repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from math import pi import numpy as np import rustworkx as rx from qiskit_nature.second_q.hamiltonians.lattices import ( BoundaryCondition, HyperCubicLattice, Lattice, LatticeDrawStyle, LineLattice, SquareLattice, TriangularLattice, ) from qiskit_nature.second_q.hamiltonians import FermiHubbardModel num_nodes = 11 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() line_lattice.draw_without_boundary() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC edge_parameter = 1.0 + 1.0j onsite_parameter = 1.0 line_lattice = LineLattice( num_nodes=num_nodes, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(line_lattice.graph.weighted_edge_list()) line_lattice.to_adjacency_matrix() line_lattice.to_adjacency_matrix(weighted=True) rows = 5 cols = 4 boundary_condition = BoundaryCondition.OPEN square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 edge_parameter = (1.0, 1.0 + 1.0j) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction onsite_parameter = 1.0 square_lattice = SquareLattice( rows=rows, cols=cols, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(square_lattice.graph.weighted_edge_list()) size = (3, 4, 5) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.OPEN, BoundaryCondition.OPEN, ) cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition) # function for setting the positions def indextocoord_3d(index: int, size: tuple, angle) -> list: z = index // (size[0] * size[1]) a = index % (size[0] * size[1]) y = a // size[0] x = a % size[0] vec_x = np.array([1, 0]) vec_y = np.array([np.cos(angle), np.sin(angle)]) vec_z = np.array([0, 1]) return_coord = x * vec_x + y * vec_y + z * vec_z return return_coord.tolist() pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))]) cubic_lattice.draw(style=LatticeDrawStyle(pos=pos)) rows = 4 cols = 3 boundary_condition = BoundaryCondition.OPEN triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() rows = 4 cols = 3 boundary_condition = BoundaryCondition.PERIODIC triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() graph = rx.PyGraph(multigraph=False) # multigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) # make a lattice general_lattice = Lattice(graph) set(general_lattice.graph.weighted_edge_list()) general_lattice.draw() general_lattice.draw(self_loop=True) general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True)) square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC) t = -1.0 # the interaction parameter v = 0.0 # the onsite potential u = 5.0 # the interaction parameter U fhm = FermiHubbardModel( square_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) ham = fhm.second_q_op().simplify() print(ham) graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix. u = 5.0 # the interaction parameter U fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u) ham = fhm.second_q_op().simplify() print(ham) from qiskit_nature.second_q.problems import LatticeModelProblem num_nodes = 4 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) fhm = FermiHubbardModel( line_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) lmp = LatticeModelProblem(fhm) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper numpy_solver = NumPyMinimumEigensolver() qubit_mapper = JordanWignerMapper() calc = GroundStateEigensolver(qubit_mapper, numpy_solver) res = calc.solve(lmp) print(res) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit_nature.second_q.hamiltonians import QuadraticHamiltonian # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) antisymmetric_part = np.array( [ [0.0, 3.0, 0.0, 0.0], [-3.0, 0.0, 3.0, 0.0], [0.0, -3.0, 0.0, 3.0], [0.0, 0.0, -3.0, 0.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, antisymmetric_part=antisymmetric_part, constant=constant, ) # convert it to a FermionicOp and print it hamiltonian_ferm = hamiltonian.second_q_op() print(hamiltonian_ferm) # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import FermionicGaussianState occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = FermionicGaussianState(transformation_matrix, occupied_orbitals=occupied_orbitals) circuit.draw("mpl") from qiskit.quantum_info import Statevector from qiskit_nature.second_q.mappers import JordanWignerMapper # simulate the circuit to get the final state state = np.array(Statevector(circuit)) # convert the Hamiltonian to a matrix hamiltonian_jw = JordanWignerMapper().map(hamiltonian_ferm).to_matrix() # check that the state is an eigenvector with the expected eigenvalue np.testing.assert_allclose(hamiltonian_jw @ state, eig * state, atol=1e-8) # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, constant=constant, ) print(f"Hamiltonian conserves particle number: {hamiltonian.conserves_particle_number()}") # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import SlaterDeterminant occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = SlaterDeterminant(transformation_matrix[list(occupied_orbitals)]) circuit.draw("mpl") from qiskit_nature.second_q.circuit.library import BogoliubovTransform from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import random_hermitian, random_statevector, state_fidelity from scipy.linalg import expm # create Hamiltonian n_modes = 5 hermitian_part = np.array(random_hermitian(n_modes)) hamiltonian = QuadraticHamiltonian(hermitian_part=hermitian_part) # diagonalize Hamiltonian ( transformation_matrix, orbital_energies, _, ) = hamiltonian.diagonalizing_bogoliubov_transform() # set simulation time and construct time evolution circuit time = 1.0 register = QuantumRegister(n_modes) circuit = QuantumCircuit(register) bog_circuit = BogoliubovTransform(transformation_matrix) # change to the diagonal basis of the Hamiltonian circuit.append(bog_circuit.inverse(), register) # perform time evolution by applying z rotations for q, energy in zip(register, orbital_energies): circuit.rz(-energy * time, q) # change back to the original basis circuit.append(bog_circuit, register) # simulate the circuit initial_state = random_statevector(2**n_modes) final_state = initial_state.evolve(circuit) # compute the correct state by direct exponentiation hamiltonian_jw = JordanWignerMapper().map(hamiltonian.second_q_op()).to_matrix() exact_evolution_op = expm(-1j * time * hamiltonian_jw) expected_state = exact_evolution_op @ np.array(initial_state) # check that the simulated state is correct fidelity = state_fidelity(final_state, expected_state) np.testing.assert_allclose(fidelity, 1.0, atol=1e-8) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from IPython.display import display, clear_output from qiskit.primitives import Estimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.observables_evaluator import estimate_observables from qiskit.algorithms.optimizers import COBYLA, SLSQP from qiskit.circuit import QuantumCircuit, Parameter from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.utils import algorithm_globals from qiskit_nature.second_q.operators import FermionicOp from qiskit_nature.second_q.mappers import JordanWignerMapper def kronecker_delta_function(n: int, m: int) -> int: """An implementation of the Kronecker delta function. Args: n (int): The first integer argument. m (int): The second integer argument. Returns: Returns 1 if n = m, else returns 0. """ return int(n == m) def create_deuteron_hamiltonian( N: int, hbar_omega: float = 7.0, V_0: float = -5.68658111 ) -> SparsePauliOp: """Creates a version of the Deuteron Hamiltonian as a qubit operator. Args: N (int): An integer number that represents the dimension of the basis. hbar_omega (float, optional): The value of the product of hbar and omega. Defaults to 7.0. V_0 (float, optional): The value of the potential energy. Defaults to -5.68658111. Returns: SparsePauliOp: The qubit-space Hamiltonian that represents the Deuteron. """ hamiltonian_terms = {} for m in range(N): for n in range(N): label = "+_{} -_{}".format(str(n), str(m)) coefficient_kinect = (hbar_omega / 2) * ( (2 * n + 3 / 2) * kronecker_delta_function(n, m) - np.sqrt(n * (n + (1 / 2))) * kronecker_delta_function(n, m + 1) - np.sqrt((n + 1) * (n + (3 / 2)) * kronecker_delta_function(n, m - 1)) ) hamiltonian_terms[label] = coefficient_kinect coefficient_potential = ( V_0 * kronecker_delta_function(n, 0) * kronecker_delta_function(n, m) ) hamiltonian_terms[label] += coefficient_potential hamiltonian = FermionicOp(hamiltonian_terms, num_spin_orbitals=N) mapper = JordanWignerMapper() qubit_hamiltonian = mapper.map(hamiltonian) if not isinstance(qubit_hamiltonian, SparsePauliOp): qubit_hamiltonian = qubit_hamiltonian.primitive return qubit_hamiltonian deuteron_hamiltonians = [create_deuteron_hamiltonian(i) for i in range(1, 5)] for i, hamiltonian in enumerate(deuteron_hamiltonians): print("Deuteron Hamiltonian: H_{}".format(i + 1)) print(hamiltonian) print("\n") theta = Parameter(r"$\theta$") eta = Parameter(r"$\eta$") wavefunction = QuantumCircuit(1) wavefunction.ry(theta, 0) wavefunction.draw("mpl") wavefunction2 = QuantumCircuit(2) wavefunction2.x(0) wavefunction2.ry(theta, 1) wavefunction2.cx(1, 0) wavefunction2.draw("mpl") wavefunction3 = QuantumCircuit(3) wavefunction3.x(0) wavefunction3.ry(eta, 1) wavefunction3.ry(theta, 2) wavefunction3.cx(2, 0) wavefunction3.cx(0, 1) wavefunction3.ry(-eta, 1) wavefunction3.cx(0, 1) wavefunction3.cx(1, 0) wavefunction3.draw("mpl") ansatz = [wavefunction, wavefunction2, wavefunction3] reference_values = [] print("Exact binding energies calculated through numpy.linalg.eigh \n") for i, hamiltonian in enumerate(deuteron_hamiltonians): eigenvalues, eigenstates = np.linalg.eigh(hamiltonian.to_matrix()) reference_values.append(eigenvalues[0]) print("Exact binding energy for H_{}: {}".format(i + 1, eigenvalues[0])) print( "Results using Estimator for H_1, H_2 and H_3 with the ansatz given in the reference paper \n" ) for i in range(3): seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}: {} MeV".format(i + 1, binding_energy)) def callback(eval_count, parameters, mean, std): # Overwrites the same line when printing display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) plots = [] for i in range(3): counts = [] values = [] params = [] deviation = [] seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=COBYLA(), callback=callback) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots.append([counts, values]) fig, ax = plt.subplots(nrows=3, ncols=1) fig.set_size_inches((12, 12)) for i, plot in enumerate(plots): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() twolocal_ansatzes = [] for i in range(1, 5): ansatz = TwoLocal( deuteron_hamiltonians[i - 1].num_qubits, ["rz", "ry"], "cx", entanglement="full", reps=i, initial_state=None, ) twolocal_ansatzes.append(ansatz) print("Results using Estimator for H_1, H_2, H_3 and H_4 with TwoLocal ansatz \n") seed = 42 algorithm_globals.random_seed = seed for i in range(4): vqe = VQE(Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}:".format(i + 1), binding_energy, "MeV") seed = 42 algorithm_globals.random_seed = seed plots_tl = [] for i in range(4): counts = [] values = [] params = [] deviation = [] vqe = VQE( Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP(), callback=callback, ) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots_tl.append([counts, values]) fig, ax = plt.subplots(nrows=4, ncols=1) fig.set_size_inches((15, 15)) for i, plot in enumerate(plots_tl): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() def calculate_observables_exp_values( quantum_circuit: QuantumCircuit, observables: list, angles: list ) -> list: """Calculate the expectation value of an observable given the quantum circuit that represents the wavefunction and a list of parameters. Args: quantum_circuit (QuantumCircuit): A parameterized quantum circuit that represents the wavefunction of the system. observables (list): A list containing the observables that we want to know the expectation values. angles (list): A list with the values that will be used in the 'bind_parameters' method. Returns: list_exp_values (list): A list containing the expectation values of the observables given as input. """ list_exp_values = [] for observable in observables: exp_values = [] for angle in angles: qc = quantum_circuit.bind_parameters({theta: angle}) result = estimate_observables( Estimator(), quantum_state=qc, observables=[observable], ) exp_values.append(result[0][0]) list_exp_values.append(exp_values) return list_exp_values angles = list(np.linspace(-np.pi, np.pi, 100)) observables = [ Pauli("IZ"), Pauli("ZI"), Pauli("XX"), Pauli("YY"), deuteron_hamiltonians[1], ] h2_observables_exp_values = calculate_observables_exp_values(wavefunction2, observables, angles) fig, ax = plt.subplots(nrows=2, ncols=1) fig.set_size_inches((12, 12)) ax[0].plot(angles, h2_observables_exp_values[0], "o", label=r"$Z_0$") ax[0].plot(angles, h2_observables_exp_values[1], "o", label=r"$Z_1$") ax[0].plot(angles, h2_observables_exp_values[2], "o", label=r"$X_0X_1$") ax[0].plot(angles, h2_observables_exp_values[3], "o", label=r"$Y_0Y_1$") ax[0].axhline( y=1, color="k", linestyle="--", ) ax[0].axhline(y=-1, color="k", linestyle="--") ax[0].legend() ax[0].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[0].set_ylabel(r"$\langle O \rangle $ - Operator Expectation Value", fontsize=15) ax[0].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[0].set_title( r"Expectation value of the observables $Z_0$, $Z_1$, $X_0X_1$ and $Y_0Y_1$ when we vary $\theta$ in the ansatz.", fontsize=15, ) ax[1].plot(angles, h2_observables_exp_values[4], "o") ax[1].axhline( y=reference_values[1], color="k", linestyle="--", label="Binding Energy: {} MeV".format(np.round(reference_values[1], 3)), ) ax[1].legend() ax[1].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[1].set_ylabel(r"$\langle H_2 \rangle $ - Energy (MeV)", fontsize=15) ax[1].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[1].set_title( r"Behavior of the expectation value of $H_2$ when we vary $\theta$ in the ansatz.", fontsize=15 ) plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.mappers.second_quantization import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(padding=2) from qiskit_nature.circuit.library import HartreeFock from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) from qiskit_nature.second_q.circuit.library import HartreeFock from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spin_orbitals = 10 from qiskit_nature.second_q.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spatial_orbitals = 5 from qiskit_nature.circuit.library import UCC, UVCC ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None) uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None) from qiskit_nature.second_q.circuit.library import UCC, UVCC ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None) uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None) from qiskit_nature.circuit.library import HartreeFock, VSCF from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper hf = HartreeFock( num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper()) ) vscf = VSCF(num_modals=[2, 2]) from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter hf = HartreeFock() hf.num_spatial_orbitals = 2 hf.num_particles = (1, 1) hf.qubit_converter = QubitConverter(JordanWignerMapper()) vscf = VSCF() vscf.num_modals = [2, 2] from qiskit.providers.basicaer import BasicAer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator")) vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory from qiskit_nature.algorithms.excited_states_solvers import QEOM from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper vqe_factory = VQEUCCFactory() converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import ( GroundStateEigensolver, VQEUCCFactory, ) from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver, estimator) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.settings import settings settings.dict_aux_operators = True driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["VibrationalEnergy"] print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) # this is now done explicitly and already requires the basis problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianLogResult from qiskit_nature.properties.second_quantization.vibrational.bases import HarmonicBasis from qiskit_nature.settings import settings settings.dict_aux_operators = True log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") hamiltonian = log_result.get_vibrational_energy() print(hamiltonian) hamiltonian.basis = HarmonicBasis([2, 2, 3, 4]) op = hamiltonian.second_q_ops()["VibrationalEnergy"] print("\n".join(str(op).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianLogResult from qiskit_nature.second_q.formats import watson_to_problem from qiskit_nature.second_q.problems import HarmonicBasis log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") watson = log_result.get_watson_hamiltonian() print(watson) basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = watson_to_problem(watson, basis) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("VibrationalEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) fermi = FermiHubbardModel.from_parameters(interaction, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) fermi = FermiHubbardModel(lattice, 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import IsingModel line = LineLattice(2) ising = IsingModel.uniform_parameters(line, 2.0, 4.0) print(ising.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import IsingModel line = LineLattice(2) ising = IsingModel(line.uniform_parameters(2.0, 4.0)) print(ising.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) ising = IsingModel.from_parameters(interaction) print(ising.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) ising = IsingModel(lattice) print(ising.second_q_op()) # Note: NO trailing `s` import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() print(problem) hamiltonian = problem.hamiltonian coefficients = hamiltonian.electronic_integrals print(coefficients.alpha) second_q_op = hamiltonian.second_q_op() print(second_q_op) hamiltonian.nuclear_repulsion_energy # NOT included in the second_q_op above problem.molecule problem.reference_energy problem.num_particles problem.num_spatial_orbitals problem.basis problem.properties problem.properties.particle_number problem.properties.angular_momentum problem.properties.magnetization problem.properties.electronic_dipole_moment from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper solver = GroundStateEigensolver( JordanWignerMapper(), NumPyMinimumEigensolver(), ) result = solver.solve(problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import GaussianForcesDriver # if you ran Gaussian elsewhere and already have the output file driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") # if you want to run the Gaussian job from Qiskit # driver = GaussianForcesDriver( # ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight', # '', # 'CO2 geometry optimization B3LYP/6-31g', # '', # '0 1', # 'C -0.848629 2.067624 0.160992', # 'O 0.098816 2.655801 -0.159738', # 'O -1.796073 1.479446 0.481721', # '', # '' from qiskit_nature.second_q.problems import HarmonicBasis basis = HarmonicBasis([2, 2, 2, 2]) from qiskit_nature.second_q.problems import VibrationalStructureProblem from qiskit_nature.second_q.mappers import DirectMapper vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() print(main_op) qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) basis = HarmonicBasis([3, 3, 3, 3]) vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) # for simplicity, we will use the smaller basis again vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2])) vibrational_problem.hamiltonian.truncation_order = 2 from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver solver = GroundStateEigensolver( qubit_mapper, NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()), ) result = solver.solve(vibrational_problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = [0.0] * ansatz.num_parameters from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE(Estimator(), tl_circuit, SLSQP()) from qiskit_nature.second_q.