hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
dc0de19c50f032120db07b68521152fa0acb2df5
1,070
agda
Agda
part1/decidable/iff-erasure.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
1
2020-07-07T09:42:22.000Z
2020-07-07T09:42:22.000Z
part1/decidable/iff-erasure.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
part1/decidable/iff-erasure.agda
akiomik/plfa-solutions
df7722b88a9b3dfde320a690b78c4c1ef8c7c547
[ "Apache-2.0" ]
null
null
null
module iff-erasure where open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Data.Empty using (⊥-elim) -- open import plfa.part1.Isomorphism using (_⇔_) open import decidable using (Dec; yes; no; Bool; true; false; ⌊_⌋) -- 同値 (equivalence) record _⇔_ (A B : Set) : Set where field to : A → B from : B → A open _⇔_ -- 必要十分条件 (if and only if) _iff_ : Bool → Bool → Bool true iff true = true true iff false = false false iff true = false false iff false = true -- 同値のdecidable _⇔-dec_ : ∀ {A B : Set} → Dec A → Dec B → Dec (A ⇔ B) yes a ⇔-dec yes b = yes record { to = λ _ → b ; from = λ _ → a } yes a ⇔-dec no ¬b = no λ a⇔b → ¬b (to a⇔b a) no ¬a ⇔-dec yes b = no λ a⇔b → ¬a (from a⇔b b) no ¬a ⇔-dec no ¬b = yes record { to = λ a → ⊥-elim (¬a a) ; from = λ b → ⊥-elim (¬b b) } -- erasureを使うことで真偽値の必要十分条件とdecidableの同値が等しくなることの証明 iff-⇔ : ∀ {A B : Set} (x : Dec A) (y : Dec B) → ⌊ x ⌋ iff ⌊ y ⌋ ≡ ⌊ x ⇔-dec y ⌋ iff-⇔ (yes a) (yes b) = refl iff-⇔ (yes a) (no b) = refl iff-⇔ (no a) (yes b) = refl iff-⇔ (no a) (no b) = refl
30.571429
88
0.584112
34e1daa952f89f7e35b0049e5f65fd3c62d4e10f
146
agda
Agda
test/Succeed/Issue2981.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2981.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2981.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
record Unit : Set where constructor tt postulate C : Set c : C g : C f : Unit → C f tt = c record R : Set where constructor r g = c
8.111111
23
0.59589
21a35f0732321cf595522119889a1247d8086286
1,831
agda
Agda
src/Util/Vec.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
5
2021-04-13T21:31:17.000Z
2021-06-26T06:37:31.000Z
src/Util/Vec.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
null
null
null
src/Util/Vec.agda
JLimperg/msc-thesis-code
104cddc6b65386c7e121c13db417aebfd4b7a863
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Util.Vec where open import Data.Vec public open import Data.Vec.Relation.Unary.All as All public using (All ; [] ; _∷_) open import Data.Vec.Relation.Unary.Any as Any public using (Any ; here ; there) open import Data.Vec.Membership.Propositional public using (_∈_) open import Data.Nat as ℕ using (_≤_) open import Level using (_⊔_) open import Relation.Binary using (Rel) open import Util.Prelude import Data.Nat.Properties as ℕ max : ∀ {n} → Vec ℕ n → ℕ max = foldr _ ℕ._⊔_ 0 max-weaken : ∀ {n} x (xs : Vec ℕ n) → max xs ≤ max (x ∷ xs) max-weaken _ _ = ℕ.n≤m⊔n _ _ max-maximal : ∀ {n} (xs : Vec ℕ n) → All (_≤ max xs) xs max-maximal [] = [] max-maximal (x ∷ xs) = ℕ.m≤m⊔n _ _ ∷ All.map (λ x≤max → ℕ.≤-trans x≤max (max-weaken x xs)) (max-maximal xs) All→∈→P : ∀ {α β} {A : Set α} {P : A → Set β} {n} {xs : Vec A n} → All P xs → ∀ {x} → x ∈ xs → P x All→∈→P (px ∷ allP) (here refl) = px All→∈→P (px ∷ allP) (there x∈xs) = All→∈→P allP x∈xs max-maximal-∈ : ∀ {n x} {xs : Vec ℕ n} → x ∈ xs → x ≤ max xs max-maximal-∈ = All→∈→P (max-maximal _) data All₂ {α} {A : Set α} {ρ} (R : Rel A ρ) : ∀ {n} → Vec A n → Vec A n → Set (α ⊔ ρ) where [] : All₂ R [] [] _∷_ : ∀ {n x y} {xs ys : Vec A n} → R x y → All₂ R xs ys → All₂ R (x ∷ xs) (y ∷ ys) All₂-tabulate⁺ : ∀ {α} {A : Set α} {ρ} {R : Rel A ρ} {n} {f g : Fin n → A} → (∀ x → R (f x) (g x)) → All₂ R (tabulate f) (tabulate g) All₂-tabulate⁺ {n = zero} p = [] All₂-tabulate⁺ {n = suc n} p = p zero ∷ All₂-tabulate⁺ (λ x → p (suc x)) All₂-tabulate⁻ : ∀ {α} {A : Set α} {ρ} {R : Rel A ρ} {n} {f g : Fin n → A} → All₂ R (tabulate f) (tabulate g) → ∀ x → R (f x) (g x) All₂-tabulate⁻ [] () All₂-tabulate⁻ (fzRgz ∷ all) zero = fzRgz All₂-tabulate⁻ (fzRgz ∷ all) (suc x) = All₂-tabulate⁻ all x
26.926471
80
0.554888
7c07456542a4fb9b978319c3418ec525794ca884
335
agda
Agda
test/Fail/Issue5058.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue5058.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue5058.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate I : Set data Box (A : Set) : Set where [_] : A → Box A variable @0 i : I @0 b : Box I data D : @0 Box I → Set where d : D [ i ] → D [ i ] variable @0 x : D b data P : @0 D b → Set where p : P (d x) works : ∀ {i} {@0 x : D [ i ]} → P (d x) works = p fails : ∀ {@0 i} {@0 x : D [ i ]} → P (d x) fails = p
12.884615
43
0.444776
35ecf410ca0f2bd1fa64816ceb2394828e56fdad
12,261
agda
Agda
src/Univalence-axiom/Isomorphism-is-equality/More/Examples.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Univalence-axiom/Isomorphism-is-equality/More/Examples.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Univalence-axiom/Isomorphism-is-equality/More/Examples.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Examples related to Univalence-axiom.Isomorphism-is-equality.More ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Note that this module uses ordinary propositional equality, with a -- computing J rule. -- This module has been developed in collaboration with Thierry -- Coquand. module Univalence-axiom.Isomorphism-is-equality.More.Examples where open import Equality.Propositional renaming (equality-with-J to eq) open import Equivalence eq hiding (id) open import Function-universe eq hiding (id) open import H-level.Closure eq open import Prelude hiding (id) open import Univalence-axiom.Isomorphism-is-equality.More ------------------------------------------------------------------------ -- Magmas magma : Code magma = ε ▻ A-type ▻ N-ary [0] 2 Magma : Type₁ Magma = ⟦ magma ⟧ private -- An unfolding of Magma. Magma-unfolded : Magma ≡ Σ (Σ (↑ _ ⊤) λ _ → Type ) λ { (_ , A) → ↑ _ A → ↑ _ A → ↑ _ A } Magma-unfolded = refl -- An unfolding of Isomorphic magma. Isomorphic-magma-unfolded : ∀ {ass A₁ f₁ A₂ f₂} → Isomorphic ass magma ((_ , A₁) , f₁) ((_ , A₂) , f₂) ≡ Σ (Σ (↑ _ ⊤) λ _ → ↑ _ (A₁ ≃ A₂) ) λ { (_ , lift A₁≃A₂) → let open _≃_ (↑-cong A₁≃A₂) in ∀ x y → to (f₁ x y) ≡ f₂ (to x) (to y) } Isomorphic-magma-unfolded = refl ------------------------------------------------------------------------ -- Semigroups -- Note that one axiom states that the underlying type is a set. This -- assumption is used to prove that the other axiom is propositional. semigroup : Code semigroup = ε ▻ A-type ▻ Is-a-set [0] ▻ N-ary (1+ [0]) 2 ▻ Proposition (λ { (_ , _∙_) → ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }) assoc-prop where assoc-prop = λ { ass ((_ , A-set) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → A-set } Semigroup : Type₁ Semigroup = ⟦ semigroup ⟧ private -- An unfolding of Semigroup. Semigroup-unfolded : Semigroup ≡ Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → Type ) λ { (_ , A) → Is-set (↑ _ A) }) λ { ((_ , A) , _) → ↑ _ A → ↑ _ A → ↑ _ A }) λ { (_ , _∙_) → ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) } Semigroup-unfolded = refl -- An unfolding of Isomorphic semigroup. Isomorphic-semigroup-unfolded : ∀ {ass A₁} {is₁ : Is-set (↑ _ A₁)} {_∙₁_ assoc₁} {A₂} {is₂ : Is-set (↑ _ A₂)} {_∙₂_ assoc₂} → Isomorphic ass semigroup ((((_ , A₁) , is₁) , _∙₁_) , assoc₁) ((((_ , A₂) , is₂) , _∙₂_) , assoc₂) ≡ Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → ↑ _ (A₁ ≃ A₂) ) λ { _ → ↑ _ ⊤ }) λ { ((_ , lift A₁≃A₂) , _) → let open _≃_ (↑-cong A₁≃A₂) in ∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y) }) λ { _ → ↑ _ ⊤ } Isomorphic-semigroup-unfolded = refl ------------------------------------------------------------------------ -- Sets with fixed-point operators set-with-fixed-point-operator : Code set-with-fixed-point-operator = ε ▻ A-type ▻ Is-a-set [0] ▻ Simple ((base (1+ [0]) ⟶ base (1+ [0])) ⟶ base (1+ [0])) ▻ Proposition (λ { (_ , fix) → ∀ f → fix f ≡ f (fix f) }) fix-point-prop where fix-point-prop = λ { ass ((_ , A-set) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set } Set-with-fixed-point-operator : Type₁ Set-with-fixed-point-operator = ⟦ set-with-fixed-point-operator ⟧ private -- An unfolding of Set-with-fixed-point-operator. Set-with-fixed-point-operator-unfolded : Set-with-fixed-point-operator ≡ Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → Type ) λ { (_ , A) → Is-set (↑ _ A) }) λ { ((_ , A) , _) → (↑ _ A → ↑ _ A) → ↑ _ A }) λ { (_ , fix) → ∀ f → fix f ≡ f (fix f) } Set-with-fixed-point-operator-unfolded = refl -- An unfolding of Isomorphic set-with-fixed-point-operator. Isomorphic-set-with-fixed-point-operator-unfolded : ∀ {ass A₁} {is₁ : Is-set (↑ _ A₁)} {fix₁ fixed-point₁} {A₂} {is₂ : Is-set (↑ _ A₂)} {fix₂ fixed-point₂} → Isomorphic ass set-with-fixed-point-operator ((((_ , A₁) , is₁) , fix₁) , fixed-point₁) ((((_ , A₂) , is₂) , fix₂) , fixed-point₂) ≡ Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → ↑ _ (A₁ ≃ A₂) ) λ { _ → ↑ _ ⊤ }) λ { ((_ , lift A₁≃A₂) , _) → let open _≃_ (↑-cong A₁≃A₂) in ∀ f g → (∀ x y → to x ≡ y → to (f x) ≡ g y) → to (fix₁ f) ≡ fix₂ g }) λ { _ → ↑ _ ⊤ } Isomorphic-set-with-fixed-point-operator-unfolded = refl ------------------------------------------------------------------------ -- Abelian groups abelian-group : Code abelian-group = ε -- The underlying type. ▻ A-type -- The underlying type is a set. ▻ Is-a-set [0] -- The binary group operation. ▻ N-ary (1+ [0]) 2 -- Commutativity. ▻ Comm -- Associativity. ▻ Assoc -- Identity. ▻ N-ary (1+ 1+ 1+ 1+ [0]) 0 -- Left identity. ▻ Left-identity -- Right identity. ▻ Right-identity -- Inverse. ▻ N-ary (1+ 1+ 1+ 1+ 1+ 1+ 1+ [0]) 1 -- Left inverse. ▻ Left-inverse -- Right inverse. ▻ Right-inverse where Comm = Proposition (λ { (_ , _∙_) → ∀ x y → (x ∙ y) ≡ (y ∙ x) }) (λ { ass ((_ , A-set) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → A-set }) Assoc = Proposition (λ { ((_ , _∙_) , _) → ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }) (λ { ass (((_ , A-set) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → Π-closure ext₁ 1 λ _ → A-set }) Left-identity = Proposition (λ { ((((_ , _∙_) , _) , _) , e) → ∀ x → (e ∙ x) ≡ x }) (λ { ass (((((_ , A-set) , _) , _) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set }) Right-identity = Proposition (λ { (((((_ , _∙_) , _) , _) , e) , _) → ∀ x → (x ∙ e) ≡ x }) (λ { ass ((((((_ , A-set) , _) , _) , _) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set }) Left-inverse = Proposition (λ { (((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) → ∀ x → ((x ⁻¹) ∙ x) ≡ e }) (λ { ass ((((((((_ , A-set) , _) , _) , _) , _) , _) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set }) Right-inverse = Proposition (λ { ((((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) , _) → ∀ x → (x ∙ (x ⁻¹)) ≡ e }) (λ { ass (((((((((_ , A-set) , _) , _) , _) , _) , _) , _) , _) , _) → let open Assumptions ass in Π-closure ext₁ 1 λ _ → A-set }) Abelian-group : Type₁ Abelian-group = ⟦ abelian-group ⟧ private -- An unfolding of Abelian-group. Note that the inner structure is -- left-nested. Abelian-group-unfolded : Abelian-group ≡ Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → Type ) λ { (_ , A) → Is-set (↑ _ A) }) λ { ((_ , A) , _) → ↑ _ A → ↑ _ A → ↑ _ A }) λ { (_ , _∙_) → ∀ x y → (x ∙ y) ≡ (y ∙ x) }) λ { ((_ , _∙_) , _) → ∀ x y z → (x ∙ (y ∙ z)) ≡ ((x ∙ y) ∙ z) }) λ { (((((_ , A) , _) , _ ) , _) , _) → ↑ _ A }) λ { ((((_ , _∙_) , _) , _) , e) → ∀ x → (e ∙ x) ≡ x }) λ { (((((_ , _∙_) , _) , _) , e) , _) → ∀ x → (x ∙ e) ≡ x }) λ { ((((((((_ , A) , _) , _ ) , _) , _) , _) , _) , _) → ↑ _ A → ↑ _ A }) λ { (((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) → ∀ x → ((x ⁻¹) ∙ x) ≡ e }) λ { ((((((((_ , _∙_) , _) , _) , e) , _) , _) , _⁻¹) , _) → ∀ x → (x ∙ (x ⁻¹)) ≡ e } Abelian-group-unfolded = refl -- An unfolding of Isomorphic abelian-group. Isomorphic-abelian-group-unfolded : ∀ {ass A₁} {is₁ : Is-set (↑ _ A₁)} {_∙₁_ comm₁ assoc₁ e₁ lid₁ rid₁ _⁻¹₁ linv₁ rinv₁} {A₂} {is₂ : Is-set (↑ _ A₂)} {_∙₂_ comm₂ assoc₂ e₂ lid₂ rid₂ _⁻¹₂ linv₂ rinv₂} → Isomorphic ass abelian-group (((((((((((_ , A₁) , is₁) , _∙₁_) , comm₁) , assoc₁) , e₁) , lid₁) , rid₁) , _⁻¹₁) , linv₁) , rinv₁) (((((((((((_ , A₂) , is₂) , _∙₂_) , comm₂) , assoc₂) , e₂) , lid₂) , rid₂) , _⁻¹₂) , linv₂) , rinv₂) ≡ Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (Σ (↑ _ ⊤) λ _ → ↑ _ (A₁ ≃ A₂) ) λ { _ → ↑ _ ⊤ }) λ { ((_ , lift A₁≃A₂) , _) → let open _≃_ (↑-cong A₁≃A₂) in ∀ x y → to (x ∙₁ y) ≡ (to x ∙₂ to y) }) λ { _ → ↑ _ ⊤ }) λ { _ → ↑ _ ⊤ }) λ { (((((_ , lift A₁≃A₂) , _) , _) , _) , _) → let open _≃_ (↑-cong A₁≃A₂) in to e₁ ≡ e₂ }) λ { _ → ↑ _ ⊤ }) λ { _ → ↑ _ ⊤ }) λ { ((((((((_ , lift A₁≃A₂) , _) , _) , _) , _) , _) , _) , _) → let open _≃_ (↑-cong A₁≃A₂) in ∀ x → to (x ⁻¹₁) ≡ (to x ⁻¹₂) }) λ { _ → ↑ _ ⊤ }) λ { _ → ↑ _ ⊤ } Isomorphic-abelian-group-unfolded = refl ------------------------------------------------------------------------ -- Church-encoded natural numbers for which we can do induction -- Church-encoded natural numbers. Nat : Type₁ Nat = (A : Type) → ↑ (# 1) A → (↑ (# 1) A → ↑ (# 1) A) → ↑ (# 1) A -- Zero and successor. Zero : Nat Zero = λ A z s → z Suc : Nat → Nat Suc = λ n A z s → s (n A z s) -- The code. inductive-natural-numbers : Code inductive-natural-numbers = ε ▻ Dep (Π set (Π (base ⟨0⟩) (Π (Π (base (1+ ⟨0⟩)) (base (1+ 1+ ⟨0⟩))) (base (1+ 1+ ⟨0⟩))))) ▻ Proposition (λ { (_ , n) → (P : Nat → Type) → Is-proposition (P n) → P Zero → (∀ m → P m → P (Suc m)) → P n }) (λ ass _ → let open Assumptions ass in Π-closure ext₁ 1 λ _ → Π-closure (lower-extensionality (# 1) (# 0) ext₁) 1 λ Pn-prop → Π-closure (lower-extensionality (# 1) (# 0) ext₁) 1 λ _ → Π-closure (lower-extensionality (# 0) (# 1) ext₁) 1 λ _ → Pn-prop) where open Dependent private -- The usual unfolding lemmas. ⟦inductive-natural-numbers⟧ : ⟦ inductive-natural-numbers ⟧ ≡ Σ (Σ (↑ _ ⊤) λ _ → Nat ) λ { (_ , n) → (P : Nat → Type) → Is-proposition (P n) → P Zero → (∀ m → P m → P (Suc m)) → P n } ⟦inductive-natural-numbers⟧ = refl Isomorphic-inductive-natural-numbers : ∀ {ass : Assumptions} {n₁ n₂ : Nat} {prop₁ : (P : Nat → Type) → Is-proposition (P n₁) → P Zero → (∀ m → P m → P (Suc m)) → P n₁} {prop₂ : (P : Nat → Type) → Is-proposition (P n₂) → P Zero → (∀ m → P m → P (Suc m)) → P n₂} → Isomorphic ass inductive-natural-numbers ((_ , n₁) , prop₁) ((_ , n₂) , prop₂) ≡ Σ (Σ (↑ (# 1) ⊤) λ _ → ((A₁ A₂ : Type) → (A₁≃A₂ : ↑ (# 1) (A₁ ≃ A₂)) → let cast = _≃_.from (↑-cong (lower A₁≃A₂)) in (z₁ : ↑ (# 1) A₁) (z₂ : ↑ (# 1) A₂) → z₁ ≡ cast z₂ → (s₁ : ↑ (# 1) A₁ → ↑ (# 1) A₁) (s₂ : ↑ (# 1) A₂ → ↑ (# 1) A₂) → (∀ n₁ n₂ → n₁ ≡ cast n₂ → s₁ n₁ ≡ cast (s₂ n₂)) → n₁ A₁ z₁ s₁ ≡ cast (n₂ A₂ z₂ s₂))) λ _ → ↑ (# 1) ⊤ Isomorphic-inductive-natural-numbers = refl
30.125307
118
0.4069
52562ea1b6afab62fa8a237799c074af9deff7f6
9,997
agda
Agda
src/Prelude.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
src/Prelude.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
src/Prelude.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A small prelude ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} -- Note that parts of Agda's standard library make use of the K rule. module Prelude where ------------------------------------------------------------------------ -- Universes -- Basic type universes and universe levels. open import Agda.Primitive public renaming (Set to Type) using (Prop; Level; _⊔_; lzero; lsuc) private variable a b c ℓ p : Level @0 A A₁ A₂ B B₁ B₂ C D Whatever : Type a @0 P Q R : A → Type p -- Lifting. record ↑ ℓ (A : Type a) : Type (a ⊔ ℓ) where constructor lift field lower : A open ↑ public ------------------------------------------------------------------------ -- Strings open import Agda.Builtin.String public using (String) ------------------------------------------------------------------------ -- The unit type -- A variant of the unit type with η-equality. open import Agda.Builtin.Unit public using (⊤; tt) -- A variant without η-equality. data Unit : Type where unit : Unit -- Block s is used to block unfolding (for performance reasons). The -- string can be used to indicate what it is that is blocked. Block : String → Type Block _ = Unit pattern ⊠ = unit -- A function that can be used to locally block something. block : (Unit → A) → A block f = f ⊠ -- A function that can be used to unblock something. unblock : (b : Unit) (@0 P : Unit → Type p) → P ⊠ → P b unblock ⊠ _ p = p ------------------------------------------------------------------------ -- The empty type data ⊥ {ℓ} : Type ℓ where ⊥-elim : ⊥ {ℓ = ℓ} → Whatever ⊥-elim () -- A version of the empty type that is not universe-polymorphic. ⊥₀ : Type ⊥₀ = ⊥ -- Negation. infix 3 ¬_ ¬_ : Type ℓ → Type ℓ ¬ P = P → ⊥₀ ------------------------------------------------------------------------ -- Natural numbers open import Agda.Builtin.Nat public using (zero; suc; _+_; _*_) renaming (Nat to ℕ; _-_ to _∸_) -- Dependent eliminator. ℕ-rec : P 0 → (∀ n → P n → P (suc n)) → ∀ n → P n ℕ-rec z s zero = z ℕ-rec z s (suc n) = s n (ℕ-rec z s n) -- A non-recursive variant of ℕ-rec. ℕ-case : P 0 → (∀ n → P (suc n)) → ∀ n → P n ℕ-case z s = ℕ-rec z (λ n _ → s n) -- Exponentiation. infixr 8 _^_ _^_ : ℕ → ℕ → ℕ m ^ zero = 1 m ^ suc n = m * m ^ n -- Factorial. infix 9 _! _! : ℕ → ℕ zero ! = 1 suc n ! = suc n * n ! -- Translation from natural numbers to levels. # : ℕ → Level # zero = lzero # (suc n) = lsuc (# n) ------------------------------------------------------------------------ -- Combinators defined using only abstraction and application infixr 9 _∘_ infixl 1 _on_ infixr 0 _$_ -- The identity function. id : A → A id x = x -- Composition. _∘_ : {@0 B : A → Type b} {@0 C : {x : A} → B x → Type c} → (∀ {x} (y : B x) → C y) → (g : (x : A) → B x) → ((x : A) → C (g x)) f ∘ g = λ x → f (g x) -- "Equational" reasoning combinators. infix -1 finally-→ infixr -2 step-→ -- For an explanation of why step-⇔ is defined in this way, see -- Equality.step-≡. step-→ : (@0 A : Type a) → (B → C) → (A → B) → A → C step-→ _ f g = f ∘ g syntax step-→ A B→C A→B = A →⟨ A→B ⟩ B→C finally-→ : (@0 A : Type a) (@0 B : Type b) → (A → B) → A → B finally-→ _ _ A→B = A→B syntax finally-→ A B A→B = A →⟨ A→B ⟩□ B □ -- Application. _$_ : {@0 B : A → Type b} → ((x : A) → B x) → ((x : A) → B x) f $ x = f x -- Constant functions. const : A → (B → A) const x = λ _ → x {-# DISPLAY const x y = x #-} -- Flips the first two arguments. flip : {@0 C : A → B → Type c} → ((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y) flip f = λ x y → f y x -- Applies the unary function to each argument and combines the -- results using the binary function. _on_ : {@0 C : B → B → Type c} → ((x y : B) → C x y) → (f : A → B) → ((x y : A) → C (f x) (f y)) _*_ on f = λ x y → f x * f y -- A term's type. Type-of : {A : Type a} → A → Type a Type-of {A = A} _ = A -- Type signatures. infix 0 type-signature type-signature : (@0 A : Type a) → A → A type-signature _ a = a syntax type-signature A a = a ⦂ A -- The it function can be used to instantiate an argument by using -- instance search. it : ⦃ _ : A ⦄ → A it ⦃ x ⦄ = x -- Case expressions (to be used with pattern-matching lambdas). infix 0 case_return_of_ case_of_ case_return_of_ : (x : A) (@0 B : A → Type b) → ((x : A) → B x) → B x case x return B of f = f x case_of_ : A → (A → B) → B case x of f = case x return _ of f ------------------------------------------------------------------------ -- Σ-types infixr 4 _,′_ infixr 2 _×_ open import Agda.Builtin.Sigma public using (Σ; _,_) hiding (module Σ) renaming (fst to proj₁; snd to proj₂) module Σ where open Agda.Builtin.Sigma.Σ public using () renaming (fst to proj₁; snd to proj₂) -- Variants of the projections with erased type arguments. proj₁₀ : {@0 B : A → Type b} → Σ A B → A proj₁₀ (x , y) = x proj₂₀ : {@0 B : A → Type b} (p : Σ A B) → B (proj₁ p) proj₂₀ (x , y) = y open Σ public using (proj₁₀; proj₂₀) -- A variant where the first argument is implicit. ∃ : {A : Type a} → (A → Type b) → Type (a ⊔ b) ∃ = Σ _ -- Binary products. _×_ : (A : Type a) (B : Type b) → Type (a ⊔ b) A × B = Σ A (const B) -- A variant of _,_ that is specialised to _×_. Use of this variant -- can make type-inference easier. _,′_ : A → B → A × B x ,′ y = x , y -- A map function. Σ-map : (f : A → B) → (∀ {x} → P x → Q (f x)) → Σ A P → Σ B Q Σ-map f g = λ p → (f (proj₁₀ p) , g (proj₂₀ p)) -- Zip. Σ-zip : (f : A → B → C) → (∀ {x y} → P x → Q y → R (f x y)) → Σ A P → Σ B Q → Σ C R Σ-zip f g = λ p q → (f (proj₁₀ p) (proj₁₀ q) , g (proj₂₀ p) (proj₂₀ q)) -- Curry and uncurry. curry : {@0 B : A → Type b} {@0 C : Σ A B → Type c} → ((p : Σ A B) → C p) → ((x : A) (y : B x) → C (x , y)) curry f x y = f (x , y) uncurry : {@0 B : A → Type b} {@0 C : Σ A B → Type c} → ((x : A) (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f (x , y) = f x y -- Swaps the two components of the pair. swap : A × B → B × A swap (x , y) = y , x ------------------------------------------------------------------------ -- W-types data W (A : Type a) (B : A → Type b) : Type (a ⊔ b) where sup : (x : A) (f : B x → W A B) → W A B -- Projections. headᵂ : {@0 B : A → Type b} → W A B → A headᵂ (sup x f) = x tailᵂ : {@0 B : A → Type b} → (x : W A B) → B (headᵂ x) → W A B tailᵂ (sup x f) = f -- If B is always inhabited, then W A B is empty. abstract inhabited⇒W-empty : {@0 B : A → Type b} → (∀ x → B x) → ¬ W A B inhabited⇒W-empty b (sup x f) = inhabited⇒W-empty b (f (b x)) ------------------------------------------------------------------------ -- Binary sums infixr 1 _⊎_ data _⊎_ (A : Type a) (B : Type b) : Type (a ⊔ b) where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B -- Eliminator for binary sums. [_,_] : {@0 C : A ⊎ B → Type c} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ] (inj₁ x) = f x [ f , g ] (inj₂ y) = g y -- A generalisation of if-then-else. infix 5 if_then_else_ if_then_else_ : A ⊎ B → C → C → C if x then t else f = [ const t , const f ] x -- A generalisation of not. not : A ⊎ B → B ⊎ A not (inj₁ x) = inj₂ x not (inj₂ x) = inj₁ x -- A map function. ⊎-map : (A₁ → A₂) → (B₁ → B₂) → A₁ ⊎ B₁ → A₂ ⊎ B₂ ⊎-map f g = [ (λ x → inj₁ (f x)) , (λ x → inj₂ (g x)) ] -- The function from-⊎ is a safe analogue of fromJust. For an example -- of how from-⊎ can be used, see -- Quotient.equivalence-but-not-strong-equivalence. From-⊎ : {A B : Type ℓ} → A ⊎ B → Type ℓ From-⊎ {A = A} (inj₁ _) = A From-⊎ {B = B} (inj₂ _) = B from-⊎ : (x : A ⊎ B) → From-⊎ x from-⊎ (inj₁ x) = x from-⊎ (inj₂ y) = y -- A special case of binary sums: decided predicates. Dec : Type p → Type p Dec P = P ⊎ ¬ P pattern yes p = inj₁ p pattern no p = inj₂ p -- Decidable relations. Decidable : {A : Type a} {B : Type b} → (A → B → Type ℓ) → Type (a ⊔ b ⊔ ℓ) Decidable _∼_ = ∀ x y → Dec (x ∼ y) -- Exclusive or. infixr 1 _Xor_ _Xor_ : Type a → Type b → Type (a ⊔ b) A Xor B = (A × ¬ B) ⊎ (¬ A × B) -- Maybe. Maybe : Type a → Type a Maybe A = ⊤ ⊎ A pattern nothing = inj₁ tt pattern just x = inj₂ x -- The truth predicate T is only inhabited when its argument is -- inj₁ something. T : A ⊎ B → Type T b = if b then ⊤ else ⊥ ------------------------------------------------------------------------ -- Booleans -- Booleans. Bool : Type Bool = ⊤ ⊎ ⊤ pattern true = inj₁ tt pattern false = inj₂ tt -- And. infixr 6 _∧_ _∧_ : Bool → Bool → Bool b₁ ∧ b₂ = if b₁ then b₂ else false -- Or. infixr 5 _∨_ _∨_ : Bool → Bool → Bool b₁ ∨ b₂ = if b₁ then true else b₂ ------------------------------------------------------------------------ -- Lists open import Agda.Builtin.List public using (List; []; _∷_) ------------------------------------------------------------------------ -- Finite sets Fin : ℕ → Type Fin zero = ⊥ Fin (suc n) = ⊤ ⊎ Fin n pattern fzero = inj₁ tt pattern fsuc i = inj₂ i ------------------------------------------------------------------------ -- Some relation combinators -- Combines two relations into a relation on functions. _→-rel_ : {A : Type a} {C : Type c} → (A → C → Type ℓ) → (B → D → Type ℓ) → (A → B) → (C → D) → Type (a ⊔ c ⊔ ℓ) (P →-rel Q) f g = ∀ x y → P x y → Q (f x) (g y) -- Combines two relations into a relation on products. _×-rel_ : (A → C → Type ℓ) → (B → D → Type ℓ) → A × B → C × D → Type ℓ (P ×-rel Q) (x , u) (y , v) = P x y × Q u v -- Combines two relations into a relation on sums. _⊎-rel_ : (A → C → Type ℓ) → (B → D → Type ℓ) → A ⊎ B → C ⊎ D → Type ℓ (P ⊎-rel Q) (inj₁ x) (inj₁ y) = P x y (P ⊎-rel Q) (inj₁ x) (inj₂ v) = ⊥ (P ⊎-rel Q) (inj₂ u) (inj₁ y) = ⊥ (P ⊎-rel Q) (inj₂ u) (inj₂ v) = Q u v
20.783784
72
0.481644
1bcf0c6230bdb5e69a76d20196a5fee46f6c107b
1,952
agda
Agda
test/Compiler/simple/Issue4168-4185.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
1
2019-09-27T06:54:44.000Z
2019-09-27T06:54:44.000Z
test/Compiler/simple/Issue4168-4185.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Compiler/simple/Issue4168-4185.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
null
null
null
-- Andreas, 2019-11-12, issue #4168b -- -- Meta variable solver should not use uncurrying -- if the record type contains erased fields. open import Agda.Builtin.Equality open import Agda.Builtin.Sigma open import Common.IO P : (A B : Set) → (A → B) → Set P A B f = (y : B) → Σ A (λ x → f x ≡ y) record R (A B : Set) : Set where field to : A → B from : B → A from-to : (x : A) → from (to x) ≡ x p : (A B : Set) (r : R A B) → P A B (R.to r) p _ _ r y = R.from r y , to-from y where postulate to-from : ∀ x → R.to r (R.from r x) ≡ x record Box (A : Set) : Set where constructor box field @0 unbox : A test : (A : Set) → P (Box A) (Box (Box A)) (box {A = Box A}) test A = p _ _ (record { to = box {A = _} ; from = λ { (box (box x)) → box {A = A} x } -- at first, a postponed type checking problem ?from ; from-to = λ x → refl {A = Box A} {x = _} }) -- from-to creates constraint -- -- x : Box A |- ?from (box x) = x : Box A -- -- This was changed to -- -- y : Box (Box A) |- ?from y = unbox y : Box A -- -- which is an invalid transformation since x is not -- guaranteed to be in erased context. -- As a consequence, compilation (GHC backend) failed. -- A variant with a non-erased field. record ⊤ : Set where record Box' (A : Set) : Set where constructor box' field unit : ⊤ @0 unbox' : A test' : (A : Set) → P (Box' A) (Box' (Box' A)) (box' {A = Box' A} _) test' A = p _ _ (record { to = box' {A = _} _ ; from = λ { (box' _ (box' _ x)) → box' {A = A} _ x } ; from-to = λ x → refl {A = Box' A} {x = _} }) -- UPDATE (2019-11-17): -- We may, however, uncurry if the record argument is erased. mutual X : {@0 A : Set} (@0 b : Box A) → Box (Box A) X = _ spec : ∀{@0 A : Set} {@0 x : A} → X (box x) ≡ box (box x) spec = refl -- This can be solved by: -- X := λ {@0 A} (@0 b) → box (box (Box.unbox b)) main : IO ⊤ main = return _
22.964706
68
0.531762
7339c4344a61d83c493059abcd8ccfe3fa9dcb58
170
agda
Agda
Cubical/HITs/SetQuotients.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/HITs/SetQuotients.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/HITs/SetQuotients.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.HITs.SetQuotients where open import Cubical.HITs.SetQuotients.Base public open import Cubical.HITs.SetQuotients.Properties public
28.333333
55
0.805882
3670fc640cd2937c820ee43f81ad0a8cd56c1199
1,605
agda
Agda
notes/FOT/FOTC/Data/List/WellFoundedRelationsSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
notes/FOT/FOTC/Data/List/WellFoundedRelationsSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
notes/FOT/FOTC/Data/List/WellFoundedRelationsSL.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Well-founded relation on lists ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.List.WellFoundedRelationsSL {A : Set} where open import Data.Product open import Data.List hiding ( length ) open import Data.Nat open import Induction.Nat open import Induction.WellFounded open import Relation.Binary.PropositionalEquality ------------------------------------------------------------------------------ -- We use our own version of the function length because we have -- better reductions. length : List A → ℕ length [] = 0 length (x ∷ xs) = 1 + length xs open module II = Induction.WellFounded.Inverse-image {_<_ = _<′_} length -- Well-founded relation on lists based on their length. LTL : List A → List A → Set LTL xs ys = length xs <′ length ys -- The relation LTL is well-founded (using the image inverse -- combinator). wfLTL : Well-founded LTL wfLTL = II.well-founded <′-well-founded -- Well-founded relation on lists based on their structure. LTC : List A → List A → Set LTC xs ys = Σ A (λ a → ys ≡ a ∷ xs) LTC→LTL : ∀ {xs ys} → LTC xs ys → LTL xs ys LTC→LTL (x , refl) = ≤′-refl open module S = Induction.WellFounded.Subrelation {_<₁_ = LTC} LTC→LTL -- The relation LTC is well-founded (using the subrelation combinator). wfLTC : Well-founded LTC wfLTC = S.well-founded wfLTL
31.470588
78
0.583801
1b8027e662980b6c5ada3e8b74f33d24ee36ab61
5,004
agda
Agda
Data/List/Properties.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
6
2020-09-11T17:45:41.000Z
2021-11-16T08:11:34.000Z
Data/List/Properties.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
null
null
null
Data/List/Properties.agda
oisdk/agda-playground
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
[ "MIT" ]
1
2021-11-11T12:30:21.000Z
2021-11-11T12:30:21.000Z
{-# OPTIONS --cubical --safe #-} module Data.List.Properties where open import Data.List open import Prelude open import Data.Fin open import Strict.Properties map-length : (f : A → B) (xs : List A) → length xs ≡ length (map f xs) map-length f [] _ = zero map-length f (x ∷ xs) i = suc (map-length f xs i) map-ind : (f : A → B) (xs : List A) → PathP (λ i → Fin (map-length f xs i) → B) (f ∘ (xs !_)) (map f xs !_) map-ind f [] i () map-ind f (x ∷ xs) i f0 = f x map-ind f (x ∷ xs) i (fs n) = map-ind f xs i n tab-length : ∀ n (f : Fin n → A) → length (tabulate n f) ≡ n tab-length zero f _ = zero tab-length (suc n) f i = suc (tab-length n (f ∘ fs) i) tab-distrib : ∀ n (f : Fin n → A) m → ∃ i × (f i ≡ tabulate n f ! m) tab-distrib (suc n) f f0 = f0 , refl tab-distrib (suc n) f (fs m) = let i , p = tab-distrib n (f ∘ fs) m in fs i , p tab-id : ∀ n (f : Fin n → A) → PathP (λ i → Fin (tab-length n f i) → A) (_!_ (tabulate n f)) f tab-id zero f _ () tab-id (suc n) f i f0 = f f0 tab-id (suc n) f i (fs m) = tab-id n (f ∘ fs) i m list-elim : ∀ {p} (P : List A → Type p) → (∀ x xs → P xs → P (x ∷ xs)) → (P []) → ∀ xs → P xs list-elim P f b [] = b list-elim P f b (x ∷ xs) = f x xs (list-elim P f b xs) foldr-universal : ∀ (h : List B → A) f e → (h [] ≡ e) → (∀ x xs → h (x ∷ xs) ≡ f x (h xs)) → ∀ xs → h xs ≡ foldr f e xs foldr-universal h f e base step [] = base foldr-universal h f e base step (x ∷ xs) = step x xs ; cong (f x) (foldr-universal h f e base step xs) foldr-id : (xs : List A) → xs ≡ foldr _∷_ [] xs foldr-id = foldr-universal id _∷_ [] refl (λ _ _ → refl) foldr-fusion : ∀ (f : C → A) {_⊕_ : B → C → C} {_⊗_ : B → A → A} e → (∀ x y → f (x ⊕ y) ≡ x ⊗ f y) → ∀ xs → f (foldr _⊕_ e xs) ≡ foldr _⊗_ (f e) xs foldr-fusion h {f} {g} e fuse = foldr-universal (h ∘ foldr f e) g (h e) refl (λ x xs → fuse x (foldr f e xs)) foldl-is-foldr : (f : B → A → B) (z : B) (xs : List A) → foldl f z xs ≡ foldr (λ x k xs → k (f xs x)) id xs z foldl-is-foldr f z xs = cong (_$ z) (foldr-universal (flip (foldl f)) (λ x k xs → k (f xs x)) id refl (λ x xs → refl) xs) foldl-fusion : ∀ (f : C → A) {_⊕_ : C → B → C} {_⊗_ : A → B → A} e → (∀ x y → f (x ⊕ y) ≡ f x ⊗ y) → ∀ xs → f (foldl _⊕_ e xs) ≡ foldl _⊗_ (f e) xs foldl-fusion h {f} {g} e fuse [] = refl foldl-fusion h {f} {g} e fuse (x ∷ xs) = foldl-fusion h (f e x) fuse xs ; cong (flip (foldl g) xs) (fuse e x) ++-assoc : (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) ++-assoc xs ys zs = foldr-fusion (_++ zs) ys (λ _ _ → refl) xs map-fusion : ∀ f (b : C) (g : A → B) xs → foldr f b (map g xs) ≡ foldr (f ∘ g) b xs map-fusion f b g = foldr-fusion (foldr f b) [] λ _ _ → refl ++-idʳ : (xs : List A) → xs ++ [] ≡ xs ++-idʳ [] = refl ++-idʳ (x ∷ xs) = cong (x ∷_) (++-idʳ xs) open import Function.Injective ∷-inj : (x : A) → Injective (x ∷_) ∷-inj x xs ys = cong λ where [] → [] (_ ∷ zs) → zs ++-inj : (xs : List A) → Injective (xs ++_) ++-inj [] ys zs ys≡zs = ys≡zs ++-inj (x ∷ xs) ys zs ys≡zs = ++-inj xs ys zs (∷-inj x (xs ++ ys) (xs ++ zs) ys≡zs) open import Algebra module _ (mon : Monoid b) where open Monoid mon module _ (f : A → 𝑆) where monStepL : 𝑆 → A → 𝑆 monStepL xs x = xs ∙ f x {-# INLINE monStepL #-} foldMapL : List A → 𝑆 foldMapL = foldl monStepL ε foldMapLStep : ∀ x xs → f x ∙ foldMapL xs ≡ foldMapL (x ∷ xs) foldMapLStep x xs = foldl-fusion (f x ∙_) ε (λ y z → sym (assoc (f x) y (f z))) xs ; cong (flip (foldl monStepL) xs) (∙ε (f x) ; sym (ε∙ (f x))) foldl-foldr-monoid : (xs : List A) → foldMapL xs ≡ foldr (_∙_ ∘ f) ε xs foldl-foldr-monoid = foldr-universal _ (_∙_ ∘ f) ε refl λ x xs → sym (foldMapLStep x xs) module _ (A : Type a) where listMonoid : Monoid a listMonoid .Monoid.𝑆 = List A listMonoid .Monoid._∙_ = _++_ listMonoid .Monoid.ε = [] listMonoid .Monoid.assoc = ++-assoc listMonoid .Monoid.ε∙ _ = refl listMonoid .Monoid.∙ε = ++-idʳ foldl′-foldl : (f : B → A → B) (z : B) (xs : List A) → foldl′ f z xs ≡ foldl f z xs foldl′-foldl f z [] = refl foldl′-foldl f z (x ∷ xs) = $!-≡ (λ y → foldl′ f y xs) (f z x) ; foldl′-foldl f (f z x) xs foldr′-foldr : (f : A → B → B) (z : B) (xs : List A) → foldr′ f z xs ≡ foldr f z xs foldr′-foldr f z [] = refl foldr′-foldr f z (x ∷ xs) = $!-≡ (f x) (foldr′ f z xs) ; cong (f x) (foldr′-foldr f z xs) is-empty : List A → Bool is-empty [] = true is-empty (_ ∷ _) = false NonEmpty : List A → Type NonEmpty = T ∘ not ∘ is-empty open import Data.Maybe.Properties foldrMay-nonEmpty : (f : A → A → A) (xs : List A) → NonEmpty xs → IsJust (foldrMay f xs) foldrMay-nonEmpty f (x ∷ xs) _ = tt foldr1 : (A → A → A) → (xs : List A) → ⦃ NonEmpty xs ⦄ → A foldr1 f xs ⦃ xsne ⦄ = fromJust (foldrMay f xs) where instance _ = foldrMay-nonEmpty f xs xsne
34.993007
148
0.520783
36b4bf417ee4518bc210c2fae908010ddc2a7981
7,254
agda
Agda
StructurallyRecursiveDescentParsing/Simplified/Semantics.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
1
2020-07-03T08:56:13.000Z
2020-07-03T08:56:13.000Z
StructurallyRecursiveDescentParsing/Simplified/Semantics.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
StructurallyRecursiveDescentParsing/Simplified/Semantics.agda
nad/parser-combinators
76774f54f466cfe943debf2da731074fe0c33644
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Semantics of the simplified parsers ------------------------------------------------------------------------ module StructurallyRecursiveDescentParsing.Simplified.Semantics where open import Algebra open import Codata.Musical.Notation open import Data.Bool open import Data.List import Data.List.Properties private module LM {Tok : Set} = Monoid (Data.List.Properties.++-monoid Tok) open import Data.Product as Prod open import Function open import Data.Empty open import Relation.Binary.PropositionalEquality as P using (_≡_) open import StructurallyRecursiveDescentParsing.Simplified open import TotalParserCombinators.Parser using (○; ◌) open import TotalParserCombinators.Semantics as Semantics using ([_-_]_>>=_) renaming (_∈_·_ to _∈′_·_) open Semantics._∈_·_ ------------------------------------------------------------------------ -- Semantics -- The semantics of the parsers. x ∈ p · s means that x can be the -- result of applying the parser p to the string s. Note that the -- semantics is defined inductively. infixl 10 _?>>=_ _!>>=_ infix 4 _∈_·_ data _∈_·_ {Tok} : ∀ {R e} → R → Parser Tok e R → List Tok → Set1 where return : ∀ {R} {x : R} → x ∈ return x · [] token : ∀ {x} → x ∈ token · [ x ] ∣ˡ : ∀ {R x e₁ e₂ s} {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₁ : x ∈ p₁ · s) → x ∈ p₁ ∣ p₂ · s ∣ʳ : ∀ {R x e₂ s} e₁ {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₂ : x ∈ p₂ · s) → x ∈ p₁ ∣ p₂ · s _?>>=_ : ∀ {R₁ R₂ x y e₂ s₁ s₂} {p₁ : Parser Tok true R₁} {p₂ : R₁ → Parser Tok e₂ R₂} (x∈p₁ : x ∈ p₁ · s₁) (y∈p₂x : y ∈ p₂ x · s₂) → y ∈ p₁ ?>>= p₂ · s₁ ++ s₂ _!>>=_ : ∀ {R₁ R₂ x y} {e₂ : R₁ → Bool} {s₁ s₂} {p₁ : Parser Tok false R₁} {p₂ : (x : R₁) → ∞ (Parser Tok (e₂ x) R₂)} (x∈p₁ : x ∈ p₁ · s₁) (y∈p₂x : y ∈ ♭ (p₂ x) · s₂) → y ∈ p₁ !>>= p₂ · s₁ ++ s₂ ------------------------------------------------------------------------ -- _∈_·_ is correct with respect to _∈′_·_ sound : ∀ {Tok e R} {p : Parser Tok e R} {x s} → x ∈ p · s → x ∈′ ⟦ p ⟧ · s sound return = return sound token = token sound (∣ˡ x∈p₁) = cast (∣-left (sound x∈p₁)) sound (∣ʳ _ {p₁} x∈p₂) = cast (∣-right (initial p₁) (sound x∈p₂)) sound (_?>>=_ {p₂ = p₂} x∈p₁ y∈p₂x) = cast ([_-_]_>>=_ ○ ○ {p₂ = λ x → ⟦ p₂ x ⟧} (sound x∈p₁) (sound y∈p₂x)) sound (x∈p₁ !>>= y∈p₂x) = [ ○ - ◌ ] sound x∈p₁ >>= sound y∈p₂x complete : ∀ {Tok e R} (p : Parser Tok e R) {x s} → x ∈′ ⟦ p ⟧ · s → x ∈ p · s complete (return x) return = return complete fail () complete token token = token complete (p₁ ∣ p₂) (cast (∣-left x∈p₁)) = ∣ˡ (complete p₁ x∈p₁) complete (_∣_ {e₁} p₁ p₂) (cast (∣-right ._ x∈p₂)) = ∣ʳ e₁ (complete p₂ x∈p₂) complete (p₁ ?>>= p₂) (cast (x∈p₁ >>= y∈p₂x)) = complete p₁ x∈p₁ ?>>= complete (p₂ _) y∈p₂x complete (p₁ !>>= p₂) (x∈p₁ >>= y∈p₂x) = complete p₁ x∈p₁ !>>= complete (♭ (p₂ _)) y∈p₂x ------------------------------------------------------------------------ -- A lemma -- A simple cast lemma. cast∈ : ∀ {Tok e R} {p p′ : Parser Tok e R} {x x′ s s′} → x ≡ x′ → p ≡ p′ → s ≡ s′ → x ∈ p · s → x′ ∈ p′ · s′ cast∈ P.refl P.refl P.refl x∈ = x∈ ------------------------------------------------------------------------ -- A variant of the semantics -- The statement x ⊕ s₂ ∈ p · s means that there is some s₁ such that -- s ≡ s₁ ++ s₂ and x ∈ p · s₁. This variant of the semantics is -- perhaps harder to understand, but sometimes easier to work with -- (and it is proved equivalent to the semantics above). infix 4 _⊕_∈_·_ data _⊕_∈_·_ {Tok} : ∀ {R e} → R → List Tok → Parser Tok e R → List Tok → Set1 where return : ∀ {R} {x : R} {s} → x ⊕ s ∈ return x · s token : ∀ {x s} → x ⊕ s ∈ token · x ∷ s ∣ˡ : ∀ {R x e₁ e₂ s s₁} {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) → x ⊕ s₁ ∈ p₁ ∣ p₂ · s ∣ʳ : ∀ {R x e₂ s s₁} e₁ {p₁ : Parser Tok e₁ R} {p₂ : Parser Tok e₂ R} (x∈p₂ : x ⊕ s₁ ∈ p₂ · s) → x ⊕ s₁ ∈ p₁ ∣ p₂ · s _?>>=_ : ∀ {R₁ R₂ x y e₂ s s₁ s₂} {p₁ : Parser Tok true R₁} {p₂ : R₁ → Parser Tok e₂ R₂} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) (y∈p₂x : y ⊕ s₂ ∈ p₂ x · s₁) → y ⊕ s₂ ∈ p₁ ?>>= p₂ · s _!>>=_ : ∀ {R₁ R₂ x y} {e₂ : R₁ → Bool} {s s₁ s₂} {p₁ : Parser Tok false R₁} {p₂ : (x : R₁) → ∞ (Parser Tok (e₂ x) R₂)} (x∈p₁ : x ⊕ s₁ ∈ p₁ · s) (y∈p₂x : y ⊕ s₂ ∈ ♭ (p₂ x) · s₁) → y ⊕ s₂ ∈ p₁ !>>= p₂ · s -- The definition is sound and complete with respect to the one above. ⊕-sound′ : ∀ {Tok R e x s₂ s} {p : Parser Tok e R} → x ⊕ s₂ ∈ p · s → ∃ λ s₁ → (s ≡ s₁ ++ s₂) × (x ∈ p · s₁) ⊕-sound′ return = ([] , P.refl , return) ⊕-sound′ {x = x} token = ([ x ] , P.refl , token) ⊕-sound′ (∣ˡ x∈p₁) with ⊕-sound′ x∈p₁ ⊕-sound′ (∣ˡ x∈p₁) | (s₁ , P.refl , x∈p₁′) = (s₁ , P.refl , ∣ˡ x∈p₁′) ⊕-sound′ (∣ʳ e₁ x∈p₁) with ⊕-sound′ x∈p₁ ⊕-sound′ (∣ʳ e₁ x∈p₁) | (s₁ , P.refl , x∈p₁′) = (s₁ , P.refl , ∣ʳ e₁ x∈p₁′) ⊕-sound′ (x∈p₁ ?>>= y∈p₂x) with ⊕-sound′ x∈p₁ | ⊕-sound′ y∈p₂x ⊕-sound′ (x∈p₁ ?>>= y∈p₂x) | (s₁ , P.refl , x∈p₁′) | (s₂ , P.refl , y∈p₂x′) = (s₁ ++ s₂ , P.sym (LM.assoc s₁ s₂ _) , x∈p₁′ ?>>= y∈p₂x′) ⊕-sound′ (x∈p₁ !>>= y∈p₂x) with ⊕-sound′ x∈p₁ | ⊕-sound′ y∈p₂x ⊕-sound′ (x∈p₁ !>>= y∈p₂x) | (s₁ , P.refl , x∈p₁′) | (s₂ , P.refl , y∈p₂x′) = (s₁ ++ s₂ , P.sym (LM.assoc s₁ s₂ _) , x∈p₁′ !>>= y∈p₂x′) ⊕-sound : ∀ {Tok R e x s} {p : Parser Tok e R} → x ⊕ [] ∈ p · s → x ∈ p · s ⊕-sound x∈p with ⊕-sound′ x∈p ⊕-sound x∈p | (s , P.refl , x∈p′) with s ++ [] | proj₂ LM.identity s ⊕-sound x∈p | (s , P.refl , x∈p′) | .s | P.refl = x∈p′ extend : ∀ {Tok R e x s s′ s″} {p : Parser Tok e R} → x ⊕ s′ ∈ p · s → x ⊕ s′ ++ s″ ∈ p · s ++ s″ extend return = return extend token = token extend (∣ˡ x∈p₁) = ∣ˡ (extend x∈p₁) extend (∣ʳ e₁ x∈p₂) = ∣ʳ e₁ (extend x∈p₂) extend (x∈p₁ ?>>= y∈p₂x) = extend x∈p₁ ?>>= extend y∈p₂x extend (x∈p₁ !>>= y∈p₂x) = extend x∈p₁ !>>= extend y∈p₂x ⊕-complete : ∀ {Tok R e x s} {p : Parser Tok e R} → x ∈ p · s → x ⊕ [] ∈ p · s ⊕-complete return = return ⊕-complete token = token ⊕-complete (∣ˡ x∈p₁) = ∣ˡ (⊕-complete x∈p₁) ⊕-complete (∣ʳ e₁ x∈p₂) = ∣ʳ e₁ (⊕-complete x∈p₂) ⊕-complete (x∈p₁ ?>>= y∈p₂x) = extend (⊕-complete x∈p₁) ?>>= ⊕-complete y∈p₂x ⊕-complete (x∈p₁ !>>= y∈p₂x) = extend (⊕-complete x∈p₁) !>>= ⊕-complete y∈p₂x ⊕-complete′ : ∀ {Tok R e x s₂ s} {p : Parser Tok e R} → (∃ λ s₁ → s ≡ s₁ ++ s₂ × x ∈ p · s₁) → x ⊕ s₂ ∈ p · s ⊕-complete′ (s₁ , P.refl , x∈p) = extend (⊕-complete x∈p)
44.231707
100
0.444031
fd003316db28d02fe24fd80ffcbc8106023e9ed0
725
agda
Agda
theorems/cw/cohomology/TopGrid.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/TopGrid.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/cw/cohomology/TopGrid.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.Theory module cw.cohomology.TopGrid {i} (OT : OrdinaryTheory i) (n : ℤ) {X Y Z : Ptd i} (f : X ⊙→ Y) (g : Y ⊙→ Z) where {- X --> Y ---> Z | | this | v v one v 1 -> Y/X -> Z/X -} open OrdinaryTheory OT open import cohomology.PtdMapSequence cohomology-theory open import cw.cohomology.GridPtdMap f g using (Y/X-to-Z/X) top-grid-comm-sqr : CommSquare (fst g) (fst Y/X-to-Z/X) cfcod cfcod top-grid-comm-sqr = comm-sqr λ _ → idp C-top-grid-commutes : CommSquareᴳ (C-fmap n Y/X-to-Z/X) (C-fmap n g) (C-fmap n (⊙cfcod' (g ⊙∘ f))) (C-fmap n (⊙cfcod' f)) C-top-grid-commutes = C-comm-square n top-grid-comm-sqr
27.884615
91
0.615172
064790ae8bae4da98de12318df96fcb3564abc2b
105
agda
Agda
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Maybe.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Maybe.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Maybe.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Data.Maybe where data Maybe (a : Set) : Set where nothing : Maybe a just : a -> Maybe a
13.125
32
0.619048
3f58bc5160499308af94a0ff68921f543cf44262
1,266
agda
Agda
src/LibraBFT/Impl/Consensus/ConsensusTypes/VoteData.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/ConsensusTypes/VoteData.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/Consensus/ConsensusTypes/VoteData.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.Impl.OBM.Logging.Logging open import Optics.All open import Util.Prelude module LibraBFT.Impl.Consensus.ConsensusTypes.VoteData where verify : VoteData → Either ErrLog Unit verify self = do lcheck (self ^∙ vdParent ∙ biEpoch == self ^∙ vdProposed ∙ biEpoch) ("parent and proposed epochs do not match" ∷ []) lcheck (⌊ self ^∙ vdParent ∙ biRound <? self ^∙ vdProposed ∙ biRound ⌋) ("proposed round is less than parent round" ∷ []) -- lcheck (self^.vdParent.biTimestamp <= self^.vdProposed.biTimestamp) -- ["proposed happened before parent"] lcheck (⌊ (self ^∙ vdParent ∙ biVersion) ≤?-Version (self ^∙ vdProposed ∙ biVersion) ⌋) ("proposed version is less than parent version" ∷ []) -- , lsVersion (self^.vdProposed.biVersion), lsVersion (self^.vdParent.biVersion)] new : BlockInfo → BlockInfo → VoteData new = VoteData∙new
40.83871
111
0.71643
4e8766da2f5e2d58c6094f30b6b937ad89e87b8b
5,233
agda
Agda
test/Succeed/CompileTimeInlining.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/CompileTimeInlining.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/CompileTimeInlining.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
------------------------------------------------------------------------ -- A small definition of a dependently typed language, using the -- technique from McBride's "Outrageous but Meaningful Coincidences" ------------------------------------------------------------------------ -- Inlining saves a lot of memory. Test with +RTS -M100M -- The inlining of zero and suc in raw-category at the end is the most -- important. {-# OPTIONS --type-in-type #-} module _ where open import Agda.Builtin.Equality open import Agda.Builtin.Unit open import Agda.Builtin.Sigma ------------------------------------------------------------------------ -- Prelude data ⊥ : Set where ⊥-elim : ⊥ → {A : Set} → A ⊥-elim () data Either (A B : Set) : Set where left : A → Either A B right : B → Either A B uncurry : {A : Set} {B : A → Set} {C : Σ A B → Set} → ((x : A) (y : B x) → C (x , y)) → ((p : Σ A B) → C p) uncurry f p = f (fst p) (snd p) infixr 2 _×_ _×_ : Set → Set → Set _×_ A B = Σ A (λ _ → B) ------------------------------------------------------------------------ -- A universe data U : Set El : U → Set data U where set : U el : Set → U sigma : (a : U) → (El a → U) → U pi : (a : U) → (El a → U) → U El set = Set El (el A) = A El (sigma a b) = Σ (El a) (λ x → El (b x)) El (pi a b) = (x : El a) → El (b x) -- Abbreviations. fun : U → U → U fun a b = pi a (λ _ → b) times : U → U → U times a b = sigma a (λ _ → b) -- -- Example. ------------------------------------------------------------------------ -- Contexts -- Contexts. data Ctxt : Set -- Types. Ty : Ctxt → Set -- Environments. Env : Ctxt → Set data Ctxt where empty : Ctxt snoc : (G : Ctxt) → Ty G → Ctxt Ty G = Env G → U Env empty = ⊤ Env (snoc G s) = Σ (Env G) (λ g → El (s g)) -- Variables (deBruijn indices). Var : ∀ G → Ty G → Set Var empty t = ⊥ Var (snoc G s) t = Either ((λ g → s (fst g)) ≡ t) (Σ _ (λ u → (λ g → u (fst g)) ≡ t × Var G u)) zero : ∀ {G s} → Var (snoc G s) (λ g → s (fst g)) zero = left refl suc : ∀ {G s t} → (x : Var G t) → Var (snoc G s) (λ g → t (fst g)) suc x = right (_ , refl , x) -- A lookup function. lookup : ∀ G (s : Ty G) → Var G s → (g : Env G) → El (s g) lookup empty _ absurd _ = ⊥-elim absurd lookup (snoc vs v) _ (left refl) g = snd g lookup (snoc vs v) t (right (_ , refl , x)) g = lookup _ _ x (fst g) ------------------------------------------------------------------------ -- A language -- Syntax for types. data Type (G : Ctxt) (s : Ty G) : Set -- Terms. data Term (G : Ctxt) (s : Ty G) : Set -- The semantics of a term. eval : ∀ {G s} → Term G s → (g : Env G) → El (s g) data Type G s where set'' : s ≡ (λ _ → set) → Type G s el'' : (x : Term G (λ _ → set)) → (λ g → el (eval {s = λ _ → set} x g)) ≡ s → Type G s sigma'' : {t : _} {u : _} → Type G t → Type (snoc G t) u → (λ g → sigma (t g) (λ v → u (g , v))) ≡ s → Type G s pi'' : {t : _} {u : _} → Type G t → Type (snoc G t) u → (λ g → pi (t g) (λ v → u (g , v))) ≡ s → Type G s data Term G s where var : Var G s → Term G s lam'' : {t : _} {u : _} → Term (snoc G t) (uncurry u) → (λ g → pi (t g) (λ v → u g v)) ≡ s → Term G s app'' : {t : _} {u : (g : Env G) → El (t g) → U} → Term G (λ g → pi (t g) (λ v → u g v)) → (t2 : Term G t) → (λ g → u g (eval t2 g)) ≡ s → Term G s eval (var x) g = lookup _ _ x g eval (lam'' t refl) g = λ v → eval t (g , v) eval (app'' t1 t2 refl) g = eval t1 g (eval t2 g) -- Abbreviations. set' : {G : Ctxt} → Type G (λ _ → set) set' = set'' refl el' : {G : Ctxt} (x : Term G (λ _ → set)) → Type G (λ g → el (eval {G} {λ _ → set} x g)) el' x = el'' x refl sigma' : {G : Ctxt} {t : Env G → U} {u : Env (snoc G t) → U} → Type G t → Type (snoc G t) u → Type G (λ g → sigma (t g) (λ v → u (g , v))) sigma' s t = sigma'' s t refl pi' : {G : _} {t : _} {u : _} → Type G t → Type (snoc G t) u → Type G (λ g → pi (t g) (λ v → u (g , v))) pi' s t = pi'' s t refl lam : {G : _} {t : _} {u : _} → Term (snoc G t) (uncurry u) → Term G (λ g → pi (t g) (λ v → u g v)) lam t = lam'' t refl app : {G : _} {t : _} {u : (g : Env G) → El (t g) → U} → Term G (λ g → pi (t g) (λ v → u g v)) → (t2 : Term G t) → Term G (λ g → u g (eval t2 g)) app t1 t2 = app'' t1 t2 refl -- Example. raw-categoryU : U raw-categoryU = sigma set (λ obj → sigma (fun (el obj) (fun (el obj) set)) (λ hom → times (pi (el obj) (λ x → el (hom x x))) (pi (el obj) (λ x → el (hom x x))))) raw-category : Type empty (λ _ → raw-categoryU) raw-category = -- Objects. sigma' set' -- Morphisms. (sigma' (pi' (el' (var zero)) (pi' (el' (var (suc zero))) set')) -- Identity. (sigma' (pi' (el' (var (suc zero))) (el' (app (app (var (suc zero)) (var zero)) (var zero)))) (pi' (el' (var (suc (suc zero)))) (el' (app (app (var (suc (suc zero))) (var zero)) (var zero))))))
24.568075
80
0.426142
cc721a0db950022add0729c2fa16a9a1483b2460
7,724
agda
Agda
Cubical/HITs/James/Inductive/Reduced.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/HITs/James/Inductive/Reduced.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/HITs/James/Inductive/Reduced.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{- This file contains: - Some alternative inductive definitions of James, and they give the same results. The most relevant one is called `𝕁Red` because it is much simpler. It has fewer constructors, among which the 2-dimensional constructor `coh` has a form essentially more clearer, and it avoids indexes. -} {-# OPTIONS --safe #-} module Cubical.HITs.James.Inductive.Reduced where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Pointed open import Cubical.Foundations.Univalence open import Cubical.Data.Nat open import Cubical.HITs.SequentialColimit open import Cubical.HITs.James.Inductive.Base renaming (𝕁ames to 𝕁amesConstruction ; 𝕁ames∞ to 𝕁ames∞Construction) private variable ℓ : Level module _ ((X , x₀) : Pointed ℓ) where infixr 5 _∷_ -- Inductive James with fewer constructors data 𝕁Red : Type ℓ where [] : 𝕁Red _∷_ : X → 𝕁Red → 𝕁Red unit : (x : X)(xs : 𝕁Red) → x₀ ∷ x ∷ xs ≡ x ∷ x₀ ∷ xs coh : (xs : 𝕁Red) → refl ≡ unit x₀ xs data 𝕁Red∞ : Type ℓ where inl : 𝕁Red → 𝕁Red∞ push : (xs : 𝕁Red) → inl xs ≡ inl (x₀ ∷ xs) -- Auxiliary constructions -- The following square of types is defined as HIT over I × I. -- Notice that the constructor `incl∷` can be seen parametrized by i, `coh` by both i j, -- and other constructors are constant. data 𝕁Square (i j : I) : Type ℓ where [] : 𝕁Square i j _∷_ : X → 𝕁Square i j → 𝕁Square i j incl : 𝕁Square i j → 𝕁Square i j unit : (xs : 𝕁Square i j) → incl xs ≡ x₀ ∷ xs incl∷ : (x : X)(xs : 𝕁Square i j) → unit (x ∷ xs) i ≡ x ∷ unit xs i coh : (xs : 𝕁Square i j) → PathP (λ k → unit (unit xs (i ∨ k)) i ≡ unit (unit xs i) (i ∨ j ∨ k)) (λ k → unit (unit xs i) (i ∨ j ∧ k)) (incl∷ x₀ xs) -- What we need actually is its diagonal. 𝕁Path : I → Type ℓ 𝕁Path i = 𝕁Square i (~ i) -- If you expand the very definition at end points, -- you will find that `𝕁Red` is almost a deformation retraction of `𝕁1`, -- and `𝕁0` is almost the same as the original inductive definition of James. -- That explains why the isomorphisms given bellow are mainly of c-c, c-v and refls. 𝕁0 = 𝕁Path i0 𝕁1 = 𝕁Path i1 data 𝕁Path∞ (i : I) : Type ℓ where inl : 𝕁Path i → 𝕁Path∞ i push : (xs : 𝕁Path i) → inl xs ≡ inl (unit xs i) 𝕁0∞ = 𝕁Path∞ i0 𝕁1∞ = 𝕁Path∞ i1 -- The equivalence 𝕁1 ≃ 𝕁Red -- This part reduces the constructors. 𝕁1→𝕁Red : 𝕁1 → 𝕁Red 𝕁1→𝕁Red [] = [] 𝕁1→𝕁Red (x ∷ xs) = x ∷ 𝕁1→𝕁Red xs 𝕁1→𝕁Red (incl xs) = x₀ ∷ 𝕁1→𝕁Red xs 𝕁1→𝕁Red (incl∷ x xs i) = unit x (𝕁1→𝕁Red xs) i 𝕁1→𝕁Red (unit xs i) = x₀ ∷ 𝕁1→𝕁Red xs 𝕁1→𝕁Red (coh xs i j) = coh (𝕁1→𝕁Red xs) i j 𝕁Red→𝕁1 : 𝕁Red → 𝕁1 𝕁Red→𝕁1 [] = [] 𝕁Red→𝕁1 (x ∷ xs) = x ∷ 𝕁Red→𝕁1 xs 𝕁Red→𝕁1 (unit x xs i) = incl∷ x (𝕁Red→𝕁1 xs) i 𝕁Red→𝕁1 (coh xs i j) = coh (𝕁Red→𝕁1 xs) i j 𝕁Red→𝕁1→𝕁Red : (xs : 𝕁Red) → 𝕁1→𝕁Red (𝕁Red→𝕁1 xs) ≡ xs 𝕁Red→𝕁1→𝕁Red [] = refl 𝕁Red→𝕁1→𝕁Red (x ∷ xs) t = x ∷ 𝕁Red→𝕁1→𝕁Red xs t 𝕁Red→𝕁1→𝕁Red (unit x xs i) t = unit x (𝕁Red→𝕁1→𝕁Red xs t) i 𝕁Red→𝕁1→𝕁Red (coh xs i j) t = coh (𝕁Red→𝕁1→𝕁Red xs t) i j 𝕁1→𝕁Red→𝕁1 : (xs : 𝕁1) → 𝕁Red→𝕁1 (𝕁1→𝕁Red xs) ≡ xs 𝕁1→𝕁Red→𝕁1 [] = refl 𝕁1→𝕁Red→𝕁1 (x ∷ xs) t = x ∷ 𝕁1→𝕁Red→𝕁1 xs t 𝕁1→𝕁Red→𝕁1 (incl xs) = (λ t → x₀ ∷ 𝕁1→𝕁Red→𝕁1 xs t) ∙ sym (unit xs) 𝕁1→𝕁Red→𝕁1 (incl∷ x xs i) t = incl∷ x (𝕁1→𝕁Red→𝕁1 xs t) i 𝕁1→𝕁Red→𝕁1 (unit xs i) j = hcomp (λ k → λ { (i = i0) → compPath-filler (λ t → x₀ ∷ 𝕁1→𝕁Red→𝕁1 xs t) (sym (unit xs)) k j ; (i = i1) → x₀ ∷ 𝕁1→𝕁Red→𝕁1 xs j ; (j = i0) → x₀ ∷ 𝕁Red→𝕁1 (𝕁1→𝕁Red xs) ; (j = i1) → unit xs (i ∨ ~ k)}) (x₀ ∷ 𝕁1→𝕁Red→𝕁1 xs j) 𝕁1→𝕁Red→𝕁1 (coh xs i j) t = coh (𝕁1→𝕁Red→𝕁1 xs t) i j 𝕁Red∞→𝕁1∞ : 𝕁Red∞ → 𝕁1∞ 𝕁Red∞→𝕁1∞ (inl xs) = inl (𝕁Red→𝕁1 xs) 𝕁Red∞→𝕁1∞ (push xs i) = push (𝕁Red→𝕁1 xs) i 𝕁1∞→𝕁Red∞ : 𝕁1∞ → 𝕁Red∞ 𝕁1∞→𝕁Red∞ (inl xs) = inl (𝕁1→𝕁Red xs) 𝕁1∞→𝕁Red∞ (push xs i) = push (𝕁1→𝕁Red xs) i 𝕁Red∞→𝕁1∞→𝕁Red∞ : (xs : 𝕁Red∞) → 𝕁1∞→𝕁Red∞ (𝕁Red∞→𝕁1∞ xs) ≡ xs 𝕁Red∞→𝕁1∞→𝕁Red∞ (inl xs) t = inl (𝕁Red→𝕁1→𝕁Red xs t) 𝕁Red∞→𝕁1∞→𝕁Red∞ (push xs i) t = push (𝕁Red→𝕁1→𝕁Red xs t) i 𝕁1∞→𝕁Red∞→𝕁1∞ : (xs : 𝕁1∞) → 𝕁Red∞→𝕁1∞ (𝕁1∞→𝕁Red∞ xs) ≡ xs 𝕁1∞→𝕁Red∞→𝕁1∞ (inl xs) t = inl (𝕁1→𝕁Red→𝕁1 xs t) 𝕁1∞→𝕁Red∞→𝕁1∞ (push xs i) t = push (𝕁1→𝕁Red→𝕁1 xs t) i 𝕁1∞≃𝕁Red∞ : 𝕁1∞ ≃ 𝕁Red∞ 𝕁1∞≃𝕁Red∞ = isoToEquiv (iso 𝕁1∞→𝕁Red∞ 𝕁Red∞→𝕁1∞ 𝕁Red∞→𝕁1∞→𝕁Red∞ 𝕁1∞→𝕁Red∞→𝕁1∞) -- The equivalence 𝕁ames ≃ 𝕁0 -- This part removes the indexes. private 𝕁ames = 𝕁amesConstruction (X , x₀) 𝕁ames∞ = 𝕁ames∞Construction (X , x₀) index : 𝕁0 → ℕ index [] = 0 index (x ∷ xs) = 1 + index xs index (incl xs) = 1 + index xs index (incl∷ x xs i) = 2 + index xs index (unit xs i) = 1 + index xs index (coh xs i j) = 2 + index xs 𝕁ames→𝕁0 : {n : ℕ} → 𝕁ames n → 𝕁0 𝕁ames→𝕁0 [] = [] 𝕁ames→𝕁0 (x ∷ xs) = x ∷ 𝕁ames→𝕁0 xs 𝕁ames→𝕁0 (incl xs) = incl (𝕁ames→𝕁0 xs) 𝕁ames→𝕁0 (incl∷ x xs i) = incl∷ x (𝕁ames→𝕁0 xs) i 𝕁ames→𝕁0 (unit xs i) = unit (𝕁ames→𝕁0 xs) i 𝕁ames→𝕁0 (coh xs i j) = coh (𝕁ames→𝕁0 xs) i j 𝕁0→𝕁ames : (xs : 𝕁0) → 𝕁ames (index xs) 𝕁0→𝕁ames [] = [] 𝕁0→𝕁ames (x ∷ xs) = x ∷ 𝕁0→𝕁ames xs 𝕁0→𝕁ames (incl xs) = incl (𝕁0→𝕁ames xs) 𝕁0→𝕁ames (incl∷ x xs i) = incl∷ x (𝕁0→𝕁ames xs) i 𝕁0→𝕁ames (unit xs i) = unit (𝕁0→𝕁ames xs) i 𝕁0→𝕁ames (coh xs i j) = coh (𝕁0→𝕁ames xs) i j 𝕁0→𝕁ames→𝕁0 : (xs : 𝕁0) → 𝕁ames→𝕁0 (𝕁0→𝕁ames xs) ≡ xs 𝕁0→𝕁ames→𝕁0 [] = refl 𝕁0→𝕁ames→𝕁0 (x ∷ xs) t = x ∷ 𝕁0→𝕁ames→𝕁0 xs t 𝕁0→𝕁ames→𝕁0 (incl xs) t = incl (𝕁0→𝕁ames→𝕁0 xs t) 𝕁0→𝕁ames→𝕁0 (incl∷ x xs i) t = incl∷ x (𝕁0→𝕁ames→𝕁0 xs t) i 𝕁0→𝕁ames→𝕁0 (unit xs i) t = unit (𝕁0→𝕁ames→𝕁0 xs t) i 𝕁0→𝕁ames→𝕁0 (coh xs i j) t = coh (𝕁0→𝕁ames→𝕁0 xs t) i j index-path : {n : ℕ}(xs : 𝕁ames n) → index (𝕁ames→𝕁0 xs) ≡ n index-path [] = refl index-path (x ∷ xs) t = 1 + index-path xs t index-path (incl xs) t = 1 + index-path xs t index-path (incl∷ x xs i) t = 2 + index-path xs t index-path (unit xs i) t = 1 + index-path xs t index-path (coh xs i j) t = 2 + index-path xs t 𝕁ames→𝕁0→𝕁ames : {n : ℕ}(xs : 𝕁ames n) → PathP (λ i → 𝕁ames (index-path xs i)) (𝕁0→𝕁ames (𝕁ames→𝕁0 xs)) xs 𝕁ames→𝕁0→𝕁ames [] = refl 𝕁ames→𝕁0→𝕁ames (x ∷ xs) t = x ∷ 𝕁ames→𝕁0→𝕁ames xs t 𝕁ames→𝕁0→𝕁ames (incl xs) t = incl (𝕁ames→𝕁0→𝕁ames xs t) 𝕁ames→𝕁0→𝕁ames (incl∷ x xs i) t = incl∷ x (𝕁ames→𝕁0→𝕁ames xs t) i 𝕁ames→𝕁0→𝕁ames (unit xs i) t = unit (𝕁ames→𝕁0→𝕁ames xs t) i 𝕁ames→𝕁0→𝕁ames (coh xs i j) t = coh (𝕁ames→𝕁0→𝕁ames xs t) i j 𝕁ames∞→𝕁0∞ : 𝕁ames∞ → 𝕁0∞ 𝕁ames∞→𝕁0∞ (inl xs) = inl (𝕁ames→𝕁0 xs) 𝕁ames∞→𝕁0∞ (push xs i) = push (𝕁ames→𝕁0 xs) i 𝕁0∞→𝕁ames∞ : 𝕁0∞ → 𝕁ames∞ 𝕁0∞→𝕁ames∞ (inl xs) = inl (𝕁0→𝕁ames xs) 𝕁0∞→𝕁ames∞ (push xs i) = push (𝕁0→𝕁ames xs) i 𝕁ames∞→𝕁0∞→𝕁ames∞ : (xs : 𝕁ames∞) → 𝕁0∞→𝕁ames∞ (𝕁ames∞→𝕁0∞ xs) ≡ xs 𝕁ames∞→𝕁0∞→𝕁ames∞ (inl xs) t = inl (𝕁ames→𝕁0→𝕁ames xs t) 𝕁ames∞→𝕁0∞→𝕁ames∞ (push xs i) t = push (𝕁ames→𝕁0→𝕁ames xs t) i 𝕁0∞→𝕁ames∞→𝕁0∞ : (xs : 𝕁0∞) → 𝕁ames∞→𝕁0∞ (𝕁0∞→𝕁ames∞ xs) ≡ xs 𝕁0∞→𝕁ames∞→𝕁0∞ (inl xs) t = inl (𝕁0→𝕁ames→𝕁0 xs t) 𝕁0∞→𝕁ames∞→𝕁0∞ (push xs i) t = push (𝕁0→𝕁ames→𝕁0 xs t) i 𝕁ames∞≃𝕁0∞ : 𝕁ames∞ ≃ 𝕁0∞ 𝕁ames∞≃𝕁0∞ = isoToEquiv (iso 𝕁ames∞→𝕁0∞ 𝕁0∞→𝕁ames∞ 𝕁0∞→𝕁ames∞→𝕁0∞ 𝕁ames∞→𝕁0∞→𝕁ames∞) -- The main equivalence: 𝕁ames∞≃𝕁Red∞ : 𝕁ames∞ ≃ 𝕁Red∞ 𝕁ames∞≃𝕁Red∞ = compEquiv 𝕁ames∞≃𝕁0∞ (compEquiv (pathToEquiv (λ i → 𝕁Path∞ i)) 𝕁1∞≃𝕁Red∞) -- Test of canonicity private -- It's good for []. eq1 : 𝕁ames∞≃𝕁Red∞ .fst (inl []) ≡ inl [] eq1 = refl -- Without regularity, "obvious" equality doesn't hold definitionally. eq2 : (x : X) → 𝕁ames∞≃𝕁Red∞ .fst (inl (x ∷ [])) ≡ inl (x ∷ []) eq2 _ = transportRefl _
33.729258
90
0.587778
11c6a9a972de708a31f31dc921cd96e613b7921c
244
agda
Agda
test/interaction/Issue1820.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1820.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1820.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Nat : Set where zero : Nat suc : (n : Nat) → Nat test₁ : (n : Nat) → Nat test₁ n with zero ... | x = {!x!} data Tree : Set where leaf : Tree node : Tree → Tree → Tree test₂ : (n : Tree) → Tree test₂ n₁ with leaf ... | n = {!n!}
15.25
27
0.536885
73a5f0f6cb2a9795768a93b3de077e31615073b0
17,168
agda
Agda
JamesFirstComposite.agda
guillaumebrunerie/JamesConstruction
89fbc29473d2d1ed1a45c3c0e56288cdcf77050b
[ "MIT" ]
5
2016-12-07T04:34:52.000Z
2018-11-16T22:10:16.000Z
JamesFirstComposite.agda
guillaumebrunerie/JamesConstruction
89fbc29473d2d1ed1a45c3c0e56288cdcf77050b
[ "MIT" ]
null
null
null
JamesFirstComposite.agda
guillaumebrunerie/JamesConstruction
