repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer, SolutionSample, OptimizationResultStatus, ) from qiskit_optimization import QuadraticProgram from qiskit.visualization import plot_histogram from typing import List, Tuple import numpy as np # create a QUBO qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) op, offset = qubo.to_ising() print("offset: {}".format(offset)) print("operator:") print(op) qp = QuadraticProgram() qp.from_ising(op, offset, linear=True) print(qp.prettyprint()) algorithm_globals.random_seed = 10598 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver exact_result = exact.solve(qubo) print(exact_result.prettyprint()) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) print("variable order:", [var.name for var in qaoa_result.variables]) for s in qaoa_result.samples: print(s) def get_filtered_samples( samples: List[SolutionSample], threshold: float = 0, allowed_status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,), ): res = [] for s in samples: if s.status in allowed_status and s.probability > threshold: res.append(s) return res filtered_samples = get_filtered_samples( qaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) for s in filtered_samples: print(s) fvals = [s.fval for s in qaoa_result.samples] probabilities = [s.probability for s in qaoa_result.samples] np.mean(fvals) np.std(fvals) samples_for_plot = { " ".join(f"{qaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) rqaoa = RecursiveMinimumEigenOptimizer(qaoa, min_num_vars=1, min_num_vars_optimizer=exact) rqaoa_result = rqaoa.solve(qubo) print(rqaoa_result.prettyprint()) filtered_samples = get_filtered_samples( rqaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) samples_for_plot = { " ".join(f"{rqaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt try: import cplex from cplex.exceptions import CplexError except: print("Warning: Cplex not found.") import math from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler # Initialize the problem by defining the parameters n = 3 # number of nodes + depot (n+1) K = 2 # number of vehicles # Get the data class Initializer: def __init__(self, n): self.n = n def generate_instance(self): n = self.n # np.random.seed(33) np.random.seed(1543) xc = (np.random.rand(n) - 0.5) * 10 yc = (np.random.rand(n) - 0.5) * 10 instance = np.zeros([n, n]) for ii in range(0, n): for jj in range(ii + 1, n): instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2 instance[jj, ii] = instance[ii, jj] return xc, yc, instance # Initialize the problem by randomly generating the instance initializer = Initializer(n) xc, yc, instance = initializer.generate_instance() class ClassicalOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n # number of nodes self.K = K # number of vehicles def compute_allowed_combinations(self): f = math.factorial return f(self.n) / f(self.K) / f(self.n - self.K) def cplex_solution(self): # refactoring instance = self.instance n = self.n K = self.K my_obj = list(instance.reshape(1, n**2)[0]) + [0.0 for x in range(0, n - 1)] my_ub = [1 for x in range(0, n**2 + n - 1)] my_lb = [0 for x in range(0, n**2)] + [0.1 for x in range(0, n - 1)] my_ctype = "".join(["I" for x in range(0, n**2)]) + "".join( ["C" for x in range(0, n - 1)] ) my_rhs = ( 2 * ([K] + [1 for x in range(0, n - 1)]) + [1 - 0.1 for x in range(0, (n - 1) ** 2 - (n - 1))] + [0 for x in range(0, n)] ) my_sense = ( "".join(["E" for x in range(0, 2 * n)]) + "".join(["L" for x in range(0, (n - 1) ** 2 - (n - 1))]) + "".join(["E" for x in range(0, n)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + ii, n**2, n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) # Sub-tour elimination constraints: for ii in range(0, n): for jj in range(0, n): if (ii != jj) and (ii * jj > 0): col = [ii + (jj * n), n**2 + ii - 1, n**2 + jj - 1] coef = [1, 1, -1] rows.append([col, coef]) for ii in range(0, n): col = [(ii) * (n + 1)] coef = [1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(instance, n, K) # Print number of feasible solutions print("Number of feasible solutions = " + str(classical_optimizer.compute_allowed_combinations())) # Solve the problem in a classical fashion via CPLEX x = None z = None try: x, classical_cost = classical_optimizer.cplex_solution() # Put the solution in the z variable z = [x[ii] for ii in range(n**2) if ii // n != ii % n] # Print the solution print(z) except: print("CPLEX may be missing.") # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.15, yc[i]), size=16, color="r") plt.plot(xc[0], yc[0], "r*", ms=20) plt.grid() for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n plt.arrow( xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=0.25, ) plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n**2) w_list = [instance_vec[x] for x in range(n**2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K**2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): algorithm_globals.random_seed = 10598 vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes()) optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) result = optimizer.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(instance, n, K) # Check if the binary representation is correct try: if z is not None: Q, g, c, binary_cost = quantum_optimizer.binary_representation(x_sol=z) print("Binary cost:", binary_cost, "classical cost:", classical_cost) if np.abs(binary_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the binary formulation") else: print("Could not verify the correctness, due to CPLEX solution being unavailable.") Q, g, c, binary_cost = quantum_optimizer.binary_representation() print("Binary cost:", binary_cost) except NameError as e: print("Warning: Please run the cells above first.") print(e) qp = quantum_optimizer.construct_problem(Q, g, c) quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) print(quantum_solution, quantum_cost) # Put the solution in a way that is compatible with the classical variables x_quantum = np.zeros(n**2) kk = 0 for ii in range(n**2): if ii // n != ii % n: x_quantum[ii] = quantum_solution[kk] kk += 1 # visualize the solution visualize_solution(xc, yc, x_quantum, quantum_cost, n, K, "Quantum") # and visualize the classical for comparison if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.applications.vertex_cover import VertexCover import networkx as nx seed = 123 algorithm_globals.random_seed = seed graph = nx.random_regular_graph(d=3, n=6, seed=seed) pos = nx.spring_layout(graph, seed=seed) prob = VertexCover(graph) prob.draw(pos=pos) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) prob.draw(result, pos=pos) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) prob.draw(result, pos=pos) from qiskit_optimization.applications import Knapsack prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) from qiskit_optimization.converters import QuadraticProgramToQubo # the same knapsack problem instance as in the previous section prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # intermediate QUBO form of the optimization problem conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(qubo.prettyprint()) # qubit Hamiltonian and offset op, offset = qubo.to_ising() print(f"num qubits: {op.num_qubits}, offset: {offset}\n") print(op) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer, SolutionSample, OptimizationResultStatus, ) from qiskit_optimization import QuadraticProgram from qiskit.visualization import plot_histogram from typing import List, Tuple import numpy as np # create a QUBO qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) op, offset = qubo.to_ising() print("offset: {}".format(offset)) print("operator:") print(op) qp = QuadraticProgram() qp.from_ising(op, offset, linear=True) print(qp.prettyprint()) algorithm_globals.random_seed = 10598 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver exact_result = exact.solve(qubo) print(exact_result.prettyprint()) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) print("variable order:", [var.name for var in qaoa_result.variables]) for s in qaoa_result.samples: print(s) def get_filtered_samples( samples: List[SolutionSample], threshold: float = 0, allowed_status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,), ): res = [] for s in samples: if s.status in allowed_status and s.probability > threshold: res.append(s) return res filtered_samples = get_filtered_samples( qaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) for s in filtered_samples: print(s) fvals = [s.fval for s in qaoa_result.samples] probabilities = [s.probability for s in qaoa_result.samples] np.mean(fvals) np.std(fvals) samples_for_plot = { " ".join(f"{qaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) rqaoa = RecursiveMinimumEigenOptimizer(qaoa, min_num_vars=1, min_num_vars_optimizer=exact) rqaoa_result = rqaoa.solve(qubo) print(rqaoa_result.prettyprint()) filtered_samples = get_filtered_samples( rqaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) samples_for_plot = { " ".join(f"{rqaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt try: import cplex from cplex.exceptions import CplexError except: print("Warning: Cplex not found.") import math from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler # Initialize the problem by defining the parameters n = 3 # number of nodes + depot (n+1) K = 2 # number of vehicles # Get the data class Initializer: def __init__(self, n): self.n = n def generate_instance(self): n = self.n # np.random.seed(33) np.random.seed(1543) xc = (np.random.rand(n) - 0.5) * 10 yc = (np.random.rand(n) - 0.5) * 10 instance = np.zeros([n, n]) for ii in range(0, n): for jj in range(ii + 1, n): instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2 instance[jj, ii] = instance[ii, jj] return xc, yc, instance # Initialize the problem by randomly generating the instance initializer = Initializer(n) xc, yc, instance = initializer.generate_instance() class ClassicalOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n # number of nodes self.K = K # number of vehicles def compute_allowed_combinations(self): f = math.factorial return f(self.n) / f(self.K) / f(self.n - self.K) def cplex_solution(self): # refactoring instance = self.instance n = self.n K = self.K my_obj = list(instance.reshape(1, n**2)[0]) + [0.0 for x in range(0, n - 1)] my_ub = [1 for x in range(0, n**2 + n - 1)] my_lb = [0 for x in range(0, n**2)] + [0.1 for x in range(0, n - 1)] my_ctype = "".join(["I" for x in range(0, n**2)]) + "".join( ["C" for x in range(0, n - 1)] ) my_rhs = ( 2 * ([K] + [1 for x in range(0, n - 1)]) + [1 - 0.1 for x in range(0, (n - 1) ** 2 - (n - 1))] + [0 for x in range(0, n)] ) my_sense = ( "".join(["E" for x in range(0, 2 * n)]) + "".join(["L" for x in range(0, (n - 1) ** 2 - (n - 1))]) + "".join(["E" for x in range(0, n)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + ii, n**2, n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) # Sub-tour elimination constraints: for ii in range(0, n): for jj in range(0, n): if (ii != jj) and (ii * jj > 0): col = [ii + (jj * n), n**2 + ii - 1, n**2 + jj - 1] coef = [1, 1, -1] rows.append([col, coef]) for ii in range(0, n): col = [(ii) * (n + 1)] coef = [1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(instance, n, K) # Print number of feasible solutions print("Number of feasible solutions = " + str(classical_optimizer.compute_allowed_combinations())) # Solve the problem in a classical fashion via CPLEX x = None z = None try: x, classical_cost = classical_optimizer.cplex_solution() # Put the solution in the z variable z = [x[ii] for ii in range(n**2) if ii // n != ii % n] # Print the solution print(z) except: print("CPLEX may be missing.") # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.15, yc[i]), size=16, color="r") plt.plot(xc[0], yc[0], "r*", ms=20) plt.grid() for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n plt.arrow( xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=0.25, ) plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n**2) w_list = [instance_vec[x] for x in range(n**2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K**2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): algorithm_globals.random_seed = 10598 vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes()) optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) result = optimizer.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(instance, n, K) # Check if the binary representation is correct try: if z is not None: Q, g, c, binary_cost = quantum_optimizer.binary_representation(x_sol=z) print("Binary cost:", binary_cost, "classical cost:", classical_cost) if np.abs(binary_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the binary formulation") else: print("Could not verify the correctness, due to CPLEX solution being unavailable.") Q, g, c, binary_cost = quantum_optimizer.binary_representation() print("Binary cost:", binary_cost) except NameError as e: print("Warning: Please run the cells above first.") print(e) qp = quantum_optimizer.construct_problem(Q, g, c) quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) print(quantum_solution, quantum_cost) # Put the solution in a way that is compatible with the classical variables x_quantum = np.zeros(n**2) kk = 0 for ii in range(n**2): if ii // n != ii % n: x_quantum[ii] = quantum_solution[kk] kk += 1 # visualize the solution visualize_solution(xc, yc, x_quantum, quantum_cost, n, K, "Quantum") # and visualize the classical for comparison if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.applications.vertex_cover import VertexCover import networkx as nx seed = 123 algorithm_globals.random_seed = seed graph = nx.random_regular_graph(d=3, n=6, seed=seed) pos = nx.spring_layout(graph, seed=seed) prob = VertexCover(graph) prob.draw(pos=pos) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) prob.draw(result, pos=pos) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) prob.draw(result, pos=pos) from qiskit_optimization.applications import Knapsack prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) from qiskit_optimization.converters import QuadraticProgramToQubo # the same knapsack problem instance as in the previous section prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # intermediate QUBO form of the optimization problem conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(qubo.prettyprint()) # qubit Hamiltonian and offset op, offset = qubo.to_ising() print(f"num qubits: {op.num_qubits}, offset: {offset}\n") print(op) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer, SolutionSample, OptimizationResultStatus, ) from qiskit_optimization import QuadraticProgram from qiskit.visualization import plot_histogram from typing import List, Tuple import numpy as np # create a QUBO qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) op, offset = qubo.to_ising() print("offset: {}".format(offset)) print("operator:") print(op) qp = QuadraticProgram() qp.from_ising(op, offset, linear=True) print(qp.prettyprint()) algorithm_globals.random_seed = 10598 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver exact_result = exact.solve(qubo) print(exact_result.prettyprint()) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) print("variable order:", [var.name for var in qaoa_result.variables]) for s in qaoa_result.samples: print(s) def get_filtered_samples( samples: List[SolutionSample], threshold: float = 0, allowed_status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,), ): res = [] for s in samples: if s.status in allowed_status and s.probability > threshold: res.append(s) return res filtered_samples = get_filtered_samples( qaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) for s in filtered_samples: print(s) fvals = [s.fval for s in qaoa_result.samples] probabilities = [s.probability for s in qaoa_result.samples] np.mean(fvals) np.std(fvals) samples_for_plot = { " ".join(f"{qaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) rqaoa = RecursiveMinimumEigenOptimizer(qaoa, min_num_vars=1, min_num_vars_optimizer=exact) rqaoa_result = rqaoa.solve(qubo) print(rqaoa_result.prettyprint()) filtered_samples = get_filtered_samples( rqaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) samples_for_plot = { " ".join(f"{rqaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt try: import cplex from cplex.exceptions import CplexError except: print("Warning: Cplex not found.") import math from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler # Initialize the problem by defining the parameters n = 3 # number of nodes + depot (n+1) K = 2 # number of vehicles # Get the data class Initializer: def __init__(self, n): self.n = n def generate_instance(self): n = self.n # np.random.seed(33) np.random.seed(1543) xc = (np.random.rand(n) - 0.5) * 10 yc = (np.random.rand(n) - 0.5) * 10 instance = np.zeros([n, n]) for ii in range(0, n): for jj in range(ii + 1, n): instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2 instance[jj, ii] = instance[ii, jj] return xc, yc, instance # Initialize the problem by randomly generating the instance initializer = Initializer(n) xc, yc, instance = initializer.generate_instance() class ClassicalOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n # number of nodes self.K = K # number of vehicles def compute_allowed_combinations(self): f = math.factorial return f(self.n) / f(self.K) / f(self.n - self.K) def cplex_solution(self): # refactoring instance = self.instance n = self.n K = self.K my_obj = list(instance.reshape(1, n**2)[0]) + [0.0 for x in range(0, n - 1)] my_ub = [1 for x in range(0, n**2 + n - 1)] my_lb = [0 for x in range(0, n**2)] + [0.1 for x in range(0, n - 1)] my_ctype = "".join(["I" for x in range(0, n**2)]) + "".join( ["C" for x in range(0, n - 1)] ) my_rhs = ( 2 * ([K] + [1 for x in range(0, n - 1)]) + [1 - 0.1 for x in range(0, (n - 1) ** 2 - (n - 1))] + [0 for x in range(0, n)] ) my_sense = ( "".join(["E" for x in range(0, 2 * n)]) + "".join(["L" for x in range(0, (n - 1) ** 2 - (n - 1))]) + "".join(["E" for x in range(0, n)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + ii, n**2, n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) # Sub-tour elimination constraints: for ii in range(0, n): for jj in range(0, n): if (ii != jj) and (ii * jj > 0): col = [ii + (jj * n), n**2 + ii - 1, n**2 + jj - 1] coef = [1, 1, -1] rows.append([col, coef]) for ii in range(0, n): col = [(ii) * (n + 1)] coef = [1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(instance, n, K) # Print number of feasible solutions print("Number of feasible solutions = " + str(classical_optimizer.compute_allowed_combinations())) # Solve the problem in a classical fashion via CPLEX x = None z = None try: x, classical_cost = classical_optimizer.cplex_solution() # Put the solution in the z variable z = [x[ii] for ii in range(n**2) if ii // n != ii % n] # Print the solution print(z) except: print("CPLEX may be missing.") # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.15, yc[i]), size=16, color="r") plt.plot(xc[0], yc[0], "r*", ms=20) plt.grid() for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n plt.arrow( xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=0.25, ) plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n**2) w_list = [instance_vec[x] for x in range(n**2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K**2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): algorithm_globals.random_seed = 10598 vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes()) optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) result = optimizer.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(instance, n, K) # Check if the binary representation is correct try: if z is not None: Q, g, c, binary_cost = quantum_optimizer.binary_representation(x_sol=z) print("Binary cost:", binary_cost, "classical cost:", classical_cost) if np.abs(binary_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the binary formulation") else: print("Could not verify the correctness, due to CPLEX solution being unavailable.") Q, g, c, binary_cost = quantum_optimizer.binary_representation() print("Binary cost:", binary_cost) except NameError as e: print("Warning: Please run the cells above first.") print(e) qp = quantum_optimizer.construct_problem(Q, g, c) quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) print(quantum_solution, quantum_cost) # Put the solution in a way that is compatible with the classical variables x_quantum = np.zeros(n**2) kk = 0 for ii in range(n**2): if ii // n != ii % n: x_quantum[ii] = quantum_solution[kk] kk += 1 # visualize the solution visualize_solution(xc, yc, x_quantum, quantum_cost, n, K, "Quantum") # and visualize the classical for comparison if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.applications.vertex_cover import VertexCover import networkx as nx seed = 123 algorithm_globals.random_seed = seed graph = nx.random_regular_graph(d=3, n=6, seed=seed) pos = nx.spring_layout(graph, seed=seed) prob = VertexCover(graph) prob.draw(pos=pos) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) prob.draw(result, pos=pos) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) prob.draw(result, pos=pos) from qiskit_optimization.applications import Knapsack prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) from qiskit_optimization.converters import QuadraticProgramToQubo # the same knapsack problem instance as in the previous section prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # intermediate QUBO form of the optimization problem conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(qubo.prettyprint()) # qubit Hamiltonian and offset op, offset = qubo.to_ising() print(f"num qubits: {op.num_qubits}, offset: {offset}\n") print(op) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer, SolutionSample, OptimizationResultStatus, ) from qiskit_optimization import QuadraticProgram from qiskit.visualization import plot_histogram from typing import List, Tuple import numpy as np # create a QUBO qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) op, offset = qubo.to_ising() print("offset: {}".format(offset)) print("operator:") print(op) qp = QuadraticProgram() qp.from_ising(op, offset, linear=True) print(qp.prettyprint()) algorithm_globals.random_seed = 10598 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver exact_result = exact.solve(qubo) print(exact_result.prettyprint()) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) print("variable order:", [var.name for var in qaoa_result.variables]) for s in qaoa_result.samples: print(s) def get_filtered_samples( samples: List[SolutionSample], threshold: float = 0, allowed_status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,), ): res = [] for s in samples: if s.status in allowed_status and s.probability > threshold: res.append(s) return res filtered_samples = get_filtered_samples( qaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) for s in filtered_samples: print(s) fvals = [s.fval for s in qaoa_result.samples] probabilities = [s.probability for s in qaoa_result.samples] np.mean(fvals) np.std(fvals) samples_for_plot = { " ".join(f"{qaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) rqaoa = RecursiveMinimumEigenOptimizer(qaoa, min_num_vars=1, min_num_vars_optimizer=exact) rqaoa_result = rqaoa.solve(qubo) print(rqaoa_result.prettyprint()) filtered_samples = get_filtered_samples( rqaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) samples_for_plot = { " ".join(f"{rqaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt try: import cplex from cplex.exceptions import CplexError except: print("Warning: Cplex not found.") import math from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler # Initialize the problem by defining the parameters n = 3 # number of nodes + depot (n+1) K = 2 # number of vehicles # Get the data class Initializer: def __init__(self, n): self.n = n def generate_instance(self): n = self.n # np.random.seed(33) np.random.seed(1543) xc = (np.random.rand(n) - 0.5) * 10 yc = (np.random.rand(n) - 0.5) * 10 instance = np.zeros([n, n]) for ii in range(0, n): for jj in range(ii + 1, n): instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2 instance[jj, ii] = instance[ii, jj] return xc, yc, instance # Initialize the problem by randomly generating the instance initializer = Initializer(n) xc, yc, instance = initializer.generate_instance() class ClassicalOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n # number of nodes self.K = K # number of vehicles def compute_allowed_combinations(self): f = math.factorial return f(self.n) / f(self.K) / f(self.n - self.K) def cplex_solution(self): # refactoring instance = self.instance n = self.n K = self.K my_obj = list(instance.reshape(1, n**2)[0]) + [0.0 for x in range(0, n - 1)] my_ub = [1 for x in range(0, n**2 + n - 1)] my_lb = [0 for x in range(0, n**2)] + [0.1 for x in range(0, n - 1)] my_ctype = "".join(["I" for x in range(0, n**2)]) + "".join( ["C" for x in range(0, n - 1)] ) my_rhs = ( 2 * ([K] + [1 for x in range(0, n - 1)]) + [1 - 0.1 for x in range(0, (n - 1) ** 2 - (n - 1))] + [0 for x in range(0, n)] ) my_sense = ( "".join(["E" for x in range(0, 2 * n)]) + "".join(["L" for x in range(0, (n - 1) ** 2 - (n - 1))]) + "".join(["E" for x in range(0, n)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + ii, n**2, n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) # Sub-tour elimination constraints: for ii in range(0, n): for jj in range(0, n): if (ii != jj) and (ii * jj > 0): col = [ii + (jj * n), n**2 + ii - 1, n**2 + jj - 1] coef = [1, 1, -1] rows.append([col, coef]) for ii in range(0, n): col = [(ii) * (n + 1)] coef = [1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(instance, n, K) # Print number of feasible solutions print("Number of feasible solutions = " + str(classical_optimizer.compute_allowed_combinations())) # Solve the problem in a classical fashion via CPLEX x = None z = None try: x, classical_cost = classical_optimizer.cplex_solution() # Put the solution in the z variable z = [x[ii] for ii in range(n**2) if ii // n != ii % n] # Print the solution print(z) except: print("CPLEX may be missing.") # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.15, yc[i]), size=16, color="r") plt.plot(xc[0], yc[0], "r*", ms=20) plt.grid() for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n plt.arrow( xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=0.25, ) plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n**2) w_list = [instance_vec[x] for x in range(n**2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K**2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): algorithm_globals.random_seed = 10598 vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes()) optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) result = optimizer.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(instance, n, K) # Check if the binary representation is correct try: if z is not None: Q, g, c, binary_cost = quantum_optimizer.binary_representation(x_sol=z) print("Binary cost:", binary_cost, "classical cost:", classical_cost) if np.abs(binary_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the binary formulation") else: print("Could not verify the correctness, due to CPLEX solution being unavailable.") Q, g, c, binary_cost = quantum_optimizer.binary_representation() print("Binary cost:", binary_cost) except NameError as e: print("Warning: Please run the cells above first.") print(e) qp = quantum_optimizer.construct_problem(Q, g, c) quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) print(quantum_solution, quantum_cost) # Put the solution in a way that is compatible with the classical variables x_quantum = np.zeros(n**2) kk = 0 for ii in range(n**2): if ii // n != ii % n: x_quantum[ii] = quantum_solution[kk] kk += 1 # visualize the solution visualize_solution(xc, yc, x_quantum, quantum_cost, n, K, "Quantum") # and visualize the classical for comparison if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.applications.vertex_cover import VertexCover import networkx as nx seed = 123 algorithm_globals.random_seed = seed graph = nx.random_regular_graph(d=3, n=6, seed=seed) pos = nx.spring_layout(graph, seed=seed) prob = VertexCover(graph) prob.draw(pos=pos) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) prob.draw(result, pos=pos) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) prob.draw(result, pos=pos) from qiskit_optimization.applications import Knapsack prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) from qiskit_optimization.converters import QuadraticProgramToQubo # the same knapsack problem instance as in the previous section prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # intermediate QUBO form of the optimization problem conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(qubo.prettyprint()) # qubit Hamiltonian and offset op, offset = qubo.to_ising() print(f"num qubits: {op.num_qubits}, offset: {offset}\n") print(op) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer, SolutionSample, OptimizationResultStatus, ) from qiskit_optimization import QuadraticProgram from qiskit.visualization import plot_histogram from typing import List, Tuple import numpy as np # create a QUBO qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) op, offset = qubo.to_ising() print("offset: {}".format(offset)) print("operator:") print(op) qp = QuadraticProgram() qp.from_ising(op, offset, linear=True) print(qp.prettyprint()) algorithm_globals.random_seed = 10598 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver exact_result = exact.solve(qubo) print(exact_result.prettyprint()) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) print("variable order:", [var.name for var in qaoa_result.variables]) for s in qaoa_result.samples: print(s) def get_filtered_samples( samples: List[SolutionSample], threshold: float = 0, allowed_status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,), ): res = [] for s in samples: if s.status in allowed_status and s.probability > threshold: res.append(s) return res filtered_samples = get_filtered_samples( qaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) for s in filtered_samples: print(s) fvals = [s.fval for s in qaoa_result.samples] probabilities = [s.probability for s in qaoa_result.samples] np.mean(fvals) np.std(fvals) samples_for_plot = { " ".join(f"{qaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) rqaoa = RecursiveMinimumEigenOptimizer(qaoa, min_num_vars=1, min_num_vars_optimizer=exact) rqaoa_result = rqaoa.solve(qubo) print(rqaoa_result.prettyprint()) filtered_samples = get_filtered_samples( rqaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) samples_for_plot = { " ".join(f"{rqaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt try: import cplex from cplex.exceptions import CplexError except: print("Warning: Cplex not found.") import math from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler # Initialize the problem by defining the parameters n = 3 # number of nodes + depot (n+1) K = 2 # number of vehicles # Get the data class Initializer: def __init__(self, n): self.n = n def generate_instance(self): n = self.n # np.random.seed(33) np.random.seed(1543) xc = (np.random.rand(n) - 0.5) * 10 yc = (np.random.rand(n) - 0.5) * 10 instance = np.zeros([n, n]) for ii in range(0, n): for jj in range(ii + 1, n): instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2 instance[jj, ii] = instance[ii, jj] return xc, yc, instance # Initialize the problem by randomly generating the instance initializer = Initializer(n) xc, yc, instance = initializer.generate_instance() class ClassicalOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n # number of nodes self.K = K # number of vehicles def compute_allowed_combinations(self): f = math.factorial return f(self.n) / f(self.K) / f(self.n - self.K) def cplex_solution(self): # refactoring instance = self.instance n = self.n K = self.K my_obj = list(instance.reshape(1, n**2)[0]) + [0.0 for x in range(0, n - 1)] my_ub = [1 for x in range(0, n**2 + n - 1)] my_lb = [0 for x in range(0, n**2)] + [0.1 for x in range(0, n - 1)] my_ctype = "".join(["I" for x in range(0, n**2)]) + "".join( ["C" for x in range(0, n - 1)] ) my_rhs = ( 2 * ([K] + [1 for x in range(0, n - 1)]) + [1 - 0.1 for x in range(0, (n - 1) ** 2 - (n - 1))] + [0 for x in range(0, n)] ) my_sense = ( "".join(["E" for x in range(0, 2 * n)]) + "".join(["L" for x in range(0, (n - 1) ** 2 - (n - 1))]) + "".join(["E" for x in range(0, n)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + ii, n**2, n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) # Sub-tour elimination constraints: for ii in range(0, n): for jj in range(0, n): if (ii != jj) and (ii * jj > 0): col = [ii + (jj * n), n**2 + ii - 1, n**2 + jj - 1] coef = [1, 1, -1] rows.append([col, coef]) for ii in range(0, n): col = [(ii) * (n + 1)] coef = [1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(instance, n, K) # Print number of feasible solutions print("Number of feasible solutions = " + str(classical_optimizer.compute_allowed_combinations())) # Solve the problem in a classical fashion via CPLEX x = None z = None try: x, classical_cost = classical_optimizer.cplex_solution() # Put the solution in the z variable z = [x[ii] for ii in range(n**2) if ii // n != ii % n] # Print the solution print(z) except: print("CPLEX may be missing.") # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.15, yc[i]), size=16, color="r") plt.plot(xc[0], yc[0], "r*", ms=20) plt.grid() for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n plt.arrow( xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=0.25, ) plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n**2) w_list = [instance_vec[x] for x in range(n**2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K**2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): algorithm_globals.random_seed = 10598 vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes()) optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) result = optimizer.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(instance, n, K) # Check if the binary representation is correct try: if z is not None: Q, g, c, binary_cost = quantum_optimizer.binary_representation(x_sol=z) print("Binary cost:", binary_cost, "classical cost:", classical_cost) if np.abs(binary_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the binary formulation") else: print("Could not verify the correctness, due to CPLEX solution being unavailable.") Q, g, c, binary_cost = quantum_optimizer.binary_representation() print("Binary cost:", binary_cost) except NameError as e: print("Warning: Please run the cells above first.") print(e) qp = quantum_optimizer.construct_problem(Q, g, c) quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) print(quantum_solution, quantum_cost) # Put the solution in a way that is compatible with the classical variables x_quantum = np.zeros(n**2) kk = 0 for ii in range(n**2): if ii // n != ii % n: x_quantum[ii] = quantum_solution[kk] kk += 1 # visualize the solution visualize_solution(xc, yc, x_quantum, quantum_cost, n, K, "Quantum") # and visualize the classical for comparison if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.applications.vertex_cover import VertexCover import networkx as nx seed = 123 algorithm_globals.random_seed = seed graph = nx.random_regular_graph(d=3, n=6, seed=seed) pos = nx.spring_layout(graph, seed=seed) prob = VertexCover(graph) prob.draw(pos=pos) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) prob.draw(result, pos=pos) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) prob.draw(result, pos=pos) from qiskit_optimization.applications import Knapsack prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) from qiskit_optimization.converters import QuadraticProgramToQubo # the same knapsack problem instance as in the previous section prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # intermediate QUBO form of the optimization problem conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(qubo.prettyprint()) # qubit Hamiltonian and offset op, offset = qubo.to_ising() print(f"num qubits: {op.num_qubits}, offset: {offset}\n") print(op) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer, SolutionSample, OptimizationResultStatus, ) from qiskit_optimization import QuadraticProgram from qiskit.visualization import plot_histogram from typing import List, Tuple import numpy as np # create a QUBO qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) op, offset = qubo.to_ising() print("offset: {}".format(offset)) print("operator:") print(op) qp = QuadraticProgram() qp.from_ising(op, offset, linear=True) print(qp.prettyprint()) algorithm_globals.random_seed = 10598 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver exact_result = exact.solve(qubo) print(exact_result.prettyprint()) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) print("variable order:", [var.name for var in qaoa_result.variables]) for s in qaoa_result.samples: print(s) def get_filtered_samples( samples: List[SolutionSample], threshold: float = 0, allowed_status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,), ): res = [] for s in samples: if s.status in allowed_status and s.probability > threshold: res.append(s) return res filtered_samples = get_filtered_samples( qaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) for s in filtered_samples: print(s) fvals = [s.fval for s in qaoa_result.samples] probabilities = [s.probability for s in qaoa_result.samples] np.mean(fvals) np.std(fvals) samples_for_plot = { " ".join(f"{qaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) rqaoa = RecursiveMinimumEigenOptimizer(qaoa, min_num_vars=1, min_num_vars_optimizer=exact) rqaoa_result = rqaoa.solve(qubo) print(rqaoa_result.prettyprint()) filtered_samples = get_filtered_samples( rqaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) samples_for_plot = { " ".join(f"{rqaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt try: import cplex from cplex.exceptions import CplexError except: print("Warning: Cplex not found.") import math from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler # Initialize the problem by defining the parameters n = 3 # number of nodes + depot (n+1) K = 2 # number of vehicles # Get the data class Initializer: def __init__(self, n): self.n = n def generate_instance(self): n = self.n # np.random.seed(33) np.random.seed(1543) xc = (np.random.rand(n) - 0.5) * 10 yc = (np.random.rand(n) - 0.5) * 10 instance = np.zeros([n, n]) for ii in range(0, n): for jj in range(ii + 1, n): instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2 instance[jj, ii] = instance[ii, jj] return xc, yc, instance # Initialize the problem by randomly generating the instance initializer = Initializer(n) xc, yc, instance = initializer.generate_instance() class ClassicalOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n # number of nodes self.K = K # number of vehicles def compute_allowed_combinations(self): f = math.factorial return f(self.n) / f(self.K) / f(self.n - self.K) def cplex_solution(self): # refactoring instance = self.instance n = self.n K = self.K my_obj = list(instance.reshape(1, n**2)[0]) + [0.0 for x in range(0, n - 1)] my_ub = [1 for x in range(0, n**2 + n - 1)] my_lb = [0 for x in range(0, n**2)] + [0.1 for x in range(0, n - 1)] my_ctype = "".join(["I" for x in range(0, n**2)]) + "".join( ["C" for x in range(0, n - 1)] ) my_rhs = ( 2 * ([K] + [1 for x in range(0, n - 1)]) + [1 - 0.1 for x in range(0, (n - 1) ** 2 - (n - 1))] + [0 for x in range(0, n)] ) my_sense = ( "".join(["E" for x in range(0, 2 * n)]) + "".join(["L" for x in range(0, (n - 1) ** 2 - (n - 1))]) + "".join(["E" for x in range(0, n)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + ii, n**2, n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) # Sub-tour elimination constraints: for ii in range(0, n): for jj in range(0, n): if (ii != jj) and (ii * jj > 0): col = [ii + (jj * n), n**2 + ii - 1, n**2 + jj - 1] coef = [1, 1, -1] rows.append([col, coef]) for ii in range(0, n): col = [(ii) * (n + 1)] coef = [1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(instance, n, K) # Print number of feasible solutions print("Number of feasible solutions = " + str(classical_optimizer.compute_allowed_combinations())) # Solve the problem in a classical fashion via CPLEX x = None z = None try: x, classical_cost = classical_optimizer.cplex_solution() # Put the solution in the z variable z = [x[ii] for ii in range(n**2) if ii // n != ii % n] # Print the solution print(z) except: print("CPLEX may be missing.") # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.15, yc[i]), size=16, color="r") plt.plot(xc[0], yc[0], "r*", ms=20) plt.grid() for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n plt.arrow( xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=0.25, ) plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n**2) w_list = [instance_vec[x] for x in range(n**2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K**2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): algorithm_globals.random_seed = 10598 vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes()) optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) result = optimizer.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(instance, n, K) # Check if the binary representation is correct try: if z is not None: Q, g, c, binary_cost = quantum_optimizer.binary_representation(x_sol=z) print("Binary cost:", binary_cost, "classical cost:", classical_cost) if np.abs(binary_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the binary formulation") else: print("Could not verify the correctness, due to CPLEX solution being unavailable.") Q, g, c, binary_cost = quantum_optimizer.binary_representation() print("Binary cost:", binary_cost) except NameError as e: print("Warning: Please run the cells above first.") print(e) qp = quantum_optimizer.construct_problem(Q, g, c) quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) print(quantum_solution, quantum_cost) # Put the solution in a way that is compatible with the classical variables x_quantum = np.zeros(n**2) kk = 0 for ii in range(n**2): if ii // n != ii % n: x_quantum[ii] = quantum_solution[kk] kk += 1 # visualize the solution visualize_solution(xc, yc, x_quantum, quantum_cost, n, K, "Quantum") # and visualize the classical for comparison if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.applications.vertex_cover import VertexCover import networkx as nx seed = 123 algorithm_globals.random_seed = seed graph = nx.random_regular_graph(d=3, n=6, seed=seed) pos = nx.spring_layout(graph, seed=seed) prob = VertexCover(graph) prob.draw(pos=pos) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) prob.draw(result, pos=pos) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) prob.draw(result, pos=pos) from qiskit_optimization.applications import Knapsack prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) from qiskit_optimization.converters import QuadraticProgramToQubo # the same knapsack problem instance as in the previous section prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # intermediate QUBO form of the optimization problem conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(qubo.prettyprint()) # qubit Hamiltonian and offset op, offset = qubo.to_ising() print(f"num qubits: {op.num_qubits}, offset: {offset}\n") print(op) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram problem = QuadraticProgram("sample") problem.binary_var("x") problem.binary_var("y") problem.maximize(linear={"x": 1, "y": -2}) print(problem.prettyprint()) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = NumPyMinimumEigensolver() meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = QAOA(optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer shots = 1000 mes = QAOA(sampler=Sampler(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) mes = VQE(ansatz=RealAmplitudes(), optimizer=COBYLA(), quantum_instance=qins) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = SamplingVQE(sampler=Sampler(), ansatz=RealAmplitudes(), optimizer=COBYLA()) meo = MinimumEigenOptimizer(min_eigen_solver=mes) result = meo.