repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/arthurfaria/QC_basic_agorithms_qiskit
arthurfaria
###### Import Libraries import numpy as np from qiskit import Aer from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ( ElectronicStructureDriverType, ElectronicStructureMoleculeDriver, ) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper import time molecule = Molecule( geometry=[["H", [0.0, 0.0, 0.0]], ["F", [0.0, 0.0, 0.9554]]], charge=0, multiplicity=1 ) print(molecule.geometry) ###### Define the electronic structure driver driver = ElectronicStructureMoleculeDriver( molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF, ) # define the electronic structure problem as a function of the driver es_problem = ElectronicStructureProblem(driver) # build the second quantized Hamiltonian of the molecule second_q_op = es_problem.second_q_ops() # print the Hamiltonian, no. of spin orbitals or qubits, and the no. of paticles print('\n',"The second quantized form of the electronic Hamiltonian is" , second_q_op[0]) print('\n',"The no. of spin orbitals is", es_problem.num_spin_orbitals) print('\n', "The total no. of electrons is", es_problem.num_particles) qubit_converter = QubitConverter(JordanWignerMapper()) %%time from qiskit.algorithms import NumPyMinimumEigensolver from qiskit_nature.algorithms import GroundStateEigensolver ############################## # Provide your code here numpy_solver = NumPyMinimumEigensolver() numpy_ground_state_solver = GroundStateEigensolver(qubit_converter=qubit_converter, solver=numpy_solver) numpy_results = numpy_ground_state_solver.solve(problem=es_problem) ############################## exact_energy = np.real(numpy_results.electronic_energies + numpy_results.nuclear_repulsion_energy)[0] print(f"Exact electronic energy: {exact_energy:.6f} Hartree\n") print(numpy_results) %%time from qiskit.utils import QuantumInstance from qiskit_nature.algorithms import VQEUCCFactory #backend backend=Aer.get_backend("aer_simulator_statevector") # Select the simulator to run the calculation quantum_instance = QuantumInstance(backend=backend) # define the VQE simulator vqe_solver = VQEUCCFactory(quantum_instance) %%time from qiskit_nature.algorithms import GroundStateEigensolver # do the calculation calc = GroundStateEigensolver(qubit_converter, vqe_solver) # save the result res = calc.solve(es_problem) # print the result print(res) from qiskit.algorithms.optimizers import COBYLA from qiskit_nature.drivers.second_quantization import PySCFDriver driver_reduced = PySCFDriver(atom='H 0.0, 0.0, 0.0; F 0.0, 0.0, 0.9554', unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='STO3G') es_problem = ElectronicStructureProblem(driver_reduced) properties = driver_reduced.run() from qiskit_nature.circuit.library import HartreeFock from qiskit.circuit.library import EfficientSU2 from qiskit_nature.properties.second_quantization.electronic import ParticleNumber particle_number = properties.get_property(ParticleNumber) init_state = HartreeFock(num_spin_orbitals=particle_number.num_spin_orbitals, num_particles=particle_number.num_particles, qubit_converter=qubit_converter) init_state.barrier() ############################## ansatz = EfficientSU2(num_qubits=particle_number.num_spin_orbitals, reps=1, entanglement='linear', initial_state=init_state, insert_barriers=True) ############################## ansatz.decompose().draw('mpl') from qiskit.providers.aer import StatevectorSimulator from qiskit.algorithms.optimizers import L_BFGS_B from qiskit.algorithms import VQE ############################## # Provide your code here backend1 = StatevectorSimulator() optimizer = L_BFGS_B(maxfun=400) ############################## from qiskit_nature.algorithms import VQEUCCFactory, GroundStateEigensolver from jupyterplot import ProgressPlot error_threshold = 10 # mHartree np.random.seed(5) # fix seed for reproducibility initial_point = np.random.random(ansatz.num_parameters) from qiskit.providers.aer import StatevectorSimulator from qiskit.algorithms.optimizers import L_BFGS_B from qiskit.algorithms import VQE ############################## # Provide your code here backend1 = StatevectorSimulator() optimizer = L_BFGS_B(maxfun=400) ############################## from qiskit_nature.algorithms import VQEUCCFactory, GroundStateEigensolver from jupyterplot import ProgressPlot error_threshold = 10 # mHartree np.random.seed(5) # fix seed for reproducibility initial_point = np.random.random(ansatz.num_parameters) %%time # for live plotting pp = ProgressPlot(plot_names=['Energy'], line_names=['Runtime VQE', f'Target + {error_threshold}mH', 'Target']) intermediate_info = { 'nfev': [], 'parameters': [], 'energy': [], 'stddev': [] } def callback(nfev, parameters, energy, stddev): intermediate_info['nfev'].append(nfev) intermediate_info['parameters'].append(parameters) intermediate_info['energy'].append(energy) intermediate_info['stddev'].append(stddev) pp.update([[energy, exact_energy+error_threshold/1000, exact_energy]]) ############################## # Provide your code here vqe = VQE(ansatz=ansatz, optimizer=optimizer, quantum_instance=backend1, callback=callback, initial_point=initial_point) vqe_ground_state_solver = GroundStateEigensolver(qubit_converter=qubit_converter, solver=vqe) vqe_results = vqe_ground_state_solver.solve(problem=es_problem) ############################## print(vqe_results) error = (vqe_results.computed_energies[0] - exact_energy) * 1000 # mHartree print(f'Error is: {error:.3f} Hartree') %%time WITHOUT__ActiveSpace = ElectronicStructureProblem(driver_reduced) second_q_ops = WITHOUT__ActiveSpace.second_q_ops() main_op = second_q_ops[0] # particle_number = problem.molecule_data_transformed # num_particles = (particle_number.num_alpha, particle_numbaer.num_beta) # num_spin_orbitals = particle_number.num_molecular_orbitals*2 molecule = driver.run() simulation = QuantumInstance(backend=backend) mapper = JordanWignerMapper() qubit_converter = QubitConverter(mapper=mapper, two_qubit_reduction=True) qubit_op = qubit_converter.convert(main_op, num_particles=2) %%time shots=10 begin = time.time() VQE = VQEUCCFactory(simulation, optimizer=COBYLA(maxiter=shots)) calculation = GroundStateEigensolver(qubit_converter, VQE) result0 = calculation.solve(WITHOUT__ActiveSpace) end = time.time() print(f"Total runtime of the program is {end - begin}") np.real(result0.electronic_energies + result0.nuclear_repulsion_energy)[0] # from qiskit_nature.transformers import ActiveSpaceTransformer from qiskit_nature.transformers.second_quantization.electronic import ActiveSpaceTransformer transformer = ActiveSpaceTransformer(2, 2, [4,5]) %%time WITH_ActiveSpace = ElectronicStructureProblem(driver_reduced, transformers=[transformer]) second_q_ops = WITH_ActiveSpace.second_q_ops() main_op = second_q_ops[0] # particle_number = problem.molecule_data_transformed # num_particles = (particle_number.num_alpha, particle_number.num_beta) # num_spin_orbitals = particle_number.num_molecular_orbitals*2 molecule = driver.run() simulation = QuantumInstance(backend=backend) mapper = JordanWignerMapper() qubit_converter = QubitConverter(mapper=mapper, two_qubit_reduction=True) qubit_op = qubit_converter.convert(main_op, num_particles=2) shots=10 simulation = QuantumInstance(backend=backend) begin = time.time() VQE = VQEUCCFactory(simulation, optimizer=COBYLA(maxiter=shots)) calculation = GroundStateEigensolver(qubit_converter, VQE) result1 = calculation.solve(WITH_ActiveSpace) end = time.time() print(f"Total runtime of the program is {end - begin}") np.real(result1.electronic_energies + result1.nuclear_repulsion_energy)[0]
https://github.com/draentropia/Qiskit_PyLadiesBCN
draentropia
from qiskit import QuantumCircuit, assemble, Aer from qiskit.visualization import plot_histogram # create quantum circuit qc = QuantumCircuit(1) # 1 quantum register, 1 classical register qc.x(0) # add a gate to the circuit qc.measure_all() # add measurement at the end # run sim = Aer.get_backend('aer_simulator') qobj = assemble(qc) # Assemble a list of circuits or pulse schedules into a Qobj result = sim.run(qobj).result() # run circuit, get results # output statistics counts = result.get_counts() # extract statistics from results print(counts) plot_histogram(counts) qc.draw("mpl") from qiskit.visualization import plot_bloch_vector vector = [0, 1, 0] # coordinates [x, y, z] plot_bloch_vector(vector) # plot in the Bloch sphere qc = QuantumCircuit(1) qc.x(0) qc.y(0) qc.z(0) qc.draw("mpl") from qiskit import QuantumCircuit, assemble, Aer from qiskit.visualization import plot_bloch_multivector import numpy as np # create quantum circuit qc = QuantumCircuit(1) qc.x(0) # add gate x(qubit) # run sim = Aer.get_backend('aer_simulator') qc.save_statevector() # we want to use statevector later qobj = assemble(qc) result = sim.run(qobj).result() # run circuit, get results final_state = result.get_statevector() # get the final state from the result # visualize plot_bloch_multivector(final_state) # display final state directly on Bloch sphere from qiskit import QuantumCircuit, assemble, Aer from qiskit.visualization import plot_bloch_multivector import numpy as np # create quantum circuit qc = QuantumCircuit(1) init_state = [1. / np.sqrt(2), 1. / np.sqrt(2)] # define initial state [a,b] like a**2 + b**2 = 1 (normalization) qc.initialize(init_state, 0) # initialize qubit 0 to init_state qc.z(0) # add gate z(qubit) # run sim = Aer.get_backend('aer_simulator') qc.save_statevector() # we want to use statevector later qobj = assemble(qc) result = sim.run(qobj).result() # run circuit, get results final_state = result.get_statevector() # get the final state from the result # visualize plot_bloch_multivector(final_state) # display final state directly on Bloch sphere
https://github.com/draentropia/Qiskit_PyLadiesBCN
draentropia
from qiskit import QuantumCircuit, assemble, Aer from qiskit.visualization import plot_bloch_multivector import numpy as np # create quantum circuit qc = QuantumCircuit(1) qc.h(0) # add h(qubit) # run sim = Aer.get_backend('aer_simulator') qc.save_statevector() # we want to use statevector later qobj = assemble(qc) result = sim.run(qobj).result() # run circuit, get results final_state = result.get_statevector() # get the final state from the result # visualize plot_bloch_multivector(final_state) # display final state directly on Bloch sphere qc = QuantumCircuit(2) qc.cx(0,1) # First element is the control qubit, second element the target (the affected) qc.draw("mpl") from qiskit import QuantumCircuit, assemble, Aer from qiskit import QuantumRegister, ClassicalRegister from qiskit.visualization import plot_histogram # create quantum circuit qc = QuantumCircuit(2) qc.h(0) # apply a Hadamard gate to the first qubit qc.cx(0,1) # qc.measure_all() # finally measure all # run sim = Aer.get_backend('aer_simulator') qobj = assemble(qc) result = sim.run(qobj, shots=1024).result() # run circuit, get results # output statistics counts = result.get_counts() # extract statistics from results plot_histogram(counts) from qiskit import QuantumCircuit, assemble, Aer from qiskit.visualization import plot_bloch_multivector import numpy as np # create quantum circuit qc = QuantumCircuit(3) qc.h(0) qc.z(1) qc.h(0) qc.h(2) # run sim = Aer.get_backend('aer_simulator') qc.save_statevector() qobj = assemble(qc) result = sim.run(qobj, shots=100).result() # run circuit, get results # get state final_state = result.get_statevector() # visualize plot_bloch_multivector(final_state) # display final state directly on Bloch sphere
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
# Importando módulos from qiskit import * from qiskit.tools.visualization import plot_histogram # Inicializando o circuito nQubits = 2 nBits = 2 circuitoQuantico = QuantumCircuit(nQubits, nBits) # Para aplicar uma porta no circuito devemos seguir o seguinte exemplo onde aplicamos uma Hadamard Gate circuitoQuantico.h(0) # Nesse exemplo h() é a função que usamos para aplicar uma Hadamard Gate e o argumento é o índice do qubit # onde se deseja aplica a porta # Podemos ver ao chamar draw() que a Hadamard Gate fica no qubit desejado circuitoQuantico.draw(output = 'mpl') # Podemos aplicar também portas que envolvem mais de um qubit, como a CNOT(Controlled NOT) Gate circuitoQuantico.cx(0,1) # Visualização do circuito após chamar a CNOT Gate circuitoQuantico.draw(output = 'mpl') # Agora podemos medir esses qubits após as operações chamando measure() circuitoQuantico.measure(0,0) circuitoQuantico.measure(1,1) # Visualização do circuito após chamar measure() circuitoQuantico.draw(output = 'mpl') # Para simular um circuito quântico usamos um elemento do Qiskit chamado Aer, que tem como # uma de suas funções a simulação de circuitos simulador = Aer.get_backend('qasm_simulator') # Para executar o circuito chamamos execute() que leva como argumento o circuito a ser executado e o # backend(aonde o circuito vai ser executado) que nesse caso é no simulador do Aer resultado = execute(circuitoQuantico, backend = simulador).result() # Usamos a variável resultado para guardar os dados do resultado # Para exibir os resultados chamamos plot_histogram() plot_histogram(resultado.get_counts(circuitoQuantico)) # Antes de tudo é necessário imp
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * # Para representar o qubit em uma esfera de bloch devemos pensar nele na seguinte forma: # Depois de encontrar o theta, phi que desejamos, vamos ter os valores necessários para plotar nossa # esfera de bloch # Para plotar precisamos chamar a função plot_bloch_vector_spherical() que leva como parâmetro # o vetor de bloch # para encontrar o vetor de bloch seguimos a fórmula # Para o exemplo vamos usar o qubit no estado |+> que fica da seguinte forma: # Para conseguir representar esse estado no formato dado anteriormente vamos precisar # de um theta valendo pi/2 e de um phi valendo 0 # portanto vamos ter o vetor de bloch como (1,0,0) # Finalmente podemos exibir a esfera de bloch from qiskit.visualization import plot_bloch_vector %matplotlib inline plot_bloch_vector([1,0,0], title="Minha Primeira Esfera de Bloch")
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * # Primeiramente vamos iniciar um circuito circuitoQ = QuantumCircuit(1,1) # No qiskit os qubits são inicializados por default com o estado |0> # Podemos ver isso plotando a esfera de bloch que representa ele from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuitoQ, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # As portas Rx,Ry,Rz servem para fazer rotações nos eixos X,Y,Z # Para demonstrar vamos inicializar outro circuito de 1 qubit circuito2 = QuantumCircuit(1) # Agora para aplicar a porta usamos .rx(rotacao_em_radianos,qubit_a_passar_pela_porta) # Nesse exemplo vamos rotacionar o qubit no eixo x em pi/2 # antes é importante importar o pi da biblioteca math from math import pi circuito2.rx(pi/2,0) circuito2.draw(output = 'mpl') # Vendo o resultado: from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito2, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector)
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * circuito = QuantumCircuit(2,2) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # Primeiramente o qiskit inicializa os qubits nos estados 0 e 1 circuito = QuantumCircuit(2,2) circuito.x(0) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) circuito.y(0) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # No tutorial sobre as portas Rx, Ry e Rz vimos que usando a porta Ry para rotacionar o qubit em pi/2 conseguimos # o estado |+> import math circuito.ry(math.pi/2,1) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # Agora aplicando a porta Z circuito.z(1) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) circuito.id(1) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector)
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * # Para representar o qubit em uma esfera de bloch devemos pensar nele na seguinte forma: # Depois de encontrar o theta, phi que desejamos, vamos ter os valores necessários para plotar nossa # esfera de bloch # Para plotar precisamos chamar a função plot_bloch_vector_spherical() que leva como parâmetro # o vetor de bloch # para encontrar o vetor de bloch seguimos a fórmula # Para o exemplo vamos usar o qubit no estado |+> que fica da seguinte forma: # Para conseguir representar esse estado no formato dado anteriormente vamos precisar # de um theta valendo pi/2 e de um phi valendo 0 # portanto vamos ter o vetor de bloch como (1,0,0) # Finalmente podemos exibir a esfera de bloch from qiskit.visualization import plot_bloch_vector %matplotlib inline plot_bloch_vector([1,0,0], title="Minha Primeira Esfera de Bloch")
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * global c c = QuantumCircuit(2,2) def ua(bit_0 , bit_1): global c if(bit_0 == 1): if(bit_1 == 0): c.x(0) else: c.h(0) ua(0,0) c.draw() c.reset(0) c.reset(1) c.draw() def ub(numeo_bob): 2 -> comp 3 -> diag 0 == 0 0 == 1 qc = QuantumCircuit(2,2) qc.y(1) qc.measure(1,1) qc.draw() backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend, shots = 1).result() count = result.get_counts() count int(count.popitem()[0][0]) import random def index(abc): index = random.randint(0, abc) i = index(len(lista_bases)) [c,d,c,d,c] [c,c,c,d,c]
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2,2) qc.rx(np.pi/2,0) qc.z(0) qc.draw(output='mpl') qc2 = QuantumCircuit(2,2) qc2.z(0) qc2.rx(-np.pi/2,0) qc2.draw(output='mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline from qiskit.tools.visualization import plot_histogram from qiskit.visualization import plot_bloch_vector from qiskit.visualization import plot_bloch_multivector import math theta = math.pi/2 phi = math.pi/2 vetor_bloch = [math.cos(phi)*math.sin(theta),math.sin(theta)*math.sin(phi),math.cos(theta)] plot_bloch_vector(vetor_bloch, title='Pedro') qc = QuantumCircuit(1,1) qc.x(0) qc.draw() backend_pe = Aer.get_backend('qasm_simulator') job = execute(qc, backend=backend_pe, shots=1000) print(backend)
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * global x x = QuantumCircuit(2,2) def ua(bit_0 , bit_1): global x if(bit_0 == 1 and bit_1 == 0): x.cx(0,1) ua(0,0) x.draw() 0 == 0 0 == 1
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2,2) qc.rx(np.pi/2,0) qc.z(0) qc.draw(output='mpl') qc2 = QuantumCircuit(2,2) qc2.z(0) qc2.rx(-np.pi/2,0) qc2.draw(output='mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
# Importando módulos from qiskit import * # Uma das formas de se inicializar um circuito quântico é usando "QuantumCircuit(x,y)" # que é armazenado em uma variável. # Nele, onde x é o número de qubits # e y o número de bits clássicos. # Usamos os bits clássicos para armazenar as medições dos qubits. nQubits = 2 nBits = 2 circuitoQuantico = QuantumCircuit(nQubits, nBits) # Nesse caso cada qubit tem o seu bit aonde será armazenado seu valor após a medição # (o primeiro bit armazena o valor do primeiro qubit, o segundo bit do segundo qubit,...) # Logo depois de inicializar o circuito e durante todo o processo de adicionar as operações desejadas, # podemos visualizar o circuito, chamando a função draw(output = 'mpl') pertencente a variável do circuito quântico circuitoQuantico.draw(output = 'mpl') # Depois de realizar as operações desejadas nos qubits, medimos chamando a função measure(x,y), # pertencente a variável de circuito quântico. # Nele o x e y são os ÍNDICES do qubit e bit respectivamente(lembrar que o índice começa a contar em 0). circuitoQuantico.measure(0,0) circuitoQuantico.measure(1,1) # Chamando o draw() para exibir novamente o circuito, mas agora exibindo a medições circuitoQuantico.draw(output = 'mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
# Importando módulos from qiskit import * from qiskit.tools.visualization import plot_histogram # Inicializando o circuito nQubits = 2 nBits = 2 circuitoQuantico = QuantumCircuit(nQubits, nBits) # Para aplicar uma porta no circuito devemos seguir o seguinte exemplo onde aplicamos uma Hadamard Gate circuitoQuantico.h(0) # Nesse exemplo h() é a função que usamos para aplicar uma Hadamard Gate e o argumento é o índice do qubit # onde se deseja aplica a porta # Podemos ver ao chamar draw() que a Hadamard Gate fica no qubit desejado circuitoQuantico.draw(output = 'mpl') # Podemos aplicar também portas que envolvem mais de um qubit, como a CNOT(Controlled NOT) Gate circuitoQuantico.cx(0,1) # Visualização do circuito após chamar a CNOT Gate circuitoQuantico.draw(output = 'mpl') # Agora podemos medir esses qubits após as operações chamando measure() circuitoQuantico.measure(0,0) circuitoQuantico.measure(1,1) # Visualização do circuito após chamar measure() circuitoQuantico.draw(output = 'mpl') # Para simular um circuito quântico usamos um elemento do Qiskit chamado Aer, que tem como # uma de suas funções a simulação de circuitos simulador = Aer.get_backend('qasm_simulator') # Para executar o circuito chamamos execute() que leva como argumento o circuito a ser executado e o # backend(aonde o circuito vai ser executado) que nesse caso é no simulador do Aer resultado = execute(circuitoQuantico, backend = simulador).result() # Usamos a variável resultado para guardar os dados do resultado # Para exibir os resultados chamamos plot_histogram() plot_histogram(resultado.get_counts(circuitoQuantico)) # Antes de tudo é necessário importar o módulo da IBMQ Experience e carregar a sua conta from qiskit import IBMQ IBMQ.load_account() # Agora precisamos inicializar a variável de provider que vai ser responsável por ter o acesso a # um dos computadores quanticos da IBM provedor = IBMQ.get_provider('ibm-q') # Podemos agora escolher um dos computadores disponíveis da IBM para podermos rodar nosso circuito computadorQuantico = provedor.get_backend('ibmq_16_melbourne') # Para simular no nosso próprio computado tivemos que usar # " execute(circuitoQuantico, backend = simulador) " # Agora vamos ter que fazer algo similar executar = execute(circuitoQuantico, backend=computadorQuantico) # Depois de rodar o comando " execute(circuitoQuantico, backend=computadorQuantico).result() " # o nosso circuito entra numa fila do computador da IBM que escolhemos roda. Como se fosse uma # lista de pedidos num restaurante para o cozinheiro preparar. # Podemos checar o status do nosso "pedido" chamando o job_monitor from qiskit.tools.monitor import job_monitor job_monitor(executar) # Para pegar o resultado do circuito fazemos o seguinte resultado = executar.result() # Da mesma forma como na simulação no próprio computador podemos exibir os resultados num histograma plot_histogram(resultado.get_counts(circuitoQuantico))
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * # Para representar o qubit em uma esfera de bloch devemos pensar nele na seguinte forma: # Depois de encontrar o theta, phi que desejamos, vamos ter os valores necessários para plotar nossa # esfera de bloch # Para plotar precisamos chamar a função plot_bloch_vector_spherical() que leva como parâmetro # o vetor de bloch # para encontrar o vetor de bloch seguimos a fórmula # Para o exemplo vamos usar o qubit no estado |+> que fica da seguinte forma: # Para conseguir representar esse estado no formato dado anteriormente vamos precisar # de um theta valendo pi/2 e de um phi valendo 0 # portanto vamos ter o vetor de bloch como (1,0,0) # Finalmente podemos exibir a esfera de bloch from qiskit.visualization import plot_bloch_vector %matplotlib inline plot_bloch_vector([1,0,0], title="Minha Primeira Esfera de Bloch")
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * # Primeiramente vamos iniciar um circuito circuitoQ = QuantumCircuit(1,1) # No qiskit os qubits são inicializados por default com o estado |0> # Podemos ver isso plotando a esfera de bloch que representa ele from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuitoQ, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # As portas Rx,Ry,Rz servem para fazer rotações nos eixos X,Y,Z # Para demonstrar vamos inicializar outro circuito de 1 qubit circuito2 = QuantumCircuit(1) # Agora para aplicar a porta usamos .rx(rotacao_em_radianos,qubit_a_passar_pela_porta) # Nesse exemplo vamos rotacionar o qubit no eixo x em pi/2 # antes é importante importar o pi da biblioteca math from math import pi circuito2.rx(pi/2,0) circuito2.draw(output = 'mpl') # Vendo o resultado: from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito2, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector)
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * circuito = QuantumCircuit(2,2) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # Primeiramente o qiskit inicializa os qubits nos estados 0 e 1 circuito = QuantumCircuit(2,2) circuito.x(0) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) circuito.y(0) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # No tutorial sobre as portas Rx, Ry e Rz vimos que usando a porta Ry para rotacionar o qubit em pi/2 conseguimos # o estado |+> import math circuito.ry(math.pi/2,1) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) # Agora aplicando a porta Z circuito.z(1) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector) circuito.id(1) circuito.draw(output = 'mpl') from qiskit.tools.visualization import plot_bloch_multivector simulator = Aer.get_backend('statevector_simulator') result = execute(circuito, backend = simulator).result() statevector = result.get_statevector() plot_bloch_multivector(statevector)
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline qc1 = QuantumCircuit(1) qc1.h(0) qc1.draw(output = 'mpl') qc2 = QuantumCircuit(1) qc2.x(0) qc2.draw(output = 'mpl') print(qc1) print(qc2) qc3 = qc1 + qc2 qc3.draw(output = 'mpl') qc1[0] qc3.z(0) qc3.draw(output = 'mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * import numpy as np circuito = QuantumCircuit(2,2) circuito.x(0) circuito.z(0) circuito.h(1) # circuito.measure([0,1],[0,1]) circuito.draw(output = 'mpl') # Podemos encontrar a matriz unitária que representa as operacoes no circuito backend = Aer.get_backend('unitary_simulator') job = execute(circuito, backend) resultado = job.result() unitaria = resultado.get_unitary() print(unitaria)
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * import numpy as np # Podemos aplicar uma matriz unitária em um circuito matriz = [[1,0], [0,1]] circuito = QuantumCircuit(1) circuito.unitary(matriz,[0]) circuito.draw(output='mpl') # É possivel dar nome para essas operações circuito = QuantumCircuit(1) circuito.unitary(matriz,[0],label='minha porta') circuito.draw(output='mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline # Podemos transformar o nosso circuito em apenas uma porta circuito = QuantumCircuit(2) circuito.x(0) circuito.h(1) circuito.draw(output='mpl') # Para conseguir uma porta que represente essas operações fazemos # Podemos ainda adicionar um titulo para a nossa porta ou apenas deixar em branco minha_porta = circuito.to_gate(label='Minha porta') # Agora vamos adicionar ela em outro circuito c2 = QuantumCircuit(2) # Para adicionar uma porta dessa forma usamos o comando append() c2.append(minha_porta,[0,1]) c2.draw(output='mpl') # Para conferir se essa porta realmente representa a original fazemos c2.decompose().draw(output='mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline # Para facilitar a visualização dos nossos circuitos podemos usar .barrier() para criar # "separadores" nos circuitos # Essas barras tem uma outra função que pode ser vista no futuro, mas por enquanto podemos # usar apenas para separar partes do circuito qc = QuantumCircuit(2,2) qc.x(0) qc.y(0) qc.z(0) qc.x(1) qc.y(0) qc.z(1) qc.draw(output='mpl') # Agora vamos separar essa parte qc.barrier() qc.draw(output='mpl') # Com isso podemos continuar a segunda parte do circuito qc.x(0) qc.y(0) qc.z(0) qc.x(1) qc.y(0) qc.z(1) qc.draw(output='mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline import numpy as np # Podemos encontrar o operador de densidade de estados # Para isso vamos primeiramente usar o statevector_simulator para encontrar o vetor de # estado desejado qc = QuantumCircuit(1) qc.ry(3*np.pi/2,0) qc.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') job = execute(qc,backend) result = job.result() statevector = result.get_statevector(qc, decimals = 3) # Aqui está o nosso vetor de estado print(statevector) # Agora para encontrar o seu operador de densidade from qiskit.quantum_info import * op_densidade = DensityMatrix(statevector) print(op_densidade.data) # É possível também visualizar a matriz de densidade por meio de um histograma from qiskit.visualization import plot_state_city plot_state_city(statevector) # Também é possivel visualizar as matrizes de Pauli que compõem o seu operador de densidade from qiskit.tools.visualization import plot_state_paulivec plot_state_paulivec(statevector) # Podemos ver o traço do nosso operador op_densidade.trace() estado = [np.sqrt(2),np.sqrt(2)] print(np.inner(np.inner(estado, op_densidade.data), estado)) rho_2 = np.matmul(op_densidade.data,op_densidade.data) trace = rho_2.trace() print(trace) def bloch_vector(op): pauli_x = [[0,1],[1,0]] pauli_y = [[0,-1j],[1j,0]] pauli_z = [[1,0],[0,-1]] x = np.matmul(op,pauli_x).trace() y = np.matmul(op,pauli_y).trace() z = np.matmul(op,pauli_z).trace() return [np.absolute(x),np.absolute(y),np.absolute(z)] from qiskit.tools.visualization import plot_bloch_vector plot_bloch_vector(bloch_vector(op_densidade.data)) # Exemplo de estado misto: estado_misto = [[0.5, 0.25],[0.25,0.5]] plot_bloch_vector(bloch_vector(estado_misto))
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure([0,1],[0,1]) qc.draw(output='mpl') backend = Aer.get_backend('qasm_simulator') result = execute(qc,backend).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) counts = result.get_counts(qc) legenda = ['Meu resultado'] plot_histogram(counts,color='red' ,legend=legenda) IBMQ.load_account() provedor = IBMQ.get_provider('ibm-q') backend = provedor.get_backend('ibmq_valencia') job = execute(qc,backend) from qiskit.tools.monitor import job_monitor job_monitor(job) result2 = job.result() counts2 = result2.get_counts(qc) legenda = ['Simulador','CQ Real'] plot_histogram([counts,counts2],color=['red','green'] ,legend=legenda) qc2 = QuantumCircuit(2,2) qc2.h(0) qc2.cx(0,1) backend_st = Aer.get_backend('statevector_simulator') result3 = execute(qc2, backend_st).result() statevector = result3.get_statevector() from qiskit.tools.visualization import plot_state_city plot_state_city(statevector) from qiskit.tools.visualization import plot_state_paulivec plot_state_paulivec(statevector) from qiskit.tools.visualization import plot_state_hinton plot_state_hinton(statevector) from qiskit.tools.visualization import plot_bloch_multivector plot_bloch_multivector(statevector) %matplotlib notebook # Repare que não está escrito inline como geralmente plot_bloch_multivector(statevector) # Para voltar ao normal é necessário apenas rodar o comando original %matplotlib inline from qiskit.tools.visualization import plot_bloch_vector plot_bloch_vector([1,0,0])
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline # Podemos transformar o nosso circuito em apenas uma porta circuito = QuantumCircuit(2) circuito.x(0) circuito.h(1) circuito.draw(output='mpl') # Para conseguir uma porta que represente essas operações fazemos # Podemos ainda adicionar um titulo para a nossa porta ou apenas deixar em branco minha_porta = circuito.to_gate(label='Minha porta') # Agora vamos adicionar ela em outro circuito c2 = QuantumCircuit(2) # Para adicionar uma porta dessa forma usamos o comando append() c2.append(minha_porta,[0,1]) c2.draw(output='mpl') # Para conferir se essa porta realmente representa a original fazemos c2.decompose().draw(output='mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline # Para facilitar a visualização dos nossos circuitos podemos usar .barrier() para criar # "separadores" nos circuitos # Essas barras tem uma outra função que pode ser vista no futuro, mas por enquanto podemos # usar apenas para separar partes do circuito qc = QuantumCircuit(2,2) qc.x(0) qc.y(0) qc.z(0) qc.x(1) qc.y(0) qc.z(1) qc.draw(output='mpl') # Agora vamos separar essa parte qc.barrier() qc.draw(output='mpl') # Com isso podemos continuar a segunda parte do circuito qc.x(0) qc.y(0) qc.z(0) qc.x(1) qc.y(0) qc.z(1) qc.draw(output='mpl')
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline import numpy as np # Podemos encontrar o operador de densidade de estados # Para isso vamos primeiramente usar o statevector_simulator para encontrar o vetor de # estado desejado qc = QuantumCircuit(1) qc.rx(np.pi/2,0) qc.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') job = execute(qc,backend) result = job.result() statevector = result.get_statevector() # Aqui está o nosso vetor de estado print(statevector) # Agora para encontrar o seu operador de densidade from qiskit.quantum_info import * op_densidade = DensityMatrix(statevector) print(op_densidade.data) # Podemos ver o traço do nosso operador op_densidade.trace() estado = [np.sqrt(2),np.sqrt(2)] print(np.inner(np.inner(estado, op_densidade.data), estado)) rho_2 = np.matmul(op_densidade.data,op_densidade.data) trace = rho_2.trace() print(trace) def bloch_vector(op): pauli_x = [[0,1],[1,0]] pauli_y = [[0,-1j],[1j,0]] pauli_z = [[1,0],[0,-1]] x = np.matmul(op,pauli_x).trace() y = np.matmul(op,pauli_y).trace() z = np.matmul(op,pauli_z).trace() return [np.absolute(x),np.absolute(y),np.absolute(z)] from qiskit.tools.visualization import plot_bloch_vector plot_bloch_vector(bloch_vector(op_densidade.data)) # Exemplo de estado misto: estado_misto = [[0.5, 0.25],[0.25,0.5]] plot_bloch_vector(bloch_vector(estado_misto))
https://github.com/pedroripper/qiskit_tutoriais
pedroripper
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure([0,1],[0,1]) qc.draw(output='mpl') backend = Aer.get_backend('qasm_simulator') result = execute(qc,backend).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) counts = result.get_counts(qc) legenda = ['Meu resultado'] plot_histogram(counts,color='red' ,legend=legenda) IBMQ.load_account() provedor = IBMQ.get_provider('ibm-q') backend = provedor.get_backend('ibmq_valencia') job = execute(qc,backend) from qiskit.tools.monitor import job_monitor job_monitor(job) result2 = job.result() counts2 = result2.get_counts(qc) legenda = ['Simulador','CQ Real'] plot_histogram([counts,counts2],color=['red','green'] ,legend=legenda) qc2 = QuantumCircuit(2,2) qc2.h(0) qc2.cx(0,1) backend_st = Aer.get_backend('statevector_simulator') result3 = execute(qc2, backend_st).result() statevector = result3.get_statevector() from qiskit.tools.visualization import plot_state_city plot_state_city(statevector) from qiskit.tools.visualization import plot_state_paulivec plot_state_paulivec(statevector) from qiskit.tools.visualization import plot_state_hinton plot_state_hinton(statevector) from qiskit.tools.visualization import plot_bloch_multivector plot_bloch_multivector(statevector) %matplotlib notebook # Repare que não está escrito inline como geralmente plot_bloch_multivector(statevector) # Para voltar ao normal é necessário apenas rodar o comando original %matplotlib inline from qiskit.tools.visualization import plot_bloch_vector plot_bloch_vector([1,0,0])
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib in_digit = np.pi print(in_digit) n = 20 nint = qt.get_nint(in_digit) print(nint) in_binary = qt.my_binary_repr(in_digit, n, nint=nint, phase=False) print(in_binary) out_digit = qt.bin_to_dec(in_binary, nint=nint, phase=False) print(out_digit) n-nint in_digit = -3.25 print(in_digit) nint = qt.get_nint(in_digit) print(nint) npres = qt.get_npres(in_digit) print(npres) n = npres + nint + 1 in_binary = qt.my_binary_repr(in_digit, n, nint=nint, phase=True) print(in_binary) out_digit = qt.bin_to_dec(in_binary, nint=nint, phase=True) print(out_digit) sm_binary = qt.my_binary_repr(in_digit, n, nint=nint, phase=True, signmag=True) print(sm_binary, qt.bin_to_dec(sm_binary, nint=nint, phase=True, signmag=True)) qreg = QuantumRegister(n, 'bit') circ = QuantumCircuit(qreg) circ = qt.input_bits_to_qubits(in_binary, circ, qreg) circ.draw(output="latex")
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
def QFT(N): ''' Constructing the fourier transform of size NxN. ''' return np.array([[(np.exp(2.*i*j*1j*np.pi/N)) for j in np.arange(N)] for i in np.arange(N)])*1./np.sqrt(N) from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib n = 5 xreg = QuantumRegister(n, 'x') circ = QuantumCircuit(xreg) circ = qt.QFT(circ, xreg) circ.draw(output="latex") backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() unit_mat = np.array(result.get_unitary(circ, decimals=8)) print(np.sum(np.abs(unit_mat-QFT(2**n))**2))
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib n = 5 xreg = QuantumRegister(n, 'x') circ = QuantumCircuit(xreg) circ = qt.QFT(circ, xreg) circ.draw(output="latex") backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() unit_mat = np.array(result.get_unitary(circ, decimals=5)) xreg = QuantumRegister(n, 'x') circ = QuantumCircuit(xreg) QFT_gate = qt.QFT(circ, xreg, wrap=True) circ.append(QFT_gate, xreg); circ.draw(output="latex") backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() unit_mat_wrap = np.array(result.get_unitary(circ, decimals=5)) print(np.sum(np.abs(unit_mat-unit_mat_wrap)**2)) xreg = QuantumRegister(n, 'x') circ = QuantumCircuit(xreg) QFT_gate = qt.QFT(circ, xreg, wrap=True) circ.append(QFT_gate, xreg); iQFT_gate = qt.QFT(circ, xreg, wrap=True, inverse=True) circ.append(iQFT_gate, xreg); circ.draw(output="latex") backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() unit_mat = np.array(result.get_unitary(circ, decimals=5)) print(np.sum(np.abs(unit_mat - np.eye(2**n))**2))
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib digit_A = 5.25 digit_B = 7.5 print(digit_A,'+',digit_B,'=',digit_A+digit_B) nint = qt.get_nint([digit_A+digit_B,digit_A,digit_B]) npres = qt.get_npres([digit_A+digit_B,digit_A,digit_B]) n = nint + npres + 1 phase = True binary_A = qt.my_binary_repr(digit_A, n, nint=nint, phase=phase) binary_B = qt.my_binary_repr(digit_B, n, nint=nint, phase=phase) print(binary_A,binary_B) qregA = QuantumRegister(n, 'A') qregB = QuantumRegister(n, 'B') out_reg = ClassicalRegister(n, 'A+B') circ = QuantumCircuit(qregA, qregB, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); add_gate = qt.QFTAddition(circ, qregA, qregB, wrap=True) circ.append(add_gate, [*qregA, *qregB]); circ.measure(qregB, out_reg); circ.draw(output="latex") shots=20 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'+',digit_A,'=',digit_B+digit_A,'->',qt.my_binary_repr(digit_B+digit_A, n, nint=nint, phase=phase)) print('Result:') for label in hist.keys(): print(digit_B,'+',digit_A,'=',qt.bin_to_dec(label, nint=nint, phase=phase),'->',label,'with probability',float(hist[label])/shots) digit_A = 5.25 digit_B = -7.5 print(digit_A,'+',digit_B,'=',digit_A+digit_B) nint = qt.get_nint([digit_A+digit_B,digit_A,digit_B]) npres = qt.get_npres([digit_A+digit_B,digit_A,digit_B]) n = nint + npres + 1 phase = True binary_A = qt.my_binary_repr(digit_A, n, nint=nint, phase=phase) binary_B = qt.my_binary_repr(digit_B, n, nint=nint, phase=phase) print(binary_A,binary_B) qregA = QuantumRegister(n, 'A') qregB = QuantumRegister(n, 'B') out_reg = ClassicalRegister(n, 'A+B') circ = QuantumCircuit(qregA, qregB, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); add_gate = qt.QFTAddition(circ, qregA, qregB, wrap=True) circ.append(add_gate, [*qregA, *qregB]); circ.measure(qregB, out_reg); circ.draw(output="latex") shots=20 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'+',digit_A,'=',digit_B+digit_A,'->',qt.my_binary_repr(digit_B+digit_A, n, nint=nint, phase=phase)) print('Result:') for label in hist.keys(): print(digit_B,'+',digit_A,'=',qt.bin_to_dec(label, nint=nint, phase=phase),'->',label,'with probability',float(hist[label])/shots) digit_A = 5.25 digit_B = 7.5 nint = qt.get_nint([digit_A-digit_B,digit_A,digit_B]) npres = qt.get_npres([digit_A-digit_B,digit_A,digit_B]) n = nint + npres + 1 phase = True binary_A = qt.my_binary_repr(digit_A, n, nint=nint, phase=phase) binary_B = qt.my_binary_repr(digit_B, n, nint=nint, phase=phase) print(binary_A,binary_B) qregA = QuantumRegister(n, 'A') qregB = QuantumRegister(n, 'B') out_reg = ClassicalRegister(n, 'A+B') circ = QuantumCircuit(qregA, qregB, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); tc_gate = qt.TwosCompliment(circ, qregB, wrap=True) circ.append(tc_gate, qregB); add_gate = qt.QFTAddition(circ, qregA, qregB, wrap=True) circ.append(add_gate, [*qregA, *qregB]); circ.measure(qregB, out_reg); circ.draw(output="latex") shots=20 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'-',digit_A,'=',digit_B-digit_A,'->',qt.my_binary_repr(digit_A-digit_B, n, nint=nint, phase=phase)) print('Result:') for label in hist.keys(): print(digit_B,'-',digit_A,'=',qt.bin_to_dec(label, nint=nint, phase=phase),'->',label,'with probability',float(hist[label])/shots) digit_A = -5.5 digit_B = 7.25 nintA = qt.get_nint([digit_A]) npresA = qt.get_npres([digit_A]) nA = nintA + npresA + 1 nintB = qt.get_nint([digit_B,digit_A+digit_B]) npresB = qt.get_npres([digit_B,digit_A+digit_B]) nB = nintB + npresB + 1 phase = True binary_A = qt.my_binary_repr(digit_A, nA, nint=nintA, phase=phase) binary_B = qt.my_binary_repr(digit_B, nB, nint=nintB, phase=phase) print(binary_A,binary_B) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') out_reg = ClassicalRegister(nB, 'A+B') circ = QuantumCircuit(qregA, qregB, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); circ = qt.QFTAddition(circ, qregA, qregB, nint1=nintA, nint2=nintB, phase=phase) circ.measure(qregB, out_reg); shots=20 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'+',digit_A,'=',digit_B+digit_A,'->',qt.my_binary_repr(digit_A+digit_B, nB, nint=nintB, phase=phase)) print('Result:') for label in hist.keys(): print(digit_B,'+',digit_A,'=',qt.bin_to_dec(label, nint=nintB, phase=phase),'->',label,'with probability',float(hist[label])/shots)
