) → (loop (i ∧ ~ l)) * loop j ; (k = i1) → loop j ; (i = i0) → (loop k * loop j) * loop (~ k) ; (i = i1) → loop (~ k ∧ ~ l) * loop j }) (inS ((loop (k ∨ i) * loop j) * loop (~ k))) rotInv-aux-2 : I → I → I → S¹ rotInv-aux-2 i j k = hcomp (λ l → λ { (k = i0) → invLooper (filler-rot (~ i) (~ j) l) ; (k = i1) → loop (j ∧ l) ; (i = i0) → filler-rot k j l ; (i = i1) → loop (j ∧ l) ; (j = i0) → loop (i ∨ k ∨ (~ l)) ; (j = i1) → loop ((i ∨ k) ∧ l) }) (base) rotInv-aux-3 : I → I → I → I → S¹ rotInv-aux-3 j k i = hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l ; (k = i1) → loop j ; (i = i0) → loop (k ∨ l) * loop j ; (i = i1) → loop k * (invLooper (loop (~ j) * loop k)) }) (inS (loop k * (invLooper (loop (~ j) * loop (k ∨ ~ i))))) rotInv-aux-4 : I → I → I → I → S¹ rotInv-aux-4 j k i = hfill (λ l → λ { (k = i0) → rotInv-aux-2 i j l ; (k = i1) → loop j ; (i = i0) → loop j * loop (k ∨ l) ; (i = i1) → (invLooper (loop (~ j) * loop k)) * loop k }) (inS ((invLooper (loop (~ j) * loop (k ∨ ~ i))) * loop k)) rotInv-1 : (a b : S¹) → b * a * invLooper b ≡ a rotInv-1 base base i = base rotInv-1 base (loop k) i = rotInv-aux-1 i0 k i i1 rotInv-1 (loop j) base i = loop j rotInv-1 (loop j) (loop k) i = rotInv-aux-1 j k i i1 rotInv-2 : (a b : S¹) → invLooper b * a * b ≡ a rotInv-2 base base i = base rotInv-2 base (loop k) i = rotInv-aux-1 i0 (~ k) i i1 rotInv-2 (loop j) base i = loop j rotInv-2 (loop j) (loop k) i = rotInv-aux-1 j (~ k) i i1 rotInv-3 : (a b : S¹) → b * (invLooper (invLooper a * b)) ≡ a rotInv-3 base base i = base rotInv-3 base (loop k) i = rotInv-aux-3 i0 k (~ i) i1 rotInv-3 (loop j) base i = loop j rotInv-3 (loop j) (loop k) i = rotInv-aux-3 j k (~ i) i1 rotInv-4 : (a b : S¹) → invLooper (b * invLooper a) * b ≡ a rotInv-4 base base i = base rotInv-4 base (loop k) i = rotInv-aux-4 i0 k (~ i) i1 rotInv-4 (loop j) base i = loop j rotInv-4 (loop j) (loop k) i = rotInv-aux-4 j k (~ i) i1
37.158537
101
0.535335
fde40973d328974b2f66dd7279a3b749ee782699
1,045
agda
Agda
src/System/FilePath.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
111
2015-01-05T11:28:15.000Z
2022-02-12T23:29:26.000Z
src/System/FilePath.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
59
2016-02-09T05:36:44.000Z
2022-01-14T07:32:36.000Z
src/System/FilePath.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
24