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import COBYLA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Estimator from qiskit_optimization.algorithms import MinimumEigenOptimizer mes = VQE(estimator=Estimator(), ansatz=RealAmplitudes(), optimizer=COBYLA()) try: meo = MinimumEigenOptimizer(min_eigen_solver=mes) except TypeError as ex: print(ex) from qiskit import BasicAer from qiskit.algorithms import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) qaoa = QAOA(optimizer=COBYLA(), quantum_instance=qins) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import WarmStartQAOAOptimizer, SlsqpOptimizer qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA()) optimizer = WarmStartQAOAOptimizer( pre_solver=SlsqpOptimizer(), relax_for_pre_solver=True, qaoa=qaoa, epsilon=0.25 ) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, quantum_instance=qins) result = optimizer.solve(problem) print(result) from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer optimizer = GroverOptimizer(num_value_qubits=3, num_iterations=3, sampler=Sampler()) result = optimizer.solve(problem) print(result) from qiskit import BasicAer from qiskit.algorithms.optimizers import COBYLA from qiskit.utils import QuantumInstance from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer backend = BasicAer.get_backend("qasm_simulator") shots = 1000 qins = QuantumInstance(backend=backend, shots=shots) try: optimizer = GroverOptimizer( num_value_qubits=3, num_iterations=3, quantum_instance=qins, sampler=Sampler() ) # raises an error because both quantum_instance and sampler are set. except ValueError as ex: print(ex) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram from qiskit_optimization.translators import from_docplex_mp # Make a Docplex model from docplex.mp.model import Model mdl = Model("docplex model") x = mdl.binary_var("x") y = mdl.integer_var(lb=-1, ub=5, name="y") mdl.minimize(x + 2 * y) mdl.add_constraint(x - y == 3) mdl.add_constraint((x + y) * (x - y) <= 1) print(mdl.export_as_lp_string()) # load from a Docplex model mod = from_docplex_mp(mdl) print(type(mod)) print() print(mod.prettyprint()) # make an empty problem mod = QuadraticProgram("my problem") print(mod.prettyprint()) # Add variables mod.binary_var(name="x") mod.integer_var(name="y", lowerbound=-1, upperbound=5) mod.continuous_var(name="z", lowerbound=-1, upperbound=5) print(mod.prettyprint()) # Add objective function using dictionaries mod.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2, ("z", "z"): -1}) print(mod.prettyprint()) # Add objective function using lists/arrays mod.minimize(constant=3, linear=[1, 0, 0], quadratic=[[0, 1, 0], [1, 0, 0], [0, 0, -1]]) print(mod.prettyprint()) print("constant:\t\t\t", mod.objective.constant) print("linear dict:\t\t\t", mod.objective.linear.to_dict()) print("linear array:\t\t\t", mod.objective.linear.to_array()) print("linear array as sparse matrix:\n", mod.objective.linear.coefficients, "\n") print("quadratic dict w/ index:\t", mod.objective.quadratic.to_dict()) print("quadratic dict w/ name:\t\t", mod.objective.quadratic.to_dict(use_name=True)) print( "symmetric quadratic dict w/ name:\t", mod.objective.quadratic.to_dict(use_name=True, symmetric=True), ) print("quadratic matrix:\n", mod.objective.quadratic.to_array(), "\n") print("symmetric quadratic matrix:\n", mod.objective.quadratic.to_array(symmetric=True), "\n") print("quadratic matrix as sparse matrix:\n", mod.objective.quadratic.coefficients) # Add linear constraints mod.linear_constraint(linear={"x": 1, "y": 2}, sense="==", rhs=3, name="lin_eq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense="<=", rhs=3, name="lin_leq") mod.linear_constraint(linear={"x": 1, "y": 2}, sense=">=", rhs=3, name="lin_geq") print(mod.prettyprint()) # Add quadratic constraints mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="==", rhs=1, name="quad_eq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense="<=", rhs=1, name="quad_leq", ) mod.quadratic_constraint( linear={"x": 1, "y": 1}, quadratic={("x", "x"): 1, ("y", "z"): -1}, sense=">=", rhs=1, name="quad_geq", ) print(mod.prettyprint()) lin_geq = mod.get_linear_constraint("lin_geq") print("lin_geq:", lin_geq.linear.to_dict(use_name=True), lin_geq.sense, lin_geq.rhs) quad_geq = mod.get_quadratic_constraint("quad_geq") print( "quad_geq:", quad_geq.linear.to_dict(use_name=True), quad_geq.quadratic.to_dict(use_name=True), quad_geq.sense, lin_geq.rhs, ) # Remove constraints mod.remove_linear_constraint("lin_eq") mod.remove_quadratic_constraint("quad_leq") print(mod.prettyprint()) sub = mod.substitute_variables(constants={"x": 0}, variables={"y": ("z", -1)}) print(sub.prettyprint()) sub = mod.substitute_variables(constants={"x": -1}) print(sub.status) from qiskit_optimization import QiskitOptimizationError try: sub = mod.substitute_variables(constants={"x": -1}, variables={"y": ("x", 1)}) except QiskitOptimizationError as e: print("Error: {}".format(e)) mod = QuadraticProgram() mod.binary_var(name="e") mod.binary_var(name="f") mod.continuous_var(name="g") mod.minimize(linear=[1, 2, 3]) print(mod.export_as_lp_string()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.integer_var(lowerbound=0, upperbound=7, name="z") qp.maximize(linear={"x": 2, "y": 1, "z": 1}) qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="LE", rhs=5.5, name="xyz_leq") qp.linear_constraint(linear={"x": 1, "y": 1, "z": 1}, sense="GE", rhs=2.5, name="xyz_geq") print(qp.prettyprint()) from qiskit_optimization.converters import InequalityToEquality ineq2eq = InequalityToEquality() qp_eq = ineq2eq.convert(qp) print(qp_eq.prettyprint()) print(qp_eq.prettyprint()) from qiskit_optimization.converters import IntegerToBinary int2bin = IntegerToBinary() qp_eq_bin = int2bin.convert(qp_eq) print(qp_eq_bin.prettyprint()) print(qp_eq_bin.prettyprint()) from qiskit_optimization.converters import LinearEqualityToPenalty lineq2penalty = LinearEqualityToPenalty() qubo = lineq2penalty.convert(qp_eq_bin) print(qubo.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import ( MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer, SolutionSample, OptimizationResultStatus, ) from qiskit_optimization import QuadraticProgram from qiskit.visualization import plot_histogram from typing import List, Tuple import numpy as np # create a QUBO qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) op, offset = qubo.to_ising() print("offset: {}".format(offset)) print("operator:") print(op) qp = QuadraticProgram() qp.from_ising(op, offset, linear=True) print(qp.prettyprint()) algorithm_globals.random_seed = 10598 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 0.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver exact_result = exact.solve(qubo) print(exact_result.prettyprint()) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) print("variable order:", [var.name for var in qaoa_result.variables]) for s in qaoa_result.samples: print(s) def get_filtered_samples( samples: List[SolutionSample], threshold: float = 0, allowed_status: Tuple[OptimizationResultStatus] = (OptimizationResultStatus.SUCCESS,), ): res = [] for s in samples: if s.status in allowed_status and s.probability > threshold: res.append(s) return res filtered_samples = get_filtered_samples( qaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) for s in filtered_samples: print(s) fvals = [s.fval for s in qaoa_result.samples] probabilities = [s.probability for s in qaoa_result.samples] np.mean(fvals) np.std(fvals) samples_for_plot = { " ".join(f"{qaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) rqaoa = RecursiveMinimumEigenOptimizer(qaoa, min_num_vars=1, min_num_vars_optimizer=exact) rqaoa_result = rqaoa.solve(qubo) print(rqaoa_result.prettyprint()) filtered_samples = get_filtered_samples( rqaoa_result.samples, threshold=0.005, allowed_status=(OptimizationResultStatus.SUCCESS,) ) samples_for_plot = { " ".join(f"{rqaoa_result.variables[i].name}={int(v)}" for i, v in enumerate(s.x)): s.probability for s in filtered_samples } samples_for_plot plot_histogram(samples_for_plot) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit.primitives import Sampler from qiskit_optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from docplex.mp.model import Model model = Model() x0 = model.binary_var(name="x0") x1 = model.binary_var(name="x1") x2 = model.binary_var(name="x2") model.minimize(-x0 + 2 * x1 - 3 * x2 - 2 * x0 * x2 - 1 * x1 * x2) qp = from_docplex_mp(model) print(qp.prettyprint()) grover_optimizer = GroverOptimizer(6, num_iterations=10, sampler=Sampler()) results = grover_optimizer.solve(qp) print(results.prettyprint()) exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp) print(exact_result.prettyprint()) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import matplotlib.pyplot as plt from docplex.mp.model import Model from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.algorithms import CobylaOptimizer, MinimumEigenOptimizer from qiskit_optimization.algorithms.admm_optimizer import ADMMParameters, ADMMOptimizer from qiskit_optimization.translators import from_docplex_mp # If CPLEX is installed, you can uncomment this line to import the CplexOptimizer. # CPLEX can be used in this tutorial to solve the convex continuous problem, # but also as a reference to solve the QUBO, or even the full problem. # # from qiskit.optimization.algorithms import CplexOptimizer # define COBYLA optimizer to handle convex continuous problems. cobyla = CobylaOptimizer() # define QAOA via the minimum eigen optimizer qaoa = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA())) # exact QUBO solver as classical benchmark exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) # to solve QUBOs # in case CPLEX is installed it can also be used for the convex problems, the QUBO, # or as a benchmark for the full problem. # # cplex = CplexOptimizer() # construct model using docplex mdl = Model("ex6") v = mdl.binary_var(name="v") w = mdl.binary_var(name="w") t = mdl.binary_var(name="t") u = mdl.continuous_var(name="u") mdl.minimize(v + w + t + 5 * (u - 2) ** 2) mdl.add_constraint(v + 2 * w + t + u <= 3, "cons1") mdl.add_constraint(v + w + t >= 1, "cons2") mdl.add_constraint(v + w == 1, "cons3") # load quadratic program from docplex model qp = from_docplex_mp(mdl) print(qp.prettyprint()) admm_params = ADMMParameters( rho_initial=1001, beta=1000, factor_c=900, maxiter=100, three_block=True, tol=1.0e-6 ) # define QUBO optimizer qubo_optimizer = exact # qubo_optimizer = cplex # uncomment to use CPLEX instead # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with classical QUBO and convex optimizer admm = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result = admm.solve(qp) print(result.prettyprint()) plt.plot(result.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() # define QUBO optimizer qubo_optimizer = qaoa # define classical optimizer convex_optimizer = cobyla # convex_optimizer = cplex # uncomment to use CPLEX instead # initialize ADMM with quantum QUBO optimizer and classical convex optimizer admm_q = ADMMOptimizer( params=admm_params, qubo_optimizer=qubo_optimizer, continuous_optimizer=convex_optimizer ) # run ADMM to solve problem result_q = admm_q.solve(qp) print(result.prettyprint()) plt.clf() plt.plot(result_q.state.residuals) plt.xlabel("Iterations") plt.ylabel("Residuals") plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
# useful additional packages import matplotlib.pyplot as plt import numpy as np import networkx as nx from qiskit_aer import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut, Tsp from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals from qiskit.primitives import Sampler from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 4 nodes n = 4 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["r" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.8, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) best_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if best_cost_brute < cost: best_cost_brute = cost xbest_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["r" if xbest_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xbest_brute) + " cost = " + str(best_cost_brute)) max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.prettyprint()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # construct SamplingVQE optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) # run SamplingVQE result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # plot results colors = ["r" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) colors = ["r" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # Generating a graph of 3 nodes n = 3 num_qubits = n**2 tsp = Tsp.create_random_instance(n, seed=123) adj_matrix = nx.to_numpy_array(tsp.graph) print("distance\n", adj_matrix) colors = ["r" for node in tsp.graph.nodes] pos = [tsp.graph.nodes[node]["pos"] for node in tsp.graph.nodes] draw_graph(tsp.graph, colors, pos) from itertools import permutations def brute_force_tsp(w, N): a = list(permutations(range(1, N))) last_best_distance = 1e10 for i in a: distance = 0 pre_j = 0 for j in i: distance = distance + w[j, pre_j] pre_j = j distance = distance + w[pre_j, 0] order = (0,) + i if distance < last_best_distance: best_order = order last_best_distance = distance print("order = " + str(order) + " Distance = " + str(distance)) return last_best_distance, best_order best_distance, best_order = brute_force_tsp(adj_matrix, n) print( "Best order from brute force = " + str(best_order) + " with total distance = " + str(best_distance) ) def draw_tsp_solution(G, order, colors, pos): G2 = nx.DiGraph() G2.add_nodes_from(G) n = len(order) for i in range(n): j = (i + 1) % n G2.add_edge(order[i], order[j], weight=G[order[i]][order[j]]["weight"]) default_axes = plt.axes(frameon=True) nx.draw_networkx( G2, node_color=colors, edge_color="b", node_size=600, alpha=0.8, ax=default_axes, pos=pos ) edge_labels = nx.get_edge_attributes(G2, "weight") nx.draw_networkx_edge_labels(G2, pos, font_color="b", edge_labels=edge_labels) draw_tsp_solution(tsp.graph, best_order, colors, pos) qp = tsp.to_quadratic_program() print(qp.prettyprint()) from qiskit_optimization.converters import QuadraticProgramToQubo qp2qubo = QuadraticProgramToQubo() qubo = qp2qubo.convert(qp) qubitOp, offset = qubo.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) result = exact.solve(qubo) print(result.prettyprint()) # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("tsp objective:", result.eigenvalue.real + offset) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 optimizer = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = SamplingVQE(sampler=Sampler(), ansatz=ry, optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(qubitOp) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) x = tsp.sample_most_likely(result.eigenstate) print("feasible:", qubo.is_feasible(x)) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) algorithm_globals.random_seed = 123 seed = 10598 # create minimum eigen optimizer based on SamplingVQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result.prettyprint()) z = tsp.interpret(x) print("solution:", z) print("solution objective:", tsp.tsp_value(z, adj_matrix)) draw_tsp_solution(tsp.graph, z, colors, pos) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import matplotlib.pyplot as plt try: import cplex from cplex.exceptions import CplexError except: print("Warning: Cplex not found.") import math from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import SamplingVQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler # Initialize the problem by defining the parameters n = 3 # number of nodes + depot (n+1) K = 2 # number of vehicles # Get the data class Initializer: def __init__(self, n): self.n = n def generate_instance(self): n = self.n # np.random.seed(33) np.random.seed(1543) xc = (np.random.rand(n) - 0.5) * 10 yc = (np.random.rand(n) - 0.5) * 10 instance = np.zeros([n, n]) for ii in range(0, n): for jj in range(ii + 1, n): instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2 instance[jj, ii] = instance[ii, jj] return xc, yc, instance # Initialize the problem by randomly generating the instance initializer = Initializer(n) xc, yc, instance = initializer.generate_instance() class ClassicalOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n # number of nodes self.K = K # number of vehicles def compute_allowed_combinations(self): f = math.factorial return f(self.n) / f(self.K) / f(self.n - self.K) def cplex_solution(self): # refactoring instance = self.instance n = self.n K = self.K my_obj = list(instance.reshape(1, n**2)[0]) + [0.0 for x in range(0, n - 1)] my_ub = [1 for x in range(0, n**2 + n - 1)] my_lb = [0 for x in range(0, n**2)] + [0.1 for x in range(0, n - 1)] my_ctype = "".join(["I" for x in range(0, n**2)]) + "".join( ["C" for x in range(0, n - 1)] ) my_rhs = ( 2 * ([K] + [1 for x in range(0, n - 1)]) + [1 - 0.1 for x in range(0, (n - 1) ** 2 - (n - 1))] + [0 for x in range(0, n)] ) my_sense = ( "".join(["E" for x in range(0, 2 * n)]) + "".join(["L" for x in range(0, (n - 1) ** 2 - (n - 1))]) + "".join(["E" for x in range(0, n)]) ) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] for ii in range(0, n): col = [x for x in range(0 + n * ii, n + n * ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0 + ii, n**2, n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) # Sub-tour elimination constraints: for ii in range(0, n): for jj in range(0, n): if (ii != jj) and (ii * jj > 0): col = [ii + (jj * n), n**2 + ii - 1, n**2 + jj - 1] coef = [1, 1, -1] rows.append([col, coef]) for ii in range(0, n): col = [(ii) * (n + 1)] coef = [1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(instance, n, K) # Print number of feasible solutions print("Number of feasible solutions = " + str(classical_optimizer.compute_allowed_combinations())) # Solve the problem in a classical fashion via CPLEX x = None z = None try: x, classical_cost = classical_optimizer.cplex_solution() # Put the solution in the z variable z = [x[ii] for ii in range(n**2) if ii // n != ii % n] # Print the solution print(z) except: print("CPLEX may be missing.") # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.15, yc[i]), size=16, color="r") plt.plot(xc[0], yc[0], "r*", ms=20) plt.grid() for ii in range(0, n**2): if x[ii] > 0: ix = ii // n iy = ii % n plt.arrow( xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=0.25, ) plt.title(title_str + " cost = " + str(int(C * 100) / 100.0)) plt.show() if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") from qiskit_optimization import QuadraticProgram from qiskit_optimization.algorithms import MinimumEigenOptimizer class QuantumOptimizer: def __init__(self, instance, n, K): self.instance = instance self.n = n self.K = K def binary_representation(self, x_sol=0): instance = self.instance n = self.n K = self.K A = np.max(instance) * 100 # A parameter of cost function # Determine the weights w instance_vec = instance.reshape(n**2) w_list = [instance_vec[x] for x in range(n**2) if instance_vec[x] > 0] w = np.zeros(n * (n - 1)) for ii in range(len(w_list)): w[ii] = w_list[ii] # Some variables I will use Id_n = np.eye(n) Im_n_1 = np.ones([n - 1, n - 1]) Iv_n_1 = np.ones(n) Iv_n_1[0] = 0 Iv_n = np.ones(n - 1) neg_Iv_n_1 = np.ones(n) - Iv_n_1 v = np.zeros([n, n * (n - 1)]) for ii in range(n): count = ii - 1 for jj in range(n * (n - 1)): if jj // (n - 1) == ii: count = ii if jj // (n - 1) != ii and jj % (n - 1) == count: v[ii][jj] = 1.0 vn = np.sum(v[1:], axis=0) # Q defines the interactions between variables Q = A * (np.kron(Id_n, Im_n_1) + np.dot(v.T, v)) # g defines the contribution from the individual variables g = ( w - 2 * A * (np.kron(Iv_n_1, Iv_n) + vn.T) - 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T) ) # c is the constant offset c = 2 * A * (n - 1) + 2 * A * (K**2) try: max(x_sol) # Evaluates the cost distance from a binary representation of a path fun = ( lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c ) cost = fun(x_sol) except: cost = 0 return Q, g, c, cost def construct_problem(self, Q, g, c) -> QuadraticProgram: qp = QuadraticProgram() for i in range(n * (n - 1)): qp.binary_var(str(i)) qp.objective.quadratic = Q qp.objective.linear = g qp.objective.constant = c return qp def solve_problem(self, qp): algorithm_globals.random_seed = 10598 vqe = SamplingVQE(sampler=Sampler(), optimizer=SPSA(), ansatz=RealAmplitudes()) optimizer = MinimumEigenOptimizer(min_eigen_solver=vqe) result = optimizer.solve(qp) # compute cost of the obtained result _, _, _, level = self.binary_representation(x_sol=result.x) return result.x, level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(instance, n, K) # Check if the binary representation is correct try: if z is not None: Q, g, c, binary_cost = quantum_optimizer.binary_representation(x_sol=z) print("Binary cost:", binary_cost, "classical cost:", classical_cost) if np.abs(binary_cost - classical_cost) < 0.01: print("Binary formulation is correct") else: print("Error in the binary formulation") else: print("Could not verify the correctness, due to CPLEX solution being unavailable.") Q, g, c, binary_cost = quantum_optimizer.binary_representation() print("Binary cost:", binary_cost) except NameError as e: print("Warning: Please run the cells above first.") print(e) qp = quantum_optimizer.construct_problem(Q, g, c) quantum_solution, quantum_cost = quantum_optimizer.solve_problem(qp) print(quantum_solution, quantum_cost) # Put the solution in a way that is compatible with the classical variables x_quantum = np.zeros(n**2) kk = 0 for ii in range(n**2): if ii // n != ii % n: x_quantum[ii] = quantum_solution[kk] kk += 1 # visualize the solution visualize_solution(xc, yc, x_quantum, quantum_cost, n, K, "Quantum") # and visualize the classical for comparison if x is not None: visualize_solution(xc, yc, x, classical_cost, n, K, "Classical") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import RealAmplitudes from qiskit.algorithms.optimizers import COBYLA from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE from qiskit.primitives import Sampler from qiskit_optimization.converters import LinearEqualityToPenalty from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.translators import from_docplex_mp from qiskit.utils import algorithm_globals import numpy as np import matplotlib.pyplot as plt from docplex.mp.model import Model algorithm_globals.random_seed = 123456 # prepare problem instance n = 6 # number of assets q = 0.5 # risk factor budget = n // 2 # budget penalty = 2 * n # scaling of penalty term # instance from [1] mu = np.array([0.7313, 0.9893, 0.2725, 0.8750, 0.7667, 0.3622]) sigma = np.array( [ [0.7312, -0.6233, 0.4689, -0.5452, -0.0082, -0.3809], [-0.6233, 2.4732, -0.7538, 2.4659, -0.0733, 0.8945], [0.4689, -0.7538, 1.1543, -1.4095, 0.0007, -0.4301], [-0.5452, 2.4659, -1.4095, 3.5067, 0.2012, 1.0922], [-0.0082, -0.0733, 0.0007, 0.2012, 0.6231, 0.1509], [-0.3809, 0.8945, -0.4301, 1.0922, 0.1509, 0.8992], ] ) # or create random instance # mu, sigma = portfolio.random_model(n, seed=123) # expected returns and covariance matrix # create docplex model mdl = Model("portfolio_optimization") x = mdl.binary_var_list(range(n), name="x") objective = mdl.sum([mu[i] * x[i] for i in range(n)]) objective -= q * mdl.sum([sigma[i, j] * x[i] * x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) mdl.add_constraint(mdl.sum(x[i] for i in range(n)) == budget) # case to qp = from_docplex_mp(mdl) # solve classically as reference opt_result = MinimumEigenOptimizer(NumPyMinimumEigensolver()).solve(qp) print(opt_result.prettyprint()) # we convert the problem to an unconstrained problem for further analysis, # otherwise this would not be necessary as the MinimumEigenSolver would do this # translation automatically linear2penalty = LinearEqualityToPenalty(penalty=penalty) qp = linear2penalty.convert(qp) _, offset = qp.to_ising() # set classical optimizer maxiter = 100 optimizer = COBYLA(maxiter=maxiter) # set variational ansatz ansatz = RealAmplitudes(n, reps=1) m = ansatz.num_parameters # set sampler sampler = Sampler() # run variational optimization for different values of alpha alphas = [1.0, 0.50, 0.25] # confidence levels to be evaluated # dictionaries to store optimization progress and results objectives = {alpha: [] for alpha in alphas} # set of tested objective functions w.r.t. alpha results = {} # results of minimum eigensolver w.r.t alpha # callback to store intermediate results def callback(i, params, obj, stddev, alpha): # we translate the objective from the internal Ising representation # to the original optimization problem objectives[alpha].append(np.real_if_close(-(obj + offset))) # loop over all given alpha values for alpha in alphas: # initialize SamplingVQE using CVaR vqe = SamplingVQE( sampler=sampler, ansatz=ansatz, optimizer=optimizer, aggregation=alpha, callback=lambda i, params, obj, stddev: callback(i, params, obj, stddev, alpha), ) # initialize optimization algorithm based on CVaR-SamplingVQE opt_alg = MinimumEigenOptimizer(vqe) # solve problem results[alpha] = opt_alg.solve(qp) # print results print("alpha = {}:".format(alpha)) print(results[alpha].prettyprint()) print() # plot resulting history of objective values plt.figure(figsize=(10, 5)) plt.plot([0, maxiter], [opt_result.fval, opt_result.fval], "r--", linewidth=2, label="optimum") for alpha in alphas: plt.plot(objectives[alpha], label="alpha = %.2f" % alpha, linewidth=2) plt.legend(loc="lower right", fontsize=14) plt.xlim(0, maxiter) plt.xticks(fontsize=14) plt.xlabel("iterations", fontsize=14) plt.yticks(fontsize=14) plt.ylabel("objective value", fontsize=14) plt.show() # evaluate and sort all objective values objective_values = np.zeros(2**n) for i in range(2**n): x_bin = ("{0:0%sb}" % n).format(i) x = [0 if x_ == "0" else 1 for x_ in reversed(x_bin)] objective_values[i] = qp.objective.evaluate(x) ind = np.argsort(objective_values) # evaluate final optimal probability for each alpha for alpha in alphas: probabilities = np.fromiter( results[alpha].min_eigen_solver_result.eigenstate.binary_probabilities().values(), dtype=float, ) print("optimal probability (alpha = %.2f): %.4f" % (alpha, probabilities[ind][-1:])) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.utils import algorithm_globals from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit_optimization.applications.vertex_cover import VertexCover import networkx as nx seed = 123 algorithm_globals.random_seed = seed graph = nx.random_regular_graph(d=3, n=6, seed=seed) pos = nx.spring_layout(graph, seed=seed) prob = VertexCover(graph) prob.draw(pos=pos) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) prob.draw(result, pos=pos) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) prob.draw(result, pos=pos) from qiskit_optimization.applications import Knapsack prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # Numpy Eigensolver meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) # QAOA meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA())) result = meo.solve(qp) print(result.prettyprint()) print("\nsolution:", prob.interpret(result)) print("\ntime:", result.min_eigen_solver_result.optimizer_time) from qiskit_optimization.converters import QuadraticProgramToQubo # the same knapsack problem instance as in the previous section prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10) qp = prob.to_quadratic_program() print(qp.prettyprint()) # intermediate QUBO form of the optimization problem conv = QuadraticProgramToQubo() qubo = conv.convert(qp) print(qubo.prettyprint()) # qubit Hamiltonian and offset op, offset = qubo.to_ising() print(f"num qubits: {op.num_qubits}, offset: {offset}\n") print(op) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
import numpy as np import copy # Problem modelling imports from docplex.mp.model import Model # Qiskit imports from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler from qiskit.utils.algorithm_globals import algorithm_globals from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer from qiskit_optimization import QuadraticProgram from qiskit_optimization.problems.variable import VarType from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo from qiskit_optimization.translators import from_docplex_mp def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram: """Solve the quadratic program using docplex.""" mdl = Model() x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))] objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))]) objective -= 2 * mdl.sum( [sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))] ) mdl.maximize(objective) cost = mdl.sum(x) mdl.add_constraint(cost == total) qp = from_docplex_mp(mdl) return qp def relax_problem(problem) -> QuadraticProgram: """Change all variables to continuous.""" relaxed_problem = copy.deepcopy(problem) for variable in relaxed_problem.variables: variable.vartype = VarType.CONTINUOUS return relaxed_problem mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051]) sigma = np.array( [ [1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765], [0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937], [0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119], [-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322], [-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951], [-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544], ] ) qubo = create_problem(mu, sigma) print(qubo.prettyprint()) result = CplexOptimizer().solve(qubo) print(result.prettyprint()) qp = relax_problem(QuadraticProgramToQubo().convert(qubo)) print(qp.prettyprint()) sol = CplexOptimizer().solve(qp) print(sol.prettyprint()) c_stars = sol.samples[0].x print(c_stars) algorithm_globals.random_seed = 12345 qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) exact_mes = NumPyMinimumEigensolver() qaoa = MinimumEigenOptimizer(qaoa_mes) qaoa_result = qaoa.solve(qubo) print(qaoa_result.prettyprint()) from qiskit import QuantumCircuit thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars] init_qc = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): init_qc.ry(theta, idx) init_qc.draw(output="mpl") from qiskit.circuit import Parameter beta = Parameter("β") ws_mixer = QuantumCircuit(len(sigma)) for idx, theta in enumerate(thetas): ws_mixer.ry(-theta, idx) ws_mixer.rz(-2 * beta, idx) ws_mixer.ry(theta, idx) ws_mixer.draw(output="mpl") ws_qaoa_mes = QAOA( sampler=Sampler(), optimizer=COBYLA(), initial_state=init_qc, mixer=ws_mixer, initial_point=[0.0, 1.0], ) ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes) ws_qaoa_result = ws_qaoa.solve(qubo) print(ws_qaoa_result.prettyprint()) def format_qaoa_samples(samples, max_len: int = 10): qaoa_res = [] for s in samples: if sum(s.x) == 3: qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability)) res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len] return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res] format_qaoa_samples(qaoa_result.samples) format_qaoa_samples(ws_qaoa_result.samples) from qiskit_optimization.algorithms import WarmStartQAOAOptimizer qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0]) ws_qaoa = WarmStartQAOAOptimizer( pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0 ) ws_result = ws_qaoa.solve(qubo) print(ws_result.prettyprint()) format_qaoa_samples(ws_result.samples) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit_optimization.problems import QuadraticProgram # define a problem qp = QuadraticProgram() qp.binary_var("x") qp.integer_var(name="y", lowerbound=-1, upperbound=4) qp.maximize(quadratic={("x", "y"): 1}) qp.linear_constraint({"x": 1, "y": -1}, "<=", 0) print(qp.prettyprint()) from qiskit_optimization.algorithms import CplexOptimizer, GurobiOptimizer cplex_result = CplexOptimizer().solve(qp) gurobi_result = GurobiOptimizer().solve(qp) print("cplex") print(cplex_result.prettyprint()) print() print("gurobi") print(gurobi_result.prettyprint()) result = CplexOptimizer(disp=True, cplex_parameters={"threads": 1, "timelimit": 0.1}).solve(qp) print(result.prettyprint()) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_aer import Aer from qiskit.algorithms.minimum_eigensolvers import QAOA from qiskit.algorithms.optimizers import COBYLA from qiskit.primitives import Sampler meo = MinimumEigenOptimizer(QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=100))) result = meo.solve(qp) print(result.prettyprint()) print("\ndisplay the best 5 solution samples") for sample in result.samples[:5]: print(sample) # docplex model from docplex.mp.model import Model docplex_model = Model("docplex") x = docplex_model.binary_var("x") y = docplex_model.integer_var(-1, 4, "y") docplex_model.maximize(x * y) docplex_model.add_constraint(x <= y) docplex_model.prettyprint() # gurobi model import gurobipy as gp gurobipy_model = gp.Model("gurobi") x = gurobipy_model.addVar(vtype=gp.GRB.BINARY, name="x") y = gurobipy_model.addVar(vtype=gp.GRB.INTEGER, lb=-1, ub=4, name="y") gurobipy_model.setObjective(x * y, gp.GRB.MAXIMIZE) gurobipy_model.addConstr(x - y <= 0) gurobipy_model.update() gurobipy_model.display() from qiskit_optimization.translators import from_docplex_mp, from_gurobipy qp = from_docplex_mp(docplex_model) print("QuadraticProgram obtained from docpblex") print(qp.prettyprint()) print("-------------") print("QuadraticProgram obtained from gurobipy") qp2 = from_gurobipy(gurobipy_model) print(qp2.prettyprint()) from qiskit_optimization.translators import to_gurobipy, to_docplex_mp gmod = to_gurobipy(from_docplex_mp(docplex_model)) print("convert docplex to gurobipy via QuadraticProgram") gmod.display() dmod = to_docplex_mp(from_gurobipy(gurobipy_model)) print("\nconvert gurobipy to docplex via QuadraticProgram") print(dmod.export_as_lp_string()) ind_mod = Model("docplex") x = ind_mod.binary_var("x") y = ind_mod.integer_var(-1, 2, "y") z = ind_mod.integer_var(-1, 2, "z") ind_mod.maximize(3 * x + y - z) ind_mod.add_indicator(x, y >= z, 1) print(ind_mod.export_as_lp_string()) qp = from_docplex_mp(ind_mod) result = meo.solve(qp) # apply QAOA to QuadraticProgram print("QAOA") print(result.prettyprint()) print("-----\nCPLEX") print(ind_mod.solve()) # apply CPLEX directly to the Docplex model import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub="ibm-q", group="open", project="main") program_id = "qaoa" qaoa_program = provider.runtime.program(program_id) print(f"Program name: {qaoa_program.name}, Program id: {qaoa_program.program_id}") print(qaoa_program.parameters()) import numpy as np from qiskit.tools import job_monitor from qiskit.opflow import PauliSumOp, Z, I from qiskit.algorithms.optimizers import SPSA # Define the cost operator to run. op = ( (Z ^ Z ^ I ^ I ^ I) - (I ^ I ^ Z ^ Z ^ I) + (I ^ I ^ Z ^ I ^ Z) - (Z ^ I ^ Z ^ I ^ I) - (I ^ Z ^ Z ^ I ^ I) + (I ^ Z ^ I ^ Z ^ I) + (I ^ I ^ I ^ Z ^ Z) ) # SPSA helps deal with noisy environments. optimizer = SPSA(maxiter=100) # We will run a depth two QAOA. reps = 2 # The initial point for the optimization, chosen at random. initial_point = np.random.random(2 * reps) # The backend that will run the programm. options = {"backend_name": "ibmq_qasm_simulator"} # The inputs of the program as described above. runtime_inputs = { "operator": op, "reps": reps, "optimizer": optimizer, "initial_point": initial_point, "shots": 2**13, # Set to True when running on real backends to reduce circuit # depth by leveraging swap strategies. If False the # given optimization_level (default is 1) will be used. "use_swap_strategies": False, # Set to True when optimizing sparse problems. "use_initial_mapping": False, # Set to true when using echoed-cross-resonance hardware. "use_pulse_efficient": False, } job = provider.runtime.run( program_id=program_id, options=options, inputs=runtime_inputs, ) job_monitor(job) print(f"Job id: {job.job_id()}") print(f"Job status: {job.status()}") result = job.result() from collections import defaultdict def op_adj_mat(op: PauliSumOp) -> np.array: """Extract the adjacency matrix from the op.""" adj_mat = np.zeros((op.num_qubits, op.num_qubits)) for pauli, coeff in op.primitive.to_list(): idx = tuple([i for i, c in enumerate(pauli[::-1]) if c == "Z"]) # index of Z adj_mat[idx[0], idx[1]], adj_mat[idx[1], idx[0]] = np.real(coeff), np.real(coeff) return adj_mat def get_cost(bit_str: str, adj_mat: np.array) -> float: """Return the cut value of the bit string.""" n, x = len(bit_str), [int(bit) for bit in bit_str[::-1]] cost = 0 for i in range(n): for j in range(n): cost += adj_mat[i, j] * x[i] * (1 - x[j]) return cost def get_cut_distribution(result) -> dict: """Extract the cut distribution from the result. Returns: A dict of cut value: probability. """ adj_mat = op_adj_mat(PauliSumOp.from_list(result["inputs"]["operator"])) state_results = [] for bit_str, amp in result["eigenstate"].items(): state_results.append((bit_str, get_cost(bit_str, adj_mat), amp**2 * 100)) vals = defaultdict(int) for res in state_results: vals[res[1]] += res[2] return dict(vals) import matplotlib.pyplot as plt cut_vals = get_cut_distribution(result) fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(result["optimizer_history"]["energy"]) axs[1].bar(list(cut_vals.keys()), list(cut_vals.values())) axs[0].set_xlabel("Energy evaluation number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Cut value") axs[1].set_ylabel("Probability") from qiskit_optimization.runtime import QAOAClient from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization import QuadraticProgram qubo = QuadraticProgram() qubo.binary_var("x") qubo.binary_var("y") qubo.binary_var("z") qubo.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qubo.prettyprint()) qaoa_mes = QAOAClient( provider=provider, backend=provider.get_backend("ibmq_qasm_simulator"), reps=2, alpha=0.75 ) qaoa = MinimumEigenOptimizer(qaoa_mes) result = qaoa.solve(qubo) print(result.prettyprint()) from qiskit.transpiler import PassManager from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary as std_eqlib, ) from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, UnrollCustomDefinitions, BasisTranslator, Optimize1qGatesDecomposition, ) from qiskit.transpiler.passes.calibration.builders import RZXCalibrationBuilderNoEcho from qiskit.transpiler.passes.optimization.echo_rzx_weyl_decomposition import ( EchoRZXWeylDecomposition, ) from qiskit.test.mock import FakeBelem backend = FakeBelem() inst_map = backend.defaults().instruction_schedule_map channel_map = backend.configuration().qubit_channel_mapping rzx_basis = ["rzx", "rz", "x", "sx"] pulse_efficient = PassManager( [ # Consolidate consecutive two-qubit operations. Collect2qBlocks(), ConsolidateBlocks(basis_gates=["rz", "sx", "x", "rxx"]), # Rewrite circuit in terms of Weyl-decomposed echoed RZX gates. EchoRZXWeylDecomposition(backend.defaults().instruction_schedule_map), # Attach scaled CR pulse schedules to the RZX gates. RZXCalibrationBuilderNoEcho( instruction_schedule_map=inst_map, qubit_channel_mapping=channel_map ), # Simplify single-qubit gates. UnrollCustomDefinitions(std_eqlib, rzx_basis), BasisTranslator(std_eqlib, rzx_basis), Optimize1qGatesDecomposition(rzx_basis), ] ) from qiskit import QuantumCircuit circ = QuantumCircuit(3) circ.h([0, 1, 2]) circ.rzx(0.5, 0, 1) circ.swap(0, 1) circ.cx(2, 1) circ.rz(0.4, 1) circ.cx(2, 1) circ.rx(1.23, 2) circ.cx(2, 1) circ.draw("mpl") pulse_efficient.run(circ).draw("mpl", fold=False) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit.quantumcircuitdata import CircuitInstruction from qiskit.circuit import Measure from qiskit.circuit.library import HGate, CXGate qr = QuantumRegister(2) cr = ClassicalRegister(2) instructions = [ CircuitInstruction(HGate(), [qr[0]], []), CircuitInstruction(CXGate(), [qr[0], qr[1]], []), CircuitInstruction(Measure(), [qr[0]], [cr[0]]), CircuitInstruction(Measure(), [qr[1]], [cr[1]]), ] circuit = QuantumCircuit.from_instructions(instructions) circuit.draw("mpl")
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qiskit.transpiler.passes import UnitarySynthesis circuit = QuantumCircuit(1) circuit.rx(0.8, 0) unitary = Operator(circuit).data unitary_circ = QuantumCircuit(1) unitary_circ.unitary(unitary, [0]) synth = UnitarySynthesis(basis_gates=["h", "s"], method="sk") out = synth(unitary_circ) out.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit # Create a circuit with a register of three qubits circ = QuantumCircuit(3) # H gate on qubit 0, putting this qubit in a superposition of |0> + |1>. circ.h(0) # A CX (CNOT) gate on control qubit 0 and target qubit 1 generating a Bell state. circ.cx(0, 1) # CX (CNOT) gate on control qubit 0 and target qubit 2 resulting in a GHZ state. circ.cx(0, 2) # Draw the circuit circ.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(0) qc.measure(0, 0) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit qr = QuantumRegister(1) cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.h(0) qc.measure(0, 0) qc.x(0).c_if(cr, 0) qc.measure(0, 0) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit import QuantumCircuit qc = QuantumCircuit(12) for idx in range(5): qc.h(idx) qc.cx(idx, idx+5) qc.cx(1, 7) qc.x(8) qc.cx(1, 9) qc.x(7) qc.cx(1, 11) qc.swap(6, 11) qc.swap(6, 9) qc.swap(6, 10) qc.x(6) qc.draw('mpl')
https://github.com/qiskit-community/qiskit-translations-staging
qiskit-community
from qiskit.circuit.library import MCXGate gate = MCXGate(4) from qiskit import QuantumCircuit circuit = QuantumCircuit(5) circuit.append(gate, [0, 1, 4, 2, 3]) circuit.draw('mpl')