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(mapper, vqe_solver) res = calc.solve(es_problem) print(res) calc = GroundStateEigensolver(mapper, numpy_solver) res = calc.solve(es_problem) print(res) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.mappers import DirectMapper from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis([2, 2, 2, 2]) vib_problem = driver.run(basis=basis) vib_problem.hamiltonian.truncation_order = 2 mapper = DirectMapper() solver_without_filter = NumPyMinimumEigensolver() solver_with_filter = NumPyMinimumEigensolver( filter_criterion=vib_problem.get_default_filter_criterion() ) gsc_wo = GroundStateEigensolver(mapper, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(mapper, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print("\n\n") print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.eigensolvers import NumPyEigensolver numpy_solver = NumPyEigensolver(filter_criterion=es_problem.get_default_filter_criterion()) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) estimator = Estimator() # This first part sets the ground state solver # see more about this part in the ground state calculation tutorial solver = VQE(estimator, ansatz, SLSQP()) solver.initial_point = [0.0] * ansatz.num_parameters gse = GroundStateEigensolver(mapper, solver) # The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive qeom_excited_states_solver = QEOM(gse, estimator, "sd") from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver) numpy_results = numpy_excited_states_solver.solve(es_problem) qeom_results = qeom_excited_states_solver.solve(es_problem) print(numpy_results) print("\n\n") print(qeom_results) import numpy as np def filter_criterion(eigenstate, eigenvalue, aux_values): return np.isclose(aux_values["ParticleNumber"][0], 2.0) new_numpy_solver = NumPyEigensolver(filter_criterion=filter_criterion) new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver) new_numpy_results = new_numpy_excited_states_solver.solve(es_problem) print(new_numpy_results) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.problems import ElectronicBasis driver = PySCFDriver() driver.run_pyscf() ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) ao_hamil = ao_problem.hamiltonian print(ao_hamil.electronic_integrals.alpha) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema qcschema = driver.to_qcschema() basis_transformer = get_ao_to_mo_from_qcschema(qcschema) print(basis_transformer.initial_basis) print(basis_transformer.final_basis) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) mo_hamil = mo_problem.hamiltonian print(mo_hamil.electronic_integrals.alpha) import numpy as np from qiskit_nature.second_q.operators import ElectronicIntegrals from qiskit_nature.second_q.problems import ElectronicBasis from qiskit_nature.second_q.transformers import BasisTransformer ao2mo_alpha = np.random.random((2, 2)) ao2mo_beta = np.random.random((2, 2)) basis_transformer = BasisTransformer( ElectronicBasis.AO, ElectronicBasis.MO, ElectronicIntegrals.from_raw_integrals(ao2mo_alpha, h1_b=ao2mo_beta), ) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.molecule) print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import FreezeCoreTransformer fc_transformer = FreezeCoreTransformer() fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) print(fc_problem.hamiltonian.constants) fc_transformer = FreezeCoreTransformer(remove_orbitals=[4, 5]) fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import ActiveSpaceTransformer as_transformer = ActiveSpaceTransformer(2, 2) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) as_transformer = ActiveSpaceTransformer(2, 2, active_orbitals=[0, 4]) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() fermionic_op = problem.hamiltonian.second_q_op() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() qubit_jw_op = mapper.map(fermionic_op) print(qubit_jw_op) from qiskit_nature.second_q.mappers import ParityMapper mapper = ParityMapper() qubit_p_op = mapper.map(fermionic_op) print(qubit_p_op) mapper = ParityMapper(num_particles=problem.num_particles) qubit_op = mapper.map(fermionic_op) print(qubit_op) tapered_mapper = problem.get_tapered_mapper(mapper) print(type(tapered_mapper)) qubit_op = tapered_mapper.map(fermionic_op) print(qubit_op) from qiskit_nature.second_q.circuit.library import HartreeFock hf_state = HartreeFock(2, (1, 1), JordanWignerMapper()) hf_state.draw() from qiskit_nature.second_q.mappers import InterleavedQubitMapper interleaved_mapper = InterleavedQubitMapper(JordanWignerMapper()) hf_state = HartreeFock(2, (1, 1), interleaved_mapper) hf_state.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from math import pi import numpy as np import rustworkx as rx from qiskit_nature.second_q.hamiltonians.lattices import ( BoundaryCondition, HyperCubicLattice, Lattice, LatticeDrawStyle, LineLattice, SquareLattice, TriangularLattice, ) from qiskit_nature.second_q.hamiltonians import FermiHubbardModel num_nodes = 11 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() line_lattice.draw_without_boundary() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC edge_parameter = 1.0 + 1.0j onsite_parameter = 1.0 line_lattice = LineLattice( num_nodes=num_nodes, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(line_lattice.graph.weighted_edge_list()) line_lattice.to_adjacency_matrix() line_lattice.to_adjacency_matrix(weighted=True) rows = 5 cols = 4 boundary_condition = BoundaryCondition.OPEN square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 edge_parameter = (1.0, 1.0 + 1.0j) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction onsite_parameter = 1.0 square_lattice = SquareLattice( rows=rows, cols=cols, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(square_lattice.graph.weighted_edge_list()) size = (3, 4, 5) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.OPEN, BoundaryCondition.OPEN, ) cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition) # function for setting the positions def indextocoord_3d(index: int, size: tuple, angle) -> list: z = index // (size[0] * size[1]) a = index % (size[0] * size[1]) y = a // size[0] x = a % size[0] vec_x = np.array([1, 0]) vec_y = np.array([np.cos(angle), np.sin(angle)]) vec_z = np.array([0, 1]) return_coord = x * vec_x + y * vec_y + z * vec_z return return_coord.tolist() pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))]) cubic_lattice.draw(style=LatticeDrawStyle(pos=pos)) rows = 4 cols = 3 boundary_condition = BoundaryCondition.OPEN triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() rows = 4 cols = 3 boundary_condition = BoundaryCondition.PERIODIC triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() graph = rx.PyGraph(multigraph=False) # multigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) # make a lattice general_lattice = Lattice(graph) set(general_lattice.graph.weighted_edge_list()) general_lattice.draw() general_lattice.draw(self_loop=True) general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True)) square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC) t = -1.0 # the interaction parameter v = 0.0 # the onsite potential u = 5.0 # the interaction parameter U fhm = FermiHubbardModel( square_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) ham = fhm.second_q_op().simplify() print(ham) graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix. u = 5.0 # the interaction parameter U fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u) ham = fhm.second_q_op().simplify() print(ham) from qiskit_nature.second_q.problems import LatticeModelProblem num_nodes = 4 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) fhm = FermiHubbardModel( line_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) lmp = LatticeModelProblem(fhm) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper numpy_solver = NumPyMinimumEigensolver() qubit_mapper = JordanWignerMapper() calc = GroundStateEigensolver(qubit_mapper, numpy_solver) res = calc.solve(lmp) print(res) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit_nature.second_q.hamiltonians import QuadraticHamiltonian # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) antisymmetric_part = np.array( [ [0.0, 3.0, 0.0, 0.0], [-3.0, 0.0, 3.0, 0.0], [0.0, -3.0, 0.0, 3.0], [0.0, 0.0, -3.0, 0.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, antisymmetric_part=antisymmetric_part, constant=constant, ) # convert it to a FermionicOp and print it hamiltonian_ferm = hamiltonian.second_q_op() print(hamiltonian_ferm) # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import FermionicGaussianState occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = FermionicGaussianState(transformation_matrix, occupied_orbitals=occupied_orbitals) circuit.draw("mpl") from qiskit.quantum_info import Statevector from qiskit_nature.second_q.mappers import JordanWignerMapper # simulate the circuit to get the final state state = np.array(Statevector(circuit)) # convert the Hamiltonian to a matrix hamiltonian_jw = JordanWignerMapper().map(hamiltonian_ferm).to_matrix() # check that the state is an eigenvector with the expected eigenvalue np.testing.assert_allclose(hamiltonian_jw @ state, eig * state, atol=1e-8) # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, constant=constant, ) print(f"Hamiltonian conserves particle number: {hamiltonian.conserves_particle_number()}") # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import SlaterDeterminant occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = SlaterDeterminant(transformation_matrix[list(occupied_orbitals)]) circuit.draw("mpl") from qiskit_nature.second_q.circuit.library import BogoliubovTransform from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import random_hermitian, random_statevector, state_fidelity from scipy.linalg import expm # create Hamiltonian n_modes = 5 hermitian_part = np.array(random_hermitian(n_modes)) hamiltonian = QuadraticHamiltonian(hermitian_part=hermitian_part) # diagonalize Hamiltonian ( transformation_matrix, orbital_energies, _, ) = hamiltonian.diagonalizing_bogoliubov_transform() # set simulation time and construct time evolution circuit time = 1.0 register = QuantumRegister(n_modes) circuit = QuantumCircuit(register) bog_circuit = BogoliubovTransform(transformation_matrix) # change to the diagonal basis of the Hamiltonian circuit.append(bog_circuit.inverse(), register) # perform time evolution by applying z rotations for q, energy in zip(register, orbital_energies): circuit.rz(-energy * time, q) # change back to the original basis circuit.append(bog_circuit, register) # simulate the circuit initial_state = random_statevector(2**n_modes) final_state = initial_state.evolve(circuit) # compute the correct state by direct exponentiation hamiltonian_jw = JordanWignerMapper().map(hamiltonian.second_q_op()).to_matrix() exact_evolution_op = expm(-1j * time * hamiltonian_jw) expected_state = exact_evolution_op @ np.array(initial_state) # check that the simulated state is correct fidelity = state_fidelity(final_state, expected_state) np.testing.assert_allclose(fidelity, 1.0, atol=1e-8) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from IPython.display import display, clear_output from qiskit.primitives import Estimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.observables_evaluator import estimate_observables from qiskit.algorithms.optimizers import COBYLA, SLSQP from qiskit.circuit import QuantumCircuit, Parameter from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.utils import algorithm_globals from qiskit_nature.second_q.operators import FermionicOp from qiskit_nature.second_q.mappers import JordanWignerMapper def kronecker_delta_function(n: int, m: int) -> int: """An implementation of the Kronecker delta function. Args: n (int): The first integer argument. m (int): The second integer argument. Returns: Returns 1 if n = m, else returns 0. """ return int(n == m) def create_deuteron_hamiltonian( N: int, hbar_omega: float = 7.0, V_0: float = -5.68658111 ) -> SparsePauliOp: """Creates a version of the Deuteron Hamiltonian as a qubit operator. Args: N (int): An integer number that represents the dimension of the basis. hbar_omega (float, optional): The value of the product of hbar and omega. Defaults to 7.0. V_0 (float, optional): The value of the potential energy. Defaults to -5.68658111. Returns: SparsePauliOp: The qubit-space Hamiltonian that represents the Deuteron. """ hamiltonian_terms = {} for m in range(N): for n in range(N): label = "+_{} -_{}".format(str(n), str(m)) coefficient_kinect = (hbar_omega / 2) * ( (2 * n + 3 / 2) * kronecker_delta_function(n, m) - np.sqrt(n * (n + (1 / 2))) * kronecker_delta_function(n, m + 1) - np.sqrt((n + 1) * (n + (3 / 2)) * kronecker_delta_function(n, m - 1)) ) hamiltonian_terms[label] = coefficient_kinect coefficient_potential = ( V_0 * kronecker_delta_function(n, 0) * kronecker_delta_function(n, m) ) hamiltonian_terms[label] += coefficient_potential hamiltonian = FermionicOp(hamiltonian_terms, num_spin_orbitals=N) mapper = JordanWignerMapper() qubit_hamiltonian = mapper.map(hamiltonian) if not isinstance(qubit_hamiltonian, SparsePauliOp): qubit_hamiltonian = qubit_hamiltonian.primitive return qubit_hamiltonian deuteron_hamiltonians = [create_deuteron_hamiltonian(i) for i in range(1, 5)] for i, hamiltonian in enumerate(deuteron_hamiltonians): print("Deuteron Hamiltonian: H_{}".format(i + 1)) print(hamiltonian) print("\n") theta = Parameter(r"$\theta$") eta = Parameter(r"$\eta$") wavefunction = QuantumCircuit(1) wavefunction.ry(theta, 0) wavefunction.draw("mpl") wavefunction2 = QuantumCircuit(2) wavefunction2.x(0) wavefunction2.ry(theta, 1) wavefunction2.cx(1, 0) wavefunction2.draw("mpl") wavefunction3 = QuantumCircuit(3) wavefunction3.x(0) wavefunction3.ry(eta, 1) wavefunction3.ry(theta, 2) wavefunction3.cx(2, 0) wavefunction3.cx(0, 1) wavefunction3.ry(-eta, 1) wavefunction3.cx(0, 1) wavefunction3.cx(1, 0) wavefunction3.draw("mpl") ansatz = [wavefunction, wavefunction2, wavefunction3] reference_values = [] print("Exact binding energies calculated through numpy.linalg.eigh \n") for i, hamiltonian in enumerate(deuteron_hamiltonians): eigenvalues, eigenstates = np.linalg.eigh(hamiltonian.to_matrix()) reference_values.append(eigenvalues[0]) print("Exact binding energy for H_{}: {}".format(i + 1, eigenvalues[0])) print( "Results using Estimator for H_1, H_2 and H_3 with the ansatz given in the reference paper \n" ) for i in range(3): seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}: {} MeV".format(i + 1, binding_energy)) def callback(eval_count, parameters, mean, std): # Overwrites the same line when printing display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) plots = [] for i in range(3): counts = [] values = [] params = [] deviation = [] seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=COBYLA(), callback=callback) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots.append([counts, values]) fig, ax = plt.subplots(nrows=3, ncols=1) fig.set_size_inches((12, 12)) for i, plot in enumerate(plots): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() twolocal_ansatzes = [] for i in range(1, 5): ansatz = TwoLocal( deuteron_hamiltonians[i - 1].num_qubits, ["rz", "ry"], "cx", entanglement="full", reps=i, initial_state=None, ) twolocal_ansatzes.append(ansatz) print("Results using Estimator for H_1, H_2, H_3 and H_4 with TwoLocal ansatz \n") seed = 42 algorithm_globals.random_seed = seed for i in range(4): vqe = VQE(Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}:".format(i + 1), binding_energy, "MeV") seed = 42 algorithm_globals.random_seed = seed plots_tl = [] for i in range(4): counts = [] values = [] params = [] deviation = [] vqe = VQE( Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP(), callback=callback, ) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots_tl.append([counts, values]) fig, ax = plt.subplots(nrows=4, ncols=1) fig.set_size_inches((15, 15)) for i, plot in enumerate(plots_tl): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() def calculate_observables_exp_values( quantum_circuit: QuantumCircuit, observables: list, angles: list ) -> list: """Calculate the expectation value of an observable given the quantum circuit that represents the wavefunction and a list of parameters. Args: quantum_circuit (QuantumCircuit): A parameterized quantum circuit that represents the wavefunction of the system. observables (list): A list containing the observables that we want to know the expectation values. angles (list): A list with the values that will be used in the 'bind_parameters' method. Returns: list_exp_values (list): A list containing the expectation values of the observables given as input. """ list_exp_values = [] for observable in observables: exp_values = [] for angle in angles: qc = quantum_circuit.bind_parameters({theta: angle}) result = estimate_observables( Estimator(), quantum_state=qc, observables=[observable], ) exp_values.append(result[0][0]) list_exp_values.append(exp_values) return list_exp_values angles = list(np.linspace(-np.pi, np.pi, 100)) observables = [ Pauli("IZ"), Pauli("ZI"), Pauli("XX"), Pauli("YY"), deuteron_hamiltonians[1], ] h2_observables_exp_values = calculate_observables_exp_values(wavefunction2, observables, angles) fig, ax = plt.subplots(nrows=2, ncols=1) fig.set_size_inches((12, 12)) ax[0].plot(angles, h2_observables_exp_values[0], "o", label=r"$Z_0$") ax[0].plot(angles, h2_observables_exp_values[1], "o", label=r"$Z_1$") ax[0].plot(angles, h2_observables_exp_values[2], "o", label=r"$X_0X_1$") ax[0].plot(angles, h2_observables_exp_values[3], "o", label=r"$Y_0Y_1$") ax[0].axhline( y=1, color="k", linestyle="--", ) ax[0].axhline(y=-1, color="k", linestyle="--") ax[0].legend() ax[0].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[0].set_ylabel(r"$\langle O \rangle $ - Operator Expectation Value", fontsize=15) ax[0].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[0].set_title( r"Expectation value of the observables $Z_0$, $Z_1$, $X_0X_1$ and $Y_0Y_1$ when we vary $\theta$ in the ansatz.", fontsize=15, ) ax[1].plot(angles, h2_observables_exp_values[4], "o") ax[1].axhline( y=reference_values[1], color="k", linestyle="--", label="Binding Energy: {} MeV".format(np.round(reference_values[1], 3)), ) ax[1].legend() ax[1].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[1].set_ylabel(r"$\langle H_2 \rangle $ - Energy (MeV)", fontsize=15) ax[1].