repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/ashishpatel26/IBM-Quantum-Challenge-Africa-2021
ashishpatel26
from qiskit import * import numpy as np from numpy import linalg as la from qiskit.tools.monitor import job_monitor import qiskit.tools.jupyter qc = QuantumCircuit(1) #### your code goes here # z measurement of qubit 0 measure_z = QuantumCircuit(1,1) measure_z.measure(0,0) # x measurement of qubit 0 measure_x = QuantumCircuit(1,1) # your code goes here # y measurement of qubit 0 measure_y = QuantumCircuit(1,1) # your code goes here shots = 2**14 # number of samples used for statistics sim = Aer.get_backend('qasm_simulator') bloch_vector_measure = [] for measure_circuit in [measure_x, measure_y, measure_z]: # run the circuit with a the selected measurement and get the number of samples that output each bit value counts = execute(qc+measure_circuit, sim, shots=shots).result().get_counts() # calculate the probabilities for each bit value probs = {} for output in ['0','1']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 bloch_vector_measure.append( probs['0'] - probs['1'] ) # normalizing the bloch sphere vector bloch_vector = bloch_vector_measure/la.norm(bloch_vector_measure) print('The bloch sphere coordinates are [{0:4.3f}, {1:4.3f}, {2:4.3f}]' .format(*bloch_vector)) from kaleidoscope.interactive import bloch_sphere bloch_sphere(bloch_vector, vectors_annotation=True) from qiskit.visualization import plot_bloch_vector plot_bloch_vector( bloch_vector ) # circuit for the state Tri1 Tri1 = QuantumCircuit(2) # your code goes here # circuit for the state Tri2 Tri2 = QuantumCircuit(2) # your code goes here # circuit for the state Tri3 Tri3 = QuantumCircuit(2) # your code goes here # circuit for the state Sing Sing = QuantumCircuit(2) # your code goes here # <ZZ> measure_ZZ = QuantumCircuit(2) measure_ZZ.measure_all() # <XX> measure_XX = QuantumCircuit(2) # your code goes here # <YY> measure_YY = QuantumCircuit(2) # your code goes here shots = 2**14 # number of samples used for statistics A = 1.47e-6 #unit of A is eV E_sim = [] for state_init in [Tri1,Tri2,Tri3,Sing]: Energy_meas = [] for measure_circuit in [measure_XX, measure_YY, measure_ZZ]: # run the circuit with a the selected measurement and get the number of samples that output each bit value qc = state_init+measure_circuit counts = execute(qc, sim, shots=shots).result().get_counts() # calculate the probabilities for each computational basis probs = {} for output in ['00','01', '10', '11']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 Energy_meas.append( probs['00'] - probs['01'] - probs['10'] + probs['11'] ) E_sim.append(A * np.sum(np.array(Energy_meas))) # Run this cell to print out your results print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E_sim[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E_sim[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E_sim[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E_sim[3])) # reduced plank constant in (eV) and the speed of light(cgs units) hbar, c = 4.1357e-15, 3e10 # energy difference between the triplets and singlet E_del = abs(E_sim[0] - E_sim[3]) # frequency associated with the energy difference f = E_del/hbar # convert frequency to wavelength in (cm) wavelength = c/f print('The wavelength of the radiation from the transition\ in the hyperfine structure is : {:.1f} cm'.format(wavelength)) provider = IBMQ.load_account() backend = provider.get_backend('ibmq_athens') # run this cell to get the backend information through the widget backend # assign your choice for the initial layout to the list variable `initial_layout`. initial_layout = qc_all = [state_init+measure_circuit for state_init in [Tri1,Tri2,Tri3,Sing] for measure_circuit in [measure_XX, measure_YY, measure_ZZ] ] shots = 8192 job = execute(qc_all, backend, initial_layout=initial_layout, optimization_level=3, shots=shots) print(job.job_id()) job_monitor(job) # getting the results of your job results = job.result() ## To access the results of the completed job #results = backend.retrieve_job('job_id').result() def Energy(results, shots): """Compute the energy levels of the hydrogen ground state. Parameters: results (obj): results, results from executing the circuits for measuring a hamiltonian. shots (int): shots, number of shots used for the circuit execution. Returns: Energy (list): energy values of the four different hydrogen ground states """ E = [] A = 1.47e-6 for ind_state in range(4): Energy_meas = [] for ind_comp in range(3): counts = results.get_counts(ind_state*3+ind_comp) # calculate the probabilities for each computational basis probs = {} for output in ['00','01', '10', '11']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 Energy_meas.append( probs['00'] - probs['01'] - probs['10'] + probs['11'] ) E.append(A * np.sum(np.array(Energy_meas))) return E E = Energy(results, shots) print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E[3])) from qiskit.ignis.mitigation.measurement import * # your code to create the circuits, meas_calibs, goes here meas_calibs, state_labels = # execute meas_calibs on your choice of the backend job = execute(meas_calibs, backend, shots = shots) print(job.job_id()) job_monitor(job) cal_results = job.result() ## To access the results of the completed job #cal_results = backend.retrieve_job('job_id').result() # your code to obtain the measurement filter object, 'meas_filter', goes here results_new = meas_filter.apply(results) E_new = Energy(results_new, shots) print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E_new[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E_new[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E_new[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E_new[3])) # results for the energy estimation from the simulation, # execution on a quantum system without error mitigation and # with error mitigation in numpy array format Energy_exact, Energy_exp_orig, Energy_exp_new = np.array(E_sim), np.array(E), np.array(E_new) # Calculate the relative errors of the energy values without error mitigation # and assign to the numpy array variable `Err_rel_orig` of size 4 Err_rel_orig = # Calculate the relative errors of the energy values with error mitigation # and assign to the numpy array variable `Err_rel_new` of size 4 Err_rel_new = np.set_printoptions(precision=3) print('The relative errors of the energy values for four bell basis\ without measurement error mitigation : {}'.format(Err_rel_orig)) np.set_printoptions(precision=3) print('The relative errors of the energy values for four bell basis\ with measurement error mitigation : {}'.format(Err_rel_new))
https://github.com/lockwo/Paper-Review
lockwo
from qiskit.providers.ibmq.runtime import UserMessenger from qiskit import Aer, IBMQ import numpy as np from runtime_test import main import matplotlib.pyplot as plt provider = IBMQ.load_account() provider = IBMQ.get_provider(group='deployed') def interim_result_callback(job_id, interim_result): print(interim_result) import uuid meta = { "name": #"grad_paper-{}".format(uuid.uuid4()), "grad_paper-lima", "description": "A sample gradient program.", "max_execution_time": 10000, } meta["parameters"] = [ {"name": "shots", "description": "Number of shots", "type": "int", "required": True}, {"name": "init_point", "description": "Initial parameters", "type": "ndarray", "required": True}, ] meta['return_values'] = [ {"name": "result", "description": "Final result in list.", "type": "list"} ] meta["interim_results"] = [ {"name": "vals", "description": "Iteration, value at current optimization step", "type": "list"}, ] #backend = provider.backend.ibmq_qasm_simulator backend = provider.backend.ibmq_lima #backend = provider.backend.ibmq_manila options = {'backend_name': backend.name()} program_id = provider.runtime.upload_program(data='runtime_test.py', metadata=meta) initial_point = np.random.uniform(0, 2 * np.pi, 5) inputs = {} inputs['init_point'] = initial_point shots = [10, 100, 1000] fig, (ax1, ax2) = plt.subplots(1, 2) fig.tight_layout() for s in shots: print(s) inputs['shots'] = s job = provider.runtime.run(program_id, options=options, inputs=inputs, callback=interim_result_callback) gd_loss, x_values = job.result() cir_evals = np.array([i for i in range(len(gd_loss))]) cir_evals *= (2 * len(initial_point) * s) ax1.plot(cir_evals, gd_loss, label='Shots %d'%s) ax2.plot(x_values[:,0], x_values[:,1], label='Shots %d'%s) # Make the graph look nice #ax1.axhline(-1, ls='--', c='tab:red', label='Target') ax1.set_ylabel('Cost') ax1.set_xlabel('Circuit Evaluations') ax1.set_xscale('log') ax1.legend() ax2.set_ylim(0, np.pi) ax2.set_xlim(-np.pi/2, np.pi/2) ax2.set_ylabel('Theta 2') ax2.set_xlabel('Theta 1') #ax2.legend() plt.show()
https://github.com/lockwo/Paper-Review
lockwo
import numpy as np from qiskit import Aer, IBMQ from qiskit.utils import QuantumInstance from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.opflow import StateFn, Z, I, CircuitSampler, Gradient, Hessian from qiskit.algorithms.optimizers import GradientDescent import matplotlib.pyplot as plt # Code to generate a circuit as present in the paper def paper_circuit(): circuit = QuantumCircuit(5) params = ParameterVector("theta", length=5) for i in range(5): circuit.rx(params[i], i) circuit.cx(0, 1) circuit.cx(2, 1) circuit.cx(3, 1) circuit.cx(4, 3) hamiltonian = I for i in range(1, 5): if i == 3: hamiltonian = hamiltonian ^ Z else: hamiltonian = hamiltonian ^ I readout_operator = StateFn(hamiltonian, is_measurement=True) @ StateFn(circuit) return circuit, readout_operator print(paper_circuit()[0]) def evaluate_expectation(x): value_dict = dict(zip(circuit.parameters, x)) result = sampler.convert(op, params=value_dict).eval() return np.real(result) def evaluate_gradient(x): value_dict = dict(zip(circuit.parameters, x)) result = sampler.convert(gradient, params=value_dict).eval() return np.real(result) def gd_callback(nfevs, x, fx, stepsize): #if nfevs % 10 == 0: # print(nfevs, fx) #print(nfevs, fx) gd_loss.append(fx) x_values.append([x[0], x[1]]) simulate = True provider = IBMQ.load_account() if simulate: backend = Aer.get_backend('aer_simulator') else: backend = provider.backends(name='ibmq_belem')[0] initial_point = np.random.uniform(0, 2 * np.pi, 5) shots = [10, 100, 1000] fig, (ax1, ax2) = plt.subplots(1, 2) fig.tight_layout() for s in shots: # Create circuit circuit, op = paper_circuit() # Specify backend information q_instance = QuantumInstance(backend, shots=s) sampler = CircuitSampler(q_instance) gradient = Gradient(grad_method='param_shift').convert(op) gd_loss, x_values = [], [] # Create optimizer gd = GradientDescent(maxiter=100, learning_rate=0.1, tol=1e-4, callback=gd_callback) # Minimize function gd.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_gradient, initial_point=initial_point) # Plotting information cir_evals = np.array([i for i in range(len(gd_loss))]) cir_evals *= (2 * circuit.num_parameters * s) ax1.plot(cir_evals, gd_loss, label='Shots %d'%s) x_values.clear() # Keeping track of just theta_0 and theta_1 gd.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_gradient, \ initial_point=[0.1, 0.15, 0, 0, 0]) x_values = np.array(x_values) ax2.plot(x_values[:,0], x_values[:,1], label='Shots %d'%s) # Make the graph look nice ax1.axhline(-1, ls='--', c='tab:red', label='Target') ax1.set_ylabel('Cost') ax1.set_xlabel('Circuit Evaluations') ax1.set_xscale('log') ax1.legend() ax2.set_ylim(0, np.pi + 0.2) ax2.set_xlim(-np.pi/2, np.pi/2) ax2.set_ylabel('Theta 2') ax2.set_xlabel('Theta 1') #ax2.legend() plt.show() class NewtonOpt(object): def __init__(self, hess, grad, num_param, circuit, sampler, op, init, lr=0.1, s=1000, maxiter=100): self.lr = lr self.shots = s self.hess = hess self.grad = grad self.max_iter = maxiter self.num_params = num_param self.circuit = circuit self.sampler = sampler self.op = op self.values = [] self.circuit_evals = [] self.init = init def optimize(self): x = self.init for i in range(self.max_iter): value_dict = dict(zip(self.circuit.parameters, x)) result = np.real(self.sampler.convert(self.op, params=value_dict).eval()) self.values.append(result) value_dict = dict(zip(self.circuit.parameters, x)) hessian = np.real(self.sampler.convert(self.hess, params=value_dict).eval()) gradient = np.real(self.sampler.convert(self.grad, params=value_dict).eval()) x = x - self.lr * np.linalg.inv(hessian + np.eye(self.num_params)) @ gradient #if i % 10 == 0: # print(i, result) return self.values, np.array([i for i in range(len(self.values))]) * \ ((4 * self.num_params**2 - 3 * self.num_params) * self.shots) # Generate circuit with only two parameters def paper_circuit_two_param(): circuit = QuantumCircuit(5) # 5 qubit circuit params = ParameterVector("theta", length=2) for i in range(2): circuit.rx(params[i], i) circuit.cx(0, 1) circuit.cx(2, 1) circuit.cx(3, 1) circuit.cx(4, 3) hamiltonian = I for i in range(1, 5): if i == 3: hamiltonian = hamiltonian ^ Z else: hamiltonian = hamiltonian ^ I readout_operator = StateFn(hamiltonian, is_measurement=True) @ StateFn(circuit) return circuit, readout_operator initial_point = np.array([0.1, 0.15]) s = 1000 circuit, op = paper_circuit_two_param() q_instance = QuantumInstance(backend, shots=s) sampler = CircuitSampler(q_instance) gradient = Gradient(grad_method='param_shift').convert(op) hessian = Hessian(hess_method='param_shift').convert(op) gd_loss = [] x_values = [] # GD minimization gd = GradientDescent(maxiter=80, learning_rate=0.1, tol=1e-4, callback=gd_callback) x_opt, fx_opt, nfevs = gd.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_gradient, \ initial_point=initial_point) cir_evals = np.array([i for i in range(len(gd_loss))]) cir_evals *= (2 * circuit.num_parameters * s) # 2nd order mimization newton = NewtonOpt(hessian, gradient, circuit.num_parameters, circuit, sampler, op, initial_point, maxiter=80) loss, evals = newton.optimize() plt.plot(evals, loss, label='Newton') plt.plot(cir_evals, gd_loss, label='GD') plt.axhline(-1, ls='--', c='tab:red', label='Target') plt.ylabel('Cost') plt.xlabel('Circuit Evaluations') plt.legend() plt.show() #initial_point = np.random.uniform(0, 2 * np.pi, 5) initial_point = np.array([0.1, 0.15, 0, 0, 0]) s = 1000 circuit, op = paper_circuit() q_instance = QuantumInstance(backend, shots=s) sampler = CircuitSampler(q_instance) gradient = Gradient().convert(op) hessian = Hessian(hess_method='param_shift').convert(op) gd_loss = [] x_values = [] # GD minimization gd = GradientDescent(maxiter=100, learning_rate=0.1, tol=1e-4, callback=gd_callback) x_opt, fx_opt, nfevs = gd.optimize(initial_point.size, evaluate_expectation, gradient_function=evaluate_gradient, \ initial_point=initial_point) cir_evals = np.array([i for i in range(len(gd_loss))]) cir_evals *= (2 * circuit.num_parameters * s) # 2nd order mimization newton = NewtonOpt(hessian, gradient, circuit.num_parameters, circuit, sampler, op, initial_point) loss, evals = newton.optimize() plt.plot(evals, loss, label='Newton') plt.plot(cir_evals, gd_loss, label='GD') plt.axhline(-1, ls='--', c='tab:red', label='Target') plt.ylabel('Cost') plt.xlabel('Circuit Evaluations') plt.xscale('log') plt.legend() plt.show()
https://github.com/lockwo/Paper-Review
lockwo
import numpy as np from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.opflow import StateFn, Z, I, CircuitSampler, Gradient from qiskit.algorithms.optimizers import GradientDescent from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeBogota from qiskit.providers.aer.noise import NoiseModel def main(backend, user_message, shots, init_point): def paper_circuit(): circuit = QuantumCircuit(5) params = ParameterVector("theta", length=5) for i in range(5): circuit.rx(params[i], i) circuit.cx(0, 1) circuit.cx(2, 1) circuit.cx(3, 1) circuit.cx(4, 3) hamiltonian = I for i in range(1, 5): if i == 3: hamiltonian = hamiltonian ^ Z else: hamiltonian = hamiltonian ^ I readout_operator = StateFn(hamiltonian, is_measurement=True) @ StateFn(circuit) return circuit, readout_operator def evaluate_expectation(x): value_dict = dict(zip(circuit.parameters, x)) result = sampler.convert(op, params=value_dict).eval() return np.real(result) def evaluate_gradient(x): value_dict = dict(zip(circuit.parameters, x)) result = sampler.convert(gradient, params=value_dict).eval() return np.real(result) def gd_callback(nfevs, x, fx, stepsize): if nfevs % 10 == 0: user_message.publish([nfevs, fx]) gd_loss.append(fx) x_values.append([x[0], x[1]]) circuit, op = paper_circuit() device_backend = FakeBogota() backend = Aer.get_backend('aer_simulator') device = QasmSimulator.from_backend(device_backend) coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device) q_instance = QuantumInstance(backend=backend, coupling_map=coupling_map, noise_model=noise_model, shots=shots) #q_instance = QuantumInstance(backend, shots=shots) sampler = CircuitSampler(q_instance) gradient = Gradient(grad_method='param_shift').convert(op) gd_loss, x_values = [], [] gd = GradientDescent(maxiter=100, learning_rate=0.1, tol=1e-4, callback=gd_callback) gd.optimize(init_point.size, evaluate_expectation, gradient_function=evaluate_gradient, \ initial_point=init_point) x_values.clear() gd_values = gd_loss.copy() gd.optimize(init_point.size, evaluate_expectation, gradient_function=evaluate_gradient, \ initial_point=[0.1, 0.15, 0, 0, 0]) x_values = np.array(x_values) return gd_values, x_values
https://github.com/lockwo/Paper-Review
lockwo
import numpy as np from scipy.linalg import sqrtm from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.quantum_info import state_fidelity, DensityMatrix from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.opflow import StateFn, I, X, Y, Z, CircuitSampler, Gradient, PauliExpectation from qiskit.algorithms.optimizers import GradientDescent, ADAM, L_BFGS_B from qiskit.providers.aer import AerSimulator, extensions, QasmSimulator from qiskit.providers.aer.noise import depolarizing_error, amplitude_damping_error, phase_damping_error, NoiseModel import matplotlib.pyplot as plt def get_fidelity(s1, s2): return state_fidelity(s1, s2) pauli_y = np.array([[0, -1j], [1j, 0]]) krons = np.kron(pauli_y, pauli_y) def get_concurrance(p): p = np.array(p) p_hat = np.matmul(np.matmul(krons, p.conj().T), krons) try: mat = sqrtm(np.matmul(np.matmul(sqrtm(p), p_hat), sqrtm(p))) except: return 0 eigs = np.linalg.eigvals(mat) sorted_eigs = sorted(eigs, reverse=True) return max(0, sorted_eigs[0] - sorted_eigs[1] - sorted_eigs[2] - sorted_eigs[3]) def get_density_matrix(circuit, params, noise_model=NoiseModel()): c = circuit.bind_parameters(params) c.save_density_matrix() sim_noise = AerSimulator(noise_model=noise_model) result = sim_noise.run(c).result() density_matrix = result.data()['density_matrix'] return density_matrix def make_circuit(version): circuit = QuantumCircuit(2) params = ParameterVector("theta", length=4 if version == 2 else 3) circuit.ry(params[0], 0) circuit.ry(params[1], 1) circuit.cx(0, 1) if version == 0: circuit.ry(params[2], 0) elif version == 1: circuit.ry(params[2], 1) elif version == 2: circuit.ry(params[2], 0) circuit.ry(params[3], 1) return circuit hamiltonian = (Z ^ Z) + (X ^ I) + (I ^ X) print(hamiltonian) noises = [phase_damping_error, amplitude_damping_error, depolarizing_error] gammas = np.linspace(0, 1, 100) backend = Aer.get_backend('qasm_simulator') fig, axs = plt.subplots(3, 3, figsize=(16, 10)) for count, noise_type in enumerate(noises): for ver in range(3): print(count, ver) energies = [] fidelities = [] concurrances = [] noiseless_solution = None for g in gammas: initial_point = np.random.uniform(0, 2 * np.pi, 4) def evaluate_expectation(x): value_dict = dict(zip(cir.parameters, x)) result = sampler.convert(op, params=value_dict).eval() return np.real(result) def evaluate_gradient(x): value_dict = dict(zip(cir.parameters, x)) result = sampler.convert(gradient, params=value_dict).eval() return np.real(result) #print(noise_type, ver, g) params = 4 if ver == 2 else 3 cir = make_circuit(ver) noise_model = NoiseModel() if g != 0: if count == 2: noise = noise_type(g, 2) else: noise = noise_type(g) noise = noise.tensor(noise) noise_model.add_all_qubit_quantum_error(noise, ['cx']) q_instance = QuantumInstance(backend, noise_model=noise_model) sampler = CircuitSampler(q_instance) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(cir) op = PauliExpectation().convert(expectation) gradient = Gradient(grad_method='param_shift').convert(op) #gd = GradientDescent(maxiter=100, learning_rate=0.05, tol=1e-4) #gd = ADAM(maxiter=80, lr=0.05) gd = L_BFGS_B() point, value, nfev = gd.optimize(params, evaluate_expectation, gradient_function=evaluate_gradient, initial_point=initial_point[:params]) energies.append(value) if g == 0 and noiseless_solution is None: noiseless_solution = get_density_matrix(cir, point) current_density_matrix = get_density_matrix(cir, point, noise_model) fidelity = get_fidelity(noiseless_solution, current_density_matrix) fidelities.append(fidelity) concurrance = get_concurrance(current_density_matrix) concurrances.append(concurrance) axs[0, count].scatter(gammas, energies, label=str(ver)) axs[1, count].scatter(gammas, fidelities) axs[2, count].scatter(gammas, concurrances) axs[2, 0].set_xlabel("$\gamma$") axs[2, 1].set_xlabel("$\gamma$") axs[2, 2].set_xlabel("$\gamma$") axs[0, 0].set_title('Phase damping') axs[0, 1].set_title('Amplitude damping') axs[0, 2].set_title('Depolarizing') axs[0, 0].set_ylim(-2.3, -1.5) axs[0, 1].set_ylim(-2.3, -1.5) axs[0, 2].set_ylim(-2.2, 0) axs[1, 0].set_ylim(0.5, 1) axs[1, 1].set_ylim(0.5, 1) axs[1, 2].set_ylim(0.2, 1) axs[2, 0].set_ylim(0, 0.5) axs[2, 1].set_ylim(0, 0.5) axs[2, 2].set_ylim(0, 0.5) axs[0, 0].legend() axs[0, 0].set_ylabel("Energy") axs[1, 0].set_ylabel("Fidelity") axs[2, 0].set_ylabel("Concurrance") plt.show() def make_circuit_four(): circuit = QuantumCircuit(4) params = ParameterVector("theta", length=8) for i in range(4): circuit.ry(params[i], i) circuit.cx(0, 1) circuit.cx(1, 2) circuit.cx(2, 3) for i in range(4): circuit.ry(params[i + 4], i) return circuit hamiltonian = (I ^ Z ^ I ^ Z) + 1/2 * ((I ^ I ^ X ^ X) + (I ^ I ^ Y ^ Y) + (X ^ X ^ I ^ I) + (Y ^ Y ^ I ^ I)) print(hamiltonian) noises = [phase_damping_error, amplitude_damping_error, depolarizing_error] noise_names = ["Phase Damping", "Amplitude Damping", "Depolarizing"] gammas = np.linspace(0, 1, 50) backend = Aer.get_backend('qasm_simulator') fig, axs = plt.subplots(2, 1, figsize=(10, 10)) for count, noise_type in enumerate(noises): energies = [] fidelities = [] noiseless_solution = None for g in gammas: initial_point = np.random.uniform(0, 2 * np.pi, 8) def evaluate_expectation(x): value_dict = dict(zip(cir.parameters, x)) result = sampler.convert(op, params=value_dict).eval() return np.real(result) def evaluate_gradient(x): value_dict = dict(zip(cir.parameters, x)) result = sampler.convert(gradient, params=value_dict).eval() return np.real(result) #print(noise_type, g) cir = make_circuit_four() noise_model = NoiseModel() if g != 0: if count == 2: noise = noise_type(g, 2) else: noise = noise_type(g) noise = noise.tensor(noise) noise_model.add_all_qubit_quantum_error(noise, ['cx']) q_instance = QuantumInstance(backend, noise_model=noise_model) sampler = CircuitSampler(q_instance) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(cir) op = PauliExpectation().convert(expectation) gradient = Gradient(grad_method='param_shift').convert(op) #gd = GradientDescent(maxiter=100, learning_rate=0.05, tol=1e-4) #gd = ADAM(maxiter=80, lr=0.05) gd = L_BFGS_B() point, value, nfev = gd.optimize(8, evaluate_expectation, gradient_function=evaluate_gradient, initial_point=initial_point) energies.append(value) if g == 0 and noiseless_solution is None: noiseless_solution = get_density_matrix(cir, point) current_density_matrix = get_density_matrix(cir, point, noise_model) fidelity = get_fidelity(noiseless_solution, current_density_matrix) fidelities.append(fidelity) axs[0].scatter(gammas, energies, label=noise_names[count]) axs[1].scatter(gammas, fidelities) axs[1].set_xlabel("$\gamma$") axs[0].set_ylim(-2.5, 