hexsha
stringlengths 40
40
| size
int64 3
1.05M
| ext
stringclasses 163
values | lang
stringclasses 53
values | max_stars_repo_path
stringlengths 3
945
| max_stars_repo_name
stringlengths 4
112
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
listlengths 1
10
| max_stars_count
float64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
945
| max_issues_repo_name
stringlengths 4
113
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
listlengths 1
10
| max_issues_count
float64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
945
| max_forks_repo_name
stringlengths 4
113
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
listlengths 1
10
| max_forks_count
float64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 3
1.05M
| avg_line_length
float64 1
966k
| max_line_length
int64 1
977k
| alphanum_fraction
float64 0
1
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2280e04d6be5d149e5888abcf167674878d56ddc
| 20,280
|
agda
|
Agda
|
agda-stdlib-0.9/src/Data/List/Properties.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Data/List/Properties.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Data/List/Properties.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- List-related properties
------------------------------------------------------------------------
-- Note that the lemmas below could be generalised to work with other
-- equalities than _≡_.
module Data.List.Properties where
open import Algebra
import Algebra.Monoid-solver
open import Category.Monad
open import Data.Bool
open import Data.List as List
open import Data.List.All using (All; []; _∷_)
open import Data.Maybe using (Maybe; just; nothing)
open import Data.Nat
open import Data.Nat.Properties
open import Data.Product as Prod hiding (map)
open import Function
import Algebra.FunctionProperties
import Relation.Binary.EqReasoning as EqR
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; _≗_; refl)
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Unary using (Decidable)
private
open module FP {a} {A : Set a} =
Algebra.FunctionProperties (_≡_ {A = A})
open module LMP {ℓ} = RawMonadPlus (List.monadPlus {ℓ = ℓ})
module LM {a} {A : Set a} = Monoid (List.monoid A)
module List-solver {a} {A : Set a} =
Algebra.Monoid-solver (monoid A) renaming (id to nil)
∷-injective : ∀ {a} {A : Set a} {x y : A} {xs ys} →
x ∷ xs ≡ y List.∷ ys → x ≡ y × xs ≡ ys
∷-injective refl = (refl , refl)
∷ʳ-injective : ∀ {a} {A : Set a} {x y : A} xs ys →
xs ∷ʳ x ≡ ys ∷ʳ y → xs ≡ ys × x ≡ y
∷ʳ-injective [] [] refl = (refl , refl)
∷ʳ-injective (x ∷ xs) (y ∷ ys) eq with ∷-injective eq
∷ʳ-injective (x ∷ xs) (.x ∷ ys) eq | (refl , eq′) =
Prod.map (P.cong (_∷_ x)) id $ ∷ʳ-injective xs ys eq′
∷ʳ-injective [] (_ ∷ []) ()
∷ʳ-injective [] (_ ∷ _ ∷ _) ()
∷ʳ-injective (_ ∷ []) [] ()
∷ʳ-injective (_ ∷ _ ∷ _) [] ()
right-identity-unique : ∀ {a} {A : Set a} (xs : List A) {ys} →
xs ≡ xs ++ ys → ys ≡ []
right-identity-unique [] refl = refl
right-identity-unique (x ∷ xs) eq =
right-identity-unique xs (proj₂ (∷-injective eq))
left-identity-unique : ∀ {a} {A : Set a} {xs} (ys : List A) →
xs ≡ ys ++ xs → ys ≡ []
left-identity-unique [] _ = refl
left-identity-unique {xs = []} (y ∷ ys) ()
left-identity-unique {xs = x ∷ xs} (y ∷ ys) eq
with left-identity-unique (ys ++ [ x ]) (begin
xs ≡⟨ proj₂ (∷-injective eq) ⟩
ys ++ x ∷ xs ≡⟨ P.sym (LM.assoc ys [ x ] xs) ⟩
(ys ++ [ x ]) ++ xs ∎)
where open P.≡-Reasoning
left-identity-unique {xs = x ∷ xs} (y ∷ [] ) eq | ()
left-identity-unique {xs = x ∷ xs} (y ∷ _ ∷ _) eq | ()
-- Map, sum, and append.
map-++-commute : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) xs ys →
map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++-commute f [] ys = refl
map-++-commute f (x ∷ xs) ys =
P.cong (_∷_ (f x)) (map-++-commute f xs ys)
sum-++-commute : ∀ xs ys → sum (xs ++ ys) ≡ sum xs + sum ys
sum-++-commute [] ys = refl
sum-++-commute (x ∷ xs) ys = begin
x + sum (xs ++ ys)
≡⟨ P.cong (_+_ x) (sum-++-commute xs ys) ⟩
x + (sum xs + sum ys)
≡⟨ P.sym $ +-assoc x _ _ ⟩
(x + sum xs) + sum ys
∎
where
open CommutativeSemiring commutativeSemiring hiding (_+_)
open P.≡-Reasoning
-- Various properties about folds.
foldr-universal : ∀ {a b} {A : Set a} {B : Set b}
(h : List A → B) f e →
(h [] ≡ e) →
(∀ x xs → h (x ∷ xs) ≡ f x (h xs)) →
h ≗ foldr f e
foldr-universal h f e base step [] = base
foldr-universal h f e base step (x ∷ xs) = begin
h (x ∷ xs)
≡⟨ step x xs ⟩
f x (h xs)
≡⟨ P.cong (f x) (foldr-universal h f e base step xs) ⟩
f x (foldr f e xs)
∎
where open P.≡-Reasoning
foldr-fusion : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
(h : B → C) {f : A → B → B} {g : A → C → C} (e : B) →
(∀ x y → h (f x y) ≡ g x (h y)) →
h ∘ foldr f e ≗ foldr g (h e)
foldr-fusion h {f} {g} e fuse =
foldr-universal (h ∘ foldr f e) g (h e) refl
(λ x xs → fuse x (foldr f e xs))
idIsFold : ∀ {a} {A : Set a} → id {A = List A} ≗ foldr _∷_ []
idIsFold = foldr-universal id _∷_ [] refl (λ _ _ → refl)
++IsFold : ∀ {a} {A : Set a} (xs ys : List A) →
xs ++ ys ≡ foldr _∷_ ys xs
++IsFold xs ys =
begin
xs ++ ys
≡⟨ P.cong (λ xs → xs ++ ys) (idIsFold xs) ⟩
foldr _∷_ [] xs ++ ys
≡⟨ foldr-fusion (λ xs → xs ++ ys) [] (λ _ _ → refl) xs ⟩
foldr _∷_ ([] ++ ys) xs
≡⟨ refl ⟩
foldr _∷_ ys xs
∎
where open P.≡-Reasoning
mapIsFold : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} →
map f ≗ foldr (λ x ys → f x ∷ ys) []
mapIsFold {f = f} =
begin
map f
≈⟨ P.cong (map f) ∘ idIsFold ⟩
map f ∘ foldr _∷_ []
≈⟨ foldr-fusion (map f) [] (λ _ _ → refl) ⟩
foldr (λ x ys → f x ∷ ys) []
∎
where open EqR (P._→-setoid_ _ _)
concat-map : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} →
concat ∘ map (map f) ≗ map f ∘ concat
concat-map {b = b} {f = f} =
begin
concat ∘ map (map f)
≈⟨ P.cong concat ∘ mapIsFold {b = b} ⟩
concat ∘ foldr (λ xs ys → map f xs ∷ ys) []
≈⟨ foldr-fusion {b = b} concat [] (λ _ _ → refl) ⟩
foldr (λ ys zs → map f ys ++ zs) []
≈⟨ P.sym ∘
foldr-fusion (map f) [] (λ ys zs → map-++-commute f ys zs) ⟩
map f ∘ concat
∎
where open EqR (P._→-setoid_ _ _)
map-id : ∀ {a} {A : Set a} → map id ≗ id {A = List A}
map-id {A = A} = begin
map id ≈⟨ mapIsFold ⟩
foldr _∷_ [] ≈⟨ P.sym ∘ idIsFold {A = A} ⟩
id ∎
where open EqR (P._→-setoid_ _ _)
map-compose : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
{g : B → C} {f : A → B} →
map (g ∘ f) ≗ map g ∘ map f
map-compose {A = A} {B} {g = g} {f} =
begin
map (g ∘ f)
≈⟨ P.cong (map (g ∘ f)) ∘ idIsFold ⟩
map (g ∘ f) ∘ foldr _∷_ []
≈⟨ foldr-fusion (map (g ∘ f)) [] (λ _ _ → refl) ⟩
foldr (λ a y → g (f a) ∷ y) []
≈⟨ P.sym ∘ foldr-fusion (map g) [] (λ _ _ → refl) ⟩
map g ∘ foldr (λ a y → f a ∷ y) []
≈⟨ P.cong (map g) ∘ P.sym ∘ mapIsFold {A = A} {B = B} ⟩
map g ∘ map f
∎
where open EqR (P._→-setoid_ _ _)
foldr-cong : ∀ {a b} {A : Set a} {B : Set b}
{f₁ f₂ : A → B → B} {e₁ e₂ : B} →
(∀ x y → f₁ x y ≡ f₂ x y) → e₁ ≡ e₂ →
foldr f₁ e₁ ≗ foldr f₂ e₂
foldr-cong {f₁ = f₁} {f₂} {e} f₁≗₂f₂ refl =
begin
foldr f₁ e
≈⟨ P.cong (foldr f₁ e) ∘ idIsFold ⟩
foldr f₁ e ∘ foldr _∷_ []
≈⟨ foldr-fusion (foldr f₁ e) [] (λ x xs → f₁≗₂f₂ x (foldr f₁ e xs)) ⟩
foldr f₂ e
∎
where open EqR (P._→-setoid_ _ _)
map-cong : ∀ {a b} {A : Set a} {B : Set b} {f g : A → B} →
f ≗ g → map f ≗ map g
map-cong {A = A} {B} {f} {g} f≗g =
begin
map f
≈⟨ mapIsFold ⟩
foldr (λ x ys → f x ∷ ys) []
≈⟨ foldr-cong (λ x ys → P.cong₂ _∷_ (f≗g x) refl) refl ⟩
foldr (λ x ys → g x ∷ ys) []
≈⟨ P.sym ∘ mapIsFold {A = A} {B = B} ⟩
map g
∎
where open EqR (P._→-setoid_ _ _)
-- Take, drop, and splitAt.
take++drop : ∀ {a} {A : Set a}
n (xs : List A) → take n xs ++ drop n xs ≡ xs
take++drop zero xs = refl
take++drop (suc n) [] = refl
take++drop (suc n) (x ∷ xs) =
P.cong (λ xs → x ∷ xs) (take++drop n xs)
splitAt-defn : ∀ {a} {A : Set a} n →
splitAt {A = A} n ≗ < take n , drop n >
splitAt-defn zero xs = refl
splitAt-defn (suc n) [] = refl
splitAt-defn (suc n) (x ∷ xs) with splitAt n xs | splitAt-defn n xs
... | (ys , zs) | ih = P.cong (Prod.map (_∷_ x) id) ih
-- TakeWhile, dropWhile, and span.
takeWhile++dropWhile : ∀ {a} {A : Set a} (p : A → Bool) (xs : List A) →
takeWhile p xs ++ dropWhile p xs ≡ xs
takeWhile++dropWhile p [] = refl
takeWhile++dropWhile p (x ∷ xs) with p x
... | true = P.cong (_∷_ x) (takeWhile++dropWhile p xs)
... | false = refl
span-defn : ∀ {a} {A : Set a} (p : A → Bool) →
span p ≗ < takeWhile p , dropWhile p >
span-defn p [] = refl
span-defn p (x ∷ xs) with p x
... | true = P.cong (Prod.map (_∷_ x) id) (span-defn p xs)
... | false = refl
-- Partition, filter.
partition-defn : ∀ {a} {A : Set a} (p : A → Bool) →
partition p ≗ < filter p , filter (not ∘ p) >
partition-defn p [] = refl
partition-defn p (x ∷ xs)
with p x | partition p xs | partition-defn p xs
... | true | (ys , zs) | eq = P.cong (Prod.map (_∷_ x) id) eq
... | false | (ys , zs) | eq = P.cong (Prod.map id (_∷_ x)) eq
filter-filters : ∀ {a p} {A : Set a} →
(P : A → Set p) (dec : Decidable P) (xs : List A) →
All P (filter (⌊_⌋ ∘ dec) xs)
filter-filters P dec [] = []
filter-filters P dec (x ∷ xs) with dec x
filter-filters P dec (x ∷ xs) | yes px = px ∷ filter-filters P dec xs
filter-filters P dec (x ∷ xs) | no ¬px = filter-filters P dec xs
-- Inits, tails, and scanr.
scanr-defn : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B → B) (e : B) →
scanr f e ≗ map (foldr f e) ∘ tails
scanr-defn f e [] = refl
scanr-defn f e (x ∷ []) = refl
scanr-defn f e (x₁ ∷ x₂ ∷ xs)
with scanr f e (x₂ ∷ xs) | scanr-defn f e (x₂ ∷ xs)
... | [] | ()
... | y ∷ ys | eq with ∷-injective eq
... | y≡fx₂⦇f⦈xs , _ = P.cong₂ (λ z zs → f x₁ z ∷ zs) y≡fx₂⦇f⦈xs eq
scanl-defn : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B → A) (e : A) →
scanl f e ≗ map (foldl f e) ∘ inits
scanl-defn f e [] = refl
scanl-defn f e (x ∷ xs) = P.cong (_∷_ e) (begin
scanl f (f e x) xs
≡⟨ scanl-defn f (f e x) xs ⟩
map (foldl f (f e x)) (inits xs)
≡⟨ refl ⟩
map (foldl f e ∘ (_∷_ x)) (inits xs)
≡⟨ map-compose (inits xs) ⟩
map (foldl f e) (map (_∷_ x) (inits xs))
∎)
where open P.≡-Reasoning
-- Length.
length-map : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) xs →
length (map f xs) ≡ length xs
length-map f [] = refl
length-map f (x ∷ xs) = P.cong suc (length-map f xs)
length-++ : ∀ {a} {A : Set a} (xs : List A) {ys} →
length (xs ++ ys) ≡ length xs + length ys
length-++ [] = refl
length-++ (x ∷ xs) = P.cong suc (length-++ xs)
length-replicate : ∀ {a} {A : Set a} n {x : A} →
length (replicate n x) ≡ n
length-replicate zero = refl
length-replicate (suc n) = P.cong suc (length-replicate n)
length-gfilter : ∀ {a b} {A : Set a} {B : Set b} (p : A → Maybe B) xs →
length (gfilter p xs) ≤ length xs
length-gfilter p [] = z≤n
length-gfilter p (x ∷ xs) with p x
length-gfilter p (x ∷ xs) | just y = s≤s (length-gfilter p xs)
length-gfilter p (x ∷ xs) | nothing = ≤-step (length-gfilter p xs)
-- Reverse.
unfold-reverse : ∀ {a} {A : Set a} (x : A) (xs : List A) →
reverse (x ∷ xs) ≡ reverse xs ∷ʳ x
unfold-reverse x xs = begin
foldl (flip _∷_) [ x ] xs ≡⟨ helper [ x ] xs ⟩
reverse xs ∷ʳ x ∎
where
open P.≡-Reasoning
helper : ∀ {a} {A : Set a} (xs ys : List A) →
foldl (flip _∷_) xs ys ≡ reverse ys ++ xs
helper xs [] = P.refl
helper xs (y ∷ ys) = begin
foldl (flip _∷_) (y ∷ xs) ys ≡⟨ helper (y ∷ xs) ys ⟩
reverse ys ++ y ∷ xs ≡⟨ P.sym $ LM.assoc (reverse ys) _ _ ⟩
(reverse ys ∷ʳ y) ++ xs ≡⟨ P.sym $ P.cong (λ zs → zs ++ xs) (unfold-reverse y ys) ⟩
reverse (y ∷ ys) ++ xs ∎
reverse-++-commute :
∀ {a} {A : Set a} (xs ys : List A) →
reverse (xs ++ ys) ≡ reverse ys ++ reverse xs
reverse-++-commute {a} [] ys = begin
reverse ys ≡⟨ P.sym $ proj₂ {a = a} {b = a} LM.identity _ ⟩
reverse ys ++ [] ≡⟨ P.refl ⟩
reverse ys ++ reverse [] ∎
where open P.≡-Reasoning
reverse-++-commute (x ∷ xs) ys = begin
reverse (x ∷ xs ++ ys) ≡⟨ unfold-reverse x (xs ++ ys) ⟩
reverse (xs ++ ys) ++ [ x ] ≡⟨ P.cong (λ zs → zs ++ [ x ]) (reverse-++-commute xs ys) ⟩
(reverse ys ++ reverse xs) ++ [ x ] ≡⟨ LM.assoc (reverse ys) _ _ ⟩
reverse ys ++ (reverse xs ++ [ x ]) ≡⟨ P.sym $ P.cong (λ zs → reverse ys ++ zs) (unfold-reverse x xs) ⟩
reverse ys ++ reverse (x ∷ xs) ∎
where open P.≡-Reasoning
reverse-map-commute :
∀ {a b} {A : Set a} {B : Set b} (f : A → B) → (xs : List A) →
map f (reverse xs) ≡ reverse (map f xs)
reverse-map-commute f [] = refl
reverse-map-commute f (x ∷ xs) = begin
map f (reverse (x ∷ xs)) ≡⟨ P.cong (map f) $ unfold-reverse x xs ⟩
map f (reverse xs ∷ʳ x) ≡⟨ map-++-commute f (reverse xs) ([ x ]) ⟩
map f (reverse xs) ∷ʳ f x ≡⟨ P.cong (λ y → y ∷ʳ f x) $ reverse-map-commute f xs ⟩
reverse (map f xs) ∷ʳ f x ≡⟨ P.sym $ unfold-reverse (f x) (map f xs) ⟩
reverse (map f (x ∷ xs)) ∎
where open P.≡-Reasoning
reverse-involutive : ∀ {a} {A : Set a} → Involutive (reverse {A = A})
reverse-involutive [] = refl
reverse-involutive (x ∷ xs) = begin
reverse (reverse (x ∷ xs)) ≡⟨ P.cong reverse $ unfold-reverse x xs ⟩
reverse (reverse xs ∷ʳ x) ≡⟨ reverse-++-commute (reverse xs) ([ x ]) ⟩
x ∷ reverse (reverse (xs)) ≡⟨ P.cong (λ y → x ∷ y) $ reverse-involutive xs ⟩
x ∷ xs ∎
where open P.≡-Reasoning
-- The list monad.
module Monad where
left-zero : ∀ {ℓ} {A B : Set ℓ} (f : A → List B) → (∅ >>= f) ≡ ∅
left-zero f = refl
right-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) →
(xs >>= const ∅) ≡ ∅ {A = B}
right-zero [] = refl
right-zero (x ∷ xs) = right-zero xs
private
not-left-distributive :
let xs = true ∷ false ∷ []; f = return; g = return in
(xs >>= λ x → f x ∣ g x) ≢ ((xs >>= f) ∣ (xs >>= g))
not-left-distributive ()
right-distributive : ∀ {ℓ} {A B : Set ℓ}
(xs ys : List A) (f : A → List B) →
(xs ∣ ys >>= f) ≡ ((xs >>= f) ∣ (ys >>= f))
right-distributive [] ys f = refl
right-distributive (x ∷ xs) ys f = begin
f x ∣ (xs ∣ ys >>= f) ≡⟨ P.cong (_∣_ (f x)) $ right-distributive xs ys f ⟩
f x ∣ ((xs >>= f) ∣ (ys >>= f)) ≡⟨ P.sym $ LM.assoc (f x) _ _ ⟩
(f x ∣ (xs >>= f)) ∣ (ys >>= f) ∎
where open P.≡-Reasoning
left-identity : ∀ {ℓ} {A B : Set ℓ} (x : A) (f : A → List B) →
(return x >>= f) ≡ f x
left-identity {ℓ} x f = proj₂ (LM.identity {a = ℓ}) (f x)
right-identity : ∀ {a} {A : Set a} (xs : List A) →
(xs >>= return) ≡ xs
right-identity [] = refl
right-identity (x ∷ xs) = P.cong (_∷_ x) (right-identity xs)
associative : ∀ {ℓ} {A B C : Set ℓ}
(xs : List A) (f : A → List B) (g : B → List C) →
(xs >>= λ x → f x >>= g) ≡ (xs >>= f >>= g)
associative [] f g = refl
associative (x ∷ xs) f g = begin
(f x >>= g) ∣ (xs >>= λ x → f x >>= g) ≡⟨ P.cong (_∣_ (f x >>= g)) $ associative xs f g ⟩
(f x >>= g) ∣ (xs >>= f >>= g) ≡⟨ P.sym $ right-distributive (f x) (xs >>= f) g ⟩
(f x ∣ (xs >>= f) >>= g) ∎
where open P.≡-Reasoning
cong : ∀ {ℓ} {A B : Set ℓ} {xs₁ xs₂} {f₁ f₂ : A → List B} →
xs₁ ≡ xs₂ → f₁ ≗ f₂ → (xs₁ >>= f₁) ≡ (xs₂ >>= f₂)
cong {xs₁ = xs} refl f₁≗f₂ = P.cong concat (map-cong f₁≗f₂ xs)
-- The applicative functor derived from the list monad.
-- Note that these proofs (almost) show that RawIMonad.rawIApplicative
-- is correctly defined. The proofs can be reused if proof components
-- are ever added to RawIMonad and RawIApplicative.
module Applicative where
open P.≡-Reasoning
private
-- A variant of flip map.
pam : ∀ {ℓ} {A B : Set ℓ} → List A → (A → B) → List B
pam xs f = xs >>= return ∘ f
-- ∅ is a left zero for _⊛_.
left-zero : ∀ {ℓ} {A B : Set ℓ} (xs : List A) → ∅ ⊛ xs ≡ ∅ {A = B}
left-zero xs = begin
∅ ⊛ xs ≡⟨ refl ⟩
(∅ >>= pam xs) ≡⟨ Monad.left-zero (pam xs) ⟩
∅ ∎
-- ∅ is a right zero for _⊛_.
right-zero : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) → fs ⊛ ∅ ≡ ∅
right-zero {ℓ} fs = begin
fs ⊛ ∅ ≡⟨ refl ⟩
(fs >>= pam ∅) ≡⟨ (Monad.cong (refl {x = fs}) λ f →
Monad.left-zero (return {ℓ = ℓ} ∘ f)) ⟩
(fs >>= λ _ → ∅) ≡⟨ Monad.right-zero fs ⟩
∅ ∎
-- _⊛_ distributes over _∣_ from the right.
right-distributive :
∀ {ℓ} {A B : Set ℓ} (fs₁ fs₂ : List (A → B)) xs →
(fs₁ ∣ fs₂) ⊛ xs ≡ (fs₁ ⊛ xs ∣ fs₂ ⊛ xs)
right-distributive fs₁ fs₂ xs = begin
(fs₁ ∣ fs₂) ⊛ xs ≡⟨ refl ⟩
(fs₁ ∣ fs₂ >>= pam xs) ≡⟨ Monad.right-distributive fs₁ fs₂ (pam xs) ⟩
(fs₁ >>= pam xs) ∣ (fs₂ >>= pam xs) ≡⟨ refl ⟩
fs₁ ⊛ xs ∣ fs₂ ⊛ xs ∎
-- _⊛_ does not distribute over _∣_ from the left.
private
not-left-distributive :
let fs = id ∷ id ∷ []; xs₁ = true ∷ []; xs₂ = true ∷ false ∷ [] in
fs ⊛ (xs₁ ∣ xs₂) ≢ (fs ⊛ xs₁ ∣ fs ⊛ xs₂)
not-left-distributive ()
-- Applicative functor laws.
identity : ∀ {a} {A : Set a} (xs : List A) → return id ⊛ xs ≡ xs
identity xs = begin
return id ⊛ xs ≡⟨ refl ⟩
(return id >>= pam xs) ≡⟨ Monad.left-identity id (pam xs) ⟩
(xs >>= return) ≡⟨ Monad.right-identity xs ⟩
xs ∎
private
pam-lemma : ∀ {ℓ} {A B C : Set ℓ}
(xs : List A) (f : A → B) (fs : B → List C) →
(pam xs f >>= fs) ≡ (xs >>= λ x → fs (f x))
pam-lemma xs f fs = begin
(pam xs f >>= fs) ≡⟨ P.sym $ Monad.associative xs (return ∘ f) fs ⟩
(xs >>= λ x → return (f x) >>= fs) ≡⟨ Monad.cong (refl {x = xs}) (λ x → Monad.left-identity (f x) fs) ⟩
(xs >>= λ x → fs (f x)) ∎
composition :
∀ {ℓ} {A B C : Set ℓ}
(fs : List (B → C)) (gs : List (A → B)) xs →
return _∘′_ ⊛ fs ⊛ gs ⊛ xs ≡ fs ⊛ (gs ⊛ xs)
composition {ℓ} fs gs xs = begin
return _∘′_ ⊛ fs ⊛ gs ⊛ xs ≡⟨ refl ⟩
(return _∘′_ >>= pam fs >>= pam gs >>= pam xs) ≡⟨ Monad.cong (Monad.cong (Monad.left-identity _∘′_ (pam fs))
(λ f → refl {x = pam gs f}))
(λ fg → refl {x = pam xs fg}) ⟩
(pam fs _∘′_ >>= pam gs >>= pam xs) ≡⟨ Monad.cong (pam-lemma fs _∘′_ (pam gs)) (λ _ → refl) ⟩
((fs >>= λ f → pam gs (_∘′_ f)) >>= pam xs) ≡⟨ P.sym $ Monad.associative fs (λ f → pam gs (_∘′_ f)) (pam xs) ⟩
(fs >>= λ f → pam gs (_∘′_ f) >>= pam xs) ≡⟨ (Monad.cong (refl {x = fs}) λ f →
pam-lemma gs (_∘′_ f) (pam xs)) ⟩
(fs >>= λ f → gs >>= λ g → pam xs (f ∘′ g)) ≡⟨ (Monad.cong (refl {x = fs}) λ f →
Monad.cong (refl {x = gs}) λ g →
P.sym $ pam-lemma xs g (return ∘ f)) ⟩
(fs >>= λ f → gs >>= λ g → pam (pam xs g) f) ≡⟨ (Monad.cong (refl {x = fs}) λ f →
Monad.associative gs (pam xs) (return ∘ f)) ⟩
(fs >>= pam (gs >>= pam xs)) ≡⟨ refl ⟩
fs ⊛ (gs ⊛ xs) ∎
homomorphism : ∀ {ℓ} {A B : Set ℓ} (f : A → B) x →
return f ⊛ return x ≡ return (f x)
homomorphism f x = begin
return f ⊛ return x ≡⟨ refl ⟩
(return f >>= pam (return x)) ≡⟨ Monad.left-identity f (pam (return x)) ⟩
pam (return x) f ≡⟨ Monad.left-identity x (return ∘ f) ⟩
return (f x) ∎
interchange : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) {x} →
fs ⊛ return x ≡ return (λ f → f x) ⊛ fs
interchange fs {x} = begin
fs ⊛ return x ≡⟨ refl ⟩
(fs >>= pam (return x)) ≡⟨ (Monad.cong (refl {x = fs}) λ f →
Monad.left-identity x (return ∘ f)) ⟩
(fs >>= λ f → return (f x)) ≡⟨ refl ⟩
(pam fs (λ f → f x)) ≡⟨ P.sym $ Monad.left-identity (λ f → f x) (pam fs) ⟩
(return (λ f → f x) >>= pam fs) ≡⟨ refl ⟩
return (λ f → f x) ⊛ fs ∎
| 37.555556
| 118
| 0.470118
|
4eb6f6edfe1ea4f4b0ef948913d389983179fd77
| 321
|
agda
|
Agda
|
Utils.agda
|
JoeyEremondi/agda-parikh
|
1e28103ff7dd1d4f3351ef21397833aa4490b7ea
|
[
"BSD-3-Clause"
] | null | null | null |
Utils.agda
|
JoeyEremondi/agda-parikh
|
1e28103ff7dd1d4f3351ef21397833aa4490b7ea
|
[
"BSD-3-Clause"
] | null | null | null |
Utils.agda
|
JoeyEremondi/agda-parikh
|
1e28103ff7dd1d4f3351ef21397833aa4490b7ea
|
[
"BSD-3-Clause"
] | null | null | null |
module Utils where
open import Relation.Binary.PropositionalEquality
open import Data.List
listHeadEq : ∀ {α} {A : Set α} {x y : A} -> {xt yt : List A} -> x ∷ xt ≡ y ∷ yt -> x ≡ y
listHeadEq refl = refl
listTailEq : ∀ {α} {A : Set α} {x y : A} -> {xt yt : List A} -> x ∷ xt ≡ y ∷ yt -> xt ≡ yt
listTailEq refl = refl
| 26.75
| 90
| 0.588785
|
1b753f6172df47b3e7eac373c5ef818b2dd74c49
| 2,664
|
agda
|
Agda
|
Definition/LogicalRelation/Fundamental/Variable.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2018-06-21T08:39:01.000Z
|
2022-01-17T16:13:53.000Z
|
Definition/LogicalRelation/Fundamental/Variable.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | null | null | null |
Definition/LogicalRelation/Fundamental/Variable.agda
|
CoqHott/logrel-mltt
|
e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04
|
[
"MIT"
] | 2
|
2022-01-26T14:55:51.000Z
|
2022-02-15T19:42:19.000Z
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Fundamental.Variable {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Fundamental theorem for variables.
fundamentalVar : ∀ {Γ A rA x}
→ x ∷ A ^ rA ∈ Γ
→ ([Γ] : ⊩ᵛ Γ)
→ ∃ λ ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ rA / [Γ])
→ Γ ⊩ᵛ⟨ ∞ ⟩ var x ∷ A ^ rA / [Γ] / [A]
fundamentalVar here (_∙_ {A = A} {rA = rA} {l = l} [Γ] [A]) =
(λ ⊢Δ [σ] →
let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ]))
[σA′] = maybeEmb (irrelevance′ (PE.sym (subst-wk A)) [σA])
in [σA′]
, (λ [σ′] [σ≡σ′] →
irrelevanceEq″ (PE.sym (subst-wk A)) (PE.sym (subst-wk A)) PE.refl PE.refl
[σA] [σA′] (proj₂ ([A] ⊢Δ (proj₁ [σ]))
(proj₁ [σ′]) (proj₁ [σ≡σ′]))))
, (λ ⊢Δ [σ] →
let [σA] = proj₁ ([A] ⊢Δ (proj₁ [σ]))
[σA′] = maybeEmb (irrelevance′ (PE.sym (subst-wk A)) [σA])
in irrelevanceTerm′ (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′] (proj₂ [σ])
, (λ [σ′] [σ≡σ′] → irrelevanceEqTerm′ (PE.sym (subst-wk A)) PE.refl PE.refl
[σA] [σA′] (proj₂ [σ≡σ′])))
fundamentalVar (there {A = A} h) ([Γ] ∙ [B]) =
(λ ⊢Δ [σ] →
let [h] = proj₁ (fundamentalVar h [Γ]) ⊢Δ (proj₁ [σ])
[σA] = proj₁ [h]
[σA′] = irrelevance′ (PE.sym (subst-wk A)) [σA]
in [σA′]
, (λ [σ′] [σ≡σ′] →
irrelevanceEq″ (PE.sym (subst-wk A)) (PE.sym (subst-wk A)) PE.refl PE.refl
[σA] [σA′]
(proj₂ [h] (proj₁ [σ′]) (proj₁ [σ≡σ′]))))
, (λ ⊢Δ [σ] →
let [h] = (proj₁ (fundamentalVar h [Γ])) ⊢Δ (proj₁ [σ])
[σA] = proj₁ [h]
[σA′] = irrelevance′ (PE.sym (subst-wk A)) [σA]
[h′] = (proj₂ (fundamentalVar h [Γ])) ⊢Δ (proj₁ [σ])
in irrelevanceTerm′ (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′] (proj₁ [h′])
, (λ [σ′] [σ≡σ′] →
irrelevanceEqTerm′ (PE.sym (subst-wk A)) PE.refl PE.refl [σA] [σA′]
(proj₂ [h′] (proj₁ [σ′]) (proj₁ [σ≡σ′]))))
| 42.967742
| 91
| 0.489114
|
fde3fe6e5988ce0da208d696e7f3be7929ef76ab
| 7,216
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Homogeneous.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Homogeneous.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Relation/Binary/Indexed/Homogeneous.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Homogeneously-indexed binary relations
--
-- Indexed structures are laid out in a similar manner as to those
-- in Relation.Binary. The main difference is each structure also
-- contains proofs for the lifted version of the relation.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Indexed.Homogeneous where
open import Function using (_⟨_⟩_)
open import Level using (Level; _⊔_; suc)
open import Relation.Binary as B using (_⇒_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary using (¬_)
open import Data.Product using (_,_)
------------------------------------------------------------------------
-- Publically export core definitions
open import Relation.Binary.Indexed.Homogeneous.Core public
------------------------------------------------------------------------
-- Equivalences
record IsIndexedEquivalence {i a ℓ} {I : Set i} (A : I → Set a)
(_≈ᵢ_ : IRel A ℓ) : Set (i ⊔ a ⊔ ℓ) where
field
reflᵢ : Reflexive A _≈ᵢ_
symᵢ : Symmetric A _≈ᵢ_
transᵢ : Transitive A _≈ᵢ_
reflexiveᵢ : ∀ {i} → _≡_ ⟨ _⇒_ ⟩ _≈ᵢ_ {i}
reflexiveᵢ P.refl = reflᵢ
-- Lift properties
reflexive : _≡_ ⇒ (Lift A _≈ᵢ_)
reflexive P.refl i = reflᵢ
refl : B.Reflexive (Lift A _≈ᵢ_)
refl i = reflᵢ
sym : B.Symmetric (Lift A _≈ᵢ_)
sym x≈y i = symᵢ (x≈y i)
trans : B.Transitive (Lift A _≈ᵢ_)
trans x≈y y≈z i = transᵢ (x≈y i) (y≈z i)
isEquivalence : B.IsEquivalence (Lift A _≈ᵢ_)
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
record IndexedSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈ᵢ_ _≈_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ
isEquivalenceᵢ : IsIndexedEquivalence Carrierᵢ _≈ᵢ_
open IsIndexedEquivalence isEquivalenceᵢ public
Carrier : Set _
Carrier = ∀ i → Carrierᵢ i
_≈_ : B.Rel Carrier _
_≈_ = Lift Carrierᵢ _≈ᵢ_
_≉_ : B.Rel Carrier _
x ≉ y = ¬ (x ≈ y)
setoid : B.Setoid _ _
setoid = record
{ isEquivalence = isEquivalence
}
------------------------------------------------------------------------
-- Decidable equivalences
record IsIndexedDecEquivalence {i a ℓ} {I : Set i} (A : I → Set a)
(_≈ᵢ_ : IRel A ℓ) : Set (i ⊔ a ⊔ ℓ) where
infix 4 _≟ᵢ_
field
_≟ᵢ_ : Decidable A _≈ᵢ_
isEquivalenceᵢ : IsIndexedEquivalence A _≈ᵢ_
open IsIndexedEquivalence isEquivalenceᵢ public
record IndexedDecSetoid {i} (I : Set i) c ℓ : Set (suc (i ⊔ c ⊔ ℓ)) where
infix 4 _≈ᵢ_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ
isDecEquivalenceᵢ : IsIndexedDecEquivalence Carrierᵢ _≈ᵢ_
open IsIndexedDecEquivalence isDecEquivalenceᵢ public
indexedSetoid : IndexedSetoid I c ℓ
indexedSetoid = record { isEquivalenceᵢ = isEquivalenceᵢ }
open IndexedSetoid indexedSetoid public
using (Carrier; _≈_; _≉_; setoid)
------------------------------------------------------------------------
-- Preorders
record IsIndexedPreorder {i a ℓ₁ ℓ₂} {I : Set i} (A : I → Set a)
(_≈ᵢ_ : IRel A ℓ₁) (_∼ᵢ_ : IRel A ℓ₂)
: Set (i ⊔ a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isEquivalenceᵢ : IsIndexedEquivalence A _≈ᵢ_
reflexiveᵢ : _≈ᵢ_ ⇒[ A ] _∼ᵢ_
transᵢ : Transitive A _∼ᵢ_
module Eq = IsIndexedEquivalence isEquivalenceᵢ
reflᵢ : Reflexive A _∼ᵢ_
reflᵢ = reflexiveᵢ Eq.reflᵢ
∼ᵢ-respˡ-≈ᵢ : Respectsˡ A _∼ᵢ_ _≈ᵢ_
∼ᵢ-respˡ-≈ᵢ x≈y x∼z = transᵢ (reflexiveᵢ (Eq.symᵢ x≈y)) x∼z
∼ᵢ-respʳ-≈ᵢ : Respectsʳ A _∼ᵢ_ _≈ᵢ_
∼ᵢ-respʳ-≈ᵢ x≈y z∼x = transᵢ z∼x (reflexiveᵢ x≈y)
∼ᵢ-resp-≈ᵢ : Respects₂ A _∼ᵢ_ _≈ᵢ_
∼ᵢ-resp-≈ᵢ = ∼ᵢ-respʳ-≈ᵢ , ∼ᵢ-respˡ-≈ᵢ
-- Lifted properties
reflexive : Lift A _≈ᵢ_ B.⇒ Lift A _∼ᵢ_
reflexive x≈y i = reflexiveᵢ (x≈y i)
refl : B.Reflexive (Lift A _∼ᵢ_)
refl i = reflᵢ
trans : B.Transitive (Lift A _∼ᵢ_)
trans x≈y y≈z i = transᵢ (x≈y i) (y≈z i)
∼-respˡ-≈ : (Lift A _∼ᵢ_) B.Respectsˡ (Lift A _≈ᵢ_)
∼-respˡ-≈ x≈y x∼z i = ∼ᵢ-respˡ-≈ᵢ (x≈y i) (x∼z i)
∼-respʳ-≈ : (Lift A _∼ᵢ_) B.Respectsʳ (Lift A _≈ᵢ_)
∼-respʳ-≈ x≈y z∼x i = ∼ᵢ-respʳ-≈ᵢ (x≈y i) (z∼x i)
∼-resp-≈ : (Lift A _∼ᵢ_) B.Respects₂ (Lift A _≈ᵢ_)
∼-resp-≈ = ∼-respʳ-≈ , ∼-respˡ-≈
isPreorder : B.IsPreorder (Lift A _≈ᵢ_) (Lift A _∼ᵢ_)
isPreorder = record
{ isEquivalence = Eq.isEquivalence
; reflexive = reflexive
; trans = trans
}
record IndexedPreorder {i} (I : Set i) c ℓ₁ ℓ₂ :
Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈ᵢ_ _∼ᵢ_ _≈_ _∼_
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ₁
_∼ᵢ_ : IRel Carrierᵢ ℓ₂
isPreorderᵢ : IsIndexedPreorder Carrierᵢ _≈ᵢ_ _∼ᵢ_
open IsIndexedPreorder isPreorderᵢ public
Carrier : Set _
Carrier = ∀ i → Carrierᵢ i
_≈_ : B.Rel Carrier _
x ≈ y = ∀ i → x i ≈ᵢ y i
_∼_ : B.Rel Carrier _
x ∼ y = ∀ i → x i ∼ᵢ y i
preorder : B.Preorder _ _ _
preorder = record { isPreorder = isPreorder }
------------------------------------------------------------------------
-- Partial orders
record IsIndexedPartialOrder {i a ℓ₁ ℓ₂} {I : Set i} (A : I → Set a)
(_≈ᵢ_ : IRel A ℓ₁) (_≤ᵢ_ : IRel A ℓ₂) :
Set (i ⊔ a ⊔ ℓ₁ ⊔ ℓ₂) where
field
isPreorderᵢ : IsIndexedPreorder A _≈ᵢ_ _≤ᵢ_
antisymᵢ : Antisymmetric A _≈ᵢ_ _≤ᵢ_
open IsIndexedPreorder isPreorderᵢ public
renaming
( ∼ᵢ-respˡ-≈ᵢ to ≤ᵢ-respˡ-≈ᵢ
; ∼ᵢ-respʳ-≈ᵢ to ≤ᵢ-respʳ-≈ᵢ
; ∼ᵢ-resp-≈ᵢ to ≤ᵢ-resp-≈ᵢ
; ∼-respˡ-≈ to ≤-respˡ-≈
; ∼-respʳ-≈ to ≤-respʳ-≈
; ∼-resp-≈ to ≤-resp-≈
)
antisym : B.Antisymmetric (Lift A _≈ᵢ_) (Lift A _≤ᵢ_)
antisym x≤y y≤x i = antisymᵢ (x≤y i) (y≤x i)
isPartialOrder : B.IsPartialOrder (Lift A _≈ᵢ_) (Lift A _≤ᵢ_)
isPartialOrder = record
{ isPreorder = isPreorder
; antisym = antisym
}
record IndexedPoset {i} (I : Set i) c ℓ₁ ℓ₂ :
Set (suc (i ⊔ c ⊔ ℓ₁ ⊔ ℓ₂)) where
field
Carrierᵢ : I → Set c
_≈ᵢ_ : IRel Carrierᵢ ℓ₁
_≤ᵢ_ : IRel Carrierᵢ ℓ₂
isPartialOrderᵢ : IsIndexedPartialOrder Carrierᵢ _≈ᵢ_ _≤ᵢ_
open IsIndexedPartialOrder isPartialOrderᵢ public
preorderᵢ : IndexedPreorder I c ℓ₁ ℓ₂
preorderᵢ = record { isPreorderᵢ = isPreorderᵢ }
open IndexedPreorder preorderᵢ public
using (Carrier; _≈_; preorder)
renaming
(_∼_ to _≤_)
poset : B.Poset _ _ _
poset = record { isPartialOrder = isPartialOrder }
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.17
REL = IREL
{-# WARNING_ON_USAGE REL
"Warning: REL was deprecated in v0.17.
Please use IREL instead."
#-}
Rel = IRel
{-# WARNING_ON_USAGE Rel
"Warning: Rel was deprecated in v0.17.
Please use IRel instead."
#-}
| 28.1875
| 73
| 0.553908
|
fd3ba5169e450b0aa6c0824332c37d9f2135ec8a
| 4,318
|
agda
|
Agda
|
notes/defns.agda
|
cbrewster/ServoNavigation
|
cea700aea1488df1d27092c8f3d79d5d99f7e09a
|
[
"CC-BY-4.0"
] | 1
|
2017-04-22T01:51:07.000Z
|
2017-04-22T01:51:07.000Z
|
notes/defns.agda
|
cbrewster/ServoNavigation
|
cea700aea1488df1d27092c8f3d79d5d99f7e09a
|
[
"CC-BY-4.0"
] | null | null | null |
notes/defns.agda
|
cbrewster/ServoNavigation
|
cea700aea1488df1d27092c8f3d79d5d99f7e09a
|
[
"CC-BY-4.0"
] | null | null | null |
module defns where
open import prelude
record NavigationHistory(D : Set) : Set₁ where
field A : Subset(D)
field Fo : Forest(D)
field FTO : FiniteTotalOrder(D)
field Eq : Equivalence(D)
open FiniteTotalOrder FTO public
open Forest Fo public
open Equivalence Eq public
field active : D → D
field active-A : ∀ d → A(active d)
field active-~ : ∀ d → (active d ~ d)
field active-uniq : ∀ d e → A(e) → (d ~ e) → (e ≡ active d)
field ⇒-impl-≤ : ∀ d e → (d ⇒ e) → (d ≤ e)
_≲_ : Rel(D)
(d ≲ e) = (d < e) ∧ (d ~ e)
≲-trans : ∀ {d e f} → (d ≲ e) → (e ≲ f) → (d ≲ f)
≲-trans (d<e , d~e) (e<f , e~f) = ((<-trans d<e e<f) , (~-trans d~e e~f))
≲-impl-< : ∀ {d e} → (d ≲ e) → (d < e)
≲-impl-< (d<e , d~e) = d<e
≲-impl-~ : ∀ {d e} → (d ≲ e) → (d ~ e)
≲-impl-~ (d<e , d~e) = d~e
active-~-impl-≡ : ∀ {d e} → (d ∈ A) → (e ∈ A) → (d ~ e) → (d ≡ e)
active-~-impl-≡ {d} {e} d∈A e∈A d~e = trans (active-uniq d d d∈A ~-refl) (sym (active-uniq d e e∈A d~e))
SessionPast : D → Subset(D)
SessionPast(d) e = (e ≲ d)
SessionFuture : D → Subset(D)
SessionFuture(d) e = (d ≲ e)
JointSessionPast : Subset(D)
JointSessionPast d = Inhabited (A ∩ SessionFuture(d))
JointSessionFuture : Subset(D)
JointSessionFuture d = Inhabited (A ∩ SessionPast(d))
CanGoBack : Subset(D)
CanGoBack d = Inhabited(SessionPast(d))
FwdTarget : Subset(D)
FwdTarget = Min(JointSessionFuture)
BackTarget : Subset(D)
BackTarget = Max(A ∩ CanGoBack)
FwdTarget* : ∀ {n} → Subset(D ^ n)
FwdTarget* = Min*(Increasing ∩ All(JointSessionFuture))
BackTarget* : ∀ {n} → Subset(D ^ n)
BackTarget* = Max*(Decreasing ∩ All((A ∪ JointSessionPast) ∩ CanGoBack))
open NavigationHistory public using (FwdTarget ; BackTarget ; FwdTarget* ; BackTarget*)
_traverse-to_ : ∀ {D} → NavigationHistory(D) → D → NavigationHistory(D)
H traverse-to d = H′ where
D = _
open NavigationHistory H
A′ : Subset(D)
A′(e) = (¬(d ~ e) ∧ A(e)) ∨ (d ≡ e)
active′ : D → D
active′ e with (d ~? e)
active′ e | in₁ d~e = d
active′ e | in₂ ¬d~e = active e
active′-A′ : ∀ d → A′(active′ d)
active′-A′ e with (d ~? e)
active′-A′ e | in₁ d~e = in₂ refl
active′-A′ e | in₂ ¬d~e = in₁ ((λ d~ae → ¬d~e (~-trans d~ae (active-~ e))) , active-A e)
active′-~ : ∀ d → (active′ d ~ d)
active′-~ e with (d ~? e)
active′-~ e | in₁ d~e = d~e
active′-~ e | in₂ ¬d~e = active-~ e
active′-uniq : ∀ d e → A′ e → (d ~ e) → (e ≡ active′ d)
active′-uniq e f (in₁ (¬d~f , f∈A)) e~f with (d ~? e)
active′-uniq e f (in₁ (¬d~f , f∈A)) e~f | in₁ d~e = contradiction (¬d~f (~-trans d~e e~f))
active′-uniq e f (in₁ (¬d~f , f∈A)) e~f | in₂ ¬d~e = active-uniq e f f∈A e~f
active′-uniq e .d (in₂ refl) e~d with (d ~? e)
active′-uniq e .d (in₂ refl) e~d | in₁ d~e = refl
active′-uniq e .d (in₂ refl) e~d | in₂ ¬d~e = contradiction (¬d~e (~-sym e~d))
H′ = record { A = A′ ; Fo = Fo ; FTO = FTO ; Eq = Eq
; active = active′ ; active-A = active′-A′ ; active-~ = active′-~ ; active-uniq = active′-uniq
; ⇒-impl-≤ = ⇒-impl-≤ }
WellFormed : ∀ {D} → (NavigationHistory(D)) → Set
WellFormed H = ∀ {a b c d} → (a ≲ b) → (c ≲ d) → (a ∈ A) → (d ∈ A) → (d ≤ b) where open NavigationHistory H
_traverses-to_ : ∀ {D n} → NavigationHistory(D) → (D ^ n) → NavigationHistory(D)
(H traverses-to nil) = H
(H traverses-to (d ∷ ds)) = (H traverse-to d) traverses-to ds
_traverse-from_∵_ : ∀ {D} (H : NavigationHistory(D)) d →
let open NavigationHistory H in
(d ∈ CanGoBack) →
NavigationHistory(D)
(H traverse-from d ∵ d∈CGB) with max(SessionPast(d)) ∵ d∈CGB where open NavigationHistory H
(H traverse-from d ∵ d∈CGB) | (c , _) = (H traverse-to c)
_traverses-from_∵_ : ∀ {D n} (H : NavigationHistory(D)) (ds : D ^ n) →
let open NavigationHistory H in
(ds ∈ All(CanGoBack)) →
NavigationHistory(D)
(H traverses-from nil ∵ tt) = H
(H traverses-from (d ∷ ds) ∵ (d∈CGB , ds∈CGB)) = (H traverse-from d ∵ d∈CGB) traverses-from ds ∵ ds∈CGB
data _traverses-by_to_ {D} (H : NavigationHistory(D)) : ℤ → (H : NavigationHistory(D)) → Set where
fwd : ∀ {δ} (ds : D ^ (succ δ)) → (ds ∈ FwdTarget*(H)) → (H traverses-by (succ δ) to (H traverses-to ds))
back : ∀ {δ} (ds : D ^ δ) ds∈CGB → (ds ∈ BackTarget*(H)) → (H traverses-by (-ve δ) to (H traverses-from ds ∵ ds∈CGB))
| 34
| 119
| 0.563224
|
cc2c1f2d72e0b55b045dd01ef6e614329dfa3f05
| 4,021
|
agda
|
Agda
|
src/Categories/Category/Construction/Properties/Presheaves/Cartesian.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/Category/Construction/Properties/Presheaves/Cartesian.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
src/Categories/Category/Construction/Properties/Presheaves/Cartesian.agda
|
glittershark/agda-categories
|
2128fab9e8d341364cbf784bb17c547bf73891de
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Construction.Properties.Presheaves.Cartesian {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Data.Unit
open import Data.Product using (_,_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Function.Equality using (Π) renaming (_∘_ to _∙_)
open import Relation.Binary
open import Categories.Category.Cartesian
open import Categories.Category.Construction.Presheaves
open import Categories.Category.Instance.Setoids
open import Categories.Functor
open import Categories.Functor.Properties
open import Categories.Functor.Presheaf
open import Categories.NaturalTransformation
import Categories.Object.Product as Prod
import Categories.Morphism.Reasoning as MR
open Π using (_⟨$⟩_)
module _ {o′ ℓ′ o″ ℓ″} where
Presheaves× : ∀ (A : Presheaf C (Setoids o′ ℓ′)) (A : Presheaf C (Setoids o″ ℓ″)) → Presheaf C (Setoids (o′ ⊔ o″) (ℓ′ ⊔ ℓ″))
Presheaves× A B = record
{ F₀ = λ X → ×-setoid (A.₀ X) (B.₀ X)
; F₁ = λ f → record
{ _⟨$⟩_ = λ { (a , b) → A.₁ f ⟨$⟩ a , B.₁ f ⟨$⟩ b }
; cong = λ { (eq₁ , eq₂) → Π.cong (A.₁ f) eq₁ , Π.cong (B.₁ f) eq₂ }
}
; identity = λ { (eq₁ , eq₂) → A.identity eq₁ , B.identity eq₂ }
; homomorphism = λ { (eq₁ , eq₂) → A.homomorphism eq₁ , B.homomorphism eq₂ }
; F-resp-≈ = λ { eq (eq₁ , eq₂) → A.F-resp-≈ eq eq₁ , B.F-resp-≈ eq eq₂ }
}
where module A = Functor A
module B = Functor B
module IsCartesian o′ ℓ′ where
private
module C = Category C
open C
P = Presheaves′ o′ ℓ′ C
module P = Category P
S = Setoids o′ ℓ′
module S = Category S
Presheaves-Cartesian : Cartesian P
Presheaves-Cartesian = record
{ terminal = record
{ ⊤ = record
{ F₀ = λ x → record
{ Carrier = Lift o′ ⊤
; _≈_ = λ _ _ → Lift ℓ′ ⊤
; isEquivalence = _
}
}
; ! = _
; !-unique = _
}
; products = record
{ product = λ {A B} →
let module A = Functor A
module B = Functor B
in record
{ A×B = Presheaves× A B
; π₁ = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ { (fst , _) → fst }
; cong = λ { (eq , _) → eq }
}
; commute = λ { f (eq , _) → Π.cong (A.F₁ f) eq }
}
; π₂ = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ { (_ , snd) → snd }
; cong = λ { (_ , eq) → eq }
}
; commute = λ { f (_ , eq) → Π.cong (B.F₁ f) eq }
}
; ⟨_,_⟩ = λ {F} α β →
let module F = Functor F
module α = NaturalTransformation α
module β = NaturalTransformation β
in ntHelper record
{ η = λ Y → record
{ _⟨$⟩_ = λ S → α.η Y ⟨$⟩ S , β.η Y ⟨$⟩ S
; cong = λ eq → Π.cong (α.η Y) eq , Π.cong (β.η Y) eq
}
; commute = λ f eq → α.commute f eq , β.commute f eq
}
; project₁ = λ {F α β x} eq →
let module F = Functor F
module α = NaturalTransformation α
module β = NaturalTransformation β
in Π.cong (α.η x) eq
; project₂ = λ {F α β x} eq →
let module F = Functor F
module α = NaturalTransformation α
module β = NaturalTransformation β
in Π.cong (β.η x) eq
; unique = λ {F α β δ} eq₁ eq₂ {x} eq →
let module F = Functor F
module α = NaturalTransformation α
module β = NaturalTransformation β
module δ = NaturalTransformation δ
in Setoid.sym (A.₀ x) (eq₁ (Setoid.sym (F.₀ x) eq))
, Setoid.sym (B.₀ x) (eq₂ (Setoid.sym (F.₀ x) eq))
}
}
}
module Presheaves-Cartesian = Cartesian Presheaves-Cartesian
| 33.789916
| 126
| 0.517782
|
36e00605e28c220318f37bf56529b5336a1afb8b
| 2,294
|
agda
|
Agda
|
LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 4
|
2020-12-16T19:43:41.000Z
|
2021-12-18T19:24:05.000Z
|
LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 72
|
2021-02-04T05:04:33.000Z
|
2022-03-25T05:36:11.000Z
|
LibraBFT/Impl/IO/OBM/InputOutputHandlers.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 6
|
2020-12-16T19:43:52.000Z
|
2022-02-18T01:04:32.000Z
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.Network as Network
import LibraBFT.Impl.Consensus.RoundManager as RoundManager
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Util.Util
open import LibraBFT.Prelude
open import Optics.All
-- This module defines the handler for our implementation. For most message types, it does some
-- initial validation before passing the message on to the proper handlers.
module LibraBFT.Impl.IO.OBM.InputOutputHandlers where
epvv : LBFT (Epoch × ValidatorVerifier)
epvv = _,_ <$> gets (_^∙ rmSafetyRules ∙ srPersistentStorage ∙ pssSafetyData ∙ sdEpoch)
<*> gets (_^∙ rmEpochState ∙ esVerifier)
module handleProposal (now : Instant) (pm : ProposalMsg) where
step₀ : LBFT Unit
step₁ : Epoch → ValidatorVerifier → LBFT Unit
step₀ = do
(myEpoch , vv) ← epvv
step₁ myEpoch vv
step₁ myEpoch vv = do
case⊎D Network.processProposal {- {!!} -} pm myEpoch vv of λ where
(Left (Left e)) → logErr e
(Left (Right i)) → logInfo i
(Right _) → RoundManager.processProposalMsgM now pm
handleProposal : Instant → ProposalMsg → LBFT Unit
handleProposal = handleProposal.step₀
module handleVote (now : Instant) (vm : VoteMsg) where
step₀ : LBFT Unit
step₁ : Epoch → ValidatorVerifier → LBFT Unit
step₀ = do
(myEpoch , vv) ← epvv
step₁ myEpoch vv
step₁ myEpoch vv = do
case Network.processVote vm myEpoch vv of λ where
(Left (Left e)) → logErr e
(Left (Right i)) → logInfo i
(Right _) → RoundManager.processVoteMsgM now vm
abstract
handleVote = handleVote.step₀
handleVote≡ : handleVote ≡ handleVote.step₀
handleVote≡ = refl
handle : NodeId → NetworkMsg → Instant → LBFT Unit
handle _self msg now =
case msg of λ where
(P pm) → handleProposal now pm
(V vm) → handleVote now vm
(C cm) → pure unit -- We don't do anything with commit messages, they are just for defining Correctness.
| 33.735294
| 111
| 0.712293
|
8b8339cdcde0328529c8151707502c427d9069e5
| 51
|
agda
|
Agda
|
test/interaction/Issue1232/List.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/interaction/Issue1232/List.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/interaction/Issue1232/List.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue1232.List where
import Issue1232.Nat
| 10.2
| 27
| 0.823529
|
5e18c95deca5430452347d8324b160a0d818b2f1
| 218
|
agda
|
Agda
|
test/Succeed/WithOfFunctionType.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/WithOfFunctionType.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/WithOfFunctionType.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2013-10-20 'with' only abstracts at base type
module WithOfFunctionType where
postulate
A B : Set
P : B → Set
mkP : (x : B) → P x
f : A → B
a : A
test : P (f a)
test with f
... | g = mkP (g a)
| 14.533333
| 57
| 0.568807
|
11fd9c81a65ef76477315d111655400b305c4aba
| 47
|
agda
|
Agda
|
test/Fail/Relevance-subtyping-4.agda
|
cagix/agda
|
cc026a6a97a3e517bb94bafa9d49233b067c7559
|
[
"BSD-2-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Relevance-subtyping-4.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Relevance-subtyping-4.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
f : {A B : Set} → (A → B) → .A → B
f g x = g x
| 15.666667
| 34
| 0.319149
|
a0b38ffa553981b6d9a156b6cf5ebebea9722de3
| 381
|
agda
|
Agda
|
test/Succeed/Issue1322.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1322.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1322.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module _ where
data _==_ {A : Set} (a : A) : A → Set where
refl : a == a
data ⊥ : Set where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
it : ∀ {a} {A : Set a} ⦃ x : A ⦄ → A
it ⦃ x ⦄ = x
f : (n : ℕ) ⦃ p : ⦃ _ : n == zero ⦄ → ⊥ ⦄ → ℕ
f n = n
g : (n : ℕ) ⦃ q : ⦃ _ : n == zero ⦄ → ⊥ ⦄ → ℕ
g n ⦃ q ⦄ = f n
h : (n : ℕ) ⦃ q : ⦃ _ : n == zero ⦄ → ⊥ ⦄ → ℕ
h n ⦃ q ⦄ = f n ⦃ it ⦄
| 15.875
| 45
| 0.35958
|
cc3d0adc2dafa303652653962e216d9f94657c6f
| 5,031
|
agda
|
Agda
|
src/Properties/StepBeta.agda
|
peterthiemann/definitional-session
|
c2213909c8a308fb1c1c1e4e789d65ba36f6042c
|
[
"BSD-3-Clause"
] | 9
|
2019-01-19T16:33:27.000Z
|
2021-01-18T08:10:14.000Z
|
src/Properties/StepBeta.agda
|
peterthiemann/definitional-session
|
c2213909c8a308fb1c1c1e4e789d65ba36f6042c
|
[
"BSD-3-Clause"
] | null | null | null |
src/Properties/StepBeta.agda
|
peterthiemann/definitional-session
|
c2213909c8a308fb1c1c1e4e789d65ba36f6042c
|
[
"BSD-3-Clause"
] | null | null | null |
module Properties.StepBeta where
open import Data.List
open import Data.List.All
open import Data.Product
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Typing
open import Syntax
open import Global
open import Channel
open import Values
open import Session
open import Schedule
open import ProcessSyntax
open import ProcessRun
open import Properties.Base
-- V: (λx.e)v = e[v/x]
-- let f = λx.e in let r = f v in E --> [let x = v in] let r = e in E
mklhs : ∀ {Φ tin tout} (e : Expr (tin ∷ []) tout) (E : Expr (tout ∷ Φ) TUnit) → Expr (tin ∷ Φ) TUnit
mklhs {Φ} e E =
letbind (rght (split-all-right Φ)) (ulambda [] [] [] e)
(letbind (left (left (split-all-right Φ))) (app (left (rght [])) (here []) (here []))
E)
mkrhs : ∀ {Φ tin tout} (e : Expr (tin ∷ []) tout) (E : Expr (tout ∷ Φ) TUnit) → Expr (tin ∷ Φ) TUnit
mkrhs {Φ} e E =
letbind (left (split-all-right Φ)) e E
reductionT : Set
reductionT = ∀ {tin tout}
(e : Expr (tin ∷ []) tout) (E : Expr (tout ∷ []) TUnit)
(v : Val [] tin)
→ let ϱ = vcons ss-[] v (vnil []-inactive) in
let lhs = run (left []) ss-[] (mklhs e E) ϱ (halt []-inactive UUnit) in
let rhs = run (left []) ss-[] (mkrhs e E) ϱ (halt []-inactive UUnit) in
restart (restart lhs) ≡ rhs
reduction : reductionT
reduction e E v
with split-env (rght []) (vcons ss-[] v (vnil []-inactive))
... | sperght
= refl
-- open reduction
reduction-open-type : Set
reduction-open-type = ∀ {Φ tin tout}
(e : Expr (tin ∷ []) tout) (E : Expr (tout ∷ Φ) TUnit)
(ϱ : VEnv [] (tin ∷ Φ))
→ let lhs = run (left (split-all-left Φ)) ss-[] (mklhs e E) ϱ (halt []-inactive UUnit) in
let rhs = run (left (split-all-left Φ)) ss-[] (mkrhs e E) ϱ (halt []-inactive UUnit) in
restart (restart lhs) ≡ rhs
reduction-open : reduction-open-type
reduction-open {Φ} e E (vcons ss-[] v ϱ)
rewrite split-rotate-lemma {Φ}
| split-env-right-lemma0 ϱ
with ssplit-compose3 ss-[] ss-[]
... | ssc3
rewrite split-env-right-lemma0 ϱ
| split-rotate-lemma {Φ}
= refl
-- open reduction with split between closure and context
mktype' : Set
mktype' = ∀ {Φ Φ₁ Φ₂ tin tout}
(sp : Split Φ Φ₁ Φ₂) (un-Φ₁ : All Unr Φ₁) (e : Expr (tin ∷ Φ₁) tout) (E : Expr (tout ∷ Φ₂) TUnit)
→ Expr (tin ∷ Φ) TUnit
mklhs' : mktype'
mklhs' {Φ} {Φ₁} {Φ₂} sp un-Φ₁ e E =
letbind (rght sp) (ulambda (split-all-left Φ₁) un-Φ₁ [] e)
(letbind (left (left (split-all-right Φ₂))) (app (left (rght [])) (here []) (here []))
E)
mkrhs' : mktype'
mkrhs' {Φ} {Φ₁} {Φ₂} sp un-Φ₁ e E =
letbind (left sp) e E
reduction-open-type' : Set
reduction-open-type' = ∀ {Φ Φ₁ Φ₂ tin tout}
(sp : Split Φ Φ₁ Φ₂) (un-Φ₁ : All Unr Φ₁)
(e : Expr (tin ∷ Φ₁) tout) (E : Expr (tout ∷ Φ₂) TUnit)
(ϱ : VEnv [] (tin ∷ Φ))
→ let lhs = run (left (split-all-left Φ)) ss-[] (mklhs' sp un-Φ₁ e E) ϱ (halt []-inactive UUnit) in
let rhs = run (left (split-all-left Φ)) ss-[] (mkrhs' sp un-Φ₁ e E) ϱ (halt []-inactive UUnit) in
restart (restart lhs) ≡ rhs
-- this runs into the split-from-disjoint, which was hacked into function application
-- it's not clear if there's a way round
-- hence the proposition needs to be proved with a more specific assumption
{-
reduction-open' : reduction-open-type'
reduction-open' {Φ} {Φ₁} {Φ₂} sp un-Φ₁ e E (vcons ss-[] v ϱ)
rewrite split-rotate-lemma' sp
with split-env sp ϱ
... | ([] , []) , ss-[] , ϱ₁ , ϱ₂
rewrite split-env-left-lemma0 ϱ₁
with ssplit-compose3 ss-[] ss-[]
... | ssc3
rewrite split-env-right-lemma0 ϱ₂
with ssplit-compose3 ss-[] ss-[]
... | ssc3'
rewrite split-rotate-lemma {Φ₂}
= {!!}
-}
-- straightforward generalization of the inspect pattern
record Reveal2_·_·_is_ {A B : Set} {C : A → B → Set}
(f : (x : A) (y : B) → C x y) (x : A) (y : B) (z : C x y) :
Set₁ where
constructor [[_]]
field eq : f x y ≡ z
inspect2 : ∀ {A B : Set} {C : A → B → Set}
(f : (x : A) (y : B) → C x y) (x : A) (y : B) → Reveal2 f · x · y is f x y
inspect2 f x y = [[ refl ]]
reduction-open-type'' : Set
reduction-open-type'' = ∀ {Φ₁ Φ₂ tin tout} →
let Φ,sp = split-from-disjoint Φ₁ Φ₂ in
let Φ = proj₁ Φ,sp in
let sp = proj₂ Φ,sp in
(un-Φ₁ : All Unr Φ₁)
(e : Expr (tin ∷ Φ₁) tout) (E : Expr (tout ∷ Φ₂) TUnit)
(ϱ : VEnv [] (tin ∷ Φ))
→ let lhs = run (left (split-all-left Φ)) ss-[] (mklhs' sp un-Φ₁ e E) ϱ (halt []-inactive UUnit) in
let rhs = run (left (split-all-left Φ)) ss-[] (mkrhs' sp un-Φ₁ e E) ϱ (halt []-inactive UUnit) in
restart (restart lhs) ≡ rhs
reduction-open'' : reduction-open-type''
reduction-open'' {Φ₁} {Φ₂} un-Φ₁ e E (vcons ss-[] v ϱ)
with split-from-disjoint Φ₁ Φ₂ | inspect2 split-from-disjoint Φ₁ Φ₂
... | Φ , sp | [[ eq ]]
rewrite split-rotate-lemma' sp
with split-env sp ϱ
... | ([] , []) , ss-[] , ϱ₁ , ϱ₂
rewrite split-env-left-lemma0 ϱ₁
with ssplit-compose3 ss-[] ss-[]
... | ssc3
rewrite split-env-right-lemma0 ϱ₂
with ssplit-compose3 ss-[] ss-[]
... | ssc3'
rewrite split-rotate-lemma {Φ₂} | eq
= refl
| 32.458065
| 101
| 0.602266
|
39d23e071b3ab94ba057e5a887445e54af795219
| 1,754
|
agda
|
Agda
|
src/Categories/Diagram/Coend.agda
|
turion/agda-categories
|
ad0f94b6cf18d8a448b844b021aeda58e833d152
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
src/Categories/Diagram/Coend.agda
|
turion/agda-categories
|
ad0f94b6cf18d8a448b844b021aeda58e833d152
|
[
"MIT"
] | null | null | null |
src/Categories/Diagram/Coend.agda
|
turion/agda-categories
|
ad0f94b6cf18d8a448b844b021aeda58e833d152
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Functor.Bifunctor
module Categories.Diagram.Coend {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′}
(F : Bifunctor (Category.op C) C D) where
private
module C = Category C
module D = Category D
open D
open HomReasoning
open Equiv
variable
A B : Obj
f g : A ⇒ B
open import Level
open import Data.Product using (Σ; _,_)
open import Categories.Functor
open import Categories.Functor.Construction.Constant
open import Categories.NaturalTransformation.Dinatural
open import Categories.Morphism.Reasoning D
open Functor F
record Cowedge : Set (levelOfTerm F) where
field
E : Obj
dinatural : DinaturalTransformation F (const E)
module dinatural = DinaturalTransformation dinatural
Cowedge-∘ : (W : Cowedge) → Cowedge.E W ⇒ A → Cowedge
Cowedge-∘ {A = A} W f = record
{ E = A
; dinatural = extranaturalˡ (λ X → f ∘ dinatural.α X)
(assoc ○ ∘-resp-≈ʳ (extranatural-commˡ dinatural) ○ sym-assoc)
}
where open Cowedge W
record Coend : Set (levelOfTerm F) where
field
cowedge : Cowedge
module cowedge = Cowedge cowedge
open cowedge public
open Cowedge
field
factor : (W : Cowedge) → cowedge.E ⇒ E W
universal : ∀ {W : Cowedge} {A} → factor W ∘ cowedge.dinatural.α A ≈ dinatural.α W A
unique : ∀ {W : Cowedge} {g : cowedge.E ⇒ E W} → (∀ {A} → g ∘ cowedge.dinatural.α A ≈ dinatural.α W A) → factor W ≈ g
η-id : factor cowedge ≈ D.id
η-id = unique identityˡ
unique′ :(∀ {A} → f ∘ cowedge.dinatural.α A ≈ g ∘ cowedge.dinatural.α A) → f ≈ g
unique′ {f = f} {g = g} eq = ⟺ (unique {W = Cowedge-∘ cowedge f} refl) ○ unique (⟺ eq)
| 28.290323
| 124
| 0.645952
|
0d1ea08467d38b3bd7ccf7c878af590f4688ca00
| 8,620
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Strict.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Strict.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/Strict.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic ordering of lists
------------------------------------------------------------------------
-- The definitions of lexicographic ordering used here are suitable if
-- the argument order is a strict partial order.