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib phase = True digit_A = 5.25 digit_B = 7.5 print(digit_A,'x',digit_B,'=',digit_A*digit_B) nintA = qt.get_nint(digit_A) npresA = qt.get_npres(digit_A) nA = nintA + npresA if phase: nA += 1 print(nA, nintA, npresA) nintB = qt.get_nint(digit_B) npresB = qt.get_npres(digit_B) nB = nintB + npresB if phase: nB += 1 print(nB, nintB, npresB) nintC = qt.get_nint(digit_A*digit_B) npresC = qt.get_npres(digit_A*digit_B) nC = nintC + npresC if phase: nC += 1 print(nC, nintC, npresC) binary_A = qt.my_binary_repr(digit_A, nA, nint=nintA, phase=phase) binary_B = qt.my_binary_repr(digit_B, nB, nint=nintB, phase=phase) binary_C = qt.my_binary_repr(digit_A*digit_B, nC, nint=nintC, phase=phase) print(binary_A,binary_B,binary_C) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') qregC = QuantumRegister(nC, 'C') out_reg = ClassicalRegister(nC,'out_reg') circ = QuantumCircuit(qregA, qregB, qregC, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); mult_gate = qt.QFTMultiply(circ, qregA, qregB, qregC, nint1=nintA, nint2=nintB, nint3=nintC, phase=True, wrap=True) circ.append(mult_gate, [*qregA, *qregB, *qregC]); circ.measure(qregC, out_reg); circ.draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'x',digit_A,'=',digit_B*digit_A,'->',binary_C) print('Result:') for label in hist.keys(): print(digit_B,'x',digit_A,'=',qt.bin_to_dec(label, nint=nintC, phase=phase),'->',label,'with probability',float(hist[label])/shots) phase = True digit_A = 5.25 digit_B = -7.5 print(digit_A,'x',digit_B,'=',digit_A*digit_B) binary_A = qt.my_binary_repr(digit_A, nA, nint=nintA, phase=phase) binary_B = qt.my_binary_repr(digit_B, nB, nint=nintB, phase=phase) binary_C = qt.my_binary_repr(digit_A*digit_B, nC, nint=nintC, phase=phase) print(binary_A,binary_B,binary_C) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') qregC = QuantumRegister(nC, 'C') out_reg = ClassicalRegister(nC,'out_reg') circ = QuantumCircuit(qregA, qregB, qregC, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); mult_gate = qt.QFTMultiply(circ, qregA, qregB, qregC, nint1=nintA, nint2=nintB, nint3=nintC, phase=True, wrap=True) circ.append(mult_gate, [*qregA, *qregB, *qregC]); circ.measure(qregC, out_reg); shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'x',digit_A,'=',digit_B*digit_A,'->',binary_C) print('Result:') for label in hist.keys(): print(digit_B,'x',digit_A,'=',qt.bin_to_dec(label, nint=nintC, phase=phase),'->',label,'with probability',float(hist[label])/shots) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') qregC = QuantumRegister(nC, 'C') out_reg = ClassicalRegister(nC,'out_reg') circ = QuantumCircuit(qregA, qregB, qregC, out_reg) # Input the A and B binary strings into their registers A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); circ.barrier() # Define the twos-complement operations tc_gate_A = qt.TwosCompliment(circ, qregA[:-1], wrap=True).control(1) tc_gate_B = qt.TwosCompliment(circ, qregB[:-1], wrap=True).control(1) tc_gate_C = qt.TwosCompliment(circ, qregC[:-1], wrap=True).control(2) # Add the twos-complement operations to convert registers A and B to sign-magnitude notation circ.append(tc_gate_A, [qregA[-1], *qregA[:-1]]); circ.append(tc_gate_B, [qregB[-1], *qregB[:-1]]); circ.barrier() # Apply simple QFT multiplication mult_gate = qt.QFTMultiply(circ, qregA[:-1], qregB[:-1], qregC[:-1], nint1=nintA, nint2=nintB, nint3=nintC, wrap=True) circ.append(mult_gate, [*qregA[:-1], *qregB[:-1], *qregC[:-1]]); circ.barrier() # If register A is positive, but register B is negative, then twos-complement operator on C circ.x(qregA[-1]); circ.append(tc_gate_C, [qregA[-1], qregB[-1], *qregC[:-1]]); circ.x(qregA[-1]); # If register B is positive, but register A is negative, then twos-complement operator on C circ.x(qregB[-1]); circ.append(tc_gate_C, [qregA[-1], qregB[-1], *qregC[:-1]]); circ.x(qregB[-1]); circ.barrier() # If A is negative flip phase qubit of C, and if B is negative flip phase qubit of C circ.cx(qregA[-1], qregC[-1]); circ.cx(qregB[-1], qregC[-1]); circ.barrier() # Restore registers A and B to original twos-complement notation circ.append(tc_gate_A, [qregA[-1], *qregA[:-1]]); circ.append(tc_gate_B, [qregB[-1], *qregB[:-1]]); circ.barrier() circ.measure(qregC, out_reg); circ.draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'x',digit_A,'=',digit_B*digit_A,'->',binary_C) print('Result:') for label in hist.keys(): print(digit_B,'x',digit_A,'=',qt.bin_to_dec(label, nint=nintC, phase=phase),'->',label,'with probability',float(hist[label])/shots) phase = True digit_A = 0. digit_B = -7.5 print(digit_A,'x',digit_B,'=',digit_A*digit_B) binary_A = qt.my_binary_repr(digit_A, nA, nint=nintA, phase=phase) binary_B = qt.my_binary_repr(digit_B, nB, nint=nintB, phase=phase) binary_C = qt.my_binary_repr(digit_A*digit_B, nC, nint=nintC, phase=phase) print(binary_A,binary_B,binary_C) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') qregC = QuantumRegister(nC, 'C') out_reg = ClassicalRegister(nC,'out_reg') circ = QuantumCircuit(qregA, qregB, qregC, out_reg) # Input the A and B binary strings into their registers A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); circ.barrier() # Define the twos-complement operations tc_gate_A = qt.TwosCompliment(circ, qregA[:-1], wrap=True).control(1) tc_gate_B = qt.TwosCompliment(circ, qregB[:-1], wrap=True).control(1) tc_gate_C = qt.TwosCompliment(circ, qregC[:-1], wrap=True).control(2) # Add the twos-complement operations to convert registers A and B to sign-magnitude notation circ.append(tc_gate_A, [qregA[-1], *qregA[:-1]]); circ.append(tc_gate_B, [qregB[-1], *qregB[:-1]]); circ.barrier() # Apply simple QFT multiplication mult_gate = qt.QFTMultiply(circ, qregA[:-1], qregB[:-1], qregC[:-1], nint1=nintA, nint2=nintB, nint3=nintC, wrap=True) circ.append(mult_gate, [*qregA[:-1], *qregB[:-1], *qregC[:-1]]); circ.barrier() # If register A is positive, but register B is negative, then twos-complement operator on C circ.x(qregA[-1]); circ.append(tc_gate_C, [qregA[-1], qregB[-1], *qregC[:-1]]); circ.x(qregA[-1]); # If register B is positive, but register A is negative, then twos-complement operator on C circ.x(qregB[-1]); circ.append(tc_gate_C, [qregA[-1], qregB[-1], *qregC[:-1]]); circ.x(qregB[-1]); circ.barrier() # If A is negative flip phase qubit of C, and if B is negative flip phase qubit of C circ.cx(qregA[-1], qregC[-1]); circ.cx(qregB[-1], qregC[-1]); circ.barrier() # Restore registers A and B to original twos-complement notation circ.append(tc_gate_A, [qregA[-1], *qregA[:-1]]); circ.append(tc_gate_B, [qregB[-1], *qregB[:-1]]); circ.barrier() circ.measure(qregC, out_reg); shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'x',digit_A,'=',digit_B*digit_A,'->',binary_C) print('Result:') for label in hist.keys(): print(digit_B,'x',digit_A,'=',qt.bin_to_dec(label, nint=nintC, phase=phase),'->',label,'with probability',float(hist[label])/shots) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') qregC = QuantumRegister(nC, 'C') out_reg = ClassicalRegister(nC,'out_reg') circ = QuantumCircuit(qregA, qregB, qregC, out_reg) # Input the A and B binary strings into their registers A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); circ.barrier() # Define the twos-complement operations tc_gate_A = qt.TwosCompliment(circ, qregA[:-1], wrap=True).control(1) tc_gate_B = qt.TwosCompliment(circ, qregB[:-1], wrap=True).control(1) tc_gate_C = qt.TwosCompliment(circ, qregC[:-1], wrap=True).control(2) # Add the twos-complement operations to convert registers A and B to sign-magnitude notation circ.append(tc_gate_A, [qregA[-1], *qregA[:-1]]); circ.append(tc_gate_B, [qregB[-1], *qregB[:-1]]); circ.barrier() # Apply simple QFT multiplication mult_gate = qt.QFTMultiply(circ, qregA[:-1], qregB[:-1], qregC[:-1], nint1=nintA, nint2=nintB, nint3=nintC, wrap=True) circ.append(mult_gate, [*qregA[:-1], *qregB[:-1], *qregC[:-1]]); circ.barrier() # If register A is positive, but register B is negative, then twos-complement operator on C circ.x(qregA[-1]); circ.append(tc_gate_C, [qregA[-1], qregB[-1], *qregC[:-1]]); circ.x(qregA[-1]); # If register B is positive, but register A is negative, then twos-complement operator on C circ.x(qregB[-1]); circ.append(tc_gate_C, [qregA[-1], qregB[-1], *qregC[:-1]]); circ.x(qregB[-1]); circ.barrier() # If A is negative flip phase qubit of C, and if B is negative flip phase qubit of C circ.cx(qregA[-1], qregC[-1]); circ.cx(qregB[-1], qregC[-1]); circ.barrier() # Restore registers A and B to original twos-complement notation circ.append(tc_gate_A, [qregA[-1], *qregA[:-1]]); circ.append(tc_gate_B, [qregB[-1], *qregB[:-1]]); circ.barrier() # Flip register A for qubit in np.arange(nA): circ.x(qregA[qubit]); # If register A is all zeros and phase of B is negative, then flip the phase of C circ.mcx([*qregA, qregB[-1]], qregC[-1], mode='noancilla') # Flip back register A for qubit in np.arange(nA): circ.x(qregA[qubit]); circ.barrier() # Flip register B for qubit in np.arange(nB): circ.x(qregB[qubit]); # If register B is all zeros and phase of A is negative, then flip the phase of C circ.mcx([*qregB, qregA[-1]], qregC[-1], mode='noancilla') # Flip back register B for qubit in np.arange(nB): circ.x(qregB[qubit]); circ.barrier() circ.measure(qregC, out_reg); circ.draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'x',digit_A,'=',digit_B*digit_A,'->',binary_C) print('Result:') for label in hist.keys(): print(digit_B,'x',digit_A,'=',qt.bin_to_dec(label, nint=nintC, phase=phase),'->',label,'with probability',float(hist[label])/shots) phase = True digit_A = 5.25 digit_B = -7.5 print(digit_A,'x',digit_B,'=',digit_A*digit_B) binary_A = qt.my_binary_repr(digit_A, nA, nint=nintA, phase=phase) binary_B = qt.my_binary_repr(digit_B, nB, nint=nintB, phase=phase) binary_C = qt.my_binary_repr(digit_A*digit_B, nC, nint=nintC, phase=phase) print(binary_A,binary_B,binary_C) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') qregC = QuantumRegister(nC, 'C') out_reg = ClassicalRegister(nC,'out_reg') circ = QuantumCircuit(qregA, qregB, qregC, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); mult_gate = qt.QFTMultPhase(circ, qregA, qregB, qregC, nint1=nintA, nint2=nintB, nint3=nintC, wrap=True) circ.append(mult_gate, [*qregA, *qregB, *qregC]); circ.measure(qregC, out_reg); circ.draw(output='latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'x',digit_A,'=',digit_B*digit_A,'->',binary_C) print('Result:') for label in hist.keys(): print(digit_B,'x',digit_A,'=',qt.bin_to_dec(label, nint=nintC, phase=phase),'->',label,'with probability',float(hist[label])/shots) phase = True signmag = True digit_A = -5.25 digit_B = 0 print(digit_A,'x',digit_B,'=',digit_A*digit_B) binary_A = qt.my_binary_repr(digit_A, nA, nint=nintA, phase=phase, signmag=signmag) binary_B = qt.my_binary_repr(digit_B, nB, nint=nintB, phase=phase, signmag=signmag) binary_C = qt.my_binary_repr(digit_A*digit_B, nC, nint=nintC, phase=phase, signmag=signmag) print(binary_A,binary_B,binary_C) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') qregC = QuantumRegister(nC, 'C') out_reg = ClassicalRegister(nC,'out_reg') circ = QuantumCircuit(qregA, qregB, qregC, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); mult_gate = qt.QFTMultPhase(circ, qregA, qregB, qregC, nint1=nintA, nint2=nintB, nint3=nintC, wrap=True, signmag1=True, signmag2=True, signmag3=True) circ.append(mult_gate, [*qregA, *qregB, *qregC]); circ.measure(qregC, out_reg); circ.decompose(reps=1).draw(output='latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'x',digit_A,'=',digit_B*digit_A,'->',binary_C) print('Result:') for label in hist.keys(): print(digit_B,'x',digit_A,'=',qt.bin_to_dec(label, nint=nintC, phase=phase, signmag=signmag),'->',label,'with probability',float(hist[label])/shots) phase = True signmag = True digit_A = -5.25 digit_B = 0 print(digit_A,'x',digit_B,'=',digit_A*digit_B) binary_A = qt.my_binary_repr(digit_A, nA, nint=nintA, phase=phase, signmag=signmag) binary_B = qt.my_binary_repr(digit_B, nB, nint=nintB, phase=phase, signmag=signmag) binary_C = qt.my_binary_repr(digit_A*digit_B, nC, nint=nintC, phase=phase, signmag=signmag) print(binary_A,binary_B,binary_C) qregA = QuantumRegister(nA, 'A') qregB = QuantumRegister(nB, 'B') qregC = QuantumRegister(nC, 'C') out_reg = ClassicalRegister(nC,'out_reg') circ = QuantumCircuit(qregA, qregB, qregC, out_reg) A_gate = qt.input_bits_to_qubits(binary_A, circ, reg=qregA, wrap=True) B_gate = qt.input_bits_to_qubits(binary_B, circ, reg=qregB, wrap=True) circ.append(A_gate, qregA); circ.append(B_gate, qregB); circ = qt.QFTMultPhase(circ, qregA, qregB, qregC, nint1=nintA, nint2=nintB, nint3=nintC, poszero=True, signmag1=True, signmag2=True, signmag3=True) circ.measure(qregC, out_reg); circ.decompose(reps=1).draw(output='latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit_B,'x',digit_A,'=',digit_B*digit_A,'->',binary_C) print('Result:') for label in hist.keys(): print(digit_B,'x',digit_A,'=',qt.bin_to_dec(label, nint=nintC, phase=phase, signmag=signmag),'->',label,'with probability',float(hist[label])/shots)
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib digit = 10.25 k = 2 target = np.power(digit, k) print(digit,'^'+str(k),'=',target) nintx = qt.get_nint(digit) npresx = qt.get_npres(digit) nx = nintx + npresx + 1 print(nx, nintx, npresx) nint = qt.get_nint(target) npres = qt.get_npres(target) n = nint + npres + 1 print(n, nint) phase = True binary = qt.my_binary_repr(digit, nx, nint=nintx, phase=phase) binary_t = qt.my_binary_repr(target, n, nint=nint, phase=phase) qx = QuantumRegister(nx, 'x') qtarg = QuantumRegister(n,'targ') c_out = ClassicalRegister(n, 'c_out') circ = QuantumCircuit(qx, qtarg, c_out) in_gate = qt.input_bits_to_qubits(binary, circ, reg=qx, wrap=True) circ.append(in_gate, qx); power_gate = qt.QFTPowerN(circ, qx, qtarg, k, wrap=True, nintx=nintx, nint=nint) circ.append(power_gate, [*qx, *qtarg]); circ.measure(qtarg, c_out); circ.draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit,'^'+str(k),'=',target,'->',binary_t) print('Result:') for label in hist.keys(): print(digit,'^'+str(k),'=',qt.bin_to_dec(label, nint=nint, phase=phase),'->',label,'with probability',float(hist[label])/shots) digit = 1.25 k = 5 target = np.power(digit, k) print(digit,'^'+str(k),'=',target) nintx = qt.get_nint(digit) npresx = qt.get_npres(digit) nx = nintx + npresx + 1 print(nx, nintx, npresx) nint = qt.get_nint(target) npres = qt.get_npres(target) n = nint + npres + 1 print(n, nint) phase = True binary = qt.my_binary_repr(digit, nx, nint=nintx, phase=phase) binary_t = qt.my_binary_repr(target, n, nint=nint, phase=phase) qx = QuantumRegister(nx, 'x') qtarg = QuantumRegister(n,'targ') c_out = ClassicalRegister(n, 'c_out') circ = QuantumCircuit(qx, qtarg, c_out) in_gate = qt.input_bits_to_qubits(binary, circ, reg=qx, wrap=True) circ.append(in_gate, qx); power_gate = qt.QFTPowerN(circ, qx, qtarg, k, wrap=True, nintx=nintx, nint=nint) circ.append(power_gate, [*qx, *qtarg]); circ.measure(qtarg, c_out); shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit,'^'+str(k),'=',target,'->',binary_t) print('Result:') for label in hist.keys(): print(digit,'^'+str(k),'=',qt.bin_to_dec(label, nint=nint, phase=phase),'->',label,'with probability',float(hist[label])/shots)
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib digit = 2 a = 1 phase = False nint = qt.get_nint([digit,a]) npres = qt.get_npres([digit,a]) n = nint + npres if phase: n+=1 print(n, nint, npres) binary_x = qt.my_binary_repr(digit, n, nint=nint, phase=phase) binary_a = qt.my_binary_repr(a, n, nint=nint, phase=phase) print(binary_x,binary_a) print('It is',digit>=a,'that',str(digit)+' >= '+str(a)+'.') qx = QuantumRegister(n, 'x') qtarg = QuantumRegister(1, 'targ') qans = QuantumRegister(n-1, 'anc') out_reg = ClassicalRegister(1,'out_reg') circ = QuantumCircuit(qx, qtarg, qans, out_reg) x_gate = qt.input_bits_to_qubits(binary_x, circ, reg=qx, wrap=True) circ.append(x_gate, qx); intcomp_gate = qt.integer_compare(circ, qx, qtarg, qans, a, geq=True, wrap=True) circ.append(intcomp_gate, [*qx, *qtarg, *qans]); circ.measure(qtarg, out_reg); circ.draw('latex') circ.decompose(reps=1).draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit,'>=',a,'=',digit>=a) print('Result:') for label in hist.keys(): print(digit,'>=',a,'=',bool(qt.bin_to_dec(label, nint=nint, phase=False)),'->',label,'with probability',float(hist[label])/shots) digit = 1.5 a = 2.25 phase = False nint = qt.get_nint([digit,a]) npres = qt.get_npres([digit,a]) n = nint + npres if phase: n+=1 print(n, nint, npres) binary_x = qt.my_binary_repr(digit, n, nint=nint, phase=phase) binary_a = qt.my_binary_repr(a, n, nint=nint, phase=phase) int_x = qt.bin_to_dec(binary_x, nint=None, phase=False) int_a = qt.bin_to_dec(binary_a, nint=None, phase=False) print(digit,'->',binary_x,'->',int(int_x),',',a,'->',binary_a,'->',int(int_a)) print('It is',digit>=a,'that',str(digit)+' >= '+str(a)+', and it is',int_x>=int_a,'that',str(int_x)+' >= '+str(int_a)) qx = QuantumRegister(n, 'x') qtarg = QuantumRegister(1, 'targ') qans = QuantumRegister(n-1, 'anc') out_reg = ClassicalRegister(1,'out_reg') circ = QuantumCircuit(qx, qtarg, qans, out_reg) x_gate = qt.input_bits_to_qubits(binary_x, circ, reg=qx, wrap=True) circ.append(x_gate, qx); intcomp_gate = qt.integer_compare(circ, qx, qtarg, qans, int_a, geq=True, wrap=True) circ.append(intcomp_gate, [*qx, *qtarg, *qans]); circ.measure(qtarg, out_reg); shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit,'>=',a,'=',digit>=a) print('Result:') for label in hist.keys(): print(digit,'>=',a,'=',bool(qt.bin_to_dec(label, nint=nint, phase=False)),'->',label,'with probability',float(hist[label])/shots) digit = -1.5 a = 2.25 phase = True nint = qt.get_nint([digit,a]) npres = qt.get_npres([digit,a]) n = nint + npres if phase: n+=1 print(n, nint, npres) binary_x = qt.my_binary_repr(digit, n, nint=nint, phase=phase) binary_a = qt.my_binary_repr(a, n, nint=nint, phase=phase) binary_a_ = qt.my_binary_repr(a, n, nint=nint, phase=phase) if binary_a[0]=='0': binary_a_ = '1'+binary_a[1:] elif binary_a[0]=='1': binary_a_ = '0'+binary_a[1:] binary_x_ = qt.my_binary_repr(digit, n, nint=nint, phase=phase) if binary_x[0]=='0': binary_x_ = '1'+binary_x[1:] elif binary_x[0]=='1': binary_x_ = '0'+binary_x[1:] int_x = qt.bin_to_dec(binary_x_, nint=None, phase=False) int_a = qt.bin_to_dec(binary_a_, nint=None, phase=False) print(digit,'->',binary_x,'->',binary_x_,'->',int(int_x),',',a,'->',binary_a,'->',binary_a_,'->',int(int_a)) print('It is',digit>=a,'that',str(digit)+' >= '+str(a)+', and it is',int_x>=int_a,'that',str(int_x)+' >= '+str(int_a)) qx = QuantumRegister(n, 'x') qtarg = QuantumRegister(1, 'targ') qans = QuantumRegister(n-1, 'anc') out_reg = ClassicalRegister(1,'out_reg') circ = QuantumCircuit(qx, qtarg, qans, out_reg) x_gate = qt.input_bits_to_qubits(binary_x, circ, reg=qx, wrap=True) circ.append(x_gate, qx); circ.x(qx[-1]); intcomp_gate = qt.integer_compare(circ, qx, qtarg, qans, int_a, geq=True, wrap=True) circ.append(intcomp_gate, [*qx, *qtarg, *qans]); circ.x(qx[-1]); circ.measure(qtarg, out_reg); circ.draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit,'>=',a,'=',digit>=a) print('Result:') for label in hist.keys(): print(digit,'>=',a,'=',bool(qt.bin_to_dec(label, nint=nint, phase=False)),'->',label,'with probability',float(hist[label])/shots) digit = -1.5 a = 2.25 phase = True nint = qt.get_nint([digit,a]) npres = qt.get_npres([digit,a]) n = nint + npres if phase: n+=1 binary_x = qt.my_binary_repr(digit, n, nint=nint, phase=phase) binary_a = qt.my_binary_repr(a, n, nint=nint, phase=phase) binary_x_ = qt.my_binary_repr(digit, n, nint=nint, phase=phase) if binary_x[0]=='0': binary_x_ = '1'+binary_x[1:] elif binary_x[0]=='1': binary_x_ = '0'+binary_x[1:] binary_a_ = qt.my_binary_repr(a, n, nint=nint, phase=phase) if binary_a[0]=='0': binary_a_ = '1'+binary_a[1:] elif binary_a[0]=='1': binary_a_ = '0'+binary_a[1:] int_x = qt.bin_to_dec(binary_x_, nint=None, phase=False) int_a = qt.bin_to_dec(binary_a_, nint=None, phase=False) qx = QuantumRegister(n, 'x') qtarg = QuantumRegister(1, 'targ') qans = QuantumRegister(n-1, 'anc') out_reg = ClassicalRegister(1,'out_reg') circ = QuantumCircuit(qx, qtarg, qans, out_reg) x_gate = qt.input_bits_to_qubits(binary_x, circ, reg=qx, wrap=True) circ.append(x_gate, qx); circ.x(qx[-1]); intcomp_gate = qt.integer_compare(circ, qx, qtarg, qans, int_a, geq=False, wrap=True) circ.append(intcomp_gate, [*qx, *qtarg, *qans]); circ.x(qx[-1]); circ.measure(qtarg, out_reg); shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit,'<=',a,'=',digit<=a) print('Result:') for label in hist.keys(): print(digit,'<=',a,'=',bool(qt.bin_to_dec(label, nint=nint, phase=False)),'->',label,'with probability',float(hist[label])/shots) digit = 3.5 a = 2.25 phase = True nint = qt.get_nint([digit,a]) npres = qt.get_npres([digit,a]) n = nint + npres if phase: n+=1 binary_x = qt.my_binary_repr(digit, n, nint=nint, phase=phase) qx = QuantumRegister(n, 'x') qtarg = QuantumRegister(1, 'targ') qans = QuantumRegister(n-1, 'anc') out_reg = ClassicalRegister(1,'out_reg') circ = QuantumCircuit(qx, qtarg, qans, out_reg) x_gate = qt.input_bits_to_qubits(binary_x, circ, reg=qx, wrap=True) circ.append(x_gate, qx); comp_gate = qt.inequal_cond(circ, qx, qtarg, qans, a, nint=nint, phase=phase, geq=False, wrap=True) circ.append(comp_gate, [*qx, *qtarg, *qans]); circ.measure(qtarg, out_reg); shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') print(digit,'<=',a,'=',digit<=a) print('Result:') for label in hist.keys(): print(digit,'<=',a,'=',bool(qt.bin_to_dec(label, nint=nint, phase=False)),'->',label,'with probability',float(hist[label])/shots)
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' width=0.75 color='black' fontsize=28 ticksize=22 figsize=(10,8) def f_x(x): return np.arctan(x) phase = True nx = 5 nintx = 3 npresx = nx - nintx if phase: npresx -= 1 xmin = -2.**(nintx) xmax = 2.**(nintx) - 2.**(-npresx) xs = np.linspace(xmin,xmax,2**nx) print(xmin, xmax) print(npresx,qt.get_npres(xs)) m = 3 bounds = np.linspace(xmin, xmax, (2**m)) norder = 1 coeffs = qt.get_bound_coeffs(f_x, bounds, norder, reterr=False).T ys = qt.piecewise_poly(xs, coeffs.T, bounds) fig = plt.figure(figsize=figsize) ax = fig.gca() for bound in bounds: ax.axvline(bound, ls=':', color='black') ax.plot(xs, f_x(xs), color='black'); ax.plot(xs, ys, color='black', ls='--', lw=3); ax.set_xlabel(r'$x$', fontsize=fontsize); ax.set_ylabel(r'$f(x)$', fontsize=fontsize); ax.set_xlim(xmin,xmax); ax.tick_params(axis='both', labelsize=ticksize); # The number of integer bits of A1, A0 and the result nint0 = qt.get_nint(coeffs[0]) nint1 = qt.get_nint(coeffs[1]) nint = nintx + nint0 # The number of precision bits of A1, A0 and the result npres0 = qt.get_npres(coeffs[0]) npres1 = qt.get_npres(coeffs[1]) npres = npresx + npres0 # The total number of bits of A1, A0 and the result n0 = npres0 + nint0 + 1 n1 = npres1 + nint1 + 1 n = npres + nint + 1 print('A0 bits:', n0) print('A1 bits:', n1) print('Result bits:', n) nsig0, nsig1 = 5, 5 coeffs[0] = qt.round_sig(coeffs[0], nsig0) coeffs[1] = qt.round_sig(coeffs[1], nsig1) # The number of integer bits of A1, A0 and the result nint0 = qt.get_nint(coeffs[0]) nint1 = qt.get_nint(coeffs[1]) nint = nintx + nint0 # The number of precision bits of A1, A0 and the result npres0 = qt.get_npres(coeffs[0]) npres1 = qt.get_npres(coeffs[1]) npres = npresx + npres0 # The total number of bits of A1, A0 and the result n0 = npres0 + nint0 + 1 n1 = npres1 + nint1 + 1 n = npres + nint + 1 print('A0 bits:', n0) print('A1 bits:', n1) print('Result bits:', n) npres0, npres1 = 4, 4 n0 = npres0 + nint0 + 1 n1 = npres1 + nint1 + 1 rcoeffs = [] for coeff in coeffs[0]: # Convert coefficient to binary string of new length n0, then calculate the corresponding decimal value rcoeff = qt.bin_to_dec(qt.my_binary_repr(coeff, n0, nint=nint0, phase=phase), nint=nint0, phase=phase) rcoeffs.append(rcoeff) coeffs[0] = np.array(rcoeffs) # Calculate the differences between the f(x) and A1x over all x fdifs = f_x(xs) - qt.piecewise_poly(xs, np.array([coeffs[0],np.zeros(len(coeffs[1]))]).T, bounds) coeffs_ = [] bounds__ = bounds bounds__[-1] = np.inf for i in np.arange(len(bounds__))[:-1]: # Calculate the mean differences in each domain to be the new bias A0 coeffs_.append(np.mean(fdifs[np.greater_equal(xs,bounds__[i])&np.greater(bounds__[i+1],xs)])) coeffs[1] = np.array(coeffs_) nint1 = qt.get_nint(coeffs[1]) print(nint1) rcoeffs = [] for coeff in coeffs[1]: # Convert coefficient to binary string of new length n1, then calculate the corresponding decimal value rcoeff = qt.bin_to_dec(qt.my_binary_repr(coeff, n1, nint=nint1, phase=phase), nint=nint1, phase=phase) rcoeffs.append(rcoeff) coeffs[1] = np.array(rcoeffs) # The number of integer bits of A1, A0 and the result nint0 = qt.get_nint(coeffs[0]) nint1 = qt.get_nint(coeffs[1]) nint = nintx + nint0 # The number of precision bits of the result npres = npresx + npres0 # The total number of bits of A1, A0 and the result n0 = npres0 + nint0 + 1 n1 = npres1 + nint1 + 1 n = npres + nint + 1 print('A0 bits:', n0) print('A1 bits:', n1) print('Result bits:', n) ys_rnd = qt.piecewise_poly(xs, coeffs.T, bounds) fig = plt.figure(figsize=figsize) ax = fig.gca() for bound in bounds: ax.axvline(bound, ls=':', color='black') ax.plot(xs, f_x(xs), color='black'); ax.plot(xs, ys, color='black', ls='--', lw=3); ax.plot(xs, ys_rnd, color='black', ls=':', lw=3); ax.set_xlabel(r'$x$', fontsize=fontsize); ax.set_ylabel(r'$f(x)$', fontsize=fontsize); ax.set_xlim(xmin,xmax); ax.tick_params(axis='both', labelsize=ticksize); A1x = qt.piecewise_poly(xs, np.array([coeffs[0],np.zeros(len(coeffs[1]))]).T, bounds) nint = qt.get_nint([A1x, ys_rnd]) n = npres + nint + 1 print(nint, npres, n) n, n0, nint, nintcs, coeffs, bounds = qt.optimize_coeffs_qubits(f_x, xs, m, npres0, npres1, norder=norder, phase=phase)
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' width=0.75 color='black' fontsize=28 ticksize=22 figsize=(10,8) digit = 1. bounds = np.array([-2., 0., 1.5, 3.]) print('Domain boundaries:',bounds) m = int(np.ceil(np.log2(len(bounds)))) print('Label qubits:',m) phase = True nint = qt.get_nint([digit,*bounds]) npres = qt.get_npres([digit,*bounds]) n = nint + npres if phase: n+=1 binary_x = qt.my_binary_repr(digit, n, nint=nint, phase=phase) qx = QuantumRegister(n, 'x') qtarg = QuantumRegister(1, 'targ') qans = QuantumRegister(n-1, 'a') qlab = QuantumRegister(m, 'l') out_reg = ClassicalRegister(m,'out') circ = QuantumCircuit(qx, qtarg, qans, qlab, out_reg) x_gate = qt.input_bits_to_qubits(binary_x, circ, reg=qx, wrap=True) circ.append(x_gate, qx); circ = qt.label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nint, phase=phase) circ.measure(qlab, out_reg); circ.draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Result:') for label in hist.keys(): if qt.bin_to_dec(label, nint=None, phase=False)==0.: print(digit,'is outwith the bounds of','['+str(bounds[0])+',',str(bounds[-1])+')','with probability',float(hist[label])/shots) else: print(bounds[int(qt.bin_to_dec(label, nint=None, phase=False))-1],'<=',digit,'<',bounds[int(qt.bin_to_dec(label, nint=None, phase=False))],'with probability',float(hist[label])/shots) digit = 1. bounds = np.array([-2., 0., 1.5, 3.]) print('Domain boundaries:',bounds) m = int(np.ceil(np.log2(len(bounds)))) phase = True nint = qt.get_nint([digit,*bounds]) npres = qt.get_npres([digit,*bounds]) n = nint + npres if phase: n+=1 binary_x = qt.my_binary_repr(digit, n, nint=nint, phase=phase) print('Label qubits:',m) A1s = np.array([3., -1., 2.5, -0.5]) nintc = qt.get_nint(A1s) npresc = qt.get_npres(A1s) nc = nintc + npresc if phase: nc+=1 n = np.max([n,nc]) qx = QuantumRegister(n, 'x') qcoff = QuantumRegister(n, 'c') qlab = QuantumRegister(m, 'l') out_reg = ClassicalRegister(n,'out') circ = QuantumCircuit(qx, qcoff, qlab, out_reg) qtarg = qcoff[0] qans = qcoff[1:] x_gate = qt.input_bits_to_qubits(binary_x, circ, reg=qx, wrap=True) circ.append(x_gate, qx); l_gate = qt.label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nint, phase=phase, wrap=True) circ.append(l_gate, [*qx, qtarg, *qans, *qlab]); circ = qt.cin_gate(circ, qcoff, qlab, A1s, nint=nintc, phase=phase) circ.measure(qcoff, out_reg); circ.draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Target:') ind = np.argwhere((np.array([bounds[-1],*bounds[:-1]])<=digit)*(bounds>digit)).flatten()[0] print(A1s[ind],'as',bounds[ind-1],'<=',digit,'<',bounds[ind]) print('Result:') for label in hist.keys(): print(qt.bin_to_dec(label, nint=nintc, phase=phase),'->',label,'with probability',float(hist[label])/shots) qx = QuantumRegister(n, 'x') qcoff = QuantumRegister(n, 'c') qlab = QuantumRegister(m, 'l') out_reg = ClassicalRegister(n,'out') circ = QuantumCircuit(qx, qcoff, qlab, out_reg) qtarg = qcoff[0] qans = qcoff[1:] x_gate = qt.input_bits_to_qubits(binary_x, circ, reg=qx, wrap=True) circ.append(x_gate, qx); l_gate = qt.label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nint, phase=phase, wrap=True) circ.append(l_gate, [*qx, qtarg, *qans, *qlab]); X_gate = qt.cin_gate(circ, qcoff, qlab, A1s, nint=nintc, phase=phase, wrap=True, label='X') X_gate_inv = qt.cin_gate(circ, qcoff, qlab, A1s, nint=nintc, phase=phase, wrap=True, inverse=True, label='X') circ.append(X_gate, [*qcoff, *qlab]); circ.append(X_gate_inv, [*qcoff, *qlab]); circ.measure(qcoff, out_reg); circ.draw('latex') shots=10 emulator = Aer.get_backend('qasm_simulator') job = execute(circ, emulator, shots=shots ) hist = job.result().get_counts() print('Result:') for label in hist.keys(): print(qt.bin_to_dec(label, nint=nintc, phase=phase),'->',label,'with probability',float(hist[label])/shots) def f_x(x): return np.arctan(x) phase = True nintx = 3 nx = 5 npresx = nx - nintx if phase: npresx-=1 xmin = -2.**(nintx) xmax = 2.**(nintx) - 2.**(-npresx) xs = np.linspace(xmin,xmax,2**nx) npres0, npres1 = 4, 4 norder = 1 m = 3 n, n0, nint, nintcs, coeffs, bounds = qt.optimize_coeffs_qubits(f_x, xs, m, npres0, npres1, norder=norder, phase=phase, label_swap=True) print('Qubits:', nx, n, n0, m) print('Integer qubits:', nintx, nint, nintcs[0,0], nintcs[0,1]) print('Memory:', 16*(2**(n+n0+nx+m))/2**20) _, _, _, _, coeffs_, _ = qt.optimize_coeffs_qubits(f_x, xs, m, npres0, npres1, norder=norder, phase=phase, label_swap=False) ys_rnd = qt.piecewise_poly(xs, coeffs_.T, bounds) qx = QuantumRegister(nx, 'x') qout = QuantumRegister(n, 'o') qlab = QuantumRegister(m, 'l') qcoff = QuantumRegister(n0, 'c') circ = QuantumCircuit(qx, qout, qlab, qcoff) # 1. Initialize the x register (let as produce a superposition across all x values) for i in np.arange(nx): circ.h(qx[i]); # We can use the coefficient register as the ancillary register for the labelling step as before qtarg = qcoff[0] qans = [*qcoff[1:], *qout][:nx-1] # 2. Label the data with the labelling operation l_gate = qt.label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nintx, phase=phase, wrap=True) circ.append(l_gate, [*qx, qtarg, *qans, *qlab]); # 3. Load A1 into the coefficient register conditioned on the label register X1_gate = qt.cin_gate(circ, qcoff, qlab, coeffs[0], nint=nintcs[0,0], phase=phase, wrap=True) circ.append(X1_gate, [*qcoff, *qlab]); # 4. Multiply the coefficient and x registers and save the output on the output register mul_gate = qt.QFTMultPhase(circ, qcoff, qx, qout, wrap=True, nint1=nintcs[0,0], nint2=nintx, nint3=nint) circ.append(mul_gate, [*qcoff, *qx, *qout]); # 5. Unload A1 from the coefficient register with the inverse load operation X1_gate_inv = qt.cin_gate(circ, qcoff, qlab, coeffs[0], nint=nintcs[0,0], phase=phase, wrap=True, inverse=True) circ.append(X1_gate_inv, [*qcoff, *qlab]); # 6. Load A0 into the coefficient register conditioned on the label register X0_gate = qt.cin_gate(circ, qcoff, qlab, coeffs[1], nint=nintcs[0,1], phase=phase, wrap=True) circ.append(X0_gate, [*qcoff, *qlab]); # 7. Add the coefficient register to the output register add_gate = qt.QFTAddition(circ, qcoff, qout, nint1=nintcs[0,1], nint2=nint, wrap=True, phase=phase) circ.append(add_gate, [*qcoff, *qout]); # Unload A0 to clear the coefficient register X0_gate_inv = qt.cin_gate(circ, qcoff, qlab, coeffs[1], nint=nintcs[0,1], phase=phase, wrap=True, inverse=True) circ.append(X0_gate_inv, [*qcoff, *qlab]); # Unlabel the label register l_gate_inv = qt.label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nintx, phase=phase, wrap=True, inverse=True) circ.append(l_gate_inv, [*qx, qtarg, *qans, *qlab]); backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = result.get_statevector() state_v = np.asarray(state_vector).reshape((2**n0,2**m,2**n,2**nx)).T state_v = np.sum(state_v, axis=(2,3)) y_unorm = np.argwhere(np.round(np.abs(state_v)**2,15)>0.)[:,1] y_out = [] for y in y_unorm: y_out.append(qt.bin_to_dec(qt.my_binary_repr(y, n=n, nint=None, phase=False), nint=nint, phase=phase)) xs_comp = [] xs_ = np.linspace(-2**(nx-1),2**(nx-1)-1,2**nx) for x in xs_: binary = qt.my_binary_repr(x, nx, nint=None, phase=True) xs_comp.append(int(qt.bin_to_dec(binary, nint=None, phase=False))) y_out = np.array(y_out)[xs_comp] fig = plt.figure(figsize=figsize) ax = fig.gca() for bound in bounds: ax.axvline(bound, ls=':', color='black') ax.plot(xs, f_x(xs), color='black'); ax.scatter(xs, y_out, color='black', lw=2); ax.plot(xs, ys_rnd, color='black', ls=':', lw=3); ax.set_xlabel(r'$x$', fontsize=fontsize); ax.set_ylabel(r'$f(x)$', fontsize=fontsize); ax.set_xlim(xmin,xmax); ax.tick_params(axis='both', labelsize=ticksize); plt.show() def f_x(x): return np.arctan(x) phase = True phasex = True nintx = 3 nx = 5 npresx = nx - nintx xmin = 0. if phasex: npresx-=1 xmin = -2.**(nintx) xmax = 2.**(nintx) - 2.**(-npresx) xs = np.linspace(xmin,xmax,2**nx) n, n0, nint, nintcs, coeffs, bounds = qt.optimize_coeffs_qubits(f_x, xs, m, npres0, npres1, norder=norder, phase=phase, label_swap=True) print('Qubits:', nx, n, n0, m) print('Integer qubits:', nintx, nint, nintcs[0,0], nintcs[0,1]) print('Memory:', 16*(2**(n+n0+nx+m))/2**20) qx = QuantumRegister(nx, 'x') qout = QuantumRegister(n, 'o') qlab = QuantumRegister(m, 'l') qcoff = QuantumRegister(n0, 'c') circ = QuantumCircuit(qx, qout, qlab, qcoff) for i in np.arange(nx): circ.h(qx[i]); lpf_gate = qt.lpf(circ, qx, qout, qlab, qcoff, coeffs, bounds, nintx=nintx, nintcs=nintcs, nint=nint, phase=phase, phasex=phasex, wrap=True) circ.append(lpf_gate, [*qx, *qout, *qlab, *qcoff]); backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = result.get_statevector() state_v = np.asarray(state_vector).reshape((2**n0,2**m,2**n,2**nx)).T state_v = np.sum(state_v, axis=(2,3)) y_unorm = np.argwhere(np.round(np.abs(state_v)**2,15)>0.)[:,1] y_out = [] for y in y_unorm: y_out.append(qt.bin_to_dec(qt.my_binary_repr(y, n=n, nint=None, phase=False), nint=nint, phase=phase)) xs_comp = [] xs_ = np.linspace(-2**(nx-1),2**(nx-1)-1,2**nx) for x in xs_: binary = qt.my_binary_repr(x, nx, nint=None, phase=True) xs_comp.append(int(qt.bin_to_dec(binary, nint=None, phase=False))) y_out = np.array(y_out)[xs_comp] Ax = qt.piecewise_poly(xs, np.array([coeffs_[0],np.zeros(len(coeffs_[1]))]).T, bounds) fig = plt.figure(figsize=figsize) ax = fig.gca() for bound in bounds: ax.axvline(bound, ls=':', color='black') ax.plot(xs, f_x(xs), color='black'); ax.scatter(xs, y_out, color='black', lw=2); #ax.plot(xs, Ax, color='black', lw=2); ax.set_xlabel(r'$x$', fontsize=fontsize); ax.set_ylabel(r'$f(x)$', fontsize=fontsize); ax.set_xlim(xmin,xmax); ax.tick_params(axis='both', labelsize=ticksize); plt.show()
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib from qiskit.circuit.library.standard_gates import RYGate matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' width=0.75 color='black' fontsize=28 ticksize=22 figsize=(10,8) def targ_dist(x, bias=0): y = (x+bias)**(-7./6) return y/np.sqrt(np.sum(np.abs(y)**2)) nx = 6 nintx = 4 xmin = -2.**(nintx) xmax = 2.**(nintx) - 2.**(-nx+nintx+1) xs = np.linspace(xmin, xmax, 2**nx) amps = targ_dist(xs, bias=2.**(nintx+1)) probs = np.abs(amps)**2 fig = plt.figure(figsize=figsize) ax = fig.gca() ax.plot(xs, probs, color='black') ax.set_xlabel(r'$x$', fontsize=fontsize); ax.set_ylabel(r'$\sqrt{p(x)}$', fontsize=fontsize); ax.set_xlim(xmin,xmax); ax.tick_params(axis='both', labelsize=ticksize); def GR_func(j, probs, m, n): j = np.array(j).astype(int) As = [] for i in np.arange(2**m): As.append(np.sum(probs[i*2**(n-m):(i+1)*2**(n-m)])) As1 = [] for i in np.arange(2**(m+1)): As1.append(np.sum(probs[i*2**(n-(m+1)):(i+1)*2**(n-(m+1))])) return np.arccos(np.sqrt(np.array(As1)[::2][j]/np.array(As)[j])) qx = QuantumRegister(nx, 'x') circ = QuantumCircuit(qx) coeffs = np.arccos(np.sqrt(np.sum(probs[:2**(nx-1)]))) circ.ry(2*coeffs, qx[nx-1]); for m in np.arange(1,nx): js = np.arange(2**m) coeffs = GR_func(js, probs, m, nx) for j in np.arange(2**m): control_bits = qt.my_binary_repr(j, m, nint=None, phase=False) if j>0: control_bits_ = qt.my_binary_repr(j-1, m, nint=None, phase=False)[::-1] else: control_bits_ = np.ones(m).astype(int).astype(str) for i,control_bit in enumerate(control_bits[::-1]): if control_bit=='0' and control_bits_[i]=='1': circ.x(qx[nx-i-1]); R_gate = RYGate(2*coeffs[j]).control(int(m)) circ.append(R_gate, [*qx[nx-m-1:][::-1]]); if j<2**m-1: control_bits_ = qt.my_binary_repr(j+1, m, nint=None, phase=False)[::-1] else: control_bits_ = np.ones(m).astype(int).astype(str) for i,control_bit in enumerate(control_bits[::-1]): if control_bit=='0' and control_bits_[i]=='1': circ.x(qx[nx-i-1]); backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) if np.any(state_vector.imag>0.): state_v = np.copy(state_vector) else: state_v = state_vector.real fig = plt.figure(figsize=figsize) ax = fig.gca() ax.scatter(xs, np.abs(state_v)**2, color='black') ax.plot(xs, probs, color='black') ax.set_xlabel(r'$x$', fontsize=fontsize); ax.set_ylabel(r'$\sqrt{p(x)}$', fontsize=fontsize); ax.set_xlim(xmin,xmax); ax.tick_params(axis='both', labelsize=ticksize); circ.draw('latex') # Register size for storing the zeta angles nanc = 8 # Register size for storing the linear coefficients for the piecewise function ncoff = 8 # Register size for the label register nlab = 4 print('Qubits:', nx, nanc, ncoff, nlab,'total:',nanc+ncoff+nx+nlab) print('Memory:', 16*(2**(nanc+ncoff+nx+nlab))/2**20) qx = QuantumRegister(nx, 'x') qanc = QuantumRegister(nanc, 'anc') qlab = QuantumRegister(nlab, 'l') qcoff = QuantumRegister(ncoff, 'c') circ = QuantumCircuit(qx, qanc, qlab, qcoff) mlow = 4 probs_ = [] for i in np.arange(2**mlow): probs_.append(np.sum(probs[i*2**(nx-mlow):(i+1)*2**(nx-mlow)])) probs_ = np.array(probs_) GRl_gate = qt.Grover_Rudolph_load(circ, qx[nx-mlow:], probs_, wrap=True) circ.append(GRl_gate, qx[nx-mlow:]); for m in np.arange(mlow,nx): js = np.arange(2**m) coeffs = GR_func(js, probs, m, nx) f_x = lambda x: GR_func(x, probs, m, nx) bounds_ = np.linspace(0,2**m,(2**nlab)+1).astype(int) coeffs = qt.get_bound_coeffs(f_x, bounds_, 1, reterr=False).T#[::-1] bounds = bounds_[1:] max_list0 = np.array([coeffs[0], coeffs[1], coeffs[0]*2**nx, (coeffs[0]*2**nx)+coeffs[-1]]) max_list1 = max_list0 nintcs = [] nintcs.append(int(np.ceil(np.log2(np.max(np.abs(max_list0)))))) nintcs.append(int(np.ceil(np.log2(np.max(np.abs(max_list1)))))) nint = nintcs[-1] nintcs = np.array([nintcs]) func_gate = qt.linear_piecewise_approx(circ, qx[nx-m:], qanc, qlab, qcoff, coeffs, bounds, nint=nint, nintx=nx, nintcs=nintcs, phase=False, wrap=True) circ.append(func_gate, [*qx[nx-m:], *qanc, *qlab, *qcoff]); rot_gate = qt.CRotation(circ, qanc, qx[nx-m-1], nint=nint, wrap=True) circ.append(rot_gate, [*qanc, qx[nx-m-1]]) func_gate_inv = qt.linear_piecewise_approx(circ, qx[nx-m:], qanc, qlab, qcoff, coeffs, bounds, nint=nint, nintx=nx, nintcs=nintcs, phase=False, wrap=True, inverse=True) circ.append(func_gate_inv, [*qx[nx-m:], *qanc, *qlab, *qcoff]); circ.draw('latex') backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) if np.any(state_vector.imag>0.): state_v = np.copy(state_vector) else: state_v = state_vector.real state_v = np.asarray(state_vector).reshape((2**ncoff,2**nlab,2**nanc,2**nx)).T state_v = np.sum(state_v, axis=(1,2,3)) fig = plt.figure(figsize=figsize) ax = fig.gca() ax.scatter(xs, np.abs(state_v)**2, color='black') ax.plot(xs, probs, color='black') ax.set_xlabel(r'$x$', fontsize=fontsize); ax.set_ylabel(r'$\sqrt{p(x)}$', fontsize=fontsize); ax.set_xlim(xmin,xmax); ax.tick_params(axis='both', labelsize=ticksize);
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ from qiskit.circuit.library import PhaseGate from qiskit.extensions import HamiltonianGate from qiskit.quantum_info import random_hermitian import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' width=0.75 color='black' fontsize=28 ticksize=22 figsize=(10,8) nx = 1 A = random_hermitian(2**nx).to_matrix() print(A) p_suc = 0.95 phase = True n = nx + int(np.ceil(np.log2(2. + 1./(2.*(1-p_suc))))) print('The number of output qubits is set to',n) lambda_min = np.real(np.min(np.linalg.eigvals(A))) lambda_max = np.real(np.max(np.linalg.eigvals(A))) kappa = np.abs(lambda_max/lambda_min) print('Minimum eigenvalue, maximum eigenvalue and conditional number of A:', lambda_min, lambda_max, kappa) # Calculate the new scale of the relative magnitudes of maximum and minimum eigenvalues rescale = int((2**(n-phase)-1)/kappa) # Make sure this scaling is not vanishingly small if rescale < 1.e-7: rescale = 1 # determine the number of integer qubits required nint = qt.get_nint(rescale) # Assert that the number of integer qubits is equal to or greater than the number of ancillary qubits assigned if nint < n - phase: nint = n - phase t0 = qt.bin_to_dec(qt.my_binary_repr(rescale, nint=nint, n=nint, phase=False), nint=0, phase=False) / (lambda_min * (2**phase)) t = 2 * np.pi * t0 qreg = QuantumRegister(nx, 'x') qout = QuantumRegister(n, 'out') circ = QuantumCircuit(qreg, qout) A_gate = HamiltonianGate(A, t) circ.h(qreg[0]); circ = qt.PhaseEst(circ, qreg, qout, A_gate) circ.draw('latex') backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) state_v = np.asarray(state_vector).reshape((2**n,2**nx)).T state_v = np.sum(state_v, axis=0) state_v = state_v/np.sqrt(np.sum(np.abs(state_v)**2)) xs = np.fft.fftfreq(2**n,2.**(-n))/(t0*2**(n)) fig = plt.figure(figsize=np.array(figsize)*[1,2]) ax = fig.add_subplot(211) plt.scatter(xs, state_v.real, marker='.', color='black') plt.scatter(xs, state_v.imag, marker='.', color='grey') ax.set_ylabel('Amplitude', fontsize=fontsize); ax.tick_params(axis='both', labelsize=ticksize); ax.axvline(lambda_min, ls='--', color='black') ax.axvline(lambda_max, ls=':', color='black') ax = fig.add_subplot(212) plt.scatter(xs, np.abs(state_v)**2, marker='.', color='black') ax.set_xlabel(r'$\theta$', fontsize=fontsize); ax.set_ylabel('Probability', fontsize=fontsize); ax.tick_params(axis='both', labelsize=ticksize); ax.axvline(lambda_min, ls='--', color='black') ax.axvline(lambda_max, ls=':', color='black') plt.show()
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ from qiskit.circuit.library import ExactReciprocal from qiskit.extensions import HamiltonianGate from qiskit.quantum_info import random_hermitian import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' width=0.75 color='black' fontsize=28 ticksize=22 figsize=(10,8) def HHL(circ, qb, qanc, qtarg, A, t=2.*np.pi, scaling=None, wrap=False, inverse=False, phase=True, label='HHL'): n = len(qb) nanc = len(qanc) if inverse: wrap = True if wrap: qb = QuantumRegister(n, 'b') qanc = QuantumRegister(nanc, 'anc') qtarg = QuantumRegister(1, 'targ') circ = QuantumCircuit(qb, qanc, qtarg) # Define unitary operator given matrix A and evolution time t A_gate = HamiltonianGate(A, t) # Apply phase estimation qe_gate = qt.PhaseEst(circ, qb, qanc, A_gate, wrap=True, do_swaps=False, reverse_bits=True) circ.append(qe_gate, [*qb, *qanc]); # Apply ExactReciprocal to rotate the target qubit proportionally to the given scaling and the inverse of the # values stored in the computational basis of the ancillary register rec_gate = ExactReciprocal(nanc, scaling=scaling, neg_vals=phase).to_gate() circ.append(rec_gate, [*qanc[::-1], qtarg]); # Apply the inverse phase estimation qe_gate_inv = qt.PhaseEst(circ, qb, qanc, A_gate, wrap=True, inverse=True, do_swaps=False, reverse_bits=True) circ.append(qe_gate_inv, [*qb, *qanc]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ n = 2 A = random_hermitian(2**n).to_matrix() print(A) lambda_min = np.min(np.abs(np.linalg.eigvals(A))) lambda_max = np.max(np.abs(np.linalg.eigvals(A))) kappa = np.abs(lambda_max/lambda_min) print('Minimum eigenvalue, maximum eigenvalue and conditional number of A:', lambda_min, lambda_max, kappa) phase = True # Choose a success probability of determining eigenvalue estimation p_suc = 0.99 # Determine the number of ancillary qubits to ensure the given success probability nanc = n + int(np.ceil(np.log2(2. + 1./(2.*(1-p_suc))))) # Calculate the new scale of the relative magnitudes of maximum and minimum eigenvalues rescale = int((2**(nanc-phase)-1)/kappa) # Make sure this scaling is not vanishingly small if rescale < 1.e-7: rescale = 1 # determine the number of integer qubits required nint = qt.get_nint(rescale) # Assert that the number of integer qubits is equal to or greater than the number of ancillary qubits assigned if nint < nanc - phase: nint = nanc - phase # We can determine the scaling of the rotation of step 3 (variable c) scaling = qt.bin_to_dec(qt.my_binary_repr(rescale, nint=nint, n=nint, phase=False), nint=0, phase=False) t0 = scaling / (lambda_min * (2**phase)) t = 2 * np.pi * t0 qb = QuantumRegister(n, 'b') circ = QuantumCircuit(qb) circ.h(qb); backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() in_vector = np.asarray(result.get_statevector()) print('The state amplitudes of b are:',in_vector) targ = np.matmul(np.linalg.inv(A),in_vector) print('The target state amplitudes of x are:',targ) qanc = QuantumRegister(nanc, 'anc') qtarg = QuantumRegister(1, 'targ') circ.add_register(qanc, qtarg) circ = HHL(circ, qb, qanc, qtarg, A, t=t, scaling=scaling) circ.draw('latex') backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) state_v = np.asarray(state_vector).reshape((2**1,2**nanc,2**n)) # 1, nanc, n print(state_v.shape) norm_ = np.sqrt(np.sum(np.abs(state_v[1])**2)) print('The target qubit is in the 1 state with probability:',norm_) state_v = state_v[1,0] print(state_v) state_v = np.array(state_v/np.sqrt(np.sum(np.abs(state_v)**2))) norm = norm_/lambda_min out = state_v*norm print('The amplitudes of the resulting states are:', out) print('Ratio of real part of output to target:',out.real/targ.real) print('Ratio of imaginary part of output to target:',out.imag/targ.imag)
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ from qiskit.circuit.library import StatePreparation, RYGate from qiskit.quantum_info import Statevector import qiskit_tools as qt import numpy as np import matplotlib.pyplot as plt import matplotlib from tqdm import tqdm from datetime import datetime # Shake things up by changing the random seed rseed = int(datetime.now().timestamp()) np.random.seed(rseed) from sklearn.gaussian_process.kernels import RBF from sklearn.gaussian_process import GaussianProcessRegressor matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' width=0.75 color='black' fontsize=28 ticksize=22 figsize=(10,8) N = 4 n = int(np.ceil(np.log2(N))) xmin, xmax = 0, 8 X_train = np.linspace(start=xmin, stop=xmax, num=2**n).reshape(-1, 1) def y_targ(x): return np.squeeze(x*np.sin(x)) noise_std = 0.75 y_train = y_targ(X_train) + np.random.normal(0,noise_std,N) Nast = 16 X = np.linspace(start=xmin, stop=xmax, num=Nast).reshape(-1, 1) y = y_targ(X) def SEK(X1, X2, ls=1.0, sig=1.0): sqdist = np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T) return sig * np.exp(-0.5 * sqdist / ls**2) sigma = 2*noise_std ls = 2.**(-(xmax-xmin)/Nast) def posterior(X_s, X_train, Y_train, l=1.0, sigma_f=1.0, sigma_y=1e-8): K = SEK(X_train, X_train, l, sigma_f) + sigma_y**2 * np.eye(len(X_train)) K_s = SEK(X_train, X_s, l, sigma_f) K_ss = SEK(X_s, X_s, l, sigma_f) K_inv = np.linalg.inv(K) mu_s = K_s.T.dot(K_inv).dot(Y_train) cov_s = K_ss - K_s.T.dot(K_inv).dot(K_s) return mu_s, cov_s mean_prediction, cov_s = posterior(X, X_train, y_train, l=ls, sigma_f=sigma, sigma_y=noise_std) std_prediction = np.diag(cov_s) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) ax.plot(X, y, label=r"$f(x) = x \sin(x)$", linestyle="dotted") ax.errorbar( X_train, y_train, noise_std, linestyle="None", color="tab:blue", marker=".", markersize=10, label="Observations", ) ax.plot(X, mean_prediction, label="Mean prediction", marker='.') ax.fill_between( X.ravel(), mean_prediction - 1.96 * std_prediction, mean_prediction + 1.96 * std_prediction, color="tab:orange", alpha=0.5, label=r"95% confidence interval", ) ax.legend() ax.set_xlabel("$x$") ax.set_ylabel("$f(x)$") plt.show() # Pick the middle x* to evaluate u_ind = (len(X)//2) - 1 # Define v and u v = y_train u = SEK(X, X_train, ls, sig=sigma)[u_ind] # Determine normalisation of v and u v_norm = np.sqrt(np.sum(np.abs(v)**2)) u_norm = np.sqrt(np.sum(np.abs(u)**2)) # Normalised vectors v and u v_ = v/v_norm u_ = u/u_norm # Determine A A = SEK(X_train, X_train, ls, sig=sigma) + (np.eye(len(X_train))*noise_std**2) kappa = np.linalg.cond(A) lambda_min = np.min(np.abs(np.linalg.eigvals(A))) lambda_max = np.max(np.abs(np.linalg.eigvals(A))) # Choose a success probability of determining eigenvalue estimation p_suc = 0.99 # Determine the number of ancillary qubits to ensure the given success probability nanc = n + int(np.ceil(np.log2(2. + 1./(2.*(1-p_suc))))) phase = True # Calculate the new scale of the relative magnitudes of maximum and minimum eigenvalues rescale = int((2**(nanc-phase)-1)/kappa) # Make sure this scaling is not vanishingly small if rescale < 1.e-7: rescale = 1 # determine the number of integer qubits required nint = qt.get_nint(rescale) # Assert that the number of integer qubits is equal to or greater than the number of ancillary qubits assigned if nint < nanc - phase: nint = nanc - phase # We can determine the scaling of the rotation of step 3 (variable c) scaling = qt.bin_to_dec(qt.my_binary_repr(rescale, nint=nint, n=nint, phase=False), nint=0, phase=False) t0 = scaling / (lambda_min * (2**phase)) t = 2 * np.pi * t0 qcont = QuantumRegister(1, 'cont') qtarg = QuantumRegister(1, 'targ') qreg = QuantumRegister(n, 'x') qanc = QuantumRegister(nanc, 'anc') circ = QuantumCircuit(qanc, qtarg, qreg, qcont) circ.h(qcont); circ.barrier(); prepv_gate = StatePreparation(Statevector(v_)).control(1) circ.append(prepv_gate, [qcont, *qreg]); circ.barrier(); circ.x(qcont); circ.cx(qcont, qtarg); circ.barrier(); prepu_gate = StatePreparation(Statevector(u_)).control(1) circ.append(prepu_gate, [qcont, *qreg]); circ.x(qcont); circ.barrier(); hhl_gate = qt.HHL(circ, qreg, qanc, qtarg, A, t=t, scaling=scaling, wrap=True).control(1) circ.append(hhl_gate, [qcont, *qreg, *qanc, qtarg]); circ.draw('latex') backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) state_v = np.asarray(state_vector).reshape((2**1, 2**n, 2**1, 2**nanc)).T state_v = state_v[0,1,:,1] targ_v = np.matmul(np.linalg.inv(A),v_)*np.sqrt(2.) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) plt.scatter(np.arange(2**n), targ_v, marker='o', color='red') plt.scatter(np.arange(2**n), state_v.real, marker='.', color='black') ax.set_ylabel('Amplitude', fontsize=fontsize); ax.tick_params(axis='both', labelsize=ticksize); state_u = np.asarray(state_vector).reshape((2**1, 2**n, 2**1, 2**nanc)).T state_u = state_u[0,1,:,0] targ_u = u_/np.sqrt(2.) fig = plt.figure(figsize=np.array(figsize)) ax = fig.add_subplot(111) plt.scatter(np.arange(2**n), targ_u, marker='o', color='red') plt.scatter(np.arange(2**n), state_u.real, marker='.', color='black') ax.set_ylabel('Amplitude', fontsize=fontsize); ax.tick_params(axis='both', labelsize=ticksize); state_v = np.asarray(state_vector).reshape((2**1, 2**n, 2**1, 2**nanc)).T state_v = state_v[0,1].T X_matrix = np.array([[0,1],[1,0]]) mu_out = np.matmul(state_v.flatten(),np.matmul(X_matrix, state_v.real).flatten()).real*(u_norm*v_norm*scaling/np.sqrt(2.)) print(mu_out, mean_prediction[u_ind]) mus = [] stds = [] for i in tqdm(np.arange(Nast)): v = y_train u = SEK(X, X_train, ls, sig=sigma)[i] v_norm = np.sqrt(np.sum(np.abs(v)**2)) u_norm = np.sqrt(np.sum(np.abs(u)**2)) v_ = v/v_norm u_ = u/u_norm v_gate = StatePreparation(Statevector(v_)) u_gate = StatePreparation(Statevector(u_)) qcont = QuantumRegister(1, 'cont') qtarg = QuantumRegister(1, 'targ') qreg = QuantumRegister(n, 'reg') qanc = QuantumRegister(nanc, 'anc') circ = QuantumCircuit(qanc, qtarg, qreg, qcont) QGPR_gate = qt.QGPR(circ, qreg, qanc, qtarg, qcont, v_gate, u_gate, A, t, scaling, wrap=True) circ.append(QGPR_gate, [*qreg, *qanc, qtarg, qcont]); backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) state_v = np.asarray(state_vector).reshape((2**1, 2**n, 2**1, 2**nanc)).T[0,1].T mus.append(np.matmul(state_v.flatten(),np.matmul(X_matrix, state_v.real).flatten()).real*(u_norm*v_norm*scaling/np.sqrt(2))) qcont = QuantumRegister(1, 'cont') qtarg = QuantumRegister(1, 'targ') qreg = QuantumRegister(n, 'reg') qanc = QuantumRegister(nanc, 'anc') circ = QuantumCircuit(qanc, qtarg, qreg, qcont) QGPR_gate = qt.QGPR(circ, qreg, qanc, qtarg, qcont, u_gate, u_gate, A, t, scaling, wrap=True) circ.append(QGPR_gate, [*qreg, *qanc, qtarg, qcont]); backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) state_v = np.asarray(state_vector).reshape((2**1, 2**n, 2**1, 2**nanc)).T[0,1].T M_exp = np.matmul(state_v.flatten(),np.matmul(X_matrix, state_v.real).flatten()).real*((u_norm**2)*scaling/np.sqrt(2)) stds.append(SEK(X, X, ls, sig=sigma)[i,i]-M_exp) mus = np.array(mus) stds = np.array(stds) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) ax.plot(X, y, label=r"$f(x) = x \sin(x)$", linestyle="dotted") ax.errorbar( X_train, y_train, noise_std, linestyle="None", color="tab:blue", marker=".", markersize=10, label="Observations", ) ax.plot(X, mean_prediction, marker='.', label="Classical mean prediction") ax.fill_between( X.ravel(), mean_prediction - 1.96 * std_prediction, mean_prediction + 1.96 * std_prediction, color="tab:orange", alpha=0.5, label=r"95% confidence interval", ) ax.plot(X, mus, color='violet', marker='.', label="Quantum mean prediction") ax.fill_between( X.ravel(), mus - 1.96 * stds, mus + 1.96 * stds, color="tab:purple", alpha=0.5, label=r"95% confidence interval", ) ax.legend() ax.set_xlabel("$x$") ax.set_ylabel("$f(x)$") plt.show()