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[1].set_title( r"Behavior of the expectation value of $H_2$ when we vary $\theta$ in the ansatz.", fontsize=15 ) plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.mappers.second_quantization import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(padding=2) from qiskit_nature.circuit.library import HartreeFock from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) from qiskit_nature.second_q.circuit.library import HartreeFock from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spin_orbitals = 10 from qiskit_nature.second_q.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spatial_orbitals = 5 from qiskit_nature.circuit.library import UCC, UVCC ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None) uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None) from qiskit_nature.second_q.circuit.library import UCC, UVCC ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None) uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None) from qiskit_nature.circuit.library import HartreeFock, VSCF from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper hf = HartreeFock( num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper()) ) vscf = VSCF(num_modals=[2, 2]) from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter hf = HartreeFock() hf.num_spatial_orbitals = 2 hf.num_particles = (1, 1) hf.qubit_converter = QubitConverter(JordanWignerMapper()) vscf = VSCF() vscf.num_modals = [2, 2] from qiskit.providers.basicaer import BasicAer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator")) vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory from qiskit_nature.algorithms.excited_states_solvers import QEOM from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper vqe_factory = VQEUCCFactory() converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import ( GroundStateEigensolver, VQEUCCFactory, ) from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver, estimator) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.settings import settings settings.dict_aux_operators = True driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["VibrationalEnergy"] print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) # this is now done explicitly and already requires the basis problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianLogResult from qiskit_nature.properties.second_quantization.vibrational.bases import HarmonicBasis from qiskit_nature.settings import settings settings.dict_aux_operators = True log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") hamiltonian = log_result.get_vibrational_energy() print(hamiltonian) hamiltonian.basis = HarmonicBasis([2, 2, 3, 4]) op = hamiltonian.second_q_ops()["VibrationalEnergy"] print("\n".join(str(op).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianLogResult from qiskit_nature.second_q.formats import watson_to_problem from qiskit_nature.second_q.problems import HarmonicBasis log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") watson = log_result.get_watson_hamiltonian() print(watson) basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = watson_to_problem(watson, basis) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("VibrationalEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) fermi = FermiHubbardModel.from_parameters(interaction, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) fermi = FermiHubbardModel(lattice, 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import IsingModel line = LineLattice(2) ising = IsingModel.uniform_parameters(line, 2.0, 4.0) print(ising.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import IsingModel line = LineLattice(2) ising = IsingModel(line.uniform_parameters(2.0, 4.0)) print(ising.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) ising = IsingModel.from_parameters(interaction) print(ising.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) ising = IsingModel(lattice) print(ising.second_q_op()) # Note: NO trailing `s` import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() print(problem) hamiltonian = problem.hamiltonian coefficients = hamiltonian.electronic_integrals print(coefficients.alpha) second_q_op = hamiltonian.second_q_op() print(second_q_op) hamiltonian.nuclear_repulsion_energy # NOT included in the second_q_op above problem.molecule problem.reference_energy problem.num_particles problem.num_spatial_orbitals problem.basis problem.properties problem.properties.particle_number problem.properties.angular_momentum problem.properties.magnetization problem.properties.electronic_dipole_moment from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper solver = GroundStateEigensolver( JordanWignerMapper(), NumPyMinimumEigensolver(), ) result = solver.solve(problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import GaussianForcesDriver # if you ran Gaussian elsewhere and already have the output file driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") # if you want to run the Gaussian job from Qiskit # driver = GaussianForcesDriver( # ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight', # '', # 'CO2 geometry optimization B3LYP/6-31g', # '', # '0 1', # 'C -0.848629 2.067624 0.160992', # 'O 0.098816 2.655801 -0.159738', # 'O -1.796073 1.479446 0.481721', # '', # '' from qiskit_nature.second_q.problems import HarmonicBasis basis = HarmonicBasis([2, 2, 2, 2]) from qiskit_nature.second_q.problems import VibrationalStructureProblem from qiskit_nature.second_q.mappers import DirectMapper vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() print(main_op) qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) basis = HarmonicBasis([3, 3, 3, 3]) vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) # for simplicity, we will use the smaller basis again vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2])) vibrational_problem.hamiltonian.truncation_order = 2 from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver solver = GroundStateEigensolver( qubit_mapper, NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()), ) result = solver.solve(vibrational_problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = [0.0] * ansatz.num_parameters from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE(Estimator(), tl_circuit, SLSQP()) from qiskit_nature.second_q.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(mapper, vqe_solver) res = calc.solve(es_problem) print(res) calc = GroundStateEigensolver(mapper, numpy_solver) res = calc.solve(es_problem) print(res) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.mappers import DirectMapper from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis([2, 2, 2, 2]) vib_problem = driver.run(basis=basis) vib_problem.hamiltonian.truncation_order = 2 mapper = DirectMapper() solver_without_filter = NumPyMinimumEigensolver() solver_with_filter = NumPyMinimumEigensolver( filter_criterion=vib_problem.get_default_filter_criterion() ) gsc_wo = GroundStateEigensolver(mapper, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(mapper, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print("\n\n") print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.eigensolvers import NumPyEigensolver numpy_solver = NumPyEigensolver(filter_criterion=es_problem.get_default_filter_criterion()) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) estimator = Estimator() # This first part sets the ground state solver # see more about this part in the ground state calculation tutorial solver = VQE(estimator, ansatz, SLSQP()) solver.initial_point = [0.0] * ansatz.num_parameters gse = GroundStateEigensolver(mapper, solver) # The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive qeom_excited_states_solver = QEOM(gse, estimator, "sd") from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver) numpy_results = numpy_excited_states_solver.solve(es_problem) qeom_results = qeom_excited_states_solver.solve(es_problem) print(numpy_results) print("\n\n") print(qeom_results) import numpy as np def filter_criterion(eigenstate, eigenvalue, aux_values): return np.isclose(aux_values["ParticleNumber"][0], 2.0) new_numpy_solver = NumPyEigensolver(filter_criterion=filter_criterion) new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver) new_numpy_results = new_numpy_excited_states_solver.solve(es_problem) print(new_numpy_results) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.problems import ElectronicBasis driver = PySCFDriver() driver.run_pyscf() ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) ao_hamil = ao_problem.hamiltonian print(ao_hamil.electronic_integrals.alpha) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema qcschema = driver.to_qcschema() basis_transformer = get_ao_to_mo_from_qcschema(qcschema) print(basis_transformer.initial_basis) print(basis_transformer.final_basis) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) mo_hamil = mo_problem.hamiltonian print(mo_hamil.electronic_integrals.alpha) import numpy as np from qiskit_nature.second_q.operators import ElectronicIntegrals from qiskit_nature.second_q.problems import ElectronicBasis from qiskit_nature.second_q.transformers import BasisTransformer ao2mo_alpha = np.random.random((2, 2)) ao2mo_beta = np.random.random((2, 2)) basis_transformer = BasisTransformer( ElectronicBasis.AO, ElectronicBasis.MO, ElectronicIntegrals.from_raw_integrals(ao2mo_alpha, h1_b=ao2mo_beta), ) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.molecule) print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import FreezeCoreTransformer fc_transformer = FreezeCoreTransformer() fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) print(fc_problem.hamiltonian.constants) fc_transformer = FreezeCoreTransformer(remove_orbitals=[4, 5]) fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import ActiveSpaceTransformer as_transformer = ActiveSpaceTransformer(2, 2) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) as_transformer = ActiveSpaceTransformer(2, 2, active_orbitals=[0, 4]) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() fermionic_op = problem.hamiltonian.second_q_op() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() qubit_jw_op = mapper.map(fermionic_op) print(qubit_jw_op) from qiskit_nature.second_q.mappers import ParityMapper mapper = ParityMapper() qubit_p_op = mapper.map(fermionic_op) print(qubit_p_op) mapper = ParityMapper(num_particles=problem.num_particles) qubit_op = mapper.map(fermionic_op) print(qubit_op) tapered_mapper = problem.get_tapered_mapper(mapper) print(type(tapered_mapper)) qubit_op = tapered_mapper.map(fermionic_op) print(qubit_op) from qiskit_nature.second_q.circuit.library import HartreeFock hf_state = HartreeFock(2, (1, 1), JordanWignerMapper()) hf_state.draw() from qiskit_nature.second_q.mappers import InterleavedQubitMapper interleaved_mapper = InterleavedQubitMapper(JordanWignerMapper()) hf_state = HartreeFock(2, (1, 1), interleaved_mapper) hf_state.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from math import pi import numpy as np import rustworkx as rx from qiskit_nature.second_q.hamiltonians.lattices import ( BoundaryCondition, HyperCubicLattice, Lattice, LatticeDrawStyle, LineLattice, SquareLattice, TriangularLattice, ) from qiskit_nature.second_q.hamiltonians import FermiHubbardModel num_nodes = 11 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() line_lattice.draw_without_boundary() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC edge_parameter = 1.0 + 1.0j onsite_parameter = 1.0 line_lattice = LineLattice( num_nodes=num_nodes, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(line_lattice.graph.weighted_edge_list()) line_lattice.to_adjacency_matrix() line_lattice.to_adjacency_matrix(weighted=True) rows = 5 cols = 4 boundary_condition = BoundaryCondition.OPEN square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 edge_parameter = (1.0, 1.0 + 1.0j) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction onsite_parameter = 1.0 square_lattice = SquareLattice( rows=rows, cols=cols, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(square_lattice.graph.weighted_edge_list()) size = (3, 4, 5) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.OPEN, BoundaryCondition.OPEN, ) cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition) # function for setting the positions def indextocoord_3d(index: int, size: tuple, angle) -> list: z = index // (size[0] * size[1]) a = index % (size[0] * size[1]) y = a // size[0] x = a % size[0] vec_x = np.array([1, 0]) vec_y = np.array([np.cos(angle), np.sin(angle)]) vec_z = np.array([0, 1]) return_coord = x * vec_x + y * vec_y + z * vec_z return return_coord.tolist() pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))]) cubic_lattice.draw(style=LatticeDrawStyle(pos=pos)) rows = 4 cols = 3 boundary_condition = BoundaryCondition.OPEN triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() rows = 4 cols = 3 boundary_condition = BoundaryCondition.PERIODIC triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() graph = rx.PyGraph(multigraph=False) # multigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) # make a lattice general_lattice = Lattice(graph) set(general_lattice.graph.weighted_edge_list()) general_lattice.draw() general_lattice.draw(self_loop=True) general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True)) square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC) t = -1.0 # the interaction parameter v = 0.0 # the onsite potential u = 5.0 # the interaction parameter U fhm = FermiHubbardModel( square_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) ham = fhm.second_q_op().simplify() print(ham) graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix. u = 5.0 # the interaction parameter U fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u) ham = fhm.second_q_op().simplify() print(ham) from qiskit_nature.second_q.problems import LatticeModelProblem num_nodes = 4 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) fhm = FermiHubbardModel( line_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) lmp = LatticeModelProblem(fhm) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper numpy_solver = NumPyMinimumEigensolver() qubit_mapper = JordanWignerMapper() calc = GroundStateEigensolver(qubit_mapper, numpy_solver) res = calc.solve(lmp) print(res) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit_nature.second_q.hamiltonians import QuadraticHamiltonian # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) antisymmetric_part = np.array( [ [0.0, 3.0, 0.0, 0.0], [-3.0, 0.0, 3.0, 0.0], [0.0, -3.0, 0.0, 3.0], [0.0, 0.0, -3.0, 0.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, antisymmetric_part=antisymmetric_part, constant=constant, ) # convert it to a FermionicOp and print it hamiltonian_ferm = hamiltonian.second_q_op() print(hamiltonian_ferm) # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import FermionicGaussianState occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = FermionicGaussianState(transformation_matrix, occupied_orbitals=occupied_orbitals) circuit.draw("mpl") from qiskit.quantum_info import Statevector from qiskit_nature.second_q.mappers import JordanWignerMapper # simulate the circuit to get the final state state = np.array(Statevector(circuit)) # convert the Hamiltonian to a matrix hamiltonian_jw = JordanWignerMapper().map(hamiltonian_ferm).to_matrix() # check that the state is an eigenvector with the expected eigenvalue np.testing.assert_allclose(hamiltonian_jw @ state, eig * state, atol=1e-8) # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, constant=constant, ) print(f"Hamiltonian conserves particle number: {hamiltonian.conserves_particle_number()}") # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import SlaterDeterminant occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = SlaterDeterminant(transformation_matrix[list(occupied_orbitals)]) circuit.draw("mpl") from qiskit_nature.second_q.circuit.library import BogoliubovTransform from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import random_hermitian, random_statevector, state_fidelity from scipy.linalg import expm # create Hamiltonian n_modes = 5 hermitian_part = np.array(random_hermitian(n_modes)) hamiltonian = QuadraticHamiltonian(hermitian_part=hermitian_part) # diagonalize Hamiltonian ( transformation_matrix, orbital_energies, _, ) = hamiltonian.diagonalizing_bogoliubov_transform() # set simulation time and construct time evolution circuit time = 1.0 register = QuantumRegister(n_modes) circuit = QuantumCircuit(register) bog_circuit = BogoliubovTransform(transformation_matrix) # change to the diagonal basis of the Hamiltonian circuit.append(bog_circuit.inverse(), register) # perform time evolution by applying z rotations for q, energy in zip(register, orbital_energies): circuit.rz(-energy * time, q) # change back to the original basis circuit.append(bog_circuit, register) # simulate the circuit initial_state = random_statevector(2**n_modes) final_state = initial_state.evolve(circuit) # compute the correct state by direct exponentiation hamiltonian_jw = JordanWignerMapper().map(hamiltonian.second_q_op()).to_matrix() exact_evolution_op = expm(-1j * time * hamiltonian_jw) expected_state = exact_evolution_op @ np.array(initial_state) # check that the simulated state is correct fidelity = state_fidelity(final_state, expected_state) np.testing.assert_allclose(fidelity, 1.0, atol=1e-8) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from IPython.display import display, clear_output from qiskit.primitives import Estimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.observables_evaluator import estimate_observables from qiskit.algorithms.optimizers import COBYLA, SLSQP from qiskit.circuit import QuantumCircuit, Parameter from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.utils import algorithm_globals from qiskit_nature.second_q.operators import FermionicOp from qiskit_nature.second_q.mappers import JordanWignerMapper def kronecker_delta_function(n: int, m: int) -> int: """An implementation of the Kronecker delta function. Args: n (int): The first integer argument. m (int): The second integer argument. Returns: Returns 1 if n = m, else returns 0. """ return int(n == m) def create_deuteron_hamiltonian( N: int, hbar_omega: float = 7.0, V_0: float = -5.68658111 ) -> SparsePauliOp: """Creates a version of the Deuteron Hamiltonian as a qubit operator. Args: N (int): An integer number that represents the dimension of the basis. hbar_omega (float, optional): The value of the product of hbar and omega. Defaults to 7.0. V_0 (float, optional): The value of the potential energy. Defaults to -5.68658111. Returns: SparsePauliOp: The qubit-space Hamiltonian that represents the Deuteron. """ hamiltonian_terms = {} for m in range(N): for n in range(N): label = "+_{} -_{}".format(str(n), str(m)) coefficient_kinect = (hbar_omega / 2) * ( (2 * n + 3 / 2) * kronecker_delta_function(n, m) - np.sqrt(n * (n + (1 / 2))) * kronecker_delta_function(n, m + 1) - np.sqrt((n + 1) * (n + (3 / 2)) * kronecker_delta_function(n, m - 1)) ) hamiltonian_terms[label] = coefficient_kinect coefficient_potential = ( V_0 * kronecker_delta_function(n, 0) * kronecker_delta_function(n, m) ) hamiltonian_terms[label] += coefficient_potential hamiltonian = FermionicOp(hamiltonian_terms, num_spin_orbitals=N) mapper = JordanWignerMapper() qubit_hamiltonian = mapper.map(hamiltonian) if not isinstance(qubit_hamiltonian, SparsePauliOp): qubit_hamiltonian = qubit_hamiltonian.primitive return