89fbc29473d2d1ed1a45c3c0e56288cdcf77050b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import PathInduction open import Pushout module JamesFirstComposite {i} (A : Type i) (⋆A : A) where open import JamesTwoMaps A ⋆A ap-from-αJ-δJ : (a : A) (x : JA) → ap from (ap (αJ a) (δJ x)) == ap (α∞ a) (δ∞ (from x)) ap-from-αJ-δJ a x = ap-from-αJ a (δJ x) ∙ ap (ap (α∞ a)) (δJ-β x) ap-from-γ : (a : A) (x : JA) → ap from (γJ a x) == γ∞ a (from x) ap-from-γ = λ a x → ap-!∙ from (ap (αJ a) (δJ x)) (δJ (αJ a x)) ∙ & coh (ap-from-αJ-δJ a x) (δJ-β (αJ a x)) module ApFromγ where coh : Coh ({A : Type i} {a b : A} {p p' : b == a} (p= : p == p') {c : A} {q q' : b == c} (q= : q == q') → ! p ∙ q == ! p' ∙ q') coh = path-induction ap-from-η : (x : JA) → Square (ap (ap from) (ηJ x)) (ap-from-γ ⋆A x) idp (η∞ (from x)) ap-from-η x = & (η-ify-coh from) (ap-δJ (δJ x)) ∙□ & η-coh-homotopy from-δJ-δJ where -- [ap] commutes with [ηIfy.coh] -- This lemma would also be true for arbitrary [αJ], [δJ], [α∞] and [δ∞], but for simplicity -- we do not abstract over them. We do abstract over [from] because otherwise Agda uses a -- crazy amount of memory. η-ify-coh : (from : JA → J∞A) → Coh ({a b : JA} {p : a == b} {c : JA} {q r : b == c} (sq : Square p p q r) → Square (ap (ap from) (& (ηIfy.coh αJ δJ) sq)) (ap-!∙ from q r) idp (& (ηIfy.coh α∞ δ∞) (ap-square from sq))) η-ify-coh = path-induction from-δJ-δJ : FlatCube (ap-square from (natural-square δJ (δJ x) (ap-idf (δJ x)) idp)) (natural-square δ∞ (δ∞ (from x)) (ap-idf (δ∞ (from x))) idp) (δJ-β x) (δJ-β x) (ap-from-αJ-δJ ⋆A x) (δJ-β (αJ ⋆A x)) from-δJ-δJ = adapt-flatcube ∙idp idp∙ idp∙ ∙idp (& (ap-square-natural-square from) (δJ x) δJ (& coh) ∙idp /∙³ & natural-square-homotopy (δJ-β) (δJ x) ∙fc & (natural-square-∘ (δJ x) from) δ∞ (& coh') idp /∙³ & natural-square= δ∞ (δJ-β x) (& ap2-idf) (& coh'')) where coh : {A B : Type i} {f : A → B} → Coh ({x y : A} {p : x == y} → ap-∘ f (λ z → z) p ∙ ap (ap f) (ap-idf p) == idp) coh = path-induction coh' : {A B : Type i} {f : A → B} → Coh ({x y : A} {p : x == y} → ∘-ap (λ z → z) f p ∙ idp == ap-idf _) coh' = path-induction coh'' : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : c == a} {d : A} {r : c == d} → Square p (! q ∙ r) idp ((! r ∙ q) ∙ p)) coh'' = path-induction -- If [sq] and [sq'] are equal (via a FlatCube), then applying [ηIfy.coh] to them give equal terms -- (via a Square). η-coh-homotopy : Coh ({a b : J∞A} {p : a == b} {c : J∞A} {q : b == c} {r : b == c} {sq : Square p p q r} {p' : a == b} {p= : p == p'} {q' : b == c} {q= : q == q'} {r' : b == c} {r= : r == r'} {sq' : Square p' p' q' r'} (cube : FlatCube sq sq' p= p= q= r=) → Square (& (ηIfy.coh α∞ δ∞) sq) (& ApFromγ.coh q= r=) idp (& (ηIfy.coh α∞ δ∞) sq')) η-coh-homotopy = path-induction comp-square2 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : b == c} → Square p idp q (p ∙ q)) comp-square2 = path-induction ap-square-comp-square2 : {A B : Type i} (f : A → B) → Coh ({a b : A} {p : a == b} {c : A} {q : b == c} → FlatCube (ap-square f (& comp-square2 {p = p} {q = q})) (& comp-square2) idp idp idp (ap-∙ f p q)) ap-square-comp-square2 f = path-induction {- First composite -} -- As for [inJ], we need both [from-inJ] and [from-inJS] for the termination checker from-inJ : (n : ℕ) (x : J n) → from (inJ n x) == in∞ n x from-inJS : (n : ℕ) (x : J (S n)) → from (inJS n x) == in∞ (S n) x -- Those three describe [from ∘ inJS] applied to [ι], [α] and [β], in the case [S n] as it is -- the only one we need. from-inJSS-ι : (n : ℕ) (x : J (S n)) → from (inJS (S n) (ι (S n) x)) == in∞ (S (S n)) (ι (S n) x) from-inJSS-ι n x = ap (α∞ ⋆A) (from-inJS n x) ∙ ap (in∞ (S (S n))) (β (S n) x) from-inJSS-α : (n : ℕ) (a : A) (x : J (S n)) → from (inJS (S n) (α (S n) a x)) == in∞ (S (S n)) (α (S n) a x) from-inJSS-α n a x = ap (α∞ a) (from-inJS n x) from-inJSS-β : (n : ℕ) (x : J (S n)) → Square (ap from (ap (inJS (S n)) (β (S n) x))) (from-inJSS-α n ⋆A x) (from-inJSS-ι n x) (ap (in∞ (S (S n))) (β (S n) x)) from-inJSS-β n x = ap (ap from) (inJS-βS n x) |∙ comp-square -- Those three terms describe what happens when we apply [from-inJS] to [ι], [α] or [β]. -- Note that the naming scheme is slightly ambiguous, they do *not* describe [from (inJS (ι _ _))] as above. -- They are defined later, as we need to know the definition of [from-inJS]. from-inJS-ι : (n : ℕ) (x : J n) → Square (from-inJS n (ι n x)) (ap from (inJS-ι n x)) idp (ap (α∞ ⋆A) (from-inJ n x) ∙ ap (in∞ (S n)) (β n x)) from-inJS-α : (n : ℕ) (a : A) (x : J n) → Square (from-inJS n (α n a x)) (ap from (inJS-α n a x)) idp (ap (α∞ a) (from-inJ n x)) from-inJS-β : (n : ℕ) (x : J n) → Cube (natural-square (from-inJS n) (β n x) (ap-∘ from (inJS n) (β n x)) idp) (& comp-square2) (from-inJS-α n ⋆A x) (ap-square from (inJS-β n x)) hid-square (from-inJS-ι n x) -- The following three terms show that the two ways of reducing [from ∘ inJS (S n) ∘ (ι (S n) | α (S n) a) ∘ (ι n | α n a)] -- are equal. For some reason, we don’t need it with α twice side1 : (n : ℕ) (a : A) (x : J n) → ap (α∞ a) (ap from (inJS-ι n x)) ∙ ap (α∞ a) (ap (α∞ ⋆A) (from-inJ n x)) ∙ ap (in∞ (S (S n))) (ap (α (S n) a) (β n x)) == from-inJSS-α n a (ι n x) side1 n = λ a x → & coh (ap-∙ _ _ _) (ap-square (α∞ a) (from-inJS-ι n x)) (ap-α∞-in∞ (S n) a (β n x)) module Side1 where coh : Coh ({A : Type i} {a c : A} {q : a == c} {d : A} {s1 : c == d} {b : A} {s2 : d == b} {s : c == b} (s= : s == s1 ∙ s2) {p : a == b} (sq : Square p q idp s) {s2' : d == b} (s2= : s2 == s2') → q ∙ s1 ∙ s2' == p) coh = path-induction side2 : (n : ℕ) (a : A) (x : J n) → ap (α∞ ⋆A) (ap from (inJS-α n a x)) ∙ ap (α∞ ⋆A) (ap (α∞ a) (from-inJ n x)) ∙ ap (in∞ (S (S n))) (β (S n) (α n a x)) == from-inJSS-ι n (α n a x) side2 n = λ a x → & coh (ap-square (α∞ ⋆A) (from-inJS-α n a x)) module Side2 where coh : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : a == c} {s : c == b} (sq : Square p q idp s) {e : A} {t : b == e} → q ∙ s ∙ t == p ∙ t) coh = path-induction side3 : (n : ℕ) (x : J n) → ap (α∞ ⋆A) (ap from (inJS-ι n x)) ∙ ap (α∞ ⋆A) (ap (α∞ ⋆A) (from-inJ n x)) ∙ ap (in∞ (S (S n))) (β (S n) (α n ⋆A x)) ∙ ap (in∞ (S (S n))) (ap (ι (S n)) (β n x)) == from-inJSS-ι n (ι n x) side3 n = λ x → & coh (ap-∙ _ _ _) (ap-α∞-in∞ (S n) ⋆A (β n x)) (ap-square (α∞ ⋆A) (from-inJS-ι n x)) (ap-square (in∞ (S (S n))) (natural-square (β (S n)) (β n x) idp idp)) module Side3 where coh : Coh ({A : Type i} {a c : A} {q : a == c} {d : A} {s : c == d} {b : A} {r : d == b} {rs : c == b} (rs= : rs == s ∙ r) {r' : d == b} (r= : r == r') {p : a == b} (sq : Square p q idp rs) {e : A} {t : d == e} {f : A} {u : e == f} {v : b == f} (sq2 : Square t r' u v) → q ∙ s ∙ t ∙ u == p ∙ v) coh = path-induction piece1 : (n : ℕ) (a : A) (x : J n) → Square (ap from (ap (inJS (S n)) (γ n a x))) (ap (α∞ a) (ap from (inJS-ι n x))) (ap (α∞ ⋆A) (ap from (inJS-α n a x))) (ap from (γJ a (inJ n x))) piece1 n a x = adapt-square (ap-square from (inJSS-γ n a x)) (ap-from-αJ a (inJS-ι n x)) (ap-from-αJ ⋆A (inJS-α n a x)) from-inJSS-γ : (n : ℕ) (a : A) (x : J n) → Square (ap from (ap (inJS (S n)) (γ n a x))) (from-inJSS-α n a (ι n x)) (from-inJSS-ι n (α n a x)) (ap (in∞ (S (S n))) (γ n a x)) from-inJSS-γ n a x = adapt-square (piece1 n a x ∙□ ap-from-γ a (inJ n x) |∙ natural-square (γ∞ a) (from-inJ n x) (ap-∘ (α∞ a) (α∞ ⋆A) (from-inJ n x)) (ap-∘ (α∞ ⋆A) (α∞ a) (from-inJ n x)) ∙□ γ∞-in a n x) (side1 n a x) (side2 n a x) adapt-eq : Coh ({A : Type i} {a b : A} {q : a == b} {sq : Square idp q q idp} (sq= : sq == vid-square) {q' : a == b} {p : q == q'} → adapt-square sq p p == vid-square) adapt-eq = path-induction natural-square-idp : {A B : Type i} {f : A → B} {x y : A} {p : x == y} {fp : f x == f y} {fp= : ap f p == fp} → natural-square (λ a → idp {a = f a}) p fp= fp= == vid-square natural-square-idp {p = idp} {fp= = idp} = idp vid-square∙□vid-square∙□vid-square : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q : b == c} {d : A} {r : c == d} → vid-square {p = p} ∙□ vid-square {p = q} ∙□ vid-square {p = r} == vid-square {p = p ∙ q ∙ r}) vid-square∙□vid-square∙□vid-square = path-induction adapt-square-natural-square : ∀ {i j} {A : Type i} {B : Type j} → Coh ({f g : A → B} {h : (a : A) → f a == g a} {x y : A} {p : x == y} {pf' : f x == f y} {q : ap f p == pf'} {pg' : g x == g y} {r : ap g p == pg'} → adapt-square (natural-square h p idp idp) q r == natural-square h p q r) adapt-square-natural-square = path-induction piece1-η : (n : ℕ) (x : J n) → Cube (ap-square from (ap-square (inJS (S n)) (η n x))) (horiz-degen-square (ap (ap from) (ηJ (inJ n x)))) (piece1 n ⋆A x) vid-square _ _ piece1-η n x = & (ap-shapeInJSη from) {to = ηJ (inJ n x)} (inJSS-η n x) (ap-from-αJ ⋆A (inJS-α n ⋆A x)) (ap-from-αJ ⋆A (inJS-ι n x)) coh-blip : {A B : Type i} {a b : A} (p : a == b) → Coh ({f g : A → B} {k : (a : A) → f a == g a} {h : A → B} {l : (a : A) → g a == h a} {fp : _} {fp= : ap f p == fp} {gp : _} (gp= : ap g p == gp) {hp : _} {hp= : ap h p == hp} → square-symmetry (natural-square (λ x → k x ∙ l x) p fp= hp=) == square-symmetry (natural-square k p fp= gp=) ∙□ square-symmetry (natural-square l p gp= hp=)) coh-blip {a = a} idp = path-induction ap-square-hid : {A B : Type i} {f : A → B} {x y : A} {p : x == y} → ap-square f (hid-square {p = p}) == hid-square ap-square-hid {p = idp} = idp from-inJSS-η : (n : ℕ) (x : J n) → Cube (ap-square from (ap-square (inJS (S n)) (η n x))) (ap-square (in∞ (S (S n))) (η n x)) (from-inJSS-γ n ⋆A x) vid-square (square-symmetry (natural-square (from-inJSS-ι n) (β n x) (ap-∘ _ _ _ ∙ ap-∘ _ _ _) (ap-∘ _ _ _))) (from-inJSS-β n (ι n x)) from-inJSS-η n x = adapt-cube (piece1-η n x ∙³x ap-from-η (inJ n x) -|∙³ natural-cube-η∞ η∞ (from-inJ n x) ∙³x η∞-in n x) (side1 n ⋆A x) (side2 n ⋆A x) (side1 n ⋆A x) (side3 n x) idp (& adapt-eq (& vid-square∙□vid-square∙□vid-square)) (& coh4 (ap-square-from-αJ ⋆A (inJS-β n x)) (& (ap-square-comp-square2 (α∞ ⋆A))) ap-square-hid (ap-cube (α∞ ⋆A) (from-inJS-β n x)) eq1 eq2 ∙ ! (& (coh-blip (β n x)) (ap-∘ (in∞ (S (S n))) (α (S n) ⋆A) (β n x)))) (& coh (ap (ap from) (inJS-βS n (ι n x)))) where coh : {A : Type i} {a : A} → Coh ({p : a == a} (sq : p == idp) {b : A} {s : a == b} {c : A} {q : b == c} {d : A} {u u'' : c == d} {u= : u'' == u} {u' : b == d} {u'= : u' == q ∙ u''} {e : A} {t : c == e} {f : A} {v : e == f} {w : d == f} {ββ : Square t u v w} {k : a == d} {X : Square k s idp u'} → adapt-square ((sq |∙ vid-square {p = s}) ∙□ idp |∙ vid-square {p = q} ∙□ skew ββ) (& (Side1.coh n) u'= X u=) (& (Side3.coh n) u'= u= X ββ) == sq |∙ comp-square) coh = path-induction eq1 : natural-square (λ a₁ → ap (α∞ ⋆A) (from-inJS n a₁)) (β n x) (ap-∘ (from ∘ inJS (S n)) inr (β n x) ∙ ap-∘ from (inJS (S n)) (ap inr (β n x))) (ap-∘ (in∞ (S (S n))) (α (S n) ⋆A) (β n x)) == adapt-square (ap-square (α∞ ⋆A) (natural-square (from-inJS n) (β n x) (ap-∘ from (inJS n) (β n x)) idp)) (! (ap-from-αJ ⋆A (ap (inJS n) (β n x))) ∙ ! (ap (ap from) (ap-inJSS-ι n (β n x)))) (ap-α∞-in∞ (S n) ⋆A (β n x)) eq1 = & (natural-square-ap (α∞ ⋆A)) (β n x) (from-inJS n) (coh' (β n x)) (coh'' (β n x)) where coh' : {x y : _} (p : x == y) → Square (∘-ap (α∞ ⋆A) (λ z → from (inJS n z)) p) (ap (ap (α∞ ⋆A)) (ap-∘ from (inJS n) p)) (ap-∘ (from ∘ inJS (S n)) inr p ∙ ap-∘ from (inJS (S n)) (ap inr p)) (! (ap-from-αJ ⋆A (ap (inJS n) p)) ∙ ! (ap (ap from) (ap-inJSS-ι n p))) coh' idp = ids coh'' : {x y : _} (p : x == y) → Square (∘-ap (α∞ ⋆A) (λ z → in∞ (S n) z) p) idp (ap-∘ (in∞ (S (S n))) (α (S n) ⋆A) p) (ap-α∞-in∞ (S n) ⋆A p) coh'' idp = ids eq2 : ap-square (in∞ (S (S n))) (natural-square (β (S n)) (β n x) idp idp) == natural-square (λ a₁ → ap (in∞ (S (S n))) (β (S n) a₁)) (β n x) (ap-∘ (in∞ (S (S n))) (α (S n) ⋆A) (β n x)) (ap-∘ (in∞ (S (S n))) inr (β n x)) eq2 = & (ap-square-natural-square (in∞ (S (S n)))) (β n x) (β (S n)) ∙idp ∙idp coh4 : Coh ({A : Type i} {a b : A} {p : a == b} {c : A} {q q'' : a == c} {q''= : q'' == q} {q' : a == c} {q'= : q' == q''} {d : A} {r r' : b == d} {r= : r == r'} {s : c == d} {sq1 : Square p q r s} {e : A} {t : b == e} {f : A} {u : e == f} {v : d == f} {sqββ : Square t r' u v} {g : A} {k k' : a == g} {k= : k == k'} {l : c == g} {sq2 : Square q'' k l idp} {l' : c == g} {l= : l == l'} {u : g == b} {sqα : Square p k' idp u} {ur : g == d} {ur= : ur == u ∙ r} {sq3 : Square q k' l' idp} (cube-right : FlatCube sq2 sq3 q''= k= l= idp) {comp-square2' : _} (comp-square2'= : FlatCube comp-square2' (& comp-square2) idp idp idp ur=) {hid' : _} (hid'= : hid' == hid-square) {sqι : Square s l' idp ur} (cube-left : Cube sq1 comp-square2' sqα sq3 hid' sqι) {sqx : _} (eq1 : sqx == adapt-square sq1 (! q''= ∙ ! q'=) r=) {sqy : _} (eq2 : sqββ == sqy) → adapt-square (adapt-square (q'= |∙ sq2) k= l= ∙□ vid-square {p = u} ∙□ comp-square) (& (Side2.coh n) sqα) (& (Side3.coh n) ur= r= sqι sqββ) == square-symmetry sqx ∙□ square-symmetry sqy) coh4 = path-induction from-inJ O ε = idp from-inJ (S n) x = from-inJS n x hdpssvs : Coh ({A : Type i} {x y : A} {p : x == y} → idp == horiz-degen-path (square-symmetry (vid-square {p = p}))) hdpssvs = path-induction from-inJS O a = idp from-inJS (S n) = JSS-elim n (from-inJSS-ι n) (from-inJSS-α n) (λ x → ↓-='-from-square (ap-∘ from (inJS (S n)) (β (S n) x)) idp (square-symmetry (from-inJSS-β n x))) (λ a x → ↓-='-from-square (ap-∘ from (inJS (S n)) (γ n a x)) idp (square-symmetry (from-inJSS-γ n a x))) (λ x → cube-to-↓-square (from-inJSS-γ n ⋆A x) (& hdpssvs) (↓-ap-in-=' (ι (S n)) (from-inJSS-ι n)) (from-inJSS-β n (ι n x)) (ap-square-∘ from (inJS (S n)) (η n x) |∙³ from-inJSS-η n x)) from-inJS-ι O ε = ids from-inJS-ι (S n) x = hid-square from-inJS-α O a ε = ids from-inJS-α (S n) a x = hid-square from-inJS-β O ε = idc from-inJS-β (S n) x = & coh (ap-square-horiz-degen-square (inJS-βS n x)) (natural-square-β (from-inJS (S n)) (β (S n) x) (push-βd _)) where coh : Coh ({A : Type i} {a b : A} {p : a == b} {q : a == a} {k : q == idp} {k' : Square q idp idp idp} (k= : k' == horiz-degen-square k) {c : A} {r : b == c} {sq : Square p q r (p ∙ r)} → sq == square-symmetry (k |∙ comp-square) → Cube sq (& comp-square2) hid-square k' hid-square hid-square) coh = path-induction from-pushJ : (n : ℕ) (x : J n) → Square (ap from (pushJ n x)) (from-inJ n x) (from-inJ (S n) (ι n x)) (push∞ n x) from-pushJ n x = & coh (δJ-β (inJ n x)) (ap from (inJS-ι n x)) (ap-∙! from _ _) (natural-square δ∞ (from-inJ n x) (ap-idf (from-inJ n x)) idp) (from-inJS-ι n x) where coh : Coh ({A : Type i} {a d : A} {p p' : a == d} (p= : p == p') {b : A} (q : b == d) {pq : a == b} (pq= : pq == p ∙ ! q) {c : A} {r : a == c} {f : A} {u : c == f} {e : A} {v : e == f} {s : d == e} (sq : Square p' r s (u ∙ ! v)) {t : b == f} (sq2 : Square t q idp (s ∙ v)) → Square pq r t u) coh = path-induction from-to : (x : J∞A) → from (to x) == x from-to = J∞A-elim from-inJ (λ n x → ↓-='-from-square (ap-∘ from to (push∞ n x) ∙ ap (ap from) (push∞-β n x)) (ap-idf (push∞ n x)) (square-symmetry (from-pushJ n x)))
56.660066
229
0.438199
d1a531840ac57fc693c8a91e5abb3f9f07309db1
989
agda
Agda
src/Prelude/List/Relations/Any.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
null
null
null
src/Prelude/List/Relations/Any.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
null
null
null
src/Prelude/List/Relations/Any.agda
t-more/agda-prelude
da4fca7744d317b8843f2bc80a923972f65548d3
[ "MIT" ]
null
null
null
module Prelude.List.Relations.Any where open import Agda.Primitive open import Prelude.Nat open import Prelude.List.Base open import Prelude.Equality open import Prelude.List.Relations.All data Any {a b} {A : Set a} (P : A → Set b) : List A → Set (a ⊔ b) where zero : ∀ {x xs} (p : P x) → Any P (x ∷ xs) suc : ∀ {x xs} (i : Any P xs) → Any P (x ∷ xs) pattern zero! = zero refl infix 3 _∈_ _∈_ : ∀ {a} {A : Set a} → A → List A → Set a x ∈ xs = Any (_≡_ x) xs module _ {a b} {A : Set a} {P : A → Set b} where -- Delete deleteIx : ∀ xs → Any P xs → List A deleteIx (_ ∷ xs) (zero _) = xs deleteIx (x ∷ xs) (suc i) = x ∷ deleteIx xs i deleteAllIx : ∀ {c} {Q : A → Set c} {xs} → All Q xs → (i : Any P xs) → All Q (deleteIx xs i) deleteAllIx (q ∷ qs) (zero _) = qs deleteAllIx (q ∷ qs) (suc i) = q ∷ deleteAllIx qs i forgetAny : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} → Any P xs → Nat forgetAny (zero _) = zero forgetAny (suc i) = suc (forgetAny i)
26.026316
94
0.575329
cc107d1c71f61dd307cabab22cd25ceef2906a65
521
agda
Agda
agda/Categories/Pullback.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
4
2021-01-05T14:07:44.000Z
2021-01-05T15:32:14.000Z
agda/Categories/Pullback.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
null
null
null
agda/Categories/Pullback.agda
oisdk/combinatorics-paper
3c176d4690566d81611080e9378f5a178b39b851
[ "MIT" ]
1
2021-01-05T14:05:30.000Z
2021-01-05T14:05:30.000Z
{-# OPTIONS --cubical --safe #-} open import Prelude open import Categories module Categories.Pullback {ℓ₁ ℓ₂} (C : Category ℓ₁ ℓ₂) where open Category C record Pullback (f : X ⟶ Z) (g : Y ⟶ Z) : Type (ℓ₁ ℓ⊔ ℓ₂) where field {P} : Ob p₁ : P ⟶ X p₂ : P ⟶ Y commute : f · p₁ ≡ g · p₂ ump : ∀ {A : Ob} (h₁ : A ⟶ X) (h₂ : A ⟶ Y) → f · h₁ ≡ g · h₂ → ∃![ u ] ((p₁ · u ≡ h₁) × (p₂ · u ≡ h₂)) HasPullbacks : Type (ℓ₁ ℓ⊔ ℓ₂) HasPullbacks = ∀ {X Y Z} (f : X ⟶ Z) (g : Y ⟶ Z) → Pullback f g
23.681818
66
0.49904
141bfd48fdc832301a7d3d0dfe6090d166ab6732
24,543
agda
Agda
Cubical/Algebra/CommRing/Localisation/Base.agda
apabepa10/cubical
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/Base.agda
apabepa10/cubical
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Localisation/Base.agda
apabepa10/cubical
3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05
[ "MIT" ]
null
null
null
-- We define the localisation of a commutative ring -- at a multiplicatively closed subset and show that it -- has a commutative ring structure. {-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Localisation.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.RingSolver.CommRingSolver open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso private variable ℓ ℓ' : Level A : Type ℓ -- A multiplicatively closed subset is assumed to contain 1 record isMultClosedSubset (R' : CommRing {ℓ}) (S' : ℙ (R' .fst)) : Type ℓ where constructor multclosedsubset field containsOne : (R' .snd .CommRingStr.1r) ∈ S' multClosed : ∀ {s t} → s ∈ S' → t ∈ S' → (R' .snd .CommRingStr._·_ s t) ∈ S' module Loc (R' : CommRing {ℓ}) (S' : ℙ (R' .fst)) (SMultClosedSubset : isMultClosedSubset R' S') where open isMultClosedSubset private R = R' .fst open CommRingStr (R' .snd) open Theory (CommRing→Ring R') open CommTheory R' S = Σ[ s ∈ R ] (s ∈ S') -- We define the localisation of R by S by quotienting by the following relation: _≈_ : R × S → R × S → Type ℓ (r₁ , s₁) ≈ (r₂ , s₂) = Σ[ s ∈ S ] (fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁) S⁻¹R = (R × S) / _≈_ -- now define addition for S⁻¹R open BinaryRelation locRefl : isRefl _≈_ locRefl _ = (1r , SMultClosedSubset .containsOne) , refl locSym : isSym _≈_ locSym (r , s , s∈S') (r' , s' , s'∈S') (u , p) = u , sym p open VarNames5 R' locTrans : isTrans _≈_ locTrans (r , s , s∈S') (r' , s' , s'∈S') (r'' , s'' , s''∈S') ((u , u∈S') , p) ((v , v∈S') , q) = ((u · v · s') , SMultClosedSubset .multClosed (SMultClosedSubset .multClosed u∈S' v∈S') s'∈S') , path where path : u · v · s' · r · s'' ≡ u · v · s' · r'' · s path = u · v · s' · r · s'' ≡⟨ solve R' (X4 ·' X5 ·' X1 ·' X3 ·' X2) (X4 ·' X3 ·' X1 ·' X5 ·' X2) (s' ∷ s'' ∷ r ∷ u ∷ v ∷ []) refl ⟩ u · r · s' · v · s'' ≡⟨ cong (λ x → x · v · s'') p ⟩ u · r' · s · v · s'' ≡⟨ cong (λ x → x · v · s'') (·-commAssocr _ _ _) ⟩ u · s · r' · v · s'' ≡⟨ cong (_· s'') (·-commAssocr _ _ _) ⟩ u · s · v · r' · s'' ≡⟨ cong (_· s'') (sym (·Assoc _ _ _)) ⟩ u · s · (v · r') · s'' ≡⟨ sym (·Assoc _ _ _) ⟩ u · s · (v · r' · s'') ≡⟨ cong (u · s ·_) q ⟩ u · s · (v · r'' · s') ≡⟨ ·Assoc _ _ _ ⟩ u · s · (v · r'') · s' ≡⟨ cong (_· s') (·-commAssocSwap _ _ _ _) ⟩ u · v · (s · r'') · s' ≡⟨ sym (·Assoc _ _ _) ⟩ u · v · (s · r'' · s') ≡⟨ cong (u · v ·_) (·-commAssocr2 _ _ _) ⟩ u · v · (s' · r'' · s) ≡⟨ ·Assoc _ _ _ ⟩ u · v · (s' · r'') · s ≡⟨ cong (_· s) (·Assoc _ _ _) ⟩ u · v · s' · r'' · s ∎ locIsEquivRel : isEquivRel _≈_ isEquivRel.reflexive locIsEquivRel = locRefl isEquivRel.symmetric locIsEquivRel = locSym isEquivRel.transitive locIsEquivRel = locTrans _+ₗ_ : S⁻¹R → S⁻¹R → S⁻¹R _+ₗ_ = setQuotBinOp locRefl _+ₚ_ θ where _+ₚ_ : R × S → R × S → R × S (r₁ , s₁ , s₁∈S) +ₚ (r₂ , s₂ , s₂∈S) = (r₁ · s₂ + r₂ · s₁) , (s₁ · s₂) , SMultClosedSubset .multClosed s₁∈S s₂∈S θ : (a a' b b' : R × S) → a ≈ a' → b ≈ b' → (a +ₚ b) ≈ (a' +ₚ b') θ (r₁ , s₁ , s₁∈S) (r'₁ , s'₁ , s'₁∈S) (r₂ , s₂ , s₂∈S) (r'₂ , s'₂ , s'₂∈S) (s , p) (s' , q) = ((fst s · fst s') , SMultClosedSubset .multClosed (s .snd) (s' .snd)) , path where path : fst s · fst s' · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s'₂) ≡ fst s · fst s' · (r'₁ · s'₂ + r'₂ · s'₁) · (s₁ · s₂) path = fst s · fst s' · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s'₂) ≡⟨ cong (_· (s'₁ · s'₂)) (·Rdist+ _ _ _) ⟩ (fst s · fst s' · (r₁ · s₂) + fst s · fst s' · (r₂ · s₁)) · (s'₁ · s'₂) ≡⟨ ·Ldist+ _ _ _ ⟩ fst s · fst s' · (r₁ · s₂) · (s'₁ · s'₂) + fst s · fst s' · (r₂ · s₁) · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s · fst s') r₁ s₂ i · (s'₁ · s'₂) + ·Assoc (fst s · fst s') r₂ s₁ i · (s'₁ · s'₂)) ⟩ fst s · fst s' · r₁ · s₂ · (s'₁ · s'₂) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → ·-comm (fst s) (fst s') i · r₁ · s₂ · (s'₁ · s'₂) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · fst s · r₁ · s₂ · (s'₁ · s'₂) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s') (fst s) r₁ (~ i) · s₂ · (s'₁ · s'₂) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r₁) · s₂ · (s'₁ · s'₂) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s' · (fst s · r₁) · s₂) s'₁ s'₂ i + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r₁) · s₂ · s'₁ · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s' · (fst s · r₁)) s₂ s'₁ (~ i) · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r₁) · (s₂ · s'₁) · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → fst s' · (fst s · r₁) · (·-comm s₂ s'₁ i) · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r₁) · (s'₁ · s₂) · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s' · (fst s · r₁)) s'₁ s₂ i · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r₁) · s'₁ · s₂ · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s') (fst s · r₁) s'₁ (~ i) · s₂ · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r₁ · s'₁) · s₂ · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → fst s' · (p i) · s₂ · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r'₁ · s₁) · s₂ · s'₂ + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s' · (fst s · r'₁ · s₁)) s₂ s'₂ (~ i) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r'₁ · s₁) · (s₂ · s'₂) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (·-comm s₂ s'₂ i) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂)) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · fst s' · r₂ · s₁ · (s'₁ · s'₂) ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · fst s' · r₂ · s₁ · ·-comm s'₁ s'₂ i) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · fst s' · r₂ · s₁ · (s'₂ · s'₁) ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s) (fst s') r₂ (~ i) · s₁ · (s'₂ · s'₁)) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r₂) · s₁ · (s'₂ · s'₁) ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s · (fst s' · r₂) · s₁) s'₂ s'₁ i) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r₂) · s₁ · s'₂ · s'₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s · (fst s' · r₂)) s₁ s'₂ (~ i) · s'₁) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r₂) · (s₁ · s'₂) · s'₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r₂) · (·-comm s₁ s'₂ i) · s'₁) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r₂) · (s'₂ · s₁) · s'₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s · (fst s' · r₂)) s'₂ s₁ i · s'₁) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r₂) · s'₂ · s₁ · s'₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s) (fst s' · r₂) s'₂ (~ i) · s₁ · s'₁) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r₂ · s'₂) · s₁ · s'₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s · (fst s' · r₂ · s'₂)) s₁ s'₁ (~ i)) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r₂ · s'₂) · (s₁ · s'₁) ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (q i) · (·-comm s₁ s'₁ i)) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r'₂ · s₂) · (s'₁ · s₁) ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s · (fst s' · r'₂ · s₂)) s'₁ s₁ i) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r'₂ · s₂) · s'₁ · s₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s) (fst s' · r'₂) s₂ i · s'₁ · s₁) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r'₂) · s₂ · s'₁ · s₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s · (fst s' · r'₂)) s₂ s'₁ (~ i) · s₁) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r'₂) · (s₂ · s'₁) · s₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r'₂) · (·-comm s₂ s'₁ i) · s₁) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r'₂) · (s'₁ · s₂) · s₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s · (fst s' · r'₂)) s'₁ s₂ i · s₁) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r'₂) · s'₁ · s₂ · s₁ ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s · (fst s' · r'₂) · s'₁) s₂ s₁ (~ i)) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · (fst s' · r'₂) · s'₁ · (s₂ · s₁) ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + ·Assoc (fst s) (fst s') r'₂ i · s'₁ · (s₂ · s₁)) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · fst s' · r'₂ · s'₁ · (s₂ · s₁) ≡⟨ (λ i → fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · fst s' · r'₂ · s'₁ · ·-comm s₂ s₁ i) ⟩ fst s' · (fst s · r'₁ · s₁) · (s'₂ · s₂) + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → ·Assoc (fst s' · (fst s · r'₁ · s₁)) s'₂ s₂ i + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂)) ⟩ fst s' · (fst s · r'₁ · s₁) · s'₂ · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → ·Assoc (fst s') (fst s · r'₁) s₁ i · s'₂ · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂)) ⟩ fst s' · (fst s · r'₁) · s₁ · s'₂ · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → ·Assoc (fst s' · (fst s · r'₁)) s₁ s'₂ (~ i) · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂)) ⟩ fst s' · (fst s · r'₁) · (s₁ · s'₂) · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → fst s' · (fst s · r'₁) · (·-comm s₁ s'₂ i) · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂)) ⟩ fst s' · (fst s · r'₁) · (s'₂ · s₁) · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → ·Assoc (fst s' · (fst s · r'₁)) s'₂ s₁ i · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂)) ⟩ fst s' · (fst s · r'₁) · s'₂ · s₁ · s₂ + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → ·Assoc (fst s' · (fst s · r'₁) · s'₂) s₁ s₂ (~ i) + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂)) ⟩ fst s' · (fst s · r'₁) · s'₂ · (s₁ · s₂) + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → ·Assoc (fst s') (fst s) r'₁ i · s'₂ · (s₁ · s₂) + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂)) ⟩ fst s' · fst s · r'₁ · s'₂ · (s₁ · s₂) + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → ·-comm (fst s') (fst s) i · r'₁ · s'₂ · (s₁ · s₂) + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂)) ⟩ fst s · fst s' · r'₁ · s'₂ · (s₁ · s₂) + fst s · fst s' · r'₂ · s'₁ · (s₁ · s₂) ≡⟨ (λ i → ·Assoc (fst s · fst s') r'₁ s'₂ (~ i) · (s₁ · s₂) + ·Assoc (fst s · fst s') r'₂ s'₁ (~ i) · (s₁ · s₂)) ⟩ fst s · fst s' · (r'₁ · s'₂) · (s₁ · s₂) + fst s · fst s' · (r'₂ · s'₁) · (s₁ · s₂) ≡⟨ sym (·Ldist+ _ _ _) ⟩ (fst s · fst s' · (r'₁ · s'₂) + fst s · fst s' · (r'₂ · s'₁)) · (s₁ · s₂) ≡⟨ cong (_· (s₁ · s₂)) (sym (·Rdist+ _ _ _)) ⟩ fst s · fst s' · (r'₁ · s'₂ + r'₂ · s'₁) · (s₁ · s₂) ∎ -- check group-laws for addition +ₗ-assoc : (x y z : S⁻¹R) → x +ₗ (y +ₗ z) ≡ (x +ₗ y) +ₗ z +ₗ-assoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) +ₗ-assoc[] where +ₗ-assoc[] : (a b c : R × S) → [ a ] +ₗ ([ b ] +ₗ [ c ]) ≡ ([ a ] +ₗ [ b ]) +ₗ [ c ] +ₗ-assoc[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = cong [_] (ΣPathP (path , Σ≡Prop (λ x → ∈-isProp S' x) (·Assoc _ _ _))) where path : r · (s' · s'') + (r' · s'' + r'' · s') · s ≡ (r · s' + r' · s) · s'' + r'' · (s · s') path = r · (s' · s'') + (r' · s'' + r'' · s') · s ≡⟨ (λ i → ·Assoc r s' s'' i + ·Ldist+ (r' · s'') (r'' · s') s i) ⟩ r · s' · s'' + (r' · s'' · s + r'' · s' · s) ≡⟨ +Assoc _ _ _ ⟩ r · s' · s'' + r' · s'' · s + r'' · s' · s ≡⟨ (λ i → r · s' · s'' + ·Assoc r' s'' s (~ i) + ·Assoc r'' s' s (~ i)) ⟩ r · s' · s'' + r' · (s'' · s) + r'' · (s' · s) ≡⟨ (λ i → r · s' · s'' + r' · (·-comm s'' s i) + r'' · (·-comm s' s i)) ⟩ r · s' · s'' + r' · (s · s'') + r'' · (s · s') ≡⟨ (λ i → r · s' · s'' + ·Assoc r' s s'' i + r'' · (s · s')) ⟩ r · s' · s'' + r' · s · s'' + r'' · (s · s') ≡⟨ (λ i → ·Ldist+ (r · s') (r' · s) s'' (~ i) + r'' · (s · s')) ⟩ (r · s' + r' · s) · s'' + r'' · (s · s') ∎ 0ₗ : S⁻¹R 0ₗ = [ 0r , 1r , SMultClosedSubset .containsOne ] +ₗ-rid : (x : S⁻¹R) → x +ₗ 0ₗ ≡ x +ₗ-rid = SQ.elimProp (λ _ → squash/ _ _) +ₗ-rid[] where +ₗ-rid[] : (a : R × S) → [ a ] +ₗ 0ₗ ≡ [ a ] +ₗ-rid[] (r , s , s∈S) = path where eq1 : r · 1r + 0r · s ≡ r eq1 = cong (r · 1r +_) (0LeftAnnihilates _) ∙∙ +Rid _ ∙∙ ·Rid _ path : [ r · 1r + 0r · s , s · 1r , SMultClosedSubset .multClosed s∈S (SMultClosedSubset .containsOne) ] ≡ [ r , s , s∈S ] path = cong [_] (ΣPathP (eq1 , Σ≡Prop (λ x → ∈-isProp S' x) (·Rid _))) -ₗ_ : S⁻¹R → S⁻¹R -ₗ_ = SQ.rec squash/ -ₗ[] -ₗWellDef where -ₗ[] : R × S → S⁻¹R -ₗ[] (r , s) = [ - r , s ] -ₗWellDef : (a b : R × S) → a ≈ b → -ₗ[] a ≡ -ₗ[] b -ₗWellDef (r , s , _) (r' , s' , _) (u , p) = eq/ _ _ (u , path) where path : fst u · - r · s' ≡ fst u · - r' · s path = fst u · - r · s' ≡⟨ cong (_· s') (-DistR· _ _) ⟩ - (fst u · r) · s' ≡⟨ -DistL· _ _ ⟩ - (fst u · r · s') ≡⟨ cong -_ p ⟩ - (fst u · r' · s) ≡⟨ sym (-DistL· _ _) ⟩ - (fst u · r') · s ≡⟨ cong (_· s) (sym (-DistR· _ _)) ⟩ fst u · - r' · s ∎ +ₗ-rinv : (x : S⁻¹R) → x +ₗ (-ₗ x) ≡ 0ₗ +ₗ-rinv = SQ.elimProp (λ _ → squash/ _ _) +ₗ-rinv[] where +ₗ-rinv[] : (a : R × S) → ([ a ] +ₗ (-ₗ [ a ])) ≡ 0ₗ +ₗ-rinv[] (r , s , s∈S) = eq/ _ _ ((1r , SMultClosedSubset .containsOne) , path) where path : 1r · (r · s + - r · s) · 1r ≡ 1r · 0r · (s · s) path = 1r · (r · s + - r · s) · 1r ≡⟨ cong (λ x → 1r · (r · s + x) · 1r) (-DistL· _ _) ⟩ 1r · (r · s + - (r · s)) · 1r ≡⟨ cong (λ x → 1r · x · 1r) (+Rinv _) ⟩ 1r · 0r · 1r ≡⟨ ·Rid _ ⟩ 1r · 0r ≡⟨ ·Lid _ ⟩ 0r ≡⟨ sym (0LeftAnnihilates _) ⟩ 0r · (s · s) ≡⟨ cong (_· (s · s)) (sym (·Lid _)) ⟩ 1r · 0r · (s · s) ∎ +ₗ-comm : (x y : S⁻¹R) → x +ₗ y ≡ y +ₗ x +ₗ-comm = SQ.elimProp2 (λ _ _ → squash/ _ _) +ₗ-comm[] where +ₗ-comm[] : (a b : R × S) → ([ a ] +ₗ [ b ]) ≡ ([ b ] +ₗ [ a ]) +ₗ-comm[] (r , s , s∈S) (r' , s' , s'∈S) = cong [_] (ΣPathP ((+Comm _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·-comm _ _))) -- Now for multiplication _·ₗ_ : S⁻¹R → S⁻¹R → S⁻¹R _·ₗ_ = setQuotBinOp locRefl _·ₚ_ θ where _·ₚ_ : R × S → R × S → R × S (r₁ , s₁ , s₁∈S) ·ₚ (r₂ , s₂ , s₂∈S) = (r₁ · r₂) , ((s₁ · s₂) , SMultClosedSubset .multClosed s₁∈S s₂∈S) θ : (a a' b b' : R × S) → a ≈ a' → b ≈ b' → (a ·ₚ b) ≈ (a' ·ₚ b') θ (r₁ , s₁ , s₁∈S) (r'₁ , s'₁ , s'₁∈S) (r₂ , s₂ , s₂∈S) (r'₂ , s'₂ , s'₂∈S) (s , p) (s' , q) = ((fst s · fst s') , SMultClosedSubset .multClosed (s .snd) (s' .snd)) , path where path : fst s · fst s' · (r₁ · r₂) · (s'₁ · s'₂) ≡ fst s · fst s' · (r'₁ · r'₂) · (s₁ · s₂) path = fst s · fst s' · (r₁ · r₂) · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s · fst s') r₁ r₂ i · (s'₁ · s'₂)) ⟩ fst s · fst s' · r₁ · r₂ · (s'₁ · s'₂) ≡⟨ (λ i → ·Assoc (fst s · fst s' · r₁ · r₂) s'₁ s'₂ i) ⟩ fst s · fst s' · r₁ · r₂ · s'₁ · s'₂ ≡⟨ (λ i → ·Assoc (fst s) (fst s') r₁ (~ i) · r₂ · s'₁ · s'₂) ⟩ fst s · (fst s' · r₁) · r₂ · s'₁ · s'₂ ≡⟨ (λ i → fst s · (·-comm (fst s') r₁ i) · r₂ · s'₁ · s'₂) ⟩ fst s · (r₁ · fst s') · r₂ · s'₁ · s'₂ ≡⟨ (λ i → ·Assoc (fst s) r₁ (fst s') i · r₂ · s'₁ · s'₂) ⟩ fst s · r₁ · fst s' · r₂ · s'₁ · s'₂ ≡⟨ (λ i → ·Assoc (fst s · r₁ · fst s') r₂ s'₁ (~ i) · s'₂) ⟩ fst s · r₁ · fst s' · (r₂ · s'₁) · s'₂ ≡⟨ (λ i → fst s · r₁ · fst s' · (·-comm r₂ s'₁ i) · s'₂) ⟩ fst s · r₁ · fst s' · (s'₁ · r₂) · s'₂ ≡⟨ (λ i → ·Assoc (fst s · r₁ · fst s') s'₁ r₂ i · s'₂) ⟩ fst s · r₁ · fst s' · s'₁ · r₂ · s'₂ ≡⟨ (λ i → ·Assoc (fst s · r₁) (fst s') s'₁ (~ i) · r₂ · s'₂) ⟩ fst s · r₁ · (fst s' · s'₁) · r₂ · s'₂ ≡⟨ (λ i → fst s · r₁ · (·-comm (fst s') s'₁ i) · r₂ · s'₂) ⟩ fst s · r₁ · (s'₁ · fst s') · r₂ · s'₂ ≡⟨ (λ i → ·Assoc (fst s · r₁) s'₁ (fst s') i · r₂ · s'₂) ⟩ fst s · r₁ · s'₁ · fst s' · r₂ · s'₂ ≡⟨ (λ i → ·Assoc (fst s · r₁ · s'₁) (fst s') r₂ (~ i) · s'₂) ⟩ fst s · r₁ · s'₁ · (fst s' · r₂) · s'₂ ≡⟨ (λ i → ·Assoc (fst s · r₁ · s'₁) (fst s' · r₂) s'₂ (~ i)) ⟩ fst s · r₁ · s'₁ · (fst s' · r₂ · s'₂) ≡⟨ (λ i → (p i) · (q i)) ⟩ fst s · r'₁ · s₁ · (fst s' · r'₂ · s₂) ≡⟨ (λ i → ·Assoc (fst s · r'₁ · s₁) (fst s' · r'₂) s₂ i) ⟩ fst s · r'₁ · s₁ · (fst s' · r'₂) · s₂ ≡⟨ (λ i → ·Assoc (fst s · r'₁ · s₁) (fst s') r'₂ i · s₂) ⟩ fst s · r'₁ · s₁ · fst s' · r'₂ · s₂ ≡⟨ (λ i → ·Assoc (fst s · r'₁) s₁ (fst s') (~ i) · r'₂ · s₂) ⟩ fst s · r'₁ · (s₁ · fst s') · r'₂ · s₂ ≡⟨ (λ i → fst s · r'₁ · (·-comm s₁ (fst s') i) · r'₂ · s₂) ⟩ fst s · r'₁ · (fst s' · s₁) · r'₂ · s₂ ≡⟨ (λ i → ·Assoc (fst s · r'₁) (fst s') s₁ i · r'₂ · s₂) ⟩ fst s · r'₁ · fst s' · s₁ · r'₂ · s₂ ≡⟨ (λ i → ·Assoc (fst s · r'₁ · fst s') s₁ r'₂ (~ i) · s₂) ⟩ fst s · r'₁ · fst s' · (s₁ · r'₂) · s₂ ≡⟨ (λ i → fst s · r'₁ · fst s' · (·-comm s₁ r'₂ i) · s₂) ⟩ fst s · r'₁ · fst s' · (r'₂ · s₁) · s₂ ≡⟨ (λ i → ·Assoc (fst s · r'₁ · fst s') r'₂ s₁ i · s₂) ⟩ fst s · r'₁ · fst s' · r'₂ · s₁ · s₂ ≡⟨ (λ i → ·Assoc (fst s) r'₁ (fst s') (~ i) · r'₂ · s₁ · s₂) ⟩ fst s · (r'₁ · fst s') · r'₂ · s₁ · s₂ ≡⟨ (λ i → fst s · (·-comm r'₁ (fst s') i) · r'₂ · s₁ · s₂) ⟩ fst s · (fst s' · r'₁) · r'₂ · s₁ · s₂ ≡⟨ (λ i → ·Assoc (fst s) (fst s') r'₁ i · r'₂ · s₁ · s₂) ⟩ fst s · fst s' · r'₁ · r'₂ · s₁ · s₂ ≡⟨ (λ i → ·Assoc (fst s · fst s' · r'₁ · r'₂) s₁ s₂ (~ i)) ⟩ fst s · fst s' · r'₁ · r'₂ · (s₁ · s₂) ≡⟨ (λ i → ·Assoc (fst s · fst s') r'₁ r'₂ (~ i) · (s₁ · s₂)) ⟩ fst s · fst s' · (r'₁ · r'₂) · (s₁ · s₂) ∎ -- checking laws for multiplication 1ₗ : S⁻¹R 1ₗ = [ 1r , 1r , SMultClosedSubset .containsOne ] ·ₗ-assoc : (x y z : S⁻¹R) → x ·ₗ (y ·ₗ z) ≡ (x ·ₗ y) ·ₗ z ·ₗ-assoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) ·ₗ-assoc[] where ·ₗ-assoc[] : (a b c : R × S) → [ a ] ·ₗ ([ b ] ·ₗ [ c ]) ≡ ([ a ] ·ₗ [ b ]) ·ₗ [ c ] ·ₗ-assoc[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = cong [_] (ΣPathP ((·Assoc _ _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Assoc _ _ _))) ·ₗ-rid : (x : S⁻¹R) → x ·ₗ 1ₗ ≡ x ·ₗ-rid = SQ.elimProp (λ _ → squash/ _ _) ·ₗ-rid[] where ·ₗ-rid[] : (a : R × S) → ([ a ] ·ₗ 1ₗ) ≡ [ a ] ·ₗ-rid[] (r , s , s∈S) = cong [_] (ΣPathP ((·Rid _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Rid _))) ·ₗ-rdist-+ₗ : (x y z : S⁻¹R) → x ·ₗ (y +ₗ z) ≡ (x ·ₗ y) +ₗ (x ·ₗ z) ·ₗ-rdist-+ₗ = SQ.elimProp3 (λ _ _ _ → squash/ _ _) ·ₗ-rdist-+ₗ[] where ·ₗ-rdist-+ₗ[] : (a b c : R × S) → [ a ] ·ₗ ([ b ] +ₗ [ c ]) ≡ ([ a ] ·ₗ [ b ]) +ₗ ([ a ] ·ₗ [ c ]) ·ₗ-rdist-+ₗ[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) = eq/ _ _ ((1r , (SMultClosedSubset .containsOne)) , path) where path : 1r · (r · (r' · s'' + r'' · s')) · (s · s' · (s · s'')) ≡ 1r · (r · r' · (s · s'') + r · r'' · (s · s')) · (s · (s' · s'')) path = 1r · (r · (r' · s'' + r'' · s')) · (s · s' · (s · s'')) ≡⟨ (λ i → ·Lid (r · (r' · s'' + r'' · s')) i · (s · s' · (s · s''))) ⟩ r · (r' · s'' + r'' · s') · (s · s' · (s · s'')) ≡⟨ (λ i → ·Rdist+ r (r' · s'') (r'' · s') i · (s · s' · (s · s''))) ⟩ (r · (r' · s'') + r · (r'' · s')) · (s · s' · (s · s'')) ≡⟨ (λ i → (·Assoc r r' s'' i + ·Assoc r r'' s' i) · (s · s' · (s · s''))) ⟩ (r · r' · s'' + r · r'' · s') · (s · s' · (s · s'')) ≡⟨ (λ i → (r · r' · s'' + r · r'' · s') · (·Assoc s s' (s · s'') (~ i))) ⟩ (r · r' · s'' + r · r'' · s') · (s · (s' · (s · s''))) ≡⟨ (λ i → ·Assoc (r · r' · s'' + r · r'' · s') s (s' · (s · s'')) i) ⟩ (r · r' · s'' + r · r'' · s') · s · (s' · (s · s'')) ≡⟨ (λ i → ·Ldist+ (r · r' · s'') (r · r'' · s') s i · (·Assoc s' s s'' i)) ⟩ (r · r' · s'' · s + r · r'' · s' · s) · (s' · s · s'') ≡⟨ (λ i → (·Assoc (r · r') s'' s (~ i) + ·Assoc (r · r'') s' s (~ i)) · ((·-comm s' s i) · s'')) ⟩ (r · r' · (s'' · s) + r · r'' · (s' · s)) · (s · s' · s'') ≡⟨ (λ i → (r · r' · (·-comm s'' s i) + r · r'' · (·-comm s' s i)) · (·Assoc s s' s'' (~ i))) ⟩ (r · r' · (s · s'') + r · r'' · (s · s')) · (s · (s' · s'')) ≡⟨ (λ i → ·Lid (r · r' · (s · s'') + r · r'' · (s · s')) (~ i) · (s · (s' · s''))) ⟩ 1r · (r · r' · (s · s'') + r · r'' · (s · s')) · (s · (s' · s'')) ∎ ·ₗ-comm : (x y : S⁻¹R) → x ·ₗ y ≡ y ·ₗ x ·ₗ-comm = SQ.elimProp2 (λ _ _ → squash/ _ _) ·ₗ-comm[] where ·ₗ-comm[] : (a b : R × S) → [ a ] ·ₗ [ b ] ≡ [ b ] ·ₗ [ a ] ·ₗ-comm[] (r , s , s∈S) (r' , s' , s'∈S) = cong [_] (ΣPathP ((·-comm _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·-comm _ _))) -- Commutative ring structure on S⁻¹R S⁻¹RAsCommRing : CommRing S⁻¹RAsCommRing = S⁻¹R , S⁻¹RCommRingStr where open CommRingStr S⁻¹RCommRingStr : CommRingStr S⁻¹R 0r S⁻¹RCommRingStr = 0ₗ 1r S⁻¹RCommRingStr = 1ₗ _+_ S⁻¹RCommRingStr = _+ₗ_ _·_ S⁻¹RCommRingStr = _·ₗ_ - S⁻¹RCommRingStr = -ₗ_ isCommRing S⁻¹RCommRingStr = makeIsCommRing squash/ +ₗ-assoc +ₗ-rid +ₗ-rinv +ₗ-comm ·ₗ-assoc ·ₗ-rid ·ₗ-rdist-+ₗ ·ₗ-comm
52.33049
109
0.37583
7369a9b296ad05d90e5a68a014abf5a7a53deb9c
2,049
agda
Agda
Universe/index.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
Universe/index.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
Universe/index.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} {- *** Definition 5.3 and Lemma 5.5 are taken from the library *** *** Corollary 6.8 is too trivial a consequence of -} {- ConnectednessAlt and the last submodule of Connection are the only modules importing real truncation types from the library. Except for that, Univalence is the only additional assumption to Agda-style MLTT we work with. -} module Universe.index where {- General utility funcions and type constructors for the pseudo-universe of types of fixed truncation level. -} import Universe.Utility.General import Universe.Utility.TruncUniverse {- Pointed types. Corresponds to section 4 plus some lemmata of section 5, which are used in multiple modules and thus belong here. -} -- *** Definitions 4.1, 4.3, 4.5, 4.6 and Lemmata 4.5, 4.7, 5.1, 5.4 *** import Universe.Utility.Pointed {- Homotopically complicated types. Corresponds to section 5 sans the initial lemma. Concludes with the main theorem that the n-types in the n-th universe from a strict n-type. Hierarchy and Trunc.* are mutually independent. -} {- *** Lemmata 5.2, 5.7, 5.8(*), Theorems 5.9, 5.11, and Corollary 5.6 *** (*) a slightly weaker version -} import Universe.Hierarchy {- Connectedness constructions Corresponds to section 6 and 7. The first three modules develop a framework of truncations internal to MLTT+Univalence without truncations. Connection contains the main result of section 6. ConnectednessAlt is independent from the first four modules and presents a provably equivalent definition of n-connectedness using only propositional truncation (as remarked in the article and mentioned in an exercise in the HoTT book). -} --- *** Definition 6.2, Lemma 6.6 import Universe.Trunc.Universal --- *** Definition 6.4, Lemma 6.7 *** import Universe.Trunc.Basics --- *** Lemmata 6.9, 6.10 import Universe.Trunc.TypeConstructors --- *** Definitions 6.11, 6.13, Lemmata 6.12, 6.14, 6.15 import Universe.Trunc.Connection import Universe.Trunc.ConnectednessAlt
37.944444
74
0.735481
30526c6a3c2a469d2d990cffbdf8032961997fbb
1,523
agda
Agda
Definition/Typed/Consequences/NeTypeEq.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/NeTypeEq.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/NeTypeEq.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.NeTypeEq where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Injectivity open import Definition.Typed.Consequences.Substitution open import Tools.Product import Tools.PropositionalEquality as PE -- Helper function for the same variable instance of a context have equal types. varTypeEq′ : ∀ {n R T Γ} → n ∷ R ∈ Γ → n ∷ T ∈ Γ → R PE.≡ T varTypeEq′ here here = PE.refl varTypeEq′ (there n∷R) (there n∷T) rewrite varTypeEq′ n∷R n∷T = PE.refl -- The same variable instance of a context have equal types. varTypeEq : ∀ {x A B Γ} → Γ ⊢ A → Γ ⊢ B → x ∷ A ∈ Γ → x ∷ B ∈ Γ → Γ ⊢ A ≡ B varTypeEq A B x∷A x∷B rewrite varTypeEq′ x∷A x∷B = refl A -- The same neutral term have equal types. neTypeEq : ∀ {t A B Γ} → Neutral t → Γ ⊢ t ∷ A → Γ ⊢ t ∷ B → Γ ⊢ A ≡ B neTypeEq (var x) (var x₁ x₂) (var x₃ x₄) = varTypeEq (syntacticTerm (var x₃ x₂)) (syntacticTerm (var x₃ x₄)) x₂ x₄ neTypeEq (∘ₙ neT) (t∷A ∘ⱼ t∷A₁) (t∷B ∘ⱼ t∷B₁) with neTypeEq neT t∷A t∷B ... | q = let w = proj₂ (injectivity q) in substTypeEq w (refl t∷A₁) neTypeEq (natrecₙ neT) (natrecⱼ x t∷A t∷A₁ t∷A₂) (natrecⱼ x₁ t∷B t∷B₁ t∷B₂) = refl (substType x₁ t∷B₂) neTypeEq x (conv t∷A x₁) t∷B = let q = neTypeEq x t∷A t∷B in trans (sym x₁) q neTypeEq x t∷A (conv t∷B x₃) = let q = neTypeEq x t∷A t∷B in trans q x₃
41.162162
80
0.643467
19c0610c5c60cdea32e4c66749d50700efae9f78
14,959
agda
Agda
README/Pointers-to-results-from-the-paper.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
README/Pointers-to-results-from-the-paper.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
README/Pointers-to-results-from-the-paper.agda
nad/definitional-interpreters
dec8cd2d2851340840de25acb0feb78f7b5ffe96
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Pointers to results from the paper ------------------------------------------------------------------------ module README.Pointers-to-results-from-the-paper where open import Prelude using (Type) open import Prelude.Size using (∞) import Colist import Conat import Omniscience import Delay-monad import Delay-monad.Bisimilarity import Delay-monad.Monad import Delay-monad.Quantitative-weak-bisimilarity import Only-allocation import Unbounded-space import Upper-bounds import Lambda.Compiler import Lambda.Compiler-correctness import Lambda.Compiler-correctness.Sizes-match import Lambda.Compiler-correctness.Steps-match import Lambda.Delay-crash import Lambda.Delay-crash-trace import Lambda.Interpreter import Lambda.Interpreter.Stack-sizes import Lambda.Interpreter.Stack-sizes.Counterexample import Lambda.Interpreter.Stack-sizes.Example import Lambda.Interpreter.Steps import Lambda.Interpreter.Steps.Counterexample import Lambda.Virtual-machine import Lambda.Virtual-machine.Instructions import Lambda.Syntax ------------------------------------------------------------------------ -- Section 2 -- Conatural numbers. Conat = Conat.Conat Conat′ = Conat.Conat′ -- Infinity. infinity = Conat.infinity -- Ordering. [_]_≤_ = Conat.[_]_≤_ [_]_≤′_ = Conat.[_]_≤′_ -- Bisimilarity. [_]_∼N_ = Conat.[_]_∼_ ------------------------------------------------------------------------ -- Section 3 -- Programs. Stmt = Only-allocation.Stmt Program = Only-allocation.Program -- Colists. Colist = Colist.Colist -- The interpreter. modify = Unbounded-space.modify ⟦_⟧₁ = Unbounded-space.⟦_⟧ ⟦_⟧′ = Unbounded-space.⟦_⟧′ -- Upper bounds. [_]_⊑_ = Upper-bounds.[_]_⊑_ [_]_⊑′_ = Upper-bounds.[_]_⊑′_ -- The □ predicate. □ = Colist.□ -- Least upper bounds. LUB = Upper-bounds.LUB -- Least upper bounds are unique up to bisimilarity. lub-unique = Upper-bounds.lub-unique -- Antisymmetry for conatural numbers. antisymmetric = Conat.antisymmetric-≤ -- WLPO. WLPO = Omniscience.WLPO -- WLPO is classically valid: it follows from excluded middle and -- extensionality for functions. LEM→WLPO = Omniscience.LEM→WLPO -- WLPO is logically equivalent to one formulation of "least upper -- bounds exist for every colist". wlpo⇔lub = Unbounded-space.wlpo⇔lub -- Maximum heap usage. Heap-usage = Unbounded-space.Heap-usage -- This was not mentioned in the paper, but WLPO is also logically -- equivalent to one formulation of "maximum heap usages exist for -- every program". wlpo⇔max = Unbounded-space.wlpo⇔max -- The maximum heap usage is unique up to bisimilarity. max-unique = Unbounded-space.max-unique -- Some examples. bounded = Only-allocation.bounded bounded₂ = Only-allocation.bounded₂ unbounded = Only-allocation.unbounded _∷′_ = Colist._∷′_ -- The example programs have infinitely long traces. bounded-loops = Unbounded-space.bounded-loops bounded₂-loops = Unbounded-space.bounded₂-loops unbounded-loops = Unbounded-space.unbounded-loops -- Properties showing that the example programs have certain maximum -- heap usages. max-bounded-1 = Unbounded-space.max-bounded-1 max-bounded₂-2 = Unbounded-space.max-bounded₂-2 max-unbounded-∞ = Unbounded-space.max-unbounded-∞ -- If no natural number is an upper bound of the heap usage of p, then -- the maximum heap usage of p is infinity. no-finite-max→infinite-max = Unbounded-space.no-finite-max→infinite-max -- If no natural number is an upper bound of ms, but the conatural -- number m is, then m is bisimilar to infinity. no-finite→infinite = Upper-bounds.no-finite→infinite ------------------------------------------------------------------------ -- Section 4 -- The optimiser. opt = Unbounded-space.opt -- The optimiser improves the space complexity of at least one -- program. opt-improves = Unbounded-space.opt-improves -- The semantics of optimise bounded-space₂ matches that of -- bounded-space. opt-bounded₂∼bounded = Unbounded-space.opt-bounded₂∼bounded -- Bisimilarity of colists. [_]_∼L_ = Colist.[_]_∼_ -- The maximum heap usage of an optimised program is at most as high -- as that of the original program (assuming that these maximums -- exist). opt-correct = Unbounded-space.opt-correct -- The [_]_≲_ relation. [_]_≲_ = Upper-bounds.[_]_≲_ [_]_≲′_ = Upper-bounds.[_]_≲′_ -- If ms has the least upper bound m, and ns has the least upper bound -- n, then ms is bounded by ns if and only if m is bounded by n. ≲⇔least-upper-bounds-≤ = Upper-bounds.≲⇔least-upper-bounds-≤ -- Four combinators that can be used to prove that one colist is -- bounded by another. []≲ = Upper-bounds.[]≲ consʳ-≲ = Upper-bounds.consʳ-≲ consˡ-≲ = Upper-bounds.consˡ-≲ cons′-≲ = Upper-bounds.cons′-≲ Bounded = Upper-bounds.Bounded -- If consʳ-≲ had taken the primed variant of the relation as an -- argument instead, then one could have proved that any colist was -- bounded by any infinite colist, and this leads to a contradiction. consʳ-≲′→≲-infinite = Upper-bounds.consʳ-≲′→≲-infinite ¬-consʳ-≲′ = Upper-bounds.¬-consʳ-≲′ -- The [_]_≲_ relation is a preorder. (The transitivity result has a -- type signature that differs slightly from that given in the paper.) reflexive-≲ = Upper-bounds._□≲ transitive-≲ = Upper-bounds.step-≲ -- Transitivity cannot be made size-preserving in the second argument. ¬-transitivity-size-preservingʳ = Upper-bounds.¬-transitivity-size-preservingʳ -- A size-preserving variant of transitivity. (This result has a -- type signature that differs slightly from that given in the paper.) transitive-∼≲ = Upper-bounds.step-∼≲ -- The main lemma used to prove that the maximum heap usage of an -- optimised program is at most as high as that of the original -- program (assuming that these maximums exist). opt-correct-≲ = Unbounded-space.opt-correct-≲ ------------------------------------------------------------------------ -- Section 5 -- The delay monad. Delay = Delay-monad.Delay -- The non-terminating computation never. never = Delay-monad.never -- Monad instance. monad-instance₁ = Delay-monad.Monad.delay-raw-monad -- Strong bisimilarity. [_]_∼D_ = Delay-monad.Bisimilarity.[_]_∼_ -- Monad laws. left-identity₁ = Delay-monad.Monad.left-identity′ right-identity₁ = Delay-monad.Monad.right-identity′ associativity₁ = Delay-monad.Monad.associativity′ -- Weak bisimilarity. (This relation is not defined in exactly the -- same way as in the paper.) [_]_≈D_ = Delay-monad.Bisimilarity.[_]_≈_ ------------------------------------------------------------------------ -- Section 6 -- Terms. Tm = Lambda.Syntax.Tm -- Environments and values. (The code uses a definition which is -- parametrised by the type of terms. The same definition is used also -- for virtual machine environments and values.) Env = Lambda.Syntax.Closure.Env Value = Lambda.Syntax.Closure.Value -- DelayC (called Delay-crash in the code) and crash. DelayC = Lambda.Delay-crash.Delay-crash crash : {A : Type} → DelayC A ∞ crash = Lambda.Delay-crash.crash -- The computation crash (in fact, any computation of the form now x) -- is not weakly bisimilar to never. now≉never = Delay-monad.Bisimilarity.now≉never -- The interpreter. _∙_ = Lambda.Interpreter._∙_ ⟦_⟧₂ = Lambda.Interpreter.⟦_⟧ ⟦if⟧ = Lambda.Interpreter.⟦if⟧ ------------------------------------------------------------------------ -- Section 7 -- DelayCT (called Delay-crash-trace in the code). DelayCT = Lambda.Delay-crash-trace.Delay-crash-trace trace = Lambda.Delay-crash-trace.trace delayC = Lambda.Delay-crash-trace.delay-crash -- Monad instance. monad-instance₂ = Lambda.Delay-crash-trace.raw-monad -- Strong bisimilarity. [_]_∼DCT_ = Lambda.Delay-crash-trace.[_]_∼_ -- Monad laws. left-identity₂ = Lambda.Delay-crash-trace.left-identity right-identity₂ = Lambda.Delay-crash-trace.right-identity associativity₂ = Lambda.Delay-crash-trace.associativity -- Instructions and code. Instr = Lambda.Virtual-machine.Instructions.Instr Code = Lambda.Virtual-machine.Instructions.Code -- Environments and values. (The code uses a definition which is -- parametrised by the type of terms. The same definition is used also -- for the interpreter's environments and values.) VM-Env = Lambda.Syntax.Closure.Env VM-Value = Lambda.Syntax.Closure.Value -- Stack elements and stacks. Stack-element = Lambda.Virtual-machine.Instructions.Stack-element Stack = Lambda.Virtual-machine.Instructions.Stack -- States. State = Lambda.Virtual-machine.Instructions.State -- The virtual machine. Result = Lambda.Virtual-machine.Instructions.Result step = Lambda.Virtual-machine.step exec⁺ = Lambda.Virtual-machine.exec⁺ exec⁺′ = Lambda.Virtual-machine.exec⁺′ exec = Lambda.Virtual-machine.exec stack-sizes = Lambda.Virtual-machine.stack-sizes ------------------------------------------------------------------------ -- Section 8 -- Tail context information. In-tail-context = Lambda.Compiler.In-tail-context -- The compilation functions. comp = Lambda.Compiler.comp comp-body = Lambda.Compiler.comp-body comp-name = Lambda.Compiler.comp-name comp-env = Lambda.Compiler.comp-env comp-val = Lambda.Compiler.comp-val comp₀ = Lambda.Compiler.comp₀ -- Compiler correctness. compiler-correct = Lambda.Compiler-correctness.correct -- The key lemma used to prove compiler correctness. key-lemma₁ = Lambda.Compiler-correctness.⟦⟧-correct Cont-OK = Lambda.Compiler-correctness.Cont-OK Stack-OK = Lambda.Compiler-correctness.Stack-OK ------------------------------------------------------------------------ -- Section 9 -- The instrumented interpreter. [_,_]_∙S_ = Lambda.Interpreter.Stack-sizes.[_,_]_∙_ ⟦_⟧S = Lambda.Interpreter.Stack-sizes.⟦_⟧ δ = Lambda.Interpreter.Stack-sizes.δ ⟦if⟧S = Lambda.Interpreter.Stack-sizes.⟦if⟧ scanl = Colist.scanl numbers = Lambda.Interpreter.Stack-sizes.numbers stack-sizesS = Lambda.Interpreter.Stack-sizes.stack-sizes -- The instrumented semantics produces computations that are strongly -- bisimilar to those produced by the other semantics. ⟦⟧∼⟦⟧ = Lambda.Interpreter.Stack-sizes.⟦⟧∼⟦⟧ -- If the trace of stack sizes produced by the instrumented semantics -- has the least upper bound i, and the corresponding trace produced -- by the virtual machine has the least upper bound v, then i and v -- are bisimilar. maximum-stack-sizes-match = Lambda.Compiler-correctness.Sizes-match.maximum-stack-sizes-match -- The trace of stack sizes produced by the virtual machine is not -- necessarily bisimilar to that produced by the instrumented -- interpreter. stack-sizes-not-bisimilar = Lambda.Interpreter.Stack-sizes.Counterexample.stack-sizes-not-bisimilar -- The trace of stack sizes produced by the virtual machine and that -- produced by the instrumented interpreter are upper bounds of each -- other. stack-sizes-related = Lambda.Compiler-correctness.Sizes-match.stack-sizes-related -- The [_]_≂_ relation. [_]_≂_ = Upper-bounds.[_]_≂_ [_]_≂′_ = Upper-bounds.[_]_≂′_ -- Colists that are related by this relation have the same least upper -- bounds (if any). LUB-cong = Upper-bounds.LUB-cong -- Some combinators that can be used to prove that two colists are -- bounded by each other. consʳ-≂ = Upper-bounds.consʳ-≂ consˡ-≂ = Upper-bounds.consˡ-≂ cons-≂ = Upper-bounds.cons-≂ cons′-≂ = Upper-bounds.cons′-≂ -- The [_]_≂_ relation is an equivalence relation. (The -- transitivity-like results have type signatures that differ slightly -- from those given in the paper.) reflexive-≂ = Upper-bounds._□≂ symmetric-≂ = Upper-bounds.symmetric-≂ transitive-≂ = Upper-bounds.step-≂ transitive-∼≂ = Upper-bounds.step-∼≂ transitive-≂∼ = Upper-bounds.step-≂∼ -- The [_]_≂″_ relation. [_]_≂″_ = Upper-bounds.[_]_≂″_ -- [_]_≂′_ and [_]_≂″_ are pointwise logically equivalent. ≂′⇔≂″ = Upper-bounds.≂′⇔≂″ -- This was not mentioned in the paper, but a corresponding relation -- can also be defined for [_]_≲′_. [_]_≲″_ = Upper-bounds.[_]_≲″_ ≲′⇔≲″ = Upper-bounds.≲′⇔≲″ -- The key lemma used to prove correctness. key-lemma₂ = Lambda.Compiler-correctness.Sizes-match.⟦⟧-correct -- A non-terminating program that requires unbounded stack space. Ω = Lambda.Syntax.Ω Ω-loops = Lambda.Interpreter.Ω-loops′ Ω-requires-unbounded-space = Lambda.Interpreter.Stack-sizes.Ω-requires-unbounded-space -- A non-terminating program that runs in bounded stack space. go = Lambda.Interpreter.Stack-sizes.Example.go go-loops = Lambda.Interpreter.Stack-sizes.Example.go-loops go-bounded-stack = Lambda.Interpreter.Stack-sizes.Example.go-bounded-stack ------------------------------------------------------------------------ -- Section 10 -- The uninstrumented interpreter does not provide a suitable cost -- measure, in the sense that there is a family of programs for which -- the running "time" (number of steps) of the corresponding compiled -- programs on the virtual machine is not linear in the running time -- on the interpreter. not-suitable-cost-measure = Lambda.Interpreter.Steps.Counterexample.not-suitable-cost-measure -- The instrumented interpreter. ✓_ = Lambda.Interpreter.Steps.✓_ _∙T_ = Lambda.Interpreter.Steps._∙_ ⟦_⟧T = Lambda.Interpreter.Steps.⟦_⟧ ⟦if⟧T = Lambda.Interpreter.Steps.⟦if⟧ -- The cost measure provided by the instrumented interpreter is -- "suitable", in the sense that the cost of running a compiled -- program on the virtual machine is linear in the cost of running the -- corresponding source program on the interpreter, and vice versa. the-cost-measure-is-suitable = Lambda.Compiler-correctness.Steps-match.steps-match -- Quantitative weak bisimilarity. [_∣_∣_∣_∣_]_≈D_ = Delay-monad.Quantitative-weak-bisimilarity.[_∣_∣_∣_∣_]_≈_ -- A characterisation of quantitative weak bisimilarity. ≈⇔≈×steps≤steps² = Delay-monad.Quantitative-weak-bisimilarity.≈⇔≈×steps≤steps² -- The left-to-right direction of the characterisation can be made -- size-preserving. ≈→≈×steps≤steps² = Delay-monad.Quantitative-weak-bisimilarity.≈→≈×steps≤steps² -- The right-to-left direction of the characterisation can be made -- size-preserving if and only if the carrier type is uninhabited -- (assuming that Agda is not buggy). ≈×steps≤steps²→≈⇔uninhabited = Delay-monad.Quantitative-weak-bisimilarity.≈×steps≤steps²→≈⇔uninhabited -- Weakening. weaken = Delay-monad.Quantitative-weak-bisimilarity.weaken -- Two transitivity-like results. transitive-≳∼ = Delay-monad.Quantitative-weak-bisimilarity.transitive-≳∼ transitive-≈∼ = Delay-monad.Quantitative-weak-bisimilarity.transitive-≈∼ transitive-∼≈ = Delay-monad.Quantitative-weak-bisimilarity.transitive-∼≈ -- The key lemma used to prove that the cost measure is "suitable". key-lemma₃ = Lambda.Compiler-correctness.Steps-match.⟦⟧-correct
27.908582
73
0.699913
fd742115f00651c6698f9ffb0f5c695b867c1abb
8,418
agda
Agda
OTTTests/Tests.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
OTTTests/Tests.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
OTTTests/Tests.agda
hbasold/Sandbox
8fc7a6cd878f37f9595124ee8dea62258da28aa4
[ "MIT" ]
null
null
null
{-# OPTIONS --copatterns --sized-types #-} {- | The purpose of this module is to demonstrate how observational type theory can be implemented for arbitrary types in Agda through the use of tests and a corresponding bisimulation proof method. To use the equivalence for a type A, the type has to be made _testable_ by creating an instance of Testable for it, see the accompanying module TestsInstances. Such an instance effectively encodes A as inductive or coinductive type, by giving an observation map to a coproduct of product of components of A. For now, we do not pose any restrictions on this encoding, hence it can be used to induce trivial equivalences. Using such an instance of Testable for A, we can define _tests_ and _observational equivalence_ for A. Moreover, we give a bisimulation proof method and prove its soundness. -} module Tests where open import Size open import Level open import Data.Product open import Data.Bool open import Function open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning open import Relation.Binary open import Isomorphisms -- | Write dependent functions as Π-type to make duality between -- inductive and coinducitve types clearer. record Π {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where field app : (x : A) → B x open Π public -- | Generalised copairing for coproducts: -- Turn an I-indexed tuple of maps fᵢ : Bᵢ → C into a map Σ I B → C. cotuple : {I C : Set} → {B : I → Set} → ((i : I) → B i → C) → (Σ I B → C) cotuple f x = f (proj₁ x) (proj₂ x) -- | Distinguish inductive and coinductive types data Kind : Set where ind : Kind coind : Kind --- | Make a type observable. An inductive type shall be represented by --- a coproduct, whereas a coinductive type is represented by a product. ObsTy : (I : Set) (B : I → Set) → Kind → Set ObsTy I B ind = Σ I B ObsTy I B coind = Π I B -- | Make a type testable record Testable (A : Set) : Set₁ where coinductive field index : Set parts : index → Set kind : Kind obs : A → ObsTy index parts kind partsTestable : (i : index) → Testable (parts i) open Testable public record IsoTestable (A : Set) : Set₁ where field testable : Testable A obsIso : IsIso (obs testable) open IsoTestable public SubTests : {l : Size} → {A : Set} → Testable A → Kind → Set -- | Test formulae data Test {i : Size} {A : Set} (T : Testable A) : Set where ⊤ : Test T ⊥ : Test T nonTriv : {j : Size< i} → SubTests {j} T (kind T) → Test {i} {A} T SubTests {l} T ind = Π (index T) (λ i → Test {l} (partsTestable T i)) SubTests {l} T coind = Σ (index T) (λ i → Test {l} (partsTestable T i)) -- | Satisfaction of subtests. sat : {A : Set} {T : Testable A} {l : Size} → (k : Kind) → SubTests {l} T k → ObsTy (index T) (parts T) k → Bool -- | Test satisfaction _⊨_ : {A : Set} {T : Testable A} → A → Test T → Bool x ⊨ ⊤ = true x ⊨ ⊥ = false _⊨_ {A} {T} x (nonTriv nt) = sat (kind T) nt (obs T x) sat ind φs o = cotuple (λ i y → y ⊨ app φs i) o sat coind (i , φ) o = app o i ⊨ φ -- | Observational equivalence: terms are equal if they satisfy the same tests. record _≃⟨_⟩_ {A : Set} (x : A) (T : Testable A) (y : A) : Set₁ where field eqProof : (φ : Test T) → (x ⊨ φ ≡ y ⊨ φ) open _≃⟨_⟩_ public ≡→≃ : {A : Set} → {T : Testable A} → {a b : A} → a ≡ b → a ≃⟨ T ⟩ b ≡→≃ p = record { eqProof = λ φ → cong (λ x → x ⊨ φ) p } ≃-refl : {A : Set} → (T : Testable A) → {a : A} → a ≃⟨ T ⟩ a ≃-refl T = record { eqProof = λ φ → refl } ≃-sym : {A : Set} → (T : Testable A) → {a b : A} → a ≃⟨ T ⟩ b → b ≃⟨ T ⟩ a ≃-sym T p = record { eqProof = sym ∘ (eqProof p) } ≃-trans : {A : Set} → (T : Testable A) → {a b c : A} → a ≃⟨ T ⟩ b → b ≃⟨ T ⟩ c → a ≃⟨ T ⟩ c ≃-trans T p₁ p₂ = record { eqProof = λ φ → trans (eqProof p₁ φ) (eqProof p₂ φ) } ≃-setoid : {A : Set} → (T : Testable A) → Setoid _ _ ≃-setoid {A} T = record { Carrier = A ;_≈_ = λ x y → x ≃⟨ T ⟩ y ; isEquivalence = record { refl = ≃-refl T ; sym = ≃-sym T ; trans = ≃-trans T } } -- Most likely impossible to prove within Agda. -- Is it consistent with the system to postulate this for _IsoTestable_ ? -- ≃-cong : {A B : Set} → {T₁ : Testable A} → {T₂ : Testable B} → {a b : A} → -- (f : A → B) → a ≃⟨ T₁ ⟩ b → f a ≃⟨ T₂ ⟩ f b -- If A is testable and there is a map B → A, then B is also testable. comap-testable : {A B : Set} → (B → A) → Testable A → Testable B comap-testable {A} {B} f T = record { index = index T ; parts = parts T ; kind = kind T ; obs = (obs T) ∘ f ; partsTestable = partsTestable T } -- | If A is testable and A ≅ B, then B is iso-testable as well. iso-testable : {A B : Set} → Iso B A → IsoTestable A → IsoTestable B iso-testable {A} {B} I T = record { testable = comap-testable (Iso.iso I) (testable T) ; obsIso = iso-comp (Iso.indeedIso I) (obsIso T) } -- | Heterogeneous record _~⟨_∥_⟩_ {A B : Set} (x : A) (T : Testable A) (I : Iso B A) (y : B) : Set₁ where field eqProofH : (φ : Test T) → (x ⊨ φ ≡ (Iso.iso I y) ⊨ φ) open _~⟨_∥_⟩_ public -- | Helper to match on Kind in construction of ≈. ≈-Proof : {A : Set} → (k : Kind) → (T : Testable A) → (A → ObsTy (index T) (parts T) k) → A → A → Set -- | Bisimilarity induced from testable types. record _≈⟨_⟩_ {A : Set} (x : A) (T : Testable A) (y : A) : Set where coinductive field proof : ≈-Proof (kind T) T (obs T) x y open _≈⟨_⟩_ public -- | Helper to fiddle around with index in construction of IndProof. ResolveIdx : {A : Set} → (T : Testable A) → (i : index T) → (r s : ObsTy (index T) (parts T) ind) → proj₁ r ≡ i → proj₁ s ≡ i → Set ResolveIdx T i (.i , x') (.i , y') refl refl = x' ≈⟨ partsTestable T i ⟩ y' -- | Proofs of bisimilarity on inductive types. record IndProof {A : Set} (T : Testable A) (o : A → ObsTy (index T) (parts T) ind) (x y : A) : Set where coinductive field which : index T eqIndex₁ : proj₁ (o x) ≡ which eqIndex₂ : proj₁ (o y) ≡ which eqTrans : ResolveIdx T which (o x) (o y) eqIndex₁ eqIndex₂ open IndProof public -- | Proofs of bisimilarity on coinductive types. record CoindProof {A : Set} (T : Testable A) (o : A → ObsTy (index T) (parts T) coind) (x y : A) : Set where coinductive field eqStep : (i : index T) → app (o x) i ≈⟨ partsTestable T i ⟩ app (o y) i open CoindProof public ≈-Proof ind = IndProof ≈-Proof coind = CoindProof -- | Lemma for induction to prove soundness of bisimilarity lem-≈→≃-testInduct : {j : Size} {A : Set} → (T : Testable A) → (x y : A) → x ≈⟨ T ⟩ y → (φ : Test {j} T) → x ⊨ φ ≡ y ⊨ φ lem-≈→≃-testInduct _ _ _ _ ⊤ = refl lem-≈→≃-testInduct _ _ _ _ ⊥ = refl lem-≈→≃-testInduct {j} {A} T x y x≈y (nonTriv {l} nt) = matchKind (kind T) nt (obs T) (proof x≈y) where matchKind : (k : Kind) → (nt : SubTests {l} T k) → (o : A → ObsTy (index T) (parts T) k) → ≈-Proof k T o x y → sat k nt (o x) ≡ sat k nt (o y) matchKind ind nt o p = refine (which p) (o x) (o y) (eqIndex₁ p) (eqIndex₂ p) (eqTrans p) where --| Do pattern matching on IndProof refine : (i : index T) → (r s : ObsTy (index T) (parts T) ind) → (eqP₁ : proj₁ r ≡ i) → (eqP₂ : proj₁ s ≡ i) → ResolveIdx T i r s eqP₁ eqP₂ → (proj₂ r) ⊨ app nt (proj₁ r) ≡ (proj₂ s) ⊨ app nt (proj₁ s) refine i (.i , x') (.i , y') refl refl p' = lem-≈→≃-testInduct (partsTestable T i) x' y' p' (app nt i) matchKind coind nt o p = lem-≈→≃-testInduct (partsTestable T i) x' y' (eqStep p i) ψ where i : index T i = proj₁ nt ψ = proj₂ nt x' = app (o x) i y' = app (o y) i -- | Bisimulation proofs are sound for observational equivalence. ≈→≃ : {A : Set} → (T : Testable A) → (x y : A) → x ≈⟨ T ⟩ y → x ≃⟨ T ⟩ y ≈→≃ T x y x≈y = record { eqProof = lem-≈→≃-testInduct T x y x≈y } {- ≃→≈ : {A : Set} → (T : Testable A) → (x y : A) → x ≃⟨ T ⟩ y → x ≈⟨ T ⟩ y ≃→≈ {A} T x y x≃y = record { proof = matchKind (kind T) (obs T) } where matchKind : (k : Kind) → (o : A → ObsTy (index T) (parts T) k) → ≈-Proof k T o x y matchKind ind o = {!!} matchKind coind o = {!!} -}
32.501931
80
0.570088
0d6ea65c112e5fabc9ba24fc3ad37caeda33f696
728
agda
Agda
test/Fail/Issue1375-2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1375-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1375-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-12-02, issue reported by Jesper Cockx {-# OPTIONS --no-guardedness #-} data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x subst : ∀ (A : Set)(P : A → Set)(x y : A) → x ≡ y → P x → P y subst A P x .x refl t = t mutual Type : Set postulate type : Type Term : Type → Set Type = Term type mutual weakenType : Type → Type → Type weaken : (ty ty' : Type) → Term ty → Term (weakenType ty' ty) weakenType ty ty' = let X : Type X = {!!} in subst Type Term (weakenType X type) type {!!} (weaken type X ty) weaken ty ty' t = {!!} data Test : Type → Set where test : Test (weakenType type type) -- Checking the constructor declaration was looping -- should work now.
