hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
7c83cfd415098bd11e5657894cb2a99b4f9d0676
36,643
agda
Agda
src/interactive-cmds.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
328
2018-09-14T20:06:09.000Z
2022-03-26T10:33:07.000Z
src/interactive-cmds.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
123
2018-09-17T10:53:20.000Z
2022-01-12T03:51:28.000Z
src/interactive-cmds.agda
mb64/cedille
d0f69cc6fbfb69d7ef83a436b623d612328eb016
[ "MIT" ]
34
2018-09-17T11:51:36.000Z
2022-02-20T18:33:16.000Z
import cedille-options module interactive-cmds (options : cedille-options.options) where open import functions open import cedille-types open import ial-datatypes open import conversion (cedille-options.options.disable-conv options) using (ctxt-term-def ; ctxt-type-def ; hnf ; unfold-head-no-defs ; unfold-all ; conv-type ; conv-kind ; unfold-head ; unfold-no-defs ; unfold-head-elab ; conv-term) open import constants open import ctxt open import general-util open import spans options {Id} open import subst open import syntax-util open import type-util open import to-string options open import toplevel-state options {IO} open import untyped-spans options {Id} open import parser open import resugar open import rewriting open import rename open import classify options {Id} (λ _ → return triv) import spans options {IO} as io-spans open import datatype-util open import free-vars open import json private elab-typed-err : ∀ {ed} → ctxt → ⟦ ed ⟧' → ⟦ ed ⟧ × 𝔹 elab-typed-err {TERM} Γ t = map-snd spans-have-error $ map-fst fst $ id-out $ check-term Γ t nothing empty-spans elab-typed-err {TYPE} Γ T = map-snd spans-have-error $ map-fst fst $ id-out $ check-type Γ T nothing empty-spans elab-typed-err {KIND} Γ k = map-snd spans-have-error $ id-out $ check-kind Γ k empty-spans elab-typed : ∀ {ed} → ctxt → ⟦ ed ⟧' → ⟦ ed ⟧ elab-typed Γ = fst ∘ elab-typed-err Γ elab-untyped : ∀ {ed} → ctxt → ⟦ ed ⟧' → ⟦ ed ⟧ elab-untyped {TERM} Γ t = fst $ id-out $ untyped-term Γ t empty-spans elab-untyped {TYPE} Γ T = fst $ id-out $ untyped-type Γ T empty-spans elab-untyped {KIND} Γ k = fst $ id-out $ untyped-kind Γ k empty-spans elab-untyped-no-params : ∀ {ed} → ctxt → ⟦ ed ⟧' → ⟦ ed ⟧ elab-untyped-no-params Γ = elab-untyped (record Γ {qual = trie-map (map-snd λ _ → []) (ctxt.qual Γ)}) {- Parsing -} ll-ind : ∀ {X : exprd → Set} → X TERM → X TYPE → X KIND → (ll : exprd) → X ll ll-ind t T k TERM = t ll-ind t T k TYPE = T ll-ind t T k KIND = k ll-ind' : ∀ {X : Σ exprd ⟦_⟧ → Set} → (s : Σ exprd ⟦_⟧) → ((t : term) → X (TERM , t)) → ((T : type) → X (TYPE , T)) → ((k : kind) → X (KIND , k)) → X s ll-ind' (TERM , t) tf Tf kf = tf t ll-ind' (TYPE , T) tf Tf kf = Tf T ll-ind' (KIND , k) tf Tf kf = kf k ll-disambiguate : ctxt → ex-tm → maybe ex-tp ll-disambiguate Γ (ExVar pi x) = ctxt-lookup-type-var Γ x >>= λ _ → just (ExTpVar pi x) ll-disambiguate Γ (ExApp t NotErased t') = ll-disambiguate Γ t >>= λ T → just (ExTpAppt T t') ll-disambiguate Γ (ExAppTp t T') = ll-disambiguate Γ t >>= λ T → just (ExTpApp T T') ll-disambiguate Γ (ExLam pi ff pi' x (just atk) t) = ll-disambiguate (ctxt-tk-decl pi' x (case atk of λ {(ExTkt _) → Tkt (TpHole pi'); (ExTkk _) → Tkk KdStar}) Γ) t >>= λ T → just (ExTpLam pi pi' x atk T) ll-disambiguate Γ (ExParens pi t pi') = ll-disambiguate Γ t ll-disambiguate Γ (ExLet pi _ d t) = ll-disambiguate (Γ' d) t >>= λ T → just (ExTpLet pi d T) where Γ' : ex-def → ctxt Γ' (ExDefTerm pi' x T? t) = ctxt-term-def pi' localScope opacity-open x (just (Hole pi')) (TpHole pi') Γ Γ' (ExDefType pi' x k T) = ctxt-type-def pi' localScope opacity-open x (just (TpHole pi')) KdStar Γ ll-disambiguate Γ t = nothing parse-string : (ll : exprd) → string → maybe ⟦ ll ⟧' parse-string ll s = case ll-ind {λ ll → string → Either string ⟦ ll ⟧'} parseTerm parseType parseKind ll s of λ {(Left e) → nothing; (Right e) → just e} ttk = "term, type, or kind" parse-err-msg : (failed-to-parse : string) → (as-a : string) → string parse-err-msg failed-to-parse "" = "Failed to parse \\\\\"" ^ failed-to-parse ^ "\\\\\"" parse-err-msg failed-to-parse as-a = "Failed to parse \\\\\"" ^ failed-to-parse ^ "\\\\\" as a " ^ as-a infixr 7 _>>nothing_ _-_!_>>parse_ _!_>>error_ _>>nothing_ : ∀{ℓ}{A : Set ℓ} → maybe A → maybe A → maybe A (nothing >>nothing m₂) = m₂ (m₁ >>nothing m₂) = m₁ _-_!_>>parse_ : ∀{A B : Set} → (string → maybe A) → string → (error-msg : string) → (A → string ⊎ B) → string ⊎ B (f - s ! e >>parse f') = maybe-else (inj₁ (parse-err-msg s e)) f' (f s) _!_>>error_ : ∀{E A B : Set} → maybe A → E → (A → E ⊎ B) → E ⊎ B (just a ! e >>error f) = f a (nothing ! e >>error f) = inj₁ e parse-try : ∀ {X : Set} → ctxt → string → maybe (((ll : exprd) → ⟦ ll ⟧' → X) → X) parse-try Γ s = maybe-map (λ t f → maybe-else (f TERM t) (f TYPE) (ll-disambiguate Γ t)) (parse-string TERM s) >>nothing maybe-map (λ T f → f TYPE T) (parse-string TYPE s) >>nothing maybe-map (λ k f → f KIND k) (parse-string KIND s) string-to-𝔹 : string → maybe 𝔹 string-to-𝔹 "tt" = just tt string-to-𝔹 "ff" = just ff string-to-𝔹 _ = nothing parse-ll : string → maybe exprd parse-ll "term" = just TERM parse-ll "type" = just TYPE parse-ll "kind" = just KIND parse-ll _ = nothing {- Local Context -} record lci : Set where constructor mk-lci field ll : string; x : var; t : string; T : string; fn : string; pi : posinfo data 𝕃ₛ {ℓ} (A : Set ℓ) : Set ℓ where [_]ₛ : A → 𝕃ₛ A _::ₛ_ : A → 𝕃ₛ A → 𝕃ₛ A headₛ : ∀ {ℓ} {A : Set ℓ} → 𝕃ₛ A → A headₛ [ a ]ₛ = a headₛ (a ::ₛ as) = a 𝕃ₛ-to-𝕃 : ∀ {ℓ} {A : Set ℓ} → 𝕃ₛ A → 𝕃 A 𝕃ₛ-to-𝕃 [ a ]ₛ = [ a ] 𝕃ₛ-to-𝕃 (a ::ₛ as) = a :: 𝕃ₛ-to-𝕃 as merge-lcis-ctxt-tvs : ctxt → 𝕃 string → ctxt × 𝕃 tagged-val merge-lcis-ctxt-tvs c = foldl merge-lcis-ctxt' (c , []) ∘ (sort-lcis ∘ strings-to-lcis) where strings-to-lcis : 𝕃 string → 𝕃 lci strings-to-lcis ss = strings-to-lcis-h ss [] where strings-to-lcis-h : 𝕃 string → 𝕃 lci → 𝕃 lci strings-to-lcis-h (ll :: x :: t :: T :: fn :: pi :: tl) items = strings-to-lcis-h tl (mk-lci ll x t T fn pi :: items) strings-to-lcis-h _ items = items -- TODO: Local context information does not pass Δ information! -- When users are using BR-explorer to rewrite with the rec function, -- if they call it upon "μ' [SUBTERM] {...}", it won't work unless they say -- "μ'<rec/mu> [SUBTERM] {...}". decl-lci : posinfo → var → ctxt → ctxt decl-lci pi x Γ = record Γ { qual = trie-insert (ctxt.qual Γ) x (pi % x , []) } exprd-type-of : exprd → exprd exprd-type-of TERM = TYPE exprd-type-of _ = KIND merge-lci-ctxt : lci → ctxt × 𝕃 tagged-val → ctxt × 𝕃 tagged-val merge-lci-ctxt (mk-lci ll v t T fn pi) (Γ , tvs) = maybe-else (Γ , tvs) (map-snd (λ tv → tvs ++ [ tv ])) (parse-ll ll >>= λ ll → parse-string (exprd-type-of ll) T >>= h ll (parse-string ll t)) where h : (ll : exprd) → maybe ⟦ ll ⟧' → ⟦ exprd-type-of ll ⟧' → maybe (ctxt × tagged-val) h TERM (just t) T = let t = elab-untyped Γ t T = elab-typed Γ T in return2 (ctxt-term-def pi localScope opacity-open v (just t) T Γ) (binder-data Γ pi v (Tkt T) ff (just t) "0" "0") h TYPE (just T) k = let T = elab-untyped Γ T k = elab-typed Γ k in return2 (ctxt-type-def pi localScope opacity-open v (just T) k Γ) (binder-data Γ pi v (Tkk k) ff (just T) "0" "0") h TERM nothing T = let T = elab-typed Γ T in return2 (ctxt-term-decl pi v T Γ) (binder-data Γ pi v (Tkt T) ff nothing "0" "0") h TYPE nothing k = let k = elab-typed Γ k in return2 (ctxt-type-decl pi v k Γ) (binder-data Γ pi v (Tkk k) ff nothing "0" "0") h _ _ _ = nothing merge-lcis-ctxt' : 𝕃ₛ lci → ctxt × 𝕃 tagged-val → ctxt × 𝕃 tagged-val merge-lcis-ctxt' ls (Γ , tvs) = let ls' = 𝕃ₛ-to-𝕃 ls in foldr merge-lci-ctxt (foldr (λ l → decl-lci (lci.pi l) (lci.x l)) Γ ls' , tvs) ls' sort-eq : ∀ {ℓ} {A : Set ℓ} → (A → A → compare-t) → 𝕃 A → 𝕃 (𝕃ₛ A) sort-eq {_} {A} c = foldr insert [] where insert : A → 𝕃 (𝕃ₛ A) → 𝕃 (𝕃ₛ A) insert n [] = [ [ n ]ₛ ] insert n (a :: as) with c (headₛ a) n ...| compare-eq = n ::ₛ a :: as ...| compare-gt = [ n ]ₛ :: a :: as ...| compare-lt = a :: insert n as sort-lcis : 𝕃 lci → 𝕃 (𝕃ₛ lci) sort-lcis = sort-eq λ l₁ l₂ → compare (posinfo-to-ℕ $ lci.pi l₁) (posinfo-to-ℕ $ lci.pi l₂) {- sort-lcis = list-merge-sort.merge-sort lci λ l l' → posinfo-to-ℕ (lci.pi l) > posinfo-to-ℕ (lci.pi l') where import list-merge-sort -} merge-lcis-ctxt : ctxt → 𝕃 string → ctxt merge-lcis-ctxt Γ ls = fst $ merge-lcis-ctxt-tvs Γ ls get-local-ctxt-tvs : ctxt → (pos : ℕ) → (local-ctxt : 𝕃 string) → ctxt × 𝕃 tagged-val get-local-ctxt-tvs Γ pi = merge-lcis-ctxt-tvs (foldr (flip ctxt-clear-symbol ∘ fst) Γ (flip filter (trie-mappings (ctxt.i Γ)) λ {(x , ci , fn' , pi') → ctxt.fn Γ =string fn' && posinfo-to-ℕ pi' > pi})) get-local-ctxt : ctxt → (pos : ℕ) → (local-ctxt : 𝕃 string) → ctxt get-local-ctxt Γ pi ls = fst (get-local-ctxt-tvs Γ pi ls) {- Helpers -} step-reduce : ∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧ step-reduce Γ t = let t' = erase t in maybe-else t' id (step-reduceh Γ t') where step-reduceh : ∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → maybe ⟦ ed ⟧ step-reduceh{TERM} Γ (Var x) = ctxt-lookup-term-var-def Γ x step-reduceh{TYPE} Γ (TpVar x) = ctxt-lookup-type-var-def Γ x step-reduceh{TERM} Γ (App (Lam ff x nothing t) t') = just (subst Γ t' x t) step-reduceh{TYPE} Γ (TpApp (TpLam x (Tkk _) T) (Ttp T')) = just (subst Γ T' x T) step-reduceh{TYPE} Γ (TpApp (TpLam x (Tkt _) T) (Ttm t)) = just (subst Γ t x T) step-reduceh{TERM} Γ (App t t') = step-reduceh Γ t >>= λ t → just (App t t') step-reduceh{TYPE} Γ (TpApp T tT) = step-reduceh Γ T >>= λ T → just (TpApp T tT) step-reduceh{TERM} Γ (Lam ff x nothing t) = step-reduceh (ctxt-var-decl x Γ) t >>= λ t → just (Lam ff x nothing t) step-reduceh{TYPE} Γ (TpLam x atk T) = step-reduceh (ctxt-var-decl x Γ) T >>= λ T → just (TpLam x atk T) step-reduceh{TERM} Γ (LetTm ff x T t' t) = just (subst Γ t' x t) step-reduceh{TERM} Γ t @ (Mu μ s Tₘ f~ ms) with decompose-var-headed s >>=c λ sₕ sₐs → env-lookup Γ sₕ ...| just (ctr-def _ _ _ _ _ , _) = just (hnf Γ unfold-head-no-defs t) ...| _ = step-reduceh Γ s >>= λ s → just (Mu μ s Tₘ f~ ms) step-reduceh Γ t = nothing parse-norm : erased? → string → maybe (∀ {ed : exprd} → ctxt → ⟦ ed ⟧ → ⟦ ed ⟧) parse-norm me "all" = just λ Γ → hnf Γ (record unfold-all {unfold-erase = me}) parse-norm me "head" = just λ Γ → hnf Γ (record unfold-head-elab {unfold-erase = me}) parse-norm me "once" = just λ Γ → step-reduce Γ ∘ erase parse-norm _ _ = nothing parse-norm-err = "normalization method (all, head, once)" {- Command Executors -} normalize-cmd : ctxt → (str ll pi norm : string) → 𝕃 string → string ⊎ tagged-val normalize-cmd Γ str ll pi norm ls = parse-ll - ll ! "language-level" >>parse λ ll' → string-to-ℕ - pi ! "natural number" >>parse λ sp → parse-norm tt - norm ! parse-norm-err >>parse λ norm → parse-string ll' - str ! ll >>parse λ t → let Γ' = get-local-ctxt Γ sp ls in inj₂ (to-string-tag "" Γ' (norm Γ' (elab-untyped Γ' t))) normalize-prompt : ctxt → (str norm : string) → 𝕃 string → string ⊎ tagged-val normalize-prompt Γ str norm ls = parse-norm tt - norm ! parse-norm-err >>parse λ norm → let Γ' = merge-lcis-ctxt Γ ls in parse-try Γ' - str ! ttk >>parse λ f → f λ ll t → inj₂ (to-string-tag "" Γ' (norm Γ' (elab-untyped Γ' t))) erase-cmd : ctxt → (str ll pi : string) → 𝕃 string → string ⊎ tagged-val erase-cmd Γ str ll pi ls = parse-ll - ll ! "language-level" >>parse λ ll' → string-to-ℕ - pi ! "natural number" >>parse λ sp → parse-string ll' - str ! ll >>parse λ t → let Γ' = get-local-ctxt Γ sp ls in inj₂ (to-string-tag "" Γ' (erase (elab-untyped Γ' t))) erase-prompt : ctxt → (str : string) → 𝕃 string → string ⊎ tagged-val erase-prompt Γ str ls = let Γ' = merge-lcis-ctxt Γ ls in parse-try Γ' - str ! ttk >>parse λ f → f λ ll t → inj₂ (to-string-tag "" Γ' (erase (elab-untyped Γ' t))) -- private -- cmds-to-escaped-string : cmds → strM -- cmds-to-escaped-string (c :: cs) = cmd-to-string c $ strAdd "\\n\\n" >>str cmds-to-escaped-string cs -- cmds-to-escaped-string [] = strEmpty -- data-cmd : ctxt → (encoding name ps is cs : string) → string ⊎ tagged-val -- data-cmd Γ encodingₛ x psₛ isₛ csₛ = -- string-to-𝔹 - encodingₛ ! "boolean" >>parse λ encoding → -- parse-string KIND - psₛ ! "kind" >>parse λ psₖ → -- parse-string KIND - isₛ ! "kind" >>parse λ isₖ → -- parse-string KIND - csₛ ! "kind" >>parse λ csₖ → -- let ps = map (λ {(Index x atk) → Decl posinfo-gen posinfo-gen Erased x atk posinfo-gen}) $ kind-to-indices Γ psₖ -- cs = map (λ {(Index x (Tkt T)) → Ctr posinfo-gen x T; (Index x (Tkk k)) → Ctr posinfo-gen x $ mtpvar "ErrorExpectedTypeNotKind"}) $ kind-to-indices empty-ctxt csₖ -- is = kind-to-indices (add-ctrs-to-ctxt cs $ add-params-to-ctxt ps Γ) isₖ -- picked-encoding = if encoding then mendler-encoding else mendler-simple-encoding -- defs = datatype-encoding.mk-defs picked-encoding Γ $ Data x ps is cs in -- inj₂ $ strRunTag "" Γ $ cmds-to-escaped-string $ fst defs -- pretty-cmd : filepath → filepath → IO string -- pretty-cmd src-fn dest-fn = -- readFiniteFile src-fn >>= λ src → -- case parseStart src of λ where -- (Left (Left p)) → return ("Lexical error at position " ^ p) -- (Left (Right p)) → return ("Parse error at position " ^ p) -- (Right file) → writeFile dest-fn "" >> writeRopeToFile dest-fn (to-string.strRun empty-ctxt (to-string.file-to-string file)) >> return "Finished" -- where import to-string (record options {pretty-print = tt}) as to-string {- Commands -} tv-to-json : string ⊎ tagged-val → json tv-to-json (inj₁ s) = json-object [ "error" , json-string s ] -- [[ "{\"error\":\"" ]] ⊹⊹ [[ s ]] ⊹⊹ [[ "\"}" ]] tv-to-json (inj₂ (_ , v , ts)) = tagged-vals-to-json [ "value" , v , ts ] interactive-cmd-h : ctxt → 𝕃 string → string ⊎ tagged-val interactive-cmd-h Γ ("normalize" :: input :: ll :: sp :: norm :: lc) = normalize-cmd Γ input ll sp norm lc interactive-cmd-h Γ ("erase" :: input :: ll :: sp :: lc) = erase-cmd Γ input ll sp lc interactive-cmd-h Γ ("normalizePrompt" :: input :: norm :: lc) = normalize-prompt Γ input norm lc interactive-cmd-h Γ ("erasePrompt" :: input :: lc) = erase-prompt Γ input lc -- interactive-cmd-h Γ ("data" :: encoding :: x :: ps :: is :: cs :: []) = -- data-cmd Γ encoding x ps is cs interactive-cmd-h Γ cs = inj₁ ("Unknown interactive cmd: " ^ 𝕃-to-string (λ s → s) ", " cs) record br-history : Set where inductive constructor mk-br-history field Γ : ctxt t : term Tₗₗ : exprd T : ⟦ Tₗₗ ⟧ Tᵤ : string f : term → 𝕃 (ctr × term) → term Γₗ : 𝕃 tagged-val undo : 𝕃 br-history redo : 𝕃 br-history data br-history2 : Set where br-node : br-history → 𝕃 (ctr × br-history2) → br-history2 br-get-h : br-history2 → br-history br-get-h (br-node h hs) = h br-lookup : 𝕃 ℕ → br-history2 → maybe br-history br-lookup xs h = maybe-map br-get-h $ foldl (λ x h? → h? >>= λ {(br-node h hs) → maybe-map snd $ head2 (nthTail x hs)}) (just h) xs {-# TERMINATING #-} br-cmd2 : ctxt → string → string → string → 𝕃 string → IO ⊤ br-cmd2 Γ Tₛ tₛ sp ls = (string-to-ℕ - sp ! "natural number" >>parse inj₂) >>parseIO λ sp → elim-pair (get-local-ctxt-tvs Γ sp ls) λ Γ Γₗ → (parse-try Γ - Tₛ ! ttk >>parse inj₂) >>parseIO λ Tf → Tf λ Tₗₗ T → (parse-string TERM - tₛ ! "term" >>parse inj₂) >>parseIO λ t → let T = elab-untyped Γ T Tₑ = erase T t = elab-typed Γ t in -- TODO: Probably should switch back to ex-tm so if this doesn't currently check it won't elaborate to a hole! putJson (tv-to-json $ inj₂ $ ts-tag Γ Tₑ) >> await (br-node (mk-br-history Γ t Tₗₗ T (rope-to-string $ ts2.to-string Γ Tₑ) const Γₗ [] []) []) where import to-string (record options {erase-types = ff}) as ts2 import to-string (record options {erase-types = ff; pretty-print = tt}) as pretty2s ts-tag : ∀ {ed} → ctxt → ⟦ ed ⟧ → tagged-val ts-tag = ts2.to-string-tag "" infixr 6 _>>parseIO_ _>>parseIO_ : ∀ {A : Set} → string ⊎ A → (A → IO ⊤) → IO ⊤ inj₁ e >>parseIO f = putJson $ tv-to-json $ inj₁ e inj₂ a >>parseIO f = f a replace-substring : string → string → ℕ → ℕ → string × string replace-substring sₒ sᵣ fm to with string-to-𝕃char sₒ | string-to-𝕃char sᵣ ...| csₒ | csᵣ = 𝕃char-to-string (take fm csₒ ++ csᵣ ++ drop to csₒ) , 𝕃char-to-string (take (to ∸ fm) $ drop fm csₒ) replace : string → string → ℕ → ℕ → string replace sₒ sᵣ fm to = fst $ replace-substring sₒ sᵣ fm to substring : string → ℕ → ℕ → string substring s fm to = snd $ replace-substring s "" fm to escape-rope : rope → rope escape-rope [[ s ]] = [[ escape-string s ]] escape-rope (r₁ ⊹⊹ r₂) = escape-rope r₁ ⊹⊹ escape-rope r₂ parse-path : string → maybe (𝕃 ℕ) parse-path "" = just [] parse-path s with string-split s ' ' | foldr (λ n ns → ns >>= λ ns → string-to-ℕ n >>= λ n → just (n :: ns)) (just []) ...| "" :: ss | f = f ss ...| path | f = f path write-history : 𝕃 ℕ → br-history → br-history2 → br-history2 write-history [] h (br-node _ hs) = br-node h hs write-history (n :: ns) h (br-node hₒ hs) = br-node hₒ $ writeh n hs where writeh : ℕ → 𝕃 (ctr × br-history2) → 𝕃 (ctr × br-history2) writeh _ [] = [] writeh zero ((c , h') :: hs) = (c , write-history ns h h') :: hs writeh (suc n) (h' :: hs) = h' :: writeh n hs write-children : 𝕃 ℕ → 𝕃 (ctr × br-history) → br-history2 → br-history2 write-children [] hs (br-node h _) = br-node h (map (uncurry λ c h → c , br-node h []) hs) write-children (n :: ns) hs (br-node h hsₒ) = br-node h $ writeh n hsₒ where writeh : ℕ → 𝕃 (ctr × br-history2) → 𝕃 (ctr × br-history2) writeh _ [] = [] writeh zero ((c , h') :: hs') = (c , write-children ns hs h') :: hs' writeh (suc n) (h' :: hs) = h' :: writeh n hs outline : br-history2 → term -- outline (br-node (mk-br-history Γ t TYPE T Tₛ f Γₗ undo redo) []) = -- elim-pair (id-out $ check-term Γ t (just T) empty-spans) λ t~ ss → f t~ [] -- outline (br-node (mk-br-history Γ t Tₗₗ T Tₛ f Γₗ undo redo) []) = f (elab-untyped-no-params Γ t) [] -- outline (br-node (mk-br-history Γ t Tₗₗ T Tₛ f Γₗ undo redo) hs) = -- f (elab-typed Γ t) (map (uncurry λ c h → c , outline h) hs) outline (br-node (mk-br-history Γ t Tₗₗ T Tₛ f Γₗ undo redo) hs) = f t (map-snd outline <$> hs) make-case : ctxt → params → term → case-args × term make-case = h [] where h : params → ctxt → params → term → case-args × term h acc Γ (Param me x atk :: ps) (Lam me' x' oc' t') = h (Param me x' atk :: acc) (ctxt-var-decl x' Γ) (substh-params Γ (renamectxt-single x x') empty-trie ps) t' h acc Γ ps (Hole pi) = params-to-case-args (reverse acc ++ ps) , Hole pi h acc Γ ps t = params-to-case-args (reverse acc ++ ps) , params-to-apps ps t await : br-history2 → IO ⊤ awaith : br-history2 → 𝕃 string → IO ⊤ await his = getLine >>= λ input → let input = undo-escape-string input as = string-split input delimiter in awaith his as awaith his as = let put = putJson ∘ tv-to-json err = (_>> await his) ∘' put ∘' inj₁ in case as of λ where -- TODO: for these commands, do not add TYPES/KINDS of local decls to context, as they are probably just bound by foralls/pis/lambdas, not _really_ in scope! ("br" :: path :: as) → maybe-else' (parse-path path) (err ("Could not parse " ^ path ^ " as a list of space-delimited natural numbers")) λ path → let await-with = await ∘ flip (write-history path) his in maybe-else' (br-lookup path his) (err "Beta-reduction pointer does not exist") λ where this @ (mk-br-history Γ t Tₗₗ T Tᵤ f Γₗ undo redo) → case as of λ where ("undo" :: []) → case undo of λ where [] → err "No undo history" (u :: us) → put (inj₂ $ "" , [[ "Undo" ]] , []) >> await-with (record u {undo = us; redo = this :: redo}) --u (await Γ t Tₗₗ T Tᵤ f undo redo :: redo) ("redo" :: []) → case redo of λ where [] → err "No redo history" (r :: rs) → put (inj₂ $ "" , [[ "Redo" ]] , []) >> await-with (record r {undo = this :: undo; redo = rs}) --r ("get" :: []) → put (inj₂ $ "" , [[ Tᵤ ]] , []) >> await his ("parse" :: []) → (_>> await his) $ maybe-else' (parse-string Tₗₗ Tᵤ) (putJson $ spans-to-json $ global-error "Parse error" nothing) λ T → putJson $ spans-to-json $ snd $ id-out $ ll-ind {λ ll → ctxt → ⟦ ll ⟧' → spanM ⟦ ll ⟧} untyped-term untyped-type untyped-kind Tₗₗ (record Γ { fn = "missing" }) T empty-spans ("context" :: []) → putJson (json-object [ "value" , json-array [ tagged-vals-to-json Γₗ ] ]) >> await his ("check" :: t?) → let await-set = maybe-else (await his) λ t → await-with $ record this {t = t; undo = this :: undo; redo = []} in (λ e → either-else' e (uncurry λ t? e → put (inj₁ e) >> await-set t?) (uncurry λ t? m → put (inj₂ $ "value" , [[ m ]] , []) >> await-set t?)) $ ll-ind' {λ T → (maybe term × string) ⊎ (maybe term × string)} (Tₗₗ , T) (λ _ → inj₁ $ nothing , "Expression must be a type, not a term!") (λ T → (case t? of λ where [] → inj₂ nothing (t :: []) → maybe-else' (parse-string TERM t) (inj₁ $ nothing , parse-err-msg t "term") (inj₂ ∘ just) _ → inj₁ $ nothing , "To many arguments given to beta-reduction command 'check'") >>= λ t? → elim-pair (maybe-else' t? (elim-pair (id-out (check-term (qualified-ctxt Γ) (resugar t) (just T) empty-spans)) λ t~ ss → nothing , spans-have-error ss) λ t → elim-pair (id-out (check-term Γ t (just T) empty-spans)) λ t~ ss → just t~ , spans-have-error ss) λ t~? e? → let fail = inj₁ (just (maybe-else' t~? t id) , "Type error") try-β = elim-pair (id-out (check-term Γ (ExBeta pi-gen nothing nothing) (just T) empty-spans)) λ β~ ss → if spans-have-error ss then inj₁ (nothing , "Type error") else inj₂ (just β~ , "Equal by beta") in if e? then if isJust t? then fail else try-β else inj₂ (t~? , "Type inhabited")) (λ _ → inj₁ $ nothing , "Expression must be a type, not a kind!") ("rewrite" :: fm :: to :: eq :: ρ+? :: lc) → let Γ' = merge-lcis-ctxt Γ lc in either-else' (parse-string TERM - eq ! "term" >>parse λ eqₒ → string-to-𝔹 - ρ+? ! "boolean" >>parse λ ρ+? → string-to-ℕ - fm ! "natural number" >>parse λ fm → string-to-ℕ - to ! "natural number" >>parse λ to → parse-try Γ' - substring Tᵤ fm to ! ttk >>parse λ Tf → Tf λ ll Tₗ → elim-pair (id-out (check-term Γ' eqₒ nothing empty-spans)) $ uncurry λ eq Tₑ ss → is-eq-tp? Tₑ ! "Synthesized a non-equational type from the proof" >>error uncurry λ t₁ t₂ → err⊎-guard (spans-have-error ss) "Proof does not type check" >> let Tₑ = TpEq t₁ t₂ x = fresh-var Γ' "x" Tₗ = elab-untyped-no-params Γ' Tₗ in elim-pair (map-snd snd $ rewrite-exprd Tₗ Γ' ρ+? nothing (just eq) t₁ x 0) λ Tᵣ n → err⊎-guard (iszero n) "No rewrites could be performed" >> parse-string Tₗₗ - replace Tᵤ (rope-to-string $ [[ "(" ]] ⊹⊹ ts2.to-string Γ' Tᵣ ⊹⊹ [[ ")" ]]) fm to ! ll-ind "term" "type" "kind" Tₗₗ >>parse λ Tᵤ → let Tᵤ = elab-untyped-no-params (ctxt-var-decl x Γ) Tᵤ in ll-ind' {λ {(ll , T) → ⟦ ll ⟧ → string ⊎ ⟦ ll ⟧ × (term → term)}} (Tₗₗ , Tᵤ) (λ t T → inj₂ $ rewrite-mk-phi x eq T (subst Γ t₂ x t) , id) (λ Tᵤ _ → inj₂ $ post-rewrite (ctxt-var-decl x Γ) x eq t₂ Tᵤ , Rho eq x Tᵤ) (λ k _ → inj₂ $ subst Γ t₂ x k , id) T) err $ uncurry λ T' fₜ → put (inj₂ $ ts-tag Γ $ erase T') >> await-with (record this {T = T'; Tᵤ = rope-to-string $ ts2.to-string Γ $ erase T'; f = f ∘ fₜ; undo = this :: undo; redo = []}) ("normalize" :: fm :: to :: norm :: lc) → either-else' (let Γ' = merge-lcis-ctxt Γ lc in string-to-ℕ - fm ! "natural number" >>parse λ fm → string-to-ℕ - to ! "natural number" >>parse λ to → let tₛ = substring Tᵤ fm to in parse-try Γ' - tₛ ! ttk >>parse λ t → t λ ll t → parse-norm ff - norm ! parse-norm-err >>parse λ norm → let s = norm Γ' $ elab-untyped-no-params Γ' t rs = rope-to-string $ [[ "(" ]] ⊹⊹ ts2.to-string Γ' s ⊹⊹ [[ ")" ]] Tᵤ' = replace Tᵤ rs fm to in parse-string Tₗₗ - Tᵤ' ! ll-ind "term" "type" "kind" Tₗₗ >>parse λ Tᵤ' → let Tᵤ' = elab-untyped-no-params Γ' Tᵤ' in inj₂ Tᵤ') err λ Tᵤ' → put (inj₂ $ ts-tag Γ Tᵤ') >> await-with (record this {T = Tᵤ' {-Checks?-}; Tᵤ = rope-to-string $ ts2.to-string Γ $ erase Tᵤ'; undo = this :: undo; redo = []}) ("conv" :: ll :: fm :: to :: t' :: ls) → let Γ' = merge-lcis-ctxt Γ ls in either-else' (parse-ll - ll ! "language level" >>parse λ ll → string-to-ℕ - fm ! "natural number" >>parse λ fm → string-to-ℕ - to ! "natural number" >>parse λ to → let t = substring Tᵤ fm to in parse-string ll - t ! ll-ind "term" "type" "kind" ll >>parse λ t → parse-string ll - t' ! ll-ind "term" "type" "kind" ll >>parse λ t' → let t = elab-untyped-no-params Γ' t; t' = elab-untyped-no-params Γ' t' in err⊎-guard (~ ll-ind {λ ll → ctxt → ⟦ ll ⟧ → ⟦ ll ⟧ → 𝔹} conv-term conv-type conv-kind ll Γ' t t') "Inconvertible" >> let rs = [[ "(" ]] ⊹⊹ ts2.to-string Γ' (erase t') ⊹⊹ [[ ")" ]] Tᵤ = replace Tᵤ (rope-to-string rs) fm to in parse-string Tₗₗ - Tᵤ ! ll-ind "term" "type" "kind" Tₗₗ >>parse λ Tᵤ → inj₂ (elab-untyped-no-params Γ Tᵤ)) err λ Tᵤ' → put (inj₂ $ ts-tag Γ $ erase Tᵤ') >> await-with (record this {Tᵤ = rope-to-string $ ts2.to-string Γ $ erase Tᵤ'; undo = this :: undo; redo = []}) ("bind" :: xᵤ :: []) → let Γₚᵢ = ℕ-to-string (length Γₗ) in either-else' (ll-ind' {λ {(ll , _) → string ⊎ ctxt × erased? × tpkd × ⟦ ll ⟧ × (term → term)}} (Tₗₗ , T) (λ t' → let R = string ⊎ ctxt × erased? × tpkd × term × (term → term) in (case_of_ {B = (erased? → var → maybe tpkd → term → R) → R} (t' , hnf Γ unfold-head t') $ uncurry λ where (Lam me x oc body) _ f → f me x oc body _ (Lam me x oc body) f → f me x oc body _ _ _ → inj₁ "Not a term abstraction") λ me x oc body → inj₂ $ ctxt-var-decl-loc Γₚᵢ xᵤ Γ , me , maybe-else' oc (Tkt $ TpHole pi-gen) id , rename-var (ctxt-var-decl-loc Γₚᵢ xᵤ Γ) x xᵤ body , Lam me xᵤ oc) (λ T → Γ ⊢ T =β= λ where (TpAbs me x dom cod) → let Γ' = ctxt-tk-decl Γₚᵢ xᵤ dom Γ in inj₂ $ Γ' , me , dom , rename-var Γ' x (Γₚᵢ % xᵤ) cod , Lam me xᵤ (just dom) _ → inj₁ "Not a type abstraction") (λ k → inj₁ "Expression must be a term or a type")) err λ where (Γ' , me , dom , cod , fₜ) → let tv = binder-data Γ' Γₚᵢ xᵤ dom me nothing "0" "0" in -- putJson (json-object [ "value" , json-array (json-array (json-rope (fst (snd tv)) :: json-rope (to-string Γ' $ erase cod) :: []) :: []) ]) >> putJson (json-object [ "value" , json-array [ json-rope (to-string Γ' $ erase cod) ] ]) >> await-with (record this {Γ = Γ' ; T = cod; Tᵤ = rope-to-string $ ts2.to-string Γ' $ erase cod; f = f ∘ fₜ; Γₗ = Γₗ ++ [ tv ]; undo = this :: undo; redo = []}) ("case" :: scrutinee :: rec :: motive?) → -- TODO: Motive? let Γₚᵢ = ℕ-to-string (length Γₗ) in either-else' (parse-string TERM - scrutinee ! "term" >>parse λ scrutinee → elim-pair (id-out (check-term Γ scrutinee nothing empty-spans)) $ uncurry λ tₛ Tₛ ss → if (spans-have-error ss) then inj₁ "Error synthesizing a type from the input term" else let Tₛ = hnf Γ unfold-no-defs Tₛ in case decompose-ctr-type Γ Tₛ of λ where (TpVar Xₛ , [] , as) → ll-ind' {λ T → string ⊎ (term × term × 𝕃 (ctr × type) × type × ctxt × 𝕃 tagged-val × datatype-info)} (Tₗₗ , T) (λ t → inj₁ "Expression must be a type to case split") (λ T → maybe-else' (data-lookup Γ Xₛ as) (inj₁ "The synthesized type of the input term is not a datatype") λ d → let mk-data-info X _ asₚ asᵢ ps kᵢ k cs csₚₛ _ _ = d is' = kind-to-indices (add-params-to-ctxt ps Γ) kᵢ is = drop-last 1 is' Tₘ = refine-motive Γ is' (asᵢ ++ [ Ttm tₛ ]) T sM' = ctxt-mu-decls Γ tₛ is Tₘ d Γₚᵢ "0" "0" rec σ = λ y → inst-ctrs Γ ps asₚ (map-snd (rename-var {TYPE} Γ X y) <$> cs) sM = if rec =string "" then (σ X , const spanMok , Γ , [] , empty-renamectxt , (λ Γ t T → t) , (λ Γ T k → T)) else (σ (Γₚᵢ % mu-Type/ rec) , sM') mu = sigma-build-evidence Xₛ d in case sM of λ where (σ-cs , _ , Γ' , ts , ρ , tf , Tf) → if spans-have-error (snd $ id-out $ check-type (qualified-ctxt Γ) (resugar Tₘ) (just kᵢ) empty-spans) then inj₁ "Computed an ill-typed motive" else inj₂ ( tₛ , mu , map (λ {(Ctr x T) → let T' = hnf Γ' unfold-head-elab T in Ctr x T , (case decompose-ctr-type Γ' T' of λ {(Tₕ , ps' , as) → params-to-alls ps' $ hnf Γ' unfold-head-no-defs (TpApp (recompose-tpapps (drop (length ps) as) Tₘ) (Ttm (recompose-apps (params-to-args ps') $ recompose-apps asₚ (Var x))))})}) σ-cs , Tₘ , Γ' , ts , d)) (λ k → inj₁ "Expression must be a type to case split") (Tₕ , [] , as) → inj₁ "Synthesized a non-datatype from the input term" (Tₕ , ps , as) → inj₁ "Case splitting is currently restricted to datatypes") err $ λ where (scrutinee , mu , cs , Tₘ , Γ , ts , d) → let json = json-object [ "value" , json-array [ json-object (map (λ {(Ctr x _ , T) → unqual-all (ctxt.qual Γ) x , json-rope (to-string Γ (erase T))}) cs) ] ] in -- ) ] ] in putJson json >> let shallow = iszero (string-length rec) mk-cs = map λ where (Ctr x T , t) → let T' = hnf Γ unfold-head-elab T in case decompose-ctr-type Γ T' of λ where (Tₕ , ps , as) → elim-pair (make-case Γ ps t) λ cas t → Case x cas t [] f'' = λ t cs → (if shallow then Mu rec else Sigma (just mu)) t (just Tₘ) d (mk-cs cs) f' = λ t cs → f (f'' t cs) cs mk-hs = map $ map-snd λ T'' → mk-br-history Γ t TYPE T'' (rope-to-string $ to-string Γ $ erase T'') (λ t cs → t) (Γₗ ++ ts) [] [] in await (write-children path (mk-hs cs) $ write-history path (record this {f = f'; Γ = Γ; t = scrutinee; Γₗ = Γₗ ++ ts;-- TODO: Should we really do this? undo = this :: undo; redo = []}) his) ("print" :: tab :: []) → either-else' (string-to-ℕ - tab ! "natural number" >>parse inj₂) err λ tab → putRopeLn (escape-rope (json-to-rope (tv-to-json (inj₂ $ pretty2s.strRunTag "" Γ $ pretty2s.strNest (suc {-left paren-} tab) (pretty2s.to-stringh $ outline his))))) >> await his ("quit" :: []) → put $ inj₂ $ strRunTag "" Γ $ strAdd "Quitting beta-reduction mode..." _ → err $ foldl (λ a s → s ^ char-to-string delimiter ^ a) "Unknown beta-reduction command: " as _ → err "A beta-reduction buffer is still open" interactive-cmd : 𝕃 string → toplevel-state → IO ⊤ interactive-cmd ("br2" :: T :: t :: sp :: lc) ts = br-cmd2 (toplevel-state.Γ ts) T t sp lc --interactive-cmd ("pretty" :: src :: dest :: []) ts = pretty-cmd src dest >>= putStrLn interactive-cmd ls ts = putRopeLn (json-to-rope (tv-to-json (interactive-cmd-h (toplevel-state.Γ ts) ls))) interactive-not-br-cmd-msg = tv-to-json $ inj₁ "Beta-reduction mode has been terminated"
50.264746
227
0.496684
7c825ccbf628fcf7ba7b51eefcb7e506d511ee25
486
agda
Agda
test/fail/Issue555b.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/Issue555b.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/Issue555b.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
-- Andreas, 2012-01-13 module Issue555b where data Empty : Set where record Unit : Set where constructor tt -- Do we want to allow this? data Exp (A : Set) : Set1 data Exp where -- ? needs to report that too few parameters are given var : Exp Empty app : {A B : Set} → Exp (A → B) → Exp A → Exp B -- Basically, A is first declared as a parameter, but later, -- in the definition, it is turned into an index. bla : {A : Set} → Exp A → Unit bla var = tt bla (app f a) = bla f
23.142857
69
0.654321
d1659aadf84e832df950b7bb2dde4df4a14d3145
3,553
agda
Agda
agda-stdlib/src/Function/Structures.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Function/Structures.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Function/Structures.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Structures for types of functions ------------------------------------------------------------------------ -- The contents of this file should usually be accessed from `Function`. {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Function.Structures {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂) where open import Data.Product using (∃; _×_; _,_) open import Function.Base open import Function.Definitions open import Level using (_⊔_) ------------------------------------------------------------------------ -- Definitions record IsCongruent (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field cong : Congruent _≈₁_ _≈₂_ f isEquivalence₁ : IsEquivalence _≈₁_ isEquivalence₂ : IsEquivalence _≈₂_ module Eq₁ where setoid : Setoid a ℓ₁ setoid = record { isEquivalence = isEquivalence₁ } open Setoid setoid public module Eq₂ where setoid : Setoid b ℓ₂ setoid = record { isEquivalence = isEquivalence₂ } open Setoid setoid public record IsInjection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isCongruent : IsCongruent f injective : Injective _≈₁_ _≈₂_ f open IsCongruent isCongruent public record IsSurjection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isCongruent : IsCongruent f surjective : Surjective _≈₁_ _≈₂_ f open IsCongruent isCongruent public record IsBijection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isInjection : IsInjection f surjective : Surjective _≈₁_ _≈₂_ f open IsInjection isInjection public bijective : Bijective _≈₁_ _≈₂_ f bijective = injective , surjective isSurjection : IsSurjection f isSurjection = record { isCongruent = isCongruent ; surjective = surjective } record IsLeftInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isCongruent : IsCongruent f cong₂ : Congruent _≈₂_ _≈₁_ g inverseˡ : Inverseˡ _≈₁_ _≈₂_ f g open IsCongruent isCongruent public renaming (cong to cong₁) record IsRightInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isCongruent : IsCongruent f cong₂ : Congruent _≈₂_ _≈₁_ g inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g open IsCongruent isCongruent public renaming (cong to cong₁) record IsBiEquivalence (f : A → B) (g₁ : B → A) (g₂ : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f-isCongruent : IsCongruent f cong₂ : Congruent _≈₂_ _≈₁_ g₁ cong₃ : Congruent _≈₂_ _≈₁_ g₂ open IsCongruent f-isCongruent public renaming (cong to cong₁) record IsBiInverse (f : A → B) (g₁ : B → A) (g₂ : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field f-isCongruent : IsCongruent f cong₂ : Congruent _≈₂_ _≈₁_ g₁ inverseˡ : Inverseˡ _≈₁_ _≈₂_ f g₁ cong₃ : Congruent _≈₂_ _≈₁_ g₂ inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g₂ open IsCongruent f-isCongruent public renaming (cong to cong₁) record IsInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where field isLeftInverse : IsLeftInverse f g inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g open IsLeftInverse isLeftInverse public isRightInverse : IsRightInverse f g isRightInverse = record { isCongruent = isCongruent ; cong₂ = cong₂ ; inverseʳ = inverseʳ } inverse : Inverseᵇ _≈₁_ _≈₂_ f g inverse = inverseˡ , inverseʳ
25.198582
75
0.594709
7c214579c8bbfabc4b51aab519b603d77fce3b46
12,177
agda
Agda
eval-checks.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
1
2019-12-19T23:42:31.000Z
2019-12-19T23:42:31.000Z
eval-checks.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
eval-checks.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import List open import contexts open import core open import lemmas-general open import preservation module eval-checks where eval-unicity : ∀{⛽ Δ Σ' Γ E e τ r r' K K'} → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ e :: τ → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ K → E ⊢ e ⌊ ⛽ ⌋⇒ r' ⊣ K' → r == r' ∧ K == K' xc-unicity : ∀{Δ Σ' r1 r2 τ K K'} → Δ , Σ' ⊢ r1 ·: τ → Δ , Σ' ⊢ r2 ·: τ → Constraints⦃ r1 , r2 ⦄:= K → Constraints⦃ r1 , r2 ⦄:= K' → K == K' eval-unicity Γ⊢E (TAFix _) EFix EFix = refl , refl eval-unicity Γ⊢E (TAVar _) (EVar h) (EVar h') = ctxunicity h h' , refl eval-unicity Γ⊢E (TAApp _ ta-f ta-arg) (EAppFix f1 form eval-f eval-arg eval) (EAppFix f2 form' eval-f' eval-arg' eval') rewrite form | form' with eval-unicity Γ⊢E ta-f eval-f eval-f' | eval-unicity Γ⊢E ta-arg eval-arg eval-arg' ... | refl , refl | refl , refl with preservation Γ⊢E ta-f eval-f ... | TAFix Γ'⊢Ef (TAFix ta-ef) rewrite Fuel-depletion-unicity f1 f2 with eval-unicity (EnvInd (EnvInd Γ'⊢Ef (preservation Γ⊢E ta-f eval-f)) (preservation Γ⊢E ta-arg eval-arg)) ta-ef eval eval' ... | refl , refl = refl , refl eval-unicity Γ⊢E TAUnit EUnit EUnit = refl , refl eval-unicity Γ⊢E (TAApp x ta-e ta-e₁) (EAppFix x₁ form eval eval₁ eval₂) (EAppUnfinished eval' nf eval'') with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl rewrite form = abort (nf refl) eval-unicity Γ⊢E (TAApp x ta-e ta-e₁) (EAppUnfinished eval nf eval₁) (EAppFix x₂ form eval' eval'' eval''') with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl rewrite form = abort (nf refl) eval-unicity Γ⊢E (TAApp x ta-f ta-arg) (EAppUnfinished eval-f x₁ eval-arg) (EAppUnfinished eval-f' x₂ eval-arg') with eval-unicity Γ⊢E ta-f eval-f eval-f' | eval-unicity Γ⊢E ta-arg eval-arg eval-arg' ... | refl , refl | refl , refl = refl , refl eval-unicity Γ⊢E (TAPair x ta-e1 ta-e2) (EPair eval1 eval2) (EPair eval1' eval2') with eval-unicity Γ⊢E ta-e1 eval1 eval1' | eval-unicity Γ⊢E ta-e2 eval2 eval2' ... | refl , refl | refl , refl = refl , refl eval-unicity Γ⊢E (TAFst ta-e) (EFst eval) (EFst eval') with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = refl , refl eval-unicity Γ⊢E (TAFst ta-e) (EFst eval) (EFstUnfinished eval' np) with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = abort (np refl) eval-unicity Γ⊢E (TAFst ta-e) (EFstUnfinished eval np) (EFst eval') with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = abort (np refl) eval-unicity Γ⊢E (TAFst ta-e) (EFstUnfinished eval x) (EFstUnfinished eval' x₁) with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = refl , refl eval-unicity Γ⊢E (TASnd ta-e) (ESnd eval) (ESnd eval') with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = refl , refl eval-unicity Γ⊢E (TASnd ta-e) (ESnd eval) (ESndUnfinished eval' np) with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = abort (np refl) eval-unicity Γ⊢E (TASnd ta-e) (ESndUnfinished eval np) (ESnd eval') with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = abort (np refl) eval-unicity Γ⊢E (TASnd ta-e) (ESndUnfinished eval x) (ESndUnfinished eval' x₁) with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = refl , refl eval-unicity Γ⊢E (TACtor x x₁ ta-e) (ECtor eval) (ECtor eval') with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = refl , refl eval-unicity Γ⊢E (TACase d∈σ' ta-e x₁ ta-rules) (EMatch f1 form eval-e eval-ec) (EMatch f2 form' eval'-e eval'-ec) with eval-unicity Γ⊢E ta-e eval-e eval'-e ... | refl , refl with ctxunicity form form' ... | refl with ta-rules form ... | _ , _ , _ , c∈cctx , ta-ec with preservation Γ⊢E ta-e eval-e ... | TACtor d∈'σ' c∈'cctx ta-r' rewrite ctxunicity d∈σ' d∈'σ' | ctxunicity c∈cctx c∈'cctx | Fuel-depletion-unicity f1 f2 with eval-unicity (EnvInd Γ⊢E ta-r') ta-ec eval-ec eval'-ec ... | refl , refl = refl , refl eval-unicity Γ⊢E (TACase x ta-e x₁ x₂) (EMatch x₃ x₄ eval eval₁) (EMatchUnfinished eval' nc) with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = abort (nc refl) eval-unicity Γ⊢E (TACase x ta-e x₁ x₂) (EMatchUnfinished eval nc) (EMatch x₄ x₅ eval' eval'') with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = abort (nc refl) eval-unicity Γ⊢E (TACase x ta-e x₁ x₂) (EMatchUnfinished eval x₃) (EMatchUnfinished eval' x₄) with eval-unicity Γ⊢E ta-e eval eval' ... | refl , refl = refl , refl eval-unicity Γ⊢E (TAHole x) EHole EHole = refl , refl eval-unicity Γ⊢E (TAAsrt x ta-e1 ta-e2) (EAsrt eval1 eval2 xc) (EAsrt eval1' eval2' xc') with eval-unicity Γ⊢E ta-e1 eval1 eval1' | eval-unicity Γ⊢E ta-e2 eval2 eval2' ... | refl , refl | refl , refl rewrite xc-unicity (preservation Γ⊢E ta-e1 eval1) (preservation Γ⊢E ta-e2 eval2) xc xc' = refl , refl xc-unicity ta1 ta2 RCRefl RCRefl = refl xc-unicity ta1 ta2 RCRefl (RCPair x rc2 rc3) = abort (x refl) xc-unicity ta1 ta2 RCRefl (RCCtor x rc2) = abort (x refl) xc-unicity ta1 ta2 RCRefl (RCVal1 x x₁ x₂ x₃) = abort (x refl) xc-unicity ta1 ta2 RCRefl (RCVal2 x x₁ x₂ x₃) = abort (x refl) xc-unicity ta1 ta2 (RCPair x rc1 rc2) RCRefl = abort (x refl) xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCPair x rc1 rc2) (RCPair x₁ rc3 rc4) rewrite xc-unicity ta1 ta3 rc1 rc3 | xc-unicity ta2 ta4 rc2 rc4 = refl xc-unicity ta1 ta2 (RCPair x rc1 rc2) (RCVal1 x₁ (Inl x₂) x₃ x₄) = abort (x₂ refl) xc-unicity ta1 ta2 (RCPair x rc1 rc2) (RCVal1 x₁ (Inr x₂) x₃ x₄) = abort (x₂ refl) xc-unicity ta1 ta2 (RCPair x rc1 rc2) (RCVal2 x₁ (Inl x₂) x₃ x₄) = abort (x₂ refl) xc-unicity ta1 ta2 (RCPair x rc1 rc2) (RCVal2 x₁ (Inr x₂) x₃ x₄) = abort (x₂ refl) xc-unicity ta1 ta2 (RCCtor x rc1) RCRefl = abort (x refl) xc-unicity (TACtor d∈σ' c∈cctx ta1) (TACtor d∈'σ' c∈'cctx ta2) (RCCtor x rc1) (RCCtor x₁ rc2) rewrite ctxunicity d∈σ' d∈'σ' | ctxunicity c∈cctx c∈'cctx = xc-unicity ta1 ta2 rc1 rc2 xc-unicity ta1 ta2 (RCCtor x rc1) (RCVal1 x₁ x₂ (Inl x₃) x₄) = abort (x₃ refl) xc-unicity ta1 ta2 (RCCtor x rc1) (RCVal1 x₁ x₂ (Inr x₃) x₄) = abort (x₃ refl) xc-unicity ta1 ta2 (RCCtor x rc1) (RCVal2 x₁ x₂ (Inl x₃) x₄) = abort (x₃ refl) xc-unicity ta1 ta2 (RCCtor x rc1) (RCVal2 x₁ x₂ (Inr x₃) x₄) = abort (x₃ refl) xc-unicity ta1 ta2 (RCVal1 x x₁ x₂ x₃) RCRefl = abort (x refl) xc-unicity ta1 ta2 (RCVal1 x (Inl x₁) x₂ x₃) (RCPair x₄ rc2 rc3) = abort (x₁ refl) xc-unicity ta1 ta2 (RCVal1 x (Inr x₁) x₂ x₃) (RCPair x₄ rc2 rc3) = abort (x₁ refl) xc-unicity ta1 ta2 (RCVal1 x _ (Inl x₁) x₃) (RCCtor x₄ rc2) = abort (x₁ refl) xc-unicity ta1 ta2 (RCVal1 x _ (Inr x₁) x₃) (RCCtor x₄ rc2) = abort (x₁ refl) xc-unicity ta1 ta2 (RCVal1 x x₁ x₂ x₃) (RCVal1 x₄ x₅ x₆ x₇) rewrite Coerce-unicity x₃ x₇ = refl xc-unicity TAUnit TAUnit (RCVal1 x x₁ x₂ x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (x₄ refl) xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCVal1 x (Inl x₂) _ x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (x₂ refl) xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCVal1 x (Inr x₂) _ x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (x₂ refl) xc-unicity (TACtor x₈ x₉ ta1) (TACtor x₁₀ x₁₁ ta2) (RCVal1 x x₁ (Inl h) x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (h refl) xc-unicity (TACtor x₈ x₉ ta1) (TACtor x₁₀ x₁₁ ta2) (RCVal1 x x₁ (Inr h) x₃) (RCVal2 x₄ x₅ x₆ x₇) = abort (h refl) xc-unicity ta1 ta2 (RCVal2 x x₁ x₂ x₃) RCRefl = abort (x refl) xc-unicity ta1 ta2 (RCVal2 x (Inl x₁) x₂ x₃) (RCPair x₄ rc2 rc3) = abort (x₁ refl) xc-unicity ta1 ta2 (RCVal2 x (Inr x₁) x₂ x₃) (RCPair x₄ rc2 rc3) = abort (x₁ refl) xc-unicity ta1 ta2 (RCVal2 x x₁ (Inl x₂) x₃) (RCCtor x₄ rc2) = abort (x₂ refl) xc-unicity ta1 ta2 (RCVal2 x x₁ (Inr x₂) x₃) (RCCtor x₄ rc2) = abort (x₂ refl) xc-unicity TAUnit TAUnit (RCVal2 x x₁ x₂ x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (x refl) xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCVal2 x (Inl h) x₂ x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (h refl) xc-unicity (TAPair ta1 ta2) (TAPair ta3 ta4) (RCVal2 x (Inr h) x₂ x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (h refl) xc-unicity (TACtor x₈ x₉ ta1) (TACtor x₁₀ x₁₁ ta2) (RCVal2 x x₁ (Inl h) x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (h refl) xc-unicity (TACtor x₈ x₉ ta1) (TACtor x₁₀ x₁₁ ta2) (RCVal2 x x₁ (Inr h) x₃) (RCVal1 x₄ x₅ x₆ x₇) = abort (h refl) xc-unicity ta1 ta2 (RCVal2 x x₁ x₂ x₃) (RCVal2 x₄ x₅ x₆ x₇) rewrite Coerce-unicity x₃ x₇ = refl -- useful in practice, since threading type-checks around everywhere can be a pain -- note that this does not prove unicity of constraints, which isn't true for poorly-typed terms untyped-eval-unicity : ∀{⛽ E e r r' K K'} → E ⊢ e ⌊ ⛽ ⌋⇒ r ⊣ K → E ⊢ e ⌊ ⛽ ⌋⇒ r' ⊣ K' → r == r' untyped-eval-unicity EFix EFix = refl untyped-eval-unicity (EVar h) (EVar h') = ctxunicity h h' untyped-eval-unicity (EAppFix f1 form eval-f eval-arg eval) (EAppFix f2 form' eval-f' eval-arg' eval') rewrite form | form' with untyped-eval-unicity eval-f eval-f' | untyped-eval-unicity eval-arg eval-arg' ... | refl | refl rewrite Fuel-depletion-unicity f1 f2 | untyped-eval-unicity eval eval' = refl untyped-eval-unicity EUnit EUnit = refl untyped-eval-unicity (EAppFix x₁ form eval eval₁ eval₂) (EAppUnfinished eval' nf eval'') rewrite untyped-eval-unicity eval eval' | form = abort (nf refl) untyped-eval-unicity (EAppUnfinished eval nf eval₁) (EAppFix x₂ form eval' eval'' eval''') rewrite untyped-eval-unicity eval eval' | form = abort (nf refl) untyped-eval-unicity (EAppUnfinished eval-f x₁ eval-arg) (EAppUnfinished eval-f' x₂ eval-arg') rewrite untyped-eval-unicity eval-f eval-f' | untyped-eval-unicity eval-arg eval-arg' = refl untyped-eval-unicity (EPair eval1 eval2) (EPair eval1' eval2') rewrite untyped-eval-unicity eval1 eval1' | untyped-eval-unicity eval2 eval2' = refl untyped-eval-unicity (EFst eval) (EFst eval') with untyped-eval-unicity eval eval' ... | refl = refl untyped-eval-unicity (EFst eval) (EFstUnfinished eval' np) with untyped-eval-unicity eval eval' ... | refl = abort (np refl) untyped-eval-unicity (EFstUnfinished eval np) (EFst eval') with untyped-eval-unicity eval eval' ... | refl = abort (np refl) untyped-eval-unicity (EFstUnfinished eval x) (EFstUnfinished eval' x₁) with untyped-eval-unicity eval eval' ... | refl = refl untyped-eval-unicity (ESnd eval) (ESnd eval') with untyped-eval-unicity eval eval' ... | refl = refl untyped-eval-unicity (ESnd eval) (ESndUnfinished eval' np) with untyped-eval-unicity eval eval' ... | refl = abort (np refl) untyped-eval-unicity (ESndUnfinished eval np) (ESnd eval') with untyped-eval-unicity eval eval' ... | refl = abort (np refl) untyped-eval-unicity (ESndUnfinished eval x) (ESndUnfinished eval' x₁) with untyped-eval-unicity eval eval' ... | refl = refl untyped-eval-unicity (ECtor eval) (ECtor eval') with untyped-eval-unicity eval eval' ... | refl = refl untyped-eval-unicity (EMatch f1 form eval-e eval-ec) (EMatch f2 form' eval'-e eval'-ec) with untyped-eval-unicity eval-e eval'-e ... | refl with ctxunicity form form' ... | refl rewrite Fuel-depletion-unicity f1 f2 with untyped-eval-unicity eval-ec eval'-ec ... | refl = refl untyped-eval-unicity (EMatch x₃ x₄ eval eval₁) (EMatchUnfinished eval' nc) with untyped-eval-unicity eval eval' ... | refl = abort (nc refl) untyped-eval-unicity (EMatchUnfinished eval nc) (EMatch x₄ x₅ eval' eval'') with untyped-eval-unicity eval eval' ... | refl = abort (nc refl) untyped-eval-unicity (EMatchUnfinished eval x₃) (EMatchUnfinished eval' x₄) with untyped-eval-unicity eval eval' ... | refl = refl untyped-eval-unicity EHole EHole = refl untyped-eval-unicity (EAsrt eval1 eval2 xc) (EAsrt eval1' eval2' xc') with untyped-eval-unicity eval1 eval1' | untyped-eval-unicity eval2 eval2' ... | refl | refl = refl
52.487069
128
0.643098
1302b0fdeb923e11937d2bb0ad44a885a752684a
5,886
agda
Agda
Cubical/Relation/Binary/Construct/Intersection.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Construct/Intersection.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Construct/Intersection.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Construct.Intersection where open import Cubical.Core.Everything open import Cubical.Foundations.Function using (_∘_) open import Cubical.Foundations.HLevels open import Cubical.Foundations.Logic using (_⊓_) open import Cubical.Data.Sigma open import Cubical.Data.Sum.Base using (_⊎_; inl; inr; rec) open import Cubical.Relation.Binary open import Cubical.Relation.Nullary using (yes; no; Dec) ------------------------------------------------------------------------ -- Definition _∩_ : ∀ {a b ℓ₁ ℓ₂} {A : Type a} {B : Type b} → REL A B ℓ₁ → REL A B ℓ₂ → REL A B (ℓ-max ℓ₁ ℓ₂) L ∩ R = λ i j → L i j ⊓ R i j ------------------------------------------------------------------------ -- Properties module _ {a ℓ₁ ℓ₂} {A : Type a} (L : Rel A ℓ₁) (R : Rel A ℓ₂) where reflexive : Reflexive L → Reflexive R → Reflexive (L ∩ R) reflexive L-refl R-refl = L-refl , R-refl symmetric : Symmetric L → Symmetric R → Symmetric (L ∩ R) symmetric L-sym R-sym = map-× L-sym R-sym transitive : Transitive L → Transitive R → Transitive (L ∩ R) transitive L-trans R-trans (xLy , xRy) (yLz , yRz) = L-trans xLy yLz , R-trans xRy yRz respects : ∀ {p} (P : A → hProp p) → P Respects L ⊎ P Respects R → P Respects (L ∩ R) respects P resp (Lxy , Rxy) = rec (λ x → x Lxy) (λ x → x Rxy) resp min : ∀ {⊤} → Minimum L ⊤ → Minimum R ⊤ → Minimum (L ∩ R) ⊤ min L-min R-min x = L-min x , R-min x max : ∀ {⊥} → Maximum L ⊥ → Maximum R ⊥ → Maximum (L ∩ R) ⊥ max L-max R-max x = L-max x , R-max x toNotEq : ToNotEq L ⊎ ToNotEq R → ToNotEq (L ∩ R) toNotEq tonoteq (Lxy , Rxy) x≡y = rec (λ x → x Lxy x≡y) (λ y → y Rxy x≡y) tonoteq irreflexive : Irreflexive L ⊎ Irreflexive R → Irreflexive (L ∩ R) irreflexive irrefl (xLx , xRx) = rec (λ x → x xLx) (λ y → y xRx) irrefl antisymmetric : Antisymmetric L ⊎ Antisymmetric R → Antisymmetric (L ∩ R) antisymmetric (inl L-antisym) (Lxy , _) (Lyx , _) = L-antisym Lxy Lyx antisymmetric (inr R-antisym) (_ , Rxy) (_ , Ryx) = R-antisym Rxy Ryx module _ {a b ℓ₁ ℓ₂ ℓ₃} {A : Type a} {B : Type b} (≈ : REL A B ℓ₁) {L : REL A B ℓ₂} {R : REL A B ℓ₃} where implies : (≈ ⇒ L) → (≈ ⇒ R) → ≈ ⇒ (L ∩ R) implies ≈⇒L ≈⇒R ≈ = ≈⇒L ≈ , ≈⇒R ≈ module _ {a ℓ₁ ℓ₂ ℓ₃} {A : Type a} (≈ : Rel A ℓ₁) (L : Rel A ℓ₂) (R : Rel A ℓ₃) where respectsˡ : L Respectsˡ ≈ → R Respectsˡ ≈ → (L ∩ R) Respectsˡ ≈ respectsˡ L-resp R-resp x≈y = map-× (L-resp x≈y) (R-resp x≈y) respectsʳ : L Respectsʳ ≈ → R Respectsʳ ≈ → (L ∩ R) Respectsʳ ≈ respectsʳ L-resp R-resp x≈y = map-× (L-resp x≈y) (R-resp x≈y) respects₂ : L Respects₂ ≈ → R Respects₂ ≈ → (L ∩ R) Respects₂ ≈ respects₂ (Lʳ , Lˡ) (Rʳ , Rˡ) = respectsʳ Lʳ Rʳ , respectsˡ Lˡ Rˡ module _ {a b ℓ₁ ℓ₂} {A : Type a} {B : Type b} (L : REL A B ℓ₁) (R : REL A B ℓ₂) where decidable : Decidable L → Decidable R → Decidable (L ∩ R) decidable L? R? x y = ×-dec (L? x y) (R? x y) where ×-dec : ∀ {a b} {A : Type a} {B : Type b} → Dec A → Dec B → Dec (A × B) ×-dec (yes a) (yes b) = yes (a , b) ×-dec _ (no ¬b) = no (¬b ∘ snd) ×-dec (no ¬a) _ = no (¬a ∘ fst) ------------------------------------------------------------------------ -- Structures module _ {a ℓ₁ ℓ₂} {A : Type a} {L : Rel A ℓ₁} {R : Rel A ℓ₂} where isPartialEquivalence : IsPartialEquivalence L → IsPartialEquivalence R → IsPartialEquivalence (L ∩ R) isPartialEquivalence eqₗ eqᵣ = record { symmetric = symmetric L R Eqₗ.symmetric Eqᵣ.symmetric ; transitive = transitive L R Eqₗ.transitive Eqᵣ.transitive } where module Eqₗ = IsPartialEquivalence eqₗ; module Eqᵣ = IsPartialEquivalence eqᵣ isEquivalence : IsEquivalence L → IsEquivalence R → IsEquivalence (L ∩ R) isEquivalence eqₗ eqᵣ = record { isPartialEquivalence = isPartialEquivalence Eqₗ.isPartialEquivalence Eqᵣ.isPartialEquivalence ; reflexive = reflexive L R Eqₗ.reflexive Eqᵣ.reflexive } where module Eqₗ = IsEquivalence eqₗ; module Eqᵣ = IsEquivalence eqᵣ isDecEquivalence : IsDecEquivalence L → IsDecEquivalence R → IsDecEquivalence (L ∩ R) isDecEquivalence eqₗ eqᵣ = record { isEquivalence = isEquivalence Eqₗ.isEquivalence Eqᵣ.isEquivalence ; _≟_ = decidable L R Eqₗ._≟_ Eqᵣ._≟_ } where module Eqₗ = IsDecEquivalence eqₗ; module Eqᵣ = IsDecEquivalence eqᵣ isPreorder : IsPreorder L → IsPreorder R → IsPreorder (L ∩ R) isPreorder Oₗ Oᵣ = record { reflexive = reflexive L R Oₗ.reflexive Oᵣ.reflexive ; transitive = transitive L R Oₗ.transitive Oᵣ.transitive } where module Oₗ = IsPreorder Oₗ; module Oᵣ = IsPreorder Oᵣ isPartialOrderˡ : IsPartialOrder L → IsPreorder R → IsPartialOrder (L ∩ R) isPartialOrderˡ Oₗ Oᵣ = record { isPreorder = isPreorder Oₗ.isPreorder Oᵣ ; antisym = antisymmetric L R (inl Oₗ.antisym) } where module Oₗ = IsPartialOrder Oₗ; module Oᵣ = IsPreorder Oᵣ isPartialOrderʳ : IsPreorder L → IsPartialOrder R → IsPartialOrder (L ∩ R) isPartialOrderʳ Oₗ Oᵣ = record { isPreorder = isPreorder Oₗ Oᵣ.isPreorder ; antisym = antisymmetric L R (inr Oᵣ.antisym) } where module Oₗ = IsPreorder Oₗ; module Oᵣ = IsPartialOrder Oᵣ isStrictPartialOrderˡ : IsStrictPartialOrder L → Transitive R → IsStrictPartialOrder (L ∩ R) isStrictPartialOrderˡ Oₗ transitiveᵣ = record { irrefl = irreflexive L R (inl Oₗ.irrefl) ; transitive = transitive L R Oₗ.transitive transitiveᵣ } where module Oₗ = IsStrictPartialOrder Oₗ isStrictPartialOrderʳ : Transitive L → IsStrictPartialOrder R → IsStrictPartialOrder (L ∩ R) isStrictPartialOrderʳ transitiveₗ Oᵣ = record { irrefl = irreflexive L R (inr Oᵣ.irrefl) ; transitive = transitive L R transitiveₗ Oᵣ.transitive } where module Oᵣ = IsStrictPartialOrder Oᵣ
41.450704
103
0.621475
1bb585490c7d4bd038a8e9bfe384fb82617ef4d2
20,039
agda
Agda
src/Delay-monad/Bisimilarity/Negative.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Bisimilarity/Negative.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
src/Delay-monad/Bisimilarity/Negative.agda
nad/delay-monad
495f9996673d0f1f34ce202902daaa6c39f8925e
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some negative results related to weak bisimilarity and expansion ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Delay-monad.Bisimilarity.Negative {a} {A : Type a} where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude.Size open import Function-universe equality-with-J hiding (id; _∘_) open import Delay-monad open import Delay-monad.Bisimilarity open import Delay-monad.Termination ------------------------------------------------------------------------ -- Lemmas stating that functions of certain types can be defined iff A -- is uninhabited -- The computation now x is an expansion of -- later (record { force = now x }) for every x : A iff A is -- uninhabited. Now≳later-now = (x : A) → now x ≳ later (record { force = now x }) now≳later-now⇔uninhabited : Now≳later-now ⇔ ¬ A now≳later-now⇔uninhabited = record { to = Now≳later-now ↝⟨ (λ hyp x → case hyp x of λ ()) ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ hyp _ → hyp _ _) ⟩□ Now≳later-now □ } -- A variant of laterˡ⁻¹ for (fully defined) expansion can be defined -- iff A is uninhabited. Laterˡ⁻¹-≳ = ∀ {x} {y : Delay A ∞} → later x ≳ y → force x ≳ y laterˡ⁻¹-≳⇔uninhabited : Laterˡ⁻¹-≳ ⇔ ¬ A laterˡ⁻¹-≳⇔uninhabited = record { to = Laterˡ⁻¹-≳ ↝⟨ (λ hyp _ → hyp (reflexive _)) ⟩ Now≳later-now ↝⟨ _⇔_.to now≳later-now⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ hyp {_ _} _ → hyp _ _) ⟩□ Laterˡ⁻¹-≳ □ } -- The following variants of transitivity can be proved iff A is -- uninhabited. Transitivity-≈≳≳ = {x y z : Delay A ∞} → x ≈ y → y ≳ z → x ≳ z Transitivity-≳≈≳ = {x y z : Delay A ∞} → x ≳ y → y ≈ z → x ≳ z transitive-≈≳≳⇔uninhabited : Transitivity-≈≳≳ ⇔ ¬ A transitive-≈≳≳⇔uninhabited = record { to = Transitivity-≈≳≳ ↝⟨ (λ trans → trans (laterʳ (reflexive _))) ⟩ Laterˡ⁻¹-≳ ↝⟨ _⇔_.to laterˡ⁻¹-≳⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ hyp {_ _ _} _ _ → hyp _ _) ⟩□ Transitivity-≈≳≳ □ } transitive-≳≈≳⇔uninhabited : Transitivity-≳≈≳ ⇔ ¬ A transitive-≳≈≳⇔uninhabited = record { to = Transitivity-≳≈≳ ↝⟨ (λ trans {_ y} lx≳y → later⁻¹ {y = record { force = y }} (trans lx≳y (laterʳ (reflexive _)))) ⟩ Laterˡ⁻¹-≳ ↝⟨ _⇔_.to laterˡ⁻¹-≳⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ hyp {_ _ _} _ _ → hyp _ _) ⟩□ Transitivity-≳≈≳ □ } ------------------------------------------------------------------------ -- Lemmas stating that certain size-preserving functions can be -- defined iff A is uninhabited -- A variant of laterˡ⁻¹ in which one occurrence of weak bisimilarity -- is replaced by strong bisimilarity, and both arguments are -- specialised, can be made size-preserving iff A is uninhabited. -- -- This lemma is used to prove all other similar results below -- (directly or indirectly), with the exception that an alternative, -- more direct proof is also given for one of the results. Laterˡ⁻¹-∼≈ = ∀ {i} {x : A} → [ i ] later (λ { .force → now x }) ∼ never → [ i ] now x ≈ never size-preserving-laterˡ⁻¹-∼≈⇔uninhabited : Laterˡ⁻¹-∼≈ ⇔ ¬ A size-preserving-laterˡ⁻¹-∼≈⇔uninhabited = record { to = Laterˡ⁻¹-∼≈ ↝⟨ (λ laterˡ⁻¹-∼≈ x → contradiction (laterˡ⁻¹-∼≈ {_}) x ∞) ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _} _ → trivial _ _) ⟩□ Laterˡ⁻¹-∼≈ □ } where module _ (laterˡ⁻¹-∼≈ : Laterˡ⁻¹-∼≈) (x : A) where mutual now≈never : ∀ {i} → [ i ] now x ≈ never now≈never = laterˡ⁻¹-∼≈ (later now∼never) now∼never : ∀ {i} → [ i ] now x ∼′ never force now∼never {j = j} = ⊥-elim (contradiction j) contradiction : Size → ⊥ contradiction i = now≉never (now≈never {i = i}) -- A variant of Laterˡ⁻¹-∼≈ which it is sometimes easier to work with. Laterˡ⁻¹-∼≈′ = ∀ {i} {x : A} → [ i ] later (record { force = now x }) ∼ never → [ i ] now x ≈ never size-preserving-laterˡ⁻¹-∼≈′⇔uninhabited : Laterˡ⁻¹-∼≈′ ⇔ ¬ A size-preserving-laterˡ⁻¹-∼≈′⇔uninhabited = Laterˡ⁻¹-∼≈′ ↝⟨ record { to = _∘ transitive-∼ʳ (later λ { .force → now }) ; from = _∘ transitive-∼ʳ (later λ { .force → now }) } ⟩ Laterˡ⁻¹-∼≈ ↝⟨ size-preserving-laterˡ⁻¹-∼≈⇔uninhabited ⟩□ ¬ A □ -- A variant of laterʳ⁻¹ for weak bisimilarity in which one occurrence -- of weak bisimilarity is replaced by strong bisimilarity, and both -- arguments are specialised, can be made size-preserving iff A is -- uninhabited. Laterʳ⁻¹-∼≈ = ∀ {i} {x : A} → [ i ] never ∼ later (record { force = now x }) → [ i ] never ≈ now x size-preserving-laterʳ⁻¹-∼≈⇔uninhabited : Laterʳ⁻¹-∼≈ ⇔ ¬ A size-preserving-laterʳ⁻¹-∼≈⇔uninhabited = Laterʳ⁻¹-∼≈ ↝⟨ record { to = λ laterʳ⁻¹ → symmetric ∘ laterʳ⁻¹ ∘ symmetric ; from = λ laterˡ⁻¹ → symmetric ∘ laterˡ⁻¹ ∘ symmetric } ⟩ Laterˡ⁻¹-∼≈′ ↝⟨ size-preserving-laterˡ⁻¹-∼≈′⇔uninhabited ⟩□ ¬ A □ -- A variant of laterʳ⁻¹ for expansion in which one occurrence of the -- expansion relation is replaced by strong bisimilarity, and both -- arguments are specialised, can be made size-preserving iff A is -- uninhabited. Laterʳ⁻¹-∼≳ = ∀ {i} {x : A} → [ i ] never ∼ later (record { force = now x }) → [ i ] never ≳ now x size-preserving-laterʳ⁻¹-∼≳⇔uninhabited : Laterʳ⁻¹-∼≳ ⇔ ¬ A size-preserving-laterʳ⁻¹-∼≳⇔uninhabited = record { to = Laterʳ⁻¹-∼≳ ↝⟨ ≳→ ∘_ ⟩ Laterʳ⁻¹-∼≈ ↝⟨ _⇔_.to size-preserving-laterʳ⁻¹-∼≈⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _} _ → trivial _ _) ⟩□ Laterʳ⁻¹-∼≳ □ } -- The function laterˡ⁻¹ can be made size-preserving iff A is -- uninhabited. Laterˡ⁻¹-≈ = ∀ {i x} {y : Delay A ∞} → [ i ] later x ≈ y → [ i ] force x ≈ y size-preserving-laterˡ⁻¹-≈⇔uninhabited : Laterˡ⁻¹-≈ ⇔ ¬ A size-preserving-laterˡ⁻¹-≈⇔uninhabited = record { to = Laterˡ⁻¹-≈ ↝⟨ _∘ ∼→ ⟩ Laterˡ⁻¹-∼≈ ↝⟨ _⇔_.to size-preserving-laterˡ⁻¹-∼≈⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _} _ → trivial _ _) ⟩□ Laterˡ⁻¹-≈ □ } -- The function laterʳ⁻¹ can be made size-preserving for weak -- bisimilarity iff A is uninhabited. Laterʳ⁻¹-≈ = ∀ {i} {x : Delay A ∞} {y} → [ i ] x ≈ later y → [ i ] x ≈ force y size-preserving-laterʳ⁻¹-≈⇔uninhabited : Laterʳ⁻¹-≈ ⇔ ¬ A size-preserving-laterʳ⁻¹-≈⇔uninhabited = Laterʳ⁻¹-≈ ↝⟨ record { to = λ laterʳ⁻¹ → symmetric ∘ laterʳ⁻¹ ∘ symmetric ; from = λ laterˡ⁻¹ → symmetric ∘ laterˡ⁻¹ ∘ symmetric } ⟩ Laterˡ⁻¹-≈ ↝⟨ size-preserving-laterˡ⁻¹-≈⇔uninhabited ⟩□ ¬ A □ -- The function laterʳ⁻¹ can be made size-preserving for expansion iff -- A is uninhabited. Laterʳ⁻¹-≳ = ∀ {i} {x : Delay A ∞} {y} → [ i ] x ≳ later y → [ i ] x ≳ force y size-preserving-laterʳ⁻¹-≳⇔uninhabited : Laterʳ⁻¹-≳ ⇔ ¬ A size-preserving-laterʳ⁻¹-≳⇔uninhabited = record { to = Laterʳ⁻¹-≳ ↝⟨ _∘ ∼→ ⟩ Laterʳ⁻¹-∼≳ ↝⟨ _⇔_.to size-preserving-laterʳ⁻¹-∼≳⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _} _ → trivial _ _) ⟩□ Laterʳ⁻¹-≳ □ } -- A variant of ⇓-respects-≈ in which _≈_ is replaced by _∼_ can be -- made size-preserving in the second argument iff A is uninhabited. ⇓-Respects-∼ʳ = ∀ {i x y} {z : A} → x ⇓ z → [ i ] x ∼ y → Terminates i y z size-preserving-⇓-respects-∼ʳ⇔uninhabited : ⇓-Respects-∼ʳ ⇔ ¬ A size-preserving-⇓-respects-∼ʳ⇔uninhabited = record { to = ⇓-Respects-∼ʳ ↝⟨ (λ resp → resp (laterʳ now)) ⟩ Laterˡ⁻¹-∼≈ ↝⟨ _⇔_.to size-preserving-laterˡ⁻¹-∼≈⇔uninhabited ⟩ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ ⇓-Respects-∼ʳ □ } -- The lemma ⇓-respects-≈ can be made size-preserving in the second -- argument iff A is uninhabited. ⇓-Respects-≈ʳ = ∀ {i x y} {z : A} → x ⇓ z → [ i ] x ≈ y → Terminates i y z size-preserving-⇓-respects-≈ʳ⇔uninhabited : ⇓-Respects-≈ʳ ⇔ ¬ A size-preserving-⇓-respects-≈ʳ⇔uninhabited = record { to = ⇓-Respects-≈ʳ ↝⟨ (λ resp x⇓z → resp x⇓z ∘ ∼→) ⟩ ⇓-Respects-∼ʳ ↝⟨ _⇔_.to size-preserving-⇓-respects-∼ʳ⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ ⇓-Respects-≈ʳ □ } -- There is a transitivity-like proof, taking weak bisimilarity and -- strong bisimilarity to weak bisimilarity, that preserves the size -- of the second argument iff A is uninhabited. Transitivity-≈∼ʳ = ∀ {i} {x y z : Delay A ∞} → x ≈ y → [ i ] y ∼ z → [ i ] x ≈ z size-preserving-transitivity-≈∼ʳ⇔uninhabited : Transitivity-≈∼ʳ ⇔ ¬ A size-preserving-transitivity-≈∼ʳ⇔uninhabited = record { to = Transitivity-≈∼ʳ ↝⟨ (λ trans → trans) ⟩ ⇓-Respects-∼ʳ ↝⟨ _⇔_.to size-preserving-⇓-respects-∼ʳ⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈∼ʳ □ } -- There is a transitivity-like proof, taking strong bisimilarity and -- weak bisimilarity to weak bisimilarity, that preserves the size of -- the first argument iff A is uninhabited. Transitivity-∼≈ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ∼ y → y ≈ z → [ i ] x ≈ z size-preserving-transitivity-∼≈ˡ⇔uninhabited : Transitivity-∼≈ˡ ⇔ ¬ A size-preserving-transitivity-∼≈ˡ⇔uninhabited = Transitivity-∼≈ˡ ↝⟨ record { to = λ trans {_ _ _ _} p q → symmetric (trans (symmetric q) (symmetric p)) ; from = λ trans {_ _ _ _} p q → symmetric (trans (symmetric q) (symmetric p)) } ⟩ Transitivity-≈∼ʳ ↝⟨ size-preserving-transitivity-≈∼ʳ⇔uninhabited ⟩□ ¬ A □ -- There is a transitivity-like proof, taking strong bisimilarity and -- expansion to expansion, that preserves the size of the first -- argument iff A is uninhabited. Transitivity-∼≳ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ∼ y → y ≳ z → [ i ] x ≳ z size-preserving-transitivity-∼≳ˡ⇔uninhabited : Transitivity-∼≳ˡ ⇔ ¬ A size-preserving-transitivity-∼≳ˡ⇔uninhabited = record { to = Transitivity-∼≳ˡ ↝⟨ (λ trans never∼lnx → trans never∼lnx (laterˡ now)) ⟩ Laterʳ⁻¹-∼≳ ↝⟨ _⇔_.to size-preserving-laterʳ⁻¹-∼≳⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-∼≳ˡ □ } -- There is a transitivity proof for weak bisimilarity that preserves -- the size of the second argument iff A is uninhabited. Transitivity-≈ʳ = ∀ {i} {x y z : Delay A ∞} → x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z size-preserving-transitivity-≈ʳ⇔uninhabited : Transitivity-≈ʳ ⇔ ¬ A size-preserving-transitivity-≈ʳ⇔uninhabited = record { to = Transitivity-≈ʳ ↝⟨ (λ trans → trans) ⟩ ⇓-Respects-≈ʳ ↝⟨ _⇔_.to size-preserving-⇓-respects-≈ʳ⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈ʳ □ } -- There is a transitivity proof for weak bisimilarity that preserves -- the size of the first argument iff A is uninhabited. Transitivity-≈ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≈ y → y ≈ z → [ i ] x ≈ z size-preserving-transitivity-≈ˡ⇔uninhabited : Transitivity-≈ˡ ⇔ ¬ A size-preserving-transitivity-≈ˡ⇔uninhabited = Transitivity-≈ˡ ↝⟨ record { to = λ trans {_ _ _ _} p q → symmetric (trans (symmetric q) (symmetric p)) ; from = λ trans {_ _ _ _} p q → symmetric (trans (symmetric q) (symmetric p)) } ⟩ Transitivity-≈ʳ ↝⟨ size-preserving-transitivity-≈ʳ⇔uninhabited ⟩□ ¬ A □ -- There is a transitivity proof for expansion that preserves the size -- of the first argument iff A is uninhabited. Transitivity-≳ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → y ≳ z → [ i ] x ≳ z size-preserving-transitivity-≳ˡ⇔uninhabited : Transitivity-≳ˡ ⇔ ¬ A size-preserving-transitivity-≳ˡ⇔uninhabited = record { to = Transitivity-≳ˡ ↝⟨ _∘ ∼→ ⟩ Transitivity-∼≳ˡ ↝⟨ _⇔_.to size-preserving-transitivity-∼≳ˡ⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳ˡ □ } -- There is a fully size-preserving transitivity proof for weak -- bisimilarity iff A is uninhabited. Transitivity-≈ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z size-preserving-transitivity-≈⇔uninhabited : Transitivity-≈ ⇔ ¬ A size-preserving-transitivity-≈⇔uninhabited = record { to = Transitivity-≈ ↝⟨ (λ trans → trans) ⟩ Transitivity-≈ˡ ↝⟨ _⇔_.to size-preserving-transitivity-≈ˡ⇔uninhabited ⟩ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈ □ } -- The following two lemmas provide an alternative proof of one -- direction of the previous lemma (with a small change to one of the -- types). -- If there is a transitivity proof for weak bisimilarity that is -- size-preserving in both arguments, then weak bisimilarity is -- trivial. size-preserving-transitivity-≈→trivial : (∀ {i} x {y z : Delay A ∞} → [ i ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z) → ∀ {i} (x y : Delay A ∞) → [ i ] x ≈ y size-preserving-transitivity-≈→trivial _≈⟨_⟩ʷ_ x y = (x ≈⟨ laterʳ (x ∎ʷ) ⟩ʷ (later (λ { .force → x }) ≈⟨ later (λ { .force → size-preserving-transitivity-≈→trivial _≈⟨_⟩ʷ_ x y }) ⟩ʷ (later (λ { .force → y }) ≈⟨ laterˡ (y ∎ʷ) ⟩ʷ (y ∎ʷ)))) where _∎ʷ = reflexive -- If there is a transitivity proof for weak bisimilarity that is -- size-preserving in both arguments, then the carrier type A is not -- inhabited. size-preserving-transitivity-≈→uninhabited : (∀ {i} x {y z : Delay A ∞} → [ i ] x ≈ y → [ i ] y ≈ z → [ i ] x ≈ z) → ¬ A size-preserving-transitivity-≈→uninhabited trans x = now≉never (size-preserving-transitivity-≈→trivial trans (now x) never) -- There is a fully size-preserving transitivity proof for expansion -- iff A is uninhabited. Transitivity-≳ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → [ i ] y ≳ z → [ i ] x ≳ z size-preserving-transitivity-≳⇔uninhabited : Transitivity-≳ ⇔ ¬ A size-preserving-transitivity-≳⇔uninhabited = record { to = Transitivity-≳ ↝⟨ id ⟩ Transitivity-≳ˡ ↝⟨ _⇔_.to size-preserving-transitivity-≳ˡ⇔uninhabited ⟩□ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≳ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳ □ } -- There is a transitivity-like proof, taking expansion and weak -- bisimilarity to weak bisimilarity, that preserves the size of the -- first argument iff A is uninhabited. Transitivity-≳≈ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → y ≈ z → [ i ] x ≈ z size-preserving-transitivity-≳≈ˡ⇔uninhabited : Transitivity-≳≈ˡ ⇔ ¬ A size-preserving-transitivity-≳≈ˡ⇔uninhabited = record { to = Transitivity-≳≈ˡ ↝⟨ _∘ ∼→ ⟩ Transitivity-∼≈ˡ ↝⟨ _⇔_.to size-preserving-transitivity-∼≈ˡ⇔uninhabited ⟩ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳≈ˡ □ } -- There is a transitivity-like proof, taking expansion and weak -- bisimilarity to weak bisimilarity, that preserves the size of both -- arguments iff A is uninhabited. Transitivity-≳≈ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≳ y → [ i ] y ≈ z → [ i ] x ≈ z size-preserving-transitivity-≳≈⇔uninhabited : Transitivity-≳≈ ⇔ ¬ A size-preserving-transitivity-≳≈⇔uninhabited = record { to = Transitivity-≳≈ ↝⟨ id ⟩ Transitivity-≳≈ˡ ↝⟨ _⇔_.to size-preserving-transitivity-≳≈ˡ⇔uninhabited ⟩ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≳≈ □ } -- There is a transitivity-like proof, taking weak bisimilarity and -- the converse of expansion to weak bisimilarity, that preserves the -- size of the second argument iff A is uninhabited. Transitivity-≈≲ʳ = ∀ {i} {x y z : Delay A ∞} → x ≈ y → [ i ] y ≲ z → [ i ] x ≈ z size-preserving-transitivity-≈≲ʳ⇔uninhabited : Transitivity-≈≲ʳ ⇔ ¬ A size-preserving-transitivity-≈≲ʳ⇔uninhabited = Transitivity-≈≲ʳ ↝⟨ record { to = λ trans x≳y y≈z → symmetric (trans (symmetric y≈z) x≳y) ; from = λ trans x≈y y≲z → symmetric (trans y≲z (symmetric x≈y)) } ⟩ Transitivity-≳≈ˡ ↝⟨ size-preserving-transitivity-≳≈ˡ⇔uninhabited ⟩□ ¬ A □ -- There is a transitivity-like proof, taking weak bisimilarity and -- the converse of expansion to weak bisimilarity, that preserves the -- size of both arguments iff A is uninhabited. Transitivity-≈≲ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≈ y → [ i ] y ≲ z → [ i ] x ≈ z size-preserving-transitivity-≈≲⇔uninhabited : Transitivity-≈≲ ⇔ ¬ A size-preserving-transitivity-≈≲⇔uninhabited = Transitivity-≈≲ ↝⟨ record { to = λ trans x≳y y≈z → symmetric (trans (symmetric y≈z) x≳y) ; from = λ trans x≈y y≲z → symmetric (trans y≲z (symmetric x≈y)) } ⟩ Transitivity-≳≈ ↝⟨ size-preserving-transitivity-≳≈⇔uninhabited ⟩□ ¬ A □ -- There is a transitivity-like proof, taking weak bisimilarity and -- expansion to weak bisimilarity, that preserves the size of the -- first argument iff A is uninhabited. Transitivity-≈≳ˡ = ∀ {i} {x y z : Delay A ∞} → [ i ] x ≈ y → y ≳ z → [ i ] x ≈ z size-preserving-transitivity-≈≳ˡ⇔uninhabited : Transitivity-≈≳ˡ ⇔ ¬ A size-preserving-transitivity-≈≳ˡ⇔uninhabited = record { to = Transitivity-≈≳ˡ ↝⟨ (λ trans x≈ly → trans x≈ly (laterˡ (reflexive _))) ⟩ Laterʳ⁻¹-≈ ↝⟨ _⇔_.to size-preserving-laterʳ⁻¹-≈⇔uninhabited ⟩ ¬ A □ ; from = ¬ A ↝⟨ uninhabited→trivial ⟩ (∀ x y → x ≈ y) ↝⟨ (λ trivial {_ _ _ _} _ _ → trivial _ _) ⟩□ Transitivity-≈≳ˡ □ }