0) axs[1].set_ylim(0, 1) axs[0].legend() axs[0].set_ylabel("Energy") axs[1].set_ylabel("Fidelity") plt.show() def make_circuit_one(): circuit = QuantumCircuit(1) params = ParameterVector("theta", length=2) circuit.ry(params[0], 0, label='first') circuit.ry(params[1], 0) return circuit hamiltonian = Z gamma = 0.4 backend = Aer.get_backend('qasm_simulator') def evaluate_expectation(x): value_dict = dict(zip(cir.parameters, x)) result = sampler.convert(op, params=value_dict).eval() return np.real(result) cir = make_circuit_one() noise_model = NoiseModel() #noise = depolarizing_error(gamma, 1) noise = phase_damping_error(gamma) noise_model.add_all_qubit_quantum_error(noise, ['first']) q_instance = QuantumInstance(backend, noise_model=noise_model) sampler = CircuitSampler(q_instance) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(cir) op = PauliExpectation().convert(expectation) N = 30 xs = np.linspace(-np.pi, np.pi, N) ys = np.linspace(-np.pi, np.pi, N) zs = np.zeros(shape=(N, N)) for i in range(len(xs)): #print(i) for j in range(len(ys)): zs[i][j] = evaluate_expectation([xs[i], ys[j]]) cir = make_circuit_one() q_instance = QuantumInstance(backend) sampler = CircuitSampler(q_instance) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(cir) op = PauliExpectation().convert(expectation) xs = np.linspace(-np.pi, np.pi, N) ys = np.linspace(-np.pi, np.pi, N) zs1 = np.zeros(shape=(N, N)) for i in range(len(xs)): #print(i) for j in range(len(ys)): zs1[i][j] = evaluate_expectation([xs[i], ys[j]]) # Label axes fig, axs = plt.subplots(1, 2, figsize=(20, 10)) axs[1].contourf(xs, ys, zs, 10, cmap='YlGnBu') #axs[1].contour(xs, ys, zs, 30, cmap='cool') axs[1].set_title("Noisy") axs[0].contourf(xs, ys, zs1, 10, cmap='YlGnBu') #axs[0].contour(xs, ys, zs1, 30, cmap='cool') axs[0].set_title("Noiseless") plt.show() def make_circuit_layers(l): circuit = QuantumCircuit(4) params = ParameterVector("theta", length=4 * l) counter = 0 for i in range(l): for j in range(4): circuit.ry(params[counter], j) counter += 1 circuit.cx(0, 1, label='first') circuit.cx(2, 3) circuit.cx(1, 2, label='second') return circuit noises = [phase_damping_error, amplitude_damping_error, depolarizing_error] gammas = [0, 1e-3, 1e-2, 5 * 1e-2, 1e-1] layers = [i for i in range(1, 7)] backend = Aer.get_backend('qasm_simulator') fig, axs = plt.subplots(2, 3, figsize=(10, 10)) target_state = np.random.uniform(0, 1, (1, 2**4)) + np.random.uniform(0, 1, (1, 2**4)) * 1j target_state = target_state / np.linalg.norm(target_state) target_dm = np.matmul(target_state.conj().T, target_state) for count, noise_type in enumerate(noises): for g in gammas: reopts = [] non_reopts = [] for lay in layers: initial_point = np.random.uniform(0, 2 * np.pi, lay * 4) def evaluate_expectation_noiseless(x): fid = get_fidelity(target_dm, get_density_matrix(cir, x)) return 1 - fid def evaluate_expectation_noisy(x): fid = get_fidelity(target_dm, get_density_matrix(cir, x, noise_model)) return 1 - fid cir = make_circuit_layers(lay) noise_model = NoiseModel() no_noise = NoiseModel() if g != 0: if count == 2: noise = noise_type(g, 2) else: noise = noise_type(g) noise = noise.tensor(noise) noise_model.add_all_qubit_quantum_error(noise, ['first', 'second']) gd = L_BFGS_B() point, value, nfev = gd.optimize(initial_point.size, evaluate_expectation_noiseless, initial_point=initial_point) current_density_matrix = get_density_matrix(cir, point, noise_model) fidelity = get_fidelity(target_dm, current_density_matrix) non_reopts.append(fidelity) gd = L_BFGS_B() point, value, nfev = gd.optimize(initial_point.size, evaluate_expectation_noisy, initial_point=point) current_density_matrix = get_density_matrix(cir, point, noise_model) fidelity = get_fidelity(target_dm, current_density_matrix) reopts.append(fidelity) axs[0, count].plot(layers, reopts, label=str(g)) axs[0, count].scatter(layers, reopts) axs[1, count].plot(layers, non_reopts) axs[1, count].scatter(layers, non_reopts) axs[1, 0].set_xlabel("Layers") axs[1, 1].set_xlabel("Layers") axs[1, 2].set_xlabel("Layers") axs[0, 0].set_title('Phase damping') axs[0, 1].set_title('Amplitude damping') axs[0, 2].set_title('Depolarizing') axs[0, 0].set_ylim(0.3, 1) axs[0, 1].set_ylim(0.3, 1) axs[0, 2].set_ylim(0.2, 1) axs[1, 0].set_ylim(0.3, 1) axs[1, 1].set_ylim(0.3, 1) axs[1, 2].set_ylim(0.2, 1) axs[0, 0].legend() axs[0, 0].set_ylabel("Reoptimized Fidelity") axs[1, 0].set_ylabel("Non-Reoptimized Fidelity") plt.show() from qiskit.tools.jupyter import * %qiskit_version_table
https://github.com/lockwo/Paper-Review
lockwo
from qiskit import IBMQ, Aer, transpile, schedule as build_schedule from qiskit.transpiler import PassManager from qiskit.transpiler.passes.calibration import RZXCalibrationBuilderNoEcho from qiskit_nature.drivers import Molecule from qiskit_nature.drivers.second_quantization import ElectronicStructureDriverType, ElectronicStructureMoleculeDriver from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.operators.second_quantization import FermionicOp from qiskit_nature.mappers.second_quantization import ParityMapper from qiskit_nature.algorithms import GroundStateEigensolver from qiskit.algorithms import NumPyMinimumEigensolver, VQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.utils import QuantumInstance import matplotlib.pyplot as plt import numpy as np IBMQ.load_account() provider = IBMQ.get_provider() lagos = provider.get_backend('ibm_lagos') def HEA_naive(num_q, depth): circuit = QuantumCircuit(num_q) params = ParameterVector("theta", length=num_q * (3 * depth + 2)) counter = 0 for q in range(num_q): circuit.rx(params[counter], q) counter += 1 circuit.rz(params[counter], q) counter += 1 for d in range(depth): for q in range(num_q - 1): circuit.cx(q, q + 1) for q in range(num_q): circuit.rz(params[counter], q) counter += 1 circuit.rx(params[counter], q) counter += 1 circuit.rz(params[counter], q) counter += 1 return circuit, params def HEA_aware(num_q, depth, hardware): circuit = QuantumCircuit(num_q) params = ParameterVector("theta", length=num_q * (3 * depth + 2)) counter = 0 for q in range(num_q): circuit.rx(params[counter], q) counter += 1 circuit.rz(params[counter], q) counter += 1 for d in range(depth): for q in range(num_q - 1): gate = QuantumCircuit(num_q) gate.rzx(np.pi/2, q, q + 1) pass_ = RZXCalibrationBuilderNoEcho(hardware) qc_cr = PassManager(pass_).run(gate) circuit.compose(qc_cr, inplace=True) for q in range(num_q): circuit.rz(params[counter], q) counter += 1 circuit.rx(params[counter], q) counter += 1 circuit.rz(params[counter], q) counter += 1 return circuit, params depth = 1 qubits = 2 back = lagos circuit, _ = HEA_naive(qubits, depth) t = transpile(circuit, back) schedule = build_schedule(t, back) schedule.draw() circuit, _ = HEA_aware(qubits, depth, back) t = transpile(circuit, back) schedule = build_schedule(t, back) schedule.draw() qubit_converter = QubitConverter(ParityMapper(), two_qubit_reduction=True) numpy_solver = NumPyMinimumEigensolver() spsa = SPSA(100) qi = QuantumInstance(Aer.get_backend('aer_simulator')) vqe_circuit = VQE(ansatz=circuit, quantum_instance=qi, optimizer=spsa) # H2 simulation total_dist = 4 dist = 0.1 incr_early = 0.1 incr_late = 0.3 real_energies = [] vqe_energies = [] dists = [] while dist < total_dist: print(dist, total_dist) molecule = Molecule(geometry=[['H', [0., 0., 0.]], ['H', [0., 0., dist]]]) driver = ElectronicStructureMoleculeDriver(molecule, basis='sto3g', \ driver_type=ElectronicStructureDriverType.PYSCF) es_problem = ElectronicStructureProblem(driver) second_q_ops = es_problem.second_q_ops() if dist == 0.1: FermionicOp.set_truncation(0) print(second_q_ops[0]) FermionicOp.set_truncation(1) print(qubit_converter.convert(second_q_ops[0], num_particles=es_problem.num_particles)) print(es_problem.grouped_property) calc = GroundStateEigensolver(qubit_converter, numpy_solver) res = calc.solve(es_problem) real_energies.append(np.real(res.total_energies[0])) calc = GroundStateEigensolver(qubit_converter, vqe_circuit) res = calc.solve(es_problem) vqe_energies.append(np.real(res.total_energies[0])) dists.append(dist) if dist > total_dist / 2: dist += incr_late else: dist += incr_early plt.plot(dists, real_energies, label='Real', color='red') plt.scatter(dists, vqe_energies, label='VQE', color='black') plt.title("H2") plt.ylim(-1.2, 0.4) plt.xlim(0, 4) plt.xlabel('Angstroms') plt.ylabel('Hartree') plt.legend() plt.show() depth = 2 qubits = 4 circuit, _ = HEA_naive(qubits, depth) spsa = SPSA(100) qi = QuantumInstance(Aer.get_backend('aer_simulator')) vqe_circuit = VQE(ansatz=circuit, quantum_instance=qi, optimizer=spsa) #print(circuit) total_dist = 5 dist = 0.3 incr_early = 0.1 incr_late = 0.3 real_energies = [] vqe_energies = [] dists = [] while dist < total_dist: print(dist, total_dist) molecule = Molecule(geometry=[['Li', [0., 0., 0.]], ['H', [0., 0., dist]]]) driver = ElectronicStructureMoleculeDriver(molecule, basis='sto3g', \ driver_type=ElectronicStructureDriverType.PYSCF) transformer = FreezeCoreTransformer(freeze_core=True, remove_orbitals=[3, 4]) es_problem = ElectronicStructureProblem(driver, transformers=[transformer]) second_q_ops = es_problem.second_q_ops() if dist == 0.3: print(second_q_ops[0]) print(qubit_converter.convert(second_q_ops[0], num_particles=es_problem.num_particles)) print(es_problem.grouped_property) print(es_problem.grouped_property_transformed) calc = GroundStateEigensolver(qubit_converter, numpy_solver) res = calc.solve(es_problem) real_energies.append(np.real(res.total_energies[0])) calc = GroundStateEigensolver(qubit_converter, vqe_circuit) #VQEClient() res = calc.solve(es_problem) vqe_energies.append(np.real(res.total_energies[0])) dists.append(dist) if dist > total_dist / 2: dist += incr_late else: dist += incr_early plt.plot(dists, real_energies, label='Real', color='green') plt.scatter(dists, vqe_energies, label='VQE', color='black') plt.title("LiH") plt.ylim(-8, -6.6) plt.xlim(0.3, 5) plt.xlabel('Angstroms') plt.ylabel('Hartree') plt.legend() plt.show() depth = 2 qubits = 6 circuit, _ = HEA_naive(qubits, depth) spsa = SPSA(100) qi = QuantumInstance(Aer.get_backend('aer_simulator')) vqe_circuit = VQE(ansatz=circuit, quantum_instance=qi, optimizer=spsa) #print(circuit) total_dist = 5 dist = 0.4 incr_early = 0.2 incr_late = 0.4 real_energies = [] vqe_energies = [] dists = [] while dist < total_dist: print(dist, total_dist) molecule = Molecule(geometry=[['H', [0., 0., -dist]], ['Be', [0., 0., 0.]], ['H', [0., 0., dist]]]) driver = ElectronicStructureMoleculeDriver(molecule, basis='sto3g', \ driver_type=ElectronicStructureDriverType.PYSCF) transformer = FreezeCoreTransformer(freeze_core=True, remove_orbitals=[4, 5]) es_problem = ElectronicStructureProblem(driver, transformers=[transformer]) second_q_ops = es_problem.second_q_ops() if dist == 0.4: print(second_q_ops[0]) print(qubit_converter.convert(second_q_ops[0], num_particles=es_problem.num_particles)) print(es_problem.grouped_property) print(es_problem.grouped_property_transformed) calc = GroundStateEigensolver(qubit_converter, numpy_solver) res = calc.solve(es_problem) real_energies.append(np.real(res.total_energies[0])) calc = GroundStateEigensolver(qubit_converter, vqe_circuit) res = calc.solve(es_problem) vqe_energies.append(np.real(res.total_energies[0])) dists.append(dist) if dist > total_dist / 2: dist += incr_late else: dist += incr_early plt.plot(dists, real_energies, label='Real', color='blue') plt.scatter(dists, vqe_energies, label='VQE', color='black') plt.title("BeH2") plt.ylim(-15.7, -12.0) plt.xlim(0.48, 5) plt.xlabel('Angstroms') plt.ylabel('Hartree') plt.legend() plt.show() from qiskit.tools.jupyter import * %qiskit_version_table
https://github.com/lockwo/Paper-Review
lockwo
from qiskit import Aer, IBMQ from qiskit.utils import QuantumInstance from qiskit.transpiler import PassManager from qiskit.transpiler.passes.calibration import RZXCalibrationBuilderNoEcho from qiskit_nature.drivers import UnitsType, Molecule from qiskit_nature.drivers.second_quantization import ElectronicStructureDriverType, ElectronicStructureMoleculeDriver from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit_nature.mappers.second_quantization import ParityMapper from qiskit_nature.algorithms import GroundStateEigensolver from qiskit_nature.runtime import VQEClient from qiskit.algorithms import NumPyMinimumEigensolver, VQE from qiskit.algorithms.optimizers import SPSA from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.utils import QuantumInstance from qiskit.providers.aer import AerSimulator import matplotlib.pyplot as plt import numpy as np IBMQ.load_account() provider = IBMQ.get_provider() hardware_backend = provider.get_backend('ibmq_quito') def HEA_aware(num_q, depth): circuit = QuantumCircuit(num_q) params = ParameterVector("theta", length=num_q * (3 * depth + 2)) counter = 0 for q in range(num_q): circuit.rx(params[counter], q) counter += 1 circuit.rz(params[counter], q) counter += 1 for d in range(depth): for q in range(num_q - 1): gate = QuantumCircuit(num_q) gate.rzx(np.pi/2, q, q + 1) pass_ = RZXCalibrationBuilderNoEcho(hardware_backend) qc_cr = PassManager(pass_).run(gate) circuit.compose(qc_cr, inplace=True) for q in range(num_q): circuit.rz(params[counter], q) counter += 1 circuit.rx(params[counter], q) counter += 1 circuit.rx(params[counter], q, label="last" if q == num_q - 1 else 'rz') counter += 1 return circuit, params dist = 0.82 qubit_converter = QubitConverter(ParityMapper(), two_qubit_reduction=True) numpy_solver = NumPyMinimumEigensolver() molecule = Molecule(geometry=[['H', [0., 0., 0.]], ['H', [0., 0., dist]]]) driver = ElectronicStructureMoleculeDriver(molecule, basis='sto3g', \ driver_type=ElectronicStructureDriverType.PYSCF) es_problem = ElectronicStructureProblem(driver) calc = GroundStateEigensolver(qubit_converter, numpy_solver) res = calc.solve(es_problem) ret_1 = np.real(res.total_energies[0]) target_energy = ret_1 shots = 1024 backend = provider.get_backend('ibmq_qasm_simulator') qubits = 2 depth = 1 circuit, _ = HEA_aware(qubits, depth) spsa = SPSA(200) qubit_converter = QubitConverter(ParityMapper(), two_qubit_reduction=True) numpy_solver = NumPyMinimumEigensolver() molecule = Molecule(geometry=[['H', [0., 0., 0.]], ['H', [0., 0., dist]]]) driver = ElectronicStructureMoleculeDriver(molecule, basis='sto3g', \ driver_type=ElectronicStructureDriverType.PYSCF) es_problem = ElectronicStructureProblem(driver) runtime_vqe = VQEClient( ansatz=circuit, optimizer=spsa, provider=provider, backend=backend, shots=shots ) runtime_vqe_groundstate_solver = GroundStateEigensolver(qubit_converter, runtime_vqe) runtime_vqe_result_soft = runtime_vqe_groundstate_solver.solve(es_problem) runtime_result_soft = runtime_vqe_result_soft.raw_result history_soft = runtime_result_soft.optimizer_history loss_soft = history_soft["loss"] target_energy = ret_1 plt.figure(figsize=(14, 8)) plt.plot(loss_soft + runtime_vqe_result_soft.nuclear_repulsion_energy, label="Noiseless Sim") plt.axhline(y=target_energy, color="tab:red", ls="--", label="Target") plt.legend() plt.xlabel("Iteration") plt.ylabel("Energy [H]") plt.title("VQE energy") plt.show() from qiskit.tools.jupyter import * %qiskit_version_table
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
!pip install -U -r grading_tools/requirements.txt from IPython.display import clear_output clear_output() import numpy as np; pi = np.pi from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram from copy import deepcopy as make_copy def prepare_hets_circuit(depth, angle1, angle2): hets_circ = QuantumCircuit(depth) hets_circ.ry(angle1, 0) hets_circ.rz(angle1, 0) hets_circ.ry(angle1, 1) hets_circ.rz(angle1, 1) for ii in range(depth): hets_circ.cx(0,1) hets_circ.ry(angle2,0) hets_circ.rz(angle2,0) hets_circ.ry(angle2,1) hets_circ.rz(angle2,1) return hets_circ hets_circuit = prepare_hets_circuit(2, pi/2, pi/2) hets_circuit.draw() def measure_zz_circuit(given_circuit): zz_meas = make_copy(given_circuit) zz_meas.measure_all() return zz_meas zz_meas = measure_zz_circuit(hets_circuit) zz_meas.draw() simulator = Aer.get_backend('qasm_simulator') result = execute(zz_meas, backend = simulator, shots=10000).result() counts = result.get_counts(zz_meas) plot_histogram(counts) def measure_zz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zz = counts['00'] + counts['11'] - counts['01'] - counts['10'] zz = zz / total_counts return zz zz = measure_zz(hets_circuit) print("<ZZ> =", str(zz)) def measure_zi(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zi = counts['00'] - counts['11'] + counts['01'] - counts['10'] zi = zi / total_counts return zi def measure_iz(given_circuit, num_shots = 10000): zz_meas = measure_zz_circuit(given_circuit) result = execute(zz_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(zz_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] iz = counts['00'] - counts['11'] - counts['01'] + counts['10'] iz = iz / total_counts return iz zi = measure_zi(hets_circuit) print("<ZI> =", str(zi)) iz = measure_iz(hets_circuit) print("<IZ> =", str(iz)) def measure_xx_circuit(given_circuit): xx_meas = make_copy(given_circuit) ### WRITE YOUR CODE BETWEEN THESE LINES - START xx_meas.h(0) xx_meas.h(1) xx_meas.measure_all() ### WRITE YOUR CODE BETWEEN THESE LINES - END return xx_meas xx_meas = measure_xx_circuit(hets_circuit) xx_meas.draw() def measure_xx(given_circuit, num_shots = 10000): xx_meas = measure_xx_circuit(given_circuit) result = execute(xx_meas, backend = simulator, shots = num_shots).result() counts = result.get_counts(xx_meas) if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] xx = counts['00'] + counts['11'] - counts['01'] - counts['10'] xx = xx / total_counts return xx xx = measure_xx(hets_circuit) print("<XX> =", str(xx)) def get_energy(given_circuit, num_shots = 10000): zz = measure_zz(given_circuit, num_shots = num_shots) iz = measure_iz(given_circuit, num_shots = num_shots) zi = measure_zi(given_circuit, num_shots = num_shots) xx = measure_xx(given_circuit, num_shots = num_shots) energy = (-1.0523732)*1 + (0.39793742)*iz + (-0.3979374)*zi + (-0.0112801)*zz + (0.18093119)*xx return energy energy = get_energy(hets_circuit) print("The energy of the trial state is", str(energy)) hets_circuit_plus = None hets_circuit_minus = None ### WRITE YOUR CODE BETWEEN THESE LINES - START hets_circuit_plus = prepare_hets_circuit(2, pi/2 + 0.1*pi/2, pi/2) hets_circuit_minus = prepare_hets_circuit(2, pi/2 - 0.1*pi/2, pi/2) ### WRITE YOUR CODE BETWEEN THESE LINES - END energy_plus = get_energy(hets_circuit_plus, num_shots=100000) energy_minus = get_energy(hets_circuit_minus, num_shots=100000) print(energy_plus, energy_minus) name = 'Pon Rahul M' email = 'ponrahul.21it@licet.ac.in' ### Do not change the lines below from grading_tools import grade grade(answer=measure_xx_circuit(hets_circuit), name=name, email=email, labid='lab9', exerciseid='ex1') grade(answer=hets_circuit_plus, name=name, email=email, labid='lab9', exerciseid='ex2') grade(answer=hets_circuit_minus, name=name, email=email, labid='lab9', exerciseid='ex3') energy_plus_100, energy_plus_1000, energy_plus_10000 = 0, 0, 0 energy_minus_100, energy_minus_1000, energy_minus_10000 = 0, 0, 0 ### WRITE YOUR CODE BETWEEN THESE LINES - START energy_plus_100 = get_energy(hets_circuit_plus, num_shots = 100) energy_minus_100 = get_energy(hets_circuit_minus, num_shots = 100) energy_plus_1000 = get_energy(hets_circuit_plus, num_shots = 1000) energy_minus_1000 = get_energy(hets_circuit_minus, num_shots = 1000) energy_plus_10000 = get_energy(hets_circuit_plus, num_shots = 10000) energy_minus_10000 = get_energy(hets_circuit_minus, num_shots = 10000) ### WRITE YOUR CODE BETWEEN THESE LINES - END print(energy_plus_100, energy_minus_100, "difference = ", energy_minus_100 - energy_plus_100) print(energy_plus_1000, energy_minus_1000, "difference = ", energy_minus_1000 - energy_plus_1000) print(energy_plus_10000, energy_minus_10000, "difference = ", energy_minus_10000 - energy_plus_10000) ### WRITE YOUR CODE BETWEEN THESE LINES - START I = np.array([ [1, 0], [0, 1] ]) X = np.array([ [0, 1], [1, 0] ]) Z = np.array([ [1, 0], [0, -1] ]) h2_hamiltonian = (-1.0523732) * np.kron(I, I) + \ (0.39793742) * np.kron(I, Z) + \ (-0.3979374) * np.kron(Z, I) + \ (-0.0112801) * np.kron(Z, Z) + \ (0.18093119) * np.kron(X, X) from numpy import linalg as LA eigenvalues, eigenvectors = LA.eig(h2_hamiltonian) for ii, eigenvalue in enumerate(eigenvalues): print(f"Eigenvector {eigenvectors[:,ii]} has energy {eigenvalue}") exact_eigenvector = eigenvectors[:,np.argmin(eigenvalues)] exact_eigenvalue = np.min(eigenvalues) print() print("Minimum energy is", exact_eigenvalue) ### WRITE YOUR CODE BETWEEN THESE LINES - END
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
from qiskit import QuantumCircuit, execute, Aer from qiskit.opflow import One, Zero, Plus, Minus from qiskit.opflow import I, X, Y, Z, S, H from qiskit.visualization import plot_bloch_multivector, plot_bloch_vector, plot_histogram from math import pi, sqrt, acos, asin, e, log, sin, cos from numpy import angle Zero One Plus Minus 1.5 * Zero -3 * Plus Zero^Zero^One Plus^Minus^Zero^Zero Zero + One Plus + Minus (Zero^Zero^One) + (Zero^One^Zero) + (One^Zero^Zero) (Zero^Zero^One) - 1.5*(Zero^One^Zero) + 3*(One^Zero^Zero) def arbitrary_state(beta): ##### ================================== # Write your solution in here. ##### ================================== Zero.eval('0') Zero.eval('1') Minus.eval('0') Minus.eval('1') ~Zero ~One ~Plus print("< 0 | 0 > =",(~Zero @ Zero).eval()) print("< 1 | 0 > =",(~One @ Zero).eval()) beta = 0.232 + 0.341j arbitrary_state(beta) beta = 0.232 + 0.341j print("< 1 | Ψ > =",(~One @ arbitrary_state(beta)).eval()) print("< 0 | Ψ > =",(~Zero @ arbitrary_state(beta)).eval()) print("< Ψ | Ψ > =", (~arbitrary_state(beta) @ arbitrary_state(beta)).eval()) def normality_check(beta): ##### ================================== # Write your solution in here. ##### ================================== # Play with your beta parameter to see if this value changes. beta = 0.232 + 0.341j print("|< 1 | Ψ >|^2 + |< 0 | Ψ >|^2 =", normality_check(beta)) def convert_braket_to_Bloch(beta): if beta == 0: # special case return [1.0, 0, 0] ##### ================================== # Write your solution in here. ##### ================================== return [1.0, theta, phi] # Check beta = -1/sqrt(2)*1j plot_bloch_vector(convert_braket_to_Bloch(beta), coord_type='spherical', title=r"$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}i|0\rangle$") # Play with more values of beta to see if it matches with your expectation beta = -1/sqrt(10)*1j plot_bloch_vector(convert_braket_to_Bloch(beta), coord_type='spherical', title=r"$|\psi\rangle = \sqrt{1-|\beta|^2}|0\rangle+\beta|0\rangle$ in Spherical") X Y Z def expectation_Z(beta): ##### ================================== # Write your solution in here. There are more than one solution here... ##### ================================== print("<Z> =", expectation_Z(beta)) def expectation_X(beta): ##### ================================== # Write your solution in here. There are more than one solution here... ##### ================================== def expectation_Y(beta): ##### ================================== # Write your solution in here. There are more than one solution here... ##### ================================== def get_cartesian_coordinate(beta): ##### ================================== # Write your solution in here. There are more than one solution here... ##### ================================== return [x, y, z] # Play with more values of beta to see if it matches with your previous Bloch sphere beta = -1/sqrt(10)*1j plot_bloch_vector(get_cartesian_coordinate(beta), coord_type='cartesian', title=r"$|\psi\rangle = \sqrt{1-|\beta|^2}|0\rangle+\beta|0\rangle$ in Cartesian") # Let's define the quantum simulator sv_simulator = Aer.get_backend("statevector_simulator") qasm_simulator = Aer.get_backend("qasm_simulator") this_circ = QuantumCircuit(1) this_circ.initialize([1/sqrt(2), -1/sqrt(2)]) this_circ.measure_all() this_circ.draw('mpl') shots = 1024 counts = execute(this_circ, backend=qasm_simulator, shots=shots).result().get_counts() print(counts) plot_histogram(counts, title=r"Measuring the $|+\rangle$ state") def contruct_arbitrary_state_on_circuit(beta): ##### ================================== # Write your solution in here. Here you do not need to append the measurement part in this function ##### ================================== return circuit shots = 81920 beta = 0.213 this_circuit = contruct_arbitrary_state_on_circuit(beta) this_circuit.measure_all() counts = execute(this_circuit, backend=qasm_simulator, shots=shots).result().get_counts() print("Probability in |1> basis =", beta**2) plot_histogram(counts, title=r"Measuring the arbitrary $|\psi(\beta)\rangle$ state") def expectation_Z_with_QASM(beta, shots): ##### ================================== # Write your solution in here. Here ##### ================================== return expectation beta = -1/sqrt(2)*1j shots = 81920 print("Expectation <Z> with QASM =", expectation_Z_with_QASM(beta, shots=shots)) print("Expectation <Z> with opflow =", expectation_Z(beta)) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_bloch_multivector, array_to_latex from grader import * language(False) phi_plus = QuantumCircuit(2) phi_plus.h(0) phi_plus.cnot(0, 1) phi_plus.draw('mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(phi_plus, backend).result().get_statevector() array_to_latex(result) phi_minus = QuantumCircuit(2) ##### ================================== # Write your solution in here. ##### ================================== phi_minus.draw('mpl') # This cell will tell you if what you did gives the correct result. # Just take it as an indication, the tests do not take into consideration every possible option # If you think that your answer is (in)correct and the grader says different, just ask me please # Don't try to tamper with the code, please :) ex1_grader(phi_minus) psi_plus = QuantumCircuit(2) ##### ================================== # Write your solution in here. ##### ================================== psi_plus.draw('mpl') ex2_grader(psi_plus) psi_minus = QuantumCircuit(2) ##### ================================== # Write your solution in here. ##### ================================== psi_minus.draw('mpl') ex3_grader(psi_minus) GHZ = QuantumCircuit(3) ##### ================================== # Write your solution in here. ##### ================================== GHZ.draw('mpl') ex4_grader(GHZ) Even = QuantumCircuit(3) ##### ================================== # Write your solution in here. ##### ================================== Even.draw('mpl') ex5_grader(Even) Odd = QuantumCircuit(3) ##### ================================== # Write your solution in here. ##### ================================== Odd.draw('mpl') ex6_grader(Odd) def measure_z_axis(qc, qubit, cbit): #Measurements have to be saved in classical bits qc.measure(qubit, cbit) def measure_x_axis(qc, qubit, cbit): ##### ================================== # Write your solution in here. ##### ================================== ex7_grader(measure_x_axis) def expectation_value_single_qubit(qc, nshots=8092): # Run the given circuit that is already measuring the selected basis backend_shots = Aer.get_backend('qasm_simulator') counts = execute(qc, backend_shots, shots=nshots).result().get_counts() #Counts is a dictionary that contains the number of zeros and the number of ones measured # This is just to make things easier in your solution if '1' not in counts.keys(): counts['1'] = 0 if '0' not in counts.keys(): counts['0'] = 0 # Get the number of times that 0 and 1 were measured n_zeros = counts['0'] n_ones = counts['1'] # Compute the probabilities p_0 = n_zeros/nshots p_1 = n_ones/nshots #OR 1-p_0 expectation_value = 1*p_0+(-1)*p_1 return expectation_value # Measure <Z> over a state that you like qc_z = QuantumCircuit(1,1) measure_z_axis(qc_z, 0, 0) print('<Z>=', expectation_value_single_qubit(qc_z)) qc_z.draw('mpl') # Measure <X> over a state that you like qc_x = QuantumCircuit(1,1) measure_x_axis(qc_x, 0, 0) print('<X>=', expectation_value_single_qubit(qc_x)) qc_x.draw('mpl') ##### ================================== # Write your solution in here. # Create bell state circuit # For each of the operators that we want to measure (ZZ, ZX, XZ and XX) create a new circuit (maybe using qc.copy()) # that measures along that axis. chsh_circuits = [] ##### ================================== chsh_circuits[0].draw('mpl') chsh_circuits[1].draw('mpl') chsh_circuits[2].draw('mpl') chsh_circuits[3].draw('mpl') # I couldn't come up with tests that would not give the answer away if you looked at the code so you are on your own here! # We can run all the circuits at the same time and then post process the data nshots = 8092 # The more shots, the less error backend_shots = Aer.get_backend('qasm_simulator') counts_list = execute(chsh_circuits, backend_shots, shots=nshots).result().get_counts() counts_list ##### ================================== # Write your solution in here. # For each of the circuits, take the counts that you got from that circuit, compute the probability # of each state and combine them together being very careful of which sign goes with which term # You might want to take some inspiration from the function expectation_value_single_qubit # If you are completely lost and don't know how to solve this, just ask ##### ================================== # If you don't know if your answer is correct you can compute the results by hand # (it's probably easier than doing this) and check if everything is working ##### ================================== # Write your solution in here. exp_AB = exp_Ab = exp_aB = exp_ab = CHSH = ##### ================================== print('Your result is <CHSH>=', CHSH) print('The correct result is <CHSH>=', 2*np.sqrt(2)) ##### ================================== # Write your solution in here. Can_entanglement_be_teleported = #Write True or False :D ##### ================================== # There is no grader for this question hehe ##### ================================== # Write your solution in here. Where_did_the_bell_pair_go = 'Write where you think they went' ##### ================================== # There is no grader for this question hehe ##### ================================== # Write your solution in here. ##### ================================== import qiskit.tools.jupyter %qiskit_version_table
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_bloch_multivector, array_to_latex from grader import * language(True) phi_plus = QuantumCircuit(2) phi_plus.h(0) phi_plus.cnot(0, 1) phi_plus.draw('mpl') # Simulamos para ver su resultado backend = Aer.get_backend('statevector_simulator') result = execute(phi_plus, backend).result().get_statevector() array_to_latex(result) phi_minus = QuantumCircuit(2) ##### ================================== # Escribe tu solución aquí. ##### ================================== phi_minus.draw('mpl') # Esta celda te dirá si lo que has hecho da el resultado correcto. # Tómalo como un indicador, los tests que hace no consideran todas las opciones posibles. # Si crees que tu respuesta es (in)correcta y el grader dice algo diferente, simplemente pregúntame. # No intentes hacer trampas modificando el código del corrector :) ex1_grader(phi_minus) psi_plus = QuantumCircuit(2) ##### ================================== # Escribe tu solución aquí. ##### ================================== psi_plus.draw('mpl') ex2_grader(psi_plus) psi_minus = QuantumCircuit(2) ##### ================================== # Escribe tu solución aquí. ##### ================================== psi_minus.draw('mpl') ex3_grader(psi_minus) GHZ = QuantumCircuit(3) ##### ================================== # Escribe tu solución aquí. ##### ================================== GHZ.draw('mpl') ex4_grader(GHZ) Even = QuantumCircuit(3) ##### ================================== # Escribe tu solución aquí. ##### ================================== Even.draw('mpl') ex5_grader(Even) Odd = QuantumCircuit(3) ##### ================================== # Escribe tu solución aquí. ##### ================================== Odd.draw('mpl') ex6_grader(Odd) def measure_z_axis(qc, qubit, cbit): #Las medidas deben guardarse en bits clásicos. qc.measure(qubit, cbit) def measure_x_axis(qc, qubit, cbit): ##### ================================== # Escribe tu solución aquí. ##### ================================== ex7_grader(measure_x_axis) def expectation_value_single_qubit(qc, nshots=8092): # Ejecuta el circuito que ya está rotado a la base correspondiente backend_shots = Aer.get_backend('qasm_simulator') counts = execute(qc, backend_shots, shots=nshots).result().get_counts() #Counts is a dictionary that contains the number of zeros and the number of ones measured # Esto es simplemente para evitar problemas. En caso de que falte una key en el diccionario la añade if '1' not in counts.keys(): counts['1'] = 0 if '0' not in counts.keys(): counts['0'] = 0 # Obten el numero de veces que se ha medido 0 y 1 n_zeros = counts['0'] n_ones = counts['1'] # Calcula las probabilidades p_0 = n_zeros/nshots p_1 = n_ones/nshots # O 1-p_0 expectation_value = 1*p_0+(-1)*p_1 return expectation_value # Mide <Z> sobre un estado que te guste qc_z = QuantumCircuit(1,1) measure_z_axis(qc_z, 0, 0) print('<Z>=', expectation_value_single_qubit(qc_z)) qc_z.draw('mpl') # Mide <X> sobre un estado que te guste qc_x = QuantumCircuit(1,1) measure_x_axis(qc_x, 0, 0) print('<X>=', expectation_value_single_qubit(qc_x)) qc_x.draw('mpl') ##### ================================== # Escribe tu solución aquí. # Primero crea un estado de Bell # Para cada uno de los operadores que queremos medir, (ZZ, ZX, XZ and XX) crea un nuevo circuito (quizás usando qc.copy()) # que mida en ese eje. chsh_circuits = [] ##### ================================== chsh_circuits[0].draw('mpl') chsh_circuits[1].draw('mpl') chsh_circuits[2].draw('mpl') chsh_circuits[3].draw('mpl') # Hacer tests aquí que no revelasen la respuesta era complicado, así que no hay ayuda :( # Podemos correr todos los circuitos a la vez y luego postprocesar los datos nshots = 8092 # Cuantos más shots, menos error backend_shots = Aer.get_backend('qasm_simulator') counts_list = execute(chsh_circuits, backend_shots, shots=nshots).result().get_counts() counts_list ##### ================================== # Escribe tu solución aquí. # Para cada uno de los circuitos, coge las counts que tengas para ese circuito, calcula la probabilidad #de cada estado y combinalas teniendo mucho cuidado con qué signo lleva cada término # Puede que quieras inspirarte en la función expectation_value_single_qubit # Si estás muy perdido y no sabes cómo resolver esto, puedes preguntar. ##### ================================== # Si no sabes si tu respuesta es correcta, puedes calcular los resultados a mano # (de hecho seguramente sea más fácil que calcularlo así) y comprobar si tu código está funcionando ##### ================================== # Escribe tu solución aquí. exp_AB = exp_Ab = exp_aB = exp_ab = CHSH = ##### ================================== print('Tu resultado es <CHSH>=', CHSH) print('El resultado correcto es <CHSH>=', 2*np.sqrt(2)) ##### ================================== # Escribe tu solución aquí. Can_entanglement_be_teleported = #Escribe True or False :D ##### ================================== ##### ================================== # Escribe tu solución aquí. Where_did_the_bell_pair_go = 'Escribe aquí' ##### ================================== ##### ================================== # Escribe tu solución aquí. ##### ================================== import qiskit.tools.jupyter %qiskit_version_table
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_bloch_multivector, array_to_latex ##### DO NOT CHANGE THIS CODE ####### # This is used to help you check if your exercises are correct and allow you to keep track # of your progress. Modifying this can make the system fail. ex_correct_dict = {'ex1': False, 'ex2': False, 'ex3': False, 'ex4': False, 'ex5': False, 'ex6': False, 'ex7': False} def language(x): global ESP ESP = x def correction_announcer(x): if ESP: if x: print('¡La respuesta es correcta! :) \n¡Te llevas un MAPI!') else: print('La respuesta es incorrecta :(') else: if x: print('Your answer is correct! :)') else: print('Your answer is incorrect :(') def ex1_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./np.sqrt(2))*np.array([1., 0., 0., -1.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex1'] = True correction_announcer(True) else: correction_announcer(False) def ex2_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./np.sqrt(2))*np.array([0., 1., 1., 0.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex2'] = True correction_announcer(True) else: correction_announcer(False) def ex3_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./np.sqrt(2))*np.array([0., 1., -1., 0.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex3'] = True correction_announcer(True) else: correction_announcer(False) def ex4_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./np.sqrt(2))*np.array([1., 0., 0., 0., 0., 0., 0., 1.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex4'] = True correction_announcer(True) else: correction_announcer(False) def ex5_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./2.)*np.array([1., 0., 0., 1., 0., 1., 1., 0.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex5'] = True correction_announcer(True) else: correction_announcer(False) def ex6_grader(qc): from qiskit.quantum_info import Statevector state_vector_solution = Statevector(qc) state_vector_real = Statevector((1./2.)*np.array([0., 1., 1., 0., 1., 0., 0., 1.])) if state_vector_solution==state_vector_real or state_vector_solution==-state_vector_real: ex_correct_dict['ex6'] = True correction_announcer(True) else: correction_announcer(False) def ex7_grader(fun): from qiskit.quantum_info import Statevector qc = QuantumCircuit(1, 1) qc.h(0) fun(qc, 0, 0) backend_shots = Aer.get_backend('qasm_simulator', shots = 1024) result = execute(qc, backend_shots).result().get_counts() if result['0'] == 1024: qc = QuantumCircuit(1, 1) qc.x(0) qc.h(0) fun(qc, 0, 0) result = execute(qc, backend_shots).result().get_counts() if result['1'] == 1024: ex_correct_dict['ex7'] = True correction_announcer(True) else: correction_announcer(False)
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
from qiskit import QuantumCircuit, execute, Aer from qiskit.visualization import plot_bloch_multivector, array_to_latex from math import pi x_gate = QuantumCircuit(1) # Create a quantum circuit with 1 qubit x_gate.x(0) x_gate.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') result = execute(x_gate, backend).result().get_statevector() plot_bloch_multivector(result) # Let's do an H-gate on a |0> qubit h_gate = QuantumCircuit(1) h_gate.h(0) h_gate.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(h_gate, backend).result().get_statevector() plot_bloch_multivector(result) # To make the problem more interesting, let's do an P-gate on a |+> state p_gate = QuantumCircuit(1) p_gate.h(0) p_gate.p(pi/2, 0) p_gate.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(p_gate, backend).result().get_statevector() plot_bloch_multivector(result) array_to_latex(result) cx_gate = QuantumCircuit(2) cx_gate.cx(0,1) cx_gate.draw(output='mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(cx_gate, backend).result().get_statevector() plot_bloch_multivector(result) circuit = QuantumCircuit(2) ##### ================================== # Write your solution in here. circuit.x(1) circuit.cx(0, 1) ##### ================================== backend = Aer.get_backend('statevector_simulator') result = execute(circuit, backend).result().get_statevector() plot_bloch_multivector(result) circuit = QuantumCircuit(2) ##### ================================== # Write your solution in here. circuit.x(0) circuit.x(1) circuit.cx(0, 1) ##### ================================== backend = Aer.get_backend('statevector_simulator') result = execute(circuit, backend).result().get_statevector() plot_bloch_multivector(result) ccx_gate = QuantumCircuit(3) ccx_gate.ccx(0,1,2) ccx_gate.draw(output='mpl') def encode_integer(circuit, qubit, integer): ##### ================================== # Write your solution in here. if integer == 1: circuit.x(qubit) ##### ================================== return circuit def classical_add(a, b): assert a in [0, 1] assert b in [0, 1] circuit = QuantumCircuit(2) ##### ================================== # Write your solution in here. encode_integer(circuit, 0, a) encode_integer(circuit, 1, b) circuit.cx(0, 1) ##### ================================== return circuit # You may want to the following code to test your results this_circ = classical_add(a=0, b=1) backend = Aer.get_backend('statevector_simulator') result = execute(this_circ, backend).result().get_statevector() plot_bloch_multivector(result) def classical_add_with_carry(a, b, carry): assert a in [0, 1] assert b in [0, 1] assert carry in [0, 1] circuit = QuantumCircuit(3) ##### ================================== # Write your solution in here. encode_integer(circuit, 0, carry) encode_integer(circuit, 1, a) encode_integer(circuit, 2, b) circuit.cx(0, 2) circuit.cx(1, 2) ##### ================================== return circuit # You may want to the following code to test your results this_circ = classical_add_with_carry(a=1, b=0, carry=1) backend = Aer.get_backend('statevector_simulator') result = execute(this_circ, backend).result().get_statevector() plot_bloch_multivector(result) def encode_integer_to_phase(circuit, qubit): ##### ================================== # Write your solution in here. Remember, before encoding to phases, # your integers are already encoded as quantum state |0> and |1> circuit.h(qubit) ##### ================================== return circuit def phase_addition(circuit, incoming_qubit, recipient_qubit): ##### ================================== # Write your solution in here. circuit.cp(pi, incoming_qubit, recipient_qubit) ##### ================================== return circuit # You may want to the following code to test your results a = 0; b = 1; this_circ = QuantumCircuit(2) this_circ = encode_integer(this_circ, 0, a) this_circ = encode_integer(this_circ, 1, b) this_circ = encode_integer_to_phase(this_circ, 1) this_circ = phase_addition(this_circ, 0, 1) backend = Aer.get_backend('statevector_simulator') result = execute(this_circ, backend).result().get_statevector() plot_bloch_multivector(result) def decode_phase_to_integer(circuit, qubit): ##### ================================== # Write your solution in here. circuit.h(qubit) ##### ================================== return circuit def quantum_add(a, b): assert a in [0, 1] assert b in [0, 1] circuit = QuantumCircuit(2) ##### ================================== # Write your solution in here. circuit = QuantumCircuit(2) circuit = encode_integer(circuit, 0, a) circuit = encode_integer(circuit, 1, b) circuit = encode_integer_to_phase(circuit, 1) circuit = phase_addition(circuit, 0, 1) circuit = decode_phase_to_integer(circuit, 1) ##### ================================== return circuit # You may want to the following code to test your results this_circ = quantum_add(a=1, b=0) backend = Aer.get_backend('statevector_simulator') result = execute(this_circ, backend).result().get_statevector() plot_bloch_multivector(result) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
from qiskit import QuantumCircuit, execute, Aer from qiskit.opflow import One, Zero, Plus, Minus from qiskit.opflow import I, X, Y, Z, S, H from qiskit.visualization import plot_bloch_multivector, plot_bloch_vector, plot_histogram from math import pi, sqrt, acos, asin, e, log, sin, cos from numpy import angle Zero One Plus Minus 1.5 * Zero -3 * Plus Zero^Zero^One Plus^Minus^Zero^Zero Zero + One Plus + Minus (Zero^Zero^One) + (Zero^One^Zero) + (One^Zero^Zero) (Zero^Zero^One) - 1.5*(Zero^One^Zero) + 3*(One^Zero^Zero) def arbitrary_state(beta): ##### ================================== # Write your solution in here. alpha = sqrt(1 - abs(beta)**2) return alpha*Zero + beta*One ##### ================================== Zero.eval('0') Zero.eval('1') Minus.eval('0') Minus.eval('1') ~Zero ~One ~Plus print("< 0 | 0 > =",(~Zero @ Zero).eval()) print("< 1 | 0 > =",(~One @ Zero).eval()) beta = 0.232 + 0.341j arbitrary_state(beta) beta = 0.232 + 0.341j print("< 1 | Ψ > =",(~One @ arbitrary_state(beta)).eval()) print("< 0 | Ψ > =",(~Zero @ arbitrary_state(beta)).eval()) print("< Ψ | Ψ > =", (~arbitrary_state(beta) @ arbitrary_state(beta)).eval()) def normality_check(beta): ##### ================================== # Write your solution in here. return abs((~One @ arbitrary_state(beta)).eval())**2 + abs((~Zero @ arbitrary_state(beta)).eval())**2 ##### ================================== # Play with your beta parameter to see if this value changes. beta = 0.232 + 0.341j print("|< 1 | Ψ >|^2 + |< 0 | Ψ >|^2 =", normality_check(beta)) def convert_braket_to_Bloch(beta): if beta == 0: # special case return [1.0, 0, 0] ##### ================================== # Write your solution in here. alpha = sqrt(1 - abs(beta)**2) theta = acos(alpha)*2 beta = beta / sin(theta/2) phi = angle(beta) ##### ================================== return [1.0, theta, phi] # Check beta = -1/sqrt(2)*1j plot_bloch_vector(convert_braket_to_Bloch(beta), coord_type='spherical', title=r"$|\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}i|0\rangle$") # Play with more values of beta to see if it matches with your expectation beta = -1/sqrt(10)*1j plot_bloch_vector(convert_braket_to_Bloch(beta), coord_type='spherical', title=r"$|\psi\rangle = \sqrt{1-|\beta|^2}|0\rangle+\beta|0\rangle$ in Spherical") X Y Z def expectation_Z(beta): ##### ================================== # Write your solution in here. There are more than one solution here... return (~arbitrary_state(beta) @ Z @ arbitrary_state(beta)).eval() ##### ================================== print("<Z> =", expectation_Z(beta)) def expectation_X(beta): ##### ================================== # Write your solution in here. There are more than one solution here... return (~arbitrary_state(beta) @ ~H @ Z @ H @ arbitrary_state(beta)).eval() ##### ================================== def expectation_Y(beta): ##### ================================== # Write your solution in here. There are more than one solution here... return (~arbitrary_state(beta) @ ~(H @ ~S) @ Z @ (H @ ~S) @ arbitrary_state(beta)).eval() ##### ================================== def get_cartesian_coordinate(beta): ##### ================================== # Write your solution in here. There are more than one solution here... x = expectation_X(beta).real y = expectation_Y(beta).real z = expectation_Z(beta).real ##### ================================== return [x, y, z] # Play with more values of beta to see if it matches with your previous Bloch sphere beta = -1/sqrt(10)*1j plot_bloch_vector(get_cartesian_coordinate(beta), coord_type='cartesian', title=r"$|\psi\rangle = \sqrt{1-|\beta|^2}|0\rangle+\beta|0\rangle$ in Cartesian") # Let's define the quantum simulator sv_simulator = Aer.get_backend("statevector_simulator") qasm_simulator = Aer.get_backend("qasm_simulator") this_circ = QuantumCircuit(1) this_circ.initialize([1/sqrt(2), -1/sqrt(2)]) this_circ.measure_all() this_circ.draw('mpl') shots = 1024 counts = execute(this_circ, backend=qasm_simulator, shots=shots).result().get_counts() print(counts) plot_histogram(counts, title=r"Measuring the $|+\rangle$ state") def contruct_arbitrary_state_on_circuit(beta): ##### ================================== # Write your solution in here. Here you do not need to append the measurement part in this function circuit = QuantumCircuit(1) circuit.initialize([sqrt(1-abs(beta)**2), beta]) ##### ================================== return circuit shots = 81920 beta = 0.213 this_circuit = contruct_arbitrary_state_on_circuit(beta) this_circuit.measure_all() counts = execute(this_circuit, backend=qasm_simulator, shots=shots).result().get_counts() print("Probability in |1> basis =", beta**2) plot_histogram(counts, title=r"Measuring the arbitrary $|\psi(\beta)\rangle$ state") def expectation_Z_with_QASM(beta, shots): ##### ================================== # Write your solution in here. Here circuit = contruct_arbitrary_state_on_circuit(beta) circuit.measure_all() counts = execute(circuit, backend=qasm_simulator, shots=shots).result().get_counts() expectation = (counts["0"] - counts["1"])/(counts["0"] + counts["1"]) ##### ================================== return expectation beta = -1/sqrt(2)*1j shots = 81920 print("Expectation <Z> with QASM =", expectation_Z_with_QASM(beta, shots=shots)) print("Expectation <Z> with opflow =", expectation_Z(beta)) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_bloch_multivector, array_to_latex from grader import * language(True) phi_plus = QuantumCircuit(2) phi_plus.h(0) phi_plus.cnot(0, 1) phi_plus.draw('mpl') # Simulamos para ver su resultado backend = Aer.get_backend('statevector_simulator') result = execute(phi_plus, backend).result().get_statevector() array_to_latex(result) phi_minus = QuantumCircuit(2) ##### ================================== # Escribe tu solución aquí. phi_minus.h(0) phi_minus.z(0) phi_minus.cnot(0, 1) ##### ================================== phi_minus.draw('mpl') # Esta celda te dirá si lo que has hecho da el resultado correcto. # Tómalo como un indicador, los tests que hace no consideran todas las opciones posibles. # Si crees que tu respuesta es (in)correcta y el grader dice algo diferente, simplemente pregúntame. # No intentes hacer trampas modificando el código del corrector :) ex1_grader(phi_minus) psi_plus = QuantumCircuit(2) ##### ================================== # Escribe tu solución aquí. psi_plus.h(0) psi_plus.x(1) psi_plus.cnot(0, 1) ##### ================================== psi_plus.draw('mpl') ex2_grader(psi_plus) psi_minus = QuantumCircuit(2) ##### ================================== # Escribe tu solución aquí. psi_minus.h(0) psi_minus.x(1) psi_minus.z(0) psi_minus.cnot(0, 1) ##### ================================== psi_minus.draw('mpl') ex3_grader(psi_minus) GHZ = QuantumCircuit(3) ##### ================================== # Escribe tu solución aquí. GHZ.h(0) GHZ.cnot(0, 1) GHZ.cnot(0, 2) ##### ================================== GHZ.draw('mpl') ex4_grader(GHZ) Even = QuantumCircuit(3) ##### ================================== # Escribe tu solución aquí. Even.h(0) Even.h(1) Even.cnot(0, 2) Even.cnot(1, 2) ##### ================================== Even.draw('mpl') ex5_grader(Even) Odd = QuantumCircuit(3) ##### ================================== # Escribe tu solución aquí. Odd.h(0) Odd.h(1) Odd.x(2) Odd.cnot(0, 2) Odd.cnot(1, 2) ##### ================================== Odd.draw('mpl') ex6_grader(Odd) def measure_z_axis(qc, qubit, cbit): #Las medidas deben guardarse en bits clásicos. qc.measure(qubit, cbit) def measure_x_axis(qc, qubit, cbit): ##### ================================== # Escribe tu solución aquí. qc.h(qubit) qc.measure(qubit, cbit) ##### ================================== ex7_grader(measure_x_axis) def expectation_value_single_qubit(qc, nshots=8092): # Ejecuta el circuito que ya está rotado a la base correspondiente backend_shots = Aer.get_backend('qasm_simulator') counts = execute(qc, backend_shots, shots=nshots).result().get_counts() #Counts is a dictionary that contains the number of zeros and the number of ones measured # Esto es simplemente para evitar problemas. En caso de que falte una key en el diccionario la añade if '1' not in counts.keys(): counts['1'] = 0 if '0' not in counts.keys(): counts['0'] = 0 # Obten el numero de veces que se ha medido 0 y 1 n_zeros = counts['0'] n_ones = counts['1'] # Calcula las probabilidades p_0 = n_zeros/nshots p_1 = n_ones/nshots # O 1-p_0 expectation_value = 1*p_0+(-1)*p_1 return expectation_value # Mide <Z> sobre un estado que te guste qc_z = QuantumCircuit(1,1) measure_z_axis(qc_z, 0, 0) print('<Z>=', expectation_value_single_qubit(qc_z)) qc_z.draw('mpl') # Mide <X> sobre un estado que te guste qc_x = QuantumCircuit(1,1) measure_x_axis(qc_x, 0, 0) print('<X>=', expectation_value_single_qubit(qc_x)) qc_x.draw('mpl') ##### ================================== # Escribe tu solución aquí. measure_strings = ['ZZ', 'ZX', 'XZ', 'XX'] # Primero crea un estado de Bell qc = QuantumCircuit(2,2) qc.h(0) qc.cnot(0, 1) # Para cada uno de los operadores que queremos medir, (ZZ, ZX, XZ and XX) crea un nuevo circuito (quizás usando qc.copy()) # que mida en ese eje. chsh_circuits = [] for string in measure_strings: qc1 = qc.copy() if string[0] == 'Z': measure_z_axis(qc1, 0, 0) if string[0] == 'X': measure_x_axis(qc1, 0, 0) if string[1] == 'Z': measure_z_axis(qc1, 1, 1) if string[1] == 'X': measure_x_axis(qc1, 1, 1) chsh_circuits.append(qc1) ##### ================================== chsh_circuits[0].draw('mpl') chsh_circuits[1].draw('mpl') chsh_circuits[2].draw('mpl') chsh_circuits[3].draw('mpl') # Hacer tests aquí que no revelasen la respuesta era complicado, así que no hay ayuda :( # Podemos correr todos los circuitos a la vez y luego postprocesar los datos nshots = 8092 # Cuantos más shots, menos error backend_shots = Aer.get_backend('qasm_simulator') counts_list = execute(chsh_circuits, backend_shots, shots=nshots).result().get_counts() counts_list ##### ================================== # Escribe tu solución aquí. exp_dict = {} # Para cada uno de los circuitos, coge las counts que tengas para ese circuito, calcula la probabilidad #de cada estado y combinalas teniendo mucho cuidado con qué signo lleva cada término for i in range(len(chsh_circuits)): string = measure_strings[i] #ZZ, ZX, XZ and XX counts = counts_list[i] exp = 0. for element in counts: parity = (-1)**(int(element[0])+int(element[1])) #print(element, parity) exp += counts[element]*parity exp_dict[string] = exp/nshots # Puede que quieras inspirarte en la función expectation_value_single_qubit # Si estás muy perdido y no sabes cómo resolver esto, puedes preguntar. ##### ================================== # Si no sabes si tu respuesta es correcta, puedes calcular los resultados a mano # (de hecho seguramente sea más fácil que calcularlo así) y comprobar si tu código está funcionando ##### ================================== # Escribe tu solución aquí. exp_AB = np.sqrt(1/2)*(exp_dict['ZZ']-exp_dict['XZ']) exp_Ab = np.sqrt(1/2)*(exp_dict['ZX']-exp_dict['XX']) exp_aB = np.sqrt(1/2)*(exp_dict['ZZ']+exp_dict['XZ']) exp_ab = np.sqrt(1/2)*(exp_dict['ZX']+exp_dict['XX']) CHSH = exp_AB - exp_Ab + exp_aB + exp_ab ##### ================================== print('Tu resultado es <CHSH>=', CHSH) print('El resultado correcto es <CHSH>=', 2*np.sqrt(2)) ##### ================================== # Escribe tu solución aquí. Can_entanglement_be_teleported = True#Escribe True or False :D ##### ================================== ##### ================================== # Escribe tu solución aquí. Where_did_the_bell_pair_go = 'En los dos últimos cúbits' ##### ================================== ##### ================================== # Escribe tu solución aquí. ##### ================================== import qiskit.tools.jupyter %qiskit_version_table
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
import numpy as np from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_bloch_multivector, array_to_latex from grader import * language(False) phi_plus = QuantumCircuit(2) phi_plus.h(0) phi_plus.cnot(0, 1) phi_plus.draw('mpl') # Let's see the result backend = Aer.get_backend('statevector_simulator') result = execute(phi_plus, backend).result().get_statevector() array_to_latex(result) phi_minus = QuantumCircuit(2) ##### ================================== # Write your solution in here. phi_minus.h(0) phi_minus.z(0) phi_minus.cnot(0, 1) ##### ================================== phi_minus.draw('mpl') # This cell will tell you if what you did gives the correct result. # Just take it as an indication, the tests do not take into consideration every possible option # If you think that your answer is (in)correct and the grader says different, just ask me please # Don't try to tamper with the code, please :) ex1_grader(phi_minus) psi_plus = QuantumCircuit(2) ##### ================================== # Write your solution in here. psi_plus.h(0) psi_plus.x(1) psi_plus.cnot(0, 1) ##### ================================== psi_plus.draw('mpl') ex2_grader(psi_plus) psi_minus = QuantumCircuit(2) ##### ================================== # Write your solution in here. psi_minus.h(0) psi_minus.x(1) psi_minus.z(0) psi_minus.cnot(0, 1) ##### ================================== psi_minus.draw('mpl') ex3_grader(psi_minus) GHZ = QuantumCircuit(3) ##### ================================== # Write your solution in here. GHZ.h(0) GHZ.cnot(0, 1) GHZ.cnot(0, 2) ##### ================================== GHZ.draw('mpl') ex4_grader(GHZ) Even = QuantumCircuit(3) ##### ================================== # Write your solution in here. Even.h(0) Even.h(1) Even.cnot(0, 2) Even.cnot(1, 2) ##### ================================== Even.draw('mpl') ex5_grader(Even) Odd = QuantumCircuit(3) ##### ================================== # Write your solution in here. Odd.h(0) Odd.h(1) Odd.x(2) Odd.cnot(0, 2) Odd.cnot(1, 2) ##### ================================== Odd.draw('mpl') ex6_grader(Odd) def measure_z_axis(qc, qubit, cbit): #Measurements have to be saved in classical bits qc.measure(qubit, cbit) def measure_x_axis(qc, qubit, cbit): ##### ================================== # Write your solution in here. qc.h(qubit) qc.measure(qubit, cbit) ##### ================================== ex7_grader(measure_x_axis) def expectation_value_single_qubit(qc, nshots=8092): # Run the given circuit that is already measuring the selected basis backend_shots = Aer.get_backend('qasm_simulator') counts = execute(qc, backend_shots, shots=nshots).result().get_counts() #Counts is a dictionary that contains the number of zeros and the number of ones measured # This is just to make things easier in your solution if '1' not in counts.keys(): counts['1'] = 0 if '0' not in counts.keys(): counts['0'] = 0 # Get the number of times that 0 and 1 were measured n_zeros = counts['0'] n_ones = counts['1'] # Compute the probabilities p_0 = n_zeros/nshots p_1 = n_ones/nshots #OR 1-p_0 expectation_value = 1*p_0+(-1)*p_1 return expectation_value # Measure <Z> over a state that you like qc_z = QuantumCircuit(1,1) measure_z_axis(qc_z, 0, 0) print('<Z>=', expectation_value_single_qubit(qc_z)) qc_z.draw('mpl') # Measure <X> over a state that you like qc_x = QuantumCircuit(1,1) measure_x_axis(qc_x, 0, 0) print('<X>=', expectation_value_single_qubit(qc_x)) qc_x.draw('mpl') ##### ================================== # Write your solution in here. measure_strings = ['ZZ', 'ZX', 'XZ', 'XX'] # Create bell state circuit qc = QuantumCircuit(2,2) qc.h(0) qc.cnot(0, 1) # For each of the operators that we want to measure (ZZ, ZX, XZ and XX) create a new circuit (maybe using qc.copy()) # that measures along that axis. chsh_circuits = [] for string in measure_strings: qc1 = qc.copy() if string[0] == 'Z': measure_z_axis(qc1, 0, 0) if string[0] == 'X': measure_x_axis(qc1, 0, 0) if string[1] == 'Z': measure_z_axis(qc1, 1, 1) if string[1] == 'X': measure_x_axis(qc1, 1, 1) chsh_circuits.append(qc1) ##### ================================== chsh_circuits[0].draw('mpl') chsh_circuits[1].draw('mpl') chsh_circuits[2].draw('mpl') chsh_circuits[3].draw('mpl') # I couldn't come up with tests that would not give the answer away if you looked at the code so you are on your own here! # We can run all the circuits at the same time and then post process the data nshots = 8092 # The more shots, the less error backend_shots = Aer.get_backend('qasm_simulator') counts_list = execute(chsh_circuits, backend_shots, shots=nshots).result().get_counts() counts_list ##### ================================== # Write your solution in here. exp_dict = {} # For each of the circuits, take the counts that you got from that circuit, compute the probability # of each state and combine them together being very careful of which sign goes with which term for i in range(len(chsh_circuits)): string = measure_strings[i] #ZZ, ZX, XZ and XX counts = counts_list[i] exp = 0. for element in counts: parity = (-1)**(int(element[0])+int(element[1])) #print(element, parity) exp += counts[element]*parity exp_dict[string] = exp/nshots # You might want to take some inspiration from the function expectation_value_single_qubit # If you are completely lost and don't know how to solve this, just ask ##### ================================== # If you don't know if your answer is correct you can compute the results by hand # (it's probably easier than doing this) and check if everything is working ##### ================================== # Write your solution in here. exp_AB = np.sqrt(1/2)*(exp_dict['ZZ']-exp_dict['XZ']) exp_Ab = np.sqrt(1/2)*(exp_dict['ZX']-exp_dict['XX']) exp_aB = np.sqrt(1/2)*(exp_dict['ZZ']+exp_dict['XZ']) exp_ab = np.sqrt(1/2)*(exp_dict['ZX']+exp_dict['XX']) CHSH = exp_AB - exp_Ab + exp_aB + exp_ab ##### ================================== print('Your result is <CHSH>=', CHSH) print('The correct result is <CHSH>=', 2*np.sqrt(2)) ##### ================================== # Write your solution in here. Can_entanglement_be_teleported = True #Write True or False :D ##### ================================== # There is no grader for this question hehe ##### ================================== # Write your solution in here. Where_did_the_bell_pair_go = 'To the last two qubits' ##### ================================== # There is no grader for this question hehe ##### ================================== # Write your solution in here. ##### ================================== import qiskit.tools.jupyter %qiskit_version_table