qubit_hamiltonian deuteron_hamiltonians = [create_deuteron_hamiltonian(i) for i in range(1, 5)] for i, hamiltonian in enumerate(deuteron_hamiltonians): print("Deuteron Hamiltonian: H_{}".format(i + 1)) print(hamiltonian) print("\n") theta = Parameter(r"$\theta$") eta = Parameter(r"$\eta$") wavefunction = QuantumCircuit(1) wavefunction.ry(theta, 0) wavefunction.draw("mpl") wavefunction2 = QuantumCircuit(2) wavefunction2.x(0) wavefunction2.ry(theta, 1) wavefunction2.cx(1, 0) wavefunction2.draw("mpl") wavefunction3 = QuantumCircuit(3) wavefunction3.x(0) wavefunction3.ry(eta, 1) wavefunction3.ry(theta, 2) wavefunction3.cx(2, 0) wavefunction3.cx(0, 1) wavefunction3.ry(-eta, 1) wavefunction3.cx(0, 1) wavefunction3.cx(1, 0) wavefunction3.draw("mpl") ansatz = [wavefunction, wavefunction2, wavefunction3] reference_values = [] print("Exact binding energies calculated through numpy.linalg.eigh \n") for i, hamiltonian in enumerate(deuteron_hamiltonians): eigenvalues, eigenstates = np.linalg.eigh(hamiltonian.to_matrix()) reference_values.append(eigenvalues[0]) print("Exact binding energy for H_{}: {}".format(i + 1, eigenvalues[0])) print( "Results using Estimator for H_1, H_2 and H_3 with the ansatz given in the reference paper \n" ) for i in range(3): seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}: {} MeV".format(i + 1, binding_energy)) def callback(eval_count, parameters, mean, std): # Overwrites the same line when printing display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) plots = [] for i in range(3): counts = [] values = [] params = [] deviation = [] seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=COBYLA(), callback=callback) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots.append([counts, values]) fig, ax = plt.subplots(nrows=3, ncols=1) fig.set_size_inches((12, 12)) for i, plot in enumerate(plots): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() twolocal_ansatzes = [] for i in range(1, 5): ansatz = TwoLocal( deuteron_hamiltonians[i - 1].num_qubits, ["rz", "ry"], "cx", entanglement="full", reps=i, initial_state=None, ) twolocal_ansatzes.append(ansatz) print("Results using Estimator for H_1, H_2, H_3 and H_4 with TwoLocal ansatz \n") seed = 42 algorithm_globals.random_seed = seed for i in range(4): vqe = VQE(Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}:".format(i + 1), binding_energy, "MeV") seed = 42 algorithm_globals.random_seed = seed plots_tl = [] for i in range(4): counts = [] values = [] params = [] deviation = [] vqe = VQE( Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP(), callback=callback, ) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots_tl.append([counts, values]) fig, ax = plt.subplots(nrows=4, ncols=1) fig.set_size_inches((15, 15)) for i, plot in enumerate(plots_tl): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() def calculate_observables_exp_values( quantum_circuit: QuantumCircuit, observables: list, angles: list ) -> list: """Calculate the expectation value of an observable given the quantum circuit that represents the wavefunction and a list of parameters. Args: quantum_circuit (QuantumCircuit): A parameterized quantum circuit that represents the wavefunction of the system. observables (list): A list containing the observables that we want to know the expectation values. angles (list): A list with the values that will be used in the 'bind_parameters' method. Returns: list_exp_values (list): A list containing the expectation values of the observables given as input. """ list_exp_values = [] for observable in observables: exp_values = [] for angle in angles: qc = quantum_circuit.bind_parameters({theta: angle}) result = estimate_observables( Estimator(), quantum_state=qc, observables=[observable], ) exp_values.append(result[0][0]) list_exp_values.append(exp_values) return list_exp_values angles = list(np.linspace(-np.pi, np.pi, 100)) observables = [ Pauli("IZ"), Pauli("ZI"), Pauli("XX"), Pauli("YY"), deuteron_hamiltonians[1], ] h2_observables_exp_values = calculate_observables_exp_values(wavefunction2, observables, angles) fig, ax = plt.subplots(nrows=2, ncols=1) fig.set_size_inches((12, 12)) ax[0].plot(angles, h2_observables_exp_values[0], "o", label=r"$Z_0$") ax[0].plot(angles, h2_observables_exp_values[1], "o", label=r"$Z_1$") ax[0].plot(angles, h2_observables_exp_values[2], "o", label=r"$X_0X_1$") ax[0].plot(angles, h2_observables_exp_values[3], "o", label=r"$Y_0Y_1$") ax[0].axhline( y=1, color="k", linestyle="--", ) ax[0].axhline(y=-1, color="k", linestyle="--") ax[0].legend() ax[0].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[0].set_ylabel(r"$\langle O \rangle $ - Operator Expectation Value", fontsize=15) ax[0].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[0].set_title( r"Expectation value of the observables $Z_0$, $Z_1$, $X_0X_1$ and $Y_0Y_1$ when we vary $\theta$ in the ansatz.", fontsize=15, ) ax[1].plot(angles, h2_observables_exp_values[4], "o") ax[1].axhline( y=reference_values[1], color="k", linestyle="--", label="Binding Energy: {} MeV".format(np.round(reference_values[1], 3)), ) ax[1].legend() ax[1].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[1].set_ylabel(r"$\langle H_2 \rangle $ - Energy (MeV)", fontsize=15) ax[1].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[1].set_title( r"Behavior of the expectation value of $H_2$ when we vary $\theta$ in the ansatz.", fontsize=15 ) plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.mappers.second_quantization import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(padding=2) from qiskit_nature.circuit.library import HartreeFock from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) from qiskit_nature.second_q.circuit.library import HartreeFock from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spin_orbitals = 10 from qiskit_nature.second_q.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spatial_orbitals = 5 from qiskit_nature.circuit.library import UCC, UVCC ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None) uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None) from qiskit_nature.second_q.circuit.library import UCC, UVCC ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None) uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None) from qiskit_nature.circuit.library import HartreeFock, VSCF from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper hf = HartreeFock( num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper()) ) vscf = VSCF(num_modals=[2, 2]) from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter hf = HartreeFock() hf.num_spatial_orbitals = 2 hf.num_particles = (1, 1) hf.qubit_converter = QubitConverter(JordanWignerMapper()) vscf = VSCF() vscf.num_modals = [2, 2] from qiskit.providers.basicaer import BasicAer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator")) vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory from qiskit_nature.algorithms.excited_states_solvers import QEOM from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper vqe_factory = VQEUCCFactory() converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import ( GroundStateEigensolver, VQEUCCFactory, ) from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver, estimator) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.settings import settings settings.dict_aux_operators = True driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["VibrationalEnergy"] print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) # this is now done explicitly and already requires the basis problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianLogResult from qiskit_nature.properties.second_quantization.vibrational.bases import HarmonicBasis from qiskit_nature.settings import settings settings.dict_aux_operators = True log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") hamiltonian = log_result.get_vibrational_energy() print(hamiltonian) hamiltonian.basis = HarmonicBasis([2, 2, 3, 4]) op = hamiltonian.second_q_ops()["VibrationalEnergy"] print("\n".join(str(op).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianLogResult from qiskit_nature.second_q.formats import watson_to_problem from qiskit_nature.second_q.problems import HarmonicBasis log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") watson = log_result.get_watson_hamiltonian() print(watson) basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = watson_to_problem(watson, basis) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("VibrationalEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) fermi = FermiHubbardModel.from_parameters(interaction, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) fermi = FermiHubbardModel(lattice, 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import IsingModel line = LineLattice(2) ising = IsingModel.uniform_parameters(line, 2.0, 4.0) print(ising.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import IsingModel line = LineLattice(2) ising = IsingModel(line.uniform_parameters(2.0, 4.0)) print(ising.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) ising = IsingModel.from_parameters(interaction) print(ising.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) ising = IsingModel(lattice) print(ising.second_q_op()) # Note: NO trailing `s` import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() print(problem) hamiltonian = problem.hamiltonian coefficients = hamiltonian.electronic_integrals print(coefficients.alpha) second_q_op = hamiltonian.second_q_op() print(second_q_op) hamiltonian.nuclear_repulsion_energy # NOT included in the second_q_op above problem.molecule problem.reference_energy problem.num_particles problem.num_spatial_orbitals problem.basis problem.properties problem.properties.particle_number problem.properties.angular_momentum problem.properties.magnetization problem.properties.electronic_dipole_moment from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper solver = GroundStateEigensolver( JordanWignerMapper(), NumPyMinimumEigensolver(), ) result = solver.solve(problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import GaussianForcesDriver # if you ran Gaussian elsewhere and already have the output file driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") # if you want to run the Gaussian job from Qiskit # driver = GaussianForcesDriver( # ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight', # '', # 'CO2 geometry optimization B3LYP/6-31g', # '', # '0 1', # 'C -0.848629 2.067624 0.160992', # 'O 0.098816 2.655801 -0.159738', # 'O -1.796073 1.479446 0.481721', # '', # '' from qiskit_nature.second_q.problems import HarmonicBasis basis = HarmonicBasis([2, 2, 2, 2]) from qiskit_nature.second_q.problems import VibrationalStructureProblem from qiskit_nature.second_q.mappers import DirectMapper vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() print(main_op) qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) basis = HarmonicBasis([3, 3, 3, 3]) vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) # for simplicity, we will use the smaller basis again vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2])) vibrational_problem.hamiltonian.truncation_order = 2 from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver solver = GroundStateEigensolver( qubit_mapper, NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()), ) result = solver.solve(vibrational_problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = [0.0] * ansatz.num_parameters from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE(Estimator(), tl_circuit, SLSQP()) from qiskit_nature.second_q.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(mapper, vqe_solver) res = calc.solve(es_problem) print(res) calc = GroundStateEigensolver(mapper, numpy_solver) res = calc.solve(es_problem) print(res) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.mappers import DirectMapper from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis([2, 2, 2, 2]) vib_problem = driver.run(basis=basis) vib_problem.hamiltonian.truncation_order = 2 mapper = DirectMapper() solver_without_filter = NumPyMinimumEigensolver() solver_with_filter = NumPyMinimumEigensolver( filter_criterion=vib_problem.get_default_filter_criterion() ) gsc_wo = GroundStateEigensolver(mapper, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(mapper, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print("\n\n") print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.eigensolvers import NumPyEigensolver numpy_solver = NumPyEigensolver(filter_criterion=es_problem.get_default_filter_criterion()) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) estimator = Estimator() # This first part sets the ground state solver # see more about this part in the ground state calculation tutorial solver = VQE(estimator, ansatz, SLSQP()) solver.initial_point = [0.0] * ansatz.num_parameters gse = GroundStateEigensolver(mapper, solver) # The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive qeom_excited_states_solver = QEOM(gse, estimator, "sd") from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver) numpy_results = numpy_excited_states_solver.solve(es_problem) qeom_results = qeom_excited_states_solver.solve(es_problem) print(numpy_results) print("\n\n") print(qeom_results) import numpy as np def filter_criterion(eigenstate, eigenvalue, aux_values): return np.isclose(aux_values["ParticleNumber"][0], 2.0) new_numpy_solver = NumPyEigensolver(filter_criterion=filter_criterion) new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver) new_numpy_results = new_numpy_excited_states_solver.solve(es_problem) print(new_numpy_results) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.problems import ElectronicBasis driver = PySCFDriver() driver.run_pyscf() ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) ao_hamil = ao_problem.hamiltonian print(ao_hamil.electronic_integrals.alpha) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema qcschema = driver.to_qcschema() basis_transformer = get_ao_to_mo_from_qcschema(qcschema) print(basis_transformer.initial_basis) print(basis_transformer.final_basis) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) mo_hamil = mo_problem.hamiltonian print(mo_hamil.electronic_integrals.alpha) import numpy as np from qiskit_nature.second_q.operators import ElectronicIntegrals from qiskit_nature.second_q.problems import ElectronicBasis from qiskit_nature.second_q.transformers import BasisTransformer ao2mo_alpha = np.random.random((2, 2)) ao2mo_beta = np.random.random((2, 2)) basis_transformer = BasisTransformer( ElectronicBasis.AO, ElectronicBasis.MO, ElectronicIntegrals.from_raw_integrals(ao2mo_alpha, h1_b=ao2mo_beta), ) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.molecule) print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import FreezeCoreTransformer fc_transformer = FreezeCoreTransformer() fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) print(fc_problem.hamiltonian.constants) fc_transformer = FreezeCoreTransformer(remove_orbitals=[4, 5]) fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import ActiveSpaceTransformer as_transformer = ActiveSpaceTransformer(2, 2) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) as_transformer = ActiveSpaceTransformer(2, 2, active_orbitals=[0, 4]) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() fermionic_op = problem.hamiltonian.second_q_op() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() qubit_jw_op = mapper.map(fermionic_op) print(qubit_jw_op) from qiskit_nature.second_q.mappers import ParityMapper mapper = ParityMapper() qubit_p_op = mapper.map(fermionic_op) print(qubit_p_op) mapper = ParityMapper(num_particles=problem.num_particles) qubit_op = mapper.map(fermionic_op) print(qubit_op) tapered_mapper = problem.get_tapered_mapper(mapper) print(type(tapered_mapper)) qubit_op = tapered_mapper.map(fermionic_op) print(qubit_op) from qiskit_nature.second_q.circuit.library import HartreeFock hf_state = HartreeFock(2, (1, 1), JordanWignerMapper()) hf_state.draw() from qiskit_nature.second_q.mappers import InterleavedQubitMapper interleaved_mapper = InterleavedQubitMapper(JordanWignerMapper()) hf_state = HartreeFock(2, (1, 1), interleaved_mapper) hf_state.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from math import pi import numpy as np import rustworkx as rx from qiskit_nature.second_q.hamiltonians.lattices import ( BoundaryCondition, HyperCubicLattice, Lattice, LatticeDrawStyle, LineLattice, SquareLattice, TriangularLattice, ) from qiskit_nature.second_q.hamiltonians import FermiHubbardModel num_nodes = 11 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() line_lattice.draw_without_boundary() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC edge_parameter = 1.0 + 1.0j onsite_parameter = 1.0 line_lattice = LineLattice( num_nodes=num_nodes, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(line_lattice.graph.weighted_edge_list()) line_lattice.to_adjacency_matrix() line_lattice.to_adjacency_matrix(weighted=True) rows = 5 cols = 4 boundary_condition = BoundaryCondition.OPEN square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 edge_parameter = (1.0, 1.0 + 1.0j) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction onsite_parameter = 1.0 square_lattice = SquareLattice( rows=rows, cols=cols, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(square_lattice.graph.weighted_edge_list()) size = (3, 4, 5) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.OPEN, BoundaryCondition.OPEN, ) cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition) # function for setting the positions def indextocoord_3d(index: int, size: tuple, angle) -> list: z = index // (size[0] * size[1]) a = index % (size[0] * size[1]) y = a // size[0] x = a % size[0] vec_x = np.array([1, 0]) vec_y = np.array([np.cos(angle), np.sin(angle)]) vec_z = np.array([0, 1]) return_coord = x * vec_x + y * vec_y + z * vec_z return return_coord.tolist() pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))]) cubic_lattice.draw(style=LatticeDrawStyle(pos=pos)) rows = 4 cols = 3 boundary_condition = BoundaryCondition.OPEN triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() rows = 4 cols = 3 boundary_condition = BoundaryCondition.PERIODIC triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() graph = rx.PyGraph(multigraph=False) # multigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) # make a lattice general_lattice = Lattice(graph) set(general_lattice.graph.weighted_edge_list()) general_lattice.draw() general_lattice.draw(self_loop=True) general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True)) square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC) t = -1.0 # the interaction parameter v = 0.0 # the onsite potential u = 5.0 # the interaction parameter U fhm = FermiHubbardModel( square_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) ham = fhm.second_q_op().simplify() print(ham) graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix. u = 5.0 # the interaction parameter U fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u) ham = fhm.second_q_op().simplify() print(ham) from qiskit_nature.second_q.problems import LatticeModelProblem num_nodes = 4 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) fhm = FermiHubbardModel( line_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) lmp = LatticeModelProblem(fhm) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper numpy_solver = NumPyMinimumEigensolver() qubit_mapper = JordanWignerMapper() calc = GroundStateEigensolver(qubit_mapper, numpy_solver) res = calc.solve(lmp) print(res) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit_nature.second_q.hamiltonians import QuadraticHamiltonian # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) antisymmetric_part = np.array( [ [0.0, 3.0, 0.0, 0.0], [-3.0, 0.0, 3.0, 0.0], [0.0, -3.0, 0.0, 3.0], [0.0, 0.0, -3.0, 0.