40.564777
108
0.532262
2ebbc63550ca63037c6f1e4213e3e41505a3041d
656
agda
Agda
test/Fail/Issue2791.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2791.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2791.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Issue #2791, reported by Ulf 2017-10-05 -- Reported fixed by Victor 2018-08-11 open import Agda.Builtin.Nat open import Agda.Builtin.Bool open import Agda.Builtin.Equality IF : Bool → Set → Set → Set IF true X Y = X IF false X Y = Y postulate F : (A : Set) (x : A) (B : Set) (y : B) → Set mutual ?b : Bool ?b = _ IFb = IF ?b Nat Bool ?X : IFb ?X = _ ?Y : Nat ?Y = _ foo : F Bool true Nat ?Y ≡ F IFb ?X IFb ?X foo = refl -- ?Y gets solved with 'true' error : ?Y + 1 ≡ 3 error = refl -- Expected failure: -- Nat != Bool of type Set -- when checking that the expression refl has type -- F Bool true Nat ?Y ≡ F IFb ?X IFb ?X
16.820513
50
0.602134
0db770dad7b449278dcf4b3e09dc135756884698
304
agda
Agda
test/Succeed/fol-theorems/Issue28.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Succeed/fol-theorems/Issue28.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Succeed/fol-theorems/Issue28.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
postulate D : Set ∃ : (A : D → Set) → Set vx : D Q₂ : D → D → Set postulate foo : (∃ λ x → Q₂ vx x) → (∃ λ x → Q₂ vx x) {-# ATP prove foo #-} -- $ apia Bug.agda -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/Apia/Utils/AgdaAPI/DeBruijn.hs:68
20.266667
63
0.578947
30906128a86c09a529accd02e6dd52831f25cd0f
140
agda
Agda
test/succeed/builtinInModule.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/succeed/builtinInModule.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/succeed/builtinInModule.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module builtinInModule where module Int where postulate I : Set {-# BUILTIN INTEGER I #-} primitive primIntegerPlus : I -> I -> I
14
41
0.678571
7c5659267dd1d3ee21f73a7286c024107cb8eb91
18,156
agda
Agda
Everything.agda
sstucki/agda-categories
602ed2ae05dd449d77fc299c07a1cdd02ee5b823
[ "MIT" ]
null
null
null
Everything.agda
sstucki/agda-categories
602ed2ae05dd449d77fc299c07a1cdd02ee5b823
[ "MIT" ]
null
null
null
Everything.agda
sstucki/agda-categories
602ed2ae05dd449d77fc299c07a1cdd02ee5b823
[ "MIT" ]
null
null
null
import Categories.2-Category import Categories.2-Functor import Categories.Adjoint import Categories.Adjoint.AFT import Categories.Adjoint.AFT.SolutionSet import Categories.Adjoint.Alternatives import Categories.Adjoint.Compose import Categories.Adjoint.Construction.EilenbergMoore import Categories.Adjoint.Construction.Kleisli import Categories.Adjoint.Equivalence import Categories.Adjoint.Equivalence.Properties import Categories.Adjoint.Equivalents import Categories.Adjoint.Instance.0-Truncation import Categories.Adjoint.Instance.01-Truncation import Categories.Adjoint.Instance.Core import Categories.Adjoint.Instance.PathsOf import Categories.Adjoint.Instance.PosetCore import Categories.Adjoint.Instance.StrictCore import Categories.Adjoint.Instance.StrictDiscrete import Categories.Adjoint.Mate import Categories.Adjoint.Monadic import Categories.Adjoint.Monadic.Crude import Categories.Adjoint.Monadic.Properties import Categories.Adjoint.Properties import Categories.Adjoint.RAPL import Categories.Adjoint.Relative import Categories.Adjoint.TwoSided import Categories.Adjoint.TwoSided.Compose import Categories.Bicategory import Categories.Bicategory.Bigroupoid import Categories.Bicategory.Construction.1-Category import Categories.Bicategory.Construction.Spans import Categories.Bicategory.Construction.Spans.Properties import Categories.Bicategory.Extras import Categories.Bicategory.Instance.Cats import Categories.Bicategory.Instance.EnrichedCats import Categories.Bicategory.Monad import Categories.Bicategory.Monad.Properties import Categories.Bicategory.Opposite import Categories.Category import Categories.Category.BicartesianClosed import Categories.Category.BinaryProducts import Categories.Category.CMonoidEnriched import Categories.Category.Cartesian import Categories.Category.Cartesian.Bundle import Categories.Category.Cartesian.Monoidal import Categories.Category.Cartesian.Properties import Categories.Category.Cartesian.SymmetricMonoidal import Categories.Category.CartesianClosed import Categories.Category.CartesianClosed.Canonical import Categories.Category.CartesianClosed.Locally import Categories.Category.CartesianClosed.Locally.Properties import Categories.Category.CartesianClosed.Properties import Categories.Category.Closed import Categories.Category.Cocartesian import Categories.Category.Cocartesian.Bundle import Categories.Category.Cocomplete import Categories.Category.Cocomplete.Finitely import Categories.Category.Cocomplete.Finitely.Properties import Categories.Category.Cocomplete.Properties import Categories.Category.Complete import Categories.Category.Complete.Finitely import Categories.Category.Complete.Finitely.Properties import Categories.Category.Complete.Properties import Categories.Category.Complete.Properties.Construction import Categories.Category.Complete.Properties.SolutionSet import Categories.Category.Concrete import Categories.Category.Concrete.Properties import Categories.Category.Construction.0-Groupoid import Categories.Category.Construction.Adjoints import Categories.Category.Construction.Arrow import Categories.Category.Construction.Cocones import Categories.Category.Construction.Comma import Categories.Category.Construction.Cones import Categories.Category.Construction.Coproduct import Categories.Category.Construction.Core import Categories.Category.Construction.Cowedges import Categories.Category.Construction.EilenbergMoore import Categories.Category.Construction.Elements import Categories.Category.Construction.EnrichedFunctors import Categories.Category.Construction.F-Algebras import Categories.Category.Construction.Fin import Categories.Category.Construction.Functors import Categories.Category.Construction.Grothendieck import Categories.Category.Construction.GroupAsCategory import Categories.Category.Construction.KanComplex import Categories.Category.Construction.KaroubiEnvelope import Categories.Category.Construction.KaroubiEnvelope.Properties import Categories.Category.Construction.Kleisli import Categories.Category.Construction.LT-Models import Categories.Category.Construction.MonoidAsCategory import Categories.Category.Construction.MonoidalFunctors import Categories.Category.Construction.Monoids import Categories.Category.Construction.ObjectRestriction import Categories.Category.Construction.Path import Categories.Category.Construction.PathCategory import Categories.Category.Construction.Presheaves import Categories.Category.Construction.Properties.Comma import Categories.Category.Construction.Properties.EilenbergMoore import Categories.Category.Construction.Properties.Functors import Categories.Category.Construction.Properties.Kleisli import Categories.Category.Construction.Properties.Presheaves import Categories.Category.Construction.Properties.Presheaves.Cartesian import Categories.Category.Construction.Properties.Presheaves.CartesianClosed import Categories.Category.Construction.Properties.Presheaves.Complete import Categories.Category.Construction.Properties.Presheaves.FromCartesianCCC import Categories.Category.Construction.Pullbacks import Categories.Category.Construction.SetoidDiscrete import Categories.Category.Construction.Spans import Categories.Category.Construction.StrictDiscrete import Categories.Category.Construction.Thin import Categories.Category.Construction.TwistedArrow import Categories.Category.Construction.Wedges import Categories.Category.Core import Categories.Category.Dagger import Categories.Category.Dagger.Construction.Discrete import Categories.Category.Dagger.Instance.Rels import Categories.Category.Diagram.Span import Categories.Category.Discrete import Categories.Category.Duality import Categories.Category.Equivalence import Categories.Category.Equivalence.Preserves import Categories.Category.Equivalence.Properties import Categories.Category.Finite import Categories.Category.Finite.Fin import Categories.Category.Finite.Fin.Construction.Discrete import Categories.Category.Finite.Fin.Construction.Poset import Categories.Category.Finite.Fin.Instance.Parallel import Categories.Category.Finite.Fin.Instance.Span import Categories.Category.Finite.Fin.Instance.Triangle import Categories.Category.Groupoid import Categories.Category.Groupoid.Properties import Categories.Category.Helper import Categories.Category.Indiscrete import Categories.Category.Instance.Cartesians import Categories.Category.Instance.Cats import Categories.Category.Instance.EmptySet import Categories.Category.Instance.FamilyOfSetoids import Categories.Category.Instance.FinCatShapes import Categories.Category.Instance.FinSetoids import Categories.Category.Instance.Globe import Categories.Category.Instance.Groupoids import Categories.Category.Instance.KanComplexes import Categories.Category.Instance.LawvereTheories import Categories.Category.Instance.Monoidals import Categories.Category.Instance.Nat import Categories.Category.Instance.One import Categories.Category.Instance.PartialFunctions import Categories.Category.Instance.PointedSets import Categories.Category.Instance.Posets import Categories.Category.Instance.Properties.Cats import Categories.Category.Instance.Properties.Posets import Categories.Category.Instance.Properties.Setoids import Categories.Category.Instance.Properties.Setoids.CCC import Categories.Category.Instance.Properties.Setoids.Cocomplete import Categories.Category.Instance.Properties.Setoids.Complete import Categories.Category.Instance.Properties.Setoids.LCCC import Categories.Category.Instance.Properties.Setoids.Limits.Canonical import Categories.Category.Instance.Quivers import Categories.Category.Instance.Rels import Categories.Category.Instance.Setoids import Categories.Category.Instance.Sets import Categories.Category.Instance.Simplex import Categories.Category.Instance.SimplicialSet import Categories.Category.Instance.SimplicialSet.Properties import Categories.Category.Instance.SingletonSet import Categories.Category.Instance.Span import Categories.Category.Instance.StrictCats import Categories.Category.Instance.StrictGroupoids import Categories.Category.Instance.Zero import Categories.Category.Inverse import Categories.Category.Lift import Categories.Category.Monoidal import Categories.Category.Monoidal.Braided import Categories.Category.Monoidal.Braided.Properties import Categories.Category.Monoidal.Bundle import Categories.Category.Monoidal.Closed import Categories.Category.Monoidal.Closed.IsClosed import Categories.Category.Monoidal.Closed.IsClosed.Diagonal import Categories.Category.Monoidal.Closed.IsClosed.Dinatural import Categories.Category.Monoidal.Closed.IsClosed.Identity import Categories.Category.Monoidal.Closed.IsClosed.L import Categories.Category.Monoidal.Closed.IsClosed.Pentagon import Categories.Category.Monoidal.CompactClosed import Categories.Category.Monoidal.Construction.Minus2 import Categories.Category.Monoidal.Construction.Product import Categories.Category.Monoidal.Core import Categories.Category.Monoidal.Instance.Cats import Categories.Category.Monoidal.Instance.One import Categories.Category.Monoidal.Instance.Rels import Categories.Category.Monoidal.Instance.Setoids import Categories.Category.Monoidal.Instance.Sets import Categories.Category.Monoidal.Instance.StrictCats import Categories.Category.Monoidal.Interchange import Categories.Category.Monoidal.Interchange.Braided import Categories.Category.Monoidal.Interchange.Symmetric import Categories.Category.Monoidal.Properties import Categories.Category.Monoidal.Reasoning import Categories.Category.Monoidal.Rigid import Categories.Category.Monoidal.Star-Autonomous import Categories.Category.Monoidal.Symmetric import Categories.Category.Monoidal.Traced import Categories.Category.Monoidal.Utilities import Categories.Category.Product import Categories.Category.Product.Properties import Categories.Category.Regular import Categories.Category.Restriction import Categories.Category.Restriction.Construction.Trivial import Categories.Category.Restriction.Instance.PartialFunctions import Categories.Category.Restriction.Properties import Categories.Category.RigCategory import Categories.Category.Site import Categories.Category.Slice import Categories.Category.Slice.Properties import Categories.Category.Species import Categories.Category.Species.Constructions import Categories.Category.SubCategory import Categories.Category.Topos import Categories.Category.Unbundled import Categories.Category.Unbundled.Properties import Categories.Category.Unbundled.Utilities import Categories.CoYoneda import Categories.Comonad import Categories.Comonad.Relative import Categories.Diagram.Cocone import Categories.Diagram.Cocone.Properties import Categories.Diagram.Coend import Categories.Diagram.Coend.Properties import Categories.Diagram.Coequalizer import Categories.Diagram.Coequalizer.Properties import Categories.Diagram.Colimit import Categories.Diagram.Colimit.DualProperties import Categories.Diagram.Colimit.Lan import Categories.Diagram.Colimit.Properties import Categories.Diagram.Cone import Categories.Diagram.Cone.Properties import Categories.Diagram.Cowedge import Categories.Diagram.Cowedge.Properties import Categories.Diagram.Duality import Categories.Diagram.End import Categories.Diagram.End.Properties import Categories.Diagram.Equalizer import Categories.Diagram.Equalizer.Indexed import Categories.Diagram.Equalizer.Limit import Categories.Diagram.Equalizer.Properties import Categories.Diagram.Finite import Categories.Diagram.KernelPair import Categories.Diagram.Limit import Categories.Diagram.Limit.Properties import Categories.Diagram.Limit.Ran import Categories.Diagram.Pullback import Categories.Diagram.Pullback.Limit import Categories.Diagram.Pullback.Properties import Categories.Diagram.Pushout import Categories.Diagram.Pushout.Properties import Categories.Diagram.ReflexivePair import Categories.Diagram.SubobjectClassifier import Categories.Diagram.Wedge import Categories.Diagram.Wedge.Properties import Categories.Enriched.Category import Categories.Enriched.Category.Opposite import Categories.Enriched.Category.Underlying import Categories.Enriched.Functor import Categories.Enriched.NaturalTransformation import Categories.Enriched.NaturalTransformation.NaturalIsomorphism import Categories.Enriched.Over.One import Categories.Enriched.Over.Setoids import Categories.Functor import Categories.Functor.Algebra import Categories.Functor.Bifunctor import Categories.Functor.Bifunctor.Properties import Categories.Functor.Cartesian import Categories.Functor.Cartesian.Properties import Categories.Functor.Coalgebra import Categories.Functor.Construction.Constant import Categories.Functor.Construction.Diagonal import Categories.Functor.Construction.FromDiscrete import Categories.Functor.Construction.LiftSetoids import Categories.Functor.Construction.Limit import Categories.Functor.Construction.ObjectRestriction import Categories.Functor.Construction.PathsOf import Categories.Functor.Construction.SubCategory import Categories.Functor.Construction.SubCategory.Properties import Categories.Functor.Construction.Zero import Categories.Functor.Core import Categories.Functor.Duality import Categories.Functor.Equivalence import Categories.Functor.Fibration import Categories.Functor.Groupoid import Categories.Functor.Hom import Categories.Functor.Hom.Properties import Categories.Functor.Hom.Properties.Contra import Categories.Functor.Hom.Properties.Covariant import Categories.Functor.IdentityOnObjects import Categories.Functor.Instance.0-Truncation import Categories.Functor.Instance.01-Truncation import Categories.Functor.Instance.Core import Categories.Functor.Instance.Discrete import Categories.Functor.Instance.SetoidDiscrete import Categories.Functor.Instance.StrictCore import Categories.Functor.Instance.Twisted import Categories.Functor.Instance.UnderlyingQuiver import Categories.Functor.Limits import Categories.Functor.Monoidal import Categories.Functor.Monoidal.Braided import Categories.Functor.Monoidal.Construction.Product import Categories.Functor.Monoidal.Properties import Categories.Functor.Monoidal.Symmetric import Categories.Functor.Monoidal.Tensor import Categories.Functor.Power import Categories.Functor.Power.Functorial import Categories.Functor.Power.NaturalTransformation import Categories.Functor.Presheaf import Categories.Functor.Profunctor import Categories.Functor.Properties import Categories.Functor.Representable import Categories.Functor.Restriction import Categories.Functor.Slice import Categories.GlobularSet import Categories.Kan import Categories.Kan.Duality import Categories.Minus2-Category import Categories.Minus2-Category.Construction.Indiscrete import Categories.Minus2-Category.Instance.One import Categories.Minus2-Category.Properties import Categories.Monad import Categories.Monad.Duality import Categories.Monad.Idempotent import Categories.Monad.Relative import Categories.Monad.Strong import Categories.Morphism import Categories.Morphism.Cartesian import Categories.Morphism.Duality import Categories.Morphism.HeterogeneousIdentity import Categories.Morphism.HeterogeneousIdentity.Properties import Categories.Morphism.Idempotent import Categories.Morphism.Idempotent.Bundles import Categories.Morphism.IsoEquiv import Categories.Morphism.Isomorphism import Categories.Morphism.Normal import Categories.Morphism.Notation import Categories.Morphism.Properties import Categories.Morphism.Reasoning import Categories.Morphism.Reasoning.Core import Categories.Morphism.Reasoning.Iso import Categories.Morphism.Regular import Categories.Morphism.Universal import Categories.Multi.Category.Indexed import Categories.NaturalTransformation import Categories.NaturalTransformation.Core import Categories.NaturalTransformation.Dinatural import Categories.NaturalTransformation.Equivalence import Categories.NaturalTransformation.Extranatural import Categories.NaturalTransformation.Hom import Categories.NaturalTransformation.Monoidal import Categories.NaturalTransformation.Monoidal.Braided import Categories.NaturalTransformation.Monoidal.Symmetric import Categories.NaturalTransformation.NaturalIsomorphism import Categories.NaturalTransformation.NaturalIsomorphism.Equivalence import Categories.NaturalTransformation.NaturalIsomorphism.Functors import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Braided import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric import Categories.NaturalTransformation.NaturalIsomorphism.Properties import Categories.NaturalTransformation.Properties import Categories.Object.Biproduct import Categories.Object.Cokernel import Categories.Object.Coproduct import Categories.Object.Duality import Categories.Object.Exponential import Categories.Object.Initial import Categories.Object.Kernel import Categories.Object.Kernel.Properties import Categories.Object.Monoid import Categories.Object.NaturalNumber import Categories.Object.NaturalNumber.Properties.F-Algebras import Categories.Object.Product import Categories.Object.Product.Construction import Categories.Object.Product.Core import Categories.Object.Product.Indexed import Categories.Object.Product.Indexed.Properties import Categories.Object.Product.Limit import Categories.Object.Product.Morphisms import Categories.Object.Subobject import Categories.Object.Subobject.Properties import Categories.Object.Terminal import Categories.Object.Terminal.Limit import Categories.Object.Zero import Categories.Pseudofunctor import Categories.Pseudofunctor.Composition import Categories.Pseudofunctor.Hom import Categories.Pseudofunctor.Identity import Categories.Pseudofunctor.Instance.EnrichedUnderlying import Categories.Tactic.Category import Categories.Theory.Lawvere import Categories.Theory.Lawvere.Instance.Identity import Categories.Theory.Lawvere.Instance.Triv import Categories.Utils.EqReasoning import Categories.Utils.Product import Categories.Yoneda import Categories.Yoneda.Continuous import Categories.Yoneda.Properties import Data.Quiver import Data.Quiver.Morphism import Data.Quiver.Paths import Relation.Binary.PropositionalEquality.Subst.Properties
44.609337
78
0.892267
8b30ce12150aa29ab4ebd3259fc4754b2af6963b
242
agda
Agda
prototyping/Properties.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
1
2022-03-18T04:10:20.000Z
2022-03-18T04:10:20.000Z
prototyping/Properties.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
null
null
null
prototyping/Properties.agda
morgoth990/luau
dbdf91f3cad8ea9e881b8cf99931f654faf65c2e
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Properties where import Properties.Contradiction import Properties.Dec import Properties.Equality import Properties.Remember import Properties.Step import Properties.StrictMode import Properties.TypeCheck
20.166667
31
0.842975
fde4d608d512dd5a528403d560428d57bc6b628b
3,431
agda
Agda
theorems/homotopy/RibbonCover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/RibbonCover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/homotopy/RibbonCover.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} {- Ribbon is an explicit covering space construction. This construction is given by Daniel Grayson, Favonia and Guillaume Brunerie together. -} open import HoTT -- A is the pointed base space. -- El is intended to be a (group-)set, module homotopy.RibbonCover {i : ULevel} where -- The HIT ribbon---reconstructed covering space module _ (X : Ptd i) {j} (gs : GroupSet (πS 0 X) j) (a₂ : de⊙ X) where private A = de⊙ X a₁ = pt X El = GroupSet.El gs El-level = GroupSet.El-level gs infix 80 _⊙_ _⊙_ = GroupSet.act gs RibbonSet : Type (lmax i j) RibbonSet = El × (a₁ =₀ a₂) data RibbonRel : RibbonSet → RibbonSet → Type (lmax i j) where ribbon-rel : ∀ el loop (p : a₁ =₀ a₂) → RibbonRel (el ⊙ loop , p) (el , loop ∙₀ p) Ribbon : Type (lmax i j) Ribbon = SetQuot RibbonRel module _ {X : Ptd i} {j} {gs : GroupSet (πS 0 X) j} {a₂ : de⊙ X} where private A = de⊙ X a = pt X El = GroupSet.El gs El-level = GroupSet.El-level gs infix 80 _⊙_ _⊙_ = GroupSet.act gs -- A point in the fiber [a₂]. {- [e] is a point in the [fiber a], and [p] is a path to transport [y] to fiber [a₂]. -} trace : El → a =₀ a₂ → Ribbon X gs a₂ trace el p = q[ el , p ] {- A loop based at [a] can used as a group action or for concatination. Both should be equivalent. -} paste : ∀ el loop (p : a =₀ a₂) → trace (el ⊙ loop) p == trace el (loop ∙₀ p) paste el loop p = quot-rel (ribbon-rel el loop p) {- Make each fiber a set and cancel all higher structures due to [paste]. -} Ribbon-level : is-set (Ribbon X gs a₂) Ribbon-level = SetQuot-level Ribbon-is-set = Ribbon-level -- Elimination rules. module RibbonElim {j} {P : Ribbon X gs a₂ → Type j} (P-level : ∀ r → is-set (P r)) (trace* : ∀ el p → P (trace el p)) (paste* : ∀ el loop p → trace* (el ⊙ loop) p == trace* el (loop ∙₀ p) [ P ↓ paste el loop p ]) where private q[_]* : (α : RibbonSet X gs a₂) → P q[ α ] q[ el , p ]* = trace* el p rel* : ∀ {α₁ α₂} (r : RibbonRel X gs a₂ α₁ α₂) → q[ α₁ ]* == q[ α₂ ]* [ P ↓ quot-rel r ] rel* (ribbon-rel el loop p) = paste* el loop p module M = SetQuotElim P-level q[_]* rel* f : Π (Ribbon X gs a₂) P f = M.f open RibbonElim public using () renaming (f to Ribbon-elim) module RibbonRec {j} {P : Type j} (P-level : is-set P) (trace* : ∀ el p → P) (paste* : ∀ el loop p → trace* (el ⊙ loop) p == trace* el (loop ∙₀ p)) where private module M = RibbonElim (λ _ → P-level) trace* (λ el loop p → ↓-cst-in (paste* el loop p)) f : Ribbon X gs a₂ → P f = M.f open RibbonRec public using () renaming (f to Ribbon-rec) -- This data structure gives a cover. Ribbon-cover : ∀ (X : Ptd i) {j} (gs : GroupSet (πS 0 X) j) → Cover (de⊙ X) (lmax i j) Ribbon-cover X gs = record { Fiber = Ribbon X gs ; Fiber-level = λ a → Ribbon-level } transp-trace : ∀ {A : Type i} {a₁} {j} {gs : GroupSet (πS 0 ⊙[ A , a₁ ]) j} {a₂} (q : a₁ == a₂) y p → transport (Ribbon ⊙[ A , a₁ ] gs) q (trace y p) == trace y (p ∙₀ [ q ]) transp-trace idp y p = ap (trace y) $ ! $ ∙₀-unit-r p
28.591667
96
0.537161
0dbcbcf515a4a6afd3f11e9f5546c7164a7591f3
14,413
agda
Agda
Cubical/Algebra/CommRing/Properties.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Properties.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Properties.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.GroupoidLaws hiding (_⁻¹) open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Foundations.Powerset open import Cubical.Foundations.Path open import Cubical.Data.Sigma open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Structures.Axioms open import Cubical.Structures.Auto open import Cubical.Structures.Macro open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing.Base open import Cubical.HITs.PropositionalTruncation private variable ℓ ℓ' ℓ'' : Level module Units (R' : CommRing ℓ) where open CommRingStr (snd R') open RingTheory (CommRing→Ring R') private R = fst R' inverseUniqueness : (r : R) → isProp (Σ[ r' ∈ R ] r · r' ≡ 1r) inverseUniqueness r (r' , rr'≡1) (r'' , rr''≡1) = Σ≡Prop (λ _ → is-set _ _) path where path : r' ≡ r'' path = r' ≡⟨ sym (·Rid _) ⟩ r' · 1r ≡⟨ cong (r' ·_) (sym rr''≡1) ⟩ r' · (r · r'') ≡⟨ ·Assoc _ _ _ ⟩ (r' · r) · r'' ≡⟨ cong (_· r'') (·Comm _ _) ⟩ (r · r') · r'' ≡⟨ cong (_· r'') rr'≡1 ⟩ 1r · r'' ≡⟨ ·Lid _ ⟩ r'' ∎ Rˣ : ℙ R Rˣ r = (Σ[ r' ∈ R ] r · r' ≡ 1r) , inverseUniqueness r -- some notation using instance arguments _⁻¹ : (r : R) → ⦃ r ∈ Rˣ ⦄ → R _⁻¹ r ⦃ r∈Rˣ ⦄ = r∈Rˣ .fst infix 9 _⁻¹ -- some results about inverses ·-rinv : (r : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ → r · r ⁻¹ ≡ 1r ·-rinv r ⦃ r∈Rˣ ⦄ = r∈Rˣ .snd ·-linv : (r : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ → r ⁻¹ · r ≡ 1r ·-linv r ⦃ r∈Rˣ ⦄ = ·Comm _ _ ∙ r∈Rˣ .snd RˣMultClosed : (r r' : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄ → (r · r') ∈ Rˣ RˣMultClosed r r' = (r ⁻¹ · r' ⁻¹) , path where path : r · r' · (r ⁻¹ · r' ⁻¹) ≡ 1r path = r · r' · (r ⁻¹ · r' ⁻¹) ≡⟨ cong (_· (r ⁻¹ · r' ⁻¹)) (·Comm _ _) ⟩ r' · r · (r ⁻¹ · r' ⁻¹) ≡⟨ ·Assoc _ _ _ ⟩ r' · r · r ⁻¹ · r' ⁻¹ ≡⟨ cong (_· r' ⁻¹) (sym (·Assoc _ _ _)) ⟩ r' · (r · r ⁻¹) · r' ⁻¹ ≡⟨ cong (λ x → r' · x · r' ⁻¹) (·-rinv _) ⟩ r' · 1r · r' ⁻¹ ≡⟨ cong (_· r' ⁻¹) (·Rid _) ⟩ r' · r' ⁻¹ ≡⟨ ·-rinv _ ⟩ 1r ∎ RˣContainsOne : 1r ∈ Rˣ RˣContainsOne = 1r , ·Lid _ RˣInvClosed : (r : R) ⦃ _ : r ∈ Rˣ ⦄ → r ⁻¹ ∈ Rˣ RˣInvClosed r = r , ·-linv _ UnitsAreNotZeroDivisors : (r : R) ⦃ _ : r ∈ Rˣ ⦄ → ∀ r' → r' · r ≡ 0r → r' ≡ 0r UnitsAreNotZeroDivisors r r' p = r' ≡⟨ sym (·Rid _) ⟩ r' · 1r ≡⟨ cong (r' ·_) (sym (·-rinv _)) ⟩ r' · (r · r ⁻¹) ≡⟨ ·Assoc _ _ _ ⟩ r' · r · r ⁻¹ ≡⟨ cong (_· r ⁻¹) p ⟩ 0r · r ⁻¹ ≡⟨ 0LeftAnnihilates _ ⟩ 0r ∎ -- laws keeping the instance arguments 1⁻¹≡1 : ⦃ 1∈Rˣ' : 1r ∈ Rˣ ⦄ → 1r ⁻¹ ≡ 1r 1⁻¹≡1 ⦃ 1∈Rˣ' ⦄ = (sym (·Lid _)) ∙ 1∈Rˣ' .snd ⁻¹-dist-· : (r r' : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄ ⦃ rr'∈Rˣ : (r · r') ∈ Rˣ ⦄ → (r · r') ⁻¹ ≡ r ⁻¹ · r' ⁻¹ ⁻¹-dist-· r r' ⦃ r∈Rˣ ⦄ ⦃ r'∈Rˣ ⦄ ⦃ rr'∈Rˣ ⦄ = sym path ∙∙ cong (r ⁻¹ · r' ⁻¹ ·_) (rr'∈Rˣ .snd) ∙∙ (·Rid _) where path : r ⁻¹ · r' ⁻¹ · (r · r' · (r · r') ⁻¹) ≡ (r · r') ⁻¹ path = r ⁻¹ · r' ⁻¹ · (r · r' · (r · r') ⁻¹) ≡⟨ ·Assoc _ _ _ ⟩ r ⁻¹ · r' ⁻¹ · (r · r') · (r · r') ⁻¹ ≡⟨ cong (λ x → r ⁻¹ · r' ⁻¹ · x · (r · r') ⁻¹) (·Comm _ _) ⟩ r ⁻¹ · r' ⁻¹ · (r' · r) · (r · r') ⁻¹ ≡⟨ cong (_· (r · r') ⁻¹) (sym (·Assoc _ _ _)) ⟩ r ⁻¹ · (r' ⁻¹ · (r' · r)) · (r · r') ⁻¹ ≡⟨ cong (λ x → r ⁻¹ · x · (r · r') ⁻¹) (·Assoc _ _ _) ⟩ r ⁻¹ · (r' ⁻¹ · r' · r) · (r · r') ⁻¹ ≡⟨ cong (λ x → r ⁻¹ · (x · r) · (r · r') ⁻¹) (·-linv _) ⟩ r ⁻¹ · (1r · r) · (r · r') ⁻¹ ≡⟨ cong (λ x → r ⁻¹ · x · (r · r') ⁻¹) (·Lid _) ⟩ r ⁻¹ · r · (r · r') ⁻¹ ≡⟨ cong (_· (r · r') ⁻¹) (·-linv _) ⟩ 1r · (r · r') ⁻¹ ≡⟨ ·Lid _ ⟩ (r · r') ⁻¹ ∎ unitCong : {r r' : R} → r ≡ r' → ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄ → r ⁻¹ ≡ r' ⁻¹ unitCong {r = r} {r' = r'} p ⦃ r∈Rˣ ⦄ ⦃ r'∈Rˣ ⦄ = PathPΣ (inverseUniqueness r' (r ⁻¹ , subst (λ x → x · r ⁻¹ ≡ 1r) p (r∈Rˣ .snd)) r'∈Rˣ) .fst ⁻¹-eq-elim : {r r' r'' : R} ⦃ r∈Rˣ : r ∈ Rˣ ⦄ → r' ≡ r'' · r → r' · r ⁻¹ ≡ r'' ⁻¹-eq-elim {r = r} {r'' = r''} p = cong (_· r ⁻¹) p ∙ sym (·Assoc _ _ _) ∙ cong (r'' ·_) (·-rinv _) ∙ ·Rid _ -- some convenient notation _ˣ : (R' : CommRing ℓ) → ℙ (R' .fst) R' ˣ = Units.Rˣ R' module _ where open RingHoms idCommRingHom : (R : CommRing ℓ) → CommRingHom R R idCommRingHom R = idRingHom (CommRing→Ring R) compCommRingHom : (R : CommRing ℓ) (S : CommRing ℓ') (T : CommRing ℓ'') → CommRingHom R S → CommRingHom S T → CommRingHom R T compCommRingHom R S T = compRingHom {R = CommRing→Ring R} {CommRing→Ring S} {CommRing→Ring T} _∘cr_ : {R : CommRing ℓ} {S : CommRing ℓ'} {T : CommRing ℓ''} → CommRingHom S T → CommRingHom R S → CommRingHom R T g ∘cr f = compCommRingHom _ _ _ f g compIdCommRingHom : {R S : CommRing ℓ} (f : CommRingHom R S) → compCommRingHom _ _ _ (idCommRingHom R) f ≡ f compIdCommRingHom = compIdRingHom idCompCommRingHom : {R S : CommRing ℓ} (f : CommRingHom R S) → compCommRingHom _ _ _ f (idCommRingHom S) ≡ f idCompCommRingHom = idCompRingHom compAssocCommRingHom : {R S T U : CommRing ℓ} (f : CommRingHom R S) (g : CommRingHom S T) (h : CommRingHom T U) → compCommRingHom _ _ _ (compCommRingHom _ _ _ f g) h ≡ compCommRingHom _ _ _ f (compCommRingHom _ _ _ g h) compAssocCommRingHom = compAssocRingHom open Iso injCommRingIso : {R : CommRing ℓ} {S : CommRing ℓ'} (f : CommRingIso R S) → (x y : R .fst) → f .fst .fun x ≡ f .fst .fun y → x ≡ y injCommRingIso f x y h = sym (f .fst .leftInv x) ∙∙ cong (f .fst .inv) h ∙∙ f .fst .leftInv y module CommRingEquivs where open RingEquivs compCommRingEquiv : {A : CommRing ℓ} {B : CommRing ℓ'} {C : CommRing ℓ''} → CommRingEquiv A B → CommRingEquiv B C → CommRingEquiv A C compCommRingEquiv {A = A} {B = B} {C = C} = compRingEquiv {A = CommRing→Ring A} {B = CommRing→Ring B} {C = CommRing→Ring C} invCommRingEquiv : (A : CommRing ℓ) → (B : CommRing ℓ') → CommRingEquiv A B → CommRingEquiv B A fst (invCommRingEquiv A B e) = invEquiv (fst e) snd (invCommRingEquiv A B e) = isRingHomInv e module CommRingHomTheory {A' B' : CommRing ℓ} (φ : CommRingHom A' B') where open Units A' renaming (Rˣ to Aˣ ; _⁻¹ to _⁻¹ᵃ ; ·-rinv to ·A-rinv ; ·-linv to ·A-linv) private A = fst A' open CommRingStr (snd A') renaming (_·_ to _·A_ ; 1r to 1a) open Units B' renaming (Rˣ to Bˣ ; _⁻¹ to _⁻¹ᵇ ; ·-rinv to ·B-rinv) open CommRingStr (snd B') renaming ( _·_ to _·B_ ; 1r to 1b ; ·Lid to ·B-lid ; ·Rid to ·B-rid ; ·Assoc to ·B-assoc) private f = fst φ open IsRingHom (φ .snd) RingHomRespInv : (r : A) ⦃ r∈Aˣ : r ∈ Aˣ ⦄ → f r ∈ Bˣ RingHomRespInv r = f (r ⁻¹ᵃ) , (sym (pres· r (r ⁻¹ᵃ)) ∙∙ cong (f) (·A-rinv r) ∙∙ pres1) φ[x⁻¹]≡φ[x]⁻¹ : (r : A) ⦃ r∈Aˣ : r ∈ Aˣ ⦄ ⦃ φr∈Bˣ : f r ∈ Bˣ ⦄ → f (r ⁻¹ᵃ) ≡ (f r) ⁻¹ᵇ φ[x⁻¹]≡φ[x]⁻¹ r ⦃ r∈Aˣ ⦄ ⦃ φr∈Bˣ ⦄ = f (r ⁻¹ᵃ) ≡⟨ sym (·B-rid _) ⟩ f (r ⁻¹ᵃ) ·B 1b ≡⟨ cong (f (r ⁻¹ᵃ) ·B_) (sym (·B-rinv _)) ⟩ f (r ⁻¹ᵃ) ·B ((f r) ·B (f r) ⁻¹ᵇ) ≡⟨ ·B-assoc _ _ _ ⟩ f (r ⁻¹ᵃ) ·B (f r) ·B (f r) ⁻¹ᵇ ≡⟨ cong (_·B (f r) ⁻¹ᵇ) (sym (pres· _ _)) ⟩ f (r ⁻¹ᵃ ·A r) ·B (f r) ⁻¹ᵇ ≡⟨ cong (λ x → f x ·B (f r) ⁻¹ᵇ) (·A-linv _) ⟩ f 1a ·B (f r) ⁻¹ᵇ ≡⟨ cong (_·B (f r) ⁻¹ᵇ) (pres1) ⟩ 1b ·B (f r) ⁻¹ᵇ ≡⟨ ·B-lid _ ⟩ (f r) ⁻¹ᵇ ∎ module Exponentiation (R' : CommRing ℓ) where open CommRingStr (snd R') private R = fst R' -- introduce exponentiation _^_ : R → ℕ → R f ^ zero = 1r f ^ suc n = f · (f ^ n) infix 9 _^_ -- and prove some laws 1ⁿ≡1 : (n : ℕ) → 1r ^ n ≡ 1r 1ⁿ≡1 zero = refl 1ⁿ≡1 (suc n) = ·Lid _ ∙ 1ⁿ≡1 n ·-of-^-is-^-of-+ : (f : R) (m n : ℕ) → (f ^ m) · (f ^ n) ≡ f ^ (m +ℕ n) ·-of-^-is-^-of-+ f zero n = ·Lid _ ·-of-^-is-^-of-+ f (suc m) n = sym (·Assoc _ _ _) ∙ cong (f ·_) (·-of-^-is-^-of-+ f m n) ^-ldist-· : (f g : R) (n : ℕ) → (f · g) ^ n ≡ (f ^ n) · (g ^ n) ^-ldist-· f g zero = sym (·Lid 1r) ^-ldist-· f g (suc n) = path where path : f · g · ((f · g) ^ n) ≡ f · (f ^ n) · (g · (g ^ n)) path = f · g · ((f · g) ^ n) ≡⟨ cong (f · g ·_) (^-ldist-· f g n) ⟩ f · g · ((f ^ n) · (g ^ n)) ≡⟨ ·Assoc _ _ _ ⟩ f · g · (f ^ n) · (g ^ n) ≡⟨ cong (_· (g ^ n)) (sym (·Assoc _ _ _)) ⟩ f · (g · (f ^ n)) · (g ^ n) ≡⟨ cong (λ r → (f · r) · (g ^ n)) (·Comm _ _) ⟩ f · ((f ^ n) · g) · (g ^ n) ≡⟨ cong (_· (g ^ n)) (·Assoc _ _ _) ⟩ f · (f ^ n) · g · (g ^ n) ≡⟨ sym (·Assoc _ _ _) ⟩ f · (f ^ n) · (g · (g ^ n)) ∎ ^-rdist-·ℕ : (f : R) (n m : ℕ) → f ^ (n ·ℕ m) ≡ (f ^ n) ^ m ^-rdist-·ℕ f zero m = sym (1ⁿ≡1 m) ^-rdist-·ℕ f (suc n) m = sym (·-of-^-is-^-of-+ f m (n ·ℕ m)) ∙∙ cong (f ^ m ·_) (^-rdist-·ℕ f n m) ∙∙ sym (^-ldist-· f (f ^ n) m) -- interaction of exponentiation and units open Units R' ^-presUnit : ∀ (f : R) (n : ℕ) → f ∈ Rˣ → f ^ n ∈ Rˣ ^-presUnit f zero f∈Rˣ = RˣContainsOne ^-presUnit f (suc n) f∈Rˣ = RˣMultClosed f (f ^ n) ⦃ f∈Rˣ ⦄ ⦃ ^-presUnit f n f∈Rˣ ⦄ -- like in Ring.Properties we provide helpful lemmas here module CommRingTheory (R' : CommRing ℓ) where open CommRingStr (snd R') private R = fst R' ·CommAssocl : (x y z : R) → x · (y · z) ≡ y · (x · z) ·CommAssocl x y z = ·Assoc x y z ∙∙ cong (_· z) (·Comm x y) ∙∙ sym (·Assoc y x z) ·CommAssocr : (x y z : R) → x · y · z ≡ x · z · y ·CommAssocr x y z = sym (·Assoc x y z) ∙∙ cong (x ·_) (·Comm y z) ∙∙ ·Assoc x z y ·CommAssocr2 : (x y z : R) → x · y · z ≡ z · y · x ·CommAssocr2 x y z = ·CommAssocr _ _ _ ∙∙ cong (_· y) (·Comm _ _) ∙∙ ·CommAssocr _ _ _ ·CommAssocSwap : (x y z w : R) → (x · y) · (z · w) ≡ (x · z) · (y · w) ·CommAssocSwap x y z w = ·Assoc (x · y) z w ∙∙ cong (_· w) (·CommAssocr x y z) ∙∙ sym (·Assoc (x · z) y w) -- the CommRing version of uaCompEquiv module CommRingUAFunctoriality where open CommRingStr open CommRingEquivs CommRing≡ : (A B : CommRing ℓ) → ( Σ[ p ∈ ⟨ A ⟩ ≡ ⟨ B ⟩ ] Σ[ q0 ∈ PathP (λ i → p i) (0r (snd A)) (0r (snd B)) ] Σ[ q1 ∈ PathP (λ i → p i) (1r (snd A)) (1r (snd B)) ] Σ[ r+ ∈ PathP (λ i → p i → p i → p i) (_+_ (snd A)) (_+_ (snd B)) ] Σ[ r· ∈ PathP (λ i → p i → p i → p i) (_·_ (snd A)) (_·_ (snd B)) ] Σ[ s ∈ PathP (λ i → p i → p i) (-_ (snd A)) (-_ (snd B)) ] PathP (λ i → IsCommRing (q0 i) (q1 i) (r+ i) (r· i) (s i)) (isCommRing (snd A)) (isCommRing (snd B))) ≃ (A ≡ B) CommRing≡ A B = isoToEquiv theIso where open Iso theIso : Iso _ _ fun theIso (p , q0 , q1 , r+ , r· , s , t) i = p i , commringstr (q0 i) (q1 i) (r+ i) (r· i) (s i) (t i) inv theIso x = cong ⟨_⟩ x , cong (0r ∘ snd) x , cong (1r ∘ snd) x , cong (_+_ ∘ snd) x , cong (_·_ ∘ snd) x , cong (-_ ∘ snd) x , cong (isCommRing ∘ snd) x rightInv theIso _ = refl leftInv theIso _ = refl caracCommRing≡ : {A B : CommRing ℓ} (p q : A ≡ B) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q caracCommRing≡ {A = A} {B = B} p q P = sym (transportTransport⁻ (ua (CommRing≡ A B)) p) ∙∙ cong (transport (ua (CommRing≡ A B))) helper ∙∙ transportTransport⁻ (ua (CommRing≡ A B)) q where helper : transport (sym (ua (CommRing≡ A B))) p ≡ transport (sym (ua (CommRing≡ A B))) q helper = Σ≡Prop (λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _) λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd B)) _ _) λ _ → isOfHLevelPathP 1 (isPropIsCommRing _ _ _ _ _) _ _) (transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q))) uaCompCommRingEquiv : {A B C : CommRing ℓ} (f : CommRingEquiv A B) (g : CommRingEquiv B C) → uaCommRing (compCommRingEquiv f g) ≡ uaCommRing f ∙ uaCommRing g uaCompCommRingEquiv f g = caracCommRing≡ _ _ ( cong ⟨_⟩ (uaCommRing (compCommRingEquiv f g)) ≡⟨ uaCompEquiv _ _ ⟩ cong ⟨_⟩ (uaCommRing f) ∙ cong ⟨_⟩ (uaCommRing g) ≡⟨ sym (cong-∙ ⟨_⟩ (uaCommRing f) (uaCommRing g)) ⟩ cong ⟨_⟩ (uaCommRing f ∙ uaCommRing g) ∎) open CommRingEquivs open CommRingUAFunctoriality recPT→CommRing : {A : Type ℓ'} (𝓕 : A → CommRing ℓ) → (σ : ∀ x y → CommRingEquiv (𝓕 x) (𝓕 y)) → (∀ x y z → σ x z ≡ compCommRingEquiv (σ x y) (σ y z)) ------------------------------------------------------ → ∥ A ∥ → CommRing ℓ recPT→CommRing 𝓕 σ compCoh = GpdElim.rec→Gpd isGroupoidCommRing 𝓕 (3-ConstantCompChar 𝓕 (λ x y → uaCommRing (σ x y)) λ x y z → sym ( cong uaCommRing (compCoh x y z) ∙ uaCompCommRingEquiv (σ x y) (σ y z)))
41.18
105
0.472976
7cfbd97bd7fc01bfe8a543c9d4e1309862f4f3ce
3,118
agda
Agda
Cubical/Homotopy/Group/Pi4S3/Summary.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Homotopy/Group/Pi4S3/Summary.agda
snu-development/cubical
58f2d0dd07e51f8aa5b348a522691097b6695d1c
[ "MIT" ]
null
null
null
Cubical/Homotopy/Group/Pi4S3/Summary.agda
snu-development/cubical
58f2d0dd07e51f8aa5b348a522691097b6695d1c
[ "MIT" ]
null
null
null
{- This file contains a summary of the proof that π₄(S³) ≡ ℤ/2ℤ The --experimental-lossy-unification flag is used to speed up type checking. The file still type checks without it, but it's a lot slower (about 10 times). -} {-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Group.Pi4S3.Summary where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Data.Nat.Base open import Cubical.Data.Sigma.Base open import Cubical.HITs.Sn open import Cubical.HITs.SetTruncation open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.HopfInvariant.Homomorphism open import Cubical.Homotopy.HopfInvariant.HopfMap open import Cubical.Homotopy.HopfInvariant.Brunerie open import Cubical.Homotopy.Whitehead open import Cubical.Homotopy.Group.Base hiding (π) open import Cubical.Homotopy.Group.Pi3S2 open import Cubical.Homotopy.Group.Pi4S3.BrunerieNumber open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Group.Instances.Bool open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.GroupPath open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Instances.IntMod open import Cubical.Algebra.Group.ZAction -- Homotopy groups (shifted version of π'Gr to get nicer numbering) π : ℕ → Pointed₀ → Group₀ π n X = π'Gr (predℕ n) X -- Nicer notation for the spheres (as pointed types) 𝕊² 𝕊³ : Pointed₀ 𝕊² = S₊∙ 2 𝕊³ = S₊∙ 3 -- The Brunerie number; defined in Cubical.Homotopy.Group.Pi4S3.BrunerieNumber -- as "abs (HopfInvariant-π' 0 ([ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×))" β : ℕ β = Brunerie -- The connection to π₄(S³) is then also proved in the BrunerieNumber -- file following Corollary 3.4.5 in Guillaume Brunerie's PhD thesis. βSpec : GroupEquiv (π 4 𝕊³) (ℤ/ β) βSpec = BrunerieIso -- Ideally one could prove that β is 2 by normalization, but this does -- not seem to terminate before we run out of memory. To try normalize -- this use "C-u C-c C-n β≡2" (which normalizes the term, ignoring -- abstract's). So instead we prove this by hand as in the second half -- of Guillaume's thesis. β≡2 : β ≡ 2 β≡2 = Brunerie≡2 -- This involves a lot of theory, for example that π₃(S²) ≃ ℤ where -- the underlying map is induced by the Hopf invariant (which involves -- the cup product on cohomology). _ : GroupEquiv (π 3 𝕊²) ℤ _ = hopfInvariantEquiv -- Which is a consequence of the fact that π₃(S²) is generated by the -- Hopf map. _ : gen₁-by (π 3 𝕊²) ∣ HopfMap ∣₂ _ = π₂S³-gen-by-HopfMap -- etc. For more details see the proof of "Brunerie≡2". -- Combining all of this gives us the desired equivalence of groups: π₄S³≃ℤ/2ℤ : GroupEquiv (π 4 𝕊³) (ℤ/ 2) π₄S³≃ℤ/2ℤ = subst (GroupEquiv (π 4 𝕊³)) (cong ℤ/_ β≡2) βSpec -- By the SIP this induces an equality of groups: π₄S³≡ℤ/2ℤ : π 4 𝕊³ ≡ ℤ/ 2 π₄S³≡ℤ/2ℤ = GroupPath _ _ .fst π₄S³≃ℤ/2ℤ -- As a sanity check we also establish the equality with Bool: π₄S³≡Bool : π 4 𝕊³ ≡ Bool π₄S³≡Bool = π₄S³≡ℤ/2ℤ ∙ GroupPath _ _ .fst (GroupIso→GroupEquiv ℤ/2≅Bool)
31.494949
78
0.749519
3770447b5a9246a211db49fbcd237a10c2a2ef92
3,000
agda
Agda
misc/RecursiveDescent/Inductive/Lib.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
misc/RecursiveDescent/Inductive/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
misc/RecursiveDescent/Inductive/Lib.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some defined parsers, collected in a library ------------------------------------------------------------------------ -- Recursive parsers cannot be defined simply as functions, but have -- to be defined in terms of a grammar. -- Non-recursive parsers can either be defined directly or by using a -- grammar. The grammar version may be harder to use in some cases, -- but has the potential advantage of increased sharing/less memory -- usage. module RecursiveDescent.Inductive.Lib (tok : Set) where open import RecursiveDescent.Index open import RecursiveDescent.Inductive open import RecursiveDescent.Inductive.SimpleLib open import Utilities open import Data.Bool open import Data.List open import Data.Nat open import Data.Product.Record using (_,_) open import Data.Product renaming (_,_ to pair) -- The index of atLeast can only be partly inferred. atLeast-index : Corners -> ℕ -> Index atLeast-index c zero = _ atLeast-index c (suc n) = _ private -- Note that the parsers are parameterised on other parsers. data NT (nt : ParserType₁) : ParserType₁ where many : forall {c r} -> Parser tok nt (false , c) r -> NT nt _ (List r) many₁ : forall {c r} -> Parser tok nt (false , c) r -> NT nt _ (List r) atLeast' : forall {c r} (n : ℕ) -> Parser tok nt (false , c) r -> NT nt (atLeast-index c n) (List r) chain≥' : forall {c₁ i₂ r} (n : ℕ) -> Assoc -> Parser tok nt (false , c₁) r -> Parser tok nt i₂ (r -> r -> r) -> NT nt _ r Nonterminal : ParserType₁ -> ParserType₁ Nonterminal = NT module Combinators {nt} (lib : forall {i r} -> Nonterminal nt i r -> nt i r) where infix 55 _⋆ _+ _⋆ : forall {c r} -> Parser tok nt (false , c) r -> Parser tok nt _ (List r) p ⋆ = ! lib (many p) _+ : forall {c r} -> Parser tok nt (false , c) r -> Parser tok nt _ (List r) p + = ! lib (many₁ p) -- At least n occurrences of p. atLeast : forall {c r} (n : ℕ) -> Parser tok nt (false , c) r -> Parser tok nt _ (List r) atLeast n p = ! lib (atLeast' n p) -- Chains at least n occurrences of op, in an a-associative -- manner. The ops are surrounded by ps. chain≥ : forall {c₁ i₂ r} (n : ℕ) -> Assoc -> Parser tok nt (false , c₁) r -> Parser tok nt i₂ (r -> r -> r) -> Parser tok nt _ r chain≥ n a p op = ! lib (chain≥' n a p op) library : forall {i r} -> Nonterminal nt i r -> Parser tok nt i r library (many p) = return [] ∣ p + library (many₁ p) = _∷_ <$> p ⊛ p ⋆ library (atLeast' zero p) = p ⋆ library (atLeast' (suc n) p) = _∷_ <$> p ⊛ atLeast n p library (chain≥' n a p op) = chain≥-combine a <$> p ⊛ atLeast n (op ⊗! p)
31.578947
72
0.543
361dc9bfb991a9738c8247764865ff682c25019e
10,582
agda
Agda
src/Univalence-axiom/Isomorphism-is-equality/Monoid.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Univalence-axiom/Isomorphism-is-equality/Monoid.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Univalence-axiom/Isomorphism-is-equality/Monoid.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Isomorphism of monoids on sets coincides with equality (assuming -- univalence) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- This module has been developed in collaboration with Thierry -- Coquand. open import Equality module Univalence-axiom.Isomorphism-is-equality.Monoid {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Bijection eq using (_↔_; Σ-≡,≡↔≡; ↑↔) open Derived-definitions-and-properties eq open import Equivalence eq as Eq using (_≃_) open import Function-universe eq hiding (id) open import H-level eq open import H-level.Closure eq open import Prelude hiding (id) open import Univalence-axiom eq -- Monoid laws (including the assumption that the carrier type is a -- set). Is-monoid : (C : Type) → (C → C → C) → C → Type Is-monoid C _∙_ id = -- C is a set. Is-set C × -- Left and right identity laws. (∀ x → (id ∙ x) ≡ x) × (∀ x → (x ∙ id) ≡ x) × -- Associativity. (∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z)) -- Monoids (on sets). Monoid : Type₁ Monoid = -- Carrier. Σ Type λ C → -- Binary operation. Σ (C → C → C) λ _∙_ → -- Identity. Σ C λ id → -- Laws. Is-monoid C _∙_ id -- The carrier type. Carrier : Monoid → Type Carrier M = proj₁ M -- The binary operation. op : (M : Monoid) → Carrier M → Carrier M → Carrier M op M = proj₁ (proj₂ M) -- The identity element. id : (M : Monoid) → Carrier M id M = proj₁ (proj₂ (proj₂ M)) -- The monoid laws. laws : (M : Monoid) → Is-monoid (Carrier M) (op M) (id M) laws M = proj₂ (proj₂ (proj₂ M)) -- Monoid morphisms. Is-homomorphism : (M₁ M₂ : Monoid) → (Carrier M₁ → Carrier M₂) → Type Is-homomorphism M₁ M₂ f = (∀ x y → f (op M₁ x y) ≡ op M₂ (f x) (f y)) × (f (id M₁) ≡ id M₂) -- Monoid isomorphisms. _≅_ : Monoid → Monoid → Type M₁ ≅ M₂ = Σ (Carrier M₁ ↔ Carrier M₂) λ f → Is-homomorphism M₁ M₂ (_↔_.to f) -- The monoid laws are propositional (assuming extensionality). laws-propositional : Extensionality (# 0) (# 0) → (M : Monoid) → Is-proposition (Is-monoid (Carrier M) (op M) (id M)) laws-propositional ext M = ×-closure 1 (H-level-propositional ext 2) (×-closure 1 (Π-closure ext 1 λ _ → is-set) (×-closure 1 (Π-closure ext 1 λ _ → is-set) (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → is-set))) where is-set = proj₁ (laws M) -- Monoid equality is isomorphic to equality of the carrier sets, -- binary operations and identity elements, suitably transported -- (assuming extensionality). equality-triple-lemma : Extensionality (# 0) (# 0) → (M₁ M₂ : Monoid) → M₁ ≡ M₂ ↔ Σ (Carrier M₁ ≡ Carrier M₂) λ C-eq → subst (λ C → C → C → C) C-eq (op M₁) ≡ op M₂ × subst (λ C → C) C-eq (id M₁) ≡ id M₂ equality-triple-lemma ext (C₁ , op₁ , id₁ , laws₁) (C₂ , op₂ , id₂ , laws₂) = ((C₁ , op₁ , id₁ , laws₁) ≡ (C₂ , op₂ , id₂ , laws₂)) ↔⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ bij ⟩ (((C₁ , op₁ , id₁) , laws₁) ≡ ((C₂ , op₂ , id₂) , laws₂)) ↝⟨ inverse $ ignore-propositional-component $ laws-propositional ext (C₂ , op₂ , id₂ , laws₂) ⟩ ((C₁ , op₁ , id₁) ≡ (C₂ , op₂ , id₂)) ↝⟨ inverse Σ-≡,≡↔≡ ⟩ (Σ (C₁ ≡ C₂) λ C-eq → subst (λ C → (C → C → C) × C) C-eq (op₁ , id₁) ≡ (op₂ , id₂)) ↝⟨ ∃-cong (λ _ → ≡⇒↝ _ $ cong (λ x → x ≡ _) $ push-subst-, (λ C → C → C → C) (λ C → C)) ⟩ (Σ (C₁ ≡ C₂) λ C-eq → (subst (λ C → C → C → C) C-eq op₁ , subst (λ C → C) C-eq id₁) ≡ (op₂ , id₂)) ↝⟨ ∃-cong (λ _ → inverse ≡×≡↔≡) ⟩□ (Σ (C₁ ≡ C₂) λ C-eq → subst (λ C → C → C → C) C-eq op₁ ≡ op₂ × subst (λ C → C) C-eq id₁ ≡ id₂) □ where bij = (Σ Type λ C → Σ (C → C → C) λ op → Σ C λ id → Is-monoid C op id) ↝⟨ ∃-cong (λ _ → Σ-assoc) ⟩ (Σ Type λ C → Σ ((C → C → C) × C) λ { (op , id) → Is-monoid C op id }) ↝⟨ Σ-assoc ⟩□ (Σ (Σ Type λ C → (C → C → C) × C) λ { (C , op , id) → Is-monoid C op id }) □ -- If two monoids are isomorphic, then they are equal (assuming -- univalence). isomorphic-equal : Univalence (# 0) → Univalence (# 1) → (M₁ M₂ : Monoid) → M₁ ≅ M₂ → M₁ ≡ M₂ isomorphic-equal univ univ₁ M₁ M₂ (bij , bij-op , bij-id) = goal where open _≃_ -- Our goal: goal : M₁ ≡ M₂ -- Extensionality follows from univalence. ext : Extensionality (# 0) (# 0) ext = dependent-extensionality univ₁ univ -- Hence the goal follows from monoids-equal-if, if we can prove -- three equalities. C-eq : Carrier M₁ ≡ Carrier M₂ op-eq : subst (λ A → A → A → A) C-eq (op M₁) ≡ op M₂ id-eq : subst (λ A → A) C-eq (id M₁) ≡ id M₂ goal = _↔_.from (equality-triple-lemma ext M₁ M₂) (C-eq , op-eq , id-eq) -- Our bijection can be converted into an equivalence. equiv : Carrier M₁ ≃ Carrier M₂ equiv = Eq.↔⇒≃ bij -- Hence the first equality follows directly from univalence. C-eq = ≃⇒≡ univ equiv -- For the second equality, let us first define a "cast" operator. cast₂ : {A B : Type} → A ≃ B → (A → A → A) → (B → B → B) cast₂ eq f = λ x y → to eq (f (from eq x) (from eq y)) -- The transport theorem implies that cast₂ equiv can be expressed -- using subst. cast₂-equiv-is-subst : ∀ f → cast₂ equiv f ≡ subst (λ A → A → A → A) C-eq f cast₂-equiv-is-subst f = transport-theorem (λ A → A → A → A) cast₂ refl univ equiv f -- The second equality op-eq follows from extensionality, -- cast₂-equiv-is-subst, and the fact that the bijection is a -- monoid homomorphism. op-eq = apply-ext ext λ x → apply-ext ext λ y → subst (λ A → A → A → A) C-eq (op M₁) x y ≡⟨ cong (λ f → f x y) $ sym $ cast₂-equiv-is-subst (op M₁) ⟩ to equiv (op M₁ (from equiv x) (from equiv y)) ≡⟨ bij-op (from equiv x) (from equiv y) ⟩ op M₂ (to equiv (from equiv x)) (to equiv (from equiv y)) ≡⟨ cong₂ (op M₂) (right-inverse-of equiv x) (right-inverse-of equiv y) ⟩∎ op M₂ x y ∎ -- The development above can be repeated for the identity -- elements. cast₀ : {A B : Type} → A ≃ B → A → B cast₀ eq x = to eq x cast₀-equiv-is-subst : ∀ x → cast₀ equiv x ≡ subst (λ A → A) C-eq x cast₀-equiv-is-subst x = transport-theorem (λ A → A) cast₀ refl univ equiv x id-eq = subst (λ A → A) C-eq (id M₁) ≡⟨ sym $ cast₀-equiv-is-subst (id M₁) ⟩ to equiv (id M₁) ≡⟨ bij-id ⟩∎ id M₂ ∎ -- Equality of monoids is in fact in bijective correspondence with -- isomorphism of monoids (assuming univalence). isomorphism-is-equality : Univalence (# 0) → Univalence (# 1) → (M₁ M₂ : Monoid) → (M₁ ≅ M₂) ↔ (M₁ ≡ M₂) isomorphism-is-equality univ univ₁ (C₁ , op₁ , id₁ , laws₁) (C₂ , op₂ , id₂ , laws₂) = (Σ (C₁ ↔ C₂) λ f → Is-homomorphism M₁ M₂ (_↔_.to f)) ↝⟨ Σ-cong (Eq.↔↔≃ ext C₁-set) (λ _ → _ □) ⟩ (Σ (C₁ ≃ C₂) λ C-eq → Is-homomorphism M₁ M₂ (_≃_.to C-eq)) ↝⟨ ∃-cong (λ C-eq → op-lemma C-eq ×-cong id-lemma C-eq) ⟩ (Σ (C₁ ≃ C₂) λ C-eq → subst (λ C → C → C → C) (≃⇒≡ univ C-eq) op₁ ≡ op₂ × subst (λ C → C) (≃⇒≡ univ C-eq) id₁ ≡ id₂) ↝⟨ inverse $ Σ-cong (≡≃≃ univ) (λ C-eq → ≡⇒↝ _ $ cong (λ eq → subst (λ C → C → C → C) eq op₁ ≡ op₂ × subst (λ C → C) eq id₁ ≡ id₂) $ sym $ _≃_.left-inverse-of (≡≃≃ univ) C-eq) ⟩ (Σ (C₁ ≡ C₂) λ C-eq → subst (λ C → C → C → C) C-eq op₁ ≡ op₂ × subst (λ C → C) C-eq id₁ ≡ id₂) ↝⟨ inverse $ equality-triple-lemma ext M₁ M₂ ⟩ ((C₁ , op₁ , id₁ , laws₁) ≡ (C₂ , op₂ , id₂ , laws₂)) □ where -- The two monoids. M₁ = (C₁ , op₁ , id₁ , laws₁) M₂ = (C₂ , op₂ , id₂ , laws₂) -- Extensionality follows from univalence. ext : Extensionality (# 0) (# 0) ext = dependent-extensionality univ₁ univ -- C₁ is a set. C₁-set : Is-set C₁ C₁-set = proj₁ laws₁ module _ (C-eq : C₁ ≃ C₂) where open _≃_ C-eq -- Two component lemmas. op-lemma : (∀ x y → to (op₁ x y) ≡ op₂ (to x) (to y)) ↔ subst (λ C → C → C → C) (≃⇒≡ univ C-eq) op₁ ≡ op₂ op-lemma = (∀ x y → to (op₁ x y) ≡ op₂ (to x) (to y)) ↔⟨ ∀-cong ext (λ _ → Eq.extensionality-isomorphism ext) ⟩ (∀ x → (λ y → to (op₁ x y)) ≡ (λ y → op₂ (to x) (to y))) ↝⟨ ∀-cong ext (λ _ → inverse $ ∘from≡↔≡∘to ext C-eq) ⟩ (∀ x → (λ y → to (op₁ x (from y))) ≡ (λ y → op₂ (to x) y)) ↔⟨ Eq.extensionality-isomorphism ext ⟩ ((λ x y → to (op₁ x (from y))) ≡ (λ x y → op₂ (to x) y)) ↝⟨ inverse $ ∘from≡↔≡∘to ext C-eq ⟩ ((λ x y → to (op₁ (from x) (from y))) ≡ (λ x y → op₂ x y)) ↝⟨ ≡⇒↝ _ $ cong (λ o → o ≡ op₂) $ transport-theorem (λ C → C → C → C) (λ eq f x y → _≃_.to eq (f (_≃_.from eq x) (_≃_.from eq y))) refl univ C-eq op₁ ⟩ (subst (λ C → C → C → C) (≃⇒≡ univ C-eq) op₁ ≡ op₂) □ id-lemma : (to id₁ ≡ id₂) ↔ (subst (λ C → C) (≃⇒≡ univ C-eq) id₁ ≡ id₂) id-lemma = (to id₁ ≡ id₂) ↝⟨ ≡⇒↝ _ $ cong (λ i → i ≡ id₂) $ transport-theorem (λ C → C) _≃_.to refl univ C-eq id₁ ⟩□ (subst (λ C → C) (≃⇒≡ univ C-eq) id₁ ≡ id₂) □ -- Equality of monoids is thus equal to equality (assuming -- univalence). isomorphism-is-equal-to-equality : Univalence (# 0) → Univalence (# 1) → (M₁ M₂ : Monoid) → ↑ _ (M₁ ≅ M₂) ≡ (M₁ ≡ M₂) isomorphism-is-equal-to-equality univ univ₁ M₁ M₂ = ≃⇒≡ univ₁ $ Eq.↔⇒≃ ( ↑ _ (M₁ ≅ M₂) ↝⟨ ↑↔ ⟩ (M₁ ≅ M₂) ↝⟨ isomorphism-is-equality univ univ₁ M₁ M₂ ⟩□ (M₁ ≡ M₂) □)
33.381703
136
0.485541
2198fdee3bb9b94e757ce7e62f9a346e1236e69e
15,214
agda
Agda