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Lex.Strict where
open import Data.Empty using (⊥)
open import Data.Unit.Base using (⊤; tt)
open import Function using (_∘_; id)
open import Data.Product using (_,_)
open import Data.Sum using (inj₁; inj₂)
open import Data.List.Base using (List; []; _∷_)
open import Level using (_⊔_)
open import Relation.Nullary using (yes; no; ¬_)
open import Relation.Binary
open import Relation.Binary.Consequences
open import Data.List.Relation.Binary.Pointwise as Pointwise
using (Pointwise; []; _∷_; head; tail)
open import Data.List.Relation.Binary.Lex.Core as Core public
using (base; halt; this; next; ²-this; ²-next)
----------------------------------------------------------------------
-- Strict lexicographic ordering.
module _ {a ℓ₁ ℓ₂} {A : Set a} where
Lex-< : (_≈_ : Rel A ℓ₁) (_≺_ : Rel A ℓ₂) →
Rel (List A) (a ⊔ ℓ₁ ⊔ ℓ₂)
Lex-< = Core.Lex ⊥
-- Properties
module _ {_≈_ : Rel A ℓ₁} {_≺_ : Rel A ℓ₂} where
private
_≋_ = Pointwise _≈_
_<_ = Lex-< _≈_ _≺_
¬[]<[] : ¬ [] < []
¬[]<[] (base ())
<-irreflexive : Irreflexive _≈_ _≺_ → Irreflexive _≋_ _<_
<-irreflexive irr [] (base ())
<-irreflexive irr (x≈y ∷ xs≋ys) (this x<y) = irr x≈y x<y
<-irreflexive irr (x≈y ∷ xs≋ys) (next _ xs⊴ys) =
<-irreflexive irr xs≋ys xs⊴ys
<-asymmetric : Symmetric _≈_ → _≺_ Respects₂ _≈_ → Asymmetric _≺_ →
Asymmetric _<_
<-asymmetric sym resp as = asym
where
irrefl : Irreflexive _≈_ _≺_
irrefl = asym⟶irr resp sym as
asym : Asymmetric _<_
asym (halt) ()
asym (base bot) _ = bot
asym (this x<y) (this y<x) = as x<y y<x
asym (this x<y) (next y≈x ys⊴xs) = irrefl (sym y≈x) x<y
asym (next x≈y xs⊴ys) (this y<x) = irrefl (sym x≈y) y<x
asym (next x≈y xs⊴ys) (next y≈x ys⊴xs) = asym xs⊴ys ys⊴xs
<-antisymmetric : Symmetric _≈_ → Irreflexive _≈_ _≺_ →
Asymmetric _≺_ → Antisymmetric _≋_ _<_
<-antisymmetric = Core.antisymmetric
<-transitive : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ →
Transitive _≺_ → Transitive _<_
<-transitive = Core.transitive
<-compare : Symmetric _≈_ → Trichotomous _≈_ _≺_ →
Trichotomous _≋_ _<_
<-compare sym tri [] [] = tri≈ ¬[]<[] [] ¬[]<[]
<-compare sym tri [] (y ∷ ys) = tri< halt (λ()) (λ())
<-compare sym tri (x ∷ xs) [] = tri> (λ()) (λ()) halt
<-compare sym tri (x ∷ xs) (y ∷ ys) with tri x y
... | tri< x<y x≉y y≮x =
tri< (this x<y) (x≉y ∘ head) (¬≤-this (x≉y ∘ sym) y≮x)
... | tri> x≮y x≉y y<x =
tri> (¬≤-this x≉y x≮y) (x≉y ∘ head) (this y<x)
... | tri≈ x≮y x≈y y≮x with <-compare sym tri xs ys
... | tri< xs<ys xs≉ys ys≮xs =
tri< (next x≈y xs<ys) (xs≉ys ∘ tail) (¬≤-next y≮x ys≮xs)
... | tri≈ xs≮ys xs≈ys ys≮xs =
tri≈ (¬≤-next x≮y xs≮ys) (x≈y ∷ xs≈ys) (¬≤-next y≮x ys≮xs)
... | tri> xs≮ys xs≉ys ys<xs =
tri> (¬≤-next x≮y xs≮ys) (xs≉ys ∘ tail) (next (sym x≈y) ys<xs)
<-decidable : Decidable _≈_ → Decidable _≺_ → Decidable _<_
<-decidable = Core.decidable (no id)
<-respects₂ : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ →
_<_ Respects₂ _≋_
<-respects₂ = Core.respects₂
<-isStrictPartialOrder : IsStrictPartialOrder _≈_ _≺_ →
IsStrictPartialOrder _≋_ _<_
<-isStrictPartialOrder spo = record
{ isEquivalence = Pointwise.isEquivalence isEquivalence
; irrefl = <-irreflexive irrefl
; trans = Core.transitive isEquivalence <-resp-≈ trans
; <-resp-≈ = Core.respects₂ isEquivalence <-resp-≈
} where open IsStrictPartialOrder spo
<-isStrictTotalOrder : IsStrictTotalOrder _≈_ _≺_ →
IsStrictTotalOrder _≋_ _<_
<-isStrictTotalOrder sto = record
{ isEquivalence = Pointwise.isEquivalence isEquivalence
; trans = <-transitive isEquivalence <-resp-≈ trans
; compare = <-compare Eq.sym compare
} where open IsStrictTotalOrder sto
<-strictPartialOrder : ∀ {a ℓ₁ ℓ₂} → StrictPartialOrder a ℓ₁ ℓ₂ →
StrictPartialOrder _ _ _
<-strictPartialOrder spo = record
{ isStrictPartialOrder = <-isStrictPartialOrder isStrictPartialOrder
} where open StrictPartialOrder spo
<-strictTotalOrder : ∀ {a ℓ₁ ℓ₂} → StrictTotalOrder a ℓ₁ ℓ₂ →
StrictTotalOrder _ _ _
<-strictTotalOrder sto = record
{ isStrictTotalOrder = <-isStrictTotalOrder isStrictTotalOrder
} where open StrictTotalOrder sto
----------------------------------------------------------------------
-- Non-strict lexicographic ordering.
module _ {a ℓ₁ ℓ₂} {A : Set a} where
Lex-≤ : (_≈_ : Rel A ℓ₁) (_≺_ : Rel A ℓ₂) →
Rel (List A) (a ⊔ ℓ₁ ⊔ ℓ₂)
Lex-≤ = Core.Lex ⊤
-- Properties
≤-reflexive : (_≈_ : Rel A ℓ₁) (_≺_ : Rel A ℓ₂) →
Pointwise _≈_ ⇒ Lex-≤ _≈_ _≺_
≤-reflexive _≈_ _≺_ [] = base tt
≤-reflexive _≈_ _≺_ (x≈y ∷ xs≈ys) =
next x≈y (≤-reflexive _≈_ _≺_ xs≈ys)
module _ {_≈_ : Rel A ℓ₁} {_≺_ : Rel A ℓ₂} where
private
_≋_ = Pointwise _≈_
_≤_ = Lex-≤ _≈_ _≺_
≤-antisymmetric : Symmetric _≈_ → Irreflexive _≈_ _≺_ →
Asymmetric _≺_ → Antisymmetric _≋_ _≤_
≤-antisymmetric = Core.antisymmetric
≤-transitive : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ →
Transitive _≺_ → Transitive _≤_
≤-transitive = Core.transitive
-- Note that trichotomy is an unnecessarily strong precondition for
-- the following lemma.
≤-total : Symmetric _≈_ → Trichotomous _≈_ _≺_ → Total _≤_
≤-total _ _ [] [] = inj₁ (base tt)
≤-total _ _ [] (x ∷ xs) = inj₁ halt
≤-total _ _ (x ∷ xs) [] = inj₂ halt
≤-total sym tri (x ∷ xs) (y ∷ ys) with tri x y
... | tri< x<y _ _ = inj₁ (this x<y)
... | tri> _ _ y<x = inj₂ (this y<x)
... | tri≈ _ x≈y _ with ≤-total sym tri xs ys
... | inj₁ xs≲ys = inj₁ (next x≈y xs≲ys)
... | inj₂ ys≲xs = inj₂ (next (sym x≈y) ys≲xs)
≤-decidable : Decidable _≈_ → Decidable _≺_ → Decidable _≤_
≤-decidable = Core.decidable (yes tt)
≤-respects₂ : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ →
_≤_ Respects₂ _≋_
≤-respects₂ = Core.respects₂
≤-isPreorder : IsEquivalence _≈_ → Transitive _≺_ →
_≺_ Respects₂ _≈_ → IsPreorder _≋_ _≤_
≤-isPreorder eq tr resp = record
{ isEquivalence = Pointwise.isEquivalence eq
; reflexive = ≤-reflexive _≈_ _≺_
; trans = Core.transitive eq resp tr
}
≤-isPartialOrder : IsStrictPartialOrder _≈_ _≺_ →
IsPartialOrder _≋_ _≤_
≤-isPartialOrder spo = record
{ isPreorder = ≤-isPreorder isEquivalence trans <-resp-≈
; antisym = Core.antisymmetric Eq.sym irrefl asym
}
where open IsStrictPartialOrder spo
≤-isTotalOrder : IsStrictTotalOrder _≈_ _≺_ → IsTotalOrder _≋_ _≤_
≤-isTotalOrder sto = record
{ isPartialOrder = ≤-isPartialOrder isStrictPartialOrder
; total = ≤-total Eq.sym compare
}
where open IsStrictTotalOrder sto
≤-isDecTotalOrder : IsStrictTotalOrder _≈_ _≺_ →
IsDecTotalOrder _≋_ _≤_
≤-isDecTotalOrder sto = record
{ isTotalOrder = ≤-isTotalOrder sto
; _≟_ = Pointwise.decidable _≟_
; _≤?_ = ≤-decidable _≟_ _<?_
}
where open IsStrictTotalOrder sto
≤-preorder : ∀ {a ℓ₁ ℓ₂} → Preorder a ℓ₁ ℓ₂ → Preorder _ _ _
≤-preorder pre = record
{ isPreorder = ≤-isPreorder isEquivalence trans ∼-resp-≈
} where open Preorder pre
≤-partialOrder : ∀ {a ℓ₁ ℓ₂} → StrictPartialOrder a ℓ₁ ℓ₂ → Poset _ _ _
≤-partialOrder spo = record
{ isPartialOrder = ≤-isPartialOrder isStrictPartialOrder
} where open StrictPartialOrder spo
≤-decTotalOrder : ∀ {a ℓ₁ ℓ₂} → StrictTotalOrder a ℓ₁ ℓ₂ →
DecTotalOrder _ _ _
≤-decTotalOrder sto = record
{ isDecTotalOrder = ≤-isDecTotalOrder isStrictTotalOrder
} where open StrictTotalOrder sto
| 37.155172
| 74
| 0.559629
|
11a8ae0e03811266c41282bc6e273aeadaf599a8
| 11,939
|
agda
|
Agda
|
EH.agda
|
andmkent/misc-HoTT
|
b05c58ffdaed99932ca2acc632deca8d14742b04
|
[
"MIT"
] | 1
|
2016-01-26T18:17:16.000Z
|
2016-01-26T18:17:16.000Z
|
EH.agda
|
andmkent/misc-HoTT
|
b05c58ffdaed99932ca2acc632deca8d14742b04
|
[
"MIT"
] | null | null | null |
EH.agda
|
andmkent/misc-HoTT
|
b05c58ffdaed99932ca2acc632deca8d14742b04
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
-- Finished 6pm Th, March 24! yay!
-- Bit thanks to tzaikin for posting his work online (some of his macros
-- were essential for this proof for me) and to the code we saw in class today.
module EH where
open import Level using (_⊔_)
open import Data.Product using (Σ; _,_)
open import Function renaming (_∘_ to _○_)
infixr 8 _∘_ -- path composition
infixr 8 _⋆_ -- horizontal path composition
infix 4 _≡_ -- propositional equality
infix 4 _∼_ -- homotopy between two functions
infix 4 _≃_ -- type of equivalences
-- macros from tzaikin for equational rewriting over non-standard ≡
infixr 4 _≡⟨_⟩_
infix 4 _∎
------------------------------------------------------------------------------
-- A few HoTT primitives
data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where
refl : (a : A) → (a ≡ a)
pathInd : ∀ {u ℓ} → {A : Set u} →
(C : {x y : A} → x ≡ y → Set ℓ) →
(c : (x : A) → C (refl x)) →
({x y : A} (p : x ≡ y) → C p)
pathInd C c (refl x) = c x
--
! : ∀ {u} → {A : Set u} {x y : A} → (x ≡ y) → (y ≡ x)
! = pathInd (λ {x} {y} _ → y ≡ x) refl
_∘_ : ∀ {u} → {A : Set u} → {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
_∘_ {u} {A} {x} {y} {z} p q =
pathInd {u}
(λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z)))
(λ x z q → pathInd (λ {x} {z} _ → x ≡ z) refl {x} {z} q)
{x} {y} p z q
-- Handy "macros" (from tzaikin)
_∎ : {A : Set} → (p : A) → p ≡ p
p ∎ = refl p
_≡⟨_⟩_ : {A : Set} → {q r : A} → (p : A) → p ≡ q → q ≡ r → p ≡ r
p ≡⟨ α ⟩ β = α ∘ β
--
RU : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ p ∘ refl y)
RU {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ≡ p ∘ (refl y))
(λ x → refl (refl x))
{x} {y} p
LU : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x ∘ p)
LU {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ≡ (refl x) ∘ p)
(λ x → refl (refl x))
{x} {y} p
invTransL : {A : Set} {x y : A} → (p : x ≡ y) → (! p ∘ p ≡ refl y)
invTransL {A} {x} {y} p =
pathInd
(λ {x} {y} p → ! p ∘ p ≡ refl y)
(λ x → refl (refl x))
{x} {y} p
invTransR : ∀ {ℓ} {A : Set ℓ} {x y : A} → (p : x ≡ y) → (p ∘ ! p ≡ refl x)
invTransR {ℓ} {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ∘ ! p ≡ refl x)
(λ x → refl (refl x))
{x} {y} p
invId : {A : Set} {x y : A} → (p : x ≡ y) → (! (! p) ≡ p)
invId {A} {x} {y} p =
pathInd
(λ {x} {y} p → ! (! p) ≡ p)
(λ x → refl (refl x))
{x} {y} p
assocP : {A : Set} {x y z w : A} → (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) →
(p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r)
assocP {A} {x} {y} {z} {w} p q r =
pathInd
(λ {x} {y} p → (z : A) → (w : A) → (q : y ≡ z) → (r : z ≡ w) →
p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r)
(λ x z w q r →
pathInd
(λ {x} {z} q → (w : A) → (r : z ≡ w) →
(refl x) ∘ (q ∘ r) ≡ ((refl x) ∘ q) ∘ r)
(λ x w r →
pathInd
(λ {x} {w} r →
(refl x) ∘ ((refl x) ∘ r) ≡
((refl x) ∘ (refl x)) ∘ r)
(λ x → (refl (refl x)))
{x} {w} r)
{x} {z} q w r)
{x} {y} p z w q r
invComp : {A : Set} {x y z : A} → (p : x ≡ y) → (q : y ≡ z) →
! (p ∘ q) ≡ ! q ∘ ! p
invComp {A} {x} {y} {z} p q =
pathInd
(λ {x} {y} p → (z : A) → (q : y ≡ z) → ! (p ∘ q) ≡ ! q ∘ ! p)
(λ x z q →
pathInd
(λ {x} {z} q → ! (refl x ∘ q) ≡ ! q ∘ ! (refl x))
(λ x → refl (refl x))
{x} {z} q)
{x} {y} p z q
--
ap : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {x y : A} →
(f : A → B) → (x ≡ y) → (f x ≡ f y)
ap {ℓ} {ℓ'} {A} {B} {x} {y} f p =
pathInd -- on p
(λ {x} {y} p → f x ≡ f y)
(λ x → refl (f x))
{x} {y} p
apfTrans : ∀ {u} → {A B : Set u} {x y z : A} →
(f : A → B) → (p : x ≡ y) → (q : y ≡ z) → ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q)
apfTrans {u} {A} {B} {x} {y} {z} f p q =
pathInd {u}
(λ {x} {y} p → (z : A) → (q : y ≡ z) →
ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q))
(λ x z q →
pathInd {u}
(λ {x} {z} q →
ap f (refl x ∘ q) ≡ (ap f (refl x)) ∘ (ap f q))
(λ x → refl (refl (f x)))
{x} {z} q)
{x} {y} p z q
apfInv : ∀ {u} → {A B : Set u} {x y : A} → (f : A → B) → (p : x ≡ y) →
ap f (! p) ≡ ! (ap f p)
apfInv {u} {A} {B} {x} {y} f p =
pathInd {u}
(λ {x} {y} p → ap f (! p) ≡ ! (ap f p))
(λ x → refl (ap f (refl x)))
{x} {y} p
apfComp : {A B C : Set} {x y : A} → (f : A → B) → (g : B → C) → (p : x ≡ y) →
ap g (ap f p) ≡ ap (g ○ f) p
apfComp {A} {B} {C} {x} {y} f g p =
pathInd
(λ {x} {y} p → ap g (ap f p) ≡ ap (g ○ f) p)
(λ x → refl (ap g (ap f (refl x))))
{x} {y} p
apfId : {A : Set} {x y : A} → (p : x ≡ y) → ap id p ≡ p
apfId {A} {x} {y} p =
pathInd
(λ {x} {y} p → ap id p ≡ p)
(λ x → refl (refl x))
{x} {y} p
--
transport : ∀ {ℓ ℓ'} → {A : Set ℓ} {x y : A} →
(P : A → Set ℓ') → (p : x ≡ y) → P x → P y
transport {ℓ} {ℓ'} {A} {x} {y} P p =
pathInd -- on p
(λ {x} {y} p → (P x → P y))
(λ _ → id)
{x} {y} p
apd : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : A → Set ℓ'} {x y : A} → (f : (a : A) → B a) →
(p : x ≡ y) → (transport B p (f x) ≡ f y)
apd {ℓ} {ℓ'} {A} {B} {x} {y} f p =
pathInd
(λ {x} {y} p → transport B p (f x) ≡ f y)
(λ x → refl (f x))
{x} {y} p
-- Homotopies and equivalences
_∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} →
(f g : (x : A) → P x) → Set (ℓ ⊔ ℓ')
_∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x
record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkqinv
field
g : B → A
α : (f ○ g) ∼ id
β : (g ○ f) ∼ id
record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkisequiv
field
g : B → A
α : (f ○ g) ∼ id
h : B → A
β : (h ○ f) ∼ id
equiv₁ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f
equiv₁ (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ
_≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A ≃ B = Σ (A → B) isequiv
postulate
univalence : {A B : Set} → (A ≡ B) ≃ (A ≃ B)
------------------------------------------------------------------------------
-- Path and loop spaces
1-Path : {A : Set} → (a b : A) → Set
1-Path {A} a b = (a ≡ b)
2-Path : {A : Set} → (a b : A) (p q : 1-Path {A} a b) → Set
2-Path {A} a b p q = (p ≡ q)
Ω : (A : Set) → {a : A} → Set
Ω A {a} = 1-Path {A} a a
Ω² : (A : Set) → {a : A} → Set
Ω² A {a} = 2-Path {A} a a (refl a) (refl a)
-- Whiskering Lemmas
-- ___ p ___ ___ r ___
-- / \ / \
-- a α⇓ b β⇓ c
-- \ / \ /
-- --- q --- --- s ---
wskR : {A : Set}
{a b c : A}
{p q : 1-Path {A} a b} →
(α : 2-Path {A} a b p q) →
(r : 1-Path {A} b c) →
(p ∘ r) ≡ (q ∘ r)
wskR {A} {a} {b} {c} {p} {q} α r =
(pathInd (λ {b} {c} r →
{p q : a ≡ b} →
(α : p ≡ q) →
2-Path {A} a c (p ∘ r) (q ∘ r))
(λ b {p} {q} α →
(p ∘ refl b) ≡⟨ ! (RU p) ⟩
p ≡⟨ α ⟩
q ≡⟨ RU q ⟩
(q ∘ refl b) ∎)
r)
α
wskL : {A : Set}
{a b c : A}
{r s : 1-Path {A} b c} →
(q : 1-Path {A} a b) →
(β : 2-Path {A} b c r s) →
(q ∘ r) ≡ (q ∘ s)
wskL {A} {a} {b} {c} {r} {s} q β =
(pathInd (λ {a} {b} q →
{r s : b ≡ c} →
(α : r ≡ s) →
2-Path {A} a c (q ∘ r) (q ∘ s))
((λ b {p} {q} β →
(refl b ∘ p) ≡⟨ ! (LU p) ⟩
p ≡⟨ β ⟩
q ≡⟨ LU q ⟩
(refl b ∘ q) ∎))
q)
β
_⋆_ : {A : Set}
{a b c : A}
{p q : 1-Path {A} a b}
{r s : 1-Path {A} b c}
(α : 2-Path {A} a b p q) →
(β : 2-Path {A} b c r s) →
(p ∘ r) ≡ (q ∘ s)
_⋆_ {A} {a} {b} {c} {p} {q} {r} {s} α β = (wskR α r) ∘ (wskL q β)
Hcomp→compR1 : {A : Set}
{a : A}
(α : 2-Path {A} a a (refl a) (refl a)) →
(wskR α (refl a)) ≡ (! (RU (refl a))) ∘ α ∘ (RU (refl a))
Hcomp→compR1 {A} {a} α = refl
(pathInd (λ {x} {y} _ → x ≡ y) refl
(pathInd (λ {x} {y} _ → (x₁ : a ≡ a) (x₂ : y ≡ x₁) → x ≡ x₁)
(λ x x₁ → pathInd (λ {x₂} {y} _ → x₂ ≡ y) refl) α (refl a)
(refl (refl a))))
Hcomp→compL1 : {A : Set}
{a : A}
(β : 2-Path {A} a a (refl a) (refl a)) →
(wskL (refl a) β) ≡ (! (LU (refl a))) ∘ β ∘ (LU (refl a))
Hcomp→compL1 {A} {a} β = refl
(pathInd (λ {x} {y} _ → x ≡ y) refl
(pathInd (λ {x} {y} _ → (x₁ : a ≡ a) (x₂ : y ≡ x₁) → x ≡ x₁)
(λ x x₁ → pathInd (λ {x₂} {y} _ → x₂ ≡ y) refl) β (refl a)
(refl (refl a))))
-- proof from pg 81
α⋆β≡α∘β : {A : Set}
{a : A}
(α : 2-Path {A} a a (refl a) (refl a)) →
(β : 2-Path {A} a a (refl a) (refl a)) →
α ⋆ β ≡ α ∘ β
α⋆β≡α∘β {A} {a} α β =
α ⋆ β
≡⟨ refl (α ⋆ β) ⟩
(wskR α ra) ∘ (wskL ra β)
≡⟨ refl ((!(refl ra) ∘ α ∘ (refl ra)) ∘ (wskL ra β)) ⟩
(!(refl ra) ∘ (α ∘ (refl ra))) ∘ (wskL ra β)
≡⟨ ap (λ p → ((!(refl ra) ∘ p) ∘ (wskL ra β))) (! (RU α)) ⟩
((!(refl ra) ∘ α) ∘ (wskL ra β))
≡⟨ ap (λ p → (p ∘ (wskL ra β))) (! (LU α)) ⟩
(α ∘ (wskL ra β))
≡⟨ refl (α ∘ (wskL ra β)) ⟩
(α ∘ (!(refl ra) ∘ β ∘ (refl ra)))
≡⟨ ap (λ p → (α ∘ (!(refl ra) ∘ p))) (! (RU β)) ⟩
(α ∘ (!(refl ra) ∘ β))
≡⟨ ap (λ p → (α ∘ p)) (! (LU β)) ⟩
α ∘ β ∎
where ra = (refl a)
_⋆'_ : {A : Set}
{a b c : A}
{p q : 1-Path {A} a b}
{r s : 1-Path {A} b c}
(α : 2-Path {A} a b p q) →
(β : 2-Path {A} b c r s) →
(p ∘ r) ≡ (q ∘ s)
_⋆'_ {A} {a} {b} {c} {p} {q} {r} {s} α β = (wskL p β) ∘ (wskR α s)
α⋆'β≡β∘α : {A : Set}
{a : A}
(α : 2-Path {A} a a (refl a) (refl a)) →
(β : 2-Path {A} a a (refl a) (refl a)) →
α ⋆' β ≡ β ∘ α
α⋆'β≡β∘α {A} {a} α β =
α ⋆' β
≡⟨ refl (α ⋆' β) ⟩
(wskL ra β) ∘ (!(refl ra) ∘ (α ∘ (refl ra)))
≡⟨ ap (λ p → ((wskL ra β) ∘ (!(refl ra) ∘ p))) (! (RU α)) ⟩
((wskL ra β) ∘ (!(refl ra) ∘ α))
≡⟨ ap (λ p → ((wskL ra β) ∘ p)) (! (LU α)) ⟩
((wskL ra β) ∘ α)
≡⟨ refl ((wskL ra β) ∘ α) ⟩
((!(refl ra) ∘ β ∘ (refl ra)) ∘ α)
≡⟨ ap (λ p → ((!(refl ra) ∘ p) ∘ α)) (! (RU β)) ⟩
((!(refl ra) ∘ β) ∘ α)
≡⟨ ap (λ p → (p ∘ α)) (! (LU β)) ⟩
β ∘ α ∎
where ra = (refl a)
-- yuck lots of nested induction
α⋆β≡α⋆'β : {A : Set}
{a : A}
(α : 2-Path {A} a a (refl a) (refl a)) →
(β : 2-Path {A} a a (refl a) (refl a)) →
α ⋆ β ≡ α ⋆' β
α⋆β≡α⋆'β {A} {a} α β =
-- induction on α
pathInd
(λ α → α ⋆ β ≡ α ⋆' β)
(λ p →
-- induction on β
pathInd
(λ β → refl p ⋆ β ≡ refl p ⋆' β)
(λ q →
-- induction on p
(pathInd
(λ {a} {b} p → (c : A) → (q : b ≡ c) →
((refl p ⋆ refl q) ≡ (refl p ⋆' refl q)))
(λ a d q →
-- induction on q
pathInd
(λ {a} {d} r →
((refl (refl a) ⋆ refl r) ≡ (refl (refl a) ⋆' refl r)))
(λ a → refl (refl (refl a)))
q)
p a q))
β)
α
eckmann-hilton : {A : Set} {a : A} (α β : Ω² A {a}) → α ∘ β ≡ β ∘ α
eckmann-hilton {A} {a} α β =
α ∘ β
≡⟨ ! (α⋆β≡α∘β α β) ⟩
α ⋆ β
≡⟨ α⋆β≡α⋆'β α β ⟩
α ⋆' β
≡⟨ α⋆'β≡β∘α α β ⟩
β ∘ α ∎
------------------------------------------------------------------------------
| 27.320366
| 88
| 0.333613
|
8b5f80b19be30dbe921cfbfbdeda461429544dbf
| 154
|
agda
|
Agda
|
test/fail/NotInScope.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
test/fail/NotInScope.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/fail/NotInScope.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
-- Also works for parts of operators.
module NotInScope where
postulate
X : Set
if_then_else_ : X -> X -> X -> X
x : X
bad = if x thenn x else x
| 14
| 37
| 0.636364
|
11f0ab4c9565d60d129de2307484c9e1c79fa8d9
| 603
|
agda
|
Agda
|
homotopy/S1SuspensionS0.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | 1
|
2021-06-30T00:17:55.000Z
|
2021-06-30T00:17:55.000Z
|
homotopy/S1SuspensionS0.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
homotopy/S1SuspensionS0.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import HoTT
module homotopy.S1SuspensionS0 where
{- To -}
module To = S¹Rec (north Bool) (merid _ false ∙ ! (merid _ true))
to : S¹ → Suspension Bool
to = To.f
{- From -}
from-merid : Bool → base == base
from-merid true = loop
from-merid false = idp
module From = SuspensionRec Bool base base from-merid
from : Suspension Bool → S¹
from = From.f
{- ToFrom and FromTo -}
postulate -- TODO, easy and boring
to-from : (x : Suspension Bool) → to (from x) == x
from-to : (x : S¹) → from (to x) == x
e : S¹ ≃ Suspension Bool
e = equiv to from to-from from-to
| 18.272727
| 65
| 0.646766
|
5ef6211a17f6acfb60f3209468a30f68478dd41f
| 2,836
|
agda
|
Agda
|
Control/Monad/HeapT/Sized.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Control/Monad/HeapT/Sized.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Control/Monad/HeapT/Sized.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --no-positivity-check --no-termination-check --allow-unsolved-metas #-}
open import Prelude
open import Algebra
open import Algebra.Monus
open import Relation.Binary
open import Data.Maybe
open import Data.List using (List; _∷_; []; foldr)
module Control.Monad.HeapT.Sized
{ℓ}
(mon : CTMAPOM ℓ)
(gmon : GradedMonad (CTMAPOM.monoid mon) ℓ ℓ)
where
open CTMAPOM mon
open GradedMonad gmon
private
variable
w i j : 𝑆
infixr 5 _∷_
infixr 6 _⋊_
mutual
data Root′ (A : Type ℓ) (i : 𝑆) : Type ℓ where
_⋊_ : ∀ w → (w < i → 𝐹 w (Branch A (i ∸ w))) → Root′ A i
data Node (A : Type ℓ) (i : 𝑆) : Type ℓ where
⌊_⌋ : A → Node A i
⌈_⌉ : Root′ A i → Node A i
data Branch (A : Type ℓ) (i : 𝑆) : Type ℓ where
[] : Branch A i
_∷_ : Node A i → 𝐹 ε (Branch A i) → Branch A i
Heap : Type ℓ → Type ℓ
Heap A = ∀ {i} → 𝐹 ε (Branch A i)
infixr 5 _++_
_++_ : 𝐹 w (Branch A i) → 𝐹 ε (Branch A i) → 𝐹 w (Branch A i)
xs ++ ys =
xs >>=ε λ { [] → ys
; (x ∷ xs) → pure (x ∷ xs ++ ys) }
infixr 1 _>>=ᴺ_ _>>=ᴴ_
mutual
_>>=ᴺ_ : Node A i → (A → Heap B) → 𝐹 ε (Branch B i)
⌊ x ⌋ >>=ᴺ f = f x
⌈ w ⋊ s ⌉ >>=ᴺ f = pure (⌈ w ⋊ (λ w<i → s w<i >>=ᴴ f) ⌉ ∷ pure [])
_>>=ᴴ_ : 𝐹 w (Branch A i) → (A → Heap B) → 𝐹 w (Branch B i)
xs >>=ᴴ f =
xs >>=ε λ { [] → pure []
; (x ∷ xs) → (x >>=ᴺ f) ++ (xs >>=ᴴ f) }
pureᴴ : A → Heap A
pureᴴ x = pure (⌊ x ⌋ ∷ pure [])
liftᴴ : 𝐹 w A → Heap A
liftᴴ xs = pure (⌈ _ ⋊ const (map (λ x → ⌊ x ⌋ ∷ pure []) xs) ⌉ ∷ pure [])
flatten : 𝐹 w (Branch A i) → 𝐹 w (List A × List (Root′ A i))
flatten xs =
xs >>=ε λ { [] → pure ([] , [])
; (⌊ x ⌋ ∷ xs) → map (map₁ (x ∷_)) (flatten xs)
; (⌈ x ⌉ ∷ xs) → map (map₂ (x ∷_)) (flatten xs) }
module PopMin
(decomp : ∀ {A B w₁ w₂ w₃} → 𝐹 (w₁ ∙ w₂) A → 𝐹 (w₁ ∙ w₃) B → 𝐹 w₁ (𝐹 w₂ A × 𝐹 w₃ B))
(choice : {w : 𝑆} → {A B : Type ℓ} → (A → 𝐹 w B) → 𝐹 w (A → B))
where
_∪_ : Root′ A i → Root′ A i → Root′ A i
_∪_ {i = i} (wˣ ⋊ xs) (wʸ ⋊ ys) with wˣ ≤|≥ wʸ
... | inr (k , wˣ≡wʸ∙k) = {!!}
... | inl (k , wʸ≡wˣ∙k) = wˣ ⋊ λ wˣ<i → map (λ { (xs , ys) → ⌈ k ⋊ (λ k<i∸wˣ → subst (𝐹 _ ∘ Branch _) (cong (_ ∸_) wʸ≡wˣ∙k ; sym (∸‿assoc _ wˣ k)) (map (_$ subst (_< i) (sym wʸ≡wˣ∙k) {!!}) ys)) ⌉ ∷ xs }) (decomp (subst (flip 𝐹 _) (sym (∙ε _)) (xs wˣ<i)) (subst (flip 𝐹 _) wʸ≡wˣ∙k (choice ys)))
where
lemma : ∀ x y z → x < z → y < z ∸ x → x ∙ y < z
lemma = {!!}
-- ⋃⁺ : Root A → List (Root A) → Root A
-- ⋃⁺ x₁ [] = x₁
-- ⋃⁺ x₁ (x₂ ∷ []) = x₁ ∪ x₂
-- ⋃⁺ x₁ (x₂ ∷ x₃ ∷ xs) = (x₁ ∪ x₂) ∪ ⋃⁺ x₃ xs
-- ⋃ : List (Root A) → Maybe (Root A)
-- ⋃ [] = nothing
-- ⋃ (x ∷ xs) = just (⋃⁺ x xs)
-- popMin : 𝐹 w (Branch A) → 𝐹 w (List A × Maybe (Root A))
-- popMin = map (map₂ ⋃) ∘ flatten
| 30.170213
| 296
| 0.464386
|
4ec7f3b73bef12b373d687882a96fd76861dc20d
| 2,291
|
agda
|
Agda
|
agda-stdlib/src/Data/AVL/Map.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/AVL/Map.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/AVL/Map.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Maps from keys to values, based on AVL trees
-- This modules provides a simpler map interface, without a dependency
-- between the key and value types.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (StrictTotalOrder)
module Data.AVL.Map
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂)
where
open import Data.Bool.Base using (Bool)
open import Data.List.Base using (List)
open import Data.Maybe.Base using (Maybe)
open import Data.Product using (_×_)
open import Level using (_⊔_)
import Data.AVL strictTotalOrder as AVL
open StrictTotalOrder strictTotalOrder renaming (Carrier to Key)
------------------------------------------------------------------------
-- The map type
Map : ∀ {v} → (V : Set v) → Set (a ⊔ v ⊔ ℓ₂)
Map v = AVL.Tree (AVL.const v)
------------------------------------------------------------------------
-- Repackaged functions
module _ {v} {V : Set v} where
empty : Map V
empty = AVL.empty
singleton : Key → V → Map V
singleton = AVL.singleton
insert : Key → V → Map V → Map V
insert = AVL.insert
insertWith : Key → (Maybe V → V) → Map V → Map V
insertWith = AVL.insertWith
delete : Key → Map V → Map V
delete = AVL.delete
lookup : Key → Map V → Maybe V
lookup = AVL.lookup
module _ {v w} {V : Set v} {W : Set w} where
map : (V → W) → Map V → Map W
map f = AVL.map f
module _ {v} {V : Set v} where
infix 4 _∈?_
_∈?_ : Key → Map V → Bool
_∈?_ = AVL._∈?_
headTail : Map V → Maybe ((Key × V) × Map V)
headTail = AVL.headTail
initLast : Map V → Maybe (Map V × (Key × V))
initLast = AVL.initLast
fromList : List (Key × V) → Map V
fromList = AVL.fromList
toList : Map V → List (Key × V)
toList = AVL.toList
module _ {v w} {V : Set v} {W : Set w} where
unionWith : (V → Maybe W → W) →
Map V → Map W → Map W
unionWith f = AVL.unionWith f
module _ {v} {V : Set v} where
union : Map V → Map V → Map V
union = AVL.union
unionsWith : (V → Maybe V → V) → List (Map V) → Map V
unionsWith f = AVL.unionsWith f
unions : List (Map V) → Map V
unions = AVL.unions
| 24.115789
| 72
| 0.550415
|
30d62f28be82b86a086fe6b2b241259b6075a714
| 864
|
agda
|
Agda
|
test/Fail/FrozenMVar2.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/FrozenMVar2.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/FrozenMVar2.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2011-04-11 adapted from Data.Nat.Properties
module FrozenMVar2 where
open import Common.Level
open import Common.Equality
Rel : ∀ {a} → Set a → (ℓ : Level) → Set (a ⊔ lsuc ℓ)
Rel A ℓ = A → A → Set ℓ
Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ
Op₂ A = A → A → A
module FunctionProperties
{a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where
Associative : Op₂ A → Set _
Associative _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z))
open FunctionProperties _≡_ -- THIS produces frozen metas
data ℕ : Set where
zℕ : ℕ
sℕ : (n : ℕ) → ℕ
infixl 6 _+_
_+_ : ℕ → ℕ → ℕ
zℕ + n = n
sℕ m + n = sℕ (m + n)
+-assoc : Associative _+_
-- +-assoc : ∀ x y z -> ((x + y) + z) ≡ (x + (y + z)) -- this works
+-assoc zℕ _ _ = refl
+-assoc (sℕ m) n o = cong sℕ (+-assoc m n o)
-- Due to a frozen meta we get:
-- Type mismatch when checking that the pattern zℕ has type _95
| 22.736842
| 67
| 0.56713
|
1ed307c4aef127d6b44ec6e283e925f65cd08886
| 840
|
agda
|
Agda
|
agda/Relation/Binary/Equivalence/Reasoning.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
agda/Relation/Binary/Equivalence/Reasoning.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/Relation/Binary/Equivalence/Reasoning.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe #-}
open import Relation.Binary
module Relation.Binary.Equivalence.Reasoning {a} {𝑆 : Set a} {b} (equivalence : Equivalence 𝑆 b) where
open Equivalence equivalence
open import Function
import Path
infixr 2 ≋˘⟨⟩-syntax _≋⟨⟩_ ≋⟨∙⟩-syntax ≡⟨∙⟩-syntax
≋˘⟨⟩-syntax : ∀ (x : 𝑆) {y z} → y ≋ z → y ≋ x → x ≋ z
≋˘⟨⟩-syntax _ y≋z y≋x = sym y≋x ⟨ trans ⟩ y≋z
syntax ≋˘⟨⟩-syntax x y≋z y≋x = x ≋˘⟨ y≋x ⟩ y≋z
≋⟨∙⟩-syntax : ∀ (x : 𝑆) {y z} → y ≋ z → x ≋ y → x ≋ z
≋⟨∙⟩-syntax _ y≋z x≋y = x≋y ⟨ trans ⟩ y≋z
syntax ≋⟨∙⟩-syntax x y≋z x≋y = x ≋⟨ x≋y ⟩ y≋z
_≋⟨⟩_ : ∀ (x : 𝑆) {y} → x ≋ y → x ≋ y
_ ≋⟨⟩ x≋y = x≋y
≡⟨∙⟩-syntax : ∀ (x : 𝑆) {y z} → y ≋ z → x Path.≡ y → x ≋ z
≡⟨∙⟩-syntax _ y≋z x≡y = Path.subst (_≋ _) (Path.sym x≡y) y≋z
syntax ≡⟨∙⟩-syntax x y≋z x≡y = x ≡⟨ x≡y ⟩ y≋z
infix 2.5 _∎
_∎ : ∀ x → x ≋ x
x ∎ = refl
| 24
| 102
| 0.504762
|
37d5842b12393648b800af3a2f2139f083449675
| 4,969
|
agda
|
Agda
|
benchmark/cwf/CwF.agda
|
asr/agda-kanso
|
aa10ae6a29dc79964fe9dec2de07b9df28b61ed5
|
[
"MIT"
] | 1
|
2019-11-27T07:26:06.000Z
|
2019-11-27T07:26:06.000Z
|
benchmark/cwf/CwF.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
benchmark/cwf/CwF.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
module CwF where
open import Setoid
open EqChain
infixr 30 _⇒_
infixl 50 _/_ _/ˢ_
infixr 45 _◄_
infixl 45 _▷_
Cxt : Set
Cxt = Setoid
_⇒_ : Cxt -> Cxt -> Set
Γ ⇒ Δ = El (Γ ==> Δ)
Type : Cxt -> Set
Type Γ = Fam Γ
_/_ : {Γ Δ : Cxt} -> Type Γ -> (Δ ⇒ Γ) -> Type Δ
A / σ = A ○ σ
lem-/id : {Γ : Cxt}{A : Type Γ} -> A / id == A
lem-/id = lem-○-id
Term : (Γ : Cxt) -> Type Γ -> Set
Term Γ A = El (Π Γ A)
_◄_ : {Γ : Cxt}{A B : Type Γ} -> B == A -> Term Γ A -> Term Γ B
B=A ◄ u = eqΠ refl B=A << u
_/ˢ_ : {Γ Δ : Cxt}{A : Type Γ} -> Term Γ A -> (σ : Δ ⇒ Γ) -> Term Δ (A / σ)
u /ˢ σ = u ∘ σ
_▷_ : (Γ : Cxt) -> Type Γ -> Cxt
Γ ▷ A = Σ Γ A
wk : {Γ : Cxt}(A : Type Γ) -> Γ ▷ A ⇒ Γ
wk A = ƛ fst \ x y x=y -> fst-eq x=y
vz : {Γ : Cxt}(A : Type Γ) -> Term (Γ ▷ A) (A / wk A)
vz A = ƛ snd \ x y x=y -> snd-eq x=y
ext : {Γ Δ : Cxt}(A : Type Γ)(σ : Δ ⇒ Γ)(u : Term Δ (A / σ)) -> Δ ⇒ Γ ▷ A
ext A σ u = ƛ (\x -> (σ # x , u # x))
\x y x=y -> eqInΣ refl (#-cong-R σ x=y) (#-cong-R u x=y)
lem-/-· : {Γ Δ Θ : Cxt}(A : Type Γ)(σ : Δ ⇒ Γ)(δ : Θ ⇒ Δ) ->
A / σ · δ == A / σ / δ
lem-/-· A σ δ = eqFam refl \x y x=y ->
!-cong-R A (sym (cast-id' _ (#-cong-R σ (#-cong-R δ (cast-id' _ (sym x=y))))))
lem-wk-∘-ext : {Γ Δ : Cxt}(A : Type Δ)(σ : Γ ⇒ Δ)(u : Term Γ (A / σ)) ->
wk A ∘ ext A σ u == σ
lem-wk-∘-ext A (ƛ σ pσ) u = eqInΠ refl pσ
lem-vz-/-ext : {Γ Δ : Cxt}(A : Type Δ)(σ : Γ ⇒ Δ)(u : Term Γ (A / σ)) ->
vz A /ˢ (ext A σ u) == u
lem-vz-/-ext A σ (ƛ u pu) = eqInΠ refl pu
-- (σ , u) ∘ δ == (σ ∘ δ , u / δ)
lem-ext-∘ : {Γ Δ Θ : Cxt}{A : Type Γ}(σ : Δ ⇒ Γ)(δ : Θ ⇒ Δ)(u : Term Δ (A / σ)) ->
ext A σ u · δ == ext A (σ · δ) (lem-/-· A σ δ ◄ u /ˢ δ)
lem-ext-∘ σ δ u = eqInΠ refl \x y x=y ->
eqInΣ refl
(cast-irr _ _ (#-cong-R σ (#-cong-R δ (cast-irr _ _ x=y))))
(cast-irr _ _ (#-cong-R u (#-cong-R δ (cast-irr _ _ x=y))))
<_> : {Γ : Cxt}{A : Type Γ} -> Term Γ A -> Γ ⇒ Γ ▷ A
< u > = ext _ id (lem-○-id ◄ u)
lift : {Γ Δ : Cxt}(A : Type Γ)(σ : Δ ⇒ Γ) -> Δ ▷ (A / σ) ⇒ Γ ▷ A
lift A σ = ƛ (\x -> σ # fst x , snd x)
\x y x=y -> eqInΣ refl (#-cong-R σ (fst-eq x=y)) (snd-eq x=y)
curryFam : {A : Setoid}{F : Fam A} -> Fam (Σ A F) -> (x : El A) -> Fam (F ! x)
curryFam G x = fam (\y -> G ! (x , y))
\z w z=w -> !-cong-R G (eqInΣ refl refl z=w)
Pi : {Γ : Cxt}(A : Type Γ)(B : Type (Γ ▷ A)) -> Type Γ
Pi A B = fam (\x -> Π (A ! x) (curryFam B x))
\x y x=y ->
eqΠ (!-cong-R A (sym x=y))
(eqFam (!-cong-R A (sym x=y)) \z w z=w ->
!-cong-R B (eqInΣ refl x=y z=w)
)
lem-Pi-/ : {Γ Δ : Cxt}(A : Type Γ)(B : Type (Γ ▷ A))(σ : Δ ⇒ Γ) ->
Pi A B / σ == Pi (A / σ) (B / lift A σ)
lem-Pi-/ A B σ = eqFam refl \x y x=y ->
eqΠ (Aσ-eq x=y)
(eqFam (Aσ-eq x=y) \z w z=w ->
!-cong-R B (eqInΣ refl (#-cong-R σ x=y) z=w)
)
where
Aσ-eq : forall {x y} -> x == y -> A ! σ # y == A ! σ # x
Aσ-eq x=y = !-cong-R A (#-cong-R σ (sym x=y))
lam : {Γ : Cxt}{A : Type Γ}{B : Type (Γ ▷ A)} -> Term (Γ ▷ A) B -> Term Γ (Pi A B)
lam {A = A} f =
ƛ (\γ -> ƛ (\x -> f # (γ , x)) (prf₁ γ)) prf₂
where
prf₁ : forall γ x y x=y -> _
prf₁ = \γ x y x=y -> #-cong-R f (eqInΣ refl refl x=y)
prf₂ = \x y x=y ->
eqInΠ (!-cong-R A (sym x=y)) \z w z=w ->
#-cong-R f (eqInΣ refl x=y z=w)
app : {Γ : Cxt}(A : Type Γ)(B : Type (Γ ▷ A))
(v : Term Γ (Pi A B))(u : Term Γ A) -> Term Γ (B / < u >)
app A B v u = ƛ (\γ -> prf₁ γ << v # γ # (u # γ)) prf₂
where
lem : forall γ -> < u > # γ == (γ , u # γ)
lem γ = eqInΣ refl refl (#-cong (lem-○-id ◄ u) u (sym (cast-id _)) refl)
prf₁ : forall γ -> (B / < u >) ! γ == B ! (γ , u # γ)
prf₁ γ = !-cong-R B (lem γ)
prf₂ = \x y x=y -> cast-irr _ _ (#-cong (v # x) (v # y)
(#-cong-R v x=y)
(#-cong-R u x=y)
)
lem-β : {Γ : Cxt}(A : Type Γ)(B : Type (Γ ▷ A))
(v : Term (Γ ▷ A) B)(u : Term Γ A) ->
app A B (lam v) u == v /ˢ < u >
lem-β A B v u = eqInΠ refl \x y x=y ->
sym (cast-id' _
(#-cong-R v
(eqInΣ refl (sym x=y)
(#-cong (lem-○-id ◄ u) u (sym (cast-id _)) (sym x=y)))
)
)
-- The stack blows when trying to prove η.
-- I'm not sure it does anymore, but I have no idea how to prove η,
-- I struggled just giving the type.
-- lem-η : {Γ : Cxt}(A : Type Γ)(B : Type (Γ ▷ A))
-- (v : Term Γ (Pi A B)) →
-- v == lam (app (A / wk A) (B / lift A (wk A)) (sym (lem-Pi-/ A B (wk A)) ◄ v /ˢ wk A) (vz A))
-- lem-η {Γ} A B (ƛ f pf) =
-- eqInΠ =S=-refl λ γ δ γ=δ →
-- proof f γ ≡ ƛ (_#_ (f γ)) (λ _ _ → #-cong-R (f γ)) by η (f γ)
-- ≡ _ by eqInΠ (!-cong-R A (sym γ=δ)) (λ x y x=y →
-- proof f γ # x
-- ≡ (_ << (_ << f (_ << δ))) # y by {!!}
-- qed)
-- qed
| 32.907285
| 103
| 0.40813
|
21734ec91c594dfee3b3a4ac0bbdbfe3ec96dd08
| 905
|
agda
|
Agda
|
agda-stdlib/src/Relation/Binary/Properties/StrictTotalOrder.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Relation/Binary/Properties/StrictTotalOrder.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Relation/Binary/Properties/StrictTotalOrder.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by strict partial orders
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Properties.StrictTotalOrder
{s₁ s₂ s₃} (STO : StrictTotalOrder s₁ s₂ s₃)
where
open Relation.Binary.StrictTotalOrder STO
open import Relation.Binary.Construct.StrictToNonStrict _≈_ _<_
import Relation.Binary.Properties.StrictPartialOrder as SPO
open import Relation.Binary.Consequences
------------------------------------------------------------------------
-- _<_ - the strict version is a strict total order
decTotalOrder : DecTotalOrder _ _ _
decTotalOrder = record
{ isDecTotalOrder = isDecTotalOrder isStrictTotalOrder
}
open DecTotalOrder decTotalOrder public
| 31.206897
| 72
| 0.592265
|
7c1fea9aabf445bcf5a708b5644777a4dd67865f
| 6,125
|
agda
|
Agda
|
TypeTheory/Container/DepM.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
TypeTheory/Container/DepM.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
TypeTheory/Container/DepM.agda
|
hbasold/Sandbox
|
8fc7a6cd878f37f9595124ee8dea62258da28aa4
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --sized-types --without-K #-}
module DepM where
open import Level using (Level)
open import Data.Product
open import Data.Nat
open import Data.Fin
open import Data.Unit
open import Data.Empty
open import Data.Vec hiding (_∈_; [_])
open import Relation.Binary.PropositionalEquality
open import Function
open import Data.Sum
open import Size
Fam : Set → Set₁
Fam I = I → Set
Fam₂ : {I : Set} → (I → Set) → Set₁
Fam₂ {I} J = (i : I) → J i → Set
-- | Morphisms between families
MorFam : {I : Set} (P₁ P₂ : Fam I) → Set
MorFam {I} P₁ P₂ = (x : I) → P₁ x → P₂ x
_⇒_ = MorFam
compMorFam : {I : Set} {P₁ P₂ P₃ : Fam I} →
MorFam P₁ P₂ → MorFam P₂ P₃ → MorFam P₁ P₃
compMorFam f₁ f₂ a = f₂ a ∘ f₁ a
_⊚_ = compMorFam
-- | Reindexing of families
_* : {I J : Set} → (I → J) → Fam J → Fam I
(u *) P = P ∘ u
-- | Reindexing on morphisms of families
_*₁ : {I J : Set} → (u : I → J) →
{P₁ P₂ : Fam J} → (P₁ ⇒ P₂) → (u *) P₁ ⇒ (u *) P₂
(u *₁) f i = f (u i)
-- | This notation for Π-types is more useful for our purposes here.
Π : (A : Set) (P : Fam A) → Set
Π A P = (x : A) → P x
-- | Fully general Σ-type, which we need to interpret the interpretation
-- of families of containers as functors for inductive types.
data Σ' {A B : Set} (f : A → B) (P : Fam A) : B → Set where
ins : (a : A) → P a → Σ' f P (f a)
p₁' : {A B : Set} {u : A → B} {P : Fam A} {b : B} →
Σ' u P b → A
p₁' (ins a _) = a
p₂' : {A B : Set} {u : A → B} {P : Fam A} {b : B} →
(x : Σ' u P b) → P (p₁' x)
p₂' (ins _ x) = x
p₌' : {A B : Set} {u : A → B} {P : Fam A} {b : B} →
(x : Σ' u P b) → u (p₁' x) ≡ b
p₌' (ins _ _) = refl
ins' : {A B : Set} {u : A → B} {P : Fam A} →
(a : A) → (b : B) → u a ≡ b → P a → Σ' u P b
ins' a ._ refl x = ins a x
Σ'-eq : {A B : Set} {f : A → B} {P : Fam A} →
(a a' : A) (x : P a) (x' : P a')
(a≡a' : a ≡ a') (x≡x' : subst P a≡a' x ≡ x') →
subst (Σ' f P) (cong f a≡a') (ins a x) ≡ ins a' x'
Σ'-eq a .a x .x refl refl = refl
Σ-eq : {a b : Level} {A : Set a} {B : A → Set b} →
(a a' : A) (x : B a) (x' : B a')
(a≡a' : a ≡ a') (x≡x' : subst B a≡a' x ≡ x') →
(a , x) ≡ (a' , x')
Σ-eq a .a x .x refl refl = refl
×-eq : {ℓ : Level} {A : Set ℓ} {B : Set ℓ} →
(a a' : A) (b b' : B) →
a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b')
×-eq a .a b .b refl refl = refl
×-eqˡ : {A B : Set} {a a' : A} {b b' : B} → (a , b) ≡ (a' , b') → a ≡ a'
×-eqˡ refl = refl
×-eqʳ : {A B : Set} {a a' : A} {b b' : B} → (a , b) ≡ (a' , b') → b ≡ b'
×-eqʳ refl = refl
-- | Comprehension
⟪_⟫ : {I : Set} → Fam I → Set
⟪_⟫ {I} B = Σ I B
⟪_⟫² : {I J : Set} → (J → Fam I) → Fam J
⟪_⟫² {I} B j = Σ I (B j)
π : {I : Set} → (B : Fam I) → ⟪ B ⟫ → I
π B = proj₁
_⊢₁_ : {I : Set} {A : Fam I} → (i : I) → A i → ⟪ A ⟫
i ⊢₁ a = (i , a)
_,_⊢₂_ : {I : Set} {A : Fam I} {B : Fam ⟪ A ⟫} →
(i : I) → (a : A i) → B (i , a) → ⟪ B ⟫
i , a ⊢₂ b = ((i , a) , b)
-- Not directly definable...
-- record Π' {A B : Set} (u : A → B) (P : A → Set) : B → Set where
-- field
-- app : (a : A) → Π' u P (u a) → P a
-- | ... but this does the job.
Π' : {I J : Set} (u : I → J) (P : Fam I) → Fam J
Π' {I} u P j = Π (∃ λ i → u i ≡ j) (λ { (i , _) → P i})
Π'' : {I J : Set} (u : I → J) (j : J) (P : Fam (∃ λ i → u i ≡ j)) → Set
Π'' {I} u j P = Π (∃ λ i → u i ≡ j) P
-- | Application for fully general Π-types.
app : {I J : Set} {u : I → J} {P : Fam I} →
(u *) (Π' u P) ⇒ P
app i f = f (i , refl)
-- | Abstraction for fully general Π-types.
abs : {I J : Set} {u : I → J} {P : Fam I} →
((i : I) → P i) → ((j : J) → Π' u P j)
abs {u = u} f .(u i) (i , refl) = f i
-- | Abstraction for fully general Π-types.
abs' : {I J : Set} {u : I → J} {P : Fam I} {X : Fam J} →
((u *) X ⇒ P) → (X ⇒ Π' u P)
abs' {u = u} f .(u i) x (i , refl) = f i x
-- | Abstraction for fully general Π-types.
abs'' : {I J : Set} {u : I → J} {P : Fam I} →
(j : J) → ((i : I) → u i ≡ j → P i) → Π' u P j
abs'' j f (i , p) = f i p
abs₃ : {I J : Set} {u : I → J} (j : J) {P : Fam (Σ I (λ i → u i ≡ j))} →
((i : I) → (p : u i ≡ j) → P (i , p)) → Π'' u j P
abs₃ j f (i , p) = f i p
-- | Functorial action of Π'
Π'₁ : {I J : Set} {u : I → J} {P Q : Fam I} →
(f : P ⇒ Q) → (Π' u P ⇒ Π' u Q)
Π'₁ {u = u} f .(u i) g (i , refl) = f i (app i g)
-- | Dependent polynomials
record DPoly
{I : Set} -- ^ Outer index
{J : Set} -- ^ Inner index
: Set₁ where
constructor dpoly
field
-- J ←t- E -p→ A -s→ I
A : Set -- ^ Labels
s : A → I
E : Set
p : E → A
t : E → J
-- | Interpretation of polynomial as functor
⟦_⟧ : {I : Set} {J : Set} →
DPoly {I} {J} →
(X : Fam J) → -- ^ Parameter
(Fam I)
⟦_⟧ {I} {N} (dpoly A s E p t) X =
Σ' s (λ a →
Π' p (λ e →
X (t e)
) a )
-- | Functorial action of T
⟦_⟧₁ : {I : Set} {J : Set} →
(P : DPoly {I} {J}) →
{X Y : J → Set} →
(f : (j : J) → X j → Y j)
(i : I) → ⟦ P ⟧ X i → ⟦ P ⟧ Y i
⟦_⟧₁ {I} {J} (dpoly A s E p t) {X} {Y} f .(s a) (ins a v) =
ins a (Π'₁ ((t *₁) f) a v)
-- | Final coalgebras for dependent polynomials
record M {a : Size} {I} (P : DPoly {I} {I}) (i : I) : Set where
coinductive
field
ξ : ∀ {b : Size< a} → ⟦ P ⟧ (M {b} P) i
open M
ξ' : ∀ {I P} → {i : I} → M P i → ⟦ P ⟧ (M P) i
ξ' x = ξ x
Rel₂ : {I : Set} → (X Y : I → Set) → Set₁
Rel₂ {I} X Y = (i : I) → X i → Y i → Set
-- | Lifting to relations
⟦_⟧'' : ∀ {I} (P : DPoly {I} {I}) {X Y} → Rel₂ X Y → Rel₂ (⟦ P ⟧ X) (⟦ P ⟧ Y)
⟦ dpoly A s E p t ⟧'' {X} {Y} R i x y =
∃ λ a → ∃ λ α → ∃ λ β → Σ[ q ∈ (i ≡ s a) ]
(subst (⟦ dpoly A s E p t ⟧ X) q x ≡ ins a α
× (subst (⟦ dpoly A s E p t ⟧ Y) q y) ≡ ins a β
× ∀ u → R (t (proj₁ u)) (α u) (β u))
[_]_≡₂_ : ∀{I} {X : I → Set} → Rel₂ X X
[ i ] x ≡₂ y = x ≡ y
eq-preserving : ∀ {I P X} (i : I) (x y : ⟦ P ⟧ X i) →
x ≡ y → ⟦ P ⟧'' (λ i → _≡_) i x y
eq-preserving i x y x≡y = {!!}
mutual
-- | Equality for M types is given by bisimilarity
record Bisim {I} {P : DPoly {I} {I}} (i : I) (x y : M P i) : Set where
coinductive
field
~pr : ⟦ P ⟧'' Bisim i (ξ' x) (ξ' y)
open Bisim public
| 27.968037
| 77
| 0.437224
|
4e692057e67da953b174b08c146f63d2beb95885
| 351
|
agda
|
Agda
|
HyperFalse.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
HyperFalse.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
HyperFalse.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical #-}
module HyperFalse where
open import Prelude hiding (false)
{-# NO_POSITIVITY_CHECK #-}
record _↬_ (A : Type a) (B : Type b) : Type (a ℓ⊔ b) where
inductive; constructor hyp
field invoke : (B ↬ A) → B
open _↬_
yes? : ⊥ ↬ ⊥
yes? .invoke h = h .invoke h
no! : (⊥ ↬ ⊥) → ⊥
no! h = h .invoke h
boom : ⊥
boom = no! yes?
| 15.954545
| 58
| 0.581197
|
4e948ef27402dea805b28223d1925235cd550860
| 10,545
|
agda
|
Agda
|
agda-stdlib-0.9/src/Data/List/Any/Membership.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | 1
|
2016-10-20T15:52:05.000Z
|
2016-10-20T15:52:05.000Z
|
agda-stdlib-0.9/src/Data/List/Any/Membership.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
agda-stdlib-0.9/src/Data/List/Any/Membership.agda
|
qwe2/try-agda
|
9d4c43b1609d3f085636376fdca73093481ab882
|
[
"Apache-2.0"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to list membership
------------------------------------------------------------------------
-- List membership is defined in Data.List.Any. This module does not
-- treat the general variant of list membership, parametrised on a
-- setoid, only the variant where the equality is fixed to be
-- propositional equality.
module Data.List.Any.Membership where
open import Algebra
open import Category.Monad
open import Data.Bool
open import Data.Empty
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalence)
import Function.Injection as Inj
open import Function.Inverse as Inv using (_↔_; module Inverse)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Data.List as List
open import Data.List.Any as Any using (Any; here; there)
open import Data.List.Any.Properties
open import Data.Nat as Nat
import Data.Nat.Properties as NatProp
open import Data.Product as Prod
open import Data.Sum as Sum
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; _≗_)
import Relation.Binary.Properties.DecTotalOrder as DTOProperties
import Relation.Binary.Sigma.Pointwise as Σ
open import Relation.Unary using (_⟨×⟩_)
open import Relation.Nullary
open import Relation.Nullary.Negation
open Any.Membership-≡
private
module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ)
open module ListMonad {ℓ} = RawMonad (List.monad {ℓ = ℓ})
------------------------------------------------------------------------
-- Properties relating _∈_ to various list functions
-- Isomorphisms.
map-∈↔ : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} {y xs} →
(∃ λ x → x ∈ xs × y ≡ f x) ↔ y ∈ List.map f xs
map-∈↔ {a} {b} {f = f} {y} {xs} =
(∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Any↔ {a = a} {p = b} ⟩
Any (λ x → y ≡ f x) xs ↔⟨ map↔ {a = a} {b = b} {p = b} ⟩
y ∈ List.map f xs ∎
where open Related.EquationalReasoning
concat-∈↔ : ∀ {a} {A : Set a} {x : A} {xss} →
(∃ λ xs → x ∈ xs × xs ∈ xss) ↔ x ∈ concat xss
concat-∈↔ {a} {x = x} {xss} =
(∃ λ xs → x ∈ xs × xs ∈ xss) ↔⟨ Σ.cong {a₁ = a} {b₁ = a} {b₂ = a} Inv.id $ ×⊎.*-comm _ _ ⟩
(∃ λ xs → xs ∈ xss × x ∈ xs) ↔⟨ Any↔ {a = a} {p = a} ⟩
Any (Any (_≡_ x)) xss ↔⟨ concat↔ {a = a} {p = a} ⟩
x ∈ concat xss ∎
where open Related.EquationalReasoning
>>=-∈↔ : ∀ {ℓ} {A B : Set ℓ} {xs} {f : A → List B} {y} →
(∃ λ x → x ∈ xs × y ∈ f x) ↔ y ∈ (xs >>= f)
>>=-∈↔ {ℓ} {xs = xs} {f} {y} =
(∃ λ x → x ∈ xs × y ∈ f x) ↔⟨ Any↔ {a = ℓ} {p = ℓ} ⟩
Any (Any (_≡_ y) ∘ f) xs ↔⟨ >>=↔ {ℓ = ℓ} {p = ℓ} ⟩
y ∈ (xs >>= f) ∎
where open Related.EquationalReasoning
⊛-∈↔ : ∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) {xs y} →
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔ y ∈ fs ⊛ xs
⊛-∈↔ {ℓ} fs {xs} {y} =
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔⟨ Σ.cong {a₁ = ℓ} {b₁ = ℓ} {b₂ = ℓ} Inv.id (∃∃↔∃∃ {a = ℓ} {b = ℓ} {p = ℓ} _) ⟩
(∃ λ f → f ∈ fs × ∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Σ.cong {a₁ = ℓ} {b₁ = ℓ} {b₂ = ℓ}
Inv.id ((_ ∎) ⟨ ×⊎.*-cong {ℓ = ℓ} ⟩ Any↔ {a = ℓ} {p = ℓ}) ⟩
(∃ λ f → f ∈ fs × Any (_≡_ y ∘ f) xs) ↔⟨ Any↔ {a = ℓ} {p = ℓ} ⟩
Any (λ f → Any (_≡_ y ∘ f) xs) fs ↔⟨ ⊛↔ ⟩
y ∈ fs ⊛ xs ∎
where open Related.EquationalReasoning
⊗-∈↔ : ∀ {A B : Set} {xs ys} {x : A} {y : B} →
(x ∈ xs × y ∈ ys) ↔ (x , y) ∈ (xs ⊗ ys)
⊗-∈↔ {A} {B} {xs} {ys} {x} {y} =
(x ∈ xs × y ∈ ys) ↔⟨ ⊗↔′ ⟩
Any (_≡_ x ⟨×⟩ _≡_ y) (xs ⊗ ys) ↔⟨ Any-cong helper (_ ∎) ⟩
(x , y) ∈ (xs ⊗ ys) ∎
where
open Related.EquationalReasoning
helper : (p : A × B) → (x ≡ proj₁ p × y ≡ proj₂ p) ↔ (x , y) ≡ p
helper (x′ , y′) = record
{ to = P.→-to-⟶ (uncurry $ P.cong₂ _,_)
; from = P.→-to-⟶ < P.cong proj₁ , P.cong proj₂ >
; inverse-of = record
{ left-inverse-of = λ _ → P.cong₂ _,_ (P.proof-irrelevance _ _)
(P.proof-irrelevance _ _)
; right-inverse-of = λ _ → P.proof-irrelevance _ _
}
}
-- Other properties.
filter-∈ : ∀ {a} {A : Set a} (p : A → Bool) (xs : List A) {x} →
x ∈ xs → p x ≡ true → x ∈ filter p xs
filter-∈ p [] () _
filter-∈ p (x ∷ xs) (here refl) px≡true rewrite px≡true = here refl
filter-∈ p (y ∷ xs) (there pxs) px≡true with p y
... | true = there (filter-∈ p xs pxs px≡true)
... | false = filter-∈ p xs pxs px≡true
------------------------------------------------------------------------
-- Properties relating _∈_ to various list functions
-- Various functions are monotone.
mono : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
xs ⊆ ys → Any P xs → Any P ys
mono xs⊆ys =
_⟨$⟩_ (Inverse.to Any↔) ∘′
Prod.map id (Prod.map xs⊆ys id) ∘
_⟨$⟩_ (Inverse.from Any↔)
map-mono : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {xs ys} →
xs ⊆ ys → List.map f xs ⊆ List.map f ys
map-mono f xs⊆ys =
_⟨$⟩_ (Inverse.to map-∈↔) ∘
Prod.map id (Prod.map xs⊆ys id) ∘
_⟨$⟩_ (Inverse.from map-∈↔)
_++-mono_ : ∀ {a} {A : Set a} {xs₁ xs₂ ys₁ ys₂ : List A} →
xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → xs₁ ++ xs₂ ⊆ ys₁ ++ ys₂
_++-mono_ xs₁⊆ys₁ xs₂⊆ys₂ =
_⟨$⟩_ (Inverse.to ++↔) ∘
Sum.map xs₁⊆ys₁ xs₂⊆ys₂ ∘
_⟨$⟩_ (Inverse.from ++↔)
concat-mono : ∀ {a} {A : Set a} {xss yss : List (List A)} →
xss ⊆ yss → concat xss ⊆ concat yss
concat-mono {a} xss⊆yss =
_⟨$⟩_ (Inverse.to $ concat-∈↔ {a = a}) ∘
Prod.map id (Prod.map id xss⊆yss) ∘
_⟨$⟩_ (Inverse.from $ concat-∈↔ {a = a})
>>=-mono : ∀ {ℓ} {A B : Set ℓ} (f g : A → List B) {xs ys} →
xs ⊆ ys → (∀ {x} → f x ⊆ g x) →
(xs >>= f) ⊆ (ys >>= g)
>>=-mono {ℓ} f g xs⊆ys f⊆g =
_⟨$⟩_ (Inverse.to $ >>=-∈↔ {ℓ = ℓ}) ∘
Prod.map id (Prod.map xs⊆ys f⊆g) ∘
_⟨$⟩_ (Inverse.from $ >>=-∈↔ {ℓ = ℓ})
_⊛-mono_ : ∀ {ℓ} {A B : Set ℓ}
{fs gs : List (A → B)} {xs ys : List A} →
fs ⊆ gs → xs ⊆ ys → (fs ⊛ xs) ⊆ (gs ⊛ ys)
_⊛-mono_ {fs = fs} {gs} fs⊆gs xs⊆ys =
_⟨$⟩_ (Inverse.to $ ⊛-∈↔ gs) ∘
Prod.map id (Prod.map id (Prod.map fs⊆gs (Prod.map xs⊆ys id))) ∘
_⟨$⟩_ (Inverse.from $ ⊛-∈↔ fs)
_⊗-mono_ : {A B : Set} {xs₁ ys₁ : List A} {xs₂ ys₂ : List B} →
xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → (xs₁ ⊗ xs₂) ⊆ (ys₁ ⊗ ys₂)
xs₁⊆ys₁ ⊗-mono xs₂⊆ys₂ =
_⟨$⟩_ (Inverse.to ⊗-∈↔) ∘
Prod.map xs₁⊆ys₁ xs₂⊆ys₂ ∘
_⟨$⟩_ (Inverse.from ⊗-∈↔)
any-mono : ∀ {a} {A : Set a} (p : A → Bool) →
∀ {xs ys} → xs ⊆ ys → T (any p xs) → T (any p ys)
any-mono {a} p xs⊆ys =
_⟨$⟩_ (Equivalence.to $ any⇔ {a = a}) ∘
mono xs⊆ys ∘
_⟨$⟩_ (Equivalence.from $ any⇔ {a = a})
map-with-∈-mono :
∀ {a b} {A : Set a} {B : Set b}
{xs : List A} {f : ∀ {x} → x ∈ xs → B}
{ys : List A} {g : ∀ {x} → x ∈ ys → B}
(xs⊆ys : xs ⊆ ys) → (∀ {x} → f {x} ≗ g ∘ xs⊆ys) →
map-with-∈ xs f ⊆ map-with-∈ ys g
map-with-∈-mono {f = f} {g = g} xs⊆ys f≈g {x} =
_⟨$⟩_ (Inverse.to map-with-∈↔) ∘
Prod.map id (Prod.map xs⊆ys (λ {x∈xs} x≡fx∈xs → begin
x ≡⟨ x≡fx∈xs ⟩
f x∈xs ≡⟨ f≈g x∈xs ⟩
g (xs⊆ys x∈xs) ∎)) ∘
_⟨$⟩_ (Inverse.from map-with-∈↔)
where open P.≡-Reasoning
-- Other properties.
filter-⊆ : ∀ {a} {A : Set a} (p : A → Bool) →
(xs : List A) → filter p xs ⊆ xs
filter-⊆ _ [] = λ ()
filter-⊆ p (x ∷ xs) with p x | filter-⊆ p xs
... | false | hyp = there ∘ hyp
... | true | hyp =
λ { (here eq) → here eq
; (there ∈filter) → there (hyp ∈filter)
}
------------------------------------------------------------------------
-- Other properties
-- Only a finite number of distinct elements can be members of a
-- given list.
finite : ∀ {a} {A : Set a}
(f : Inj.Injection (P.setoid ℕ) (P.setoid A)) →
∀ xs → ¬ (∀ i → Inj.Injection.to f ⟨$⟩ i ∈ xs)
finite inj [] ∈[] with ∈[] zero
... | ()
finite {A = A} inj (x ∷ xs) ∈x∷xs = excluded-middle helper
where
open Inj.Injection inj
module DTO = DecTotalOrder Nat.decTotalOrder
module STO = StrictTotalOrder
(DTOProperties.strictTotalOrder Nat.decTotalOrder)
module CS = CommutativeSemiring NatProp.commutativeSemiring
not-x : ∀ {i} → ¬ (to ⟨$⟩ i ≡ x) → to ⟨$⟩ i ∈ xs
not-x {i} ≢x with ∈x∷xs i
... | here ≡x = ⊥-elim (≢x ≡x)
... | there ∈xs = ∈xs
helper : ¬ Dec (∃ λ i → to ⟨$⟩ i ≡ x)
helper (no ≢x) = finite inj xs (λ i → not-x (≢x ∘ _,_ i))
helper (yes (i , ≡x)) = finite inj′ xs ∈xs
where
open P
f : ℕ → A
f j with STO.compare i j
f j | tri< _ _ _ = to ⟨$⟩ suc j
f j | tri≈ _ _ _ = to ⟨$⟩ suc j
f j | tri> _ _ _ = to ⟨$⟩ j
∈-if-not-i : ∀ {j} → i ≢ j → to ⟨$⟩ j ∈ xs
∈-if-not-i i≢j = not-x (i≢j ∘ injective ∘ trans ≡x ∘ sym)
lemma : ∀ {k j} → k ≤ j → suc j ≢ k
lemma 1+j≤j refl = NatProp.1+n≰n 1+j≤j
∈xs : ∀ j → f j ∈ xs
∈xs j with STO.compare i j
∈xs j | tri< (i≤j , _) _ _ = ∈-if-not-i (lemma i≤j ∘ sym)
∈xs j | tri> _ i≢j _ = ∈-if-not-i i≢j
∈xs .i | tri≈ _ refl _ =
∈-if-not-i (NatProp.m≢1+m+n i ∘
subst (_≡_ i ∘ suc) (sym $ proj₂ CS.+-identity i))
injective′ : Inj.Injective {B = P.setoid A} (→-to-⟶ f)
injective′ {j} {k} eq with STO.compare i j | STO.compare i k
... | tri< _ _ _ | tri< _ _ _ = cong pred $ injective eq
... | tri< _ _ _ | tri≈ _ _ _ = cong pred $ injective eq
... | tri< (i≤j , _) _ _ | tri> _ _ (k≤i , _) = ⊥-elim (lemma (DTO.trans k≤i i≤j) $ injective eq)
... | tri≈ _ _ _ | tri< _ _ _ = cong pred $ injective eq
... | tri≈ _ _ _ | tri≈ _ _ _ = cong pred $ injective eq
... | tri≈ _ i≡j _ | tri> _ _ (k≤i , _) = ⊥-elim (lemma (subst (_≤_ k) i≡j k≤i) $ injective eq)
... | tri> _ _ (j≤i , _) | tri< (i≤k , _) _ _ = ⊥-elim (lemma (DTO.trans j≤i i≤k) $ sym $ injective eq)
... | tri> _ _ (j≤i , _) | tri≈ _ i≡k _ = ⊥-elim (lemma (subst (_≤_ j) i≡k j≤i) $ sym $ injective eq)
... | tri> _ _ (j≤i , _) | tri> _ _ (k≤i , _) = injective eq
inj′ = record
{ to = →-to-⟶ {B = P.setoid A} f
; injective = injective′
}
| 38.485401
| 126
| 0.467141
|
29e17f5ae4fe56e4186e23a0f37673465d99f18c
| 3,199
|
agda
|
Agda
|
proglangs-learning/Agda/plfa-exercises/weird.agda
|
helq/old_code
|
a432faf1b340cb379190a2f2b11b997b02d1cd8d
|
[
"CC0-1.0"
] | null | null | null |
proglangs-learning/Agda/plfa-exercises/weird.agda
|
helq/old_code
|
a432faf1b340cb379190a2f2b11b997b02d1cd8d
|
[
"CC0-1.0"
] | 4
|
2020-03-10T19:20:21.000Z
|
2021-06-07T15:39:48.000Z
|
proglangs-learning/Agda/plfa-exercises/weird.agda
|
helq/old_code
|
a432faf1b340cb379190a2f2b11b997b02d1cd8d
|
[
"CC0-1.0"
] | null | null | null |
module plfa-exercises.weird where
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Data.Bool.Base using (Bool; true; false; _∧_; _∨_; not)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; subst)
data ℕ∨Bool : Set where
N B : ℕ∨Bool
-- Idea taken from paper: Fractional Types by Chao-Hong Chen et al.