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, antisymmetric_part=antisymmetric_part, constant=constant, ) # convert it to a FermionicOp and print it hamiltonian_ferm = hamiltonian.second_q_op() print(hamiltonian_ferm) # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import FermionicGaussianState occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = FermionicGaussianState(transformation_matrix, occupied_orbitals=occupied_orbitals) circuit.draw("mpl") from qiskit.quantum_info import Statevector from qiskit_nature.second_q.mappers import JordanWignerMapper # simulate the circuit to get the final state state = np.array(Statevector(circuit)) # convert the Hamiltonian to a matrix hamiltonian_jw = JordanWignerMapper().map(hamiltonian_ferm).to_matrix() # check that the state is an eigenvector with the expected eigenvalue np.testing.assert_allclose(hamiltonian_jw @ state, eig * state, atol=1e-8) # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, constant=constant, ) print(f"Hamiltonian conserves particle number: {hamiltonian.conserves_particle_number()}") # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import SlaterDeterminant occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = SlaterDeterminant(transformation_matrix[list(occupied_orbitals)]) circuit.draw("mpl") from qiskit_nature.second_q.circuit.library import BogoliubovTransform from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import random_hermitian, random_statevector, state_fidelity from scipy.linalg import expm # create Hamiltonian n_modes = 5 hermitian_part = np.array(random_hermitian(n_modes)) hamiltonian = QuadraticHamiltonian(hermitian_part=hermitian_part) # diagonalize Hamiltonian ( transformation_matrix, orbital_energies, _, ) = hamiltonian.diagonalizing_bogoliubov_transform() # set simulation time and construct time evolution circuit time = 1.0 register = QuantumRegister(n_modes) circuit = QuantumCircuit(register) bog_circuit = BogoliubovTransform(transformation_matrix) # change to the diagonal basis of the Hamiltonian circuit.append(bog_circuit.inverse(), register) # perform time evolution by applying z rotations for q, energy in zip(register, orbital_energies): circuit.rz(-energy * time, q) # change back to the original basis circuit.append(bog_circuit, register) # simulate the circuit initial_state = random_statevector(2**n_modes) final_state = initial_state.evolve(circuit) # compute the correct state by direct exponentiation hamiltonian_jw = JordanWignerMapper().map(hamiltonian.second_q_op()).to_matrix() exact_evolution_op = expm(-1j * time * hamiltonian_jw) expected_state = exact_evolution_op @ np.array(initial_state) # check that the simulated state is correct fidelity = state_fidelity(final_state, expected_state) np.testing.assert_allclose(fidelity, 1.0, atol=1e-8) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from IPython.display import display, clear_output from qiskit.primitives import Estimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.observables_evaluator import estimate_observables from qiskit.algorithms.optimizers import COBYLA, SLSQP from qiskit.circuit import QuantumCircuit, Parameter from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.utils import algorithm_globals from qiskit_nature.second_q.operators import FermionicOp from qiskit_nature.second_q.mappers import JordanWignerMapper def kronecker_delta_function(n: int, m: int) -> int: """An implementation of the Kronecker delta function. Args: n (int): The first integer argument. m (int): The second integer argument. Returns: Returns 1 if n = m, else returns 0. """ return int(n == m) def create_deuteron_hamiltonian( N: int, hbar_omega: float = 7.0, V_0: float = -5.68658111 ) -> SparsePauliOp: """Creates a version of the Deuteron Hamiltonian as a qubit operator. Args: N (int): An integer number that represents the dimension of the basis. hbar_omega (float, optional): The value of the product of hbar and omega. Defaults to 7.0. V_0 (float, optional): The value of the potential energy. Defaults to -5.68658111. Returns: SparsePauliOp: The qubit-space Hamiltonian that represents the Deuteron. """ hamiltonian_terms = {} for m in range(N): for n in range(N): label = "+_{} -_{}".format(str(n), str(m)) coefficient_kinect = (hbar_omega / 2) * ( (2 * n + 3 / 2) * kronecker_delta_function(n, m) - np.sqrt(n * (n + (1 / 2))) * kronecker_delta_function(n, m + 1) - np.sqrt((n + 1) * (n + (3 / 2)) * kronecker_delta_function(n, m - 1)) ) hamiltonian_terms[label] = coefficient_kinect coefficient_potential = ( V_0 * kronecker_delta_function(n, 0) * kronecker_delta_function(n, m) ) hamiltonian_terms[label] += coefficient_potential hamiltonian = FermionicOp(hamiltonian_terms, num_spin_orbitals=N) mapper = JordanWignerMapper() qubit_hamiltonian = mapper.map(hamiltonian) if not isinstance(qubit_hamiltonian, SparsePauliOp): qubit_hamiltonian = qubit_hamiltonian.primitive return qubit_hamiltonian deuteron_hamiltonians = [create_deuteron_hamiltonian(i) for i in range(1, 5)] for i, hamiltonian in enumerate(deuteron_hamiltonians): print("Deuteron Hamiltonian: H_{}".format(i + 1)) print(hamiltonian) print("\n") theta = Parameter(r"$\theta$") eta = Parameter(r"$\eta$") wavefunction = QuantumCircuit(1) wavefunction.ry(theta, 0) wavefunction.draw("mpl") wavefunction2 = QuantumCircuit(2) wavefunction2.x(0) wavefunction2.ry(theta, 1) wavefunction2.cx(1, 0) wavefunction2.draw("mpl") wavefunction3 = QuantumCircuit(3) wavefunction3.x(0) wavefunction3.ry(eta, 1) wavefunction3.ry(theta, 2) wavefunction3.cx(2, 0) wavefunction3.cx(0, 1) wavefunction3.ry(-eta, 1) wavefunction3.cx(0, 1) wavefunction3.cx(1, 0) wavefunction3.draw("mpl") ansatz = [wavefunction, wavefunction2, wavefunction3] reference_values = [] print("Exact binding energies calculated through numpy.linalg.eigh \n") for i, hamiltonian in enumerate(deuteron_hamiltonians): eigenvalues, eigenstates = np.linalg.eigh(hamiltonian.to_matrix()) reference_values.append(eigenvalues[0]) print("Exact binding energy for H_{}: {}".format(i + 1, eigenvalues[0])) print( "Results using Estimator for H_1, H_2 and H_3 with the ansatz given in the reference paper \n" ) for i in range(3): seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}: {} MeV".format(i + 1, binding_energy)) def callback(eval_count, parameters, mean, std): # Overwrites the same line when printing display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) plots = [] for i in range(3): counts = [] values = [] params = [] deviation = [] seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=COBYLA(), callback=callback) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots.append([counts, values]) fig, ax = plt.subplots(nrows=3, ncols=1) fig.set_size_inches((12, 12)) for i, plot in enumerate(plots): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() twolocal_ansatzes = [] for i in range(1, 5): ansatz = TwoLocal( deuteron_hamiltonians[i - 1].num_qubits, ["rz", "ry"], "cx", entanglement="full", reps=i, initial_state=None, ) twolocal_ansatzes.append(ansatz) print("Results using Estimator for H_1, H_2, H_3 and H_4 with TwoLocal ansatz \n") seed = 42 algorithm_globals.random_seed = seed for i in range(4): vqe = VQE(Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}:".format(i + 1), binding_energy, "MeV") seed = 42 algorithm_globals.random_seed = seed plots_tl = [] for i in range(4): counts = [] values = [] params = [] deviation = [] vqe = VQE( Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP(), callback=callback, ) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots_tl.append([counts, values]) fig, ax = plt.subplots(nrows=4, ncols=1) fig.set_size_inches((15, 15)) for i, plot in enumerate(plots_tl): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() def calculate_observables_exp_values( quantum_circuit: QuantumCircuit, observables: list, angles: list ) -> list: """Calculate the expectation value of an observable given the quantum circuit that represents the wavefunction and a list of parameters. Args: quantum_circuit (QuantumCircuit): A parameterized quantum circuit that represents the wavefunction of the system. observables (list): A list containing the observables that we want to know the expectation values. angles (list): A list with the values that will be used in the 'bind_parameters' method. Returns: list_exp_values (list): A list containing the expectation values of the observables given as input. """ list_exp_values = [] for observable in observables: exp_values = [] for angle in angles: qc = quantum_circuit.bind_parameters({theta: angle}) result = estimate_observables( Estimator(), quantum_state=qc, observables=[observable], ) exp_values.append(result[0][0]) list_exp_values.append(exp_values) return list_exp_values angles = list(np.linspace(-np.pi, np.pi, 100)) observables = [ Pauli("IZ"), Pauli("ZI"), Pauli("XX"), Pauli("YY"), deuteron_hamiltonians[1], ] h2_observables_exp_values = calculate_observables_exp_values(wavefunction2, observables, angles) fig, ax = plt.subplots(nrows=2, ncols=1) fig.set_size_inches((12, 12)) ax[0].plot(angles, h2_observables_exp_values[0], "o", label=r"$Z_0$") ax[0].plot(angles, h2_observables_exp_values[1], "o", label=r"$Z_1$") ax[0].plot(angles, h2_observables_exp_values[2], "o", label=r"$X_0X_1$") ax[0].plot(angles, h2_observables_exp_values[3], "o", label=r"$Y_0Y_1$") ax[0].axhline( y=1, color="k", linestyle="--", ) ax[0].axhline(y=-1, color="k", linestyle="--") ax[0].legend() ax[0].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[0].set_ylabel(r"$\langle O \rangle $ - Operator Expectation Value", fontsize=15) ax[0].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[0].set_title( r"Expectation value of the observables $Z_0$, $Z_1$, $X_0X_1$ and $Y_0Y_1$ when we vary $\theta$ in the ansatz.", fontsize=15, ) ax[1].plot(angles, h2_observables_exp_values[4], "o") ax[1].axhline( y=reference_values[1], color="k", linestyle="--", label="Binding Energy: {} MeV".format(np.round(reference_values[1], 3)), ) ax[1].legend() ax[1].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[1].set_ylabel(r"$\langle H_2 \rangle $ - Energy (MeV)", fontsize=15) ax[1].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[1].set_title( r"Behavior of the expectation value of $H_2$ when we vary $\theta$ in the ansatz.", fontsize=15 ) plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.mappers.second_quantization import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(padding=2) from qiskit_nature.circuit.library import HartreeFock from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) from qiskit_nature.second_q.circuit.library import HartreeFock from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spin_orbitals = 10 from qiskit_nature.second_q.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spatial_orbitals = 5 from qiskit_nature.circuit.library import UCC, UVCC ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None) uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None) from qiskit_nature.second_q.circuit.library import UCC, UVCC ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None) uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None) from qiskit_nature.circuit.library import HartreeFock, VSCF from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper hf = HartreeFock( num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper()) ) vscf = VSCF(num_modals=[2, 2]) from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter hf = HartreeFock() hf.num_spatial_orbitals = 2 hf.num_particles = (1, 1) hf.qubit_converter = QubitConverter(JordanWignerMapper()) vscf = VSCF() vscf.num_modals = [2, 2] from qiskit.providers.basicaer import BasicAer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator")) vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory from qiskit_nature.algorithms.excited_states_solvers import QEOM from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper vqe_factory = VQEUCCFactory() converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import ( GroundStateEigensolver, VQEUCCFactory, ) from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver, estimator) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.settings import settings settings.dict_aux_operators = True driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["VibrationalEnergy"] print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) # this is now done explicitly and already requires the basis problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianLogResult from qiskit_nature.properties.second_quantization.vibrational.bases import HarmonicBasis from qiskit_nature.settings import settings settings.dict_aux_operators = True log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") hamiltonian = log_result.get_vibrational_energy() print(hamiltonian) hamiltonian.basis = HarmonicBasis([2, 2, 3, 4]) op = hamiltonian.second_q_ops()["VibrationalEnergy"] print("\n".join(str(op).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianLogResult from qiskit_nature.second_q.formats import watson_to_problem from qiskit_nature.second_q.problems import HarmonicBasis log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") watson = log_result.get_watson_hamiltonian() print(watson) basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = watson_to_problem(watson, basis) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("VibrationalEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) fermi = FermiHubbardModel.from_parameters(interaction, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) fermi = FermiHubbardModel(lattice, 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import IsingModel line = LineLattice(2) ising = IsingModel.uniform_parameters(line, 2.0, 4.0) print(ising.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import IsingModel line = LineLattice(2) ising = IsingModel(line.uniform_parameters(2.0, 4.0)) print(ising.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) ising = IsingModel.from_parameters(interaction) print(ising.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) ising = IsingModel(lattice) print(ising.second_q_op()) # Note: NO trailing `s` import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() print(problem) hamiltonian = problem.hamiltonian coefficients = hamiltonian.electronic_integrals print(coefficients.alpha) second_q_op = hamiltonian.second_q_op() print(second_q_op) hamiltonian.nuclear_repulsion_energy # NOT included in the second_q_op above problem.molecule problem.reference_energy problem.num_particles problem.num_spatial_orbitals problem.basis problem.properties problem.properties.particle_number problem.properties.angular_momentum problem.properties.magnetization problem.properties.electronic_dipole_moment from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper solver = GroundStateEigensolver( JordanWignerMapper(), NumPyMinimumEigensolver(), ) result = solver.solve(problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import GaussianForcesDriver # if you ran Gaussian elsewhere and already have the output file driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") # if you want to run the Gaussian job from Qiskit # driver = GaussianForcesDriver( # ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight', # '', # 'CO2 geometry optimization B3LYP/6-31g', # '', # '0 1', # 'C -0.848629 2.067624 0.160992', # 'O 0.098816 2.655801 -0.159738', # 'O -1.796073 1.479446 0.481721', # '', # '' from qiskit_nature.second_q.problems import HarmonicBasis basis = HarmonicBasis([2, 2, 2, 2]) from qiskit_nature.second_q.problems import VibrationalStructureProblem from qiskit_nature.second_q.mappers import DirectMapper vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() print(main_op) qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) basis = HarmonicBasis([3, 3, 3, 3]) vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) # for simplicity, we will use the smaller basis again vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2])) vibrational_problem.hamiltonian.truncation_order = 2 from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver solver = GroundStateEigensolver( qubit_mapper, NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()), ) result = solver.solve(vibrational_problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = [0.0] * ansatz.num_parameters from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE(Estimator(), tl_circuit, SLSQP()) from qiskit_nature.second_q.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(mapper, vqe_solver) res = calc.solve(es_problem) print(res) calc = GroundStateEigensolver(mapper, numpy_solver) res = calc.solve(es_problem) print(res) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.mappers import DirectMapper from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis([2, 2, 2, 2]) vib_problem = driver.run(basis=basis) vib_problem.hamiltonian.truncation_order = 2 mapper = DirectMapper() solver_without_filter = NumPyMinimumEigensolver() solver_with_filter = NumPyMinimumEigensolver( filter_criterion=vib_problem.get_default_filter_criterion() ) gsc_wo = GroundStateEigensolver(mapper, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(mapper, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print("\n\n") print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.eigensolvers import NumPyEigensolver numpy_solver = NumPyEigensolver(filter_criterion=es_problem.get_default_filter_criterion()) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) estimator = Estimator() # This first part sets the ground state solver # see more about this part in the ground state calculation tutorial solver = VQE(estimator, ansatz, SLSQP()) solver.initial_point = [0.0] * ansatz.num_parameters gse = GroundStateEigensolver(mapper, solver) # The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive qeom_excited_states_solver = QEOM(gse, estimator, "sd") from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver) numpy_results = numpy_excited_states_solver.solve(es_problem) qeom_results = qeom_excited_states_solver.solve(es_problem) print(numpy_results) print("\n\n") print(qeom_results) import numpy as np def filter_criterion(eigenstate, eigenvalue, aux_values): return np.isclose(aux_values["ParticleNumber"][0], 2.0) new_numpy_solver = NumPyEigensolver(filter_criterion=filter_criterion) new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver) new_numpy_results = new_numpy_excited_states_solver.solve(es_problem) print(new_numpy_results) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.problems import ElectronicBasis driver = PySCFDriver() driver.run_pyscf() ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) ao_hamil = ao_problem.hamiltonian print(ao_hamil.electronic_integrals.alpha) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema qcschema = driver.to_qcschema() basis_transformer = get_ao_to_mo_from_qcschema(qcschema) print(basis_transformer.initial_basis) print(basis_transformer.final_basis) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) mo_hamil = mo_problem.hamiltonian print(mo_hamil.electronic_integrals.alpha) import numpy as np from qiskit_nature.second_q.operators import ElectronicIntegrals from qiskit_nature.second_q.problems import ElectronicBasis from qiskit_nature.second_q.transformers import BasisTransformer ao2mo_alpha = np.random.random((2, 2)) ao2mo_beta = np.random.random((2, 2)) basis_transformer = BasisTransformer( ElectronicBasis.AO, ElectronicBasis.MO, ElectronicIntegrals.from_raw_integrals(ao2mo_alpha, h1_b=ao2mo_beta), ) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.molecule) print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import FreezeCoreTransformer fc_transformer = FreezeCoreTransformer() fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) print(fc_problem.hamiltonian.constants) fc_transformer = FreezeCoreTransformer(remove_orbitals=[4, 5]) fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import ActiveSpaceTransformer as_transformer = ActiveSpaceTransformer(2, 2) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) as_transformer = ActiveSpaceTransformer(2, 2, active_orbitals=[0, 4]) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() fermionic_op = problem.hamiltonian.second_q_op() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() qubit_jw_op = mapper.map(fermionic_op) print(qubit_jw_op) from qiskit_nature.second_q.mappers import ParityMapper mapper = ParityMapper() qubit_p_op = mapper.map(fermionic_op) print(qubit_p_op) mapper = ParityMapper(num_particles=problem.num_particles) qubit_op = mapper.map(fermionic_op) print(qubit_op) tapered_mapper = problem.get_tapered_mapper(mapper) print(type(tapered_mapper)) qubit_op = tapered_mapper.map(fermionic_op) print(qubit_op) from qiskit_nature.second_q.circuit.library import HartreeFock hf_state = HartreeFock(2, (1, 1), JordanWignerMapper()) hf_state.draw() from qiskit_nature.second_q.mappers import InterleavedQubitMapper interleaved_mapper = InterleavedQubitMapper(JordanWignerMapper()) hf_state = HartreeFock(2, (1, 1), interleaved_mapper) hf_state.