Cubical/Homotopy/Whitehead.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Homotopy/Whitehead.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Homotopy/Whitehead.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.Whitehead where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Pointed open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.HITs.Susp renaming (toSusp to σ) open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.Join open import Cubical.HITs.Wedge open import Cubical.HITs.SetTruncation open import Cubical.Homotopy.Group.Base open Iso open 3x3-span joinTo⋁ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} → join (typ A) (typ B) → (Susp (typ A) , north) ⋁ (Susp (typ B) , north) joinTo⋁ (inl x) = inr north joinTo⋁ (inr x) = inl north joinTo⋁ {A = A} {B = B} (push a b i) = ((λ i → inr (σ B b i)) ∙∙ sym (push tt) ∙∙ λ i → inl (σ A a i)) i -- Whitehead product (main definition) [_∣_] : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ} → (S₊∙ (suc n) →∙ X) → (S₊∙ (suc m) →∙ X) → S₊∙ (suc (n + m)) →∙ X fst ([_∣_] {X = X} {n = n} {m = m} f g) x = _∨→_ (f ∘∙ (inv (IsoSucSphereSusp n) , IsoSucSphereSusp∙ n)) (g ∘∙ (inv (IsoSucSphereSusp m) , IsoSucSphereSusp∙ m)) (joinTo⋁ {A = S₊∙ n} {B = S₊∙ m} (inv (IsoSphereJoin n m) x)) snd ([_∣_] {n = n} {m = m} f g) = cong (_∨→_ (f ∘∙ (inv (IsoSucSphereSusp n) , IsoSucSphereSusp∙ n)) (g ∘∙ (inv (IsoSucSphereSusp m) , IsoSucSphereSusp∙ m))) (cong (joinTo⋁ {A = S₊∙ n} {B = S₊∙ m}) (IsoSphereJoin⁻Pres∙ n m)) ∙ cong (fst g) (IsoSucSphereSusp∙ m) ∙ snd g -- For Sⁿ, Sᵐ with n, m ≥ 2, we can avoid some bureaucracy. We make -- a separate definition and prove it equivalent. [_∣_]-pre : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ} → (S₊∙ (suc (suc n)) →∙ X) → (S₊∙ (suc (suc m)) →∙ X) → join (typ (S₊∙ (suc n))) (typ (S₊∙ (suc m))) → fst X [_∣_]-pre {n = n} {m = m} f g x = _∨→_ f g (joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)} x) [_∣_]₂ : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ} → (S₊∙ (suc (suc n)) →∙ X) → (S₊∙ (suc (suc m)) →∙ X) → S₊∙ (suc ((suc n) + (suc m))) →∙ X fst ([_∣_]₂ {n = n} {m = m} f g) x = [ f ∣ g ]-pre (inv (IsoSphereJoin (suc n) (suc m)) x) snd ([_∣_]₂ {n = n} {m = m} f g) = cong ([ f ∣ g ]-pre) (IsoSphereJoin⁻Pres∙ (suc n) (suc m)) ∙ snd g []≡[]₂ : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ} → (f : (S₊∙ (suc (suc n)) →∙ X)) → (g : (S₊∙ (suc (suc m)) →∙ X)) → [ f ∣ g ] ≡ [ f ∣ g ]₂ []≡[]₂ {n = n} {m = m} f g = ΣPathP ( (λ i x → _∨→_ (∘∙-idˡ f i) (∘∙-idˡ g i) (joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)} (inv (IsoSphereJoin (suc n) (suc m)) x))) , (cong (cong (_∨→_ (f ∘∙ idfun∙ _) (g ∘∙ idfun∙ _)) (cong (joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)}) (IsoSphereJoin⁻Pres∙ (suc n) (suc m))) ∙_) (sym (lUnit (snd g))) ◁ λ j → (λ i → _∨→_ (∘∙-idˡ f j) (∘∙-idˡ g j) ( joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)} ((IsoSphereJoin⁻Pres∙ (suc n) (suc m)) i))) ∙ snd g)) -- Homotopy group version [_∣_]π' : ∀ {ℓ} {X : Pointed ℓ} {n m : ℕ} → π' (suc n) X → π' (suc m) X → π' (suc (n + m)) X [_∣_]π' = elim2 (λ _ _ → squash₂) λ f g → ∣ [ f ∣ g ] ∣₂ -- We prove that the function joinTo⋁ used in the definition of the whitehead -- product gives an equivalence between (Susp A × Susp B) and the -- appropriate cofibre of joinTo⋁ (last two theorems in the following -- module). module _ (A B : Type) (a₀ : A) (b₀ : B) where private W = joinTo⋁ {A = (A , a₀)} {B = (B , b₀)} A∨B = (Susp A , north) ⋁ (Susp B , north) σB = σ (B , b₀) σA = σ (A , a₀) cofibW = Pushout W λ _ → tt whitehead3x3 : 3x3-span A00 whitehead3x3 = Susp A A02 whitehead3x3 = B A04 whitehead3x3 = Unit A20 whitehead3x3 = B A22 whitehead3x3 = A × B A24 whitehead3x3 = A A40 whitehead3x3 = B A42 whitehead3x3 = B A44 whitehead3x3 = Unit f10 whitehead3x3 _ = south f12 whitehead3x3 = snd f14 whitehead3x3 _ = tt f30 whitehead3x3 = idfun B f32 whitehead3x3 = snd f34 whitehead3x3 _ = tt f01 whitehead3x3 _ = north f21 whitehead3x3 = snd f41 whitehead3x3 = idfun B f03 whitehead3x3 _ = tt f23 whitehead3x3 = fst f43 whitehead3x3 _ = tt H11 whitehead3x3 x = merid (fst x) H13 whitehead3x3 _ = refl H31 whitehead3x3 _ = refl H33 whitehead3x3 _ = refl A0□→A∨B : A0□ whitehead3x3 → A∨B A0□→A∨B (inl x) = inl x A0□→A∨B (inr x) = inr north A0□→A∨B (push a i) = (push tt ∙ λ i → inr (σB a (~ i))) i A∨B→A0□ : A∨B → A0□ whitehead3x3 A∨B→A0□ (inl x) = inl x A∨B→A0□ (inr north) = inl north A∨B→A0□ (inr south) = inl north A∨B→A0□ (inr (merid b i)) = (push b₀ ∙ sym (push b)) i A∨B→A0□ (push a i) = inl north Iso-A0□-⋁ : Iso (A0□ whitehead3x3) A∨B fun Iso-A0□-⋁ = A0□→A∨B inv Iso-A0□-⋁ = A∨B→A0□ rightInv Iso-A0□-⋁ (inl x) = refl rightInv Iso-A0□-⋁ (inr north) = push tt rightInv Iso-A0□-⋁ (inr south) = push tt ∙ λ i → inr (merid b₀ i) rightInv Iso-A0□-⋁ (inr (merid a i)) j = lem j i where lem : PathP (λ i → push tt i ≡ (push tt ∙ (λ i → inr (merid b₀ i))) i) (cong A0□→A∨B (cong A∨B→A0□ λ i → inr (merid a i))) (λ i → inr (merid a i)) lem = (cong-∙ A0□→A∨B (push b₀) (sym (push a)) ∙ cong₂ _∙_ (cong (push tt ∙_) (λ j i → inr (rCancel (merid b₀) j (~ i))) ∙ sym (rUnit (push tt))) (symDistr (push tt) (λ i → inr (σB a (~ i))))) ◁ λ i j → hcomp (λ k → λ { (i = i0) → compPath-filler' (push tt) (compPath-filler (λ i → inr (σB a i)) (sym (push tt)) k) k j ; (i = i1) → inr (merid a j) ; (j = i0) → push tt (i ∨ ~ k) ; (j = i1) → compPath-filler' (push tt) (λ i → inr (merid b₀ i)) k i}) (inr (compPath-filler (merid a) (sym (merid b₀)) (~ i) j)) rightInv Iso-A0□-⋁ (push a i) j = push tt (i ∧ j) leftInv Iso-A0□-⋁ (inl x) = refl leftInv Iso-A0□-⋁ (inr tt) = push b₀ leftInv Iso-A0□-⋁ (push b i) j = help j i where help : PathP (λ i → inl north ≡ push b₀ i) (cong A∨B→A0□ (cong A0□→A∨B (push b))) (push b) help = (cong-∙ A∨B→A0□ (push tt) (λ i → inr (σB b (~ i))) ∙ (λ i → lUnit (sym (cong-∙ (A∨B→A0□ ∘ inr) (merid b) (sym (merid b₀)) i)) (~ i)) ∙ cong sym (cong ((push b₀ ∙ sym (push b)) ∙_) (cong sym (rCancel (push b₀)))) ∙ cong sym (sym (rUnit (push b₀ ∙ sym (push b))))) ◁ λ i j → compPath-filler' (push b₀) (sym (push b)) (~ i) (~ j) Iso-A2□-join : Iso (A2□ whitehead3x3) (join A B) fun Iso-A2□-join (inl x) = inr x fun Iso-A2□-join (inr x) = inl x fun Iso-A2□-join (push (a , b) i) = push a b (~ i) inv Iso-A2□-join (inl x) = inr x inv Iso-A2□-join (inr x) = inl x inv Iso-A2□-join (push a b i) = push (a , b) (~ i) rightInv Iso-A2□-join (inl x) = refl rightInv Iso-A2□-join (inr x) = refl rightInv Iso-A2□-join (push a b i) = refl leftInv Iso-A2□-join (inl x) = refl leftInv Iso-A2□-join (inr x) = refl leftInv Iso-A2□-join (push a i) = refl isContrA4□ : isContr (A4□ whitehead3x3) fst isContrA4□ = inr tt snd isContrA4□ (inl x) = sym (push x) snd isContrA4□ (inr x) = refl snd isContrA4□ (push a i) j = push a (i ∨ ~ j) A4□≃Unit : A4□ whitehead3x3 ≃ Unit A4□≃Unit = isContr→≃Unit isContrA4□ Iso-A□0-Susp : Iso (A□0 whitehead3x3) (Susp A) fun Iso-A□0-Susp (inl x) = x fun Iso-A□0-Susp (inr x) = north fun Iso-A□0-Susp (push a i) = merid a₀ (~ i) inv Iso-A□0-Susp x = inl x rightInv Iso-A□0-Susp x = refl leftInv Iso-A□0-Susp (inl x) = refl leftInv Iso-A□0-Susp (inr x) = (λ i → inl (merid a₀ i)) ∙ push x leftInv Iso-A□0-Susp (push a i) j = hcomp (λ k → λ { (i = i0) → inl (merid a₀ (k ∨ j)) ; (i = i1) → compPath-filler (λ i₁ → inl (merid a₀ i₁)) (push (idfun B a)) k j ; (j = i0) → inl (merid a₀ (~ i ∧ k)) ; (j = i1) → push a (i ∧ k)}) (inl (merid a₀ j)) Iso-A□2-Susp× : Iso (A□2 whitehead3x3) (Susp A × B) fun Iso-A□2-Susp× (inl x) = north , x fun Iso-A□2-Susp× (inr x) = south , x fun Iso-A□2-Susp× (push a i) = merid (fst a) i , (snd a) inv Iso-A□2-Susp× (north , y) = inl y inv Iso-A□2-Susp× (south , y) = inr y inv Iso-A□2-Susp× (merid a i , y) = push (a , y) i rightInv Iso-A□2-Susp× (north , snd₁) = refl rightInv Iso-A□2-Susp× (south , snd₁) = refl rightInv Iso-A□2-Susp× (merid a i , snd₁) = refl leftInv Iso-A□2-Susp× (inl x) = refl leftInv Iso-A□2-Susp× (inr x) = refl leftInv Iso-A□2-Susp× (push a i) = refl Iso-A□4-Susp : Iso (A□4 whitehead3x3) (Susp A) fun Iso-A□4-Susp (inl x) = north fun Iso-A□4-Susp (inr x) = south fun Iso-A□4-Susp (push a i) = merid a i inv Iso-A□4-Susp north = inl tt inv Iso-A□4-Susp south = inr tt inv Iso-A□4-Susp (merid a i) = push a i rightInv Iso-A□4-Susp north = refl rightInv Iso-A□4-Susp south = refl rightInv Iso-A□4-Susp (merid a i) = refl leftInv Iso-A□4-Susp (inl x) = refl leftInv Iso-A□4-Susp (inr x) = refl leftInv Iso-A□4-Susp (push a i) = refl Iso-PushSusp×-Susp×Susp : Iso (Pushout {A = Susp A × B} fst fst) (Susp A × Susp B) Iso-PushSusp×-Susp×Susp = theIso where F : Pushout {A = Susp A × B} fst fst → Susp A × Susp B F (inl x) = x , north F (inr x) = x , north F (push (x , b) i) = x , σB b i G : Susp A × Susp B → Pushout {A = Susp A × B} fst fst G (a , north) = inl a G (a , south) = inr a G (a , merid b i) = push (a , b) i retr : retract F G retr (inl x) = refl retr (inr x) = push (x , b₀) retr (push (a , b) i) j = help j i where help : PathP (λ i → Path (Pushout fst fst) (inl a) (push (a , b₀) i)) (cong G (λ i → a , σB b i)) (push (a , b)) help = cong-∙ (λ x → G (a , x)) (merid b) (sym (merid b₀)) ◁ λ i j → compPath-filler (push (a , b)) (sym (push (a , b₀))) (~ i) j theIso : Iso (Pushout fst fst) (Susp A × Susp B) fun theIso = F inv theIso = G rightInv theIso (a , north) = refl rightInv theIso (a , south) = ΣPathP (refl , merid b₀) rightInv theIso (a , merid b i) j = a , compPath-filler (merid b) (sym (merid b₀)) (~ j) i leftInv theIso = retr Iso-A□○-PushSusp× : Iso (A□○ whitehead3x3) (Pushout {A = Susp A × B} fst fst) Iso-A□○-PushSusp× = pushoutIso _ _ fst fst (isoToEquiv Iso-A□2-Susp×) (isoToEquiv Iso-A□0-Susp) (isoToEquiv Iso-A□4-Susp) (funExt (λ { (inl x) → refl ; (inr x) → merid a₀ ; (push a i) j → help₁ a j i})) (funExt λ { (inl x) → refl ; (inr x) → refl ; (push a i) j → fun Iso-A□4-Susp (rUnit (push (fst a)) (~ j) i)}) where help₁ : (a : A × B) → PathP (λ i → north ≡ merid a₀ i) (cong (fun Iso-A□0-Susp) (cong (f□1 whitehead3x3) (push a))) (merid (fst a)) help₁ a = (cong-∙∙ (fun Iso-A□0-Susp) (λ i → inl (merid (fst a) i)) (push (snd a)) refl) ◁ (λ i j → hcomp (λ k → λ {(i = i1) → merid (fst a) (j ∨ ~ k) ; (j = i0) → merid (fst a) (~ k) ; (j = i1) → merid a₀ i}) (merid a₀ (i ∨ ~ j))) Iso-A□○-Susp×Susp : Iso (A□○ whitehead3x3) (Susp A × Susp B) Iso-A□○-Susp×Susp = compIso Iso-A□○-PushSusp× Iso-PushSusp×-Susp×Susp Iso-A○□-cofibW : Iso (A○□ whitehead3x3) cofibW Iso-A○□-cofibW = pushoutIso _ _ W (λ _ → tt) (isoToEquiv Iso-A2□-join) (isoToEquiv Iso-A0□-⋁) A4□≃Unit (funExt lem) λ _ _ → tt where lem : (x : A2□ whitehead3x3) → A0□→A∨B (f1□ whitehead3x3 x) ≡ W (fun Iso-A2□-join x) lem (inl x) = (λ i → inl (merid a₀ (~ i))) lem (inr x) = refl lem (push (a , b) i) j = help j i where help : PathP (λ i → Path (Pushout (λ _ → north) (λ _ → north)) ((inl (merid a₀ (~ i)))) (inr north)) (cong A0□→A∨B (cong (f1□ whitehead3x3) (push (a , b)))) (cong W (cong (fun Iso-A2□-join) (push (a , b)))) help = (cong-∙∙ A0□→A∨B (λ i → inl (merid a (~ i))) (push b) refl ∙ λ j → (λ i₂ → inl (merid a (~ i₂))) ∙∙ compPath-filler (push tt) (λ i → inr (σB b (~ i))) (~ j) ∙∙ λ i → inr (σB b (~ i ∧ j))) ◁ (λ j → (λ i → inl (sym (compPath-filler (merid a) (sym (merid a₀)) j) i)) ∙∙ push tt ∙∙ λ i → inr (σB b (~ i))) Iso₁-Susp×Susp-cofibW : Iso (Susp A × Susp B) cofibW Iso₁-Susp×Susp-cofibW = compIso (invIso Iso-A□○-Susp×Susp) (compIso (3x3-Iso whitehead3x3) Iso-A○□-cofibW) -- Main iso Iso-Susp×Susp-cofibJoinTo⋁ : Iso (Susp A × Susp B) cofibW Iso-Susp×Susp-cofibJoinTo⋁ = compIso (Σ-cong-iso-snd (λ _ → invSuspIso)) Iso₁-Susp×Susp-cofibW -- The induced function A ∨ B → Susp A × Susp B satisfies -- the following identity Susp×Susp→cofibW≡ : Path (A∨B → Susp A × Susp B) (Iso.inv Iso-Susp×Susp-cofibJoinTo⋁ ∘ inl) ⋁↪ Susp×Susp→cofibW≡ = funExt λ { (inl x) → ΣPathP (refl , (sym (merid b₀))) ; (inr north) → ΣPathP (refl , (sym (merid b₀))) ; (inr south) → refl ; (inr (merid a i)) j → lem₂ a j i ; (push a i) j → north , (merid b₀ (~ j))} where f₁ = fun Iso-PushSusp×-Susp×Susp f₂ = fun Iso-A□○-PushSusp× f₃ = backward-l whitehead3x3 f₄ = fun (Σ-cong-iso-snd (λ _ → invSuspIso)) lem : (b : B) → cong (f₁ ∘ f₂ ∘ f₃) (push b) ≡ (λ i → north , σB b i) lem b = cong (cong f₁) (sym (rUnit (push (north , b)))) lem₂ : (a : B) → PathP (λ i → (north , merid b₀ (~ i)) ≡ (north , south)) (cong (f₄ ∘ f₁ ∘ f₂ ∘ f₃ ∘ A∨B→A0□ ∘ inr) (merid a)) λ i → north , merid a i lem₂ a = cong (cong f₄) (cong-∙ (f₁ ∘ f₂ ∘ f₃) (push b₀) (sym (push a)) ∙∙ cong₂ _∙_ (lem b₀ ∙ (λ j i → north , rCancel (merid b₀) j i)) (cong sym (lem a)) ∙∙ sym (lUnit (λ i₁ → north , σB a (~ i₁)))) ∙ (λ i j → north , cong-∙ invSusp (merid a) (sym (merid b₀)) i (~ j) ) ◁ λ i j → north , compPath-filler (sym (merid a)) (merid b₀) (~ i) (~ j)
37.017032
80
0.491521
37ee4f8bb3b99af8b9ab22b6065cf1350ca3d457
1,356
agda
Agda
Cubical/Relation/Nullary/HLevels.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Nullary/HLevels.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Relation/Nullary/HLevels.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Nullary.HLevels where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Functions.Fixpoint open import Cubical.Relation.Nullary private variable ℓ : Level A : Type ℓ isPropPopulated : isProp (Populated A) isPropPopulated = isPropΠ λ x → 2-Constant→isPropFixpoint (x .fst) (x .snd) isPropHSeparated : isProp (HSeparated A) isPropHSeparated f g i x y a = HSeparated→isSet f x y (f x y a) (g x y a) i isPropCollapsible≡ : isProp (Collapsible≡ A) isPropCollapsible≡ {A = A} f = (isPropΠ2 λ x y → isPropCollapsiblePointwise) f where sA : isSet A sA = Collapsible≡→isSet f gA : isGroupoid A gA = isSet→isGroupoid sA isPropCollapsiblePointwise : ∀ {x y} → isProp (Collapsible (x ≡ y)) isPropCollapsiblePointwise {x} {y} (a , ca) (b , cb) = λ i → endoFunction i , endoFunctionIsConstant i where endoFunction : a ≡ b endoFunction = funExt λ p → sA _ _ (a p) (b p) isProp2-Constant : (k : I) → isProp (2-Constant (endoFunction k)) isProp2-Constant k = isPropΠ2 λ r s → gA x y (endoFunction k r) (endoFunction k s) endoFunctionIsConstant : PathP (λ i → 2-Constant (endoFunction i)) ca cb endoFunctionIsConstant = isProp→PathP isProp2-Constant ca cb
37.666667
110
0.716814
1b615ecba2d0518d50fbd642073e9440627a16e2
1,191
agda
Agda
agda-stdlib-0.9/src/Data/W/Indexed.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/W/Indexed.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/W/Indexed.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed W-types aka Petersson-Synek trees ------------------------------------------------------------------------ module Data.W.Indexed where open import Level open import Data.Container.Indexed.Core open import Data.Product open import Relation.Unary -- The family of indexed W-types. module _ {ℓ c r} {O : Set ℓ} (C : Container O O c r) where open Container C data W (o : O) : Set (ℓ ⊔ c ⊔ r) where sup : ⟦ C ⟧ W o → W o -- Projections. head : W ⊆ Command head (sup (c , _)) = c tail : ∀ {o} (w : W o) (r : Response (head w)) → W (next (head w) r) tail (sup (_ , k)) r = k r -- Induction, (primitive) recursion and iteration. ind : ∀ {ℓ} (P : Pred (Σ O W) ℓ) → (∀ {o} (cs : ⟦ C ⟧ W o) → □ C P (o , cs) → P (o , sup cs)) → ∀ {o} (w : W o) → P (o , w) ind P φ (sup (c , k)) = φ (c , k) (λ r → ind P φ (k r)) rec : ∀ {ℓ} {X : Pred O ℓ} → (⟦ C ⟧ (W ∩ X) ⊆ X) → W ⊆ X rec φ (sup (c , k))= φ (c , λ r → (k r , rec φ (k r))) iter : ∀ {ℓ} {X : Pred O ℓ} → (⟦ C ⟧ X ⊆ X) → W ⊆ X iter φ (sup (c , k))= φ (c , λ r → iter φ (k r))
27.697674
72
0.439966
06ce802cafd4077083cef06084dd7c463ea48fd2
963
agda
Agda
test/Succeed/Issue1796.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1796.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1796.agda
redfish64/autonomic-agda
c0ae7d20728b15d7da4efff6ffadae6fe4590016
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2016-01-23, issue 1796 -- Need to run size constraint solver before with-abstraction open import Common.Size postulate anything : ∀{A : Set} → A mutual record IO i : Set where coinductive field force : ∀{j : Size< i} → IO' j data IO' i : Set where cons : IO i → IO' i mutual record All i (s : IO ∞) : Set where field force : ∀{j : Size< i} → All' j (IO.force s) data All' i : (s : IO' ∞) → Set where always : ∀ e → All' i (cons e) runIO : ∀{i} (s : IO ∞) → IO i IO.force (runIO s) with IO.force s ... | cons e = cons e -- With abstraction fails when _ in IO.force s {_} -- has not been solved to ∞. test : ∀ i s → All i (runIO s) All.force (test i s) with IO.force s -- works with {∞} added All.force (test i s) | cons e = always e -- cons e != IO.force (runIO {∞} s) {∞} | IO.force s of type IO' ∞ -- when checking that the expression always e has type -- All' .j (IO.force (runIO {∞} s) {∞} | IO.force s)
24.075
66
0.590862
fd8cf7913d3e757fdbb6ac99ad68ce062e49675c
176
agda
Agda
Multidimensional/Data/Extra/Nat/Base.agda
wrrnhttn/agda-cubical-multidimensional
55709dd950e319c4a105ace33ddaf8b955354add
[ "MIT" ]
null
null
null
Multidimensional/Data/Extra/Nat/Base.agda
wrrnhttn/agda-cubical-multidimensional
55709dd950e319c4a105ace33ddaf8b955354add
[ "MIT" ]
4
2019-06-19T20:40:07.000Z
2019-07-02T16:24:01.000Z
Multidimensional/Data/Extra/Nat/Base.agda
wrrnhttn/agda-cubical-multidimensional
55709dd950e319c4a105ace33ddaf8b955354add
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-exact-split --safe #-} module Multidimensional.Data.Extra.Nat.Base where open import Cubical.Data.Nat sucn : (n : ℕ) → (ℕ → ℕ) sucn n = iter n suc
22
49
0.670455
1dbdaea0b8d485ac67631dde40b76b12e98c95a2
4,860
agda
Agda
src/Algebra/Theorems.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
src/Algebra/Theorems.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
src/Algebra/Theorems.agda
asr/alga
01f5f9f53ea81f692215300744aa77e26d8bf332
[ "MIT" ]
null
null
null
module Algebra.Theorems where open import Algebra open import Reasoning +pre-idempotence : ∀ {A} {x : Graph A} -> x + x + ε ≡ x +pre-idempotence {_} {x} = begin (x + x) + ε ≡⟨ L (L (symmetry *right-identity)) ⟩ (x * ε + x) + ε ≡⟨ L (R (symmetry *right-identity)) ⟩ (x * ε + x * ε) + ε ≡⟨ R (symmetry *right-identity) ⟩ (x * ε + x * ε) + ε * ε ≡⟨ symmetry decomposition ⟩ (x * ε) * ε ≡⟨ *right-identity ⟩ x * ε ≡⟨ *right-identity ⟩ x ∎ +identity : ∀ {A} {x : Graph A} -> x + ε ≡ x +identity {_} {x} = begin x + ε ≡⟨ symmetry +pre-idempotence ⟩ ((x + ε) + (x + ε)) + ε ≡⟨ L +associativity ⟩ (((x + ε) + x) + ε) + ε ≡⟨ L (L (symmetry +associativity)) ⟩ ((x + (ε + x)) + ε) + ε ≡⟨ L (L (R +commutativity)) ⟩ ((x + (x + ε)) + ε) + ε ≡⟨ L (L +associativity) ⟩ (((x + x) + ε) + ε) + ε ≡⟨ L (symmetry +associativity) ⟩ ((x + x) + (ε + ε)) + ε ≡⟨ symmetry +associativity ⟩ (x + x) + ((ε + ε) + ε) ≡⟨ R +pre-idempotence ⟩ (x + x) + ε ≡⟨ +pre-idempotence ⟩ x ∎ +idempotence : ∀ {A} {x : Graph A} -> x + x ≡ x +idempotence = transitivity (symmetry +identity) +pre-idempotence saturation : ∀ {A} {x : Graph A} -> x * x * x ≡ x * x saturation {_} {x} = begin (x * x) * x ≡⟨ decomposition ⟩ (x * x + x * x) + x * x ≡⟨ L +idempotence ⟩ x * x + x * x ≡⟨ +idempotence ⟩ x * x ∎ absorption : ∀ {A} {x y : Graph A} -> x * y + x + y ≡ x * y absorption {_} {x} {y} = begin (x * y + x) + y ≡⟨ L (R (symmetry *right-identity)) ⟩ (x * y + x * ε) + y ≡⟨ R (symmetry *right-identity) ⟩ (x * y + x * ε) + y * ε ≡⟨ symmetry decomposition ⟩ (x * y) * ε ≡⟨ *right-identity ⟩ x * y ∎ -- Subgraph relation ⊆reflexivity : ∀ {A} {x : Graph A} -> x ⊆ x ⊆reflexivity = +idempotence ⊆antisymmetry : ∀ {A} {x y : Graph A} -> x ⊆ y -> y ⊆ x -> x ≡ y ⊆antisymmetry p q = symmetry q -- x = y + x >> +commutativity -- y + x = x + y >> p -- x + y = y ⊆transitivity : ∀ {A} {x y z : Graph A} -> x ⊆ y -> y ⊆ z -> x ⊆ z ⊆transitivity p q = symmetry (symmetry q -- z = y + z >> L (symmetry p) -- y + z = (x + y) + z >> symmetry +associativity -- (x + y) + z = x + (y + z) >> R q) -- x + (y + z) = x + z ⊆least-element : ∀ {A} {x : Graph A} -> ε ⊆ x ⊆least-element = +commutativity >> +identity ⊆overlay : ∀ {A} {x y : Graph A} -> x ⊆ (x + y) ⊆overlay = +associativity >> L +idempotence ⊆connect : ∀ {A} {x y : Graph A} -> (x + y) ⊆ (x * y) ⊆connect = +commutativity >> +associativity >> absorption ⊆left-overlay-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (x + z) ⊆ (y + z) ⊆left-overlay-monotony {_} {x} {y} {z} p = begin (x + z) + (y + z) ≡⟨ symmetry +associativity ⟩ x + (z + (y + z)) ≡⟨ R +commutativity ⟩ x + ((y + z) + z) ≡⟨ R (symmetry +associativity) ⟩ x + (y + (z + z)) ≡⟨ R (R +idempotence) ⟩ x + (y + z) ≡⟨ +associativity ⟩ (x + y) + z ≡⟨ L p ⟩ y + z ∎ ⊆right-overlay-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (z + x) ⊆ (z + y) ⊆right-overlay-monotony {_} {x} {y} {z} p = begin (z + x) + (z + y) ≡⟨ +associativity ⟩ ((z + x) + z) + y ≡⟨ L +commutativity ⟩ (z + (z + x)) + y ≡⟨ L +associativity ⟩ ((z + z) + x) + y ≡⟨ L (L +idempotence) ⟩ (z + x) + y ≡⟨ symmetry +associativity ⟩ z + (x + y) ≡⟨ R p ⟩ z + y ∎ ⊆left-connect-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (x * z) ⊆ (y * z) ⊆left-connect-monotony {_} {x} {y} {z} p = begin (x * z) + (y * z) ≡⟨ symmetry right-distributivity ⟩ (x + y) * z ≡⟨ L p ⟩ y * z ∎ ⊆right-connect-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (z * x) ⊆ (z * y) ⊆right-connect-monotony {_} {x} {y} {z} p = begin (z * x) + (z * y) ≡⟨ symmetry left-distributivity ⟩ z * (x + y) ≡⟨ R p ⟩ z * y ∎ ⊆left-monotony : ∀ {A} {op : BinaryOperator} {x y z : Graph A} -> x ⊆ y -> apply op x z ⊆ apply op y z ⊆left-monotony {_} {+op} {x} {y} {z} p = ⊆left-overlay-monotony p ⊆left-monotony {_} {*op} {x} {y} {z} p = ⊆left-connect-monotony p ⊆right-monotony : ∀ {A} {op : BinaryOperator} {x y z : Graph A} -> x ⊆ y -> apply op z x ⊆ apply op z y ⊆right-monotony {_} {+op} {x} {y} {z} p = ⊆right-overlay-monotony p ⊆right-monotony {_} {*op} {x} {y} {z} p = ⊆right-connect-monotony p
38.267717
103
0.417284
191899c2d1a8f44bb8fb4671babae43bb7529447
627
agda
Agda
test/Succeed/Issue3211.agda
alhassy/agda
6043e77e4a72518711f5f808fb4eb593cbf0bb7c
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue3211.agda
alhassy/agda
6043e77e4a72518711f5f808fb4eb593cbf0bb7c
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue3211.agda
alhassy/agda
6043e77e4a72518711f5f808fb4eb593cbf0bb7c
[ "BSD-3-Clause" ]
null
null
null
-- 2018-09-05, reported by Andreas Abel -- The new type-directed rewriting was using the wrong type for -- constructors of parametrized datatypes. {-# OPTIONS --rewriting #-} module _ (Form : Set) where open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} data Cxt : Set where _∙_ : (Γ : Cxt) (A : Form) → Cxt data _≤_ : (Γ Δ : Cxt) → Set where id≤ : ∀{Γ} → Γ ≤ Γ lift : ∀{A Γ Δ} (τ : Γ ≤ Δ) → (Γ ∙ A) ≤ (Δ ∙ A) postulate lift-id≤ : ∀{Γ A} → lift id≤ ≡ id≤ {Γ ∙ A} {-# REWRITE lift-id≤ #-} _•_ : ∀{Γ Δ Φ} (τ : Γ ≤ Δ) (σ : Δ ≤ Φ) → Γ ≤ Φ id≤ • σ = σ lift τ • id≤ = lift τ lift τ • lift σ = lift (τ • σ)
22.392857
63
0.551834
310dff09c69121a8929557ecdbb3d472c1e5fa27
119
agda
Agda
test/Fail/UnequalSorts.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/UnequalSorts.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/UnequalSorts.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module UnequalSorts where data One : Set where one : One data One' : Set1 where one' : One' err : One err = one'
11.9
34
0.655462
0ddfa2177f55a154962e3a8da3fb1530578fac88
224
agda
Agda
test/fail/NoTerminationCheck3.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/NoTerminationCheck3.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/NoTerminationCheck3.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
-- 2012-03-08 Andreas module NoTerminationCheck3 where data Bool : Set where true false : Bool f : Bool -> Bool f true = true {-# NO_TERMINATION_CHECK #-} f false = false -- error: cannot place pragma inbetween clauses
17.230769
47
0.71875
365b4fd1f3866b3e9c144e9d869753d4b4e61bd8
272
agda
Agda
src/data/lib/prim/Agda/Builtin/Word/Properties.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
src/data/lib/prim/Agda/Builtin/Word/Properties.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
src/data/lib/prim/Agda/Builtin/Word/Properties.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Word.Properties where open import Agda.Builtin.Word open import Agda.Builtin.Equality primitive primWord64ToNatInjective : ∀ a b → primWord64ToNat a ≡ primWord64ToNat b → a ≡ b
24.727273
82
0.746324
d1083a00739c6f6e4a02b4ac8029fc9f3e629716
105
agda
Agda
Both.agda
brunoczim/ual
ea0260e1a0612ba581e4283dfb187f531a944dfd
[ "MIT" ]
null
null
null
Both.agda
brunoczim/ual
ea0260e1a0612ba581e4283dfb187f531a944dfd
[ "MIT" ]
null
null
null
Both.agda
brunoczim/ual
ea0260e1a0612ba581e4283dfb187f531a944dfd
[ "MIT" ]
null
null
null
module Ual.Both where infix 10 _∧_ record _∧_ (A B : Set) : Set where field andL : A andR : B
13.125
34
0.6
19dee97ed338800ee5c360a55418773c431cf8d5
448
agda
Agda
test/interaction/Issue3264.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue3264.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue3264.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2018-10-15, issue #3264 reported by Guillaume Brunerie -- Refine should not say "cannot refine" just because of a termination error. f : Set → Set f A = {!f!} -- C-c C-r -- EXPECTED ANSWER: -- -- ?1 : Set -- ———— Errors ———————————————————————————————————————————————— -- Termination checking failed for the following functions: -- f -- Problematic calls: -- f (?1 (A = A)) -- when checking that the expression f ? has type Set
26.352941
77
0.578125
43dca3ea0c157c367b34167bc62f23f00705ed6e
11,332
agda
Agda
Cubical/Foundations/HLevels.agda
oisdk/cubical
a01973ef7264f9454a40697313a2073c51a6b77a
[ "MIT" ]
null
null
null
Cubical/Foundations/HLevels.agda
oisdk/cubical
a01973ef7264f9454a40697313a2073c51a6b77a
[ "MIT" ]
null
null
null
Cubical/Foundations/HLevels.agda
oisdk/cubical
a01973ef7264f9454a40697313a2073c51a6b77a
[ "MIT" ]
null
null
null
{- Basic theory about h-levels/n-types: - Basic properties of isContr, isProp and isSet (definitions are in Prelude) - Hedberg's theorem can be found in Cubical/Relation/Nullary/DecidableEq -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.HLevels where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.FunExtEquiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Foundations.HAEquiv using (congEquiv) open import Cubical.Foundations.Univalence using (ua; univalence) open import Cubical.Data.Sigma using (ΣPathP; sigmaPath→pathSigma; pathSigma≡sigmaPath; _Σ≡T_) open import Cubical.Data.Nat.Base using (ℕ; zero; suc; _+_) private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ x y : A n : ℕ -- uses an inlined version of +-comm to avoid cyclic imports from using Cubical.Data.Nat.Properties private +-zero : ∀ m → m + 0 ≡ m +-zero zero = refl +-zero (suc m) = cong suc (+-zero m) +-suc : ∀ m n → m + suc n ≡ suc (m + n) +-suc zero n = refl +-suc (suc m) n = cong suc (+-suc m n) +-comm : ∀ m n → m + n ≡ n + m +-comm m zero = +-zero m +-comm m (suc n) = (+-suc m n) ∙ (cong suc (+-comm m n)) hProp : ∀ ℓ → Type (ℓ-suc ℓ) hProp ℓ = Σ (Type ℓ) isProp isOfHLevel : ℕ → Type ℓ → Type ℓ isOfHLevel 0 A = isContr A isOfHLevel 1 A = isProp A isOfHLevel (suc (suc n)) A = (x y : A) → isOfHLevel (suc n) (x ≡ y) HLevel : ∀ ℓ → ℕ → Type (ℓ-suc ℓ) HLevel ℓ n = Σ[ A ∈ Type ℓ ] (isOfHLevel n A) inhProp→isContr : A → isProp A → isContr A inhProp→isContr x h = x , h x isContrPartial→isContr : ∀ {ℓ} {A : Type ℓ} → (extend : ∀ φ → Partial φ A → A) → (∀ u → u ≡ (extend i1 λ { _ → u})) → isContr A isContrPartial→isContr {A = A} extend law = ex , λ y → law ex ∙ (λ i → Aux.v y i) ∙ sym (law y) where ex = extend i0 empty module Aux (y : A) (i : I) where φ = ~ i ∨ i u : Partial φ A u = λ { (i = i0) → ex ; (i = i1) → y } v = extend φ u -- Dependent h-level over a type isOfHLevelDep : ℕ → {A : Type ℓ} (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') isOfHLevelDep 0 {A = A} B = {a : A} → Σ[ b ∈ B a ] ({a' : A} (b' : B a') (p : a ≡ a') → PathP (λ i → B (p i)) b b') isOfHLevelDep 1 {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) (p : a0 ≡ a1) → PathP (λ i → B (p i)) b0 b1 isOfHLevelDep (suc (suc n)) {A = A} B = {a0 a1 : A} (b0 : B a0) (b1 : B a1) → isOfHLevelDep (suc n) {A = a0 ≡ a1} (λ p → PathP (λ i → B (p i)) b0 b1) isOfHLevel→isOfHLevelDep : (n : ℕ) → {A : Type ℓ} {B : A → Type ℓ'} (h : (a : A) → isOfHLevel n (B a)) → isOfHLevelDep n {A = A} B isOfHLevel→isOfHLevelDep 0 h {a} = (h a .fst , λ b' p → isProp→PathP (λ i → isContr→isProp (h (p i))) (h a .fst) b') isOfHLevel→isOfHLevelDep 1 h = λ b0 b1 p → isProp→PathP (λ i → h (p i)) b0 b1 isOfHLevel→isOfHLevelDep (suc (suc n)) {A = A} {B} h {a0} {a1} b0 b1 = isOfHLevel→isOfHLevelDep (suc n) (λ p → helper a1 p b1) where helper : (a1 : A) (p : a0 ≡ a1) (b1 : B a1) → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1) helper a1 p b1 = J (λ a1 p → ∀ b1 → isOfHLevel (suc n) (PathP (λ i → B (p i)) b0 b1)) (λ _ → h _ _ _) p b1 -- Fillers for cubes from h-level isSet→isSet' : isSet A → isSet' A isSet→isSet' {A = A} Aset a₀₋ a₁₋ a₋₀ a₋₁ = transport⁻ (PathP≡Path (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋) (Aset _ _ _ _) isSet'→isSet : isSet' A → isSet A isSet'→isSet {A = A} Aset' x y p q = Aset' p q refl refl isGroupoid→isGroupoid' : {A : Type ℓ} → isGroupoid A → isGroupoid' A isGroupoid→isGroupoid' {A = A} Agpd a₀₋₋ a₁₋₋ a₋₀₋ a₋₁₋ a₋₋₀ a₋₋₁ = transport⁻ (PathP≡Path (λ i → Square (a₋₀₋ i) (a₋₁₋ i) (a₋₋₀ i) (a₋₋₁ i)) a₀₋₋ a₁₋₋) (isGroupoid→isPropSquare _ _ _ _ _ _) where isGroupoid→isPropSquare : {a₀₀ a₀₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) {a₁₀ a₁₁ : A} (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → isProp (Square a₀₋ a₁₋ a₋₀ a₋₁) isGroupoid→isPropSquare a₀₋ a₁₋ a₋₀ a₋₁ = transport⁻ (cong isProp (PathP≡Path (λ i → a₋₀ i ≡ a₋₁ i) a₀₋ a₁₋)) (Agpd _ _ _ _) isGroupoid'→isGroupoid : isGroupoid' A → isGroupoid A isGroupoid'→isGroupoid Agpd' x y p q r s = Agpd' r s refl refl refl refl -- hlevels are preserved by retracts (and consequently equivalences) retractIsContr : ∀ {B : Type ℓ} → (f : A → B) (g : B → A) → (h : retract f g) → (v : isContr B) → isContr A retractIsContr f g h (b , p) = (g b , λ x → (cong g (p (f x))) ∙ (h x)) retractIsProp : {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isProp B → isProp A retractIsProp f g h p x y i = hcomp (λ j → λ { (i = i0) → h x j ; (i = i1) → h y j}) (g (p (f x) (f y) i)) retractIsOfHLevel : (n : ℕ) {B : Type ℓ} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isOfHLevel n B → isOfHLevel n A retractIsOfHLevel 0 = retractIsContr retractIsOfHLevel 1 = retractIsProp retractIsOfHLevel (suc (suc n)) f g h ofLevel x y = retractIsOfHLevel (suc n) (cong f) (λ q i → hcomp (λ j → λ { (i = i0) → h x j ; (i = i1) → h y j}) (g (q i))) (λ p k i → hcomp (λ j → λ { (i = i0) → h x (j ∨ k) ; (i = i1) → h y (j ∨ k) ; (k = i1) → p i}) (h (p i) k)) (ofLevel (f x) (f y)) hLevelRespectEquiv : {A : Type ℓ} {B : Type ℓ'} → (n : ℕ) → A ≃ B → isOfHLevel n A → isOfHLevel n B hLevelRespectEquiv n eq = retractIsOfHLevel n (invEq eq) (eq .fst) (retEq eq) -- hlevel of path and dependent path types isProp→isPropPathP : {A : I → Type ℓ} (isPropA : ∀ i → isProp (A i)) (g : A i0) (h : A i1) → isProp (PathP A g h) isProp→isPropPathP {A = A} isPropA g h = transport⁻ (λ i → isProp (PathP≡Path A g h i)) (isProp→isSet (isPropA i1) _ _) isProp→isContrPathP : {A : I → Type ℓ} (isPropA : ∀ i → isProp (A i)) (g : A i0) (h : A i1) → isContr (PathP A g h) isProp→isContrPathP isPropA g h = inhProp→isContr (isProp→PathP isPropA g h) (isProp→isPropPathP isPropA g h) -- inhProp→isContr (isProp→PathP (λ i → isPropB (m i)) g h) (isProp→isPropPathP isPropB m g h) isProp→isContr≡ : isProp A → (x y : A) → isContr (x ≡ y) isProp→isContr≡ isPropA x y = inhProp→isContr (isPropA x y) (isProp→isSet isPropA x y) isContrPath : isContr A → (x y : A) → isContr (x ≡ y) isContrPath cA = isProp→isContr≡ (isContr→isProp cA) hLevelPath : (n : ℕ) → isOfHLevel (suc n) A → (x y : A) → isOfHLevel n (x ≡ y) hLevelPath zero h = isProp→isContr≡ h hLevelPath (suc n) h = h -- h-level of Σ-types isContrSigma : isContr A → ((x : A) → isContr (B x)) → isContr (Σ[ x ∈ A ] B x) isContrSigma {A = A} {B = B} (a , p) q = let h : (x : A) (y : B x) → (q x) .fst ≡ y h x y = (q x) .snd y in (( a , q a .fst) , ( λ x i → p (x .fst) i , h (p (x .fst) i) (transp (λ j → B (p (x .fst) (i ∨ ~ j))) i (x .snd)) i)) ΣProp≡ : ((x : A) → isProp (B x)) → {u v : Σ[ a ∈ A ] B a} → (p : u .fst ≡ v .fst) → u ≡ v ΣProp≡ pB {u} {v} p i = (p i) , isProp→PathP (λ i → pB (p i)) (u .snd) (v .snd) i isPropSigma : isProp A → ((x : A) → isProp (B x)) → isProp (Σ[ x ∈ A ] B x) isPropSigma pA pB t u = ΣProp≡ pB (pA (t .fst) (u .fst)) isOfHLevelΣ : ∀ n → isOfHLevel n A → ((x : A) → isOfHLevel n (B x)) → isOfHLevel n (Σ A B) isOfHLevelΣ 0 = isContrSigma isOfHLevelΣ 1 = isPropSigma isOfHLevelΣ {B = B} (suc (suc n)) h1 h2 x y = let h3 : isOfHLevel (suc n) (x Σ≡T y) h3 = isOfHLevelΣ (suc n) (h1 (fst x) (fst y)) λ p → h2 (p i1) (subst B p (snd x)) (snd y) in transport (λ i → isOfHLevel (suc n) (pathSigma≡sigmaPath x y (~ i))) h3 -- h-level of Π-types propPi : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x) propPi h f0 f1 i x = h x (f0 x) (f1 x) i hLevelPi : ∀ n → ((x : A) → isOfHLevel n (B x)) → isOfHLevel n ((x : A) → B x) hLevelPi 0 h = (λ x → fst (h x)) , λ f i y → snd (h y) (f y) i hLevelPi {B = B} 1 h f g i x = (h x) (f x) (g x) i hLevelPi (suc (suc n)) h f g = subst (isOfHLevel (suc n)) funExtPath (hLevelPi (suc n) λ x → h x (f x) (g x)) isSetPi : ((x : A) → isSet (B x)) → isSet ((x : A) → B x) isSetPi Bset = hLevelPi 2 (λ a → Bset a) -- lower h-levels imply higher h-levels hLevelSuc : (n : ℕ) (A : Type ℓ) → isOfHLevel n A → isOfHLevel (suc n) A hLevelSuc 0 A = isContr→isProp hLevelSuc 1 A = isProp→isSet hLevelSuc (suc (suc n)) A h a b = hLevelSuc (suc n) (a ≡ b) (h a b) hLevelLift : (m : ℕ) (hA : isOfHLevel n A) → isOfHLevel (m + n) A hLevelLift zero hA = hA hLevelLift {A = A} (suc m) hA = hLevelSuc _ A (hLevelLift m hA) -- h-level of isOfHLevel isPropIsProp : isProp (isProp A) isPropIsProp f g i a b = isProp→isSet f a b (f a b) (g a b) i isPropIsOfHLevel : (n : ℕ) (A : Type ℓ) → isProp (isOfHLevel n A) isPropIsOfHLevel 0 A = isPropIsContr isPropIsOfHLevel 1 A = isPropIsProp isPropIsOfHLevel (suc (suc n)) A f g i a b = isPropIsOfHLevel (suc n) (a ≡ b) (f a b) (g a b) i isPropIsSet : isProp (isSet A) isPropIsSet {A = A} = isPropIsOfHLevel 2 A -- h-level of A ≃ B and A ≡ B hLevel≃ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≃ B) hLevel≃ zero {A = A} {B = B} hA hB = A≃B , contr where A≃B : A ≃ B A≃B = isoToEquiv (iso (λ _ → fst hB) (λ _ → fst hA) (snd hB ) (snd hA)) contr : (y : A ≃ B) → A≃B ≡ y contr y = ΣProp≡ isPropIsEquiv (funExt (λ a → snd hB (fst y a))) hLevel≃ (suc n) hA hB = isOfHLevelΣ (suc n) (hLevelPi (suc n) (λ _ → hB)) (λ a → subst (λ n → isOfHLevel n (isEquiv a)) (+-comm n 1) (hLevelLift n (isPropIsEquiv a))) hLevel≡ : ∀ n → {A B : Type ℓ} (hA : isOfHLevel n A) (hB : isOfHLevel n B) → isOfHLevel n (A ≡ B) hLevel≡ n hA hB = hLevelRespectEquiv n (invEquiv univalence) (hLevel≃ n hA hB) -- h-level of HLevel HLevel≡ : ∀ {A B : Type ℓ} {hA : isOfHLevel n A} {hB : isOfHLevel n B} → (A ≡ B) ≡ ((A , hA) ≡ (B , hB)) HLevel≡ {n = n} {A = A} {B = B} {hA} {hB} = isoToPath (iso intro elim intro-elim elim-intro) where intro : A ≡ B → (A , hA) ≡ (B , hB) intro eq = ΣProp≡ (λ A → isPropIsOfHLevel n _) eq elim : (A , hA) ≡ (B , hB) → A ≡ B elim = cong fst intro-elim : ∀ x → intro (elim x) ≡ x intro-elim eq = cong ΣPathP (ΣProp≡ (λ e → J (λ B e → ∀ k → (x y : PathP (λ i → isOfHLevel n (e i)) hA k) → x ≡ y) (λ k → isProp→isSet (isPropIsOfHLevel n _) _ _) e hB) refl) elim-intro : ∀ x → elim (intro x) ≡ x elim-intro eq = refl isPropHContr : isProp (HLevel ℓ 0) isPropHContr x y = ΣProp≡ (λ _ → isPropIsContr) ((hLevel≡ 0 (x .snd) (y .snd) .fst)) hLevelHLevel : ∀ n → isOfHLevel (suc n) (HLevel ℓ n) hLevelHLevel 0 = isPropHContr hLevelHLevel (suc n) x y = subst (λ e → isOfHLevel (suc n) e) HLevel≡ (hLevel≡ (suc n) (snd x) (snd y)) isSetHProp : isSet (hProp ℓ) isSetHProp = hLevelHLevel 1 -- h-level of lifted type isOfHLevelLift : ∀ {ℓ ℓ'} (n : ℕ) {A : Type ℓ} → isOfHLevel n A → isOfHLevel n (Lift {j = ℓ'} A) isOfHLevelLift n = retractIsOfHLevel n lower lift λ _ → refl
34.760736
150
0.560272
52d244cbeca51f2af18ff7086cd58ba2c1bce9ca
441
agda
Agda
test/fail/ATPBadLocalHint3.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/fail/ATPBadLocalHint3.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
null
null
null
test/fail/ATPBadLocalHint3.agda
asr/eagda
7220bebfe9f64297880ecec40314c0090018fdd0
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- An ATP local hint can be only a postulate, function or a data -- constructor. -- This error is detected by Syntax.Translation.ConcreteToAbstract. module ATPBadLocalHint3 where postulate D : Set _≡_ : D → D → Set zero : D succ : D → D data N : D → Set where zN : N zero sN : ∀ {n} → N n → N (succ n) refl : ∀ n → N n → n ≡ n refl n Nn = prf where postulate prf : n ≡ n {-# ATP prove prf Nn #-}
19.173913
67
0.580499
38ff777486a62f4f78f59eccb6a579ed3fb676a5
953
agda
Agda
agda/MorePropAlgebra/Properties/AbGroup.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
3
2020-07-31T18:15:26.000Z
2022-02-19T12:15:21.000Z
agda/MorePropAlgebra/Properties/AbGroup.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
agda/MorePropAlgebra/Properties/AbGroup.agda
mchristianl/synthetic-reals
10206b5c3eaef99ece5d18bf703c9e8b2371bde4
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts #-} open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Function.Base using (_∋_) open import MorePropAlgebra.Bundles import Cubical.Algebra.AbGroup as Std module MorePropAlgebra.Properties.AbGroup {ℓ} (assumptions : AbGroup {ℓ}) where open AbGroup assumptions renaming (Carrier to G) import MorePropAlgebra.Properties.Group module Group'Properties = MorePropAlgebra.Properties.Group (record { AbGroup assumptions }) module Group' = Group (record { AbGroup assumptions }) ( Group') = Group ∋ (record { AbGroup assumptions }) stdIsAbGroup : Std.IsAbGroup 0g _+_ (-_) stdIsAbGroup .Std.IsAbGroup.isGroup = Group'Properties.stdIsGroup stdIsAbGroup .Std.IsAbGroup.comm = is-comm stdAbGroup : Std.AbGroup {ℓ} stdAbGroup = record { AbGroup assumptions ; isAbGroup = stdIsAbGroup }
41.434783
93
0.700944
3463427f0f7d0f4b5ca2fef2a2ceb9284e44f406
6,044
agda
Agda
src/rkt.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/rkt.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
src/rkt.agda
xoltar/cedille
acf691e37210607d028f4b19f98ec26c4353bfb5
[ "MIT" ]
null
null
null
import cedille-options module rkt (options : cedille-options.options) where open import string open import char open import io open import maybe open import ctxt open import list open import trie open import general-util open import monad-instances open import toplevel-state options {IO} open import unit open import bool open import functions open import product open import cedille-types open import syntax-util private rkt-dbg-flag = ff rkt-dbg : string → rope → rope rkt-dbg msg out = [[ if rkt-dbg-flag then ("; " ^ msg ^ "\n") else "" ]] ⊹⊹ out -- constructs the name of a .racket directory for the given original directory rkt-dirname : string → string rkt-dirname dir = combineFileNames dir ".racket" -- constructs the fully-qualified name of a .rkt file for a .ced file at the given ced-path {-rkt-filename : (ced-path : string) → string rkt-filename ced-path = let dir = takeDirectory ced-path in let unit-name = base-filename (takeFileName ced-path) in combineFileNames (rkt-dirname dir) (unit-name ^ ".rkt")-} -- sanitize a Cedille identifier for Racket -- Racket does not allow "'" as part of a legal identifier, -- so swamp this out for "." rkt-iden : var → var rkt-iden = 𝕃char-to-string ∘ ((map λ c → if c =char '\'' then '.' else c) ∘ string-to-𝕃char) -- Racket string from erase Cedile term rkt-from-term : term → rope rkt-from-term (Lam _ KeptLam _ v _ tm) = [[ "(lambda (" ]] ⊹⊹ [[ rkt-iden v ]] ⊹⊹ [[ ")" ]] ⊹⊹ rkt-from-term tm ⊹⊹ [[ ")" ]] -- TODO untested rkt-from-term (Let _ (DefTerm _ v _ tm-def) tm-body) = [[ "(let ([" ]] ⊹⊹ [[ rkt-iden v ]] ⊹⊹ [[ " " ]] ⊹⊹ rkt-from-term tm-def ⊹⊹ [[ "]) " ]] ⊹⊹ rkt-from-term tm-body ⊹⊹ [[ ")\n" ]] rkt-from-term (Var _ v) = [[ rkt-iden v ]] rkt-from-term (App tm₁ x tm₂) = [[ "(" ]] ⊹⊹ rkt-from-term tm₁ ⊹⊹ [[ " " ]] ⊹⊹ rkt-from-term tm₂ ⊹⊹ [[ ")" ]] rkt-from-term (Hole x) = [[ "(error 'cedille-hole)" ]] rkt-from-term (Beta _ _ NoTerm) = [[ "(lambda (x) x)\n" ]] rkt-from-term _ = rkt-dbg "unsupported/unknown term" [[]] -- Racket define form from var, term rkt-define : var → term → rope rkt-define v tm = [[ "(define " ]] ⊹⊹ [[ rkt-iden v ]] ⊹⊹ rkt-from-term tm ⊹⊹ [[ ")" ]] ⊹⊹ [[ "\n" ]] -- Racket require form from file rkt-require-file : string → rope rkt-require-file fp = [[ "(require (file \"" ]] ⊹⊹ [[ fp ]] ⊹⊹ [[ "\"))" ]] -- Racket term from Cedille term sym-info rkt-from-sym-info : string → sym-info → rope rkt-from-sym-info n (term-def (just (ParamsCons (Decl _ _ _ v _ _) _)) _ tm ty , _) -- TODO not tested = rkt-dbg "term-def: paramsCons:" (rkt-define n tm) rkt-from-sym-info n (term-def (just ParamsNil) _ tm ty , _) = rkt-dbg "term-def: paramsNil:" (rkt-define n tm) rkt-from-sym-info n (term-def nothing _ tm ty , b) -- TODO not tested = rkt-dbg "term-def: nothing:" (rkt-define n tm) rkt-from-sym-info n (term-udef _ _ tm , _) = rkt-dbg "term-udef:" (rkt-define n tm) rkt-from-sym-info n (term-decl x , _) = rkt-dbg "term-decl" [[]] rkt-from-sym-info n (type-decl x , _) = rkt-dbg "type-decl:" [[]] rkt-from-sym-info n (type-def _ _ _ _ , _) = rkt-dbg "type-def:" [[]] rkt-from-sym-info n (kind-def _ _ , _) = rkt-dbg "kind-def:" [[]] rkt-from-sym-info n (rename-def v , _) -- TODO Not implemented! = rkt-dbg ("rename-def: " ^ v) [[]] rkt-from-sym-info n (var-decl , _) = rkt-dbg "var-decl:" [[]] rkt-from-sym-info n (const-def _ , _) = rkt-dbg "const-def:" [[]] rkt-from-sym-info n (datatype-def _ _ , _) = rkt-dbg "datatype-def:" [[]] to-rkt-file : (ced-path : string) → ctxt → include-elt → ((cede-filename : string) → string) → rope to-rkt-file ced-path (mk-ctxt _ (syms , _) i sym-occurences _) ie rkt-filename = rkt-header ⊹⊹ rkt-body where cdle-pair = trie-lookup𝕃2 syms ced-path cdle-mod = fst cdle-pair cdle-defs = snd cdle-pair qual-name : string → string qual-name name = cdle-mod ^ "." ^ name -- lang pragma, imports, and provides rkt-header rkt-body : rope rkt-header = [[ "#lang racket\n\n" ]] ⊹⊹ foldr (λ fn x → rkt-require-file (rkt-filename fn) ⊹⊹ x) [[ "\n" ]] (include-elt.deps ie) ⊹⊹ [[ "(provide (all-defined-out))\n\n" ]] -- in reverse order: lookup symbol defs from file, -- pair name with info, and convert to racket rkt-body = foldr (λ {(n , s) x → x ⊹⊹ [[ "\n" ]] ⊹⊹ rkt-from-sym-info (qual-name n) s}) [[]] (drop-nothing (map (λ name → maybe-map (λ syminf → name , syminf) (trie-lookup i (qual-name name))) cdle-defs)) {- -- write a Racket file to .racket subdirectory from Cedille file path, -- context, and include-elt write-rkt-file : (ced-path : string) → ctxt → include-elt → ((cede-filename : string) → string) → IO ⊤ write-rkt-file ced-path (mk-ctxt _ (syms , _) i sym-occurences) ie rkt-filename = let dir = takeDirectory ced-path in createDirectoryIfMissing tt (rkt-dirname dir) >> writeFile (rkt-filename ced-path) (rkt-header ^ rkt-body) where cdle-mod = fst (trie-lookup𝕃2 syms ced-path) cdle-defs = snd (trie-lookup𝕃2 syms ced-path) qual-name : string → string qual-name name = cdle-mod ^ "." ^ name -- lang pragma, imports, and provides rkt-header rkt-body : string rkt-header = "#lang racket\n\n" ^ (string-concat-sep "\n" (map (rkt-require-file ∘ rkt-filename) (include-elt.deps ie))) ^ "\n" ^ "(provide (all-defined-out))\n\n" -- in reverse order: lookup symbol defs from file, -- pair name with info, and convert to racket rkt-body = string-concat-sep "\n" (map (λ { (n , s) → rkt-from-sym-info (qual-name n) s}) (reverse (drop-nothing (map (λ name → maybe-map (λ syminf → name , syminf) (trie-lookup i (qual-name name))) cdle-defs)))) -}
36.630303
131
0.588021
0dc9c5dcc182723d6247555fe7cc8fc936c1ad8c
18,546
agda
Agda
core.agda
hazelgrove/agda-popl17
db3d21a1e3f17ef77ad557ed12374979f381b6b7
[ "MIT" ]
14
2016-07-01T22:44:11.000Z
2019-07-11T12:30:50.000Z
core.agda
hazelgrove/agda-popl17
db3d21a1e3f17ef77ad557ed12374979f381b6b7
[ "MIT" ]
37
2016-07-07T16:23:11.000Z
2016-11-09T18:13:55.000Z
core.agda
hazelgrove/agda-popl17
db3d21a1e3f17ef77ad557ed12374979f381b6b7
[ "MIT" ]
1
2021-07-03T03:45:07.000Z
2021-07-03T03:45:07.000Z
open import Nat open import Prelude module core where -- types data τ̇ : Set where num : τ̇ ⦇-⦈ : τ̇ _==>_ : τ̇ → τ̇ → τ̇ -- expressions, prefixed with a · to distinguish name clashes with agda -- built-ins data ė : Set where _·:_ : ė → τ̇ → ė X : Nat → ė ·λ : Nat → ė → ė N : Nat → ė _·+_ : ė → ė → ė ⦇-⦈ : ė ⦇⌜_⌟⦈ : ė → ė _∘_ : ė → ė → ė ---- contexts and some operations on them -- variables are named with naturals in ė. therefore we represent -- contexts as functions from names for variables (nats) to possible -- bindings. ·ctx : Set ·ctx = Nat → Maybe τ̇ -- convenient shorthand for the (unique up to fun. ext.) empty context ∅ : ·ctx ∅ _ = None -- add a new binding to the context, clobbering anything that might have -- been there before. _,,_ : ·ctx → (Nat × τ̇) → ·ctx (Γ ,, (x , t)) y with natEQ x y (Γ ,, (x , t)) .x | Inl refl = Some t (Γ ,, (x , t)) y | Inr neq = Γ y -- membership, or presence, in a context _∈_ : (p : Nat × τ̇) → (Γ : ·ctx) → Set (x , t) ∈ Γ = (Γ x) == Some t -- apartness for contexts, so that we can follow barendregt's convention _#_ : (n : Nat) → (Γ : ·ctx) → Set x # Γ = (Γ x) == None -- without: remove a variable from a context _/_ : ·ctx → Nat → ·ctx (Γ / x) y with natEQ x y (Γ / x) .x | Inl refl = None (Γ / x) y | Inr neq = Γ y -- the type consistency judgement data _~_ : (t1 : τ̇) → (t2 : τ̇) → Set where TCRefl : {t : τ̇} → t ~ t TCHole1 : {t : τ̇} → t ~ ⦇-⦈ TCHole2 : {t : τ̇} → ⦇-⦈ ~ t TCArr : {t1 t2 t1' t2' : τ̇} → t1 ~ t1' → t2 ~ t2' → (t1 ==> t2) ~ (t1' ==> t2') -- type inconsistency. a judgmental version and associated proofs are in -- judgemental-inconsistency.agda. each definition implies the other, but -- the two are isomorphic only if you treat proofs of inconsistency at -- arrow types as being proof-irrelevant---that is, if you don't -- distinguish between cases where the inconsistency between a pair of -- function types stems from the domain, range, or both. we use the form -- below throughout the rest of the development because we do not care to -- make that distinction. _~̸_ : τ̇ → τ̇ → Set t1 ~̸ t2 = (t1 ~ t2) → ⊥ --- matching for arrows data _▸arr_ : τ̇ → τ̇ → Set where MAHole : ⦇-⦈ ▸arr (⦇-⦈ ==> ⦇-⦈) MAArr : {t1 t2 : τ̇} → (t1 ==> t2) ▸arr (t1 ==> t2) -- matching produces unique answers matcharrunicity : ∀{ t t2 t3 } → t ▸arr t2 → t ▸arr t3 → t2 == t3 matcharrunicity MAHole MAHole = refl matcharrunicity MAArr MAArr = refl -- if a type matches, then it's consistent with the least restrictive -- function type matchconsist : ∀{t t'} → t ▸arr t' → t ~ (⦇-⦈ ==> ⦇-⦈) matchconsist MAHole = TCHole2 matchconsist MAArr = TCArr TCHole1 TCHole1 matchnotnum : ∀{t1 t2} → num ▸arr (t1 ==> t2) → ⊥ matchnotnum () -- bidirectional type checking judgements for ė mutual -- synthesis data _⊢_=>_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where SAsc : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ e <= t → Γ ⊢ (e ·: t) => t SVar : {Γ : ·ctx} {t : τ̇} {n : Nat} → (n , t) ∈ Γ → Γ ⊢ X n => t SAp : {Γ : ·ctx} {e1 e2 : ė} {t t' t2 : τ̇} → Γ ⊢ e1 => t → t ▸arr (t2 ==> t') → Γ ⊢ e2 <= t2 → Γ ⊢ (e1 ∘ e2) => t' SNum : {Γ : ·ctx} {n : Nat} → Γ ⊢ N n => num SPlus : {Γ : ·ctx} {e1 e2 : ė} → Γ ⊢ e1 <= num → Γ ⊢ e2 <= num → Γ ⊢ (e1 ·+ e2) => num SEHole : {Γ : ·ctx} → Γ ⊢ ⦇-⦈ => ⦇-⦈ SNEHole : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ e => t → Γ ⊢ ⦇⌜ e ⌟⦈ => ⦇-⦈ -- analysis data _⊢_<=_ : (Γ : ·ctx) → (e : ė) → (t : τ̇) → Set where ASubsume : {Γ : ·ctx} {e : ė} {t t' : τ̇} → Γ ⊢ e => t' → t ~ t' → Γ ⊢ e <= t ALam : {Γ : ·ctx} {e : ė} {t t1 t2 : τ̇} {x : Nat} → x # Γ → t ▸arr (t1 ==> t2) → (Γ ,, (x , t1)) ⊢ e <= t2 → Γ ⊢ (·λ x e) <= t ----- some theorems about the rules and judgement presented so far. -- a variable is apart from any context from which it is removed aar : (Γ : ·ctx) (x : Nat) → x # (Γ / x) aar Γ x with natEQ x x aar Γ x | Inl refl = refl aar Γ x | Inr x≠x = abort (x≠x refl) -- contexts give at most one binding for each variable ctxunicity : {Γ : ·ctx} {n : Nat} {t t' : τ̇} → (n , t) ∈ Γ → (n , t') ∈ Γ → t == t' ctxunicity {n = n} p q with natEQ n n ctxunicity p q | Inl refl = someinj (! p · q) ctxunicity _ _ | Inr x≠x = abort (x≠x refl) -- type consistency is symmetric ~sym : {t1 t2 : τ̇} → t1 ~ t2 → t2 ~ t1 ~sym TCRefl = TCRefl ~sym TCHole1 = TCHole2 ~sym TCHole2 = TCHole1 ~sym (TCArr p1 p2) = TCArr (~sym p1) (~sym p2) -- type consistency isn't transitive not-trans : ((t1 t2 t3 : τ̇) → t1 ~ t2 → t2 ~ t3 → t1 ~ t3) → ⊥ not-trans t with t (num ==> num) ⦇-⦈ num TCHole1 TCHole2 ... | () -- if the domain or codomain of a pair of arrows isn't consistent, the -- whole arrow isn't consistent. lemarr1 : {t1 t2 t3 t4 : τ̇} → (t1 ~ t3 → ⊥) → (t1 ==> t2) ~ (t3 ==> t4) → ⊥ lemarr1 v TCRefl = v TCRefl lemarr1 v (TCArr p _) = v p lemarr2 : {t1 t2 t3 t4 : τ̇} → (t2 ~ t4 → ⊥) → (t1 ==> t2) ~ (t3 ==> t4) → ⊥ lemarr2 v TCRefl = v TCRefl lemarr2 v (TCArr _ p) = v p -- every pair of types is either consistent or not consistent ~dec : (t1 t2 : τ̇) → ((t1 ~ t2) + (t1 ~̸ t2)) -- this takes care of all hole cases, so we don't consider them below ~dec _ ⦇-⦈ = Inl TCHole1 ~dec ⦇-⦈ _ = Inl TCHole2 -- num cases ~dec num num = Inl TCRefl ~dec num (t2 ==> t3) = Inr (λ ()) -- arrow cases ~dec (t1 ==> t2) num = Inr (λ ()) ~dec (t1 ==> t2) (t3 ==> t4) with ~dec t1 t3 | ~dec t2 t4 ... | Inl x | Inl y = Inl (TCArr x y) ... | Inl _ | Inr y = Inr (lemarr2 y) ... | Inr x | _ = Inr (lemarr1 x) -- theorem: no pair of types is both consistent and not consistent. this -- is immediate from our encoding of the ~̸ judgement in the formalism -- here; in the exact mathematics presented in the paper, this would -- require induction to relate the two judgements. ~apart : {t1 t2 : τ̇} → (t1 ~̸ t2) → (t1 ~ t2) → ⊥ ~apart v p = v p -- synthesis only produces equal types. note that there is no need for an -- analagous theorem for analytic positions because we think of -- the type as an input synthunicity : {Γ : ·ctx} {e : ė} {t t' : τ̇} → (Γ ⊢ e => t) → (Γ ⊢ e => t') → t == t' synthunicity (SAsc _) (SAsc _) = refl synthunicity {Γ = G} (SVar in1) (SVar in2) = ctxunicity {Γ = G} in1 in2 synthunicity (SAp D1 MAHole b) (SAp D2 MAHole y) = refl synthunicity (SAp D1 MAHole b) (SAp D2 MAArr y) with synthunicity D1 D2 ... | () synthunicity (SAp D1 MAArr b) (SAp D2 MAHole y) with synthunicity D1 D2 ... | () synthunicity (SAp D1 MAArr b) (SAp D2 MAArr y) with synthunicity D1 D2 ... | refl = refl synthunicity SNum SNum = refl synthunicity (SPlus _ _ ) (SPlus _ _ ) = refl synthunicity SEHole SEHole = refl synthunicity (SNEHole _) (SNEHole _) = refl ----- the zippered form of the forms above and the rules for actions on them -- those types without holes anywhere tcomplete : τ̇ → Set tcomplete num = ⊤ tcomplete ⦇-⦈ = ⊥ tcomplete (t1 ==> t2) = (tcomplete t1) × (tcomplete t2) -- similarly to the complete types, the complete expressions ecomplete : ė → Set ecomplete (e1 ·: t) = ecomplete e1 × tcomplete t ecomplete (X _) = ⊤ ecomplete (·λ _ e1) = ecomplete e1 ecomplete (N x) = ⊤ ecomplete (e1 ·+ e2) = ecomplete e1 × ecomplete e2 ecomplete ⦇-⦈ = ⊥ ecomplete ⦇⌜ e1 ⌟⦈ = ⊥ ecomplete (e1 ∘ e2) = ecomplete e1 × ecomplete e2 -- zippered form of types data τ̂ : Set where ▹_◃ : τ̇ → τ̂ _==>₁_ : τ̂ → τ̇ → τ̂ _==>₂_ : τ̇ → τ̂ → τ̂ -- zippered form of expressions data ê : Set where ▹_◃ : ė → ê _·:₁_ : ê → τ̇ → ê _·:₂_ : ė → τ̂ → ê ·λ : Nat → ê → ê _∘₁_ : ê → ė → ê _∘₂_ : ė → ê → ê _·+₁_ : ê → ė → ê _·+₂_ : ė → ê → ê ⦇⌜_⌟⦈ : ê → ê -- erasure of cursor for types and expressions, judgementally. see -- jugemental-erase.agda for an argument that this defines an isomorphic -- object to the direct metafunction provided in the text of the paper data erase-t : τ̂ → τ̇ → Set where ETTop : ∀{t} → erase-t (▹ t ◃) t ETArrL : ∀{t1 t1' t2} → erase-t t1 t1' → erase-t (t1 ==>₁ t2) (t1' ==> t2) ETArrR : ∀{t1 t2 t2'} → erase-t t2 t2' → erase-t (t1 ==>₂ t2) (t1 ==> t2') data erase-e : ê → ė → Set where EETop : ∀{x} → erase-e (▹ x ◃) x EEAscL : ∀{e e' t} → erase-e e e' → erase-e (e ·:₁ t) (e' ·: t) EEAscR : ∀{e t t'} → erase-t t t' → erase-e (e ·:₂ t) (e ·: t') EELam : ∀{x e e'} → erase-e e e' → erase-e (·λ x e) (·λ x e') EEApL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e (e1 ∘₁ e2) (e1' ∘ e2) EEApR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e (e1 ∘₂ e2) (e1 ∘ e2') EEPlusL : ∀{e1 e1' e2} → erase-e e1 e1' → erase-e (e1 ·+₁ e2) (e1' ·+ e2) EEPlusR : ∀{e1 e2 e2'} → erase-e e2 e2' → erase-e (e1 ·+₂ e2) (e1 ·+ e2') EENEHole : ∀{e e'} → erase-e e e' → erase-e ⦇⌜ e ⌟⦈ ⦇⌜ e' ⌟⦈ -- the three grammars that define actions data direction : Set where child : Nat → direction parent : direction data shape : Set where arrow : shape num : shape asc : shape var : Nat → shape lam : Nat → shape ap : shape numlit : Nat → shape plus : shape nehole : shape data action : Set where move : direction → action construct : shape → action del : action finish : action -- type actions data _+_+>_ : (t : τ̂) → (α : action) → (t' : τ̂) → Set where TMArrChild1 : {t1 t2 : τ̇} → ▹ t1 ==> t2 ◃ + move (child 1) +> (▹ t1 ◃ ==>₁ t2) TMArrChild2 : {t1 t2 : τ̇} → ▹ t1 ==> t2 ◃ + move (child 2) +> (t1 ==>₂ ▹ t2 ◃) TMArrParent1 : {t1 t2 : τ̇} → (▹ t1 ◃ ==>₁ t2) + move parent +> ▹ t1 ==> t2 ◃ TMArrParent2 : {t1 t2 : τ̇} → (t1 ==>₂ ▹ t2 ◃) + move parent +> ▹ t1 ==> t2 ◃ TMDel : {t : τ̇} → (▹ t ◃) + del +> (▹ ⦇-⦈ ◃) TMConArrow : {t : τ̇} → (▹ t ◃) + construct arrow +> (t ==>₂ ▹ ⦇-⦈ ◃) TMConNum : (▹ ⦇-⦈ ◃) + construct num +> (▹ num ◃) TMArrZip1 : {t1 t1' : τ̂} {t2 : τ̇} {α : action} → (t1 + α +> t1') → ((t1 ==>₁ t2) + α +> (t1' ==>₁ t2)) TMArrZip2 : {t2 t2' : τ̂} {t1 : τ̇} {α : action} → (t2 + α +> t2') → ((t1 ==>₂ t2) + α +> (t1 ==>₂ t2')) -- expression movement data _+_+>e_ : (e : ê) → (α : action) → (e' : ê) → Set where -- rules for ascriptions EMAscChild1 : {e : ė} {t : τ̇} → (▹ e ·: t ◃) + move (child 1) +>e (▹ e ◃ ·:₁ t) EMAscChild2 : {e : ė} {t : τ̇} → (▹ e ·: t ◃) + move (child 2) +>e (e ·:₂ ▹ t ◃) EMAscParent1 : {e : ė} {t : τ̇} → (▹ e ◃ ·:₁ t) + move parent +>e (▹ e ·: t ◃) EMAscParent2 : {e : ė} {t : τ̇} → (e ·:₂ ▹ t ◃) + move parent +>e (▹ e ·: t ◃) -- rules for lambdas EMLamChild1 : {e : ė} {x : Nat} → ▹ (·λ x e) ◃ + move (child 1) +>e ·λ x (▹ e ◃) EMLamParent : {e : ė} {x : Nat} → ·λ x (▹ e ◃) + move parent +>e ▹ (·λ x e) ◃ -- rules for 2-ary constructors EMPlusChild1 : {e1 e2 : ė} → (▹ e1 ·+ e2 ◃) + move (child 1) +>e (▹ e1 ◃ ·+₁ e2) EMPlusChild2 : {e1 e2 : ė} → (▹ e1 ·+ e2 ◃) + move (child 2) +>e (e1 ·+₂ ▹ e2 ◃) EMPlusParent1 : {e1 e2 : ė} → (▹ e1 ◃ ·+₁ e2) + move parent +>e (▹ e1 ·+ e2 ◃) EMPlusParent2 : {e1 e2 : ė} → (e1 ·+₂ ▹ e2 ◃) + move parent +>e (▹ e1 ·+ e2 ◃) EMApChild1 : {e1 e2 : ė} → (▹ e1 ∘ e2 ◃) + move (child 1)+>e (▹ e1 ◃ ∘₁ e2) EMApChild2 : {e1 e2 : ė} → (▹ e1 ∘ e2 ◃) + move (child 2) +>e (e1 ∘₂ ▹ e2 ◃) EMApParent1 : {e1 e2 : ė} → (▹ e1 ◃ ∘₁ e2) + move parent +>e (▹ e1 ∘ e2 ◃) EMApParent2 : {e1 e2 : ė} → (e1 ∘₂ ▹ e2 ◃) + move parent +>e (▹ e1 ∘ e2 ◃) -- rules for non-empty holes EMNEHoleChild1 : {e : ė} → (▹ ⦇⌜ e ⌟⦈ ◃) + move (child 1) +>e ⦇⌜ ▹ e ◃ ⌟⦈ EMNEHoleParent : {e : ė} → ⦇⌜ ▹ e ◃ ⌟⦈ + move parent +>e (▹ ⦇⌜ e ⌟⦈ ◃) mutual -- synthetic action expressions data _⊢_=>_~_~>_=>_ : (Γ : ·ctx) → (e1 : ê) → (t1 : τ̇) → (α : action) → (e2 : ê) → (t2 : τ̇) → Set where SAMove : {δ : direction} {e e' : ê} {Γ : ·ctx} {t : τ̇} → (e + move δ +>e e') → Γ ⊢ e => t ~ move δ ~> e' => t SADel : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ ▹ e ◃ => t ~ del ~> ▹ ⦇-⦈ ◃ => ⦇-⦈ SAConAsc : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ ▹ e ◃ => t ~ construct asc ~> (e ·:₂ ▹ t ◃ ) => t SAConVar : {Γ : ·ctx} {x : Nat} {t : τ̇} → (p : (x , t) ∈ Γ) → Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (var x) ~> ▹ X x ◃ => t SAConLam : {Γ : ·ctx} {x : Nat} → (x # Γ) → Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (lam x) ~> ((·λ x ⦇-⦈) ·:₂ (▹ ⦇-⦈ ◃ ==>₁ ⦇-⦈)) => (⦇-⦈ ==> ⦇-⦈) SAConApArr : {Γ : ·ctx} {t t1 t2 : τ̇} {e : ė} → t ▸arr (t1 ==> t2) → Γ ⊢ ▹ e ◃ => t ~ construct ap ~> e ∘₂ ▹ ⦇-⦈ ◃ => t2 SAConApOtw : {Γ : ·ctx} {t : τ̇} {e : ė} → (t ~̸ (⦇-⦈ ==> ⦇-⦈)) → Γ ⊢ ▹ e ◃ => t ~ construct ap ~> ⦇⌜ e ⌟⦈ ∘₂ ▹ ⦇-⦈ ◃ => ⦇-⦈ SAConNumlit : {Γ : ·ctx} {n : Nat} → Γ ⊢ ▹ ⦇-⦈ ◃ => ⦇-⦈ ~ construct (numlit n) ~> ▹ N n ◃ => num SAConPlus1 : {Γ : ·ctx} {e : ė} {t : τ̇} → (t ~ num) → Γ ⊢ ▹ e ◃ => t ~ construct plus ~> e ·+₂ ▹ ⦇-⦈ ◃ => num SAConPlus2 : {Γ : ·ctx} {e : ė} {t : τ̇} → (t ~̸ num) → Γ ⊢ ▹ e ◃ => t ~ construct plus ~> ⦇⌜ e ⌟⦈ ·+₂ ▹ ⦇-⦈ ◃ => num SAConNEHole : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ ▹ e ◃ => t ~ construct nehole ~> ⦇⌜ ▹ e ◃ ⌟⦈ => ⦇-⦈ SAFinish : {Γ : ·ctx} {e : ė} {t : τ̇} → (Γ ⊢ e => t) → Γ ⊢ ▹ ⦇⌜ e ⌟⦈ ◃ => ⦇-⦈ ~ finish ~> ▹ e ◃ => t SAZipAsc1 : {Γ : ·ctx} {e e' : ê} {α : action} {t : τ̇} → (Γ ⊢ e ~ α ~> e' ⇐ t) → Γ ⊢ (e ·:₁ t) => t ~ α ~> (e' ·:₁ t) => t SAZipAsc2 : {Γ : ·ctx} {e : ė} {α : action} {t t' : τ̂} {t◆ t'◆ : τ̇} → (t + α +> t') → (erase-t t' t'◆) → (erase-t t t◆) → (Γ ⊢ e <= t'◆) → Γ ⊢ (e ·:₂ t) => t◆ ~ α ~> (e ·:₂ t') => t'◆ SAZipApArr : {Γ : ·ctx} {t t1 t2 t3 t4 : τ̇} {α : action} {eh eh' : ê} {e eh◆ : ė} → (t ▸arr (t3 ==> t4)) → (erase-e eh eh◆) → (Γ ⊢ (eh◆) => t2) → (Γ ⊢ eh => t2 ~ α ~> eh' => t) → (Γ ⊢ e <= t3) → Γ ⊢ (eh ∘₁ e) => t1 ~ α ~> (eh' ∘₁ e) => t4 SAZipApAna : {Γ : ·ctx} {t' t2 t : τ̇} {e : ė} {eh eh' : ê} {α : action} → (t' ▸arr (t2 ==> t)) → (Γ ⊢ e => t') → (Γ ⊢ eh ~ α ~> eh' ⇐ t2) → Γ ⊢ (e ∘₂ eh) => t ~ α ~> (e ∘₂ eh') => t SAZipPlus1 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} → (Γ ⊢ eh ~ α ~> eh' ⇐ num) → Γ ⊢ (eh ·+₁ e) => num ~ α ~> (eh' ·+₁ e) => num SAZipPlus2 : {Γ : ·ctx} {e : ė} {eh eh' : ê} {α : action} → (Γ ⊢ eh ~ α ~> eh' ⇐ num) → Γ ⊢ (e ·+₂ eh) => num ~ α ~> (e ·+₂ eh') => num SAZipHole : {Γ : ·ctx} {e e' : ê} {t t' : τ̇} {α : action} {e◆ : ė} → (erase-e e e◆) → (Γ ⊢ e◆ => t) → (Γ ⊢ e => t ~ α ~> e' => t') → Γ ⊢ ⦇⌜ e ⌟⦈ => ⦇-⦈ ~ α ~> ⦇⌜ e' ⌟⦈ => ⦇-⦈ -- analytic action expressions data _⊢_~_~>_⇐_ : (Γ : ·ctx) → (e : ê) → (α : action) → (e' : ê) → (t : τ̇) → Set where AASubsume : {Γ : ·ctx} {e e' : ê} {t t' t'' : τ̇} {α : action} {e◆ : ė} → (erase-e e e◆) → (Γ ⊢ e◆ => t') → (Γ ⊢ e => t' ~ α ~> e' => t'') → (t ~ t'') → Γ ⊢ e ~ α ~> e' ⇐ t AAMove : {e e' : ê} {δ : direction} {Γ : ·ctx} {t : τ̇} → (e + move δ +>e e') → Γ ⊢ e ~ move δ ~> e' ⇐ t AADel : {e : ė} {Γ : ·ctx} {t : τ̇} → Γ ⊢ ▹ e ◃ ~ del ~> ▹ ⦇-⦈ ◃ ⇐ t AAConAsc : {Γ : ·ctx} {e : ė} {t : τ̇} → Γ ⊢ ▹ e ◃ ~ construct asc ~> (e ·:₂ ▹ t ◃) ⇐ t AAConVar : {Γ : ·ctx} {t t' : τ̇} {x : Nat} → (t ~̸ t') → (p : (x , t') ∈ Γ) → Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (var x) ~> ⦇⌜ ▹ X x ◃ ⌟⦈ ⇐ t AAConLam1 : {Γ : ·ctx} {x : Nat} {t t1 t2 : τ̇} → (x # Γ) → (t ▸arr (t1 ==> t2)) → Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (lam x) ~> ·λ x (▹ ⦇-⦈ ◃) ⇐ t AAConLam2 : {Γ : ·ctx} {x : Nat} {t : τ̇} → (x # Γ) → (t ~̸ (⦇-⦈ ==> ⦇-⦈)) → Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (lam x) ~> ⦇⌜ ·λ x ⦇-⦈ ·:₂ (▹ ⦇-⦈ ◃ ==>₁ ⦇-⦈) ⌟⦈ ⇐ t AAConNumlit : {Γ : ·ctx} {t : τ̇} {n : Nat} → (t ~̸ num) → Γ ⊢ ▹ ⦇-⦈ ◃ ~ construct (numlit n) ~> ⦇⌜ ▹ (N n) ◃ ⌟⦈ ⇐ t AAFinish : {Γ : ·ctx} {e : ė} {t : τ̇} → (Γ ⊢ e <= t) → Γ ⊢ ▹ ⦇⌜ e ⌟⦈ ◃ ~ finish ~> ▹ e ◃ ⇐ t AAZipLam : {Γ : ·ctx} {x : Nat} {t t1 t2 : τ̇} {e e' : ê} {α : action} → x # Γ → (t ▸arr (t1 ==> t2)) → ((Γ ,, (x , t1)) ⊢ e ~ α ~> e' ⇐ t2) → Γ ⊢ (·λ x e) ~ α ~> (·λ x e') ⇐ t
39.044211
92
0.407797
7ca4cdca84232603cd1af2addb20962547ef88a8
559
agda
Agda
test/Fail/Issue2253.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2253.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2253.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-08-24, issue #2253 -- -- Better error message for matching on abstract constructor. -- {-# OPTIONS -v tc.lhs.split:30 #-} -- {-# OPTIONS -v tc.lhs:30 #-} -- {-# OPTIONS -v tc.lhs.flex:60 #-} abstract data B : Set where x : B data C : Set where c : B → C f : C → C f (c x) = c x -- WAS: -- -- Not in scope: -- AbstractPatternShadowsConstructor.B.x -- (did you mean 'x'?) -- when checking that the pattern c x has type C -- Expected: -- -- Cannot split on abstract data type B -- when checking that the pattern x has type B
18.633333
61
0.613596
43014719abbb1e56727573588132745f3edf89b8
3,206
agda
Agda
prototyping/FFI/Data/Aeson.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-11-06T08:03:00.000Z
2021-11-06T08:03:00.000Z
prototyping/FFI/Data/Aeson.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/FFI/Data/Aeson.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module FFI.Data.Aeson where open import Agda.Builtin.Equality using (_≡_) open import Agda.Builtin.Equality.Rewrite using () open import Agda.Builtin.Bool using (Bool) open import Agda.Builtin.String using (String) open import FFI.Data.ByteString using (ByteString) open import FFI.Data.HaskellString using (HaskellString; pack) open import FFI.Data.Maybe using (Maybe; just; nothing) open import FFI.Data.Either using (Either; mapL) open import FFI.Data.Scientific using (Scientific) open import FFI.Data.Vector using (Vector) open import Properties.Equality using (_≢_) {-# FOREIGN GHC import qualified Data.Aeson #-} {-# FOREIGN GHC import qualified Data.Aeson.Key #-} {-# FOREIGN GHC import qualified Data.Aeson.KeyMap #-} postulate KeyMap : Set → Set Key : Set fromString : String → Key toString : Key → String empty : ∀ {A} → KeyMap A singleton : ∀ {A} → Key → A → (KeyMap A) insert : ∀ {A} → Key → A → (KeyMap A) → (KeyMap A) delete : ∀ {A} → Key → (KeyMap A) → (KeyMap A) unionWith : ∀ {A} → (A → A → A) → (KeyMap A) → (KeyMap A) → (KeyMap A) lookup : ∀ {A} → Key -> KeyMap A -> Maybe A {-# POLARITY KeyMap ++ #-} {-# COMPILE GHC KeyMap = type Data.Aeson.KeyMap.KeyMap #-} {-# COMPILE GHC Key = type Data.Aeson.Key.Key #-} {-# COMPILE GHC fromString = Data.Aeson.Key.fromText #-} {-# COMPILE GHC toString = Data.Aeson.Key.toText #-} {-# COMPILE GHC empty = \_ -> Data.Aeson.KeyMap.empty #-} {-# COMPILE GHC singleton = \_ -> Data.Aeson.KeyMap.singleton #-} {-# COMPILE GHC insert = \_ -> Data.Aeson.KeyMap.insert #-} {-# COMPILE GHC delete = \_ -> Data.Aeson.KeyMap.delete #-} {-# COMPILE GHC unionWith = \_ -> Data.Aeson.KeyMap.unionWith #-} {-# COMPILE GHC lookup = \_ -> Data.Aeson.KeyMap.lookup #-} postulate lookup-insert : ∀ {A} k v (m : KeyMap A) → (lookup k (insert k v m) ≡ just v) postulate lookup-empty : ∀ {A} k → (lookup {A} k empty ≡ nothing) postulate lookup-insert-not : ∀ {A} j k v (m : KeyMap A) → (j ≢ k) → (lookup k m ≡ lookup k (insert j v m)) postulate singleton-insert-empty : ∀ {A} k (v : A) → (singleton k v ≡ insert k v empty) postulate insert-swap : ∀ {A} j k (v w : A) m → (j ≢ k) → insert j v (insert k w m) ≡ insert k w (insert j v m) postulate insert-over : ∀ {A} j k (v w : A) m → (j ≡ k) → insert j v (insert k w m) ≡ insert j v m postulate to-from : ∀ k → toString(fromString k) ≡ k postulate from-to : ∀ k → fromString(toString k) ≡ k {-# REWRITE lookup-insert lookup-empty singleton-insert-empty #-} data Value : Set where object : KeyMap Value → Value array : Vector Value → Value string : String → Value number : Scientific → Value bool : Bool → Value null : Value {-# COMPILE GHC Value = data Data.Aeson.Value (Data.Aeson.Object|Data.Aeson.Array|Data.Aeson.String|Data.Aeson.Number|Data.Aeson.Bool|Data.Aeson.Null) #-} Object = KeyMap Value Array = Vector Value postulate decode : ByteString → Maybe Value eitherHDecode : ByteString → Either HaskellString Value {-# COMPILE GHC decode = Data.Aeson.decodeStrict #-} {-# COMPILE GHC eitherHDecode = Data.Aeson.eitherDecodeStrict #-} eitherDecode : ByteString → Either String Value eitherDecode bytes = mapL pack (eitherHDecode bytes)
41.102564
154
0.674672
0487c1383326e10304ab8051155937a05aff8d94
6,861
agda
Agda
src/Unification.agda
wenkokke/AutoInAgda
f384b5c236645fcf8ab93179723a7355383a8716