22.060606
72
0.587912
032b45bdd2bd28a740e94c7aeee78fa902481476
12,239
agda
Agda
guarded-recursion/embedding.agda
np/guarded-recursion
9fba7d89d8b27e9bb08c27df802608b5fff769e0
[ "BSD-3-Clause" ]
1
2016-12-06T23:04:56.000Z
2016-12-06T23:04:56.000Z
guarded-recursion/embedding.agda
np/guarded-recursion
9fba7d89d8b27e9bb08c27df802608b5fff769e0
[ "BSD-3-Clause" ]
null
null
null
guarded-recursion/embedding.agda
np/guarded-recursion
9fba7d89d8b27e9bb08c27df802608b5fff769e0
[ "BSD-3-Clause" ]
2
2015-08-19T12:37:53.000Z
2021-11-16T16:21:54.000Z
-- Axiomatic embedding of guarded recursion in Agda module guarded-recursion.embedding where open import guarded-recursion.prelude renaming (O to zero; S to suc) open Coe module M (▹_ : ∀ {a} → Type_ a → Type_ a) (▸ : ∀ {a} → ▹ (Type_ a) → Type_ a) (next : ∀ {a} {A : Type_ a} → A → ▹ A) (▸-rule : ∀ {a} {A : Type_ a} → ▸ (next A) ≡ ▹ A) (fix : ∀ {a} {A : Type_ a} → (▹ A → A) → A) (fix-rule : ∀ {a} {A : Type_ a} {f : ▹ A → A} → fix f ≡ f (next (fix f))) (_⊛′_ : ∀ {a b} {A : Type_ a} {B : Type_ b} → ▹ (A → B) → ▹ A → ▹ B) (_⊛_ : ∀ {a b} {A : Type_ a} {B : A → Type_ b} → ▹ ((x : A) → B x) → (x : ▹ A) → ▸ (next B ⊛′ x)) (fix-uniq : ∀ {a} {A : Type_ a} (u : A) f → u ≡ f (next u) → u ≡ fix f) (next⊛next : ∀ {a b} {A : Type_ a} {B : Type_ b} (f : A → B) (x : A) → next f ⊛′ next x ≡ next (f x)) where roll▸ : ∀ {a} {A : Type_ a} → ▹ A → ▸ (next A) roll▸ = coe! ▸-rule un▸ : ∀ {a} {A : Type_ a} → ▸ (next A) → ▹ A un▸ = coe ▸-rule ▹Fix : ∀ {a} → Type_ a → Type_ a ▹Fix X = (▹ X → X) → X ▹Endo : ∀ {a} → Type_ a → Type_ a ▹Endo X = ▹ X → X μ : ∀ {a} → Fix (Type_ a) μ F = fix (F ∘ ▸) un : ∀ {a f} → fix {A = Type_ a} f → f (next (fix f)) un = coe fix-rule unμ : ∀ {a} f → μ {a} f → f (▹ μ f) unμ {a} f x rewrite ! (▸-rule {A = μ f}) = un x roll : ∀ {a f} → f (next (fix f)) → fix {A = Type_ a} f roll = coe! fix-rule μ-rule : ∀ {a} f → μ {a} f ≡ f (▹ μ f) μ-rule f = fix-rule ∙ ap f (▸-rule {A = μ f}) rollμ : ∀ {a} f → f (▹ μ f) → μ {a} f rollμ f = coe! (μ-rule f) un₁ : ∀ {a b} {A : Type_ a} {f x} → fix {A = A → Type_ b} f x → f (next (fix f)) x un₁ = coe₁ fix-rule roll₁ : ∀ {a b} {A : Type_ a} {f x} → f (next (fix f)) x → fix {A = A → Type_ b} f x roll₁ = coe₁! fix-rule un₂ : ∀ {a b} {A : Type_ a} {B : Type_ b} {c f x y} → fix {A = A → B → Type_ c} f x y → f (next (fix f)) x y un₂ = coe₂ fix-rule roll₂ : ∀ {a b} {A : Type_ a} {B : Type_ b} {c f x y} → f (next (fix f)) x y → fix {A = A → B → Type_ c} f x y roll₂ = coe₂! fix-rule map▹ : ∀ {a b} {A : Type_ a} {B : Type_ b} → (A → B) → ▹ A → ▹ B map▹ f ▹x = next f ⊛′ ▹x {- alternatively _⊛′′_ : ∀ {a b} {A : Type_ a} {B : A → Type_ b} → ▹ ((x : A) → B x) → (x : A) → ▹ (B x) ▹f ⊛′′ x = map▹ (λ f → f x) ▹f -} {- alternatively _$_ : ∀ {a b} {A : Type_ a} (B : A → Type_ b) → ▹ A → ▹ (Type_ b) f $ ▹x = map▹ f ▹x -} ▹^ : ∀ {a} → ℕ → Type_ a → Type_ a ▹^ zero A = A ▹^ (suc n) A = ▹ ▹^ n A next^ : ∀ {a} {A : Type_ a} n → A → ▹^ n A next^ zero x = x next^ (suc n) x = next (next^ n x) map▹^ : ∀ {a b} {A : Type_ a} {B : Type_ b} n → (A → B) → ▹^ n A → ▹^ n B map▹^ zero f = f map▹^ (suc n) f = map▹ (map▹^ n f) module SimpleStream where F : Type → Type → Type F A X = A × X S : Type → Type S A = μ (F A) μ₁F' : ∀ {a} {A : Type_ a} → ((A → ▹ Type) → A → Type) → (▹(A → Type) → A → Type) μ₁F' F self = F (λ x → (self ⊛′ next x)) μ₁F : ∀ {a} {A : Type_ a} → ((A → Type) → A → Type) → (▹(A → Type) → A → Type) μ₁F F self = F (λ x → ▸ (self ⊛′ next x)) μ₁ : ∀ {a} {A : Type_ a} → ((A → Type) → A → Type) → A → Type μ₁ F = fix (μ₁F F) module μId where μid : Type μid = μ id μid-rule : μid ≡ ▹ μid μid-rule = fix-rule ∙ ▸-rule {A = μ id} ω : μid ω = fix (rollμ id) module CoNat where Coℕ : Type Coℕ = μ Maybe rollNat : Maybe (▹ Coℕ) → Coℕ rollNat = rollμ Maybe ze : Coℕ ze = rollNat nothing su : ▹ Coℕ → Coℕ su x = rollNat (just x) su′ : Coℕ → Coℕ su′ = su ∘ next ω : Coℕ ω = fix su module Neg where {- data X : Type where rollX : Fix X : (X → X) → X -} X : Type X = μ Endo rollX : Endo (▹ X) → X -- : (▹ X → ▹ X) → X rollX = rollμ Endo rollX′ : ▹(Endo X) → X -- : ▹(X → X) → X rollX′ = rollX ∘ _⊛′_ unX : X → Endo (▹ X) unX = unμ Endo -- δ = λ x → x x δ : X → ▹ X δ = λ x → (unX x) (next x) module Neg' where {- data X : Type where c : Fix X : ((X → X) → X) → X -} X : Type X = μ Fix rollX : Fix (▹ X) → X rollX = rollμ Fix unX : X → Fix (▹ X) unX = unμ Fix module μ₁Id where -- μ₁id = ▹∘▹∘…∘▹ -- μ₁id A = ▹ (▹ … (▹ A)) μ₁id : Type → Type μ₁id = μ₁ id betterfix₁ : ∀ {a} {A : Type_ a} {x : A} (F : Endo (A → Type)) → (▹ μ₁ F x → μ₁F F (next (μ₁ F)) x) → μ₁ F x betterfix₁ {a} {A} {x} F f = fix helper where helper : _ → _ helper self = roll₁ (f self) ▹ω-inh' : ∀ {A : Type} {x : A} (F : Endo (A → Type)) → (▸ (next (μ₁ F) ⊛′ next x) → μ₁F F (next (μ₁ F)) x) → μ₁ F x ▹ω-inh' {A} {x} F f = fix helper where helper : _ → _ helper self = roll₁ (f (coe! (ap ▸ (next⊛next (μ₁ F) x)) (roll▸ self))) ▹ω-inh : ∀ {A} → μ₁id A -- ▹ω-inh {A} = fix λ self → roll₁ (coe! (ap ▸ (next⊛next μ₁id A)) (roll▸ self)) ▹ω-inh {A} = betterfix₁ id (λ self → coe! (ap ▸ (next⊛next μ₁id A)) (roll▸ self)) -- ▹ω-inh {A} = fix λ self → {!!} -- (coe! (ap ▸ (next⊛next μ₁idω A)) (roll▸ self)) fix2 : ∀ {a} {A : Type_ a} → (▹ A → A) → A fix2 f = fix (f ∘ next ∘ f) fix≡fix2 : ∀ {a} {A : Type_ a} (f : ▹ A → A) → fix f ≡ fix2 f fix≡fix2 f = fix-uniq (fix f) (f ∘ next ∘ f) (fix-rule ∙ ap (f ∘ next) fix-rule) module Streams where F : Type → Type → Type F A X = A × X -- S : Type → Type -- S A = μ (F A) F^ : ℕ → Type → Type → Type F^ n A X = A × ▹^ n X S^ : ℕ → Type → Type S^ n A = μ (F^ n A) S : Type → Type S = S^ 0 S₂ = S^ 1 unS : ∀ {A} → S A → F A (▹ S A) unS = unμ (F _) rollS : ∀ {A} → F A (▹ S A) → S A rollS = rollμ (F _) unS^ : ∀ {A} n → S^ n A → F^ n A (▹ S^ n A) unS^ n = unμ (F^ n _) rollS^ : ∀ {A} n → F^ n A (▹ S^ n A) → S^ n A rollS^ n = rollμ (F^ n _) hd : ∀ {A} → S A → A hd = fst ∘ unS tl : ∀ {A} → S A → ▹ S A tl = snd ∘ unS cons : ∀ {A} n → A → ▹^ n (▹ (S^ n A)) → S^ n A cons n x xs = rollS^ n (x , xs) infixr 4 _∷_ _∷_ : ∀ {A} → A → ▹ (S A) → S A _∷_ = cons 0 infixr 4 _∷₂_ _∷₂_ : ∀ {A} → A → ▹^ 2 (S₂ A) → S₂ A x ∷₂ xs = roll (x , map▹ roll▸ xs) repeatS : ∀ {A} → A → S A repeatS x = fix λ x… → x ∷ x… module MapS {A B : Type} (f : A → B) where mapSf : ▹(S A → S B) → S A → S B mapSf self s = f (hd s) ∷ self ⊛′ tl s mapS : S A → S B mapS = fix mapSf mapS2f : ▹(S A → S B) → S A → S B mapS2f self s = f (hd s) ∷ map▹ (λ s' → f (hd s') ∷ self ⊛′ tl s') (tl s) mapS2f' : ▹(S A → S B) → S A → S B mapS2f' self = mapSf (next (mapSf self)) mapS2f≡mapS2f' : mapS2f ≡ mapS2f' mapS2f≡mapS2f' = idp mapS2 : S A → S B mapS2 = fix mapS2f mapS2' : S A → S B mapS2' = fix mapS2f' mapS2≡mapS2' : mapS2 ≡ mapS2' mapS2≡mapS2' = idp mapS2'' : S A → S B mapS2'' = fix2 mapSf mapS2≡mapS2'' : mapS2 ≡ mapS2'' mapS2≡mapS2'' = idp mapS≡mapS2 : mapS ≡ mapS2 mapS≡mapS2 = fix≡fix2 mapSf open MapS group2 : S ℕ → ▹ S₂ ℕ² group2 = fix λ self s → map▹ (λ tls → (hd s , hd tls) ∷₂ self ⊛′ tl tls) (tl s) ‼ : ∀ {A} → (n : ℕ) → S A → ▹^ n A ‼ zero = hd ‼ (suc n) = map▹ (‼ n) ∘ tl toFun : ∀ {A} → S A → (n : ℕ) → ▹^ n A toFun s n = ‼ n s fromFun : ∀ {A} → (ℕ → A) → S A fromFun {A} = fix λ self (f : ℕ → A) → f 0 ∷ self ⊛′ next (f ∘ suc) nats : S ℕ nats = fix λ self → 0 ∷ map▹ (mapS suc) self nats2 : S ℕ nats2 = fix λ self → 0 ∷ map▹ (mapS2 suc) self nats≡nats2 : nats ≡ nats2 nats≡nats2 rewrite mapS≡mapS2 suc = idp arrow : ▹ ℕ arrow = ‼ 1 nats module Sim {A : Type} (ℛ : A → A → Type) (ℛ-refl : Reflexive ℛ) where ≈F : ▹(S A × S A → Type) → S A × S A → Type ≈F X (xs , ys) = ℛ (hd xs) (hd ys) × ▸ ((map▹ curry X ⊛′ (tl xs)) ⊛′ tl ys) _≈_ : S A × S A → Type _≈_ = fix ≈F ≈-tail : ∀ {xs ys : S A} → _≈_ (xs , ys) → ▸ ((map▹ curry (next _≈_) ⊛′ tl xs) ⊛′ tl ys) ≈-tail pf = snd (un₁ pf) {- Does not work yet ≈-refl : Reflexive (curry _≈_) ≈-refl {x} = (fix λ pf x → roll₁ {f = ≈F} (ℛ-refl , helper pf x)) x where helper' : _ → _ → _ helper' pf x = map▹ (λ f → f x) pf helper : _ → _ → _ helper pf x = let r = helper' pf x in {!roll▸ r!} -} module DelayedStreams where data F (A : Type) (X : Type) : Type where done : F A X skip : X → F A X yield : A → X → F A X mapF : ∀ {A B X Y} → (A → B) → (X → Y) → F A X → F B Y mapF f g done = done mapF f g (skip x) = skip (g x) mapF f g (yield a x) = yield (f a) (g x) S : Type → Type S A = μ (F A) unS : ∀ {A} → S A → F A (▹ S A) unS = mapF id un▸ ∘ un rollS : ∀ {A} → F A (▹ S A) → S A rollS = roll ∘ mapF id roll▸ unfoldS : ∀ {A X} → (X → F A (▹ X)) → X → S A unfoldS coalg = fix λ self x → rollS (mapF id (λ x′ → self ⊛′ x′) (coalg x)) repeatS : ∀ {A} → A → S A repeatS x = fix λ self → rollS (yield x self) neverS : ∀ {A} → S A neverS = fix λ self → rollS (skip self) -- Co-algebra style... mapS : ∀ {A B} → (A → B) → S A → S B mapS {A} {B} f = unfoldS (mapF f id ∘ unS) filterF : ∀ {A X} → (A → 𝟚) → F A X → F A X filterF f done = done filterF f (skip xs) = skip xs filterF f (yield x xs) = if f x then yield x xs else skip xs filterS : ∀ {A} → (A → 𝟚) → S A → S A filterS f = unfoldS (filterF f ∘ unS) module FuelBased where fix : ∀ {a} {A : Type_ a} → ℕ → (A → A) → A fix zero f = STUCK where postulate STUCK : _ fix (suc n) f = f (fix n f) fix-rule : ∀ {a} {A : Type_ a} (n : ℕ) {f : A → A} → fix n f ≡ f (fix n f) fix-rule zero = ThisIsUnsafeButPlease.trustMe fix-rule (suc n) {f} = ap f (fix-rule n) fix-uniq : ∀ {a} {A : Type_ a} (n : ℕ) (u : A) f → u ≡ f u → u ≡ fix n f fix-uniq zero u f pf = ThisIsUnsafeButPlease.trustMe fix-uniq (suc n) u f pf = pf ∙ ap f (fix-uniq n u f pf) module I (n : ℕ) = M id id id idp (fix n) (fix-rule n) id id (fix-uniq n) (λ _ _ → idp) module HiddenFix {a} {A : Type_ a} (f : A → A) where -- This definition is not intended to termination-check. -- Use with care it's really easy to make the type-checker loop. {-# TERMINATING #-} fix : Hidden A fix = hide f (reveal fix) fix-rule : reveal fix ≡ f (reveal fix) fix-rule = idp {a} {A} {reveal fix} -- This definition is not intended to termination-check. -- Use with care it's really easy to make the type-checker loop. {-# TERMINATING #-} fix-uniq : (u : A) → u ≡ f u → u ≡ reveal fix fix-uniq u pf = pf ∙ ap f (fix-uniq u pf) ∙ ! fix-rule module Test where open HiddenFix open M id id id idp (reveal ∘ fix) (λ {_} {_} {f} → fix-rule f) id id (λ {_} {_} u f → fix-uniq f u) (λ _ _ → idp) public open Streams two : map▹ hd (tl nats) ≡ 1 two = idp -- -} -- -} -- -}
28.462791
123
0.407468
4ef8b582acde03a61a68e7b5b46b91175011b639
10,701
agda
Agda
complexity-drafts/Source-lang.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity-drafts/Source-lang.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity-drafts/Source-lang.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
{- Name: Bowornmet (Ben) Hudson -- define the source language from the paper -} open import Preliminaries open import Preorder-withmax module Source-lang where -- define the source language from the paper -- we want to focus on arrow, cross, and nat types data Tp : Set where unit : Tp nat : Tp susp : Tp → Tp _->s_ : Tp → Tp → Tp _×s_ : Tp → Tp → Tp data Cost : Set where 0c : Cost 1c : Cost _+c_ : Cost → Cost → Cost data Equals0c : Cost → Set where Eq0-0c : Equals0c 0c Eq0-+c : ∀ {c c'} → Equals0c c → Equals0c c' → Equals0c (c +c c') -- represent a context as a list of types Ctx = List Tp -- de Bruijn indices (for free variables) data _∈_ : Tp → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ (τ :: Γ) iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ (τ1 :: Γ) data _|-_ : Ctx → Tp → Set where unit : ∀ {Γ} → Γ |- unit var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ z : ∀ {Γ} → Γ |- nat suc : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (susp τ :: Γ)) |- τ → Γ |- τ lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->s τ) app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->s τ1) → Γ |- τ2 → Γ |- τ1 prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×s τ2) l-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×s τ2) → Γ |- τ1 r-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×s τ2) → Γ |- τ2 -- include split, delay/susp/force instead of usual elim rules for products delay : ∀ {Γ τ} → Γ |- τ → Γ |- susp τ force : ∀ {Γ τ} → Γ |- susp τ → Γ |- τ split : ∀ {Γ τ τ1 τ2} → Γ |- (τ1 ×s τ2) → (τ1 :: (τ2 :: Γ)) |- τ → Γ |- τ ------weakening and substitution lemmas -- renaming function rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ -- re: transferring variables in contexts lem1 : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') lem1 d i0 = i0 lem1 d (iS x) = iS (d x) -- renaming lemma ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ ren unit d = unit ren (var x) d = var (d x) ren z d = z ren (suc e) d = suc (ren e d) ren (rec e e0 e1) d = rec (ren e d) (ren e0 d) (ren e1 (lem1 (lem1 d))) ren (lam e) d = lam (ren e (lem1 d)) ren (app e1 e2) d = app (ren e1 d) (ren e2 d) ren (prod e1 e2) d = prod (ren e1 d) (ren e2 d) ren (l-proj e) d = l-proj (ren e d) ren (r-proj e) d = r-proj (ren e d) ren (delay e) d = delay (ren e d) ren (force e) d = force (ren e d) ren (split e e1) d = split (ren e d) (ren e1 (lem1 (lem1 d))) -- substitution sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ -- weakening a context wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 wkn e = ren e iS -- weakening also works with substitution wkn-s : ∀ {Γ τ1 Γ'} → sctx Γ Γ' → sctx (τ1 :: Γ) Γ' wkn-s d = λ f → wkn (d f) wkn-r : ∀ {Γ τ1 Γ'} → rctx Γ Γ' → rctx (τ1 :: Γ) Γ' wkn-r d = λ x → iS (d x) -- lem2 (need a lemma for subst like we did for renaming) lem2 : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') lem2 d i0 = var i0 lem2 d (iS i) = wkn (d i) -- another substitution lemma lem3 : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) lem3 e i0 = e lem3 e (iS i) = var i lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ') lem3' Θ e i0 = e lem3' Θ e (iS i) = Θ i -- one final lemma needed for the last stepping rule. Thank you Professor Licata! lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem4 e1 e2 i0 = e1 lem4 e1 e2 (iS i0) = e2 lem4 e1 e2 (iS (iS i)) = var i lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ')) lem4' Θ a b i0 = a lem4' Θ a b (iS i0) = b lem4' Θ a b (iS (iS i)) = Θ i lem5 : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×s τ2) → sctx Γ ((τ1 ×s τ2) :: (τ1 :: (τ2 :: Γ))) lem5 e i0 = e lem5 e (iS i0) = l-proj e lem5 e (iS (iS i0)) = r-proj e lem5 e (iS (iS (iS i))) = var i ids-2 : ∀ {Γ τ} → Γ |- τ → sctx Γ Γ → Γ |- τ ids-2 e Θ = e -- the 'real' substitution lemma (if (x : τ') :: Γ |- (e : τ) and Γ |- (e : τ') , then Γ |- e[x -> e'] : τ) subst : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ' |- τ → Γ |- τ subst d unit = unit subst d (var x) = d x subst d z = z subst d (suc x) = suc (subst d x) subst d (rec e e0 e1) = rec (subst d e) (subst d e0) (subst (lem2 (lem2 d)) e1) subst d (lam e) = lam (subst (lem2 d) e) subst d (app e1 e2) = app (subst d e1) (subst d e2) subst d (prod e1 e2) = prod (subst d e1) (subst d e2) subst d (l-proj e) = l-proj (subst d e) subst d (r-proj e) = r-proj (subst d e) subst d (delay e) = delay (subst d e) subst d (force e) = force (subst d e) subst d (split e e1) = split (subst d e) (subst (lem2 (lem2 d)) e1) s-comp1 : ∀ {Γ Γ' Γ''} → sctx Γ Γ' → sctx Γ'' Γ → sctx Γ'' Γ' s-comp1 Θ Θ' = subst Θ' o Θ postulate subst-compose : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (lem3 v) (subst (lem2 Θ) e) == subst (lem3' Θ v) e --subst-compose {Γ} {_} Θ v e = {!!} postulate subst-compose2 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (n : Γ |- nat) (e1 : Γ' |- τ) (e2 : (nat :: (susp τ :: Γ')) |- τ) → subst (lem4 n (delay (rec n (subst Θ e1) (subst (lem2 (lem2 Θ)) e2)))) (subst (lem2 (lem2 Θ)) e2) == subst (lem4' Θ n (delay (rec n (subst Θ e1) (subst (lem2 (lem2 Θ)) e2)))) e2 postulate subst-compose3 : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (lem4 v1 v2) (subst (lem2 (lem2 Θ)) e1) == subst (lem4' Θ v1 v2) e1 postulate subst-compose4 : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- susp τ) (e2 : (nat :: (susp τ :: Γ')) |- τ) → subst (lem4 v' r) (subst (lem2 (lem2 Θ)) e2) == subst (lem4' Θ v' r) e2 ------- data val : ∀ {τ} → [] |- τ → Set where z-isval : val z suc-isval : (e : [] |- nat) → (val e) → val (suc e) pair-isval : ∀ {τ1 τ2} (e1 : [] |- τ1) → (e2 : [] |- τ2) → val e1 → val e2 → val (prod e1 e2) lam-isval : ∀ {ρ τ} (e : (ρ :: []) |- τ) → val (lam e) unit-isval : val unit delay-isval : ∀ {τ} (e : [] |- τ) → val (delay e) mutual -- define evals (e : source exp) (v : value) (c : nat) -- analogous to "e evaluates to v in c steps" -- see figure 4 of paper data evals : {τ : Tp} → [] |- τ → [] |- τ → Cost → Set where pair-evals : ∀ {n1 n2} → {τ1 τ2 : Tp} {e1 v1 : [] |- τ1} {e2 v2 : [] |- τ2} → evals e1 v1 n1 → evals e2 v2 n2 → evals (prod e1 e2) (prod v1 v2) (n1 +c n2) lam-evals : ∀ {ρ τ} {e : (ρ :: []) |- τ} → evals (lam e) (lam e) 0c app-evals : ∀ {n0 n1 n} → {τ1 τ2 : Tp} {e0 : [] |- (τ1 ->s τ2)} {e0' : (τ1 :: []) |- τ2} {e1 v1 : [] |- τ1} {v : [] |- τ2} → evals e0 (lam e0') n0 → evals e1 v1 n1 → evals (subst (lem3 v1) e0') v n → evals (app e0 e1) v ((n0 +c n1) +c n) z-evals : evals z z 0c s-evals : ∀ {n} → {e v : [] |- nat} → evals e v n → evals (suc e) (suc v) n unit-evals : evals unit unit 0c rec-evals : ∀ {n1 n2} → {τ : Tp} {e v : [] |- nat} {e0 v' : [] |- τ} {e1 : (nat :: (susp τ :: [])) |- τ} → evals e v n1 → evals-rec-branch e0 e1 v v' n2 → evals (rec e e0 e1) v' (n1 +c (1c +c n2)) -- adding some new rules to the mix delay-evals : {τ : Tp} {e : [] |- τ} → evals (delay e) (delay e) 0c force-evals : ∀ {n1 n2} → {τ : Tp} {e' v : [] |- τ} {e : [] |- susp τ} → evals e (delay e') n1 → evals e' v n2 → evals (force e) v (n1 +c n2) split-evals : ∀ {n1 n2} → {τ τ1 τ2 : Tp} {e0 : [] |- (τ1 ×s τ2)} {v1 : [] |- τ1} {v2 : [] |- τ2} {e1 : (τ1 :: (τ2 :: [])) |- τ} {v : [] |- τ} → evals e0 (prod v1 v2) n1 → evals (subst (lem4 v1 v2) e1) v n2 → evals (split e0 e1) v (n1 +c n2) -- means evals (rec v e0 e1) v' n -- but helpful to have a separate type for this data evals-rec-branch {τ : Tp} (e0 : [] |- τ) (e1 : (nat :: (susp τ :: [])) |- τ) : (e : [] |- nat) (v : [] |- τ) → Cost → Set where evals-rec-z : ∀ {v n} → evals e0 v n → evals-rec-branch e0 e1 z v n evals-rec-s : ∀ {v v' n} → evals (subst (lem4 v (delay (rec v e0 e1))) e1) v' n → evals-rec-branch e0 e1 (suc v) v' n evals-val : {τ : Tp} {e : [] |- τ} {v : [] |- τ} {n : Cost} → evals e v n → val v evals-val (pair-evals D D₁) = pair-isval _ _ (evals-val D) (evals-val D₁) evals-val lam-evals = lam-isval _ evals-val (app-evals D D₁ D₂) = evals-val D₂ evals-val z-evals = z-isval evals-val (s-evals D) = suc-isval _ (evals-val D) evals-val unit-evals = unit-isval evals-val (rec-evals x (evals-rec-z D)) = evals-val D evals-val (rec-evals x (evals-rec-s D)) = evals-val D evals-val delay-evals = delay-isval _ evals-val (force-evals D D₁) = evals-val D₁ evals-val (split-evals D D₁) = evals-val D₁ val-evals-inversion : {τ : Tp} {v v' : [] |- τ} {n : Cost} → val v → evals v v' n → (v == v') × Equals0c n val-evals-inversion z-isval z-evals = Refl , Eq0-0c val-evals-inversion (suc-isval e valv) (s-evals evv) = ap suc (fst IH) , snd IH where IH = val-evals-inversion valv evv val-evals-inversion (pair-isval e1 e2 valv valv₁) (pair-evals evv evv₁) = ap2 prod (fst IH1) (fst IH2) , Eq0-+c (snd IH1) (snd IH2) where IH1 = val-evals-inversion valv evv IH2 = val-evals-inversion valv₁ evv₁ val-evals-inversion (lam-isval e) lam-evals = Refl , Eq0-0c val-evals-inversion unit-isval unit-evals = Refl , Eq0-0c val-evals-inversion (delay-isval e) delay-evals = Refl , Eq0-0c ---------- some sample programs in the source language --dbl(n : nat) = 2*n dbl : ∀ {Γ} → Γ |- (nat ->s nat) dbl = lam (rec (var i0) z (suc (suc (force (var (iS i0)))))) --add(x : nat , y : nat) = x+y add : ∀ {Γ} → Γ |- (nat ->s (nat ->s nat)) add = lam (lam (rec (var (iS i0)) (var i0) (suc (force (var (iS i0)))))) --mult(x : nat , y : nat) = x*y mult : ∀ {Γ} → Γ |- (nat ->s (nat ->s nat)) mult = lam (lam (rec (var (iS i0)) z (app (app add (var (iS (iS i0)))) (force (var (iS i0))))))
35.551495
139
0.461359
cc66312c98f9dc7d53889f8acad5392b1f7bf98f
200
agda
Agda
data/test-files/VecAppend.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
data/test-files/VecAppend.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
data/test-files/VecAppend.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
module VecAppend where open import Prelude add : Nat -> Nat -> Nat add zero y = y add (suc x) y = suc (add x y) append : forall {A m n} -> Vec A m -> Vec A n -> Vec A (add m n) append xs ys = {!!}
18.181818
64
0.59
14ca8c18331ac2c52cc7a675024673ecf7a86e4c
4,580
agda
Agda
Cubical/Data/Group/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Group/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/Group/Base.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Group.Base where open import Cubical.Foundations.Prelude hiding ( comp ) import Cubical.Foundations.Isomorphism as I import Cubical.Foundations.Equiv as E import Cubical.Foundations.HAEquiv as HAE record isGroup {ℓ} (A : Type ℓ) : Type ℓ where constructor group-struct field id : A inv : A → A comp : A → A → A lUnit : ∀ a → comp id a ≡ a rUnit : ∀ a → comp a id ≡ a assoc : ∀ a b c → comp (comp a b) c ≡ comp a (comp b c) lCancel : ∀ a → comp (inv a) a ≡ id rCancel : ∀ a → comp a (inv a) ≡ id record Group ℓ : Type (ℓ-suc ℓ) where constructor group field type : Type ℓ setStruc : isSet type groupStruc : isGroup type isMorph : ∀ {ℓ ℓ'} (G : Group ℓ) (H : Group ℓ') → (f : (Group.type G → Group.type H)) → Type (ℓ-max ℓ ℓ') isMorph (group G Gset (group-struct _ _ _⊙_ _ _ _ _ _)) (group H Hset (group-struct _ _ _∘_ _ _ _ _ _)) f = (g0 g1 : G) → f (g0 ⊙ g1) ≡ (f g0) ∘ (f g1) morph : ∀ {ℓ ℓ'} (G : Group ℓ) (H : Group ℓ') → Type (ℓ-max ℓ ℓ') morph G H = Σ (Group.type G → Group.type H) (isMorph G H) record Iso {ℓ ℓ'} (G : Group ℓ) (H : Group ℓ') : Type (ℓ-max ℓ ℓ') where constructor iso field fun : morph G H inv : morph H G rightInv : I.section (fun .fst) (inv .fst) leftInv : I.retract (fun .fst) (inv .fst) record Iso' {ℓ ℓ'} (G : Group ℓ) (H : Group ℓ') : Type (ℓ-max ℓ ℓ') where constructor iso' field isoSet : I.Iso (Group.type G) (Group.type H) isoSetMorph : isMorph G H (I.Iso.fun isoSet) _≃_ : ∀ {ℓ ℓ'} (A : Group ℓ) (B : Group ℓ') → Type (ℓ-max ℓ ℓ') A ≃ B = Σ (morph A B) \ f → (E.isEquiv (f .fst)) Iso'→Iso : ∀ {ℓ ℓ'} {G : Group ℓ} {H : Group ℓ'} → Iso' G H → Iso G H Iso'→Iso {G = group G Gset Ggroup} {H = group H Hset Hgroup} i = iso (fun , funMorph) (inv , invMorph) rightInv leftInv where G_ : Group _ G_ = (group G Gset Ggroup) H_ : Group _ H_ = (group H Hset Hgroup) open Iso' fun : G → H fun = I.Iso.fun (isoSet i) inv : H → G inv = I.Iso.inv (isoSet i) rightInv : I.section fun inv rightInv = I.Iso.rightInv (isoSet i) leftInv : I.retract fun inv leftInv = I.Iso.leftInv (isoSet i) e' : G E.≃ H e' = E.isoToEquiv (I.iso fun inv rightInv leftInv) funMorph : isMorph G_ H_ fun funMorph = isoSetMorph i _∘_ : H → H → H _∘_ = isGroup.comp Hgroup _⊙_ : G → G → G _⊙_ = isGroup.comp Ggroup invMorph : isMorph H_ G_ inv invMorph h0 h1 = E.invEq (HAE.congEquiv e') (fun (inv (h0 ∘ h1)) ≡⟨ rightInv (h0 ∘ h1) ⟩ h0 ∘ h1 ≡⟨ cong (λ x → x ∘ h1) (sym (rightInv h0)) ⟩ (fun (inv h0)) ∘ h1 ≡⟨ cong (λ x → fun (inv h0) ∘ x) (sym (rightInv h1)) ⟩ (fun (inv h0)) ∘ (fun (inv h1)) ≡⟨ sym (funMorph (inv h0) (inv h1)) ⟩ fun ((inv h0) ⊙ (inv h1)) ∎ ) Equiv→Iso' : ∀ {ℓ ℓ'} {G : Group ℓ} {H : Group ℓ'} → G ≃ H → Iso' G H Equiv→Iso' {G = group G Gset Ggroup} {H = group H Hset Hgroup} e = iso' i' (e .fst .snd) where e' : G E.≃ H e' = (e .fst .fst) , (e .snd) i' : I.Iso G H i' = E.equivToIso e' compMorph : ∀ {ℓ} {F G H : Group ℓ} (I : morph F G) (J : morph G H) → morph F H compMorph {ℓ} {group F Fset (group-struct _ _ _⊙_ _ _ _ _ _)} {group G Gset (group-struct _ _ _∙_ _ _ _ _ _)} {group H Hset (group-struct _ _ _∘_ _ _ _ _ _)} (i , ic) (j , jc) = k , kc where k : F → H k f = j (i f) kc : (g0 g1 : F) → k (g0 ⊙ g1) ≡ (k g0) ∘ (k g1) kc g0 g1 = j (i (g0 ⊙ g1)) ≡⟨ cong j (ic _ _) ⟩ j (i g0 ∙ i g1) ≡⟨ jc _ _ ⟩ j (i g0) ∘ j (i g1) ∎ compIso : ∀ {ℓ} {F G H : Group ℓ} (I : Iso F G) (J : Iso G H) → Iso F H compIso {ℓ} {F} {G} {H} (iso F→G G→F fg gf) (iso G→H H→G gh hg ) = iso F→H H→F sec ret where F→H : morph F H F→H = compMorph {ℓ} {F} {G} {H} F→G G→H H→F : morph H F H→F = compMorph {ℓ} {H} {G} {F} H→G G→F open Group f→h : F .type → H .type f→h = F→H .fst f→g : F .type → G .type f→g = F→G .fst g→h : G .type → H .type g→h = G→H .fst h→f : H .type → F .type h→f = H→F .fst h→g : H .type → G .type h→g = H→G .fst g→f : G .type → F .type g→f = G→F .fst sec : I.section f→h h→f sec h = f→h (h→f h) ≡⟨ cong g→h (fg (h→g h)) ⟩ g→h (h→g h) ≡⟨ gh _ ⟩ h ∎ ret : I.retract f→h h→f ret f = h→f (f→h f) ≡⟨ cong g→f (hg (f→g f)) ⟩ g→f (f→g f) ≡⟨ gf _ ⟩ f ∎
28.09816
119
0.504585
21a5308d2f0637281af5900a0f5339424f1c86f4
1,315
agda
Agda
agda-stdlib-0.9/src/Category/Applicative/Predicate.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Category/Applicative/Predicate.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Category/Applicative/Predicate.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Applicative functors on indexed sets (predicates) ------------------------------------------------------------------------ -- Note that currently the applicative functor laws are not included -- here. module Category.Applicative.Predicate where open import Category.Functor.Predicate open import Data.Product open import Function open import Level open import Relation.Unary open import Relation.Unary.PredicateTransformer using (Pt) ------------------------------------------------------------------------ record RawPApplicative {i ℓ} {I : Set i} (F : Pt I ℓ) : Set (i ⊔ suc ℓ) where infixl 4 _⊛_ _<⊛_ _⊛>_ infix 4 _⊗_ field pure : ∀ {P} → P ⊆ F P _⊛_ : ∀ {P Q} → F (P ⇒ Q) ⊆ F P ⇒ F Q rawPFunctor : RawPFunctor F rawPFunctor = record { _<$>_ = λ g x → pure g ⊛ x } private open module RF = RawPFunctor rawPFunctor public _<⊛_ : ∀ {P Q} → F P ⊆ const (∀ {j} → F Q j) ⇒ F P x <⊛ y = const <$> x ⊛ y _⊛>_ : ∀ {P Q} → const (∀ {i} → F P i) ⊆ F Q ⇒ F Q x ⊛> y = flip const <$> x ⊛ y _⊗_ : ∀ {P Q} → F P ⊆ F Q ⇒ F (P ∩ Q) x ⊗ y = (_,_) <$> x ⊛ y zipWith : ∀ {P Q R} → (P ⊆ Q ⇒ R) → F P ⊆ F Q ⇒ F R zipWith f x y = f <$> x ⊛ y
26.836735
72
0.469962
1b396aefcda2e04fe6bbc5a71140cb3c753e1f6e
29,801
agda
Agda
src/DualContractive.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2022-02-13T05:43:25.000Z
2022-02-13T05:43:25.000Z
src/DualContractive.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
null
null
null
src/DualContractive.agda
peterthiemann/dual-session
7a8bc1f6b2f808bd2a22c592bd482dbcc271979c
[ "BSD-2-Clause" ]
1
2019-12-07T16:12:50.000Z
2019-12-07T16:12:50.000Z
{-# OPTIONS --rewriting #-} module DualContractive where open import Data.Fin open import Data.Maybe open import Data.Nat hiding (_≤_ ; compare) renaming (_+_ to _+ℕ_) open import Data.Nat.Properties open import Data.Sum hiding (map) open import Data.Product open import Relation.Nullary open import Relation.Binary.PropositionalEquality hiding (Extensionality) open import Function open import Types.Direction open import Auxiliary.Extensionality open import Max hiding (n) ---------------------------------------------------------------------- -- see also https://github.com/zmthy/recursive-types/tree/ftfjp16 -- for encoding of recursive types variable m n : ℕ i i' j : Fin n ---------------------------------------------------------------------- -- lemmas for rewriting n+1=suc-n : n +ℕ 1 ≡ suc n n+1=suc-n {zero} = refl n+1=suc-n {suc n} = cong suc (n+1=suc-n {n}) n+0=n : n +ℕ 0 ≡ n n+0=n {zero} = refl n+0=n {suc n} = cong suc (n+0=n {n}) n+sucm=sucn+m : ∀ n m → n +ℕ suc m ≡ suc (n +ℕ m) n+sucm=sucn+m zero m = refl n+sucm=sucn+m (suc n) m = cong suc (n+sucm=sucn+m n m) {-# REWRITE n+sucm=sucn+m #-} open import Agda.Builtin.Equality.Rewrite ---------------------------------------------------------------------- -- auxiliaries for automatic rewriting {- REWRITE n+1=suc-n #-} {-# REWRITE n+0=n #-} -- inject+0-x=x : {x : Fin m} → inject+ 0 x ≡ x -- inject+0-x=x {x = zero} = refl -- inject+0-x=x {x = suc x} = cong suc inject+0-x=x {- REWRITE inject+0-x=x #-} ---------------------------------------------------------------------- -- types and session types data TType (n : ℕ) : Set data SType (n : ℕ) : Set data TType n where TInt : TType n TChn : (S : SType n) → TType n data SType n where xmt : (d : Dir) (T : TType n) (S : SType n) → SType n end : SType n rec : (S : SType (suc n)) → SType n var : (x : Fin n) → SType n variable t T : TType n s s₀ S S₀ : SType n ---------------------------------------------------------------------- module Examples-Types where sint : SType n → SType n sint = xmt SND TInt -- μ X. !Int. X s1 : SType 0 s1 = rec (sint (var zero)) -- μ X. μ Y. !Int. Y s2 : SType 0 s2 = rec (rec (sint (var zero))) -- μ X. μ Y. !Int. X s2a : SType 0 s2a = rec (rec (sint (var (suc zero)))) -- μ X. !Int. μ Y. X s3 : SType 0 s3 = rec (sint (rec (var (suc zero)))) module Alternative-Substitution where -- analogous to https://plfa.github.io/DeBruijn/ -- extending a map by an identity segment extV : (Fin m → Fin n) → (Fin (suc m) → Fin (suc n)) extV ρ zero = zero extV ρ (suc i) = suc (ρ i) -- renaming / can be used for weakening one binding as @rename suc@ renameT : (Fin m → Fin n) → TType m → TType n renameS : (Fin m → Fin n) → SType m → SType n renameT ρ TInt = TInt renameT ρ (TChn S) = TChn (renameS ρ S) renameS ρ (xmt d T S) = xmt d (renameT ρ T) (renameS ρ S) renameS ρ end = end renameS ρ (rec S) = rec (renameS (extV ρ) S) renameS ρ (var x) = var (ρ x) -- extending a map from variables to terms extS : (Fin m → SType n) → (Fin (suc m) → SType (suc n)) extS σ zero = var zero extS σ (suc i) = renameS suc (σ i) -- simultaneous substitution substT : (Fin m → SType n) → TType m → TType n substS : (Fin m → SType n) → SType m → SType n substT σ TInt = TInt substT σ (TChn S) = TChn (substS σ S) substS σ (xmt d T S) = xmt d (substT σ T) (substS σ S) substS σ end = end substS σ (rec S) = rec (substS (extS σ) S) substS σ (var x) = σ x -- single substitution mk-σ : SType n → Fin (suc n) → SType n mk-σ S' zero = S' mk-σ S' (suc x) = var x substT1 : SType n → TType (suc n) → TType n substT1 S' T = substT (mk-σ S') T substS1 : SType n → SType (suc n) → SType n substS1 S' S = substS (mk-σ S') S ---------------------------------------------------------------------- -- weakening increase : ∀ m → (x : Fin n) → Fin (n +ℕ m) increase zero x = x increase (suc m) x = suc (increase m x) increaseS : ∀ m → SType n → SType (n +ℕ m) increaseT : ∀ m → TType n → TType (n +ℕ m) increaseS m (xmt d t s) = xmt d (increaseT m t) (increaseS m s) increaseS m (rec s) = rec (increaseS m s) increaseS m (var x) = var (inject+ m x) -- should say increase here increaseS m end = end increaseT m TInt = TInt increaseT m (TChn s) = TChn (increaseS m s) -- weaken m is used to push a (closed) term under m new binders weakenS : ∀ m → SType n → SType (n +ℕ m) weakenT : ∀ m → TType n → TType (n +ℕ m) weakenS m (xmt d t s) = xmt d (weakenT m t) (weakenS m s) weakenS m (rec s) = rec (weakenS m s) weakenS m (var x) = var (inject+ m x) weakenS m end = end weakenT m TInt = TInt weakenT m (TChn s) = TChn (weakenS m s) weaken1S : SType n → SType (suc n) weaken1S s = weakenS 1 s -- this one behaves correctly weaken'S : ∀ m → Fin (suc n) → SType n → SType (n +ℕ m) weaken'T : ∀ m → Fin (suc n) → TType n → TType (n +ℕ m) weaken'S m i (xmt d T S) = xmt d (weaken'T m i T) (weaken'S m i S) weaken'S m i end = end weaken'S m i (rec S) = rec (weaken'S m (suc i) S) weaken'S {suc n} m zero (var x) = var (increase m x) weaken'S {suc n} m (suc i) (var x) with compare i x weaken'S {suc n} m (suc .(inject least)) (var x) | less .x least = var (increase m x) weaken'S {suc n} m (suc i) (var .i) | equal .i = var (inject+ m i) weaken'S {suc n} m (suc i) (var .(inject least)) | greater .i least = var (inject+ m (inject least)) weaken'T m i TInt = TInt weaken'T m i (TChn S) = TChn (weaken'S m i S) weaken'S0 : ∀ m → SType n → SType (n +ℕ m) weaken'S0 m S = weaken'S m (fromℕ _) S ---------------------------------------------------------------------- -- examples module Examples-Weakening where sv0 sv1 : SType 1 sv0 = rec (var zero) sv1 = rec (var (suc zero)) sv0-w : SType 2 sv0-w = weaken'S 1 zero sv0 step0 : weaken'S{2} 1 zero (var zero) ≡ var (suc zero) × weaken'S{2} 1 zero (var (suc zero)) ≡ var (suc (suc zero)) step0 = refl , refl step1 : weaken'S{2} 1 (suc zero) (var zero) ≡ var zero × weaken'S{2} 1 (suc zero) (var (suc zero)) ≡ var (suc (suc zero)) step1 = refl , refl stepr1 : weaken'S 1 zero sv0 ≡ rec (var zero) × weaken'S 1 zero sv1 ≡ rec (var (suc (suc zero))) stepr1 = refl , refl stepr2 : weaken'S{3} 1 zero (rec (rec (var zero))) ≡ rec (rec (var zero)) × weaken'S{3} 1 zero (rec (rec (var (suc zero)))) ≡ rec (rec (var (suc zero))) × weaken'S{3} 1 zero (rec (rec (var (suc (suc zero))))) ≡ rec (rec (var (suc (suc (suc zero))))) stepr2 = refl , refl , refl sx1 : SType 0 sx1 = rec (xmt SND TInt (var zero)) sx1-w : SType 1 sx1-w = rec (xmt SND TInt (var zero)) sx1=sx1-w : sx1-w ≡ weaken'S 1 zero sx1 sx1=sx1-w = refl sx2 : SType 1 sx2 = xmt SND TInt (var zero) sx2-w1 : SType 2 sx2-w1 = xmt SND TInt (var (suc zero)) sx2-w0 : SType 2 sx2-w0 = xmt SND TInt (var zero) sx2=w : sx2-w1 ≡ weaken'S 1 zero sx2 × sx2-w0 ≡ weaken'S 1 (suc zero) sx2 sx2=w = refl , refl open Alternative-Substitution step0-r : renameS suc sv0 ≡ rec (var zero) × renameS suc sv1 ≡ rec (var (suc (suc zero))) step0-r = refl , refl step1-r : renameS{1} suc (rec (rec (var zero))) ≡ (rec (rec (var zero))) × renameS{1} suc (rec (rec (var (suc zero)))) ≡ (rec (rec (var (suc zero)))) × renameS{1} suc (rec (rec (var (suc (suc zero))))) ≡ (rec (rec (var (suc (suc (suc zero)))))) step1-r = refl , refl , refl ---------------------------------------------------------------------- -- contractivity mutual data ContractiveT {n} : TType n → Set where con-int : ContractiveT TInt con-chn : Contractive zero S → ContractiveT (TChn S) data Contractive (i : Fin (suc n)) : SType n → Set where con-xmt : ContractiveT t → Contractive zero s → Contractive i (xmt d t s) con-end : Contractive i end con-rec : Contractive (suc i) S → Contractive i (rec S) con-var : i ≤ inject₁ j → Contractive i (var j) ---------------------------------------------------------------------- module Examples-Contractivity where open Examples-Types cn1 : ¬ Contractive {2} (suc zero) (var zero) cn1 (con-var ()) cp1 : Contractive {2} zero (var (suc zero)) cp1 = con-var z≤n cp0 : Contractive {2} zero (var zero) cp0 = con-var z≤n cs1 : Contractive zero s1 cs1 = con-rec (con-xmt con-int (con-var z≤n)) cs2 : Contractive zero s2 cs2 = con-rec (con-rec (con-xmt con-int (con-var z≤n))) cs2a : Contractive zero s2a cs2a = con-rec (con-rec (con-xmt con-int (con-var z≤n))) sp2 : SType 0 sp2 = s3 cp2 : Contractive zero sp2 cp2 = con-rec (con-xmt con-int (con-rec (con-var (s≤s z≤n)))) sn2 : SType 0 sn2 = (rec (xmt SND TInt (rec (var zero)))) cn2 : ¬ Contractive zero sn2 cn2 (con-rec (con-xmt con-int (con-rec (con-var ())))) module Alternative-Unfolding where open Alternative-Substitution -- one top-level unfolding if possible unfold₁ : SType n → SType n unfold₁ (rec S) = substS1 (rec S) S unfold₁ S@(xmt d T x) = S unfold₁ S@end = S unfold₁ S@(var x) = S -- unfold all the way unfold : (S : SType n) (σ : SType n → SType m) → SType m unfold S@(xmt d T S') σ = σ S unfold end σ = end unfold (rec S) σ = unfold S (σ ∘ substS1 (rec S)) unfold S@(var x) σ = σ S unfold₀ : SType n → SType n unfold₀ S = unfold S id ---------------------------------------------------------------------- -- substitution ssubst : SType (suc n) → Fin (suc n) → SType 0 → SType n tsubst : TType (suc n) → Fin (suc n) → SType 0 → TType n ssubst (xmt d t s) i s0 = xmt d (tsubst t i s0) (ssubst s i s0) ssubst (rec s) i s0 = rec (ssubst s (suc i) s0) ssubst {n} (var zero) zero s0 = increaseS n s0 ssubst {suc n} (var zero) (suc i) s0 = var zero ssubst (var (suc x)) zero s0 = var x ssubst {suc n} (var (suc x)) (suc i) s0 = increaseS 1 (ssubst (var x) i s0) ssubst end i s0 = end tsubst TInt i s₀ = TInt tsubst (TChn s) i s₀ = TChn (ssubst s i s₀) ---------------------------------------------------------------------- -- unfolding to first non-rec constructor unfold : (s : SType n) (c : Contractive i s) (σ : SType n → SType 0) → SType 0 unfold (xmt d t s) (con-xmt ct c) σ = σ (xmt d t s) unfold end con-end σ = end unfold (rec s) (con-rec c) σ = unfold s c (σ ∘ λ sn' → ssubst sn' zero (σ (rec s))) unfold {i = zero} (var x) (con-var z≤n) σ = σ (var x) unfold {i = suc i} (var zero) (con-var ()) σ unfold {i = suc i} (var (suc x)) (con-var (s≤s x₁)) σ = unfold (var x) (con-var x₁) (σ ∘ increaseS 1) unfold₀ : (S : SType 0) (c : Contractive zero S) → SType 0 unfold₀ S c = unfold S c id ---------------------------------------------------------------------- module Examples-Unfold where open Examples-Types c1 : Contractive zero s1 c1 = con-rec (con-xmt con-int (con-var z≤n)) s11 : SType 0 s11 = xmt SND TInt s1 u-s1=s11 : unfold s1 c1 id ≡ s11 u-s1=s11 = refl c2 : Contractive zero s2 c2 = con-rec (con-rec (con-xmt con-int (con-var z≤n))) u-s2=s11 : unfold s2 c2 id ≡ s11 u-s2=s11 = cong (xmt SND TInt) (cong rec (cong (xmt SND TInt) refl)) ---------------------------------------------------------------------- -- contractivity is decidable infer-contractiveT : (t : TType n) → Dec (ContractiveT t) infer-contractive : (s : SType n) (i : Fin (suc n)) → Dec (Contractive i s) infer-contractiveT TInt = yes con-int infer-contractiveT (TChn s) with infer-contractive s zero infer-contractiveT (TChn s) | yes p = yes (con-chn p) infer-contractiveT (TChn s) | no ¬p = no (λ { (con-chn cs) → ¬p cs }) infer-contractive (xmt d t s) i with infer-contractiveT t | infer-contractive s zero infer-contractive (xmt d t s) i | yes p | yes p₁ = yes (con-xmt p p₁) infer-contractive (xmt d t s) i | yes p | no ¬p = no (λ { (con-xmt ct cs) → ¬p cs }) infer-contractive (xmt d t s) i | no ¬p | yes p = no (λ { (con-xmt ct cs) → ¬p ct }) infer-contractive (xmt d t s) i | no ¬p | no ¬p₁ = no (λ { (con-xmt ct cs) → ¬p₁ cs}) infer-contractive end i = yes con-end infer-contractive (rec s) i with infer-contractive s (suc i) infer-contractive (rec s) i | yes p = yes (con-rec p) infer-contractive (rec s) i | no ¬p = no (λ { (con-rec c) → ¬p c }) infer-contractive (var x) zero = yes (con-var z≤n) infer-contractive (var zero) (suc i) = no (λ { (con-var ()) }) infer-contractive (var (suc x)) (suc i) with infer-contractive (var x) i infer-contractive (var (suc x)) (suc i) | yes (con-var x₁) = yes (con-var (s≤s x₁)) infer-contractive (var (suc x)) (suc i) | no ¬p = no (λ { (con-var (s≤s y)) → ¬p (con-var y) }) ---------------------------------------------------------------------- module Examples-Inference where open Examples-Contractivity infer-p2 : infer-contractive sp2 zero ≡ yes cp2 infer-p2 = refl infer-n2 : infer-contractive sn2 zero ≡ no cn2 infer-n2 = cong no (ext (λ { (con-rec (con-xmt con-int (con-rec (con-var ())))) })) ---------------------------------------------------------------------- -- RT: if a type is contractive at level i, then it is also contractive at any smaller level c-weakenS : {S : SType n} (i' : Fin′ i) → Contractive i S → Contractive (inject i') S c-weakenS i' (con-rec cis) = con-rec (c-weakenS (suc i') cis) c-weakenS i' (con-xmt x cis) = con-xmt x cis c-weakenS i' con-end = con-end c-weakenS {i = suc i} i' (con-var {zero} ()) c-weakenS {i = suc i} zero (con-var {suc n} (s≤s x)) = con-var z≤n c-weakenS {i = suc i} (suc i') (con-var {suc n} (s≤s x)) = con-var (s≤s (trans-< x)) c-weakenS₁ : {S : SType n} → Contractive (suc i) S → Contractive (inject₁ i) S c-weakenS₁ (con-rec cis) = con-rec (c-weakenS₁ cis) c-weakenS₁ (con-xmt x cis) = con-xmt x cis c-weakenS₁ con-end = con-end c-weakenS₁ {zero} {()} (con-var x) c-weakenS₁ {suc n} {zero} (con-var x) = con-var z≤n c-weakenS₁ {suc n} {suc i} (con-var x) = con-var (pred-≤ x) c-weakenS! : {S : SType n} → Contractive i S → Contractive zero S c-weakenS! {i = zero} (con-rec cis) = con-rec cis c-weakenS! {i = suc i} (con-rec cis) = con-rec (c-weakenS (suc zero) cis) c-weakenS! {n} {i} (con-xmt x cis) = con-xmt x cis c-weakenS! {n} {i} con-end = con-end c-weakenS! {n} {i} (con-var x) = con-var z≤n ct-weaken+ : {T : TType n} → ContractiveT T → ContractiveT (weaken'T 1 zero T) c-weaken+ : {S : SType n} → Contractive i S → Contractive (suc i) (weaken'S 1 zero S) ct-weaken+ con-int = con-int ct-weaken+ (con-chn x) = con-chn (c-weakenS! (c-weaken+ x)) c-weaken+ (con-xmt x cis) = con-xmt (ct-weaken+ x) (c-weakenS! (c-weaken+ cis)) c-weaken+ con-end = con-end c-weaken+ (con-rec cis) = con-rec {!!} -- gives a problem: (c-weaken+ {!cis!}) c-weaken+ {suc n} {i} {var j} (con-var i≤j) = con-var (s≤s i≤j) module Alternative-Multiple-Substitution-Preserves where open Alternative-Substitution subst-contr-T : {T : TType m} (σ : Fin m → SType n) (γ : (j : Fin m) → Contractive i (σ j)) (ct : ContractiveT T) → ContractiveT (substT σ T) subst-contr-S : ∀ {k} → (σ : Fin m → SType n) (γ : (j : Fin m) → Contractive k (σ j)) (c : Contractive zero S) → Contractive k (substS σ S) subst-contr-T σ γ con-int = con-int subst-contr-T σ γ (con-chn cs) = con-chn (subst-contr-S σ (c-weakenS! ∘ γ) cs) subst-contr-S σ γ (con-xmt ct cs) = con-xmt (subst-contr-T σ γ ct) (subst-contr-S σ (c-weakenS! ∘ γ) cs) subst-contr-S σ γ con-end = con-end subst-contr-S σ γ (con-rec cs) = con-rec (subst-contr-S (extS σ) {!extS!} (c-weakenS₁ cs)) subst-contr-S σ γ (con-var{j} x) = γ j module Alternative-Substitution-Preserves where open Alternative-Substitution subst-contr-T : {S' : SType n} (c' : Contractive i S') {T : TType (suc n)} (c : ContractiveT T) → ContractiveT (substT1 S' T) subst-contr-S : {S' : SType n} (c' : Contractive i S') {S : SType (suc n)} (c : Contractive (inject₁ i) S) → Contractive i (substS1 S' S) subst-contr-T c' con-int = con-int subst-contr-T c' (con-chn x) = con-chn (subst-contr-S (c-weakenS! c') x) subst-contr-S c' (con-xmt ct cs) = con-xmt (subst-contr-T c' ct) (subst-contr-S (c-weakenS! c') cs) subst-contr-S c' con-end = con-end subst-contr-S c' (con-rec c) = con-rec {!!} -- (subst-contr-S {!!} {!c!}) subst-contr-S c' (con-var x) = {!!} module Alternative-SingleSubstitution where ---------------------------------------------------------------------- -- single substitution of j ↦ Sj subst1T : (T : TType (suc n)) (j : Fin (suc n)) (Sj : SType n) → TType n subst1S : (S : SType (suc n)) (j : Fin (suc n)) (Sj : SType n) → SType n subst1T TInt j Sj = TInt subst1T (TChn S) j Sj = TChn (subst1S S j Sj) subst1S (xmt d T S) j Sj = xmt d (subst1T T j Sj) (subst1S S j Sj) subst1S end j Sj = end subst1S (rec S) j Sj = rec (subst1S S (suc j) (weaken'S 1 zero Sj)) subst1S (var x) j Sj with compare x j subst1S (var .(inject least)) j Sj | less .j least = var (inject! least) subst1S (var x) .x Sj | equal .x = Sj subst1S (var (suc x)) .(inject least) Sj | greater .(suc x) least = var x {- the termination checker doesnt like this: subst1S (var zero) zero Sj = Sj subst1S {suc n} (var zero) (suc j) Sj = var zero subst1S (var (suc x)) zero Sj = var x subst1S (var (suc x)) (suc j) Sj = subst1S (var (inject₁ x)) (inject₁ j) Sj -} unfold1S : (S : SType 0) → SType 0 unfold1S (xmt d T S) = xmt d T S unfold1S end = end unfold1S (rec S) = subst1S S zero (rec S) unfoldSS : (S : SType n) → SType n unfoldSS (xmt d T S) = xmt d T S unfoldSS end = end unfoldSS (rec S) with unfoldSS S ... | ih = subst1S ih zero (rec ih) unfoldSS (var x) = var x ---------------------------------------------------------------------- -- max index substitution subst-maxT : (Sm : SType n) (T : TType (suc n)) → TType n subst-maxS : (Sm : SType n) (S : SType (suc n)) → SType n subst-maxT Sm TInt = TInt subst-maxT Sm (TChn S) = TChn (subst-maxS Sm S) subst-maxS Sm (xmt d T S) = xmt d (subst-maxT Sm T) (subst-maxS Sm S) subst-maxS Sm end = end subst-maxS Sm (rec S) = rec (subst-maxS (weaken'S 1 zero Sm) S) subst-maxS Sm (var x) with max? x subst-maxS Sm (var x) | yes p = Sm subst-maxS Sm (var x) | no ¬p = var (reduce ¬p) unfoldmS : (S : SType n) → SType n unfoldmS (xmt d T S) = xmt d T S unfoldmS end = end unfoldmS (rec S) = subst-maxS (rec S) S unfoldmS {suc n} (var x) = var x ---------------------------------------------------------------------- -- max substitution preserves contractivity subst-contr-mT : {T : TType (suc n)} (c : ContractiveT T) {S' : SType n} (c' : Contractive i S') → ContractiveT (subst-maxT S' T) subst-contr-mS : -- {i : Fin (suc (suc n))} {S : SType (suc n)} (c : Contractive (inject₁ i) S) {S' : SType n} (c' : Contractive i S') → Contractive i (subst-maxS S' S) subst-contr-mT con-int csm = con-int subst-contr-mT (con-chn x) csm = con-chn (c-weakenS! (subst-contr-mS x (c-weakenS! csm))) subst-contr-mS (con-xmt x cs) csm = con-xmt (subst-contr-mT x csm) (subst-contr-mS cs (c-weakenS! csm)) subst-contr-mS con-end csm = con-end subst-contr-mS (con-rec cs) csm = con-rec (subst-contr-mS cs (c-weaken+ csm)) subst-contr-mS {S = var j} (con-var x) csm with max? j subst-contr-mS {i = _} {var j} (con-var x) csm | yes p = csm subst-contr-mS {i = _} {var j} (con-var x) csm | no ¬p = con-var (lemma-reduce x ¬p) -- one step unfolding preserves contractivity unfold-contr : Contractive i S → Contractive i (unfoldmS S) unfold-contr (con-xmt x c) = con-xmt x c unfold-contr con-end = con-end unfold-contr (con-rec c) = subst-contr-mS (c-weakenS₁ c) (con-rec c) unfold-contr (con-var x) = {!!} -- multiple unfolding -- terminates even for non-contractive types because it delays the substitution unfold! : (S : SType n) (σ : SType n → SType 0) → SType 0 unfold! (xmt d T S) σ = σ (xmt d T S) unfold! end σ = end unfold! (rec S) σ = unfold! S (σ ∘ subst-maxS (rec S)) unfold! (var x) σ = σ (var x) -- unclear how this could be completed -- unfold!-contr : Contractive i S → Contractive i (unfold! S id) -- unfold!-contr (con-xmt x cs) = con-xmt x cs -- unfold!-contr con-end = con-end -- unfold!-contr (con-rec cs) = {!!} -- multiple unfolding preserves contractivity TCType : (n : ℕ) → Set TCType n = Σ (TType n) ContractiveT SCType : (n : ℕ) → Fin (suc n) → Set SCType n i = Σ (SType n) (Contractive i) unfold!! : (SC : SCType n i) → (SCType n i → SCType 0 zero) → SCType 0 zero unfold!! SC@(xmt d T S , con-xmt x cs) σ = σ SC unfold!! (end , con-end) σ = end , con-end unfold!! (rec S , con-rec cs) σ = unfold!! (S , cs) (σ ∘ λ{ (S' , c') → (subst-maxS (rec S) S') , (subst-contr-mS (c-weakenS₁ c') (con-rec cs)) }) unfold!! SC@(var x , con-var x₁) σ = σ SC {-# TERMINATING #-} unfold!!! : ∀ {m n : ℕ} → SCType (n +ℕ m) zero → (SCType (n +ℕ m) zero → SCType m zero) → SCType m zero unfold!!! SC@(xmt d T S , con-xmt x cs) σ = σ SC unfold!!! (end , con-end) σ = end , con-end unfold!!! (rec S , con-rec cs) σ = unfold!!! (S , c-weakenS₁ cs) (σ ∘ λ SC → (subst-maxS (rec S) (proj₁ SC)) , (subst-contr-mS (proj₂ SC) (con-rec cs))) unfold!!! SC@(var x , con-var x₁) σ = σ SC ---------------------------------------------------------------------- -- equivalence requires multiple unfolding variable T₁ T₂ : TCType n S₁ S₂ : SCType n i data EquivT (R : SCType n zero → SCType n zero → Set) : TCType n → TCType n → Set where eq-int : EquivT R (TInt , con-int) (TInt , con-int) eq-chn : R S₁ S₂ → EquivT R (TChn (proj₁ S₁) , con-chn (proj₂ S₁)) (TChn (proj₁ S₂) , con-chn (proj₂ S₂)) data EquivS (R : SCType n zero → SCType n zero → Set) : (S₁ S₂ : SCType n zero) → Set where eq-end : EquivS R (end , con-end) (end , con-end) eq-xmt : (d : Dir) → EquivT R T₁ T₂ → R S₁ S₂ → EquivS R (xmt d (proj₁ T₁) (proj₁ S₁) , con-xmt (proj₂ T₁) (proj₂ S₁)) (xmt d (proj₁ T₂) (proj₁ S₂) , con-xmt (proj₂ T₂) (proj₂ S₂)) eq-rec-l : let S = proj₁ S₁ in let cs = proj₂ S₁ in EquivS R (subst-maxS (rec S) S , subst-contr-mS (c-weakenS₁ cs) (con-rec cs)) S₂ → EquivS R (rec S , con-rec cs) S₂ eq-rec-r : let S = proj₁ S₂ in let cs = proj₂ S₂ in EquivS R S₁ (subst-maxS (rec S) S , subst-contr-mS (c-weakenS₁ cs) (con-rec cs)) → EquivS R S₁ (rec S , con-rec cs) record Equiv (S₁ S₂ : SCType 0 zero) : Set where coinductive field force : EquivS Equiv (unfold!! S₁ id) (unfold!! S₂ id) record Equiv' (S₁ S₂ : SCType n zero) : Set where coinductive field force : EquivS Equiv' (unfold!!!{n = 0} S₁ id) (unfold!!!{n = 0} S₂ id) {-# TERMINATING #-} equivt-refl : ∀ T → EquivT Equiv T T equivs-refl : ∀ S → EquivS Equiv S S equiv-refl : ∀ S → Equiv S S equivt-refl (TInt , con-int) = eq-int equivt-refl (TChn S , con-chn x) = eq-chn (equiv-refl (S , x)) equivs-refl (xmt d t s , con-xmt ct cs) = eq-xmt d (equivt-refl (t , ct)) (equiv-refl (s , cs)) equivs-refl (end , con-end) = eq-end equivs-refl (rec s , con-rec cs) = eq-rec-l (eq-rec-r (equivs-refl ((subst-maxS (rec s) s) , (subst-contr-mS (c-weakenS₁ cs) (con-rec cs))))) Equiv.force (equiv-refl S) = equivs-refl (unfold!! S id) ---------------------------------------------------------------------- -- prove equivalence of one-level unrolling -- μX S ≈ S [μX S / X] module μ-unrolling where unfold-≡ : ∀ S cs → unfold!! (S , cs) (λ { (S' , c') → (subst-maxS (rec S) S') , (subst-contr-mS (c-weakenS₁ c') (con-rec cs)) }) ≡ (unfold!! (subst-maxS (rec S) S , subst-contr-mS (c-weakenS₁ cs) (con-rec cs)) id) unfold-≡ (xmt d T S) (con-xmt x cs) = refl unfold-≡ end con-end = refl unfold-≡ (rec S) (con-rec cs) = {!!} unfold-≡ (var x) (con-var x₁) with max? x unfold-≡ (var x) (con-var x₁) | yes p = {!!} unfold-≡ (var x) (con-var x₁) | no ¬p = refl unroll : SCType n i → SCType n i unroll SC@(xmt d T S , con-xmt x cs) = SC unroll SC@(end , con-end) = SC unroll (rec S , cs@(con-rec cs')) = (subst-maxS (rec S) S) , (subst-contr-mS (c-weakenS₁ cs') cs) unroll SC@(var x , con-var x₁) = SC unroll-equiv : (SC : SCType 0 zero) → Equiv SC (unroll SC) Equiv.force (unroll-equiv SC@(xmt d T S , con-xmt x cs)) with unroll SC ... | SC' = equivs-refl SC' Equiv.force (unroll-equiv (end , con-end)) = eq-end Equiv.force (unroll-equiv (rec S , con-rec cs)) rewrite unfold-≡ S cs = let S₁ = unfold!! (S , cs) (λ { (S' , c') → (subst-maxS (rec S) S') , (subst-contr-mS (c-weakenS₁ c') (con-rec cs)) }) in let eqx = equivs-refl S₁ in {!S₁!} ---------------------------------------------------------------------- -- prove the folk theorem -- μX μY S = μY [Y/X]S module μ-examples where r1 : SType 0 r1 = rec (rec (xmt SND (TChn (var zero)) (var (suc zero)))) r2 : SType n r2 = rec (xmt SND (TChn (var zero)) (var zero)) r2a : SType 0 r2a = rec r2 r2b : SType n r2b = rec (rec (xmt SND (TChn (var zero)) (var (suc zero)))) r2-unfolded : SType 0 r2-unfolded = xmt SND (TChn r2) r2 r2-unf : SType 0 r2-unf = rec (xmt SND (TChn (var zero)) r2b) rc2-unf : SCType 0 zero rc2-unf = r2-unf , (con-rec (con-xmt (con-chn (con-var z≤n)) (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))))) rc1 : SCType 0 zero rc1 = r1 , (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))) rc2 : SCType n zero rc2 = r2 , (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))) rc2a : SCType 0 zero rc2a = r2a , con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))) rc2b : SCType n zero rc2b = r2b , con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))) rc2-unfolded : SCType 0 zero rc2-unfolded = r2-unfolded , (con-xmt (con-chn (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))) (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))) rc2=rc2 : Equiv rc2 rc2 Equiv.force rc2=rc2 = eq-xmt SND (eq-chn rc2=rc2) rc2=rc2 rc2=rc2-unfolded : Equiv rc2 rc2-unfolded Equiv.force rc2=rc2-unfolded = eq-xmt SND (eq-chn rc2=rc2) rc2=rc2 weak-r2 : SType 0 weak-r2 = rec (weaken'S 1 zero r2) weak-rc2 : SCType 0 zero weak-rc2 = weak-r2 , (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n)))) r2-weak : SType n r2-weak = rec (xmt SND ((TChn (weaken'S 1 zero (rec (rec (xmt SND (TChn (var (suc zero))) (var (suc zero)))))))) ((weaken'S 1 zero (rec (rec (xmt SND (TChn (var (suc zero))) (var (suc zero)))))))) rc2-weak : SCType 0 zero rc2-weak = r2-weak , con-rec (con-xmt (con-chn (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))))) (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))))) rc2=rc2a : Equiv rc2 rc2a Equiv.force rc2=rc2a = eq-xmt SND (eq-chn rc2=rc2a) rc2=rc2a rc2=xxxrc2b : Equiv' rc2 rc2-unf rc2=rc2b : Equiv' rc2 rc2b Equiv'.force rc2=xxxrc2b = eq-xmt SND (eq-chn rc2=xxxrc2b) rc2=rc2b Equiv'.force rc2=rc2b = eq-xmt SND (eq-chn rc2=rc2b) rc2=xxxrc2b rc2=rc2-weak : Equiv' rc2 rc2-weak Equiv'.force rc2=rc2-weak = eq-xmt SND (eq-chn {!rc2=rc2b!}) {!!} rc2=weak-rc2 : Equiv rc2 weak-rc2 Equiv.force rc2=weak-rc2 = eq-xmt SND (eq-chn rc2=rc2a) rc2=rc2a r3 : SType 0 r3 = rec (xmt SND (TChn (var zero)) (weaken'S 1 zero r1)) rc3 : SCType 0 zero rc3 = r3 , con-rec (con-xmt (con-chn (con-var z≤n)) (con-rec (con-rec (con-xmt (con-chn (con-var z≤n)) (con-var z≤n))))) rc1=rc2 : Equiv rc1 rc2 rc3=rc2 : Equiv rc3 rc2 Equiv.force rc1=rc2 = eq-xmt SND (eq-chn rc1=rc2) rc3=rc2 Equiv.force rc3=rc2 = eq-xmt SND (eq-chn rc3=rc2) rc1=rc2 -- end examples ---------------------------------------------------------------------- recrec : SType 2 → SType 0 × SType 0 recrec S = rec (rec S) , rec (subst-maxS (var zero) S) recrec2 : SType 2 → SType 1 recrec2 S = rec S conrr1 : {S : SType 2} → Contractive (suc (suc zero)) S → Contractive zero (rec (rec S)) conrr1 cs = con-rec (con-rec cs) conrr2 : {S : SType 2} → Contractive (suc (suc zero)) S → Contractive (suc zero) (subst-maxS (var zero) S) conrr2 cs = subst-contr-mS {!subst-contr-mS!} (con-var (s≤s z≤n)) sc-rec : SCType (suc n) (suc i) → SCType n i sc-rec (S , cs) = (rec S , con-rec cs) ¬fromN≤x : (x : Fin n) → ¬ (fromℕ n ≤ inject₁ x) ¬fromN≤x {suc n} zero () ¬fromN≤x {suc n} (suc x) (s≤s n≤x) = ¬fromN≤x x n≤x μμ-lem-gen : {n : ℕ} → (S : SType (suc (suc n))) → Contractive (suc (suc (fromℕ n))) S → Contractive (suc (fromℕ n)) (subst-maxS (var (fromℕ n)) S) μμ-lem-gen (xmt d T S) (con-xmt x cs) = con-xmt (subst-contr-mT x (con-var z≤n)) (subst-contr-mS cs (con-var z≤n)) μμ-lem-gen end con-end = con-end μμ-lem-gen (rec S) (con-rec cs) = con-rec (μμ-lem-gen S cs) μμ-lem-gen (var zero) (con-var ()) μμ-lem-gen (var (suc zero)) (con-var (s≤s ())) μμ-lem-gen (var (suc (suc x))) (con-var (s≤s (s≤s x₁))) with ¬fromN≤x x x₁ μμ-lem-gen (var (suc (suc x))) (con-var (s≤s (s≤s x₁))) | () μμ-lemma : (S : SType 2) → Contractive (suc (suc zero)) S → Contractive (suc zero) (subst-maxS (var zero) S) μμ-lemma S cs = μμ-lem-gen S cs μμ-gen : (S : SType (suc (suc n))) (cs : Contractive (suc (suc (fromℕ n))) S) → Equiv' (sc-rec (sc-rec (S , {!!}))) (sc-rec ((subst-maxS (var zero) S) , {!!})) μμ-gen S cs = {!!} μμ1 : (S : SType 2) (cs : Contractive (suc (suc zero)) S) → Equiv (sc-rec (sc-rec (S , cs))) (sc-rec ((subst-maxS (var zero) S) , μμ-lemma S cs)) Equiv.force (μμ1 (xmt d T S) (con-xmt x cs)) = {!!} Equiv.force (μμ1 end con-end) = eq-end Equiv.force (μμ1 (rec S) (con-rec cs)) = {!!} Equiv.force (μμ1 (var x) (con-var x₁)) = {!!} -- or μX μY S = μX [X/Y]S μμ2 : (S : SType 2) (cs : Contractive (suc (suc zero)) S) → Equiv (sc-rec (sc-rec (S , cs))) let xxx = subst-maxS {!sc-rec!} (rec S) in (sc-rec ((subst-maxS (var zero) S) , (subst-contr-mS (c-weakenS₁ cs) (con-var {!!})))) μμ2 S cs = {!!}
33.297207
198
0.574578
21b1a3a7999a8965cce6d614174043adfc9f9f63
5,113
agda
Agda
src/Web/Semantic/DL/Category/Properties/Tensor/SymmNatural.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
1
2022-02-22T09:43:23.000Z
2022-02-22T09:43:23.000Z
src/Web/Semantic/DL/Category/Properties/Tensor/SymmNatural.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
null
null
null
src/Web/Semantic/DL/Category/Properties/Tensor/SymmNatural.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
null
null
null
open import Data.Product using ( proj₁ ; proj₂ ) open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind ; _*_ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; on-bnode ; bnodes ; _,_ ; ⊨a-resp-≲ ) open import Web.Semantic.DL.Category.Composition using ( _∙_ ) open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using ( compose-left ; compose-right ; compose-resp-⊨a ) open import Web.Semantic.DL.Category.Properties.Tensor.Lemmas using ( tensor-up ; tensor-down ; tensor-resp-⊨a ) open import Web.Semantic.DL.Category.Object using ( Object ; IN ; fin ) open import Web.Semantic.DL.Category.Morphism using ( _⇒_ ; BN ; impl ; _⊑_ ; _≣_ ; _,_ ) open import Web.Semantic.DL.Category.Tensor using ( _⊗_ ; _⟨⊗⟩_ ) open import Web.Semantic.DL.Category.Unit using ( I ) open import Web.Semantic.DL.Category.Wiring using ( wires-≈ ; wires-≈⁻¹ ; symm ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox using ( TBox ) open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl ) open import Web.Semantic.Util using ( _∘_ ; False ; ⊎-swap ; _⊕_⊕_ ; inode ; bnode ; enode ; left ; right ; up ; down ) module Web.Semantic.DL.Category.Properties.Tensor.SymmNatural {Σ : Signature} {S T : TBox Σ} where symm-natural : ∀ {A₁ A₂ B₁ B₂ : Object S T} (F₁ : A₁ ⇒ B₁) (F₂ : A₂ ⇒ B₂) → ((F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂ ≣ symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁)) symm-natural {A₁} {A₂} {B₁} {B₂} F₁ F₂ = (LHS⊑RHS , RHS⊑LHS) where LHS⊑RHS : (F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂ ⊑ symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁) LHS⊑RHS J J⊨STA J⊨LHS = (f , J⊨RHS) where f : False ⊕ (IN A₂ ⊎ IN A₁) ⊕ (BN F₂ ⊎ BN F₁) → Δ ⌊ J ⌋ f (inode ()) f (bnode (inj₁ x)) = ind J (inode (inj₂ x)) f (bnode (inj₂ x)) = ind J (inode (inj₁ x)) f (enode (inj₁ v)) = ind J (bnode (inode (inj₂ v))) f (enode (inj₂ v)) = ind J (bnode (inode (inj₁ v))) lemma₀ : ∀ x → ⌊ J ⌋ ⊨ ind J (inode (⊎-swap x)) ≈ f (bnode x) lemma₀ (inj₁ x) = ≈-refl ⌊ J ⌋ lemma₀ (inj₂ y) = ≈-refl ⌊ J ⌋ lemma₁ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (up x)) ≈ on-bnode {Σ} f (ind J) (right (down x)) lemma₁ (inode x) = ≈-refl ⌊ J ⌋ lemma₁ (bnode v) = ≈-refl ⌊ J ⌋ lemma₁ (enode y) = wires-≈ ⊎-swap (proj₂ (fin (B₂ ⊗ B₁)) (inj₂ y)) (compose-right (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) J J⊨LHS) lemma₂ : ∀ x → ⌊ J ⌋ ⊨ ind J (left (down x)) ≈ on-bnode {Σ} f (ind J) (right (up x)) lemma₂ (inode x) = ≈-refl ⌊ J ⌋ lemma₂ (bnode v) = ≈-refl ⌊ J ⌋ lemma₂ (enode y) = wires-≈ ⊎-swap (proj₂ (fin (B₂ ⊗ B₁)) (inj₁ y)) (compose-right (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) J J⊨LHS) J⊨RHS : bnodes J f ⊨a impl (symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁)) J⊨RHS = compose-resp-⊨a (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) (bnodes J f) (wires-≈⁻¹ ⊎-swap lemma₀ (proj₁ (fin (A₂ ⊗ A₁)))) (tensor-resp-⊨a F₂ F₁ (right * bnodes J f) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂) (tensor-down F₁ F₂ (left * J) (compose-left (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) J J⊨LHS))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁) (tensor-up F₁ F₂ (left * J) (compose-left (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) J J⊨LHS)))) RHS⊑LHS : symm A₁ A₂ ∙ (F₂ ⟨⊗⟩ F₁) ⊑ (F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂ RHS⊑LHS J J⊨STA J⊨RHS = (f , J⊨LHS) where f : ((BN F₁ ⊎ BN F₂) ⊕ (IN B₁ ⊎ IN B₂) ⊕ False) → Δ ⌊ J ⌋ f (inode (inj₁ v)) = ind J (bnode (enode (inj₂ v))) f (inode (inj₂ v)) = ind J (bnode (enode (inj₁ v))) f (bnode (inj₁ y)) = ind J (enode (inj₂ y)) f (bnode (inj₂ y)) = ind J (enode (inj₁ y)) f (enode ()) lemma₀ : ∀ x → ⌊ J ⌋ ⊨ f (bnode (⊎-swap x)) ≈ ind J (enode x) lemma₀ (inj₁ y) = ≈-refl ⌊ J ⌋ lemma₀ (inj₂ y) = ≈-refl ⌊ J ⌋ lemma₁ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (down x)) ≈ on-bnode {Σ} f (ind J) (left (up x)) lemma₁ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-swap (proj₂ (fin (A₂ ⊗ A₁)) (inj₂ x)) (compose-left (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) J J⊨RHS)) lemma₁ (bnode v) = ≈-refl ⌊ J ⌋ lemma₁ (enode y) = ≈-refl ⌊ J ⌋ lemma₂ : ∀ x → ⌊ J ⌋ ⊨ ind J (right (up x)) ≈ on-bnode {Σ} f (ind J) (left (down x)) lemma₂ (inode x) = ≈-sym ⌊ J ⌋ (wires-≈ ⊎-swap (proj₂ (fin (A₂ ⊗ A₁)) (inj₁ x)) (compose-left (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) J J⊨RHS)) lemma₂ (bnode v) = ≈-refl ⌊ J ⌋ lemma₂ (enode y) = ≈-refl ⌊ J ⌋ J⊨LHS : bnodes J f ⊨a impl ((F₁ ⟨⊗⟩ F₂) ∙ symm B₁ B₂) J⊨LHS = compose-resp-⊨a (F₁ ⟨⊗⟩ F₂) (symm B₁ B₂) (bnodes J f) (tensor-resp-⊨a F₁ F₂ (left * bnodes J f) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₁) (impl F₁) (tensor-down F₂ F₁ (right * J) (compose-right (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) J J⊨RHS))) (⊨a-resp-≲ (≲-refl ⌊ J ⌋ , lemma₂) (impl F₂) (tensor-up F₂ F₁ (right * J) (compose-right (symm A₁ A₂) (F₂ ⟨⊗⟩ F₁) J J⊨RHS)))) (wires-≈⁻¹ ⊎-swap lemma₀ (proj₁ (fin (B₂ ⊗ B₁))))
44.46087
76
0.548406
1993c5dab5ff9c3a79fda2529ef442e0c04b4df4
4,849
agda
Agda
src/ctxt-types.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
src/ctxt-types.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
src/ctxt-types.agda
CarlOlson/cedille
f5ce42258b7d9bc66f75cd679c785d6133b82b58
[ "MIT" ]
null
null
null
module ctxt-types where open import lib open import cedille-types open import general-util open import syntax-util location : Set location = string × posinfo -- file path and starting position in the file -- file path and starting / ending position in file span-location = string × posinfo × posinfo -- missing locations missing-location : location missing-location = ("missing" , "missing") missing-span-location : span-location missing-span-location = ("missing" , "missing" , "missing") {- we will generally keep classifiers of variables in hnf in the ctxt, although we will not necessarily unfold recursive type definitions. -} defScope : Set defScope = 𝔹 pattern localScope = tt pattern globalScope = ff pattern concrete-datatype = globalScope pattern abstract-datatype = localScope defParams : Set defParams = maybe params data ctxt-info : Set where -- for defining a datatype -- datatype-def : defParams → (ind reg : kind) → ctrs → ctxt-info -- for defining a datatype constructor ctr-def : params → type → (ctrs-length ctr-index ctr-unerased-arrows : ℕ) → ctxt-info -- for declaring the type that proves a type is a datatype (X/Mu) -- mu-def : defParams → var → kind → ctxt-info -- for declaring a variable to have a given type (with no definition) term-decl : type → ctxt-info -- for defining a variable to equal a term with a given type -- maybe term, because datatype X/Mu and X/mu have params, etc... but no def term-def : defParams → opacity → maybe term → type → ctxt-info -- for untyped term definitions term-udef : defParams → opacity → term → ctxt-info -- for declaring a variable to have a given kind (with no definition) type-decl : kind → ctxt-info -- for defining a variable to equal a type with a given kind type-def : defParams → opacity → maybe type → kind → ctxt-info -- for defining a variable to equal a kind kind-def : params → kind → ctxt-info -- to rename a variable at any level to another rename-def : var → ctxt-info -- representing a declaration of a variable with no other information about it var-decl : ctxt-info sym-info : Set sym-info = ctxt-info × location -- module filename, name, parameters, and qualifying substitution mod-info : Set mod-info = string × string × params × qualif is-term-level : ctxt-info → 𝔹 is-term-level (term-decl _) = tt is-term-level (term-def _ _ _ _) = tt is-term-level (term-udef _ _ _) = tt is-term-level (ctr-def _ _ _ _ _ ) = tt is-term-level _ = ff data ctxt : Set where mk-ctxt : (mod : mod-info) → -- current module (syms : trie (string × 𝕃 string) × trie string × trie params × trie ℕ × Σ ℕ (𝕍 string)) → -- map each filename to its module name and the symbols declared in that file, map each module name to its filename and params, and file ID's for use in to-string.agda (i : trie sym-info) → -- map symbols (from Cedille files) to their ctxt-info and location (sym-occurrences : trie (𝕃 (var × posinfo × string))) → -- map symbols to a list of definitions they occur in (and relevant file info) (Δ : trie (params × kind × kind × ctrs) × trie (var × var × args) × trie var) → -- datatype info: (concrete/global datatypes × abstract/local datatypes × datatype/Mu map) ctxt ctxt-binds-var : ctxt → var → 𝔹 ctxt-binds-var (mk-ctxt (_ , _ , _ , q) _ i _ _) x = trie-contains q x || trie-contains i x ctxt-var-decl : var → ctxt → ctxt ctxt-var-decl v (mk-ctxt (fn , mn , ps , q) syms i symb-occs Δ) = mk-ctxt (fn , mn , ps , (trie-insert q v (v , []))) syms (trie-insert i v (var-decl , "missing" , "missing")) symb-occs Δ ctxt-var-decl-loc : posinfo → var → ctxt → ctxt ctxt-var-decl-loc pi v (mk-ctxt (fn , mn , ps , q) syms i symb-occs Δ) = mk-ctxt (fn , mn , ps , (trie-insert q v (v , []))) syms (trie-insert i v (var-decl , fn , pi)) symb-occs Δ qualif-var : ctxt → var → var qualif-var (mk-ctxt (_ , _ , _ , q) _ _ _ _) v with trie-lookup q v ...| just (v' , _) = v' ...| nothing = v start-modname : start → string start-modname (File _ _ _ mn _ _ _) = mn ctxt-get-current-filename : ctxt → string ctxt-get-current-filename (mk-ctxt (fn , _) _ _ _ _) = fn ctxt-get-current-mod : ctxt → mod-info ctxt-get-current-mod (mk-ctxt m _ _ _ _) = m ctxt-get-current-modname : ctxt → string ctxt-get-current-modname (mk-ctxt (_ , mn , _ , _) _ _ _ _) = mn ctxt-get-current-params : ctxt → params ctxt-get-current-params (mk-ctxt (_ , _ , ps , _) _ _ _ _) = ps ctxt-get-symbol-occurrences : ctxt → trie (𝕃 (var × posinfo × string)) ctxt-get-symbol-occurrences (mk-ctxt _ _ _ symb-occs _) = symb-occs ctxt-set-symbol-occurrences : ctxt → trie (𝕃 (var × posinfo × string)) → ctxt ctxt-set-symbol-occurrences (mk-ctxt fn syms i symb-occs Δ) new-symb-occs = mk-ctxt fn syms i new-symb-occs Δ
37.589147
272
0.67086
fd7ee97284ac039f15340129af2eb0c02061b4de
1,886
agda
Agda
Definition/Typed/Consequences/Reduction.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Reduction.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
Definition/Typed/Consequences/Reduction.agda
loic-p/logrel-mltt
2251b8da423be0c6fb916f2675d7bd8537e4cd96
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Reduction where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Embedding open import Tools.Product -- Helper function where all reducible types can be reduced to WHNF. whNorm′ : ∀ {A Γ l} ([A] : Γ ⊩⟨ l ⟩ A) → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B whNorm′ (Uᵣ′ .⁰ 0<1 ⊢Γ) = U , Uₙ , idRed:*: (Uⱼ ⊢Γ) whNorm′ (ℕᵣ D) = ℕ , ℕₙ , D whNorm′ (ne′ K D neK K≡K) = K , ne neK , D whNorm′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = Π F ▹ G , Πₙ , D whNorm′ (emb′ 0<1 [A]) = whNorm′ [A] -- Well-formed types can all be reduced to WHNF. whNorm : ∀ {A Γ} → Γ ⊢ A → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B whNorm A = whNorm′ (reducible A) -- Helper function where reducible all terms can be reduced to WHNF. whNormTerm′ : ∀ {a A Γ l} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ a ∷ A / [A] → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A whNormTerm′ (Uᵣ′ a b c) (Uₜ A d typeA A≡A [t]) = A , typeWhnf typeA , d whNormTerm′ (ℕᵣ x) (ιx (ℕₜ n d n≡n prop)) = let natN = natural prop in n , naturalWhnf natN , convRed:*: d (sym (subset* (red x))) whNormTerm′ (ne′ K D neK K≡K) (ιx (neₜ k d (neNfₜ neK₁ ⊢k k≡k))) = k , ne neK₁ , convRed:*: d (sym (subset* (red D))) whNormTerm′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) = f , functionWhnf funcF , convRed:*: d (sym (subset* (red D))) whNormTerm′ (emb′ 0<1 [A]) (ιx [a]) = whNormTerm′ [A] [a] -- Well-formed terms can all be reduced to WHNF. whNormTerm : ∀ {a A Γ} → Γ ⊢ a ∷ A → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A whNormTerm {a} {A} ⊢a = let [A] , [a] = reducibleTerm ⊢a in whNormTerm′ [A] [a]
39.291667
77
0.599682
11c2dcc76a211ba1df61a16756f31267f9b7e86c
459
agda
Agda
test/Fail/ExactSplitParity.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/ExactSplitParity.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/ExactSplitParity.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --exact-split -Werror #-} module ExactSplitParity where data Bool : Set where true false : Bool data ℕ : Set where zero : ℕ suc : ℕ → ℕ parity : ℕ → ℕ → Bool parity zero zero = true parity zero (suc zero) = false parity zero (suc (suc n)) = parity zero n parity (suc zero) zero = false parity (suc (suc m)) zero = parity m zero parity (suc m) (suc n) = parity m n
24.157895
50
0.553377
1b57b2289bf5504aeb7b3da9e6b7776f211b5bf9
1,280
agda
Agda
test/succeed/PruningNonMillerPattern.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/succeed/PruningNonMillerPattern.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/succeed/PruningNonMillerPattern.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
-- {-# OPTIONS -v tc.meta:100 #-} -- Andreas, 2011-04-20 -- see Abel Pientka TLCA 2011 module PruningNonMillerPattern where data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a data Nat : Set where zero : Nat suc : Nat -> Nat test : let X : Nat -> Nat -> Nat X = _ Y : Nat -> Nat -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x x ≡ suc (Y x y)) -> ({x y : Nat} -> Y x x ≡ x) -> ({x y : Nat} -> X (Y x y) y ≡ X x x) -> C) -> C test C k = k refl refl refl {- none of these equations is immediately solvable. However, from 1. we deduce that Y does not depend on its second argument, thus from 2. we solve Y x y = x, and then eqn. 3. simplifies to X x y = X x x, thus, X does not depend on its second arg, we can then solve using 1. X x y = suc x -} -- a variant, where pruning is even triggered from a non-pattern test' : let X : Nat -> Nat -> Nat X = _ Y : Nat -> Nat -> Nat Y = _ in (C : Set) -> (({x y : Nat} -> X x (suc x) ≡ suc (Y x y)) -> -- non-pattern lhs ({x y : Nat} -> Y x x ≡ x) -> ({x y : Nat} -> X (Y x y) y ≡ X x x) -> C) -> C test' C k = k refl refl refl
32.820513
82
0.473438
ad604965295406f9762b27ded9700990ec52f9fb
4,426
agda
Agda
theorems/cohomology/ProductRepr.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
1
2021-06-30T00:17:55.000Z
2021-06-30T00:17:55.000Z
theorems/cohomology/ProductRepr.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/cohomology/ProductRepr.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.Exactness open import cohomology.FunctionOver module cohomology.ProductRepr where {- Given the following commutative diagram of homomorphisms, H₁ i₁ i₂ H₂ ↘ ↙ id ↓ G ↓ id ↙ ↘ H₁ j₁ j₂ H₂ - assuming i₁,j₂ and i₂,j₁ are exact sequences, - there exists an isomorphism G == H₁ × H₂ such that i₁,i₂ correspond - to the natural injections and j₁,j₂ correspond to the natural - projections. -} module ProductRepr {i j} {G : Group (lmax i j)} {H₁ : Group i} {H₂ : Group j} (i₁ : H₁ →ᴳ G) (i₂ : H₂ →ᴳ G) (j₁ : G →ᴳ H₁) (j₂ : G →ᴳ H₂) (p₁ : ∀ h₁ → GroupHom.f j₁ (GroupHom.f i₁ h₁) == h₁) (p₂ : ∀ h₂ → GroupHom.f j₂ (GroupHom.f i₂ h₂) == h₂) (ex₁ : is-exact i₁ j₂) (ex₂ : is-exact i₂ j₁) where zero-ker : (g : Group.El G) → GroupHom.f (×ᴳ-hom-in j₁ j₂) g == Group.ident (H₁ ×ᴳ H₂) → g == Group.ident G zero-ker g q = Trunc-rec (Group.El-level G _ _) (lemma g (fst×= q)) (ktoi ex₁ g (snd×= q)) where lemma : (g : Group.El G) (r : GroupHom.f j₁ g == Group.ident H₁) → Σ (Group.El H₁) (λ h → GroupHom.f i₁ h == g) → g == Group.ident G lemma ._ r (h , idp) = ap (GroupHom.f i₁) (! (p₁ h) ∙ r) ∙ GroupHom.pres-ident i₁ β₁ : (h₁ : Group.El H₁) (h₂ : Group.El H₂) → GroupHom.f j₁ (Group.comp G (GroupHom.f i₁ h₁) (GroupHom.f i₂ h₂)) == h₁ β₁ h₁ h₂ = GroupHom.pres-comp j₁ (GroupHom.f i₁ h₁) (GroupHom.f i₂ h₂) ∙ ap2 (Group.comp H₁) (p₁ h₁) (itok ex₂ _ [ h₂ , idp ]) ∙ Group.unitr H₁ h₁ β₂ : (h₁ : Group.El H₁) (h₂ : Group.El H₂) → GroupHom.f j₂ (Group.comp G (GroupHom.f i₁ h₁) (GroupHom.f i₂ h₂)) == h₂ β₂ h₁ h₂ = GroupHom.pres-comp j₂ (GroupHom.f i₁ h₁) (GroupHom.f i₂ h₂) ∙ ap2 (Group.comp H₂) (itok ex₁ _ [ h₁ , idp ]) (p₂ h₂) ∙ Group.unitl H₂ h₂ iso : G ≃ᴳ (H₁ ×ᴳ H₂) iso = surj-inj-iso (×ᴳ-hom-in j₁ j₂) (zero-kernel-injective (×ᴳ-hom-in j₁ j₂) zero-ker) (λ {(h₁ , h₂) → [ Group.comp G (GroupHom.f i₁ h₁) (GroupHom.f i₂ h₂) , pair×= (β₁ h₁ h₂) (β₂ h₁ h₂) ]}) path : G == H₁ ×ᴳ H₂ path = group-ua iso fst-over : j₁ == ×ᴳ-fst [ (λ U → U →ᴳ H₁) ↓ path ] fst-over = domain-over-iso $ domain-over-equiv fst _ snd-over : j₂ == ×ᴳ-snd {G = H₁} [ (λ U → U →ᴳ H₂) ↓ path ] snd-over = domain-over-iso $ domain-over-equiv snd _ inl-over : i₁ == ×ᴳ-inl [ (λ V → H₁ →ᴳ V) ↓ path ] inl-over = codomain-over-iso $ codomain-over-equiv (GroupHom.f i₁) _ ▹ λ= (λ h₁ → pair×= (p₁ h₁) (itok ex₁ _ [ h₁ , idp ])) inr-over : i₂ == ×ᴳ-inr {G = H₁} [ (λ V → H₂ →ᴳ V) ↓ path ] inr-over = codomain-over-iso $ codomain-over-equiv (GroupHom.f i₂) _ ▹ λ= (λ h₂ → pair×= (itok ex₂ _ [ h₂ , idp ]) (p₂ h₂)) {- Given additionally maps i₀ j₀ K –––→ G ––→ L - such that j₀∘i₀ = 0, we have j₀(i₁(j₁(i₀ k)))⁻¹ = j₀(i₂(j₂(i₀ k))). - (This is called the hexagon lemma in Eilenberg & Steenrod's book. - The hexagon is not visible in this presentation.) -} module HexagonLemma {k l} {K : Group k} {L : Group l} (i₀ : K →ᴳ G) (j₀ : G →ᴳ L) (ex₀ : ∀ g → GroupHom.f j₀ (GroupHom.f i₀ g) == Group.ident L) where decomp : ∀ g → Group.comp G (GroupHom.f i₁ (GroupHom.f j₁ g)) (GroupHom.f i₂ (GroupHom.f j₂ g)) == g decomp = transport (λ {(G' , i₁' , i₂' , j₁' , j₂') → ∀ g → Group.comp G' (GroupHom.f i₁' (GroupHom.f j₁' g)) (GroupHom.f i₂' (GroupHom.f j₂' g)) == g}) (! (pair= path (↓-×-in inl-over (↓-×-in inr-over (↓-×-in fst-over snd-over))))) (λ {(h₁ , h₂) → pair×= (Group.unitr H₁ h₁) (Group.unitl H₂ h₂)}) cancel : ∀ k → Group.comp L (GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k) (GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k) == Group.ident L cancel k = ! (GroupHom.pres-comp j₀ _ _) ∙ ap (GroupHom.f j₀) (decomp (GroupHom.f i₀ k)) ∙ ex₀ k inv₁ : ∀ k → Group.inv L (GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k) == GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k inv₁ k = group-inv-unique-r L _ _ (cancel k) inv₂ : ∀ k → Group.inv L (GroupHom.f (j₀ ∘ᴳ i₂ ∘ᴳ j₂ ∘ᴳ i₀) k) == GroupHom.f (j₀ ∘ᴳ i₁ ∘ᴳ j₁ ∘ᴳ i₀) k inv₂ k = group-inv-unique-l L _ _ (cancel k)
35.126984
78
0.528468
4e6418adb454b55ce849243a3c635fb0d2af934d
4,717
agda
Agda
Data/BinaryTree.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/BinaryTree.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/BinaryTree.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Data.BinaryTree where import Lvl open import Type private variable ℓ ℓᵢ ℓₗ ℓₙ ℓₒ : Lvl.Level private variable N N₁ N₂ L T A B : Type{ℓ} data BinaryTree (L : Type{ℓₗ}) (N : Type{ℓₙ}) : Type{ℓₗ Lvl.⊔ ℓₙ} where Leaf : L → BinaryTree L N Node : N → BinaryTree L N → BinaryTree L N → BinaryTree L N elim : (P : BinaryTree L N → Type{ℓ}) → ((l : L) → P(Leaf l)) → (∀{tl tr} → (n : N) → (pl : P(tl)) → (pr : P(tr)) → P(Node n tl tr)) → ((t : BinaryTree L N) → P(t)) elim P pl pn (Leaf l) = pl l elim P pl pn (Node n l r) = pn n (elim P pl pn l) (elim P pl pn r) open import Data using (Unit ; <>) open import Data.Boolean open import Data.Option open import Data.Tuple using (_⨯_ ; _,_) open import Functional as Fn using (_$_) open import Numeral.Natural open import Numeral.Natural.Function open import Numeral.Natural.Oper hiding (_^_) emptyTree : BinaryTree{ℓₗ} Unit N emptyTree = Leaf <> singleton : N → BinaryTree{ℓₗ} Unit N singleton a = Node a emptyTree emptyTree isLeaf : BinaryTree L N → Bool isLeaf (Leaf _) = 𝑇 isLeaf (Node _ _ _) = 𝐹 isNode : BinaryTree L N → Bool isNode (Leaf _) = 𝐹 isNode (Node _ _ _) = 𝑇 root : BinaryTree L N → Option(N) root (Leaf _) = None root (Node a _ _) = Some a flip : BinaryTree L N → BinaryTree L N flip (Leaf l) = Leaf l flip (Node n l r) = Node n (flip r) (flip l) foldPreOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T foldPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id foldPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) = a ▫ₙ_ $ Fn.swap(foldPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $ Fn.swap(foldPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $ id foldInOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T foldInOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id foldInOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) = Fn.swap(foldInOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $ a ▫ₙ_ $ Fn.swap(foldInOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $ id foldPostOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T foldPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id foldPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) = Fn.swap(foldPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $ Fn.swap(foldPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $ a ▫ₙ_ $ id foldReversedPreOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T foldReversedPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id foldReversedPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) = a ▫ₙ_ $ Fn.swap(foldReversedPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $ Fn.swap(foldReversedPreOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $ id foldReversedInOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T foldReversedInOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id foldReversedInOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) = Fn.swap(foldReversedInOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $ a ▫ₙ_ $ Fn.swap(foldReversedInOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $ id foldReversedPostOrderDepthFirst : (L → T → T) → (N → T → T) → T → BinaryTree L N → T foldReversedPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Leaf a) = a ▫ₗ id foldReversedPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_) id (Node a l r) = Fn.swap(foldReversedPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) r $ Fn.swap(foldReversedPostOrderDepthFirst(_▫ₗ_)(_▫ₙ_)) l $ a ▫ₙ_ $ id -- The size is the number of nodes in the tree. size : BinaryTree L N → ℕ size (Leaf _) = 𝟎 size (Node _ l r) = 𝐒(size(l) + size(r)) -- The number of leaves in the tree. numberOfLeaves : BinaryTree L N → ℕ numberOfLeaves (Leaf _) = 1 numberOfLeaves (Node _ l r) = numberOfLeaves(l) + numberOfLeaves(r) -- The height is the length of the longest path from the root. height : BinaryTree L N → ℕ height (Leaf _) = 𝟎 height (Node _ l r) = 𝐒(max (height l) (height r)) open import Data.Boolean.Operators open Data.Boolean.Operators.Programming isFull : BinaryTree L N → Bool isFull (Leaf _) = 𝑇 isFull (Node _ (Leaf _) (Leaf _)) = 𝑇 isFull (Node _ (Node _ _ _) (Leaf _)) = 𝐹 isFull (Node _ (Leaf _) (Node _ _ _)) = 𝐹 isFull (Node _ l@(Node _ _ _) r@(Node _ _ _)) = isFull l && isFull r open import Data.List import Data.List.Functions as List treesOfDepth : ℕ → BinaryTree L N → List(BinaryTree L N) treesOfDepth 𝟎 tree = tree ⊰ ∅ treesOfDepth (𝐒(_)) (Leaf _) = ∅ treesOfDepth (𝐒(n)) (Node _ l r) = (treesOfDepth n l) List.++ (treesOfDepth n r)
36.851563
164
0.604834
3647eab7dde91524eb741868eda16d2afadef950
769
agda
Agda
test/Compiler/simple/VecReverse.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Compiler/simple/VecReverse.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Compiler/simple/VecReverse.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
module _ where open import Common.Prelude open import Lib.Vec _∘_ : ∀ {a b c} {A : Set a} {B : A → Set b} {C : ∀ x → B x → Set c} (f : ∀ {x} (y : B x) → C x y) (g : ∀ x → B x) → ∀ x → C x (g x) (f ∘ g) x = f (g x) sum : ∀ {n} → Vec Nat n → Nat sum (x ∷ xs) = x + sum xs sum [] = 0 foldl : ∀ {A} (B : Nat → Set) → (∀ {n} → B n → A → B (suc n)) → B 0 → ∀ {n} → Vec A n → B n foldl B f z (x ∷ xs) = foldl (λ n → B (suc n)) f (f z x) xs foldl B f z [] = z reverse : ∀ {A n} → Vec A n → Vec A n reverse = foldl (Vec _) (λ xs x → x ∷ xs) [] downFrom : ∀ n → Vec Nat n downFrom zero = [] downFrom (suc n) = n ∷ downFrom n main : IO Unit main = printNat (sum (reverse (downFrom 600))) -- 10000 gives a stack overflow on JS
23.30303
85
0.469441
3527ed5c4b7ff032d5a92936ca2b8f59060c4f24
1,017
agda
Agda
test/Fail/Issue1228b.agda
vlopezj/agda
ff4d89e75970cf27599fb9f572bd43c9455cbb56
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Fail/Issue1228b.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Fail/Issue1228b.agda
vikfret/agda
49ad0b3f0d39c01bc35123478b857e702b29fb9d
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
open import Common.Prelude hiding (tt) open import Common.Reflection open import Common.Equality tt : ⊤ tt = record{} NoConf : Nat → Nat → Set NoConf zero zero = ⊤ NoConf zero (suc n) = ⊥ NoConf (suc m) zero = ⊥ NoConf (suc m) (suc n) = m ≡ n pattern `Nat = def (quote Nat) [] infixr 0 Π syntax Π x a b = [ x ∈ a ]→ b Π : String → Type → Type → Type Π x a b = pi (vArg a) (abs x b) -- noConf : (m n : ℕ) → m ≡ n → NoConfusion-ℕ m n -- noConf zero .zero refl = tt -- noConf (suc m) .(suc m) refl = refl noConf : FunDef noConf = funDef ([ "A" ∈ `Nat ]→ [ "B" ∈ `Nat ]→ [ "C" ∈ def (quote _≡_) (vArg (var 1 []) ∷ vArg (var 0 []) ∷ []) ]→ def (quote NoConf) (vArg (var 2 []) ∷ vArg (var 1 []) ∷ [])) ( clause (vArg (con (quote zero) []) ∷ vArg dot ∷ vArg (con (quote refl) []) ∷ []) (def (quote tt) []) ∷ clause (vArg (con (quote suc) (vArg (var "m") ∷ [])) ∷ vArg dot ∷ vArg (con (quote refl) []) ∷ []) (def (quote refl) []) ∷ []) unquoteDecl test = define (vArg test) noConf
26.763158
102
0.54179
4e35fd84d204159bae2f6cc8b924311e27314951
1,199
agda
Agda
data/test-files/ListMember.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
data/test-files/ListMember.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
data/test-files/ListMember.agda
carlostome/martin
baf979ef78b5ec0f4783240b03f9547490bc5d42
[ "BSD-3-Clause" ]
null
null
null
module ListMember where open import Prelude data Member {A : Set} (x : A) : List A -> Set where here : {xs : List A} -> Member x (cons x xs) there : forall {y} -> {xs : List A} -> Member x xs -> Member x (cons y xs) empty-no-member' : forall {A} -> {x : A} -> Member x nil -> Empty empty-no-member' p = {!!} empty-no-member : forall {A} -> {x : A} -> Not (Member x nil) empty-no-member = is-absurd empty-no-member' neither-here-nor-there' : forall {A} -> {x y : A} {ys : List A} -> (x == y -> Empty) -> (Member x ys -> Empty) -> Member x (cons y ys) -> Empty neither-here-nor-there' not-here not-there member = {!!} neither-here-nor-there : forall {A} -> {x y : A} {ys : List A} -> Not (x == y) -> Not (Member x ys) -> Not (Member x (cons y ys)) neither-here-nor-there (is-absurd not-here) (is-absurd not-there) = is-absurd (neither-here-nor-there' not-here not-there) member : forall {A} -> ((x y : A) -> Dec (x == y)) -> (v : A) -> (vs : List A) -> Dec (Member v vs) member eq? x nil = no empty-no-member member eq? x (cons y ys) with eq? x y member eq? x (cons y ys) | yes p = {!!} member eq? x (cons y ys) | no pf with member eq? x ys member eq? x (cons y ys) | no pf | member = {!!}
44.407407
143
0.588824
11c0aa3d64072c7182cbefb0ca02b0ffd825a2b5
14,127
agda
Agda
complexity/complexity-final/submit/Complexity.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
2
2016-04-26T20:22:22.000Z
2019-08-08T12:27:18.000Z
complexity/complexity-final/submit/Complexity.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
1
2020-03-23T08:39:04.000Z
2020-05-12T00:32:45.000Z
complexity/complexity-final/submit/Complexity.agda
benhuds/Agda
2404a6ef2688f879bda89860bb22f77664ad813e
[ "MIT" ]
null
null
null