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from math import pi import numpy as np import rustworkx as rx from qiskit_nature.second_q.hamiltonians.lattices import ( BoundaryCondition, HyperCubicLattice, Lattice, LatticeDrawStyle, LineLattice, SquareLattice, TriangularLattice, ) from qiskit_nature.second_q.hamiltonians import FermiHubbardModel num_nodes = 11 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() line_lattice.draw_without_boundary() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC edge_parameter = 1.0 + 1.0j onsite_parameter = 1.0 line_lattice = LineLattice( num_nodes=num_nodes, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(line_lattice.graph.weighted_edge_list()) line_lattice.to_adjacency_matrix() line_lattice.to_adjacency_matrix(weighted=True) rows = 5 cols = 4 boundary_condition = BoundaryCondition.OPEN square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 edge_parameter = (1.0, 1.0 + 1.0j) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction onsite_parameter = 1.0 square_lattice = SquareLattice( rows=rows, cols=cols, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(square_lattice.graph.weighted_edge_list()) size = (3, 4, 5) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.OPEN, BoundaryCondition.OPEN, ) cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition) # function for setting the positions def indextocoord_3d(index: int, size: tuple, angle) -> list: z = index // (size[0] * size[1]) a = index % (size[0] * size[1]) y = a // size[0] x = a % size[0] vec_x = np.array([1, 0]) vec_y = np.array([np.cos(angle), np.sin(angle)]) vec_z = np.array([0, 1]) return_coord = x * vec_x + y * vec_y + z * vec_z return return_coord.tolist() pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))]) cubic_lattice.draw(style=LatticeDrawStyle(pos=pos)) rows = 4 cols = 3 boundary_condition = BoundaryCondition.OPEN triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() rows = 4 cols = 3 boundary_condition = BoundaryCondition.PERIODIC triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() graph = rx.PyGraph(multigraph=False) # multigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) # make a lattice general_lattice = Lattice(graph) set(general_lattice.graph.weighted_edge_list()) general_lattice.draw() general_lattice.draw(self_loop=True) general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True)) square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC) t = -1.0 # the interaction parameter v = 0.0 # the onsite potential u = 5.0 # the interaction parameter U fhm = FermiHubbardModel( square_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) ham = fhm.second_q_op().simplify() print(ham) graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix. u = 5.0 # the interaction parameter U fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u) ham = fhm.second_q_op().simplify() print(ham) from qiskit_nature.second_q.problems import LatticeModelProblem num_nodes = 4 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) fhm = FermiHubbardModel( line_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) lmp = LatticeModelProblem(fhm) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper numpy_solver = NumPyMinimumEigensolver() qubit_mapper = JordanWignerMapper() calc = GroundStateEigensolver(qubit_mapper, numpy_solver) res = calc.solve(lmp) print(res) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit_nature.second_q.hamiltonians import QuadraticHamiltonian # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) antisymmetric_part = np.array( [ [0.0, 3.0, 0.0, 0.0], [-3.0, 0.0, 3.0, 0.0], [0.0, -3.0, 0.0, 3.0], [0.0, 0.0, -3.0, 0.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, antisymmetric_part=antisymmetric_part, constant=constant, ) # convert it to a FermionicOp and print it hamiltonian_ferm = hamiltonian.second_q_op() print(hamiltonian_ferm) # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import FermionicGaussianState occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = FermionicGaussianState(transformation_matrix, occupied_orbitals=occupied_orbitals) circuit.draw("mpl") from qiskit.quantum_info import Statevector from qiskit_nature.second_q.mappers import JordanWignerMapper # simulate the circuit to get the final state state = np.array(Statevector(circuit)) # convert the Hamiltonian to a matrix hamiltonian_jw = JordanWignerMapper().map(hamiltonian_ferm).to_matrix() # check that the state is an eigenvector with the expected eigenvalue np.testing.assert_allclose(hamiltonian_jw @ state, eig * state, atol=1e-8) # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, constant=constant, ) print(f"Hamiltonian conserves particle number: {hamiltonian.conserves_particle_number()}") # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import SlaterDeterminant occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = SlaterDeterminant(transformation_matrix[list(occupied_orbitals)]) circuit.draw("mpl") from qiskit_nature.second_q.circuit.library import BogoliubovTransform from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import random_hermitian, random_statevector, state_fidelity from scipy.linalg import expm # create Hamiltonian n_modes = 5 hermitian_part = np.array(random_hermitian(n_modes)) hamiltonian = QuadraticHamiltonian(hermitian_part=hermitian_part) # diagonalize Hamiltonian ( transformation_matrix, orbital_energies, _, ) = hamiltonian.diagonalizing_bogoliubov_transform() # set simulation time and construct time evolution circuit time = 1.0 register = QuantumRegister(n_modes) circuit = QuantumCircuit(register) bog_circuit = BogoliubovTransform(transformation_matrix) # change to the diagonal basis of the Hamiltonian circuit.append(bog_circuit.inverse(), register) # perform time evolution by applying z rotations for q, energy in zip(register, orbital_energies): circuit.rz(-energy * time, q) # change back to the original basis circuit.append(bog_circuit, register) # simulate the circuit initial_state = random_statevector(2**n_modes) final_state = initial_state.evolve(circuit) # compute the correct state by direct exponentiation hamiltonian_jw = JordanWignerMapper().map(hamiltonian.second_q_op()).to_matrix() exact_evolution_op = expm(-1j * time * hamiltonian_jw) expected_state = exact_evolution_op @ np.array(initial_state) # check that the simulated state is correct fidelity = state_fidelity(final_state, expected_state) np.testing.assert_allclose(fidelity, 1.0, atol=1e-8) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from IPython.display import display, clear_output from qiskit.primitives import Estimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.observables_evaluator import estimate_observables from qiskit.algorithms.optimizers import COBYLA, SLSQP from qiskit.circuit import QuantumCircuit, Parameter from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.utils import algorithm_globals from qiskit_nature.second_q.operators import FermionicOp from qiskit_nature.second_q.mappers import JordanWignerMapper def kronecker_delta_function(n: int, m: int) -> int: """An implementation of the Kronecker delta function. Args: n (int): The first integer argument. m (int): The second integer argument. Returns: Returns 1 if n = m, else returns 0. """ return int(n == m) def create_deuteron_hamiltonian( N: int, hbar_omega: float = 7.0, V_0: float = -5.68658111 ) -> SparsePauliOp: """Creates a version of the Deuteron Hamiltonian as a qubit operator. Args: N (int): An integer number that represents the dimension of the basis. hbar_omega (float, optional): The value of the product of hbar and omega. Defaults to 7.0. V_0 (float, optional): The value of the potential energy. Defaults to -5.68658111. Returns: SparsePauliOp: The qubit-space Hamiltonian that represents the Deuteron. """ hamiltonian_terms = {} for m in range(N): for n in range(N): label = "+_{} -_{}".format(str(n), str(m)) coefficient_kinect = (hbar_omega / 2) * ( (2 * n + 3 / 2) * kronecker_delta_function(n, m) - np.sqrt(n * (n + (1 / 2))) * kronecker_delta_function(n, m + 1) - np.sqrt((n + 1) * (n + (3 / 2)) * kronecker_delta_function(n, m - 1)) ) hamiltonian_terms[label] = coefficient_kinect coefficient_potential = ( V_0 * kronecker_delta_function(n, 0) * kronecker_delta_function(n, m) ) hamiltonian_terms[label] += coefficient_potential hamiltonian = FermionicOp(hamiltonian_terms, num_spin_orbitals=N) mapper = JordanWignerMapper() qubit_hamiltonian = mapper.map(hamiltonian) if not isinstance(qubit_hamiltonian, SparsePauliOp): qubit_hamiltonian = qubit_hamiltonian.primitive return qubit_hamiltonian deuteron_hamiltonians = [create_deuteron_hamiltonian(i) for i in range(1, 5)] for i, hamiltonian in enumerate(deuteron_hamiltonians): print("Deuteron Hamiltonian: H_{}".format(i + 1)) print(hamiltonian) print("\n") theta = Parameter(r"$\theta$") eta = Parameter(r"$\eta$") wavefunction = QuantumCircuit(1) wavefunction.ry(theta, 0) wavefunction.draw("mpl") wavefunction2 = QuantumCircuit(2) wavefunction2.x(0) wavefunction2.ry(theta, 1) wavefunction2.cx(1, 0) wavefunction2.draw("mpl") wavefunction3 = QuantumCircuit(3) wavefunction3.x(0) wavefunction3.ry(eta, 1) wavefunction3.ry(theta, 2) wavefunction3.cx(2, 0) wavefunction3.cx(0, 1) wavefunction3.ry(-eta, 1) wavefunction3.cx(0, 1) wavefunction3.cx(1, 0) wavefunction3.draw("mpl") ansatz = [wavefunction, wavefunction2, wavefunction3] reference_values = [] print("Exact binding energies calculated through numpy.linalg.eigh \n") for i, hamiltonian in enumerate(deuteron_hamiltonians): eigenvalues, eigenstates = np.linalg.eigh(hamiltonian.to_matrix()) reference_values.append(eigenvalues[0]) print("Exact binding energy for H_{}: {}".format(i + 1, eigenvalues[0])) print( "Results using Estimator for H_1, H_2 and H_3 with the ansatz given in the reference paper \n" ) for i in range(3): seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}: {} MeV".format(i + 1, binding_energy)) def callback(eval_count, parameters, mean, std): # Overwrites the same line when printing display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) plots = [] for i in range(3): counts = [] values = [] params = [] deviation = [] seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=COBYLA(), callback=callback) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots.append([counts, values]) fig, ax = plt.subplots(nrows=3, ncols=1) fig.set_size_inches((12, 12)) for i, plot in enumerate(plots): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() twolocal_ansatzes = [] for i in range(1, 5): ansatz = TwoLocal( deuteron_hamiltonians[i - 1].num_qubits, ["rz", "ry"], "cx", entanglement="full", reps=i, initial_state=None, ) twolocal_ansatzes.append(ansatz) print("Results using Estimator for H_1, H_2, H_3 and H_4 with TwoLocal ansatz \n") seed = 42 algorithm_globals.random_seed = seed for i in range(4): vqe = VQE(Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}:".format(i + 1), binding_energy, "MeV") seed = 42 algorithm_globals.random_seed = seed plots_tl = [] for i in range(4): counts = [] values = [] params = [] deviation = [] vqe = VQE( Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP(), callback=callback, ) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots_tl.append([counts, values]) fig, ax = plt.subplots(nrows=4, ncols=1) fig.set_size_inches((15, 15)) for i, plot in enumerate(plots_tl): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() def calculate_observables_exp_values( quantum_circuit: QuantumCircuit, observables: list, angles: list ) -> list: """Calculate the expectation value of an observable given the quantum circuit that represents the wavefunction and a list of parameters. Args: quantum_circuit (QuantumCircuit): A parameterized quantum circuit that represents the wavefunction of the system. observables (list): A list containing the observables that we want to know the expectation values. angles (list): A list with the values that will be used in the 'bind_parameters' method. Returns: list_exp_values (list): A list containing the expectation values of the observables given as input. """ list_exp_values = [] for observable in observables: exp_values = [] for angle in angles: qc = quantum_circuit.bind_parameters({theta: angle}) result = estimate_observables( Estimator(), quantum_state=qc, observables=[observable], ) exp_values.append(result[0][0]) list_exp_values.append(exp_values) return list_exp_values angles = list(np.linspace(-np.pi, np.pi, 100)) observables = [ Pauli("IZ"), Pauli("ZI"), Pauli("XX"), Pauli("YY"), deuteron_hamiltonians[1], ] h2_observables_exp_values = calculate_observables_exp_values(wavefunction2, observables, angles) fig, ax = plt.subplots(nrows=2, ncols=1) fig.set_size_inches((12, 12)) ax[0].plot(angles, h2_observables_exp_values[0], "o", label=r"$Z_0$") ax[0].plot(angles, h2_observables_exp_values[1], "o", label=r"$Z_1$") ax[0].plot(angles, h2_observables_exp_values[2], "o", label=r"$X_0X_1$") ax[0].plot(angles, h2_observables_exp_values[3], "o", label=r"$Y_0Y_1$") ax[0].axhline( y=1, color="k", linestyle="--", ) ax[0].axhline(y=-1, color="k", linestyle="--") ax[0].legend() ax[0].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[0].set_ylabel(r"$\langle O \rangle $ - Operator Expectation Value", fontsize=15) ax[0].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[0].set_title( r"Expectation value of the observables $Z_0$, $Z_1$, $X_0X_1$ and $Y_0Y_1$ when we vary $\theta$ in the ansatz.", fontsize=15, ) ax[1].plot(angles, h2_observables_exp_values[4], "o") ax[1].axhline( y=reference_values[1], color="k", linestyle="--", label="Binding Energy: {} MeV".format(np.round(reference_values[1], 3)), ) ax[1].legend() ax[1].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[1].set_ylabel(r"$\langle H_2 \rangle $ - Energy (MeV)", fontsize=15) ax[1].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[1].set_title( r"Behavior of the expectation value of $H_2$ when we vary $\theta$ in the ansatz.", fontsize=15 ) plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.mappers.second_quantization import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(padding=2) from qiskit_nature.circuit.library import HartreeFock from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) from qiskit_nature.second_q.circuit.library import HartreeFock from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spin_orbitals = 10 from qiskit_nature.second_q.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spatial_orbitals = 5 from qiskit_nature.circuit.library import UCC, UVCC ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None) uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None) from qiskit_nature.second_q.circuit.library import UCC, UVCC ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None) uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None) from qiskit_nature.circuit.library import HartreeFock, VSCF from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper hf = HartreeFock( num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper()) ) vscf = VSCF(num_modals=[2, 2]) from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter hf = HartreeFock() hf.num_spatial_orbitals = 2 hf.num_particles = (1, 1) hf.qubit_converter = QubitConverter(JordanWignerMapper()) vscf = VSCF() vscf.num_modals = [2, 2] from qiskit.providers.basicaer import BasicAer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator")) vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory from qiskit_nature.algorithms.excited_states_solvers import QEOM from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper vqe_factory = VQEUCCFactory() converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import ( GroundStateEigensolver, VQEUCCFactory, ) from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver, estimator) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.settings import settings settings.dict_aux_operators = True driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["VibrationalEnergy"] print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) # this is now done explicitly and already requires the basis problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianLogResult from qiskit_nature.properties.second_quantization.vibrational.bases import HarmonicBasis from qiskit_nature.settings import settings settings.dict_aux_operators = True log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") hamiltonian = log_result.get_vibrational_energy() print(hamiltonian) hamiltonian.basis = HarmonicBasis([2, 2, 3, 4]) op = hamiltonian.second_q_ops()["VibrationalEnergy"] print("\n".join(str(op).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianLogResult from qiskit_nature.second_q.formats import watson_to_problem from qiskit_nature.second_q.problems import HarmonicBasis log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") watson = log_result.get_watson_hamiltonian() print(watson) basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = watson_to_problem(watson, basis) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("VibrationalEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel line = LineLattice(2) fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) fermi = FermiHubbardModel.from_parameters(interaction, 3.0) print(fermi.