[ "MIT" ]
22
2017-07-18T18:14:09.000Z
2021-03-20T15:04:47.000Z
src/Unification.agda
wenkokke/AutoInAgda
f384b5c236645fcf8ab93179723a7355383a8716
[ "MIT" ]
1
2017-11-03T09:46:19.000Z
2017-11-06T16:49:27.000Z
src/Unification.agda
wenkokke/AutoInAgda
f384b5c236645fcf8ab93179723a7355383a8716
[ "MIT" ]
2
2018-07-10T10:47:30.000Z
2019-07-07T07:37:07.000Z
open import Function using (_∘_) open import Category.Monad using (module RawMonad) open import Data.Fin using (Fin; suc; zero) open import Data.Fin.Properties renaming (_≟_ to _≟-Fin_) open import Data.List as List using (List; _∷_; []) open import Data.List.Properties renaming (∷-injective to ∷-inj) open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Data.Nat using (ℕ; suc; zero) open import Data.Product as Prod using (∃; _×_; _,_; proj₁; proj₂) open import Relation.Nullary using (Dec; yes; no) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong₂) module Unification (Name : Set) (_≟-Name_ : (x y : Name) → Dec (x ≡ y)) (Literal : Set) (_≟-Literal_ : (x y : Literal) → Dec (x ≡ y)) where open RawMonad {{...}} using (_<$>_; _>>=_; return) private instance MaybeMonad = Maybe.monad data Term (n : ℕ) : Set where var : (x : Fin n) → Term n con : (s : Name) (ts : List (Term n)) → Term n lit : (l : Literal) → Term n -- ext : (x : Fin (suc n)) (t : Term (suc n)) → Term n var-inj : ∀ {n x₁ x₂} → var {n} x₁ ≡ var {n} x₂ → x₁ ≡ x₂ var-inj refl = refl con-inj : ∀ {n s₁ s₂ ts₁ ts₂} → con {n} s₁ ts₁ ≡ con {n} s₂ ts₂ → s₁ ≡ s₂ × ts₁ ≡ ts₂ con-inj refl = (refl , refl) lit-inj : ∀ {n x₁ x₂} → lit {n} x₁ ≡ lit {n} x₂ → x₁ ≡ x₂ lit-inj refl = refl mutual _≟-Term_ : ∀ {n} → (t₁ t₂ : Term n) → Dec (t₁ ≡ t₂) _≟-Term_ (var _) (lit _) = no (λ ()) _≟-Term_ (var _) (con _ _) = no (λ ()) _≟-Term_ (var x₁) (var x₂) with x₁ ≟-Fin x₂ ... | yes x₁=x₂ = yes (cong var x₁=x₂) ... | no x₁≠x₂ = no (x₁≠x₂ ∘ var-inj) _≟-Term_ (con _ _) (var _) = no (λ ()) _≟-Term_ (con _ _) (lit _) = no (λ ()) _≟-Term_ (con s₁ ts₁) (con s₂ ts₂) with s₁ ≟-Name s₂ ... | no s₁≠s₂ = no (s₁≠s₂ ∘ proj₁ ∘ con-inj) ... | yes s₁=s₂ rewrite s₁=s₂ with ts₁ ≟-Terms ts₂ ... | no ts₁≠ts₂ = no (ts₁≠ts₂ ∘ proj₂ ∘ con-inj) ... | yes ts₁=ts₂ = yes (cong (con s₂) ts₁=ts₂) _≟-Term_ (lit _) (var _) = no (λ ()) _≟-Term_ (lit _) (con _ _) = no (λ ()) _≟-Term_ (lit x₁) (lit x₂) with x₁ ≟-Literal x₂ ... | yes x₁=x₂ = yes (cong lit x₁=x₂) ... | no x₁≠x₂ = no (x₁≠x₂ ∘ lit-inj) _≟-Terms_ : ∀ {n} (xs ys : List (Term n)) → Dec (xs ≡ ys) _≟-Terms_ [] [] = yes refl _≟-Terms_ [] (_  ∷ _) = no (λ ()) _≟-Terms_ (_ ∷ _) [] = no (λ ()) _≟-Terms_ (x ∷ xs) (y ∷ ys) with x ≟-Term y ... | no x≠y = no (x≠y ∘ proj₁ ∘ ∷-inj) ... | yes x=y with xs ≟-Terms ys ... | no xs≠ys = no (xs≠ys ∘ proj₂ ∘ ∷-inj) ... | yes xs=ys = yes (cong₂ _∷_ x=y xs=ys) -- defining thick and thin thin : {n : ℕ} → Fin (suc n) → Fin n → Fin (suc n) thin zero y = suc y thin (suc x) zero = zero thin (suc x) (suc y) = suc (thin x y) thick : {n : ℕ} → (x y : Fin (suc n)) → Maybe (Fin n) thick zero zero = nothing thick zero (suc y) = just y thick {zero} (suc ()) _ thick {suc n} (suc x) zero = just zero thick {suc n} (suc x) (suc y) = suc <$> thick x y -- defining replacement function (written _◂ in McBride, 2003) replace : ∀ {n m} → (Fin n → Term m) → Term n → Term m replace _ (lit l) = lit l replace f (var i) = f i replace f (con s ts) = con s (replaceChildren f ts) where replaceChildren : ∀ {n m} → (Fin n → Term m) → (List (Term n) → List (Term m)) replaceChildren f [] = [] replaceChildren f (x ∷ xs) = replace f x ∷ (replaceChildren f xs) -- defining replacement composition _◇_ : ∀ {m n l} (f : Fin m → Term n) (g : Fin l → Term m) → Fin l → Term n _◇_ f g = replace f ∘ g -- defining an occurs check (**check** in McBride, 2003) check : ∀ {n} (x : Fin (suc n)) (t : Term (suc n)) → Maybe (Term n) check _ (lit l) = just (lit l) check x₁ (var x₂) = var <$> thick x₁ x₂ check x₁ (con s ts) = con s <$> checkChildren x₁ ts where checkChildren : ∀ {n} (x : Fin (suc n)) (ts : List (Term (suc n))) → Maybe (List (Term n)) checkChildren x₁ [] = just [] checkChildren x₁ (t ∷ ts) = check x₁ t >>= λ t' → checkChildren x₁ ts >>= λ ts' → return (t' ∷ ts') -- datatype for substitutions (AList in McBride, 2003) data Subst : ℕ → ℕ → Set where nil : ∀ {n} → Subst n n snoc : ∀ {m n} → (s : Subst m n) → (t : Term m) → (x : Fin (suc m)) → Subst (suc m) n -- substitutes t for x (**for** in McBride, 2003) _for_ : ∀ {n} (t : Term n) (x : Fin (suc n)) → Fin (suc n) → Term n _for_ t x y with thick x y _for_ t x y | just y' = var y' _for_ t x y | nothing = t -- substitution application (**sub** in McBride, 2003) sub : ∀ {m n} → Subst m n → Fin m → Term n sub nil = var sub (snoc s t x) = (sub s) ◇ (t for x) -- composes two substitutions _++_ : ∀ {l m n} → Subst m n → Subst l m → Subst l n s₁ ++ nil = s₁ s₁ ++ (snoc s₂ t x) = snoc (s₁ ++ s₂) t x flexRigid : ∀ {n} → Fin n → Term n → Maybe (∃ (Subst n)) flexRigid {zero} () t flexRigid {suc n} x t with check x t flexRigid {suc n} x t | nothing = nothing flexRigid {suc n} x t | just t' = just (n , snoc nil t' x) flexFlex : ∀ {n} → (x y : Fin n) → ∃ (Subst n) flexFlex {zero} () j flexFlex {suc n} x y with thick x y flexFlex {suc n} x y | nothing = (suc n , nil) flexFlex {suc n} x y | just z = (n , snoc nil (var z) x) mutual unifyAcc : ∀ {m} → (t₁ t₂ : Term m) → ∃ (Subst m) → Maybe (∃ (Subst m)) unifyAcc (lit x₁) (lit x₂) (n , nil) with x₁ ≟-Literal x₂ ... | yes x₁=x₂ rewrite x₁=x₂ = just (n , nil) ... | no x₁≠x₂ = nothing unifyAcc (con s ts) (lit x) (n , nil) = nothing unifyAcc (lit x) (con s ts) (n , nil) = nothing unifyAcc (con s₁ ts₁) (con s₂ ts₂) acc with s₁ ≟-Name s₂ ... | yes s₁=s₂ rewrite s₁=s₂ = unifyAccChildren ts₁ ts₂ acc ... | no s₁≠s₂ = nothing unifyAcc (var x₁) (var x₂) (n , nil) = just (flexFlex x₁ x₂) unifyAcc t (var x) (n , nil) = flexRigid x t unifyAcc (var x) t (n , nil) = flexRigid x t unifyAcc t₁ t₂ (n , snoc s t′ x) = ( λ s → proj₁ s , snoc (proj₂ s) t′ x ) <$> unifyAcc (replace (t′ for x) t₁) (replace (t′ for x) t₂) (n , s) unifyAccChildren : ∀ {n} → (ts₁ ts₂ : List (Term n)) → ∃ (Subst n) → Maybe (∃ (Subst n)) unifyAccChildren [] [] acc = just acc unifyAccChildren [] _ _ = nothing unifyAccChildren _ [] _ = nothing unifyAccChildren (t₁ ∷ ts₁) (t₂ ∷ ts₂) acc = unifyAcc t₁ t₂ acc >>= unifyAccChildren ts₁ ts₂ unify : ∀ {m} → (t₁ t₂ : Term m) → Maybe (∃ (Subst m)) unify {m} t₁ t₂ = unifyAcc t₁ t₂ (m , nil)
41.331325
96
0.521207
fda1d5b2e71f26f5d21f0b047232625978d488ff
858
agda
Agda
examples/Termination/StructuralOrder.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/Termination/StructuralOrder.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/Termination/StructuralOrder.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- some examples for structural order in the termination checker module StructuralOrder where data Nat : Set where zero : Nat succ : Nat -> Nat -- c t > t for any term t -- e.g., succ (succ y) > succ y plus : Nat -> Nat -> Nat plus x (succ (succ y)) = succ (plus x (succ y)) plus x (succ zero) = succ x plus x zero = x -- constructor names do not matter -- c (c' t) > c'' t -- e.g. c0 (c1 x) > c0 x -- c0 (c0 x) > c1 x -- Actually constructor names does matter until the non-mattering is -- implemented properly. {- TEMPORARILY REMOVED by Ulf since there are problems with the constructor-name ignoring data Bin : Set where eps : Bin c0 : Bin -> Bin c1 : Bin -> Bin foo : Bin -> Nat foo eps = zero foo (c0 eps) = zero foo (c0 (c1 x)) = succ (foo (c0 x)) foo (c0 (c0 x)) = succ (foo (c1 x)) foo (c1 x) = succ (foo x) -}
23.189189
89
0.614219
21c4b2d92ea754580f4507822da460d403f90a94
238
agda
Agda
Cubical/Codata/Stream/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
1
2020-03-23T23:52:11.000Z
2020-03-23T23:52:11.000Z
Cubical/Codata/Stream/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Codata/Stream/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe --guardedness #-} module Cubical.Codata.Stream.Base where open import Cubical.Core.Everything record Stream (A : Type₀) : Type₀ where coinductive constructor _,_ field head : A tail : Stream A
19.833333
46
0.701681
3088328fee06dad4ae2d5a191155f26419190a1a
1,822
agda
Agda
src/Categories/Functor/Instance/Twisted.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Instance/Twisted.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Instance/Twisted.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category; module Definitions) -- Definition of the "Twisted" Functor between certain Functor Categories module Categories.Functor.Instance.Twisted {o ℓ e o′ ℓ′ e′} (𝒞 : Category o ℓ e) (𝒟 : Category o′ ℓ′ e′) where import Categories.Category.Construction.TwistedArrow as TW open import Categories.Category.Product open import Categories.Category.Construction.Functors open import Categories.Functor open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Data.Product using (_,_) private module C = Category 𝒞 Twist : Functor (Product C.op 𝒞) 𝒟 → Functor (TW.TwistedArrow 𝒞) 𝒟 Twist F = record { F₀ = λ x → F₀ (dom x , cod x) ; F₁ = λ f → F₁ (dom⇐ f , cod⇒ f) ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = F-resp-≈ } where open Functor F open TW.Morphism open TW.Morphism⇒ Twist′ : Functor (Product C.op 𝒞) 𝒟 → Functor (Category.op (TW.TwistedArrow C.op)) 𝒟 Twist′ F = record { F₀ = λ x → F₀ (dom x , cod x) ; F₁ = λ f → F₁ (dom⇐ f , cod⇒ f) ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = F-resp-≈ } where open Functor F open TW.Morphism open TW.Morphism⇒ Twisted : Functor (Functors (Product C.op 𝒞) 𝒟) (Functors (TW.TwistedArrow 𝒞) 𝒟) Twisted = record { F₀ = Twist ; F₁ = Nat ; identity = D.Equiv.refl ; homomorphism = D.Equiv.refl ; F-resp-≈ = λ f≈g → f≈g } where open TW.Morphism open TW.Morphism⇒ module D = Category 𝒟 Nat : {F G : Functor (Product C.op 𝒞) 𝒟} → NaturalTransformation F G → NaturalTransformation (Twist F) (Twist G) Nat nt = ntHelper record { η = λ x → η nt (dom x , cod x) ; commute = λ f → commute nt (dom⇐ f , cod⇒ f) } where open NaturalTransformation
28.920635
114
0.672338
35ec09586cdfae7c0c3e48cfb9d4755b79c8166b
1,506
agda
Agda
Cubical/Data/Graph/Base.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/Graph/Base.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/Graph/Base.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Data.Graph.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function private variable ℓv ℓv' ℓv'' ℓe ℓe' ℓe'' ℓd ℓd' : Level -- The type of directed multigraphs (with loops) record Graph ℓv ℓe : Type (ℓ-suc (ℓ-max ℓv ℓe)) where field Obj : Type ℓv Hom : Obj → Obj → Type ℓe open Graph public _ᵒᵖ : Graph ℓv ℓe → Graph ℓv ℓe Obj (G ᵒᵖ) = Obj G Hom (G ᵒᵖ) x y = Hom G y x TypeGr : ∀ ℓ → Graph (ℓ-suc ℓ) ℓ Obj (TypeGr ℓ) = Type ℓ Hom (TypeGr ℓ) A B = A → B -- Graph functors/homomorphisms record GraphHom (G : Graph ℓv ℓe ) (G' : Graph ℓv' ℓe') : Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-max ℓv' ℓe'))) where field _$_ : Obj G → Obj G' _<$>_ : ∀ {x y : Obj G} → Hom G x y → Hom G' (_$_ x) (_$_ y) open GraphHom public GraphGr : ∀ ℓv ℓe → Graph _ _ Obj (GraphGr ℓv ℓe) = Graph ℓv ℓe Hom (GraphGr ℓv ℓe) G G' = GraphHom G G' -- Diagrams are (graph) functors with codomain Type Diag : ∀ ℓd (G : Graph ℓv ℓe) → Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc ℓd))) Diag ℓd G = GraphHom G (TypeGr ℓd) record DiagMor {G : Graph ℓv ℓe} (F : Diag ℓd G) (F' : Diag ℓd' G) : Type (ℓ-suc (ℓ-max (ℓ-max ℓv ℓe) (ℓ-suc (ℓ-max ℓd ℓd')))) where field nat : ∀ (x : Obj G) → F $ x → F' $ x comSq : ∀ {x y : Obj G} (f : Hom G x y) → nat y ∘ F <$> f ≡ F' <$> f ∘ nat x open DiagMor public DiagGr : ∀ ℓd (G : Graph ℓv ℓe) → Graph _ _ Obj (DiagGr ℓd G) = Diag ℓd G Hom (DiagGr ℓd G) = DiagMor
26.892857
80
0.586985
1a3ca2e30681a9acba0d3a34f0046f3c04534e20
1,578
agda
Agda
src/Leftovers/Examples.agda
JoeyEremondi/AgdaLeftovers
01b60b405009feaada181af175f019ceb89e42b2
[ "BSD-3-Clause" ]
null
null
null
src/Leftovers/Examples.agda
JoeyEremondi/AgdaLeftovers
01b60b405009feaada181af175f019ceb89e42b2
[ "BSD-3-Clause" ]
null
null
null
src/Leftovers/Examples.agda
JoeyEremondi/AgdaLeftovers
01b60b405009feaada181af175f019ceb89e42b2
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS -v 2 #-} module Leftovers.Examples where open import Leftovers.Utils open import Leftovers.Leftovers open import Leftovers.Equality open import Data.Bool open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Product open import Data.Unit -- notNot : ∀ b → not (not b) ≡ b -- notNot = (by {A = ∀ b → not (not b) ≡ b} (cases (quote Bool)) {!!}) -- (refl , refl) -- applyTo : ∀ {ℓ1 ℓ2} {X : Set ℓ1} { Y : Set ℓ2 } → (X → Y) → X → Y -- applyTo f x = f x -- infixr 40 applyTo -- syntax applyTo e₁ (λ x → e₂) = x ≔ e₁ ︔ e₂ plusZero : ∀ n → n ≡ n + 0 plusZero = getNormal (by {A = ∀ n → n ≡ n + 0} (cases (quote ℕ)) ((λ x → cong suc (plusZero x)) , refl)) -- (by {A = ∀ n → n ≡ n + 0} (cases (quote ℕ)) ((λ x → cong suc (plusZero x)) , refl)) -- plusZero' : ∀ n → n ≡ n + 0 -- plusZero' = getNormal -- ((the ((zero ≡ zero × (∀ x → suc x ≡ suc x + 0)) → ∀ n → n ≡ n + 0) λ h → identity (λ { zero → proj₁ h ; (suc x) → (proj₂ h) x })) -- (refl , λ x → cong suc (plusZero' x))) -- -- plusZero'' : ∀ n → n ≡ n + 0 -- -- plusZero'' = (the (zero ≡ zero → (∀ x → suc x ≡ suc x + 0) → ∀ n → n ≡ n + 0) λ h1 h2 → (λ { zero → h1 ; (suc x) → h2 x})) refl ((the (Dummy → ∀ x → suc x ≡ suc x + 0) (λ {dummy → λ x → cong suc (plusZero'' x)})) dummy) -- -- plusZero' = -- -- let -- -- h : (zero ≡ zero × ∀ n → suc n ≡ (suc n) + 0) -- -- h = refl , λ n → cong suc (plusZero' n) -- -- in λ { zero → proj₁ h ; (suc x) → (proj₂ h) x} -- -- plusZeroR : ∀ n → n + 0 ≡ n -- -- plusZeroR = by (refl-cases (quote ℕ)) ?
30.346154
226
0.516477
522f57d683e26504dd7634e3b80887110d4df7da
6,294
agda
Agda
FormalLanguage.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
FormalLanguage.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
FormalLanguage.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
{-# OPTIONS --sized-types #-} module FormalLanguage {ℓ} where import Lvl open import Sized.Data.List renaming (∅ to []) open import Lang.Size open import Data.Boolean open import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.Boolean.Stmt open import Functional open import Relator.Equals open import Type -- Definitions: -- A language is a set of words. -- A word in a language is a list of valid symbols in the language. -- A valid symbol in the language is an element in the alphabet of the language. -- An alphabet of a language is a set. -- A string is a word. -- Standard conventions for variable naming in languages: -- L is a language -- Σ is an alphabet Alphabet = Type{ℓ} Word = List -- Language is defined as a trie: (LHS is using the definition of Language, RHS is using the usual "semantics" of languages as sets): -- For a language L -- accepts-ε: -- (accepts-ε(L) = 𝑇) ↔ (ε ∈ L) -- accepts-ε(L) returns a boolean determining whether the empty word is accepted in the language. -- suffix-lang: -- ∀word∀c. (word ∈ suffix-lang(L)(c)) ↔ ((c 𝁼 word) ∈ L) -- suffix-lang(L)(c) is the language that consists of the rest of the words when a word is starting with c in L. -- Copied (with modifications) from: http://agda.readthedocs.io/en/v2.5.2/language/sized-types.html (2017-05-13) -- which links the following paper: "Formal Languages, Formally and Coinductively, Dmitriy Traytel, FSCD (2016)" [https://www21.in.tum.de/~traytel/papers/fscd16-coind_lang/paper.pdf] -- Example: -- A language 𝔏 consists of 6 words: -- 𝔏 = {"" , "aa" , "aaa" , "aab" , "aba" , "aaab"} -- accepts-ε (𝔏) = 𝑇 -- suffix-lang(𝔏)(a) = {"a" , "aa" , "ab" , "ba" , "aab"} -- accepts-ε (suffix-lang(𝔏)(a)) = 𝐹 -- suffix-lang(suffix-lang(𝔏)(a))(a) = {"" , "a" , "b" , "ab"} -- suffix-lang(suffix-lang(𝔏)(a))(b) = {"a"} record Language (Σ : Alphabet) {s : Size} : Type{ℓ} where constructor intro coinductive field accepts-ε : Bool suffix-lang : ∀{sₛ : <ˢⁱᶻᵉ s} → Σ → Language(Σ){sₛ} module Oper {Σ} where infixl 1003 _∪_ infixl 1002 _∩_ infixl 1001 _𝁼_ infixl 1000 _* -- The empty language. -- The language that does not include any word at all. ∅ : ∀{s} → Language(Σ){s} Language.accepts-ε ∅ = 𝐹 Language.suffix-lang ∅ _ = ∅ -- The empty word language. -- The language with only the empty word. ε : ∀{s} → Language(Σ){s} Language.accepts-ε ε = 𝑇 Language.suffix-lang ε _ = ∅ -- The language of length 1 words that only accepts some symbols of its alphabet alphabet-filter : ∀{s} → (Σ → Bool) → Language(Σ){s} Language.accepts-ε (alphabet-filter f) = 𝐹 Language.suffix-lang (alphabet-filter f) c = if f(c) then ε else ∅ -- The single symbol language. -- The language consisting of a single word with a single letter -- Note: This is only possible when Alphabet has a computably decidable equality relation single : ⦃ _ : ComputablyDecidable(_≡_) ⦄ → ∀{s} → Σ → Language(Σ){s} single(a) = alphabet-filter(ComputablyDecidable.decide(_≡_) a) -- The sublanguage filtered by a decidable predicate. filter : ∀{s} → (Word(Σ) → Bool) → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (filter P(𝔏)) = P(List.∅) Language.suffix-lang (filter P(𝔏)) c = filter (P ∘ tail) (Language.suffix-lang(𝔏)(c)) -- The language where every letter in the alphabet is applied to a function. unmap : ∀{Σ₂}{s} → (Σ → Σ₂) → Language(Σ₂){s} → Language(Σ){s} Language.accepts-ε (unmap f(𝔏)) = Language.accepts-ε (𝔏) Language.suffix-lang (unmap f(𝔏)) c = unmap f(Language.suffix-lang(𝔏)(f(c))) -- Union. -- The language that includes any words that the two languages have. _∪_ : ∀{s} → Language(Σ){s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (L₁ ∪ L₂) = Language.accepts-ε(L₁) || Language.accepts-ε(L₂) Language.suffix-lang (L₁ ∪ L₂) c = Language.suffix-lang(L₁)(c) ∪ Language.suffix-lang(L₂)(c) -- Intersection. -- The language that only includes the words that both languages have in common. _∩_ : ∀{s} → Language(Σ){s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (L₁ ∩ L₂) = Language.accepts-ε(L₁) && Language.accepts-ε(L₂) Language.suffix-lang (L₁ ∩ L₂) c = Language.suffix-lang(L₁)(c) ∩ Language.suffix-lang(L₂)(c) -- Concatenation. -- The language that includes words that start with a word the first language and end in a word from the second language. _𝁼_ : ∀{s} → Language(Σ){s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (L₁ 𝁼 L₂) = Language.accepts-ε(L₁) && Language.accepts-ε(L₂) Language.suffix-lang (L₁ 𝁼 L₂) c = if Language.accepts-ε(L₁) then (Language.suffix-lang(L₁)(c) 𝁼 L₂) ∪ Language.suffix-lang(L₂)(c) else (Language.suffix-lang(L₁)(c) 𝁼 L₂) -- Star/Closure -- The language that includes words in any number of concatenations with itself. _* : ∀{s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (L *) = 𝑇 Language.suffix-lang (L *) c = Language.suffix-lang(L)(c) 𝁼 (L *) -- Complement -- The language that includes all words that a language does not have. ∁_ : ∀{s} → Language(Σ){s} → Language(Σ){s} Language.accepts-ε (∁ L) = !(Language.accepts-ε(L)) Language.suffix-lang (∁ L) c = ∁(Language.suffix-lang(L)(c)) -- The universal language. -- The language that includes all words in any combination of the alphabet. -- The largest language (with most words) with a certain alphabet. 𝐔 : ∀{s} → Language(Σ){s} 𝐔 = ∁(∅) -- Containment check -- Checks whether a word is in the language. _∈?_ : ∀{s} → Word{s = s}(Σ) → Language(Σ) → Bool _∈?_ [] L = Language.accepts-ε(L) _∈?_ (_⊰_ {sₗ} c w) L = _∈?_ {s = sₗ} w (Language.suffix-lang L c) -- Containment -- The relation of whether a word is in the language or not. _∈_ : ∀{s} → Word{s = s}(Σ) → Language(Σ) → Type _∈_ {s} a b = IsTrue(_∈?_ {s} a b) [_]_∈_ : ∀(s) → Word{s = s}(Σ) → Language(Σ) → Type [ s ] a ∈ b = _∈_ {s} a b -- Uncontainment -- The relation of whether a word is not in the language or not. _∉_ : ∀{s} → Word{s = s}(Σ) → Language(Σ) → Type _∉_ {s} a b = IsFalse(_∈?_ {s} a b) [_]_∉_ : ∀(s) → Word{s = s}(Σ) → Language(Σ) → Type [ s ] a ∉ b = _∉_ {s} a b
41.137255
182
0.636638
1b541614b363b26c0e99f54918925738586fcd10
15,543
agda
Agda
Structure/Logic/Constructive/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Logic/Constructive/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Logic/Constructive/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Logic.Constructive.Proofs where open import Functional as Fn open import Lang.Instance open import Logic.Propositional as Logic using (_←_ ; _↔_) open import Logic.Predicate as Logic hiding (∀ₗ) import Lvl import Structure.Logic.Constructive.BoundedPredicate import Structure.Logic.Constructive.Predicate import Structure.Logic.Constructive.Propositional open import Syntax.Function open import Type private variable ℓ ℓₗ ℓₘₗ ℓₒ ℓₚ : Lvl.Level private variable Formula : Type{ℓₗ} private variable Proof : Formula → Type{ℓₘₗ} private variable Predicate : Type{ℓₚ} private variable Domain : Type{ℓₒ} module _ (Proof : Formula → Type{ℓₘₗ}) where open Structure.Logic.Constructive.Propositional(Proof) private variable X Y Z : Formula {- module _ ⦃ logic : ConstructiveLogic ⦄ where [⟵][⟶][∧]-[⟷]-equivalence : Proof(X ⟷ Y) ↔ (Proof(X ⟵ Y) Logic.∧ Proof(X ⟶ Y)) [⟵][⟶][∧]-[⟷]-equivalence {X} {Y} = Logic.[↔]-intro (p ↦ ⟷.intro (⟵.elim(Logic.[∧]-elimₗ p)) (⟶.elim(Logic.[∧]-elimᵣ p))) (p ↦ Logic.[∧]-intro (⟵.intro (⟷.elimₗ p)) (⟶.intro (⟷.elimᵣ p))) -} [⟶]-redundancyₗ : ⦃ impl : ∃(Implication) ⦄ → Proof(X ⟶ (X ⟶ Y)) → Proof(X ⟶ Y) [⟶]-redundancyₗ = ⟶.intro ∘ swap apply₂ ∘ (⟶.elim ∘₂ ⟶.elim) [⟷]-reflexivity : ∀{_⟷_} → ⦃ Equivalence(_⟷_) ⦄ → Proof(X ⟷ X) [⟷]-reflexivity = ⟷.intro id id [⟵]-to-[⟶] : ⦃ con : ∃(Consequence) ⦄ → ∃(Implication) ∃.witness [⟵]-to-[⟶] = swap(_⟵_) Implication.intro (∃.proof [⟵]-to-[⟶]) = ⟵.intro Implication.elim (∃.proof [⟵]-to-[⟶]) = ⟵.elim [⟶]-to-[⟵] : ⦃ impl : ∃(Implication) ⦄ → ∃(Consequence) ∃.witness [⟶]-to-[⟵] = swap(_⟶_) Consequence.intro (∃.proof [⟶]-to-[⟵]) = ⟶.intro Consequence.elim (∃.proof [⟶]-to-[⟵]) = ⟶.elim [⟵][⟶][∧]-to-[⟷] : ⦃ con : ∃(Consequence) ⦄ → ⦃ impl : ∃(Implication) ⦄ → ⦃ or : ∃(Conjunction) ⦄ → ∃(Equivalence) ∃.witness [⟵][⟶][∧]-to-[⟷] X Y = (X ⟵ Y) ∧ (X ⟶ Y) Equivalence.intro (∃.proof [⟵][⟶][∧]-to-[⟷]) yx xy = ∧.intro (⟵.intro yx) (⟶.intro xy) Equivalence.elimₗ (∃.proof [⟵][⟶][∧]-to-[⟷]) = ⟵.elim ∘ ∧.elimₗ Equivalence.elimᵣ (∃.proof [⟵][⟶][∧]-to-[⟷]) = ⟶.elim ∘ ∧.elimᵣ [⟶][⟷]-to-[∧] : ⦃ impl : ∃(Implication) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Conjunction) ∃.witness [⟶][⟷]-to-[∧] X Y = (X ⟶ Y) ⟷ X Conjunction.intro (∃.proof [⟶][⟷]-to-[∧]) x y = ⟷.intro (const(⟶.intro(const y))) (const x) Conjunction.elimₗ (∃.proof [⟶][⟷]-to-[∧]) xyx = ⟷.elimᵣ xyx (⟶.intro(swap apply₂(⟶.elim ∘ ⟷.elimₗ xyx))) Conjunction.elimᵣ (∃.proof [⟶][⟷]-to-[∧]) xyx = apply₂(⟷.elimᵣ xyx (⟶.intro(swap apply₂ (⟶.elim ∘ ⟷.elimₗ xyx)))) (⟶.elim ∘ (⟷.elimₗ xyx)) [∨][⟷]-to-[⟶] : ⦃ or : ∃(Disjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Implication) ∃.witness [∨][⟷]-to-[⟶] X Y = (X ∨ Y) ⟷ Y Implication.intro (∃.proof [∨][⟷]-to-[⟶]) = ⟷.intro ∨.introᵣ ∘ swap ∨.elim id Implication.elim (∃.proof [∨][⟷]-to-[⟶]) xyy x = ⟷.elimᵣ xyy (∨.introₗ x) [∧][⟷]-to-[⟶] : ⦃ and : ∃(Conjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Implication) ∃.witness [∧][⟷]-to-[⟶] X Y = (X ∧ Y) ⟷ X Implication.intro (∃.proof [∧][⟷]-to-[⟶]) xy = ⟷.intro (x ↦ ∧.intro x (xy x)) ∧.elimₗ Implication.elim (∃.proof [∧][⟷]-to-[⟶]) xyx x = ∧.elimᵣ(⟷.elimₗ xyx x) [¬][⊤]-to-[⊥] : ⦃ neg : ∃(Negation) ⦄ → ⦃ top : ∃(Top) ⦄ → ∃(Bottom) ∃.witness [¬][⊤]-to-[⊥] = ¬ ⊤ Bottom.elim (∃.proof [¬][⊤]-to-[⊥]) = ¬.elim ⊤.intro [¬][⊥]-to-[⊤] : ⦃ neg : ∃(Negation) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → ∃(Top) ∃.witness [¬][⊥]-to-[⊤] = ¬ ⊥ Top.intro (∃.proof [¬][⊥]-to-[⊤]) = ¬.intro{Y = ⊥} ⊥.elim ⊥.elim [⟷]-to-[⊤] : Formula → ⦃ eq : ∃(Equivalence) ⦄ → ∃(Top) ∃.witness ([⟷]-to-[⊤] φ) = φ ⟷ φ Top.intro (∃.proof ([⟷]-to-[⊤] φ)) = [⟷]-reflexivity [⟷][⊥]-to-[¬] : ⦃ eq : ∃(Equivalence) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → ∃(Negation) ∃.witness [⟷][⊥]-to-[¬] = _⟷ ⊥ Negation.intro (∃.proof [⟷][⊥]-to-[¬]) xy xy⊥ = ⟷.intro ⊥.elim ((⟷.elimᵣ ∘ xy⊥) ∘ₛ xy) Negation.elim (∃.proof [⟷][⊥]-to-[¬]) = ⊥.elim ∘₂ swap ⟷.elimᵣ [∨][⟷][⊥]-adequacy : ⦃ or : ∃(Disjunction) ⦄ → ⦃ eq : ∃(Equivalence) ⦄ → ⦃ bot : ∃(Bottom) ⦄ → Logic Logic.top [∨][⟷][⊥]-adequacy = [⟷]-to-[⊤] ⊥ Logic.implication [∨][⟷][⊥]-adequacy = [∨][⟷]-to-[⟶] Logic.negation [∨][⟷][⊥]-adequacy = [⟷][⊥]-to-[¬] Logic.conjunction [∨][⟷][⊥]-adequacy = [⟶][⟷]-to-[∧] where instance _ = Logic.implication [∨][⟷][⊥]-adequacy Logic.consequence [∨][⟷][⊥]-adequacy = [⟶]-to-[⟵] where instance _ = Logic.implication [∨][⟷][⊥]-adequacy module _ (Proof : Formula → Type{ℓₘₗ}) where open Structure.Logic.Constructive.Propositional(Proof) private variable X Y Z : Formula open import Data.Tuple as Tuple using () [⊤]-preserving-type : ⦃ top : ∃(Top) ⦄ → Proof(⊤) ↔ Logic.⊤ Tuple.left [⊤]-preserving-type = const ⊤.intro Tuple.right [⊤]-preserving-type = const Logic.[⊤]-intro [∧]-preserving-type : ⦃ and : ∃(Conjunction) ⦄ → Proof(X ∧ Y) ↔ (Proof(X) Logic.∧ Proof(Y)) Tuple.left [∧]-preserving-type (Logic.[∧]-intro x y) = ∧.intro x y Tuple.right [∧]-preserving-type xy = Logic.[∧]-intro (∧.elimₗ xy) (∧.elimᵣ xy) [∨]-preserving-type : ⦃ or : ∃(Disjunction) ⦄ → Proof(X ∨ Y) ← (Proof(X) Logic.∨ Proof(Y)) [∨]-preserving-type = Logic.[∨]-elim ∨.introₗ ∨.introᵣ [⟶]-preserving-type : ⦃ impl : ∃(Implication) ⦄ → Proof(X ⟶ Y) ↔ (Proof(X) → Proof(Y)) Tuple.left [⟶]-preserving-type = ⟶.intro Tuple.right [⟶]-preserving-type = ⟶.elim [⟵]-preserving-type : ⦃ cons : ∃(Consequence) ⦄ → Proof(X ⟵ Y) ↔ (Proof(X) ← Proof(Y)) Tuple.left [⟵]-preserving-type = ⟵.intro Tuple.right [⟵]-preserving-type = ⟵.elim [⟷]-preserving-type : ⦃ eq : ∃(Equivalence) ⦄ → Proof(X ⟷ Y) ↔ (Proof(X) ↔ Proof(Y)) Tuple.left [⟷]-preserving-type xy = ⟷.intro (Logic.[↔]-to-[←] xy) (Logic.[↔]-to-[→] xy) Tuple.right [⟷]-preserving-type xy = Logic.[↔]-intro (⟷.elimₗ xy) (⟷.elimᵣ xy) {- module Test ⦃ logic : Logic ⦄ where pure : ∀{A : Formula} → Proof(A) → Proof(A) pure = id _<*>_ : ∀{A B : Formula} → Proof(A ⟶ B) → Proof(A) → Proof(B) _<*>_ = ⟶.elim test : ∀{A B} → Proof(A ⟶ (A ⟶ B)) → Proof(A) → Proof(B) test ab a = ⦇ ab a a ⦈ module Test2 ⦃ logic : ConstructiveLogic ⦄ {Obj : Type{ℓ}} where private variable P : Obj → Formula module _ ⦃ all : ∃(Universal) ⦄ where pure : ∀{A : Formula} → Proof(A) → Proof(A) pure = id _<*>_ : ∀{P : Obj → Formula} → Proof(∀ₗ P) → (x : Obj) → Proof(P(x)) _<*>_ = ∀ₗ.elim test : ∀{A : Obj → Obj → Formula} → Proof(∀ₗ(x ↦ ∀ₗ(y ↦ A x y))) → (x : Obj) → Proof(A x x) test a x = ⦇ a x x ⦈ -} module _ where open import Data open import Data.Tuple open import Data.Either as Either open Structure.Logic.Constructive.BoundedPredicate renaming (Logic to BoundedPredicateLogic) open Structure.Logic.Constructive.Predicate renaming (Logic to PredicateLogic) open Structure.Logic.Constructive.Propositional renaming (Logic to PropositionalLogic) instance typePropositionalLogic : PropositionalLogic{Formula = Type{ℓ}} id PropositionalLogic.bottom typePropositionalLogic = [∃]-intro Empty ⦃ record{elim = empty} ⦄ PropositionalLogic.top typePropositionalLogic = [∃]-intro Unit ⦃ record{intro = <>} ⦄ PropositionalLogic.implication typePropositionalLogic = [∃]-intro _→ᶠ_ ⦃ record{intro = _$_ ; elim = id} ⦄ PropositionalLogic.conjunction typePropositionalLogic = [∃]-intro _⨯_ ⦃ record{intro = _,_ ; elimₗ = left ; elimᵣ = right} ⦄ PropositionalLogic.disjunction typePropositionalLogic = [∃]-intro _‖_ ⦃ record{introₗ = Left ; introᵣ = Right ; elim = Either.map1} ⦄ PropositionalLogic.consequence typePropositionalLogic = [∃]-intro _←ᶠ_ ⦃ record{intro = id ; elim = _$_} ⦄ PropositionalLogic.equivalence typePropositionalLogic = [∃]-intro Logic._↔_ ⦃ record{intro = _,_ ; elimₗ = left ; elimᵣ = right} ⦄ PropositionalLogic.negation typePropositionalLogic = [∃]-intro Logic.¬_ ⦃ record{intro = Fn.swap(_∘ₛ_) ; elim = empty ∘₂ apply} ⦄ instance typePredicateLogic : ∀{T : Type{ℓₒ}} → PredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ}} id {Predicate = T → Type{ℓₒ Lvl.⊔ ℓₗ}} {Domain = T} id PredicateLogic.universal typePredicateLogic = [∃]-intro Logic.∀ₗ ⦃ record{intro = id ; elim = id} ⦄ PredicateLogic.existential typePredicateLogic = [∃]-intro Logic.∃ ⦃ record{intro = \{_}{x} p → Logic.[∃]-intro x ⦃ p ⦄ ; elim = Logic.[∃]-elim} ⦄ open import Type.Dependent instance typeBoundedPredicateLogic : ∀{T : Type{ℓₒ}} → BoundedPredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ}} id {Predicate = (x : T) → ∀{B : T → Type{ℓₒ Lvl.⊔ ℓₗ}} → B(x) → Type{ℓₒ Lvl.⊔ ℓₗ}} {Domain = T} id BoundedPredicateLogic.universal typeBoundedPredicateLogic = [∃]-intro (\B P → ∀{x} → (bx : B(x)) → P(x){B}(bx)) ⦃ record{intro = \p bx → p bx ; elim = \p bx → p bx} ⦄ BoundedPredicateLogic.existential typeBoundedPredicateLogic = [∃]-intro (\B P → Logic.∃(x ↦ Σ(B(x)) (P(x){B}))) ⦃ record{intro = \{_}{x} bx p → Logic.[∃]-intro x ⦃ intro bx p ⦄ ; elim = \p → Logic.[∃]-elim (\(intro bx px) → p bx px)} ⦄ {- TODO: Maybe have some more assumptions boundedPredicateLogic-to-predicateLogic : ∀{Formula Domain Predicate : Type{ℓₒ}}{Proof : Formula → Type}{_$_} → BoundedPredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Domain} (_$_) → PredicateLogic{Formula = Formula} Proof {Predicate = (Domain → Formula) ⨯ Predicate} {Domain = Σ(Predicate ⨯ Domain) (\(P , x) → Proof((P $ x) {{!!}} {!!}))} {!!} PredicateLogic.propositional (boundedPredicateLogic-to-predicateLogic L) = BoundedPredicateLogic.propositional L ∃.witness (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L)) (B , P) = ∃.witness (BoundedPredicateLogic.universal L) B P Universal.intro (∃.proof (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L))) {B , P} p = BoundedUniversal.intro (∃.proof (BoundedPredicateLogic.universal L)) (\{x} pp → p{intro (P , x) {!!}}) Universal.elim (∃.proof (PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L))) = {!!} ∃.witness (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L)) (B , P) = ∃.witness (BoundedPredicateLogic.existential L) B P Existential.intro (∃.proof (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L))) = {!!} Existential.elim (∃.proof (PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L))) = {!!} -} {- TODO: Seems to need a duplicate (Domain → Formula) in Predicate. Also, does not work with this generality boundedPredicateLogic-to-predicateLogic : ∀{_$_} → BoundedPredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Domain} (_$_) → PredicateLogic{Formula = Formula} Proof {Predicate = Predicate} {Domain = Σ((Domain → Formula) ⨯ Domain) (\(B , x) → Proof(B(x)))} (\P (intro(B , x) bx) → (P $ x) {B} bx) PredicateLogic.propositional (boundedPredicateLogic-to-predicateLogic L) = BoundedPredicateLogic.propositional L PredicateLogic.universal (boundedPredicateLogic-to-predicateLogic L) = [∃]-intro {!!} ⦃ record{intro = {!!} ; elim = {!!}} ⦄ PredicateLogic.existential (boundedPredicateLogic-to-predicateLogic L) = [∃]-intro {!!} ⦃ record{intro = {!!} ; elim = {!!}} ⦄ -} {-instance typeBoundedPredicateLogic : ∀{T : Type{ℓₒ}}{B : T → Type{ℓ}} → PredicateLogic{Formula = Type{ℓₒ Lvl.⊔ ℓₗ Lvl.⊔ ℓ}} id {Predicate = (x : T) → ⦃ B(x) ⦄ → Type{ℓₒ Lvl.⊔ ℓₗ Lvl.⊔ ℓ}} {Domain = Σ T B} (\f (intro x b) → f x ⦃ b ⦄) PredicateLogic.universal (typeBoundedPredicateLogic {B = B}) = [∃]-intro (f ↦ (∀{x} ⦃ bx ⦄ → f(x) ⦃ bx ⦄)) ⦃ record{intro = \px → px ; elim = \{P} px {x} → px{Σ.left x} ⦃ Σ.right x ⦄} ⦄ PredicateLogic.existential (typeBoundedPredicateLogic {B = B}) = [∃]-intro (f ↦ Logic.∃(x ↦ Σ(B(x)) (bx ↦ f x ⦃ bx ⦄)) ) ⦃ record{intro = {!!} ; elim = {!!}} ⦄ -} import Logic.Classical.DoubleNegated as DoubleNegated open import Logic.Names import Logic.Propositional.Theorems as Logic instance doubleNegatedTypeLogic : PropositionalLogic{ℓₘₗ = Lvl.𝟎}(Logic.¬¬_) PropositionalLogic.bottom doubleNegatedTypeLogic = Logic.[∃]-intro Logic.⊥ ⦃ record{elim = DoubleNegated.[⊥]-elim} ⦄ PropositionalLogic.top doubleNegatedTypeLogic = Logic.[∃]-intro Logic.⊤ ⦃ record{intro = DoubleNegated.[⊤]-intro} ⦄ PropositionalLogic.implication doubleNegatedTypeLogic = Logic.[∃]-intro (_→ᶠ_) ⦃ record{intro = DoubleNegated.[→]-intro ; elim = DoubleNegated.[→]-elim} ⦄ PropositionalLogic.conjunction doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._∧_) ⦃ record{intro = DoubleNegated.[∧]-intro ; elimₗ = DoubleNegated.[∧]-elimₗ ; elimᵣ = DoubleNegated.[∧]-elimᵣ} ⦄ PropositionalLogic.disjunction doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._∨_) ⦃ record{introₗ = DoubleNegated.[∨]-introₗ ; introᵣ = DoubleNegated.[∨]-introᵣ ; elim = DoubleNegated.[∨]-elim} ⦄ PropositionalLogic.consequence doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._←_) ⦃ record{intro = DoubleNegated.[←]-intro ; elim = DoubleNegated.[→]-elim} ⦄ PropositionalLogic.equivalence doubleNegatedTypeLogic = Logic.[∃]-intro (Logic._↔_) ⦃ record{intro = DoubleNegated.[↔]-intro ; elimₗ = DoubleNegated.[↔]-elimₗ ; elimᵣ = DoubleNegated.[↔]-elimᵣ} ⦄ PropositionalLogic.negation doubleNegatedTypeLogic = Logic.[∃]-intro (Logic.¬_) ⦃ record{intro = Fn.swap(_∘ₛ_) ; elim = const ∘₂ apply} ⦄ open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.Boolean.Stmt open import Data.Boolean.Stmt.Proofs instance booleanLogic : PropositionalLogic IsTrue PropositionalLogic.bottom booleanLogic = [∃]-intro 𝐹 ⦃ record{elim = Logic.[⊥]-elim ∘ IsTrue.[𝐹]-elim} ⦄ PropositionalLogic.top booleanLogic = [∃]-intro 𝑇 ⦃ record{intro = IsTrue.[𝑇]-intro} ⦄ PropositionalLogic.conjunction booleanLogic = [∃]-intro _&&_ ⦃ record{intro = IsTrue.[∧]-intro ; elimₗ = IsTrue.[∧]-elimₗ ; elimᵣ = IsTrue.[∧]-elimᵣ} ⦄ PropositionalLogic.disjunction booleanLogic = [∃]-intro _||_ ⦃ record{introₗ = IsTrue.[∨]-introₗ ; introᵣ = IsTrue.[∨]-introᵣ ; elim = IsTrue.[∨]-elim} ⦄ PropositionalLogic.negation booleanLogic = [∃]-intro ! ⦃ record{intro = IsTrue.[!]-intro ; elim = IsTrue.[!]-elim} ⦄ PropositionalLogic.implication booleanLogic = [∃]-intro _→?_ ⦃ record{intro = IsTrue.[→?]-intro ; elim = IsTrue.[→?]-elim} ⦄ PropositionalLogic.consequence booleanLogic = [∃]-intro _←?_ ⦃ record{intro = IsTrue.[←?]-intro ; elim = IsTrue.[←?]-elim} ⦄ PropositionalLogic.equivalence booleanLogic = [∃]-intro _==_ ⦃ record{intro = IsTrue.[==]-intro ; elimₗ = IsTrue.[==]-elimₗ ; elimᵣ = IsTrue.[==]-elimᵣ} ⦄ booleanPredicateLogic : ∀{T : Type{ℓ}}{all exist : (T → Bool) → Bool} → (∀{P} → (∀{x} → IsTrue(P(x))) ↔ IsTrue(all P)) → (∀{P} → (Logic.∃(x ↦ IsTrue(P(x)))) ↔ IsTrue(exist P)) → PredicateLogic IsTrue {Domain = T} id PredicateLogic.universal (booleanPredicateLogic {all = all} {exist = exist} all-eq exist-eq) = [∃]-intro all ⦃ record{intro = Logic.[↔]-to-[→] all-eq ; elim = Logic.[↔]-to-[←] all-eq} ⦄ PredicateLogic.existential (booleanPredicateLogic {all = all} {exist = exist} all-eq exist-eq) = [∃]-intro exist ⦃ record{intro = Logic.[↔]-to-[→] exist-eq ∘ (p ↦ [∃]-intro _ ⦃ p ⦄) ; elim = p ↦ ep ↦ p(Logic.[∃]-proof(Logic.[↔]-to-[←] exist-eq ep))} ⦄
65.582278
373
0.606897
37606314b2a1dc7c8b78d3f4c7cd65e883934c5c
8,672
agda
Agda
agda/paper/2012-Stephanie_Weirich_and_Casinghino-Generic_Programming_with_Dependent_Types/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/paper/2012-Stephanie_Weirich_and_Casinghino-Generic_Programming_with_Dependent_Types/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/paper/2012-Stephanie_Weirich_and_Casinghino-Generic_Programming_with_Dependent_Types/z.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
{-# OPTIONS --type-in-type #-} module z where {- Generic Programming with Dependent Types Stephanie Weirich and Chris Casinghino, University of Pennsylvania, {sweirich,ccasin}@cis.upenn.edu ccasin@cis.upenn.edu 2010 : https://www.seas.upenn.edu/~sweirich/papers/aritygen.pdf 2012 : https://www.cis.upenn.edu/~sweirich/papers/ssgip-journal.pdf ------------------------------------------------------------------------------ -- Abstract and Intro 2 types of genericity - datatype - operate on type structure of data - so no need to define for each new type - arity - enables functions to be applied to a variable number of args. e.g., generalize arity of map repeat :: a → [a] map :: (a → b) → [a] → [b] zipWith :: (a → b → c) → [a] → [b] → [c] zipWith3 :: (a → b → c → d) → [a] → [b] → [c] → [d] code : http://www.seas.upenn.edu/~sweirich/papers/aritygen-lncs.tar.gz tested with : Agda version 2.2.10 ------------------------------------------------------------------------------ 2 SIMPLE TYPE-GENERIC PROGRAMMING IN AGDA using Agda with flags (which implies cannot do proofs) {-# OPTIONS --type-in-type #-} –no-termination-check {-# OPTIONS --no-positivity-check #-} -} data Bool : Set where true : Bool false : Bool ¬ : Bool → Bool ¬ true = false ¬ false = true _∧_ : Bool → Bool → Bool true ∧ true = true _ ∧ _ = false if_then_else : ∀ {A : Set} → Bool → A → A → A if true then a1 else a2 = a1 if false then a1 else a2 = a2 data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+_ : ℕ → ℕ → ℕ zero + m = m suc n + m = suc (n + m) infixl 40 _+_ data List (A : Set) : Set where [] : List A _::_ : A → List A → List A infixr 5 _::_ -- https://agda.github.io/agda-stdlib/Data.Vec.Functional.html replicate : ∀ {A} → ℕ → A → List A replicate zero _ = [] replicate (suc n) x = x :: replicate n x data Vec (A : Set) : ℕ → Set where [] : Vec A zero _::_ : ∀ {n} → A → (Vec A n) → Vec A (suc n) repeat : ∀ {n} {A} → A → Vec A n repeat {zero} x = [] repeat {suc n} x = x :: repeat x ------------------------------------------------------------------------------ -- 2.1 BASIC TYPE-GENERIC PROGRAMMING eq-bool : Bool → Bool → Bool eq-bool true true = true eq-bool false false = true eq-bool _ _ = false eq-nat : ℕ → ℕ → Bool eq-nat zero zero = true eq-nat (suc n) (suc m) = eq-nat n m eq-nat _ _ = false {- Structural equality functions, like above, motivate type-generic programming: - enables defining functions that observe and use structure of types In a dependently typed language, type-generic is accomplished using universes [17, 21]. E.G., universe of natural number, boolean and product types -} -- datatype 'Type', called a "universe" data Type : Set where TNat : Type TBool : Type TProd : Type → Type → Type open import Data.Product -- define an interpretation function '⟨_⟩' -- maps elements of this universe to Agda types ⟨_⟩ : Type → Set ⟨ TNat ⟩ = ℕ ⟨ TBool ⟩ = Bool ⟨ TProd t1 t2 ⟩ = ⟨ t1 ⟩ × ⟨ t2 ⟩ geq : (t : Type) → ⟨ t ⟩ → ⟨ t ⟩ → Bool geq TNat n1 n2 = eq-nat n1 n2 geq TBool b1 b2 = eq-bool b1 b2 geq (TProd a b) (a1 , b1) (a2 , b2) = geq a a1 a2 ∧ geq b b1 b2 geqEx : Bool geqEx = geq (TProd TNat TBool) (1 , false) (1 , false) {- ------------------------------------------------------------------------------ -- 3 ARITY-GENERIC PROGRAMMING : generalize over number of arguments e.g., map-like (above), +, foldl, foldr e.g., generalize following functions into one definition : maps for vectors -} -- infix zipping application, pronounced “zap” for “zip with apply” _⊗_ : {A B : Set} {n : ℕ} → Vec (A → B) n → Vec A n → Vec B n [] ⊗ [] = [] (a :: As) ⊗ (b :: Bs) = a b :: As ⊗ Bs infixl 40 _⊗_ map0 : {m : ℕ} {A : Set} → A → Vec A m map0 = repeat map1 : {m : ℕ} {A B : Set} → (A → B) → Vec A m → Vec B m map1 f x = repeat f ⊗ x map2 : {m : ℕ} {A B C : Set} → (A → B → C) → Vec A m → Vec B m → Vec C m map2 f x1 x2 = repeat f ⊗ x1 ⊗ x2 {- Intuitively, each map defined by a application of repeat and n copies of _⊗_. nvec-map f n v1 v2 ... vn = repeat f ⊗ v1 ⊗ v2 ⊗ ... ⊗ vn -- recursion on n in accumulator style -- after repeating f : have a vector of functions -- then zap this vector across n argument vectors -- NEEDS type declaration - given below (in Arity section) nvec-map n f = g n (repeat f) where g0 a = a g (suc n) f = (λ a → g n (f ⊗ a)) -------------------------------------------------- 3.1 Typing Arity-Generic Vector Map arity-generic map : instances have different types Given arity n, generate corresponding type in the sequence Part of the difficulty is that generic function is curried in both its type and term args. This subsection starts with an initial def that takes - all of the type args in a vector, - curries term arguments next subsection, shows how to uncurry type args ℕ for arity store types in vector of Agda types, Bool :: N :: []. vector has type Vec Set 2, so can use standard vector operations (such as _⊗_) (given in OPTIONS at top of file) --type-in-type : gives Set the type Set - simplifies presentation by hiding Agda’s infinite hierarchy of Set levels - at cost of making Agda’s logic inconsistent -} -- folds arrow type constructor (→) over vector of types -- used to construct the type of 1sr arg to nvec-map arrTy : {n : ℕ} → Vec Set (suc n) → Set arrTy {0} (A :: []) = A arrTy {suc n} (A :: As) = A → arrTy As arrTyTest : Set arrTyTest = arrTy (ℕ :: ℕ :: Bool :: []) -- C-c C-n arrTyTest -- ℕ → ℕ → Bool -- Constructs result type of arity-generic map for vectors. -- Map Vec constructor onto the vector of types, then placing arrows between them. -- There are two indices: -- - n : number of types (the arity) -- - m : length of vectors to be mapped over arrTyVec : {n : ℕ} → ℕ → Vec Set (suc n) → Set arrTyVec m As = arrTy (repeat (λ A → Vec A m) ⊗ As) {- alternate type sigs of previous mapN examples: map0' : {m : ℕ} {A : Set} → arrTy (A :: []) → arrTyVec m (A :: []) map1' : {m : ℕ} {A B : Set} → arrTy (A :: B :: []) → arrTyVec m (A :: B :: []) map2' : {m : ℕ} {A B C : Set} → arrTy (A :: B :: C :: []) → arrTyVec m (A :: B :: C :: []) -} nvec-map : {m : ℕ} → (n : ℕ) → {As : Vec Set (suc n)} → arrTy As → arrTyVec m As nvec-map n f = g n (repeat f) where g : {m : ℕ} → (n : ℕ) → {As : Vec Set (suc n)} → Vec (arrTy As) m → arrTyVec m As g 0 {A :: []} a = a g (suc n) {A :: As} f = (λ a → g n (f ⊗ a)) nvec-map-Test : Vec ℕ 2 -- 11 :: 15 :: [] nvec-map-Test = nvec-map 1 { ℕ :: ℕ :: [] } (λ x → 10 + x) (1 :: 5 :: []) {- annoying : must explicitly supply types next section : enable inference -------------------------------------------------- 3.2 A Curried Vector Map Curry type args so they are supplied individually (rather than a ector). Enables inference (usually). -} -- quantify : creates curried version of a type which depends on a vector ∀⇒ : {n : ℕ} {A : Set} → (Vec A n → Set) → Set ∀⇒ {zero} B = B [] ∀⇒ {suc n} {A} B = (a : A) → ∀⇒ {n} (λ as → B (a :: as)) -- curry : creates curried version of a corresponding function term λ⇒ : {n : ℕ} {A : Set} {B : Vec A n → Set} → ((X : Vec A n) → B X) → (∀⇒ B) λ⇒ {zero} f = f [] λ⇒ {suc n} {A} f = (λ a → λ⇒ {n} (λ as → f (a :: as))) -- **** HERE -- 'a' is implicit in paper -- Victor says 'hidden' lambdas are magic. -- see: Eliminating the problems of hidden-lambda insertion -- https://www.cse.chalmers.se/~abela/MScThesisJohanssonLloyd.pdf -- uncurry (from 2010 paper) /⇒ : (n : ℕ) → {K : Set} {B : Vec K n → Set} → (∀⇒ B) → (A : Vec K n) → B A /⇒ (zero) f [] = f /⇒ (suc n) f (a :: as) = /⇒ n (f a) as -- arity-generic map nmap : {m : ℕ} → (n : ℕ) -- specifies arity → ∀⇒ (λ (As : Vec Set (suc n)) → arrTy As → arrTyVec m As) nmap {m} n = λ⇒ (λ As → nvec-map {m} n {As}) {- nmap 1 has type {m : N} → {A B : Set} → (A → B) → (Vec A m) → (Vec B m) C-c C-d (a a₁ : Set) → (a → a₁) → arrTyVec _m_193 (a :: a₁ :: []) nmap 1 (λ x → 10 + x) (10 :: 5 :: []) evaluates to 11 :: 15 :: [] C-c C-d (x : ℕ) → ℕ !=< Set when checking that the expression λ x → 10 + x has type Set nmap 2 has type {m : N} → {ABC : Set} → (A → B → C) → Vec A m → Vec B m → Vec C m C-c C-d (a a₁ a₂ : Set) → (a → a₁ → a₂) → arrTyVec _m_193 (a :: a₁ :: a₂ :: []) nmap 2 ( , ) (1 :: 2 :: 3 :: []) (4 :: 5 :: 6 :: []) evaluates to (1 , 4) :: (2 , 5) :: (3 , 6) :: [] now : do not need to explicitly specify type of data in vectors -}
28.526316
99
0.551315
c7447f00bb86016821370d30bb51779693e16b10
1,403
agda
Agda
homotopy/JoinComm.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
homotopy/JoinComm.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
homotopy/JoinComm.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT module homotopy.JoinComm where module _ {i j} {A : Type i} {B : Type j} where swap : A * B → B * A swap = Swap.f module SwapM where swap-glue : (a : A) (b : B) → right a == left b swap-glue a b = ! (glue (b , a)) module Swap = PushoutRec right left (uncurry swap-glue) {- ∞TT: swap : A * B → B * A swap (left a) = right a swap (right b) = left b ap swap (glue (a , b)) = ! (glue (b , a)) -} module _ {i j} {A : Type i} {B : Type j} where swap-swap : (x : A * B) → swap (swap x) == x swap-swap = Pushout-elim (λ a → idp) (λ b → idp) (λ c → ↓-∘=idf-in swap swap (swap-swap-glue c)) where swap-swap-glue : (c : A × B) → ap swap (ap swap (glue c)) == glue c swap-swap-glue (a , b) = ap swap (ap swap (glue (a , b))) =⟨ SwapM.Swap.glue-β (a , b) |in-ctx ap swap ⟩ ap swap (! (glue (b , a))) =⟨ ap-! swap (glue (b , a)) ⟩ ! (ap swap (glue (b , a))) =⟨ SwapM.Swap.glue-β (b , a) |in-ctx ! ⟩ ! (! (glue (a , b))) =⟨ !-! (glue (a , b)) ⟩ glue (a , b) ∎ {- ∞TT: swap-swap : (x : A * B) → swap (swap x) == x swap-swap (left a) = idp swap-swap (right b) = idp apd swap-swap (glue (a , b)) = !-! (glue (a , b)) -} module _ {i j} {A : Type i} {B : Type j} where swap-equiv : (A * B) ≃ (B * A) swap-equiv = equiv swap swap swap-swap swap-swap
27.509804
87
0.493229
0dd5d8d42cf9f2c807bd289777812c1c8788789d
10,639
agda
Agda
src/Erased/Counterexamples/Cubical.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Erased/Counterexamples/Cubical.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Erased/Counterexamples/Cubical.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Some properties that hold for Erased do not hold for every -- accessible modality ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P module Erased.Counterexamples.Cubical {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection equality-with-J as B using (_↔_) open import Erased.Cubical eq using (Σ-closed-reflective-subuniverse; Accessible) open import Equality.Decision-procedures equality-with-J open import Equality.Path.Isomorphisms eq open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Equivalence.Path-split equality-with-J as PS using (_-Null_; Is-∞-extendable-along-[_]) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as T using (∥_∥; ∣_∣; Axiom-of-choice) open import Preimage equality-with-J using (_⁻¹_) private variable a b ℓ ℓ′ p : Level A : Type a -- A type is modal with respect to the modality ∥_∥ if it is a -- proposition. ∥∥-modal : Type ℓ → Type ℓ ∥∥-modal = Is-proposition -- Propositional truncation is a Σ-closed reflective subuniverse. -- -- This proof is based on "Modalities in Homotopy Type Theory" by -- Rijke, Shulman and Spitters. ∥∥-modality : Σ-closed-reflective-subuniverse ℓ ∥∥-modality {ℓ = ℓ} = λ where .◯ → ∥_∥ .η → ∣_∣ .Is-modal → ∥∥-modal .Is-modal-propositional → λ ext → H-level-propositional ext 1 .Is-modal-◯ → T.truncation-is-proposition .Is-modal-respects-≃ → H-level-cong _ 1 .extendable-along-η → extendable .Σ-closed → Σ-closure 1 where open Σ-closed-reflective-subuniverse extendable : {A B : Type ℓ} → Is-proposition B → Is-∞-extendable-along-[ ∣_∣ ] (λ (_ : ∥ A ∥) → B) extendable {A = A} {B = B} = Is-proposition B →⟨ (λ prop → _≃_.is-equivalence $ Eq.↔→≃ _ (T.rec prop) refl (λ f → ⟨ext⟩ $ T.elim _ (λ _ → ⇒≡ 1 prop) (λ _ → refl _))) ⟩ Is-equivalence (λ (f : ∥ A ∥ → B) → f ∘ ∣_∣) ↔⟨ inverse $ PS.Is-∞-extendable-along≃Is-equivalence ext ⟩□ Is-∞-extendable-along-[ ∣_∣ ] (λ (_ : ∥ A ∥) → B) □ -- The propositional truncation modality is accessible. -- -- This proof is based on "Modalities in Homotopy Type Theory" by -- Rijke, Shulman and Spitters. ∥∥-accessible : Accessible ℓ′ (∥∥-modality {ℓ = ℓ}) ∥∥-accessible {ℓ′ = ℓ′} {ℓ = ℓ} = ↑ ℓ′ ⊤ , (λ _ → ↑ ℓ′ Bool) , (λ A → Is-proposition A ↝⟨ record { from = from; to = to } ⟩ (λ _ → ↑ ℓ′ Bool) -Null A ↔⟨ inverse $ PS.Π-Is-∞-extendable-along≃Null ext ⟩□ (↑ ℓ′ ⊤ → Is-∞-extendable-along-[ _ ] (λ _ → A)) □) where to : Is-proposition A → (λ _ → ↑ ℓ′ Bool) -Null A to prop _ = _≃_.is-equivalence $ Eq.⇔→≃ prop (Π-closure ext 1 λ _ → prop) _ (_$ lift true) from : (λ _ → ↑ ℓ′ Bool) -Null A → Is-proposition A from {A = A} null x y = x ≡⟨⟩ case true ⦂ Bool of if_then x else y ≡⟨ cong (_$ true) $ sym $ E.right-inverse-of _ ⟩ E.to (E.from (if_then x else y)) true ≡⟨⟩ E.from (if_then x else y) ≡⟨⟩ E.to (E.from (if_then x else y)) false ≡⟨ cong (_$ false) $ E.right-inverse-of _ ⟩ case false ⦂ Bool of if_then x else y ≡⟨⟩ y ∎ where ≃Bool→ : A ≃ (Bool → A) ≃Bool→ = A ↝⟨ Eq.⟨ _ , null _ ⟩ ⟩ (↑ ℓ′ Bool → A) ↝⟨ Eq.↔→≃ (_∘ lift) (_∘ lower) refl refl ⟩□ (Bool → A) □ module E = _≃_ ≃Bool→ -- It is not the case that, for all types A and B and functions -- f : A → B, "f is ∥∥-connected" implies ∥ Is-equivalence f ∥. ¬[∥∥-connected→∥Is-equivalence∥] : ¬ ({A : Type a} {B : Type b} {f : A → B} → (∀ y → Contractible ∥ f ⁻¹ y ∥) → ∥ Is-equivalence f ∥) ¬[∥∥-connected→∥Is-equivalence∥] hyp = $⟨ (λ _ → ∣ lift true , refl _ ∣) ⟩ ((y : ↑ _ ⊤) → ∥ (const (lift tt) ⦂ (↑ _ Bool → ↑ _ ⊤)) ⁻¹ y ∥) →⟨ (∀-cong _ λ _ → propositional⇒inhabited⇒contractible T.truncation-is-proposition) ⟩ ((y : ↑ _ ⊤) → Contractible ∥ (const (lift tt) ⦂ (↑ _ Bool → ↑ _ ⊤)) ⁻¹ y ∥) →⟨ hyp ⟩ ∥ Is-equivalence (const (lift tt) ⦂ (↑ _ Bool → ↑ _ ⊤)) ∥ ↔⟨ T.∥∥↔ (Eq.propositional ext _) ⟩ Is-equivalence (const (lift tt) ⦂ (↑ _ Bool → ↑ _ ⊤)) →⟨ Eq.⟨ _ ,_⟩ ⟩ ↑ _ Bool ≃ ↑ _ ⊤ →⟨ (λ eq → Eq.↔⇒≃ B.↑↔ F.∘ eq F.∘ Eq.↔⇒≃ (inverse B.↑↔)) ⟩ Bool ≃ ⊤ →⟨ (λ eq → H-level-cong _ 1 (inverse eq) (mono₁ 0 ⊤-contractible)) ⟩ Is-proposition Bool →⟨ ¬-Bool-propositional ⟩□ ⊥ □ -- It is not the case that, for all types A and B and functions -- f : A → B, "f is ∥∥-connected" is equivalent to -- ∥ Is-equivalence f ∥. -- -- Compare with -- Erased.Level-1.[]-cong₂-⊔.Erased-connected↔Erased-Is-equivalence. ¬[∥∥-connected≃∥Is-equivalence∥] : ¬ ({A : Type a} {B : Type b} {f : A → B} → (∀ y → Contractible ∥ f ⁻¹ y ∥) ≃ ∥ Is-equivalence f ∥) ¬[∥∥-connected≃∥Is-equivalence∥] hyp = ¬[∥∥-connected→∥Is-equivalence∥] (_≃_.to hyp) -- If (x : A) → ∥ P x ∥ implies ∥ ((x : A) → P x) ∥ for all types A -- and type families P over A, then the axiom of choice holds. [Π∥∥→∥Π∥]→Axiom-of-choice : ({A : Type a} {P : A → Type p} → ((x : A) → ∥ P x ∥) → ∥ ((x : A) → P x) ∥) → Axiom-of-choice a p [Π∥∥→∥Π∥]→Axiom-of-choice hyp = λ _ → hyp -- If ∥ ((x : A) → P x) ∥ is isomorphic to (x : A) → ∥ P x ∥ for all -- types A and type families P over A, then the axiom of choice holds. -- -- Compare with Erased.Level-1.Erased-Π↔Π. [∥Π∥↔Π∥∥]→Axiom-of-choice : ({A : Type a} {P : A → Type p} → ∥ ((x : A) → P x) ∥ ↔ ((x : A) → ∥ P x ∥)) → Axiom-of-choice a p [∥Π∥↔Π∥∥]→Axiom-of-choice hyp = [Π∥∥→∥Π∥]→Axiom-of-choice (_↔_.from hyp) -- If ∥ A ∥ → ∥ B ∥ implies ∥ (A → B) ∥ for all types A and B in the -- same universe, then ∥ (∥ A ∥ → A) ∥ holds for every type A in this -- universe. This is a variant of the axiom of choice of which Kraus -- et al. state that "We expect that this makes it possible to show -- that, in MLTT with weak propositional truncation, [a logically -- equivalent variant of the axiom] is not derivable" (see "Notions of -- Anonymous Existence in Martin-Löf Type Theory"). [[∥∥→∥∥]→∥→∥]→Axiom-of-choice : ({A B : Type a} → (∥ A ∥ → ∥ B ∥) → ∥ (A → B) ∥) → ({A : Type a} → ∥ (∥ A ∥ → A) ∥) [[∥∥→∥∥]→∥→∥]→Axiom-of-choice hyp {A = A} = $⟨ T.rec T.truncation-is-proposition id ⟩ (∥ ∥ A ∥ ∥ → ∥ A ∥) →⟨ hyp ⟩□ ∥ (∥ A ∥ → A) ∥ □ -- If ∥ (A → B) ∥ is isomorphic to ∥ A ∥ → ∥ B ∥ for all types A and B -- in the same universe, then ∥ (∥ A ∥ → A) ∥ holds for every type A -- in this universe. This is a variant of the axiom of choice of which -- Kraus et al. state that "We expect that this makes it possible to -- show that, in MLTT with weak propositional truncation, [a logically -- equivalent variant of the axiom] is not derivable" (see "Notions of -- Anonymous Existence in Martin-Löf Type Theory"). -- -- Compare with Erased.Level-1.Erased-Π↔Π-Erased. [∥→∥↔[∥∥→∥∥]]→Axiom-of-choice : ({A B : Type a} → ∥ (A → B) ∥ ↔ (∥ A ∥ → ∥ B ∥)) → ({A : Type a} → ∥ (∥ A ∥ → A) ∥) [∥→∥↔[∥∥→∥∥]]→Axiom-of-choice hyp = [[∥∥→∥∥]→∥→∥]→Axiom-of-choice (_↔_.from hyp) -- It is not the case that, for every type A, if A is ∥∥-modal, then A -- is (λ (A : Type a) → ∥∥-modal A)-null. ¬[∥∥-modal→∥∥-modal-Null] : ¬ ({A : Type a} → ∥∥-modal A → (λ (A : Type a) → ∥∥-modal A) -Null A) ¬[∥∥-modal→∥∥-modal-Null] hyp = $⟨ ⊥-propositional ⟩ Is-proposition ⊥ →⟨ hyp ⟩ (∀ A → Is-equivalence (const ⦂ (⊥ → Is-proposition A → ⊥))) →⟨ _$ _ ⟩ Is-equivalence (const ⦂ (⊥ → Is-proposition (↑ _ Bool) → ⊥)) →⟨ Eq.⟨ _ ,_⟩ ⟩ ⊥ ≃ (Is-proposition (↑ _ Bool) → ⊥) →⟨ →-cong ext (Eq.↔⇒≃ $ inverse $ B.⊥↔uninhabited (¬-Bool-propositional ∘ ↑⁻¹-closure 1)) Eq.id F.∘_ ⟩ ⊥ ≃ (⊥₀ → ⊥) →⟨ Π⊥↔⊤ ext F.∘_ ⟩ ⊥ ≃ ⊤ →⟨ (λ eq → ⊥-elim $ _≃_.from eq _) ⟩□ ⊥ □ -- It is not the case that, for every type A, there is an equivalence -- between "A is ∥∥-modal" and (λ (A : Type a) → ∥∥-modal A) -Null A. -- -- Compare with Erased.Stability.Very-stable≃Very-stable-Null. ¬[∥∥-modal≃∥∥-modal-Null] : ¬ ({A : Type a} → ∥∥-modal A ≃ (λ (A : Type a) → ∥∥-modal A) -Null A) ¬[∥∥-modal≃∥∥-modal-Null] hyp = ¬[∥∥-modal→∥∥-modal-Null] (_≃_.to hyp) -- It is not the case that, for every type A : Type a and proof of -- Extensionality a a, there is an equivalence between "A is ∥∥-modal" -- and (λ (A : Type a) → ∥∥-modal A) -Null A. -- -- Compare with Erased.Stability.Very-stable≃Very-stable-Null. ¬[∥∥-modal≃∥∥-modal-Null]′ : ¬ ({A : Type a} → Extensionality a a → ∥∥-modal A ≃ (λ (A : Type a) → ∥∥-modal A) -Null A) ¬[∥∥-modal≃∥∥-modal-Null]′ hyp = ¬[∥∥-modal≃∥∥-modal-Null] (hyp ext)
41.721569
138
0.468183
7c726d5394d85911bf06b8181ba5a0b48ca2317c
4,375
agda
Agda
examples/SimpleTypes.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/SimpleTypes.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/SimpleTypes.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- A simple bidirectional type checker for simply typed lambda calculus which is sound by construction. -} module SimpleTypes where infix 10 _==_ data _==_ {A : Set}(x : A) : A -> Set where refl : x == x data Maybe (A : Set) : Set where nothing : Maybe A just : A -> Maybe A data Nat : Set where zero : Nat suc : Nat -> Nat data Fin : Nat -> Set where fzero : {n : Nat} -> Fin (suc n) fsuc : {n : Nat} -> Fin n -> Fin (suc n) data List (A : Set) : Set where ε : List A _,_ : List A -> A -> List A length : forall {A} -> List A -> Nat length ε = zero length (xs , x) = suc (length xs) infixl 25 _,_ -- Raw terms data Expr : Set where varʳ : Nat -> Expr _•ʳ_ : Expr -> Expr -> Expr ƛʳ_ : Expr -> Expr infixl 90 _•ʳ_ infix 50 ƛʳ_ -- Types data Type : Set where ι : Type _⟶_ : Type -> Type -> Type infixr 40 _⟶_ -- Typed terms Ctx = List Type data Var : Ctx -> Type -> Set where vz : forall {Γ τ} -> Var (Γ , τ) τ vs : forall {Γ τ σ} -> Var Γ τ -> Var (Γ , σ) τ data Term : Ctx -> Type -> Set where var : forall {Γ τ} -> Var Γ τ -> Term Γ τ _•_ : forall {Γ τ σ} -> Term Γ (τ ⟶ σ) -> Term Γ τ -> Term Γ σ ƛ_ : forall {Γ τ σ} -> Term (Γ , σ) τ -> Term Γ (σ ⟶ τ) infixl 90 _•_ infix 50 ƛ_ -- Type erasure ⌊_⌋ˣ : forall {Γ τ} -> Var Γ τ -> Nat ⌊ vz ⌋ˣ = zero ⌊ vs x ⌋ˣ = suc ⌊ x ⌋ˣ ⌊_⌋ : forall {Γ τ} -> Term Γ τ -> Expr ⌊ var v ⌋ = varʳ ⌊ v ⌋ˣ ⌊ s • t ⌋ = ⌊ s ⌋ •ʳ ⌊ t ⌋ ⌊ ƛ t ⌋ = ƛʳ ⌊ t ⌋ -- Type equality infix 30 _≟_ _≟_ : (σ τ : Type) -> Maybe (σ == τ) ι ≟ ι = just refl σ₁ ⟶ τ₁ ≟ σ₂ ⟶ τ₂ with σ₁ ≟ σ₂ | τ₁ ≟ τ₂ σ ⟶ τ ≟ .σ ⟶ .τ | just refl | just refl = just refl _ ⟶ _ ≟ _ ⟶ _ | _ | _ = nothing _ ≟ _ = nothing -- The type checked view -- ok : forall {Γ τ e} -> Check ⌊ e ⌋ -- unsolved metas with no range! data Check (Γ : Ctx)(τ : Type) : Expr -> Set where ok : (t : Term Γ τ) -> Check Γ τ ⌊ t ⌋ bad : {e : Expr} -> Check Γ τ e data Infer (Γ : Ctx) : Expr -> Set where yes : (τ : Type)(t : Term Γ τ) -> Infer Γ ⌊ t ⌋ no : {e : Expr} -> Infer Γ e data Lookup (Γ : Ctx) : Nat -> Set where found : (τ : Type)(x : Var Γ τ) -> Lookup Γ ⌊ x ⌋ˣ outofscope : {n : Nat} -> Lookup Γ n lookup : (Γ : Ctx)(n : Nat) -> Lookup Γ n lookup ε n = outofscope lookup (Γ , τ) zero = found τ vz lookup (Γ , σ) (suc n) with lookup Γ n lookup (Γ , σ) (suc .(⌊ x ⌋ˣ)) | found τ x = found τ (vs x) lookup (Γ , σ) (suc n) | outofscope = outofscope infix 20 _⊢_∋_ _⊢_∈ _⊢_∈ : (Γ : Ctx)(e : Expr) -> Infer Γ e _⊢_∋_ : (Γ : Ctx)(τ : Type)(e : Expr) -> Check Γ τ e Γ ⊢ ι ∋ ƛʳ e = bad Γ ⊢ (σ ⟶ τ) ∋ ƛʳ e with Γ , σ ⊢ τ ∋ e Γ ⊢ (σ ⟶ τ) ∋ ƛʳ .(⌊ t ⌋) | ok t = ok (ƛ t) Γ ⊢ (σ ⟶ τ) ∋ ƛʳ _ | bad = bad Γ ⊢ τ ∋ e with Γ ⊢ e ∈ Γ ⊢ τ ∋ .(⌊ t ⌋) | yes σ t with τ ≟ σ Γ ⊢ τ ∋ .(⌊ t ⌋) | yes .τ t | just refl = ok t Γ ⊢ τ ∋ .(⌊ t ⌋) | yes σ t | nothing = bad Γ ⊢ τ ∋ e | no = bad Γ ⊢ varʳ i ∈ with lookup Γ i Γ ⊢ varʳ .(⌊ x ⌋ˣ) ∈ | found τ x = yes τ (var x) Γ ⊢ varʳ _ ∈ | outofscope = no Γ ⊢ e₁ •ʳ e₂ ∈ with Γ ⊢ e₁ ∈ Γ ⊢ e₁ •ʳ e₂ ∈ | no = no Γ ⊢ .(⌊ t₁ ⌋) •ʳ e₂ ∈ | yes ι t₁ = no Γ ⊢ .(⌊ t₁ ⌋) •ʳ e₂ ∈ | yes (σ ⟶ τ) t₁ with Γ ⊢ σ ∋ e₂ Γ ⊢ .(⌊ t₁ ⌋) •ʳ .(⌊ t₂ ⌋) ∈ | yes (σ ⟶ τ) t₁ | ok t₂ = yes τ (t₁ • t₂) Γ ⊢ .(⌊ t₁ ⌋) •ʳ _ ∈ | yes (σ ⟶ τ) t₁ | bad = no Γ ⊢ ƛʳ e ∈ = no -- Proving completeness (for normal terms) -- Needs magic with {- mutual data Nf : forall {Γ τ} -> Term Γ τ -> Set where ƛ-nf : forall {Γ σ τ} -> {t : Term (Γ , σ) τ} -> Nf t -> Nf (ƛ t) ne-nf : forall {Γ τ} -> {t : Term Γ τ} -> Ne t -> Nf t data Ne : forall {Γ τ} -> Term Γ τ -> Set where •-ne : forall {Γ σ τ} -> {t₁ : Term Γ (σ ⟶ τ)} -> Ne t₁ -> {t₂ : Term Γ σ} -> Nf t₂ -> Ne (t₁ • t₂) var-ne : forall {Γ τ} -> {x : Var Γ τ} -> Ne (var x) mutual complete-check : forall {Γ τ} -> (t : Term Γ τ) -> Nf t -> Γ ⊢ τ ∋ ⌊ t ⌋ == ok t complete-check ._ (ƛ-nf t) = {! !} complete-check _ (ne-nf n) with complete-infer _ n complete-check t (ne-nf n) | p = {! !} complete-infer : forall {Γ τ} -> (t : Term Γ τ) -> Ne t -> Γ ⊢ ⌊ t ⌋ ∈ == yes τ t complete-infer t ne = {! !} -} -- Testing test1 = ε ⊢ ι ⟶ ι ∋ ƛʳ varʳ zero test2 = ε , ι , ι ⟶ ι ⊢ varʳ zero •ʳ varʳ (suc zero) ∈
25.143678
79
0.478629
374ea88a99c03ac8ec0e809a3bf10ea11051f33a
1,519
agda
Agda
htype-decidable.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
16
2018-03-12T14:32:03.000Z
2021-12-19T02:50:23.000Z
htype-decidable.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
54
2017-06-29T20:53:34.000Z
2018-11-29T16:32:40.000Z
htype-decidable.agda
hazelgrove/hazelnut-dynamics-agda
229dfb06ea51ebe91cb3b1c973c2f2792e66797c
[ "MIT" ]
1
2019-09-13T18:20:02.000Z
2019-09-13T18:20:02.000Z
open import Nat open import Prelude open import core open import contexts module htype-decidable where lemma-l : ∀{t1 t2 t4} → t1 ==> t2 == t1 ==> t4 → t2 == t4 lemma-l refl = refl lemma-r : ∀{t1 t2 t3} → t1 ==> t2 == t3 ==> t2 → t1 == t3 lemma-r refl = refl lemma-b : ∀{t1 t2 t3 t4} → t1 ==> t2 == t3 ==> t4 → t1 == t3 lemma-b refl = refl htype-dec : (t1 t2 : htyp) → t1 == t2 + (t1 == t2 → ⊥) htype-dec b b = Inl refl htype-dec b ⦇-⦈ = Inr (λ ()) htype-dec b (t2 ==> t3) = Inr (λ ()) htype-dec ⦇-⦈ b = Inr (λ ()) htype-dec ⦇-⦈ ⦇-⦈ = Inl refl htype-dec ⦇-⦈ (t2 ==> t3) = Inr (λ ()) htype-dec (t1 ==> t2) b = Inr (λ ()) htype-dec (t1 ==> t2) ⦇-⦈ = Inr (λ ()) htype-dec (t1 ==> t2) (t3 ==> t4) with htype-dec t1 t3 | htype-dec t2 t4 htype-dec (t1 ==> t2) (.t1 ==> .t2) | Inl refl | Inl refl = Inl refl htype-dec (t1 ==> t2) (.t1 ==> t4) | Inl refl | Inr x₁ = Inr (λ x → x₁ (lemma-l x)) htype-dec (t1 ==> t2) (t3 ==> .t2) | Inr x | Inl refl = Inr (λ x₁ → x (lemma-r x₁)) htype-dec (t1 ==> t2) (t3 ==> t4) | Inr x | Inr x₁ = Inr (λ x₂ → x (lemma-b x₂)) -- if an arrow is disequal, it disagrees in the first or second argument ne-factor : ∀{τ1 τ2 τ3 τ4} → (τ1 ==> τ2) ≠ (τ3 ==> τ4) → (τ1 ≠ τ3) + (τ2 ≠ τ4) ne-factor {τ1} {τ2} {τ3} {τ4} ne with htype-dec τ1 τ3 | htype-dec τ2 τ4 ne-factor ne | Inl refl | Inl refl = Inl (λ x → ne refl) ne-factor ne | Inl x | Inr x₁ = Inr x₁ ne-factor ne | Inr x | Inl x₁ = Inl x ne-factor ne | Inr x | Inr x₁ = Inl x
39.973684
89
0.523371
522047ed567b63da5df3fa8f97311b93b30ee859
5,770
agda
Agda
GSeTT/Dec-Type-Checking.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
GSeTT/Dec-Type-Checking.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
GSeTT/Dec-Type-Checking.agda
thibautbenjamin/catt-formalization
3a02010a869697f4833c9bc6047d66ca27b87cf2