2015-03-12T18:03:45.000Z
2021-04-22T06:10:41.000Z
-- | NOTE: This module can only represent file paths which are valid strings. -- On Linux, a file path may be an arbitrary sequence of bytes, but using anything -- except utf8 for file paths is a terrible idea. -- -- What should happen if we come across a non utf8 path from an untrusted source? -- crash -> denial-of-service -- ignore -> maybe security holes -- -- Currently, the behaviour for non-textual file paths is undefined. module System.FilePath where open import Prelude.Unit open import Prelude.String data Kind : Set where Rel : Kind Abs : Kind abstract record Path (kind : Kind) : Set where constructor mkPath field path : String open import Prelude.Monoid open Path _//_ : ∀ {k} → Path k → Path Rel → Path k x // y = mkPath (path x <> "/" <> path y) _∙_ : ∀ {k} → Path k → String → Path k p ∙ ext = mkPath (path p <> "." <> ext) toString : ∀ {k} → Path k → String toString p = path p relative : String → Path Rel relative = mkPath absolute : String → Path Abs absolute = mkPath
24.880952
82
0.665072
0df478257e6b77e5bb7942d5be2020a2f20ca363
18,830
agda
Agda
Definition/LogicalRelation/Substitution/Introductions/SingleSubst.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
30
2017-05-20T03:05:21.000Z
2022-03-30T18:01:07.000Z
Definition/LogicalRelation/Substitution/Introductions/SingleSubst.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
4
2017-06-22T12:49:23.000Z
2021-02-22T10:37:24.000Z
Definition/LogicalRelation/Substitution/Introductions/SingleSubst.agda
fhlkfy/logrel-mltt
ea83fc4f618d1527d64ecac82d7d17e2f18ac391
[ "MIT" ]
8
2017-10-18T14:18:20.000Z
2021-11-27T15:58:33.000Z
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.SingleSubst {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped hiding (_∷_) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening using (id) open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Conversion open import Definition.LogicalRelation.Substitution.Weakening open import Tools.Nat open import Tools.Product import Tools.PropositionalEquality as PE private variable n : Nat Γ : Con Term n -- Validity of substitution of single variable in types. substS : ∀ {F G t l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ G [ t ] / [Γ] substS {F = F} {G} {t} [Γ] [F] [G] [t] {σ = σ} ⊢Δ [σ] = let Geq = substConsId G G[t] = proj₁ ([G] ⊢Δ ([σ] , (proj₁ ([t] ⊢Δ [σ])))) G[t]′ = irrelevance′ Geq G[t] in G[t]′ , (λ {σ′} [σ′] [σ≡σ′] → irrelevanceEq″ Geq (substConsId G) G[t] G[t]′ (proj₂ ([G] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) ([σ′] , proj₁ ([t] ⊢Δ [σ′])) (([σ≡σ′] , (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]))))) -- Validity of substitution of single variable in type equality. substSEq : ∀ {F F′ G G′ t t′ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ / [Γ]) ([F≡F′] : Γ ⊩ᵛ⟨ l ⟩ F ≡ F′ / [Γ] / [F]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F]) ([G′] : Γ ∙ F′ ⊩ᵛ⟨ l ⟩ G′ / [Γ] ∙ [F′]) ([G≡G′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G ≡ G′ / [Γ] ∙ [F] / [G]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) ([t′] : Γ ⊩ᵛ⟨ l ⟩ t′ ∷ F′ / [Γ] / [F′]) ([t≡t′] : Γ ⊩ᵛ⟨ l ⟩ t ≡ t′ ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ G [ t ] ≡ G′ [ t′ ] / [Γ] / substS {F = F} {G} {t} [Γ] [F] [G] [t] substSEq {F = F} {F′} {G} {G′} {t} {t′} [Γ] [F] [F′] [F≡F′] [G] [G′] [G≡G′] [t] [t′] [t≡t′] {σ = σ} ⊢Δ [σ] = let Geq = substConsId G G′eq = substConsId G′ G[t] = (proj₁ ([G] ⊢Δ ([σ] , (proj₁ ([t] ⊢Δ [σ]))))) G[t]′ = irrelevance′ Geq G[t] [t]′ = convᵛ {t = t} {F} {F′} [Γ] [F] [F′] [F≡F′] [t] G′[t] = (proj₁ ([G′] ⊢Δ ([σ] , proj₁ ([t]′ ⊢Δ [σ])))) G[t]≡G′[t] = irrelevanceEq′ Geq G[t] G[t]′ ([G≡G′] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) G′[t]≡G′[t′] = irrelevanceEq″ PE.refl G′eq G′[t] G′[t] (proj₂ ([G′] ⊢Δ ([σ] , proj₁ ([t]′ ⊢Δ [σ]))) ([σ] , proj₁ ([t′] ⊢Δ [σ])) (reflSubst [Γ] ⊢Δ [σ] , convEqᵛ {t = t} {t′} {F} {F′} [Γ] [F] [F′] [F≡F′] [t≡t′] ⊢Δ [σ])) G′[t′] = (proj₁ ([G′] ⊢Δ ([σ] , proj₁ ([t′] ⊢Δ [σ])))) G′[t′]′ = irrelevance′ G′eq G′[t′] in transEq G[t]′ G′[t] G′[t′]′ G[t]≡G′[t] G′[t]≡G′[t′] -- Validity of substitution of single variable in terms. substSTerm : ∀ {F G t f l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F]) ([f] : Γ ∙ F ⊩ᵛ⟨ l ⟩ f ∷ G / [Γ] ∙ [F] / [G]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ f [ t ] ∷ G [ t ] / [Γ] / substS {F = F} {G} {t} [Γ] [F] [G] [t] substSTerm {F = F} {G} {t} {f} [Γ] [F] [G] [f] [t] {σ = σ} ⊢Δ [σ] = let prfG = substConsId G prff = substConsId f G[t] = proj₁ ([G] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) G[t]′ = irrelevance′ prfG G[t] f[t] = proj₁ ([f] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) f[t]′ = irrelevanceTerm″ prfG prff G[t] G[t]′ f[t] in f[t]′ , (λ {σ′} [σ′] [σ≡σ′] → irrelevanceEqTerm″ prff (substConsId f) prfG G[t] G[t]′ (proj₂ ([f] ⊢Δ ([σ] , proj₁ ([t] ⊢Δ [σ]))) ([σ′] , proj₁ ([t] ⊢Δ [σ′])) ([σ≡σ′] , proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]))) -- Validity of substitution of single lifted variable in types. subst↑S : ∀ {F G t l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F]) ([t] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t ∷ wk1 F / [Γ] ∙ [F] / wk1ᵛ {A = F} {F} [Γ] [F] [F]) → Γ ∙ F ⊩ᵛ⟨ l ⟩ G [ t ]↑ / [Γ] ∙ [F] subst↑S {F = F} {G} {t} [Γ] [F] [G] [t] {σ = σ} ⊢Δ [σ] = let [wk1F] = wk1ᵛ {A = F} {F} [Γ] [F] [F] [σwk1F] = proj₁ ([wk1F] {σ = σ} ⊢Δ [σ]) [σwk1F]′ = proj₁ ([F] {σ = tail σ} ⊢Δ (proj₁ [σ])) [t]′ = irrelevanceTerm′ (subst-wk F) [σwk1F] [σwk1F]′ (proj₁ ([t] ⊢Δ [σ])) G[t] = proj₁ ([G] {σ = consSubst (tail σ) (subst σ t)} ⊢Δ (proj₁ [σ] , [t]′)) G[t]′ = irrelevance′ (substConsTailId {σ = σ} {G} {t}) G[t] in G[t]′ , (λ {σ′} [σ′] [σ≡σ′] → let [σ′t] = irrelevanceTerm′ (subst-wk F) (proj₁ ([wk1F] {σ = σ′} ⊢Δ [σ′])) (proj₁ ([F] ⊢Δ (proj₁ [σ′]))) (proj₁ ([t] ⊢Δ [σ′])) [σt≡σ′t] = irrelevanceEqTerm′ (subst-wk F) [σwk1F] [σwk1F]′ (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]) [σG[t]≡σ′G[t]] = proj₂ ([G] ⊢Δ (proj₁ [σ] , [t]′)) (proj₁ [σ′] , [σ′t]) (proj₁ [σ≡σ′] , [σt≡σ′t]) in irrelevanceEq″ (substConsTailId {σ = σ} {G} {t} ) (substConsTailId {σ = σ′} {G} {t}) G[t] G[t]′ [σG[t]≡σ′G[t]]) -- Validity of substitution of single lifted variable in type equality. subst↑SEq : ∀ {F G G′ t t′ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F]) ([G′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G′ / [Γ] ∙ [F]) ([G≡G′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G ≡ G′ / [Γ] ∙ [F] / [G]) ([t] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t ∷ wk1 F / [Γ] ∙ [F] / wk1ᵛ {A = F} {F} [Γ] [F] [F]) ([t′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t′ ∷ wk1 F / [Γ] ∙ [F] / wk1ᵛ {A = F} {F} [Γ] [F] [F]) ([t≡t′] : Γ ∙ F ⊩ᵛ⟨ l ⟩ t ≡ t′ ∷ wk1 F / [Γ] ∙ [F] / wk1ᵛ {A = F} {F} [Γ] [F] [F]) → Γ ∙ F ⊩ᵛ⟨ l ⟩ G [ t ]↑ ≡ G′ [ t′ ]↑ / [Γ] ∙ [F] / subst↑S {F = F} {G} {t} [Γ] [F] [G] [t] subst↑SEq {F = F} {G} {G′} {t} {t′} [Γ] [F] [G] [G′] [G≡G′] [t] [t′] [t≡t′] {σ = σ} ⊢Δ [σ] = let [wk1F] = wk1ᵛ {A = F} {F} [Γ] [F] [F] [σwk1F] = proj₁ ([wk1F] {σ = σ} ⊢Δ [σ]) [σwk1F]′ = proj₁ ([F] {σ = tail σ} ⊢Δ (proj₁ [σ])) [t]′ = irrelevanceTerm′ (subst-wk F) [σwk1F] [σwk1F]′ (proj₁ ([t] ⊢Δ [σ])) [t′]′ = irrelevanceTerm′ (subst-wk F) [σwk1F] [σwk1F]′ (proj₁ ([t′] ⊢Δ [σ])) [t≡t′]′ = irrelevanceEqTerm′ (subst-wk F) [σwk1F] [σwk1F]′ ([t≡t′] ⊢Δ [σ]) G[t] = proj₁ ([G] ⊢Δ (proj₁ [σ] , [t]′)) G[t]′ = irrelevance′ (substConsTailId {σ = σ} {G} {t}) G[t] G′[t] = proj₁ ([G′] ⊢Δ (proj₁ [σ] , [t]′)) G′[t]′ = irrelevance′ (substConsTailId {σ = σ} {G′} {t}) G′[t] G′[t′] = proj₁ ([G′] ⊢Δ (proj₁ [σ] , [t′]′)) G′[t′]′ = irrelevance′ (substConsTailId {σ = σ} {G′} {t′}) G′[t′] G[t]≡G′[t] = irrelevanceEq″ (substConsTailId {σ = σ} {G} {t}) (substConsTailId {σ = σ} {G′} {t}) G[t] G[t]′ ([G≡G′] ⊢Δ (proj₁ [σ] , [t]′)) G′[t]≡G′[t′] = irrelevanceEq″ (substConsTailId {σ = σ} {G′} {t}) (substConsTailId {σ = σ} {G′} {t′}) G′[t] G′[t]′ (proj₂ ([G′] ⊢Δ (proj₁ [σ] , [t]′)) (proj₁ [σ] , [t′]′) (reflSubst [Γ] ⊢Δ (proj₁ [σ]) , [t≡t′]′)) in transEq G[t]′ G′[t]′ G′[t′]′ G[t]≡G′[t] G′[t]≡G′[t′] -- Helper function for reducible substitution of Π-types with specific typing derivations. substSΠ₁′ : ∀ {F G t l l′} W ([ΠFG] : Γ ⊩⟨ l ⟩B⟨ W ⟩ ⟦ W ⟧ F ▹ G) ([F] : Γ ⊩⟨ l′ ⟩ F) ([t] : Γ ⊩⟨ l′ ⟩ t ∷ F / [F]) → Γ ⊩⟨ l ⟩ G [ t ] substSΠ₁′ {t = t} W (noemb (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) [F]₁ [t] = let F≡F′ , G≡G′ = B-PE-injectivity W (whnfRed* (red D) ⟦ W ⟧ₙ) Feq = PE.trans F≡F′ (PE.sym (wk-id _)) Geq = PE.cong (λ x → x [ _ ]) (PE.trans (wk-lift-id _) (PE.sym G≡G′)) ⊢Γ = wf (escape [F]₁) [t]′ = irrelevanceTerm′ Feq [F]₁ ([F] id ⊢Γ) [t] in irrelevance′ Geq ([G] id ⊢Γ [t]′) substSΠ₁′ W (emb 0<1 x) [F]₁ [t] = emb 0<1 (substSΠ₁′ W x [F]₁ [t]) -- Reducible substitution of Π-types. substSΠ₁ : ∀ {F G t l l′} W ([ΠFG] : Γ ⊩⟨ l ⟩ ⟦ W ⟧ F ▹ G) ([F] : Γ ⊩⟨ l′ ⟩ F) ([t] : Γ ⊩⟨ l′ ⟩ t ∷ F / [F]) → Γ ⊩⟨ l ⟩ G [ t ] substSΠ₁ W [ΠFG] [F] [t] = substSΠ₁′ W (B-elim W [ΠFG]) [F] [t] -- Helper function for reducible substitution of Π-congruence with specific typing derivations. substSΠ₂′ : ∀ {F F′ G G′ t t′ l l′ l″ l‴} W ([ΠFG] : Γ ⊩⟨ l ⟩B⟨ W ⟩ ⟦ W ⟧ F ▹ G) ([ΠFG≡ΠF′G′] : Γ ⊩⟨ l ⟩ ⟦ W ⟧ F ▹ G ≡ ⟦ W ⟧ F′ ▹ G′ / B-intr W [ΠFG]) ([F] : Γ ⊩⟨ l′ ⟩ F) ([F′] : Γ ⊩⟨ l′ ⟩ F′) ([t] : Γ ⊩⟨ l′ ⟩ t ∷ F / [F]) ([t′] : Γ ⊩⟨ l′ ⟩ t′ ∷ F′ / [F′]) ([t≡t′] : Γ ⊩⟨ l′ ⟩ t ≡ t′ ∷ F / [F]) ([G[t]] : Γ ⊩⟨ l″ ⟩ G [ t ]) ([G′[t′]] : Γ ⊩⟨ l‴ ⟩ G′ [ t′ ]) → Γ ⊩⟨ l″ ⟩ G [ t ] ≡ G′ [ t′ ] / [G[t]] substSΠ₂′ W (noemb (Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) (B₌ F″ G″ D′ A≡B [F≡F′] [G≡G′]) [F]₁ [F′] [t] [t′] [t≡t′] [G[t]] [G′[t′]] = let F≡F′ , G≡G′ = B-PE-injectivity W (whnfRed* (red D) (⟦ W ⟧ₙ)) F′≡F″ , G′≡G″ = B-PE-injectivity W (whnfRed* D′ ⟦ W ⟧ₙ) Feq = PE.trans F≡F′ (PE.sym (wk-id _)) F′eq = PE.trans F′≡F″ (PE.sym (wk-id _)) Geq = PE.cong (λ x → x [ _ ]) (PE.trans (wk-lift-id _) (PE.sym G≡G′)) Geq′ = PE.cong (λ x → x [ _ ]) (PE.trans G′≡G″ (PE.sym (wk-lift-id _))) ⊢Γ = wf (escape [F]₁) [t]′ = irrelevanceTerm′ Feq [F]₁ ([F] id ⊢Γ) [t] [t′]′ = convTerm₂′ F′eq ([F] id ⊢Γ) [F′] ([F≡F′] id ⊢Γ) [t′] [t≡t′]′ = irrelevanceEqTerm′ Feq [F]₁ ([F] id ⊢Γ) [t≡t′] [Gt≡Gt′] = G-ext id ⊢Γ [t]′ [t′]′ [t≡t′]′ [Gt′≡G′t′] = [G≡G′] id ⊢Γ [t′]′ in irrelevanceEq′ Geq ([G] id ⊢Γ [t]′) [G[t]] (transEq′ PE.refl Geq′ ([G] id ⊢Γ [t]′) ([G] id ⊢Γ [t′]′) [G′[t′]] [Gt≡Gt′] [Gt′≡G′t′]) substSΠ₂′ W (emb 0<1 x) = substSΠ₂′ W x -- Reducible substitution of Π-congruence. substSΠ₂ : ∀ {F F′ G G′ t t′ l l′ l″ l‴} W ([ΠFG] : Γ ⊩⟨ l ⟩ ⟦ W ⟧ F ▹ G) ([ΠFG≡ΠF′G′] : Γ ⊩⟨ l ⟩ ⟦ W ⟧ F ▹ G ≡ ⟦ W ⟧ F′ ▹ G′ / [ΠFG]) ([F] : Γ ⊩⟨ l′ ⟩ F) ([F′] : Γ ⊩⟨ l′ ⟩ F′) ([t] : Γ ⊩⟨ l′ ⟩ t ∷ F / [F]) ([t′] : Γ ⊩⟨ l′ ⟩ t′ ∷ F′ / [F′]) ([t≡t′] : Γ ⊩⟨ l′ ⟩ t ≡ t′ ∷ F / [F]) ([G[t]] : Γ ⊩⟨ l″ ⟩ G [ t ]) ([G′[t′]] : Γ ⊩⟨ l‴ ⟩ G′ [ t′ ]) → Γ ⊩⟨ l″ ⟩ G [ t ] ≡ G′ [ t′ ] / [G[t]] substSΠ₂ W [ΠFG] [ΠFG≡ΠF′G′] = let [ΠFG≡ΠF′G′]′ = irrelevanceEq [ΠFG] (B-intr W (B-elim W [ΠFG])) [ΠFG≡ΠF′G′] in substSΠ₂′ W (B-elim W [ΠFG]) [ΠFG≡ΠF′G′]′ -- Valid substitution of Π-types. substSΠ : ∀ {F G t l} W ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ ⟦ W ⟧ F ▹ G / [Γ]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ G [ t ] / [Γ] substSΠ {F = F} {G} {t} BΠ [Γ] [F] [ΠFG] [t] ⊢Δ [σ] = let ⊩σΠFG = [ΠFG] ⊢Δ [σ] --[σΠFG] = PE.subst (λ x → _ ⊩⟨ _ ⟩ x) (B-subst _ W F G) (proj₁ ⊩σΠFG) [σΠFG] = proj₁ ⊩σΠFG [σG[t]] = substSΠ₁ BΠ [σΠFG] (proj₁ ([F] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) [σG[t]]′ = irrelevance′ (PE.sym (singleSubstLift G t)) [σG[t]] in [σG[t]]′ , (λ [σ′] [σ≡σ′] → irrelevanceEq″ (PE.sym (singleSubstLift G t)) (PE.sym (singleSubstLift G t)) [σG[t]] [σG[t]]′ (substSΠ₂ BΠ [σΠFG] (proj₂ ⊩σΠFG [σ′] [σ≡σ′]) (proj₁ ([F] ⊢Δ [σ])) (proj₁ ([F] ⊢Δ [σ′])) (proj₁ ([t] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ′])) (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]) [σG[t]] (substSΠ₁ BΠ (proj₁ ([ΠFG] ⊢Δ [σ′])) (proj₁ ([F] ⊢Δ [σ′])) (proj₁ ([t] ⊢Δ [σ′]))))) substSΠ {F = F} {G} {t} BΣ [Γ] [F] [ΠFG] [t] ⊢Δ [σ] = let ⊩σΠFG = [ΠFG] ⊢Δ [σ] [σΠFG] = proj₁ ⊩σΠFG [σG[t]] = substSΠ₁ BΣ [σΠFG] (proj₁ ([F] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) [σG[t]]′ = irrelevance′ (PE.sym (singleSubstLift G t)) [σG[t]] in [σG[t]]′ , (λ [σ′] [σ≡σ′] → irrelevanceEq″ (PE.sym (singleSubstLift G t)) (PE.sym (singleSubstLift G t)) [σG[t]] [σG[t]]′ (substSΠ₂ BΣ [σΠFG] (proj₂ ⊩σΠFG [σ′] [σ≡σ′]) (proj₁ ([F] ⊢Δ [σ])) (proj₁ ([F] ⊢Δ [σ′])) (proj₁ ([t] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ′])) (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]) [σG[t]] (substSΠ₁ BΣ (proj₁ ([ΠFG] ⊢Δ [σ′])) (proj₁ ([F] ⊢Δ [σ′])) (proj₁ ([t] ⊢Δ [σ′]))))) -- Valid substitution of Π-congruence. substSΠEq : ∀ {F G F′ G′ t u l} W ([Γ] : ⊩ᵛ Γ) ([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ]) ([F′] : Γ ⊩ᵛ⟨ l ⟩ F′ / [Γ]) ([ΠFG] : Γ ⊩ᵛ⟨ l ⟩ ⟦ W ⟧ F ▹ G / [Γ]) ([ΠF′G′] : Γ ⊩ᵛ⟨ l ⟩ ⟦ W ⟧ F′ ▹ G′ / [Γ]) ([ΠFG≡ΠF′G′] : Γ ⊩ᵛ⟨ l ⟩ ⟦ W ⟧ F ▹ G ≡ ⟦ W ⟧ F′ ▹ G′ / [Γ] / [ΠFG]) ([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F]) ([u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ F′ / [Γ] / [F′]) ([t≡u] : Γ ⊩ᵛ⟨ l ⟩ t ≡ u ∷ F / [Γ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ G [ t ] ≡ G′ [ u ] / [Γ] / substSΠ {F = F} {G} {t} W [Γ] [F] [ΠFG] [t] substSΠEq {F = F} {G} {F′} {G′} {t} {u} BΠ [Γ] [F] [F′] [ΠFG] [ΠF′G′] [ΠFG≡ΠF′G′] [t] [u] [t≡u] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [σΠFG] = proj₁ ([ΠFG] ⊢Δ [σ]) _ , Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ = extractMaybeEmb (Π-elim [σΠFG]) F≡F₁ , G≡G₁ = B-PE-injectivity BΠ (whnfRed* (red D₁) Πₙ) [σΠF′G′] = proj₁ ([ΠF′G′] ⊢Δ [σ]) _ , Bᵣ F₂ G₂ D₂ ⊢F₂ ⊢G₂ A≡A₂ [F]₂ [G]₂ G-ext₂ = extractMaybeEmb (Π-elim [σΠF′G′]) F′≡F₂ , G′≡G₂ = B-PE-injectivity BΠ (whnfRed* (red D₂) Πₙ) [σF] = proj₁ ([F] ⊢Δ [σ]) [σF′] = proj₁ ([F′] ⊢Δ [σ]) [σt] = proj₁ ([t] ⊢Δ [σ]) [σu] = proj₁ ([u] ⊢Δ [σ]) [σt]′ = irrelevanceTerm′ (PE.trans F≡F₁ (PE.sym (wk-id F₁))) [σF] ([F]₁ id ⊢Δ) [σt] [σu]′ = irrelevanceTerm′ (PE.trans F′≡F₂ (PE.sym (wk-id F₂))) [σF′] ([F]₂ id ⊢Δ) [σu] [σt≡σu] = [t≡u] ⊢Δ [σ] [G[t]] = irrelevance′ (PE.cong (λ x → x [ subst σ t ]) (PE.trans (wk-lift-id G₁) (PE.sym G≡G₁))) ([G]₁ id ⊢Δ [σt]′) [G′[u]] = irrelevance′ (PE.cong (λ x → x [ subst σ u ]) (PE.trans (wk-lift-id G₂) (PE.sym G′≡G₂))) ([G]₂ id ⊢Δ [σu]′) in irrelevanceEq″ (PE.sym (singleSubstLift G t)) (PE.sym (singleSubstLift G′ u)) [G[t]] (proj₁ (substSΠ {F = F} {G} {t} BΠ [Γ] [F] [ΠFG] [t] ⊢Δ [σ])) (substSΠ₂ {F = subst σ F} {subst σ F′} {subst (liftSubst σ) G} {subst (liftSubst σ) G′} BΠ (proj₁ ([ΠFG] ⊢Δ [σ])) ([ΠFG≡ΠF′G′] ⊢Δ [σ]) [σF] [σF′] [σt] [σu] [σt≡σu] [G[t]] [G′[u]]) substSΠEq {F = F} {G} {F′} {G′} {t} {u} BΣ [Γ] [F] [F′] [ΣFG] [ΣF′G′] [ΣFG≡ΣF′G′] [t] [u] [t≡u] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [σΣFG] = proj₁ ([ΣFG] ⊢Δ [σ]) _ , Bᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ = extractMaybeEmb (Σ-elim [σΣFG]) F≡F₁ , G≡G₁ = B-PE-injectivity BΣ (whnfRed* (red D₁) Σₙ) [σΣF′G′] = proj₁ ([ΣF′G′] ⊢Δ [σ]) _ , Bᵣ F₂ G₂ D₂ ⊢F₂ ⊢G₂ A≡A₂ [F]₂ [G]₂ G-ext₂ = extractMaybeEmb (Σ-elim [σΣF′G′]) F′≡F₂ , G′≡G₂ = B-PE-injectivity BΣ (whnfRed* (red D₂) Σₙ) [σF] = proj₁ ([F] ⊢Δ [σ]) [σF′] = proj₁ ([F′] ⊢Δ [σ]) [σt] = proj₁ ([t] ⊢Δ [σ]) [σu] = proj₁ ([u] ⊢Δ [σ]) [σt]′ = irrelevanceTerm′ (PE.trans F≡F₁ (PE.sym (wk-id F₁))) [σF] ([F]₁ id ⊢Δ) [σt] [σu]′ = irrelevanceTerm′ (PE.trans F′≡F₂ (PE.sym (wk-id F₂))) [σF′] ([F]₂ id ⊢Δ) [σu] [σt≡σu] = [t≡u] ⊢Δ [σ] [G[t]] = irrelevance′ (PE.cong (λ x → x [ subst σ t ]) (PE.trans (wk-lift-id G₁) (PE.sym G≡G₁))) ([G]₁ id ⊢Δ [σt]′) [G′[u]] = irrelevance′ (PE.cong (λ x → x [ subst σ u ]) (PE.trans (wk-lift-id G₂) (PE.sym G′≡G₂))) ([G]₂ id ⊢Δ [σu]′) in irrelevanceEq″ (PE.sym (singleSubstLift G t)) (PE.sym (singleSubstLift G′ u)) [G[t]] (proj₁ (substSΠ {F = F} {G} {t} BΣ [Γ] [F] [ΣFG] [t] ⊢Δ [σ])) (substSΠ₂ {F = subst σ F} {subst σ F′} {subst (liftSubst σ) G} {subst (liftSubst σ) G′} BΣ (proj₁ ([ΣFG] ⊢Δ [σ])) ([ΣFG≡ΣF′G′] ⊢Δ [σ]) [σF] [σF′] [σt] [σu] [σt≡σu] [G[t]] [G′[u]])
49.036458
102
0.353372
1b32db3377590157b4966b6744d96767e770d0c2
137
agda
Agda
Cubical/Algebra/AbGroup.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/AbGroup.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Algebra/AbGroup.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.AbGroup where open import Cubical.Algebra.AbGroup.Base public
27.4
50
0.759124