⟦_⟧ : ℕ∨Bool → Set
⟦ N ⟧ = ℕ
⟦ B ⟧ = Bool
manyinputs : {a : ℕ∨Bool} → ⟦ a ⟧ → ⟦ a ⟧
manyinputs {N} n = suc n
manyinputs {B} b = not b
_ : manyinputs 6 ≡ 7
_ = refl
_ : manyinputs true ≡ false -- WOW!!
_ = refl
open import Relation.Nullary using (¬_)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
-- Actually this should use "isomorphisms" not mere 'iff' between propositions.
-- https://agda.github.io/agda-stdlib/v1.1/Function.Inverse.html#2229
open import plfa.part1.Isomorphism using (_⇔_)
lemma₁ : ¬ ⊤ → ⊥
lemma₁ ¬⊤ = ¬⊤ tt
lemma₂ : ⊥ → ¬ ⊤
lemma₂ ()
-- I can easily prove this!! Which is not the same as ¬ ⊤ same as ⊥,
-- but ¬ ⊤ iff ⊥, where ⊤ and ⊥ are predicates
prf₀ : (¬ ⊤) ⇔ ⊥
prf₀ = record {
to = lemma₁
; from = lemma₂
}
-- But how to prove the following?
--prf : ¬ ⊤ ≡ ⊥
--prf = ? -- seems to require extensionality and iso-is-≡, or cubical, see https://stackoverflow.com/a/58912530
open import Level using (0ℓ)
open import Agda.Primitive using (lsuc)
open import Relation.Binary.Definitions using (Substitutive; _Respects_; _⟶_Respects_)
prf₂ : ¬ (⊤ ≡ ⊥) -- same as: ⊤ ≢ ⊥
prf₂ ⊤≡⊥ = subst (λ x → x) ⊤≡⊥ tt
-- We don't need to give the implicit parameters but doing so lets us look
-- inside of the definitions and how they get reduced to other terms
--prf₂ ⊤≡⊥ = subst {A = Set} {ℓ = 0ℓ} (λ x → x) ⊤≡⊥ tt
-- `subst` has type: {a : Level} {A : Set a} {ℓ : Level} → Substitutive _≡_ ℓ
-- `subst {A = Set}` has type: {ℓ : Level} → Substitutive _≡_ ℓ
-- `subst {A = Set} {ℓ = 0ℓ}` has type: Substitutive _≡_ 0ℓ
-- actually it has type: Substitutive {A = Set} _≡_ 0ℓ
-- `Substitutive {A = Set} _≡_ 0ℓ` which reduces to (P : Set → Set) {x y : Set} → x ≡ y → P x → P y
-- which means that the type of
-- `subst {A = Set} {ℓ = 0ℓ}`
-- is
-- (P : Set → Set) {x y : Set} → x ≡ y → P x → P y
-- thus, the type of
-- `subst {A = Set} {ℓ = 0ℓ} (λ x → x)` (*)
-- is
-- {x y : Set} → x ≡ y → P x → P y
-- Note: careful, Agda tells us that the type of (*) is:
-- (λ x → x) Respects _≡_
-- but it is actually:
-- _Respects_ {A = Set} (λ x → x) _≡_
--
-- From reading the code:
-- _Respects_ {A = Set} (λ x → x) _≡_ (**)
-- reduces first to:
-- _⟶_Respects_ {A = Set} (λ x → x) (λ x → x) _≡_
--
-- There is even more. (**) actually has some implicit parameters, here they are
-- _Respects_ {A = Set} {ℓ₁ = 0ℓ} {ℓ₂ = lsuc 0ℓ} (λ x → x) _≡_
--
-- LESSON LEARNT: Implicit arguments are cool because you don't need to give
-- them, Agda can generally infer them from context which makes code to look
-- prettier but excesively harder to read
--
-- Other stuff:
-- `Substitutive {A = Set} _≡_ 0ℓ` reduces to (P : Set → Set) {x y : Set} → x ≡ y → P x → P y
-- `Substitutive {A = Set} _≡_ (lsuc 0ℓ)` reduces to (P : Set → Set₁) {x y : Set} → x ≡ y → P x → P y
| 33.673684
| 112
| 0.60769
|
37e496d5e9e3f219fd062bb1799b8a860ec1daef
| 429
|
agda
|
Agda
|
test/Fail/Issue1216a.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue1216a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue1216a.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2014-06-27
-- {-# OPTIONS -v tc.lhs:40 #-}
{-# OPTIONS --copatterns #-}
record Coind : Set where
coinductive
field ind : Coind
open Coind
loop : Set -> Coind
ind A (loop B) = ind (loop A)
-- WAS: Internal error.
-- NOW: Proper error.
-- Cannot eliminate type Coind with pattern ind A (did you supply too many arguments?)
-- when checking that the clause ind A (loop B) = ind (loop A) has
-- type Set → Coind
| 21.45
| 86
| 0.657343
|
36399405c4cdd6357f1f2955a8f9fc209df1e40a
| 8,102
|
agda
|
Agda
|
Cubical/Algebra/CommRing/Properties.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommRing/Properties.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommRing/Properties.agda
|
Schippmunk/cubical
|
c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.CommRing.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing.Base
private
variable
ℓ : Level
module Units (R' : CommRing {ℓ}) where
open CommRingStr (snd R')
open Theory (CommRing→Ring R')
private R = R' .fst
inverseUniqueness : (r : R) → isProp (Σ[ r' ∈ R ] r · r' ≡ 1r)
inverseUniqueness r (r' , rr'≡1) (r'' , rr''≡1) = Σ≡Prop (λ _ → is-set _ _) path
where
path : r' ≡ r''
path = r' ≡⟨ sym (·-rid _) ⟩
r' · 1r ≡⟨ cong (r' ·_) (sym rr''≡1) ⟩
r' · (r · r'') ≡⟨ ·-assoc _ _ _ ⟩
(r' · r) · r'' ≡⟨ cong (_· r'') (·-comm _ _) ⟩
(r · r') · r'' ≡⟨ cong (_· r'') rr'≡1 ⟩
1r · r'' ≡⟨ ·-lid _ ⟩
r'' ∎
Rˣ : ℙ R
Rˣ r = (Σ[ r' ∈ R ] r · r' ≡ 1r) , inverseUniqueness r
-- some notation using instance arguments
_⁻¹ : (r : R) → ⦃ r ∈ Rˣ ⦄ → R
_⁻¹ r ⦃ r∈Rˣ ⦄ = r∈Rˣ .fst
infix 9 _⁻¹
-- some results about inverses
·-rinv : (r : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ → r · r ⁻¹ ≡ 1r
·-rinv r ⦃ r∈Rˣ ⦄ = r∈Rˣ .snd
·-linv : (r : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ → r ⁻¹ · r ≡ 1r
·-linv r ⦃ r∈Rˣ ⦄ = ·-comm _ _ ∙ r∈Rˣ .snd
RˣMultClosed : (r r' : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄
→ (r · r') ∈ Rˣ
RˣMultClosed r r' = (r ⁻¹ · r' ⁻¹) , path
where
path : r · r' · (r ⁻¹ · r' ⁻¹) ≡ 1r
path = r · r' · (r ⁻¹ · r' ⁻¹) ≡⟨ cong (_· (r ⁻¹ · r' ⁻¹)) (·-comm _ _) ⟩
r' · r · (r ⁻¹ · r' ⁻¹) ≡⟨ ·-assoc _ _ _ ⟩
r' · r · r ⁻¹ · r' ⁻¹ ≡⟨ cong (_· r' ⁻¹) (sym (·-assoc _ _ _)) ⟩
r' · (r · r ⁻¹) · r' ⁻¹ ≡⟨ cong (λ x → r' · x · r' ⁻¹) (·-rinv _) ⟩
r' · 1r · r' ⁻¹ ≡⟨ cong (_· r' ⁻¹) (·-rid _) ⟩
r' · r' ⁻¹ ≡⟨ ·-rinv _ ⟩
1r ∎
RˣContainsOne : 1r ∈ Rˣ
RˣContainsOne = 1r , ·-lid _
RˣInvClosed : (r : R) ⦃ _ : r ∈ Rˣ ⦄ → r ⁻¹ ∈ Rˣ
RˣInvClosed r = r , ·-linv _
UnitsAreNotZeroDivisors : (r : R) ⦃ _ : r ∈ Rˣ ⦄
→ ∀ r' → r' · r ≡ 0r → r' ≡ 0r
UnitsAreNotZeroDivisors r r' p = r' ≡⟨ sym (·-rid _) ⟩
r' · 1r ≡⟨ cong (r' ·_) (sym (·-rinv _)) ⟩
r' · (r · r ⁻¹) ≡⟨ ·-assoc _ _ _ ⟩
r' · r · r ⁻¹ ≡⟨ cong (_· r ⁻¹) p ⟩
0r · r ⁻¹ ≡⟨ 0-leftNullifies _ ⟩
0r ∎
-- laws keeping the instance arguments
1⁻¹≡1 : ⦃ 1∈Rˣ' : 1r ∈ Rˣ ⦄ → 1r ⁻¹ ≡ 1r
1⁻¹≡1 ⦃ 1∈Rˣ' ⦄ = (sym (·-lid _)) ∙ 1∈Rˣ' .snd
⁻¹-dist-· : (r r' : R) ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄ ⦃ rr'∈Rˣ : (r · r') ∈ Rˣ ⦄
→ (r · r') ⁻¹ ≡ r ⁻¹ · r' ⁻¹
⁻¹-dist-· r r' ⦃ r∈Rˣ ⦄ ⦃ r'∈Rˣ ⦄ ⦃ rr'∈Rˣ ⦄ =
sym path ∙∙ cong (r ⁻¹ · r' ⁻¹ ·_) (rr'∈Rˣ .snd) ∙∙ (·-rid _)
where
path : r ⁻¹ · r' ⁻¹ · (r · r' · (r · r') ⁻¹) ≡ (r · r') ⁻¹
path = r ⁻¹ · r' ⁻¹ · (r · r' · (r · r') ⁻¹)
≡⟨ ·-assoc _ _ _ ⟩
r ⁻¹ · r' ⁻¹ · (r · r') · (r · r') ⁻¹
≡⟨ cong (λ x → r ⁻¹ · r' ⁻¹ · x · (r · r') ⁻¹) (·-comm _ _) ⟩
r ⁻¹ · r' ⁻¹ · (r' · r) · (r · r') ⁻¹
≡⟨ cong (_· (r · r') ⁻¹) (sym (·-assoc _ _ _)) ⟩
r ⁻¹ · (r' ⁻¹ · (r' · r)) · (r · r') ⁻¹
≡⟨ cong (λ x → r ⁻¹ · x · (r · r') ⁻¹) (·-assoc _ _ _) ⟩
r ⁻¹ · (r' ⁻¹ · r' · r) · (r · r') ⁻¹
≡⟨ cong (λ x → r ⁻¹ · (x · r) · (r · r') ⁻¹) (·-linv _) ⟩
r ⁻¹ · (1r · r) · (r · r') ⁻¹
≡⟨ cong (λ x → r ⁻¹ · x · (r · r') ⁻¹) (·-lid _) ⟩
r ⁻¹ · r · (r · r') ⁻¹
≡⟨ cong (_· (r · r') ⁻¹) (·-linv _) ⟩
1r · (r · r') ⁻¹
≡⟨ ·-lid _ ⟩
(r · r') ⁻¹ ∎
unitCong : {r r' : R} → r ≡ r' → ⦃ r∈Rˣ : r ∈ Rˣ ⦄ ⦃ r'∈Rˣ : r' ∈ Rˣ ⦄ → r ⁻¹ ≡ r' ⁻¹
unitCong {r = r} {r' = r'} p ⦃ r∈Rˣ ⦄ ⦃ r'∈Rˣ ⦄ =
PathPΣ (inverseUniqueness r' (r ⁻¹ , subst (λ x → x · r ⁻¹ ≡ 1r) p (r∈Rˣ .snd)) r'∈Rˣ) .fst
-- some convenient notation
_ˣ : (R' : CommRing {ℓ}) → ℙ (R' .fst)
R' ˣ = Units.Rˣ R'
module RingHomRespUnits {A' B' : CommRing {ℓ}} (φ : CommRingHom A' B') where
open Units A' renaming (Rˣ to Aˣ ; _⁻¹ to _⁻¹ᵃ ; ·-rinv to ·A-rinv ; ·-linv to ·A-linv)
private A = A' .fst
open CommRingStr (A' .snd) renaming (_·_ to _·A_ ; 1r to 1a)
open Units B' renaming (Rˣ to Bˣ ; _⁻¹ to _⁻¹ᵇ ; ·-rinv to ·B-rinv)
open CommRingStr (B' .snd) renaming ( _·_ to _·B_ ; 1r to 1b
; ·-lid to ·B-lid ; ·-rid to ·B-rid
; ·-assoc to ·B-assoc)
open RingHom
RingHomRespInv : (r : A) ⦃ r∈Aˣ : r ∈ Aˣ ⦄ → f φ r ∈ Bˣ
RingHomRespInv r = f φ (r ⁻¹ᵃ) , (sym (isHom· φ r (r ⁻¹ᵃ)) ∙∙ cong (f φ) (·A-rinv r) ∙∙ pres1 φ)
φ[x⁻¹]≡φ[x]⁻¹ : (r : A) ⦃ r∈Aˣ : r ∈ Aˣ ⦄ ⦃ φr∈Bˣ : f φ r ∈ Bˣ ⦄
→ f φ (r ⁻¹ᵃ) ≡ (f φ r) ⁻¹ᵇ
φ[x⁻¹]≡φ[x]⁻¹ r ⦃ r∈Aˣ ⦄ ⦃ φr∈Bˣ ⦄ =
f φ (r ⁻¹ᵃ) ≡⟨ sym (·B-rid _) ⟩
f φ (r ⁻¹ᵃ) ·B 1b ≡⟨ cong (f φ (r ⁻¹ᵃ) ·B_) (sym (·B-rinv _)) ⟩
f φ (r ⁻¹ᵃ) ·B ((f φ r) ·B (f φ r) ⁻¹ᵇ) ≡⟨ ·B-assoc _ _ _ ⟩
f φ (r ⁻¹ᵃ) ·B (f φ r) ·B (f φ r) ⁻¹ᵇ ≡⟨ cong (_·B (f φ r) ⁻¹ᵇ) (sym (isHom· φ _ _)) ⟩
f φ (r ⁻¹ᵃ ·A r) ·B (f φ r) ⁻¹ᵇ ≡⟨ cong (λ x → f φ x ·B (f φ r) ⁻¹ᵇ) (·A-linv _) ⟩
f φ 1a ·B (f φ r) ⁻¹ᵇ ≡⟨ cong (_·B (f φ r) ⁻¹ᵇ) (pres1 φ) ⟩
1b ·B (f φ r) ⁻¹ᵇ ≡⟨ ·B-lid _ ⟩
(f φ r) ⁻¹ᵇ ∎
module Exponentiation (R' : CommRing {ℓ}) where
open CommRingStr (snd R')
private R = R' .fst
-- introduce exponentiation
_^_ : R → ℕ → R
f ^ zero = 1r
f ^ suc n = f · (f ^ n)
infix 9 _^_
-- and prove some laws
·-of-^-is-^-of-+ : (f : R) (m n : ℕ) → (f ^ m) · (f ^ n) ≡ f ^ (m +ℕ n)
·-of-^-is-^-of-+ f zero n = ·-lid _
·-of-^-is-^-of-+ f (suc m) n = sym (·-assoc _ _ _) ∙ cong (f ·_) (·-of-^-is-^-of-+ f m n)
^-ldist-· : (f g : R) (n : ℕ) → (f · g) ^ n ≡ (f ^ n) · (g ^ n)
^-ldist-· f g zero = sym (·-lid 1r)
^-ldist-· f g (suc n) = path
where
path : f · g · ((f · g) ^ n) ≡ f · (f ^ n) · (g · (g ^ n))
path = f · g · ((f · g) ^ n) ≡⟨ cong (f · g ·_) (^-ldist-· f g n) ⟩
f · g · ((f ^ n) · (g ^ n)) ≡⟨ ·-assoc _ _ _ ⟩
f · g · (f ^ n) · (g ^ n) ≡⟨ cong (_· (g ^ n)) (sym (·-assoc _ _ _)) ⟩
f · (g · (f ^ n)) · (g ^ n) ≡⟨ cong (λ r → (f · r) · (g ^ n)) (·-comm _ _) ⟩
f · ((f ^ n) · g) · (g ^ n) ≡⟨ cong (_· (g ^ n)) (·-assoc _ _ _) ⟩
f · (f ^ n) · g · (g ^ n) ≡⟨ sym (·-assoc _ _ _) ⟩
f · (f ^ n) · (g · (g ^ n)) ∎
-- like in Ring.Properties we provide helpful lemmas here
module CommTheory (R' : CommRing {ℓ}) where
open CommRingStr (snd R')
private R = R' .fst
·-commAssocl : (x y z : R) → x · (y · z) ≡ y · (x · z)
·-commAssocl x y z = ·-assoc x y z ∙∙ cong (_· z) (·-comm x y) ∙∙ sym (·-assoc y x z)
·-commAssocr : (x y z : R) → x · y · z ≡ x · z · y
·-commAssocr x y z = sym (·-assoc x y z) ∙∙ cong (x ·_) (·-comm y z) ∙∙ ·-assoc x z y
·-commAssocr2 : (x y z : R) → x · y · z ≡ z · y · x
·-commAssocr2 x y z = ·-commAssocr _ _ _ ∙∙ cong (_· y) (·-comm _ _) ∙∙ ·-commAssocr _ _ _
·-commAssocSwap : (x y z w : R) → (x · y) · (z · w) ≡ (x · z) · (y · w)
·-commAssocSwap x y z w = ·-assoc (x · y) z w ∙∙ cong (_· w) (·-commAssocr x y z)
∙∙ sym (·-assoc (x · z) y w)
| 39.521951
| 101
| 0.42866
|
cc5a686078ee84b0e9b177e99ae38157b8b9e3ad
| 1,198
|
agda
|
Agda
|
test/Fail/IndexInference.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/IndexInference.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/IndexInference.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Jesper, 2017-08-13: This test case now fails since instantiation
-- of metavariables during case splitting was disabled (see #2621).
{-# OPTIONS -v tc.conv.irr:50 #-}
-- {-# OPTIONS -v tc.lhs.unify:50 #-}
module IndexInference where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
infixr 40 _::_
-- The length of the vector can be inferred from the pattern.
foo : Vec Nat _ -> Nat
foo (a :: b :: c :: []) = c
-- Andreas, 2012-09-13 an example with irrelevant components in index
pred : Nat → Nat
pred (zero ) = zero
pred (suc n) = n
data ⊥ : Set where
record ⊤ : Set where
NonZero : Nat → Set
NonZero zero = ⊥
NonZero (suc n) = ⊤
data Fin (n : Nat) : Set where
zero : .(NonZero n) → Fin n
suc : .(NonZero n) → Fin (pred n) → Fin n
data SubVec (A : Set)(n : Nat) : Fin n → Set where
[] : .{p : NonZero n} → SubVec A n (zero p)
_::_ : .{p : NonZero n}{k : Fin (pred n)} → A → SubVec A (pred n) k → SubVec A n (suc p k)
-- The length of the vector can be inferred from the pattern.
bar : {A : Set} → SubVec A (suc (suc (suc zero))) _ → A
bar (a :: []) = a
| 26.043478
| 92
| 0.593489
|
cc3f8836dfd9ca9db4cbfcbf5ec42c96897a2ee7
| 398
|
agda
|
Agda
|
agda/Data/Sum/Properties.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 4
|
2021-01-05T14:07:44.000Z
|
2021-01-05T15:32:14.000Z
|
agda/Data/Sum/Properties.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/Data/Sum/Properties.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 1
|
2021-01-05T14:05:30.000Z
|
2021-01-05T14:05:30.000Z
|
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Data.Sum.Properties where
open import Prelude
open import Data.Sum
open import Data.Bool
sumAsSigma : A ⊎ B ≃ Σ[ x ⦂ Bool ] (if x then A else B)
sumAsSigma = isoToEquiv $
iso
(either (true ,_) (false ,_))
(uncurry (bool inr inl))
(λ { (false , _) → refl ; (true , _) → refl})
(λ { (inl _) → refl ; (inr _) → refl})
| 24.875
| 55
| 0.605528
|
d106c9461b698f8012c7212b354d18612b3d7150
| 359
|
agda
|
Agda
|
test/Fail/Issue4482.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue4482.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue4482.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2020-03-20, issue #4482, reported by gallai
-- Precise range for unexpected implicit argument.
_ : Set → {A : Set} → {B : Set} → {C : Set} → Set
_ = λ { _ {B = B} {A = A} → {!!} }
-- Unexpected implicit argument
-- when checking the clause left hand side
-- .extendedlambda0 _ {B = B} {A = A}
-- ^ highlight this
| 32.636364
| 55
| 0.554318
|
114ef7506122692682fd743b314f1ba51fca84bc
| 4,086
|
agda
|
Agda
|
src/PiCalculus/LinearTypeSystem/Algebras.agda
|
guilhermehas/typing-linear-pi
|
0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a
|
[
"MIT"
] | 26
|
2020-05-02T23:32:11.000Z
|
2022-03-14T15:18:23.000Z
|
src/PiCalculus/LinearTypeSystem/Algebras.agda
|
guilhermehas/typing-linear-pi
|
0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a
|
[
"MIT"
] | 1
|
2022-03-15T09:16:14.000Z
|
2022-03-15T09:16:14.000Z
|
src/PiCalculus/LinearTypeSystem/Algebras.agda
|
guilhermehas/typing-linear-pi
|
0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a
|
[
"MIT"
] | 3
|
2021-01-25T13:57:13.000Z
|
2022-03-14T16:24:07.000Z
|
{-# OPTIONS --safe --without-K #-}
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (fromWitness; toWitness)
open import Function using (_∘_)
open import Data.Empty using (⊥-elim)
import Data.Fin as Fin
import Data.Unit as Unit
import Data.Product as Product
import Data.Vec as Vec
import Data.Vec.Relation.Unary.All as All
import Data.Nat as ℕ
open Fin using (Fin; zero; suc)
open Unit using (⊤; tt)
open ℕ using (ℕ)
open Product using (Σ-syntax; ∃-syntax; _,_; _×_; proj₁; proj₂)
open Vec using (Vec; []; _∷_)
open All using (All; []; _∷_)
module PiCalculus.LinearTypeSystem.Algebras where
private
variable
n : ℕ
infixr 100 _²
_² : ∀ {a} → Set a → Set a
A ² = A × A
record Algebra (Q : Set) : Set₁ where
field
0∙ 1∙ : Q
_≔_∙_ : Q → Q → Q → Set
-- Given two operands, we can decide whether a third one exists
∙-computeʳ : ∀ x y → Dec (∃[ z ] (x ≔ y ∙ z))
-- If a third operand exists, it must be unique
∙-unique : ∀ {x x' y z} → x' ≔ y ∙ z → x ≔ y ∙ z → x' ≡ x
∙-uniqueˡ : ∀ {x y y' z} → x ≔ y' ∙ z → x ≔ y ∙ z → y' ≡ y
-- 0 is the minimum
0∙-minˡ : ∀ {y z} → 0∙ ≔ y ∙ z → y ≡ 0∙
-- Neutral element, commutativity, associativity
∙-idˡ : ∀ {x} → x ≔ 0∙ ∙ x
∙-comm : ∀ {x y z} → x ≔ y ∙ z → x ≔ z ∙ y -- no need for right rules
∙-assoc : ∀ {x y z u v} → x ≔ y ∙ z → y ≔ u ∙ v → ∃[ w ] (x ≔ u ∙ w × w ≔ v ∙ z)
ℓ∅ : Q ²
ℓ∅ = 0∙ , 0∙
ℓᵢ : Q ²
ℓᵢ = 1∙ , 0∙
ℓₒ : Q ²
ℓₒ = 0∙ , 1∙
ℓ# : Q ²
ℓ# = 1∙ , 1∙
_≔_∙²_ : Q ² → Q ² → Q ² → Set
(lx , rx) ≔ (ly , ry) ∙² (lz , rz) = (lx ≔ ly ∙ lz) × (rx ≔ ry ∙ rz)
∙-idʳ : ∀ {x} → x ≔ x ∙ 0∙
∙-idʳ = ∙-comm ∙-idˡ
∙-assoc⁻¹ : ∀ {x y z u v} → x ≔ y ∙ z → z ≔ u ∙ v → ∃[ ; ] (x ≔ ; ∙ v × ; ≔ y ∙ u)
∙-assoc⁻¹ a b = let _ , a' , b' = ∙-assoc (∙-comm a) (∙-comm b) in _ , ∙-comm a' , ∙-comm b'
∙-mut-cancel : ∀ {x y y' z} → x ≔ y ∙ z → z ≔ y' ∙ x → x ≡ z
∙-mut-cancel x≔y∙z z≔y'∙x with ∙-assoc⁻¹ x≔y∙z z≔y'∙x
∙-mut-cancel x≔y∙z z≔y'∙x | e , x≔e∙x , e≔y∙y' rewrite ∙-uniqueˡ x≔e∙x ∙-idˡ | 0∙-minˡ e≔y∙y' = ∙-unique x≔y∙z ∙-idˡ
∙²-computeʳ : ∀ x y → Dec (∃[ z ] (x ≔ y ∙² z))
∙²-computeʳ (lx , rx) (ly , ry) with ∙-computeʳ lx ly | ∙-computeʳ rx ry
∙²-computeʳ (lx , rx) (ly , ry) | yes (_ , p) | yes (_ , q) = yes (_ , p , q)
∙²-computeʳ (lx , rx) (ly , ry) | yes p | no ¬q = no λ {(_ , _ , r) → ¬q (_ , r)}
∙²-computeʳ (lx , rx) (ly , ry) | no ¬p | _ = no λ {(_ , l , _) → ¬p (_ , l)}
∙²-unique : ∀ {x x' y z} → x' ≔ y ∙² z → x ≔ y ∙² z → x' ≡ x
∙²-unique {x = _ , _} {x' = _ , _} (ll , rl) (lr , rr)
rewrite ∙-unique ll lr | ∙-unique rl rr = refl
∙²-uniqueˡ : ∀ {x y y' z} → x ≔ y' ∙² z → x ≔ y ∙² z → y' ≡ y
∙²-uniqueˡ {y = _ , _} {y' = _ , _} (ll , lr) (rl , rr)
rewrite ∙-uniqueˡ ll rl | ∙-uniqueˡ lr rr = refl
∙²-idˡ : ∀ {x} → x ≔ (0∙ , 0∙) ∙² x
∙²-idˡ = ∙-idˡ , ∙-idˡ
∙²-comm : ∀ {x y z} → x ≔ y ∙² z → x ≔ z ∙² y
∙²-comm (lx , rx) = ∙-comm lx , ∙-comm rx
∙²-idʳ : ∀ {x} → x ≔ x ∙² (0∙ , 0∙)
∙²-idʳ = ∙²-comm ∙²-idˡ
∙²-assoc : ∀ {x y z u v} → x ≔ y ∙² z → y ≔ u ∙² v → ∃[ w ] (x ≔ u ∙² w × w ≔ v ∙² z)
∙²-assoc (lx , rx) (ly , ry) with ∙-assoc lx ly | ∙-assoc rx ry
∙²-assoc (lx , rx) (ly , ry) | _ , ll , rl | _ , lr , rr = _ , ((ll , lr) , (rl , rr))
∙²-assoc⁻¹ : ∀ {x y z u v} → x ≔ y ∙² z → z ≔ u ∙² v → ∃[ ; ] (x ≔ ; ∙² v × ; ≔ y ∙² u)
∙²-assoc⁻¹ a b = let _ , a' , b' = ∙²-assoc (∙²-comm a) (∙²-comm b) in _ , ∙²-comm a' , ∙²-comm b'
∙²-mut-cancel : ∀ {x y y' z} → x ≔ y ∙² z → z ≔ y' ∙² x → x ≡ z
∙²-mut-cancel {_ , _} (lx , rx) (ly , ry) rewrite ∙-mut-cancel lx ly | ∙-mut-cancel rx ry = refl
record Algebras : Set₁ where
field
Idx : Set
∃Idx : Idx
Usage : Idx → Set
UsageAlgebra : ∀ idx → Algebra (Usage idx)
infixl 40 _-,_
pattern _-,_ xs x = _∷_ x xs
module _ {idx : Idx} where
open Algebra (UsageAlgebra idx) public
| 32.428571
| 118
| 0.476016
|
1b67f79d584854eb6ec06aee32d6220b67abf47c
| 386
|
agda
|
Agda
|
test/Succeed/Issue1550.agda
|
zliu41/agda
|
73405f70bced057d24dd4bf122d53f9548544aba
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue1550.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue1550.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2015-08-27 Allow rewrite rules for symbols defined in other file
{-# OPTIONS --rewriting --local-confluence-check #-}
open import Common.Nat
open import Common.Equality
{-# BUILTIN REWRITE _≡_ #-}
x+0 : ∀ x → x + 0 ≡ x
x+0 zero = refl
x+0 (suc x) rewrite x+0 x = refl
{-# REWRITE x+0 #-} -- adding rewrite rule for + is ok
x+0+0 : ∀{x} → (x + 0) + 0 ≡ x
x+0+0 = refl
| 21.444444
| 76
| 0.619171
|
3fdd37d56fa097e5721bf61ad466514b9b1b239f
| 803
|
agda
|
Agda
|
prototyping/Examples/Type.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | 1
|
2022-03-18T04:10:20.000Z
|
2022-03-18T04:10:20.000Z
|
prototyping/Examples/Type.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
prototyping/Examples/Type.agda
|
JohnnyMorganz/luau
|
f2191b9e4da6a4bb2d9d344ebd7941ec2f00844b
|
[
"MIT"
] | null | null | null |
module Examples.Type where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.String using (_++_)
open import Luau.Type using (nil; _∪_; _∩_; _⇒_)
open import Luau.Type.ToString using (typeToString)
ex1 : typeToString(nil) ≡ "nil"
ex1 = refl
ex2 : typeToString(nil ⇒ nil) ≡ "(nil) -> nil"
ex2 = refl
ex3 : typeToString(nil ⇒ (nil ⇒ nil)) ≡ "(nil) -> (nil) -> nil"
ex3 = refl
ex4 : typeToString(nil ∪ (nil ⇒ (nil ⇒ nil))) ≡ "((nil) -> (nil) -> nil)?"
ex4 = refl
ex5 : typeToString(nil ⇒ ((nil ⇒ nil) ∪ nil)) ≡ "(nil) -> ((nil) -> nil)?"
ex5 = refl
ex6 : typeToString((nil ⇒ nil) ∪ (nil ⇒ (nil ⇒ nil))) ≡ "((nil) -> nil | (nil) -> (nil) -> nil)"
ex6 = refl
ex7 : typeToString((nil ⇒ nil) ∪ ((nil ⇒ (nil ⇒ nil)) ∪ nil)) ≡ "((nil) -> nil | (nil) -> (nil) -> nil)?"
ex7 = refl
| 27.689655
| 105
| 0.576588
|
141081047b2e566d741bb4c96cda4c9d6ff0760c
| 504
|
agda
|
Agda
|
agda/examples-that-run/xxx/src-agda/xxx.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | 36
|
2015-01-29T14:37:15.000Z
|
2021-07-30T06:55:03.000Z
|
agda/examples-that-run/xxx/src-agda/xxx.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | null | null | null |
agda/examples-that-run/xxx/src-agda/xxx.agda
|
haroldcarr/learn-haskell-coq-ml-etc
|
3dc7abca7ad868316bb08f31c77fbba0d3910225
|
[
"Unlicense"
] | 8
|
2015-04-13T21:40:15.000Z
|
2021-09-21T15:58:10.000Z
|
module xxx where
open import Agda.Builtin.Unit using (⊤)
open import IO as IO hiding (_>>=_; _>>_)
import IO.Primitive as Primitive
open import hcio as HCIO
main : Primitive.IO ⊤
main = run do
IO.putStrLn "enter file name:"
f ← HCIO.getLine
IO.putStrLn "enter file contents"
c ← HCIO.getLine
IO.writeFile f c
c' ← IO.readFiniteFile f
IO.putStrLn c'
std ← IO.readFiniteFile "spacetrack-data-2021-05-31.txt"
IO.putStrLn std
IO.putStrLn "Bye"
| 21
| 58
| 0.650794
|
14c4b02a1d159e73fad1d18d11421a61eb02f604
| 875
|
agda
|
Agda
|
test/Succeed/Issue175b.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Succeed/Issue175b.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/Succeed/Issue175b.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
module Issue175b where
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
data Bool : Set where
true : Bool
false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
postulate ℝ : Set
{-# BUILTIN FLOAT ℝ #-}
primitive
-- ℝ functions
primFloatMinus : ℝ -> ℝ -> ℝ
primFloatNumericalLess : ℝ -> ℝ -> Bool
_<_ : ℝ -> ℝ -> Bool
a < b = primFloatNumericalLess a b
data _≤_ : ℝ -> ℝ -> Set where
≤_ : {x y : ℝ} -> (x < y) ≡ true -> x ≤ y
--absolute value
[|_|] : ℝ -> ℝ
[| a |] with (a < 0.0)
[| a |] | true = primFloatMinus 0.0 a
[| a |] | false = a
--error variable
ε : ℝ
ε = 1.0e-5
-- two floating point numbers can be said to be equal if their
-- difference is less than the given error variable
postulate
reflℝ : {a b : ℝ} -> [| primFloatMinus a b |] ≤ ε -> a ≡ b
test : 1.0 ≡ 1.0000001
test = reflℝ (≤ refl)
| 19.444444
| 62
| 0.576
|
d1b49b7dde0c2e2908c1430c819d52bc0fca3e27
| 2,094
|
agda
|
Agda
|
Obsolete/Wow-FV-zh/Wow-It-is-FV.agda
|
ice1000/Books
|
a875d10f9a25d28e8e4f77e6ca32625a1e389227
|
[
"MIT"
] | 133
|
2018-10-08T16:02:07.000Z
|
2022-01-05T10:37:03.000Z
|
Wow-FV-zh/Wow-It-is-FV.agda
|
ice1000/Books
|
a875d10f9a25d28e8e4f77e6ca32625a1e389227
|
[
"MIT"
] | 3
|
2018-10-09T22:48:45.000Z
|
2018-10-16T19:29:15.000Z
|
Wow-FV-zh/Wow-It-is-FV.agda
|
ice1000/Books
|
a875d10f9a25d28e8e4f77e6ca32625a1e389227
|
[
"MIT"
] | 7
|
2018-10-09T03:41:20.000Z
|
2021-09-24T16:49:13.000Z
|
{-# OPTIONS --without-K #-}
module Wow-It-is-FV where
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Primitive
levelEq : lzero ≡ lzero
levelEq = refl
levelEq′ : lsuc lzero ≡ lsuc lzero
levelEq′ = refl
trans : {l : Level} {Q : Set l} {a b c : Q}
→ a ≡ b → b ≡ c → a ≡ c
trans refl refl = refl
J : {A : Set} (P : (x y : A) → x ≡ y → Set)
→ ((x : A) → P x x refl)
→ (x y : A) (xy : x ≡ y) → P x y xy
J P p x .x refl = p x
cong : {A B : Set} (f : A → B)
→ {m n : A} → m ≡ n → f m ≡ f n
cong f refl = refl
sym : {A : Set} {m n : A} → m ≡ n → n ≡ m
sym refl = refl
theorem : suc zero + suc zero ≡ _
theorem = refl
theorem′ : 1 + 1 ≡ 2
theorem′ = refl
trivialEq : {a : _} {A : Set a} → A ≡ A
trivialEq = refl
trivialEq′ : ∀ {a} {A : Set a} → A ≡ A
trivialEq′ = refl
trivialEq′′ : ∀ a b → a + b ≡ a + b
trivialEq′′ a b = refl
trans′ : ∀ {a} {A : Set a} (a b c : A)
→ a ≡ b → b ≡ c → a ≡ c
trans′ a .a c refl bc = bc
data _<=_ : (a b : Nat) → Set where
0ltn : ∀ {n} → 0 <= n
nltm : ∀ {n m} → n <= m → suc n <= suc m
7lt13 : 7 <= 13
7lt13 = nltm (nltm (nltm (nltm (nltm (nltm (nltm 0ltn))))))
abc : ∀ {a b c} → a <= b → b <= c → a <= c
abc 0ltn bc = 0ltn
abc (nltm ab) (nltm bc) = nltm (abc ab bc)
data ⊥ : Set where
ridiculous : ⊥ → ⊥
ridiculous a = a
ridiculous′ : 1 ≡ 0 → ⊥
ridiculous′ ()
⊥-elim : ∀ {a} {A : Set a} → ⊥ → A
⊥-elim ()
4lt3 : 4 <= 3 → ⊥
4lt3 (nltm (nltm (nltm ())))
infix 3 ¬_
¬_ : ∀ {a} → Set a → Set a
¬ P = P → ⊥
_!=_ : ∀ {a} {A : Set a} → A → A → Set a
x != y = ¬ x ≡ y
_≡⟨_⟩_ : ∀ {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z
_ ≡⟨ refl ⟩ c = c
_QED : ∀ {A : Set} (x : A) → x ≡ x
_ QED = refl
lemma₀ : ∀ n → n + 0 ≡ n
lemma₀ zero = refl
lemma₀ (suc n) = cong suc (lemma₀ n)
lemma₁ : ∀ n m → suc (n + m) ≡ n + suc m
lemma₁ zero _ = refl
lemma₁ (suc n) m = cong suc (lemma₁ n m)
comm : ∀ n m → n + m ≡ m + n
comm zero n = sym (lemma₀ n)
comm (suc n) m = suc n + m
≡⟨ refl ⟩ suc (n + m)
≡⟨ cong suc (comm n m) ⟩ suc (m + n)
≡⟨ lemma₁ m n ⟩ m + suc n QED
infixr 2 _≡⟨_⟩_
infix 3 _QED
| 20.134615
| 62
| 0.492359
|
34126154aff085ee8d6fc4a66e5164b58dfa22ac
| 3,798
|
agda
|
Agda
|
homotopy/SuspSmash.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
homotopy/SuspSmash.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
homotopy/SuspSmash.agda
|
danbornside/HoTT-Agda
|
1695a7f3dc60177457855ae846bbd86fcd96983e
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import HoTT
open import lib.cubical.elims.CofWedge
open import lib.cubical.elims.SuspSmash
{- Σ(X∧Y) ≃ X * Y -}
module homotopy.SuspSmash {i j} (X : Ptd i) (Y : Ptd j) where
private
{- path lemmas -}
private
reduce-x : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y)
→ p ∙ ! q ∙ q ∙ ! p ∙ p == p
reduce-x idp idp = idp
reduce-y : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : x == z)
→ p ∙ ! p ∙ q ∙ ! q ∙ p == p
reduce-y idp idp = idp
module Into = SuspensionRec (Smash X Y)
{C = fst (X ⊙* Y)}
(left (snd X))
(right (snd Y))
(cof-wedge-path-rec
(glue (snd X , snd Y))
(λ {(x , y) →
glue (snd X , snd Y) ∙ ! (glue (x , snd Y))
∙ glue (x , y)
∙ ! (glue (snd X , y)) ∙ glue (snd X , snd Y)})
(λ x → ! (reduce-x (glue (snd X , snd Y)) (glue (x , snd Y))))
(λ y → ! (reduce-y (glue (snd X , snd Y)) (glue (snd X , y)))))
into = Into.f
module Out = PushoutRec {d = ⊙span-out (*-⊙span X Y)}
{D = Suspension (Smash X Y)}
(λ _ → north _)
(λ _ → south _)
(λ {(x , y) → merid _ (cfcod _ (x , y))})
out = Out.f
into-out : (j : fst (X ⊙* Y)) → into (out j) == j
into-out = Pushout-elim
(λ x → glue (snd X , snd Y) ∙ ! (glue (x , snd Y)))
(λ y → ! (glue (snd X , snd Y)) ∙ glue (snd X , y))
(↓-∘=idf-from-square into out ∘ λ {(x , y) →
(ap (ap into) (Out.glue-β (x , y))
∙ Into.glue-β (cfcod _ (x , y)))
∙v⊡ lemma (glue (snd X , snd Y)) (glue (x , snd Y))
(glue (snd X , y)) (glue (x , y))})
where
lemma : ∀ {i} {A : Type i} {x y z w : A}
(p : x == y) (q : z == y) (r : x == w) (s : z == w)
→ Square (p ∙ ! q) (p ∙ ! q ∙ s ∙ ! r ∙ p) s (! p ∙ r)
lemma idp idp idp s =
vert-degen-square (∙-unit-r s)
out-into : (σ : Suspension (Smash X Y)) → out (into σ) == σ
out-into = susp-smash-path-elim (out ∘ into) (idf _)
idp
idp
(λ {(x , y) → vert-degen-square $
ap-∘ out into (merid _ (cfcod _ (x , y)))
∙ ap (ap out) (Into.glue-β (cfcod _ (x , y)))
∙ lemma₁ out (Out.glue-β (snd X , snd Y))
(Out.glue-β (x , snd Y))
(Out.glue-β (x , y))
(Out.glue-β (snd X , y))
(Out.glue-β (snd X , snd Y))
∙ lemma₂ {p = merid _ (cfcod _ (snd X , snd Y))}
{q = merid _ (cfcod _ (x , snd Y))}
{r = merid _ (cfcod _ (x , y))}
{s = merid _ (cfcod _ (snd X , y))}
{t = merid _ (cfcod _ (snd X , snd Y))}
(ap (merid _) (! (cfglue _ (winl (snd X))) ∙ cfglue _ (winl x)))
(ap (merid _) (! (cfglue _ (winr y)) ∙ cfglue _ (winr (snd Y))))
∙ ! (ap-idf (merid _ (cfcod _ (x , y))))})
where
lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{x y z u v w : A}
{p : x == y} {q : z == y} {r : z == u} {s : v == u} {t : v == w}
{p' : f x == f y} {q' : f z == f y} {r' : f z == f u}
{s' : f v == f u} {t' : f v == f w}
(α : ap f p == p') (β : ap f q == q') (γ : ap f r == r')
(δ : ap f s == s') (ε : ap f t == t')
→ ap f (p ∙ ! q ∙ r ∙ ! s ∙ t) == p' ∙ ! q' ∙ r' ∙ ! s' ∙ t'
lemma₁ f {p = idp} {q = idp} {r = idp} {s = idp} {t = idp}
idp idp idp idp idp
= idp
lemma₂ : ∀ {i} {A : Type i} {x y z u : A}
{p q : x == y} {r : x == z} {s t : u == z}
(α : p == q) (β : s == t)
→ p ∙ ! q ∙ r ∙ ! s ∙ t == r
lemma₂ {p = idp} {r = idp} {s = idp} idp idp = idp
module SuspSmash where
eq : Suspension (Smash X Y) ≃ fst (X ⊙* Y)
eq = equiv into out into-out out-into
path : Suspension (Smash X Y) == fst (X ⊙* Y)
path = ua eq
⊙path : ⊙Susp (⊙Smash X Y) == X ⊙* Y
⊙path = ⊙ua eq idp
| 33.910714
| 74
| 0.418641
|
cc65a4438b8f93ef3392d01f5d356ff5ff42d22c
| 1,501
|
agda
|
Agda
|
legacy/LinkedList.agda
|
banacorn/numeral
|
aae093cc9bf21f11064e7f7b12049448cd6449f1
|
[
"MIT"
] | 1
|
2015-04-23T15:58:28.000Z
|
2015-04-23T15:58:28.000Z
|
legacy/LinkedList.agda
|
banacorn/numeral
|
aae093cc9bf21f11064e7f7b12049448cd6449f1
|
[
"MIT"
] | null | null | null |
legacy/LinkedList.agda
|
banacorn/numeral
|
aae093cc9bf21f11064e7f7b12049448cd6449f1
|
[
"MIT"
] | 1
|
2015-05-30T05:50:50.000Z
|
2015-05-30T05:50:50.000Z
|
module LinkedList where
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥)
open import Data.Nat
import Data.Fin as Fin
open import Data.Fin
using (Fin)
renaming (zero to Fzero; suc to Fsuc)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; cong)
open import Relation.Nullary using (¬_)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Decidable using (False)
data LinkedList (A : Set) : Set where
[] : LinkedList A
_∷_ : A → LinkedList A → LinkedList A
--------------------------------------------------------------------------------
-- to ℕ
⟦_⟧ : ∀ {A} → LinkedList A → ℕ
⟦ [] ⟧ = zero
⟦ x ∷ xs ⟧ = suc ⟦ xs ⟧
--------------------------------------------------------------------------------
-- predicates
null : ∀ {A} → LinkedList A → Set
null [] = ⊤
null (_ ∷ _) = ⊥
null? : ∀ {A} → (xs : LinkedList A) → Dec (null xs)
null? [] = yes tt
null? (x ∷ xs) = no (λ z → z)
--------------------------------------------------------------------------------
-- operations
incr : ∀ {A} → A → LinkedList A → LinkedList A
incr = _∷_
decr : ∀ {A} → (xs : LinkedList A) → False (null? xs) → LinkedList A
decr [] ()
decr (x ∷ xs) p = xs
_++_ : ∀ {A} → LinkedList A → LinkedList A → LinkedList A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
elemAt : ∀ {A} → (xs : LinkedList A) → Fin ⟦ xs ⟧ → A
elemAt [] ()
elemAt (x ∷ xs) Fzero = x
elemAt (x ∷ xs) (Fsuc i) = elemAt xs i
| 26.333333
| 80
| 0.49034
|
14cf5d1e6e264b23875099253cc44e915cabfef1
| 3,002
|
agda
|
Agda
|
theorems/cohomology/LongExactSequence.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
theorems/cohomology/LongExactSequence.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
theorems/cohomology/LongExactSequence.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import groups.ExactSequence
open import groups.HomSequence
open import homotopy.CofiberSequence
module cohomology.LongExactSequence {i} (CT : CohomologyTheory i)
{X Y : Ptd i} (n : ℤ) (f : X ⊙→ Y) where
open CohomologyTheory CT
open import cohomology.PtdMapSequence CT
co∂ : C n X →ᴳ C (succ n) (⊙Cofiber f)
co∂ = record {f = CEl-fmap (succ n) ⊙extract-glue ∘ GroupIso.g (C-Susp n X); pres-comp = lemma} where
abstract lemma = ∘ᴳ-pres-comp (C-fmap (succ n) ⊙extract-glue) (GroupIso.g-hom (C-Susp n X))
⊙∂-before-Susp : ⊙Cofiber f ⊙→ ⊙Susp (de⊙ X)
⊙∂-before-Susp = ⊙extract-glue
∂-before-Susp : Cofiber (fst f) → Susp (de⊙ X)
∂-before-Susp = extract-glue
abstract
∂-before-Susp-glue-β : ∀ x →
ap ∂-before-Susp (cfglue x) == merid x
∂-before-Susp-glue-β = ExtractGlue.glue-β
C-cofiber-seq : HomSequence (C n Y) (C (succ n) X)
C-cofiber-seq =
C n Y →⟨ C-fmap n f ⟩ᴳ
C n X →⟨ co∂ ⟩ᴳ
C (succ n) (⊙Cofiber f) →⟨ C-fmap (succ n) (⊙cfcod' f) ⟩ᴳ
C (succ n) Y →⟨ C-fmap (succ n) f ⟩ᴳ
C (succ n) X ⊣|ᴳ
private
C-iterated-cofiber-seq = C-seq (succ n) (iterated-cofiber-seq f)
C-iterated-cofiber-seq-is-exact : is-exact-seq C-iterated-cofiber-seq
C-iterated-cofiber-seq-is-exact =
C-exact (succ n) (⊙cfcod²' f) , C-exact (succ n) (⊙cfcod' f) , C-exact (succ n) f , lift tt
-- An intermediate sequence for proving exactness of [C-cofiber-seq].
C-cofiber-seq' = C-seq (succ n) (cyclic-cofiber-seq f)
C-cofiber-seq'-is-exact : is-exact-seq C-cofiber-seq'
C-cofiber-seq'-is-exact =
seq-equiv-preserves'-exact
(C-seq-emap (succ n) (iterated-equiv-cyclic f))
C-iterated-cofiber-seq-is-exact
-- Now the final sequence
C-cofiber-seq'-to-C-cofiber-seq :
HomSeqMap C-cofiber-seq' C-cofiber-seq
(GroupIso.f-hom (C-Susp n Y)) (idhom _)
C-cofiber-seq'-to-C-cofiber-seq =
GroupIso.f-hom (C-Susp n Y) ↓⟨ C-Susp-fmap n f ⟩ᴳ
GroupIso.f-hom (C-Susp n X) ↓⟨ comm-sqrᴳ (λ x → ap (CEl-fmap (succ n) ⊙extract-glue) (! $ GroupIso.g-f (C-Susp n X) x)) ⟩ᴳ
idhom _ ↓⟨ comm-sqrᴳ (λ _ → idp) ⟩ᴳ
idhom _ ↓⟨ comm-sqrᴳ (λ _ → idp) ⟩ᴳ
idhom _ ↓|ᴳ
C-cofiber-seq'-equiv-C-cofiber-seq :
HomSeqEquiv C-cofiber-seq' C-cofiber-seq
(GroupIso.f-hom (C-Susp n Y)) (idhom _)
C-cofiber-seq'-equiv-C-cofiber-seq =
C-cofiber-seq'-to-C-cofiber-seq ,
(GroupIso.f-is-equiv (C-Susp n Y) , GroupIso.f-is-equiv (C-Susp n X) , idf-is-equiv _ , idf-is-equiv _ , idf-is-equiv _)
abstract
C-cofiber-seq-is-exact : is-exact-seq C-cofiber-seq
C-cofiber-seq-is-exact = seq-equiv-preserves-exact
C-cofiber-seq'-equiv-C-cofiber-seq C-cofiber-seq'-is-exact
C-cofiber-exact-seq : ExactSequence (C n Y) (C (succ n) X)
C-cofiber-exact-seq = C-cofiber-seq , C-cofiber-seq-is-exact
| 38
| 126
| 0.613924
|
193575727fdad34b4b2885adb10305a1a8334162
| 1,313
|
agda
|
Agda
|
Experiment/ListConstruction.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | 3
|
2020-04-07T17:49:42.000Z
|
2020-04-21T00:03:43.000Z
|
Experiment/ListConstruction.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | null | null | null |
Experiment/ListConstruction.agda
|
rei1024/agda-misc
|
37200ea91d34a6603d395d8ac81294068303f577
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Experiment.ListConstruction where
open import Level renaming (zero to lzero; suc to lsuc)
data ⊥ : Set where
record ⊤ : Set where
constructor tt
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
module Inductive where
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
data Bool : Set where
true false : Bool
record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
fst : A
snd : B fst
∃ : ∀ {a b} {A : Set a} (B : A → Set b) → Set (a ⊔ b)
∃ {a} {b} {A} B = Σ A B
if : ∀ {p} {P : Bool → Set p} → ∀ b → P true → P false → P b
if true t e = t
if false t e = e
_⊎_ : (A B : Set) → Set
A ⊎ B = ∃ λ b → if b A B
inj₁ : {A B : Set} → A → A ⊎ B
inj₁ x = true , x
inj₂ : {A B : Set} → B → A ⊎ B
inj₂ x = false , x
⊎-elim : ∀ {p} {A B : Set} {P : A ⊎ B → Set p} →
(∀ x → P (inj₁ x)) → (∀ y → P (inj₂ y)) → ∀ s → P s
⊎-elim x y (true , snd) = x snd
⊎-elim x y (false , snd) = y snd
_×_ : (A B : Set) → Set
A × B = ∀ b → if b A B
proj₁ : {A B : Set} → A × B → A
proj₁ x = x true
proj₂ : {A B : Set} → A × B → B
proj₂ x = x false
Fin : ℕ → Set
Fin zero = ⊥
Fin (suc n) = ⊤ ⊎ Fin n
Vec : Set → ℕ → Set
Vec A n = Fin n → A
module VecList where
List : Set → Set
List A = ∃ λ n → Vec A n
| 18.757143
| 62
| 0.504189
|
1356adc24632fa66bdc30fd91e6f1c13f5fa65be
| 803
|
agda
|
Agda
|
archive/agda-3/src/Oscar/Class/Quadricity.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
archive/agda-3/src/Oscar/Class/Quadricity.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | 1
|
2019-04-29T00:35:04.000Z
|
2019-05-11T23:33:04.000Z
|
archive/agda-3/src/Oscar/Class/Quadricity.agda
|
m0davis/oscar
|
52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb
|
[
"RSA-MD"
] | null | null | null |
open import Oscar.Prelude
open import Oscar.Class
module Oscar.Class.Quadricity where
module Quadricity
{𝔞} {𝔄 : Ø 𝔞}
{𝔟} {𝔅 : Ø 𝔟}
{ℓ} (_↦_ : 𝔅 → 𝔅 → Ø ℓ) (let infix 4 _↦_; _↦_ = _↦_)
(_∧_ : 𝔅 → 𝔅 → 𝔅) (let infixr 15 _∧_; _∧_ = _∧_)
(_∼_ : 𝔄 → 𝔄 → 𝔅) (let infix 18 _∼_; _∼_ = _∼_)
(_⊛_ : 𝔄 → 𝔄 → 𝔄)
= ℭLASS (_↦_ , _∼_ , _∧_ , _⊛_) (∀ s1 s2 t1 t2 → s1 ⊛ s2 ∼ t1 ⊛ t2 ↦ s1 ∼ t1 ∧ s2 ∼ t2)
module _
{𝔞} {𝔄 : Ø 𝔞}
{𝔟} {𝔅 : Ø 𝔟}
{ℓ} {_↦_ : 𝔅 → 𝔅 → Ø ℓ}
{_∧_ : 𝔅 → 𝔅 → 𝔅}
{_∼_ : 𝔄 → 𝔄 → 𝔅}
{_⊛_ : 𝔄 → 𝔄 → 𝔄}
where
quadricity = Quadricity.method _↦_ _∧_ _∼_ _⊛_
open import Oscar.Class.Properthing
open import Oscar.Class.HasEquivalence
module Properfact1
{𝔞} {𝔄 : Ø 𝔞} {𝔟} {𝔅 : Ø 𝔟} (∼ : 𝔄 → 𝔄 → 𝔅) {ℓ} ⦃ _ : Properthing ℓ 𝔅 ⦄ (⊛ : 𝔄 → 𝔄 → 𝔄)
= Quadricity _≈_ _∧_ ∼ ⊛
| 25.09375
| 89
| 0.504359
|
4373c719edc7bb6c4879305ad5bc06260045f169
| 1,834
|
agda
|
Agda
|
Numeral/Integer/Oper.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | 6
|
2020-04-07T17:58:13.000Z
|
2022-02-05T06:53:22.000Z
|
Numeral/Integer/Oper.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
Numeral/Integer/Oper.agda
|
Lolirofle/stuff-in-agda
|
70f4fba849f2fd779c5aaa5af122ccb6a5b271ba
|
[
"MIT"
] | null | null | null |
module Numeral.Integer.Oper where
open import Numeral.Natural as ℕ using (ℕ)
import Numeral.Natural.Oper as ℕ
open import Numeral.Integer
open import Numeral.Integer.Sign
import Numeral.Sign as Sign
import Numeral.Sign.Oper0 as Sign
-- Unclosed total subtraction from natural numbers to integers
_−ₙ_ : ℕ → ℕ → ℤ
x −ₙ ℕ.𝟎 = ℤ.+ₙ x
ℕ.𝟎 −ₙ ℕ.𝐒(x) = ℤ.−𝐒ₙ(x)
ℕ.𝐒(x) −ₙ ℕ.𝐒(y) = x −ₙ y
-- Construction of an integer with the sign and numeral components
signed : (Sign.+|−) → ℕ → ℤ
signed (Sign.➕) (n) = +ₙ n
signed (Sign.➖) (n) = −ₙ n
signed0 : (Sign.+|0|−) → ℕ → ℤ
signed0(Sign.➕) (ℕ.𝐒(n)) = +𝐒ₙ(n)
signed0(Sign.➖) (ℕ.𝐒(n)) = −𝐒ₙ(n)
{-# CATCHALL #-}
signed0(_) (_) = 𝟎
------------------------------------------
-- Unary operations
-- Predecessor
𝐏 : ℤ → ℤ
𝐏(+𝐒ₙ(n)) = +ₙ n
𝐏(𝟎) = −𝐒ₙ(ℕ.𝟎)
𝐏(−𝐒ₙ(n)) = −𝐒ₙ(ℕ.𝐒(n))
-- Successor
𝐒 : ℤ → ℤ
𝐒(+ₙ n) = +ₙ ℕ.𝐒(n)
𝐒(−𝐒ₙ(ℕ.𝟎)) = +ₙ ℕ.𝟎
𝐒(−𝐒ₙ(ℕ.𝐒(n))) = −𝐒ₙ(n)
-- Identity
+_ : ℤ → ℤ
+ n = n
-- Negation
−_ : ℤ → ℤ
− 𝟎 = 𝟎
− (+𝐒ₙ(n)) = −𝐒ₙ(n)
− (−𝐒ₙ(n)) = +𝐒ₙ(n)
-- Absolute value
abs : ℤ → ℤ
abs(+ₙ x) = +ₙ x
abs(−𝐒ₙ x) = +𝐒ₙ x
------------------------------------------
-- Binary operations
infixl 10010 _+_
infixl 10020 _⋅_
-- Addition
_+_ : ℤ → ℤ → ℤ
(+ₙ x) + (+ₙ y) = +ₙ (x ℕ.+ y)
(−𝐒ₙ x) + (−𝐒ₙ y) = −𝐒ₙ(ℕ.𝐒(x ℕ.+ y))
(+ₙ x) + (−𝐒ₙ y) = x −ₙ ℕ.𝐒(y)
(−𝐒ₙ x) + (+ₙ y) = (+ₙ y) + (−𝐒ₙ x)
-- Subtraction
_−_ : ℤ → ℤ → ℤ
x − y = x + (− y)
-- Multiplication
_⋅_ : ℤ → ℤ → ℤ
x ⋅ y = signed0 ((sign0 x) Sign.⨯ (sign0 y)) ((absₙ x) ℕ.⋅ (absₙ y))
-- Distance
_𝄩_ : ℤ → ℤ → ℕ
(+ₙ x) 𝄩 (+ₙ y) = x ℕ.𝄩 y
(−𝐒ₙ x) 𝄩 (−𝐒ₙ y) = x ℕ.𝄩 y
(+ₙ(ℕ.𝟎)) 𝄩 (−𝐒ₙ y) = ℕ.𝐒(y)
(+ₙ(ℕ.𝐒 x)) 𝄩 (−𝐒ₙ y) = ℕ.𝐒((+ₙ x) 𝄩 (−𝐒ₙ y))
(−𝐒ₙ x) 𝄩 (+ₙ(ℕ.𝟎)) = ℕ.𝐒(x)
(−𝐒ₙ x) 𝄩 (+ₙ(ℕ.𝐒 y)) = ℕ.𝐒((−𝐒ₙ x) 𝄩 (+ₙ y))
| 21.325581
| 68
| 0.45747
|
140d2cdfb76a9553f1db7e209b17a85762026c02
| 7,359
|
agda
|
Agda
|
src/Data/Context/Properties.agda
|
Blaisorblade/f-omega-int-agda
|
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
|
[
"MIT"
] | null | null | null |
src/Data/Context/Properties.agda
|
Blaisorblade/f-omega-int-agda
|
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
|
[
"MIT"
] | null | null | null |
src/Data/Context/Properties.agda
|
Blaisorblade/f-omega-int-agda
|
ae20dac2a5e0c18dff2afda4c19954e24d73a24f
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Propierties of abstract typing contexts
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module Data.Context.Properties where
open import Data.Fin using (Fin; zero; suc; lift; raise)
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Product using (_×_; _,_)
open import Data.Vec as Vec using (Vec; []; _∷_)
import Data.Vec.Properties as VecProps
open import Function as Fun using (_∘_; flip)
open import Relation.Binary.PropositionalEquality hiding (subst-∘)
open ≡-Reasoning
open import Relation.Unary using (Pred)
open import Data.Context
open import Data.Context.WellFormed
------------------------------------------------------------------------
-- Properties of abstract contexts and context extensions.
-- Properties of the `map' functions.
module _ {ℓ₁ ℓ₂} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} where
-- pointwise equality is a congruence w.r.t. map and mapExt.
map-cong : ∀ {n} {f g : ∀ {k} → T₁ k → T₂ k} → (∀ {k} → f {k} ≗ g {k}) →
_≗_ {A = Ctx T₁ n} (map f) (map g)
map-cong f≗g [] = refl
map-cong f≗g (_∷_ t Γ) = cong₂ _∷_ (f≗g t) (map-cong f≗g Γ)
mapExt-cong : ∀ {k m n} {f g : ∀ i → T₁ (i + m) → T₂ (i + n)} →
(∀ {i} → f i ≗ g i) →
_≗_ {A = CtxExt T₁ m k} (mapExt {T₂ = T₂} f) (mapExt g)
mapExt-cong f≗g [] = refl
mapExt-cong f≗g (_∷_ {l} t Γ) = cong₂ _∷_ (f≗g {l} t) (mapExt-cong f≗g Γ)
module _ {ℓ} {T : Pred ℕ ℓ} where
-- map and mapExt are functorial.
map-id : ∀ {n} → _≗_ {A = Ctx T n} (map Fun.id) Fun.id
map-id [] = refl
map-id (t ∷ Γ) = cong (t ∷_) (map-id Γ)
mapExt-id : ∀ {m n} → _≗_ {A = CtxExt T m n} (mapExt λ _ t → t) Fun.id
mapExt-id [] = refl
mapExt-id (t ∷ Γ) = cong (t ∷_) (mapExt-id Γ)
module _ {ℓ₁ ℓ₂ ℓ₃} {T₁ : Pred ℕ ℓ₁} {T₂ : Pred ℕ ℓ₂} {T₃ : Pred ℕ ℓ₃} where
map-∘ : ∀ {n} (f : ∀ {k} → T₂ k → T₃ k) (g : ∀ {k} → T₁ k → T₂ k)
(Γ : Ctx T₁ n) → map {T₂ = T₃} (f ∘ g) Γ ≡ map {T₁ = T₂} f (map g Γ)
map-∘ f g [] = refl
map-∘ f g (t ∷ Γ) = cong (_ ∷_) (map-∘ f g Γ)
mapExt-∘ : ∀ {k l m n}
(f : ∀ i → T₂ (i + m) → T₃ (i + n))
(g : ∀ i → T₁ (i + l) → T₂ (i + m)) →
(Γ : CtxExt T₁ l k) →
mapExt {T₂ = T₃} (λ i t → f i (g i t)) Γ ≡
mapExt {T₁ = T₂} f (mapExt g Γ)
mapExt-∘ f g [] = refl
mapExt-∘ f g (t ∷ Γ) = cong (_ ∷_) (mapExt-∘ f g Γ)
-- Lemmas about operations on contexts that require weakening of
-- types.
module WeakenOpsLemmas {ℓ} {T : Pred ℕ ℓ} (extension : Extension T) where
-- The underlyig operations.
open WeakenOps extension
-- Conversion to vector representation commutes with
-- concatenation.
toVec-++ : ∀ {m n} (Δ : CtxExt T m n) (Γ : Ctx T m) →
toVec (Δ ++ Γ) ≡ extToVec Δ (toVec Γ)
toVec-++ [] Γ = refl
toVec-++ (t ∷ Δ) Γ =
cong ((_ ∷_) ∘ Vec.map weaken) (toVec-++ Δ Γ)
-- Lookup commutes with concatenation.
lookup-++ : ∀ {m n} (Δ : CtxExt T m n) (Γ : Ctx T m) x →
lookup (Δ ++ Γ) x ≡ extLookup Δ (toVec Γ) x
lookup-++ Δ Γ x = cong (flip Vec.lookup x) (toVec-++ Δ Γ)
-- We can skip the first element when looking up others.
lookup-suc : ∀ {n} t (Γ : Ctx T n) x →
lookup (t ∷ Γ) (suc x) ≡ weaken (lookup Γ x)
lookup-suc t Γ x = VecProps.lookup-map x weaken (toVec Γ)
extLookup-suc : ∀ {k m n} t (Γ : CtxExt T m n) (ts : Vec (T m) k) x →
extLookup (t ∷ Γ) ts (suc x) ≡ weaken (extLookup Γ ts x)
extLookup-suc t Γ ts x = VecProps.lookup-map x weaken (extToVec Γ ts)
-- We can skip a spliced-in element when looking up others.
lookup-lift : ∀ {k m n} (Γ : CtxExt T m n) t (ts : Vec (T m) k) x →
extLookup Γ ts x ≡ extLookup Γ (t ∷ ts) (lift n suc x)
lookup-lift [] t ts x = refl
lookup-lift (u ∷ Δ) t ts zero = refl
lookup-lift {n = suc n} (u ∷ Δ) t ts (suc x) = begin
extLookup (u ∷ Δ) ts (suc x)
≡⟨ extLookup-suc u Δ ts x ⟩
weaken (extLookup Δ ts x)
≡⟨ cong weaken (lookup-lift Δ t ts x) ⟩
weaken (extLookup Δ (t ∷ ts) (lift n suc x))
≡⟨ sym (extLookup-suc u Δ (t ∷ ts) (lift n suc x)) ⟩
extLookup (u ∷ Δ) (t ∷ ts) (suc (lift n suc x))
∎
-- Lookup in the prefix of a concatenation results in weakening.
lookup-weaken⋆ : ∀ {m} n (Δ : CtxExt T m n) (Γ : Ctx T m) x →
lookup (Δ ++ Γ) (raise n x) ≡ weaken⋆ n (lookup Γ x)
lookup-weaken⋆ zero [] Γ x = refl
lookup-weaken⋆ (suc n) (t ∷ Δ) Γ x = begin
lookup (t ∷ Δ ++ Γ) (suc (raise n x))
≡⟨ VecProps.lookup-map (raise n x) weaken (toVec (Δ ++ Γ)) ⟩
weaken (lookup (Δ ++ Γ) (raise n x))
≡⟨ cong weaken (lookup-weaken⋆ n Δ Γ x) ⟩
weaken (weaken⋆ n (lookup Γ x))
∎
-- Lemmas relating conversions of context extensions to vector
-- representation with conversions of the underling entries.
module ConversionLemmas {T₁ T₂ : ℕ → Set}
(extension₁ : Extension T₁)
(extension₂ : Extension T₂) where
private
module W₁ = WeakenOps extension₁
module W₂ = WeakenOps extension₂
toVec-map : ∀ {n} (f : ∀ {k} → T₁ k → T₂ k) (Γ : Ctx T₁ n) →
(∀ {k} (t : T₁ k) → W₂.weaken (f t) ≡ f (W₁.weaken t)) →
W₂.toVec (map f Γ) ≡ Vec.map f (W₁.toVec Γ)
toVec-map f [] _ = refl
toVec-map f (_∷_ t Γ) hyp = cong₂ _∷_ (hyp t) (begin
Vec.map W₂.weaken (W₂.toVec (map f Γ))
≡⟨ cong (Vec.map W₂.weaken) (toVec-map f Γ hyp) ⟩
(Vec.map W₂.weaken (Vec.map f (W₁.toVec Γ)))
≡⟨ sym (VecProps.map-∘ W₂.weaken f (W₁.toVec Γ)) ⟩
(Vec.map (W₂.weaken ∘ f) (W₁.toVec Γ))
≡⟨ VecProps.map-cong hyp (W₁.toVec Γ) ⟩
(Vec.map (f ∘ W₁.weaken) (W₁.toVec Γ))
≡⟨ VecProps.map-∘ f W₁.weaken (W₁.toVec Γ) ⟩
(Vec.map f (Vec.map W₁.weaken (W₁.toVec Γ)))
∎)
-- Lookup commutes with re-indexing, provided that the reindexing
-- function commutes with weakening.
lookup-map : ∀ {n} (f : ∀ {k} → T₁ k → T₂ k) (Γ : Ctx T₁ n) x →
(∀ {k} (t : T₁ k) → W₂.weaken (f t) ≡ f (W₁.weaken t)) →
W₂.lookup (map f Γ) x ≡ f (W₁.lookup Γ x)
lookup-map f Γ x hyp = begin
W₂.lookup (map f Γ) x
≡⟨ cong (flip Vec.lookup x) (toVec-map f Γ hyp) ⟩
Vec.lookup (Vec.map f (W₁.toVec Γ)) x
≡⟨ VecProps.lookup-map x f (W₁.toVec Γ) ⟩
f (W₁.lookup Γ x)
∎
-- Lemmas about well-formed contexts and context extensions.
module ContextFormationLemmas {t ℓ} {T : Pred ℕ t}
(_⊢_wf : Wf T T ℓ) where
open ContextFormation _⊢_wf
-- Concatenation preserves well-formedness of contexts.
wf-++-wfExt : ∀ {m n} {Δ : CtxExt T m n} {Γ : Ctx T m} →
Γ ⊢ Δ wfExt → Γ wf → Δ ++ Γ wf
wf-++-wfExt [] Γ-wf = Γ-wf
wf-++-wfExt (t-wf ∷ Δ-wfExt) Γ-wf = t-wf ∷ wf-++-wfExt Δ-wfExt Γ-wf
-- Splitting of well-formed contexts.
wf-split : ∀ {m n} {Δ : CtxExt T m n} {Γ : Ctx T m} →
Δ ++ Γ wf → Γ ⊢ Δ wfExt × Γ wf
wf-split {Δ = []} Γ-wf = [] , Γ-wf
wf-split {Δ = t ∷ Δ} (t-wf ∷ Δ++Γ-wf) =
let Δ-wfExt , Γ-wf = wf-split Δ++Γ-wf
in t-wf ∷ Δ-wfExt , Γ-wf
| 37.93299
| 78
| 0.521131
|
0d204bd50d478eca4bc1da84c69c40a419171464
| 7,127
|
agda
|
Agda
|
examples/outdated-and-incorrect/IORef.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/outdated-and-incorrect/IORef.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/outdated-and-incorrect/IORef.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module IORef where
data Unit : Set where
unit : Unit
data Pair (A B : Set) : Set where
pair : A -> B -> Pair A B
fst : {A B : Set} -> Pair A B -> A
fst (pair a b) = a
snd : {A B : Set} -> Pair A B -> B
snd (pair a b) = b
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Fin : Nat -> Set where
fz : {n : Nat} -> Fin (suc n)
fs : {n : Nat} -> Fin n -> Fin (suc n)
infixr 40 _::_
infixl 20 _!_
data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
_::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n)
_!_ : {A : Set}{n : Nat} -> Vec A n -> Fin n -> A
[] ! ()
x :: _ ! fz = x
_ :: xs ! (fs i) = xs ! i
Loc : Nat -> Set
Loc = Fin
-- A universe. IORefs can store data of type el(u), for some u : U
postulate
U : Set
el : U -> Set
-- Shapes tell you what types live on the heap.
Shape : Nat -> Set
Shape n = Vec U n -- Fin n -> U
-- Shapes can grow as you allocate new memory
_||_ : {n : Nat} -> Shape n -> U -> Shape (suc n)
xs || u = u :: xs
infixl 40 _▻_
infixl 60 _[_:=_] _[_]
-- The heap maps locations to elements of the right type.
data Heap : {n : Nat}(s : Shape n) -> Set where
ε : Heap []
_▻_ : {n : Nat}{s : Shape n}{a : U} -> Heap s -> el a -> Heap (s || a)
-- Heap : {n : Nat} -> Shape n -> Set
-- Heap {n} shape = (k : Fin n) -> el (shape ! k)
_[_:=_] : {n : Nat}{s : Shape n} -> Heap s -> (l : Loc n) -> el (s ! l) -> Heap s
ε [ () := _ ]
(h ▻ _) [ fz := x ] = h ▻ x
(h ▻ y) [ fs i := x ] = h [ i := x ] ▻ y
_[_] : {n : Nat}{s : Shape n} -> Heap s -> (l : Loc n) -> el (s ! l)
ε [ () ]
(h ▻ x) [ fz ] = x
(h ▻ _) [ fs i ] = h [ i ]
-- (h [ fz := x ]) fz = x
-- (h [ fz := x ]) (fs i) = h (fs i)
-- (h [ fs i := x ]) fz = h fz
-- _[_:=_] {._}{_ :: s} h (fs i) x (fs j) = _[_:=_] {s = s} (\z -> h (fs z)) i x j
-- Well-scoped, well-typed IORefs
data IO (A : Set) : {n m : Nat} -> Shape n -> Shape m -> Set where
Return : {n : Nat}{s : Shape n} -> A -> IO A s s
WriteIORef : {n m : Nat}{s : Shape n}{t : Shape m} ->
(loc : Loc n) -> el (s ! loc) -> IO A s t -> IO A s t
ReadIORef : {n m : Nat}{s : Shape n}{t : Shape m} ->
(loc : Loc n) -> (el (s ! loc) -> IO A s t) -> IO A s t
NewIORef : {n m : Nat}{s : Shape n}{t : Shape m}{u : U} ->
el u -> IO A (s || u) t -> IO A s t
-- Running IO programs
run : {A : Set} -> {n m : Nat} -> {s : Shape n} -> {t : Shape m}
-> Heap s -> IO A s t -> Pair A (Heap t)
run heap (Return x) = pair x heap
run heap (WriteIORef l x io) = run (heap [ l := x ]) io
run heap (ReadIORef l k) = run heap (k (heap [ l ]))
run heap (NewIORef x k) = run (heap ▻ x) k
infixr 10 _>>=_ _>>_
_>>=_ : {A B : Set}{n₁ n₂ n₃ : Nat}{s₁ : Shape n₁}{s₂ : Shape n₂}{s₃ : Shape n₃} ->
IO A s₁ s₂ -> (A -> IO B s₂ s₃) -> IO B s₁ s₃
Return x >>= f = f x
WriteIORef r x k >>= f = WriteIORef r x (k >>= f)
ReadIORef r k >>= f = ReadIORef r (\x -> k x >>= f)
NewIORef x k >>= f = NewIORef x (k >>= f)
_>>_ : {A B : Set}{n₁ n₂ n₃ : Nat}{s₁ : Shape n₁}{s₂ : Shape n₂}{s₃ : Shape n₃} ->
IO A s₁ s₂ -> IO B s₂ s₃ -> IO B s₁ s₃
a >> b = a >>= \_ -> b
-- The operations without CPS
data IORef : {n : Nat}(s : Shape n) -> U -> Set where
ioRef : {n : Nat}{s : Shape n}(r : Loc n) -> IORef s (s ! r)
return : {A : Set}{n : Nat}{s : Shape n} -> A -> IO A s s
return = Return
writeIORef : {n : Nat}{s : Shape n}{a : U} ->
IORef s a -> el a -> IO Unit s s
writeIORef (ioRef r) x = WriteIORef r x (Return unit)
readIORef : {n : Nat}{s : Shape n}{a : U} -> IORef s a -> IO (el a) s s
readIORef (ioRef r) = ReadIORef r Return
newIORef : {n : Nat}{s : Shape n}{a : U} -> el a -> IO (IORef (s || a) a) s (s || a)
newIORef x = NewIORef x (Return (ioRef fz))
-- Some nice properties
infix 10 _==_ _≡_
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
subst : {A : Set}(P : A -> Set){x y : A} -> x == y -> P y -> P x
subst {A} P refl Px = Px
cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y
cong {A} f refl = refl
trans : {A : Set}{x y z : A} -> x == y -> y == z -> x == z
trans {A} refl p = p
fsteq : {A B : Set}{x y : A}{z w : B} -> pair x z == pair y w -> x == y
fsteq {A}{B} refl = refl
-- Lemmas
update-lookup : {n : Nat}{s : Shape n}(h : Heap s)(r : Loc n)(x : el (s ! r)) ->
h [ r := x ] [ r ] == x
update-lookup ε () _
update-lookup (h ▻ _) fz x = refl
update-lookup (h ▻ _) (fs i) x = update-lookup h i x
update-update : {n : Nat}{s : Shape n}(h : Heap s)(r : Loc n)(x y : el (s ! r)) ->
h [ r := x ] [ r := y ] == h [ r := y ]
update-update ε () _ _
update-update (h ▻ _) fz x y = refl
update-update (h ▻ z) (fs i) x y = cong (\ ∙ -> ∙ ▻ z) (update-update h i x y)
-- Equality of monadic computations
data _≡_ {A : Set}{n m : Nat}{s : Shape n}{t : Shape m}(io₁ io₂ : IO A s t) : Set where
eqIO : ((h : Heap s) -> run h io₁ == run h io₂) -> io₁ ≡ io₂
uneqIO : {A : Set}{n m : Nat}{s : Shape n}{t : Shape m}{io₁ io₂ : IO A s t} ->
io₁ ≡ io₂ -> (h : Heap s) -> run h io₁ == run h io₂
uneqIO (eqIO e) = e
-- Congruence properties
cong->> : {A B : Set}{n₁ n₂ n₃ : Nat}{s₁ : Shape n₁}{s₂ : Shape n₂}{s₃ : Shape n₃}
{io₁₁ io₁₂ : IO A s₁ s₂}{io₂₁ io₂₂ : A -> IO B s₂ s₃} ->
io₁₁ ≡ io₁₂ -> ((x : A) -> io₂₁ x ≡ io₂₂ x) -> io₁₁ >>= io₂₁ ≡ io₁₂ >>= io₂₂
cong->> {A}{B}{s₁ = s₁}{s₂}{s₃}{io₁₁}{io₁₂}{io₂₁}{io₂₂}(eqIO eq₁) eq₂ =
eqIO (prf io₁₁ io₁₂ io₂₁ io₂₂ eq₁ eq₂)
where
prf : {n₁ n₂ n₃ : Nat}{s₁ : Shape n₁}{s₂ : Shape n₂}{s₃ : Shape n₃}
(io₁₁ io₁₂ : IO A s₁ s₂)(io₂₁ io₂₂ : A -> IO B s₂ s₃) ->
((h : Heap s₁) -> run h io₁₁ == run h io₁₂) ->
((x : A) -> io₂₁ x ≡ io₂₂ x) ->
(h : Heap s₁) -> run h (io₁₁ >>= io₂₁) == run h (io₁₂ >>= io₂₂)
prf (Return x) (Return y) k₁ k₂ eq₁ eq₂ h =
subst (\ ∙ -> run h (k₁ ∙) == run h (k₂ y)) x=y (uneqIO (eq₂ y) h)
where
x=y : x == y
x=y = fsteq (eq₁ h)
prf (WriteIORef r₁ x₁ k₁) (Return y) k₂ k₃ eq₁ eq₂ h = ?
-- ... boring proofs
-- Monad laws
-- boring...
-- IO laws
new-read : {n : Nat}{s : Shape n}{a : U}(x : el a) ->
newIORef {s = s} x >>= readIORef ≡
newIORef x >> return x
new-read x = eqIO \h -> refl
write-read : {n : Nat}{s : Shape n}{a : U}(r : IORef s a)(x : el a) ->
writeIORef r x >> readIORef r
≡ writeIORef r x >> return x
write-read (ioRef r) x =
eqIO \h -> cong (\ ∙ -> pair ∙ (h [ r := x ]))
(update-lookup h r x)
write-write : {n : Nat}{s : Shape n}{a : U}(r : IORef s a)(x y : el a) ->
writeIORef r x >> writeIORef r y
≡ writeIORef r y
write-write (ioRef r) x y =
eqIO \h -> cong (\ ∙ -> pair unit ∙) (update-update h r x y)
-- Some separation properties would be nice
| 32.99537
| 89
| 0.459801
|
11113ee846883c17648137c2fd932f5c6276ca6a
| 225
|
agda
|
Agda
|
test/Succeed/Issue2629.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue2629.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue2629.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --exact-split #-}
open import Agda.Builtin.Nat
data IsZero : Nat → Set where
isZero : IsZero 0
test : (n m : Nat) → IsZero n → IsZero m → Nat
test zero zero _ _ = zero
test (suc _) _ () _
test _ (suc _) _ ()
| 18.75
| 46
| 0.617778
|
7c5af67176f88afd8eb1909e2f79eb536e437592
| 1,627
|
agda
|
Agda
|
Relation/Binary/Equivalence/PropTruncated.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Relation/Binary/Equivalence/PropTruncated.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Relation/Binary/Equivalence/PropTruncated.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --cubical --safe --prop #-}
module Relation.Binary.Equivalence.PropTruncated where
open import Prelude
open import Relation.Nullary.Stable
infix 4 _≐_
data _≐_ {a} {A : Type a} (x y : A) : Prop a where
∣_∣ : x ≡ y → x ≐ y
data ∙⊥ : Prop where
private
variable
x y z : A
rerel : ∙⊥ → ⊥
rerel ()
∙refute : x ≐ y → (x ≡ y → ⊥) → ∙⊥
∙refute ∣ x≡y ∣ x≢y with x≢y x≡y
∙refute ∣ x≡y ∣ x≢y | ()
refute : x ≐ y → ¬ (¬ (x ≡ y))
refute x≐y x≢y = rerel (∙refute x≐y x≢y)
unsquash : Stable (x ≡ y) → x ≐ y → x ≡ y
unsquash st x≐y = st (refute x≐y)
∙refl : x ≐ x
∙refl = ∣ refl ∣
∙trans : x ≐ y → y ≐ z → x ≐ z
∙trans ∣ xy ∣ (∣_∣ yz) = ∣_∣ (xy ; yz)
∙sym : x ≐ y → y ≐ x
∙sym (∣_∣ p) = ∣_∣ (sym p)
∙cong : (f : A → B) → x ≐ y → f x ≐ f y
∙cong f ∣ x≡y ∣ = ∣ cong f x≡y ∣
module Reasoning where
infixr 2 ≐˘⟨⟩-syntax ≐⟨∙⟩-syntax
≐˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≐ z → y ≐ x → x ≐ z
≐˘⟨⟩-syntax _ y≡z y≡x = ∙trans (∙sym y≡x) y≡z
syntax ≐˘⟨⟩-syntax x y≡z y≡x = x ≐˘⟨ y≡x ⟩ y≡z
≐⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≐ z → x ≐ y → x ≐ z
≐⟨∙⟩-syntax _ y≡z x≡y = ∙trans x≡y y≡z
syntax ≐⟨∙⟩-syntax x y≡z x≡y = x ≐⟨ x≡y ⟩ y≡z
_≐⟨⟩_ : ∀ (x : A) {y} → x ≐ y → x ≐ y
_ ≐⟨⟩ x≡y = x≡y
infix 2.5 _∎
_∎ : ∀ {A : Type a} (x : A) → x ≐ x
_∎ x = ∙refl
infixr 2 ≡˘⟨⟩-syntax ≡⟨∙⟩-syntax
≡˘⟨⟩-syntax : ∀ (x : A) {y z} → y ≐ z → y ≡ x → x ≐ z
≡˘⟨⟩-syntax _ y≡z y≡x = ∙trans (∣_∣ (sym y≡x)) y≡z
syntax ≡˘⟨⟩-syntax x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
≡⟨∙⟩-syntax : ∀ (x : A) {y z} → y ≐ z → x ≡ y → x ≐ z
≡⟨∙⟩-syntax _ y≡z x≡y = ∙trans ∣ x≡y ∣ y≡z
syntax ≡⟨∙⟩-syntax x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
| 21.693333
| 55
| 0.451752
|
0d476b138830272ac95d524c889a8b74621e8089
| 5,325
|
agda
|
Agda
|
src/Dodo/Binary/Domain.agda
|
sourcedennis/agda-dodo
|
376f0ccee1e1aa31470890e494bcb534324f598a
|
[
"BSD-3-Clause"
] | null | null | null |
src/Dodo/Binary/Domain.agda
|
sourcedennis/agda-dodo
|
376f0ccee1e1aa31470890e494bcb534324f598a
|
[
"BSD-3-Clause"
] | null | null | null |
src/Dodo/Binary/Domain.agda
|
sourcedennis/agda-dodo
|
376f0ccee1e1aa31470890e494bcb534324f598a
|
[
"BSD-3-Clause"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Domain where
-- Stdlib imports
open import Level using (Level; _⊔_)
open import Function.Base using (flip; _∘_)
open import Data.Product using (_×_; _,_; ∃; ∃-syntax; proj₁; proj₂)
open import Data.Sum using (_⊎_; inj₁; inj₂; swap)
open import Relation.Unary using (Pred; _∈_; _∉_)
open import Relation.Binary using (Rel; REL)
-- Local imports
open import Dodo.Unary.Equality
open import Dodo.Unary.Union
open import Dodo.Binary.Equality
open import Dodo.Binary.Composition
-- # Definitions
-- | The domain of the binary relation
dom : ∀ {a b ℓ : Level} {A : Set a} {B : Set b}
→ REL A B ℓ
--------------
→ Pred A (b ⊔ ℓ)
dom R x = ∃[ y ] (R x y)
-- | The co-domain (or range) of the binary relation
--
--
-- # Design decision: Not range
--
-- It is somewhat arbitrary what constitutes the /co-domain/ of a binary relation,
-- and how it differs from its /range/. Usually, the /co-domain/ denotes the set of
-- /possible/ outputs of a function, while the /range/ denotes the set of /actual/
-- outputs. When considering functions, the /domain/ is a set of /independent/ variables,
-- while the /co-domain/ is the set variables that are /dependent/ on the domain.
--
-- However, when considering /relations/ (as opposed to mere functions), this dependency
-- is (usually) absent; Or could be inverted, where the domain "depends on" the codomain.
-- Under such interpretation, distinguishing co-domain from range is rather arbitrary.
codom : ∀ {a b ℓ : Level} {A : Set a} {B : Set b}
→ REL A B ℓ
--------------
→ Pred B (a ⊔ ℓ)
codom R y = ∃[ x ] (R x y)
-- | The domain and co-domain of the binary relation
--
-- Conventionally named after: Union (of) Domain (and) Range
udr : ∀ {a ℓ : Level} {A : Set a}
→ Rel A ℓ
--------------
→ Pred A (a ⊔ ℓ)
udr R = dom R ∪₁ codom R
-- # Operations
-- ## Operations: dom / codom / udr
-- | Weakens an element of a relation's domain to an element of its udr.
--
-- Note that Agda is unable to infer `R` from `x ∈ dom R`.
-- (As `R` may be beta-reduced inside the latter, I think)
dom⇒udr : ∀ {a ℓ : Level} {A : Set a} (R : Rel A ℓ) {x : A} → x ∈ dom R → x ∈ udr R
dom⇒udr _ = inj₁
-- | Weakens an element of a relation's co-domain to an element of its udr.
--
-- Note that Agda is unable to infer `R` from `x ∈ dom R`.
-- (As `R` may be beta-reduced inside the latter, I think)
codom⇒udr : ∀ {a ℓ : Level} {A : Set a} (R : Rel A ℓ) {x : A} → x ∈ codom R → x ∈ udr R
codom⇒udr _ = inj₂
module _ {a b ℓ : Level} {A : Set a} {B : Set b} where
-- | Takes an inhabitant of `R x y` as proof that `x` is in the domain of `R`.
--
-- Note that `R` must be provided /explicitly/, as it may not always be inferred
-- from its applied type.
take-dom : (R : REL A B ℓ) → {x : A} {y : B} → R x y → x ∈ dom R
take-dom R {x} {y} Rxy = (y , Rxy)
-- | Takes an inhabitant of `R x y` as proof that `y` is in the co-domain of `R`.
--
-- Note that `R` must be provided /explicitly/, as it may not always be inferred
-- from its applied type.
take-codom : (R : REL A B ℓ) → {x : A} {y : B} → R x y → y ∈ codom R
take-codom R {x} {y} Rxy = (x , Rxy)
module _ {a ℓ : Level} {A : Set a} where
-- | Takes an inhabitant of `R x y` as proof that `x` is in the udr of `R`.
--
-- Note that `R` must be provided /explicitly/, as it may not always be inferred
-- from its applied type.
take-udrˡ : (R : Rel A ℓ) → {x y : A} → R x y → x ∈ udr R
take-udrˡ R Rxy = dom⇒udr R (take-dom R Rxy)
-- | Takes an inhabitant of `R x y` as proof that `y` is in the udr of `R`.
--
-- Note that `R` must be provided /explicitly/, as it may not always be inferred
-- from its applied type.
take-udrʳ : (R : Rel A ℓ) → {x y : A} → R x y → y ∈ udr R
take-udrʳ R Rxy = codom⇒udr R (take-codom R Rxy)
module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} where
dom-preserves-⊆ : P ⊆₂ Q → dom P ⊆₁ dom Q
dom-preserves-⊆ P⊆Q = ⊆: λ{x (y , Pxy) → (y , un-⊆₂ P⊆Q x y Pxy)}
codom-preserves-⊆ : P ⊆₂ Q → codom P ⊆₁ codom Q
codom-preserves-⊆ P⊆Q = ⊆: λ{y (x , Pxy) → (x , un-⊆₂ P⊆Q x y Pxy)}
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a}
{P : Rel A ℓ₁} {Q : Rel A ℓ₂} where
udr-preserves-⊆ : P ⊆₂ Q → udr P ⊆₁ udr Q
udr-preserves-⊆ P⊆Q = ⊆: lemma
where
lemma : udr P ⊆₁' udr Q
lemma x (inj₁ x∈dom) = dom⇒udr Q (⊆₁-apply (dom-preserves-⊆ P⊆Q) x∈dom)
lemma y (inj₂ y∈codom) = codom⇒udr Q (⊆₁-apply (codom-preserves-⊆ P⊆Q) y∈codom)
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a}
{P : Rel A ℓ₁} {Q : Rel A ℓ₂} where
udr-combine-⨾ : udr (P ⨾ Q) ⊆₁ udr P ∪₁ udr Q
udr-combine-⨾ = ⊆: lemma
where
lemma : udr (P ⨾ Q) ⊆₁' (udr P ∪₁ udr Q)
lemma _ (inj₁ (a , (Pxb ⨾[ b ]⨾ Qba))) = inj₁ (inj₁ (b , Pxb))
lemma _ (inj₂ (a , (Pab ⨾[ b ]⨾ Qbx))) = inj₂ (inj₂ (b , Qbx))
module _ {a ℓ : Level} {A : Set a}
{P : Rel A ℓ} where
udr-flip : udr P ⇔₁ udr (flip P)
udr-flip = ⇔: (λ _ → swap) (λ _ → swap)
dom-flip : dom P ⇔₁ codom (flip P)
dom-flip = ⇔: (λ _ z → z) (λ _ z → z)
codom-flip : codom P ⇔₁ dom (flip P)
codom-flip = ⇔: (λ _ z → z) (λ _ z → z)
| 34.577922
| 90
| 0.575399
|
3fbfedbd76f58be4957ab2978274bdbe5990994a
| 16,338
|
agda
|
Agda
|
Categories/Square.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 98
|
2015-04-15T14:57:33.000Z
|
2022-03-08T05:20:36.000Z
|
Categories/Square.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 19
|
2015-05-23T06:47:10.000Z
|
2019-08-09T16:31:40.000Z
|
Categories/Square.agda
|
copumpkin/categories
|
36f4181d751e2ecb54db219911d8c69afe8ba892
|
[
"BSD-3-Clause"
] | 23
|
2015-02-05T13:03:09.000Z
|
2021-11-11T13:50:56.000Z
|
{-# OPTIONS --universe-polymorphism --irrelevant-projections #-}
module Categories.Square where
open import Level
open import Function renaming (id to idᶠ; _∘_ to _©_)
open import Categories.Support.PropositionalEquality
open import Categories.Category
import Categories.Morphisms as Mor
open import Relation.Binary hiding (_⇒_)
module GlueSquares {o ℓ e} (C : Category o ℓ e) where
private module C = Category C
open C
open Mor C
module Pulls {X Y Z} {a : Y ⇒ Z} {b : X ⇒ Y} {c : X ⇒ Z} (ab≡c : a ∘ b ≡ c) where
.pullʳ : ∀ {W} {f : Z ⇒ W} → (f ∘ a) ∘ b ≡ f ∘ c
pullʳ {f = f} =
begin
(f ∘ a) ∘ b
↓⟨ assoc ⟩
f ∘ (a ∘ b)
↓⟨ ∘-resp-≡ʳ ab≡c ⟩
f ∘ c
∎
where open HomReasoning
.pullˡ : ∀ {W} {f : W ⇒ X} → a ∘ (b ∘ f) ≡ c ∘ f
pullˡ {f = f} =
begin
a ∘ (b ∘ f)
↑⟨ assoc ⟩
(a ∘ b) ∘ f
↓⟨ ∘-resp-≡ˡ ab≡c ⟩
c ∘ f
∎
where open HomReasoning
open Pulls public
module Pushes {X Y Z} {a : Y ⇒ Z} {b : X ⇒ Y} {c : X ⇒ Z} (c≡ab : c ≡ a ∘ b) where
.pushʳ : ∀ {W} {f : Z ⇒ W} → f ∘ c ≡ (f ∘ a) ∘ b
pushʳ {f = f} =
begin
f ∘ c
↓⟨ ∘-resp-≡ʳ c≡ab ⟩
f ∘ (a ∘ b)
↑⟨ assoc ⟩
(f ∘ a) ∘ b
∎
where open HomReasoning
.pushˡ : ∀ {W} {f : W ⇒ X} → c ∘ f ≡ a ∘ (b ∘ f)
pushˡ {f = f} =
begin
c ∘ f
↓⟨ ∘-resp-≡ˡ c≡ab ⟩
(a ∘ b) ∘ f
↓⟨ assoc ⟩
a ∘ (b ∘ f)
∎
where open HomReasoning
open Pushes public
module IntroElim {X} {a : X ⇒ X} (a≡id : a ≡ id) where
.elimʳ : ∀ {W} {f : X ⇒ W} → (f ∘ a) ≡ f
elimʳ {f = f} =
begin
f ∘ a
↓⟨ ∘-resp-≡ʳ a≡id ⟩
f ∘ id
↓⟨ identityʳ ⟩
f
∎
where
open HomReasoning
.introʳ : ∀ {W} {f : X ⇒ W} → f ≡ f ∘ a
introʳ = Equiv.sym elimʳ
.elimˡ : ∀ {W} {f : W ⇒ X} → (a ∘ f) ≡ f
elimˡ {f = f} =
begin
a ∘ f
↓⟨ ∘-resp-≡ˡ a≡id ⟩
id ∘ f
↓⟨ identityˡ ⟩
f
∎
where
open HomReasoning
.introˡ : ∀ {W} {f : W ⇒ X} → f ≡ a ∘ f
introˡ = Equiv.sym elimˡ
open IntroElim public
module Extends {X Y Z W} {f : X ⇒ Y} {g : X ⇒ Z} {h : Y ⇒ W} {i : Z ⇒ W} (s : CommutativeSquare f g h i) where
.extendˡ : ∀ {A} {a : W ⇒ A} → CommutativeSquare f g (a ∘ h) (a ∘ i)
extendˡ {a = a} =
begin
(a ∘ h) ∘ f
↓⟨ pullʳ s ⟩
a ∘ i ∘ g
↑⟨ assoc ⟩
(a ∘ i) ∘ g
∎
where
open HomReasoning
.extendʳ : ∀ {A} {a : A ⇒ X} → CommutativeSquare (f ∘ a) (g ∘ a) h i
extendʳ {a = a} =
begin
h ∘ (f ∘ a)
↓⟨ pullˡ s ⟩
(i ∘ g) ∘ a
↓⟨ assoc ⟩
i ∘ (g ∘ a)
∎
where
open HomReasoning
.extend² : ∀ {A B} {a : W ⇒ A} {b : B ⇒ X} → CommutativeSquare (f ∘ b) (g ∘ b) (a ∘ h) (a ∘ i)
extend² {a = a} {b} =
begin
(a ∘ h) ∘ (f ∘ b)
↓⟨ pullʳ extendʳ ⟩
a ∘ (i ∘ (g ∘ b))
↑⟨ assoc ⟩
(a ∘ i) ∘ (g ∘ b)
∎
where
open HomReasoning
open Extends public
-- essentially composition in the arrow category
.glue : {X Y Y′ Z Z′ W : Obj} {a : Z ⇒ W} {a′ : Y′ ⇒ Z′} {b : Y ⇒ Z} {b′ : X ⇒ Y′} {c : X ⇒ Y} {c′ : Y′ ⇒ Z} {c″ : Z′ ⇒ W} → CommutativeSquare c′ a′ a c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c (a′ ∘ b′) (a ∘ b) c″
glue {a = a} {a′} {b} {b′} {c} {c′} {c″} sq-a sq-b =
begin
(a ∘ b) ∘ c
↓⟨ pullʳ sq-b ⟩
a ∘ (c′ ∘ b′)
↓⟨ pullˡ sq-a ⟩
(c″ ∘ a′) ∘ b′
↓⟨ assoc ⟩
c″ ∘ (a′ ∘ b′)
∎
where
open HomReasoning
.glue◃◽ : {X Y Y′ Z W : Obj} {a : Z ⇒ W} {b : Y ⇒ Z} {b′ : X ⇒ Y′} {c : X ⇒ Y} {c′ : Y′ ⇒ Z} {c″ : Y′ ⇒ W} → a ∘ c′ ≡ c″ → CommutativeSquare c b′ b c′ → CommutativeSquare c b′ (a ∘ b) c″
glue◃◽ {a = a} {b} {b′} {c} {c′} {c″} tri-a sq-b =
begin
(a ∘ b) ∘ c
↓⟨ pullʳ sq-b ⟩
a ∘ (c′ ∘ b′)
↓⟨ pullˡ tri-a ⟩
c″ ∘ b′
∎
where
open HomReasoning
-- essentially composition in the over category
.glueTrianglesʳ : ∀ {X X′ X″ Y} {a : X ⇒ Y} {b : X′ ⇒ X} {a′ : X′ ⇒ Y} {b′ : X″ ⇒ X′} {a″ : X″ ⇒ Y}
→ a ∘ b ≡ a′ → a′ ∘ b′ ≡ a″ → a ∘ (b ∘ b′) ≡ a″
glueTrianglesʳ {a = a} {b} {a′} {b′} {a″} a∘b≡a′ a′∘b′≡a″ =
begin
a ∘ (b ∘ b′)
↓⟨ pullˡ a∘b≡a′ ⟩
a′ ∘ b′
↓⟨ a′∘b′≡a″ ⟩
a″
∎
where open HomReasoning
-- essentially composition in the under category
.glueTrianglesˡ : ∀ {X Y Y′ Y″} {b : X ⇒ Y} {a : Y ⇒ Y′} {b′ : X ⇒ Y′} {a′ : Y′ ⇒ Y″} {b″ : X ⇒ Y″} → a′ ∘ b′ ≡ b″ → a ∘ b ≡ b′ → (a′ ∘ a) ∘ b ≡ b″
glueTrianglesˡ {b = b} {a} {b′} {a′} {b″} a′∘b′≡b″ a∘b≡b′ =
begin
(a′ ∘ a) ∘ b
↓⟨ pullʳ a∘b≡b′ ⟩
a′ ∘ b′
↓⟨ a′∘b′≡b″ ⟩
b″
∎
where open HomReasoning
module Cancellers {Y Y′ : Obj} {h : Y′ ⇒ Y} {i : Y ⇒ Y′} (inv : h ∘ i ≡ id) where
.cancelRight : ∀ {Z} {f : Y ⇒ Z} → (f ∘ h) ∘ i ≡ f
cancelRight {f = f} =
begin
(f ∘ h) ∘ i
↓⟨ pullʳ inv ⟩
f ∘ id
↓⟨ identityʳ ⟩
f
∎
where open HomReasoning
.cancelLeft : ∀ {X} {f : X ⇒ Y} → h ∘ (i ∘ f) ≡ f
cancelLeft {f = f} =
begin
h ∘ (i ∘ f)
↓⟨ pullˡ inv ⟩
id ∘ f
↓⟨ identityˡ ⟩
f
∎
where open HomReasoning
.cancelInner : ∀ {X Z} {f : Y ⇒ Z} {g : X ⇒ Y} → (f ∘ h) ∘ (i ∘ g) ≡ f ∘ g
cancelInner {f = f} {g} =
begin
(f ∘ h) ∘ (i ∘ g)
↓⟨ pullˡ cancelRight ⟩
f ∘ g
∎
where open HomReasoning
open Cancellers public
module Switch {X Y} (i : X ≅ Y) where
open _≅_ i
.switch-fgˡ : ∀ {W} {h : W ⇒ X} {k : W ⇒ Y} → (f ∘ h ≡ k) → (h ≡ g ∘ k)
switch-fgˡ {h = h} {k} pf =
begin
h
↑⟨ cancelLeft isoˡ ⟩
g ∘ (f ∘ h)
↓⟨ ∘-resp-≡ʳ pf ⟩
g ∘ k
∎
where open HomReasoning
.switch-gfˡ : ∀ {W} {h : W ⇒ Y} {k : W ⇒ X} → (g ∘ h ≡ k) → (h ≡ f ∘ k)
switch-gfˡ {h = h} {k} pf =
begin
h
↑⟨ cancelLeft isoʳ ⟩
f ∘ (g ∘ h)
↓⟨ ∘-resp-≡ʳ pf ⟩
f ∘ k
∎
where open HomReasoning
.switch-fgʳ : ∀ {W} {h : Y ⇒ W} {k : X ⇒ W} → (h ∘ f ≡ k) → (h ≡ k ∘ g)
switch-fgʳ {h = h} {k} pf =
begin
h
↑⟨ cancelRight isoʳ ⟩
(h ∘ f) ∘ g
↓⟨ ∘-resp-≡ˡ pf ⟩
k ∘ g
∎
where open HomReasoning
.switch-gfʳ : ∀ {W} {h : X ⇒ W} {k : Y ⇒ W} → (h ∘ g ≡ k) → (h ≡ k ∘ f)
switch-gfʳ {h = h} {k} pf =
begin
h
↑⟨ cancelRight isoˡ ⟩
(h ∘ g) ∘ f
↓⟨ ∘-resp-≡ˡ pf ⟩
k ∘ f
∎
where open HomReasoning
open Switch public
module Yon-Eda {o ℓ e} (C : Category o ℓ e) where
private module C = Category C
open C
open Equiv
record Yon (X Y : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
arr : X ⇒ Y
fun : ∀ {W} (f : W ⇒ X) → (W ⇒ Y)
.ok : ∀ {W} (f : W ⇒ X) → fun f ≡ arr ∘ f
norm : X ⇒ Y
norm = fun id
.norm≡arr : norm ≡ arr
norm≡arr = trans (ok id) identityʳ
record _≡′_ {X Y : Obj} (f g : Yon X Y) : Set (o ⊔ ℓ ⊔ e) where
constructor yeq
field
arr-≡ : Yon.arr f ≡ Yon.arr g
open _≡′_ public using (arr-≡)
module _ {X Y} where
.Yon-refl : Reflexive (_≡′_ {X} {Y})
Yon-refl = yeq refl
.Yon-sym : Symmetric (_≡′_ {X} {Y})
Yon-sym = yeq © sym © arr-≡
.Yon-trans : Transitive (_≡′_ {X} {Y})
Yon-trans eq eq′ = yeq (trans (arr-≡ eq) (arr-≡ eq′))
Yon-id : ∀ {X} → Yon X X
Yon-id = record
{ arr = id
; fun = idᶠ
; ok = λ _ → sym identityˡ
}
Yon-inject : ∀ {X Y} → (X ⇒ Y) → Yon X Y
Yon-inject f = record { arr = f; fun = _∘_ f; ok = λ _ → refl }
Yon-compose : ∀ {X Y Z} → (Yon Y Z) → (Yon X Y) → (Yon X Z)
Yon-compose g f = record
{ arr = g.fun f.arr
; fun = g.fun © f.fun
; ok = λ h → trans (g.ok (f.fun h)) (trans (∘-resp-≡ʳ (f.ok h)) (trans (sym assoc) (sym (∘-resp-≡ˡ (g.ok f.arr)))))
}
where
module g = Yon g
module f = Yon f
.Yon-assoc : ∀ {X Y Z W} (f : Yon Z W) (g : Yon Y Z) (h : Yon X Y) → Yon-compose f (Yon-compose g h) ≣ Yon-compose (Yon-compose f g) h
Yon-assoc f g h = ≣-refl
.Yon-identityˡ : ∀ {X Y} (f : Yon X Y) → Yon-compose Yon-id f ≣ f
Yon-identityˡ f = ≣-refl
.Yon-identityʳ : ∀ {X Y} (f : Yon X Y) → Yon-compose f Yon-id ≡′ f
Yon-identityʳ f = yeq (Yon.norm≡arr f)
.Yon-compose-resp-≡′ : ∀ {X Y Z} {f f′ : Yon Y Z} {g g′ : Yon X Y}
→ f ≡′ f′ → g ≡′ g′
→ Yon-compose f g ≡′ Yon-compose f′ g′
Yon-compose-resp-≡′ {f = f} {f′} {g} {g′} f≡′f′ g≡′g′
= yeq (trans (Yon.ok f (Yon.arr g))
(trans (∘-resp-≡ (arr-≡ f≡′f′) (arr-≡ g≡′g′))
(sym (Yon.ok f′ (Yon.arr g′)))))
record Eda (X Y : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
yon : Yon X Y
fun : ∀ {Z} (f : Yon Y Z) → Yon X Z
.ok : ∀ {Z} (f : Yon Y Z) → fun f ≡′ Yon-compose f yon
norm : Yon X Y
norm = fun Yon-id
open Yon yon public using (arr)
Eda-id : ∀ {X} → Eda X X
Eda-id = record
{ yon = Yon-id
; fun = idᶠ
; ok = yeq © sym © arr-≡ © Yon-identityʳ
}
Eda-inject : ∀ {X Y} → Yon X Y → Eda X Y
Eda-inject f = record { yon = f; fun = flip Yon-compose f; ok = λ _ → yeq refl }
Eda-compose : ∀ {X Y Z} → (Eda Y Z) → (Eda X Y) → (Eda X Z)
Eda-compose {X} {Y} {Z} g f = record
{ yon = f.fun g.yon
; fun = f.fun © g.fun
; ok = λ {W} h → Yon-trans {X} {W} {f.fun (g.fun h)} (f.ok (g.fun h))
(Yon-trans (Yon-compose-resp-≡′ (g.ok h) (Yon-refl {x = f.yon}))
(Yon-sym (Yon-compose-resp-≡′ (Yon-refl {x = h}) (f.ok g.yon))))
}
where
module g = Eda g
module f = Eda f
.Eda-assoc : ∀ {X Y Z W} (f : Eda Z W) (g : Eda Y Z) (h : Eda X Y) → Eda-compose f (Eda-compose g h) ≣ Eda-compose (Eda-compose f g) h
Eda-assoc f g h = ≣-refl
-- .Eda-identityˡ : ∀ {X Y} (f : Eda X Y) → Eda-compose Eda-id f ≣ f
-- Eda-identityˡ f = {!!}
.Eda-identityʳ : ∀ {X Y} (f : Eda X Y) → Eda-compose f Eda-id ≣ f
Eda-identityʳ f = ≣-refl
record NormReasoning {o ℓ e} (C : Category o ℓ e) (o′ ℓ′ : _) : Set (suc o′ ⊔ o ⊔ ℓ ⊔ e ⊔ suc ℓ′) where
private module C = Category C
field
U : Set o′
T : U -> C.Obj
_#⇒_ : U -> U -> Set ℓ′
eval : ∀ {A B} -> A #⇒ B -> T A C.⇒ T B
norm : ∀ {A B} -> A #⇒ B -> T A C.⇒ T B
.norm≡eval : ∀ {A B} (f : A #⇒ B) -> norm f C.≡ eval f
open C.Equiv
open C
infix 4 _IsRelatedTo_
infix 1 begin_
infixr 2 _≈⟨_⟩_ _↓⟨_⟩_ _↑⟨_⟩_ _↓≡⟨_⟩_ _↑≡⟨_⟩_ _↕_
infix 3 _∎
data _IsRelatedTo_ {X Y} (f g : _#⇒_ X Y) : Set e where
relTo : (f∼g : norm f ≡ norm g) → f IsRelatedTo g
.begin_ : ∀ {X Y} {f g : _#⇒_ X Y} → f IsRelatedTo g → eval f ≡ eval g
begin_ {f = f} {g} (relTo f∼g) = trans (sym (norm≡eval f)) (trans f∼g (norm≡eval g))
._↓⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm f ≡ norm g) → g IsRelatedTo h → f IsRelatedTo h
_ ↓⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h)
._↑⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm g ≡ norm f) → g IsRelatedTo h → f IsRelatedTo h
_ ↑⟨ g∼f ⟩ relTo g∼h = relTo (trans (sym g∼f) g∼h)
-- the syntax of the ancients, for compatibility
._≈⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → (norm f ≡ norm g) → g IsRelatedTo h → f IsRelatedTo h
_ ≈⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h)
._↓≡⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → eval f ≡ eval g → g IsRelatedTo h → f IsRelatedTo h
_↓≡⟨_⟩_ f {g} f∼g (relTo g∼h) = relTo (trans (norm≡eval f) (trans f∼g (trans (sym (norm≡eval g)) g∼h)))
._↑≡⟨_⟩_ : ∀ {X Y} (f : _#⇒_ X Y) {g h} → eval g ≡ eval f → g IsRelatedTo h → f IsRelatedTo h
_↑≡⟨_⟩_ f {g} g∼f (relTo g∼h) = relTo (trans (norm≡eval f) (trans (sym g∼f) (trans (sym (norm≡eval g)) g∼h)))
._↕_ : ∀ {X Y} (f : _#⇒_ X Y) {h} → f IsRelatedTo h → f IsRelatedTo h
_ ↕ f∼h = f∼h
._∎ : ∀ {X Y} (f : _#⇒_ X Y) → f IsRelatedTo f
_∎ _ = relTo refl
.by_ : ∀ {X Y} {f g h : X ⇒ Y} -> ((h ≡ h) -> f ≡ g) -> f ≡ g
by eq = eq refl
.computation : ∀ {X Y} (f g : X #⇒ Y) -> norm f ≡ norm g → eval f ≡ eval g
computation f g eq = begin f ↓⟨ eq ⟩ g ∎
module AUReasoning {o ℓ e} (C : Category o ℓ e) where
private module C = Category C
open C
open Equiv
{-
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≈⟨_⟩_
infixr 2 _↓⟨_⟩_
infixr 2 _↑⟨_⟩_
infixr 2 _↓≡⟨_⟩_
infixr 2 _↑≡⟨_⟩_
infixr 2 _↕_
infix 1 begin_
-}
infixr 8 _∙_
open Yon-Eda C public
data Climb : Rel Obj (o ⊔ ℓ) where
ID : ∀ {X} → Climb X X
leaf : ∀ {X Y} → (X ⇒ Y) → Climb X Y
_branch_ : ∀ {X Y Z} (l : Climb Y Z) (r : Climb X Y) → Climb X Z
interp : ∀ {p} (P : Rel Obj p)
(f-id : ∀ {X} → P X X)
(f-leaf : ∀ {X Y} → X ⇒ Y → P X Y)
(f-branch : ∀ {X Y Z} → P Y Z → P X Y → P X Z)
→ ∀ {X Y} → Climb X Y → P X Y
interp P f-id f-leaf f-branch ID = f-id
interp P f-id f-leaf f-branch (leaf y) = f-leaf y
interp P f-id f-leaf f-branch (l branch r) = f-branch
(interp P f-id f-leaf f-branch l)
(interp P f-id f-leaf f-branch r)
eval : ∀ {X Y} → Climb X Y → X ⇒ Y
eval = interp _⇒_ id idᶠ _∘_
yeval : ∀ {X Y} → Climb X Y → Yon X Y
yeval = interp Yon Yon-id Yon-inject Yon-compose
.yarr : ∀ {X Y} → (t : Climb X Y) → Yon.arr (yeval t) ≡ eval t
yarr ID = refl
yarr (leaf y) = refl
yarr (t branch t1) = trans (Yon.ok (yeval t) (Yon.arr (yeval t1))) (∘-resp-≡ (yarr t) (yarr t1))
eeval : ∀ {X Y} → Climb X Y → Eda X Y
eeval = interp Eda Eda-id (Eda-inject © Yon-inject) Eda-compose
.eyon : ∀ {X Y} → (t : Climb X Y) → Eda.yon (eeval t) ≡′ yeval t
eyon ID = Yon-refl
eyon (leaf y) = Yon-refl
eyon (t branch t1) = Yon-trans (Eda.ok (eeval t1) (Eda.yon (eeval t)))
(Yon-compose-resp-≡′ (eyon t) (eyon t1))
.earr : ∀ {X Y} → (t : Climb X Y) → Eda.arr (eeval t) ≡ eval t
earr t = trans (arr-≡ (eyon t)) (yarr t)
yyeval : ∀ {X Y} → (t : Climb X Y) → (X ⇒ Y)
yyeval = Eda.arr © eeval
record ClimbBuilder (X Y : Obj) {t} (T : Set t) : Set (o ⊔ ℓ ⊔ t) where
field build : T → Climb X Y
instance
leafBuilder : ∀ {X Y} → ClimbBuilder X Y (X ⇒ Y)
leafBuilder = record { build = leaf }
idBuilder : ∀ {X Y} → ClimbBuilder X Y (Climb X Y)
idBuilder = record { build = idᶠ }
_∙_ : ∀ {X Y Z} {s} {S : Set s} {{Sb : ClimbBuilder Y Z S}} (f : S) {t} {T : Set t} {{Tb : ClimbBuilder X Y T}} (g : T) → Climb X Z
_∙_ {{Sb}} f {{Tb}} g = ClimbBuilder.build Sb f branch ClimbBuilder.build Tb g
aureasoning : NormReasoning C o (ℓ ⊔ o)
aureasoning = record
{ U = Obj
; T = λ A → A
; _#⇒_ = Climb
; eval = eval
; norm = yyeval
; norm≡eval = earr
}
open NormReasoning aureasoning public hiding (eval)
{-
data _IsRelatedTo_ {X Y} (f g : Climb X Y) : Set e where
relTo : (f∼g : yyeval f ≡ yyeval g) → f IsRelatedTo g
.begin_ : ∀ {X Y} {f g : Climb X Y} → f IsRelatedTo g → eval f ≡ eval g
begin_ {f = f} {g} (relTo f∼g) = trans (sym (earr f)) (trans f∼g (earr g))
._↓⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval f ≡ yyeval g) → g IsRelatedTo h → f IsRelatedTo h
_ ↓⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h)
._↑⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval g ≡ yyeval f) → g IsRelatedTo h → f IsRelatedTo h
_ ↑⟨ g∼f ⟩ relTo g∼h = relTo (trans (sym g∼f) g∼h)
-- the syntax of the ancients, for compatibility
._≈⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → (yyeval f ≡ yyeval g) → g IsRelatedTo h → f IsRelatedTo h
_ ≈⟨ f∼g ⟩ relTo g∼h = relTo (trans f∼g g∼h)
._↓≡⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → eval f ≡ eval g → g IsRelatedTo h → f IsRelatedTo h
_↓≡⟨_⟩_ f {g} f∼g (relTo g∼h) = relTo (trans (earr f) (trans f∼g (trans (sym (earr g)) g∼h)))
._↑≡⟨_⟩_ : ∀ {X Y} (f : Climb X Y) {g h} → eval g ≡ eval f → g IsRelatedTo h → f IsRelatedTo h
_↑≡⟨_⟩_ f {g} g∼f (relTo g∼h) = relTo (trans (earr f) (trans (sym g∼f) (trans (sym (earr g)) g∼h)))
{-
-- XXX i want this to work whenever the Edas are equal -- but that probably
-- requires Climb to be indexed by yyeval! oh, for cheap ornamentation.
._↕_ : ∀ {X Y} (f : Climb X Y) {h} → f IsRelatedTo h → f IsRelatedTo h
_ ↕ f∼h = f∼h
-}
._∎ : ∀ {X Y} (f : Climb X Y) → f IsRelatedTo f
_∎ _ = relTo refl
-}
| 29.384892
| 228
| 0.464561
|
7ce23621f54753a491c719b9d935132bc9ed6f55
| 2,513
|
agda
|
Agda
|
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | null | null | null |
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | null | null | null |
examples/outdated-and-incorrect/Alonzo/PrintFloat.agda
|
larrytheliquid/agda
|
477c8c37f948e6038b773409358fd8f38395f827
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module PrintFloat where
import AlonzoPrelude
import PreludeShow
import PreludeList
import PreludeString
import PreludeNat
open AlonzoPrelude
open PreludeShow
open PreludeList, hiding(_++_)
open PreludeString
open PreludeNat
typeS : Char -> Set
typeS 'f' = Float
show : (c : Char) -> (typeS c) -> String
show 'f' f = showFloat f
data Unit : Set where
unit : Unit
data Format : Set where
stringArg : Format
natArg : Format
intArg : Format
floatArg : Format
charArg : Format
litChar : Char -> Format
badFormat : Char -> Format
data BadFormat (c:Char) : Set where
format' : List Char -> List Format
format' ('%' :: 's' :: fmt) = stringArg :: format' fmt
format' ('%' :: 'n' :: fmt) = natArg :: format' fmt
-- format' ('%' :: 'd' :: fmt) = intArg :: format' fmt
format' ('%' :: 'f' :: fmt) = floatArg :: format' fmt
format' ('%' :: 'c' :: fmt) = charArg :: format' fmt
format' ('%' :: '%' :: fmt) = litChar '%' :: format' fmt
format' ('%' :: c :: fmt) = badFormat c :: format' fmt
format' (c :: fmt) = litChar c :: format' fmt
format' [] = []
format : String -> List Format
format s = format' (toList s)
-- Printf1 : Format -> Set
-- Printf1 floatArg = Float
Printf' : List Format -> Set
Printf' (stringArg :: fmt) = String × Printf' fmt
Printf' (natArg :: fmt) = Nat × Printf' fmt
Printf' (intArg :: fmt) = Int × Printf' fmt
Printf' (floatArg :: fmt) = Float × Printf' fmt
Printf' (charArg :: fmt) = Char × Printf' fmt
Printf' (badFormat c :: fmt) = BadFormat c
Printf' (litChar _ :: fmt) = Printf' fmt
Printf' [] = Unit × Unit
Printf : String -> Set
Printf fmt = Printf' (format fmt)
printf' : (fmt : List Format) -> Printf' fmt -> String
printf' (stringArg :: fmt) < s | args > = s ++ printf' fmt args
printf' (natArg :: fmt) < n | args > = showNat n ++ printf' fmt args
printf' (intArg :: fmt) < n | args > = showInt n ++ printf' fmt args
printf' (floatArg :: fmt) < x | args > = showFloat x ++ printf' fmt args
printf' (charArg :: fmt) < c | args > = showChar c ++ printf' fmt args
printf' (litChar c :: fmt) args = fromList (c :: []) ++ printf' fmt args
printf' (badFormat _ :: fmt) ()
printf' [] < unit | unit > = ""
printf : (fmt : String) -> Printf fmt -> String
printf fmt = printf' (format fmt)
-- mainS = show 'f' 3.14
-- mainS = printf' (format "%f") < 3.14 | < unit | unit > >
mainS = printf "pi = %f" < 3.14159 | < unit | unit > >
-- mainS = fromList ( 'p' :: [] )
| 30.646341
| 75
| 0.58655
|
fd4e874e5aa54c60922e729f5fee5844697c4be2
| 25,190
|
agda
|
Agda
|
Cubical/Algebra/CommRing/Localisation/InvertingElements.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommRing/Localisation/InvertingElements.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommRing/Localisation/InvertingElements.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
-- In this file we consider the special of localising at a single
-- element f : R (or rather the set of powers of f). This is also
-- known as inverting f.
-- We then prove that localising first at an element f and at an element
-- g (or rather the image g/1) is the same as localising at the product f·g
-- This fact has an important application in algebraic geometry where it's
-- used to define the structure sheaf of a commutative ring.
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommRing.Localisation.InvertingElements where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Transport
open import Cubical.Functions.FunExtEquiv
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Vec
open import Cubical.Data.Sigma.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.FinData
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Algebra.Group
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Localisation.Base
open import Cubical.Algebra.CommRing.Localisation.UniversalProperty
open import Cubical.Algebra.RingSolver.ReflectionSolving
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.HITs.PropositionalTruncation as PT
open Iso
private
variable
ℓ ℓ' : Level
A : Type ℓ
module _(R' : CommRing {ℓ}) where
open isMultClosedSubset
private R = fst R'
open CommRingStr (snd R')
open Exponentiation R'
[_ⁿ|n≥0] : R → ℙ R
[ f ⁿ|n≥0] g = (∃[ n ∈ ℕ ] g ≡ f ^ n) , propTruncIsProp
-- Σ[ n ∈ ℕ ] (s ≡ f ^ n) × (∀ m → s ≡ f ^ m → n ≤ m) maybe better, this isProp:
-- (n,s≡fⁿ,p) (m,s≡fᵐ,q) then n≤m by p and m≤n by q => n≡m
powersFormMultClosedSubset : (f : R) → isMultClosedSubset R' [ f ⁿ|n≥0]
powersFormMultClosedSubset f .containsOne = PT.∣ zero , refl ∣
powersFormMultClosedSubset f .multClosed =
PT.map2 λ (m , p) (n , q) → (m +ℕ n) , (λ i → (p i) · (q i)) ∙ ·-of-^-is-^-of-+ f m n
R[1/_] : R → Type ℓ
R[1/ f ] = Loc.S⁻¹R R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f)
R[1/_]AsCommRing : R → CommRing {ℓ}
R[1/ f ]AsCommRing = Loc.S⁻¹RAsCommRing R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f)
-- A useful lemma: (gⁿ/1)≡(g/1)ⁿ in R[1/f]
^-respects-/1 : {f g : R} (n : ℕ) → [ (g ^ n) , 1r , PT.∣ 0 , (λ _ → 1r) ∣ ] ≡
Exponentiation._^_ R[1/ f ]AsCommRing [ g , 1r , powersFormMultClosedSubset _ .containsOne ] n
^-respects-/1 zero = refl
^-respects-/1 {f} {g} (suc n) = eq/ _ _ ( (1r , powersFormMultClosedSubset f .containsOne)
, cong (1r · (g · (g ^ n)) ·_) (·Lid 1r))
∙ cong (CommRingStr._·_ (R[1/ f ]AsCommRing .snd)
[ g , 1r , powersFormMultClosedSubset f .containsOne ]) (^-respects-/1 n)
-- A slight improvement for eliminating into propositions
InvElPropElim : {f : R} {P : R[1/ f ] → Type ℓ'}
→ (∀ x → isProp (P x))
→ (∀ (r : R) (n : ℕ) → P [ r , (f ^ n) , PT.∣ n , refl ∣ ]) -- ∀ r n → P (r/fⁿ)
----------------------------------------------------------
→ (∀ x → P x)
InvElPropElim {f = f} {P = P} PisProp base = elimProp (λ _ → PisProp _) []-case
where
S[f] = Loc.S R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f)
[]-case : (a : R × S[f]) → P [ a ]
[]-case (r , s , s∈S[f]) = PT.rec (PisProp _) Σhelper s∈S[f]
where
Σhelper : Σ[ n ∈ ℕ ] s ≡ f ^ n → P [ r , s , s∈S[f] ]
Σhelper (n , p) = subst P (cong [_] (≡-× refl (Σ≡Prop (λ _ → propTruncIsProp) (sym p)))) (base r n)
-- For predicates over the set of powers
powersPropElim : {f : R} {P : R → Type ℓ'}
→ (∀ x → isProp (P x))
→ (∀ n → P (f ^ n))
------------------------------
→ ∀ s → s ∈ [ f ⁿ|n≥0] → P s
powersPropElim {f = f} {P = P} PisProp base s =
PT.rec (PisProp s) λ (n , p) → subst P (sym p) (base n)
module DoubleLoc (R' : CommRing {ℓ}) (f g : (fst R')) where
open isMultClosedSubset
open CommRingStr (snd R')
open CommTheory R'
open Exponentiation R'
open Theory (CommRing→Ring R')
open CommRingStr (snd (R[1/_]AsCommRing R' f)) renaming ( _·_ to _·ᶠ_ ; 1r to 1ᶠ
; _+_ to _+ᶠ_ ; 0r to 0ᶠ
; ·Lid to ·ᶠ-lid ; ·Rid to ·ᶠ-rid
; ·Assoc to ·ᶠ-assoc ; ·-comm to ·ᶠ-comm)
private
R = fst R'
R[1/f] = R[1/_] R' f
R[1/f]AsCommRing = R[1/_]AsCommRing R' f
R[1/fg] = R[1/_] R' (f · g)
R[1/fg]AsCommRing = R[1/_]AsCommRing R' (f · g)
R[1/f][1/g] = R[1/_] (R[1/_]AsCommRing R' f)
[ g , 1r , powersFormMultClosedSubset R' f .containsOne ]
R[1/f][1/g]AsCommRing = R[1/_]AsCommRing (R[1/_]AsCommRing R' f)
[ g , 1r , powersFormMultClosedSubset R' f .containsOne ]
R[1/f][1/g]ˣ = R[1/f][1/g]AsCommRing ˣ
_/1/1 : R → R[1/f][1/g]
r /1/1 = [ [ r , 1r , PT.∣ 0 , refl ∣ ] , 1ᶠ , PT.∣ 0 , refl ∣ ]
/1/1AsCommRingHom : CommRingHom R' R[1/f][1/g]AsCommRing
RingHom.f /1/1AsCommRingHom = _/1/1
RingHom.pres1 /1/1AsCommRingHom = refl
RingHom.isHom+ /1/1AsCommRingHom r r' = cong [_] (≡-× (cong [_]
(≡-×
(cong₂ _+_ (sym (·Rid _) ∙ (λ i → (·Rid r (~ i)) · (·Rid 1r (~ i))))
(sym (·Rid _) ∙ (λ i → (·Rid r' (~ i)) · (·Rid 1r (~ i)))))
(Σ≡Prop (λ _ → propTruncIsProp)
(sym (·Lid _) ∙ (λ i → (·Lid 1r (~ i)) · (·Lid 1r (~ i)))))))
(Σ≡Prop (λ _ → propTruncIsProp) (sym (·ᶠ-lid 1ᶠ))))
RingHom.isHom· /1/1AsCommRingHom r r' = cong [_] (≡-× (cong [_]
(≡-× refl (Σ≡Prop (λ _ → propTruncIsProp)
(sym (·Lid _)))))
(Σ≡Prop (λ _ → propTruncIsProp) (sym (·ᶠ-lid 1ᶠ))))
-- this will give us a map R[1/fg] → R[1/f][1/g] by the universal property of localisation
fⁿgⁿ/1/1∈R[1/f][1/g]ˣ : (s : R) → s ∈ ([_ⁿ|n≥0] R' (f · g)) → s /1/1 ∈ R[1/f][1/g]ˣ
fⁿgⁿ/1/1∈R[1/f][1/g]ˣ = powersPropElim R' (λ s → R[1/f][1/g]ˣ (s /1/1) .snd) ℕcase
where
ℕcase : (n : ℕ) → ((f · g) ^ n) /1/1 ∈ R[1/f][1/g]ˣ
ℕcase n = [ [ 1r , (f ^ n) , PT.∣ n , refl ∣ ]
, [ (g ^ n) , 1r , PT.∣ 0 , refl ∣ ] --denominator
, PT.∣ n , ^-respects-/1 _ n ∣ ]
, eq/ _ _ ((1ᶠ , powersFormMultClosedSubset _ _ .containsOne)
, eq/ _ _ ((1r , powersFormMultClosedSubset _ _ .containsOne) , path))
where
eq1 : ∀ x → 1r · (1r · (x · 1r) · 1r) · (1r · 1r · (1r · 1r)) ≡ x
eq1 = solve R'
eq2 : ∀ x y → x · y ≡ 1r · (1r · 1r · (1r · y)) · (1r · (1r · x) · 1r)
eq2 = solve R'
path : 1r · (1r · ((f · g) ^ n · 1r) · 1r) · (1r · 1r · (1r · 1r))
≡ 1r · (1r · 1r · (1r · g ^ n)) · (1r · (1r · f ^ n) · 1r)
path = 1r · (1r · ((f · g) ^ n · 1r) · 1r) · (1r · 1r · (1r · 1r)) ≡⟨ eq1 ((f · g) ^ n) ⟩
(f · g) ^ n ≡⟨ ^-ldist-· _ _ _ ⟩
f ^ n · g ^ n ≡⟨ eq2 (f ^ n) (g ^ n) ⟩
1r · (1r · 1r · (1r · g ^ n)) · (1r · (1r · f ^ n) · 1r) ∎
-- the main result: localising at one element and then at another is
-- the same as localising at the product.
-- takes forever to compute without experimental lossy unification
R[1/fg]≡R[1/f][1/g] : R[1/fg]AsCommRing ≡ R[1/f][1/g]AsCommRing
R[1/fg]≡R[1/f][1/g] = S⁻¹RChar R' ([_ⁿ|n≥0] R' (f · g))
(powersFormMultClosedSubset R' (f · g)) _ /1/1AsCommRingHom pathtoR[1/fg]
where
open PathToS⁻¹R
pathtoR[1/fg] : PathToS⁻¹R R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g))
R[1/f][1/g]AsCommRing /1/1AsCommRingHom
φS⊆Aˣ pathtoR[1/fg] = fⁿgⁿ/1/1∈R[1/f][1/g]ˣ
kerφ⊆annS pathtoR[1/fg] r p = toGoal helperR[1/f]
where
open Theory (CommRing→Ring R[1/f]AsCommRing) renaming ( 0RightAnnihilates to 0ᶠRightAnnihilates
; 0LeftAnnihilates to 0ᶠ-leftNullifies)
open Exponentiation R[1/f]AsCommRing renaming (_^_ to _^ᶠ_)
hiding (·-of-^-is-^-of-+ ; ^-ldist-·)
S[f] = Loc.S R' ([_ⁿ|n≥0] R' f) (powersFormMultClosedSubset R' f)
S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g))
g/1 : R[1/_] R' f
g/1 = [ g , 1r , powersFormMultClosedSubset R' f .containsOne ]
S[g/1] = Loc.S R[1/f]AsCommRing
([_ⁿ|n≥0] R[1/f]AsCommRing g/1)
(powersFormMultClosedSubset R[1/f]AsCommRing g/1)
r/1 : R[1/_] R' f
r/1 = [ r , 1r , powersFormMultClosedSubset R' f .containsOne ]
-- this is the crucial step, modulo truncation we can take p to be generated
-- by the quotienting relation of localisation. Note that we wouldn't be able
-- to prove our goal if kerφ⊆annS was formulated with a Σ instead of a ∃
∥r/1,1/1≈0/1,1/1∥ : ∃[ u ∈ S[g/1] ] fst u ·ᶠ r/1 ·ᶠ 1ᶠ ≡ fst u ·ᶠ 0ᶠ ·ᶠ 1ᶠ
∥r/1,1/1≈0/1,1/1∥ = Iso.fun (SQ.isEquivRel→TruncIso (Loc.locIsEquivRel _ _ _) _ _) p
helperR[1/f] : ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ
helperR[1/f] = PT.rec propTruncIsProp
(uncurry (uncurry (powersPropElim R[1/f]AsCommRing
(λ _ → isPropΠ (λ _ → propTruncIsProp)) baseCase)))
∥r/1,1/1≈0/1,1/1∥
where
baseCase : ∀ n → g/1 ^ᶠ n ·ᶠ r/1 ·ᶠ 1ᶠ ≡ g/1 ^ᶠ n ·ᶠ 0ᶠ ·ᶠ 1ᶠ
→ ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ
baseCase n q = PT.∣ n , path ∣
where
path : [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ
path = [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ]
≡⟨ cong [_] (≡-× refl (Σ≡Prop (λ _ → propTruncIsProp) (sym (·Rid _)))) ⟩
[ g ^ n , 1r , PT.∣ 0 , refl ∣ ] ·ᶠ r/1
≡⟨ cong (_·ᶠ r/1) (^-respects-/1 _ n) ⟩
g/1 ^ᶠ n ·ᶠ r/1
≡⟨ sym (·ᶠ-rid _) ⟩
g/1 ^ᶠ n ·ᶠ r/1 ·ᶠ 1ᶠ
≡⟨ q ⟩
g/1 ^ᶠ n ·ᶠ 0ᶠ ·ᶠ 1ᶠ
≡⟨ cong (_·ᶠ 1ᶠ) (0ᶠRightAnnihilates _) ∙ 0ᶠ-leftNullifies 1ᶠ ⟩
0ᶠ ∎
toGoal : ∃[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ
→ ∃[ u ∈ S[fg] ] fst u · r ≡ 0r
toGoal = PT.rec propTruncIsProp Σhelper
where
Σhelper : Σ[ n ∈ ℕ ] [ g ^ n · r , 1r , PT.∣ 0 , refl ∣ ] ≡ 0ᶠ
→ ∃[ u ∈ S[fg] ] fst u · r ≡ 0r
Σhelper (n , q) = PT.map Σhelper2 helperR
where
-- now, repeat the above strategy with q
∥gⁿr≈0∥ : ∃[ u ∈ S[f] ] fst u · (g ^ n · r) · 1r ≡ fst u · 0r · 1r
∥gⁿr≈0∥ = Iso.fun (SQ.isEquivRel→TruncIso (Loc.locIsEquivRel _ _ _) _ _) q
helperR : ∃[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r
helperR = PT.rec propTruncIsProp
(uncurry (uncurry (powersPropElim R'
(λ _ → isPropΠ (λ _ → propTruncIsProp)) baseCase)))
∥gⁿr≈0∥
where
baseCase : (m : ℕ) → f ^ m · (g ^ n · r) · 1r ≡ f ^ m · 0r · 1r
→ ∃[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r
baseCase m q' = PT.∣ m , path ∣
where
path : f ^ m · g ^ n · r ≡ 0r
path = (λ i → ·Rid (·Assoc (f ^ m) (g ^ n) r (~ i)) (~ i))
∙∙ q' ∙∙ (λ i → ·Rid (0RightAnnihilates (f ^ m) i) i)
Σhelper2 : Σ[ m ∈ ℕ ] f ^ m · g ^ n · r ≡ 0r
→ Σ[ u ∈ S[fg] ] fst u · r ≡ 0r
Σhelper2 (m , q') = (((f · g) ^ l) , PT.∣ l , refl ∣) , path
where
l = max m n
path : (f · g) ^ l · r ≡ 0r
path = (f · g) ^ l · r
≡⟨ cong (_· r) (^-ldist-· _ _ _) ⟩
f ^ l · g ^ l · r
≡⟨ cong₂ (λ x y → f ^ x · g ^ y · r) (sym (≤-∸-+-cancel {m = m} left-≤-max))
(sym (≤-∸-+-cancel {m = n} right-≤-max)) ⟩
f ^ (l ∸ m +ℕ m) · g ^ (l ∸ n +ℕ n) · r
≡⟨ cong₂ (λ x y → x · y · r) (sym (·-of-^-is-^-of-+ _ _ _))
(sym (·-of-^-is-^-of-+ _ _ _)) ⟩
f ^ (l ∸ m) · f ^ m · (g ^ (l ∸ n) · g ^ n) · r
≡⟨ cong (_· r) (·-commAssocSwap _ _ _ _) ⟩
f ^ (l ∸ m) · g ^ (l ∸ n) · (f ^ m · g ^ n) · r
≡⟨ sym (·Assoc _ _ _) ⟩
f ^ (l ∸ m) · g ^ (l ∸ n) · (f ^ m · g ^ n · r)
≡⟨ cong (f ^ (l ∸ m) · g ^ (l ∸ n) ·_) q' ⟩
f ^ (l ∸ m) · g ^ (l ∸ n) · 0r
≡⟨ 0RightAnnihilates _ ⟩
0r ∎
surχ pathtoR[1/fg] = InvElPropElim _ (λ _ → propTruncIsProp) toGoal
where
open Exponentiation R[1/f]AsCommRing renaming (_^_ to _^ᶠ_)
hiding (·-of-^-is-^-of-+ ; ^-ldist-·)
open CommRingStr (snd R[1/f][1/g]AsCommRing) renaming (_·_ to _·R[1/f][1/g]_)
hiding (1r ; ·Lid ; ·Rid ; ·Assoc)
open Units R[1/f][1/g]AsCommRing
g/1 : R[1/_] R' f
g/1 = [ g , 1r , powersFormMultClosedSubset R' f .containsOne ]
S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g))
baseCase : (r : R) (m n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1)
≡ [ [ r , f ^ m , PT.∣ m , refl ∣ ]
, [ g ^ n , 1r , PT.∣ 0 , refl ∣ ] , PT.∣ n , ^-respects-/1 _ n ∣ ]
·R[1/f][1/g] (x .snd .fst /1/1)
baseCase r m n = PT.∣ ((r · f ^ (l ∸ m) · g ^ (l ∸ n)) -- x .fst
, (f · g) ^ l , PT.∣ l , refl ∣) -- x .snd
, eq/ _ _ ((1ᶠ , PT.∣ 0 , refl ∣) , eq/ _ _ ((1r , PT.∣ 0 , refl ∣) , path)) ∣
-- reduce equality of double fractions into equality in R
where
eq1 : ∀ r flm gln gn fm
→ 1r · (1r · (r · flm · gln) · (gn · 1r)) · (1r · (fm · 1r) · 1r)
≡ r · flm · (gln · gn) · fm
eq1 = solve R'
eq2 : ∀ r flm gl fm → r · flm · gl · fm ≡ r · (flm · fm ) · gl
eq2 = solve R'
eq3 : ∀ r fgl → r · fgl ≡ 1r · (1r · (r · fgl) · 1r) · (1r · 1r · (1r · 1r))
eq3 = solve R'
l = max m n
path : 1r · (1r · (r · f ^ (l ∸ m) · g ^ (l ∸ n)) · (g ^ n · 1r)) · (1r · (f ^ m · 1r) · 1r)
≡ 1r · (1r · (r · (f · g) ^ l) · 1r) · (1r · 1r · (1r · 1r))
path = 1r · (1r · (r · f ^ (l ∸ m) · g ^ (l ∸ n)) · (g ^ n · 1r)) · (1r · (f ^ m · 1r) · 1r)
≡⟨ eq1 r (f ^ (l ∸ m)) (g ^ (l ∸ n)) (g ^ n) (f ^ m) ⟩
r · f ^ (l ∸ m) · (g ^ (l ∸ n) · g ^ n) · f ^ m
≡⟨ cong (λ x → r · f ^ (l ∸ m) · x · f ^ m) (·-of-^-is-^-of-+ _ _ _) ⟩
r · f ^ (l ∸ m) · g ^ (l ∸ n +ℕ n) · f ^ m
≡⟨ cong (λ x → r · f ^ (l ∸ m) · g ^ x · f ^ m) (≤-∸-+-cancel right-≤-max) ⟩
r · f ^ (l ∸ m) · g ^ l · f ^ m
≡⟨ eq2 r (f ^ (l ∸ m)) (g ^ l) (f ^ m) ⟩
r · (f ^ (l ∸ m) · f ^ m) · g ^ l
≡⟨ cong (λ x → r · x · g ^ l) (·-of-^-is-^-of-+ _ _ _) ⟩
r · f ^ (l ∸ m +ℕ m) · g ^ l
≡⟨ cong (λ x → r · f ^ x · g ^ l) (≤-∸-+-cancel left-≤-max) ⟩
r · f ^ l · g ^ l
≡⟨ sym (·Assoc _ _ _) ⟩
r · (f ^ l · g ^ l)
≡⟨ cong (r ·_) (sym (^-ldist-· _ _ _)) ⟩
r · (f · g) ^ l
≡⟨ eq3 r ((f · g) ^ l) ⟩
1r · (1r · (r · (f · g) ^ l) · 1r) · (1r · 1r · (1r · 1r)) ∎
base-^ᶠ-helper : (r : R) (m n : ℕ) → ∃[ x ∈ R × S[fg] ] (x .fst /1/1)
≡ [ [ r , f ^ m , PT.∣ m , refl ∣ ]
, g/1 ^ᶠ n , PT.∣ n , refl ∣ ] ·R[1/f][1/g] (x .snd .fst /1/1)
base-^ᶠ-helper r m n = subst (λ y → ∃[ x ∈ R × S[fg] ] (x .fst /1/1)
≡ [ [ r , f ^ m , PT.∣ m , refl ∣ ] , y ] ·R[1/f][1/g] (x .snd .fst /1/1))
(Σ≡Prop (λ _ → propTruncIsProp) (^-respects-/1 _ n)) (baseCase r m n)
indStep : (r : R[1/_] R' f) (n : ℕ) → ∃[ x ∈ R × S[fg] ]
(x .fst /1/1) ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣ ] ·R[1/f][1/g] (x .snd .fst /1/1)
indStep = InvElPropElim _ (λ _ → isPropΠ λ _ → propTruncIsProp) base-^ᶠ-helper
toGoal : (r : R[1/_] R' f) (n : ℕ) → ∃[ x ∈ R × S[fg] ]
(x .fst /1/1) ·R[1/f][1/g]
((x .snd .fst /1/1) ⁻¹) ⦃ φS⊆Aˣ pathtoR[1/fg] (x .snd .fst) (x .snd .snd) ⦄
≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣ ]
toGoal r n = PT.map Σhelper (indStep r n)
where
Σhelper : Σ[ x ∈ R × S[fg] ]
(x .fst /1/1) ≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣ ] ·R[1/f][1/g] (x .snd .fst /1/1)
→ Σ[ x ∈ R × S[fg] ]
(x .fst /1/1) ·R[1/f][1/g] ((x .snd .fst /1/1) ⁻¹)
⦃ φS⊆Aˣ pathtoR[1/fg] (x .snd .fst) (x .snd .snd) ⦄
≡ [ r , g/1 ^ᶠ n , PT.∣ n , refl ∣ ]
Σhelper ((r' , s , s∈S[fg]) , p) = (r' , s , s∈S[fg])
, ⁻¹-eq-elim ⦃ φS⊆Aˣ pathtoR[1/fg] s s∈S[fg] ⦄ p
-- In this module we construct the map R[1/fg]→R[1/f][1/g] directly
-- and show that it is equal (although not judgementally) to the map induced
-- by the universal property of localisation, i.e. transporting along the path
-- constructed above. Given that this is the easier direction, we can see that
-- it is pretty cumbersome to prove R[1/fg]≡R[1/f][1/g] directly,
-- which illustrates the usefulness of S⁻¹RChar quite well.
private
module check where
φ : R[1/fg] → R[1/f][1/g]
φ = SQ.rec squash/ ϕ ϕcoh
where
S[fg] = Loc.S R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g))
curriedϕΣ : (r s : R) → Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n → R[1/f][1/g]
curriedϕΣ r s (n , s≡fg^n) = [ [ r , (f ^ n) , PT.∣ n , refl ∣ ]
, [ (g ^ n) , 1r , PT.∣ 0 , refl ∣ ] --denominator
, PT.∣ n , ^-respects-/1 R' n ∣ ]
curriedϕ : (r s : R) → ∃[ n ∈ ℕ ] s ≡ (f · g) ^ n → R[1/f][1/g]
curriedϕ r s = elim→Set (λ _ → squash/) (curriedϕΣ r s) coh
where
coh : (x y : Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n) → curriedϕΣ r s x ≡ curriedϕΣ r s y
coh (n , s≡fg^n) (m , s≡fg^m) = eq/ _ _ ((1ᶠ , PT.∣ 0 , refl ∣) ,
eq/ _ _ ( (1r , powersFormMultClosedSubset R' f .containsOne)
, path))
where
eq1 : ∀ r gm fm → 1r · (1r · r · gm) · (1r · fm · 1r) ≡ r · (gm · fm)
eq1 = solve R'
path : 1r · (1r · r · (g ^ m)) · (1r · (f ^ m) · 1r)
≡ 1r · (1r · r · (g ^ n)) · (1r · (f ^ n) · 1r)
path = 1r · (1r · r · (g ^ m)) · (1r · (f ^ m) · 1r)
≡⟨ eq1 r (g ^ m) (f ^ m) ⟩
r · (g ^ m · f ^ m)
≡⟨ cong (r ·_) (sym (^-ldist-· g f m)) ⟩
r · ((g · f) ^ m)
≡⟨ cong (λ x → r · (x ^ m)) (·-comm _ _) ⟩
r · ((f · g) ^ m)
≡⟨ cong (r ·_) ((sym s≡fg^m) ∙ s≡fg^n) ⟩
r · ((f · g) ^ n)
≡⟨ cong (λ x → r · (x ^ n)) (·-comm _ _) ⟩
r · ((g · f) ^ n)
≡⟨ cong (r ·_) (^-ldist-· g f n) ⟩
r · (g ^ n · f ^ n)
≡⟨ sym (eq1 r (g ^ n) (f ^ n)) ⟩
1r · (1r · r · (g ^ n)) · (1r · (f ^ n) · 1r) ∎
ϕ : R × S[fg] → R[1/f][1/g]
ϕ (r , s , |n,s≡fg^n|) = curriedϕ r s |n,s≡fg^n|
-- λ (r / (fg)ⁿ) → ((r / fⁿ) / gⁿ)
curriedϕcohΣ : (r s r' s' u : R) → (p : u · r · s' ≡ u · r' · s)
→ (α : Σ[ n ∈ ℕ ] s ≡ (f · g) ^ n)
→ (β : Σ[ m ∈ ℕ ] s' ≡ (f · g) ^ m)
→ (γ : Σ[ l ∈ ℕ ] u ≡ (f · g) ^ l)
→ ϕ (r , s , PT.∣ α ∣) ≡ ϕ (r' , s' , PT.∣ β ∣)
curriedϕcohΣ r s r' s' u p (n , s≡fgⁿ) (m , s'≡fgᵐ) (l , u≡fgˡ) =
eq/ _ _ ( ( [ (g ^ l) , 1r , powersFormMultClosedSubset R' f .containsOne ]
, PT.∣ l , ^-respects-/1 R' l ∣)
, eq/ _ _ ((f ^ l , PT.∣ l , refl ∣) , path))
where
eq1 : ∀ fl gl r gm fm
→ fl · (gl · r · gm) · (1r · fm · 1r) ≡ fl · gl · r · (gm · fm)
eq1 = solve R'
path : f ^ l · (g ^ l · transp (λ i → R) i0 r · transp (λ i → R) i0 (g ^ m))
· (1r · transp (λ i → R) i0 (f ^ m) · transp (λ i → R) i0 1r)
≡ f ^ l · (g ^ l · transp (λ i → R) i0 r' · transp (λ i → R) i0 (g ^ n))
· (1r · transp (λ i → R) i0 (f ^ n) · transp (λ i → R) i0 1r)
path = f ^ l · (g ^ l · transp (λ i → R) i0 r · transp (λ i → R) i0 (g ^ m))
· (1r · transp (λ i → R) i0 (f ^ m) · transp (λ i → R) i0 1r)
≡⟨ (λ i → f ^ l · (g ^ l · transportRefl r i · transportRefl (g ^ m) i)
· (1r · transportRefl (f ^ m) i · transportRefl 1r i)) ⟩
f ^ l · (g ^ l · r · g ^ m) · (1r · f ^ m · 1r)
≡⟨ eq1 (f ^ l) (g ^ l) r (g ^ m) (f ^ m) ⟩
f ^ l · g ^ l · r · (g ^ m · f ^ m)
≡⟨ (λ i → ^-ldist-· f g l (~ i) · r · ^-ldist-· g f m (~ i)) ⟩
(f · g) ^ l · r · (g · f) ^ m
≡⟨ cong (λ x → (f · g) ^ l · r · x ^ m) (·-comm _ _) ⟩
(f · g) ^ l · r · (f · g) ^ m
≡⟨ (λ i → u≡fgˡ (~ i) · r · s'≡fgᵐ (~ i)) ⟩
u · r · s'
≡⟨ p ⟩
u · r' · s
≡⟨ (λ i → u≡fgˡ i · r' · s≡fgⁿ i) ⟩
(f · g) ^ l · r' · (f · g) ^ n
≡⟨ cong (λ x → (f · g) ^ l · r' · x ^ n) (·-comm _ _) ⟩
(f · g) ^ l · r' · (g · f) ^ n
≡⟨ (λ i → ^-ldist-· f g l i · r' · ^-ldist-· g f n i) ⟩
f ^ l · g ^ l · r' · (g ^ n · f ^ n)
≡⟨ sym (eq1 (f ^ l) (g ^ l) r' (g ^ n) (f ^ n)) ⟩
f ^ l · (g ^ l · r' · g ^ n) · (1r · f ^ n · 1r)
≡⟨ (λ i → f ^ l · (g ^ l · transportRefl r' (~ i) · transportRefl (g ^ n) (~ i))
· (1r · transportRefl (f ^ n) (~ i) · transportRefl 1r (~ i))) ⟩
f ^ l · (g ^ l · transp (λ i → R) i0 r' · transp (λ i → R) i0 (g ^ n))
· (1r · transp (λ i → R) i0 (f ^ n) · transp (λ i → R) i0 1r) ∎
curriedϕcoh : (r s r' s' u : R) → (p : u · r · s' ≡ u · r' · s)
→ (α : ∃[ n ∈ ℕ ] s ≡ (f · g) ^ n)
→ (β : ∃[ m ∈ ℕ ] s' ≡ (f · g) ^ m)
→ (γ : ∃[ l ∈ ℕ ] u ≡ (f · g) ^ l)
→ ϕ (r , s , α) ≡ ϕ (r' , s' , β)
curriedϕcoh r s r' s' u p = PT.elim (λ _ → isPropΠ2 (λ _ _ → squash/ _ _))
λ α → PT.elim (λ _ → isPropΠ (λ _ → squash/ _ _))
λ β → PT.rec (squash/ _ _)
λ γ → curriedϕcohΣ r s r' s' u p α β γ
ϕcoh : (a b : R × S[fg])
→ Loc._≈_ R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g)) a b
→ ϕ a ≡ ϕ b
ϕcoh (r , s , α) (r' , s' , β) ((u , γ) , p) = curriedϕcoh r s r' s' u p α β γ
-- the map induced by the universal property
open S⁻¹RUniversalProp R' ([_ⁿ|n≥0] R' (f · g)) (powersFormMultClosedSubset R' (f · g))
χ : R[1/fg] → R[1/f][1/g]
χ = RingHom.f ( S⁻¹RHasUniversalProp R[1/f][1/g]AsCommRing
/1/1AsCommRingHom fⁿgⁿ/1/1∈R[1/f][1/g]ˣ .fst .fst)
-- the sanity check:
-- both maps send a fraction r/(fg)ⁿ to a double fraction,
-- where numerator and denominator are almost the same fraction respectively.
-- unfortunately the proofs that the denominators are powers are quite different for
-- the two maps, but of course we can ignore them.
-- The definition of χ introduces a lot of (1r ·_). Perhaps most surprisingly,
-- we have to give the path eq1 for the equality of the numerator of the numerator.
φ≡χ : ∀ r → φ r ≡ χ r
φ≡χ = InvElPropElim _ (λ _ → squash/ _ _) ℕcase
where
ℕcase : (r : R) (n : ℕ)
→ φ [ r , (f · g) ^ n , PT.∣ n , refl ∣ ] ≡ χ [ r , (f · g) ^ n , PT.∣ n , refl ∣ ]
ℕcase r n = cong [_] (ΣPathP --look into the components of the double-fractions
( cong [_] (ΣPathP (eq1 , Σ≡Prop (λ x → S'[f] x .snd) (sym (·Lid _))))
, Σ≡Prop (λ x → S'[f][g] x .snd) --ignore proof that denominator is power of g/1
( cong [_] (ΣPathP (sym (·Lid _) , Σ≡Prop (λ x → S'[f] x .snd) (sym (·Lid _)))))))
where
S'[f] = ([_ⁿ|n≥0] R' f)
S'[f][g] = ([_ⁿ|n≥0] R[1/f]AsCommRing [ g , 1r , powersFormMultClosedSubset R' f .containsOne ])
eq1 : transp (λ i → fst R') i0 r ≡ r · transp (λ i → fst R') i0 1r
eq1 = transportRefl r ∙∙ sym (·Rid r) ∙∙ cong (r ·_) (sym (transportRefl 1r))
| 42.123746
| 102
| 0.433624
|
5e3a285a40abf5b3d2dbde0a58b5c51dd994c9a6
| 8,664
|
agda
|
Agda
|
Cubical/Experiments/EscardoSIP.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
Cubical/Experiments/EscardoSIP.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
Cubical/Experiments/EscardoSIP.agda
|
maxdore/cubical
|
ef62b84397396d48135d73ba7400b71c721ddc94
|
[
"MIT"
] | null | null | null |
{-
This is a rather literal translation of Martin Hötzel-Escardó's structure identity principle into cubical Agda. See
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns
All the needed preliminary results from the lecture notes are stated and proven in this file.
It would be interesting to compare the proves with the one in Cubical.Foundations.SIP
-}
{-# OPTIONS --safe #-}
module Cubical.Experiments.EscardoSIP where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Data.Sigma.Properties
private
variable
ℓ ℓ' ℓ'' : Level
S : Type ℓ → Type ℓ'
-- We prove several useful equalities and equivalences between Σ-types all the proofs are taken from
-- Martin Hötzel-Escardó's lecture notes.
-- The next result is just a reformulation of pathSigma≡sigmaPath from Sigma.Properties.
Σ-≡-≃ : {X : Type ℓ} {A : X → Type ℓ'}
→ (σ τ : Σ X A) → ((σ ≡ τ) ≃ (Σ[ p ∈ (σ .fst) ≡ (τ .fst) ] (subst A p (σ .snd) ≡ (τ .snd))))
Σ-≡-≃ {A = A} σ τ = invEquiv (ΣPathTransport≃PathΣ σ τ)
-- This cubical proof is much shorter than in HoTT but requires that A, B live in the same universe.
Σ-cong : {X : Type ℓ} {A B : X → Type ℓ'} →
((x : X) → (A x ≡ B x)) → (Σ X A ≡ Σ X B)
Σ-cong {X = X} p i = Σ[ x ∈ X ] (p x i)
-- Two lemmas for the more general formulation using equivalences
NatΣ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''}
→ ((x : X) → (A x) → (B x)) → (Σ X A) → (Σ X B)
NatΣ τ (x , a) = (x , τ x a)
Σ-to-PathP : {X : Type ℓ} {A : X → Type ℓ'} {x : X} {a b : A x}
→ (a ≡ b) → PathP (λ i → Σ X A) (x , a) (x , b)
Σ-to-PathP {x = x} p i = (x , p i)
Σ-cong-≃ : {X : Type ℓ} {A : X → Type ℓ'} {B : X → Type ℓ''} →
((x : X) → (A x ≃ B x)) → (Σ X A ≃ Σ X B)
Σ-cong-≃ {X = X} {A = A} {B = B} φ = isoToEquiv (iso (NatΣ f) (NatΣ g) NatΣ-ε NatΣ-η)
where
f : (x : X) → (A x) → (B x)
f x = equivFun (φ x)
g : (x : X) → (B x) → (A x)
g x = equivFun (invEquiv (φ x))
η : (x : X) → (a : A x) → (g x) ((f x) a) ≡ a
η x = retEq (invEquiv (φ x))
ε : (x : X) → (b : B x) → f x (g x b) ≡ b
ε x = secEq (invEquiv (φ x))
NatΣ-η : (w : Σ X A) → NatΣ g (NatΣ f w) ≡ w
NatΣ-η (x , a) = (x , g x (f x a)) ≡⟨ Σ-to-PathP (η x a) ⟩
(x , a) ∎
NatΣ-ε : (u : Σ X B) → NatΣ f (NatΣ g u) ≡ u
NatΣ-ε (x , b) = (x , f x (g x b)) ≡⟨ Σ-to-PathP (ε x b) ⟩
(x , b) ∎
-- The next result is stated a bit awkwardly but is rather straightforward to prove.
Σ-change-of-variable-Iso : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y)
→ (isHAEquiv f) → (Iso (Σ X (A ∘ f)) (Σ Y A))
Σ-change-of-variable-Iso {ℓ = ℓ} {ℓ' = ℓ'} {X = X} {Y = Y} {A = A} f isHAEquivf = iso φ ψ φψ ψφ
where
g : Y → X
g = isHAEquiv.g isHAEquivf
ε : (x : X) → (g (f x)) ≡ x
ε = isHAEquiv.linv isHAEquivf
η : (y : Y) → f (g y) ≡ y
η = isHAEquiv.rinv isHAEquivf
τ : (x : X) → cong f (ε x) ≡ η (f x)
τ = isHAEquiv.com isHAEquivf
φ : (Σ X (A ∘ f)) → (Σ Y A)
φ (x , a) = (f x , a)
ψ : (Σ Y A) → (Σ X (A ∘ f))
ψ (y , a) = (g y , subst A (sym (η y)) a)
φψ : (z : (Σ Y A)) → φ (ψ z) ≡ z
φψ (y , a) =
ΣPathTransport→PathΣ _ _ (η y , transportTransport⁻ (λ i → A (η y i)) a)
-- last term proves transp (λ i → A (η y i)) i0 (transp (λ i → A (η y (~ i))) i0 a) ≡ a
ψφ : (z : (Σ X (A ∘ f))) → ψ (φ z) ≡ z
ψφ (x , a) = ΣPathTransport→PathΣ _ _ (ε x , q)
where
b : A (f (g (f x)))
b = (transp (λ i → A (η (f x) (~ i))) i0 a)
q : transp (λ i → A (f (ε x i))) i0 (transp (λ i → A (η (f x) (~ i))) i0 a) ≡ a
q = transp (λ i → A (f (ε x i))) i0 b ≡⟨ i ⟩
transp (λ i → A (η (f x) i)) i0 b ≡⟨ transportTransport⁻ (λ i → A (η (f x) i)) a ⟩
a ∎
where
i : (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (η (f x) i)) i0 b)
i = subst (λ p → (transp (λ i → A (f (ε x i))) i0 b) ≡ (transp (λ i → A (p i)) i0 b))
(τ x) refl
-- Using the result above we can prove the following quite useful result.
Σ-change-of-variable-≃ : {X : Type ℓ} {Y : Type ℓ'} {A : Y → Type ℓ''} (f : X → Y)
→ (isEquiv f) → ((Σ X (A ∘ f)) ≃ (Σ Y A))
Σ-change-of-variable-≃ f isEquivf =
isoToEquiv (Σ-change-of-variable-Iso f (equiv→HAEquiv (f , isEquivf) .snd))
-- A structure is a type-family S : Type ℓ → Type ℓ', i.e. for X : Type ℓ and s : S X, the pair (X , s)
-- means that X is equipped with a S-structure, which is witnessed by s.
-- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism.
-- This will be implemented by a function ι
-- that gives us for any two types with S-structure (X , s) and (Y , t) a family:
-- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ''
-- Note that for any equivalence (f , e) : X ≃ Y the type ι (X , s) (Y , t) (f , e) need not to be
-- a proposition. Indeed this type should correspond to the ways s and t can be identified
-- as S-structures. This we call a standard notion of structure.
SNS : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') → Type (ℓ-max (ℓ-max (ℓ-suc ℓ) ℓ') ℓ'')
SNS {ℓ = ℓ} S ι = ∀ {X : (Type ℓ)} (s t : S X) → ((s ≡ t) ≃ ι (X , s) (X , t) (idEquiv X))
-- Escardo's ρ can actually be defined from this:
ρ : {ι : StrEquiv S ℓ''} (θ : SNS S ι) (A : TypeWithStr ℓ S) → (ι A A (idEquiv (typ A)))
ρ θ A = equivFun (θ (str A) (str A)) refl
-- We introduce the notation a bit differently:
_≃[_]_ : (A : TypeWithStr ℓ S) (ι : StrEquiv S ℓ'') (B : TypeWithStr ℓ S) → (Type (ℓ-max ℓ ℓ''))
A ≃[ ι ] B = Σ[ f ∈ ((typ A) ≃ (typ B)) ] (ι A B f)
Id→homEq : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'')
→ (ρ : (A : TypeWithStr ℓ S) → ι A A (idEquiv (typ A)))
→ (A B : TypeWithStr ℓ S) → A ≡ B → (A ≃[ ι ] B)
Id→homEq S ι ρ A B p = J (λ y x → A ≃[ ι ] y) (idEquiv (typ A) , ρ A) p
-- Use a PathP version of Escardó's homomorphism-lemma
hom-lemma-dep : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι)
→ (A B : TypeWithStr ℓ S)
→ (p : (typ A) ≡ (typ B))
→ (PathP (λ i → S (p i)) (str A) (str B)) ≃ (ι A B (pathToEquiv p))
hom-lemma-dep S ι θ A B p = (J P (λ s → γ s) p) (str B)
where
P = (λ y x → (s : S y) → PathP (λ i → S (x i)) (str A) s ≃ ι A (y , s) (pathToEquiv x))
γ : (s : S (typ A)) → ((str A) ≡ s) ≃ ι A ((typ A) , s) (pathToEquiv refl)
γ s = subst (λ f → ((str A) ≡ s) ≃ ι A ((typ A) , s) f) (sym pathToEquivRefl) (θ (str A) s)
-- Define the inverse of Id→homEq directly.
ua-lemma : (A B : Type ℓ) (e : A ≃ B) → (pathToEquiv (ua e)) ≡ e
ua-lemma A B e = EquivJ (λ A f → (pathToEquiv (ua f)) ≡ f)
(subst (λ r → pathToEquiv r ≡ idEquiv B) (sym uaIdEquiv) pathToEquivRefl)
e
homEq→Id : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι)
→ (A B : TypeWithStr ℓ S) → (A ≃[ ι ] B) → A ≡ B
homEq→Id S ι θ A B (f , φ) = ΣPathP (p , q)
where
p = ua f
ψ : ι A B (pathToEquiv p)
ψ = subst (λ g → ι A B g) (sym (ua-lemma (typ A) (typ B) f)) φ
q : PathP (λ i → S (p i)) (str A) (str B)
q = equivFun (invEquiv (hom-lemma-dep S ι θ A B p)) ψ
-- Proof of the SIP:
SIP : (S : Type ℓ → Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι)
→ (A B : TypeWithStr ℓ S) → ((A ≡ B) ≃ (A ≃[ ι ] B))
SIP S ι θ A B =
(A ≡ B) ≃⟨ i ⟩
(Σ[ p ∈ (typ A) ≡ (typ B) ] PathP (λ i → S (p i)) (str A) (str B)) ≃⟨ ii ⟩
(Σ[ p ∈ (typ A) ≡ (typ B) ] (ι A B (pathToEquiv p))) ≃⟨ iii ⟩
(A ≃[ ι ] B) ■
where
i = invEquiv ΣPath≃PathΣ
ii = Σ-cong-≃ (hom-lemma-dep S ι θ A B)
iii = Σ-change-of-variable-≃ pathToEquiv (equivIsEquiv univalence)
-- A simple example: pointed types
pointed-structure : Type ℓ → Type ℓ
pointed-structure X = X
Pointed-Type : Type (ℓ-suc ℓ)
Pointed-Type {ℓ = ℓ} = Σ (Type ℓ) pointed-structure
pointed-ι : (A B : Pointed-Type) → (A .fst) ≃ (B. fst) → Type ℓ
pointed-ι (X , x) (Y , y) f = (equivFun f) x ≡ y
pointed-is-sns : SNS {ℓ = ℓ} pointed-structure pointed-ι
pointed-is-sns s t = idEquiv (s ≡ t)
pointed-type-sip : (X Y : Type ℓ) (x : X) (y : Y)
→ (Σ[ f ∈ X ≃ Y ] (f .fst) x ≡ y) ≃ ((X , x) ≡ (Y , y))
pointed-type-sip X Y x y = invEquiv (SIP pointed-structure pointed-ι pointed-is-sns (X , x) (Y , y))
| 39.561644
| 115
| 0.500231
|
37423864d848ff876c2abf613b6840c3a695a06c
| 12,740
|
agda
|
Agda
|
cohesion/david_jaz_261/Flat.agda
|
glangmead/formalization
|
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
|
[
"CC0-1.0"
] | 6
|
2021-10-06T17:39:22.000Z
|
2022-02-13T05:51:12.000Z
|
cohesion/david_jaz_261/Flat.agda
|
glangmead/formalization
|
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
|
[
"CC0-1.0"
] | null | null | null |
cohesion/david_jaz_261/Flat.agda
|
glangmead/formalization
|
497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a
|
[
"CC0-1.0"
] | null | null | null |
{-# OPTIONS --without-K --rewriting #-}
module Flat where
open import lib.Basics
open import Basics
open import Bool
open import lib.types.Bool
open import lib.NType2
open import lib.Equivalence2
open import lib.types.Suspension
open import lib.types.IteratedSuspension
open import lib.types.Pushout as Pushout
open import lib.types.Truncation
-- The type of points of A, ♭ A, is inductively generated by the crisp elements of A
data ♭ {@♭ l : ULevel} (@♭ A : Type l) : Type l where
_^♭ : A ::→ ♭ A
-- The deduced mapping principle of ♭ A: it represents crisp functions.
♭-elim : {c : ULevel} {@♭ l : ULevel}{@♭ A : Type l}
→ (C : ♭ A → Type c)
→ ((@♭ u : A) → C (u ^♭))
→ (x : ♭ A) → C x
♭-elim C f (x ^♭) = f x
syntax ♭-elim C (λ u → t) a = let♭ u ^♭:= a in♭ t in-family C
{- Mike's "let" notation (following Felix) -}
-- An implicit version of ♭-elim
let♭ : {@♭ i j : ULevel} {@♭ A : Type i} {B : ♭ A → Type j}
(a : ♭ A) (f : (@♭ u : A) → B (u ^♭))
→ B a
let♭ (u ^♭) f = f u
syntax let♭ a (λ u → t) = let♭ u ^♭:= a in♭ t
♭-rec : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} {B : Type j}
→ (A ::→ B) → (♭ A) → B
♭-rec f (a ^♭) = f a
♭-rec-eq : {@♭ i : ULevel} {j : ULevel} {@♭ A : Type i} {B : Type j}
→ (A ::→ B) ≃ (♭ A → B)
♭-rec-eq {A = A} {B = B} =
equiv ♭-rec
(λ f → λ (@♭ a : A) → f (a ^♭)) -- fro
(λ f → λ= (λ { (a ^♭) → refl })) -- to-fro
(λ f → refl) -- fro-to
-- Crisp function types, but from A : ♭ Type
_♭:→_ : {@♭ i : ULevel} {j : ULevel} (A : ♭ (Type i)) (B : Type j) → Type (lmax i j)
(A ^♭) ♭:→ B = A ::→ B
-- The inclusion of the points of A into A
_↓♭ : {@♭ i : ULevel} {@♭ A : Type i} → (♭ A → A)
_↓♭ (x ^♭) = x
-- The (judgemental) computation rule for mapping out of points
♭-β : {@♭ i : ULevel} {@♭ A : Type i} (@♭ a : ♭ A)
→ ((a ↓♭) ^♭) == a
♭-β (a ^♭) = refl
-- Application of crisp functions to crisp equalities
-- Used mostly to apply _^♭.
♭-ap : {@♭ i j : ULevel} {@♭ A : Type i} {B : Type j}
(f : (@♭ a : A) → B) {@♭ x y : A} (@♭ p : x == y)
→ (f x) == (f y)
♭-ap f refl = refl
-- ♭ is a functor
♭→ : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j}
→ (@♭ f : A → B) → (♭ A → ♭ B)
♭→ f (x ^♭) = (f x) ^♭
-- The naturality square of the inclusion of points (judgemental!)
♭→-nat : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j} (@♭ f : A → B)
→ (a : ♭ A) → (f ∘ _↓♭) a == (_↓♭ ∘ (♭→ f)) a
♭→-nat f (a ^♭) = refl
-- Proof of functoriality
♭→∘ : {@♭ i j k : ULevel} {@♭ A : Type i} {@♭ B : Type j} {@♭ C : Type k}
{@♭ f : A → B} {@♭ g : B → C}
→ ♭→ (g ∘ f) == (♭→ g) ∘ (♭→ f)
♭→∘ {f = f} {g = g} =
λ= (λ a → -- We test on elements, but
let♭ u ^♭:= a in♭ -- might as well assume those elements are crisp
refl -- where it follows by definition.
in-family (λ a → (♭→ (g ∘ f)) a == ((♭→ g) ∘ (♭→ f)) a) )
-- ♭→ preserves crisp equivalences
♭→e : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j}
→ (@♭ e : A ≃ B) → (♭ A) ≃ (♭ B)
♭→e e =
equiv (♭→ (–> e))
(♭→ (<– e))
(λ { (a ^♭) → ♭-ap _^♭ (<–-inv-r e a) })
(λ { (a ^♭) → ♭-ap _^♭ (<–-inv-l e a) })
-- A type is discrete if the inclusion of its point is an equivalence.
_is-discrete : {@♭ l : ULevel} → (@♭ A : Type l) → Type l
_is-discrete {l} A = is-equiv {l} {l} {♭ A} {A} _↓♭
-- The equivalence between the points of a discrete type and itself
discrete-eq : {@♭ l : ULevel} {@♭ A : Type l} → A is-discrete → (♭ A) ≃ A
discrete-eq = _↓♭ ,_
_is-discrete-is-a-prop : {@♭ l : ULevel} (@♭ A : Type l) → (A is-discrete) is-a-prop
A is-discrete-is-a-prop = is-equiv-is-prop
is-discrete-prop : {@♭ l : ULevel} → SubtypeProp (♭ (Type l)) l
is-discrete-prop = (λ { (A ^♭) → A is-discrete }) , (λ { (A ^♭) → A is-discrete-is-a-prop })
-- The subtype of discrete types
Discrete : (@♭ l : ULevel) → Type (lsucc l)
Discrete l = Subtype is-discrete-prop
Discrete-_-Type_ : (@♭ n : ℕ₋₂) (@♭ i : ULevel) → Type (lsucc i)
Discrete- n -Type i = Subtype prop
where prop : SubtypeProp (♭ (n -Type i)) i
prop = (λ { (A ^♭) → (fst A) is-discrete }) , (λ { (A ^♭) → (fst A) is-discrete-is-a-prop })
DiscSet : (@♭ i : ULevel) → Type (lsucc i)
DiscSet i = Discrete- ⟨ S (S O) ⟩₋₂ -Type i
DiscSet₀ = DiscSet lzero
∈Disc : {@♭ i : ULevel} (A : DiscSet i) → Type i
∈Disc A = ((♭→ ∈) (fst A)) ↓♭
DiscSet-to-Set : {@♭ i : ULevel} → DiscSet i → hSet i
DiscSet-to-Set A = (fst A) ↓♭
-- DiscSet_is-discrete : {@♭ i : ULevel} → (@♭ A : DiscSet i) → (∈Disc A) is-discrete
-- DiscSet A is-discrete = {!(snd A)!}
-- Just in case, we apply univalence to the discrete-eq
discrete-id : {@♭ l : ULevel} {@♭ A : Type l} → A is-discrete → (♭ A) == A
discrete-id p = ua (discrete-eq p)
-- Obviously, the points of a type are discrete
♭-is-discrete : {@♭ l : ULevel} {@♭ A : Type l} → (♭ A) is-discrete
♭-is-discrete {_} {A} =
_↓♭ is-an-equivalence-because
fro is-inverse-by
to-fro
and
fro-to
where
fro : ♭ A → ♭ (♭ A)
fro (a ^♭) = (a ^♭) ^♭
to-fro : (a : ♭ A) → ((fro a) ↓♭) == a
to-fro (a ^♭) = refl
fro-to : (a : ♭ (♭ A)) → fro (a ↓♭) == a
fro-to ((a ^♭) ^♭) = refl
-- To prove the ♭i is an equivalence, it suffices to give a section of it.
_is-discrete-because_is-section-by_ : {@♭ l : ULevel} (@♭ A : Type l)
(@♭ s : A → ♭ A) (@♭ p : (a : A) → ((s a) ↓♭)== a)
→ A is-discrete
A is-discrete-because s is-section-by p =
_↓♭ is-an-equivalence-because s is-inverse-by p and
(λ { (a ^♭) → ! (♭-β (s a)) ∙ (♭-ap _^♭ (p a))})
-- ♭ commutes with identity types in the following sense
module _ {@♭ i : ULevel} {@♭ A : Type i} where
♭-identity-eq : (@♭ x y : A) → ♭ (x == y) ≃ ((x ^♭) == (y ^♭))
♭-identity-eq _ _ = equiv to fro to-fro fro-to
where
to : {@♭ x y : A} → ♭ (x == y) → ((x ^♭) == (y ^♭))
to (refl ^♭) = refl
fro : {@♭ x y : A} → ((x ^♭) == (y ^♭)) → ♭ (x == y)
fro refl = refl ^♭
to-fro : {@♭ x y : A} → (p : (x ^♭) == (y ^♭)) → (to (fro p) == p)
to-fro refl = refl
fro-to : {@♭ x y : A} → (p : ♭ (x == y)) → fro (to p) == p
fro-to (refl ^♭) = refl
{- From Tslil:
There once was a Bear in a Zoo
Who didn't know quite what to do
It bored him so
To walk to and fro
So he flipped it and walked fro and to
-}
-- ♭ preserves crisp level.
♭-preserves-level : {@♭ i : ULevel} {@♭ A : Type i}
{@♭ n : ℕ₋₂} (@♭ p : has-level n A)
→ has-level n (♭ A)
♭-preserves-level {_}{A}{⟨-2⟩} p =
has-level-in ((a ^♭) ,
(λ {(y ^♭) → (–> (♭-identity-eq a y)) ((contr-path p y )^♭)}))
where -- If A contracts onto a, then ♭ A contracts onto a ^♭
a = contr-center p
♭-preserves-level {_}{A}{S n} p =
has-level-in (λ {(x ^♭) (y ^♭) →
equiv-preserves-level
(♭-identity-eq x y)
{{♭-preserves-level {_}{(x == y)}{n} (has-level-apply p x y)}}})
{-
Because the equality types of ♭ A are themselves ♭ (x == y) for x y : A,
and because we know that x == y has level n if A has level (S n), we can recurse
to show that ♭ (x == y) has level n and therefore ♭ A has level (S n).
-}
-- A version of ♭ that acts on n-types.
♭ₙ : {@♭ i : ULevel} {@♭ n : ℕ₋₂}
→ (@♭ A : n -Type i) → (n -Type i)
♭ₙ A = (♭ (fst A)) , ♭-preserves-level (snd A)
♭-Trunc-map : {@♭ i : ULevel} {@♭ n : ℕ₋₂} (@♭ X : Type i)
→ (Trunc n (♭ X)) → ♭ (Trunc n X)
♭-Trunc-map X =
Trunc-elim {{p = ♭-preserves-level Trunc-level}}
(λ { (a ^♭) → [ a ] ^♭ })
-- Until ♯ works we have to postulate this.
♭-Trunc-eq : {@♭ i : ULevel} {@♭ n : ℕ₋₂} (@♭ X : Type i)
→ (Trunc n (♭ X)) ≃ ♭ (Trunc n X)
♭-Trunc-eq X = (♭-Trunc-map X) , unproven
where
postulate unproven : (♭-Trunc-map X) is-an-equiv
⊤-is-discrete : ⊤ is-discrete
⊤-is-discrete = _↓♭ is-an-equivalence-because
(λ {unit → unit ^♭}) is-inverse-by
(λ {unit → refl})
and
(λ {(unit ^♭) → refl})
-- ♭ commutes with coproducts.
♭-commutes-with-⊔ : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j}
→ ♭ (A ⊔ B) ≃ (♭ A) ⊔ (♭ B)
♭-commutes-with-⊔ = to ,
(to is-an-equivalence-because
fro is-inverse-by
(λ { (inl (a ^♭)) → refl ;
(inr (b ^♭)) → refl })
and
(λ { ((inl a) ^♭) → refl ;
((inr b) ^♭) → refl }))
where
to : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j}
→ ♭ (A ⊔ B) → (♭ A) ⊔ (♭ B)
to ((inl a) ^♭) = inl (a ^♭)
to ((inr b) ^♭) = inr (b ^♭)
fro : {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : Type j}
→ (♭ A) ⊔ (♭ B) → ♭ (A ⊔ B)
fro (inl (a ^♭)) = (inl a) ^♭
fro (inr (b ^♭)) = (inr b) ^♭
-- ♭ commutes with Σ types for crisp families.
module _ {@♭ i j : ULevel} {@♭ A : Type i} {@♭ B : A → Type j} where
♭-commutes-with-Σ : ♭ (Σ A B) ≃ Σ (♭ A) (λ a → let♭ u ^♭:= a in♭ ♭ (B u))
♭-commutes-with-Σ = equiv to fro ((λ { ((a ^♭) , (b ^♭)) → refl })) ((λ { ((a , b) ^♭) → refl }))
where
to : ♭ (Σ A B) → Σ (♭ A) (λ a → let♭ u ^♭:= a in♭ ♭ (B u))
to ((a , b) ^♭) = ((a ^♭) , (b ^♭))
fro : Σ (♭ A) (λ a → let♭ u ^♭:= a in♭ ♭ (B u)) → ♭ (Σ A B)
fro ((a ^♭) , (b ^♭)) = (a , b) ^♭
ℕ-is-discrete : ℕ is-discrete
ℕ-is-discrete =
ℕ is-discrete-because fro is-section-by to-fro
where
fro : ℕ → ♭ ℕ
fro O = O ^♭
fro (S n) = (♭→ S) (fro n)
to-fro : (n : ℕ) → ((fro n) ↓♭) == n
to-fro O = refl
to-fro (S n) = (fro (S n)) ↓♭
=⟨ ! ((♭→-nat S) (fro n)) ⟩
(S ∘ _↓♭) (fro n)
=⟨ ap S (to-fro n) ⟩
S n
=∎
{-
When proving this equality by induction on n, the case of 0 presents no problem,
but when we work with (S n), we have to deal with the fact that n is not crisp.
However, as a constructor (and therefore defined in the empty context), S is crisp.
Therefore, we can use the naturality sqaure of ♭ to commute it past fro, and then recurse.
-}
-- We copy the proof for ULevel (or would but we can't pattern match on lsucc?)
{-
ULevel-is-discrete : ULevel is-discrete
ULevel-is-discrete =
ULevel is-discrete-because fro is-section-by to-fro
where
fro : ULevel → ♭ ULevel
fro lzero = lzero ^♭
fro (lsucc n) = (♭→ lsucc) (fro n)
to-fro : (n : ULevel) → ♭i (fro n) == n
to-fro lzero = refl
to-fro (lsucc n) = ♭i (fro (lsucc n))
=⟨ ! ((♭→-nat lsucc) (fro n)) ⟩
(lsucc ∘ ♭i) (fro n)
=⟨ ap lsucc (to-fro n) ⟩
lsucc n
=∎ -}
Bool-is-discrete : Bool is-discrete
Bool-is-discrete = Bool is-discrete-because fro is-section-by to-fro
where
fro : Bool → ♭ Bool
fro true = true ^♭
fro false = false ^♭
to-fro : (b : Bool) → ((fro b) ↓♭)== b
to-fro true = refl
to-fro false = refl
Bool-to-♭PropT₀ : Bool → ♭ PropT₀
Bool-to-♭PropT₀ true = True ^♭
Bool-to-♭PropT₀ false = False ^♭
Bool-to-♭PropT₀∘↓♭=♭→Bool-to-PropT₀ : Bool-to-♭PropT₀ ∘ _↓♭ == (♭→ Bool-to-PropT₀)
Bool-to-♭PropT₀∘↓♭=♭→Bool-to-PropT₀ = λ= (λ { (true ^♭) → refl ; (false ^♭) → refl })
{-
_-Sphere-is-discrete : (@♭ n : ℕ) → (Sphere n) is-discrete
n -Sphere-is-discrete = (Sphere n) is-discrete-because
(fro n) is-section-by {!!}
where
♭-north : {@♭ n : ℕ} → ♭ (Sphere n)
♭-north {O} = true ^♭
♭-north {S n} = {!north!}
♭-south : {@♭ n : ℕ} → ♭ (Sphere n)
♭-south = {!!}
fro : (@♭ n : ℕ) → (Sphere n) → ♭ (Sphere n)
fro O = λ { true → true ^♭ ; false → false ^♭ }
fro (S n) = {!Susp-rec {A = Sphere n} {C = ♭ (Sphere (S n))} ♭-north ♭-south!}
-}
| 35.686275
| 102
| 0.437834
|
c78376d7f8313ea856a07cf7ec0ab9e223341862
| 2,551
|
agda
|
Agda
|
Cubical/Algebra/Ideal.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Ideal.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Ideal.agda
|
knrafto/cubical
|
f6771617374bfe65a7043d00731fed5a673aa729
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Ideal where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Logic using ([_]; _∈_)
open import Cubical.Algebra.Ring
private
variable
ℓ : Level
module _ (R' : Ring {ℓ}) where
open Ring R' renaming (Carrier to R)
{- by default, 'ideal' means two-sided ideal -}
record isIdeal (I : R → hProp ℓ) : Type ℓ where
field
+-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I
-closed : {x : R} → x ∈ I → - x ∈ I
0r-closed : 0r ∈ I
·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I
·-closedRight : {x : R} → (r : R) → x ∈ I → x · r ∈ I
Ideal : Type _
Ideal = Σ[ I ∈ (R → hProp ℓ) ] isIdeal I
record isLeftIdeal (I : R → hProp ℓ) : Type ℓ where
field
+-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I
-closed : {x : R} → x ∈ I → - x ∈ I
0r-closed : 0r ∈ I
·-closedLeft : {x : R} → (r : R) → x ∈ I → r · x ∈ I
record isRightIdeal (I : R → hProp ℓ) : Type ℓ where
field
+-closed : {x y : R} → x ∈ I → y ∈ I → (x + y) ∈ I
-closed : {x : R} → x ∈ I → - x ∈ I
0r-closed : 0r ∈ I
·-closedRight : {x : R} → (r : R) → x ∈ I → x · r ∈ I
{- Examples of ideals -}
zeroSubset : (x : R) → hProp ℓ
zeroSubset x = (x ≡ 0r) , isSetRing R' _ _
open Theory R'
isIdealZeroIdeal : isIdeal zeroSubset
isIdealZeroIdeal = record
{ +-closed = λ x≡0 y≡0 → _ + _ ≡⟨ cong (λ u → u + _) x≡0 ⟩
0r + _ ≡⟨ +-lid _ ⟩
_ ≡⟨ y≡0 ⟩
0r ∎
; -closed = λ x≡0 → - _ ≡⟨ cong (λ u → - u) x≡0 ⟩
- 0r ≡⟨ 0-selfinverse ⟩
0r ∎
; 0r-closed = refl
; ·-closedLeft = λ r x≡0 → r · _ ≡⟨ cong (λ u → r · u) x≡0 ⟩
r · 0r ≡⟨ 0-rightNullifies r ⟩
0r ∎
; ·-closedRight = λ r x≡0 → _ · r ≡⟨ cong (λ u → u · r) x≡0 ⟩
0r · r ≡⟨ 0-leftNullifies r ⟩
0r ∎
}
zeroIdeal : Ideal
zeroIdeal = zeroSubset , isIdealZeroIdeal
| 35.430556
| 84
| 0.402195
|
367e01d9d88e3c7e5ad63091a7f536c8fb0a3828
| 201
|
agda
|
Agda
|
Cubical/HITs/Ints/BiInvInt.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Ints/BiInvInt.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/HITs/Ints/BiInvInt.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Ints.BiInvInt where
open import Cubical.HITs.Ints.BiInvInt.Base public
open import Cubical.HITs.Ints.BiInvInt.Properties public
| 28.714286
| 56
| 0.781095
|
03220a37c9ba8e8cb16e8a2ad2688365256ad822
| 2,525
|
agda
|
Agda
|
src/LibraBFT/Impl/Consensus/Liveness/ProposalGenerator.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Impl/Consensus/Liveness/ProposalGenerator.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
src/LibraBFT/Impl/Consensus/Liveness/ProposalGenerator.agda
|
LaudateCorpus1/bft-consensus-agda
|
a4674fc473f2457fd3fe5123af48253cfb2404ef
|
[
"UPL-1.0"
] | null | null | null |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block
import LibraBFT.Impl.Consensus.ConsensusTypes.BlockData as BlockData
import LibraBFT.Impl.Types.BlockInfo as BlockInfo
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.Encode as Encode
open import Util.Prelude
module LibraBFT.Impl.Consensus.Liveness.ProposalGenerator where
ensureHighestQuorumCertM : Round → LBFT (Either ErrLog QuorumCert)
generateNilBlockM : Round → LBFT (Either ErrLog Block)
generateNilBlockM round =
ensureHighestQuorumCertM round ∙?∙ (ok ∘ Block.newNil round)
generateProposalM : Instant → Round → LBFT (Either ErrLog BlockData)
generateProposalM _now round = do
lrg ← use (lProposalGenerator ∙ pgLastRoundGenerated)
ifD lrg <?ℕ round
then (do
lProposalGenerator ∙ pgLastRoundGenerated ∙= round
ensureHighestQuorumCertM round ∙?∙ λ hqc -> do
payload ← ifD BlockInfo.hasReconfiguration (hqc ^∙ qcCertifiedBlock)
-- IMPL-DIFF : create a fake TX
then pure (Encode.encode 0) -- (Payload [])
else pure (Encode.encode 0) -- use pgTxnManager <*> use (rmEpochState ∙ esEpoch) <*> pure round
use (lRoundManager ∙ pgAuthor) >>= λ where
nothing → bail fakeErr -- ErrL (here ["lRoundManager.pgAuthor", "Nothing"])
(just author) →
ok (BlockData.newProposal payload author round {-pure blockTimestamp <*>-} hqc))
else bail fakeErr
-- where
-- here t = "ProposalGenerator" ∷ "generateProposal" ∷ t
ensureHighestQuorumCertM round = do
hqc ← use (lBlockStore ∙ bsHighestQuorumCert)
ifD‖ (hqc ^∙ qcCertifiedBlock ∙ biRound) ≥?ℕ round ≔
bail fakeErr {- ErrL (here [ "given round is lower than hqc round"
, show (hqc^.qcCertifiedBlock.biRound) ]) -}
‖ hqc ^∙ qcEndsEpoch ≔
bail fakeErr {-ErrEpochEndedNoProposals (here ["further proposals not allowed"])-}
‖ otherwise≔
ok hqc
-- where
-- here t = "ProposalGenerator":"ensureHighestQuorumCertM":lsR round:t
| 44.298246
| 117
| 0.682772
|
11d8ac2d58427f9ad07f1085742f42296663bcac
| 13,067
|
agda
|
Agda
|
Cubical/Algebra/CommAlgebra/Localisation.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | 1
|
2021-10-31T17:32:49.000Z
|
2021-10-31T17:32:49.000Z
|
Cubical/Algebra/CommAlgebra/Localisation.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/CommAlgebra/Localisation.agda
|
guilhermehas/cubical
|
ce3120d3f8d692847b2744162bcd7a01f0b687eb
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommAlgebra.Localisation where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Powerset
open import Cubical.Data.Sigma
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_
; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Data.FinData
open import Cubical.Reflection.StrictEquiv
open import Cubical.Structures.Axioms
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommRing.Base
open import Cubical.Algebra.CommRing.Properties
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.RadicalIdeal
open import Cubical.Algebra.CommRing.Localisation.Base
open import Cubical.Algebra.CommRing.Localisation.UniversalProperty
open import Cubical.Algebra.CommRing.Localisation.InvertingElements
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Algebra
open import Cubical.Algebra.CommAlgebra.Base
open import Cubical.Algebra.CommAlgebra.Properties
open import Cubical.Algebra.CommRingSolver.Reflection
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.HITs.PropositionalTruncation as PT
private
variable
ℓ ℓ′ : Level
module AlgLoc (R' : CommRing ℓ)
(S' : ℙ (fst R')) (SMultClosedSubset : isMultClosedSubset R' S') where
open isMultClosedSubset
private R = fst R'
open CommAlgebraStr
open IsAlgebraHom
open CommRingStr (snd R') renaming (_+_ to _+r_ ; _·_ to _·r_ ; ·Rid to ·rRid)
open RingTheory (CommRing→Ring R')
open CommRingTheory R'
open Loc R' S' SMultClosedSubset
open S⁻¹RUniversalProp R' S' SMultClosedSubset
open CommAlgChar R'
S⁻¹RAsCommAlg : CommAlgebra R' ℓ
S⁻¹RAsCommAlg = toCommAlg (S⁻¹RAsCommRing , /1AsCommRingHom)
hasLocAlgUniversalProp : (A : CommAlgebra R' ℓ)
→ (∀ s → s ∈ S' → _⋆_ (snd A) s (1a (snd A)) ∈ (CommAlgebra→CommRing A) ˣ)
→ Type (ℓ-suc ℓ)
hasLocAlgUniversalProp A _ = (B : CommAlgebra R' ℓ)
→ (∀ s → s ∈ S' → _⋆_ (snd B) s (1a (snd B)) ∈ (CommAlgebra→CommRing B) ˣ)
→ isContr (CommAlgebraHom A B)
S⋆1⊆S⁻¹Rˣ : ∀ s → s ∈ S' → _⋆_ (snd S⁻¹RAsCommAlg) s (1a (snd S⁻¹RAsCommAlg)) ∈ S⁻¹Rˣ
S⋆1⊆S⁻¹Rˣ s s∈S' = subst-∈ S⁻¹Rˣ
(cong [_] (≡-× (sym (·rRid s)) (Σ≡Prop (λ x → S' x .snd) (sym (·rRid _)))))
(S/1⊆S⁻¹Rˣ s s∈S')
S⁻¹RHasAlgUniversalProp : hasLocAlgUniversalProp S⁻¹RAsCommAlg S⋆1⊆S⁻¹Rˣ
S⁻¹RHasAlgUniversalProp B' S⋆1⊆Bˣ = χᴬ , χᴬuniqueness
where
B = fromCommAlg B' .fst
φ = fromCommAlg B' .snd
open CommRingStr (snd B) renaming (_·_ to _·b_ ; 1r to 1b ; ·Lid to ·bLid)
χ : CommRingHom S⁻¹RAsCommRing B
χ = S⁻¹RHasUniversalProp B φ S⋆1⊆Bˣ .fst .fst
χcomp : ∀ r → fst χ (r /1) ≡ fst φ r
χcomp = funExt⁻ (S⁻¹RHasUniversalProp B φ S⋆1⊆Bˣ .fst .snd)
χᴬ : CommAlgebraHom S⁻¹RAsCommAlg B'
fst χᴬ = fst χ
pres0 (snd χᴬ) = IsRingHom.pres0 (snd χ)
pres1 (snd χᴬ) = IsRingHom.pres1 (snd χ)
pres+ (snd χᴬ) = IsRingHom.pres+ (snd χ)
pres· (snd χᴬ) = IsRingHom.pres· (snd χ)
pres- (snd χᴬ) = IsRingHom.pres- (snd χ)
pres⋆ (snd χᴬ) r x = path
where
path : fst χ ((r /1) ·ₗ x) ≡ _⋆_ (snd B') r (fst χ x)
path = fst χ ((r /1) ·ₗ x) ≡⟨ IsRingHom.pres· (snd χ) _ _ ⟩
fst χ (r /1) ·b fst χ x ≡⟨ cong (_·b fst χ x) (χcomp r) ⟩
fst φ r ·b fst χ x ≡⟨ refl ⟩
_⋆_ (snd B') r 1b ·b fst χ x ≡⟨ ⋆-lassoc (snd B') _ _ _ ⟩
_⋆_ (snd B') r (1b ·b fst χ x) ≡⟨ cong (_⋆_ (snd B') r) (·bLid _) ⟩
_⋆_ (snd B') r (fst χ x) ∎
χᴬuniqueness : (ψ : CommAlgebraHom S⁻¹RAsCommAlg B') → χᴬ ≡ ψ
χᴬuniqueness ψ = Σ≡Prop (λ _ → isPropIsAlgebraHom _ _ _ _)
(cong (fst ∘ fst) (χuniqueness (ψ' , funExt ψ'r/1≡φr)))
where
χuniqueness = S⁻¹RHasUniversalProp B φ S⋆1⊆Bˣ .snd
ψ' : CommRingHom S⁻¹RAsCommRing B
fst ψ' = fst ψ
IsRingHom.pres0 (snd ψ') = pres0 (snd ψ)
IsRingHom.pres1 (snd ψ') = pres1 (snd ψ)
IsRingHom.pres+ (snd ψ') = pres+ (snd ψ)
IsRingHom.pres· (snd ψ') = pres· (snd ψ)
IsRingHom.pres- (snd ψ') = pres- (snd ψ)
ψ'r/1≡φr : ∀ r → fst ψ (r /1) ≡ fst φ r
ψ'r/1≡φr r =
fst ψ (r /1) ≡⟨ cong (fst ψ) (sym (·ₗ-rid _)) ⟩
fst ψ (_⋆_ (snd S⁻¹RAsCommAlg) r (1a (snd S⁻¹RAsCommAlg))) ≡⟨ pres⋆ (snd ψ) _ _ ⟩
_⋆_ (snd B') r (fst ψ (1a (snd S⁻¹RAsCommAlg))) ≡⟨ cong (_⋆_ (snd B') r) (pres1 (snd ψ)) ⟩
_⋆_ (snd B') r 1b ∎
-- an immediate corollary:
isContrHomS⁻¹RS⁻¹R : isContr (CommAlgebraHom S⁻¹RAsCommAlg S⁻¹RAsCommAlg)
isContrHomS⁻¹RS⁻¹R = S⁻¹RHasAlgUniversalProp S⁻¹RAsCommAlg S⋆1⊆S⁻¹Rˣ
S⁻¹RAlgCharEquiv : (A' : CommRing ℓ) (φ : CommRingHom R' A')
→ PathToS⁻¹R R' S' SMultClosedSubset A' φ
→ CommAlgebraEquiv S⁻¹RAsCommAlg (toCommAlg (A' , φ))
S⁻¹RAlgCharEquiv A' φ cond = toCommAlgebraEquiv _ _
(S⁻¹RCharEquiv R' S' SMultClosedSubset A' φ cond)
(RingHom≡ (S⁻¹RHasUniversalProp A' φ (cond .φS⊆Aˣ) .fst .snd))
where open PathToS⁻¹R
-- the special case of localizing at a single element
R[1/_]AsCommAlgebra : {R : CommRing ℓ} → fst R → CommAlgebra R ℓ
R[1/_]AsCommAlgebra {R = R} f = S⁻¹RAsCommAlg [ f ⁿ|n≥0] (powersFormMultClosedSubset f)
where
open AlgLoc R
open InvertingElementsBase R
module AlgLocTwoSubsets (R' : CommRing ℓ)
(S₁ : ℙ (fst R')) (S₁MultClosedSubset : isMultClosedSubset R' S₁)
(S₂ : ℙ (fst R')) (S₂MultClosedSubset : isMultClosedSubset R' S₂) where
open isMultClosedSubset
open CommRingStr (snd R') hiding (is-set)
open RingTheory (CommRing→Ring R')
open Loc R' S₁ S₁MultClosedSubset renaming (S⁻¹R to S₁⁻¹R ;
S⁻¹RAsCommRing to S₁⁻¹RAsCommRing)
open Loc R' S₂ S₂MultClosedSubset renaming (S⁻¹R to S₂⁻¹R ;
S⁻¹RAsCommRing to S₂⁻¹RAsCommRing)
open AlgLoc R' S₁ S₁MultClosedSubset renaming ( S⁻¹RAsCommAlg to S₁⁻¹RAsCommAlg
; S⋆1⊆S⁻¹Rˣ to S₁⋆1⊆S₁⁻¹Rˣ
; S⁻¹RHasAlgUniversalProp to S₁⁻¹RHasAlgUniversalProp
; isContrHomS⁻¹RS⁻¹R to isContrHomS₁⁻¹RS₁⁻¹R)
open AlgLoc R' S₂ S₂MultClosedSubset renaming ( S⁻¹RAsCommAlg to S₂⁻¹RAsCommAlg
; S⋆1⊆S⁻¹Rˣ to S₂⋆1⊆S₂⁻¹Rˣ
; S⁻¹RHasAlgUniversalProp to S₂⁻¹RHasAlgUniversalProp
; isContrHomS⁻¹RS⁻¹R to isContrHomS₂⁻¹RS₂⁻¹R)
open IsAlgebraHom
open AlgebraHoms
open CommAlgebraHoms
open CommAlgebraStr ⦃...⦄
private
R = fst R'
S₁⁻¹Rˣ = S₁⁻¹RAsCommRing ˣ
S₂⁻¹Rˣ = S₂⁻¹RAsCommRing ˣ
instance
_ = snd S₁⁻¹RAsCommAlg
_ = snd S₂⁻¹RAsCommAlg
isContrS₁⁻¹R≡S₂⁻¹R : (∀ s₁ → s₁ ∈ S₁ → s₁ ⋆ 1a ∈ S₂⁻¹Rˣ)
→ (∀ s₂ → s₂ ∈ S₂ → s₂ ⋆ 1a ∈ S₁⁻¹Rˣ)
→ isContr (S₁⁻¹RAsCommAlg ≡ S₂⁻¹RAsCommAlg)
isContrS₁⁻¹R≡S₂⁻¹R S₁⊆S₂⁻¹Rˣ S₂⊆S₁⁻¹Rˣ = isOfHLevelRetractFromIso 0
(equivToIso (invEquiv (CommAlgebraPath _ _ _)))
isContrS₁⁻¹R≅S₂⁻¹R
where
χ₁ : CommAlgebraHom S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg
χ₁ = S₁⁻¹RHasAlgUniversalProp S₂⁻¹RAsCommAlg S₁⊆S₂⁻¹Rˣ .fst
χ₂ : CommAlgebraHom S₂⁻¹RAsCommAlg S₁⁻¹RAsCommAlg
χ₂ = S₂⁻¹RHasAlgUniversalProp S₁⁻¹RAsCommAlg S₂⊆S₁⁻¹Rˣ .fst
χ₁∘χ₂≡id : χ₁ ∘a χ₂ ≡ idCommAlgebraHom _
χ₁∘χ₂≡id = isContr→isProp isContrHomS₂⁻¹RS₂⁻¹R _ _
χ₂∘χ₁≡id : χ₂ ∘a χ₁ ≡ idCommAlgebraHom _
χ₂∘χ₁≡id = isContr→isProp isContrHomS₁⁻¹RS₁⁻¹R _ _
IsoS₁⁻¹RS₂⁻¹R : Iso S₁⁻¹R S₂⁻¹R
Iso.fun IsoS₁⁻¹RS₂⁻¹R = fst χ₁
Iso.inv IsoS₁⁻¹RS₂⁻¹R = fst χ₂
Iso.rightInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₁∘χ₂≡id)
Iso.leftInv IsoS₁⁻¹RS₂⁻¹R = funExt⁻ (cong fst χ₂∘χ₁≡id)
isContrS₁⁻¹R≅S₂⁻¹R : isContr (CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg)
isContrS₁⁻¹R≅S₂⁻¹R = center , uniqueness
where
center : CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg
fst center = isoToEquiv IsoS₁⁻¹RS₂⁻¹R
pres0 (snd center) = pres0 (snd χ₁)
pres1 (snd center) = pres1 (snd χ₁)
pres+ (snd center) = pres+ (snd χ₁)
pres· (snd center) = pres· (snd χ₁)
pres- (snd center) = pres- (snd χ₁)
pres⋆ (snd center) = pres⋆ (snd χ₁)
uniqueness : (φ : CommAlgebraEquiv S₁⁻¹RAsCommAlg S₂⁻¹RAsCommAlg) → center ≡ φ
uniqueness φ = Σ≡Prop (λ _ → isPropIsAlgebraHom _ _ _ _)
(equivEq (cong fst
(S₁⁻¹RHasAlgUniversalProp S₂⁻¹RAsCommAlg S₁⊆S₂⁻¹Rˣ .snd
(AlgebraEquiv→AlgebraHom φ))))
isPropS₁⁻¹R≡S₂⁻¹R : isProp (S₁⁻¹RAsCommAlg ≡ S₂⁻¹RAsCommAlg)
isPropS₁⁻¹R≡S₂⁻¹R S₁⁻¹R≡S₂⁻¹R =
isContr→isProp (isContrS₁⁻¹R≡S₂⁻¹R S₁⊆S₂⁻¹Rˣ S₂⊆S₁⁻¹Rˣ) S₁⁻¹R≡S₂⁻¹R
where
S₁⊆S₂⁻¹Rˣ : ∀ s₁ → s₁ ∈ S₁ → s₁ ⋆ 1a ∈ S₂⁻¹Rˣ
S₁⊆S₂⁻¹Rˣ s₁ s₁∈S₁ =
transport (λ i → _⋆_ ⦃ S₁⁻¹R≡S₂⁻¹R i .snd ⦄ s₁ (1a ⦃ S₁⁻¹R≡S₂⁻¹R i .snd ⦄)
∈ (CommAlgebra→CommRing (S₁⁻¹R≡S₂⁻¹R i)) ˣ) (S₁⋆1⊆S₁⁻¹Rˣ s₁ s₁∈S₁)
S₂⊆S₁⁻¹Rˣ : ∀ s₂ → s₂ ∈ S₂ → s₂ ⋆ 1a ∈ S₁⁻¹Rˣ
S₂⊆S₁⁻¹Rˣ s₂ s₂∈S₂ =
transport (λ i → _⋆_ ⦃ (sym S₁⁻¹R≡S₂⁻¹R) i .snd ⦄ s₂ (1a ⦃ (sym S₁⁻¹R≡S₂⁻¹R) i .snd ⦄)
∈ (CommAlgebra→CommRing ((sym S₁⁻¹R≡S₂⁻¹R) i)) ˣ) (S₂⋆1⊆S₂⁻¹Rˣ s₂ s₂∈S₂)
-- A crucial result for the construction of the structure sheaf
module DoubleAlgLoc (R : CommRing ℓ) (f g : (fst R)) where
open Exponentiation R
open InvertingElementsBase
open CommRingStr (snd R) hiding (·Rid)
open isMultClosedSubset
open DoubleLoc R f g hiding (R[1/fg]≡R[1/f][1/g])
open CommAlgChar R
open AlgLoc R ([_ⁿ|n≥0] R (f · g)) (powersFormMultClosedSubset R (f · g))
renaming (S⁻¹RAlgCharEquiv to R[1/fg]AlgCharEquiv)
open CommIdeal R hiding (subst-∈) renaming (_∈_ to _∈ᵢ_)
open isCommIdeal
open RadicalIdeal R
private
⟨_⟩ : (fst R) → CommIdeal
⟨ f ⟩ = ⟨ replicateFinVec 1 f ⟩[ R ]
R[1/fg]AsCommAlgebra = R[1/_]AsCommAlgebra {R = R} (f · g)
R[1/fg]ˣ = R[1/_]AsCommRing R (f · g) ˣ
R[1/g]AsCommAlgebra = R[1/_]AsCommAlgebra {R = R} g
R[1/g]ˣ = R[1/_]AsCommRing R g ˣ
R[1/f][1/g]AsCommRing = R[1/_]AsCommRing (R[1/_]AsCommRing R f)
[ g , 1r , powersFormMultClosedSubset R f .containsOne ]
R[1/f][1/g]AsCommAlgebra = toCommAlg (R[1/f][1/g]AsCommRing , /1/1AsCommRingHom)
R[1/fg]≡R[1/f][1/g] : R[1/fg]AsCommAlgebra ≡ R[1/f][1/g]AsCommAlgebra
R[1/fg]≡R[1/f][1/g] = uaCommAlgebra (R[1/fg]AlgCharEquiv _ _ pathtoR[1/fg])
doubleLocCancel : g ∈ᵢ √ ⟨ f ⟩ → R[1/f][1/g]AsCommAlgebra ≡ R[1/g]AsCommAlgebra
doubleLocCancel g∈√⟨f⟩ = sym R[1/fg]≡R[1/f][1/g] ∙ isContrR[1/fg]≡R[1/g] toUnit1 toUnit2 .fst
where
open S⁻¹RUniversalProp R ([_ⁿ|n≥0] R g) (powersFormMultClosedSubset R g)
renaming (_/1 to _/1ᵍ)
open S⁻¹RUniversalProp R ([_ⁿ|n≥0] R (f · g)) (powersFormMultClosedSubset R (f · g))
renaming (_/1 to _/1ᶠᵍ)
open AlgLocTwoSubsets R ([_ⁿ|n≥0] R (f · g)) (powersFormMultClosedSubset R (f · g))
([_ⁿ|n≥0] R g) (powersFormMultClosedSubset R g)
renaming (isContrS₁⁻¹R≡S₂⁻¹R to isContrR[1/fg]≡R[1/g])
open CommAlgebraStr ⦃...⦄ hiding (_·_ ; _+_)
instance
_ = snd R[1/fg]AsCommAlgebra
_ = snd R[1/g]AsCommAlgebra
toUnit1 : ∀ s → s ∈ [_ⁿ|n≥0] R (f · g) → s ⋆ 1a ∈ R[1/g]ˣ
toUnit1 s s∈[fgⁿ|n≥0] = subst-∈ R[1/g]ˣ (sym (·Rid (s /1ᵍ)))
(RadicalLemma.toUnit R g (f · g) (radHelper _ _ g∈√⟨f⟩) s s∈[fgⁿ|n≥0])
where
radHelper : ∀ x y → x ∈ᵢ √ ⟨ y ⟩ → x ∈ᵢ √ ⟨ y · x ⟩
radHelper x y = PT.rec ((√ ⟨ y · x ⟩) .fst x .snd) (uncurry helper1)
where
helper1 : (n : ℕ) → x ^ n ∈ᵢ ⟨ y ⟩ → x ∈ᵢ √ ⟨ y · x ⟩
helper1 n = PT.rec ((√ ⟨ y · x ⟩) .fst x .snd) (uncurry helper2)
where
helper2 : (α : FinVec (fst R) 1)
→ x ^ n ≡ linearCombination R α (replicateFinVec 1 y)
→ x ∈ᵢ √ ⟨ y · x ⟩
helper2 α p = ∣ (suc n) , ∣ α , cong (x ·_) p ∙ useSolver x y (α zero) ∣₁ ∣₁
where
useSolver : ∀ x y a → x · (a · y + 0r) ≡ a · (y · x) + 0r
useSolver = solve R
toUnit2 : ∀ s → s ∈ [_ⁿ|n≥0] R g → s ⋆ 1a ∈ R[1/fg]ˣ
toUnit2 s s∈[gⁿ|n≥0] = subst-∈ R[1/fg]ˣ (sym (·Rid (s /1ᶠᵍ)))
(RadicalLemma.toUnit R (f · g) g radHelper s s∈[gⁿ|n≥0])
where
radHelper : (f · g) ∈ᵢ √ ⟨ g ⟩
radHelper = ·Closed (snd (√ ⟨ g ⟩)) f (∈→∈√ _ _ (indInIdeal R _ zero))
| 41.351266
| 100
| 0.598225
|
d0a41a9ca2e8056c03805efcffb27bbd01939c20
| 633
|
agda
|
Agda
|
test/Succeed/ProjectionLikeFunctions.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/ProjectionLikeFunctions.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/ProjectionLikeFunctions.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Getting projection like functions right was a little tricky.
-- Here are the cases that didn't work and weren't caught by
-- existing test cases.
module ProjectionLikeFunctions where
record Wrap (A : Set) : Set where
constructor [_]
field unwrap : A
postulate
Nat : Set
n : Nat
Thm : Nat → Set
prf : ∀ n → Thm n
module M x (p : Thm x) (w : Wrap Nat) where
module W = Wrap w
module M′ = M n (prf n) ([ n ])
test₁ : Thm M′.W.unwrap
test₁ = prf n
eq! : ∀ x (S : Thm x) → Wrap Nat → Nat
eq! s S [n] = W.unwrap
module Local where
module W = Wrap [n]
test₂ : Thm (eq! n (prf n) [ n ])
test₂ = prf n
| 20.419355
| 63
| 0.614534
|
c760824c8197c9b39d46235b6a7d0b86c4d39a69
| 123
|
agda
|
Agda
|
test/Succeed/SafeFlagSafePragmas.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | null | null | null |
test/Succeed/SafeFlagSafePragmas.agda
|
favonia/agda
|
8d433b967567c08afe15d04a5cb63b6f6d8884ee
|
[
"BSD-2-Clause"
] | 6
|
2021-10-18T08:12:24.000Z
|
2021-11-24T08:31:10.000Z
|
test/Succeed/SafeFlagSafePragmas.agda
|
antoinevanmuylder/agda
|
bd59d5b07ffe02a43b28d186d95e1747aac5bc8c
|
[
"BSD-2-Clause"
] | null | null | null |
{-# OPTIONS --universe-polymorphism --no-irrelevant-projections --cubical-compatible #-}
module SafeFlagSafePragmas where
| 30.75
| 88
| 0.788618
|
14d178e916e787e6dadd9cc869074151e54239c1
| 504
|
agda
|
Agda
|
src/agda/FRP/JS/Geolocation.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | 63
|
2015-04-20T21:47:00.000Z
|
2022-02-28T09:46:14.000Z
|
src/agda/FRP/JS/Geolocation.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | null | null | null |
src/agda/FRP/JS/Geolocation.agda
|
agda/agda-frp-js
|
c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72
|
[
"MIT",
"BSD-3-Clause"
] | 7
|
2016-11-07T21:50:58.000Z
|
2022-03-12T11:39:38.000Z
|
-- Partial Agda bindings for the W3C Geolocation API
-- http://dev.w3.org/geo/api/spec-source.html
-- Not supporting the "read once" API or any of the options yet.
open import FRP.JS.Behaviour using ( Beh ; map )
open import FRP.JS.Geolocation.Coords using ( Coords )
open import FRP.JS.Maybe using ( Maybe )
open import FRP.JS.RSet using ( ⟦_⟧ ; ⟨_⟩ )
module FRP.JS.Geolocation where
postulate
geolocation : ⟦ Beh ⟨ Maybe Coords ⟩ ⟧
{-# COMPILED_JS geolocation require("agda.frp").geolocation #-}
| 31.5
| 64
| 0.720238
|
37d43470a0ea791917cfb8da8d4d86a3745d12f0
| 1,151
|
agda
|
Agda
|
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Poset.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Poset.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
test/asset/agda-stdlib-1.0/Relation/Binary/Properties/Poset.agda
|
omega12345/agda-mode
|
0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by posets
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Properties.Poset
{p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open Relation.Binary.Poset P hiding (trans)
open import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_
open import Relation.Binary.Properties.Preorder preorder
open import Function using (flip)
-- The inverse relation is also a poset.
invIsPartialOrder : IsPartialOrder _≈_ (flip _≤_)
invIsPartialOrder = record
{ isPreorder = invIsPreorder
; antisym = flip antisym
}
invPoset : Poset p₁ p₂ p₃
invPoset = record { isPartialOrder = invIsPartialOrder }
------------------------------------------------------------------------
-- Posets can be turned into strict partial orders
strictPartialOrder : StrictPartialOrder _ _ _
strictPartialOrder = record
{ isStrictPartialOrder = <-isStrictPartialOrder isPartialOrder
}
open StrictPartialOrder strictPartialOrder
| 29.512821
| 72
| 0.616855
|
cc0a71b7039ab92459af8727129df83e806e623e
| 1,701
|
agda
|
Agda
|
Cats/Category/Constructions/Equalizer.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | 24
|
2017-11-03T15:18:57.000Z
|
2021-08-06T05:00:46.000Z
|
Cats/Category/Constructions/Equalizer.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | null | null | null |
Cats/Category/Constructions/Equalizer.agda
|
JLimperg/cats
|
1ad7b243acb622d46731e9ae7029408db6e561f1
|
[
"MIT"
] | 1
|
2019-03-18T15:35:07.000Z
|
2019-03-18T15:35:07.000Z
|
{-# OPTIONS --without-K --safe #-}
module Cats.Category.Constructions.Equalizer where
open import Level
open import Cats.Category.Base
open import Cats.Util.Conv
import Cats.Category.Constructions.Mono as Mono
import Cats.Category.Constructions.Unique as Unique
module Build {lo la l≈} (Cat : Category lo la l≈) where
private open module Cat = Category Cat
open Cat.≈-Reasoning
open Mono.Build Cat
open Unique.Build Cat
record IsEqualizer {A B} (f g : A ⇒ B) {E} (e : E ⇒ A)
: Set (lo ⊔ la ⊔ l≈)
where
field
equalizes : f ∘ e ≈ g ∘ e
universal : ∀ {Z} (z : Z ⇒ A)
→ f ∘ z ≈ g ∘ z
→ ∃![ u ] (e ∘ u ≈ z)
record Equalizer {A B} (f g : A ⇒ B) : Set (lo ⊔ la ⊔ l≈) where
field
{E} : Obj
e : E ⇒ A
isEqualizer : IsEqualizer f g e
open IsEqualizer isEqualizer public
instance
HasObj-Equalizer : ∀ {A B} {f g : A ⇒ B}
→ HasObj (Equalizer f g) lo la l≈
HasObj-Equalizer = record { Cat = Cat ; _ᴼ = Equalizer.E }
HasArrow-Equalizer : ∀ {A B} {f g : A ⇒ B}
→ HasArrow (Equalizer f g) lo la l≈
HasArrow-Equalizer = record { Cat = Cat ; _⃗ = Equalizer.e }
equalizer→mono : ∀ {A B} {f g : A ⇒ B} {E} {e : E ⇒ A}
→ IsEqualizer f g e
→ IsMono e
equalizer→mono {f = f} {g} {E} {e} eql {Z} {i} {j} e∘i≈e∘j
= ∃!→≈ (universal (e ∘ j) lemma) e∘i≈e∘j ≈.refl
where
open IsEqualizer eql
lemma : f ∘ e ∘ j ≈ g ∘ e ∘ j
lemma
= begin
f ∘ e ∘ j
≈⟨ unassoc ⟩
(f ∘ e) ∘ j
≈⟨ ∘-resp-l equalizes ⟩
(g ∘ e) ∘ j
≈⟨ assoc ⟩
g ∘ e ∘ j
∎
open Build public
| 23.30137
| 65
| 0.519106
|
8bdd09752ddc9853aad58ccf12721d9551572f9a
| 604
|
agda
|
Agda
|
examples/lib/Logic/Structure/Applicative.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
examples/lib/Logic/Structure/Applicative.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
examples/lib/Logic/Structure/Applicative.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Logic.Structure.Applicative where
data Applicative (f : Set -> Set) : Set1 where
applicative :
(pure : {a : Set} -> a -> f a)
(_<*>_ : {a b : Set} -> f (a -> b) -> f a -> f b) ->
Applicative f
module ApplicativeM {f : Set -> Set}(App : Applicative f) where
private
pure' : Applicative f -> {a : Set} -> a -> f a
pure' (applicative p _) = p
app' : Applicative f -> {a b : Set} -> f (a -> b) -> f a -> f b
app' (applicative _ a) = a
pure : {a : Set} -> a -> f a
pure = pure' App
_<*>_ : {a b : Set} -> f (a -> b) -> f a -> f b
_<*>_ = app' App
| 24.16
| 67
| 0.490066
|
fdd8e1856cf05cb3faf5f444f63ec7a07ecb3c33
| 2,237
|
agda
|
Agda
|
LibraBFT/Impl/OBM/Logging/Logging.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 4
|
2020-12-16T19:43:41.000Z
|
2021-12-18T19:24:05.000Z
|
LibraBFT/Impl/OBM/Logging/Logging.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 72
|
2021-02-04T05:04:33.000Z
|
2022-03-25T05:36:11.000Z
|
LibraBFT/Impl/OBM/Logging/Logging.agda
|
oracle/bft-consensus-agda
|
49f8b1b70823be805d84ffc3157c3b880edb1e92
|
[
"UPL-1.0"
] | 6
|
2020-12-16T19:43:52.000Z
|
2022-02-18T01:04:32.000Z
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Util
open import LibraBFT.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.OBM.Logging.Logging where
-- NOTE: Logging operations change the structure of the program, and proofs about peer
-- operations are sensitive to this structure. Therefore, we add a "skeleton" of
-- logging operations so that future refinements do not break existing proofs.
-- In the future, we may wish to model and reason about errors and logging in more detail.
postulate -- TODO-1 : errText : Note, the existing Agda ErrLog constructors do not contain text.
errText : ErrLog → List String
errText' : ErrLog → String
logErr : ErrLog → LBFT Unit
logErr x = tell1 (LogErr x)
logInfo : InfoLog → LBFT Unit
logInfo x = tell1 (LogInfo x)
logEE : ∀ {A} → List String → LBFT A → LBFT A
logEE _ f = logInfo fakeInfo >> f >>= λ r → logInfo fakeInfo >> pure r
withErrCtx : List String → ErrLog → ErrLog
withErrCtx _ = id
withErrCtx' : ∀ {A} → List String → Either ErrLog A → Either ErrLog A
withErrCtx' ctx = λ where
(Left e) → Left (withErrCtx ctx e)
(Right b) → pure b
withErrCtxD'
: ∀ {ℓ} {E : Set → Set → Set ℓ} ⦃ _ : EitherLike E ⦄
→ ∀ {A : Set} → List String → E ErrLog A → EitherD ErrLog A
withErrCtxD' ctx e = case toEither e of λ where
(Left e) → fromEither $ Left (withErrCtx ctx e)
(Right b) → fromEither $ Right b
lcheck : ∀ {ℓ} {B : Set ℓ} ⦃ _ : ToBool B ⦄ → B → List String → Either ErrLog Unit
lcheck b t = case check (toBool b) t of λ where
(Left e) → Left fakeErr -- (ErrL [e])
(Right r) → Right r
lcheckInfo : ∀ {ℓ} {B : Set ℓ} ⦃ _ : ToBool B ⦄ → B → List String → Either ErrLog Unit
lcheckInfo b t = case check (toBool b) t of λ where
(Left _) → Left (ErrInfo fakeInfo {-InfoL [e]-})
(Right r) → Right r
| 37.915254
| 111
| 0.663835
|
5224f53b4e5f7c485569e497119e3295bf5f8c5a
| 2,809
|
agda
|
Agda
|
src/Tactic/Deriving/Quotable.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
src/Tactic/Deriving/Quotable.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
src/Tactic/Deriving/Quotable.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | null | null | null |
module Tactic.Deriving.Quotable where
open import Prelude
open import Container.Traversable
open import Tactic.Reflection
open import Tactic.Reflection.Quote.Class
open import Tactic.Deriving
private
-- Bootstrapping
qVis : Visibility → Term
qVis visible = con (quote visible) []
qVis hidden = con (quote hidden) []
qVis instance′ = con (quote instance′) []
qRel : Relevance → Term
qRel relevant = con (quote relevant) []
qRel irrelevant = con (quote irrelevant) []
qArgInfo : ArgInfo → Term
qArgInfo (arg-info v r) = con₂ (quote arg-info) (qVis v) (qRel r)
qArg : Arg Term → Term
qArg (arg i x) = con₂ (quote arg) (qArgInfo i) x
qList : List Term → Term
qList = foldr (λ x xs → con₂ (quote List._∷_) x xs)
(con₀ (quote List.[]))
-- Could compute this from the type of the dictionary constructor
quoteType : Name → TC Type
quoteType d =
caseM instanceTelescope d (quote Quotable) of λ
{ (tel , vs) → pure $ telPi tel $ def d vs `→ def (quote Term) []
}
dictConstructor : TC Name
dictConstructor =
caseM getConstructors (quote Quotable) of λ
{ (c ∷ []) → pure c
; _ → typeErrorS "impossible" }
patArgs : Telescope → List (Arg Pattern)
patArgs tel = zipWith (λ x (_ , a) → var x <$ a) (reverse (from 0 for (length tel))) tel
quoteArgs′ : Nat → Telescope → List Term
quoteArgs′ 0 _ = []
quoteArgs′ _ [] = []
quoteArgs′ (suc n) ((x , a) ∷ tel) =
qArg (def₁ (quote `) (var n []) <$ a) ∷ quoteArgs′ n tel
quoteArgs : Nat → Telescope → Term
quoteArgs pars tel = qList $ replicate pars (qArg $ hArg (con₀ (quote Term.unknown))) ++
quoteArgs′ (length tel) tel
constructorClause : Nat → Name → TC Clause
constructorClause pars c = do
tel ← drop pars ∘ fst ∘ telView <$> getType c
pure (clause tel
(vArg (con c (patArgs tel)) ∷ [])
(con₂ (quote Term.con) (lit (name c)) (quoteArgs pars tel)))
quoteClauses : Name → TC (List Clause)
quoteClauses d = do
n ← getParameters d
caseM getConstructors d of λ where
[] → pure [ absurd-clause (("()" , vArg unknown) ∷ []) (vArg absurd ∷ []) ]
cs → mapM (constructorClause n) cs
declareQuotableInstance : Name → Name → TC ⊤
declareQuotableInstance iname d =
declareDef (iArg iname) =<< instanceType d (quote Quotable)
defineQuotableInstance : Name → Name → TC ⊤
defineQuotableInstance iname d = do
fname ← freshName ("quote[" & show d & "]")
declareDef (vArg fname) =<< quoteType d
dictCon ← dictConstructor
defineFun iname (clause [] [] (con₁ dictCon (def₀ fname)) ∷ [])
defineFun fname =<< quoteClauses d
return _
deriveQuotable : Name → Name → TC ⊤
deriveQuotable iname d =
declareQuotableInstance iname d >>
defineQuotableInstance iname d
| 31.920455
| 90
| 0.640441
|
cccb315ebad54a56a9a7f841b23e92d477522578
| 440
|
agda
|
Agda
|
bool-test.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 29
|
2019-02-06T13:09:31.000Z
|
2022-03-04T15:05:12.000Z
|
bool-test.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 8
|
2018-07-09T22:53:38.000Z
|
2022-03-22T03:43:34.000Z
|
bool-test.agda
|
rfindler/ial
|
f3f0261904577e930bd7646934f756679a6cbba6
|
[
"MIT"
] | 17
|
2018-12-03T22:38:15.000Z
|
2021-11-28T20:13:21.000Z
|
module bool-test where
open import bool
open import eq
open import level
~~tt : ~ ~ tt ≡ tt
~~tt = refl
~~ff : ~ ~ ff ≡ ff
~~ff = refl
~~-elim2 : ∀ (b : 𝔹) → ~ ~ b ≡ b
~~-elim2 tt = ~~tt
~~-elim2 ff = ~~ff
~~tt' : ~ ~ tt ≡ tt
~~tt' = refl{lzero}{𝔹}{tt}
~~ff' : ~ ~ ff ≡ ff
~~ff' = refl{lzero}{𝔹}{ff}
test1 : 𝔹
test1 = tt && ff
test2 : 𝔹
test2 = tt && tt
test1-ff : test1 ≡ ff
test1-ff = refl
test2-tt : test2 ≡ tt
test2-tt = refl
| 12.941176
| 32
| 0.525
|
cc02bf734213fdd740c9ba2fcc8ab09c8a289a45
| 93
|
agda
|
Agda
|
test/Fail/Issue215.agda
|
pthariensflame/agda
|
222c4c64b2ccf8e0fc2498492731c15e8fef32d4
|
[
"BSD-3-Clause"
] | 1
|
2018-10-10T17:08:44.000Z
|
2018-10-10T17:08:44.000Z
|
test/fail/Issue215.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | null | null | null |
test/fail/Issue215.agda
|
np/agda-git-experiment
|
20596e9dd9867166a64470dd24ea68925ff380ce
|
[
"MIT"
] | 1
|
2022-03-12T11:35:18.000Z
|
2022-03-12T11:35:18.000Z
|
module Issue215 where
open import Imports.Bool
{-# COMPILED_DATA Bool Bool True False #-}
| 13.285714
| 42
| 0.752688
|
36b8802cc2e0436d5cb67c5b0083ed861b9286e6
| 3,750
|
agda
|
Agda
|
src/Data/Finitude/Permutation.agda
|
tizmd/agda-finitary
|
abacd166f63582b7395d9cc10b6323c0f69649e5
|
[
"MIT"
] | null | null | null |
src/Data/Finitude/Permutation.agda
|
tizmd/agda-finitary
|
abacd166f63582b7395d9cc10b6323c0f69649e5
|
[
"MIT"
] | null | null | null |
src/Data/Finitude/Permutation.agda
|
tizmd/agda-finitary
|
abacd166f63582b7395d9cc10b6323c0f69649e5
|
[
"MIT"
] | null | null | null |
module Data.Finitary.Permutation where
open import Data.Nat
open import Data.Fin
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)
open import Function.Inverse as Inv using (Inverse)
import Function.Equality as F
open import Function.LeftInverse using (_LeftInverseOf_)
open import Data.Finitary
open import Data.Vec as Vec using (Vec)
open import Data.Vec.Distinct as Distinct using (Distinct)
open import Data.Product hiding (swap)
Permutation : ℕ → Set
Permutation n = Finitary (P.setoid (Fin n)) n
identity : ∀ {n} → Permutation n
identity = Inv.id
swap : ∀ {n} → Fin n → Fin n → Permutation n
swap {n} i j = record {
to = P.→-to-⟶ swap′
; from = P.→-to-⟶ swap′
; inverse-of = record {
left-inverse-of = swap′-involutive
; right-inverse-of = swap′-involutive
}
}
where
open import Data.Fin.Properties as FinP
open import Relation.Nullary
open import Data.Empty using (⊥-elim)
swap′ : Fin n → Fin n
swap′ k with k FinP.≟ i
swap′ k | yes k≡i = j
swap′ k | no ¬p with k FinP.≟ j
swap′ k | no ¬p | yes k≡j = i
swap′ k | no ¬p | no ¬p₁ = k
swap′-involutive : ∀ k → swap′ (swap′ k) ≡ k
swap′-involutive k with k FinP.≟ i
swap′-involutive k | yes k≡i with k≡i | j FinP.≟ i
swap′-involutive _ | yes k≡i | P.refl | yes j≡i = j≡i
swap′-involutive _ | yes k≡i | P.refl | no j≢i with j FinP.≟ j
swap′-involutive _ | yes k≡i | P.refl | no j≢i | yes j≡j = P.refl
swap′-involutive _ | yes k≡i | P.refl | no j≢i | no j≢j = ⊥-elim (j≢j P.refl)
swap′-involutive k | no k≢i with k FinP.≟ j
swap′-involutive k | no k≢i | yes k≡j with k≡j | i FinP.≟ i
swap′-involutive k | no k≢i | yes k≡j | P.refl | yes P.refl = P.refl
swap′-involutive k | no k≢i | yes k≡j | P.refl | no i≢i = ⊥-elim (i≢i P.refl)
swap′-involutive k | no k≢i | no k≢j = lemma k≢i k≢j
where
open P.≡-Reasoning
lemma : ∀ {k} → k ≢ i → k ≢ j → swap′ k ≡ k
lemma {k} k≢i k≢j with k FinP.≟ i
lemma k≢i k≢j | yes k≡i = ⊥-elim (k≢i k≡i)
lemma {k} k≢i k≢j | no ¬k≡i with k FinP.≟ j
lemma {k} k≢i k≢j | no ¬k≡i | yes k≡j = ⊥-elim (k≢j k≡j)
lemma {k} k≢i k≢j | no ¬k≡i | no ¬p = P.refl
shift : ∀ {n} → Permutation n → Permutation (ℕ.suc n)
shift {n} p = record {
to = P.→-to-⟶ (shift′ Perm.to)
; from = P.→-to-⟶ (shift′ Perm.from)
; inverse-of = record {
left-inverse-of = shift′-inverse-of Perm.left-inverse-of
; right-inverse-of = shift′-inverse-of Perm.right-inverse-of
}
}
where
module Perm = Inverse p
shift′ : P.setoid (Fin n) F.⟶ P.setoid (Fin n) → Fin (ℕ.suc n) → Fin (ℕ.suc n)
shift′ f Fin.zero = Fin.zero
shift′ f (Fin.suc i) = Fin.suc (f F.⟨$⟩ i)
shift′-inverse-of : ∀ {from : P.setoid (Fin n) F.⟶ P.setoid (Fin n)}{to : P.setoid (Fin n) F.⟶ P.setoid (Fin n)} → from LeftInverseOf to → (P.→-to-⟶ (shift′ from)) LeftInverseOf (P.→-to-⟶ (shift′ to))
shift′-inverse-of inv Fin.zero = P.refl
shift′-inverse-of inv (Fin.suc i) = P.cong Fin.suc (inv i)
Perm→Distinct : ∀ {n} → Permutation n → ∃ λ (xs : Vec (Fin n) n) → Distinct xs
Perm→Distinct {n} p = , xs-distinct
where
open Inverse p renaming (to to f)
open import Data.Vec.Properties
xs-distinct : Distinct (Vec.tabulate (f F.⟨$⟩_))
xs-distinct = P.subst Distinct (P.sym (tabulate-allFin _))
(Distinct.map injection (Distinct.allFin n))
| 41.666667
| 206
| 0.5456
|
0d55825f0121970649e1051364ee2871d2d06eaa
| 1,105
|
agda
|
Agda
|
Data/Fin/Indexed/Properties.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 6
|
2020-09-11T17:45:41.000Z
|
2021-11-16T08:11:34.000Z
|
Data/Fin/Indexed/Properties.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | null | null | null |
Data/Fin/Indexed/Properties.agda
|
oisdk/agda-playground
|
97a3aab1282b2337c5f43e2cfa3fa969a94c11b7
|
[
"MIT"
] | 1
|
2021-11-11T12:30:21.000Z
|
2021-11-11T12:30:21.000Z
|
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Indexed.Properties where
open import Agda.Builtin.Nat using (_<_)
open import Data.Nat.Base
open import Data.Fin.Indexed.Base
open import Data.Bool
open import Data.Maybe.Base
private variable n m k : ℕ
weaken : ∀ {n} → Fin n → Fin (suc n)
weaken {suc n} f0 = f0
weaken {suc n} (fs x) = fs (weaken x)
-- x \\ y | x < y = just x
-- | x ≡ y = nothing
-- | x > y = just (x - 1)
_\\_ : Fin (suc n) → Fin (suc n) → Maybe (Fin n)
f0 \\ f0 = nothing
fs i \\ f0 = just i
_\\_ {suc n} (fs i) (fs j) = mapMaybe fs (i \\ j)
_\\_ {suc n} (f0 ) (fs j) = just f0
insert : Fin (suc n) → Fin n → Fin (suc n)
insert f0 j = fs j
insert (fs i) f0 = f0
insert (fs i) (fs j) = fs (insert i j)
weakens : ∀ n → Fin m → Fin (n + m)
weakens zero x = x
weakens (suc n) x = weaken (weakens n x)
_∔_ : Fin n → Fin m → Fin (n + m)
f0 ∔ m = weakens _ m
fs n ∔ m = fs (n ∔ m)
under : (Fin m → Fin k) → Fin (n + m) → Fin (n + k)
under {n = zero } f x = f x
under {n = suc n} f (fs x) = fs (under f x)
under {n = suc n} f f0 = f0
| 25.697674
| 51
| 0.542081
|
4e60fbf127487434dca6be4c3933c9b906a6b1fe
| 5,152
|
agda
|
Agda
|
BasicIS4/Semantics/BasicKripkeBozicDosen.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 29
|
2016-07-03T18:51:56.000Z
|
2022-01-01T10:29:18.000Z
|
BasicIS4/Semantics/BasicKripkeBozicDosen.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | 1
|
2018-06-10T09:11:22.000Z
|
2018-06-10T09:11:22.000Z
|
BasicIS4/Semantics/BasicKripkeBozicDosen.agda
|
mietek/hilbert-gentzen
|
fcd187db70f0a39b894fe44fad0107f61849405c
|
[
"X11"
] | null | null | null |
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Basic Kripke-style semantics with abstract worlds, for soundness only.
-- Božić-Došen-style conditions.
module BasicIS4.Semantics.BasicKripkeBozicDosen where
open import BasicIS4.Syntax.Common public
-- Intuitionistic modal Kripke models, with frame conditions given by Božić-Došen.
record Model : Set₁ where
infix 3 _⊩ᵅ_
field
World : Set
-- Intuitionistic accessibility; preorder.
_≤_ : World → World → Set
refl≤ : ∀ {w} → w ≤ w
trans≤ : ∀ {w w′ w″} → w ≤ w′ → w′ ≤ w″ → w ≤ w″
-- Modal accessibility; preorder.
_R_ : World → World → Set
reflR : ∀ {w} → w R w
transR : ∀ {w w′ w″} → w R w′ → w′ R w″ → w R w″
-- Forcing for atomic propositions; monotonic.
_⊩ᵅ_ : World → Atom → Set
mono⊩ᵅ : ∀ {P w w′} → w ≤ w′ → w ⊩ᵅ P → w′ ⊩ᵅ P
-- Composition of accessibility.
_≤⨾R_ : World → World → Set
_≤⨾R_ = _≤_ ⨾ _R_
_R⨾≤_ : World → World → Set
_R⨾≤_ = _R_ ⨾ _≤_
-- Minor persistence condition.
--
-- w′ v′ → v′
-- ◌───R───● → ●
-- │ → │
-- ≤ ξ,ζ → ≤
-- │ → │
-- ● → ●───R───◌
-- w → w v
--
-- w″ → w″
-- ● → ●
-- │ → │
-- ξ′,ζ′ ≤ → │
-- │ → │
-- ●───R───◌ → ≤
-- │ v′ → │
-- ξ,ζ ≤ → │
-- │ → │
-- ●───R───◌ → ●───────R───────◌
-- w v → w v″
field
≤⨾R→R⨾≤ : ∀ {v′ w} → w ≤⨾R v′ → w R⨾≤ v′
reflR⨾≤ : ∀ {w} → w R⨾≤ w
reflR⨾≤ {w} = w , (reflR , refl≤)
transR⨾≤ : ∀ {w′ w w″} → w R⨾≤ w′ → w′ R⨾≤ w″ → w R⨾≤ w″
transR⨾≤ {w′} (v , (ζ , ξ)) (v′ , (ζ′ , ξ′)) = let v″ , (ζ″ , ξ″) = ≤⨾R→R⨾≤ (w′ , (ξ , ζ′))
in v″ , (transR ζ ζ″ , trans≤ ξ″ ξ′)
open Model {{…}} public
-- Forcing in a particular world of a particular model.
module _ {{_ : Model}} where
infix 3 _⊩_
_⊩_ : World → Ty → Set
w ⊩ α P = w ⊩ᵅ P
w ⊩ A ▻ B = ∀ {w′} → w ≤ w′ → w′ ⊩ A → w′ ⊩ B
w ⊩ □ A = ∀ {v′} → w R v′ → v′ ⊩ A
w ⊩ A ∧ B = w ⊩ A × w ⊩ B
w ⊩ ⊤ = 𝟙
infix 3 _⊩⋆_
_⊩⋆_ : World → Cx Ty → Set
w ⊩⋆ ∅ = 𝟙
w ⊩⋆ Ξ , A = w ⊩⋆ Ξ × w ⊩ A
-- Monotonicity with respect to intuitionistic accessibility.
module _ {{_ : Model}} where
mono⊩ : ∀ {A w w′} → w ≤ w′ → w ⊩ A → w′ ⊩ A
mono⊩ {α P} ξ s = mono⊩ᵅ ξ s
mono⊩ {A ▻ B} ξ s = λ ξ′ a → s (trans≤ ξ ξ′) a
mono⊩ {□ A} ξ s = λ ζ → let v , (ζ′ , ξ′) = ≤⨾R→R⨾≤ (_ , (ξ , ζ))
in mono⊩ {A} ξ′ (s ζ′)
mono⊩ {A ∧ B} ξ s = mono⊩ {A} ξ (π₁ s) , mono⊩ {B} ξ (π₂ s)
mono⊩ {⊤} ξ s = ∙
mono⊩⋆ : ∀ {Γ w w′} → w ≤ w′ → w ⊩⋆ Γ → w′ ⊩⋆ Γ
mono⊩⋆ {∅} ξ ∙ = ∙
mono⊩⋆ {Γ , A} ξ (γ , a) = mono⊩⋆ {Γ} ξ γ , mono⊩ {A} ξ a
-- Additional useful equipment.
module _ {{_ : Model}} where
_⟪$⟫_ : ∀ {A B w} → w ⊩ A ▻ B → w ⊩ A → w ⊩ B
s ⟪$⟫ a = s refl≤ a
⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A
⟪K⟫ {A} a ξ = K (mono⊩ {A} ξ a)
⟪S⟫ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ A ▻ B → w ⊩ A → w ⊩ C
⟪S⟫ {A} {B} {C} s₁ s₂ a = _⟪$⟫_ {B} {C} (_⟪$⟫_ {A} {B ▻ C} s₁ a) (_⟪$⟫_ {A} {B} s₂ a)
⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ ξ s₂ ξ′ a = let s₁′ = mono⊩ {A ▻ B ▻ C} (trans≤ ξ ξ′) s₁
s₂′ = mono⊩ {A ▻ B} ξ′ s₂
in ⟪S⟫ {A} {B} {C} s₁′ s₂′ a
_⟪D⟫_ : ∀ {A B w} → w ⊩ □ (A ▻ B) → w ⊩ □ A → w ⊩ □ B
_⟪D⟫_ {A} {B} s₁ s₂ ζ = let s₁′ = s₁ ζ
s₂′ = s₂ ζ
in _⟪$⟫_ {A} {B} s₁′ s₂′
_⟪D⟫′_ : ∀ {A B w} → w ⊩ □ (A ▻ B) → w ⊩ □ A ▻ □ B
_⟪D⟫′_ {A} {B} s₁ ξ = _⟪D⟫_ {A} {B} (mono⊩ {□ (A ▻ B)} ξ s₁)
⟪↑⟫ : ∀ {A w} → w ⊩ □ A → w ⊩ □ □ A
⟪↑⟫ s ζ ζ′ = s (transR ζ ζ′)
⟪↓⟫ : ∀ {A w} → w ⊩ □ A → w ⊩ A
⟪↓⟫ s = s reflR
_⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} {B} a ξ = _,_ (mono⊩ {A} ξ a)
-- Forcing in a particular world of a particular model, for sequents.
module _ {{_ : Model}} where
infix 3 _⊩_⇒_
_⊩_⇒_ : World → Cx Ty → Ty → Set
w ⊩ Γ ⇒ A = w ⊩⋆ Γ → w ⊩ A
infix 3 _⊩_⇒⋆_
_⊩_⇒⋆_ : World → Cx Ty → Cx Ty → Set
w ⊩ Γ ⇒⋆ Ξ = w ⊩⋆ Γ → w ⊩⋆ Ξ
-- Entailment, or forcing in all worlds of all models, for sequents.
infix 3 _⊨_
_⊨_ : Cx Ty → Ty → Set₁
Γ ⊨ A = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx Ty → Cx Ty → Set₁
Γ ⊨⋆ Ξ = ∀ {{_ : Model}} {w : World} → w ⊩ Γ ⇒⋆ Ξ
infix 3 _⁏_⊨_
_⁏_⊨_ : Cx Ty → Cx Ty → Ty → Set₁
Γ ⁏ Δ ⊨ A = ∀ {{_ : Model}} {w : World}
→ w ⊩⋆ Γ → (∀ {v′} → w R v′ → v′ ⊩⋆ Δ) → w ⊩ A
-- Additional useful equipment, for sequents.
module _ {{_ : Model}} where
lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩ Γ ⇒ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ
| 28.94382
| 93
| 0.365295
|
4e48c0a07b1123fd546631f177b491d01366c48c
| 2,413
|
agda
|
Agda
|
Cubical/HITs/Susp/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Susp/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/HITs/Susp/Properties.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Susp.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Data.Bool
open import Cubical.HITs.Join
open import Cubical.HITs.Susp.Base
open Iso
Susp-iso-joinBool : ∀ {ℓ} {A : Type ℓ} → Iso (Susp A) (join A Bool)
fun Susp-iso-joinBool north = inr true
fun Susp-iso-joinBool south = inr false
fun Susp-iso-joinBool (merid a i) = (sym (push a true) ∙ push a false) i
inv Susp-iso-joinBool (inr true ) = north
inv Susp-iso-joinBool (inr false) = south
inv Susp-iso-joinBool (inl _) = north
inv Susp-iso-joinBool (push a true i) = north
inv Susp-iso-joinBool (push a false i) = merid a i
rightInv Susp-iso-joinBool (inr true ) = refl
rightInv Susp-iso-joinBool (inr false) = refl
rightInv Susp-iso-joinBool (inl a) = sym (push a true)
rightInv Susp-iso-joinBool (push a true i) j = push a true (i ∨ ~ j)
rightInv Susp-iso-joinBool (push a false i) j
= hcomp (λ k → λ { (i = i0) → push a true (~ j)
; (i = i1) → push a false k
; (j = i1) → push a false (i ∧ k) })
(push a true (~ i ∧ ~ j))
leftInv Susp-iso-joinBool north = refl
leftInv Susp-iso-joinBool south = refl
leftInv (Susp-iso-joinBool {A = A}) (merid a i) j
= hcomp (λ k → λ { (i = i0) → transp (λ _ → Susp A) (k ∨ j) north
; (i = i1) → transp (λ _ → Susp A) (k ∨ j) (merid a k)
; (j = i1) → merid a (i ∧ k) })
(transp (λ _ → Susp A) j north)
Susp≃joinBool : ∀ {ℓ} {A : Type ℓ} → Susp A ≃ join A Bool
Susp≃joinBool = isoToEquiv Susp-iso-joinBool
Susp≡joinBool : ∀ {ℓ} {A : Type ℓ} → Susp A ≡ join A Bool
Susp≡joinBool = isoToPath Susp-iso-joinBool
congSuspEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≃ B → Susp A ≃ Susp B
congSuspEquiv {ℓ} {A} {B} h = isoToEquiv isom
where isom : Iso (Susp A) (Susp B)
fun isom north = north
fun isom south = south
fun isom (merid a i) = merid (fst h a) i
inv isom north = north
inv isom south = south
inv isom (merid a i) = merid (invEq h a) i
rightInv isom north = refl
rightInv isom south = refl
rightInv isom (merid a i) j = merid (retEq h a j) i
leftInv isom north = refl
leftInv isom south = refl
leftInv isom (merid a i) j = merid (secEq h a j) i
| 39.557377
| 73
| 0.61666
|
d17b1f0b66b9479fa486cb5f7b5261afc2461209
| 10,387
|
agda
|
Agda
|
Univalence/Obsolete/VectorLemmas.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 14
|
2015-08-18T21:40:15.000Z
|
2021-05-05T01:07:57.000Z
|
Univalence/Obsolete/VectorLemmas.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 4
|
2018-06-07T16:27:41.000Z
|
2021-10-29T20:41:23.000Z
|
Univalence/Obsolete/VectorLemmas.agda
|
JacquesCarette/pi-dual
|
003835484facfde0b770bc2b3d781b42b76184c1
|
[
"BSD-2-Clause"
] | 3
|
2016-05-29T01:56:33.000Z
|
2019-09-10T09:47:13.000Z
|
{-# OPTIONS --without-K #-}
module VectorLemmas where
open import Level using (Level)
open import Data.Vec
using (Vec; tabulate; []; _∷_; lookup; allFin)
renaming (_++_ to _++V_; map to mapV; concat to concatV)
open import Data.Vec.Properties
using (lookup-++-≥; lookup∘tabulate; tabulate-∘; tabulate∘lookup;
tabulate-allFin)
open import Function using (id;_∘_;flip)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; cong; cong₂; subst; trans; proof-irrelevance; module ≡-Reasoning)
open import Data.Nat using (ℕ; zero; suc; _+_; z≤n; _*_)
open import Data.Nat.Properties.Simple using (+-comm; +-right-identity)
open import Data.Fin using (Fin; zero; suc; inject+; raise; reduce≥)
open import Data.Fin.Properties using (toℕ-injective)
open import Data.Sum using (_⊎_; [_,_]′; inj₁; inj₂) renaming (map to map⊎)
open import SubstLemmas
open import FinNatLemmas
open import FiniteFunctions
------------------------------------------------------------------------------
-- Lemmas about map and tabulate
-- to make things look nicer
_!!_ : ∀ {m} {A : Set} → Vec A m → Fin m → A
v !! i = lookup i v
-- this is actually in Data.Vec.Properties, but over an arbitrary
-- Setoid. Specialize
map-id : ∀ {a n} {A : Set a} (xs : Vec A n) → mapV id xs ≡ xs
map-id [] = refl
map-id (x ∷ xs) = cong (_∷_ x) (map-id xs)
map-++-commute : ∀ {a b m n} {A : Set a} {B : Set b}
(f : B → A) (xs : Vec B m) {ys : Vec B n} →
mapV f (xs ++V ys) ≡ mapV f xs ++V mapV f ys
map-++-commute f [] = refl
map-++-commute f (x ∷ xs) = cong (λ z → f x ∷ z) (map-++-commute f xs)
-- this is too, but is done "point free", this version is more convenient
map-∘ : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c}
(f : B → C) (g : A → B) → (xs : Vec A n) →
mapV (f ∘ g) xs ≡ (mapV f ∘ mapV g) xs
map-∘ f g [] = refl
map-∘ f g (x ∷ xs) = cong (_∷_ (f (g x))) (map-∘ f g xs)
-- this looks trivial, why can't I find it?
lookup-map : ∀ {a b} {n : ℕ} {A : Set a} {B : Set b} →
(i : Fin n) → (f : A → B) →
(v : Vec A n) → lookup i (mapV f v) ≡ f (lookup i v)
lookup-map {n = 0} () _ _
lookup-map {n = suc n} zero f (x ∷ v) = refl
lookup-map {n = suc n} (suc i) f (x ∷ v) = lookup-map i f v
-- These are 'generalized' lookup into left/right parts of a Vector which
-- does not depend on the values in the Vector at all.
look-left : ∀ {m n} {a b c : Level} {A : Set a} {B : Set b} {C : Set c} →
(i : Fin m) → (f : A → C) → (g : B → C) → (vm : Vec A m) → (vn : Vec B n) →
lookup (inject+ n i) (mapV f vm ++V mapV g vn) ≡ f (lookup i vm)
look-left {0} () _ _ _ _
look-left {suc _} zero f g (x ∷ vm) vn = refl
look-left {suc _} (suc i) f g (x ∷ vm) vn = look-left i f g vm vn
look-right : ∀ {m n} {a b c : Level} {A : Set a} {B : Set b} {C : Set c} →
(i : Fin n) → (f : A → C) → (g : B → C) → (vm : Vec A m) → (vn : Vec B n) →
lookup (raise m i) (mapV f vm ++V mapV g vn) ≡ g (lookup i vn)
look-right {0} i f g vn vm = lookup-map i g vm
look-right {suc m} {0} () _ _ _ _
look-right {suc m} {suc n} i f g (x ∷ vn) vm = look-right i f g vn vm
-- variant
left!! : ∀ {m n} {C : Set} →
(i : Fin m) → (f : Fin m → C) → {g : Fin n → C} →
(tabulate f ++V tabulate g) !! (inject+ n i) ≡ f i
left!! {zero} () _
left!! {suc _} zero f = refl
left!! {suc _} (suc i) f = left!! i (f ∘ suc)
right!! : ∀ {m n} {C : Set} →
(i : Fin n) → {f : Fin m → C} → (g : Fin n → C) →
(tabulate f ++V tabulate g) !! (raise m i) ≡ g i
right!! {zero} i g = lookup∘tabulate g i
right!! {suc _} {0} () _
right!! {suc m} {suc _} i g = right!! {m} i g
-- similar to lookup-++-inject+ from library
lookup-++-raise : ∀ {m n} {a : Level} {A : Set a} →
(vm : Vec A m) (vn : Vec A n) (i : Fin n) →
lookup (raise m i) (vm ++V vn) ≡ lookup i vn
lookup-++-raise {0} vn vm i =
begin (lookup i (vn ++V vm)
≡⟨ lookup-++-≥ vn vm i z≤n ⟩
lookup (reduce≥ i z≤n) vm
≡⟨ refl ⟩
lookup i vm ∎)
where open ≡-Reasoning --
lookup-++-raise {suc m} {0} _ _ ()
lookup-++-raise {suc m} {suc n} (x ∷ vn) vm i = lookup-++-raise vn vm i
-- concat (map (map f) xs) = map f (concat xs)
concat-map : ∀ {a b m n} {A : Set a} {B : Set b} →
(xs : Vec (Vec A n) m) → (f : A → B) →
concatV (mapV (mapV f) xs) ≡ mapV f (concatV xs)
concat-map [] f = refl
concat-map (xs ∷ xss) f =
begin (concatV (mapV (mapV f) (xs ∷ xss))
≡⟨ refl ⟩
concatV (mapV f xs ∷ mapV (mapV f) xss)
≡⟨ refl ⟩
mapV f xs ++V concatV (mapV (mapV f) xss)
≡⟨ cong (_++V_ (mapV f xs)) (concat-map xss f) ⟩
mapV f xs ++V mapV f (concatV xss)
≡⟨ sym (map-++-commute f xs) ⟩
mapV f (xs ++V concatV xss)
≡⟨ refl ⟩
mapV f (concatV (xs ∷ xss)) ∎)
where open ≡-Reasoning
map-map-map : ∀ {a b c m n} {A : Set a} {B : Set b} {C : Set c} →
(f : B → C) → (g : A → Vec B n) → (xs : Vec A m) →
mapV (mapV f) (mapV g xs) ≡ mapV (mapV f ∘ g) xs
map-map-map f g xss = sym (map-∘ (mapV f) g xss)
splitV+ : ∀ {m n} {a : Level} {A : Set a} {f : Fin (m + n) → A} → Vec A (m + n)
splitV+ {m} {n} {f = f} = tabulate {m} (f ∘ inject+ n) ++V tabulate {n} (f ∘ raise m)
splitVOp+ : ∀ {m} {n} {a : Level} {A : Set a} {f : Fin (n + m) → A} → Vec A (m + n)
splitVOp+ {m} {n} {f = f} = tabulate {m} (f ∘ raise n) ++V tabulate {n} (f ∘ inject+ m)
-- f can be implicit since this is mostly used in equational reasoning, where it can be inferred!
tabulate-split : ∀ {m n} {a : Level} {A : Set a} → {f : Fin (m + n) → A} →
tabulate {m + n} f ≡ splitV+ {m} {n} {f = f}
tabulate-split {0} = refl
tabulate-split {suc m} {f = f} = cong (_∷_ (f zero)) (tabulate-split {m} {f = f ∘ suc})
lookup-subst : ∀ {m m' n}
(i : Fin n) (xs : Vec (Fin m) n) (eq : m ≡ m') →
lookup i (subst (λ s → Vec (Fin s) n) eq xs) ≡
subst Fin eq (lookup i xs)
lookup-subst i xs refl = refl
-- lookup is associative on Fin vectors
lookupassoc : ∀ {m₁ m₂ m₃ m₄} → (π₁ : Vec (Fin m₂) m₁)
(π₂ : Vec (Fin m₃) m₂) (π₃ : Vec (Fin m₄) m₃) → (i : Fin m₁) →
lookup (lookup i π₁) (tabulate (λ j → lookup (lookup j π₂) π₃)) ≡
lookup (lookup i (tabulate (λ j → lookup (lookup j π₁) π₂))) π₃
lookupassoc π₁ π₂ π₃ i =
begin (lookup (lookup i π₁) (tabulate (λ j → lookup (lookup j π₂) π₃))
≡⟨ lookup∘tabulate (λ j → lookup (lookup j π₂) π₃) (lookup i π₁) ⟩
lookup (lookup (lookup i π₁) π₂) π₃
≡⟨ cong
(λ x → lookup x π₃)
(sym (lookup∘tabulate (λ j → lookup (lookup j π₁) π₂) i)) ⟩
lookup (lookup i (tabulate (λ j → lookup (lookup j π₁) π₂))) π₃ ∎)
where open ≡-Reasoning
-- This should generalize a lot, but that can be done later
subst-lookup-tabulate-raise : ∀ {m n : ℕ} → (z : Fin n) →
subst Fin (+-comm n m) (lookup z (tabulate (λ i → subst Fin (+-comm m n) (raise m i)))) ≡
raise m z
subst-lookup-tabulate-raise {m} {n} z =
begin (subst Fin (+-comm n m) (lookup z (tabulate (λ i → subst Fin (+-comm m n) (raise m i))))
≡⟨ cong (subst Fin (+-comm n m))
(lookup∘tabulate (λ i → subst Fin (+-comm m n) (raise m i)) z) ⟩
subst Fin (+-comm n m) (subst Fin (+-comm m n) (raise m z))
≡⟨ subst-subst (+-comm n m) (+-comm m n)
(proof-irrelevance (sym (+-comm n m)) (+-comm m n)) (raise m z) ⟩
raise m z
∎)
where open ≡-Reasoning
subst-lookup-tabulate-inject+ : ∀ {m n : ℕ} → (z : Fin m) →
subst Fin (+-comm n m) (lookup z (tabulate (λ i → subst Fin (+-comm m n) (inject+ n i)))) ≡
inject+ n z
subst-lookup-tabulate-inject+ {m} {n} z =
begin (subst Fin (+-comm n m) (lookup z (tabulate (λ i → subst Fin (+-comm m n) (inject+ n i))))
≡⟨ cong (subst Fin (+-comm n m))
(lookup∘tabulate (λ i → subst Fin (+-comm m n) (inject+ n i)) z) ⟩
subst Fin (+-comm n m) (subst Fin (+-comm m n) (inject+ n z))
≡⟨ subst-subst (+-comm n m) (+-comm m n)
(proof-irrelevance (sym (+-comm n m)) (+-comm m n)) (inject+ n z) ⟩
inject+ n z
∎)
where open ≡-Reasoning
-- a kind of inverse for splitAt
unSplit : {m n : ℕ} {A : Set} → (f : Fin (m + n) → A) →
tabulate {m} (f ∘ (inject+ n)) ++V tabulate {n} (f ∘ (raise m)) ≡ tabulate f
unSplit {0} {n} f = refl
unSplit {suc m} f = cong (λ x → (f zero) ∷ x) (unSplit {m} (f ∘ suc))
-- nested tabulate-lookup
denest-tab-!! : {A B C : Set} {k : ℕ} → (f : B → C) → (g : A → B) → (v : Vec A k) →
tabulate (λ i → f (tabulate (λ j → g (v !! j)) !! i)) ≡ mapV (f ∘ g) v
denest-tab-!! f g v =
begin (
tabulate (λ i → f (tabulate (λ j → g (v !! j)) !! i))
≡⟨ tabulate-∘ f (λ i → tabulate (λ j → g (v !! j)) !! i) ⟩
mapV f (tabulate (λ i → tabulate (λ j → g (v !! j)) !! i) )
≡⟨ cong (mapV f) (tabulate∘lookup (tabulate (λ j → g (v !! j)))) ⟩
mapV f (tabulate (λ j → g (v !! j)))
≡⟨ cong (mapV f) (tabulate-∘ g (flip lookup v)) ⟩
mapV f (mapV g (tabulate (flip lookup v)))
≡⟨ sym (map-∘ f g _) ⟩
mapV (f ∘ g) (tabulate (flip lookup v))
≡⟨ cong (mapV (f ∘ g)) (tabulate∘lookup v) ⟩
mapV (f ∘ g) v ∎)
where open ≡-Reasoning
tab++[]≡tab∘̂unite+ : ∀ {m} {A : Set} (f : Fin m → A) (eq : m + 0 ≡ m) →
tabulate f ++V [] ≡ tabulate (λ j → f (subst Fin eq j))
tab++[]≡tab∘̂unite+ {zero} f eq = refl
tab++[]≡tab∘̂unite+ {suc m} f eq = cong₂ _∷_ (cong f pf₁) pf₂
where
pf₁ : zero ≡ subst Fin eq zero
pf₁ = toℕ-injective (sym (toℕ-invariance zero eq))
pf₃ : ∀ j → suc (subst Fin (+-right-identity m) j) ≡ subst Fin eq (suc j)
pf₃ j = toℕ-injective (trans (cong suc (toℕ-invariance j (+-right-identity m)))
(sym (toℕ-invariance (suc j) eq)))
pf₂ : tabulate (f ∘ suc) ++V [] ≡ tabulate (λ j → f (subst Fin eq (suc j)))
pf₂ = trans (tab++[]≡tab∘̂unite+ (f ∘ suc) (+-right-identity m))
(finext (λ j → cong f (pf₃ j)))
-- Move to its own spot later
merge-[,] : {A B C D E : Set} → {h : A → C} → {i : B → D} → {f : C → E}
→ {g : D → E} → (x : A ⊎ B) →
[ f , g ]′ ( map⊎ h i x ) ≡ [ (f ∘ h) , (g ∘ i) ]′ x
merge-[,] (inj₁ x) = refl
merge-[,] (inj₂ y) = refl
| 43.099585
| 98
| 0.510735
|
0d6893383c697469f9dcd04cb3b243c18e97045a
| 2,667
|
agda
|
Agda
|
src/Categories/Functor/Cartesian/Properties.agda
|
bond15/agda-categories
|
6cbfdf3f1be15ef513435e3b85faae92cb1ac36f
|
[
"MIT"
] | null | null | null |
src/Categories/Functor/Cartesian/Properties.agda
|
bond15/agda-categories
|
6cbfdf3f1be15ef513435e3b85faae92cb1ac36f
|
[
"MIT"
] | null | null | null |
src/Categories/Functor/Cartesian/Properties.agda
|
bond15/agda-categories
|
6cbfdf3f1be15ef513435e3b85faae92cb1ac36f
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
-- Some of the obvious properties of cartesian functors
module Categories.Functor.Cartesian.Properties where
open import Data.Product using (_,_; proj₁; proj₂)
open import Level
open import Categories.Category.Core using (Category)
open import Categories.Category.Cartesian
open import Categories.Category.Product using (Product; _⁂_)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Cartesian
open import Categories.Morphism.Reasoning
open import Categories.NaturalTransformation hiding (id)
import Categories.Object.Product as OP
private
variable
o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level
idF-Cartesian : {A : Category o ℓ e} {CA : Cartesian A} → CartesianF CA CA idF
idF-Cartesian {A = A} {CA} = record
{ ε = id
; ⊗-homo = ntHelper record
{ η = λ _ → id
; commute = λ _ → id-comm-sym A }
}
where
open Category A
∘-Cartesian : {A : Category o ℓ e} {B : Category o′ ℓ′ e′} {C : Category o″ ℓ″ e″}
{CA : Cartesian A} {CB : Cartesian B} {CC : Cartesian C}
{F : Functor B C} {G : Functor A B} (CF : CartesianF CB CC F) (CG : CartesianF CA CB G) → CartesianF CA CC (F ∘F G)
∘-Cartesian {B = B} {C} {CA} {CB} {CC} {F} {G} CF CG = record
{ ε = F.₁ CG.ε ∘ CF.ε
; ⊗-homo = ntHelper record
{ η = λ X → F.₁ (NTG.η X) ∘ NTF.η (Functor.F₀ (G ⁂ G) X)
; commute = λ { {A} {B} f →
let GGA = F₀ (G ⁂ G) A in
let GGB = F₀ (G ⁂ G) B in
let GGf = F₁ (G ⁂ G) f in
begin
(F.₁ (NTG.η B) ∘ NTF.η GGB) ∘ F₁ (⊗ CC ∘F ((F ∘F G) ⁂ (F ∘F G))) f ≈⟨ C.assoc ⟩
F.₁ (NTG.η B) ∘ NTF.η GGB ∘ F₁ (⊗ CC ∘F ((F ∘F G) ⁂ (F ∘F G))) f ≈⟨ (refl⟩∘⟨ NTF.commute GGf) ⟩
F.₁ (NTG.η B) ∘ (F.₁ (F₁ (⊗ CB) GGf) ∘ NTF.η GGA) ≈⟨ C.sym-assoc ⟩
(F.₁ (NTG.η B) ∘ F.₁ (F₁ (⊗ CB) GGf)) ∘ NTF.η GGA ≈˘⟨ (F.homomorphism ⟩∘⟨refl) ⟩
(F.₁ (NTG.η B B.∘ F₁ (⊗ CB) GGf)) ∘ NTF.η GGA ≈⟨ (F.F-resp-≈ (NTG.commute f) ⟩∘⟨refl) ⟩
F.F₁ (F₁ G (F₁ (⊗ CA) f) B.∘ NTG.η A) ∘ NTF.η GGA ≈⟨ (F.homomorphism ⟩∘⟨refl) ⟩
(F₁ ((F ∘F G) ∘F ⊗ CA) f ∘ F.₁ (NTG.η A)) ∘ NTF.η GGA ≈⟨ C.assoc ⟩
F₁ ((F ∘F G) ∘F ⊗ CA) f ∘ F.₁ (NTG.η A) ∘ NTF.η GGA ∎}
}
}
where
module CF = CartesianF CF
module CG = CartesianF CG
module NTF = NaturalTransformation CF.⊗-homo
module NTG = NaturalTransformation CG.⊗-homo
module F = Functor F
module B = Category B
module C = Category C
open C using (_≈_; _∘_)
open C.HomReasoning
open Cartesian CC using (products)
open Functor
open OP C using (Product)
open Product
open Cartesian using (⊗)
| 38.652174
| 117
| 0.573303
|
580a8a75b3ad8f1c23aba6a665a48d1b075ee02b
| 4,037
|
agda
|
Agda
|
src/data/lib/prim/Agda/Builtin/Nat.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2021-06-14T11:08:59.000Z
|
2021-06-14T11:08:59.000Z
|
src/data/lib/prim/Agda/Builtin/Nat.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T15:49:15.000Z
|
2015-09-15T15:49:15.000Z
|
src/data/lib/prim/Agda/Builtin/Nat.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2020-05-16T20:10:05.000Z
|
2020-05-16T20:10:05.000Z
|
{-# OPTIONS --without-K --safe --no-universe-polymorphism
--no-sized-types --no-guardedness --no-subtyping #-}
module Agda.Builtin.Nat where
open import Agda.Builtin.Bool
data Nat : Set where
zero : Nat
suc : (n : Nat) → Nat
{-# BUILTIN NATURAL Nat #-}
infix 4 _==_ _<_
infixl 6 _+_ _-_
infixl 7 _*_
_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_-_ : Nat → Nat → Nat
n - zero = n
zero - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS _-_ #-}
_*_ : Nat → Nat → Nat
zero * m = zero
suc n * m = m + n * m
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat → Nat → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
{-# BUILTIN NATEQUALS _==_ #-}
_<_ : Nat → Nat → Bool
_ < zero = false
zero < suc _ = true
suc n < suc m = n < m
{-# BUILTIN NATLESS _<_ #-}
-- Helper function div-helper for Euclidean division.