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import FermiHubbardModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) fermi = FermiHubbardModel(lattice, 3.0) print(fermi.second_q_op()) # Note: NO trailing `s` from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice from qiskit_nature.problems.second_quantization.lattice.models import IsingModel line = LineLattice(2) ising = IsingModel.uniform_parameters(line, 2.0, 4.0) print(ising.second_q_ops()) # Note: the trailing `s` from qiskit_nature.second_q.hamiltonians.lattices import LineLattice from qiskit_nature.second_q.hamiltonians import IsingModel line = LineLattice(2) ising = IsingModel(line.uniform_parameters(2.0, 4.0)) print(ising.second_q_op()) # Note: NO trailing `s` import numpy as np from qiskit_nature.problems.second_quantization.lattice.models import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) ising = IsingModel.from_parameters(interaction) print(ising.second_q_ops()) # Note: the trailing `s` import numpy as np from qiskit_nature.second_q.hamiltonians.lattices import Lattice from qiskit_nature.second_q.hamiltonians import IsingModel interaction = np.array([[4.0, 2.0], [2.0, 4.0]]) lattice = Lattice.from_adjacency_matrix(interaction) ising = IsingModel(lattice) print(ising.second_q_op()) # Note: NO trailing `s` import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() print(problem) hamiltonian = problem.hamiltonian coefficients = hamiltonian.electronic_integrals print(coefficients.alpha) second_q_op = hamiltonian.second_q_op() print(second_q_op) hamiltonian.nuclear_repulsion_energy # NOT included in the second_q_op above problem.molecule problem.reference_energy problem.num_particles problem.num_spatial_orbitals problem.basis problem.properties problem.properties.particle_number problem.properties.angular_momentum problem.properties.magnetization problem.properties.electronic_dipole_moment from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper solver = GroundStateEigensolver( JordanWignerMapper(), NumPyMinimumEigensolver(), ) result = solver.solve(problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import GaussianForcesDriver # if you ran Gaussian elsewhere and already have the output file driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") # if you want to run the Gaussian job from Qiskit # driver = GaussianForcesDriver( # ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight', # '', # 'CO2 geometry optimization B3LYP/6-31g', # '', # '0 1', # 'C -0.848629 2.067624 0.160992', # 'O 0.098816 2.655801 -0.159738', # 'O -1.796073 1.479446 0.481721', # '', # '' from qiskit_nature.second_q.problems import HarmonicBasis basis = HarmonicBasis([2, 2, 2, 2]) from qiskit_nature.second_q.problems import VibrationalStructureProblem from qiskit_nature.second_q.mappers import DirectMapper vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() print(main_op) qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) basis = HarmonicBasis([3, 3, 3, 3]) vibrational_problem = driver.run(basis=basis) vibrational_problem.hamiltonian.truncation_order = 2 main_op, aux_ops = vibrational_problem.second_q_ops() qubit_mapper = DirectMapper() qubit_op = qubit_mapper.map(main_op) print(qubit_op) # for simplicity, we will use the smaller basis again vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2])) vibrational_problem.hamiltonian.truncation_order = 2 from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver solver = GroundStateEigensolver( qubit_mapper, NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()), ) result = solver.solve(vibrational_problem) print(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = [0.0] * ansatz.num_parameters from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal( rotation_blocks=["h", "rx"], entanglement_blocks="cz", entanglement="full", reps=2, parameter_prefix="y", ) another_solver = VQE(Estimator(), tl_circuit, SLSQP()) from qiskit_nature.second_q.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(mapper, vqe_solver) res = calc.solve(es_problem) print(res) calc = GroundStateEigensolver(mapper, numpy_solver) res = calc.solve(es_problem) print(res) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.mappers import DirectMapper from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis([2, 2, 2, 2]) vib_problem = driver.run(basis=basis) vib_problem.hamiltonian.truncation_order = 2 mapper = DirectMapper() solver_without_filter = NumPyMinimumEigensolver() solver_with_filter = NumPyMinimumEigensolver( filter_criterion=vib_problem.get_default_filter_criterion() ) gsc_wo = GroundStateEigensolver(mapper, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(mapper, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print("\n\n") print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) es_problem = driver.run() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() from qiskit.algorithms.eigensolvers import NumPyEigensolver numpy_solver = NumPyEigensolver(filter_criterion=es_problem.get_default_filter_criterion()) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.algorithms import GroundStateEigensolver, QEOM from qiskit_nature.second_q.circuit.library import HartreeFock, UCCSD ansatz = UCCSD( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, initial_state=HartreeFock( es_problem.num_spatial_orbitals, es_problem.num_particles, mapper, ), ) estimator = Estimator() # This first part sets the ground state solver # see more about this part in the ground state calculation tutorial solver = VQE(estimator, ansatz, SLSQP()) solver.initial_point = [0.0] * ansatz.num_parameters gse = GroundStateEigensolver(mapper, solver) # The qEOM algorithm is simply instantiated with the chosen ground state solver and Estimator primitive qeom_excited_states_solver = QEOM(gse, estimator, "sd") from qiskit_nature.second_q.algorithms import ExcitedStatesEigensolver numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, numpy_solver) numpy_results = numpy_excited_states_solver.solve(es_problem) qeom_results = qeom_excited_states_solver.solve(es_problem) print(numpy_results) print("\n\n") print(qeom_results) import numpy as np def filter_criterion(eigenstate, eigenvalue, aux_values): return np.isclose(aux_values["ParticleNumber"][0], 2.0) new_numpy_solver = NumPyEigensolver(filter_criterion=filter_criterion) new_numpy_excited_states_solver = ExcitedStatesEigensolver(mapper, new_numpy_solver) new_numpy_results = new_numpy_excited_states_solver.solve(es_problem) print(new_numpy_results) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.problems import ElectronicBasis driver = PySCFDriver() driver.run_pyscf() ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) ao_hamil = ao_problem.hamiltonian print(ao_hamil.electronic_integrals.alpha) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema qcschema = driver.to_qcschema() basis_transformer = get_ao_to_mo_from_qcschema(qcschema) print(basis_transformer.initial_basis) print(basis_transformer.final_basis) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) mo_hamil = mo_problem.hamiltonian print(mo_hamil.electronic_integrals.alpha) import numpy as np from qiskit_nature.second_q.operators import ElectronicIntegrals from qiskit_nature.second_q.problems import ElectronicBasis from qiskit_nature.second_q.transformers import BasisTransformer ao2mo_alpha = np.random.random((2, 2)) ao2mo_beta = np.random.random((2, 2)) basis_transformer = BasisTransformer( ElectronicBasis.AO, ElectronicBasis.MO, ElectronicIntegrals.from_raw_integrals(ao2mo_alpha, h1_b=ao2mo_beta), ) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.molecule) print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import FreezeCoreTransformer fc_transformer = FreezeCoreTransformer() fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) print(fc_problem.hamiltonian.constants) fc_transformer = FreezeCoreTransformer(remove_orbitals=[4, 5]) fc_problem = fc_transformer.transform(full_problem) print(fc_problem.num_particles) print(fc_problem.num_spatial_orbitals) from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver(atom="Li 0 0 0; H 0 0 1.5") full_problem = driver.run() print(full_problem.num_particles) print(full_problem.num_spatial_orbitals) from qiskit_nature.second_q.transformers import ActiveSpaceTransformer as_transformer = ActiveSpaceTransformer(2, 2) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) as_transformer = ActiveSpaceTransformer(2, 2, active_orbitals=[0, 4]) as_problem = as_transformer.transform(full_problem) print(as_problem.num_particles) print(as_problem.num_spatial_orbitals) print(as_problem.hamiltonian.electronic_integrals.alpha) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() fermionic_op = problem.hamiltonian.second_q_op() from qiskit_nature.second_q.mappers import JordanWignerMapper mapper = JordanWignerMapper() qubit_jw_op = mapper.map(fermionic_op) print(qubit_jw_op) from qiskit_nature.second_q.mappers import ParityMapper mapper = ParityMapper() qubit_p_op = mapper.map(fermionic_op) print(qubit_p_op) mapper = ParityMapper(num_particles=problem.num_particles) qubit_op = mapper.map(fermionic_op) print(qubit_op) tapered_mapper = problem.get_tapered_mapper(mapper) print(type(tapered_mapper)) qubit_op = tapered_mapper.map(fermionic_op) print(qubit_op) from qiskit_nature.second_q.circuit.library import HartreeFock hf_state = HartreeFock(2, (1, 1), JordanWignerMapper()) hf_state.draw() from qiskit_nature.second_q.mappers import InterleavedQubitMapper interleaved_mapper = InterleavedQubitMapper(JordanWignerMapper()) hf_state = HartreeFock(2, (1, 1), interleaved_mapper) hf_state.draw() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import ParityMapper from qiskit_nature.second_q.properties import ParticleNumber from qiskit_nature.second_q.transformers import ActiveSpaceTransformer bond_distance = 2.5 # in Angstrom # specify driver driver = PySCFDriver( atom=f"Li 0 0 0; H 0 0 {bond_distance}", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() # specify active space transformation active_space_trafo = ActiveSpaceTransformer( num_electrons=problem.num_particles, num_spatial_orbitals=3 ) # transform the electronic structure problem problem = active_space_trafo.transform(problem) # construct the parity mapper with 2-qubit reduction qubit_mapper = ParityMapper(num_particles=problem.num_particles) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms.ground_state_solvers import GroundStateEigensolver np_solver = NumPyMinimumEigensolver() np_groundstate_solver = GroundStateEigensolver(qubit_mapper, np_solver) np_result = np_groundstate_solver.solve(problem) target_energy = np_result.total_energies[0] print(np_result) from qiskit.circuit.library import EfficientSU2 ansatz = EfficientSU2(num_qubits=4, reps=1, entanglement="linear", insert_barriers=True) ansatz.decompose().draw("mpl", style="iqx") import numpy as np from qiskit.utils import algorithm_globals # fix random seeds for reproducibility np.random.seed(5) algorithm_globals.random_seed = 5 from qiskit.algorithms.optimizers import SPSA optimizer = SPSA(maxiter=100) initial_point = np.random.random(ansatz.num_parameters) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.primitives import Estimator estimator = Estimator() local_vqe = VQE( estimator, ansatz, optimizer, initial_point=initial_point, ) local_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, local_vqe) local_vqe_result = local_vqe_groundstate_solver.solve(problem) print(local_vqe_result) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(group="open") # replace by your runtime provider backend = provider.get_backend("ibmq_qasm_simulator") # select a backend that supports the runtime from qiskit_nature.runtime import VQEClient runtime_vqe = VQEClient( ansatz=ansatz, optimizer=optimizer, initial_point=initial_point, provider=provider, backend=backend, shots=1024, measurement_error_mitigation=True, ) # use a complete measurement fitter for error mitigation runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_mapper, runtime_vqe) runtime_vqe_result = runtime_vqe_groundstate_solver.solve(problem) print(runtime_vqe_result) runtime_result = runtime_vqe_result.raw_result history = runtime_result.optimizer_history loss = history["energy"] import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 # plot loss and reference value plt.figure(figsize=(12, 6)) plt.plot(loss + runtime_vqe_result.nuclear_repulsion_energy, label="Runtime VQE") plt.axhline(y=target_energy + 0.2, color="tab:red", ls=":", label="Target + 200mH") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy"); import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.drivers import PySCFDriver driver = PySCFDriver() problem = driver.run() print(problem) from qiskit_nature.second_q.problems import ElectronicBasis driver.run_pyscf() problem = driver.to_problem(basis=ElectronicBasis.MO, include_dipole=True) print(problem.basis) ao_problem = driver.to_problem(basis=ElectronicBasis.AO) print(ao_problem.basis) from qiskit_nature.second_q.formats.qcschema_translator import qcschema_to_problem qcschema = driver.to_qcschema() ao_problem = qcschema_to_problem(qcschema, basis=ElectronicBasis.AO) from qiskit_nature.second_q.formats.qcschema_translator import get_ao_to_mo_from_qcschema basis_transformer = get_ao_to_mo_from_qcschema(qcschema) mo_problem = basis_transformer.transform(ao_problem) print(mo_problem.basis) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.second_q.problems import BaseProblem dummy_hamiltonian = None base_problem = BaseProblem(dummy_hamiltonian) print(base_problem.properties) from qiskit_nature.second_q.properties import AngularMomentum print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Adding AngularMomentum to problem.properties...") base_problem.properties.add(AngularMomentum(2)) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) print("Discarding AngularMomentum from problem.properties...") base_problem.properties.discard(AngularMomentum) print("AngularMomentum is in problem.properties:", AngularMomentum in base_problem.properties) from qiskit_nature.second_q.drivers import PySCFDriver es_problem = PySCFDriver().run() print(es_problem.properties.particle_number) print(es_problem.properties.angular_momentum) print(es_problem.properties.magnetization) print(es_problem.properties.electronic_dipole_moment) print(es_problem.properties.electronic_density) from qiskit_nature.second_q.properties import ElectronicDensity density = ElectronicDensity.from_orbital_occupation( es_problem.orbital_occupations, es_problem.orbital_occupations_b, ) es_problem.properties.electronic_density = density import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from math import pi import numpy as np import rustworkx as rx from qiskit_nature.second_q.hamiltonians.lattices import ( BoundaryCondition, HyperCubicLattice, Lattice, LatticeDrawStyle, LineLattice, SquareLattice, TriangularLattice, ) from qiskit_nature.second_q.hamiltonians import FermiHubbardModel num_nodes = 11 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) line_lattice.draw() line_lattice.draw_without_boundary() num_nodes = 11 boundary_condition = BoundaryCondition.PERIODIC edge_parameter = 1.0 + 1.0j onsite_parameter = 1.0 line_lattice = LineLattice( num_nodes=num_nodes, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(line_lattice.graph.weighted_edge_list()) line_lattice.to_adjacency_matrix() line_lattice.to_adjacency_matrix(weighted=True) rows = 5 cols = 4 boundary_condition = BoundaryCondition.OPEN square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) square_lattice.draw() rows = 5 cols = 4 edge_parameter = (1.0, 1.0 + 1.0j) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.PERIODIC, ) # open in the x-direction, periodic in the y-direction onsite_parameter = 1.0 square_lattice = SquareLattice( rows=rows, cols=cols, edge_parameter=edge_parameter, onsite_parameter=onsite_parameter, boundary_condition=boundary_condition, ) set(square_lattice.graph.weighted_edge_list()) size = (3, 4, 5) boundary_condition = ( BoundaryCondition.OPEN, BoundaryCondition.OPEN, BoundaryCondition.OPEN, ) cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition) # function for setting the positions def indextocoord_3d(index: int, size: tuple, angle) -> list: z = index // (size[0] * size[1]) a = index % (size[0] * size[1]) y = a // size[0] x = a % size[0] vec_x = np.array([1, 0]) vec_y = np.array([np.cos(angle), np.sin(angle)]) vec_z = np.array([0, 1]) return_coord = x * vec_x + y * vec_y + z * vec_z return return_coord.tolist() pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))]) cubic_lattice.draw(style=LatticeDrawStyle(pos=pos)) rows = 4 cols = 3 boundary_condition = BoundaryCondition.OPEN triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() rows = 4 cols = 3 boundary_condition = BoundaryCondition.PERIODIC triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition) triangular_lattice.draw() graph = rx.PyGraph(multigraph=False) # multigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) # make a lattice general_lattice = Lattice(graph) set(general_lattice.graph.weighted_edge_list()) general_lattice.draw() general_lattice.draw(self_loop=True) general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True)) square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC) t = -1.0 # the interaction parameter v = 0.0 # the onsite potential u = 5.0 # the interaction parameter U fhm = FermiHubbardModel( square_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) ham = fhm.second_q_op().simplify() print(ham) graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False graph.add_nodes_from(range(6)) weighted_edge_list = [ (0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 3, 2.0), (4, 2, -1.0 + 2.0j), (4, 4, 3.0), (2, 5, -1.0), ] graph.add_edges_from(weighted_edge_list) general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix. u = 5.0 # the interaction parameter U fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u) ham = fhm.second_q_op().simplify() print(ham) from qiskit_nature.second_q.problems import LatticeModelProblem num_nodes = 4 boundary_condition = BoundaryCondition.OPEN line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition) fhm = FermiHubbardModel( line_lattice.uniform_parameters( uniform_interaction=t, uniform_onsite_potential=v, ), onsite_interaction=u, ) lmp = LatticeModelProblem(fhm) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import JordanWignerMapper numpy_solver = NumPyMinimumEigensolver() qubit_mapper = JordanWignerMapper() calc = GroundStateEigensolver(qubit_mapper, numpy_solver) res = calc.solve(lmp) print(res) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np from qiskit_nature.second_q.hamiltonians import QuadraticHamiltonian # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) antisymmetric_part = np.array( [ [0.0, 3.0, 0.0, 0.0], [-3.0, 0.0, 3.0, 0.0], [0.0, -3.0, 0.0, 3.0], [0.0, 0.0, -3.0, 0.