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting --without-K #-} open import Agda.Primitive open import Prelude open import GSeTT.Syntax open import GSeTT.Rules {- Decidability of type cheking for the type theory for globular sets -} module GSeTT.Dec-Type-Checking where dec-⊢C : ∀ Γ → dec (Γ ⊢C) dec-⊢T : ∀ Γ A → dec (Γ ⊢T A) dec-⊢t : ∀ Γ A t → dec (Γ ⊢t t # A) dec-⊢S : ∀ Δ Γ γ → dec (Δ ⊢S γ > Γ) private Γ+⊢→Γ⊢ : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → Γ ⊢C Γ+⊢→Γ⊢ (cc Γ⊢ _ idp) = Γ⊢ Γ+⊢→x=l : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → x == length Γ Γ+⊢→x=l (cc _ _ idp) = idp Γ+⊢→Γ⊢A : ∀ {Γ x A} → (Γ :: (x , A)) ⊢C → Γ ⊢T A Γ+⊢→Γ⊢A (cc _ Γ⊢A _) = Γ⊢A Γ⊢t⇒u→Γ⊢A : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢T A Γ⊢t⇒u→Γ⊢A (ar Γ⊢t:A Γ⊢u:A) = Γ⊢t:A→Γ⊢A Γ⊢t:A Γ⊢t⇒u→Γ⊢t : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t t # A Γ⊢t⇒u→Γ⊢t (ar Γ⊢t:A Γ⊢u:A) = Γ⊢t:A Γ⊢t⇒u→Γ⊢u : ∀ {Γ A t u} → Γ ⊢T ⇒ A t u → Γ ⊢t u # A Γ⊢t⇒u→Γ⊢u (ar Γ⊢t:A Γ⊢u:A) = Γ⊢u:A Γ⊢x:A→x∈Γ : ∀ {Γ x A} → Γ ⊢t Var x # A → x # A ∈ Γ Γ⊢x:A→x∈Γ (var _ x∈Γ) = x∈Γ Δ⊢<>:Γ→Γ=nil : ∀ {Δ Γ} → Δ ⊢S nil > Γ → Γ == nil Δ⊢<>:Γ→Γ=nil (es _) = idp Δ⊢γ:⊘→γ=nil : ∀ {Δ γ} → Δ ⊢S γ > nil → γ == nil Δ⊢γ:⊘→γ=nil (es _) = idp Δ⊢γ+:Γ+→x=y : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → x == y Δ⊢γ+:Γ+→x=y (sc _ _ _ idp) = idp Δ⊢γ+:Γ+→Δ⊢t : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → Δ ⊢t t # (A [ γ ]Pre-Ty) Δ⊢γ+:Γ+→Δ⊢t (sc _ _ Δ⊢t idp) = Δ⊢t Δ⊢γ+:Γ+→Δ⊢γ : ∀ {Δ Γ x A γ y t} → Δ ⊢S (γ :: (y , t)) > (Γ :: (x , A)) → Δ ⊢S γ > Γ Δ⊢γ+:Γ+→Δ⊢γ (sc Δ⊢γ:Γ _ _ idp) = Δ⊢γ:Γ eqdec-Ty : eqdec Pre-Ty eqdec-Tm : eqdec Pre-Tm eqdec-Ty ∗ ∗ = inl idp eqdec-Ty ∗ (⇒ _ _ _) = inr λ{()} eqdec-Ty (⇒ _ _ _) ∗ = inr λ{()} eqdec-Ty (⇒ A t u) (⇒ B t' u') with eqdec-Ty A B | eqdec-Tm t t' | eqdec-Tm u u' ... | inl idp | inl idp | inl idp = inl idp ... | inl idp | inl idp | inr u≠u' = inr λ p → u≠u' (snd (=⇒ p)) ... | inl idp | inr t≠t' | _ = inr λ p → t≠t' (snd (fst (=⇒ p))) ... | inr A≠B | _ | _ = inr λ p → A≠B (fst (fst (=⇒ p))) eqdec-Tm (Var x) (Var y) with eqdecℕ x y ... | inl idp = inl idp ... | inr x≠y = inr λ p → x≠y (=Var p) dec-∈ : ∀ Γ x A → dec (x # A ∈ Γ) dec-∈ nil x A = inr λ x → x dec-∈ (Γ :: (y , B)) x A with (eqdecℕ y x) | (eqdec-Ty B A) ... | inl idp | inl idp = inl (inr (idp , idp)) ... | inl idp | inr B≠A with dec-∈ Γ x A ... | inl x∈Γ = inl (inl x∈Γ) ... | inr x∉Γ = inr λ {(inl x∈Γ) → x∉Γ x∈Γ ; (inr (_ , A=B)) → B≠A (A=B ^)} dec-∈ (Γ :: (y , B)) x A | inr y≠x | _ with dec-∈ Γ x A ... | inl x∈Γ = inl (inl x∈Γ) ... | inr x∉Γ = inr λ{ (inl x∈Γ) → x∉Γ x∈Γ ; (inr (x=y , _)) → y≠x (x=y ^)} dec-⊢C nil = inl ec dec-⊢C (Γ :: (x , A)) with dec-⊢C Γ | eqdecℕ x (length Γ) | dec-⊢T Γ A ... | inl Γ⊢ | inl idp | inl Γ⊢A = inl (cc Γ⊢ Γ⊢A idp) ... | inl _ | inl idp | inr Γ⊬A = inr λ Γ+⊢ → Γ⊬A (Γ+⊢→Γ⊢A Γ+⊢) ... | inl Γ⊢ | inr n≠l | _ = inr λ Γ+⊢ → n≠l (Γ+⊢→x=l Γ+⊢) ... | inr Γ⊬ | _ | _ = inr λ Γ+⊢ → Γ⊬ (Γ+⊢→Γ⊢ Γ+⊢) dec-⊢T Γ ∗ with dec-⊢C Γ ... | inl Γ⊢ = inl (ob Γ⊢) ... | inr Γ⊬ = inr λ Γ⊢* → Γ⊬ (Γ⊢A→Γ⊢ Γ⊢*) dec-⊢T Γ (⇒ A t u) with dec-⊢t Γ A t | dec-⊢t Γ A u ... | inl Γ⊢t:A | inl Γ⊢u:A = inl (ar Γ⊢t:A Γ⊢u:A) ... | inl _ | inr Γ⊬u:A = inr λ Γ⊢t⇒u → Γ⊬u:A (Γ⊢t⇒u→Γ⊢u Γ⊢t⇒u) ... | inr Γ⊬t:A | _ = inr λ Γ⊢t⇒u → Γ⊬t:A (Γ⊢t⇒u→Γ⊢t Γ⊢t⇒u) dec-⊢t Γ A (Var x) with dec-⊢C Γ | dec-∈ Γ x A ... | inl Γ⊢ | inl x∈Γ = inl (var Γ⊢ x∈Γ) ... | inl _ | inr x∉Γ = inr λ Γ⊢x:A → x∉Γ (Γ⊢x:A→x∈Γ Γ⊢x:A) ... | inr Γ⊬ | _ = inr λ Γ⊢x:A → Γ⊬ (Γ⊢t:A→Γ⊢ Γ⊢x:A) dec-⊢S Δ nil nil with dec-⊢C Δ ... | inl Δ⊢ = inl (es Δ⊢) ... | inr Δ⊬ = inr λ Δ⊢<>:⊘ → Δ⊬ (Δ⊢γ:Γ→Δ⊢ Δ⊢<>:⊘) dec-⊢S Δ (Γ :: _) nil = inr λ Δ⊢<>:Γ → cons≠nil (Δ⊢<>:Γ→Γ=nil Δ⊢<>:Γ) dec-⊢S Δ nil (γ :: a) = inr λ Δ⊢γ:⊘ → cons≠nil (Δ⊢γ:⊘→γ=nil Δ⊢γ:⊘) dec-⊢S Δ (Γ :: (x , A)) (γ :: (y , t)) with dec-⊢S Δ Γ γ | dec-⊢C (Γ :: (x , A)) | dec-⊢t Δ (A [ γ ]Pre-Ty) t | eqdecℕ x y ... | inl Δ⊢γ:Γ | inl Γ+⊢ | inl Δ⊢t | inl idp = inl (sc Δ⊢γ:Γ Γ+⊢ Δ⊢t idp) ... | inl _ | inl _ | inl _ | inr x≠y = inr λ Δ⊢γ+:Γ+ → x≠y (Δ⊢γ+:Γ+→x=y Δ⊢γ+:Γ+) ... | inl _ | inl _ | inr Δ⊬t | _ = inr λ Δ⊢γ+:Γ+ → Δ⊬t (Δ⊢γ+:Γ+→Δ⊢t Δ⊢γ+:Γ+) ... | inl _ | inr Γ+⊬ | _ | _ = inr λ Δ⊢γ+:Γ+ → Γ+⊬ (Δ⊢γ:Γ→Γ⊢ Δ⊢γ+:Γ+) ... | inr Δ⊬γ | _ | _ | _ = inr λ Δ⊢γ+:Γ+ → Δ⊬γ (Δ⊢γ+:Γ+→Δ⊢γ Δ⊢γ+:Γ+)
51.981982
168
0.311785
3882c2189058953d92c486473d80301f3e3a01a5
5,352
agda
Agda
Data/Either/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/Either/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/Either/Proofs.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Data.Either.Proofs where import Lvl open import Data open import Data.Either as Either open import Data.Either.Equiv open import Function.Equals open import Functional open import Logic.Propositional open import Logic.Predicate open import Structure.Setoid open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Domain.Proofs open import Structure.Function.Multi open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ ℓₑ₅ ℓₑ₆ : Lvl.Level private variable A B C A₁ A₂ A₃ B₁ B₂ B₃ : Type{ℓ} module _ ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ where map1-values : {f : A → C}{g : B → C}{e : A ‖ B} → (∃(x ↦ map1 f g e ≡ f(x)) ∨ ∃(x ↦ map1 f g e ≡ g(x))) map1-values {e = Either.Left a} = [∨]-introₗ ([∃]-intro a ⦃ reflexivity(_≡_) ⦄) map1-values {e = Either.Right b} = [∨]-introᵣ ([∃]-intro b ⦃ reflexivity(_≡_) ⦄) module _ where module _ ⦃ _ : Equiv{ℓₑ}(A ‖ B) ⦄ where mapLeft-preserves-id : Names.Preserving₀ ⦃ [⊜]-equiv ⦄ (mapLeft {A₁ = A}{B = B})(id)(id) _⊜_.proof (mapLeft-preserves-id) {Left x} = reflexivity(_≡_) _⊜_.proof (mapLeft-preserves-id) {Right x} = reflexivity(_≡_) mapRight-preserves-id : Names.Preserving₀ ⦃ [⊜]-equiv ⦄ (mapRight {A = A}{B₁ = B})(id)(id) _⊜_.proof (mapRight-preserves-id) {Left x} = reflexivity(_≡_) _⊜_.proof (mapRight-preserves-id) {Right x} = reflexivity(_≡_) swap-involution : (Either.swap ∘ Either.swap {A = A}{B = B} ⊜ id) _⊜_.proof swap-involution {Left _} = reflexivity(_≡_) _⊜_.proof swap-involution {Right _} = reflexivity(_≡_) module _ ⦃ _ : let _ = A₁ ; _ = A₂ ; _ = A₃ ; _ = B in Equiv{ℓₑ}(A₃ ‖ B) ⦄ {f : A₂ → A₃} {g : A₁ → A₂} where mapLeft-preserves-[∘] : (mapLeft(f ∘ g) ⊜ (mapLeft f) ∘ (mapLeft g)) _⊜_.proof mapLeft-preserves-[∘] {Left x} = reflexivity(_≡_) _⊜_.proof mapLeft-preserves-[∘] {Right x} = reflexivity(_≡_) module _ ⦃ _ : let _ = A ; _ = B₁ ; _ = B₂ ; _ = B₃ in Equiv{ℓₑ}(A ‖ B₃) ⦄ {f : B₂ → B₃} {g : B₁ → B₂} where mapRight-preserves-[∘] : (mapRight(f ∘ g) ⊜ (mapRight f) ∘ (mapRight g)) _⊜_.proof mapRight-preserves-[∘] {Left x} = reflexivity(_≡_) _⊜_.proof mapRight-preserves-[∘] {Right x} = reflexivity(_≡_) module _ ⦃ _ : Equiv{ℓₑ}(A ‖ B) ⦄ where map-preserves-id : (map id id ⊜ id) _⊜_.proof map-preserves-id {Left x} = reflexivity(_≡_) _⊜_.proof map-preserves-id {Right x} = reflexivity(_≡_) module _ ⦃ equiv-A₁ : Equiv{ℓₑ₁}(A₁) ⦄ ⦃ equiv-B₁ : Equiv{ℓₑ₂}(B₁) ⦄ ⦃ equiv-A₂ : Equiv{ℓₑ₃}(A₂) ⦄ ⦃ equiv-B₂ : Equiv{ℓₑ₄}(B₂) ⦄ ⦃ equiv-AB₁ : Equiv{ℓₑ₅}(A₁ ‖ B₁) ⦄ ⦃ ext-AB₁ : Extensionality(equiv-AB₁) ⦄ ⦃ equiv-AB₂ : Equiv{ℓₑ₆}(A₂ ‖ B₂) ⦄ ⦃ ext-AB₂ : Extensionality(equiv-AB₂) ⦄ {f : A₁ → A₂} {g : B₁ → B₂} where open Extensionality ⦃ … ⦄ instance map-function : BinaryOperator(Either.map {A₁ = A₁}{A₂ = A₂}{B₁ = B₁}{B₂ = B₂}) _⊜_.proof (BinaryOperator.congruence map-function (intro p₁) (intro p₂)) {Left _} = congruence₁(Left) p₁ _⊜_.proof (BinaryOperator.congruence map-function (intro p₁) (intro p₂)) {Right _} = congruence₁(Right) p₂ instance map-injective : ⦃ inj-f : Injective(f) ⦄ → ⦃ inj-g : Injective(g) ⦄ → Injective(Either.map f g) Injective.proof map-injective {Left x} {Left y} p = congruence₁(Either.Left) (injective(f) (injective(Either.Left) p)) Injective.proof map-injective {Left x} {Right y} p with () ← Left-Right-inequality p Injective.proof map-injective {Right x} {Left y} p with () ← Left-Right-inequality (symmetry(_≡_) p) Injective.proof map-injective {Right x} {Right y} p = congruence₁(Either.Right) (injective(g) (injective(Either.Right) p)) instance map-surjective : ⦃ surj-f : Surjective(f) ⦄ → ⦃ surj-g : Surjective(g) ⦄ → Surjective(Either.map f g) Surjective.proof map-surjective {Left y} with [∃]-intro x ⦃ p ⦄ ← surjective(f){y} = [∃]-intro (Left x) ⦃ congruence₁(Left) p ⦄ Surjective.proof map-surjective {Right y} with [∃]-intro x ⦃ p ⦄ ← surjective(g){y} = [∃]-intro (Right x) ⦃ congruence₁(Right) p ⦄ instance map-bijective : ⦃ bij-f : Bijective(f) ⦄ → ⦃ bij-g : Bijective(g) ⦄ → Bijective(Either.map f g) map-bijective = injective-surjective-to-bijective(Either.map f g) where instance inj-f : Injective(f) inj-f = bijective-to-injective(f) instance inj-g : Injective(g) inj-g = bijective-to-injective(g) instance surj-f : Surjective(f) surj-f = bijective-to-surjective(f) instance surj-g : Surjective(g) surj-g = bijective-to-surjective(g) module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-AB : Equiv{ℓₑ}(A ‖ B) ⦄ ⦃ ext-AB : Extensionality(equiv-AB) ⦄ where map-mapLeft-mapRight : ∀{f : B → A}{g : C → B} → (map f g ≡ mapLeft f ∘ mapRight g) _⊜_.proof (map-mapLeft-mapRight) {[∨]-introₗ _} = reflexivity(_≡_) _⊜_.proof (map-mapLeft-mapRight) {[∨]-introᵣ _} = reflexivity(_≡_) instance map1-function : ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ → BinaryOperator{B = (A ‖ B) → C}(map1) _⊜_.proof (BinaryOperator.congruence map1-function (intro p₁) (intro p₂)) {Left _} = p₁ _⊜_.proof (BinaryOperator.congruence map1-function (intro p₁) (intro p₂)) {Right _} = p₂
45.355932
134
0.634529
7c1aaf3e2973be2e08ba3ca63405afeb39f96313
518
agda
Agda
lib/types/Join.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
lib/types/Join.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
lib/types/Join.agda
UlrikBuchholtz/HoTT-Agda
f8fa68bf753d64d7f45556ca09d0da7976709afa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Sigma open import lib.types.Span open import lib.types.Pointed open import lib.types.Pushout module lib.types.Join where module _ {i j} (A : Type i) (B : Type j) where *-span : Span *-span = span A B (A × B) fst snd infix 80 _*_ _*_ : Type _ _*_ = Pushout *-span module _ {i j} (X : Ptd i) (Y : Ptd j) where *-⊙span : ⊙Span *-⊙span = ⊙span X Y (X ⊙× Y) ⊙fst ⊙snd infix 80 _⊙*_ _⊙*_ : Ptd _ _⊙*_ = ⊙Pushout *-⊙span
17.266667
46
0.600386
381b53b2469eadef174e24933c209c1295fff1d1
52,614
agda
Agda
Agda/10-fundamental-theorem.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
333
2018-09-26T08:33:30.000Z
2022-03-22T23:50:15.000Z
Agda/10-fundamental-theorem.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
8
2019-06-18T04:16:04.000Z
2020-10-16T15:27:01.000Z
Agda/10-fundamental-theorem.agda
UlrikBuchholtz/HoTT-Intro
1e1f8def50f9359928e52ebb2ee53ed1166487d9
[ "CC-BY-4.0" ]
30
2018-09-26T09:08:57.000Z
2022-03-16T00:33:50.000Z
{-# OPTIONS --without-K --exact-split --safe #-} module 10-fundamental-theorem where import 09-contractible-types open 09-contractible-types public -------------------------------------------------------------------------------- -- Section 8.1 Families of equivalences {- Any family of maps induces a map on the total spaces. -} tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → ( Σ A B → Σ A C) tot f t = pair (pr1 t) (f (pr1 t) (pr2 t)) {- We show that for any family of maps, the fiber of the induced map on total spaces are equivalent to the fibers of the maps in the family. -} fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (tot f) t → fib (f (pr1 t)) (pr2 t) fib-ftr-fib-tot f .(pair x (f x y)) (pair (pair x y) refl) = pair y refl fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → fib (f (pr1 t)) (pr2 t) → fib (tot f) t fib-tot-fib-ftr F (pair a .(F a y)) (pair y refl) = pair (pair a y) refl issec-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-ftr-fib-tot f t) ∘ (fib-tot-fib-ftr f t)) ~ id issec-fib-tot-fib-ftr f (pair x .(f x y)) (pair y refl) = refl isretr-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → ((fib-tot-fib-ftr f t) ∘ (fib-ftr-fib-tot f t)) ~ id isretr-fib-tot-fib-ftr f .(pair x (f x y)) (pair (pair x y) refl) = refl abstract is-equiv-fib-ftr-fib-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-ftr-fib-tot f t) is-equiv-fib-ftr-fib-tot f t = is-equiv-has-inverse ( fib-tot-fib-ftr f t) ( issec-fib-tot-fib-ftr f t) ( isretr-fib-tot-fib-ftr f t) abstract is-equiv-fib-tot-fib-ftr : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → (t : Σ A C) → is-equiv (fib-tot-fib-ftr f t) is-equiv-fib-tot-fib-ftr f t = is-equiv-has-inverse ( fib-ftr-fib-tot f t) ( isretr-fib-tot-fib-ftr f t) ( issec-fib-tot-fib-ftr f t) {- Now that we have shown that the fibers of the induced map on total spaces are equivalent to the fibers of the maps in the family, it follows that the induced map on total spaces is an equivalence if and only if each map in the family is an equivalence. -} is-fiberwise-equiv : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x → C x) → UU (i ⊔ (j ⊔ k)) is-fiberwise-equiv f = (x : _) → is-equiv (f x) abstract is-equiv-tot-is-fiberwise-equiv : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → {f : (x : A) → B x → C x} → is-fiberwise-equiv f → is-equiv (tot f ) is-equiv-tot-is-fiberwise-equiv {f = f} H = is-equiv-is-contr-map ( λ t → is-contr-is-equiv _ ( fib-ftr-fib-tot f t) ( is-equiv-fib-ftr-fib-tot f t) ( is-contr-map-is-equiv (H _) (pr2 t))) abstract is-fiberwise-equiv-is-equiv-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → (f : (x : A) → B x → C x) → is-equiv (tot f) → is-fiberwise-equiv f is-fiberwise-equiv-is-equiv-tot {A = A} {B} {C} f is-equiv-tot-f x = is-equiv-is-contr-map ( λ z → is-contr-is-equiv' ( fib (tot f) (pair x z)) ( fib-ftr-fib-tot f (pair x z)) ( is-equiv-fib-ftr-fib-tot f (pair x z)) ( is-contr-map-is-equiv is-equiv-tot-f (pair x z))) equiv-tot : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} → ((x : A) → B x ≃ C x) → (Σ A B) ≃ (Σ A C) equiv-tot e = pair ( tot (λ x → map-equiv (e x))) ( is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-map-equiv (e x))) {- In the second part of this section we show that any equivalence f on base types also induces an equivalence on total spaces. -} Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → Σ A (λ x → C (f x)) → Σ B C Σ-map-base-map f C s = pair (f (pr1 s)) (pr2 s) {- The proof is similar to the previous part: we show that the fibers of f and Σ-kap-base-map f C are equivalent. -} fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → fib f (pr1 t) → fib (Σ-map-base-map f C) t fib-Σ-map-base-map-fib f C (pair .(f x) z) (pair x refl) = pair (pair x z) refl fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → fib (Σ-map-base-map f C) t → fib f (pr1 t) fib-fib-Σ-map-base-map f C .(pair (f x) z) (pair (pair x z) refl) = pair x refl issec-fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → ( (fib-Σ-map-base-map-fib f C t) ∘ (fib-fib-Σ-map-base-map f C t)) ~ id issec-fib-fib-Σ-map-base-map f C .(pair (f x) z) (pair (pair x z) refl) = refl isretr-fib-fib-Σ-map-base-map : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → ( (fib-fib-Σ-map-base-map f C t) ∘ (fib-Σ-map-base-map-fib f C t)) ~ id isretr-fib-fib-Σ-map-base-map f C (pair .(f x) z) (pair x refl) = refl abstract is-equiv-fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → is-equiv (fib-Σ-map-base-map-fib f C t) is-equiv-fib-Σ-map-base-map-fib f C t = is-equiv-has-inverse ( fib-fib-Σ-map-base-map f C t) ( issec-fib-fib-Σ-map-base-map f C t) ( isretr-fib-fib-Σ-map-base-map f C t) equiv-fib-Σ-map-base-map-fib : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : B → UU l3) → ( t : Σ B C) → (fib f (pr1 t)) ≃ (fib (Σ-map-base-map f C) t) equiv-fib-Σ-map-base-map-fib f C t = pair ( fib-Σ-map-base-map-fib f C t) ( is-equiv-fib-Σ-map-base-map-fib f C t) abstract is-contr-map-Σ-map-base-map : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (f : A → B) → is-contr-map f → is-contr-map (Σ-map-base-map f C) is-contr-map-Σ-map-base-map C f is-contr-f (pair y z) = is-contr-is-equiv' ( fib f y) ( fib-Σ-map-base-map-fib f C (pair y z)) ( is-equiv-fib-Σ-map-base-map-fib f C (pair y z)) ( is-contr-f y) abstract is-equiv-Σ-map-base-map : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : B → UU l3) (f : A → B) → is-equiv f → is-equiv (Σ-map-base-map f C) is-equiv-Σ-map-base-map C f is-equiv-f = is-equiv-is-contr-map ( is-contr-map-Σ-map-base-map C f (is-contr-map-is-equiv is-equiv-f)) {- Now we combine the two parts of this section. -} toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → Σ A C → Σ B D toto D f g t = pair (f (pr1 t)) (g (pr1 t) (pr2 t)) {- A special case of toto is the functoriality of the cartesian product. -} {- We construct the functoriality of cartesian products. -} functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (A × B) → (C × D) functor-prod f g (pair a b) = pair (f a) (g b) functor-prod-pr1 : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (pr1 ∘ (functor-prod f g)) ~ (f ∘ pr1) functor-prod-pr1 f g (pair a b) = refl functor-prod-pr2 : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → (pr2 ∘ (functor-prod f g)) ~ (g ∘ pr2) functor-prod-pr2 f g (pair a b) = refl {- For our convenience we show that the functorial action of cartesian products preserves identity maps, compositions, homotopies, and equivalences. -} functor-prod-id : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (functor-prod (id {A = A}) (id {A = B})) ~ id functor-prod-id (pair a b) = refl functor-prod-comp : {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} (f : A → C) (g : B → D) (h : C → E) (k : D → F) → functor-prod (h ∘ f) (k ∘ g) ~ ((functor-prod h k) ∘ (functor-prod f g)) functor-prod-comp f g h k (pair a b) = refl functor-prod-htpy : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {f f' : A → C} (H : f ~ f') {g g' : B → D} (K : g ~ g') → functor-prod f g ~ functor-prod f' g' functor-prod-htpy {f = f} {f'} H {g} {g'} K (pair a b) = eq-pair-triv (pair (H a) (K b)) abstract is-equiv-functor-prod : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → C) (g : B → D) → is-equiv f → is-equiv g → is-equiv (functor-prod f g) is-equiv-functor-prod f g ( pair (pair sf issec-sf) (pair rf isretr-rf)) ( pair (pair sg issec-sg) (pair rg isretr-rg)) = pair ( pair ( functor-prod sf sg) ( ( htpy-inv (functor-prod-comp sf sg f g)) ∙h ( (functor-prod-htpy issec-sf issec-sg) ∙h functor-prod-id))) ( pair ( functor-prod rf rg) ( ( htpy-inv (functor-prod-comp f g rf rg)) ∙h ( (functor-prod-htpy isretr-rf isretr-rg) ∙h functor-prod-id))) {- triangle -} triangle-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → (toto D f g) ~ ((Σ-map-base-map f D) ∘ (tot g)) triangle-toto D f g t = refl abstract is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → is-equiv f → (is-fiberwise-equiv g) → is-equiv (toto D f g) is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map D f g is-equiv-f is-fiberwise-equiv-g = is-equiv-comp ( toto D f g) ( Σ-map-base-map f D) ( tot g) ( triangle-toto D f g) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-g) ( is-equiv-Σ-map-base-map D f is-equiv-f) equiv-toto : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (e : A ≃ B) (g : (x : A) → C x ≃ D (map-equiv e x)) → Σ A C ≃ Σ B D equiv-toto D e g = pair ( toto D (map-equiv e) (λ x → map-equiv (g x))) ( is-equiv-toto-is-fiberwise-equiv-is-equiv-base-map D ( map-equiv e) ( λ x → map-equiv (g x)) ( is-equiv-map-equiv e) ( λ x → is-equiv-map-equiv (g x))) abstract is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} (D : B → UU l4) (f : A → B) (g : (x : A) → C x → D (f x)) → is-equiv f → is-equiv (toto D f g) → is-fiberwise-equiv g is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map D f g is-equiv-f is-equiv-toto-fg = is-fiberwise-equiv-is-equiv-tot g ( is-equiv-right-factor ( toto D f g) ( Σ-map-base-map f D) ( tot g) ( triangle-toto D f g) ( is-equiv-Σ-map-base-map D f is-equiv-f) ( is-equiv-toto-fg)) -------------------------------------------------------------------------------- -- Section 8.2 The fundamental theorem -- The general form of the fundamental theorem of identity types abstract fundamental-theorem-id : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → (f : (x : A) → Id a x → B x) → is-fiberwise-equiv f fundamental-theorem-id {A = A} a b is-contr-AB f = is-fiberwise-equiv-is-equiv-tot f ( is-equiv-is-contr (tot f) (is-contr-total-path a) is-contr-AB) abstract fundamental-theorem-id' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) (f : (x : A) → Id a x → B x) → is-fiberwise-equiv f → is-contr (Σ A B) fundamental-theorem-id' {A = A} {B = B} a b f is-fiberwise-equiv-f = is-contr-is-equiv' ( Σ A (Id a)) ( tot f) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-f) ( is-contr-total-path a) -- The canonical form of the fundamental theorem of identity types abstract fundamental-theorem-id-J : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → is-contr (Σ A B) → is-fiberwise-equiv (ind-Id a (λ x p → B x) b) fundamental-theorem-id-J {i} {j} {A} {B} a b is-contr-AB = fundamental-theorem-id a b is-contr-AB (ind-Id a (λ x p → B x) b) -- The converse of the fundamental theorem of identity types abstract fundamental-theorem-id-J' : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-fiberwise-equiv (ind-Id a (λ x p → B x) b)) → is-contr (Σ A B) fundamental-theorem-id-J' {i} {j} {A} {B} a b H = is-contr-is-equiv' ( Σ A (Id a)) ( tot (ind-Id a (λ x p → B x) b)) ( is-equiv-tot-is-fiberwise-equiv H) ( is-contr-total-path a) -- We characterize the identity type of the natural numbers. center-total-Eq-ℕ : (m : ℕ) → Σ ℕ (Eq-ℕ m) center-total-Eq-ℕ m = pair m (refl-Eq-ℕ m) map-total-Eq-ℕ : (m : ℕ) → Σ ℕ (Eq-ℕ m) → Σ ℕ (Eq-ℕ (succ-ℕ m)) map-total-Eq-ℕ m (pair n e) = pair (succ-ℕ n) e contraction-total-Eq-ℕ : (m : ℕ) (x : Σ ℕ (Eq-ℕ m)) → Id (center-total-Eq-ℕ m) x contraction-total-Eq-ℕ zero-ℕ (pair zero-ℕ star) = refl contraction-total-Eq-ℕ (succ-ℕ m) (pair (succ-ℕ n) e) = ap (map-total-Eq-ℕ m) (contraction-total-Eq-ℕ m (pair n e)) is-contr-total-Eq-ℕ : (m : ℕ) → is-contr (Σ ℕ (Eq-ℕ m)) is-contr-total-Eq-ℕ m = pair (center-total-Eq-ℕ m) (contraction-total-Eq-ℕ m) is-equiv-Eq-ℕ-eq : {m n : ℕ} → is-equiv (Eq-ℕ-eq {m} {n}) is-equiv-Eq-ℕ-eq {m} {n} = fundamental-theorem-id m ( refl-Eq-ℕ m) ( is-contr-total-Eq-ℕ m) ( λ y → Eq-ℕ-eq {m} {y}) ( n) -- As an application we show that equivalences are embeddings. is-emb : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-emb f = (x y : _) → is-equiv (ap f {x} {y}) _↪_ : {i j : Level} → UU i → UU j → UU (i ⊔ j) A ↪ B = Σ (A → B) is-emb map-emb : {i j : Level} {A : UU i} {B : UU j} → A ↪ B → A → B map-emb f = pr1 f is-emb-map-emb : { i j : Level} {A : UU i} {B : UU j} (f : A ↪ B) → is-emb (map-emb f) is-emb-map-emb f = pr2 f eq-emb : {i j : Level} {A : UU i} {B : UU j} (f : A ↪ B) → {x y : A} → Id (map-emb f x) (map-emb f y) → Id x y eq-emb f {x} {y} = inv-is-equiv (is-emb-map-emb f x y) abstract is-emb-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-equiv f → is-emb f is-emb-is-equiv {i} {j} {A} {B} f is-equiv-f x = fundamental-theorem-id x refl ( is-contr-equiv ( fib f (f x)) ( equiv-tot (λ y → equiv-inv (f x) (f y))) ( is-contr-map-is-equiv is-equiv-f (f x))) ( λ y p → ap f p) emb-equiv : {i j : Level} {A : UU i} {B : UU j} → (A ≃ B) → (A ↪ B) emb-equiv e = pair (map-equiv e) (is-emb-is-equiv (map-equiv e) (is-equiv-map-equiv e)) emb-id : {i : Level} {A : UU i} → (A ↪ A) emb-id {i} {A} = emb-equiv (equiv-id A) equiv-ap : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) (x y : A) → (Id x y) ≃ (Id (map-equiv e x) (map-equiv e y)) equiv-ap e x y = pair ( ap (map-equiv e) {x} {y}) ( is-emb-is-equiv (map-equiv e) (is-equiv-map-equiv e) x y) -- Section 7.3 Identity systems IND-identity-system : {i j : Level} (k : Level) {A : UU i} (B : A → UU j) (a : A) (b : B a) → UU _ IND-identity-system k {A} B a b = ( P : (x : A) (y : B x) → UU k) → sec (λ (h : (x : A) (y : B x) → P x y) → h a b) fam-Σ : {i j k : Level} {A : UU i} {B : A → UU j} (C : (x : A) → B x → UU k) → Σ A B → UU k fam-Σ C (pair x y) = C x y abstract ind-identity-system : {i j k : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) (P : (x : A) → B x → UU k) → P a b → (x : A) (y : B x) → P x y ind-identity-system a b is-contr-AB P p x y = tr ( fam-Σ P) ( eq-is-contr is-contr-AB (pair a b) (pair x y)) ( p) comp-identity-system : {i j k : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) → (P : (x : A) → B x → UU k) (p : P a b) → Id (ind-identity-system a b is-contr-AB P p a b) p comp-identity-system a b is-contr-AB P p = ap ( λ t → tr (fam-Σ P) t p) ( eq-is-contr ( is-prop-is-contr is-contr-AB (pair a b) (pair a b)) ( eq-is-contr is-contr-AB (pair a b) (pair a b)) ( refl)) Ind-identity-system : {i j : Level} (k : Level) {A : UU i} {B : A → UU j} (a : A) (b : B a) → (is-contr-AB : is-contr (Σ A B)) → IND-identity-system k B a b Ind-identity-system k a b is-contr-AB P = pair ( ind-identity-system a b is-contr-AB P) ( comp-identity-system a b is-contr-AB P) contraction-total-space-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → (t : Σ A B) → Id (pair a b) t contraction-total-space-IND-identity-system a b ind (pair x y) = pr1 (ind (λ x' y' → Id (pair a b) (pair x' y'))) refl x y abstract is-contr-total-space-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → is-contr (Σ A B) is-contr-total-space-IND-identity-system a b ind = pair ( pair a b) ( contraction-total-space-IND-identity-system a b ind) abstract fundamental-theorem-id-IND-identity-system : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (b : B a) → IND-identity-system (i ⊔ j) B a b → (f : (x : A) → Id a x → B x) → (x : A) → is-equiv (f x) fundamental-theorem-id-IND-identity-system a b ind f = fundamental-theorem-id a b (is-contr-total-space-IND-identity-system a b ind) f -------------------------------------------------------------------------------- -- Section 7.4 Disjointness of coproducts -- Raising universe levels data raise (l : Level) {l1 : Level} (A : UU l1) : UU (l1 ⊔ l) where map-raise : A → raise l A inv-map-raise : {l l1 : Level} {A : UU l1} → raise l A → A inv-map-raise (map-raise x) = x issec-inv-map-raise : {l l1 : Level} {A : UU l1} (x : raise l A) → Id (map-raise (inv-map-raise x)) x issec-inv-map-raise (map-raise x) = refl isretr-inv-map-raise : {l l1 : Level} {A : UU l1} (x : A) → Id (inv-map-raise {l} (map-raise x)) x isretr-inv-map-raise x = refl is-equiv-map-raise : (l : Level) {l1 : Level} (A : UU l1) → is-equiv (map-raise {l} {l1} {A}) is-equiv-map-raise l A = is-equiv-has-inverse inv-map-raise ( issec-inv-map-raise) ( isretr-inv-map-raise {l}) equiv-raise : (l : Level) {l1 : Level} (A : UU l1) → A ≃ raise l A equiv-raise l A = pair map-raise (is-equiv-map-raise l A) Raise : (l : Level) {l1 : Level} (A : UU l1) → Σ (UU (l1 ⊔ l)) (λ X → A ≃ X) Raise l A = pair (raise l A) (equiv-raise l A) -- Lemmas about coproducts left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → Σ (coprod A B) C → coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) left-distributive-coprod-Σ-map A B C (pair (inl x) z) = inl (pair x z) left-distributive-coprod-Σ-map A B C (pair (inr y) z) = inr (pair y z) inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) → Σ (coprod A B) C inv-left-distributive-coprod-Σ-map A B C (inl (pair x z)) = pair (inl x) z inv-left-distributive-coprod-Σ-map A B C (inr (pair y z)) = pair (inr y) z issec-inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → ( (left-distributive-coprod-Σ-map A B C) ∘ (inv-left-distributive-coprod-Σ-map A B C)) ~ id issec-inv-left-distributive-coprod-Σ-map A B C (inl (pair x z)) = refl issec-inv-left-distributive-coprod-Σ-map A B C (inr (pair y z)) = refl isretr-inv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → ( (inv-left-distributive-coprod-Σ-map A B C) ∘ (left-distributive-coprod-Σ-map A B C)) ~ id isretr-inv-left-distributive-coprod-Σ-map A B C (pair (inl x) z) = refl isretr-inv-left-distributive-coprod-Σ-map A B C (pair (inr y) z) = refl abstract is-equiv-left-distributive-coprod-Σ-map : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → is-equiv (left-distributive-coprod-Σ-map A B C) is-equiv-left-distributive-coprod-Σ-map A B C = is-equiv-has-inverse ( inv-left-distributive-coprod-Σ-map A B C) ( issec-inv-left-distributive-coprod-Σ-map A B C) ( isretr-inv-left-distributive-coprod-Σ-map A B C) equiv-left-distributive-coprod-Σ : {l1 l2 l3 : Level} (A : UU l1) (B : UU l2) (C : coprod A B → UU l3) → Σ (coprod A B) C ≃ coprod (Σ A (λ x → C (inl x))) (Σ B (λ y → C (inr y))) equiv-left-distributive-coprod-Σ A B C = pair ( left-distributive-coprod-Σ-map A B C) ( is-equiv-left-distributive-coprod-Σ-map A B C) abstract is-equiv-map-to-empty : {l : Level} {A : UU l} (f : A → empty) → is-equiv f is-equiv-map-to-empty f = is-equiv-has-inverse ind-empty ind-empty ( λ x → ind-empty {P = λ t → Id (ind-empty (f x)) x} (f x)) map-Σ-empty-fam : {l : Level} (A : UU l) → Σ A (λ x → empty) → empty map-Σ-empty-fam A (pair x ()) abstract is-equiv-map-Σ-empty-fam : {l : Level} (A : UU l) → is-equiv (map-Σ-empty-fam A) is-equiv-map-Σ-empty-fam A = is-equiv-map-to-empty (map-Σ-empty-fam A) equiv-Σ-empty-fam : {l : Level} (A : UU l) → Σ A (λ x → empty) ≃ empty equiv-Σ-empty-fam A = pair (map-Σ-empty-fam A) (is-equiv-map-Σ-empty-fam A) -- The identity types of coproducts Eq-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → coprod A B → coprod A B → UU (l1 ⊔ l2) Eq-coprod {l1} {l2} A B (inl x) (inl y) = raise (l1 ⊔ l2) (Id x y) Eq-coprod {l1} {l2} A B (inl x) (inr y) = raise (l1 ⊔ l2) empty Eq-coprod {l1} {l2} A B (inr x) (inl y) = raise (l1 ⊔ l2) empty Eq-coprod {l1} {l2} A B (inr x) (inr y) = raise (l1 ⊔ l2) (Id x y) reflexive-Eq-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (t : coprod A B) → Eq-coprod A B t t reflexive-Eq-coprod {l1} {l2} A B (inl x) = map-raise refl reflexive-Eq-coprod {l1} {l2} A B (inr x) = map-raise refl Eq-coprod-eq : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (s t : coprod A B) → Id s t → Eq-coprod A B s t Eq-coprod-eq A B s .s refl = reflexive-Eq-coprod A B s abstract is-contr-total-Eq-coprod-inl : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : A) → is-contr (Σ (coprod A B) (Eq-coprod A B (inl x))) is-contr-total-Eq-coprod-inl A B x = is-contr-equiv ( coprod ( Σ A (λ y → Eq-coprod A B (inl x) (inl y))) ( Σ B (λ y → Eq-coprod A B (inl x) (inr y)))) ( equiv-left-distributive-coprod-Σ A B (Eq-coprod A B (inl x))) ( is-contr-equiv' ( coprod ( Σ A (Id x)) ( Σ B (λ y → empty))) ( equiv-functor-coprod ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( equiv-tot (λ y → equiv-raise _ empty))) ( is-contr-equiv ( coprod (Σ A (Id x)) empty) ( equiv-functor-coprod ( equiv-id (Σ A (Id x))) ( equiv-Σ-empty-fam B)) ( is-contr-equiv' ( Σ A (Id x)) ( right-unit-law-coprod (Σ A (Id x))) ( is-contr-total-path x)))) abstract is-contr-total-Eq-coprod-inr : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : B) → is-contr (Σ (coprod A B) (Eq-coprod A B (inr x))) is-contr-total-Eq-coprod-inr A B x = is-contr-equiv ( coprod ( Σ A (λ y → Eq-coprod A B (inr x) (inl y))) ( Σ B (λ y → Eq-coprod A B (inr x) (inr y)))) ( equiv-left-distributive-coprod-Σ A B (Eq-coprod A B (inr x))) ( is-contr-equiv' ( coprod (Σ A (λ y → empty)) (Σ B (Id x))) ( equiv-functor-coprod ( equiv-tot (λ y → equiv-raise _ empty)) ( equiv-tot (λ y → equiv-raise _ (Id x y)))) ( is-contr-equiv ( coprod empty (Σ B (Id x))) ( equiv-functor-coprod ( equiv-Σ-empty-fam A) ( equiv-id (Σ B (Id x)))) ( is-contr-equiv' ( Σ B (Id x)) ( left-unit-law-coprod (Σ B (Id x))) ( is-contr-total-path x)))) abstract is-equiv-Eq-coprod-eq-inl : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : A) → is-fiberwise-equiv (Eq-coprod-eq A B (inl x)) is-equiv-Eq-coprod-eq-inl A B x = fundamental-theorem-id ( inl x) ( reflexive-Eq-coprod A B (inl x)) ( is-contr-total-Eq-coprod-inl A B x) ( Eq-coprod-eq A B (inl x)) abstract is-equiv-Eq-coprod-eq-inr : {l1 l2 : Level} (A : UU l1) (B : UU l2) (x : B) → is-fiberwise-equiv (Eq-coprod-eq A B (inr x)) is-equiv-Eq-coprod-eq-inr A B x = fundamental-theorem-id ( inr x) ( reflexive-Eq-coprod A B (inr x)) ( is-contr-total-Eq-coprod-inr A B x) ( Eq-coprod-eq A B (inr x)) abstract is-equiv-Eq-coprod-eq : {l1 l2 : Level} (A : UU l1) (B : UU l2) (s : coprod A B) → is-fiberwise-equiv (Eq-coprod-eq A B s) is-equiv-Eq-coprod-eq A B (inl x) = is-equiv-Eq-coprod-eq-inl A B x is-equiv-Eq-coprod-eq A B (inr x) = is-equiv-Eq-coprod-eq-inr A B x map-compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → Id (inl {B = B} x) (inl {B = B} x') → Id x x' map-compute-eq-coprod-inl-inl x x' = ( inv-is-equiv (is-equiv-map-raise _ (Id x x'))) ∘ ( Eq-coprod-eq _ _ (inl x) (inl x')) abstract is-equiv-map-compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → is-equiv (map-compute-eq-coprod-inl-inl {B = B} x x') is-equiv-map-compute-eq-coprod-inl-inl x x' = is-equiv-comp ( map-compute-eq-coprod-inl-inl x x') ( inv-is-equiv (is-equiv-map-raise _ (Id x x'))) ( Eq-coprod-eq _ _ (inl x) (inl x')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inl x) (inl x')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ (Id x x'))) compute-eq-coprod-inl-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x x' : A) → (Id (inl {B = B} x) (inl x')) ≃ (Id x x') compute-eq-coprod-inl-inl x x' = pair ( map-compute-eq-coprod-inl-inl x x') ( is-equiv-map-compute-eq-coprod-inl-inl x x') map-compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → Id (inl x) (inr y') → empty map-compute-eq-coprod-inl-inr x y' = ( inv-is-equiv (is-equiv-map-raise _ empty)) ∘ ( Eq-coprod-eq _ _ (inl x) (inr y')) abstract is-equiv-map-compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → is-equiv (map-compute-eq-coprod-inl-inr x y') is-equiv-map-compute-eq-coprod-inl-inr x y' = is-equiv-comp ( map-compute-eq-coprod-inl-inr x y') ( inv-is-equiv (is-equiv-map-raise _ empty)) ( Eq-coprod-eq _ _ (inl x) (inr y')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inl x) (inr y')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ empty)) compute-eq-coprod-inl-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (x : A) (y' : B) → (Id (inl x) (inr y')) ≃ empty compute-eq-coprod-inl-inr x y' = pair ( map-compute-eq-coprod-inl-inr x y') ( is-equiv-map-compute-eq-coprod-inl-inr x y') map-compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → (Id (inr {A = A} y) (inl x')) → empty map-compute-eq-coprod-inr-inl y x' = ( inv-is-equiv (is-equiv-map-raise _ empty)) ∘ ( Eq-coprod-eq _ _ (inr y) (inl x')) abstract is-equiv-map-compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → is-equiv (map-compute-eq-coprod-inr-inl y x') is-equiv-map-compute-eq-coprod-inr-inl y x' = is-equiv-comp ( map-compute-eq-coprod-inr-inl y x') ( inv-is-equiv (is-equiv-map-raise _ empty)) ( Eq-coprod-eq _ _ (inr y) (inl x')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inr y) (inl x')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ empty)) compute-eq-coprod-inr-inl : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y : B) (x' : A) → (Id (inr y) (inl x')) ≃ empty compute-eq-coprod-inr-inl y x' = pair ( map-compute-eq-coprod-inr-inl y x') ( is-equiv-map-compute-eq-coprod-inr-inl y x') map-compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → (Id (inr {A = A} y) (inr y')) → Id y y' map-compute-eq-coprod-inr-inr y y' = ( inv-is-equiv (is-equiv-map-raise _ (Id y y'))) ∘ ( Eq-coprod-eq _ _ (inr y) (inr y')) abstract is-equiv-map-compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → is-equiv (map-compute-eq-coprod-inr-inr {A = A} y y') is-equiv-map-compute-eq-coprod-inr-inr y y' = is-equiv-comp ( map-compute-eq-coprod-inr-inr y y') ( inv-is-equiv (is-equiv-map-raise _ (Id y y'))) ( Eq-coprod-eq _ _ (inr y) (inr y')) ( refl-htpy) ( is-equiv-Eq-coprod-eq _ _ (inr y) (inr y')) ( is-equiv-inv-is-equiv (is-equiv-map-raise _ (Id y y'))) compute-eq-coprod-inr-inr : {l1 l2 : Level} {A : UU l1} {B : UU l2} (y y' : B) → (Id (inr {A = A} y) (inr y')) ≃ (Id y y') compute-eq-coprod-inr-inr y y' = pair ( map-compute-eq-coprod-inr-inr y y') ( is-equiv-map-compute-eq-coprod-inr-inr y y') -------------------------------------------------------------------------------- -- Exercises -- Exercise 7.1 abstract is-emb-empty : {i : Level} (A : UU i) → is-emb (ind-empty {P = λ x → A}) is-emb-empty A = ind-empty -- Exercise 7.2 eq-transpose-equiv : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) (x : A) (y : B) → (Id (map-equiv e x) y) ≃ (Id x (inv-map-equiv e y)) eq-transpose-equiv e x y = ( inv-equiv (equiv-ap e x (inv-map-equiv e y))) ∘e ( equiv-concat' ( map-equiv e x) ( inv (issec-inv-map-equiv e y))) map-eq-transpose-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) {x : A} {y : B} → Id (map-equiv e x) y → Id x (inv-map-equiv e y) map-eq-transpose-equiv e {x} {y} = map-equiv (eq-transpose-equiv e x y) triangle-eq-transpose-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) {x : A} {y : B} (p : Id (map-equiv e x) y) → Id ( ( ap (map-equiv e) (map-eq-transpose-equiv e p)) ∙ ( issec-inv-map-equiv e y)) ( p) triangle-eq-transpose-equiv e {x} {y} p = ( ap ( concat' (map-equiv e x) (issec-inv-map-equiv e y)) ( issec-inv-map-equiv ( equiv-ap e x (inv-map-equiv e y)) ( p ∙ inv (issec-inv-map-equiv e y)))) ∙ ( ( assoc p (inv (issec-inv-map-equiv e y)) (issec-inv-map-equiv e y)) ∙ ( ( ap (concat p y) (left-inv (issec-inv-map-equiv e y))) ∙ right-unit)) map-eq-transpose-equiv' : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) {a : A} {b : B} → Id b (map-equiv e a) → Id (inv-map-equiv e b) a map-eq-transpose-equiv' e p = inv (map-eq-transpose-equiv e (inv p)) triangle-eq-transpose-equiv' : {l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) {x : A} {y : B} → (p : Id y (map-equiv e x)) → Id ( (issec-inv-map-equiv e y) ∙ p) ( ap (map-equiv e) (map-eq-transpose-equiv' e p)) triangle-eq-transpose-equiv' e {x} {y} p = inv-map-equiv ( equiv-ap ( equiv-inv (map-equiv e (inv-map-equiv e y)) (map-equiv e x)) ( (issec-inv-map-equiv e y) ∙ p) ( ap (map-equiv e) (map-eq-transpose-equiv' e p))) ( ( distributive-inv-concat (issec-inv-map-equiv e y) p) ∙ ( ( inv ( con-inv ( ap (map-equiv e) (inv (map-eq-transpose-equiv' e p))) ( issec-inv-map-equiv e y) ( inv p) ( ( ap ( concat' (map-equiv e x) (issec-inv-map-equiv e y)) ( ap ( ap (map-equiv e)) ( inv-inv ( inv-map-equiv ( equiv-ap e x (inv-map-equiv e y)) ( ( inv p) ∙ ( inv (issec-inv-map-equiv e y))))))) ∙ ( triangle-eq-transpose-equiv e (inv p))))) ∙ ( ap-inv (map-equiv e) (map-eq-transpose-equiv' e p)))) -- Exercise 7.3 abstract is-equiv-top-is-equiv-left-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → is-equiv i → is-equiv f → is-equiv g → is-equiv h is-equiv-top-is-equiv-left-square f g h i H is-equiv-i is-equiv-f is-equiv-g = is-equiv-right-factor (i ∘ f) g h H is-equiv-g ( is-equiv-comp' i f is-equiv-f is-equiv-i) abstract is-emb-htpy : {i j : Level} {A : UU i} {B : UU j} (f g : A → B) → (f ~ g) → is-emb g → is-emb f is-emb-htpy f g H is-emb-g x y = is-equiv-top-is-equiv-left-square ( ap g) ( concat' (f x) (H y)) ( ap f) ( concat (H x) (g y)) ( htpy-nat H) ( is-equiv-concat (H x) (g y)) ( is-emb-g x y) ( is-equiv-concat' (f x) (H y)) abstract is-emb-htpy' : {i j : Level} {A : UU i} {B : UU j} (f g : A → B) → (f ~ g) → is-emb f → is-emb g is-emb-htpy' f g H is-emb-f = is-emb-htpy g f (htpy-inv H) is-emb-f -- Exercise 7.4 abstract is-emb-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-emb g → is-emb h → is-emb f is-emb-comp f g h H is-emb-g is-emb-h = is-emb-htpy f (g ∘ h) H ( λ x y → is-equiv-comp (ap (g ∘ h)) (ap g) (ap h) (ap-comp g h) ( is-emb-h x y) ( is-emb-g (h x) (h y))) abstract is-emb-comp' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (g : B → X) (h : A → B) → is-emb g → is-emb h → is-emb (g ∘ h) is-emb-comp' g h = is-emb-comp (g ∘ h) g h refl-htpy abstract is-emb-right-factor : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-emb g → is-emb f → is-emb h is-emb-right-factor f g h H is-emb-g is-emb-f x y = is-equiv-right-factor ( ap (g ∘ h)) ( ap g) ( ap h) ( ap-comp g h) ( is-emb-g (h x) (h y)) ( is-emb-htpy (g ∘ h) f (htpy-inv H) is-emb-f x y) abstract is-emb-triangle-is-equiv : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (e : A → B) (H : f ~ (g ∘ e)) → is-equiv e → is-emb g → is-emb f is-emb-triangle-is-equiv f g e H is-equiv-e is-emb-g = is-emb-comp f g e H is-emb-g (is-emb-is-equiv e is-equiv-e) abstract is-emb-triangle-is-equiv' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (e : A → B) (H : f ~ (g ∘ e)) → is-equiv e → is-emb f → is-emb g is-emb-triangle-is-equiv' f g e H is-equiv-e is-emb-f = is-emb-triangle-is-equiv g f ( inv-is-equiv is-equiv-e) ( triangle-section f g e H ( pair ( inv-is-equiv is-equiv-e) ( issec-inv-is-equiv is-equiv-e))) ( is-equiv-inv-is-equiv is-equiv-e) ( is-emb-f) -- Exercise 7.5 abstract is-emb-inl : {i j : Level} (A : UU i) (B : UU j) → is-emb (inl {A = A} {B = B}) is-emb-inl A B x = fundamental-theorem-id x refl ( is-contr-is-equiv ( Σ A (λ y → Eq-coprod A B (inl x) (inl y))) ( tot (λ y → Eq-coprod-eq A B (inl x) (inl y))) ( is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-Eq-coprod-eq A B (inl x) (inl y))) ( is-contr-equiv' ( Σ A (Id x)) ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( is-contr-total-path x))) ( λ y → ap inl) abstract is-emb-inr : {i j : Level} (A : UU i) (B : UU j) → is-emb (inr {A = A} {B = B}) is-emb-inr A B x = fundamental-theorem-id x refl ( is-contr-is-equiv ( Σ B (λ y → Eq-coprod A B (inr x) (inr y))) ( tot (λ y → Eq-coprod-eq A B (inr x) (inr y))) ( is-equiv-tot-is-fiberwise-equiv ( λ y → is-equiv-Eq-coprod-eq A B (inr x) (inr y))) ( is-contr-equiv' ( Σ B (Id x)) ( equiv-tot (λ y → equiv-raise _ (Id x y))) ( is-contr-total-path x))) ( λ y → ap inr) -- Exercise 7.6 -- Exercise 7.7 tot-htpy : {i j k : Level} {A : UU i} {B : A → UU j} {C : A → UU k} {f g : (x : A) → B x → C x} → (H : (x : A) → f x ~ g x) → tot f ~ tot g tot-htpy H (pair x y) = eq-pair refl (H x y) tot-id : {i j : Level} {A : UU i} (B : A → UU j) → (tot (λ x (y : B x) → y)) ~ id tot-id B (pair x y) = refl tot-comp : {i j j' j'' : Level} {A : UU i} {B : A → UU j} {B' : A → UU j'} {B'' : A → UU j''} (f : (x : A) → B x → B' x) (g : (x : A) → B' x → B'' x) → tot (λ x → (g x) ∘ (f x)) ~ ((tot g) ∘ (tot f)) tot-comp f g (pair x y) = refl -- Exercise 7.8 abstract fundamental-theorem-id-retr : {i j : Level} {A : UU i} {B : A → UU j} (a : A) → (i : (x : A) → B x → Id a x) → (R : (x : A) → retr (i x)) → is-fiberwise-equiv i fundamental-theorem-id-retr {_} {_} {A} {B} a i R = is-fiberwise-equiv-is-equiv-tot i ( is-equiv-is-contr (tot i) ( is-contr-retract-of (Σ _ (λ y → Id a y)) ( pair (tot i) ( pair (tot λ x → pr1 (R x)) ( ( htpy-inv (tot-comp i (λ x → pr1 (R x)))) ∙h ( ( tot-htpy λ x → pr2 (R x)) ∙h (tot-id B))))) ( is-contr-total-path a)) ( is-contr-total-path a)) abstract is-equiv-sec-is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (sec-f : sec f) → is-equiv (pr1 sec-f) → is-equiv f is-equiv-sec-is-equiv {A = A} {B = B} f (pair g issec-g) is-equiv-sec-f = let h : A → B h = inv-is-equiv is-equiv-sec-f in is-equiv-htpy h ( ( htpy-left-whisk f (htpy-inv (issec-inv-is-equiv is-equiv-sec-f))) ∙h ( htpy-right-whisk issec-g h)) ( is-equiv-inv-is-equiv is-equiv-sec-f) abstract fundamental-theorem-id-sec : {i j : Level} {A : UU i} {B : A → UU j} (a : A) (f : (x : A) → Id a x → B x) → ((x : A) → sec (f x)) → is-fiberwise-equiv f fundamental-theorem-id-sec {A = A} {B = B} a f sec-f x = let i : (x : A) → B x → Id a x i = λ x → pr1 (sec-f x) retr-i : (x : A) → retr (i x) retr-i = λ x → pair (f x) (pr2 (sec-f x)) is-fiberwise-equiv-i : is-fiberwise-equiv i is-fiberwise-equiv-i = fundamental-theorem-id-retr a i retr-i in is-equiv-sec-is-equiv (f x) (sec-f x) (is-fiberwise-equiv-i x) -- Exercise 7.9 abstract is-emb-sec-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → ((x y : A) → sec (ap f {x = x} {y = y})) → is-emb f is-emb-sec-ap f sec-ap-f x = fundamental-theorem-id-sec x (λ y → ap f {y = y}) (sec-ap-f x) -- Exercise 7.10 coherence-is-half-adjoint-equivalence : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (g : B → A) (G : (f ∘ g) ~ id) (H : (g ∘ f) ~ id) → UU (l1 ⊔ l2) coherence-is-half-adjoint-equivalence f g G H = ( htpy-right-whisk G f) ~ (htpy-left-whisk f H) is-half-adjoint-equivalence : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-half-adjoint-equivalence {A = A} {B = B} f = Σ (B → A) ( λ g → Σ ((f ∘ g) ~ id) ( λ G → Σ ((g ∘ f) ~ id) (coherence-is-half-adjoint-equivalence f g G))) is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-path-split {A = A} {B = B} f = sec f × ((x y : A) → sec (ap f {x = x} {y = y})) abstract is-path-split-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-path-split f is-path-split-is-equiv f is-equiv-f = pair (pr1 is-equiv-f) (λ x y → pr1 (is-emb-is-equiv f is-equiv-f x y)) abstract is-half-adjoint-equivalence-is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-path-split f → is-half-adjoint-equivalence f is-half-adjoint-equivalence-is-path-split {A = A} {B = B} f ( pair (pair g issec-g) sec-ap-f) = let φ : ((x : A) → fib (ap f) (issec-g (f x))) → Σ ((g ∘ f) ~ id) ( λ H → (htpy-right-whisk issec-g f) ~ (htpy-left-whisk f H)) φ = ( tot (λ H' → htpy-inv)) ∘ ( λ s → pair (λ x → pr1 (s x)) (λ x → pr2 (s x))) in pair g ( pair issec-g ( φ (λ x → pair ( pr1 (sec-ap-f (g (f x)) x) (issec-g (f x))) ( pr2 (sec-ap-f (g (f x)) x) (issec-g (f x)))))) abstract is-equiv-is-half-adjoint-equivalence : { l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-half-adjoint-equivalence f → is-equiv f is-equiv-is-half-adjoint-equivalence f (pair g (pair G (pair H K))) = is-equiv-has-inverse g G H abstract is-equiv-is-path-split : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-path-split f → is-equiv f is-equiv-is-path-split f = ( is-equiv-is-half-adjoint-equivalence f) ∘ ( is-half-adjoint-equivalence-is-path-split f) abstract is-half-adjoint-equivalence-is-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-equiv f → is-half-adjoint-equivalence f is-half-adjoint-equivalence-is-equiv f = ( is-half-adjoint-equivalence-is-path-split f) ∘ (is-path-split-is-equiv f) -- Exercise 7.11 abstract is-equiv-top-is-equiv-bottom-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv f) → (is-equiv g) → (is-equiv i) → (is-equiv h) is-equiv-top-is-equiv-bottom-square f g h i H is-equiv-f is-equiv-g is-equiv-i = is-equiv-right-factor (i ∘ f) g h H is-equiv-g ( is-equiv-comp' i f is-equiv-f is-equiv-i) abstract is-equiv-bottom-is-equiv-top-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv f) → (is-equiv g) → (is-equiv h) → (is-equiv i) is-equiv-bottom-is-equiv-top-square f g h i H is-equiv-f is-equiv-g is-equiv-h = is-equiv-left-factor' i f ( is-equiv-comp (i ∘ f) g h H is-equiv-h is-equiv-g) is-equiv-f abstract is-equiv-left-is-equiv-right-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv h) → (is-equiv i) → (is-equiv g) → (is-equiv f) is-equiv-left-is-equiv-right-square f g h i H is-equiv-h is-equiv-i is-equiv-g = is-equiv-right-factor' i f is-equiv-i ( is-equiv-comp (i ∘ f) g h H is-equiv-h is-equiv-g) abstract is-equiv-right-is-equiv-left-square : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (g : C → D) (h : A → C) (i : B → D) (H : (i ∘ f) ~ (g ∘ h)) → (is-equiv h) → (is-equiv i) → (is-equiv f) → (is-equiv g) is-equiv-right-is-equiv-left-square f g h i H is-equiv-h is-equiv-i is-equiv-f = is-equiv-left-factor (i ∘ f) g h H ( is-equiv-comp' i f is-equiv-f is-equiv-i) ( is-equiv-h) fib-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (x : X) → (fib f x) → (fib g x) fib-triangle f g h H .(f a) (pair a refl) = pair (h a) (inv (H a)) square-tot-fib-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (h ∘ (Σ-fib-to-domain f)) ~ ((Σ-fib-to-domain g) ∘ (tot (fib-triangle f g h H))) square-tot-fib-triangle f g h H (pair .(f a) (pair a refl)) = refl abstract is-fiberwise-equiv-is-equiv-triangle : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (E : is-equiv h) → is-fiberwise-equiv (fib-triangle f g h H) is-fiberwise-equiv-is-equiv-triangle f g h H E = is-fiberwise-equiv-is-equiv-tot ( fib-triangle f g h H) ( is-equiv-top-is-equiv-bottom-square ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( tot (fib-triangle f g h H)) ( h) ( square-tot-fib-triangle f g h H) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( E)) abstract is-equiv-triangle-is-fiberwise-equiv : {i j k : Level} {X : UU i} {A : UU j} {B : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → (E : is-fiberwise-equiv (fib-triangle f g h H)) → is-equiv h is-equiv-triangle-is-fiberwise-equiv f g h H E = is-equiv-bottom-is-equiv-top-square ( Σ-fib-to-domain f) ( Σ-fib-to-domain g) ( tot (fib-triangle f g h H)) ( h) ( square-tot-fib-triangle f g h H) ( is-equiv-Σ-fib-to-domain f) ( is-equiv-Σ-fib-to-domain g) ( is-equiv-tot-is-fiberwise-equiv E) -- Extra material {- In order to show that the total space of htpy-cone is contractible, we give a general construction that helps us characterize the identity type of a structure. This construction is called is-contr-total-Eq-structure. We first give some definitions that help us with the construction of is-contr-total-Eq-structure. -} swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t))) → Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) swap-total-Eq-structure B C D (pair (pair a b) (pair c d)) = pair (pair a c) (pair b d) htpy-swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → ( ( swap-total-Eq-structure B C D) ∘ ( swap-total-Eq-structure C B (λ x z y → D x y z))) ~ id htpy-swap-total-Eq-structure B C D (pair (pair a b) (pair c d)) = refl abstract is-equiv-swap-total-Eq-structure : {l1 l2 l3 l4 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) (D : (x : A) → B x → C x → UU l4) → is-equiv (swap-total-Eq-structure B C D) is-equiv-swap-total-Eq-structure B C D = is-equiv-has-inverse ( swap-total-Eq-structure C B (λ x z y → D x y z)) ( htpy-swap-total-Eq-structure B C D) ( htpy-swap-total-Eq-structure C B (λ x z y → D x y z)) abstract is-contr-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-contr A → ((x : A) → is-contr (B x)) → is-contr (Σ A B) is-contr-Σ {A = A} {B = B} is-contr-A is-contr-B = is-contr-equiv' ( B (center is-contr-A)) ( left-unit-law-Σ B is-contr-A) ( is-contr-B (center is-contr-A)) abstract is-contr-Σ' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-contr A → (a : A) → is-contr (B a) → is-contr (Σ A B) is-contr-Σ' {A = A} {B} is-contr-A a is-contr-B = is-contr-is-equiv' ( B a) ( left-unit-law-Σ-map-gen B is-contr-A a) ( is-equiv-left-unit-law-Σ-map-gen B is-contr-A a) ( is-contr-B) abstract is-contr-total-Eq-structure : { l1 l2 l3 l4 : Level} { A : UU l1} {B : A → UU l2} {C : A → UU l3} ( D : (x : A) → B x → C x → UU l4) → ( is-contr-AC : is-contr (Σ A C)) → ( t : Σ A C) → is-contr (Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t))) → is-contr (Σ (Σ A B) (λ t → Σ (C (pr1 t)) (D (pr1 t) (pr2 t)))) is-contr-total-Eq-structure {A = A} {B = B} {C = C} D is-contr-AC t is-contr-BD = is-contr-is-equiv ( Σ (Σ A C) (λ t → Σ (B (pr1 t)) (λ y → D (pr1 t) y (pr2 t)))) ( swap-total-Eq-structure B C D) ( is-equiv-swap-total-Eq-structure B C D) ( is-contr-Σ' is-contr-AC t is-contr-BD) -- Characterizing the identity type of a fiber as the fiber of the action on -- paths fib-ap-eq-fib-fiberwise : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) (p : Id (pr1 s) (pr1 t)) → (Id (tr (λ (a : A) → Id (f a) b) p (pr2 s)) (pr2 t)) → (Id (ap f p) ((pr2 s) ∙ (inv (pr2 t)))) fib-ap-eq-fib-fiberwise f (pair .x' p) (pair x' refl) refl = inv ∘ (concat right-unit refl) abstract is-fiberwise-equiv-fib-ap-eq-fib-fiberwise : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → is-fiberwise-equiv (fib-ap-eq-fib-fiberwise f s t) is-fiberwise-equiv-fib-ap-eq-fib-fiberwise f (pair x y) (pair .x refl) refl = is-equiv-comp ( fib-ap-eq-fib-fiberwise f (pair x y) (pair x refl) refl) ( inv) ( concat right-unit refl) ( refl-htpy) ( is-equiv-concat right-unit refl) ( is-equiv-inv (y ∙ refl) refl) fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → Id s t → fib (ap f {x = pr1 s} {y = pr1 t}) ((pr2 s) ∙ (inv (pr2 t))) fib-ap-eq-fib f s .s refl = pair refl (inv (right-inv (pr2 s))) triangle-fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → (fib-ap-eq-fib f s t) ~ ((tot (fib-ap-eq-fib-fiberwise f s t)) ∘ (pair-eq {s = s} {t})) triangle-fib-ap-eq-fib f (pair x refl) .(pair x refl) refl = refl abstract is-equiv-fib-ap-eq-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {b : B} (s t : fib f b) → is-equiv (fib-ap-eq-fib f s t) is-equiv-fib-ap-eq-fib f s t = is-equiv-comp ( fib-ap-eq-fib f s t) ( tot (fib-ap-eq-fib-fiberwise f s t)) ( pair-eq {s = s} {t}) ( triangle-fib-ap-eq-fib f s t) ( is-equiv-pair-eq s t) ( is-equiv-tot-is-fiberwise-equiv ( is-fiberwise-equiv-fib-ap-eq-fib-fiberwise f s t)) eq-fib-fib-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x y : A) (q : Id (f x) (f y)) → Id (pair x q) (pair y (refl {x = f y})) → fib (ap f {x = x} {y = y}) q eq-fib-fib-ap f x y q = (tr (fib (ap f)) right-unit) ∘ (fib-ap-eq-fib f (pair x q) (pair y refl)) abstract is-equiv-eq-fib-fib-ap : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (x y : A) (q : Id (f x) (f y)) → is-equiv (eq-fib-fib-ap f x y q) is-equiv-eq-fib-fib-ap f x y q = is-equiv-comp ( eq-fib-fib-ap f x y q) ( tr (fib (ap f)) right-unit) ( fib-ap-eq-fib f (pair x q) (pair y refl)) ( refl-htpy) ( is-equiv-fib-ap-eq-fib f (pair x q) (pair y refl)) ( is-equiv-tr (fib (ap f)) right-unit) -- Comparing fib and fib' fib'-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) (y : B) → fib f y → fib' f y fib'-fib f y t = tot (λ x → inv) t abstract is-equiv-fib'-fib : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → is-fiberwise-equiv (fib'-fib f) is-equiv-fib'-fib f y = is-equiv-tot-is-fiberwise-equiv (λ x → is-equiv-inv (f x) y) {- -- Equivalent finite sets have the same cardinality skip-Fin : {n : ℕ} → Fin (succ-ℕ n) → Fin n → Fin (succ-ℕ n) skip-Fin {succ-ℕ n} (inl x) (inl y) = inl (skip-Fin x y) skip-Fin {succ-ℕ n} (inl x) (inr y) = inr star skip-Fin {succ-ℕ n} (inr x) y = inl y swap-top-two-Fin : {n : ℕ} → Fin (succ-ℕ (succ-ℕ n)) → Fin (succ-ℕ (succ-ℕ n)) swap-top-two-Fin (inl (inl x)) = inl (inl x) swap-top-two-Fin (inl (inr star)) = inr star swap-top-two-Fin (inr star) = inl (inr star) idempotent-top-two-Fin : {n : ℕ} (x : Fin (succ-ℕ (succ-ℕ n))) → Id (swap-top-two-Fin (swap-top-two-Fin x)) x idempotent-top-two-Fin (inl (inl x)) = refl idempotent-top-two-Fin (inl (inr star)) = refl idempotent-top-two-Fin (inr star) = refl is-equiv-swap-top-two-Fin : {n : ℕ} → is-equiv (swap-top-two-Fin {n}) is-equiv-swap-top-two-Fin = is-equiv-has-inverse swap-top-two-Fin idempotent-top-two-Fin idempotent-top-two-Fin {- swap-top-Fin : {n : ℕ} → Fin (succ-ℕ n) → Fin (succ-ℕ n) → Fin (succ-ℕ n) swap-top-Fin {zero-ℕ} x y = x swap-top-Fin {succ-ℕ n} (inl (inl x)) (inl (inl y)) = swap-top-two-Fin (inl (swap-top-Fin (inl x) (inl y))) swap-top-Fin {succ-ℕ n} (inl (inr x)) (inl (inl y)) = inl (inl y) swap-top-Fin {succ-ℕ n} (inl (inl x)) (inl (inr star)) = inl (inr star) swap-top-Fin {succ-ℕ n} (inl (inr x)) (inl (inr star)) = inr star swap-top-Fin {succ-ℕ n} (inl x) (inr y) = inl x swap-top-Fin {succ-ℕ n} (inr x) y = y idempotent-swap-top-Fin : {n : ℕ} (x : Fin (succ-ℕ n)) → ((swap-top-Fin x) ∘ (swap-top-Fin x)) ~ id idempotent-swap-top-Fin {zero-ℕ} (inr star) (inr star) = refl idempotent-swap-top-Fin {succ-ℕ n} (inl x) (inl y) = {!!} idempotent-swap-top-Fin {succ-ℕ n} (inl (inl x)) (inr star) = {!!} idempotent-swap-top-Fin {succ-ℕ n} (inl (inr star)) (inr star) = refl idempotent-swap-top-Fin {succ-ℕ n} (inr x) (inl y) = refl idempotent-swap-top-Fin {succ-ℕ n} (inr x) (inr y) = refl eq-ℕ-equiv-Fin : {m n : ℕ} → (Fin m ≃ Fin n) → Id m n eq-ℕ-equiv-Fin {zero-ℕ} {zero-ℕ} e = refl eq-ℕ-equiv-Fin {zero-ℕ} {succ-ℕ n} e = ind-empty (inv-map-equiv e (inr star)) eq-ℕ-equiv-Fin {succ-ℕ m} {zero-ℕ} e = ind-empty (map-equiv e (inr star)) eq-ℕ-equiv-Fin {succ-ℕ m} {succ-ℕ n} e = {!!} -} -}
35.840599
107
0.52984
21a2c05fb810308dfb216bd0d18956daa3434ef5
2,980
agda
Agda
Cubical/Categories/Monoidal/Base.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Categories/Monoidal/Base.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Categories/Monoidal/Base.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
-- Monoidal categories {-# OPTIONS --safe #-} module Cubical.Categories.Monoidal.Base where open import Cubical.Categories.Category.Base open import Cubical.Categories.Constructions.BinProduct open import Cubical.Categories.Functor.Base open import Cubical.Categories.Functor.BinProduct open import Cubical.Categories.Morphism open import Cubical.Categories.NaturalTransformation.Base open import Cubical.Foundations.Prelude module _ {ℓ ℓ' : Level} (C : Category ℓ ℓ') where open Category C private record TensorStr : Type (ℓ-max ℓ ℓ') where field ─⊗─ : Functor (C × C) C unit : ob open Functor -- Useful tensor product notation _⊗_ : ob → ob → ob x ⊗ y = ─⊗─ .F-ob (x , y) _⊗ₕ_ : ∀ {x y z w} → Hom[ x , y ] → Hom[ z , w ] → Hom[ x ⊗ z , y ⊗ w ] f ⊗ₕ g = ─⊗─ .F-hom (f , g) record StrictMonStr : Type (ℓ-max ℓ ℓ') where field tenstr : TensorStr open TensorStr tenstr public field -- Axioms - strict assoc : ∀ x y z → x ⊗ (y ⊗ z) ≡ (x ⊗ y) ⊗ z idl : ∀ x → unit ⊗ x ≡ x idr : ∀ x → x ⊗ unit ≡ x record MonoidalStr : Type (ℓ-max ℓ ℓ') where field tenstr : TensorStr open TensorStr tenstr public private -- Private names to make the axioms below look nice x⊗[y⊗z] : Functor (C × C × C) C x⊗[y⊗z] = ─⊗─ ∘F (𝟙⟨ C ⟩ ×F ─⊗─) [x⊗y]⊗z : Functor (C × C × C) C [x⊗y]⊗z = ─⊗─ ∘F (─⊗─ ×F 𝟙⟨ C ⟩) ∘F (×C-assoc C C C) x = 𝟙⟨ C ⟩ 1⊗x = ─⊗─ ∘F (rinj C C unit) x⊗1 = ─⊗─ ∘F (linj C C unit) field -- "Axioms" - up to natural isomorphism α : x⊗[y⊗z] ≅ᶜ [x⊗y]⊗z η : 1⊗x ≅ᶜ x ρ : x⊗1 ≅ᶜ x open NatIso -- More nice notations α⟨_,_,_⟩ : (x y z : ob) → Hom[ x ⊗ (y ⊗ z) , (x ⊗ y) ⊗ z ] α⟨ x , y , z ⟩ = α .trans ⟦ ( x , y , z ) ⟧ η⟨_⟩ : (x : ob) → Hom[ unit ⊗ x , x ] η⟨ x ⟩ = η .trans ⟦ x ⟧ ρ⟨_⟩ : (x : ob) → Hom[ x ⊗ unit , x ] ρ⟨ x ⟩ = ρ .trans ⟦ x ⟧ field -- Coherence conditions pentagon : ∀ w x y z → id ⊗ₕ α⟨ x , y , z ⟩ ⋆ α⟨ w , x ⊗ y , z ⟩ ⋆ α⟨ w , x , y ⟩ ⊗ₕ id ≡ α⟨ w , x , y ⊗ z ⟩ ⋆ α⟨ w ⊗ x , y , z ⟩ triangle : ∀ x y → α⟨ x , unit , y ⟩ ⋆ ρ⟨ x ⟩ ⊗ₕ id ≡ id ⊗ₕ η⟨ y ⟩ open isIso -- Inverses of α, η, ρ for convenience α⁻¹⟨_,_,_⟩ : (x y z : ob) → Hom[ (x ⊗ y) ⊗ z , x ⊗ (y ⊗ z) ] α⁻¹⟨ x , y , z ⟩ = α .nIso (x , y , z) .inv η⁻¹⟨_⟩ : (x : ob) → Hom[ x , unit ⊗ x ] η⁻¹⟨ x ⟩ = η .nIso (x) .inv ρ⁻¹⟨_⟩ : (x : ob) → Hom[ x , x ⊗ unit ] ρ⁻¹⟨ x ⟩ = ρ .nIso (x) .inv record StrictMonCategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field C : Category ℓ ℓ' sms : StrictMonStr C open Category C public open StrictMonStr sms public record MonoidalCategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field C : Category ℓ ℓ' monstr : MonoidalStr C open Category C public open MonoidalStr monstr public
24.42623
76
0.502685
0d792a4841f632f5177e3f3be94feb5f3faf1db8
441
agda
Agda
src/Morphism/Structures.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-08-15T06:16:13.000Z
2021-08-17T09:14:03.000Z
src/Morphism/Structures.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
2
2021-10-04T05:30:30.000Z
2021-10-09T08:24:56.000Z
src/Morphism/Structures.agda
Akshobhya1234/agda-NonAssociativeAlgebra
443e831e536b756acbd1afd0d6bae7bc0d288048
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Morphism.Structures where open import Algebra import Algebra.Morphism.Definitions as MorphismDefinitions open import Level using (Level; _⊔_) import Function.Definitions as FunctionDefinitions open import Relation.Binary.Morphism.Structures open import Quasigroup open import Loop open import Algebra.Morphism.Structures private variable a b ℓ₁ ℓ₂ : Level
23.210526
58
0.807256
43196c0d0b30e52027468c53aebbed3889274f54
353
agda
Agda
test/Succeed/Issue1834b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1834b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1834b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas & James, 2016-04-18 pre-AIM XXIII -- order of clauses should not matter here! {-# OPTIONS --exact-split #-} open import Common.Equality open import Common.Prelude open import Common.Product thing : Bool → Bool × Bool proj₁ (thing true) = false proj₁ (thing false) = true proj₂ (thing b) = b test : ∀ b → proj₂ (thing b) ≡ b test b = refl
20.764706
44
0.691218
21eaba1fcbd948f687b22b7c8e98dcd7fc6069b4
1,276
agda
Agda
theorems/homotopy/Bouquet.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/Bouquet.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/Bouquet.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.FinWedge module homotopy.Bouquet where Rose : ∀ {i} (I : Type i) → Type i Rose I = BigWedge {A = I} (λ _ → ⊙S¹) Bouquet-family : ∀ {i} (I : Type i) (m : ℕ) → (I → Ptd₀) Bouquet-family I m _ = ⊙Sphere m Bouquet : ∀ {i} (I : Type i) (m : ℕ) → Type i Bouquet I m = BigWedge (Bouquet-family I m) ⊙Bouquet : ∀ {i} (I : Type i) (m : ℕ) → Ptd i ⊙Bouquet I m = ⊙BigWedge (Bouquet-family I m) BouquetLift-family : ∀ {i} (I : Type i) (m : ℕ) → (I → Ptd i) BouquetLift-family {i} I m _ = ⊙Lift {j = i} (⊙Sphere m) BouquetLift : ∀ {i} (I : Type i) (m : ℕ) → Type i BouquetLift {i} I m = BigWedge (BouquetLift-family I m) ⊙BouquetLift : ∀ {i} (I : Type i) (m : ℕ) → Ptd i ⊙BouquetLift {i} I m = ⊙BigWedge (BouquetLift-family I m) FinBouquetLift-family : ∀ {i} (I m : ℕ) → (Fin I → Ptd i) FinBouquetLift-family {i} I m _ = ⊙Lift {j = i} (⊙Sphere m) ⊙FinBouquetLift : ∀ {i} (I m : ℕ) → Ptd i ⊙FinBouquetLift I m = ⊙FinWedge (FinBouquetLift-family I m) FinBouquet-family : (I m : ℕ) → (Fin I → Ptd₀) FinBouquet-family I m _ = ⊙Sphere m FinBouquet : (I m : ℕ) → Type₀ FinBouquet I m = FinWedge (FinBouquet-family I m) ⊙FinBouquet : (I m : ℕ) → Ptd₀ ⊙FinBouquet I m = ⊙FinWedge (FinBouquet-family I m)
29.674419
61
0.608934
7c9e0252a98b78ae3c4e70a38aebf8acf8ecf44d
531
agda
Agda
test/Succeed/Issue5334.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue5334.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue5334.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2021-04-21, issue #5334 -- Improve sorting of constructors to data for interleaved mutual blocks. {-# OPTIONS --allow-unsolved-metas #-} module Issue5334 where module Works where data Nat : Set where zero : Nat data Fin : Nat → Set where zero : Fin {!!} interleaved mutual data Nat : Set data Fin : Nat → Set data _ where zero : Nat data _ where zero : Fin {!!} -- should work -- Error was: -- Could not find a matching data signature for constructor zero -- There was no candidate.