open import Preliminaries module Complexity where data CTp : Set where unit : CTp nat : CTp -- discrete natural numbers ♭nat, where we interpret ≤ as = _->c_ : CTp → CTp → CTp _×c_ : CTp → CTp → CTp list : CTp → CTp bool : CTp C : CTp rnat : CTp data CTpM : CTp → Set where runit : CTpM unit rnat-max : CTpM rnat _×cm_ : ∀ {τ1 τ2} → CTpM τ1 → CTpM τ2 → CTpM (τ1 ×c τ2) _->cm_ : ∀ {τ1 τ2} → CTpM τ2 → CTpM (τ1 ->c τ2) -- represent a context as a list of types Ctx = List CTp -- de Bruijn indices (for free variables) data _∈_ : CTp → Ctx → Set where i0 : ∀ {Γ τ} → τ ∈ (τ :: Γ) iS : ∀ {Γ τ τ1} → τ ∈ Γ → τ ∈ (τ1 :: Γ) rctx : Ctx → Ctx → Set rctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → τ ∈ Γ r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') data _|-_ : Ctx → CTp → Set sctx : Ctx → Ctx → Set sctx Γ Γ' = ∀ {τ} → τ ∈ Γ' → Γ |- τ _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C _rs_ : ∀ {A B C} → rctx A B → sctx B C → sctx A C ren : ∀ {Γ Γ' τ} → Γ' |- τ → rctx Γ Γ' → Γ |- τ subst : ∀ {Γ Γ' τ} → Γ' |- τ → sctx Γ Γ' → Γ |- τ _ss_ : ∀ {A B C} → sctx A B → sctx B C → sctx A C _sr_ : ∀ {A B C} → sctx A B → rctx B C → sctx A C data _≤s_ : ∀ {Γ T} → Γ |- T → Γ |- T → Set rename-var : ∀ {Γ Γ' τ} → rctx Γ Γ' → τ ∈ Γ' → τ ∈ Γ idr : ∀ {Γ} → rctx Γ Γ p∙ : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) Γ' p : ∀ {Γ τ} → rctx (τ :: Γ) Γ rename-var-ident : ∀ {Γ τ} → (x : τ ∈ Γ) → rename-var idr x == x rename-var-∙ : ∀ {A B C τ} → (r1 : rctx A B) (r2 : rctx B C) (x : τ ∈ C) → rename-var r1 (rename-var r2 x) == rename-var (r1 ∙rr r2) x ∙rr-assoc : ∀ {A B C D} → (r1 : rctx A B) (r2 : rctx B C) (r3 : rctx C D) → _==_ {_} {rctx A D} (r1 ∙rr (r2 ∙rr r3)) ((r1 ∙rr r2) ∙rr r3) extend-ren-comp-lemma : ∀ {Γ Γ' Γ'' τ τ'} → (x : τ ∈ τ' :: Γ'') (ρ1 : rctx Γ Γ') (ρ2 : rctx Γ' Γ'') → Id {_} {_} ((r-extend ρ1 ∙rr r-extend ρ2) x) (r-extend (ρ1 ∙rr ρ2) x) extend-ren-comp : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → Id {_} {rctx (τ :: Γ) (τ :: Γ'')} (r-extend ρ1 ∙rr r-extend ρ2) (r-extend (ρ1 ∙rr ρ2)) wkn : ∀ {Γ τ1 τ2} → Γ |- τ2 → (τ1 :: Γ) |- τ2 s-extend : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) (τ :: Γ') ids : ∀ {Γ} → sctx Γ Γ q∙ : ∀ {Γ Γ' τ} → sctx Γ Γ' → sctx (τ :: Γ) Γ' lem3' : ∀ {Γ Γ' τ} → sctx Γ Γ' → Γ |- τ → sctx Γ (τ :: Γ') q : ∀ {Γ τ} → Γ |- τ → sctx Γ (τ :: Γ) svar : ∀ {Γ1 Γ2 τ} → sctx Γ1 Γ2 → τ ∈ Γ2 → Γ1 |- τ lem4' : ∀ {Γ Γ' τ1 τ2} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ')) lem4 : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → sctx Γ (τ1 :: (τ2 :: Γ)) lem5' : ∀ {Γ Γ' τ1 τ2 τ3} → sctx Γ Γ' → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ'))) lem5 : ∀ {Γ τ1 τ2 τ3} → Γ |- τ1 → Γ |- τ2 → Γ |- τ3 → sctx Γ (τ1 :: (τ2 :: (τ3 :: Γ))) data _|-_ where unit : ∀ {Γ} → Γ |- unit 0C : ∀ {Γ} → Γ |- C 1C : ∀ {Γ}→ Γ |- C plusC : ∀ {Γ} → Γ |- C → Γ |- C → Γ |- C var : ∀ {Γ τ} → τ ∈ Γ → Γ |- τ z : ∀ {Γ} → Γ |- nat s : ∀ {Γ} → (e : Γ |- nat) → Γ |- nat rec : ∀ {Γ τ} → Γ |- nat → Γ |- τ → (nat :: (τ :: Γ)) |- τ → Γ |- τ lam : ∀ {Γ τ ρ} → (ρ :: Γ) |- τ → Γ |- (ρ ->c τ) app : ∀ {Γ τ1 τ2} → Γ |- (τ2 ->c τ1) → Γ |- τ2 → Γ |- τ1 prod : ∀ {Γ τ1 τ2} → Γ |- τ1 → Γ |- τ2 → Γ |- (τ1 ×c τ2) l-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ1 r-proj : ∀ {Γ τ1 τ2} → Γ |- (τ1 ×c τ2) → Γ |- τ2 nil : ∀ {Γ τ} → Γ |- list τ _::c_ : ∀ {Γ τ} → Γ |- τ → Γ |- list τ → Γ |- list τ listrec : ∀ {Γ τ τ'} → Γ |- list τ → Γ |- τ' → (τ :: (list τ :: (τ' :: Γ))) |- τ' → Γ |- τ' true : ∀ {Γ} → Γ |- bool false : ∀ {Γ} → Γ |- bool max : ∀ {Γ τ} → CTpM τ → Γ |- τ → Γ |- τ → Γ |- τ letc : ∀ {Γ ρ τ} → (ρ :: Γ) |- τ → Γ |- ρ → Γ |- τ {-[ Θ ]s : Monotone [ Γ ] [ Γ' ] [ ρ ]r : same interpE ren e ρ k == interpE e (interpR ρ) k interp commutes with renaming and substitution equations that define ren and subst are true in the semantics-} --also add axioms for max-l/r etc. data _≤s_ where refl-s : ∀ {Γ T} → {e : Γ |- T} → e ≤s e trans-s : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' cong-refl : ∀ {Γ τ} {e e' : Γ |- τ} → e == e' → e ≤s e' lt : ∀ {Γ} → _≤s_ {Γ} 0C 1C letc-app-l : ∀ {Γ ρ τ} {e : (ρ :: Γ) |- τ} {e' : Γ |- ρ} → letc e e' ≤s app (lam e) e' letc-app-r : ∀ {Γ ρ τ} {e : (ρ :: Γ) |- τ} {e' : Γ |- ρ} → app (lam e) e' ≤s letc e e' +-unit-l : ∀ {Γ} {e : Γ |- C} → (plusC 0C e) ≤s e +-unit-l' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC 0C e) +-unit-r : ∀ {Γ} {e : Γ |- C} → (plusC e 0C) ≤s e +-unit-r' : ∀ {Γ} {e : Γ |- C} → e ≤s (plusC e 0C) +-assoc : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC e1 (plusC e2 e3)) ≤s (plusC (plusC e1 e2) e3) +-assoc' : ∀ {Γ} {e1 e2 e3 : Γ |- C} → (plusC (plusC e1 e2) e3) ≤s (plusC e1 (plusC e2 e3)) refl-+ : ∀ {Γ} {e0 e1 : Γ |- C} → (plusC e0 e1) ≤s (plusC e1 e0) cong-+ : ∀ {Γ} {e0 e1 e0' e1' : Γ |- C} → e0 ≤s e0' → e1 ≤s e1' → (plusC e0 e1) ≤s (plusC e0' e1') cong-suc : ∀ {Γ} {e e' : Γ |- nat} → e ≤s e' → (s e) ≤s (s e') cong-prod : ∀ {Γ τ τ'} {e1 e1' : Γ |- τ} {e2 e2' : Γ |- τ'} → e1 ≤s e1' → e2 ≤s e2' → (prod e1 e2) ≤s (prod e1' e2') cong-lproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (l-proj e) ≤s (l-proj e') cong-rproj : ∀ {Γ τ τ'} {e e' : Γ |- (τ ×c τ')} → e ≤s e' → (r-proj e) ≤s (r-proj e') cong-lam : ∀ {Γ ρ τ} {e e' : (ρ :: Γ) |- τ} → e ≤s e' → (lam e) ≤s (lam e') cong-app : ∀ {Γ τ τ'} {e e' : Γ |- (τ ->c τ')} {e1 : Γ |- τ} → e ≤s e' → (app e e1) ≤s (app e' e1) ren-cong : ∀ {Γ Γ' τ} {e1 e2 : Γ' |- τ} {ρ : rctx Γ Γ'} → e1 ≤s e2 → (ren e1 ρ) ≤s (ren e2 ρ) subst-cong : ∀ {Γ Γ' τ} {e1 e2 : Γ' |- τ} {Θ : sctx Γ Γ'} → e1 ≤s e2 → (subst e1 Θ) ≤s (subst e2 Θ) subst-cong2 : ∀ {Γ Γ' τ} {Θ Θ' : sctx Γ Γ'} {e : Γ' |- τ} → (∀ τ → (x : τ ∈ Γ') → Θ x ≤s Θ' x) → subst e Θ ≤s subst e Θ' cong-rec : ∀ {Γ τ} {e e' : Γ |- nat} {e0 : Γ |- τ} {e1 : (nat :: (τ :: Γ)) |- τ} → e ≤s e' → rec e e0 e1 ≤s rec e' e0 e1 cong-listrec : ∀ {Γ τ τ'} {e e' : Γ |- list τ} {e0 : Γ |- τ'} {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e ≤s e' → listrec e e0 e1 ≤s listrec e' e0 e1 lam-s : ∀ {Γ T T'} → {e : (T :: Γ) |- T'} → {e2 : Γ |- T} → subst e (q e2) ≤s app (lam e) e2 l-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} {e2 : Γ |- T2} → e1 ≤s (l-proj (prod e1 e2)) r-proj-s : ∀ {Γ T1 T2} → {e1 : Γ |- T1} → {e2 : Γ |- T2} → e2 ≤s (r-proj (prod e1 e2)) rec-steps-z : ∀ {Γ T} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → e0 ≤s (rec z e0 e1) rec-steps-s : ∀ {Γ T} → {e : Γ |- nat} → {e0 : Γ |- T} → {e1 : (nat :: (T :: Γ)) |- T} → subst e1 (lem4 e (rec e e0 e1)) ≤s (rec (s e) e0 e1) listrec-steps-nil : ∀ {Γ τ τ'} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → e0 ≤s (listrec nil e0 e1) listrec-steps-cons : ∀ {Γ τ τ'} → {h : Γ |- τ} {t : Γ |- list τ} → {e0 : Γ |- τ'} → {e1 : (τ :: (list τ :: (τ' :: Γ))) |- τ'} → subst e1 (lem5 h t (listrec t e0 e1)) ≤s (listrec (h ::c t) e0 e1) ren-comp-l : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren (ren e ρ2) ρ1) ≤s (ren e (ρ1 ∙rr ρ2)) ren-comp-r : ∀ {Γ Γ' Γ'' τ} → (ρ1 : rctx Γ Γ') → (ρ2 : rctx Γ' Γ'') → (e : Γ'' |- τ) → (ren e (ρ1 ∙rr ρ2)) ≤s (ren (ren e ρ2) ρ1) subst-id-l : ∀ {Γ τ} → (e : Γ |- τ) → e ≤s subst e ids subst-id-r : ∀ {Γ τ} → (e : Γ |- τ) → subst e ids ≤s e subst-rs-l : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → ren (subst e Θ) ρ ≤s subst e (ρ rs Θ) subst-rs-r : ∀ {A B C τ} → (ρ : rctx C A) (Θ : sctx A B) (e : B |- τ) → subst e (ρ rs Θ) ≤s ren (subst e Θ) ρ subst-sr-l : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → (subst (ren e ρ) Θ) ≤s subst e (Θ sr ρ) subst-sr-r : ∀ {Γ Γ' Γ'' τ} → (Θ : sctx Γ Γ') → (ρ : rctx Γ' Γ'') → (e : Γ'' |- τ) → subst e (Θ sr ρ) ≤s (subst (ren e ρ) Θ) subst-ss-l : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst e (Θ1 ss Θ2) ≤s subst (subst e Θ2) Θ1 subst-ss-r : ∀ {A B C τ} → (Θ1 : sctx A B) (Θ2 : sctx B C) (e : C |- τ) → subst (subst e Θ2) Θ1 ≤s subst e (Θ1 ss Θ2) subst-compose-l : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst (subst e (s-extend Θ)) (q v) ≤s subst e (lem3' Θ v) subst-compose-r : ∀ {Γ Γ' τ τ1} (Θ : sctx Γ Γ') (v : Γ |- τ) (e : (τ :: Γ' |- τ1) ) → subst e (lem3' Θ v) ≤s subst (subst e (s-extend Θ)) (q v) subst-compose2-l : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) ≤s subst e1 (lem4' Θ v1 v2) subst-compose2-r : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) → subst e1 (lem4' Θ v1 v2) ≤s subst (subst e1 (s-extend (s-extend Θ))) (lem4 v1 v2) subst-compose3-l : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst (subst e1 (lem4 v1 v2)) Θ ≤s subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) subst-compose3-r : ∀ {Γ Γ' τ τ1 τ2} (Θ : sctx Γ Γ') (e1 : (τ1 :: (τ2 :: Γ')) |- τ) (v1 : Γ' |- τ1) (v2 : Γ' |- τ2) → subst e1 (lem4' Θ (subst v1 Θ) (subst v2 Θ)) ≤s subst (subst e1 (lem4 v1 v2)) Θ subst-compose4-l : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) ≤s subst e2 (lem4' Θ v' r) subst-compose4-r : ∀ {Γ Γ' τ} (Θ : sctx Γ Γ') (v' : Γ |- nat) (r : Γ |- τ) (e2 : (nat :: (τ :: Γ')) |- τ) → subst e2 (lem4' Θ v' r) ≤s subst (subst e2 (s-extend (s-extend Θ))) (lem4 v' r) subst-compose5-l : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) ≤s subst e (lem5' Θ v1 v2 v3) subst-compose5-r : ∀ {Γ Γ' τ τ1 τ2 τ3} (Θ : sctx Γ Γ') (e : (τ1 :: (τ2 :: (τ3 :: Γ'))) |- τ) (v1 : Γ |- τ1) (v2 : Γ |- τ2) (v3 : Γ |- τ3) → subst e (lem5' Θ v1 v2 v3) ≤s subst (subst e (s-extend (s-extend (s-extend (Θ))))) (lem5 v1 v2 v3) -- r-extend : ∀ {Γ Γ' τ} → rctx Γ Γ' → rctx (τ :: Γ) (τ :: Γ') r-extend ρ i0 = i0 r-extend ρ (iS x) = iS (ρ x) -- _∙rr_ : ∀ {A B C} → rctx A B → rctx B C → rctx A C ρ1 ∙rr ρ2 = ρ1 o ρ2 rename-var ρ a = ρ a idr x = x p∙ ρ = λ x → iS (ρ x) p = p∙ idr --free stuff rename-var-ident _ = Refl rename-var-∙ _ _ _ = Refl ∙rr-assoc r1 r2 r3 = Refl ren unit ρ = unit ren 0C ρ = 0C ren 1C ρ = 1C ren (plusC e e₁) ρ = plusC (ren e ρ) (ren e₁ ρ) ren (var x) ρ = var (ρ x) ren z ρ = z ren (s e) ρ = s (ren e ρ) ren (rec e e₁ e₂) ρ = rec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend ρ))) ren (lam e) ρ = lam (ren e (r-extend ρ)) ren (app e e₁) ρ = app (ren e ρ) (ren e₁ ρ) ren (prod e1 e2) ρ = prod (ren e1 ρ) (ren e2 ρ) ren (l-proj e) ρ = l-proj (ren e ρ) ren (r-proj e) ρ = r-proj (ren e ρ) ren nil ρ = nil ren (x ::c xs) ρ = ren x ρ ::c ren xs ρ ren true ρ = true ren false ρ = false ren (listrec e e₁ e₂) ρ = listrec (ren e ρ) (ren e₁ ρ) (ren e₂ (r-extend (r-extend (r-extend ρ)))) ren (max τ e1 e2) ρ = max τ (ren e1 ρ) (ren e2 ρ) ren (letc e e') ρ = letc (ren e (r-extend ρ)) (ren e' ρ) extend-ren-comp-lemma i0 ρ1 ρ2 = Refl extend-ren-comp-lemma (iS x) ρ1 ρ2 = Refl extend-ren-comp ρ1 ρ2 = λ=i (λ τ → λ= (λ x → extend-ren-comp-lemma x ρ1 ρ2)) -- weakening a context wkn e = ren e iS -- parallel extension s-extend Θ i0 = var i0 s-extend Θ (iS x) = wkn (Θ x) -- identity substitution ids x = var x -- weakening with substitution q∙ Θ = λ x → wkn (Θ x) lem3' Θ e i0 = e lem3' Θ e (iS i) = Θ i --lem3 q e = lem3' ids e -- subst-var svar Θ i = q (Θ i) i0 lem4' Θ a b = lem3' (lem3' Θ b) a lem4 e1 e2 = lem4' ids e1 e2 lem5' Θ a b c = lem3' (lem3' (lem3' Θ c) b) a lem5 e1 e2 e3 = lem5' ids e1 e2 e3 subst unit Θ = unit subst 0C Θ = 0C subst 1C Θ = 1C subst (plusC e e₁) Θ = plusC (subst e Θ) (subst e₁ Θ) subst (var x) Θ = Θ x subst z Θ = z subst (s e) Θ = s (subst e Θ) subst (rec e e₁ e₂) Θ = rec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend Θ))) subst (lam e) Θ = lam (subst e (s-extend Θ)) subst (app e e₁) Θ = app (subst e Θ) (subst e₁ Θ) subst (prod e1 e2) Θ = prod (subst e1 Θ) (subst e2 Θ) subst (l-proj e) Θ = l-proj (subst e Θ) subst (r-proj e) Θ = r-proj (subst e Θ) subst nil Θ = nil subst (x ::c xs) Θ = subst x Θ ::c subst xs Θ subst true Θ = true subst false Θ = false subst (listrec e e₁ e₂) Θ = listrec (subst e Θ) (subst e₁ Θ) (subst e₂ (s-extend (s-extend (s-extend Θ)))) subst (max τ e1 e2) Θ = max τ (subst e1 Θ) (subst e2 Θ) subst (letc e e') Θ = letc (subst e (s-extend Θ)) (subst e' Θ) subst1 : ∀ {Γ τ τ1} → Γ |- τ1 → (τ1 :: Γ) |- τ → Γ |- τ subst1 e e' = subst e' (q e) _rs_ ρ Θ x = ren (subst (var x) Θ) ρ _ss_ Θ1 Θ2 x = subst (subst (var x) Θ2) Θ1 _sr_ Θ ρ x = subst (ren (var x) ρ) Θ extend-id-once-lemma : ∀ {Γ τ τ'} → (x : τ ∈ τ' :: Γ) → _==_ {_} {τ' :: Γ |- τ} (ids {τ' :: Γ} {τ} x) (s-extend {Γ} {Γ} {τ'} (ids {Γ}) {τ} x) extend-id-once-lemma i0 = Refl extend-id-once-lemma (iS x) = Refl extend-id-once : ∀ {Γ τ} → Id {_} {sctx (τ :: Γ) (τ :: Γ)} (ids {τ :: Γ}) (s-extend ids) extend-id-once = λ=i (λ τ → λ= (λ x → extend-id-once-lemma x)) extend-id-twice : ∀ {Γ τ1 τ2} → Id {_} {sctx (τ1 :: τ2 :: Γ) (τ1 :: τ2 :: Γ)} (ids {τ1 :: τ2 :: Γ}) (s-extend (s-extend ids)) extend-id-twice = ap s-extend extend-id-once ∘ extend-id-once _trans_ : ∀ {Γ T} → {e e' e'' : Γ |- T} → e ≤s e' → e' ≤s e'' → e ≤s e'' _trans_ = trans-s infixr 10 _trans_
50.274021
173
0.439301
4d34ae86ddd035f77cc54932f2e634e1ffd0f459
17,003
agda
Agda
Cubical/Homotopy/Connected.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Homotopy/Connected.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Homotopy/Connected.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Homotopy.Connected where open import Cubical.Core.Everything open import Cubical.Foundations.Everything open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path open import Cubical.Foundations.Univalence open import Cubical.Functions.Fibration open import Cubical.Data.Nat open import Cubical.Data.Sigma open import Cubical.HITs.Nullification open import Cubical.HITs.Susp open import Cubical.HITs.SmashProduct open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec) open import Cubical.Homotopy.Loopspace open import Cubical.HITs.Pushout open import Cubical.HITs.Sn.Base open import Cubical.HITs.S1 open import Cubical.Data.Bool open import Cubical.Data.Unit -- Note that relative to most sources, this notation is off by +2 isConnected : ∀ {ℓ} (n : HLevel) (A : Type ℓ) → Type ℓ isConnected n A = isContr (hLevelTrunc n A) isConnectedFun : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isConnectedFun n f = ∀ b → isConnected n (fiber f b) isTruncatedFun : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ-max ℓ ℓ') isTruncatedFun n f = ∀ b → isOfHLevel n (fiber f b) isConnectedSubtr : ∀ {ℓ} {A : Type ℓ} (n m : HLevel) → isConnected (m + n) A → isConnected n A isConnectedSubtr {A = A} n m iscon = isOfHLevelRetractFromIso 0 (truncOfTruncIso n m) (helper n iscon) where helper : (n : ℕ) → isConnected (m + n) A → isContr (hLevelTrunc n (hLevelTrunc (m + n) A)) helper zero iscon = isContrUnit* helper (suc n) iscon = ∣ iscon .fst ∣ , (Trunc.elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) λ a → cong ∣_∣ (iscon .snd a)) isConnectedFunSubtr : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : HLevel) (f : A → B) → isConnectedFun (m + n) f → isConnectedFun n f isConnectedFunSubtr n m f iscon b = isConnectedSubtr n m (iscon b) private typeToFiberIso : ∀ {ℓ} (A : Type ℓ) → Iso A (fiber (λ (x : A) → tt) tt) Iso.fun (typeToFiberIso A) x = x , refl Iso.inv (typeToFiberIso A) = fst Iso.rightInv (typeToFiberIso A) b i = fst b , (isOfHLevelSuc 1 (isPropUnit) tt tt (snd b) refl) i Iso.leftInv (typeToFiberIso A) a = refl typeToFiber : ∀ {ℓ} (A : Type ℓ) → A ≡ fiber (λ (x : A) → tt) tt typeToFiber A = isoToPath (typeToFiberIso A) isOfHLevelIsConnectedStable : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → isOfHLevel n (isConnected n A) isOfHLevelIsConnectedStable {A = A} zero = (tt* , (λ _ → refl)) , λ _ → refl isOfHLevelIsConnectedStable {A = A} (suc n) = isProp→isOfHLevelSuc n isPropIsContr module elim {ℓ ℓ' : Level} {A : Type ℓ} {B : Type ℓ'} (f : A → B) where private inv : ∀ {ℓ'''} (n : HLevel) (P : B → TypeOfHLevel ℓ''' (suc n)) → ((a : A) → P (f a) .fst) → (b : B) → hLevelTrunc (suc n) (fiber f b) → P b .fst inv n P t b = Trunc.rec (P b .snd) (λ {(a , p) → subst (fst ∘ P) p (t a)}) isIsoPrecompose : ∀ {ℓ'''} (n : ℕ) (P : B → TypeOfHLevel ℓ''' n) → isConnectedFun n f → Iso ((b : B) → P b .fst) ((a : A) → P (f a) .fst) isIsoPrecompose zero P fConn = isContr→Iso (isOfHLevelΠ _ (λ b → P b .snd)) (isOfHLevelΠ _ λ a → P (f a) .snd) Iso.fun (isIsoPrecompose (suc n) P fConn) = _∘ f Iso.inv (isIsoPrecompose (suc n) P fConn) t b = inv n P t b (fConn b .fst) Iso.rightInv (isIsoPrecompose (suc n) P fConn) t = funExt λ a → cong (inv n P t (f a)) (fConn (f a) .snd ∣ a , refl ∣) ∙ substRefl {B = fst ∘ P} (t a) Iso.leftInv (isIsoPrecompose (suc n) P fConn) s = funExt λ b → Trunc.elim {B = λ d → inv n P (s ∘ f) b d ≡ s b} (λ _ → isOfHLevelPath (suc n) (P b .snd) _ _) (λ {(a , p) i → transp (λ j → P (p (j ∨ i)) .fst) i (s (p i))}) (fConn b .fst) isEquivPrecompose : ∀ {ℓ'''} (n : ℕ) (P : B → TypeOfHLevel ℓ''' n) → isConnectedFun n f → isEquiv (λ(s : (b : B) → P b .fst) → s ∘ f) isEquivPrecompose zero P fConn = isoToIsEquiv theIso where theIso : Iso ((b : B) → P b .fst) ((a : A) → P (f a) .fst) Iso.fun theIso = λ(s : (b : B) → P b .fst) → s ∘ f Iso.inv theIso = λ _ b → P b .snd .fst Iso.rightInv theIso g = funExt λ x → P (f x) .snd .snd (g x) Iso.leftInv theIso g = funExt λ x → P x .snd .snd (g x) isEquivPrecompose (suc n) P fConn = isoToIsEquiv (isIsoPrecompose (suc n) P fConn) isConnectedPrecompose : (n : ℕ) → ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') n) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → isConnectedFun n f isConnectedPrecompose zero P→sect b = isContrUnit* isConnectedPrecompose (suc n) P→sect b = c n P→sect b , λ y → sym (fun n P→sect b y) where P : (n : HLevel) → ((P : B → TypeOfHLevel ℓ (suc n)) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → B → Type _ P n s b = hLevelTrunc (suc n) (fiber f b) c : (n : HLevel) → ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') (suc n)) → hasSection (λ(s : (b : B) → P b .fst) → s ∘ f)) → (b : B) → hLevelTrunc (suc n) (fiber f b) c n s = (s λ b → (hLevelTrunc (suc n) (fiber f b) , isOfHLevelTrunc _)) .fst λ a → ∣ a , refl ∣ fun : (n : HLevel) (P→sect : ((P : B → TypeOfHLevel (ℓ-max ℓ ℓ') (suc n)) → hasSection λ(s : (b : B) → P b .fst) → s ∘ f)) → (b : B) (w : (hLevelTrunc (suc n) (fiber f b))) → w ≡ c n P→sect b fun n P→sect b = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _) λ a → J (λ b p → ∣ (fst a) , p ∣ ≡ c n P→sect b) (c* (fst a)) (snd a) where c* : ((a : A) → ∣ (a , refl {x = f a}) ∣ ≡ c n P→sect (f a)) c* a = sym (cong (λ x → x a) (P→sect (λ b → hLevelTrunc (suc n) (fiber f b) , isOfHLevelTrunc _) .snd λ a → ∣ a , refl ∣)) isOfHLevelPrecomposeConnected : ∀ {ℓ ℓ' ℓ''} (k : HLevel) (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (P : B → TypeOfHLevel ℓ'' (k + n)) (f : A → B) → isConnectedFun n f → isOfHLevelFun k (λ(s : (b : B) → P b .fst) → s ∘ f) isOfHLevelPrecomposeConnected zero n P f fConn = elim.isEquivPrecompose f n P fConn .equiv-proof isOfHLevelPrecomposeConnected (suc k) n P f fConn t = isOfHLevelPath'⁻ k λ {(s₀ , p₀) (s₁ , p₁) → isOfHLevelRetractFromIso k (invIso ΣPathIsoPathΣ) (subst (isOfHLevel k) (sym (fiberPath (s₀ , p₀) (s₁ , p₁))) (isOfHLevelRetract k (λ {(q , α) → (funExt⁻ q) , (cong funExt⁻ α)}) (λ {(h , β) → (funExt h) , (cong funExt β)}) (λ _ → refl) (isOfHLevelPrecomposeConnected k n (λ b → (s₀ b ≡ s₁ b) , isOfHLevelPath' (k + n) (P b .snd) _ _) f fConn (funExt⁻ (p₀ ∙∙ refl ∙∙ sym p₁)))))} indMapEquiv→conType : ∀ {ℓ} {A : Type ℓ} (n : HLevel) → ((B : TypeOfHLevel ℓ n) → isEquiv (λ (b : (fst B)) → λ (a : A) → b)) → isConnected n A indMapEquiv→conType {A = A} zero BEq = isContrUnit* indMapEquiv→conType {A = A} (suc n) BEq = isOfHLevelRetractFromIso 0 (mapCompIso {n = (suc n)} (typeToFiberIso A)) (elim.isConnectedPrecompose (λ _ → tt) (suc n) (λ P → ((λ a _ → a) ∘ invIsEq (BEq (P tt))) , λ a → equiv-proof (BEq (P tt)) a .fst .snd) tt) isConnectedComp : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (f : B → C) (g : A → B) (n : ℕ) → isConnectedFun n f → isConnectedFun n g → isConnectedFun n (f ∘ g) isConnectedComp {C = C} f g n con-f con-g = elim.isConnectedPrecompose (f ∘ g) n λ P → isEquiv→hasSection (compEquiv (_ , elim.isEquivPrecompose f n P con-f) (_ , elim.isEquivPrecompose g n (λ b → P (f b)) con-g) .snd) isEquiv→isConnected : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → isEquiv f → (n : ℕ) → isConnectedFun n f isEquiv→isConnected f iseq n b = isContr→isContr∥ n (equiv-proof iseq b) isConnectedPath : ∀ {ℓ} (n : HLevel) {A : Type ℓ} → isConnected (suc n) A → (a₀ a₁ : A) → isConnected n (a₀ ≡ a₁) isConnectedPath zero connA a₀ a₁ = isContrUnit* isConnectedPath (suc n) {A = A} connA a₀ a₁ = isOfHLevelRetractFromIso 0 (invIso (PathIdTruncIso (suc n))) (isContr→isContrPath connA _ _) isConnectedPathP : ∀ {ℓ} (n : HLevel) {A : I → Type ℓ} → isConnected (suc n) (A i1) → (a₀ : A i0) (a₁ : A i1) → isConnected n (PathP A a₀ a₁) isConnectedPathP n con a₀ a₁ = subst (isConnected n) (sym (PathP≡Path _ _ _)) (isConnectedPath n con _ _) isConnectedCong : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) → isConnectedFun (suc n) f → ∀ {a₀ a₁} → isConnectedFun n {A = a₀ ≡ a₁} (cong f) isConnectedCong n f cf {a₀} {a₁} q = subst (isConnected n) (sym (fiberCong f q)) (isConnectedPath n (cf (f a₁)) (a₀ , q) (a₁ , refl)) isConnectedCong' : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {x : A} {y : B} (n : ℕ) (f : A → B) → isConnectedFun (suc n) f → (p : f x ≡ y) → isConnectedFun n λ (q : x ≡ x) → sym p ∙∙ cong f q ∙∙ p isConnectedCong' {x = x} n f conf p = transport (λ i → (isConnectedFun n λ (q : x ≡ x) → doubleCompPath-filler (sym p) (cong f q) p i)) (isConnectedCong n f conf) isConnectedRetract : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} (f : A → B) (g : B → A) (h : (x : A) → g (f x) ≡ x) → isConnected n B → isConnected n A isConnectedRetract zero _ _ _ _ = isContrUnit* isConnectedRetract (suc n) f g h = isContrRetract (Trunc.map f) (Trunc.map g) (Trunc.elim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (λ a → cong ∣_∣ (h a))) isConnectedRetractFromIso : ∀ {ℓ ℓ'} (n : HLevel) {A : Type ℓ} {B : Type ℓ'} → Iso A B → isConnected n B → isConnected n A isConnectedRetractFromIso n e = isConnectedRetract n (Iso.fun e) (Iso.inv e) (Iso.leftInv e) isConnectedPoint : ∀ {ℓ} (n : HLevel) {A : Type ℓ} → isConnected (suc n) A → (a : A) → isConnectedFun n (λ(_ : Unit) → a) isConnectedPoint n connA a₀ a = isConnectedRetract n snd (_ ,_) (λ _ → refl) (isConnectedPath n connA a₀ a) isConnectedPoint2 : ∀ {ℓ} (n : HLevel) {A : Type ℓ} (a : A) → isConnectedFun n (λ(_ : Unit) → a) → isConnected (suc n) A isConnectedPoint2 n {A = A} a connMap = indMapEquiv→conType _ λ B → isoToIsEquiv (theIso B) where module _ {ℓ' : Level} (B : TypeOfHLevel ℓ' (suc n)) where helper : (f : A → fst B) → (a2 : A) → f a2 ≡ f a helper f = equiv-proof (elim.isEquivPrecompose (λ _ → a) n (λ a2 → (f a2 ≡ f a) , isOfHLevelPath' n (snd B) (f a2) (f a)) connMap) (λ _ → refl) .fst .fst theIso : Iso (fst B) (A → fst B) Iso.fun theIso b a = b Iso.inv theIso f = f a Iso.rightInv theIso f = funExt λ y → sym (helper f y) Iso.leftInv theIso _ = refl connectedTruncIso : ∀ {ℓ} {A B : Type ℓ} (n : HLevel) (f : A → B) → isConnectedFun n f → Iso (hLevelTrunc n A) (hLevelTrunc n B) connectedTruncIso {A = A} {B = B} zero f con = isContr→Iso isContrUnit* isContrUnit* connectedTruncIso {A = A} {B = B} (suc n) f con = g where back : B → hLevelTrunc (suc n) A back y = map fst ((con y) .fst) backSection : (b : B) → Path (hLevelTrunc (suc n) B) (Trunc.rec (isOfHLevelTrunc (suc n)) (λ a → ∣ f a ∣) (Trunc.rec (isOfHLevelTrunc (suc n)) back ∣ b ∣)) ∣ b ∣ backSection b = helper (λ p → map f p ≡ ∣ b ∣) (λ x → (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n))) (map f (map fst x)) ∣ b ∣) (λ a p → cong ∣_∣ p) (fst (con b)) where helper : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} (P : hLevelTrunc (suc n) A → Type ℓ'') → ((x : hLevelTrunc (suc n) (Σ A B)) → isOfHLevel (suc n) (P (map fst x))) → ((a : A) (b : B a) → P ∣ a ∣) → (p : hLevelTrunc (suc n) (Σ A B)) → P (map fst p) helper P hlev pf = Trunc.elim hlev λ pair → pf (fst pair) (snd pair) g : Iso (hLevelTrunc (suc n) A) (hLevelTrunc (suc n) B) Iso.fun g = map f Iso.inv g = Trunc.rec (isOfHLevelTrunc _) back Iso.leftInv g = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _) λ a → cong (map fst) (con (f a) .snd ∣ a , refl ∣) Iso.rightInv g = Trunc.elim (λ x → isOfHLevelPath (suc n) (isOfHLevelTrunc _) _ _) backSection connectedTruncIso2 : ∀ {ℓ} {A B : Type ℓ} (n m : HLevel) (f : A → B) → Σ[ x ∈ ℕ ] x + n ≡ m → isConnectedFun m f → Iso (hLevelTrunc n A) (hLevelTrunc n B) connectedTruncIso2 {A = A} {B = B} n m f (x , pf) con = connectedTruncIso n f (isConnectedFunSubtr n x f (transport (λ i → isConnectedFun (pf (~ i)) f) con)) connectedTruncEquiv : ∀ {ℓ} {A B : Type ℓ} (n : HLevel) (f : A → B) → isConnectedFun n f → hLevelTrunc n A ≃ hLevelTrunc n B connectedTruncEquiv {A = A} {B = B} n f con = isoToEquiv (connectedTruncIso n f con) -- TODO : Reorganise the following proofs. inrConnected : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (n : HLevel) → (f : C → A) (g : C → B) → isConnectedFun n f → isConnectedFun n {A = B} {B = Pushout f g} inr inrConnected {A = A} {B = B} {C = C} n f g iscon = elim.isConnectedPrecompose inr n λ P → (k P) , λ b → refl where module _ {ℓ : Level} (P : (Pushout f g) → TypeOfHLevel ℓ n) (h : (b : B) → typ (P (inr b))) where Q : A → TypeOfHLevel _ n Q a = (P (inl a)) fun : (c : C) → typ (Q (f c)) fun c = transport (λ i → typ (P (push c (~ i)))) (h (g c)) k : (d : Pushout f g) → typ (P d) k (inl x) = equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .fst x k (inr x) = h x k (push a i) = hcomp (λ k → λ { (i = i0) → equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i0 a ; (i = i1) → transportTransport⁻ (λ j → typ (P (push a j))) (h (g a)) k }) (transp (λ j → typ (P (push a (i ∧ j)))) (~ i) (equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i a)) {- Given two fibration B , C : A → Type and a family of maps on fibres f : (a : A) → B a → C a, we have that f a is n-connected for all (a : A) iff the induced map on totalspaces Σ A B → Σ A C is n-connected -} module _ {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : A → Type ℓ'} {C : A → Type ℓ''} (f : ((a : A) → B a → C a)) where open Iso TotalFun : Σ A B → Σ A C TotalFun (a , b) = a , f a b fibTotalFun→fibFun : (x : Σ A C) → Σ[ y ∈ Σ A B ] TotalFun y ≡ x → Σ[ y ∈ B (fst x) ] f (fst x) y ≡ snd x fibTotalFun→fibFun x = uncurry λ r → J (λ x _ → Σ[ y ∈ B (fst x) ] f (fst x) y ≡ snd x) ((snd r) , refl) fibFun→fibTotalFun : (x : Σ A C) → Σ[ y ∈ B (fst x) ] f (fst x) y ≡ snd x → Σ[ y ∈ Σ A B ] TotalFun y ≡ x fibFun→fibTotalFun x (b , p) = (_ , b) , ΣPathP (refl , p) Iso-fibTotalFun-fibFun : (x : Σ A C) → Iso (Σ[ y ∈ Σ A B ] TotalFun y ≡ x) (Σ[ y ∈ B (fst x) ] f (fst x) y ≡ snd x) fun (Iso-fibTotalFun-fibFun x) = fibTotalFun→fibFun x inv (Iso-fibTotalFun-fibFun x) = fibFun→fibTotalFun x rightInv (Iso-fibTotalFun-fibFun x) (r , y) j = transp (λ i → Σ[ b ∈ B (fst x) ] (f (fst x) b ≡ y (i ∨ j))) j (r , λ i → y (i ∧ j)) leftInv (Iso-fibTotalFun-fibFun x) = uncurry λ r → J (λ x y → inv (Iso-fibTotalFun-fibFun x) (fun (Iso-fibTotalFun-fibFun x) (r , y)) ≡ (r , y)) (cong (fibFun→fibTotalFun (TotalFun r)) (transportRefl (snd r , refl))) TotalFunConnected→FunConnected : (n : ℕ) → isConnectedFun n TotalFun → ((a : A) → isConnectedFun n (f a)) TotalFunConnected→FunConnected n con a r = isConnectedRetractFromIso n (invIso (Iso-fibTotalFun-fibFun (a , r))) (con (a , r)) FunConnected→TotalFunConnected : (n : ℕ) → ((a : A) → isConnectedFun n (f a)) → isConnectedFun n TotalFun FunConnected→TotalFunConnected n con r = isConnectedRetractFromIso n (Iso-fibTotalFun-fibFun r) (con (fst r) (snd r))
41.87931
145
0.5342
14ecde1b1af4cf9bbbbf493fc70359ec938fc88b
3,595
agda
Agda
test/Succeed/Issue1324.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1324.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1324.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
------------------------------------------------------------------------ -- Library stuff data ⊥ : Set where record ⊤ : Set where constructor tt data Bool : Set where true false : Bool if_then_else_ : ∀ {A : Set} → Bool → A → A → A if true then t else f = t if false then t else f = f data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n _≤_ : ℕ → ℕ → Bool zero ≤ n = true suc m ≤ zero = false suc m ≤ suc n = m ≤ n data _⊎_ (A : Set) (B : Set) : Set where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B [_,_]₁ : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set₁} → ((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) → ((x : A ⊎ B) → C x) [ f , g ]₁ (inj₁ x) = f x [ f , g ]₁ (inj₂ y) = g y data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x record Σ (X : Set) (Y : X → Set) : Set where constructor _,_ field proj₁ : X proj₂ : Y proj₁ _×_ : Set → Set → Set X × Y = Σ X λ _ → Y record Sig : Set₁ where constructor _◃_ field Parameter : Set Arity : Parameter → Set open Sig public ⟦_⟧ : Sig → Set → Set ⟦ P ◃ A ⟧ X = Σ P λ p → A p → X Alg : Sig → Set → Set Alg Σ X = ⟦ Σ ⟧ X → X data μ (C : Sig) : Set where sup : Alg C (μ C) const^C : Set → Sig const^C X = X ◃ λ _ → ⊥ _⊎^C_ : Sig → Sig → Sig (P₁ ◃ A₁) ⊎^C (P₂ ◃ A₂) = (P₁ ⊎ P₂) ◃ [ A₁ , A₂ ]₁ _⋆^C_ : Sig → Set → Sig C ⋆^C X = const^C X ⊎^C C _⋆_ : Sig → Set → Set C ⋆ X = μ (C ⋆^C X) do : ∀ {C X} → Alg C (C ⋆ X) do (p , k) = sup (inj₂ p , k) record Monad (T : Set → Set) : Set₁ where infixl 1 _>>=_ field return : ∀ {X} → X → T X _>>=_ : ∀ {X Y} → T X → (X → T Y) → T Y monad : ∀ {Σ} → Monad (_⋆_ Σ) monad {Σ} = record { return = λ x → sup (inj₁ x , λ ()) ; _>>=_ = _>>=_ } where _>>=_ : ∀ {X Y} → Σ ⋆ X → (X → Σ ⋆ Y) → Σ ⋆ Y sup (inj₁ x , _) >>= f = f x sup (inj₂ p , k) >>= f = do (p , λ a → k a >>= f) generic : ∀ {Σ} (p : Parameter Σ) → Σ ⋆ Arity Σ p generic p = do (p , return) where open Monad monad ------------------------------------------------------------------------ -- Example Π : (X : Set) → (X → Set) → Set Π X Y = (x : X) → (X ◃ Y) ⋆ Y x call : ∀ {X Y} → Π X Y call x = generic x dom : ∀ {X Y} → ∀ {x} → (X ◃ Y) ⋆ Y x → (X → Set) → Set dom (sup (inj₁ _ , _)) R = ⊤ dom {Y = Y} (sup (inj₂ x , k)) R = R x × ((y : Y x) → dom (k y) R) data Dom {X}{Y} (f : (x : X) → (X ◃ Y) ⋆ Y x) : X → Set where ⟨_⟩ : ∀ {x} → dom (f x) (Dom f) → Dom f x dom-map : ∀ {X Y} {R₁ R₂ : X → Set} {x} {w : (X ◃ Y) ⋆ Y x} → (∀ {x} → R₁ x → R₂ x) → dom w R₁ → dom w R₂ dom-map {w = sup (inj₁ _ , _)} f _ = tt dom-map {w = sup (inj₂ _ , _)} f (y₁ , k) = f y₁ , λ y₂ → dom-map f (k y₂) {-# TERMINATING #-} bove-capretta : ∀ {X Y} (f : Π X Y) → (x : X) → Dom f x → Y x bove-capretta {X}{Y} f x ⟨ d ⟩ = helper (f x) (dom-map (λ {x′} → bove-capretta f x′) d) where helper : ∀ {x} (w : (X ◃ Y) ⋆ Y x) → dom w Y → Y x helper (sup (inj₁ y , _)) _ = y helper (sup (inj₂ _ , k)) (d , dk) = helper (k d) (dk d) module _ where open Monad monad gcd : Π (ℕ × ℕ) (λ _ → ℕ) gcd (0 , n) = return n gcd (m , 0) = return m gcd (suc m , suc n) = if m ≤ n then call (suc m , (n ∸ m)) else call ((m ∸ n) , suc n) acc : Dom gcd (8 , 12) acc = ⟨ ⟨ ⟨ ⟨ _ ⟩ , _ ⟩ , _ ⟩ , _ ⟩ -- ⟨ ⟨ ⟨ ⟨ tt ⟩ , (λ _ → tt) ⟩ , (λ _ → tt) ⟩ , (λ _ → tt) ⟩ test-gcd′ : bove-capretta gcd (8 , 12) acc ≡ 4 test-gcd′ = refl
23.044872
96
0.418359
29e2cec12cfb5c932bed92f50ac400932c5c8bbc
905
agda
Agda
README.agda
Saizan/dependent-lenses
b7921cc6b52858cd7d8a52c183c7a6544d1a4062
[ "MIT" ]
null
null
null
README.agda
Saizan/dependent-lenses
b7921cc6b52858cd7d8a52c183c7a6544d1a4062
[ "MIT" ]
null
null
null
README.agda
Saizan/dependent-lenses
b7921cc6b52858cd7d8a52c183c7a6544d1a4062
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Non-dependent and dependent lenses -- Nils Anders Danielsson ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} module README where -- Non-dependent lenses. import Lens.Non-dependent import Lens.Non-dependent.Traditional import Lens.Non-dependent.Higher import Lens.Non-dependent.Higher.Capriotti import Lens.Non-dependent.Higher.Surjective-remainder import Lens.Non-dependent.Equivalent-preimages import Lens.Non-dependent.Bijection -- Non-dependent lenses with erased proofs. import Lens.Non-dependent.Traditional.Erased import Lens.Non-dependent.Higher.Erased -- Dependent lenses. import Lens.Dependent -- Comparisons of different kinds of lenses, focusing on the -- definition of composable record getters and setters. import README.Record-getters-and-setters
27.424242
72
0.675138
36611a2443d2629871665523a8cbc633459fc9ba
396
agda
Agda
test/interaction/Issue1653.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1653.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1653.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2016-06-20 -- Issue #1653 reported by Jesper -- Fixed by Ulf's AIM XXIII code sprint "instantiating module parameters" open import Common.Equality module _ (A : Set₁) where -- Matching on refl works with new instantiateable module parameters. test : A ≡ Set → Set₁ test refl = A -- Case splitting thus should also work. foo : A ≡ Set → Set₁ foo e = {!e!} -- C-c C-c
22
73
0.676768
3f7eaa724f6fbf13cc3bd7c35c517494cb606b87
2,072
agda
Agda
Cubical/Experiments/ZCohomologyOld/Groups/Connected.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomologyOld/Groups/Connected.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
Cubical/Experiments/ZCohomologyOld/Groups/Connected.agda
Schippmunk/cubical
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Experiments.ZCohomologyOld.Groups.Connected where open import Cubical.Experiments.ZCohomologyOld.Base open import Cubical.Experiments.ZCohomologyOld.Properties open import Cubical.Experiments.ZCohomologyOld.Groups.Unit open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) open import Cubical.HITs.Nullification open import Cubical.Data.Sigma hiding (_×_) open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (rec to trRec) open import Cubical.Algebra.Group open import Cubical.Homotopy.Connected open import Cubical.Foundations.Equiv private H⁰-connected-type : ∀ {ℓ} {A : Type ℓ} (a : A) → isConnected 2 A → Iso (coHom 0 A) Int Iso.fun (H⁰-connected-type a con) = sRec isSetInt λ f → f a Iso.inv (H⁰-connected-type a con) b = ∣ (λ x → b) ∣₂ Iso.rightInv (H⁰-connected-type a con) b = refl Iso.leftInv (H⁰-connected-type a con) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f → cong ∣_∣₂ (funExt λ x → trRec (isSetInt _ _) (cong f) (isConnectedPath 1 con a x .fst)) H⁰-connected : ∀ {ℓ} {A : Type ℓ} (a : A) → ((x : A) → ∥ a ≡ x ∥₁) → GroupIso (coHomGr 0 A) intGroup GroupHom.fun (GroupIso.map (H⁰-connected a con)) = sRec isSetInt (λ f → f a) GroupHom.isHom (GroupIso.map (H⁰-connected a con)) = sElim2 (λ _ _ → isProp→isSet (isSetInt _ _)) λ x y → addLemma (x a) (y a) GroupIso.inv (H⁰-connected a con) b = ∣ (λ _ → b) ∣₂ GroupIso.rightInv (H⁰-connected a con) _ = refl GroupIso.leftInv (H⁰-connected a con) = sElim (λ _ → isProp→isSet (setTruncIsSet _ _)) (λ f → cong ∣_∣₂ (funExt λ x → pRec (isSetInt _ _) (cong f) (con x)))
47.090909
104
0.713803
314e4b4cfc80cdc6d4632165cfef306f8193e772
1,161
agda
Agda
test/Succeed/Issue1663.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1663.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1663.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K --rewriting --confluence-check #-} postulate _↦_ : ∀ {i} {A : Set i} → A → A → Set i idr : ∀ {i} {A : Set i} {a : A} → a ↦ a {-# BUILTIN REWRITE _↦_ #-} data _==_ {i} {A : Set i} (a : A) : A → Set i where idp : a == a PathOver : ∀ {i j} {A : Set i} (B : A → Set j) {x y : A} (p : x == y) (u : B x) (v : B y) → Set j PathOver B idp u v = (u == v) syntax PathOver B p u v = u == v [ B ↓ p ] postulate PathOver-rewr : ∀ {i j} {A : Set i} {B : Set j} {x y : A} (p : x == y) (u v : B) → (PathOver (λ _ → B) p u v) ↦ (u == v) {-# REWRITE PathOver-rewr #-} ap : ∀ {i j} {A : Set i} {B : A → Set j} (f : (a : A) → B a) {x y : A} → (p : x == y) → PathOver B p (f x) (f y) ap f idp = idp postulate Circle : Set base : Circle loop : base == base module _ {i} {P : Circle → Set i} (base* : P base) (loop* : base* == base* [ P ↓ loop ]) where postulate Circle-elim : (x : Circle) → P x Circle-base-β : Circle-elim base ↦ base* {-# REWRITE Circle-base-β #-} Circle-loop-β : ap Circle-elim loop ↦ loop* {-# REWRITE Circle-loop-β #-} idCircle : Circle → Circle idCircle = Circle-elim base loop
26.386364
88
0.500431
1169f70468a9a6f44a1cd32127016c6eab9eac45
503
agda
Agda
NonReflectiveZ.agda
z-murray/AnalysisAgda
6fbaca08b1d63b5765d184f6284fb0e58c9f5e52
[ "MIT" ]
null
null
null
NonReflectiveZ.agda
z-murray/AnalysisAgda
6fbaca08b1d63b5765d184f6284fb0e58c9f5e52
[ "MIT" ]
null
null
null
NonReflectiveZ.agda
z-murray/AnalysisAgda
6fbaca08b1d63b5765d184f6284fb0e58c9f5e52
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Agda.Builtin.Bool open import Data.Maybe.Base using (just; nothing) open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Data.Integer.Base open import Data.Integer.Properties using (+-*-commutativeRing) open import Tactic.RingSolver.Core.AlmostCommutativeRing using (fromCommutativeRing) open import Tactic.RingSolver.NonReflective (fromCommutativeRing +-*-commutativeRing λ { +0 -> just refl; _ -> nothing}) public
41.916667
127
0.797217
37fbddef0e84d66997b4a3cb081aa7fd19b8dbf6
782
agda
Agda
Data/Num/Sandbox/Unary.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
1
2015-04-23T15:58:28.000Z
2015-04-23T15:58:28.000Z
Data/Num/Sandbox/Unary.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
null
null
null
Data/Num/Sandbox/Unary.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
1
2015-05-30T05:50:50.000Z
2015-05-30T05:50:50.000Z
module Data.Num.Unary where open import Data.Unit open import Data.Empty open import Data.List open import Data.Nat renaming (_+_ to _⊹_) data Digit : Set where [1] : Digit Unary : Set Unary = List Digit _⊕_ : Digit → Digit → Digit [1] ⊕ [1] = [1] _⊚_ : Digit → Digit → Digit [1] ⊚ [1] = [1] add : Digit → Unary → Unary add [1] [] = [1] ∷ [] add [1] ([1] ∷ xs) = [1] ∷ add [1] xs _+_ : Unary → Unary → Unary [] + ys = ys xs + [] = xs (x ∷ xs) + (y ∷ ys) = x ⊕ y ∷ add (x ⊚ y) (xs + ys) _≈_ : Unary → Unary → Set [] ≈ [] = ⊤ [] ≈ (x ∷ ys) = ⊥ (x ∷ xs) ≈ [] = ⊥ (x ∷ xs) ≈ (y ∷ ys) = xs ≈ ys fromℕ : ℕ → Unary fromℕ zero = [] fromℕ (suc n) = fromℕ n -- fromℕ zero = [] -- fromℕ (suc n) = [1] ∷ fromℕ n toℕ : Unary → ℕ toℕ [] = zero toℕ (_ ∷ xs) = suc (toℕ xs)
17.377778
51
0.503836
0d64c5b9a927cb64b712ba20d655f99b2a55407f
732
agda
Agda
test/Succeed/Issue1546.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue1546.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue1546.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2015-06-11 -- testing with in copattern matching with dependent record -- {-# OPTIONS -v tc.with:20 #-} open import Common.Prelude open import Common.Equality data Dec P : Set where yes : (p : P) → Dec P no : (¬p : P → ⊥) → Dec P postulate _≟_ : (n m : Nat) → Dec (n ≡ m) boring : {A : Set} → A record R : Set₁ where field Car : Set el : Car same : (x : Car) → Dec (x ≡ el) test : (n : Nat) → R R.Car (test n) = Nat R.el (test n) = n R.same (test zero) zero = yes refl R.same (test zero) (suc x) = no λ() R.same (test (suc n)) zero = no λ() R.same (test (suc n)) (suc x) with n ≟ x R.same (test (suc n)) (suc .n) | yes refl = yes refl R.same (test (suc n)) (suc x) | no ¬p = no boring
22.875
59
0.565574
cc494f6b2d55388c483137bac23a74ecc94ed4bc
458
agda
Agda
Nehemiah/Syntax/Type.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
10
2015-03-04T06:09:20.000Z
2019-07-19T07:06:59.000Z
Nehemiah/Syntax/Type.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
6
2015-07-01T18:09:31.000Z
2017-05-04T13:53:59.000Z
Nehemiah/Syntax/Type.agda
inc-lc/ilc-agda
39bb081c6f192bdb87bd58b4a89291686d2d7d03
[ "MIT" ]
1
2016-02-18T12:26:44.000Z
2016-02-18T12:26:44.000Z
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- The syntax of types with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Syntax.Type where import Parametric.Syntax.Type as Type data Base : Type.Structure where base-int : Base base-bag : Base open Type.Structure Base public pattern int = base base-int pattern bag = base base-bag
24.105263
72
0.5131
365051c0e586ad822dbd487df395080f9d9524e6
810
agda
Agda
src/NTypes/Nat.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/NTypes/Nat.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
src/NTypes/Nat.agda
vituscze/HoTT-lectures
7730385adfdbdda38ee8b124be3cdeebb7312c65
[ "BSD-3-Clause" ]
null
null
null
{-# OPTIONS --without-K #-} module NTypes.Nat where open import NTypes open import PathOperations open import PathStructure.Nat open import Types ℕ-isSet : isSet ℕ ℕ-isSet = ind (λ m → (n : ℕ) (p q : m ≡ n) → p ≡ q) (λ m-1 r → ind (λ n → (p q : suc m-1 ≡ n) → p ≡ q) (λ n-1 r′ p′ q′ → split-eq p′ ⁻¹ · ap (ap suc) (r _ (merge-path m-1 n-1 (tr (F (suc m-1)) p′ (F-lemma (suc m-1)))) (merge-path m-1 n-1 (tr (F (suc m-1)) q′ (F-lemma (suc m-1))))) · split-eq q′ ) (λ p q → 0-elim (split-path _ _ p))) (ind (λ n → (p q : 0 ≡ n) → p ≡ q) (λ _ _ p q → 0-elim (split-path _ _ p)) (λ p q → split-eq p ⁻¹ · split-eq q)) where split-eq : {x y : ℕ} → _ split-eq {x} {y} = π₂ (π₂ (π₂ (split-merge-eq {x} {y})))
27
58
0.471605
73214c5be30320f40554921739efe7552a118115
495
agda
Agda
test/Fail/Issue427.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue427.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue427.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- 2011-08-22 Andreas (reported and fixed by Dominique Devriese) {-# OPTIONS --no-universe-polymorphism #-} module Issue427 where data ⊥ : Set where postulate f : {I : ⊥} (B : _) → ⊥ data A : Set where a : {x y : ⊥} → A test : A → Set test (a {x = x} {y = y}) with f {_} test (a {x = x} {y = y}) | _ = A {- old error message: ⊥ should be a function type, but it isn't when checking that {y} are valid arguments to a function of type ⊥ -} -- new error message should be: Unresolved metas
26.052632
68
0.622222
4ed249bb467a7acc8a9f255fd53bf0938eb760f5
1,400
agda
Agda
src/Categories/Category/Monoidal/Bundle.agda
yourboynico/agda-categories
6a087c592dbe58fc4bd9d02e1be9b94a9e138aca
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Monoidal/Bundle.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Monoidal/Bundle.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} -- Bundled version of Monoidal Category module Categories.Category.Monoidal.Bundle where open import Level open import Categories.Category.Core using (Category) open import Categories.Category.Monoidal.Core using (Monoidal) open import Categories.Category.Monoidal.Braided using (Braided) open import Categories.Category.Monoidal.Symmetric using (Symmetric) record MonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where field U : Category o ℓ e monoidal : Monoidal U open Category U public open Monoidal monoidal public record BraidedMonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where field U : Category o ℓ e monoidal : Monoidal U braided : Braided monoidal monoidalCategory : MonoidalCategory o ℓ e monoidalCategory = record { U = U ; monoidal = monoidal } open Category U public open Braided braided public record SymmetricMonoidalCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where field U : Category o ℓ e monoidal : Monoidal U symmetric : Symmetric monoidal open Category U public open Symmetric symmetric public braidedMonoidalCategory : BraidedMonoidalCategory o ℓ e braidedMonoidalCategory = record { U = U ; monoidal = monoidal ; braided = braided } open BraidedMonoidalCategory braidedMonoidalCategory public using (monoidalCategory)
27.45098
68
0.715
ccb01f8602539dbc97c1b862faa83eb6f8c10313
626
agda
Agda
Relation/Binary/PropositionalEquality/FasterReasoning.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
1
2019-03-21T21:30:10.000Z
2019-03-21T21:30:10.000Z
Relation/Binary/PropositionalEquality/FasterReasoning.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
null
null
null
Relation/Binary/PropositionalEquality/FasterReasoning.agda
oisdk/agda-binary
92af4d620febd47a9791d466d747278dc4a417aa
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Relation.Binary.PropositionalEquality.FasterReasoning {a} {A : Set a} where open import Relation.Binary.PropositionalEquality infix 3 _∎ infixr 2 _≡⟨⟩_ step-≡ step-≡˘ infix 1 begin_ begin_ : ∀{x y : A} → x ≡ y → x ≡ y begin_ x≡y = x≡y _≡⟨⟩_ : (x {y} : A) → x ≡ y → x ≡ y _ ≡⟨⟩ x≡y = x≡y step-≡ : (x {y z} : A) → y ≡ z → x ≡ y → x ≡ z step-≡ _ y≡z x≡y = trans x≡y y≡z syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z _∎ : (x : A) → x ≡ x _∎ _ = refl step-≡˘ : (x {y z} : A) → y ≡ z → y ≡ x → x ≡ z step-≡˘ _ y≡z y≡x = trans (sym y≡x) y≡z syntax step-≡˘ x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
21.586207
82
0.514377
736d2381ea87e48c15ede9e9e7172740684977ef
76,499
agda
Agda
agda/Text/Greek/SBLGNT/1Tim.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
44
2015-05-29T14:48:51.000Z
2022-03-06T15:41:57.000Z
agda/Text/Greek/SBLGNT/1Tim.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
13
2015-05-28T20:04:08.000Z
2020-09-07T11:58:38.000Z
agda/Text/Greek/SBLGNT/1Tim.agda
scott-fleischman/GreekGrammar
915c46c27c7f8aad5907474d8484f2685a4cd6a7
[ "MIT" ]
5
2015-02-27T22:34:13.000Z
2017-06-11T11:25:09.000Z
module Text.Greek.SBLGNT.1Tim where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Α : List (Word) ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Α = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.1.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.1" ∷ word (κ ∷ α ∷ τ ∷ []) "1Tim.1.1" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ὴ ∷ ν ∷ []) "1Tim.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.1.1" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "1Tim.1.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.1.1" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "1Tim.1.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.1" ∷ word (Τ ∷ ι ∷ μ ∷ ο ∷ θ ∷ έ ∷ ῳ ∷ []) "1Tim.1.2" ∷ word (γ ∷ ν ∷ η ∷ σ ∷ ί ∷ ῳ ∷ []) "1Tim.1.2" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ῳ ∷ []) "1Tim.1.2" ∷ word (ἐ ∷ ν ∷ []) "1Tim.1.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.1.2" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Tim.1.2" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "1Tim.1.2" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "1Tim.1.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Tim.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.1.2" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.2" ∷ word (Κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Tim.1.3" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ []) "1Tim.1.3" ∷ word (σ ∷ ε ∷ []) "1Tim.1.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.1.3" ∷ word (ἐ ∷ ν ∷ []) "1Tim.1.3" ∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "1Tim.1.3" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.1.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.3" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.1.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "1Tim.1.3" ∷ word (τ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "1Tim.1.3" ∷ word (μ ∷ ὴ ∷ []) "1Tim.1.3" ∷ word (ἑ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.1.3" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Tim.1.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Tim.1.4" ∷ word (μ ∷ ύ ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.4" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.4" ∷ word (ἀ ∷ π ∷ ε ∷ ρ ∷ ά ∷ ν ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.4" ∷ word (α ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.1.4" ∷ word (ἐ ∷ κ ∷ ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.1.4" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "1Tim.1.4" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Tim.1.4" ∷ word (ἢ ∷ []) "1Tim.1.4" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.1.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.4" ∷ word (ἐ ∷ ν ∷ []) "1Tim.1.4" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.1.4" ∷ word (τ ∷ ὸ ∷ []) "1Tim.1.5" ∷ word (δ ∷ ὲ ∷ []) "1Tim.1.5" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.1.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.1.5" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.1.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Tim.1.5" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Tim.1.5" ∷ word (ἐ ∷ κ ∷ []) "1Tim.1.5" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "1Tim.1.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.5" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.1.5" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῆ ∷ ς ∷ []) "1Tim.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.1.5" ∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "1Tim.1.5" ∷ word (ὧ ∷ ν ∷ []) "1Tim.1.6" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.1.6" ∷ word (ἀ ∷ σ ∷ τ ∷ ο ∷ χ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.1.6" ∷ word (ἐ ∷ ξ ∷ ε ∷ τ ∷ ρ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.1.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.6" ∷ word (μ ∷ α ∷ τ ∷ α ∷ ι ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.6" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.1.7" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.1.7" ∷ word (ν ∷ ο ∷ μ ∷ ο ∷ δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Tim.1.7" ∷ word (μ ∷ ὴ ∷ []) "1Tim.1.7" ∷ word (ν ∷ ο ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.1.7" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "1Tim.1.7" ∷ word (ἃ ∷ []) "1Tim.1.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.1.7" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "1Tim.1.7" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Tim.1.7" ∷ word (τ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.1.7" ∷ word (δ ∷ ι ∷ α ∷ β ∷ ε ∷ β ∷ α ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.7" ∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.1.8" ∷ word (δ ∷ ὲ ∷ []) "1Tim.1.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "1Tim.1.8" ∷ word (ὁ ∷ []) "1Tim.1.8" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Tim.1.8" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "1Tim.1.8" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.1.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Tim.1.8" ∷ word (ν ∷ ο ∷ μ ∷ ί ∷ μ ∷ ω ∷ ς ∷ []) "1Tim.1.8" ∷ word (χ ∷ ρ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.8" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "1Tim.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.1.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.9" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ῳ ∷ []) "1Tim.1.9" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Tim.1.9" ∷ word (ο ∷ ὐ ∷ []) "1Tim.1.9" ∷ word (κ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.9" ∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9" ∷ word (δ ∷ ὲ ∷ []) "1Tim.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.9" ∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ο ∷ τ ∷ ά ∷ κ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9" ∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ έ ∷ σ ∷ ι ∷ []) "1Tim.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.9" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.1.9" ∷ word (ἀ ∷ ν ∷ ο ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.9" ∷ word (β ∷ ε ∷ β ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ο ∷ ∙λ ∷ ῴ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.9" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ο ∷ ∙λ ∷ ῴ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.9" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ φ ∷ ό ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.10" ∷ word (ἀ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ ο ∷ κ ∷ ο ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.10" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ α ∷ π ∷ ο ∷ δ ∷ ι ∷ σ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.1.10" ∷ word (ψ ∷ ε ∷ ύ ∷ σ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.10" ∷ word (ἐ ∷ π ∷ ι ∷ ό ∷ ρ ∷ κ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.10" ∷ word (ε ∷ ἴ ∷ []) "1Tim.1.10" ∷ word (τ ∷ ι ∷ []) "1Tim.1.10" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.1.10" ∷ word (τ ∷ ῇ ∷ []) "1Tim.1.10" ∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "1Tim.1.10" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.1.10" ∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.10" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Tim.1.11" ∷ word (τ ∷ ὸ ∷ []) "1Tim.1.11" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.1.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.1.11" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "1Tim.1.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.11" ∷ word (μ ∷ α ∷ κ ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.1.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.1.11" ∷ word (ὃ ∷ []) "1Tim.1.11" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ θ ∷ η ∷ ν ∷ []) "1Tim.1.11" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "1Tim.1.11" ∷ word (Χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Tim.1.12" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Tim.1.12" ∷ word (τ ∷ ῷ ∷ []) "1Tim.1.12" ∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ ν ∷ α ∷ μ ∷ ώ ∷ σ ∷ α ∷ ν ∷ τ ∷ ί ∷ []) "1Tim.1.12" ∷ word (μ ∷ ε ∷ []) "1Tim.1.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Tim.1.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.12" ∷ word (τ ∷ ῷ ∷ []) "1Tim.1.12" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Tim.1.12" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.12" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Tim.1.12" ∷ word (μ ∷ ε ∷ []) "1Tim.1.12" ∷ word (ἡ ∷ γ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "1Tim.1.12" ∷ word (θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.1.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.12" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.12" ∷ word (τ ∷ ὸ ∷ []) "1Tim.1.13" ∷ word (π ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.1.13" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "1Tim.1.13" ∷ word (β ∷ ∙λ ∷ ά ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "1Tim.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.13" ∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "1Tim.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.13" ∷ word (ὑ ∷ β ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ ν ∷ []) "1Tim.1.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.1.13" ∷ word (ἠ ∷ ∙λ ∷ ε ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "1Tim.1.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.13" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ῶ ∷ ν ∷ []) "1Tim.1.13" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ []) "1Tim.1.13" ∷ word (ἐ ∷ ν ∷ []) "1Tim.1.13" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "1Tim.1.13" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ π ∷ ∙λ ∷ ε ∷ ό ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.1.14" ∷ word (δ ∷ ὲ ∷ []) "1Tim.1.14" ∷ word (ἡ ∷ []) "1Tim.1.14" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Tim.1.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.14" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.1.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.1.14" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.14" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "1Tim.1.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.1.14" ∷ word (ἐ ∷ ν ∷ []) "1Tim.1.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Tim.1.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.14" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.1.15" ∷ word (ὁ ∷ []) "1Tim.1.15" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Tim.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.15" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Tim.1.15" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ χ ∷ ῆ ∷ ς ∷ []) "1Tim.1.15" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.1.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.1.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Tim.1.15" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "1Tim.1.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.1.15" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "1Tim.1.15" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.1.15" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "1Tim.1.15" ∷ word (ὧ ∷ ν ∷ []) "1Tim.1.15" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ό ∷ ς ∷ []) "1Tim.1.15" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Tim.1.15" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "1Tim.1.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.1.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.1.16" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.1.16" ∷ word (ἠ ∷ ∙λ ∷ ε ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "1Tim.1.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.1.16" ∷ word (ἐ ∷ ν ∷ []) "1Tim.1.16" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Tim.1.16" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῳ ∷ []) "1Tim.1.16" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ί ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.1.16" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Tim.1.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.16" ∷ word (ἅ ∷ π ∷ α ∷ σ ∷ α ∷ ν ∷ []) "1Tim.1.16" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.1.16" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ύ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.1.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.1.16" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.1.16" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Tim.1.16" ∷ word (ἐ ∷ π ∷ []) "1Tim.1.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Tim.1.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.16" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "1Tim.1.16" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.1.16" ∷ word (τ ∷ ῷ ∷ []) "1Tim.1.17" ∷ word (δ ∷ ὲ ∷ []) "1Tim.1.17" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Tim.1.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.1.17" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.1.17" ∷ word (ἀ ∷ φ ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "1Tim.1.17" ∷ word (ἀ ∷ ο ∷ ρ ∷ ά ∷ τ ∷ ῳ ∷ []) "1Tim.1.17" ∷ word (μ ∷ ό ∷ ν ∷ ῳ ∷ []) "1Tim.1.17" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Tim.1.17" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "1Tim.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.17" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Tim.1.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.17" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.1.17" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "1Tim.1.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.1.17" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.1.17" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "1Tim.1.17" ∷ word (Τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "1Tim.1.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.18" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.18" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ί ∷ θ ∷ ε ∷ μ ∷ α ∷ ί ∷ []) "1Tim.1.18" ∷ word (σ ∷ ο ∷ ι ∷ []) "1Tim.1.18" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.1.18" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ε ∷ []) "1Tim.1.18" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Tim.1.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.1.18" ∷ word (π ∷ ρ ∷ ο ∷ α ∷ γ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "1Tim.1.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.1.18" ∷ word (σ ∷ ὲ ∷ []) "1Tim.1.18" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.1.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.1.18" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ῃ ∷ []) "1Tim.1.18" ∷ word (ἐ ∷ ν ∷ []) "1Tim.1.18" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.1.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.18" ∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.1.18" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.18" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Tim.1.19" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.19" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὴ ∷ ν ∷ []) "1Tim.1.19" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.1.19" ∷ word (ἥ ∷ ν ∷ []) "1Tim.1.19" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.1.19" ∷ word (ἀ ∷ π ∷ ω ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.1.19" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Tim.1.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.19" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.1.19" ∷ word (ἐ ∷ ν ∷ α ∷ υ ∷ ά ∷ γ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.1.19" ∷ word (ὧ ∷ ν ∷ []) "1Tim.1.20" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.1.20" ∷ word (Ὑ ∷ μ ∷ έ ∷ ν ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.20" ∷ word (Ἀ ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ς ∷ []) "1Tim.1.20" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "1Tim.1.20" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "1Tim.1.20" ∷ word (τ ∷ ῷ ∷ []) "1Tim.1.20" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾷ ∷ []) "1Tim.1.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.1.20" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ υ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ []) "1Tim.1.20" ∷ word (μ ∷ ὴ ∷ []) "1Tim.1.20" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.1.20" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Tim.2.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Tim.2.1" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.2.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.1" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Tim.2.1" ∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.2.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ά ∷ ς ∷ []) "1Tim.2.1" ∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ ύ ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.2.1" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.2.1" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Tim.2.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.1" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.2.1" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Tim.2.2" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "1Tim.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.2.2" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.2" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ο ∷ χ ∷ ῇ ∷ []) "1Tim.2.2" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.2.2" ∷ word (ἤ ∷ ρ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "1Tim.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.2" ∷ word (ἡ ∷ σ ∷ ύ ∷ χ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.2.2" ∷ word (β ∷ ί ∷ ο ∷ ν ∷ []) "1Tim.2.2" ∷ word (δ ∷ ι ∷ ά ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.2.2" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.2" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Tim.2.2" ∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Tim.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.2" ∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "1Tim.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.2.3" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Tim.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.3" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.2.3" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.2.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.2.3" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "1Tim.2.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.2.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.2.3" ∷ word (ὃ ∷ ς ∷ []) "1Tim.2.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.2.4" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.2.4" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Tim.2.4" ∷ word (σ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.2.4" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.2.4" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.2.4" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.2.4" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Tim.2.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.2.5" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Tim.2.5" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Tim.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.5" ∷ word (μ ∷ ε ∷ σ ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "1Tim.2.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.2.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.5" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.2.5" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Tim.2.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.2.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Tim.2.5" ∷ word (ὁ ∷ []) "1Tim.2.6" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.2.6" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Tim.2.6" ∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ ∙λ ∷ υ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.2.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Tim.2.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.6" ∷ word (τ ∷ ὸ ∷ []) "1Tim.2.6" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.2.6" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.2.6" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.2.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.2.7" ∷ word (ὃ ∷ []) "1Tim.2.7" ∷ word (ἐ ∷ τ ∷ έ ∷ θ ∷ η ∷ ν ∷ []) "1Tim.2.7" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Tim.2.7" ∷ word (κ ∷ ῆ ∷ ρ ∷ υ ∷ ξ ∷ []) "1Tim.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.7" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.2.7" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.2.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Tim.2.7" ∷ word (ο ∷ ὐ ∷ []) "1Tim.2.7" ∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.2.7" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.2.7" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "1Tim.2.7" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.7" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.7" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Tim.2.7" ∷ word (Β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.2.8" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Tim.2.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Tim.2.8" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.2.8" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.2.8" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.8" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Tim.2.8" ∷ word (τ ∷ ό ∷ π ∷ ῳ ∷ []) "1Tim.2.8" ∷ word (ἐ ∷ π ∷ α ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.2.8" ∷ word (ὁ ∷ σ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.2.8" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.2.8" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Tim.2.8" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "1Tim.2.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.8" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "1Tim.2.8" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.9" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ ς ∷ []) "1Tim.2.9" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.9" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "1Tim.2.9" ∷ word (κ ∷ ο ∷ σ ∷ μ ∷ ί ∷ ῳ ∷ []) "1Tim.2.9" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.2.9" ∷ word (α ∷ ἰ ∷ δ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Tim.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.9" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "1Tim.2.9" ∷ word (κ ∷ ο ∷ σ ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.2.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ά ∷ ς ∷ []) "1Tim.2.9" ∷ word (μ ∷ ὴ ∷ []) "1Tim.2.9" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.9" ∷ word (π ∷ ∙λ ∷ έ ∷ γ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.9" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "1Tim.2.9" ∷ word (ἢ ∷ []) "1Tim.2.9" ∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.2.9" ∷ word (ἢ ∷ []) "1Tim.2.9" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ι ∷ σ ∷ μ ∷ ῷ ∷ []) "1Tim.2.9" ∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Tim.2.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Tim.2.10" ∷ word (ὃ ∷ []) "1Tim.2.10" ∷ word (π ∷ ρ ∷ έ ∷ π ∷ ε ∷ ι ∷ []) "1Tim.2.10" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ ξ ∷ ὶ ∷ ν ∷ []) "1Tim.2.10" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ έ ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "1Tim.2.10" ∷ word (θ ∷ ε ∷ ο ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.2.10" ∷ word (δ ∷ ι ∷ []) "1Tim.2.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "1Tim.2.10" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῶ ∷ ν ∷ []) "1Tim.2.10" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Tim.2.11" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.11" ∷ word (ἡ ∷ σ ∷ υ ∷ χ ∷ ί ∷ ᾳ ∷ []) "1Tim.2.11" ∷ word (μ ∷ α ∷ ν ∷ θ ∷ α ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Tim.2.11" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.11" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Tim.2.11" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ῇ ∷ []) "1Tim.2.11" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "1Tim.2.12" ∷ word (δ ∷ ὲ ∷ []) "1Tim.2.12" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "1Tim.2.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Tim.2.12" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ρ ∷ έ ∷ π ∷ ω ∷ []) "1Tim.2.12" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Tim.2.12" ∷ word (α ∷ ὐ ∷ θ ∷ ε ∷ ν ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.2.12" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "1Tim.2.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Tim.2.12" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.2.12" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.12" ∷ word (ἡ ∷ σ ∷ υ ∷ χ ∷ ί ∷ ᾳ ∷ []) "1Tim.2.12" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Tim.2.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.2.13" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.2.13" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "1Tim.2.13" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Tim.2.13" ∷ word (Ε ∷ ὕ ∷ α ∷ []) "1Tim.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.14" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Tim.2.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Tim.2.14" ∷ word (ἠ ∷ π ∷ α ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "1Tim.2.14" ∷ word (ἡ ∷ []) "1Tim.2.14" ∷ word (δ ∷ ὲ ∷ []) "1Tim.2.14" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Tim.2.14" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ α ∷ τ ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "1Tim.2.14" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.14" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.2.14" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "1Tim.2.14" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.2.15" ∷ word (δ ∷ ὲ ∷ []) "1Tim.2.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.2.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.2.15" ∷ word (τ ∷ ε ∷ κ ∷ ν ∷ ο ∷ γ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "1Tim.2.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Tim.2.15" ∷ word (μ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.2.15" ∷ word (ἐ ∷ ν ∷ []) "1Tim.2.15" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.15" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Tim.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.15" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "1Tim.2.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.2.15" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "1Tim.2.15" ∷ word (Π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.3.1" ∷ word (ὁ ∷ []) "1Tim.3.1" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Tim.3.1" ∷ word (ε ∷ ἴ ∷ []) "1Tim.3.1" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.3.1" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ο ∷ π ∷ ῆ ∷ ς ∷ []) "1Tim.3.1" ∷ word (ὀ ∷ ρ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.3.1" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "1Tim.3.1" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ υ ∷ []) "1Tim.3.1" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ε ∷ ῖ ∷ []) "1Tim.3.1" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Tim.3.2" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Tim.3.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.3.2" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ν ∷ []) "1Tim.3.2" ∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ ί ∷ ∙λ ∷ η ∷ μ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.3.2" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.3.2" ∷ word (μ ∷ ι ∷ ᾶ ∷ ς ∷ []) "1Tim.3.2" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Tim.3.2" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Tim.3.2" ∷ word (ν ∷ η ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.3.2" ∷ word (σ ∷ ώ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ α ∷ []) "1Tim.3.2" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.3.2" ∷ word (φ ∷ ι ∷ ∙λ ∷ ό ∷ ξ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.3.2" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ κ ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Tim.3.2" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.3" ∷ word (π ∷ ά ∷ ρ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.3.3" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.3" ∷ word (π ∷ ∙λ ∷ ή ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "1Tim.3.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.3.3" ∷ word (ἐ ∷ π ∷ ι ∷ ε ∷ ι ∷ κ ∷ ῆ ∷ []) "1Tim.3.3" ∷ word (ἄ ∷ μ ∷ α ∷ χ ∷ ο ∷ ν ∷ []) "1Tim.3.3" ∷ word (ἀ ∷ φ ∷ ι ∷ ∙λ ∷ ά ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.3.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.3.4" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.3.4" ∷ word (ο ∷ ἴ ∷ κ ∷ ο ∷ υ ∷ []) "1Tim.3.4" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Tim.3.4" ∷ word (π ∷ ρ ∷ ο ∷ ϊ ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.3.4" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Tim.3.4" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Tim.3.4" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.4" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ῇ ∷ []) "1Tim.3.4" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.3.4" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Tim.3.4" ∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.3.4" ∷ word (ε ∷ ἰ ∷ []) "1Tim.3.5" ∷ word (δ ∷ έ ∷ []) "1Tim.3.5" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.3.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.3.5" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.3.5" ∷ word (ο ∷ ἴ ∷ κ ∷ ο ∷ υ ∷ []) "1Tim.3.5" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.3.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Tim.3.5" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Tim.3.5" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Tim.3.5" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.3.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.3.5" ∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.3.5" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.6" ∷ word (ν ∷ ε ∷ ό ∷ φ ∷ υ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.3.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.3.6" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.6" ∷ word (τ ∷ υ ∷ φ ∷ ω ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Tim.3.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.3.6" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Tim.3.6" ∷ word (ἐ ∷ μ ∷ π ∷ έ ∷ σ ∷ ῃ ∷ []) "1Tim.3.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.3.6" ∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Tim.3.6" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Tim.3.7" ∷ word (δ ∷ ὲ ∷ []) "1Tim.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.7" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.3.7" ∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.3.7" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Tim.3.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Tim.3.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.3.7" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "1Tim.3.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.3.7" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.3.7" ∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Tim.3.7" ∷ word (ἐ ∷ μ ∷ π ∷ έ ∷ σ ∷ ῃ ∷ []) "1Tim.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.7" ∷ word (π ∷ α ∷ γ ∷ ί ∷ δ ∷ α ∷ []) "1Tim.3.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.3.7" ∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Tim.3.7" ∷ word (Δ ∷ ι ∷ α ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.3.8" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.3.8" ∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "1Tim.3.8" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.8" ∷ word (δ ∷ ι ∷ ∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.3.8" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.8" ∷ word (ο ∷ ἴ ∷ ν ∷ ῳ ∷ []) "1Tim.3.8" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "1Tim.3.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.3.8" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.8" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ο ∷ κ ∷ ε ∷ ρ ∷ δ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Tim.3.8" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.3.9" ∷ word (τ ∷ ὸ ∷ []) "1Tim.3.9" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.3.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.3.9" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.3.9" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.9" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ᾷ ∷ []) "1Tim.3.9" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.10" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "1Tim.3.10" ∷ word (δ ∷ ὲ ∷ []) "1Tim.3.10" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.3.10" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.3.10" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Tim.3.10" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ε ∷ ί ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.3.10" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ι ∷ []) "1Tim.3.10" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.3.10" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ ς ∷ []) "1Tim.3.11" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.3.11" ∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ά ∷ ς ∷ []) "1Tim.3.11" ∷ word (μ ∷ ὴ ∷ []) "1Tim.3.11" ∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.3.11" ∷ word (ν ∷ η ∷ φ ∷ α ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.3.11" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "1Tim.3.11" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.11" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.3.11" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.3.12" ∷ word (ἔ ∷ σ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.3.12" ∷ word (μ ∷ ι ∷ ᾶ ∷ ς ∷ []) "1Tim.3.12" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Tim.3.12" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "1Tim.3.12" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.3.12" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Tim.3.12" ∷ word (π ∷ ρ ∷ ο ∷ ϊ ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.3.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.3.12" ∷ word (ἰ ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.3.12" ∷ word (ο ∷ ἴ ∷ κ ∷ ω ∷ ν ∷ []) "1Tim.3.12" ∷ word (ο ∷ ἱ ∷ []) "1Tim.3.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.3.13" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Tim.3.13" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.3.13" ∷ word (β ∷ α ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Tim.3.13" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.3.13" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Tim.3.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Tim.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.13" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.3.13" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.3.13" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.3.13" ∷ word (τ ∷ ῇ ∷ []) "1Tim.3.13" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Tim.3.13" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.3.13" ∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ ά ∷ []) "1Tim.3.14" ∷ word (σ ∷ ο ∷ ι ∷ []) "1Tim.3.14" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "1Tim.3.14" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Tim.3.14" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.3.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.3.14" ∷ word (σ ∷ ὲ ∷ []) "1Tim.3.14" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.14" ∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "1Tim.3.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Tim.3.15" ∷ word (δ ∷ ὲ ∷ []) "1Tim.3.15" ∷ word (β ∷ ρ ∷ α ∷ δ ∷ ύ ∷ ν ∷ ω ∷ []) "1Tim.3.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.3.15" ∷ word (ε ∷ ἰ ∷ δ ∷ ῇ ∷ ς ∷ []) "1Tim.3.15" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Tim.3.15" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Tim.3.15" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.15" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "1Tim.3.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.3.15" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Tim.3.15" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "1Tim.3.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Tim.3.15" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "1Tim.3.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.3.15" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.3.15" ∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.3.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.15" ∷ word (ἑ ∷ δ ∷ ρ ∷ α ∷ ί ∷ ω ∷ μ ∷ α ∷ []) "1Tim.3.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.3.15" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.3.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.16" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ς ∷ []) "1Tim.3.16" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Tim.3.16" ∷ word (τ ∷ ὸ ∷ []) "1Tim.3.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.3.16" ∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.3.16" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.3.16" ∷ word (Ὃ ∷ ς ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Tim.3.16" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Tim.3.16" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ κ ∷ η ∷ ρ ∷ ύ ∷ χ ∷ θ ∷ η ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Tim.3.16" ∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ φ ∷ θ ∷ η ∷ []) "1Tim.3.16" ∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "1Tim.3.16" ∷ word (Τ ∷ ὸ ∷ []) "1Tim.4.1" ∷ word (δ ∷ ὲ ∷ []) "1Tim.4.1" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Tim.4.1" ∷ word (ῥ ∷ η ∷ τ ∷ ῶ ∷ ς ∷ []) "1Tim.4.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Tim.4.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.4.1" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.1" ∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.4.1" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.1" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "1Tim.4.1" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.4.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.1" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.4.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.4.1" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "1Tim.4.1" ∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.1" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Tim.4.1" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.4.1" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.2" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.4.2" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ ∙λ ∷ ό ∷ γ ∷ ω ∷ ν ∷ []) "1Tim.4.2" ∷ word (κ ∷ ε ∷ κ ∷ α ∷ υ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ι ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.4.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.4.2" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.4.2" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.4.2" ∷ word (κ ∷ ω ∷ ∙λ ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.4.3" ∷ word (γ ∷ α ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.4.3" ∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Tim.4.3" ∷ word (β ∷ ρ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.4.3" ∷ word (ἃ ∷ []) "1Tim.4.3" ∷ word (ὁ ∷ []) "1Tim.4.3" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Tim.4.3" ∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.4.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.4.3" ∷ word (μ ∷ ε ∷ τ ∷ ά ∷ ∙λ ∷ η ∷ μ ∷ ψ ∷ ι ∷ ν ∷ []) "1Tim.4.3" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.4.3" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.4.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.3" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.3" ∷ word (ἐ ∷ π ∷ ε ∷ γ ∷ ν ∷ ω ∷ κ ∷ ό ∷ σ ∷ ι ∷ []) "1Tim.4.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.4.3" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.4.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.4.4" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "1Tim.4.4" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "1Tim.4.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.4.4" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "1Tim.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Tim.4.4" ∷ word (ἀ ∷ π ∷ ό ∷ β ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.4.4" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.4.4" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.4.4" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.4.4" ∷ word (ἁ ∷ γ ∷ ι ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.4.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.4.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.4.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "1Tim.4.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.5" ∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ ύ ∷ ξ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.4.5" ∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.4.6" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ι ∷ θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.4.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.6" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "1Tim.4.6" ∷ word (ἔ ∷ σ ∷ ῃ ∷ []) "1Tim.4.6" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.4.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.4.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.4.6" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ ε ∷ φ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.4.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.6" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.4.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.6" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.6" ∷ word (κ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Tim.4.6" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.4.6" ∷ word (ᾗ ∷ []) "1Tim.4.6" ∷ word (π ∷ α ∷ ρ ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ κ ∷ α ∷ ς ∷ []) "1Tim.4.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.4.7" ∷ word (δ ∷ ὲ ∷ []) "1Tim.4.7" ∷ word (β ∷ ε ∷ β ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.7" ∷ word (γ ∷ ρ ∷ α ∷ ώ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.4.7" ∷ word (μ ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.4.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ι ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.4.7" ∷ word (γ ∷ ύ ∷ μ ∷ ν ∷ α ∷ ζ ∷ ε ∷ []) "1Tim.4.7" ∷ word (δ ∷ ὲ ∷ []) "1Tim.4.7" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Tim.4.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.4.7" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.4.7" ∷ word (ἡ ∷ []) "1Tim.4.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.4.8" ∷ word (σ ∷ ω ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὴ ∷ []) "1Tim.4.8" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ α ∷ σ ∷ ί ∷ α ∷ []) "1Tim.4.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.4.8" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "1Tim.4.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Tim.4.8" ∷ word (ὠ ∷ φ ∷ έ ∷ ∙λ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "1Tim.4.8" ∷ word (ἡ ∷ []) "1Tim.4.8" ∷ word (δ ∷ ὲ ∷ []) "1Tim.4.8" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ []) "1Tim.4.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.4.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Tim.4.8" ∷ word (ὠ ∷ φ ∷ έ ∷ ∙λ ∷ ι ∷ μ ∷ ό ∷ ς ∷ []) "1Tim.4.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.4.8" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.4.8" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "1Tim.4.8" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "1Tim.4.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.8" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Tim.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.8" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "1Tim.4.8" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.4.9" ∷ word (ὁ ∷ []) "1Tim.4.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Tim.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.9" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Tim.4.9" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ χ ∷ ῆ ∷ ς ∷ []) "1Tim.4.9" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.4.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.4.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.4.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.4.10" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.10" ∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Tim.4.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.4.10" ∷ word (ἠ ∷ ∙λ ∷ π ∷ ί ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.4.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.4.10" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Tim.4.10" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "1Tim.4.10" ∷ word (ὅ ∷ ς ∷ []) "1Tim.4.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.4.10" ∷ word (σ ∷ ω ∷ τ ∷ ὴ ∷ ρ ∷ []) "1Tim.4.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.4.10" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.4.10" ∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "1Tim.4.10" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Tim.4.10" ∷ word (Π ∷ α ∷ ρ ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ε ∷ []) "1Tim.4.11" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.11" ∷ word (δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ []) "1Tim.4.11" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ί ∷ ς ∷ []) "1Tim.4.12" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Tim.4.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.12" ∷ word (ν ∷ ε ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.4.12" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Tim.4.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.4.12" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ς ∷ []) "1Tim.4.12" ∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "1Tim.4.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.4.12" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Tim.4.12" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Tim.4.12" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῇ ∷ []) "1Tim.4.12" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Tim.4.12" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.4.12" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12" ∷ word (ἁ ∷ γ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Tim.4.12" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Tim.4.13" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.4.13" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ε ∷ χ ∷ ε ∷ []) "1Tim.4.13" ∷ word (τ ∷ ῇ ∷ []) "1Tim.4.13" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.4.13" ∷ word (τ ∷ ῇ ∷ []) "1Tim.4.