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, antisymmetric_part=antisymmetric_part, constant=constant, ) # convert it to a FermionicOp and print it hamiltonian_ferm = hamiltonian.second_q_op() print(hamiltonian_ferm) # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import FermionicGaussianState occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = FermionicGaussianState(transformation_matrix, occupied_orbitals=occupied_orbitals) circuit.draw("mpl") from qiskit.quantum_info import Statevector from qiskit_nature.second_q.mappers import JordanWignerMapper # simulate the circuit to get the final state state = np.array(Statevector(circuit)) # convert the Hamiltonian to a matrix hamiltonian_jw = JordanWignerMapper().map(hamiltonian_ferm).to_matrix() # check that the state is an eigenvector with the expected eigenvalue np.testing.assert_allclose(hamiltonian_jw @ state, eig * state, atol=1e-8) # create Hamiltonian hermitian_part = np.array( [ [1.0, 2.0, 0.0, 0.0], [2.0, 1.0, 2.0, 0.0], [0.0, 2.0, 1.0, 2.0], [0.0, 0.0, 2.0, 1.0], ] ) constant = 4.0 hamiltonian = QuadraticHamiltonian( hermitian_part=hermitian_part, constant=constant, ) print(f"Hamiltonian conserves particle number: {hamiltonian.conserves_particle_number()}") # get the transformation matrix W and orbital energies {epsilon_j} ( transformation_matrix, orbital_energies, transformed_constant, ) = hamiltonian.diagonalizing_bogoliubov_transform() print(f"Shape of matrix W: {transformation_matrix.shape}") print(f"Orbital energies: {orbital_energies}") print(f"Transformed constant: {transformed_constant}") from qiskit_nature.second_q.circuit.library import SlaterDeterminant occupied_orbitals = (0, 2) eig = np.sum(orbital_energies[list(occupied_orbitals)]) + transformed_constant print(f"Eigenvalue: {eig}") circuit = SlaterDeterminant(transformation_matrix[list(occupied_orbitals)]) circuit.draw("mpl") from qiskit_nature.second_q.circuit.library import BogoliubovTransform from qiskit import QuantumCircuit, QuantumRegister from qiskit.quantum_info import random_hermitian, random_statevector, state_fidelity from scipy.linalg import expm # create Hamiltonian n_modes = 5 hermitian_part = np.array(random_hermitian(n_modes)) hamiltonian = QuadraticHamiltonian(hermitian_part=hermitian_part) # diagonalize Hamiltonian ( transformation_matrix, orbital_energies, _, ) = hamiltonian.diagonalizing_bogoliubov_transform() # set simulation time and construct time evolution circuit time = 1.0 register = QuantumRegister(n_modes) circuit = QuantumCircuit(register) bog_circuit = BogoliubovTransform(transformation_matrix) # change to the diagonal basis of the Hamiltonian circuit.append(bog_circuit.inverse(), register) # perform time evolution by applying z rotations for q, energy in zip(register, orbital_energies): circuit.rz(-energy * time, q) # change back to the original basis circuit.append(bog_circuit, register) # simulate the circuit initial_state = random_statevector(2**n_modes) final_state = initial_state.evolve(circuit) # compute the correct state by direct exponentiation hamiltonian_jw = JordanWignerMapper().map(hamiltonian.second_q_op()).to_matrix() exact_evolution_op = expm(-1j * time * hamiltonian_jw) expected_state = exact_evolution_op @ np.array(initial_state) # check that the simulated state is correct fidelity = state_fidelity(final_state, expected_state) np.testing.assert_allclose(fidelity, 1.0, atol=1e-8) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt from IPython.display import display, clear_output from qiskit.primitives import Estimator from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.observables_evaluator import estimate_observables from qiskit.algorithms.optimizers import COBYLA, SLSQP from qiskit.circuit import QuantumCircuit, Parameter from qiskit.circuit.library import TwoLocal from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.utils import algorithm_globals from qiskit_nature.second_q.operators import FermionicOp from qiskit_nature.second_q.mappers import JordanWignerMapper def kronecker_delta_function(n: int, m: int) -> int: """An implementation of the Kronecker delta function. Args: n (int): The first integer argument. m (int): The second integer argument. Returns: Returns 1 if n = m, else returns 0. """ return int(n == m) def create_deuteron_hamiltonian( N: int, hbar_omega: float = 7.0, V_0: float = -5.68658111 ) -> SparsePauliOp: """Creates a version of the Deuteron Hamiltonian as a qubit operator. Args: N (int): An integer number that represents the dimension of the basis. hbar_omega (float, optional): The value of the product of hbar and omega. Defaults to 7.0. V_0 (float, optional): The value of the potential energy. Defaults to -5.68658111. Returns: SparsePauliOp: The qubit-space Hamiltonian that represents the Deuteron. """ hamiltonian_terms = {} for m in range(N): for n in range(N): label = "+_{} -_{}".format(str(n), str(m)) coefficient_kinect = (hbar_omega / 2) * ( (2 * n + 3 / 2) * kronecker_delta_function(n, m) - np.sqrt(n * (n + (1 / 2))) * kronecker_delta_function(n, m + 1) - np.sqrt((n + 1) * (n + (3 / 2)) * kronecker_delta_function(n, m - 1)) ) hamiltonian_terms[label] = coefficient_kinect coefficient_potential = ( V_0 * kronecker_delta_function(n, 0) * kronecker_delta_function(n, m) ) hamiltonian_terms[label] += coefficient_potential hamiltonian = FermionicOp(hamiltonian_terms, num_spin_orbitals=N) mapper = JordanWignerMapper() qubit_hamiltonian = mapper.map(hamiltonian) if not isinstance(qubit_hamiltonian, SparsePauliOp): qubit_hamiltonian = qubit_hamiltonian.primitive return qubit_hamiltonian deuteron_hamiltonians = [create_deuteron_hamiltonian(i) for i in range(1, 5)] for i, hamiltonian in enumerate(deuteron_hamiltonians): print("Deuteron Hamiltonian: H_{}".format(i + 1)) print(hamiltonian) print("\n") theta = Parameter(r"$\theta$") eta = Parameter(r"$\eta$") wavefunction = QuantumCircuit(1) wavefunction.ry(theta, 0) wavefunction.draw("mpl") wavefunction2 = QuantumCircuit(2) wavefunction2.x(0) wavefunction2.ry(theta, 1) wavefunction2.cx(1, 0) wavefunction2.draw("mpl") wavefunction3 = QuantumCircuit(3) wavefunction3.x(0) wavefunction3.ry(eta, 1) wavefunction3.ry(theta, 2) wavefunction3.cx(2, 0) wavefunction3.cx(0, 1) wavefunction3.ry(-eta, 1) wavefunction3.cx(0, 1) wavefunction3.cx(1, 0) wavefunction3.draw("mpl") ansatz = [wavefunction, wavefunction2, wavefunction3] reference_values = [] print("Exact binding energies calculated through numpy.linalg.eigh \n") for i, hamiltonian in enumerate(deuteron_hamiltonians): eigenvalues, eigenstates = np.linalg.eigh(hamiltonian.to_matrix()) reference_values.append(eigenvalues[0]) print("Exact binding energy for H_{}: {}".format(i + 1, eigenvalues[0])) print( "Results using Estimator for H_1, H_2 and H_3 with the ansatz given in the reference paper \n" ) for i in range(3): seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}: {} MeV".format(i + 1, binding_energy)) def callback(eval_count, parameters, mean, std): # Overwrites the same line when printing display("Evaluation: {}, Energy: {}, Std: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) plots = [] for i in range(3): counts = [] values = [] params = [] deviation = [] seed = 42 algorithm_globals.random_seed = seed vqe = VQE(Estimator(), ansatz=ansatz[i], optimizer=COBYLA(), callback=callback) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots.append([counts, values]) fig, ax = plt.subplots(nrows=3, ncols=1) fig.set_size_inches((12, 12)) for i, plot in enumerate(plots): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() twolocal_ansatzes = [] for i in range(1, 5): ansatz = TwoLocal( deuteron_hamiltonians[i - 1].num_qubits, ["rz", "ry"], "cx", entanglement="full", reps=i, initial_state=None, ) twolocal_ansatzes.append(ansatz) print("Results using Estimator for H_1, H_2, H_3 and H_4 with TwoLocal ansatz \n") seed = 42 algorithm_globals.random_seed = seed for i in range(4): vqe = VQE(Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP()) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) binding_energy = vqe_result.optimal_value print("Binding energy for H_{}:".format(i + 1), binding_energy, "MeV") seed = 42 algorithm_globals.random_seed = seed plots_tl = [] for i in range(4): counts = [] values = [] params = [] deviation = [] vqe = VQE( Estimator(), ansatz=twolocal_ansatzes[i], optimizer=SLSQP(), callback=callback, ) vqe_result = vqe.compute_minimum_eigenvalue(deuteron_hamiltonians[i]) plots_tl.append([counts, values]) fig, ax = plt.subplots(nrows=4, ncols=1) fig.set_size_inches((15, 15)) for i, plot in enumerate(plots_tl): ax[i].plot(plot[0], plot[1], "o-", label="COBYLA") ax[i].axhline( y=reference_values[i], color="k", linestyle="--", label=f"Reference Value: {reference_values[i]}", ) ax[i].legend() ax[i].set_xlabel("Cost Function Evaluations", fontsize=15) ax[i].set_ylabel(r"$\langle H_{} \rangle$ - Energy (MeV)".format(i + 1), fontsize=15) plt.show() def calculate_observables_exp_values( quantum_circuit: QuantumCircuit, observables: list, angles: list ) -> list: """Calculate the expectation value of an observable given the quantum circuit that represents the wavefunction and a list of parameters. Args: quantum_circuit (QuantumCircuit): A parameterized quantum circuit that represents the wavefunction of the system. observables (list): A list containing the observables that we want to know the expectation values. angles (list): A list with the values that will be used in the 'bind_parameters' method. Returns: list_exp_values (list): A list containing the expectation values of the observables given as input. """ list_exp_values = [] for observable in observables: exp_values = [] for angle in angles: qc = quantum_circuit.bind_parameters({theta: angle}) result = estimate_observables( Estimator(), quantum_state=qc, observables=[observable], ) exp_values.append(result[0][0]) list_exp_values.append(exp_values) return list_exp_values angles = list(np.linspace(-np.pi, np.pi, 100)) observables = [ Pauli("IZ"), Pauli("ZI"), Pauli("XX"), Pauli("YY"), deuteron_hamiltonians[1], ] h2_observables_exp_values = calculate_observables_exp_values(wavefunction2, observables, angles) fig, ax = plt.subplots(nrows=2, ncols=1) fig.set_size_inches((12, 12)) ax[0].plot(angles, h2_observables_exp_values[0], "o", label=r"$Z_0$") ax[0].plot(angles, h2_observables_exp_values[1], "o", label=r"$Z_1$") ax[0].plot(angles, h2_observables_exp_values[2], "o", label=r"$X_0X_1$") ax[0].plot(angles, h2_observables_exp_values[3], "o", label=r"$Y_0Y_1$") ax[0].axhline( y=1, color="k", linestyle="--", ) ax[0].axhline(y=-1, color="k", linestyle="--") ax[0].legend() ax[0].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[0].set_ylabel(r"$\langle O \rangle $ - Operator Expectation Value", fontsize=15) ax[0].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[0].set_title( r"Expectation value of the observables $Z_0$, $Z_1$, $X_0X_1$ and $Y_0Y_1$ when we vary $\theta$ in the ansatz.", fontsize=15, ) ax[1].plot(angles, h2_observables_exp_values[4], "o") ax[1].axhline( y=reference_values[1], color="k", linestyle="--", label="Binding Energy: {} MeV".format(np.round(reference_values[1], 3)), ) ax[1].legend() ax[1].set_xlabel(r"Theta - $\theta$", fontsize=15) ax[1].set_ylabel(r"$\langle H_2 \rangle $ - Energy (MeV)", fontsize=15) ax[1].set_xticks( [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi], labels=[r"$-\pi$", r"$-\pi/2$", "0", r"$\pi/2$", r"$\pi$"], ) ax[1].set_title( r"Behavior of the expectation value of $H_2$ when we vary $\theta$ in the ansatz.", fontsize=15 ) plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.mappers.second_quantization import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(2) from qiskit_nature.second_q.mappers import LogarithmicMapper mapper = LogarithmicMapper(padding=2) from qiskit_nature.circuit.library import HartreeFock from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spin_orbitals=6, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) from qiskit_nature.second_q.circuit.library import HartreeFock from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter converter = QubitConverter(JordanWignerMapper()) init_state = HartreeFock(num_spatial_orbitals=3, num_particles=(2, 1), qubit_converter=converter) print(init_state.draw()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spin_orbitals = 10 from qiskit_nature.second_q.circuit.library import UCCSD ansatz = UCCSD() ansatz.num_spatial_orbitals = 5 from qiskit_nature.circuit.library import UCC, UVCC ucc = UCC(qubit_converter=None, num_particles=None, num_spin_orbitals=None, excitations=None) uvcc = UVCC(qubit_converter=None, num_modals=None, excitations=None) from qiskit_nature.second_q.circuit.library import UCC, UVCC ucc = UCC(num_spatial_orbitals=None, num_particles=None, excitations=None, qubit_converter=None) uvcc = UVCC(num_modals=None, excitations=None, qubit_converter=None) from qiskit_nature.circuit.library import HartreeFock, VSCF from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import DirectMapper, JordanWignerMapper hf = HartreeFock( num_spin_orbitals=4, num_particles=(1, 1), qubit_converter=QubitConverter(JordanWignerMapper()) ) vscf = VSCF(num_modals=[2, 2]) from qiskit_nature.second_q.circuit.library import HartreeFock, VSCF from qiskit_nature.second_q.mappers import DirectMapper, JordanWignerMapper, QubitConverter hf = HartreeFock() hf.num_spatial_orbitals = 2 hf.num_particles = (1, 1) hf.qubit_converter = QubitConverter(JordanWignerMapper()) vscf = VSCF() vscf.num_modals = [2, 2] from qiskit.providers.basicaer import BasicAer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms.ground_state_solvers import VQEUCCFactory quantum_instance = QuantumInstance(BasicAer.get_backend("statevector_simulator")) vqe_factory = VQEUCCFactory(quantum_instance=quantum_instance) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import VQEUCCFactory estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver, VQEUCCFactory from qiskit_nature.algorithms.excited_states_solvers import QEOM from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper vqe_factory = VQEUCCFactory() converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver) from qiskit.algorithms.optimizers import SLSQP from qiskit.primitives import Estimator from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms.ground_state_solvers import ( GroundStateEigensolver, VQEUCCFactory, ) from qiskit_nature.second_q.algorithms.excited_states_solvers import QEOM from qiskit_nature.second_q.mappers import JordanWignerMapper, QubitConverter estimator = Estimator() ansatz = UCCSD() optimizer = SLSQP() vqe_factory = VQEUCCFactory(estimator, ansatz, optimizer) converter = QubitConverter(JordanWignerMapper()) ground_state_solver = GroundStateEigensolver(converter, vqe_factory) qeom = QEOM(ground_state_solver, estimator) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, PySCFDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.settings import settings settings.dict_aux_operators = True molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF ) # or equivalently: driver = PySCFDriver.from_molecule(molecule, basis="sto3g") transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["ElectronicEnergy"] print(hamiltonian) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo from qiskit_nature.second_q.transformers import FreezeCoreTransformer molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") # this is now done explicitly problem = driver.run() transformer = FreezeCoreTransformer() # and you also apply transformers explicitly problem = transformer.transform(problem) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import PySCFDriver molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["H", [0.0, 0.0, 0.735]]], charge=0, multiplicity=1 ) driver = PySCFDriver.from_molecule(molecule) result = driver.run() print(type(result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)], charge=0, multiplicity=1) driver = PySCFDriver.from_molecule(molecule, basis="sto3g") result = driver.run() print(type(result)) from qiskit_nature.drivers.second_quantization import FCIDumpDriver path_to_fcidump = "aux_files/h2.fcidump" driver = FCIDumpDriver(path_to_fcidump) result = driver.run() print(type(result)) from qiskit_nature.second_q.formats.fcidump import FCIDump path_to_fcidump = "aux_files/h2.fcidump" fcidump = FCIDump.from_file(path_to_fcidump) print(type(fcidump)) from qiskit_nature.second_q.formats.fcidump_translator import fcidump_to_problem problem = fcidump_to_problem(fcidump) print(type(problem)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer transformer = FreezeCoreTransformer() driver = PySCFDriver() transformed_result = transformer.transform(driver.run()) print(type(transformed_result)) from qiskit_nature.drivers.second_quantization import PySCFDriver from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer driver = PySCFDriver() transformer = FreezeCoreTransformer() problem = ElectronicStructureProblem(driver, transformers=[transformer]) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("ElectronicEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.transformers import FreezeCoreTransformer driver = PySCFDriver() problem = driver.run() transformer = FreezeCoreTransformer() problem = transformer.transform(problem) hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.settings import settings settings.dict_aux_operators = True driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # Note: at this point, `driver.run()` has NOT been called yet. We can trigger this indirectly like so: second_q_ops = problem.second_q_ops() hamiltonian = second_q_ops["VibrationalEnergy"] print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) # this is now done explicitly and already requires the basis problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianLogResult from qiskit_nature.properties.second_quantization.vibrational.bases import HarmonicBasis from qiskit_nature.settings import settings settings.dict_aux_operators = True log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") hamiltonian = log_result.get_vibrational_energy() print(hamiltonian) hamiltonian.basis = HarmonicBasis([2, 2, 3, 4]) op = hamiltonian.second_q_ops()["VibrationalEnergy"] print("\n".join(str(op).splitlines()[:10] + ["..."])) from qiskit_nature.second_q.drivers import GaussianLogResult from qiskit_nature.second_q.formats import watson_to_problem from qiskit_nature.second_q.problems import HarmonicBasis log_result = GaussianLogResult("aux_files/CO2_freq_B3LYP_631g.log") watson = log_result.get_watson_hamiltonian() print(watson) basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = watson_to_problem(watson, basis) hamiltonian = problem.hamiltonian.second_q_op() print("\n".join(str(hamiltonian).splitlines()[:10] + ["..."])) from qiskit_nature.drivers.second_quantization import GaussianForcesDriver from qiskit_nature.problems.second_quantization import VibrationalStructureProblem driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") problem = VibrationalStructureProblem(driver, num_modals=[2, 2, 3, 4], truncation_order=2) # we trigger driver.run() implicitly like so: second_q_ops = problem.second_q_ops() hamiltonian_op = second_q_ops.pop("VibrationalEnergy") aux_ops = second_q_ops from qiskit_nature.second_q.drivers import GaussianForcesDriver from qiskit_nature.second_q.problems import HarmonicBasis driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log") basis = HarmonicBasis(num_modals=[2, 2, 3, 4]) problem = driver.run(basis=basis) problem.hamiltonian.truncation_order = 2 hamiltonian_op, aux_ops = problem.second_q_ops() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright