hexsha
stringlengths
40
40
size
int64
3
1.05M
ext
stringclasses
163 values
lang
stringclasses
53 values
max_stars_repo_path
stringlengths
3
945
max_stars_repo_name
stringlengths
4
112
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
float64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
945
max_issues_repo_name
stringlengths
4
113
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
float64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
945
max_forks_repo_name
stringlengths
4
113
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
float64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.05M
avg_line_length
float64
1
966k
max_line_length
int64
1
977k
alphanum_fraction
float64
0
1
1b2717a0cd495bb54e938dde224b9054a6f125a0
1,579
agda
Agda
bool.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
29
2019-02-06T13:09:31.000Z
2022-03-04T15:05:12.000Z
bool.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
8
2018-07-09T22:53:38.000Z
2022-03-22T03:43:34.000Z
bool.agda
rfindler/ial
f3f0261904577e930bd7646934f756679a6cbba6
[ "MIT" ]
17
2018-12-03T22:38:15.000Z
2021-11-28T20:13:21.000Z
module bool where open import level ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- data 𝔹 : Set where tt : 𝔹 ff : 𝔹 -- this is an alias for Mac users who cannot see blackboard b. bool : Set bool = 𝔹 {-# BUILTIN BOOL 𝔹 #-} {-# BUILTIN TRUE tt #-} {-# BUILTIN FALSE ff #-} ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 7 ~_ infix 6 _xor_ _nand_ infixr 6 _&&_ infixr 5 _||_ infix 4 if_then_else_ if*_then_else_ infixr 4 _imp_ infix 4 _iff_ ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- -- not ~_ : 𝔹 → 𝔹 ~ tt = ff ~ ff = tt _iff_ : 𝔹 → 𝔹 → 𝔹 tt iff tt = tt tt iff ff = ff ff iff tt = ff ff iff ff = tt -- and _&&_ : 𝔹 → 𝔹 → 𝔹 tt && b = b ff && b = ff -- or _||_ : 𝔹 → 𝔹 → 𝔹 tt || b = tt ff || b = b if_then_else_ : ∀ {ℓ} {A : Set ℓ} → 𝔹 → A → A → A if tt then y else z = y if ff then y else z = z if*_then_else_ : ∀ {ℓ} {A B : Set ℓ} → (b : 𝔹) → A → B → if b then A else B if* tt then a else b = a if* ff then a else b = b _xor_ : 𝔹 → 𝔹 → 𝔹 tt xor ff = tt ff xor tt = tt tt xor tt = ff ff xor ff = ff -- implication _imp_ : 𝔹 → 𝔹 → 𝔹 tt imp b2 = b2 ff imp b2 = tt -- also called the Sheffer stroke _nand_ : 𝔹 → 𝔹 → 𝔹 tt nand tt = ff tt nand ff = tt ff nand tt = tt ff nand ff = tt _nor_ : 𝔹 → 𝔹 → 𝔹 x nor y = ~ (x || y)
18.360465
75
0.412286
fd843779b3a31507c9ec0f429c2e052aa48ca580
1,466
agda
Agda
theorems/groups/KernelCstImageCst.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/groups/KernelCstImageCst.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
null
null
null
theorems/groups/KernelCstImageCst.agda
mikeshulman/HoTT-Agda
e7d663b63d89f380ab772ecb8d51c38c26952dbb
[ "MIT" ]
1
2018-12-26T21:31:57.000Z
2018-12-26T21:31:57.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.KernelCstImageCst {i j k} (G : Group i) (H : Group j) (K : Group k) (H-ab : is-abelian H) where private module H = Group H open import groups.KernelImage {G = G} {H = H} {K = K} cst-hom cst-hom H-ab Ker-cst-quot-Im-cst : Ker/Im ≃ᴳ H Ker-cst-quot-Im-cst = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where to : Ker/Im.El → H.El to = SetQuot-rec H.El-level to' to-rel where to' : Ker.El (cst-hom {G = H} {H = K}) → H.El to' ker = fst ker abstract to-rel : ∀ {h₁ h₂} → ker/im-rel' h₁ h₂ → h₁ == h₂ to-rel {h₁} {h₂} = Trunc-rec (H.El-level _ _) λ{(_ , 0=h₁h₂⁻¹) → H.zero-diff-same h₁ h₂ (! 0=h₁h₂⁻¹)} from : H.El → Ker/Im.El from h = q[ h , idp ] abstract to-from : ∀ h → to (from h) == h to-from h = idp from-to : ∀ k/i → from (to k/i) == k/i from-to = SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (λ _ → ap q[_] $ ker-El=-out idp) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _)) to-pres-comp : preserves-comp Ker/Im.comp H.comp to to-pres-comp = SetQuot-elim (λ _ → Π-is-set λ _ → =-preserves-set H.El-level) (λ _ → SetQuot-elim (λ _ → =-preserves-set H.El-level) (λ _ → idp) (λ _ → prop-has-all-paths-↓ (H.El-level _ _))) (λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → H.El-level _ _))
31.869565
82
0.53206
529c9916e5ad91a5199f00777a7f049a673bc2ee
197
agda
Agda
test/Fail/Erased-cubical-Import/Cubical.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Erased-cubical-Import/Cubical.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Erased-cubical-Import/Cubical.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} module Erased-cubical-Import.Cubical where open import Agda.Builtin.Cubical.Path data ∥_∥ (A : Set) : Set where ∣_∣ : A → ∥ A ∥ trivial : (x y : ∥ A ∥) → x ≡ y
19.7
42
0.583756
1462aac597a19b1ef12a067b992b6bd095a06539
456
agda
Agda
stdlib-exts/Data/Maybe/Instance.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
35
2019-06-13T07:44:50.000Z
2021-10-12T22:59:10.000Z
stdlib-exts/Data/Maybe/Instance.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
10
2019-06-13T17:44:43.000Z
2020-04-25T15:29:17.000Z
stdlib-exts/Data/Maybe/Instance.agda
WhatisRT/meta-cedille
62fa6f36e4555360d94041113749bbb6d291691c
[ "MIT" ]
2
2019-06-27T23:12:48.000Z
2021-10-20T10:46:20.000Z
module Data.Maybe.Instance where open import Class.Equality open import Class.Monad open import Data.Maybe open import Data.Maybe.Properties instance Maybe-Monad : ∀ {a} -> Monad (Maybe {a}) Maybe-Monad = record { _>>=_ = λ x f → maybe f nothing x ; return = just } Maybe-Eq : ∀ {A} {{_ : Eq A}} → Eq (Maybe A) Maybe-Eq ⦃ record { _≟_ = _≟_ } ⦄ = record { _≟_ = ≡-dec _≟_ } Maybe-EqB : ∀ {A} {{_ : Eq A}} → EqB (Maybe A) Maybe-EqB = Eq→EqB
26.823529
76
0.611842
fdf8c689b57f4d8f0022bfe03508b7a220fcaae4
3,886
agda
Agda
old/Spaces/Flattening.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
old/Spaces/Flattening.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
old/Spaces/Flattening.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import BaseOver module Spaces.Flattening {i j k} (A : Set i) (B : Set j) (f g : B → A) (C : A → Set k) (D : (b : B) → C (f b) ≃ C (g b)) where open import Spaces.FlatteningTypes A B f g C D -- The family of paths used in the definition of [flatten] paths-flatten : (b : B) → (cct (f b) == cct (g b) [ (λ w → (P w → Wt)) ↓ pp b ]) paths-flatten b = ↓-app→cst-in (λ q → ppt b _ ∘' ap (cct (g b)) (↓-pp-out q)) flatten-curried : (w : W) → (P w → Wt) flatten-curried = W-rec _ cct paths-flatten flatten : Σ W P → Wt flatten (w , x) = flatten-curried w x unflatten : Wt → Σ W P unflatten = Wt-rec-nondep _ (λ a c → (cc a , c)) (λ b d → Σ-eq (pp b) (↓-pp-in refl)) -- flatten-unflatten : (w : Wt) → flatten (unflatten w) ≡ w flatten-unflatten = Wt-rec _ (λ _ _ → refl) (λ b d → ↓-◯=id-in unflatten flatten (ap flatten (ap unflatten (ppt b d)) ≡⟨ Wt-rec-nondep-β _ (λ a c → (cc a , c)) (λ b d → Σ-eq (pp b) (↓-pp-in refl)) b d |in-ctx ap flatten ⟩ ap flatten (Σ-eq (pp b) (↓-pp-in refl)) ≡⟨ split-ap2 flatten (pp b) (↓-pp-in refl) ⟩ ↓-app→cst-out (apd flatten-curried (pp b)) (↓-pp-in refl) ≡⟨ W-rec-β _ cct paths-flatten b |in-ctx (λ u → ↓-app→cst-out u (↓-pp-in refl)) ⟩ ↓-app→cst-out (paths-flatten b) (↓-pp-in refl) ≡⟨ refl ⟩ ↓-app→cst-out (↓-app→cst-in (λ q → ppt b _ ∘' ap (cct (g b)) (↓-pp-out q))) (↓-pp-in refl) ≡⟨ ↓-app→cst-β (λ q → ppt b _ ∘' ap (cct (g b)) (↓-pp-out q)) (↓-pp-in refl) ⟩ ppt b d ∘' ap (cct (g b)) (↓-pp-out (↓-pp-in refl)) ≡⟨ ↓-pp-β refl |in-ctx (λ u → ppt b d ∘' ap (cct (g b)) u) ⟩ ppt b d ∎)) unflatten-flatten-curried : (w : W) (x : P w) → unflatten (flatten-curried w x) ≡ (w , x) unflatten-flatten-curried = W-rec _ (λ a x → refl) (λ b → ↓-Π-in (λ q → ↓-◯=id-in flatten unflatten (ap unflatten (ap flatten (Σ-eq (pp b) q)) ≡⟨ split-ap2 flatten (pp b) q |in-ctx ap unflatten ⟩ ap unflatten (↓-app→cst-out (apd flatten-curried (pp b)) q) ≡⟨ W-rec-β _ cct paths-flatten b |in-ctx (λ u → ap unflatten (↓-app→cst-out u q)) ⟩ ap unflatten (↓-app→cst-out (paths-flatten b) q) ≡⟨ refl ⟩ ap unflatten (↓-app→cst-out (↓-app→cst-in (λ qq → ppt b _ ∘' ap (cct (g b)) (↓-pp-out qq))) q) ≡⟨ ↓-app→cst-β (λ qq → ppt b _ ∘' ap (cct (g b)) (↓-pp-out qq)) q |in-ctx ap unflatten ⟩ ap unflatten (ppt b _ ∘' ap (cct (g b)) (↓-pp-out q)) ≡⟨ ap-∘' unflatten (ppt b _) (ap (cct (g b)) (↓-pp-out q)) ⟩ ap unflatten (ppt b _) ∘' ap unflatten (ap (cct (g b)) (↓-pp-out q)) ≡⟨ Wt-rec-nondep-β _ (λ a c → (cc a , c)) (λ b d → Σ-eq (pp b) (↓-pp-in refl)) b _ |in-ctx (λ u → u ∘' ap unflatten (ap (cct (g b)) (↓-pp-out q))) ⟩ Σ-eq (pp b) (↓-pp-in refl) ∘' ap unflatten (ap (cct (g b)) (↓-pp-out q)) ≡⟨ compose-ap unflatten (cct (g b)) (↓-pp-out q) |in-ctx (λ u → (Σ-eq (pp b) (↓-pp-in refl) ∘' u)) ⟩ Σ-eq (pp b) (↓-pp-in refl) ∘' ap (unflatten ◯ cct (g b)) (↓-pp-out q) ≡⟨ refl ⟩ Σ-eq (pp b) (↓-pp-in refl) ∘' ap (λ x → (cc (g b), x)) (↓-pp-out q) ≡⟨ ap-cst,id P (↓-pp-out q) |in-ctx (λ u → Σ-eq (pp b) (↓-pp-in refl) ∘' u) ⟩ Σ-eq (pp b) (↓-pp-in refl) ∘' Σ-eq refl (↓-pp-out q) ≡⟨ Σ-∘' (↓-pp-in refl) (↓-pp-out q) ⟩ Σ-eq (pp b) (↓-pp-in refl ∘'dep ↓-pp-out q) ≡⟨ to-transp-weird q (pp-path _ _) |in-ctx Σ-eq (pp b) ⟩ Σ-eq (pp b) q ∎))) unflatten-flatten : (wx : Σ W P) → unflatten (flatten wx) ≡ wx unflatten-flatten (w , x) = unflatten-flatten-curried w x eqv : Σ W P ≃ Wt eqv = (flatten , iso-is-eq flatten unflatten flatten-unflatten unflatten-flatten)
46.819277
165
0.488677
3710a14308a178ebc035875ba78680ea62df93c3
2,706
agda
Agda
test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties/Core.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties/Core.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
test/asset/agda-stdlib-1.0/Data/List/Membership/Propositional/Properties/Core.agda
omega12345/agda-mode
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- The Agda standard library -- -- Core properties related to propositional list membership. -- -- This file is needed to break the cyclic dependency with the proof -- `Any-cong` in `Data.Any.Properties` which relies on `Any↔` in this -- file. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Membership.Propositional.Properties.Core where open import Function using (flip; id; _∘_) open import Function.Inverse using (_↔_; inverse) open import Data.List.Base using (List) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional open import Data.Product as Prod using (_,_; proj₁; proj₂; uncurry′; ∃; _×_) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) open import Relation.Unary using (_⊆_) -- Lemmas relating map and find. map∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs} (p : Any P xs) → let p′ = find p in {f : _≡_ (proj₁ p′) ⊆ P} → f refl ≡ proj₂ (proj₂ p′) → Any.map f (proj₁ (proj₂ p′)) ≡ p map∘find (here p) hyp = P.cong here hyp map∘find (there p) hyp = P.cong there (map∘find p hyp) find∘map : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs : List A} (p : Any P xs) (f : P ⊆ Q) → find (Any.map f p) ≡ Prod.map id (Prod.map id f) (find p) find∘map (here p) f = refl find∘map (there p) f rewrite find∘map p f = refl -- find satisfies a simple equality when the predicate is a -- propositional equality. find-∈ : ∀ {a} {A : Set a} {x : A} {xs : List A} (x∈xs : x ∈ xs) → find x∈xs ≡ (x , x∈xs , refl) find-∈ (here refl) = refl find-∈ (there x∈xs) rewrite find-∈ x∈xs = refl -- find and lose are inverses (more or less). lose∘find : ∀ {a p} {A : Set a} {P : A → Set p} {xs : List A} (p : Any P xs) → uncurry′ lose (proj₂ (find p)) ≡ p lose∘find p = map∘find p P.refl find∘lose : ∀ {a p} {A : Set a} (P : A → Set p) {x xs} (x∈xs : x ∈ xs) (pp : P x) → find {P = P} (lose x∈xs pp) ≡ (x , x∈xs , pp) find∘lose P x∈xs p rewrite find∘map x∈xs (flip (P.subst P) p) | find-∈ x∈xs = refl -- Any can be expressed using _∈_ ∃∈-Any : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → (∃ λ x → x ∈ xs × P x) → Any P xs ∃∈-Any = uncurry′ lose ∘ proj₂ Any↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → (∃ λ x → x ∈ xs × P x) ↔ Any P xs Any↔ = inverse ∃∈-Any find from∘to lose∘find where from∘to : ∀ v → find (∃∈-Any v) ≡ v from∘to p = find∘lose _ (proj₁ (proj₂ p)) (proj₂ (proj₂ p))
35.142857
72
0.54139
34c94ecb491eab526bfa7148318d2e5fe3a05e9d
826
agda
Agda
test/Succeed/Issue1231.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1231.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1231.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
data Nat : Set where zero : Nat data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x subst : ∀ {A : Set} (P : A → Set) {x y} → x ≡ y → P x → P y subst P refl px = px postulate Eq : Set → Set mkEq : {A : Set} (x y : A) → x ≡ y _==_ : {A : Set} {{_ : Eq A}} (x y : A) → x ≡ y A : Set B : A → Set C : ∀ x → B x → Set case_of_ : ∀ {a b} {A : Set a} {B : Set b} → A → (A → B) → B case x of f = f x id : ∀ {a} (A : Set a) → A → A id A x = x eqTriple : {{_ : ∀ {x} {y : B x} → Eq (C x y)}} (a : A) (b : B a) (c : C a b) (a₁ : A) (b₁ : B a₁) (c : C a₁ b₁) → Nat eqTriple a b c a₁ b₁ c₁ = subst (λ a₂ → ∀ (b₂ : B a₂) (c₂ : _) → Nat) (mkEq a a₁) (λ b₂ c₂ → subst (λ b₃ → ∀ c₃ → Nat) (mkEq b b₂) (λ c₃ → case c == c₃ of λ eq → zero) c₂) b₁ c₁
24.294118
67
0.401937
37aa1d6f7549fcf271f01ce198900bdde405c6e2
314
agda
Agda
test/Fail/Issue2897.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue2897.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue2897.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module _ where open import Agda.Builtin.Nat open import Agda.Builtin.Equality data ⊥ : Set where T : Nat → Set T zero = ⊥ T (suc n) = Nat module M (n : Nat) where foo : n ≡ 0 → T n → Nat foo refl t = 0 module M' where bar : ⊥ bar = t bad : ⊥ bad = M'.bar loop : ⊥ loop = M.bad 0
12.076923
33
0.55414
0de98dc12e6875a7679ac29a9adbfface5aa72ba
463
agda
Agda
Cats/Category/Sets/Facts/Terminal.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
24
2017-11-03T15:18:57.000Z
2021-08-06T05:00:46.000Z
Cats/Category/Sets/Facts/Terminal.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
null
null
null
Cats/Category/Sets/Facts/Terminal.agda
JLimperg/cats
1ad7b243acb622d46731e9ae7029408db6e561f1
[ "MIT" ]
1
2019-03-18T15:35:07.000Z
2019-03-18T15:35:07.000Z
{-# OPTIONS --without-K --safe #-} module Cats.Category.Sets.Facts.Terminal where open import Data.Unit using (⊤) open import Level using (Lift ; lift ; lower) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Cats.Category open import Cats.Category.Sets using (Sets) instance hasTerminal : ∀ {l} → HasTerminal (Sets l) hasTerminal = record { ⊤ = Lift _ ⊤ ; isTerminal = λ X → record { unique = λ _ _ → refl } }
25.722222
68
0.684665
145993a70aaf357d8ef92333493fa50a5a247178
93
agda
Agda
test/Fail/AmbiguousModule.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/AmbiguousModule.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/AmbiguousModule.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module AmbiguousModule where module A where module B where module A where open B open A
9.3
28
0.774194
033ab393102d71e087c33df99983c8b493e5606d
613
agda
Agda
examples/outdated-and-incorrect/fileIO/Base.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
examples/outdated-and-incorrect/fileIO/Base.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/fileIO/Base.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
module Base where postulate String : Set Char : Set {-# BUILTIN STRING String #-} {-# BUILTIN CHAR Char #-} data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () #-} data Bool : Set where true : Bool false : Bool data False : Set where record True : Set where IsTrue : Bool -> Set IsTrue true = True IsTrue false = False {-# COMPILED_DATA Bool True False #-} infixr 40 _::_ data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A {-# COMPILED_DATA List [] (:) #-} data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B {-# COMPILED_DATA _×_ (,) #-}
16.567568
37
0.582382
36584a266ef40c8b672b3d1bdbdb767813b17176
457
agda
Agda
test/fail/SizedTypesFunctionFromSuccSize.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
test/fail/SizedTypesFunctionFromSuccSize.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/SizedTypesFunctionFromSuccSize.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
{-# OPTIONS --sized-types --injective-type-constructors #-} module SizedTypesFunctionFromSuccSize where postulate Size : Set _^ : Size -> Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZESUC _^ #-} {-# BUILTIN SIZEINF ∞ #-} data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {size ^} suc : {size : Size} -> Nat {size} -> Nat {size ^} bad : {i : Size} -> Nat {i ^} -> Set bad (zero) = bad zero bad (suc x) = Nat
20.772727
59
0.573304
14170963b9eaba7c8374cfbea6570062b6ebe204
1,639
agda
Agda
examples/examplesPaperJFP/SpaceShipSimpleVar.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
examples/examplesPaperJFP/SpaceShipSimpleVar.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
examples/examplesPaperJFP/SpaceShipSimpleVar.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module examplesPaperJFP.SpaceShipSimpleVar where open import SizedIO.Base open import StateSizedIO.GUI.BaseStateDependent open import Data.Bool.Base open import Data.List.Base open import Data.Integer open import Data.Product hiding (map) open import SizedIO.Object open import SizedIO.IOObject open import NativeIO open import StateSizedIO.GUI.WxBindingsFFI open import StateSizedIO.GUI.VariableList open import StateSizedIO.GUI.WxGraphicsLib open import StateSized.GUI.BitMaps VarType = ℤ varInit : VarType varInit = (+ 150) onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType onPaint z dc rect = exec (drawBitmap dc ship (z , (+ 150)) true) λ _ → return z moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType moveSpaceShip fra z = return (z + (+ 20)) callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType callRepaint fra z = exec (repaint fra) λ _ → return z buttonHandler : ∀{i} → Frame → List (VarType → IO GuiLev1Interface i VarType) buttonHandler fra = moveSpaceShip fra ∷ [ callRepaint fra ] program : ∀{i} → IOˢ GuiLev2Interface i (λ _ → Unit) [] program = execˢ (level1C makeFrame) λ fra → execˢ (level1C (makeButton fra)) λ bt → execˢ (level1C (addButton fra bt)) λ _ → execˢ (createVar varInit) λ _ → execˢ (setButtonHandler bt (moveSpaceShip fra ∷ [ callRepaint fra ])) λ _ → execˢ (setOnPaint fra [ onPaint ]) returnˢ main : NativeIO Unit main = start (translateLev2 program)
29.8
78
0.663819
3406296e9336917a6b842a20046009cdc1661fdc
365
agda
Agda
test/Succeed/Issue1115.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Succeed/Issue1115.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Succeed/Issue1115.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Fin : Nat → Set where zero : {n : Nat} → Fin (suc n) suc : {n : Nat} (i : Fin n) → Fin (suc n) -- From Data.Fin.Properties in the standard library (2016-12-30). suc-injective : ∀ {o} {m n : Fin o} → Fin.suc m ≡ suc n → m ≡ n suc-injective refl = refl
26.071429
65
0.630137
3fe8da1abe7a99a34d1d710a6540f7dd531116d1
2,980
agda
Agda
SOAS/Families/Build.agda
k4rtik/agda-soas
b224d31e20cfd010b7c924ce940f3c2f417777e3
[ "MIT" ]
null
null
null
SOAS/Families/Build.agda
k4rtik/agda-soas
b224d31e20cfd010b7c924ce940f3c2f417777e3
[ "MIT" ]
null
null
null
SOAS/Families/Build.agda
k4rtik/agda-soas
b224d31e20cfd010b7c924ce940f3c2f417777e3
[ "MIT" ]
null
null
null
-- Operators for combining and building families module SOAS.Families.Build {T : Set} where open import SOAS.Common open import SOAS.Context open import SOAS.Sorting {T} open import SOAS.Families.Core {T} -- | Metavariable contexts -- Inductive construction of context- and type-indexed sets data MCtx : Set where ⁅⁆ : MCtx ⁅_⊩ₙ_⁆_ : (Π : Ctx {T}) → (τ : T) → MCtx → MCtx infixr 7 ⁅_⊩ₙ_⁆_ -- Pattern synonym for parameterless elements and final elements infixr 10 ⁅_⁆̣ ⁅_⊩ₙ_⁆̣ infixr 7 ⁅_⁆_ ⁅_⊩_⁆_ ⁅_·_⊩_⁆_ ⁅_⊩_⁆̣ ⁅_·_⊩_⁆̣ _⁅_⊩ₙ_⁆ pattern ⁅_⁆̣ α = ⁅ ∅ ⊩ₙ α ⁆ ⁅⁆ pattern ⁅_⊩ₙ_⁆̣ Π α = ⁅ Π ⊩ₙ α ⁆ ⁅⁆ pattern ⁅_⁆_ τ 𝔐 = ⁅ ∅ ⊩ₙ τ ⁆ 𝔐 pattern ⁅_⊩_⁆_ τ α 𝔐 = ⁅ ⌊ τ ⌋ ⊩ₙ α ⁆ 𝔐 pattern ⁅_·_⊩_⁆_ τ₁ τ₂ α 𝔐 = ⁅ ⌊ τ₁ ∙ τ₂ ⌋ ⊩ₙ α ⁆ 𝔐 pattern ⁅_⊩_⁆̣ τ α = ⁅ ⌊ τ ⌋ ⊩ₙ α ⁆ ⁅⁆ pattern ⁅_·_⊩_⁆̣ τ₁ τ₂ α = ⁅ ⌊ τ₁ ∙ τ₂ ⌋ ⊩ₙ α ⁆ ⁅⁆ -- Add type-context pair to the end of the metavariable context _⁅_⊩ₙ_⁆ : MCtx → Ctx {T} → T → MCtx ⁅⁆ ⁅ Γ ⊩ₙ α ⁆ = ⁅ Γ ⊩ₙ α ⁆̣ (⁅ Π ⊩ₙ τ ⁆ 𝔐) ⁅ Γ ⊩ₙ α ⁆ = ⁅ Π ⊩ₙ τ ⁆ (𝔐 ⁅ Γ ⊩ₙ α ⁆) private variable Γ Δ Θ Π : Ctx α β γ τ : T 𝔐 : MCtx -- Membership of metavariable contexts data _⊩_∈_ : Ctx → T → MCtx → Set where ↓ : Π ⊩ τ ∈ (⁅ Π ⊩ₙ τ ⁆ 𝔐) ↑_ : Π ⊩ τ ∈ 𝔐 → Π ⊩ τ ∈ (⁅ Γ ⊩ₙ α ⁆ 𝔐) infixr 220 ↑_ -- Metavariable context can be interpreted as a family via the membership ∥_∥ : MCtx → Familyₛ ∥ 𝔐 ∥ α Γ = Γ ⊩ α ∈ 𝔐 infixr 60 ∥_∥ _▷_ : MCtx → (Familyₛ → Familyₛ) → Familyₛ 𝔐 ▷ 𝒳 = 𝒳 ∥ 𝔐 ∥ infix 4 _▷_ -- Generalised sums and pattern matching data +₂ (A B : Set) : Set where _₁ : A → +₂ A B _₂ : B → +₂ A B data +₃ (A B C : Set) : Set where _₁ : A → +₃ A B C _₂ : B → +₃ A B C _₃ : C → +₃ A B C data +₄ (A B C D : Set) : Set where _₁ : A → +₄ A B C D _₂ : B → +₄ A B C D _₃ : C → +₄ A B C D _₄ : D → +₄ A B C D infixr 60 _₁ infixr 60 _₂ infixr 60 _₃ infixr 60 _₄ ₂| : {A B : Set}{X : Set} → (A → X) → (B → X) → (+₂ A B → X) ₂| f g (a ₁) = f a ₂| f g (b ₂) = g b ₃| : {A B C : Set}{X : Set} → (A → X) → (B → X) → (C → X) → (+₃ A B C → X) ₃| f g h (a ₁) = f a ₃| f g h (b ₂) = g b ₃| f g h (c ₃) = h c ₄| : {A B C D : Set}{X : Set} → (A → X) → (B → X) → (C → X) → (D → X) → (+₄ A B C D → X) ₄| f g h e (a ₁) = f a ₄| f g h e (b ₂) = g b ₄| f g h e (c ₃) = h c ₄| f g h e (d ₄) = e d pattern _ₛ 𝔪 = 𝔪 ₁ pattern _ₘ 𝔪 = 𝔪 ₂ infixr 60 _ₛ infixr 60 _ₘ -- Empty and unit families data Ø : Familyₛ where data _⊪_ (Γ : Ctx)(α : T) : Familyₛ where ● : (Γ ⊪ α) α Γ ⊪_ : T → Familyₛ ⊪ α = ∅ ⊪ α infix 20 _⊪_ infix 20 ⊪_ -- Sum of families infix 10 _⊹_ infix 10 _⊹_⊹_ infix 10 _⊹_⊹_⊹_ _⊹_ : Familyₛ → Familyₛ → Familyₛ (𝒳 ⊹ 𝒴) α Γ = +₂ (𝒳 α Γ) (𝒴 α Γ) _⊹₁_ : {𝒳₁ 𝒳₂ 𝒴₁ 𝒴₂ : Familyₛ} → (𝒳₁ ⇾̣ 𝒳₂) → (𝒴₁ ⇾̣ 𝒴₂) → (𝒳₁ ⊹ 𝒴₁) ⇾̣ (𝒳₂ ⊹ 𝒴₂) (f ⊹₁ g) (x ₁) = (f x) ₁ (f ⊹₁ g) (y ₂) = (g y) ₂ _⊹_⊹_ : Familyₛ → Familyₛ → Familyₛ → Familyₛ (𝒳 ⊹ 𝒴 ⊹ 𝒵) α Γ = +₃ (𝒳 α Γ) (𝒴 α Γ) (𝒵 α Γ) _⊹_⊹_⊹_ : Familyₛ → Familyₛ → Familyₛ → Familyₛ → Familyₛ (𝒳 ⊹ 𝒴 ⊹ 𝒵 ⊹ 𝒲) α Γ = +₄ (𝒳 α Γ) (𝒴 α Γ) (𝒵 α Γ) (𝒲 α Γ)
22.575758
88
0.508725
3fb837cf23c0bc7bf7e37cf48d1152a487aa51bc
37,421
agda
Agda
src/agda/FRP/JS/Model.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
63
2015-04-20T21:47:00.000Z
2022-02-28T09:46:14.000Z
src/agda/FRP/JS/Model.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
null
null
null
src/agda/FRP/JS/Model.agda
agda/agda-frp-js
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
[ "MIT", "BSD-3-Clause" ]
7
2016-11-07T21:50:58.000Z
2022-03-12T11:39:38.000Z
open import FRP.JS.Level using ( Level ; _⊔_ ) renaming ( zero to o ; suc to ↑ ) open import FRP.JS.Time using ( Time ; _≤_ ; _<_ ) open import FRP.JS.Bool using ( Bool ; true ; false ; not ; _≟_ ) open import FRP.JS.True using ( True ; tt ) module FRP.JS.Model where -- This model is essentially System F-omega with a kind time -- together with a type for the partial order on time, -- and expressions for reflexivity and transitivity. -- We prove parametricity, and then show that parametricity implies causality. -- Note that this is a "deep" notion of causality, not the "shallow" -- causality usually used in FRP. The pragmatic upshot of this is that -- there is only one time model: nested signals are in the same time -- model, not a simulated time model. This fits with the JS implementation, -- which uses wall clock time for all signals. -- Propositional equality data _≡_ {α} {A : Set α} (a : A) : A → Set α where refl : a ≡ a sym : ∀ {α} {A : Set α} {a b : A} → (a ≡ b) → (b ≡ a) sym refl = refl trans : ∀ {α} {A : Set α} {a b c : A} → (a ≡ b) → (b ≡ c) → (a ≡ c) trans refl refl = refl cong : ∀ {α β} {A : Set α} {B : Set β} (f : A → B) {a₁ a₂ : A} → (a₁ ≡ a₂) → (f a₁ ≡ f a₂) cong f refl = refl apply : ∀ {α β} {A : Set α} {B : Set β} {F G : A → B} → (F ≡ G) → ∀ {a b} → (a ≡ b) → (F a ≡ G b) apply refl refl = refl cast : ∀ {α} {A B : Set α} → (A ≡ B) → A → B cast refl a = a cast² : ∀ {α} {A B : Set α} {ℜ ℑ : A → B → Set α} → (ℜ ≡ ℑ) → ∀ {a b} → ℜ a b → ℑ a b cast² refl aℜb = aℜb irrel : ∀ b → (b₁ b₂ : True b) → (b₁ ≡ b₂) irrel true tt tt = refl irrel false () () -- Postulates (including dependent extensionality) data _≤?_ (t u : Time) : Set where leq : True (t ≤ u) → (t ≤? u) geq : True (u ≤ t) → (t ≤? u) postulate ≤-refl : ∀ t → True (t ≤ t) ≤-trans : ∀ t u v → True (t ≤ u) → True (u ≤ v) → True (t ≤ v) ≤-asym : ∀ t u → True (t ≤ u) → True (u ≤ t) → (t ≡ u) ≤-total : ∀ t u → (t ≤? u) dext : ∀ {α β} {A : Set α} {B : A → Set β} {F G : ∀ a → B a} → (∀ a → F a ≡ G a) → (F ≡ G) ext : ∀ {α β} {A : Set α} {B : Set β} {F G : A → B} → (∀ a → F a ≡ G a) → (F ≡ G) ext = dext iext : ∀ {α β} {A : Set α} {B : A → Set β} {F G : ∀ {a} → B a} → (∀ a → F {a} ≡ G {a}) → ((λ {a} → F {a}) ≡ (λ {a} → G {a})) iext F≈G = cong (λ X {a} → X a) (dext F≈G) -- Finite products record ⊤ {α} : Set α where constructor tt open ⊤ public record Σ {α β} (A : Set α) (B : A → Set β) : Set (α ⊔ β) where constructor _,_ field proj₁ : A proj₂ : B proj₁ open Σ public _×_ : ∀ {α β} → Set α → Set β → Set (α ⊔ β) A × B = Σ A (λ a → B) _ײ_ : ∀ {α β} {A C : Set α} {B D : Set β} → (A → C → Set α) → (B → D → Set β) → ((A × B) → (C × D) → Set (α ⊔ β)) (ℜ ײ ℑ) (a , b) (c , d) = (ℜ a c × ℑ b d) _→²_ : ∀ {α β} {A C : Set α} {B D : Set β} → (A → C → Set α) → (B → D → Set β) → ((A → B) → (C → D) → Set (α ⊔ β)) (ℜ →² ℑ) f g = ∀ {a b} → ℜ a b → ℑ (f a) (g b) -- Case on booleans data Case (c : Bool) : Set where _,_ : ∀ b → True (b ≟ c) → Case c switch : ∀ b → Case b switch true = (true , tt) switch false = (false , tt) -- Reactive sets RSet : ∀ α → Set (↑ α) RSet α = Time → Set α -- Equalitional reasoning infix 4 _IsRelatedTo_ infix 2 _∎ infixr 2 _≡⟨_⟩_ infix 1 begin_ data _IsRelatedTo_ {α} {A : Set α} (a b : A) : Set α where relTo : (a≡b : a ≡ b) → a IsRelatedTo b begin_ : ∀ {α} {A : Set α} {a b : A} → a IsRelatedTo b → a ≡ b begin relTo a≡b = a≡b _≡⟨_⟩_ : ∀ {α} {A : Set α} a {b c : A} → a ≡ b → b IsRelatedTo c → a IsRelatedTo c _ ≡⟨ a≡b ⟩ relTo b≡c = relTo (trans a≡b b≡c) _∎ : ∀ {α} {A : Set α} (a : A) → a IsRelatedTo a _∎ _ = relTo refl -- Kinds data Kind : Set where time : Kind set : Level → Kind _⇒_ : Kind → Kind → Kind level : Kind → Level level time = o level (set α) = ↑ α level (K ⇒ L) = level K ⊔ level L K⟦_⟧ : ∀ K → Set (level K) K⟦ time ⟧ = Time K⟦ set α ⟧ = Set α K⟦ K ⇒ L ⟧ = K⟦ K ⟧ → K⟦ L ⟧ _∋_↔_ : ∀ K → K⟦ K ⟧ → K⟦ K ⟧ → Set (level K) time ∋ t ↔ u = (t ≡ u) set α ∋ A ↔ B = A → B → Set α (K ⇒ L) ∋ F ↔ G = ∀ {A B} → (K ∋ A ↔ B) → (L ∋ F A ↔ G B) -- ≡ can be used as a structural equivalence on relations. struct : ∀ K {A B C D} → (A ≡ B) → (K ∋ B ↔ D) → (C ≡ D) → (K ∋ A ↔ C) struct K refl ℜ refl = ℜ struct-ext : ∀ K L {A B} {F G H I : K⟦ K ⇒ L ⟧} (F≈G : ∀ A → F A ≡ G A) (ℜ : (K ⇒ L) ∋ G ↔ I) (H≈I : ∀ B → H B ≡ I B) (ℑ : K ∋ A ↔ B) → struct L (F≈G A) (ℜ ℑ) (H≈I B) ≡ struct (K ⇒ L) (ext F≈G) ℜ (ext H≈I) ℑ struct-ext K L {A} {B} F≈G ℜ H≈I ℑ with ext F≈G | ext H≈I | F≈G A | H≈I B ... | refl | refl | refl | refl = refl struct-apply : ∀ K L {F G H I A B C D} → (F≡G : F ≡ G) (ℜ : (K ⇒ L) ∋ G ↔ I) (H≡I : H ≡ I) → (A≡B : A ≡ B) (ℑ : K ∋ B ↔ D) (C≡D : C ≡ D) → struct (K ⇒ L) F≡G ℜ H≡I (struct K A≡B ℑ C≡D) ≡ struct L (apply F≡G A≡B) (ℜ ℑ) (apply H≡I C≡D) struct-apply K L refl ℜ refl refl ℑ refl = refl struct-cast : ∀ {α A B C D} (ℜ : set α ∋ B ↔ D) (A≡B : A ≡ B) (C≡D : C ≡ D) {a c} → struct (set α) A≡B ℜ C≡D a c → ℜ (cast A≡B a) (cast C≡D c) struct-cast ℜ refl refl aℜc = aℜc struct-sym : ∀ K {A B C D ℑ ℜ} → (A≡B : A ≡ B) → (C≡D : C ≡ D) → (ℑ ≡ struct K A≡B ℜ C≡D) → (ℜ ≡ struct K (sym A≡B) ℑ (sym C≡D)) struct-sym K refl refl refl = refl struct-trans : ∀ K {A B C D E F} (A≡B : A ≡ B) (B≡C : B ≡ C) (ℜ : K ∋ C ↔ F) (E≡F : E ≡ F) (D≡E : D ≡ E) → struct K A≡B (struct K B≡C ℜ E≡F) D≡E ≡ struct K (trans A≡B B≡C) ℜ (trans D≡E E≡F) struct-trans K refl refl ℜ refl refl = refl -- Type contexts infixr 4 _∷_ data Kinds : Set where [] : Kinds _∷_ : Kind → Kinds → Kinds levels : Kinds → Level levels [] = o levels (K ∷ Σ) = level K ⊔ levels Σ Σ⟦_⟧ : ∀ Σ → Set (levels Σ) Σ⟦ [] ⟧ = ⊤ Σ⟦ K ∷ Σ ⟧ = K⟦ K ⟧ × Σ⟦ Σ ⟧ _∋_↔*_ : ∀ Σ → Σ⟦ Σ ⟧ → Σ⟦ Σ ⟧ → Set (levels Σ) [] ∋ tt ↔* tt = ⊤ (K ∷ Σ) ∋ (A , As) ↔* (B , Bs) = (K ∋ A ↔ B) × (Σ ∋ As ↔* Bs) -- Inclusion order on type contexts. -- Credited by Randy Pollack to Geuvers and Nederhof, JAR 1991. -- http://thread.gmane.org/gmane.comp.lang.agda/3259/focus=3267 data _⊑_ : Kinds → Kinds → Set where id : ∀ {Σ} → Σ ⊑ Σ keep : ∀ K {Σ Υ} → (Σ ⊑ Υ) → ((K ∷ Σ) ⊑ (K ∷ Υ)) skip : ∀ K {Σ Υ} → (Σ ⊑ Υ) → (Σ ⊑ (K ∷ Υ)) ⊑⟦_⟧ : ∀ {Σ Υ} → (Σ ⊑ Υ) → Σ⟦ Υ ⟧ → Σ⟦ Σ ⟧ ⊑⟦ id ⟧ As = As ⊑⟦ keep K Σ⊑Υ ⟧ (A , As) = (A , ⊑⟦ Σ⊑Υ ⟧ As) ⊑⟦ skip K Σ⊑Υ ⟧ (A , As) = ⊑⟦ Σ⊑Υ ⟧ As ⊑⟦_⟧² : ∀ {Σ Υ} → (Σ⊑Υ : Σ ⊑ Υ) → ∀ {As Bs} → (Υ ∋ As ↔* Bs) → (Σ ∋ ⊑⟦ Σ⊑Υ ⟧ As ↔* ⊑⟦ Σ⊑Υ ⟧ Bs) ⊑⟦ id ⟧² ℜs = ℜs ⊑⟦ keep K Σ⊑Υ ⟧² (ℜ , ℜs) = (ℜ , ⊑⟦ Σ⊑Υ ⟧² ℜs) ⊑⟦ skip K Σ⊑Υ ⟧² (ℜ , ℜs) = ⊑⟦ Σ⊑Υ ⟧² ℜs -- Concatenation of type contexts _++_ : Kinds → Kinds → Kinds [] ++ Υ = Υ (K ∷ Σ) ++ Υ = K ∷ (Σ ++ Υ) _∋_++_∋_ : ∀ Σ → Σ⟦ Σ ⟧ → ∀ Υ → Σ⟦ Υ ⟧ → Σ⟦ Σ ++ Υ ⟧ [] ∋ tt ++ Υ ∋ Bs = Bs (K ∷ Σ) ∋ (A , As) ++ Υ ∋ Bs = (A , (Σ ∋ As ++ Υ ∋ Bs)) _∋_++²_∋_ : ∀ Σ {As Bs} → (Σ ∋ As ↔* Bs) → ∀ Υ {Cs Ds} → (Υ ∋ Cs ↔* Ds) → ((Σ ++ Υ) ∋ (Σ ∋ As ++ Υ ∋ Cs) ↔* (Σ ∋ Bs ++ Υ ∋ Ds)) [] ∋ tt ++² Υ ∋ ℑs = ℑs (K ∷ Σ) ∋ (ℜ , ℜs) ++² Υ ∋ ℑs = (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs)) -- Type variables data TVar (K : Kind) : Kinds → Set where zero : ∀ {Σ} → TVar K (K ∷ Σ) suc : ∀ {L Σ} → TVar K Σ → TVar K (L ∷ Σ) τ⟦_⟧ : ∀ {Σ K} (τ : TVar K Σ) → Σ⟦ Σ ⟧ → K⟦ K ⟧ τ⟦ zero ⟧ (A , As) = A τ⟦ suc τ ⟧ (A , As) = τ⟦ τ ⟧ As τ⟦_⟧² : ∀ {Σ K} (τ : TVar K Σ) {As Bs} → (Σ ∋ As ↔* Bs) → (K ∋ τ⟦ τ ⟧ As ↔ τ⟦ τ ⟧ Bs) τ⟦ zero ⟧² (ℜ , ℜs) = ℜ τ⟦ suc τ ⟧² (ℜ , ℜs) = τ⟦ τ ⟧² ℜs -- Type constants data TConst : Kind → Set where prod fun : ∀ {α β} → TConst (set α ⇒ (set β ⇒ set (α ⊔ β))) leq : TConst (time ⇒ (time ⇒ set o)) univ : ∀ K {α} → TConst ((K ⇒ set α) ⇒ set (level K ⊔ α)) C⟦_⟧ : ∀ {K} → (TConst K) → K⟦ K ⟧ C⟦ prod ⟧ = λ A B → (A × B) C⟦ fun ⟧ = λ A B → (A → B) C⟦ leq ⟧ = λ t u → True (t ≤ u) C⟦ univ K ⟧ = λ F → ∀ A → F A C⟦_⟧² : ∀ {K} (C : TConst K) → (K ∋ C⟦ C ⟧ ↔ C⟦ C ⟧) C⟦ prod ⟧² = λ ℜ ℑ → (ℜ ײ ℑ) C⟦ fun ⟧² = λ ℜ ℑ → (ℜ →² ℑ) C⟦ leq ⟧² = λ _ _ _ _ → ⊤ C⟦ univ K ⟧² = λ ℜ f g → ∀ {a b} ℑ → ℜ ℑ (f a) (g b) -- Types data Typ (Σ : Kinds) : Kind → Set where const : ∀ {K} → TConst K → Typ Σ K abs : ∀ K {L} → Typ (K ∷ Σ) L → Typ Σ (K ⇒ L) app : ∀ {K L} → Typ Σ (K ⇒ L) → Typ Σ K → Typ Σ L var : ∀ {K} → TVar K Σ → Typ Σ K tlevel : ∀ {Σ α} → Typ Σ (set α) → Level tlevel {Σ} {α} T = α T⟦_⟧ : ∀ {Σ K} (T : Typ Σ K) → Σ⟦ Σ ⟧ → K⟦ K ⟧ T⟦ const C ⟧ As = C⟦ C ⟧ T⟦ abs K T ⟧ As = λ A → T⟦ T ⟧ (A , As) T⟦ app T U ⟧ As = T⟦ T ⟧ As (T⟦ U ⟧ As) T⟦ var τ ⟧ As = τ⟦ τ ⟧ As T⟦_⟧² : ∀ {Σ K} (T : Typ Σ K) {As Bs} → (Σ ∋ As ↔* Bs) → (K ∋ T⟦ T ⟧ As ↔ T⟦ T ⟧ Bs) T⟦ const C ⟧² ℜs = C⟦ C ⟧² T⟦ abs K T ⟧² ℜs = λ ℜ → T⟦ T ⟧² (ℜ , ℜs) T⟦ app T U ⟧² ℜs = T⟦ T ⟧² ℜs (T⟦ U ⟧² ℜs) T⟦ var τ ⟧² ℜs = τ⟦ τ ⟧² ℜs -- Type shorthands app₂ : ∀ {Σ K L M} → Typ Σ (K ⇒ (L ⇒ M)) → Typ Σ K → Typ Σ L → Typ Σ M app₂ T U V = app (app T U) V capp : ∀ {Σ K L} → TConst (K ⇒ L) → Typ Σ K → Typ Σ L capp C = app (const C) capp₂ : ∀ {Σ K L M} → TConst (K ⇒ (L ⇒ M)) → Typ Σ K → Typ Σ L → Typ Σ M capp₂ C = app₂ (const C) _⊗_ : ∀ {Σ α β} → Typ Σ (set α) → Typ Σ (set β) → Typ Σ (set (α ⊔ β)) _⊗_ = capp₂ prod _⊸_ : ∀ {Σ α β} → Typ Σ (set α) → Typ Σ (set β) → Typ Σ (set (α ⊔ β)) _⊸_ = capp₂ fun _≼_ : ∀ {Σ} → Typ Σ time → Typ Σ time → Typ Σ (set o) _≼_ = capp₂ leq Π : ∀ {Σ α} K → Typ (K ∷ Σ) (set α) → Typ Σ (set (level K ⊔ α)) Π K T = capp (univ K) (abs K T) tvar₀ : ∀ {Σ K} → Typ (K ∷ Σ) K tvar₀ = var zero tvar₁ : ∀ {Σ K L} → Typ (L ∷ K ∷ Σ) K tvar₁ = var (suc zero) tvar₂ : ∀ {Σ K L M} → Typ (M ∷ L ∷ K ∷ Σ) K tvar₂ = var (suc (suc zero)) tvar₃ : ∀ {Σ K L M N} → Typ (N ∷ M ∷ L ∷ K ∷ Σ) K tvar₃ = var (suc (suc (suc zero))) rset : Level → Kind rset α = time ⇒ set α rset₀ : Kind rset₀ = rset o prodʳ : ∀ {Σ α β} → Typ Σ (rset α ⇒ (rset β ⇒ rset (α ⊔ β))) prodʳ {Σ} {α} {β} = abs (rset α) (abs (rset β) (abs time (app tvar₂ tvar₀ ⊗ app tvar₁ tvar₀))) _⊗ʳ_ : ∀ {Σ α β} → Typ Σ (rset α) → Typ Σ (rset β) → Typ Σ (rset (α ⊔ β)) _⊗ʳ_ = app₂ prodʳ funʳ : ∀ {Σ α β} → Typ Σ (rset α ⇒ (rset β ⇒ rset (α ⊔ β))) funʳ {Σ} {α} {β} = abs (rset α) (abs (rset β) (abs time (app tvar₂ tvar₀ ⊸ app tvar₁ tvar₀))) _⊸ʳ_ : ∀ {Σ α β} → Typ Σ (rset α) → Typ Σ (rset β) → Typ Σ (rset (α ⊔ β)) _⊸ʳ_ = app₂ funʳ always : ∀ {Σ α} → Typ Σ (set α ⇒ rset α) always {Σ} {α} = abs (set α) (abs time tvar₁) interval : ∀ {Σ α} → Typ Σ (rset α ⇒ (time ⇒ (time ⇒ set α))) interval {Σ} {α} = abs (rset α) (abs time (abs time (Π time ((tvar₂ ≼ tvar₀) ⊸ ((tvar₀ ≼ tvar₁) ⊸ app tvar₃ tvar₀))))) _[_,_] : ∀ {Σ α} → Typ Σ (rset α) → Typ Σ time → Typ Σ time → Typ Σ (set α) T [ t , u ] = app (app (app interval T) t) u constreq : ∀ {Σ α β} → Typ Σ (rset α ⇒ (rset β ⇒ rset (α ⊔ β))) constreq {Σ} {α} {β} = abs (rset α) (abs (rset β) (abs time (Π time ((tvar₁ ≼ tvar₀) ⊸ ((tvar₃ [ tvar₁ , tvar₀ ]) ⊸ app tvar₂ tvar₀))))) _⊵_ : ∀ {Σ α β} → Typ Σ (rset α) → Typ Σ (rset β) → Typ Σ (rset (α ⊔ β)) T ⊵ U = app₂ constreq T U -- Contexts data Typs (Σ : Kinds) : Set where [] : Typs Σ _∷_ : ∀ {α} → (Typ Σ (set α)) → Typs Σ → Typs Σ tlevels : ∀ {Σ} → Typs Σ → Level tlevels [] = o tlevels (T ∷ Γ) = tlevel T ⊔ tlevels Γ Γ⟦_⟧ : ∀ {Σ} (Γ : Typs Σ) → Σ⟦ Σ ⟧ → Set (tlevels Γ) Γ⟦ [] ⟧ As = ⊤ Γ⟦ T ∷ Γ ⟧ As = T⟦ T ⟧ As × Γ⟦ Γ ⟧ As Γ⟦_⟧² : ∀ {Σ} (Γ : Typs Σ) {As Bs} (ℜs : Σ ∋ As ↔* Bs) → (Γ⟦ Γ ⟧ As → Γ⟦ Γ ⟧ Bs → Set (tlevels Γ)) Γ⟦ [] ⟧² ℜs tt tt = ⊤ Γ⟦ T ∷ Γ ⟧² ℜs (a , as) (b , bs) = T⟦ T ⟧² ℜs a b × Γ⟦ Γ ⟧² ℜs as bs -- Weakening of type variables τweaken : ∀ {Σ Υ K} → (Σ ⊑ Υ) → TVar K Σ → TVar K Υ τweaken id x = x τweaken (keep K Σ⊑Υ) zero = zero τweaken (keep K Σ⊑Υ) (suc x) = suc (τweaken Σ⊑Υ x) τweaken (skip K Σ⊑Υ) x = suc (τweaken Σ⊑Υ x) τweaken⟦_⟧ : ∀ {Σ Υ K} (τ : TVar K Σ) (Σ⊑Υ : Σ ⊑ Υ) (As : Σ⟦ Υ ⟧) → τ⟦ τ ⟧ (⊑⟦ Σ⊑Υ ⟧ As) ≡ τ⟦ τweaken Σ⊑Υ τ ⟧ As τweaken⟦ τ ⟧ id As = refl τweaken⟦ zero ⟧ (keep K Σ⊑Υ) (A , As) = refl τweaken⟦ suc τ ⟧ (keep K Σ⊑Υ) (A , As) = τweaken⟦ τ ⟧ Σ⊑Υ As τweaken⟦ τ ⟧ (skip K Σ⊑Υ) (A , As) = τweaken⟦ τ ⟧ Σ⊑Υ As τweaken⟦_⟧² : ∀ {Σ Υ K} (τ : TVar K Σ) (Σ⊑Υ : Σ ⊑ Υ) {As Bs} (ℜs : Υ ∋ As ↔* Bs) → τ⟦ τ ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) ≡ struct K (τweaken⟦ τ ⟧ Σ⊑Υ As) (τ⟦ τweaken Σ⊑Υ τ ⟧² ℜs) (τweaken⟦ τ ⟧ Σ⊑Υ Bs) τweaken⟦ τ ⟧² id ℜs = refl τweaken⟦ zero ⟧² (keep K Σ⊑Υ) (ℜ , ℜs) = refl τweaken⟦ suc τ ⟧² (keep K Σ⊑Υ) (ℜ , ℜs) = τweaken⟦ τ ⟧² Σ⊑Υ ℜs τweaken⟦ τ ⟧² (skip K Σ⊑Υ) (ℜ , ℜs) = τweaken⟦ τ ⟧² Σ⊑Υ ℜs -- Weakening of types weaken : ∀ {Σ Υ K} → (Σ ⊑ Υ) → Typ Σ K → Typ Υ K weaken Σ⊑Υ (const C) = const C weaken Σ⊑Υ (abs K T) = abs K (weaken (keep K Σ⊑Υ) T) weaken Σ⊑Υ (app T U) = app (weaken Σ⊑Υ T) (weaken Σ⊑Υ U) weaken Σ⊑Υ (var τ) = var (τweaken Σ⊑Υ τ) weaken⟦_⟧ : ∀ {Σ Υ K} (T : Typ Σ K) (Σ⊑Υ : Σ ⊑ Υ) (As : Σ⟦ Υ ⟧) → T⟦ T ⟧ (⊑⟦ Σ⊑Υ ⟧ As) ≡ T⟦ weaken Σ⊑Υ T ⟧ As weaken⟦ const C ⟧ Σ⊑Υ As = refl weaken⟦ abs K T ⟧ Σ⊑Υ As = ext (λ A → weaken⟦ T ⟧ (keep K Σ⊑Υ) (A , As)) weaken⟦ app T U ⟧ Σ⊑Υ As = apply (weaken⟦ T ⟧ Σ⊑Υ As) (weaken⟦ U ⟧ Σ⊑Υ As) weaken⟦ var τ ⟧ Σ⊑Υ As = τweaken⟦ τ ⟧ Σ⊑Υ As weaken⟦_⟧² : ∀ {Σ Υ K} (T : Typ Σ K) (Σ⊑Υ : Σ ⊑ Υ) {As Bs} (ℜs : Υ ∋ As ↔* Bs) → T⟦ T ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) ≡ struct K (weaken⟦ T ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ T ⟧² ℜs) (weaken⟦ T ⟧ Σ⊑Υ Bs) weaken⟦ const C ⟧² Σ⊑Υ ℜs = refl weaken⟦ abs K {L} T ⟧² Σ⊑Υ {As} {Bs} ℜs = iext (λ A → iext (λ B → ext (λ ℜ → begin T⟦ abs K T ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) ℜ ≡⟨ weaken⟦ T ⟧² (keep K Σ⊑Υ) (ℜ , ℜs) ⟩ struct L (weaken⟦ T ⟧ (keep K Σ⊑Υ) (A , As)) (T⟦ weaken (keep K Σ⊑Υ) T ⟧² (ℜ , ℜs)) (weaken⟦ T ⟧ (keep K Σ⊑Υ) (B , Bs)) ≡⟨ struct-ext K L (λ A → weaken⟦ T ⟧ (keep K Σ⊑Υ) (A , As)) (λ ℜ → T⟦ weaken (keep K Σ⊑Υ) T ⟧² (ℜ , ℜs)) (λ B → weaken⟦ T ⟧ (keep K Σ⊑Υ) (B , Bs)) ℜ ⟩ struct (K ⇒ L) (weaken⟦ abs K T ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ (abs K T) ⟧² ℜs) (weaken⟦ abs K T ⟧ Σ⊑Υ Bs) ℜ ∎))) weaken⟦ app {K} {L} T U ⟧² Σ⊑Υ {As} {Bs} ℜs = begin T⟦ app T U ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) ≡⟨ cong (T⟦ T ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs)) (weaken⟦ U ⟧² Σ⊑Υ ℜs) ⟩ T⟦ T ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) (struct K (weaken⟦ U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ U ⟧² ℜs) (weaken⟦ U ⟧ Σ⊑Υ Bs)) ≡⟨ cong (λ X → X (struct K (weaken⟦ U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ U ⟧² ℜs) (weaken⟦ U ⟧ Σ⊑Υ Bs))) (weaken⟦ T ⟧² Σ⊑Υ ℜs) ⟩ (struct (K ⇒ L) (weaken⟦ T ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ T ⟧² ℜs) (weaken⟦ T ⟧ Σ⊑Υ Bs)) (struct K (weaken⟦ U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ U ⟧² ℜs) (weaken⟦ U ⟧ Σ⊑Υ Bs)) ≡⟨ struct-apply K L (weaken⟦ T ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ T ⟧² ℜs) (weaken⟦ T ⟧ Σ⊑Υ Bs) (weaken⟦ U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ U ⟧² ℜs) (weaken⟦ U ⟧ Σ⊑Υ Bs) ⟩ struct L (weaken⟦ app T U ⟧ Σ⊑Υ As) (T⟦ weaken Σ⊑Υ (app T U) ⟧² ℜs) (weaken⟦ app T U ⟧ Σ⊑Υ Bs) ∎ weaken⟦ var τ ⟧² Σ⊑Υ ℜs = τweaken⟦ τ ⟧² Σ⊑Υ ℜs -- Weakening on type contexts weakens : ∀ {Σ Υ} → (Σ ⊑ Υ) → Typs Σ → Typs Υ weakens Σ⊑Υ [] = [] weakens Σ⊑Υ (T ∷ Γ) = weaken Σ⊑Υ T ∷ weakens Σ⊑Υ Γ weakens⟦_⟧ : ∀ {Σ Υ} (Γ : Typs Σ) (Σ⊑Υ : Σ ⊑ Υ) (As : Σ⟦ Υ ⟧) → Γ⟦ Γ ⟧ (⊑⟦ Σ⊑Υ ⟧ As) → Γ⟦ weakens Σ⊑Υ Γ ⟧ As weakens⟦ [] ⟧ Σ⊑Υ As tt = tt weakens⟦ T ∷ Γ ⟧ Σ⊑Υ As (B , Bs) = (cast (weaken⟦ T ⟧ Σ⊑Υ As) B , weakens⟦ Γ ⟧ Σ⊑Υ As Bs) weakens⟦_⟧² : ∀ {Σ Υ} (Γ : Typs Σ) (Σ⊑Υ : Σ ⊑ Υ) {As Bs} (ℜs : Υ ∋ As ↔* Bs) {as bs} → Γ⟦ Γ ⟧² (⊑⟦ Σ⊑Υ ⟧² ℜs) as bs → Γ⟦ weakens Σ⊑Υ Γ ⟧² ℜs (weakens⟦ Γ ⟧ Σ⊑Υ As as) (weakens⟦ Γ ⟧ Σ⊑Υ Bs bs) weakens⟦ [] ⟧² Σ⊑Υ ℜs tt = tt weakens⟦ T ∷ Γ ⟧² Σ⊑Υ ℜs (aℜb , asℜbs) = ( struct-cast (T⟦ weaken Σ⊑Υ T ⟧² ℜs) (weaken⟦ T ⟧ Σ⊑Υ _) (weaken⟦ T ⟧ Σ⊑Υ _) (cast² (weaken⟦ T ⟧² Σ⊑Υ ℜs) aℜb) , weakens⟦ Γ ⟧² Σ⊑Υ ℜs asℜbs) -- Susbtitution on type variables under a context τsubstn+ : ∀ Σ {Υ K L} → TVar K (Σ ++ (L ∷ Υ)) → Typ Υ L → Typ (Σ ++ Υ) K τsubstn+ [] zero U = U τsubstn+ [] (suc τ) U = var τ τsubstn+ (K ∷ Σ) zero U = var zero τsubstn+ (K ∷ Σ) (suc τ) U = weaken (skip K id) (τsubstn+ Σ τ U) τsubstn+_⟦_⟧⟦_⟧ : ∀ Σ {Υ K L} (τ : TVar K (Σ ++ (L ∷ Υ))) (U : Typ Υ L) (As : Σ⟦ Σ ⟧) (Bs : Σ⟦ Υ ⟧) → τ⟦ τ ⟧ (Σ ∋ As ++ (L ∷ Υ) ∋ (T⟦ U ⟧ Bs , Bs)) ≡ T⟦ τsubstn+ Σ τ U ⟧ (Σ ∋ As ++ Υ ∋ Bs) τsubstn+ [] ⟦ zero ⟧⟦ U ⟧ tt Bs = refl τsubstn+ [] ⟦ suc τ ⟧⟦ U ⟧ tt Bs = refl τsubstn+ (K ∷ Σ) ⟦ zero ⟧⟦ U ⟧ (A , As) Bs = refl τsubstn+ (K ∷ Σ) ⟦ suc τ ⟧⟦ U ⟧ (A , As) Bs = trans (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Bs) (weaken⟦ τsubstn+ Σ τ U ⟧ (skip K id) (A , (Σ ∋ As ++ _ ∋ Bs))) τsubstn+_⟦_⟧⟦_⟧² : ∀ Σ {Υ L K} (τ : TVar K (Σ ++ (L ∷ Υ))) (U : Typ Υ L) {As Bs Cs Ds} (ℜs : Σ ∋ As ↔* Bs) → (ℑs : Υ ∋ Cs ↔* Ds) → τ⟦ τ ⟧² (Σ ∋ ℜs ++² (L ∷ Υ) ∋ (T⟦ U ⟧² ℑs , ℑs)) ≡ struct K (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs) (T⟦ τsubstn+ Σ τ U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs) ) (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds) τsubstn+ [] ⟦ zero ⟧⟦ U ⟧² tt ℑs = refl τsubstn+ [] ⟦ suc τ ⟧⟦ U ⟧² tt ℑs = refl τsubstn+ (J ∷ Σ) ⟦ zero ⟧⟦ U ⟧² (ℜ , ℜs) ℑs = refl τsubstn+_⟦_⟧⟦_⟧² (J ∷ Σ) {Υ} {L} {K} (suc τ) U {A , As} {B , Bs} {Cs} {Ds} (ℜ , ℜs) ℑs = begin τ⟦ τ ⟧² (Σ ∋ ℜs ++² (L ∷ Υ) ∋ (T⟦ U ⟧² ℑs , ℑs)) ≡⟨ τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧² ℜs ℑs ⟩ struct K (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs) (T⟦ τsubstn+ Σ τ U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds) ≡⟨ cong (λ X → struct K (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs) X (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds)) (weaken⟦ τsubstn+ Σ τ U ⟧² (skip J id) (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs))) ⟩ struct K (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs) (struct K (weaken⟦ τsubstn+ Σ τ U ⟧ (skip J id) (A , (Σ ∋ As ++ Υ ∋ Cs))) (T⟦ weaken (skip J id) (τsubstn+ Σ τ U) ⟧² (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs))) (weaken⟦ τsubstn+ Σ τ U ⟧ (skip J id) (B , (Σ ∋ Bs ++ Υ ∋ Ds)))) (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds) ≡⟨ struct-trans K (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Cs) (weaken⟦ τsubstn+ Σ τ U ⟧ (skip J id) (A , (Σ ∋ As ++ Υ ∋ Cs))) (T⟦ weaken (skip J id) (τsubstn+ Σ τ U) ⟧² (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs))) (weaken⟦ τsubstn+ Σ τ U ⟧ (skip J id) (B , (Σ ∋ Bs ++ Υ ∋ Ds))) (τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ Bs Ds) ⟩ struct K (τsubstn+ (J ∷ Σ) ⟦ suc τ ⟧⟦ U ⟧ (A , As) Cs) (T⟦ τsubstn+ (J ∷ Σ) (suc τ) U ⟧² (ℜ , (Σ ∋ ℜs ++² Υ ∋ ℑs)) ) (τsubstn+ (J ∷ Σ) ⟦ suc τ ⟧⟦ U ⟧ (B , Bs) Ds) ∎ -- Substitution on types under a context substn+ : ∀ Σ {Υ K L} → Typ (Σ ++ (L ∷ Υ)) K → Typ Υ L → Typ (Σ ++ Υ) K substn+ Σ (const C) U = const C substn+ Σ (abs K T) U = abs K (substn+ (K ∷ Σ) T U) substn+ Σ (app S T) U = app (substn+ Σ S U) (substn+ Σ T U) substn+ Σ (var τ) U = τsubstn+ Σ τ U substn+_⟦_⟧⟦_⟧ : ∀ Σ {Υ K L} (T : Typ (Σ ++ (L ∷ Υ)) K) (U : Typ Υ L) (As : Σ⟦ Σ ⟧) (Bs : Σ⟦ Υ ⟧) → T⟦ T ⟧ (Σ ∋ As ++ (L ∷ Υ) ∋ (T⟦ U ⟧ Bs , Bs)) ≡ T⟦ substn+ Σ T U ⟧ (Σ ∋ As ++ Υ ∋ Bs) substn+ Σ ⟦ const C ⟧⟦ U ⟧ As Bs = refl substn+ Σ ⟦ abs K T ⟧⟦ U ⟧ As Bs = ext (λ A → substn+ K ∷ Σ ⟦ T ⟧⟦ U ⟧ (A , As) Bs) substn+ Σ ⟦ app S T ⟧⟦ U ⟧ As Bs = apply (substn+ Σ ⟦ S ⟧⟦ U ⟧ As Bs) (substn+ Σ ⟦ T ⟧⟦ U ⟧ As Bs) substn+ Σ ⟦ var τ ⟧⟦ U ⟧ As Bs = τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧ As Bs substn+_⟦_⟧⟦_⟧² : ∀ Σ {Υ L K} (T : Typ (Σ ++ (L ∷ Υ)) K) (U : Typ Υ L) {As Bs Cs Ds} (ℜs : Σ ∋ As ↔* Bs) → (ℑs : Υ ∋ Cs ↔* Ds) → T⟦ T ⟧² (Σ ∋ ℜs ++² (L ∷ Υ) ∋ (T⟦ U ⟧² ℑs , ℑs)) ≡ struct K (substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs) ) (substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds) substn+ Σ ⟦ const C ⟧⟦ U ⟧² ℜs ℑs = refl substn+_⟦_⟧⟦_⟧² Σ {Υ} {L} (abs J {K} T) U {As} {Bs} {Cs} {Ds} ℜs ℑs = iext (λ A → iext (λ B → ext (λ ℜ → begin T⟦ abs J T ⟧² (Σ ∋ ℜs ++² (L ∷ Υ) ∋ (T⟦ U ⟧² ℑs , ℑs)) ℜ ≡⟨ substn+ (J ∷ Σ) ⟦ T ⟧⟦ U ⟧² (ℜ , ℜs) ℑs ⟩ struct K (substn+ J ∷ Σ ⟦ T ⟧⟦ U ⟧ (A , As) Cs) (T⟦ substn+ (J ∷ Σ) T U ⟧² ((J ∷ Σ) ∋ (ℜ , ℜs) ++² Υ ∋ ℑs)) (substn+ J ∷ Σ ⟦ T ⟧⟦ U ⟧ (B , Bs) Ds) ≡⟨ struct-ext J K (λ A → substn+ J ∷ Σ ⟦ T ⟧⟦ U ⟧ (A , As) Cs) (λ ℜ → T⟦ substn+ (J ∷ Σ) T U ⟧² ((J ∷ Σ) ∋ ℜ , ℜs ++² Υ ∋ ℑs)) (λ B → substn+ J ∷ Σ ⟦ T ⟧⟦ U ⟧ (B , Bs) Ds) ℜ ⟩ struct (J ⇒ K) (substn+ Σ ⟦ abs J T ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ (abs J T) U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (substn+ Σ ⟦ abs J T ⟧⟦ U ⟧ Bs Ds) ℜ ∎))) substn+_⟦_⟧⟦_⟧² Σ {Υ} {L} (app {J} {K} S T) U {As} {Bs} {Cs} {Ds} ℜs ℑs = begin T⟦ app S T ⟧² (Σ ∋ ℜs ++² L ∷ Υ ∋ (T⟦ U ⟧² ℑs , ℑs)) ≡⟨ cong (T⟦ S ⟧² (Σ ∋ ℜs ++² L ∷ Υ ∋ (T⟦ U ⟧² ℑs , ℑs))) (substn+ Σ ⟦ T ⟧⟦ U ⟧² ℜs ℑs) ⟩ T⟦ S ⟧² (Σ ∋ ℜs ++² L ∷ Υ ∋ (T⟦ U ⟧² ℑs , ℑs)) (struct J (substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds)) ≡⟨ cong (λ X → X (struct J (substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds))) (substn+ Σ ⟦ S ⟧⟦ U ⟧² ℜs ℑs) ⟩ struct (J ⇒ K) (substn+ Σ ⟦ S ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ S U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (substn+ Σ ⟦ S ⟧⟦ U ⟧ Bs Ds) (struct J (substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds)) ≡⟨ struct-apply J K (substn+ Σ ⟦ S ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ S U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (substn+ Σ ⟦ S ⟧⟦ U ⟧ Bs Ds) (substn+ Σ ⟦ T ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ T U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (substn+ Σ ⟦ T ⟧⟦ U ⟧ Bs Ds) ⟩ struct K (substn+ Σ ⟦ app S T ⟧⟦ U ⟧ As Cs) (T⟦ substn+ Σ (app S T) U ⟧² (Σ ∋ ℜs ++² Υ ∋ ℑs)) (substn+ Σ ⟦ app S T ⟧⟦ U ⟧ Bs Ds) ∎ substn+ Σ ⟦ var τ ⟧⟦ U ⟧² ℜs ℑs = τsubstn+ Σ ⟦ τ ⟧⟦ U ⟧² ℜs ℑs -- Substitution on types substn : ∀ {Σ K L} → Typ (L ∷ Σ) K → Typ Σ L → Typ Σ K substn = substn+ [] substn⟦_⟧⟦_⟧ : ∀ {Σ K L} (T : Typ (L ∷ Σ) K) (U : Typ Σ L) (As : Σ⟦ Σ ⟧)→ T⟦ T ⟧ (T⟦ U ⟧ As , As) ≡ T⟦ substn T U ⟧ As substn⟦ T ⟧⟦ U ⟧ = substn+ [] ⟦ T ⟧⟦ U ⟧ tt substn⟦_⟧⟦_⟧² : ∀ {Σ K L} (T : Typ (L ∷ Σ) K) (U : Typ Σ L) {As Bs} (ℜs : Σ ∋ As ↔* Bs) → T⟦ T ⟧² (T⟦ U ⟧² ℜs , ℜs) ≡ struct K (substn⟦ T ⟧⟦ U ⟧ As) (T⟦ substn T U ⟧² ℜs) (substn⟦ T ⟧⟦ U ⟧ Bs) substn⟦ T ⟧⟦ U ⟧² = substn+ [] ⟦ T ⟧⟦ U ⟧² tt -- Eta-beta equivalence on types data _∋_≣_ {Σ} : ∀ K → Typ Σ K → Typ Σ K → Set where abs : ∀ K {L T U} → (L ∋ T ≣ U) → ((K ⇒ L) ∋ abs K T ≣ abs K U) app : ∀ {K L F G T U} → ((K ⇒ L) ∋ F ≣ G) → (K ∋ T ≣ U) → (L ∋ app F T ≣ app G U) beta : ∀ {K L} T U → (L ∋ app (abs K T) U ≣ substn T U) eta : ∀ {K L} T → ((K ⇒ L) ∋ T ≣ abs K (app (weaken (skip K id) T) tvar₀)) ≣-refl : ∀ {K T} → (K ∋ T ≣ T) ≣-sym : ∀ {K T U} → (K ∋ T ≣ U) → (K ∋ U ≣ T) ≣-trans : ∀ {K T U V} → (K ∋ T ≣ U) → (K ∋ U ≣ V) → (K ∋ T ≣ V) ≣⟦_⟧ : ∀ {Σ K} {T U : Typ Σ K} → (K ∋ T ≣ U) → ∀ As → T⟦ T ⟧ As ≡ T⟦ U ⟧ As ≣⟦ abs K T≣U ⟧ As = ext (λ A → ≣⟦ T≣U ⟧ (A , As)) ≣⟦ app F≣G T≣U ⟧ As = apply (≣⟦ F≣G ⟧ As) (≣⟦ T≣U ⟧ As) ≣⟦ beta T U ⟧ As = substn⟦ T ⟧⟦ U ⟧ As ≣⟦ eta {K} T ⟧ As = ext (λ A → apply (weaken⟦ T ⟧ (skip K id) (A , As)) refl) ≣⟦ ≣-refl ⟧ As = refl ≣⟦ ≣-sym T≣U ⟧ As = sym (≣⟦ T≣U ⟧ As) ≣⟦ ≣-trans T≣U U≣V ⟧ As = trans (≣⟦ T≣U ⟧ As) (≣⟦ U≣V ⟧ As) ≣⟦_⟧² : ∀ {Σ K} {T U : Typ Σ K} (T≣U : K ∋ T ≣ U) {As Bs} (ℜs : Σ ∋ As ↔* Bs) → T⟦ T ⟧² ℜs ≡ struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs) ≣⟦ abs K {L} {T} {U} T≣U ⟧² {As} {Bs} ℜs = iext (λ A → iext (λ B → ext (λ ℜ → begin T⟦ T ⟧² (ℜ , ℜs) ≡⟨ ≣⟦ T≣U ⟧² (ℜ , ℜs) ⟩ struct L (≣⟦ T≣U ⟧ (A , As)) (T⟦ U ⟧² (ℜ , ℜs)) (≣⟦ T≣U ⟧ (B , Bs)) ≡⟨ struct-ext K L (λ A → ≣⟦ T≣U ⟧ (A , As)) (λ ℜ' → T⟦ U ⟧² (ℜ' , ℜs)) (λ B → ≣⟦ T≣U ⟧ (B , Bs)) ℜ ⟩ struct (K ⇒ L) (≣⟦ abs K T≣U ⟧ As) (T⟦ abs K U ⟧² ℜs) (≣⟦ abs K T≣U ⟧ Bs) ℜ ∎))) ≣⟦ app {K} {L} {F} {G} {T} {U} F≣G T≣U ⟧² {As} {Bs} ℜs = begin T⟦ app F T ⟧² ℜs ≡⟨ cong (T⟦ F ⟧² ℜs) (≣⟦ T≣U ⟧² ℜs) ⟩ T⟦ F ⟧² ℜs (struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs)) ≡⟨ cong (λ X → X (struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs))) (≣⟦ F≣G ⟧² ℜs) ⟩ struct (K ⇒ L) (≣⟦ F≣G ⟧ As) (T⟦ G ⟧² ℜs) (≣⟦ F≣G ⟧ Bs) (struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs)) ≡⟨ struct-apply K L (≣⟦ F≣G ⟧ As) (T⟦ G ⟧² ℜs) (≣⟦ F≣G ⟧ Bs) (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs) ⟩ struct L (≣⟦ app F≣G T≣U ⟧ As) (T⟦ app G U ⟧² ℜs) (≣⟦ app F≣G T≣U ⟧ Bs) ∎ ≣⟦ beta T U ⟧² ℜs = substn⟦ T ⟧⟦ U ⟧² ℜs ≣⟦ eta {K} {L} T ⟧² {As} {Bs} ℜs = iext (λ A → iext (λ B → ext (λ ℜ → begin T⟦ T ⟧² ℜs ℜ ≡⟨ cong (λ X → X ℜ) (weaken⟦ T ⟧² (skip K id) (ℜ , ℜs)) ⟩ struct (K ⇒ L) (weaken⟦ T ⟧ (skip K id) (A , As)) (T⟦ weaken (skip K id) T ⟧² (ℜ , ℜs)) (weaken⟦ T ⟧ (skip K id) (B , Bs)) ℜ ≡⟨ struct-apply K L (weaken⟦ T ⟧ (skip K id) (A , As)) (T⟦ weaken (skip K id) T ⟧² (ℜ , ℜs)) (weaken⟦ T ⟧ (skip K id) (B , Bs)) refl ℜ refl ⟩ struct L (apply (weaken⟦ T ⟧ (skip K id) (A , As)) refl) (T⟦ weaken (skip K id) T ⟧² (ℜ , ℜs) ℜ) (apply (weaken⟦ T ⟧ (skip K id) (B , Bs)) refl) ≡⟨ struct-ext K L (λ A → apply (weaken⟦ T ⟧ (skip K id) (A , As)) refl) (λ ℜ → T⟦ weaken (skip K id) T ⟧² (ℜ , ℜs) ℜ) (λ B → apply (weaken⟦ T ⟧ (skip K id) (B , Bs)) refl) ℜ ⟩ struct (K ⇒ L) (≣⟦ eta T ⟧ As) (T⟦ abs K (app (weaken (skip K id) T) (var zero)) ⟧² ℜs) (≣⟦ eta T ⟧ Bs) ℜ ∎))) ≣⟦ ≣-refl ⟧² ℜs = refl ≣⟦ ≣-sym {K} {T} {U} T≣U ⟧² {As} {Bs} ℜs = struct-sym K (≣⟦ T≣U ⟧ As) (≣⟦ T≣U ⟧ Bs) (≣⟦ T≣U ⟧² ℜs) ≣⟦ ≣-trans {K} {T} {U} {V} T≣U U≣V ⟧² {As} {Bs} ℜs = begin T⟦ T ⟧² ℜs ≡⟨ ≣⟦ T≣U ⟧² ℜs ⟩ struct K (≣⟦ T≣U ⟧ As) (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ Bs) ≡⟨ cong (λ X → struct K (≣⟦ T≣U ⟧ As) X (≣⟦ T≣U ⟧ Bs)) (≣⟦ U≣V ⟧² ℜs) ⟩ struct K (≣⟦ T≣U ⟧ As) (struct K (≣⟦ U≣V ⟧ As) (T⟦ V ⟧² ℜs) (≣⟦ U≣V ⟧ Bs)) (≣⟦ T≣U ⟧ Bs) ≡⟨ struct-trans K (≣⟦ T≣U ⟧ As) (≣⟦ U≣V ⟧ As) (T⟦ V ⟧² ℜs) (≣⟦ U≣V ⟧ Bs) (≣⟦ T≣U ⟧ Bs) ⟩ struct K (≣⟦ ≣-trans T≣U U≣V ⟧ As) (T⟦ V ⟧² ℜs) (≣⟦ ≣-trans T≣U U≣V ⟧ Bs) ∎ -- Variables data Var {Σ : Kinds} {α} (T : Typ Σ (set α)) : Typs Σ → Set where zero : ∀ {Γ} → Var T (T ∷ Γ) suc : ∀ {β Γ} {U : Typ Σ (set β)} → Var T Γ → Var T (U ∷ Γ) x⟦_⟧ : ∀ {Σ} {Γ : Typs Σ} {α} {T : Typ Σ (set α)} → Var T Γ → (As : Σ⟦ Σ ⟧) → (as : Γ⟦ Γ ⟧ As) → (T⟦ T ⟧ As) x⟦ zero ⟧ As (a , as) = a x⟦ suc x ⟧ As (a , as) = x⟦ x ⟧ As as x⟦_⟧² : ∀ {Σ} {Γ : Typs Σ} {α} {T : Typ Σ (set α)} (x : Var T Γ) → ∀ {As Bs} (ℜs : Σ ∋ As ↔* Bs) {as bs} → (Γ⟦ Γ ⟧² ℜs as bs) → (T⟦ T ⟧² ℜs (x⟦ x ⟧ As as) (x⟦ x ⟧ Bs bs)) x⟦ zero ⟧² ℜs (aℜb , asℜbs) = aℜb x⟦ suc x ⟧² ℜs (aℜb , asℜbs) = x⟦ x ⟧² ℜs asℜbs -- Constants data Const {Σ : Kinds} : ∀ {α} → Typ Σ (set α) → Set where pair : ∀ {α β} → Const (Π (set α) (Π (set β) (tvar₁ ⊸ (tvar₀ ⊸ (tvar₁ ⊗ tvar₀))))) fst : ∀ {α β} → Const (Π (set α) (Π (set β) ((tvar₁ ⊗ tvar₀) ⊸ tvar₁))) snd : ∀ {α β} → Const (Π (set α) (Π (set β) ((tvar₁ ⊗ tvar₀) ⊸ tvar₀))) ≼-refl : Const (Π time (tvar₀ ≼ tvar₀)) ≼-trans : Const (Π time (Π time (Π time ((tvar₂ ≼ tvar₁) ⊸ ((tvar₁ ≼ tvar₀) ⊸ (tvar₂ ≼ tvar₀)))))) ≼-antisym : ∀ {α} → Const (Π (rset α) (Π time (Π time ((tvar₁ ≼ tvar₀) ⊸ ((tvar₀ ≼ tvar₁) ⊸ (app tvar₂ tvar₁ ⊸ app tvar₂ tvar₀)))))) ≼-case : ∀ {α} → Const (Π (set α) (Π time (Π time (((tvar₁ ≼ tvar₀) ⊸ tvar₂) ⊸ (((tvar₀ ≼ tvar₁) ⊸ tvar₂) ⊸ tvar₂))))) ≤-antisym : ∀ {α} (A : RSet α) t u → True (t ≤ u) → True (u ≤ t) → A t → A u ≤-antisym A t u t≤u u≤t a with ≤-asym t u t≤u u≤t ≤-antisym A t .t _ _ a | refl = a ≤-case′ : ∀ {α} {A : Set α} {t u} → (t ≤? u) → (True (t ≤ u) → A) → (True (u ≤ t) → A) → A ≤-case′ (leq t≤u) f g = f t≤u ≤-case′ (geq u≤t) f g = g u≤t ≤-case : ∀ {α} (A : Set α) t u → (True (t ≤ u) → A) → (True (u ≤ t) → A) → A ≤-case A t u = ≤-case′ (≤-total t u) c⟦_⟧ : ∀ {Σ} {α} {T : Typ Σ (set α)} → Const T → (As : Σ⟦ Σ ⟧) → (T⟦ T ⟧ As) c⟦ pair ⟧ As = λ A B a b → (a , b) c⟦ fst ⟧ As = λ A B → proj₁ c⟦ snd ⟧ As = λ A B → proj₂ c⟦ ≼-refl ⟧ As = ≤-refl c⟦ ≼-trans ⟧ As = ≤-trans c⟦ ≼-antisym ⟧ As = ≤-antisym c⟦ ≼-case ⟧ As = ≤-case c⟦_⟧² : ∀ {Σ} {α} {T : Typ Σ (set α)} (c : Const T) → ∀ {As Bs} (ℜs : Σ ∋ As ↔* Bs) → (T⟦ T ⟧² ℜs (c⟦ c ⟧ As) (c⟦ c ⟧ Bs)) c⟦ pair ⟧² ℜs = λ ℜ ℑ aℜb cℑd → (aℜb , cℑd) c⟦ fst ⟧² ℜs = λ ℜ ℑ → proj₁ c⟦ snd ⟧² ℜs = λ ℜ ℑ → proj₂ c⟦ ≼-refl ⟧² ℜs = _ c⟦ ≼-trans ⟧² ℜs = _ c⟦ ≼-antisym {α} ⟧² ℜs = lemma where lemma : ∀ {α} {A B : RSet α} (ℜ : rset α ∋ A ↔ B) → {t u : Time} → (t≡u : t ≡ u) → {v w : Time} → (v≡w : v ≡ w) → {t≤v : True (t ≤ v)} {u≤w : True (u ≤ w)} → ⊤ → {v≤t : True (v ≤ t)} {w≤u : True (w ≤ u)} → ⊤ → {a : A t} {b : B u} → ℜ t≡u a b → ℜ v≡w (≤-antisym A t v t≤v v≤t a) (≤-antisym B u w u≤w w≤u b) lemma ℜ {t} refl {v} refl {t≤v} {u≤w} tt {v≤t} {w≤u} tt aℜb with irrel (t ≤ v) t≤v u≤w | irrel (v ≤ t) v≤t w≤u lemma ℜ {t} refl {v} refl {t≤v} tt {v≤t} tt aℜb | refl | refl with ≤-asym t v t≤v v≤t lemma ℜ refl refl tt tt aℜb | refl | refl | refl = aℜb c⟦ ≼-case {α} ⟧² ℜs = lemma where lemma : ∀ {α} {A B : Set α} (ℜ : set α ∋ A ↔ B) → ∀ {t u : Time} → (t≡u : t ≡ u) → ∀ {v w : Time} → (v≡w : v ≡ w) → ∀ {f g} → (∀ {t≤v} {u≤w} → ⊤ → ℜ (f t≤v) (g u≤w)) → ∀ {h i} → (∀ {v≤t} {w≤u} → ⊤ → ℜ (h v≤t) (i w≤u)) → ℜ (≤-case A t v f h) (≤-case B u w g i) lemma ℜ {t} refl {v} refl {f} {g} fℜg {h} {i} hℜi = lemma′ (≤-total t v) where lemma′ : ∀ t≤?v → ℜ (≤-case′ t≤?v f h) (≤-case′ t≤?v g i) lemma′ (leq t≤v) = fℜg {t≤v} {t≤v} tt lemma′ (geq v≤t) = hℜi {v≤t} {v≤t} tt -- Expressions data Exp {Σ : Kinds} (Γ : Typs Σ) : ∀ {α} → Typ Σ (set α) → Set where const : ∀ {α} {T : Typ Σ (set α)} → Const T → Exp Γ T abs : ∀ {α β} (T : Typ Σ (set α)) {U : Typ Σ (set β)} (M : Exp (T ∷ Γ) U) → Exp Γ (T ⊸ U) app : ∀ {α β} {T : Typ Σ (set α)} {U : Typ Σ (set β)} (M : Exp Γ (T ⊸ U)) (N : Exp Γ T) → Exp Γ U var : ∀ {α} {T : Typ Σ (set α)} → Var T Γ → Exp Γ T tabs : ∀ K {α} {T : Typ (K ∷ Σ) (set α)} (M : Exp (weakens (skip K id) Γ) T) → Exp Γ (Π K T) tapp : ∀ {K α} {T : Typ (K ∷ Σ) (set α)} → Exp Γ (Π K T) → ∀ U → Exp Γ (substn T U) eq : ∀ {α T U} → (set α ∋ T ≣ U) → (Exp Γ T) → (Exp Γ U) ctxt : ∀ {Σ Γ α T} → Exp {Σ} Γ {α} T → Typs Σ ctxt {Σ} {Γ} M = Γ M⟦_⟧ : ∀ {Σ} {Γ : Typs Σ} {α} {T : Typ Σ (set α)} → Exp Γ T → (As : Σ⟦ Σ ⟧) → (as : Γ⟦ Γ ⟧ As) → (T⟦ T ⟧ As) M⟦ const c ⟧ As as = c⟦ c ⟧ As M⟦ abs T M ⟧ As as = λ a → M⟦ M ⟧ As (a , as) M⟦ app M N ⟧ As as = M⟦ M ⟧ As as (M⟦ N ⟧ As as) M⟦ var x ⟧ As as = x⟦ x ⟧ As as M⟦ tabs K M ⟧ As as = λ A → M⟦ M ⟧ (A , As) (weakens⟦ ctxt (tabs K M) ⟧ (skip K id) (A , As) as) M⟦ tapp {T = T} M U ⟧ As as = cast (substn⟦ T ⟧⟦ U ⟧ As) (M⟦ M ⟧ As as (T⟦ U ⟧ As)) M⟦ eq T≣U M ⟧ As as = cast (≣⟦ T≣U ⟧ As) (M⟦ M ⟧ As as) M⟦_⟧² : ∀ {Σ} {Γ : Typs Σ} {α} {T : Typ Σ (set α)} (M : Exp Γ T) → ∀ {As Bs} (ℜs : Σ ∋ As ↔* Bs) {as bs} → (Γ⟦ Γ ⟧² ℜs as bs) → (T⟦ T ⟧² ℜs (M⟦ M ⟧ As as) (M⟦ M ⟧ Bs bs)) M⟦ const c ⟧² ℜs asℜbs = c⟦ c ⟧² ℜs M⟦ abs T M ⟧² ℜs asℜbs = λ aℜb → M⟦ M ⟧² ℜs (aℜb , asℜbs) M⟦ app M N ⟧² ℜs asℜbs = M⟦ M ⟧² ℜs asℜbs (M⟦ N ⟧² ℜs asℜbs) M⟦ var x ⟧² ℜs asℜbs = x⟦ x ⟧² ℜs asℜbs M⟦ tabs K M ⟧² ℜs asℜbs = λ ℜ → M⟦ M ⟧² (ℜ , ℜs) (weakens⟦ ctxt (tabs K M) ⟧² (skip K id) (ℜ , ℜs) asℜbs) M⟦ tapp {T = T} M U ⟧² ℜs asℜbs = struct-cast (T⟦ substn T U ⟧² ℜs) (substn⟦ T ⟧⟦ U ⟧ _) (substn⟦ T ⟧⟦ U ⟧ _) (cast² (substn⟦ T ⟧⟦ U ⟧² ℜs) (M⟦ M ⟧² ℜs asℜbs (T⟦ U ⟧² ℜs))) M⟦ eq {α} {T} {U} T≣U M ⟧² {As} {Bs} ℜs asℜbs = struct-cast (T⟦ U ⟧² ℜs) (≣⟦ T≣U ⟧ As) (≣⟦ T≣U ⟧ Bs) (cast² (≣⟦ T≣U ⟧² ℜs) (M⟦ M ⟧² ℜs asℜbs)) -- Types with a chosen free world variable _∷ʳ_ : Kinds → Kind → Kinds [] ∷ʳ K = K ∷ [] (T ∷ Σ) ∷ʳ K = T ∷ (Σ ∷ʳ K) TVar+ : Kind → Kinds → Set TVar+ K Σ = TVar K (Σ ∷ʳ rset₀) Typ+ : Kinds → Kind → Set Typ+ Σ = Typ (Σ ∷ʳ rset₀) wvar : ∀ Σ → TVar+ rset₀ Σ wvar [] = zero wvar (K ∷ Σ) = suc (wvar Σ) world : ∀ {Σ} → Typ+ Σ rset₀ world {Σ} = var (wvar Σ) World : Time → Set World t = ⊤ taut : ∀ {Σ α} → Typ+ Σ (rset α ⇒ set α) taut {Σ} {α} = abs (rset α) (Π time (app (world {time ∷ rset α ∷ Σ}) tvar₀ ⊸ app tvar₁ tvar₀)) -- Surface types data STyp : Kind → Set where ⟨_⟩ : ∀ {α} → STyp (set α) → STyp (rset α) [_] : ∀ {α} → STyp (rset α) → STyp (set α) _⊠_ _↦_ : ∀ {α β} → STyp (set α) → STyp (set β) → STyp (set (α ⊔ β)) _∧_ _⇒_ : ∀ {α β} → STyp (rset α) → STyp (rset β) → STyp (rset (α ⊔ β)) □ : ∀ {α} → STyp (rset α) → STyp (rset α) ⟪_⟫ : ∀ {K} → STyp K → Typ+ [] K ⟪ ⟨ T ⟩ ⟫ = app always ⟪ T ⟫ ⟪ [ T ] ⟫ = app (taut {[]}) ⟪ T ⟫ ⟪ T ⊠ U ⟫ = ⟪ T ⟫ ⊗ ⟪ U ⟫ ⟪ T ↦ U ⟫ = ⟪ T ⟫ ⊸ ⟪ U ⟫ ⟪ T ∧ U ⟫ = ⟪ T ⟫ ⊗ʳ ⟪ U ⟫ ⟪ T ⇒ U ⟫ = ⟪ T ⟫ ⊸ʳ ⟪ U ⟫ ⟪ □ T ⟫ = tvar₀ ⊵ ⟪ T ⟫ T⟪_⟫ : ∀ {K} → STyp K → K⟦ K ⟧ T⟪ T ⟫ = T⟦ ⟪ T ⟫ ⟧ (World , tt) -- Signals of T are iso to □ T Signal : ∀ {α} → RSet α → RSet α Signal A s = ∀ t → True (s ≤ t) → A t sig : ∀ {α} (T : STyp (rset α)) s → T⟪ □ T ⟫ s → Signal T⟪ T ⟫ s sig T s σ t s≤t = σ t s≤t _ sig⁻¹ : ∀ {α} (T : STyp (rset α)) s → Signal T⟪ T ⟫ s → T⟪ □ T ⟫ s sig⁻¹ T s σ t s≤t _ = σ t s≤t sig-iso : ∀ {α} (T : STyp (rset α)) s σ → (sig T s (sig⁻¹ T s σ) ≡ σ) sig-iso T s σ = refl sig-iso⁻¹ : ∀ {α} (T : STyp (rset α)) s σ → (sig⁻¹ T s (sig T s σ) ≡ σ) sig-iso⁻¹ T s σ = refl -- Signal functions from T to U are iso to □ T ⇒ □ U SF : ∀ {α β} → RSet α → RSet β → RSet (α ⊔ β) SF A B s = Signal A s → Signal B s sf : ∀ {α β} (T : STyp (rset α)) (U : STyp (rset β)) s → T⟪ □ T ⇒ □ U ⟫ s → SF T⟪ T ⟫ T⟪ U ⟫ s sf T U s f σ = sig U s (f (sig⁻¹ T s σ)) sf⁻¹ : ∀ {α β} (T : STyp (rset α)) (U : STyp (rset β)) s → SF T⟪ T ⟫ T⟪ U ⟫ s → T⟪ □ T ⇒ □ U ⟫ s sf⁻¹ T U s f σ = sig⁻¹ U s (f (sig T s σ)) sf-iso : ∀ {α β} (T : STyp (rset α)) (U : STyp (rset β)) s f → (sf T U s (sf⁻¹ T U s f) ≡ f) sf-iso T U s f = refl sf-iso⁻¹ : ∀ {α β} (T : STyp (rset α)) (U : STyp (rset β)) s f → (sf⁻¹ T U s (sf T U s f) ≡ f) sf-iso⁻¹ T U s f = refl -- Causality mutual _at_⊨_≈[_]_ : ∀ {α} (T : STyp (rset α)) s → T⟪ T ⟫ s → Time → T⟪ T ⟫ s → Set α ⟨ T ⟩ at s ⊨ a ≈[ u ] b = T ⊨ a ≈[ u ] b (T ∧ U) at s ⊨ (a , b) ≈[ u ] (c , d) = (T at s ⊨ a ≈[ u ] c) × (U at s ⊨ b ≈[ u ] d) (T ⇒ U) at s ⊨ f ≈[ u ] g = ∀ a b → (T at s ⊨ a ≈[ u ] b) → (U at s ⊨ f a ≈[ u ] g b) □ T at s ⊨ σ ≈[ u ] τ = (∀ t s≤t → True (t ≤ u) → (T at t ⊨ σ t s≤t _ ≈[ u ] τ t s≤t _)) _⊨_≈[_]_ : ∀ {α} → (T : STyp (set α)) → T⟪ T ⟫ → Time → T⟪ T ⟫ → Set α [ T ] ⊨ σ ≈[ u ] τ = ∀ s → True (s ≤ u) → (T at s ⊨ σ s _ ≈[ u ] τ s _) (T ⊠ U) ⊨ (a , b) ≈[ u ] (c , d) = (T ⊨ a ≈[ u ] c) × (U ⊨ b ≈[ u ] d) (T ↦ U) ⊨ f ≈[ u ] g = ∀ a b → (T ⊨ a ≈[ u ] b) → (U ⊨ f a ≈[ u ] g b) Causal : ∀ {α β} (T : STyp (set α)) (U : STyp (set β)) → T⟪ T ↦ U ⟫ → Set (α ⊔ β) Causal T U f = ∀ u σ τ → (T ⊨ σ ≈[ u ] τ) → (U ⊨ f σ ≈[ u ] f τ) -- Parametricity implies causality ℜ[_] : Time → (rset o ∋ World ↔ World) ℜ[ u ] {t} s≡t tt tt = True (t ≤ u) mutual ℜ-impl-≈_at : ∀ {α} (T : STyp (rset α)) s u → True (s ≤ u) → ∀ a b → (T⟦ ⟪ T ⟫ ⟧² (ℜ[ u ] , tt) refl a b) → (T at s ⊨ a ≈[ u ] b) ℜ-impl-≈ ⟨ T ⟩ at s u s≤u a b aℜb = ℜ-impl-≈ T u a b aℜb ℜ-impl-≈ (T ∧ U) at s u s≤u (a , b) (c , d) (aℜc , bℜd) = (ℜ-impl-≈ T at s u s≤u a c aℜc , ℜ-impl-≈ U at s u s≤u b d bℜd) ℜ-impl-≈ (T ⇒ U) at s u s≤u f g fℜg = λ a b a≈b → ℜ-impl-≈ U at s u s≤u (f a) (g b) (fℜg (≈-impl-ℜ T at s u s≤u a b a≈b)) ℜ-impl-≈_at (□ T) s u s≤u σ τ σℜτ = λ t s≤t t≤u → ℜ-impl-≈ T at t u t≤u (σ t s≤t _) (τ t s≤t _) (σℜτ refl tt (λ {r} _ _ {r≤t} _ → ≤-trans r t u r≤t t≤u)) ≈-impl-ℜ_at : ∀ {α} (T : STyp (rset α)) s u → True (s ≤ u) → ∀ a b → (T at s ⊨ a ≈[ u ] b) → (T⟦ ⟪ T ⟫ ⟧² (ℜ[ u ] , tt) refl a b) ≈-impl-ℜ ⟨ T ⟩ at s u s≤u a b a≈b = ≈-impl-ℜ T u a b a≈b ≈-impl-ℜ (T ∧ U) at s u s≤u (a , b) (c , d) (a≈c , b≈d) = (≈-impl-ℜ T at s u s≤u a c a≈c , ≈-impl-ℜ U at s u s≤u b d b≈d) ≈-impl-ℜ (T ⇒ U) at s u s≤u f g f≈g = λ {a} {b} aℜb → ≈-impl-ℜ U at s u s≤u (f a) (g b) (f≈g a b (ℜ-impl-≈ T at s u s≤u a b aℜb)) ≈-impl-ℜ (□ T) at s u s≤u σ τ σ≈τ = lemma where lemma : T⟦ ⟪ □ T ⟫ ⟧² (ℜ[ u ] , tt) {s} refl σ τ lemma {t} refl {s≤t} {s≤t′} tt kℜk′ with irrel (s ≤ t) s≤t s≤t′ lemma {t} refl {s≤t} tt kℜk′ | refl = ≈-impl-ℜ T at t u t≤u (σ t s≤t _) (τ t s≤t _) (σ≈τ t s≤t t≤u) where t≤u = kℜk′ {t} refl {s≤t} {s≤t} tt {≤-refl t} {≤-refl t} tt ℜ-impl-≈ : ∀ {α} (T : STyp (set α)) (u : Time) (a b : T⟪ T ⟫) → (T⟦ ⟪ T ⟫ ⟧² (ℜ[ u ] , tt) a b) → (T ⊨ a ≈[ u ] b) ℜ-impl-≈ (T ⊠ U) u (a , b) (c , d) (aℜc , bℜd) = (ℜ-impl-≈ T u a c aℜc , ℜ-impl-≈ U u b d bℜd) ℜ-impl-≈ (T ↦ U) u f g fℜg = λ a b a≈b → ℜ-impl-≈ U u (f a) (g b) (fℜg (≈-impl-ℜ T u a b a≈b)) ℜ-impl-≈ [ T ] u σ τ σℜτ = λ s s≤u → ℜ-impl-≈ T at s u s≤u (σ s _) (τ s _) (σℜτ refl s≤u) ≈-impl-ℜ : ∀ {α} (T : STyp (set α)) (u : Time) (a b : T⟪ T ⟫) → (T ⊨ a ≈[ u ] b) → (T⟦ ⟪ T ⟫ ⟧² (ℜ[ u ] , tt) a b) ≈-impl-ℜ (T ⊠ U) u (a , b) (c , d) (a≈c , b≈d) = (≈-impl-ℜ T u a c a≈c , ≈-impl-ℜ U u b d b≈d) ≈-impl-ℜ (T ↦ U) u f g f≈g = λ {a} {b} aℜb → ≈-impl-ℜ U u (f a) (g b) (f≈g a b (ℜ-impl-≈ T u a b aℜb)) ≈-impl-ℜ [ T ] u σ τ σ≈τ = lemma where lemma : T⟦ ⟪ [ T ] ⟫ ⟧² (ℜ[ u ] , tt) σ τ lemma {s} refl s≤u = ≈-impl-ℜ T at s u s≤u (σ s _) (τ s _) (σ≈τ s s≤u) -- Every F-omega function is causal causality : ∀ {α β} (T : STyp (set α)) (U : STyp (set β)) (M : Exp [] ⟪ T ↦ U ⟫) → Causal T U (M⟦ M ⟧ (World , tt) tt) causality T U M u = ℜ-impl-≈ (T ↦ U) u (M⟦ M ⟧ (World , tt) tt) (M⟦ M ⟧ (World , tt) tt) (M⟦ M ⟧² (ℜ[ u ] , _) tt)
37.160874
134
0.436359
38a1878175f00ef820335c837ec4e5664ee4b579
129
agda
Agda
thesisExamples/VecFlip.agda
JoeyEremondi/lambda-pi-constraint
64a1b4c6632153d75cba540f7c91f40b49375e2f
[ "BSD-3-Clause" ]
16
2017-03-16T11:14:56.000Z
2021-02-05T20:21:46.000Z
thesisExamples/VecFlip.agda
JoeyEremondi/lambda-pi-constraint
64a1b4c6632153d75cba540f7c91f40b49375e2f
[ "BSD-3-Clause" ]
null
null
null
thesisExamples/VecFlip.agda
JoeyEremondi/lambda-pi-constraint
64a1b4c6632153d75cba540f7c91f40b49375e2f
[ "BSD-3-Clause" ]
null
null
null
module VecFlip where open import AgdaPrelude goodNil : Vec Nat Zero goodNil = Nil Nat badNil : Vec Zero Nat badNil = Nil Nat
11.727273
23
0.751938
fdbb77ecd12a49b7635e67c6a865c42578a19d8d
224
agda
Agda
Cubical/HITs/Truncation/FromNegOne.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/FromNegOne.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/HITs/Truncation/FromNegOne.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Truncation.FromNegOne where open import Cubical.HITs.Truncation.FromNegOne.Base public open import Cubical.HITs.Truncation.FromNegOne.Properties public
37.333333
64
0.808036
0d747b5131c75c3eca915e7a2af279f01e110c72
727
agda
Agda
src/Data/List/First/Membership.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
10
2017-11-17T17:10:36.000Z
2021-09-24T08:02:33.000Z
src/Data/List/First/Membership.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2019-01-13T13:03:47.000Z
2020-10-14T13:41:58.000Z
src/Data/List/First/Membership.agda
metaborg/mj.agda
0c096fea1716d714db0ff204ef2a9450b7a816df
[ "Apache-2.0" ]
1
2021-12-28T17:38:05.000Z
2021-12-28T17:38:05.000Z
module Data.List.First.Membership {ℓ}{A : Set ℓ} where open import Data.Product open import Data.List open import Data.List.Relation.Unary.Any open import Data.List.First hiding (find) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Level open import Function open import Data.Empty _∈_ : A → List A → Set _ x ∈ l = first x ∈ l ⇒ (_≡_ x) ¬x∈[] : ∀ {x} → ¬ x ∈ [] ¬x∈[] () find : Decidable (_≡_ {A = A}) → ∀ x l → Dec (x ∈ l) find _≟_ x [] = no (λ ()) find _≟_ x (y ∷ l) with x ≟ y ... | yes refl = yes (here refl) ... | no neq with find _≟_ x l ... | yes p = yes (there y neq p) ... | no ¬p = no (λ{ (here eq) → neq eq ; (there _ _ p) → ¬p p})
26.925926
67
0.616231
36c1d9b06a6a7d2253e14b457079a820e9ace836
514
agda
Agda
Groups/Subgroups/Normal/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Groups/Subgroups/Normal/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Groups/Subgroups/Normal/Definition.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Setoids.Setoids open import Groups.Subgroups.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Groups.Subgroups.Normal.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where normalSubgroup : {c : _} {pred : A → Set c} (sub : Subgroup G pred) → Set (a ⊔ c) normalSubgroup {pred = pred} sub = {g k : A} → pred k → pred (g + (k + Group.inverse G g))
39.538462
128
0.64786
381fe55c5b86ab7a6682d80b7209c68494ba7961
193
agda
Agda
test/Fail/Issue1084.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1084.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1084.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-12-03 Issue reported by Fabien Renaud postulate A : Set f : A → A g : A → A f x = g x ok : A → A ok x = x g x = f x -- Only `f` and `g` should be colored red, not `ok`.
11.352941
54
0.564767
a1e938754620801e2a3177af4f29d5b93adc61cc
2,326
agda
Agda
Cubical/Algebra/RingSolver/CommRingExamples.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/CommRingExamples.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
null
null
null
Cubical/Algebra/RingSolver/CommRingExamples.agda
maxdore/cubical
ef62b84397396d48135d73ba7400b71c721ddc94
[ "MIT" ]
1
2021-03-12T20:08:45.000Z
2021-03-12T20:08:45.000Z
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.CommRingExamples where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Vec.Base open import Cubical.Algebra.CommRing open import Cubical.Algebra.RingSolver.NatAsAlmostRing open import Cubical.Algebra.RingSolver.RawAlgebra renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.CommRingSolver private variable ℓ : Level module MultivariateSolving (R : CommRing ℓ) where -- In scope for debuggin: -- In scope for solver use: open CommRingStr (snd R) AsAlgebra = CommRing→RawℤAlgebra R X : ℤExpr R 3 X = ∣ Fin.zero Y : ℤExpr R 3 Y = ∣ (suc Fin.zero) Z : ℤExpr R 3 Z = ∣ (suc (suc Fin.zero)) _ : (x y z : (fst R)) → x · y · z ≡ z · y · x _ = λ x y z → let lhs = X ·' Y ·' Z rhs = Z ·' Y ·' X in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl _ : (x y z : (fst R)) → x · (y + z) ≡ z · x + y · x _ = λ x y z → let lhs = X ·' (Y +' Z) rhs = Z ·' X +' Y ·' X in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl _ : (x y z : (fst R)) → x · (y - z) ≡ (- z) · x + y · x _ = λ x y z → let lhs = X ·' (Y +' (-' Z)) rhs = (-' Z) ·' X +' (Y ·' X) in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl {- A bigger example, copied from 'Example.agda' -} _ : (x y z : (fst R)) → (x + y) · (x + y) · (x + y) · (x + y) ≡ x · x · x · x + (scalar R 4) · x · x · x · y + (scalar R 6) · x · x · y · y + (scalar R 4) · x · y · y · y + y · y · y · y _ = λ x y z → let lhs = (X +' Y) ·' (X +' Y) ·' (X +' Y) ·' (X +' Y) rhs = X ·' X ·' X ·' X +' (K 4) ·' X ·' X ·' X ·' Y +' (K 6) ·' X ·' X ·' Y ·' Y +' (K 4) ·' X ·' Y ·' Y ·' Y +' Y ·' Y ·' Y ·' Y in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl _ : (x y z : (fst R)) → (x + y) · (x - y) ≡ (x · x - y · y) _ = λ x y z → let lhs = (X +' Y) ·' (X +' (-' Y)) rhs = (X ·' X) +' (-' (Y ·' Y)) in solve R lhs rhs (x ∷ y ∷ z ∷ []) refl
29.075
93
0.414445
141e6baaf47f1d29d10b75ae32c0e7713ca3f192
8,581
agda
Agda
choices/minlist-is-correct.agda
mihanus/curry-agda
b7cfdda11cdadeba882b6b72d75448acd8b0a294
[ "BSD-3-Clause" ]
null
null
null
choices/minlist-is-correct.agda
mihanus/curry-agda
b7cfdda11cdadeba882b6b72d75448acd8b0a294
[ "BSD-3-Clause" ]
null
null
null
choices/minlist-is-correct.agda
mihanus/curry-agda
b7cfdda11cdadeba882b6b72d75448acd8b0a294
[ "BSD-3-Clause" ]
null
null
null
-- Proof: if we non-deterministically select an element -- which is less-than-or-equal than all other elements, -- such a result is the minimum of the list. -- This holds for any non-deterministically selected element. -- Basically, this is the translation of the Curry rule: -- -- min-nd xs@(_++[x]++_) | all (x<=) xs = x -- open import bool module minlist-is-correct (Choice : Set) (choose : Choice → 𝔹) (lchoice : Choice → Choice) (rchoice : Choice → Choice) where open import eq open import bool-thms open import bool-thms2 open import nat open import nat-thms open import list open import maybe open import inspect ---------------------------------------------------------------------- -- Some auxiliaries: -- We define our own less-or-equal since the standard definition with -- if-then-else produces too many branches: _<=_ : ℕ → ℕ → 𝔹 0 <= y = tt (suc x) <= 0 = ff (suc x) <= (suc y) = x <= y -- Some properties about less-or-equal: <=-refl : ∀ (x : ℕ) → x <= x ≡ tt <=-refl 0 = refl <=-refl (suc x) = <=-refl x <=-trans : ∀ (x y z : ℕ) → x <= y ≡ tt → y <= z ≡ tt → x <= z ≡ tt <=-trans zero y z p1 p2 = refl <=-trans (suc x) zero z p1 p2 = 𝔹-contra p1 <=-trans (suc x) (suc y) zero p1 p2 = 𝔹-contra p2 <=-trans (suc x) (suc y) (suc z) p1 p2 = <=-trans x y z p1 p2 <=-< : ∀ (x y : ℕ) → x <= y ≡ ff → y < x ≡ tt <=-< zero x () <=-< (suc x) zero p = refl <=-< (suc x) (suc y) p = <=-< x y p <-<= : ∀ (x y : ℕ) → x < y ≡ tt → y <= x ≡ ff <-<= x zero p rewrite <-0 x = 𝔹-contra p <-<= zero (suc y) p = refl <-<= (suc x) (suc y) p = <-<= x y p <-<=-ff : ∀ (x y : ℕ) → x < y ≡ ff → y <= x ≡ tt <-<=-ff zero zero p = refl <-<=-ff zero (suc y) p = 𝔹-contra (sym p) <-<=-ff (suc x) zero p = refl <-<=-ff (suc x) (suc y) p = <-<=-ff x y p <-<=-trans : ∀ (x y z : ℕ) → x < y ≡ tt → y <= z ≡ tt → x < z ≡ tt <-<=-trans zero zero z p1 p2 = 𝔹-contra p1 <-<=-trans zero (suc y) zero p1 p2 = 𝔹-contra p2 <-<=-trans zero (suc y) (suc z) p1 p2 = refl <-<=-trans (suc x) zero z p1 p2 = 𝔹-contra p1 <-<=-trans (suc x) (suc y) zero p1 p2 = 𝔹-contra p2 <-<=-trans (suc x) (suc y) (suc z) p1 p2 = <-<=-trans x y z p1 p2 ---------------------------------------------------------------------- -- More lemmas about ordering relations: leq-if : ∀ (x y z : ℕ) → y <= x && y <= z ≡ (if x <= z then y <= x else y <= z) leq-if x y z with inspect (y <= x) leq-if x y z | it tt p1 with inspect (x <= z) ... | it tt p2 rewrite p1 | p2 | <=-trans y x z p1 p2 = refl ... | it ff p2 rewrite p1 | p2 = refl leq-if x y z | it ff p1 with inspect (x <= z) ... | it tt p2 rewrite p1 | p2 = refl ... | it ff p2 rewrite p1 | p2 | <-<= z y (<-trans {z} {x} {y} (<=-< x z p2) (<=-< y x p1)) = refl le-if : ∀ (x y z : ℕ) → y < x && y < z ≡ (if x <= z then y < x else y < z) le-if x y z with inspect (y < x) le-if x y z | it tt p1 with inspect (x <= z) ... | it tt p2 rewrite p1 | p2 | <-<=-trans y x z p1 p2 = refl ... | it ff p2 rewrite p1 | p2 = refl le-if x y z | it ff p1 with inspect (x <= z) ... | it tt p2 rewrite p1 | p2 = refl ... | it ff p2 rewrite p1 | p2 | <-asym {z} {y} (<-<=-trans z x y (<=-< x z p2) (<-<=-ff y x p1)) = refl ---------------------------------------------------------------------- -- A lemma relating equality and orderings: =ℕ-not-le : ∀ (m n : ℕ) → m =ℕ n ≡ ~ (m < n) && m <= n =ℕ-not-le zero zero = refl =ℕ-not-le zero (suc m) = refl =ℕ-not-le (suc n) zero = refl =ℕ-not-le (suc n) (suc m) = =ℕ-not-le n m ---------------------------------------------------------------------- -- This is the translation of the Curry program: -- Check whether all elements of a list satisfy a given predicate: all : {A : Set} → (A → 𝔹) → 𝕃 A → 𝔹 all _ [] = tt all p (x :: xs) = p x && all p xs -- Deterministic min-d: min-d : (l : 𝕃 ℕ) → is-empty l ≡ ff → ℕ min-d [] () min-d (x :: []) _ = x min-d (x :: y :: xs) _ = --if x <= min-d (y :: xs) refl then x else min-d (y :: xs) refl let z = min-d (y :: xs) refl in if x <= z then x else z -- Select some element from a list: select : {A : Set} → Choice → 𝕃 A -> maybe A select _ [] = nothing select ch (x :: xs) = if choose ch then just x else select (lchoice ch) xs -- Select elements with a property from a list: select-with : {A : Set} → Choice → (A → 𝔹) → 𝕃 A → maybe A select-with _ p [] = nothing select-with ch p (x :: xs) = if choose ch then (if p x then just x else nothing) else select-with (lchoice ch) p xs {- -- more or less original definition: min-nd : Choice → 𝕃 ℕ -> maybe ℕ min-nd ch xs = (select ch xs) ≫=maybe (λ y → if all (_<=_ y) xs then just y else nothing) -} min-nd : Choice → (xs : 𝕃 ℕ) → maybe ℕ min-nd ch xs = select-with ch (λ x → all (_<=_ x) xs) xs ---------------------------------------------------------------------- -- Proof of the correctness of the operation select-with: select-with-correct : ∀ {A : Set} → (ch : Choice) (p : A → 𝔹) (xs : 𝕃 A) (z : A) → select-with ch p xs ≡ just z → p z ≡ tt select-with-correct ch p [] z () select-with-correct ch p (x :: xs) z u with choose ch select-with-correct ch p (x :: xs) z u | tt with inspect (p x) select-with-correct ch p (x :: xs) z u | tt | it tt v rewrite v | u | down-≡ u = v select-with-correct ch p (x :: xs) z u | tt | it ff v rewrite v with u select-with-correct ch p (x :: xs) z u | tt | it ff v | () select-with-correct ch p (x :: xs) z u | ff = select-with-correct (lchoice ch) p xs z u ---------------------------------------------------------------------- -- First step: if y smaller than all elements, y is smaller than the minimum: all-leq-min : ∀ (y x : ℕ) (xs : 𝕃 ℕ) → all (_<=_ y) (x :: xs) ≡ y <= min-d (x :: xs) refl all-leq-min y x [] = &&-tt (y <= x) all-leq-min y x (z :: zs) rewrite all-leq-min y z zs | ite-arg (_<=_ y) (x <= min-d (z :: zs) refl) x (min-d (z :: zs) refl) = leq-if x y (min-d (z :: zs) refl) -- Now we can prove: -- if min-nd selects an element, it is smaller or equal than the minimum: min-nd-select-min-d : ∀ (ch : Choice) (x : ℕ) (xs : 𝕃 ℕ) (z : ℕ) → min-nd ch (x :: xs) ≡ just z → z <= min-d (x :: xs) refl ≡ tt min-nd-select-min-d ch x xs z u rewrite sym (all-leq-min z x xs) | select-with-correct ch (λ y → all (_<=_ y) (x :: xs)) (x :: xs) z u = refl ---------------------------------------------------------------------- -- Next step: if y smaller than all elements, y is smaller than the minimum: all-less-min : ∀ (y x : ℕ) (xs : 𝕃 ℕ) → all (_<_ y) (x :: xs) ≡ y < min-d (x :: xs) refl all-less-min y x [] rewrite &&-tt (y < x) = refl all-less-min y x (z :: zs) rewrite all-less-min y z zs | ite-arg (_<_ y) (x <= min-d (z :: zs) refl) x (min-d (z :: zs) refl) = le-if x y (min-d (z :: zs) refl) -- Next want to prove that the element selected by min-nd cannot be smaller -- than the minimum. -- For this purpose, we prove an auxiliary lemma: -- If an element is selected from a list, it cannot be smaller than all elements select-with-all<-ff : ∀ (ch : Choice) (p : ℕ → 𝔹) (xs : 𝕃 ℕ) (z : ℕ) → select-with ch p xs ≡ just z → all (_<_ z) xs ≡ ff select-with-all<-ff ch _ [] z () select-with-all<-ff ch p (x :: xs) z u with (choose ch) select-with-all<-ff ch p (x :: xs) z u | tt with (p x) select-with-all<-ff ch p (x :: xs) z u | tt | tt rewrite down-≡ u | <-irrefl z = refl select-with-all<-ff ch p (x :: xs) z () | tt | ff select-with-all<-ff ch p (x :: xs) z u | ff rewrite select-with-all<-ff (lchoice ch) p xs z u | &&-ff (z < x) = refl -- Now we can prove: if min-nd selects an element, it cannot be smaller -- than all other elements: min-nd-select-all<-ff : ∀ (ch : Choice) (xs : 𝕃 ℕ) (z : ℕ) → min-nd ch xs ≡ just z → all (_<_ z) xs ≡ ff min-nd-select-all<-ff ch xs z u rewrite select-with-all<-ff ch (λ y → all (_<=_ y) xs) xs z u = refl ---------------------------------------------------------------------- -- This is the main theorem: min-nd-theorem : ∀ (ch : Choice) (x : ℕ) (xs : 𝕃 ℕ) (z : ℕ) → min-nd ch (x :: xs) ≡ just z → z =ℕ min-d (x :: xs) refl ≡ tt min-nd-theorem ch x xs z u rewrite =ℕ-not-le z (min-d (x :: xs) refl) -- split equality into no less and leq | min-nd-select-min-d ch x xs z u -- min-nd selects leq min. elements | sym (all-less-min z x xs) -- less-than min. elements satisfy all< | min-nd-select-all<-ff ch (x :: xs) z u -- min-nd can't select any all< element = refl ----------------------------------------------------------------------
36.514894
81
0.510547
43916dee6efd1a96f427c2be5da7adc097783aa7
1,385
agda
Agda
src/data/lib/prim/Agda/Builtin/Cubical/Id.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
src/data/lib/prim/Agda/Builtin/Cubical/Id.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
src/data/lib/prim/Agda/Builtin/Cubical/Id.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --erased-cubical --safe --no-sized-types --no-guardedness #-} module Agda.Builtin.Cubical.Id where open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Cubical.Sub renaming (primSubOut to ouc; Sub to _[_↦_]) {-# BUILTIN ID Id #-} {-# BUILTIN REFLID reflId #-} private module ConId where primitive primConId : ∀ {ℓ} {A : Set ℓ} {x y : A} → I → x ≡ y → Id x y open ConId public renaming (primConId to conid) -- Id x y is treated as a pair of I and x ≡ y, using "i" for the -- first component and "p" for the second. {-# COMPILE JS conid = _ => _ => _ => _ => i => p => { return { "i" : i, "p" : p } } #-} primitive primDepIMin : _ primIdFace : ∀ {ℓ} {A : Set ℓ} {x y : A} → Id x y → I primIdPath : ∀ {ℓ} {A : Set ℓ} {x y : A} → Id x y → x ≡ y primitive primIdJ : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} (P : ∀ y → Id x y → Set ℓ') → P x (conid i1 (λ i → x)) → ∀ {y} (p : Id x y) → P y p primitive primIdElim : ∀ {a c} {A : Set a} {x : A} (C : (y : A) → Id x y → Set c) → ((φ : I) (y : A [ φ ↦ (λ _ → x) ]) (w : (x ≡ ouc y) [ φ ↦ (λ { (φ = i1) → \ _ → x}) ]) → C (ouc y) (conid φ (ouc w))) → {y : A} (p : Id x y) → C y p
32.97619
82
0.462816
34352758cb73b4581ec6e5d13f2e43e40dc42f7e
65
agda
Agda
test/interaction/Issue1268.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/interaction/Issue1268.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/interaction/Issue1268.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
postulate A : Set F : { x : A } → Set G : ⦃ x : A ⦄ → Set
10.833333
21
0.384615
1bd5c6fbe17d7c67815144391ada6ddebe100832
308
agda
Agda
notes/talks/Types07/Bad.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
notes/talks/Types07/Bad.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
notes/talks/Types07/Bad.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Bad where data Bool : Set where false : Bool true : Bool data Nat : Set where zero : Nat suc : Nat -> Nat F : Bool -> Set F false = Bool F true = Nat cast : {x : Bool} -> F x -> F x cast a = a not : Bool -> Bool not true = false not false = true oops : Bool oops = not (cast zero)
11.846154
31
0.587662
35fc7b6a4452d10c27aade1fed0583ccd6ee502d
3,588
agda
Agda
Cubical/Categories/Category/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
301
2018-10-17T18:00:24.000Z
2022-03-24T02:10:47.000Z
Cubical/Categories/Category/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
584
2018-10-15T09:49:02.000Z
2022-03-30T12:09:17.000Z
Cubical/Categories/Category/Properties.agda
hyleIndex/cubical
ce5c2820ecb2e0fd8dce74fb0247856cdbf034c4
[ "MIT" ]
134
2018-11-16T06:11:03.000Z
2022-03-23T16:22:13.000Z
{-# OPTIONS --safe #-} module Cubical.Categories.Category.Properties where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Categories.Category.Base hiding (isSetHom) open Precategory private variable ℓ ℓ' : Level module _ {C : Precategory ℓ ℓ'} ⦃ isC : isCategory C ⦄ where open isCategory isC -- isSet where your allowed to compare paths where one side is only -- equal up to path. Is there a generalization of this? isSetHomP1 : ∀ {x y : C .ob} {n : C [ x , y ]} → isOfHLevelDep 1 (λ m → m ≡ n) isSetHomP1 {x = x} {y} {n} = isOfHLevel→isOfHLevelDep 1 (λ m → isSetHom m n) -- isSet where the arrows can be between non-definitionally equal obs isSetHomP2l : ∀ {y : C .ob} → isOfHLevelDep 2 (λ x → C [ x , y ]) isSetHomP2l = isOfHLevel→isOfHLevelDep 2 (λ a → isSetHom {x = a}) isSetHomP2r : ∀ {x : C .ob} → isOfHLevelDep 2 (λ y → C [ x , y ]) isSetHomP2r = isOfHLevel→isOfHLevelDep 2 (λ a → isSetHom {y = a}) -- opposite of opposite is definitionally equal to itself involutiveOp : ∀ {C : Precategory ℓ ℓ'} → (C ^op) ^op ≡ C involutiveOp = refl module _ {C : Precategory ℓ ℓ'} where -- Other useful operations on categories -- whisker the parallel morphisms g and g' with f lPrecatWhisker : {x y z : C .ob} (f : C [ x , y ]) (g g' : C [ y , z ]) (p : g ≡ g') → f ⋆⟨ C ⟩ g ≡ f ⋆⟨ C ⟩ g' lPrecatWhisker f _ _ p = cong (_⋆_ C f) p rPrecatWhisker : {x y z : C .ob} (f f' : C [ x , y ]) (g : C [ y , z ]) (p : f ≡ f') → f ⋆⟨ C ⟩ g ≡ f' ⋆⟨ C ⟩ g rPrecatWhisker _ _ g p = cong (λ v → v ⋆⟨ C ⟩ g) p -- working with equal objects idP : ∀ {x x'} {p : x ≡ x'} → C [ x , x' ] idP {x = x} {x'} {p} = subst (λ v → C [ x , v ]) p (C .id x) -- heterogeneous seq seqP : ∀ {x y y' z} {p : y ≡ y'} → (f : C [ x , y ]) (g : C [ y' , z ]) → C [ x , z ] seqP {x = x} {_} {_} {z} {p} f g = f ⋆⟨ C ⟩ (subst (λ a → C [ a , z ]) (sym p) g) -- also heterogeneous seq, but substituting on the left seqP' : ∀ {x y y' z} {p : y ≡ y'} → (f : C [ x , y ]) (g : C [ y' , z ]) → C [ x , z ] seqP' {x = x} {_} {_} {z} {p} f g = subst (λ a → C [ x , a ]) p f ⋆⟨ C ⟩ g -- show that they're equal seqP≡seqP' : ∀ {x y y' z} {p : y ≡ y'} → (f : C [ x , y ]) (g : C [ y' , z ]) → seqP {p = p} f g ≡ seqP' {p = p} f g seqP≡seqP' {x = x} {z = z} {p = p} f g i = (toPathP {A = λ i' → C [ x , p i' ]} {f} refl i) ⋆⟨ C ⟩ (toPathP {A = λ i' → C [ p (~ i') , z ]} {x = g} (sym refl) (~ i)) -- seqP is equal to normal seq when y ≡ y' seqP≡seq : ∀ {x y z} → (f : C [ x , y ]) (g : C [ y , z ]) → seqP {p = refl} f g ≡ f ⋆⟨ C ⟩ g seqP≡seq {y = y} {z} f g i = f ⋆⟨ C ⟩ toPathP {A = λ _ → C [ y , z ]} {x = g} refl (~ i) -- whiskering with heterogenous seq -- (maybe should let z be heterogeneous too) lPrecatWhiskerP : {x y z y' : C .ob} {p : y ≡ y'} → (f : C [ x , y ]) (g : C [ y , z ]) (g' : C [ y' , z ]) → (r : PathP (λ i → C [ p i , z ]) g g') → f ⋆⟨ C ⟩ g ≡ seqP {p = p} f g' lPrecatWhiskerP f g g' r = cong (λ v → f ⋆⟨ C ⟩ v) (sym (fromPathP (symP r))) rPrecatWhiskerP : {x y' y z : C .ob} {p : y' ≡ y} → (f' : C [ x , y' ]) (f : C [ x , y ]) (g : C [ y , z ]) → (r : PathP (λ i → C [ x , p i ]) f' f) → f ⋆⟨ C ⟩ g ≡ seqP' {p = p} f' g rPrecatWhiskerP f' f g r = cong (λ v → v ⋆⟨ C ⟩ g) (sym (fromPathP r))
38.170213
113
0.479933
212fc7ba5ed41946e952dedb5d481c8ffcd09c81
1,709
agda
Agda
Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Instances.MultivariatePoly where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat renaming(_+_ to _+n_; _·_ to _·n_) open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Instances.Int open import Cubical.Algebra.Polynomials.Multivariate.Base open import Cubical.Algebra.Polynomials.Multivariate.Properties private variable ℓ : Level ----------------------------------------------------------------------------- -- General Nth polynome module _ (A : CommRing ℓ) (n : ℕ) where open CommRingStr open RingTheory (CommRing→Ring A) open Nth-Poly-structure A n PolyCommRing : CommRing ℓ fst PolyCommRing = Poly A n 0r (snd PolyCommRing) = 0P 1r (snd PolyCommRing) = 1P _+_ (snd PolyCommRing) = _poly+_ _·_ (snd PolyCommRing) = _poly*_ - snd PolyCommRing = polyInv isCommRing (snd PolyCommRing) = makeIsCommRing trunc poly+Assoc poly+IdR poly+InvR poly+Comm poly*Assoc poly*IdR poly*DistR poly*Comm ----------------------------------------------------------------------------- -- Notation and syntax in the case 1,2,3 and ℤ module _ (Ar@(A , Astr) : CommRing ℓ) (n : ℕ) where A[X1,···,Xn] : CommRing ℓ A[X1,···,Xn] = PolyCommRing Ar n A[x1,···,xn] : Type ℓ A[x1,···,xn] = fst (A[X1,···,Xn])
27.564516
77
0.523113
d1a25151390d3a00c19fa6f1864a3cb89837f60b
2,001
agda
Agda
bench/stlc_small.agda
int-index/smalltt
6a87f295148bd753d2519d50c2e1011b64c859ff
[ "MIT" ]
377
2017-11-26T16:57:16.000Z
2022-03-19T21:31:01.000Z
bench/stlc_small.agda
int-index/smalltt
6a87f295148bd753d2519d50c2e1011b64c859ff
[ "MIT" ]
3
2020-03-16T09:14:57.000Z
2022-02-28T21:51:10.000Z
bench/stlc_small.agda
int-index/smalltt
6a87f295148bd753d2519d50c2e1011b64c859ff
[ "MIT" ]
19
2018-12-05T21:11:34.000Z
2022-03-03T19:46:54.000Z
{-# OPTIONS --type-in-type #-} Ty% : Set; Ty% = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι% : Ty%; ι% = λ _ ι% _ → ι% arr% : Ty% → Ty% → Ty%; arr% = λ A B Ty% ι% arr% → arr% (A Ty% ι% arr%) (B Ty% ι% arr%) Con% : Set;Con% = (Con% : Set) (nil : Con%) (snoc : Con% → Ty% → Con%) → Con% nil% : Con%;nil% = λ Con% nil% snoc → nil% snoc% : Con% → Ty% → Con%;snoc% = λ Γ A Con% nil% snoc% → snoc% (Γ Con% nil% snoc%) A Var% : Con% → Ty% → Set;Var% = λ Γ A → (Var% : Con% → Ty% → Set) (vz : (Γ : _)(A : _) → Var% (snoc% Γ A) A) (vs : (Γ : _)(B A : _) → Var% Γ A → Var% (snoc% Γ B) A) → Var% Γ A vz% : ∀{Γ A} → Var% (snoc% Γ A) A;vz% = λ Var% vz% vs → vz% _ _ vs% : ∀{Γ B A} → Var% Γ A → Var% (snoc% Γ B) A;vs% = λ x Var% vz% vs% → vs% _ _ _ (x Var% vz% vs%) Tm% : Con% → Ty% → Set;Tm% = λ Γ A → (Tm% : Con% → Ty% → Set) (var : (Γ : _) (A : _) → Var% Γ A → Tm% Γ A) (lam : (Γ : _) (A B : _) → Tm% (snoc% Γ A) B → Tm% Γ (arr% A B)) (app : (Γ : _) (A B : _) → Tm% Γ (arr% A B) → Tm% Γ A → Tm% Γ B) → Tm% Γ A var% : ∀{Γ A} → Var% Γ A → Tm% Γ A;var% = λ x Tm% var% lam app → var% _ _ x lam% : ∀{Γ A B} → Tm% (snoc% Γ A) B → Tm% Γ (arr% A B);lam% = λ t Tm% var% lam% app → lam% _ _ _ (t Tm% var% lam% app) app% : ∀{Γ A B} → Tm% Γ (arr% A B) → Tm% Γ A → Tm% Γ B;app% = λ t u Tm% var% lam% app% → app% _ _ _ (t Tm% var% lam% app%) (u Tm% var% lam% app%) v0% : ∀{Γ A} → Tm% (snoc% Γ A) A;v0% = var% vz% v1% : ∀{Γ A B} → Tm% (snoc% (snoc% Γ A) B) A;v1% = var% (vs% vz%) v2% : ∀{Γ A B C} → Tm% (snoc% (snoc% (snoc% Γ A) B) C) A;v2% = var% (vs% (vs% vz%)) v3% : ∀{Γ A B C D} → Tm% (snoc% (snoc% (snoc% (snoc% Γ A) B) C) D) A;v3% = var% (vs% (vs% (vs% vz%))) v4% : ∀{Γ A B C D E} → Tm% (snoc% (snoc% (snoc% (snoc% (snoc% Γ A) B) C) D) E) A;v4% = var% (vs% (vs% (vs% (vs% vz%)))) test% : ∀{Γ A} → Tm% Γ (arr% (arr% A A) (arr% A A));test% = lam% (lam% (app% v1% (app% v1% (app% v1% (app% v1% (app% v1% (app% v1% v0%)))))))
27.791667
87
0.418291
11d754ee4f534be835c5952396cf5cb7f52862af
2,863
agda
Agda
Cubical/Categories/Abelian/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
1
2021-10-31T17:32:49.000Z
2021-10-31T17:32:49.000Z
Cubical/Categories/Abelian/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
Cubical/Categories/Abelian/Base.agda
guilhermehas/cubical
ce3120d3f8d692847b2744162bcd7a01f0b687eb
[ "MIT" ]
null
null
null
-- (Pre)abelian categories {-# OPTIONS --safe #-} module Cubical.Categories.Abelian.Base where open import Cubical.Categories.Additive.Base open import Cubical.Categories.Category.Base open import Cubical.Categories.Morphism open import Cubical.Data.Sigma.Base open import Cubical.Foundations.Prelude private variable ℓ ℓ' : Level -- (Co)kernels module _ (C : PreaddCategory ℓ ℓ') where open PreaddCategory C module _ {x y : ob} (f : Hom[ x , y ]) where -- Kernels record IsKernel {k : ob} (ker : Hom[ k , x ]) : Type (ℓ-max ℓ ℓ') where field ker⋆f : ker ⋆ f ≡ 0h univ : ∀ (w : ob) (t : Hom[ w , x ]) → (t ⋆ f ≡ 0h) → ∃![ u ∈ Hom[ w , k ] ] (u ⋆ ker ≡ t) record Kernel : Type (ℓ-max ℓ ℓ') where constructor kernel field k : ob ker : Hom[ k , x ] isKer : IsKernel ker open IsKernel isKer public -- Cokernels record IsCokernel {c : ob} (coker : Hom[ y , c ]) : Type (ℓ-max ℓ ℓ') where field f⋆coker : f ⋆ coker ≡ 0h univ : ∀ (w : ob) (t : Hom[ y , w ]) → (f ⋆ t ≡ 0h) → ∃![ u ∈ Hom[ c , w ] ] (coker ⋆ u ≡ t) record Cokernel : Type (ℓ-max ℓ ℓ') where field c : ob coker : Hom[ y , c ] isCoker : IsCokernel coker open IsCokernel isCoker public -- Preabelian categories record PreAbCategoryStr (C : AdditiveCategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where open AdditiveCategory C field hasKernels : {x y : ob} → (f : Hom[ x , y ]) → Kernel preaddcat f hasCokernels : {x y : ob} → (f : Hom[ x , y ]) → Cokernel preaddcat f -- Convenient ker/coker functions ker = λ {x y} (f : Hom[ x , y ]) → hasKernels f .Kernel.ker coker = λ {x y} (f : Hom[ x , y ]) → hasCokernels f .Cokernel.coker record PreAbCategory (ℓ ℓ' : Level) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field additive : AdditiveCategory ℓ ℓ' preAbStr : PreAbCategoryStr additive open AdditiveCategory additive public open PreAbCategoryStr preAbStr public -- Abelian categories record AbelianCategoryStr (C : PreAbCategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where open PreAbCategory C private _=ker_ : ∀ {k x y} → Hom[ k , x ] → Hom[ x , y ] → Type (ℓ-max ℓ ℓ') m =ker f = IsKernel preaddcat f m _=coker_ : ∀ {c x y} → Hom[ y , c ] → Hom[ x , y ] → Type (ℓ-max ℓ ℓ') e =coker f = IsCokernel preaddcat f e field monNormal : {x y : ob} → (m : Hom[ x , y ]) → isMonic cat m → Σ[ z ∈ ob ] Σ[ f ∈ Hom[ y , z ] ] (m =ker f) epiNormal : {x y : ob} → (e : Hom[ x , y ]) → isEpic cat e → Σ[ w ∈ ob ] Σ[ f ∈ Hom[ w , x ] ] (e =coker f) record AbelianCategory (ℓ ℓ' : Level): Type (ℓ-suc (ℓ-max ℓ ℓ')) where field preAb : PreAbCategory ℓ ℓ' abelianStr : AbelianCategoryStr preAb open PreAbCategory preAb public open AbelianCategoryStr abelianStr public
27.796117
79
0.581558
2e70023b4d2c004729020925b67c27a5a650f0be
834
agda
Agda
test/Succeed/FlexRemoval.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/FlexRemoval.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/FlexRemoval.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{- In order to solve the metavariables in this example we need to solve a constraint of the form _1 := unit₂ (_2 y) With the flex removal feature the occurs check will spot the bad variable 'y' in the instantiation and remove it by instantiating _2 := λ y → _3 for a fresh metavariable _3. The instantiation of _1 can then proceed. -} module FlexRemoval where record Unit : Set where data Unit₂ : Set where unit₂ : Unit → Unit₂ mutual data D : Set where c₁ : D c₂ : (x : Unit₂) → (Unit → D₂ x) → D D₂ : Unit₂ → Set D₂ (unit₂ x) = D foo : D foo = c₂ _ (λ y → c₁) {- 2011-04-05 Andreas This test case and the explanation is no longer up to date. What happens is _2 y : Unit is solved by eta-expansion _2 = λ y -> record {} and then _1 = unit₂ (record {}) is in solved form. -}
15.163636
59
0.653477
37eefff48ba9ecdb585729f87c807d4401703eec
2,880
agda
Agda
LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor.agda
lisandrasilva/bft-consensus-agda-1
b7dd98dd90d98fbb934ef8cb4f3314940986790d
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Base.ByteString open import LibraBFT.Base.PKCS open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Util.Util open import LibraBFT.Hash open import Optics.All open RWST-do -- This is a minimal/fake example handler that obeys the VotesOnce rule, enabling us to start -- exploring how we express the algorithm and prove properties about it. It simply sends a vote for -- 1 + its LatestVotedRound, and increments its LatestVotedRound. It is called EventProcessor for -- historical reasons, because this what a previous version of LibraBFT called its main handler; -- this will be updated when we move towards modeling a more recent implementation. module LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor (hash : BitString → Hash) (hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y) where processCommitM : LedgerInfoWithSignatures → LBFT (List ExecutedBlock) processCommitM finalityProof = pure [] fakeAuthor : Author fakeAuthor = 0 fakeBlockInfo : EpochId → Round → ProposalMsg → BlockInfo fakeBlockInfo eid rnd pm = mkBlockInfo eid rnd (pm ^∙ pmProposal ∙ bId) fakeLedgerInfo : BlockInfo → ProposalMsg → LedgerInfo fakeLedgerInfo bi pm = mkLedgerInfo bi (pm ^∙ pmProposal ∙ bId) postulate fakeSK : SK fakeSig : Signature processProposalMsg : Instant → ProposalMsg → LBFT Unit processProposalMsg inst pm = do st ← get let 𝓔 = α-EC ((₋epEC st) , (₋epEC-correct st)) ix = EpochConfig.epochId 𝓔 ep = ₋epEC st epw = ₋epWithEC st epc = ₋epEC-correct st bt = epw ^∙ (lBlockTree 𝓔) nr = suc ((₋epEC st) ^∙ epLastVotedRound) uv = mkVote (mkVoteData (fakeBlockInfo ix nr pm) (fakeBlockInfo ix 0 pm)) fakeAuthor (fakeLedgerInfo (fakeBlockInfo ix nr pm) pm) fakeSig (₋bSignature (₋pmProposal pm)) sv = record uv { ₋vSignature = sign ⦃ sig-Vote ⦄ uv fakeSK} si = mkSyncInfo (₋btHighestQuorumCert bt) (₋btHighestCommitCert bt) ep' = ep [ epLastVotedRound := nr ] epc2 = EventProcessorEC-correct-≡ (₋epEC st) ep' refl epc st' = record st { ₋epEC = ep' ; ₋epEC-correct = epc2 ; ₋epWithEC = subst EventProcessorWithEC (α-EC-≡ ep ep' refl refl epc) epw } put st' tell1 (SendVote (mkVoteMsg sv si) (fakeAuthor ∷ [])) pure unit processVote : Instant → VoteMsg → LBFT Unit processVote now msg = pure unit
39.452055
111
0.667014
5e6f310438245bc5887aac29443b899b6c0f040e
5,474
agda
Agda
setoid-cats/Category/Diagram.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Category/Diagram.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
setoid-cats/Category/Diagram.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
module Category.Diagram where open import Level renaming (suc to lsuc) open import Equality.Eq open import Setoid.Total open import Category.Category open import Category.Funct open import Category.Preorder -- Diagrams are functors from an index category J to a category ℂ. We -- think of J as the scheme of the diagram in ℂ. record Diagram {l₁ l₂ : Level} (J : Cat {l₁}) (ℂ : Cat {l₂}) : Set (l₁ ⊔ l₂) where field diag : Functor J ℂ -- A commutative diagram is a diagram from a preorder to a category ℂ. -- The preorder axiom garauntees that any diagram must commute because -- there is only one composition. Mixing this with the fact that -- functors preserve composition implies that there can only be one -- composition in ℂ. This definition goes against the references -- -- nLab and Awedoy's book -- that comm. diagrams must be functors from -- posets. In fact we can prove that a PO is enough. See the next -- module. record Comm-Diagram {l₁ l₂ : Level} (J : PO {l₁}) (ℂ : Cat {l₂}) : Set (l₁ ⊔ l₂) where field diag : Diagram (po-cat J) ℂ open Comm-Diagram -- The underlying functor of a diagram. UFunc : {l l' : Level}{J : PO {l}}{ℂ : Cat {l'}} → Comm-Diagram J ℂ → Functor (po-cat J) ℂ UFunc D = Diagram.diag (diag D) -- This module shows that comm. squares can be modeled by POs. module Commutative-Squares where open 4PO record Comm-Square' {l : Level} (ℂ : Cat {l}) (om : 4Obj → Obj ℂ) (g : el (Hom ℂ (om i₁) (om i₂))) (h : el (Hom ℂ (om i₂) (om i₄))) (j : el (Hom ℂ (om i₁) (om i₃))) (k : el (Hom ℂ (om i₃) (om i₄))) : Set l where field Sq : {a b : 4Obj {l}} → SetoidFun (4Hom a b) (Hom ℂ (om a) (om b)) sq-max₁ : ⟨ Hom ℂ (om i₁) (om i₂) ⟩[ appT Sq f₁ ≡ g ] sq-max₂ : ⟨ Hom ℂ (om i₁) (om i₃) ⟩[ appT Sq f₂ ≡ j ] sq-max₃ : ⟨ Hom ℂ (om i₂) (om i₄) ⟩[ appT Sq f₃ ≡ h ] sq-max₄ : ⟨ Hom ℂ (om i₃) (om i₄) ⟩[ appT Sq f₄ ≡ k ] sq-funct-id : {i : 4Obj} → ⟨ Hom ℂ (om i) (om i) ⟩[ appT Sq (4Id {_}{i}) ≡ id ℂ ] sq-funct-comp : ∀{i j k : 4Obj {l}}{a : el (4Hom i j)}{b : el (4Hom j k)} → ⟨ Hom ℂ (om i) (om k) ⟩[ appT Sq (a ○[ 4Comp {l}{i}{j}{k} ] b) ≡ (appT Sq a) ○[ comp ℂ ] (appT Sq b) ] open Comm-Square' -- A default function from the objects of the 4PO to the objects of -- a square in ℂ. sq-default-om : {l : Level}{ℂ : Cat {l}} → Obj ℂ → Obj ℂ → Obj ℂ → Obj ℂ → (4Obj {l} → Obj ℂ) sq-default-om A B D C i₁ = A sq-default-om A B D C i₂ = B sq-default-om A B D C i₃ = D sq-default-om A B D C i₄ = C -- Commutative squares in ℂ. Comm-Square : {l : Level}{ℂ : Cat {l}} → (A B D C : Obj ℂ) → (g : el (Hom ℂ A B)) → (h : el (Hom ℂ B C)) → (j : el (Hom ℂ A D)) → (k : el (Hom ℂ D C)) → Set l Comm-Square {_} {ℂ} A B D C g h j k = Comm-Square' ℂ (sq-default-om {_} {ℂ} A B D C) g h j k -- Commutative squares are functors. Comm-Square-is-Functor : ∀{l}{ℂ : Cat {l}}{A B D C} → {g : el (Hom ℂ A B)} → {h : el (Hom ℂ B C)} → {j : el (Hom ℂ A D)} → {k : el (Hom ℂ D C)} → Comm-Square {_} {ℂ} A B D C g h j k → Functor {l} 4cat ℂ Comm-Square-is-Functor {_} {ℂ} {A} {B} {D} {C} {g} {h} {j} {k} sq = record { omap = sq-default-om {_}{ℂ} A B D C; fmap = λ {A₁} {B₁} → Sq sq {A₁} {B₁}; idPF = sq-funct-id sq; compPF = λ {A₁} {B₁} {C₁} {f} {g₁} → sq-funct-comp sq {A₁}{B₁}{C₁}{f}{g₁} } -- The former now implies that we have a commutative diagram. Comm-Square-is-Comm-Diagram : ∀{l}{ℂ : Cat {l}}{A B D C} → {g : el (Hom ℂ A B)} → {h : el (Hom ℂ B C)} → {j : el (Hom ℂ A D)} → {k : el (Hom ℂ D C)} → Comm-Square {_} {ℂ} A B D C g h j k → Comm-Diagram {l}{l} 4po ℂ Comm-Square-is-Comm-Diagram {l}{ℂ}{g}{h}{j}{k} sq = record { diag = record { diag = Comm-Square-is-Functor sq } } -- If we have a commutative square, then it commutes in ℂ. Comm-Square-Commutes : ∀{l}{ℂ : Cat {l}}{A B D C} → {g : el (Hom ℂ A B)} → {h : el (Hom ℂ B C)} → {j : el (Hom ℂ A D)} → {k : el (Hom ℂ D C)} → Comm-Square {_} {ℂ} A B D C g h j k → ⟨ Hom ℂ A C ⟩[ g ○[ comp ℂ ] h ≡ j ○[ comp ℂ ] k ] Comm-Square-Commutes {l}{ℂ}{A}{B}{D}{C}{g}{h}{j}{k} sq with sq-funct-comp sq {i₁}{i₂}{i₄}{f₁}{f₃} | sq-funct-comp sq {i₁}{i₃}{i₄}{f₂}{f₄} ... | sq-eq₁ | sq-eq₂ with transPf (parEqPf (eqRpf (Hom ℂ A C))) (symPf (parEqPf (eqRpf (Hom ℂ A C))) sq-eq₁) sq-eq₂ ... | sq-eq₃ with eq-comp-all {_}{ℂ}{A}{B}{C}{g} {appT {_}{_}{4Hom i₁ i₂} {Hom ℂ A B} (Sq sq {i₁}{i₂}) f₁} {h} {appT (Sq sq {i₂}{i₄}) f₃} (symPf (parEqPf (eqRpf (Hom ℂ A B))) (sq-max₁ sq)) (symPf (parEqPf (eqRpf (Hom ℂ B C))) (sq-max₃ sq)) ... | sq-eq₄ with eq-comp-all {_}{ℂ}{A}{D}{C} {appT {_}{_}{4Hom i₁ i₃} {Hom ℂ A D} (Sq sq {i₁}{i₃}) f₂} {j} {appT (Sq sq {i₃}{i₄}) f₄} {k} (sq-max₂ sq) (sq-max₄ sq) ... | sq-eq₅ with transPf (parEqPf (eqRpf (Hom ℂ A C))) sq-eq₄ sq-eq₃ ... | sq-eq₆ = transPf (parEqPf (eqRpf (Hom ℂ A C))) sq-eq₆ sq-eq₅
40.548148
139
0.504202
4e326e7794ecc5a14305ba5e2d8645644608004f
483
agda
Agda
test/interaction/SplitResult.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/interaction/SplitResult.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
test/interaction/SplitResult.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --copatterns #-} module SplitResult where open import Common.Product test : {A B : Set} (a : A) (b : B) → A × B test a b = {!!} -- expected: -- proj₁ (test a b) = {!!} -- proj₂ (test a b) = {!!} testFun : {A B : Set} (a : A) (b : B) → A × B testFun = {!!} -- expected: -- testFun a b = {!!} record FunRec A : Set where field funField : A → A open FunRec testFunRec : ∀{A} → FunRec A testFunRec = {!!} -- expected (since 2016-05-03): -- funField testFunRec = {!!}
18.576923
45
0.554865
37e146bd5d034d98724688884a262d9ccb95400a
2,899
agda
Agda
theorems/cw/cohomology/grid/CofiberSplit.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/cw/cohomology/grid/CofiberSplit.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/cw/cohomology/grid/CofiberSplit.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.PushoutSplit module cw.cohomology.grid.CofiberSplit {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → B) (g : B → C) where {- A -------> B -----------> C | | _/| | | _/ | | | __.D_ | v v .--' | `-.v 1 ------> B/A ------|-> C/A | | | | v | | __.E_ | v .--' `-.v 1 ---------> C/B -} open import cw.cohomology.grid.Map f g private B-to-B/A : B → B/A B-to-B/A = cfcod' f D-span : Span D-span = span B/A C B B-to-B/A g D : Type (lmax i (lmax j k)) D = Pushout D-span private module VSplit = PushoutRSplit (λ _ → tt) f g module C/AToD = VSplit.Split C/A-to-D : C/A → D C/A-to-D = C/AToD.f B/A-to-D : B/A → D B/A-to-D = left private E : Type (lmax i (lmax j k)) E = Cofiber B/A-to-D private module HSplit = PushoutLSplit B-to-B/A (λ _ → tt) g module C/BToE = HSplit.Split C/B-to-E : C/B → E C/B-to-E = C/BToE.f C/B-to-E-glue-β : ∀ x → ap C/B-to-E (glue x) == glue (cfcod x) ∙' ap cfcod (glue x) C/B-to-E-glue-β = HSplit.split-glue-β private module DToC/B = HSplit.Inner D-to-C/B : D → C/B D-to-C/B = DToC/B.f D-to-E : D → E D-to-E = cfcod C/A-to-D-to-C/B : ∀ c/a → D-to-C/B (C/A-to-D c/a) == C/A-to-C/B c/a C/A-to-D-to-C/B = Cofiber-elim idp (λ c → idp) (λ a → ↓-='-in' $ ! $ ap (D-to-C/B ∘ C/A-to-D) (glue a) =⟨ ap-∘ D-to-C/B C/A-to-D (glue a) ⟩ ap D-to-C/B (ap C/A-to-D (glue a)) =⟨ C/AToD.glue-β a |in-ctx ap D-to-C/B ⟩ ap D-to-C/B (ap left (glue a) ∙ glue (f a)) =⟨ ap-∙ D-to-C/B (ap left (glue a)) (glue (f a)) ⟩ ap D-to-C/B (ap left (glue a)) ∙ ap D-to-C/B (glue (f a)) =⟨ ap2 _∙_ (∘-ap D-to-C/B left (glue a)) (DToC/B.glue-β (f a)) ⟩ ap (λ _ → cfbase) (glue a) ∙ glue (f a) =⟨ ap-cst cfbase (glue a) |in-ctx _∙ glue (f a) ⟩ glue (f a) =⟨ ! $ C/AToC/B.glue-β a ⟩ ap C/A-to-C/B (glue a) =∎) D-to-C/B-to-E : ∀ d → C/B-to-E (D-to-C/B d) == D-to-E d D-to-C/B-to-E = HSplit.split-inner {- The public interface -} C/A-to-C/B-comm-square : CommSquare C/A-to-C/B D-to-E C/A-to-D C/B-to-E C/A-to-C/B-comm-square = comm-sqr λ c/a → ap C/B-to-E (! (C/A-to-D-to-C/B c/a)) ∙ D-to-C/B-to-E (C/A-to-D c/a) B/A-to-C/A-comm-square : CommSquare B/A-to-C/A B/A-to-D (idf B/A) C/A-to-D B/A-to-C/A-comm-square = comm-sqr VSplit.split-inner C/A-to-D-is-equiv : is-equiv C/A-to-D C/A-to-D-is-equiv = snd VSplit.split-equiv C/B-to-E-is-equiv : is-equiv C/B-to-E C/B-to-E-is-equiv = snd HSplit.split-equiv
28.145631
81
0.456364
1342acb2bc746c8dabe3db5557d2091036019702
1,578
agda
Agda
test/Succeed/Issue709.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue709.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue709.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --sized-types #-} -- {-# OPTIONS --termination-depth=2 #-} -- not necessary! -- {-# OPTIONS -v tc.size.solve:60 --show-implicit #-} -- {-# OPTIONS -v term:5 #-} module Issue709 where open import Common.Size data Bool : Set where true false : Bool postulate A : Set _<=_ : A → A → Bool data List {i : Size} : Set where [] : List cons : (j : Size< i) → A → List {j} → List {i} module If where if_then_else_ : {A : Set} → Bool → A → A → A if true then t else e = t if false then t else e = e merge : ∀ {i j} → List {i} → List {j} → List -- {∞} merge {i} {j} [] ys = ys merge {i} {j} (cons i' x xs) [] = cons _ x xs merge {i} {j} (cons i' x xs) (cons j' y ys) = if x <= y then cons _ x (merge xs (cons _ y ys)) else cons _ y (merge (cons _ x xs) ys) module Succeeds where merge : ∀ {i j} → List {i} → List {j} → List merge [] ys = ys merge (cons i' x xs) [] = cons _ x xs merge {i} {j} (cons i' x xs) (cons j' y ys) with x <= y ... | true = cons _ x (merge {i'} {j} -- removing this implicit application makes it not termination check xs (cons _ y ys)) ... | false = cons _ y (merge (cons _ x xs) ys) module NeedsTerminationDepthTwo where merge : ∀ {i j} → List {i} → List {j} → List merge [] ys = ys merge (cons j x xs) [] = cons _ x xs merge {i} {i'} (cons j x xs) (cons j' y ys) with x <= y ... | true = cons _ x (merge xs (cons _ y ys)) ... | false = cons _ y (merge (cons _ x xs) ys)
30.941176
109
0.515209
3f2981d86b40afa00b1d16bb33bcf579e385b5cd
51
agda
Agda
test/Fail/NothingAppliedToHiddenArg.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NothingAppliedToHiddenArg.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NothingAppliedToHiddenArg.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module NothingAppliedToHiddenArg where bad = {x}
10.2
38
0.784314
11c79cffdf90365db4d0705321aa536c8af340a2
720
agda
Agda
test/Succeed/Issue689-stevana.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue689-stevana.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue689-stevana.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2017-10-04, issue #689, test case by stevana -- {-# OPTIONS -v tc.data:50 #-} -- {-# OPTIONS -v tc.force:100 #-} -- {-# OPTIONS -v tc.constr:50 #-} -- {-# OPTIONS -v tc.conv.sort:30 #-} -- {-# OPTIONS -v tc.conv.nat:30 #-} open import Agda.Primitive data L {a} (A : Set a) : Set a where _∷_ : A → L A → L A data S {a} {A : Set a} : L A → Set₁ where _∷_ : (x : A) → (xs : L A) → S (x ∷ xs) -- x and xs are forced! -- Should succeed without unsolved constraints. -- There was a problem in the forcing analysis which I introduced -- with apparently improper use of `noConstraints` (still do not know why) -- for the Big/Small Forced argument analysis. -- The latter one is obsolete and thus removed.
31.304348
74
0.625
1d44b106d0f2739b811a96a69bf28428bd09629e
488
agda
Agda
Data/ListSized.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Data/ListSized.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Data/ListSized.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
import Lvl open import Type module Data.ListSized {ℓ} (T : Type{ℓ}) where import Data.IndexedList open import Functional open import Numeral.Natural open Data.IndexedList(T){ℕ} using (IndexedList ; intro) -- A list is a container/collection with elements in order and which allows multiples List : ℕ → Type{ℓ} List(n) = IndexedList(intro 𝟎 (const 𝐒))(n) open Data.IndexedList(T){ℕ} using (∅ ; _⊰_ ; singleton) public elim = Data.IndexedList.elim(T){ℕ} (intro 𝟎 (const 𝐒))
25.684211
85
0.715164
14bf2a6d4bc808367dbc00f8a4c12feb06169750
4,762
agda
Agda
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectOrientedGui.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
23
2016-06-19T12:57:55.000Z
2020-10-12T23:15:25.000Z
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectOrientedGui.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
null
null
null
presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectOrientedGui.agda
agda/ooAgda
7cc45e0148a4a508d20ed67e791544c30fecd795
[ "MIT" ]
2
2018-09-01T15:02:37.000Z
2022-03-12T11:41:00.000Z
module objectOrientedGui where open import Data.Product hiding (map) open import Data.List open import Data.Bool.Base open import SizedIO.Base open import NativeIO open import Relation.Binary.PropositionalEquality hiding ([_]) open import Size open import Function open import StateSizedIO.GUI.BaseStateDependent open import StateSizedIO.GUI.WxBindingsFFI data VarList : Set₁ where []v : VarList addVar : (A : Set) → Var A → VarList → VarList prod : VarList → Set prod []v = Unit prod (addVar A v []v) = A prod (addVar A v l) = A × prod l takeVar : (l : VarList) → NativeIO (prod l) takeVar []v = nativeReturn _ takeVar (addVar A v []v) = nativeTakeVar {A} v takeVar (addVar A v (addVar B v' l)) = nativeTakeVar {A} v native>>= λ a → takeVar (addVar B v' l) native>>= λ rest → nativeReturn ( a , rest ) putVar : (l : VarList) → prod l → NativeIO Unit putVar []v _ = nativeReturn _ putVar (addVar A v []v) a = nativePutVar {A} v a putVar (addVar A v (addVar B v' l)) (a , rest) = nativePutVar {A} v a native>>= λ _ → putVar (addVar B v' l) rest data GuiLev1Command : Set where makeFrame : GuiLev1Command makeButton : Frame → GuiLev1Command addButton : Frame → Button → GuiLev1Command drawBitmap : DC → Bitmap → Point → Bool → GuiLev1Command repaint : Frame → GuiLev1Command GuiLev1Response : GuiLev1Command → Set GuiLev1Response makeFrame = Frame GuiLev1Response (makeButton _) = Button GuiLev1Response _ = Unit GuiLev1Interface : IOInterface Command GuiLev1Interface = GuiLev1Command Response GuiLev1Interface = GuiLev1Response GuiLev2State : Set₁ GuiLev2State = VarList data GuiLev2Command (s : GuiLev2State) : Set₁ where level1C : GuiLev1Command → GuiLev2Command s createVar : {A : Set} → A → GuiLev2Command s setButtonHandler : Button → List (prod s → IO GuiLev1Interface ∞ (prod s)) → GuiLev2Command s setOnPaint : Frame → List (prod s → DC → Rect → IO GuiLev1Interface ∞ (prod s)) → GuiLev2Command s GuiLev2Response : (s : GuiLev2State) → GuiLev2Command s → Set GuiLev2Response _ (level1C c) = GuiLev1Response c GuiLev2Response _ (createVar {A} a) = Var A GuiLev2Response _ _ = Unit GuiLev2Next : (s : GuiLev2State) → (c : GuiLev2Command s) → GuiLev2Response s c → GuiLev2State GuiLev2Next s (createVar {A} a) var = addVar A var s GuiLev2Next s _ _ = s GuiLev2Interface : IOInterfaceˢ Stateˢ GuiLev2Interface = GuiLev2State Commandˢ GuiLev2Interface = GuiLev2Command Responseˢ GuiLev2Interface = GuiLev2Response nextˢ GuiLev2Interface = GuiLev2Next translateLev1Local : (c : GuiLev1Command) → NativeIO (GuiLev1Response c) translateLev1Local makeFrame = nativeMakeFrame translateLev1Local (makeButton fra) = nativeMakeButton fra translateLev1Local (addButton fra bt) = nativeAddButton fra bt translateLev1Local (drawBitmap dc bm p b) = nativeDrawBitmap dc bm p b translateLev1Local (repaint fra) = nativeRepaint fra translateLev1 : {A : Set} → IO GuiLev1Interface ∞ A → NativeIO A translateLev1 = translateIO translateLev1Local translateLev1List : {A : Set} → List (IO GuiLev1Interface ∞ A) → List (NativeIO A) translateLev1List l = map translateLev1 l dispatch : (l : VarList) → (prod l → NativeIO (prod l)) → NativeIO Unit dispatch l f = takeVar l native>>= λ a → f a native>>= λ a₁ → putVar l a₁ dispatchList : (l : VarList) → List (prod l → NativeIO (prod l)) → NativeIO Unit dispatchList l [] = nativeReturn _ dispatchList l (p ∷ rest) = dispatch l p native>>= λ _ → dispatchList l rest translateLev2Local : (s : GuiLev2State) → (c : GuiLev2Command s) → NativeIO (GuiLev2Response s c) translateLev2Local s (level1C c) = translateLev1Local c translateLev2Local s (createVar {A} a) = nativeNewVar {A} a translateLev2Local s (setButtonHandler bt proglist) = nativeSetButtonHandler bt (dispatchList s (map (λ prog → translateLev1 ∘ prog) proglist)) translateLev2Local s (setOnPaint fra proglist) = nativeSetOnPaint fra (λ dc rect → dispatchList s (map (λ prog aa → translateLev1 (prog aa dc rect)) proglist)) translateLev2 : ∀ {A s} → IOˢ GuiLev2Interface ∞ (λ _ → A) s → NativeIO A translateLev2 = translateIOˢ translateLev2Local
38.403226
83
0.637337
36fc217ea3478f5385158d4331c86af8249080ff
364
agda
Agda
src/Categories/Category/Instance/SimplicialSet.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Instance/SimplicialSet.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Instance/SimplicialSet.agda
seanpm2001/agda-categories
d9e4f578b126313058d105c61707d8c8ae987fa8
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.SimplicialSet where open import Level open import Categories.Category open import Categories.Category.Instance.Simplex open import Categories.Category.Construction.Presheaves SimplicialSet : ∀ o ℓ → Category (suc (o ⊔ ℓ)) (o ⊔ ℓ) (o ⊔ ℓ) SimplicialSet o ℓ = Presheaves {o′ = o} {ℓ′ = ℓ} Δ
28
62
0.733516
0d8fcefa0216b9d30dd0fcf60b1444da3d74f82c
4,472
agda
Agda
Rings/Ideals/Prime/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
4
2019-08-08T12:44:19.000Z
2022-01-28T06:04:15.000Z
Rings/Ideals/Prime/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
14
2019-01-06T21:11:59.000Z
2020-04-11T11:03:39.000Z
Rings/Ideals/Prime/Lemmas.agda
Smaug123/agdaproofs
0f4230011039092f58f673abcad8fb0652e6b562
[ "MIT" ]
1
2021-11-29T13:23:07.000Z
2021-11-29T13:23:07.000Z
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Setoids.Setoids open import Rings.Definition open import Sets.EquivalenceRelations open import Rings.Ideals.Definition open import Rings.IntegralDomains.Definition open import Rings.Ideals.Prime.Definition open import Rings.Cosets module Rings.Ideals.Prime.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} {c : _} {pred : A → Set c} (i : Ideal R pred) where open Ring R open Group additiveGroup open Setoid S open Equivalence eq open import Rings.Ideals.Lemmas R idealPrimeImpliesQuotientIntDom : PrimeIdeal i → IntegralDomain (cosetRing R i) IntegralDomain.intDom (idealPrimeImpliesQuotientIntDom isPrime) {a} {b} ab=0 a!=0 = ans where ab=0' : pred (a * b) ab=0' = translate' i ab=0 a!=0' : (pred a) → False a!=0' prA = a!=0 (translate i prA) ans' : pred b ans' = PrimeIdeal.isPrime isPrime ab=0' a!=0' ans : pred (inverse (Ring.0R (cosetRing R i)) + b) ans = translate i ans' IntegralDomain.nontrivial (idealPrimeImpliesQuotientIntDom isPrime) 1=0 = PrimeIdeal.notContainedIsNotContained isPrime u where t : pred (Ring.1R (cosetRing R i)) t = translate' i 1=0 u : pred (PrimeIdeal.notContained isPrime) u = Ideal.isSubset i identIsIdent (Ideal.accumulatesTimes i {y = PrimeIdeal.notContained isPrime} t) quotientIntDomImpliesIdealPrime : IntegralDomain (cosetRing R i) → PrimeIdeal i quotientIntDomImpliesIdealPrime intDom = record { isPrime = isPrime ; notContained = Ring.1R R ; notContainedIsNotContained = notCon } where abstract notCon : pred 1R → False notCon 1=0 = IntegralDomain.nontrivial intDom (translate i 1=0) isPrime : {a b : A} → pred (a * b) → (pred a → False) → pred b isPrime {a} {b} predAB !predA = translate' i (IntegralDomain.intDom intDom (translate i predAB) λ t → !predA (translate' i t)) private dividesZero : {a : A} → generatedIdealPred R 0R a → a ∼ 0R dividesZero (c , pr) = symmetric (transitive (symmetric (transitive *Commutative timesZero)) pr) zeroIdealPrimeImpliesIntDom : PrimeIdeal (generatedIdeal R 0R) → IntegralDomain R IntegralDomain.intDom (zeroIdealPrimeImpliesIntDom record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) {a} {b} ab=0 a!=0 with isPrime {a} {b} (1R , transitive (transitive *Commutative timesZero) (symmetric ab=0)) (λ 0|a → a!=0 (dividesZero 0|a)) ... | c , 0c=b = transitive (symmetric 0c=b) (transitive *Commutative timesZero) IntegralDomain.nontrivial (zeroIdealPrimeImpliesIntDom record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) 1=0 = notContainedIsNotContained (notContained , transitive (*WellDefined (symmetric 1=0) reflexive) identIsIdent) intDomImpliesZeroIdealPrime : IntegralDomain R → PrimeIdeal (generatedIdeal R 0R) PrimeIdeal.isPrime (intDomImpliesZeroIdealPrime intDom) (c , 0=ab) 0not|a with IntegralDomain.intDom intDom (transitive (symmetric 0=ab) (transitive *Commutative timesZero)) (λ a=0 → 0not|a (0R , transitive timesZero (symmetric a=0))) ... | b=0 = 0R , transitive timesZero (symmetric b=0) PrimeIdeal.notContained (intDomImpliesZeroIdealPrime intDom) = 1R PrimeIdeal.notContainedIsNotContained (intDomImpliesZeroIdealPrime intDom) (c , 0c=1) = IntegralDomain.nontrivial intDom (symmetric (transitive (symmetric (transitive *Commutative timesZero)) 0c=1)) primeIdealWellDefined : {c : _} {pred2 : A → Set c} (ideal2 : Ideal R pred2) → ({x : A} → pred x → pred2 x) → ({x : A} → pred2 x → pred x) → PrimeIdeal i → PrimeIdeal ideal2 PrimeIdeal.isPrime (primeIdealWellDefined ideal2 predToPred2 pred2ToPred record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) p2ab notP2a = predToPred2 (isPrime (pred2ToPred p2ab) λ p → notP2a (predToPred2 p)) PrimeIdeal.notContained (primeIdealWellDefined ideal2 predToPred2 pred2ToPred record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) = notContained PrimeIdeal.notContainedIsNotContained (primeIdealWellDefined ideal2 predToPred2 pred2ToPred record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) pred2Not = notContainedIsNotContained (pred2ToPred pred2Not)
65.764706
311
0.750894
0d2efa170c36ee679af4777eacaae6af759d6bd8
137
agda
Agda
test/Fail/InstanceArgumentsAmbiguous.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/InstanceArgumentsAmbiguous.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/InstanceArgumentsAmbiguous.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module InstanceArgumentsAmbiguous where postulate A B : Set f : {{a : A}} → B instance a₁ a₂ : A test : B test = f
15.222222
39
0.569343
7c9026dadfef5cc47e1a3b204ce936893eee8720
3,337
agda
Agda
TotalParserCombinators/Examples/PBM.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
7
2016-12-13T05:23:14.000Z
2021-06-22T05:35:31.000Z
TotalParserCombinators/Examples/PBM.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
1
2018-01-22T22:21:41.000Z
2018-01-24T16:39:37.000Z
TotalParserCombinators/Examples/PBM.agda
yurrriq/parser-combinators
b396d35cc2cb7e8aea50b982429ee385f001aa88
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- A parser for PBM images; illustrates "essential" use of bind ------------------------------------------------------------------------ -- Note that I am using the simple "Plain PBM" format, and I try to -- adhere to the following statement from the pbm man page: -- -- "Programs that read this format should be as lenient as possible, -- accepting anything that looks remotely like a bitmap." -- I got the idea to write this particular parser from "The Power of -- Pi" by Oury and Swierstra. module TotalParserCombinators.Examples.PBM where open import Data.Bool open import Data.Char as Char using (Char; _==_) open import Data.List as List using (List) open import Data.Maybe open import Data.Nat hiding (_^_) import Data.Nat.Show as ℕ open import Data.String as String using (String) renaming (_++_ to _<+>_) open import Data.Unit open import Data.Vec as Vec using (Vec; _++_; [_]) open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_) open import TotalParserCombinators.BreadthFirst open import TotalParserCombinators.Lib open import TotalParserCombinators.Parser open Token Char Char._≟_ ------------------------------------------------------------------------ -- PBM images module PBM where -- Colours. data Colour : Set where white : Colour black : Colour -- Matrices. Matrix : Set → ℕ → ℕ → Set Matrix A rows cols = Vec (Vec A cols) rows -- PBM images. record PBM : Set where constructor toPBM field {rows cols} : ℕ matrix : Matrix Colour rows cols open PBM public -- Showing PBM images. showColour : Colour → Char showColour white = '0' showColour black = '1' show : PBM → String show i = "P1\n" <+> ℕ.show (cols i) <+> " " <+> ℕ.show (rows i) <+> "\n" <+> showMatrix (matrix i) where showMatrix = String.fromList ∘ Vec.toList ∘ Vec.concat ∘ Vec.map ((λ xs → xs ++ [ '\n' ]) ∘ Vec.map showColour) open PBM ------------------------------------------------------------------------ -- Parsing PBM images comment : Parser Char ⊤ _ comment = tok '#' >>= λ _ → sat′ (not ∘ _==_ '\n') ⋆ >>= λ _ → tok '\n' >>= λ _ → return tt colour : Parser Char Colour _ colour = const white <$> tok '0' ∣ const black <$> tok '1' pbm : Parser Char PBM _ pbm = w∣c ⋆ >>= λ _ → tok 'P' >>= λ _ → tok '1' >>= λ _ → w∣c ⋆ >>= λ _ → number >>= λ cols → w∣c + >>= λ _ → number >>= λ rows → w∣c >>= λ _ → (w∣c ⋆ >>= λ _ → colour) ^ cols ^ rows >>= λ m → token ⋆ >>= λ _ → return (toPBM m) where w∣c = whitespace ∣ comment -- The example is commented out, because it takes ages to run this -- parser. -- module Example where -- open Vec.Vec -- image = toPBM ((white ∷ black ∷ []) ∷ -- (black ∷ white ∷ []) ∷ -- (black ∷ black ∷ []) ∷ []) -- ex : parse pbm (String.toList $ show image) ≡ List.[_] image -- ex = P.refl
27.578512
72
0.503147
0d5fb098f0df64edb355b1d6a4b527460a364605
281
agda
Agda
src/data/lib/prim/Agda/Builtin/Coinduction.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
src/data/lib/prim/Agda/Builtin/Coinduction.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
null
null
null
src/data/lib/prim/Agda/Builtin/Coinduction.agda
Blaisorblade/Agda
802a28aa8374f15fe9d011ceb80317fdb1ec0949
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
{-# OPTIONS --without-K #-} module Agda.Builtin.Coinduction where infix 1000 ♯_ postulate ∞ : ∀ {a} (A : Set a) → Set a ♯_ : ∀ {a} {A : Set a} → A → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-}
18.733333
37
0.47331
5ededc25716c5abc6ba6aa0c68bc36b885254ab9
194
agda
Agda
test/Fail/NotAnExpression.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NotAnExpression.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NotAnExpression.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Patterns are parsed as expressions. That means that expressions can contain -- pattern parts. That's of course not ok. module NotAnExpression where X = x @ y -- as pattern as an expression
27.714286
78
0.752577
3782a7c2e42c5b3c698afcc4a13288e7f194a51b
21,553
agda
Agda
nat-thms.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
nat-thms.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
nat-thms.agda
heades/AUGL
b33c6a59d664aed46cac8ef77d34313e148fecc2
[ "MIT" ]
null
null
null
module nat-thms where open import bool open import bool-thms open import bool-thms2 open import eq open import nat open import neq open import product open import product-thms open import sum open import level open import negation -------------------------------------------------- -- properties of addition -------------------------------------------------- 0+ : ∀ (x : ℕ) → 0 + x ≡ x 0+ x = refl +0 : ∀ (x : ℕ) → x + 0 ≡ x +0 zero = refl +0 (suc x) rewrite +0 x = refl +1 : ∀ (x : ℕ) → x + 1 ≡ suc x +1 zero = refl +1 (suc x) rewrite +1 x = refl +suc : ∀ (x y : ℕ) → x + (suc y) ≡ suc(x + y) +suc zero y = refl +suc (suc x) y rewrite +suc x y = refl +assoc : ∀ (x y z : ℕ) → x + (y + z) ≡ (x + y) + z +assoc zero y z = refl +assoc (suc x) y z rewrite +assoc x y z = refl +comm : ∀ (x y : ℕ) → x + y ≡ y + x +comm zero y rewrite +0 y = refl +comm (suc x) y rewrite +suc y x | +comm x y = refl +perm : ∀ (x y z : ℕ) → x + (y + z) ≡ y + (x + z) +perm x y z rewrite +assoc x y z | +comm x y | sym (+assoc y x z) = refl +perm2 : ∀ (x y z : ℕ) → (x + y) + z ≡ (x + z) + y +perm2 x y z rewrite sym (+assoc x y z) | +comm y z | +assoc x z y = refl +≡0 : ∀ {x y : ℕ} → x + y ≡ 0 → x ≡ 0 ∧ y ≡ 0 +≡0{zero}{zero} p = refl , refl +≡0{zero}{suc y} () +≡0{suc x}{zero} () +≡0{suc x}{suc y} () -------------------------------------------------- -- properties of multiplication -------------------------------------------------- *0 : ∀ (x : ℕ) → x * 0 ≡ 0 *0 zero = refl *0 (suc x) rewrite *0 x = refl *1 : ∀ {n : ℕ} → n * 1 ≡ n *1 {0} = refl *1 {suc n} rewrite *1 {n} = refl *suc : ∀ (x y : ℕ) → x * (suc y) ≡ x + x * y *suc zero y = refl *suc (suc x) y rewrite *suc x y | +assoc y x (x * y) | +assoc x y (x * y) | +comm y x = refl *distribr : ∀ (x y z : ℕ) → (x + y) * z ≡ x * z + y * z *distribr zero y z = refl *distribr (suc x) y z rewrite *distribr x y z = +assoc z (x * z) (y * z) *distribl : ∀ (x y z : ℕ) → x * (y + z) ≡ x * y + x * z *distribl 0 y z = refl *distribl (suc x) y z rewrite *distribl x y z | +assoc (y + z) (x * y) (x * z) | +assoc (y + x * y) z (x * z) | +comm (y + z) (x * y) | +assoc (x * y) y z | +comm (x * y) y = refl *comm : ∀ (x y : ℕ) → x * y ≡ y * x *comm zero y rewrite *0 y = refl *comm (suc x) y rewrite *suc y x | *comm x y = refl *assoc : ∀ (x y z : ℕ) → x * (y * z) ≡ (x * y) * z *assoc zero y z = refl *assoc (suc x) y z rewrite *assoc x y z | *distribr y (x * y) z = refl -------------------------------------------------- -- basic properties of pred -------------------------------------------------- sucpred : ∀ {x : ℕ} → iszero x ≡ ff → suc (pred x) ≡ x sucpred{0} () sucpred{suc x} p = refl pred+ : ∀ (x y : ℕ) → iszero x ≡ ff → (pred x) + y ≡ pred (x + y) pred+ 0 y () pred+ (suc x) y p = refl -------------------------------------------------- -- properties of <, ≤, and =ℕ, iszero -------------------------------------------------- <-0 : ∀ (x : ℕ) → x < 0 ≡ ff <-0 0 = refl <-0 (suc y) = refl 0-≤ : ∀ (x : ℕ) → 0 ≤ x ≡ tt 0-≤ 0 = refl 0-≤ (suc x) = refl <-drop : ∀ {x y : ℕ} → (x < (suc y) ≡ tt) → x ≡ y ∨ x < y ≡ tt <-drop {0} {0} p = inj₁ refl <-drop {suc x} {0} p rewrite <-0 x = 𝔹-contra p <-drop {0} {suc y} p = inj₂ refl <-drop {suc x} {suc y} p with <-drop {x} {y} p ... | inj₁ u rewrite u = inj₁ refl ... | inj₂ u = inj₂ u =ℕ-refl : ∀ (x : ℕ) → (x =ℕ x) ≡ tt =ℕ-refl 0 = refl =ℕ-refl (suc x) = (=ℕ-refl x) =ℕ-to-≡ : ∀ {x y : ℕ} → x =ℕ y ≡ tt → x ≡ y =ℕ-to-≡ {0} {0} u = refl =ℕ-to-≡ {suc x} {0} () =ℕ-to-≡ {0} {suc y} () =ℕ-to-≡ {suc x} {suc y} u rewrite =ℕ-to-≡ {x} {y} u = refl =ℕ-from-≡ : ∀ {x y : ℕ} → x ≡ y → x =ℕ y ≡ tt =ℕ-from-≡ {x} refl = =ℕ-refl x =ℕ-sym : ∀ (x y : ℕ) → (x =ℕ y) ≡ (y =ℕ x) =ℕ-sym 0 0 = refl =ℕ-sym 0 (suc y) = refl =ℕ-sym (suc x) 0 = refl =ℕ-sym (suc x) (suc y) rewrite =ℕ-sym x y = refl =ℕ-suc : ∀ (x : ℕ) → suc x =ℕ x ≡ ff =ℕ-suc 0 = refl =ℕ-suc (suc x) = =ℕ-suc x <-suc : ∀ (n : ℕ) → n < suc n ≡ tt <-suc 0 = refl <-suc (suc n) rewrite <-suc n = refl <-suc2 : ∀ (n : ℕ) → suc n < n ≡ ff <-suc2 0 = refl <-suc2 (suc n) = <-suc2 n ≤-suc : ∀ (n : ℕ) → n ≤ suc n ≡ tt ≤-suc n rewrite <-suc n = refl ≤-suc2 : ∀ (n : ℕ) → suc n ≤ n ≡ ff ≤-suc2 n rewrite <-suc2 n | =ℕ-suc n = refl <-push : ∀ {x y : ℕ} → (suc x) < y ≡ tt → Σ ℕ (λ y' → y ≡ (suc y')) <-push {x} {0} () <-push {0} {suc y} p = (y , refl) <-push {suc x} {suc y} p with <-push {x} {y} p ... | ( y' , p' ) rewrite p' = (suc y' , refl) suc-inj : ∀ {n m : ℕ} → suc n ≡ suc m → n ≡ m suc-inj {n} {m} p rewrite (=ℕ-to-≡{n} (=ℕ-from-≡ p)) = refl <-implies-suc : ∀ {x y : ℕ} → x < y ≡ tt → Σ ℕ λ y' → y ≡ suc y' <-implies-suc{x}{0} p rewrite <-0 x = 𝔹-contra p <-implies-suc{y = suc y} p = y , refl <=ℕff : ∀ (x : ℕ) → 0 < x ≡ tt → x =ℕ 0 ≡ ff <=ℕff 0 () <=ℕff (suc x) p = refl nonzero< : ∀ {n : ℕ} → iszero n ≡ ff → 0 < n ≡ tt nonzero<{0} () nonzero<{(suc n)} p = refl iszerosum : ∀ (x y : ℕ) → iszero(x + y) ≡ iszero(x) && iszero(y) iszerosum 0 y = refl iszerosum (suc x) y = refl iszerosum2 : ∀ (x y : ℕ) → iszero x ≡ ff → iszero(x + y) ≡ ff iszerosum2 0 y () iszerosum2 (suc x) y _ = refl iszeromult : ∀ (x y : ℕ) → iszero x ≡ ff → iszero y ≡ ff → iszero (x * y) ≡ ff iszeromult zero zero () q iszeromult zero (suc y) () q iszeromult (suc x) zero p () iszeromult (suc x) (suc y) p q = refl <≤ : ∀ {n m : ℕ} → n < m ≡ tt → n ≤ m ≡ tt <≤ {n}{m} p rewrite p = refl ≤+1 : ∀(x y : ℕ) → x ≤ x + y ≡ tt ≤+1 zero zero = refl ≤+1 zero (suc y) = refl ≤+1 (suc x) zero rewrite +0 x | =ℕ-refl x | ||-tt (x < x) = refl ≤+1 (suc x) (suc y) = ≤+1 x (suc y) ≤+2 : ∀(x y : ℕ) → y ≤ x + y ≡ tt ≤+2 x y rewrite +comm x y = ≤+1 y x -- a theorem about quotients q, divisors d, and remainders r ÷< : ∀ {d q r x : ℕ} → 1 < d ≡ tt → q * d + r ≡ suc x → q < suc x ≡ tt ÷<{0} () p ÷<{suc 0} () p ÷<{suc (suc d)}{0} u p = refl ÷<{suc (suc d)}{suc q}{r}{0} u () ÷<{suc (suc d)}{suc q}{r}{suc x} u p with suc-inj{suc (d + q * suc (suc d) + r)}{suc x} p ... | p' rewrite sym (+suc (d + q * suc (suc d)) r) | +comm d (q * suc (suc d)) | sym (+assoc (q * (suc (suc d))) d (suc r)) = ÷<{suc (suc d)}{q}{d + suc r}{x} refl p' -------------------------------------------------- -- ordering properties of < and ≤ℕ -------------------------------------------------- <-irrefl : ∀ (n : ℕ) → n < n ≡ ff <-irrefl 0 = refl <-irrefl (suc n) = <-irrefl n <-asym : ∀ {x y : ℕ} → x < y ≡ tt → y < x ≡ ff <-asym {0} {0} _ = refl <-asym {0} {suc y} p = refl <-asym {suc x}{0} () <-asym {suc x}{suc y} p = <-asym {x} {y} p ℕ-trichotomy𝔹 : ∀ (n m : ℕ) → n < m || n =ℕ m || m < n ≡ tt ℕ-trichotomy𝔹 0 0 = refl ℕ-trichotomy𝔹 0 (suc m) = refl ℕ-trichotomy𝔹 (suc n) 0 = refl ℕ-trichotomy𝔹 (suc n) (suc m) = ℕ-trichotomy𝔹 n m ℕ-trichotomy : ∀ (n m : ℕ) → (n < m ≡ tt) ∨ (n =ℕ m ≡ tt) ∨ (m < n ≡ tt) ℕ-trichotomy n m with ||-split{n < m} (ℕ-trichotomy𝔹 n m) ... | inj₁ p = inj₁ p ... | inj₂ p with ||-split{n =ℕ m} p ... | inj₁ p' = inj₂ (inj₁ p') ... | inj₂ p' = inj₂ (inj₂ p') <-insert : ∀ {x n m : ℕ} → n ≤ m ≡ tt → (x < n ≡ tt) ∨ (n ≤ x && x ≤ m ≡ tt) ∨ (m < x ≡ tt) <-insert{x}{n}{m} q with ℕ-trichotomy x n <-insert{x}{n}{m} q | inj₁ p = inj₁ p <-insert{x}{n}{m} q | inj₂ (inj₁ p) rewrite (=ℕ-to-≡{x} p) | =ℕ-refl n | ||-tt (n < n) = inj₂ (inj₁ q) <-insert{x}{n}{m} q | inj₂ (inj₂ p) rewrite p with ℕ-trichotomy x m <-insert{x}{n}{m} q | inj₂ (inj₂ p) | inj₁ p' rewrite p' = inj₂ (inj₁ refl) <-insert{x}{n}{m} q | inj₂ (inj₂ p) | inj₂ (inj₁ p') rewrite p' | ||-tt (x < m) = inj₂ (inj₁ refl) <-insert{x}{n}{m} q | inj₂ (inj₂ p) | inj₂ (inj₂ p') = inj₂ (inj₂ p') <-insert2 : ∀ {x n m : ℕ} → n ≤ m ≡ tt → (x < n ≡ tt) ∨ (n ≤ x ≡ tt ∧ x ≤ m ≡ tt) ∨ (m < x ≡ tt) <-insert2{x}{n}{m} p with <-insert{x}{n}{m} p <-insert2{x}{n}{m} p | inj₁ p' = inj₁ p' <-insert2{x}{n}{m} p | inj₂ (inj₁ p') with &&-elim {n ≤ x} {x ≤ m} p' <-insert2{x}{n}{m} p | inj₂ (inj₁ p') | p1 , p2 = inj₂ (inj₁ (p1 , p2)) <-insert2{x}{n}{m} p | inj₂ (inj₂ p') = inj₂ (inj₂ p') <-trans : ∀ {x y z : ℕ} → x < y ≡ tt → y < z ≡ tt → x < z ≡ tt <-trans {x} {0} p1 p2 rewrite <-0 x = 𝔹-contra p1 <-trans {0} {suc y} {0} p1 () <-trans {0} {suc y} {suc z} p1 p2 = refl <-trans {suc x} {suc y} {0} p1 () <-trans {suc x} {suc y} {suc z} p1 p2 = <-trans {x} {y} {z} p1 p2 -- <≤-trans : ∀ {x y z : ℕ} → x < y ≡ tt → y ≤ z ≡ tt → x < z ≡ tt -- <≤-trans {x} {y} {z} p1 p2 with ||-split p2 -- ... | inj₁ p' = <-trans{x} p1 p' -- ... | inj₂ p' rewrite =ℕ-to-≡ {y} {z} p' = p1 ≤<-trans : ∀ {x y z : ℕ} → x ≤ y ≡ tt → y < z ≡ tt → x < z ≡ tt ≤<-trans {x} {y} {z} p1 p2 with ||-split p1 ... | inj₁ p' = <-trans{x} p' p2 ... | inj₂ p' rewrite =ℕ-to-≡ {x} {y} p' = p2 ≤-refl : ∀ (x : ℕ) → x ≤ x ≡ tt ≤-refl 0 = refl ≤-refl (suc x) = ≤-refl x ≤-trans : ∀ {x y z : ℕ} → x ≤ y ≡ tt → y ≤ z ≡ tt → x ≤ z ≡ tt ≤-trans {x} {y} {z} p1 p2 with ||-split p1 | ||-split p2 ... | inj₁ p' | inj₁ p'' rewrite <-trans {x} p' p'' = refl ... | inj₂ p' | inj₁ p'' rewrite =ℕ-to-≡ {x} p' | p'' = refl ... | inj₁ p' | inj₂ p'' rewrite =ℕ-to-≡ {y} p'' | p' = refl ... | inj₂ p' | inj₂ p'' rewrite =ℕ-to-≡ {x} p' | =ℕ-to-≡ {y} p'' | =ℕ-refl z | ||-tt (z < z) = refl suc≤ : ∀ {n n' : ℕ} → suc n ≤ suc n' ≡ tt → n ≤ n' ≡ tt suc≤{n}{n'} p = p -- suc≤< : ∀ {n n' : ℕ} → suc n ≤ n' ≡ tt → n < n' ≡ tt -- suc≤<{n} p = <≤-trans{n} (<-suc n) p suc<< : ∀ {n' n : ℕ} → suc n < n' ≡ tt → n < n' ≡ tt suc<<{n = n} p = <-trans{n} (<-suc n) p <-suc-trans : ∀{x y : ℕ} → x < y ≡ tt → x < suc y ≡ tt <-suc-trans{0}{0} _ = refl <-suc-trans{suc x}{0} () <-suc-trans{0}{suc y} _ = refl <-suc-trans{suc x}{suc y} p = <-suc-trans{x}{y} p ≤-suc-trans : ∀{x y : ℕ} → x ≤ y ≡ tt → x ≤ suc y ≡ tt ≤-suc-trans{0}{0} _ = refl ≤-suc-trans{suc x}{0} () ≤-suc-trans{0}{suc y} _ = refl ≤-suc-trans{suc x}{suc y} p = ≤-suc-trans{x}{y} p ------------------------------------------------------------- -- more properties relating <, ≤ with arithmetic operations ------------------------------------------------------------- <+ : ∀ {x y : ℕ} → y =ℕ 0 ≡ ff → x < y + x ≡ tt <+{y = 0} () <+{x}{suc 0} p = <-suc x <+{x}{suc (suc y)} p = <-trans{x}{(suc y) + x}{suc ((suc y) + x)} (<+{x}{suc y} refl) (<-suc ((suc y) + x)) <+2 : ∀ {x y : ℕ} → x < (suc y) + x ≡ tt <+2{x}{y} = <+{x}{suc y} refl <-iter-suc-trans-t-h : (n : ℕ) → (x : ℕ) → (accum : ℕ) → Set <-iter-suc-trans-t-h 0 x accum = x < accum ≡ tt <-iter-suc-trans-t-h (suc n) x accum = <-iter-suc-trans-t-h n x (suc accum) <-iter-suc-trans-t : (n : ℕ) → (x : ℕ) → Set <-iter-suc-trans-t n x = <-iter-suc-trans-t-h n x (suc x) <-iter-suc-trans-h : ∀ (n : ℕ) → (x : ℕ) → (accum : ℕ) → x < accum ≡ tt → <-iter-suc-trans-t-h n x accum <-iter-suc-trans-h 0 x accum p = p <-iter-suc-trans-h (suc n) x accum p = <-iter-suc-trans-h n x (suc accum) (<-suc-trans{x} p) <-iter-suc-trans : ∀ (n : ℕ) → (x : ℕ) → <-iter-suc-trans-t n x <-iter-suc-trans n x = <-iter-suc-trans-h n x (suc x) (<-suc x) ≤0 : ∀ (n : ℕ) → 0 ≤ n ≡ tt ≤0 0 = refl ≤0 (suc n) = refl ≤2* : ∀ (x : ℕ) → x ≤ 2 * x ≡ tt ≤2* 0 = refl ≤2* (suc x) rewrite +suc x (x + 0) | ≤<-trans {x} (≤2* x) (<-suc (2 * x)) = refl 0<+ : ∀ (x y : ℕ) → 0 < y ≡ tt → 0 < x + y ≡ tt 0<+ 0 y p = p 0<+ (suc x) y p = refl <=ℕff2 : ∀ (x : ℕ) → 1 < x ≡ tt → x =ℕ 0 ≡ ff <=ℕff2 x p = <=ℕff x (<-trans{0}{1}{x} refl p) *≤ : ∀(x y : ℕ) → x ≤ x * (suc y) ≡ tt *≤ zero y = refl *≤ (suc x) y = ≤-trans {x} (*≤ x y) (≤+2 y (x * suc y)) -------------------------------------------------- -- relationships between ≤ and < -------------------------------------------------- ≤ff : ∀ {x y : ℕ} → x ≤ y ≡ ff → y < x ≡ tt ≤ff{0}{0} () ≤ff{0}{suc y} () ≤ff{suc x}{0} _ = refl ≤ff{suc x}{suc y} p rewrite ≤ff {x}{y} p = refl <ff : ∀ {x y : ℕ} → x < y ≡ ff → y ≤ x ≡ tt <ff{x}{y} p with ℕ-trichotomy x y ... | inj₁ u rewrite u = 𝔹-contra (sym p) ... | inj₂ (inj₁ u) rewrite (=ℕ-to-≡{x} u) | =ℕ-refl y | ||-tt (y < y) = refl ... | inj₂ (inj₂ u) rewrite u = refl <-not-=ℕ : ∀{x y : ℕ} → x < y ≡ tt → y =ℕ x ≡ ff <-not-=ℕ{0}{0} () <-not-=ℕ{suc x}{0} () <-not-=ℕ{0}{suc y} p = refl <-not-=ℕ{suc x}{suc y} p = <-not-=ℕ{x}{y} p <-not-> : ∀{x y : ℕ} → x < y ≡ tt → y < x ≡ ff <-not->{0}{0} () <-not->{suc x}{0} () <-not->{0}{suc y} p = refl <-not->{suc x}{suc y} p = <-not->{x}{y} p <tt : ∀ {x y : ℕ} → x < y ≡ tt → y ≤ x ≡ ff <tt{x}{y} p rewrite <-not-=ℕ{x}{y} p | <-not->{x}{y} p = refl ≤-antisym : ∀{x y : ℕ} → x ≤ y ≡ tt → y ≤ x ≡ tt → x ≡ y ≤-antisym{x}{y} p q with ||-split {x < y} p ≤-antisym{x}{y} p q | inj₁ u rewrite <tt{x} u with q ≤-antisym{x}{y} p q | inj₁ u | () ≤-antisym{x}{y} p q | inj₂ u = =ℕ-to-≡ u -------------------------------------------------- -- monotonicity properties of < and ≤ℕ -------------------------------------------------- <+mono1 : ∀ {z x y : ℕ} → x < y ≡ tt → z + x < z + y ≡ tt <+mono1{0} p = p <+mono1{suc z} p = <+mono1{z} p <+mono2 : ∀ {x y z : ℕ} → x < y ≡ tt → x + z < y + z ≡ tt <+mono2{x}{y}{z} p rewrite +comm x z | +comm y z | <+mono1{z}{x}{y} p = refl -------------------------------------------------- -- properties of subtraction -------------------------------------------------- 0∸ : ∀ {x : ℕ} → 0 ∸ x ≡ 0 0∸{0} = refl 0∸{suc x} = refl ∸≤ : ∀ (x y : ℕ) → x ∸ y ≤ x ≡ tt ∸≤ 0 0 = refl ∸≤ (suc x) 0 rewrite (=ℕ-refl x) = ||-tt (x < x) ∸≤ 0 (suc y) = refl ∸≤ (suc x) (suc y) with ||-split{x ∸ y < x}{x ∸ y =ℕ x} (∸≤ x y) ... | inj₁ u rewrite <-trans {x ∸ y} u (<-suc x) = refl ... | inj₂ u rewrite (=ℕ-to-≡ {x ∸ y} u) | <-suc x = refl ∸< : ∀ {x y : ℕ} → x =ℕ 0 ≡ ff → x ∸ (suc y) < x ≡ tt ∸< {0} {y} () ∸< {suc x} {y} _ with ||-split{x ∸ y < x}{x ∸ y =ℕ x} (∸≤ x y) ... | inj₁ u = <-trans {x ∸ y} u (<-suc x) ... | inj₂ u rewrite (=ℕ-to-≡ {x ∸ y} u) = <-suc x ∸<1 : ∀ {x y : ℕ} → x ∸ y < suc x ≡ tt ∸<1 {zero} {zero} = refl ∸<1 {zero} {suc y} = refl ∸<1 {suc x} {zero} = <-suc x ∸<1 {suc x} {suc y} = <-trans {x ∸ y}{suc x} (∸<1 {x} {y}) (<-suc x) +∸1 : ∀ {x y : ℕ} → x < y ≡ tt → x + (y ∸ x) ≡ y +∸1{0} p = refl +∸1{suc x}{0} () +∸1{suc x}{suc y} p rewrite +∸1{x}{y} p = refl ∸+ : ∀ {x y z : ℕ} → x ∸ (y + z) ≡ (x ∸ y) ∸ z ∸+{x}{0} = refl ∸+{0}{suc y}{z} rewrite 0∸{z} = refl ∸+{suc x}{suc y} = ∸+{x}{y} ∸+2 : ∀ {x y : ℕ} → y ≤ x ≡ tt → (x ∸ y) + y ≡ x ∸+2{0}{0} _ = refl ∸+2{suc x}{0} _ rewrite +0 x = refl ∸+2{0}{suc y} () ∸+2{suc x}{suc y} p rewrite +suc (x ∸ y) y | ∸+2{x}{y} p = refl ∸eq-swap : ∀ {x y z : ℕ} → y ≤ x ≡ tt → z ≡ x ∸ y → z + y ≡ x ∸eq-swap{x}{y}{z} p q = lem (cong (λ w → w + y) q) where lem : z + y ≡ (x ∸ y) + y → z + y ≡ x lem p' rewrite ∸+2{x}{y} p = p' <∸ : ∀ {x y : ℕ} → (y < x ≡ tt) → ((x ∸ y =ℕ 0) ≡ ff) <∸ {0}{y} p with <-0 y ... | q rewrite p = 𝔹-contra (sym q) <∸ {suc x}{0} p = refl <∸ {suc x}{suc y} p = <∸{x}{y} p <∸suc : ∀ {x y : ℕ} → (y < x ≡ tt) → Σ ℕ (λ n → x ∸ y ≡ suc n) <∸suc{x}{y} p with keep (x ∸ y) <∸suc{x}{y} p | 0 , r with <∸{x}{y} p <∸suc{x}{y} p | 0 , r | q rewrite r with q <∸suc{x}{y} p | 0 , r | q | () <∸suc{x}{y} p | suc n , r = n , r ∸suc : ∀ {x y z : ℕ } → y < x ≡ tt → x ∸ (y + (suc z)) < x ∸ y ≡ tt ∸suc{x}{y}{z} p rewrite ∸+{x}{y}{suc z} = ∸< {x ∸ y} (<∸{x}{y} p) ∸suc2 : ∀ {x y z : ℕ } → y < x ≡ tt → x ∸ ((suc z) + y) < x ∸ y ≡ tt ∸suc2{x}{y}{z} p rewrite +comm (suc z) y = ∸suc{x}{y}{z} p ∸cancel : ∀ (x y z : ℕ) → (x + y) ∸ (x + z) ≡ y ∸ z ∸cancel 0 y z = refl ∸cancel (suc x) y z = ∸cancel x y z distribr*∸ : ∀ (x y z : ℕ) → (x ∸ y) * z ≡ x * z ∸ y * z distribr*∸ 0 y z rewrite 0∸{y} | 0∸{y * z} = refl distribr*∸ (suc x) 0 z = refl distribr*∸ (suc x) (suc y) z rewrite distribr*∸ x y z | ∸cancel z (x * z) (y * z) = refl ∸≤2 : ∀ (n x y : ℕ) → x ≤ suc n ≡ tt → y =ℕ 0 ≡ ff → x ∸ y ≤ n ≡ tt ∸≤2 0 0 y p1 p2 rewrite 0∸{y} = refl ∸≤2 0 (suc x) 0 p1 () ∸≤2 0 (suc 0) (suc y) p1 p2 rewrite 0∸{y}= refl ∸≤2 0 (suc (suc x)) (suc y) () p2 ∸≤2 (suc n) 0 y p1 p2 rewrite 0∸{y} = refl ∸≤2 (suc n) (suc x) 0 p1 () ∸≤2 (suc n) (suc x) (suc 0) p1 p2 = p1 ∸≤2 (suc n) (suc x) (suc (suc y)) p1 p2 = ≤-trans{x ∸ suc y}{n}{suc n} (∸≤2 n x (suc y) p1 refl) (≤-suc n) -------------------------------------------------- -- properties of min, max -------------------------------------------------- min-forced1 : ∀ {n n' m : ℕ} → n < n' ≡ tt → n ≡ min n' m → n ≡ m min-forced1{n}{n'}{m} p1 p2 with n' < m ... | tt rewrite p2 = 𝔹-contra (trans (sym (<-irrefl n')) p1) ... | ff = p2 min-suc : ∀ (n m : ℕ) → min (suc n) (suc m) ≡ suc (min n m) min-suc n m rewrite (ite-arg suc (n < m) n m) = refl max-suc : ∀ (n m : ℕ) → max (suc n) (suc m) ≡ suc (max n m) max-suc n m rewrite (ite-arg suc (n < m) m n) = refl min-mono1 : ∀ (n n' m : ℕ) → n ≤ n' ≡ tt → min n m ≤ min n' m ≡ tt min-mono1 n n' m p with ||-split{n < n'} p ... | inj₂ p' rewrite =ℕ-to-≡ {n} p' | =ℕ-refl (min n' m) | ||-tt ((min n' m) < (min n' m)) = refl ... | inj₁ p' with ℕ-trichotomy n' m ... | inj₁ p'' rewrite <-trans {n} p' p'' | p'' | p' = refl ... | inj₂ (inj₁ p'') rewrite =ℕ-to-≡ {n'} p'' | p' | =ℕ-refl (min n m) | ||-tt ((min n m) < (min n m)) | <-irrefl m | p' = refl ... | inj₂ (inj₂ p'') rewrite <-asym {m} p'' with ℕ-trichotomy n m ... | inj₁ p''' rewrite p''' | p''' = refl ... | inj₂ (inj₁ p''') rewrite =ℕ-to-≡ {n} p''' | <-irrefl m | =ℕ-refl m | ||-tt (m < m) = refl ... | inj₂ (inj₂ p''') rewrite <-asym {m} p''' | =ℕ-refl m | ||-tt (m < m) = refl min-comm : ∀ (n m : ℕ) → min n m ≡ min m n min-comm n m with ℕ-trichotomy n m ... | inj₁ p rewrite p | <-asym {n} p = refl ... | inj₂ (inj₁ p) rewrite =ℕ-to-≡ {n} p = refl ... | inj₂ (inj₂ p) rewrite p | <-asym {m} p = refl min-mono2 : ∀ (n m m' : ℕ) → m ≤ m' ≡ tt → min n m ≤ min n m' ≡ tt min-mono2 n m m' p rewrite min-comm n m | min-comm n m' = min-mono1 m m' n p min-same : ∀ (n : ℕ) → min n n ≡ n min-same n rewrite <-irrefl n = refl min-<1 : ∀ {n m : ℕ} → min n m ≤ m ≡ tt min-<1{0}{0} = refl min-<1{0}{suc m} = refl min-<1{suc n}{0} = refl min-<1{suc n}{suc m} rewrite min-suc n m = min-<1{n} min-<2 : ∀ {n m : ℕ} → min n m ≤ n ≡ tt min-<2{0}{0} = refl min-<2{0}{suc m} = refl min-<2{suc n}{0} = refl min-<2{suc n}{suc m} rewrite min-suc n m = min-<2{n} max-<1 : ∀ {n m : ℕ} → n ≤ max n m ≡ tt max-<1{0}{0} = refl max-<1{0}{suc m} = refl max-<1{suc n}{0} rewrite =ℕ-refl n | ||-tt (n < n) = refl max-<1{suc n}{suc m} rewrite max-suc n m = max-<1{n} max-<2 : ∀ {n m : ℕ} → n ≤ max n m ≡ tt max-<2{0}{0} = refl max-<2{0}{suc m} = refl max-<2{suc n}{0} rewrite =ℕ-refl n | ||-tt (n < n) = refl max-<2{suc n}{suc m} rewrite max-suc n m = max-<2{n} -------------------------------------------------- -- some disequalities -------------------------------------------------- +≢ : ∀ (x y : ℕ) → x ≢ x + suc y +≢ 0 y () +≢ (suc x) y p with =ℕ-from-≡ {suc x} p ... | q with =ℕ-to-≡ {x} q ... | r = +≢ x y r -------------------------------------------------- -- properties of parity -------------------------------------------------- parity-even : ∀ (x : ℕ) → parity (x * 2) ≡ ff parity-even 0 = refl parity-even (suc x) rewrite parity-even x = refl parity-even2 : ∀ (x : ℕ) → parity (2 * x) ≡ ff parity-even2 x rewrite *comm 2 x = parity-even x parity-odd : ∀ (x : ℕ) → parity (x * 2 + 1) ≡ tt parity-odd 0 = refl parity-odd (suc x) rewrite parity-odd x = refl parity-add : ∀ (x y : ℕ) → parity (x + y) ≡ (parity x) xor (parity y) parity-add 0 y rewrite ff-xor (parity y) = refl parity-add (suc x) y rewrite parity-add x y | ~-xor-distrb (parity x) (parity y) = refl parity-mult : ∀ (x y : ℕ) → parity (x * y) ≡ (parity x) && (parity y) parity-mult 0 y = refl parity-mult (suc x) y rewrite parity-add y (x * y) | parity-mult x y = xor-distrib-&& (parity y) (parity x) -------------------------------------------------- -- properties of power -------------------------------------------------- 1-pow : ∀ {n : ℕ} → 1 pow n ≡ 1 1-pow {0} = refl 1-pow {(suc n)} rewrite 1-pow {n} = refl nonzero-pow : ∀ (x y : ℕ) → x =ℕ 0 ≡ ff → iszero (x pow y) ≡ ff nonzero-pow x 0 _ = refl nonzero-pow 0 (suc y) () nonzero-pow (suc x) (suc y) p rewrite iszerosum2 (suc x pow y) (x * suc x pow y) (nonzero-pow (suc x) y refl) = refl pow+ : ∀ (x y z : ℕ) → x pow (y + z) ≡ (x pow y) * (x pow z) pow+ x 0 z rewrite +0 (x pow z) = refl pow+ x (suc y) z rewrite pow+ x y z | *assoc x (x pow y) (x pow z) = refl pow* : ∀ (x y z : ℕ) → x pow (y * z) ≡ (x pow y) pow z pow* x y 0 rewrite *0 y = refl pow* x y (suc z) rewrite sym (pow* x y z) | sym (pow+ x y (y * z)) | *comm y (suc z) | *comm y z = refl -------------------------------------------------- -- properties of factorial -------------------------------------------------- factorial-nonzero : ∀ (n : ℕ) → iszero (factorial n) ≡ ff factorial-nonzero zero = refl factorial-nonzero (suc x) rewrite iszerosum (factorial x) (x * factorial x) | factorial-nonzero x = refl -------------------------------------------------- -- injectivity properties of addition -------------------------------------------------- +inj1 : ∀ {x y z : ℕ} → x + y ≡ x + z → y ≡ z +inj1 {0} {y} {z} p = p +inj1 {suc x} {y} {z} p = +inj1 {x} {y} {z} (suc-inj p) +inj2 : ∀ {x y z : ℕ} → x + z ≡ y + z → x ≡ y +inj2 {x} {y} {z} p rewrite +comm x z | +comm y z = +inj1 {z} {x} {y} p -------------------------------------------------- -- properties of is-even, is-odd -------------------------------------------------- even~odd : ∀ (x : ℕ) → is-even x ≡ ~ is-odd x odd~even : ∀ (x : ℕ) → is-odd x ≡ ~ is-even x even~odd zero = refl even~odd (suc x) = odd~even x odd~even zero = refl odd~even (suc x) = even~odd x suc-eq : ∀{x y} → suc x ≡ suc y → x ≡ y suc-eq refl = refl suc-eq⊥ : ∀{x y} → ¬ (x ≡ y) → ¬ (suc x ≡ suc y) suc-eq⊥ p refl = p refl zero-suc-eq⊥ : ∀{x} → zero ≡ suc x → ⊥ {lzero} zero-suc-eq⊥ () suc-zero-eq⊥ : ∀{x} → suc x ≡ zero → ⊥ {lzero} suc-zero-eq⊥ ()
33.835165
179
0.44082
cc09199c4d757b949f6c8ef54c11800e9e5c8368
18,867
agda
Agda
canonical-indeterminate-forms.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
4
2020-10-04T06:45:06.000Z
2021-12-19T15:38:31.000Z
canonical-indeterminate-forms.agda
hazelgrove/hazel-palette-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
9
2020-09-30T20:27:56.000Z
2020-10-20T20:44:13.000Z
canonical-indeterminate-forms.agda
hazelgrove/hazelnut-livelits-agda
c3225acc3c94c56376c6842b82b8b5d76912df2a
[ "MIT" ]
null
null
null
open import Nat open import Prelude open import contexts open import core open import type-assignment-unicity module canonical-indeterminate-forms where -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at base type data cif-base : (Δ : hctx) (d : iexp) → Set where CIFBEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇⦈⟨ u , σ ⟩) × ((u :: b [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-base Δ d CIFBNEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: b [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-base Δ d CIFBAp : ∀ {Δ d} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] Σ[ τ2 ∈ typ ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2 ==> b) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : typ) (d1' : iexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-base Δ d CIFBFst : ∀{Δ d} → Σ[ d' ∈ iexp ] Σ[ τ2 ∈ typ ] ((d == fst d') × (Δ , ∅ ⊢ d' :: b ⊗ τ2) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-base Δ d CIFBSnd : ∀{Δ d} → Σ[ d' ∈ iexp ] Σ[ τ1 ∈ typ ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ1 ⊗ b) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-base Δ d CIFBCast : ∀ {Δ d} → Σ[ d' ∈ iexp ] ((d == d' ⟨ ⦇·⦈ ⇒ b ⟩) × (Δ , ∅ ⊢ d' :: ⦇·⦈) × (d' indet) × ((d'' : iexp) (τ' : typ) → d' ≠ (d'' ⟨ τ' ⇒ ⦇·⦈ ⟩)) ) → cif-base Δ d CIFBFailedCast : ∀ {Δ d} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == d' ⟨ τ' ⇒⦇⦈⇏ b ⟩) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ b) ) → cif-base Δ d canonical-indeterminate-forms-base : ∀{Δ d} → Δ , ∅ ⊢ d :: b → d indet → cif-base Δ d canonical-indeterminate-forms-base TAConst () canonical-indeterminate-forms-base (TAVar x₁) () canonical-indeterminate-forms-base (TAAp wt wt₁) (IAp x ind x₁) = CIFBAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-base (TAEHole x x₁) IEHole = CIFBEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-base (TANEHole x wt x₁) (INEHole x₂) = CIFBNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-base (TACast wt x) (ICastHoleGround x₁ ind x₂) = CIFBCast (_ , refl , wt , ind , x₁) canonical-indeterminate-forms-base (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) = CIFBFailedCast (_ , _ , refl , x , x₅ , x₇) canonical-indeterminate-forms-base (TAFst wt) (IFst ind h1 h2) = CIFBFst (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-base (TASnd wt) (ISnd ind h1 h2) = CIFBSnd (_ , _ , refl , wt , ind , h1 , h2) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at arrow type data cif-arr : (Δ : hctx) (d : iexp) (τ1 τ2 : typ) → Set where CIFAEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇⦈⟨ u , σ ⟩) × ((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-arr Δ d τ1 τ2 CIFANEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: (τ1 ==> τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-arr Δ d τ1 τ2 CIFAAp : ∀{d Δ τ1 τ2} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] Σ[ τ2' ∈ typ ] Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ==> τ2)) × (Δ , ∅ ⊢ d2 :: τ2') × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : typ) (d1' : iexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-arr Δ d τ1 τ2 CIFAFst : ∀{Δ d τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == fst d') × (Δ , ∅ ⊢ d' :: (τ1 ==> τ2) ⊗ τ') × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-arr Δ d τ1 τ2 CIFASnd : ∀{Δ d τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊗ (τ1 ==> τ2)) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-arr Δ d τ1 τ2 CIFACast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] Σ[ τ1' ∈ typ ] Σ[ τ2' ∈ typ ] ((d == d' ⟨ (τ1' ==> τ2') ⇒ (τ1 ==> τ2) ⟩) × (Δ , ∅ ⊢ d' :: τ1' ==> τ2') × (d' indet) × ((τ1' ==> τ2') ≠ (τ1 ==> τ2)) ) → cif-arr Δ d τ1 τ2 CIFACastHole : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] ((d == (d' ⟨ ⦇·⦈ ⇒ ⦇·⦈ ==> ⦇·⦈ ⟩)) × (τ1 == ⦇·⦈) × (τ2 == ⦇·⦈) × (Δ , ∅ ⊢ d' :: ⦇·⦈) × (d' indet) × ((d'' : iexp) (τ' : typ) → d' ≠ (d'' ⟨ τ' ⇒ ⦇·⦈ ⟩)) ) → cif-arr Δ d τ1 τ2 CIFAFailedCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == (d' ⟨ τ' ⇒⦇⦈⇏ ⦇·⦈ ==> ⦇·⦈ ⟩) ) × (τ1 == ⦇·⦈) × (τ2 == ⦇·⦈) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ (⦇·⦈ ==> ⦇·⦈)) ) → cif-arr Δ d τ1 τ2 canonical-indeterminate-forms-arr : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d indet → cif-arr Δ d τ1 τ2 canonical-indeterminate-forms-arr (TAVar x₁) () canonical-indeterminate-forms-arr (TALam _ wt) () canonical-indeterminate-forms-arr (TAAp wt wt₁) (IAp x ind x₁) = CIFAAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-arr (TAEHole x x₁) IEHole = CIFAEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-arr (TANEHole x wt x₁) (INEHole x₂) = CIFANEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-arr (TACast wt x) (ICastArr x₁ ind) = CIFACast (_ , _ , _ , _ , _ , refl , wt , ind , x₁) canonical-indeterminate-forms-arr (TACast wt TCHole2) (ICastHoleGround x₁ ind GHole) = CIFACastHole (_ , refl , refl , refl , wt , ind , x₁) canonical-indeterminate-forms-arr (TAFailedCast x x₁ GHole x₃) (IFailedCast x₄ x₅ GHole x₇) = CIFAFailedCast (_ , _ , refl , refl , refl , x , x₅ , x₇) canonical-indeterminate-forms-arr (TAFst wt) (IFst ind h1 h2) = CIFAFst (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-arr (TASnd wt) (ISnd ind h1 h2) = CIFASnd (_ , _ , refl , wt , ind , h1 , h2) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at hole type data cif-hole : (Δ : hctx) (d : iexp) → Set where CIFHEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇⦈⟨ u , σ ⟩) × ((u :: ⦇·⦈ [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-hole Δ d CIFHNEHole : ∀ {Δ d} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: ⦇·⦈ [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-hole Δ d CIFHAp : ∀ {Δ d} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] Σ[ τ2 ∈ typ ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: (τ2 ==> ⦇·⦈)) × (Δ , ∅ ⊢ d2 :: τ2) × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : typ) (d1' : iexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-hole Δ d CIFHFst : ∀{Δ d} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == fst d') × (Δ , ∅ ⊢ d' :: ⦇·⦈ ⊗ τ') × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-hole Δ d CIFHSnd : ∀{Δ d} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊗ ⦇·⦈) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-hole Δ d CIFHCast : ∀ {Δ d} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == d' ⟨ τ' ⇒ ⦇·⦈ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (d' indet) ) → cif-hole Δ d canonical-indeterminate-forms-hole : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇·⦈ → d indet → cif-hole Δ d canonical-indeterminate-forms-hole (TAVar x₁) () canonical-indeterminate-forms-hole (TAAp wt wt₁) (IAp x ind x₁) = CIFHAp (_ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-hole (TAEHole x x₁) IEHole = CIFHEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-hole (TANEHole x wt x₁) (INEHole x₂) = CIFHNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-hole (TACast wt x) (ICastGroundHole x₁ ind) = CIFHCast (_ , _ , refl , wt , x₁ , ind) canonical-indeterminate-forms-hole (TACast wt x) (ICastHoleGround x₁ ind ()) canonical-indeterminate-forms-hole (TAFailedCast x x₁ () x₃) (IFailedCast x₄ x₅ x₆ x₇) canonical-indeterminate-forms-hole (TAFst wt) (IFst ind h1 h2) = CIFHFst (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-hole (TASnd wt) (ISnd ind h1 h2) = CIFHSnd (_ , _ , refl , wt , ind , h1 , h2) -- this type gives somewhat nicer syntax for the output of the canonical -- forms lemma for indeterminates at product type data cif-prod : (Δ : hctx) (d : iexp) (τ1 τ2 : typ) → Set where CIFPEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ Γ ∈ tctx ] ((d == ⦇⦈⟨ u , σ ⟩) × ((u :: (τ1 ⊗ τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-prod Δ d τ1 τ2 CIFPNEHole : ∀{d Δ τ1 τ2} → Σ[ u ∈ Nat ] Σ[ σ ∈ env ] Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] Σ[ Γ ∈ tctx ] ((d == ⦇⌜ d' ⌟⦈⟨ u , σ ⟩) × (Δ , ∅ ⊢ d' :: τ') × (d' final) × ((u :: (τ1 ⊗ τ2) [ Γ ]) ∈ Δ) × (Δ , ∅ ⊢ σ :s: Γ) ) → cif-prod Δ d τ1 τ2 CIFPAp : ∀{d Δ τ1 τ2} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] Σ[ τ2' ∈ typ ] Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] ((d == d1 ∘ d2) × (Δ , ∅ ⊢ d1 :: τ2' ==> (τ1 ⊗ τ2)) × (Δ , ∅ ⊢ d2 :: τ2') × (d1 indet) × (d2 final) × ((τ3 τ4 τ3' τ4' : typ) (d1' : iexp) → d1 ≠ (d1' ⟨ τ3 ==> τ4 ⇒ τ3' ==> τ4' ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPFst : ∀{Δ d τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == fst d') × (Δ , ∅ ⊢ d' :: (τ1 ⊗ τ2) ⊗ τ') × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPSnd : ∀{Δ d τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == snd d') × (Δ , ∅ ⊢ d' :: τ' ⊗ (τ1 ⊗ τ2)) × (d' indet) × (∀{d1 d2} → d' ≠ ⟨ d1 , d2 ⟩) × (∀{d'' τ1 τ2 τ3 τ4} → d' ≠ (d'' ⟨ τ1 ⊗ τ2 ⇒ τ3 ⊗ τ4 ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPPair1 : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] ((d == ⟨ d1 , d2 ⟩) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2) × d1 indet × d2 final ) → cif-prod Δ d τ1 τ2 CIFPPair2 : ∀{Δ d τ1 τ2} → Σ[ d1 ∈ iexp ] Σ[ d2 ∈ iexp ] ((d == ⟨ d1 , d2 ⟩) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2) × d1 final × d2 indet ) → cif-prod Δ d τ1 τ2 CIFPCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ1 ∈ typ ] Σ[ τ2 ∈ typ ] Σ[ τ1' ∈ typ ] Σ[ τ2' ∈ typ ] ((d == d' ⟨ (τ1' ⊗ τ2') ⇒ (τ1 ⊗ τ2) ⟩) × (Δ , ∅ ⊢ d' :: τ1' ⊗ τ2') × (d' indet) × ((τ1' ⊗ τ2') ≠ (τ1 ⊗ τ2)) × ((τ1' ⊗ τ2') ~ (τ1 ⊗ τ2)) ) → cif-prod Δ d τ1 τ2 CIFPCastHole : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] ((d == (d' ⟨ ⦇·⦈ ⇒ ⦇·⦈ ⊗ ⦇·⦈ ⟩)) × (τ1 == ⦇·⦈) × (τ2 == ⦇·⦈) × (Δ , ∅ ⊢ d' :: ⦇·⦈) × (d' indet) × ((d'' : iexp) (τ' : typ) → d' ≠ (d'' ⟨ τ' ⇒ ⦇·⦈ ⟩)) ) → cif-prod Δ d τ1 τ2 CIFPFailedCast : ∀{d Δ τ1 τ2} → Σ[ d' ∈ iexp ] Σ[ τ' ∈ typ ] ((d == (d' ⟨ τ' ⇒⦇⦈⇏ ⦇·⦈ ⊗ ⦇·⦈ ⟩) ) × (τ1 == ⦇·⦈) × (τ2 == ⦇·⦈) × (Δ , ∅ ⊢ d' :: τ') × (τ' ground) × (τ' ≠ (⦇·⦈ ⊗ ⦇·⦈) × d' final)) → cif-prod Δ d τ1 τ2 canonical-indeterminate-forms-prod : ∀{Δ d τ1 τ2 } → Δ , ∅ ⊢ d :: (τ1 ⊗ τ2) → d indet → cif-prod Δ d τ1 τ2 canonical-indeterminate-forms-prod (TAVar x₁) () canonical-indeterminate-forms-prod (TAAp wt wt₁) (IAp x ind x₁) = CIFPAp (_ , _ , _ , _ , _ , refl , wt , wt₁ , ind , x₁ , x) canonical-indeterminate-forms-prod (TAEHole x x₁) IEHole = CIFPEHole (_ , _ , _ , refl , x , x₁) canonical-indeterminate-forms-prod (TANEHole x wt x₁) (INEHole x₂) = CIFPNEHole (_ , _ , _ , _ , _ , refl , wt , x₂ , x , x₁) canonical-indeterminate-forms-prod (TACast wt x) (ICastProd x₁ ind) = CIFPCast (_ , _ , _ , _ , _ , refl , wt , ind , x₁ , x) canonical-indeterminate-forms-prod (TACast wt TCHole2) (ICastHoleGround x₁ ind GProd) = CIFPCastHole (_ , refl , refl , refl , wt , ind , x₁) canonical-indeterminate-forms-prod (TAFailedCast wt x GProd x₂) (IFailedCast x₃ x₄ GProd x₆) = CIFPFailedCast (_ , _ , refl , refl , refl , wt , x₄ , x₆ , x₃) canonical-indeterminate-forms-prod (TAFst wt) (IFst ind h1 h2) = CIFPFst (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-prod (TASnd wt) (ISnd ind h1 h2) = CIFPSnd (_ , _ , refl , wt , ind , h1 , h2) canonical-indeterminate-forms-prod (TAPair wt wt₁) (IPair1 ind x) = CIFPPair1 (_ , _ , refl , wt , wt₁ , ind , x) canonical-indeterminate-forms-prod (TAPair wt wt₁) (IPair2 x ind) = CIFPPair2 (_ , _ , refl , wt , wt₁ , x , ind) canonical-indeterminate-forms-coverage : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d indet → τ ≠ b → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ==> τ2)) → τ ≠ ⦇·⦈ → ((τ1 : typ) (τ2 : typ) → τ ≠ (τ1 ⊗ τ2)) → ⊥ canonical-indeterminate-forms-coverage TAConst () nb na nh canonical-indeterminate-forms-coverage (TAVar x₁) () nb na nh canonical-indeterminate-forms-coverage (TALam _ wt) () nb na nh canonical-indeterminate-forms-coverage {τ = b} (TAAp wt wt₁) (IAp x ind x₁) nb na nh _ = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TAAp wt wt₁) (IAp x ind x₁) nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAAp wt wt₁) (IAp x ind x₁) nb na nh _ = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TAEHole x x₁) IEHole nb na nh _ = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TAEHole x x₁) IEHole nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAEHole x x₁) IEHole nb na nh _ = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TANEHole x wt x₁) (INEHole x₂) nb na nh _ = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TANEHole x wt x₁) (INEHole x₂) nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TANEHole x wt x₁) (INEHole x₂) nb na nh _ = na τ τ₁ refl canonical-indeterminate-forms-coverage (TACast wt x) (ICastArr x₁ ind) nb na nh _ = na _ _ refl canonical-indeterminate-forms-coverage (TACast wt x) (ICastGroundHole x₁ ind) nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = b} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh _ = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh _ = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh _ = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) z _ _ _ = z refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) _ _ z _ = z refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAFailedCast x x₁ x₂ x₃) (IFailedCast x₄ x₅ x₆ x₇) _ z _ _ = z τ τ₁ refl canonical-indeterminate-forms-coverage {τ = b} (TAFst wt) (IFst ind x _) nb na nh np = nb refl canonical-indeterminate-forms-coverage {τ = b} (TASnd wt) (ISnd ind x _) nb na nh np = nb refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TAFst wt) (IFst ind x _) nb na nh np = nh refl canonical-indeterminate-forms-coverage {τ = ⦇·⦈} (TASnd wt) (ISnd ind x _) nb na nh np = nh refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TAFst wt) (IFst ind x _) nb na nh np = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ==> τ₁} (TASnd wt) (ISnd ind x _) nb na nh np = na τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAAp wt wt₁) (IAp x ind x₁) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAEHole x x₁) IEHole nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TANEHole x wt x₁) (INEHole x₂) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TACast wt x) (ICastProd x₁ ind) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TACast wt x) (ICastHoleGround x₁ ind x₂) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAFailedCast wt x x₁ x₂) (IFailedCast x₃ x₄ x₅ x₆) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAFst wt) (IFst ind x _) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TASnd wt) (ISnd ind x _) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAPair wt wt₁) (IPair1 ind x) nb na nh np = np τ τ₁ refl canonical-indeterminate-forms-coverage {τ = τ ⊗ τ₁} (TAPair wt wt₁) (IPair2 x ind) nb na nh np = np τ τ₁ refl
46.816377
160
0.457094
11866cc169686b648f7bf25515516114ab57dafa
64,420
agda
Agda
Cubical/ZCohomology/RingStructure/GradedCommutativity.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/ZCohomology/RingStructure/GradedCommutativity.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
Cubical/ZCohomology/RingStructure/GradedCommutativity.agda
thomas-lamiaux/cubical
58c0b83bb0fed0dc683f3d29b1709effe51c1689
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.RingStructure.GradedCommutativity where open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Transport open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Foundations.Path open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat open import Cubical.Data.Int renaming (_+_ to _ℤ+_ ; _·_ to _ℤ∙_ ; +Comm to +ℤ-comm ; ·Comm to ∙-comm ; +Assoc to ℤ+-assoc ; -_ to -ℤ_) hiding (_+'_ ; +'≡+) open import Cubical.Data.Sigma open import Cubical.Data.Sum open import Cubical.HITs.SetTruncation as ST open import Cubical.HITs.Truncation as T open import Cubical.HITs.S1 hiding (_·_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.Homotopy.Loopspace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.RingLaws open import Cubical.ZCohomology.Properties private variable ℓ : Level open PlusBis natTranspLem : ∀ {ℓ} {A B : ℕ → Type ℓ} {n m : ℕ} (a : A n) (f : (n : ℕ) → (a : A n) → B n) (p : n ≡ m) → f m (subst A p a) ≡ subst B p (f n a) natTranspLem {A = A} {B = B} a f p = sym (substCommSlice A B f p a) transp0₁ : (n : ℕ) → subst coHomK (+'-comm 1 (suc n)) (0ₖ _) ≡ 0ₖ _ transp0₁ zero = refl transp0₁ (suc n) = refl transp0₂ : (n m : ℕ) → subst coHomK (+'-comm (suc (suc n)) (suc m)) (0ₖ _) ≡ 0ₖ _ transp0₂ n zero = refl transp0₂ n (suc m) = refl -- Recurring expressions private ΩKn+1→Ω²Kn+2 : {k : ℕ} → typ (Ω (coHomK-ptd k)) → typ ((Ω^ 2) (coHomK-ptd (suc k))) ΩKn+1→Ω²Kn+2 x = sym (Kn→ΩKn+10ₖ _) ∙∙ cong (Kn→ΩKn+1 _) x ∙∙ Kn→ΩKn+10ₖ _ ΩKn+1→Ω²Kn+2' : {k : ℕ} → Kn→ΩKn+1 k (0ₖ k) ≡ Kn→ΩKn+1 k (0ₖ k) → typ ((Ω^ 2) (coHomK-ptd (suc k))) ΩKn+1→Ω²Kn+2' p = sym (Kn→ΩKn+10ₖ _) ∙∙ p ∙∙ Kn→ΩKn+10ₖ _ Kn→Ω²Kn+2 : {k : ℕ} → coHomK k → typ ((Ω^ 2) (coHomK-ptd (2 + k))) Kn→Ω²Kn+2 x = ΩKn+1→Ω²Kn+2 (Kn→ΩKn+1 _ x) -- Definition of of -ₖ'ⁿ̇*ᵐ -- This definition is introduced to facilite the proofs -ₖ'-helper : {k : ℕ} (n m : ℕ) → isEvenT n ⊎ isOddT n → isEvenT m ⊎ isOddT m → coHomKType k → coHomKType k -ₖ'-helper {k = zero} n m (inl x₁) q x = x -ₖ'-helper {k = zero} n m (inr x₁) (inl x₂) x = x -ₖ'-helper {k = zero} n m (inr x₁) (inr x₂) x = 0 - x -ₖ'-helper {k = suc zero} n m p q base = base -ₖ'-helper {k = suc zero} n m (inl x) q (loop i) = loop i -ₖ'-helper {k = suc zero} n m (inr x) (inl x₁) (loop i) = loop i -ₖ'-helper {k = suc zero} n m (inr x) (inr x₁) (loop i) = loop (~ i) -ₖ'-helper {k = suc (suc k)} n m p q north = north -ₖ'-helper {k = suc (suc k)} n m p q south = north -ₖ'-helper {k = suc (suc k)} n m (inl x) q (merid a i) = (merid a ∙ sym (merid (ptSn (suc k)))) i -ₖ'-helper {k = suc (suc k)} n m (inr x) (inl x₁) (merid a i) = (merid a ∙ sym (merid (ptSn (suc k)))) i -ₖ'-helper {k = suc (suc k)} n m (inr x) (inr x₁) (merid a i) = (merid a ∙ sym (merid (ptSn (suc k)))) (~ i) -ₖ'-gen : {k : ℕ} (n m : ℕ) (p : isEvenT n ⊎ isOddT n) (q : isEvenT m ⊎ isOddT m) → coHomK k → coHomK k -ₖ'-gen {k = zero} = -ₖ'-helper {k = zero} -ₖ'-gen {k = suc k} n m p q = T.map (-ₖ'-helper {k = suc k} n m p q) -- -ₖ'ⁿ̇*ᵐ -ₖ'^_·_ : {k : ℕ} (n m : ℕ) → coHomK k → coHomK k -ₖ'^_·_ {k = k} n m = -ₖ'-gen n m (evenOrOdd n) (evenOrOdd m) -- cohomology version -ₕ'^_·_ : {k : ℕ} {A : Type ℓ} (n m : ℕ) → coHom k A → coHom k A -ₕ'^_·_ n m = ST.map λ f x → (-ₖ'^ n · m) (f x) -- -ₖ'ⁿ̇*ᵐ = -ₖ' for n m odd -ₖ'-gen-inr≡-ₖ' : {k : ℕ} (n m : ℕ) (p : _) (q : _) (x : coHomK k) → -ₖ'-gen n m (inr p) (inr q) x ≡ (-ₖ x) -ₖ'-gen-inr≡-ₖ' {k = zero} n m p q _ = refl -ₖ'-gen-inr≡-ₖ' {k = suc zero} n m p q = T.elim ((λ _ → isOfHLevelTruncPath)) λ { base → refl ; (loop i) → refl} -ₖ'-gen-inr≡-ₖ' {k = suc (suc k)} n m p q = T.elim ((λ _ → isOfHLevelTruncPath)) λ { north → refl ; south → refl ; (merid a i) k → ∣ symDistr (merid (ptSn _)) (sym (merid a)) (~ k) (~ i) ∣ₕ} -- -ₖ'ⁿ̇*ᵐ x = x for n even -ₖ'-gen-inl-left : {k : ℕ} (n m : ℕ) (p : _) (q : _) (x : coHomK k) → -ₖ'-gen n m (inl p) q x ≡ x -ₖ'-gen-inl-left {k = zero} n m p q x = refl -ₖ'-gen-inl-left {k = suc zero} n m p q = T.elim (λ _ → isOfHLevelTruncPath) λ { base → refl ; (loop i) → refl} -ₖ'-gen-inl-left {k = suc (suc k)} n m p q = T.elim (λ _ → isOfHLevelPath (4 + k) (isOfHLevelTrunc (4 + k)) _ _) λ { north → refl ; south → cong ∣_∣ₕ (merid (ptSn _)) ; (merid a i) k → ∣ compPath-filler (merid a) (sym (merid (ptSn _))) (~ k) i ∣ₕ} -- -ₖ'ⁿ̇*ᵐ x = x for m even -ₖ'-gen-inl-right : {k : ℕ} (n m : ℕ) (p : _) (q : _) (x : coHomK k) → -ₖ'-gen n m p (inl q) x ≡ x -ₖ'-gen-inl-right {k = zero} n m (inl x₁) q x = refl -ₖ'-gen-inl-right {k = zero} n m (inr x₁) q x = refl -ₖ'-gen-inl-right {k = suc zero} n m (inl x₁) q = T.elim (λ _ → isOfHLevelTruncPath) λ { base → refl ; (loop i) → refl} -ₖ'-gen-inl-right {k = suc zero} n m (inr x₁) q = T.elim (λ _ → isOfHLevelTruncPath) λ { base → refl ; (loop i) → refl} -ₖ'-gen-inl-right {k = suc (suc k)} n m (inl x₁) q = T.elim (λ _ → isOfHLevelTruncPath) λ { north → refl ; south → cong ∣_∣ₕ (merid (ptSn _)) ; (merid a i) k → ∣ compPath-filler (merid a) (sym (merid (ptSn _))) (~ k) i ∣ₕ} -ₖ'-gen-inl-right {k = suc (suc k)} n m (inr x₁) q = T.elim (λ _ → isOfHLevelTruncPath) λ { north → refl ; south → cong ∣_∣ₕ (merid (ptSn _)) ; (merid a i) k → ∣ compPath-filler (merid a) (sym (merid (ptSn _))) (~ k) i ∣ₕ} -ₖ'-gen² : {k : ℕ} (n m : ℕ) (p : isEvenT n ⊎ isOddT n) (q : isEvenT m ⊎ isOddT m) → (x : coHomK k) → -ₖ'-gen n m p q (-ₖ'-gen n m p q x) ≡ x -ₖ'-gen² {k = zero} n m (inl x₁) q x = refl -ₖ'-gen² {k = zero} n m (inr x₁) (inl x₂) x = refl -ₖ'-gen² {k = zero} n m (inr x₁) (inr x₂) x = cong (pos 0 -_) (-AntiComm (pos 0) x) ∙∙ -AntiComm (pos 0) (-ℤ (x - pos 0)) ∙∙ h x where h : (x : _) → -ℤ (-ℤ (x - pos 0) - pos 0) ≡ x h (pos zero) = refl h (pos (suc n)) = refl h (negsuc n) = refl -ₖ'-gen² {k = suc k} n m (inl x₁) q x i = -ₖ'-gen-inl-left n m x₁ q (-ₖ'-gen-inl-left n m x₁ q x i) i -ₖ'-gen² {k = suc k} n m (inr x₁) (inl x₂) x i = -ₖ'-gen-inl-right n m (inr x₁) x₂ (-ₖ'-gen-inl-right n m (inr x₁) x₂ x i) i -ₖ'-gen² {k = suc k} n m (inr x₁) (inr x₂) x = (λ i → -ₖ'-gen-inr≡-ₖ' n m x₁ x₂ (-ₖ'-gen-inr≡-ₖ' n m x₁ x₂ x i) i) ∙ -ₖ^2 x -ₖ'-genIso : {k : ℕ} (n m : ℕ) (p : isEvenT n ⊎ isOddT n) (q : isEvenT m ⊎ isOddT m) → Iso (coHomK k) (coHomK k) Iso.fun (-ₖ'-genIso {k = k} n m p q) = -ₖ'-gen n m p q Iso.inv (-ₖ'-genIso {k = k} n m p q) = -ₖ'-gen n m p q Iso.rightInv (-ₖ'-genIso {k = k} n m p q) = -ₖ'-gen² n m p q Iso.leftInv (-ₖ'-genIso {k = k} n m p q) = -ₖ'-gen² n m p q -- action of cong on -ₖ'ⁿ̇*ᵐ cong-ₖ'-gen-inr : {k : ℕ} (n m : ℕ) (p : _) (q : _) (P : Path (coHomK (2 + k)) (0ₖ _) (0ₖ _)) → cong (-ₖ'-gen n m (inr p) (inr q)) P ≡ sym P cong-ₖ'-gen-inr {k = k} n m p q P = code≡sym (0ₖ _) P where code : (x : coHomK (2 + k)) → 0ₖ _ ≡ x → x ≡ 0ₖ _ code = T.elim (λ _ → isOfHLevelΠ (4 + k) λ _ → isOfHLevelTruncPath) λ { north → cong (-ₖ'-gen n m (inr p) (inr q)) ; south P → cong ∣_∣ₕ (sym (merid (ptSn _))) ∙ (cong (-ₖ'-gen n m (inr p) (inr q)) P) ; (merid a i) → t a i} where t : (a : S₊ (suc k)) → PathP (λ i → 0ₖ (2 + k) ≡ ∣ merid a i ∣ₕ → ∣ merid a i ∣ₕ ≡ 0ₖ (2 + k)) (cong (-ₖ'-gen n m (inr p) (inr q))) (λ P → cong ∣_∣ₕ (sym (merid (ptSn _))) ∙ (cong (-ₖ'-gen n m (inr p) (inr q)) P)) t a = toPathP (funExt λ P → cong (transport (λ i → ∣ merid a i ∣ ≡ 0ₖ (suc (suc k)))) (cong (cong (-ₖ'-gen n m (inr p) (inr q))) (λ i → (transp (λ j → 0ₖ (suc (suc k)) ≡ ∣ merid a (~ j ∧ ~ i) ∣) i (compPath-filler P (λ j → ∣ merid a (~ j) ∣ₕ) i)))) ∙∙ cong (transport (λ i → ∣ merid a i ∣ ≡ 0ₖ (suc (suc k)))) (congFunct (-ₖ'-gen n m (inr p) (inr q)) P (sym (cong ∣_∣ₕ (merid a)))) ∙∙ (λ j → transp (λ i → ∣ merid a (i ∨ j) ∣ ≡ 0ₖ (suc (suc k))) j (compPath-filler' (cong ∣_∣ₕ (sym (merid a))) (cong (-ₖ'-gen n m (inr p) (inr q)) P ∙ cong (-ₖ'-gen n m (inr p) (inr q)) (sym (cong ∣_∣ₕ (merid a)))) j)) ∙∙ (λ i → sym (cong ∣_∣ₕ (merid a)) ∙ isCommΩK (2 + k) (cong (-ₖ'-gen n m (inr p) (inr q)) P) (cong (-ₖ'-gen n m (inr p) (inr q)) (sym (cong ∣_∣ₕ (merid a)))) i) ∙∙ (λ j → (λ i → ∣ merid a (~ i ∨ j) ∣) ∙ (cong ∣_∣ₕ (compPath-filler' (merid a) (sym (merid (ptSn _))) (~ j)) ∙ (λ i → -ₖ'-gen n m (inr p) (inr q) (P i)))) ∙ sym (lUnit _)) code≡sym : (x : coHomK (2 + k)) → (p : 0ₖ _ ≡ x) → code x p ≡ sym p code≡sym x = J (λ x p → code x p ≡ sym p) refl cong-cong-ₖ'-gen-inr : {k : ℕ} (n m : ℕ) (p : _) (q : _) (P : Square (refl {x = 0ₖ (suc (suc k))}) refl refl refl) → cong (cong (-ₖ'-gen n m (inr p) (inr q))) P ≡ sym P cong-cong-ₖ'-gen-inr n m p q P = rUnit _ ∙∙ (λ k → (λ i → cong-ₖ'-gen-inr n m p q refl (i ∧ k)) ∙∙ (λ i → cong-ₖ'-gen-inr n m p q (P i) k) ∙∙ λ i → cong-ₖ'-gen-inr n m p q refl (~ i ∧ k)) ∙∙ (λ k → transportRefl refl k ∙∙ cong sym P ∙∙ transportRefl refl k) ∙∙ sym (rUnit (cong sym P)) ∙∙ sym (sym≡cong-sym P) Kn→ΩKn+1-ₖ'' : {k : ℕ} (n m : ℕ) (p : _) (q : _) (x : coHomK k) → Kn→ΩKn+1 k (-ₖ'-gen n m (inr p) (inr q) x) ≡ sym (Kn→ΩKn+1 k x) Kn→ΩKn+1-ₖ'' n m p q x = cong (Kn→ΩKn+1 _) (-ₖ'-gen-inr≡-ₖ' n m p q x) ∙ Kn→ΩKn+1-ₖ _ x transpΩ² : {n m : ℕ} (p q : n ≡ m) → (P : _) → transport (λ i → refl {x = 0ₖ (p i)} ≡ refl {x = 0ₖ (p i)}) P ≡ transport (λ i → refl {x = 0ₖ (q i)} ≡ refl {x = 0ₖ (q i)}) P transpΩ² p q P k = subst (λ n → refl {x = 0ₖ n} ≡ refl {x = 0ₖ n}) (isSetℕ _ _ p q k) P -- Some technical lemmas about Kn→Ω²Kn+2 and its interaction with -ₖ'ⁿ̇*ᵐ and transports -- TODO : Check if this can be cleaned up more by having more general lemmas private lem₁ : (n : ℕ) (a : _) → (cong (cong (subst coHomK (+'-comm (suc zero) (suc (suc n))))) (Kn→Ω²Kn+2 ∣ a ∣ₕ)) ≡ ΩKn+1→Ω²Kn+2 (sym (transp0₁ n) ∙∙ cong (subst coHomK (+'-comm (suc zero) (suc n))) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ) ∙∙ transp0₁ n) lem₁ zero a = (λ k i j → transportRefl (Kn→Ω²Kn+2 ∣ a ∣ₕ i j) k) ∙ cong ΩKn+1→Ω²Kn+2 λ k → rUnit (λ i → transportRefl (Kn→ΩKn+1 1 ∣ a ∣ i) (~ k)) k lem₁ (suc n) a = (λ k → transp (λ i → refl {x = 0ₖ (+'-comm 1 (suc (suc (suc n))) (i ∨ ~ k))} ≡ refl {x = 0ₖ (+'-comm 1 (suc (suc (suc n))) (i ∨ ~ k))}) (~ k) (λ i j → transp (λ i → coHomK (+'-comm 1 (suc (suc (suc n))) (i ∧ ~ k))) k (Kn→Ω²Kn+2 ∣ a ∣ₕ i j))) ∙∙ transpΩ² (+'-comm 1 (suc (suc (suc n)))) (cong suc (+'-comm (suc zero) (suc (suc n)))) (Kn→Ω²Kn+2 ∣ a ∣ₕ) ∙∙ sym (natTranspLem {A = λ n → 0ₖ n ≡ 0ₖ n} (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣) (λ _ → ΩKn+1→Ω²Kn+2) (+'-comm 1 (suc (suc n)))) ∙∙ cong ΩKn+1→Ω²Kn+2 (λ k → transp (λ i → 0ₖ (+'-comm (suc zero) (suc (suc n)) (i ∨ k)) ≡ 0ₖ (+'-comm (suc zero) (suc (suc n)) (i ∨ k))) k (λ i → transp (λ i → coHomK (+'-comm (suc zero) (suc (suc n)) (i ∧ k))) (~ k) (Kn→ΩKn+1 _ ∣ a ∣ₕ i))) ∙∙ cong ΩKn+1→Ω²Kn+2 (rUnit (cong (subst coHomK (+'-comm (suc zero) (suc (suc n)))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ))) lem₂ : (n : ℕ) (a : _) (p : _) (q : _) → (cong (cong (-ₖ'-gen (suc (suc n)) (suc zero) p q ∘ (subst coHomK (+'-comm 1 (suc (suc n)))))) (Kn→Ω²Kn+2 (∣ a ∣ₕ))) ≡ ΩKn+1→Ω²Kn+2 (sym (transp0₁ n) ∙∙ cong (subst coHomK (+'-comm (suc zero) (suc n))) (cong (-ₖ'-gen (suc (suc n)) (suc zero) p q) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ)) ∙∙ transp0₁ n) lem₂ n a (inl x) (inr y) = (λ k i j → (-ₖ'-gen-inl-left (suc (suc n)) 1 x (inr y) ( subst coHomK (+'-comm 1 (suc (suc n))) (Kn→Ω²Kn+2 ∣ a ∣ₕ i j))) k) ∙∙ lem₁ n a ∙∙ cong ΩKn+1→Ω²Kn+2 (cong (sym (transp0₁ n) ∙∙_∙∙ transp0₁ n) λ k i → subst coHomK (+'-comm 1 (suc n)) (-ₖ'-gen-inl-left (suc (suc n)) 1 x (inr y) (Kn→ΩKn+1 (suc n) ∣ a ∣ i) (~ k))) lem₂ n a (inr x) (inr y) = cong-cong-ₖ'-gen-inr (suc (suc n)) 1 x y (cong (cong (subst coHomK (+'-comm 1 (suc (suc n))))) (Kn→Ω²Kn+2 ∣ a ∣ₕ)) ∙∙ cong sym (lem₁ n a) ∙∙ λ k → ΩKn+1→Ω²Kn+2 (sym (transp0₁ n) ∙∙ cong (subst coHomK (+'-comm 1 (suc n))) (cong-ₖ'-gen-inr (suc (suc n)) 1 x y (Kn→ΩKn+1 (suc n) ∣ a ∣) (~ k)) ∙∙ transp0₁ n) lem₃ : (n m : ℕ) (q : _) (p : isEvenT (suc (suc n)) ⊎ isOddT (suc (suc n))) (x : _) → (((sym (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) ∙∙ (λ j → -ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (+'-comm (suc (suc m)) (suc n)) (Kn→ΩKn+1 _ x j))) ∙∙ cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)))) ≡ (Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) x))) lem₃ n m q p x = sym (cong-∙∙ (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (sym (transp0₂ m n)) (λ j → subst coHomK (+'-comm (suc (suc m)) (suc n)) (Kn→ΩKn+1 _ x j)) (transp0₂ m n)) ∙ h n m p q x where help : (n m : ℕ) (x : _) → ((sym (transp0₂ m n)) ∙∙ (λ j → subst coHomK (+'-comm (suc (suc m)) (suc n)) (Kn→ΩKn+1 (suc (suc (m + n))) x j)) ∙∙ transp0₂ m n) ≡ Kn→ΩKn+1 (suc (n + suc m)) (subst coHomK (cong suc (+-comm (suc m) n)) x) help zero m x = sym (rUnit _) ∙∙ (λ k i → transp (λ i → coHomK (+'-comm (suc (suc m)) 1 (i ∨ k))) k (Kn→ΩKn+1 _ (transp (λ i → coHomK (predℕ (+'-comm (suc (suc m)) 1 (i ∧ k)))) (~ k) x) i)) ∙∙ cong (Kn→ΩKn+1 _) λ k → subst coHomK (isSetℕ _ _ (cong predℕ (+'-comm (suc (suc m)) 1)) (cong suc (+-comm (suc m) zero)) k) x help (suc n) m x = sym (rUnit _) ∙∙ ((λ k i → transp (λ i → coHomK (+'-comm (suc (suc m)) (suc (suc n)) (i ∨ k))) k (Kn→ΩKn+1 _ (transp (λ i → coHomK (predℕ (+'-comm (suc (suc m)) (suc (suc n)) (i ∧ k)))) (~ k) x) i))) ∙∙ cong (Kn→ΩKn+1 _) (λ k → subst coHomK (isSetℕ _ _ (cong predℕ (+'-comm (suc (suc m)) (suc (suc n)))) (cong suc (+-comm (suc m) (suc n))) k) x) h : (n m : ℕ) (p : isEvenT (suc (suc n)) ⊎ isOddT (suc (suc n))) (q : _) (x : _) → cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (sym (transp0₂ m n) ∙∙ (λ j → subst coHomK (+'-comm (suc (suc m)) (suc n)) (Kn→ΩKn+1 (suc (suc (m + n))) x j)) ∙∙ transp0₂ m n) ≡ Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) x)) h n m (inl p) (inl q) x = (λ k → cong (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inr p) k) (inl q)) (help n m x k)) ∙∙ ((λ k i → -ₖ'-gen-inl-right (suc n) (suc (suc m)) (inr p) q (help n m x i1 i) k)) ∙∙ λ i → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-right (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (inr p) (evenOrOdd (suc n)) i) q (subst coHomK (cong suc (+-comm (suc m) n)) x) (~ i)) h n m (inl p) (inr q) x = (λ k → cong (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inr p) k) (inr q)) (help n m x k)) ∙∙ cong-ₖ'-gen-inr (suc n) (suc (suc m)) p q (help n m x i1) ∙∙ sym (Kn→ΩKn+1-ₖ'' (suc n) (suc (suc m)) p q (subst coHomK (λ i → suc (+-comm (suc m) n i)) x)) ∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (inr p) (evenOrOdd (suc n)) k) (inr q) (subst coHomK (cong suc (+-comm (suc m) n)) x)) h n m (inr p) (inl q) x = (λ k → cong (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inl p) k) (inl q)) (help n m x k)) ∙∙ (λ k i → -ₖ'-gen-inl-left (suc n) (suc (suc m)) p (inl q) (help n m x i1 i) k) ∙∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-right (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) x) (~ k)) h n m (inr p) (inr q) x = (λ k → cong (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inl p) k) (inr q)) (help n m x k)) ∙∙ (λ k i → -ₖ'-gen-inl-left (suc n) (suc (suc m)) p (inr q) (help n m x i1 i) k) ∙∙ cong (Kn→ΩKn+1 (suc (n + suc m))) (sym (-ₖ'-gen-inl-left (suc n) (suc (suc m)) p (inr q) (subst coHomK (λ i → suc (+-comm (suc m) n i)) x))) ∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (inl p) (evenOrOdd (suc n)) k) (inr q) (subst coHomK (cong suc (+-comm (suc m) n)) x)) lem₄ : (n m : ℕ) (q : _) (p : isEvenT (suc (suc n)) ⊎ isOddT (suc (suc n))) (a : _) (b : _) → cong (Kn→ΩKn+1 _) (((sym (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) ∙∙ (λ j → -ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (+'-comm (suc (suc m)) (suc n)) (_⌣ₖ_ {n = suc (suc m)} {m = (suc n)} ∣ merid b j ∣ₕ ∣ a ∣))) ∙∙ cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)))) ≡ cong (Kn→ΩKn+1 _) (Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ₕ ∣ a ∣)))) lem₄ n m q p a b = cong (cong (Kn→ΩKn+1 _)) (lem₃ n m q p (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ₕ ∣ a ∣)) lem₅ : (n m : ℕ) (p : _) (q : _) (a : _) (b : _) → cong (cong (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q ∘ (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))))) (ΩKn+1→Ω²Kn+2 (sym (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m)) ∙∙ (λ i → -ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (+'-comm (suc (suc n)) (suc m)) (_⌣ₖ_ {n = suc (suc n)} {m = suc m} ∣ merid a i ∣ₕ ∣ b ∣ₕ))) ∙∙ cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m))) ≡ Kn→Ω²Kn+2 (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) (_⌣ₖ_ {n = suc n} {m = suc m} ∣ a ∣ₕ ∣ b ∣ₕ)))) lem₅ n m p q a b = cong (cong (cong (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q ∘ (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))))) (cong (sym (Kn→ΩKn+10ₖ _) ∙∙_∙∙ Kn→ΩKn+10ₖ _) (lem₄ m n p q b a)) ∙ help p q (_⌣ₖ_ {n = suc n} {m = suc m} ∣ a ∣ ∣ b ∣) where annoying : (x : _) → cong (cong (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))) (Kn→Ω²Kn+2 (subst coHomK (cong suc (+-comm (suc n) m)) x)) ≡ Kn→Ω²Kn+2 (subst coHomK (cong suc (sym (+-suc n m))) x) annoying x = ((λ k → transp (λ i → refl {x = 0ₖ ((+'-comm (suc (suc m)) (suc (suc n))) (i ∨ ~ k))} ≡ refl {x = 0ₖ ((+'-comm (suc (suc m)) (suc (suc n))) (i ∨ ~ k))}) (~ k) λ i j → transp (λ i → coHomK (+'-comm (suc (suc m)) (suc (suc n)) (i ∧ ~ k))) k (Kn→Ω²Kn+2 (subst coHomK (cong suc (+-comm (suc n) m)) x) i j))) ∙∙ cong (transport (λ i → refl {x = 0ₖ ((+'-comm (suc (suc m)) (suc (suc n))) i)} ≡ refl {x = 0ₖ ((+'-comm (suc (suc m)) (suc (suc n))) i)})) (natTranspLem {A = coHomK} x (λ _ → Kn→Ω²Kn+2) (cong suc (+-comm (suc n) m))) ∙∙ sym (substComposite (λ n → refl {x = 0ₖ n} ≡ refl {x = 0ₖ n}) (cong (suc ∘ suc ∘ suc) (+-comm (suc n) m)) (+'-comm (suc (suc m)) (suc (suc n))) (Kn→Ω²Kn+2 x)) ∙∙ (λ k → subst (λ n → refl {x = 0ₖ n} ≡ refl {x = 0ₖ n}) (isSetℕ _ _ (cong (suc ∘ suc ∘ suc) (+-comm (suc n) m) ∙ (+'-comm (suc (suc m)) (suc (suc n)))) (cong (suc ∘ suc ∘ suc) (sym (+-suc n m))) k) (Kn→Ω²Kn+2 x)) ∙∙ sym (natTranspLem {A = coHomK} x (λ _ → Kn→Ω²Kn+2) (cong suc (sym (+-suc n m)))) help : (p : _) (q : _) (x : _) → cong (cong (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q ∘ subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))) (Kn→Ω²Kn+2 (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (+-comm (suc n) m)) x))) ≡ Kn→Ω²Kn+2 (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) x))) help (inl x) (inl y) z = (λ k i j → -ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inl x) y (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) ((ΩKn+1→Ω²Kn+2 (Kn→ΩKn+1 _ (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (subst coHomK (cong suc (+-comm (suc n) m)) z) k))) i j)) k) ∙∙ annoying z ∙∙ cong Kn→Ω²Kn+2 λ k → (-ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inl x) y (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (subst coHomK (cong suc (sym (+-suc n m))) z) (~ k)) (~ k)) help (inl x) (inr y) z = (λ k i j → -ₖ'-gen-inl-left (suc (suc n)) (suc (suc m)) x (inr y) (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→Ω²Kn+2 (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (subst coHomK (cong suc (+-comm (suc n) m)) z) k) i j)) k) ∙∙ annoying z ∙∙ cong Kn→Ω²Kn+2 (λ k → (-ₖ'-gen-inl-left (suc (suc n)) (suc (suc m)) x (inr y) (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (subst coHomK (cong suc (sym (+-suc n m))) z) (~ k)) (~ k))) help (inr x) (inl y) z = (λ k i j → -ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inr x) y (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→Ω²Kn+2 (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (evenOrOdd (suc m)) (inr y) k) (inr x) (subst coHomK (cong suc (+-comm (suc n) m)) z)) i j)) k) ∙∙ cong (cong (cong (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))) ∘ ΩKn+1→Ω²Kn+2) (Kn→ΩKn+1-ₖ'' (suc m) (suc (suc n)) y x (subst coHomK (cong suc (+-comm (suc n) m)) z)) ∙∙ cong sym (annoying z) ∙∙ cong ΩKn+1→Ω²Kn+2 (sym (Kn→ΩKn+1-ₖ'' (suc m) (suc (suc n)) y x (subst coHomK (cong suc (sym (+-suc n m))) z))) ∙∙ cong Kn→Ω²Kn+2 λ k → (-ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inr x) y (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (evenOrOdd (suc m)) (inr y) (~ k)) (inr x) (subst coHomK (cong suc (sym (+-suc n m))) z)) (~ k)) help (inr x) (inr y) z = (λ k → cong-cong-ₖ'-gen-inr (suc (suc n)) (suc (suc m)) x y (λ i j → subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→Ω²Kn+2 (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (evenOrOdd (suc m)) (inl y) k) (inr x) (subst coHomK (cong suc (+-comm (suc n) m)) z)) i j)) k) ∙∙ cong (sym ∘ cong (cong (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))))) ∘ Kn→Ω²Kn+2) (-ₖ'-gen-inl-left (suc m) (suc (suc n)) y (inr x) (subst coHomK (cong suc (+-comm (suc n) m)) z)) ∙∙ cong sym (annoying z) ∙∙ cong (sym ∘ Kn→Ω²Kn+2) (sym (-ₖ'-gen-inl-left (suc m) (suc (suc n)) y (inr x) (subst coHomK (cong suc (sym (+-suc n m))) z))) ∙∙ cong ΩKn+1→Ω²Kn+2 λ k → (Kn→ΩKn+1-ₖ'' (suc (suc n)) (suc (suc m)) x y (-ₖ'-gen (suc m) (suc (suc n)) ( isPropEvenOrOdd (suc m) (evenOrOdd (suc m)) (inl y) (~ k)) (inr x) (subst coHomK (cong suc (sym (+-suc n m))) z))) (~ k) lem₆ : (n m : ℕ) (p : _) (q : _) (a : _) (b : _) → flipSquare (Kn→Ω²Kn+2 (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ₕ ∣ a ∣)))) ≡ Kn→Ω²Kn+2 (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) (subst coHomK (+'-comm (suc m) (suc n)) (∣ b ∣ₕ ⌣ₖ ∣ a ∣ₕ)))))) lem₆ n m p q a b = sym (sym≡flipSquare (Kn→Ω²Kn+2 (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (cong suc (+-comm (suc m) n)) (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ₕ ∣ a ∣))))) ∙ cong ΩKn+1→Ω²Kn+2 (help₁ (subst coHomK (cong suc (+-comm (suc m) n)) (_⌣ₖ_ {n = suc m} {m = (suc n)} ∣ b ∣ ∣ a ∣)) p q ∙ cong (Kn→ΩKn+1 _) (sym (help₂ (∣ b ∣ ⌣ₖ ∣ a ∣)))) where help₁ : (x : _) (p : _) (q : _) → sym (Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q x)) ≡ Kn→ΩKn+1 (suc (n + suc m)) ((-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) x)))) help₁ z (inl x) (inl y) = cong (λ x → sym (Kn→ΩKn+1 (suc (n + suc m)) x)) (-ₖ'-gen-inl-right (suc n) (suc (suc m)) (evenOrOdd (suc n)) y z) ∙∙ sym (Kn→ΩKn+1-ₖ'' (suc n) (suc m) x y z) ∙∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inl x) y (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (-ₖ'-gen (suc n) (suc m) (isPropEvenOrOdd (suc n) (inr x) (evenOrOdd (suc n)) k) (isPropEvenOrOdd (suc m) (inr y) (evenOrOdd (suc m)) k) z) (~ k)) (~ k)) help₁ z (inl x) (inr y) = (λ k → sym (Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inr x) k) (inr y) z))) ∙∙ cong sym (Kn→ΩKn+1-ₖ'' (suc n) (suc (suc m)) x y z) ∙∙ cong (Kn→ΩKn+1 (suc (n + suc m))) (sym (-ₖ'-gen-inl-right (suc n) (suc m) (inr x) y z)) ∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-left (suc (suc n)) (suc (suc m)) x (inr y) (-ₖ'-gen-inl-right (suc m) (suc (suc n)) (evenOrOdd (suc m)) x (-ₖ'-gen (suc n) (suc m) (isPropEvenOrOdd (suc n) (inr x) (evenOrOdd (suc n)) k) (isPropEvenOrOdd (suc m) (inl y) (evenOrOdd (suc m)) k) z) (~ k)) (~ k)) help₁ z (inr x) (inl y) = cong (λ x → sym (Kn→ΩKn+1 (suc (n + suc m)) x)) (-ₖ'-gen-inl-right (suc n) (suc (suc m)) (evenOrOdd (suc n)) y z) ∙∙ (λ k → Kn→ΩKn+1-ₖ'' (suc m) (suc (suc n)) y x (-ₖ'-gen-inl-left (suc n) (suc m) x (inr y) z (~ k)) (~ k)) ∙∙ λ k → Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-right (suc (suc n)) (suc (suc m)) (inr x) y (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (inr y) (evenOrOdd (suc m)) k) (inr x) (-ₖ'-gen (suc n) (suc m) (isPropEvenOrOdd (suc n) (inl x) (evenOrOdd (suc n)) k) (isPropEvenOrOdd (suc m) (inr y) (evenOrOdd (suc m)) k) z)) (~ k)) help₁ z (inr x) (inr y) = ((λ k → sym (Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen (suc n) (suc (suc m)) (isPropEvenOrOdd (suc n) (evenOrOdd (suc n)) (inl x) k) (inr y) z)))) ∙∙ cong sym (cong (Kn→ΩKn+1 (suc (n + suc m))) (-ₖ'-gen-inl-left (suc n) (suc (suc m)) x (inr y) z)) ∙∙ (λ k → sym (Kn→ΩKn+1 (suc (n + suc m)) (-ₖ'-gen-inl-left (suc m) (suc (suc n)) y (inr x) (-ₖ'-gen-inl-right (suc n) (suc m) (inl x) y z (~ k)) (~ k)))) ∙ λ k → Kn→ΩKn+1-ₖ'' (suc (suc n)) (suc (suc m)) x y (-ₖ'-gen (suc m) (suc (suc n)) (isPropEvenOrOdd (suc m) (inl y) (evenOrOdd (suc m)) k) (inr x) (-ₖ'-gen (suc n) (suc m) (isPropEvenOrOdd (suc n) (inl x) (evenOrOdd (suc n)) k) (isPropEvenOrOdd (suc m) (inl y) (evenOrOdd (suc m)) k) z)) (~ k) help₂ : (x : _) → (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) (subst coHomK (+'-comm (suc m) (suc n)) x))))) ≡ -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) (subst coHomK (cong suc (+-comm (suc m) n)) x))) help₂ x = (λ k → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (transp (λ i → coHomK ((cong suc (sym (+-suc n m))) (i ∨ k))) k (-ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m)) (transp (λ i → coHomK ((cong suc (sym (+-suc n m))) (i ∧ k))) (~ k) (subst coHomK (+'-comm (suc m) (suc n)) x)))))) ∙ cong (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q ∘ -ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p ∘ -ₖ'-gen (suc n) (suc m) (evenOrOdd (suc n)) (evenOrOdd (suc m))) (sym (substComposite coHomK (+'-comm (suc m) (suc n)) ((cong suc (sym (+-suc n m)))) x) ∙ λ k → subst coHomK (isSetℕ _ _ (+'-comm (suc m) (suc n) ∙ cong suc (sym (+-suc n m))) ((cong suc (+-comm (suc m) n))) k) x) lem₇ : (n : ℕ) (a : _) (p : _) (q : _) → ((λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc zero) (evenOrOdd (suc n)) (inr tt) (transp0₁ n (~ i)))) ∙∙ (λ i j → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc zero) (evenOrOdd (suc n)) (inr tt) (subst coHomK (+'-comm (suc zero) (suc n)) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ i))) j) ∙∙ (λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) (suc zero) (evenOrOdd (suc n)) (inr tt) (transp0₁ n i)))) ≡ (cong (Kn→ΩKn+1 (suc (suc (n + zero)))) (sym (transp0₁ n) ∙∙ sym (cong (subst coHomK (+'-comm (suc zero) (suc n))) (cong (-ₖ'-gen (suc (suc n)) (suc zero) p q) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ))) ∙∙ transp0₁ n)) lem₇ zero a (inl x) (inr tt) = (λ k → rUnit ((cong (Kn→ΩKn+1 _) (cong-ₖ'-gen-inr (suc zero) (suc zero) tt tt (λ i → (subst coHomK (+'-comm (suc zero) (suc zero)) (Kn→ΩKn+1 (suc zero) ∣ a ∣ₕ i))) k))) (~ k)) ∙ λ k → ((cong (Kn→ΩKn+1 (suc (suc zero))) (rUnit (λ i → subst coHomK (+'-comm (suc zero) (suc zero)) (-ₖ'-gen-inl-left (suc (suc zero)) (suc zero) tt (inr tt) (Kn→ΩKn+1 (suc zero) ∣ a ∣ₕ (~ i)) (~ k))) k))) lem₇ (suc n) a (inl x) (inr tt) = ((λ k → rUnit (cong (Kn→ΩKn+1 _) (λ i → -ₖ'-gen (suc (suc n)) (suc zero) (isPropEvenOrOdd n (evenOrOdd (suc (suc n))) (inr x) k) (inr tt) (subst coHomK (+'-comm (suc zero) (suc (suc n))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ i)))) (~ k))) ∙∙ (((λ k → ((cong (Kn→ΩKn+1 _) (cong-ₖ'-gen-inr (suc (suc n)) (suc zero) x tt (λ i → (subst coHomK (+'-comm (suc zero) (suc (suc n))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ i))) k)))))) ∙∙ λ k → ((cong (Kn→ΩKn+1 (suc (suc (suc n + zero)))) (rUnit (λ i → subst coHomK (+'-comm (suc zero) (suc (suc n))) (-ₖ'-gen-inl-left (suc (suc (suc n))) (suc zero) x (inr tt) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ (~ i)) (~ k))) k))) lem₇ (suc n) a (inr x) (inr tt) = (λ k → rUnit (λ i j → Kn→ΩKn+1 _ (-ₖ'-gen (suc (suc n)) (suc zero) (isPropEvenOrOdd (suc (suc n)) (evenOrOdd (suc (suc n))) (inl x) k) (inr tt) (subst coHomK (+'-comm (suc zero) (suc (suc n))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ i))) j) (~ k)) ∙∙ (λ k i j → Kn→ΩKn+1 _ (-ₖ'-gen-inl-left (suc (suc n)) (suc zero) x (inr tt) (subst coHomK (+'-comm (suc zero) (suc (suc n))) (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ i)) k) j) ∙∙ λ k → cong (Kn→ΩKn+1 _) (rUnit (sym (cong (subst coHomK (+'-comm (suc zero) (suc (suc n)))) (cong-ₖ'-gen-inr (suc (suc (suc n))) (suc zero) x tt (Kn→ΩKn+1 (suc (suc n)) ∣ a ∣ₕ) (~ k)))) k) -- ∣ a ∣ ⌣ₖ ∣ b ∣ ≡ -ₖ'ⁿ*ᵐ (∣ b ∣ ⌣ₖ ∣ a ∣) for n ≥ 1, m = 1 gradedComm'-elimCase-left : (n : ℕ) (p : _) (q : _) (a : S₊ (suc n)) (b : S¹) → (_⌣ₖ_ {n = suc n} {m = (suc zero)} ∣ a ∣ₕ ∣ b ∣ₕ) ≡ (-ₖ'-gen (suc n) (suc zero) p q) (subst coHomK (+'-comm (suc zero) (suc n)) (_⌣ₖ_ {n = suc zero} {m = suc n} ∣ b ∣ₕ ∣ a ∣ₕ)) gradedComm'-elimCase-left zero (inr tt) (inr tt) a b = proof a b ∙ cong (-ₖ'-gen 1 1 (inr tt) (inr tt)) (sym (transportRefl ((_⌣ₖ_ {n = suc zero} {m = suc zero} ∣ b ∣ ∣ a ∣)))) where help : flipSquare (ΩKn+1→Ω²Kn+2' (λ j i → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop i ∣ₕ ∣ loop j ∣ₕ)) ≡ cong (cong (-ₖ'-gen 1 1 (inr tt) (inr tt))) (ΩKn+1→Ω²Kn+2' (λ i j → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop j ∣ₕ ∣ loop i ∣ₕ)) help = sym (sym≡flipSquare _) ∙ sym (cong-cong-ₖ'-gen-inr 1 1 tt tt (ΩKn+1→Ω²Kn+2' (λ i j → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop j ∣ ∣ loop i ∣))) proof : (a b : S¹) → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ a ∣ₕ ∣ b ∣ₕ ≡ -ₖ'-gen 1 1 (inr tt) (inr tt) (_⌣ₖ_ {n = suc zero} {m = suc zero} ∣ b ∣ ∣ a ∣) proof base base = refl proof base (loop i) k = -ₖ'-gen 1 1 (inr tt) (inr tt) (Kn→ΩKn+10ₖ _ (~ k) i) proof (loop i) base k = Kn→ΩKn+10ₖ _ k i proof (loop i) (loop j) k = hcomp (λ r → λ { (i = i0) → -ₖ'-gen 1 1 (inr tt) (inr tt) (Kn→ΩKn+10ₖ _ (~ k ∨ ~ r) j) ; (i = i1) → -ₖ'-gen 1 1 (inr tt) (inr tt) (Kn→ΩKn+10ₖ _ (~ k ∨ ~ r) j) ; (j = i0) → Kn→ΩKn+10ₖ _ (k ∨ ~ r) i ; (j = i1) → Kn→ΩKn+10ₖ _ (k ∨ ~ r) i ; (k = i0) → doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (λ j i → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop i ∣ₕ ∣ loop j ∣ₕ) (Kn→ΩKn+10ₖ _) (~ r) j i ; (k = i1) → (-ₖ'-gen 1 1 (inr tt) (inr tt) (doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (λ i j → _⌣ₖ_ {n = suc zero} {m = suc zero} ∣ loop j ∣ₕ ∣ loop i ∣ₕ) (Kn→ΩKn+10ₖ _) (~ r) i j))}) (help k i j) gradedComm'-elimCase-left (suc n) p q north b = cong (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ b ∣ₕ)) gradedComm'-elimCase-left (suc n) p q south b = cong (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) ((sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ b ∣ₕ)) ∙ λ i → ∣ b ∣ ⌣ₖ ∣ merid (ptSn (suc n)) i ∣ₕ) gradedComm'-elimCase-left (suc n) p q (merid a i) base k = hcomp (λ j → λ {(i = i0) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (0ₖ _) ; (i = i1) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (compPath-filler (sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ base ∣ₕ)) (λ i → ∣ base ∣ ⌣ₖ ∣ merid a i ∣ₕ) j k) ; (k = i0) → _⌣ₖ_ {n = suc (suc n)} {m = suc zero} ∣ merid a i ∣ₕ ∣ base ∣ₕ ; (k = i1) → -ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (∣ base ∣ₕ ⌣ₖ ∣ merid a i ∣ₕ))}) (hcomp (λ j → λ {(i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (k = i0) → (sym (Kn→ΩKn+10ₖ _) ∙ (λ j → Kn→ΩKn+1 _ (sym (gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a base ∙ cong (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt)) (transp0₁ n)) j))) j i ; (k = i1) → ∣ north ∣}) ∣ north ∣) gradedComm'-elimCase-left (suc n) p q (merid a i) (loop j) k = hcomp (λ r → λ { (i = i0) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ (loop j) ∣ₕ) k) ; (i = i1) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) (compPath-filler (sym (⌣ₖ-0ₖ _ (suc (suc n)) ∣ (loop j) ∣ₕ)) (λ i → ∣ loop j ∣ ⌣ₖ ∣ merid (ptSn (suc n)) i ∣ₕ) r k) ; (k = i0) → _⌣ₖ_ {n = suc (suc n)} {m = suc zero} ∣ merid a i ∣ₕ ∣ loop j ∣ₕ ; (k = i1) → -ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (_⌣ₖ_ {n = suc zero} {m = suc (suc n)} ∣ loop j ∣ₕ ∣ compPath-filler (merid a) (sym (merid (ptSn (suc n)))) (~ r) i ∣ₕ))}) (hcomp (λ r → λ { (i = i0) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) ∣ rCancel (merid (ptSn (suc (suc n)))) (~ k ∧ r) j ∣ ; (i = i1) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ (subst coHomK (+'-comm 1 (suc (suc n))))) ∣ rCancel (merid (ptSn (suc (suc n)))) (~ k ∧ r) j ∣ ; (k = i0) → help₂ r i j ; (k = i1) → -ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (_⌣ₖ_ {n = suc zero} {m = suc (suc n)} ∣ loop j ∣ₕ (Kn→ΩKn+1 _ ∣ a ∣ₕ i)))}) (-ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (_⌣ₖ_ {n = suc zero} {m = suc (suc n)} ∣ loop j ∣ₕ (Kn→ΩKn+1 _ ∣ a ∣ₕ i))))) where P : Path _ (Kn→ΩKn+1 (suc (suc (n + 0))) (0ₖ _)) (Kn→ΩKn+1 (suc (suc (n + 0))) (_⌣ₖ_ {n = (suc n)} {m = suc zero} ∣ a ∣ ∣ base ∣)) P i = Kn→ΩKn+1 (suc (suc (n + 0))) ((sym (gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a base ∙ cong (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt)) (transp0₁ n)) i)) help₁ : (P ∙∙ ((λ i j → _⌣ₖ_ {n = suc (suc n)} {m = suc zero} ∣ merid a j ∣ₕ ∣ loop i ∣ₕ)) ∙∙ sym P) ≡ ((λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (transp0₁ n (~ i)))) ∙∙ (λ i j → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (subst coHomK (+'-comm 1 (suc n)) (∣ loop i ∣ₕ ⌣ₖ ∣ a ∣ₕ))) j) ∙∙ (λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (transp0₁ n i)))) help₁ k i j = ((λ i → (Kn→ΩKn+1 (suc (suc (n + 0)))) (compPath-filler' ((gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a base)) (cong (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt)) (transp0₁ n)) (~ k) (~ i))) ∙∙ (λ i j → (Kn→ΩKn+1 _ (gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a (loop i) k) j)) ∙∙ λ i → (Kn→ΩKn+1 (suc (suc (n + 0)))) (compPath-filler' ((gradedComm'-elimCase-left n (evenOrOdd (suc n)) (inr tt) a base)) (cong (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt)) (transp0₁ n)) (~ k) i)) i j help₂ : I → I → I → coHomK _ help₂ r i j = hcomp (λ k → λ { (i = i0) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ subst coHomK (+'-comm 1 (suc (suc n)))) ∣ rCancel (merid (ptSn (suc (suc n)))) (~ k ∨ r) j ∣ ; (i = i1) → (-ₖ'-gen (suc (suc n)) 1 p q ∘ subst coHomK (+'-comm 1 (suc (suc n)))) ∣ rCancel (merid (ptSn (suc (suc n)))) (~ k ∨ r) j ∣ ; (j = i0) → compPath-filler (sym (Kn→ΩKn+10ₖ (suc (suc (n + 0))))) P k r i ; (j = i1) → compPath-filler (sym (Kn→ΩKn+10ₖ (suc (suc (n + 0))))) P k r i ; (r = i0) → -ₖ'-gen (suc (suc n)) 1 p q (subst coHomK (+'-comm 1 (suc (suc n))) (doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (λ i j → _⌣ₖ_ {n = suc zero} {m = suc (suc n)} ∣ loop j ∣ₕ (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ i)) (Kn→ΩKn+10ₖ _) (~ k) i j)) ; (r = i1) → doubleCompPath-filler P (λ i j → _⌣ₖ_ {n = suc (suc n)} {m = suc zero} ∣ merid a j ∣ₕ ∣ loop i ∣ₕ) (sym P) (~ k) j i}) (hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → (Kn→ΩKn+10ₖ (suc (suc (n + 0)))) (~ r) i ; (j = i1) → (Kn→ΩKn+10ₖ (suc (suc (n + 0)))) (~ r) i ; (r = i0) → lem₂ n a p q (~ k) i j ; (r = i1) → help₁ (~ k) j i}) (hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+10ₖ (suc (suc (n + 0))) (~ r) i ; (j = i1) → Kn→ΩKn+10ₖ (suc (suc (n + 0))) (~ r) i ; (r = i0) → flipSquare≡cong-sym (flipSquare (ΩKn+1→Ω²Kn+2 (sym (transp0₁ n) ∙∙ cong (subst coHomK (+'-comm 1 (suc n))) (cong (-ₖ'-gen (suc (suc n)) 1 p q) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ)) ∙∙ transp0₁ n))) (~ k) i j ; (r = i1) → ((λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (transp0₁ n (~ i)))) ∙∙ (λ i j → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (subst coHomK (+'-comm 1 (suc n)) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ i))) j) ∙∙ (λ i → Kn→ΩKn+1 _ (-ₖ'-gen (suc n) 1 (evenOrOdd (suc n)) (inr tt) (transp0₁ n i)))) j i}) (hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+10ₖ (suc (suc (n + 0))) (~ r ∧ k) i ; (j = i1) → Kn→ΩKn+10ₖ (suc (suc (n + 0))) (~ r ∧ k) i ; (r = i0) → doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (cong (Kn→ΩKn+1 (suc (suc (n + 0)))) (sym (transp0₁ n) ∙∙ sym (cong (subst coHomK (+'-comm 1 (suc n))) (cong (-ₖ'-gen (suc (suc n)) 1 p q) (Kn→ΩKn+1 (suc n) ∣ a ∣ₕ))) ∙∙ transp0₁ n)) (Kn→ΩKn+10ₖ _) k j i ; (r = i1) → lem₇ n a p q (~ k) j i}) (lem₇ n a p q i1 j i)))) -- ∣ a ∣ ⌣ₖ ∣ b ∣ ≡ -ₖ'ⁿ*ᵐ (∣ b ∣ ⌣ₖ ∣ a ∣) for all n, m ≥ 1 gradedComm'-elimCase : (k n m : ℕ) (term : n + m ≡ k) (p : _) (q : _) (a : _) (b : _) → (_⌣ₖ_ {n = suc n} {m = (suc m)} ∣ a ∣ₕ ∣ b ∣ₕ) ≡ (-ₖ'-gen (suc n) (suc m) p q) (subst coHomK (+'-comm (suc m) (suc n)) (_⌣ₖ_ {n = suc m} {m = suc n} ∣ b ∣ₕ ∣ a ∣ₕ)) gradedComm'-elimCase k zero zero term p q a b = gradedComm'-elimCase-left zero p q a b gradedComm'-elimCase k zero (suc m) term (inr tt) q a b = help q ∙ sym (cong (-ₖ'-gen 1 (suc (suc m)) (inr tt) q ∘ (subst coHomK (+'-comm (suc (suc m)) 1))) (gradedComm'-elimCase-left (suc m) q (inr tt) b a)) where help : (q : _) → ∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ ≡ -ₖ'-gen 1 (suc (suc m)) (inr tt) q (subst coHomK (+'-comm (suc (suc m)) 1) (-ₖ'-gen (suc (suc m)) 1 q (inr tt) (subst coHomK (+'-comm 1 (suc (suc m))) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)))) help (inl x) = (sym (transportRefl _) ∙ (λ i → subst coHomK (isSetℕ _ _ refl (+'-comm 1 (suc (suc m)) ∙ +'-comm (suc (suc m)) 1) i) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ))) ∙∙ substComposite coHomK (+'-comm 1 (suc (suc m))) (+'-comm (suc (suc m)) 1) ((∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)) ∙∙ λ i → -ₖ'-gen-inl-right (suc zero) (suc (suc m)) (inr tt) x ((subst coHomK (+'-comm (suc (suc m)) 1) (-ₖ'-gen-inl-left (suc (suc m)) 1 x (inr tt) (subst coHomK (+'-comm 1 (suc (suc m))) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)) (~ i)))) (~ i) help (inr x) = (sym (transportRefl _) ∙∙ (λ k → subst coHomK (isSetℕ _ _ refl (+'-comm 1 (suc (suc m)) ∙ +'-comm (suc (suc m)) 1) k) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)) ∙∙ sym (-ₖ^2 (subst coHomK (+'-comm 1 (suc (suc m)) ∙ +'-comm (suc (suc m)) 1) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ)))) ∙∙ (λ i → -ₖ'-gen-inr≡-ₖ' 1 (suc (suc m)) tt x (-ₖ'-gen-inr≡-ₖ' (suc (suc m)) 1 x tt (substComposite coHomK (+'-comm 1 (suc (suc m))) (+'-comm (suc (suc m)) 1) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ) i) (~ i)) (~ i)) ∙∙ λ i → (-ₖ'-gen 1 (suc (suc m)) (inr tt) (inr x) (transp (λ j → coHomK ((+'-comm (suc (suc m)) 1) (j ∨ ~ i))) (~ i) (-ₖ'-gen (suc (suc m)) 1 (inr x) (inr tt) (transp (λ j → coHomK ((+'-comm (suc (suc m)) 1) (j ∧ ~ i))) i ((subst coHomK (+'-comm 1 (suc (suc m))) (∣ a ∣ₕ ⌣ₖ ∣ b ∣ₕ))))))) gradedComm'-elimCase k (suc n) zero term p q a b = gradedComm'-elimCase-left (suc n) p q a b gradedComm'-elimCase zero (suc n) (suc m) term p q a b = ⊥.rec (snotz (sym (+-suc n m) ∙ cong predℕ term)) gradedComm'-elimCase (suc zero) (suc n) (suc m) term p q a b = ⊥.rec (snotz (sym (+-suc n m) ∙ cong predℕ term)) gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q north north = refl gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q north south = refl gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q north (merid a i) r = -ₖ'-gen (suc (suc n)) (suc (suc m)) p q ( (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))) ((sym (Kn→ΩKn+10ₖ _) ∙ cong (Kn→ΩKn+1 _) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (sym (transp0₂ n m)) ∙ sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p a north))) r i)) gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q south north = refl gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q south south = refl gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q south (merid a i) r = -ₖ'-gen (suc (suc n)) (suc (suc m)) p q ( (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))) ((sym (Kn→ΩKn+10ₖ _) ∙ cong (Kn→ΩKn+1 _) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (sym (transp0₂ n m)) ∙ sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p a south))) r i)) gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q (merid a i) north r = (cong (Kn→ΩKn+1 (suc (suc (n + suc m)))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a north ∙ cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) ∙' Kn→ΩKn+10ₖ _) r i gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q (merid a i) south r = (cong (Kn→ΩKn+1 (suc (suc (n + suc m)))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a south ∙ cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) ∙' Kn→ΩKn+10ₖ _) r i gradedComm'-elimCase (suc (suc k)) (suc n) (suc m) term p q (merid a i) (merid b j) r = hcomp (λ l → λ { (i = i0) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q ( (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))) ((compPath-filler (sym (Kn→ΩKn+10ₖ _)) (cong (Kn→ΩKn+1 _) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (sym (transp0₂ n m)) ∙ sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b north))) l r j))) ; (i = i1) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q ( (subst coHomK (+'-comm (suc (suc m)) (suc (suc n)))) ((compPath-filler (sym (Kn→ΩKn+10ₖ _)) (cong (Kn→ΩKn+1 _) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (sym (transp0₂ n m)) ∙ sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b south))) l r j))) ; (r = i0) → help₂ l i j ; (r = i1) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (help₁ l i j))}) (hcomp (λ l → λ { (i = i0) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→ΩKn+10ₖ _ (~ r ∨ ~ l) j)) ; (i = i1) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (Kn→ΩKn+10ₖ _ (~ r ∨ ~ l) j)) ; (j = i0) → Kn→ΩKn+10ₖ _ r i ; (j = i1) → Kn→ΩKn+10ₖ _ r i ; (r = i0) → lem₄ n m q p a b (~ l) j i ; (r = i1) → -ₖ'-gen (suc (suc n)) (suc (suc m)) p q (subst coHomK (+'-comm (suc (suc m)) (suc (suc n))) (doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (λ i j → Kn→ΩKn+1 _ ((sym (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m)) ∙∙ (λ i → -ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (+'-comm (suc (suc n)) (suc m)) (_⌣ₖ_ {n = suc (suc n)} {m = suc m} ∣ merid a i ∣ₕ ∣ b ∣ₕ))) ∙∙ cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m)) i) j) (Kn→ΩKn+10ₖ _) (~ l) i j))}) (hcomp (λ l → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+10ₖ _ r i ; (j = i1) → Kn→ΩKn+10ₖ _ r i ; (r = i0) → lem₄ n m q p a b i1 j i ; (r = i1) → lem₅ n m p q a b (~ l) i j}) (hcomp (λ l → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+10ₖ _ (r ∨ ~ l) i ; (j = i1) → Kn→ΩKn+10ₖ _ (r ∨ ~ l) i ; (r = i0) → doubleCompPath-filler (sym (Kn→ΩKn+10ₖ _)) (lem₄ n m q p a b i1) (Kn→ΩKn+10ₖ _) (~ l) j i ; (r = i1) → Kn→Ω²Kn+2 (-ₖ'-gen (suc (suc n)) (suc (suc m)) p q (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (cong suc (sym (+-suc n m))) (gradedComm'-elimCase k n m (+-comm n m ∙∙ cong predℕ (+-comm (suc m) n) ∙∙ cong (predℕ ∘ predℕ) term) (evenOrOdd (suc n)) (evenOrOdd (suc m)) a b (~ l))))) i j}) (lem₆ n m p q a b r i j)))) where help₁ : I → I → I → coHomK _ help₁ l i j = Kn→ΩKn+1 _ (hcomp (λ r → λ { (i = i0) → compPath-filler' (cong ((-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p)) (sym (transp0₂ n m))) (sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b north)) r l ; (i = i1) → compPath-filler' (cong ((-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p)) (sym (transp0₂ n m))) (sym (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b south)) r l ; (l = i0) → doubleCompPath-filler (sym (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m))) (λ i → -ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p (subst coHomK (+'-comm (suc (suc n)) (suc m)) (_⌣ₖ_ {n = suc (suc n)} {m = suc m} ∣ merid a i ∣ₕ ∣ b ∣ₕ))) (cong (-ₖ'-gen (suc m) (suc (suc n)) (evenOrOdd (suc m)) p) (transp0₂ n m)) r i ; (l = i1) → _⌣ₖ_ {n = suc m} {m = suc (suc n)} ∣ b ∣ₕ ∣ merid a i ∣ₕ}) (gradedComm'-elimCase (suc k) m (suc n) (+-suc m n ∙ +-comm (suc m) n ∙ cong predℕ term) (evenOrOdd (suc m)) p b (merid a i) (~ l))) j help₂ : I → I → I → coHomK _ help₂ l i j = hcomp (λ r → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+1 (suc (suc (n + suc m))) (compPath-filler (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a north) (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) r (~ l)) i ; (j = i1) → Kn→ΩKn+1 (suc (suc (n + suc m))) (compPath-filler (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a south) (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) r (~ l)) i ; (l = i0) → Kn→ΩKn+1 _ (doubleCompPath-filler (sym (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n))) (λ j → -ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q (subst coHomK (+'-comm (suc (suc m)) (suc n)) (_⌣ₖ_ {n = suc (suc m)} {m = (suc n)} ∣ merid b j ∣ₕ ∣ a ∣))) (cong (-ₖ'-gen (suc n) (suc (suc m)) (evenOrOdd (suc n)) q) (transp0₂ m n)) r j) i ; (l = i1) → Kn→ΩKn+1 _ (_⌣ₖ_ {n = (suc n)} {m = suc (suc m)} ∣ a ∣ ∣ merid b j ∣ₕ) i}) (hcomp (λ r → λ { (i = i0) → ∣ north ∣ ; (i = i1) → ∣ north ∣ ; (j = i0) → Kn→ΩKn+1 (suc (suc (n + suc m))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a north (~ l ∨ ~ r)) i ; (j = i1) → Kn→ΩKn+1 (suc (suc (n + suc m))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a south (~ l ∨ ~ r)) i ; (l = i0) → Kn→ΩKn+1 (suc (suc (n + suc m))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a (merid b j) i1) i ; (l = i1) → Kn→ΩKn+1 _ (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a (merid b j) (~ r)) i}) (Kn→ΩKn+1 (suc (suc (n + suc m))) (gradedComm'-elimCase (suc k) n (suc m) (cong predℕ term) (evenOrOdd (suc n)) q a (merid b j) i1) i)) private coherence-transp : (n m : ℕ) (p : _) (q : _) → -ₖ'-gen (suc n) (suc m) p q (subst coHomK (+'-comm (suc m) (suc n)) (0ₖ (suc m +' suc n))) ≡ 0ₖ _ coherence-transp zero zero p q = refl coherence-transp zero (suc m) p q = refl coherence-transp (suc n) zero p q = refl coherence-transp (suc n) (suc m) p q = refl gradedComm'-⌣ₖ∙ : (n m : ℕ) (p : _) (q : _) (a : _) → ⌣ₖ∙ (suc n) (suc m) a ≡ ((λ b → -ₖ'-gen (suc n) (suc m) p q (subst coHomK (+'-comm (suc m) (suc n)) (b ⌣ₖ a))) , (cong (-ₖ'-gen (suc n) (suc m) p q) (cong (subst coHomK (+'-comm (suc m) (suc n))) (0ₖ-⌣ₖ (suc m) (suc n) a)) ∙ coherence-transp n m p q)) gradedComm'-⌣ₖ∙ n m p q = T.elim (λ _ → isOfHLevelPath (3 + n) ((isOfHLevel↑∙ (suc n) m)) _ _) λ a → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ b → funExt⁻ (cong fst (f₁≡f₂ b)) a) where f₁ : coHomK (suc m) → S₊∙ (suc n) →∙ coHomK-ptd (suc n +' suc m) fst (f₁ b) a = _⌣ₖ_ {n = suc n} {m = suc m} ∣ a ∣ₕ b snd (f₁ b) = 0ₖ-⌣ₖ (suc n) (suc m) b f₂ : coHomK (suc m) → S₊∙ (suc n) →∙ coHomK-ptd (suc n +' suc m) fst (f₂ b) a = -ₖ'-gen (suc n) (suc m) p q (subst coHomK (+'-comm (suc m) (suc n)) (_⌣ₖ_ {n = suc m} {m = suc n} b ∣ a ∣ₕ)) snd (f₂ b) = (cong (-ₖ'-gen (suc n) (suc m) p q) (cong (subst coHomK (+'-comm (suc m) (suc n))) (⌣ₖ-0ₖ (suc m) (suc n) b)) ∙ coherence-transp n m p q) f₁≡f₂ : (b : _) → f₁ b ≡ f₂ b f₁≡f₂ = T.elim (λ _ → isOfHLevelPath (3 + m) (subst (isOfHLevel (3 + m)) (λ i → S₊∙ (suc n) →∙ coHomK-ptd (+'-comm (suc n) (suc m) (~ i))) (isOfHLevel↑∙' (suc m) n)) _ _) λ b → →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ a → gradedComm'-elimCase (n + m) n m refl p q a b) -- Finally, graded commutativity: gradedComm'-⌣ₖ : (n m : ℕ) (a : coHomK n) (b : coHomK m) → a ⌣ₖ b ≡ (-ₖ'^ n · m) (subst coHomK (+'-comm m n) (b ⌣ₖ a)) gradedComm'-⌣ₖ zero zero a b = sym (transportRefl _) ∙ cong (transport refl) (comm-·₀ a b) gradedComm'-⌣ₖ zero (suc m) a b = sym (transportRefl _) ∙∙ (λ k → subst coHomK (isSetℕ _ _ refl (+'-comm (suc m) zero) k) (b ⌣ₖ a)) ∙∙ sym (-ₖ'-gen-inl-left zero (suc m) tt (evenOrOdd (suc m)) (subst coHomK (+'-comm (suc m) zero) (b ⌣ₖ a))) gradedComm'-⌣ₖ (suc n) zero a b = sym (transportRefl _) ∙∙ ((λ k → subst coHomK (isSetℕ _ _ refl (+'-comm zero (suc n)) k) (b ⌣ₖ a))) ∙∙ sym (-ₖ'-gen-inl-right (suc n) zero (evenOrOdd (suc n)) tt (subst coHomK (+'-comm zero (suc n)) (b ⌣ₖ a))) gradedComm'-⌣ₖ (suc n) (suc m) a b = funExt⁻ (cong fst (gradedComm'-⌣ₖ∙ n m (evenOrOdd (suc n)) (evenOrOdd (suc m)) a)) b gradedComm'-⌣ : {A : Type ℓ} (n m : ℕ) (a : coHom n A) (b : coHom m A) → a ⌣ b ≡ (-ₕ'^ n · m) (subst (λ n → coHom n A) (+'-comm m n) (b ⌣ a)) gradedComm'-⌣ n m = ST.elim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → cong ∣_∣₂ (funExt (λ x → gradedComm'-⌣ₖ n m (f x) (g x) ∙ cong ((-ₖ'^ n · m) ∘ (subst coHomK (+'-comm m n))) λ i → g (transportRefl x (~ i)) ⌣ₖ f (transportRefl x (~ i)))) ----------------------------------------------------------------------------- -- The previous code introduces another - to facilitate proof -- This a reformulation with the usual -ₕ' definition (the one of the ring) of the results -ₕ^-gen : {k : ℕ} → {A : Type ℓ} → (n m : ℕ) → (p : isEvenT n ⊎ isOddT n) → (q : isEvenT m ⊎ isOddT m) → (a : coHom k A) → coHom k A -ₕ^-gen n m (inl p) q a = a -ₕ^-gen n m (inr p) (inl q) a = a -ₕ^-gen n m (inr p) (inr q) a = -ₕ a -ₕ^_·_ : {k : ℕ} → {A : Type ℓ} → (n m : ℕ) → (a : coHom k A) → coHom k A -ₕ^_·_ n m a = -ₕ^-gen n m (evenOrOdd n) (evenOrOdd m) a -ₕ^-gen-eq : ∀ {ℓ} {k : ℕ} {A : Type ℓ} (n m : ℕ) → (p : isEvenT n ⊎ isOddT n) (q : isEvenT m ⊎ isOddT m) → (x : coHom k A) → -ₕ^-gen n m p q x ≡ (ST.map λ f x → (-ₖ'-gen n m p q) (f x)) x -ₕ^-gen-eq {k = k} n m (inl p) q = ST.elim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ x → sym (-ₖ'-gen-inl-left n m p q (f x))) -ₕ^-gen-eq {k = k} n m (inr p) (inl q) = ST.elim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ z → sym (-ₖ'-gen-inl-right n m (inr p) q (f z))) -ₕ^-gen-eq {k = k} n m (inr p) (inr q) = ST.elim (λ _ → isSetPathImplicit) λ f → cong ∣_∣₂ (funExt λ z → sym (-ₖ'-gen-inr≡-ₖ' n m p q (f z))) -ₕ^-eq : ∀ {ℓ} {k : ℕ} {A : Type ℓ} (n m : ℕ) → (a : coHom k A) → (-ₕ^ n · m) a ≡ (-ₕ'^ n · m) a -ₕ^-eq n m a = -ₕ^-gen-eq n m (evenOrOdd n) (evenOrOdd m) a gradedComm-⌣ : ∀ {ℓ} {A : Type ℓ} (n m : ℕ) (a : coHom n A) (b : coHom m A) → a ⌣ b ≡ (-ₕ^ n · m) (subst (λ n → coHom n A) (+'-comm m n) (b ⌣ a)) gradedComm-⌣ n m a b = (gradedComm'-⌣ n m a b) ∙ (sym (-ₕ^-eq n m (subst (λ n₁ → coHom n₁ _) (+'-comm m n) (b ⌣ a))))
56.80776
149
0.424604
0d42c109f2de89cbd199b974467e206ccd8ade6f
32,093
agda
Agda
Cubical/ZCohomology/Properties.agda
ecavallo/cubical
b1d105aeeab1ba9888394c6a919b99a476390b7b
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Properties.agda
ecavallo/cubical
b1d105aeeab1ba9888394c6a919b99a476390b7b
[ "MIT" ]
null
null
null
Cubical/ZCohomology/Properties.agda
ecavallo/cubical
b1d105aeeab1ba9888394c6a919b99a476390b7b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Properties where {- This module contains: 1. direct proofs of connectedness of Kn and ΩKn 2. Induction principles for cohomology groups of pointed types 3. Equivalence between cohomology of A and reduced cohomology of (A + 1) 4. Equivalence between cohomology and reduced cohomology for dimension ≥ 1 5. Encode-decode proof of Kₙ ≃ ΩKₙ₊₁ and proofs that this equivalence and its inverse are morphisms 6. A proof of coHomGr ≅ coHomGrΩ 7. A locked (non-reducing) version of Kₙ ≃ ΩKₙ₊₁ 8. Some HLevel lemmas used for the cup product -} open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.HITs.S1 hiding (encode ; decode ; _·_) open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙) open import Cubical.Foundations.Univalence open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; isSetSetTrunc to §) open import Cubical.Data.Int renaming (_+_ to _ℤ+_) hiding (-_) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; map2 to trMap2; rec to trRec ; elim3 to trElim3) open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.Algebra.Group hiding (Unit ; ℤ) open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.Sum.Base hiding (map) open import Cubical.Functions.Morphism open import Cubical.Data.Sigma open Iso renaming (inv to inv') private variable ℓ ℓ' : Level ------------------- Connectedness --------------------- is2ConnectedKn : (n : ℕ) → isConnected 2 (coHomK (suc n)) is2ConnectedKn zero = ∣ ∣ base ∣ ∣ , trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelSuc 2 (isOfHLevelTrunc 2)) _ _) (toPropElim (λ _ → isOfHLevelTrunc 2 _ _) refl)) is2ConnectedKn (suc n) = ∣ ∣ north ∣ ∣ , trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _) (trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isOfHLevelTrunc 2 _ _)) (suspToPropElim (ptSn (suc n)) (λ _ → isOfHLevelTrunc 2 _ _) refl)) isConnectedKn : (n : ℕ) → isConnected (2 + n) (coHomK (suc n)) isConnectedKn n = isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (2 + n) 1)) (sphereConnected (suc n)) -- direct proof of connectedness of ΩKₙ₊₁ not relying on the equivalence ∥ a ≡ b ∥ₙ ≃ (∣ a ∣ₙ₊₁ ≡ ∣ b ∣ₙ₊₁) isConnectedPathKn : (n : ℕ) (x y : (coHomK (suc n))) → isConnected (suc n) (x ≡ y) isConnectedPathKn n = trElim (λ _ → isProp→isOfHLevelSuc (2 + n) (isPropΠ λ _ → isPropIsContr)) (sphereElim _ (λ _ → isProp→isOfHLevelSuc n (isPropΠ λ _ → isPropIsContr)) λ y → isContrRetractOfConstFun {B = (hLevelTrunc (suc n) (ptSn (suc n) ≡ ptSn (suc n)))} ∣ refl ∣ (fun⁻ n y , trElim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _) (J (λ y p → fun⁻ n y _ ≡ _) (funExt⁻ (fun⁻Id n) ∣ refl ∣)))) where fun⁻ : (n : ℕ) → (y : coHomK (suc n)) → hLevelTrunc (suc n) (ptSn (suc n) ≡ ptSn (suc n)) → hLevelTrunc (suc n) (∣ ptSn (suc n) ∣ ≡ y) fun⁻ n = trElim (λ _ → isOfHLevelΠ (3 + n) λ _ → isOfHLevelSuc (2 + n) (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n)))) (sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n)) λ _ → ∣ refl ∣) fun⁻Id : (n : ℕ) → fun⁻ n ∣ ptSn (suc n) ∣ ≡ λ _ → ∣ refl ∣ fun⁻Id zero = refl fun⁻Id (suc n) = refl ------------------- -- Induction principles for cohomology groups (n ≥ 1) -- If we want to show a proposition about some x : Hⁿ(A), it suffices to show it under the -- assumption that x = ∣ f ∣₂ for some f : A → Kₙ and that f is pointed coHomPointedElim : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → Type ℓ'} → ((x : coHom (suc n) A) → isProp (B x)) → ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂) → (x : coHom (suc n) A) → B x coHomPointedElim {ℓ' = ℓ'} {A = A} n a isprop indp = sElim (λ _ → isOfHLevelSuc 1 (isprop _)) λ f → helper n isprop indp f (f a) refl where helper : (n : ℕ) {B : coHom (suc n) A → Type ℓ'} → ((x : coHom (suc n) A) → isProp (B x)) → ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂) → (f : A → coHomK (suc n)) → (x : coHomK (suc n)) → f a ≡ x → B ∣ f ∣₂ -- pattern matching a bit extra to avoid isOfHLevelPlus' helper zero isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ λ _ → isprop _)) (toPropElim (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc zero) isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ λ _ → isprop _)) (suspToPropElim base (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc (suc zero)) isprop ind f = trElim (λ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ λ _ → isprop _)) (suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f)) helper (suc (suc (suc n))) isprop ind f = trElim (λ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ λ _ → isprop _)) (suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f)) coHomPointedElim2 : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'} → ((x y : coHom (suc n) A) → isProp (B x y)) → ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂) → (x y : coHom (suc n) A) → B x y coHomPointedElim2 {ℓ' = ℓ'} {A = A} n a isprop indp = sElim2 (λ _ _ → isOfHLevelSuc 1 (isprop _ _)) λ f g → helper n a isprop indp f g (f a) (g a) refl refl where helper : (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'} → ((x y : coHom (suc n) A) → isProp (B x y)) → ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂) → (f g : A → coHomK (suc n)) → (x y : coHomK (suc n)) → f a ≡ x → g a ≡ y → B ∣ f ∣₂ ∣ g ∣₂ helper zero a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ2 λ _ _ → isprop _ _)) (toPropElim2 (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc zero) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 base (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc (suc zero)) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) helper (suc (suc (suc n))) a isprop indp f g = elim2 (λ _ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ2 λ _ _ → isprop _ _)) (suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g)) coHomK-elim : ∀ {ℓ} (n : ℕ) {B : coHomK (suc n) → Type ℓ} → ((x : _) → isOfHLevel (suc n) (B x)) → B (0ₖ (suc n)) → (x : _) → B x coHomK-elim n {B = B } hlev b = trElim (λ _ → isOfHLevelPlus {n = (suc n)} 2 (hlev _)) (sphereElim _ (hlev ∘ ∣_∣) b) {- Equivalence between cohomology of A and reduced cohomology of (A + 1) -} coHomRed+1Equiv : (n : ℕ) → (A : Type ℓ) → (coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt)))) coHomRed+1Equiv zero A i = ∥ helpLemma {C = (ℤ , pos 0)} i ∥₂ module coHomRed+1 where helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →∙ C))) helpLemma {C = C} = isoToPath (iso map1 map2 (λ b → linvPf b) (λ _ → refl)) where map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →∙ C)) map1 f = map1' , refl module helpmap where map1' : A ⊎ Unit → fst C map1' (inl x) = f x map1' (inr x) = pt C map2 : ((((A ⊎ Unit) , inr (tt)) →∙ C)) → (A → typ C) map2 (g , pf) x = g (inl x) linvPf : (b :((((A ⊎ Unit) , inr (tt)) →∙ C))) → map1 (map2 b) ≡ b linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j) where helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x helper (inl x) = refl helper (inr tt) = sym snd coHomRed+1Equiv (suc zero) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK 1 , ∣ base ∣)} i ∥₂ coHomRed+1Equiv (suc (suc n)) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK (2 + n) , ∣ north ∣)} i ∥₂ Iso-coHom-coHomRed : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (coHomRed (suc n) A) (coHom (suc n) (typ A)) fun (Iso-coHom-coHomRed {A = A , a} n) = map fst inv' (Iso-coHom-coHomRed {A = A , a} n) = map λ f → (λ x → f x -ₖ f a) , rCancelₖ _ _ rightInv (Iso-coHom-coHomRed {A = A , a} n) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ f → trRec (isProp→isOfHLevelSuc _ (§ _ _)) (λ p → cong ∣_∣₂ (funExt λ x → cong (λ y → f x +ₖ y) (cong -ₖ_ p ∙ -0ₖ) ∙ rUnitₖ _ (f x))) (Iso.fun (PathIdTruncIso (suc n)) (isContr→isProp (isConnectedKn n) ∣ f a ∣ ∣ 0ₖ _ ∣)) leftInv (Iso-coHom-coHomRed {A = A , a} n) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ {(f , p) → cong ∣_∣₂ (ΣPathP (((funExt λ x → (cong (λ y → f x -ₖ y) p ∙∙ cong (λ y → f x +ₖ y) -0ₖ ∙∙ rUnitₖ _ (f x)) ∙ refl)) , helper n (f a) (sym p)))} where path : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x) → _ path n x p = (cong (λ y → x -ₖ y) (sym p) ∙∙ cong (λ y → x +ₖ y) -0ₖ ∙∙ rUnitₖ _ x) ∙ refl helper : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x) → PathP (λ i → path n x p i ≡ 0ₖ _) (rCancelₖ _ x) (sym p) helper zero x = J (λ x p → PathP (λ i → path 0 x p i ≡ 0ₖ _) (rCancelₖ _ x) (sym p)) λ i j → rUnit (rUnit (λ _ → 0ₖ 1) (~ j)) (~ j) i helper (suc n) x = J (λ x p → PathP (λ i → path (suc n) x p i ≡ 0ₖ _) (rCancelₖ _ x) (sym p)) λ i j → rCancelₖ (suc (suc n)) (0ₖ (suc (suc n))) (~ i ∧ ~ j) +∙≡+ : (n : ℕ) {A : Pointed ℓ} (x y : coHomRed (suc n) A) → Iso.fun (Iso-coHom-coHomRed n) (x +ₕ∙ y) ≡ Iso.fun (Iso-coHom-coHomRed n) x +ₕ Iso.fun (Iso-coHom-coHomRed n) y +∙≡+ zero = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl +∙≡+ (suc n) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl private homhelp : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) (x y : coHom (suc n) (typ A)) → Iso.inv (Iso-coHom-coHomRed {A = A} n) (x +ₕ y) ≡ Iso.inv (Iso-coHom-coHomRed n) x +ₕ∙ Iso.inv (Iso-coHom-coHomRed n) y homhelp n A = morphLemmas.isMorphInv _+ₕ∙_ _+ₕ_ (Iso.fun (Iso-coHom-coHomRed n)) (+∙≡+ n) _ (Iso.rightInv (Iso-coHom-coHomRed n)) (Iso.leftInv (Iso-coHom-coHomRed n)) coHomGr≅coHomRedGr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → GroupEquiv (coHomRedGrDir (suc n) A) (coHomGr (suc n) (typ A)) fst (coHomGr≅coHomRedGr n A) = isoToEquiv (Iso-coHom-coHomRed n) snd (coHomGr≅coHomRedGr n A) = makeIsGroupHom (+∙≡+ n) coHomRedGroup : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → AbGroup ℓ coHomRedGroup zero A = coHomRedGroupDir zero A coHomRedGroup (suc n) A = InducedAbGroup (coHomGroup (suc n) (typ A)) _+ₕ∙_ (isoToEquiv (invIso (Iso-coHom-coHomRed n))) (homhelp n A) abstract coHomGroup≡coHomRedGroup : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → coHomGroup (suc n) (typ A) ≡ coHomRedGroup (suc n) A coHomGroup≡coHomRedGroup n A = InducedAbGroupPath (coHomGroup (suc n) (typ A)) _+ₕ∙_ (isoToEquiv (invIso (Iso-coHom-coHomRed n))) (homhelp n A) ------------------- Kₙ ≃ ΩKₙ₊₁ --------------------- -- This proof uses the encode-decode method rather than Freudenthal -- We define the map σ : Kₙ → ΩKₙ₊₁ and prove that it is a morphism private module _ (n : ℕ) where σ : {n : ℕ} → coHomK (suc n) → Path (coHomK (2 + n)) ∣ north ∣ ∣ north ∣ σ {n = n} = trRec (isOfHLevelTrunc (4 + n) _ _) λ a → cong ∣_∣ (merid a ∙ sym (merid (ptSn (suc n)))) σ-hom-helper : ∀ {ℓ} {A : Type ℓ} {a : A} (p : a ≡ a) (r : refl ≡ p) → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r σ-hom-helper p = J (λ p r → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r) refl σ-hom : {n : ℕ} (x y : coHomK (suc n)) → σ (x +ₖ y) ≡ σ x ∙ σ y σ-hom {n = zero} = elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 4 _ _) _ _) (wedgeconFun _ _ (λ _ _ → isOfHLevelTrunc 4 _ _ _ _) (λ x → lUnit _ ∙ cong (_∙ σ ∣ x ∣) (cong (cong ∣_∣) (sym (rCancel (merid base))))) (λ y → cong σ (rUnitₖ 1 ∣ y ∣) ∙∙ rUnit _ ∙∙ cong (σ ∣ y ∣ ∙_) (cong (cong ∣_∣) (sym (rCancel (merid base))))) (sym (σ-hom-helper (σ ∣ base ∣) (cong (cong ∣_∣) (sym (rCancel (merid base))))))) σ-hom {n = suc n} = elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) _ _) _ _) (wedgeconFun _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev' n) _ _) (λ x → lUnit _ ∙ cong (_∙ σ ∣ x ∣) (cong (cong ∣_∣) (sym (rCancel (merid north))))) (λ y → cong σ (rUnitₖ (2 + n) ∣ y ∣) ∙∙ rUnit _ ∙∙ cong (σ ∣ y ∣ ∙_) (cong (cong ∣_∣) (sym (rCancel (merid north))))) (sym (σ-hom-helper (σ ∣ north ∣) (cong (cong ∣_∣) (sym (rCancel (merid north))))))) -- We will need to following lemma σ-minusDistr : {n : ℕ} (x y : coHomK (suc n)) → σ (x -ₖ y) ≡ σ x ∙ sym (σ y) σ-minusDistr {n = n} = morphLemmas.distrMinus' _+ₖ_ _∙_ σ σ-hom ∣ (ptSn (suc n)) ∣ refl -ₖ_ sym (λ x → sym (lUnit x)) (λ x → sym (rUnit x)) (rUnitₖ (suc n)) (lCancelₖ (suc n)) rCancel (assocₖ (suc n)) assoc∙ (cong (cong ∣_∣) (rCancel (merid (ptSn (suc n))))) -- we define the code using addIso Code : (n : ℕ) → coHomK (2 + n) → Type₀ Code n x = (trRec {B = TypeOfHLevel ℓ-zero (3 + n)} (isOfHLevelTypeOfHLevel (3 + n)) λ a → Code' a , hLevCode' a) x .fst where Code' : (S₊ (2 + n)) → Type₀ Code' north = coHomK (suc n) Code' south = coHomK (suc n) Code' (merid a i) = isoToPath (addIso (suc n) ∣ a ∣) i hLevCode' : (x : S₊ (2 + n)) → isOfHLevel (3 + n) (Code' x) hLevCode' = suspToPropElim (ptSn (suc n)) (λ _ → isPropIsOfHLevel (3 + n)) (isOfHLevelTrunc (3 + n)) symMeridLem : (n : ℕ) → (x : S₊ (suc n)) (y : coHomK (suc n)) → subst (Code n) (cong ∣_∣ (sym (merid x))) y ≡ y -ₖ ∣ x ∣ symMeridLem n x = trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) (λ y → cong (_-ₖ ∣ x ∣) (transportRefl ∣ y ∣)) decode : {n : ℕ} (x : coHomK (2 + n)) → Code n x → ∣ north ∣ ≡ x decode {n = n} = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) decode-elim where north≡merid : (a : S₊ (suc n)) → Path (coHomK (2 + n)) ∣ north ∣ ∣ north ∣ ≡ (Path (coHomK (2 + n)) ∣ north ∣ ∣ south ∣) north≡merid a i = Path (coHomK (2 + n)) ∣ north ∣ ∣ merid a i ∣ decode-elim : (a : S₊ (2 + n)) → Code n ∣ a ∣ → Path (coHomK (2 + n)) ∣ north ∣ ∣ a ∣ decode-elim north = σ decode-elim south = trRec (isOfHLevelTrunc (4 + n) _ _) λ a → cong ∣_∣ (merid a) decode-elim (merid a i) = hcomp (λ k → λ { (i = i0) → σ ; (i = i1) → mainPath a k}) (funTypeTransp (Code n) (λ x → ∣ north ∣ ≡ x) (cong ∣_∣ (merid a)) σ i) where mainPath : (a : (S₊ (suc n))) → transport (north≡merid a) ∘ σ ∘ transport (λ i → Code n ∣ merid a (~ i) ∣) ≡ trRec (isOfHLevelTrunc (4 + n) _ _) λ a → cong ∣_∣ (merid a) mainPath a = funExt (trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (4 + n) _ _) _ _) (λ x → (λ i → transport (north≡merid a) (σ (symMeridLem n a ∣ x ∣ i))) ∙∙ cong (transport (north≡merid a)) (-distrHelp x) ∙∙ (substAbove x))) where -distrHelp : (x : S₊ (suc n)) → σ (∣ x ∣ -ₖ ∣ a ∣) ≡ cong ∣_∣ (merid x) ∙ cong ∣_∣ (sym (merid a)) -distrHelp x = σ-minusDistr ∣ x ∣ ∣ a ∣ ∙ (λ i → (cong ∣_∣ (compPath-filler (merid x) (λ j → merid (ptSn (suc n)) (~ j ∨ i)) (~ i))) ∙ (cong ∣_∣ (sym (compPath-filler (merid a) (λ j → merid (ptSn (suc n)) (~ j ∨ i)) (~ i))))) substAbove : (x : S₊ (suc n)) → transport (north≡merid a) (cong ∣_∣ (merid x) ∙ cong ∣_∣ (sym (merid a))) ≡ cong ∣_∣ (merid x) substAbove x i = transp (λ j → north≡merid a (i ∨ j)) i (compPath-filler (cong ∣_∣ (merid x)) (λ j → ∣ merid a (~ j ∨ i) ∣) (~ i)) encode : {n : ℕ} {x : coHomK (2 + n)} → Path (coHomK (2 + n)) ∣ north ∣ x → Code n x encode {n = n} p = transport (cong (Code n) p) ∣ (ptSn (suc n)) ∣ decode-encode : {n : ℕ} {x : coHomK (2 + n)} (p : Path (coHomK (2 + n)) ∣ north ∣ x) → decode _ (encode p) ≡ p decode-encode {n = n} = J (λ y p → decode _ (encode p) ≡ p) (cong (decode ∣ north ∣) (transportRefl ∣ ptSn (suc n) ∣) ∙ cong (cong ∣_∣) (rCancel (merid (ptSn (suc n))))) -- We define an addition operation on Code which we can use in order to show that encode is a -- morphism (in a very loose sense) hLevCode : {n : ℕ} (x : coHomK (2 + n)) → isOfHLevel (3 + n) (Code n x) hLevCode {n = n} = trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropIsOfHLevel (3 + n))) (sphereToPropElim _ (λ _ → (isPropIsOfHLevel (3 + n))) (isOfHLevelTrunc (3 + n))) Code-add' : {n : ℕ} (x : _) → Code n ∣ north ∣ → Code n ∣ x ∣ → Code n ∣ x ∣ Code-add' {n = n} north = _+ₖ_ Code-add' {n = n} south = _+ₖ_ Code-add' {n = n} (merid a i) = helper n a i where help : (n : ℕ) → (x y a : S₊ (suc n)) → transport (λ i → Code n ∣ north ∣ → Code n ∣ merid a i ∣ → Code n ∣ merid a i ∣) (_+ₖ_) ∣ x ∣ ∣ y ∣ ≡ ∣ x ∣ +ₖ ∣ y ∣ help n x y a = (λ i → transportRefl ((∣ transportRefl x i ∣ +ₖ (∣ transportRefl y i ∣ -ₖ ∣ a ∣)) +ₖ ∣ a ∣) i) ∙∙ cong (_+ₖ ∣ a ∣) (assocₖ _ ∣ x ∣ ∣ y ∣ (-ₖ ∣ a ∣)) ∙∙ sym (assocₖ _ (∣ x ∣ +ₖ ∣ y ∣) (-ₖ ∣ a ∣) ∣ a ∣) ∙∙ cong ((∣ x ∣ +ₖ ∣ y ∣) +ₖ_) (lCancelₖ _ ∣ a ∣) ∙∙ rUnitₖ _ _ helper : (n : ℕ) (a : S₊ (suc n)) → PathP (λ i → Code n ∣ north ∣ → Code n ∣ merid a i ∣ → Code n ∣ merid a i ∣) _+ₖ_ _+ₖ_ helper n a = toPathP (funExt (trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelΠ (3 + n) (λ _ → isOfHLevelTrunc (3 + n))) _ _) λ x → funExt (trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) λ y → help n x y a))) Code-add : {n : ℕ} (x : _) → Code n ∣ north ∣ → Code n x → Code n x Code-add {n = n} = trElim (λ x → isOfHLevelΠ (4 + n) λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelSuc (3 + n) (hLevCode {n = n} x)) Code-add' encode-hom : {n : ℕ} {x : _} (q : 0ₖ _ ≡ 0ₖ _) (p : 0ₖ _ ≡ x) → encode (q ∙ p) ≡ Code-add {n = n} x (encode q) (encode p) encode-hom {n = n} q = J (λ x p → encode (q ∙ p) ≡ Code-add {n = n} x (encode q) (encode p)) (cong encode (sym (rUnit q)) ∙∙ sym (rUnitₖ _ (encode q)) ∙∙ cong (encode q +ₖ_) (cong ∣_∣ (sym (transportRefl _)))) stabSpheres : (n : ℕ) → Iso (coHomK (suc n)) (typ (Ω (coHomK-ptd (2 + n)))) fun (stabSpheres n) = decode _ inv' (stabSpheres n) = encode rightInv (stabSpheres n) p = decode-encode p leftInv (stabSpheres n) = trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _) λ a → cong encode (congFunct ∣_∣ (merid a) (sym (merid (ptSn (suc n))))) ∙∙ (λ i → transport (congFunct (Code n) (cong ∣_∣ (merid a)) (cong ∣_∣ (sym (merid (ptSn (suc n))))) i) ∣ ptSn (suc n) ∣) ∙∙ (substComposite (λ x → x) (cong (Code n) (cong ∣_∣ (merid a))) (cong (Code n) (cong ∣_∣ (sym (merid (ptSn (suc n)))))) ∣ ptSn (suc n) ∣ ∙∙ cong (transport (λ i → Code n ∣ merid (ptSn (suc n)) (~ i) ∣)) (transportRefl (∣ (ptSn (suc n)) ∣ +ₖ ∣ a ∣) ∙ lUnitₖ (suc n) ∣ a ∣) ∙∙ symMeridLem n (ptSn (suc n)) ∣ a ∣ ∙∙ cong (∣ a ∣ +ₖ_) -0ₖ ∙∙ rUnitₖ (suc n) ∣ a ∣) Iso-Kn-ΩKn+1 : (n : HLevel) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) Iso-Kn-ΩKn+1 zero = invIso (compIso (congIso (truncIdempotentIso _ isGroupoidS¹)) ΩS¹Isoℤ) Iso-Kn-ΩKn+1 (suc n) = stabSpheres n Kn≃ΩKn+1 : {n : ℕ} → coHomK n ≃ typ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n) -- Some properties of the Iso Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 n = Iso.fun (Iso-Kn-ΩKn+1 n) ΩKn+1→Kn : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n ΩKn+1→Kn n = Iso.inv (Iso-Kn-ΩKn+1 n) Kn→ΩKn+10ₖ : (n : ℕ) → Kn→ΩKn+1 n (0ₖ n) ≡ refl Kn→ΩKn+10ₖ zero = sym (rUnit refl) Kn→ΩKn+10ₖ (suc n) i j = ∣ (rCancel (merid (ptSn (suc n))) i j) ∣ ΩKn+1→Kn-refl : (n : ℕ) → ΩKn+1→Kn n refl ≡ 0ₖ n ΩKn+1→Kn-refl zero = refl ΩKn+1→Kn-refl (suc zero) = refl ΩKn+1→Kn-refl (suc (suc n)) = refl Kn≃ΩKn+1∙ : {n : ℕ} → coHomK-ptd n ≡ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1∙ {n = n} = ua∙ Kn≃ΩKn+1 (Kn→ΩKn+10ₖ n) Kn→ΩKn+1-hom : (n : ℕ) (x y : coHomK n) → Kn→ΩKn+1 n (x +[ n ]ₖ y) ≡ Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y Kn→ΩKn+1-hom zero x y = (λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i) (inS (∣ intLoop (x ℤ+ y) i ∣)) (~ j)) ∙∙ (λ j i → ∣ intLoop-hom x y (~ j) i ∣) ∙∙ (congFunct ∣_∣ (intLoop x) (intLoop y) ∙ cong₂ _∙_ (λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i) (inS (∣ intLoop x i ∣)) j) λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i) (inS (∣ intLoop y i ∣)) j) Kn→ΩKn+1-hom (suc n) = σ-hom ΩKn+1→Kn-hom : (n : ℕ) (x y : Path (coHomK (suc n)) (0ₖ _) (0ₖ _)) → ΩKn+1→Kn n (x ∙ y) ≡ ΩKn+1→Kn n x +[ n ]ₖ ΩKn+1→Kn n y ΩKn+1→Kn-hom zero p q = cong winding (congFunct (trRec isGroupoidS¹ (λ x → x)) p q) ∙ winding-hom (cong (trRec isGroupoidS¹ (λ x → x)) p) (cong (trRec isGroupoidS¹ (λ x → x)) q) ΩKn+1→Kn-hom (suc n) = encode-hom Kn→ΩKn+1-ₖ : (n : ℕ) (x : coHomK n) → Kn→ΩKn+1 n (-ₖ x) ≡ sym (Kn→ΩKn+1 n x) Kn→ΩKn+1-ₖ n x = lUnit _ ∙∙ cong (_∙ Kn→ΩKn+1 n (-ₖ x)) (sym (lCancel _)) ∙∙ sym (assoc∙ _ _ _) ∙∙ cong (sym (Kn→ΩKn+1 n x) ∙_) help ∙∙ sym (rUnit _) where help : Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n (-ₖ x) ≡ refl help = sym (Kn→ΩKn+1-hom n x (-ₖ x)) ∙∙ cong (Kn→ΩKn+1 n) (rCancelₖ n x) ∙∙ Kn→ΩKn+10ₖ n isHomogeneousKn : (n : HLevel) → isHomogeneous (coHomK-ptd n) isHomogeneousKn n = subst isHomogeneous (sym (ΣPathP (ua Kn≃ΩKn+1 , ua-gluePath _ (Kn→ΩKn+10ₖ n)))) (isHomogeneousPath _ _) -- With the equivalence Kn≃ΩKn+1, we get that the two definitions of cohomology groups agree open IsGroupHom coHom≅coHomΩ : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → GroupIso (coHomGr n A) (coHomGrΩ n A) fun (fst (coHom≅coHomΩ n A)) = map λ f a → Kn→ΩKn+1 n (f a) inv' (fst (coHom≅coHomΩ n A)) = map λ f a → ΩKn+1→Kn n (f a) rightInv (fst (coHom≅coHomΩ n A)) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ f → cong ∣_∣₂ (funExt λ x → rightInv (Iso-Kn-ΩKn+1 n) (f x)) leftInv (fst (coHom≅coHomΩ n A)) = sElim (λ _ → isOfHLevelPath 2 § _ _) λ f → cong ∣_∣₂ (funExt λ x → leftInv (Iso-Kn-ΩKn+1 n) (f x)) snd (coHom≅coHomΩ n A) = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ f g → cong ∣_∣₂ (funExt λ x → Kn→ΩKn+1-hom n (f x) (g x))) module lockedKnIso (key : Unit') where Kn→ΩKn+1' : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1' n = lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) ΩKn+1→Kn' : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n ΩKn+1→Kn' n = lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) ΩKn+1→Kn→ΩKn+1 : (n : ℕ) → (x : typ (Ω (coHomK-ptd (suc n)))) → Kn→ΩKn+1' n (ΩKn+1→Kn' n x) ≡ x ΩKn+1→Kn→ΩKn+1 n x = pm key where pm : (key : Unit') → lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) (lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) x) ≡ x pm unlock = Iso.rightInv (Iso-Kn-ΩKn+1 n) x Kn→ΩKn+1→Kn : (n : ℕ) → (x : coHomK n) → ΩKn+1→Kn' n (Kn→ΩKn+1' n x) ≡ x Kn→ΩKn+1→Kn n x = pm key where pm : (key : Unit') → lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) (lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) x) ≡ x pm unlock = Iso.leftInv (Iso-Kn-ΩKn+1 n) x -distrLemma : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : ℕ) (f : GroupHom (coHomGr n A) (coHomGr m B)) (x y : coHom n A) → fst f (x -[ n ]ₕ y) ≡ fst f x -[ m ]ₕ fst f y -distrLemma n m f' x y = sym (-cancelRₕ m (f y) (f (x -[ n ]ₕ y))) ∙∙ cong (λ x → x -[ m ]ₕ f y) (sym (f' .snd .pres· (x -[ n ]ₕ y) y)) ∙∙ cong (λ x → x -[ m ]ₕ f y) ( cong f (-+cancelₕ n _ _)) where f = fst f' -- HLevel stuff for cup product isContr-↓∙ : (n : ℕ) → isContr (coHomK-ptd (suc n) →∙ coHomK-ptd n) fst (isContr-↓∙ zero) = (λ _ → 0) , refl snd (isContr-↓∙ zero) (f , p) = Σ≡Prop (λ f → isSetℤ _ _) (funExt (trElim (λ _ → isOfHLevelPath 3 (isOfHLevelSuc 2 isSetℤ) _ _) (toPropElim (λ _ → isSetℤ _ _) (sym p)))) fst (isContr-↓∙ (suc n)) = (λ _ → 0ₖ _) , refl fst (snd (isContr-↓∙ (suc n)) f i) x = trElim {B = λ x → 0ₖ (suc n) ≡ fst f x} (λ _ → isOfHLevelPath (4 + n) (isOfHLevelSuc (3 + n) (isOfHLevelTrunc (3 + n))) _ _) (sphereElim _ (λ _ → isOfHLevelTrunc (3 + n) _ _) (sym (snd f))) x i snd (snd (isContr-↓∙ (suc n)) f i) j = snd f (~ i ∨ j) isContr-↓∙' : (n : ℕ) → isContr (S₊∙ (suc n) →∙ coHomK-ptd n) fst (isContr-↓∙' zero) = (λ _ → 0) , refl snd (isContr-↓∙' zero) (f , p) = Σ≡Prop (λ f → isSetℤ _ _) (funExt (toPropElim (λ _ → isSetℤ _ _) (sym p))) fst (isContr-↓∙' (suc n)) = (λ _ → 0ₖ _) , refl fst (snd (isContr-↓∙' (suc n)) f i) x = sphereElim _ {A = λ x → 0ₖ (suc n) ≡ fst f x} (λ _ → isOfHLevelTrunc (3 + n) _ _) (sym (snd f)) x i snd (snd (isContr-↓∙' (suc n)) f i) j = snd f (~ i ∨ j) isOfHLevel→∙Kn : {A : Pointed₀} (n m : ℕ) → isOfHLevel (suc m) (A →∙ coHomK-ptd n) → isOfHLevel (suc (suc m)) (A →∙ coHomK-ptd (suc n)) isOfHLevel→∙Kn {A = A} n m hlev = step₃ where step₁ : isOfHLevel (suc m) (A →∙ Ω (coHomK-ptd (suc n))) step₁ = subst (isOfHLevel (suc m)) (λ i → A →∙ ua∙ {A = Ω (coHomK-ptd (suc n))} {B = coHomK-ptd n} (invEquiv Kn≃ΩKn+1) (ΩKn+1→Kn-refl n) (~ i)) hlev step₂ : isOfHLevel (suc m) (typ (Ω (A →∙ coHomK-ptd (suc n) ∙))) step₂ = isOfHLevelRetractFromIso (suc m) (invIso (invIso (ΩfunExtIso _ _))) step₁ step₃ : isOfHLevel (suc (suc m)) (A →∙ coHomK-ptd (suc n)) step₃ = isOfHLevelΩ→isOfHLevel m λ f → subst (λ x → isOfHLevel (suc m) (typ (Ω x))) (isHomogeneous→∙ (isHomogeneousKn (suc n)) f) step₂ isOfHLevel↑∙ : ∀ n m → isOfHLevel (2 + n) (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (n + m))) isOfHLevel↑∙ zero m = isOfHLevel→∙Kn m 0 (isContr→isProp (isContr-↓∙ m)) isOfHLevel↑∙ (suc n) m = isOfHLevel→∙Kn (suc (n + m)) (suc n) (isOfHLevel↑∙ n m) isOfHLevel↑∙' : ∀ n m → isOfHLevel (2 + n) (S₊∙ (suc m) →∙ coHomK-ptd (suc (n + m))) isOfHLevel↑∙' zero m = isOfHLevel→∙Kn m 0 (isContr→isProp (isContr-↓∙' m)) isOfHLevel↑∙' (suc n) m = isOfHLevel→∙Kn (suc (n + m)) (suc n) (isOfHLevel↑∙' n m) →∙KnPath : (A : Pointed₀) (n : ℕ) → Ω (A →∙ coHomK-ptd (suc n) ∙) ≡ (A →∙ coHomK-ptd n ∙) →∙KnPath A n = ua∙ (isoToEquiv (ΩfunExtIso A (coHomK-ptd (suc n)))) refl ∙ (λ i → (A →∙ Kn≃ΩKn+1∙ {n = n} (~ i) ∙)) contr∙-lem : (n m : ℕ) → isContr (coHomK-ptd (suc n) →∙ (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (n + m)) ∙)) fst (contr∙-lem n m) = (λ _ → (λ _ → 0ₖ _) , refl) , refl snd (contr∙-lem n m) (f , p) = →∙Homogeneous≡ (isHomogeneous→∙ (isHomogeneousKn _)) (sym (funExt help)) where help : (x : _) → (f x) ≡ ((λ _ → 0ₖ _) , refl) help = trElim (λ _ → isOfHLevelPath (3 + n) (subst (λ x → isOfHLevel x (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (n + m)))) (λ i → suc (suc (+-comm n 1 i))) (isOfHLevelPlus' {n = 1} (2 + n) (isOfHLevel↑∙ n m))) _ _) (sphereElim _ (λ _ → isOfHLevel↑∙ n m _ _) p) isOfHLevel↑∙∙ : ∀ n m l → isOfHLevel (2 + l) (coHomK-ptd (suc n) →∙ (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (suc (l + n + m))) ∙)) isOfHLevel↑∙∙ n m zero = isOfHLevelΩ→isOfHLevel 0 λ f → subst isProp (cong (λ x → typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousKn _)) f)) (isOfHLevelRetractFromIso 1 (ΩfunExtIso _ _) h) where h : isProp (coHomK-ptd (suc n) →∙ (Ω (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (suc (n + m))) ∙))) h = subst isProp (λ i → coHomK-ptd (suc n) →∙ (→∙KnPath (coHomK-ptd (suc m)) (suc (n + m)) (~ i))) (isContr→isProp (contr∙-lem n m)) isOfHLevel↑∙∙ n m (suc l) = isOfHLevelΩ→isOfHLevel (suc l) λ f → subst (isOfHLevel (2 + l)) (cong (λ x → typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousKn _)) f)) (isOfHLevelRetractFromIso (2 + l) (ΩfunExtIso _ _) h) where h : isOfHLevel (2 + l) (coHomK-ptd (suc n) →∙ (Ω (coHomK-ptd (suc m) →∙ coHomK-ptd (suc (suc (suc (l + n + m)))) ∙))) h = subst (isOfHLevel (2 + l)) (λ i → coHomK-ptd (suc n) →∙ →∙KnPath (coHomK-ptd (suc m)) (suc (suc (l + n + m))) (~ i)) (isOfHLevel↑∙∙ n m l) ----------- Misc. ------------ isoType→isoCohom : {A : Type ℓ} {B : Type ℓ'} (n : ℕ) → Iso A B → GroupIso (coHomGr n A) (coHomGr n B) fst (isoType→isoCohom n is) = setTruncIso (domIso is) snd (isoType→isoCohom n is) = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) (λ _ _ → refl)) -- Explicit index swapping for cohomology groups transportCohomIso : {A : Type ℓ} {n m : ℕ} → (p : n ≡ m) → GroupIso (coHomGr n A) (coHomGr m A) Iso.fun (fst (transportCohomIso {A = A} p)) = subst (λ n → coHom n A) p Iso.inv (fst (transportCohomIso {A = A} p)) = subst (λ n → coHom n A) (sym p) Iso.rightInv (fst (transportCohomIso p)) = transportTransport⁻ _ Iso.leftInv (fst (transportCohomIso p)) = transportTransport⁻ _ snd (transportCohomIso {A = A} {n = n} {m = m} p) = makeIsGroupHom (λ x y → help x y p) where help : (x y : coHom n A) (p : n ≡ m) → subst (λ n → coHom n A) p (x +ₕ y) ≡ subst (λ n → coHom n A) p x +ₕ subst (λ n → coHom n A) p y help x y = J (λ m p → subst (λ n → coHom n A) p (x +ₕ y) ≡ subst (λ n → coHom n A) p x +ₕ subst (λ n → coHom n A) p y) (transportRefl (x +ₕ y) ∙ cong₂ _+ₕ_ (sym (transportRefl x)) (sym (transportRefl y)))
47.545185
132
0.518867
5739152ac8392426a996d4699e39e8754133cc5b
1,271
agda
Agda
Cubical/HITs/ListedFiniteSet/Properties.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
Cubical/HITs/ListedFiniteSet/Properties.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/HITs/ListedFiniteSet/Properties.agda
jorge-jbs/cubical
ebbe824fda41ab6524b62a42959665be4e67b847
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.ListedFiniteSet.Properties where open import Cubical.Foundations.Prelude open import Cubical.HITs.ListedFiniteSet.Base private variable A : Type₀ _++_ : ∀ (xs ys : LFSet A) → LFSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) --------------------------------------------- dup x xs i ++ ys = proof i where proof : -- Need: (x ∷ x ∷ xs) ++ ys ≡ (x ∷ xs) ++ ys -- which reduces to: x ∷ x ∷ (xs ++ ys) ≡ x ∷ (xs ++ ys) proof = dup x (xs ++ ys) comm x y xs i ++ ys = comm x y (xs ++ ys) i trunc xs zs p q i j ++ ys = trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j assoc-++ : ∀ (xs : LFSet A) ys zs → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs assoc-++ [] ys zs = refl assoc-++ (x ∷ xs) ys zs = cong (x ∷_) (assoc-++ xs ys zs) ------------------------------------ assoc-++ (dup x xs i) ys zs j = dup x (assoc-++ xs ys zs j) i assoc-++ (comm x y xs i) ys zs j = comm x y (assoc-++ xs ys zs j) i assoc-++ (trunc xs xs' p q i k) ys zs j = trunc (assoc-++ xs ys zs j) (assoc-++ xs' ys zs j) (cong (\ xs -> assoc-++ xs ys zs j) p) (cong (\ xs -> assoc-++ xs ys zs j) q) i k
31.775
91
0.461841
11f6444f4bde817bca774e7d2bce2e31aed8a1ed
857
agda
Agda
test/Succeed/Issue175b.agda
LaloHao/agda
7de768bb7bc65dbe1efa35c699cfa8b8f9510573
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue175b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue175b.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Issue175b where data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x data Bool : Set where true : Bool false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} postulate ℝ : Set {-# BUILTIN FLOAT ℝ #-} primitive -- ℝ functions primFloatMinus : ℝ -> ℝ -> ℝ primFloatLess : ℝ -> ℝ -> Bool _<_ : ℝ -> ℝ -> Bool a < b = primFloatLess a b data _≤_ : ℝ -> ℝ -> Set where ≤_ : {x y : ℝ} -> (x < y) ≡ true -> x ≤ y --absolute value [|_|] : ℝ -> ℝ [| a |] with (a < 0.0) [| a |] | true = primFloatMinus 0.0 a [| a |] | false = a --error variable ε : ℝ ε = 1.0e-5 -- two floating point numbers can be said to be equal if their -- difference is less than the given error variable postulate reflℝ : {a b : ℝ} -> [| primFloatMinus a b |] ≤ ε -> a ≡ b test : 1.0 ≡ 1.0000001 test = reflℝ (≤ refl)
19.044444
62
0.567095
435c035a5a9f25557d808476ee64c45a557de8d3
935
agda
Agda
Cubical/Data/Int/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/Int/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/Int/Base.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Int.Base where open import Cubical.Core.Everything open import Cubical.Data.Nat data ℤ : Type₀ where pos : (n : ℕ) → ℤ negsuc : (n : ℕ) → ℤ neg : (n : ℕ) → ℤ neg zero = pos zero neg (suc n) = negsuc n infix 100 -_ -_ : ℕ → ℤ -_ = neg {-# DISPLAY pos n = n #-} {-# DISPLAY negsuc n = - (suc n) #-} sucInt : ℤ → ℤ sucInt (pos n) = pos (suc n) sucInt (negsuc zero) = pos zero sucInt (negsuc (suc n)) = negsuc n predInt : ℤ → ℤ predInt (pos zero) = negsuc zero predInt (pos (suc n)) = pos n predInt (negsuc n) = negsuc (suc n) -- Natural number and negative integer literals for ℤ open import Cubical.Data.Nat.Literals public instance fromNatℤ : FromNat ℤ fromNatℤ = record { Constraint = λ _ → ⊤ ; fromNat = λ n → pos n } instance negativeℤ : Negative ℤ negativeℤ = record { Constraint = λ _ → ⊤ ; fromNeg = λ n → neg n }
21.25
69
0.62139
0d20e214e3f50e3ca0ee50bafaa67ca47f1416e6
24
agda
Agda
examples/outdated-and-incorrect/Alonzo/Primitive.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/Alonzo/Primitive.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/Alonzo/Primitive.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Primitive where
8
22
0.833333
373230121e7b041d44642aa0f0d79e1432ac1912
566
agda
Agda
Type/Properties/Singleton.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Type/Properties/Singleton.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Type/Properties/Singleton.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Type.Properties.Singleton {ℓ ℓₑ} where import Lvl open import Lang.Instance open import Structure.Setoid open import Type -- A type is a singleton type when it has exactly one inhabitant (there is only one object with this type). -- In other words: There is an unique inhabitant of type T. -- Also called: -- • "singleton type" -- • "unit type" -- • "contractible" record IsUnit (T : Type{ℓ}) ⦃ _ : Equiv{ℓₑ}(T) ⦄ : Type{ℓ Lvl.⊔ ℓₑ} where constructor intro field unit : T uniqueness : ∀{x : T} → (x ≡ unit) open IsUnit ⦃ ... ⦄ using (unit)
28.3
107
0.671378
3f9946c26680b774ff7f8730ad03886e3352e53a
92
agda
Agda
test/Succeed/Issue2332.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue2332.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue2332.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
record R : Set₁ where field _f_ : Set → Set postulate A : Set I₁ : R I₁ R.f x = A
8.363636
19
0.565217
30605e9621b8d6f53917fb547887edab10e422b7
2,194
agda
Agda
src/Categories/Morphism/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
src/Categories/Morphism/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
null
null
null
src/Categories/Morphism/Properties.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Morphism.Properties {o ℓ e} (𝒞 : Category o ℓ e) where open import Data.Product using (_,_; _×_) open Category 𝒞 open Definitions 𝒞 open HomReasoning import Categories.Morphism as M open M 𝒞 open import Categories.Morphism.Reasoning 𝒞 private variable A B C D : Obj f g h i : A ⇒ B module _ (iso : Iso f g) where open Iso iso Iso-resp-≈ : f ≈ h → g ≈ i → Iso h i Iso-resp-≈ {h = h} {i = i} eq₁ eq₂ = record { isoˡ = begin i ∘ h ≈˘⟨ eq₂ ⟩∘⟨ eq₁ ⟩ g ∘ f ≈⟨ isoˡ ⟩ id ∎ ; isoʳ = begin h ∘ i ≈˘⟨ eq₁ ⟩∘⟨ eq₂ ⟩ f ∘ g ≈⟨ isoʳ ⟩ id ∎ } Iso-swap : Iso g f Iso-swap = record { isoˡ = isoʳ ; isoʳ = isoˡ } Iso⇒Mono : Mono f Iso⇒Mono h i eq = begin h ≈⟨ introˡ isoˡ ⟩ (g ∘ f) ∘ h ≈⟨ pullʳ eq ⟩ g ∘ f ∘ i ≈⟨ cancelˡ isoˡ ⟩ i ∎ Iso⇒Epi : Epi f Iso⇒Epi h i eq = begin h ≈⟨ introʳ isoʳ ⟩ h ∘ f ∘ g ≈⟨ pullˡ eq ⟩ (i ∘ f) ∘ g ≈⟨ cancelʳ isoʳ ⟩ i ∎ Iso-∘ : Iso f g → Iso h i → Iso (h ∘ f) (g ∘ i) Iso-∘ {f = f} {g = g} {h = h} {i = i} iso iso′ = record { isoˡ = begin (g ∘ i) ∘ h ∘ f ≈⟨ cancelInner (isoˡ iso′) ⟩ g ∘ f ≈⟨ isoˡ iso ⟩ id ∎ ; isoʳ = begin (h ∘ f) ∘ g ∘ i ≈⟨ cancelInner (isoʳ iso) ⟩ h ∘ i ≈⟨ isoʳ iso′ ⟩ id ∎ } where open Iso Iso-≈ : f ≈ h → Iso f g → Iso h i → g ≈ i Iso-≈ {f = f} {h = h} {g = g} {i = i} eq iso iso′ = begin g ≈⟨ introˡ (isoˡ iso′) ⟩ (i ∘ h) ∘ g ≈˘⟨ (refl⟩∘⟨ eq) ⟩∘⟨refl ⟩ (i ∘ f) ∘ g ≈⟨ cancelʳ (isoʳ iso) ⟩ i ∎ where open Iso module _ where open _≅_ isos×≈⇒≈ : ∀ {f g : A ⇒ B} → h ≈ i → (iso₁ : A ≅ C) → (iso₂ : B ≅ D) → CommutativeSquare f (from iso₁) (from iso₂) h → CommutativeSquare g (from iso₁) (from iso₂) i → f ≈ g isos×≈⇒≈ {h = h} {i = i} {f = f} {g = g} eq iso₁ iso₂ sq₁ sq₂ = begin f ≈⟨ switch-fromtoˡ iso₂ sq₁ ⟩ to iso₂ ∘ h ∘ from iso₁ ≈⟨ refl⟩∘⟨ (eq ⟩∘⟨refl ) ⟩ to iso₂ ∘ i ∘ from iso₁ ≈˘⟨ switch-fromtoˡ iso₂ sq₂ ⟩ g ∎
24.377778
72
0.466727
147c3610c58f25187946147a6e638ef893782b78
70
agda
Agda
a/Agda.agda
tylerlmccart/hello-world
7368535ee06d277b23b06be10fe4475cff89e8f6
[ "MIT" ]
8,076
2015-01-02T04:55:03.000Z
2022-03-31T16:09:18.000Z
a/Agda.agda
tylerlmccart/hello-world
7368535ee06d277b23b06be10fe4475cff89e8f6
[ "MIT" ]
514
2015-01-08T21:48:21.000Z
2022-03-31T11:55:07.000Z
a/Agda.agda
tylerlmccart/hello-world
7368535ee06d277b23b06be10fe4475cff89e8f6
[ "MIT" ]
1,978
2015-01-01T14:24:01.000Z
2022-03-31T11:38:08.000Z
module agda where open import IO main = run (putStrLn "Hello World")
14
35
0.742857
7c3f034774c1d9a6d7ec78500f2041edbb40bf48
5,647
agda
Agda
BasicICML/Syntax/DyadicGentzenSpinalNormalForm.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicICML/Syntax/DyadicGentzenSpinalNormalForm.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicICML/Syntax/DyadicGentzenSpinalNormalForm.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
-- Basic intuitionistic contextual modal logic, without ∨ or ⊥. -- Gentzen-style formalisation of syntax with context pairs, after Nanevski-Pfenning-Pientka. -- Normal forms, neutrals, and spines. module BasicICML.Syntax.DyadicGentzenSpinalNormalForm where open import BasicICML.Syntax.DyadicGentzen public -- Commuting propositions for neutrals. data Tyⁿᵉ : Ty → Set where α_ : (P : Atom) → Tyⁿᵉ (α P) [_]_ : (Ψ : Cx Ty) (A : Ty) → Tyⁿᵉ ([ Ψ ] A) -- Derivations. mutual -- Normal forms, or introductions. infix 3 _⊢ⁿᶠ_ data _⊢ⁿᶠ_ : Cx² Ty Box → Ty → Set where neⁿᶠ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A → {{_ : Tyⁿᵉ A}} → Γ ⁏ Δ ⊢ⁿᶠ A lamⁿᶠ : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ⊢ⁿᶠ A ▻ B boxⁿᶠ : ∀ {Ψ A Γ Δ} → Ψ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ [ Ψ ] A pairⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ⊢ⁿᶠ A ∧ B unitⁿᶠ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ ⊤ -- Neutrals, or eliminations. infix 3 _⊢ⁿᵉ_ data _⊢ⁿᵉ_ : Cx² Ty Box → Ty → Set where spⁿᵉ : ∀ {A B C Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ˢᵖ A ⦙ B → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → Γ ⁏ Δ ⊢ⁿᵉ C mspⁿᵉ : ∀ {Ψ A B C Γ Δ} → [ Ψ ] A ∈ Δ → {{_ : Γ ⁏ Δ ⊢⋆ⁿᶠ Ψ}} → Γ ⁏ Δ ⊢ˢᵖ A ⦙ B → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → Γ ⁏ Δ ⊢ⁿᵉ C -- Spines. infix 3 _⊢ˢᵖ_⦙_ data _⊢ˢᵖ_⦙_ : Cx² Ty Box → Ty → Ty → Set where nilˢᵖ : ∀ {C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ C ⦙ C appˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ B ⦙ C → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ˢᵖ A ▻ B ⦙ C fstˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ A ⦙ C → Γ ⁏ Δ ⊢ˢᵖ A ∧ B ⦙ C sndˢᵖ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ˢᵖ B ⦙ C → Γ ⁏ Δ ⊢ˢᵖ A ∧ B ⦙ C -- Spine tips. infix 3 _⊢ᵗᵖ_⦙_ data _⊢ᵗᵖ_⦙_ : Cx² Ty Box → Ty → Ty → Set where nilᵗᵖ : ∀ {C Γ Δ} → Γ ⁏ Δ ⊢ᵗᵖ C ⦙ C unboxᵗᵖ : ∀ {Ψ A C Γ Δ} → Γ ⁏ Δ , [ Ψ ] A ⊢ⁿᶠ C → Γ ⁏ Δ ⊢ᵗᵖ [ Ψ ] A ⦙ C infix 3 _⊢⋆ⁿᶠ_ _⊢⋆ⁿᶠ_ : Cx² Ty Box → Cx Ty → Set Γ ⁏ Δ ⊢⋆ⁿᶠ ∅ = 𝟙 Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ , A = Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ × Γ ⁏ Δ ⊢ⁿᶠ A -- Translation to simple terms. mutual nf→tm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ A nf→tm (neⁿᶠ t) = ne→tm t nf→tm (lamⁿᶠ t) = lam (nf→tm t) nf→tm (boxⁿᶠ t) = box (nf→tm t) nf→tm (pairⁿᶠ t u) = pair (nf→tm t) (nf→tm u) nf→tm unitⁿᶠ = unit ne→tm : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ ⊢ A ne→tm (spⁿᵉ i xs y) = tp→tm (var i) xs y ne→tm (mspⁿᵉ i {{ts}} xs y) = tp→tm (mvar i {{nf→tm⋆ ts}}) xs y sp→tm : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ˢᵖ A ⦙ C → Γ ⁏ Δ ⊢ C sp→tm t nilˢᵖ = t sp→tm t (appˢᵖ xs u) = sp→tm (app t (nf→tm u)) xs sp→tm t (fstˢᵖ xs) = sp→tm (fst t) xs sp→tm t (sndˢᵖ xs) = sp→tm (snd t) xs tp→tm : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ˢᵖ A ⦙ B → Γ ⁏ Δ ⊢ᵗᵖ B ⦙ C → Γ ⁏ Δ ⊢ C tp→tm t xs nilᵗᵖ = sp→tm t xs tp→tm t xs (unboxᵗᵖ u) = unbox (sp→tm t xs) (nf→tm u) nf→tm⋆ : ∀ {Ξ Γ Δ} → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Γ ⁏ Δ ⊢⋆ Ξ nf→tm⋆ {∅} ∙ = ∙ nf→tm⋆ {Ξ , A} (ts , t) = nf→tm⋆ ts , nf→tm t -- Monotonicity with respect to context inclusion. mutual mono⊢ⁿᶠ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ⁿᶠ A → Γ′ ⁏ Δ ⊢ⁿᶠ A mono⊢ⁿᶠ η (neⁿᶠ t) = neⁿᶠ (mono⊢ⁿᵉ η t) mono⊢ⁿᶠ η (lamⁿᶠ t) = lamⁿᶠ (mono⊢ⁿᶠ (keep η) t) mono⊢ⁿᶠ η (boxⁿᶠ t) = boxⁿᶠ t mono⊢ⁿᶠ η (pairⁿᶠ t u) = pairⁿᶠ (mono⊢ⁿᶠ η t) (mono⊢ⁿᶠ η u) mono⊢ⁿᶠ η unitⁿᶠ = unitⁿᶠ mono⊢ⁿᵉ : ∀ {A Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ⁿᵉ A → Γ′ ⁏ Δ ⊢ⁿᵉ A mono⊢ⁿᵉ η (spⁿᵉ i xs y) = spⁿᵉ (mono∈ η i) (mono⊢ˢᵖ η xs) (mono⊢ᵗᵖ η y) mono⊢ⁿᵉ η (mspⁿᵉ i {{ts}} xs y) = mspⁿᵉ i {{mono⊢⋆ⁿᶠ η ts}} (mono⊢ˢᵖ η xs) (mono⊢ᵗᵖ η y) mono⊢ˢᵖ : ∀ {A C Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ˢᵖ A ⦙ C → Γ′ ⁏ Δ ⊢ˢᵖ A ⦙ C mono⊢ˢᵖ η nilˢᵖ = nilˢᵖ mono⊢ˢᵖ η (appˢᵖ xs u) = appˢᵖ (mono⊢ˢᵖ η xs) (mono⊢ⁿᶠ η u) mono⊢ˢᵖ η (fstˢᵖ xs) = fstˢᵖ (mono⊢ˢᵖ η xs) mono⊢ˢᵖ η (sndˢᵖ xs) = sndˢᵖ (mono⊢ˢᵖ η xs) mono⊢ᵗᵖ : ∀ {A C Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢ᵗᵖ A ⦙ C → Γ′ ⁏ Δ ⊢ᵗᵖ A ⦙ C mono⊢ᵗᵖ η nilᵗᵖ = nilᵗᵖ mono⊢ᵗᵖ η (unboxᵗᵖ u) = unboxᵗᵖ (mono⊢ⁿᶠ η u) mono⊢⋆ⁿᶠ : ∀ {Ξ Γ Γ′ Δ} → Γ ⊆ Γ′ → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Γ′ ⁏ Δ ⊢⋆ⁿᶠ Ξ mono⊢⋆ⁿᶠ {∅} η ∙ = ∙ mono⊢⋆ⁿᶠ {Ξ , A} η (ts , t) = mono⊢⋆ⁿᶠ η ts , mono⊢ⁿᶠ η t -- Monotonicity with respect to modal context inclusion. mutual mmono⊢ⁿᶠ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ′ ⊢ⁿᶠ A mmono⊢ⁿᶠ θ (neⁿᶠ t) = neⁿᶠ (mmono⊢ⁿᵉ θ t) mmono⊢ⁿᶠ θ (lamⁿᶠ t) = lamⁿᶠ (mmono⊢ⁿᶠ θ t) mmono⊢ⁿᶠ θ (boxⁿᶠ t) = boxⁿᶠ (mmono⊢ⁿᶠ θ t) mmono⊢ⁿᶠ θ (pairⁿᶠ t u) = pairⁿᶠ (mmono⊢ⁿᶠ θ t) (mmono⊢ⁿᶠ θ u) mmono⊢ⁿᶠ θ unitⁿᶠ = unitⁿᶠ mmono⊢ⁿᵉ : ∀ {A Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ′ ⊢ⁿᵉ A mmono⊢ⁿᵉ θ (spⁿᵉ i xs y) = spⁿᵉ i (mmono⊢ˢᵖ θ xs) (mmono⊢ᵗᵖ θ y) mmono⊢ⁿᵉ θ (mspⁿᵉ i {{ts}} xs y) = mspⁿᵉ (mono∈ θ i) {{mmono⊢⋆ⁿᶠ θ ts}} (mmono⊢ˢᵖ θ xs) (mmono⊢ᵗᵖ θ y) mmono⊢ˢᵖ : ∀ {A C Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ˢᵖ A ⦙ C → Γ ⁏ Δ′ ⊢ˢᵖ A ⦙ C mmono⊢ˢᵖ θ nilˢᵖ = nilˢᵖ mmono⊢ˢᵖ θ (appˢᵖ xs u) = appˢᵖ (mmono⊢ˢᵖ θ xs) (mmono⊢ⁿᶠ θ u) mmono⊢ˢᵖ θ (fstˢᵖ xs) = fstˢᵖ (mmono⊢ˢᵖ θ xs) mmono⊢ˢᵖ θ (sndˢᵖ xs) = sndˢᵖ (mmono⊢ˢᵖ θ xs) mmono⊢ᵗᵖ : ∀ {A C Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢ᵗᵖ A ⦙ C → Γ ⁏ Δ′ ⊢ᵗᵖ A ⦙ C mmono⊢ᵗᵖ θ nilᵗᵖ = nilᵗᵖ mmono⊢ᵗᵖ θ (unboxᵗᵖ u) = unboxᵗᵖ (mmono⊢ⁿᶠ (keep θ) u) mmono⊢⋆ⁿᶠ : ∀ {Ξ Γ Δ Δ′} → Δ ⊆ Δ′ → Γ ⁏ Δ ⊢⋆ⁿᶠ Ξ → Γ ⁏ Δ′ ⊢⋆ⁿᶠ Ξ mmono⊢⋆ⁿᶠ {∅} θ ∙ = ∙ mmono⊢⋆ⁿᶠ {Ξ , A} θ (ts , t) = mmono⊢⋆ⁿᶠ θ ts , mmono⊢ⁿᶠ θ t -- Monotonicity using context pairs. mono²⊢ⁿᶠ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ⁿᶠ A → Π′ ⊢ⁿᶠ A mono²⊢ⁿᶠ (η , θ) = mono⊢ⁿᶠ η ∘ mmono⊢ⁿᶠ θ mono²⊢ⁿᵉ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊢ⁿᵉ A → Π′ ⊢ⁿᵉ A mono²⊢ⁿᵉ (η , θ) = mono⊢ⁿᵉ η ∘ mmono⊢ⁿᵉ θ mono²⊢ˢᵖ : ∀ {A C Π Π′} → Π ⊆² Π′ → Π ⊢ˢᵖ A ⦙ C → Π′ ⊢ˢᵖ A ⦙ C mono²⊢ˢᵖ (η , θ) = mono⊢ˢᵖ η ∘ mmono⊢ˢᵖ θ mono²⊢ᵗᵖ : ∀ {A C Π Π′} → Π ⊆² Π′ → Π ⊢ᵗᵖ A ⦙ C → Π′ ⊢ᵗᵖ A ⦙ C mono²⊢ᵗᵖ (η , θ) = mono⊢ᵗᵖ η ∘ mmono⊢ᵗᵖ θ
36.432258
114
0.487338
5ed72de15b837c588fca05501a1f6a8f0a9b751d
166
agda
Agda
test/Common/Coinduction.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
2
2019-10-29T09:40:30.000Z
2020-09-20T00:28:57.000Z
test/Common/Coinduction.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
3
2018-11-14T15:31:44.000Z
2019-04-01T19:39:26.000Z
test/Common/Coinduction.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1
2015-09-15T14:36:15.000Z
2015-09-15T14:36:15.000Z
{-# OPTIONS --without-K #-} module Common.Coinduction where open import Agda.Builtin.Coinduction public private my-♯ : ∀ {a} {A : Set a} → A → ∞ A my-♯ x = ♯ x
18.444444
43
0.614458
3f09b9c13ea55d501a46c34681bfe961c049191c
3,794
agda
Agda
Cubical/Data/Maybe/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/Data/Maybe/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
Cubical/Data/Maybe/Properties.agda
Rotsor/cubical
d55cd4834ca1f171f58b4a0c46b804ea6d18191f
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Maybe.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.Data.Nat open import Cubical.Relation.Nullary open import Cubical.Data.Sum open import Cubical.Data.Maybe.Base -- Path space of Maybe type module MaybePath {ℓ} {A : Type ℓ} where Cover : Maybe A → Maybe A → Type ℓ Cover nothing nothing = Lift Unit Cover nothing (just _) = Lift ⊥ Cover (just _) nothing = Lift ⊥ Cover (just a) (just a') = a ≡ a' reflCode : (c : Maybe A) → Cover c c reflCode nothing = lift tt reflCode (just b) = refl encode : ∀ c c' → c ≡ c' → Cover c c' encode c _ = J (λ c' _ → Cover c c') (reflCode c) encodeRefl : ∀ c → encode c c refl ≡ reflCode c encodeRefl c = JRefl (λ c' _ → Cover c c') (reflCode c) decode : ∀ c c' → Cover c c' → c ≡ c' decode nothing nothing _ = refl decode (just _) (just _) p = cong just p decodeRefl : ∀ c → decode c c (reflCode c) ≡ refl decodeRefl nothing = refl decodeRefl (just _) = refl decodeEncode : ∀ c c' → (p : c ≡ c') → decode c c' (encode c c' p) ≡ p decodeEncode c _ = J (λ c' p → decode c c' (encode c c' p) ≡ p) (cong (decode c c) (encodeRefl c) ∙ decodeRefl c) isOfHLevelCover : (n : ℕ) → isOfHLevel (suc (suc n)) A → ∀ c c' → isOfHLevel (suc n) (Cover c c') isOfHLevelCover n p nothing nothing = isOfHLevelLift (suc n) (isOfHLevelUnit (suc n)) isOfHLevelCover n p nothing (just a') = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p (just a) nothing = isOfHLevelLift (suc n) (subst (λ m → isOfHLevel m ⊥) (+-comm n 1) (hLevelLift n isProp⊥)) isOfHLevelCover n p (just a) (just a') = p a a' isOfHLevelMaybe : ∀ {ℓ} (n : ℕ) {A : Type ℓ} → isOfHLevel (suc (suc n)) A → isOfHLevel (suc (suc n)) (Maybe A) isOfHLevelMaybe n lA c c' = retractIsOfHLevel (suc n) (MaybePath.encode c c') (MaybePath.decode c c') (MaybePath.decodeEncode c c') (MaybePath.isOfHLevelCover n lA c c') private variable ℓ : Level A : Type ℓ fromJust-def : A → Maybe A → A fromJust-def a nothing = a fromJust-def _ (just a) = a just-inj : (x y : A) → just x ≡ just y → x ≡ y just-inj x _ eq = cong (fromJust-def x) eq ¬nothing≡just : ∀ {x : A} → ¬ (nothing ≡ just x) ¬nothing≡just {A = A} {x = x} p = lower (subst (caseMaybe (Maybe A) (Lift ⊥)) p (just x)) ¬just≡nothing : ∀ {x : A} → ¬ (just x ≡ nothing) ¬just≡nothing {A = A} {x = x} p = lower (subst (caseMaybe (Lift ⊥) (Maybe A)) p (just x)) discreteMaybe : Discrete A → Discrete (Maybe A) discreteMaybe eqA nothing nothing = yes refl discreteMaybe eqA nothing (just a') = no ¬nothing≡just discreteMaybe eqA (just a) nothing = no ¬just≡nothing discreteMaybe eqA (just a) (just a') with eqA a a' ... | yes p = yes (cong just p) ... | no ¬p = no (λ p → ¬p (just-inj _ _ p)) module SumUnit where Maybe→SumUnit : Maybe A → Unit ⊎ A Maybe→SumUnit nothing = inl tt Maybe→SumUnit (just a) = inr a SumUnit→Maybe : Unit ⊎ A → Maybe A SumUnit→Maybe (inl _) = nothing SumUnit→Maybe (inr a) = just a Maybe→SumUnit→Maybe : (x : Maybe A) → SumUnit→Maybe (Maybe→SumUnit x) ≡ x Maybe→SumUnit→Maybe nothing = refl Maybe→SumUnit→Maybe (just _) = refl SumUnit→Maybe→SumUnit : (x : Unit ⊎ A) → Maybe→SumUnit (SumUnit→Maybe x) ≡ x SumUnit→Maybe→SumUnit (inl _) = refl SumUnit→Maybe→SumUnit (inr _) = refl Maybe≡SumUnit : Maybe A ≡ Unit ⊎ A Maybe≡SumUnit = isoToPath (iso SumUnit.Maybe→SumUnit SumUnit.SumUnit→Maybe SumUnit.SumUnit→Maybe→SumUnit SumUnit.Maybe→SumUnit→Maybe)
33.875
133
0.648129
52270ac1ae872bb244844475ce32ec24417358ee
783
agda
Agda
test/Fail/Issue1428c.agda
cagix/agda
cc026a6a97a3e517bb94bafa9d49233b067c7559
[ "BSD-2-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue1428c.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue1428c.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2015-03-17 -- Andreas, 2020-10-26 conform to Issue1428a {-# OPTIONS --sized-types #-} open import Agda.Builtin.Size data ⊥ : Set where data SizeLt (i : Size) : Set where wrap : Size< i → SizeLt i -- This definition of size predecessor should be forbidden... module _ (i : Size) where postulate pred : Size< i -- ...otherwise the injectivity test loops here. iter : ∀ i → SizeLt i → ⊥ iter i (wrap j) = iter j (wrap (pred j)) loop : Size → ⊥ loop i = iter i (wrap (pred i)) absurd : ⊥ absurd = FIXME loop ∞ -- Testcase temporarily mutilated, original error: -- -- -Issue1428c.agda:... -- -We don't like postulated sizes in parametrized modules. -- -- +Issue1428c.agda:... -- +Not in scope: -- + FIXME at Issue1428c.agda:... -- +when scope checking FIXME
21.162162
61
0.655172
3648c91a12c5bd3a05c81f291699f3f039a182c9
259
agda
Agda
test/Succeed/Issue1809.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1809.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1809.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS -v tc.lhs.unify:80 #-} data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x postulate A : Set a : A record Foo : Set where constructor foo field anA : A test : (f : A → A) (x : Foo) → foo (f a) ≡ x → A test f .(foo (f a)) refl = a
17.266667
48
0.521236
4353bda76d0c98c3b10ed4cc70c570e46ef5e439
459
agda
Agda
test/Succeed/Issue1597/Main2.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1597/Main2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1597/Main2.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, Jesper, 2015-07-02 Error in copyScope {-# OPTIONS -v tc.decl:5 #-} -- KEEP, this forced Agda to look at A.Decls and loop -- To trigger the bug, it is important that -- the main module is in a subdirectory of the imported module. module Issue1597.Main2 where open import Issue1597 -- external import is needed module B where open A public -- public is needed module C = B -- hanged when trying to print the Syntax.Abstract.Declarations
28.6875
82
0.729847
34ca481895438ecb71664b4a5356906950fd4882
3,778
agda
Agda
theorems/cohomology/WithCoefficients.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/cohomology/WithCoefficients.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
theorems/cohomology/WithCoefficients.agda
cmknapp/HoTT-Agda
bc849346a17b33e2679a5b3f2b8efbe7835dc4b6
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import HoTT module cohomology.WithCoefficients where →Ω-group-structure : ∀ {i j} (X : Ptd i) (Y : Ptd j) → GroupStructure (fst (X ⊙→ ⊙Ω Y)) →Ω-group-structure X Y = record { ident = ⊙cst; inv = λ F → ((! ∘ fst F) , ap ! (snd F)); comp = λ F G → ⊙conc ⊙∘ ⊙×-in F G; unitl = λ G → pair= idp (unitl-lemma (snd G)); unitr = λ F → ⊙λ= (∙-unit-r ∘ fst F) (unitr-lemma (snd F)); assoc = λ F G H → ⊙λ= (λ x → ∙-assoc (fst F x) (fst G x) (fst H x)) (assoc-lemma (snd F) (snd G) (snd H)); invl = λ F → ⊙λ= (!-inv-l ∘ fst F) (invl-lemma (snd F)); invr = λ F → ⊙λ= (!-inv-r ∘ fst F) (invr-lemma (snd F))} where unitl-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ap (uncurry _∙_) (ap2 _,_ idp α) ∙ idp == α unitl-lemma idp = idp unitr-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ap (uncurry _∙_) (ap2 _,_ α idp) ∙ idp == ∙-unit-r p ∙ α unitr-lemma idp = idp assoc-lemma : ∀ {i} {A : Type i} {x : A} {p q r : x == x} (α : p == idp) (β : q == idp) (γ : r == idp) → ap (uncurry _∙_) (ap2 _,_ (ap (uncurry _∙_) (ap2 _,_ α β) ∙ idp) γ) ∙ idp == ∙-assoc p q r ∙ ap (uncurry _∙_) (ap2 _,_ α (ap (uncurry _∙_) (ap2 _,_ β γ) ∙ idp)) ∙ idp assoc-lemma idp idp idp = idp invl-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ap (uncurry _∙_) (ap2 _,_ (ap ! α) α) ∙ idp == !-inv-l p ∙ idp invl-lemma idp = idp invr-lemma : ∀ {i} {A : Type i} {x : A} {p : x == x} (α : p == idp) → ap (uncurry _∙_) (ap2 _,_ α (ap ! α)) ∙ idp == !-inv-r p ∙ idp invr-lemma idp = idp →Ω-group : ∀ {i j} (X : Ptd i) (Y : Ptd j) → Group (lmax i j) →Ω-group X Y = Trunc-group (→Ω-group-structure X Y) {- →Ω-group is functorial in the first argument -} →Ω-group-dom-act : ∀ {i j k} {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y)) (Z : Ptd k) → (→Ω-group Y Z →ᴳ →Ω-group X Z) →Ω-group-dom-act {Y = Y} f Z = Trunc-group-hom (λ g → g ⊙∘ f) (λ g₁ g₂ → ⊙∘-assoc ⊙conc (⊙×-in g₁ g₂) f ∙ ap (λ w → ⊙conc ⊙∘ w) (⊙×-in-pre∘ g₁ g₂ f)) →Ω-group-dom-idf : ∀ {i j} {X : Ptd i} (Y : Ptd j) → →Ω-group-dom-act (⊙idf X) Y == idhom (→Ω-group X Y) →Ω-group-dom-idf Y = hom= _ _ $ λ= $ Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ _ → idp) →Ω-group-dom-∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) (W : Ptd l) → →Ω-group-dom-act (g ⊙∘ f) W == →Ω-group-dom-act f W ∘ᴳ →Ω-group-dom-act g W →Ω-group-dom-∘ g f W = hom= _ _ $ λ= $ Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ h → ap [_] (! (⊙∘-assoc h g f))) {- Pointed maps out of bool -} Bool⊙→-out : ∀ {i} {X : Ptd i} → fst (⊙Lift {j = i} ⊙Bool ⊙→ X) → fst X Bool⊙→-out (h , _) = h (lift false) Bool⊙→-equiv : ∀ {i} (X : Ptd i) → fst (⊙Lift {j = i} ⊙Bool ⊙→ X) ≃ fst X Bool⊙→-equiv {i} X = equiv Bool⊙→-out g f-g g-f where g : fst X → fst (⊙Lift {j = i} ⊙Bool ⊙→ X) g x = ((λ {(lift b) → if b then snd X else x}) , idp) f-g : ∀ x → Bool⊙→-out (g x) == x f-g x = idp g-f : ∀ H → g (Bool⊙→-out H) == H g-f (h , hpt) = pair= (λ= lemma) (↓-app=cst-in $ idp =⟨ ! (!-inv-l hpt) ⟩ ! hpt ∙ hpt =⟨ ! (app=-β lemma (lift true)) |in-ctx (λ w → w ∙ hpt) ⟩ app= (λ= lemma) (lift true) ∙ hpt ∎) where lemma : ∀ b → fst (g (h (lift false))) b == h b lemma (lift true) = ! hpt lemma (lift false) = idp abstract Bool⊙→-path : ∀ {i} (X : Ptd i) → fst (⊙Lift {j = i} ⊙Bool ⊙→ X) == fst X Bool⊙→-path X = ua (Bool⊙→-equiv X) abstract Bool⊙→Ω-is-π₁ : ∀ {i} (X : Ptd i) → →Ω-group (⊙Lift {j = i} ⊙Bool) X == πS 0 X Bool⊙→Ω-is-π₁ {i} X = group-ua $ Trunc-group-iso Bool⊙→-out (λ _ _ → idp) (snd (Bool⊙→-equiv (⊙Ω X)))
34.66055
84
0.477766
1b54f51a54bb32fd24859e83e93c93f68e5fbd61
236
agda
Agda
test/Fail/ShouldBeAppliedToTheDatatypeParameters.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/ShouldBeAppliedToTheDatatypeParameters.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/ShouldBeAppliedToTheDatatypeParameters.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module ShouldBeAppliedToTheDatatypeParameters where data Nat : Set where zero : Nat suc : Nat -> Nat mutual F : Nat -> Set F zero = Nat F (suc n) = Foo (F n) data Foo (A : Set) : Set where fooI1 : F (suc zero)
13.882353
51
0.605932
d1af52f3f9b75635195effe4d9fc3f54a586a1e8
2,133
agda
Agda
BasicIPC/Metatheory/Hilbert-KripkeMcKinseyTarski.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
29
2016-07-03T18:51:56.000Z
2022-01-01T10:29:18.000Z
BasicIPC/Metatheory/Hilbert-KripkeMcKinseyTarski.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
1
2018-06-10T09:11:22.000Z
2018-06-10T09:11:22.000Z
BasicIPC/Metatheory/Hilbert-KripkeMcKinseyTarski.agda
mietek/hilbert-gentzen
fcd187db70f0a39b894fe44fad0107f61849405c
[ "X11" ]
null
null
null
module BasicIPC.Metatheory.Hilbert-KripkeMcKinseyTarski where open import BasicIPC.Syntax.Hilbert public open import BasicIPC.Semantics.KripkeMcKinseyTarski public -- Soundness with respect to all models, or evaluation. eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A eval (var i) γ = lookup i γ eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ) eval ci γ = K I eval (ck {A} {B}) γ = K (⟪K⟫ {A} {B}) eval (cs {A} {B} {C}) γ = K (⟪S⟫′ {A} {B} {C}) eval (cpair {A} {B}) γ = K (_⟪,⟫′_ {A} {B}) eval cfst γ = K π₁ eval csnd γ = K π₂ eval unit γ = ∙ -- TODO: Correctness of evaluation with respect to conversion. -- The canonical model. private instance canon : Model canon = record { World = Cx Ty ; _≤_ = _⊆_ ; refl≤ = refl⊆ ; trans≤ = trans⊆ ; _⊩ᵅ_ = λ Γ P → Γ ⊢ α P ; mono⊩ᵅ = mono⊢ } -- Soundness and completeness with respect to the canonical model. mutual reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A reflectᶜ {α P} t = t reflectᶜ {A ▻ B} t = λ η a → reflectᶜ (app (mono⊢ η t) (reifyᶜ a)) reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t) reflectᶜ {⊤} t = ∙ reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A reifyᶜ {α P} s = s reifyᶜ {A ▻ B} s = lam (reifyᶜ (s weak⊆ (reflectᶜ {A} v₀))) reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s)) reifyᶜ {⊤} s = unit reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ reflectᶜ⋆ {∅} ∙ = ∙ reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ reifyᶜ⋆ {∅} ∙ = ∙ reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t -- Reflexivity and transitivity. refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ refl⊩⋆ = reflectᶜ⋆ refl⊢⋆ trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″ trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us)) -- Completeness with respect to all models, or quotation. quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A quot s = reifyᶜ (s refl⊩⋆) -- Normalisation by evaluation. norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A norm = quot ∘ eval -- TODO: Correctness of normalisation with respect to conversion.
25.094118
68
0.524613
5e22508c80d5506148d86b788a80d372bba99d0f
493
agda
Agda
Cubical/Data/DescendingList/Strict.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Data/DescendingList/Strict.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Data/DescendingList/Strict.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
------------------------------------------------------------------------ -- Strictly descending lists ------------------------------------------------------------------------ {-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything module Cubical.Data.DescendingList.Strict (A : Type₀) (_>_ : A → A → Type₀) where open import Cubical.Data.DescendingList.Base A _>_ renaming (_≥ᴴ_ to _>ᴴ_; ≥ᴴ[] to >ᴴ[]; ≥ᴴcons to >ᴴcons; DL to SDL) using ([]; cons) public
32.866667
141
0.482759
36060671b9ce14d3b35c88f1c4a091964ade9563
7,891
agda
Agda
List.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
1
2019-12-19T23:42:31.000Z
2019-12-19T23:42:31.000Z
List.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
List.agda
hazelgrove/hazelnat-myth
a8f9299090d95f4ef1a6c2f15954c2981c0ee25c
[ "MIT" ]
null
null
null
open import Prelude open import Nat open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax) module List where -- definitions data List (A : Set) : Set where [] : List A _::_ : A → List A → List A _++_ : {A : Set} → List A → List A → List A [] ++ l₂ = l₂ (h :: l₁) ++ l₂ = h :: (l₁ ++ l₂) infixl 50 _++_ ∥_∥ : {A : Set} → List A → Nat ∥ [] ∥ = Z ∥ a :: as ∥ = 1+ ∥ as ∥ _⟦_⟧ : {A : Set} → List A → Nat → Maybe A [] ⟦ i ⟧ = None (a :: as) ⟦ Z ⟧ = Some a (a :: as) ⟦ 1+ i ⟧ = as ⟦ i ⟧ map : {A B : Set} → (A → B) → List A → List B map f [] = [] map f (a :: as) = f a :: map f as foldl : {A B : Set} → (B → A → B) → B → List A → B foldl f b [] = b foldl f b (a :: as) = foldl f (f b a) as concat : {A : Set} → List (List A) → List A concat [] = [] concat (l1 :: rest) = l1 ++ (concat rest) -- if the lists aren't the same length, -- the extra elements of the longer list are ignored zip : {A B : Set} → List A → List B → List (A ∧ B) zip [] _ = [] zip (a :: as) [] = [] zip (a :: as) (b :: bs) = (a , b) :: zip as bs unzip : {A B : Set} → List (A ∧ B) → (List A ∧ List B) unzip [] = ([] , []) unzip ((a , b) :: rest) with unzip rest ... | (as , bs) = (a :: as , b :: bs) reverse : {A : Set} → List A → List A reverse [] = [] reverse (a :: as) = reverse as ++ (a :: []) -- theorems list-==-dec : {A : Set} → (l1 l2 : List A) → ((a1 a2 : A) → a1 == a2 ∨ a1 ≠ a2) → l1 == l2 ∨ l1 ≠ l2 list-==-dec [] [] A-==-dec = Inl refl list-==-dec [] (_ :: _) A-==-dec = Inr (λ ()) list-==-dec (_ :: _) [] A-==-dec = Inr (λ ()) list-==-dec (h1 :: t1) (h2 :: t2) A-==-dec with A-==-dec h1 h2 ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl with list-==-dec t1 t2 A-==-dec ... | Inr ne = Inr (λ where refl → ne refl) ... | Inl refl = Inl refl -- if the items of two lists are equal, then the lists are equal ==-per-elem : {A : Set} → {l1 l2 : List A} → ((i : Nat) → l1 ⟦ i ⟧ == l2 ⟦ i ⟧) → l1 == l2 ==-per-elem {l1 = []} {[]} items== = refl ==-per-elem {l1 = []} {h2 :: t2} items== = abort (somenotnone (! (items== Z))) ==-per-elem {l1 = h1 :: t1} {[]} items== = abort (somenotnone (items== Z)) ==-per-elem {l1 = h1 :: t1} {h2 :: t2} items== rewrite someinj (items== Z) | ==-per-elem {l1 = t1} {t2} (λ i → items== (1+ i)) = refl -- _++_ theorems ++assc : ∀{A a1 a2 a3} → (_++_ {A} a1 a2) ++ a3 == a1 ++ (a2 ++ a3) ++assc {A} {[]} {a2} {a3} = refl ++assc {A} {x :: a1} {a2} {a3} with a1 ++ a2 ++ a3 | ++assc {A} {a1} {a2} {a3} ++assc {A} {x :: a1} {a2} {a3} | _ | refl = refl l++[]==l : {A : Set} (l : List A) → l ++ [] == l l++[]==l [] = refl l++[]==l (a :: as) rewrite l++[]==l as = refl -- ∥_∥ theorem ∥-++-comm : ∀{A a1 a2} → ∥ a1 ∥ + (∥_∥ {A} a2) == ∥ a1 ++ a2 ∥ ∥-++-comm {A} {[]} {a2} = refl ∥-++-comm {A} {a :: a1} {a2} = 1+ap (∥-++-comm {A} {a1}) -- _⟦_⟧ and ++ theorem ⦇l1++[a]++l2⦈⟦∥l1∥⟧==a : {A : Set} {l1 l2 : List A} {a : A} → (h : ∥ l1 ∥ < ∥ l1 ++ (a :: []) ++ l2 ∥) → ((l1 ++ (a :: []) ++ l2) ⟦ ∥ l1 ∥ ⟧ == Some a) ⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = []} h = refl ⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = a1 :: l1rest} {l2} {a} h = ⦇l1++[a]++l2⦈⟦∥l1∥⟧==a {l1 = l1rest} {l2} {a} (1+n<1+m→n<m h) -- packaging of list indexing results list-index-dec : {A : Set} (l : List A) (i : Nat) → l ⟦ i ⟧ == None ∨ Σ[ a ∈ A ] (l ⟦ i ⟧ == Some a) list-index-dec l i with l ⟦ i ⟧ ... | None = Inl refl ... | Some a = Inr (a , refl) -- theorems characterizing the partiality of list indexing list-index-some : {A : Set} {l : List A} {i : Nat} → i < ∥ l ∥ → Σ[ a ∈ A ] (l ⟦ i ⟧ == Some a) list-index-some {l = []} {Z} i<∥l∥ = abort (n≮0 i<∥l∥) list-index-some {l = a :: as} {Z} i<∥l∥ = _ , refl list-index-some {l = a :: as} {1+ i} i<∥l∥ = list-index-some (1+n<1+m→n<m i<∥l∥) list-index-none : {A : Set} {l : List A} {i : Nat} → ∥ l ∥ ≤ i → l ⟦ i ⟧ == None list-index-none {l = []} i≥∥l∥ = refl list-index-none {l = a :: as} {1+ i} i≥∥l∥ = list-index-none (1+n≤1+m→n≤m i≥∥l∥) list-index-some-conv : {A : Set} {l : List A} {i : Nat} {a : A} → l ⟦ i ⟧ == Some a → i < ∥ l ∥ list-index-some-conv {l = l} {i} i≥∥l∥ with <dec ∥ l ∥ i ... | Inr (Inr i<∥l∥) = i<∥l∥ ... | Inr (Inl refl) rewrite list-index-none {l = l} {∥ l ∥} ≤refl = abort (somenotnone (! i≥∥l∥)) ... | Inl ∥l∥<i rewrite list-index-none (n<m→n≤m ∥l∥<i) = abort (somenotnone (! i≥∥l∥)) list-index-none-conv : {A : Set} {l : List A} {i : Nat} → l ⟦ i ⟧ == None → ∥ l ∥ ≤ i list-index-none-conv {l = l} {i} i≥∥l∥ with <dec ∥ l ∥ i ... | Inl ∥l∥<i = n<m→n≤m ∥l∥<i ... | Inr (Inl refl) = ≤refl ... | Inr (Inr i<∥l∥) with list-index-some i<∥l∥ ... | _ , i≱∥l∥ rewrite i≥∥l∥ = abort (somenotnone (! i≱∥l∥)) ∥l1∥==∥l2∥→l1[i]→l2[i] : {A B : Set} {la : List A} {lb : List B} {i : Nat} {a : A} → ∥ la ∥ == ∥ lb ∥ → la ⟦ i ⟧ == Some a → Σ[ b ∈ B ] (lb ⟦ i ⟧ == Some b) ∥l1∥==∥l2∥→l1[i]→l2[i] {i = i} ∥la∥==∥lb∥ la[i]==a = list-index-some (tr (λ y → i < y) ∥la∥==∥lb∥ (list-index-some-conv la[i]==a)) ∥l1∥==∥l2∥→¬l1[i]→¬l2[i] : {A B : Set} {la : List A} {lb : List B} {i : Nat} → ∥ la ∥ == ∥ lb ∥ → la ⟦ i ⟧ == None → lb ⟦ i ⟧ == None ∥l1∥==∥l2∥→¬l1[i]→¬l2[i] {i = i} ∥la∥==∥lb∥ la[i]==None = list-index-none (tr (λ y → y ≤ i) ∥la∥==∥lb∥ (list-index-none-conv la[i]==None)) -- map theorem map-++-comm : ∀{A B f a b} → map f a ++ map f b == map {A} {B} f (a ++ b) map-++-comm {a = []} = refl map-++-comm {A} {B} {f} {h :: t} {b} with map f (t ++ b) | map-++-comm {A} {B} {f} {t} {b} map-++-comm {A} {B} {f} {h :: t} {b} | _ | refl = refl -- foldl theorem foldl-++ : {A B : Set} {l1 l2 : List A} {f : B → A → B} {b0 : B} → foldl f b0 (l1 ++ l2) == foldl f (foldl f b0 l1) l2 foldl-++ {l1 = []} = refl foldl-++ {l1 = a1 :: l1rest} = foldl-++ {l1 = l1rest} -- zip/unzip theorems unzip-inv : {A B : Set} {l : List (A ∧ B)} {la : List A} {lb : List B} → unzip l == (la , lb) → l == zip la lb unzip-inv {l = []} form with form ... | refl = refl unzip-inv {l = (a' , b') :: rest} {a :: as} {b :: bs} form with unzip rest | unzip-inv {l = rest} refl | form ... | (as' , bs') | refl | refl = refl zip-inv : {A B : Set} {la : List A} {lb : List B} → ∥ la ∥ == ∥ lb ∥ → unzip (zip la lb) == (la , lb) zip-inv {la = []} {[]} len-eq = refl zip-inv {la = a :: as} {b :: bs} len-eq with unzip (zip as bs) | zip-inv (1+inj len-eq) ... | (as' , bs') | refl = refl -- reverse theorems reverse-single : {A : Set} {a : A} → reverse (a :: []) == a :: [] reverse-single = refl reverse-++ : {A : Set} {l1 l2 : List A} → reverse (l1 ++ l2) == reverse l2 ++ reverse l1 reverse-++ {l1 = []} {l2} rewrite l++[]==l (reverse l2) = refl reverse-++ {l1 = a1 :: as1} {l2} rewrite reverse-++ {l1 = as1} {l2} = ++assc {a1 = reverse l2} reverse-inv : {A : Set} {l : List A} → reverse (reverse l) == l reverse-inv {l = []} = refl reverse-inv {l = a :: as} rewrite reverse-++ {l1 = reverse as} {a :: []} | reverse-inv {l = as} = refl
36.031963
119
0.407046
cc27df0200a5a462ecf4bc49a0ada70387acd98b
1,672
agda
Agda
Cubical/Foundations/Surjection.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Foundations/Surjection.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
Cubical/Foundations/Surjection.agda
limemloh/cubical
df4ef7edffd1c1deb3d4ff342c7178e9901c44f1
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Surjection where open import Cubical.Core.Everything open import Cubical.Data.Prod open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Embedding open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' f : A → B isSurjection : (A → B) → Type _ isSurjection f = ∀ b → ∥ fiber f b ∥ section→isSurjection : {g : B → A} → section f g → isSurjection f section→isSurjection {g = g} s b = ∣ g b , s b ∣ isSurjectionIsProp : isProp (isSurjection f) isSurjectionIsProp = propPi λ _ → squash isEquiv→isSurjection : isEquiv f → isSurjection f isEquiv→isSurjection e b = ∣ fst (equiv-proof e b) ∣ isEquiv→isEmbedding×isSurjection : isEquiv f → isEmbedding f × isSurjection f isEquiv→isEmbedding×isSurjection e = isEquiv→isEmbedding e , isEquiv→isSurjection e isEmbedding×isSurjection→isEquiv : isEmbedding f × isSurjection f → isEquiv f equiv-proof (isEmbedding×isSurjection→isEquiv {f = f} (emb , sur)) b = inhProp→isContr (recPropTrunc fib' (λ x → x) fib) fib' where hpf : hasPropFibers f hpf = isEmbedding→hasPropFibers emb fib : ∥ fiber f b ∥ fib = sur b fib' : isProp (fiber f b) fib' = hpf b isEquiv≃isEmbedding×isSurjection : isEquiv f ≃ isEmbedding f × isSurjection f isEquiv≃isEmbedding×isSurjection = isoToEquiv (iso isEquiv→isEmbedding×isSurjection isEmbedding×isSurjection→isEquiv (λ _ → hLevelProd 1 isEmbeddingIsProp isSurjectionIsProp _ _) (λ _ → isPropIsEquiv _ _ _))
30.962963
83
0.740431
2eaeaf0f5a043a493e29364c4f8402b5c79bafe9
1,570
agda
Agda
agda-stdlib/src/Data/AVL/Sets.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
5
2020-10-07T12:07:53.000Z
2020-10-10T21:41:32.000Z
agda-stdlib/src/Data/AVL/Sets.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
null
null
null
agda-stdlib/src/Data/AVL/Sets.agda
DreamLinuxer/popl21-artifact
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
[ "MIT" ]
1
2021-11-04T06:54:45.000Z
2021-11-04T06:54:45.000Z
------------------------------------------------------------------------ -- The Agda standard library -- -- Finite sets, based on AVL trees ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (StrictTotalOrder) module Data.AVL.Sets {a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂) where open import Data.Bool.Base open import Data.List.Base as List using (List) open import Data.Maybe.Base as Maybe open import Data.Product as Prod using (_×_; _,_; proj₁) open import Data.Unit open import Function open import Level import Data.AVL strictTotalOrder as AVL open StrictTotalOrder strictTotalOrder renaming (Carrier to A) ------------------------------------------------------------------------ -- The set type (note that Set is a reserved word) ⟨Set⟩ : Set (a ⊔ ℓ₂) ⟨Set⟩ = AVL.Tree (AVL.const ⊤) ------------------------------------------------------------------------ -- Repackaged functions empty : ⟨Set⟩ empty = AVL.empty singleton : A → ⟨Set⟩ singleton k = AVL.singleton k _ insert : A → ⟨Set⟩ → ⟨Set⟩ insert k = AVL.insert k _ delete : A → ⟨Set⟩ → ⟨Set⟩ delete = AVL.delete infix 4 _∈?_ _∈?_ : A → ⟨Set⟩ → Bool _∈?_ = AVL._∈?_ headTail : ⟨Set⟩ → Maybe (A × ⟨Set⟩) headTail s = Maybe.map (Prod.map₁ proj₁) (AVL.headTail s) initLast : ⟨Set⟩ → Maybe (⟨Set⟩ × A) initLast s = Maybe.map (Prod.map₂ proj₁) (AVL.initLast s) fromList : List A → ⟨Set⟩ fromList = AVL.fromList ∘ List.map (_, _) toList : ⟨Set⟩ → List A toList = List.map proj₁ ∘ AVL.toList
24.920635
72
0.558599
148568f2bfc61dbdec3003eaa376ac20547434ae
455
agda
Agda
test/Succeed/ProjectionsPreserveGuardednessTrivialExample.agda
alex-mckenna/agda
78b62cd24bbd570271a7153e44ad280e52ef3e29
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/Succeed/ProjectionsPreserveGuardednessTrivialExample.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
null
null
null
test/Succeed/ProjectionsPreserveGuardednessTrivialExample.agda
andersk/agda
56928ff709dcb931cb9a48c4790e5ed3739e3032
[ "BSD-3-Clause" ]
1
2019-03-05T20:02:38.000Z
2019-03-05T20:02:38.000Z
-- {-# OPTIONS -v term:30 #-} -- 2010-10-14 module ProjectionsPreserveGuardednessTrivialExample where open import Common.Level open import Common.Coinduction open import Common.Product -- Streams infixr 5 _∷_ data Stream (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A mutual repeat : {A : Set}(a : A) → Stream A repeat a = a ∷ proj₂ (repeat' a) repeat' : {A : Set}(a : A) → A × ∞ (Stream A) repeat' a = a , ♯ repeat a
19.782609
57
0.628571
37b39eb2f05ffe9992c0aae3948d6093ede23a3b
265
agda
Agda
agda/Order/Total.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
6
2015-05-21T12:50:35.000Z
2021-08-24T22:11:15.000Z
agda/Order/Total.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
agda/Order/Total.agda
bgbianchi/sorting
b8d428bccbdd1b13613e8f6ead6c81a8f9298399
[ "MIT" ]
null
null
null
open import Relation.Binary.Core module Order.Total {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.Sum refl≤ : {x : A} → x ≤ x refl≤ {x} with tot≤ x x ... | inj₁ x≤x = x≤x ... | inj₂ x≤x = x≤x
18.928571
43
0.471698
3fcdecc17e6f3da92e135fa04141cbc65594a51a
167
agda
Agda
test/Fail/Issue5448-4.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
null
null
null
test/Fail/Issue5448-4.agda
favonia/agda
8d433b967567c08afe15d04a5cb63b6f6d8884ee
[ "BSD-2-Clause" ]
6
2021-10-18T08:12:24.000Z
2021-11-24T08:31:10.000Z
test/Fail/Issue5448-4.agda
antoinevanmuylder/agda
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
[ "BSD-2-Clause" ]
null
null
null
{-# OPTIONS --cubical-compatible #-} open import Agda.Builtin.Equality subst : {@0 A : Set} {@0 x y : A} (@0 P : A → Set) → x ≡ y → P x → P y subst P refl p = p
18.555556
38
0.54491
14efefb9ca291bb9dc25f622d58d612c74cd2fa9
696
agda
Agda
test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/LibSucceed/InstanceArguments/09-higherOrderClasses.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --universe-polymorphism #-} module InstanceArguments.09-higherOrderClasses where open import Category.Applicative open import Category.Monad open import Category.Monad.Indexed open import Function lift : ∀ {a b c} {A : Set a} {C : Set c} {B : A → Set b} → ({{x : A}} → B x) → (f : C → A) → {{x : C}} → B (f x) lift m f {{x}} = m {{f x}} monadToApplicative : ∀ {l} {M : Set l → Set l} → RawMonad M → RawApplicative M monadToApplicative = RawIMonad.rawIApplicative liftAToM : ∀ {l} {V : Set l} {M : Set l → Set l} → ({{appM : RawApplicative M}} → M V) → {{monadM : RawMonad M}} → M V liftAToM app {{x}} = lift (λ {{appM}} → app {{appM}}) monadToApplicative {{x}}
34.8
88
0.606322
4e855045830c762dc85d199e0d3c13bc56483ce1
357
agda
Agda
examples/outdated-and-incorrect/clowns/Zipper.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2018-10-10T17:08:44.000Z
2018-10-10T17:08:44.000Z
examples/outdated-and-incorrect/clowns/Zipper.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
examples/outdated-and-incorrect/clowns/Zipper.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module Zipper where import Derivative import Functor import Sets open Functor open Derivative open Semantics open Recursive open Sets Zipper : U -> Set Zipper F = List (⟦ ∂ F ⟧ (μ F)) -- Plugging a zipper unzip : {F : U} -> Zipper F -> μ F -> μ F unzip [] t = t unzip {F} (c :: γ) t = inn (plug-∂ F c (unzip γ t))
16.227273
53
0.571429
d109aa5c8718a67c2bf1e8a9dc98dea2964f15ab
1,084
agda
Agda
examples/outdated-and-incorrect/cat/Unique.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
examples/outdated-and-incorrect/cat/Unique.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
examples/outdated-and-incorrect/cat/Unique.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
module Unique where open import Category module Uniq (ℂ : Cat) where private open module C = Cat ℂ -- We say that f ∈! P iff f is the unique arrow satisfying P. data _∈!_ {A B : Obj}(f : A ─→ B)(P : A ─→ B -> Set) : Set where unique : (forall g -> P g -> f == g) -> f ∈! P itsUnique : {A B : Obj}{f : A ─→ B}{P : A ─→ B -> Set} -> f ∈! P -> (g : A ─→ B) -> P g -> f == g itsUnique (unique h) = h data ∃! {A B : Obj}(P : A ─→ B -> Set) : Set where witness : (f : A ─→ B) -> f ∈! P -> ∃! P getWitness : {A B : Obj}{P : A ─→ B -> Set} -> ∃! P -> A ─→ B getWitness (witness w _) = w uniqueWitness : {A B : Obj}{P : A ─→ B -> Set}(u : ∃! P) -> getWitness u ∈! P uniqueWitness (witness _ u) = u witnessEqual : {A B : Obj}{P : A ─→ B -> Set} -> ∃! P -> {f g : A ─→ B} -> P f -> P g -> f == g witnessEqual u {f} {g} pf pg = trans (sym hf) hg where h = getWitness u hf : h == f hf = itsUnique (uniqueWitness u) f pf hg : h == g hg = itsUnique (uniqueWitness u) g pg
27.794872
66
0.462177
0db681b5d1b4ce0eab43f4b06b10ebf58d9f3dcf
2,298
agda
Agda
src/LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
src/LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda
LaudateCorpus1/bft-consensus-agda
a4674fc473f2457fd3fe5123af48253cfb2404ef
[ "UPL-1.0" ]
null
null
null
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.Network as Network import LibraBFT.Impl.Consensus.RoundManager as RoundManager open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude -- This module defines the handler for our implementation. For most message types, it does some -- initial validation before passing the message on to the proper handlers. module LibraBFT.Impl.IO.OBM.InputOutputHandlers where epvv : LBFT (Epoch × ValidatorVerifier) epvv = _,_ <$> gets (_^∙ rmSafetyRules ∙ srPersistentStorage ∙ pssSafetyData ∙ sdEpoch) <*> gets (_^∙ rmEpochState ∙ esVerifier) module handleProposal (now : Instant) (pm : ProposalMsg) where step₀ : LBFT Unit step₁ : Epoch → ValidatorVerifier → LBFT Unit step₀ = do (myEpoch , vv) ← epvv step₁ myEpoch vv step₁ myEpoch vv = do case⊎D Network.processProposal {- {!!} -} pm myEpoch vv of λ where (Left (Left e)) → logErr e (Left (Right i)) → logInfo i (Right _) → RoundManager.processProposalMsgM now pm handleProposal : Instant → ProposalMsg → LBFT Unit handleProposal = handleProposal.step₀ module handleVote (now : Instant) (vm : VoteMsg) where step₀ : LBFT Unit step₁ : Epoch → ValidatorVerifier → LBFT Unit step₀ = do (myEpoch , vv) ← epvv step₁ myEpoch vv step₁ myEpoch vv = do case Network.processVote vm myEpoch vv of λ where (Left (Left e)) → logErr e (Left (Right i)) → logInfo i (Right _) → RoundManager.processVoteMsgM now vm abstract handleVote = handleVote.step₀ handleVote≡ : handleVote ≡ handleVote.step₀ handleVote≡ = refl handle : NodeId → NetworkMsg → Instant → LBFT Unit handle _self msg now = case msg of λ where (P pm) → handleProposal now pm (V vm) → handleVote now vm (C cm) → pure unit -- We don't do anything with commit messages, they are just for defining Correctness.
33.794118
111
0.712359
355b2cfa72272aaf4a031b46bdf1d6732fb85ef2
208
agda
Agda
test/Fail/NegativeIntegerLiteral.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/NegativeIntegerLiteral.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/NegativeIntegerLiteral.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andreas, 2014-05-02 -- As of now, we have no negative integer literals, and these parse as identifiers. module _ where open import Common.Prelude n : Nat n = -1 -- Should give error "not in scope: -1"
17.333333
83
0.701923
d163bba88380f9e4dd3da1b0b59bc3047fc066a4
2,601
agda
Agda
theorems/homotopy/elims/SuspSmash.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
theorems/homotopy/elims/SuspSmash.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
theorems/homotopy/elims/SuspSmash.agda
AntoineAllioux/HoTT-Agda
1037d82edcf29b620677a311dcfd4fc2ade2faa6
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.elims.Lemmas module homotopy.elims.SuspSmash {i j k} {X : Ptd i} {Y : Ptd j} {P : Susp (X ∧ Y) → Type k} (north* : P north) (south* : P south) (smin* : (x : de⊙ X) (y : de⊙ Y) → north* == south* [ P ↓ merid (smin x y) ]) where private smbase*-template : ∀ {s} (p : smin (pt X) (pt Y) == s) → north* == south* [ P ↓ merid s ] smbase*-template p = transport (λ κ → north* == south* [ P ↓ merid κ ]) p (smin* (pt X) (pt Y)) smbasel* = smbase*-template (smgluel (pt X)) smbaser* = smbase*-template (smgluer (pt Y)) -- note that [smin*] is adjusted. coh* : (s : X ∧ Y) → north* == south* [ P ↓ merid s ] coh* = Smash-elim (λ x y → fst (fill-l x) ◃ fst (fill-r y) ◃ fst fill-base ◃ smin* x y) smbasel* smbaser* (λ x → ↓↓-from-squareover $ ap (λ p → fst (fill-l x) ◃ p ◃ fst fill-base ◃ smin* x (pt Y)) fill-r-β ∙h↓⊡ ap (fst (fill-l x) ◃_) (idp◃ _) ∙h↓⊡ snd (fill-l x)) (λ y → ↓↓-from-squareover $ ap (λ p → p ◃ fst (fill-r y) ◃ fst fill-base ◃ smin* (pt X) y) fill-l-β ∙h↓⊡ idp◃ _ ∙h↓⊡ snd (fill-r y)) where fill-template : ∀ {s₁ s₂} (p : s₁ == s₂) (α : north* == south* [ P ↓ merid s₁ ]) (β : north* == south* [ P ↓ merid s₂ ]) → Σ (north* == north*) (λ q → SquareOver P (natural-square merid p) (q ◃ α) (↓-ap-in _ _ (apd (λ _ → north*) p)) (↓-ap-in _ _ (apd (λ _ → south*) p)) β) fill-template p α β = fill-upper-left _ _ _ _ _ fill-base = fill-template (smgluel (pt X)) (smin* (pt X) (pt Y)) smbasel* fill-l = λ x → fill-template (smgluel x) (fst fill-base ◃ smin* x (pt Y)) smbasel* fill-l-β : fst (fill-l (pt X)) == idp fill-l-β = ! $ fill-upper-left-unique _ _ _ _ _ idp (idp◃ _ ∙h↓⊡ snd fill-base) fill-r = λ y → fill-template (smgluer y) (fst fill-base ◃ smin* (pt X) y) smbaser* fill-r-β : fst (fill-r (pt Y)) == idp fill-r-β = ! $ fill-upper-left-unique _ _ _ _ _ idp (idp◃ _ ∙h↓⊡ snd fill-base) ∙ ap (λ sp → fst (fill-template (snd sp) (fst fill-base ◃ smin* (pt X) (pt Y)) (smbase*-template (snd sp)))) (contr-has-all-paths {{pathfrom-is-contr (smin (pt X) (pt Y))}} (smbasel , smgluel (pt X)) (smbaser , smgluer (pt Y))) SuspSmash-elim : Π (Susp (X ∧ Y)) P SuspSmash-elim = Susp-elim north* south* coh*
40.015385
86
0.489043
35d140c2d46ef02080f6ddecc2111f2fd40ade36
176
agda
Agda
Cubical/Codata/Conat.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
null
null
null
Cubical/Codata/Conat.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2022-01-27T02:07:48.000Z
2022-01-27T02:07:48.000Z
Cubical/Codata/Conat.agda
kiana-S/univalent-foundations
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
[ "MIT" ]
1
2021-11-22T02:02:01.000Z
2021-11-22T02:02:01.000Z
{-# OPTIONS --cubical --no-import-sorts #-} module Cubical.Codata.Conat where open import Cubical.Codata.Conat.Base public open import Cubical.Codata.Conat.Properties public
25.142857
50
0.784091
7c9e4edd58349bedcf15320d2536d395a371b5af
684
agda
Agda
Cubical/Algebra/NatSolver/NatExpression.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
1
2022-03-05T00:29:41.000Z
2022-03-05T00:29:41.000Z
Cubical/Algebra/NatSolver/NatExpression.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
Cubical/Algebra/NatSolver/NatExpression.agda
FernandoLarrain/cubical
9acdecfa6437ec455568be4e5ff04849cc2bc13b
[ "MIT" ]
null
null
null
{-# OPTIONS --safe #-} module Cubical.Algebra.NatSolver.NatExpression where open import Cubical.Foundations.Prelude open import Cubical.Data.FinData open import Cubical.Data.Nat open import Cubical.Data.Nat.Order using (zero-≤) open import Cubical.Data.Vec.Base infixl 6 _+'_ infixl 7 _·'_ -- Expression in a ring on A with n variables data Expr (n : ℕ) : Type ℓ-zero where K : ℕ → Expr n ∣ : Fin n → Expr n _+'_ : Expr n → Expr n → Expr n _·'_ : Expr n → Expr n → Expr n module Eval where open import Cubical.Data.Vec ⟦_⟧ : ∀ {n} → Expr n → Vec ℕ n → ℕ ⟦ K r ⟧ v = r ⟦ ∣ k ⟧ v = lookup k v ⟦ x +' y ⟧ v = ⟦ x ⟧ v + ⟦ y ⟧ v ⟦ x ·' y ⟧ v = ⟦ x ⟧ v · ⟦ y ⟧ v
23.586207
52
0.609649
14cdc1a49430ca17607904706e12f63a0e903375
801
agda
Agda
test/Succeed/Issue1357.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue1357.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue1357.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- Andrea & Andreas, 2014-11-12 -- Pruning projected vars during solving open import Common.Product open import Common.Equality postulate A : Set works1 : {q1 : Set} {q2 : Set → Set} -> let M : Set -> Set; M = _ in {z : Set} -> q1 ≡ M (q2 z) works1 = refl works2 : {q1 : Set} {q2 : Set → Set} -> let M : Set -> Set; M = _ in q1 ≡ M (q2 A) works2 = refl works3 : {q : Set × Set} -> let M : Set -> Set; M = _ in proj₁ q ≡ M (proj₂ q) works3 = refl test1 : {q : Set × (Set → Set)} -> let M : Set -> Set; M = _ in {z : Set} -> proj₁ q ≡ M (proj₂ q z) test1 = refl test2 : {q : Set × (Set → Set)} -> let M : Set -> Set; M = _ in proj₁ q ≡ M (proj₂ q A) test2 = refl -- these tests should succeed, as expanding q into a pair gets us back to -- works1 and works2
25.03125
73
0.555556
3675e3b3fd231352b9fc9d872b2f6d164c3d1081
8,537
agda
Agda
Cubical/Algebra/Ring/QuotientRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/QuotientRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
Cubical/Algebra/Ring/QuotientRing.agda
L-TChen/cubical
60226aacd7b386aef95d43a0c29c4eec996348a8
[ "MIT" ]
null
null
null
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Ring.QuotientRing where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.Powerset using (_∈_; _⊆_) -- \in, \sub= open import Cubical.HITs.SetQuotients.Base renaming (_/_ to _/ₛ_) open import Cubical.HITs.SetQuotients.Properties open import Cubical.Algebra.Ring private variable ℓ : Level module _ (R' : Ring {ℓ}) (I : ⟨ R' ⟩ → hProp ℓ) (I-isIdeal : isIdeal R' I) where open RingStr (snd R') private R = ⟨ R' ⟩ open isIdeal I-isIdeal open Theory R' R/I : Type ℓ R/I = R /ₛ (λ x y → x - y ∈ I) private homogeneity : ∀ (x a b : R) → (a - b ∈ I) → (x + a) - (x + b) ∈ I homogeneity x a b p = subst (λ u → u ∈ I) (translatedDifference x a b) p isSetR/I : isSet R/I isSetR/I = squash/ [_]/I : (a : R) → R/I [ a ]/I = [ a ] lemma : (x y a : R) → x - y ∈ I → [ x + a ]/I ≡ [ y + a ]/I lemma x y a x-y∈I = eq/ (x + a) (y + a) (subst (λ u → u ∈ I) calculate x-y∈I) where calculate : x - y ≡ (x + a) - (y + a) calculate = x - y ≡⟨ translatedDifference a x y ⟩ ((a + x) - (a + y)) ≡⟨ cong (λ u → u - (a + y)) (+Comm _ _) ⟩ ((x + a) - (a + y)) ≡⟨ cong (λ u → (x + a) - u) (+Comm _ _) ⟩ ((x + a) - (y + a)) ∎ pre-+/I : R → R/I → R/I pre-+/I x = elim (λ _ → squash/) (λ y → [ x + y ]) λ y y' diffrenceInIdeal → eq/ (x + y) (x + y') (homogeneity x y y' diffrenceInIdeal) pre-+/I-DescendsToQuotient : (x y : R) → (x - y ∈ I) → pre-+/I x ≡ pre-+/I y pre-+/I-DescendsToQuotient x y x-y∈I i r = pointwise-equal r i where pointwise-equal : ∀ (u : R/I) → pre-+/I x u ≡ pre-+/I y u pointwise-equal = elimProp (λ u → isSetR/I (pre-+/I x u) (pre-+/I y u)) (λ a → lemma x y a x-y∈I) _+/I_ : R/I → R/I → R/I x +/I y = (elim R/I→R/I-isSet pre-+/I pre-+/I-DescendsToQuotient x) y where R/I→R/I-isSet : R/I → isSet (R/I → R/I) R/I→R/I-isSet _ = isSetΠ (λ _ → squash/) +/I-comm : (x y : R/I) → x +/I y ≡ y +/I x +/I-comm = elimProp2 (λ _ _ → squash/ _ _) eq where eq : (x y : R) → [ x ] +/I [ y ] ≡ [ y ] +/I [ x ] eq x y i = [ +Comm x y i ] +/I-assoc : (x y z : R/I) → x +/I (y +/I z) ≡ (x +/I y) +/I z +/I-assoc = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] +/I ([ y ] +/I [ z ]) ≡ ([ x ] +/I [ y ]) +/I [ z ] eq x y z i = [ +Assoc x y z i ] 0/I : R/I 0/I = [ 0r ] 1/I : R/I 1/I = [ 1r ] -/I : R/I → R/I -/I = elim (λ _ → squash/) (λ x' → [ - x' ]) eq where eq : (x y : R) → (x - y ∈ I) → [ - x ] ≡ [ - y ] eq x y x-y∈I = eq/ (- x) (- y) (subst (λ u → u ∈ I) eq' (isIdeal.-closed I-isIdeal x-y∈I)) where eq' = - (x + (- y)) ≡⟨ sym (-Dist _ _) ⟩ (- x) - (- y) ∎ +/I-rinv : (x : R/I) → x +/I (-/I x) ≡ 0/I +/I-rinv = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] +/I (-/I [ x ]) ≡ 0/I eq x i = [ +Rinv x i ] +/I-rid : (x : R/I) → x +/I 0/I ≡ x +/I-rid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] +/I 0/I ≡ [ x ] eq x i = [ +Rid x i ] _·/I_ : R/I → R/I → R/I _·/I_ = elim (λ _ → isSetΠ (λ _ → squash/)) (λ x → left· x) eq' where eq : (x y y' : R) → (y - y' ∈ I) → [ x · y ] ≡ [ x · y' ] eq x y y' y-y'∈I = eq/ _ _ (subst (λ u → u ∈ I) (x · (y - y') ≡⟨ ·Rdist+ _ _ _ ⟩ ((x · y) + x · (- y')) ≡⟨ cong (λ u → (x · y) + u) (-DistR· x y') ⟩ (x · y) - (x · y') ∎) (isIdeal.·-closedLeft I-isIdeal x y-y'∈I)) left· : (x : R) → R/I → R/I left· x = elim (λ y → squash/) (λ y → [ x · y ]) (eq x) eq' : (x x' : R) → (x - x' ∈ I) → left· x ≡ left· x' eq' x x' x-x'∈I i y = elimProp (λ y → squash/ (left· x y) (left· x' y)) (λ y → eq′ y) y i where eq′ : (y : R) → left· x [ y ] ≡ left· x' [ y ] eq′ y = eq/ (x · y) (x' · y) (subst (λ u → u ∈ I) ((x - x') · y ≡⟨ ·Ldist+ x (- x') y ⟩ x · y + (- x') · y ≡⟨ cong (λ u → x · y + u) (-DistL· x' y) ⟩ x · y - x' · y ∎) (isIdeal.·-closedRight I-isIdeal y x-x'∈I)) -- more or less copy paste from '+/I' - this is preliminary anyway ·/I-assoc : (x y z : R/I) → x ·/I (y ·/I z) ≡ (x ·/I y) ·/I z ·/I-assoc = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] ·/I ([ y ] ·/I [ z ]) ≡ ([ x ] ·/I [ y ]) ·/I [ z ] eq x y z i = [ ·Assoc x y z i ] ·/I-lid : (x : R/I) → 1/I ·/I x ≡ x ·/I-lid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → 1/I ·/I [ x ] ≡ [ x ] eq x i = [ ·Lid x i ] ·/I-rid : (x : R/I) → x ·/I 1/I ≡ x ·/I-rid = elimProp (λ x → squash/ _ _) eq where eq : (x : R) → [ x ] ·/I 1/I ≡ [ x ] eq x i = [ ·Rid x i ] /I-ldist : (x y z : R/I) → (x +/I y) ·/I z ≡ (x ·/I z) +/I (y ·/I z) /I-ldist = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → ([ x ] +/I [ y ]) ·/I [ z ] ≡ ([ x ] ·/I [ z ]) +/I ([ y ] ·/I [ z ]) eq x y z i = [ ·Ldist+ x y z i ] /I-rdist : (x y z : R/I) → x ·/I (y +/I z) ≡ (x ·/I y) +/I (x ·/I z) /I-rdist = elimProp3 (λ _ _ _ → squash/ _ _) eq where eq : (x y z : R) → [ x ] ·/I ([ y ] +/I [ z ]) ≡ ([ x ] ·/I [ y ]) +/I ([ x ] ·/I [ z ]) eq x y z i = [ ·Rdist+ x y z i ] asRing : Ring {ℓ} asRing = makeRing 0/I 1/I _+/I_ _·/I_ -/I isSetR/I +/I-assoc +/I-rid +/I-rinv +/I-comm ·/I-assoc ·/I-rid ·/I-lid /I-rdist /I-ldist _/_ : (R : Ring {ℓ}) → (I : IdealsIn R) → Ring {ℓ} R / (I , IisIdeal) = asRing R I IisIdeal [_]/I : {R : Ring {ℓ}} {I : IdealsIn R} → (a : ⟨ R ⟩) → ⟨ R / I ⟩ [ a ]/I = [ a ] module UniversalProperty (R : Ring {ℓ}) (I : IdealsIn R) where open RingStr ⦃...⦄ open Theory ⦃...⦄ Iₛ = fst I private instance _ = R _ = snd R module _ {S : Ring {ℓ}} (φ : RingHom R S) where open RingHom φ open HomTheory φ private instance _ = S _ = snd S inducedHom : Iₛ ⊆ kernel φ → RingHom (R / I) S f (inducedHom Iₛ⊆kernel) = elim (λ _ → isSetRing S) f λ r₁ r₂ r₁-r₂∈I → equalByDifference (f r₁) (f r₂) (f r₁ - f r₂ ≡⟨ cong (λ u → f r₁ + u) (sym (-commutesWithHom _)) ⟩ f r₁ + f (- r₂) ≡⟨ sym (isHom+ _ _) ⟩ f (r₁ - r₂) ≡⟨ Iₛ⊆kernel (r₁ - r₂) r₁-r₂∈I ⟩ 0r ∎) pres1 (inducedHom Iₛ⊆kernel) = pres1 isHom+ (inducedHom Iₛ⊆kernel) = elimProp2 (λ _ _ → isSetRing S _ _) isHom+ isHom· (inducedHom Iₛ⊆kernel) = elimProp2 (λ _ _ → isSetRing S _ _) isHom· solution : (p : Iₛ ⊆ kernel φ) → (x : ⟨ R ⟩) → inducedHom p $ [ x ] ≡ φ $ x solution p x = refl unique : (p : Iₛ ⊆ kernel φ) → (ψ : RingHom (R / I) S) → (ψIsSolution : (x : ⟨ R ⟩) → ψ $ [ x ] ≡ φ $ x) → (x : ⟨ R ⟩) → ψ $ [ x ] ≡ inducedHom p $ [ x ] unique p ψ ψIsSolution x = ψIsSolution x
37.279476
105
0.362774
30b140163a13dc8e738e56c788aa8a379fdb0fb6
1,337
agda
Agda
src/Generics/Mu/All.agda
flupe/generics
db764f858d908aa39ea4901669a6bbce1525f757
[ "MIT" ]
11
2021-04-08T15:10:20.000Z
2022-02-05T09:35:17.000Z
src/Generics/Mu/All.agda
flupe/generics
db764f858d908aa39ea4901669a6bbce1525f757
[ "MIT" ]
4
2021-09-13T07:33:50.000Z
2022-01-14T10:48:30.000Z
src/Generics/Mu/All.agda
flupe/generics
db764f858d908aa39ea4901669a6bbce1525f757
[ "MIT" ]
3
2021-04-08T08:32:42.000Z
2022-01-14T10:35:16.000Z
{-# OPTIONS --safe --without-K #-} module Generics.Mu.All where open import Generics.Prelude hiding (lookup) open import Generics.Telescope open import Generics.Desc open import Generics.Mu private variable P : Telescope ⊤ p : ⟦ P ⟧tel tt V I : ExTele P ℓ c : Level n : ℕ AllIndArgωω : {X : ⟦ P , I ⟧xtel → Setω} (Pr : ∀ {i} → X (p , i) → Setω) (C : ConDesc P V I) → ∀ {v} → ⟦ C ⟧IndArgω X (p , v) → Setω AllIndArgωω Pr (var _) x = Pr x AllIndArgωω Pr (π (n , ai) S C) x = (s : < relevance ai > S _) → AllIndArgωω Pr C (x s) AllIndArgωω Pr (A ⊗ B) (xa , xb) = AllIndArgωω Pr A xa ×ω AllIndArgωω Pr B xb AllConωω : {X : ⟦ P , I ⟧xtel → Setω} (Pr : ∀ {i} → X (p , i) → Setω) (C : ConDesc P V I) → ∀ {v i} → ⟦ C ⟧Conω X (p , v , i) → Setω AllConωω Pr (var f) x = ⊤ω AllConωω Pr (π ia S C) (_ , x) = AllConωω Pr C x AllConωω Pr (A ⊗ B) (xa , xb) = AllIndArgωω Pr A xa ×ω AllConωω Pr B xb AllDataωω : {X : ⟦ P , I ⟧xtel → Setω} (Pr : ∀ {i} → X (p , i) → Setω) (D : DataDesc P I n) → ∀ {i} (x : ⟦ D ⟧Dataω X (p , i)) → Setω AllDataωω Pr D (k , x) = AllConωω Pr (lookupCon D k) x All : ∀ (D : DataDesc P I n) {c} (Pr : ∀ {i} → μ D (p , i) → Set c) → ∀ {i} → μ D (p , i) → Setω All D Pr ⟨ x ⟩ = AllDataωω (λ x → Liftω (Pr x)) D x
25.711538
87
0.511593
4e8e17ed7947a09c62ffed9d59f496ff8a7e5391
79
agda
Agda
test/Fail/UselessAbstractAbstract.agda
pthariensflame/agda
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
[ "BSD-3-Clause" ]
3
2015-03-28T14:51:03.000Z
2015-12-07T20:14:00.000Z
test/fail/UselessAbstractAbstract.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
null
null
null
test/fail/UselessAbstractAbstract.agda
np/agda-git-experiment
20596e9dd9867166a64470dd24ea68925ff380ce
[ "MIT" ]
1
2022-03-12T11:35:18.000Z
2022-03-12T11:35:18.000Z
module UselessAbstractAbstract where A : Set₁ abstract abstract A = Set
11.285714
36
0.746835
34735d17c6db3427e1dc7f3160a25a003c2edf19
820
agda
Agda
test/Succeed/Issue3695.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue3695.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue3695.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path using (_≡_) open import Agda.Builtin.Sigma using (Σ; fst; _,_) postulate Is-proposition : Set → Set subst : ∀ {A : Set} (P : A → Set) {x y} → x ≡ y → P x → P y Proposition : Set₁ Proposition = Σ _ Is-proposition data _/_ (A : Set) (R : A → A → Proposition) : Set where [_] : A → A / R resp : ∀ {x y} → fst (R x y) → [ x ] ≡ [ y ] variable A : Set R : A → A → Proposition postulate F : (P : A / R → Set) (p-[] : ∀ x → P [ x ]) → (∀ {x y} (r : fst (R x y)) → subst P (resp r) (p-[] x) ≡ p-[] y) → Set F' : (A : Set) (R : A → A → Proposition) (P : A / R → Set) (p-[] : ∀ x → P [ x ]) → (∀ {x y} (r : fst (R x y)) → subst P (resp r) (p-[] x) ≡ p-[] y) → Set F' A R = F {A = A} {R = R}
23.428571
72
0.44878
4ef897dde3bc38eea24f8e3237f61994238cb793
1,018
agda
Agda
README/Safe/Cubical.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
3
2020-05-21T22:58:50.000Z
2021-09-02T17:18:15.000Z
README/Safe/Cubical.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
README/Safe/Cubical.agda
nad/equality
402b20615cfe9ca944662380d7b2d69b0f175200
[ "MIT" ]
null
null
null
------------------------------------------------------------------------ -- Safe modules that use --cubical ------------------------------------------------------------------------ {-# OPTIONS --safe --cubical #-} module README.Safe.Cubical where -- A proof of univalence. import Equality.Path.Univalence -- A proof of univalence for an arbitrary "equality with J". import Equality.Path.Isomorphisms.Univalence -- Very stable booleans. import Bool.Very-stable -- Listed finite subsets. import Finite-subset.Listed -- An alternative definition of listed finite subsets. import Finite-subset.Listed.Alternative -- Kuratowski finite subsets. import Finite-subset.Kuratowski -- An example related to Nat.Wrapper, defined in Cubical Agda. import Nat.Wrapper.Cubical -- Abstract binding trees, based on Harper's "Practical Foundations -- for Programming Languages". import Abstract-binding-tree import README.Abstract-binding-tree -- Overview of code related to a paper. import README.HITs-without-paths
22.130435
72
0.662083
1454cd6c8d3bf40cc7b63fdd75bb451b51803645
386
agda
Agda
test/Succeed/Issue695.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Succeed/Issue695.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Succeed/Issue695.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
{-# OPTIONS --auto-inline #-} module _ where data Sigma (A : Set)(B : A → Set) : Set where _,_ : (x : A) → B x → Sigma A B record Top : Set where _o_ : {A B : Set}{C : Set1} → (f : B → C) → (g : A → B) → (A → C) f o g = \ x → f (g x) mutual data U : Set where top : U sig : (X : U) → (T X → U) → U T : U → Set T top = Top T (sig a b) = Sigma (T a) (T o b)
18.380952
45
0.448187
3618fefced8346abf8907a433e845ca7ee9d46fa
2,785
agda
Agda
gen/templates/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
39
2021-11-09T20:39:55.000Z
2022-03-19T17:33:12.000Z
gen/templates/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
1
2021-11-21T12:19:32.000Z
2021-11-21T12:19:32.000Z
gen/templates/Syntax.agda
JoeyEremondi/agda-soas
ff1a985a6be9b780d3ba2beff68e902394f0a9d8
[ "MIT" ]
4
2021-11-09T20:39:59.000Z
2022-01-24T12:49:17.000Z
{- This second-order term syntax was created from the following second-order syntax description: $sig_string -} module ${syn_name}.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import ${syn_name}.Signature private variable Γ Δ Π : Ctx $ty_vars : $type 𝔛 : Familyₛ -- Inductive term declaration module ${sig}:Terms (𝔛 : Familyₛ) where data ${sig} : Familyₛ where var : ℐ ⇾̣ ${sig} mvar : 𝔛 $fst_ty_var Π → Sub ${sig} Π Γ → ${sig} $fst_ty_var Γ $syn_constructors $op_fixity open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 ${sig}ᵃ : MetaAlg ${sig} ${sig}ᵃ = record { 𝑎𝑙𝑔 = λ where $alg_patterns ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module ${sig}ᵃ = MetaAlg ${sig}ᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : ${sig} ⇾̣ 𝒜 𝕊 : Sub ${sig} Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v $sem_patterns 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ ${sig}ᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ ${sig} $fst_ty_var Γ) → 𝕤𝕖𝕞 (${sig}ᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) $alg_hom_patterns 𝕊-tab : (mε : Π ~[ ${sig} ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : ${sig} ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ ${sig}ᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : ${sig} $fst_ty_var Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub ${sig} Π Γ)(v : ℐ $fst_ty_var Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ $alg_unique_patterns -- Syntax instance for the signature ${sig}:Syn : Syntax ${sig}:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = ${sig}:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open ${sig}:Terms 𝔛 in record { ⊥ = ${sig} ⋉ ${sig}ᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax ${sig}:Syn public open ${sig}:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands ${sig}ᵃ public open import SOAS.Metatheory ${sig}:Syn public $derived_tm_ops
25.550459
93
0.569838
0d5220c94118c7711aa730d63d6d838699072706
919
agda
Agda
test/succeed/IrrelevantRecordFields.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
1
2019-11-27T07:26:06.000Z
2019-11-27T07:26:06.000Z
test/succeed/IrrelevantRecordFields.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
test/succeed/IrrelevantRecordFields.agda
dagit/agda
4383a3d20328a6c43689161496cee8eb479aca08
[ "MIT" ]
null
null
null
-- 2010-09-24 -- example originally stolen from Andrea Vezzosi's post on the Agda list {-# OPTIONS --no-irrelevant-projections #-} module IrrelevantRecordFields where -- import Common.Irrelevance infix 4 _≡_ data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a sym : {A : Set}{a b : A} → a ≡ b → b ≡ a sym refl = refl record SemiG : Set1 where constructor _,_,_,_,_,_ field M : Set unit : M _+_ : M -> M -> M .assoc : ∀ {x y z} -> x + (y + z) ≡ (x + y) + z .leftUnit : ∀ {x} -> unit + x ≡ x .rightUnit : ∀ {x} -> x + unit ≡ x dual : SemiG -> SemiG dual (M , e , _+_ , assoc , leftUnit , rightUnit) = M , e , (λ x y -> y + x) , sym assoc , rightUnit , leftUnit data _≡₁_ {A : Set1}(a : A) : A -> Set where refl : a ≡₁ a open SemiG -- trivId : ∀ (M : SemiG) -> M ≡₁ M -- trivId M = refl dual∘dual≡id : ∀ M -> dual (dual M) ≡₁ M dual∘dual≡id M = refl {a = M}
20.422222
73
0.536453
7c5d653faeae3a998374f1e8e3540fc1f6d2d9fd
993
agda
Agda
Categories/Functor/Cocontinuous.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Functor/Cocontinuous.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
Categories/Functor/Cocontinuous.agda
rei1024/agda-categories
89d163f72caa7deeac9413f27bc1b4ed7f9e025b
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Cocontinuous where open import Level open import Data.Product using (Σ) open import Categories.Category open import Categories.Functor import Categories.Category.Construction.Cocones as Coc import Categories.Diagram.Cocone.Properties as Cocₚ import Categories.Diagram.Colimit as Col import Categories.Morphism as Mor private variable o ℓ e : Level C D E J : Category o ℓ e -- G preserves the colimit of F. CoimitPreserving : (G : Functor C D) {F : Functor J C} (L : Col.Colimit F) → Set _ CoimitPreserving {C = C} {D = D} G {F} L = Σ (Col.Colimit (G ∘F F)) λ L′ → G.F₀ (Col.Colimit.coapex L) ≅ Col.Colimit.coapex L′ where module F = Functor F module G = Functor G open Mor D -- cocontinuous functors preserves all colimits. Cocontinuous : ∀ (o ℓ e : Level) (G : Functor C D) → Set _ Cocontinuous {C = C} o ℓ e G = ∀ {J : Category o ℓ e} {F : Functor J C} (L : Col.Colimit F) → CoimitPreserving G L
33.1
126
0.693857
37d6df2051c5d675f298cca96fd7566d0a2fc91e
7,513
agda
Agda
main/Util/Finite.agda
awswan/nielsenschreier-hott
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
[ "MIT" ]
null
null
null
main/Util/Finite.agda
awswan/nielsenschreier-hott
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
[ "MIT" ]
null
null
null
main/Util/Finite.agda
awswan/nielsenschreier-hott
84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Sigma open import lib.types.Pi open import lib.types.Fin open import lib.types.Nat open import lib.types.Empty open import lib.NType2 open import lib.Equivalence2 open import Util.Misc open import Util.Coproducts {- Some useful lemmas about working with finite sets. E.g. An injection from a finite set to itself is an equivalence, an injection from a finite set to a large finite set has at least one element not in its image. -} module Util.Finite where ℕ=-to-Fin= : {n : ℕ} {x y : Fin n} → (fst x == fst y) → x == y ℕ=-to-Fin= p = pair= p prop-has-all-paths-↓ finite-lpo : {i : ULevel} {n : ℕ} (P : Fin n → Type i) (dec : (x : Fin n) → Dec (P x)) → (Σ (Fin n) P ⊔ ((x : Fin n) → ¬ (P x))) finite-lpo {n = 0} P dec = inr (λ x _ → –> Fin-equiv-Empty x) finite-lpo {i} {n = S n} P dec = ⊔-fmap (–> el) (–> er) lemma where P' : Fin n ⊔ ⊤ → Type i P' z = P (<– Fin-equiv-Coprod z) el : Σ (Fin n ⊔ ⊤) P' ≃ Σ (Fin (S n)) P el = Σ-emap-l P (Fin-equiv-Coprod ⁻¹) er : ((x : Fin n ⊔ ⊤) → ¬ (P' x)) ≃ ((x : Fin (S n)) → ¬ (P x)) er = Π-emap-l (¬ ∘ P) (Fin-equiv-Coprod ⁻¹) lemma : Σ (Fin n ⊔ ⊤) P' ⊔ ((x : Fin n ⊔ ⊤) → ¬ (P' x)) lemma = ⊔-rec (λ np → inl ((inl (fst np)) , (snd np))) (λ f → ⊔-rec (λ p → inl ((inr unit) , p)) (λ np → inr (λ { (inl k) → f k ; (inr _) → np})) (dec (n , ltS))) (finite-lpo {n = n} (P' ∘ inl) λ x → dec (<– Fin-equiv-Coprod (inl x))) fin-img-dec : {i : ULevel} {A : Type i} (dec : has-dec-eq A) {n : ℕ} (inc : Fin n → A) → (a : A) → ((hfiber inc a) ⊔ ¬ (hfiber inc a)) fin-img-dec dec inc a = ⊔-rec (λ np → inl np) (λ f → inr (λ np → f (fst np) (snd np))) (finite-lpo (λ k → inc k == a) λ k → dec (inc k) a) Fin-eq : {n : ℕ} {x y : Fin n} → (fst x == fst y) → x == y Fin-eq p = pair= p prop-has-all-paths-↓ <-or-≥ : (n m : ℕ) → ((n < m) ⊔ (m ≤ n)) <-or-≥ n m = ⊔-rec (λ p → inr (inl (! p))) (⊔-rec inl (λ l → inr (inr l))) (ℕ-trichotomy n m) ≤-or-> : (n m : ℕ) → ((n ≤ m) ⊔ (m < n)) ≤-or-> m n = ⊔-rec (inl ∘ inl) (⊔-fmap inr (idf _)) (ℕ-trichotomy m n) <-≤-trans : {l m n : ℕ} → (l < m) → (m ≤ n) → (l < n) <-≤-trans p (inl q) = transport _ q p <-≤-trans p (inr q) = <-trans p q ≤-<-trans : {l m n : ℕ} → (l ≤ m) → (m < n) → (l < n) ≤-<-trans (inl p) q = transport _ (! p) q ≤-<-trans (inr p) q = <-trans p q <S≠-to-< : {a b : ℕ} → (a < S b) → (a ≠ b) → (a < b) <S≠-to-< ltS ne = ⊥-elim (ne idp) <S≠-to-< (ltSR lt) ne = lt module _ {n : ℕ} (k : Fin n) where private degeneracy-aux : (x : Fin (S n)) → ((fst x ≤ fst k) ⊔ (fst k < fst x)) → Fin n degeneracy-aux x (inl z) = (fst x) , ≤-<-trans z (snd k) degeneracy-aux (.(S (fst k)) , snd) (inr ltS) = k degeneracy-aux (.(S _) , snd) (inr (ltSR z)) = _ , (<-cancel-S snd) degeneracy-almost-inj-aux : {x y : Fin (S n)} → (fst x ≠ fst k) → (fst y ≠ fst k) → (z : ((fst x) ≤ (fst k)) ⊔ ((fst k) < (fst x))) → (w : ((fst y) ≤ (fst k)) ⊔ ((fst k) < (fst y))) → (degeneracy-aux x z == degeneracy-aux y w) → x == y degeneracy-almost-inj-aux f g (inl z) (inl w) p = ℕ=-to-Fin= (ap fst p) degeneracy-almost-inj-aux f g (inl z) (inr ltS) p = ⊥-rec (f (ap fst p)) degeneracy-almost-inj-aux f g (inl z) (inr (ltSR w)) p = ⊥-rec (<-to-≠ (≤-<-trans z w) (ap fst p)) degeneracy-almost-inj-aux f g (inr ltS) (inl w) p = ⊥-rec (g (ap fst (! p))) degeneracy-almost-inj-aux f g (inr (ltSR z)) (inl w) p = ⊥-rec (<-to-≠ (≤-<-trans w z) (ap fst (! p))) degeneracy-almost-inj-aux f g (inr ltS) (inr ltS) p = ℕ=-to-Fin= idp degeneracy-almost-inj-aux f g (inr ltS) (inr (ltSR w)) p = ℕ=-to-Fin= (ap S (ap fst p)) degeneracy-almost-inj-aux f g (inr (ltSR z)) (inr ltS) p = ℕ=-to-Fin= (ap S (ap fst p)) degeneracy-almost-inj-aux f g (inr (ltSR z)) (inr (ltSR w)) p = ℕ=-to-Fin= (ap S (ap fst p)) abstract degeneracy : (x : Fin (S n)) → Fin n degeneracy x = degeneracy-aux x (≤-or-> _ _) degeneracy-almost-inj : {x y : Fin (S n)} → (fst x ≠ fst k) → (fst y ≠ fst k) → (degeneracy x == degeneracy y) → x == y degeneracy-almost-inj f g = degeneracy-almost-inj-aux f g (≤-or-> _ _) (≤-or-> _ _) Fin-hfiber-dec : {i : ULevel} {X : Type i} {n : ℕ} (dec : has-dec-eq X) → (f : Fin n → X) → (x : X) → Dec (hfiber f x) Fin-hfiber-dec dec f x = ⊔-fmap (idf _) (λ g p → g (fst p) (snd p)) (finite-lpo (λ z → f z == x) (λ z → dec (f z) x)) Fin-inj-to-surj : (n : ℕ) → (inc : Fin n → Fin n) → (inc-inj : is-inj inc) → (y : Fin n) → hfiber inc y Fin-inj-to-surj O inc inc-inj y = ⊥-rec (–> Fin-equiv-Empty y) Fin-inj-to-surj (S n) inc inc-inj y = ⊔-rec (λ p → n<Sn , (! p)) (λ f → ⊔-rec (λ p → case1 p f) (λ g → case2 g f) (Fin-has-dec-eq k n<Sn)) (Fin-has-dec-eq y k) where n<Sn = (n , ltS) k = inc n<Sn case1 : k == n<Sn → (y ≠ k) → hfiber inc y case1 p f = Fin-S (fst x') , ℕ=-to-Fin= (ap fst (snd x')) where inc' : Fin n → Fin n inc' x = (fst (inc (Fin-S x))) , <S≠-to-< (snd (inc (Fin-S x))) λ q → <-to-≠ (snd x) (ap fst (inc-inj _ _ (ℕ=-to-Fin= q ∙ ! p))) inc-inj' : is-inj inc' inc-inj' x x' p = Fin-S-is-inj _ _ (inc-inj _ _ (ℕ=-to-Fin= (ap fst p))) y' : Fin n y' = (fst y) , (<S≠-to-< (snd y) (λ q → f (ℕ=-to-Fin= q ∙ ! p))) x' : hfiber inc' y' x' = Fin-inj-to-surj n inc' inc-inj' y' case2 : k ≠ n<Sn → (y ≠ k) → hfiber inc y case2 f g = Fin-S (fst x') , degeneracy-almost-inj k' (λ q → <-to-≠ (snd (fst x')) (ap fst (inc-inj (Fin-S (fst x')) n<Sn (ℕ=-to-Fin= q)))) (λ q → g (ℕ=-to-Fin= q)) (snd x') where k' = (fst k) , (<S≠-to-< (snd k) (λ q → f (ℕ=-to-Fin= q))) inc' : Fin n → Fin n inc' x = degeneracy k' (inc (Fin-S x)) inc-inj' : is-inj inc' inc-inj' x x' p = Fin-S-is-inj _ _ (inc-inj _ _ (degeneracy-almost-inj k' (λ q → <-to-≠ (snd x) (ap fst (inc-inj _ _ (ℕ=-to-Fin= q)))) (λ q → <-to-≠ (snd x') (ap fst (inc-inj _ _ (ℕ=-to-Fin= q)))) p)) x' : hfiber inc' (degeneracy k' y) x' = Fin-inj-to-surj n inc' inc-inj' ((degeneracy k' y)) Fin-inj-to-equiv : {n : ℕ} → (inc : Fin (S n) → Fin (S n)) → (inc-inj : is-inj inc) → (is-equiv inc) Fin-inj-to-equiv inc inc-inj = contr-map-is-equiv λ x → inhab-prop-is-contr (Fin-inj-to-surj _ inc inc-inj x) ⦃ inj-to-embed ⦃ Fin-is-set ⦄ inc inc-inj x ⦄ Fin-smaller-is-smaller : {m n : ℕ} (l : m < n) (f : Fin m → Fin n) → Σ (Fin n) (λ k → ¬ (hfiber f k)) Fin-smaller-is-smaller {m} {n} l f = ⊔-cancel-r (finite-lpo _ (λ k → ⊔-rec (λ x → inr (λ g → g x)) inl (Fin-hfiber-dec Fin-has-dec-eq f k))) lemma where lemma : ((k : Fin n) → ¬ (¬ (hfiber f k))) → ⊥ lemma g = <-to-≠ (snd (g'' (fst k))) (ap fst (snd k)) where g' : (k : Fin n) → (hfiber f k) g' k = ⊔-cancel-r (Fin-hfiber-dec Fin-has-dec-eq f k) (g k) g'' : Fin n → Fin m g'' = fst ∘ g' g''-is-inj : is-inj g'' g''-is-inj y y' p = ! (snd (g' y)) ∙ ap f p ∙ snd (g' y') h : Fin n → Fin n h k = (fst (g'' k)) , (<-trans (snd (g'' k)) l) h-is-inj : is-inj h h-is-inj x y p = g''-is-inj _ _ (ℕ=-to-Fin= (ap fst p)) k : hfiber h (m , l) k = Fin-inj-to-surj n h h-is-inj ((m , l))
42.6875
185
0.485026
039d72ce7f277b712e438b482e50bddf24ac0b3d
357
agda
Agda
test/interaction/ExtendedLambdaCase.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/interaction/ExtendedLambdaCase.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
test/interaction/ExtendedLambdaCase.agda
asr/agda-kanso
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
[ "MIT" ]
null
null
null
module ExtendedLambdaCase where data Bool : Set where true false : Bool data Void : Set where foo : Bool -> Bool -> Bool -> Bool foo = λ { x → λ { y z → {!!} } } data Bar : (Bool -> Bool) -> Set where baz : (t : Void) -> Bar λ { x → {!!} } -- with hidden argument data Bar' : (Bool -> Bool) -> Set where baz' : {t : Void} -> Bar' λ { x' → {!!} }
21
43
0.535014
04b4746d05a3bd121add166430251177730bc9f5
4,517
agda
Agda
old/Homotopy/PushoutUP.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
294
2015-01-09T16:23:23.000Z
2022-03-20T13:54:45.000Z
old/Homotopy/PushoutUP.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
31
2015-03-05T20:09:00.000Z
2021-10-03T19:15:25.000Z
old/Homotopy/PushoutUP.agda
danbornside/HoTT-Agda
1695a7f3dc60177457855ae846bbd86fcd96983e
[ "MIT" ]
50
2015-01-10T01:48:08.000Z
2022-02-14T03:03:25.000Z
{-# OPTIONS --without-K #-} open import Base open import Homotopy.PushoutDef module Homotopy.PushoutUP {m} (D : pushout-diag m) (P : Set m → Set m) ⦃ PA : P (pushout-diag.A D) ⦄ ⦃ PB : P (pushout-diag.B D) ⦄ ⦃ PC : P (pushout-diag.C D) ⦄ where open pushout-diag D -- Idea : [cocone E = (A → E) ×_(C → E) (B → E)] record cocone (top : Set m) : Set m where constructor _,_,_ field A→top : A → top B→top : B → top h : (c : C) → (A→top (f c)) ≡ (B→top (g c)) open cocone public cocone-eq-raw : (top : Set m) {a1 a2 : A → top} {b1 b2 : B → top} {h1 : (c : C) → a1 (f c) ≡ b1 (g c)} {h2 : (c : C) → a2 (f c) ≡ b2 (g c)} (p1 : a1 ≡ a2) (p2 : b1 ≡ b2) (p3 : transport _ p1 (transport _ p2 h1) ≡ h2) → (a1 , b1 , h1) ≡ (a2 , b2 , h2) cocone-eq-raw top refl refl refl = refl cocone-eq : (top : Set m) {a1 a2 : A → top} {b1 b2 : B → top} {h1 : (c : C) → a1 (f c) ≡ b1 (g c)} {h2 : (c : C) → a2 (f c) ≡ b2 (g c)} (p1 : a1 ≡ a2) (p2 : b1 ≡ b2) (p3 : (c : C) → happly p1 (f c) ∘ h2 c ≡ h1 c ∘ happly p2 (g c)) → (a1 , b1 , h1) ≡ (a2 , b2 , h2) cocone-eq top refl refl p3 = cocone-eq-raw top refl refl (funext (λ c → ! (refl-right-unit _) ∘ ! (p3 c))) open import Homotopy.PullbackDef D→top : (top : Set m) → pullback-diag m D→top top = diag (A → top) , (B → top) , (C → top) , (λ u → u ◯ f) , (λ u → u ◯ g) cocone-to-pullback : (top : Set m) → cocone top → pullback (D→top top) cocone-to-pullback top (a , b , h) = (a , b , funext h) pullback-to-cocone : (top : Set m) → pullback (D→top top) → cocone top pullback-to-cocone top (a , b , h) = (a , b , happly h) cocone-equiv-pullback : (top : Set m) → cocone top ≃ pullback (D→top top) cocone-equiv-pullback top = (cocone-to-pullback top , iso-is-eq _ (pullback-to-cocone top) (λ p → ap (λ u → _ , _ , u) (funext-happly _)) (λ c → ap (λ u → _ , _ , u) (happly-funext _))) pullback-equiv-cocone : (top : Set m) → pullback (D→top top) ≃ cocone top pullback-equiv-cocone top = (pullback-to-cocone top , iso-is-eq _ (cocone-to-pullback top) (λ c → ap (λ u → _ , _ , u) (happly-funext _)) (λ p → ap (λ u → _ , _ , u) (funext-happly _))) compose-cocone-map : (D E : Set m) (Dcocone : cocone D) → ((f : D → E) → cocone E) compose-cocone-map D E (A→top , B→top , h) f = ((f ◯ A→top) , (f ◯ B→top) , (λ c → ap f (h c))) is-pushout : (D : Set m) ⦃ PD : P D ⦄ (Dcocone : cocone D) → Set _ is-pushout D Dcocone = (E : Set m) ⦃ PE : P E ⦄ → is-equiv (compose-cocone-map D E Dcocone) compose-cocone-map-compose : (D E F : Set m) (Dcocone : cocone D) (f : D → E) (g : E → F) → compose-cocone-map E F (compose-cocone-map D E Dcocone f) g ≡ compose-cocone-map D F Dcocone (g ◯ f) compose-cocone-map-compose D E F Dcocone f g = ap (λ u → ((g ◯ (f ◯ cocone.A→top Dcocone)) , (g ◯ (f ◯ cocone.B→top Dcocone)) , u)) (funext (λ c → compose-ap g f (cocone.h Dcocone c))) module _ (D : Set m) ⦃ PD : P D ⦄ (Dcocone : cocone D) (Dpushout : is-pushout D Dcocone) (E : Set m) ⦃ PE : P E ⦄ (Ecocone : cocone E) (Epushout : is-pushout E Ecocone) where private DE-eq : (D → E) ≃ cocone E DE-eq = (compose-cocone-map D E Dcocone , Dpushout E) ED-eq : (E → D) ≃ cocone D ED-eq = (compose-cocone-map E D Ecocone , Epushout D) DD-eq : (D → D) ≃ cocone D DD-eq = (compose-cocone-map D D Dcocone , Dpushout D) EE-eq : (E → E) ≃ cocone E EE-eq = (compose-cocone-map E E Ecocone , Epushout E) D→E : D → E D→E = (DE-eq ⁻¹) ☆ Ecocone E→D : E → D E→D = (ED-eq ⁻¹) ☆ Dcocone abstract D→E→D : (λ x → E→D (D→E x)) ≡ (λ x → x) D→E→D = equiv-is-inj (compose-cocone-map D D Dcocone , Dpushout D) _ _ (! (compose-cocone-map-compose D E D Dcocone D→E E→D) ∘ (ap (λ u → compose-cocone-map E D u E→D) (inverse-right-inverse DE-eq Ecocone) ∘ (inverse-right-inverse ED-eq Dcocone ∘ ap (λ u → _ , _ , u) (funext (λ c → ! (ap-id _)))))) E→D→E : (λ x → D→E (E→D x)) ≡ (λ x → x) E→D→E = equiv-is-inj (compose-cocone-map E E Ecocone , Epushout E) _ _ (! (compose-cocone-map-compose E D E Ecocone E→D D→E) ∘ (ap (λ u → compose-cocone-map D E u D→E) (inverse-right-inverse ED-eq Dcocone) ∘ (inverse-right-inverse DE-eq Ecocone ∘ ap (λ u → _ , _ , u) (funext (λ c → ! (ap-id _)))))) pushout-equiv-pushout : D ≃ E pushout-equiv-pushout = (D→E , iso-is-eq _ E→D (happly E→D→E) (happly D→E→D))
36.427419
79
0.537304
a0e67bbd192bb558320ca44429fd85a6d2353867
813
agda
Agda
test/Fail/Issue829.agda
mdimjasevic/agda
8fb548356b275c7a1e79b768b64511ae937c738b
[ "BSD-3-Clause" ]
1,989
2015-01-09T23:51:16.000Z
2022-03-30T18:20:48.000Z
test/Fail/Issue829.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
4,066
2015-01-10T11:24:51.000Z
2022-03-31T21:14:49.000Z
test/Fail/Issue829.agda
Seanpm2001-languages/agda
9911f73061e21a87fad76c662463257afe02c861
[ "BSD-2-Clause" ]
371
2015-01-03T14:04:08.000Z
2022-03-30T19:00:30.000Z
-- {-# OPTIONS -v tc.cover.splittree:10 -v tc.cc:30 #-} module Issue829 where record ⊤ : Set where constructor tt data ⊥ : Set where postulate P : ⊥ → Set data D : (A : Set) → A → Set where c : ⊥ → (x : ⊤) → D ⊤ x f : {A : Set} {x : A} → D A x → ⊥ f (c () .tt) g : (x : ⊥) → P x g () h : (A : Set) (x : A) (d : D A x) → P (f d) h .⊤ tt (c x .tt) = g x -- Bug.agda:21,21-24 -- Incomplete pattern matching when applying Bug.f -- when checking that the expression g x has type P (f (c x tt)) -- Agda 2.3.2 gives the following more reasonable error message: -- -- Bug.agda:21,21-24 -- x != f (c x tt) of type ⊥ -- when checking that the expression g x has type P (f (c x tt)) -- This regression is caused by the patch "Fixed issue 827 : incomplete -- case tree caused by record pattern translation".
22.583333
72
0.590406
3fe4b4160617a829882086902167c3fa13377ff9
6,101
agda
Agda
theorems/cw/DegreeByProjection.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/cw/DegreeByProjection.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
theorems/cw/DegreeByProjection.agda
timjb/HoTT-Agda
66f800adef943afdf08c17b8ecfba67340fead5e
[ "MIT" ]
null
null
null
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Bouquet open import homotopy.SphereEndomorphism open import groups.SphereEndomorphism open import groups.CoefficientExtensionality open import cw.CW open import cw.WedgeOfCells module cw.DegreeByProjection {i} where module DegreeAboveOne {n : ℕ} (skel : Skeleton {i} (S (S n))) (dec : has-cells-with-dec-eq skel) -- the cells at the upper and lower dimensions (upper : cells-last skel) (lower : cells-last (cw-init skel)) where private lower-skel = cw-init skel lower-cells = cells-nth lteS skel lower-dec = cells-nth-has-dec-eq lteS skel dec degree-map : Sphere (S n) → Sphere (S n) degree-map = bwproj lower-dec lower ∘ <– (Bouquet-equiv-Xₙ/Xₙ₋₁ lower-skel) ∘ cfcod ∘ attaching-last skel upper degree : ℤ degree = Trunc-⊙SphereS-endo-degree n (Trunc-⊙SphereS-endo-in n [ degree-map ]) module DegreeAtOne (skel : Skeleton {i} 1) (dec : has-cells-with-dec-eq skel) -- the cells at the upper and lower dimensions (line : cells-last skel) (point : cells-last (cw-init skel)) where private points-dec-eq = cells-nth-has-dec-eq (inr ltS) skel dec endpoint = attaching-last skel -- When [true] matches, [true] will be sent to [false], -- which is bad. degree-true : ℤ degree-true with points-dec-eq point (endpoint line true) degree-true | inl _ = -1 degree-true | inr _ = 0 -- When [false] matches, [false] will be sent to [false], -- which is good. degree-false : ℤ degree-false with points-dec-eq point (endpoint line false) degree-false | inl _ = 1 degree-false | inr _ = 0 degree : ℤ degree = degree-true ℤ+ degree-false degree-last : ∀ {n} (skel : Skeleton {i} (S n)) → has-cells-with-dec-eq skel → cells-last skel → cells-last (cw-init skel) → ℤ degree-last {n = O} = DegreeAtOne.degree degree-last {n = S _} = DegreeAboveOne.degree degree-nth : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) → has-cells-with-dec-eq skel → cells-nth Sm≤n skel → cells-last (cw-init (cw-take Sm≤n skel)) → ℤ degree-nth Sm≤n skel dec = degree-last (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) has-degrees-with-finite-support : ∀ {n} (skel : Skeleton {i} n) → has-cells-with-dec-eq skel → Type i has-degrees-with-finite-support {n = O} _ _ = Lift ⊤ has-degrees-with-finite-support {n = S n} skel dec = has-degrees-with-finite-support (cw-init skel) (init-has-cells-with-dec-eq skel dec) × ∀ upper → has-finite-support (cells-nth-has-dec-eq (inr ltS) skel dec) (degree-last skel dec upper) init-has-degrees-with-finite-support : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → has-degrees-with-finite-support (cw-init skel) (init-has-cells-with-dec-eq skel dec) init-has-degrees-with-finite-support skel dec fin-sup = fst fin-sup take-has-degrees-with-finite-support : ∀ {m n} (m≤n : m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → has-degrees-with-finite-support (cw-take m≤n skel) (take-has-cells-with-dec-eq m≤n skel dec) take-has-degrees-with-finite-support (inl idp) skel dec fin-sup = fin-sup take-has-degrees-with-finite-support (inr ltS) skel dec fin-sup = init-has-degrees-with-finite-support skel dec fin-sup take-has-degrees-with-finite-support (inr (ltSR lt)) skel dec fin-sup = take-has-degrees-with-finite-support (inr lt) (cw-init skel) (init-has-cells-with-dec-eq skel dec) (init-has-degrees-with-finite-support skel dec fin-sup) degree-last-has-finite-support : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → ∀ upper → has-finite-support (cells-last-has-dec-eq (cw-init skel) (init-has-cells-with-dec-eq skel dec)) (degree-last skel dec upper) degree-last-has-finite-support skel dec fin-sup = snd fin-sup degree-nth-has-finite-support : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → ∀ upper → has-finite-support (cells-last-has-dec-eq (cw-init (cw-take Sm≤n skel)) (init-has-cells-with-dec-eq (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec))) (degree-nth Sm≤n skel dec upper) degree-nth-has-finite-support Sm≤n skel dec fin-sup = degree-last-has-finite-support (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) (take-has-degrees-with-finite-support Sm≤n skel dec fin-sup) -- the following are named [boundary'] because it is not extended to the free groups boundary'-last : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → cells-last skel → FreeAbGroup.El (cells-last (cw-init skel)) boundary'-last skel dec fin-sup upper = fst ((snd fin-sup) upper) boundary-last : ∀ {n} (skel : Skeleton {i} (S n)) dec → has-degrees-with-finite-support skel dec → FreeAbGroup.grp (cells-last skel) →ᴳ FreeAbGroup.grp (cells-last (cw-init skel)) boundary-last skel dec fin-sup = FreeAbGroup-extend (FreeAbGroup (cells-last (cw-init skel))) (boundary'-last skel dec fin-sup) boundary'-nth : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → cells-nth Sm≤n skel → FreeAbGroup.El (cells-last (cw-init (cw-take Sm≤n skel))) boundary'-nth Sm≤n skel dec fin-sup = boundary'-last (cw-take Sm≤n skel) (take-has-cells-with-dec-eq Sm≤n skel dec) (take-has-degrees-with-finite-support Sm≤n skel dec fin-sup) boundary-nth : ∀ {m n} (Sm≤n : S m ≤ n) (skel : Skeleton {i} n) dec → has-degrees-with-finite-support skel dec → FreeAbGroup.grp (cells-nth Sm≤n skel) →ᴳ FreeAbGroup.grp (cells-last (cw-init (cw-take Sm≤n skel))) boundary-nth Sm≤n skel dec fin-sup = FreeAbGroup-extend (FreeAbGroup (cells-last (cw-init (cw-take Sm≤n skel)))) (boundary'-nth Sm≤n skel dec fin-sup)
42.664336
103
0.655302
3ff72daa13374862d2954b423c07c30cd80e7a18
112
agda
Agda
Float.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
6
2020-04-07T17:58:13.000Z
2022-02-05T06:53:22.000Z
Float.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
Float.agda
Lolirofle/stuff-in-agda
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
[ "MIT" ]
null
null
null
module Float where import Lvl open import Type postulate Float : Type{Lvl.𝟎} {-# BUILTIN FLOAT Float #-}
14
29
0.696429
11fe5e9dc47346258cf0f72eb3c6b282ea84bc59
547
agda
Agda
src/Categories/Category/Construction/MonoidAsCategory.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
279
2019-06-01T14:36:40.000Z
2022-03-22T00:40:14.000Z
src/Categories/Category/Construction/MonoidAsCategory.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
236
2019-06-01T14:53:54.000Z
2022-03-28T14:31:43.000Z
src/Categories/Category/Construction/MonoidAsCategory.agda
jaykru/agda-categories
a4053cf700bcefdf73b857c3352f1eae29382a60
[ "MIT" ]
64
2019-06-02T16:58:15.000Z
2022-03-14T02:00:59.000Z
open import Algebra.Bundles using (Monoid) module Categories.Category.Construction.MonoidAsCategory o {c ℓ} (M : Monoid c ℓ) where open import Data.Unit.Polymorphic open import Level open import Categories.Category.Core open Monoid M -- A monoid is a category with one object MonoidAsCategory : Category o c ℓ MonoidAsCategory = record { Obj = ⊤ ; assoc = assoc _ _ _ ; sym-assoc = sym (assoc _ _ _) ; identityˡ = identityˡ _ ; identityʳ = identityʳ _ ; identity² = identityˡ _ ; equiv = isEquivalence ; ∘-resp-≈ = ∙-cong }
22.791667
87
0.711152
cc2139e5ae38f66c4457a5b6469fc1c5e17c87f8
194
agda
Agda
test/Issue73.agda
jespercockx/agda2hs
703c66db29023f5538eaa841f38dc34e89473a3e
[ "MIT" ]
55
2020-10-20T13:36:25.000Z
2022-03-26T21:57:56.000Z
test/Issue73.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
63
2020-10-22T05:19:27.000Z
2022-02-25T15:47:30.000Z
test/Issue73.agda
SNU-2D/agda2hs
160478a51bc78b0fdab07b968464420439f9fed6
[ "MIT" ]
18
2020-10-21T22:19:09.000Z
2022-03-12T11:42:52.000Z
module Issue73 where record ImplicitField (a : Set) : Set where field aField : a {anImplicitField} : a open ImplicitField public {-# COMPILE AGDA2HS ImplicitField class #-}
21.555556
43
0.680412