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.4.13" ∷ word (τ ∷ ῇ ∷ []) "1Tim.4.13" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.4.13" ∷ word (μ ∷ ὴ ∷ []) "1Tim.4.14" ∷ word (ἀ ∷ μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Tim.4.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.4.14" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.14" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "1Tim.4.14" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.4.14" ∷ word (ὃ ∷ []) "1Tim.4.14" ∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "1Tim.4.14" ∷ word (σ ∷ ο ∷ ι ∷ []) "1Tim.4.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.4.14" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.4.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.4.14" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.4.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.4.14" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Tim.4.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.4.14" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ ε ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.4.14" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.4.15" ∷ word (μ ∷ ε ∷ ∙λ ∷ έ ∷ τ ∷ α ∷ []) "1Tim.4.15" ∷ word (ἐ ∷ ν ∷ []) "1Tim.4.15" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.4.15" ∷ word (ἴ ∷ σ ∷ θ ∷ ι ∷ []) "1Tim.4.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.4.15" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Tim.4.15" ∷ word (ἡ ∷ []) "1Tim.4.15" ∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ο ∷ π ∷ ὴ ∷ []) "1Tim.4.15" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὰ ∷ []) "1Tim.4.15" ∷ word (ᾖ ∷ []) "1Tim.4.15" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.4.15" ∷ word (ἔ ∷ π ∷ ε ∷ χ ∷ ε ∷ []) "1Tim.4.16" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Tim.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.16" ∷ word (τ ∷ ῇ ∷ []) "1Tim.4.16" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.4.16" ∷ word (ἐ ∷ π ∷ ί ∷ μ ∷ ε ∷ ν ∷ ε ∷ []) "1Tim.4.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.16" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.4.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.4.16" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "1Tim.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.16" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Tim.4.16" ∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.4.16" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ά ∷ ς ∷ []) "1Tim.4.16" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Tim.4.16" ∷ word (Π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "1Tim.5.1" ∷ word (μ ∷ ὴ ∷ []) "1Tim.5.1" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ∙λ ∷ ή ∷ ξ ∷ ῃ ∷ ς ∷ []) "1Tim.5.1" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.5.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Tim.5.1" ∷ word (ὡ ∷ ς ∷ []) "1Tim.5.1" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Tim.5.1" ∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.5.1" ∷ word (ὡ ∷ ς ∷ []) "1Tim.5.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ύ ∷ ς ∷ []) "1Tim.5.1" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.2" ∷ word (ὡ ∷ ς ∷ []) "1Tim.5.2" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.2" ∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.2" ∷ word (ὡ ∷ ς ∷ []) "1Tim.5.2" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "1Tim.5.2" ∷ word (ἐ ∷ ν ∷ []) "1Tim.5.2" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Tim.5.2" ∷ word (ἁ ∷ γ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Tim.5.2" ∷ word (Χ ∷ ή ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.3" ∷ word (τ ∷ ί ∷ μ ∷ α ∷ []) "1Tim.5.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.5.3" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.5.3" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.3" ∷ word (ε ∷ ἰ ∷ []) "1Tim.5.4" ∷ word (δ ∷ έ ∷ []) "1Tim.5.4" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.5.4" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "1Tim.5.4" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Tim.5.4" ∷ word (ἢ ∷ []) "1Tim.5.4" ∷ word (ἔ ∷ κ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "1Tim.5.4" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Tim.5.4" ∷ word (μ ∷ α ∷ ν ∷ θ ∷ α ∷ ν ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.5.4" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.5.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.5.4" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.5.4" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "1Tim.5.4" ∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.4" ∷ word (ἀ ∷ μ ∷ ο ∷ ι ∷ β ∷ ὰ ∷ ς ∷ []) "1Tim.5.4" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ α ∷ ι ∷ []) "1Tim.5.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.5.4" ∷ word (π ∷ ρ ∷ ο ∷ γ ∷ ό ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.5.4" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Tim.5.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.5.4" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.5.4" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.5.4" ∷ word (ἡ ∷ []) "1Tim.5.5" ∷ word (δ ∷ ὲ ∷ []) "1Tim.5.5" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.5.5" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "1Tim.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.5" ∷ word (μ ∷ ε ∷ μ ∷ ο ∷ ν ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "1Tim.5.5" ∷ word (ἤ ∷ ∙λ ∷ π ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "1Tim.5.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.5.5" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Tim.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.5" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "1Tim.5.5" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.5" ∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.5" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.5" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.5" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.5" ∷ word (ἡ ∷ []) "1Tim.5.6" ∷ word (δ ∷ ὲ ∷ []) "1Tim.5.6" ∷ word (σ ∷ π ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ α ∷ []) "1Tim.5.6" ∷ word (ζ ∷ ῶ ∷ σ ∷ α ∷ []) "1Tim.5.6" ∷ word (τ ∷ έ ∷ θ ∷ ν ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Tim.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.7" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.5.7" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ε ∷ []) "1Tim.5.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.5.7" ∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ ί ∷ ∙λ ∷ η ∷ μ ∷ π ∷ τ ∷ ο ∷ ι ∷ []) "1Tim.5.7" ∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.7" ∷ word (ε ∷ ἰ ∷ []) "1Tim.5.8" ∷ word (δ ∷ έ ∷ []) "1Tim.5.8" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.5.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.5.8" ∷ word (ἰ ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.8" ∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "1Tim.5.8" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.5.8" ∷ word (ο ∷ ὐ ∷ []) "1Tim.5.8" ∷ word (π ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ []) "1Tim.5.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.5.8" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.5.8" ∷ word (ἤ ∷ ρ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Tim.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.5.8" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "1Tim.5.8" ∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "1Tim.5.8" ∷ word (Χ ∷ ή ∷ ρ ∷ α ∷ []) "1Tim.5.9" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ γ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Tim.5.9" ∷ word (μ ∷ ὴ ∷ []) "1Tim.5.9" ∷ word (ἔ ∷ ∙λ ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.5.9" ∷ word (ἐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Tim.5.9" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Tim.5.9" ∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ υ ∷ ῖ ∷ α ∷ []) "1Tim.5.9" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "1Tim.5.9" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.5.9" ∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "1Tim.5.9" ∷ word (ἐ ∷ ν ∷ []) "1Tim.5.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.5.10" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.5.10" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "1Tim.5.10" ∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10" ∷ word (ἐ ∷ τ ∷ ε ∷ κ ∷ ν ∷ ο ∷ τ ∷ ρ ∷ ό ∷ φ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.5.10" ∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10" ∷ word (ἐ ∷ ξ ∷ ε ∷ ν ∷ ο ∷ δ ∷ ό ∷ χ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.5.10" ∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.5.10" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "1Tim.5.10" ∷ word (ἔ ∷ ν ∷ ι ∷ ψ ∷ ε ∷ ν ∷ []) "1Tim.5.10" ∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10" ∷ word (θ ∷ ∙λ ∷ ι ∷ β ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.5.10" ∷ word (ἐ ∷ π ∷ ή ∷ ρ ∷ κ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.5.10" ∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Tim.5.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "1Tim.5.10" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῷ ∷ []) "1Tim.5.10" ∷ word (ἐ ∷ π ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.5.10" ∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.11" ∷ word (δ ∷ ὲ ∷ []) "1Tim.5.11" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ι ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.11" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Tim.5.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.5.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ι ∷ ά ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.11" ∷ word (γ ∷ α ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.11" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.11" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "1Tim.5.12" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Tim.5.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.5.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.5.12" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "1Tim.5.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.5.12" ∷ word (ἠ ∷ θ ∷ έ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.5.12" ∷ word (ἅ ∷ μ ∷ α ∷ []) "1Tim.5.13" ∷ word (δ ∷ ὲ ∷ []) "1Tim.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.13" ∷ word (ἀ ∷ ρ ∷ γ ∷ α ∷ ὶ ∷ []) "1Tim.5.13" ∷ word (μ ∷ α ∷ ν ∷ θ ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "1Tim.5.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.5.13" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.5.13" ∷ word (ο ∷ ὐ ∷ []) "1Tim.5.13" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.5.13" ∷ word (δ ∷ ὲ ∷ []) "1Tim.5.13" ∷ word (ἀ ∷ ρ ∷ γ ∷ α ∷ ὶ ∷ []) "1Tim.5.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.13" ∷ word (φ ∷ ∙λ ∷ ύ ∷ α ∷ ρ ∷ ο ∷ ι ∷ []) "1Tim.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.13" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ι ∷ []) "1Tim.5.13" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "1Tim.5.13" ∷ word (τ ∷ ὰ ∷ []) "1Tim.5.13" ∷ word (μ ∷ ὴ ∷ []) "1Tim.5.13" ∷ word (δ ∷ έ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Tim.5.13" ∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.5.14" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Tim.5.14" ∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.14" ∷ word (γ ∷ α ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.14" ∷ word (τ ∷ ε ∷ κ ∷ ν ∷ ο ∷ γ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.14" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ε ∷ σ ∷ π ∷ ο ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.14" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.5.14" ∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ μ ∷ ὴ ∷ ν ∷ []) "1Tim.5.14" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ α ∷ ι ∷ []) "1Tim.5.14" ∷ word (τ ∷ ῷ ∷ []) "1Tim.5.14" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "1Tim.5.14" ∷ word (∙λ ∷ ο ∷ ι ∷ δ ∷ ο ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.5.14" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Tim.5.14" ∷ word (ἤ ∷ δ ∷ η ∷ []) "1Tim.5.15" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Tim.5.15" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.5.15" ∷ word (ἐ ∷ ξ ∷ ε ∷ τ ∷ ρ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.5.15" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "1Tim.5.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.15" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "1Tim.5.15" ∷ word (ε ∷ ἴ ∷ []) "1Tim.5.16" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.5.16" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὴ ∷ []) "1Tim.5.16" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Tim.5.16" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.16" ∷ word (ἐ ∷ π ∷ α ∷ ρ ∷ κ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Tim.5.16" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.16" ∷ word (μ ∷ ὴ ∷ []) "1Tim.5.16" ∷ word (β ∷ α ∷ ρ ∷ ε ∷ ί ∷ σ ∷ θ ∷ ω ∷ []) "1Tim.5.16" ∷ word (ἡ ∷ []) "1Tim.5.16" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "1Tim.5.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.5.16" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.16" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.5.16" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.5.16" ∷ word (ἐ ∷ π ∷ α ∷ ρ ∷ κ ∷ έ ∷ σ ∷ ῃ ∷ []) "1Tim.5.16" ∷ word (Ο ∷ ἱ ∷ []) "1Tim.5.17" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Tim.5.17" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.5.17" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Tim.5.17" ∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Tim.5.17" ∷ word (τ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "1Tim.5.17" ∷ word (ἀ ∷ ξ ∷ ι ∷ ο ∷ ύ ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.5.17" ∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "1Tim.5.17" ∷ word (ο ∷ ἱ ∷ []) "1Tim.5.17" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.5.17" ∷ word (ἐ ∷ ν ∷ []) "1Tim.5.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Tim.5.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.17" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.5.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Tim.5.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.5.18" ∷ word (ἡ ∷ []) "1Tim.5.18" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ή ∷ []) "1Tim.5.18" ∷ word (Β ∷ ο ∷ ῦ ∷ ν ∷ []) "1Tim.5.18" ∷ word (ἀ ∷ ∙λ ∷ ο ∷ ῶ ∷ ν ∷ τ ∷ α ∷ []) "1Tim.5.18" ∷ word (ο ∷ ὐ ∷ []) "1Tim.5.18" ∷ word (φ ∷ ι ∷ μ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.5.18" ∷ word (κ ∷ α ∷ ί ∷ []) "1Tim.5.18" ∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.5.18" ∷ word (ὁ ∷ []) "1Tim.5.18" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ τ ∷ η ∷ ς ∷ []) "1Tim.5.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.18" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ο ∷ ῦ ∷ []) "1Tim.5.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.18" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Tim.5.19" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "1Tim.5.19" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.5.19" ∷ word (μ ∷ ὴ ∷ []) "1Tim.5.19" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ έ ∷ χ ∷ ο ∷ υ ∷ []) "1Tim.5.19" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.5.19" ∷ word (ε ∷ ἰ ∷ []) "1Tim.5.19" ∷ word (μ ∷ ὴ ∷ []) "1Tim.5.19" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.5.19" ∷ word (δ ∷ ύ ∷ ο ∷ []) "1Tim.5.19" ∷ word (ἢ ∷ []) "1Tim.5.19" ∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Tim.5.19" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "1Tim.5.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.5.20" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.5.20" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.5.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.5.20" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ χ ∷ ε ∷ []) "1Tim.5.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.5.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.20" ∷ word (ο ∷ ἱ ∷ []) "1Tim.5.20" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "1Tim.5.20" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "1Tim.5.20" ∷ word (ἔ ∷ χ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.20" ∷ word (δ ∷ ι ∷ α ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.5.21" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.5.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.5.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.21" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.5.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.5.21" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Tim.5.21" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Tim.5.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.5.21" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.5.21" ∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ ξ ∷ ῃ ∷ ς ∷ []) "1Tim.5.21" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Tim.5.21" ∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.5.21" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "1Tim.5.21" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "1Tim.5.21" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Tim.5.21" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ ∙λ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.21" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.22" ∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "1Tim.5.22" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "1Tim.5.22" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ί ∷ θ ∷ ε ∷ ι ∷ []) "1Tim.5.22" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Tim.5.22" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ώ ∷ ν ∷ ε ∷ ι ∷ []) "1Tim.5.22" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Tim.5.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Tim.5.22" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Tim.5.22" ∷ word (ἁ ∷ γ ∷ ν ∷ ὸ ∷ ν ∷ []) "1Tim.5.22" ∷ word (τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "1Tim.5.22" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "1Tim.5.23" ∷ word (ὑ ∷ δ ∷ ρ ∷ ο ∷ π ∷ ό ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.5.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.5.23" ∷ word (ο ∷ ἴ ∷ ν ∷ ῳ ∷ []) "1Tim.5.23" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ῳ ∷ []) "1Tim.5.23" ∷ word (χ ∷ ρ ∷ ῶ ∷ []) "1Tim.5.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.5.23" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.5.23" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ χ ∷ ο ∷ ν ∷ []) "1Tim.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.23" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.5.23" ∷ word (π ∷ υ ∷ κ ∷ ν ∷ ά ∷ ς ∷ []) "1Tim.5.23" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Tim.5.23" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.5.23" ∷ word (Τ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "1Tim.5.24" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.5.24" ∷ word (α ∷ ἱ ∷ []) "1Tim.5.24" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "1Tim.5.24" ∷ word (π ∷ ρ ∷ ό ∷ δ ∷ η ∷ ∙λ ∷ ο ∷ ί ∷ []) "1Tim.5.24" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.24" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "1Tim.5.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.5.24" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.24" ∷ word (τ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "1Tim.5.24" ∷ word (δ ∷ ὲ ∷ []) "1Tim.5.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.24" ∷ word (ἐ ∷ π ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.24" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.5.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.25" ∷ word (τ ∷ ὰ ∷ []) "1Tim.5.25" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "1Tim.5.25" ∷ word (τ ∷ ὰ ∷ []) "1Tim.5.25" ∷ word (κ ∷ α ∷ ∙λ ∷ ὰ ∷ []) "1Tim.5.25" ∷ word (π ∷ ρ ∷ ό ∷ δ ∷ η ∷ ∙λ ∷ α ∷ []) "1Tim.5.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.25" ∷ word (τ ∷ ὰ ∷ []) "1Tim.5.25" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Tim.5.25" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Tim.5.25" ∷ word (κ ∷ ρ ∷ υ ∷ β ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.5.25" ∷ word (ο ∷ ὐ ∷ []) "1Tim.5.25" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Tim.5.25" ∷ word (Ὅ ∷ σ ∷ ο ∷ ι ∷ []) "1Tim.6.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Tim.6.1" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Tim.6.1" ∷ word (ζ ∷ υ ∷ γ ∷ ὸ ∷ ν ∷ []) "1Tim.6.1" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Tim.6.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.6.1" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.1" ∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "1Tim.6.1" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Tim.6.1" ∷ word (τ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "1Tim.6.1" ∷ word (ἀ ∷ ξ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.1" ∷ word (ἡ ∷ γ ∷ ε ∷ ί ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.6.1" ∷ word (μ ∷ ὴ ∷ []) "1Tim.6.1" ∷ word (τ ∷ ὸ ∷ []) "1Tim.6.1" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "1Tim.6.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.1" ∷ word (ἡ ∷ []) "1Tim.6.1" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ []) "1Tim.6.1" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.1" ∷ word (ο ∷ ἱ ∷ []) "1Tim.6.2" ∷ word (δ ∷ ὲ ∷ []) "1Tim.6.2" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.6.2" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.6.2" ∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "1Tim.6.2" ∷ word (μ ∷ ὴ ∷ []) "1Tim.6.2" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ί ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.6.2" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Tim.6.2" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.6.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.6.2" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Tim.6.2" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ υ ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.6.2" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ί ∷ []) "1Tim.6.2" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.2" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "1Tim.6.2" ∷ word (ο ∷ ἱ ∷ []) "1Tim.6.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.2" ∷ word (ε ∷ ὐ ∷ ε ∷ ρ ∷ γ ∷ ε ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.2" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ α ∷ μ ∷ β ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.6.2" ∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.6.2" ∷ word (δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ []) "1Tim.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Tim.6.2" ∷ word (ε ∷ ἴ ∷ []) "1Tim.6.3" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.6.3" ∷ word (ἑ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Tim.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.3" ∷ word (μ ∷ ὴ ∷ []) "1Tim.6.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.3" ∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "1Tim.6.3" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.6.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.6.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.6.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.3" ∷ word (τ ∷ ῇ ∷ []) "1Tim.6.3" ∷ word (κ ∷ α ∷ τ ∷ []) "1Tim.6.3" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.6.3" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.6.3" ∷ word (τ ∷ ε ∷ τ ∷ ύ ∷ φ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.4" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "1Tim.6.4" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.6.4" ∷ word (ν ∷ ο ∷ σ ∷ ῶ ∷ ν ∷ []) "1Tim.6.4" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Tim.6.4" ∷ word (ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.4" ∷ word (∙λ ∷ ο ∷ γ ∷ ο ∷ μ ∷ α ∷ χ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.4" ∷ word (ἐ ∷ ξ ∷ []) "1Tim.6.4" ∷ word (ὧ ∷ ν ∷ []) "1Tim.6.4" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.4" ∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.4" ∷ word (ἔ ∷ ρ ∷ ι ∷ ς ∷ []) "1Tim.6.4" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "1Tim.6.4" ∷ word (ὑ ∷ π ∷ ό ∷ ν ∷ ο ∷ ι ∷ α ∷ ι ∷ []) "1Tim.6.4" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ α ∷ ί ∷ []) "1Tim.6.4" ∷ word (δ ∷ ι ∷ α ∷ π ∷ α ∷ ρ ∷ α ∷ τ ∷ ρ ∷ ι ∷ β ∷ α ∷ ὶ ∷ []) "1Tim.6.5" ∷ word (δ ∷ ι ∷ ε ∷ φ ∷ θ ∷ α ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.6.5" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.6.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.6.5" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "1Tim.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.5" ∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ ε ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.6.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.5" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.5" ∷ word (ν ∷ ο ∷ μ ∷ ι ∷ ζ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.6.5" ∷ word (π ∷ ο ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Tim.6.5" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.6.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.5" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.6.5" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.6.6" ∷ word (δ ∷ ὲ ∷ []) "1Tim.6.6" ∷ word (π ∷ ο ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Tim.6.6" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "1Tim.6.6" ∷ word (ἡ ∷ []) "1Tim.6.6" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ []) "1Tim.6.6" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.6.6" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ρ ∷ κ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.6" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Tim.6.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.6.7" ∷ word (ε ∷ ἰ ∷ σ ∷ η ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.6.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.6.7" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "1Tim.6.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.6.7" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Tim.6.7" ∷ word (ἐ ∷ ξ ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.7" ∷ word (τ ∷ ι ∷ []) "1Tim.6.7" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Tim.6.7" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.6.8" ∷ word (δ ∷ ὲ ∷ []) "1Tim.6.8" ∷ word (δ ∷ ι ∷ α ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ὰ ∷ ς ∷ []) "1Tim.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.8" ∷ word (σ ∷ κ ∷ ε ∷ π ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Tim.6.8" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.8" ∷ word (ἀ ∷ ρ ∷ κ ∷ ε ∷ σ ∷ θ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Tim.6.8" ∷ word (ο ∷ ἱ ∷ []) "1Tim.6.9" ∷ word (δ ∷ ὲ ∷ []) "1Tim.6.9" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.6.9" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.9" ∷ word (ἐ ∷ μ ∷ π ∷ ί ∷ π ∷ τ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.6.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.9" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Tim.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.9" ∷ word (π ∷ α ∷ γ ∷ ί ∷ δ ∷ α ∷ []) "1Tim.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.9" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "1Tim.6.9" ∷ word (ἀ ∷ ν ∷ ο ∷ ή ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.9" ∷ word (β ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ρ ∷ ά ∷ ς ∷ []) "1Tim.6.9" ∷ word (α ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.6.9" ∷ word (β ∷ υ ∷ θ ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "1Tim.6.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.6.9" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.9" ∷ word (ὄ ∷ ∙λ ∷ ε ∷ θ ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.9" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.6.9" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "1Tim.6.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.6.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.6.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.6.10" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ν ∷ []) "1Tim.6.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.6.10" ∷ word (ἡ ∷ []) "1Tim.6.10" ∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "1Tim.6.10" ∷ word (ἧ ∷ ς ∷ []) "1Tim.6.10" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.6.10" ∷ word (ὀ ∷ ρ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.6.10" ∷ word (ἀ ∷ π ∷ ε ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.10" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Tim.6.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.10" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.10" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.6.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ π ∷ ε ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "1Tim.6.10" ∷ word (ὀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "1Tim.6.10" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.6.10" ∷ word (Σ ∷ ὺ ∷ []) "1Tim.6.11" ∷ word (δ ∷ έ ∷ []) "1Tim.6.11" ∷ word (ὦ ∷ []) "1Tim.6.11" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ε ∷ []) "1Tim.6.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.6.11" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.6.11" ∷ word (φ ∷ ε ∷ ῦ ∷ γ ∷ ε ∷ []) "1Tim.6.11" ∷ word (δ ∷ ί ∷ ω ∷ κ ∷ ε ∷ []) "1Tim.6.11" ∷ word (δ ∷ ὲ ∷ []) "1Tim.6.11" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "1Tim.6.11" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.6.11" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.6.11" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Tim.6.11" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "1Tim.6.11" ∷ word (π ∷ ρ ∷ α ∷ ϋ ∷ π ∷ α ∷ θ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.6.11" ∷ word (ἀ ∷ γ ∷ ω ∷ ν ∷ ί ∷ ζ ∷ ο ∷ υ ∷ []) "1Tim.6.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.6.12" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Tim.6.12" ∷ word (ἀ ∷ γ ∷ ῶ ∷ ν ∷ α ∷ []) "1Tim.6.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.6.12" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ῦ ∷ []) "1Tim.6.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.12" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.6.12" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "1Tim.6.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.12" ∷ word (ἣ ∷ ν ∷ []) "1Tim.6.12" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ ς ∷ []) "1Tim.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.12" ∷ word (ὡ ∷ μ ∷ ο ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "1Tim.6.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.12" ∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.6.12" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.6.12" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.6.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Tim.6.12" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "1Tim.6.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "1Tim.6.13" ∷ word (σ ∷ ο ∷ ι ∷ []) "1Tim.6.13" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.6.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.6.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13" ∷ word (ζ ∷ ῳ ∷ ο ∷ γ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.6.13" ∷ word (τ ∷ ὰ ∷ []) "1Tim.6.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Tim.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.6.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.6.13" ∷ word (Π ∷ ο ∷ ν ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.6.13" ∷ word (Π ∷ ι ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Tim.6.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.13" ∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.6.13" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.6.13" ∷ word (τ ∷ η ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "1Tim.6.14" ∷ word (σ ∷ ε ∷ []) "1Tim.6.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.14" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.6.14" ∷ word (ἄ ∷ σ ∷ π ∷ ι ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Tim.6.14" ∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ ί ∷ ∙λ ∷ η ∷ μ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.6.14" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "1Tim.6.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.14" ∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ α ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.14" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.6.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.6.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.6.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.14" ∷ word (ἣ ∷ ν ∷ []) "1Tim.6.15" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.15" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.15" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "1Tim.6.15" ∷ word (ὁ ∷ []) "1Tim.6.15" ∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.15" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.15" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ σ ∷ τ ∷ η ∷ ς ∷ []) "1Tim.6.15" ∷ word (ὁ ∷ []) "1Tim.6.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "1Tim.6.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.6.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.6.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.15" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.6.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.6.15" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.6.15" ∷ word (ὁ ∷ []) "1Tim.6.16" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.16" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Tim.6.16" ∷ word (ἀ ∷ θ ∷ α ∷ ν ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.6.16" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "1Tim.6.16" ∷ word (ο ∷ ἰ ∷ κ ∷ ῶ ∷ ν ∷ []) "1Tim.6.16" ∷ word (ἀ ∷ π ∷ ρ ∷ ό ∷ σ ∷ ι ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.6.16" ∷ word (ὃ ∷ ν ∷ []) "1Tim.6.16" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Tim.6.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Tim.6.16" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.6.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Tim.6.16" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.16" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.16" ∷ word (ᾧ ∷ []) "1Tim.6.16" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "1Tim.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.16" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.6.16" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.6.16" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "1Tim.6.16" ∷ word (Τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.17" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.17" ∷ word (ἐ ∷ ν ∷ []) "1Tim.6.17" ∷ word (τ ∷ ῷ ∷ []) "1Tim.6.17" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Tim.6.17" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "1Tim.6.17" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ε ∷ []) "1Tim.6.17" ∷ word (μ ∷ ὴ ∷ []) "1Tim.6.17" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ο ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.17" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Tim.6.17" ∷ word (ἠ ∷ ∙λ ∷ π ∷ ι ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.6.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.6.17" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Tim.6.17" ∷ word (ἀ ∷ δ ∷ η ∷ ∙λ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "1Tim.6.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Tim.6.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.6.17" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Tim.6.17" ∷ word (τ ∷ ῷ ∷ []) "1Tim.6.17" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "1Tim.6.17" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Tim.6.17" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Tim.6.17" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "1Tim.6.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.17" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.6.17" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.18" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.18" ∷ word (ἐ ∷ ν ∷ []) "1Tim.6.18" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.18" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.18" ∷ word (ε ∷ ὐ ∷ μ ∷ ε ∷ τ ∷ α ∷ δ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.18" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.6.18" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ι ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "1Tim.6.18" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.6.19" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.19" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.6.19" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Tim.6.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.19" ∷ word (τ ∷ ὸ ∷ []) "1Tim.6.19" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Tim.6.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.6.19" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ ά ∷ β ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.19" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.6.19" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "1Tim.6.19" ∷ word (Ὦ ∷ []) "1Tim.6.20" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ε ∷ []) "1Tim.6.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.20" ∷ word (π ∷ α ∷ ρ ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ν ∷ []) "1Tim.6.20" ∷ word (φ ∷ ύ ∷ ∙λ ∷ α ∷ ξ ∷ ο ∷ ν ∷ []) "1Tim.6.20" ∷ word (ἐ ∷ κ ∷ τ ∷ ρ ∷ ε ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.6.20" ∷ word (β ∷ ε ∷ β ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.20" ∷ word (κ ∷ ε ∷ ν ∷ ο ∷ φ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.20" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ θ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.6.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.20" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ο ∷ υ ∷ []) "1Tim.6.20" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.6.20" ∷ word (ἥ ∷ ν ∷ []) "1Tim.6.21" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.6.21" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.6.21" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Tim.6.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.21" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.6.21" ∷ word (ἠ ∷ σ ∷ τ ∷ ό ∷ χ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.21" ∷ word (Ἡ ∷ []) "1Tim.6.21" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Tim.6.21" ∷ word (μ ∷ ε ∷ θ ∷ []) "1Tim.6.21" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.6.21" ∷ []
47.752185
92
0.336972
0dea82be1e24d2f6cd79792e2ff76042be139beb
3,099
agda
Agda
examples/lib/Data/Fin.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/lib/Data/Fin.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/lib/Data/Fin.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Data.Fin where open import Data.Nat hiding (_==_; _<_) open import Data.Bool open import Logic.Identity open import Logic.Base data Fin : Nat -> Set where fzero : {n : Nat} -> Fin (suc n) fsuc : {n : Nat} -> Fin n -> Fin (suc n) pred : {n : Nat} -> Fin (suc (suc n)) -> Fin (suc n) pred fzero = fzero pred (fsuc i) = i fzero≠fsuc : {n : Nat}{i : Fin n} -> fzero ≢ fsuc i fzero≠fsuc () fsuc-inj : {n : Nat}{i j : Fin n} -> fsuc i ≡ fsuc j -> i ≡ j fsuc-inj refl = refl _==_ : {n : Nat}(i j : Fin n) -> (i ≡ j) \/ (i ≢ j) fzero == fzero = \/-IL refl fzero == fsuc j = \/-IR fzero≠fsuc fsuc i == fzero = \/-IR (sym≢ fzero≠fsuc) fsuc i == fsuc j = aux i j (i == j) where aux : {n : Nat}(i j : Fin n) -> (i ≡ j) \/ (i ≢ j) -> (fsuc i ≡ fsuc j) \/ (fsuc i ≢ fsuc j) aux i .i (\/-IL refl) = \/-IL refl aux i j (\/-IR i≠j) = \/-IR \si=sj -> i≠j (fsuc-inj si=sj) _<_ : {n : Nat} -> Fin n -> Fin n -> Bool _ < fzero = false fzero < fsuc j = true fsuc i < fsuc j = i < j fromNat : (n : Nat) -> Fin (suc n) fromNat zero = fzero fromNat (suc n) = fsuc (fromNat n) liftSuc : {n : Nat} -> Fin n -> Fin (suc n) liftSuc fzero = fzero liftSuc (fsuc i) = fsuc (liftSuc i) lift+ : {n : Nat}(m : Nat) -> Fin n -> Fin (m + n) lift+ zero i = i lift+ (suc m) i = liftSuc (lift+ m i) thin : {n : Nat} -> Fin (suc n) -> Fin n -> Fin (suc n) thin fzero i = fsuc i thin (fsuc j) fzero = fzero thin (fsuc j) (fsuc i) = fsuc (thin j i) -- Two elements of Fin n are either the same or one is the thinning of -- something with respect to the other. data ThinView : {n : Nat}(i j : Fin n) -> Set where same : {n : Nat}{i : Fin n} -> ThinView i i diff : {n : Nat}{i : Fin (suc n)}(j : Fin n) -> ThinView i (thin i j) thinView : {n : Nat}(i j : Fin n) -> ThinView i j thinView {suc _} fzero fzero = same thinView {suc _} fzero (fsuc j) = diff j thinView {suc zero} (fsuc ()) fzero thinView {suc (suc _)} (fsuc i) fzero = diff fzero thinView (fsuc i) (fsuc j) = aux i j (thinView i j) where aux : {n : Nat}(i j : Fin n) -> ThinView i j -> ThinView (fsuc i) (fsuc j) aux i .i same = same aux i .(thin i j) (diff j) = diff (fsuc j) thin-ij≠i : {n : Nat}(i : Fin (suc n))(j : Fin n) -> thin i j ≢ i thin-ij≠i fzero j () thin-ij≠i (fsuc i) fzero () thin-ij≠i (fsuc i) (fsuc j) eq = thin-ij≠i i j (fsuc-inj eq) -- Thickening. -- thin i (thick i j) ≡ j ? -- thick i (thin i j) ≡ j thick : {n : Nat}(i j : Fin (suc n)) -> i ≢ j -> Fin n thick i j i≠j = thick' i j i≠j (thinView i j) where thick' : {n : Nat}(i j : Fin (suc n)) -> i ≢ j -> ThinView i j -> Fin n thick' i .i i≠i same = elim-False (i≠i refl) thick' i .(thin i j) _ (diff j) = j -- thin∘thick=id : {n : Nat}(i j : Fin (suc n))(p : i ≢ j) -> -- thin i (thick i j p) ≡ j -- thin∘thick=id i j p = ? -- -- thick∘thin=id : {n : Nat}(i : Fin (suc n))(j : Fin n) -> -- thick i (thin i j) (sym≢ (thin-ij≠i i j)) ≡ j -- thick∘thin=id i j = ? --
32.968085
96
0.516618
1165fdaae48621990fc7f0a84c06691366a2b107
29,213
agda
Agda
prototyping/Properties/StrictMode.agda
EtiTheSpirit/luau
d37d0c857ba543ea47f0b8fce5678f7aadf5239e
[ "MIT" ]
null
null
null
prototyping/Properties/StrictMode.agda
EtiTheSpirit/luau
d37d0c857ba543ea47f0b8fce5678f7aadf5239e
[ "MIT" ]
null
null
null
prototyping/Properties/StrictMode.agda
EtiTheSpirit/luau
d37d0c857ba543ea47f0b8fce5678f7aadf5239e
[ "MIT" ]
null
null
null
{-# OPTIONS --rewriting #-} module Properties.StrictMode where import Agda.Builtin.Equality.Rewrite open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapL; mapR; mapLR; swapLR; cond) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Heap using (Heap; Object; function_is_end; defn; alloc; ok; next; lookup-not-allocated) renaming (_≡_⊕_↦_ to _≡ᴴ_⊕_↦_; _[_] to _[_]ᴴ; ∅ to ∅ᴴ) open import Luau.StrictMode using (Warningᴱ; Warningᴮ; Warningᴼ; Warningᴴ; UnallocatedAddress; UnboundVariable; FunctionCallMismatch; app₁; app₂; BinOpMismatch₁; BinOpMismatch₂; bin₁; bin₂; BlockMismatch; block₁; return; LocalVarMismatch; local₁; local₂; FunctionDefnMismatch; function₁; function₂; heap; expr; block; addr) open import Luau.Substitution using (_[_/_]ᴮ; _[_/_]ᴱ; _[_/_]ᴮunless_; var_[_/_]ᴱwhenever_) open import Luau.Subtyping using (_≮:_; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_; Tree; Language; ¬Language) open import Luau.Syntax using (Expr; yes; var; val; var_∈_; _⟨_⟩∈_; _$_; addr; number; bool; string; binexp; nil; function_is_end; block_is_end; done; return; local_←_; _∙_; fun; arg; name; ==; ~=) open import Luau.Type using (Type; strict; nil; number; boolean; string; _⇒_; never; unknown; _∩_; _∪_; tgt; _≡ᵀ_; _≡ᴹᵀ_) open import Luau.TypeCheck(strict) using (_⊢ᴮ_∈_; _⊢ᴱ_∈_; _⊢ᴴᴮ_▷_∈_; _⊢ᴴᴱ_▷_∈_; nil; var; addr; app; function; block; done; return; local; orUnknown; srcBinOp; tgtBinOp) open import Luau.Var using (_≡ⱽ_) open import Luau.Addr using (_≡ᴬ_) open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_; ⊕-lookup-miss; ⊕-swap; ⊕-over) renaming (_[_] to _[_]ⱽ) open import Luau.VarCtxt using (VarCtxt; ∅) open import Properties.Remember using (remember; _,_) open import Properties.Equality using (_≢_; sym; cong; trans; subst₁) open import Properties.Dec using (Dec; yes; no) open import Properties.Contradiction using (CONTRADICTION; ¬) open import Properties.Functions using (_∘_) open import Properties.Subtyping using (unknown-≮:; ≡-trans-≮:; ≮:-trans-≡; never-tgt-≮:; tgt-never-≮:; src-unknown-≮:; unknown-src-≮:; ≮:-trans; ≮:-refl; scalar-≢-impl-≮:; function-≮:-scalar; scalar-≮:-function; function-≮:-never; unknown-≮:-scalar; scalar-≮:-never; unknown-≮:-never) open import Properties.TypeCheck(strict) using (typeOfᴼ; typeOfᴹᴼ; typeOfⱽ; typeOfᴱ; typeOfᴮ; typeCheckᴱ; typeCheckᴮ; typeCheckᴼ; typeCheckᴴ) open import Luau.OpSem using (_⟦_⟧_⟶_; _⊢_⟶*_⊣_; _⊢_⟶ᴮ_⊣_; _⊢_⟶ᴱ_⊣_; app₁; app₂; function; beta; return; block; done; local; subst; binOp₀; binOp₁; binOp₂; refl; step; +; -; *; /; <; >; ==; ~=; <=; >=; ··) open import Luau.RuntimeError using (BinOpError; RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinOpMismatch₁; BinOpMismatch₂; UnboundVariable; SEGV; app₁; app₂; bin₁; bin₂; block; local; return; +; -; *; /; <; >; <=; >=; ··) open import Luau.RuntimeType using (RuntimeType; valueType; number; string; boolean; nil; function) src = Luau.Type.src strict data _⊑_ (H : Heap yes) : Heap yes → Set where refl : (H ⊑ H) snoc : ∀ {H′ a O} → (H′ ≡ᴴ H ⊕ a ↦ O) → (H ⊑ H′) rednᴱ⊑ : ∀ {H H′ M M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (H ⊑ H′) rednᴮ⊑ : ∀ {H H′ B B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (H ⊑ H′) rednᴱ⊑ (function a p) = snoc p rednᴱ⊑ (app₁ s) = rednᴱ⊑ s rednᴱ⊑ (app₂ p s) = rednᴱ⊑ s rednᴱ⊑ (beta O v p q) = refl rednᴱ⊑ (block s) = rednᴮ⊑ s rednᴱ⊑ (return v) = refl rednᴱ⊑ done = refl rednᴱ⊑ (binOp₀ p) = refl rednᴱ⊑ (binOp₁ s) = rednᴱ⊑ s rednᴱ⊑ (binOp₂ s) = rednᴱ⊑ s rednᴮ⊑ (local s) = rednᴱ⊑ s rednᴮ⊑ (subst v) = refl rednᴮ⊑ (function a p) = snoc p rednᴮ⊑ (return s) = rednᴱ⊑ s data LookupResult (H : Heap yes) a V : Set where just : (H [ a ]ᴴ ≡ just V) → LookupResult H a V nothing : (H [ a ]ᴴ ≡ nothing) → LookupResult H a V lookup-⊑-nothing : ∀ {H H′} a → (H ⊑ H′) → (H′ [ a ]ᴴ ≡ nothing) → (H [ a ]ᴴ ≡ nothing) lookup-⊑-nothing {H} a refl p = p lookup-⊑-nothing {H} a (snoc defn) p with a ≡ᴬ next H lookup-⊑-nothing {H} a (snoc defn) p | yes refl = refl lookup-⊑-nothing {H} a (snoc o) p | no q = trans (lookup-not-allocated o q) p heap-weakeningᴱ : ∀ Γ H M {H′ U} → (H ⊑ H′) → (typeOfᴱ H′ Γ M ≮: U) → (typeOfᴱ H Γ M ≮: U) heap-weakeningᴱ Γ H (var x) h p = p heap-weakeningᴱ Γ H (val nil) h p = p heap-weakeningᴱ Γ H (val (addr a)) refl p = p heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p with a ≡ᴬ b heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = a} defn) p | yes refl = unknown-≮: p heap-weakeningᴱ Γ H (val (addr a)) (snoc {a = b} q) p | no r = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ (lookup-not-allocated q r))) p heap-weakeningᴱ Γ H (val (number x)) h p = p heap-weakeningᴱ Γ H (val (bool x)) h p = p heap-weakeningᴱ Γ H (val (string x)) h p = p heap-weakeningᴱ Γ H (M $ N) h p = never-tgt-≮: (heap-weakeningᴱ Γ H M h (tgt-never-≮: p)) heap-weakeningᴱ Γ H (function f ⟨ var x ∈ T ⟩∈ U is B end) h p = p heap-weakeningᴱ Γ H (block var b ∈ T is B end) h p = p heap-weakeningᴱ Γ H (binexp M op N) h p = p heap-weakeningᴮ : ∀ Γ H B {H′ U} → (H ⊑ H′) → (typeOfᴮ H′ Γ B ≮: U) → (typeOfᴮ H Γ B ≮: U) heap-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h p = heap-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h p heap-weakeningᴮ Γ H (local var x ∈ T ← M ∙ B) h p = heap-weakeningᴮ (Γ ⊕ x ↦ T) H B h p heap-weakeningᴮ Γ H (return M ∙ B) h p = heap-weakeningᴱ Γ H M h p heap-weakeningᴮ Γ H done h p = p substitutivityᴱ : ∀ {Γ T U} H M v x → (typeOfᴱ H Γ (M [ v / x ]ᴱ) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) M ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴱ-whenever : ∀ {Γ T U} H v x y (r : Dec(x ≡ y)) → (typeOfᴱ H Γ (var y [ v / x ]ᴱwhenever r) ≮: U) → Either (typeOfᴱ H (Γ ⊕ x ↦ T) (var y) ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ : ∀ {Γ T U} H B v x → (typeOfᴮ H Γ (B [ v / x ]ᴮ) ≮: U) → Either (typeOfᴮ H (Γ ⊕ x ↦ T) B ≮: U) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless : ∀ {Γ T U V} H B v x y (r : Dec(x ≡ y)) → (typeOfᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r) ≮: V) → Either (typeOfᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless-yes : ∀ {Γ Γ′ T V} H B v x y (r : x ≡ y) → (Γ′ ≡ Γ) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless yes r) ≮: V) → Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴮ-unless-no : ∀ {Γ Γ′ T V} H B v x y (r : x ≢ y) → (Γ′ ≡ Γ ⊕ x ↦ T) → (typeOfᴮ H Γ (B [ v / x ]ᴮunless no r) ≮: V) → Either (typeOfᴮ H Γ′ B ≮: V) (typeOfᴱ H ∅ (val v) ≮: T) substitutivityᴱ H (var y) v x p = substitutivityᴱ-whenever H v x y (x ≡ⱽ y) p substitutivityᴱ H (val w) v x p = Left p substitutivityᴱ H (binexp M op N) v x p = Left p substitutivityᴱ H (M $ N) v x p = mapL never-tgt-≮: (substitutivityᴱ H M v x (tgt-never-≮: p)) substitutivityᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x p = Left p substitutivityᴱ H (block var b ∈ T is B end) v x p = Left p substitutivityᴱ-whenever H v x x (yes refl) q = swapLR (≮:-trans q) substitutivityᴱ-whenever H v x y (no p) q = Left (≡-trans-≮: (cong orUnknown (sym (⊕-lookup-miss x y _ _ p))) q) substitutivityᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x p = substitutivityᴮ-unless H B v x f (x ≡ⱽ f) p substitutivityᴮ H (local var y ∈ T ← M ∙ B) v x p = substitutivityᴮ-unless H B v x y (x ≡ⱽ y) p substitutivityᴮ H (return M ∙ B) v x p = substitutivityᴱ H M v x p substitutivityᴮ H done v x p = Left p substitutivityᴮ-unless H B v x y (yes p) q = substitutivityᴮ-unless-yes H B v x y p (⊕-over p) q substitutivityᴮ-unless H B v x y (no p) q = substitutivityᴮ-unless-no H B v x y p (⊕-swap p) q substitutivityᴮ-unless-yes H B v x y refl refl p = Left p substitutivityᴮ-unless-no H B v x y p refl q = substitutivityᴮ H B v x q binOpPreservation : ∀ H {op v w x} → (v ⟦ op ⟧ w ⟶ x) → (tgtBinOp op ≡ typeOfᴱ H ∅ (val x)) binOpPreservation H (+ m n) = refl binOpPreservation H (- m n) = refl binOpPreservation H (/ m n) = refl binOpPreservation H (* m n) = refl binOpPreservation H (< m n) = refl binOpPreservation H (> m n) = refl binOpPreservation H (<= m n) = refl binOpPreservation H (>= m n) = refl binOpPreservation H (== v w) = refl binOpPreservation H (~= v w) = refl binOpPreservation H (·· v w) = refl reflect-subtypingᴱ : ∀ H M {H′ M′ T} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → (typeOfᴱ H′ ∅ M′ ≮: T) → Either (typeOfᴱ H ∅ M ≮: T) (Warningᴱ H (typeCheckᴱ H ∅ M)) reflect-subtypingᴮ : ∀ H B {H′ B′ T} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → (typeOfᴮ H′ ∅ B′ ≮: T) → Either (typeOfᴮ H ∅ B ≮: T) (Warningᴮ H (typeCheckᴮ H ∅ B)) reflect-subtypingᴱ H (M $ N) (app₁ s) p = mapLR never-tgt-≮: app₁ (reflect-subtypingᴱ H M s (tgt-never-≮: p)) reflect-subtypingᴱ H (M $ N) (app₂ v s) p = Left (never-tgt-≮: (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (tgt-never-≮: p))) reflect-subtypingᴱ H (M $ N) (beta (function f ⟨ var y ∈ T ⟩∈ U is B end) v refl q) p = Left (≡-trans-≮: (cong tgt (cong orUnknown (cong typeOfᴹᴼ q))) p) reflect-subtypingᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) p = Left p reflect-subtypingᴱ H (block var b ∈ T is B end) (block s) p = Left p reflect-subtypingᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) p = mapR BlockMismatch (swapLR (≮:-trans p)) reflect-subtypingᴱ H (block var b ∈ T is done end) done p = mapR BlockMismatch (swapLR (≮:-trans p)) reflect-subtypingᴱ H (binexp M op N) (binOp₀ s) p = Left (≡-trans-≮: (binOpPreservation H s) p) reflect-subtypingᴱ H (binexp M op N) (binOp₁ s) p = Left p reflect-subtypingᴱ H (binexp M op N) (binOp₂ s) p = Left p reflect-subtypingᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) p = mapLR (heap-weakeningᴮ _ _ B (snoc defn)) (CONTRADICTION ∘ ≮:-refl) (substitutivityᴮ _ B (addr a) f p) reflect-subtypingᴮ H (local var x ∈ T ← M ∙ B) (local s) p = Left (heap-weakeningᴮ (x ↦ T) H B (rednᴱ⊑ s) p) reflect-subtypingᴮ H (local var x ∈ T ← M ∙ B) (subst v) p = mapR LocalVarMismatch (substitutivityᴮ H B v x p) reflect-subtypingᴮ H (return M ∙ B) (return s) p = mapR return (reflect-subtypingᴱ H M s p) reflect-substitutionᴱ : ∀ {Γ T} H M v x → Warningᴱ H (typeCheckᴱ H Γ (M [ v / x ]ᴱ)) → Either (Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) M)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴱ-whenever : ∀ {Γ T} H v x y (p : Dec(x ≡ y)) → Warningᴱ H (typeCheckᴱ H Γ (var y [ v / x ]ᴱwhenever p)) → Either (Warningᴱ H (typeCheckᴱ H (Γ ⊕ x ↦ T) (var y))) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ : ∀ {Γ T} H B v x → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮ)) → Either (Warningᴮ H (typeCheckᴮ H (Γ ⊕ x ↦ T) B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless : ∀ {Γ T U} H B v x y (r : Dec(x ≡ y)) → Warningᴮ H (typeCheckᴮ H (Γ ⊕ y ↦ U) (B [ v / x ]ᴮunless r)) → Either (Warningᴮ H (typeCheckᴮ H ((Γ ⊕ x ↦ T) ⊕ y ↦ U) B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless-yes : ∀ {Γ Γ′ T} H B v x y (r : x ≡ y) → (Γ′ ≡ Γ) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless yes r)) → Either (Warningᴮ H (typeCheckᴮ H Γ′ B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴮ-unless-no : ∀ {Γ Γ′ T} H B v x y (r : x ≢ y) → (Γ′ ≡ Γ ⊕ x ↦ T) → Warningᴮ H (typeCheckᴮ H Γ (B [ v / x ]ᴮunless no r)) → Either (Warningᴮ H (typeCheckᴮ H Γ′ B)) (Either (Warningᴱ H (typeCheckᴱ H ∅ (val v))) (typeOfᴱ H ∅ (val v) ≮: T)) reflect-substitutionᴱ H (var y) v x W = reflect-substitutionᴱ-whenever H v x y (x ≡ⱽ y) W reflect-substitutionᴱ H (val (addr a)) v x (UnallocatedAddress r) = Left (UnallocatedAddress r) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) with substitutivityᴱ H N v x p reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Right W = Right (Right W) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q with substitutivityᴱ H M v x (src-unknown-≮: q) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Left r = Left ((FunctionCallMismatch ∘ unknown-src-≮: q) r) reflect-substitutionᴱ H (M $ N) v x (FunctionCallMismatch p) | Left q | Right W = Right (Right W) reflect-substitutionᴱ H (M $ N) v x (app₁ W) = mapL app₁ (reflect-substitutionᴱ H M v x W) reflect-substitutionᴱ H (M $ N) v x (app₂ W) = mapL app₂ (reflect-substitutionᴱ H N v x W) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H B v x y (x ≡ⱽ y) q) reflect-substitutionᴱ H (function f ⟨ var y ∈ T ⟩∈ U is B end) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W) reflect-substitutionᴱ H (block var b ∈ T is B end) v x (BlockMismatch q) = mapLR BlockMismatch Right (substitutivityᴮ H B v x q) reflect-substitutionᴱ H (block var b ∈ T is B end) v x (block₁ W′) = mapL block₁ (reflect-substitutionᴮ H B v x W′) reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₁ q) = mapLR BinOpMismatch₁ Right (substitutivityᴱ H M v x q) reflect-substitutionᴱ H (binexp M op N) v x (BinOpMismatch₂ q) = mapLR BinOpMismatch₂ Right (substitutivityᴱ H N v x q) reflect-substitutionᴱ H (binexp M op N) v x (bin₁ W) = mapL bin₁ (reflect-substitutionᴱ H M v x W) reflect-substitutionᴱ H (binexp M op N) v x (bin₂ W) = mapL bin₂ (reflect-substitutionᴱ H N v x W) reflect-substitutionᴱ-whenever H a x x (yes refl) (UnallocatedAddress p) = Right (Left (UnallocatedAddress p)) reflect-substitutionᴱ-whenever H v x y (no p) (UnboundVariable q) = Left (UnboundVariable (trans (sym (⊕-lookup-miss x y _ _ p)) q)) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (FunctionDefnMismatch q) = mapLR FunctionDefnMismatch Right (substitutivityᴮ-unless H C v x y (x ≡ⱽ y) q) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (function₁ W) = mapL function₁ (reflect-substitutionᴮ-unless H C v x y (x ≡ⱽ y) W) reflect-substitutionᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) v x (function₂ W) = mapL function₂ (reflect-substitutionᴮ-unless H B v x f (x ≡ⱽ f) W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (LocalVarMismatch q) = mapLR LocalVarMismatch Right (substitutivityᴱ H M v x q) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (local₁ W) = mapL local₁ (reflect-substitutionᴱ H M v x W) reflect-substitutionᴮ H (local var y ∈ T ← M ∙ B) v x (local₂ W) = mapL local₂ (reflect-substitutionᴮ-unless H B v x y (x ≡ⱽ y) W) reflect-substitutionᴮ H (return M ∙ B) v x (return W) = mapL return (reflect-substitutionᴱ H M v x W) reflect-substitutionᴮ-unless H B v x y (yes p) W = reflect-substitutionᴮ-unless-yes H B v x y p (⊕-over p) W reflect-substitutionᴮ-unless H B v x y (no p) W = reflect-substitutionᴮ-unless-no H B v x y p (⊕-swap p) W reflect-substitutionᴮ-unless-yes H B v x x refl refl W = Left W reflect-substitutionᴮ-unless-no H B v x y p refl W = reflect-substitutionᴮ H B v x W reflect-weakeningᴱ : ∀ Γ H M {H′} → (H ⊑ H′) → Warningᴱ H′ (typeCheckᴱ H′ Γ M) → Warningᴱ H (typeCheckᴱ H Γ M) reflect-weakeningᴮ : ∀ Γ H B {H′} → (H ⊑ H′) → Warningᴮ H′ (typeCheckᴮ H′ Γ B) → Warningᴮ H (typeCheckᴮ H Γ B) reflect-weakeningᴱ Γ H (var x) h (UnboundVariable p) = (UnboundVariable p) reflect-weakeningᴱ Γ H (val (addr a)) h (UnallocatedAddress p) = UnallocatedAddress (lookup-⊑-nothing a h p) reflect-weakeningᴱ Γ H (M $ N) h (FunctionCallMismatch p) = FunctionCallMismatch (heap-weakeningᴱ Γ H N h (unknown-src-≮: p (heap-weakeningᴱ Γ H M h (src-unknown-≮: p)))) reflect-weakeningᴱ Γ H (M $ N) h (app₁ W) = app₁ (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴱ Γ H (M $ N) h (app₂ W) = app₂ (reflect-weakeningᴱ Γ H N h W) reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₁ p) = BinOpMismatch₁ (heap-weakeningᴱ Γ H M h p) reflect-weakeningᴱ Γ H (binexp M op N) h (BinOpMismatch₂ p) = BinOpMismatch₂ (heap-weakeningᴱ Γ H N h p) reflect-weakeningᴱ Γ H (binexp M op N) h (bin₁ W′) = bin₁ (reflect-weakeningᴱ Γ H M h W′) reflect-weakeningᴱ Γ H (binexp M op N) h (bin₂ W′) = bin₂ (reflect-weakeningᴱ Γ H N h W′) reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (Γ ⊕ y ↦ T) H B h p) reflect-weakeningᴱ Γ H (function f ⟨ var y ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ ⊕ y ↦ T) H B h W) reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (BlockMismatch p) = BlockMismatch (heap-weakeningᴮ Γ H B h p) reflect-weakeningᴱ Γ H (block var b ∈ T is B end) h (block₁ W) = block₁ (reflect-weakeningᴮ Γ H B h W) reflect-weakeningᴮ Γ H (return M ∙ B) h (return W) = return (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (LocalVarMismatch p) = LocalVarMismatch (heap-weakeningᴱ Γ H M h p) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (local₁ W) = local₁ (reflect-weakeningᴱ Γ H M h W) reflect-weakeningᴮ Γ H (local var y ∈ T ← M ∙ B) h (local₂ W) = local₂ (reflect-weakeningᴮ (Γ ⊕ y ↦ T) H B h W) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (Γ ⊕ x ↦ T) H C h p) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₁ W) = function₁ (reflect-weakeningᴮ (Γ ⊕ x ↦ T) H C h W) reflect-weakeningᴮ Γ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) h (function₂ W) = function₂ (reflect-weakeningᴮ (Γ ⊕ f ↦ (T ⇒ U)) H B h W) reflect-weakeningᴼ : ∀ H O {H′} → (H ⊑ H′) → Warningᴼ H′ (typeCheckᴼ H′ O) → Warningᴼ H (typeCheckᴼ H O) reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (FunctionDefnMismatch p) = FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H B h p) reflect-weakeningᴼ H (just function f ⟨ var x ∈ T ⟩∈ U is B end) h (function₁ W) = function₁ (reflect-weakeningᴮ (x ↦ T) H B h W) reflectᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴱ H′ (typeCheckᴱ H′ ∅ M′) → Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H)) reflectᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴮ H′ (typeCheckᴮ H′ ∅ B′) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflectᴱ H (M $ N) (app₁ s) (FunctionCallMismatch p) = cond (Left ∘ FunctionCallMismatch ∘ heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) ∘ unknown-src-≮: p) (Left ∘ app₁) (reflect-subtypingᴱ H M s (src-unknown-≮: p)) reflectᴱ H (M $ N) (app₁ s) (app₁ W′) = mapL app₁ (reflectᴱ H M s W′) reflectᴱ H (M $ N) (app₁ s) (app₂ W′) = Left (app₂ (reflect-weakeningᴱ ∅ H N (rednᴱ⊑ s) W′)) reflectᴱ H (M $ N) (app₂ p s) (FunctionCallMismatch q) = cond (λ r → Left (FunctionCallMismatch (unknown-src-≮: r (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) (src-unknown-≮: r))))) (Left ∘ app₂) (reflect-subtypingᴱ H N s q) reflectᴱ H (M $ N) (app₂ p s) (app₁ W′) = Left (app₁ (reflect-weakeningᴱ ∅ H M (rednᴱ⊑ s) W′)) reflectᴱ H (M $ N) (app₂ p s) (app₂ W′) = mapL app₂ (reflectᴱ H N s W′) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) with substitutivityᴮ H B v x q reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Left r = Right (addr a p (FunctionDefnMismatch r)) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (BlockMismatch q) | Right r = Left (FunctionCallMismatch (≮:-trans-≡ r ((cong src (cong orUnknown (cong typeOfᴹᴼ (sym p))))))) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) with reflect-substitutionᴮ _ B v x W′ reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Left W = Right (addr a p (function₁ W)) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Right (Left W) = Left (app₂ W) reflectᴱ H (val (addr a) $ N) (beta (function f ⟨ var x ∈ T ⟩∈ U is B end) v refl p) (block₁ W′) | Right (Right q) = Left (FunctionCallMismatch (≮:-trans-≡ q (cong src (cong orUnknown (cong typeOfᴹᴼ (sym p)))))) reflectᴱ H (block var b ∈ T is B end) (block s) (BlockMismatch p) = Left (cond BlockMismatch block₁ (reflect-subtypingᴮ H B s p)) reflectᴱ H (block var b ∈ T is B end) (block s) (block₁ W′) = mapL block₁ (reflectᴮ H B s W′) reflectᴱ H (block var b ∈ T is B end) (return v) W′ = Left (block₁ (return W′)) reflectᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (UnallocatedAddress ()) reflectᴱ H (binexp M op N) (binOp₀ ()) (UnallocatedAddress p) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₁ p) = Left (cond BinOpMismatch₁ bin₁ (reflect-subtypingᴱ H M s p)) reflectᴱ H (binexp M op N) (binOp₁ s) (BinOpMismatch₂ p) = Left (BinOpMismatch₂ (heap-weakeningᴱ ∅ H N (rednᴱ⊑ s) p)) reflectᴱ H (binexp M op N) (binOp₁ s) (bin₁ W′) = mapL bin₁ (reflectᴱ H M s W′) reflectᴱ H (binexp M op N) (binOp₁ s) (bin₂ W′) = Left (bin₂ (reflect-weakeningᴱ ∅ H N (rednᴱ⊑ s) W′)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₁ p) = Left (BinOpMismatch₁ (heap-weakeningᴱ ∅ H M (rednᴱ⊑ s) p)) reflectᴱ H (binexp M op N) (binOp₂ s) (BinOpMismatch₂ p) = Left (cond BinOpMismatch₂ bin₂ (reflect-subtypingᴱ H N s p)) reflectᴱ H (binexp M op N) (binOp₂ s) (bin₁ W′) = Left (bin₁ (reflect-weakeningᴱ ∅ H M (rednᴱ⊑ s) W′)) reflectᴱ H (binexp M op N) (binOp₂ s) (bin₂ W′) = mapL bin₂ (reflectᴱ H N s W′) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (LocalVarMismatch p) = Left (cond LocalVarMismatch local₁ (reflect-subtypingᴱ H M s p)) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₁ W′) = mapL local₁ (reflectᴱ H M s W′) reflectᴮ H (local var x ∈ T ← M ∙ B) (local s) (local₂ W′) = Left (local₂ (reflect-weakeningᴮ (x ↦ T) H B (rednᴱ⊑ s) W′)) reflectᴮ H (local var x ∈ T ← M ∙ B) (subst v) W′ = Left (cond local₂ (cond local₁ LocalVarMismatch) (reflect-substitutionᴮ H B v x W′)) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ with reflect-substitutionᴮ _ B (addr a) f W′ reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Left W = Left (function₂ (reflect-weakeningᴮ (f ↦ (T ⇒ U)) H B (snoc defn) W)) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Right (Left (UnallocatedAddress ())) reflectᴮ H (function f ⟨ var y ∈ T ⟩∈ U is C end ∙ B) (function a defn) W′ | Right (Right p) = CONTRADICTION (≮:-refl p) reflectᴮ H (return M ∙ B) (return s) (return W′) = mapL return (reflectᴱ H M s W′) reflectᴴᴱ : ∀ H M {H′ M′} → (H ⊢ M ⟶ᴱ M′ ⊣ H′) → Warningᴴ H′ (typeCheckᴴ H′) → Either (Warningᴱ H (typeCheckᴱ H ∅ M)) (Warningᴴ H (typeCheckᴴ H)) reflectᴴᴮ : ∀ H B {H′ B′} → (H ⊢ B ⟶ᴮ B′ ⊣ H′) → Warningᴴ H′ (typeCheckᴴ H′) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflectᴴᴱ H (M $ N) (app₁ s) W = mapL app₁ (reflectᴴᴱ H M s W) reflectᴴᴱ H (M $ N) (app₂ v s) W = mapL app₂ (reflectᴴᴱ H N s W) reflectᴴᴱ H (M $ N) (beta O v refl p) W = Right W reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (addr b refl W) with b ≡ᴬ a reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H B (snoc defn) p)) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x ↦ T) H B (snoc defn) W)) reflectᴴᴱ H (function f ⟨ var x ∈ T ⟩∈ U is B end) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W)) reflectᴴᴱ H (block var b ∈ T is B end) (block s) W = mapL block₁ (reflectᴴᴮ H B s W) reflectᴴᴱ H (block var b ∈ T is return (val v) ∙ B end) (return v) W = Right W reflectᴴᴱ H (block var b ∈ T is done end) done W = Right W reflectᴴᴱ H (binexp M op N) (binOp₀ s) W = Right W reflectᴴᴱ H (binexp M op N) (binOp₁ s) W = mapL bin₁ (reflectᴴᴱ H M s W) reflectᴴᴱ H (binexp M op N) (binOp₂ s) W = mapL bin₂ (reflectᴴᴱ H N s W) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a p) (addr b refl W) with b ≡ᴬ a reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (FunctionDefnMismatch p)) | yes refl = Left (FunctionDefnMismatch (heap-weakeningᴮ (x ↦ T) H C (snoc defn) p)) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a defn) (addr b refl (function₁ W)) | yes refl = Left (function₁ (reflect-weakeningᴮ (x ↦ T) H C (snoc defn) W)) reflectᴴᴮ H (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) (function a p) (addr b refl W) | no q = Right (addr b (lookup-not-allocated p q) (reflect-weakeningᴼ H _ (snoc p) W)) reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (local s) W = mapL local₁ (reflectᴴᴱ H M s W) reflectᴴᴮ H (local var x ∈ T ← M ∙ B) (subst v) W = Right W reflectᴴᴮ H (return M ∙ B) (return s) W = mapL return (reflectᴴᴱ H M s W) reflect* : ∀ H B {H′ B′} → (H ⊢ B ⟶* B′ ⊣ H′) → Either (Warningᴮ H′ (typeCheckᴮ H′ ∅ B′)) (Warningᴴ H′ (typeCheckᴴ H′)) → Either (Warningᴮ H (typeCheckᴮ H ∅ B)) (Warningᴴ H (typeCheckᴴ H)) reflect* H B refl W = W reflect* H B (step s t) W = cond (reflectᴮ H B s) (reflectᴴᴮ H B s) (reflect* _ _ t W) isntNumber : ∀ H v → (valueType v ≢ number) → (typeOfᴱ H ∅ (val v) ≮: number) isntNumber H nil p = scalar-≢-impl-≮: nil number (λ ()) isntNumber H (addr a) p with remember (H [ a ]ᴴ) isntNumber H (addr a) p | (just (function f ⟨ var x ∈ T ⟩∈ U is B end) , q) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ q)) (function-≮:-scalar number) isntNumber H (addr a) p | (nothing , q) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ q)) (unknown-≮:-scalar number) isntNumber H (number x) p = CONTRADICTION (p refl) isntNumber H (bool x) p = scalar-≢-impl-≮: boolean number (λ ()) isntNumber H (string x) p = scalar-≢-impl-≮: string number (λ ()) isntString : ∀ H v → (valueType v ≢ string) → (typeOfᴱ H ∅ (val v) ≮: string) isntString H nil p = scalar-≢-impl-≮: nil string (λ ()) isntString H (addr a) p with remember (H [ a ]ᴴ) isntString H (addr a) p | (just (function f ⟨ var x ∈ T ⟩∈ U is B end) , q) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ q)) (function-≮:-scalar string) isntString H (addr a) p | (nothing , q) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ q)) (unknown-≮:-scalar string) isntString H (number x) p = scalar-≢-impl-≮: number string (λ ()) isntString H (bool x) p = scalar-≢-impl-≮: boolean string (λ ()) isntString H (string x) p = CONTRADICTION (p refl) isntFunction : ∀ H v {T U} → (valueType v ≢ function) → (typeOfᴱ H ∅ (val v) ≮: (T ⇒ U)) isntFunction H nil p = scalar-≮:-function nil isntFunction H (addr a) p = CONTRADICTION (p refl) isntFunction H (number x) p = scalar-≮:-function number isntFunction H (bool x) p = scalar-≮:-function boolean isntFunction H (string x) p = scalar-≮:-function string isntEmpty : ∀ H v → (typeOfᴱ H ∅ (val v) ≮: never) isntEmpty H nil = scalar-≮:-never nil isntEmpty H (addr a) with remember (H [ a ]ᴴ) isntEmpty H (addr a) | (just (function f ⟨ var x ∈ T ⟩∈ U is B end) , p) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ p)) function-≮:-never isntEmpty H (addr a) | (nothing , p) = ≡-trans-≮: (cong orUnknown (cong typeOfᴹᴼ p)) unknown-≮:-never isntEmpty H (number x) = scalar-≮:-never number isntEmpty H (bool x) = scalar-≮:-never boolean isntEmpty H (string x) = scalar-≮:-never string runtimeBinOpWarning : ∀ H {op} v → BinOpError op (valueType v) → (typeOfᴱ H ∅ (val v) ≮: srcBinOp op) runtimeBinOpWarning H v (+ p) = isntNumber H v p runtimeBinOpWarning H v (- p) = isntNumber H v p runtimeBinOpWarning H v (* p) = isntNumber H v p runtimeBinOpWarning H v (/ p) = isntNumber H v p runtimeBinOpWarning H v (< p) = isntNumber H v p runtimeBinOpWarning H v (> p) = isntNumber H v p runtimeBinOpWarning H v (<= p) = isntNumber H v p runtimeBinOpWarning H v (>= p) = isntNumber H v p runtimeBinOpWarning H v (·· p) = isntString H v p runtimeWarningᴱ : ∀ H M → RuntimeErrorᴱ H M → Warningᴱ H (typeCheckᴱ H ∅ M) runtimeWarningᴮ : ∀ H B → RuntimeErrorᴮ H B → Warningᴮ H (typeCheckᴮ H ∅ B) runtimeWarningᴱ H (var x) UnboundVariable = UnboundVariable refl runtimeWarningᴱ H (val (addr a)) (SEGV p) = UnallocatedAddress p runtimeWarningᴱ H (M $ N) (FunctionMismatch v w p) = FunctionCallMismatch (unknown-src-≮: (isntEmpty H w) (isntFunction H v p)) runtimeWarningᴱ H (M $ N) (app₁ err) = app₁ (runtimeWarningᴱ H M err) runtimeWarningᴱ H (M $ N) (app₂ err) = app₂ (runtimeWarningᴱ H N err) runtimeWarningᴱ H (block var b ∈ T is B end) (block err) = block₁ (runtimeWarningᴮ H B err) runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₁ v w p) = BinOpMismatch₁ (runtimeBinOpWarning H v p) runtimeWarningᴱ H (binexp M op N) (BinOpMismatch₂ v w p) = BinOpMismatch₂ (runtimeBinOpWarning H w p) runtimeWarningᴱ H (binexp M op N) (bin₁ err) = bin₁ (runtimeWarningᴱ H M err) runtimeWarningᴱ H (binexp M op N) (bin₂ err) = bin₂ (runtimeWarningᴱ H N err) runtimeWarningᴮ H (local var x ∈ T ← M ∙ B) (local err) = local₁ (runtimeWarningᴱ H M err) runtimeWarningᴮ H (return M ∙ B) (return err) = return (runtimeWarningᴱ H M err) wellTypedProgramsDontGoWrong : ∀ H′ B B′ → (∅ᴴ ⊢ B ⟶* B′ ⊣ H′) → (RuntimeErrorᴮ H′ B′) → Warningᴮ ∅ᴴ (typeCheckᴮ ∅ᴴ ∅ B) wellTypedProgramsDontGoWrong H′ B B′ t err with reflect* ∅ᴴ B t (Left (runtimeWarningᴮ H′ B′ err)) wellTypedProgramsDontGoWrong H′ B B′ t err | Right (addr a refl ()) wellTypedProgramsDontGoWrong H′ B B′ t err | Left W = W
83.704871
323
0.653168
4e50e3e14843875b4a09b6d3b022ceaafb4e6cdc
1,822
agda
Agda
test/Succeed/Issue3435.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3435.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3435.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where infix -1 _■ infixr -2 step-∼ postulate Transitive : {A : Set} (P Q : A → A → Set) → Set step-∼ : ∀ {A} {P Q : A → A → Set} ⦃ t : Transitive P Q ⦄ x {y z} → Q y z → P x y → Q x z syntax step-∼ x Qyz Pxy = x ∼⟨ Pxy ⟩ Qyz infix 4 _≈_ postulate Proc : Set _≈_ : Proc → Proc → Set _■ : ∀ x → x ≈ x instance trans : Transitive _≈_ _≈_ module DummyInstances where postulate R₁ R₂ R₃ R₄ R₅ : Proc → Proc → Set postulate instance transitive₁₁ : Transitive R₁ R₁ transitive₁₂ : Transitive R₁ R₂ transitive₁₃ : Transitive R₁ R₃ transitive₁₄ : Transitive R₁ R₄ transitive₁₅ : Transitive R₁ R₅ transitive₂₁ : Transitive R₂ R₁ transitive₂₂ : Transitive R₂ R₂ transitive₂₃ : Transitive R₂ R₃ transitive₂₄ : Transitive R₂ R₄ transitive₂₅ : Transitive R₂ R₅ transitive₃₁ : Transitive R₃ R₁ transitive₃₂ : Transitive R₃ R₂ transitive₃₃ : Transitive R₃ R₃ transitive₃₄ : Transitive R₃ R₄ transitive₃₅ : Transitive R₃ R₅ transitive₄₁ : Transitive R₄ R₁ transitive₄₂ : Transitive R₄ R₂ transitive₄₃ : Transitive R₄ R₃ transitive₄₄ : Transitive R₄ R₄ transitive₄₅ : Transitive R₄ R₅ transitive₅₁ : Transitive R₅ R₁ transitive₅₂ : Transitive R₅ R₂ transitive₅₃ : Transitive R₅ R₃ transitive₅₄ : Transitive R₅ R₄ transitive₅₅ : Transitive R₅ R₅ postulate comm : ∀ {P} → P ≈ P P : Proc cong : P ≈ P cong = P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ∼⟨ comm ⟩ P ■
21.690476
50
0.576839
ccf80f30ea51d5b1b7741d1443c45de7b66de7b2
2,540
agda
Agda
src/PiCalculus/LinearTypeSystem/Strengthening.agda
guilhermehas/typing-linear-pi
0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a
[ "MIT" ]
26
2020-05-02T23:32:11.000Z
2022-03-14T15:18:23.000Z
src/PiCalculus/LinearTypeSystem/Strengthening.agda
guilhermehas/typing-linear-pi
0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a
[ "MIT" ]
1
2022-03-15T09:16:14.000Z
2022-03-15T09:16:14.000Z
src/PiCalculus/LinearTypeSystem/Strengthening.agda
guilhermehas/typing-linear-pi
0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a
[ "MIT" ]
3
2021-01-25T13:57:13.000Z
2022-03-14T16:24:07.000Z
{-# OPTIONS --safe #-} -- --without-K #-} open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong) open import Function using (_∘_) import Data.Empty as Empty import Data.Product as Product import Data.Product.Properties as Productₚ import Data.Unit as Unit import Data.Nat as Nat import Data.Vec as Vec import Data.Vec.Properties as Vecₚ import Data.Bool as Bool import Data.Fin as Fin import Data.Vec.Relation.Unary.All as All open Empty using (⊥-elim) open Nat using (ℕ; zero; suc) open Vec using (Vec; []; _∷_) open All using (All; []; _∷_) open Fin using (Fin ; zero ; suc) open Product using (_,_; proj₁; proj₂) import PiCalculus.Syntax open PiCalculus.Syntax.Scoped open import PiCalculus.Semantics open import PiCalculus.LinearTypeSystem.Algebras module PiCalculus.LinearTypeSystem.Strengthening (Ω : Algebras) where open Algebras Ω open import PiCalculus.LinearTypeSystem Ω open import PiCalculus.LinearTypeSystem.ContextLemmas Ω private variable n : ℕ idxs : Idxs n idx idx' : Idx t t' : Type i j : Fin n P Q : Scoped n ∋-strengthen : {γ : PreCtx (suc n)} {idxs : Idxs (suc n)} {Γ Θ : Ctx idxs} {m' : Usage idx' ²} → (i : Fin (suc n)) → (i≢j : i ≢ j) → γ ; Γ ∋[ j ] t' ; m' ▹ Θ → Vec.remove γ i ; ctx-remove Γ i ∋[ Fin.punchOut i≢j ] t' ; m' ▹ ctx-remove Θ i ∋-strengthen zero i≢x (zero , zero _) = ⊥-elim (i≢x refl) ∋-strengthen zero i≢x (suc t , suc x) = t , x ∋-strengthen {γ = _ -, _ -, _} {_ -, _ -, _} {_ -, _ -, _} (suc i) i≢x (zero , zero xyz) = zero , zero xyz ∋-strengthen {γ = _ -, _ -, _} {_ -, _ -, _} {_ -, _ -, _} {_ -, _ -, _} (suc i) i≢x (suc t , suc x) = there (∋-strengthen i (i≢x ∘ cong suc) (t , x)) ⊢-strengthen : {P : Scoped (suc n)} {γ : PreCtx (suc n)} {idxs : Idxs (suc n)} {Γ Θ : Ctx idxs} → (i : Fin (suc n)) → (uP : Unused i P) → γ ; Γ ⊢ P ▹ Θ → Vec.remove γ i ; ctx-remove Γ i ⊢ lower i P uP ▹ ctx-remove Θ i ⊢-strengthen i uP 𝟘 = 𝟘 ⊢-strengthen {γ = _ -, _} {Γ = _ -, _} {Θ = _ -, _} i uP (ν t m μ ⊢P) = ν t m μ (⊢-strengthen (suc i) uP ⊢P) ⊢-strengthen {γ = _ -, _} {Γ = _ -, _} {Θ = _ -, _} i (i≢x , uP) (_⦅⦆_ {Ξ = _ -, _} x ⊢P) = ∋-strengthen i i≢x x ⦅⦆ ⊢-strengthen (suc i) uP ⊢P ⊢-strengthen {γ = _ -, _} i (i≢x , i≢y , uP) (x ⟨ y ⟩ ⊢P) = ∋-strengthen i i≢x x ⟨ ∋-strengthen i i≢y y ⟩ ⊢-strengthen i uP ⊢P ⊢-strengthen {γ = _ -, _} i (uP , uQ) (⊢P ∥ ⊢Q) = ⊢-strengthen i uP ⊢P ∥ ⊢-strengthen i uQ ⊢Q
37.910448
150
0.571654
4ece549f0d9ed7a25f7a6603588bddaf73564e1d
5,388
agda
Agda
src/Pts/Reduction/Cbv.agda
asr/pts-agda
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
[ "BSD-3-Clause" ]
21
2016-05-13T12:11:10.000Z
2021-08-31T10:47:57.000Z
src/Pts/Reduction/Cbv.agda
asr/pts-agda
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
[ "BSD-3-Clause" ]
1
2017-08-21T14:48:09.000Z
2017-08-21T16:01:50.000Z
src/Pts/Reduction/Cbv.agda
asr/pts-agda
d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43
[ "BSD-3-Clause" ]
4
2017-08-20T10:29:44.000Z
2019-08-11T23:28:33.000Z
------------------------------------------------------------------------ -- Call-by-value (CBV) reduction in pure type systems (PTS) ------------------------------------------------------------------------ module Pts.Reduction.Cbv where open import Data.Fin.Substitution open import Data.Fin.Substitution.ExtraLemmas open import Data.Star using (map; gmap) import Relation.Binary.EquivalenceClosure as EqClos import Relation.Binary.PropositionalEquality as PropEq open import Relation.Binary.Reduction open import Pts.Syntax open import Pts.Reduction.Full as Full hiding (reduction) -- All remaining submodules are parametrized by a given set of sorts. module _ {Sort : Set} where open Syntax Sort open Substitution Sort using (_[_]) ---------------------------------------------------------------------- -- Call-by-value (CBV) reduction and equivalence relations -- Untyped values with up to n free variables. data Val {n} : Term n → Set where sort : ∀ s → Val (sort s) -- sort Π : ∀ a b → Val (Π a b) -- dependent product ƛ : ∀ a b → Val (ƛ a b) -- abstraction infixl 9 _·₁_ _·₂_ infix 5 _→v_ -- One-step CBV reduction. data _→v_ {n} : Term n → Term n → Set where cont : ∀ a b {c} (v : Val c) → (ƛ a b) · c →v b [ c ] _·₁_ : ∀ {a₁ a₂} → a₁ →v a₂ → ∀ b → a₁ · b →v a₂ · b _·₂_ : ∀ {a b₁ b₂} (v : Val a) → b₁ →v b₂ → a · b₁ →v a · b₂ reduction : Reduction Term reduction = record { _→1_ = _→v_ } -- CBV reduction and equivalence. open Reduction reduction public renaming (_→*_ to _→v*_; _↔_ to _≡v_) ---------------------------------------------------------------------- -- Substitutions in CBV reductions/equivalence -- -- The applications _/→v_, _/→v*_ and _/≡v_ below may be considered -- substitution lemmas, i.e. they establish the commutativity of the -- respective reductions/equivalence with substitutions. -- Application of generic substitutions to the -- reductions/equivalence. record CbvSubstApp {T} (l : Lift T Term) : Set where open Lift l open SubstApp Sort l open PropEq hiding ([_]) -- Substitutions commute. field /-sub-↑ : ∀ {m n} a b (σ : Sub T m n) → a [ b ] / σ ≡ (a / σ ↑) [ b / σ ] infixl 8 _/Val_ _/→v_ -- Application of substitutions preserves values. _/Val_ : ∀ {m n a} → Val a → (σ : Sub T m n) → Val (a / σ) sort s /Val σ = sort s Π a b /Val σ = Π (a / σ) (b / σ ↑) ƛ a b /Val σ = ƛ (a / σ) (b / σ ↑) -- Substitution commutes with one-step reduction. _/→v_ : ∀ {m n a b} → a →v b → (σ : Sub T m n) → a / σ →v b / σ cont a b c /→v σ = subst (_→v_ _) (sym (/-sub-↑ b _ σ)) (cont (a / σ) (b / σ ↑) (c /Val σ)) a₁→a₂ ·₁ b /→v σ = (a₁→a₂ /→v σ) ·₁ (b / σ) a ·₂ b₁→b₂ /→v σ = (a /Val σ) ·₂ (b₁→b₂ /→v σ) redSubstApp : RedSubstApp reduction (record { _/_ = _/_ }) redSubstApp = record { _/→1_ = _/→v_ } open RedSubstApp redSubstApp public hiding (_/→1_) renaming (_/→*_ to _/→v*_; _/↔_ to _/≡v_) -- Term substitutions in reductions/equivalences. module CbvSubstitution where open Substitution Sort using (termSubst; weaken; sub-commutes; varLiftSubLemmas) -- Application of renamings to reductions/equivalences. varSubstApp : CbvSubstApp (TermSubst.varLift termSubst) varSubstApp = record { /-sub-↑ = /-sub-↑ } where open LiftSubLemmas varLiftSubLemmas private module V = CbvSubstApp varSubstApp -- Weakening of one-step CBV reductions. weaken-→v : ∀ {n} {a b : Term n} → a →v b → weaken a →v weaken b weaken-→v a→b = a→b V./→v VarSubst.wk -- Weakening of CBV reductions. weaken-→v* : ∀ {n} {a b : Term n} → a →v* b → weaken a →v* weaken b weaken-→v* = gmap weaken weaken-→v -- Weakening of equivalences. weaken-≡v : ∀ {n} {a b : Term n} → a ≡v b → weaken a ≡v weaken b weaken-≡v = EqClos.gmap weaken weaken-→v -- Application of term substitutions to reductions/equivalences. termSubstApp : CbvSubstApp (TermSubst.termLift termSubst) termSubstApp = record { /-sub-↑ = λ a _ _ → sub-commutes a } open CbvSubstApp termSubstApp public ---------------------------------------------------------------------- -- Properties of the CBV reductions/equivalence -- Inclusions. →v⇒→v* = →1⇒→* reduction →v*⇒≡v = →*⇒↔ reduction →v⇒≡v = →1⇒↔ reduction -- CBV reduction is a preorder. →v*-predorder = →*-predorder reduction -- Preorder reasoning for CBV reduction. module →v*-Reasoning = →*-Reasoning reduction -- Terms together with CBV equivalence form a setoid. ≡v-setoid = ↔-setoid reduction -- Equational reasoning for CBV equivalence. module ≡v-Reasoning = ↔-Reasoning reduction ---------------------------------------------------------------------- -- Relationships between CBV reduction and full β-reduction -- One-step CBV reduction implies one-step β-reduction. →v⇒→β : ∀ {n} {a b : Term n} → a →v b → a →β b →v⇒→β (cont a b c) = cont a b _ →v⇒→β (a₁→a₂ ·₁ b) = →v⇒→β a₁→a₂ ·₁ b →v⇒→β (a ·₂ b₁→b₂) = _ ·₂ →v⇒→β b₁→b₂ -- CBV reduction implies parallel reduction. →v*⇒→β* : ∀ {n} {a b : Term n} → a →v* b → a →β* b →v*⇒→β* = map →v⇒→β -- CBV equivalence implies parallel equivalence. ≡v⇒≡p : ∀ {n} {a b : Term n} → a ≡v b → a ≡β b ≡v⇒≡p = EqClos.map →v⇒→β
34.987013
78
0.559948
ccc52f366eb056b8d74befc718c4443b2951da93
7,845
agda
Agda
agda/course/2017-conor_mcbride_cs410/HC-Lec2.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
36
2015-01-29T14:37:15.000Z
2021-07-30T06:55:03.000Z
agda/course/2017-conor_mcbride_cs410/HC-Lec2.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
null
null
null
agda/course/2017-conor_mcbride_cs410/HC-Lec2.agda
haroldcarr/learn-haskell-coq-ml-etc
3dc7abca7ad868316bb08f31c77fbba0d3910225
[ "Unlicense" ]
8
2015-04-13T21:40:15.000Z
2021-09-21T15:58:10.000Z
module HC-Lec2 where open import HC-Lec1 -- ============================================================================== -- Lecture 4 : Sigma, Difference, Vector Take -- https://www.youtube.com/watch?v=OZeDRtRmgkw -- 43:14 data Vec (X : Set) : Nat -> Set where [] : Vec X zero _::_ : {n : Nat} -> X -> Vec X n -> Vec X (suc n) infixr 4 _::_ vTake : (m n : Nat) -> m >= n -> {X : Set} -> Vec X m -> Vec X n vTake m zero m>=n xs = [] vTake (suc m) (suc n) m>=n (x :: xs) = x :: vTake m n m>=n xs vTake32 : Set vTake32 = vTake 3 2 <> (1 :: 2 :: 3 :: []) == (1 :: 2 :: []) -- 47:35 : taking ALL elements is an identity vTakeIdFact : (n : Nat) {X : Set} (xs : Vec X n) -> vTake n n (refl->= n) xs == xs vTakeIdFact .0 [] = refl [] vTakeIdFact (suc n) (x :: xs) rewrite vTakeIdFact n xs = refl (x :: xs) -- 48:17 : taking p elements from Vm is same as taking n elements from Vm, forming Vn -- then taking p elments from Vn vTakeCpFact : (m n p : Nat) (m>=n : m >= n) (n>=p : n >= p) {X : Set} (xs : Vec X m) -> vTake m p (trans->= m n p m>=n n>=p) xs == vTake n p n>=p (vTake m n m>=n xs) vTakeCpFact m n zero m>=n n>=p _ = refl [] vTakeCpFact (suc m) (suc n) (suc p) m>=n n>=p (x :: xs) rewrite vTakeCpFact m n p m>=n n>=p xs = refl (x :: (vTake n p n>=p (vTake m n m>=n xs))) -- 48:54 -- vTakeIdFact : reflexivity turns into identity -- vTakeCpFact : transitivity turns into composition -- ============================================================================== -- Lecture 5 : How Rewrite Works -- https://www.youtube.com/watch?v=b5salYMZoyM -- 3:34 vTake53 : Vec Nat 3 vTake53 = vTake 5 3 <> (1 :: 2 :: 3 :: 4 :: 5 :: []) -- 5:30 vTake' : ∀ {m : Nat} {X : Set} -> (n : Nat) -> m >= n -> Vec X m -> Vec X n vTake' {m} zero m>=n xs = [] vTake' {suc m} (suc n) m>=n (x :: xs) = x :: vTake' {m} n m>=n xs {- -- 7:45 rigid symbols : constructors (value and type) - if you are trying to tell if two usages of constructors match each other, you can compare them component-wise - no defined computational meaning - they are what they are - e.g., Vec Nat 3 non-rigid - e.g., >= - can compute -- 15:48 vTake : think of as turning a '>=' proof into a vector operation. - In comes a proof on numbers, out comes an operation on vectors. vTakeIdFact : identity proof on numbers turns into identity operation on vectors vTakeCpFact : proof of transitivity on numbers turns into composition operation on vectors -- 24:08 : best practice : use record (instead of data) when possible : agda is more aggressive -- 24:28 : HOW REWRITE WORKS Rewrite is shorthand for - abstract the LHS of the equation using 'with' - abstract the proof of the equation using 'with' - then pattern matching on the proof -} ------------------------------------------------------------------------------ -- Splittings (which bear some relationship to <= from ex1) -- 39:00 data _<[_]>_ : Nat -> Nat -> Nat -> Set where zzz : zero <[ zero ]> zero lll : {l m r : Nat} -> l <[ m ]> r -> suc l <[ suc m ]> r rrr : {l m r : Nat} -> l <[ m ]> r -> l <[ suc m ]> suc r -- xzzz : Set -- xzzz = zero <[ zero ]> zero -- x1z1 : Set -- x1z1 = 1 <[ zero ]> 1 -- x159 : Set -- x159 = 1 <[ 5 ]> 9 -- x951 : Set -- x951 = 9 <[ 5 ]> 1 -- 41:08 -- combine two vectors into one according to given instructions -- this is kind of a "double-sided" '<=' {- collection * <--- * * ---> * * ---> * * <--- * * ---> * 3 from left 2 from right -} _>[_]<_ : {X : Set} {l m r : Nat} -> Vec X l -> l <[ m ]> r -- instructions -> Vec X r -> Vec X m -- why is rrr the first line? -- 29:49 https://www.youtube.com/watch?v=RW4aC_6n0yQ -- do NOT pattern match on vector first (LHS of first clause) -- pattern match on instructions first -- i.e., no pattern match on xl, so goes to try to match instruction : >[ rrr mmm ]< xl >[ rrr mmm ]< (x :: xr) = x :: (xl >[ mmm ]< xr) (x :: xl) >[ lll mmm ]< xr = x :: (xl >[ mmm ]< xr) [] >[ zzz ]< [] = [] v6rl : Vec Nat 6 v6rl = (0 :: 2 :: 3 :: []) >[ rrr (rrr (rrr (lll (lll (lll zzz))))) ]< (7 :: 8 :: 9 :: []) _ : v6rl == (7 :: 8 :: 9 :: 0 :: 2 :: 3 :: []) _ = refl (7 :: 8 :: 9 :: 0 :: 2 :: 3 :: []) v6 : Vec Nat 6 v6 = (0 :: 2 :: 3 :: []) >[ lll (rrr (lll (rrr (lll (rrr zzz))))) ]< (7 :: 8 :: 9 :: []) _ : v6 == (0 :: 7 :: 2 :: 8 :: 3 :: 9 :: []) _ = refl (0 :: 7 :: 2 :: 8 :: 3 :: 9 :: []) -- 44:27 -- split a vector into two vectors according to given instructions -- reverses '<[ m ]>' - instructions for taking things apart data FindSplit {X : Set} {l m r : Nat} (nnn : l <[ m ]> r) : (xs : Vec X m) -> Set where splitBits : (xl : Vec X l) (xr : Vec X r) -> FindSplit nnn (xl >[ nnn ]< xr) -- proves FindSplit findSplit : {X : Set} {l m r : Nat} (nnn : l <[ m ]> r) (xs : Vec X m) -> FindSplit nnn xs findSplit zzz [] = splitBits [] [] findSplit (lll nnn) (x :: xs) with findSplit nnn xs -- FindSplit (lll nnn) (x :: (xl >[ nnn ]< xr)) findSplit (lll nnn) (x :: .(xl >[ nnn ]< xr)) | splitBits xl xr = splitBits (x :: xl) xr findSplit (rrr nnn) (x :: xs) with findSplit nnn xs -- FindSplit (rrr nnn) (x :: (xl >[ nnn ]< xr)) findSplit (rrr nnn) (x :: .(xl >[ nnn ]< xr)) | splitBits xl xr = splitBits xl (x :: xr) -- ============================================================================== -- https://www.youtube.com/watch?v=RW4aC_6n0yQ -- 5:08 {- The o' <= constructor : you can keep increasing the RHS oz -- stop os -- take this one and keep going o' -- skip this one and keep going Tabulating the ways of choosing N things from M things A path is a way to get a specific embedding. The numbers in parenthesis shows the number of paths to a specific embedding (Pascal's triangle). oz 0<=0 (1) / \ / \ / \ o' os 0<=1 1<=1 (1) (1) / \ / \ / \ / \ / \ / \ o' os o' os 0<=2 1<=2 2<=2 (1) (2) (2) / \ / \ / \ / \ / \ / \ / \ / \ / \ o' os o' os o' os 0<=3 1<=3 2<=3 3<=3 (1) (3) (3) (1) witnesses to M choose N read a value in a set of this type as instructions for choosing -} -- 14:58 -- 'findSplit' (above) -- 23:20 -- last clause of 'findSplit' -- 29:49 : the same ERROR I had before changing order of clauses in _>[_]<_ -- 34:22 : rule of thumb -- if there is one column of args, where on every line is a constructor then no change -- otherwise, choose ordering carefully -- 35:52 : final order of clauses of of _>[_]<_ -- tidy to have nil case at top or bottom -- 40:15 shows how agda/haskell does case splitting on _>[_]<_