19.666667
73
0.66855
fd613ccbdfd1f3f463509668ed6f61efbc3b2ca6
66
agda
Agda
test/Compiler/simple/Cubical-is-not-supported.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Cubical-is-not-supported.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Cubical-is-not-supported.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical -van-extra-option-just-to-test-a-hack:0 #-}
33
65
0.666667
1be27f2b9269c6b6ed1d8033aa7208d2bd609093
2,740
agda
Agda
src/Categories/Functor/Construction/PathsOf.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Functor/Construction/PathsOf.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Functor/Construction/PathsOf.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Construction.PathsOf where -- "Free Category on a Quiver" Construction, i.e. the category of paths of the quiver. -- Note the use of Categories.Morphism.HeterogeneousIdentity as well as -- Relation.Binary.PropositionalEquality.Subst.Properties which are needed -- for F-resp-≈. open import Level open import Function using (_$_) open import Relation.Binary.PropositionalEquality using (refl; sym) open import Relation.Binary.PropositionalEquality.Subst.Properties using (module TransportStar) open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties open import Data.Quiver open import Data.Quiver.Morphism open import Data.Quiver.Paths using (module Paths) open import Categories.Category import Categories.Category.Construction.PathCategory as PC open import Categories.Category.Instance.Quivers open import Categories.Category.Instance.StrictCats open import Categories.Functor using (Functor) open import Categories.Functor.Equivalence using (_≡F_) import Categories.Morphism.HeterogeneousIdentity as HId import Categories.Morphism.Reasoning as MR private variable o o′ ℓ ℓ′ e e′ : Level G₁ G₂ : Quiver o ℓ e ⇒toPathF : {G₁ G₂ : Quiver o ℓ e} → Morphism G₁ G₂ → Functor (PC.PathCategory G₁) (PC.PathCategory G₂) ⇒toPathF {G₁ = G₁} {G₂} G⇒ = record { F₀ = F₀ G⇒ ; F₁ = qmap G⇒ ; identity = Paths.refl G₂ ; homomorphism = λ {_} {_} {_} {f} {g} → Paths.≡⇒≈* G₂ $ gmap-◅◅ (F₀ G⇒) (F₁ G⇒) f g ; F-resp-≈ = λ { {f = f} → map-resp G⇒ f} } where open Morphism ⇒toPathF-resp-≃ : {f g : Morphism G₁ G₂} → f ≃ g → ⇒toPathF f ≡F ⇒toPathF g ⇒toPathF-resp-≃ {G₂ = G} {f} {g} f≈g = record { eq₀ = λ _ → F₀≡ ; eq₁ = λ h → let open Category.HomReasoning (PC.PathCategory G) open HId (PC.PathCategory G) open TransportStar (Quiver._⇒_ G) in begin qmap f h ◅◅ (hid F₀≡) ≈˘⟨ hid-subst-cod (qmap f h) F₀≡ ⟩ qmap f h ▸* F₀≡ ≈⟨ map-F₁≡ f≈g h ⟩ F₀≡ ◂* qmap g h ≈⟨ hid-subst-dom F₀≡ (qmap g h) ⟩ hid F₀≡ ◅◅ qmap g h ∎ } where open _≃_ f≈g PathsOf : Functor (Quivers o ℓ e) (StrictCats o (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)) PathsOf = record { F₀ = PC.PathCategory ; F₁ = ⇒toPathF ; identity = λ {G} → record { eq₀ = λ _ → refl ; eq₁ = λ f → toSquare (PC.PathCategory G) (Paths.≡⇒≈* G $ gmap-id f) } ; homomorphism = λ {_} {_} {G} {f} {g} → record { eq₀ = λ _ → refl ; eq₁ = λ h → toSquare (PC.PathCategory G) (Paths.≡⇒≈* G (sym $ gmap-∘ (F₀ g) (F₁ g) (F₀ f) (F₁ f) h) ) } ; F-resp-≈ = ⇒toPathF-resp-≃ } where open Morphism using (F₀; F₁) open MR using (toSquare)
35.584416
107
0.656204
213d8074525fda6943e78c85959f1bb10f892940
3,335
agda
Agda
src/Categories/Object/Product/Limit.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Object/Product/Limit.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Object/Product/Limit.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core module Categories.Object.Product.Limit {o ℓ e} (C : Category o ℓ e) where open import Level open import Data.Nat.Base using (ℕ) open import Data.Fin.Base using (Fin) open import Data.Fin.Patterns open import Categories.Category.Lift open import Categories.Category.Finite.Fin open import Categories.Category.Finite.Fin.Construction.Discrete open import Categories.Object.Product C open import Categories.Diagram.Limit open import Categories.Functor.Core import Categories.Category.Construction.Cones as Co import Categories.Morphism.Reasoning as MR private module C = Category C open C open MR C open HomReasoning module _ {o′ ℓ′ e′} {F : Functor (liftC o′ ℓ′ e′ (Discrete 2)) C} where private module F = Functor F open F limit⇒product : Limit F → Product (F₀ (lift 0F)) (F₀ (lift 1F)) limit⇒product L = record { A×B = apex ; π₁ = proj (lift 0F) ; π₂ = proj (lift 1F) ; ⟨_,_⟩ = λ f g → rep record { apex = record { ψ = λ { (lift 0F) → f ; (lift 1F) → g } ; commute = λ { {lift 0F} {lift 0F} (lift 0F) → elimˡ identity ; {lift 1F} {lift 1F} (lift 0F) → elimˡ identity } } } ; project₁ = commute ; project₂ = commute ; unique = λ {_} {h} eq eq′ → terminal.!-unique record { arr = h ; commute = λ { {lift 0F} → eq ; {lift 1F} → eq′ } } } where open Limit L module _ o′ ℓ′ e′ A B where open Equiv product⇒limit-F : Functor (liftC o′ ℓ′ e′ (Discrete 2)) C product⇒limit-F = record { F₀ = λ { (lift 0F) → A ; (lift 1F) → B } ; F₁ = λ { {lift 0F} {lift 0F} _ → C.id ; {lift 1F} {lift 1F} _ → C.id } ; identity = λ { {lift 0F} → refl ; {lift 1F} → refl } ; homomorphism = λ { {lift 0F} {lift 0F} {lift 0F} → sym identity² ; {lift 1F} {lift 1F} {lift 1F} → sym identity² } ; F-resp-≈ = λ { {lift 0F} {lift 0F} _ → refl ; {lift 1F} {lift 1F} _ → refl } } module _ o′ ℓ′ e′ {A B} (p : Product A B) where open Product p private F = product⇒limit-F o′ ℓ′ e′ A B open Functor F product⇒limit : Limit F product⇒limit = record { terminal = record { ⊤ = record { N = A×B ; apex = record { ψ = λ { (lift 0F) → π₁ ; (lift 1F) → π₂ } ; commute = λ { {lift 0F} {lift 0F} (lift 0F) → identityˡ ; {lift 1F} {lift 1F} (lift 0F) → identityˡ } } } ; ⊤-is-terminal = record { ! = λ {K} → let open Co.Cone F K in record { arr = ⟨ ψ (lift 0F) , ψ (lift 1F) ⟩ ; commute = λ { {lift 0F} → project₁ ; {lift 1F} → project₂ } } ; !-unique = λ {K} f → let module K = Co.Cone F K module f = Co.Cone⇒ F f in begin ⟨ K.ψ (lift 0F) , K.ψ (lift 1F) ⟩ ≈˘⟨ ⟨⟩-cong₂ f.commute f.commute ⟩ ⟨ π₁ ∘ f.arr , π₂ ∘ f.arr ⟩ ≈⟨ g-η ⟩ f.arr ∎ } } }
30.59633
80
0.489355
7c3d41c54287b85768e669c14d4a122f3128fa03
57
agda
Agda
test/Succeed/LineEndings/Unix.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/LineEndings/Unix.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/LineEndings/Unix.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module LineEndings.Unix where postulate ThisWorks : Set
14.25
29
0.824561
1b9d6808c918281eb86ef37f4cc605a6bc678fde
7,811
agda
Agda
Cubical/Codata/Conat/Bounded.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Codata/Conat/Bounded.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Codata/Conat/Bounded.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe --guardedness #-} module Cubical.Codata.Conat.Bounded where open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Codata.Conat.Base renaming (zero to czero; suc to csuc) open import Cubical.Codata.Conat.Properties open import Cubical.Data.Empty as Empty open import Cubical.Data.Sigma open import Cubical.Data.Sum hiding (rec) open import Cubical.Data.Unit open import Cubical.Relation.Nullary open import Cubical.Data.Nat as Nat import Cubical.Data.Fin.Recursive as Fin private variable ℓ : Level _≺_ : ℕ → Conat → Type _ _≺′_ : ℕ → Conat′ → Type _ n ≺ c = n ≺′ force c _ ≺′ czero = ⊥ zero ≺′ csuc _ = Unit suc n ≺′ csuc c = n ≺ c isProp≺ : ∀ n c → isProp (n ≺ c) isProp≺′ : ∀ n c → isProp (n ≺′ c) isProp≺ n c = isProp≺′ n (force c) isProp≺′ n czero = isProp⊥ isProp≺′ zero (csuc _) = isPropUnit isProp≺′ (suc n) (csuc c') = isProp≺ n c' isPropDep≺ : ∀ c → isPropDep (_≺ c) isPropDep≺ c = isOfHLevel→isOfHLevelDep 1 (λ n → isProp≺ n c) {_} {_} isPropDep≺′ : ∀ c → isPropDep (_≺′ c) isPropDep≺′ c = isOfHLevel→isOfHLevelDep 1 (λ n → isProp≺′ n c) {_} {_} private apart : ℕ → ℕ → Type apart zero zero = ⊥ apart (suc m) (suc n) = apart m n apart _ _ = Unit ≢→apart : (i j : ℕ) → ¬ i ≡ j → apart i j ≢→apart zero zero ¬p = ¬p refl ≢→apart (suc i) (suc j) ¬p = ≢→apart i j (¬p ∘ cong suc) ≢→apart zero (suc j) _ = _ ≢→apart (suc i) zero _ = _ apart→≢ : (i j : ℕ) → apart i j → ¬ i ≡ j apart→≢ (suc i) zero _ = snotz apart→≢ zero (suc j) _ = znots apart→≢ (suc i) (suc j) i#j = apart→≢ i j i#j ∘ cong predℕ isPropApart : ∀ m n → isProp (apart m n) isPropApart 0 0 = isProp⊥ isPropApart (suc m) (suc n) = isPropApart m n isPropApart (suc _) 0 = isPropUnit isPropApart 0 (suc _) = isPropUnit _#_ : ∀{P : ℕ → Type ℓ} → (l r : Σ ℕ P) → Type (m , _) # (n , _) = apart m n #→≢ : ∀{P : ℕ → Type ℓ} → (l r : Σ ℕ P) → l # r → ¬ l ≡ r #→≢ (i , _) (j , _) d = apart→≢ i j d ∘ cong fst isProp# : ∀{P : ℕ → Type ℓ} (l r : Σ ℕ P) → isProp (l # r) isProp# (m , _) (n , _) = isPropApart m n isProp#Depᵣ : ∀{P : ℕ → Type ℓ} (r : Σ ℕ P) → isPropDep (_# r) isProp#Depᵣ r = isOfHLevel→isOfHLevelDep 1 (λ l → isProp# l r) {_} {_} Bounded : Conat → Type Bounded m = Σ[ n ∈ ℕ ] n ≺ m Bounded′ : Conat′ → Type Bounded′ m = Σ[ n ∈ ℕ ] n ≺′ m discreteB′ : ∀ m → (i j : Bounded′ m) → (i ≡ j) ⊎ (i # j) discreteB′ m (i , i≺m) (j , j≺m) with discreteℕ i j ... | yes p = inl λ i → p i , isPropDep≺′ m i≺m j≺m p i ... | no ¬p = inr (≢→apart i j ¬p) ≺∞ : ∀ n → n ≺ ∞ ≺∞ zero = _ ≺∞ (suc n) = ≺∞ n Σ≺∞≃ℕ : Bounded ∞ ≃ ℕ Σ≺∞≃ℕ = isoToEquiv λ where .fun → fst .inv n → n , ≺∞ n .rightInv _ → refl .leftInv (n , p) i → λ where .fst → n .snd → isProp≺ n ∞ (≺∞ n) p i where open Iso Σ≺∞≡ℕ : Bounded ∞ ≡ ℕ Σ≺∞≡ℕ = ua Σ≺∞≃ℕ _≺?_ : ∀ n c → Dec (n ≺ c) n ≺? c with force c _ ≺? c | czero = no (idfun ⊥) zero ≺? c | csuc d = yes _ suc n ≺? c | csuc d = n ≺? d ≺-pred : ∀ n c → suc n ≺ c → n ≺ c ≺-pred n c sn≺c with force c ≺-pred zero c sn≺c | csuc d = _ ≺-pred (suc n) c sn≺c | csuc d = ≺-pred n d sn≺c ≺?-yes : ∀ n c → (p : n ≺ c) → n ≺? c ≡ yes p ≺?-yes n c p with force c ≺?-yes zero c p | csuc c' = refl ≺?-yes (suc n) c p | csuc c' = ≺?-yes n c' p ∀≺-same : ∀ m n → (∀ k → (k ≺ m) ≡ (k ≺ n)) → m ≡ n ∀≺-same m n ∀≺ i .force with force m | force n ... | czero | czero = czero ... | csuc o | csuc p = csuc (∀≺-same o p (∀≺ ∘ suc) i) ... | csuc o | czero = Empty.rec {A = csuc o ≡ czero} (transport (∀≺ 0) _) i ... | czero | csuc p = Empty.rec {A = czero ≡ csuc p} (transport⁻ (∀≺ 0) _) i Bounded→Fin : ∀ m → Bounded (embed m) → Fin.Fin m Bounded→Fin (suc m) (0 , 0≺m) = Fin.zero Bounded→Fin (suc m) (suc n , n≺m) = Fin.suc (Bounded→Fin m (n , n≺m)) module Untangle {m n} (f : Bounded′ (csuc m) → Bounded′ (csuc n)) (g : Bounded′ (csuc n) → Bounded′ (csuc m)) (rinv : section f g) (linv : retract f g) where bzro : ∀{k} → Bounded′ (csuc k) bzro = (zero , _) bsuc : ∀{k} → Bounded k → Bounded′ (csuc k) bsuc (l , l≺k) = (suc l , l≺k) #-f : ∀ v u → v # u → f v # f u #-f v u v#u with discreteB′ (csuc n) (f v) (f u) ... | inr fv#fu = fv#fu ... | inl fv≡fu = rec (#→≢ v u v#u (sym (linv v) ∙∙ cong g (fv≡fu) ∙∙ linv u)) #-g : ∀ v u → v # u → g v # g u #-g v u v#u with discreteB′ (csuc m) (g v) (g u) ... | inr gv#gu = gv#gu ... | inl gv≡gu = rec (#→≢ v u v#u (sym (rinv v) ∙∙ cong f (gv≡gu) ∙∙ rinv u)) #-fg : ∀ v u → v # u → f (g v) # f (g u) #-fg v u = #-f (g v) (g u) ∘ #-g v u #-gf : ∀ v u → v # u → g (f v) # g (f u) #-gf v u = #-g (f v) (f u) ∘ #-f v u default : ∀{k} → (v d : Bounded′ (csuc k)) → v # d → Bounded k default (suc l , l≺n) d _ = (l , l≺n) default (0 , _) (suc l , l≺n) _ = (l , l≺n) f- : Bounded m → Bounded n f- v = default (f (bsuc v)) (f bzro) (#-f (bsuc v) bzro _) g- : Bounded n → Bounded m g- v = default (g (bsuc v)) (g bzro) (#-g (bsuc v) bzro _) g-f-z : ∀ v u → g bzro ≡ bsuc v → g (bsuc u) ≡ bzro → g- u ≡ v g-f-z (l , l≺m) u p q with g (bsuc u) | g bzro | #-g (bsuc u) bzro _ ... | zero , _ | suc k , k≺m | #gf = λ where i .fst → predℕ (p i .fst) i .snd → isPropDep≺ m k≺m l≺m (cong (predℕ ∘ fst) p) i ... | w@(suc k , k≺m) | dg | #gf = rec (snotz (cong fst q)) g-f-s : ∀ v u → g (bsuc u) ≡ bsuc v → g- u ≡ v g-f-s (l , l≺m) u p with g (bsuc u) | #-g (bsuc u) bzro _ ... | suc k , k≺m | #gf = λ where i .fst → predℕ (p i .fst) i .snd → isPropDep≺ m k≺m l≺m (cong (predℕ ∘ fst) p) i ... | zero , k≺m | #gf = rec (znots (cong fst p)) g-f- : ∀ v → g- (f- v) ≡ v g-f- v@(i , i≺m) with f (bsuc v) | linv (bsuc v) | #-f (bsuc v) bzro _ ... | suc j , j≺m | p | #f = g-f-s v (j , j≺m) p ... | zero , _ | p | #f with f bzro | linv bzro ... | suc k , k≺n | q = g-f-z v (k , k≺n) p q f-g-z : ∀ v u → f bzro ≡ bsuc v → f (bsuc u) ≡ bzro → f- u ≡ v f-g-z (l , l≺n) u p q with f (bsuc u) | f bzro | #-f (bsuc u) bzro _ ... | zero , _ | suc k , k≺n | #fg = λ where i .fst → predℕ (p i .fst) i .snd → isPropDep≺ n k≺n l≺n (cong (predℕ ∘ fst) p) i ... | w@(suc k , k≺m) | df | #fg = rec (snotz (cong fst q)) f-g-s : ∀ v u → f (bsuc u) ≡ bsuc v → f- u ≡ v f-g-s (l , l≺n) u p with f (bsuc u) | #-f (bsuc u) bzro _ ... | suc k , k≺n | _ = λ where i .fst → predℕ (p i .fst) i .snd → isPropDep≺ n k≺n l≺n (cong (predℕ ∘ fst) p) i ... | zero , k≺m | _ = rec (znots (cong fst p)) f-g- : ∀ v → f- (g- v) ≡ v f-g- v@(i , i≺n) with g (bsuc v) | rinv (bsuc v) | #-g (bsuc v) bzro _ ... | suc j , j≺m | p | #g = f-g-s v (j , j≺m) p ... | zero , _ | p | #g with g bzro | rinv bzro ... | suc k , k≺m | q = f-g-z v (k , k≺m) p q open Iso iso- : Iso (Bounded m) (Bounded n) iso- .fun = f- iso- .inv = g- iso- .rightInv = f-g- iso- .leftInv = g-f- untangled : ∀{m n} → Iso (Bounded′ (csuc m)) (Bounded′ (csuc n)) → Iso (Bounded m) (Bounded n) untangled isom = Untangle.iso- fun inv rightInv leftInv where open Iso isom Bounded-inj-iso : ∀ m n → Iso (Bounded m) (Bounded n) → m ≡ n Bounded-inj-iso m n theIso i .force with force m | force n ... | czero | czero = czero ... | csuc l | csuc r = csuc (Bounded-inj-iso l r (untangled theIso) i) ... | czero | csuc r = rec {A = czero ≡ csuc r} (Iso.inv theIso (zero , _) .snd) i ... | csuc l | czero = rec {A = csuc l ≡ czero} (Iso.fun theIso (zero , _) .snd) i Bounded-inj : ∀ m n → Bounded m ≡ Bounded n → m ≡ n Bounded-inj m n = Bounded-inj-iso m n ∘ pathToIso
31.244
71
0.52234
1bd287c63f25bc032e51f34dae6ba4fe8dd8e406
10,167
agda
Agda
Structure/Operator/Names.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Structure/Operator/Names.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Structure/Operator/Names.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Structure.Operator.Names where open import Functional.Dependent open import Function.Names import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate open import Structure.Function.Names open import Structure.Setoid open import Syntax.Function open import Syntax.Transitivity open import Type private variable ℓ ℓₑ ℓ₁ ℓ₂ ℓ₃ ℓᵣ₂ ℓᵣ₃ ℓᵣ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑᵣ : Lvl.Level module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where -- Definition of commutativity of specific elements. -- The binary operation swapped yields the same result. -- Example: For any x, (x ▫ x) always commutes. Commuting : (T₁ → T₁ → T₂) → T₁ → T₁ → Stmt Commuting(_▫_) = pointwise₂,₂(_≡_) (_▫_) (swap(_▫_)) -- Definition of commutativity. -- Order of application for the operation does not matter for equality. -- Example: Addition of the natural numbers (_+_ : ℕ → ℕ → ℕ). Commutativity : (T₁ → T₁ → T₂) → Stmt Commutativity = ∀² ∘ Commuting -- Definition of an left identity element. -- Example: Top implies a proposition in boolean logic (⊤ →_). Identityₗ : (T₁ → T₂ → T₂) → T₁ → Stmt Identityₗ (_▫_) id = ∀{x : T₂} → (id ▫ x) ≡ x -- Definition of a right absorber element -- Also called "right neutral element" or "right annihilator" -- Applying the operation on this element to the right always yields itself. -- Example: A proposition implies top in boolean logic (_→ ⊤). Absorberᵣ : (T₁ → T₂ → T₂) → T₂ → Stmt Absorberᵣ (_▫_) null = ∀{x : T₁} → (x ▫ null) ≡ null ConverseAbsorberᵣ : (T₁ → T₂ → T₂) → T₂ → Stmt ConverseAbsorberᵣ (_▫_)(a) = ∀{x y} → (x ▫ y ≡ a) → (y ≡ a) module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} where -- Definition of an right identity element -- Example: Subtracting 0 for integers (_− 0). Identityᵣ : (T₁ → T₂ → T₁) → T₂ → Stmt Identityᵣ(_▫_) id = Identityₗ(swap(_▫_)) id -- Definition of a left absorber element -- Also called "left neutral element" or "left annihilator" -- Example: Subtraction (monus) of 0 for natural numbers (0 − ). Absorberₗ : (T₁ → T₂ → T₁) → T₁ → Stmt Absorberₗ(_▫_) null = Absorberᵣ(swap(_▫_)) null ConverseAbsorberₗ : (T₁ → T₂ → T₁) → T₁ → Stmt ConverseAbsorberₗ (_▫_)(a) = ∀{x y} → (x ▫ y ≡ a) → (x ≡ a) module _ {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ where -- Definition of an identity element -- Example: 0 for addition of integers, 1 for multiplication of integers. Identity : (T → T → T) → T → Stmt Identity (_▫_) id = (Identityₗ (_▫_) id) ∧ (Identityᵣ (_▫_) id) -- Definition of idempotence. Idempotence : (T → T → T) → Stmt Idempotence (_▫_) = ∀{x : T} → (x ▫ x ≡ x) -- Example: 0 for addition of natural numbers, 1 for multiplication of natural numbers. ConverseAbsorber : (T → T → T) → T → Stmt ConverseAbsorber (_▫_)(a) = ∀{x y} → (x ▫ y ≡ a) → (x ≡ a)∧(y ≡ a) -- Example: 0 for multiplication of natural numbers. WeakConverseAbsorber : (T → T → T) → T → Stmt WeakConverseAbsorber (_▫_)(a) = ∀{x y} → (x ▫ y ≡ a) → (x ≡ a)∨(y ≡ a) module _ {T₊ : Type{ℓ₁}} {T₋ : Type{ℓ₂}} {Tᵣ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑᵣ}(Tᵣ) ⦄ where -- Definition of a left inverse element. InverseElementₗ : (T₋ → T₊ → Tᵣ) → Tᵣ → T₊ → T₋ → Stmt InverseElementₗ (_▫_) id x x⁻¹ = ((x⁻¹ ▫ x) ≡ id) -- Definition of a right inverse element InverseElementᵣ : (T₊ → T₋ → Tᵣ) → Tᵣ → T₊ → T₋ → Stmt InverseElementᵣ (_▫_) id x x⁻¹ = ((x ▫ x⁻¹) ≡ id) -- Definition of a left inverse function InverseFunctionₗ : (T₋ → T₊ → Tᵣ) → Tᵣ → (T₊ → T₋) → Stmt InverseFunctionₗ (_▫_) id inv = ∀{x : T₊} → InverseElementₗ(_▫_) id x (inv x) -- Definition of a right inverse function InverseFunctionᵣ : (T₊ → T₋ → Tᵣ) → Tᵣ → (T₊ → T₋) → Stmt InverseFunctionᵣ (_▫_) id inv = ∀{x : T₊} → InverseElementᵣ(_▫_) id x (inv x) module _ {T : Type{ℓ₁}} {Tᵣ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑᵣ}(Tᵣ) ⦄ where -- Definition of an invertible element InverseElement : (T → T → Tᵣ) → Tᵣ → T → T → Stmt InverseElement (_▫_) id x x⁻¹ = (InverseElementₗ(_▫_) id x x⁻¹) ∧ (InverseElementᵣ(_▫_) id x x⁻¹) -- Definition of a function which returns the inverse element of the other side of the operation InverseFunction : (T → T → Tᵣ) → Tᵣ → (T → T) → Stmt InverseFunction (_▫_) id inv = (InverseFunctionₗ (_▫_) id inv) ∧ (InverseFunctionᵣ (_▫_) id inv) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ where -- Definition of right cancellation of a specific object -- ∀{a b : T₂} → ((x ▫ a) ≡ (x ▫ b)) → (a ≡ b) CancellationOnₗ : (T₁ → T₂ → T₃) → T₁ → Stmt CancellationOnₗ (_▫_) (x) = Injective(x ▫_) -- Definition of left cancellation (Injectivity for the right param) -- ∀{x : T₁}{a b : T₂} → ((x ▫ a) ≡ (x ▫ b)) → (a ≡ b) Cancellationₗ : (T₁ → T₂ → T₃) → Stmt Cancellationₗ (_▫_) = (∀{x : T₁} → CancellationOnₗ(_▫_)(x)) module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ where -- Definition of right cancellation of a specific object -- ∀{a b : T₁} → ((a ▫ x) ≡ (b ▫ x)) → (a ≡ b) CancellationOnᵣ : (T₁ → T₂ → T₃) → T₂ → Stmt CancellationOnᵣ (_▫_) (x) = Injective(_▫ x) -- Definition of right cancellation (Injectivity for the left param) -- ∀{x : T₂}{a b : T₁} → ((a ▫ x) ≡ (b ▫ x)) → (a ≡ b) Cancellationᵣ : (T₁ → T₂ → T₃) → Stmt Cancellationᵣ (_▫_) = (∀{x : T₂} → CancellationOnᵣ (_▫_)(x)) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where -- Definition of the left inverse property InverseOperatorOnₗ : (T₁ → T₂ → T₃) → (T₁ → T₃ → T₂) → T₁ → T₂ → Stmt InverseOperatorOnₗ (_▫₁_) (_▫₂_) x y = (x ▫₂ (x ▫₁ y) ≡ y) InverseOperatorₗ : (T₁ → T₂ → T₃) → (T₁ → T₃ → T₂) → Stmt InverseOperatorₗ (_▫₁_)(_▫₂_) = ∀{x y} → InverseOperatorOnₗ(_▫₁_)(_▫₂_) x y module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ where -- Definition of the right inverse property InverseOperatorOnᵣ : (T₁ → T₂ → T₃) → (T₃ → T₂ → T₁) → T₁ → T₂ → Stmt InverseOperatorOnᵣ (_▫₁_) (_▫₂_) x y = ((x ▫₁ y) ▫₂ y ≡ x) InverseOperatorᵣ : (T₁ → T₂ → T₃) → (T₃ → T₂ → T₁) → Stmt InverseOperatorᵣ (_▫₁_)(_▫₂_) = ∀{x y} → InverseOperatorOnᵣ(_▫₁_)(_▫₂_) x y module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where InversePropertyₗ : (T₁ → T₂ → T₂) → (T₁ → T₁) → Stmt InversePropertyₗ (_▫_) inv = InverseOperatorₗ(_▫_)(a ↦ b ↦ inv(a) ▫ b) InversePropertyᵣ : (T₂ → T₁ → T₂) → (T₁ → T₁) → Stmt InversePropertyᵣ (_▫_) inv = InverseOperatorᵣ(_▫_)(a ↦ b ↦ a ▫ inv(b)) --------------------------------------------------------- -- Patterns module _ {T₁ : Type{ℓ₁}}{T₂ : Type{ℓ₂}}{T₃ : Type{ℓ₃}}{Tᵣ₂ : Type{ℓᵣ₂}}{Tᵣ₃ : Type{ℓᵣ₃}}{Tᵣ : Type{ℓᵣ}} ⦃ _ : Equiv{ℓₑᵣ}(Tᵣ) ⦄ where AssociativityPattern : (T₁ → T₂ → Tᵣ₃) → (Tᵣ₃ → T₃ → Tᵣ) → (T₁ → Tᵣ₂ → Tᵣ) → (T₂ → T₃ → Tᵣ₂)→ Stmt AssociativityPattern (_▫₁_) (_▫₂_) (_▫₃_) (_▫₄_) = ∀{x : T₁}{y : T₂}{z : T₃} → ((x ▫₁ y) ▫₂ z) ≡ (x ▫₃ (y ▫₄ z)) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ where DistributivityPatternₗ : (T₁ → T₂ → T₃) → (T₂ → T₂ → T₂) → (T₃ → T₃ → T₃) → Stmt DistributivityPatternₗ (_▫₁_) (_▫₂_) (_▫₃_) = ∀{x : T₁} {y z : T₂} → (x ▫₁ (y ▫₂ z)) ≡ ((x ▫₁ y) ▫₃ (x ▫₁ z)) DistributivityPatternᵣ : (T₁ → T₂ → T₃) → (T₁ → T₁ → T₁) → (T₃ → T₃ → T₃) → Stmt DistributivityPatternᵣ (_▫₁_) (_▫₂_) (_▫₃_) = ∀{x y : T₁} {z : T₂} → ((x ▫₂ y) ▫₁ z) ≡ ((x ▫₁ z) ▫₃ (y ▫₁ z)) --------------------------------------------------------- -- Derived module _ {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ where -- Definition of associativity for a binary operation Associativity : (T → T → T) → Stmt Associativity (_▫_) = AssociativityPattern (_▫_) (_▫_) (_▫_) (_▫_) -- {x y z : T} → ((x ▫ y) ▫ z) ≡ (x ▫ (y ▫ z)) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where -- Definition of compatibility for a binary operation Compatibility : (T₁ → T₁ → T₁) → (T₁ → T₂ → T₂) → Stmt -- TODO: https://en.wikipedia.org/wiki/Semigroup_action Compatibility (_▫₁_) (_▫₂_) = AssociativityPattern (_▫₁_) (_▫₂_) (_▫₂_) (_▫₂_) -- {x₁ x₂ : T₁}{y : T₂} → ((x₁ ▫₁ x₂) ▫₂ y) ≡ (x₁ ▫₂ (x₂ ▫₂ y)) -- Definition of left distributivity for a binary operation Distributivityₗ : (T₁ → T₂ → T₂) → (T₂ → T₂ → T₂) → Stmt Distributivityₗ (_▫₁_) (_▫₂_) = DistributivityPatternₗ (_▫₁_) (_▫₂_) (_▫₂_) -- ∀{x : T₁} {y z : T₂} → (x ▫₁ (y ▫₂ z)) ≡ (x ▫₁ y) ▫₂ (x ▫₁ z) -- Definition of right distributivity for a binary operation Distributivityᵣ : (T₂ → T₁ → T₂) → (T₂ → T₂ → T₂) → Stmt Distributivityᵣ (_▫₁_) (_▫₂_) = DistributivityPatternᵣ (_▫₁_) (_▫₂_) (_▫₂_) -- ∀{x y : T₂} {z : T₁} → ((x ▫₂ y) ▫₁ z) ≡ (x ▫₁ z) ▫₂ (y ▫₁ z) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ where -- Definition of left absorption for two binary operators Absorptionₗ : (T₁ → T₃ → T₁) → (T₁ → T₂ → T₃) → Stmt Absorptionₗ (_▫₁_)(_▫₂_) = ∀{x : T₁}{y : T₂} → (x ▫₁ (x ▫₂ y) ≡ x) module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where -- Definition of right absorption for two binary operators Absorptionᵣ : (T₃ → T₂ → T₂) → (T₁ → T₂ → T₃) → Stmt Absorptionᵣ (_▫₁_)(_▫₂_) = ∀{x : T₁}{y : T₂} → ((x ▫₂ y) ▫₁ y ≡ y) --------------------------------------------------------- -- Functions (TODO: Move to Structure.Operator.Proofs) {- open import Relator.Equals{ℓ₁}{ℓ₂} open import Relator.Equals.Proofs{ℓ₁}{ℓ₂} -- Returns a commuted LHS of an equality commuteₗ : ∀{T}{_▫_}{x y z} → ⦃ _ : Commutativity {T} {T} (_▫_) ⦄ → ((x ▫ y) ≡ z) → ((y ▫ x) ≡ z) commuteₗ ⦃ comm ⦄ stmt = comm 🝖 stmt -- Returns a commuted RHS of an equality commuteᵣ : ∀{T}{_▫_}{x y z} → ⦃ _ : Commutativity {T} {T} (_▫_) ⦄ → (z ≡ (x ▫ y)) → (z ≡ (y ▫ x)) commuteᵣ ⦃ comm ⦄ stmt = stmt 🝖 comm commuteBoth : ∀{T₁ T₂}{_▫_}{a₁ a₂ b₁ b₂} → Commutativity{T₁}{T₂}(_▫_) → (a₁ ▫ a₂ ≡ b₁ ▫ b₂) → (a₂ ▫ a₁ ≡ b₂ ▫ b₁) commuteBoth {_}{_} {a₁} {a₂} {b₁} {b₂} commutativity (a₁▫a₂≡b₁▫b₂) = (symmetry ⦃ [≡]-symmetry ⦄ (commutativity {a₁} {a₂})) 🝖' (a₁▫a₂≡b₁▫b₂) 🝖' (commutativity {b₁} {b₂}) where _🝖'_ = _🝖_ ⦃ [≡]-transitivity ⦄ infixl 1000 _🝖'_ -}
45.388393
132
0.57667
34e6691f0cc06481f241a5be29d07ba78eca4a56
19,425
agda
Agda
prototyping/Properties/Subtyping.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
1
2021-12-05T21:53:03.000Z
2021-12-05T21:53:03.000Z
prototyping/Properties/Subtyping.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
prototyping/Properties/Subtyping.agda
JohnnyMorganz/luau
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Properties.Subtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; skalar) open import Properties.Contradiction using (CONTRADICTION; ¬; ⊥) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) -- Language membership is decidable dec-language : ∀ T t → Either (¬Language T t) (Language T t) dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ())) dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ())) dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ())) dec-language nil (scalar nil) = Right (scalar nil) dec-language nil function = Left (scalar-function nil) dec-language nil (function-ok t) = Left (scalar-function-ok nil) dec-language nil (function-err t) = Left (scalar-function-err nil) dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ())) dec-language boolean (scalar boolean) = Right (scalar boolean) dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ())) dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ())) dec-language boolean function = Left (scalar-function boolean) dec-language boolean (function-ok t) = Left (scalar-function-ok boolean) dec-language boolean (function-err t) = Left (scalar-function-err boolean) dec-language number (scalar number) = Right (scalar number) dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ())) dec-language number (scalar string) = Left (scalar-scalar string number (λ ())) dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ())) dec-language number function = Left (scalar-function number) dec-language number (function-ok t) = Left (scalar-function-ok number) dec-language number (function-err t) = Left (scalar-function-err number) dec-language string (scalar number) = Left (scalar-scalar number string (λ ())) dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ())) dec-language string (scalar string) = Right (scalar string) dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ())) dec-language string function = Left (scalar-function string) dec-language string (function-ok t) = Left (scalar-function-ok string) dec-language string (function-err t) = Left (scalar-function-err string) dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s) dec-language (T₁ ⇒ T₂) function = Right function dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t) dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t)) dec-language never t = Left never dec-language unknown t = Right unknown dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t) dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t) -- ¬Language T is the complement of Language T language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t) language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q language-comp t (left p) (q₁ , q₂) = language-comp t p q₁ language-comp t (right p) (q₁ , q₂) = language-comp t p q₂ language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function language-comp (scalar s) never (scalar ()) language-comp function (scalar-function ()) function language-comp (function-ok t) (scalar-function-ok ()) (function-ok q) language-comp (function-ok t) (function-ok p) (function-ok q) = language-comp t p q language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p -- ≮: is the complement of <: ¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U) ¬≮:-impl-<: {T} {U} p t q with dec-language U t ¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r)) ¬≮:-impl-<: {T} {U} p t q | Right r = r <:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U) <:-impl-¬≮: p (witness t q r) = language-comp t r (p t q) <:-impl-⊇ : ∀ {T U} → (T <: U) → ∀ t → ¬Language U t → ¬Language T t <:-impl-⊇ {T} p t q with dec-language T t <:-impl-⊇ {_} p t q | Left r = r <:-impl-⊇ {_} p t q | Right r = CONTRADICTION (language-comp t q (p t r)) -- reflexivity ≮:-refl : ∀ {T} → ¬(T ≮: T) ≮:-refl (witness t p q) = language-comp t q p <:-refl : ∀ {T} → (T <: T) <:-refl = ¬≮:-impl-<: ≮:-refl -- transititivity ≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U) ≮:-trans-≡ p refl = p ≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U) ≡-trans-≮: refl p = p ≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U) ≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) <:-trans p q t r = q t (p t r) <:-trans-≮: : ∀ {S T U} → (S <: T) → (S ≮: U) → (T ≮: U) <:-trans-≮: p (witness t q r) = witness t (p t q) r ≮:-trans-<: : ∀ {S T U} → (S ≮: U) → (T <: U) → (S ≮: T) ≮:-trans-<: (witness t p q) r = witness t p (<:-impl-⊇ r t q) -- Properties of union <:-union : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∪ S) <: (T ∪ U)) <:-union p q t (left r) = left (p t r) <:-union p q t (right r) = right (q t r) <:-∪-left : ∀ {S T} → S <: (S ∪ T) <:-∪-left t p = left p <:-∪-right : ∀ {S T} → T <: (S ∪ T) <:-∪-right t p = right p <:-∪-lub : ∀ {S T U} → (S <: U) → (T <: U) → ((S ∪ T) <: U) <:-∪-lub p q t (left r) = p t r <:-∪-lub p q t (right r) = q t r <:-∪-symm : ∀ {T U} → (T ∪ U) <: (U ∪ T) <:-∪-symm t (left p) = right p <:-∪-symm t (right p) = left p <:-∪-assocl : ∀ {S T U} → (S ∪ (T ∪ U)) <: ((S ∪ T) ∪ U) <:-∪-assocl t (left p) = left (left p) <:-∪-assocl t (right (left p)) = left (right p) <:-∪-assocl t (right (right p)) = right p <:-∪-assocr : ∀ {S T U} → ((S ∪ T) ∪ U) <: (S ∪ (T ∪ U)) <:-∪-assocr t (left (left p)) = left p <:-∪-assocr t (left (right p)) = right (left p) <:-∪-assocr t (right p) = right (right p) ≮:-∪-left : ∀ {S T U} → (S ≮: U) → ((S ∪ T) ≮: U) ≮:-∪-left (witness t p q) = witness t (left p) q ≮:-∪-right : ∀ {S T U} → (T ≮: U) → ((S ∪ T) ≮: U) ≮:-∪-right (witness t p q) = witness t (right p) q -- Properties of intersection <:-intersect : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∩ S) <: (T ∩ U)) <:-intersect p q t (r₁ , r₂) = (p t r₁ , q t r₂) <:-∩-left : ∀ {S T} → (S ∩ T) <: S <:-∩-left t (p , _) = p <:-∩-right : ∀ {S T} → (S ∩ T) <: T <:-∩-right t (_ , p) = p <:-∩-glb : ∀ {S T U} → (S <: T) → (S <: U) → (S <: (T ∩ U)) <:-∩-glb p q t r = (p t r , q t r) <:-∩-symm : ∀ {T U} → (T ∩ U) <: (U ∩ T) <:-∩-symm t (p₁ , p₂) = (p₂ , p₁) ≮:-∩-left : ∀ {S T U} → (S ≮: T) → (S ≮: (T ∩ U)) ≮:-∩-left (witness t p q) = witness t p (left q) ≮:-∩-right : ∀ {S T U} → (S ≮: U) → (S ≮: (T ∩ U)) ≮:-∩-right (witness t p q) = witness t p (right q) -- Distribution properties <:-∩-distl-∪ : ∀ {S T U} → (S ∩ (T ∪ U)) <: ((S ∩ T) ∪ (S ∩ U)) <:-∩-distl-∪ t (p₁ , left p₂) = left (p₁ , p₂) <:-∩-distl-∪ t (p₁ , right p₂) = right (p₁ , p₂) ∩-distl-∪-<: : ∀ {S T U} → ((S ∩ T) ∪ (S ∩ U)) <: (S ∩ (T ∪ U)) ∩-distl-∪-<: t (left (p₁ , p₂)) = (p₁ , left p₂) ∩-distl-∪-<: t (right (p₁ , p₂)) = (p₁ , right p₂) <:-∩-distr-∪ : ∀ {S T U} → ((S ∪ T) ∩ U) <: ((S ∩ U) ∪ (T ∩ U)) <:-∩-distr-∪ t (left p₁ , p₂) = left (p₁ , p₂) <:-∩-distr-∪ t (right p₁ , p₂) = right (p₁ , p₂) ∩-distr-∪-<: : ∀ {S T U} → ((S ∩ U) ∪ (T ∩ U)) <: ((S ∪ T) ∩ U) ∩-distr-∪-<: t (left (p₁ , p₂)) = (left p₁ , p₂) ∩-distr-∪-<: t (right (p₁ , p₂)) = (right p₁ , p₂) <:-∪-distl-∩ : ∀ {S T U} → (S ∪ (T ∩ U)) <: ((S ∪ T) ∩ (S ∪ U)) <:-∪-distl-∩ t (left p) = (left p , left p) <:-∪-distl-∩ t (right (p₁ , p₂)) = (right p₁ , right p₂) ∪-distl-∩-<: : ∀ {S T U} → ((S ∪ T) ∩ (S ∪ U)) <: (S ∪ (T ∩ U)) ∪-distl-∩-<: t (left p₁ , p₂) = left p₁ ∪-distl-∩-<: t (right p₁ , left p₂) = left p₂ ∪-distl-∩-<: t (right p₁ , right p₂) = right (p₁ , p₂) <:-∪-distr-∩ : ∀ {S T U} → ((S ∩ T) ∪ U) <: ((S ∪ U) ∩ (T ∪ U)) <:-∪-distr-∩ t (left (p₁ , p₂)) = left p₁ , left p₂ <:-∪-distr-∩ t (right p) = (right p , right p) ∪-distr-∩-<: : ∀ {S T U} → ((S ∪ U) ∩ (T ∪ U)) <: ((S ∩ T) ∪ U) ∪-distr-∩-<: t (left p₁ , left p₂) = left (p₁ , p₂) ∪-distr-∩-<: t (left p₁ , right p₂) = right p₂ ∪-distr-∩-<: t (right p₁ , p₂) = right p₁ -- Properties of functions <:-function : ∀ {R S T U} → (R <: S) → (T <: U) → (S ⇒ T) <: (R ⇒ U) <:-function p q function function = function <:-function p q (function-ok t) (function-ok r) = function-ok (q t r) <:-function p q (function-err s) (function-err r) = function-err (<:-impl-⊇ p s r) <:-function-∩-∪ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∪ S) ⇒ (T ∪ U)) <:-function-∩-∪ function (function , function) = function <:-function-∩-∪ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (right p₂) <:-function-∩-∪ (function-err _) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂) <:-function-∩ : ∀ {S T U} → ((S ⇒ T) ∩ (S ⇒ U)) <: (S ⇒ (T ∩ U)) <:-function-∩ function (function , function) = function <:-function-∩ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (p₁ , p₂) <:-function-∩ (function-err s) (function-err p₁ , function-err p₂) = function-err p₂ <:-function-∪ : ∀ {R S T U} → ((R ⇒ S) ∪ (T ⇒ U)) <: ((R ∩ T) ⇒ (S ∪ U)) <:-function-∪ function (left function) = function <:-function-∪ (function-ok t) (left (function-ok p)) = function-ok (left p) <:-function-∪ (function-err s) (left (function-err p)) = function-err (left p) <:-function-∪ (scalar s) (left (scalar ())) <:-function-∪ function (right function) = function <:-function-∪ (function-ok t) (right (function-ok p)) = function-ok (right p) <:-function-∪ (function-err s) (right (function-err x)) = function-err (right x) <:-function-∪ (scalar s) (right (scalar ())) <:-function-∪-∩ : ∀ {R S T U} → ((R ∩ S) ⇒ (T ∪ U)) <: ((R ⇒ T) ∪ (S ⇒ U)) <:-function-∪-∩ function function = left function <:-function-∪-∩ (function-ok t) (function-ok (left p)) = left (function-ok p) <:-function-∪-∩ (function-ok t) (function-ok (right p)) = right (function-ok p) <:-function-∪-∩ (function-err s) (function-err (left p)) = left (function-err p) <:-function-∪-∩ (function-err s) (function-err (right p)) = right (function-err p) ≮:-function-left : ∀ {R S T U} → (R ≮: S) → (S ⇒ T) ≮: (R ⇒ U) ≮:-function-left (witness t p q) = witness (function-err t) (function-err q) (function-err p) ≮:-function-right : ∀ {R S T U} → (T ≮: U) → (S ⇒ T) ≮: (R ⇒ U) ≮:-function-right (witness t p q) = witness (function-ok t) (function-ok p) (function-ok q) -- Properties of scalars skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t)) skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) scalar-<: : ∀ {S T} → (s : Scalar S) → Language T (scalar s) → (S <: T) scalar-<: number p (scalar number) (scalar number) = p scalar-<: boolean p (scalar boolean) (scalar boolean) = p scalar-<: string p (scalar string) (scalar string) = p scalar-<: nil p (scalar nil) (scalar nil) = p scalar-∩-function-<:-never : ∀ {S T U} → (Scalar S) → ((T ⇒ U) ∩ S) <: never scalar-∩-function-<:-never number .(scalar number) (() , scalar number) scalar-∩-function-<:-never boolean .(scalar boolean) (() , scalar boolean) scalar-∩-function-<:-never string .(scalar string) (() , scalar string) scalar-∩-function-<:-never nil .(scalar nil) (() , scalar nil) function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U) function-≮:-scalar s = witness function function (scalar-function s) scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T)) scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s) unknown-≮:-scalar : ∀ {U} → (Scalar U) → (unknown ≮: U) unknown-≮:-scalar s = witness (function-ok (scalar s)) unknown (scalar-function-ok s) scalar-≮:-never : ∀ {U} → (Scalar U) → (U ≮: never) scalar-≮:-never s = witness (scalar s) (scalar s) never scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U) scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p) scalar-≢-∩-<:-never : ∀ {T U V} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ∩ U) <: V scalar-≢-∩-<:-never s t p u (scalar s₁ , scalar s₂) = CONTRADICTION (p refl) skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) skalar-scalar number = left (scalar number) skalar-scalar boolean = right (right (right (scalar boolean))) skalar-scalar string = right (left (scalar string)) skalar-scalar nil = right (right (left (scalar nil))) -- Properties of unknown and never unknown-≮: : ∀ {T U} → (T ≮: U) → (unknown ≮: U) unknown-≮: (witness t p q) = witness t unknown q never-≮: : ∀ {T U} → (T ≮: U) → (T ≮: never) never-≮: (witness t p q) = witness t p never unknown-≮:-never : (unknown ≮: never) unknown-≮:-never = witness (scalar nil) unknown never function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never) function-≮:-never = witness function function never <:-never : ∀ {T} → (never <: T) <:-never t (scalar ()) ≮:-never-left : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: T) → (S ∩ U) ≮: never ≮:-never-left p (witness t q₁ q₂) with p t q₁ ≮:-never-left p (witness t q₁ q₂) | left r = CONTRADICTION (language-comp t q₂ r) ≮:-never-left p (witness t q₁ q₂) | right r = witness t (q₁ , r) never ≮:-never-right : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: U) → (S ∩ T) ≮: never ≮:-never-right p (witness t q₁ q₂) with p t q₁ ≮:-never-right p (witness t q₁ q₂) | left r = witness t (q₁ , r) never ≮:-never-right p (witness t q₁ q₂) | right r = CONTRADICTION (language-comp t q₂ r) <:-unknown : ∀ {T} → (T <: unknown) <:-unknown t p = unknown <:-everything : unknown <: ((never ⇒ unknown) ∪ skalar) <:-everything (scalar s) p = right (skalar-scalar s) <:-everything function p = left function <:-everything (function-ok t) p = left (function-ok unknown) <:-everything (function-err s) p = left (function-err never) -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types, -- for example (never -> T) is equivalent to (never -> U) -- when types are interpreted as sets of syntactic values. _⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set (P ⊆ Q) = ∀ a → (P a) → (Q a) _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set) (P ⊗ Q) (a , b) = (P a) × (Q b) Comp : ∀ {A : Set} → (A → Set) → (A → Set) Comp P a = ¬(P a) Lift : ∀ {A : Set} → (A → Set) → (Maybe A → Set) Lift P nothing = ⊥ Lift P (just a) = P a set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} → -- This is the "if" part of being a set-theoretic model -- though it uses the definition from Frisch's thesis -- rather than from the Gentle Introduction. The difference -- being the presence of Lift, (written D_Ω in Defn 4.2 of -- https://www.cduce.org/papers/frisch_phd.pdf). (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) → (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , just u) Qtu (S₂t , ¬T₂u) = q (t , just u) Qtu (S₁t , ¬T₁u) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r ¬T₁u : ¬(Language T₁ u) ¬T₁u T₁u with p (function-ok u) (function-ok T₁u) ¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , nothing) Qt- (S₂t , _) = q (t , nothing) Qt- (S₁t , λ ()) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → -- We don't quite have that this is a set-theoretic model -- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited -- in particular it's not true when T₁ is never, or T₂ is unknown. ∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ → -- This is the "only if" part of being a set-theoretic model (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) → (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where Q : (Tree × Maybe Tree) → Set Q (t , just u) = Either (¬Language S₁ t) (Language T₁ u) Q (t , nothing) = ¬Language S₁ t q : Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) q (t , just u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t q (t , just u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u q (t , nothing) ¬S₁t (S₁t , _) = language-comp t ¬S₁t S₁t r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂) r function function = function r (function-err s) (function-err ¬S₁s) with dec-language S₂ s r (function-err s) (function-err ¬S₁s) | Left ¬S₂s = function-err ¬S₂s r (function-err s) (function-err ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ())) r (function-ok t) (function-ok T₁t) with dec-language T₂ t r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , just t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t -- A counterexample when the argument type is empty. set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language number))) → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language string)))) set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p) set-theoretic-counterexample-two : (never ⇒ number) ≮: (never ⇒ string) set-theoretic-counterexample-two = witness (function-ok (scalar number)) (function-ok (scalar number)) (function-ok (scalar-scalar number string (λ ()))) -- At some point we may deal with overloaded function resolution, which should fix this problem... -- The reason why this is connected to overloaded functions is that currently we have that the type of -- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U), -- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V) -- and tgt(never => T) should be unknown. For example -- -- tgt((number => string) & (string => bool))(number) -- is tgt(number => string)(number) & tgt(string => bool)(number) -- is tgt(number => string)(number) & tgt(string => bool)(number&unknown) -- is tgt(number => string)(number) & tgt(string&number => bool)(unknown) -- is tgt(number => string)(number) & tgt(never => bool)(unknown) -- is string & unknown -- is string -- -- there's some discussion of this in the Gentle Introduction paper.