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit.utils import algorithm_globals from qiskit import QuantumCircuit, Aer, execute from qiskit.circuit.library import RealAmplitudes from qiskit.primitives import Sampler from qiskit_machine_learning.connectors import TorchConnector from qiskit_machine_learning.neural_networks import SamplerQNN from torch import nn from torch.optim import Adam import torch, time, argparse, sys import numpy as np import matplotlib import matplotlib.pyplot as plt from datetime import datetime from tqdm import tqdm matplotlib.rcParams['mathtext.fontset'] = 'stix' matplotlib.rcParams['font.family'] = 'STIXGeneral' width=0.75 color='black' fontsize=28 ticksize=22 figsize=(10,10) # For this example, I have chosen a power-law with power -7/3 def targ_prob(xs): px = xs**(-7./3) return px/np.sum(px) # Set the number of qubits n = 4 # Number of dimensions (currently hard coded to 1 but can be expanded) num_dim = 1 # Number of evaluation points num_discrete_values = 2**n # Range of x and the intervals between points xmin, xmax = 40., 168. dx = (xmax-xmin)/num_discrete_values # Full set of x values xs = np.arange(xmin, xmax, dx) # Evaluate the target distribution over this range prob_data = targ_prob(xs) coords = np.linspace(-2, 2, num_discrete_values) grid_elements = np.expand_dims(coords,axis=1) # Set the number of samples S we wish to take from the PQC and target distribution shots=10000 # Set the random seed used in the simulation (the outcome is highly sensitive to this) rseed = 1696004649 # Uncomment line below to change the random seed for the training #rseed = int(datetime.now().timestamp()) algorithm_globals.random_seed = rseed _ = torch.manual_seed(rseed) # Define the sampler object sampler = Sampler(options={"shots": shots, "seed": algorithm_globals.random_seed}) qc = QuantumCircuit(n) # Begin by initiallising the qubits in an equal superposition qc.h(qc.qubits); # Set the number of layers L reps = 12 ansatz = RealAmplitudes(n, reps=reps) qc.compose(ansatz, inplace=True) def create_generator() -> TorchConnector: qnn = SamplerQNN( circuit=qc, sampler=sampler, input_params=[], weight_params=qc.parameters, sparse=False, ) initial_weights = algorithm_globals.random.random(qc.num_parameters) return TorchConnector(qnn, initial_weights) class Discriminator(nn.Module): def __init__(self, input_size): super(Discriminator, self).__init__() self.linear_input = nn.Linear(input_size, 20) self.leaky_relu = nn.LeakyReLU(0.2) self.linear20 = nn.Linear(20, 1) self.sigmoid = nn.Sigmoid() def forward(self, input: torch.Tensor) -> torch.Tensor: x = self.linear_input(input) x = self.leaky_relu(x) x = self.linear20(x) x = self.sigmoid(x) return x generator = create_generator() discriminator = Discriminator(num_dim) def adversarial_loss(input, target, w): bce_loss = target * torch.log(input) + (1 - target) * torch.log(1 - input) weighted_loss = w * bce_loss total_loss = -torch.sum(weighted_loss) return total_loss lr=0.01 b1=0.7 b2=0.999 generator_optimizer = Adam(generator.parameters(), lr=lr, betas=(b1, b2), weight_decay=0.005) discriminator_optimizer = Adam(discriminator.parameters(), lr=lr, betas=(b1, b2), weight_decay=0.005) generator_loss_values = [] discriminator_loss_values = [] entropy_values = [] # Set the number of epochs n_epochs=1000 num_qnn_outputs = num_discrete_values**num_dim # Resume training if already performed some iterations n_epochs = n_epochs-len(entropy_values) start = time.time() for epoch in tqdm(range(n_epochs)): # Define torch target objects valid = torch.ones(num_qnn_outputs, 1, dtype=torch.float) fake = torch.zeros(num_qnn_outputs, 1, dtype=torch.float) # Define torch tensor representing the target probability distribution real_dist = torch.tensor(prob_data, dtype=torch.float).reshape(-1, 1) # Define torch tensor representing the grid over which samples are taken samples = torch.tensor(grid_elements, dtype=torch.float) disc_value = discriminator(samples) # Generate data gen_dist = generator(torch.tensor([])).reshape(-1, 1) # Train generator generator_optimizer.zero_grad() generator_loss = adversarial_loss(disc_value, valid, gen_dist) # store for plotting generator_loss_values.append(generator_loss.detach().item()) generator_loss.backward(retain_graph=True) generator_optimizer.step() # Train Discriminator discriminator_optimizer.zero_grad() real_loss = adversarial_loss(disc_value, valid, real_dist) fake_loss = adversarial_loss(disc_value, fake, gen_dist.detach()) discriminator_loss = (real_loss + fake_loss) / 2 # Store for plotting discriminator_loss_values.append(discriminator_loss.detach().item()) discriminator_loss.backward() discriminator_optimizer.step() # Retreive trained parameters with torch.no_grad(): generated_weights = generator.weight.detach().numpy().reshape((reps+1,n)) # Build circuit to execute given trained parameters circ = QuantumCircuit(n) circ.h(circ.qubits) # Implement parameterised quantum circuit equvalent to RealAmplitude for rep in np.arange(reps+1): for i in np.arange(n): circ.ry(generated_weights[rep,i],circ.qubits[i]) for i in np.arange(n): if i!=n-1 and rep!=reps: circ.cx(circ.qubits[i], circ.qubits[i+1]) # Produce resulting state vector backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) # Calculate value equivalent to mismatch from fidelity entropy_value = 1-np.sqrt(np.abs(np.dot(np.sqrt(prob_data),np.conjugate(state_vector)))**2) entropy_values.append(entropy_value) print(np.round(100.*(epoch/n_epochs),2),'%','Mismatch:',"{:.2e}".format(entropy_value),'Generator loss:', np.round(generator_loss_values[-1],2), 'Discriminator loss:', np.round(discriminator_loss_values[-1],2)) elapsed = time.time() - start print(f"Fit in {elapsed:0.2f} sec") fig = plt.figure(figsize=np.array(figsize)*[1,2]) ax = fig.add_subplot(211) plt.plot(generator_loss_values, lw=2, color='black') plt.plot(discriminator_loss_values, lw=2, color='grey') ax.set_ylabel('Loss function', fontsize=fontsize); ax.tick_params(axis='both', labelsize=ticksize); ax = fig.add_subplot(212) plt.plot(np.log10(entropy_values), lw=2, color='black') ax.set_ylabel(r'log$_{10}(1-\sqrt{\mathcal{F}})$', fontsize=fontsize); ax.set_xlabel('Iterations', fontsize=fontsize); ax.tick_params(axis='both', labelsize=ticksize); with torch.no_grad(): generated_weights = generator.weight.detach().numpy().reshape((reps+1,n)) circ = QuantumCircuit(n) circ.h(circ.qubits) for rep in np.arange(reps+1): for i in np.arange(n): circ.ry(generated_weights[rep,i],circ.qubits[i]) for i in np.arange(n): if i!=n-1 and rep!=reps: circ.cx(circ.qubits[i], circ.qubits[i+1]) backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() state_vector = np.asarray(result.get_statevector()) fidelity = np.abs(np.dot(np.sqrt(prob_data),np.conjugate(state_vector)))**2 mismatch = 1. - np.sqrt(fidelity) print('Fidelity:', fidelity, 'Mismatch:', mismatch) target_state = np.sqrt(targ_prob(xs)) fig, ax = plt.subplots(2, 1, figsize=figsize, gridspec_kw={'height_ratios': [1.5, 1]}) color1 = 'black' color2 = 'grey' ax[0].scatter(xs, state_vector.real, color=color1, lw=2) ax[0].plot(xs, state_vector.real, color=color1, ls='-', lw=1) ax[0].plot(xs, target_state, color=color1, ls='--', lw=2) ax[0].tick_params(axis='both', labelsize=ticksize) ax[1].set_xlabel(r'$x$', fontsize=fontsize) ax[0].set_ylabel(r'Amplitude', fontsize=fontsize) ax[0].set_xlim(xmin-1,xmax+1) ax[0].set_xticks([]) ax[1].scatter(xs, state_vector.real-target_state.real, color=color1, lw=2) ax[1].set_ylabel(r'$\Delta$ Amplitude', fontsize=fontsize) ax[1].tick_params(axis='both', labelsize=ticksize) ax[1].set_xlim(xmin-1,xmax+1) fig.tight_layout() plt.show()
https://github.com/Fergus-Hayes/qiskit_tools
Fergus-Hayes
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ from scipy.interpolate import approximate_taylor_polynomial from qiskit.circuit.library import RGQFTMultiplier, DraperQFTAdder, ExactReciprocal from qiskit.circuit.library.basis_change import QFT as QFT_pre from qiskit.extensions import HamiltonianGate from qiskit.circuit.library.standard_gates import PhaseGate, RYGate, CSwapGate from qiskit.circuit.library.arithmetic.integer_comparator import IntegerComparator from qiskit.circuit.library.standard_gates import XGate from qiskit.quantum_info.operators.pauli import Pauli from qiskit.circuit.library.boolean_logic import OR from qiskit.quantum_info import random_unitary from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller import itertools as it import numpy as np import sympy def signmag_bin_to_dec(binary, nint=None): mag = bin_to_dec(binary[1:], nint=nint) sign = (-1)**(int(binary[0])) return mag*sign def bin_to_dec(binary, nint=None, phase=False, signmag=False): """ Convert a binary string to a floating point number binary - input binary (string) nint - number of integer bits. Default to all (int) """ if signmag: return signmag_bin_to_dec(binary, nint) basis = 0. n = len(binary) if phase: if binary[0]=='1': if nint is None: nint_ = n-1 else: nint_ = nint basis = -(2.**(nint_)) binary = binary[1:] n = len(binary) if nint is None: nint = n digit = 0. for i,bit in enumerate(np.arange(nint-n,nint)[::-1]): digit+=(2.**bit)*int(binary[i]) return digit + basis def my_binary_repr(digit, n, nint=None, phase=False, nround=True, overflow_error=True, signmag=False): """ Convert a floating point digit to binary string digit - input number (float) n - total number of bits (int) nint - number of integer bits. Default to lowest required (int) """ if signmag and phase: bin_out = my_binary_repr(np.abs(digit), n-1, nint=nint, phase=False, signmag=False) if digit<0.: return '1'+ bin_out else: return '0'+ bin_out if nint is None:# or nint==n: if phase: nint = n - 1 else: nint = n if phase: p = n - nint - 1 dmax = 2.**(nint) - 2.**(-p) dmin = -2.**(nint) else: p = n - nint dmax = 2.**(nint) - 2.**(-p) dmin = 0. if overflow_error: if digit>dmax or digit<dmin: raise ValueError('Digit '+str(digit)+' does not lie in the range:',dmin,'-',dmax,n,nint,p) if nround: n += 1 p += 1 value = digit bin_out = '' if phase: if value<0.: value+=2.**nint bin_out+='1' else: bin_out+='0' for i,bit in enumerate(np.arange(-p,nint)[::-1]): bin_out+=str(int(np.floor(value/2.**bit))) if value>=2.**bit: value-=2.**bit if nround: carry = True bin_out = np.array(list(bin_out)) for i in np.arange(n)[::-1]: if not carry: break if bin_out[i]=='1': bin_out[i]='0' elif bin_out[i]=='0': bin_out[i]='1' carry = False bin_out = ("").join(list(bin_out[:-1])) return bin_out def pres_est(digit, n, nint=None, phase=False): if phase: n -= 1 if nint is None: nint = n if digit==0.: return 0. if digit!=0.: return (digit/np.abs(digit))*bin_to_dec(my_binary_repr(digit, n, nint=nint, phase=phase), nint=nint, phase=phase) else: return 0. def twos_compliment(binary): n = len(binary) if np.sum(np.array(list(binary)).astype(int))==0: compliment = binary else: compliment = my_binary_repr(bin_to_dec(''.join(list(np.logical_not(np.array(list(binary)).astype(bool)).astype(int).astype(str))), nint=None, phase=False) + 1, n, nint=None, phase=False, overflow_error=False) return compliment def get_nint(digits): if np.array(digits).ndim==0: digits=np.array([digits]) digits = np.where(np.abs(digits)>1.,np.modf(digits)[1],digits) digits = digits[digits!=0.] if len(digits)==0: return 0 nint = int(np.ceil(np.log2(np.max(np.abs(digits)+1)))) return nint def get_npres(digits): if np.array(digits).ndim==0: digits=np.array([digits]) digdecs = np.modf(digits)[0] digdecs = digdecs[digdecs!=0] if len(digdecs)==0: return 0 mindec = np.min(np.abs(digdecs)) switch = True p = 0 while switch: if mindec%(2.**-p)==0.: switch=False p+=1 return p-1 def piecewise_poly(xs, coeffs, bounds_): ys = np.array([]) bounds__ = np.copy(bounds_) bounds__[-1] = np.inf for i in np.arange(len(bounds__))[:-1]: ys_ = np.array(np.polyval(coeffs[i], xs[np.greater_equal(xs,bounds__[i])&np.greater(bounds__[i+1],xs)])) ys = np.concatenate([ys, ys_]) return ys def get_coefficients(xs, coeffs, bounds_): ys = np.array([]) bounds__ = np.copy(bounds_) bounds__[-1] = np.inf for i in np.arange(len(bounds__))[:-1]: #print(np.where(np.greater_equal(xs,bounds[i])&np.greater(bounds[i+1],xs), coeffs[i])) ys_ = np.ones(np.sum(np.greater_equal(xs,bounds__[i])&np.greater(bounds__[i+1],xs)))*coeffs[i] #ys_ = np.array(np.polyval(coeffs[i], xs[np.greater_equal(xs,bounds[i])&np.greater(bounds[i+1],xs)])) ys = np.concatenate([ys, ys_]) return ys def get_bound_coeffs(func, bounds, norder, reterr=False): if np.array(bounds).ndim==0: print('Bounds must be a list of two entries!') if len(bounds)==1: print('Bounds must be a list of two entries!') coeffs = [] errs = [] for i in np.arange(len(bounds))[:-1]: coeffs_, err_ = run_remez(func, bounds[i], bounds[i+1], norder) coeffs.append(np.array(coeffs_)) errs.append(err_) if reterr: return np.array(coeffs), np.array(errs) else: return np.array(coeffs) def input_bits_to_qubits(binary, circ, reg, wrap=False, inverse=False, phase=False, qphase=None, label='Input'): # Flips the qubits to match a classical bit string n = len(binary) if inverse: wrap = True if wrap: regs = [] reg = QuantumRegister(n, 'reg') regs.append(reg) if qphase!=None: qphase = QuantumRegister(1, 'phase') regs.append(qphase) circ = QuantumCircuit(*regs) if phase and qphase==None: qphase = QuantumRegister(1, 'phase') circ.add(qphase) for bit in np.arange(n): if int(binary[::-1][bit])==1: circ.x(reg[bit]) if phase<0.: circ.x(qphase[0]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def binary_input(data_ins, n, nint=None): #Return the binary representation of the input number as a string data_outs=[] for data_in in data_ins: data_outs.append(my_binary_repr(data_in, n, nint=nint)) return np.array(data_outs) def qft_rotations(circuit, n): """Performs qft on the first n qubits in circuit (without swaps)""" circuit.h(n) for qubit in np.arange(n): circuit.cp(np.pi/2.**(n-qubit), qubit, n) # At the end of our function, we call the same function again on # the next qubits (we reduced n by one earlier in the function) return circuit def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): """QFT on the first n qubits in circuit""" for qubit in np.arange(n)[::-1]: circuit = qft_rotations(circuit, qubit) swap_registers(circuit, n) return circuit def QFT(circ, qreg, do_swaps=True, approximation_degree=0., insert_barriers=False, wrap=False, inverse=False, label='QFT'): n = len(qreg) if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'q_reg') circ = QuantumCircuit(qreg) for j in reversed(np.arange(n)): circ.h(j) num_entanglements = max(0, j - max(0, approximation_degree - (n - j - 1))) for k in reversed(np.arange(j - num_entanglements, j)): lam = np.pi * (2.0 ** (k - j)) circ.cp(lam, j, k) if insert_barriers: circ.barrier() if do_swaps: for i in np.arange(n // 2): circ.swap(i, n - i - 1) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTAddition(circ, qreg1, qreg2, wrap=False, inverse=False, label='Add', QFT_on=True, iQFT_on=True, nint1=None, nint2=None, phase=False, signmag=False): r""" |qreg1>|qreg2> -> |qreg1>|qreg2 + qreg1> """ n1 = len(qreg1) n2 = len(qreg2) #if n1>n2: # raise ValueError('First register cannot be greater than the second!',n1,n2) if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n1, 'q_reg1') qreg2 = QuantumRegister(n2, 'q_reg2') circ = QuantumCircuit(qreg1, qreg2) if nint1==None: nint1 = n1 if nint2==None: nint2 = n2 dp = (n2 - nint2) - (n1 - nint1) dpn = 0 if dp<0: dpn = np.abs(dp) dp = 0 add_gate = QFTAddition_(circ, qreg1[dpn:], qreg2[dp:], wrap=True, phase=False, QFT_on=QFT_on, iQFT_on=iQFT_on, signmag=signmag) circ.append(add_gate, [*qreg1[dpn:], *qreg2[dp:]]); if n1!=n2 and not signmag and phase: for i in np.arange(nint2-nint1): circ.cx(qreg1[-1], qreg2[-i-1]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTAddition_(circ, qreg1, qreg2, wrap=False, inverse=False, label='Add', QFT_on=True, iQFT_on=True, pm=1, phase=False, signmag=False): r""" |qreg1>|qreg2> -> |qreg1>|qreg2 + qreg1> """ n1 = len(qreg1) n2 = len(qreg2) if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n1, 'q_reg1') qreg2 = QuantumRegister(n2, 'q_reg2') circ = QuantumCircuit(qreg1, qreg2) if QFT_on: circ.append(QFT(circ, qreg2, do_swaps=False, wrap=True), qreg2[:]) jend = n1 if phase and signmag: circ.append(TwosCompliment(circ, qreg1[:-1], wrap=True).control(1), [qreg1[-1], *qreg1[:-1]]); jend -= 1 for j in np.arange(0,jend): for l in np.arange(0,n2): lam = pm*2*np.pi*2.**(j-l-1) if lam%(2*np.pi)==0: continue circ.cp(lam, qreg1[j], qreg2[l]) if phase and n1!=n2 and lam%np.pi!=0: circ.append(PhaseGate(-2.*lam).control(2), [qreg1[-1], qreg1[j], qreg2[l]]); if phase and signmag: circ.append(TwosCompliment(circ, qreg1[:-1], wrap=True).control(1), [qreg1[-1], *qreg1[:-1]]); if iQFT_on: circ.append(QFT(circ, qreg2, do_swaps=False, wrap=True, inverse=True), qreg2[:]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTSubtraction(circ, qreg1, qreg2, wrap=False, inverse=False, label='Sub', QFT_on=True, iQFT_on=True): r""" |qreg1>|qreg2> -> |qreg1>|qreg2 - qreg1> """ n1 = qreg1.size n2 = qreg2.size if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n1, 'q_reg1') qreg2 = QuantumRegister(n2, 'q_reg2') circ = QuantumCircuit(qreg1, qreg2) if QFT_on: circ.append(QFT(circ, qreg2, do_swaps=False, wrap=True), qreg2[:]) for j in np.arange(n1): for k in np.arange(n2 - j): lam = -np.pi / (2.**(k)) if lam%(2*np.pi)==0.: continue circ.cp(lam, qreg1[j], qreg2[j + k]) if iQFT_on: circ.append(QFT(circ, qreg2, do_swaps=False, wrap=True, inverse=True), qreg2[:]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTSubtractionRHS(circ, qreg1, qreg2, wrap=False, inverse=False, label='Sub', QFT_on=True, iQFT_on=True): r""" |qreg1>|qreg2> -> |qreg1>|qreg1 - qreg2> """ n1 = qreg1.size n2 = qreg2.size if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n1, 'q_reg1') qreg2 = QuantumRegister(n2, 'q_reg2') circ = QuantumCircuit(qreg1, qreg2) if QFT_on: circ.append(QFT(circ, qreg2, do_swaps=False, wrap=True, inverse=True), qreg2[:]) for j in np.arange(n1): for k in np.arange(n2 - j): lam = np.pi / (2.**(k)) if lam%(2*np.pi)==0.: continue circ.cp(lam, qreg1[j], qreg2[j + k]) if iQFT_on: circ.append(QFT(circ, qreg2, do_swaps=False, wrap=True, inverse=True), qreg2[:]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def OnebitSub(circ, qbit1, qbit2, qans, wrap=True, inverse=False, label='Sub1'): if len(qans)!=2: print('Ancillary register must be of 2 qubits, length:', len(qans)) return 0 if inverse: wrap = True if wrap: qbit1 = QuantumRegister(1, 'q_bit1') qbit2 = QuantumRegister(1, 'q_bit2') qans = QuantumRegister(2, 'q_ans') circ = QuantumCircuit(qbit1, qbit2, qans) circ.x(qbit2) circ.ccx(qbit1, qbit2, qans[0]) circ.x(qbit1) circ.x(qbit2) circ.ccx(qbit1, qbit2, qans[1]) circ.x(qbit1) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def BitStringCompare(circ, qreg1, qreg2, qans, wrap=False, inverse=False, label='BitComp'): n = qreg1.size if n!=qreg1.size: print('Registers must be of equal length to compare!') return 0 if len(qans)!=(3*n)-1: print('Ancillary register must be 3xlength of input register - 1, length = ', len(qans)) return 0 if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n, 'q_reg1') qreg2 = QuantumRegister(n, 'q_reg2') qans = QuantumRegister((3*n)-1, 'q_ans') circ = QuantumCircuit(qreg1, qreg2, qans) for i in np.arange(n): bit_gate = OnebitSub(circ, qreg1[i], qreg2[i], qans[3*i:(3*i)+2], wrap=True) circ.append(bit_gate, [qreg1[i], qreg2[i], *qans[3*i:(3*i)+2]]) if i+1<n: circ.x(qans[3*i]) circ.x(qans[(3*i)+1]) circ.ccx(*qans[3*i:(3*i)+3]) circ.x(qans[3*i]) circ.x(qans[(3*i)+1]) for i in np.arange(n)[1:][::-1]: circ.ccx(qans[(3*(i-1))+2], qans[3*i], qans[3*(i-1)]) circ.ccx(qans[(3*(i-1))+2], qans[(3*i)+1], qans[(3*(i-1))+1]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def TwosCompliment(circ, qreg, wrap=False, inverse=False, QFT_on=True, iQFT_on=True, label='comp2'): n = len(qreg) if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'q_reg') circ = QuantumCircuit(qreg) for qubit in qreg: circ.x(qubit) inc_gate = QFTBinaryAdd(circ, qreg, ''.join(np.zeros(n-1).astype(int).astype(str))+'1', wrap=True) circ.append(inc_gate, qreg) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTMultiply(circ, qreg1, qreg2, qreg3, A=1., wrap=False, inverse=False, nint1=None, nint2=None, nint3=None, phase=False, label='Mult', QFT_on=True, iQFT_on=True): r""" |qreg1>|qreg2>|qreg3> -> |qreg1>|qreg2>|qreg1 x qreg2> """ n1 = len(qreg1) n2 = len(qreg2) n3 = len(qreg3) if n3!=n1+n2 and nint3 == None: raise ValueError('Output register should be the combined length of both input registers if no integer bit length is specified.') if nint1==None: nint1=n1 if nint2==None: nint2=n2 if nint3==None: nint3=n3 nshift = (nint1 + nint2)-nint3 if phase: nshift+=1 if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n1, 'q_reg1') qreg2 = QuantumRegister(n2, 'q_reg2') qreg3 = QuantumRegister(n3, 'q_reg3') circ = QuantumCircuit(qreg1, qreg2, qreg3) if QFT_on: circ.append(QFT(circ, qreg3, do_swaps=False, wrap=True), qreg3[:]) for j in np.arange(1, n1 + 1): for i in np.arange(1, n2 + 1): for k in np.arange(1, n3 + 1): lam = A*(2 * np.pi) / (2. ** (i + j + k - n3 - nshift)) if lam%(2*np.pi)==0.: continue circ.append(PhaseGate(lam).control(2),[qreg1[n1 - j], qreg2[n2 - i], qreg3[k - 1]]) if iQFT_on: circ.append(QFT(circ, qreg3, do_swaps=False, wrap=True, inverse=True), qreg3[:]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTMultPhase(circ, qreg1, qreg2, qreg3, wrap=False, inverse=False, nint1=None, nint2=None, nint3=None, label='MultPhase', QFT_on=True, iQFT_on=True, signmag1=False, signmag2=False, signmag3=False, poszero=False): r""" |qreg1>|qreg2>|qreg3> -> |qreg1>|qreg2>|qreg1 x qreg2> """ n1 = len(qreg1) n2 = len(qreg2) n3 = len(qreg3) if n3>n1+n2: raise ValueError('The output register is greater than necessary.') if n3!=n1+n2 and nint3 == None: raise ValueError('Output register should be the combined length of both input registers if no integer bit length is specified.') if nint1==None: nint1=n1 if nint2==None: nint2=n2 if nint3==None: nint3=n3 if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n1, 'q_reg1') qreg2 = QuantumRegister(n2, 'q_reg2') qreg3 = QuantumRegister(n3, 'q_reg3') circ = QuantumCircuit(qreg1, qreg2, qreg3) # Define the twos-complement operations tc_gate_1 = TwosCompliment(circ, qreg1[:-1], wrap=True).control(1) tc_gate_2 = TwosCompliment(circ, qreg2[:-1], wrap=True).control(1) tc_gate_3 = TwosCompliment(circ, qreg3[:-1], wrap=True).control(2) # Add the twos-complement operations to convert registers 1 and 2 to sign-magnitude notation if not signmag1: circ.append(tc_gate_1, [qreg1[-1], *qreg1[:-1]]); if not signmag2: circ.append(tc_gate_2, [qreg2[-1], *qreg2[:-1]]); # Apply simple QFT multiplication mult_gate = QFTMultiply(circ, qreg1[:-1], qreg2[:-1], qreg3[:-1], nint1=nint1, nint2=nint2, nint3=nint3, wrap=True) circ.append(mult_gate, [*qreg1[:-1], *qreg2[:-1], *qreg3[:-1]]); if not signmag3: # If register 1 is positive, but register 2 is negative, then twos-complement operator on 3 circ.x(qreg1[-1]); circ.append(tc_gate_3, [qreg1[-1], qreg2[-1], *qreg3[:-1]]); circ.x(qreg1[-1]); # If register 2 is positive, but register 1 is negative, then twos-complement operator on 3 circ.x(qreg2[-1]); circ.append(tc_gate_3, [qreg1[-1], qreg2[-1], *qreg3[:-1]]); circ.x(qreg2[-1]); # If 1 is negative flip phase qubit of 3, and if 2 is negative flip phase qubit of 3 circ.cx(qreg1[-1], qreg3[-1]); circ.cx(qreg2[-1], qreg3[-1]); if not signmag1: # Restore register 1 to original twos-complement notation circ.append(tc_gate_1, [qreg1[-1], *qreg1[:-1]]); if not signmag2: # Restore register 2 to original twos-complement notation circ.append(tc_gate_2, [qreg2[-1], *qreg2[:-1]]); if poszero or not signmag3: # Flip register 1 for qubit in np.arange(n1): circ.x(qreg1[qubit]); # If register 1 is all zeros and phase of 2 is negative, then flip the phase of 3 circ.mcx([*qreg1, qreg2[-1]], qreg3[-1], mode='noancilla') # Flip back register A for qubit in np.arange(n1): circ.x(qreg1[qubit]); # Flip register B for qubit in np.arange(n2): circ.x(qreg2[qubit]); # If register 2 is all zeros and phase of 1 is negative, then flip the phase of 3 circ.mcx([*qreg2, qreg1[-1]], qreg3[-1], mode='noancilla') # Flip back register 2 for qubit in np.arange(n2): circ.x(qreg2[qubit]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTMultBinPhase(circ, qreg1, qreg3, binary, wrap=False, inverse=False, nint=None, label='MultBinPhase', QFT_on=True, iQFT_on=True): r""" |qreg1>|qreg2> -> |qreg1>|qreg1 x A> """ n1 = len(qreg1) n2 = len(binary) n3 = len(qreg3) #if n3>n1+n2: # raise ValueError('The output register is greater than necessary.') if n3!=n1+n2 and nint == None: raise ValueError('Output register should be the combined length of both input registers if no integer bit length is specified.') if nint==None: nint=n1 if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n1, 'q_reg1') qreg3 = QuantumRegister(n3, 'q_reg3') circ = QuantumCircuit(qreg1, qreg3) comp_gate1_inv = TwosCompliment(circ, qreg1[:-1], wrap=True, inverse=True).control(1) circ.append(comp_gate1_inv, [qreg1[-1], *qreg1[:-1]]); if binary[0]=='1': twoscomp = twos_compliment(binary) else: twoscomp = binary mult_gate = QFTBinaryMult(circ, qreg1[:-1], qreg3[:-1], twoscomp[1:], nint=nint, wrap=True) circ.append(mult_gate, [*qreg1[:-1], *qreg3[:-1]]); # if reg1 was neg, but binary is pos, then flip 2comp of reg3 # then vise versa if binary[0]=='1': circ.x(qreg1[-1]); comp_gate = TwosCompliment(circ, qreg3[:-1], wrap=True).control(1) circ.append(comp_gate, [qreg1[-1], *qreg3[:-1]]); circ.x(qreg1[-1]); elif binary[0]=='0': comp_gate = TwosCompliment(circ, qreg3[:-1], wrap=True).control(1) circ.append(comp_gate, [qreg1[-1], *qreg3[:-1]]); # if reg1(bin) is neg, flip sign of reg3 circ.cx(qreg1[-1], qreg3[-1]); if binary[0]=='1': circ.x(qreg3[-1]); # reverse the twos comp comp_gate1 = TwosCompliment(circ, qreg1[:-1], wrap=True).control(1) circ.append(comp_gate1, [qreg1[-1], *qreg1[:-1]]); # flip all reg1 qubits # and all but last binary if binary[0]=='1': for qubit in np.arange(n1): circ.x(qreg1[qubit]); circ.mcx(qreg1, qreg3[-1], mode='noancilla') for qubit in np.arange(n1): circ.x(qreg1[qubit]); if np.sum(np.array(list(binary)).astype(int))==0: circ.cx(qreg1[-1], qreg3[-1]); #for qubit in np.arange(n3-1): # circ.x(qreg3[qubit]) #circ.mcx(qreg3[:-1], qreg3[-1], mode='noancilla') #for qubit in np.arange(n3-1): # circ.x(qreg3[qubit]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTBinaryAdd(circ, qreg, binary, wrap=False, inverse=False, QFT_on=True, iQFT_on=True, label='AddA'): r""" |qreg> -> |qreg + A> """ n1 = len(qreg) n2 = len(binary) if inverse: wrap = True if wrap: qreg = QuantumRegister(n1, 'q_reg1') circ = QuantumCircuit(qreg) if QFT_on: circ.append(QFT(circ, qreg, do_swaps=False, wrap=True), qreg[:]) for i in np.arange(1, n1 + 1): for k in np.arange(1, n2 + 1): lam = (2. * np.pi) / (2. ** (i + k - n2)) if lam%(2*np.pi)==0.: continue if binary[i-1]=='1': circ.p(lam,qreg[k-1]) if iQFT_on: circ.append(QFT(circ, qreg, do_swaps=False, wrap=True, inverse=True), qreg[:]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTBinarySub(circ, qreg, binary, wrap=False, inverse=False, label='SubA'): r""" |qreg> -> |qreg - A> """ n1 = len(qreg) n2 = len(binary) if inverse: wrap = True if wrap: qreg = QuantumRegister(n1, 'q_reg1') circ = QuantumCircuit(qreg) circ.append(QFT(circ, qreg, do_swaps=False, wrap=True), qreg[:]) for i in np.arange(1, n2 + 1): for k in np.arange(1, n1 + 1): lam = -(2. * np.pi) / (2. ** (i + k - n1)) if lam%(2*np.pi)==0.: continue if binary[k-1]=='1': circ.p(lam,qreg[i-1]) circ.append(QFT(circ, qreg, do_swaps=False, wrap=True, inverse=True), qreg[:]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTBinarySubRHS(circ, qreg, binary, wrap=False, inverse=False, label='SubA'): r""" |qreg> -> |A - qreg> """ n1 = qreg.size n2 = len(binary) if inverse: wrap = True if wrap: qreg = QuantumRegister(n1, 'q_reg1') circ = QuantumCircuit(qreg) circ.append(QFT(circ, qreg, do_swaps=False, wrap=True, inverse=False), qreg[:]) for i in np.arange(1, n1 + 1): for k in np.arange(1, n2 + 1): lam = -(2. * np.pi) / (2. ** (i + k - n2)) if lam%(2*np.pi)==0.: continue if binary[i-1]=='1': circ.p(lam,qreg[k-1]) circ.append(QFT(circ, qreg, do_swaps=False, wrap=True, inverse=True), qreg[:]) for i in np.arange(1, n2): circ.x(qreg[i]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def qubit_to_phase(circ, qreg, nint=None, wrap=False, inverse=False, phase=False, factor=1, label='Amp2Phase'): r""" |qreg> -> e^(2pi i qreg)|qreg> """ n = len(qreg) if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'q_reg') circ = QuantumCircuit(qreg) if phase: n -= 1 if nint==None: nint = n for k in np.arange(1,n-nint+1): lam = 2.*np.pi*(2.**(-k))*factor qubit = n-nint-k circ.p(lam,qreg[qubit]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def CRotation(circ, qreg, qtarg, nint=None, phase=False, label='CRot', wrap=False, inverse=False): n = len(qreg) if nint is None: nint = n if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'qreg') qtarg = QuantumRegister(1, 'q_targ') circ = QuantumCircuit(qreg, qtarg) for i in np.arange(n): circ.cry(2.**(i+1+nint-n), qreg[i], qtarg) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QFTPowerN(circ, qreg1, qreg2, N, wrap=False, inverse=False, nintx=None, nint=None, label='PowN', QFT_on=True, iQFT_on=True): r""" |qreg1>|qreg2> -> |qreg1>|qreg1**N> """ n1 = qreg1.size n2 = qreg2.size if n2>(n1*N): raise ValueError('The output register is greater than necessary.') if n2!=(n1*N) and nint == None: raise ValueError('Output register should be '+str(N)+'x the length of the input register if no integer bit length is specified.') if nintx==None: nintx=0 if nint==None: nint=0 nshift = N-1+(N*nintx)-nint if inverse: wrap = True if wrap: qreg1 = QuantumRegister(n1, 'q_reg1') qreg2 = QuantumRegister(n2, 'q_reg2') circ = QuantumCircuit(qreg1, qreg2) if QFT_on: circ.append(QFT(circ, qreg2, do_swaps=False, wrap=True), qreg2[:]) qubit_grid = np.meshgrid(*[np.arange(1,n1+1) for i in np.arange(N)], indexing='ij') grid_shape = [n1 for i in np.arange(N)] grid_shape.append(n2) gridouts = np.ones(grid_shape)*np.arange(1,n2+1) gridouts = 2*np.pi/(np.power(2.,np.sum(qubit_grid,axis=0)+gridouts.T-n2-nshift)) cond = gridouts%(2.*np.pi)!=0. inds = np.argwhere(cond)+1 lams = gridouts[cond] for j,ind in enumerate(inds): k = ind[0] ind_ = ind[1:] cnt = len(np.unique(ind_)) cqubits = [n1-i for i in np.unique(ind_)] cqubits = [qreg1[n1-i] for i in np.unique(ind_)] cqubits.append(qreg2[k-1]) circ.append(PhaseGate(lams[j]).control(cnt),cqubits) if iQFT_on: circ.append(QFT(circ, qreg2, do_swaps=False, wrap=True, inverse=True), qreg2[:]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'†' return circ def QFTDivision(circ, qreg1, qreg2, c_div, acc, backend=Aer.get_backend('qasm_simulator'), shots=10, wrap=False, inverse=False, label='DivInt'): if inverse: wrap = True if wrap: qreg1 = QuantumRegister(qreg1.size, 'q_reg1') qreg2 = QuantumRegister(qreg2.size, 'q_reg2') acc = QuantumRegister(acc.size, 'acc') c_div = ClassicalRegister(c_div.size, 'c_div') circ = QuantumCircuit(qreg1, qreg2, acc, c_div) d = QuantumRegister(1, 'd') circ.add_register(d) circ.x(d[0]) c_dividend_str = '0' while c_dividend_str[0] == '0': print(c_dividend_str) circ = QFTSubtraction(circ, qreg1, qreg2) circ = QFTAddition(circ, acc, d) circ.measure(qreg1[:], c_div[:]) result = execute(circ, backend=backend, shots=shots).result() counts = result.get_counts() c_dividend_str = list(counts.keys())[0] print(c_dividend_str) circ = QFTSubtract(circ, acc, d) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def taylor_coeffs(f_, args=[], a=0., norders=3): x = sympy.Symbol('x') f = f_(x) coeffs = [] for norder in np.arange(norders): coeffs.append(float(sympy.diff(f, x, norder).subs(x, a) / sympy.factorial(norder))) return np.array(coeffs) def Gaussian_noise_amp(circ, qreg, reps=2, wrap=False, inverse=False, label='GaussNoise'): n = qreg.size if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'q_reg') circ = QuantumCircuit(qreg) for level in np.arange(reps+1): for i in np.arange(n-1): for j in np.arange(i+1,n): rand_op = random_unitary(4) circ.append(rand_op,[qreg[i],qreg[j]]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def depolarisation_channel(circ, qreg, p, wrap=False, inverse=False, label='depol_channel'): n = qreg.size if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'q_reg') circ = QuantumCircuit(qreg) num_terms = 4**n max_param = num_terms / (num_terms - 1) if p < 0 or p > max_param: raise NoiseError("Depolarizing parameter must be in between 0 " "and {}.".format(max_param)) prob_iden = 1 - p / max_param prob_pauli = p / num_terms probs = [prob_iden] + (num_terms - 1) * [prob_pauli] paulis = [Pauli("".join(tup)) for tup in it.product(['I', 'X', 'Y', 'Z'], repeat=n)] gates_ind = np.random.choice(num_terms, p=probs, size=1)[0] gates = paulis[gates_ind] circ.append(gates, qreg[:]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def increment_gate(circ, qreg, wrap=False, inverse=False, QFT_on=True, iQFT_on=True, ncut=0, label='inc'): n = len(qreg) if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'q_reg') circ = QuantumCircuit(qreg) if n<ncut: for i in np.arange(n)[1:][::-1]: if i!=0: xgate = XGate().control(i) circ.append(xgate, [*qreg[:i+1]]) circ.x(qreg[0]) else: bin_one = ''.join(np.zeros(n-1).astype(int).astype(str))+'1' inc_gate = QFTBinaryAdd(circ, qreg, bin_one, wrap=True, QFT_on=QFT_on, iQFT_on=iQFT_on) circ.append(inc_gate, qreg) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def integer_compare(circ, qreg, qtarg, qans, value, geq=True, wrap=False, inverse=False, uncomp=True, label='intP'): n = len(qreg) if len(qans)!=n-1: raise ValueError('Ancilla register must be 1 qubit fewer than input register.') if len(qtarg)!=1: raise ValueError('Target register must be of 1 qubit.') if wrap: qreg = QuantumRegister(n, 'q_reg') qans = QuantumRegister(n, 'q_ans') circ = QuantumCircuit(qreg, qans) qtarg = qans[0] qans = qans[1:] if value<=0.: if geq: circ.x(qtarg); elif value < np.power(2,n): if n>1: twos = np.array(list(twos_compliment(my_binary_repr(value, n=n, phase=False))))[::-1] for i in np.arange(n): if i==0: if twos[i]=='1': circ.cx(qreg[i], qans[i]) elif i<n-1: if twos[i]=='1': circ.compose(OR(2), [qreg[i], qans[i-1], qans[i]], inplace=True); else: circ.ccx(qreg[i], qans[i - 1], qans[i]); else: if twos[i]=='1': circ.compose(OR(2), [qreg[i], qans[i-1], qtarg], inplace=True); else: circ.ccx(qreg[i], qans[i - 1], qtarg); if not geq: circ.x(qtarg); if uncomp: for i in np.arange(n-1)[::-1]: if i==0: if twos[i]=='1': circ.cx(qreg[i], qans[i]); else: if twos[i]=='1': circ.compose(OR(2), [qreg[i], qans[i-1], qans[i]], inplace=True); else: circ.ccx(qreg[i], qans[i-1], qans[i]); else: circ.cx(qreg[0], qtarg); if not geq: circ.x(qtarg); else: if not geq: circ.x(qtarg); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def inequal_cond(circ, qreg, qtarg, qans, value, nint=None, phase=False, comp2=True, geq=True, wrap=False, inverse=False, uncomp=True, xflip=True, label='P'): n = len(qreg) if len(qans)!=n-1: raise ValueError('Ancilla register must be 1 qubit fewer than input register.') if len(qtarg)!=1: raise ValueError('Target register must be of 1 qubit.') if phase and not comp2: raise ValueError('Only twos-compliment representation for signed numbers is currently implemented') if wrap: qreg = QuantumRegister(n, 'q_reg') qans = QuantumRegister(n-1, 'q_ans') qtarg = QuantumRegister(1, 'q_targ') circ = QuantumCircuit(qreg, qtarg, qans) binary = my_binary_repr(value, n, phase=phase, nint=nint) if phase: if xflip: circ.x(qreg[-1]); if binary[0]=='0': binary = '1'+binary[1:] elif binary[0]=='1': binary = '0'+binary[1:] int_value = bin_to_dec(binary, nint=None, phase=False) intcomp_gate = integer_compare(circ, qreg, qtarg, qans, int_value, geq=geq, wrap=wrap, inverse=inverse, uncomp=uncomp) circ.append(intcomp_gate, [*qreg, *qtarg, *qans]); if phase and xflip: circ.x(qreg[-1]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def label_gate(circ, qreg, qtarg, qans, qlab, bounds=None, wrap=False, nint=None, inverse=False, phase=False, ncut=0, label='LABEL'): n = len(qreg) if nint is None: nint = n if phase: nint -= 1 if inverse: wrap = True if bounds is None: bounds = [0, 2**n] nlab = int(np.ceil(np.log2(len(bounds)))) if nlab!=qlab.size: raise ValueError('Size of label register does not match the number of bounds placed.') if len(qans)!= n-1: raise ValueError('Ancilla register must have one fewer qubit than input register.') if wrap: qreg = QuantumRegister(n, 'q_reg') qtarg = QuantumRegister(1, 'q_targ') qans = QuantumRegister(n-1, 'q_ans') qlab = QuantumRegister(nlab, 'q_lab') circ = QuantumCircuit(qreg, qtarg, qans, qlab) circ.x(qreg[-1]); if nlab>=ncut: circ.append(QFT(circ, qlab, do_swaps=False, wrap=True), qlab) for i,bound_ in enumerate(bounds): binary = my_binary_repr(bound_, n=n, nint=nint, phase=phase) if binary[0]=='0': binary = '1'+binary[1:] elif binary[0]=='1': binary = '0'+binary[1:] bound = bin_to_dec(binary, nint=None, phase=False) intcomp_gate = integer_compare(circ, qreg, qtarg, qans, bound, geq=True, wrap=True, uncomp=False, label='P'+str(i)) circ.append(intcomp_gate, [*qreg, qtarg[0], *qans[:]]) inc_gate = increment_gate(circ, qlab, wrap=True, label='SET'+str(i), ncut=ncut, QFT_on=False, iQFT_on=False).control(1) circ.append(inc_gate, [qtarg[0], *qlab[:]]) intcomp_gate_inv = integer_compare(circ, qreg, qtarg, qans, bound, geq=True, wrap=True, uncomp=False, inverse=True, label='P'+str(i)) circ.append(intcomp_gate_inv, [*qreg, qtarg[0], *qans[:]]) if nlab>=ncut: circ.append(QFT(circ, qlab, do_swaps=False, wrap=True, inverse=True), qlab) circ.x(qreg[-1]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def cin_gate(circ, qcoff, qlab, coeffs_in, nint=None, phase=False, wrap=False, inverse=False, label='X', comp2=True): n = len(qcoff) nlab = len(qlab) if 2**nlab<len(coeffs_in): print('Not enough label states to coefficents.') return 0 if inverse: wrap = True if wrap: qcoff = QuantumRegister(n, 'q_reg') qlab = QuantumRegister(nlab, 'q_lab') circ = QuantumCircuit(qcoff, qlab) for i in np.arange(len(coeffs_in)): control_bits = my_binary_repr(i, nlab, nint=nlab, phase=False) if i>0: control_bits_ = my_binary_repr(i-1, nlab, nint=nlab, phase=False)[::-1] else: control_bits_ = np.ones(nlab).astype(int).astype(str) for j,control_bit in enumerate(control_bits[::-1]): if control_bit=='0' and control_bits_[j]=='1': circ.x(qlab[j]) if comp2: input_gate = input_bits_to_qubits(my_binary_repr(coeffs_in[i], n, nint=nint, phase=phase), circ, reg=qcoff, wrap=True).control(nlab) circ.append(input_gate, [*qlab, *qcoff]); else: input_gate = input_bits_to_qubits(my_binary_repr(np.abs(coeffs_in[i]), n-1, nint=nint, phase=False), circ, reg=qcoff[:-1], wrap=True).control(nlab) circ.append(input_gate, [*qlab, *qcoff[:-1]]); if coeffs_in[i]<0.: circ.append(XGate().control(nlab), [*qlab, qcoff[-1]]); if i<len(coeffs_in)-1: control_bits_ = my_binary_repr(i+1, nlab, nint=nlab, phase=False)[::-1] else: control_bits_ = np.ones(nlab).astype(int).astype(str) for j,control_bit in enumerate(control_bits[::-1]): if control_bit=='0' and control_bits_[j]=='1': circ.x(qlab[j]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def classic_piecewise_function(x_, coeffs_, n, bounds, nint=None, phase=False): nintx = int(np.ceil(np.log2(np.max(bounds)))) x = pres_est(x_, n, nint=n, phase=phase) coeff_ind = np.argwhere(bounds>=x)[0].flatten() if coeff_ind!=0: coeff_ind = coeff_ind-1 coeffs_ = coeffs_.T[coeff_ind].flatten() nintc = int(np.ceil(np.log2(np.max(np.abs(coeffs_))))) coeffs = [] for coeff in coeffs_: coeffs.append(pres_est(coeff, n, nint=nintc, phase=phase)) coeffs = np.array(coeffs)[::-1] y = pres_est(x*coeffs[0], n, nint=nint, phase=phase) y = pres_est(y + coeffs[1], n, nint=nint, phase=phase) for i in np.arange(2,len(coeffs)): y = pres_est(y*x, n, nint=nint, phase=phase) y = pres_est(y + coeffs[i], n, nint=nint, phase=phase) return y def linear_piecewise_approx(circ, qx, qout, qlab, qcoff, coeffs, bounds, nint=None, nintx=None, nintcs=None, phase=False, wrap=False, inverse=False, unlabel=False, label='f(x)'): m = int(np.ceil(np.log2(len(bounds)))) nx = len(qx) n = len(qout) n0 = len(qcoff) Nord, Ncoeffs = coeffs.shape if Nord!=2: raise ValueError('Currently only working for linear piecewise approximations.') if nint is None: nint = n if m!=len(qlab): raise ValueError('Size of label register is smaller than number of bounds.') return 0 if np.any(nintcs==None): nintcs = [] for coeffs_ in coeffs: nintcs.append(int(np.ceil(np.log2(np.max(np.abs(coeffs_)))))) nintcs[-1] = nint nintcs = np.array(nintcs).astype(int) if nintx is None: nintx = int(np.ceil(np.log2(np.max(np.abs(bounds))))) if inverse: wrap = True if wrap: qx = QuantumRegister(nx, 'x') qout = QuantumRegister(n, 'o') qlab = QuantumRegister(m, 'l') qcoff = QuantumRegister(n0, 'c') circ = QuantumCircuit(qx, qout, qlab, qcoff) # We can use the coefficient register as the ancillary register for #the labelling step as before qtarg = qcoff[0] qans = [*qcoff[1:], *qout][:nx-1] # Label the data with the labelling operation l_gate = label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nintx, phase=phase, wrap=True) circ.append(l_gate, [*qx, qtarg, *qans, *qlab]); # Load A1 into the coefficient register conditioned on the label register X1_gate = cin_gate(circ, qcoff, qlab, coeffs[0], nint=nintcs[0,0], phase=phase, wrap=True) circ.append(X1_gate, [*qcoff, *qlab]); # Multiply the coefficient and x registers and save the output on the output register mul_gate = QFTMultPhase(circ, qcoff, qx, qout, wrap=True, nint1=nintcs[0,0], nint2=nintx, nint3=nint) circ.append(mul_gate, [*qcoff, *qx, *qout]); # Unload A1 from the coefficient register with the inverse load operation X1_gate_inv = cin_gate(circ, qcoff, qlab, coeffs[0], nint=nintcs[0,0], phase=phase, wrap=True, inverse=True) circ.append(X1_gate_inv, [*qcoff, *qlab]); # Load A0 into the coefficient register conditioned on the label register X0_gate = cin_gate(circ, qcoff, qlab, coeffs[1], nint=nintcs[0,1], phase=phase, wrap=True) circ.append(X0_gate, [*qcoff, *qlab]); # Add the coefficient register to the output register add_gate = QFTAddition(circ, qcoff, qout, nint1=nintcs[0,1], nint2=nint, wrap=True, phase=phase) circ.append(add_gate, [*qcoff, *qout]); # Unload A0 to clear the coefficient register X0_gate_inv = cin_gate(circ, qcoff, qlab, coeffs[1], nint=nintcs[0,1], phase=phase, wrap=True, inverse=True) circ.append(X0_gate_inv, [*qcoff, *qlab]); # Unlabel the label register l_gate_inv = label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nintx, phase=phase, wrap=True, inverse=True) circ.append(l_gate_inv, [*qx, qtarg, *qans, *qlab]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def piecewise_function_posmulti(circ, q_x, q_y, q_lab, q_coff, coeffs, bounds, nint=None, nintx=None, nintcs=None, phase=False, wrap=False, inverse=False, unlabel=False, unfirst=False, comp2=False, label='f_x'): nlab = int(np.ceil(np.log2(len(bounds)))) nx = len(q_x) n = len(q_y) nc = len(q_coff) Nord, Ncoeffs = coeffs.shape if Nord!=2: raise ValueError('Currently only working for linear piecewise approximations.') if nint is None: nint = n if nlab!=len(q_lab): raise ValueError('Size of label register is smaller than number of bounds.') return 0 if np.any(nintcs==None): nintcs = [] for coeffs_ in coeffs: nintcs.append(int(np.ceil(np.log2(np.max(np.abs(coeffs_)))))) nintcs[-1] = nint nintcs = np.array(nintcs).astype(int) if nintx is None: nintx = int(np.ceil(np.log2(np.max(np.abs(bounds))))) if inverse: wrap = True if wrap: q_x = QuantumRegister(nx, 'q_x') q_y = QuantumRegister(n, 'q_y0') q_lab = QuantumRegister(nlab, 'q_lab') q_coff = QuantumRegister(nc, 'q_coff') circ = QuantumCircuit(q_x, q_y, q_lab, q_coff) q_ans = [*q_coff, *q_y] if len(q_ans)<nx: raise ValueError('Coefficient/output register must be greater than half the length of the x register.') lab_gate = label_gate(circ, q_x, q_ans[0], q_ans[1:nx+2], q_lab, bounds=bounds, nint=nintx, phase=False, wrap=True) circ.append(lab_gate, [*q_x, *q_ans[:nx+2], *q_lab]); #y1in_gate = cin_gate(circ, q_y, q_lab, coeffs[1], nint=nintcs[0,1], phase=phase, wrap=True) #circ.append(y1in_gate, [*q_y, *q_lab]); #circ.append(QFT(circ, q_y, do_swaps=False, wrap=True), q_y); for i in np.arange(1, Nord): y0in_gate = cin_gate(circ, q_coff, q_lab, coeffs[i-1], nint=nintcs[i-1,0], phase=phase, wrap=True, comp2=comp2) circ.append(y0in_gate, [*q_coff, *q_lab]); mul_gate = QFTPosMultiplicand(circ, q_coff, q_x, q_y, wrap=True, nint1=nintcs[i-1,0], nint2=nintx, nint3=nint, iQFT_on=True, QFT_on=True, comp2=comp2) circ.append(mul_gate, [*q_coff, *q_x, *q_y]); if unfirst or True: y0in_gate_inv = cin_gate(circ, q_coff, q_lab, coeffs[i-1], nint=nintcs[i-1,0], phase=phase, wrap=True, comp2=comp2, inverse=True) circ.append(y0in_gate_inv, [*q_coff, *q_lab]); y1in_gate = cin_gate(circ, q_coff, q_lab, coeffs[i], nint=nintcs[i-1,1], phase=phase, wrap=True) circ.append(y1in_gate, [*q_coff, *q_lab]); add_gate = QFTAddition(circ, q_coff, q_y, wrap=True, phase=phase, nint1=nintcs[i-1,1], nint2=nint, QFT_on=True, iQFT_on=True) circ.append(add_gate, [*q_coff, *q_y]); #circ.append(QFT(circ, q_y, do_swaps=False, wrap=True, inverse=True), q_y); if unlabel: lab_gate_inv = label_gate(circ, q_x, q_ans[0], q_ans[1:nx+2], q_lab, bounds=bounds, nint=nintx, phase=False, wrap=True, inverse=True) circ.append(lab_gate_inv, [*q_x, *q_ans[:nx+2], *q_lab]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def SWAP_test(circ, q_1, q_2, q_a, wrap=False, inverse=False, label='SWAP'): n = len(q_1) if len(q_1)!=len(q_2): raise ValueError('The two registers should be the same size!') if inverse: wrap = True if wrap: q_1 = QuantumRegister(n, 'q_1') q_2 = QuantumRegister(n, 'q_2') q_a = QuantumRegister(1, 'q_a') circ = QuantumCircuit(q_1, q_2, q_a) circ.h(q_a[0]); for qubit in np.arange(n): circ.cswap(q_a,q_1[qubit],q_2[qubit]) circ.h(q_a[0]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def gate_decompose(qc): """decompose circuit to evaluate cost""" pass_ = Unroller(["u3", "cx"]) return PassManager(pass_).run(qc).count_ops() def Grover_Rudolph_load(circ, qx, probs, wrap=False, inverse=False, nstart=0, nend=None, label='GR_load'): nx = len(qx) if nend==None: nend=nx if len(probs)!=2**nx: raise ValueError('Probabilities must equal length of x register') if inverse: wrap = True if wrap: qx = QuantumRegister(nx, 'q_x') circ = QuantumCircuit(qx) for m in np.arange(nstart, nend): def GR_func(j): j = np.array(j).astype(int) As = [] for i in np.arange(2**m): As.append(np.sum(probs[i*2**(nx-m):(i+1)*2**(nx-m)])) As1 = [] for i in np.arange(2**(m+1)): As1.append(np.sum(probs[i*2**(nx-(m+1)):(i+1)*2**(nx-(m+1))])) return np.arccos(np.sqrt(np.array(As1)[::2][j]/np.array(As)[j])) if m==0: coeffs = np.arccos(np.sqrt(np.sum(probs[:2**(nx-1)]))) circ.ry(2*coeffs, qx[nx-m-1]); else: js = np.arange(2**m) coeffs = GR_func(js) for i in np.arange(2**m): control_bits = my_binary_repr(i, m, nint=None, phase=False) if i>0: control_bits_ = my_binary_repr(i-1, m, nint=None, phase=False)[::-1] else: control_bits_ = np.ones(m).astype(int).astype(str) for j,control_bit in enumerate(control_bits[::-1]): if control_bit=='0' and control_bits_[j]=='1': circ.x(qx[nx-j-1]); R_gate = RYGate(2*coeffs[i]).control(int(m)) circ.append(R_gate, [*qx[nx-m-1:][::-1]]); if i<2**m-1: control_bits_ = my_binary_repr(i+1, m, nint=None, phase=False)[::-1] else: control_bits_ = np.ones(m).astype(int).astype(str) for j,control_bit in enumerate(control_bits[::-1]): if control_bit=='0' and control_bits_[j]=='1': circ.x(qx[nx-j-1]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def Grover_Rudolph_func(circ, qx, qanc, qlab, qcoff, probs, wrap=False, inverse=False, mtol=1, mmax=None, norder=1, label='GR_func'): nx = len(qx) n = len(qcoff) nanc = len(qanc) nlab = len(qlab) if mmax==None: mmax=nx if n!=nanc: raise ValueError('I think ancilla and coefficient reg should be the same size') if len(probs)!=2**nx: raise ValueError('Probabilities must equal length of x register') if inverse: wrap = True if wrap: qx = QuantumRegister(nx, 'q_x') qanc = QuantumRegister(nanc, 'q_anc') qlab = QuantumRegister(nlab, 'q_lab') qcoff = QuantumRegister(nanc, 'q_coff') circ = QuantumCircuit(qx, qanc, qlab, qcoff) if mtol>nx: GRL_gate = Grover_Rudolph_load(circ, qx, probs, wrap=True) circ.append(GRL_gate, qx); elif mtol!=0: probs_ = [] for i in np.arange(2**mtol): probs_.append(np.sum(probs[i*2**(nx-mtol):(i+1)*2**(nx-mtol)])) probs_ = np.array(probs_) GRL_gate = Grover_Rudolph_load(circ, qx[nx-mtol:], probs_, wrap=True) circ.append(GRL_gate, qx[nx-mtol:]); for m in np.arange(mtol,mmax): def GR_func(j): j = np.array(j).astype(int) As = [] for i in np.arange(2**m): As.append(np.sum(probs[i*2**(nx-m):(i+1)*2**(nx-m)])) As1 = [] for i in np.arange(2**(m+1)): As1.append(np.sum(probs[i*2**(nx-(m+1)):(i+1)*2**(nx-(m+1))])) return np.arccos(np.sqrt(np.array(As1)[::2][j]/np.array(As)[j])) js = np.arange(2**m) coeffs = GR_func(js) bounds_ = np.linspace(0,2**m,(2**nlab)+1).astype(int) coeffs = get_bound_coeffs(GR_func, bounds_, norder, reterr=False).T#[::-1] bounds = bounds_[1:] max_list0 = np.array([coeffs[0], coeffs[1], coeffs[0]*2**nx, (coeffs[0]*2**nx)+coeffs[-1]]) max_list1 = max_list0 nintcs = [] nintcs.append(int(np.ceil(np.log2(np.max(np.abs(max_list0)))))) nintcs.append(int(np.ceil(np.log2(np.max(np.abs(max_list1)))))) nint = nintcs[-1] nintcs = np.array([nintcs]) func_gate = piecewise_function_posmulti(circ, qx[nx-m:], qanc, qlab, qcoff, coeffs, bounds, nint=nint, nintx=nx, nintcs=nintcs, phase=False, wrap=True, unlabel=False, unfirst=False) circ.append(func_gate, [*qx[nx-m:], *qanc, *qlab, *qcoff]); rot_gate = CRotation(circ, qanc, qx[nx-m-1], nint=nint, wrap=True) circ.append(rot_gate, [*qanc, qx[nx-m-1]]) func_gate_inv = piecewise_function_posmulti(circ, qx[nx-m:], qanc, qlab, qcoff, coeffs, bounds, nint=nint, nintx=nx, nintcs=nintcs, phase=False, wrap=True, inverse=True, unlabel=False, unfirst=False) circ.append(func_gate_inv, [*qx[nx-m:], *qanc, *qlab, *qcoff]); for m in np.arange(mmax,nx): circ.h(qx[nx-m-1]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def lpf(circ, qx, qout, qlab, qcoff, coeffs, bounds, nintx=None, nintcs=None, nint=None, phasex=False, phase=True, wrap=False, inverse=False, label='f_x'): nlab = int(np.ceil(np.log2(len(bounds)))) nx = len(qx) n = len(qout) nc = len(qcoff) Nord, Ncoeffs = coeffs.shape if Nord!=2: raise ValueError('Currently only working for linear piecewise approximations.') if nlab!=len(qlab): raise ValueError('Size of label register is smaller than number of bounds.') return 0 if nint==None: nint=n if np.any(nintcs==None): nintcs = [] for coeffs_ in coeffs: nintcs.append(int(np.ceil(np.log2(np.max(np.abs(coeffs_)))))) nintcs[-1] = nint nintcs = np.array(nintcs).astype(int) if nintx is None: nintx = int(np.ceil(np.log2(np.max(np.abs(bounds))))) if inverse: wrap = True if wrap: qx = QuantumRegister(nx, 'x') qout = QuantumRegister(n, 'out') qlab = QuantumRegister(nlab, 'lab') qcoff = QuantumRegister(nc, 'coff') circ = QuantumCircuit(qx, qout, qlab, qcoff) qans = [*qcoff[1:], *qout][:nx-1] qtarg = qcoff[0] # Label the data with the labelling operation l_gate = label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nintx, phase=phase, wrap=True) circ.append(l_gate, [*qx, qtarg, *qans, *qlab]); # Load A1 into the coefficient register conditioned on the label register X1_gate = cin_gate(circ, qcoff, qlab, coeffs[0], nint=nintcs[0,0], phase=phase, wrap=True) circ.append(X1_gate, [*qcoff, *qlab]); # Multiply the coefficient and x registers and save the output on the output register mul_gate = QFTMultPhase(circ, qcoff, qx, qout, wrap=True, nint1=nintcs[0,0], nint2=nintx, nint3=nint) circ.append(mul_gate, [*qcoff, *qx, *qout]); # Unload A1 from the coefficient register with the inverse load operation X1_gate_inv = cin_gate(circ, qcoff, qlab, coeffs[0], nint=nintcs[0,0], phase=phase, wrap=True, inverse=True) circ.append(X1_gate_inv, [*qcoff, *qlab]); # Load A0 into the coefficient register conditioned on the label register X0_gate = cin_gate(circ, qcoff, qlab, coeffs[1], nint=nintcs[0,1], phase=phase, wrap=True) circ.append(X0_gate, [*qcoff, *qlab]); # Add the coefficient register to the output register add_gate = QFTAddition(circ, qcoff, qout, nint1=nintcs[0,1], nint2=nint, wrap=True, phase=phase) circ.append(add_gate, [*qcoff, *qout]); # Unload A0 to clear the coefficient register X0_gate_inv = cin_gate(circ, qcoff, qlab, coeffs[1], nint=nintcs[0,1], phase=phase, wrap=True, inverse=True) circ.append(X0_gate_inv, [*qcoff, *qlab]); # Unlabel the label register l_gate_inv = label_gate(circ, qx, qtarg, qans, qlab, bounds=bounds, nint=nintx, phase=phase, wrap=True, inverse=True) circ.append(l_gate_inv, [*qx, qtarg, *qans, *qlab]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def PQC_realamp(circ, qreg, weights, wrap=False, inverse=False, label='PQCrealamp'): n = len(qreg) reps = weights.shape[0] - 1 if weights.shape[1]!=n: raise ValueError('Shape of weight array does not match the number of qubits of the target register.') if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'q_reg') circ = QuantumCircuit(qreg) circ.h(qreg); for rep in np.arange(reps+1): for i in np.arange(n): circ.ry(weights[rep,i],qreg[i]) for i in np.arange(n): if i!=n-1 and rep!=reps: circ.cx(qreg[i], qreg[i+1]) if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def round_sig(xs, sigfig=0): if np.array(xs).ndim==0: xs = np.array([xs]) rxs = [] for x in xs: if x!=0.: rxs.append(np.round(x, sigfig-int(np.floor(np.log10(np.abs(x)))))) else: rxs.append(0.) rxs = np.array(rxs) return rxs def optimize_coeffs_qubits(f_x, xs, m, n=None, npres0=None, npres1=None, norder=1, phase=True, label_swap=False): if n==None and npres0==None and npres1==None: raise ValueError('Must specify either the number of qubits of the output register or the precision qubits of sets of coefficients.') if npres0==None and npres1!=None or npres0!=None and npres1==None: raise ValueError('Must leave both precision qubit options as None.') xmin = xs[0] xmax = xs[-1] nx = int(np.log2(len(xs))) nintx = get_nint(xs) npresx = int(-np.log2(xs[1]-xs[0])) if xmin==0.: xphase=False else: xphase=True bounds_ = np.linspace(xs[1], xmax, (2**m)) bounds__ = [] for bound in bounds_: bounds__.append(bin_to_dec(my_binary_repr(bound, n=nx, nint=nintx, phase=xphase), nint=nintx, phase=xphase)) bounds_ = bounds__ bounds_[0] = xs[1] bounds_ = np.append(xmin, bounds_) coeffs = get_bound_coeffs(f_x, bounds_, norder, reterr=False).T #bounds = np.copy(np.array(bounds_[:-1])) bounds = np.copy(np.array(bounds_)) # The number of integer bits of A1, A0 and the result nint0 = get_nint(coeffs[0]) nint1 = get_nint(coeffs[1]) nint = nintx + nint0 nswitch = False if n==None: nswitch = True # The number of precision bits of the result npres = npresx + npres0 # The total number of bits of A1, A0 and the result n0 = npres0 + nint0 + 1 n1 = npres1 + nint1 + 1 n = npres + nint + 1 else: npres = n - nint - 1 npres0 = npres - npresx n0 = npres0 + nint0 + 1 npres1 = n0 - nint1 - 1 n1 = npres1 + nint1 + 1 rcoeffs = [] for coeff in coeffs[0]: # Convert coefficient to binary string of new length n0, then calculate the corresponding decimal value rcoeff = bin_to_dec(my_binary_repr(coeff, n0, nint=nint0, phase=phase), nint=nint0, phase=phase) rcoeffs.append(rcoeff) coeffs[0] = np.array(rcoeffs) # Calculate the differences between the f(x) and A1x over all x fdifs = f_x(xs) - piecewise_poly(xs, np.array([coeffs[0],np.zeros(len(coeffs[1]))]).T, bounds) coeffs_ = [] bounds__ = np.copy(bounds_) bounds__[-1] = np.inf for i in np.arange(len(bounds__))[:-1]: # Calculate the mean differences in each domain to be the new bias A0 coeffs_.append(np.mean(fdifs[np.greater_equal(xs,bounds__[i])&np.greater(bounds__[i+1],xs)])) coeffs[1] = np.array(coeffs_) nint1 = get_nint(coeffs[1]) rcoeffs = [] for coeff in coeffs[1]: # Convert coefficient to binary string of new length n1, then calculate the corresponding decimal value rcoeff = bin_to_dec(my_binary_repr(coeff, n1, nint=nint1, phase=phase), nint=nint1, phase=phase) rcoeffs.append(rcoeff) coeffs[1] = np.array(rcoeffs) coeffs[0,0] = 0. coeffs[1,0] = bin_to_dec(my_binary_repr(f_x(bounds[0]), n1, nint=nint1, phase=phase), nint=nint1, phase=phase) # The number of integer bits of A1, A0 and the result nint0 = get_nint(coeffs[0]) nint1 = get_nint(coeffs[1]) nint = nintx + nint0 if nswitch: # The number of precision bits of the result npres = npresx + npres0 # The total number of bits of A1, A0 and the result n0 = npres0 + nint0 + 1 n1 = npres1 + nint1 + 1 n = npres + nint + 1 else: npres = n - nint - 1 npres0 = npres - npresx n0 = npres0 + nint0 + 1 npres1 = n0 - nint1 - 1 n1 = npres1 + nint1 + 1 ys_rnd = piecewise_poly(xs, coeffs.T, bounds) A1x = piecewise_poly(xs, np.array([coeffs[0],np.zeros(len(coeffs[1]))]).T, bounds) nint = get_nint([A1x, ys_rnd]) if nswitch: n = npres + nint + 1 nintcs = np.array([[nint0,nint1]]) if 16*(2**(n0+n+nx+m))/2**20>7568: raise ValueError('Too many qubits!',n0+n+nx+m) if label_swap: coeffs[0] = np.array([coeffs[0,-1],*coeffs[0,:-1]]) coeffs[1] = np.array([coeffs[1,-1],*coeffs[1,:-1]]) return n, n0, nint, nintcs, coeffs, bounds[:-1], npres0, npres1 def get_bound_coeffs(func, bounds, norder, reterr=False): if np.array(bounds).ndim==0: print('Bounds must be a list of two entries!') if len(bounds)==1: print('Bounds must be a list of two entries!') coeffs = [] errs = [] for i in np.arange(len(bounds))[:-1]: coeffs_, err_ = run_remez(func, bounds[i], bounds[i+1], norder) coeffs.append(np.array(coeffs_)) errs.append(err_) if reterr: return np.array(coeffs), np.array(errs) else: return np.array(coeffs) def _get_chebyshev_nodes(n, a, b): nodes = [.5 * (a + b) + .5 * (b - a) * np.cos((2 * k + 1) / (2. * n) * np.pi) for k in range(n)] return nodes def _get_errors(exact_values, poly_coeff, nodes): ys = np.polyval(poly_coeff, nodes) for i in range(len(ys)): ys[i] = abs(ys[i] - exact_values[i]) return ys def run_remez(fun, a, b, d=5, odd=False, even=False, tol=1.e-13): finished = False # initial set of points for the interpolation cn = _get_chebyshev_nodes(d + 2, a, b) # mesh on which we'll evaluate the error cn2 = _get_chebyshev_nodes(100 * d, a, b) # do at most 50 iterations and cancel if we "lose" an interpolation # point it = 0 while not finished and len(cn) == d + 2 and it < 50: it += 1 # set up the linear system of equations for Remez' algorithm b = np.array([fun(c) for c in cn]) A = np.matrix(np.zeros([d + 2,d + 2])) for i in range(d + 2): x = 1. if odd: x *= cn[i] for j in range(d + 2): A[i, j] = x x *= cn[i] if odd or even: x *= cn[i] A[i, -1] = (-1)**(i + 1) # this will give us a polynomial interpolation res = np.linalg.solve(A, b) # add padding for even/odd polynomials revlist = reversed(res[0:-1]) sc_coeff = [] for c in revlist: sc_coeff.append(c) if odd or even: sc_coeff.append(0) if even: sc_coeff = sc_coeff[0:-1] # evaluate the approximation error errs = _get_errors([fun(c) for c in cn2], sc_coeff, cn2) maximum_indices = [] # determine points of locally maximal absolute error if errs[0] > errs[1]: maximum_indices.append(0) for i in range(1, len(errs) - 1): if errs[i] > errs[i-1] and errs[i] > errs[i+1]: maximum_indices.append(i) if errs[-1] > errs[-2]: maximum_indices.append(-1) # and choose those as new interpolation points # if not converged already. finished = True for idx in maximum_indices[1:]: if abs(errs[idx] - errs[maximum_indices[0]]) > tol: finished = False cn = [cn2[i] for i in maximum_indices] return sc_coeff, max(abs(errs)) def PhaseEst(circ, qreg, qanc, A_gate, wrap=False, inverse=False, do_swaps=True, reverse_bits=False, label='QPE'): n = len(qreg) nanc = len(qanc) if inverse: wrap = True if wrap: qreg = QuantumRegister(n, 'q_reg') qanc = QuantumRegister(nanc, 'q_anc') circ = QuantumCircuit(qreg, qanc) circ.h(qanc); for i in np.arange(nanc): A_gate_i = A_gate.power(-2.**(i)).control(1) circ.append(A_gate_i, [qanc[i], *qreg]); iqft_gate = QFT(circ, qanc, do_swaps=do_swaps, wrap=True, inverse=True) if reverse_bits: circ.append(iqft_gate, qanc[::-1]); else: circ.append(iqft_gate, qanc); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def HHL(circ, qb, qanc, qtarg, A, t=2.*np.pi, scaling=None, wrap=False, inverse=False, phase=True, label='HHL'): n = len(qb) nanc = len(qanc) if inverse: wrap = True if wrap: qb = QuantumRegister(n, 'b') qanc = QuantumRegister(nanc, 'anc') qtarg = QuantumRegister(1, 'targ') circ = QuantumCircuit(qb, qanc, qtarg) # Define unitary operator given matrix A and evolution time t A_gate = HamiltonianGate(A, t) # Apply phase estimation qe_gate = PhaseEst(circ, qb, qanc, A_gate, wrap=True, do_swaps=False, reverse_bits=True) circ.append(qe_gate, [*qb, *qanc]); # Apply ExactReciprocal to rotate the target qubit proportionally to the given scaling and the inverse of the # values stored in the computational basis of the ancillary register rec_gate = ExactReciprocal(nanc, scaling=scaling, neg_vals=phase).to_gate() circ.append(rec_gate, [*qanc[::-1], qtarg]); # Apply the inverse phase estimation qe_gate_inv = PhaseEst(circ, qb, qanc, A_gate, wrap=True, inverse=True, do_swaps=False, reverse_bits=True) circ.append(qe_gate_inv, [*qb, *qanc]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ def QGPR(circ, qreg, qanc, qtarg, qcont, v_gate, u_gate, A, t, scaling, wrap=False, inverse=False, neg_vals=True, label='QGPR'): n = len(qreg) nanc = len(qanc) if inverse: wrap = True if wrap: qcont = QuantumRegister(1, 'q_cont') qtarg = QuantumRegister(1, 'q_targ') qreg = QuantumRegister(n, 'q_reg') qanc = QuantumRegister(nanc, 'anc') circ = QuantumCircuit(qreg, qanc, qtarg, qcont) circ.h(qcont); circ.append(v_gate.control(1), [qcont, *qreg]); circ.x(qcont); circ.cx(qcont, qtarg); circ.append(u_gate.control(1), [qcont, *qreg]); circ.x(qcont); hhl_gate = HHL(circ, qreg, qanc, qtarg, A, t=t, scaling=scaling, wrap=True).control(1) circ.append(hhl_gate, [qcont, *qreg, *qanc, qtarg]); if wrap: circ = circ.to_gate() circ.label = label if inverse: circ = circ.inverse() circ.label = label+'\dag' return circ
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ, execute from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram from qiskit_textbook.problems import dj_problem_oracle from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * provider = IBMQ.load_account() def lab1_ex1(): qc = QuantumCircuit(1) qc.x(0) return qc state = Statevector.from_instruction(lab1_ex1()) plot_bloch_multivector(state) def lab1_ex2(): qc = QuantumCircuit(1) qc.h(0) return qc state = Statevector.from_instruction(lab1_ex2()) plot_bloch_multivector(state) def lab1_ex3(): qc = QuantumCircuit(1) qc.x(0) qc.h(0) return qc state = Statevector.from_instruction(lab1_ex3()) plot_bloch_multivector(state) def lab1_ex4(): qc = QuantumCircuit(1) qc.x(0) qc.h(0) qc.s(0) return qc state = Statevector.from_instruction(lab1_ex4()) plot_bloch_multivector(state) def lab1_ex5(): qc = QuantumCircuit(2,2) # this time, we not only want two qubits, but also two classical bits for the measurement qc.h(0) qc.x(1) qc.cx(0,1) return qc qc = lab1_ex5() qc.draw() # we draw the circuit qc.measure_all() # we measure all the qubits backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts plot_histogram(counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities def lab1_ex6(): qc = QuantumCircuit(3,3) qc.x(0) qc.h(0) qc.x(1) qc.x(2) qc.cx(0,1) qc.cx(1,2) return qc qc = lab1_ex6() qc.draw() # we draw the circuit oraclenr = 2 # determines the oracle (can range from 1 to 5) oracle = dj_problem_oracle(oraclenr) # gives one out of 5 oracles oracle.name = "DJ-Oracle" def dj_classical(n, input_str): # build a quantum circuit with n qubits and 1 classical readout bit dj_circuit = QuantumCircuit(n+1,1) # Prepare the initial state corresponding to your input bit string for i in range(n): if input_str[i] == '1': dj_circuit.x(i) # append oracle dj_circuit.append(oracle, range(n+1)) # measure the fourth qubit dj_circuit.measure(n,0) return dj_circuit n = 4 # number of qubits input_str = '1111' dj_circuit = dj_classical(n, input_str) dj_circuit.draw() # draw the circuit input_str = '1011' dj_circuit = dj_classical(n, input_str) qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit, qasm_sim) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def lab1_ex7(): min_nr_inputs = 2 # put your answer here, then uncomment max_nr_inputs = (2**n)/2 + 1 # put your answer here, then uncomment return [min_nr_inputs, max_nr_inputs] n=4 def psi_0(n): qc = QuantumCircuit(n+1,n) # Build the state (|00000> - |10000>)/sqrt(2) qc.x(4) qc.h(4) qc.barrier() return qc dj_circuit = psi_0(n) dj_circuit.draw() def psi_1(n): # obtain the |psi_0> = (|00000> - |10000>)/sqrt(2) state qc = psi_0(n) # create the superposition state |psi_1> for i in range(4): qc.h(i) return qc dj_circuit = psi_1(n) dj_circuit.draw() def psi_2(oracle,n): # circuit to obtain psi_1 qc = psi_1(n) # append the oracle qc.append(oracle, range(n+1)) return qc dj_circuit = psi_2(oracle, n) dj_circuit.draw() def lab1_ex8(oracle, n): # note that this exercise also depends on the code in the functions psi_0 (In [24]) and psi_1 (In [25]) qc = psi_2(oracle, n) # apply n-fold hadamard gate for i in range(n): qc.h(i) qc.barrier() # add the measurement by connecting qubits to classical bits for j in range(n): qc.measure(j, j) return qc dj_circuit = lab1_ex8(oracle, n) dj_circuit.draw() qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print('least busy backend: ', backend) %qiskit_job_watcher job = execute(dj_circuit, backend=backend, shots=1024, optimization_level=3) # Get results of computation results = job.result() answer = results.get_counts() plot_histogram(answer) # Jobs I ran before backend = provider.get_backend('ibmq_quito') old_job = backend.retrieve_job('61cbfe7be867009014a0362e') results = old_job.result() answer = results.get_counts() plot_histogram(answer)
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np from mitiq import cdr, Observable, PauliString, Executor import cirq from cirq.contrib.qasm_import import circuit_from_qasm from cirq.circuits.qasm_output import QasmUGate from qiskit import * from qiskit import transpile, assemble, IBMQ from qiskit.visualization import * from qiskit import Aer, QuantumCircuit from qiskit.circuit import ParameterVector pi = np.pi feature_dim = 2 reps = 2 duplicates = 1 feature_map_circuit = QuantumCircuit(feature_dim, name='feature_map_circuit') # x = ParameterVector('x', feature_dim * reps) x = [0.1, 0.2] for i in range(reps): for i in range(feature_dim): feature_map_circuit.h(i) feature_map_circuit.rz(2.0*x[0], 0) feature_map_circuit.rz(2.0*x[1], 1) feature_map_circuit.cnot(0, 1) feature_map_circuit.rz(2.0*(pi - x[0])*(pi - x[1]), 1) feature_map_circuit.cnot(0, 1) feature_map_circuit.draw() qasm_feature_map = feature_map_circuit.qasm(filename='feature_map.qasm') print(qasm_feature_map) cirq_feature_map = circuit_from_qasm(qasm_feature_map) cirq_3_feature_map = cirq_feature_map * 3 print(cirq_3_feature_map) from mitiq.interface.mitiq_cirq import compute_density_matrix compute_density_matrix(cirq_feature_map).round(3) obs = Observable(PauliString("ZZ")) print(obs) def simulate(circuit: cirq.Circuit) -> np.ndarray: return compute_density_matrix(circuit, noise_level=(0.0,)) simulate(cirq_feature_map).round(3) ideal_measurement = obs.expectation(cirq_feature_map, simulate).real print("ideal_measurement = ",ideal_measurement) unmitigated_measurement = obs.expectation(cirq_feature_map, compute_density_matrix).real print("unmitigated_measurement = ", unmitigated_measurement) mitigated_measurement = cdr.execute_with_cdr( cirq_feature_map, compute_density_matrix, observable=obs, simulator=simulate, seed=0, ).real print("mitigated_measurement = ", mitigated_measurement) from mitiq.zne import scaling vncdr = cdr.execute_with_cdr( cirq_feature_map, compute_density_matrix, observable=obs, simulator=simulate, seed=0, scale_factors=(1.0, 3.0), ).real print("vncdr = ", vncdr) error_unmitigated = abs(unmitigated_measurement-ideal_measurement) error_mitigated = abs(mitigated_measurement-ideal_measurement) error_vn_mitigated = abs(vncdr-ideal_measurement) print("Error (unmitigated):", error_unmitigated) print("Error (mitigated with CDR):", error_mitigated) print("Error (mitigated with VNCDR):", error_vn_mitigated) print("Relative error (unmitigated):", (error_unmitigated/ideal_measurement)) print("Relative error (mitigated with CDR):", error_mitigated/ideal_measurement) print("Relative error (mitigated with VNCDR):", error_vn_mitigated/ideal_measurement) print( f"Error reduction with CDR: {(error_unmitigated-error_mitigated)/error_unmitigated :.1%}.") print( f"Error reduction with VNCDR: {(error_unmitigated-error_vn_mitigated)/error_unmitigated :.1%}.") num_qubits = 2 ansatz_circuit = QuantumCircuit(num_qubits, name='ansatz_circuit') reps = 1 # params = ParameterVector('θ', num_qubits + num_qubits * reps) params = [0.7, 0.3, 0.5, 1.2] counter = 0 for i in range(num_qubits): ansatz_circuit.ry(params[counter], i) counter += 1 for j in range(reps): for k in range(num_qubits-1): ansatz_circuit.cnot(k, k+1) for m in range(num_qubits): ansatz_circuit.ry(params[counter], m) counter += 1 ansatz_circuit.draw() qasm_ansatz = ansatz_circuit.qasm(filename='ansatz.qasm') print(qasm_ansatz) cirq_ansatz = circuit_from_qasm(qasm_ansatz) * 1 print(cirq_ansatz) compute_density_matrix(cirq_ansatz).round(3) simulate(cirq_ansatz).round(3) ideal_measurement = obs.expectation(cirq_ansatz, simulate).real print("ideal_measurement = ",ideal_measurement) unmitigated_measurement = obs.expectation(cirq_ansatz, compute_density_matrix).real print("unmitigated_measurement = ", unmitigated_measurement) mitigated_measurement = cdr.execute_with_cdr( cirq_ansatz, compute_density_matrix, observable=obs, simulator=simulate, seed=0, ).real print("mitigated_measurement = ", mitigated_measurement) from mitiq.zne import scaling vncdr = cdr.execute_with_cdr( cirq_ansatz, compute_density_matrix, observable=obs, simulator=simulate, seed=0, scale_factors=(1.0, 3.0), ).real print("vncdr = ", vncdr) error_unmitigated = abs(unmitigated_measurement-ideal_measurement) error_mitigated = abs(mitigated_measurement-ideal_measurement) error_vn_mitigated = abs(vncdr-ideal_measurement) print("Error (unmitigated):", error_unmitigated) print("Error (mitigated with CDR):", error_mitigated) print("Error (mitigated with VNCDR):", error_vn_mitigated) print("Relative error (unmitigated):", (error_unmitigated/ideal_measurement)) print("Relative error (mitigated with CDR):", error_mitigated/ideal_measurement) print("Relative error (mitigated with VNCDR):", error_vn_mitigated/ideal_measurement) print( f"Error reduction with CDR: {(error_unmitigated-error_mitigated)/error_unmitigated :.1%}.") print( f"Error reduction with VNCDR: {(error_unmitigated-error_vn_mitigated)/error_unmitigated :.1%}.")
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() import math desired_state = [ 0, 0, 0, 0, 0, 1 / math.sqrt(2), 0, 1 / math.sqrt(2)] qc = QuantumCircuit(3) qc.initialize(desired_state, [0,1,2]) qc.decompose().decompose().decompose().decompose().decompose().draw() desired_state = [ 1 / math.sqrt(15.25) * 1.5, 0, 1 / math.sqrt(15.25) * -2, 1 / math.sqrt(15.25) * 3] qc = QuantumCircuit(2) qc.initialize(desired_state, [0,1]) qc.decompose().decompose().decompose().decompose().decompose().draw() qc = QuantumCircuit(3) qc.ry(0, 0) qc.ry(math.pi/4, 1) qc.ry(math.pi/2, 2) qc.draw() from qiskit.circuit.library import ZZFeatureMap circuit = ZZFeatureMap(3, reps=1, insert_barriers=True) circuit.decompose().draw() x = [0.1, 0.2, 0.3] encode = circuit.bind_parameters(x) encode.decompose().draw() from qiskit.circuit.library import EfficientSU2 circuit = EfficientSU2(num_qubits=3, reps=1, insert_barriers=True) circuit.decompose().draw() x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2] encode = circuit.bind_parameters(x) encode.decompose().draw()
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np from qiskit.quantum_info import state_fidelity, Statevector def getStatevector(circuit): return Statevector(circuit).data import warnings warnings.filterwarnings('ignore') def P_haar(N, F): if F == 1: return 0 else: return (N - 1) * ((1 - F) ** (N - 2)) def KL(P, Q): epsilon = 1e-8 kl_divergence = 0.0 for p, q in zip(P, Q): kl_divergence += p * np.log( (p + epsilon) / (q + epsilon) ) return abs(kl_divergence) def expressibility(qubits, sampler, *, bins=100, epoch=3000, layer=1, encode=False, return_detail=False): unit = 1 / bins limits = [] probabilities = np.array([0] * bins) for i in range(1, bins + 1): limits.append(unit * i) for i in range(epoch): circuit_1 = sampler(layer=layer, qubits=qubits) circuit_2 = sampler(layer=layer, qubits=qubits) f = state_fidelity( getStatevector(circuit_1), getStatevector(circuit_2) ) for j in range(bins): if f <= limits[j]: probabilities[j] += 1 break pHaar_vqc = [ P_haar(2 ** qubits, f - (unit/2)) / bins for f in limits] probabilities = [ p / epoch for p in probabilities ] if return_detail: return pHaar_vqc, probabilities else: return KL(probabilities, pHaar_vqc)
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np import matplotlib.pyplot as plt import torch from torch.autograd import Function from torchvision import datasets, transforms import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from torchsummary import summary import qiskit from qiskit import transpile, assemble, IBMQ from qiskit.visualization import * from qiskit.providers.aer import AerSimulator from qiskit.test.mock import FakeBelem provider = IBMQ.load_account() class QuantumCircuit: """ This class provides a simple interface for interaction with the quantum circuit """ def __init__(self, n_qubits, backend, shots): # --- Circuit definition --- self._circuit = qiskit.QuantumCircuit(n_qubits) all_qubits = [i for i in range(n_qubits)] self.theta = qiskit.circuit.Parameter('theta') self._circuit.h(all_qubits) self._circuit.barrier() self._circuit.ry(self.theta, all_qubits) self._circuit.measure_all() # --------------------------- self.backend = backend self.shots = shots def run(self, thetas): t_qc = transpile(self._circuit, self.backend) qobj = assemble(t_qc, shots=self.shots, parameter_binds = [{self.theta: theta} for theta in thetas]) job = self.backend.run(qobj) result = job.result().get_counts() # print(f"Result is {result}") counts = np.array(list(result.values())) states = np.array(list(result.keys())).astype(float) # Compute probabilities for each state probabilities = counts / self.shots # Get state expectation expectation = np.sum(states * probabilities) return np.array([expectation]) # Using a noisy simulator noisy_backend = FakeBelem() simulator = AerSimulator.from_backend(noisy_backend) # simulator = qiskit.Aer.get_backend('aer_simulator') circuit = QuantumCircuit(1, simulator, 100) print('Expected value for rotation pi {}'.format(circuit.run([np.pi])[0])) circuit._circuit.draw('mpl') class HybridFunction(Function): """ Hybrid quantum - classical function definition """ @staticmethod def forward(ctx, input, quantum_circuit, shift): """ Forward pass computation """ ctx.shift = shift ctx.quantum_circuit = quantum_circuit expectation_z = ctx.quantum_circuit.run(input[0].tolist()) result = torch.tensor([expectation_z]) ctx.save_for_backward(input, result) return result @staticmethod def backward(ctx, grad_output): """ Backward pass computation """ input, expectation_z = ctx.saved_tensors input_list = np.array(input.tolist()) shift_right = input_list + np.ones(input_list.shape) * ctx.shift shift_left = input_list - np.ones(input_list.shape) * ctx.shift gradients = [] for i in range(len(input_list)): expectation_right = ctx.quantum_circuit.run(shift_right[i]) expectation_left = ctx.quantum_circuit.run(shift_left[i]) gradient = torch.tensor([expectation_right]) - torch.tensor([expectation_left]) gradients.append(gradient) gradients = np.array([gradients]).T return torch.tensor([gradients]).float() * grad_output.float(), None, None class Hybrid(nn.Module): """ Hybrid quantum - classical layer definition """ def __init__(self, backend, shots, shift): super(Hybrid, self).__init__() self.quantum_circuit = QuantumCircuit(2, backend, shots) # initialize 2 qubit VQC self.shift = shift def forward(self, input): return HybridFunction.apply(input, self.quantum_circuit, self.shift) # Concentrating on the first 100 samples n_samples = 100 X_train = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()])) # Leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] train_loader = torch.utils.data.DataLoader(X_train, batch_size=1, shuffle=True) n_samples_show = 6 data_iter = iter(train_loader) fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) while n_samples_show > 0: images, targets = data_iter.__next__() axes[n_samples_show - 1].imshow(images[0].numpy().squeeze(), cmap='gray') axes[n_samples_show - 1].set_xticks([]) axes[n_samples_show - 1].set_yticks([]) axes[n_samples_show - 1].set_title("Labeled: {}".format(targets.item())) n_samples_show -= 1 n_samples = 50 X_test = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()])) idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] test_loader = torch.utils.data.DataLoader(X_test, batch_size=1, shuffle=True) class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1 input image channel, 6 output channels, 5x5 square convolution self.conv1 = nn.Conv2d(1, 6, kernel_size=5) # 6 input channels, 16 output channels, 5x5 square convolution self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(256, 64) # fc stands for fully connected layer self.fc2 = nn.Linear(64, 2) # output 1 to be run on 2 qubit VQC # self.hybrid = Hybrid(qiskit.Aer.get_backend('aer_simulator'), 100, np.pi / 2) self.hybrid = [Hybrid(qiskit.Aer.get_backend('aer_simulator'), 100, np.pi / 2) for i in range(2)] def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) # Here is where the matrixes/channels are flattened into one long vector x = torch.flatten(x, start_dim=1) # x = x.view(1, -1) # make it the same shape as output x = F.relu(self.fc1(x)) # ReLu is applied to fc1(x) where fc1 is channel which it takes an input of 256 and outputs a vector of a size of 64. x = self.fc2(x) # Final step where input is a size of 64 and output is a size of 10. x = torch.chunk(x, 2, dim=1) # x = self.hybrid(x) x = tuple([hybr(x_) for hybr, x_ in zip(self.hybrid, x)]) return torch.cat(x, -1) # class Net(nn.Module): # def __init__(self): # super(Net, self).__init__() # self.conv1 = nn.Conv2d(1, 6, kernel_size=5) # self.conv2 = nn.Conv2d(6, 16, kernel_size=5) # self.dropout = nn.Dropout2d() # self.fc1 = nn.Linear(256, 64) # self.fc2 = nn.Linear(64, 1) # self.hybrid = Hybrid(qiskit.Aer.get_backend('aer_simulator'), 100, np.pi / 2) # def forward(self, x): # x = F.relu(self.conv1(x)) # x = F.max_pool2d(x, 2) # x = F.relu(self.conv2(x)) # x = F.max_pool2d(x, 2) # x = self.dropout(x) # x = x.view(1, -1) # x = F.relu(self.fc1(x)) # x = self.fc2(x) # x = self.hybrid(x) # return torch.cat((x, 1 - x), -1) model = Net() summary(model, (1, 28, 28), device='cpu') optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # clears old gradients from the last step (otherwise you’d just accumulate the gradients from all loss.backward() calls). # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation. # Optimize the weights optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters. total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Negative Log Likelihood Loss') model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), correct / len(test_loader) * 100) ) n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(10, 3)) model.eval() with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) axes[count].set_title('Predicted {}'.format(pred.item())) count += 1
https://github.com/googlercolin/Qiskit-Course
googlercolin
# !pip install -r 'requirements.txt' --quiet import numpy as np import torch from torchvision.transforms import ToTensor from torch import no_grad from torchvision import datasets import torch.optim as optim from torch.nn import (Module, Conv2d, Linear, Dropout2d, NLLLoss, MaxPool2d, Flatten, Sequential, ReLU) import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from qiskit import * from qiskit import transpile, assemble, IBMQ from qiskit.visualization import * from qiskit import Aer, QuantumCircuit from qiskit.utils import QuantumInstance, algorithm_globals from qiskit.opflow import AerPauliExpectation from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.circuit import ParameterVector from qiskit_machine_learning.neural_networks import CircuitQNN, TwoLayerQNN from qiskit_machine_learning.connectors import TorchConnector import qiskit.providers.fake_provider as fake from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer import AerSimulator import matplotlib.pyplot as plt provider = IBMQ.load_account() # Declare Quantum instance noisy_backend = provider.get_backend('ibmq_manila') backend_sim = AerSimulator.from_backend(noisy_backend) qi = QuantumInstance(backend_sim) print(backend_sim) ### Training and test data downloaded from FashionMNIST and transformed into tensors ### training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor() ) ### Inspecting the images in the training data set with their labels ### labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot", } figure = plt.figure(figsize=(8, 8)) cols, rows = 3, 3 for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray") plt.show() ### Load training data into Torch DataLoader ### X_train = training_data n_samples = 500 batch_size = 64 # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] # A torch dataloader is defined with filtered data train_loader = DataLoader(X_train, batch_size=64, shuffle=True) # Load test data into Torch DataLoader X_test = test_data # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] # Define torch dataloader with filtered data test_loader = DataLoader(X_test, batch_size=64, shuffle=True) ### Two layer QNN constructed ### feature_map_lib = ZZFeatureMap(feature_dimension=2, entanglement='linear') ansatz_lib = RealAmplitudes(2, reps=1, entanglement='linear') print(feature_map_lib.decompose()) print(ansatz_lib.decompose()) qnn2 = TwoLayerQNN(2, feature_map_lib, ansatz_lib, input_gradients=True, exp_val=AerPauliExpectation(), quantum_instance=qi) print(qnn2.operator) ### Torch NN module from Qiskit ### class Net(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(1, 2, kernel_size=5) self.conv2 = Conv2d(2, 16, kernel_size=5) self.dropout = Dropout2d() self.fc1 = Linear(256, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN # Apply torch connector, weights chosen self.qnn = TorchConnector(qnn2) # uniformly at random from interval [-1,1]. self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) # apply QNN x = self.fc3(x) return torch.cat((x, 1 - x), -1) ### Model trained and the loss computed ### model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) ### Loss convergence plotted ### plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg. Log Likelihood Loss') plt.show() ### Model evaluated ### model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), (correct / len(test_loader) / batch_size) * 100)) ### Predicted images displayed. Either T-shirt or Trouser ### n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(15, 5)) model.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data[0:1]) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) if pred.item() == 0: axes[count].set_title('Predicted item: T-Shirt') elif pred.item() == 1: axes[count].set_title('Predicted item: Trouser') count += 1 pi = np.pi feature_dim = 2 reps = 2 duplicates = 1 feature_map_circuit = QuantumCircuit(feature_dim, name='feature_map_circuit') x = ParameterVector('x', feature_dim * reps) for i in range(reps): for i in range(feature_dim): feature_map_circuit.h(i) feature_map_circuit.p(2.0*x[0], 0) feature_map_circuit.p(2.0*x[1], 1) feature_map_circuit.cnot(0, 1) feature_map_circuit.p(2.0*(pi - x[0])*(pi - x[1]), 1) feature_map_circuit.cnot(0, 1) feature_map_circuit.draw() num_qubits = 2 ansatz_circuit = QuantumCircuit(num_qubits, name='ansatz_circuit') reps = 1 params = ParameterVector('θ', num_qubits + num_qubits * reps) counter = 0 for i in range(num_qubits): ansatz_circuit.ry(params[counter], i) counter += 1 for j in range(reps): for k in range(num_qubits-1): ansatz_circuit.cnot(k, k+1) for m in range(num_qubits): ansatz_circuit.ry(params[counter], m) counter += 1 ansatz_circuit.draw() qnn2 = TwoLayerQNN(2, feature_map_circuit, ansatz_circuit, input_gradients=True, exp_val=AerPauliExpectation(), quantum_instance=qi) print(qnn2.operator) ### Torch NN module from Qiskit ### class Net(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(1, 2, kernel_size=5) self.conv2 = Conv2d(2, 16, kernel_size=5) self.dropout = Dropout2d() self.fc1 = Linear(256, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN # Apply torch connector, weights chosen self.qnn = TorchConnector(qnn2) # uniformly at random from interval [-1,1]. self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) # apply QNN x = self.fc3(x) return torch.cat((x, 1 - x), -1) ### Model trained and the loss computed ### model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) ### Loss convergence plotted ### plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg. Log Likelihood Loss') plt.show() torch.save(model.state_dict( ), 'Models/defaultZZDefaultRealAmp.pth') ### Model evaluated ### model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), (correct / len(test_loader) / batch_size) * 100)) ### Predicted images displayed. Either T-shirt or Trouser ### n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(15, 5)) model.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data[0:1]) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) if pred.item() == 0: axes[count].set_title('Predicted item: T-Shirt') elif pred.item() == 1: axes[count].set_title('Predicted item: Trouser') count += 1
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np import torch from torchvision.transforms import ToTensor from torch import no_grad from torchvision import datasets import torch.optim as optim from torch.nn import (Module, Conv2d, Linear, Dropout2d, NLLLoss, MaxPool2d, Flatten, Sequential, ReLU) import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from qiskit import * from qiskit import transpile, assemble, IBMQ from qiskit.visualization import * from qiskit import Aer, QuantumCircuit from qiskit.utils import QuantumInstance, algorithm_globals from qiskit.opflow import AerPauliExpectation from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.circuit import ParameterVector from qiskit_machine_learning.neural_networks import CircuitQNN, TwoLayerQNN from qiskit_machine_learning.connectors import TorchConnector import qiskit.providers.fake_provider as fake from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer import AerSimulator, QasmSimulator import matplotlib.pyplot as plt provider = IBMQ.load_account() # Declare Quantum instance noisy_backend = provider.get_backend('ibmq_manila') backend_sim = AerSimulator.from_backend(noisy_backend) qi = QuantumInstance(backend_sim) print(backend_sim) ### Training and test data downloaded from FashionMNIST and transformed into tensors ### training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor() ) ### Inspecting the images in the training data set with their labels ### labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot", } figure = plt.figure(figsize=(8, 8)) cols, rows = 3, 3 for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray") plt.show() ### Load training data into Torch DataLoader ### X_train = training_data n_samples = 500 batch_size = 64 # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] # A torch dataloader is defined with filtered data train_loader = DataLoader(X_train, batch_size=64, shuffle=True) # Load test data into Torch DataLoader X_test = test_data # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] # Define torch dataloader with filtered data test_loader = DataLoader(X_test, batch_size=64, shuffle=True) pi = np.pi feature_dim = 2 reps = 2 duplicates = 3 # only use odd integers here feature_map_circuit = QuantumCircuit(feature_dim, name=f'feature_map_circuit, duplicates = {duplicates}') x = ParameterVector('x', feature_dim * reps) for i in range(reps): for j in range(feature_dim): for k in range(duplicates): feature_map_circuit.h(j) for m in range(duplicates): feature_map_circuit.p(2.0*x[0], 0) feature_map_circuit.p(2.0*x[1], 1) for m in range(duplicates): feature_map_circuit.cnot(0, 1) for m in range(duplicates): feature_map_circuit.p(2.0*(pi - x[0])*(pi - x[1]), 1) for m in range(duplicates): feature_map_circuit.cnot(0, 1) feature_map_circuit.draw() num_qubits = 2 ansatz_circuit = QuantumCircuit(num_qubits, name=f'ansatz_circuit, duplicates = {duplicates}') reps = 1 params = ParameterVector('θ', num_qubits + num_qubits * reps) counter = 0 for i in range(num_qubits): for n in range(duplicates): ansatz_circuit.ry(params[counter], i) counter += 1 for j in range(reps): for k in range(num_qubits-1): for n in range(duplicates): ansatz_circuit.cnot(k, k+1) for m in range(num_qubits): for n in range(duplicates): ansatz_circuit.ry(params[counter], m) counter += 1 ansatz_circuit.draw() qnn2 = TwoLayerQNN(2, feature_map_circuit, ansatz_circuit, input_gradients=True, exp_val=AerPauliExpectation(), quantum_instance=qi) print(qnn2.operator) ### Torch NN module from Qiskit ### class Net(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(1, 2, kernel_size=5) self.conv2 = Conv2d(2, 16, kernel_size=5) self.dropout = Dropout2d() self.fc1 = Linear(256, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN # Apply torch connector, weights chosen self.qnn = TorchConnector(qnn2) # uniformly at random from interval [-1,1]. self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) # apply QNN x = self.fc3(x) return torch.cat((x, 1 - x), -1) ### Model trained and the loss computed ### model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) ### Loss convergence plotted ### plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg. Log Likelihood Loss') plt.show() torch.save(model.state_dict( ), 'Models/d3ZZ_d3RealAmp.pth') ### Model evaluated ### model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), (correct / len(test_loader) / batch_size) * 100)) ### Predicted images displayed. Either T-shirt or Trouser ### n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(15, 5)) model.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data[0:1]) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) if pred.item() == 0: axes[count].set_title('Predicted item: T-Shirt') elif pred.item() == 1: axes[count].set_title('Predicted item: Trouser') count += 1
https://github.com/googlercolin/Qiskit-Course
googlercolin
# !pip install -r 'requirements.txt' --quiet import numpy as np import torch from torchvision.transforms import ToTensor from torch import no_grad from torchvision import datasets import torch.optim as optim from torch.nn import (Module, Conv2d, Linear, Dropout2d, NLLLoss, MaxPool2d, Flatten, Sequential, ReLU) import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader import qiskit from qiskit import transpile, assemble from qiskit.visualization import * from qiskit import Aer, QuantumCircuit from qiskit.utils import QuantumInstance from qiskit.opflow import AerPauliExpectation from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit_machine_learning.neural_networks import CircuitQNN, TwoLayerQNN from qiskit_machine_learning.connectors import TorchConnector import matplotlib.pyplot as plt # Declare Quantum instance qi = QuantumInstance(Aer.get_backend('aer_simulator_statevector')) ### Training and test data downloaded from FashionMNIST and transformed into tensors ### training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor() ) ### Inspecting the images in the training data set with their labels ### labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot", } figure = plt.figure(figsize=(8, 8)) cols, rows = 3, 3 for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray") plt.show() ### Load training data into Torch DataLoader ### X_train = training_data n_samples = 500 batch_size = 64 # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append(np.where(X_train.targets == 0)[0][:n_samples], np.where(X_train.targets == 1)[0][:n_samples]) X_train.data = X_train.data[idx] X_train.targets = X_train.targets[idx] # A torch dataloader is defined with filtered data train_loader = DataLoader(X_train, batch_size=64, shuffle=True) # Load test data into Torch DataLoader X_test = test_data # Filter out labels (originally 0-9), leaving only labels 0 and 1 idx = np.append(np.where(X_test.targets == 0)[0][:n_samples], np.where(X_test.targets == 1)[0][:n_samples]) X_test.data = X_test.data[idx] X_test.targets = X_test.targets[idx] # Define torch dataloader with filtered data test_loader = DataLoader(X_test, batch_size=64, shuffle=True) ### Two layer QNN constructed ### feature_map = ZZFeatureMap(feature_dimension=2, entanglement='linear') ansatz = RealAmplitudes(2, reps=1, entanglement='linear') qnn2 = TwoLayerQNN(2, feature_map, ansatz, input_gradients=True, exp_val=AerPauliExpectation(), quantum_instance=qi) print(qnn2.operator) ### Torch NN module from Qiskit ### class Net(Module): def __init__(self): super().__init__() self.conv1 = Conv2d(1, 2, kernel_size=5) self.conv2 = Conv2d(2, 16, kernel_size=5) self.dropout = Dropout2d() self.fc1 = Linear(256, 64) self.fc2 = Linear(64, 2) # 2-dimensional input to QNN # Apply torch connector, weights chosen self.qnn = TorchConnector(qnn2) # uniformly at random from interval [-1,1]. self.fc3 = Linear(1, 1) # 1-dimensional output from QNN def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout(x) x = x.view(x.shape[0], -1) x = F.relu(self.fc1(x)) x = self.fc2(x) x = self.qnn(x) # apply QNN x = self.fc3(x) return torch.cat((x, 1 - x), -1) ### Model trained and the loss computed ### model = Net() optimizer = optim.Adam(model.parameters(), lr=0.001) loss_func = nn.NLLLoss() epochs = 20 loss_list = [] model.train() for epoch in range(epochs): total_loss = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Forward pass output = model(data) # Calculating loss loss = loss_func(output, target) # Backward pass loss.backward() # Optimize the weights optimizer.step() total_loss.append(loss.item()) loss_list.append(sum(total_loss)/len(total_loss)) print('Training [{:.0f}%]\tLoss: {:.4f}'.format( 100. * (epoch + 1) / epochs, loss_list[-1])) ### Loss convergence plotted ### plt.plot(loss_list) plt.title('Hybrid NN Training Convergence') plt.xlabel('Training Iterations') plt.ylabel('Neg. Log Likelihood Loss') plt.show() ### Model evaluated ### model.eval() with torch.no_grad(): correct = 0 for batch_idx, (data, target) in enumerate(test_loader): output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() loss = loss_func(output, target) total_loss.append(loss.item()) print('Performance on test data:\n\tLoss: {:.4f}\n\tAccuracy: {:.1f}%'.format( sum(total_loss) / len(total_loss), (correct / len(test_loader) / batch_size) * 100)) ### Predicted images displayed. Either T-shirt or Trouser ### n_samples_show = 6 count = 0 fig, axes = plt.subplots(nrows=1, ncols=n_samples_show, figsize=(15, 5)) model.eval() with no_grad(): for batch_idx, (data, target) in enumerate(test_loader): if count == n_samples_show: break output = model(data[0:1]) if len(output.shape) == 1: output = output.reshape(1, *output.shape) pred = output.argmax(dim=1, keepdim=True) axes[count].imshow(data[0].numpy().squeeze(), cmap='gray') axes[count].set_xticks([]) axes[count].set_yticks([]) if pred.item() == 0: axes[count].set_title('Predicted item: T-Shirt') elif pred.item() == 1: axes[count].set_title('Predicted item: Trouser') count += 1
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np import networkx as nx import timeit from qiskit import Aer from qiskit.circuit.library import TwoLocal from qiskit_optimization.applications import Maxcut from qiskit.algorithms import VQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.utils import algorithm_globals, QuantumInstance from qiskit_optimization.algorithms import MinimumEigenOptimizer # Generating a graph of 6 nodes n = 6 # Number of nodes in graph G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (1, 3, 1.0), (2, 4, 1.0), (3, 5, 1.0), (4, 5, 1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ["y" for node in G.nodes()] pos = nx.spring_layout(G) def draw_graph(G, colors, pos): default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=0.6, ax=default_axes, pos=pos) edge_labels = nx.get_edge_attributes(G, "weight") nx.draw_networkx_edge_labels(G, pos=pos, edge_labels=edge_labels) draw_graph(G, colors, pos) # Computing the weight matrix from the random graph w = np.zeros([n, n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i, j, default=0) if temp != 0: w[i, j] = temp["weight"] print(w) def brute(): max_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] # create reverse of binary combinations from 0 to 2**n to create every possible set cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if cost > max_cost_brute: max_cost_brute = cost xmax_brute = x max_cost_brute = 0 for b in range(2**n): x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))] # create reverse of binary combinations from 0 to 2**n to create every possible set cost = 0 for i in range(n): for j in range(n): cost = cost + w[i, j] * x[i] * (1 - x[j]) if cost > max_cost_brute: max_cost_brute = cost xmax_brute = x print("case = " + str(x) + " cost = " + str(cost)) colors = ["m" if xmax_brute[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) print("\nBest solution = " + str(xmax_brute) + " with cost = " + str(max_cost_brute)) time = timeit.timeit(brute, number = 1) print(f"\nTime taken for brute force: {time}") max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.export_as_lp_string()) qubitOp, offset = qp.to_ising() print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) # solving Quadratic Program using exact classical eigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) def classical_eigen(): result = exact.solve(qp) result = exact.solve(qp) print(result) time = timeit.timeit(classical_eigen, number = 1) print(f"\nTime taken for exact classical eigensolver force: {time}") # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector ee = NumPyMinimumEigensolver() result = ee.compute_minimum_eigenvalue(qubitOp) x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) colors = ["m" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) algorithm_globals.random_seed = 99 seed = 1010 backend = Aer.get_backend("aer_simulator_statevector") quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) # construct VQE spsa = SPSA(maxiter=300) ry = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") vqe = VQE(ry, optimizer=spsa, quantum_instance=quantum_instance) # run VQE # def vqe_solve(): # result = vqe.compute_minimum_eigenvalue(qubitOp) # time = timeit.timeit(vqe_solve, number = 1) result = vqe.compute_minimum_eigenvalue(qubitOp) # print results x = max_cut.sample_most_likely(result.eigenstate) print("energy:", result.eigenvalue.real) print("time:", result.optimizer_time) print("max-cut objective:", result.eigenvalue.real + offset) print("solution:", x) print("solution objective:", qp.objective.evaluate(x)) # print(f"\nTime taken for VQE: {time}") # plot results colors = ["m" if x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos) # create minimum eigen optimizer based on VQE vqe_optimizer = MinimumEigenOptimizer(vqe) # solve quadratic program result = vqe_optimizer.solve(qp) print(result) colors = ["m" if result.x[i] == 0 else "c" for i in range(n)] draw_graph(G, colors, pos)
https://github.com/googlercolin/Qiskit-Course
googlercolin
!pip install mitiq --quiet import warnings warnings.filterwarnings(action='ignore') # Optional warning filter from qiskit import IBMQ IBMQ.save_account('0238b0afc0dc515fe7987b02706791d1719cb89b68befedc125eded0607e6e9e9f26d3eed482f66fdc45fdfceca3aab2edb9519d96b39e9c78040194b86e7858', overwrite=True) import qiskit import qiskit.ignis.verification.randomized_benchmarking as rb from qiskit.transpiler.passes import RemoveBarriers, RemoveFinalMeasurements from mitiq.interface import convert_to_mitiq, convert_from_mitiq n_qubits = 2 depth = 20 qiskit_circuit = rb.randomized_benchmarking_seq( length_vector=[depth], rb_pattern=[range(n_qubits)], group_gates="0", rand_seed=1, )[0][0][0] # Remove Barriers qiskit_circuit=RemoveBarriers()(qiskit_circuit) # Remove Measurements qiskit_circuit=RemoveFinalMeasurements()(qiskit_circuit) # print(qiskit_circuit) # Double conversion trick to rename qubit register circuit = convert_from_mitiq(convert_to_mitiq(qiskit_circuit)[0], "qiskit") print(f"Randomized benchmarking circuit with {len(circuit)} gates generated.") print(circuit) # Set the number of shots shots = 10 ** 5 # Initialize ideal backend (classical noiseless simulator) ideal_backend = qiskit.Aer.get_backend('aer_simulator') # Append measurements circuit_to_run = circuit.copy() circuit_to_run.measure_all() # Run and get count job = ideal_backend.run(circuit_to_run, shots=shots) counts = job.result().get_counts() # Expectation value of A=|00><00| ideal_value = counts["00"] / shots ideal_value from qiskit.test.mock import FakeLima from qiskit.providers.aer.noise import NoiseModel # Set the number of shots shots = 20000 # Select a noisy backend # noisy_backend = qiskit.IBMQ.load_account().get_backend("ibmq_lima") noisy_backend = FakeLima() # Simulator with noise model similar to "ibmq_lima" # Append measurements circuit_to_run = circuit.copy() circuit_to_run.measure_all() # Run and get counts print(f"Executing circuit with {len(circuit)} gates using {shots} shots.") job = noisy_backend.run(circuit_to_run, shots=shots) counts = job.result().get_counts() # Compute expectation value of the observable A=|0><0| noisy_value = counts["00"] / shots noisy_value def executor(circuit, shots=10 ** 5): """Executes the input circuit and returns the noisy expectation value <A>, where A=|00>00|. """ # Select a noisy backend # noisy_backend = qiskit.IBMQ.load_account().get_backend("ibmq_lima") noisy_backend = FakeLima() # Simulator with noise model similar to "ibmq_lima" # Append measurements circuit_to_run = circuit.copy() circuit_to_run.measure_all() # Run and get counts print(f"Executing circuit with {len(circuit)} gates using {shots} shots.") job = noisy_backend.run(circuit_to_run, shots=shots) counts = job.result().get_counts() # Compute expectation value of the observable A=|0><0| noisy_value = counts["00"] / shots return noisy_value noisy_value = executor(circuit) noisy_value from mitiq import zne # By default, noise is scaled by locally folding gates at random, and the default extrapolation is Richardson. Scale factor = 3. zne_value = zne.execute_with_zne(circuit, executor) unmitigated_error = abs(ideal_value - noisy_value) zne_error = abs(ideal_value - zne_value) print(f"Estimation error without Mitiq : {unmitigated_error}") print(f"Estimation error with Mitiq (ZNE): {zne_error}") print(f"ZNE reduced the estimation error by {(unmitigated_error - zne_error) / unmitigated_error :.1%}.") import mitiq @mitiq.zne.zne_decorator() def executor(circuit, shots=10 ** 5): """Executes the input circuit and returns the noisy expectation value <A>, where A=|00>00|. """ # Select a noisy backend # noisy_backend = qiskit.IBMQ.load_account().get_backend("ibmq_lima") noisy_backend = FakeLima() # Simulator with noise model similar to "ibmq_lima" # Append measurements circuit_to_run = circuit.copy() circuit_to_run.measure_all() # Run and get counts print(f"Executing circuit with {len(circuit)} gates using {shots} shots.") job = noisy_backend.run(circuit_to_run, shots=shots) counts = job.result().get_counts() # Compute expectation value of the observable A=|0><0| noisy_value = counts["00"] / shots return noisy_value noisy_value = executor(circuit) noisy_value # Choose a unitary folding function noise_scaling_function = zne.scaling.fold_global noise_scaled_circuit = noise_scaling_function(circuit, scale_factor=3.5) print(f"The input circuit has {len(circuit)} gates") print(f"The scaled circuit has {len(noise_scaled_circuit)} gates") # Examples: # Richardson extrapolation # factory = zne.inference.RichardsonFactory(scale_factors = [1, 1.2, 2, 3, 5.5]) # Exponential extrapolation factory = zne.inference.ExpFactory(scale_factors = [1, 1.5, 2, 3, 3.5], asymptote=0.25) # Exponential adaptive extrapolation # factory = zne.inference.AdaExpFactory(steps=10, asymptote=0.25) zne_value = zne.execute_with_zne(circuit, executor, scale_noise=noise_scaling_function, factory=factory) unmitigated_error = abs(ideal_value - noisy_value) zne_error = abs(ideal_value - zne_value) print(f"Estimation error without Mitiq : {unmitigated_error}") print(f"Estimation error with Mitiq (ZNE): {zne_error}") print(f"ZNE reduced the estimation error by {(unmitigated_error - zne_error) / unmitigated_error :.1%}.") _ = factory.plot_fit() factory.get_expectation_values() factory.get_scale_factors() factory.get_zero_noise_limit() from mitiq import pec # Print error probability of CNOT gate cnot_error_prob = noisy_backend.properties().gate_error("cx", qubits=(0, 1)) cnot_error_prob # a very rough approximation of the error acting on a CNOT gate # print(qiskit.transpile(circuit, backend=noisy_backend)) from mitiq.pec.representations.depolarizing import represent_operation_with_global_depolarizing_noise # Define ideal operation that we aim to represent cnot_circuit = qiskit.QuantumCircuit(qiskit.QuantumRegister(2, name="q")) cnot_circuit.cx(0, 1) # Build representation cnot_rep = represent_operation_with_global_depolarizing_noise(cnot_circuit, noise_level=cnot_error_prob) print(f"Quasi-probability representation with one-norm {cnot_rep.norm :g} generated.") print(cnot_rep) # full quasi-probability representation of the CNOT gate import mitiq.pec.representations.optimal.find_optimal_representation from functools import partial # Set number of probabilistically generated circuits num_samples = 100 # Distribute budget of shots among all circuits shots_per_circuit = shots // num_samples pec_executor = partial(executor, shots=shots_per_circuit) # Run PEC pec_value = pec.execute_with_pec( circuit, pec_executor, representations = [cnot_rep], num_samples=num_samples, random_state=0, ) unmitigated_error = abs(ideal_value - noisy_value) pec_error = abs(ideal_value - pec_value) print(f"Estimation error without Mitiq : {unmitigated_error}") print(f"Estimation error with Mitiq (PEC): {pec_error}") print(f"PEC reduced the estimation error by {(unmitigated_error - pec_error) / unmitigated_error :.1%}.") from mitiq.pec import NoisyOperation, OperationRepresentation def get_richardson_coefficients(scale_factors): """Returns the array of Richardson extrapolation coefficients associated to the input array of scale factors.""" # This is based on the Lagrange interpolation formula richardson_coeffs = [] for l in scale_factors: coeff = 1.0 for l_prime in scale_factors: if l_prime == l: continue coeff *= l_prime / (l_prime - l) richardson_coeffs.append(coeff) return richardson_coeffs def represent_operation_with_nepec(ideal_operation, scale_factors): """Returns the OperationRepresentation contructed by noise scaling and extrapolation.""" coeffs = get_richardson_coefficients(scale_factors) basis_expansion = {} for scale_factor, coeff in zip(scale_factors, coeffs): scaled_op = NoisyOperation(noise_scaling_function(ideal_operation, scale_factor)) basis_expansion[scaled_op] = coeff return OperationRepresentation(ideal_operation, basis_expansion) # scale_factors = [1, 3, 5] scale_factors = [1, 100] # Large scale factors reduce the PEC sampling cost. agn_rep = represent_operation_with_nepec(cnot_circuit, scale_factors) print(f"NEPEC quasi-probability representation with one-norm {agn_rep.norm :g} generated.") print(agn_rep) nepec_value = pec.execute_with_pec( circuit, pec_executor, representations = [agn_rep], num_samples=num_samples, random_state=0, ) unmitigated_error = abs(ideal_value - noisy_value) nepec_error = abs(ideal_value - nepec_value) print(f"Estimation error without Mitiq : {unmitigated_error}") print(f"Estimation error with Mitiq (NEPEC): {nepec_error}") print(f"NEPEC reduced the estimation error by {(unmitigated_error - nepec_error) / unmitigated_error :.1%}.")
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np from sklearn.datasets.samples_generator import make_blobs from qiskit.aqua.utils import split_dataset_to_data_and_labels from sklearn import svm from utility import breast_cancer_pca from matplotlib import pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 n = 2 # number of principal components kept training_dataset_size = 20 testing_dataset_size = 10 sample_Total, training_input, test_input, class_labels = breast_cancer_pca(training_dataset_size, testing_dataset_size, n) data_train, _ = split_dataset_to_data_and_labels(training_input) data_test, _ = split_dataset_to_data_and_labels(test_input) print (f"data_train[0].shape: {data_train[0].shape}" ) print (f"data_train[1].shape: {data_train[1].shape}" ) # We use the function of scikit learn to generate linearly separable blobs centers = [(2.5,0),(0,2.5)] x, y = make_blobs(n_samples=100, centers=centers, n_features=2,random_state=0,cluster_std=0.5) fig,ax=plt.subplots(1,2,figsize=(12,4)) ax[0].scatter(data_train[0][:,0],data_train[0][:,1],c=data_train[1]) ax[0].set_title('Breast Cancer dataset'); ax[1].scatter(x[:,0],x[:,1],c=y) ax[1].set_title('Blobs linearly separable'); plt.scatter(data_train[0][:,0],data_train[0][:,1],c=data_train[1]) plt.title('Breast Cancer dataset'); model= svm.LinearSVC() model.fit(data_train[0], data_train[1]) #small utility function # some utility functions def make_meshgrid(x, y, h=.02): x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy def plot_contours(ax, clf, xx, yy, **params): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) out = ax.contourf(xx, yy, Z, **params) return out accuracy_train = model.score(data_train[0], data_train[1]) accuracy_test = model.score(data_test[0], data_test[1]) X0, X1 = data_train[0][:, 0], data_train[0][:, 1] xx, yy = make_meshgrid(X0, X1) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) fig,ax=plt.subplots(1,2,figsize=(15,5)) ax[0].contourf(xx, yy, Z, cmap=plt.cm.coolwarm) ax[0].scatter(data_train[0][:,0], data_train[0][:,1], c=data_train[1]) ax[0].set_title('Accuracy on the training set: '+str(accuracy_train)); ax[1].contourf(xx, yy, Z, cmap=plt.cm.coolwarm) ax[1].scatter(data_test[0][:,0], data_test[0][:,1], c=data_test[1]) ax[1].set_title('Accuracy on the test set: '+str(accuracy_test)); clf = svm.SVC(gamma = 'scale') clf.fit(data_train[0], data_train[1]); accuracy_train = clf.score(data_train[0], data_train[1]) accuracy_test = clf.score(data_test[0], data_test[1]) X0, X1 = data_train[0][:, 0], data_train[0][:, 1] xx, yy = make_meshgrid(X0, X1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) fig,ax=plt.subplots(1,2,figsize=(15,5)) ax[0].contourf(xx, yy, Z, cmap=plt.cm.coolwarm) ax[0].scatter(data_train[0][:,0], data_train[0][:,1], c=data_train[1]) ax[0].set_title('Accuracy on the training set: '+str(accuracy_train)); ax[1].contourf(xx, yy, Z, cmap=plt.cm.coolwarm) ax[1].scatter(data_test[0][:,0], data_test[0][:,1], c=data_test[1]) ax[1].set_title('Accuracy on the test set: '+str(accuracy_test)); import qiskit as qk # Creating Qubits q = qk.QuantumRegister(2) # Creating Classical Bits c = qk.ClassicalRegister(2) circuit = qk.QuantumCircuit(q, c) circuit.draw('mpl') # Initialize empty circuit circuit = qk.QuantumCircuit(q, c) # Hadamard Gate on the first Qubit circuit.h(q[0]) # CNOT Gate on the first and second Qubits circuit.cx(q[0], q[1]) # Measuring the Qubits circuit.measure(q, c) circuit.draw('mpl') # Using Qiskit Aer's Qasm Simulator: Define where do you want to run the simulation. simulator = qk.BasicAer.get_backend('qasm_simulator') # Simulating the circuit using the simulator to get the result job = qk.execute(circuit, simulator, shots=100) result = job.result() # Getting the aggregated binary outcomes of the circuit. counts = result.get_counts(circuit) print (counts) from qiskit.aqua.components.feature_maps import SecondOrderExpansion feature_map = SecondOrderExpansion(feature_dimension=2, depth=1) x = np.array([0.6, 0.3]) #feature_map.construct_circuit(x) print(feature_map.construct_circuit(x)) from qiskit.aqua.algorithms import QSVM qsvm = QSVM(feature_map, training_input, test_input) #from qiskit.aqua import run_algorithm, QuantumInstance from qiskit.aqua import algorithm, QuantumInstance from qiskit import BasicAer backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=10598, seed_transpiler=10598) result = qsvm.run(quantum_instance) plt.scatter(training_input['Benign'][:,0], training_input['Benign'][:,1]) plt.scatter(training_input['Malignant'][:,0], training_input['Malignant'][:,1]) length_data = len(training_input['Benign']) + len(training_input['Malignant']) print("size training set: {}".format(length_data)) #print("Matrix dimension: {}".format(result['kernel_matrix_training'].shape)) print("testing success ratio: ", result['testing_accuracy']) test_set = np.concatenate((test_input['Benign'], test_input['Malignant'])) y_test = qsvm.predict(test_set, quantum_instance) plt.scatter(test_set[:, 0], test_set[:,1], c=y_test) plt.show() plt.scatter(test_input['Benign'][:,0], test_input['Benign'][:,1]) plt.scatter(test_input['Malignant'][:,0], test_input['Malignant'][:,1]) plt.show()
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library import RealAmplitudes ansatz = RealAmplitudes(num_qubits=2, reps=1, entanglement='linear').decompose() ansatz.draw() from qiskit.opflow import Z, I hamiltonian = Z ^ Z from qiskit.opflow import StateFn, PauliExpectation expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(ansatz) pauli_basis = PauliExpectation().convert(expectation) print(pauli_basis) from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.opflow import CircuitSampler quantum_instance = QuantumInstance(Aer.get_backend('qasm_simulator'), # we'll set a seed for reproducibility shots = 8192, seed_simulator = 2718, seed_transpiler = 2718) sampler = CircuitSampler(quantum_instance) def evaluate_expectation(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(pauli_basis, params=value_dict).eval() return np.real(result) import numpy as np point = np.random.random(ansatz.num_parameters) index = 2 eps = 0.2 # make identity vector with a 1 at index ``index``, otherwise 0 e_i = np.identity(point.size)[:, index] print(e_i) plus = point + eps * e_i minus = point - eps * e_i finite_difference = ( evaluate_expectation(plus) - evaluate_expectation(minus)) / (2 * eps) print(finite_difference) from qiskit.opflow import Gradient shifter = Gradient('fin_diff', analytic=False, epsilon=eps) grad = shifter.convert(expectation, params=ansatz.parameters[index]) print(grad) value_dict = dict(zip(ansatz.parameters, point)) sampler.convert(grad, value_dict).eval().real eps = np.pi / 2 e_i = np.identity(point.size)[:, index] plus = point + eps * e_i minus = point - eps * e_i finite_difference = ( evaluate_expectation(plus) - evaluate_expectation(minus)) / 2 print(finite_difference) shifter = Gradient() # parameter-shift rule is the default grad = shifter.convert(expectation, params=ansatz.parameters[index]) sampler.convert(grad, value_dict).eval().real # initial_point = np.random.random(ansatz.num_parameters) initial_point = np.array([0.43253681, 0.09507794, 0.42805949, 0.34210341]) # now fix and initial point for reproducibility gradient = Gradient().convert(expectation) gradient_in_pauli_basis = PauliExpectation().convert(gradient) sampler = CircuitSampler(quantum_instance) def evaluate_gradient(x): value_dict = dict(zip(ansatz.parameters, x)) result = sampler.convert(gradient_in_pauli_basis, params=value_dict).eval() return np.real(result) from qiskit.algorithms.optimizers import GradientDescent gd_loss = [] def gd_callback(nfevs, x, fx, stepsize): gd_loss.append(fx) gd = GradientDescent(maxiter=300, learning_rate=0.01, callback=gd_callback) x_opt, fx_opt, nfevs = gd.optimize( initial_point.size, # number of parameters evaluate_expectation, # function to minimize gradient_function=evaluate_gradient, # function to evaluate gradient initial_point=initial_point # initial point ) import matplotlib import matplotlib.pyplot as plt plt.figure(figsize=(7, 3)) plt.plot(gd_loss, label='vanilla gradient descent') plt.axhline(-1, ls='--', c='C3', label='target') plt.ylabel('loss') plt.xlabel('iterations') plt.legend()
https://github.com/googlercolin/Qiskit-Course
googlercolin
#!pip install PySCF --upgrade import networkx as nx import numpy as np import plotly.graph_objects as go import matplotlib as mpl import pandas as pd from IPython.display import clear_output from plotly.subplots import make_subplots from matplotlib import pyplot as plt from qiskit import Aer, transpile, assemble, IBMQ, execute from qiskit import QuantumCircuit from qiskit.visualization import plot_state_city from qiskit.algorithms.optimizers import COBYLA, SLSQP, ADAM from time import time from copy import copy from typing import List from qc_grader.graph_util import display_maxcut_widget, QAOA_widget, graphs mpl.rcParams['figure.dpi'] = 300 from qiskit.circuit import Parameter, ParameterVector #Parameters are initialized with a simple string identifier parameter_0 = Parameter('θ[0]') parameter_1 = Parameter('θ[1]') circuit = QuantumCircuit(1) #We can then pass the initialized parameters as the rotation angle argument to the Rx and Ry gates circuit.ry(theta = parameter_0, qubit = 0) circuit.rx(theta = parameter_1, qubit = 0) circuit.draw('mpl') parameter = Parameter('θ') circuit = QuantumCircuit(1) circuit.ry(theta = parameter, qubit = 0) circuit.rx(theta = parameter, qubit = 0) circuit.draw('mpl') #Set the number of layers and qubits n=3 num_layers = 2 #ParameterVectors are initialized with a string identifier and an integer specifying the vector length parameters = ParameterVector('θ', n*(num_layers+1)) circuit = QuantumCircuit(n, n) for layer in range(num_layers): #Appending the parameterized Ry gates using parameters from the vector constructed above for i in range(n): circuit.ry(parameters[n*layer+i], i) circuit.barrier() #Appending the entangling CNOT gates for i in range(n): for j in range(i): circuit.cx(j,i) circuit.barrier() #Appending one additional layer of parameterized Ry gates for i in range(n): circuit.ry(parameters[n*num_layers+i], i) circuit.barrier() circuit.draw('mpl') print(circuit.parameters) #Create parameter dictionary with random values to bind param_dict = {parameter: np.random.random() for parameter in parameters} print(param_dict) #Assign parameters using the assign_parameters method bound_circuit = circuit.assign_parameters(parameters = param_dict) bound_circuit.draw('mpl') new_parameters = ParameterVector('Ψ',9) new_circuit = circuit.assign_parameters(parameters = [k*new_parameters[k] for k in range(9)]) new_circuit.draw('mpl') #Run the circuit with assigned parameters on Aer's statevector simulator simulator = Aer.get_backend('statevector_simulator') result = simulator.run(bound_circuit).result() statevector = result.get_statevector(bound_circuit) plot_state_city(statevector) #The following line produces an error when run because 'circuit' still contains non-assigned parameters #result = simulator.run(circuit).result() for key in graphs.keys(): print(key) graph = nx.Graph() #Add nodes and edges graph.add_nodes_from(np.arange(0,6,1)) edges = [(0,1,2.0),(0,2,3.0),(0,3,2.0),(0,4,4.0),(0,5,1.0),(1,2,4.0),(1,3,1.0),(1,4,1.0),(1,5,3.0),(2,4,2.0),(2,5,3.0),(3,4,5.0),(3,5,1.0)] graph.add_weighted_edges_from(edges) graphs['custom'] = graph #Display widget display_maxcut_widget(graphs['custom']) def maxcut_cost_fn(graph: nx.Graph, bitstring: List[int]) -> float: """ Computes the maxcut cost function value for a given graph and cut represented by some bitstring Args: graph: The graph to compute cut values for bitstring: A list of integer values '0' or '1' specifying a cut of the graph Returns: The value of the cut """ #Get the weight matrix of the graph weight_matrix = nx.adjacency_matrix(graph).toarray() size = weight_matrix.shape[0] value = 0. #INSERT YOUR CODE TO COMPUTE THE CUT VALUE HERE for i in range(size): for j in range(size): value += weight_matrix[i][j]*bitstring[i]*(1-bitstring[j]) return value def plot_maxcut_histogram(graph: nx.Graph) -> None: """ Plots a bar diagram with the values for all possible cuts of a given graph. Args: graph: The graph to compute cut values for """ num_vars = graph.number_of_nodes() #Create list of bitstrings and corresponding cut values bitstrings = ['{:b}'.format(i).rjust(num_vars, '0')[::-1] for i in range(2**num_vars)] values = [maxcut_cost_fn(graph = graph, bitstring = [int(x) for x in bitstring]) for bitstring in bitstrings] #Sort both lists by largest cut value values, bitstrings = zip(*sorted(zip(values, bitstrings))) #Plot bar diagram bar_plot = go.Bar(x = bitstrings, y = values, marker=dict(color=values, colorscale = 'plasma', colorbar=dict(title='Cut Value'))) fig = go.Figure(data=bar_plot, layout = dict(xaxis=dict(type = 'category'), width = 1500, height = 600)) fig.show() plot_maxcut_histogram(graph = graphs['custom']) from qc_grader import grade_lab2_ex1 bitstring = [1, 0, 1, 1, 0, 0] #DEFINE THE CORRECT MAXCUT BITSTRING HERE # Note that the grading function is expecting a list of integers '0' and '1' grade_lab2_ex1(bitstring) from qiskit_optimization import QuadraticProgram quadratic_program = QuadraticProgram('sample_problem') print(quadratic_program.export_as_lp_string()) quadratic_program.binary_var(name = 'x_0') quadratic_program.integer_var(name = 'x_1') quadratic_program.continuous_var(name = 'x_2', lowerbound = -2.5, upperbound = 1.8) quadratic = [[0,1,2],[3,4,5],[0,1,2]] linear = [10,20,30] quadratic_program.minimize(quadratic = quadratic, linear = linear, constant = -5) print(quadratic_program.export_as_lp_string()) def quadratic_program_from_graph(graph: nx.Graph) -> QuadraticProgram: """Constructs a quadratic program from a given graph for a MaxCut problem instance. Args: graph: Underlying graph of the problem. Returns: QuadraticProgram """ #Get weight matrix of graph weight_matrix = nx.adjacency_matrix(graph) shape = weight_matrix.shape size = shape[0] #Build qubo matrix Q from weight matrix W qubo_matrix = np.zeros((size, size)) for i in range(size): for j in range(size): qubo_matrix[i, j] -= weight_matrix[i, j] #INSERT YOUR CODE HERE #Define quadratic_program quadratic_program = QuadraticProgram('quadratic_program_from_graph') #Initiate binary variables for i in range(size): quadratic_program.binary_var(name = f'x_{i}') #Build the qubo vector c_vector from weight matrix W c_vector = np.zeros(size) for i in range(size): for j in range(size): c_vector[i] += weight_matrix[i, j] quadratic_program.maximize(quadratic = qubo_matrix, linear = c_vector) return quadratic_program quadratic_program = quadratic_program_from_graph(graphs['custom']) print(quadratic_program.export_as_lp_string()) from qc_grader import grade_lab2_ex2 # Note that the grading function is expecting a quadratic program grade_lab2_ex2(quadratic_program) def qaoa_circuit(qubo: QuadraticProgram, p: int = 1): """ Given a QUBO instance and the number of layers p, constructs the corresponding parameterized QAOA circuit with p layers. Args: qubo: The quadratic program instance p: The number of layers in the QAOA circuit Returns: The parameterized QAOA circuit """ size = len(qubo.variables) qubo_matrix = qubo.objective.quadratic.to_array(symmetric=True) qubo_linearity = qubo.objective.linear.to_array() #Prepare the quantum and classical registers qaoa_circuit = QuantumCircuit(size,size) #Apply the initial layer of Hadamard gates to all qubits qaoa_circuit.h(range(size)) #Create the parameters to be used in the circuit gammas = ParameterVector('gamma', p) betas = ParameterVector('beta', p) #Outer loop to create each layer for i in range(p): #Apply R_Z rotational gates from cost layer #INSERT YOUR CODE HERE for j in range(size): qubo_matrix_row_sum = 0 for k in range(size): qubo_matrix_row_sum += qubo_matrix[j, k] qaoa_circuit.rz((qubo_linearity[j]+qubo_matrix_row_sum)*gammas[i], j) qaoa_circuit.barrier() #Apply R_ZZ rotational gates for entangled qubit rotations from cost layer #INSERT YOUR CODE HERE for j in range(size): for k in range(size): if j>=k: continue qaoa_circuit.rzz(0.5*qubo_matrix[j, k]*gammas[i], j, k) qaoa_circuit.barrier() # Apply single qubit X - rotations with angle 2*beta_i to all qubits #INSERT YOUR CODE HERE for j in range(size): qaoa_circuit.rx(2.0*betas[i], j) qaoa_circuit.barrier() return qaoa_circuit quadratic_program = quadratic_program_from_graph(graphs['custom']) custom_circuit = qaoa_circuit(qubo = quadratic_program) test = custom_circuit.assign_parameters(parameters=[1.0]*len(custom_circuit.parameters)) custom_circuit.draw() from qc_grader import grade_lab2_ex3 # Note that the grading function is expecting a quantum circuit grade_lab2_ex3(test) from qiskit.algorithms import QAOA from qiskit_optimization.algorithms import MinimumEigenOptimizer backend = Aer.get_backend('statevector_simulator') qaoa = QAOA(optimizer = ADAM(), quantum_instance = backend, reps=1, initial_point = [0.1,0.1]) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) quadratic_program = quadratic_program_from_graph(graphs['custom']) result = eigen_optimizer.solve(quadratic_program) print(result) def plot_samples(samples): """ Plots a bar diagram for the samples of a quantum algorithm Args: samples """ #Sort samples by probability samples = sorted(samples, key = lambda x: x.probability) #Get list of probabilities, function values and bitstrings probabilities = [sample.probability for sample in samples] values = [sample.fval for sample in samples] bitstrings = [''.join([str(int(i)) for i in sample.x]) for sample in samples] #Plot bar diagram sample_plot = go.Bar(x = bitstrings, y = probabilities, marker=dict(color=values, colorscale = 'plasma',colorbar=dict(title='Function Value'))) fig = go.Figure( data=sample_plot, layout = dict( xaxis=dict( type = 'category' ) ) ) fig.show() plot_samples(result.samples) graph_name = 'custom' quadratic_program = quadratic_program_from_graph(graph=graphs[graph_name]) trajectory={'beta_0':[], 'gamma_0':[], 'energy':[]} offset = 1/4*quadratic_program.objective.quadratic.to_array(symmetric = True).sum() + 1/2*quadratic_program.objective.linear.to_array().sum() def callback(eval_count, params, mean, std_dev): trajectory['beta_0'].append(params[1]) trajectory['gamma_0'].append(params[0]) trajectory['energy'].append(-mean + offset) optimizers = { 'cobyla': COBYLA(), 'slsqp': SLSQP(), 'adam': ADAM() } qaoa = QAOA(optimizer = optimizers['cobyla'], quantum_instance = backend, reps=1, initial_point = [6.2,1.8],callback = callback) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) result = eigen_optimizer.solve(quadratic_program) fig = QAOA_widget(landscape_file=f'./resources/energy_landscapes/{graph_name}.csv', trajectory = trajectory, samples = result.samples) fig.show() graph_name = 'custom' quadratic_program = quadratic_program_from_graph(graphs[graph_name]) #Create callback to record total number of evaluations max_evals = 0 def callback(eval_count, params, mean, std_dev): global max_evals max_evals = eval_count #Create empty lists to track values energies = [] runtimes = [] num_evals=[] #Run QAOA for different values of p for p in range(1,10): print(f'Evaluating for p = {p}...') qaoa = QAOA(optimizer = optimizers['cobyla'], quantum_instance = backend, reps=p, callback=callback) eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver = qaoa) start = time() result = eigen_optimizer.solve(quadratic_program) runtimes.append(time()-start) num_evals.append(max_evals) #Calculate energy of final state from samples avg_value = 0. for sample in result.samples: avg_value += sample.probability*sample.fval energies.append(avg_value) #Create and display plots energy_plot = go.Scatter(x = list(range(1,10)), y =energies, marker=dict(color=energies, colorscale = 'plasma')) runtime_plot = go.Scatter(x = list(range(1,10)), y =runtimes, marker=dict(color=runtimes, colorscale = 'plasma')) num_evals_plot = go.Scatter(x = list(range(1,10)), y =num_evals, marker=dict(color=num_evals, colorscale = 'plasma')) fig = make_subplots(rows = 1, cols = 3, subplot_titles = ['Energy value', 'Runtime', 'Number of evaluations']) fig.update_layout(width=1800,height=600, showlegend=False) fig.add_trace(energy_plot, row=1, col=1) fig.add_trace(runtime_plot, row=1, col=2) fig.add_trace(num_evals_plot, row=1, col=3) clear_output() fig.show() def plot_qaoa_energy_landscape(graph: nx.Graph, cvar: float = None): num_shots = 1000 seed = 42 simulator = Aer.get_backend('qasm_simulator') simulator.set_options(seed_simulator = 42) #Generate circuit circuit = qaoa_circuit(qubo = quadratic_program_from_graph(graph), p=1) circuit.measure(range(graph.number_of_nodes()),range(graph.number_of_nodes())) #Create dictionary with precomputed cut values for all bitstrings cut_values = {} size = graph.number_of_nodes() for i in range(2**size): bitstr = '{:b}'.format(i).rjust(size, '0')[::-1] x = [int(bit) for bit in bitstr] cut_values[bitstr] = maxcut_cost_fn(graph, x) #Perform grid search over all parameters data_points = [] max_energy = None for beta in np.linspace(0,np.pi, 50): for gamma in np.linspace(0, 4*np.pi, 50): bound_circuit = circuit.assign_parameters([beta, gamma]) result = simulator.run(bound_circuit, shots = num_shots).result() statevector = result.get_counts(bound_circuit) energy = 0 measured_cuts = [] for bitstring, count in statevector.items(): measured_cuts = measured_cuts + [cut_values[bitstring]]*count if cvar is None: #Calculate the mean of all cut values energy = sum(measured_cuts)/num_shots else: # raise NotImplementedError() # INSERT YOUR CODE HERE measured_cuts.sort(reverse=True) # sort the measured_cuts in descending order reduced_size = cvar*num_shots energy = sum(measured_cuts[:int(reduced_size)])/(reduced_size) # average only from the reduced sample #Update optimal parameters if max_energy is None or energy > max_energy: max_energy = energy optimum = {'beta': beta, 'gamma': gamma, 'energy': energy} #Update data data_points.append({'beta': beta, 'gamma': gamma, 'energy': energy}) #Create and display surface plot from data_points df = pd.DataFrame(data_points) df = df.pivot(index='beta', columns='gamma', values='energy') matrix = df.to_numpy() beta_values = df.index.tolist() gamma_values = df.columns.tolist() surface_plot = go.Surface( x=gamma_values, y=beta_values, z=matrix, coloraxis = 'coloraxis' ) fig = go.Figure(data = surface_plot) fig.show() #Return optimum return optimum graph = graphs['custom'] optimal_parameters = plot_qaoa_energy_landscape(graph = graph) print('Optimal parameters:') print(optimal_parameters) optimal_parameters = plot_qaoa_energy_landscape(graph = graph, cvar = 0.2) print(optimal_parameters) from qc_grader import grade_lab2_ex4 # Note that the grading function is expecting a python dictionary # with the entries 'beta', 'gamma' and 'energy' grade_lab2_ex4(optimal_parameters)
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np from numpy import pi # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ, execute from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram from qiskit_textbook.problems import dj_problem_oracle def lab1_ex1(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE qc.x(0) # # return qc state = Statevector.from_instruction(lab1_ex1()) plot_bloch_multivector(state) from qc_grader.challenges.qgss_2022 import grade_lab1_ex1 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex1(lab1_ex1()) def lab1_ex2(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE qc.h(0) # # return qc state = Statevector.from_instruction(lab1_ex2()) plot_bloch_multivector(state) from qc_grader.challenges.qgss_2022 import grade_lab1_ex2 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex2(lab1_ex2()) def lab1_ex3(): qc = QuantumCircuit(1) # # # FILL YOUR CODE IN HERE qc.h(0) qc.z(0) # # return qc state = Statevector.from_instruction(lab1_ex3()) plot_bloch_multivector(state) from qc_grader.challenges.qgss_2022 import grade_lab1_ex3 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex3(lab1_ex3()) def lab1_ex4(): qc = QuantumCircuit(1) # # FILL YOUR CODE IN HERE qc.h(0) qc.sdg(0) # # return qc state = Statevector.from_instruction(lab1_ex4()) plot_bloch_multivector(state) from qc_grader.challenges.qgss_2022 import grade_lab1_ex4 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex4(lab1_ex4()) def lab1_ex5(): # This time, we not only want two qubits, but also two classical bits for the measurement qc = QuantumCircuit(2,2) # # # FILL YOUR CODE IN HERE qc.x(1) qc.h(0) qc.cx(0,1) # # return qc qc = lab1_ex5() qc.draw() # we draw the circuit from qc_grader.challenges.qgss_2022 import grade_lab1_ex5 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex5(lab1_ex5()) qc.measure_all() # we measure all the qubits backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts plot_histogram(counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities def lab1_ex6(): # This time, we need 3 qubits and also add 3 classical bits in case we want to measure qc = QuantumCircuit(3,3) # # # FILL YOUR CODE IN HERE qc.h(0) qc.z(0) qc.cx(0,1) qc.x(2) qc.cx(1,2) # return qc qc = lab1_ex6() qc.draw() # we draw the circuit qc.measure_all() # we measure all the qubits backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts plot_histogram(counts) # let us plot a histogram to see the possible outcomes and corresponding probabilities from qc_grader.challenges.qgss_2022 import grade_lab1_ex6 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex6(lab1_ex6()) qc = QuantumCircuit(3) qc.h(0) qc.cx(0,1) qc.cx(0,2) print(qc.size()) print(qc.num_nonlocal_gates()) def qft_rotations(circuit, n): """Performs qft on the first n qubits in circuit (without swaps)""" if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) # At the end of our function, we call the same function again on # the next qubits (we reduced n by one earlier in the function) qft_rotations(circuit, n) def swap_registers(circuit, n): """Swaps registers to match the definition""" for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): """QFT on the first n qubits in circuit""" qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qft_rotations(qc,3) print(qc.size()) print(qc.num_nonlocal_gates()) qc.draw() def lab1_ex7(n:int) -> int: #Here we want you to build a function calculating the number of gates needed by the fourier rotation for n qubits. numberOfGates=0 # # FILL YOUR CODE IN HERE # TRY TO FIND AN EXPLIZIT (NON RECURSIVE) FUNCTION qc = QuantumCircuit(n) qft_rotations(qc, n) numberOfGates = qc.size() # return numberOfGates print(lab1_ex7(3)) print(lab1_ex7(4)) print(lab1_ex7(5)) print(lab1_ex7(10)) print(lab1_ex7(100)) print(lab1_ex7(200)) # Lab 1, Exercise 7 from qc_grader.challenges.qgss_2022 import grade_lab1_ex7 # Note that the grading function is expecting as input a function! #(And the function takes n as an input and outputs the number of gates constructed) grade_lab1_ex7(lab1_ex7) qc = QuantumCircuit(4) qc.h(0) qc.s(0) qc.s(0) qc.s(0) qc.cx(0,1) qc.cx(1,3) print(qc.depth()) qc.draw() qc2 = QuantumCircuit(4) qc2.h(0) qc2.s(1) qc2.cx(0,1) qc2.s(2) qc2.s(3) qc2.cx(2,3) print(qc2.depth()) qc2.draw() qc = QuantumCircuit(16) #Step 1: Preparing the first qubit in superposition qc.h(0) #Step 2: Entangling all other qubits with it (1 is included 16 is exclude) for x in range(1, 16): qc.cx(0,x) print(qc.depth()) qc = QuantumCircuit(16) #Same as above #Step 1: Preparing the first qubit in superposition qc.h(0) qc.cx(0,1) for i in range(2): qc.cx(i,i+2) for i in range(4): qc.cx(i,i+4) for i in range(8): qc.cx(i,i+8) # qc.draw() def lab1_ex8(): qc = QuantumCircuit(16) #Same as above #Step 1: Preparing the first qubit in superposition qc.h(0) # # # FILL YOUR CODE IN HERE qc.cx(0,1) for i in range(2): qc.cx(i,i+2) for i in range(4): qc.cx(i,i+4) for i in range(8): qc.cx(i,i+8) # return qc qc = lab1_ex8() print(qc.depth()) from qc_grader.challenges.qgss_2022 import grade_lab1_ex8 # Note that the grading function is expecting a quantum circuit without measurements grade_lab1_ex8(lab1_ex8())
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np from qiskit.opflow import I, X, Y, Z, MatrixEvolution, PauliTrotterEvolution from qiskit.circuit import Parameter from qiskit import QuantumCircuit from qiskit import Aer from qiskit.compiler import transpile import qc_grader # Define which will contain the Paulis pauli_list = [] # Define Paulis and add them to the list ###INSERT CODE BELOW THIS LINE pauli_list = [X, Y, Z, I] ###DO NOT EDIT BELOW THIS LINE for pauli in pauli_list: print(pauli, '\n') from qc_grader.challenges.qgss_2022 import grade_lab2_ex1 grade_lab2_ex1(pauli_list) # Define list of ladder operators ladder_operator_list = [] # Define ladder operators and add the to the list ###INSERT CODE BELOW THIS LINE ladder_operator_list = [0.5*(X+(1j*Y)), 0.5*(X-(1j*Y))] ###DO NOT EDIT BELOW THIS LINE for ladder_operator in ladder_operator_list: print(ladder_operator, '\n') from qc_grader.challenges.qgss_2022 import grade_lab2_ex2 grade_lab2_ex2(ladder_operator_list) # Define list which will contain the matrices representing the Pauli operators matrix_sigma_list = [] # Add matrix representation of Paulis to the list ###INSERT CODE BELOW THIS LINE matrix_sigma_list = [X.to_matrix(), Y.to_matrix(), Z.to_matrix(), I.to_matrix()] ###DO NOT EDIT BELOW THIS LINE for matrix_sigma in matrix_sigma_list: print(matrix_sigma, '\n') from qc_grader.challenges.qgss_2022 import grade_lab2_ex3 grade_lab2_ex3(matrix_sigma_list) # Define a list which will contain the circuit representation of the Paulis circuit_sigma_list = [] # Add circuits to list ###INSERT CODE BELOW THIS LINE circuit_sigma_list = [X.to_circuit(), Y.to_circuit(), Z.to_circuit(), I.to_circuit()] ###DO NOT EDIT BELOW THIS LINE for circuit in circuit_sigma_list: print(circuit, '\n') from qc_grader.challenges.qgss_2022 import grade_lab2_ex4 grade_lab2_ex4(circuit_sigma_list) # Define a variable theta to be a parameter with name 'theta' theta = Parameter('theta') # Set number of qubits to 1 qubits_count = 1 # Initialize a quantum circuit with one qubit quantum_circuit = QuantumCircuit(qubits_count) # Add a parametrized RX rotation on the qubit ###INSERT CODE BELOW THIS LINE quantum_circuit.rx(theta, 0) ###DO NOT EDIT BELOW THIS LINE print(quantum_circuit) from qc_grader.challenges.qgss_2022 import grade_lab2_ex5 grade_lab2_ex5(quantum_circuit) # Set the value of the parameter theta_value = np.pi # Bind the value to the parametrized circuit ###INSERT CODE BELOW THIS LINE quantum_circuit = quantum_circuit.bind_parameters({theta: theta_value}) ###DO NOT EDIT BELOW THIS LINE print(quantum_circuit) from qc_grader.challenges.qgss_2022 import grade_lab2_ex6 grade_lab2_ex6(quantum_circuit) # Use the formula above to define the Hamiltonian operator ###INSERT CODE BELOW THIS LINE H = 0.5*((I^I)+(X^X)+(Y^Y)+(Z^Z)) ###DO NOT EDIT BELOW THIS LINE # Get its matrix representation H_matrix = H.to_matrix() print(H_matrix) from qc_grader.challenges.qgss_2022 import grade_lab2_ex7 grade_lab2_ex7(H_matrix) # Define a parameter t for the time in the time evolution operator t = Parameter('t') # Follow the instructions above to define a time-evolution operator ###INSERT CODE BELOW THIS LINE time_evolution_operator = (H*t).exp_i() ###DO NOT EDIT BELOW THIS LINE print(time_evolution_operator) from qc_grader.challenges.qgss_2022 import grade_lab2_ex8 grade_lab2_ex8(time_evolution_operator) # Set a total time for the time evolution evolution_time = 0.5 # Instantiate a MatrixEvolution() object to convert the time evolution operator # and bind the value for the time parameter ###INSERT CODE BELOW THIS LINE matrix_evol = MatrixEvolution() bound_matrix_exponentiation_circuit = matrix_evol.convert(time_evolution_operator) bound_matrix_exponentiation_circuit = bound_matrix_exponentiation_circuit.bind_parameters({t:evolution_time}) ###DO NOT EDIT BELOW THIS LINE print(bound_matrix_exponentiation_circuit) from qc_grader.challenges.qgss_2022 import grade_lab2_ex9 grade_lab2_ex9(bound_matrix_exponentiation_circuit) # Define a value for the duration of the time-step time_step_value = 0.1 # Instantiate a PauliTrotterEvolution() object and convert the time-evolution operator # to then bind the value of the time step ###INSERT CODE BELOW THIS LINE pauli_t_evol = PauliTrotterEvolution() bound_trotter_exponentiation_circuit = pauli_t_evol.convert(time_evolution_operator) bound_trotter_exponentiation_circuit = bound_trotter_exponentiation_circuit.bind_parameters({ t: time_step_value }) ###DO NOT EDIT BELOW THIS LINE print(bound_trotter_exponentiation_circuit) from qc_grader.challenges.qgss_2022 import grade_lab2_ex10 grade_lab2_ex10(bound_trotter_exponentiation_circuit) # Define the number of steps needed to reach the previously set total time-evolution steps = int(evolution_time/time_step_value) # Compose the operator for a Trotter step several times to generate the # operator for the full time-evolution ###INSERT CODE BELOW THIS LINE total_time_evolution_circuit = bound_trotter_exponentiation_circuit for i in range(1, steps): total_time_evolution_circuit = total_time_evolution_circuit @ bound_trotter_exponentiation_circuit ###DO NOT EDIT BELOW THIS LINE print(total_time_evolution_circuit) from qc_grader.challenges.qgss_2022 import grade_lab2_ex11 grade_lab2_ex11(total_time_evolution_circuit) # Set number of qubits num_qubits = 3 # Define time parameter t = Parameter('t') # Set total evolution time evolution_time_t = 2 # Set size of time-step for Trotter evolution time_step_value_t = 0.1 # Define the number of steps steps_t = int(evolution_time_t/time_step_value_t) # Create circuit tight_binding_circuit = QuantumCircuit(num_qubits) # Add initial state preparation tight_binding_circuit.x(0) # Define the Hamiltonian, the time-evolution operator, the Trotter step and the total evolution ###INSERT CODE BELOW THIS LINE H = (I^X^X) + (X^X^I) + (I^Y^Y) + (Y^Y^I) # Define a parameter t for the time in the time evolution operator t = Parameter('t') time_evolution_operator = (H*t).exp_i() pauli_t_evol = PauliTrotterEvolution() bound_trotter_exponentiation_circuit = pauli_t_evol.convert(time_evolution_operator) bound_trotter_exponentiation_circuit = bound_trotter_exponentiation_circuit.bind_parameters({ t: time_step_value_t }) total_time_evolution_circuit = bound_trotter_exponentiation_circuit for i in range(1, steps_t): total_time_evolution_circuit = total_time_evolution_circuit @ bound_trotter_exponentiation_circuit full_time_evolution_circuit = tight_binding_circuit + total_time_evolution_circuit.to_circuit() ###DO NOT EDIT BELOW THIS LINE print(full_time_evolution_circuit) from qc_grader.challenges.qgss_2022 import grade_lab2_ex12 grade_lab2_ex12(full_time_evolution_circuit)
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np import qiskit from qiskit.circuit.library import RXGate from qiskit.providers.aer.noise import NoiseModel, ReadoutError, depolarizing_error, coherent_unitary_error from scipy.stats import norm from scipy.optimize import curve_fit import matplotlib.pylab as plt import qc_grader # Create circuit to generate an equal superposition of quantum states # Set the number of qubits qubits_count = 1 # Set the number of bits cbits_count = 1 # Instantiate a quantum register quantum_register = qiskit.QuantumRegister(qubits_count) # Instantiate a classical register classical_register = qiskit.ClassicalRegister(cbits_count) # Instantiate a quantum circuit circuit = qiskit.QuantumCircuit(quantum_register, classical_register) # Add a Hadamard gate and measurement ###INSERT CODE BELOW THIS LINE circuit.h(0) circuit.measure(0,0) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex1 grade_lab3_ex1(circuit) # Run the quantum circuit on a simulator backend which returns measured shots in the Z basis shots_backend = qiskit.Aer.get_backend('qasm_simulator') # Fix number of times to repeat the experiment num_shots = 10 # Create a job, run on the simulator, extract the results and get the counts dictionary ###INSERT CODE BELOW THIS LINE job = shots_backend.run(circuit, shots = num_shots).result() counts = job.get_counts() ###DO NOT EDIT BELOW THIS LINE print(counts) from qc_grader.challenges.qgss_2022 import grade_lab3_ex2 grade_lab3_ex2(counts) # Set different number of shots num_shots_list = [10, 100, 1000, 10000] # For each number of shots, extract the probability of |0> from the experimental counts p0_list = [] for num_shots in num_shots_list: # Create a job, run on the simulator, extract the results and get the counts dictionary ###INSERT CODE BELOW THIS LINE job = shots_backend.run(circuit, shots = num_shots).result() counts = job.get_counts() counts_0 = counts['0'] prob = counts_0/num_shots p0_list.append(prob) ###DO NOT EDIT BELOW THIS LINE for num_shots, p0 in zip(num_shots_list, p0_list): print(f"The probability of observing the 0 state with {num_shots} shots is: {p0}") from qc_grader.challenges.qgss_2022 import grade_lab3_ex3 grade_lab3_ex3(p0_list) # Set the number of shots num_shots = 10 # Set the number of times to repeat the experiment iterations = 10000 # Set the number of bins for the histogram bin_count = 100 # For each iteration, create job, run the experiment, # collect results and calculate probability of |0> p0_list = [] for _ in range(iterations): job = shots_backend.run(circuit, shots=num_shots) result = job.result() if '0' in result.get_counts().keys(): p0 = result.get_counts()['0']/num_shots else: p0 = 1 - result.get_counts()['1']/num_shots p0_list.append(p0) # Calculate a histogram from the results yhist, xhist = np.histogram(p0_list, bins=bin_count) # Restrict horizontal axis to 0-1 x_01 = np.array([xhist[n] + (xhist[n + 1] - xhist[n])/2 for n in range(len(xhist)-1)]) # Find x-points for which the histogram has more than zero counts xh = np.where(yhist > 0)[0] # Get the y-points of the corresponding x ones yh = yhist[xh] # Get the x-points x_01_h = x_01[xh] # Plot plt.scatter(x_01_h, yh, color = 'red') plt.title(f"Using {num_shots} shots to estimate probability") plt.xlim((0, 1)) plt.xlabel(r'probability of $\vert 0 \rangle$') plt.ylabel('counts') plt.show() # Define a Gaussian function for the fit def gaussian(x, a, mean, sigma): return a * (1/(sigma*np.sqrt(2*np.pi)))*np.exp(-((x - mean)**2 / (2 * sigma**2))) # Set initial estimates for the fit: the maximum height of the histogram, the theoretical # average and the theoretical standard deviation height_estimate = np.max(yh) mu_estimate = 0.5 sigma_estimate = np.sqrt(mu_estimate*(1-mu_estimate)/num_shots) # Define list to store the estimated values of the average (mu_sigma[0]) and standard deviation (mu_sigma[1]) mu_sigma = [] # Use the curve_fit function to fit the experimental data using the definition of the Gaussian function # which will return the estimate of the parameters. ###INSERT CODE BELOW THIS LINE popt, pcov = curve_fit(gaussian, x_01_h, yh, [height_estimate, mu_estimate, sigma_estimate]) # (x_01_h, 1, mu_estimate, sigma_estimate) mu_sigma.append(popt[1]) mu_sigma.append(popt[2]) # ###DO NOT EDIT BELOW THIS LINE print("The mean is ", mu_sigma[0]) print("The standard deviation is ", mu_sigma[1]) # Plot experimental data and the fit plt.scatter(x_01_h, yh, label = 'data', color = 'red') plt.plot(x_01, gaussian(x_01, *popt), label = 'fit', linestyle = '--') plt.title(f"Using {num_shots} shots to estimate probability") plt.xlim((0, 1)) plt.xlabel(r'probability of $\vert 0 \rangle$') plt.ylabel('counts') plt.legend() plt.show() from qc_grader.challenges.qgss_2022 import grade_lab3_ex4 grade_lab3_ex4(mu_sigma) # Set different number of shots num_shots_list = [10, 100, 1000,10000] # Set the number of times to repeat the experiment iterations = 10000 # Set the number of bins for the histogram bin_count = 100 # Repeat the protocol above for different number of shots to see how the parameters of the # estimated Gaussian change with the number of shots popt_list = [] gaussian_curve_list, x_01_list = [], [] for num_shots in num_shots_list: p0_list = [] for _ in range(iterations): job = shots_backend.run(circuit, shots=num_shots) result = job.result() if '0' in result.get_counts().keys(): p0 = result.get_counts()['0']/num_shots else: p0 = 1 - result.get_counts()['1']/num_shots p0_list.append(p0) yhist, xhist = np.histogram(p0_list, bins=bin_count) norm_y = np.sum(yhist) yhist = yhist/iterations x_01 = np.array([xhist[n] + (xhist[n + 1] - xhist[n])/2 for n in range(len(xhist)-1)]) xh = np.where(yhist > 0)[0] yh = yhist[xh] x_01_h = x_01[xh] height_estimate = np.max(yh) mu_estimate = p0 sigma_estimate = np.sqrt(mu_estimate*(1-mu_estimate)/num_shots) popt, pcov = curve_fit(gaussian, x_01_h, yh, [height_estimate, mu_estimate, sigma_estimate]) gaussian_curve = gaussian(x_01, *popt) gaussian_curve_list.append(gaussian_curve) x_01_list.append(x_01) popt_list.append(popt) plt.scatter(x_01_h, yh, label = 'data', color = 'red') plt.plot(x_01, gaussian_curve, label = 'fit', linestyle = '--') plt.title(f"Using {num_shots} shots to estimate probability") plt.xlim((0, 1)) plt.xlabel(r'probability of $\vert 0 \rangle$') plt.ylabel('counts') plt.legend() plt.show() # Define list which will contain the experimental standard deviations sigma_exp_list = [] # Append the standard deviations from the experiments with different number of shots to sigma_exp_list ###INSERT CODE BELOW THIS LINE for popt in popt_list: sigma_exp_list.append(popt[2]) ###DO NOT EDIT BELOW THIS LINE # Define theoretical sigma p=0.5 sigma_th_list = [np.sqrt(p*(1-p)/num_shots) for num_shots in num_shots_list] for sigma_exp, sigma_th in zip(sigma_exp_list, sigma_th_list): print(f"The variance from experiment is {sigma_exp} while the theoretical one is {sigma_th}") from qc_grader.challenges.qgss_2022 import grade_lab3_ex5 grade_lab3_ex5(sigma_exp_list) # Set number of shots num_shots_measurement = 10000 # Create an empty noise model readout_noise_model = NoiseModel() # Measurement miss-assignement probabilities p0given1 = 0.3 # Probability of measuuring |0> given the state is |1> p1given0 = 0.05 # Probability of measuring |1> given the state is |0> readout_error = ReadoutError([[1 - p1given0, p1given0], [p0given1, 1 - p0given1]]) # Define readout error readout_noise_model.add_readout_error(readout_error, [0]) # Add error to noise model # Calculate probability of seeing |0> given that |0> is prepared circuit_0 = qiskit.QuantumCircuit(quantum_register, classical_register) # Add measurement ###INSERT CODE BELOW THIS LINE circuit_0.measure(0,0) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex6 grade_lab3_ex6(circuit_0) # Run the experiment job = shots_backend.run(circuit_0, shots=num_shots_measurement, noise_model=readout_noise_model) # Retrieve results result = job.result() # Calculate probability of |0> if '0' in result.get_counts().keys(): p0_0 = result.get_counts()['0']/num_shots_measurement else: p0_0 = 1 - result.get_counts()['1']/num_shots_measurement p1_0 = 1 - p0_0 print('Probability of measuring |0> when |0> is prepared:', p0_0) print('Probability of measuring |1> when |0> is prepared:', p1_0) # Calculate probability of seeing |1> given that |1> is prepared circuit_1 = qiskit.QuantumCircuit(quantum_register, classical_register) # Add X gate and measurement ###INSERT CODE BELOW THIS LINE circuit_1.x(0) circuit_1.measure(0,0) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex7 grade_lab3_ex7(circuit_1) # Run the experiment job = shots_backend.run(circuit_1, shots=num_shots_measurement, noise_model=readout_noise_model) # Retrieve results result = job.result() # Calculate probability of |0> if '0' in result.get_counts().keys(): p1_1 = 1 - result.get_counts()['0']/num_shots_measurement else: p1_1 = result.get_counts()['1']/num_shots_measurement p0_1 = 1 - p1_1 print('Probability of measuring |0> when |1> is prepared:', p0_1) print('Probability of measuring |1> when |1> is prepared:', p1_1) # Define the confusion matrix from the probabilities found above ###INSERT CODE BELOW THIS LINE confusion_matrix = np.array([[p0_0, p0_1], [p1_0, p1_1]]) ###DO NOT EDIT BELOW THIS LINE print("Confusion matrix:") print(confusion_matrix) from qc_grader.challenges.qgss_2022 import grade_lab3_ex8 # The grader expects a np.array object (not list) grade_lab3_ex8(confusion_matrix) # Run experiments job = shots_backend.run(circuit, shots=num_shots_measurement, noise_model=readout_noise_model) # Extract results result = job.result() # Calculate probability of |0> if '0' in result.get_counts().keys(): p0_noisy = result.get_counts()['0']/num_shots_measurement p1_noisy = 1 - p0_noisy else: p0_noisy = 1 - result.get_counts()['1']/num_shots_measurement p1_noisy = 1 - p0_noisy p_vector_noisy = np.array([p0_noisy, p1_noisy]) print("Noisy probability of |0>: ", p0_noisy) print("Noisy probability of |1>: ", p1_noisy) # Invert the confusion matrix inverse_confusion_matrix = np.linalg.inv(confusion_matrix) # Mitigate the counts using the inverse of the confusion matrix ###INSERT CODE BELOW THIS LINE p_vector_mitigated = (inverse_confusion_matrix @ p_vector_noisy) ###DO NOT EDIT BELOW THIS LINE print("Mitigated probability of |0>: ", p_vector_mitigated[0]) print("Mitigated probability of |1>: ", p_vector_mitigated[1]) from qc_grader.challenges.qgss_2022 import grade_lab3_ex9 # The grader expects a np.array object (not list) grade_lab3_ex9(p_vector_mitigated) # Run ideal experiments job = shots_backend.run(circuit, shots=num_shots_measurement) # Extract results result = job.result() # Calculate probability of |0> if '0' in result.get_counts().keys(): p0_ideal = result.get_counts()['0']/num_shots_measurement p1_ideal = 1 - p0_ideal else: p0_ideal = 1 - result.get_counts()['1']/num_shots_measurement p1_ideal = 1 - p0_ideal print("Ideal probability of |0>: ", p0_ideal) print("Ideal probability of |1>: ", p1_ideal) # Set number of shots num_shots_coherent = 100 # Create an empty noise model rx_overrotation_noise_model = NoiseModel() # Construct a 1 qubit over-rotation of the RX gate epsilon = np.pi/5 # over rotation amount epsilon_rotation = RXGate(epsilon).to_matrix() # get matrix representation # Create coherent error over_rotation = coherent_unitary_error(epsilon_rotation) # Add error to error model rx_overrotation_noise_model.add_quantum_error(over_rotation, ['rx'], qubits = [0]) # Set value of rotation theta = np.pi # Instantiate a quantum circuit circuit = qiskit.QuantumCircuit(quantum_register, classical_register) # Add a parametrized RX rotation and bind the value of the parameter. (By default, parameter binding is not an in-place operation) # Then measure the qubit and calculate probability of seeing |0> after rx(np.pi) ###INSERT CODE BELOW THIS LINE circuit.rx(theta, 0) circuit.measure(0,0) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex10 grade_lab3_ex10(circuit) # Run experiments job = shots_backend.run(circuit, shots=num_shots_coherent, noise_model=rx_overrotation_noise_model) # Extract results result = job.result() # Calculate the probability of |0> if '0' in result.get_counts().keys(): p0 = result.get_counts()['0']/num_shots_coherent else: p0 = 1 - result.get_counts()['1']/num_shots_coherent print("Noisy probability of |0> after coherent error in idling: ", p0) print("Noisy probability of |1> after coherent error in idling: ", 1-p0) # Define number of shots num_shots_incoherent = 10000 # Create an empty noise model depolarizing_noise_model = NoiseModel() # Define a depolarizing error on the identity gate for qubit zero and add it to the noise model ###INSERT CODE BELOW THIS LINE lamb = float(5/100) depolarizing = depolarizing_error(lamb, 1) depolarizing_noise_model.add_quantum_error(depolarizing, ['id'], qubits = [0]) ###DO NOT EDIT BELOW THIS LINE from qc_grader.challenges.qgss_2022 import grade_lab3_ex11 grade_lab3_ex11(depolarizing_noise_model) # Create a circuit with an idle instruction circuit_idle = qiskit.QuantumCircuit(quantum_register, classical_register) circuit_idle.id(0) circuit_idle.measure(0,0) # Run experiments job = shots_backend.run(circuit_idle, shots=num_shots_incoherent, noise_model=depolarizing_noise_model) # Extract results result = job.result() # Calculate probability of seeing |0> after idle time if '0' in result.get_counts().keys(): p0 = result.get_counts()['0']/num_shots_incoherent else: p0 = 1 - result.get_counts()['1']/num_shots_incoherent print("Noisy probability of |0> after incoherent error in idling: ", p0) print("Noisy probability of |1> after incoherent error in idling: ", 1-p0)
https://github.com/googlercolin/Qiskit-Course
googlercolin
import numpy as np import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts # Import qubit states Zero (|0>) and One (|1>), Pauli operators (X, Y, Z), and the identity operator (I) from qiskit.opflow import Zero, One, X, Y, Z, I # Returns the XXX Heisenberg model for 3 spin-1/2 particles in a line def ex1_compute_H_heis3(): # FILL YOUR CODE IN HERE H = (I^X^X) + (X^X^I) + (I^Y^Y) + (Y^Y^I) + (I^Z^Z) + (Z^Z^I) # Return Hamiltonian return H from qc_grader.challenges.qgss_2022 import grade_lab4_ex1 # The grading function is expecting a PauliSumOp operator grade_lab4_ex1(ex1_compute_H_heis3()) # Returns the time evolution operator U_heis3(t) for a given time t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2 particles in a line def ex2_compute_U_heis3(t): # FILL YOUR CODE IN HERE H = ex1_compute_H_heis3() U = (t*H).exp_i() return U from qc_grader.challenges.qgss_2022 import grade_lab4_ex2 # The grading function is expecting a funtion that returns PauliSumOp operator grade_lab4_ex2(ex2_compute_U_heis3) # Define array of time points ts = np.linspace(0, np.pi, 100) # Define initial state |110> initial_state = One^One^Zero # Compute probability of remaining in |110> state over the array of time points # ~initial_state gives the bra of the initial state (<110|) # @ is short hand for matrix multiplication # ex2_compute_U_heis3(t) is the unitary time evolution at time t # t needs to be wrapped with float(t) to avoid a bug # (...).eval() returns the inner product <110|ex2_compute_U_heis3(t)|110> # np.abs(...)**2 is the modulus squared of the innner product which is the expectation value, or probability, of remaining in |110> probs_110 = [np.abs((~initial_state @ ex2_compute_U_heis3(float(t)) @ initial_state).eval())**2 for t in ts] # Plot evolution of |110> plt.plot(ts, probs_110, linewidth=2) plt.xlabel('time') plt.ylabel(r'probability of state $|110\rangle$') plt.title(r'Evolution of state $|110\rangle$ under $H_{Heis3}$') plt.ylim([-0.05,1.05]) plt.grid() plt.show() !pip install qiskit_ignis --quiet # Importing standard Qiskit modules from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile from qiskit.providers.aer import QasmSimulator from qiskit.tools.monitor import job_monitor from qiskit.circuit import Parameter # Import state tomography modules from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.quantum_info import state_fidelity # load IBMQ Account data # IBMQ.save_account(TOKEN) # replace TOKEN with your API token string (https://quantum-computing.ibm.com/lab/docs/iql/manage/account/ibmq) provider = IBMQ.load_account() # Get backend for experiment provider = IBMQ.get_provider(hub='ibm-q') manila = provider.get_backend('ibmq_manila') # properties = manila.properties() # Simulated backend based on ibmq_manila's device noise profile sim_noisy_manila = QasmSimulator.from_backend(provider.get_backend('ibmq_manila')) # Noiseless simulated backend sim = QasmSimulator() # Parameterize variable t to be evaluated at t=pi later t = Parameter('t') # Build a subcircuit for XX(t) two-qubit gate def compute_XX_gate(t): XX_qr = QuantumRegister(2) XX_qc = QuantumCircuit(XX_qr, name='XX') XX_qc.ry(np.pi/2,[0,1]) XX_qc.cnot(0,1) XX_qc.rz(2 * t, 1) XX_qc.cnot(0,1) XX_qc.ry(-np.pi/2,[0,1]) # Convert custom quantum circuit into a gate XX = XX_qc.to_instruction() return XX # Build a subcircuit for YY(t) two-qubit gate def ex3_compute_YY_gate(t): # FILL YOUR CODE IN HERE YY_qr = QuantumRegister(2) YY_qc = QuantumCircuit(YY_qr, name='YY') YY_qc.s(0) YY_qc.s(1) XX = compute_XX_gate(t) YY_qc.append(XX, [YY_qr[0], YY_qr[1]]) YY_qc.sdg(0) YY_qc.sdg(1) YY = YY_qc.to_instruction() return YY from qc_grader.challenges.qgss_2022 import grade_lab4_ex3 # The grading function is expecting an Instruction grade_lab4_ex3(ex3_compute_YY_gate(t)) # Build a subcircuit for ZZ(t) two-qubit gate def ex4_compute_ZZ_gate(t): # FILL YOUR CODE IN HERE ZZ_qr = QuantumRegister(2) ZZ_qc = QuantumCircuit(ZZ_qr, name='ZZ') ZZ_qc.h(0) ZZ_qc.h(1) XX = compute_XX_gate(t) ZZ_qc.append(XX, [ZZ_qr[0], ZZ_qr[1]]) ZZ_qc.h(0) ZZ_qc.h(1) ZZ = ZZ_qc.to_instruction() return ZZ from qc_grader.challenges.qgss_2022 import grade_lab4_ex4 # The grading function is expecting an Instruction grade_lab4_ex4(ex4_compute_ZZ_gate(t)) # Combine subcircuits into a single multiqubit gate representing a single trotter step num_qubits = 3 # Define two-qubit interactions Parameterized by t XX = compute_XX_gate(t) YY = ex3_compute_YY_gate(t) ZZ = ex4_compute_ZZ_gate(t) Trot_qr = QuantumRegister(num_qubits) Trot_qc = QuantumCircuit(Trot_qr, name='Trot') for i in range(0, num_qubits - 1): Trot_qc.append(ZZ, [Trot_qr[i], Trot_qr[i+1]]) Trot_qc.append(YY, [Trot_qr[i], Trot_qr[i+1]]) Trot_qc.append(XX, [Trot_qr[i], Trot_qr[i+1]]) # Convert custom quantum circuit into a gate Trot_gate = Trot_qc.to_instruction() # Setup experiment parameters # The final time of the state evolution target_time = np.pi # DO NOT MODIFY # Number of trotter steps trotter_steps = 20 ### CAN BE >= 4 # Select which qubits to use for the simulation q_regs = [0,1,2] # Initialize quantum circuit for 3 qubits qr = QuantumRegister(5) qc = QuantumCircuit(qr) # Prepare initial state (remember we are only evolving 3 of the 7 qubits on manila qubits (q_5, q_3, q_1) corresponding to the state |110>) qc.x([q_regs[2], q_regs[1]]) # For example this could be (q_regs=[2, 1, 0] which corresponds to => |110>) # Simulate time evolution under H_heis3 Hamiltonian for _ in range(trotter_steps): qc.append(Trot_gate, q_regs) # Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time qc = qc.bind_parameters({t: target_time/trotter_steps}) # Generate state tomography circuits to evaluate fidelity of simulation st_qcs = state_tomography_circuits(qc, q_regs) # Display circuit for confirmation # st_qcs[-1].decompose().draw() # view decomposition of trotter gates st_qcs[-1].draw() # only view trotter gates shots = 8192 reps = 4 # Pick the simulated or real backend for manila # backend = sim # Noiseless simulator backend = sim_noisy_manila # Simulator that mimics ibmq_manila # backend = manila # The real manila backend jobs = [] for _ in range(reps): # Execute job = execute(st_qcs, backend, shots=shots) print('Job ID', job.job_id()) jobs.append(job) for job in jobs: job_monitor(job) try: if job.error_message() is not None: print(job.error_message()) except: pass # Compute the state tomography based on the st_qcs quantum circuits and the results from those ciricuits def state_tomo(result, st_qcs): # The expected final state; necessary to determine state tomography fidelity target_state = (One^One^Zero).to_matrix() # DO NOT MODIFY # Fit state tomography results tomo_fitter = StateTomographyFitter(result, st_qcs) rho_fit = tomo_fitter.fit(method='lstsq') # Compute fidelity fid = state_fidelity(rho_fit, target_state) return fid # Compute tomography fidelities for each repetition fids = [] for job in jobs: fid = state_tomo(job.result(), st_qcs) fids.append(fid) # Share tomography fidelity of discord to compete and collaborate with other students print('state tomography fidelity on ' + str(backend) + ' = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids))) # Share what lectures and techniques were useful in optimizing your results print('Inspiration: Measurement error mitigation, Olivia Lanes\'s 2nd lecture') import qiskit.tools.jupyter %qiskit_version_table
https://github.com/greatdevaks/geopython-qiskit
greatdevaks
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Importing basic math libraries from math import pi, sqrt # Loading your IBM Q account(s) provider = IBMQ.load_account() # Definining the simulator: statevector_simulator, or qasm_simulator simulator = "qasm_simulator" # Function to plot the Quantum Circuit / Quantum State def get_plot(quantum_circuit): """ Parameters: quantum_circuit: The Quantum Circuit to visualize Returns: return: Plot/Visualization of the Quantum State """ sim = Aer.get_backend(simulator) quantum_object = assemble(quantum_circuit) if simulator == "statevector_simulator": result = sim.run(quantum_object).result() statevector = result.get_statevector() return plot_bloch_multivector(statevector) elif simulator == "qasm_simulator": result = sim.run(quantum_object).result() count = result.get_counts() return plot_histogram(count) # Creating a single qubit Quantum Circuit num_qubits = 2 qc = QuantumCircuit(num_qubits) # Creates a Quantum Circuit with 1 qubit num_input_qubits = num_qubits # defines the number of qubits in the circuit num_output_qubits = num_qubits # defines the number of output bits that we want to extract from the circuit # Note: The extraction of output from a Quantum Circuit is done via a process called `measurement` # Each measurement tells a specific qubit to give an output to a specific output bit qc_output = QuantumCircuit(num_input_qubits, num_output_qubits) # qc_output is the Quantum Circuit # Visualizing the Quantum Wire qc_output.draw() # Drawing the Quantum Circuit # Here C is represents the measurement results / count # Applying H-gate to the first qubit q0: qc_output.h(0) # Applying X-gate to the first qubit q: qc_output.x(1) qc_output.draw() # Drawing the Quantum Circuit # TAKING MEASUREMENT ONLY FOR EXPLANATION PURPOSES # IN REAL CIRCUITS, MEASUREMENTS SHOULD NOT BE TAKEN LIKE THIS IN THE INTERMEDIATE STATES # MEASUREMENT CHANGES THE QUBIT'S STATE # Measuring the results for qubit in range(num_qubits): qc_output.measure(qubit, qubit) qc_output.draw() # Drawing the Quantum Circuit # Initial state of each qubit is |0> # After Hadamard gate is applied to q0, q0 can be in 0 or 1 state when measured (as Hadamard Gate # will bring q0 to some superposition state) # H q0 => |0> -> |0> or |1> # Applying Pauli-X Gate on q1 will flip its qubit state # X q1 => |0> -> |1> # Quantum State analysis for the above circuit # q0 q1 output # 0 1 0 1 # 1 1 1 1 # Getting the plot and visualization get_plot(qc_output) # Applying a CNOT gate from qubit q0 to qubit q1: qc_output.cx(0,1) qc_output.draw() # Drawing the Quantum Circuit # Measuring the results for qubit in range(num_qubits): qc_output.measure(qubit, qubit) # Visualizing the Quantum Circuit using Simulator qc_output.draw() # Drawing the Quantum Circuit # Quantum State analysis for the previously measure circuit # q0 q1 output # 0 1 0 1 # 1 1 1 1 # Applying CNOT Gate on from q0 to q1 will conditionally flip the q1 qubit # q0 q1 output # 0 1 0 1 # 1 1 1 0 # Getting the plot and visualization get_plot(qc_output)
https://github.com/greatdevaks/geopython-qiskit
greatdevaks
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # Importing basic math libraries from math import pi, sqrt # Loading your IBM Q account(s) provider = IBMQ.load_account() # Definining the simulator: statevector_simulator, or qasm_simulator simulator = "statevector_simulator" # Function to plot the Quantum Circuit / Quantum State def get_plot(quantum_circuit): """ Parameters: quantum_circuit: The Quantum Circuit to visualize Returns: return: Plot/Visualization of the Quantum State """ sim = Aer.get_backend(simulator) quantum_object = assemble(quantum_circuit) if simulator == "statevector_simulator": result = sim.run(quantum_object).result() statevector = result.get_statevector() return plot_bloch_multivector(statevector) elif simulator == "qasm_simulator": result = sim.run(quantum_object).result() count = result.get_counts() return plot_histogram(count) # Creating a single qubit Quantum Circuit num_qubits = 1 qc = QuantumCircuit(num_qubits) # Creates a Quantum Circuit with 1 qubit # Visualizing the Quantum Wire qc.draw() # Drawing the Quantum Circuit # Visualizing the Quantum Circuit using Simulator get_plot(qc) # Drawing the Quantum Circuit # Pauli-X Gate Demonstration # Let's do an X-gate on a |0> qubit qc.x(0) # Applies Pauli-X Gate to the |0> qubit qc.draw() # Drawing the Quantum Circuit # Visualize the Quantum Circuit using Simulator get_plot(qc)
https://github.com/mhlr/qiskit-meetup
mhlr
#%pip install qiskit-aqua qiskit from qiskit.visualization import iplot_histogram, plot_histogram %pylab inline import qiskit as qk qr = qk.QuantumRegister(2) cr = qk.ClassicalRegister(2) qc = qk.QuantumCircuit(qr,cr) qc.h(qr[0]) qc.draw(output='mpl') qc.cx(qr[0], qr[1]) qc.draw(output='mpl') qc.measure(qr,cr) qc.draw(output='mpl') qk.Aer.backends() sim = qk.Aer.get_backend('qasm_simulator') res = qk.execute(qc, sim).result() res plot_histogram(res.get_counts()) from qiskit import IBMQ IBMQ.delete_account() IBMQ.save_account('4fd56...', overwrite=True) # the token you obtained above IBMQ.load_account() provider = IBMQ.get_provider() procs=provider.backends(operational=True, simulator=False) procs from qiskit.tools.jupyter import * %qiskit_backend_overview from qiskit.tools import monitor backend = qk.providers.ibmq.least_busy([p for p in procs if len(p.properties().qubits) >= 2]) from qiskit.tools.monitor import backend_overview, backend_monitor backend_monitor(backend) #%%qiskit_job_status #%%qiskit_progress_bar %time job = qk.execute(qc, backend=backend, shots=2**10) #mon = monitor.job_monitor(job) %time res2 = job.result() plot_histogram(res2.get_counts(qc)) res2.get_counts(qc)
https://github.com/AbeerVaishnav13/Using-Qiskit
AbeerVaishnav13
import qiskit as q %matplotlib inline circuit = q.QuantumCircuit(3, 2) # Grover Search algorithm for 2 qubits and 1 control bit # Preparation using superposition circuit.h(0) circuit.h(1) circuit.x(2) circuit.h(2) circuit.barrier() # Function Uw circuit.x(0) circuit.ccx(0, 1, 2) circuit.x(0) circuit.barrier() # Function Us circuit.h(0) circuit.h(1) circuit.x(0) circuit.x(1) circuit.ccx(0, 1, 2) circuit.x(0) circuit.x(1) circuit.h(0) circuit.h(1) circuit.barrier() # Measure circuit.measure([0, 1], [0, 1]) # Draw the circuit circuit.draw() circuit.draw(output='mpl') from qiskit import IBMQ # IBM-Q Account credentials initialization IBMQ.load_account() # List all backends available with us provider = IBMQ.get_provider('ibm-q') for backend in provider.backends(): try: qubit_count = len(backend.properties().qubits) except: qubit_count = 'simulated' print(f'{backend.name()} ({qubit_count}) : {backend.status().pending_jobs} queued job(s).') from qiskit.tools.monitor import job_monitor # Executing a job on the IBM-Q quantum computer backend = provider.get_backend('ibmq_ourense') job = q.execute(circuit, backend = backend, shots = 1024) job_monitor(job) from qiskit.visualization import plot_histogram from matplotlib import style style.use('dark_background') # Display histogram for results result = job.result() counts = result.get_counts(circuit) plot_histogram([counts]) # Trying on ibmq-qasm-simulator sim_backend = provider.get_backend('ibmq_qasm_simulator') sim_job = q.execute(circuit, backend = sim_backend, shots = 1024) job_monitor(sim_job) # Results of the ibmq-qasm-simulator sim_result = sim_job.result() sim_counts = sim_result.get_counts(circuit) plot_histogram([sim_counts])
https://github.com/AbeerVaishnav13/Using-Qiskit
AbeerVaishnav13
import numpy as np from qiskit import * from qiskit.visualization import plot_histogram, plot_gate_map from qiskit.tools.monitor import job_monitor from qiskit.test.mock import FakeProvider import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') %matplotlib inline backends = list(filter(lambda x: not (x.configuration().simulator or x.configuration().n_qubits <= 5), FakeProvider().backends())) ghz = QuantumCircuit(5, 5) ghz.h(0) for idx in range(1, 5): ghz.cx(0, idx) ghz.barrier() ghz.measure(range(5), range(5)) ghz.draw(output='mpl') ghz_basis = ghz.decompose() ghz_basis.draw(output='mpl') import inspect inspect.signature(transpile) qc = QuantumCircuit(3, 2) # Preparation using superposition qc.h(0) qc.h(1) qc.x(2) qc.h(2) qc.barrier() # Function Uw qc.x(0) qc.ccx(0, 1, 2) qc.x(0) qc.barrier() # Function Us qc.h(0) qc.h(1) qc.x(0) qc.x(1) qc.ccx(0, 1, 2) qc.x(0) qc.x(1) qc.h(0) qc.h(1) qc.barrier() # Measure qc.measure([0, 1], [0, 1]) qc.draw(output='mpl') qc_basis = qc.decompose() qc_basis.draw(output='mpl') print(qc.depth(), ', ', qc_basis.depth()) # Without barrier qc = QuantumCircuit(3, 2) # Preparation using superposition qc.h(0) qc.h(1) qc.x(2) qc.h(2) # Function Uw qc.x(0) qc.ccx(0, 1, 2) qc.x(0) # Function Us qc.h(0) qc.h(1) qc.x(0) qc.x(1) qc.ccx(0, 1, 2) qc.x(0) qc.x(1) qc.h(0) qc.h(1) # Measure qc.measure([0, 1], [0, 1]) qc.draw(output='mpl') qc_basis = qc.decompose() qc_basis.draw(output='mpl') print(qc.depth(), ', ', qc_basis.depth())
https://github.com/at2005/hodl-qiskit
at2005
from qiskit import * from qiskit.visualization import plot_histogram import re import subprocess import os ### define a class to hold hodl oracle code alongside parameters ### this allows many instances of an oracle to be defined --> not limited to ### input-dependent compilation class HODLOracle: def __init__(self, func_name, init_params, program): ### accepts body of the oracle, parameters to the oracle in order, and the oracle name self.program = program self.params = init_params self.fname = func_name ### compilation function --> this takes an oracle instance, generates a HODL program, ### invokes the compiler binary, converts the output assembly to a qiskit circuit, and returns it def to_circ(self,params): main = "function main() {" ### iterate over each parameter and if a quantum register then declare it as ### a |0>^n register. This initialization is such so that the circuit can be concatenated ## with any desired input register param_lst = [] for q in params: if isinstance(q, QuantumRegister): main += f"\nsuper {q.name} = {2**(q.size)};\nH({q.name});" param_lst.append(q.name) else: param_lst.append(str(q)) main += f"\n{self.fname}({','.join(param_lst)});" result = self.program + main + "\n}" f = open("program.hodl", "w") f.write(result) f.close() os.system("hodl --target qasm -o out.qasm program.hodl") circ = QuantumCircuit.from_qasm_file("out.qasm") os.remove("program.hodl") os.remove("out.qasm") return circ ### takes an oracle and outputs a HODL object def init_oracle(code): fname = re.search("function (.*)\(", code).group(1) params = re.search("\((.*)\)",code).group(1) params = params.split(",") ### parameter map --> {type: name} param_dict = {} for p in params: p = p.split() param_dict[p[0]] = p[1] oracle = HODLOracle(fname, param_dict, code) return oracle
https://github.com/oierajenjo/q-Grover-Algorithm
oierajenjo
import qiskit qiskit.__qiskit_version__ import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.visualization import plot_histogram q = QuantumRegister(6) qc = QuantumCircuit(q) qc.x(q[2]) qc.cx(q[1], q[5]) qc.cx(q[2], q[5]) qc.cx(q[3], q[5]) qc.ccx(q[1], q[2], q[4]) qc.ccx(q[3], q[4], q[5]) qc.ccx(q[1], q[2], q[4]) qc.x(q[2]) qc.draw(output='mpl') def black_box_u_f(circuit, f_in, f_out, aux, n, exactly_1_3_sat_formula): """Circuit that computes the black-box function from f_in to f_out. Create a circuit that verifies whether a given exactly-1 3-SAT formula is satisfied by the input. The exactly-1 version requires exactly one literal out of every clause to be satisfied. """ num_clauses = len(exactly_1_3_sat_formula) for (k, clause) in enumerate(exactly_1_3_sat_formula): # This loop ensures aux[k] is 1 if an odd number of literals # are true for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) # Flip aux[k] if all literals are true, using auxiliary qubit # (ancilla) aux[num_clauses] circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) # Flip back to reverse state of negative literals and ancilla circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) # The formula is satisfied if and only if all auxiliary qubits # except aux[num_clauses] are 1 if (num_clauses == 1): circuit.cx(aux[0], f_out[0]) elif (num_clauses == 2): circuit.ccx(aux[0], aux[1], f_out[0]) elif (num_clauses == 3): circuit.ccx(aux[0], aux[1], aux[num_clauses]) circuit.ccx(aux[2], aux[num_clauses], f_out[0]) circuit.ccx(aux[0], aux[1], aux[num_clauses]) else: raise ValueError('We only allow at most 3 clauses') # Flip back any auxiliary qubits to make sure state is consistent # for future executions of this routine; same loop as above. for (k, clause) in enumerate(exactly_1_3_sat_formula): for literal in clause: if literal > 0: circuit.cx(f_in[literal-1], aux[k]) else: circuit.x(f_in[-literal-1]) circuit.cx(f_in[-literal-1], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) circuit.ccx(f_in[2], aux[num_clauses], aux[k]) circuit.ccx(f_in[0], f_in[1], aux[num_clauses]) for literal in clause: if literal < 0: circuit.x(f_in[-literal-1]) # -- end function def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 ' + 'controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) # -- end function def inversion_about_average(circuit, f_in, n): """Apply inversion about the average step of Grover's algorithm.""" # Hadamards everywhere for j in range(n): circuit.h(f_in[j]) # D matrix: flips the sign of the state |000> only for j in range(n): circuit.x(f_in[j]) n_controlled_Z(circuit, [f_in[j] for j in range(n-1)], f_in[n-1]) for j in range(n): circuit.x(f_in[j]) # Hadamards everywhere again for j in range(n): circuit.h(f_in[j]) # -- end function qr = QuantumRegister(3) qInvAvg = QuantumCircuit(qr) inversion_about_average(qInvAvg, qr, 3) qInvAvg.draw(output='mpl') """ Grover search implemented in Qiskit. This module contains the code necessary to run Grover search on 3 qubits, both with a simulator and with a real quantum computing device. This code is the companion for the paper "An introduction to quantum computing, without the physics", Giacomo Nannicini, https://arxiv.org/abs/1708.03684. """ def input_state(circuit, f_in, f_out, n): """(n+1)-qubit input state for Grover search.""" for j in range(n): circuit.h(f_in[j]) circuit.x(f_out) circuit.h(f_out) # -- end function # Make a quantum program for the n-bit Grover search. n = 3 # Exactly-1 3-SAT formula to be satisfied, in conjunctive # normal form. We represent literals with integers, positive or # negative, to indicate a Boolean variable or its negation. exactly_1_3_sat_formula = [[1, 2, -3], [-1, -2, -3], [-1, 2, 3]] # Define three quantum registers: 'f_in' is the search space (input # to the function f), 'f_out' is bit used for the output of function # f, aux are the auxiliary bits used by f to perform its # computation. f_in = QuantumRegister(n) f_out = QuantumRegister(1) aux = QuantumRegister(len(exactly_1_3_sat_formula) + 1) # Define classical register for algorithm result ans = ClassicalRegister(n) # Define quantum circuit with above registers grover = QuantumCircuit() grover.add_register(f_in) grover.add_register(f_out) grover.add_register(aux) grover.add_register(ans) input_state(grover, f_in, f_out, n) T = 2 for t in range(T): # Apply T full iterations black_box_u_f(grover, f_in, f_out, aux, n, exactly_1_3_sat_formula) inversion_about_average(grover, f_in, n) # Measure the output register in the computational basis for j in range(n): grover.measure(f_in[j], ans[j]) # Execute circuit backend = BasicAer.get_backend('qasm_simulator') job = execute([grover], backend=backend, shots=1000) result = job.result() # Get counts and plot histogram counts = result.get_counts(grover) plot_histogram(counts) IBMQ.load_account() # get ibmq_16_melbourne configuration and coupling map backend = IBMQ.get_backend('ibmq_16_melbourne') # compile the circuit for ibmq_16_rueschlikon grover_compiled = transpile(grover, backend=backend, seed_transpiler=1, optimization_level=3) print('gates = ', grover_compiled.count_ops()) print('depth = ', grover_compiled.depth()) grover.draw(output='mpl', scale=0.5)
https://github.com/oierajenjo/q-Grover-Algorithm
oierajenjo
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Created on Wed Mar 11 18:03:12 2020 Functional interface to Qasm2 source loading and exporting Supersede QuantumCircuit member functions Provide for pluggable qasm translator Based on conversation with Dr. Luciano Bello @author: jax """ from importlib import import_module from os import linesep from typing import List, BinaryIO, TextIO from qiskit import QuantumCircuit, QiskitError from qiskit_openqasm2 import Qasm from .funhelp import qasm_load, qasm_export def _load_from_string(qasm_src: str or List[str], loader: str = None, include_path: str = '') -> QuantumCircuit: """ Parameters ---------- qasm_src : str or List[str] Qasm program source as string or list of string. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is ''. Raises ------ QiskitError If unknown loader. Returns ------- QuantumCircuit Circuit factoried from Qasm src. """ circ = None if not loader: if isinstance(qasm_src, list): qasm_src = ''.join(s + linesep for s in qasm_src) qasm = Qasm(data=qasm_src) circ = qasm_load(qasm) else: m_m = import_module(loader) circ = getattr(m_m, 'load')(data=qasm_src, include_path=include_path) return circ def _load_from_file(filename: str, loader: str = None, include_path: str = '') -> QuantumCircuit: """ Parameters ---------- filename : str Filepath to qasm program source. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is ''. Returns ------- QuantumCircuit Circuit factoried from Qasm src. """ circ = None if not loader: qasm = Qasm(filename=filename) circ = qasm_load(qasm) else: m_m = import_module(loader) circ = getattr(m_m, 'load')(filename=filename, include_path=include_path) return circ def load(data: str or List[str] = None, filename: str = None, loader: str = None, include_path: str = None) -> QuantumCircuit: """ Parameters ---------- data : str or List[str], optional Qasm program source as string or list of string. The default is None. filename : str, optional Filepath to qasm program source. The default is None. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is None. Raises ------ QiskitError If both filename and data or neither filename nor data. Returns ------- QuantumCircuit The factoried circuit. """ if (not data and not filename) or (data and filename): raise QiskitError("To load, either filename or data (and not both) must be provided.") circ = None if data: circ = _load_from_string(data, loader=loader, include_path=include_path) elif filename: circ = _load_from_file(filename, loader=loader, include_path=include_path) return circ def export(qc: QuantumCircuit, exporter: str = None, file: BinaryIO or TextIO = None, filename: str = None, include_path: str = None,) -> str: """ Decompile a QuantumCircuit into Return OpenQASM string Parameters ---------- qc : QuantumCircuit Circuit to decompile ("export") exporter : str, optional Name of module with functional attribute export(qc: QuantumCircuit, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. file : BinaryIO or TextIO, optional File object to write to as well as return str Written in UTF-8 Caller must close file. Mutually exclusive with filename= The default is None. filename : str, optional Name of file to write export to as well as return str Mutually exclusive with file= The default is None. include_path: str, optional Unloader-specific include path for qasm include directives Raises ------ QiskitError If both filename and file Returns ------- str OpenQASM source for circuit. """ if filename and file: raise QiskitError("export: file= and filename= are mutually exclusive") qasm_src = None if not exporter: qasm_src = qasm_export(qc) else: m_m = import_module(exporter) qasm_src = getattr(m_m, 'export')(qc, include_path=include_path) if filename: f_f = open(filename, 'w') f_f.write(qasm_src) f_f.close() elif file: if 'b' in file.mode: file.write(bytes(qasm_src, 'utf-8')) else: file.write(qasm_src) return qasm_src
https://github.com/apozas/qaoa-color
apozas
from functools import reduce from itertools import product from qiskit import BasicAer, QuantumRegister from qiskit_aqua import QuantumInstance from qiskit_aqua import Operator, run_algorithm from qiskit.quantum_info import Pauli from qiskit_aqua.components.optimizers import COBYLA from constrainedqaoa import constrainedQAOA import numpy as np edges = [(0, 0)] vertices = 1 colors = 2 n_qubits = vertices * colors zr = np.zeros(n_qubits) ws = np.eye(n_qubits) cost_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(ws[colors*v1 + j, :], zr) *Pauli(ws[colors*v2 + j, :], zr))]]) for (v1, v2), j in product(edges, range(colors)) ] ) mixer_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(zr, ws[colors*i + j, :]) *Pauli(zr, ws[colors*i + (j+1) % colors, :]))]]) + Operator([[1, (Pauli(ws[colors*i + j % colors, :], ws[colors*i + j % colors, :]) *Pauli(ws[colors*i + (j+1) % colors, :], ws[colors*i + (j+1) % colors, :]))]]) for i, j in product(range(vertices), range(colors)) ] ) if colors == 2: mixer_operator.scaling_coeff(1/2) print(mixer_operator.print_operators()) what = 'circuit' circ = mixer_operator.evolve(np.eye(4), np.pi*0.35, what, 1, QuantumRegister(2)) if what == 'matrix': print(np.round(circ, 4)) elif what == 'circuit': print(circ.draw()) cobyla = COBYLA() cobyla.set_options(maxiter=250) constrained = constrainedQAOA(cost_operator, cobyla, mixer_operator, 1) backend = BasicAer.get_backend('statevector_simulator') seed = 50 constrained.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed) result = constrained.run(quantum_instance) result['eigvecs']
https://github.com/apozas/qaoa-color
apozas
#!/usr/bin/env python # coding: utf-8 # In[65]: # useful additional packages import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np import time from pprint import pprint # importing Qiskit from qiskit import Aer, IBMQ from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram # In[72]: "Choice of the backend" # using local qasm simulator backend = Aer.get_backend('qasm_simulator') # using IBMQ qasm simulator # backend = IBMQ.get_backend('ibmq_qasm_simulator') # using real device # backend = least_busy(IBMQ.backends(simulator=False)) flag_qx2 = True if backend.name() == 'ibmqx4': flag_qx2 = False print("Your choice for the backend is: ", backend, "flag_qx2 is: ", flag_qx2) # In[73]: # Here, two useful routine # Define a F_gate def G_gate(circ, p, q , i, j) : theta = np.arctan(np.sqrt(p/(1-p))) circ.ry(theta,q[j]) circ.cx(q[i],q[j]) circ.ry(-theta,q[j]) #circ.cx(q[i],q[j]) circ.barrier(q[i]) # Define the cxrv gate which uses reverse CNOT instead of CNOT def cxrv(circ,q,i,j) : circ.h(q[i]) circ.h(q[j]) circ.cx(q[j],q[i]) circ.h(q[i]) circ.h(q[j]) circ.barrier(q[i],q[j]) # In[78]: # 3-qubit W state n = 8 q = QuantumRegister(n) c = ClassicalRegister(n) W_states = QuantumCircuit(q,c) W_states.x(q[n-1]) #start is |100> # In[79]: for i in range(1,n) : p=1/(n+1-i) print(n-i, n-i-1, p) print(p/(1-p)) print(np.arctan(np.sqrt(p/(1-p)))*180/3.14) G_gate(W_states, p, q, n-i, n-i-1) W_states.cx(q[n-i-1], q[n-i]) # In[80]: for i in range(n) : W_states.measure(q[i] , c[i]) shots = 10000 time_exp = time.strftime('%d/%m/%Y %H:%M:%S') print('start W state 3-qubit on', backend, "N=", shots,time_exp) result = execute(W_states, backend=backend, shots=shots) time_exp = time.strftime('%d/%m/%Y %H:%M:%S') print('end W state 3-qubit on', backend, "N=", shots,time_exp) W_states.draw(output="mpl") plot_histogram(result.result().get_counts(W_states)) # In[81]: # In[ ]:
https://github.com/apozas/qaoa-color
apozas
from functools import reduce from itertools import product from qiskit import BasicAer, QuantumRegister, ClassicalRegister from qiskit_aqua import QuantumInstance from qiskit_aqua import Operator, run_algorithm from qiskit.quantum_info import Pauli from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua.algorithms import QAOA import numpy as np import qutip as qt from qiskit_aqua.components.initial_states import Custom edges = [(0, 1), (1, 2), (2, 3)] colors = 4 vertices = max(reduce(lambda x, y: x + y, [list(edge) for edge in edges])) + 1 logcolors = int(np.log2(colors)) n_qubits = int(vertices * logcolors) zr = np.zeros(n_qubits) ws = np.eye(n_qubits) up = qt.basis(2, 0) dn = qt.basis(2, 1) cost_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(ws[logcolors*v1 + j, :], zr) *Pauli(ws[logcolors*v2 + j, :], zr))]]) for (v1, v2), j in product(edges, range(logcolors)) ] ) cobyla = COBYLA() cobyla.set_options(maxiter=250) p = 2 # steps of QAOA constrained = QAOA(cost_operator, cobyla, p) backend = BasicAer.get_backend('statevector_simulator') seed = 50 constrained.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed) result = constrained.run(quantum_instance) result['eigvals'] result['opt_params'] result['eigvecs']
https://github.com/apozas/qaoa-color
apozas
from functools import reduce from itertools import product from qiskit import BasicAer, QuantumRegister from qiskit_aqua import QuantumInstance from qiskit_aqua import Operator, run_algorithm from qiskit.quantum_info import Pauli from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua.components.initial_states import Custom from constrainedqaoa import constrainedQAOA import numpy as np import qutip as qt edges = [(0, 1), (1, 2), (2, 3)] vertices = max(reduce(lambda x, y: x + y, [list(edge) for edge in edges])) + 1 colors = 2 n_qubits = vertices * colors zr = np.zeros(n_qubits) ws = np.eye(n_qubits) up = qt.basis(2, 0) dn = qt.basis(2, 1) def W(size, copies): initial_list = [dn] + [up] * (size - 1) cycles = [[initial_list[i - j] for i in range(size)] for j in range(size)] W_1copy = sum([qt.tensor(states) for states in cycles]) return qt.tensor([W_1copy] * copies) amplitudes = W(colors, vertices).full().T.tolist()[0] init_state = Custom(n_qubits, state_vector=amplitudes) cost_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(ws[colors*v1 + j, :], zr) *Pauli(ws[colors*v2 + j, :], zr))]]) for (v1, v2), j in product(edges, range(colors)) ] ) mixer_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(zr, ws[colors*i + j, :]) *Pauli(zr, ws[colors*i + (j+1) % colors, :]))]]) + Operator([[1, (Pauli(ws[colors*i + j % colors, :], ws[colors*i + j % colors, :]) *Pauli(ws[colors*i + (j+1) % colors, :], ws[colors*i + (j+1) % colors, :]))]]) for i, j in product(range(vertices), range(colors)) ] ) # Fix redundancies if colors == 2: mixer_operator.scaling_coeff(1/2) cobyla = COBYLA() cobyla.set_options(maxiter=250) p = 1 # steps of QAOA constrained = constrainedQAOA(cost_operator, cobyla, mixer_operator, p, init_state) backend = BasicAer.get_backend('statevector_simulator') seed = 50 constrained.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed) result = constrained.run(quantum_instance) result['eigvals'] np.round(result['eigvecs'], 4) np.savetxt('4_line_2colors_p1', result['eigvecs'][0])
https://github.com/apozas/qaoa-color
apozas
# Copied and modified from qiskit_aqua.algorithms.adaptive.qaoa.qaoa.py # and qiskit_aqua.algorithms.adaptive.qaoa.varform.py # ============================================================================= import logging from qiskit_aqua.algorithms import QuantumAlgorithm from qiskit_aqua import AquaError, PluggableType, get_pluggable_class from qiskit_aqua.algorithms.adaptive import VQE from qiskit_aqua.algorithms.adaptive.qaoa.varform import QAOAVarForm logger = logging.getLogger(__name__) class constrainedQAOA(VQE): """ The Quantum Approximate Optimization Algorithm. See https://arxiv.org/abs/1411.4028 """ CONFIGURATION = { 'name': 'QAOA.Variational', 'description': 'Quantum Approximate Optimization Algorithm', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'qaoa_schema', 'type': 'object', 'properties': { 'operator_mode': { 'type': 'string', 'default': 'matrix', 'oneOf': [ {'enum': ['matrix', 'paulis', 'grouped_paulis']} ] }, 'p': { 'type': 'integer', 'default': 1, 'minimum': 1 }, 'initial_point': { 'type': ['array', 'null'], "items": { "type": "number" }, 'default': None }, 'batch_mode': { 'type': 'boolean', 'default': False } }, 'additionalProperties': False }, 'problems': ['ising'], 'depends': ['optimizer'], 'defaults': { 'optimizer': { 'name': 'COBYLA' }, } } def __init__(self, cost, optimizer, mixer, p=1, initial_state=None, operator_mode='matrix', initial_point=None, batch_mode=False, aux_operators=None): """ Args: operator (Operator): Qubit operator operator_mode (str): operator mode, used for eval of operator p (int) : the integer parameter p as specified in https://arxiv.org/abs/1411.4028 optimizer (Optimizer) : the classical optimization algorithm. initial_point (numpy.ndarray) : optimizer initial point. """ self.validate(locals()) var_form = constrainedQAOAVarForm(cost, p, mixer, initial_state) super().__init__(cost, var_form, optimizer, operator_mode=operator_mode, initial_point=initial_point) @classmethod def init_params(cls, params, algo_input): """ Initialize via parameters dictionary and algorithm input instance Args: params (dict): parameters dictionary algo_input (EnergyInput): EnergyInput instance """ if algo_input is None: raise AquaError("EnergyInput instance is required.") operator = algo_input.qubit_op qaoa_params = params.get(QuantumAlgorithm.SECTION_KEY_ALGORITHM) operator_mode = qaoa_params.get('operator_mode') p = qaoa_params.get('p') initial_point = qaoa_params.get('initial_point') batch_mode = qaoa_params.get('batch_mode') # Set up optimizer opt_params = params.get(QuantumAlgorithm.SECTION_KEY_OPTIMIZER) optimizer = get_pluggable_class(PluggableType.OPTIMIZER, opt_params['name']).init_params(opt_params) return cls(operator, optimizer, p=p, operator_mode=operator_mode, initial_point=initial_point, batch_mode=batch_mode, aux_operators=algo_input.aux_ops) class constrainedQAOAVarForm(QAOAVarForm): def __init__(self, cost_operator, p, mixer_operator=None, initial_state=None): super().__init__(cost_operator, p, initial_state) if mixer_operator is None: v = np.zeros(self._cost_operator.num_qubits) ws = np.eye(self._cost_operator.num_qubits) self._mixer_operator = reduce( lambda x, y: x + y, [ Operator([[1, Pauli(v, ws[i, :])]]) for i in range(self._cost_operator.num_qubits) ] ) else: self._mixer_operator = mixer_operator from functools import reduce from itertools import product from qiskit import BasicAer, QuantumRegister from qiskit_aqua import QuantumInstance from qiskit_aqua import Operator, run_algorithm from qiskit.quantum_info import Pauli from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua.components.initial_states import Custom #from constrainedqaoa import constrainedQAOA import numpy as np import qutip as qt edges = [(0, 1), (1, 2), (2, 0)] vertices = 3 colors = 3 n_qubits = vertices * colors zr = np.zeros(n_qubits) ws = np.eye(n_qubits) up = qt.basis(2, 0) dn = qt.basis(2, 1) def W(size, copies): initial_list = [dn] + [up] * (size - 1) cycles = [[initial_list[i - j] for i in range(size)] for j in range(size)] W_1copy = sum([qt.tensor(states) for states in cycles]) return qt.tensor([W_1copy] * copies) amplitudes = W(colors, vertices).full().T.tolist()[0] init_state = Custom(n_qubits, state_vector=amplitudes) W(colors, vertices) cost_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(ws[colors*v1 + j, :], zr) *Pauli(ws[colors*v2 + j, :], zr))]]) for (v1, v2), j in product(edges, range(colors)) ] ) mixer_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(zr, ws[colors*i + j, :]) *Pauli(zr, ws[colors*i + (j+1) % colors, :]))]]) + Operator([[1, (Pauli(ws[colors*i + j % colors, :], ws[colors*i + j % colors, :]) *Pauli(ws[colors*i + (j+1) % colors, :], ws[colors*i + (j+1) % colors, :]))]]) for i, j in product(range(vertices), range(colors)) ] ) # Fix redundancies if colors == 2: mixer_operator.scaling_coeff(1/2) cobyla = COBYLA() cobyla.set_options(maxiter=250) p = 1 # steps of QAOA constrained = constrainedQAOA(cost_operator, cobyla, mixer_operator, p, init_state) from qiskit import IBMQ IBMQ.load_accounts() # Please input the 20 qubit architecture! backend = IBMQ.get_backend('ibmq_20_tokyo') quantum_instance = QuantumInstance(backend=backend_melbourne) result = constrained.run(quantum_instance) result['eigvals'] np.round(result['eigvecs'], 4) result['eval_count'] np.savetxt('3_triangle_3colors_p1_20q_qpu', result['eigvecs'][0])
https://github.com/apozas/qaoa-color