35.022321
97
0.446781
3777d8e7f93f2435ae7e840e4d4b9ae062bde8a0
906
agda
Agda
src/Web/Semantic/DL/KB/Model.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
1
2022-02-22T09:43:23.000Z
2022-02-22T09:43:23.000Z
src/Web/Semantic/DL/KB/Model.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
null
null
null
src/Web/Semantic/DL/KB/Model.agda
bblfish/agda-web-semantic
38fbc3af7062ba5c3d7d289b2b4bcfb995d99057
[ "MIT" ]
null
null
null
open import Data.Product using ( _×_ ; _,_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; ⊨a-resp-≲ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; ⌊_⌋ ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≃_ ; ≃⌊_⌋ ; ≃-impl-≲ ) open import Web.Semantic.DL.KB using ( KB ; tbox ; abox ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Model using ( _⊨t_ ; ⊨t-resp-≃ ) module Web.Semantic.DL.KB.Model {Σ : Signature} {X : Set} where infixr 2 _⊨_ {- An interpretation entails a knowledge base if it entails the tbox and the abox of the KB -} _⊨_ : Interp Σ X → KB Σ X → Set I ⊨ K = (⌊ I ⌋ ⊨t tbox K) × (I ⊨a abox K) Interps : KB Σ X → Interp Σ X → Set Interps K I = I ⊨ K ⊨-resp-≃ : ∀ {I J} → (I ≃ J) → ∀ K → (I ⊨ K) → (J ⊨ K) ⊨-resp-≃ I≃J K (I⊨T , I⊨A) = (⊨t-resp-≃ ≃⌊ I≃J ⌋ (tbox K) I⊨T , ⊨a-resp-≲ (≃-impl-≲ I≃J) (abox K) I⊨A)
37.75
80
0.609272
140051dbeac6304f678a5a552a7d9442499e1b0d
381
agda
Agda
test/Fail/Errors/UnknownATP.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
10
2015-09-03T20:54:16.000Z
2019-12-03T13:44:25.000Z
test/Fail/Errors/UnknownATP.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
121
2015-01-25T13:22:12.000Z
2018-04-22T06:01:44.000Z
test/Fail/Errors/UnknownATP.agda
asr/apia
a66c5ddca2ab470539fd68c42c4fbd45f720d682
[ "MIT" ]
4
2016-05-10T23:06:19.000Z
2016-08-03T03:54:55.000Z
-- Testing the error when using an unknown ATP. See the .flags file. {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} postulate D : Set _≡_ : D → D → Set a b : D postulate p : a ≡ b {-# ATP axiom p #-} postulate foo : a ≡ b {-# ATP prove foo #-}
21.166667
68
0.524934
ccde33ef6f402577fbbc988a2da8b2f57a3b3859
215
agda
Agda
Cubical/Categories/NaturalTransformation.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Categories/NaturalTransformation.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Categories/NaturalTransformation.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Categories.NaturalTransformation where open import Cubical.Categories.NaturalTransformation.Base public open import Cubical.Categories.NaturalTransformation.Properties public
30.714286
70
0.846512
1462b56fae015a50ba80a74964ec63d986b5fa66
850
agda
Agda
test/Fail/Issue1435-helper.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1435-helper.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1435-helper.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Jesper, 2015-12-18: the helper function shouldn't be accepted, since it -- matches on a heterogeneous equality and the equation between the types -- Box A and Box B cannot be solved without injective type constructors. data Box (A : Set) : Set where [_] : A → Box A data _≡_ (A : Set) : Set → Set₁ where refl : A ≡ A data _≅_ {A : Set₁} (x : A) : {B : Set₁} → B → Set₂ where refl : x ≅ x data C : Set → Set₁ where c₁ c₂ : (A : Set) → C (Box A) data D : {A : Set} → C A → Set₂ where d₁ : (A : Set) → D (c₁ A) d₂ : (A : Set) → D (c₂ A) D-elim-c₁-helper : (P : {A B : Set} {c : C A} → D c → A ≡ Box B → c ≅ c₁ B → Set₂) → ((A : Set) → P (d₁ A) refl refl) → {A B : Set} {c : C A} (x : D c) (eq₂ : c ≅ c₁ B) (eq₁ : A ≡ Box B) → P x eq₁ eq₂ D-elim-c₁-helper P p (d₂ A) () _ D-elim-c₁-helper P p (d₁ A) refl refl = p A
29.310345
74
0.545882
2ec7392ae786ad75ce1f625ede3b8ddaffc62127
11,352
agda
Agda
Cubical/Categories/Presheaf/KanExtension.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-02-05T01:25:26.000Z
2022-02-05T01:25:26.000Z
Cubical/Categories/Presheaf/KanExtension.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Categories/Presheaf/KanExtension.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} {- Kan extension of a functor C → D to a functor PreShv C ℓ → PreShv D ℓ left or right adjoint to precomposition. -} module Cubical.Categories.Presheaf.KanExtension where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Functions.FunExtEquiv open import Cubical.HITs.SetQuotients open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Adjoint open import Cubical.Categories.Presheaf.Base open import Cubical.Categories.Instances.Functors open import Cubical.Categories.Instances.Sets {- Left Kan extension of a functor C → D to a functor PreShv C ℓ → PreShv D ℓ left adjoint to precomposition. -} module Lan {ℓC ℓC' ℓD ℓD'} ℓS {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) where open Functor open NatTrans private module C = Category C module D = Category D {- We want the category SET ℓ we're mapping into to be large enough that the coend will take presheaves Cᵒᵖ → Set ℓ to presheaves Dᵒᵖ → Set ℓ, otherwise we get no adjunction with precomposition. So we must have ℓC,ℓC',ℓD' ≤ ℓ; the parameter ℓS allows ℓ to be larger than their maximum. -} ℓ = ℓ-max (ℓ-max (ℓ-max ℓC ℓC') ℓD') ℓS module _ (G : Functor (C ^op) (SET ℓ)) where -- Definition of the coend module _ (d : D.ob) where Raw : Type ℓ Raw = Σ[ c ∈ C.ob ] Σ[ g ∈ D.Hom[ d , F ⟅ c ⟆ ] ] G .F-ob c .fst data _≈_ : (u v : Raw) → Type ℓ where shift : {c c' : C.ob} (g : D.Hom[ d , F ⟅ c ⟆ ]) (f : C.Hom[ c , c' ]) (a : (G ⟅ c' ⟆) .fst) → (c' , (g D.⋆ F ⟪ f ⟫) , a) ≈ (c , g , (G ⟪ f ⟫) a) Quo = Raw / _≈_ pattern shift/ g f a i = eq/ _ _ (shift g f a) i -- Action of Quo on arrows in D mapR : {d d' : D.ob} (h : D.Hom[ d' , d ]) → Quo d → Quo d' mapR h [ c , g , a ] = [ c , h D.⋆ g , a ] mapR h (shift/ g f a i) = hcomp (λ j → λ { (i = i0) → [ _ , D.⋆Assoc h g (F ⟪ f ⟫) j , a ] ; (i = i1) → [ _ , h D.⋆ g , (G ⟪ f ⟫) a ] }) (shift/ (h D.⋆ g) f a i) mapR h (squash/ t u p q i j) = squash/ (mapR h t) (mapR h u) (cong (mapR h) p) (cong (mapR h) q) i j mapRId : (d : D.ob) → mapR (D.id {x = d}) ≡ idfun (Quo d) mapRId d = funExt (elimProp (λ _ → squash/ _ _) (λ (c , g , a) i → [ c , D.⋆IdL g i , a ])) mapR∘ : {d d' d'' : D.ob} (h' : D.Hom[ d'' , d' ]) (h : D.Hom[ d' , d ]) → mapR (h' D.⋆ h) ≡ mapR h' ∘ mapR h mapR∘ h' h = funExt (elimProp (λ _ → squash/ _ _) (λ (c , g , a) i → [ c , D.⋆Assoc h' h g i , a ])) LanOb : Functor (C ^op) (SET ℓ) → Functor (D ^op) (SET _) LanOb G .F-ob d .fst = Quo G d LanOb G .F-ob d .snd = squash/ LanOb G .F-hom = mapR G LanOb G .F-id {d} = mapRId G d LanOb G .F-seq h h' = mapR∘ G h' h -- Action of Quo on arrows in Cᵒᵖ → Set module _ {G G' : Functor (C ^op) (SET ℓ)} (α : NatTrans G G') where mapL : (d : D.ob) → Quo G d → Quo G' d mapL d [ c , g , a ] = [ c , g , α .N-ob c a ] mapL d (shift/ g f a i) = hcomp (λ j → λ { (i = i0) → [ _ , (g D.⋆ F ⟪ f ⟫) , α .N-ob _ a ] ; (i = i1) → [ _ , g , funExt⁻ (α .N-hom f) a (~ j) ] }) (shift/ g f ((α ⟦ _ ⟧) a) i) mapL d (squash/ t u p q i j) = squash/ (mapL d t) (mapL d u) (cong (mapL d) p) (cong (mapL d) q) i j mapLR : {d d' : D.ob} (h : D.Hom[ d' , d ]) → mapL d' ∘ mapR G h ≡ mapR G' h ∘ mapL d mapLR h = funExt (elimProp (λ _ → squash/ _ _) (λ _ → refl)) mapLId : (G : Functor (C ^op) (SET ℓ)) (d : D.ob) → mapL (idTrans G) d ≡ idfun (Quo G d) mapLId G d = funExt (elimProp (λ _ → squash/ _ _) (λ _ → refl)) mapL∘ : {G G' G'' : Functor (C ^op) (SET ℓ)} (β : NatTrans G' G'') (α : NatTrans G G') (d : D.ob) → mapL (seqTrans α β) d ≡ mapL β d ∘ mapL α d mapL∘ β α d = funExt (elimProp (λ _ → squash/ _ _) (λ _ → refl)) LanHom : {G G' : Functor (C ^op) (SET ℓ)} → NatTrans G G' → NatTrans (LanOb G) (LanOb G') LanHom α .N-ob = mapL α LanHom α .N-hom = mapLR α -- Definition of the left Kan extension functor Lan : Functor (FUNCTOR (C ^op) (SET ℓ)) (FUNCTOR (D ^op) (SET ℓ)) Lan .F-ob = LanOb Lan .F-hom = LanHom Lan .F-id {G} = makeNatTransPath (funExt (mapLId G)) Lan .F-seq α β = makeNatTransPath (funExt (mapL∘ β α)) -- Adjunction between the left Kan extension and precomposition private F* = precomposeF (SET ℓ) (F ^opF) open UnitCounit η : 𝟙⟨ FUNCTOR (C ^op) (SET ℓ) ⟩ ⇒ funcComp F* Lan η .N-ob G .N-ob c a = [ c , D.id , a ] η .N-ob G .N-hom {c'} {c} f = funExt λ a → [ c , D.id , (G ⟪ f ⟫) a ] ≡⟨ sym (shift/ D.id f a) ⟩ [ c' , (D.id D.⋆ F ⟪ f ⟫) , a ] ≡[ i ]⟨ [ c' , lem i , a ] ⟩ [ c' , (F ⟪ f ⟫ D.⋆ D.id) , a ] ∎ where lem : D.id D.⋆ F ⟪ f ⟫ ≡ F ⟪ f ⟫ D.⋆ D.id lem = D.⋆IdL (F ⟪ f ⟫) ∙ sym (D.⋆IdR (F ⟪ f ⟫)) η .N-hom f = makeNatTransPath refl ε : funcComp Lan F* ⇒ 𝟙⟨ FUNCTOR (D ^op) (SET ℓ) ⟩ ε .N-ob H .N-ob d = elim (λ _ → (H ⟅ d ⟆) .snd) (λ (c , g , a) → (H ⟪ g ⟫) a) (λ {_ _ (shift g f a) i → H .F-seq (F ⟪ f ⟫) g i a}) ε .N-ob H .N-hom g' = funExt (elimProp (λ _ → (H ⟅ _ ⟆) .snd _ _) (λ (c , g , a) → funExt⁻ (H .F-seq g g') a)) ε .N-hom {H} {H'} α = makeNatTransPath (funExt₂ λ d → elimProp (λ _ → (H' ⟅ _ ⟆) .snd _ _) (λ (c , g , a) → sym (funExt⁻ (α .N-hom g) a))) Δ₁ : ∀ G → seqTrans (Lan ⟪ η ⟦ G ⟧ ⟫) (ε ⟦ Lan ⟅ G ⟆ ⟧) ≡ idTrans _ Δ₁ G = makeNatTransPath (funExt₂ λ d → elimProp (λ _ → squash/ _ _) (λ (c , g , a) → [ c , g D.⋆ D.id , a ] ≡[ i ]⟨ [ c , (g D.⋆ F .F-id (~ i)) , a ] ⟩ [ c , g D.⋆ (F ⟪ C.id ⟫) , a ] ≡⟨ shift/ g C.id a ⟩ [ c , g , (G ⟪ C.id ⟫) a ] ≡[ i ]⟨ [ c , g , G .F-id i a ] ⟩ [ c , g , a ] ∎)) Δ₂ : ∀ H → seqTrans (η ⟦ F* ⟅ H ⟆ ⟧) (F* ⟪ ε ⟦ H ⟧ ⟫) ≡ idTrans _ Δ₂ H = makeNatTransPath (funExt λ c → H .F-id) adj : Lan ⊣ F* adj = make⊣ η ε Δ₁ Δ₂ {- Right Kan extension of a functor C → D to a functor PreShv C ℓ → PreShv D ℓ right adjoint to precomposition. -} module Ran {ℓC ℓC' ℓD ℓD'} ℓS {C : Category ℓC ℓC'} {D : Category ℓD ℓD'} (F : Functor C D) where open Functor open NatTrans private module C = Category C module D = Category D {- We want the category SET ℓ we're mapping into to be large enough that the coend will take presheaves Cᵒᵖ → Set ℓ to presheaves Dᵒᵖ → Set ℓ, otherwise we get no adjunction with precomposition. So we must have ℓC,ℓC',ℓD' ≤ ℓ; the parameter ℓS allows ℓ to be larger than their maximum. -} ℓ = ℓ-max (ℓ-max (ℓ-max ℓC ℓC') ℓD') ℓS module _ (G : Functor (C ^op) (SET ℓ)) where -- Definition of the end record End (d : D.ob) : Type ℓ where field fun : (c : C.ob) (g : D.Hom[ F ⟅ c ⟆ , d ]) → G .F-ob c .fst coh : {c c' : C.ob} (f : C.Hom[ c , c' ]) (g : D.Hom[ F ⟅ c' ⟆ , d ]) → fun c (F ⟪ f ⟫ ⋆⟨ D ⟩ g) ≡ (G ⟪ f ⟫) (fun c' g) open End end≡ : {d : D.ob} {x x' : End d} → (∀ c g → x .fun c g ≡ x' .fun c g) → x ≡ x' end≡ h i .fun c g = h c g i end≡ {_} {x} {x'} h i .coh f g = isSet→isSet' (G .F-ob _ .snd) (x .coh f g) (x' .coh f g) (h _ (F ⟪ f ⟫ ⋆⟨ D ⟩ g)) (cong (G ⟪ f ⟫) (h _ g)) i -- Action of End on arrows in D mapR : {d d' : D.ob} (h : D.Hom[ d' , d ]) → End d → End d' mapR h x .fun c g = x .fun c (g ⋆⟨ D ⟩ h) mapR h x .coh f g = cong (x .fun _) (D.⋆Assoc (F ⟪ f ⟫) g h) ∙ x .coh f (g ⋆⟨ D ⟩ h) mapRId : (d : D.ob) → mapR (D.id {x = d}) ≡ idfun (End d) mapRId h = funExt λ x → end≡ λ c g → cong (x .fun c) (D.⋆IdR g) mapR∘ : {d d' d'' : D.ob} (h' : D.Hom[ d'' , d' ]) (h : D.Hom[ d' , d ]) → mapR (h' D.⋆ h) ≡ mapR h' ∘ mapR h mapR∘ h' h = funExt λ x → end≡ λ c g → cong (x .fun c) (sym (D.⋆Assoc g h' h)) open End RanOb : Functor (C ^op) (SET ℓ) → Functor (D ^op) (SET _) RanOb G .F-ob d .fst = End G d RanOb G .F-ob d .snd = -- We use that End is equivalent to a Σ-type to prove its HLevel more easily isOfHLevelRetract 2 {B = Σ[ z ∈ ((c : C.ob) (g : D.Hom[ F ⟅ c ⟆ , d ]) → G .F-ob c .fst) ] ({c c' : C.ob} (f : C.Hom[ c , c' ]) (g : D.Hom[ F ⟅ c' ⟆ , d ]) → z c (F ⟪ f ⟫ ⋆⟨ D ⟩ g) ≡ (G ⟪ f ⟫) (z c' g)) } (λ x → λ where .fst → x .fun; .snd → x .coh) (λ σ → λ where .fun → σ .fst; .coh → σ .snd) (λ _ → refl) (isSetΣ (isSetΠ2 λ _ _ → G .F-ob _ .snd) (λ _ → isProp→isSet (isPropImplicitΠ λ _ → isPropImplicitΠ λ _ → isPropΠ2 λ _ _ → G .F-ob _ .snd _ _))) RanOb G .F-hom = mapR G RanOb G .F-id {d} = mapRId G d RanOb G .F-seq h h' = mapR∘ G h' h -- Action of End on arrows in Cᵒᵖ → Set module _ {G G' : Functor (C ^op) (SET ℓ)} (α : NatTrans G G') where mapL : (d : D.ob) → End G d → End G' d mapL d x .fun c g = (α ⟦ c ⟧) (x .fun c g) mapL d x .coh f g = cong (α ⟦ _ ⟧) (x .coh f g) ∙ funExt⁻ (α .N-hom f) (x .fun _ g) mapLR : {d d' : D.ob} (h : D.Hom[ d' , d ]) → mapL d' ∘ mapR G h ≡ mapR G' h ∘ mapL d mapLR h = funExt λ _ → end≡ _ λ _ _ → refl mapLId : (G : Functor (C ^op) (SET ℓ)) (d : D.ob) → mapL (idTrans G) d ≡ idfun (End G d) mapLId G d = funExt λ _ → end≡ _ λ _ _ → refl mapL∘ : {G G' G'' : Functor (C ^op) (SET ℓ)} (β : NatTrans G' G'') (α : NatTrans G G') (d : D.ob) → mapL (seqTrans α β) d ≡ mapL β d ∘ mapL α d mapL∘ β α d = funExt λ _ → end≡ _ λ _ _ → refl RanHom : {G G' : Functor (C ^op) (SET ℓ)} → NatTrans G G' → NatTrans (RanOb G) (RanOb G') RanHom α .N-ob = mapL α RanHom α .N-hom = mapLR α -- Definition of the right Kan extension functor Ran : Functor (FUNCTOR (C ^op) (SET ℓ)) (FUNCTOR (D ^op) (SET ℓ)) Ran .F-ob = RanOb Ran .F-hom = RanHom Ran .F-id {G} = makeNatTransPath (funExt (mapLId G)) Ran .F-seq α β = makeNatTransPath (funExt (mapL∘ β α)) -- Adjunction between precomposition and right Kan extension private F* = precomposeF (SET ℓ) (F ^opF) open UnitCounit η : 𝟙⟨ FUNCTOR (D ^op) (SET ℓ) ⟩ ⇒ (funcComp Ran F*) η .N-ob G .N-ob d a .fun c g = (G ⟪ g ⟫) a η .N-ob G .N-ob d a .coh f g = funExt⁻ (G .F-seq g (F ⟪ f ⟫)) a η .N-ob G .N-hom h = funExt λ a → end≡ _ λ c g → sym (funExt⁻ (G .F-seq h g) a) η .N-hom {G} {G'} α = makeNatTransPath (funExt₂ λ d a → end≡ _ λ c g → sym (funExt⁻ (α .N-hom g) a)) ε : funcComp F* Ran ⇒ 𝟙⟨ FUNCTOR (C ^op) (SET ℓ) ⟩ ε .N-ob H .N-ob c x = x .fun c D.id ε .N-ob H .N-hom {c} {c'} g = funExt λ x → cong (x .fun c') (D.⋆IdL _ ∙ sym (D.⋆IdR _)) ∙ x .coh g D.id ε .N-hom {H} {H'} α = makeNatTransPath refl Δ₁ : ∀ G → seqTrans (F* ⟪ η ⟦ G ⟧ ⟫) (ε ⟦ F* ⟅ G ⟆ ⟧) ≡ idTrans _ Δ₁ G = makeNatTransPath (funExt₂ λ c a → funExt⁻ (G .F-id) a) Δ₂ : ∀ H → seqTrans (η ⟦ Ran ⟅ H ⟆ ⟧) (Ran ⟪ ε ⟦ H ⟧ ⟫) ≡ idTrans _ Δ₂ H = makeNatTransPath (funExt₂ λ c x → end≡ _ λ c' g → cong (x .fun c') (D.⋆IdL g)) adj : F* ⊣ Ran adj = make⊣ η ε Δ₁ Δ₂
33.192982
110
0.498855
306f1e645769a69f1c54bac4024aacf3011afef2
9,568
agda
Agda
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
Cubical/Experiments/ZariskiLatticeBasicOpens.agda
howsiyu/cubical
1b9c97a2140fe96fe636f4c66beedfd7b8096e8f
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Experiments.ZariskiLatticeBasicOpens where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Foundations.Structure open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Relation.Binary.Poset open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.Algebra.CommRing.Localisation.InvertingElements open import Cubical.Algebra.CommAlgebra.Base open import Cubical.Algebra.CommAlgebra.Properties open import Cubical.Algebra.CommAlgebra.Localisation open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Semilattice open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso open BinaryRelation open isEquivRel private variable ℓ ℓ' : Level module Presheaf (A' : CommRing ℓ) where open CommRingStr (snd A') renaming (_·_ to _·r_ ; ·Comm to ·r-comm ; ·Assoc to ·rAssoc ; ·Lid to ·rLid ; ·Rid to ·rRid) open Exponentiation A' open CommRingTheory A' open InvertingElementsBase A' open isMultClosedSubset open CommAlgebraStr ⦃...⦄ private A = fst A' A[1/_] : A → CommAlgebra A' ℓ A[1/ x ] = AlgLoc.S⁻¹RAsCommAlg A' [ x ⁿ|n≥0] (powersFormMultClosedSubset _) A[1/_]ˣ : (x : A) → ℙ (fst A[1/ x ]) A[1/ x ]ˣ = (CommAlgebra→CommRing A[1/ x ]) ˣ _≼_ : A → A → Type ℓ x ≼ y = ∃[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y -- rad(x) ⊆ rad(y) -- ≼ is a pre-order: Refl≼ : isRefl _≼_ Refl≼ x = PT.∣ 1 , 1r , ·r-comm _ _ ∣ Trans≼ : isTrans _≼_ Trans≼ x y z = map2 Trans≼Σ where Trans≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] y ^ n ≡ a ·r z → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r z Trans≼Σ (n , a , p) (m , b , q) = n ·ℕ m , (a ^ m ·r b) , path where path : x ^ (n ·ℕ m) ≡ a ^ m ·r b ·r z path = x ^ (n ·ℕ m) ≡⟨ ^-rdist-·ℕ x n m ⟩ (x ^ n) ^ m ≡⟨ cong (_^ m) p ⟩ (a ·r y) ^ m ≡⟨ ^-ldist-· a y m ⟩ a ^ m ·r y ^ m ≡⟨ cong (a ^ m ·r_) q ⟩ a ^ m ·r (b ·r z) ≡⟨ ·rAssoc _ _ _ ⟩ a ^ m ·r b ·r z ∎ R : A → A → Type ℓ R x y = x ≼ y × y ≼ x -- rad(x) ≡ rad(y) RequivRel : isEquivRel R RequivRel .reflexive x = Refl≼ x , Refl≼ x RequivRel .symmetric _ _ Rxy = (Rxy .snd) , (Rxy .fst) RequivRel .transitive _ _ _ Rxy Ryz = Trans≼ _ _ _ (Rxy .fst) (Ryz .fst) , Trans≼ _ _ _ (Ryz .snd) (Rxy .snd) RpropValued : isPropValued R RpropValued x y = isProp× isPropPropTrunc isPropPropTrunc powerIs≽ : (x a : A) → x ∈ [ a ⁿ|n≥0] → a ≼ x powerIs≽ x a = map powerIs≽Σ where powerIs≽Σ : Σ[ n ∈ ℕ ] (x ≡ a ^ n) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] (a ^ n ≡ z ·r x) powerIs≽Σ (n , p) = n , 1r , sym p ∙ sym (·rLid _) module ≼ToLoc (x y : A) where private instance _ = snd A[1/ x ] lemma : x ≼ y → y ⋆ 1a ∈ A[1/ x ]ˣ -- y/1 ∈ A[1/x]ˣ lemma = PT.rec (A[1/ x ]ˣ (y ⋆ 1a) .snd) lemmaΣ where path1 : (y z : A) → 1r ·r (y ·r 1r ·r z) ·r 1r ≡ z ·r y path1 = solve A' path2 : (xn : A) → xn ≡ 1r ·r 1r ·r (1r ·r 1r ·r xn) path2 = solve A' lemmaΣ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → y ⋆ 1a ∈ A[1/ x ]ˣ lemmaΣ (n , z , p) = [ z , (x ^ n) , PT.∣ n , refl ∣ ] -- xⁿ≡zy → y⁻¹ ≡ z/xⁿ , eq/ _ _ ((1r , powersFormMultClosedSubset _ .containsOne) , (path1 _ _ ∙∙ sym p ∙∙ path2 _)) module ≼PowerToLoc (x y : A) (x≼y : x ≼ y) where private [yⁿ|n≥0] = [ y ⁿ|n≥0] instance _ = snd A[1/ x ] lemma : ∀ (s : A) → s ∈ [yⁿ|n≥0] → s ⋆ 1a ∈ A[1/ x ]ˣ lemma _ s∈[yⁿ|n≥0] = ≼ToLoc.lemma _ _ (Trans≼ _ y _ x≼y (powerIs≽ _ _ s∈[yⁿ|n≥0])) 𝓞ᴰ : A / R → CommAlgebra A' ℓ 𝓞ᴰ = rec→Gpd.fun isGroupoidCommAlgebra (λ a → A[1/ a ]) RCoh LocPathProp where RCoh : ∀ a b → R a b → A[1/ a ] ≡ A[1/ b ] RCoh a b (a≼b , b≼a) = fst (isContrS₁⁻¹R≡S₂⁻¹R (≼PowerToLoc.lemma _ _ b≼a) (≼PowerToLoc.lemma _ _ a≼b)) where open AlgLocTwoSubsets A' [ a ⁿ|n≥0] (powersFormMultClosedSubset _) [ b ⁿ|n≥0] (powersFormMultClosedSubset _) LocPathProp : ∀ a b → isProp (A[1/ a ] ≡ A[1/ b ]) LocPathProp a b = isPropS₁⁻¹R≡S₂⁻¹R where open AlgLocTwoSubsets A' [ a ⁿ|n≥0] (powersFormMultClosedSubset _) [ b ⁿ|n≥0] (powersFormMultClosedSubset _) -- The quotient A/R corresponds to the basic opens of the Zariski topology. -- Multiplication lifts to the quotient and corresponds to intersection -- of basic opens, i.e. we get a meet-semilattice with: _∧/_ : A / R → A / R → A / R _∧/_ = setQuotSymmBinOp (RequivRel .reflexive) (RequivRel .transitive) _·r_ (λ a b → subst (λ x → R (a ·r b) x) (·r-comm a b) (RequivRel .reflexive (a ·r b))) ·r-lcoh where ·r-lcoh-≼ : (x y z : A) → x ≼ y → (x ·r z) ≼ (y ·r z) ·r-lcoh-≼ x y z = map ·r-lcoh-≼Σ where path : (x z a y zn : A) → x ·r z ·r (a ·r y ·r zn) ≡ x ·r zn ·r a ·r (y ·r z) path = solve A' ·r-lcoh-≼Σ : Σ[ n ∈ ℕ ] Σ[ a ∈ A ] x ^ n ≡ a ·r y → Σ[ n ∈ ℕ ] Σ[ a ∈ A ] (x ·r z) ^ n ≡ a ·r (y ·r z) ·r-lcoh-≼Σ (n , a , p) = suc n , (x ·r z ^ n ·r a) , (cong (x ·r z ·r_) (^-ldist-· _ _ _) ∙∙ cong (λ v → x ·r z ·r (v ·r z ^ n)) p ∙∙ path _ _ _ _ _) ·r-lcoh : (x y z : A) → R x y → R (x ·r z) (y ·r z) ·r-lcoh x y z Rxy = ·r-lcoh-≼ x y z (Rxy .fst) , ·r-lcoh-≼ y x z (Rxy .snd) BasicOpens : Semilattice ℓ BasicOpens = makeSemilattice [ 1r ] _∧/_ squash/ (elimProp3 (λ _ _ _ → squash/ _ _) λ _ _ _ → cong [_] (·rAssoc _ _ _)) (elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rRid _)) (elimProp (λ _ → squash/ _ _) λ _ → cong [_] (·rLid _)) (elimProp2 (λ _ _ → squash/ _ _) λ _ _ → cong [_] (·r-comm _ _)) (elimProp (λ _ → squash/ _ _) λ a → eq/ _ _ -- R a a² (∣ 1 , a , ·rRid _ ∣ , ∣ 2 , 1r , cong (a ·r_) (·rRid a) ∙ sym (·rLid _) ∣)) -- The induced partial order open MeetSemilattice BasicOpens renaming (_≤_ to _≼/_ ; IndPoset to BasicOpensAsPoset) -- coincides with our ≼ ≼/CoincidesWith≼ : ∀ (x y : A) → ([ x ] ≼/ [ y ]) ≡ (x ≼ y) ≼/CoincidesWith≼ x y = [ x ] ≼/ [ y ] -- ≡⟨ refl ⟩ [ x ·r y ] ≡ [ x ] ≡⟨ isoToPath (isEquivRel→effectiveIso RpropValued RequivRel _ _) ⟩ R (x ·r y) x ≡⟨ isoToPath Σ-swap-Iso ⟩ R x (x ·r y) ≡⟨ hPropExt (RpropValued _ _) isPropPropTrunc ·To≼ ≼To· ⟩ x ≼ y ∎ where x≼xy→x≼yΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y) → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y x≼xy→x≼yΣ (n , z , p) = n , (z ·r x) , p ∙ ·rAssoc _ _ _ ·To≼ : R x (x ·r y) → x ≼ y ·To≼ (x≼xy , _) = PT.map x≼xy→x≼yΣ x≼xy x≼y→x≼xyΣ : Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r y → Σ[ n ∈ ℕ ] Σ[ z ∈ A ] x ^ n ≡ z ·r (x ·r y) x≼y→x≼xyΣ (n , z , p) = suc n , z , cong (x ·r_) p ∙ ·CommAssocl _ _ _ ≼To· : x ≼ y → R x ( x ·r y) ≼To· x≼y = PT.map x≼y→x≼xyΣ x≼y , PT.∣ 1 , y , ·rRid _ ∙ ·r-comm _ _ ∣ open IsPoset open PosetStr Refl≼/ : isRefl _≼/_ Refl≼/ = BasicOpensAsPoset .snd .isPoset .is-refl Trans≼/ : isTrans _≼/_ Trans≼/ = BasicOpensAsPoset .snd .isPoset .is-trans -- The restrictions: ρᴰᴬ : (a b : A) → a ≼ b → isContr (CommAlgebraHom A[1/ b ] A[1/ a ]) ρᴰᴬ _ b a≼b = A[1/b]HasUniversalProp _ (≼PowerToLoc.lemma _ _ a≼b) where open AlgLoc A' [ b ⁿ|n≥0] (powersFormMultClosedSubset _) renaming (S⁻¹RHasAlgUniversalProp to A[1/b]HasUniversalProp) ρᴰᴬId : ∀ (a : A) (r : a ≼ a) → ρᴰᴬ a a r .fst ≡ idAlgHom ρᴰᴬId a r = ρᴰᴬ a a r .snd _ ρᴰᴬComp : ∀ (a b c : A) (l : a ≼ b) (m : b ≼ c) → ρᴰᴬ a c (Trans≼ _ _ _ l m) .fst ≡ ρᴰᴬ a b l .fst ∘a ρᴰᴬ b c m .fst ρᴰᴬComp a _ c l m = ρᴰᴬ a c (Trans≼ _ _ _ l m) .snd _ ρᴰ : (x y : A / R) → x ≼/ y → CommAlgebraHom (𝓞ᴰ y) (𝓞ᴰ x) ρᴰ = elimContr2 λ _ _ → isContrΠ λ [a]≼/[b] → ρᴰᴬ _ _ (transport (≼/CoincidesWith≼ _ _) [a]≼/[b]) ρᴰId : ∀ (x : A / R) (r : x ≼/ x) → ρᴰ x x r ≡ idAlgHom ρᴰId = SQ.elimProp (λ _ → isPropΠ (λ _ → isSetAlgebraHom _ _ _ _)) λ a r → ρᴰᴬId a (transport (≼/CoincidesWith≼ _ _) r) ρᴰComp : ∀ (x y z : A / R) (l : x ≼/ y) (m : y ≼/ z) → ρᴰ x z (Trans≼/ _ _ _ l m) ≡ ρᴰ x y l ∘a ρᴰ y z m ρᴰComp = SQ.elimProp3 (λ _ _ _ → isPropΠ2 (λ _ _ → isSetAlgebraHom _ _ _ _)) λ a b c _ _ → sym (ρᴰᴬ a c _ .snd _) ∙ ρᴰᴬComp a b c _ _
38.272
100
0.534176
43cad849307a16e785df19b686f498cc1f9d5dd8
212
agda
Agda
src/Trees.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
1
2020-04-15T15:28:03.000Z
2020-04-15T15:28:03.000Z
src/Trees.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
src/Trees.agda
ice1k/Theorems
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
[ "Apache-2.0" ]
null
null
null
module Trees where open import Data.Unit using (⊤) data BinTree {a} (A : Set a) : Set a where Empty : A → BinTree A Node : A → BinTree A → BinTree A → BinTree A BareBinTree : Set BareBinTree = BinTree ⊤
17.666667
47
0.660377
7391211816b721681a5face2901feb93eba0c14f
5,243
agda
Agda
Univalence/OldUnivalence/SimpleHoTT.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
14
2015-08-18T21:40:15.000Z
2021-05-05T01:07:57.000Z
Univalence/OldUnivalence/SimpleHoTT.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
4
2018-06-07T16:27:41.000Z
2021-10-29T20:41:23.000Z
Univalence/OldUnivalence/SimpleHoTT.agda
JacquesCarette/pi-dual
003835484facfde0b770bc2b3d781b42b76184c1
[ "BSD-2-Clause" ]
3
2016-05-29T01:56:33.000Z
2019-09-10T09:47:13.000Z
{-# OPTIONS --without-K #-} module SimpleHoTT where open import Data.Empty open import Data.Sum renaming (map to _⊎→_) open import Function renaming (_∘_ to _○_) infixr 8 _∘_ -- path composition infix 4 _≡_ -- propositional equality infix 2 _∎ -- equational reasoning for paths infixr 2 _≡⟨_⟩_ -- equational reasoning for paths ------------------------------------------------------------------------------ -- Equivalences a la HoTT (using HoTT paths and path induction) -- Our own version of refl that makes 'a' explicit data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : (a : A) → (a ≡ a) -- not sure where else to put this [Z] hetType : {A B : Set} → (a : A) → A ≡ B → B hetType a (refl _) = a -- J pathInd : ∀ {u ℓ} → {A : Set u} → (C : {x y : A} → x ≡ y → Set ℓ) → (c : (x : A) → C (refl x)) → ({x y : A} (p : x ≡ y) → C p) pathInd C c (refl x) = c x basedPathInd : {A : Set} → (a : A) → (C : (x : A) → (a ≡ x) → Set) → C a (refl a) → ((x : A) (p : a ≡ x) → C x p) basedPathInd a C c .a (refl .a) = c ! : ∀ {u} → {A : Set u} {x y : A} → (x ≡ y) → (y ≡ x) ! = pathInd (λ {x} {y} _ → y ≡ x) refl _∘_ : ∀ {u} → {A : Set u} → {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _∘_ {u} {A} {x} {y} {z} p q = pathInd {u} (λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z))) (λ x z q → pathInd (λ {x} {z} _ → x ≡ z) refl {x} {z} q) {x} {y} p z q -- p = p . refl unitTransR : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ p ∘ refl y) unitTransR {A} {x} {y} p = pathInd (λ {x} {y} p → p ≡ p ∘ (refl y)) (λ x → refl (refl x)) {x} {y} p -- p = refl . p unitTransL : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x ∘ p) unitTransL {A} {x} {y} p = pathInd (λ {x} {y} p → p ≡ (refl x) ∘ p) (λ x → refl (refl x)) {x} {y} p ap : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {x y : A} → (f : A → B) → (x ≡ y) → (f x ≡ f y) ap {ℓ} {ℓ'} {A} {B} {x} {y} f p = pathInd -- on p (λ {x} {y} p → f x ≡ f y) (λ x → refl (f x)) {x} {y} p ap2 : ∀ {ℓ ℓ' ℓ''} → {A : Set ℓ} {B : Set ℓ'} {C : Set ℓ''} {x₁ y₁ : A} {x₂ y₂ : B} → (f : A → B → C) → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (f x₁ x₂ ≡ f y₁ y₂) ap2 {ℓ} {ℓ'} {ℓ''} {A} {B} {C} {x₁} {y₁} {x₂} {y₂} f p₁ p₂ = pathInd -- on p₁ (λ {x₁} {y₁} p₁ → f x₁ x₂ ≡ f y₁ y₂) (λ x → pathInd -- on p₂ (λ {x₂} {y₂} p₂ → f x x₂ ≡ f x y₂) (λ y → refl (f x y)) {x₂} {y₂} p₂) {x₁} {y₁} p₁ -- Abbreviations for path compositions _≡⟨_⟩_ : ∀ {u} → {A : Set u} (x : A) {y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _ ≡⟨ p ⟩ q = p ∘ q bydef : ∀ {u} → {A : Set u} {x : A} → (x ≡ x) bydef {u} {A} {x} = refl x _∎ : ∀ {u} → {A : Set u} (x : A) → x ≡ x _∎ x = refl x -- Transport; Lifting transport : ∀ {ℓ ℓ'} → {A : Set ℓ} {x y : A} → (P : A → Set ℓ') → (p : x ≡ y) → P x → P y transport {ℓ} {ℓ'} {A} {x} {y} P p = pathInd -- on p (λ {x} {y} p → (P x → P y)) (λ _ → id) {x} {y} p -- Lemma 2.3.10 transport-f : ∀ {ℓ ℓ' ℓ''} → {A : Set ℓ} {B : Set ℓ'} {x y : A} → (f : A → B) → (P : B → Set ℓ'') → (p : x ≡ y) → (u : P (f x)) → transport (P ○ f) p u ≡ transport P (ap f p) u transport-f {ℓ} {ℓ'} {ℓ''} {A} {B} {x} {y} f P p u = pathInd -- on p (λ {x} {y} p → (u : P (f x)) → transport (P ○ f) p u ≡ transport P (ap f p) u) (λ x u → refl u) {x} {y} p u -- Lemma 2.11.2 transportIdR : {A : Set} {a y z : A} → (p : y ≡ z) → (q : a ≡ y) → transport (λ x → a ≡ x) p q ≡ q ∘ p transportIdR {A} {a} {y} {z} p q = pathInd (λ {y} {z} p → (q : a ≡ y) → transport (λ x → a ≡ x) p q ≡ q ∘ p) (λ y q → transport (λ x → a ≡ x) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransR q ⟩ q ∘ refl y ∎) {y} {z} p q transportIdL : {A : Set} {a y z : A} → (p : y ≡ z) → (q : y ≡ a) → transport (λ x → x ≡ a) p q ≡ ! p ∘ q transportIdL {A} {a} {y} {z} p q = pathInd (λ {y} {z} p → (q : y ≡ a) → transport (λ x → x ≡ a) p q ≡ ! p ∘ q) (λ y q → transport (λ x → x ≡ a) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransL q ⟩ ! (refl y) ∘ q ∎) {y} {z} p q transportIdRefl : {A : Set} {y z : A} → (p : y ≡ z) → (q : y ≡ y) → transport (λ x → x ≡ x) p q ≡ ! p ∘ q ∘ p transportIdRefl {A} {y} {z} p q = pathInd (λ {y} {z} p → (q : y ≡ y) → transport (λ x → x ≡ x) p q ≡ ! p ∘ q ∘ p) (λ y q → transport (λ x → x ≡ x) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransR q ⟩ q ∘ refl y ≡⟨ unitTransL (q ∘ refl y) ⟩ ! (refl y) ∘ q ∘ refl y ∎) {y} {z} p q -- tools for coproducts (Sec. 2.12) indCP : {A B : Set} → (C : A ⊎ B → Set) → ((a : A) → C (inj₁ a)) → ((b : B) → C (inj₂ b)) → ((x : A ⊎ B) → C x) indCP C f g (inj₁ a) = f a indCP C f g (inj₂ b) = g b code : {A B : Set} → (a₀ : A) → A ⊎ B → Set code a₀ (inj₁ a) = a₀ ≡ a code a₀ (inj₂ b) = ⊥ encode : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (p : inj₁ a₀ ≡ x) → code a₀ x encode {A} {B} a₀ x p = transport (code a₀) p (refl a₀) decode : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (c : code a₀ x) → inj₁ a₀ ≡ x decode a₀ (inj₁ a) c = ap inj₁ c decode a₀ (inj₂ b) ()
29.96
78
0.400343
731d4f62d17502b2854eea6208f48efb4f79585c
815
agda
Agda
test/Succeed/Issue450.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/Issue450.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Succeed/Issue450.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
module Issue450 where open import Common.Level open import Common.Coinduction data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x data Wrap (A : Set) : Set where con : A -> Wrap A out : forall {A} -> Wrap A -> A out (con x) = x out' : forall {A} -> ∞ (Wrap A) -> A out' y = out (♭ y) inn : forall {A} -> A -> ∞ (Wrap A) inn y = ♯ (con y) prf : (A : Set)(x : A) → out' (inn x) ≡ x prf A x = refl test : forall {A : Set}{x : A} -> out (con x) ≡ x test = refl -- these work test1 : forall {A}{x : A} -> out' (inn x) ≡ x test1 {A} {x} = test test2 : forall {A}{x : A} -> out' (inn x) ≡ x test2 {A} {x} = test {A} -- but the following ones won't typecheck test3 : forall {A}{x : A} -> out' (inn x) ≡ x test3 {A} {x} = test {A} {x} test4 : forall {A}{x : A} -> out' (inn x) ≡ x test4 {A} {x} = refl
19.404762
49
0.52638
0dbc72c2f9fa975a98a02b696ac8b18e4e77ffbd
1,042
agda
Agda
test/Succeed/Issue899.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
1
2016-03-17T01:45:59.000Z
2016-03-17T01:45:59.000Z
test/Succeed/Issue899.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/Issue899.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- Andreas, 2013-11-07 -- Instance candidates are now considered modulo judgemental equality. module Issue899 where postulate A B : Set f : {{ x : A }} → B instance a : A instance a' : A a' = a test : B test = f {- The previous code fails with the following message: Resolve implicit argument _x_257 : A. Candidates: [a : A, a : A] There are indeed two values in scope of type A (a and a'), but given that they are definitionally equal, Agda should not complain about it but just pick any one of them. -} -- Andreas, 2017-07-28: the other example now also works, thanks to G. Brunerie record Eq (A : Set) : Set₁ where field _==_ : A → A → Set record Ord (A : Set) : Set₁ where field {{eq}} : Eq A _<_ : A → A → Set postulate N : Set eqN : N → N → Set ordN : N → N → Set instance EqN : Eq N EqN = record {_==_ = eqN} OrdN : Ord N OrdN = record {_<_ = ordN} ordToEq : {A : Set} → Ord A → Eq A ordToEq o = Ord.eq o postulate f2 : (A : Set) {{e : Eq A}} → Set → Set test2 = f2 N N
18.607143
79
0.614203
14eb157b9126663cbc143cc0f5b2769ff3e92338
33
agda
Agda
Categories/Preorder.agda
copumpkin/categories
36f4181d751e2ecb54db219911d8c69afe8ba892
[ "BSD-3-Clause" ]
98
2015-04-15T14:57:33.000Z
2022-03-08T05:20:36.000Z
Categories/Preorder.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
19
2015-05-23T06:47:10.000Z
2019-08-09T16:31:40.000Z
Categories/Preorder.agda
p-pavel/categories
e41aef56324a9f1f8cf3cd30b2db2f73e01066f2
[ "BSD-3-Clause" ]
23
2015-02-05T13:03:09.000Z
2021-11-11T13:50:56.000Z
module Categories.Preorder where
16.5
32
0.878788
14435461c35e8cdeb1157a0b492e95dd516cdf3f
40,156
agda
Agda
Definition/LogicalRelation/Substitution/Introductions/CastPi.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2018-06-21T08:39:01.000Z
2022-01-17T16:13:53.000Z
Definition/LogicalRelation/Substitution/Introductions/CastPi.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
null
null
null
Definition/LogicalRelation/Substitution/Introductions/CastPi.agda
CoqHott/logrel-mltt
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
[ "MIT" ]
2
2022-01-26T14:55:51.000Z
2022-02-15T19:42:19.000Z
{-# OPTIONS --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.CastPi {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped as U hiding (wk) open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm) open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Weakening open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties open import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Introductions.Sigma open import Definition.LogicalRelation.Substitution.Introductions.Fst open import Definition.LogicalRelation.Substitution.Introductions.Snd open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.Lambda open import Definition.LogicalRelation.Substitution.Introductions.Application open import Definition.LogicalRelation.Substitution.Introductions.Cast open import Definition.LogicalRelation.Substitution.Introductions.Id open import Definition.LogicalRelation.Substitution.Introductions.IdUPiPi open import Definition.LogicalRelation.Substitution.Introductions.Transp open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Definition.LogicalRelation.Substitution.MaybeEmbed open import Definition.LogicalRelation.Substitution.Introductions.Universe open import Definition.LogicalRelation.Substitution.Reduction open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.Conversion open import Definition.LogicalRelation.Substitution.ProofIrrelevance open import Definition.LogicalRelation.Fundamental.Variable open import Tools.Product import Tools.PropositionalEquality as PE wk2d : Term → Term wk2d = U.wk (lift (lift (step id))) wk1f-cast-subst : ∀ σ f A' A rA e → (wk1 (subst σ f) ∘ cast ⁰ (wk1 (subst σ A')) (wk1 (subst σ A)) (Idsym (Univ rA ⁰) (wk1 (subst σ A)) (wk1 (subst σ A')) (fst (wk1 (subst σ e)))) (var 0) ^ ⁰) PE.≡ subst (repeat liftSubst (repeat liftSubst σ 1) 0) (wk1 f ∘ cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) ^ ⁰) wk1f-cast-subst σ f A' A rA e = PE.cong₂ (λ X Y → X ∘ Y ^ ⁰) (PE.sym (Idsym-subst-lemma σ f)) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (PE.sym (Idsym-subst-lemma σ A')) (PE.sym (Idsym-subst-lemma σ A)) (PE.trans (PE.cong₃ (λ X Y Z → Idsym (Univ rA ⁰) X Y Z) (PE.sym (Idsym-subst-lemma σ A)) (PE.sym (Idsym-subst-lemma σ A')) (PE.sym (Idsym-subst-lemma σ (fst e)))) (PE.sym (subst-Idsym (liftSubst σ) (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e)))))) B-cast-subst : ∀ σ A' A rA e B → subst (liftSubst σ) B [ cast ⁰ (wk1 (subst σ A')) (wk1 (subst σ A)) (Idsym (Univ rA ⁰) (wk1 (subst σ A)) (wk1 (subst σ A')) (fst (wk1 (subst σ e)))) (var 0) ]↑ PE.≡ subst (repeat liftSubst (repeat liftSubst σ 1) 0) (B [ cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) ]↑) B-cast-subst σ A′ A rA e B = PE.trans (PE.cong (λ X → (subst (liftSubst σ) B) [ X ]↑) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (PE.sym (Idsym-subst-lemma σ A′)) (PE.sym (Idsym-subst-lemma σ A)) (PE.trans (PE.cong₃ (λ X Y Z → Idsym (Univ rA ⁰) X Y Z) (PE.sym (Idsym-subst-lemma σ A)) (PE.sym (Idsym-subst-lemma σ A′)) (PE.sym (Idsym-subst-lemma σ (fst e)))) (PE.sym (subst-Idsym (liftSubst σ) (Univ rA ⁰) (wk1 A) (wk1 A′) (fst (wk1 e))))))) (PE.sym ((singleSubstLift↑ σ B _))) wk2d11-111 : ∀ A → wk2d (wk1 (wk1 A)) PE.≡ wk1 (wk1 (wk1 A)) wk2d11-111 A = PE.trans (wk-comp (lift (lift (step id))) (step id) (wk1 A)) (PE.trans (wk-comp (step (lift (step id))) (step id) A) (PE.trans (PE.sym (wk-comp (step (step id)) (step id) A)) (PE.sym (wk-comp (step id) (step id) (wk1 A))))) wk2d1d-1d1d : ∀ A → wk2d (wk1d A) PE.≡ wk1d (wk1d A) wk2d1d-1d1d A = PE.trans (wk-comp (lift (lift (step id))) (lift (step id)) A) (PE.trans PE.refl (PE.sym (wk-comp (lift (step id)) (lift (step id)) A))) wk1∃-aux : ∀ A A' rA B B' → wk1 (∃ Id (Univ rA ⁰) A A' ▹ (Π wk1 A' ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹)) PE.≡ ∃ Id (Univ rA ⁰) (wk1 A) (wk1 A') ▹ (Π wk1 (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk2d (wk1d B) [ cast ⁰ (wk2d (wk1 (wk1 A'))) (wk2d (wk1 (wk1 A))) (Idsym (Univ rA ⁰) (wk2d (wk1 (wk1 A))) (wk2d (wk1 (wk1 A'))) (var 1)) (var 0) ]↑) (wk1d (wk1d B')) ° ¹ ° ¹) wk1∃-aux A A' rA B B' = PE.cong₃ (λ X Y Z → ∃ Id (Univ rA ⁰) (wk1 A) (wk1 A') ▹ Π X ^ rA ° ⁰ ▹ Id (U ⁰) Y Z ° ¹ ° ¹) (PE.trans (wk-comp (lift (step id)) (step id) A') (PE.sym (wk-comp (step id) (step id) A'))) (PE.trans (wk-β↑ (wk1d B)) (PE.cong₃ (λ X Y Z → wk2d (wk1d B) [ cast ⁰ X Y Z (var 0) ]↑) PE.refl PE.refl (wk-Idsym (lift (lift (step id))) (Univ rA ⁰) _ _ (var 1)) )) (wk2d1d-1d1d B') wk1∃ : ∀ A A' rA B B' → wk1 (∃ Id (Univ rA ⁰) A A' ▹ (Π wk1 A' ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹)) PE.≡ ∃ Id (Univ rA ⁰) (wk1 A) (wk1 A') ▹ (Π wk1 (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d (wk1d B) [ cast ⁰ (wk1 (wk1 (wk1 A'))) (wk1 (wk1 (wk1 A))) (Idsym (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) (var 1)) (var 0) ]↑) (wk1d (wk1d B')) ° ¹ ° ¹) wk1∃ A A' rA B B' = PE.trans (wk1∃-aux A A' rA B B') (PE.cong₃ (λ X Y Z → ∃ Id (Univ rA ⁰) (wk1 A) (wk1 A') ▹ Π (wk1 (wk1 A')) ^ rA ° ⁰ ▹ Id (U ⁰) (X [ Y ]↑) Z ° ¹ ° ¹) (wk2d1d-1d1d B) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (wk2d11-111 A') (wk2d11-111 A) (PE.cong₂ (λ X Y → Idsym (Univ rA ⁰) X Y (var 1)) (wk2d11-111 A) (wk2d11-111 A'))) PE.refl ) snd-cast-subst : ∀ A A' rA B B' e → Π wk1 (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d (wk1d B) [ cast ⁰ (wk1 (wk1 (wk1 A'))) (wk1 (wk1 (wk1 A))) (Idsym (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) (var 1)) (var 0) ]↑) (wk1d (wk1d B')) ° ¹ ° ¹ [ fst (wk1 e) ] PE.≡ Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B') ° ¹ ° ¹ snd-cast-subst A A' rA B B' e = PE.cong₃ (λ X Y Z → Π X ^ rA ° ⁰ ▹ Id (U ⁰) Y Z ° ¹ ° ¹) (wk1-singleSubst (wk1 A') _) (PE.trans (singleSubstLift↑ (sgSubst (fst (wk1 e))) (wk1d (wk1d B)) _) (PE.cong₂ (λ X Y → X [ Y ]↑) (wk1d-singleSubst (wk1d B) (fst (wk1 e))) (PE.cong₃ (λ X Y Z → cast ⁰ X Y Z (var 0)) (subst3wk A' (fst (wk1 e))) (subst3wk A (fst (wk1 e))) (PE.trans (subst-Idsym (liftSubst (sgSubst (fst (wk1 e)))) (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) (var 1)) (PE.cong₂ (λ X Y → Idsym (Univ rA ⁰) X Y (fst (wk1 (wk1 e)))) (subst3wk A (fst (wk1 e))) (subst3wk A' (fst (wk1 e)))))))) (wk1d-singleSubst (wk1d B') (fst (wk1 e))) where subst3wk : ∀ t u → subst (liftSubst (sgSubst u)) (wk1 (wk1 (wk1 t))) PE.≡ wk1 (wk1 t) subst3wk t u = PE.trans (Idsym-subst-lemma (sgSubst u) (wk1 (wk1 t))) (PE.cong wk1 (wk1-singleSubst (wk1 t) u)) Id-cast-subst : ∀ A A' rA B B' e → Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B') [ var 0 ] PE.≡ Id (U ⁰) (B [ cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) ]↑) B' Id-cast-subst A A' rA B B' e = PE.cong₂ (Id (U ⁰)) (PE.trans (PE.cong (λ X → X [ var 0 ]) (wk1d[]-[]↑ (wk1d B) _)) (PE.trans aux (PE.sym (wk1d[]-[]↑ B _))) ) (wkSingleSubstId B') where aux : (wk1d (wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]) [ var 0 ] PE.≡ wk1d B [ cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) ] aux = PE.trans (singleSubstLift (wk1d (wk1d B)) _) (PE.cong₄ (λ X Y Z T → X [ cast ⁰ Y Z T (var 0) ]) (wk1d-singleSubst (wk1d B) (var 0)) (wk1-singleSubst (wk1 A') (var 0)) (wk1-singleSubst (wk1 A) (var 0)) (PE.trans (subst-Idsym _ (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (wk1 (wk1 (fst e)))) (PE.cong₃ (λ X Y Z → Idsym (Univ rA ⁰) X Y Z) (wk1-singleSubst (wk1 A) (var 0)) (wk1-singleSubst (wk1 A') (var 0)) (wk1-singleSubst (wk1 (fst e)) (var 0))))) cast-Πᵗᵛ-aux : ∀ {A B A' B' rA Γ e f} ([Γ] : ⊩ᵛ Γ) → let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) in ([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rA , ι lΠ ] / [Γ]) ([A'] : Γ ⊩ᵛ⟨ l ⟩ A' ^ [ rA , ι lΠ ] / [Γ]) ([UB] : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A]) ([UB'] : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A']) ([A]ₜ : Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B]ₜ : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ})) ([A']ₜ : Γ ⊩ᵛ⟨ l ⟩ A' ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B']ₜ : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B' ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'] / (λ {Δ} {σ} → [UB'] {Δ} {σ})) ([Id] : Γ ⊩ᵛ⟨ l ⟩ Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) ^ [ % , next lΠ ] / [Γ]) ([e]ₜ : Γ ⊩ᵛ⟨ l ⟩ e ∷ Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) ^ [ % , next lΠ ] / [Γ] / [Id]) ([ΠAB] : Γ ⊩ᵛ⟨ l ⟩ Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ]) ([f]ₜ : Γ ⊩ᵛ⟨ l ⟩ f ∷ Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ] / [ΠAB]) → ([Id-U-ΠΠ] : [ Γ ⊩ᵛ⟨ l ⟩ (Id (U ⁰) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° lΠ) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° lΠ)) ≡ ∃ (Id (Univ rA ⁰) A A') ▹ (Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((U.wk (lift (step id)) B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (U.wk (lift (step id)) B') ° ¹ ° ¹) ∷ SProp ¹ ^ [ ! , next ¹ ] / [Γ] ] ) → let [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [ΓA'] = (_∙_ {Γ} {A'} [Γ] [A']) [w'A] = wk1ᵗᵛ {F = A'} {G = A} {lG = ⁰} [Γ] [A'] [A]ₜ [w'A'] = wk1ᵗᵛ {F = A'} {G = A'} {lG = ⁰} [Γ] [A'] [A']ₜ [w'A']' = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [wUA] = maybeEmbᵛ {A = Univ rA _} [ΓA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'] {Δ} {σ}) [wIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] [ww'A']' = wk1ᵛ {A = wk1 A'} {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [w'A']' [ww'A'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A'} {lG = ⁰} [ΓA'] [wIdAA'] [w'A'] [ΓA'Id] = _∙_ {A = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [ΓA'IdA'] = _∙_ {A = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [wwwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'IdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'IdA'] {Δ} {σ}) {Δ} {σ} [www'A'] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A')} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A'] [ww'A] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A} {lG = ⁰} [ΓA'] [wIdAA'] [w'A] [www'A] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A)} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A] [wwwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 (wk1 A))} {u = wk1 (wk1 (wk1 A'))} [ΓA'IdA'] (λ {Δ} {σ} → [wwwUA'] {Δ} {σ} rA) [www'A] [www'A'] [wwwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓA'Id] {Δ} {σ} Id-U-ΠΠ-res-end A A' B B' = Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹ in ([Id-U-ΠΠ-res-end] : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ⊩ᵛ⟨ ∞ ⟩ Id-U-ΠΠ-res-end (wk1 A) (wk1 A') (wk1d B) (wk1d B') ∷ SProp ¹ ^ [ ! , ∞ ] / [ΓA'Id] / (λ {Δ} {σ} → [wwwU¹] {Δ} {σ} %)) ([var]ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 A' ^ [ rA , ι ⁰ ] / [ΓA'] / wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A']) ([var0']ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ∙ wk1 (wk1 A') ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 (wk1 (wk1 A')) ^ [ rA , ι ⁰ ] / [ΓA'IdA'] / wk1ᵛ {A = wk1 (wk1 A')} {F = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [ww'A']') ([var1']ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ∙ wk1 (wk1 A') ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 1 ∷ Id (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) ^ [ % , ι ¹ ] / [ΓA'IdA'] / [wwwIdAA']) → [ Γ ⊩ᵛ⟨ l ⟩ (cast lΠ (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) e f) ≡ (lam A' ▹ (let a = cast lΠ (wk1 A') (wk1 A) (Idsym (Univ rA lΠ) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) in cast lΠ (B [ a ]↑) B' ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 f) ∘ a ^ lΠ)) ^ ⁰) ∷ Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ] ] cast-Πᵗᵛ-aux {A} {B} {A'} {B'} {rA} {Γ} {e} {f} [Γ] [A] [A'] [UB] [UB'] [A]ₜ [B]ₜ [A']ₜ [B']ₜ [Id] [e]ₜ [ΠAB] [f]ₜ [Id-U-ΠΠ] [Id-U-ΠΠ-res-end] [var]ₜ [var0']ₜ [var1']ₜ = let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) ⊢AΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A]ₜ ⊢Δ [σ])) ⊢A'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UA] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([A']ₜ ⊢Δ [σ])) ⊢A = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A] {Δ} {σ} ⊢Δ [σ])) ⊢A' = λ {Δ} {σ} ⊢Δ [σ] → escape (proj₁ ([A'] {Δ} {σ} ⊢Δ [σ])) [ΓA] = (_∙_ {Γ} {A} [Γ] [A]) [ΓA'] = (_∙_ {Γ} {A'} [Γ] [A']) ⊢BΔ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B]ₜ {Δ} {σ} ⊢Δ [σ])) [A]' = univᵛ {A = A} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']' = univᵛ {A = A'} [Γ] (≡is≤ PE.refl) (λ {Δ} {σ} → [UA] {Δ} {σ}) [A']ₜ [B]' = univᵛ {A = B} [ΓA] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ [B] = maybeEmbᵛ {A = B} [ΓA] [B]' [B']' = univᵛ {A = B'} [ΓA'] (≡is≤ PE.refl) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [B']ₜ [B'] = maybeEmbᵛ {A = B'} [ΓA'] [B']' ⊢B'Δ = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([UB'] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([B']ₜ {Δ} {σ} ⊢Δ [σ])) [liftσ] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A] [σ] [liftσ'] = λ {Δ} {σ} ⊢Δ [σ] → liftSubstS {F = A'} {σ = σ} {Δ = Δ} [Γ] ⊢Δ [A'] [σ] ⊢e = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([Id] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([e]ₜ {Δ} {σ} ⊢Δ [σ])) ⊢f = λ {Δ} {σ} ⊢Δ [σ] → escapeTerm (proj₁ ([ΠAB] {Δ} {σ} ⊢Δ [σ])) (proj₁ ([f]ₜ {Δ} {σ} ⊢Δ [σ])) [ΠAB'] = Πᵛ {A'} {B'} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A'] [B'] [ΓA'] = _∙_ {A = A'} [Γ] [A'] [wUA] = maybeEmbᵛ {A = Univ rA _} [ΓA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'] {Δ} {σ}) [wUA]ᵗ = Uᵗᵛ [ΓA'] [IdAA']ₜ = Idᵗᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ (Uᵗᵛ [Γ]) [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓIdA'] {Δ} {σ} [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [ΓIdA] = _∙_ {A = wk1 A} [ΓId] [wA]' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA]' = wk1ᵛ {A = wk1 A} {F = wk1 A'} [ΓId] [wA']' [wA]' [wwU0A] = maybeEmbᵛ {A = Univ ! _ } [ΓIdA] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA] {Δ} {σ}) [wB'] = wk1dᵗᵛ {F = A'} {F' = Id (Univ rA ⁰) A A'} {G = B'} [Γ] [A'] [IdAA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) [B']ₜ [wB] = wk1dᵗᵛ {F = A} {F' = Id (Univ rA ⁰) A A'} {G = B} [Γ] [A] [IdAA'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [wwU0A] {Δ} {σ}) [B]ₜ [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [wwIdA'A] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A')} {u = wk1 (wk1 A)} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA'] [wwA] Id-U-ΠΠ-res-end A A' B B' = Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0) ]↑) (wk1d B') ° ¹ ° ¹ Id-U-ΠΠ-left = Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) Id-U-ΠΠ-res A A' B B' = ∃ (Id (Univ rA ⁰) A A') ▹ Id-U-ΠΠ-res-end A A' B B' [wU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓA'] {Δ} {σ} modelsTermEq [SProp] _ [Id-U-ΠΠ-res] [eq] = [Id-U-ΠΠ] [Id-U-ΠΠ-res]' = maybeEmbᵛ {A = Id-U-ΠΠ-res A A' B B'} [Γ] (univᵛ {A = Id-U-ΠΠ-res A A' B B'} [Γ] (≡is≤ PE.refl) [SProp] [Id-U-ΠΠ-res]) [conve]ₜ = convᵛ {t = e} {A = Id-U-ΠΠ-left} {B = Id-U-ΠΠ-res A A' B B'} [Γ] [Id] [Id-U-ΠΠ-res]' (univEqᵛ {A = Id-U-ΠΠ-left} {B = Id-U-ΠΠ-res A A' B B'} [Γ] [SProp] [Id] [eq]) [e]ₜ [we] = wk1Termᵛ {F = A'} {G = Id-U-ΠΠ-res A A' B B'} {t = e} [Γ] [A'] [Id-U-ΠΠ-res]' [conve]ₜ [w'A] = wk1ᵗᵛ {F = A'} {G = A} {lG = ⁰} [Γ] [A'] [A]ₜ [w'A]' = wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A] [w'A]⁰ = wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A]' [w'A'] = wk1ᵗᵛ {F = A'} {G = A'} {lG = ⁰} [Γ] [A'] [A']ₜ [w'A']' = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [w'A']⁰ = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A']' [wIdA'A] = Idᵛ {A = Univ rA ⁰} {t = wk1 A'} {u = wk1 A} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A'] [w'A] [wIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] [wIdAA']ᵗ = Idᵗᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] (λ {Δ} {σ} → Uᵗᵛ [ΓA'] {Δ} {σ}) [wIdAA']ₜ = Idᵗᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] (λ {Δ} {σ} → Uᵗᵛ [ΓA'] {Δ} {σ}) [ww'A']' = wk1ᵛ {A = wk1 A'} {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [w'A']' [ww'A'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A'} {lG = ⁰} [ΓA'] [wIdAA'] [w'A'] [ww'A]' = wk1ᵛ {A = wk1 A} {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [w'A]' [ww'A] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A} {lG = ⁰} [ΓA'] [wIdAA'] [w'A] [ΓA'A'] = _∙_ {A = wk1 A'} [ΓA'] [w'A']' [ww'UA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'A'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'A'] {Δ} {σ}) {Δ} {σ} [ΓA'A] = _∙_ {A = wk1 A} [ΓA'] [w'A]' [ww'UA] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'A] (λ {Δ} {σ} → Uᵛ emb< [ΓA'A] {Δ} {σ}) {Δ} {σ} [ΓA'Id] = _∙_ {A = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [ΓA'IdA'] = _∙_ {A = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [www'UA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'IdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'IdA'] {Δ} {σ}) {Δ} {σ} [ΓA'IdA] = _∙_ {A = wk1 (wk1 A)} [ΓA'Id] [ww'A]' [www'UA] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'IdA] (λ {Δ} {σ} → Uᵛ emb< [ΓA'IdA] {Δ} {σ}) {Δ} {σ} [w'B'] = wk1dᵗᵛ {F = A'} {F' = A'} {G = B'} [Γ] [A'] [A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) ((λ {Δ} {σ} → [ww'UA'] {Δ} {σ} !)) [B']ₜ [ww'B'] = wk1dᵗᵛ {F = wk1 A'} {F' = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1d B'} [ΓA'] [w'A']' [wIdAA'] (λ {Δ} {σ} → [ww'UA'] {Δ} {σ} !) (λ {Δ} {σ} → [www'UA'] {Δ} {σ} !) [w'B'] [w'B] = wk1dᵗᵛ {F = A} {F' = A'} {G = B} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) ((λ {Δ} {σ} → [ww'UA] {Δ} {σ} !)) [B]ₜ [ww'B] = wk1dᵗᵛ {F = wk1 A} {F' = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1d B} [ΓA'] [w'A]' [wIdAA'] (λ {Δ} {σ} → [ww'UA] {Δ} {σ} !) (λ {Δ} {σ} → [www'UA] {Δ} {σ} !) [w'B] [www'A']' = wk1ᵛ {A = wk1 (wk1 A')} {F = wk1 (wk1 A') } [ΓA'Id] [ww'A']' [ww'A']' [www'A'] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A')} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A'] [www'A]' = wk1ᵛ {A = wk1 (wk1 A)} {F = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [ww'A]' [www'A] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A)} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A] [wwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓA'A'] {Δ} {σ} [wwwU¹] = λ {Δ} {σ} r → Uᵛ {rU = r} ∞< [ΓA'Id] {Δ} {σ} Id-U-ΠΠ-res-end-wk1d = Id-U-ΠΠ-res-end (wk1 A) (wk1 A') (wk1d B) (wk1d B') Id-U-ΠΠ-res-wk1d = Id-U-ΠΠ-res (wk1 A) (wk1 A') (wk1d B) (wk1d B') [Id-U-ΠΠ-res-end]' = maybeEmbᵛ {A = Id-U-ΠΠ-res-end-wk1d} [ΓA'Id] (univᵛ {A = Id-U-ΠΠ-res-end-wk1d} [ΓA'Id] (≡is≤ PE.refl) (λ {Δ} {σ} → [wwwU¹] {Δ} {σ} %) [Id-U-ΠΠ-res-end]) [we]' = S.irrelevanceTerm′ {A = wk1 (Id-U-ΠΠ-res A A' B B')} {A′ = Id-U-ΠΠ-res-wk1d} {t = wk1 e} (wk1∃ A A' rA B B') PE.refl [ΓA'] [ΓA'] (wk1ᵛ {A = Id-U-ΠΠ-res A A' B B'} {F = A'} [Γ] [A'] [Id-U-ΠΠ-res]') (∃ᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]') [we] [fst] = fstᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} {tu = wk1 e} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]' (λ {Δ} {σ} → [wwwU¹] {Δ} {σ} %) [wIdAA']ᵗ [Id-U-ΠΠ-res-end] [we]' [wfste] : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e)) ∷ Id (Univ rA ⁰) (wk1 A') (wk1 A) ^ [ % , ι ¹ ] / [ΓA'] / [wIdA'A] [wfste] = IdSymᵗᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} {e = fst (wk1 e)} [ΓA'] (λ {Δ} {σ} → [wU¹] {Δ} {σ} !) (λ {Δ} {σ} → [wUA]ᵗ {Δ} {σ}) (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] [wIdAA'] [wIdA'A] [fst] cast-Π-a A A' e = cast ⁰ (wk1 A') (wk1 A) (Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) [cast-Π-a] : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ cast-Π-a A A' e ∷ wk1 A ^ [ rA , ι ⁰ ] / [ΓA'] / wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A] [cast-Π-a] = castᵗᵛ {wk1 A'} {wk1 A} {t = var 0} {e = Idsym (Univ rA ⁰) (wk1 A) (wk1 A') (fst (wk1 e))} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A'] [w'A] (wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A']) (wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A]) [var]ₜ [wIdA'A] [wfste] B[cast-Π-a]↑ₜ = subst↑STerm {F = A'} {F' = A} {G = B} {t = cast-Π-a A A' e} [Γ] [A'] [A] (λ {Δ} {σ} → [UB'] {Δ} {σ}) (λ {Δ} {σ} → [UB] {Δ} {σ}) [B]ₜ [cast-Π-a] [f°cast-Π-a] = appᵛ↑ {F = A} {F' = A'} {G = B} {t = wk1 f} {u = cast-Π-a A A' e} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A] [A'] [B] [ΠAB] (wk1Termᵛ {F = A'} {G = Π A ^ rA ° ⁰ ▹ B ° ⁰ ° lΠ} {t = f} [Γ] [A'] [ΠAB] [f]ₜ) [cast-Π-a] [wIdBB'] : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ Id (Univ ! ⁰) (B [ cast-Π-a A A' e ]↑) B' ^ [ % , ι ¹ ] / [ΓA'] [wIdBB'] = Idᵛ {A = Univ ! ⁰} {t = B [ cast-Π-a A A' e ]↑} {u = B'} [ΓA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) B[cast-Π-a]↑ₜ [B']ₜ [snd] = sndᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} {tu = wk1 e} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]' (λ {Δ} {σ} → [wwwU¹] {Δ} {σ} %) [wIdAA']ᵗ [Id-U-ΠΠ-res-end] [we]' [sndType]' = S.irrelevance′ {A = Id-U-ΠΠ-res-end-wk1d [ fst (wk1 e) ]} {A′ = Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B') ° ¹ ° ¹} (snd-cast-subst A A' rA B B' e) [ΓA'] [ΓA'] (substS {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} {fst (wk1 e)} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]' [fst]) [snd]' = S.irrelevanceTerm′ {A = Id-U-ΠΠ-res-end-wk1d [ fst (wk1 e) ]} {A′ = Π (wk1 A') ^ rA ° ⁰ ▹ Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B') ° ¹ ° ¹} {t = snd (wk1 e)} (snd-cast-subst A A' rA B B' e) PE.refl [ΓA'] [ΓA'] (substS {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = Id-U-ΠΠ-res-end-wk1d} {fst (wk1 e)} [ΓA'] [wIdAA'] [Id-U-ΠΠ-res-end]' [fst]) [sndType]' [snd] [wsnde] : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ (snd (wk1 e)) ∘ (var 0) ^ ¹ ∷ Id (Univ ! ⁰) (B [ cast-Π-a A A' e ]↑) B' ^ [ % , ι ¹ ] / [ΓA'] / [wIdBB'] [wsnde] = let X = appᵛ {F = wk1 A'} {G = Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B')} {t = snd (wk1 e)} {u = var 0} [ΓA'] [w'A']' [sndType]' [snd]' [var]ₜ in S.irrelevanceTerm′ {A = (Id (U ⁰) ((wk1d B) [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B')) [ var 0 ]} {A′ = Id (Univ ! ⁰) (B [ cast-Π-a A A' e ]↑) B'} {t = (snd (wk1 e)) ∘ (var 0) ^ ¹} (Id-cast-subst A A' rA B B' e) PE.refl [ΓA'] [ΓA'] (substSΠ {wk1 A'} {Id (U ⁰) (wk1d B [ cast ⁰ (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA ⁰) (wk1 (wk1 A)) (wk1 (wk1 A')) (fst (wk1 (wk1 e)))) (var 0) ]↑) (wk1d B')} {var 0} [ΓA'] [w'A']' [sndType]' [var]ₜ ) [wIdBB'] X cast-Π-res A A' B B' e f = cast ⁰ (B [ cast-Π-a A A' e ]↑) B' ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 f) ∘ cast-Π-a A A' e ^ ⁰) [cast-Π-res] : Γ ⊩ᵛ⟨ ∞ ⟩ lam A' ▹ cast-Π-res A A' B B' e f ^ ⁰ ∷ Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ^ [ ! , ι ⁰ ] / [Γ] / [ΠAB'] [cast-Π-res] = lamᵛ {F = A'} {G = B'} {t = cast-Π-res A A' B B' e f} (≡is≤ PE.refl) (≡is≤ PE.refl) [Γ] [A'] [B'] (castᵗᵛ {B [ cast-Π-a A A' e ]↑} {B'} {t = (wk1 f) ∘ cast-Π-a A A' e ^ ⁰} {e = (snd (wk1 e)) ∘ (var 0) ^ ¹} [ΓA'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) B[cast-Π-a]↑ₜ [B']ₜ (subst↑S {F = A'} {G = B} {F' = A} [Γ] [A'] [A] [B] [cast-Π-a]) [B'] [f°cast-Π-a] [wIdBB'] [wsnde]) [cast-Π] : Γ ⊩ᵛ cast ⁰ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) e f ⇒ lam A' ▹ cast-Π-res A A' B B' e f ^ ⁰ ∷ Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰ ^ ι ⁰ / [Γ] [cast-Π] = λ {Δ} {σ} ⊢Δ [σ] → let Aσ = ⊢AΔ {Δ} {σ} ⊢Δ [σ] Bσ = ⊢BΔ {Δ ∙ subst σ A ^ _} {liftSubst σ} (⊢Δ ∙ ⊢A {Δ} {σ} ⊢Δ [σ]) ([liftσ] {Δ} {σ} ⊢Δ [σ]) A'σ = ⊢A'Δ {Δ} {σ} ⊢Δ [σ] B'σ = ⊢B'Δ {Δ ∙ subst σ A' ^ _} {liftSubst σ} (⊢Δ ∙ ⊢A' {Δ} {σ} ⊢Δ [σ]) ([liftσ'] {Δ} {σ} ⊢Δ [σ]) eσ = ⊢e {Δ} {σ} ⊢Δ [σ] fσ = ⊢f {Δ} {σ} ⊢Δ [σ] X : Δ ⊢ (cast ⁰ (Π (subst σ A) ^ rA ° ⁰ ▹ (subst (liftSubst σ) B) ° ⁰ ° ⁰) (Π (subst σ A') ^ rA ° ⁰ ▹ (subst (liftSubst σ) B') ° ⁰ ° ⁰) (subst σ e) (subst σ f)) ⇒ lam (subst σ A') ▹ cast-Π-res (subst σ A) (subst σ A') (subst (liftSubst σ) B) (subst (liftSubst σ) B') (subst σ e) (subst σ f) ^ ⁰ ∷ Π (subst σ A') ^ rA ° ⁰ ▹ (subst (liftSubst σ) B') ° ⁰ ° ⁰ ^ ι ⁰ X = cast-Π {Δ} {subst σ A} {subst σ A'} {rA} {subst (liftSubst σ) B} {subst (liftSubst σ) B'} {subst σ e} {subst σ f} Aσ Bσ A'σ B'σ eσ fσ in PE.subst (λ BB → Δ ⊢ subst σ (cast ⁰ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) e f) ⇒ lam subst σ A' ▹ BB ^ ⁰ ∷ subst σ (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) ^ ι ⁰ ) (PE.cong₄ (cast ⁰) (B-cast-subst σ A' A rA e B) PE.refl (PE.cong₂ (λ X Y → snd X ∘ Y ^ ¹) (PE.sym (Idsym-subst-lemma σ e)) PE.refl) (wk1f-cast-subst σ f A' A rA e)) X [id] , [eq] = redSubstTermᵛ {Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰} {cast ⁰ (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° ⁰) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° ⁰) e f} {lam A' ▹ cast-Π-res A A' B B' e f ^ ⁰} [Γ] (λ {Δ} {σ} ⊢Δ [σ] → [cast-Π] {Δ} {σ} ⊢Δ [σ]) [ΠAB'] [cast-Π-res] in modelsTermEq [ΠAB'] [id] [cast-Π-res] [eq] cast-Πᵗᵛ : ∀ {A B A' B' rA Γ e f} ([Γ] : ⊩ᵛ Γ) → let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [UΠ] = maybeEmbᵛ {A = Univ ! _} [Γ] (Uᵛ emb< [Γ]) in ([A] : Γ ⊩ᵛ⟨ l ⟩ A ^ [ rA , ι lΠ ] / [Γ]) ([A'] : Γ ⊩ᵛ⟨ l ⟩ A' ^ [ rA , ι lΠ ] / [Γ]) ([UB] : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A]) ([UB'] : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A']) ([A]ₜ : Γ ⊩ᵛ⟨ l ⟩ A ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B]ₜ : Γ ∙ A ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A] / (λ {Δ} {σ} → [UB] {Δ} {σ})) ([A']ₜ : Γ ⊩ᵛ⟨ l ⟩ A' ∷ Univ rA lΠ ^ [ ! , next lΠ ] / [Γ] / [UA]) ([B']ₜ : Γ ∙ A' ^ [ rA , ι lΠ ] ⊩ᵛ⟨ l ⟩ B' ∷ Univ ! lΠ ^ [ ! , next lΠ ] / [Γ] ∙ [A'] / (λ {Δ} {σ} → [UB'] {Δ} {σ})) ([Id] : Γ ⊩ᵛ⟨ l ⟩ Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) ^ [ % , next lΠ ] / [Γ]) ([e]ₜ : Γ ⊩ᵛ⟨ l ⟩ e ∷ Id (U lΠ) (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) ^ [ % , next lΠ ] / [Γ] / [Id]) ([ΠAB] : Γ ⊩ᵛ⟨ l ⟩ Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ]) ([f]ₜ : Γ ⊩ᵛ⟨ l ⟩ f ∷ Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ] / [ΠAB]) → [ Γ ⊩ᵛ⟨ l ⟩ (cast lΠ (Π A ^ rA ° lΠ ▹ B ° lΠ ° lΠ) (Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ) e f) ≡ (lam A' ▹ (let a = cast lΠ (wk1 A') (wk1 A) (Idsym (Univ rA lΠ) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0) in cast lΠ (B [ a ]↑) B' ((snd (wk1 e)) ∘ (var 0) ^ ¹) ((wk1 f) ∘ a ^ ⁰)) ^ ⁰) ∷ Π A' ^ rA ° lΠ ▹ B' ° lΠ ° lΠ ^ [ ! , ι lΠ ] / [Γ] ] abstract cast-Πᵗᵛ {A} {B} {A'} {B'} {rA} {Γ} {e} {f} [Γ] [A] [A'] [UB] [UB'] [A]ₜ [B]ₜ [A']ₜ [B']ₜ [Id] [e]ₜ [ΠAB] [f]ₜ = let l = ∞ lΠ = ⁰ [UA] = maybeEmbᵛ {A = Univ rA _} [Γ] (Uᵛ emb< [Γ]) [IdAA'] = Idᵛ {A = Univ rA ⁰} {t = A} {u = A'} [Γ] (λ {Δ} {σ} → [UA] {Δ} {σ}) [A]ₜ [A']ₜ [ΓId] = _∙_ {A = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [wA'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A'} {lG = ⁰} [Γ] [IdAA'] [A']ₜ [wA']' = wk1ᵛ {A = A'} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A'] [wA]' = wk1ᵛ {A = A} {F = Id (Univ rA ⁰) A A'} [Γ] [IdAA'] [A] [wA] = wk1ᵗᵛ {F = Id (Univ rA ⁰) A A'} {G = A} {lG = ⁰} [Γ] [IdAA'] [A]ₜ [ΓIdA'] = _∙_ {A = wk1 A'} [ΓId] [wA']' [wwA']' = wk1ᵛ {A = wk1 A'} {F = wk1 A'} [ΓId] [wA']' [wA']' [wwA'] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A'} {lG = ⁰} [ΓId] [wA']' [wA'] [wwA] = wk1ᵗᵛ {F = wk1 A'} {G = wk1 A} {lG = ⁰} [ΓId] [wA']' [wA] [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓIdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓIdA'] {Δ} {σ}) {Δ} {σ} [wwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 A)} {u = wk1 (wk1 A')} [ΓIdA'] (λ {Δ} {σ} → [wwUA'] {Δ} {σ} rA) [wwA] [wwA'] [ΓA'] = (_∙_ {Γ} {A'} [Γ] [A']) [w'A] = wk1ᵗᵛ {F = A'} {G = A} {lG = ⁰} [Γ] [A'] [A]ₜ [w'A'] = wk1ᵗᵛ {F = A'} {G = A'} {lG = ⁰} [Γ] [A'] [A']ₜ [w'A']' = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [wUA] = maybeEmbᵛ {A = Univ rA _} [ΓA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'] {Δ} {σ}) [wIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 A} {u = wk1 A'} [ΓA'] (λ {Δ} {σ} → [wUA] {Δ} {σ}) [w'A] [w'A'] [ww'A']' = wk1ᵛ {A = wk1 A'} {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [w'A']' [ww'A'] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A'} {lG = ⁰} [ΓA'] [wIdAA'] [w'A'] [ΓA'Id] = _∙_ {A = Id (Univ rA ⁰) (wk1 A) (wk1 A')} [ΓA'] [wIdAA'] [ΓA'IdA'] = _∙_ {A = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [wwwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'IdA'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'IdA'] {Δ} {σ}) {Δ} {σ} [www'A'] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A')} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A'] [ww'A] = wk1ᵗᵛ {F = Id (Univ rA ⁰) (wk1 A) (wk1 A')} {G = wk1 A} {lG = ⁰} [ΓA'] [wIdAA'] [w'A] [www'A] = wk1ᵗᵛ {F = wk1 (wk1 A')} {G = wk1 (wk1 A)} {lG = ⁰} [ΓA'Id] [ww'A']' [ww'A] [wwwIdAA'] = Idᵛ {A = Univ rA ⁰} {t = wk1 (wk1 (wk1 A))} {u = wk1 (wk1 (wk1 A'))} [ΓA'IdA'] (λ {Δ} {σ} → [wwwUA'] {Δ} {σ} rA) [www'A] [www'A'] [wA]ₜ = wk1ᵗᵛ {F = A'} {G = A} {lG = ⁰} [Γ] [A'] [A]ₜ [wA] = wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A] [wA']ₜ = wk1ᵗᵛ {F = A'} {G = A'} {lG = ⁰} [Γ] [A'] [A']ₜ [wA'] = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [wA']' = wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [wA]' = wk1ᵛ {A = A} {F = A'} [Γ] [A'] [A] [ΓA'A'] = _∙_ {A = wk1 A'} [ΓA'] [wA']' [ΓA'A] = _∙_ {A = wk1 A} [ΓA'] [wA]' [wwUA'] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'A'] (λ {Δ} {σ} → Uᵛ emb< [ΓA'A'] {Δ} {σ}) {Δ} {σ} [wwUA] = λ {Δ} {σ} r → maybeEmbᵛ {A = Univ r _ } [ΓA'A] (λ {Δ} {σ} → Uᵛ emb< [ΓA'A] {Δ} {σ}) {Δ} {σ} [wB']ₜ = wk1dᵗᵛ {F = A'} {F' = A'} {G = B'} [Γ] [A'] [A'] (λ {Δ} {σ} → [UB'] {Δ} {σ}) ((λ {Δ} {σ} → [wwUA'] {Δ} {σ} !)) [B']ₜ [wB]ₜ = wk1dᵗᵛ {F = A} {F' = A'} {G = B} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) ((λ {Δ} {σ} → [wwUA] {Δ} {σ} !)) [B]ₜ [var]ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 A' ^ [ rA , ι ⁰ ] / [ΓA'] / wk1ᵛ {A = A'} {F = A'} [Γ] [A'] [A'] [var]ₜ = proj₂ (fundamentalVar here [ΓA']) [var0']ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ∙ wk1 (wk1 A') ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 0 ∷ wk1 (wk1 (wk1 A')) ^ [ rA , ι ⁰ ] / [ΓA'IdA'] / wk1ᵛ {A = wk1 (wk1 A')} {F = wk1 (wk1 A')} [ΓA'Id] [ww'A']' [ww'A']' [var0']ₜ = proj₂ (fundamentalVar here [ΓA'IdA']) [var1']ₜ : Γ ∙ A' ^ [ rA , ι ⁰ ] ∙ Id (Univ rA ⁰) (wk1 A) (wk1 A') ^ [ % , ι ¹ ] ∙ wk1 (wk1 A') ^ [ rA , ι ⁰ ] ⊩ᵛ⟨ ∞ ⟩ var 1 ∷ Id (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A'))) ^ [ % , ι ¹ ] / [ΓA'IdA'] / [wwwIdAA'] [var1']ₜ = let X = fundamentalVar (there here) [ΓA'IdA'] in S.irrelevanceTerm {A = Id (Univ rA ⁰) (wk1 (wk1 (wk1 A))) (wk1 (wk1 (wk1 A')))} {t = var 1} [ΓA'IdA'] [ΓA'IdA'] (proj₁ X) [wwwIdAA'] (proj₂ X) in cast-Πᵗᵛ-aux {A} {B} {A'} {B'} {rA} {Γ} {e} {f} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A]ₜ [B]ₜ [A']ₜ [B']ₜ [Id] [e]ₜ [ΠAB] [f]ₜ (Id-U-ΠΠᵗᵛ {A} {B} {A'} {B'} {rA} {Γ} [Γ] [A] [A'] (λ {Δ} {σ} → [UB] {Δ} {σ}) (λ {Δ} {σ} → [UB'] {Δ} {σ}) [A]ₜ [B]ₜ [A']ₜ [B']ₜ) (Id-U-ΠΠ-resᵗᵛ {wk1 A} {wk1d B} {wk1 A'} {wk1d B'} [ΓA'] [wA] [wA'] (λ {Δ} {σ} → [wwUA] {Δ} {σ} !) (λ {Δ} {σ} → [wwUA'] {Δ} {σ} !) [wA]ₜ [wB]ₜ [wA']ₜ [wB']ₜ [var0']ₜ [var1']ₜ) [var]ₜ [var0']ₜ [var1']ₜ
80.472946
210
0.389332
22090dda6a638bdc41ed8974103efa90a4dfc240
100
agda
Agda
test/Fail/Issue308b.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue308b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue308b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue308b where data D : Set where d : D → D syntax d x = e x x g : D → D g (d x) = e x
10
22
0.55
7c4e8877154ebb92385ed5de241f88bd103400bf
429
agda
Agda
test/Sections.agda
JonathanBrouwer/agda2hs
dcf63cc7ce51a325a97ac58bdd0aeace24c08b15
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
test/Sections.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
test/Sections.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module Sections where open import Haskell.Prelude test₁ : Nat → Nat test₁ = 5 +_ test₂ : Nat → Nat test₂ = _+ 5 test₃ : Nat → Nat test₃ = _+_ 5 test₄ : Nat → Nat test₄ = λ x → x + 5 test₅ : Nat → Nat test₅ = λ x → 5 + x -- Agda eta-contracts this before we get to see it {-# COMPILE AGDA2HS test₁ #-} {-# COMPILE AGDA2HS test₂ #-} {-# COMPILE AGDA2HS test₃ #-} {-# COMPILE AGDA2HS test₄ #-} {-# COMPILE AGDA2HS test₅ #-}
16.5
70
0.631702
5e9425f867b22f8a412d81ab88fb8bde7a3906af
4,811
agda
Agda
Categories/Enriched/NaturalTransformation/NaturalIsomorphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Enriched/NaturalTransformation/NaturalIsomorphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Enriched/NaturalTransformation/NaturalIsomorphism.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} open import Categories.Category using () renaming (Category to Setoid-Category) open import Categories.Category.Monoidal module Categories.Enriched.NaturalTransformation.NaturalIsomorphism {o ℓ e} {V : Setoid-Category o ℓ e} (M : Monoidal V) where open import Level open import Categories.Category.Construction.EnrichedFunctors M open import Categories.Enriched.Category M open import Categories.Enriched.Functor M renaming (id to idF) open import Categories.Enriched.NaturalTransformation M renaming (id to idNT) open import Categories.Functor.Properties using ([_]-resp-Iso) open import Categories.Morphism as Morphism using (Iso) open import Categories.Category.Monoidal.Reasoning M open import Relation.Binary using (IsEquivalence) open Setoid-Category V renaming (Obj to ObjV; id to idV) module M = Monoidal M open M hiding (unitorˡ; unitorʳ; associator) open NaturalTransformation module NaturalIsomorphism = Morphism._≅_ open NaturalIsomorphism -- A natural isomorphism |α : F ≅ G : C → D| is an isomorphism of F -- and G in the functor category [C , D] between C and D. module _ {c d} {C : Category c} {D : Category d} where NaturalIsomorphism : (F G : Functor C D) → Set (ℓ ⊔ e ⊔ c) NaturalIsomorphism F G = F ≅ G where open Morphism (EnrichedFunctors C D) using (_≅_) -- A commonly used shorthand for NaturalIsomorphism infix 4 _≃_ _≃_ = NaturalIsomorphism module _ {F G : Functor C D} where private module F = Functor F module G = Functor G open Morphism (Underlying D) using (_≅_) -- Natural isomorphisms are pointwise isomorphisms: each component -- |α [ X ]| is an isomorphism |F X ≅ G X|. infixl 16 _ᵢ[_] _ᵢ[_] : NaturalIsomorphism F G → ∀ X → F.₀ X ≅ G.₀ X α ᵢ[ X ] = record { from = from α [ X ] ; to = to α [ X ] ; iso = record { isoˡ = isoˡ α ; isoʳ = isoʳ α } } ≃-isEquivalence : IsEquivalence _≃_ ≃-isEquivalence = Morphism.≅-isEquivalence (EnrichedFunctors C D) module ≃ = IsEquivalence ≃-isEquivalence id : {F : Functor C D} → F ≃ F id = ≃.refl _⁻¹ : {F G : Functor C D} → F ≃ G → G ≃ F α ⁻¹ = ≃.sym α infixr 9 _ⓘᵥ_ _ⓘᵥ_ : {F G H : Functor C D} → G ≃ H → F ≃ G → F ≃ H α ⓘᵥ β = ≃.trans β α private module D = Underlying D -- Left and right unitors unitorˡ : {F : Functor C D} → idF ∘F F ≃ F unitorˡ {F} = record { from = record { comp = λ _ → D.id ; commute = (refl⟩∘⟨ refl⟩⊗⟨ identityˡ ⟩∘⟨refl) ○ comm } ; to = record { comp = λ _ → D.id ; commute = comm ○ (refl⟩∘⟨ ⟺ identityˡ ⟩⊗⟨refl ⟩∘⟨refl) } ; iso = record { isoˡ = D.identity² ; isoʳ = D.identity² } } where comm = commute (idNT {F = F}) unitorʳ : {F : Functor C D} → F ∘F idF ≃ F unitorʳ {F} = record { from = record { comp = λ _ → D.id ; commute = (refl⟩∘⟨ refl⟩⊗⟨ identityʳ ⟩∘⟨refl) ○ comm } ; to = record { comp = λ _ → D.id ; commute = comm ○ (refl⟩∘⟨ ⟺ identityʳ ⟩⊗⟨refl ⟩∘⟨refl) } ; iso = record { isoˡ = D.identity² ; isoʳ = D.identity² } } where comm = commute (idNT {F = F}) module _ {c d e} {C : Category c} {D : Category d} {E : Category e} where open NaturalIsomorphism -- Left- and right-hand composition with a functor infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ _ⓘˡ_ : {F G : Functor C D} (H : Functor D E) → F ≃ G → H ∘F F ≃ H ∘F G H ⓘˡ α = record { from = H ∘ˡ from α ; to = H ∘ˡ to α ; iso = record { isoˡ = iso.isoˡ ; isoʳ = iso.isoʳ } } where module iso {X} = Iso ([ UnderlyingFunctor H ]-resp-Iso (iso (α ᵢ[ X ]))) _ⓘʳ_ : {G H : Functor D E} → G ≃ H → (F : Functor C D) → G ∘F F ≃ H ∘F F α ⓘʳ F = record { from = from α ∘ʳ F ; to = to α ∘ʳ F ; iso = record { isoˡ = isoˡ (α ᵢ[ F.₀ _ ]) ; isoʳ = isoʳ (α ᵢ[ F.₀ _ ]) } } where module F = Functor F -- Horizontal composition _ⓘₕ_ : {H I : Functor D E} {F G : Functor C D} → H ≃ I → F ≃ G → (H ∘F F) ≃ (I ∘F G) _ⓘₕ_ {_} {I} {F} {_} α β = (I ⓘˡ β) ⓘᵥ (α ⓘʳ F) module _ {b c d e} {B : Category b} {C : Category c} {D : Category d} {E : Category e} where open NaturalIsomorphism private module E = Category E module UE = Underlying E -- Associator associator : {F : Functor D E} {G : Functor C D} {H : Functor B C} → (F ∘F G) ∘F H ≃ F ∘F (G ∘F H) associator {F} {G} {H} = record { from = record { comp = λ _ → E.id ; commute = (refl⟩∘⟨ refl⟩⊗⟨ assoc ⟩∘⟨refl) ○ comm } ; to = record { comp = λ _ → E.id ; commute = comm ○ (refl⟩∘⟨ ⟺ assoc ⟩⊗⟨refl ⟩∘⟨refl) } ; iso = record { isoˡ = UE.identity² ; isoʳ = UE.identity² } } where comm = commute (idNT {F = F ∘F (G ∘F H)})
29.515337
79
0.578466
1116f2f83b517e3f93e6ad0cdd3a427dec0b476d
9,969
agda
Agda
setoid-cats/Equality/Eq.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Equality/Eq.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Equality/Eq.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
--------------------------------------------------------------------- -- This file contains the definition of heterogenous equality and -- -- related facts. A lot of this code is old, and could be written -- -- better. This equality is mainly used for object equivalence. -- -- -- -- Some of it came from the paper: -- -- "Monads Need Not Be Endofunctors" by Altenkirch et al. -- -- -- -- See: http://www.cs.nott.ac.uk/~txa/publ/Relative_Monads.pdf -- --------------------------------------------------------------------- module Equality.Eq where open import Level open import Relation.Relation open import Relation.Binary.PropositionalEquality public renaming (sym to prop-sym ; trans to prop-trans; refl to prop-refl) data _≅_ {l : Level} {A : Set l} (a : A) : {A' : Set l} → A' → Set l where refl : a ≅ a postulate ext : ∀{i j}{A : Set i}{B B' : A → Set j}{f : ∀ a → B a}{g : ∀ a → B' a} → (∀ a → f a ≅ g a) → f ≅ g postulate prop-ext : ∀{i j}{A : Set i}{B : A → Set j}{f : ∀ a → B a}{g : ∀ a → B a} → (∀ a → f a ≡ g a) → f ≡ g ≅-to-≡ : ∀{l : Level}{A : Set l}{a b : A} → a ≅ b → a ≡ b ≅-to-≡ refl = prop-refl -- this could just be derived from ext postulate iext : ∀{i j}{A : Set i}{B B' : A → Set j}{f : ∀ {a} → B a}{g : ∀{a} → B' a} → (∀ a → f {a} ≅ g {a}) → _≅_ {_}{ {a : A} → B a} f { {a : A} → B' a} g sym : ∀{l : Level}{A : Set l }{a b : A} → a ≅ b → b ≅ a sym refl = refl trans : ∀{l : Level}{A : Set l}{a b c : A} → a ≅ b → b ≅ c → a ≅ c trans refl refl = refl isEqRel : ∀{l : Level}{A : Set l} → EqRel {A = A} (λ x y → x ≅ y) isEqRel {l} {A} = record { parEqPf = record { symPf = sym; transPf = trans }; refPf = refl } ir : ∀{l : Level}{A A' : Set l}{a : A}{a' : A'}{p q : a ≅ a'} → p ≅ q ir {p = refl}{q = refl} = refl eqApp : ∀{l l' : Level}{A : Set l}{B : Set l'}{f : A → B}{b c : A} → b ≅ c → (f b) ≅ (f c) eqApp refl = refl subst≅ : {l l' : Level}{A : Set l}{a b : A}{P : A → Set l'} → a ≅ b → P a → P b subst≅ refl x = x -- Cite from relative monads paper. deqApp : ∀{l : Level}{A : Set l}{B : A → Set l}(f : ∀ a → B a){a a' : A} → a ≅ a' → f a ≅ f a' deqApp f refl = refl feqApp : ∀{l l' : Level}{A : Set l}{B : Set l'}{f f' : A → B}{b c : A} → f ≅ f' → b ≅ c → (f b) ≅ (f' c) feqApp refl refl = refl ifeqApp : ∀{i j}{A : Set i}{B : A → Set j}{f f' : {x : A} → B x}(a : A) → _≅_ {_}{ {a : A} → B a} f { {a : A} → B a} f' → f {a} ≅ f' {a} ifeqApp a refl = refl ieqApp : ∀{x y}{A : Set x}{B : A → Set y}(f : ∀ {a} → B a){a a' : A} → a ≅ a' → f {a} ≅ f {a'} ieqApp f refl = refl -- Cite from relative monads paper. eqApp2 : ∀{i j k}{A : Set i}{B : A → Set j}{C : Set k}{a a' : A} → a ≅ a' → {b : B a}{b' : B a'} → b ≅ b' → (f : (a : A) → B a → C) → f a b ≅ f a' b' eqApp2 refl refl f = refl eqApp3 : ∀{x y z w}{A : Set x}{B : A → Set y}{C : (a : A) → B a → Set z}{E : Set w} (f : (a : A)(b : B a)(c : C a b) → E) → {a a' : A} → a ≅ a' → {b : B a}{b' : B a'} → b ≅ b' → {c : C a b}{c' : C a' b'} → c ≅ c' → f a b c ≅ f a' b' c' eqApp3 f refl refl refl = refl depfeqApp3a : ∀{l}{A : Set l}{B : Set (suc l)}{C : A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B)(z : C x) → D) → (f' : (x : A)(y : B)(z : C x) → D) → f ≅ f' → {a : A}{b : B} {c : C a} → f a b c ≅ f' a b c depfeqApp3a {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqApp3b : ∀{l}{A : Set l}{B : A → Set (suc l)}{C : A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B x)(z : C x) → D) → (f' : (x : A)(y : B x)(z : C x) → D) → f ≅ f' → {a : A}{b : B a} {c : C a} → f a b c ≅ f' a b c depfeqApp3b {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqApp3c : ∀{l}{A : Set l}{B : A → A → Set (suc l)}{C : A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B x x)(z : C x) → D) → (f' : (x : A)(y : B x x)(z : C x) → D) → f ≅ f' → {a : A}{b : B a a} {c : C a} → f a b c ≅ f' a b c depfeqApp3c {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqApp3d : ∀{l}{A : Set l}{B : A → A → Set (suc l)}{C : A → A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B x x)(z : C x x) → D) → (f' : (x : A)(y : B x x)(z : C x x) → D) → f ≅ f' → {a : A}{b : B a a} {c : C a a} → f a b c ≅ f' a b c depfeqApp3d {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqApp3e : ∀{l}{A : Set l}{B : Set (suc l)}{C : A → A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B)(z : C x x) → D) → (f' : (x : A)(y : B)(z : C x x) → D) → f ≅ f' → {a : A}{b : B} {c : C a a} → f a b c ≅ f' a b c depfeqApp3e {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl depfeqAppa : ∀{l l' l'' l'''}{A : Set l}{B : Set l'}{C : A → B → Set l''}{D : A → B → Set l'''}{a : A} (f : (x : A)(y : B)(z : C x y) → D x y) → (f' : (x : A)(y : B)(z : C x y) → D x y) → f ≅ f' → f a ≅ f' a depfeqAppa {l}{l'}{l''}{l'''}{A}{B}{C}{D}{a} f f' p = eqApp {f = λ h → h a} p depfeqApp2a : ∀{l l' l'' l'''}{A : Set l}{B : Set l'}{C : A → B → Set l''}{D : A → B → Set l'''}{a : A} (f : (y : B)(z : C a y) → D a y) → (f' : (y : B)(z : C a y) → D a y) → f ≅ f' → {b : B} {c : C a b} → f b c ≅ f' b c depfeqApp2a f f' p {b} {c} = feqApp {f = f b} {f' = f' b} (eqApp {f = λ h → h b} p) refl depfeqApp3f : ∀{l l' l'' l'''}{A : Set l}{B : Set l'}{C : A → B → Set l''}{D : A → B → Set l'''} (f : (x : A)(y : B)(z : C x y) → D x y) → (f' : (x : A)(y : B)(z : C x y) → D x y) → f ≅ f' → {a : A}{b : B} {c : C a b} → f a b c ≅ f' a b c depfeqApp3f {_}{_}{_}{_}{A}{B}{C}{D} f f' p {a}{b}{c} = depfeqApp2a {A = A} {B = B}{C = λ o1 o2 → C o1 o2} {D = λ o1₁ o2₁ → D o1₁ o2₁} (f a) (f' a) (eqApp {f = λ h → h a} p) {b} {c} depfeqApp3g : ∀{l l' l'' l'''}{A : Set l}{B : Set l'}{C : A → B → Set l''}{D D' : A → B → Set l'''} (f : (x : A)(y : B)(z : C x y) → D x y) → (f' : (x : A)(y : B)(z : C x y) → D' x y) → D ≅ D' → f ≅ f' → {a : A}{b : B} {c : C a b} → f a b c ≅ f' a b c depfeqApp3g {_}{_}{_}{_}{A}{B}{C}{D} f f' refl p {a}{b}{c} = depfeqApp2a {A = A} {B = B} {C = λ o1₁ o2₁ → C o1₁ o2₁} {D = λ o1 o2 → D o1 o2} (f a) (f' a) (eqApp {f = λ h → h a} p) {b} {c} idepfeqApp2a : ∀{l l' l'' l''' l''''}{A : Set l}{B : Set l'}{C : Set l''}{D : A → B → C → Set l'''}{E : A → B → C → Set l''''}{a : A} (f : {x : B}{y : C}(z : D a x y) → E a x y) → (f' : {x : B}{y : C}(z : D a x y) → E a x y) → (∀{x y} → f {x}{y} ≅ f' {x}{y}) → {b : B}{c : C}{m : D a b c} → f {b}{c} m ≅ f' {b} {c} m idepfeqApp2a {l}{l'}{l''}{l'''}{l''''}{A}{B}{C}{D}{E}{a} f f' p {b}{c}{m} = feqApp {f = f {b} {c}} {f' = f' {b} {c}} {m} {m} (ext (λ h → feqApp {f = f {b} {c}} {f' = f' {b} {c}} {h} {h} (p {b}{c}) refl)) refl depfeqApp2b : ∀{l l' l''}{A : Set l}{D : A → A → Set l'}{E E' : A → A → Set l''} (f : (x : A)(y : A)(z : A) → (m1 : D y z) → (m2 : D x y) → E x z) → {f' : (x : A)(y : A)(z : A) → (m1 : D y z) → (m2 : D x y) → E' x z} → E ≅ E' → f ≅ f' → {a a' b b' c c' : A}{m1 : D b c}{m2 : D a b}{m1' : D b' c'}{m2' : D a' b'} → a ≅ a' → b ≅ b' → c ≅ c' → m1 ≅ m1' → m2 ≅ m2' → f a b c m1 m2 ≅ f' a' b' c' m1' m2' depfeqApp2b {_}{_}{_}{A}{D}{E} f refl refl {a = a}{b = b}{c = c}{m1 = m1}{m2 = m2} refl refl refl refl refl = eqApp {f = f a b c m1} {m2}{m2} refl feqApp3 : ∀{l}{A : Set l}{B : A → Set (suc l)}{C : A → Set (suc l)}{D : Set (suc l)} (f : (x : A)(y : B x)(z : C x) → D) → (f' : (x : A)(y : B x)(z : C x) → D) → f ≅ f' → {a : A}{b : B a} {c : C a} → f a b c ≅ f' a b c feqApp3 {_}{A}{B}{C} f f' p {a}{b}{c} = feqApp {f = f a b} {f' = f' a b} (feqApp {f = f a} {f' = f' a} (eqApp {f = λ h → h a} p) refl) refl coerce : ∀{l}{A B : Set l} → A ≅ B → A → B coerce refl a = a p : ∀{m}{A B : Set m}{a : A}{b : B} → (q : B ≅ A) → _≅_ {m} {A} a {A} (coerce q b) → _≅_ {m} {A} a {B} b p refl refl = refl eqApp4 : ∀{x y z v w}{A : Set x}{B : A → Set y}{C : (a : A) → B a → Set z}{D : (a : A)(b : B a) → C a b → Set v}{E : Set w} (f : (a : A)(b : B a)(c : C a b) → D a b c → E) → {a a' : A} → a ≅ a' → {b : B a}{b' : B a'} → b ≅ b' → {c : C a b}{c' : C a' b'} → c ≅ c' → {d : D a b c}{d' : D a' b' c'} → d ≅ d' → f a b c d ≅ f a' b' c' d' eqApp4 f refl refl refl refl = refl funCong : ∀{l m : Level}{A : Set l}{B : Set m}{f g : A → B}{a : A}{b : B} → (p : f ≅ g) → (q : f a ≅ b) → (w : g a ≅ b) → q ≅ w funCong refl q w = ir funCong2 : ∀{l : Level}{A B B' X Y : Set l}{f : ∀{X Y} → A → B}{g : ∀{X Y} → A → B'}{a : A}{b : B} → (r : B ≅ B') → (p : (λ {X}{Y} → f {X}{Y}) ≅ (λ {X}{Y} → g {X}{Y})) → (q : f {X}{Y} a ≅ b) → (w : g {X}{Y} a ≅ b) → q ≅ w funCong2 refl refl q w = ir fixtypes : ∀{x}{A A' : Set x}{a a' : A}{a'' a''' : A'}{p : a ≅ a'}{q : a'' ≅ a'''} → a ≅ a'' → a' ≅ a''' → p ≅ q fixtypes refl refl = ir
45.520548
151
0.365433
0dd95a310a091a875ebd311cee7b1420b20464a5
147
agda
Agda
test/fail/TermSplicingOutOfScope.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/TermSplicingOutOfScope.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/TermSplicingOutOfScope.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
open import Common.Prelude open import Common.Reflect module TermSplicingOutOfScope where f : Set → Set → Set → Set f x y z = unquote (var 3 [])
18.375
35
0.727891
374e498a970b1cf375db52551ee5d4b047d85619
3,003
agda
Agda
Cubical/Categories/Limits/Terminal.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Categories/Limits/Terminal.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
Cubical/Categories/Limits/Terminal.agda
barrettj12/cubical
7b41b9171f90473efc98487cb2ea7a4d02320cb2
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Categories.Limits.Terminal where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Foundations.HLevels -- open import Cubical.Categories.Limits.Base open import Cubical.Categories.Category open import Cubical.Categories.Functor private variable ℓ ℓ' : Level module _ (C : Category ℓ ℓ') where open Category C isInitial : (x : ob) → Type (ℓ-max ℓ ℓ') isInitial x = ∀ (y : ob) → isContr (C [ x , y ]) isFinal : (x : ob) → Type (ℓ-max ℓ ℓ') isFinal x = ∀ (y : ob) → isContr (C [ y , x ]) hasInitialOb : Type (ℓ-max ℓ ℓ') hasInitialOb = Σ[ x ∈ ob ] isInitial x hasFinalOb : Type (ℓ-max ℓ ℓ') hasFinalOb = Σ[ x ∈ ob ] isFinal x -- Initiality of an object is a proposition. isPropIsInitial : (x : ob) → isProp (isInitial x) isPropIsInitial x = isPropΠ λ y → isPropIsContr -- Objects that are initial are isomorphic. isInitialToIso : {x y : ob} (hx : isInitial x) (hy : isInitial y) → CatIso C x y isInitialToIso {x = x} {y = y} hx hy = let x→y : C [ x , y ] x→y = fst (hx y) -- morphism forwards y→x : C [ y , x ] y→x = fst (hy x) -- morphism backwards x→y→x : x→y ⋆⟨ C ⟩ y→x ≡ id x→y→x = isContr→isProp (hx x) _ _ -- compose to id by uniqueness y→x→y : y→x ⋆⟨ C ⟩ x→y ≡ id y→x→y = isContr→isProp (hy y) _ _ -- similar. in catiso x→y y→x y→x→y x→y→x open isUnivalent -- The type of initial objects of a univalent category is a proposition, -- i.e. all initial objects are equal. isPropInitial : (hC : isUnivalent C) → isProp (hasInitialOb) isPropInitial hC x y = -- Being initial is a prop ∴ Suffices equal as objects in C. Σ≡Prop (isPropIsInitial) -- C is univalent ∴ Suffices isomorphic as objects in C. (CatIsoToPath hC (isInitialToIso (snd x) (snd y))) -- Now the dual argument for final objects. -- Finality of an object is a proposition. isPropIsFinal : (x : ob) → isProp (isFinal x) isPropIsFinal x = isPropΠ λ y → isPropIsContr -- Objects that are initial are isomorphic. isFinalToIso : {x y : ob} (hx : isFinal x) (hy : isFinal y) → CatIso C x y isFinalToIso {x = x} {y = y} hx hy = let x→y : C [ x , y ] x→y = fst (hy x) -- morphism forwards y→x : C [ y , x ] y→x = fst (hx y) -- morphism backwards x→y→x : x→y ⋆⟨ C ⟩ y→x ≡ id x→y→x = isContr→isProp (hx x) _ _ -- compose to id by uniqueness y→x→y : y→x ⋆⟨ C ⟩ x→y ≡ id y→x→y = isContr→isProp (hy y) _ _ -- similar. in catiso x→y y→x y→x→y x→y→x -- The type of final objects of a univalent category is a proposition, -- i.e. all final objects are equal. isPropFinal : (hC : isUnivalent C) → isProp (hasFinalOb) isPropFinal hC x y = -- Being final is a prop ∴ Suffices equal as objects in C. Σ≡Prop isPropIsFinal -- C is univalent ∴ Suffices isomorphic as objects in C. (CatIsoToPath hC (isFinalToIso (snd x) (snd y)))
34.125
74
0.616384
9acd121d179915930130e69f78d9425ea82a9e24
4,235
agda
Agda
src/Data/PropFormula/Theorems/Negation.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
13
2017-05-01T16:45:41.000Z
2022-01-17T03:33:12.000Z
src/Data/PropFormula/Theorems/Negation.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
18
2017-03-08T14:33:10.000Z
2017-12-18T16:34:21.000Z
src/Data/PropFormula/Theorems/Negation.agda
jonaprieto/agda-prop
a1730062a6aaced2bb74878c1071db06477044ae
[ "MIT" ]
2
2017-03-30T16:41:56.000Z
2017-12-01T17:01:25.000Z
------------------------------------------------------------------------------ -- Agda-Prop Library. -- Theorems of ¬ connective. ------------------------------------------------------------------------------ open import Data.Nat using ( ℕ ) module Data.PropFormula.Theorems.Negation ( n : ℕ ) where ------------------------------------------------------------------------------ open import Data.PropFormula.Properties n using ( ¬-injective ; subst ) open import Data.PropFormula.Syntax n open import Data.PropFormula.Theorems.Classical n open import Data.PropFormula.Theorems.Implication n using ( subst⊢⊃₁ ) open import Function using ( _$_ ; _∘_ ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ) ------------------------------------------------------------------------------ -- Theorem. ¬-equiv₁ : ∀ {Γ} {φ} → Γ ⊢ ¬ φ → Γ ⊢ φ ⊃ ⊥ ¬-to-⊃⊥ = ¬-equiv₁ -- Proof. ¬-equiv₁ {φ = φ} Γ⊢¬φ = ⊃-intro (¬-elim (weaken φ Γ⊢¬φ) (assume φ)) -------------------------------------------------------------------------- ∎ -- Theorem. ¬-equiv₂ : ∀ {Γ} {φ} → Γ ⊢ φ ⊃ ⊥ → Γ ⊢ ¬ φ ⊃⊥-to-¬ = ¬-equiv₂ -- Proof. ¬-equiv₂ {φ = φ} Γ⊢φ⊃⊥ = ¬-intro (⊃-elim (weaken φ Γ⊢φ⊃⊥) (assume φ)) -------------------------------------------------------------------------- ∎ -- Theorem. ¬¬-equiv₁ : ∀ {Γ} {φ} → Γ ⊢ ¬ (¬ φ) → Γ ⊢ φ -- Proof. ¬¬-equiv₁ {Γ}{φ} Γ⊢¬¬φ = (⊃-elim (⊃-intro $ RAA (¬-elim (weaken (¬ φ) $ assume $ ¬ (¬ φ)) (assume {Γ = Γ , ¬ (¬ φ)} $ ¬ φ))) Γ⊢¬¬φ) -------------------------------------------------------------------------- ∎ -- Theorem. ¬¬-equiv₂ : ∀ {Γ} {φ} → Γ ⊢ φ → Γ ⊢ ¬ (¬ φ) -- Proof. ¬¬-equiv₂ {Γ}{φ} Γ⊢φ = ⊃⊥-to-¬ (⊃-intro (¬-elim (assume (¬ φ)) (weaken (¬ φ) Γ⊢φ))) -------------------------------------------------------------------------- ∎ -- Theorem. ¬∨-to-⊃ : ∀ {Γ} {φ ψ} → Γ ⊢ ¬ φ ∨ ψ → Γ ⊢ φ ⊃ ψ -- Proof. ¬∨-to-⊃ {Γ}{φ}{ψ} = ⊃-elim $ ⊃-intro $ ∨-elim (⊃-intro $ ⊥-elim {Γ = Γ , ¬ φ , φ} ψ (¬-elim (weaken φ $ assume (¬ φ)) (assume {Γ = Γ , ¬ φ} φ))) (⊃-intro $ weaken φ $ assume ψ) -------------------------------------------------------------------------- ∎ -- Theorem. ¬⊤-to-⊥ : ∀ {Γ} → Γ ⊢ ¬ ⊤ → Γ ⊢ ⊥ -- Proof. ¬⊤-to-⊥ Γ⊢¬⊤ = ¬-elim Γ⊢¬⊤ ⊤-intro -------------------------------------------------------------------------- ∎ -- Theorem. ⊤-to-¬⊥ : ∀ {Γ} → Γ ⊢ ⊤ → Γ ⊢ ¬ ⊥ -- Proof. ⊤-to-¬⊥ = λ _ → ¬-intro (assume ⊥) -------------------------------------------------------------------------- ∎ -- Theorem. ¬⊥-to-⊤ : ∀ {Γ} → Γ ⊢ ¬ ⊥ → Γ ⊢ ⊤ -- Proof. ¬⊥-to-⊤ Γ⊢¬⊥ = ⊤-intro -------------------------------------------------------------------------- ∎ -- Theorem. ⊥-to-¬⊤ : ∀ {Γ} → Γ ⊢ ⊥ → Γ ⊢ ¬ ⊤ -- Proof. ⊥-to-¬⊤ = ¬-intro ∘ weaken ⊤ -------------------------------------------------------------------------- ∎ -- Theorem. ¬-inside : ∀ {Γ} {φ ψ} → φ ≡ ψ → Γ ⊢ ¬ φ → Γ ⊢ ¬ ψ ≡-¬-to-¬ = ¬-inside -- Proof. ¬-inside {φ = φ}{ψ} φ≡ψ Γ⊢¬φ = ¬-equiv₂ (⊃-intro (⊃-elim (¬-equiv₁ (weaken ψ Γ⊢¬φ)) (subst (sym φ≡ψ) (assume ψ)))) -------------------------------------------------------------------------- ∎ -- Theorem. subst⊢¬ : ∀ {Γ} {φ γ} → Γ ⊢ γ ⊃ φ → Γ ⊢ ¬ φ → Γ ⊢ ¬ γ -- Proof. subst⊢¬ Γ⊢γ⊃φ Γ⊢¬φ = ⊃⊥-to-¬ (subst⊢⊃₁ Γ⊢γ⊃φ (¬-to-⊃⊥ Γ⊢¬φ)) -------------------------------------------------------------------------- ∎ -- Theorem. ¬⇔-to-⊃¬∧⊃¬ : ∀ {Γ} {φ₁ φ₂} → Γ ⊢ ¬ (φ₁ ⇔ φ₂) → Γ ⊢ (φ₁ ⊃ ¬ φ₂) ∧ (φ₂ ⊃ ¬ φ₁) -- Proof. ¬⇔-to-⊃¬∧⊃¬ {Γ}{φ₁}{φ₂} thm = ∧-intro (⊃-intro (¬-intro (¬-elim (weaken φ₂ $ weaken φ₁ thm) (⇔-intro (weaken φ₁ $ assume {Γ = Γ , φ₁} φ₂) (weaken φ₂ $ weaken φ₂ $ assume φ₁))))) (⊃-intro (¬-intro (¬-elim (weaken φ₁ $ weaken φ₂ thm) (⇔-intro (weaken φ₁ $ weaken φ₁ $ assume φ₂) (weaken φ₂ $ assume {Γ = Γ , φ₂} φ₁))))) -------------------------------------------------------------------------- ∎
21.175
78
0.288784
3fe37079ecc72a0ddfb7963fbe463b555f8c60a6
3,238
agda
Agda
legacy/Data/Num/Bij.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
1
2015-04-23T15:58:28.000Z
2015-04-23T15:58:28.000Z
legacy/Data/Num/Bij.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
null
null
null
legacy/Data/Num/Bij.agda
banacorn/numeral
aae093cc9bf21f11064e7f7b12049448cd6449f1
[ "MIT" ]
1
2015-05-30T05:50:50.000Z
2015-05-30T05:50:50.000Z
module Data.Num.Bij where open import Data.List hiding ([_]) open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_) import Level -------------------------------------------------------------------------------- -- Bijective Numeration -- -- A numeral system which has a unique representation for every non-negative -- interger -- http://en.wikipedia.org/wiki/Bijective_numeration -------------------------------------------------------------------------------- -- zeroless binary number infixl 7 _*B_ infixl 6 _+B_ data DigitB : Set where one : DigitB two : DigitB Bij : Set Bij = List DigitB incrB : Bij → Bij incrB [] = one ∷ [] incrB (one ∷ a) = two ∷ a incrB (two ∷ a) = one ∷ incrB a -- addition _+B_ : Bij → Bij → Bij [] +B b = b a +B [] = a (one ∷ as) +B (one ∷ bs) = two ∷ as +B bs (one ∷ as) +B (two ∷ bs) = one ∷ incrB (as +B bs) (two ∷ as) +B (one ∷ bs) = one ∷ incrB (as +B bs) (two ∷ as) +B (two ∷ bs) = two ∷ incrB (as +B bs) -- arithmetic shift *2_ : Bij → Bij *2 [] = [] *2 (one ∷ as) = two ∷ *2 as *2 (two ∷ as) = two ∷ incrB (*2 as) -- multiplication _*B_ : Bij → Bij → Bij [] *B b = [] (one ∷ as) *B b = b +B (*2 (as *B b)) (two ∷ as) *B b = b +B b +B (*2 (as *B b)) -------------------------------------------------------------------------------- -- Ordering -------------------------------------------------------------------------------- infix 4 _≤-digitB_ _≤B_ _<B_ data _≤-digitB_ : Rel DigitB Level.zero where 1≤1 : one ≤-digitB one 1≤2 : one ≤-digitB two 2≤2 : two ≤-digitB two data _≤B_ : Rel Bij Level.zero where []≤all : ∀ {n} → [] ≤B n ≤here : ∀ {as bs a b} -- compare the least digit → {a≤b : a ≤-digitB b} → {as≡bs : as ≡ bs} → a ∷ as ≤B b ∷ bs ≤there : ∀ {as bs a b} → (as<bs : incrB as ≤B bs) -- compare the rest digits → a ∷ as ≤B b ∷ bs _<B_ : Rel Bij Level.zero a <B b = incrB a ≤B b {- decr : Bij → Bij decr [] = [] decr (one ∷ a) = a decr (two ∷ a) = one ∷ a _-_ : Bij → Bij → Bij [] - bs = [] as - [] = as (one ∷ as) - (one ∷ bs) = as - bs (one ∷ as) - (two ∷ bs) = one ∷ decr (as - bs) (two ∷ as) - (one ∷ bs) = one ∷ as - bs (two ∷ as) - (two ∷ bs) = as - bs -} -------------------------------------------------------------------------------- -- typeclass for converting data types to Bij -- http://people.cs.kuleuven.be/~dominique.devriese/agda-instance-arguments/icfp001-Devriese.pdf record Conversion (t : Set) : Set where constructor conversion field [_] : t → Bij !_! : Bij → t -- split morphism -- !_! is a section of [_] -- [_] is a retraction of !_! -- [!!]-id : ∀ n → [ ! n ! ] ≡ n [_] : ∀ {t} → {{convT : Conversion t}} → t → Bij [_] {{convT}} = Conversion.[ convT ] !_! : ∀ {t} → {{convT : Conversion t}} → Bij → t !_! {{convT}} = Conversion.! convT ! --[!!]-id : ∀ {t} → {{convT : Conversion t}} → (n : Bij) → [ ! n ! ] ≡ n --[!!]-id {{convT}} = Conversion.[!!]-id convT -- alias, more meaningful than the forgettable [_] and !_! (replace them some day) toBij = [_] fromBij = !_!