---------------------------------------------------------------------------
--
-- div-helper computes n / 1+m via iteration on n.
--
-- n div (suc m) = div-helper 0 m n m
--
-- The state of the iterator has two accumulator variables:
--
-- k: The quotient, returned once n=0. Initialized to 0.
--
-- j: A counter, initialized to the divisor m, decreased on each iteration step.
-- Once it reaches 0, the quotient k is increased and j reset to m,
-- starting the next countdown.
--
-- Under the precondition j ≤ m, the invariant is
--
-- div-helper k m n j = k + (n + m - j) div (1 + m)
div-helper : (k m n j : Nat) → Nat
div-helper k m zero j = k
div-helper k m (suc n) zero = div-helper (suc k) m n m
div-helper k m (suc n) (suc j) = div-helper k m n j
{-# BUILTIN NATDIVSUCAUX div-helper #-}
-- Proof of the invariant by induction on n.
--
-- clause 1: div-helper k m 0 j
-- = k by definition
-- = k + (0 + m - j) div (1 + m) since m - j < 1 + m
--
-- clause 2: div-helper k m (1 + n) 0
-- = div-helper (1 + k) m n m by definition
-- = 1 + k + (n + m - m) div (1 + m) by induction hypothesis
-- = 1 + k + n div (1 + m) by simplification
-- = k + (n + (1 + m)) div (1 + m) by expansion
-- = k + (1 + n + m - 0) div (1 + m) by expansion
--
-- clause 3: div-helper k m (1 + n) (1 + j)
-- = div-helper k m n j by definition
-- = k + (n + m - j) div (1 + m) by induction hypothesis
-- = k + ((1 + n) + m - (1 + j)) div (1 + m) by expansion
--
-- Q.e.d.
-- Helper function mod-helper for the remainder computation.
---------------------------------------------------------------------------
--
-- (Analogous to div-helper.)
--
-- mod-helper computes n % 1+m via iteration on n.
--
-- n mod (suc m) = mod-helper 0 m n m
--
-- The invariant is:
--
-- m = k + j ==> mod-helper k m n j = (n + k) mod (1 + m).
mod-helper : (k m n j : Nat) → Nat
mod-helper k m zero j = k
mod-helper k m (suc n) zero = mod-helper 0 m n m
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
{-# BUILTIN NATMODSUCAUX mod-helper #-}
-- Proof of the invariant by induction on n.
--
-- clause 1: mod-helper k m 0 j
-- = k by definition
-- = (0 + k) mod (1 + m) since m = k + j, thus k < m
--
-- clause 2: mod-helper k m (1 + n) 0
-- = mod-helper 0 m n m by definition
-- = (n + 0) mod (1 + m) by induction hypothesis
-- = (n + (1 + m)) mod (1 + m) by expansion
-- = (1 + n) + k) mod (1 + m) since k = m (as l = 0)
--
-- clause 3: mod-helper k m (1 + n) (1 + j)
-- = mod-helper (1 + k) m n j by definition
-- = (n + (1 + k)) mod (1 + m) by induction hypothesis
-- = ((1 + n) + k) mod (1 + m) by commutativity
--
-- Q.e.d.
| 29.903704
| 82
| 0.471142
|
7c2f901e2d24053187f73df3626fbb64c4d08b8e
| 1,240
|
agda
|
Agda
|
theorems/groups/KernelCstImage.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 294
|
2015-01-09T16:23:23.000Z
|
2022-03-20T13:54:45.000Z
|
theorems/groups/KernelCstImage.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 31
|
2015-03-05T20:09:00.000Z
|
2021-10-03T19:15:25.000Z
|
theorems/groups/KernelCstImage.agda
|
AntoineAllioux/HoTT-Agda
|
1037d82edcf29b620677a311dcfd4fc2ade2faa6
|
[
"MIT"
] | 50
|
2015-01-10T01:48:08.000Z
|
2022-02-14T03:03:25.000Z
|
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module groups.KernelCstImage {i j k}
{G : Group i} {H : Group j} (K : Group k)
(φ : G →ᴳ H) (H-ab : is-abelian H) where
open import groups.KernelImage {K = K} cst-hom φ H-ab
open import groups.Cokernel φ H-ab
Ker-cst-quot-Im : Ker/Im ≃ᴳ Coker
Ker-cst-quot-Im = ≃-to-≃ᴳ (equiv to from to-from from-to) to-pres-comp where
to : Ker/Im.El → Coker.El
to = SetQuot-rec to' quot-rel where
to' : Ker.El (cst-hom {G = H} {H = K}) → Coker.El
to' ker = q[ fst ker ]
from : Coker.El → Ker/Im.El
from = SetQuot-rec from' quot-rel where
from' : Group.El H → Ker/Im.El
from' h = q[ h , idp ]
abstract
to-from : ∀ cok → to (from cok) == cok
to-from = SetQuot-elim
(λ _ → idp)
(λ _ → prop-has-all-paths-↓)
from-to : ∀ ker → from (to ker) == ker
from-to = SetQuot-elim
(λ _ → ap q[_] $ Ker.El=-out (cst-hom {G = H} {H = K}) idp)
(λ _ → prop-has-all-paths-↓)
to-pres-comp : preserves-comp Ker/Im.comp Coker.comp to
to-pres-comp = SetQuot-elim
(λ _ → SetQuot-elim
(λ _ → idp)
(λ _ → prop-has-all-paths-↓))
(λ _ → prop-has-all-paths-↓)
| 30.243902
| 78
| 0.543548
|
4b6950fa34f7f76686b03ab9433bb315b4900b5f
| 2,827
|
agda
|
Agda
|
src/Prelude/IO.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 111
|
2015-01-05T11:28:15.000Z
|
2022-02-12T23:29:26.000Z
|
src/Prelude/IO.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 59
|
2016-02-09T05:36:44.000Z
|
2022-01-14T07:32:36.000Z
|
src/Prelude/IO.agda
|
t-more/agda-prelude
|
da4fca7744d317b8843f2bc80a923972f65548d3
|
[
"MIT"
] | 24
|
2015-03-12T18:03:45.000Z
|
2021-04-22T06:10:41.000Z
|
module Prelude.IO where
open import Prelude.Function
open import Prelude.Functor
open import Prelude.Applicative
open import Prelude.Monad
open import Prelude.List
open import Prelude.String
open import Prelude.Char
open import Prelude.Unit
open import Prelude.Show
open import Prelude.Nat
open import Agda.Builtin.IO public
postulate
ioReturn : ∀ {a} {A : Set a} → A → IO A
ioBind : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
{-# COMPILE GHC ioReturn = (\ _ _ -> return) #-}
{-# COMPILE GHC ioBind = (\ _ _ _ _ -> (>>=)) #-}
{-# COMPILE UHC ioReturn = (\ _ _ x -> UHC.Agda.Builtins.primReturn x) #-}
{-# COMPILE UHC ioBind = (\ _ _ _ _ x y -> UHC.Agda.Builtins.primBind x y) #-}
ioMap : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → IO A → IO B
ioMap f m = ioBind m λ x → ioReturn (f x)
instance
FunctorIO : ∀ {a} → Functor {a} IO
fmap {{FunctorIO}} = ioMap
ApplicativeIO : ∀ {a} → Applicative {a} IO
pure {{ApplicativeIO}} = ioReturn
_<*>_ {{ApplicativeIO}} = monadAp ioBind
MonadIO : ∀ {a} → Monad {a} IO
_>>=_ {{MonadIO}} = ioBind
FunctorIO′ : ∀ {a b} → Functor′ {a} {b} IO
fmap′ {{FunctorIO′}} = ioMap
ApplicativeIO′ : ∀ {a b} → Applicative′ {a} {b} IO
_<*>′_ {{ApplicativeIO′}} = monadAp′ ioBind
MonadIO′ : ∀ {a b} → Monad′ {a} {b} IO
_>>=′_ {{MonadIO′}} = ioBind
--- Terminal IO ---
postulate
getChar : IO Char
putChar : Char → IO Unit
putStr : String → IO Unit
putStrLn : String → IO Unit
{-# FOREIGN GHC import qualified Data.Text as Text #-}
{-# FOREIGN GHC import qualified Data.Text.IO as Text #-}
{-# COMPILE GHC getChar = getChar #-}
{-# COMPILE GHC putChar = putChar #-}
{-# COMPILE GHC putStr = Text.putStr #-}
{-# COMPILE GHC putStrLn = Text.putStrLn #-}
{-# COMPILE UHC putStr = (UHC.Agda.Builtins.primPutStr) #-}
{-# COMPILE UHC putStrLn = (UHC.Agda.Builtins.primPutStrLn) #-}
print : ∀ {a} {A : Set a} {{ShowA : Show A}} → A → IO Unit
print = putStrLn ∘ show
--- Command line arguments ---
{-# FOREIGN GHC import System.Environment (getArgs, getProgName) #-}
postulate
getArgs : IO (List String)
getProgName : IO String
{-# COMPILE GHC getArgs = fmap (map Text.pack) getArgs #-}
{-# COMPILE GHC getProgName = fmap Text.pack getProgName #-}
--- Misc ---
{-# FOREIGN GHC import System.Exit #-}
data ExitCode : Set where
Success : ExitCode
-- TODO we probably should also enforce an upper limit?
Failure : (n : Nat) → {p : NonZero n} → ExitCode
private
{-# FOREIGN GHC exitWith' x = exitWith (if x == 0 then ExitSuccess else ExitFailure $ fromInteger x) #-}
postulate
exitWith' : ∀ {a} {A : Set a} → Nat → IO A
{-# COMPILE GHC exitWith' = \ _ _ -> exitWith' #-}
exitWith : ∀ {a} {A : Set a} → ExitCode → IO A
exitWith Success = exitWith' 0
exitWith (Failure i) = exitWith' i
| 27.715686
| 106
| 0.622568
|
1bcdde20205ceafbcfc62c9537988f47d2de6403
| 523
|
agda
|
Agda
|
src/Nats/Add/Assoc.agda
|
ice1k/Theorems
|
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
|
[
"Apache-2.0"
] | 1
|
2020-04-15T15:28:03.000Z
|
2020-04-15T15:28:03.000Z
|
src/Nats/Add/Assoc.agda
|
ice1k/Theorems
|
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
|
[
"Apache-2.0"
] | null | null | null |
src/Nats/Add/Assoc.agda
|
ice1k/Theorems
|
7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc
|
[
"Apache-2.0"
] | null | null | null |
module Nats.Add.Assoc where
open import Equality
open import Nats
open import Function
------------------------------------------------------------------------
-- internal stuffs
private
a+/b+c/=/a+b/+c : ∀ a b c → a + b + c ≡ a + (b + c)
a+/b+c/=/a+b/+c zero b c = refl
a+/b+c/=/a+b/+c (suc a) b c = cong suc $ a+/b+c/=/a+b/+c a b c
------------------------------------------------------------------------
-- public aliases
nat-add-assoc : ∀ a b c → a + b + c ≡ a + (b + c)
nat-add-assoc = a+/b+c/=/a+b/+c
| 23.772727
| 72
| 0.388145
|
3748ed6d4c6858ea4bbe42c3939f826bca8edf79
| 14,831
|
agda
|
Agda
|
Chapter2/Formalization.agda
|
CodaFi/HoTT-Exercises
|
3411b253b0a49a5f9c3301df175ae8ecdc563b12
|
[
"MIT"
] | null | null | null |
Chapter2/Formalization.agda
|
CodaFi/HoTT-Exercises
|
3411b253b0a49a5f9c3301df175ae8ecdc563b12
|
[
"MIT"
] | null | null | null |
Chapter2/Formalization.agda
|
CodaFi/HoTT-Exercises
|
3411b253b0a49a5f9c3301df175ae8ecdc563b12
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
module Formalization where
open import Agda.Primitive using (lsuc)
open import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality.≡-Reasoning
open import Level
-- Recall Lemma 1.12
ind₌ : ∀{a b}{A : Set a} → (C : (x y : A) → (x ≡ y) → Set b) → ((x : A) → C x x refl) → {x y : A} → (p : x ≡ y) → C x y p
ind₌ C c {x}{y} p rewrite p = c y
-- Types are higher groupoids
-- --------------------------
-- This is the *central* idea of HoTT. A Type isn't just an atomic entity, it's a homotopic space.
-- An ∞-groupoid consists of
-- ∘ a collection of objects
-- ∘ a collection of morphisms between objects, and then morphisms between morphisms, and so on
-- ∘ equipped with some complex algebraic structure
--
-- a morphism at level k is called a k- morphism. Morphisms at each level have
-- ∘ identity
-- ∘ composition
-- ∘ inverse operations
--
-- which are weak in the sense that they satisfy the groupoid laws (associativity
-- of composition, identity is a unit for composition, inverses cancel) only up
-- to morphisms at the next level, and this weakness gives rise to further structure.
-- Example
--
-- Because associativity of composition of morphisms p (q r) = (p q) r is itself a higher-dimensional morphism
-- we need additional operators to talk about them. For example:
{- Mac Lane's Pentagon
---------------------
All the various ways to reassociate p (q (r s))
/- ((p q) r) s -\
/ \
(p (q r)) s (p q) (r s)
| |
| |
p ((q r) s) ----------------- p (q (r s))
-}
-- Moreover, all of this higher groupoid structure comes automagically from the induction principle
-- on Id.
-- "Informally, the induction principle for identity types says that if we
-- construct an object (or prove a statement) which depends on an inhabitant
-- p : x == y of an identity type,
data _==_ {i} {A : Set i} (a : A) : A → Set (lsuc i) where
idp : a == a -- then it suffices to perform the construction (or the proof) in
-- the special case when x and y are the same (judgmentally)
-- and p is the reflexivity element reflx : x = x (judgmentally)
-- Lemma 2.1.1 "Paths can be reversed"
-- first proof
_⁻¹ : ∀ {i} {A : Set i}{x y : A} → (x ≡ y) → (y ≡ x)
_⁻¹ {i} {A} = λ p → ind₌ D d p where
D : (x y : A) → x ≡ y → Set i
D = λ x y p → (y ≡ x)
d : (x : A) → D x x refl
d = λ x → refl
-- second proof
inv-sym : ∀ {i} {A : Set i}{x y : A} → (x ≡ y) → (y ≡ x)
inv-sym refl = refl
-- Lemma 2.1.2 & 2.1.3 "paths can be concatenated (strung together)"
-- First proof. We need the type family D : Π (x, y : A) Π (p : x ≡ y) → Type. From that we
-- produce an element d : D x x reflₓ (simply identity) then apply the induction
-- principle above to D and d.
composite : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
composite {i} {A} {_}{_}{z} p = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set i
D x y _ = y ≡ z → x ≡ z
d : (x₁ : A) → D x₁ x₁ refl
d _ = λ x → x
-- Second proof. We need the type family D : Π (x, y : A) Π (p : x ≡ y) → Type again. From that
-- we produce an element d (x) : D x x reflₓ again, but rather than the identity we go a
-- step further and define E : Π (x z : A) Π (q : x ≡ z) → Type. We then produce an
-- element e (x) : E x x reflₓ. Induction on D d then unfolds to induction on D then E e.
composite' : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
composite' {i} {A} {_}{_}{z} = ind₌ D d where
D : (x y : A) → (p : x ≡ y) → Set i
D x y _ = y ≡ z → x ≡ z
d : (x : A) → D x x refl
d x = ind₌ E e where
E : (x z : A) → (q : x ≡ z) → Set i
E x z _ = x ≡ z
e : (x : A) → E x x refl
e x = refl
-- Third proof. Everything is reflexivity you fool. The hell did you do all that work for before?
composite'' : ∀ {i} {A : Set i}{x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
composite'' refl refl = refl
-- Equality | Homotopy | ∞-Groupoid
-- reflexivity | constant path | identity morphism
-- symmetry | inversion of paths | inverse morphism
-- transitivity | concatenation of paths | composition of morphisms
open import Function
-- Lemma 2.1.4
-- These are all propositional equalities living in the type of identity types.
-- Topologically they are paths of paths, and we can form a homotopy between them.
-- For my next trick, I will need composition of paths
-- Reflexivity right
lem-1-r : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → p ≡ (composite p refl)
lem-1-r {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = p ≡ composite p refl
d : (x₁ : A) → D x₁ x₁ refl
d = λ x → refl
-- Reflexivity left
lem-1-l : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → p ≡ (composite refl p)
lem-1-l {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = p ≡ composite refl p
d : (x₁ : A) → D x₁ x₁ refl
d = λ x → refl
lem-2-l : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → composite ((p)⁻¹) p ≡ refl
lem-2-l {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set i
D x y p = composite ((p)⁻¹) p ≡ refl
d : (x₁ : A) → D x₁ x₁ refl
d = λ x → refl
lem-2-r : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → composite p ((p)⁻¹) ≡ refl
lem-2-r {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = composite p ((p)⁻¹) ≡ refl
d : (x₁ : A) → D x₁ x₁ refl
d = λ x → refl
-- Inversion of identity
lem-3 : ∀ {i} {A : Set i}{x y : A}{p : x ≡ y} → ((p)⁻¹)⁻¹ ≡ p
lem-3 {i} {A} {x}{y} {p} = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = ((p)⁻¹)⁻¹ ≡ p
d : (x₁ : A) → D x₁ x₁ refl
d = λ _ → refl
{-
-- Transitivity of identity
lem-4 : ∀ {i} {A : Set i}{x y z w : A}{p : x ≡ y}{q : y ≡ z}{r : z ≡ w} → composite p (composite q r) ≡ composite (composite p q) r
lem-4 {i} {A} {_}{_}{z} = ind₌ D₁ d₁ where
D₁ : (x y : A) → (x ≡ y) → Set i
D₁ x y p = (z w : A)(q : y ≡ z)(r : z ≡ w) → composite p (composite q r) ≡ composite (composite p q) r
d₁ : (x₁ : A) → D₁ x₁ x₁ refl
d₁ _ = ind₌ D₂ d₂ where
D₂ : (x z : A) → (q : x ≡ z) → Set i
D₂ x z q = (w : A)(r : z ≡ w) → composite refl (composite q r) ≡ composite (composite refl q) r
d₂ : (x₂ : A) → D₂ x₂ x₂ refl
d₂ _ = ind₌ D₃ d₃ where
D₃ : (x w : A) → (r : x ≡ w) → Set i
D₃ x w r = (composite refl (composite refl r)) ≡ (composite (composite refl refl) r)
d₃ : (x₃ : A) → D₃ x₃ x₃ refl
d₃ _ = composite refl (composite refl refl) ≡ composite (composite refl refl) refl
-}
-- Lemma 2.1.6
open import Data.Product using (Σ ; _,_ ; proj₁ ; proj₂)
open import Data.Nat using (ℕ ; suc)
-- We need pointed sets for this part
Set• : ∀ i → Set _
Set• i = Σ (Set i) λ X → X
-- The loop space of a type is
-- - A base point
-- - A loop (reflexivity) about that point
Ω₁ : ∀ {i} → Set• i → Set• i
Ω₁ (X , x) = ((x ≡ x) , refl)
-- Construct arbitrary n-dimensional loop spaces
Ωⁿ : ∀ {i} → ℕ → Set• i → Set• _
Ωⁿ 0 x = x
Ωⁿ (suc n) x = Ωⁿ n (Ω₁ x)
-- Projects the type from an n-dimensional loop space
Ω : ∀ {i} → ℕ → {X : Set i} → X → Set i
Ω n {X} x = proj₁ (Ωⁿ n (X , x))
-- Projects the loop from an n-dimensional loop space
loop : ∀ {i} n {X : Set i}(x : X) → Ω n x
loop n {X} x = proj₂ (Ωⁿ n (X , x))
-- Composition operation on n-dimensional loop spaces
_×_ : ∀ {i} n {A : Set i}{x : A} → Ω n x → Ω n x → Ω n x
_×_ n {A} {x} x₁ x₂ = loop n x
-- 2.2.1
-- We're type theorists, so we like functor-looking things.
-- Paths are functor looking things.
-- We like paths
-- They respect equality and are all continuous-like
ap : ∀ {i j} {A : Set i}{B : Set j}{x y : A}{f : A → B} → (x ≡ y) → (f x ≡ f y)
ap {i}{j} {A}{B} {x}{y}{f} p = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set j
D x y p = f x ≡ f y
d : (x : A) → D x x refl
d = λ x → refl
ap₂ : ∀ {i j k} {A : Set i}{B : Set j}{C : Set k}{x x′ : A}{y y′ : B}(f : A → B → C) → (x ≡ x′) → (y ≡ y′) → (f x y ≡ f x′ y′)
ap₂ f p q = composite (ap {f = λ _ → f _ _} p) (ap {f = f _} q)
ap' : ∀ {i j} {A : Set i}{B : Set j}{x y : A} → (f : A → B) → ((x ≡ y) → (f x ≡ f y))
ap' f refl = refl
-- 2.3
-- The dependently typed version of `ap` takes a type family and relates its instantiations with p
transport : ∀ {i} {A : Set i}{P : A → Set i}{x y : A} → (p : x ≡ y) → (P x → P y)
transport {i} {A}{P} {x}{y} p = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set i
D x y p = P x → P y
d : (x : A) → D x x refl
d = λ x → id
-- Topologically, we can view transport as a "path lifting" operation
-- That is, we lift the path p to a path in the space ∑[ x ∈ A ] P(x) provided we have a
-- base point u in the lifted space.
--
-- Basically, P respects equality
path-lifting : ∀ {a p}{A : Set a}{x y : A}{P : A → Set p} → (u : P x) → (p : x ≡ y) → (x , u) ≡ (y , u)
path-lifting = λ {a} {p} {A} {x} {y} {P} u → cong (λ z → z , u)
-- Look, transport works in the "upper" space too!
apd : ∀ {i} {A : Set i}{P : A → Set i}{f : (x : A) → P x}{x y : A} → (p : x ≡ y) → (transport p (f x) ≡ f y)
apd {i} {A}{P} {f}{x}{y} p = ind₌ D d p where
D : (x y : A) → (p : x ≡ y) → Set i
D x y p = transport p (f x) ≡ f y
d : (x : A) → D x x refl
d = λ x → refl
-- By induction, it suffices to assume p is refl. Because of course it does.
apd' : ∀ {i} {A : Set i}{P : A → Set i}{f : (x : A) → P x}{x y : A} → (p : x ≡ y) → (transport p (f x) ≡ f y)
apd' refl = refl
-- We can also fix B and make transport work like fmap with equalities.
transportconst : ∀ {i} {A : Set i}{B : Set i}{P : A → B}{x y : A} → (p : x ≡ y) → (b : B) → transport p b ≡ b
transportconst {i} {A}{B}{P} {x}{y} p b = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = transport p b ≡ b
d : (x : A) → D x x refl
d = λ x → refl
{-
lem-2-3-8 : ∀ {i} {A : Set i}{B : Set i}{f : A → B}{x y : A} → (p : x ≡ y) → apd p ≡ transportconst (ap p) (f x)
lem-2-3-8 {i} {A}{B}{f} {x}{y} p = ind₌ D d p where
D : (x y : A) → (x ≡ y) → Set i
D x y p = apd p ≡ transportconst (f x) ∘ ap p
d : (x : A) → D x x refl
d = refl
-}
{-
lem-2-3-9 : ∀ {i} {A : Set i}{P : A → Set i}{x y z : A} → (p : x ≡ y) → (q : y ≡ z) → (u : P x) → transport q (transport p u) ≡ transport (p ∘ q) u
lem-2-3-9 = ?
-}
-- Homotopies
-- Under Propositions-as-Types two functions are the same if they give the same outputs on the
-- same inputs. Which looks like this: a type whose terms are proofs of that^
_∼_ : ∀ {a b} {A : Set a}{P : A → Set b} → (f g : (x : A) → P x) → Set (a ⊔ b)
_∼_ {a}{b} {A}{P} f g = (x : A) → f x ≡ g x
-- 2.4.2
lem-2-4-2 : ∀ {a} {A : Set a}{B : Set a} → (f : A → B) → f ∼ f
lem-2-4-2 f = λ _ → refl
lem-2-4-2' : ∀ {a} {A : Set a}{B : Set a} → (f g : A → B) → (f ∼ g) → (g ∼ f)
lem-2-4-2' f g x x₁ = sym (x x₁)
-- For any A and B, a quasi-inverse of f is a triple with
-- ∘ A way back (an inverse for the homomorphism)
-- ∘ Homotopies:
-- ⊚ α : f ∘ g ∼ id
-- ⊚ β : g ∘ f ∼ id
-- For now, because I am lazy, the presence of a quasi-inverse will count
-- as our definition of equivalence for now. Sorry.
record IsEquiv {i j}{A : Set i}{B : Set j}(to : A → B) : Set (i ⊔ j) where
field
from : B → A
iso₁ : (x : A) → from (to x) ≡ x
iso₂ : (y : B) → to (from y) ≡ y
-- Example 2.4.7: Identity is an equivalence.
id-is-equiv : ∀ {i} (A : Set i) → IsEquiv (id {i}{A})
id-is-equiv {i} A = record
{ from = id {i}{A}
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl
}
-- Type equivalence is also an equivalence, just on the Universe because:
-- ∘ id-is-equiv works for it, therefore A ≃ A
-- ∘ With A ≃ B, we can always make B ≃ A
-- ∘ With A ≃ B and B ≃ C we have A ≃ C
_≃_ : ∀ {i j} (A : Set i) (B : Set j) → Set (i ⊔ j)
A ≃ B = Σ (A → B) IsEquiv
open import Data.Product renaming (_×_ to _×p_)
split-path : ∀ {i j}{A : Set i}{B : Set j}{x y : A ×p B} → x ≡ y → (proj₁ x ≡ proj₁ y) ×p (proj₂ x ≡ proj₂ y)
split-path p = ap {f = proj₁} p , ap {f = proj₂} p
pair₌ : ∀ {i j}{A : Set i}{B : Set j}{x y : A ×p B} → (proj₁ x ≡ proj₁ y) ×p (proj₂ x ≡ proj₂ y) → x ≡ y
pair₌ (p , q) = ap₂ _,_ p q
instance
split-is-equiv : ∀ {i j}{A : Set i}{B : Set j}{x y : A ×p B} → IsEquiv (pair₌ {x = x}{y = y})
split-is-equiv {x = x}{y = y} = record
{ from = split-path
; iso₁ = λ pq →
ind₌ (λ _ _ p → ∀ {b₁ b₂} (q : b₁ ≡ b₂) →
split-path (pair₌ (p , q)) ≡ (p , q))
(λ _ q → ind₌
(λ _ _ q →
split-path (pair₌ (refl , q)) ≡ (refl , q))
(λ _ → refl) q)
(proj₁ pq) (proj₂ pq)
; iso₂ = ind₌ (λ _ _ p → pair₌ (split-path p) ≡ p) (λ _ → refl)
}
{-
happly : ∀ {i}{A : Set i}{f g : A → Set i} → (f ≡ g) → ((x : A) → f x ≡ g x)
happly p x = ap' (λ u → u x)
-}
-- 2.10
-- This says, when you get down to it, id on universes is a
-- type family with a total space of pointed types. Turns out
-- Ω isn't just for horses.
idtoeqv : ∀ {i} {A : Set i}{B : Set i} → (A ≡ B) → (A ≃ B)
idtoeqv {_}{A} refl = (id , id-is-equiv A)
-- With idtoeqv in hand, we have to ask Agda nicely to make idtoeqv an equivalence.
postulate -- Just kidding
ua : ∀ {i} {A : Set i}{B : Set i} → (A ≃ B) ≃ (A ≡ B)
-- ^This says "equivalent types may be identified"
-- 2.12
{-
data _⊎_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
inl : (x : A) → A ⊎ B
inr : (y : B) → A ⊎ B
code : ∀ {a b}{{A : Set a}}{{B : Set b}} → A ⊎ B → Set (a ⊔ b)
code (inl a) = ?
code (inr b) = ⊥
code-lem : ∀ {a b}{{A : Set a}}{{B : Set b}} → (x : A ⊎ B) → (a₀ : A) → ((inl a₀ ≡ x) ≃ code x)
code-lem {{A}} {{B}} x a₀ = ? where
encode : (x : A ⊎ B) → (p : inl a₀ ≡ x) → code x
encode x p = transport p refl
decode : (x : A ⊎ B) → (c : code x) → inl a₀ ≡ x
decode x c = ?
-}
open import Data.Nat
open import Data.Unit
open import Data.Empty
code : ℕ → ℕ → Set
code ℕ.zero ℕ.zero = ⊤
code ℕ.zero (ℕ.suc m) = ⊥
code (ℕ.suc n) ℕ.zero = ⊥
code (ℕ.suc n) (ℕ.suc m) = code n m
-- 2.13
natcode-lem : ∀ {m n : ℕ} → (m ≡ n) → code m n
natcode-lem {x}{y} p = encode {x}{y} p where
encode : ∀ {m n : ℕ} → (m ≡ n) → code m n
encode {m}{n} p = transport p (r m) where
r : (n : ℕ) → code n n
r ℕ.zero = tt
r (ℕ.suc n) = r n
decode : ∀ {m n : ℕ} → code m n → (m ≡ n)
decode {ℕ.zero} {ℕ.zero} tt = refl
decode {ℕ.zero} {ℕ.suc _} ()
decode {ℕ.suc _} {ℕ.zero} ()
decode {ℕ.suc m} {ℕ.suc n} c = cong ℕ.suc (decode c)
enc-dec-quasi : ∀ {n : ℕ} → decode {n}{n} (encode {n}{n} refl) ≡ refl
enc-dec-quasi {ℕ.zero} = refl
enc-dec-quasi {ℕ.suc n₁} = {! !}
| 34.016055
| 147
| 0.513924
|
2ece1a28a6a9bb3c73d74caf5f3d91cbea890943
| 1,275
|
agda
|
Agda
|
vendor/stdlib/src/Algebra/Props/Lattice.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 56
|
2015-01-20T02:11:42.000Z
|
2021-12-21T17:02:19.000Z
|
vendor/stdlib/src/Algebra/Props/Lattice.agda
|
larrytheliquid/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 1
|
2022-03-12T12:17:51.000Z
|
2022-03-12T12:17:51.000Z
|
vendor/stdlib/src/Algebra/Props/Lattice.agda
|
isabella232/Lemmachine
|
8ef786b40e4a9ab274c6103dc697dcb658cf3db3
|
[
"MIT"
] | 3
|
2015-07-21T16:37:58.000Z
|
2022-03-12T11:54:10.000Z
|
------------------------------------------------------------------------
-- Some derivable properties
------------------------------------------------------------------------
open import Algebra
module Algebra.Props.Lattice (l : Lattice) where
open Lattice l
open import Algebra.Structures
import Algebra.FunctionProperties as P; open P _≈_
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Data.Function
open import Data.Product
∧-idempotent : Idempotent _∧_
∧-idempotent x = begin
x ∧ x ≈⟨ refl ⟨ ∧-pres-≈ ⟩ sym (proj₁ absorptive _ _) ⟩
x ∧ (x ∨ x ∧ x) ≈⟨ proj₂ absorptive _ _ ⟩
x ∎
∨-idempotent : Idempotent _∨_
∨-idempotent x = begin
x ∨ x ≈⟨ refl ⟨ ∨-pres-≈ ⟩ sym (∧-idempotent _) ⟩
x ∨ x ∧ x ≈⟨ proj₁ absorptive _ _ ⟩
x ∎
-- The dual construction is also a lattice.
∧-∨-isLattice : IsLattice _≈_ _∧_ _∨_
∧-∨-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ∧-comm
; ∨-assoc = ∧-assoc
; ∨-pres-≈ = ∧-pres-≈
; ∧-comm = ∨-comm
; ∧-assoc = ∨-assoc
; ∧-pres-≈ = ∨-pres-≈
; absorptive = swap absorptive
}
∧-∨-lattice : Lattice
∧-∨-lattice = record
{ _∧_ = _∨_
; _∨_ = _∧_
; isLattice = ∧-∨-isLattice
}
| 26.5625
| 72
| 0.509804
|
4ebe23f9b5e55544f59f879d02d967b2266f505c
| 876
|
agda
|
Agda
|
Cubical/Data/Int/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | null | null | null |
Cubical/Data/Int/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2022-01-27T02:07:48.000Z
|
2022-01-27T02:07:48.000Z
|
Cubical/Data/Int/Base.agda
|
L-TChen/cubical
|
60226aacd7b386aef95d43a0c29c4eec996348a8
|
[
"MIT"
] | 1
|
2021-11-22T02:02:01.000Z
|
2021-11-22T02:02:01.000Z
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Int.Base where
open import Cubical.Core.Everything
open import Cubical.Data.Nat
data Int : Type₀ where
pos : (n : ℕ) → Int
negsuc : (n : ℕ) → Int
neg : (n : ℕ) → Int
neg zero = pos zero
neg (suc n) = negsuc n
sucInt : Int → Int
sucInt (pos n) = pos (suc n)
sucInt (negsuc zero) = pos zero
sucInt (negsuc (suc n)) = negsuc n
predInt : Int → Int
predInt (pos zero) = negsuc zero
predInt (pos (suc n)) = pos n
predInt (negsuc n) = negsuc (suc n)
-- Natural number and negative integer literals for Int
open import Cubical.Data.Nat.Literals public
instance
fromNatInt : HasFromNat Int
fromNatInt = record { Constraint = λ _ → Unit ; fromNat = λ n → pos n }
instance
fromNegInt : HasFromNeg Int
fromNegInt = record { Constraint = λ _ → Unit ; fromNeg = λ n → neg n }
| 23.675676
| 73
| 0.657534
|
4e8c8ccd60689a760b08caa6f5488900176ec756
| 1,211
|
agda
|
Agda
|
overloading/level.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 27
|
2015-04-14T15:47:03.000Z
|
2022-01-09T07:26:57.000Z
|
src/overloading/level.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T14:32:16.000Z
|
2016-10-26T11:57:26.000Z
|
overloading/level.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 4
|
2015-04-11T17:19:12.000Z
|
2019-02-26T06:17:38.000Z
|
{-# OPTIONS --without-K #-}
module overloading.level where
open import sum
open import equality.core
open import overloading.bundle
open import function.isomorphism
open import hott.level.core
open import sets.unit
open Bundle
bundle-structure-iso : ∀ {i j}{Base : Set i}
(Struct : Base → Set j)
→ Σ Base Struct ≅ Bundle Struct
bundle-structure-iso Struct = record
{ to = λ { (X , s) → bundle X s }
; from = λ { (bundle X s) → X , s }
; iso₁ = λ _ → refl
; iso₂ = λ _ → refl }
bundle-equality-iso : ∀ {i j}{Base : Set i}
(Struct : Base → Set j)
→ ((B : Base) → h 1 (Struct B))
→ {X Y : Bundle Struct}
→ (parent X ≡ parent Y)
≅ (X ≡ Y)
bundle-equality-iso Struct hS {X}{Y} = begin
parent X ≡ parent Y
≅⟨ sym≅ ×-right-unit ⟩
((parent X ≡ parent Y) × ⊤)
≅⟨ Σ-ap-iso refl≅ (λ p → sym≅ (contr-⊤-iso (hS _ _ _))) ⟩
( Σ (parent X ≡ parent Y) λ p
→ (subst Struct p (struct X) ≡ struct Y) )
≅⟨ Σ-split-iso ⟩
(parent X , struct X) ≡ (parent Y , struct Y)
≅⟨ iso≡ (bundle-structure-iso Struct) ⟩
X ≡ Y
∎
where open ≅-Reasoning
| 28.833333
| 59
| 0.527663
|
1b7c45ea99bb885839a4b038f70dd7df056384ed
| 1,251
|
agda
|
Agda
|
test/Succeed/NonvariantPolarity.agda
|
alex-mckenna/agda
|
78b62cd24bbd570271a7153e44ad280e52ef3e29
|
[
"BSD-3-Clause"
] | 3
|
2015-03-28T14:51:03.000Z
|
2015-12-07T20:14:00.000Z
|
test/Succeed/NonvariantPolarity.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | null | null | null |
test/Succeed/NonvariantPolarity.agda
|
andersk/agda
|
56928ff709dcb931cb9a48c4790e5ed3739e3032
|
[
"BSD-3-Clause"
] | 1
|
2019-03-05T20:02:38.000Z
|
2019-03-05T20:02:38.000Z
|
-- Andreas, 2012-09-15
-- Positive effects of making Agda recognize constant functions.
-- Arguments to constant functions are ignored in definitional equality.
{-# OPTIONS --copatterns #-}
module NonvariantPolarity where
open import Common.Equality
data ⊥ : Set where
record ⊤ : Set where
constructor trivial
data Bool : Set where
true false : Bool
True : Bool → Set
True true = ⊤
True false = ⊥
module IgnoreArg where
-- A function ignoring its first argument
knot : Bool → Bool → Bool
knot x true = false
knot x false = true
test : (y : Bool) → knot true y ≡ knot false y
test y = refl
module UnusedModulePar where
-- An unused module parameter
module M (x : Bool) where
not : Bool → Bool
not true = false
not false = true
open M true
open M false renaming (not to not′)
test : (y : Bool) → not y ≡ not′ y
test y = refl
module CoinductiveUnit where
record Unit : Set where
coinductive
constructor delay
field force : Unit
open Unit
-- The identity on Unit does not match on its argument, so it is constant.
id : Unit → Unit
force (id x) = id (force x)
idConst : (x y : Unit) → id x ≡ id y
idConst x y = refl
-- That does not imply x ≡ y (needs bisimulation).
| 20.177419
| 76
| 0.669065
|
1490fdd99db01017b56b751dcbc9d5b6e0869d38
| 1,944
|
agda
|
Agda
|
agda-stdlib/src/Data/Unit.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/Unit.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/Unit.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The unit type
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Unit where
import Relation.Binary.PropositionalEquality as PropEq
------------------------------------------------------------------------
-- Re-export contents of base module
open import Data.Unit.Base public
------------------------------------------------------------------------
-- Re-export query operations
open import Data.Unit.Properties public
using (_≟_; _≤?_)
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.1
setoid = Data.Unit.Properties.≡-setoid
{-# WARNING_ON_USAGE setoid
"Warning: setoid was deprecated in v1.1.
Please use ≡-setoid from Data.Unit.Properties instead."
#-}
decSetoid = Data.Unit.Properties.≡-decSetoid
{-# WARNING_ON_USAGE decSetoid
"Warning: decSetoid was deprecated in v1.1.
Please use ≡-decSetoid from Data.Unit.Properties instead."
#-}
total = Data.Unit.Properties.≡-total
{-# WARNING_ON_USAGE total
"Warning: total was deprecated in v1.1.
Please use ≡-total from Data.Unit.Properties instead"
#-}
poset = Data.Unit.Properties.≡-poset
{-# WARNING_ON_USAGE poset
"Warning: poset was deprecated in v1.1.
Please use ≡-poset from Data.Unit.Properties instead."
#-}
decTotalOrder = Data.Unit.Properties.≡-decTotalOrder
{-# WARNING_ON_USAGE decTotalOrder
"Warning: decTotalOrder was deprecated in v1.1.
Please use ≡-decTotalOrder from Data.Unit.Properties instead."
#-}
preorder = PropEq.preorder ⊤
{-# WARNING_ON_USAGE decTotalOrder
"Warning: preorder was deprecated in v1.1.
Please use ≡-preorder from Data.Unit.Properties instead."
#-}
| 31.354839
| 72
| 0.585905
|
73139e4461ab02c621e7eb5710982177a628dd41
| 3,778
|
agda
|
Agda
|
Cubical/Data/Nat/GCD.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | 1
|
2020-03-23T23:52:11.000Z
|
2020-03-23T23:52:11.000Z
|
Cubical/Data/Nat/GCD.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
Cubical/Data/Nat/GCD.agda
|
ryanorendorff/cubical
|
c67854d2e11aafa5677e25a09087e176fafd3e43
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Nat.GCD where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Induction.WellFounded
open import Cubical.Data.Fin
open import Cubical.Data.Sigma as Σ
open import Cubical.Data.NatPlusOne
open import Cubical.HITs.PropositionalTruncation as PropTrunc
open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Data.Nat.Order
open import Cubical.Data.Nat.Divisibility
private
variable
m n d : ℕ
-- common divisors
isCD : ℕ → ℕ → ℕ → Type₀
isCD m n d = (d ∣ m) × (d ∣ n)
isPropIsCD : isProp (isCD m n d)
isPropIsCD = isProp× isProp∣ isProp∣
symCD : isCD m n d → isCD n m d
symCD (d∣m , d∣n) = (d∣n , d∣m)
-- greatest common divisors
isGCD : ℕ → ℕ → ℕ → Type₀
isGCD m n d = (isCD m n d) × (∀ d' → isCD m n d' → d' ∣ d)
GCD : ℕ → ℕ → Type₀
GCD m n = Σ ℕ (isGCD m n)
isPropIsGCD : isProp (isGCD m n d)
isPropIsGCD = isProp× isPropIsCD (isPropΠ2 (λ _ _ → isProp∣))
isPropGCD : isProp (GCD m n)
isPropGCD (d , dCD , gr) (d' , d'CD , gr') =
ΣProp≡ (λ _ → isPropIsGCD) (antisym∣ (gr' d dCD) (gr d' d'CD))
symGCD : isGCD m n d → isGCD n m d
symGCD (dCD , gr) = symCD dCD , λ { d' d'CD → gr d' (symCD d'CD) }
divsGCD : m ∣ n → isGCD m n m
divsGCD p = (∣-refl refl , p) , λ { d (d∣m , _) → d∣m }
-- The base case of the Euclidean algorithm
zeroGCD : ∀ m → isGCD m 0 m
zeroGCD m = divsGCD (∣-zeroʳ m)
private
lem₁ : prediv d (suc n) → prediv d (m % suc n) → prediv d m
lem₁ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = (q * c₁ + c₂) , p
where r = m % suc n; q = n%k≡n[modk] m (suc n) .fst
p = (q * c₁ + c₂) * d ≡⟨ sym (*-distribʳ (q * c₁) c₂ d) ⟩
(q * c₁) * d + c₂ * d ≡⟨ cong (_+ c₂ * d) (sym (*-assoc q c₁ d)) ⟩
q * (c₁ * d) + c₂ * d ≡[ i ]⟨ q * (p₁ i) + (p₂ i) ⟩
q * (suc n) + r ≡⟨ n%k≡n[modk] m (suc n) .snd ⟩
m ∎
lem₂ : prediv d (suc n) → prediv d m → prediv d (m % suc n)
lem₂ {d} {n} {m} (c₁ , p₁) (c₂ , p₂) = c₂ ∸ q * c₁ , p
where r = m % suc n; q = n%k≡n[modk] m (suc n) .fst
p = (c₂ ∸ q * c₁) * d ≡⟨ ∸-distribʳ c₂ (q * c₁) d ⟩
c₂ * d ∸ (q * c₁) * d ≡⟨ cong (c₂ * d ∸_) (sym (*-assoc q c₁ d)) ⟩
c₂ * d ∸ q * (c₁ * d) ≡[ i ]⟨ p₂ i ∸ q * (p₁ i) ⟩
m ∸ q * (suc n) ≡⟨ cong (_∸ q * (suc n)) (sym (n%k≡n[modk] m (suc n) .snd)) ⟩
(q * (suc n) + r) ∸ q * (suc n) ≡⟨ cong (_∸ q * (suc n)) (+-comm (q * (suc n)) r) ⟩
(r + q * (suc n)) ∸ q * (suc n) ≡⟨ ∸-cancelʳ r zero (q * (suc n)) ⟩
r ∎
-- The inductive step of the Euclidean algorithm
stepGCD : isGCD (suc n) (m % suc n) d
→ isGCD m (suc n) d
fst (stepGCD ((d∣n , d∣m%n) , gr)) = PropTrunc.map2 lem₁ d∣n d∣m%n , d∣n
snd (stepGCD ((d∣n , d∣m%n) , gr)) d' (d'∣m , d'∣n) = gr d' (d'∣n , PropTrunc.map2 lem₂ d'∣n d'∣m)
-- putting it all together using well-founded induction
euclid< : ∀ m n → n < m → GCD m n
euclid< = WFI.induction <-wellfounded λ {
m rec zero p → m , zeroGCD m ;
m rec (suc n) p → let d , dGCD = rec (suc n) p (m % suc n) (n%sk<sk m n)
in d , stepGCD dGCD }
euclid : ∀ m n → GCD m n
euclid m n with n ≟ m
... | lt p = euclid< m n p
... | gt p = Σ.mapʳ symGCD (euclid< n m p)
... | eq p = m , divsGCD (∣-refl (sym p))
isContrGCD : ∀ m n → isContr (GCD m n)
isContrGCD m n = euclid m n , isPropGCD _
-- the gcd operator on ℕ
gcd : ℕ → ℕ → ℕ
gcd m n = euclid m n .fst
gcdIsGCD : ∀ m n → isGCD m n (gcd m n)
gcdIsGCD m n = euclid m n .snd
| 32.568966
| 107
| 0.534939
|
735756bbe4e9f76e1969e0b0ee2592cf5bcdb0fd
| 417
|
agda
|
Agda
|
Data/Binary.agda
|
oisdk/agda-binary
|
92af4d620febd47a9791d466d747278dc4a417aa
|
[
"MIT"
] | 1
|
2019-03-21T21:30:10.000Z
|
2019-03-21T21:30:10.000Z
|
Data/Binary.agda
|
oisdk/agda-binary
|
92af4d620febd47a9791d466d747278dc4a417aa
|
[
"MIT"
] | null | null | null |
Data/Binary.agda
|
oisdk/agda-binary
|
92af4d620febd47a9791d466d747278dc4a417aa
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K --safe #-}
module Data.Binary where
open import Data.Binary.Definitions using (𝔹) public
open import Data.Binary.Operations.Semantics using (⟦_⇑⟧; ⟦_⇓⟧) public
open import Data.Binary.Operations.Addition using (_+_) public
open import Data.Binary.Operations.Multiplication using (_*_) public
open import Data.Binary.Operations.Unary using (inc; dec) public
| 41.7
| 75
| 0.707434
|
1101be5536ed582f1e38f73878682d2fca89fe8d
| 562
|
agda
|
Agda
|
test/Succeed/Issue180.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/Issue180.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/Issue180.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
module Issue180 where
module Example₁ where
data C : Set where
c : C → C
data Indexed : (C → C) → Set where
i : Indexed c
foo : Indexed c → Set
foo i = C
module Example₂ where
data List (A : Set) : Set where
nil : List A
cons : A → List A → List A
postulate
A : Set
x : A
T : Set
T = List A → List A
data P : List T → Set where
p : (f : T) → P (cons f nil)
data S : (xs : List T) → P xs → Set where
s : (f : T) → S (cons f nil) (p f)
foo : S (cons (cons x) nil) (p (cons x)) → A
foo (s ._) = x
| 16.057143
| 46
| 0.517794
|
350814524508fa3bb8525d4307be46263dbc1cbf
| 11,591
|
agda
|
Agda
|
AdmissibleButNotPostulable.agda
|
nad/codata
|
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
|
[
"MIT"
] | 1
|
2021-02-13T14:48:45.000Z
|
2021-02-13T14:48:45.000Z
|
AdmissibleButNotPostulable.agda
|
nad/codata
|
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
|
[
"MIT"
] | null | null | null |
AdmissibleButNotPostulable.agda
|
nad/codata
|
1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e
|
[
"MIT"
] | null | null | null |
------------------------------------------------------------------------
-- Admissible rules are sometimes not "postulable"
------------------------------------------------------------------------
-- Even though a rule is admissible it may not be sound to postulate
-- it, i.e. add it as an inductive constructor. This was observed by
-- Edsko de Vries in a message to the Coq-club mailing list (Re:
-- [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not
-- sound? (was: Need help with coinductive proof), 2009-08-28).
module AdmissibleButNotPostulable where
open import Codata.Musical.Notation using (∞; ♯_; ♭)
open import Data.Nat
open import Data.Product as Prod
open import Function
open import Relation.Binary.PropositionalEquality as P using (_≡_; [_])
open import Relation.Nullary using (¬_)
------------------------------------------------------------------------
-- The partiality monad
data _⊥ (A : Set) : Set where
now : (v : A) → A ⊥
later : (x : ∞ (A ⊥)) → A ⊥
------------------------------------------------------------------------
-- Weak equality of computations in the partiality monad
module WeakEquality where
infix 4 _≈_
data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {v} → now v ≈ now v
later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y
laterʳ : ∀ {x y} (x≈y : x ≈ ♭ y ) → x ≈ later y
laterˡ : ∀ {x y} (x≈y : ♭ x ≈ y ) → later x ≈ y
-- Some lemmas.
laterʳ⁻¹ : ∀ {A : Set} {x : A ⊥} {y} → x ≈ later y → x ≈ ♭ y
laterʳ⁻¹ (later x≈y) = laterˡ (♭ x≈y)
laterʳ⁻¹ (laterʳ x≈y) = x≈y
laterʳ⁻¹ (laterˡ x≈ly) = laterˡ (laterʳ⁻¹ x≈ly)
laterˡ⁻¹ : ∀ {A : Set} {x} {y : A ⊥} → later x ≈ y → ♭ x ≈ y
laterˡ⁻¹ (later x≈y) = laterʳ (♭ x≈y)
laterˡ⁻¹ (laterʳ lx≈y) = laterʳ (laterˡ⁻¹ lx≈y)
laterˡ⁻¹ (laterˡ x≈y) = x≈y
-- Weak equality is an equivalence relation.
refl : {A : Set} (x : A ⊥) → x ≈ x
refl (now v) = now
refl (later x) = later (♯ refl (♭ x))
sym : {A : Set} {x y : A ⊥} → x ≈ y → y ≈ x
sym now = now
sym (later x≈y) = later (♯ sym (♭ x≈y))
sym (laterʳ x≈y) = laterˡ (sym x≈y)
sym (laterˡ x≈y) = laterʳ (sym x≈y)
trans : {A : Set} {x y z : A ⊥} → x ≈ y → y ≈ z → x ≈ z
trans {x = now v} {z = z} p q = tr p q
where
tr : ∀ {y} → now v ≈ y → y ≈ z → now v ≈ z
tr now y≈z = y≈z
tr (laterʳ v≈y) ly≈z = tr v≈y (laterˡ⁻¹ ly≈z)
trans {x = later x} lx≈y y≈z = tr lx≈y y≈z
where
tr : ∀ {y z} → later x ≈ y → y ≈ z → later x ≈ z
tr lx≈ly (later y≈z) = later (♯ trans (laterˡ⁻¹ lx≈ly) (laterˡ (♭ y≈z)))
tr lx≈y (laterʳ y≈z) = later (♯ trans (laterˡ⁻¹ lx≈y) y≈z )
tr lx≈ly (laterˡ y≈z) = tr (laterʳ⁻¹ lx≈ly) y≈z
tr (laterˡ x≈y) y≈z = laterˡ ( trans x≈y y≈z )
-- Non-termination.
never : {A : Set} → A ⊥
never = later (♯ never)
-- Weak equality is not trivial (assuming that the argument to _⊥ is
-- non-empty).
non-trivial : {A : Set} {v : A} → ¬ now v ≈ never
non-trivial (laterʳ v≈⊥) = non-trivial v≈⊥
------------------------------------------------------------------------
-- Extended weak equality
module ExtendedWeakEquality where
infix 4 _≈_
infix 3 _∎
infixr 2 _≈⟨_⟩_
-- Let us try to postulate transitivity using an inductive rule.
data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {v} → now v ≈ now v
later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y
laterʳ : ∀ {x y} (x≈y : x ≈ ♭ y ) → x ≈ later y
laterˡ : ∀ {x y} (x≈y : ♭ x ≈ y ) → later x ≈ y
-- Transitivity.
_≈⟨_⟩_ : ∀ x {y z} (x≈y : x ≈ y) (y≈z : y ≈ z) → x ≈ z
-- Reflexivity.
_∎ : {A : Set} (x : A ⊥) → x ≈ x
now v ∎ = now
later x ∎ = later (♯ (♭ x ∎))
-- Extended weak equality is trivial.
trivial : {A : Set} (x y : A ⊥) → x ≈ y
trivial x y =
x ≈⟨ laterʳ (x ∎) ⟩
later (♯ x) ≈⟨ later (♯ trivial x y) ⟩
later (♯ y) ≈⟨ laterˡ (y ∎) ⟩
y ∎
-- The problem is that there is no "contractive" proof of
-- transitivity; the proof given above consumes the input
-- certificate "faster" than it produces the output certificate.
------------------------------------------------------------------------
-- Capretta's definition of equality coincides with weak equality
-- This is not really related to the problem discussed above, I just
-- want to ensure that the definition of weak equality is not too
-- strange.
module Capretta'sEquality where
infix 4 _⇓_ _≈_
-- x ⇓ v means that x terminates with the value v.
data _⇓_ {A : Set} : A ⊥ → A → Set where
now : ∀ {v} → now v ⇓ v
later : ∀ {x v} (x⇓v : ♭ x ⇓ v) → later x ⇓ v
-- Equality as defined by Capretta in "General Recursion via
-- Coinductive Types".
data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈ y
later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y
-- Soundness.
open WeakEquality using () renaming (_≈_ to _≋_)
sound : {A : Set} {x y : A ⊥} → x ≈ y → x ≋ y
sound (later x≈y) = WeakEquality.later (♯ sound (♭ x≈y))
sound (now x⇓v y⇓v) = nw x⇓v y⇓v
where
nw : ∀ {A : Set} {x y : A ⊥} {v} → x ⇓ v → y ⇓ v → x ≋ y
nw now now = WeakEquality.now
nw x⇓v (later y⇓v) = WeakEquality.laterʳ (nw x⇓v y⇓v)
nw (later x⇓v) y⇓v = WeakEquality.laterˡ (nw x⇓v y⇓v)
-- Completeness.
data _≈P_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈P y
later : ∀ {x y} (x≈y : ∞ (♭ x ≈P ♭ y)) → later x ≈P later y
laterʳ : ∀ {x y} (x≈y : x ≈P ♭ y ) → x ≈P later y
laterˡ : ∀ {x y} (x≈y : ♭ x ≈P y ) → later x ≈P y
data _≈W_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈W y
later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y
laterʳW : ∀ {A : Set} {x : A ⊥} {y} → x ≈W ♭ y → x ≈W later y
laterʳW {y = y} x≈y with ♭ y | P.inspect ♭ y
laterʳW x≈y | y′ | [ eq ] with x≈y
laterʳW x≈y | y′ | [ eq ] | now {v = v} x⇓v y⇓v =
now x⇓v (later (P.subst (λ y → y ⇓ v) (P.sym eq) y⇓v))
laterʳW x≈y | later y′ | [ eq ] | later x′≈y′ =
later (P.subst (_≈P_ _) (P.sym eq) (laterʳ x′≈y′))
laterˡW : ∀ {A : Set} {x} {y : A ⊥} → ♭ x ≈W y → later x ≈W y
laterˡW {x = x} x≈y with ♭ x | P.inspect ♭ x
laterˡW x≈y | x′ | [ eq ] with x≈y
laterˡW x≈y | x′ | [ eq ] | now {v = v} x⇓v y⇓v =
now (later (P.subst (λ x → x ⇓ v) (P.sym eq) x⇓v)) y⇓v
laterˡW x≈y | later x′ | [ eq ] | later {y = y′} x′≈y′ =
later (P.subst (λ x → x ≈P ♭ y′) (P.sym eq) (laterˡ x′≈y′))
whnf : {A : Set} {x y : A ⊥} → x ≈P y → x ≈W y
whnf (now x⇓v y⇓v) = now x⇓v y⇓v
whnf (later x≈y) = later (♭ x≈y)
whnf (laterʳ x≈y) = laterʳW (whnf x≈y)
whnf (laterˡ x≈y) = laterˡW (whnf x≈y)
mutual
⟦_⟧W : {A : Set} {x y : A ⊥} → x ≈W y → x ≈ y
⟦ now x⇓v y⇓v ⟧W = now x⇓v y⇓v
⟦ later x≈y ⟧W = later (♯ ⟦ x≈y ⟧P)
⟦_⟧P : {A : Set} {x y : A ⊥} → x ≈P y → x ≈ y
⟦ x≈y ⟧P = ⟦ whnf x≈y ⟧W
complete : {A : Set} {x y : A ⊥} → x ≋ y → x ≈ y
complete x≋y = ⟦ completeP x≋y ⟧P
where
completeP : {A : Set} {x y : A ⊥} → x ≋ y → x ≈P y
completeP WeakEquality.now = now now now
completeP (WeakEquality.later x≈y) = later (♯ completeP (♭ x≈y))
completeP (WeakEquality.laterʳ x≈y) = laterʳ (completeP x≈y)
completeP (WeakEquality.laterˡ x≈y) = laterˡ (completeP x≈y)
------------------------------------------------------------------------
-- The weak equality above coincides with weak bisimilarity
module WeakBisimilarity {A : Set} where
-- The function drop n drops n later constructors (if possible).
drop : ℕ → A ⊥ → A ⊥
drop zero x = x
drop _ (now v) = now v
drop (suc n) (later x) = drop n (♭ x)
-- Weak simulations and bisimulations. The removal of a later
-- constructor is treated as a silent transition.
record IsWeakSimulation (_R_ : A ⊥ → A ⊥ → Set) : Set where
field
match-later : ∀ {x y} → later x R y → ∃ λ n → ♭ x R drop n y
match-now : ∀ {v y} → now v R y → ∃ λ n → now v ≡ drop n y
record IsWeakBisimulation (_R_ : A ⊥ → A ⊥ → Set) : Set where
field
left : IsWeakSimulation _R_
right : IsWeakSimulation (flip _R_)
-- Weak bisimilarity.
record _≈_ (x y : A ⊥) : Set₁ where
field
_R_ : A ⊥ → A ⊥ → Set
xRy : x R y
bisim : IsWeakBisimulation _R_
open WeakEquality hiding (module _≈_) renaming (_≈_ to _≋_)
-- Completeness.
complete : ∀ {x y} → x ≋ y → x ≈ y
complete x≋y = record
{ _R_ = _≋_
; xRy = x≋y
; bisim = record
{ left = record
{ match-later = λ lx≋y → (0 , laterˡ⁻¹ lx≋y)
; match-now = match-now
}
; right = record
{ match-later = λ x≋ly → (0 , laterʳ⁻¹ x≋ly)
; match-now = match-now ∘ sym
}
}
}
where
match-now : ∀ {v y} → now v ≋ y → ∃ λ n → now v ≡ drop n y
match-now now = (0 , P.refl)
match-now (laterʳ v≋y) = Prod.map suc id (match-now v≋y)
-- Soundness.
module Sound {x y} (x≈y : x ≈ y) where
open _≈_ x≈y
open IsWeakBisimulation
open IsWeakSimulation
helper₁ : ∀ {x} y → (∃ λ n → now x ≡ drop n y) → now x ≋ y
helper₁ (now y) (zero , P.refl) = now
helper₁ (now y) (suc n , P.refl) = now
helper₁ (later y) (zero , ())
helper₁ (later y) (suc n , nx≡y-n) =
laterʳ (helper₁ (♭ y) (n , nx≡y-n))
mutual
helper₂ : ∀ {x} y → (∃ λ n → x R drop n y) → x ≋ y
helper₂ y (zero , xRy) = sound _ _ xRy
helper₂ (now y) (suc n , xRny) = sound _ _ xRny
helper₂ (later y) (suc n , xRy-n) =
laterʳ (helper₂ (♭ y) (n , xRy-n))
helper₃ : ∀ x {y} → (∃ λ n → drop (suc n) x R y) → x ≋ y
helper₃ (now x) (n , nxRy) = sound _ _ nxRy
helper₃ (later x) (zero , xRy) = laterˡ (sound _ _ xRy)
helper₃ (later x) (suc n , x-nRy) =
laterˡ (helper₃ (♭ x) (n , x-nRy))
sound : ∀ x y → x R y → x ≋ y
sound (now x) y nxRy = helper₁ y $ match-now (left bisim) nxRy
sound (later x) (now y) lxRny =
sym $ helper₁ (later x) $ match-now (right bisim) lxRny
sound (later x) (later y) lxRly
with match-later (left bisim) lxRly
... | (suc n , xRy-n) = later (♯ helper₂ (♭ y) (n , xRy-n))
... | (zero , xRly) with match-later (right bisim) xRly
... | (zero , xRy) = later (♯ sound _ _ xRy)
... | (suc n , x-1+nRy) =
later (♯ helper₃ (♭ x) (n , x-1+nRy))
sound : ∀ {x y} → x ≈ y → x ≋ y
sound x≈y = Sound.sound x≈y _ _ (_≈_.xRy x≈y)
-- Note that the problem illustrated in ExtendedWeakEquality is
-- related to the problem of weak bisimulation up to weak
-- bisimilarity. Let R be a relation which is only inhabited for the
-- pair (later (♯ x), later (♯ y)). R is a weak bisimulation up to
-- weak bisimilarity (_≈_):
--
-- later (♯ x) R later (♯ y)
-- ↓ =
-- x ≈ later (♯ x) R later (♯ y)
--
-- later (♯ x) R later (♯ y)
-- = ↓
-- later (♯ x) R later (♯ y) ≈ y
--
-- Weak bisimilarity is transitive, so if every relation which is a
-- weak bisimulation up to weak bisimilarity were contained in weak
-- bisimilarity we would have x ≈ y for all x and y.
| 34.6
| 86
| 0.486843
|
7c6e418a6dd9374fffb258ceeb590f1b94dd0446
| 1,425
|
agda
|
Agda
|
agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/Vec/Functional/Relation/Unary/All.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Universal lifting of predicates over Vectors
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Functional.Relation.Unary.All where
open import Data.Fin.Base
open import Data.Fin.Properties
open import Data.Nat.Base
open import Data.Product using (_,_)
open import Data.Vec.Functional as VF hiding (map)
open import Level using (Level)
open import Relation.Unary
private
variable
a p q ℓ : Level
A : Set a
------------------------------------------------------------------------
-- Definition
All : Pred A ℓ → ∀ {n} → Vector A n → Set ℓ
All P xs = ∀ i → P (xs i)
------------------------------------------------------------------------
-- Operations
module _ {P : Pred A p} {Q : Pred A q} where
map : P ⊆ Q → ∀ {n} → All P {n = n} ⊆ All Q
map p⊆q ps i = p⊆q (ps i)
------------------------------------------------------------------------
-- Properties of predicates preserved by All
module _ {P : Pred A p} where
all : Decidable P → ∀ {n} → Decidable (All P {n = n})
all p? xs = all? λ i → p? (xs i)
universal : Universal P → ∀ {n} → Universal (All P {n = n})
universal uni xs i = uni (xs i)
satisfiable : Satisfiable P → ∀ {n} → Satisfiable (All P {n = n})
satisfiable (x , px) = (λ _ → x) , (λ _ → px)
| 27.941176
| 72
| 0.465263
|
3ff61f1e34db57d25cb37c5576a1b2ce8c3cc5da
| 1,729
|
agda
|
Agda
|
test/interaction/Issue2096.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 2
|
2019-10-29T09:40:30.000Z
|
2020-09-20T00:28:57.000Z
|
test/interaction/Issue2096.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 3
|
2018-11-14T15:31:44.000Z
|
2019-04-01T19:39:26.000Z
|
test/interaction/Issue2096.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1
|
2015-09-15T14:36:15.000Z
|
2015-09-15T14:36:15.000Z
|
-- {-# OPTIONS -v tc.size.solve:100 #-}
open import Agda.Builtin.Size
data Cx (U : Set) : Set where
⌀ : Cx U
_,_ : Cx U → U → Cx U
module _ {U : Set} where
data _⊆_ : Cx U → Cx U → Set where
done : ⌀ ⊆ ⌀
skip : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊆ (Γ′ , A)
keep : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → (Γ , A) ⊆ (Γ′ , A)
data _∈_ (A : U) : Cx U → Set where
top : ∀ {Γ} → A ∈ (Γ , A)
pop : ∀ {C Γ} → A ∈ Γ → A ∈ (Γ , C)
mono∈ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → A ∈ Γ → A ∈ Γ′
mono∈ done ()
mono∈ (skip η) i = pop (mono∈ η i)
mono∈ (keep η) top = top
mono∈ (keep η) (pop i) = pop (mono∈ η i)
refl⊆ : ∀ {Γ} → Γ ⊆ Γ
refl⊆ {⌀} = done
refl⊆ {Γ , A} = keep refl⊆
infixr 3 _⊃_
data Ty : Set where
ι : Ty
_⊃_ : Ty → Ty → Ty
infix 1 _⊢⟨_⟩_
data _⊢⟨_⟩_ (Γ : Cx Ty) : Size → Ty → Set where
var : ∀ {p A} → A ∈ Γ → Γ ⊢⟨ p ⟩ A
lam : ∀ {n A B} {o : Size< n} → Γ , A ⊢⟨ o ⟩ B → Γ ⊢⟨ n ⟩ A ⊃ B
app : ∀ {m A B} {l k : Size< m} → Γ ⊢⟨ k ⟩ A ⊃ B → Γ ⊢⟨ l ⟩ A → Γ ⊢⟨ m ⟩ B
mono⊢ : ∀ {m A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⟨ m ⟩ A → Γ′ ⊢⟨ m ⟩ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (lam t) = lam (mono⊢ (keep η) t)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
det : ∀ {i A B Γ} {j : Size< i} → Γ ⊢⟨ j ⟩ A ⊃ B → Γ , A ⊢⟨ i ⟩ B
det t = app (mono⊢ (skip refl⊆) t) (var top)
ccont : ∀ {m A B Γ} → Γ ⊢⟨ ↑ ↑ ↑ ↑ m ⟩ (A ⊃ A ⊃ B) ⊃ A ⊃ B
ccont = lam (lam (app (app (var (pop top)) (var top)) (var top)))
cont : ∀ {m A B Γ} {m′ : Size< m} → (Γ , A) , A ⊢⟨ ↑ ↑ m′ ⟩ B → Γ , A ⊢⟨ ↑ ↑ ↑ ↑ ↑ m ⟩ B
cont {m = m} {m′ = m′} t = det (app {m = ↑ ↑ ↑ ↑ m} ccont (lam (lam t)))
cont′ : ∀ {q A B Γ} {r : Size< q} → (Γ , A) , A ⊢⟨ {!q!} ⟩ B → Γ , A ⊢⟨ {!!} ⟩ B
cont′ t = det (app ccont (lam (lam t)))
| 30.875
| 88
| 0.396183
|
73166570fc48b047da5940582c6bb5426eab60be
| 926
|
agda
|
Agda
|
agda/Relation/Nullary/Stable/Properties.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 4
|
2021-01-05T14:07:44.000Z
|
2021-01-05T15:32:14.000Z
|
agda/Relation/Nullary/Stable/Properties.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | null | null | null |
agda/Relation/Nullary/Stable/Properties.agda
|
oisdk/combinatorics-paper
|
3c176d4690566d81611080e9378f5a178b39b851
|
[
"MIT"
] | 1
|
2021-01-05T14:05:30.000Z
|
2021-01-05T14:05:30.000Z
|
{-# OPTIONS --cubical --safe #-}
module Relation.Nullary.Stable.Properties where
open import Data.Empty
open import Level
open import Relation.Nullary.Stable.Base
open import Path
open import HLevels
open import Data.Empty.Properties
open import Cubical.Foundations.Everything
using (hcomp; _∧_; i0; i1)
Stable≡→isSet : ∀ {ℓ} {A : Type ℓ} → (st : ∀ (a b : A) → Stable (a ≡ b)) → isSet A
Stable≡→isSet {A = A} st a b p q j i =
let f : (x : A) → a ≡ x → a ≡ x
f x p = st a x (λ h → h p)
fIsConst : (x : A) → (p q : a ≡ x) → f x p ≡ f x q
fIsConst = λ x p q i → st a x (isProp¬ _ (λ h → h p) (λ h → h q) i)
rem : (p : a ≡ b) → PathP (λ i → a ≡ p i) (f a refl) (f b p)
rem p j = f (p j) (λ i → p (i ∧ j))
in hcomp (λ k → λ { (i = i0) → f a refl k
; (i = i1) → fIsConst b p q j k
; (j = i0) → rem p i k
; (j = i1) → rem q i k }) a
| 34.296296
| 82
| 0.5054
|
1b0e4088d9e5974fb6991f0ba53f1b4159db40b1
| 450
|
agda
|
Agda
|
src/Data/ByteString/Utf8.agda
|
semenov-vladyslav/bytes-agda
|
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
|
[
"MIT"
] | null | null | null |
src/Data/ByteString/Utf8.agda
|
semenov-vladyslav/bytes-agda
|
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
|
[
"MIT"
] | null | null | null |
src/Data/ByteString/Utf8.agda
|
semenov-vladyslav/bytes-agda
|
98a53f35fca27e3379cf851a9a6bdfe5bd8c9626
|
[
"MIT"
] | null | null | null |
module Data.ByteString.Utf8 where
open import Data.ByteString.Primitive
open import Data.String using (String)
{-# FOREIGN GHC import qualified Data.ByteString #-}
{-# FOREIGN GHC import qualified Data.Text.Encoding #-}
postulate
packStrict : String → ByteStringStrict
unpackStrict : ByteStringStrict → String
{-# COMPILE GHC packStrict = (Data.Text.Encoding.encodeUtf8) #-}
{-# COMPILE GHC unpackStrict = (Data.Text.Encoding.decodeUtf8) #-}
| 30
| 66
| 0.76
|
7c408990c513508b5a2c8e20bfd635852ab2ab0a
| 1,896
|
agda
|
Agda
|
function/core.agda
|
HoTT/M-types
|
beebe176981953ab48f37de5eb74557cfc5402f4
|
[
"BSD-3-Clause"
] | 27
|
2015-04-14T15:47:03.000Z
|
2022-01-09T07:26:57.000Z
|
src/function/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T14:32:16.000Z
|
2016-10-26T11:57:26.000Z
|
src/function/core.agda
|
pcapriotti/agda-base
|
bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c
|
[
"BSD-3-Clause"
] | 4
|
2015-02-02T12:17:00.000Z
|
2019-05-04T19:31:00.000Z
|
{-# OPTIONS --without-K #-}
module function.core where
open import level
-- copied from Agda's standard library
infixr 9 _∘'_
infixr 0 _$_
_∘'_ : ∀ {a b c}
{A : Set a} {B : A → Set b} {C : {x : A} → B x → Set c} →
(∀ {x} (y : B x) → C y) → (g : (x : A) → B x) →
((x : A) → C (g x))
f ∘' g = λ x → f (g x)
const : ∀ {a b} {A : Set a} {B : Set b} → A → B → A
const x = λ _ → x
_$_ : ∀ {a b} {A : Set a} {B : A → Set b} →
((x : A) → B x) → ((x : A) → B x)
f $ x = f x
flip : ∀ {a b c} {A : Set a} {B : Set b} {C : A → B → Set c} →
((x : A) (y : B) → C x y) → ((y : B) (x : A) → C x y)
flip f = λ y x → f x y
record Composition u₁ u₂ u₃ u₁₂ u₂₃ u₁₃
: Set (lsuc (u₁ ⊔ u₂ ⊔ u₃ ⊔ u₁₂ ⊔ u₂₃ ⊔ u₁₃)) where
infixl 9 _∘_
field
U₁ : Set u₁
U₂ : Set u₂
U₃ : Set u₃
hom₁₂ : U₁ → U₂ → Set u₁₂
hom₂₃ : U₂ → U₃ → Set u₂₃
hom₁₃ : U₁ → U₃ → Set u₁₃
_∘_ : {X₁ : U₁}{X₂ : U₂}{X₃ : U₃} → hom₂₃ X₂ X₃ → hom₁₂ X₁ X₂ → hom₁₃ X₁ X₃
record Identity u e : Set (lsuc (u ⊔ e)) where
field
U : Set u
endo : U → Set e
id : {X : U} → endo X
id- : (X : U) → endo X
id- X = id {X}
instance
func-comp : ∀ {i j k} → Composition _ _ _ _ _ _
func-comp {i}{j}{k} = record
{ U₁ = Set i
; U₂ = Set j
; U₃ = Set k
; hom₁₂ = λ X Y → X → Y
; hom₂₃ = λ X Y → X → Y
; hom₁₃ = λ X Y → X → Y
; _∘_ = λ f g x → f (g x) }
instance
func-id : ∀ {i} → Identity _ _
func-id {i} = record
{ U = Set i
; endo = λ X → X → X
; id = λ x → x }
module ComposeInterface {u₁ u₂ u₃ u₁₂ u₂₃ u₁₃}
⦃ comp : Composition u₁ u₂ u₃ u₁₂ u₂₃ u₁₃ ⦄ where
open Composition comp public using (_∘_)
open ComposeInterface public
module IdentityInterface {i e}
⦃ identity : Identity i e ⦄ where
open Identity identity public using (id; id-)
open IdentityInterface public
| 24.307692
| 79
| 0.48154
|
1148c5a036cf097b511e8c30b41118cab5c5da3e
| 25,689
|
agda
|
Agda
|
agda-stdlib/src/Data/List/Relation/Unary/Any/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Data/List/Relation/Unary/Any/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Data/List/Relation/Unary/Any/Properties.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to Any
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.Any.Properties where
open import Category.Monad
open import Data.Bool.Base using (Bool; false; true; T)
open import Data.Bool.Properties
open import Data.Empty using (⊥)
open import Data.Fin.Base using (Fin) renaming (zero to fzero; suc to fsuc)
open import Data.List.Base as List
open import Data.List.Categorical using (monad)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Membership.Propositional
open import Data.List.Membership.Propositional.Properties.Core
using (Any↔; find∘map; map∘find; lose∘find)
open import Data.List.Relation.Binary.Pointwise
using (Pointwise; []; _∷_)
open import Data.Nat.Base using (zero; suc; _<_; z≤n; s≤s)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Maybe.Relation.Unary.Any as MAny using (just)
open import Data.Product as Prod
using (_×_; _,_; ∃; ∃₂; proj₁; proj₂; uncurry′)
open import Data.Product.Properties
open import Data.Product.Function.NonDependent.Propositional
using (_×-cong_)
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Sum.Function.Propositional using (_⊎-cong_)
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; equivalence; Equivalence)
open import Function.Inverse as Inv using (_↔_; inverse; Inverse)
open import Function.Related as Related using (Kind; Related; SK-sym)
open import Level using (Level)
open import Relation.Binary as B
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; inspect)
open import Relation.Unary as U
using (Pred; _⟨×⟩_; _⟨→⟩_) renaming (_⊆_ to _⋐_)
open import Relation.Nullary using (¬_; _because_; does; ofʸ; ofⁿ)
open import Relation.Nullary.Negation using (contradiction; ¬?; decidable-stable)
private
open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ})
private
variable
a b p q r ℓ : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Equality properties
module _ {P : A → Set p} {_≈_ : Rel A ℓ} where
lift-resp : P Respects _≈_ → (Any P) Respects (Pointwise _≈_)
lift-resp resp (x≈y ∷ xs≈ys) (here px) = here (resp x≈y px)
lift-resp resp (x≈y ∷ xs≈ys) (there pxs) =
there (lift-resp resp xs≈ys pxs)
module _ {P : A → Set p} {x xs} where
here-injective : ∀ {p q : P x} →
here {P = P} {xs = xs} p ≡ here q → p ≡ q
here-injective refl = refl
there-injective : ∀ {p q : Any P xs} →
there {x = x} p ≡ there q → p ≡ q
there-injective refl = refl
------------------------------------------------------------------------
-- Misc
module _ {P : A → Set p} where
¬Any[] : ¬ Any P []
¬Any[] ()
------------------------------------------------------------------------
-- Any is a congruence
module _ {k : Kind} {P : Pred A p} {Q : Pred A q} where
Any-cong : ∀ {xs ys : List A} →
(∀ x → Related k (P x) (Q x)) →
(∀ {z} → Related k (z ∈ xs) (z ∈ ys)) →
Related k (Any P xs) (Any Q ys)
Any-cong {xs} {ys} P↔Q xs≈ys =
Any P xs ↔⟨ SK-sym Any↔ ⟩
(∃ λ x → x ∈ xs × P x) ∼⟨ Σ.cong Inv.id (xs≈ys ×-cong P↔Q _) ⟩
(∃ λ x → x ∈ ys × Q x) ↔⟨ Any↔ ⟩
Any Q ys ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- map
map-id : ∀ {P : A → Set p} (f : P ⋐ P) {xs} →
(∀ {x} (p : P x) → f p ≡ p) →
(p : Any P xs) → Any.map f p ≡ p
map-id f hyp (here p) = P.cong here (hyp p)
map-id f hyp (there p) = P.cong there $ map-id f hyp p
map-∘ : ∀ {P : A → Set p} {Q : A → Set q} {R : A → Set r}
(f : Q ⋐ R) (g : P ⋐ Q)
{xs} (p : Any P xs) →
Any.map (f ∘ g) p ≡ Any.map f (Any.map g p)
map-∘ f g (here p) = refl
map-∘ f g (there p) = P.cong there $ map-∘ f g p
------------------------------------------------------------------------
-- lookup
lookup-result : ∀ {P : Pred A p} {xs} → (p : Any P xs) → P (Any.lookup p)
lookup-result (here px) = px
lookup-result (there p) = lookup-result p
------------------------------------------------------------------------
-- Swapping
-- Nested occurrences of Any can sometimes be swapped. See also ×↔.
swap : ∀ {P : A → B → Set ℓ} {xs ys} →
Any (λ x → Any (P x) ys) xs → Any (λ y → Any (flip P y) xs) ys
swap (here pys) = Any.map here pys
swap (there pxys) = Any.map there (swap pxys)
swap-there : ∀ {P : A → B → Set ℓ} {x xs ys} →
(any : Any (λ x → Any (P x) ys) xs) →
swap (Any.map (there {x = x}) any) ≡ there (swap any)
swap-there (here pys) = refl
swap-there (there pxys) = P.cong (Any.map there) (swap-there pxys)
swap-invol : ∀ {P : A → B → Set ℓ} {xs ys} →
(any : Any (λ x → Any (P x) ys) xs) →
swap (swap any) ≡ any
swap-invol (here (here px)) = refl
swap-invol (here (there pys)) =
P.cong (Any.map there) (swap-invol (here pys))
swap-invol (there pxys) =
P.trans (swap-there (swap pxys)) (P.cong there (swap-invol pxys))
swap↔ : ∀ {P : A → B → Set ℓ} {xs ys} →
Any (λ x → Any (P x) ys) xs ↔ Any (λ y → Any (flip P y) xs) ys
swap↔ = inverse swap swap swap-invol swap-invol
------------------------------------------------------------------------
-- Lemmas relating Any to ⊥
⊥↔Any⊥ : ∀ {xs : List A} → ⊥ ↔ Any (const ⊥) xs
⊥↔Any⊥ {A = A} = inverse (λ()) (λ p → from p) (λ()) (λ p → from p)
where
from : {xs : List A} → Any (const ⊥) xs → ∀ {b} {B : Set b} → B
from (there p) = from p
⊥↔Any[] : ∀ {P : A → Set p} → ⊥ ↔ Any P []
⊥↔Any[] = inverse (λ()) (λ()) (λ()) (λ())
------------------------------------------------------------------------
-- Lemmas relating Any to ⊤
-- These introduction and elimination rules are not inverses, though.
any⁺ : ∀ (p : A → Bool) {xs} → Any (T ∘ p) xs → T (any p xs)
any⁺ p (here px) = Equivalence.from T-∨ ⟨$⟩ inj₁ px
any⁺ p (there {x = x} pxs) with p x
... | true = _
... | false = any⁺ p pxs
any⁻ : ∀ (p : A → Bool) xs → T (any p xs) → Any (T ∘ p) xs
any⁻ p (x ∷ xs) px∷xs with p x | inspect p x
... | true | P.[ eq ] = here (Equivalence.from T-≡ ⟨$⟩ eq)
... | false | _ = there (any⁻ p xs px∷xs)
any⇔ : ∀ {p : A → Bool} {xs} → Any (T ∘ p) xs ⇔ T (any p xs)
any⇔ = equivalence (any⁺ _) (any⁻ _ _)
------------------------------------------------------------------------
-- Sums commute with Any
module _ {P : A → Set p} {Q : A → Set q} where
Any-⊎⁺ : ∀ {xs} → Any P xs ⊎ Any Q xs → Any (λ x → P x ⊎ Q x) xs
Any-⊎⁺ = [ Any.map inj₁ , Any.map inj₂ ]′
Any-⊎⁻ : ∀ {xs} → Any (λ x → P x ⊎ Q x) xs → Any P xs ⊎ Any Q xs
Any-⊎⁻ (here (inj₁ p)) = inj₁ (here p)
Any-⊎⁻ (here (inj₂ q)) = inj₂ (here q)
Any-⊎⁻ (there p) = Sum.map there there (Any-⊎⁻ p)
⊎↔ : ∀ {xs} → (Any P xs ⊎ Any Q xs) ↔ Any (λ x → P x ⊎ Q x) xs
⊎↔ = inverse Any-⊎⁺ Any-⊎⁻ from∘to to∘from
where
from∘to : ∀ {xs} (p : Any P xs ⊎ Any Q xs) → Any-⊎⁻ (Any-⊎⁺ p) ≡ p
from∘to (inj₁ (here p)) = refl
from∘to (inj₁ (there p)) rewrite from∘to (inj₁ p) = refl
from∘to (inj₂ (here q)) = refl
from∘to (inj₂ (there q)) rewrite from∘to (inj₂ q) = refl
to∘from : ∀ {xs} (p : Any (λ x → P x ⊎ Q x) xs) →
Any-⊎⁺ (Any-⊎⁻ p) ≡ p
to∘from (here (inj₁ p)) = refl
to∘from (here (inj₂ q)) = refl
to∘from (there p) with Any-⊎⁻ p | to∘from p
to∘from (there .(Any.map inj₁ p)) | inj₁ p | refl = refl
to∘from (there .(Any.map inj₂ q)) | inj₂ q | refl = refl
------------------------------------------------------------------------
-- Products "commute" with Any.
module _ {P : Pred A p} {Q : Pred B q} where
Any-×⁺ : ∀ {xs ys} → Any P xs × Any Q ys →
Any (λ x → Any (λ y → P x × Q y) ys) xs
Any-×⁺ (p , q) = Any.map (λ p → Any.map (λ q → (p , q)) q) p
Any-×⁻ : ∀ {xs ys} → Any (λ x → Any (λ y → P x × Q y) ys) xs →
Any P xs × Any Q ys
Any-×⁻ pq with Prod.map id (Prod.map id find) (find pq)
... | (x , x∈xs , y , y∈ys , p , q) = (lose x∈xs p , lose y∈ys q)
×↔ : ∀ {xs ys} →
(Any P xs × Any Q ys) ↔ Any (λ x → Any (λ y → P x × Q y) ys) xs
×↔ {xs} {ys} = inverse Any-×⁺ Any-×⁻ from∘to to∘from
where
open P.≡-Reasoning
from∘to : ∀ pq → Any-×⁻ (Any-×⁺ pq) ≡ pq
from∘to (p , q) =
Any-×⁻ (Any-×⁺ (p , q))
≡⟨⟩
(let (x , x∈xs , pq) = find (Any-×⁺ (p , q))
(y , y∈ys , p , q) = find pq
in lose x∈xs p , lose y∈ys q)
≡⟨ P.cong (λ • → let (x , x∈xs , pq) = •
(y , y∈ys , p , q) = find pq
in lose x∈xs p , lose y∈ys q)
(find∘map p (λ p → Any.map (p ,_) q)) ⟩
(let (x , x∈xs , p) = find p
(y , y∈ys , p , q) = find (Any.map (p ,_) q)
in lose x∈xs p , lose y∈ys q)
≡⟨ P.cong (λ • → let (x , x∈xs , p) = find p
(y , y∈ys , p , q) = •
in lose x∈xs p , lose y∈ys q)
(find∘map q (proj₂ (proj₂ (find p)) ,_)) ⟩
(let (x , x∈xs , p) = find p
(y , y∈ys , q) = find q
in lose x∈xs p , lose y∈ys q)
≡⟨ P.cong₂ _,_ (lose∘find p) (lose∘find q) ⟩
(p , q) ∎
to∘from : ∀ pq → Any-×⁺ {xs} (Any-×⁻ pq) ≡ pq
to∘from pq
with find pq
| (λ (f : (proj₁ (find pq) ≡_) ⋐ _) → map∘find pq {f})
... | (x , x∈xs , pq′) | lem₁
with find pq′
| (λ (f : (proj₁ (find pq′) ≡_) ⋐ _) → map∘find pq′ {f})
... | (y , y∈ys , p , q) | lem₂
rewrite P.sym $ map-∘ {R = λ x → Any (λ y → P x × Q y) ys}
(λ p → Any.map (λ q → p , q) (lose y∈ys q))
(λ y → P.subst P y p)
x∈xs
= lem₁ _ helper
where
helper : Any.map (λ q → p , q) (lose y∈ys q) ≡ pq′
helper rewrite P.sym $ map-∘ (λ q → p , q)
(λ y → P.subst Q y q)
y∈ys
= lem₂ _ refl
------------------------------------------------------------------------
-- Half-applied product commutes with Any.
module _ {_~_ : REL A B r} where
Any-Σ⁺ʳ : ∀ {xs} → (∃ λ x → Any (_~ x) xs) → Any (∃ ∘ _~_) xs
Any-Σ⁺ʳ (b , here px) = here (b , px)
Any-Σ⁺ʳ (b , there pxs) = there (Any-Σ⁺ʳ (b , pxs))
Any-Σ⁻ʳ : ∀ {xs} → Any (∃ ∘ _~_) xs → ∃ λ x → Any (_~ x) xs
Any-Σ⁻ʳ (here (b , x)) = b , here x
Any-Σ⁻ʳ (there xs) = Prod.map₂ there $ Any-Σ⁻ʳ xs
------------------------------------------------------------------------
-- Invertible introduction (⁺) and elimination (⁻) rules for various
-- list functions
------------------------------------------------------------------------
------------------------------------------------------------------------
-- singleton
module _ {P : Pred A p} where
singleton⁺ : ∀ {x} → P x → Any P [ x ]
singleton⁺ Px = here Px
singleton⁻ : ∀ {x} → Any P [ x ] → P x
singleton⁻ (here Px) = Px
------------------------------------------------------------------------
-- map
module _ {f : A → B} where
map⁺ : ∀ {P : B → Set p} {xs} → Any (P ∘ f) xs → Any P (List.map f xs)
map⁺ (here p) = here p
map⁺ (there p) = there $ map⁺ p
map⁻ : ∀ {P : B → Set p} {xs} → Any P (List.map f xs) → Any (P ∘ f) xs
map⁻ {xs = x ∷ xs} (here p) = here p
map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p
map⁺∘map⁻ : ∀ {P : B → Set p} {xs} →
(p : Any P (List.map f xs)) → map⁺ (map⁻ p) ≡ p
map⁺∘map⁻ {xs = x ∷ xs} (here p) = refl
map⁺∘map⁻ {xs = x ∷ xs} (there p) = P.cong there (map⁺∘map⁻ p)
map⁻∘map⁺ : ∀ (P : B → Set p) {xs} →
(p : Any (P ∘ f) xs) → map⁻ {P = P} (map⁺ p) ≡ p
map⁻∘map⁺ P (here p) = refl
map⁻∘map⁺ P (there p) = P.cong there (map⁻∘map⁺ P p)
map↔ : ∀ {P : B → Set p} {xs} →
Any (P ∘ f) xs ↔ Any P (List.map f xs)
map↔ = inverse map⁺ map⁻ (map⁻∘map⁺ _) map⁺∘map⁻
module _ {f : A → B} {P : A → Set p} {Q : B → Set q} where
gmap : P ⋐ Q ∘ f → Any P ⋐ Any Q ∘ map f
gmap g = map⁺ ∘ Any.map g
------------------------------------------------------------------------
-- mapMaybe
module _ {P : B → Set p} (f : A → Maybe B) where
mapMaybe⁺ : ∀ xs → Any (MAny.Any P) (map f xs) →
Any P (mapMaybe f xs)
mapMaybe⁺ (x ∷ xs) ps with f x | ps
... | nothing | here ()
... | nothing | there pxs = mapMaybe⁺ xs pxs
... | just _ | here (just py) = here py
... | just _ | there pxs = there (mapMaybe⁺ xs pxs)
------------------------------------------------------------------------
-- _++_
module _ {P : A → Set p} where
++⁺ˡ : ∀ {xs ys} → Any P xs → Any P (xs ++ ys)
++⁺ˡ (here p) = here p
++⁺ˡ (there p) = there (++⁺ˡ p)
++⁺ʳ : ∀ xs {ys} → Any P ys → Any P (xs ++ ys)
++⁺ʳ [] p = p
++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p)
++⁻ : ∀ xs {ys} → Any P (xs ++ ys) → Any P xs ⊎ Any P ys
++⁻ [] p = inj₂ p
++⁻ (x ∷ xs) (here p) = inj₁ (here p)
++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p)
++⁺∘++⁻ : ∀ xs {ys} (p : Any P (xs ++ ys)) →
[ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs p) ≡ p
++⁺∘++⁻ [] p = refl
++⁺∘++⁻ (x ∷ xs) (here p) = refl
++⁺∘++⁻ (x ∷ xs) (there p) with ++⁻ xs p | ++⁺∘++⁻ xs p
++⁺∘++⁻ (x ∷ xs) (there p) | inj₁ p′ | ih = P.cong there ih
++⁺∘++⁻ (x ∷ xs) (there p) | inj₂ p′ | ih = P.cong there ih
++⁻∘++⁺ : ∀ xs {ys} (p : Any P xs ⊎ Any P ys) →
++⁻ xs ([ ++⁺ˡ , ++⁺ʳ xs ]′ p) ≡ p
++⁻∘++⁺ [] (inj₂ p) = refl
++⁻∘++⁺ (x ∷ xs) (inj₁ (here p)) = refl
++⁻∘++⁺ (x ∷ xs) {ys} (inj₁ (there p)) rewrite ++⁻∘++⁺ xs {ys} (inj₁ p) = refl
++⁻∘++⁺ (x ∷ xs) (inj₂ p) rewrite ++⁻∘++⁺ xs (inj₂ p) = refl
++↔ : ∀ {xs ys} → (Any P xs ⊎ Any P ys) ↔ Any P (xs ++ ys)
++↔ {xs = xs} = inverse [ ++⁺ˡ , ++⁺ʳ xs ]′ (++⁻ xs) (++⁻∘++⁺ xs) (++⁺∘++⁻ xs)
++-comm : ∀ xs ys → Any P (xs ++ ys) → Any P (ys ++ xs)
++-comm xs ys = [ ++⁺ʳ ys , ++⁺ˡ ]′ ∘ ++⁻ xs
++-comm∘++-comm : ∀ xs {ys} (p : Any P (xs ++ ys)) →
++-comm ys xs (++-comm xs ys p) ≡ p
++-comm∘++-comm [] {ys} p
rewrite ++⁻∘++⁺ ys {ys = []} (inj₁ p) = refl
++-comm∘++-comm (x ∷ xs) {ys} (here p)
rewrite ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₂ (here p)) = refl
++-comm∘++-comm (x ∷ xs) (there p) with ++⁻ xs p | ++-comm∘++-comm xs p
++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ʳ ys p))))
| inj₁ p | refl
rewrite ++⁻∘++⁺ ys (inj₂ p)
| ++⁻∘++⁺ ys (inj₂ $ there {x = x} p) = refl
++-comm∘++-comm (x ∷ xs) {ys} (there .([ ++⁺ʳ xs , ++⁺ˡ ]′ (++⁻ ys (++⁺ˡ p))))
| inj₂ p | refl
rewrite ++⁻∘++⁺ ys {ys = xs} (inj₁ p)
| ++⁻∘++⁺ ys {ys = x ∷ xs} (inj₁ p) = refl
++↔++ : ∀ xs ys → Any P (xs ++ ys) ↔ Any P (ys ++ xs)
++↔++ xs ys = inverse (++-comm xs ys) (++-comm ys xs)
(++-comm∘++-comm xs) (++-comm∘++-comm ys)
++-insert : ∀ xs {ys x} → P x → Any P (xs ++ [ x ] ++ ys)
++-insert xs Px = ++⁺ʳ xs (++⁺ˡ (singleton⁺ Px))
------------------------------------------------------------------------
-- concat
module _ {P : A → Set p} where
concat⁺ : ∀ {xss} → Any (Any P) xss → Any P (concat xss)
concat⁺ (here p) = ++⁺ˡ p
concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p)
concat⁻ : ∀ xss → Any P (concat xss) → Any (Any P) xss
concat⁻ ([] ∷ xss) p = there $ concat⁻ xss p
concat⁻ ((x ∷ xs) ∷ xss) (here p) = here (here p)
concat⁻ ((x ∷ xs) ∷ xss) (there p) with concat⁻ (xs ∷ xss) p
... | here p′ = here (there p′)
... | there p′ = there p′
concat⁻∘++⁺ˡ : ∀ {xs} xss (p : Any P xs) →
concat⁻ (xs ∷ xss) (++⁺ˡ p) ≡ here p
concat⁻∘++⁺ˡ xss (here p) = refl
concat⁻∘++⁺ˡ xss (there p) rewrite concat⁻∘++⁺ˡ xss p = refl
concat⁻∘++⁺ʳ : ∀ xs xss (p : Any P (concat xss)) →
concat⁻ (xs ∷ xss) (++⁺ʳ xs p) ≡ there (concat⁻ xss p)
concat⁻∘++⁺ʳ [] xss p = refl
concat⁻∘++⁺ʳ (x ∷ xs) xss p rewrite concat⁻∘++⁺ʳ xs xss p = refl
concat⁺∘concat⁻ : ∀ xss (p : Any P (concat xss)) →
concat⁺ (concat⁻ xss p) ≡ p
concat⁺∘concat⁻ ([] ∷ xss) p = concat⁺∘concat⁻ xss p
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (here p) = refl
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there p)
with concat⁻ (xs ∷ xss) p | concat⁺∘concat⁻ (xs ∷ xss) p
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ˡ p′)) | here p′ | refl = refl
concat⁺∘concat⁻ ((x ∷ xs) ∷ xss) (there .(++⁺ʳ xs (concat⁺ p′))) | there p′ | refl = refl
concat⁻∘concat⁺ : ∀ {xss} (p : Any (Any P) xss) → concat⁻ xss (concat⁺ p) ≡ p
concat⁻∘concat⁺ (here p) = concat⁻∘++⁺ˡ _ p
concat⁻∘concat⁺ (there {x = xs} {xs = xss} p)
rewrite concat⁻∘++⁺ʳ xs xss (concat⁺ p) =
P.cong there $ concat⁻∘concat⁺ p
concat↔ : ∀ {xss} → Any (Any P) xss ↔ Any P (concat xss)
concat↔ {xss} = inverse concat⁺ (concat⁻ xss) concat⁻∘concat⁺ (concat⁺∘concat⁻ xss)
------------------------------------------------------------------------
-- applyUpTo
module _ {P : A → Set p} where
applyUpTo⁺ : ∀ f {i n} → P (f i) → i < n → Any P (applyUpTo f n)
applyUpTo⁺ _ p (s≤s z≤n) = here p
applyUpTo⁺ f p (s≤s (s≤s i<n)) =
there (applyUpTo⁺ (f ∘ suc) p (s≤s i<n))
applyUpTo⁻ : ∀ f {n} → Any P (applyUpTo f n) →
∃ λ i → i < n × P (f i)
applyUpTo⁻ f {suc n} (here p) = zero , s≤s z≤n , p
applyUpTo⁻ f {suc n} (there p) with applyUpTo⁻ (f ∘ suc) p
... | i , i<n , q = suc i , s≤s i<n , q
------------------------------------------------------------------------
-- tabulate
module _ {P : A → Set p} where
tabulate⁺ : ∀ {n} {f : Fin n → A} i → P (f i) → Any P (tabulate f)
tabulate⁺ fzero p = here p
tabulate⁺ (fsuc i) p = there (tabulate⁺ i p)
tabulate⁻ : ∀ {n} {f : Fin n → A} →
Any P (tabulate f) → ∃ λ i → P (f i)
tabulate⁻ {suc n} (here p) = fzero , p
tabulate⁻ {suc n} (there p) = Prod.map fsuc id (tabulate⁻ p)
------------------------------------------------------------------------
-- filter
module _ {P : A → Set p} {Q : A → Set q} (Q? : U.Decidable Q) where
filter⁺ : ∀ {xs} → (p : Any P xs) → Any P (filter Q? xs) ⊎ ¬ Q (Any.lookup p)
filter⁺ {x ∷ xs} (here px) with Q? x
... | true because _ = inj₁ (here px)
... | false because ofⁿ ¬Qx = inj₂ ¬Qx
filter⁺ {x ∷ xs} (there p) with Q? x
... | true because _ = Sum.map₁ there (filter⁺ p)
... | false because _ = filter⁺ p
filter⁻ : ∀ {xs} → Any P (filter Q? xs) → Any P xs
filter⁻ {x ∷ xs} p with does (Q? x)
filter⁻ {x ∷ xs} (here px) | true = here px
filter⁻ {x ∷ xs} (there p) | true = there (filter⁻ p)
filter⁻ {x ∷ xs} p | false = there (filter⁻ p)
------------------------------------------------------------------------
-- derun and deduplicate
module _ {P : A → Set p} {R : A → A → Set r} (R? : B.Decidable R) where
private
derun⁺-aux : ∀ x xs → P Respects R → P x → Any P (derun R? (x ∷ xs))
derun⁺-aux x [] P-resp-R Px = here Px
derun⁺-aux x (y ∷ xs) P-resp-R Px with R? x y
... | true because ofʸ Rxy = derun⁺-aux y xs P-resp-R (P-resp-R Rxy Px)
... | false because _ = here Px
derun⁺ : ∀ {xs} → P Respects R → Any P xs → Any P (derun R? xs)
derun⁺ {x ∷ xs} P-resp-R (here px) = derun⁺-aux x xs P-resp-R px
derun⁺ {x ∷ y ∷ xs} P-resp-R (there any[P,xs]) with R? x y
... | true because _ = derun⁺ P-resp-R any[P,xs]
... | false because _ = there (derun⁺ P-resp-R any[P,xs])
deduplicate⁺ : ∀ {xs} → P Respects (flip R) → Any P xs → Any P (deduplicate R? xs)
deduplicate⁺ {x ∷ xs} P-resp-R (here px) = here px
deduplicate⁺ {x ∷ xs} P-resp-R (there any[P,xs]) with filter⁺ (¬? ∘ R? x) (deduplicate⁺ {xs} P-resp-R any[P,xs])
... | inj₁ p = there p
... | inj₂ ¬¬q with decidable-stable (R? x (Any.lookup (deduplicate⁺ P-resp-R any[P,xs]))) ¬¬q
... | q = here (P-resp-R q (lookup-result (deduplicate⁺ P-resp-R any[P,xs])))
private
derun⁻-aux : ∀ {x xs} → Any P (derun R? (x ∷ xs)) → Any P (x ∷ xs)
derun⁻-aux {x} {[]} (here px) = here px
derun⁻-aux {x} {y ∷ xs} any[P,derun[x∷y∷xs]] with R? x y
derun⁻-aux {x} {y ∷ xs} any[P,derun[y∷xs]] | true because _ = there (derun⁻-aux any[P,derun[y∷xs]])
derun⁻-aux {x} {y ∷ xs} (here px) | false because _ = here px
derun⁻-aux {x} {y ∷ xs} (there any[P,derun[y∷xs]]) | false because _ = there (derun⁻-aux any[P,derun[y∷xs]])
derun⁻ : ∀ {xs} → Any P (derun R? xs) → Any P xs
derun⁻ {x ∷ xs} any[P,derun[x∷xs]] = derun⁻-aux any[P,derun[x∷xs]]
deduplicate⁻ : ∀ {xs} → Any P (deduplicate R? xs) → Any P xs
deduplicate⁻ {x ∷ xs} (here px) = here px
deduplicate⁻ {x ∷ xs} (there any[P,dedup[xs]]) = there (deduplicate⁻ (filter⁻ (¬? ∘ R? x) any[P,dedup[xs]]))
------------------------------------------------------------------------
-- map-with-∈.
module _ {P : B → Set p} where
map-with-∈⁺ : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B) →
(∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) →
Any P (map-with-∈ xs f)
map-with-∈⁺ f (_ , here refl , p) = here p
map-with-∈⁺ f (_ , there x∈xs , p) =
there $ map-with-∈⁺ (f ∘ there) (_ , x∈xs , p)
map-with-∈⁻ : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B) →
Any P (map-with-∈ xs f) →
∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)
map-with-∈⁻ (y ∷ xs) f (here p) = (y , here refl , p)
map-with-∈⁻ (y ∷ xs) f (there p) =
Prod.map id (Prod.map there id) $ map-with-∈⁻ xs (f ∘ there) p
map-with-∈↔ : ∀ {xs : List A} {f : ∀ {x} → x ∈ xs → B} →
(∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) ↔ Any P (map-with-∈ xs f)
map-with-∈↔ = inverse (map-with-∈⁺ _) (map-with-∈⁻ _ _) (from∘to _) (to∘from _ _)
where
from∘to : ∀ {xs : List A} (f : ∀ {x} → x ∈ xs → B)
(p : ∃₂ λ x (x∈xs : x ∈ xs) → P (f x∈xs)) →
map-with-∈⁻ xs f (map-with-∈⁺ f p) ≡ p
from∘to f (_ , here refl , p) = refl
from∘to f (_ , there x∈xs , p)
rewrite from∘to (f ∘ there) (_ , x∈xs , p) = refl
to∘from : ∀ (xs : List A) (f : ∀ {x} → x ∈ xs → B)
(p : Any P (map-with-∈ xs f)) →
map-with-∈⁺ f (map-with-∈⁻ xs f p) ≡ p
to∘from (y ∷ xs) f (here p) = refl
to∘from (y ∷ xs) f (there p) =
P.cong there $ to∘from xs (f ∘ there) p
------------------------------------------------------------------------
-- return
module _ {P : A → Set p} {x : A} where
return⁺ : P x → Any P (return x)
return⁺ = here
return⁻ : Any P (return x) → P x
return⁻ (here p) = p
return⁺∘return⁻ : (p : Any P (return x)) → return⁺ (return⁻ p) ≡ p
return⁺∘return⁻ (here p) = refl
return⁻∘return⁺ : (p : P x) → return⁻ (return⁺ p) ≡ p
return⁻∘return⁺ p = refl
return↔ : P x ↔ Any P (return x)
return↔ = inverse return⁺ return⁻ return⁻∘return⁺ return⁺∘return⁻
------------------------------------------------------------------------
-- _∷_
module _ (P : Pred A p) where
∷↔ : ∀ {x xs} → (P x ⊎ Any P xs) ↔ Any P (x ∷ xs)
∷↔ {x} {xs} =
(P x ⊎ Any P xs) ↔⟨ return↔ {P = P} ⊎-cong (Any P xs ∎) ⟩
(Any P [ x ] ⊎ Any P xs) ↔⟨ ++↔ {P = P} {xs = [ x ]} ⟩
Any P (x ∷ xs) ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- _>>=_
module _ {A B : Set ℓ} {P : B → Set p} {f : A → List B} where
>>=↔ : ∀ {xs} → Any (Any P ∘ f) xs ↔ Any P (xs >>= f)
>>=↔ {xs} =
Any (Any P ∘ f) xs ↔⟨ map↔ ⟩
Any (Any P) (List.map f xs) ↔⟨ concat↔ ⟩
Any P (xs >>= f) ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- _⊛_
⊛↔ : ∀ {P : B → Set ℓ} {fs : List (A → B)} {xs : List A} →
Any (λ f → Any (P ∘ f) xs) fs ↔ Any P (fs ⊛ xs)
⊛↔ {P = P} {fs} {xs} =
Any (λ f → Any (P ∘ f) xs) fs ↔⟨ Any-cong (λ _ → Any-cong (λ _ → return↔) (_ ∎)) (_ ∎) ⟩
Any (λ f → Any (Any P ∘ return ∘ f) xs) fs ↔⟨ Any-cong (λ _ → >>=↔ ) (_ ∎) ⟩
Any (λ f → Any P (xs >>= return ∘ f)) fs ↔⟨ >>=↔ ⟩
Any P (fs ⊛ xs) ∎
where open Related.EquationalReasoning
-- An alternative introduction rule for _⊛_
⊛⁺′ : ∀ {P : A → Set ℓ} {Q : B → Set ℓ} {fs : List (A → B)} {xs} →
Any (P ⟨→⟩ Q) fs → Any P xs → Any Q (fs ⊛ xs)
⊛⁺′ pq p =
Inverse.to ⊛↔ ⟨$⟩
Any.map (λ pq → Any.map (λ {x} → pq {x}) p) pq
------------------------------------------------------------------------
-- _⊗_
⊗↔ : {P : A × B → Set ℓ} {xs : List A} {ys : List B} →
Any (λ x → Any (λ y → P (x , y)) ys) xs ↔ Any P (xs ⊗ ys)
⊗↔ {P = P} {xs} {ys} =
Any (λ x → Any (λ y → P (x , y)) ys) xs ↔⟨ return↔ ⟩
Any (λ _,_ → Any (λ x → Any (λ y → P (x , y)) ys) xs) (return _,_) ↔⟨ ⊛↔ ⟩
Any (λ x, → Any (P ∘ x,) ys) (_,_ <$> xs) ↔⟨ ⊛↔ ⟩
Any P (xs ⊗ ys) ∎
where open Related.EquationalReasoning
⊗↔′ : {P : A → Set ℓ} {Q : B → Set ℓ} {xs : List A} {ys : List B} →
(Any P xs × Any Q ys) ↔ Any (P ⟨×⟩ Q) (xs ⊗ ys)
⊗↔′ {P = P} {Q} {xs} {ys} =
(Any P xs × Any Q ys) ↔⟨ ×↔ ⟩
Any (λ x → Any (λ y → P x × Q y) ys) xs ↔⟨ ⊗↔ ⟩
Any (P ⟨×⟩ Q) (xs ⊗ ys) ∎
where open Related.EquationalReasoning
| 38.001479
| 114
| 0.440811
|
14e2d2a8cdf5117150127428495a57b582f05064
| 6,862
|
agda
|
Agda
|
agda-stdlib/src/Relation/Binary/Construct/Add/Infimum/Strict.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 5
|
2020-10-07T12:07:53.000Z
|
2020-10-10T21:41:32.000Z
|
agda-stdlib/src/Relation/Binary/Construct/Add/Infimum/Strict.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | null | null | null |
agda-stdlib/src/Relation/Binary/Construct/Add/Infimum/Strict.agda
|
DreamLinuxer/popl21-artifact
|
fb380f2e67dcb4a94f353dbaec91624fcb5b8933
|
[
"MIT"
] | 1
|
2021-11-04T06:54:45.000Z
|
2021-11-04T06:54:45.000Z
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- The lifting of a non-strict order to incorporate a new infimum
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This module is designed to be used with
-- Relation.Nullary.Construct.Add.Infimum
open import Relation.Binary
module Relation.Binary.Construct.Add.Infimum.Strict
{a ℓ} {A : Set a} (_<_ : Rel A ℓ) where
open import Level using (_⊔_)
open import Data.Product
open import Function
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl)
import Relation.Binary.Construct.Add.Infimum.Equality as Equality
import Relation.Binary.Construct.Add.Infimum.NonStrict as NonStrict
open import Relation.Nullary hiding (Irrelevant)
open import Relation.Nullary.Construct.Add.Infimum
import Relation.Nullary.Decidable as Dec
------------------------------------------------------------------------
-- Definition
data _<₋_ : Rel (A ₋) (a ⊔ ℓ) where
⊥₋<[_] : (l : A) → ⊥₋ <₋ [ l ]
[_] : {k l : A} → k < l → [ k ] <₋ [ l ]
------------------------------------------------------------------------
-- Relational properties
[<]-injective : ∀ {k l} → [ k ] <₋ [ l ] → k < l
[<]-injective [ p ] = p
<₋-asym : Asymmetric _<_ → Asymmetric _<₋_
<₋-asym <-asym [ p ] [ q ] = <-asym p q
<₋-trans : Transitive _<_ → Transitive _<₋_
<₋-trans <-trans ⊥₋<[ l ] [ q ] = ⊥₋<[ _ ]
<₋-trans <-trans [ p ] [ q ] = [ <-trans p q ]
<₋-dec : Decidable _<_ → Decidable _<₋_
<₋-dec _<?_ ⊥₋ ⊥₋ = no (λ ())
<₋-dec _<?_ ⊥₋ [ l ] = yes ⊥₋<[ l ]
<₋-dec _<?_ [ k ] ⊥₋ = no (λ ())
<₋-dec _<?_ [ k ] [ l ] = Dec.map′ [_] [<]-injective (k <? l)
<₋-irrelevant : Irrelevant _<_ → Irrelevant _<₋_
<₋-irrelevant <-irr ⊥₋<[ l ] ⊥₋<[ l ] = P.refl
<₋-irrelevant <-irr [ p ] [ q ] = P.cong _ (<-irr p q)
module _ {r} {_≤_ : Rel A r} where
open NonStrict _≤_
<₋-transʳ : Trans _≤_ _<_ _<_ → Trans _≤₋_ _<₋_ _<₋_
<₋-transʳ <-transʳ (⊥₋≤ .⊥₋) (⊥₋<[ l ]) = ⊥₋<[ l ]
<₋-transʳ <-transʳ (⊥₋≤ l) [ q ] = ⊥₋<[ _ ]
<₋-transʳ <-transʳ [ p ] [ q ] = [ <-transʳ p q ]
<₋-transˡ : Trans _<_ _≤_ _<_ → Trans _<₋_ _≤₋_ _<₋_
<₋-transˡ <-transˡ ⊥₋<[ l ] [ q ] = ⊥₋<[ _ ]
<₋-transˡ <-transˡ [ p ] [ q ] = [ <-transˡ p q ]
------------------------------------------------------------------------
-- Relational properties + propositional equality
<₋-cmp-≡ : Trichotomous _≡_ _<_ → Trichotomous _≡_ _<₋_
<₋-cmp-≡ <-cmp ⊥₋ ⊥₋ = tri≈ (λ ()) refl (λ ())
<₋-cmp-≡ <-cmp ⊥₋ [ l ] = tri< ⊥₋<[ l ] (λ ()) (λ ())
<₋-cmp-≡ <-cmp [ k ] ⊥₋ = tri> (λ ()) (λ ()) ⊥₋<[ k ]
<₋-cmp-≡ <-cmp [ k ] [ l ] with <-cmp k l
... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ []-injective) (¬c ∘ [<]-injective)
... | tri≈ ¬a refl ¬c = tri≈ (¬a ∘ [<]-injective) refl (¬c ∘ [<]-injective)
... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ []-injective) [ c ]
<₋-irrefl-≡ : Irreflexive _≡_ _<_ → Irreflexive _≡_ _<₋_
<₋-irrefl-≡ <-irrefl refl [ x ] = <-irrefl refl x
<₋-respˡ-≡ : _<₋_ Respectsˡ _≡_
<₋-respˡ-≡ = P.subst (_<₋ _)
<₋-respʳ-≡ : _<₋_ Respectsʳ _≡_
<₋-respʳ-≡ = P.subst (_ <₋_)
<₋-resp-≡ : _<₋_ Respects₂ _≡_
<₋-resp-≡ = <₋-respʳ-≡ , <₋-respˡ-≡
------------------------------------------------------------------------
-- Relational properties + setoid equality
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
<₋-cmp : Trichotomous _≈_ _<_ → Trichotomous _≈₋_ _<₋_
<₋-cmp <-cmp ⊥₋ ⊥₋ = tri≈ (λ ()) ⊥₋≈⊥₋ (λ ())
<₋-cmp <-cmp ⊥₋ [ l ] = tri< ⊥₋<[ l ] (λ ()) (λ ())
<₋-cmp <-cmp [ k ] ⊥₋ = tri> (λ ()) (λ ()) ⊥₋<[ k ]
<₋-cmp <-cmp [ k ] [ l ] with <-cmp k l
... | tri< a ¬b ¬c = tri< [ a ] (¬b ∘ [≈]-injective) (¬c ∘ [<]-injective)
... | tri≈ ¬a b ¬c = tri≈ (¬a ∘ [<]-injective) [ b ] (¬c ∘ [<]-injective)
... | tri> ¬a ¬b c = tri> (¬a ∘ [<]-injective) (¬b ∘ [≈]-injective) [ c ]
<₋-irrefl : Irreflexive _≈_ _<_ → Irreflexive _≈₋_ _<₋_
<₋-irrefl <-irrefl [ p ] [ q ] = <-irrefl p q
<₋-respˡ-≈₋ : _<_ Respectsˡ _≈_ → _<₋_ Respectsˡ _≈₋_
<₋-respˡ-≈₋ <-respˡ-≈ ⊥₋≈⊥₋ q = q
<₋-respˡ-≈₋ <-respˡ-≈ [ p ] [ q ] = [ <-respˡ-≈ p q ]
<₋-respʳ-≈₋ : _<_ Respectsʳ _≈_ → _<₋_ Respectsʳ _≈₋_
<₋-respʳ-≈₋ <-respʳ-≈ ⊥₋≈⊥₋ q = q
<₋-respʳ-≈₋ <-respʳ-≈ [ p ] ⊥₋<[ l ] = ⊥₋<[ _ ]
<₋-respʳ-≈₋ <-respʳ-≈ [ p ] [ q ] = [ <-respʳ-≈ p q ]
<₋-resp-≈₋ : _<_ Respects₂ _≈_ → _<₋_ Respects₂ _≈₋_
<₋-resp-≈₋ = map <₋-respʳ-≈₋ <₋-respˡ-≈₋
------------------------------------------------------------------------
-- Structures + propositional equality
<₋-isStrictPartialOrder-≡ : IsStrictPartialOrder _≡_ _<_ →
IsStrictPartialOrder _≡_ _<₋_
<₋-isStrictPartialOrder-≡ strict = record
{ isEquivalence = P.isEquivalence
; irrefl = <₋-irrefl-≡ irrefl
; trans = <₋-trans trans
; <-resp-≈ = <₋-resp-≡
} where open IsStrictPartialOrder strict
<₋-isDecStrictPartialOrder-≡ : IsDecStrictPartialOrder _≡_ _<_ →
IsDecStrictPartialOrder _≡_ _<₋_
<₋-isDecStrictPartialOrder-≡ dectot = record
{ isStrictPartialOrder = <₋-isStrictPartialOrder-≡ isStrictPartialOrder
; _≟_ = ≡-dec _≟_
; _<?_ = <₋-dec _<?_
} where open IsDecStrictPartialOrder dectot
<₋-isStrictTotalOrder-≡ : IsStrictTotalOrder _≡_ _<_ →
IsStrictTotalOrder _≡_ _<₋_
<₋-isStrictTotalOrder-≡ strictot = record
{ isEquivalence = P.isEquivalence
; trans = <₋-trans trans
; compare = <₋-cmp-≡ compare
} where open IsStrictTotalOrder strictot
------------------------------------------------------------------------
-- Structures + setoid equality
module _ {e} {_≈_ : Rel A e} where
open Equality _≈_
<₋-isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ →
IsStrictPartialOrder _≈₋_ _<₋_
<₋-isStrictPartialOrder strict = record
{ isEquivalence = ≈₋-isEquivalence isEquivalence
; irrefl = <₋-irrefl irrefl
; trans = <₋-trans trans
; <-resp-≈ = <₋-resp-≈₋ <-resp-≈
} where open IsStrictPartialOrder strict
<₋-isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ →
IsDecStrictPartialOrder _≈₋_ _<₋_
<₋-isDecStrictPartialOrder dectot = record
{ isStrictPartialOrder = <₋-isStrictPartialOrder isStrictPartialOrder
; _≟_ = ≈₋-dec _≟_
; _<?_ = <₋-dec _<?_
} where open IsDecStrictPartialOrder dectot
<₋-isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ →
IsStrictTotalOrder _≈₋_ _<₋_
<₋-isStrictTotalOrder strictot = record
{ isEquivalence = ≈₋-isEquivalence isEquivalence
; trans = <₋-trans trans
; compare = <₋-cmp compare
} where open IsStrictTotalOrder strictot
| 37.091892
| 75
| 0.488342
|
cc234faa45b5739dffa8e0f63ebf5476e6bf33f9
| 406
|
agda
|
Agda
|
test/Fail/Issue2862fun.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Fail/Issue2862fun.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Fail/Issue2862fun.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
-- Andreas, 2017-12-04, Re: issue #2862, reported by m0davis,
-- Make sure there is similar problem with functions.
open import Agda.Builtin.Equality
data Bool : Set where
true false : Bool
val : Bool
module M where
val = true -- Should fail
val≡true : val ≡ true
val≡true = refl
val = false
data ⊥ : Set where
¬val≡true : val ≡ true → ⊥
¬val≡true ()
boom : ⊥
boom = ¬val≡true Z.val≡true
| 15.615385
| 61
| 0.660099
|
36232f1e491af8039961a7842f379ba6ba73baf2
| 10,100
|
agda
|
Agda
|
nicolai/pseudotruncations/PseudoTruncs-wconst-seq.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | 1
|
2021-06-30T00:17:55.000Z
|
2021-06-30T00:17:55.000Z
|
nicolai/pseudotruncations/PseudoTruncs-wconst-seq.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | null | null | null |
nicolai/pseudotruncations/PseudoTruncs-wconst-seq.agda
|
nicolaikraus/HoTT-Agda
|
939a2d83e090fcc924f69f7dfa5b65b3b79fe633
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.NType2
open import lib.PathFunctor
open import lib.PathGroupoid
open import lib.types.Bool
open import lib.types.IteratedSuspension
open import lib.types.LoopSpace
open import lib.types.Nat
open import lib.types.Paths
open import lib.types.Pi
open import lib.types.Pointed
open import lib.types.Sigma
open import lib.types.Suspension
open import lib.types.TLevel
open import lib.types.Unit
open import nicolai.pseudotruncations.Preliminary-definitions
open import nicolai.pseudotruncations.Liblemmas
open import nicolai.pseudotruncations.SeqColim
open import nicolai.pseudotruncations.wconstSequence
module nicolai.pseudotruncations.PseudoTruncs-wconst-seq where
open import nicolai.pseudotruncations.pointed-O-Sphere
open import nicolai.pseudotruncations.LoopsAndSpheres
open import nicolai.pseudotruncations.PseudoTruncs
{- The special sequence that we consider -}
module PtruncsSeq {i} (X : Type i) where
A : ℕ → Type i
A O = X
A (S n) = Pseudo n -1-trunc (A n)
f : (n : ℕ) → A n → A (S n)
f n x = point n -1 x
C : Sequence {i}
C = (A , f)
{- A main result: If we have an inhabitant of X, then the sequence is weakly constant.
This is Lemma 6.2 ! -}
module PtruncSeqWC {i} (X : Type i) (x₀ : X) where
open PtruncsSeq {i} X
fs : (n : ℕ) → A n
fs O = x₀
fs (S n) = f n (fs n)
P : (n : ℕ) → (x : A n) → Type i
P n x = f n x == fs (S n)
{- This is the easy 'Case j ≡ -2' -}
f₀-x₀ : (y : X) → P O y
f₀-x₀ y = (spoke O -1 r (lift false)) ∙ ! (spoke O -1 r (lift true)) where
r : Sphere {i} O → X
r (lift true) = x₀
r (lift false) = y
{- Now, the general case is done by induction on n
(note that this variable is called 'j' in the paper).
Hence, what is 'j' in the paper is now 'S n'.
Unfortunately, we have to do everything in one "big"
step with many "where" clauses due to the mutual dependencies. -}
fₙ-x₀ : (n : ℕ) → (y : A n) → P n y
fₙ-x₀ O y = f₀-x₀ y
fₙ-x₀ (S n) = Pseudotrunc-ind n Point Hub Spoke where
-- just for convenience - saves brackets
norₙ' : Sphere' {i} n
norₙ' = nor' n
fⁿx₀ = fs n
Point : (w : A n) → P (S n) (point n -1 w)
Point w = ap (point (S n) -1) (fₙ-x₀ n w)
Hub : (r : Sphere' n → A n) → point S n -1 _ == _
Hub r = ap (point (S n) -1) (! (spoke n -1 r norₙ') ∙ fₙ-x₀ n (r norₙ'))
{- The definition of [Spoke] is the hard part.
First, we do the easy things that we have to do... -}
Spoke : (r : _) → (x : Sphere' n) → _
Spoke r = λ x → from-transp (P (S n))
(spoke n -1 r x)
(
transport (P (S n)) (spoke n -1 r x) (Point (r x))
=⟨ trans-ap₁ (f (S n)) (fs (S (S n))) (spoke n -1 r x) (Point (r x)) ⟩
! (ap (point (S n) -1) (spoke n -1 r x)) ∙ Point (r x)
=⟨ ! (ap (point (S n) -1) (spoke n -1 r x)) ∙ₗ ! (∙-unit-r (Point (r x))) ⟩
! (ap (point (S n) -1) (spoke n -1 r x)) ∙ Point (r x) ∙ idp
{- Now comes the hard step which requires A LOT of work in the where clause
below: we can compose with something which, for a complicated reason, is idp! -}
=⟨ ! (ap (point (S n) -1) (spoke n -1 r x)) ∙ₗ (Point (r x) ∙ₗ ! (k-const x)) ⟩
! (ap (point (S n) -1) (spoke n -1 r x)) ∙ Point (r x) ∙ k x
{- From here, it's easy; we just have to re-associate paths and cancel inverses.
This could be done with standard library lemmas, but it's easier to just use
an 'ad-hoc' lemma. -}
=⟨ multi-cancelling (ap (point S n -1) (spoke n -1 r x)) (Point (r x)) (Hub r) ⟩
Hub r
∎
)
where
{- Now, the actual work follows! -}
{- First, we define the interesting loop.
In the paper, it is called [kₓ].
Here, it is just [k x]. -}
k : (x : Sphere' {i} n)
→ Ω (Pseudo S n -1-trunc (A (S n)) ,
f (S n) (f n fⁿx₀))
k x = ! (Point (r x)) ∙ ap (point (S n) -1) (spoke n -1 r x) ∙ (Hub r)
{- We want to show that [k] factors as [ap pₙ ∘ h].
First, we define h. -}
h : Sphere' {i} n
→ Ω (Pseudo n -1-trunc (A n) ,
f n fⁿx₀)
h x = ! (fₙ-x₀ n (r x))
∙ (spoke n -1 r x)
∙ (! (spoke n -1 r norₙ') ∙ fₙ-x₀ n (r norₙ'))
{- The statement that k == ap pₙ ∘ h: -}
k-p-h : k == ap (point S n -1) ∘ h
k-p-h = λ= (λ (x : Sphere' {i} n)
→ k x
=⟨ idp ⟩
! (Point (r x))
∙ (ap (point (S n) -1) (spoke n -1 r x) ∙ (Hub r))
=⟨ !-ap (point S n -1) (fₙ-x₀ n (r x))
∙ᵣ ( ap (point S n -1) (spoke n -1 r x)
∙ Hub r) ⟩
ap (point (S n) -1) (! (fₙ-x₀ n (r x)))
∙ ap (point (S n) -1) (spoke n -1 r x)
∙ (Hub r)
=⟨ ! (ap (point (S n) -1) (! (fₙ-x₀ n (r x)))
∙ₗ ap-∙ point S n -1
(spoke n -1 r x)
_ ) ⟩
ap (point (S n) -1) (! (fₙ-x₀ n (r x)))
∙ ap (point (S n) -1)
( spoke n -1 r x
∙ (! (spoke n -1 r norₙ')
∙ fₙ-x₀ n (r norₙ')))
=⟨ ! (ap-∙ point S n -1 (! (fₙ-x₀ n (r x))) _) ⟩
ap (point S n -1) (h x)
∎)
{- [h] can be made into a a pointed map, written [ĥ] -}
ĥ : (⊙Sphere' {i} n)
→̇ ⊙Ω (A (S n) ,
f n fⁿx₀)
ĥ = h ,
(! (fₙ-x₀ n (r _))
∙ (spoke n -1 r _)
∙ ! (spoke n -1 r norₙ')
∙ fₙ-x₀ n (r norₙ')
=⟨ (! (fₙ-x₀ n (r _)))
∙ₗ (! (∙-assoc (spoke n -1 r _)
(! (spoke n -1 r norₙ'))
(fₙ-x₀ n (r norₙ')))) ⟩
! (fₙ-x₀ n (r _))
∙ ((spoke n -1 r _) ∙ (! (spoke n -1 r norₙ')))
∙ fₙ-x₀ n (r norₙ')
=⟨ ! (fₙ-x₀ n (r _))
∙ₗ !-inv-r (spoke n -1 r _)
∙ᵣ fₙ-x₀ n (r norₙ') ⟩
! (fₙ-x₀ n (r _))
∙ idp
∙ fₙ-x₀ n (r norₙ')
=⟨ !-inv-l (fₙ-x₀ n (r _)) ⟩
idp
∎ )
{- A pointed version of the first constructor. -}
pointsₙ : (A (S n) , f n fⁿx₀) →̇ A (S (S n)) , f (S n) (f n fⁿx₀)
pointsₙ = point S n -1 , idp
open null
open hom-adjoint
points-Φ⁻¹-null : isNull∙ (pointsₙ ⊙∘ Φ⁻¹ _ _ ĥ)
points-Φ⁻¹-null = <– (isNull-equiv (pointsₙ ⊙∘ Φ⁻¹ _ _ ĥ))
-- translate from isNull∙'
(null-lequiv (pointsₙ ⊙∘ Φ⁻¹ _ _ ĥ)
-- translate from isNulld; this,
-- we have done already!
(cmp-nll'.from-sphere-null'∙ n (Φ⁻¹ _ _ ĥ)))
ap-points-ĥ-null : isNull∙ (⊙ap (point S n -1 , idp) ⊙∘ ĥ)
ap-points-ĥ-null = –> (combine-isnull-nat' ĥ (point S n -1 , idp)) points-Φ⁻¹-null
{- ... consequently, h is always refl [in the library "idp"]: -}
points-h-const : (x : Sphere' n) → ap (point S n -1) (h x) == idp
points-h-const x = null-lequiv-easy _ ap-points-ĥ-null x
{- ... and so is k: -}
k-const : (x : Sphere' n) → k x == idp
k-const x = app= k-p-h x ∙ points-h-const x
{- Main result: each function in the sequence is propositional! -}
wconst-f : wconst-chain C
wconst-f n w₁ w₂ = fₙ-x₀ n w₁ ∙ ! (fₙ-x₀ n w₂)
{- Another important result:
if we want to show a proposition, we can assume A₀ instead of Aω
But this should follow from the general induction principle, so... TODO
-}
module PtruncSeqResult' {i} (X : Type i) where
open PtruncsSeq {i} X -- this defines the chain C of pseudo-truncations
SC = SeqCo C
reduction-lemma : (P : Type i) → (is-prop P) → (A O → P) → (SC → P)
reduction-lemma P ip ff = SeqCo-rec {C = C} {B = P} Ins Glue where
Ins : (n : ℕ) → A n → P
Ins O = ff
Ins (S n) = Pseudotrunc-rec {P = P} n Point-1 Hub-1 Spoke-1 where
Point-1 : _ → P
Point-1 x = Ins n x
Hub-1 : (Sphere' n → A n) → P
Hub-1 r = Ins n (r (nor' n))
Spoke-1 : (r : Sphere' n → A n) (x : Sphere' n) → Point-1 (r x) == Hub-1 r
Spoke-1 r x = prop-has-all-paths {A = P} ip _ _
Glue : (n : ℕ) (a : A n) → Ins n a == Ins (S n) (f n a)
Glue n a = prop-has-all-paths ip _ _
{- Corollary of the main result: The colimit of the considered sequence is propositional! -}
module PtruncSeqResult {i} (X : Type i) where
open PtruncsSeq {i} X -- this defines the chain C of pseudo-truncations
colim-is-prp : is-prop (SeqCo C)
colim-is-prp =
inhab-to-contr-is-prop
(PtruncSeqResult'.reduction-lemma X (is-contr (SeqCo C)) has-level-is-prop
(λ x₀ → ins O x₀ , prop-has-all-paths (wconst-prop C (PtruncSeqWC.wconst-f X x₀))
(ins O x₀)))
open PtruncSeqResult' X
{- If we have the propositional truncation in the theory: -}
open import lib.types.Truncation
colim-is-trunc : (Trunc ⟨-1⟩ X) ≃ SeqCo C
colim-is-trunc = equiv (Trunc-rec (colim-is-prp) (ins 0))
(reduction-lemma (Trunc ⟨-1⟩ X) Trunc-level [_])
(λ _ → prop-has-all-paths colim-is-prp _ _)
(λ _ → prop-has-all-paths Trunc-level _ _)
| 35.56338
| 94
| 0.468515
|
364f861418b542be487ab5df0cd7ce93587b3b48
| 790
|
agda
|
Agda
|
Cubical/Algebra/Monoid/Construct/Unit.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Monoid/Construct/Unit.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
Cubical/Algebra/Monoid/Construct/Unit.agda
|
kiana-S/univalent-foundations
|
8bdb0766260489f9c89a14f4c0f2ad26e5190dec
|
[
"MIT"
] | null | null | null |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Monoid.Construct.Unit where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Monoid
open import Cubical.Data.Prod using (_,_)
open import Cubical.Data.Unit
import Cubical.Algebra.Semigroup.Construct.Unit as ⊤Semigroup
open ⊤Semigroup public hiding (⊤-isSemigroup; ⊤-Semigroup)
◯-identityˡ : LeftIdentity tt _◯_
◯-identityˡ _ = refl
◯-identityʳ : RightIdentity tt _◯_
◯-identityʳ _ = refl
◯-identity : Identity tt _◯_
◯-identity = ◯-identityˡ , ◯-identityʳ
⊤-isMonoid : IsMonoid ⊤ _◯_ tt
⊤-isMonoid = record
{ isSemigroup = ⊤Semigroup.⊤-isSemigroup
; identity = ◯-identity
}
⊤-Monoid : Monoid ℓ-zero
⊤-Monoid = record { isMonoid = ⊤-isMonoid }
| 24.6875
| 61
| 0.73038
|
21e726a409a09ebfed61ad609cf80db575785147
| 232
|
agda
|
Agda
|
test/Succeed/NoQualifiedInstances-ParameterizedImport.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
test/Succeed/NoQualifiedInstances-ParameterizedImport.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
test/Succeed/NoQualifiedInstances-ParameterizedImport.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
{-# OPTIONS --no-qualified-instances #-}
module NoQualifiedInstances-ParameterizedImport where
postulate
T : Set
open import NoQualifiedInstances.ParameterizedImport.A T as A
postulate
f : {{A.I}} → A.I
test : A.I
test = f
| 15.466667
| 61
| 0.728448
|
2e93f26b4829e04d9ab459df5de4a694e1b58f86
| 408
|
agda
|
Agda
|
benchmark/monad/IndexedMap.agda
|
mdimjasevic/agda
|
8fb548356b275c7a1e79b768b64511ae937c738b
|
[
"BSD-3-Clause"
] | 1,989
|
2015-01-09T23:51:16.000Z
|
2022-03-30T18:20:48.000Z
|
benchmark/monad/IndexedMap.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 4,066
|
2015-01-10T11:24:51.000Z
|
2022-03-31T21:14:49.000Z
|
benchmark/monad/IndexedMap.agda
|
Seanpm2001-languages/agda
|
9911f73061e21a87fad76c662463257afe02c861
|
[
"BSD-2-Clause"
] | 371
|
2015-01-03T14:04:08.000Z
|
2022-03-30T19:00:30.000Z
|
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Level
module IndexedMap
{Index : Set} {Key : Index → Set} {_≈_ _<_ : Rel (∃ Key) zero}
(isOrderedKeySet : IsStrictTotalOrder _≈_ _<_)
-- Equal keys must have equal indices.
(indicesEqual : _≈_ =[ proj₁ ]⇒ _≡_)
(Value : Index → Set)
where
| 31.384615
| 71
| 0.634804
|
Subsets and Splits
HTML Code Excluding Scripts
The query retrieves a limited set of HTML content entries that are longer than 8 characters and do not contain script tags, offering only basic filtering with minimal analytical value.