apozas
import qiskit qiskit.__version__ from functools import reduce from itertools import product from qiskit import BasicAer, QuantumRegister from qiskit_aqua import QuantumInstance from qiskit_aqua import Operator, run_algorithm from qiskit.quantum_info import Pauli from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua.components.initial_states import Custom from constrainedqaoa import constrainedQAOA import numpy as np import qutip as qt edges = [(0, 1), (1, 2), (2, 3)] vertices = 4 colors = 2 n_qubits = vertices * colors zr = np.zeros(n_qubits) ws = np.eye(n_qubits) up = qt.basis(2, 0) dn = qt.basis(2, 1) reduce( lambda x, y: x + y, [list(edge) for edge in edges]) def W(size, copies): initial_list = [dn] + [up] * (size - 1) cycles = [[initial_list[i - j] for i in range(size)] for j in range(size)] W_1copy = sum([qt.tensor(states) for states in cycles]) return qt.tensor([W_1copy] * copies) amplitudes = W(colors, vertices).full().T.tolist()[0] init_state = Custom(n_qubits, state_vector=amplitudes) W(colors, vertices) cost_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(ws[colors*v1 + j, :], zr) *Pauli(ws[colors*v2 + j, :], zr))]]) for (v1, v2), j in product(edges, range(colors)) ] ) mixer_operator = reduce( lambda x, y: x + y, [ Operator([[1, (Pauli(zr, ws[colors*i + j, :]) *Pauli(zr, ws[colors*i + (j+1) % colors, :]))]]) + Operator([[1, (Pauli(ws[colors*i + j % colors, :], ws[colors*i + j % colors, :]) *Pauli(ws[colors*i + (j+1) % colors, :], ws[colors*i + (j+1) % colors, :]))]]) for i, j in product(range(vertices), range(colors)) ] ) # Fix redundancies if colors == 2: mixer_operator.scaling_coeff(1/2) cobyla = COBYLA() cobyla.set_options(maxiter=250) p = 2 # steps of QAOA constrained = constrainedQAOA(cost_operator, cobyla, mixer_operator, p, init_state) from qiskit import BasicAer backend = BasicAer.get_backend('statevector_simulator') seed = 50 constrained.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed) result = constrained.run(quantum_instance) result['eigvals'] np.round(result['eigvecs'], 4) result['eval_count']
https://github.com/apozas/qaoa-color
apozas
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit import IBMQ from qiskit import BasicAer, execute from qiskit.providers.aer import QasmSimulator from qiskit.tools.visualization import plot_histogram import matplotlib.pyplot as plt import numpy as np import numpy.random as rand import networkx as nx from random_graph import random_graph from itertools import product #take a state vector and turn it into an array for vertices=2 colors=2 qubits=vertices*colors #Assume qubits (0,1) represent (red0,blue0) and (2,3) represent (red1,blue1) #lists of q and c registers qr=QuantumRegister(qubits) cr=ClassicalRegister(qubits) #for i in range(vertices): # #make a list of quantum registers for the qubits in each vertex with a qubit in each register for each color # vertex_q_registers.append(QuantumRegister(colors)) # vertext_c_registers.append(ClassicalRegister(colors)) circ=QuantumCircuit(qr,cr) #circ=QuantumCircuit(vertex_q_regs[i] for i in range(vertices),vertex_c_regs[i] for i in range(vertices)) #generage some sample state for i in range(qubits): circ.h(qr[i]) circ.measure(qr,cr) backend_sim=BasicAer.get_backend('qasm_simulator') result=execute(circ, backend_sim).result() counts=result.get_counts(circ) plot_histogram(counts) #for n qubits what construct the hamming weight 1 binary strings #data={'1001':30,'1101':11,'0101':15} data=counts bad_strings=[] good_data={} dumpster={'bad':0} for k,v in data.items(): for j in range(vertices): if k[j*colors:(j+1)*colors].count('1') != 1 and k not in bad_strings: bad_strings.append(k) for i in bad_strings: dumpster['bad'] += data[i] for k,v in data.items(): if k not in bad_strings: good_data[k]=v color_data={} if colors==2: for k,v in good_data.items(): color_code='' for j in range(vertices): if k[j*colors:(j+1)*colors]=='01': color_code+='0' else: color_code+='1' color_data[k]=color_code elif colors==3: for k,v in good_data.items(): color_code='' for j in range(vertices): if k[j*colors:(j+1)*colors]=='001': color_code+='0' elif k[j*colors:(j+1)*colors]=='010': color_code+='1' else: color_code+='2' color_data[k]=color_code elif colors==4: for k,v in good_data.items(): color_code='' for j in range(vertices): if k[j*colors:(j+1)*colors]=='0001': color_code+='0' elif k[j*colors:(j+1)*colors]=='0010': color_code+='1' elif k[j*colors:(j+1)*colors]=='0010': color_code+='2' else: color_code+='3' color_data[k]=color_code best_solution=max(good_data, key=good_data.get) best_color=color_data[best_solution] total_data={**good_data,**dumpster} plot_histogram(total_data) #graph=random_graph(vertices,edge_prob=1) #G = nx.from_numpy_matrix(graph) color_map=[] for node in G: if best_color[node]=='0': color_map.append('red') elif best_color[node]=='1': color_map.append('blue') elif best_color[node]=='2': color_map.append('green') elif best_color[node]=='3': color_map.append('yellow') nx.draw(G,node_color=color_map, with_labels=True) def generate_histogram(vertices,colors,counts): data=counts bad_strings=[] #bin_string_list = [''.join(p) for p in product('10', repeat=N)] #bin_string_list.sort(key=lambda s: s.count('1')) # ex. N=3bits ['000', '100', '010', '001', '110', '101', '011', '111'] good_data={} dumpster={'bad':0} for k,v in data.items(): for j in range(vertices): if k[j*colors:(j+1)*colors].count('1') != 1 and k not in bad_strings: bad_strings.append(k) for i in bad_strings: dumpster['bad'] += data[i] for k,v in data.items(): if k not in bad_strings: good_data[k]=v color_data={} if colors==2: for k,v in good_data.items(): color_code='' for j in range(vertices): if k[j*colors:(j+1)*colors]=='01': color_code+='0' else: color_code+='1' color_data[k]=color_code elif colors==3: for k,v in good_data.items(): color_code='' for j in range(vertices): if k[j*colors:(j+1)*colors]=='001': color_code+='0' elif k[j*colors:(j+1)*colors]=='010': color_code+='1' else: color_code+='2' color_data[k]=color_code elif colors==4: for k,v in good_data.items(): color_code='' for j in range(vertices): if k[j*colors:(j+1)*colors]=='0001': color_code+='0' elif k[j*colors:(j+1)*colors]=='0010': color_code+='1' elif k[j*colors:(j+1)*colors]=='0010': color_code+='2' else: color_code+='3' color_data[k]=color_code try: best_solution=max(good_data, key=good_data.get) best_color=color_data[best_solution] except ValueError: print('no solutions in dataset') total_data={**good_data,**dumpster} print(total_data) plot_histogram(total_data)
https://github.com/apozas/qaoa-color
apozas
from qiskit.tools.visualization import plot_histogram import matplotlib.pyplot as plt import numpy as np import numpy.random as rand import networkx as nx from random_graph import random_graph from itertools import product from ast import literal_eval import qutip as qt import os def get_probs(filename): with open(filename) as file: amplitudes = file.read() result = [[literal_eval(amplitude)] for amplitude in amplitudes[1:].split('\n ')] n_qubits = int(np.log2(len(result))) q_state = qt.Qobj(result, dims=[[2]*n_qubits, [1]*n_qubits]) prob_vector = np.abs(q_state.full())**2 n_qubits = len(q_state.dims[0]) strings = product('01', repeat=n_qubits) return {''.join(string): prob[0] for string, prob in zip(strings, prob_vector)} def draw_best_coloring_2colors(probs, edges): labels = list(probs.keys()) probabilities = list(probs.values()) best_prob = np.max(probabilities) best_coloring = labels[np.argmax(probabilities)].replace('0', 'r').replace('1', 'b') print('Probability of coloring: ' + str(np.round(best_prob, 4))) nx.draw(nx.Graph(edges), node_color=best_coloring, with_labels=False) def draw_best_coloring_4colors(probs, edges): labels = list(probs.keys()) probabilities = list(probs.values()) best_prob = np.max(probabilities) best_coloring = labels[np.argmax(probabilities)] best_colors = [best_coloring[2*i:2*(i+1)] for i in range(int(len(best_coloring) / 2))] color_dict = {'00': 'r', '01': 'g', '10': 'b', '11': 'k'} best_colors =[color_dict[color] for color in best_colors] print('Probability of coloring: ' + str(np.round(best_prob, 4))) nx.draw(nx.Graph(edges), node_color=best_colors, with_labels=False) to_graph_2colors = [file for file in os.listdir('results') if (file[-10:] == 'binary.txt') and (file.split('_')[2] == '2colors')] to_graph_4colors = [file for file in os.listdir('results') if (file[-10:] == 'binary.txt') and (file.split('_')[2] == '4colors')] structures_2colors = [file.split('_')[1] for file in to_graph_2colors] structures_4colors = [file.split('_')[1] for file in to_graph_4colors] graphs = {'triang': [(0, 1), (1, 2), (2, 0)], 'line': [(0, 1), (1, 2), (2, 3)], 'square1diag': [(0, 1), (1, 2), (2, 3), (3, 0), (0, 2)]} for graph, structure in zip(to_graph_2colors, structures_2colors): probs = get_probs('results/' + graph) print('---------------' + graph[:-11] + '---------------') draw_best_coloring_2colors(probs, graphs[structure]) plt.show() for graph, structure in zip(to_graph_4colors, structures_4colors): probs = get_probs('results/' + graph) print('---------------' + graph[:-11] + '---------------') draw_best_coloring_4colors(probs, graphs[structure]) plt.show()
https://github.com/apozas/qaoa-color
apozas
import time # Import the Qiskit modules(Qiskit Terra) from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, QISKitError from qiskit import QISKitError,execute, IBMQ, Aer import numpy as np # Set your API Token. # You can get it from https://quantumexperience.ng.bluemix.net/qx/account, # looking for "Personal Access Token" section. QX_TOKEN = "3e30646ac6c9ac8bae7e1ab0802d14f67ed3667a6aa12e2328a46043dd8102f83de09858a41b43bd0c35f8e44eb6eb46ed27046ea61363354599d8f3a79bfa02" QX_URL = "https://quantumexperience.ng.bluemix.net/api" # Authenticate with the IBM Q API in order to use online devices. # You need the API Token and the QX URL. IBMQ.enable_account(QX_TOKEN, QX_URL) # import basic plot tools from qiskit.tools.visualization import plot_histogram "Choice of the backend" # using local qasm simulator backend = Aer.get_backend('qasm_simulator') # using IBMQ qasm simulator # backend = IBMQ.get_backend('ibmq_qasm_simulator') # using real device # backend = least_busy(IBMQ.backends(simulator=False)) # backend = IBMQ.get_backend('ibmq_16_melbourne') flag_qx2 = True if backend.name() == 'ibmqx4': flag_qx2 = False print("Your choice for the backend is: ", backend, "flag_qx2 is: ", flag_qx2) # Define a F_gate def F_gate(circ,q,i,j,n,k) : theta = np.arccos(np.sqrt(1/(n-k+1))) circ.ry(-theta,q[j]) circ.cz(q[i],q[j]) circ.ry(theta,q[j]) circ.barrier(q[i]) # Define the cxrv gate which uses reverse CNOT instead of CNOT def cxrv(circ,q,i,j) : circ.h(q[i]) circ.h(q[j]) circ.cx(q[j],q[i]) circ.h(q[i]) circ.h(q[j]) circ.barrier(q[i],q[j]) def wstategenrate(W_states) : # 3-qubit W state W_states.x(q[2]) #start is |100> F_gate(W_states,q,2,1,3,1) # Applying F12 F_gate(W_states,q,1,0,3,2) # Applying F23 # option ibmqx4 cxrv(W_states,q,1,2) cxrv(W_states,q,0,1) return W_states n = 3 q = QuantumRegister(n) c = ClassicalRegister(n) W_states = QuantumCircuit(q,c) wstate = wstategenrate(W_states) for i in range(3) : wstate.measure(q[i] , c[i]) shots = 8192 time_exp = time.strftime('%d/%m/%Y %H:%M:%S') print('start W state 3-qubit on', backend, "N=", shots,time_exp) result = execute(wstate, backend=backend, shots=shots) time_exp = time.strftime('%d/%m/%Y %H:%M:%S') print('end W state 3-qubit on', backend, "N=", shots,time_exp) plot_histogram(result.result().get_counts(W_states)) W_states.draw(output="mpl")
https://github.com/GBisi/QiskitFallFest2023
GBisi
https://github.com/GBisi/QiskitFallFest2023
GBisi
from qiskit import QuantumCircuit # Importiamo la libreria Qiskit e in particolare la classe QuantumCircuit qc = QuantumCircuit(3, 3) # Creiamo un QuantumCircuit chiamato qc avente 3 qubit e 3 bit classici qc.draw() # Visualizziamo graficamente il circuito from qiskit import QuantumCircuit qc = QuantumCircuit(3, 3) qc.measure([0, 1, 2], [0, 1, 2]) # Misuriamo i qubit qc.draw(output="mpl") from qiskit.providers.aer import AerSimulator # Importiamo il simulatore locale Aer di Qiskit sim = AerSimulator() # Creiamo un simulatore Aer chiamato sim job = sim.run(qc) # Eseguiamo il circuito qc nel simulatore result = job.result() # Memorizziamo i risultati dell'esecuzione in una variabile chiamata result result.get_counts() # Visualizziamo i risultati # ------------- # --- BUILD --- # ------------- from qiskit import QuantumCircuit # Importiamo la libreria Qiskit e in particolare la classe QuantumCircuit qc = QuantumCircuit(3, 3) # Creiamo un QuantumCircuit chiamato qc avente 3 qubit e 3 bit classici qc.measure([0, 1, 2], [0, 1, 2]) # Misuriamo i qubit # --------------- # --- EXECUTE --- # --------------- from qiskit.providers.aer import AerSimulator # Importiamo il simulatore locale Aer di Qiskit sim = AerSimulator() # Creiamo un simulatore Aer chiamato sim job = sim.run(qc) # Eseguiamo il circuito qc nel simulatore result = job.result() # Memorizziamo i risultati dell'esecuzione in una variabile chiamata result result.get_counts() # Visualizziamo i risultati from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Importiamo tutto il necessario service = QiskitRuntimeService(channel="ibm_quantum") # Colleghiamoci al nostro account IBM Quantum service.backends() # Visualizziamo i backend disponibili backend = Sampler("ibmq_qasm_simulator") job = backend.run(qc) # result = job.result() result.quasi_dists backend = Sampler("ibmq_qasm_simulator") job = backend.run(qc) # result = job.result() result from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.x(0) qc.h(0) qc.cx(0, 1) qc.draw()
https://github.com/GBisi/QiskitFallFest2023
GBisi
import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from qiskit import(QuantumCircuit, QuantumRegister, ClassicalRegister, transpile) from qiskit.visualization import plot_histogram, plot_gate_map from qiskit.quantum_info import Statevector from qiskit.circuit.library import QFT from qiskit_aer import AerSimulator from qiskit_ibm_provider import IBMProvider plt.style.use('default') #IBMProvider.save_account('YOUR_TOKEN',overwrite=True) provider = IBMProvider(instance="ibm-q/open/main") print(provider.backends(min_num_qubits=5, simulator=False, operational=True)) print(provider.backends(min_num_qubits=5, simulator=True, operational=True)) backend = provider.get_backend("ibm_lagos") backend.status() props = backend.properties() def describe_qubit(qubit, properties): """Print a string describing some of reported properties of the given qubit.""" # Conversion factors from standard SI units us = 1e6 ns = 1e9 GHz = 1e-9 print("Qubit {0} has a \n" " - T1 time of {1} microseconds\n" " - T2 time of {2} microseconds\n" " - U2 gate error of {3}\n" " - U2 gate duration of {4} nanoseconds\n" " - resonant frequency of {5} GHz".format( qubit, properties.t1(qubit) * us, properties.t2(qubit) * us, properties.gate_error('x', qubit), properties.gate_length('x', qubit) * ns, properties.frequency(qubit) * GHz)) describe_qubit(0, props) plot_gate_map(backend) simulator = AerSimulator() backendSimulator = AerSimulator.from_backend(backend) qr = QuantumRegister(2, 'q') cr = ClassicalRegister(2, 'c') circuit = QuantumCircuit(qr, cr,name="bell state") circuit.h(0) circuit.cx(0,1) circuit.draw('mpl') vector=Statevector(circuit) display(vector.draw('latex')) circuit = QuantumCircuit(qr, cr,name="bell state") circuit.h(0) circuit.cx(0,1) circuit.measure([0,1],[0,1]) circuit.draw('mpl') counts=simulator.run(circuit,shots=1000).result().get_counts() display(counts) plot_histogram(counts) circuit = QuantumCircuit(qr, cr,name="bell state") circuit.h(0) circuit.cx(0,1) circuit.measure([0,1],[0,1]) circuit.draw('mpl') layout=[0,1] circuitTranspiled=transpile(circuit,backendSimulator,initial_layout=layout,optimization_level=1) circuitTranspiled.draw('mpl') counts=backendSimulator.run(circuitTranspiled,shots=1000).result().get_counts() display(counts) plot_histogram(counts) layout=[0,6] circuitTranspiled=transpile(circuit,backendSimulator,initial_layout=layout,optimization_level=1) circuitTranspiled.draw('mpl') counts=backendSimulator.run(circuitTranspiled,shots=1000).result().get_counts() display(counts) plot_histogram(counts) from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibmq_qasm_simulator") #backend = provider.get_backend("ibmq_qasm_simulator") from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0, measure=True).decompose(reps=1) circuit.draw("mpl") from qiskit_ibm_runtime import Sampler sampler = Sampler(backend=backend) #from qiskit.primitives import Sampler #sampler = Sampler() job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Quasi-probability distribution: {result.quasi_dists[0]}") print(f" > Metadata: {result.metadata[0]}") from qiskit_ibm_runtime import Options options = Options() options.optimization_level = 1 options.execution.shots = 2048 sampler = Sampler(backend=backend, options=options) job=sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> Metadata: {result.metadata[0]}") from qiskit_aer.noise import NoiseModel device = provider.get_backend("ibm_lagos") noise_model = NoiseModel.from_backend(device) coupling_map = device.configuration().coupling_map basis_gates=device.configuration().basis_gates options_with_nm = Options() options_with_nm.simulator = { "noise_model": noise_model, "basis_gates": basis_gates, "coupling_map": coupling_map, "seed_simulator": 42 } # Set number of shots, optimization_level and resilience_level options_with_nm.execution.shots = 1000 options_with_nm.optimization_level = 0 # no optimization options_with_nm.resilience_level = 1 # M3 for Sampler and T-REx for Estimator sampler = Sampler(backend=backend, options=options_with_nm) job = sampler.run(circuit) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result=job.result() print(f" > Quasi-probability distribution: {result.quasi_dists[0]}") plot_histogram(result.quasi_dists[0]) circuitList=[] for t in np.linspace(0,10000,101): circuit = QuantumCircuit(1, 1) circuit.x(0) #circuit.h(0) circuit.barrier() for i in range(int(t)): circuit.id(0) circuit.barrier() #circuit.h(0) circuit.measure(0,0) circuitList.append(circuit) circuitListTranspiled=transpile(circuitList,backendSimulator,initial_layout=[0],optimization_level=0) countsList=backendSimulator.run(circuitListTranspiled,shots=1000).result().get_counts() probabiltyVec=[] for counts in countsList: probabiltyVec.append(counts.get('1')/1000) timeVec=np.linspace(0,10000,101)* props.gate_length('id', 0) *10**6 plt.plot(timeVec,probabiltyVec) plt.xlabel('Time [$\mu$s]') plt.ylabel('$p_1$') plt.show() def func(x, amp, tau,c): return amp* np.exp(-x/tau)+c popt, pcov = curve_fit(func, timeVec, probabiltyVec) # scipy's curve fitting tool print(popt) plt.plot(timeVec,probabiltyVec) plt.plot(timeVec, func(timeVec, *popt), label="Fitted Curve") plt.xlabel('Time [$\mu$s]') plt.ylabel('$p_1$') plt.legend() plt.show() transpile(QFT(4,do_swaps=True,inverse=False,insert_barriers=True),simulator).draw('mpl') backend = provider.get_backend("ibm_brisbane") plot_gate_map(backend,figsize=(16,10)) backendSimulator = AerSimulator.from_backend(backend) circuitQFT=QFT(5,do_swaps=True,inverse=False) circuitQFT.draw('mpl') nQubit=8 qr = QuantumRegister(nQubit, 'q') circuit = QuantumCircuit(qr,name=" QFT calculation") #circuit.x(4) for i in range(nQubit): circuit.h(i) circuit.barrier() circuit.append(QFT(nQubit,do_swaps=True,inverse=True),range(nQubit)) circuit.draw('mpl') vector=Statevector(circuit) display( vector.draw('latex') ) circuit.measure_all() circuit.draw('mpl') layout=[0,34,4,8,100,45,12,5] circuitTranspiled=transpile(circuit,backendSimulator,initial_layout=layout,optimization_level=1) #circuitTranspiled.draw('mpl') # NON ESEGUIRE!!!!! counts=backendSimulator.run(circuitTranspiled,shots=1000).result().get_counts() layout=[0,1,2,3,4,5,6,7] circuitTranspiled=transpile(circuit,backendSimulator,initial_layout=layout,optimization_level=1) #circuitTranspiled.draw('mpl') counts=backendSimulator.run(circuitTranspiled,shots=1000).result().get_counts() #display(counts) plot_histogram(counts,figsize=(26,6)) nQubit=8 qr = QuantumRegister(nQubit, 'q') circuit = QuantumCircuit(qr,name=" QFT calculation") circuit.x(3) circuit.append(QFT(nQubit,do_swaps=False,inverse=False),range(nQubit)) circuit.barrier() circuit.append(QFT(nQubit,do_swaps=False,inverse=True),range(nQubit)) circuit.barrier() circuit.append(QFT(nQubit,do_swaps=False,inverse=False),range(nQubit)) circuit.barrier() circuit.append(QFT(nQubit,do_swaps=False,inverse=True),range(nQubit)) circuit.measure_all() layout=[0,1,2,3,4,5,6,7] circuitTranspiled=transpile(circuit,backendSimulator,initial_layout=layout,optimization_level=1) counts=backendSimulator.run(circuitTranspiled,shots=1000).result().get_counts() plot_histogram(counts,figsize=(40,6)) from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") backend = service.backend("ibmq_qasm_simulator") from qiskit.circuit.random import random_circuit circuit = random_circuit(2, 2, seed=0).decompose(reps=1) display(circuit.draw("mpl")) from qiskit.quantum_info import SparsePauliOp observable = SparsePauliOp("XZ") print(f">>> Observable: {observable.paulis}") from qiskit_ibm_runtime import Estimator estimator = Estimator(backend=backend) job = estimator.run(circuit, observable) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() print(f">>> {result}") print(f" > Expectation value: {result.values[0]}") circuits = ( random_circuit(2, 2, seed=0).decompose(reps=1), random_circuit(2, 2, seed=1).decompose(reps=1), ) observables = ( SparsePauliOp("XZ"), SparsePauliOp("IY"), ) job = estimator.run(circuits, observables) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() [display(cir.draw("mpl")) for cir in circuits] print(f">>> Observables: {[obs.paulis for obs in observables]}") print(f">>> Expectation values: {result.values.tolist()}") from qiskit.circuit.library import RealAmplitudes circuit = RealAmplitudes(num_qubits=2, reps=2).decompose(reps=1) observable = SparsePauliOp("ZI") parameter_values = [0, 1, 2, 3, 4, 5] job = estimator.run(circuit, observable, parameter_values) print(f">>> Job ID: {job.job_id()}") print(f">>> Job Status: {job.status()}") result = job.result() display(circuit.draw("mpl")) print(f">>> Observable: {observable.paulis}") print(f">>> Parameter values: {parameter_values}") print(f">>> Expectation value: {result.values[0]}") # General imports import time import numpy as np # Pre-defined ansatz circuit and operator class for Hamiltonian from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp # The IBM Qiskit Runtime / Primitives #from qiskit_ibm_runtime import QiskitRuntimeService #from qiskit_ibm_runtime import Estimator, Session from qiskit.primitives import Estimator # SciPy minimizer routine from scipy.optimize import minimize # Plotting functions import matplotlib.pyplot as plt hamiltonian = SparsePauliOp.from_list( [("YZ", 0.3980), ("ZI", -0.3980), ("ZZ", -0.0113), ("XX", 0.1810)] ) ansatz = EfficientSU2(hamiltonian.num_qubits) ansatz.draw("mpl") transpile(ansatz,simulator).draw('mpl') num_params = ansatz.num_parameters num_params def cost_func(params, ansatz, hamiltonian, estimator): """Return estimate of energy from estimator Parameters: params (ndarray): Array of ansatz parameters ansatz (QuantumCircuit): Parameterized ansatz circuit hamiltonian (SparsePauliOp): Operator representation of Hamiltonian estimator (Estimator): Estimator primitive instance Returns: float: Energy estimate """ energy = estimator.run(ansatz, hamiltonian, parameter_values=params).result().values[0] return energy x0 = 2 * np.pi * np.random.random(num_params) estimator = Estimator(options={"shots": int(1e4)}) res = minimize(cost_func, x0, args=(ansatz, hamiltonian, estimator), method="cobyla") display(res) def build_callback(ansatz, hamiltonian, estimator, callback_dict): """Return callback function that uses Estimator instance, and stores intermediate values into a dictionary. Parameters: ansatz (QuantumCircuit): Parameterized ansatz circuit hamiltonian (SparsePauliOp): Operator representation of Hamiltonian estimator (Estimator): Estimator primitive instance callback_dict (dict): Mutable dict for storing values Returns: Callable: Callback function object """ def callback(current_vector): """Callback function storing previous solution vector, computing the intermediate cost value, and displaying number of completed iterations and average time per iteration. Values are stored in pre-defined 'callback_dict' dictionary. Parameters: current_vector (ndarray): Current vector of parameters returned by optimizer """ # Keep track of the number of iterations callback_dict["iters"] += 1 # Set the prev_vector to the latest one callback_dict["prev_vector"] = current_vector # Compute the value of the cost function at the current vector callback_dict["cost_history"].append( estimator.run(ansatz, hamiltonian, parameter_values=current_vector).result().values[0] ) # Grab the current time current_time = time.perf_counter() # Find the total time of the execute (after the 1st iteration) if callback_dict["iters"] > 1: callback_dict["_total_time"] += current_time - callback_dict["_prev_time"] # Set the previous time to the current time callback_dict["_prev_time"] = current_time # Compute the average time per iteration and round it time_str = ( round(callback_dict["_total_time"] / (callback_dict["iters"] - 1), 2) if callback_dict["_total_time"] else "-" ) # Print to screen on single line print( "Iters. done: {} [Avg. time per iter: {}]".format(callback_dict["iters"], time_str), end="\r", flush=True, ) return callback callback_dict = { "prev_vector": None, "iters": 0, "cost_history": [], "_total_time": 0, "_prev_time": None,} estimator = Estimator(options={"shots": int(1e4)}) callback = build_callback(ansatz, hamiltonian, estimator, callback_dict) res = minimize(cost_func,x0,args=(ansatz, hamiltonian, estimator),method="cobyla",callback=callback) all(callback_dict["prev_vector"] == res.x) callback_dict["iters"] == res.nfev fig, ax = plt.subplots() ax.plot(range(callback_dict["iters"]), callback_dict["cost_history"]) ax.set_xlabel("Iterations") ax.set_ylabel("Cost"); # General imports import time import numpy as np # The IBM Qiskit Runtime / Primitives from qiskit.primitives import Sampler # SciPy minimizer routine from scipy.optimize import minimize # Datasets from sklearn.datasets import make_moons # Plotting functions import matplotlib.pyplot as plt # Set random seeds np.random.seed(42) # number of samples N=500 # Let's use the Moons dataset X, Y = make_moons(n_samples=N, noise=0.1) c = ["#1f77b4" if y_ == 0 else "#ff7f0e" for y_ in Y] # colours for each class #plt.axis("off") plt.scatter(X[:, 0], X[:, 1], c=c) plt.show() display(X,Y) from qiskit.circuit import ParameterVector # data re-uploading classifier circuit L=5 x=ParameterVector('x',2) thetas = ParameterVector('θ',3*L) qr = QuantumRegister(1, name="q") cr = ClassicalRegister(1, name='c') ansatz = QuantumCircuit(qr, cr) for k in range(L): ansatz.u(x[0],x[1],0.0,qr) ansatz.u(thetas[3*k+0], thetas[3*k+1], thetas[3*k+2], qr) # su(2) rotation ansatz.measure(qr, cr) ansatz.draw('mpl') num_params = ansatz.num_parameters display(num_params) params0 = 2 * np.pi * np.random.random(3*L) circuit=ansatz.assign_parameters({x:X[0], thetas:params0}) circuit.draw('mpl') sampler=Sampler() def loss(params, ansatz, x , y , sampler): """Return the loss for a pattern Parameters: params (ndarray): Array of ansatz parameters ansatz (QuantumCircuit): Parameterized ansatz circuit x (numpyArray): Array of the pattern features y (integer): Class of the pattern 0 or 1 sampler (Estimator): Sampler primitive instance Returns: float: loss function (cost function) """ parameter_values=np.concatenate((x,params)) job = sampler.run(ansatz, parameter_values=parameter_values) loss = 1 - job.result().quasi_dists[0].get(y) return loss def cost_func( params, ansatz, trainingX , trainingY , sampler): N=len(trainingY) return sum(loss(params,ansatz,trainingX[k],trainingY[k],sampler) for k in range(N))/N def predict(params,x,ansatz,sampler): if loss(params,ansatz,x,0,sampler) < 0.5: return 0 else: return 1 cost_func(params0,ansatz,X,Y,sampler) Ypred = [predict(params0,x,ansatz,sampler) for x in X] c = ["#1f77b4" if y == 0 else "#ff7f0e" for y in Y] # colours for each class cpred = ["#1f77b4" if y == 0 else "#ff7f0e" for y in Ypred] # colours for each class plt.figure(figsize=(15,5)) plt.subplot(1,2,1) plt.axis("off") plt.title("true") plt.scatter(X[:, 0], X[:, 1], c=c) plt.subplot(1,2,2) plt.axis("off") plt.title("predicted") plt.scatter(X[:, 0], X[:, 1], c=cpred) plt.show() trainingX=X[0:100] trainingY=Y[0:100] res = minimize(cost_func, params0, args=(ansatz, trainingX , trainingY , sampler), method="cobyla") res.fun paramsOpt=res.x Ypred = [predict(paramsOpt,x,ansatz,sampler) for x in X[200:]] c = ["#1f77b4" if y == 0 else "#ff7f0e" for y in Y[200:]] # colours for each class cpred = ["#1f77b4" if y == 0 else "#ff7f0e" for y in Ypred] # colours for each class plt.figure(figsize=(15,5)) plt.subplot(1,2,1) plt.axis("off") plt.title("true") plt.scatter(X[200:, 0], X[200:, 1], c=c) plt.subplot(1,2,2) plt.axis("off") plt.title("predicted") plt.scatter(X[200:, 0], X[200:, 1], c=cpred) plt.show() from qutip import basis,Bloch, expect, sigmax,sigmay,sigmaz #import qutip as qt L=5 x=ParameterVector('x',2) thetas = ParameterVector('θ',3*L) qr = QuantumRegister(1, name="q") cr = ClassicalRegister(1, name='c') qc = QuantumCircuit(qr, cr) for k in range(L): qc.u(x[0],x[1],0.0,qr) qc.u(thetas[3*k+0], thetas[3*k+1], thetas[3*k+2], qr) # su(2) rotation def blochPoints(X,Y,params,ansatz): xp1=[] yp1=[] zp1=[] xp0=[] yp0=[] zp0=[] for i in range(len(X)): circuit=ansatz.assign_parameters({x:X[i], thetas:params}) state=Statevector(circuit) pnt=state[0]*basis(2,0)+state[1]*basis(2,1) if Y[i]==0: xp0.append(expect(sigmax(),pnt)) yp0.append(expect(sigmay(),pnt)) zp0.append(expect(sigmaz(),pnt)) else: xp1.append(expect(sigmax(),pnt)) yp1.append(expect(sigmay(),pnt)) zp1.append(expect(sigmaz(),pnt)) return [[xp0,yp0,zp0],[xp1,yp1,zp1]] b1=Bloch() b2=Bloch() b1.add_points(blochPoints(X[200:300],Y[200:300],params0,qc)[0]) b1.add_points(blochPoints(X[200:300],Y[200:300],params0,qc)[1]) b2.add_points(blochPoints(X[200:300],Y[200:300],paramsOpt,qc)[0]) b2.add_points(blochPoints(X[200:300],Y[200:300],paramsOpt,qc)[1]) b1.show() b2.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/simanraj1123/n-qubit-Grover-s-search-on-IBM-Qiskit
simanraj1123
# Importing libraries from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * import numpy as np import matplotlib.pyplot as plt from qiskit.converters import circuit_to_gate from qiskit.circuit.library.standard_gates import ZGate def oracle(n, targets): ''' Given the number of qubits "n" and a list of target states "targets", the function returns the quantum circuit for the oracle. ''' qbits = QuantumRegister(n,'q') circ = QuantumCircuit(qbits, name="Oracle") # Creating a sequential circuit for each target state. for target in targets: # Each string representing a target state is reversed so that the indexing matches with the indices of # the corresponding qubits. target = list(target) target.reverse() target = ''.join(target) # Flip zero bits for i in range(len(target)): if target[i]=='0': circ.x(i) # Apply a n-1 CZ CZ = ZGate().control(n-1) circ.append(CZ, qbits) # Flip back for i in range(len(target)): if target[i]=='0': circ.x(i) # Uncomment the following line if you the circuit to be converted to a gate. This step is not essential to the # function of the quantum circuit. # circ = circuit_to_gate(circ) return circ def diffusion(n): ''' Given the number of qubits "n", the function returns the circuit for the n-qubit diffusion operation. ''' qbits = QuantumRegister(n,'q') circ = QuantumCircuit(qbits, name="Diffusion") circ.h(qbits) # Call the oracle function with target state set to the n-qubit zero state. circ.append(oracle(n,['0'*n]), qbits) circ.h(qbits) return circ def grover(n, oracle, m,threshold=0): ''' The "grover" function returns the quantum circuit to implement Grover's search algorithm for an "n"-qubit system to search for "m" targets. The argument "oracle" is the quantum circuit for the Oracle for the target state/states. The argument "threshold" is the user-given threshold on the success probability. The default value of "threshold is zero." ''' qbits = QuantumRegister(n,'q') circ = QuantumCircuit(n, name="Grover") # Initial state: Prepare equal superposition circ.h(qbits) # Number of iterations required N = 2**n # Size of the database theta = np.arcsin(np.sqrt(m/N))%(2*np.pi) # The value of theta ''' The following loop searches for the optimum value of "p" and the corresponding number of iterations such that the success probability of the search is equal to or more than the threshold.''' p=0 # Initialized to zero while True: k = (2*p+1)*np.pi/(4*theta)-0.5 # The optimal k is close to this value. tk_down = theta*(1+2*np.floor(k)) # Final angle theta_k with k rounded down. tk_up = theta*(1+2*np.ceil(k)) # Final angle theta_k with k rounded up. # Condition to check if the success probability crosses the threshold. if max(np.sin(tk_down)**2, np.sin(tk_up)**2) >= threshold: # If tk_down satisfies the condition choose the floor of k. if np.sin(tk_down)**2 >= threshold: k = int(np.floor(k)) print(np.sin(tk_down)**2) # Print the value of success probability. # If tk_up satisfies the condition choose the ceil of k. else: k = int(np.ceil(k)) print(np.sin(tk_up)**2) # Print the value of success probability. print('p =',p) # Print the value of optimal p. break # Break the loop if the optimal p is found. p+=1 print('k =',k) # Print the value of optimal k. # Append the oracle followed by diffusion operation k number of times. for i in range(k): circ.append(oracle, qbits) circ.append(diffusion(n), qbits) return circ ''' Each n-qubit computational basis state is represented by its corresponding n-digit binary string. For example, the state |001101> is represented by the string '0001101'. ''' n= # Set the number of qubits. form = f'{{0:0{str(n)}b}}' # Format to convert decimal number to n-digit binary string. all_states = [form.format(i) for i in range(2**n)] # A list of all possible orthogonal states tars = [] # "tars" is a list of binary strings for all the target states. success_rate = # Set the threshold for success probability. orc = oracle(n, tars) # The circuit for Oracle given the target states in the list tars. # Construction of the circuit for Grover's search. circuit = grover(n, orc, len(tars), success_rate) # Applying projective measurement to each qubit at the end of the circuit. circuit.measure_all() # Running the "circuit" using the QASM simulator. sim = Aer.get_backend('qasm_simulator') # Calling the qasm_simulator. job = execute(circuit, sim, shots=1000000) # Executing the circuit with 1,000,000 shots. result = job.result() count = result.get_counts(circuit) # "count" is a dict of counts after the projective measurements. ''' If the count of a state is zero in the output, it is not included in the dict. The following loop includes the absent states in the dict and sets their counts to zero. ''' for x in all_states: if x not in count.keys(): count[x]=0 final_counts = count ''' Uncomment the following lines, if you want the collective counts of the target and non-target states.''' # collective_count = {'Others':0, 'Target':0} # for x in all_states: # if x in tars: # collective_count['Target'] += count[x] # else: # collective_count['Others'] += count[x] # final_counts = collective_count plot_histogram(final_counts) # Plot the probability histogram of the final_counts.
https://github.com/QForestCommunity/launchpad
QForestCommunity
import qiskit qiskit.__qiskit_version__ from qiskit import QuantumRegister, ClassicalRegister from qiskit import Aer, execute, QuantumCircuit from qiskit.circuit.library.standard_gates import RYGate from qiskit.tools.visualization import circuit_drawer from numpy import pi, e, sqrt, arccos, log2 from scipy.integrate import quad %matplotlib inline import matplotlib.pyplot as plt def distribution(x): """ Returns the value of a chosen probability distribution at the given value of x. Mess around with this function to see how the encoder works! The current distribution being used is N(0, 2). """ # Use these with normal distributions mu = 0 sigma = 2 return (((e ** (-0.5 * ((x - mu) / sigma) ** 2)) / (sigma * sqrt(2 * pi))) / 0.99993665) def integrate(dist, lower, upper): """ Perform integration using numpy's quad method. We can use parametrized distributions as well by using this syntax instead: quad(integrand, lower, upper, args=(tupleOfArgsForIntegrand)) """ return quad(dist, lower, upper)[0] def computeRegionProbability(dist, regBounds, numRegions, j): """ Given a distribution dist, a list of adjacent regions regBounds, the current level of discretization numRegions, a region number j, computes the probability that the value random variable following dist lies in region j given that it lies in the larger region made up of regions [(j // 2) * 2, ((j + 2) // 2) * 2] """ totalRegions = len(regBounds) - 1 k = 2 * j prob = integrate(dist, regBounds[(totalRegions // numRegions) * k], regBounds[(totalRegions // numRegions) * (k + 1)]) / integrate( dist, regBounds[(totalRegions // numRegions) * ((k // 2) * 2)], regBounds[(totalRegions // numRegions) * (((k + 2) // 2) * 2)]) return prob def encodeDist(dist, regBounds): numQubits = int(log2(len(regBounds) - 1)) a = QuantumRegister(2 * numQubits - 2) c = ClassicalRegister(numQubits) qc = QuantumCircuit(a, c) for i in range(numQubits): numRegions = int(2 ** (i + 1)) for j in range(numRegions // 2): prob = computeRegionProbability(dist, regBounds, numRegions, j) if not i: qc.ry(2 * arccos(sqrt(prob)), a[2 * numQubits - 3]) else: cGate = RYGate(2 * arccos(sqrt(prob))).control(i) def getFlipList(i, j, numQubits): """ Given the current level of desired level of discretization, the current level of discretization i and a region number j, returns the binary bit string associated with j in the form of a list of bits to be flipped. """ binString = str(bin(j))[2:] binString = ("0" * (numQubits - len(binString))) + binString bitFlips = [] for k in range(numQubits - i, numQubits): if binString[k] == '0': bitFlips.append(3 * numQubits - 3 - k - i) return bitFlips for k in listOfFlips: qc.x(a[k]) qubitsUsed = [a[k] for k in range(2 * numQubits - 2 - i, 2 * numQubits - 2)] qubitsUsed.append(a[2 * numQubits - 3 - i]) qc.append(cGate, qubitsUsed) for k in listOfFlips: qc.x(a[k]) return qc, a, c def encodeDist(dist, regBounds): """ Discretize the distribution dist into multiple regions with boundaries given by regBounds, and store the associated quantum superposition state in a new quantum register reg. Please make sure the number of regions is a power of 2, i.e. len(regBounds) = (2 ** n) + 1. Additionally, the number of regions is limited to a maximum of 2^(n // 2 + 1), where n is the number of qubits available in the backend being used - this is due to the requirement of (n - 2) ancilla qubits in order to perform (n - 1) control operations with minimal possible depth. Returns a new quantum circuit containing the instructions and registers needed to create the superposition state, along with the size of the quantum register. """ numQubits = int(log2(len(regBounds) - 1)) a = QuantumRegister(2 * numQubits - 2) c = ClassicalRegister(numQubits) qc = QuantumCircuit(a, c) for i in range(numQubits): numRegions = int(2 ** (i + 1)) for j in range(numRegions // 2): prob = computeRegionProbability(dist, regBounds, numRegions, j) if not i: qc.ry(2 * arccos(sqrt(prob)), a[2 * numQubits - 3]) else: cGate = RYGate(2 * arccos(sqrt(prob))).control(i) listOfFlips = getFlipList(i, j, numQubits) for k in listOfFlips: qc.x(a[k]) qubitsUsed = [a[k] for k in range(2 * numQubits - 2 - i, 2 * numQubits - 2)] qubitsUsed.append(a[2 * numQubits - 3 - i]) qc.append(cGate, qubitsUsed) for k in listOfFlips: qc.x(a[k]) return qc, a, c def pad(x, numQubits): """ Utility function that returns a left padded version of the bit string passed. """ string = str(x)[2:] string = ('0' * (numQubits - len(string))) + string return string regBounds = [i for i in range(-16, 17)] qc, a, c = encodeDist(distribution, regBounds) numQubits = (qc.num_qubits + 2) // 2 for i in range(numQubits - 2, 2 * numQubits - 2): qc.measure(a[i], c[i - (numQubits - 2)]) backend = Aer.get_backend('qasm_simulator') shots = 100000 job = execute(qc, backend=backend, shots=shots) results = job.result().get_counts() resultsX = [] resultsY = [] for i in [pad(bin(x), numQubits) for x in range(2 ** (numQubits))]: resultsX.append(i) if i in results.keys(): resultsY.append(results[i]) else: resultsY.append(0) truthDisc = [integrate(distribution, regBounds[i], regBounds[i + 1]) * shots for i in range( len(regBounds) - 1)] plt.figure(figsize=[16, 9]) plt.plot(resultsX, resultsY) plt.plot(resultsX, truthDisc, '--') plt.legend(['quantum estimate', 'classical estimate']) plt.show() circuit_drawer(qc, output='mpl')
https://github.com/QForestCommunity/launchpad
QForestCommunity
from pyqubo import Spin, solve_ising x1, x2, x3 = Spin("x1"), Spin("x2"), Spin("x3") Quad_form = 2*(x1) + x2 - 3*(x3) model = Quad_form.compile() deg1, deg2, off = model.to_ising() print('Degree1:',deg1,' Degree2:',deg2,' Offset:',off) res = solve_ising(deg1,deg2) print(res) shots = 10 #variable used to specify number of times you want to solve the model ans = [] for i in range(shots): res = solve_ising(deg1, deg2) ans.append(res) result = ans[0] maxim = 0 for i in ans: freq = ans.count(i) if freq>maxim: maxim = freq result = i print(str(result))
https://github.com/QForestCommunity/launchpad
QForestCommunity
import qiskit qiskit.__qiskit_version__ from qiskit import QuantumCircuit, BasicAer, execute from qiskit.visualization import plot_histogram qcSwap = QuantumCircuit(2, 2) #create a quantum circuit with 2 quantum bits and 2 classical bits. qcSwap.x(0) #apply a pauli X gate to the first qubit to better demonstrate the swap. qcSwap.swap(0, 1) #apply a swap gate on the first and second qubits. qcSwap.measure([0, 1], [0, 1]) #measure the qubits to see what their states end up being qcSwap.draw(output = "mpl") #draw the circuit. backend = BasicAer.get_backend("statevector_simulator") state = execute(qcSwap, backend, shots=1024).result().get_counts() #the initial state should've been '01' before the swap, #go ahead and comment the swap gate out and run the code! #the state is '01' before the swap because of qiskit's little endian encoding. print(state) n = 4 #number of data qubits. ancilla = n #number of ancillary qubits is the same as number of qubits in this example. #number of classical registers is equal to the number of data qubits, since we want the values of only those. qcShift = QuantumCircuit(n + ancilla, n) seed = "1011" #this is the initial value of our data qubits. seed = list(map(int, list(seed)))[::-1] #reverse the list to follow qiskit's encoding scheme. #to encode the seed, when we encounter a 1, we apply a pauli x gate. for bit in range(len(seed)): if seed[bit] == 1: qcShift.x(bit) qcShift.barrier(range(n + ancilla)) #add a barrier to mark the end of the encoding phase. #to apply the swap gates for qubit in range(1, n + ancilla)[::-1]: qcShift.swap(qubit, qubit - 1) qcShift.barrier(range(n + ancilla)) #add a barrier to mark the end of the swapping phase. #measure the values of the data qubits. qcShift.measure(range(n), range(n)) qcShift.barrier(range(n + ancilla)) #add a barrier to mark the end of the measuring phase. qcShift.draw(output = "mpl") def create_shift_gate(n:int, circular:bool = False): """Creates a gate out of a shift circuit. Args: n : number of data qubits. seed : initial state of the data qubits. circular : flag indicating whether the shift register is circular in nature or not. """ if circular: name = "Circular Left Shift" else: name = "Left Shift" ancilla = n #n data qubits and the same number of ancillary qubits and one extra qubit to act as the control #bit for deciding if the operation should be a left shift or a circular left shift. shiftGate = QuantumCircuit(n + ancilla + 1, name=name) for qubit in range(1, n + ancilla)[::-1]: shiftGate.swap(qubit, qubit - 1) #implement the controlled swap. shiftGate.cx(0, n) shiftGate.toffoli(n + ancilla, n, 0) shiftGate.cx(0, n) return shiftGate.to_gate() n = 4 seed = '1011' ancilla = n #n data qubits and the same number of ancillary qubits and one extra qubit to act as the control #bit for deciding if the operation should be a left shift or a circular left shift. shiftCirc = QuantumCircuit(n + ancilla + 1, n) seed = list(map(int, list(seed)))[::-1] circular = True #encode the circuit for bit in range(len(seed)): if seed[bit] == 1: shiftCirc.x(bit) if circular: shiftCirc.x(n + ancilla) #encode the control qubit. shiftCirc.barrier(range(n + ancilla + 1)) shiftGate = create_shift_gate(n, circular) #perform 2 shift operations. shiftCirc.append(shiftGate, range(n + ancilla + 1)) shiftCirc.append(shiftGate, range(n + ancilla + 1)) shiftCirc.barrier(range(n + ancilla + 1)) #get the state of the data qubits. shiftCirc.measure(range(n), range(n)) shiftCirc.barrier(range(n + ancilla)) #draw the circuit. shiftCirc.draw(output="mpl") #get the state of the shift register backend = BasicAer.get_backend("statevector_simulator") register_state = execute(shiftCirc, backend, shots=1024).result().get_counts() plot_histogram(register_state) #as it can be seen, the state of the register is '1110' which is what #you would get by performing two left shift operations circularly. #to see what the shift gate is acutally made up of. seeShiftGate = QuantumCircuit(n + ancilla + 1) seeShiftGate.append(shiftGate, range(n + ancilla + 1)) seeShiftGate.decompose().draw(output = "mpl") #q8 is the control qubit. q0-q3 are the data qubits and q4-q7 are the ancillary qubits.
https://github.com/QForestCommunity/launchpad
QForestCommunity
import qiskit qiskit.__qiskit_version__ from qiskit import QuantumRegister, ClassicalRegister from qiskit import Aer, execute, QuantumCircuit from qiskit.circuit.library.standard_gates import RYGate from numpy import pi, e, sqrt, arccos, log2 from scipy.integrate import quad %matplotlib inline import matplotlib.pyplot as plt def distribution(x): """ Returns the value of a chosen probability distribution at the given value of x. Mess around with this function to see how the encoder works! The current distribution being used is N(0, 2). """ # Use these with normal distributions mu = 0 sigma = 2 return (((e ** (-0.5 * ((x - mu) / sigma) ** 2)) / (sigma * sqrt(2 * pi))) / 0.99993665) def integrate(dist, lower, upper): """ Perform integration using numpy's quad method. We can use parametrized distributions as well by using this syntax instead: quad(integrand, lower, upper, args=(tupleOfArgsForIntegrand)) """ return quad(dist, lower, upper)[0] def computeRegionProbability(dist, regBounds, numRegions, j): """ Given a distribution dist, a list of adjacent regions regBounds, the current level of discretization numRegions, a region number j, computes the probability that the value random variable following dist lies in region j given that it lies in the larger region made up of regions [(j // 2) * 2, ((j + 2) // 2) * 2] """ totalRegions = len(regBounds) - 1 k = 2 * j prob = integrate(dist, regBounds[(totalRegions // numRegions) * k], regBounds[(totalRegions // numRegions) * (k + 1)]) / integrate( dist, regBounds[(totalRegions // numRegions) * ((k // 2) * 2)], regBounds[(totalRegions // numRegions) * (((k + 2) // 2) * 2)]) return prob def encodeDist(dist, regBounds): numQubits = int(log2(len(regBounds) - 1)) a = QuantumRegister(2 * numQubits - 2) c = ClassicalRegister(numQubits) qc = QuantumCircuit(a, c) for i in range(numQubits): numRegions = int(2 ** (i + 1)) for j in range(numRegions // 2): prob = computeRegionProbability(dist, regBounds, numRegions, j) if not i: qc.ry(2 * arccos(sqrt(prob)), a[2 * numQubits - 3]) else: cGate = RYGate(2 * arccos(sqrt(prob))).control(i) def getFlipList(i, j, numQubits): """ Given the current level of desired level of discretization, the current level of discretization i and a region number j, returns the binary bit string associated with j in the form of a list of bits to be flipped. """ binString = str(bin(j))[2:] binString = ("0" * (numQubits - len(binString))) + binString bitFlips = [] for k in range(numQubits - i, numQubits): if binString[k] == '0': bitFlips.append(3 * numQubits - 3 - k - i) return bitFlips for k in listOfFlips: qc.x(a[k]) qubitsUsed = [a[k] for k in range(2 * numQubits - 2 - i, 2 * numQubits - 2)] qubitsUsed.append(a[2 * numQubits - 3 - i]) qc.append(cGate, qubitsUsed) for k in listOfFlips: qc.x(a[k]) return qc, a, c def encodeDist(dist, regBounds): """ Discretize the distribution dist into multiple regions with boundaries given by regBounds, and store the associated quantum superposition state in a new quantum register reg. Please make sure the number of regions is a power of 2, i.e. len(regBounds) = (2 ** n) + 1. Additionally, the number of regions is limited to a maximum of 2^(n // 2 + 1), where n is the number of qubits available in the backend being used - this is due to the requirement of (n - 2) ancilla qubits in order to perform (n - 1) control operations with minimal possible depth. Returns a new quantum circuit containing the instructions and registers needed to create the superposition state, along with the size of the quantum register. """ numQubits = int(log2(len(regBounds) - 1)) a = QuantumRegister(2 * numQubits - 2) c = ClassicalRegister(numQubits) qc = QuantumCircuit(a, c) for i in range(numQubits): numRegions = int(2 ** (i + 1)) for j in range(numRegions // 2): prob = computeRegionProbability(dist, regBounds, numRegions, j) if not i: qc.ry(2 * arccos(sqrt(prob)), a[2 * numQubits - 3]) else: cGate = RYGate(2 * arccos(sqrt(prob))).control(i) listOfFlips = getFlipList(i, j, numQubits) for k in listOfFlips: qc.x(a[k]) qubitsUsed = [a[k] for k in range(2 * numQubits - 2 - i, 2 * numQubits - 2)] qubitsUsed.append(a[2 * numQubits - 3 - i]) qc.append(cGate, qubitsUsed) for k in listOfFlips: qc.x(a[k]) return qc, a, c def pad(x, numQubits): """ Utility function that returns a left padded version of the bit string passed. """ string = str(x)[2:] string = ('0' * (numQubits - len(string))) + string return string regBounds = [i for i in range(-16, 17)] qc, a, c = encodeDist(distribution, regBounds) numQubits = (qc.num_qubits + 2) // 2 for i in range(numQubits - 2, 2 * numQubits - 2): qc.measure(a[i], c[i - (numQubits - 2)]) backend = Aer.get_backend('qasm_simulator') shots = 100000 job = execute(qc, backend=backend, shots=shots) results = job.result().get_counts() resultsX = [] resultsY = [] for i in [pad(bin(x), numQubits) for x in range(2 ** (numQubits))]: resultsX.append(i) if i in results.keys(): resultsY.append(results[i]) else: resultsY.append(0) truthDisc = [integrate(distribution, regBounds[i], regBounds[i + 1]) * shots for i in range( len(regBounds) - 1)] plt.figure(figsize=[16, 9]) plt.plot(resultsX, resultsY) plt.plot(resultsX, truthDisc, '--') plt.legend(['quantum estimate', 'classical estimate']) plt.show() circuit_drawer(qc, output='latex')
https://github.com/QForestCommunity/launchpad
QForestCommunity
import qiskit qiskit.__qiskit_version__ from qiskit import QuantumCircuit, BasicAer, execute from qiskit.visualization import plot_histogram qcSwap = QuantumCircuit(2, 2) #create a quantum circuit with 2 quantum bits and 2 classical bits. qcSwap.x(0) #apply a pauli X gate to the first qubit to better demonstrate the swap. qcSwap.swap(0, 1) #apply a swap gate on the first and second qubits. qcSwap.measure([0, 1], [0, 1]) #measure the qubits to see what their states end up being qcSwap.draw(output = "mpl") #draw the circuit. backend = BasicAer.get_backend("statevector_simulator") state = execute(qcSwap, backend, shots=1024).result().get_counts() #the initial state should've been '01' before the swap, #go ahead and comment the swap gate out and run the code! #the state is '01' before the swap because of qiskit's little endian encoding. print(state) n = 4 #number of data qubits. ancilla = n #number of ancillary qubits is the same as number of qubits in this example. #number of classical registers is equal to the number of data qubits, since we want the values of only those. qcShift = QuantumCircuit(n + ancilla, n) seed = "1011" #this is the initial value of our data qubits. seed = list(map(int, list(seed)))[::-1] #reverse the list to follow qiskit's encoding scheme. #to encode the seed, when we encounter a 1, we apply a pauli x gate. for bit in range(len(seed)): if seed[bit] == 1: qcShift.x(bit) qcShift.barrier(range(n + ancilla)) #add a barrier to mark the end of the encoding phase. #to apply the swap gates for qubit in range(1, n + ancilla)[::-1]: qcShift.swap(qubit, qubit - 1) qcShift.barrier(range(n + ancilla)) #add a barrier to mark the end of the swapping phase. #measure the values of the data qubits. qcShift.measure(range(n), range(n)) qcShift.barrier(range(n + ancilla)) #add a barrier to mark the end of the measuring phase. qcShift.draw(output = "mpl") def create_shift_gate(n:int, circular:bool = False): """Creates a gate out of a shift circuit. Args: n : number of data qubits. seed : initial state of the data qubits. circular : flag indicating whether the shift register is circular in nature or not. """ if circular: name = "Circular Left Shift" else: name = "Left Shift" ancilla = n #n data qubits and the same number of ancillary qubits and one extra qubit to act as the control #bit for deciding if the operation should be a left shift or a circular left shift. shiftGate = QuantumCircuit(n + ancilla + 1, name=name) for qubit in range(1, n + ancilla)[::-1]: shiftGate.swap(qubit, qubit - 1) #implement the controlled swap. shiftGate.cx(0, n) shiftGate.toffoli(n + ancilla, n, 0) shiftGate.cx(0, n) return shiftGate.to_gate() n = 4 seed = '1011' ancilla = n #n data qubits and the same number of ancillary qubits and one extra qubit to act as the control #bit for deciding if the operation should be a left shift or a circular left shift. shiftCirc = QuantumCircuit(n + ancilla + 1, n) seed = list(map(int, list(seed)))[::-1] circular = True #encode the circuit for bit in range(len(seed)): if seed[bit] == 1: shiftCirc.x(bit) if circular: shiftCirc.x(n + ancilla) #encode the control qubit. shiftCirc.barrier(range(n + ancilla + 1)) shiftGate = create_shift_gate(n, circular) #perform 2 shift operations. shiftCirc.append(shiftGate, range(n + ancilla + 1)) shiftCirc.append(shiftGate, range(n + ancilla + 1)) shiftCirc.barrier(range(n + ancilla + 1)) #get the state of the data qubits. shiftCirc.measure(range(n), range(n)) shiftCirc.barrier(range(n + ancilla)) #draw the circuit. shiftCirc.draw(output="mpl") #get the state of the shift register backend = BasicAer.get_backend("statevector_simulator") register_state = execute(shiftCirc, backend, shots=1024).result().get_counts() plot_histogram(register_state) #as it can be seen, the state of the register is '1110' which is what #you would get by performing two left shift operations circularly. #to see what the shift gate is acutally made up of. seeShiftGate = QuantumCircuit(n + ancilla + 1) seeShiftGate.append(shiftGate, range(n + ancilla + 1)) seeShiftGate.decompose().draw(output = "mpl") #q8 is the control qubit. q0-q3 are the data qubits and q4-q7 are the ancillary qubits.
https://github.com/jenglick/scipy22-qiskit-runtime-tutorial
jenglick
# import functionality from qiskit for building and running circuits from qiskit import QuantumCircuit, BasicAer, transpile # here we'll create a GHZ state circuit = QuantumCircuit(3) circuit.h(0) circuit.cnot(0,1) circuit.cnot(1,2) circuit.measure_all() print(circuit.draw()) # select a quantum backend and run the circuit backend = BasicAer.get_backend('qasm_simulator') shots = 2**13 job = backend.run(transpile(circuit, backend), shots=shots) result = job.result() counts = result.get_counts() from qiskit.visualization import plot_histogram plot_histogram(counts) # defining the state |1> import numpy as np a = 0 b = 1 state = np.array([a,b]) norm = np.linalg.norm(state) normalized_state_ONE = state/norm print(normalized_state_ONE) # define the state |+> a = 0.70710678 # 1/sqrt(2) b = 0.70710678 state = np.array([a,b]) norm = np.linalg.norm(state) normalized_state_PLUS = state/norm print(normalized_state_PLUS) # define the Pauli X operator x = np.array([[0, 1], [1, 0]]) from qiskit.visualization import plot_state_city, plot_bloch_multivector x_eigenvals, x_eigenvecs = np.linalg.eigh(x) print('\nEigensystem of X:') print(x_eigenvals) print(x_eigenvecs) plot_bloch_multivector(x_eigenvecs[:,1]) circuit = QuantumCircuit(1) circuit.initialize(normalized_state_ONE) circuit.h(0) circuit.measure_all() print(circuit) job = backend.run(transpile(circuit, backend), shots=shots) result = job.result() counts = result.get_counts() print(counts) expval = (counts.get('0',0)-counts.get('1',0)) / shots print('expectation value: {}'.format(expval)) circuit = QuantumCircuit(1) circuit.initialize(normalized_state_PLUS) circuit.h(0) circuit.measure_all() print(circuit) job = backend.run(transpile(circuit, backend), shots=shots) result = job.result() counts = result.get_counts() print(counts) expval = (counts.get('0',0)-counts.get('1',0)) / shots print('expectation value: {}'.format(expval)) circuit = QuantumCircuit(1) circuit.initialize(normalized_state_ONE) circuit.sdg(0) circuit.h(0) circuit.measure_all() print(circuit) job = backend.run(transpile(circuit, backend), shots=shots) result = job.result() counts = result.get_counts() print(counts) expval = (counts.get('0',0)-counts.get('1',0)) / shots print('expectation value: {}'.format(expval)) circuit = QuantumCircuit(1) circuit.initialize(normalized_state_PLUS) circuit.sdg(0) circuit.h(0) circuit.measure_all() print(circuit) job = backend.run(transpile(circuit, backend), shots=shots) result = job.result() counts = result.get_counts() print(counts) expval = (counts.get('0',0)-counts.get('1',0)) / shots print('expectation value: {}'.format(expval)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/jenglick/scipy22-qiskit-runtime-tutorial
jenglick
# import functionality from qiskit for building and running circuits from qiskit import QuantumCircuit, BasicAer, transpile import numpy as np # define a quantum circuit with a single "X" gate circuit = QuantumCircuit(1) circuit.x(0) circuit.measure_all() circuit.draw() # select a quantum backend and run the circuit backend = BasicAer.get_backend('qasm_simulator') shots = 2**13 job = backend.run(circuit, shots=shots) result = job.result() # get the measurement counts from the circuit counts = result.get_counts() print(counts) print('probability to measure state 0: {}%'.format(counts.get('0', 0) / shots * 100)) print('probability to measure state 1: {}%'.format(counts.get('1', 0) / shots * 100)) # define a quantum circuit with a single Hadamard gate circuit = QuantumCircuit(1) circuit.h(0) circuit.measure_all() circuit.draw() job = backend.run(transpile(circuit, backend), shots=shots) result = job.result() counts = result.get_counts() print(counts) print('probability to measure state 0: {}%'.format(counts.get('0', 0) / shots * 100)) print('probability to measure state 1: {}%'.format(counts.get('1', 0) / shots * 100)) # define the state |1> a = 0 b = 1 state = np.array([a,b]) norm = np.linalg.norm(state) normalized_state_ONE = state/norm print(normalized_state_ONE) # then, initialize this state as a quantum circuit and measure in computational (Z) basis circuit = QuantumCircuit(1) circuit.initialize(normalized_state_ONE) circuit.measure_all() print(circuit) # run the circuit and then subtract the two probabilities p(0)-p(1) job = backend.run(transpile(circuit, backend), shots=shots) result = job.result() counts = result.get_counts() print(counts) expval = (counts.get('0',0)-counts.get('1',0)) / shots print('expectation value: {}'.format(expval)) # define the state |+> a = 0.70710678 # 1/sqrt(2) b = 0.70710678 state = np.array([a,b]) norm = np.linalg.norm(state) normalized_state_PLUS = state/norm print(normalized_state_PLUS) # initialize as a quantum circuit and measure circuit = QuantumCircuit(1) circuit.initialize(normalized_state_PLUS) circuit.measure_all() print(circuit) # run the circuit and then subtract the two probabilities p(0)-p(1) job = backend.run(transpile(circuit, backend), shots=shots) result = job.result() counts = result.get_counts() print(counts) expval = (counts.get('0',0)-counts.get('1',0)) / shots print('expectation value: {}'.format(expval)) # define the Pauli Z operator z = np.array([[1, 0], [0, -1]]) # what are the eigenvectors of this operator? from qiskit.visualization import plot_state_city, plot_bloch_multivector z_eigenvals, z_eigenvecs = np.linalg.eigh(z) print('Eigensystem of Z:') print(z_eigenvals) print(z_eigenvecs) plot_bloch_multivector(z_eigenvecs[:,0]) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/jenglick/scipy22-qiskit-runtime-tutorial
jenglick
# Authenticate with the server. from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService(channel="ibm_quantum") # Prepare the circuit. from qiskit import QuantumCircuit qc1 = QuantumCircuit(1, 1) qc1.x(0) qc1.measure_all() # Prepare the operators. from qiskit.quantum_info import SparsePauliOp x_op = SparsePauliOp.from_list([("X", 1)]) y_op = SparsePauliOp.from_list([("Y", 1)]) # Get the expectation values. from qiskit_ibm_runtime import Estimator with Estimator( circuits=[qc1], observables=[x_op, y_op], service=service, options={ "backend": "ibmq_qasm_simulator" } ) as estimator: target = 0.01 exp_val = estimator(circuits=[0], observables=[x_op]).values[0] print(f"Expectation value: {exp_val}") while abs(exp_val) > target: op = x_op if exp_val > 0 else y_op exp_val = estimator(circuits=[0], observables=[op]).values[0] print(f"Expectation value: {exp_val}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/jenglick/scipy22-qiskit-runtime-tutorial
jenglick
# Import the module needed to access Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService # Save account on disk. # QiskitRuntimeService.save_account(channel="ibm_quantum", token=<IBM Quantum API token>) # Load your IBM Quantum account or enable the account if it's not previously saved. service = QiskitRuntimeService(channel="ibm_quantum") # service = QiskitRuntimeService(channel="ibm_quantum", token=<IBM Quantum API token>) # Specify the backend name. options = {"backend_name": "ibmq_qasm_simulator"} job = service.run( program_id="hello-world", options=options, inputs={}, ) # Get the job result - this is blocking and control may not return immediately. result = job.result() print(result) from qiskit.circuit.library import RealAmplitudes pqc = RealAmplitudes(num_qubits=2, reps=2) pqc.measure_all() print(f"The circuit has {pqc.num_parameters} parameters") pqc.decompose().draw() # You can also check the backend configuration and properties. # Backend configuration contains (mostly) static information about the backend. # Backend properties contains dynamic information about the backend. backend = service.least_busy(simulator=False, min_num_qubits=5) print(f"Backend {backend.name} has {backend.configuration().num_qubits} qubits.") print(f"T1 value for qubit 0 is {backend.properties().t1(0)}s") # In this workshop we will be using the simulator. backend = "ibmq_qasm_simulator" from qiskit_ibm_runtime import Sampler # Use a context manager to open a session. with Sampler(circuits=pqc, service=service, options={"backend": backend}) as sampler: pass with Sampler(circuits=pqc, service=service, options={"backend": backend}) as sampler: result = sampler(circuits=[0], parameter_values=[[0, 1, 1, 2, 3, 5]]) print(result) from qiskit.circuit.library import EfficientSU2 pqc2 = EfficientSU2(num_qubits=2, reps=1) pqc2.measure_all() print(f"The circuit has {pqc2.num_parameters} parameters") pqc2.decompose().draw() from qiskit_ibm_runtime import Sampler theta1 = [0, 1, 1, 2, 3, 5] theta2 = [1, 2, 3, 4, 5, 6] theta3 = [0, 1, 2, 3, 4, 5, 6, 7] with Sampler(circuits=[pqc, pqc2], service=service, options={"backend": backend}) as sampler: result = sampler(circuits=[0], parameter_values=[theta1], shots=2000) print(f"Result from circuit 0 with parameter {theta1}: {result}\n") result = sampler(circuits=[0, 0], parameter_values=[theta1, theta2]) print(f"Result from circuit 0 with parameters {theta1, theta2}: {result}\n") result = sampler(circuits=[0, 1], parameter_values=[theta1, theta3]) print(f"Result from circuits 0, 1 with parameters {theta1, theta2}: {result}") from qiskit.circuit import Parameter, QuantumCircuit # Create a custom parameterized circuit. theta = Parameter('θ') qc = QuantumCircuit(1) qc.rx(theta, 0) qc.measure_all() qc.draw() from math import pi from qiskit_ibm_runtime import Sampler theta_val = 0.25*pi with Sampler(circuits=[qc], service=service, options={"backend": backend}) as sampler: result = sampler(circuits=[0], parameter_values=[[theta_val]], shots=100) while result.quasi_dists[0].get('1', 0) < 0.5: print(f"Result is {result.quasi_dists} when using theta {theta_val}") theta_val += (result.quasi_dists[0].get('1', 0.25)*pi) result = sampler(circuits=[0], parameter_values=[[theta_val]], shots=100) print(f"All done. Result is {result.quasi_dists} when using theta {theta_val}") import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/jenglick/scipy22-qiskit-runtime-tutorial
jenglick
from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ElectronicStructureDriverType, ElectronicStructureMoleculeDriver dist = 0.72 molecule = Molecule(geometry=[['H', [0., 0., 0.]], ['H', [0., 0., dist]]]) driver = ElectronicStructureMoleculeDriver(molecule, basis='sto3g', \ driver_type=ElectronicStructureDriverType.PYSCF) print(molecule) from qiskit_nature.problems.second_quantization import ElectronicStructureProblem es_problem = ElectronicStructureProblem(driver) second_q_ops = es_problem.second_q_ops() print(second_q_ops[0]) from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import ParityMapper qubit_converter = QubitConverter(ParityMapper(), two_qubit_reduction=True) hamiltonian = qubit_converter.convert(second_q_ops[0], num_particles=es_problem.num_particles) print(hamiltonian) from qiskit.algorithms import NumPyMinimumEigensolver from qiskit.algorithms import MinimumEigensolverResult # Generate the exact solution sol = MinimumEigensolverResult() sol.eigenvalue = NumPyMinimumEigensolver().compute_minimum_eigenvalue(hamiltonian).eigenvalue exact_solution = es_problem.interpret(sol).total_energies[0] print('exact_solution:\n{}'.format(exact_solution)) from qiskit.opflow import TaperedPauliSumOp import numpy as np ops = [] h = hamiltonian.primitive h.coeffs = np.real(hamiltonian.coeffs) ops.append(TaperedPauliSumOp(h, hamiltonian.z2_symmetries)) from qiskit_ibm_runtime import QiskitRuntimeService, Estimator service = QiskitRuntimeService() options = {"backend" : "ibmq_qasm_simulator"} from qiskit.algorithms.optimizers import NELDER_MEAD from qiskit.circuit.library import RealAmplitudes circuit = RealAmplitudes(num_qubits=hamiltonian.num_qubits, reps=2) circuit.decompose().draw() convergence = [] with Estimator( circuits=circuit, observables=ops, options=options, service=service ) as estimator: def evaluate_expectation(x): x = list(x) results = estimator(circuits=[0], observables=[0], parameter_values=[x]).values[0] return np.real(results) def callback(fx): expval = evaluate_expectation(fx) print('expval: {}'.format(expval)) convergence.append(expval) np.random.seed(1) initial_point = np.random.uniform(-np.pi, np.pi, len(circuit.parameters)) optimizer = NELDER_MEAD(40, callback=callback) result = optimizer.minimize(fun=evaluate_expectation, x0=initial_point) total_energy = [] for i in range(len(convergence)): sol = MinimumEigensolverResult() sol.eigenvalue = convergence[i] sol = es_problem.interpret(sol).total_energies[0] total_energy.append(sol) print(total_energy) import matplotlib.pyplot as plt plt.rcParams["font.size"] = 14 plt.figure(figsize=(12, 6)) plt.plot(total_energy, label="Estimator VQE") plt.axhline(y=exact_solution, color="tab:red", ls="--", label="Target") plt.legend(loc="best") plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy") plt.show() import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table %qiskit_copyright
https://github.com/jenglick/scipy22-qiskit-runtime-tutorial
jenglick
from qiskit.quantum_info import SparsePauliOp op = SparsePauliOp.from_list([("ZZII", 1)]) num_qubits = op.num_qubits ops = [op] print(op) target_energy = -1 from qiskit.circuit.library import EfficientSU2 circuit = EfficientSU2(num_qubits, reps=1, entanglement="linear", insert_barriers=True) circuit.decompose().draw() from qiskit_ibm_runtime import QiskitRuntimeService, Estimator from qiskit.algorithms.optimizers import SPSA import numpy as np service = QiskitRuntimeService() options = {"backend" : "ibmq_qasm_simulator"} # Callback: number of function evals, parameters, function value, stepsize, whether step was accepted history = {"nfevs": [], "points": [], "fvals": [], "updates": [], "accepted": []} with Estimator(circuits=circuit, observables=ops, options=options, service=service) as estimator: def evaluate_expectation(x): x = list(x) results = estimator(circuits=[0], observables=[0], parameter_values=[x]).values[0] return np.real(results) def callback(nfev, point, fval, update, accepted): print('expectation value: {}'.format(fval)) history["nfevs"].append(nfev) history["points"].append(point) history["fvals"].append(fval) history["updates"].append(update) history["accepted"].append(accepted) initial_point = np.random.random(circuit.num_parameters) optimizer = SPSA(20, callback=callback) result = optimizer.minimize(fun=evaluate_expectation, x0=initial_point) history["fvals"][-1] - target_energy print('optimal point:\n{}'.format(result.x)) import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table %qiskit_copyright
https://github.com/jenglick/scipy22-qiskit-runtime-tutorial
jenglick
import numpy as np w = np.array([[0., 1., 1., 1.], [1., 0., 1., 0.], [1., 1., 0., 1.], [1., 0., 1., 0.]]) from qiskit_optimization.applications import Maxcut max_cut = Maxcut(w) qp = max_cut.to_quadratic_program() print(qp.export_as_lp_string()) qubitOp, offset = qp.to_ising() num_qubits = qubitOp.num_qubits print("Offset:", offset) print("Ising Hamiltonian:") print(str(qubitOp)) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.algorithms import NumPyMinimumEigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result) from qiskit.opflow import PauliSumOp import numpy as np ops = [] h = qubitOp.primitive h.coeffs = np.real(qubitOp.coeffs) ops.append(PauliSumOp(h)) print(ops) from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() options = {"backend" : "ibmq_qasm_simulator"} from qiskit.circuit.library import TwoLocal circuit = TwoLocal(qubitOp.num_qubits, "ry", "cz", reps=5, entanglement="linear") circuit.decompose().draw(fold=300) from qiskit_ibm_runtime import Estimator from qiskit.algorithms.optimizers import SPSA history = {"nfevs": [], "points": [], "fvals": [], "updates": [], "accepted": []} with Estimator( circuits=circuit, observables=ops, options=options, service=service ) as estimator: def evaluate_expectation(x): x = list(x) results = estimator(circuits=[0], observables=[0], parameter_values=[x]).values[0] return np.real(results) def callback(nfev, point, fval, update, accepted): print('expectation value: {}'.format(fval)) history["nfevs"].append(nfev) history["points"].append(point) history["fvals"].append(fval) history["updates"].append(update) history["accepted"].append(accepted) np.random.seed(1) initial_point = np.random.uniform(-np.pi, np.pi, len(circuit.parameters)) optimizer = SPSA(50, callback=callback) result = optimizer.minimize(fun=evaluate_expectation, x0=initial_point) print('optimized circuit parameters:\n{}'.format(result.x)) from qiskit_ibm_runtime import Sampler circut = circuit.measure_all() with Sampler( circuits=circuit, options=options, service=service ) as sampler: sampler_result = sampler(circuits=[0], parameter_values=[result.x], shots=8000) print(result) bitstrings = sampler_result.quasi_dists[0] # get the dictionary of bitstring counts import matplotlib.pyplot as plt fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(history['fvals']) axs[1].bar(list(bitstrings.keys()), list(bitstrings.values())) axs[0].set_xlabel("Energy Evaluation Number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Objective Function Value") axs[1].set_ylabel("Probability") samples = [] for x, probability in bitstrings.items(): x = list(map(int, x)) # convert bitstring to list status = qp.is_feasible(x) fval = qp.objective.evaluate(x) samples.append((x, fval, probability, status)) sorted_samples = sorted( samples, key=lambda v: (1-v[3], qp.objective.sense.value * v[1]) # feasible: 0; infeasible: 1 ) print('\nsorted') for sample in sorted_samples: print(sample) best = sorted_samples[0] print('optimal value: {}'.format(best[0])) print('optimal function value: {}'.format(best[1])) print('probability of optimal value: {}'.format(best[2])) from qiskit_optimization import QuadraticProgram qp = QuadraticProgram() qp.binary_var("x") qp.binary_var("y") qp.binary_var("z") qp.minimize(linear=[1, -2, 3], quadratic={("x", "y"): 1, ("x", "z"): -1, ("y", "z"): 2}) print(qp.export_as_lp_string()) qubitOp, offset = qp.to_ising() num_qubits = qubitOp.num_qubits print("offset: {}".format(offset)) print("operator:\n{}".format(qubitOp)) from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.algorithms import NumPyMinimumEigensolver exact = MinimumEigenOptimizer(NumPyMinimumEigensolver()) result = exact.solve(qp) print(result) from qiskit.opflow import PauliSumOp import numpy as np ops = [] h = qubitOp.primitive h.coeffs = np.real(qubitOp.coeffs) ops.append(PauliSumOp(h)) print(ops) from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() options = {"backend" : "ibmq_qasm_simulator"} from qiskit.circuit.library import RealAmplitudes circuit = RealAmplitudes(num_qubits=num_qubits, reps=2) circuit.decompose().draw(fold=100) from qiskit_ibm_runtime import Estimator from qiskit.algorithms.optimizers import SPSA history = {"nfevs": [], "points": [], "fvals": [], "updates": [], "accepted": []} with Estimator( circuits=circuit, observables=ops, options=options, service=service ) as estimator: def evaluate_expectation(x): x = list(x) results = estimator(circuits=[0], observables=[0], parameter_values=[x]).values[0] return np.real(results) def callback(nfev, point, fval, update, accepted): print('expectation value: {}'.format(fval)) history["nfevs"].append(nfev) history["points"].append(point) history["fvals"].append(fval) history["updates"].append(update) history["accepted"].append(accepted) np.random.seed(1) initial_point = np.random.uniform(-np.pi, np.pi, len(circuit.parameters)) optimizer = SPSA(30, callback=callback) result = optimizer.minimize(fun=evaluate_expectation, x0=initial_point) print('optimized circuit parameters:\n{}'.format(result.x)) from qiskit_ibm_runtime import Sampler circut = circuit.measure_all() with Sampler( circuits=circuit, options=options, service=service ) as sampler: sampler_result = sampler(circuits=[0], parameter_values=[result.x], shots=8000) print(sampler_result) bitstrings = sampler_result.quasi_dists[0] # get the dictionary of bitstring counts import matplotlib.pyplot as plt fig, axs = plt.subplots(1, 2, figsize=(14, 5)) axs[0].plot(history['fvals']) axs[1].bar(list(bitstrings.keys()), list(bitstrings.values())) axs[0].set_xlabel("Energy Evaluation Number") axs[0].set_ylabel("Energy") axs[1].set_xlabel("Objective Function Value") axs[1].set_ylabel("Probability") samples = [] for x, probability in bitstrings.items(): x = list(map(int, x)) # convert bitstring to list status = qp.is_feasible(x) fval = qp.objective.evaluate(x) samples.append((x, fval, probability, status)) sorted_samples = sorted( samples, key=lambda v: (1-v[3], qp.objective.sense.value * v[1]) # feasible: 0; infeasible: 1 ) print('\nsorted') for sample in sorted_samples: print(sample) best = sorted_samples[0] print('optimal value: {}'.format(best[0])) print('optimal function value: {}'.format(best[1])) print('probability of optimal value: {}'.format(best[2])) import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() from qiskit.tools.jupyter import * %qiskit_version_table %qiskit_copyright
https://github.com/jayeshparashar/Bloch-sphere-
jayeshparashar
# in this step, we will generate a 2 dim random statevector using quantum_info random_statevector method from qiskit.quantum_info import random_statevector, Statevector rand_sv = random_statevector(2).data print(rand_sv) # print the vector components (complex amplitudes) associated with bais |0> and |1> from rand_sv #Lets plot the rand_sv using plot_bloch_multivector, before that import plot_bloch vector from qiskit.visualization from qiskit.visualization import plot_bloch_multivector plot_bloch_multivector(rand_sv) # once we will have the cartesian cordinates calculated we can use plot_bloch_vector from visualization as shown below from qiskit.visualization import plot_bloch_vector plot_bloch_vector([1,0,0]) # break down complex amplitudes α and β in real and imaginary parts to express same in polar form. import math import numpy as np print('The random statevector', rand_sv) alpha_real = rand_sv[0].real alpha_imag = rand_sv[0].imag alpha_theta = math.atan(alpha_imag/alpha_real) if alpha_real < 0 and alpha_imag > 0 : alpha_theta = math.atan(alpha_imag/alpha_real) + math.pi if alpha_real < 0 and alpha_imag < 0 : alpha_theta = math.atan(alpha_imag/alpha_real) + math.pi print ('alpha and alpha_theta ', np.around(alpha_real,8), np.around(alpha_imag,8), math.degrees(alpha_theta)) r_alpha = math.sqrt((alpha_real**2) + (alpha_imag**2)) beta_real = rand_sv[1].real beta_imag = rand_sv[1].imag beta_theta = math.atan(beta_imag/beta_real) if beta_real < 0 and beta_imag > 0 : beta_theta = math.atan(beta_imag/beta_real) + math.pi if beta_real < 0 and beta_imag < 0 : beta_theta = math.atan(beta_imag/beta_real) + math.pi print ('beta and beta_theta ', np.around(beta_real,8), np.around(beta_imag,8), math.degrees(beta_theta)) r_beta = math.sqrt((beta_real**2) + (beta_imag**2)) # use global phase to get a real only value for amplitude associated with state |0> on bloch sphere phi = beta_theta - alpha_theta print('r_alpha, r_beta, Phase differnce phi: ',phi) theta = 2 * np.arccos(r_alpha) print('Spherical Coordinates of Blochsphere are theta and phi : 1, ', theta, beta_theta - alpha_theta) x = math.sin(theta)*math.cos(phi) y = math.sin(theta)*math.sin(phi) z = math.cos(theta) print(x,y,z) plot_bloch_vector([x,y,z]) #plot_bloch_vector([1, theta, phi], coord_type='spherical') # also try it out with spherical coordinates #once agian we plot rand_sv state to check if that is same as what we have calculated above plot_bloch_multivector(rand_sv)
https://github.com/jayeshparashar/Bloch-sphere-
jayeshparashar
from qiskit import * import numpy as np import math from qiskit.visualization import plot_bloch_multivector, plot_state_qsphere, plot_histogram # Define a function which will return a gate equivalent to (control-Z)^n, this gate is used in a below circuit to change # the phase of control qubits by various powers of 2. def CU_Z(power) : circ = QuantumCircuit(2) circ.cz(0,1) Unitary = circ.to_gate() ret_unitary = Unitary.power(power) return ret_unitary # Define a function which will return a gate equivalent to (control-RZ(pi))^n, it is used in below circuit to change # the phase of control qubits by powers of 2, such that the control qubits carries the value of global phase introduced # by a single RZ(pi) in fourier (phase) basis. def CU_RZ(power) : circ = QuantumCircuit(2) circ.crz(np.pi, 0,1) Unitary = circ.to_gate() ret_unitary = Unitary.power(power) return ret_unitary # define a function that will convert the information from phase basis to computational basis def inv_qft(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) # you don't need this step if you apply control Ops on qubits in reversed order for j in range(n): for m in range(j): circuit.cp(-math.pi/float(2**(j-m)), m, j) circuit.h(j) # Run a circuit to calculate global phase introduced by a Rz(pi) gate nqubits = 3 qc = QuantumCircuit(nqubits + 1, nqubits) qc.h(range(nqubits)) # set control qubits to phase basis qc.x(nqubits) # comment this line to choose |0> eigen vector, it will not change the results qc.append(CU_RZ(1), [0, nqubits]) # Kickback a phase introduced by Rz(pi) times 2^0 to 0th control qubit qc.append(CU_RZ(2), [1, nqubits]) # Kickback the phase introduced by Rz(pi) times 2^1 to 1st control qubit qc.append(CU_RZ(4), [2, nqubits]) # Kickback the phase introduced by Rz(pi) times 2^2 to 2nd control qubit qc.draw() # print qubits on Bloch sphere to witness the global phase introduced by a Rz(pi) rotation bkend = Aer.get_backend('statevector_simulator') job = execute(qc, bkend) sv1 = job.result().get_statevector(qc) #print(sv1) plot_bloch_multivector(sv1) # apply inverse qft to read convert infomration coded in phase basis to computational basis inv_qft(qc, nqubits) qc.measure(range(nqubits), range(nqubits)) qc.draw() # Run circuit with qasm simulator or real quantum computer on cloud to obtain the value of global phase using IQFT # We only have to measure first three qubits from LSB as the state on MSB qubit will remain unchanged bkend = Aer.get_backend('qasm_simulator') job = execute(qc, bkend, shots=100) cnt1 = job.result().get_counts(qc) print(cnt1) max_val = max(cnt1, key=cnt1.get) max_val_dec = int(max_val, 2) print('Global Phase introduced by Rz(pi) gate is = ', (2*np.pi)/(2**nqubits) * max_val_dec, ' radians and ', (360/(2**nqubits) * max_val_dec), ' Degrees.') plot_histogram(cnt1) #### Lets run same routine with Z gate that rotate the state vector on bloch sphere by pi radians around Z axis # Run below circuit to calculate the global phase introduced by Z gate nqubits = 3 qc_z = QuantumCircuit(nqubits + 1, nqubits) qc_z.h(range(nqubits)) qc_z.x(nqubits) qc_z.append(CU_Z(1), [0, nqubits]) #Kickback the phase introduced by a Z gate times 2^0 to 0th control qubit qc_z.append(CU_Z(2), [1, nqubits]) #Kickback a phase introduced by a Z gate times 2^1 to 0th control qubit qc_z.append(CU_Z(4), [2, nqubits]) #Kickback a phase introduced by a Z gate times 2^2 to 0th control qubit qc_z.draw() # print qubits on Bloch Sphere to get the global phase introduced by a Z gate bkend = Aer.get_backend('statevector_simulator') job = execute(qc_z, bkend) sv2 = job.result().get_statevector(qc_z) #print(sv2) plot_bloch_multivector(sv2) # apply inverse qft to read convert information coded in phase basis to computational basis inv_qft(qc_z, nqubits) qc_z.measure(range(nqubits), range(nqubits)) qc_z.draw() # Run circuit with qasm simulator or real quantum computer on cloud to extract and print the value of global phase # using IQFT introduced by a Z gate, We only have to measure the first three qubits from LSB as the state on MSB qubit # will remain unchanged bkend = Aer.get_backend('qasm_simulator') job = execute(qc_z, bkend, shots=100) cnt2 = job.result().get_counts(qc_z) print(cnt2) max_val = max(cnt2, key=cnt2.get) max_val_dec = int(max_val, 2) print('Global Phase introduced by a Z gate is = ', (2*np.pi)/(2**nqubits) * max_val_dec, ' radians and ', (360/(2**nqubits) * max_val_dec), ' Degrees.') plot_histogram(cnt2) # end of program
https://github.com/jayeshparashar/Bloch-sphere-
jayeshparashar
#Let's start with importing packages from qiskit import QuantumRegister, ClassicalRegister,QuantumCircuit, Aer, assemble, execute from qiskit.visualization import plot_histogram, plot_bloch_vector, plot_bloch_multivector import numpy as np # import random_statevector to get a random two state quantum system from qiskit.quantum_info import random_statevector, Statevector # Use random_statevector method to get a valid random statevector representing a qubit in superposition of two states rand_sv = random_statevector(2).data print(rand_sv) plot_bloch_multivector(rand_sv) # Define a function to calculate and return the expectation values of X, Y and Z coordinates of a qubit vector situated # on a blochsphere, since qiskit measurement operation is set to measure in default 'Z' axis, in order to measure qubit # in 'X' and 'Y' direction/axis we have to rotate/adjust the final vector as it is measured in X and Y axis while performing # a default Z measurement. def Exp_Value(axis): shots=10000 qc = QuantumCircuit(1,1) qc.initialize(rand_sv,0) if (axis == 'Y') : qc.sdg(0) if (axis == 'X' or axis == 'Y') : qc.h(0) qc.measure(0,0) bkend = Aer.get_backend('qasm_simulator') cnts = execute(qc,bkend,shots=shots).result().get_counts() exp_val = (cnts['0'] * 1 + cnts['1']* -1 )/shots print('counts and exp. value for qubit system for', axis,' measurement ', cnts['0'], cnts['1'], exp_val) return exp_val # The expectation values of X, Y and Z on same initial state is an indicator of average energy which is calculated with # the help of eigenvalues (discrete energy states) obtained during the measurement in same repeated experiment. ev_X = Exp_Value('X') ev_Y = Exp_Value('Y') ev_Z = Exp_Value('Z') print(ev_X, ev_Y, ev_Z) # let's plot the vector on blochsphere with help of cartesian coordinates and see if we get same representation as # rand_sv plot_bloch_vector([ev_X, ev_Y, ev_Z]) # lets calculate the spherical coordinates theta and phi as radius is 1 # since x = sin(θ)cos(φ), y = sin(θ)sin(φ) and z = cos(θ) theta = np.arccos(ev_Z) phi = np.arcsin(ev_Y/np.sin(theta)) print('theta, phi ', theta, phi) plot_bloch_vector([1, theta, phi], coord_type='spherical') #lets calculate the vector associated with this value of theta and phi using standard qubit's representation # on blochsphere amp_zero = np.cos(theta/2) amp_one = np.cos(phi)*np.sin(theta/2) + (np.sin(phi)*np.sin(theta/2)) * complex(0, 1) q_sv = [amp_zero, amp_one] print(q_sv) plot_bloch_multivector(q_sv) # lets measure the state_fidelity to check if both the states (rand_sv and q_sv) are in-fact same from qiskit.quantum_info import state_fidelity print(rand_sv, q_sv) state_fidelity(rand_sv, q_sv) # End of program #
https://github.com/bringthehouse/qiskit-2019-purple-qubits-server
bringthehouse
#!/usr/bin/env python3 from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, Aer, execute def run_qasm(qasm, backend_to_run="qasm_simulator"): qc = QuantumCircuit.from_qasm_str(qasm) backend = Aer.get_backend(backend_to_run) job_sim = execute(qc, backend) sim_result = job_sim.result() return sim_result.get_counts(qc)
https://github.com/ashishpatel26/IBM-Quantum-Challenge-Africa-2021
ashishpatel26
from qiskit import * from qiskit.visualization import plot_histogram import numpy as np def NOT(inp): """An NOT gate. Parameters: inp (str): Input, encoded in qubit 0. Returns: QuantumCircuit: Output NOT circuit. str: Output value measured from qubit 0. """ qc = QuantumCircuit(1, 1) # A quantum circuit with a single qubit and a single classical bit qc.reset(0) # We encode '0' as the qubit state |0⟩, and '1' as |1⟩ # Since the qubit is initially |0⟩, we don't need to do anything for an input of '0' # For an input of '1', we do an x to rotate the |0⟩ to |1⟩ if inp=='1': qc.x(0) # barrier between input state and gate operation qc.barrier() # Now we've encoded the input, we can do a NOT on it using x qc.x(0) #barrier between gate operation and measurement qc.barrier() # Finally, we extract the |0⟩/|1⟩ output of the qubit and encode it in the bit c[0] qc.measure(0,0) qc.draw() # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp in ['0', '1']: qc, out = NOT(inp) print('NOT with input',inp,'gives output',out) display(qc.draw()) print('\n') def XOR(inp1,inp2): """An XOR gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 1. """ qc = QuantumCircuit(2, 1) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) # barrier between input state and gate operation qc.barrier() # this is where your program for quantum XOR gate goes qc.cx(0, 1) # barrier between input state and gate operation qc.barrier() qc.measure(1,0) # output from qubit 1 is measured #We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') #Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = XOR(inp1, inp2) print('XOR with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def AND(inp1,inp2): """An AND gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum AND gate goes qc.ccx(0,1,2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = AND(inp1, inp2) print('AND with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def NAND(inp1,inp2): """An NAND gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output NAND circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum NAND gate goes qc.ccx(0,1,2) if inp=='1': qc.x(2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('aer_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc,shots=1,memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = NAND(inp1, inp2) print('NAND with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def OR(inp1,inp2): """An OR gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum OR gate goes qc.cx(0, 2) qc.cx(1, 2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('aer_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc,shots=1,memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = OR(inp1, inp2) print('OR with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') from qiskit import IBMQ #IBMQ.save_account("a68a35747d4eccd1d58f275e637909987c789ce5c0edd8a4f43014672bf0301b54b28b1b5f44ba8ff87500777429e1e4ceb79621a6ba248d6cca6bca0e233d23", overwrite=True) IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider('ibm-q') provider.backends() import qiskit.tools.jupyter # run this cell backend = provider.get_backend('ibmq_quito') qc_and = QuantumCircuit(3) qc_and.ccx(0,1,2) print('AND gate') display(qc_and.draw()) print('\n\nTranspiled AND gate with all the required connectivity') qc_and.decompose().draw() from qiskit.tools.monitor import job_monitor # run the cell to define AND gate for real quantum system def AND(inp1, inp2, backend, layout): qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() qc.ccx(0, 1, 2) qc.barrier() qc.measure(2, 0) qc_trans = transpile(qc, backend, initial_layout=layout, optimization_level=3) job = backend.run(qc_trans, shots=8192) print(job.job_id()) job_monitor(job) output = job.result().get_counts() return qc_trans, output backend layout = [0, 1, 2] output_all = [] qc_trans_all = [] prob_all = [] worst = 1 best = 0 for input1 in ['0','1']: for input2 in ['0','1']: qc_trans, output = AND(input1, input2, backend, layout) output_all.append(output) qc_trans_all.append(qc_trans) prob = output[str(int( input1=='1' and input2=='1' ))]/8192 prob_all.append(prob) print('\nProbability of correct answer for inputs',input1,input2) print('{:.2f}'.format(prob) ) print('---------------------------------') worst = min(worst,prob) best = max(best, prob) print('') print('\nThe highest of these probabilities was {:.2f}'.format(best)) print('The lowest of these probabilities was {:.2f}'.format(worst)) print('Transpiled AND gate circuit for ibmq_vigo with input 0 0') print('\nThe circuit depth : {}'.format (qc_trans_all[0].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[0].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[0]) ) qc_trans_all[0].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 0 1') print('\nThe circuit depth : {}'.format (qc_trans_all[1].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[1].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[1]) ) qc_trans_all[1].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 1 0') print('\nThe circuit depth : {}'.format (qc_trans_all[2].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[2].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[2]) ) qc_trans_all[2].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 1 1') print('\nThe circuit depth : {}'.format (qc_trans_all[3].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[3].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[3]) ) qc_trans_all[3].draw()
https://github.com/ashishpatel26/IBM-Quantum-Challenge-Africa-2021
ashishpatel26
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, execute from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers.aer import QasmSimulator backend = Aer.get_backend('statevector_simulator') qc1 = QuantumCircuit(4) # perform gate operations on individual qubits qc1.x(0) qc1.y(1) qc1.z(2) qc1.s(3) # Draw circuit qc1.draw() # Plot blochshere out1 = execute(qc1,backend).result().get_statevector() plot_bloch_multivector(out1) qc2 = QuantumCircuit(4) # initialize qubits qc2.x(range(4)) # perform gate operations on individual qubits qc2.x(0) qc2.y(1) qc2.z(2) qc2.s(3) # Draw circuit qc2.draw() # Plot blochshere out2 = execute(qc2,backend).result().get_statevector() plot_bloch_multivector(out2) qc3 = QuantumCircuit(4) # initialize qubits qc3.h(range(4)) # perform gate operations on individual qubits qc3.x(0) qc3.y(1) qc3.z(2) qc3.s(3) # Draw circuit qc3.draw() # Plot blochshere out3 = execute(qc3,backend).result().get_statevector() plot_bloch_multivector(out3) qc4 = QuantumCircuit(4) # initialize qubits qc4.x(range(4)) qc4.h(range(4)) # perform gate operations on individual qubits qc4.x(0) qc4.y(1) qc4.z(2) qc4.s(3) # Draw circuit qc4.draw() # Plot blochshere out4 = execute(qc4,backend).result().get_statevector() plot_bloch_multivector(out4) qc5 = QuantumCircuit(4) # initialize qubits qc5.h(range(4)) qc5.s(range(4)) # perform gate operations on individual qubits qc5.x(0) qc5.y(1) qc5.z(2) qc5.s(3) # Draw circuit qc5.draw() # Plot blochshere out5 = execute(qc5,backend).result().get_statevector() plot_bloch_multivector(out5) qc6 = QuantumCircuit(4) # initialize qubits qc6.x(range(4)) qc6.h(range(4)) qc6.s(range(4)) # perform gate operations on individual qubits qc6.x(0) qc6.y(1) qc6.z(2) qc6.s(3) # Draw circuit qc6.draw() # Plot blochshere out6 = execute(qc6,backend).result().get_statevector() plot_bloch_multivector(out6) import qiskit qiskit.__qiskit_version__