26.325203
97
0.455528
14f57130a37fce01d913addbbdd7e8debfa1c7ad
42,874
agda
Agda
BTA8.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
1
2019-10-15T04:35:29.000Z
2019-10-15T04:35:29.000Z
BTA8.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
null
null
null
BTA8.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
1
2019-10-15T09:01:37.000Z
2019-10-15T09:01:37.000Z
module BTA8 where ---------------------------------------------- -- Preliminaries: Imports and List-utilities ---------------------------------------------- open import Data.Nat hiding (_<_;_⊔_;_*_;equal) open import Data.Bool hiding (_∧_;_∨_) open import Function using (_∘_) open import Data.List open import Data.Nat.Properties open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import Lib --------------------------------------- -- Start of the development: --------------------------------------- -- Intro/Objective: ------------------- -- The following development defines a (verified) specializer/partial -- evaluator for a simply typed lambda calculus embedded in Agda using -- deBruijn indices. -- The residual language. ------------------------- -- The residual language is a standard simply typed λ-calculus. The -- types are integers,functions,pairs,and sums. data Type : Set where Int : Type Fun : Type → Type → Type --pair type on the residual type level _•_ : Type → Type → Type --sum type on the residual type level _⊎_ : Type → Type → Type Ctx = List Type -- The type Exp describes the typed residual expressions. Variables -- are represented by deBruijn indices that form references into the -- typing context. The constructors and typing constraints are -- standard. -- TODO: citations for ``as usual'' and ``standard'' -- what? data Exp (Γ : Ctx) : Type → Set where EVar : ∀ {τ} → τ ∈ Γ → Exp Γ τ EInt : ℕ → Exp Γ Int EAdd : Exp Γ Int → Exp Γ Int -> Exp Γ Int ELam : ∀ {τ τ'} → Exp (τ ∷ Γ) τ' → Exp Γ (Fun τ τ') EApp : ∀ {τ τ'} → Exp Γ (Fun τ τ') → Exp Γ τ → Exp Γ τ' _,_ : ∀ {τ τ'} → Exp Γ τ → Exp Γ τ' → Exp Γ (τ • τ') Tl : ∀ {τ τ'} → Exp Γ τ → Exp Γ (τ ⊎ τ') Tr : ∀ {τ τ'} → Exp Γ τ' → Exp Γ (τ ⊎ τ') EFst : ∀ {τ τ'} → Exp Γ (τ • τ') → Exp Γ τ ESnd : ∀ {τ τ'} → Exp Γ (τ • τ') → Exp Γ τ' ECase : ∀ {τ τ' τ''} → Exp Γ (τ ⊎ τ') → Exp (τ ∷ Γ) τ'' → Exp (τ' ∷ Γ) τ'' → Exp Γ τ'' -- The standard functional semantics of the residual expressions. -- TODO: citations for ``as usual'' and ``standard'' -- what? module Exp-Eval where -- interpretation of Exp types EImp : Type → Set EImp Int = ℕ EImp (Fun ty ty₁) = EImp ty → EImp ty₁ EImp (ty • ty₁) = EImp ty * EImp ty₁ EImp (ty ⊎ ty₁) = EImp ty ⨄ EImp ty₁ -- Environments containing values for free variables. An environment -- is indexed by a typing context that provides the types for the -- contained values. data Env : Ctx → Set where [] : Env [] _∷_ : ∀ {τ Γ} → EImp τ → Env Γ → Env (τ ∷ Γ) -- Lookup a value in the environment, given a reference into the -- associated typing context. lookupE : ∀ { τ Γ } → τ ∈ Γ → Env Γ → EImp τ lookupE hd (x ∷ env) = x lookupE (tl v) (x ∷ env) = lookupE v env -- Evaluation of residual terms, given a suitably typed environment. ev : ∀ {τ Γ} → Exp Γ τ → Env Γ → EImp τ ev (EVar x) env = lookupE x env ev (EInt x) env = x ev (EAdd e e₁) env = ev e env + ev e₁ env ev (ELam e) env = λ x → ev e (x ∷ env) ev (EApp e e₁) env = ev e env (ev e₁ env) ev (e , e₁) env = ev e env , (ev e₁ env) ev (Tl e) env = tl (ev e env) ev (Tr e) env = tr (ev e env) ev (EFst e) env = fst (ev e env) ev (ESnd e) env = snd (ev e env) ev (ECase e e₁ e₂) env with ev e env ev (ECase e e₁ e₂) env | tl c = (λ x → ev e₁ (x ∷ env)) c ev (ECase e e₁ e₂) env | tr c = (λ x → ev e₂ (x ∷ env)) c -- The binding-time-annotated language. --------------------------------------- -- The type of a term determines the term's binding time. The type -- constructors with an A-prefix denote statically bound integers and -- functions. Terms with dynamic binding time have a `D' type. The `D' -- type constructor simply wraps up a residual type. data AType : Set where AInt : AType AFun : AType → AType → AType D : Type → AType --pair type on the annotated type level _•_ : AType → AType → AType --sum type on the annotated type level _⊎_ : AType → AType → AType ACtx = List AType -- The mapping from annotated types to residual types is straightforward. typeof : AType → Type typeof AInt = Int typeof (AFun α₁ α₂) = Fun (typeof α₁) (typeof α₂) typeof (D x) = x typeof (α₁ • α₂) = typeof α₁ • typeof α₂ typeof (α₁ ⊎ α₂) = typeof α₁ ⊎ typeof α₂ -- The typed annotated terms: The binding times of variables is -- determined by the corresponding type-binding in the context. In the -- other cases, the A- and D-prefixes on term constructors inidicate -- the corresponding binding times for the resulting terms. ------------------------------------------------------------------------------------------------ -- Now the typed annotated terms are extended to inculde dynamic terms whose subterms are static ------------------------------------------------------------------------------------------------ --------------- --Some examples --------------- --a. first-order static value in a dynamic environment -- DAdd (DInt 1) (AAdd (AInt 2) (AInt 3)) where AAdd (AInt 2) (AInt 3) : AExp [] AInt -- DAdd (DInt 1) (AApp (ALam (Var hd)) (AInt 5)) where AApp (ALam (Var hd)) (AInt 5) : AExp [] AInt --b. higher-order static value in a dynamic environment -- DApp (ALam (Var hd)) (DInt 5) where ALam (Var hd) : AExp [] (AFun (D Int) (D Int)) -- DApp (ALam (ALam (AInt 0))) (DInt 5) where ALam (ALam (AInt 0)) : AExp [] (AFun (AFun (D Int) (D Int)) AInt) -- DApp (ALam (ALam (DInt 0))) (DInt 5) where ALam (ALam (DInt 0)) : AExp [] (AFun (AFun AInt (D Int)) (D Int)) --Clearly these terms are not well-typed and we need to modify [AExp] such that they have the right types which are --compatible with the dynamic environment,or we can "lift" their static types to dynamic types so that they can be --used as dynamic sub-terms to be filled in the right dynamic environment. This,however,brings new difficulty when --we try to partially evaluate term who contains "lifted" subterms. ---------------- --new difficulty ---------------- --Consider the evaluation of the following term --DAdd (DInt 1) (Lift (AAdd (AInt 2) (AInt 3))) : AExp [] AInt --the expected type after evaluation is, --EAdd (EInt 1) ? : Exp [] Int where ? : Exp [] Int --and one good candidate for "?" as, --EInt (pe (AAdd (AInt 2) (AInt 3)) []) : Exp [] Int --where we wrap up the partial evaluation of the static subterm so --that it fits with the rest of evaluation. --However,we can not always "wrap up" a evaluated higher-order static --value so that it has the required residual type, --ALam (Var hd) : AExp [] (AFun AInt AInt) --the required type of its lifted term as, --? : Exp [] (Fun Int Int) --which can not be constructed from [λ Γ↝Γ' x → x : []↝Γ' → ℕ → ℕ] --for the input of the static function is evaluated to be a natural --number which can not be matched with the type of the input of the --required residual term. It is then clear that we need to impose --restriction upon terms to be lifted. ------------------------- --restriction for lifting ------------------------- ------------------------------------------------------------- -- The interpretation of annotated types. Imp : Ctx → AType → Set Imp Γ (AInt) = ℕ Imp Γ (AFun α₁ α₂) = ∀ {Γ'} → Γ ↝ Γ' → (Imp Γ' α₁ → Imp Γ' α₂) Imp Γ (D σ) = Exp Γ σ Imp Γ (α₁ • α₂) = (Imp Γ α₁) * (Imp Γ α₂) Imp Γ (α₁ ⊎ α₂) = (Imp Γ α₁) ⨄ (Imp Γ α₂) elevate-var : ∀ {Γ Γ'} {τ : Type} → Γ ↝ Γ' → τ ∈ Γ → τ ∈ Γ' elevate-var ↝-refl x = x elevate-var (↝-extend Γ↝Γ') x = tl (elevate-var Γ↝Γ' x) elevate-var2 : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → τ ∈ Γ → τ ∈ Γ'' elevate-var2 (↝↝-base x) x₁ = elevate-var x x₁ elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') hd = hd elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') (tl x) = tl (elevate-var2 Γ↝Γ'↝Γ'' x) elevate : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → Exp Γ τ → Exp Γ'' τ elevate Γ↝Γ'↝Γ'' (EVar x) = EVar (elevate-var2 Γ↝Γ'↝Γ'' x) elevate Γ↝Γ'↝Γ'' (EInt x) = EInt x elevate Γ↝Γ'↝Γ'' (EAdd e e₁) = EAdd (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (ELam e) = ELam (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) elevate Γ↝Γ'↝Γ'' (EApp e e₁) = EApp (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (e , e₁) = ((elevate Γ↝Γ'↝Γ'' e) , (elevate Γ↝Γ'↝Γ'' e₁)) elevate Γ↝Γ'↝Γ'' (Tl e) = Tl (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (Tr e) = Tr (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (EFst e) = EFst (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (ESnd e) = ESnd (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (ECase c e₁ e₂) = ECase (elevate Γ↝Γ'↝Γ'' c) (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₁) (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₂) liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e ------------------------------------------------------------- -- --case 1. a first-order static value in a dynamic environment -- lift1 : AExp [] AInt -- lift1 = (AInt 0) -- e1 : Imp [] AInt -- e1 = 0 -- lifted1 : Exp [] (typeof AInt) -- lifted1 = EInt e1 -- --case 2. higher-order static function in a dynamic environment -- --a. a function whose input argument is of static integer -- --lift2 : AExp [] (AFun AInt AInt) -- --lift2 = ALam (Var hd) -- --e2 : Imp [] (AFun AInt AInt) -- --e2 = λ Γ↝Γ' x → x -- --lifted2 : Exp [] (typeof (AFun AInt AInt)) -- --lifted2 = ELam {!!} -- --Note that as explained above it is impossible to construct the right term using [e2] -- --to fill in the above hole! -- --b. a function whose input argument is of dynamic integer -- --b.1. when return type is of dynamic integer -- lift3 : AExp [] (AFun (D Int) (D Int)) -- lift3 = ALam (Var hd) -- e3 : Imp [] (AFun (D Int) (D Int)) -- e3 = λ Γ↝Γ' x → x -- liftede3 : Exp [] (typeof (AFun (D Int) (D Int))) -- liftede3 = ELam (e3 (↝-extend ↝-refl) (EVar hd)) -- --b.2. when return type is of static integer -- lift4 : AExp [] (AFun (D Int) AInt) -- lift4 = ALam (AInt 0) -- e4 : Imp [] (AFun (D Int) AInt) -- e4 = λ Γ↝Γ' x → 0 -- liftede4 : Exp [] (typeof (AFun (D Int) AInt)) -- liftede4 = ELam ( EInt {Int ∷ []} (e4 (↝-extend ↝-refl) (EVar hd))) -- --c. a function whose input argument is of static function type -- --c.1. static function type returns a static integer -- --lift5 : AExp [] (AFun (AFun AInt AInt) AInt) -- --lift5 = ALam (AApp (Var hd) (AInt 0)) -- --e5 : Imp [] (AFun (AFun AInt AInt) AInt) -- --e5 = λ Γ↝Γ' x → x ↝-refl 0 -- --liftede5 : Exp [] (typeof ( AFun (AFun AInt AInt) AInt)) -- --liftede5 = ELam (EInt (e5 (↝-extend {τ = Fun Int Int} ↝-refl) (λ Γ↝Γ' e' → {!!}))) -- --Note that again it is impossible to construct the right residual term -- --c.2. static function type returns a dynamic integer -- --c.2.1. the input of the function type is of static integer -- lift6 : AExp [] (AFun (AFun AInt (D Int)) (D Int)) -- lift6 = ALam (AApp (Var hd) (AInt 0)) -- e6 : Imp [] (AFun (AFun AInt (D Int)) (D Int)) -- e6 = λ Γ↝Γ' x → x ↝-refl 0 -- liftede6 : Exp [] (typeof ( AFun (AFun AInt (D Int)) (D Int))) -- liftede6 = ELam ((e6 (↝-extend {τ = Fun Int Int} ↝-refl) -- (λ Γ↝Γ' e' → EApp (liftE Γ↝Γ' (EVar {Fun Int Int ∷ []} hd)) (EInt e')))) -- --c.2.1. the input of the function type is of dynamic integer -- lift7 : AExp [] (AFun (AFun (D Int) (D Int)) (D Int)) -- lift7 = ALam (AApp (Var hd) (DInt 0)) -- e7 : Imp [] (AFun (AFun (D Int) (D Int)) (D Int)) -- e7 = λ Γ↝Γ' x → x ↝-refl (EInt 0) -- liftede7 : Exp [] (typeof ( AFun (AFun (D Int) (D Int)) (D Int))) -- liftede7 = ELam ((e7 (↝-extend {τ = Fun Int Int} ↝-refl) -- (λ Γ↝Γ' e' → EApp (liftE Γ↝Γ' (EVar {Fun Int Int ∷ []} hd)) e'))) -- --c.3. the output of the function type is of higher-order static value -- --c.3.1 the return value has one static integer as input -- -- lift8 : AExp [] (AFun (D Int) (AFun AInt (D Int))) -- -- lift8 = ALam (ALam (Var (tl hd))) -- -- e8 : Imp [] (AFun (D Int) (AFun AInt (D Int))) -- -- e8 = λ Γ↝Γ' x Γ'↝Γ'' y → liftE Γ'↝Γ'' x -- -- liftede8 : Exp [] (typeof ( AFun (D Int) (AFun AInt (D Int)))) -- -- liftede8 = ELam (ELam (e8 (↝-extend (↝-extend ↝-refl)) (EVar (tl hd)) ↝-refl {!!})) -- --c.3.2 the return value has one dynamic integer as input -- lift9 : AExp [] (AFun (D Int) (AFun (D Int) (D Int))) -- lift9 = ALam (ALam (Var (tl hd))) -- e9 : Imp [] (AFun (D Int) (AFun (D Int) (D Int))) -- e9 = λ Γ↝Γ' x Γ'↝Γ'' y → liftE Γ'↝Γ'' x -- liftede9 : Exp [] (typeof ( AFun (D Int) (AFun (D Int) (D Int)))) -- liftede9 = ELam (ELam (e9 (↝-extend (↝-extend ↝-refl)) (EVar (tl hd)) ↝-refl (EVar hd))) -- --d. static pairs and sums in dynamic environment -- --d.1. identity function with static sum as its input -- lift10 : AExp [] (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int))) -- lift10 = ALam (Var hd) -- e10 : Imp [] (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int))) -- e10 = λ Γ↝Γ' x → x -- liftede10 : Exp [] (typeof (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int)))) -- liftede10 = ELam {!e10!} -- --d.1. identity function with static sum as its input -- lift11 : AExp [] (AFun ((D Int) • (D Int)) ((D Int) • (D Int))) -- lift11 = ALam (Var hd) -- e11 : Imp [] (AFun ((D Int) • (D Int)) ((D Int) • (D Int))) -- e11 = λ Γ↝Γ' x → x -- liftede11 : Exp [] (typeof (AFun ((D Int) • (D Int)) ((D Int) • (D Int)))) -- liftede11 = ELam (fst (e11 (↝-extend ↝-refl) (EFst (EVar hd) , ESnd (EVar hd))) , -- snd (e11 (↝-extend ↝-refl) (EFst (EVar hd) , ESnd (EVar hd)))) --Note that the above two examples in section "d" clearly shows that --"static functions with inputs of static sum type are not liftable -- while with inputs of static pair type are liftable ". --------------------------- --summary on liftable terms --------------------------- --a. Regarding static first-order static value (static integer) in dynamic environment -- All terms of static integer type are liftable --b. Regarding static higher-order static value in dynamic environment --b.1. given that output value is liftable -- • when input is of first-order dynamic type,liftable -- • when input is of higher-order static type and output -- of that input is of dynamic type,liftable --b.2. given that input value is liftable -- • when output is of first-order type,liftable -- • when output is of higher-order type and inputs -- of that type are of dynamic type,liftable ------------------------------------------- --specification of the liftable restriction ------------------------------------------- mutual data Liftable : AType → Set where D : ∀ τ → Liftable (D τ) AInt : Liftable AInt _⊎_ : ∀ {α₁ α₂} → Liftable α₁ → Liftable α₂ → Liftable (α₁ ⊎ α₂) _•_ : ∀ {α₁ α₂} → Liftable α₁ → Liftable α₂ → Liftable (α₁ • α₂) AFun : ∀ {α₁ α₂} → Liftable⁻ α₁ → Liftable α₂ → Liftable (AFun α₁ α₂) data Liftable⁻ : AType → Set where D : ∀ τ → Liftable⁻ (D τ) _•_ : ∀ {α₁ α₂} → Liftable⁻ α₁ → Liftable⁻ α₂ → Liftable⁻ (α₁ • α₂) AFun : ∀ {α₁ α₂} → Liftable α₁ → Liftable⁻ α₂ → Liftable⁻ (AFun α₁ α₂) ---------------------------------------- --[AExp] with liftable terms ---------------------------------------- data AExp (Δ : ACtx) : AType → Set where Var : ∀ {α} → α ∈ Δ → AExp Δ α AInt : ℕ → AExp Δ AInt AAdd : AExp Δ AInt → AExp Δ AInt → AExp Δ AInt ALam : ∀ {α₁ α₂} → AExp (α₁ ∷ Δ) α₂ → AExp Δ (AFun α₁ α₂) AApp : ∀ {α₁ α₂} → AExp Δ (AFun α₂ α₁) → AExp Δ α₂ → AExp Δ α₁ DInt : ℕ → AExp Δ (D Int) DAdd : AExp Δ (D Int) → AExp Δ (D Int) → AExp Δ (D Int) DLam : ∀ {σ₁ σ₂} → AExp ((D σ₁) ∷ Δ) (D σ₂) → AExp Δ (D (Fun σ₁ σ₂)) DApp : ∀ {α₁ α₂} → AExp Δ (D (Fun α₂ α₁)) → AExp Δ (D α₂) → AExp Δ (D α₁) -- Static pairs and sums _,_ : ∀ {α₁ α₂} → AExp Δ α₁ → AExp Δ α₂ → AExp Δ (α₁ • α₂) Tl : ∀ {α₁ α₂} → AExp Δ α₁ → AExp Δ (α₁ ⊎ α₂) Tr : ∀ {α₁ α₂} → AExp Δ α₂ → AExp Δ (α₁ ⊎ α₂) Fst : ∀ {α₁ α₂} → AExp Δ (α₁ • α₂) → AExp Δ α₁ Snd : ∀ {α₁ α₂} → AExp Δ (α₁ • α₂) → AExp Δ α₂ Case : ∀ {α₁ α₂ α₃} → AExp Δ (α₁ ⊎ α₂) → AExp (α₁ ∷ Δ) α₃ → AExp (α₂ ∷ Δ) α₃ → AExp Δ α₃ -- Dynamic pairs and sums _ḋ_ : ∀ {σ₁ σ₂} → AExp Δ (D σ₁) → AExp Δ (D σ₂) → AExp Δ (D (σ₁ • σ₂)) DTl : ∀ {σ₁ σ₂} → AExp Δ (D σ₁) → AExp Δ (D (σ₁ ⊎ σ₂)) DTr : ∀ {σ₁ σ₂} → AExp Δ (D σ₂) → AExp Δ (D (σ₁ ⊎ σ₂)) DFst : ∀ {σ₁ σ₂} → AExp Δ (D (σ₁ • σ₂)) → AExp Δ (D σ₁) DSnd : ∀ {σ₁ σ₂} → AExp Δ (D (σ₁ • σ₂)) → AExp Δ (D σ₂) DCase : ∀ {σ₁ σ₂ σ₃} → AExp Δ (D (σ₁ ⊎ σ₂)) → AExp ((D σ₁) ∷ Δ) (D σ₃) → AExp ((D σ₂) ∷ Δ) (D σ₃) → AExp Δ (D σ₃) -- Liftable static terms ↑ : ∀ {α} → Liftable α → AExp Δ α → AExp Δ (D (typeof α)) -- The terms of AExp assign a binding time to each subterm. For -- program specialization, we interpret terms with dynamic binding -- time as the programs subject to specialization, and their subterms -- with static binding time as statically known inputs. A partial -- evaluation function (or specializer) then compiles the program into -- a residual term for that is specialized for the static inputs. The -- main complication when defining partial evaluation as a total, -- primitively recursive function will be the treatment of the De -- Bruijn variables of non-closed residual expressions. lift : ∀ {Γ Γ'} α → Γ ↝ Γ' → Imp Γ α → Imp Γ' α lift AInt p v = v lift (AFun x x₁) Γ↝Γ' v = λ Γ'↝Γ'' → v (↝-trans Γ↝Γ' Γ'↝Γ'') lift (D x₁) Γ↝Γ' v = elevate (↝↝-base Γ↝Γ') v lift (α₁ • α₂) Γ↝Γ' (v₁ , v₂) = (lift α₁ Γ↝Γ' v₁) , (lift α₂ Γ↝Γ' v₂) lift (α₁ ⊎ α₂) Γ↝Γ' (tl v) = tl (lift α₁ Γ↝Γ' v) lift (α₁ ⊎ α₂) Γ↝Γ' (tr v) = tr (lift α₂ Γ↝Γ' v) module SimpleAEnv where -- A little weaker, but much simpler data AEnv (Γ : Ctx) : ACtx → Set where [] : AEnv Γ [] --cons : ∀ {Δ} (α : AType) → Imp Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) cons : ∀ {Δ} {α : AType} → Imp Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) lookup : ∀ {α Δ Γ} → AEnv Γ Δ → α ∈ Δ → Imp Γ α lookup [] () --lookup {α} (cons .α x aenv) hd = x --lookup {α} (cons .y x aenv) (tl {.α} {y} id) = lookup aenv id lookup {α} (cons x aenv) hd = x lookup {α} (cons x aenv) (tl {.α} {y} id) = lookup aenv id liftEnv : ∀ {Γ Γ' Δ} → Γ ↝ Γ' → AEnv Γ Δ → AEnv Γ' Δ liftEnv Γ↝Γ' [] = [] --liftEnv Γ↝Γ' (cons α x env) = cons α (lift α Γ↝Γ' x) (liftEnv Γ↝Γ' env) liftEnv Γ↝Γ' (cons {α = α} x env) = cons {α = α} (lift α Γ↝Γ' x) (liftEnv Γ↝Γ' env) consD : ∀ {Γ Δ} σ → AEnv Γ Δ → AEnv (σ ∷ Γ) (D σ ∷ Δ) --consD σ env = (cons (D σ) (EVar hd) (liftEnv (↝-extend {τ = σ} ↝-refl) env)) consD σ env = (cons {α = D σ} (EVar hd) (liftEnv (↝-extend {τ = σ} ↝-refl) env)) ---------------------------------------------- -- Helper for the evaluation of liftable terms ---------------------------------------------- mutual lift' : ∀ {Γ α} → Liftable α → Imp Γ α → (Exp Γ (typeof α)) lift' (D τ) v = v lift' AInt v = EInt v lift' (ty ⊎ ty₁) (tl a) = Tl (lift' ty a) lift' (ty ⊎ ty₁) (tr b) = Tr (lift' ty₁ b) lift' (ty • ty₁) (ffst , ssnd) = lift' ty ffst , lift' ty₁ ssnd lift' {Γ} (AFun {α₁} ty₁ ty₂) v = ELam ((λ x → lift' ty₂ (v (↝-extend {τ = typeof α₁} ↝-refl) x)) (embed ty₁ (EVar {Γ = typeof α₁ ∷ Γ} hd))) embed : ∀ {Γ α} → Liftable⁻ α → Exp Γ (typeof α) → (Imp Γ α) embed (D τ) e = e -- embed (ty ⊎ ty₁) e = {! (ECase e (EVar hd) ?)!} -- embed (ty ⊎ ty₁) (EVar x) = {!!} -- embed (ty ⊎ ty₁) (EApp e e₁) = {!!} -- embed (ty ⊎ ty₁) (Tl e) = tl (embed ty e) -- embed (ty ⊎ ty₁) (Tr e) = tr (embed ty₁ e) -- embed (ty ⊎ ty₁) (EFst e) = {!!} -- embed (ty ⊎ ty₁) (ESnd e) = {!!} -- embed (ty ⊎ ty₁) (ECase e e₁ e₂) = {!!} embed (ty • ty₁) e = embed ty (EFst e) , embed ty₁ (ESnd e) embed {Γ} (AFun {α} ty₁ ty₂) e = λ Γ↝Γ' v₁ → embed ty₂ (EApp (liftE Γ↝Γ' e) (lift' ty₁ v₁)) -------------------- -- Partial Evaluator -------------------- pe : ∀ {α Δ Γ} → AExp Δ α → AEnv Γ Δ → Imp Γ α pe (Var x) env = lookup env x pe (AInt x) env = x pe (AAdd e e₁) env = pe e env + pe e₁ env pe (ALam {α} e) env = λ Γ↝Γ' → λ y → pe e (cons {α = α} y (liftEnv Γ↝Γ' env)) pe (AApp e e₁) env = pe e env ↝-refl (pe e₁ env) pe (DInt x) env = EInt x pe (DAdd e e₁) env = EAdd (pe e env) (pe e₁ env) pe (DLam {σ} e) env = ELam (pe e (consD σ env)) pe (DApp e e₁) env = EApp (pe e env) (pe e₁ env) pe {Γ = Γ} (e , e₁) env = pe {Γ = Γ} e env , pe {Γ = Γ} e₁ env pe {α = α₁ ⊎ α₂} {Γ = Γ} (Tl e) env = tl (pe {α = α₁} {Γ = Γ} e env) pe {α = α₁ ⊎ α₂} {Γ = Γ} (Tr e) env = tr (pe {α = α₂} {Γ = Γ} e env) pe {Γ = Γ} (Fst e) env = fst (pe {Γ = Γ} e env) pe {Γ = Γ} (Snd e) env = snd (pe {Γ = Γ} e env) pe {Γ = Γ} (Case e e₁ e₂) env with pe {Γ = Γ} e env pe {Γ = Γ} (Case {α₁ = α} e e₁ e₂) env | tl y = (λ Γ↝Γ' → λ y → pe e₁ (cons {α = α} y (liftEnv Γ↝Γ' env))) ↝-refl y pe {Γ = Γ} (Case {α₂ = α} e e₁ e₂) env | tr y = (λ Γ↝Γ' → λ y → pe e₂ (cons {α = α} y (liftEnv Γ↝Γ' env))) ↝-refl y pe (e ḋ e₁) env = pe e env , pe e₁ env pe (DTl e) env = Tl (pe e env) pe (DTr e) env = Tr (pe e env) pe (DFst e) env = EFst (pe e env) pe (DSnd e) env = ESnd (pe e env) pe (DCase {σ₁} {σ₂} e e₁ e₂) env = ECase (pe e env) (pe e₁ (consD σ₁ env)) (pe e₂ (consD σ₂ env)) pe (↑ x e) env = lift' x (pe e env) -- Correctness proof module Correctness where open SimpleAEnv open Exp-Eval -- TODO: rename occurences of stripα to typeof stripα = typeof stripΔ : ACtx → Ctx stripΔ = map stripα strip-lookup : ∀ { α Δ} → α ∈ Δ → stripα α ∈ stripΔ Δ strip-lookup hd = hd strip-lookup (tl x) = tl (strip-lookup x) strip : ∀ {α Δ} → AExp Δ α → Exp (stripΔ Δ) (stripα α) strip (Var x) = EVar (strip-lookup x) strip (AInt x) = EInt x strip (AAdd e e₁) = EAdd (strip e) (strip e₁) strip (ALam e) = ELam (strip e) strip (AApp e e₁) = EApp (strip e) (strip e₁) strip (DInt x) = EInt x strip (DAdd e e₁) = EAdd (strip e) (strip e₁) strip (DLam e) = ELam (strip e) strip (DApp e e₁) = EApp (strip e) (strip e₁) strip (e , e₁) = strip e , strip e₁ strip (Tl e) = Tl (strip e) strip (Tr e) = Tr (strip e) strip (Fst e) = EFst (strip e) strip (Snd e) = ESnd (strip e) strip (Case e e₁ e₂) = ECase (strip e) (strip e₁) (strip e₂) strip (e ḋ e₁) = strip e , strip e₁ strip (DTl e) = Tl (strip e) strip (DTr e) = Tr (strip e) strip (DFst e) = EFst (strip e) strip (DSnd e) = ESnd (strip e) strip (DCase e e₁ e₂) = ECase (strip e) (strip e₁) (strip e₂) strip (↑ x e) = strip e --liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ --liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e stripLift : ∀ {α Δ Γ} → stripΔ Δ ↝ Γ → AExp Δ α → Exp Γ (stripα α) stripLift Δ↝Γ = liftE Δ↝Γ ∘ strip -- -------------------------------- -- --"lift-strip" equivalence lemma -- -------------------------------- -- ↑≡↓ : ∀ x e env env' aenv → Equiv-Env env' aenv env → ev (lift' x (pe e aenv)) env' ≡ ev (strip e) env -- ↑≡↓ x e env env' aenv eqenv = {!!} -- We want to show that pe preserves the semantics of the -- program. Roughly, Exp-Eval.ev-ing a stripped program is -- equivalent to first pe-ing a program and then Exp-Eval.ev-ing the -- result. But as the pe-result of a static function ``can do more'' -- than the (ev ∘ strip)ped function we need somthing more refined. module Equiv where open import Relation.Binary.PropositionalEquality -- Extending a value environment according to an extension of a -- type environment data _⊢_↝_ {Γ} : ∀ {Γ'} → Γ ↝ Γ' → Env Γ → Env Γ' → Set where refl : ∀ env → ↝-refl ⊢ env ↝ env extend : ∀ {τ Γ' env env'} → {Γ↝Γ' : Γ ↝ Γ'} → (v : EImp τ) → (Γ↝Γ' ⊢ env ↝ env') → ↝-extend Γ↝Γ' ⊢ env ↝ (v ∷ env') env↝trans : ∀ {Γ Γ' Γ''} {Γ↝Γ' : Γ ↝ Γ'} {Γ'↝Γ'' : Γ' ↝ Γ''} {env env' env''} → Γ↝Γ' ⊢ env ↝ env' → Γ'↝Γ'' ⊢ env' ↝ env'' → let Γ↝Γ'' = ↝-trans Γ↝Γ' Γ'↝Γ'' in Γ↝Γ'' ⊢ env ↝ env'' env↝trans {Γ} {.Γ''} {Γ''} {Γ↝Γ'} {.↝-refl} {env} {.env''} {env''} env↝env' (refl .env'') = env↝env' env↝trans env↝env' (extend v env'↝env'') = extend v (env↝trans env↝env' env'↝env'') -- Equivalent Imp Γ α and EImp τ values (where τ = stripα α). As -- (v : Imp Γ α) is not necessarily closed, equivalence is defined for -- the closure (Env Γ, ImpΓ α) Equiv : ∀ {α Γ} → Env Γ → Imp Γ α → EImp (stripα α) → Set Equiv {AInt} env av v = av ≡ v Equiv {AFun α₁ α₂} {Γ} env av v = ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → {av' : Imp Γ' α₁} → {v' : EImp (stripα α₁)} → Equiv env' av' v' → Equiv env' (av Γ↝Γ' av') (v v') Equiv {D x} env av v = ev av env ≡ v Equiv {α • α₁} env (ffst , ssnd) (ffst₁ , ssnd₁) = Equiv {α} env ffst ffst₁ ∧ Equiv {α₁} env ssnd ssnd₁ Equiv {α ⊎ α₁} env (tl a) (tl a₁) = Equiv {α} env a a₁ -------------------------------------------------------------------- Equiv {α ⊎ α₁} env (tl a) (tr b) = ⊥ -- Interesting case! Equiv {α ⊎ α₁} env (tr b) (tl a) = ⊥ -- Interesting case! -------------------------------------------------------------------- Equiv {α ⊎ α₁} env (tr b) (tr b₁) = Equiv {α₁} env b b₁ -- Equiv {AInt} env av v = av ≡ v -- Equiv {AFun α₁ α₂} {Γ} env av v = -- extensional equality, given -- an extended context -- ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → -- {av' : Imp Γ' α₁} → {v' : EImp (stripα α₁)} → -- Equiv env' av' v' → Equiv env' (av Γ↝Γ' av') (v v') -- Equiv {D x} {Γ} env av v = ev av env ≡ v -- actually we mean extensional equality -- TODO: Define a proper equivalence for EImps -- Equivalence of AEnv and Env environments. They need to provide -- Equivalent bindings for a context Δ/stripΔ Δ. Again, the -- equivalence is defined for a closure (Env Γ', AEnv Γ' Δ). data Equiv-Env {Γ' : _} (env' : Env Γ') : ∀ {Δ} → let Γ = stripΔ Δ in AEnv Γ' Δ → Env Γ → Set where [] : Equiv-Env env' [] [] cons : ∀ {α Δ} → let τ = stripα α Γ = stripΔ Δ in {env : Env Γ} → {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (va : Imp (Γ') α) → (v : EImp τ) → Equiv env' va v → --Equiv-Env env' (cons α va (aenv)) (v ∷ env) Equiv-Env env' (cons {α = α} va (aenv)) (v ∷ env) -------------------------------- --"lift-strip" equivalence lemma -------------------------------- -- ↑≡↓ : ∀ {Γ' Δ α} x e env env' aenv → Equiv-Env {Γ'} env' {Δ} aenv env → ev (lift' {Γ = Γ'} {α = α} x (pe e aenv)) env' ≡ ev (strip e) env -- ↑≡↓ x e env env' aenv eqenv = {!!} -- Now for the proof... module Proof where open Equiv open import Relation.Binary.PropositionalEquality -- Extensional equality as an axiom to prove the Equivalence of -- function values. We could (should?) define it locally for -- Equiv. postulate ext : ∀ {τ₁ τ₂} {f g : EImp τ₁ → EImp τ₂} → (∀ x → f x ≡ g x) → f ≡ g -- Ternary helper relation for environment extensions, analogous to _↝_↝_ for contexts data _⊢_↝_↝_⊣ : ∀ { Γ Γ' Γ''} → Γ ↝ Γ' ↝ Γ'' → Env Γ → Env Γ' → Env Γ'' → Set where refl : ∀ {Γ Γ''} {Γ↝Γ'' : Γ ↝ Γ''} { env env'' } → Γ↝Γ'' ⊢ env ↝ env'' → ↝↝-base Γ↝Γ'' ⊢ env ↝ [] ↝ env'' ⊣ extend : ∀ {Γ Γ' Γ'' τ} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} { env env' env'' } → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (v : EImp τ) → ↝↝-extend Γ↝Γ'↝Γ'' ⊢ (v ∷ env) ↝ (v ∷ env') ↝ (v ∷ env'') ⊣ -- the following lemmas are strong versions of the shifting -- functions, proving that consistent variable renaming preserves -- equivalence (and not just typing). lookup-elevate-≡ : ∀ {τ Γ Γ'} {Γ↝Γ' : Γ ↝ Γ'} {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var Γ↝Γ' x) env' lookup-elevate-≡ {τ} {.Γ'} {Γ'} {.↝-refl} {.env'} {env'} (refl .env') x = refl lookup-elevate-≡ (extend v env↝env') x = lookup-elevate-≡ env↝env' x lookup-elevate2-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var2 Γ↝Γ'↝Γ'' x) env'' lookup-elevate2-≡ (refl Γ↝Γ') x = lookup-elevate-≡ Γ↝Γ' x lookup-elevate2-≡ (extend env↝env'↝env'' v) hd = refl lookup-elevate2-≡ (extend env↝env'↝env'' _) (tl x) rewrite lookup-elevate2-≡ env↝env'↝env'' x = refl lem-elevate-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (e : Exp Γ τ) → ev e env ≡ ev (elevate Γ↝Γ'↝Γ'' e) env'' lem-elevate-≡ env↝env' (EVar x) = lookup-elevate2-≡ env↝env' x lem-elevate-≡ env↝env' (EInt x) = refl lem-elevate-≡ env↝env' (EAdd e e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ _+_ IA1 IA2 lem-elevate-≡ {Γ↝Γ'↝Γ'' = Γ↝Γ'↝Γ''} {env = env} {env'' = env''} env↝env' (ELam e) = ext lem-elevate-≡-body where lem-elevate-≡-body : ∀ x → ev e (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e lem-elevate-≡ env↝env' (EApp e e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ (λ f₁ x → f₁ x) IA1 IA2 lem-elevate-≡ env↝env' (e , e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ (λ x y → x , y) IA1 IA2 lem-elevate-≡ env↝env' (Tl e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → tl x) IA lem-elevate-≡ env↝env' (Tr e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → tr x) IA lem-elevate-≡ env↝env' (EFst e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → fst x) IA lem-elevate-≡ env↝env' (ESnd e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → snd x) IA lem-elevate-≡ {Γ↝Γ'↝Γ'' = Γ↝Γ'↝Γ''} {env = env} {env'' = env''} env↝env' (ECase e e₁ e₂) with ev e env | ev (elevate Γ↝Γ'↝Γ'' e) env'' | lem-elevate-≡ env↝env' e ... | tl c | tl c' | IA rewrite (→tl {x' = c} {y' = c'} (tl c) (tl c') IA refl refl) = lem-elevate-≡-body c' where lem-elevate-≡-body : ∀ x → ev e₁ (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₁) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e₁ ... | tl c | tr c' | () ... | tr c | tl c' | () ... | tr c | tr c' | IA rewrite (→tr {x' = c} {y' = c'} (tr c) (tr c') IA refl refl) = lem-elevate-≡-body c' where lem-elevate-≡-body : ∀ x → ev e₂ (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₂) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e₂ lem-lift-refl-id : ∀ {α Γ} → let τ = stripα α in (env : Env Γ) → (v : EImp τ) (va : Imp Γ α) → Equiv env va v → Equiv env (lift α ↝-refl va) v lem-lift-refl-id {AInt} env v va eq = eq lem-lift-refl-id {AFun α α₁} {Γ} env v va eq = body where body : ∀ {Γ'} {env' : Env Γ'} {Γ↝Γ' : Γ ↝ Γ'} → Γ↝Γ' ⊢ env ↝ env' → {av' : Imp Γ' α} {v' : EImp (stripα α)} → Equiv env' av' v' → Equiv env' (va (↝-trans ↝-refl Γ↝Γ') av') (v v') body {Γ↝Γ' = Γ↝Γ'} env↝env' eq' rewrite sym (lem-↝-refl-id Γ↝Γ') = eq env↝env' eq' lem-lift-refl-id {D x} env v va eq rewrite sym eq = sym (lem-elevate-≡ (refl (refl env)) va) lem-lift-refl-id {α • α₁} env (ffst , ssnd) (ffst₁ , ssnd₁) (∧-intro x x₁) = ∧-intro (lem-lift-refl-id {α} env ffst ffst₁ x) (lem-lift-refl-id {α₁} env ssnd ssnd₁ x₁) lem-lift-refl-id {α ⊎ α₁} env (tl a) (tl a₁) eq = lem-lift-refl-id env a a₁ eq lem-lift-refl-id {α ⊎ α₁} env (tl a) (tr b) () lem-lift-refl-id {α ⊎ α₁} env (tr b) (tl a) () lem-lift-refl-id {α ⊎ α₁} env (tr b) (tr b₁) eq = lem-lift-refl-id env b b₁ eq -- lifting an Imp does not affect equivalence lem-lift-equiv : ∀ {α Γ Γ'} → let τ = stripα α in {Γ↝Γ' : Γ ↝ Γ'} → (va : Imp Γ α) (v : EImp τ) → {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → Equiv env va v → Equiv env' (lift α Γ↝Γ' va) v lem-lift-equiv va v {.env'} {env'} (refl .env') eq = lem-lift-refl-id env' v va eq lem-lift-equiv {AInt} va v (extend v₁ env↝env') eq = eq lem-lift-equiv {AFun α α₁} va v (extend v₁ env↝env') eq = λ v₁env₁↝env' eq₁ → eq (env↝trans (extend v₁ env↝env') v₁env₁↝env') eq₁ lem-lift-equiv {D x} va v (extend v₁ env↝env') eq rewrite sym eq = sym (lem-elevate-≡ (refl (extend v₁ env↝env')) va) lem-lift-equiv {α • α₁} (ffst , ssnd) (ffst₁ , ssnd₁) (extend v₁ env↝env') (∧-intro x x₁) = ∧-intro (lem-lift-equiv {α} ffst ffst₁ (extend v₁ env↝env') x) (lem-lift-equiv {α₁} ssnd ssnd₁ (extend v₁ env↝env') x₁) lem-lift-equiv {α ⊎ α₁} (tl a) (tl a₁) (extend v₁ env↝env') eq = lem-lift-equiv a a₁ (extend v₁ env↝env') eq lem-lift-equiv {α ⊎ α₁} (tl a) (tr b) (extend v₁ env↝env') () lem-lift-equiv {α ⊎ α₁} (tr b) (tl a) (extend v₁ env↝env') () lem-lift-equiv {α ⊎ α₁} (tr b) (tr b₁) (extend v₁ env↝env') eq = lem-lift-equiv b b₁ (extend v₁ env↝env') eq lem-equiv-lookup : ∀ {α Δ Γ'} → let Γ = stripΔ Δ in { aenv : AEnv Γ' Δ } {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → ∀ x → Equiv {α} env' (lookup aenv x) (lookupE (strip-lookup x) env) lem-equiv-lookup env' [] () lem-equiv-lookup env' (cons enveq va v eq) hd = eq lem-equiv-lookup env' (cons enveq va v eq) (tl x) = lem-equiv-lookup env' enveq x lem-equiv-env-lift-extend : ∀ {σ Γ' Δ} (env' : Env Γ') → let Γ = stripΔ Δ in {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (x : EImp σ) → Equiv-Env (x ∷ env') (liftEnv (↝-extend ↝-refl) aenv) env lem-equiv-env-lift-extend _ [] x = [] lem-equiv-env-lift-extend env' (cons {α} eqenv va v x) x₁ = cons (lem-equiv-env-lift-extend env' eqenv x₁) (lift α (↝-extend ↝-refl) va) v (lem-lift-equiv va v (extend x₁ (refl env')) x) lem-equiv-env-lift-lift : ∀ {Γ' Γ'' Δ} → let Γ = stripΔ Δ in {Γ↝Γ' : Γ' ↝ Γ''} {env' : Env Γ'} {env'' : Env Γ''} (env'↝env'' : Γ↝Γ' ⊢ env' ↝ env'') → {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → Equiv-Env env'' (liftEnv Γ↝Γ' aenv) env lem-equiv-env-lift-lift env'↝env'' [] = [] lem-equiv-env-lift-lift {Γ↝Γ' = Γ↝Γ'} env'↝env'' (cons {α} eqenv va v x) with lem-equiv-env-lift-lift env'↝env'' eqenv ... | IA = cons IA (lift α Γ↝Γ' va) v (lem-lift-equiv va v env'↝env'' x) -------------------------------- --"lift-correct" equivalence lemma -------------------------------- open import Data.Product mutual lift-correct : ∀ {Γ α} (lft : Liftable α) (env : Env Γ) (av : Imp Γ α) (v : EImp (typeof α)) → Equiv env av v → (Equiv env (lift' lft av) v) lift-correct (D τ) env av v eq = eq lift-correct AInt env av v eq = eq lift-correct (lft ⊎ lft₁) env (tl a) (tl a₁) eq with lift-correct lft env a a₁ ... | IA rewrite IA eq = refl lift-correct (lft ⊎ lft₁) env (tr b) (tl a) () lift-correct (lft ⊎ lft₁) env (tl a) (tr b) () lift-correct (lft ⊎ lft₁) env (tr b) (tr b₁) eq with lift-correct lft₁ env b b₁ ... | IA rewrite IA eq = refl lift-correct (lft • lft₁) env (ffst , ssnd) (ffst₁ , ssnd₁) (∧-intro x x₁) rewrite lift-correct lft env ffst ffst₁ x | lift-correct lft₁ env ssnd ssnd₁ x₁ = refl lift-correct (AFun x lft) env av v eq = ext (λ x₁ → lift-correct lft (x₁ ∷ env) (av (↝-extend ↝-refl) (embed x (EVar hd))) (v x₁) (eq (extend x₁ (refl env)) (embed-correct x (x₁ ∷ env) (EVar hd) x₁ refl))) embed-correct : ∀ {Γ α} (lft : Liftable⁻ α) (env : Env Γ) → (e : Exp Γ (typeof α)) → (v : EImp (typeof α)) → ev e env ≡ v → Equiv env (embed lft e) v embed-correct (D τ) env e v eq rewrite eq = refl embed-correct (lft • lft₁) env e (fstv , sndv) eq = ∧-intro (embed-correct lft env (EFst e) fstv (subst (λ x → ffst x ≡ fstv) (sym eq) refl)) (embed-correct lft₁ env (ESnd e) sndv (subst (λ x → ssnd x ≡ sndv) (sym eq) refl)) embed-correct {α = AFun α₁ α₂} (AFun x lft) env e v eq = f where f : ∀ {Γ' env' Γ↝Γ'} (x₁ : Γ↝Γ' ⊢ env ↝ env') {x₂ : Imp Γ' α₁} {x₃ : EImp (typeof α₁)} (x₄ : Equiv env' x₂ x₃) → Equiv env' (embed lft (EApp (elevate (↝↝-base Γ↝Γ') e) (lift' x x₂))) (v x₃) f {Γ'} {env'} {Γext} envext {av'} {v'} eq' = embed-correct lft env' (EApp (elevate (↝↝-base Γext) e) (lift' x av')) (v v') g where g : ev (elevate (↝↝-base Γext) e) env' (ev (lift' x av') env') ≡ v v' g rewrite lift-correct x env' av' v' eq' | sym (cong (λ f → f v') (lem-elevate-≡ (refl envext) e)) | (cong (λ f → f v') eq) = refl --------------------------------------- --Correctness proof with liftable terms --------------------------------------- -- When we partially evaluate somthing under an environment , it -- will give equivalent results to a ``complete'' evaluation under -- an equivalent environment pe-correct : ∀ { α Δ Γ' } → (e : AExp Δ α) → let Γ = stripΔ Δ in {aenv : AEnv Γ' Δ} → {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → Equiv env' (pe e aenv) (ev (strip e) env) pe-correct (Var x) env' eqenv = lem-equiv-lookup env' eqenv x pe-correct (AInt x) env' eqenv = refl pe-correct (AAdd e e₁) env' eqenv rewrite pe-correct e env' eqenv | pe-correct e₁ env' eqenv = refl pe-correct (ALam e) env' eqenv = λ {_} {env''} env'↝env'' {av'} {v'} eq → let eqenv' : _ eqenv' = lem-equiv-env-lift-lift env'↝env'' eqenv eqenv'' : _ eqenv'' = cons eqenv' av' v' eq in pe-correct e env'' eqenv'' pe-correct (AApp e e₁) env' eqenv with pe-correct e env' eqenv | pe-correct e₁ env' eqenv ... | IAe | IAf = IAe (refl env') IAf pe-correct (DInt x) env' eqenv = refl pe-correct (DAdd e e₁) env' eqenv rewrite pe-correct e env' eqenv | pe-correct e₁ env' eqenv = refl pe-correct (DLam e) env' eqenv = ext (λ x → let eqenv₁ : _ eqenv₁ = lem-equiv-env-lift-extend env' eqenv x eqenv₂ : _ eqenv₂ = cons eqenv₁ (EVar hd) x refl in pe-correct e (x ∷ env') eqenv₂) pe-correct (DApp e e₁) env' eqenv with pe-correct e₁ env' eqenv | pe-correct e env' eqenv ... | IA' | IA = cong₂ (λ f x → f x) IA IA' pe-correct (e , e₁) env' eqenv = ∧-intro (pe-correct e env' eqenv) (pe-correct e₁ env' eqenv) pe-correct (Tl e) env' eqenv = pe-correct e env' eqenv pe-correct (Tr e) env' eqenv = pe-correct e env' eqenv pe-correct (Fst (e , e₁)) env' eqenv = pe-correct e env' eqenv pe-correct (Fst e) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | e₁ , e₂ | e₁' , e₂' | ∧-intro A B = A pe-correct (Snd (e , e₁)) env' eqenv = pe-correct e₁ env' eqenv pe-correct (Snd e) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | e₁ , e₂ | e₁' , e₂' | ∧-intro A B = B pe-correct {α} (Case e e₁ e₂) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | tl c | tl c' | L = pe-correct e₁ {aenv = cons c (liftEnv ↝-refl aenv)} {env = c' ∷ env} env' (cons (lem-equiv-env-lift-lift (refl env') eqenv) c c' L) ... | tr c | tr c' | R = pe-correct e₂ {aenv = cons c (liftEnv ↝-refl aenv)} {env = c' ∷ env} env' (cons (lem-equiv-env-lift-lift (refl env') eqenv) c c' R) ... | tr c | tl c' | () ... | tl c | tr c' | () pe-correct (e ḋ e₁) env' eqenv with pe-correct e env' eqenv | pe-correct e₁ env' eqenv ... | IA | IA' rewrite IA | IA' = refl pe-correct (DTl e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DTr e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DFst e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DSnd e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DCase e e₁ e₂) {aenv = aenv} {env = env} env' eqenv with ev (pe e aenv) env' | ev (strip e) env | pe-correct e env' eqenv ... | tl c | tl c' | IA rewrite (→tl {x' = c} {y' = c'} (tl c) (tl c') IA refl refl) = pe-correct e₁ {aenv = cons (EVar hd) (liftEnv (↝-extend ↝-refl) aenv)} {env = c' ∷ env} (c' ∷ env') (cons (lem-equiv-env-lift-lift (extend c' (refl env')) eqenv) (EVar hd) c' refl) ... | tr c | tr c' | IA rewrite (→tr {x' = c} {y' = c'} (tr c) (tr c') IA refl refl) = pe-correct e₂ {aenv = cons (EVar hd) (liftEnv (↝-extend ↝-refl) aenv)} {env = c' ∷ env} (c' ∷ env') (cons (lem-equiv-env-lift-lift (extend c' (refl env')) eqenv) (EVar hd) c' refl) ... | tl c | tr c' | () ... | tr c | tl c' | () pe-correct (↑ x e) {aenv = aenv} {env = env} env' eqenv with pe-correct e env' eqenv ... | IA = lift-correct x env' (pe e aenv) (ev (strip e) env) IA
44.475104
149
0.515581
1b4bde6a241f8f98f571c54e921ebf12a8ccd178
207
agda
Agda
Naturals.agda
Smaug123/CubicalTutorial
3d56e649152d2cd906281943860ca19da1d1f344
[ "MIT" ]
3
2020-04-26T17:02:42.000Z
2021-01-16T23:14:13.000Z
Naturals.agda
Smaug123/CubicalTutorial
3d56e649152d2cd906281943860ca19da1d1f344
[ "MIT" ]
null
null
null
Naturals.agda
Smaug123/CubicalTutorial
3d56e649152d2cd906281943860ca19da1d1f344
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --warning=error --without-K #-} module Naturals where data ℕ : Set where zero : ℕ succ : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+N_ : ℕ → ℕ → ℕ zero +N b = b succ a +N b = succ (a +N b)
14.785714
50
0.560386
36a8494bb9ea1d5f81fbba9dcfb1a4acf566e3d6
1,020
agda
Agda
src/Categories/Diagram/Colimit/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Diagram/Colimit/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Diagram/Colimit/Properties.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor hiding (id) module Categories.Diagram.Colimit.Properties {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where private module F = Functor F module C = Category C open C open import Categories.Diagram.Limit F.op open import Categories.Diagram.Colimit F open import Categories.Category.Construction.Cocones F open import Categories.Diagram.Duality C module _ (X : Obj) (coapex₁ : Coapex X) (coapex₂ : Coapex X) (L : Colimit) where private module coapex₁ = Coapex coapex₁ module coapex₂ = Coapex coapex₂ module L = Colimit L K₁ : Cocone K₁ = record { coapex = coapex₁ } module K₁ = Cocone K₁ K₂ : Cocone K₂ = record { coapex = coapex₂ } module K₂ = Cocone K₂ coψ-≈⇒rep-≈ : (∀ A → coapex₁.ψ A ≈ coapex₂.ψ A) → L.rep K₁ ≈ L.rep K₂ coψ-≈⇒rep-≈ = ψ-≈⇒rep-≈ X (Coapex⇒coApex X coapex₁) (Coapex⇒coApex X coapex₂) (Colimit⇒coLimit L)
29.142857
99
0.668627
3558758de83b501783aebdf96e80c1101c20bf1c
9,656
agda
Agda
src/fot/LTC-PCF/Program/GCD/Partial/ConversionRules.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
11
2015-09-03T20:53:42.000Z
2021-09-12T16:09:54.000Z
src/fot/LTC-PCF/Program/GCD/Partial/ConversionRules.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
2
2016-10-12T17:28:16.000Z
2017-01-01T14:34:26.000Z
src/fot/LTC-PCF/Program/GCD/Partial/ConversionRules.agda
asr/fotc
2fc9f2b81052a2e0822669f02036c5750371b72d
[ "MIT" ]
3
2016-09-19T14:18:30.000Z
2018-03-14T08:50:00.000Z
------------------------------------------------------------------------------ -- Conversion rules for the greatest common divisor ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Program.GCD.Partial.ConversionRules where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Inequalities.Properties open import LTC-PCF.Loop open import LTC-PCF.Program.GCD.Partial.GCD ------------------------------------------------------------------------------ private -- Before to prove some properties for the gcd it is convenient to -- descompose the behavior of the function step by step. -- Initially, we define the possible states (gcd-s₁, gcd-s₂, -- ...). Then we write down the proof for the execution step from -- the state p to the state q, e.g. -- -- proof₂₋₃ : ∀ m n → gcd-s₂ m n → gcd-s₃ m n. -- The functions gcd-00, gcd-S0, gcd-0S, gcd-Sm>Sn and gcd-Sm≯Sn -- show the use of the states gcd-s₁, gcd-s₂, ..., and the proofs -- associated with the execution steps. ---------------------------------------------------------------------------- -- The steps -- Initially, the conversion rule fix-eq is applied. gcd-s₁ : D → D → D gcd-s₁ m n = gcdh (fix gcdh) · m · n -- First argument application. gcd-s₂ : D → D gcd-s₂ m = lam (λ n → if (iszero₁ n) then (if (iszero₁ m) then error else m) else (if (iszero₁ m) then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m)))) -- Second argument application. gcd-s₃ : D → D → D gcd-s₃ m n = if (iszero₁ n) then (if (iszero₁ m) then error else m) else (if (iszero₁ m) then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m))) -- First if_then_else_ iszero₁ n = b. gcd-s₄ : D → D → D → D gcd-s₄ m n b = if b then (if (iszero₁ m) then error else m) else (if (iszero₁ m) then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m))) -- First if_then_else_ when if true ... gcd-s₅ : D → D gcd-s₅ m = if (iszero₁ m) then error else m -- First if_then_else_ when if false ... gcd-s₆ : D → D → D gcd-s₆ m n = if (iszero₁ m) then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m)) -- Second if_then_else_ iszero₁ m = b. gcd-s₇ : D → D → D gcd-s₇ m b = if b then error else m -- Third if_then_else_ iszero₁ m = b. gcd-s₈ : D → D → D → D gcd-s₈ m n b = if b then n else (if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m)) -- Third if_then_else_ when if false ... gcd-s₉ : D → D → D gcd-s₉ m n = if (gt m n) then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m) -- Fourth if_then_else_ gt m n = b. gcd-s₁₀ : D → D → D → D gcd-s₁₀ m n b = if b then fix gcdh · (m ∸ n) · n else fix gcdh · m · (n ∸ m) ---------------------------------------------------------------------------- -- Congruence properties gcd-s₁₀Cong₃ : ∀ {m n b b'} → b ≡ b' → gcd-s₁₀ m n b ≡ gcd-s₁₀ m n b' gcd-s₁₀Cong₃ refl = refl ---------------------------------------------------------------------------- -- The execution steps {- To prove the execution steps, e.g. proof₃₋₄ : ∀ m n → gcd-s₃ m n → gcd_s₄ m n, we usually need to prove that C [m] ≡ C [n] (1) given that m ≡ n, (2) where (2) is a conversion rule usually. We prove (1) using subst : ∀ {x y} (D : A → Set) → x ≡ y → P x → P y where • P is given by λ m → C [m ] ≡ C [n], • x ≡ y is given n ≡ m (actually, we use sym (m ≡ n)) and • P x is given by C [n] ≡ C [n] (i.e. refl). -} proof₀₋₁ : ∀ m n → fix gcdh · m · n ≡ gcd-s₁ m n proof₀₋₁ m n = subst (λ x → x · m · n ≡ gcdh (fix gcdh) · m · n) (sym (fix-eq gcdh)) refl proof₁₋₂ : ∀ m n → gcd-s₁ m n ≡ gcd-s₂ m · n proof₁₋₂ m n = subst (λ x → x · n ≡ gcd-s₂ m · n) (sym (beta gcd-s₂ m)) refl proof₂₋₃ : ∀ m n → gcd-s₂ m · n ≡ gcd-s₃ m n proof₂₋₃ m n = beta (gcd-s₃ m) n -- 25 April 2014. Failed with Andreas' --without-K. proof₃₋₄ : ∀ m n b → iszero₁ n ≡ b → gcd-s₃ m n ≡ gcd-s₄ m n b proof₃₋₄ m n .(iszero₁ n) refl = refl proof₄₋₅ : ∀ m n → gcd-s₄ m n true ≡ gcd-s₅ m proof₄₋₅ m _ = if-true (gcd-s₅ m) proof₄₋₆ : ∀ m n → gcd-s₄ m n false ≡ gcd-s₆ m n proof₄₋₆ m n = if-false (gcd-s₆ m n) proof₅₋₇ : ∀ m b → iszero₁ m ≡ b → gcd-s₅ m ≡ gcd-s₇ m b proof₅₋₇ m .(iszero₁ m) refl = refl proof₆₋₈ : ∀ m n b → iszero₁ m ≡ b → gcd-s₆ m n ≡ gcd-s₈ m n b proof₆₋₈ m n .(iszero₁ m) refl = refl proof₇₊ : ∀ m → gcd-s₇ m true ≡ error proof₇₊ _ = if-true error proof₇₋ : ∀ m → gcd-s₇ m false ≡ m proof₇₋ m = if-false m proof₈₊ : ∀ m n → gcd-s₈ m n true ≡ n proof₈₊ _ n = if-true n proof₈₋₉ : ∀ m n → gcd-s₈ m n false ≡ gcd-s₉ m n proof₈₋₉ m n = if-false (gcd-s₉ m n) proof₉₋₁₀ : ∀ m n b → gt m n ≡ b → gcd-s₉ m n ≡ gcd-s₁₀ m n b proof₉₋₁₀ m n b = gcd-s₁₀Cong₃ proof₁₀₊ : ∀ m n → gcd-s₁₀ m n true ≡ fix gcdh · (m ∸ n) · n proof₁₀₊ m n = if-true (fix gcdh · (m ∸ n) · n) proof₁₀₋ : ∀ m n → gcd-s₁₀ m n false ≡ fix gcdh · m · (n ∸ m) proof₁₀₋ m n = if-false (fix gcdh · m · (n ∸ m)) ------------------------------------------------------------------------------ -- The five equations for gcd -- First equation. -- -- We do not use this equation for reasoning about gcd. gcd-00 : gcd zero zero ≡ error gcd-00 = gcd zero zero ≡⟨ proof₀₋₁ zero zero ⟩ gcd-s₁ zero zero ≡⟨ proof₁₋₂ zero zero ⟩ gcd-s₂ zero · zero ≡⟨ proof₂₋₃ zero zero ⟩ gcd-s₃ zero zero ≡⟨ proof₃₋₄ zero zero true iszero-0 ⟩ gcd-s₄ zero zero true ≡⟨ proof₄₋₅ zero zero ⟩ gcd-s₅ zero ≡⟨ proof₅₋₇ zero true iszero-0 ⟩ gcd-s₇ zero true ≡⟨ proof₇₊ zero ⟩ error ∎ -- Second equation. gcd-S0 : ∀ n → gcd (succ₁ n) zero ≡ succ₁ n gcd-S0 n = gcd (succ₁ n) zero ≡⟨ proof₀₋₁ (succ₁ n) zero ⟩ gcd-s₁ (succ₁ n) zero ≡⟨ proof₁₋₂ (succ₁ n) zero ⟩ gcd-s₂ (succ₁ n) · zero ≡⟨ proof₂₋₃ (succ₁ n) zero ⟩ gcd-s₃ (succ₁ n) zero ≡⟨ proof₃₋₄ (succ₁ n) zero true iszero-0 ⟩ gcd-s₄ (succ₁ n) zero true ≡⟨ proof₄₋₅ (succ₁ n) zero ⟩ gcd-s₅ (succ₁ n) ≡⟨ proof₅₋₇ (succ₁ n) false (iszero-S n) ⟩ gcd-s₇ (succ₁ n) false ≡⟨ proof₇₋ (succ₁ n) ⟩ succ₁ n ∎ -- Third equation. gcd-0S : ∀ n → gcd zero (succ₁ n) ≡ succ₁ n gcd-0S n = gcd zero (succ₁ n) ≡⟨ proof₀₋₁ zero (succ₁ n) ⟩ gcd-s₁ zero (succ₁ n) ≡⟨ proof₁₋₂ zero (succ₁ n) ⟩ gcd-s₂ zero · (succ₁ n) ≡⟨ proof₂₋₃ zero (succ₁ n) ⟩ gcd-s₃ zero (succ₁ n) ≡⟨ proof₃₋₄ zero (succ₁ n) false (iszero-S n) ⟩ gcd-s₄ zero (succ₁ n) false ≡⟨ proof₄₋₆ zero (succ₁ n) ⟩ gcd-s₆ zero (succ₁ n) ≡⟨ proof₆₋₈ zero (succ₁ n) true iszero-0 ⟩ gcd-s₈ zero (succ₁ n) true ≡⟨ proof₈₊ zero (succ₁ n) ⟩ succ₁ n ∎ -- Fourth equation. gcd-S>S : ∀ m n → succ₁ m > succ₁ n → gcd (succ₁ m) (succ₁ n) ≡ gcd (succ₁ m ∸ succ₁ n) (succ₁ n) gcd-S>S m n Sm>Sn = gcd (succ₁ m) (succ₁ n) ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩ gcd-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) ⟩ gcd-s₂ (succ₁ m) · (succ₁ n) ≡⟨ proof₂₋₃ (succ₁ m) (succ₁ n) ⟩ gcd-s₃ (succ₁ m) (succ₁ n) ≡⟨ proof₃₋₄ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩ gcd-s₄ (succ₁ m) (succ₁ n) false ≡⟨ proof₄₋₆ (succ₁ m) (succ₁ n) ⟩ gcd-s₆ (succ₁ m) (succ₁ n) ≡⟨ proof₆₋₈ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩ gcd-s₈ (succ₁ m) (succ₁ n) false ≡⟨ proof₈₋₉ (succ₁ m) (succ₁ n) ⟩ gcd-s₉ (succ₁ m) (succ₁ n) ≡⟨ proof₉₋₁₀ (succ₁ m) (succ₁ n) true Sm>Sn ⟩ gcd-s₁₀ (succ₁ m) (succ₁ n) true ≡⟨ proof₁₀₊ (succ₁ m) (succ₁ n) ⟩ fix gcdh · (succ₁ m ∸ succ₁ n) · succ₁ n ∎ -- Fifth equation. gcd-S≯S : ∀ m n → succ₁ m ≯ succ₁ n → gcd (succ₁ m) (succ₁ n) ≡ gcd (succ₁ m) (succ₁ n ∸ succ₁ m) gcd-S≯S m n Sm≯Sn = gcd (succ₁ m) (succ₁ n) ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩ gcd-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) ⟩ gcd-s₂ (succ₁ m) · (succ₁ n) ≡⟨ proof₂₋₃ (succ₁ m) (succ₁ n) ⟩ gcd-s₃ (succ₁ m) (succ₁ n) ≡⟨ proof₃₋₄ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩ gcd-s₄ (succ₁ m) (succ₁ n) false ≡⟨ proof₄₋₆ (succ₁ m) (succ₁ n) ⟩ gcd-s₆ (succ₁ m) (succ₁ n) ≡⟨ proof₆₋₈ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩ gcd-s₈ (succ₁ m) (succ₁ n) false ≡⟨ proof₈₋₉ (succ₁ m) (succ₁ n) ⟩ gcd-s₉ (succ₁ m) (succ₁ n) ≡⟨ proof₉₋₁₀ (succ₁ m) (succ₁ n) false Sm≯Sn ⟩ gcd-s₁₀ (succ₁ m) (succ₁ n) false ≡⟨ proof₁₀₋ (succ₁ m) (succ₁ n) ⟩ fix gcdh · succ₁ m · (succ₁ n ∸ succ₁ m) ∎
34.362989
78
0.485708
73578d7b0fbb9a52d3c9c47e4f2930cbe560d300
2,745
agda
Agda
agda-stdlib-0.9/src/Data/Fin/Subset.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
1
2016-10-20T15:52:05.000Z
2016-10-20T15:52:05.000Z
agda-stdlib-0.9/src/Data/Fin/Subset.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
agda-stdlib-0.9/src/Data/Fin/Subset.agda
qwe2/try-agda
9d4c43b1609d3f085636376fdca73093481ab882
[ "Apache-2.0" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Subsets of finite sets ------------------------------------------------------------------------ module Data.Fin.Subset where open import Algebra import Algebra.Properties.BooleanAlgebra as BoolAlgProp import Algebra.Properties.BooleanAlgebra.Expression as BAExpr import Data.Bool.Properties as BoolProp open import Data.Fin open import Data.List as List using (List) open import Data.Nat open import Data.Product open import Data.Vec using (Vec; _∷_; _[_]=_) import Relation.Binary.Vec.Pointwise as Pointwise open import Relation.Nullary infix 4 _∈_ _∉_ _⊆_ _⊈_ ------------------------------------------------------------------------ -- Definitions -- Sides. open import Data.Bool public using () renaming (Bool to Side; true to inside; false to outside) -- Partitions a finite set into two parts, the inside and the outside. Subset : ℕ → Set Subset = Vec Side ------------------------------------------------------------------------ -- Membership and subset predicates _∈_ : ∀ {n} → Fin n → Subset n → Set x ∈ p = p [ x ]= inside _∉_ : ∀ {n} → Fin n → Subset n → Set x ∉ p = ¬ (x ∈ p) _⊆_ : ∀ {n} → Subset n → Subset n → Set p₁ ⊆ p₂ = ∀ {x} → x ∈ p₁ → x ∈ p₂ _⊈_ : ∀ {n} → Subset n → Subset n → Set p₁ ⊈ p₂ = ¬ (p₁ ⊆ p₂) ------------------------------------------------------------------------ -- Set operations -- Pointwise lifting of the usual boolean algebra for booleans gives -- us a boolean algebra for subsets. -- -- The underlying equality of the returned boolean algebra is -- propositional equality. booleanAlgebra : ℕ → BooleanAlgebra _ _ booleanAlgebra n = BoolAlgProp.replace-equality (BAExpr.lift BoolProp.booleanAlgebra n) Pointwise.Pointwise-≡ private open module BA {n} = BooleanAlgebra (booleanAlgebra n) public using ( ⊥ -- The empty subset. ; ⊤ -- The subset containing all elements. ) renaming ( _∨_ to _∪_ -- Binary union. ; _∧_ to _∩_ -- Binary intersection. ; ¬_ to ∁ -- Complement. ) -- A singleton subset, containing just the given element. ⁅_⁆ : ∀ {n} → Fin n → Subset n ⁅ zero ⁆ = inside ∷ ⊥ ⁅ suc i ⁆ = outside ∷ ⁅ i ⁆ -- N-ary union. ⋃ : ∀ {n} → List (Subset n) → Subset n ⋃ = List.foldr _∪_ ⊥ -- N-ary intersection. ⋂ : ∀ {n} → List (Subset n) → Subset n ⋂ = List.foldr _∩_ ⊤ ------------------------------------------------------------------------ -- Properties Nonempty : ∀ {n} (p : Subset n) → Set Nonempty p = ∃ λ f → f ∈ p Empty : ∀ {n} (p : Subset n) → Set Empty p = ¬ Nonempty p -- Point-wise lifting of properties. Lift : ∀ {n} → (Fin n → Set) → (Subset n → Set) Lift P p = ∀ {x} → x ∈ p → P x
25.654206
72
0.539162
117ab25f63014c9dc44a615d1e32d6866ce01181
17,431
agda
Agda
test/Compiler/simple/Floats.agda
LaloHao/agda
7de768bb7bc65dbe1efa35c699cfa8b8f9510573
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Compiler/simple/Floats.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Compiler/simple/Floats.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Common.IO renaming (then to _>>_ ) open import Agda.Builtin.Unit open import Agda.Builtin.Bool open import Agda.Builtin.Equality using (_≡_; refl) open import Agda.Builtin.Float renaming ( primFloatEquality to _≡ᵇ_ ; primFloatInequality to _≤ᵇ_ ; primFloatLess to _<ᵇ_ ; primFloatPlus to infixl 6 _+_ ; primFloatMinus to infixl 6 _-_ ; primFloatTimes to infixl 7 _*_ ; primFloatDiv to infixl 7 _÷_ ; primFloatPow to infix 8 _**_ ; primFloatNegate to infix 9 -_ ; primFloatSqrt to sqrt ; primFloatExp to e^_ ; primFloatLog to log ; primFloatSin to sin ; primFloatCos to cos ; primFloatTan to tan ; primFloatASin to asin ; primFloatACos to acos ; primFloatATan to atan ; primFloatATan2 to atan2 ; primFloatSinh to sinh ; primFloatCosh to cosh ; primFloatTanh to tanh ; primFloatASinh to asinh ; primFloatACosh to acosh ; primFloatATanh to atanh ; primFloatRound to round ; primFloatFloor to floor ; primFloatCeiling to ceiling ; primShowFloat to showF ; primFloatToWord64 to toWord ; primFloatToRatio to toRatio ; primRatioToFloat to fromRatio ; primFloatDecode to decode ; primFloatEncode to encode ; primFloatIsInfinite to isInfinite ; primFloatIsNaN to isNaN ; primFloatIsNegativeZero to isNegativeZero ; primFloatIsSafeInteger to isSafeInteger ) open import Agda.Builtin.Int using (Int; pos; negsuc) renaming ( primShowInteger to showI ) open import Agda.Builtin.Nat using (Nat) renaming ( _==_ to _==N_ ) open import Agda.Builtin.Maybe open import Agda.Builtin.Sigma open import Agda.Builtin.String using (String) renaming ( primStringEquality to _==S_ ; primShowNat to showN ; primStringAppend to _++_ ) open import Agda.Builtin.Word using (Word64) renaming ( primWord64ToNat to toℕ ) -- Prelude data ⊥ : Set where _≢_ : {A : Set} (P Q : A) → Set P ≢ Q = P ≡ Q → ⊥ NaN : Float NaN = 0.0 ÷ 0.0 -NaN : Float -NaN = - NaN Infinity : Float Infinity = 1.0 ÷ 0.0 -Infinity : Float -Infinity = - Infinity MaxFloat : Float MaxFloat = 1.7976931348623157e308 MinFloat : Float MinFloat = 2.2250738585072014e-308 MaxSafeIntF : Float MaxSafeIntF = 9007199254740991.0 MaxSafeIntZ : Int MaxSafeIntZ = pos 9007199254740991 -- * Tests showB : Bool → String showB false = "false" showB true = "true" maybeShow : {A : Set} (show : A → String) → Maybe A → String maybeShow show (just x) = "(just (" ++ (show x ++ "))") maybeShow show nothing = "nothing" pairShow : {A B : Set} (showA : A → String) (showB : B → String) → Σ A (λ _ → B) → String pairShow showA showB (x , y) = "(" ++ (showA x ++ (" , " ++ (showB y ++ ")"))) showR = pairShow showI showI newline : IO ⊤ newline = putStr "\n" T : Bool → Set T false = ⊥ T true = ⊤ _==F_ : Float → Float → Bool x ==F y = toℕ (toWord x) ==N toℕ (toWord x) _==B_ : Bool → Bool → Bool false ==B false = true false ==B true = false true ==B false = false true ==B true = true _==I_ : Int → Int → Bool pos n ==I pos m = n ==N m pos n ==I negsuc m = false negsuc n ==I pos m = false negsuc n ==I negsuc m = n ==N m maybeEq : {A : Set} (eq : A → A → Bool) → Maybe A → Maybe A → Bool maybeEq eq (just x) (just y) = eq x y maybeEq eq (just x) nothing = false maybeEq eq nothing (just y) = false maybeEq eq nothing nothing = true pairEq : {A B : Set} (eqA : A → A → Bool) (eqB : B → B → Bool) → Σ A (λ _ → B) → Σ A (λ _ → B) → Bool pairEq eqA eqB (x , y) (z , w) = eqA x z && eqB y w where _&&_ : Bool → Bool → Bool true && true = true x && y = false _==R_ = pairEq _==I_ _==I_ check : {A : Set} (show : A → String) (eq : A → A → Bool) (str : String) (exp act : A) {p : T (eq act exp)} → IO ⊤ check show eq str exp act = do putStr str; putStr " = "; putStr (show exp); putStr " = "; putStr (show act); newline checkB = check showB _==B_ checkS = check (λ x → x) _==S_ checkN = check showN _==N_ checkI = check showI _==I_ checkMI = check (maybeShow showI) (maybeEq _==I_) checkR = check showR _==R_ checkF = check showF _==F_ checkMR = check (maybeShow showR) (maybeEq _==R_) checkMF = check (maybeShow showF) (maybeEq _==F_) -- ** Relations main : IO ⊤ main = do -- ** Relations checkB " NaN ≡ᵇ NaN " false ( NaN ≡ᵇ NaN ) checkB "-NaN ≡ᵇ NaN " false (-NaN ≡ᵇ NaN ) checkB " NaN ≡ᵇ -NaN " false ( NaN ≡ᵇ -NaN ) checkB "-NaN ≡ᵇ -NaN " false (-NaN ≡ᵇ -NaN ) checkB " Infinity ≡ᵇ Infinity" true ( Infinity ≡ᵇ Infinity) checkB "-Infinity ≡ᵇ Infinity" false (-Infinity ≡ᵇ Infinity) checkB " Infinity ≡ᵇ -Infinity" false ( Infinity ≡ᵇ -Infinity) checkB "-Infinity ≡ᵇ -Infinity" true (-Infinity ≡ᵇ -Infinity) checkB " MaxFloat ≡ᵇ MaxFloat" true ( MaxFloat ≡ᵇ MaxFloat) checkB " MinFloat ≡ᵇ MinFloat" true ( MinFloat ≡ᵇ MinFloat) checkB " 1.0 ≡ᵇ 1.5 " false ( 1.0 ≡ᵇ 1.5 ) checkB " 1.0 ≡ᵇ 1.0 " true ( 1.0 ≡ᵇ 1.0 ) checkB " 1.5 ≡ᵇ 1.5 " true ( 1.5 ≡ᵇ 1.5 ) checkB " NaN ≤ᵇ NaN " false ( NaN ≤ᵇ NaN ) checkB "-NaN ≤ᵇ NaN " false (-NaN ≤ᵇ NaN ) checkB " NaN ≤ᵇ -NaN " false ( NaN ≤ᵇ -NaN ) checkB "-NaN ≤ᵇ -NaN " false (-NaN ≤ᵇ -NaN ) checkB " NaN ≤ᵇ 5.0 " false ( NaN ≤ᵇ 5.0 ) checkB "-NaN ≤ᵇ 5.0 " false (-NaN ≤ᵇ 5.0 ) checkB " 5.0 ≤ᵇ -NaN " false ( 5.0 ≤ᵇ -NaN ) checkB "-5.0 ≤ᵇ -NaN " false (-5.0 ≤ᵇ -NaN ) checkB " NaN ≤ᵇ Infinity" false ( NaN ≤ᵇ Infinity) checkB "-NaN ≤ᵇ Infinity" false (-NaN ≤ᵇ Infinity) checkB " Infinity ≤ᵇ -NaN " false ( Infinity ≤ᵇ -NaN ) checkB "-Infinity ≤ᵇ -NaN " false (-Infinity ≤ᵇ -NaN ) checkB " Infinity ≤ᵇ Infinity" true ( Infinity ≤ᵇ Infinity) checkB "-Infinity ≤ᵇ Infinity" true (-Infinity ≤ᵇ Infinity) checkB " Infinity ≤ᵇ -Infinity" false ( Infinity ≤ᵇ -Infinity) checkB "-Infinity ≤ᵇ -Infinity" true (-Infinity ≤ᵇ -Infinity) checkB " MaxFloat ≤ᵇ MaxFloat" true ( MaxFloat ≤ᵇ MaxFloat) checkB " MinFloat ≤ᵇ MinFloat" true ( MinFloat ≤ᵇ MinFloat) checkB " 1.0 ≤ᵇ 1.5 " true ( 1.0 ≤ᵇ 1.5 ) checkB " 1.0 ≤ᵇ 1.0 " true ( 1.0 ≤ᵇ 1.0 ) checkB " 1.5 ≤ᵇ 1.5 " true ( 1.5 ≤ᵇ 1.5 ) checkB " NaN <ᵇ NaN " false ( NaN <ᵇ NaN ) checkB "-NaN <ᵇ NaN " false (-NaN <ᵇ NaN ) checkB " NaN <ᵇ -NaN " false ( NaN <ᵇ -NaN ) checkB "-NaN <ᵇ -NaN " false (-NaN <ᵇ -NaN ) checkB " NaN <ᵇ 5.0 " false ( NaN <ᵇ 5.0 ) checkB "-NaN <ᵇ 5.0 " false (-NaN <ᵇ 5.0 ) checkB " 5.0 <ᵇ -NaN " false ( 5.0 <ᵇ -NaN ) checkB "-5.0 <ᵇ -NaN " false (-5.0 <ᵇ -NaN ) checkB " NaN <ᵇ Infinity" false ( NaN <ᵇ Infinity) checkB "-NaN <ᵇ Infinity" false (-NaN <ᵇ Infinity) checkB " Infinity <ᵇ -NaN " false ( Infinity <ᵇ -NaN ) checkB "-Infinity <ᵇ -NaN " false (-Infinity <ᵇ -NaN ) checkB " Infinity <ᵇ Infinity" false ( Infinity <ᵇ Infinity) checkB "-Infinity <ᵇ Infinity" true (-Infinity <ᵇ Infinity) checkB " Infinity <ᵇ -Infinity" false ( Infinity <ᵇ -Infinity) checkB "-Infinity <ᵇ -Infinity" false (-Infinity <ᵇ -Infinity) checkB " MaxFloat <ᵇ MaxFloat" false ( MaxFloat <ᵇ MaxFloat) checkB " MinFloat <ᵇ MinFloat" false ( MinFloat <ᵇ MinFloat) checkB " 1.0 <ᵇ 1.5 " true ( 1.0 <ᵇ 1.5 ) checkB " 1.0 <ᵇ 1.0 " false ( 1.0 <ᵇ 1.0 ) checkB " 1.5 <ᵇ 1.5 " false ( 1.5 <ᵇ 1.5 ) checkB "isNaN NaN " true (isNaN NaN ) checkB "isNaN -NaN " true (isNaN -NaN ) checkB "isNaN Infinity " false (isNaN Infinity ) checkB "isNaN -Infinity " false (isNaN -Infinity ) checkB "isNaN 0.0 " false (isNaN 0.0 ) checkB "isNaN -0.0 " false (isNaN -0.0 ) checkB "isNaN 1.0 " false (isNaN 1.0 ) checkB "isNaN 1.5 " false (isNaN 1.5 ) checkB "isInfinite NaN " false (isInfinite NaN ) checkB "isInfinite -NaN " false (isInfinite -NaN ) checkB "isInfinite Infinity " true (isInfinite Infinity ) checkB "isInfinite -Infinity " true (isInfinite -Infinity ) checkB "isInfinite 0.0 " false (isInfinite 0.0 ) checkB "isInfinite -0.0 " false (isInfinite -0.0 ) checkB "isInfinite 1.0 " false (isInfinite 1.0 ) checkB "isInfinite 1.5 " false (isInfinite 1.5 ) -- Depends on optimisation settings: -- -- - with -O0 the test succeeds -- - with -O the test fails -- -- checkB "isInfinite ((MaxFloat * MaxFloat) ÷ MaxFloat)" -- true -- (isInfinite ((MaxFloat * MaxFloat) ÷ MaxFloat)) checkB "isNegativeZero NaN " false (isNegativeZero NaN ) checkB "isNegativeZero -NaN " false (isNegativeZero -NaN ) checkB "isNegativeZero Infinity " false (isNegativeZero Infinity ) checkB "isNegativeZero -Infinity " false (isNegativeZero -Infinity ) checkB "isNegativeZero 0.0 " false (isNegativeZero 0.0 ) checkB "isNegativeZero -0.0 " true (isNegativeZero -0.0 ) checkB "isNegativeZero 1.0 " false (isNegativeZero 1.0 ) checkB "isNegativeZero 1.5 " false (isNegativeZero 1.5 ) checkB "isSafeInteger 1.0 " true (isSafeInteger 1.0 ) checkB "isSafeInteger 1.5 " false (isSafeInteger 1.5 ) checkB "isSafeInteger MaxFloat " false (isSafeInteger MaxFloat ) checkB "isSafeInteger MinFloat " false (isSafeInteger MinFloat ) checkB "isSafeInteger MaxSafeIntF " true (isSafeInteger MaxSafeIntF ) -- ** Conversions checkS "show NaN " "NaN" (showF NaN ) checkS "show -NaN " "NaN" (showF -NaN ) checkS "show 0.0 " "0.0" (showF 0.0 ) checkS "show -0.0 " "-0.0" (showF -0.0 ) checkS "show Infinity" "Infinity" (showF Infinity) checkS "show -Infinity" "-Infinity" (showF -Infinity) checkS "show 1.0 " "1.0" (showF 1.0 ) checkS "show 1.5 " "1.5" (showF 1.5 ) -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkN "toℕ (toWord 1.0) " 4607182418800017408 (toℕ (toWord 1.0) ) -- checkN "toℕ (toWord 1.5) " 4609434218613702656 (toℕ (toWord 1.5) ) -- checkN "toℕ (toWord 0.0) " 0 (toℕ (toWord 0.0) ) -- checkN "toℕ (toWord -0.0) " 9223372036854775808 (toℕ (toWord -0.0) ) -- checkN "toℕ (toWord NaN) " 18444492273895866368 (toℕ (toWord NaN) ) -- checkN "toℕ (toWord -NaN) " 18444492273895866368 (toℕ (toWord -NaN) ) -- checkN "toℕ (toWord Infinity) " 9218868437227405312 (toℕ (toWord Infinity) ) -- checkN "toℕ (toWord -Infinity)" 18442240474082181120 (toℕ (toWord -Infinity)) checkMI "round 1.0 " (just (pos 1)) (round 1.0 ) checkMI "round 1.5 " (just (pos 2)) (round 1.5 ) checkMI "round NaN " (nothing ) (round NaN ) checkMI "round -NaN " (nothing ) (round -NaN ) checkMI "round Infinity " (nothing ) (round Infinity ) checkMI "round -Infinity" (nothing ) (round -Infinity) checkMI "round MinFloat " (just (pos 0)) (round MinFloat ) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMI "round MaxFloat " (just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368)) (round MaxFloat ) checkMI "floor 1.0 " (just (pos 1)) (floor 1.0 ) checkMI "floor 1.5 " (just (pos 1)) (floor 1.5 ) checkMI "floor NaN " (nothing ) (floor NaN ) checkMI "floor -NaN " (nothing ) (floor -NaN ) checkMI "floor Infinity " (nothing ) (floor Infinity ) checkMI "floor -Infinity" (nothing ) (floor -Infinity) checkMI "floor MinFloat " (just (pos 0)) (floor MinFloat ) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMI "floor MaxFloat " (just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368)) (floor MaxFloat ) checkMI "ceiling 1.0 " (just (pos 1)) (ceiling 1.0 ) checkMI "ceiling 1.5 " (just (pos 2)) (ceiling 1.5 ) checkMI "ceiling NaN " (nothing ) (ceiling NaN ) checkMI "ceiling -NaN " (nothing ) (ceiling -NaN ) checkMI "ceiling Infinity " (nothing ) (ceiling Infinity ) checkMI "ceiling -Infinity" (nothing ) (ceiling -Infinity) checkMI "ceiling MinFloat " (just (pos 1)) (ceiling MinFloat ) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMI "ceiling MaxFloat " (just (pos 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368)) (ceiling MaxFloat ) checkMR "decode NaN " (nothing ) (decode NaN ) checkMR "decode Infinity" (nothing ) (decode Infinity) checkMR "decode -Infinity" (nothing ) (decode -Infinity) checkMR "decode 1.0 " (just (pos 1 , pos 0)) (decode 1.0 ) checkMR "decode 1.5 " (just (pos 3 , negsuc 0)) (decode 1.5 ) checkMR "decode MinFloat" (just (pos 1 , negsuc 1021)) (decode MinFloat) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMR "decode MaxFloat" (just (MaxSafeIntZ , pos 971)) (decode MaxFloat) checkMF "encode (pos 1) (pos 0)" (just 1.0 ) (encode (pos 1) (pos 0)) checkMF "encode (pos 3) (negsuc 0)" (just 1.5 ) (encode (pos 3) (negsuc 0)) -- -- Breaks the JavaScript backend, on account of it being... too big: -- -- checkMF "encode MaxSafeIntZ (pos 0)" (just MaxSafeIntF) (encode MaxSafeIntZ (pos 0)) -- checkMF "encode MaxSafeIntZ (pos 971)" (just MaxFloat ) (encode MaxSafeIntZ (pos 971)) -- checkMF "encode MaxSafeIntZ (pos 972)" (nothing ) (encode MaxSafeIntZ (pos 972)) -- checkMF "encode (pos 1) (negsuc 1021)" (just MinFloat ) (encode (pos 1) (negsuc 1021)) -- checkMF "encode MaxSafeIntZ (negsuc 1075)" (nothing ) (encode MaxSafeIntZ (negsuc 1075)) checkR "toRatio NaN " (pos 0 , pos 0) (toRatio NaN ) checkR "toRatio Infinity" (pos 1 , pos 0) (toRatio Infinity) checkR "toRatio -Infinity" (negsuc 0 , pos 0) (toRatio -Infinity) checkR "toRatio 1.0 " (pos 1 , pos 1) (toRatio 1.0 ) checkR "toRatio 1.5 " (pos 3 , pos 2) (toRatio 1.5 ) checkF "fromRatio (pos 0) (pos 0)" ( NaN ) (fromRatio (pos 0) (pos 0)) checkF "fromRatio (pos 1) (pos 0)" ( Infinity) (fromRatio (pos 1) (pos 0)) checkF "fromRatio (negsuc 0) (pos 0)" (-Infinity) (fromRatio (negsuc 0) (pos 0)) checkF "fromRatio (pos 1) (pos 1)" ( 1.0 ) (fromRatio (pos 1) (pos 1)) checkF "fromRatio (pos 3) (pos 2)" ( 1.5 ) (fromRatio (pos 3) (pos 2)) checkF "e^ 1.0 " 2.718281828459045 (e^ 1.0 ) checkF "sin (asin 0.6) " 0.6 (sin (asin 0.6) ) checkF "cos (acos 0.6) " 0.6 (cos (acos 0.6) ) checkF "tan (atan 0.4) " 0.4 (tan (atan 0.4) ) checkF "tan (atan2 0.4 1.0)" 0.4 (tan (atan2 0.4 1.0))