46.140143
250
0.593925
375d5a75dbbc19f2f5d4664569d7a2128e8a250b
903
agda
Agda
src/Categories/Morphism/Extremal.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
src/Categories/Morphism/Extremal.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
src/Categories/Morphism/Extremal.agda
maxsnew/agda-categories
8f3c844d929508040dfa21f681fa260056214b73
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} {- Extremal Mono and Epimorphisms. https://ncatlab.org/nlab/show/extremal+epimorphism -} open import Categories.Category.Core module Categories.Morphism.Extremal {o ℓ e} (𝒞 : Category o ℓ e) where open import Level open import Categories.Morphism 𝒞 open Category 𝒞 IsExtremalEpi : ∀ {A B} {f : A ⇒ B} → Epi f → Set (o ⊔ ℓ ⊔ e) IsExtremalEpi {A = A} {B = B} {f = f} epi = ∀ {X} {i : X ⇒ B} {g : A ⇒ X} → Mono i → f ≈ i ∘ g → IsIso i IsExtremalMono : ∀ {A B} {f : A ⇒ B} → Mono f → Set (o ⊔ ℓ ⊔ e) IsExtremalMono {A = A} {B = B} {f = f} mono = ∀ {X} {g : X ⇒ B} {i : A ⇒ X} → Epi i → f ≈ g ∘ i → IsIso i record ExtremalEpi {A B} (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field epi : Epi f extremal : IsExtremalEpi epi record ExtremalMono {A B} (f : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field mono : Mono f extremal : IsExtremalMono mono
25.083333
70
0.572536
3689c36514f8a5a1fadc2cef4368e85dfdd02b58
261
agda
Agda
test/Succeed/Issue4384.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue4384.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue4384.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical --rewriting #-} open import Agda.Builtin.Cubical.Path open import Agda.Primitive.Cubical data A : Set where a : A eq : a ≡ a ok : ∀ i → eq i ≡ a ok i j = eq (primIMin i (primINeg j)) {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE ok #-}
17.4
37
0.613027
9ae01399226f732a011a1efe4e9b179f69c80687
230
agda
Agda
Cubical/Data/Queue/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Data/Queue/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Data/Queue/Base.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --no-exact-split --safe #-} module Cubical.Data.Queue.Base where open import Cubical.Data.Queue.1List public open import Cubical.Data.Queue.Truncated2List public open import Cubical.Data.Queue.Untruncated2List public
32.857143
54
0.804348
0d9b4c5ccb2a99a52e6b21ce37677a917ab9187c
2,617
agda
Agda
src/fot/FOTC/Data/List/WF-Relation/LT-Length/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/FOTC/Data/List/WF-Relation/LT-Length/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/FOTC/Data/List/WF-Relation/LT-Length/PropertiesI.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Properties for the relation LTL ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.List.WF-Relation.LT-Length.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesI as Nat using () open import FOTC.Data.List open import FOTC.Data.List.PropertiesI open import FOTC.Data.List.WF-Relation.LT-Length ------------------------------------------------------------------------------ xs<[]→⊥ : ∀ {xs} → List xs → ¬ (LTL xs []) xs<[]→⊥ Lxs xs<[] = lg-xs<lg-[]→⊥ Lxs xs<[] x∷xs<y∷ys→xs<ys : ∀ {x xs y ys} → List xs → List ys → LTL (x ∷ xs) (y ∷ ys) → LTL xs ys x∷xs<y∷ys→xs<ys {x} {xs} {y} {ys} Lxs Lys x∷xs<y∷ys = Nat.Sx<Sy→x<y helper where helper : succ₁ (length xs) < succ₁ (length ys) helper = lt (succ₁ (length xs)) (succ₁ (length ys)) ≡⟨ subst₂ (λ t t' → lt (succ₁ (length xs)) (succ₁ (length ys)) ≡ lt t t') (sym (length-∷ x xs)) (sym (length-∷ y ys)) refl ⟩ lt (length (x ∷ xs)) (length (y ∷ ys)) ≡⟨ x∷xs<y∷ys ⟩ true ∎ <-trans : ∀ {xs ys zs} → List xs → List ys → List zs → LTL xs ys → LTL ys zs → LTL xs zs <-trans Lxs Lys Lzs xs<ys ys<zs = Nat.<-trans (lengthList-N Lxs) (lengthList-N Lys) (lengthList-N Lzs) xs<ys ys<zs lg-xs≡lg-ys→ys<zx→xs<zs : ∀ {xs ys zs} → length xs ≡ length ys → LTL ys zs → LTL xs zs lg-xs≡lg-ys→ys<zx→xs<zs {xs} {ys} {zs} h ys<zs = lt (length xs) (length zs) ≡⟨ subst (λ t → lt (length xs) (length zs) ≡ lt t (length zs)) h refl ⟩ lt (length ys) (length zs) ≡⟨ ys<zs ⟩ true ∎ xs<y∷ys→xs<ys∨lg-xs≡lg-ys : ∀ {xs y ys} → List xs → List ys → LTL xs (y ∷ ys) → LTL xs ys ∨ length xs ≡ length ys xs<y∷ys→xs<ys∨lg-xs≡lg-ys {xs} {y} {ys} Lxs Lys xs<y∷ys = Nat.x<Sy→x<y∨x≡y (lengthList-N Lxs) (lengthList-N Lys) helper where helper : length xs < succ₁ (length ys) helper = lt (length xs) (succ₁ (length ys)) ≡⟨ subst (λ t → lt (length xs) (succ₁ (length ys)) ≡ lt (length xs) t) (sym (length-∷ y ys)) refl ⟩ lt (length xs) (length (y ∷ ys)) ≡⟨ xs<y∷ys ⟩ true ∎
35.364865
82
0.495606
1e6220ecb2344163c905f2b03863fddd78699e5e
899
agda
Agda
agda/InsertSort/Impl2/Correctness/Permutation/Base.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/InsertSort/Impl2/Correctness/Permutation/Base.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/InsertSort/Impl2/Correctness/Permutation/Base.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module InsertSort.Impl2.Correctness.Permutation.Base {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.List open import Data.Sum open import InsertSort.Impl2 _≤_ tot≤ open import List.Permutation.Base A open import OList _≤_ lemma-forget-insert : {b : Bound} → (x : A) → (b≤x : LeB b (val x)) → (xs : OList b) → forget (insert b≤x xs) / x ⟶ forget xs lemma-forget-insert x b≤x onil = /head lemma-forget-insert x b≤x (:< {x = y} b≤y ys) with tot≤ x y ... | inj₁ x≤y = /head ... | inj₂ y≤x = /tail (lemma-forget-insert x (lexy y≤x) ys) theorem-insertSort∼ : (xs : List A) → xs ∼ forget (insertSort xs) theorem-insertSort∼ [] = ∼[] theorem-insertSort∼ (x ∷ xs) = ∼x /head (lemma-forget-insert x lebx (insertSort xs)) (theorem-insertSort∼ xs)
35.96
125
0.641824
8be83a61c776bb4bd17967d976173a45e5d4b974
400
agda
Agda
test/Succeed/Issue2573.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2573.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2573.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality {-# BUILTIN REWRITE _≡_ #-} data Bool : Set where true false : Bool op : Bool → Set → Set op false _ = Bool op true A = A postulate id : Bool → Bool id-comp : ∀ y → id y ≡ y {-# REWRITE id-comp #-} postulate A : Set law : (i : Bool) → op (id i) A ≡ Bool {-# REWRITE law #-} ok : (i : Bool) → op i A ≡ Bool ok i = refl
16
39
0.57
7c48000ef756ff5483045971dd3335bd64c52a44
7,044
agda
Agda
Cubical/Data/Nat/Order.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Order.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/Nat/Order.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Data.Nat.Order where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Sigma open import Cubical.Data.Sum as ⊎ open import Cubical.Data.Nat.Base open import Cubical.Data.Nat.Properties open import Cubical.Induction.WellFounded open import Cubical.Relation.Nullary infix 4 _≤_ _<_ _≤_ : ℕ → ℕ → Type₀ m ≤ n = Σ[ k ∈ ℕ ] k + m ≡ n _<_ : ℕ → ℕ → Type₀ m < n = suc m ≤ n data Trichotomy (m n : ℕ) : Type₀ where lt : m < n → Trichotomy m n eq : m ≡ n → Trichotomy m n gt : n < m → Trichotomy m n private variable k l m n : ℕ private witness-prop : ∀ j → isProp (j + m ≡ n) witness-prop {m} {n} j = isSetℕ (j + m) n m≤n-isProp : isProp (m ≤ n) m≤n-isProp {m} {n} (k , p) (l , q) = Σ≡Prop witness-prop lemma where lemma : k ≡ l lemma = inj-+m (p ∙ (sym q)) zero-≤ : 0 ≤ n zero-≤ {n} = n , +-zero n suc-≤-suc : m ≤ n → suc m ≤ suc n suc-≤-suc (k , p) = k , (+-suc k _) ∙ (cong suc p) ≤-+k : m ≤ n → m + k ≤ n + k ≤-+k {m} {k = k} (i , p) = i , +-assoc i m k ∙ cong (_+ k) p ≤-k+ : m ≤ n → k + m ≤ k + n ≤-k+ {m} {n} {k} = subst (_≤ k + n) (+-comm m k) ∘ subst (m + k ≤_) (+-comm n k) ∘ ≤-+k pred-≤-pred : suc m ≤ suc n → m ≤ n pred-≤-pred (k , p) = k , injSuc ((sym (+-suc k _)) ∙ p) ≤-refl : m ≤ m ≤-refl = 0 , refl ≤-suc : m ≤ n → m ≤ suc n ≤-suc (k , p) = suc k , cong suc p ≤-predℕ : predℕ n ≤ n ≤-predℕ {zero} = ≤-refl ≤-predℕ {suc n} = ≤-suc ≤-refl ≤-trans : k ≤ m → m ≤ n → k ≤ n ≤-trans {k} {m} {n} (i , p) (j , q) = i + j , l2 ∙ (l1 ∙ q) where l1 : j + i + k ≡ j + m l1 = (sym (+-assoc j i k)) ∙ (cong (j +_) p) l2 : i + j + k ≡ j + i + k l2 = cong (_+ k) (+-comm i j) ≤-antisym : m ≤ n → n ≤ m → m ≡ n ≤-antisym {m} (i , p) (j , q) = (cong (_+ m) l3) ∙ p where l1 : j + i + m ≡ m l1 = (sym (+-assoc j i m)) ∙ ((cong (j +_) p) ∙ q) l2 : j + i ≡ 0 l2 = m+n≡n→m≡0 l1 l3 : 0 ≡ i l3 = sym (snd (m+n≡0→m≡0×n≡0 l2)) ≤-k+-cancel : k + m ≤ k + n → m ≤ n ≤-k+-cancel {k} {m} (l , p) = l , inj-m+ (sub k m ∙ p) where sub : ∀ k m → k + (l + m) ≡ l + (k + m) sub k m = +-assoc k l m ∙ cong (_+ m) (+-comm k l) ∙ sym (+-assoc l k m) ≤-+k-cancel : m + k ≤ n + k → m ≤ n ≤-+k-cancel {m} {k} {n} (l , p) = l , cancelled where cancelled : l + m ≡ n cancelled = inj-+m (sym (+-assoc l m k) ∙ p) <-k+-cancel : k + m < k + n → m < n <-k+-cancel {k} {m} {n} = ≤-k+-cancel ∘ subst (_≤ k + n) (sym (+-suc k m)) ¬-<-zero : ¬ m < 0 ¬-<-zero (k , p) = snotz ((sym (+-suc k _)) ∙ p) ¬m<m : ¬ m < m ¬m<m {m} = ¬-<-zero ∘ ≤-+k-cancel {k = m} ≤0→≡0 : n ≤ 0 → n ≡ 0 ≤0→≡0 {zero} ineq = refl ≤0→≡0 {suc n} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ : m ≤ n → (predℕ m) ≤ (predℕ n) predℕ-≤-predℕ {zero} {zero} ineq = ≤-refl predℕ-≤-predℕ {zero} {suc n} ineq = zero-≤ predℕ-≤-predℕ {suc m} {zero} ineq = ⊥.rec (¬-<-zero ineq) predℕ-≤-predℕ {suc m} {suc n} ineq = pred-≤-pred ineq ¬m+n<m : ¬ m + n < m ¬m+n<m {m} {n} = ¬-<-zero ∘ <-k+-cancel ∘ subst (m + n <_) (sym (+-zero m)) <-weaken : m < n → m ≤ n <-weaken (k , p) = suc k , sym (+-suc k _) ∙ p ≤<-trans : l ≤ m → m < n → l < n ≤<-trans {l} {m} {n} (i , p) (j , q) = (j + i) , reason where reason : j + i + suc l ≡ n reason = j + i + suc l ≡⟨ sym (+-assoc j i (suc l)) ⟩ j + (i + suc l) ≡⟨ cong (j +_) (+-suc i l) ⟩ j + (suc (i + l)) ≡⟨ cong (_+_ j ∘ suc) p ⟩ j + suc m ≡⟨ q ⟩ n ∎ <≤-trans : l < m → m ≤ n → l < n <≤-trans {l} {m} {n} (i , p) (j , q) = j + i , reason where reason : j + i + suc l ≡ n reason = j + i + suc l ≡⟨ sym (+-assoc j i (suc l)) ⟩ j + (i + suc l) ≡⟨ cong (j +_) p ⟩ j + m ≡⟨ q ⟩ n ∎ <-trans : l < m → m < n → l < n <-trans p = ≤<-trans (<-weaken p) <-asym : m < n → ¬ n ≤ m <-asym m<n = ¬m<m ∘ <≤-trans m<n Trichotomy-suc : Trichotomy m n → Trichotomy (suc m) (suc n) Trichotomy-suc (lt m<n) = lt (suc-≤-suc m<n) Trichotomy-suc (eq m=n) = eq (cong suc m=n) Trichotomy-suc (gt n<m) = gt (suc-≤-suc n<m) _≟_ : ∀ m n → Trichotomy m n zero ≟ zero = eq refl zero ≟ suc n = lt (n , +-comm n 1) suc m ≟ zero = gt (m , +-comm m 1) suc m ≟ suc n = Trichotomy-suc (m ≟ n) <-split : m < suc n → (m < n) ⊎ (m ≡ n) <-split {n = zero} = inr ∘ snd ∘ m+n≡0→m≡0×n≡0 ∘ snd ∘ pred-≤-pred <-split {zero} {suc n} = λ _ → inl (suc-≤-suc zero-≤) <-split {suc m} {suc n} = ⊎.map suc-≤-suc (cong suc) ∘ <-split ∘ pred-≤-pred private acc-suc : Acc _<_ n → Acc _<_ (suc n) acc-suc a = acc λ y y<sn → case <-split y<sn of λ { (inl y<n) → access a y y<n ; (inr y≡n) → subst _ (sym y≡n) a } <-wellfounded : WellFounded _<_ <-wellfounded zero = acc λ _ → ⊥.rec ∘ ¬-<-zero <-wellfounded (suc n) = acc-suc (<-wellfounded n) module _ (b₀ : ℕ) (P : ℕ → Type₀) (base : ∀ n → n < suc b₀ → P n) (step : ∀ n → P n → P (suc b₀ + n)) where open WFI (<-wellfounded) private dichotomy : ∀ b n → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) dichotomy b n = case n ≟ b return (λ _ → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m)) of λ { (lt o) → inl o ; (eq p) → inr (0 , p ∙ sym (+-zero b)) ; (gt (m , p)) → inr (suc m , sym p ∙ +-suc m b ∙ +-comm (suc m) b) } dichotomy<≡ : ∀ b n → (n<b : n < b) → dichotomy b n ≡ inl n<b dichotomy<≡ b n n<b = case dichotomy b n return (λ d → d ≡ inl n<b) of λ { (inl x) → cong inl (m≤n-isProp x n<b) ; (inr (m , p)) → ⊥.rec (<-asym n<b (m , sym (p ∙ +-comm b m))) } dichotomy+≡ : ∀ b m n → (p : n ≡ b + m) → dichotomy b n ≡ inr (m , p) dichotomy+≡ b m n p = case dichotomy b n return (λ d → d ≡ inr (m , p)) of λ { (inl n<b) → ⊥.rec (<-asym n<b (m , +-comm m b ∙ sym p)) ; (inr (m' , q)) → cong inr (Σ≡Prop (λ x → isSetℕ n (b + x)) (inj-m+ {m = b} (sym q ∙ p))) } b = suc b₀ lemma₁ : ∀{x y z} → x ≡ suc z + y → y < x lemma₁ {y = y} {z} p = z , +-suc z y ∙ sym p subStep : (n : ℕ) → (∀ m → m < n → P m) → (n < b) ⊎ (Σ[ m ∈ ℕ ] n ≡ b + m) → P n subStep n _ (inl l) = base n l subStep n rec (inr (m , p)) = transport (cong P (sym p)) (step m (rec m (lemma₁ p))) wfStep : (n : ℕ) → (∀ m → m < n → P m) → P n wfStep n rec = subStep n rec (dichotomy b n) wfStepLemma₀ : ∀ n (n<b : n < b) rec → wfStep n rec ≡ base n n<b wfStepLemma₀ n n<b rec = cong (subStep n rec) (dichotomy<≡ b n n<b) wfStepLemma₁ : ∀ n rec → wfStep (b + n) rec ≡ step n (rec n (lemma₁ refl)) wfStepLemma₁ n rec = cong (subStep (b + n) rec) (dichotomy+≡ b n (b + n) refl) ∙ transportRefl _ +induction : ∀ n → P n +induction = induction wfStep +inductionBase : ∀ n → (l : n < b) → +induction n ≡ base n l +inductionBase n l = induction-compute wfStep n ∙ wfStepLemma₀ n l _ +inductionStep : ∀ n → +induction (b + n) ≡ step n (+induction n) +inductionStep n = induction-compute wfStep (b + n) ∙ wfStepLemma₁ n _
28.518219
84
0.482538
1a9c993fbbfd08efbead8128d7623f6ab381ba06
1,079
agda
Agda
agda-stdlib/src/Data/List/Relation/Binary/Equality/Propositional.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/List/Relation/Binary/Equality/Propositional.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/List/Relation/Binary/Equality/Propositional.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise equality over lists using propositional equality ------------------------------------------------------------------------ -- Note think carefully about using this module as pointwise -- propositional equality can usually be replaced with propositional -- equality. {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Binary.Equality.Propositional {a} {A : Set a} where open import Data.List.Base import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality open import Relation.Binary.PropositionalEquality as P using (_≡_) ------------------------------------------------------------------------ -- Re-export everything from setoid equality open SetoidEquality (P.setoid A) public ------------------------------------------------------------------------ -- ≋ is propositional ≋⇒≡ : _≋_ ⇒ _≡_ ≋⇒≡ [] = P.refl ≋⇒≡ (P.refl ∷ xs≈ys) = P.cong (_ ∷_) (≋⇒≡ xs≈ys) ≡⇒≋ : _≡_ ⇒ _≋_ ≡⇒≋ P.refl = ≋-refl
30.828571
77
0.511585
0421cecc065cd2bee1df5a19996bb4f04a5a4114
5,090
agda
Agda
examples/outdated-and-incorrect/iird/IID-Proof-Setup.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/iird/IID-Proof-Setup.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/iird/IID-Proof-Setup.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module IID-Proof-Setup where open import LF open import Identity open import IID open import IIDr open import DefinitionalEquality OPg : Set -> Set1 OPg I = OP I I -- Encoding indexed inductive types as non-indexed types. ε : {I : Set}(γ : OPg I) -> OPr I ε (ι i) j = σ (i == j) (\_ -> ι ★) ε (σ A γ) j = σ A (\a -> ε (γ a) j) ε (δ H i γ) j = δ H i (ε γ j) -- Adds a reflexivity proof. g→rArgs : {I : Set}(γ : OPg I)(U : I -> Set) (a : Args γ U) -> rArgs (ε γ) U (index γ U a) g→rArgs (ι e) U arg = (refl , ★) g→rArgs (σ A γ) U arg = (π₀ arg , g→rArgs (γ (π₀ arg)) U (π₁ arg)) g→rArgs (δ H i γ) U arg = (π₀ arg , g→rArgs γ U (π₁ arg)) -- Strips the equality proof. r→gArgs : {I : Set}(γ : OPg I)(U : I -> Set) (i : I)(a : rArgs (ε γ) U i) -> Args γ U r→gArgs (ι i) U j _ = ★ r→gArgs (σ A γ) U j arg = (π₀ arg , r→gArgs (γ (π₀ arg)) U j (π₁ arg)) r→gArgs (δ H i γ) U j arg = (π₀ arg , r→gArgs γ U j (π₁ arg)) -- Converting an rArgs to a gArgs and back is (provably, not definitionally) -- the identity. r←→gArgs-subst : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> rArgs (ε γ) U i -> Set) (i : I)(a : rArgs (ε γ) U i) -> (C (index γ U (r→gArgs γ U i a)) (g→rArgs γ U (r→gArgs γ U i a)) ) -> C i a r←→gArgs-subst {I} (ι i) U C j arg m = elim== i (\k q -> C k (q , ★)) m j (π₀ arg) r←→gArgs-subst (σ A γ) U C j arg m = r←→gArgs-subst (γ (π₀ arg)) U (\i c -> C i (π₀ arg , c)) j (π₁ arg) m r←→gArgs-subst (δ H i γ) U C j arg m = r←→gArgs-subst γ U (\i c -> C i (π₀ arg , c)) j (π₁ arg) m -- r←→gArgs-subst eliminates the identity proof stored in the rArgs. If this proof is -- by reflexivity r←→gArgs-subst is a definitional identity. This is the case -- when a = g→rArgs a' r←→gArgs-subst-identity : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> rArgs (ε γ) U i -> Set) (a' : Args γ U) -> let a = g→rArgs γ U a' i = index γ U a' in (h : C (index γ U (r→gArgs γ U i a)) (g→rArgs γ U (r→gArgs γ U i a)) ) -> r←→gArgs-subst γ U C i a h ≡ h r←→gArgs-subst-identity (ι i) U C _ h = refl-≡ r←→gArgs-subst-identity (σ A γ) U C arg h = r←→gArgs-subst-identity (γ (π₀ arg)) U C' (π₁ arg) h where C' = \i c -> C i (π₀ arg , c) r←→gArgs-subst-identity (δ H i γ) U C arg h = r←→gArgs-subst-identity γ U C' (π₁ arg) h where C' = \i c -> C i (π₀ arg , c) -- Going the other way around is definitionally the identity. g←→rArgs-identity : {I : Set}(γ : OPg I)(U : I -> Set) (a : Args γ U) -> r→gArgs γ U (index γ U a) (g→rArgs γ U a) ≡ a g←→rArgs-identity (ι i) U _ = refl-≡ g←→rArgs-identity (σ A γ) U arg = cong-≡ (\ ∙ -> (π₀ arg , ∙)) (g←→rArgs-identity (γ (π₀ arg)) U (π₁ arg)) g←→rArgs-identity (δ H i γ) U arg = cong-≡ (\ ∙ -> (π₀ arg , ∙)) (g←→rArgs-identity γ U (π₁ arg)) -- Corresponding conversion functions for assumptions to inductive occurrences. -- Basically an identity function. g→rIndArg : {I : Set}(γ : OPg I)(U : I -> Set) (i : I)(a : rArgs (ε γ) U i) -> IndArg γ U (r→gArgs γ U i a) -> IndArg (ε γ i) U a g→rIndArg (ι j) U i _ () g→rIndArg (σ A γ) U i arg v = g→rIndArg (γ (π₀ arg)) U i (π₁ arg) v g→rIndArg (δ A j γ) U i arg (inl a) = inl a g→rIndArg (δ A j γ) U i arg (inr v) = inr (g→rIndArg γ U i (π₁ arg) v) -- Basically we can substitute general inductive occurences for the encoded -- restricted inductive occurrences. g→rIndArg-subst : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> U i -> Set) (i : I)(a : rArgs (ε γ) U i) (v : IndArg γ U (r→gArgs γ U i a)) -> C (IndIndex (ε γ i) U a (g→rIndArg γ U i a v)) (Ind (ε γ i) U a (g→rIndArg γ U i a v)) -> C (IndIndex γ U (r→gArgs γ U i a) v) (Ind γ U (r→gArgs γ U i a) v) g→rIndArg-subst (ι j) U C i _ () h g→rIndArg-subst (σ A γ) U C i arg v h = g→rIndArg-subst (γ (π₀ arg)) U C i (π₁ arg) v h g→rIndArg-subst (δ A j γ) U C i arg (inl a) h = h g→rIndArg-subst (δ A j γ) U C i arg (inr v) h = g→rIndArg-subst γ U C i (π₁ arg) v h -- g→rIndArg-subst is purely book-keeping. On the object level it's definitional identity. g→rIndArg-subst-identity : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> U i -> Set) (i : I)(a : rArgs (ε γ) U i) (v : IndArg γ U (r→gArgs γ U i a)) (h : C (IndIndex (ε γ i) U a (g→rIndArg γ U i a v)) (Ind (ε γ i) U a (g→rIndArg γ U i a v)) ) -> g→rIndArg-subst γ U C i a v h ≡ h g→rIndArg-subst-identity (ι j) U C i _ () h g→rIndArg-subst-identity (σ A γ) U C i arg v h = g→rIndArg-subst-identity (γ (π₀ arg)) U C i (π₁ arg) v h g→rIndArg-subst-identity (δ A j γ) U C i arg (inl a) h = refl-≡ g→rIndArg-subst-identity (δ A j γ) U C i arg (inr v) h = g→rIndArg-subst-identity γ U C i (π₁ arg) v h -- And finally conversion of induction hypotheses. This goes the other direction. r→gIndHyp : {I : Set}(γ : OPg I)(U : I -> Set) (C : (i : I) -> U i -> Set) (i : I)(a : rArgs (ε γ) U i) -> IndHyp (ε γ i) U C a -> IndHyp γ U C (r→gArgs γ U i a) r→gIndHyp γ U C i a h v = g→rIndArg-subst γ U C i a v (h (g→rIndArg γ U i a v))
38.854962
108
0.548723
7c8fc7167b9f7de8de6de4fd41a4580244548b5f
2,433
agda
Agda
EuclideanDomain.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
EuclideanDomain.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
EuclideanDomain.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
-- This file defines the Euclidean Domain structure. {-# OPTIONS --without-K --safe #-} module EuclideanDomain where -- We comply to the definition format in stdlib, i.e. define an -- IsSomething predicate then define the bundle. open import Relation.Binary using (Rel; Setoid; IsEquivalence) module Structures {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality relation where open import Algebra.Structures _≈_ open import Algebra.Core open import Algebra.Definitions _≈_ import Algebra.Consequences.Setoid as Consequences open import Data.Product using (_,_; proj₁; proj₂) open import Level using (_⊔_) open import Data.Nat using (ℕ ; _<_) open import Data.Product using (∃ ; _×_) open import Relation.Nullary using (¬_) -- We only require leftcancellative since we have required the -- domain to be commutative. An Euclidean domain is a commutative -- domain with a div, mod, and rank function satisfy euc-eq and -- euc-rank. record IsEuclideanDomain (+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isCommutativeRing : IsCommutativeRing + * - 0# 1# *-alc : AlmostLeftCancellative 0# * div : ∀ (n d : A) -> ¬ d ≈ 0# -> A mod : ∀ (n d : A) -> ¬ d ≈ 0# -> A rank : A → ℕ euc-eq : ∀ (n d : A) -> (n0 : ¬ d ≈ 0#) -> let r = mod n d n0 in let q = div n d n0 in n ≈ + r (* q d) euc-rank : ∀ (n d : A) -> (n0 : ¬ d ≈ 0#) -> let r = mod n d n0 in let q = div n d n0 in rank r < rank d module Bundles where open Structures open import Algebra.Core open import Algebra.Structures open import Relation.Binary open import Function.Base import Relation.Nullary as N open import Level record EuclideanDomainBundle c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isEuclideanDomain : IsEuclideanDomain _≈_ _+_ _*_ -_ 0# 1# open IsEuclideanDomain isEuclideanDomain public
33.328767
70
0.560625
22c1d2b683ce415b6cb08bce25a075519d2f5128
3,555
agda
Agda
StructurallyRecursiveDescentParsing/DepthFirst.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
StructurallyRecursiveDescentParsing/DepthFirst.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
StructurallyRecursiveDescentParsing/DepthFirst.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A depth-first backend ------------------------------------------------------------------------ -- Based on the parser combinators in Wadler's "How to Replace Failure -- by a List of Successes". module StructurallyRecursiveDescentParsing.DepthFirst where open import Data.Bool open import Data.Product as Prod open import Data.BoundedVec.Inefficient import Data.List as L; open L using (List) import Data.List.Categorical open import Data.Nat open import Function open import Category.Applicative.Indexed open import Category.Monad.Indexed open import Category.Monad.State open import Coinduction import Level open import StructurallyRecursiveDescentParsing.Simplified ------------------------------------------------------------------------ -- Parser monad private P : Set → IFun ℕ Level.zero P Tok = IStateT (BoundedVec Tok) List open module M₁ {Tok : Set} = RawIMonadPlus (StateTIMonadPlus (BoundedVec Tok) Data.List.Categorical.monadPlus) using () renaming ( return to return′ ; _>>=_ to _>>=′_ ; _>>_ to _>>′_ ; ∅ to fail′ ; _∣_ to _∣′_ ) open module M₂ {Tok : Set} = RawIMonadState (StateTIMonadState (BoundedVec Tok) Data.List.Categorical.monad) using () renaming ( get to get′ ; put to put′ ; modify to modify′ ) ------------------------------------------------------------------------ -- Run function for the parsers -- For every successful parse the run function returns the remaining -- string. (Since there can be several successful parses a list of -- strings is returned.) -- This function is structurally recursive with respect to the -- following lexicographic measure: -- -- 1) The upper bound of the length of the input string. -- 2) The parser's proper left corner tree. mutual parse↓ : ∀ {Tok e R} n → Parser Tok e R → P Tok n (if e then n else pred n) R parse↓ n (return x) = return′ x parse↓ n fail = fail′ parse↓ n (_∣_ {true} p₁ p₂) = parse↓ n p₁ ∣′ parse↑ n p₂ parse↓ n (_∣_ {false} {true} p₁ p₂) = parse↑ n p₁ ∣′ parse↓ n p₂ parse↓ n (_∣_ {false} {false} p₁ p₂) = parse↓ n p₁ ∣′ parse↓ n p₂ parse↓ n (p₁ ?>>= p₂) = parse↓ n p₁ >>=′ λ x → parse↓ n (p₂ x) parse↓ zero (p₁ !>>= p₂) = fail′ parse↓ (suc n) (p₁ !>>= p₂) = parse↓ (suc n) p₁ >>=′ λ x → parse↑ n (♭ (p₂ x)) parse↓ n token = get′ >>=′ eat where eat : ∀ {Tok n} → BoundedVec Tok n → P Tok n (pred n) Tok eat [] = fail′ eat (c ∷ s) = put′ s >>′ return′ c parse↑ : ∀ {e Tok R} n → Parser Tok e R → P Tok n n R parse↑ {true} n p = parse↓ n p parse↑ {false} zero p = fail′ parse↑ {false} (suc n) p = parse↓ (suc n) p >>=′ λ r → modify′ ↑ >>′ return′ r -- Exported run function. parse : ∀ {Tok i R} → Parser Tok i R → List Tok → List (R × List Tok) parse p s = L.map (Prod.map id toList) (parse↓ _ p (fromList s)) -- A variant which only returns parses which leave no remaining input. parseComplete : ∀ {Tok i R} → Parser Tok i R → List Tok → List R parseComplete p s = L.map proj₁ (L.boolFilter (L.null ∘ proj₂) (parse p s))
35.55
95
0.5173
d15dff65fb964982477d94db1bc54530326e9b3f
290
agda
Agda
test/Fail/Issue1976-constraints2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1976-constraints2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1976-constraints2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-12-31, re issue #1976 -- Allow projection pattern disambiguation by parameters postulate A B : Set module M (_ : Set) where record R : Set₂ where field F : Set₁ open R public module ShouldFail where open M _ open M A test : M.R B F test = Set
13.809524
56
0.651724
7c44bf48fd8a932a3a0cb9d1bca78815351aea8a
126
agda
Agda
test/Succeed/Issue2320.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2320.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2320.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
record R₁ : Set₁ where field A : Set open R₁ ⦃ … ⦄ record R₂ : Set₁ where field ⦃ r₁ ⦄ : R₁ B : Set B = A
9
22
0.507937
43e5ac67ca4fb846a1faca7cfe0537e05196793d
128
agda
Agda
test/Fail/ShouldBeApplicationOf.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/ShouldBeApplicationOf.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/ShouldBeApplicationOf.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module ShouldBeApplicationOf where data One : Set where one : One data Two : Set where two : Two f : One -> Two f two = two
12.8
34
0.6875
43677e8ab235078ba00a19e0c73da0c203bb01a7
227
agda
Agda
base/agda/Base/Prelude.agda
FreeProving/free-compiler
6931b9ca652a185a92dd824373f092823aea4ea9
[ "BSD-3-Clause" ]
36
2020-02-06T11:03:34.000Z
2021-08-21T13:38:23.000Z
base/agda/Base/Prelude.agda
FreeProving/free-compiler
6931b9ca652a185a92dd824373f092823aea4ea9
[ "BSD-3-Clause" ]
120
2020-04-09T09:40:39.000Z
2020-12-08T07:46:01.000Z
base/agda/Base/Prelude.agda
FreeProving/free-compiler
6931b9ca652a185a92dd824373f092823aea4ea9
[ "BSD-3-Clause" ]
3
2020-04-08T11:23:46.000Z
2021-05-14T07:48:41.000Z
module Base.Prelude where open import Base.Prelude.Bool public open import Base.Prelude.Integer public open import Base.Prelude.List public open import Base.Prelude.Pair public open import Base.Prelude.Unit public
28.375
39
0.792952
7c406e489f98fd747a292c1c3eb9fed081c5c056
568
agda
Agda
test/Succeed/Issue1009.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1009.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1009.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2013-12-28 Andreas, issue reported by Christian Sattler {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS -v tc.cc:15 #-} -- Keep! Debug printing triggered the problem. record Σ (A : Set) (B : A → Set) : Set where field fst : A snd : B fst test : {A : Set} → Σ A (λ {_ → A}) test = _ -- This used to trigger an internal error -- (funnily only at -v tc.cc:15 verbosity) -- because adding the clause to an -- extended lambda failed. Reason: -- Extended lambda was registered as Axiom -- during first checking, not Defn as -- checkFunDef' now expects.
27.047619
74
0.660211
7c21f2d119a34e943cd17288ae55e73126fff28a
727
agda
Agda
metatheory/test/StringLiteral.agda
greggdourgarian/plutus
07a2fbef515b988ca3401d38e1464a36ca80b641
[ "Apache-2.0" ]
1
2019-02-22T12:34:17.000Z
2019-02-22T12:34:17.000Z
metatheory/test/StringLiteral.agda
greggdourgarian/plutus
07a2fbef515b988ca3401d38e1464a36ca80b641
[ "Apache-2.0" ]
1
2019-02-06T12:42:31.000Z
2019-02-06T12:42:31.000Z
metatheory/test/StringLiteral.agda
greggdourgarian/plutus
07a2fbef515b988ca3401d38e1464a36ca80b641
[ "Apache-2.0" ]
null
null
null
module test.StringLiteral where open import Type open import Declarative open import Builtin open import Builtin.Constant.Type open import Builtin.Constant.Term Ctx⋆ Kind * # _⊢⋆_ con size⋆ -- plutus/language-plutus-core/test/data/stringLiteral.plc postulate str1 : ByteString {-# FOREIGN GHC import qualified Data.ByteString.Lazy.Char8 as BS #-} {-# COMPILE GHC str1 = BS.pack "4321758fabce1aa4780193f" #-} open import Relation.Binary.PropositionalEquality open import Agda.Builtin.TrustMe lemma1 : length str1 ≡ 23 lemma1 = primTrustMe open import Data.Nat lemma1' : BoundedB 100 str1 lemma1' rewrite lemma1 = gen _ _ _ stringLit : ∀{Γ} → Γ ⊢ con bytestring (size⋆ 100) stringLit = con (bytestring 100 str1 lemma1')
25.964286
69
0.766162
7c1a66f17b14de6ad54a98ed96dfb6612885bbac
12,342
agda
Agda
Preservation.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
4
2020-07-17T00:15:00.000Z
2021-03-22T22:48:48.000Z
Preservation.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
null
null
null
Preservation.agda
danelahman/aeff-agda
71ebed9f90a3eb37ae6cd209457bae23a4d122d1
[ "MIT" ]
null
null
null
open import Data.List hiding ([_]) renaming (_∷_ to _∷ₗ_) open import Data.Maybe open import Data.Product open import AEff open import EffectAnnotations open import Renamings open import Substitutions open import Types open import Relation.Binary.PropositionalEquality hiding ([_]) open import Relation.Nullary module Preservation where -- BINDING CONTEXTS BCtx = List VType -- WELL-TYPED EVALUATION CONTEXTS data _⊢E[_]⦂_ (Γ : Ctx) : (Δ : BCtx) → CType → Set where [-] : {C : CType} → ------------- Γ ⊢E[ [] ]⦂ C let=_`in_ : {Δ : BCtx} {X Y : VType} {o : O} {i : I} → Γ ⊢E[ Δ ]⦂ X ! (o , i) → Γ ∷ X ⊢M⦂ Y ! (o , i) → ------------------------ Γ ⊢E[ Δ ]⦂ Y ! (o , i) ↑ : {Δ : BCtx} {X : VType} {o : O} {i : I} → (op : Σₛ) → op ∈ₒ o → Γ ⊢V⦂ ``(payload op) → Γ ⊢E[ Δ ]⦂ X ! (o , i) → ------------------------ Γ ⊢E[ Δ ]⦂ X ! (o , i) ↓ : {Δ : BCtx} {X : VType} {o : O} {i : I} (op : Σₛ) → Γ ⊢V⦂ ``(payload op) → Γ ⊢E[ Δ ]⦂ X ! (o , i) → --------------------------- Γ ⊢E[ Δ ]⦂ X ! op ↓ₑ (o , i) promise_∣_↦_`in_ : {Δ : BCtx} {X Y : VType} {o o' : O} {i i' : I} → (op : Σₛ) → lkpᵢ op i ≡ just (o' , i') → Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i') → Γ ∷ ⟨ X ⟩ ⊢E[ Δ ]⦂ Y ! (o , i) → ------------------------------------------ Γ ⊢E[ X ∷ₗ Δ ]⦂ Y ! (o , i) coerce : {Δ : BCtx} {X : VType} {o o' : O} {i i' : I} → o ⊑ₒ o' → i ⊑ᵢ i' → Γ ⊢E[ Δ ]⦂ X ! (o , i) → ------------------------ Γ ⊢E[ Δ ]⦂ X ! (o' , i') -- MERGING AN ORDINARY CONTEXT AND A BINDING CONTEXT infix 30 _⋈_ _⋈_ : Ctx → BCtx → Ctx Γ ⋈ [] = Γ Γ ⋈ (X ∷ₗ Δ) = (Γ ∷ ⟨ X ⟩) ⋈ Δ -- FINDING THE TYPE OF THE HOLE OF A WELL-TYPED EVALUATION CONTEXT hole-ty-e : {Γ : Ctx} {Δ : BCtx} {C : CType} → Γ ⊢E[ Δ ]⦂ C → CType hole-ty-e {_} {_} {C} [-] = C hole-ty-e (let= E `in M) = hole-ty-e E hole-ty-e (↑ op p V E) = hole-ty-e E hole-ty-e (↓ op V E) = hole-ty-e E hole-ty-e (promise op ∣ p ↦ M `in E) = hole-ty-e E hole-ty-e (coerce p q E) = hole-ty-e E -- FILLING A WELL-TYPED EVALUATION CONTEXT {- LEMMA 3.5 -} infix 30 _[_] _[_] : {Γ : Ctx} {Δ : BCtx} {C : CType} → (E : Γ ⊢E[ Δ ]⦂ C) → Γ ⋈ Δ ⊢M⦂ (hole-ty-e E) → Γ ⊢M⦂ C [-] [ M ] = M (let= E `in N) [ M ] = let= (E [ M ]) `in N ↑ op p V E [ M ] = ↑ op p V (E [ M ]) ↓ op V E [ M ] = ↓ op V (E [ M ]) (promise op ∣ p ↦ N `in E) [ M ] = promise op ∣ p ↦ N `in (E [ M ]) coerce p q E [ M ] = coerce p q (E [ M ]) -- STRENGTHENING OF GROUND VALUES WRT BOUND PROMISES strengthen-var : {Γ : Ctx} → (Δ : BCtx) → {A : BType} → `` A ∈ Γ ⋈ Δ → `` A ∈ Γ strengthen-var [] x = x strengthen-var (y ∷ₗ Δ) x with strengthen-var Δ x ... | Tl p = p strengthen-val : {Γ : Ctx} {Δ : BCtx} {A : BType} → Γ ⋈ Δ ⊢V⦂ `` A → Γ ⊢V⦂ `` A strengthen-val {_} {Δ} (` x) = ` strengthen-var Δ x strengthen-val (``_ c) = ``_ c strengthen-val-[] : {Γ : Ctx} {A : BType} → (V : Γ ⋈ [] ⊢V⦂ `` A) → -------------------- strengthen-val {Δ = []} V ≡ V strengthen-val-[] (` x) = refl strengthen-val-[] (``_ c) = refl -- SMALL-STEP OPERATIONAL SEMANTICS FOR WELL-TYPED COMPUTATIONS -- (ADDITIONALLY SERVES AS THE PRESERVATION THEOREM) {- THEOREM 3.6 -} infix 10 _↝_ data _↝_ {Γ : Ctx} : {C : CType} → Γ ⊢M⦂ C → Γ ⊢M⦂ C → Set where -- COMPUTATIONAL RULES apply : {X : VType} {C : CType} → (M : Γ ∷ X ⊢M⦂ C) → (V : Γ ⊢V⦂ X) → ---------------------- (ƛ M) · V ↝ M [ id-subst [ V ]s ]m let-return : {X Y : VType} {o : O} {i : I} → (V : Γ ⊢V⦂ X) → (N : Γ ∷ X ⊢M⦂ Y ! (o , i)) → ----------------------------- let= (return V) `in N ↝ N [ id-subst [ V ]s ]m let-↑ : {X Y : VType} {o : O} {i : I} {op : Σₛ} → (p : op ∈ₒ o) → (V : Γ ⊢V⦂ ``(payload op)) → (M : Γ ⊢M⦂ X ! (o , i)) → (N : Γ ∷ X ⊢M⦂ Y ! (o , i)) → ----------------------------- let= (↑ op p V M) `in N ↝ ↑ op p V (let= M `in N) let-promise : {X Y Z : VType} {o o' : O} {i i' : I} {op : Σₛ} → (p : lkpᵢ op i ≡ just (o' , i')) → (M₁ : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) → (M₂ : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → (N : Γ ∷ Y ⊢M⦂ Z ! (o , i)) → --------------------------------------------------------------------------- let= (promise op ∣ p ↦ M₁ `in M₂) `in N ↝ (promise op ∣ p ↦ M₁ `in (let= M₂ `in (M-rename (comp-ren exchange wk₁) N))) letrec-unfold : {X : VType} {C D : CType} (M : Γ ∷ (X ⇒ C) ∷ X ⊢M⦂ C) → (N : Γ ∷ (X ⇒ C) ⊢M⦂ D) → ---------------------------------------- (letrec M `in N) ↝ N [ id-subst [ ƛ (letrec M-rename wk₃ M `in M-rename exchange M) ]s ]m promise-↑ : {X Y : VType} {o o' : O} {i i' : I} {op op' : Σₛ} → (p : lkpᵢ op i ≡ just (o' , i')) → (q : op' ∈ₒ o) → (V : Γ ∷ ⟨ X ⟩ ⊢V⦂ ``(payload op')) → (M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → -------------------------------------------- (promise op ∣ p ↦ M `in (↑ op' q V N)) ↝ ↑ op' q (strengthen-val {Δ = X ∷ₗ []} V) (promise op ∣ p ↦ M `in N) ↓-return : {X : VType} {o : O} {i : I} {op : Σₛ} → (V : Γ ⊢V⦂ ``(payload op)) → (W : Γ ⊢V⦂ X) → ---------------------------------------------------------------- ↓ {o = o} {i = i} op V (return W) ↝ return {o = proj₁ (op ↓ₑ (o , i))} {i = proj₂ (op ↓ₑ (o , i))} W ↓-↑ : {X : VType} {o : O} {i : I} {op : Σₛ} {op' : Σₛ} → (p : op' ∈ₒ o) → (V : Γ ⊢V⦂ ``(payload op)) → (W : Γ ⊢V⦂ ``(payload op')) → (M : Γ ⊢M⦂ X ! (o , i)) → ------------------------------- ↓ op V (↑ op' p W M) ↝ ↑ op' (↓ₑ-⊑ₒ op' p) W (↓ op V M) ↓-promise-op : {X Y : VType} {o o' : O} {i i' : I} {op : Σₛ} → (p : lkpᵢ op i ≡ just (o' , i')) → (V : Γ ⊢V⦂ ``(payload op)) → (M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → --------------------------------------------------------------------------------------- ↓ op V (promise op ∣ p ↦ M `in N ) ↝ (let= (coerce (↓ₑ-⊑ₒ-o' {o} p) (↓ₑ-⊑ₒ-i' {o} p) (M [ id-subst [ V ]s ]m)) `in ↓ op (V-rename wk₁ V) ((M-rename (comp-ren exchange wk₁) N) [ id-subst [ ` Hd ]s ]m)) ↓-promise-op' : {X Y : VType} {o o' : O} {i i' : I} {op op' : Σₛ} → (p : ¬ op ≡ op') → (q : lkpᵢ op' i ≡ just (o' , i')) → (V : Γ ⊢V⦂ ``(payload op)) → (M : Γ ∷ ``(payload op') ⊢M⦂ ⟨ X ⟩ ! (o' , i')) → (N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → ------------------------------------------------------------------------------------------ ↓ op V (promise op' ∣ q ↦ M `in N ) ↝ promise_∣_↦_`in_ {o' = proj₁ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q)} {i' = proj₁ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q))} op' (proj₁ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q)))) (coerce (proj₁ (proj₂ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q))))) (proj₂ (proj₂ (proj₂ (proj₂ (lkpᵢ-↓ₑ-neq {o = o} {i = i} p q))))) M) (↓ op (V-rename wk₁ V) N) await-promise : {X : VType} {C : CType} → (V : Γ ⊢V⦂ X) → (M : Γ ∷ X ⊢M⦂ C) → -------------------- await ⟨ V ⟩ until M ↝ M [ id-subst [ V ]s ]m -- EVALUATION CONTEXT RULE context : {Δ : BCtx} {C : CType} → (E : Γ ⊢E[ Δ ]⦂ C) → {M N : Γ ⋈ Δ ⊢M⦂ (hole-ty-e E)} → M ↝ N → ------------------------------- E [ M ] ↝ E [ N ] -- COERCION RULES -- (THE RESULT OF WORKING WITH WELL-TYPED SYNTAX AND MAKING SUBSUMPTION INTO AN EXPLICIT COERCION) coerce-return : {X : VType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} → (V : Γ ⊢V⦂ X) → -------------------------------- coerce p q (return V) ↝ return V coerce-↑ : {X : VType} {o o' : O} {i i' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} {op : Σₛ} → (r : op ∈ₒ o) → (V : Γ ⊢V⦂ ``(payload op)) → (M : Γ ⊢M⦂ X ! (o , i)) → ------------------------------- coerce p q (↑ op r V M) ↝ ↑ op (p op r) V (coerce p q M) coerce-promise : {X Y : VType} {o o' o'' : O} {i i' i'' : I} {p : o ⊑ₒ o'} {q : i ⊑ᵢ i'} {op : Σₛ} → (r : lkpᵢ op i ≡ just (o'' , i'')) (M : Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o'' , i'')) → (N : Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i)) → ------------------------------------------------------------------ coerce p q (promise op ∣ r ↦ M `in N) ↝ promise_∣_↦_`in_ {o' = lkpᵢ-nextₒ q r} {i' = lkpᵢ-nextᵢ q r} op (lkpᵢ-next-eq q r) (coerce (lkpᵢ-next-⊑ₒ q r) (lkpᵢ-next-⊑ᵢ q r) M) (coerce p q N)
34.571429
110
0.259682
35ed10549a54a07e82ecbaa41495d67f7be829e9
1,315
agda
Agda
test/Succeed/Issue1264.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1264.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1264.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2014-08-30, reported by asr -- All of the following corecursive functions from Data.Stream -- should pass the termination checker. {-# OPTIONS --without-K #-} -- {-# OPTIONS -v term:20 #-} open import Common.Coinduction open import Common.Prelude renaming (Nat to ℕ) hiding (_∷_; map) infixr 5 _∷_ data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A map : ∀ {A B} → (A → B) → Stream A → Stream B map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) zipWith : ∀ {A B C} → (A → B → C) → Stream A → Stream B → Stream C zipWith _∙_ (x ∷ xs) (y ∷ ys) = (x ∙ y) ∷ ♯ zipWith _∙_ (♭ xs) (♭ ys) drop : ∀ {A} → ℕ → Stream A → Stream A drop zero xs = xs drop (suc n) (x ∷ xs) = drop n (♭ xs) repeat : ∀ {A} → A → Stream A repeat x = x ∷ ♯ repeat x iterate : ∀ {A} → (A → A) → A → Stream A iterate f x = x ∷ ♯ iterate f (f x) -- Interleaves the two streams. infixr 5 _⋎_ _⋎_ : ∀ {A} → Stream A → Stream A → Stream A (x ∷ xs) ⋎ ys = x ∷ ♯ (ys ⋎ ♭ xs) mutual -- Takes every other element from the stream, starting with the -- first one. evens : ∀ {A} → Stream A → Stream A evens (x ∷ xs) = x ∷ ♯ odds (♭ xs) -- Takes every other element from the stream, starting with the -- second one. odds : ∀ {A} → Stream A → Stream A odds (x ∷ xs) = evens (♭ xs)
24.811321
69
0.563498
3722377e712b3d0ecf7d803f3eddc37cdc0f0b4a
3,603
agda
Agda
test/LibSucceed/Issue846/OldDivMod.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/LibSucceed/Issue846/OldDivMod.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/LibSucceed/Issue846/OldDivMod.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Integer division ------------------------------------------------------------------------ module Issue846.OldDivMod where open import Data.Nat as Nat open import Data.Nat.Properties open import Data.Nat.Solver open +-*-Solver open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ) import Data.Fin.Properties as Fin open import Induction.Nat open import Relation.Nullary.Decidable open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Function ------------------------------------------------------------------------ -- Some boring lemmas private lem₁ : (m k : ℕ) → Nat.suc m ≡ suc (toℕ (Fin.inject+ k (fromℕ m)) + 0) lem₁ m k = cong suc $ begin m ≡⟨ sym $ Fin.toℕ-fromℕ m ⟩ toℕ (fromℕ m) ≡⟨ Fin.toℕ-inject+ k (fromℕ m) ⟩ toℕ (Fin.inject+ k (fromℕ m)) ≡⟨ solve 1 (λ x → x := x :+ con 0) refl _ ⟩ toℕ (Fin.inject+ k (fromℕ m)) + 0 ∎ lem₂ : ∀ n → _ lem₂ = solve 1 (λ n → con 1 :+ n := con 1 :+ (n :+ con 0)) refl lem₃ : ∀ n k q (r : Fin n) eq → suc n + k ≡ toℕ r + suc q * n lem₃ n k q r eq = begin suc n + k ≡⟨ solve 2 (λ n k → con 1 :+ n :+ k := n :+ (con 1 :+ k)) refl n k ⟩ n + suc k ≡⟨ cong (_+_ n) eq ⟩ n + (toℕ r + q * n) ≡⟨ solve 3 (λ n r q → n :+ (r :+ q :* n) := r :+ (con 1 :+ q) :* n) refl n (toℕ r) q ⟩ toℕ r + suc q * n ∎ ------------------------------------------------------------------------ -- Division infixl 7 _divMod_ _div_ _mod_ -- A specification of integer division. record DivMod (dividend divisor : ℕ) : Set where constructor result field quotient : ℕ remainder : Fin divisor property : dividend ≡ toℕ remainder + quotient * divisor -- Integer division with remainder. -- Note that Induction.Nat.<-rec is used to establish termination of -- division. The run-time complexity of this implementation of integer -- division should be linear in the size of the dividend, assuming -- that well-founded recursion and the equality type are optimised -- properly (see "Inductive Families Need Not Store Their Indices" -- (Brady, McBride, McKinna, TYPES 2003)). _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor _divMod_ m n {≢0} = <′-rec Pred dm m n {≢0} where Pred : ℕ → Set Pred dividend = (divisor : ℕ) {≢0 : False (divisor ≟ 0)} → DivMod dividend divisor 1+_ : ∀ {k n} → DivMod (suc k) n → DivMod (suc n + k) n 1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq) dm : (dividend : ℕ) → <′-Rec Pred dividend → Pred dividend dm m rec zero {≢0 = ()} dm zero rec (suc n) = result 0 zero refl dm (suc m) rec (suc n) with compare m n dm (suc m) rec (suc .(suc m + k)) | less .m k = result 0 r (lem₁ m k) where r = suc (Fin.inject+ k (fromℕ m)) dm (suc m) rec (suc .m) | equal .m = result 1 zero (lem₂ m) dm (suc .(suc n + k)) rec (suc n) | greater .n k = 1+ rec (suc k) le (suc n) where le = s≤′s (s≤′s (n≤′m+n n k)) -- Integer division. _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ _div_ m n {≢0} = DivMod.quotient $ _divMod_ m n {≢0} -- The remainder after integer division. _mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor _mod_ m n {≢0} = DivMod.remainder $ _divMod_ m n {≢0}
33.055046
79
0.522342
37ea5fc731b32ac0084d4312e445eb2f1f3bff6a
716
agda
Agda
archive/agda-3/src/Oscar/Class/Prefunctor.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
archive/agda-3/src/Oscar/Class/Prefunctor.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
1
2019-04-29T00:35:04.000Z
2019-05-11T23:33:04.000Z
archive/agda-3/src/Oscar/Class/Prefunctor.agda
m0davis/oscar
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
[ "RSA-MD" ]
null
null
null
open import Oscar.Prelude open import Oscar.Class.IsPrefunctor open import Oscar.Class.Smap open import Oscar.Class.Surjection open import Oscar.Class.Transitivity module Oscar.Class.Prefunctor where record Prefunctor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ : Ø ↑̂ (𝔬₁ ∙̂ 𝔯₁ ∙̂ ℓ₁ ∙̂ 𝔬₂ ∙̂ 𝔯₂ ∙̂ ℓ₂) where constructor ∁ field {𝔒₁} : Ø 𝔬₁ _∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁ _∼̇₁_ : ∀ {x y} → x ∼₁ y → x ∼₁ y → Ø ℓ₁ _↦₁_ : Transitivity.type _∼₁_ {𝔒₂} : Ø 𝔬₂ _∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂ _∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂ _↦₂_ : Transitivity.type _∼₂_ {μ} : Surjection.type 𝔒₁ 𝔒₂ prefunctor-smap : Smap.type _∼₁_ _∼₂_ μ μ ⦃ `IsPrefunctor ⦄ : IsPrefunctor _∼₁_ _∼̇₁_ _↦₁_ _∼₂_ _∼̇₂_ _↦₂_ prefunctor-smap
29.833333
84
0.614525
21a5efdab7a7723955d61511e65abff98e7feb5b
8,003
agda
Agda
Cubical/Functions/FunExtEquiv.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Functions/FunExtEquiv.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Functions/FunExtEquiv.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Functions.FunExtEquiv where open import Cubical.Foundations.Prelude open import Cubical.Foundations.CartesianKanOps open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Data.Vec.Base open import Cubical.Data.Vec.NAry open import Cubical.Data.Nat open import Cubical.Reflection.StrictEquiv private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level -- Function extensionality is an equivalence module _ {A : Type ℓ} {B : A → I → Type ℓ₁} {f : (x : A) → B x i0} {g : (x : A) → B x i1} where funExtEquiv : (∀ x → PathP (B x) (f x) (g x)) ≃ PathP (λ i → ∀ x → B x i) f g unquoteDef funExtEquiv = defStrictEquiv funExtEquiv funExt funExt⁻ funExtPath : (∀ x → PathP (B x) (f x) (g x)) ≡ PathP (λ i → ∀ x → B x i) f g funExtPath = ua funExtEquiv funExtIso : Iso (∀ x → PathP (B x) (f x) (g x)) (PathP (λ i → ∀ x → B x i) f g) funExtIso = iso funExt funExt⁻ (λ x → refl {x = x}) (λ x → refl {x = x}) -- Function extensionality for binary functions funExt₂ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂} {f : (x : A) → (y : B x) → C x y i0} {g : (x : A) → (y : B x) → C x y i1} → ((x : A) (y : B x) → PathP (C x y) (f x y) (g x y)) → PathP (λ i → ∀ x y → C x y i) f g funExt₂ p i x y = p x y i -- Function extensionality for binary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂} {f : (x : A) → (y : B x) → C x y i0} {g : (x : A) → (y : B x) → C x y i1} where private appl₂ : PathP (λ i → ∀ x y → C x y i) f g → ∀ x y → PathP (C x y) (f x y) (g x y) appl₂ eq x y i = eq i x y funExt₂Equiv : (∀ x y → PathP (C x y) (f x y) (g x y)) ≃ (PathP (λ i → ∀ x y → C x y i) f g) unquoteDef funExt₂Equiv = defStrictEquiv funExt₂Equiv funExt₂ appl₂ funExt₂Path : (∀ x y → PathP (C x y) (f x y) (g x y)) ≡ (PathP (λ i → ∀ x y → C x y i) f g) funExt₂Path = ua funExt₂Equiv -- Function extensionality for ternary functions funExt₃ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → I → Type ℓ₃} {f : (x : A) → (y : B x) → (z : C x y) → D x y z i0} {g : (x : A) → (y : B x) → (z : C x y) → D x y z i1} → ((x : A) (y : B x) (z : C x y) → PathP (D x y z) (f x y z) (g x y z)) → PathP (λ i → ∀ x y z → D x y z i) f g funExt₃ p i x y z = p x y z i -- Function extensionality for ternary functions is an equivalence module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂} {D : (x : A) → (y : B x) → C x y → I → Type ℓ₃} {f : (x : A) → (y : B x) → (z : C x y) → D x y z i0} {g : (x : A) → (y : B x) → (z : C x y) → D x y z i1} where private appl₃ : PathP (λ i → ∀ x y z → D x y z i) f g → ∀ x y z → PathP (D x y z) (f x y z) (g x y z) appl₃ eq x y z i = eq i x y z funExt₃Equiv : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≃ (PathP (λ i → ∀ x y z → D x y z i) f g) unquoteDef funExt₃Equiv = defStrictEquiv funExt₃Equiv funExt₃ appl₃ funExt₃Path : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≡ (PathP (λ i → ∀ x y z → D x y z i) f g) funExt₃Path = ua funExt₃Equiv -- n-ary non-dependent funext nAryFunExt : {X : Type ℓ} {Y : I → Type ℓ₁} (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) → PathP (λ i → nAryOp n X (Y i)) fX fY nAryFunExt zero fX fY p = p [] nAryFunExt (suc n) fX fY p i x = nAryFunExt n (fX x) (fY x) (λ xs → p (x ∷ xs)) i -- n-ary funext⁻ nAryFunExt⁻ : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → PathP (λ i → nAryOp n X (Y i)) fX fY → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) nAryFunExt⁻ zero fX fY p [] = p nAryFunExt⁻ (suc n) fX fY p (x ∷ xs) = nAryFunExt⁻ n (fX x) (fY x) (λ i → p i x) xs nAryFunExtEquiv : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) → ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) ≃ PathP (λ i → nAryOp n X (Y i)) fX fY nAryFunExtEquiv n {X} {Y} fX fY = isoToEquiv (iso (nAryFunExt n fX fY) (nAryFunExt⁻ n fX fY) (linv n fX fY) (rinv n fX fY)) where linv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) (p : PathP (λ i → nAryOp n X (Y i)) fX fY) → nAryFunExt n fX fY (nAryFunExt⁻ n fX fY p) ≡ p linv zero fX fY p = refl linv (suc n) fX fY p i j x = linv n (fX x) (fY x) (λ k → p k x) i j rinv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1)) (p : (xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) → nAryFunExt⁻ n fX fY (nAryFunExt n fX fY p) ≡ p rinv zero fX fY p i [] = p [] rinv (suc n) fX fY p i (x ∷ xs) = rinv n (fX x) (fY x) (λ ys i → p (x ∷ ys) i) i xs -- Funext when the domain also depends on the interval funExtDep : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) → PathP (λ i → (x : A i) → B i x) f g funExtDep {A = A} {B} {f} {g} h i x = comp (λ k → B i (coei→i A i x k)) (λ k → λ { (i = i0) → f (coei→i A i0 x k) ; (i = i1) → g (coei→i A i1 x k) }) (h (λ j → coei→j A i j x) i) funExtDep⁻ : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → PathP (λ i → (x : A i) → B i x) f g → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) funExtDep⁻ q p i = q i (p i) funExtDepEquiv : {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ₁} {f : (x : A i0) → B i0 x} {g : (x : A i1) → B i1 x} → ({x₀ : A i0} {x₁ : A i1} (p : PathP A x₀ x₁) → PathP (λ i → B i (p i)) (f x₀) (g x₁)) ≃ PathP (λ i → (x : A i) → B i x) f g funExtDepEquiv {A = A} {B} {f} {g} = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun = funExtDep isom .inv = funExtDep⁻ isom .rightInv q m i x = comp (λ k → B i (coei→i A i x (k ∨ m))) (λ k → λ { (i = i0) → f (coei→i A i0 x (k ∨ m)) ; (i = i1) → g (coei→i A i1 x (k ∨ m)) ; (m = i1) → q i x }) (q i (coei→i A i x m)) isom .leftInv h m p i = comp (λ k → B i (lemi→i m k)) (λ k → λ { (i = i0) → f (lemi→i m k) ; (i = i1) → g (lemi→i m k) ; (m = i1) → h p i }) (h (λ j → lemi→j j m) i) where lemi→j : ∀ j → coei→j A i j (p i) ≡ p j lemi→j j = coei→j (λ k → coei→j A i k (p i) ≡ p k) i j (coei→i A i (p i)) lemi→i : PathP (λ m → lemi→j i m ≡ p i) (coei→i A i (p i)) refl lemi→i = sym (coei→i (λ k → coei→j A i k (p i) ≡ p k) i (coei→i A i (p i))) ◁ λ m k → lemi→j i (m ∨ k) heteroHomotopy≃Homotopy : {A : I → Type ℓ} {B : (i : I) → Type ℓ₁} {f : A i0 → B i0} {g : A i1 → B i1} → ({x₀ : A i0} {x₁ : A i1} → PathP A x₀ x₁ → PathP B (f x₀) (g x₁)) ≃ ((x₀ : A i0) → PathP B (f x₀) (g (transport (λ i → A i) x₀))) heteroHomotopy≃Homotopy {A = A} {B} {f} {g} = isoToEquiv isom where open Iso isom : Iso _ _ isom .fun h x₀ = h (isContrSinglP A x₀ .fst .snd) isom .inv k {x₀} {x₁} p = subst (λ fib → PathP B (f x₀) (g (fib .fst))) (isContrSinglP A x₀ .snd (x₁ , p)) (k x₀) isom .rightInv k = funExt λ x₀ → cong (λ α → subst (λ fib → PathP B (f x₀) (g (fib .fst))) α (k x₀)) (isProp→isSet isPropSinglP (isContrSinglP A x₀ .fst) _ (isContrSinglP A x₀ .snd (isContrSinglP A x₀ .fst)) refl) ∙ transportRefl (k x₀) isom .leftInv h j {x₀} {x₁} p = transp (λ i → PathP B (f x₀) (g (isContrSinglP A x₀ .snd (x₁ , p) (i ∨ j) .fst))) j (h (isContrSinglP A x₀ .snd (x₁ , p) j .snd))
41.252577
106
0.496189
fde0b93c08bd4c978581745191f18acfc78435b1
520
agda
Agda
agda/Confluence.agda
anqurvanillapy/fpl
9576d5b76e6a868992dbe52930712ac67697bed2
[ "MIT" ]
1
2019-08-24T22:47:47.000Z
2019-08-24T22:47:47.000Z
agda/Confluence.agda
anqurvanillapy/fpl
9576d5b76e6a868992dbe52930712ac67697bed2
[ "MIT" ]
null
null
null
agda/Confluence.agda
anqurvanillapy/fpl
9576d5b76e6a868992dbe52930712ac67697bed2
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Confluence where open import Relation.Binary.PropositionalEquality using (_≡_; refl) cong : ∀ {A B : Set} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl data ℕ : Set where Z : ℕ S : ℕ → ℕ add : ℕ → ℕ → ℕ add n Z = n add n (S m) = S (add n m) _ : ∀ {a : ℕ} → add a Z ≡ a _ = refl thm : ∀ {a : ℕ} → add Z a ≡ a thm {a = Z} = refl thm {a = (S m)} = cong S thm -- Confluence checking is not supported; -- Check out Jesper Cockx's Phd thesis for overlapping patterns.
19.259259
64
0.567308
7cca65047465e84f79ed2c893080230b44b4c345
1,793
agda
Agda
tree.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
tree.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
tree.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module tree where open import bool open import eq open import level open import list open import list-to-string open import nat open import nat-thms open import string ---------------------------------------------------------------------- -- datatype ---------------------------------------------------------------------- -- nonempty trees data 𝕋 {ℓ} (A : Set ℓ) : Set ℓ where node : A → 𝕃 (𝕋 A) → 𝕋 A ---------------------------------------------------------------------- -- tree operations ---------------------------------------------------------------------- leaf : ∀ {ℓ}{A : Set ℓ} → A → 𝕋 A leaf a = node a [] 𝕋-to-string : ∀ {ℓ}{A : Set ℓ} → (f : A → string) → (t : 𝕋 A) → string 𝕋s-to-string : ∀ {ℓ}{A : Set ℓ} → (f : A → string) → (ts : 𝕃 (𝕋 A)) → string 𝕋-to-string f (node a []) = f a 𝕋-to-string f (node a ts) = "(" ^ (f a) ^ (𝕋s-to-string f ts) ^ ")" 𝕋s-to-string f [] = "" 𝕋s-to-string f (t :: ts) = " " ^ (𝕋-to-string f t) ^ (𝕋s-to-string f ts) perfect-binary-tree : ∀ {ℓ}{A : Set ℓ} → ℕ → A → 𝕋 A perfect-binary-tree 0 a = (node a []) perfect-binary-tree (suc n) a = let t = perfect-binary-tree n a in (node a (t :: t :: [])) size𝕋 : ∀ {ℓ}{A : Set ℓ} → 𝕋 A → ℕ size𝕋s : ∀ {ℓ}{A : Set ℓ} → 𝕃 (𝕋 A) → ℕ size𝕋 (node a ts) = suc (size𝕋s ts) size𝕋s [] = 0 size𝕋s (t :: ts) = size𝕋 t + size𝕋s ts size-perfect : ∀ {ℓ}{A : Set ℓ}(n : ℕ)(a : A) → (size𝕋 (perfect-binary-tree n a)) ≡ pred (2 pow (suc n)) size-perfect 0 a = refl size-perfect (suc n) a with (size𝕋 (perfect-binary-tree n a)) | size-perfect n a ... | s | ps rewrite ps with 2 pow n | nonzero-pow 2 n refl ... | x | px rewrite +0 x with x + x | (iszerosum2 x x px) ... | x2 | q rewrite +0 x2 | +0 (pred x2) | sym (+suc (pred x2) (pred x2)) | sucpred q | pred+ x2 x2 q = refl
35.156863
109
0.467373
fde2d227f0f6b16d9452f1d3df2dfdc3fc257148
7,862
agda
Agda
papers/unraveling-recursion/code/src/Type/Lemmas.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
1,299
2018-10-02T13:41:39.000Z
2022-03-28T01:10:02.000Z
papers/unraveling-recursion/code/src/Type/Lemmas.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
2,493
2018-09-28T19:28:17.000Z
2022-03-31T15:31:31.000Z
papers/unraveling-recursion/code/src/Type/Lemmas.agda
imikushin/plutus
2c5bda20fb94b0f3737ba1a236ef5d7a7fd9f631
[ "Apache-2.0" ]
399
2018-10-05T09:36:10.000Z
2022-03-31T11:18:25.000Z
module Type.Lemmas where open import Context open import Type.Core open import Function open import Data.Unit.Base open import Relation.Binary.PropositionalEquality foldlᶜ-▻-ε : ∀ {α} {A : Set α} -> (Θ : Con A) -> foldlᶜ _▻_ ε Θ ≡ Θ foldlᶜ-▻-ε ε = refl foldlᶜ-▻-ε (Γ ▻ σ) = cong (_▻ σ) (foldlᶜ-▻-ε Γ) -- Same as `mapᶜ f (Γ ▻▻ Δ) ≡ mapᶜ f Γ ▻▻ mapᶜ f Δ`, but we fully inline the definitions, -- because the REWRITE pragma requires that. mapᶜ-▻▻ : ∀ {α β} {A : Set α} {B : Set β} {f : A -> B} {Γ : Con A} -> ∀ Δ -> foldlᶜ (λ Ξ σ -> Ξ ▻ f σ) ε (foldlᶜ _▻_ Γ Δ) ≡ foldlᶜ _▻_ (foldlᶜ (λ Ξ σ -> Ξ ▻ f σ) ε Γ) (foldlᶜ (λ Ξ σ -> Ξ ▻ f σ) ε Δ) mapᶜ-▻▻ ε = refl mapᶜ-▻▻ (Δ ▻ τ) = cong (_▻ _) (mapᶜ-▻▻ Δ) keep-id : ∀ {α} {A : Set α} {Γ : Con A} {σ τ} -> (v : σ ∈ Γ ▻ τ) -> keep id v ≡ v keep-id vz = refl keep-id (vs v) = refl keep-keep : ∀ {α} {A : Set α} {Γ Δ Ξ : Con A} {σ τ} -> (κ : Δ ⊆ Ξ) -> (ι : Γ ⊆ Δ) -> (v : σ ∈ Γ ▻ τ) -> keep κ (keep ι v) ≡ keep (κ ∘ ι) v keep-keep κ ι vz = refl keep-keep κ ι (vs v) = refl dupl-keep-vs : ∀ {α} {A : Set α} {Γ Δ : Con A} {σ τ} -> (ι : Γ ⊆ Δ) -> (v : σ ∈ Γ ▻ τ) -> dupl (keep (vs_ ∘ ι) v) ≡ keep ι v dupl-keep-vs ι vz = refl dupl-keep-vs ι (vs v) = refl inject-foldr-poly : ∀ {α β γ} {A : Set α} {B : Set β} {yᶠ yᵍ} -> (C : B -> Set γ) -> (h : ∀ {yʰ} -> C yʰ -> C yʰ -> C yʰ) -> (g : C yᶠ -> C yᵍ) -> (∀ {y z} -> h (g y) (g z) ≡ g (h y z)) -> (f : A -> C yᶠ) -> (Γ : Con A) -> (z : C yᶠ) -> g (foldrᶜ (h ∘ f) z Γ) ≡ foldrᶜ (h ∘ g ∘ f) (g z) Γ inject-foldr-poly C h g dist f ε y = refl inject-foldr-poly C h g dist f (Γ ▻ x) y rewrite dist {f x} {y} = inject-foldr-poly C h g dist f Γ (h (f x) y) inject-foldr-mono : ∀ {α β} {A : Set α} {B : Set β} -> (h : B -> B -> B) -> (g : B -> B) -> (∀ {y z} -> h (g y) (g z) ≡ g (h y z)) -> (f : A -> B) -> (Γ : Con A) -> (y : B) -> g (foldrᶜ (h ∘ f) y Γ) ≡ foldrᶜ (h ∘ g ∘ f) (g y) Γ inject-foldr-mono h g dist f Γ y = inject-foldr-poly {B = ⊤} _ h g dist f Γ y keep-eq : ∀ {α} {A : Set α} {Θ Ξ : Con A} {σ} (ι κ : Θ ⊆ Ξ) -> (∀ {τ} -> (v : τ ∈ Θ) -> renᵛ ι v ≡ renᵛ κ v) -> (∀ {τ} -> (v : τ ∈ Θ ▻ σ) -> renᵛ (keep ι) v ≡ renᵛ (keep κ) v) keep-eq ι κ q vz = refl keep-eq ι κ q (vs v) = cong vs_ (q v) renᵗ-ext : ∀ {Θ Ξ σ} (ι κ : Θ ⊆ Ξ) (α : Θ ⊢ᵗ σ) -> (∀ {τ} -> (v : τ ∈ Θ) -> renᵛ ι v ≡ renᵛ κ v) -> renᵗ ι α ≡ renᵗ κ α renᵗ-ext ι κ (Var v) q = cong Var (q v) renᵗ-ext ι κ (Lam β) q = cong Lam_ (renᵗ-ext (keep ι) (keep κ) β (keep-eq ι κ q)) renᵗ-ext ι κ (φ ∙ α) q = cong₂ _∙_ (renᵗ-ext ι κ φ q) (renᵗ-ext ι κ α q) renᵗ-ext ι κ (α ⇒ β) q = cong₂ _⇒_ (renᵗ-ext ι κ α q) (renᵗ-ext ι κ β q) renᵗ-ext ι κ (π σ β) q = cong (π σ) (renᵗ-ext (keep ι) (keep κ) β (keep-eq ι κ q)) renᵗ-ext ι κ (μ ψ α) q = cong₂ μ (renᵗ-ext ι κ ψ q) (renᵗ-ext ι κ α q) renᵗ-keep-keep : ∀ {Θ Ξ Ω σ τ} (κ : Ξ ⊆ Ω) (ι : Θ ⊆ Ξ) (β : Θ ▻ σ ⊢ᵗ τ) -> renᵗ (keep κ ∘ keep ι) β ≡ renᵗ (keep (κ ∘ ι)) β renᵗ-keep-keep κ ι β = renᵗ-ext (keep κ ∘ keep ι) (keep (κ ∘ ι)) β λ { vz -> refl ; (vs v) -> refl } renᵗ-∘ : ∀ {Θ Ξ Ω σ} (κ : Ξ ⊆ Ω) (ι : Θ ⊆ Ξ) (α : Θ ⊢ᵗ σ) -> renᵗ κ (renᵗ ι α) ≡ renᵗ (κ ∘ ι) α renᵗ-∘ κ ι (Var v) = refl renᵗ-∘ κ ι (Lam β) = cong Lam_ (trans (renᵗ-∘ (keep κ) (keep ι) β) (renᵗ-keep-keep κ ι β)) renᵗ-∘ κ ι (f ∙ α) = cong₂ _∙_ (renᵗ-∘ κ ι f) (renᵗ-∘ κ ι α) renᵗ-∘ κ ι (α ⇒ β) = cong₂ _⇒_ (renᵗ-∘ κ ι α) (renᵗ-∘ κ ι β) renᵗ-∘ κ ι (π σ β) = cong (π σ) (trans (renᵗ-∘ (keep κ) (keep ι) β) (renᵗ-keep-keep κ ι β)) renᵗ-∘ κ ι (μ ψ α) = cong₂ μ (renᵗ-∘ κ ι ψ) (renᵗ-∘ κ ι α) renᵗ-keep-id : ∀ {Θ σ τ} (β : Θ ▻ σ ⊢ᵗ τ) -> renᵗ (keep id) β ≡ renᵗ id β renᵗ-keep-id β = renᵗ-ext (keep id) id β λ { vz -> refl ; (vs v) -> refl } renᵗ-id : ∀ {Θ σ} (α : Θ ⊢ᵗ σ) -> renᵗ id α ≡ α renᵗ-id (Var v) = refl renᵗ-id (Lam β) = cong Lam_ (trans (renᵗ-keep-id β) (renᵗ-id β)) renᵗ-id (φ ∙ α) = cong₂ _∙_ (renᵗ-id φ) (renᵗ-id α) renᵗ-id (α ⇒ β) = cong₂ _⇒_ (renᵗ-id α) (renᵗ-id β) renᵗ-id (π σ β) = cong (π σ) (trans (renᵗ-keep-id β) (renᵗ-id β)) renᵗ-id (μ ψ α) = cong₂ μ (renᵗ-id ψ) (renᵗ-id α) module EnvironmentLemmas {α β} {A : Set α} {_◆_ : Con A -> A -> Set β} (environment : Environment _◆_) where open Environment environment keepᵉ-eq : ∀ {Θ Ξ : Con A} {σ} (ρ χ : Ξ ⊢ᵉ Θ) -> (∀ {τ} -> (v : τ ∈ Θ) -> lookupᵉ v ρ ≡ lookupᵉ v χ ) -> (∀ {τ} -> (v : τ ∈ Θ ▻ σ) -> lookupᵉ v (keepᵉ ρ) ≡ lookupᵉ v (keepᵉ χ)) keepᵉ-eq ρ χ q vz = refl keepᵉ-eq ρ χ q (vs v) = cong (renᵈ vs_) (q v) module _ where open TypeEnv open EnvironmentLemmas environmentᵗ subᵗ-ext : ∀ {Θ Ξ σ} (ρ χ : Ξ ⊢ᵗᵉ Θ) (α : Θ ⊢ᵗ σ) -> (∀ {τ} -> (v : τ ∈ Θ) -> lookupᵉ v ρ ≡ lookupᵉ v χ) -> subᵗ ρ α ≡ subᵗ χ α subᵗ-ext ρ χ (Var v) q = q v subᵗ-ext ρ χ (Lam β) q = cong Lam_ (subᵗ-ext (keepᵉ ρ) (keepᵉ χ) β (keepᵉ-eq ρ χ q)) subᵗ-ext ρ χ (φ ∙ α) q = cong₂ _∙_ (subᵗ-ext ρ χ φ q) (subᵗ-ext ρ χ α q) subᵗ-ext ρ χ (α ⇒ β) q = cong₂ _⇒_ (subᵗ-ext ρ χ α q) (subᵗ-ext ρ χ β q) subᵗ-ext ρ χ (π σ β) q = cong (π σ) (subᵗ-ext (keepᵉ ρ) (keepᵉ χ) β (keepᵉ-eq ρ χ q)) subᵗ-ext ρ χ (μ ψ α) q = cong₂ μ (subᵗ-ext ρ χ ψ q) (subᵗ-ext ρ χ α q) subᵗ-keepᵉ-keep : ∀ {Θ Ξ Ω σ τ} (ρ : Ω ⊢ᵗᵉ Ξ) (ι : Θ ⊆ Ξ) (β : Θ ▻ σ ⊢ᵗ τ) -> subᵗ (keepᵉ ρ ∘ᵉ keep ι) β ≡ subᵗ (keepᵉ (ρ ∘ᵉ ι)) β subᵗ-keepᵉ-keep ρ ι β = subᵗ-ext (keepᵉ ρ ∘ᵉ keep ι) (keepᵉ (ρ ∘ᵉ ι)) β λ { vz -> refl ; (vs v) -> refl } subᵗ-renᵗ : ∀ {Θ Ξ Ω σ} (ρ : Ω ⊢ᵗᵉ Ξ) (ι : Θ ⊆ Ξ) (α : Θ ⊢ᵗ σ) -> subᵗ ρ (renᵗ ι α) ≡ subᵗ (ρ ∘ᵉ ι) α subᵗ-renᵗ ρ ι (Var v) = refl subᵗ-renᵗ ρ ι (Lam β) = cong Lam_ (trans (subᵗ-renᵗ (keepᵉ ρ) (keep ι) β) (subᵗ-keepᵉ-keep ρ ι β)) subᵗ-renᵗ ρ ι (φ ∙ α) = cong₂ _∙_ (subᵗ-renᵗ ρ ι φ) (subᵗ-renᵗ ρ ι α) subᵗ-renᵗ ρ ι (α ⇒ β) = cong₂ _⇒_ (subᵗ-renᵗ ρ ι α) (subᵗ-renᵗ ρ ι β) subᵗ-renᵗ ρ ι (π σ β) = cong (π σ) (trans (subᵗ-renᵗ (keepᵉ ρ) (keep ι) β) (subᵗ-keepᵉ-keep ρ ι β)) subᵗ-renᵗ ρ ι (μ ψ α) = cong₂ μ (subᵗ-renᵗ ρ ι ψ) (subᵗ-renᵗ ρ ι α) subᵗ-keepᵉ-idᵉ : ∀ {Θ σ τ} (β : Θ ▻ σ ⊢ᵗ τ) -> subᵗ (keepᵉ idᵉ) β ≡ subᵗ idᵉ β subᵗ-keepᵉ-idᵉ β = subᵗ-ext (keepᵉ idᵉ) idᵉ β λ { vz -> refl ; (vs v) -> refl } subᵗ-idᵉ : ∀ {Θ σ} (α : Θ ⊢ᵗ σ) -> subᵗ idᵉ α ≡ α subᵗ-idᵉ (Var v) = refl subᵗ-idᵉ (Lam β) = cong Lam_ (trans (subᵗ-keepᵉ-idᵉ β) (subᵗ-idᵉ β)) subᵗ-idᵉ (φ ∙ α) = cong₂ _∙_ (subᵗ-idᵉ φ) (subᵗ-idᵉ α) subᵗ-idᵉ (α ⇒ β) = cong₂ _⇒_ (subᵗ-idᵉ α) (subᵗ-idᵉ β) subᵗ-idᵉ (π σ β) = cong (π σ) (trans (subᵗ-keepᵉ-idᵉ β) (subᵗ-idᵉ β)) subᵗ-idᵉ (μ ψ α) = cong₂ μ (subᵗ-idᵉ ψ) (subᵗ-idᵉ α) subᵗ-keepᵉ-Var : ∀ {Θ Ξ σ τ} (ι : Θ ⊆ Ξ) (β : Θ ▻ σ ⊢ᵗ τ) -> subᵗ (keepᵉ (PackEnv (Var ∘ ι))) β ≡ subᵗ (PackEnv (Var ∘ keep ι)) β subᵗ-keepᵉ-Var ι β = subᵗ-ext (keepᵉ (PackEnv (Var ∘ ι))) (PackEnv (Var ∘ keep ι)) β λ { vz -> refl ; (vs v) -> refl } subᵗ-Var : ∀ {Θ Ξ σ} (ι : Θ ⊆ Ξ) (α : Θ ⊢ᵗ σ) -> subᵗ (PackEnv (Var ∘ ι)) α ≡ renᵗ ι α subᵗ-Var ι (Var v) = refl subᵗ-Var ι (Lam β) = cong Lam_ (trans (subᵗ-keepᵉ-Var ι β) (subᵗ-Var (keep ι) β)) subᵗ-Var ι (φ ∙ α) = cong₂ _∙_ (subᵗ-Var ι φ) (subᵗ-Var ι α) subᵗ-Var ι (α ⇒ β) = cong₂ _⇒_ (subᵗ-Var ι α) (subᵗ-Var ι β) subᵗ-Var ι (π σ β) = cong (π σ) (trans (subᵗ-keepᵉ-Var ι β) (subᵗ-Var (keep ι) β)) subᵗ-Var ι (μ ψ α) = cong₂ μ (subᵗ-Var ι ψ) (subᵗ-Var ι α) inject-foldr-⇒-renᵗ : ∀ {Θ Ξ Ω} {f : Star Θ -> Star Ξ} -> ∀ Δ -> (ι : Ξ ⊆ Ω) -> (β : Star Ξ) -> renᵗ ι (conToTypeBy f Δ β) ≡ conToTypeBy (renᵗ ι ∘ f) Δ (renᵗ ι β) inject-foldr-⇒-renᵗ Δ ι β = inject-foldr-poly Star _⇒_ (renᵗ ι) refl _ Δ β inject-foldr-⇒-subᵗ : ∀ {Θ Ξ Ω} {f : Star Θ -> Star Ξ} -> ∀ Δ -> (ρ : Ω TypeEnv.⊢ᵉ Ξ) -> (β : Star Ξ) -> subᵗ ρ (conToTypeBy f Δ β) ≡ conToTypeBy (subᵗ ρ ∘ f) Δ (subᵗ ρ β) inject-foldr-⇒-subᵗ Δ ρ β = inject-foldr-poly Star _⇒_ (subᵗ ρ) refl _ Δ β
36.910798
101
0.500254
36609349a3661c103f3845a2a6e4b0626c35b386
5,946
agda
Agda
theorems/homotopy/EilenbergMacLane.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/EilenbergMacLane.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/homotopy/EilenbergMacLane.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.HSpace renaming (HSpaceStructure to HSS) open import homotopy.Freudenthal open import homotopy.IterSuspensionStable open import homotopy.Pi2HSusp open import homotopy.EM1HSpace module homotopy.EilenbergMacLane where -- EM(G,n) when G is π₁(A,a₀) module EMImplicit {i} (A : Type i) (cA : is-connected 0 A) (gA : has-level 1 A) (A-H : HSS A) where private a₀ = HSS.e A-H X = ⊙[ A , a₀ ] ⊙EM : (n : ℕ) → Ptd i ⊙EM O = ⊙Ω X ⊙EM (S n) = ⊙Trunc ⟨ S n ⟩ (⊙Susp^ n X) module _ (n : ℕ) where EM = fst (⊙EM n) embase = snd (⊙EM n) EM-level : (n : ℕ) → has-level ⟨ n ⟩ (fst (⊙EM n)) EM-level O = gA a₀ a₀ EM-level (S n) = Trunc-level EM-conn : (n : ℕ) → is-connected ⟨ n ⟩ (EM (S n)) EM-conn n = Trunc-preserves-conn ⟨ S n ⟩ (transport (λ t → is-connected t (fst (⊙Susp^ n X))) (+2+0 ⟨ n ⟩₋₂) (⊙Susp^-conn n cA)) {- π (S k) (EM (S n)) (embase (S n)) == π k (EM n) (embase n) where k > 0 and n = S (S n') -} module Stable (k n : ℕ) (indexing : S k ≤ S (S n)) where private SSn : ℕ SSn = S (S n) lte : ⟨ S k ⟩ ≤T ⟨ SSn ⟩ lte = ⟨⟩-monotone-≤ $ indexing Skle : S k ≤ (S n) *2 Skle = ≤-trans indexing (lemma n) where lemma : (n' : ℕ) → S (S n') ≤ (S n') *2 lemma O = inl idp lemma (S n') = ≤-trans (≤-ap-S (lemma n')) (inr ltS) private module SS = Susp^StableSucc X cA k (S n) Skle abstract stable : πS (S k) (⊙EM (S SSn)) == πS k (⊙EM SSn) stable = πS (S k) (⊙EM (S SSn)) =⟨ πS-below-trunc _ _ _ (≤T-ap-S lte) ⟩ πS (S k) (⊙Susp^ SSn X) =⟨ SS.stable ⟩ πS k (⊙Susp^ (S n) X) =⟨ ! (πS-below-trunc _ _ _ lte) ⟩ πS k (⊙EM SSn) ∎ module BelowDiagonal where π₁ : (n : ℕ) → πS 0 (⊙EM (S (S n))) == Lift-Unit-group π₁ n = contr-is-0ᴳ (πS 0 (⊙EM (S (S n)))) (connected-at-level-is-contr (raise-level-≤T (≤T-ap-S (≤T-ap-S (-2≤T ⟨ n ⟩₋₂))) (Trunc-level {n = 0})) (Trunc-preserves-conn 0 (path-conn (EM-conn (S n))))) -- some clutter here arises from the definition of <; -- any simple way to avoid this? πS-below : (k n : ℕ) → (S k < n) → πS k (⊙EM n) == Lift-Unit-group πS-below 0 .2 ltS = π₁ 0 πS-below 0 .3 (ltSR ltS) = π₁ 1 πS-below 0 (S (S n)) (ltSR (ltSR _)) = π₁ n πS-below (S k) ._ ltS = Stable.stable k k (inr ltS) ∙ πS-below k _ ltS πS-below (S k) ._ (ltSR ltS) = Stable.stable k (S k) (inr (ltSR ltS)) ∙ πS-below k _ (ltSR ltS) πS-below (S k) ._ (ltSR (ltSR ltS)) = Stable.stable k (S (S k)) (inr (ltSR (ltSR ltS))) ∙ πS-below k _ (ltSR (ltSR ltS)) πS-below (S k) (S (S (S n))) (ltSR (ltSR (ltSR lt))) = Stable.stable k n (inr (<-cancel-S (ltSR (ltSR (ltSR lt))))) ∙ πS-below k _ (<-cancel-S (ltSR (ltSR (ltSR lt)))) module OnDiagonal where π₁ : πS 0 (⊙EM 1) == πS 0 X π₁ = πS-below-trunc 0 1 X ≤T-refl private module Π₂ = Pi2HSusp A gA cA A-H π₂ : πS 1 (⊙EM 2) == πS 0 X π₂ = πS-below-trunc 1 2 (⊙Susp X) ≤T-refl ∙ Π₂.π₂-Suspension πS-diag : (n : ℕ) → πS n (⊙EM (S n)) == πS 0 X πS-diag 0 = π₁ πS-diag 1 = π₂ πS-diag (S (S n)) = Stable.stable (S n) n ≤-refl ∙ πS-diag (S n) module AboveDiagonal where πS-above : (k n : ℕ) → (n < S k) → πS k (⊙EM n) == Lift-Unit-group πS-above k n lt = contr-is-0ᴳ (πS k (⊙EM n)) (inhab-prop-is-contr [ idp^ (S k) ] (Trunc-preserves-level 0 (Ω^-level-in -1 (S k) _ (raise-level-≤T (lemma lt) (EM-level n))))) where lemma : {k n : ℕ} → n < k → ⟨ n ⟩ ≤T (⟨ k ⟩₋₂ +2+ -1) lemma ltS = inl (! (+2+-comm _ -1)) lemma (ltSR lt) = ≤T-trans (lemma lt) (inr ltS) module Spectrum where private module Π₂ = Pi2HSusp A gA cA A-H spectrum0 : ⊙Ω (⊙EM 1) == ⊙EM 0 spectrum0 = ⊙Ω (⊙EM 1) =⟨ ⊙ua (⊙≃-in (Trunc=-equiv _ _) idp) ⟩ ⊙Trunc 0 (⊙Ω X) =⟨ ⊙ua (⊙≃-in (unTrunc-equiv _ (gA a₀ a₀)) idp) ⟩ ⊙Ω X ∎ spectrum1 : ⊙Ω (⊙EM 2) == ⊙EM 1 spectrum1 = ⊙Ω (⊙EM 2) =⟨ ⊙ua (⊙≃-in (Trunc=-equiv _ _) idp) ⟩ ⊙Trunc 1 (⊙Ω (⊙Susp X)) =⟨ Π₂.⊙main-lemma ⟩ X =⟨ ! (⊙ua (⊙≃-in (unTrunc-equiv _ gA) idp)) ⟩ ⊙EM 1 ∎ private sconn : (n : ℕ) → is-connected ⟨ S n ⟩ (fst (⊙Susp^ (S n) X)) sconn n = transport (λ t → is-connected t (fst (⊙Susp^ (S n) X))) (+2+0 ⟨ n ⟩₋₁) (⊙Susp^-conn (S n) cA) kle : (n : ℕ) → ⟨ S (S n) ⟩ ≤T ⟨ n ⟩ +2+ ⟨ n ⟩ kle O = inl idp kle (S n) = ≤T-trans (≤T-ap-S (kle n)) (≤T-trans (inl (! (+2+-βr ⟨ n ⟩ ⟨ n ⟩))) (inr ltS)) module FS (n : ℕ) = FreudenthalEquiv ⟨ n ⟩₋₁ ⟨ S (S n) ⟩ (kle n) (fst (⊙Susp^ (S n) X)) (snd (⊙Susp^ (S n) X)) (sconn n) spectrumSS : (n : ℕ) → ⊙Ω (⊙EM (S (S (S n)))) == ⊙EM (S (S n)) spectrumSS n = ⊙Ω (⊙EM (S (S (S n)))) =⟨ ⊙ua (⊙≃-in (Trunc=-equiv _ _) idp) ⟩ ⊙Trunc ⟨ S (S n) ⟩ (⊙Ω (⊙Susp^ (S (S n)) X)) =⟨ ! (FS.⊙path n) ⟩ ⊙EM (S (S n)) ∎ abstract spectrum : (n : ℕ) → ⊙Ω (⊙EM (S n)) == ⊙EM n spectrum 0 = spectrum0 spectrum 1 = spectrum1 spectrum (S (S n)) = spectrumSS n module EMExplicit {i} (G : Group i) (G-abelian : is-abelian G) where module K₁ = EM₁ G module HSpace = EM₁HSpace G G-abelian open EMImplicit K₁.EM₁ K₁.EM₁-conn K₁.emlevel HSpace.H-EM₁ public open BelowDiagonal public using (πS-below) πS-diag : (n : ℕ) → πS n (⊙EM (S n)) == G πS-diag n = OnDiagonal.πS-diag n ∙ K₁.π₁.π₁-iso open AboveDiagonal public using (πS-above) open Spectrum public using (spectrum)
29.29064
71
0.480491
fdaebb196f18a0040742d3acfcfbc7cc8c958e42
178
agda
Agda
test/Succeed/Issue427.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue427.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue427.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue427 where data T : Set where tt : T test = (λ {s : T} {t : T} → t) {tt} {tt} f : {s t : T} → T f = tt test₂ = (let x = tt in λ {s : T} {t : T} → x) {tt} {tt}
12.714286
55
0.449438
34678a23735c93bcd85c0bc75be53012962f5a4d
16,533
agda
Agda
Integer/EucDomain2.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
Integer/EucDomain2.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
Integer/EucDomain2.agda
onestruggler/EucDomain
7e268e8354065fde734c9c2d9998d2cfd4a21f71
[ "CC0-1.0" ]
null
null
null
-- We show by allowing the reminder of integer division to be -- negative, we can get more precise estimation of the rank of the -- remainder: rank reminder ≤ (rank divisor) / 2. {-# OPTIONS --without-K --safe #-} module Integer.EucDomain2 where -- ---------------------------------------------------------------------- -- ℕ is an "Euclidean SemiRing". module NatESR where -- ℕ satisfy the euc-eq and euc-rank property with the usual div and -- mod function. Still we need to do the translation from non-equality -- to NonZero predicate. -- imports form stdlib. open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Data.Nat as Nat using (ℕ ; zero ; suc) import Data.Nat.DivMod as NDM import Data.Nat.Properties as NatP -- imports from local. open import Instances -- We already make ℕ an instance of Rank. For convinence we restate it -- here. rank' : ℕ -> ℕ rank' x = x -- Division with the annoying translation from ¬ d ≡ 0 to NonZero -- predicate. div : ∀ (n d : ℕ) -> ¬ d ≡ 0 -> ℕ div n zero n0 with n0 refl ... | () div n (suc d) n0 = NDM._/_ n (suc d) -- Reminder. mod : ∀ (n d : ℕ) -> ¬ d ≡ 0 -> ℕ mod n zero n0 with n0 refl ... | () mod n (suc d) n0 = NDM._%_ n (suc d) -- Dividend = reminder + quotient * divisor. euc-eq : ∀ (n d : ℕ) (n0 : ¬ d ≡ 0) -> let r = mod n d n0 in let q = div n d n0 in n ≡ r + q * d euc-eq n zero n0 with n0 refl ... | () euc-eq n (suc d) n0 = NDM.m≡m%n+[m/n]*n n (suc d) -- rank reminder < rank divisor. euc-rank : ∀ (n d : ℕ) (n0 : ¬ d ≡ 0) -> let r = mod n d n0 in let q = div n d n0 in rank r < rank d euc-rank n zero n0 with n0 refl ... | () euc-rank n (suc d) n0 = NDM.m%n<n n (suc d) -- ---------------------------------------------------------------------- -- Allow Integer division to have negative reminder -- Let n, d be integers and d nonzero, by the usual divison with -- reminder we have q, r such that n = r + q * d and ∣ r ∣ < ∣ d ∣. -- What we want is q' and r' such that n = r' + q' * d and ∣ r' ∣ ≤ ∣ -- d ∣ / 2. Asssume d > 0, an easy calculation shows if ∣ r ∣ ≤ ∣ d ∣ -- / 2, we let q' = q and r' = r, and if ∣ r ∣ > ∣ d ∣ / 2, we let q' -- = q + 1 and r' = r - d. The case when d < 0 is similar. -- imports from stdlib. open import Relation.Nullary using (yes ; no ; ¬_) open import Relation.Binary.PropositionalEquality as PE using (_≡_ ; refl ; sym ; cong ; trans) open import Data.Empty using (⊥-elim) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open import Data.Bool using (T ; not) open import Data.Nat as Nat using (ℕ ; suc ; s≤s ; zero ; z≤n) import Data.Nat.DivMod as NDM import Data.Nat.Properties as NatP open import Data.Integer as Int using (ℤ ; ∣_∣ ; +_ ; +[1+_] ; -[1+_] ; 1ℤ ; _◃_ ; +<+ ; -<- ; -≤- ; -<+ ; -≤+ ; +≤+ ; 0ℤ) import Data.Integer.Properties as IntP open import Data.Integer.DivMod using (_div_ ; _mod_ ; a≡a%n+[a/n]*n ; n%d<d) open import Data.Integer.Solver -- imports from local. open import Instances -- Aother integer division allowing negative reminder. div' : ∀ (n d : ℤ) -> ¬ d ≡ 0ℤ -> ℤ div' n (+_ zero) n0 with n0 refl ... | () div' n d@(+[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = n div d ... | no np = 1ℤ + n div d div' n d@(-[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = n div d ... | no np = - 1ℤ + n div d -- Another integer mod allowing negative reminder. mod' : ∀ (n d : ℤ) -> ¬ d ≡ 0ℤ -> ℤ mod' n (+_ zero) n0 with n0 refl ... | () mod' n d@(+[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = + (n mod d) ... | no np = + (n mod d) - d mod' n d@(-[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = + (n mod d) ... | no np = + (n mod d) + d -- Dividend = reminder + quotient * divisor. euc-eq' : ∀ (n d : ℤ) (n0 : ¬ d ≡ 0ℤ) -> let r = mod' n d n0 in let q = div' n d n0 in n ≡ r + q * d euc-eq' n (+_ zero) n0 with n0 refl ... | () euc-eq' n d@(+[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = a≡a%n+[a/n]*n n d ... | no np = claim where claim : n ≡ (+ (n mod d) - d) + (1ℤ + n div d) * d claim = begin n ≡⟨ a≡a%n+[a/n]*n n d ⟩ + (n mod d) + (n div d) * d ≡⟨ solve 3 (\ x y z -> x :+ y :* z := x :- z :+ (con 1ℤ :+ y) :* z) refl (+ (n mod d)) (n div d) d ⟩ (+ (n mod d) - d) + (1ℤ + n div d) * d ∎ where open +-*-Solver open PE.≡-Reasoning euc-eq' n d@(-[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = a≡a%n+[a/n]*n n d ... | no np = claim where claim : n ≡ (+ (n mod d) + d) + (- 1ℤ + n div d) * d claim = begin n ≡⟨ a≡a%n+[a/n]*n n d ⟩ + (n mod d) + (n div d) * d ≡⟨ solve 3 (\ x y z -> x :+ y :* z := x :+ z :+ (con (- 1ℤ) :+ y) :* z) refl (+ (n mod d)) (n div d) d ⟩ (+ (n mod d) + d) + (- 1ℤ + n div d) * d ∎ where open +-*-Solver open PE.≡-Reasoning -- rank reminder ≤ (rank divisor) / 2. euc-rank' : ∀ (n d : ℤ) (n0 : ¬ d ≡ 0ℤ) -> let r = mod' n d n0 in let q = div' n d n0 in ∣ r ∣ ≤ ∣ d ∣ / 2 euc-rank' n (+_ zero) n0 with n0 refl ... | () euc-rank' n d@(+[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 ... | yes pr = pr ... | no ¬p = claim where r = + (n mod d) - d d≠0 : ¬ ∣ d ∣ ≡ 0 d≠0 = λ () -- We follow the steps to show ∣ r ∣ ≤ ∣ d ∣ / 2, in the current case, i.e. ∣ -- n % d - d ∣ ≤ d / 2. We follows the steps below: -- 1) d / 2 < n % d -- 2) d / 2 - d < n % d - d -- 3) n % d - d < 0, hence d / 2 - d < n % d - d < 0 -- 4) ∣ d / 2 - d ∣ > ∣ n % d - d ∣ -- 5) d / 2 - d ≡ - d / 2 or d / 2 - d ≡ - (d / 2 + 1) -- 6) ∣ d / 2 - d ∣ ≡ d / 2 or ∣ d / 2 - d ∣ ≡ d / 2 + 1 -- 7) d / 2 > ∣ n % d - d ∣ or d / 2 + 1 > ∣ n % d - d ∣ -- 8) d / 2 ≥ ∣ n % d - d ∣ -- By negate ¬p, we can show ∣ d ∣ / 2 < n mod d. -- By negation of ¬p (we are using the decidable order). open import Relation.Binary using (tri< ; tri≈ ; tri>) step1 : ∣ d ∣ / 2 < n mod d step1 with NatP.<-cmp (n mod d) (∣ d ∣ / 2) ... | tri< a ¬b ¬c = ⊥-elim (¬p (NatP.<⇒≤ a)) ... | tri≈ ¬a b ¬c = ⊥-elim (¬p (NatP.≤-reflexive b)) ... | tri> ¬a ¬b c = c where notle : ¬ (n mod d ≤ ∣ d ∣ / 2) notle = ¬p -- Step 2. ∣ d ∣ / 2 - ∣ d ∣ < n mod d - ∣ d ∣. Subtracting ∣ d ∣ -- from both sides of step1 preserves the inequality. step2 : + (∣ d ∣ / 2) - + ∣ d ∣ < + (n mod d) - + ∣ d ∣ step2 = IntP.+-monoʳ-< (- (+ ∣ d ∣)) (+<+ step1) -- Step 3. n mod d - ∣ d ∣ < 0 -- Some auxillary. n-n=0 : ∀ {n} -> n - n ≡ 0ℤ n-n=0 {n} = IntP.+-inverseʳ n step3 : + (n mod d) - (+ ∣ d ∣) < 0ℤ step3 rewrite (sym (n-n=0 {+ ∣ d ∣})) = r-d<d-d where -- n mod d < ∣ d ∣, by Euclidean property of integers. r<∣d∣ : + (n mod d) < + ∣ d ∣ r<∣d∣ = +<+ (n%d<d n d) -- Substract ∣ d ∣ on both sides of n mod d < ∣ d ∣. r-d<d-d : + (n mod d) - (+ ∣ d ∣) < (+ ∣ d ∣) - (+ ∣ d ∣) r-d<d-d = IntP.+-monoʳ-< (- + ∣ d ∣) r<∣d∣ -- Step 4. ∣ d / 2 - d ∣ > ∣ n % d - d ∣. By 2, we have -- d / 2 - d < n % d - d < 0. By taking absolute values, we show -- ∣ d / 2 - d ∣ > ∣ n % d - d ∣. -- Some lemmas about take absolute value of negative and nonpositive -- numbers. lemma-∣neg∣ : ∀ {a : ℤ} -> a < 0ℤ -> + ∣ a ∣ ≡ - a lemma-∣neg∣ -<+ = refl lemma-∣non-pos∣ : ∀ {a : ℤ} -> a ≤ 0ℤ -> + ∣ a ∣ ≡ - a lemma-∣non-pos∣ {.(-[1+ _ ])} -≤+ = refl lemma-∣non-pos∣ {.(+ zero)} (+≤+ z≤n) = refl -- The injection of natural numbers into integers reflect order. lemma-inj-reflect-ord : ∀ {a b} -> + a < + b -> a < b lemma-inj-reflect-ord (+<+ m<n) = m<n lemma-inj-reflect-ord' : ∀ {a b} -> + a ≤ + b -> a ≤ b lemma-inj-reflect-ord' (+≤+ m<n) = m<n -- Taking absolute value on both sides of a strict inequality of -- negative numbers (can relax this to non-positive numbers) -- reverses the order. lemma-∣neg<neg∣ : ∀ {a b} -> a < 0ℤ -> b < a -> ∣ a ∣ < ∣ b ∣ lemma-∣neg<neg∣ {a} {b} a<0 b<a = lemma-inj-reflect-ord claim where 0<b : b < 0ℤ 0<b = IntP.<-trans b<a a<0 claim : (+ ∣ a ∣) < (+ ∣ b ∣) claim = begin-strict + ∣ a ∣ ≡⟨ lemma-∣neg∣ {a} a<0 ⟩ - a <⟨ IntP.neg-mono-< b<a ⟩ - b ≡⟨ sym (lemma-∣neg∣ 0<b) ⟩ + ∣ b ∣ ∎ where open IntP.≤-Reasoning -- Goal step4 achieved. step4 : ∣ + (n mod d) - d ∣ < ∣ + (∣ d ∣ / 2) - d ∣ step4 = lemma-∣neg<neg∣ step3 step2 -- Step 5. d / 2 - d ≡ - d / 2 or d / 2 - d ≡ - (d / 2 + 1) -- Natural number version of Step 5. step5-nat : ∣ d ∣ / 2 + ∣ d ∣ / 2 ≡ ∣ d ∣ ⊎ suc (∣ d ∣ / 2 + ∣ d ∣ / 2) ≡ ∣ d ∣ step5-nat = lemma-div-by-2 ∣ d ∣ where -- An easy and useful fact. *2+ : ∀ {a} -> a * 2 ≡ a + a *2+ {zero} = refl *2+ {suc a} rewrite *2+ {a} | NatP.+-comm a (suc a) = refl -- Either d / 2 + d / 2 ≡ d or d / 2 + d / 2 + 1 ≡ d. lemma-div-by-2 : ∀ d -> let hd = d / 2 in hd + hd ≡ d ⊎ suc (hd + hd) ≡ d lemma-div-by-2 d with d / 2 | d % 2 | NatESR.euc-eq d 2 (λ { ()}) | NatESR.euc-rank d 2 (λ { ()}) ... | hd | zero | proj₁₁ | pr rewrite *2+ {hd} = inj₁ (sym proj₁₁) ... | hd | suc zero | proj₁₁ | pr rewrite *2+ {hd} = inj₂ (sym proj₁₁) ... | hd | suc (suc r₁) | proj₁₁ | pr = ⊥-elim ((c1 r₁) pr ) where c1 : ∀ a -> ¬ (suc (suc (suc a)) ≤ 2) c1 a = λ { (s≤s (s≤s ()))} -- Next we need inject naturals to integers. We do the two -- identities separately. -- Step 5a. If (d / 2) + (d / 2) ≡ d, we show d / 2 - d ≡ - d / 2. step5a : ∀ d -> (d / 2) + (d / 2) ≡ d -> let -_ = λ x -> - (+ x) in + (d / 2) - (+ d) ≡ - (d / 2) step5a d hyp = sym claim4 where open PE.≡-Reasoning claim : + (d / 2 + d / 2) ≡ + d claim = cong +_ hyp claim2 : + (d / 2) + + (d / 2) ≡ + d claim2 = begin + (d / 2) + + (d / 2) ≡⟨ IntP.pos-+-commute (d / 2) (d / 2) ⟩ + (d / 2 + d / 2) ≡⟨ cong +_ hyp ⟩ + d ∎ claim3 : + (d / 2) ≡ + d - + (d / 2) claim3 = begin + (d / 2) ≡⟨ (solve 1 (λ a -> a := a :+ a :- a) refl) (+ (d / 2)) ⟩ + (d / 2) + + (d / 2) - + (d / 2) ≡⟨ cong (_- + (d / 2)) claim2 ⟩ + d - + (d / 2) ∎ where open +-*-Solver claim4 : let -_ = λ x -> - (+ x) in - (d / 2) ≡ + (d / 2) - + d claim4 = begin - (+ (d / 2)) ≡⟨ cong -_ claim3 ⟩ - (+ d - + (d / 2)) ≡⟨ (solve 2 (λ a b -> :- (a :- b) := b :- a) refl) (+ d) (+ (d / 2)) ⟩ + (d / 2) - + d ∎ where open +-*-Solver -- Step 5b. If (d / 2) + (d / 2) + 1 ≡ d, we show d / 2 - d ≡ - (d -- / 2 + 1). (Note that we change the sign of the equality) step5b : ∀ d -> suc ((d / 2) + (d / 2)) ≡ d -> let -_ = λ x -> - (+ x) in (+ d) - + (d / 2) ≡ + (d / 2) + 1ℤ step5b d hyp = begin + d - + (d / 2) ≡⟨ cong (λ x → + x - + (d / 2)) (sym hyp) ⟩ + (suc (d / 2 + d / 2)) - + (d / 2) ≡⟨ refl ⟩ + (1 + (d / 2 + d / 2)) - + (d / 2) ≡⟨ cong (_- + (d / 2)) (IntP.pos-+-commute 1 (d / 2 + d / 2)) ⟩ + 1 + + (d / 2 + d / 2) - + (d / 2) ≡⟨ cong (λ x → + 1 + x - + (d / 2)) (IntP.pos-+-commute (d / 2) (d / 2)) ⟩ + 1 + + (d / 2) + + (d / 2) - + (d / 2) ≡⟨ solve 1 (λ x → (con 1ℤ) :+ (x :+ x) :- x := x :+ con 1ℤ) refl (+ (d / 2)) ⟩ + (d / 2) + 1ℤ ∎ where open +-*-Solver open PE.≡-Reasoning -- Goal 5. step5 : let -_ = λ x -> - (+ x) in + (∣ d ∣ / 2) - d ≡ - (∣ d ∣ / 2) ⊎ d - + (∣ d ∣ / 2) ≡ + (∣ d ∣ / 2) + 1ℤ step5 with step5-nat ... | inj₁ x = inj₁ (step5a ∣ d ∣ x) ... | inj₂ y = inj₂ (step5b ∣ d ∣ y) -- Step 6. ∣ d / 2 - d ∣ ≡ d / 2 or ∣ d / 2 - d ∣ ≡ d / 2 + 1 step6 : let -_ = λ x -> - (+ x) in ∣ + (∣ d ∣ / 2) - d ∣ ≡ ∣ d ∣ / 2 ⊎ ∣ d - + (∣ d ∣ / 2) ∣ ≡ ∣ d ∣ / 2 + 1 step6 with step5 ... | inj₁ x rewrite x = inj₁ (trans ∣-d/2∣≡∣d/2∣ ∣d/2∣≡d/2) where ∣-d/2∣≡∣d/2∣ : ∣ - (+ (∣ d ∣ / 2)) ∣ ≡ ∣ + (∣ d ∣ / 2) ∣ ∣-d/2∣≡∣d/2∣ = IntP.∣-i∣≡∣i∣ (+ (∣ d ∣ / 2)) ∣d/2∣≡d/2 : ∣ + (∣ d ∣ / 2) ∣ ≡ (∣ d ∣ / 2) ∣d/2∣≡d/2 = refl ... | inj₂ y rewrite y = inj₂ claim where claim : ∣ + (∣ d ∣ / 2) + 1ℤ ∣ ≡ ∣ d ∣ / 2 + 1 claim = begin ∣ + (∣ d ∣ / 2) + 1ℤ ∣ ≡⟨ refl ⟩ ∣ + ((∣ d ∣ / 2) + 1) ∣ ≡⟨ refl ⟩ ∣ d ∣ / 2 + 1 ∎ where open PE.≡-Reasoning -- Step 7. d / 2 > ∣ n % d - d ∣ or d / 2 + 1 > ∣ n % d - d ∣ step7 : ∣ + (n mod d) - d ∣ < ∣ d ∣ / 2 ⊎ ∣ + (n mod d) - d ∣ < ∣ d ∣ / 2 + 1 step7 with step6 ... | inj₁ x = inj₁ claim where claim : ∣ + (n mod d) - d ∣ < ∣ d ∣ / 2 claim = begin-strict ∣ + (n mod d) - d ∣ <⟨ step4 ⟩ ∣ + (∣ d ∣ / 2) - d ∣ ≡⟨ x ⟩ ∣ d ∣ / 2 ∎ where open NatP.≤-Reasoning ... | inj₂ y = inj₂ claim where claim : ∣ + (n mod d) - d ∣ < ∣ d ∣ / 2 + 1 claim = begin-strict ∣ + (n mod d) - d ∣ <⟨ step4 ⟩ ∣ + (∣ d ∣ / 2) - d ∣ ≡⟨ IntP.∣i-j∣≡∣j-i∣ (+ (∣ d ∣ / 2)) d ⟩ ∣ d - + (∣ d ∣ / 2) ∣ ≡⟨ y ⟩ ∣ d ∣ / 2 + 1 ∎ where open NatP.≤-Reasoning -- Step 8. d / 2 ≥ ∣ n % d - d ∣ step8 : ∣ + (n mod d) - d ∣ ≤ ∣ d ∣ / 2 step8 with step7 ... | inj₁ x = NatP.<⇒≤ x ... | inj₂ y = m<sucn⇒m≤n claim where m<sucn⇒m≤n : ∀ {m n : ℕ} → m < suc n → m ≤ n m<sucn⇒m≤n (s≤s le) = le lemma-+1 : ∀ {a : ℕ} -> a + 1 ≡ suc a lemma-+1 {zero} = refl lemma-+1 {suc a} = cong suc (lemma-+1 {a}) claim : ∣ + (n mod d) - d ∣ < suc (∣ d ∣ / 2) claim = begin-strict ∣ + (n mod d) - d ∣ <⟨ y ⟩ ∣ d ∣ / 2 + 1 ≡⟨ lemma-+1 ⟩ suc (∣ d ∣ / 2) ∎ where open NatP.≤-Reasoning claim : ∣ r ∣ ≤ ∣ d ∣ / 2 claim = step8 -- This case is solved by recursive call with argument n and - d. euc-rank' n d@(-[1+ e ]) n0 with n mod d ≤? ∣ d ∣ / 2 | euc-rank' n (+[1+ e ]) (λ {()}) ... | yes pr | hyp = pr ... | no ¬p | hyp = hyp -- We can relax the estimation. euc-rank'' : ∀ (n d : ℤ) (n0 : ¬ d ≡ 0ℤ) -> let r = mod' n d n0 in let q = div' n d n0 in ∣ r ∣ < ∣ d ∣ euc-rank'' n d n0 = let r = mod' n d n0 in let q = div' n d n0 in begin-strict ∣ r ∣ ≤⟨ euc-rank' n d n0 ⟩ ∣ d ∣ / 2 <⟨ aux ∣ d ∣ ∣d∣≠0 ⟩ ∣ d ∣ ∎ where open NatP.≤-Reasoning aux : ∀ n -> ¬ n ≡ 0 -> n / 2 < n aux zero n0 with n0 refl ... | () aux (suc n) n0 = NDM.m/n<m (suc n) 2 (s≤s (s≤s z≤n)) ∣d∣≠0 : ¬ ∣ d ∣ ≡ 0 ∣d∣≠0 x = n0 (IntP.∣i∣≡0⇒i≡0 x) -- ---------------------------------------------------------------------- -- Alternative Euclidean Structure -- The newly defined div' and mod' together with euc-eq' and -- euc-rank'' make ℤ an Euclidean Domain with more precise estimate on -- the rank of the reminder. open import Integer.EucDomain using (+-*-isEuclideanDomain ; +-*-euclideanDomain) import EuclideanDomain open EuclideanDomain.Bundles -- We update the old Euclidean structure in EucDomain. +-*-isEuclideanDomain' = record +-*-isEuclideanDomain { div = div' ; mod = mod' ; euc-eq = euc-eq' ; euc-rank = euc-rank'' } -- Bundle. +-*-euclideanDomain' : EuclideanDomainBundle _ _ +-*-euclideanDomain' = record { isEuclideanDomain = +-*-isEuclideanDomain' } -- ---------------------------------------------------------------------- -- Make a new instance for DivMod ℤ -- Translation between two nonzeros. nz : ∀ (x : ℤ) -> .{{NonZero x}} -> ¬ x ≡ 0# nz +[1+ n ] () -- We use the newly defined div and mod function. instance new-DMℤ : DivMod ℤ new-DMℤ .NZT = NZTℤ new-DMℤ ._/_ n d = div' n d (nz d) new-DMℤ ._%_ n d = mod' n d (nz d)
36.019608
139
0.417166
4e3531d045577139ec7843147485a2de19a88c09
868
agda
Agda
notes/FOT/Agsy/DataBase.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/Agsy/DataBase.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/Agsy/DataBase.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of the Agda standard library on -- 27 May 2011. -- Nils' idea about databases in the Agda mailing list. -- http://thread.gmane.org/gmane.comp.lang.agda/2911/focus=2917 module FOT.Agsy.DataBase where open import Data.Nat open import Data.Product open import Relation.Binary.PropositionalEquality open ≡-Reasoning postulate right-identity : ∀ n → n + 0 ≡ n move-suc : ∀ m n → suc (m + n) ≡ m + suc n db = right-identity ,′ move-suc comm : ∀ m n → m + n ≡ n + m -- Via auto {!-c db!} comm zero n = sym (proj₁ db n) comm (suc n) n' = begin suc (n + n') ≡⟨ cong suc (comm n n') ⟩ suc (n' + n) ≡⟨ proj₂ db n' n ⟩ (n' + suc n) ∎
26.30303
70
0.59447
7cb9e080dd42a518558c4128a6b42f0a1b0779a9
193
agda
Agda
test/Fail/Issue5558.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue5558.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue5558.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
interleaved mutual -- we don't do `data A : Set` data A where -- you don't have to actually define any constructor to trigger the error, the "where" is enough data B where b : B
24.125
100
0.668394
38d01f8a3d08504ce80b05fa6eaee101a70ec1d0
648
agda
Agda
Cubical/Relation/Binary/Reasoning/StrictPartialOrder.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Reasoning/StrictPartialOrder.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Relation/Binary/Reasoning/StrictPartialOrder.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw module Cubical.Relation.Binary.Reasoning.StrictPartialOrder {a ℓ} {A : Type a} (S : StrictPartialOrder A ℓ) where open StrictPartialOrder S import Cubical.Relation.Binary.Raw.Construct.StrictToNonStrict _<_ as NonStrict ------------------------------------------------------------------------ -- Publicly re-export the contents of the base module open import Cubical.Relation.Binary.Reasoning.Base.Double (NonStrict.isPreorder transitive) transitive NonStrict.<⇒≤ (NonStrict.<-≤-trans transitive) public
30.857143
79
0.688272
0dc6f7714f27bc6851afc02f9b34224ad63ecab4
14,752
agda
Agda
Cubical/Data/Sigma/Properties.agda
antoinevanmuylder/cubical
5b40df813434aa11631ac240409ca2c4d849453c
[ "MIT" ]
null
null
null
Cubical/Data/Sigma/Properties.agda
antoinevanmuylder/cubical
5b40df813434aa11631ac240409ca2c4d849453c
[ "MIT" ]
null
null
null
Cubical/Data/Sigma/Properties.agda
antoinevanmuylder/cubical
5b40df813434aa11631ac240409ca2c4d849453c
[ "MIT" ]
null
null
null
{- Basic properties about Σ-types - Action of Σ on functions ([map-fst], [map-snd]) - Characterization of equality in Σ-types using dependent paths ([ΣPath{Iso,≃,≡}PathΣ], [Σ≡Prop]) - Proof that discrete types are closed under Σ ([discreteΣ]) - Commutativity and associativity ([Σ-swap-*, Σ-assoc-*]) - Distributivity of Π over Σ ([Σ-Π-*]) - Action of Σ on isomorphisms, equivalences, and paths ([Σ-cong-fst], [Σ-cong-snd], ...) - Characterization of equality in Σ-types using transport ([ΣPathTransport{≃,≡}PathΣ]) - Σ with a contractible base is its fiber ([Σ-contractFst, ΣUnit]) -} {-# OPTIONS --safe #-} module Cubical.Data.Sigma.Properties where open import Cubical.Data.Sigma.Base open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Relation.Nullary open import Cubical.Data.Unit.Base open import Cubical.Data.Empty.Base open import Cubical.Reflection.StrictEquiv open Iso private variable ℓ ℓ' ℓ'' : Level A A' : Type ℓ B B' : (a : A) → Type ℓ C : (a : A) (b : B a) → Type ℓ map-fst : {B : Type ℓ} → (f : A → A') → A × B → A' × B map-fst f (a , b) = (f a , b) map-snd : (∀ {a} → B a → B' a) → Σ A B → Σ A B' map-snd f (a , b) = (a , f b) map-× : {B : Type ℓ} {B' : Type ℓ'} → (A → A') → (B → B') → A × B → A' × B' map-× f g (a , b) = (f a , g b) ≡-× : {A : Type ℓ} {B : Type ℓ'} {x y : A × B} → fst x ≡ fst y → snd x ≡ snd y → x ≡ y ≡-× p q i = (p i) , (q i) -- Characterization of paths in Σ using dependent paths module _ {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ'} {x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)} where ΣPathP : Σ[ p ∈ PathP A (fst x) (fst y) ] PathP (λ i → B i (p i)) (snd x) (snd y) → PathP (λ i → Σ (A i) (B i)) x y ΣPathP eq i = fst eq i , snd eq i PathPΣ : PathP (λ i → Σ (A i) (B i)) x y → Σ[ p ∈ PathP A (fst x) (fst y) ] PathP (λ i → B i (p i)) (snd x) (snd y) PathPΣ eq = (λ i → fst (eq i)) , (λ i → snd (eq i)) -- allows one to write -- open PathPΣ somePathInΣAB renaming (fst ... ) module PathPΣ (p : PathP (λ i → Σ (A i) (B i)) x y) where open Σ (PathPΣ p) public ΣPathIsoPathΣ : Iso (Σ[ p ∈ PathP A (fst x) (fst y) ] (PathP (λ i → B i (p i)) (snd x) (snd y))) (PathP (λ i → Σ (A i) (B i)) x y) fun ΣPathIsoPathΣ = ΣPathP inv ΣPathIsoPathΣ = PathPΣ rightInv ΣPathIsoPathΣ _ = refl leftInv ΣPathIsoPathΣ _ = refl unquoteDecl ΣPath≃PathΣ = declStrictIsoToEquiv ΣPath≃PathΣ ΣPathIsoPathΣ ΣPath≡PathΣ : (Σ[ p ∈ PathP A (fst x) (fst y) ] (PathP (λ i → B i (p i)) (snd x) (snd y))) ≡ (PathP (λ i → Σ (A i) (B i)) x y) ΣPath≡PathΣ = ua ΣPath≃PathΣ ×≡Prop : isProp A' → {u v : A × A'} → u .fst ≡ v .fst → u ≡ v ×≡Prop pB {u} {v} p i = (p i) , (pB (u .snd) (v .snd) i) -- Useful lemma to prove unique existence uniqueExists : (a : A) (b : B a) (h : (a' : A) → isProp (B a')) (H : (a' : A) → B a' → a ≡ a') → ∃![ a ∈ A ] B a fst (uniqueExists a b h H) = (a , b) snd (uniqueExists a b h H) (a' , b') = ΣPathP (H a' b' , isProp→PathP (λ i → h (H a' b' i)) b b') -- Characterization of dependent paths in Σ module _ {A : I → Type ℓ} {B : (i : I) → (a : A i) → Type ℓ'} {x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)} where ΣPathPIsoPathPΣ : Iso (Σ[ p ∈ PathP A (x .fst) (y .fst) ] PathP (λ i → B i (p i)) (x .snd) (y .snd)) (PathP (λ i → Σ (A i) (B i)) x y) ΣPathPIsoPathPΣ .fun (p , q) i = p i , q i ΣPathPIsoPathPΣ .inv pq .fst i = pq i .fst ΣPathPIsoPathPΣ .inv pq .snd i = pq i .snd ΣPathPIsoPathPΣ .rightInv _ = refl ΣPathPIsoPathPΣ .leftInv _ = refl unquoteDecl ΣPathP≃PathPΣ = declStrictIsoToEquiv ΣPathP≃PathPΣ ΣPathPIsoPathPΣ ΣPathP≡PathPΣ = ua ΣPathP≃PathPΣ -- Σ of discrete types discreteΣ : Discrete A → ((a : A) → Discrete (B a)) → Discrete (Σ A B) discreteΣ {B = B} Adis Bdis (a0 , b0) (a1 , b1) = discreteΣ' (Adis a0 a1) where discreteΣ' : Dec (a0 ≡ a1) → Dec ((a0 , b0) ≡ (a1 , b1)) discreteΣ' (yes p) = J (λ a1 p → ∀ b1 → Dec ((a0 , b0) ≡ (a1 , b1))) (discreteΣ'') p b1 where discreteΣ'' : (b1 : B a0) → Dec ((a0 , b0) ≡ (a0 , b1)) discreteΣ'' b1 with Bdis a0 b0 b1 ... | (yes q) = yes (transport ΣPath≡PathΣ (refl , q)) ... | (no ¬q) = no (λ r → ¬q (subst (λ X → PathP (λ i → B (X i)) b0 b1) (Discrete→isSet Adis a0 a0 (cong fst r) refl) (cong snd r))) discreteΣ' (no ¬p) = no (λ r → ¬p (cong fst r)) module _ {A : Type ℓ} {A' : Type ℓ'} where Σ-swap-Iso : Iso (A × A') (A' × A) fun Σ-swap-Iso (x , y) = (y , x) inv Σ-swap-Iso (x , y) = (y , x) rightInv Σ-swap-Iso _ = refl leftInv Σ-swap-Iso _ = refl unquoteDecl Σ-swap-≃ = declStrictIsoToEquiv Σ-swap-≃ Σ-swap-Iso module _ {A : Type ℓ} {B : A → Type ℓ'} {C : ∀ a → B a → Type ℓ''} where Σ-assoc-Iso : Iso (Σ[ (a , b) ∈ Σ A B ] C a b) (Σ[ a ∈ A ] Σ[ b ∈ B a ] C a b) fun Σ-assoc-Iso ((x , y) , z) = (x , (y , z)) inv Σ-assoc-Iso (x , (y , z)) = ((x , y) , z) rightInv Σ-assoc-Iso _ = refl leftInv Σ-assoc-Iso _ = refl unquoteDecl Σ-assoc-≃ = declStrictIsoToEquiv Σ-assoc-≃ Σ-assoc-Iso Σ-Π-Iso : Iso ((a : A) → Σ[ b ∈ B a ] C a b) (Σ[ f ∈ ((a : A) → B a) ] ∀ a → C a (f a)) fun Σ-Π-Iso f = (fst ∘ f , snd ∘ f) inv Σ-Π-Iso (f , g) x = (f x , g x) rightInv Σ-Π-Iso _ = refl leftInv Σ-Π-Iso _ = refl unquoteDecl Σ-Π-≃ = declStrictIsoToEquiv Σ-Π-≃ Σ-Π-Iso Σ-cong-iso-fst : (isom : Iso A A') → Iso (Σ A (B ∘ fun isom)) (Σ A' B) fun (Σ-cong-iso-fst isom) x = fun isom (x .fst) , x .snd inv (Σ-cong-iso-fst {B = B} isom) x = inv isom (x .fst) , subst B (sym (ε (x .fst))) (x .snd) where ε = isHAEquiv.rinv (snd (iso→HAEquiv isom)) rightInv (Σ-cong-iso-fst {B = B} isom) (x , y) = ΣPathP (ε x , toPathP goal) where ε = isHAEquiv.rinv (snd (iso→HAEquiv isom)) goal : subst B (ε x) (subst B (sym (ε x)) y) ≡ y goal = sym (substComposite B (sym (ε x)) (ε x) y) ∙∙ cong (λ x → subst B x y) (lCancel (ε x)) ∙∙ substRefl {B = B} y leftInv (Σ-cong-iso-fst {A = A} {B = B} isom) (x , y) = ΣPathP (leftInv isom x , toPathP goal) where ε = isHAEquiv.rinv (snd (iso→HAEquiv isom)) γ = isHAEquiv.com (snd (iso→HAEquiv isom)) lem : (x : A) → sym (ε (fun isom x)) ∙ cong (fun isom) (leftInv isom x) ≡ refl lem x = cong (λ a → sym (ε (fun isom x)) ∙ a) (γ x) ∙ lCancel (ε (fun isom x)) goal : subst B (cong (fun isom) (leftInv isom x)) (subst B (sym (ε (fun isom x))) y) ≡ y goal = sym (substComposite B (sym (ε (fun isom x))) (cong (fun isom) (leftInv isom x)) y) ∙∙ cong (λ a → subst B a y) (lem x) ∙∙ substRefl {B = B} y Σ-cong-equiv-fst : (e : A ≃ A') → Σ A (B ∘ equivFun e) ≃ Σ A' B -- we could just do this: -- Σ-cong-equiv-fst e = isoToEquiv (Σ-cong-iso-fst (equivToIso e)) -- but the following reduces slightly better Σ-cong-equiv-fst {A = A} {A' = A'} {B = B} e = intro , isEqIntro where intro : Σ A (B ∘ equivFun e) → Σ A' B intro (a , b) = equivFun e a , b isEqIntro : isEquiv intro isEqIntro .equiv-proof x = ctr , isCtr where PB : ∀ {x y} → x ≡ y → B x → B y → Type _ PB p = PathP (λ i → B (p i)) open Σ x renaming (fst to a'; snd to b) open Σ (equivCtr e a') renaming (fst to ctrA; snd to α) ctrB : B (equivFun e ctrA) ctrB = subst B (sym α) b ctrP : PB α ctrB b ctrP = symP (transport-filler (λ i → B (sym α i)) b) ctr : fiber intro x ctr = (ctrA , ctrB) , ΣPathP (α , ctrP) isCtr : ∀ y → ctr ≡ y isCtr ((r , s) , p) = λ i → (a≡r i , b!≡s i) , ΣPathP (α≡ρ i , coh i) where open PathPΣ p renaming (fst to ρ; snd to σ) open PathPΣ (equivCtrPath e a' (r , ρ)) renaming (fst to a≡r; snd to α≡ρ) b!≡s : PB (cong (equivFun e) a≡r) ctrB s b!≡s i = comp (λ k → B (α≡ρ i (~ k))) (λ k → (λ { (i = i0) → ctrP (~ k) ; (i = i1) → σ (~ k) })) b coh : PathP (λ i → PB (α≡ρ i) (b!≡s i) b) ctrP σ coh i j = fill (λ k → B (α≡ρ i (~ k))) (λ k → (λ { (i = i0) → ctrP (~ k) ; (i = i1) → σ (~ k) })) (inS b) (~ j) Σ-cong-fst : (p : A ≡ A') → Σ A (B ∘ transport p) ≡ Σ A' B Σ-cong-fst {B = B} p i = Σ (p i) (B ∘ transp (λ j → p (i ∨ j)) i) Σ-cong-iso-snd : ((x : A) → Iso (B x) (B' x)) → Iso (Σ A B) (Σ A B') fun (Σ-cong-iso-snd isom) (x , y) = x , fun (isom x) y inv (Σ-cong-iso-snd isom) (x , y') = x , inv (isom x) y' rightInv (Σ-cong-iso-snd isom) (x , y) = ΣPathP (refl , rightInv (isom x) y) leftInv (Σ-cong-iso-snd isom) (x , y') = ΣPathP (refl , leftInv (isom x) y') Σ-cong-equiv-snd : (∀ a → B a ≃ B' a) → Σ A B ≃ Σ A B' Σ-cong-equiv-snd h = isoToEquiv (Σ-cong-iso-snd (equivToIso ∘ h)) Σ-cong-snd : ((x : A) → B x ≡ B' x) → Σ A B ≡ Σ A B' Σ-cong-snd {A = A} p i = Σ[ x ∈ A ] (p x i) Σ-cong-iso : (isom : Iso A A') → ((x : A) → Iso (B x) (B' (fun isom x))) → Iso (Σ A B) (Σ A' B') Σ-cong-iso isom isom' = compIso (Σ-cong-iso-snd isom') (Σ-cong-iso-fst isom) Σ-cong-equiv : (e : A ≃ A') → ((x : A) → B x ≃ B' (equivFun e x)) → Σ A B ≃ Σ A' B' Σ-cong-equiv e e' = isoToEquiv (Σ-cong-iso (equivToIso e) (equivToIso ∘ e')) Σ-cong' : (p : A ≡ A') → PathP (λ i → p i → Type ℓ') B B' → Σ A B ≡ Σ A' B' Σ-cong' p p' = cong₂ (λ (A : Type _) (B : A → Type _) → Σ A B) p p' -- Alternative version for path in Σ-types, as in the HoTT book ΣPathTransport : (a b : Σ A B) → Type _ ΣPathTransport {B = B} a b = Σ[ p ∈ (fst a ≡ fst b) ] transport (λ i → B (p i)) (snd a) ≡ snd b IsoΣPathTransportPathΣ : (a b : Σ A B) → Iso (ΣPathTransport a b) (a ≡ b) IsoΣPathTransportPathΣ {B = B} a b = compIso (Σ-cong-iso-snd (λ p → invIso (PathPIsoPath (λ i → B (p i)) _ _))) ΣPathIsoPathΣ ΣPathTransport≃PathΣ : (a b : Σ A B) → ΣPathTransport a b ≃ (a ≡ b) ΣPathTransport≃PathΣ {B = B} a b = isoToEquiv (IsoΣPathTransportPathΣ a b) ΣPathTransport→PathΣ : (a b : Σ A B) → ΣPathTransport a b → (a ≡ b) ΣPathTransport→PathΣ a b = Iso.fun (IsoΣPathTransportPathΣ a b) PathΣ→ΣPathTransport : (a b : Σ A B) → (a ≡ b) → ΣPathTransport a b PathΣ→ΣPathTransport a b = Iso.inv (IsoΣPathTransportPathΣ a b) ΣPathTransport≡PathΣ : (a b : Σ A B) → ΣPathTransport a b ≡ (a ≡ b) ΣPathTransport≡PathΣ a b = ua (ΣPathTransport≃PathΣ a b) Σ-contractFstIso : (c : isContr A) → Iso (Σ A B) (B (c .fst)) fun (Σ-contractFstIso {B = B} c) p = subst B (sym (c .snd (fst p))) (snd p) inv (Σ-contractFstIso {B = B} c) b = _ , b rightInv (Σ-contractFstIso {B = B} c) b = cong (λ p → subst B p b) (isProp→isSet (isContr→isProp c) _ _ _ _) ∙ transportRefl _ fst (leftInv (Σ-contractFstIso {B = B} c) p j) = c .snd (fst p) j snd (leftInv (Σ-contractFstIso {B = B} c) p j) = transp (λ i → B (c .snd (fst p) (~ i ∨ j))) j (snd p) Σ-contractFst : (c : isContr A) → Σ A B ≃ B (c .fst) Σ-contractFst {B = B} c = isoToEquiv (Σ-contractFstIso c) -- a special case of the above module _ (A : Unit → Type ℓ) where ΣUnit : Σ Unit A ≃ A tt unquoteDef ΣUnit = defStrictEquiv ΣUnit snd (λ { x → (tt , x) }) Σ-contractSnd : ((a : A) → isContr (B a)) → Σ A B ≃ A Σ-contractSnd c = isoToEquiv isom where isom : Iso _ _ isom .fun = fst isom .inv a = a , c a .fst isom .rightInv _ = refl isom .leftInv (a , b) = cong (a ,_) (c a .snd b) isEmbeddingFstΣProp : ((x : A) → isProp (B x)) → {u v : Σ A B} → isEquiv (λ (p : u ≡ v) → cong fst p) isEmbeddingFstΣProp {B = B} pB {u = u} {v = v} .equiv-proof x = ctr , isCtr where ctrP : u ≡ v ctrP = ΣPathP (x , isProp→PathP (λ _ → pB _) _ _) ctr : fiber (λ (p : u ≡ v) → cong fst p) x ctr = ctrP , refl isCtr : ∀ z → ctr ≡ z isCtr (z , p) = ΣPathP (ctrP≡ , cong (sym ∘ snd) fzsingl) where fzsingl : Path (singl x) (x , refl) (cong fst z , sym p) fzsingl = isContrSingl x .snd (cong fst z , sym p) ctrSnd : SquareP (λ i j → B (fzsingl i .fst j)) (cong snd ctrP) (cong snd z) _ _ ctrSnd = isProp→SquareP (λ _ _ → pB _) _ _ _ _ ctrP≡ : ctrP ≡ z ctrP≡ i = ΣPathP (fzsingl i .fst , ctrSnd i) Σ≡PropEquiv : ((x : A) → isProp (B x)) → {u v : Σ A B} → (u .fst ≡ v .fst) ≃ (u ≡ v) Σ≡PropEquiv pB = invEquiv (_ , isEmbeddingFstΣProp pB) Σ≡Prop : ((x : A) → isProp (B x)) → {u v : Σ A B} → (p : u .fst ≡ v .fst) → u ≡ v Σ≡Prop pB p = equivFun (Σ≡PropEquiv pB) p ≃-× : ∀ {ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} → A ≃ C → B ≃ D → A × B ≃ C × D ≃-× eq1 eq2 = map-× (fst eq1) (fst eq2) , record { equiv-proof = λ {(c , d) → ((eq1⁻ c .fst .fst , eq2⁻ d .fst .fst) , ≡-× (eq1⁻ c .fst .snd) (eq2⁻ d .fst .snd)) , λ {((a , b) , p) → ΣPathP (≡-× (cong fst (eq1⁻ c .snd (a , cong fst p))) (cong fst (eq2⁻ d .snd (b , cong snd p))) , λ i → ≡-× (snd ((eq1⁻ c .snd (a , cong fst p)) i)) (snd ((eq2⁻ d .snd (b , cong snd p)) i)))}}} where eq1⁻ = equiv-proof (eq1 .snd) eq2⁻ = equiv-proof (eq2 .snd) {- Some simple ismorphisms -} prodIso : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} → Iso A C → Iso B D → Iso (A × B) (C × D) Iso.fun (prodIso iAC iBD) (a , b) = (Iso.fun iAC a) , Iso.fun iBD b Iso.inv (prodIso iAC iBD) (c , d) = (Iso.inv iAC c) , Iso.inv iBD d Iso.rightInv (prodIso iAC iBD) (c , d) = ΣPathP ((Iso.rightInv iAC c) , (Iso.rightInv iBD d)) Iso.leftInv (prodIso iAC iBD) (a , b) = ΣPathP ((Iso.leftInv iAC a) , (Iso.leftInv iBD b)) toProdIso : {B C : A → Type ℓ} → Iso ((a : A) → B a × C a) (((a : A) → B a) × ((a : A) → C a)) Iso.fun toProdIso = λ f → (λ a → fst (f a)) , (λ a → snd (f a)) Iso.inv toProdIso (f , g) = λ a → (f a) , (g a) Iso.rightInv toProdIso (f , g) = refl Iso.leftInv toProdIso b = refl module _ {A : Type ℓ} {B : A → Type ℓ'} {C : ∀ a → B a → Type ℓ''} where curryIso : Iso (((a , b) : Σ A B) → C a b) ((a : A) → (b : B a) → C a b) Iso.fun curryIso f a b = f (a , b) Iso.inv curryIso f a = f (fst a) (snd a) Iso.rightInv curryIso a = refl Iso.leftInv curryIso f = refl unquoteDecl curryEquiv = declStrictIsoToEquiv curryEquiv curryIso -- Sigma type with empty base module _ (A : ⊥ → Type ℓ) where open Iso ΣEmptyIso : Iso (Σ ⊥ A) ⊥ fun ΣEmptyIso (* , _) = * ΣEmpty : Σ ⊥ A ≃ ⊥ ΣEmpty = isoToEquiv ΣEmptyIso
38.821053
140
0.539656
1b19c3736c0c4c1feb43d874fccd48f8538dfc98
9,428
agda
Agda
Categories/2-Category.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/2-Category.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/2-Category.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
{-# OPTIONS --universe-polymorphism #-} module Categories.2-Category where open import Level open import Data.Product using (curry; _,_) open import Function using () renaming (_∘_ to _·_) open import Categories.Support.PropositionalEquality open import Categories.Category open import Categories.Categories open import Categories.Object.Terminal open import Categories.Terminal open import Categories.Functor using (Functor) renaming (_∘_ to _∘F_; _≡_ to _≡F_; id to idF) open import Categories.Bifunctor using (Bifunctor; reduce-×) open import Categories.Product using (assocʳ; πˡ; πʳ) record 2-Category (o ℓ t e : Level) : Set (suc (o ⊔ ℓ ⊔ t ⊔ e)) where open Terminal (One {ℓ} {t} {e}) infix 4 _⇒_ infixr 9 _∘_ field Obj : Set o _⇒_ : (A B : Obj) → Category ℓ t e id : {A : Obj} → Functor ⊤ (A ⇒ A) —∘— : {A B C : Obj} → Bifunctor (B ⇒ C) (A ⇒ B) (A ⇒ C) _∘_ : {A B C : Obj} {L R : Category ℓ t e} → Functor L (B ⇒ C) → Functor R (A ⇒ B) → Bifunctor L R (A ⇒ C) _∘_ {A} {B} {C} F G = reduce-× {D₁ = B ⇒ C} {D₂ = A ⇒ B} —∘— F G field .assoc : ∀ {A B C D : Obj} → ((—∘— ∘ idF) ∘F assocʳ (C ⇒ D) (B ⇒ C) (A ⇒ B)) ≡F (idF ∘ —∘—) .identityˡ : {A B : Obj} → (id {B} ∘ idF {C = A ⇒ B}) ≡F πʳ {C = ⊤} {A ⇒ B} .identityʳ : {A B : Obj} → (idF {C = A ⇒ B} ∘ id {A}) ≡F πˡ {C = A ⇒ B} {⊤} -- convenience? module _⇒_ (A B : Obj) = Category (A ⇒ B) open _⇒_ public using () renaming (Obj to _⇒₁_) private module imp⇒ {X Y : Obj} = Category (X ⇒ Y) open imp⇒ public using () renaming (_⇒_ to _⇒₂_; id to id₂; _∘_ to _•_; assoc to vassoc′; identityˡ to videntityˡ′; identityʳ to videntityʳ′; ∘-resp-≡ to •-resp-≡′; ∘-resp-≡ˡ to •-resp-≡′ˡ; ∘-resp-≡ʳ to •-resp-≡′ʳ; hom-setoid to hom₂′-setoid; _≡_ to _≡′_; equiv to equiv′; module Equiv to Equiv′) module Equiv {X Y : Obj} = Heterogeneous (X ⇒ Y) open Equiv public using () renaming (_∼_ to _≡_; ≡⇒∼ to loosely) id₁ : ∀ {A} → A ⇒₁ A id₁ {A} = Functor.F₀ (id {A}) unit id₁₂ : ∀ {A} → id₁ {A} ⇒₂ id₁ {A} id₁₂ {A} = id₂ {A = id₁ {A}} infixr 9 _∘₁_ _∘₁_ : ∀ {A B C} → B ⇒₁ C → A ⇒₁ B → A ⇒₁ C _∘₁_ = curry (Functor.F₀ —∘—) -- horizontal composition infixr 9 _∘₂_ _∘₂_ : ∀ {A B C} {g g′ : B ⇒₁ C} {f f′ : A ⇒₁ B} (β : g ⇒₂ g′) (α : f ⇒₂ f′) → (g ∘₁ f) ⇒₂ (g′ ∘₁ f′) _∘₂_ = curry (Functor.F₁ —∘—) .∘₂-resp-≡′ : ∀ {A B C} {f h : B ⇒₁ C} {g i : A ⇒₁ B} {α γ : f ⇒₂ h} {β δ : g ⇒₂ i} → α ≡′ γ → β ≡′ δ → α ∘₂ β ≡′ γ ∘₂ δ ∘₂-resp-≡′ = curry (Functor.F-resp-≡ —∘—) .∘₂-resp-≡ : ∀ {A B C} {f f′ h h′ : B ⇒₁ C} {g g′ i i′ : A ⇒₁ B} {α : f ⇒₂ h} {γ : f′ ⇒₂ h′} {β : g ⇒₂ i} {δ : g′ ⇒₂ i′} → α ≡ γ → β ≡ δ → (α ∘₂ β) ≡ (γ ∘₂ δ) ∘₂-resp-≡ (loosely a) (loosely b) = loosely (∘₂-resp-≡′ a b) -- left whiskering infixl 9 _◃_ _◃_ : ∀ {A B C} {g g′ : B ⇒₁ C} → g ⇒₂ g′ → (f : A ⇒₁ B) → (g ∘₁ f) ⇒₂ (g′ ∘₁ f) β ◃ f = β ∘₂ id₂ -- right whiskering infixr 9 _▹_ _▹_ : ∀ {A B C} (g : B ⇒₁ C) → {f f′ : A ⇒₁ B} → f ⇒₂ f′ → (g ∘₁ f) ⇒₂ (g ∘₁ f′) g ▹ α = id₂ ∘₂ α private ≡F-on-objects : ∀ {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (F G : Functor C D) → (F ≡F G) → (X : Category.Obj C) → Functor.F₀ F X ≣ Functor.F₀ G X ≡F-on-objects {C = C} F G eq X with Functor.F₀ F X | Functor.F₁ F (Category.id C {X}) | eq (Category.id C {X}) ≡F-on-objects {C = C} F G eq X | ._ | _ | Heterogeneous.≡⇒∼ _ = ≣-refl private module Laws1A {A B} {f : A ⇒₁ B} where .assoc₁ : ∀ {C D} {g : B ⇒₁ C} {h : C ⇒₁ D} → ((h ∘₁ g) ∘₁ f) ≣ (h ∘₁ (g ∘₁ f)) assoc₁ {C} {D} {g} {h} = ≡F-on-objects ((—∘— ∘ idF) ∘F assocʳ (C ⇒ D) (B ⇒ C) (A ⇒ B)) (idF ∘ —∘—) assoc (h , g , f) .identity₁ˡ : {- ∀ {A B} {f : A ⇒₁ B} → -} id₁ ∘₁ f ≣ f identity₁ˡ = ≡F-on-objects (id {B} ∘ idF {C = A ⇒ B}) (πʳ {C = ⊤} {A ⇒ B}) identityˡ (unit , f) .identity₁ʳ : ∀ {A B} {f : A ⇒₁ B} → f ∘₁ id₁ ≣ f identity₁ʳ {A} {B} {f} = ≡F-on-objects (idF {C = A ⇒ B} ∘ id {A}) (πˡ {C = A ⇒ B} {⊤}) identityʳ (f , unit) .vassoc : ∀ {A B} {f g h i : A ⇒₁ B} {η : f ⇒₂ g} {θ : g ⇒₂ h} {ι : h ⇒₂ i} → ((ι • θ) • η) ≡ (ι • (θ • η)) vassoc = loosely vassoc′ .hidentityˡ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (id₁₂ ∘₂ η) ≡ η hidentityˡ {A} {B} {f} {f′} {η} = Equiv.trans (loosely (∘₂-resp-≡′ (Equiv′.sym (Functor.identity id)) Equiv′.refl)) (identityˡ (unit , η)) .hidentityʳ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (η ∘₂ id₁₂) ≡ η hidentityʳ {A} {B} {f} {f′} {η} = Equiv.trans (loosely (∘₂-resp-≡′ Equiv′.refl (Equiv′.sym (Functor.identity id)))) (identityʳ (η , unit)) .im-id₂-closed-under-∘₂′ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → id₂ {A = g} ∘₂ id₂ {A = f} ≡′ id₂ {A = g ∘₁ f} im-id₂-closed-under-∘₂′ = Functor.identity —∘— .im-id₂-closed-under-∘₂ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → (id₂ {A = g} ∘₂ id₂ {A = f}) ≡ id₂ {A = g ∘₁ f} im-id₂-closed-under-∘₂ = loosely im-id₂-closed-under-∘₂′ .lidentityˡ′ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → id₂ {A = g} ◃ f ≡′ id₂ lidentityˡ′ = Functor.identity —∘— .lidentityˡ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → (id₂ {A = g} ◃ f) ≡ id₂ {A = g ∘₁ f} lidentityˡ = loosely lidentityˡ′ .ridentityʳ′ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → g ▹ id₂ {A = f} ≡′ id₂ ridentityʳ′ = Functor.identity —∘— .ridentityʳ : ∀ {A B C} {f : A ⇒₁ B} {g : B ⇒₁ C} → (g ▹ id₂ {A = f}) ≡ id₂ {A = g ∘₁ f} ridentityʳ = loosely ridentityʳ′ -- .lidentityʳ′ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (η ◃ id₁) ≡′ η -- lidentityʳ′ = ? .lidentityʳ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (η ◃ id₁) ≡ η lidentityʳ {η = η} = Equiv.trans (∘₂-resp-≡ Equiv.refl (Equiv.sym (loosely (Functor.identity id)))) (identityʳ (η , unit)) -- .ridentityˡ′ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (id₁ ▹ η) ≡′ η -- ridentityˡ′ = ? .ridentityˡ : ∀ {A B} {f f′ : A ⇒₁ B} {η : f ⇒₂ f′} → (id₁ ▹ η) ≡ η ridentityˡ {η = η} = Equiv.trans (∘₂-resp-≡ (Equiv.sym (loosely (Functor.identity id))) Equiv.refl) (identityˡ (unit , η)) .interchange′ : ∀ {A B C} {f g h : A ⇒₁ B} {i j k : B ⇒₁ C} {α : f ⇒₂ g} {β : g ⇒₂ h} {γ : i ⇒₂ j} {δ : j ⇒₂ k} → ((δ • γ) ∘₂ (β • α)) ≡′ ((δ ∘₂ β) • (γ ∘₂ α)) interchange′ = Functor.homomorphism —∘— .interchange : ∀ {A B C} {f g h : A ⇒₁ B} {i j k : B ⇒₁ C} {α : f ⇒₂ g} {β : g ⇒₂ h} {γ : i ⇒₂ j} {δ : j ⇒₂ k} → ((δ • γ) ∘₂ (β • α)) ≡ ((δ ∘₂ β) • (γ ∘₂ α)) interchange = loosely interchange′ .lvdistrib′ : ∀ {A B C} {f : A ⇒₁ B} {g h i : B ⇒₁ C} {η : g ⇒₂ h} {θ : h ⇒₂ i} → (θ • η) ◃ f ≡′ ((θ ◃ f) • (η ◃ f)) lvdistrib′ = Equiv′.trans (∘₂-resp-≡′ Equiv′.refl (Equiv′.sym videntityˡ′)) interchange′ .lvdistrib : ∀ {A B C} {f : A ⇒₁ B} {g h i : B ⇒₁ C} {η : g ⇒₂ h} {θ : h ⇒₂ i} → ((θ • η) ◃ f) ≡ ((θ ◃ f) • (η ◃ f)) lvdistrib = loosely lvdistrib′ .rvdistrib′ : ∀ {A B C} {f g h : A ⇒₁ B} {i : B ⇒₁ C} {η : f ⇒₂ g} {θ : g ⇒₂ h} → (i ▹ (θ • η)) ≡′ ((i ▹ θ) • (i ▹ η)) rvdistrib′ = Equiv′.trans (∘₂-resp-≡′ (Equiv′.sym videntityˡ′) Equiv′.refl) interchange′ .rvdistrib : ∀ {A B C} {f g h : A ⇒₁ B} {i : B ⇒₁ C} {η : f ⇒₂ g} {θ : g ⇒₂ h} → (i ▹ (θ • η)) ≡ ((i ▹ θ) • (i ▹ η)) rvdistrib = loosely rvdistrib′ -- XXX mixed assocs still need proving {- -- XXX not well-typed without a subst or something -- .lhassoc′ : ∀ {A B C D} {f : A ⇒₁ B} {g : B ⇒₁ C} {h i : C ⇒₁ D} {η : h ⇒₂ i} → (η ◃ (g ∘₁ f)) ≡′ {!((η ◃ g) ◃ f)!} -- lhassoc′ = {!!} .lhassoc : ∀ {A B C D} {f : A ⇒₁ B} {g : B ⇒₁ C} {h i : C ⇒₁ D} {η : h ⇒₂ i} → (η ◃ (g ∘₁ f)) ≡ ((η ◃ g) ◃ f) lhassoc = {!!} -- XXX ditto -- .rlassoc′ : ∀ {A B C D} {f : A ⇒₁ B} {g h : B ⇒₁ C} {i : C ⇒₁ D} {η : g ⇒₂ h} → (i ▹ (η ◃ f)) ≡′ {!((i ▹ η) ◃ f)!} -- rlassoc′ = {!!} .rlassoc : ∀ {A B C D} {f : A ⇒₁ B} {g h : B ⇒₁ C} {i : C ⇒₁ D} {η : g ⇒₂ h} → (i ▹ (η ◃ f)) ≡ ((i ▹ η) ◃ f) rlassoc = {!!} -- XXX tritto -- .hrassoc′ : ∀ {A B C D} {f g : A ⇒₁ B} {h : B ⇒₁ C} {i : C ⇒₁ D} {η : f ⇒₂ g} → (i ▹ (h ▹ η)) ≡′ {!((i ∘₁ h) ▹ η)!} -- hrassoc′ = {!!} .hrassoc : ∀ {A B C D} {f g : A ⇒₁ B} {h : B ⇒₁ C} {i : C ⇒₁ D} {η : f ⇒₂ g} → (i ▹ (h ▹ η)) ≡ ((i ∘₁ h) ▹ η) hrassoc = {!!} -} .lrsmoosh′ : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((θ ◃ g) • (h ▹ η)) ≡′ (θ ∘₂ η) lrsmoosh′ = Equiv′.trans (Equiv′.sym interchange′) (∘₂-resp-≡′ videntityʳ′ videntityˡ′) .lrsmoosh : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((θ ◃ g) • (h ▹ η)) ≡ (θ ∘₂ η) lrsmoosh = loosely lrsmoosh′ .rlsmoosh′ : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((i ▹ η) • (θ ◃ f)) ≡′ (θ ∘₂ η) rlsmoosh′ = Equiv′.trans (Equiv′.sym interchange′) (∘₂-resp-≡′ videntityˡ′ videntityʳ′) .rlsmoosh : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((i ▹ η) • (θ ◃ f)) ≡ (θ ∘₂ η) rlsmoosh = loosely rlsmoosh′ .lrexch′ : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((i ▹ η) • (θ ◃ f)) ≡′ ((θ ◃ g) • (h ▹ η)) lrexch′ = Equiv′.trans rlsmoosh′ (Equiv′.sym lrsmoosh′) .lrexch : ∀ {A B C} {f g : A ⇒₁ B} {h i : B ⇒₁ C} {η : f ⇒₂ g} {θ : h ⇒₂ i} → ((i ▹ η) • (θ ◃ f)) ≡ ((θ ◃ g) • (h ▹ η)) lrexch = loosely lrexch′ module Hom₁Reasoning = ≣-reasoning module Hom₂′Reasoning {A B : Obj} {f g : A ⇒₁ B} where open imp⇒.HomReasoning {A} {B} {f} {g} public renaming (_⟩∘⟨_ to _⟩•⟨_) -- XXX won't work if Hom₂′Reasoning is frozen infixr 4 _⟩∘₂⟨_ ._⟩∘₂⟨_ : ∀ {C} {h i : C ⇒₁ A} {α β : f ⇒₂ g} {γ δ : h ⇒₂ i} → α ≡′ β → γ ≡′ δ → (α ∘₂ γ) ≡′ (β ∘₂ δ) _⟩∘₂⟨_ = ∘₂-resp-≡′
46.673267
298
0.470301
38bcf1cdd210992af05d43eb9ad3aaea4a0fed01
2,742
agda
Agda
Streams/Streams-old.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Streams/Streams-old.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
Streams/Streams-old.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
{-# OPTIONS --copatterns --sized-types #-} module Streams where open import Size open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Data.List using (List; module List; []; _∷_; _++_; length) open import Data.Nat using (ℕ; zero; suc) open import Data.Product using (_,_; _×_; proj₁; proj₂) -- | Streams (with size annotations to ease definitions). record Stream {i : Size} (A : Set) : Set where coinductive constructor _∷_ field hd : A tl : ∀ {j : Size< i} → Stream {j} A open Stream public -- | Stream equality is bisimilarity record _~_ {A : Set} (s t : Stream A) : Set where coinductive field hd~ : hd s ≡ hd t tl~ : (tl s) ~ (tl t) open _~_ public -- | Functoriality map : ∀ {i A B} (f : A → B) (s : Stream {i} A) → Stream {i} B hd (map f s) = f (hd s) tl (map {i} f s) {j} = map {j} f (tl s {j}) -- | Coalgebra structure str-out : ∀{A} → Stream A → A × Stream A str-out s = (hd s , tl s) -- | (Weak) Finality corec : ∀ {A X : Set} → (X → A × X) → (∀ {i} → X → Stream {i} A) hd (corec f x) = proj₁ (f x) tl (corec f x) = corec f (proj₂ (f x)) -- | Direct access to elements _<_> : ∀{A} → Stream A → ℕ → A s < 0 > = hd s s < suc n > = (tl s) < n > -- | Correctness of bisimlarity ~→pw-equal : ∀{A} {s t : Stream A} → s ~ t → ∀ n → s < n > ≡ t < n > ~→pw-equal p zero = hd~ p ~→pw-equal p (suc n) = ~→pw-equal (tl~ p) n -- | The usual definition of a bisimulation on streams. Is-Bisim : ∀{A} → Rel (Stream A) _ → Set Is-Bisim _R_ = ∀ x y → x R y → hd x ≡ hd y × (tl x) R (tl y) -- | If R is a bisimulation then all elements related by R are bisimilar. ex-bisimulation→bisim : ∀{A R} → Is-Bisim {A} R → ∀ {x y} → R x y → x ~ y hd~ (ex-bisimulation→bisim p {x} {y} xRy) = proj₁ (p x y xRy) tl~ (ex-bisimulation→bisim p {x} {y} xRy) = ex-bisimulation→bisim p (proj₂ (p x y xRy)) -- | Generalised bisimulations between arbitrary stream coalgebras. Is-Bisim' : ∀{A X Y : Set} → (c : X → A × X) (d : Y → A × Y) → REL X Y _ → Set Is-Bisim' c d _R_ = ∀ x y → x R y → proj₁ (c x) ≡ proj₁ (d y) × (proj₂ (c x)) R (proj₂ (d y)) ex-bisimulation→bisim' : ∀{A X Y R c d} → Is-Bisim' {A} {X} {Y} c d R → ∀ {x y} → R x y → corec c x ~ corec d y hd~ (ex-bisimulation→bisim' p {x} {y} xRy) = proj₁ (p x y xRy) tl~ (ex-bisimulation→bisim' p {x} {y} xRy) = ex-bisimulation→bisim' p (proj₂ (p x y xRy)) ~trans : ∀{A} {r s t : Stream A} → r ~ s → s ~ t → r ~ t hd~ (~trans p q) = trans (hd~ p) (hd~ q) tl~ (~trans p q) = ~trans (tl~ p) (tl~ q) ~sym : ∀{A} {s t : Stream A} → s ~ t → t ~ s hd~ (~sym p) = sym (hd~ p) tl~ (~sym p) = ~sym (tl~ p)
31.883721
78
0.551422
4e29f5caee63b7169687e45144c283f914a93060
14,430
agda
Agda
examples/outdated-and-incorrect/syntax/Syntax.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/syntax/Syntax.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/syntax/Syntax.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- An agda file contains a single module. The module name should correspond to the name and path of the file. The path is relative to the project root. In this case the project root is the root of Agda II. Modules can be parameterised, but in this case we choose not to parameterise the top-level module. -} module examples.syntax.Syntax where -- It is recommended that the body of the top-level module is indented by a -- small amount, but this is not enforced in the syntax. -- You can have modules inside modules. The name of a sub-module isn't -- qualified. module Expressions (X : Set)(x1, x2 : X) where -- There are three forms of sorts. Set = Set0. postulate A1 : Set A2 : Set3 A3 : Prop -- Independent function space. fun1 : X -> X fun1 x = x -- Implicit independent function space. This is mostly included for -- symmetry, I can't come up with an example when this would be useful. fun2 : {X} -> X fun2 {x} = x -- Dependent function space. fun3 : (A:Set) -> A -> A fun3 A x = x -- Implicit dependent function space. 'A' is implicit so we don't have to -- write it out in the function definition. fun4 : {A:Set} -> A -> A fun4 x = x -- You can also write independent functions using the dependent function -- space syntax. Not that you'd ever want to. fun5 : (_:X) -> X fun5 x = x -- Lambdas can be domain free. const1 : {A, B : Set} -> A -> B -> A const1 = \x y -> x -- Or completely typed. const2 = \{A:Set}{B:Set}(x:A)(y:B) -> x -- inferable, no type needed -- You cannot mix typed and untyped arguments in the same lambda. const3 : {A, B : Set} -> A -> B -> A const3 = \{A}{B} -> \(x:A)(y:B) -> x -- You can have wildcards in lambdas const4 : {A, B : Set} -> A -> B -> A const4 = \x _ -> x -- Implicit arguments can be omitted in applications. x = const1 x1 x2 -- Or made explicit. x' = const1 {X} {X} x1 x2 -- Infix operators can be bound by lambdas. See ComplexDeclarations for -- more information about infix operators. dup : {A:Set} -> (A -> A -> A) -> A -> A dup = \(+) x -> x + x -- The two basic declarations are function definitions and datatype -- declarations. module BasicDeclarations (X : Set) where -- The most common declaration is the function definition. It consists of -- two parts; a type signature and a set of function clauses. Type -- signatures have the form 'id : type', no telescopes are allowed at this -- point. This can be discussed. id : X -> X id x = x -- You can omit the type signature if the type can be inferred. id' = id -- Datatypes are introduced with the data keyword. data Bool : Set where false : Bool true : Bool -- The parameters to the datatype (A in this case) are in scope in the -- types of the constructors. At the moment inductive families are not -- supported. data List (A : Set) : Set where nil : List A (::) : A -> List A -> List A -- When using a constructor as a function, the parameters are hidden -- arguments. singleton : X -> List X singleton x = x :: nil singleton' : X -> List X singleton' x = (::) {X} x (nil {X}) -- You can pattern match over elements of a datatype when defining -- functions (and only then). null : (A : Set) -> List A -> Bool null A nil = true null A (x::xs) = false -- Patterns can be nested (and functions can be recursive). and : List Bool -> Bool and nil = true and (true::xs) = and xs and (false::xs) = false -- Functions can be defined in an infix style. When doing this it must be -- clear what name is being defined without looking at fixities. Hence we -- could never remove the parenthesis around x::xs in the second clause. (++) : List X -> List X -> List X nil ++ ys = ys (x::xs) ++ ys = x :: (xs ++ ys) -- You can also use a combination of infix and prefix. (@) : {A, B, C : Set} -> (B -> C) -> (A -> B) -> A -> C (f @ g) x = f (g x) -- Declarations can appear in many different contexts and not all -- declarations are allowed everywhere. module ComplexDeclarations (X : Set) where -- You can introduce new constants with the postulate declaration. A -- postulate declaration takes a list of type signatures. postulate A : Set a : A -- Let's introduce some datatypes so we have something to work with. At the -- same time we illustrate that layout is optional. data Nat : Set where { zero : Nat; suc : Nat -> Nat } data Bool : Set where { false : Bool; true : Bool } {- We can declare the fixity of infix symbols. The fixity is tied to a particular binding of a name. The binding doesn't have to be in scope directly (as in the example below), but it should be possible to bring it into scope by moving the fixity declaration further down in the current block (but never inside things). The following wouldn't be allowed: infixl 15 + mutual (+) : Nat -> Nat -> Nat .. There are three forms: infix, infixl and infixr, for non-associative, left associative and right associative respectively. The number is the precedence level. -} infixl 15 +, `plus` (+) : Nat -> Nat -> Nat n + zero = zero n + suc m = suc (n + m) plus = (+) -- The following code is to stress test the handling of infix applications. infixl 10 @ infixl 11 @@ infixr 10 # infixr 11 ## postulate (@) : Nat -> Nat -> Nat (#) : Nat -> Nat -> Nat (@@) : Nat -> Nat -> Nat (##) : Nat -> Nat -> Nat z = zero test1 = z @ (z # z) test2 = (z @ z) # z test3 = z # (z @ z) test4 = (z # z) @ z test5 = z ## z # z ## z # z test6 = z @@ z @ z @@ z @ z test7 = z # z @@ z @@ z # z -- Mutually recursive definition are introduced using the 'mutual' keyword. -- A mutual block can contain function definitions, datatypes -- (induction-recursion) and fixity declarations. mutual even : Nat -> Bool even zero = true even (suc n) = odd n odd : Nat -> Bool odd zero = false odd (suc n) = even n -- If a function is declared abstract the definition of the function is not -- visible outside the module. For an abstract datatype the constructors -- are hidden. Definitions that can appear in an abstract block are: -- function definitions, data declarations, fixity declarations, mutual -- blocks, open and name space declarations (see NameSpaces). abstract data Stack : Set where nil : Stack cons : A -> Stack -> Stack empty : Stack empty = nil push : A -> Stack -> Stack push = cons -- Local declarations are introduces either with a let or in a where -- clause. A where clause is attached to a function clause. Everything that -- can appear in an abstract block can appear in a local declaration, plus -- abstract blocks. Local functions can be recursive. foo : (A : Set) -> A -> A foo A x = let f : Local -> A f (local y) = y in f (local x) where data Local : Set where local : A -> Local -- You can declare things to be private to the current module. This means -- that they cannot be accessed outside the module (but they're still -- visible inside the module and its submodules). The only things that -- cannot appear in a private block are other private blocks and import -- statements. private bar : X -> X bar x = x -- Private declarations can go inside mutual and abstract blocks. mutual private f : Nat -> Nat f zero = zero f (suc n) = g n g : Nat -> Nat g n = f n abstract Nat' : Set Nat' = Nat private h : Nat' -> Nat h n = n -- A name space is something that contains names. You can create new -- name spaces and bring names from a name space into scope. module NameSpaces where -- To access definitions from a module in a different file, you have to -- 'import' this module. Only top-level modules (which have their own -- files) can be imported. -- If the imported module is not parameterised a name space with the same -- name as the module is created. import examples.syntax.ModuleA -- We can now refer to things from ModuleA using the created name -- space. Note that no unqualified names were brought into scope -- (except, perhaps, the name of the name space). [To bring -- unqualified names into scope we have to use the 'open' -- declaration.] FunnyNat = examples.syntax.ModuleA.Nat -- If the name of an imported module clashes with a local module we might -- have to rename the module we are importing import examples.syntax.ModuleA as A import examples.syntax.ModuleA as A' using (Nat) Nat1 = A.Nat Nat2 = A'.Nat {- You can't project from a parameterised module. It has to be instantiated first. The only thing that happens when importing is that the module name 'examples.syntax.ModuleB' is brought into scope (and the type checker goes away and type checks this module). -} import examples.syntax.ModuleB -- To instantiate ModuleB we need something to instantiate it with. postulate X : Set (==) : X -> X -> Prop refl : (x : X) -> x == x -- To instantiate a module you create a new module and define it as the -- instantiation in question. module B = examples.syntax.ModuleB X (==) refl -- Now the module B contains all the names from ModuleB. XList = B.List And = B./\ -- qualified operators are not infix symbols dummyX = B.SubModule.dummy -- submodules of ModuleB are also in scope -- This of course works for non-parameterised modules as well. module B' = B -- And you can create parameterised modules this way. module BX ((==) : X -> X -> Prop)(refl : (x : X) -> x == x) = B X (==) refl -- To bring names from a module into scope you use an open declaration. open examples.syntax.ModuleA two : FunnyNat two = eval (plus (suc zero) (suc zero)) {- In all three declarations (import, module instantiation and open) you can give modifiers that affect the names which are imported. There are three modifiers: using (x1;..;xn) only import x1,..,xn hiding (x1;..;xn) import everything but x1,..,xn renaming (x1 to y1;..;xn to yn) import x1,..,xn but call them y1,..,yn Restrictions: - a modifier can appear only once - 'using' and 'hiding' cannot appear together - imported names must be distinct (e.g. you cannot rename to a name that is already being imported). -} -- B1 only contains True and False module B1 = B using (True; False) -- B2 contains True, False and And where And = B./\ module B2 = B using (True; False) renaming (/\ to And) -- B3 contains everything from B except reflEqList and eqList, plus === -- where (===) = B.eqList. module B3 = B hiding (reflEqList) renaming (eqList to ===) -- When referring to sub modules you have to be explicitly about it being -- a module module B4 = B renaming (module SubModule to Sub) dummy : X dummy = B4.Sub.dummy -- There are two kinds of meta variables; question marks and underscores. -- Question marks are used for interaction and underscores for implicit -- arguments. module MetaVariables where postulate X : Set x : X -- There are two ways of writing a question mark: ? and {! ... !} -- The type checker will not complain about unsolved question marks (unless -- you claim you are done). incomplete : {A:Set} -> A -> A incomplete x = ? incomplete' : {A:Set} -> A -> A incomplete' x = {! you can put anything in here, even {! nested holes !} !} -- Underscores should always be solvable locally. Internally underscores -- are inserted for implicit arguments, but there are cases where you would -- like to write them explicitly. For instance, if you want to give one but -- not all implicit arguments to a function explicitly. underscore : ({A,B,C:Set} -> (A -> A) -> B -> C) -> X underscore f = f {_} {X} {_} (\y -> y) x -- Note that '_' is not an identifier character. The current use of -- underscore is not the real reason for this. The idea is rather that -- underscore will be used for subscripts. id : (A : Set) -> A -> A id A x = x x' = id_x -- this means id _ x -- The parser supports four types of literals. The syntax is the same as in -- Haskell (since that meant I could steal the lexer for them from ghc). module Literals where -- We haven't decided how to handle built-in types. postulate Integer : Set Char : Set String : Set Float : Set fortyTwo : Integer fortyTwo = 42 helloWorld : String helloWorld = "Hello World!" escape : Char escape = '\ESC' pi : Float pi = 3.141592 -- There are few things that the parser doesn't implement. {- Fancy case. I haven't been able to come up with a nice syntax for the fancy case statement. The difficulty is that we should make it clear what arguments to the elimination rule will appear as patterns (the targets). Suggestions are welcome. Also I'm not sure that we want the fancy case. It would be better to have a good way of doing actual pattern matching on inductive families. -} {- Relative imports. You might want to be able to say import .ModuleA to import the module 'current.directory.ModuleA'. Easy to implement but I'm not sure it's that painful to write the complete name (not a problem in Haskell for instance). Drawbacks: it looks kind of funny and it adds an extra bit of syntax to remember. -}
33.714953
79
0.615246
372c1a78194a44f6a4cecc1f5edb68723147f69d
331
agda
Agda
test/Succeed/ImportWarningsB.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/Succeed/ImportWarningsB.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/ImportWarningsB.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS -W ignore #-} module ImportWarningsB where -- all of the following files have warnings, which should be displayed -- when loading this file import Issue1988 import Issue2243 import Issue708quote import OldCompilerPragmas import RewritingEmptyPragma import Unreachable -- this warning will be ignored {-# REWRITE #-}
20.6875
70
0.791541