47.366848
375
0.560266
3f8f1534b1b0059942b4105c5fe509afad3c1903
396
agda
Agda
lib/types/Empty.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
lib/types/Empty.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
lib/types/Empty.agda
sattlerc/HoTT-Agda
c8fb8da3354fc9e0c430ac14160161759b4c5b37
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics module lib.types.Empty where ⊥ = Empty ⊥-elim : ∀ {i} {A : ⊥ → Type i} → ((x : ⊥) → A x) ⊥-elim = Empty-elim Empty-rec : ∀ {i} {A : Type i} → (Empty → A) Empty-rec = Empty-elim ⊥-rec : ∀ {i} {A : Type i} → (⊥ → A) ⊥-rec = Empty-rec Empty-is-prop : is-prop Empty Empty-is-prop = Empty-elim ⊥-is-prop : is-prop ⊥ ⊥-is-prop = Empty-is-prop
17.217391
49
0.558081
7c14a20154c85f0ce738953ff7016e1ede9beeb9
193
agda
Agda
test/Succeed/Issue3362.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3362.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3362.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate A : Set P : A → Set variable x : A y : P x data D₁ {x : A} : P x → Set where z : D₁ y s : D₁ y → D₁ y data D₂ : {x : A} → P x → Set where z : D₂ y s : D₂ y → D₂ y
11.352941
35
0.46114
1483060a245f294efdf80d345c16b468f5315e19
135
agda
Agda
README.agda
guilhermehas/Equality
e1104012d85d2072318656f6c6d31acff75c9460
[ "MIT" ]
1
2021-10-01T06:04:21.000Z
2021-10-01T06:04:21.000Z
README.agda
guilhermehas/Equality
e1104012d85d2072318656f6c6d31acff75c9460
[ "MIT" ]
null
null
null
README.agda
guilhermehas/Equality
e1104012d85d2072318656f6c6d31acff75c9460
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --cumulativity #-} open import leibniz public open import equalities public open import leibniz-equality public
22.5
40
0.785185
1368240b5bedd3bce83c91d3fb154582558f6b39
722
agda
Agda
theorems/groups/Image.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/groups/Image.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/groups/Image.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.Image where module _ {i j k} {G : Group i} {H : Group j} {K : Group k} (φ : H →ᴳ K) (ψ : G →ᴳ H) where abstract im-sub-im-∘ : is-surjᴳ ψ → im-propᴳ φ ⊆ᴳ im-propᴳ (φ ∘ᴳ ψ) im-sub-im-∘ ψ-is-surj k = Trunc-rec (λ{(h , φh=k) → Trunc-rec (λ{(g , ψg=h) → [ g , ap (GroupHom.f φ) ψg=h ∙ φh=k ]}) (ψ-is-surj h)}) im-∘-sub-im : im-propᴳ (φ ∘ᴳ ψ) ⊆ᴳ im-propᴳ φ im-∘-sub-im k = Trunc-rec (λ{(g , φψg=k) → [ GroupHom.f ψ g , φψg=k ]}) im-iso-im-pre∘ : is-surjᴳ ψ → Im φ ≃ᴳ Im (φ ∘ᴳ ψ) im-iso-im-pre∘ ψ-is-surj = Subgroup-emap-r (im-propᴳ φ) (im-propᴳ (φ ∘ᴳ ψ)) (im-sub-im-∘ ψ-is-surj) im-∘-sub-im
28.88
63
0.51662
fd9e4c7b74a0e4396f0e1cc5bcfdca246269121f
4,846
agda
Agda
examples/GUIgeneric/GUIFeaturesPart5.agda
stephanadls/state-dependent-gui
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
[ "MIT" ]
2
2020-07-31T15:37:39.000Z
2020-07-31T17:20:59.000Z
examples/GUIgeneric/GUIFeaturesPart5.agda
stephanadls/state-dependent-gui
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
[ "MIT" ]
null
null
null
examples/GUIgeneric/GUIFeaturesPart5.agda
stephanadls/state-dependent-gui
2bc84cb14a568b560acb546c440cbe0ddcbb2a01
[ "MIT" ]
null
null
null
-- {-# OPTIONS --allow-unsolved-metas #-} module GUIgeneric.GUIFeaturesPart5 where open import GUIgeneric.Prelude renaming (addButton to addButton') open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add) open import GUIgeneric.GUI open import GUIgeneric.GUIExampleLib open import StateSizedIO.GUI.WxGraphicsLibLevel3 renaming (addButton to addButton') open import GUIgeneric.GUIFeatures open import GUIgeneric.GUIFeaturesPart2 hiding ( main ; main1 ) open import GUIgeneric.GUIFeaturesPart3 hiding ( main ; Tea ; Cancel) open import GUIgeneric.GUIFeaturesPart4 hiding ( main ; cancelNewStateSM ; cancelStateAdded ; cancelFeatureAdded ) open import GUIgeneric.GUIExample hiding (main ) data StatesBasicVM : Set where pay change soda serveSoda open' close : StatesBasicVM basicVM : FMachine StatesBasicVM basicVM .Features = ⊤ basicVM .AddStateF = ⊥ basicVM .GUIF f (inj₁ pay) = simpleSMState "Pay" (inj₁ change) basicVM .GUIF f (inj₁ change) = simpleSMState "Get Change" (inj₁ soda) basicVM .GUIF f (inj₁ soda) = simpleSMState "Soda" (inj₁ serveSoda) basicVM .GUIF f (inj₁ serveSoda) = simpleSMState "Serve Soda" (inj₁ open') basicVM .GUIF f (inj₁ open') = simpleSMState "Open" (inj₁ close) basicVM .GUIF f (inj₁ close) = simpleSMState "Close" (inj₁ pay) basicVM .GUIF f (inj₂ ()) newState : {A B : Set} → A ⊎ B ⊎ ⊤ newState = (inj₂ (inj₂ tt)) {- handler for the new state to be added to the tea machine -} teaNewStateSM : (fm : FMachine StatesBasicVM) → SMachineState (StatesBasicVM ⊎ fm .AddStateF ⊎ ⊤) newState teaNewStateSM fm = simpleSMState "Serve Tea" (inj₁ open') {- add the new state to the feature machine -} TeaMAddNewState : FMachine StatesBasicVM → FMachine StatesBasicVM TeaMAddNewState fm = addOneStateFMachine fm (teaNewStateSM fm) {- add a dummy feature "FeatureTea" to the feature machine -} TeaMAddFeature : FMachine StatesBasicVM → FMachine StatesBasicVM TeaMAddFeature fm = addDummyFeatures (TeaMAddNewState fm) FeatureTea {- redefine in the feature machine one button -} Tea : FMachine StatesBasicVM → FMachine StatesBasicVM Tea fm .Features = TeaMAddFeature fm .Features Tea fm .AddStateF = TeaMAddFeature fm .AddStateF Tea fm .GUIF (f , yesTea) (inj₁ soda) = addBtn2StateMachine ( TeaMAddFeature fm .GUIF (f , yesTea) (inj₁ soda)) "Tea" newState Tea fm .GUIF f s = TeaMAddFeature fm .GUIF f s {- handler for the new state to be added to the cancel machine -} cancelNewStateSM : (fm : FMachine StatesBasicVM) → SMachineState (StatesBasicVM ⊎ fm .AddStateF ⊎ ⊤) newState cancelNewStateSM fm = simpleSMState "Cancelling" (inj₁ pay) {- add the state to the old feature machine -} cancelStateAdded : FMachine StatesBasicVM → FMachine StatesBasicVM cancelStateAdded fm = addOneStateFMachine fm (cancelNewStateSM fm) {- add a dummy feature "FeatureCancel" to the feature machine -} cancelFeatureAdded : FMachine StatesBasicVM → FMachine StatesBasicVM cancelFeatureAdded fm = addDummyFeatures (cancelStateAdded fm) FeatureCancel {- redefine in the feature machine one button -} Cancel : FMachine StatesBasicVM → FMachine StatesBasicVM Cancel fm .Features = cancelFeatureAdded fm .Features Cancel fm .AddStateF = cancelFeatureAdded fm .AddStateF Cancel fm .GUIF (f , yesCancel) (inj₁ soda) = addBtn2StateMachine (cancelFeatureAdded fm .GUIF (f , yesCancel) (inj₁ soda)) "Cancel" newState Cancel fm .GUIF f s = cancelFeatureAdded fm .GUIF f s {- add the Dummy free feature -} FreeMAddFeature : FMachine StatesBasicVM → FMachine StatesBasicVM FreeMAddFeature fm = addDummyFeatures fm FeatureFree {- redefine the pay button to free in case feature free is yesFree -} Free : FMachine StatesBasicVM → FMachine StatesBasicVM Free fm .Features = FreeMAddFeature fm .Features Free fm .AddStateF = FreeMAddFeature fm .AddStateF Free fm .GUIF (f , yesFree) (inj₁ pay) = simpleSMState "Free" (inj₁ soda) Free fm .GUIF (f , yesFree) (inj₁ open') = simpleSMState "Skip" (inj₁ pay) Free fm .GUIF f s = FreeMAddFeature fm .GUIF f s main1 : NativeIO Unit main1 = compileFeatureVM (Tea (Cancel basicVM)) ((_ , yesCancel) , yesTea) (inj₁ pay) main2 : NativeIO Unit main2 = compileFeatureVM (Free basicVM) (_ , yesFree) (inj₁ pay) -- multiFeatureMachine : FMachine StatesBasicVM multiFeatureMachine = Free (Cancel (Tea basicVM)) main : NativeIO Unit main = compileFeatureVM multiFeatureMachine (((_ , yesTea) , yesCancel) , noFree) (inj₁ pay)
38.15748
115
0.693974
73c520572b718f9b643f01f03ad0cb8bd173cffb
104
agda
Agda
test/Fail/Issue4638-2.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue4638-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue4638-2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --without-K --safe #-} data E (@0 A : Set) : Set where c₁ c₂ : A → E A @0 c₃ : A → E A
17.333333
34
0.480769
cce1042f90b39cc0b6971e529648af428946e361
43,147
agda
Agda
BTA9.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
1
2019-10-15T04:35:29.000Z
2019-10-15T04:35:29.000Z
BTA9.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
null
null
null
BTA9.agda
luminousfennell/polybta
ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb
[ "BSD-3-Clause" ]
1
2019-10-15T09:01:37.000Z
2019-10-15T09:01:37.000Z
module BTA9 where ---------------------------------------------- -- Preliminaries: Imports and List-utilities ---------------------------------------------- open import Data.Nat hiding (_<_;_⊔_;_*_;equal) open import Data.Bool hiding (_∧_;_∨_) open import Function using (_∘_) open import Data.List open import Data.Nat.Properties open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import Lib --------------------------------------- -- Start of the development: --------------------------------------- -- Intro/Objective: ------------------- -- The following development defines a (verified) specializer/partial -- evaluator for a simply typed lambda calculus embedded in Agda using -- deBruijn indices. -- The residual language. ------------------------- -- The residual language is a standard simply typed λ-calculus. The -- types are integers,functions,pairs,and sums. data Type : Set where Int : Type Fun : Type → Type → Type --pair type on the residual type level _•_ : Type → Type → Type --sum type on the residual type level _⊎_ : Type → Type → Type Ctx = List Type -- The type Exp describes the typed residual expressions. Variables -- are represented by deBruijn indices that form references into the -- typing context. The constructors and typing constraints are -- standard. -- TODO: citations for ``as usual'' and ``standard'' -- what? data Exp (Γ : Ctx) : Type → Set where EVar : ∀ {τ} → τ ∈ Γ → Exp Γ τ EInt : ℕ → Exp Γ Int EAdd : Exp Γ Int → Exp Γ Int -> Exp Γ Int ELam : ∀ {τ τ'} → Exp (τ ∷ Γ) τ' → Exp Γ (Fun τ τ') EApp : ∀ {τ τ'} → Exp Γ (Fun τ τ') → Exp Γ τ → Exp Γ τ' _,_ : ∀ {τ τ'} → Exp Γ τ → Exp Γ τ' → Exp Γ (τ • τ') Tl : ∀ {τ τ'} → Exp Γ τ → Exp Γ (τ ⊎ τ') Tr : ∀ {τ τ'} → Exp Γ τ' → Exp Γ (τ ⊎ τ') EFst : ∀ {τ τ'} → Exp Γ (τ • τ') → Exp Γ τ ESnd : ∀ {τ τ'} → Exp Γ (τ • τ') → Exp Γ τ' ECase : ∀ {τ τ' τ''} → Exp Γ (τ ⊎ τ') → Exp (τ ∷ Γ) τ'' → Exp (τ' ∷ Γ) τ'' → Exp Γ τ'' -- The standard functional semantics of the residual expressions. -- TODO: citations for ``as usual'' and ``standard'' -- what? module Exp-Eval where -- interpretation of Exp types EImp : Type → Set EImp Int = ℕ EImp (Fun ty ty₁) = EImp ty → EImp ty₁ EImp (ty • ty₁) = EImp ty * EImp ty₁ EImp (ty ⊎ ty₁) = EImp ty ⨄ EImp ty₁ -- Environments containing values for free variables. An environment -- is indexed by a typing context that provides the types for the -- contained values. data Env : Ctx → Set where [] : Env [] _∷_ : ∀ {τ Γ} → EImp τ → Env Γ → Env (τ ∷ Γ) -- Lookup a value in the environment, given a reference into the -- associated typing context. lookupE : ∀ { τ Γ } → τ ∈ Γ → Env Γ → EImp τ lookupE hd (x ∷ env) = x lookupE (tl v) (x ∷ env) = lookupE v env -- Evaluation of residual terms, given a suitably typed environment. ev : ∀ {τ Γ} → Exp Γ τ → Env Γ → EImp τ ev (EVar x) env = lookupE x env ev (EInt x) env = x ev (EAdd e e₁) env = ev e env + ev e₁ env ev (ELam e) env = λ x → ev e (x ∷ env) ev (EApp e e₁) env = ev e env (ev e₁ env) ev (e , e₁) env = ev e env , (ev e₁ env) ev (Tl e) env = tl (ev e env) ev (Tr e) env = tr (ev e env) ev (EFst e) env = fst (ev e env) ev (ESnd e) env = snd (ev e env) ev (ECase e e₁ e₂) env with ev e env ev (ECase e e₁ e₂) env | tl c = (λ x → ev e₁ (x ∷ env)) c ev (ECase e e₁ e₂) env | tr c = (λ x → ev e₂ (x ∷ env)) c -- The binding-time-annotated language. --------------------------------------- -- The type of a term determines the term's binding time. The type -- constructors with an A-prefix denote statically bound integers and -- functions. Terms with dynamic binding time have a `D' type. The `D' -- type constructor simply wraps up a residual type. data AType : Set where AInt : AType AFun : AType → AType → AType D : Type → AType --pair type on the annotated type level _•_ : AType → AType → AType --sum type on the annotated type level _⊎_ : AType → AType → AType ACtx = List AType -- The mapping from annotated types to residual types is straightforward. typeof : AType → Type typeof AInt = Int typeof (AFun α₁ α₂) = Fun (typeof α₁) (typeof α₂) typeof (D x) = x typeof (α₁ • α₂) = typeof α₁ • typeof α₂ typeof (α₁ ⊎ α₂) = typeof α₁ ⊎ typeof α₂ -- The typed annotated terms: The binding times of variables is -- determined by the corresponding type-binding in the context. In the -- other cases, the A- and D-prefixes on term constructors inidicate -- the corresponding binding times for the resulting terms. ------------------------------------------------------------------------------------------------ -- Now the typed annotated terms are extended to inculde dynamic terms whose subterms are static ------------------------------------------------------------------------------------------------ --------------- --Some examples --------------- --a. first-order static value in a dynamic environment -- DAdd (DInt 1) (AAdd (AInt 2) (AInt 3)) where AAdd (AInt 2) (AInt 3) : AExp [] AInt -- DAdd (DInt 1) (AApp (ALam (Var hd)) (AInt 5)) where AApp (ALam (Var hd)) (AInt 5) : AExp [] AInt --b. higher-order static value in a dynamic environment -- DApp (ALam (Var hd)) (DInt 5) where ALam (Var hd) : AExp [] (AFun (D Int) (D Int)) -- DApp (ALam (ALam (AInt 0))) (DInt 5) where ALam (ALam (AInt 0)) : AExp [] (AFun (AFun (D Int) (D Int)) AInt) -- DApp (ALam (ALam (DInt 0))) (DInt 5) where ALam (ALam (DInt 0)) : AExp [] (AFun (AFun AInt (D Int)) (D Int)) --Clearly these terms are not well-typed and we need to modify [AExp] such that they have the right types which are --compatible with the dynamic environment,or we can "lift" their static types to dynamic types so that they can be --used as dynamic sub-terms to be filled in the right dynamic environment. This,however,brings new difficulty when --we try to partially evaluate term who contains "lifted" subterms. ---------------- --new difficulty ---------------- --Consider the evaluation of the following term --DAdd (DInt 1) (Lift (AAdd (AInt 2) (AInt 3))) : AExp [] AInt --the expected type after evaluation is, --EAdd (EInt 1) ? : Exp [] Int where ? : Exp [] Int --and one good candidate for "?" as, --EInt (pe (AAdd (AInt 2) (AInt 3)) []) : Exp [] Int --where we wrap up the partial evaluation of the static subterm so --that it fits with the rest of evaluation. --However,we can not always "wrap up" a evaluated higher-order static --value so that it has the required residual type, --ALam (Var hd) : AExp [] (AFun AInt AInt) --the required type of its lifted term as, --? : Exp [] (Fun Int Int) --which can not be constructed from [λ Γ↝Γ' x → x : []↝Γ' → ℕ → ℕ] --for the input of the static function is evaluated to be a natural --number which can not be matched with the type of the input of the --required residual term. It is then clear that we need to impose --restriction upon terms to be lifted. ------------------------- --restriction for lifting ------------------------- ------------------------------------------------------------- -- The interpretation of annotated types. Imp : Ctx → AType → Set Imp Γ (AInt) = ℕ Imp Γ (AFun α₁ α₂) = ∀ {Γ'} → Γ ↝ Γ' → (Imp Γ' α₁ → Imp Γ' α₂) Imp Γ (D σ) = Exp Γ σ Imp Γ (α₁ • α₂) = (Imp Γ α₁) * (Imp Γ α₂) Imp Γ (α₁ ⊎ α₂) = (Imp Γ α₁) ⨄ (Imp Γ α₂) elevate-var : ∀ {Γ Γ'} {τ : Type} → Γ ↝ Γ' → τ ∈ Γ → τ ∈ Γ' elevate-var ↝-refl x = x elevate-var (↝-extend Γ↝Γ') x = tl (elevate-var Γ↝Γ' x) elevate-var2 : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → τ ∈ Γ → τ ∈ Γ'' elevate-var2 (↝↝-base x) x₁ = elevate-var x x₁ elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') hd = hd elevate-var2 (↝↝-extend Γ↝Γ'↝Γ'') (tl x) = tl (elevate-var2 Γ↝Γ'↝Γ'' x) elevate : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → Exp Γ τ → Exp Γ'' τ elevate Γ↝Γ'↝Γ'' (EVar x) = EVar (elevate-var2 Γ↝Γ'↝Γ'' x) elevate Γ↝Γ'↝Γ'' (EInt x) = EInt x elevate Γ↝Γ'↝Γ'' (EAdd e e₁) = EAdd (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (ELam e) = ELam (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) elevate Γ↝Γ'↝Γ'' (EApp e e₁) = EApp (elevate Γ↝Γ'↝Γ'' e) (elevate Γ↝Γ'↝Γ'' e₁) elevate Γ↝Γ'↝Γ'' (e , e₁) = ((elevate Γ↝Γ'↝Γ'' e) , (elevate Γ↝Γ'↝Γ'' e₁)) elevate Γ↝Γ'↝Γ'' (Tl e) = Tl (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (Tr e) = Tr (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (EFst e) = EFst (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (ESnd e) = ESnd (elevate Γ↝Γ'↝Γ'' e) elevate Γ↝Γ'↝Γ'' (ECase c e₁ e₂) = ECase (elevate Γ↝Γ'↝Γ'' c) (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₁) (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₂) liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e ------------------------------------------------------------- -- --case 1. a first-order static value in a dynamic environment -- lift1 : AExp [] AInt -- lift1 = (AInt 0) -- e1 : Imp [] AInt -- e1 = 0 -- lifted1 : Exp [] (typeof AInt) -- lifted1 = EInt e1 -- --case 2. higher-order static function in a dynamic environment -- --a. a function whose input argument is of static integer -- --lift2 : AExp [] (AFun AInt AInt) -- --lift2 = ALam (Var hd) -- --e2 : Imp [] (AFun AInt AInt) -- --e2 = λ Γ↝Γ' x → x -- --lifted2 : Exp [] (typeof (AFun AInt AInt)) -- --lifted2 = ELam {!!} -- --Note that as explained above it is impossible to construct the right term using [e2] -- --to fill in the above hole! -- --b. a function whose input argument is of dynamic integer -- --b.1. when return type is of dynamic integer -- lift3 : AExp [] (AFun (D Int) (D Int)) -- lift3 = ALam (Var hd) -- e3 : Imp [] (AFun (D Int) (D Int)) -- e3 = λ Γ↝Γ' x → x -- liftede3 : Exp [] (typeof (AFun (D Int) (D Int))) -- liftede3 = ELam (e3 (↝-extend ↝-refl) (EVar hd)) -- --b.2. when return type is of static integer -- lift4 : AExp [] (AFun (D Int) AInt) -- lift4 = ALam (AInt 0) -- e4 : Imp [] (AFun (D Int) AInt) -- e4 = λ Γ↝Γ' x → 0 -- liftede4 : Exp [] (typeof (AFun (D Int) AInt)) -- liftede4 = ELam ( EInt {Int ∷ []} (e4 (↝-extend ↝-refl) (EVar hd))) -- --c. a function whose input argument is of static function type -- --c.1. static function type returns a static integer -- --lift5 : AExp [] (AFun (AFun AInt AInt) AInt) -- --lift5 = ALam (AApp (Var hd) (AInt 0)) -- --e5 : Imp [] (AFun (AFun AInt AInt) AInt) -- --e5 = λ Γ↝Γ' x → x ↝-refl 0 -- --liftede5 : Exp [] (typeof ( AFun (AFun AInt AInt) AInt)) -- --liftede5 = ELam (EInt (e5 (↝-extend {τ = Fun Int Int} ↝-refl) (λ Γ↝Γ' e' → {!!}))) -- --Note that again it is impossible to construct the right residual term -- --c.2. static function type returns a dynamic integer -- --c.2.1. the input of the function type is of static integer -- lift6 : AExp [] (AFun (AFun AInt (D Int)) (D Int)) -- lift6 = ALam (AApp (Var hd) (AInt 0)) -- e6 : Imp [] (AFun (AFun AInt (D Int)) (D Int)) -- e6 = λ Γ↝Γ' x → x ↝-refl 0 -- liftede6 : Exp [] (typeof ( AFun (AFun AInt (D Int)) (D Int))) -- liftede6 = ELam ((e6 (↝-extend {τ = Fun Int Int} ↝-refl) -- (λ Γ↝Γ' e' → EApp (liftE Γ↝Γ' (EVar {Fun Int Int ∷ []} hd)) (EInt e')))) -- --c.2.1. the input of the function type is of dynamic integer -- lift7 : AExp [] (AFun (AFun (D Int) (D Int)) (D Int)) -- lift7 = ALam (AApp (Var hd) (DInt 0)) -- e7 : Imp [] (AFun (AFun (D Int) (D Int)) (D Int)) -- e7 = λ Γ↝Γ' x → x ↝-refl (EInt 0) -- liftede7 : Exp [] (typeof ( AFun (AFun (D Int) (D Int)) (D Int))) -- liftede7 = ELam ((e7 (↝-extend {τ = Fun Int Int} ↝-refl) -- (λ Γ↝Γ' e' → EApp (liftE Γ↝Γ' (EVar {Fun Int Int ∷ []} hd)) e'))) -- --c.3. the output of the function type is of higher-order static value -- --c.3.1 the return value has one static integer as input -- -- lift8 : AExp [] (AFun (D Int) (AFun AInt (D Int))) -- -- lift8 = ALam (ALam (Var (tl hd))) -- -- e8 : Imp [] (AFun (D Int) (AFun AInt (D Int))) -- -- e8 = λ Γ↝Γ' x Γ'↝Γ'' y → liftE Γ'↝Γ'' x -- -- liftede8 : Exp [] (typeof ( AFun (D Int) (AFun AInt (D Int)))) -- -- liftede8 = ELam (ELam (e8 (↝-extend (↝-extend ↝-refl)) (EVar (tl hd)) ↝-refl {!!})) -- --c.3.2 the return value has one dynamic integer as input -- lift9 : AExp [] (AFun (D Int) (AFun (D Int) (D Int))) -- lift9 = ALam (ALam (Var (tl hd))) -- e9 : Imp [] (AFun (D Int) (AFun (D Int) (D Int))) -- e9 = λ Γ↝Γ' x Γ'↝Γ'' y → liftE Γ'↝Γ'' x -- liftede9 : Exp [] (typeof ( AFun (D Int) (AFun (D Int) (D Int)))) -- liftede9 = ELam (ELam (e9 (↝-extend (↝-extend ↝-refl)) (EVar (tl hd)) ↝-refl (EVar hd))) -- --d. static pairs and sums in dynamic environment -- --d.1. identity function with static sum as its input -- lift10 : AExp [] (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int))) -- lift10 = ALam (Var hd) -- e10 : Imp [] (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int))) -- e10 = λ Γ↝Γ' x → x -- liftede10 : Exp [] (typeof (AFun ((D Int) ⊎ (D Int)) ((D Int) ⊎ (D Int)))) -- liftede10 = ELam {!e10!} -- --d.1. identity function with static sum as its input -- lift11 : AExp [] (AFun ((D Int) • (D Int)) ((D Int) • (D Int))) -- lift11 = ALam (Var hd) -- e11 : Imp [] (AFun ((D Int) • (D Int)) ((D Int) • (D Int))) -- e11 = λ Γ↝Γ' x → x -- liftede11 : Exp [] (typeof (AFun ((D Int) • (D Int)) ((D Int) • (D Int)))) -- liftede11 = ELam (fst (e11 (↝-extend ↝-refl) (EFst (EVar hd) , ESnd (EVar hd))) , -- snd (e11 (↝-extend ↝-refl) (EFst (EVar hd) , ESnd (EVar hd)))) --Note that the above two examples in section "d" clearly shows that --"static functions with inputs of static sum type are not liftable -- while with inputs of static pair type are liftable ". --------------------------- --summary on liftable terms --------------------------- --a. Regarding static first-order static value (static integer) in dynamic environment -- All terms of static integer type are liftable --b. Regarding static higher-order static value in dynamic environment --b.1. given that output value is liftable -- • when input is of first-order dynamic type,liftable -- • when input is of higher-order static type and output -- of that input is of dynamic type,liftable --b.2. given that input value is liftable -- • when output is of first-order type,liftable -- • when output is of higher-order type and inputs -- of that type are of dynamic type,liftable ------------------------------------------- --specification of the liftable restriction ------------------------------------------- mutual data Liftable : AType → Set where D : ∀ τ → Liftable (D τ) AInt : Liftable AInt _⊎_ : ∀ {α₁ α₂} → Liftable α₁ → Liftable α₂ → Liftable (α₁ ⊎ α₂) _•_ : ∀ {α₁ α₂} → Liftable α₁ → Liftable α₂ → Liftable (α₁ • α₂) AFun : ∀ {α₁ α₂} → Liftable⁻ α₁ → Liftable α₂ → Liftable (AFun α₁ α₂) data Liftable⁻ : AType → Set where D : ∀ τ → Liftable⁻ (D τ) _•_ : ∀ {α₁ α₂} → Liftable⁻ α₁ → Liftable⁻ α₂ → Liftable⁻ (α₁ • α₂) AFun : ∀ {α₁ α₂} → Liftable α₁ → Liftable⁻ α₂ → Liftable⁻ (AFun α₁ α₂) ---------------------------------------- --[AExp] with liftable terms ---------------------------------------- data AExp (Δ : ACtx) : AType → Set where Var : ∀ {α} → α ∈ Δ → AExp Δ α AInt : ℕ → AExp Δ AInt AAdd : AExp Δ AInt → AExp Δ AInt → AExp Δ AInt ALam : ∀ {α₁ α₂} → AExp (α₁ ∷ Δ) α₂ → AExp Δ (AFun α₁ α₂) AApp : ∀ {α₁ α₂} → AExp Δ (AFun α₂ α₁) → AExp Δ α₂ → AExp Δ α₁ DInt : ℕ → AExp Δ (D Int) DAdd : AExp Δ (D Int) → AExp Δ (D Int) → AExp Δ (D Int) DLam : ∀ {σ₁ σ₂} → AExp ((D σ₁) ∷ Δ) (D σ₂) → AExp Δ (D (Fun σ₁ σ₂)) DApp : ∀ {α₁ α₂} → AExp Δ (D (Fun α₂ α₁)) → AExp Δ (D α₂) → AExp Δ (D α₁) -- Static pairs and sums _,_ : ∀ {α₁ α₂} → AExp Δ α₁ → AExp Δ α₂ → AExp Δ (α₁ • α₂) Tl : ∀ {α₁ α₂} → AExp Δ α₁ → AExp Δ (α₁ ⊎ α₂) Tr : ∀ {α₁ α₂} → AExp Δ α₂ → AExp Δ (α₁ ⊎ α₂) Fst : ∀ {α₁ α₂} → AExp Δ (α₁ • α₂) → AExp Δ α₁ Snd : ∀ {α₁ α₂} → AExp Δ (α₁ • α₂) → AExp Δ α₂ Case : ∀ {α₁ α₂ α₃} → AExp Δ (α₁ ⊎ α₂) → AExp (α₁ ∷ Δ) α₃ → AExp (α₂ ∷ Δ) α₃ → AExp Δ α₃ -- Dynamic pairs and sums _ḋ_ : ∀ {σ₁ σ₂} → AExp Δ (D σ₁) → AExp Δ (D σ₂) → AExp Δ (D (σ₁ • σ₂)) DTl : ∀ {σ₁ σ₂} → AExp Δ (D σ₁) → AExp Δ (D (σ₁ ⊎ σ₂)) DTr : ∀ {σ₁ σ₂} → AExp Δ (D σ₂) → AExp Δ (D (σ₁ ⊎ σ₂)) DFst : ∀ {σ₁ σ₂} → AExp Δ (D (σ₁ • σ₂)) → AExp Δ (D σ₁) DSnd : ∀ {σ₁ σ₂} → AExp Δ (D (σ₁ • σ₂)) → AExp Δ (D σ₂) DCase : ∀ {σ₁ σ₂ σ₃} → AExp Δ (D (σ₁ ⊎ σ₂)) → AExp ((D σ₁) ∷ Δ) (D σ₃) → AExp ((D σ₂) ∷ Δ) (D σ₃) → AExp Δ (D σ₃) -- Liftable static terms ↑ : ∀ {α} → Liftable α → AExp Δ α → AExp Δ (D (typeof α)) -- The terms of AExp assign a binding time to each subterm. For -- program specialization, we interpret terms with dynamic binding -- time as the programs subject to specialization, and their subterms -- with static binding time as statically known inputs. A partial -- evaluation function (or specializer) then compiles the program into -- a residual term for that is specialized for the static inputs. The -- main complication when defining partial evaluation as a total, -- primitively recursive function will be the treatment of the De -- Bruijn variables of non-closed residual expressions. lift : ∀ {Γ Γ'} α → Γ ↝ Γ' → Imp Γ α → Imp Γ' α lift AInt p v = v lift (AFun x x₁) Γ↝Γ' v = λ Γ'↝Γ'' → v (↝-trans Γ↝Γ' Γ'↝Γ'') lift (D x₁) Γ↝Γ' v = elevate (↝↝-base Γ↝Γ') v lift (α₁ • α₂) Γ↝Γ' (v₁ , v₂) = (lift α₁ Γ↝Γ' v₁) , (lift α₂ Γ↝Γ' v₂) lift (α₁ ⊎ α₂) Γ↝Γ' (tl v) = tl (lift α₁ Γ↝Γ' v) lift (α₁ ⊎ α₂) Γ↝Γ' (tr v) = tr (lift α₂ Γ↝Γ' v) module SimpleAEnv where -- A little weaker, but much simpler data AEnv (Γ : Ctx) : ACtx → Set where [] : AEnv Γ [] --cons : ∀ {Δ} (α : AType) → Imp Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) cons : ∀ {Δ} {α : AType} → Imp Γ α → AEnv Γ Δ → AEnv Γ (α ∷ Δ) lookup : ∀ {α Δ Γ} → AEnv Γ Δ → α ∈ Δ → Imp Γ α lookup [] () --lookup {α} (cons .α x aenv) hd = x --lookup {α} (cons .y x aenv) (tl {.α} {y} id) = lookup aenv id lookup {α} (cons x aenv) hd = x lookup {α} (cons x aenv) (tl {.α} {y} id) = lookup aenv id liftEnv : ∀ {Γ Γ' Δ} → Γ ↝ Γ' → AEnv Γ Δ → AEnv Γ' Δ liftEnv Γ↝Γ' [] = [] --liftEnv Γ↝Γ' (cons α x env) = cons α (lift α Γ↝Γ' x) (liftEnv Γ↝Γ' env) liftEnv Γ↝Γ' (cons {α = α} x env) = cons {α = α} (lift α Γ↝Γ' x) (liftEnv Γ↝Γ' env) consD : ∀ {Γ Δ} σ → AEnv Γ Δ → AEnv (σ ∷ Γ) (D σ ∷ Δ) --consD σ env = (cons (D σ) (EVar hd) (liftEnv (↝-extend {τ = σ} ↝-refl) env)) consD σ env = (cons {α = D σ} (EVar hd) (liftEnv (↝-extend {τ = σ} ↝-refl) env)) ---------------------------------------------- -- Helper for the evaluation of liftable terms ---------------------------------------------- mutual lift' : ∀ {Γ α} → Liftable α → Imp Γ α → (Exp Γ (typeof α)) lift' (D τ) v = v lift' AInt v = EInt v lift' (ty ⊎ ty₁) (tl a) = Tl (lift' ty a) lift' (ty ⊎ ty₁) (tr b) = Tr (lift' ty₁ b) lift' (ty • ty₁) (ffst , ssnd) = lift' ty ffst , lift' ty₁ ssnd lift' {Γ} (AFun {α₁} ty₁ ty₂) v = ELam ((λ x → lift' ty₂ (v (↝-extend {τ = typeof α₁} ↝-refl) x)) (embed ty₁ (EVar {Γ = typeof α₁ ∷ Γ} hd))) embed : ∀ {Γ α} → Liftable⁻ α → Exp Γ (typeof α) → (Imp Γ α) embed (D τ) e = e -- embed (ty ⊎ ty₁) e = {! (ECase e (EVar hd) ?)!} -- embed (ty ⊎ ty₁) (EVar x) = {!!} -- embed (ty ⊎ ty₁) (EApp e e₁) = {!!} -- embed (ty ⊎ ty₁) (Tl e) = tl (embed ty e) -- embed (ty ⊎ ty₁) (Tr e) = tr (embed ty₁ e) -- embed (ty ⊎ ty₁) (EFst e) = {!!} -- embed (ty ⊎ ty₁) (ESnd e) = {!!} -- embed (ty ⊎ ty₁) (ECase e e₁ e₂) = {!!} embed (ty • ty₁) e = embed ty (EFst e) , embed ty₁ (ESnd e) embed {Γ} (AFun {α} ty₁ ty₂) e = λ Γ↝Γ' v₁ → embed ty₂ (EApp (liftE Γ↝Γ' e) (lift' ty₁ v₁)) -------------------- -- Partial Evaluator -------------------- pe : ∀ {α Δ Γ} → AExp Δ α → AEnv Γ Δ → Imp Γ α pe (Var x) env = lookup env x pe (AInt x) env = x pe (AAdd e e₁) env = pe e env + pe e₁ env pe (ALam {α} e) env = λ Γ↝Γ' → λ y → pe e (cons {α = α} y (liftEnv Γ↝Γ' env)) pe (AApp e e₁) env = pe e env ↝-refl (pe e₁ env) pe (DInt x) env = EInt x pe (DAdd e e₁) env = EAdd (pe e env) (pe e₁ env) pe (DLam {σ} e) env = ELam (pe e (consD σ env)) pe (DApp e e₁) env = EApp (pe e env) (pe e₁ env) pe {Γ = Γ} (e , e₁) env = pe {Γ = Γ} e env , pe {Γ = Γ} e₁ env pe {α = α₁ ⊎ α₂} {Γ = Γ} (Tl e) env = tl (pe {α = α₁} {Γ = Γ} e env) pe {α = α₁ ⊎ α₂} {Γ = Γ} (Tr e) env = tr (pe {α = α₂} {Γ = Γ} e env) pe {Γ = Γ} (Fst e) env = fst (pe {Γ = Γ} e env) pe {Γ = Γ} (Snd e) env = snd (pe {Γ = Γ} e env) pe {Γ = Γ} (Case e e₁ e₂) env with pe {Γ = Γ} e env pe {Γ = Γ} (Case {α₁ = α} e e₁ e₂) env | tl y = (λ Γ↝Γ' → λ y → pe e₁ (cons {α = α} y (liftEnv Γ↝Γ' env))) ↝-refl y pe {Γ = Γ} (Case {α₂ = α} e e₁ e₂) env | tr y = (λ Γ↝Γ' → λ y → pe e₂ (cons {α = α} y (liftEnv Γ↝Γ' env))) ↝-refl y pe (e ḋ e₁) env = pe e env , pe e₁ env pe (DTl e) env = Tl (pe e env) pe (DTr e) env = Tr (pe e env) pe (DFst e) env = EFst (pe e env) pe (DSnd e) env = ESnd (pe e env) pe (DCase {σ₁} {σ₂} e e₁ e₂) env = ECase (pe e env) (pe e₁ (consD σ₁ env)) (pe e₂ (consD σ₂ env)) pe (↑ x e) env = lift' x (pe e env) -- Correctness proof module Correctness where open SimpleAEnv open Exp-Eval -- TODO: rename occurences of stripα to typeof stripα = typeof stripΔ : ACtx → Ctx stripΔ = map stripα strip-lookup : ∀ { α Δ} → α ∈ Δ → stripα α ∈ stripΔ Δ strip-lookup hd = hd strip-lookup (tl x) = tl (strip-lookup x) strip : ∀ {α Δ} → AExp Δ α → Exp (stripΔ Δ) (stripα α) strip (Var x) = EVar (strip-lookup x) strip (AInt x) = EInt x strip (AAdd e e₁) = EAdd (strip e) (strip e₁) strip (ALam e) = ELam (strip e) strip (AApp e e₁) = EApp (strip e) (strip e₁) strip (DInt x) = EInt x strip (DAdd e e₁) = EAdd (strip e) (strip e₁) strip (DLam e) = ELam (strip e) strip (DApp e e₁) = EApp (strip e) (strip e₁) strip (e , e₁) = strip e , strip e₁ strip (Tl e) = Tl (strip e) strip (Tr e) = Tr (strip e) strip (Fst e) = EFst (strip e) strip (Snd e) = ESnd (strip e) strip (Case e e₁ e₂) = ECase (strip e) (strip e₁) (strip e₂) strip (e ḋ e₁) = strip e , strip e₁ strip (DTl e) = Tl (strip e) strip (DTr e) = Tr (strip e) strip (DFst e) = EFst (strip e) strip (DSnd e) = ESnd (strip e) strip (DCase e e₁ e₂) = ECase (strip e) (strip e₁) (strip e₂) strip (↑ x e) = strip e --liftE : ∀ {τ Γ Γ'} → Γ ↝ Γ' → Exp Γ τ → Exp Γ' τ --liftE Γ↝Γ' e = elevate (↝↝-base Γ↝Γ') e stripLift : ∀ {α Δ Γ} → stripΔ Δ ↝ Γ → AExp Δ α → Exp Γ (stripα α) stripLift Δ↝Γ = liftE Δ↝Γ ∘ strip -- -------------------------------- -- --"lift-strip" equivalence lemma -- -------------------------------- -- ↑≡↓ : ∀ x e env env' aenv → Equiv-Env env' aenv env → ev (lift' x (pe e aenv)) env' ≡ ev (strip e) env -- ↑≡↓ x e env env' aenv eqenv = {!!} -- We want to show that pe preserves the semantics of the -- program. Roughly, Exp-Eval.ev-ing a stripped program is -- equivalent to first pe-ing a program and then Exp-Eval.ev-ing the -- result. But as the pe-result of a static function ``can do more'' -- than the (ev ∘ strip)ped function we need somthing more refined. module Equiv where open import Relation.Binary.PropositionalEquality -- Extending a value environment according to an extension of a -- type environment data _⊢_↝_ {Γ} : ∀ {Γ'} → Γ ↝ Γ' → Env Γ → Env Γ' → Set where refl : ∀ env → ↝-refl ⊢ env ↝ env extend : ∀ {τ Γ' env env'} → {Γ↝Γ' : Γ ↝ Γ'} → (v : EImp τ) → (Γ↝Γ' ⊢ env ↝ env') → ↝-extend {Γ = Γ} {Γ' = Γ'} {τ = τ} Γ↝Γ' ⊢ env ↝ (v ∷ env') env↝trans : ∀ {Γ Γ' Γ''} {Γ↝Γ' : Γ ↝ Γ'} {Γ'↝Γ'' : Γ' ↝ Γ''} {env env' env''} → Γ↝Γ' ⊢ env ↝ env' → Γ'↝Γ'' ⊢ env' ↝ env'' → let Γ↝Γ'' = ↝-trans Γ↝Γ' Γ'↝Γ'' in Γ↝Γ'' ⊢ env ↝ env'' env↝trans {Γ} {.Γ''} {Γ''} {Γ↝Γ'} {.↝-refl} {env} {.env''} {env''} env↝env' (refl .env'') = env↝env' env↝trans env↝env' (extend v env'↝env'') = extend v (env↝trans env↝env' env'↝env'') -- Equivalent Imp Γ α and EImp τ values (where τ = stripα α). As -- (v : Imp Γ α) is not necessarily closed, equivalence is defined for -- the closure (Env Γ, ImpΓ α) Equiv : ∀ {α Γ} → Env Γ → Imp Γ α → EImp (stripα α) → Set Equiv {AInt} env av v = av ≡ v Equiv {AFun α₁ α₂} {Γ} env av v = ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → {av' : Imp Γ' α₁} → {v' : EImp (stripα α₁)} → Equiv {α₁} {Γ'} env' av' v' → Equiv {α₂} env' (av Γ↝Γ' av') (v v') Equiv {D x} env av v = ev av env ≡ v Equiv {α • α₁} env (ffst , ssnd) (ffst₁ , ssnd₁) = (Equiv {α} env ffst ffst₁) ∧ (Equiv {α₁} env ssnd ssnd₁) Equiv {α ⊎ α₁} env (tl a) (tl a₁) = Equiv {α} env a a₁ -------------------------------------------------------------------- Equiv {α ⊎ α₁} env (tl a) (tr b) = ⊥ -- Interesting case! Equiv {α ⊎ α₁} env (tr b) (tl a) = ⊥ -- Interesting case! -------------------------------------------------------------------- Equiv {α ⊎ α₁} env (tr b) (tr b₁) = Equiv {α₁} env b b₁ -- Equiv {AInt} env av v = av ≡ v -- Equiv {AFun α₁ α₂} {Γ} env av v = -- extensional equality, given -- an extended context -- ∀ {Γ' env' Γ↝Γ'} → (Γ↝Γ' ⊢ env ↝ env') → -- {av' : Imp Γ' α₁} → {v' : EImp (stripα α₁)} → -- Equiv env' av' v' → Equiv env' (av Γ↝Γ' av') (v v') -- Equiv {D x} {Γ} env av v = ev av env ≡ v -- actually we mean extensional equality -- TODO: Define a proper equivalence for EImps -- Equivalence of AEnv and Env environments. They need to provide -- Equivalent bindings for a context Δ/stripΔ Δ. Again, the -- equivalence is defined for a closure (Env Γ', AEnv Γ' Δ). data Equiv-Env {Γ' : _} (env' : Env Γ') : ∀ {Δ} → let Γ = stripΔ Δ in AEnv Γ' Δ → Env Γ → Set where [] : Equiv-Env env' [] [] cons : ∀ {α Δ} → let τ = stripα α Γ = stripΔ Δ in {env : Env Γ} → {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (va : Imp (Γ') α) → (v : EImp τ) → Equiv {α} {Γ'} env' va v → --Equiv-Env env' (cons α va (aenv)) (v ∷ env) Equiv-Env env' (cons {α = α} va (aenv)) (v ∷ env) -------------------------------- --"lift-strip" equivalence lemma -------------------------------- -- ↑≡↓ : ∀ {Γ' Δ α} x e env env' aenv → Equiv-Env {Γ'} env' {Δ} aenv env → ev (lift' {Γ = Γ'} {α = α} x (pe e aenv)) env' ≡ ev (strip e) env -- ↑≡↓ x e env env' aenv eqenv = {!!} -- Now for the proof... module Proof where open Equiv open import Relation.Binary.PropositionalEquality -- Extensional equality as an axiom to prove the Equivalence of -- function values. We could (should?) define it locally for -- Equiv. postulate ext : ∀ {τ₁ τ₂} {f g : EImp τ₁ → EImp τ₂} → (∀ x → f x ≡ g x) → f ≡ g -- Ternary helper relation for environment extensions, analogous to _↝_↝_ for contexts data _⊢_↝_↝_⊣ : ∀ { Γ Γ' Γ''} → Γ ↝ Γ' ↝ Γ'' → Env Γ → Env Γ' → Env Γ'' → Set where refl : ∀ {Γ Γ''} {Γ↝Γ'' : Γ ↝ Γ''} { env env'' } → Γ↝Γ'' ⊢ env ↝ env'' → ↝↝-base Γ↝Γ'' ⊢ env ↝ [] ↝ env'' ⊣ extend : ∀ {Γ Γ' Γ'' τ} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} { env env' env'' } → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (v : EImp τ) → ↝↝-extend {Γ = Γ} {Γ' = Γ'} {Γ'' = Γ''} {τ = τ} Γ↝Γ'↝Γ'' ⊢ (v ∷ env) ↝ (v ∷ env') ↝ (v ∷ env'') ⊣ -- the following lemmas are strong versions of the shifting -- functions, proving that consistent variable renaming preserves -- equivalence (and not just typing). lookup-elevate-≡ : ∀ {τ Γ Γ'} {Γ↝Γ' : Γ ↝ Γ'} {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var Γ↝Γ' x) env' lookup-elevate-≡ {τ} {.Γ'} {Γ'} {.↝-refl} {.env'} {env'} (refl .env') x = refl lookup-elevate-≡ (extend v env↝env') x = lookup-elevate-≡ env↝env' x lookup-elevate2-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (x : τ ∈ Γ) → lookupE x env ≡ lookupE (elevate-var2 Γ↝Γ'↝Γ'' x) env'' lookup-elevate2-≡ (refl Γ↝Γ') x = lookup-elevate-≡ Γ↝Γ' x lookup-elevate2-≡ (extend env↝env'↝env'' v) hd = refl lookup-elevate2-≡ (extend env↝env'↝env'' _) (tl x) rewrite lookup-elevate2-≡ env↝env'↝env'' x = refl lem-elevate-≡ : ∀ {τ Γ Γ' Γ''} {Γ↝Γ'↝Γ'' : Γ ↝ Γ' ↝ Γ''} {env : Env Γ} {env' : Env Γ'} {env'' : Env Γ''} → Γ↝Γ'↝Γ'' ⊢ env ↝ env' ↝ env'' ⊣ → (e : Exp Γ τ) → ev e env ≡ ev (elevate Γ↝Γ'↝Γ'' e) env'' lem-elevate-≡ env↝env' (EVar x) = lookup-elevate2-≡ env↝env' x lem-elevate-≡ env↝env' (EInt x) = refl lem-elevate-≡ env↝env' (EAdd e e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ _+_ IA1 IA2 lem-elevate-≡ {Fun τ₁ τ₂} {Γ↝Γ'↝Γ'' = Γ↝Γ'↝Γ''} {env = env} {env'' = env''} env↝env' (ELam e) = ext {τ₁} {τ₂} lem-elevate-≡-body where lem-elevate-≡-body : ∀ x → ev e (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e lem-elevate-≡ env↝env' (EApp e e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ (λ f₁ x → f₁ x) IA1 IA2 lem-elevate-≡ env↝env' (e , e₁) with lem-elevate-≡ env↝env' e | lem-elevate-≡ env↝env' e₁ ... | IA1 | IA2 = cong₂ (λ x y → x , y) IA1 IA2 lem-elevate-≡ env↝env' (Tl e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → tl x) IA lem-elevate-≡ env↝env' (Tr e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → tr x) IA lem-elevate-≡ env↝env' (EFst e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → fst x) IA lem-elevate-≡ env↝env' (ESnd e) with lem-elevate-≡ env↝env' e ... | IA = cong (λ x → snd x) IA lem-elevate-≡ {Γ↝Γ'↝Γ'' = Γ↝Γ'↝Γ''} {env = env} {env'' = env''} env↝env' (ECase e e₁ e₂) with ev e env | ev (elevate Γ↝Γ'↝Γ'' e) env'' | lem-elevate-≡ env↝env' e ... | tl c | tl c' | IA rewrite (→tl {x' = c} {y' = c'} (tl c) (tl c') IA refl refl) = lem-elevate-≡-body c' where lem-elevate-≡-body : ∀ x → ev e₁ (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₁) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e₁ ... | tl c | tr c' | () ... | tr c | tl c' | () ... | tr c | tr c' | IA rewrite (→tr {x' = c} {y' = c'} (tr c) (tr c') IA refl refl) = lem-elevate-≡-body c' where lem-elevate-≡-body : ∀ x → ev e₂ (x ∷ env) ≡ ev (elevate (↝↝-extend Γ↝Γ'↝Γ'') e₂) (x ∷ env'') lem-elevate-≡-body x = lem-elevate-≡ (extend env↝env' x) e₂ lem-lift-refl-id : ∀ {α Γ} → let τ = stripα α in (env : Env Γ) → (v : EImp τ) (va : Imp Γ α) → Equiv {α} {Γ} env va v → Equiv {α} {Γ} env (lift α ↝-refl va) v lem-lift-refl-id {AInt} env v va eq = eq lem-lift-refl-id {AFun α α₁} {Γ} env v va eq = body where body : ∀ {Γ'} {env' : Env Γ'} {Γ↝Γ' : Γ ↝ Γ'} → Γ↝Γ' ⊢ env ↝ env' → {av' : Imp Γ' α} {v' : EImp (stripα α)} → Equiv {α} {Γ'} env' av' v' → Equiv {α₁} {Γ'} env' (va (↝-trans ↝-refl Γ↝Γ') av') (v v') body {Γ↝Γ' = Γ↝Γ'} env↝env' eq' rewrite sym (lem-↝-refl-id Γ↝Γ') = eq env↝env' eq' lem-lift-refl-id {D x} env v va eq rewrite sym eq = sym (lem-elevate-≡ (refl (refl env)) va) lem-lift-refl-id {α • α₁} env (ffst , ssnd) (ffst₁ , ssnd₁) (∧-intro x x₁) = ∧-intro (lem-lift-refl-id {α} env ffst ffst₁ x) (lem-lift-refl-id {α₁} env ssnd ssnd₁ x₁) lem-lift-refl-id {α ⊎ α₁} env (tl a) (tl a₁) eq = lem-lift-refl-id {α} env a a₁ eq lem-lift-refl-id {α ⊎ α₁} env (tl a) (tr b) () lem-lift-refl-id {α ⊎ α₁} env (tr b) (tl a) () lem-lift-refl-id {α ⊎ α₁} env (tr b) (tr b₁) eq = lem-lift-refl-id {α₁} env b b₁ eq -- lifting an Imp does not affect equivalence lem-lift-equiv : ∀ {α Γ Γ'} → let τ = stripα α in {Γ↝Γ' : Γ ↝ Γ'} → (va : Imp Γ α) (v : EImp τ) → {env : Env Γ} {env' : Env Γ'} → Γ↝Γ' ⊢ env ↝ env' → Equiv {α} {Γ} env va v → Equiv {α} {Γ'} env' (lift α Γ↝Γ' va) v lem-lift-equiv {α} va v {.env'} {env'} (refl .env') eq = lem-lift-refl-id {α} env' v va eq lem-lift-equiv {AInt} va v (extend v₁ env↝env') eq = eq lem-lift-equiv {AFun α α₁} va v (extend v₁ env↝env') eq = λ v₁env₁↝env' eq₁ → eq (env↝trans (extend v₁ env↝env') v₁env₁↝env') eq₁ lem-lift-equiv {D x} va v (extend v₁ env↝env') eq rewrite sym eq = sym (lem-elevate-≡ (refl (extend v₁ env↝env')) va) lem-lift-equiv {α • α₁} (ffst , ssnd) (ffst₁ , ssnd₁) (extend v₁ env↝env') (∧-intro x x₁) = ∧-intro (lem-lift-equiv {α} ffst ffst₁ (extend v₁ env↝env') x) (lem-lift-equiv {α₁} ssnd ssnd₁ (extend v₁ env↝env') x₁) lem-lift-equiv {α ⊎ α₁} (tl a) (tl a₁) (extend v₁ env↝env') eq = lem-lift-equiv {α} a a₁ (extend v₁ env↝env') eq lem-lift-equiv {α ⊎ α₁} (tl a) (tr b) (extend v₁ env↝env') () lem-lift-equiv {α ⊎ α₁} (tr b) (tl a) (extend v₁ env↝env') () lem-lift-equiv {α ⊎ α₁} (tr b) (tr b₁) (extend v₁ env↝env') eq = lem-lift-equiv {α₁} b b₁ (extend v₁ env↝env') eq lem-equiv-lookup : ∀ {α Δ Γ'} → let Γ = stripΔ Δ in { aenv : AEnv Γ' Δ } {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → ∀ (x : α ∈ Δ) → Equiv {α} env' (lookup aenv x) (lookupE (strip-lookup x) env) lem-equiv-lookup env' [] () lem-equiv-lookup env' (cons enveq va v eq) hd = eq lem-equiv-lookup env' (cons enveq va v eq) (tl x) = lem-equiv-lookup env' enveq x lem-equiv-env-lift-extend : ∀ {σ Γ' Δ} (env' : Env Γ') → let Γ = stripΔ Δ in {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → (x : EImp σ) → Equiv-Env {σ ∷ Γ'} (x ∷ env') (liftEnv (↝-extend ↝-refl) aenv) env lem-equiv-env-lift-extend _ [] x = [] lem-equiv-env-lift-extend env' (cons {α} eqenv va v x) x₁ = cons (lem-equiv-env-lift-extend env' eqenv x₁) (lift α (↝-extend ↝-refl) va) v (lem-lift-equiv {α} va v (extend x₁ (refl env')) x) lem-equiv-env-lift-lift : ∀ {Γ' Γ'' Δ} → let Γ = stripΔ Δ in {Γ↝Γ' : Γ' ↝ Γ''} {env' : Env Γ'} {env'' : Env Γ''} (env'↝env'' : Γ↝Γ' ⊢ env' ↝ env'') → {env : Env Γ} {aenv : AEnv Γ' Δ} → Equiv-Env env' aenv env → Equiv-Env env'' (liftEnv Γ↝Γ' aenv) env lem-equiv-env-lift-lift env'↝env'' [] = [] lem-equiv-env-lift-lift {Γ↝Γ' = Γ↝Γ'} env'↝env'' (cons {α} eqenv va v x) with lem-equiv-env-lift-lift env'↝env'' eqenv ... | IA = cons IA (lift α Γ↝Γ' va) v (lem-lift-equiv {α} va v env'↝env'' x) -------------------------------- --"lift-correct" equivalence lemma -------------------------------- open import Data.Product mutual lift-correct : ∀ {Γ α} (lft : Liftable α) (env : Env Γ) (av : Imp Γ α) (v : EImp (typeof α)) → Equiv {α} {Γ} env av v → (Equiv {D (typeof α)} {Γ} env (lift' lft av) v) lift-correct (D τ) env av v eq = eq lift-correct AInt env av v eq = eq lift-correct (lft ⊎ lft₁) env (tl a) (tl a₁) eq with lift-correct lft env a a₁ ... | IA rewrite IA eq = refl lift-correct (lft ⊎ lft₁) env (tr b) (tl a) () lift-correct (lft ⊎ lft₁) env (tl a) (tr b) () lift-correct (lft ⊎ lft₁) env (tr b) (tr b₁) eq with lift-correct lft₁ env b b₁ ... | IA rewrite IA eq = refl lift-correct (lft • lft₁) env (ffst , ssnd) (ffst₁ , ssnd₁) (∧-intro x x₁) rewrite lift-correct lft env ffst ffst₁ x | lift-correct lft₁ env ssnd ssnd₁ x₁ = refl lift-correct {Γ} {AFun x lft} (AFun y y') env av v eq = ext {typeof x} {typeof lft} (λ x₁ → lift-correct y' (x₁ ∷ env) (av (↝-extend ↝-refl) (embed y (EVar hd))) (v x₁) (eq (extend x₁ (refl env)) (embed-correct {typeof x ∷ Γ} {x} y (x₁ ∷ env) (EVar hd) x₁ refl))) embed-correct : ∀ {Γ α} (lft : Liftable⁻ α) (env : Env Γ) → (e : Exp Γ (typeof α)) → (v : EImp (typeof α)) → ev e env ≡ v → Equiv {α} {Γ} env (embed lft e) v embed-correct (D τ) env e v eq rewrite eq = refl embed-correct (lft • lft₁) env e (fstv , sndv) eq = ∧-intro (embed-correct lft env (EFst e) fstv (subst (λ x → ffst x ≡ fstv) (sym eq) refl)) (embed-correct lft₁ env (ESnd e) sndv (subst (λ x → ssnd x ≡ sndv) (sym eq) refl)) embed-correct {α = AFun α₁ α₂} (AFun x lft) env e v eq = f where f : ∀ {Γ' env' Γ↝Γ'} (x₁ : Γ↝Γ' ⊢ env ↝ env') {x₂ : Imp Γ' α₁} {x₃ : EImp (typeof α₁)} (x₄ : Equiv {α₁} {Γ'} env' x₂ x₃) → Equiv {α₂} {Γ'} env' (embed lft (EApp (elevate (↝↝-base Γ↝Γ') e) (lift' x x₂))) (v x₃) f {Γ'} {env'} {Γext} envext {av'} {v'} eq' = embed-correct lft env' (EApp (elevate (↝↝-base Γext) e) (lift' x av')) (v v') g where g : ev (elevate (↝↝-base Γext) e) env' (ev (lift' x av') env') ≡ v v' g rewrite lift-correct x env' av' v' eq' | sym (cong (λ f → f v') (lem-elevate-≡ (refl envext) e)) | (cong (λ f → f v') eq) = refl --g = {!!} --------------------------------------- --Correctness proof with liftable terms --------------------------------------- -- When we partially evaluate somthing under an environment , it -- will give equivalent results to a ``complete'' evaluation under -- an equivalent environment pe-correct : ∀ { α Δ Γ' } → (e : AExp Δ α) → let Γ = stripΔ Δ in {aenv : AEnv Γ' Δ} → {env : Env Γ} → (env' : Env Γ') → Equiv-Env env' aenv env → Equiv {α} {Γ'} env' (pe e aenv) (ev (strip e) env) pe-correct (Var x) env' eqenv = lem-equiv-lookup env' eqenv x pe-correct (AInt x) env' eqenv = refl pe-correct (AAdd e e₁) env' eqenv rewrite pe-correct e env' eqenv | pe-correct e₁ env' eqenv = refl pe-correct (ALam e) env' eqenv = λ {_} {env''} env'↝env'' {av'} {v'} eq → let eqenv' : _ eqenv' = lem-equiv-env-lift-lift env'↝env'' eqenv eqenv'' : _ eqenv'' = cons eqenv' av' v' eq in pe-correct e env'' eqenv'' pe-correct (AApp e e₁) env' eqenv with pe-correct e env' eqenv | pe-correct e₁ env' eqenv ... | IAe | IAf = IAe (refl env') IAf pe-correct (DInt x) env' eqenv = refl pe-correct (DAdd e e₁) env' eqenv rewrite pe-correct e env' eqenv | pe-correct e₁ env' eqenv = refl pe-correct {α = D (Fun σ₁ σ₂)} (DLam e) env' eqenv = ext {σ₁} {σ₂} (λ x → let eqenv₁ : _ eqenv₁ = lem-equiv-env-lift-extend env' eqenv x eqenv₂ : _ eqenv₂ = cons eqenv₁ (EVar hd) x refl in pe-correct e (x ∷ env') eqenv₂) pe-correct (DApp e e₁) env' eqenv with pe-correct e₁ env' eqenv | pe-correct e env' eqenv ... | IA' | IA = cong₂ (λ f x → f x) IA IA' pe-correct (e , e₁) env' eqenv = ∧-intro (pe-correct e env' eqenv) (pe-correct e₁ env' eqenv) pe-correct (Tl e) env' eqenv = pe-correct e env' eqenv pe-correct (Tr e) env' eqenv = pe-correct e env' eqenv pe-correct (Fst (e , e₁)) env' eqenv = pe-correct e env' eqenv pe-correct (Fst e) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | e₁ , e₂ | e₁' , e₂' | ∧-intro A B = A pe-correct (Snd (e , e₁)) env' eqenv = pe-correct e₁ env' eqenv pe-correct (Snd e) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | e₁ , e₂ | e₁' , e₂' | ∧-intro A B = B pe-correct {α} (Case e e₁ e₂) {aenv = aenv} {env = env} env' eqenv with pe e aenv | ev (strip e) env | pe-correct e env' eqenv ... | tl c | tl c' | L = pe-correct e₁ {aenv = cons c (liftEnv ↝-refl aenv)} {env = c' ∷ env} env' (cons (lem-equiv-env-lift-lift (refl env') eqenv) c c' L) ... | tr c | tr c' | R = pe-correct e₂ {aenv = cons c (liftEnv ↝-refl aenv)} {env = c' ∷ env} env' (cons (lem-equiv-env-lift-lift (refl env') eqenv) c c' R) ... | tr c | tl c' | () ... | tl c | tr c' | () pe-correct (e ḋ e₁) env' eqenv with pe-correct e env' eqenv | pe-correct e₁ env' eqenv ... | IA | IA' rewrite IA | IA' = refl pe-correct (DTl e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DTr e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DFst e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DSnd e) env' eqenv with pe-correct e env' eqenv ... | IA rewrite IA = refl pe-correct (DCase e e₁ e₂) {aenv = aenv} {env = env} env' eqenv with ev (pe e aenv) env' | ev (strip e) env | pe-correct e env' eqenv ... | tl c | tl c' | IA rewrite (→tl {x' = c} {y' = c'} (tl c) (tl c') IA refl refl) = pe-correct e₁ {aenv = cons (EVar hd) (liftEnv (↝-extend ↝-refl) aenv)} {env = c' ∷ env} (c' ∷ env') (cons (lem-equiv-env-lift-lift (extend c' (refl env')) eqenv) (EVar hd) c' refl) ... | tr c | tr c' | IA rewrite (→tr {x' = c} {y' = c'} (tr c) (tr c') IA refl refl) = pe-correct e₂ {aenv = cons (EVar hd) (liftEnv (↝-extend ↝-refl) aenv)} {env = c' ∷ env} (c' ∷ env') (cons (lem-equiv-env-lift-lift (extend c' (refl env')) eqenv) (EVar hd) c' refl) ... | tl c | tr c' | () ... | tr c | tl c' | () pe-correct (↑ x e) {aenv = aenv} {env = env} env' eqenv with pe-correct e env' eqenv ... | IA = lift-correct x env' (pe e aenv) (ev (strip e) env) IA
44.758299
159
0.515192
14a11f2496af691122eeac5c57b0300abe89b3d3
8,134
agda
Agda
Cubical/Data/DescendingList/Strict/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/DescendingList/Strict/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Data/DescendingList/Strict/Properties.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} open import Cubical.Core.Everything open import Cubical.Foundations.Everything open import Agda.Primitive using (lzero) module Cubical.Data.DescendingList.Strict.Properties (A : Type₀) (_>_ : A → A → Type₀) where open import Cubical.Data.DescendingList.Strict A _>_ open import Cubical.HITs.ListedFiniteSet renaming (_∈_ to _∈ʰ_) import Cubical.Data.Empty as Empty open Empty using (⊥-elim) open import Cubical.Relation.Nullary.DecidableEq open import Cubical.Relation.Nullary using (Dec; Discrete) renaming (¬_ to Type¬_) unsort : SDL → LFSet A unsort [] = [] unsort (cons x xs x>xs) = x ∷ unsort xs module _ where open import Cubical.Relation.Nullary data Tri (A B C : Set) : Set where tri-< : A → ¬ B → ¬ C → Tri A B C tri-≡ : ¬ A → B → ¬ C → Tri A B C tri-> : ¬ A → ¬ B → C → Tri A B C module IsoToLFSet (A-discrete : Discrete A) (>-isProp : ∀ {x y} → isProp (x > y)) (tri : ∀ x y → Tri (y > x) (x ≡ y) (x > y)) (>-trans : ∀ {x y z} → x > y → y > z → x > z) (>-irreflexive : ∀ {x} → Type¬ x > x) where Tri' : A → A → Set Tri' x y = Tri (y > x) (x ≡ y) (x > y) open import Cubical.Foundations.Logic open import Cubical.HITs.PropositionalTruncation -- Membership is defined via `LFSet`. -- This computes just as well as a direct inductive definition, -- and additionally lets us use the extra `comm` and `dup` paths to prove -- things about membership. _∈ˡ_ : A → SDL → hProp lzero a ∈ˡ l = a ∈ʰ unsort l Memˡ : SDL → A → hProp lzero Memˡ l a = a ∈ˡ l Memʰ : LFSet A → A → hProp lzero Memʰ l a = a ∈ʰ l >ᴴ-trans : ∀ x y zs → x > y → y >ᴴ zs → x >ᴴ zs >ᴴ-trans x y [] x>y y>zs = >ᴴ[] >ᴴ-trans x y (cons z zs _) x>y (>ᴴcons y>z) = >ᴴcons (>-trans x>y y>z) ≡ₚ-sym : ∀ {A : Set} {x y : A} → [ x ≡ₚ y ] → [ y ≡ₚ x ] ≡ₚ-sym p = recPropTrunc squash (λ p → ∣ sym p ∣) p >-all : ∀ x l → x >ᴴ l → ∀ a → [ a ∈ˡ l ] → x > a >-all x (cons y zs y>zs) (>ᴴcons x>y) a a∈l = ⊔-elim (a ≡ₚ y) (a ∈ˡ zs) (λ _ → (x > a) , >-isProp {x} {a}) (λ a≡ₚy → substₚ (λ q → x > q , >-isProp) (≡ₚ-sym a≡ₚy) x>y) (λ a∈zs → >-all x zs (>ᴴ-trans x y zs x>y y>zs) a a∈zs) a∈l >-absent : ∀ x l → x >ᴴ l → [ ¬ (x ∈ˡ l) ] >-absent x l x>l x∈l = ⊥-elim (>-irreflexive (>-all x l x>l x x∈l)) >ᴴ-isProp : ∀ x xs → isProp (x >ᴴ xs) >ᴴ-isProp x _ >ᴴ[] >ᴴ[] = refl >ᴴ-isProp x _ (>ᴴcons p) (>ᴴcons q) = cong >ᴴcons (>-isProp p q) SDL-isSet : isSet SDL SDL-isSet = isSetDL.isSetDL A _>_ >-isProp A-discrete where open import Cubical.Data.DescendingList.Properties insert : A → SDL → SDL >ᴴinsert : {x y : A} {u : SDL} → y >ᴴ u → (y > x) → y >ᴴ insert x u insert x [] = cons x [] >ᴴ[] insert x (cons y zs good) with tri x y insert x (cons y zs good) | tri-< x<y _ _ = cons y (insert x zs) (>ᴴinsert good x<y) insert x (cons y zs good) | tri-≡ _ x≡y _ = cons y zs good insert x (cons y zs good) | tri-> _ _ x>y = cons x (cons y zs good) (>ᴴcons x>y) >ᴴinsert >ᴴ[] y>x = >ᴴcons y>x >ᴴinsert {x} (>ᴴcons {y} y>ys) y>x with tri x y >ᴴinsert {x} {y} (>ᴴcons {z} z>zs) y>x | tri-< _ _ e = >ᴴcons z>zs >ᴴinsert {x} (>ᴴcons {y} y>ys) y>x | tri-≡ _ _ e = >ᴴcons y>ys >ᴴinsert {x} (>ᴴcons {y} y>ys) y>x | tri-> _ _ _ = >ᴴcons y>x insert-correct : ∀ x ys → unsort (insert x ys) ≡ (x ∷ unsort ys) insert-correct x [] = refl insert-correct x (cons y zs y>zs) with tri x y ... | tri-< _ _ _ = y ∷ unsort (insert x zs) ≡⟨ (λ i → y ∷ (insert-correct x zs i)) ⟩ y ∷ x ∷ unsort zs ≡⟨ comm _ _ _ ⟩ x ∷ y ∷ unsort zs ∎ ... | tri-≡ _ x≡y _ = sym (dup y (unsort zs)) ∙ (λ i → (x≡y (~ i)) ∷ y ∷ unsort zs) ... | tri-> _ _ _ = refl insert-correct₂ : ∀ x y zs → unsort (insert x (insert y zs)) ≡ (x ∷ y ∷ unsort zs) insert-correct₂ x y zs = insert-correct x (insert y zs) ∙ cong (λ q → x ∷ q) (insert-correct y zs) abstract -- for some reason, making [exclude] non-abstract makes -- typechecking noticeably slower exclude : A → (A → hProp lzero) → (A → hProp lzero) exclude x h a = ¬ a ≡ₚ x ⊓ h a >-excluded : ∀ x xs → x >ᴴ xs → exclude x (Memʰ (x ∷ unsort xs)) ≡ Memˡ xs >-excluded x xs x>xs = funExt (λ a → ⇔toPath (to a) (from a)) where import Cubical.Data.Prod as D import Cubical.Data.Sum as D from : ∀ a → [ a ∈ˡ xs ] → [ ¬ a ≡ₚ x ⊓ (a ≡ₚ x ⊔ a ∈ˡ xs) ] from a a∈xs = (recPropTrunc (snd ⊥) a≢x) D., inr a∈xs where a≢x : Type¬ (a ≡ x) a≢x = λ a≡x → (>-absent x xs x>xs (transport (λ i → [ a≡x i ∈ˡ xs ]) a∈xs )) to : ∀ a → [ ¬ a ≡ₚ x ⊓ (a ≡ₚ x ⊔ a ∈ˡ xs) ] → [ a ∈ˡ xs ] to a (a≢x D., x) = recPropTrunc (snd (a ∈ˡ xs)) (λ { (D.inl a≡x) → ⊥-elim (a≢x a≡x); (D.inr x) → x }) x cons-eq : ∀ x xs x>xs y ys y>ys → x ≡ y → xs ≡ ys → cons x xs x>xs ≡ cons y ys y>ys cons-eq x xs x>xs y ys y>ys x≡y xs≡ys i = cons (x≡y i) (xs≡ys i) (>ᴴ-isProp (x≡y i) (xs≡ys i) (transp (λ j → (x≡y (i ∧ j)) >ᴴ (xs≡ys) (i ∧ j)) (~ i) x>xs) (transp (λ j → (x≡y (i ∨ ~ j)) >ᴴ (xs≡ys) (i ∨ ~ j)) i y>ys) i) Memˡ-inj-cons : ∀ x xs x>xs y ys y>ys → x ≡ y → Memˡ (cons x xs x>xs) ≡ Memˡ (cons y ys y>ys) → Memˡ xs ≡ Memˡ ys Memˡ-inj-cons x xs x>xs y ys y>ys x≡y e = Memˡ xs ≡⟨ sym (>-excluded x xs x>xs) ⟩ exclude x (Memʰ (x ∷ unsort xs)) ≡⟨ (λ i → exclude (x≡y i) (e i)) ⟩ exclude y (Memʰ (y ∷ unsort ys)) ≡⟨ (>-excluded y ys y>ys) ⟩ Memˡ ys ∎ Memˡ-inj : ∀ l₁ l₂ → Memˡ l₁ ≡ Memˡ l₂ → l₁ ≡ l₂ Memˡ-inj [] [] eq = refl Memˡ-inj [] (cons y ys y>ys) eq = ⊥-elim (transport (λ i → [ eq (~ i) y ]) (inl ∣ refl ∣)) Memˡ-inj (cons y ys y>ys) [] eq = ⊥-elim (transport (λ i → [ eq i y ]) (inl ∣ refl ∣)) Memˡ-inj (cons x xs x>xs) (cons y ys y>ys) e = ⊔-elim (x ≡ₚ y) (x ∈ʰ unsort ys) (λ _ → ((cons x xs x>xs) ≡ (cons y ys y>ys)) , SDL-isSet _ _) (recPropTrunc (SDL-isSet _ _) with-x≡y) (⊥-elim ∘ x∉ys) (transport (λ i → [ e i x ]) (inl ∣ refl ∣)) where xxs = cons x xs x>xs x∉ys : [ ¬ x ∈ˡ ys ] x∉ys x∈ys = ⊥-elim (>-irreflexive y>y) where y>x : y > x y>x = (>-all y ys y>ys x x∈ys) y∈xxs : [ y ∈ˡ (cons x xs x>xs) ] y∈xxs = (transport (λ i → [ e (~ i) y ]) (inl ∣ refl ∣)) y>y : y > y y>y = >-all y xxs (>ᴴcons y>x) y y∈xxs with-x≡y : x ≡ y → (cons x xs x>xs) ≡ (cons y ys y>ys) with-x≡y x≡y = cons-eq x xs x>xs y ys y>ys x≡y r where r : xs ≡ ys r = Memˡ-inj _ _ (Memˡ-inj-cons x xs x>xs y ys y>ys x≡y e) unsort-inj : ∀ x y → unsort x ≡ unsort y → x ≡ y unsort-inj x y e = Memˡ-inj x y λ i a → a ∈ʰ (e i) insert-swap : (x y : A) (zs : SDL) → insert x (insert y zs) ≡ insert y (insert x zs) insert-swap x y zs = unsort-inj (insert x (insert y zs)) (insert y (insert x zs)) (unsort (insert x (insert y zs)) ≡⟨ (λ i → insert-correct₂ x y zs i) ⟩ x ∷ y ∷ unsort zs ≡⟨ (λ i → comm x y (unsort zs) i) ⟩ y ∷ x ∷ unsort zs ≡⟨ (λ i → insert-correct₂ y x zs (~ i)) ⟩ unsort (insert y (insert x zs)) ∎) insert-dup : (x : A) (ys : SDL) → insert x (insert x ys) ≡ insert x ys insert-dup x ys = unsort-inj (insert x (insert x ys)) (insert x ys) ( unsort (insert x (insert x ys)) ≡⟨ (λ i → insert-correct₂ x x ys i) ⟩ x ∷ x ∷ unsort ys ≡⟨ dup x (unsort ys) ⟩ x ∷ unsort ys ≡⟨ (λ i → insert-correct x ys (~ i)) ⟩ unsort (insert x ys) ∎ ) sort : LFSet A → SDL sort = LFSetRec.f [] insert insert-swap insert-dup SDL-isSet unsort∘sort : ∀ x → unsort (sort x) ≡ x unsort∘sort = LFPropElim.f (λ x → unsort (sort x) ≡ x) refl (λ x {ys} ys-hyp → insert-correct x (sort ys) ∙ cong (λ q → x ∷ q) ys-hyp) (λ xs → trunc (unsort (sort xs)) xs) sort∘unsort : ∀ x → sort (unsort x) ≡ x sort∘unsort x = unsort-inj (sort (unsort x)) x (unsort∘sort (unsort x)) SDL-LFSet-iso : Iso SDL (LFSet A) SDL-LFSet-iso = (iso unsort sort unsort∘sort sort∘unsort) SDL≡LFSet : SDL ≡ LFSet A SDL≡LFSet = ua (isoToEquiv SDL-LFSet-iso)
36.151111
115
0.526309
ed20ae2c4ac9e6b4e9dceac5fcc28fee5e4a0d6e
1,105
agda
Agda
Int.agda
nickcollins/dependent-dicts-agda
db857f3e7dc9a4793f68504e6365d93ed75d7f88
[ "MIT" ]
null
null
null
Int.agda
nickcollins/dependent-dicts-agda
db857f3e7dc9a4793f68504e6365d93ed75d7f88
[ "MIT" ]
null
null
null
Int.agda
nickcollins/dependent-dicts-agda
db857f3e7dc9a4793f68504e6365d93ed75d7f88
[ "MIT" ]
null
null
null
open import Prelude open import Nat open import Bij module Int where data Int : Set where +_ : Nat → Int -[1+_] : Nat → Int int→nat : Int → Nat int→nat (+ n) = 1+ (n + n) int→nat -[1+ n ] = n + n int→nat:inj : ∀{m n} → int→nat m == int→nat n → m == n int→nat:inj {+ m} {+ n} eq rewrite even-inj {m} {n} (1+inj eq) = refl int→nat:inj {+ m} { -[1+ n ]} eq = abort (even-not-odd {m} {n} eq) int→nat:inj { -[1+ m ]} {+ n} eq = abort (even-not-odd {n} {m} (! eq)) int→nat:inj { -[1+ m ]} { -[1+ n ]} eq rewrite even-inj {m} {n} eq = refl int→nat:surj : (n : Nat) → Σ[ m ∈ Int ] (int→nat m == n) int→nat:surj Z = -[1+ Z ] , refl int→nat:surj (1+ Z) = (+ Z) , refl int→nat:surj (1+ (1+ n)) with int→nat:surj n int→nat:surj (1+ (1+ .(1+ (n + n)))) | (+ n) , refl = (+ 1+ n) , 1+ap (1+ap n+1+m==1+n+m) int→nat:surj (1+ (1+ .(n + n))) | -[1+ n ] , refl = -[1+ 1+ n ] , 1+ap n+1+m==1+n+m instance IntBij : bij Int Nat IntBij = record { convert = int→nat; inj = int→nat:inj; surj = int→nat:surj}
30.694444
91
0.467873
04411c75f3a7191d6d367cc0746c6dc6200d7230
3,231
agda
Agda
Cubical/Functions/Fibration.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
Cubical/Functions/Fibration.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Functions/Fibration.agda
cangiuli/cubical
d103ec455d41cccf9b13a4803e7d3cf462e00067
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Functions.Fibration where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Data.Sigma private variable ℓ ℓb : Level B : Type ℓb module FiberIso {ℓ} (p⁻¹ : B → Type ℓ) (x : B) where p : Σ B p⁻¹ → B p = fst fwd : fiber p x → p⁻¹ x fwd ((x' , y) , q) = subst (λ z → p⁻¹ z) q y bwd : p⁻¹ x → fiber p x bwd y = (x , y) , refl fwd-bwd : ∀ x → fwd (bwd x) ≡ x fwd-bwd y = transportRefl y bwd-fwd : ∀ x → bwd (fwd x) ≡ x bwd-fwd ((x' , y) , q) i = h (r i) where h : Σ[ s ∈ singl x ] p⁻¹ (s .fst) → fiber p x h ((x , p) , y) = (x , y) , sym p r : Path (Σ[ s ∈ singl x ] p⁻¹ (s .fst)) ((x , refl ) , subst p⁻¹ q y) ((x' , sym q) , y ) r = ΣPathP (isContrSingl x .snd (x' , sym q) , toPathP (transport⁻Transport (λ i → p⁻¹ (q i)) y)) -- HoTT Lemma 4.8.1 fiberEquiv : fiber p x ≃ p⁻¹ x fiberEquiv = isoToEquiv (iso fwd bwd fwd-bwd bwd-fwd) open FiberIso using (fiberEquiv) public module _ {ℓ} {E : Type ℓ} (p : E → B) where -- HoTT Lemma 4.8.2 totalEquiv : E ≃ Σ B (fiber p) totalEquiv = isoToEquiv isom where isom : Iso E (Σ B (fiber p)) Iso.fun isom x = p x , x , refl Iso.inv isom (b , x , q) = x Iso.leftInv isom x i = x Iso.rightInv isom (b , x , q) i = q i , x , λ j → q (i ∧ j) module _ (B : Type ℓb) (ℓ : Level) where private ℓ' = ℓ-max ℓb ℓ -- HoTT Theorem 4.8.3 fibrationEquiv : (Σ[ E ∈ Type ℓ' ] (E → B)) ≃ (B → Type ℓ') fibrationEquiv = isoToEquiv isom where isom : Iso (Σ[ E ∈ Type ℓ' ] (E → B)) (B → Type ℓ') Iso.fun isom (E , p) = fiber p Iso.inv isom p⁻¹ = Σ B p⁻¹ , fst Iso.rightInv isom p⁻¹ i x = ua (fiberEquiv p⁻¹ x) i Iso.leftInv isom (E , p) i = ua e (~ i) , fst ∘ ua-unglue e (~ i) where e = totalEquiv p -- The path type in a fiber of f is equivalent to a fiber of (cong f) open import Cubical.Foundations.Function fiberPath : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {f : A → B} {b : B} (h h' : fiber f b) → (Σ[ p ∈ (fst h ≡ fst h') ] (PathP (λ i → f (p i) ≡ b) (snd h) (snd h'))) ≡ fiber (cong f) (h .snd ∙∙ refl ∙∙ sym (h' .snd)) fiberPath h h' = cong (Σ (h .fst ≡ h' .fst)) (funExt λ p → flipSquarePath ∙ PathP≡doubleCompPathʳ _ _ _ _) fiber≡ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {f : A → B} {b : B} (h h' : fiber f b) → (h ≡ h') ≡ fiber (cong f) (h .snd ∙∙ refl ∙∙ sym (h' .snd)) fiber≡ {f = f} {b = b} h h' = ΣPath≡PathΣ ⁻¹ ∙ fiberPath h h' FibrationStr : (B : Type ℓb) → Type ℓ → Type (ℓ-max ℓ ℓb) FibrationStr B A = A → B Fibration : (B : Type ℓb) → (ℓ : Level) → Type (ℓ-max ℓb (ℓ-suc ℓ)) Fibration {ℓb = ℓb} B ℓ = Σ[ A ∈ Type ℓ ] FibrationStr B A
34.37234
106
0.542866