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
wyqian1027
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector, array_to_latex from qiskit.extensions import Initialize from qiskit.quantum_info import random_statevector from qiskit.quantum_info import Statevector # Creamos 3 registros cuánticos qr = QuantumRegister(3, name="q") # Creamos dos registros clásicos con nombres diferentes crz = ClassicalRegister(1, name="crz") crx = ClassicalRegister(1, name="crx") # Creamos el circuito qc = QuantumCircuit(qr, crz, crx) # O QuantumCircuit(3, 2) qc.draw('mpl') # Creamos un circuito cuántico de dos cúbits phi_plus = QuantumCircuit(2) # Aplicamos la puerta H phi_plus.h(0) # Aplicamos la CNOT phi_plus.cnot(0, 1) phi_plus.draw('mpl') Statevector(phi_plus).draw('latex') # Primero fabricamos un estado aleatorio psi = random_statevector(2) #Esta función nos permite meter el estado en q_{0} init_gate = Initialize(psi) init_gate.label = "psi" # Lo representamos en la esfera de Bloch plot_bloch_multivector(psi) # Lo aplicamos qc qc.append(init_gate, [0]) # Y creamos el estado de bell en los dos últimos cúbits qc.h(1) qc.cnot(1, 2) # Representamos qc.draw('mpl') # Implementamos la acción de alice qc.barrier() qc.cnot(0, 1) qc.h(0) qc.draw('mpl') # Medimos los cúbits de Alice qc.barrier() qc.measure(1,crx) qc.measure(0,crz) qc.draw('mpl') # Aplicamos estas operaciones controladas por los bits clásicos #c_if controla las puertas con un bit clásico en vez de con un cubit qc.x(2).c_if(crx, 1) # Estas dos líneas verifican qc.z(2).c_if(crz, 1) # las acciones vistas arriba. qc.draw('mpl') sim = Aer.get_backend('aer_simulator') qc.save_statevector() out_vector = sim.run(qc).result().get_statevector() plot_bloch_multivector(out_vector)
https://github.com/RigiResearch/qiskit-fall-fest-22-public
RigiResearch
# Imports from Qiskit Terra from qiskit.circuit import QuantumCircuit from qiskit.visualization import plot_bloch_vector, plot_bloch_multivector, plot_state_qsphere, plot_histogram, visualize_transition from qiskit.quantum_info import Pauli, PauliList, Statevector # Imports from Qiskit Aer from qiskit import Aer, execute # Creation of multi-qubit circuit q_multi = QuantumCircuit() # Mention multi-quantum and classical bits in args # Display circuit q_multi.draw() cx_circ = QuantumCircuit() # Mention number of quantum and classical bits in args # Apply CX gate to the qubits [0 - Control qubit; 1 - Target qubit] # Draw the circuit cx_circ.draw() # Bloch Sphere visualization state = Statevector(cx_circ) # Statevector of the circuit plot_bloch_multivector(state) # Let's measaure the multi-qubit circuit cx_circ.measure() # Add measurement gate with appropriate args # Draw the circuit cx_circ.draw() # Import the backend backend = Aer.get_backend('qasm_simulator') # Creating a job and extracting results job = execute(cx_circ, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() # Plotting the counts plot_histogram(counts) # Do you know some of the quantum gates are reversible? # Can you verify what happens when you apply these gates twice? reverse_gate_circ = QuantumCircuit(2, 2) # Apply 2 CX gates on the same qubits ## APPLY GATE 1 HERE ## ## APPLY GATE 2 HERE ## # Draw circuit reverse_gate_circ.draw() # Send the circuit to a simulator to check the results! # Your blank canvas to apply the Toffoli gate! # Let us contruct the circuit for the first Bell state |phi+> entangled_circ = QuantumCircuit(2, 2) # Apply H gate follwoed by a CX gate on the qubits [0 - Control qubit; 1 - Target qubit] # Draw the circuit entangled_circ.draw() # Let's measaure the multi-qubit circuit entangled_circ.measure([0, 1], [0, 1]) # Add measurement gate with appropriate args # Draw the circuit entangled_circ.draw() # Import the backend backend = Aer.get_backend('qasm_simulator') # Creating a job and extracting results job = execute(entangled_circ, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() # Plotting the counts plot_histogram(counts) # Don't forget Qiskit uses a little-endian notation ! # Do you know there are 4 different Bell States? Can you build a circuit for the rest 3 Bell States?
https://github.com/RigiResearch/qiskit-fall-fest-22-public
RigiResearch
# Imports import numpy as np # Imports from Qiskit Terra from qiskit.circuit import QuantumCircuit from qiskit.visualization import plot_bloch_vector, plot_bloch_multivector, plot_state_qsphere, plot_histogram, visualize_transition from qiskit.quantum_info import Pauli, PauliList, Statevector # Imports from Qiskit Aer from qiskit import Aer, execute # Creation of a single qubit circuit q_circ = QuantumCircuit() # Mention number of quantum and classical bits in args # Display circuit q_circ.draw() # Plot a Bloch sphere for state |0> plot_bloch_vector([0, 0, 1]) # Creation of multi-qubit circuit q_multi = QuantumCircuit() # Mention multi-quantum and classical bits in args # Display circuit q_multi.draw() # Pauli-X representation as a matrix Pauli('X').to_matrix(sparse = False) x_circ = QuantumCircuit(1, 1) # Apply X gate to the qubit # Draw the circuit x_circ.draw() # Bloch Sphere visualization state = Statevector(x_circ) # Statevector of the circuit plot_bloch_multivector(state) # Visualize the effect of X gate visualize_transition(x_circ, trace = True, fpg = 15) # Your blank canvas! # Your blank canvas! rx_circ = QuantumCircuit(1, 1) # Apply Rx gate to the qubit rx_circ.rx(np.pi/2, 0) # Draw the circuit rx_circ.draw() # Bloch Sphere visualization state = Statevector(rx_circ) # Statevector of the circuit plot_bloch_multivector(state) # Visualize the effect of Rx gate visualize_transition(rx_circ, trace = True, fpg = 15) # Try experimenting with Ry and Rz gates! h_circ = QuantumCircuit(1, 1) # Apply H gate to the qubit h_circ.h(0) # Draw the circuit h_circ.draw() # Bloch Sphere visualization state = Statevector(h_circ) # Statevector of the circuit plot_bloch_multivector(state) # Visualize the effect of H gate visualize_transition(h_circ, trace = True, fpg = 15) uneq_superpos = QuantumCircuit(1, 1) # Apply series of single-qubit gates to create unequal superposition ## APPLY GATE(S) HERE ## # Draw the circuit uneq_superpos.draw() # Visualize the transition # Grab the circuits (every circuit made till now has a different name) # Let's measure the x_circ # Add measurement gate # Draw circuit x_circ.draw() # Measure the h_circ (superposition) # Add measurement gate # Draw circuit h_circ.draw() # What happens when you measure the unequal superposition circuit (uneq_superpos)? # Add measurement gate # Draw_circuit
https://github.com/RigiResearch/qiskit-fall-fest-22-public
RigiResearch
from qiskit import QuantumCircuit from qiskit import Aer, transpile from qiskit.tools.visualization import plot_histogram Aer.backends() simulator = Aer.get_backend('statevector_simulator') # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) circ.draw('mpl') # Create a Quantum Program for execution result = simulator.run(circ).result() counts = result.get_counts(circ) print(counts) plot_histogram(counts) simulator = Aer.get_backend('aer_simulator') # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) circ.measure_all() circ = transpile(circ, simulator) # Run and get counts result = simulator.run(circ).result() counts = result.get_counts(circ) plot_histogram(counts, title='GHZ State counts') result = simulator.run(circ, shots=10, memory=True).result() memory = result.get_memory(circ) print(memory) # IBMQ.load_account() # provider = IBMQ.get_provider(hub = 'ibm-q') # device = provider.get_backend('ibmq_16_melbourne') # job = execute(circuit,backend = device,shots = 1024) # print(job.job_id()) # device_result = job.result() # plot_histogram(device_result.get_counts(circuit))
https://github.com/amitcrypto/ARIA-Blocks-Qiskit
amitcrypto
# Copyright (c) Amit Kumar Chauhan, IIT Ropar, India. # Licensed under the GNU General Public License. # Importing standard Qiskit libraries and configuring account import qiskit from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Creating qubits q = qiskit.QuantumRegister(128) circuit = qiskit.QuantumCircuit(q) # Applying CNOT gates on the register of qubits circuit.cx(q[40], q[0]) circuit.cx(q[56], q[0]) circuit.cx(q[80], q[0]) circuit.cx(q[88], q[0]) circuit.cx(q[104], q[0]) circuit.cx(q[112], q[0]) circuit.cx(q[41], q[1]) circuit.cx(q[57], q[1]) circuit.cx(q[81], q[1]) circuit.cx(q[89], q[1]) circuit.cx(q[105], q[1]) circuit.cx(q[113], q[1]) circuit.cx(q[42], q[2]) circuit.cx(q[58], q[2]) circuit.cx(q[82], q[2]) circuit.cx(q[90], q[2]) circuit.cx(q[106], q[2]) circuit.cx(q[114], q[2]) circuit.cx(q[43], q[3]) circuit.cx(q[59], q[3]) circuit.cx(q[83], q[3]) circuit.cx(q[91], q[3]) circuit.cx(q[107], q[3]) circuit.cx(q[115], q[3]) circuit.cx(q[44], q[4]) circuit.cx(q[60], q[4]) circuit.cx(q[84], q[4]) circuit.cx(q[92], q[4]) circuit.cx(q[108], q[4]) circuit.cx(q[116], q[4]) circuit.cx(q[45], q[5]) circuit.cx(q[61], q[5]) circuit.cx(q[85], q[5]) circuit.cx(q[93], q[5]) circuit.cx(q[109], q[5]) circuit.cx(q[117], q[5]) circuit.cx(q[46], q[6]) circuit.cx(q[62], q[6]) circuit.cx(q[86], q[6]) circuit.cx(q[94], q[6]) circuit.cx(q[110], q[6]) circuit.cx(q[118], q[6]) circuit.cx(q[47], q[7]) circuit.cx(q[63], q[7]) circuit.cx(q[87], q[7]) circuit.cx(q[95], q[7]) circuit.cx(q[111], q[7]) circuit.cx(q[119], q[7]) circuit.cx(q[32], q[8]) circuit.cx(q[48], q[8]) circuit.cx(q[80], q[8]) circuit.cx(q[88], q[8]) circuit.cx(q[96], q[8]) circuit.cx(q[120], q[8]) circuit.cx(q[33], q[9]) circuit.cx(q[49], q[9]) circuit.cx(q[81], q[9]) circuit.cx(q[89], q[9]) circuit.cx(q[97], q[9]) circuit.cx(q[121], q[9]) circuit.cx(q[34], q[10]) circuit.cx(q[50], q[10]) circuit.cx(q[82], q[10]) circuit.cx(q[90], q[10]) circuit.cx(q[98], q[10]) circuit.cx(q[122], q[10]) circuit.cx(q[35], q[11]) circuit.cx(q[51], q[11]) circuit.cx(q[83], q[11]) circuit.cx(q[91], q[11]) circuit.cx(q[99], q[11]) circuit.cx(q[123], q[11]) circuit.cx(q[36], q[12]) circuit.cx(q[52], q[12]) circuit.cx(q[84], q[12]) circuit.cx(q[92], q[12]) circuit.cx(q[100], q[12]) circuit.cx(q[124], q[12]) circuit.cx(q[37], q[13]) circuit.cx(q[53], q[13]) circuit.cx(q[85], q[13]) circuit.cx(q[93], q[13]) circuit.cx(q[101], q[13]) circuit.cx(q[125], q[13]) circuit.cx(q[38], q[14]) circuit.cx(q[54], q[14]) circuit.cx(q[86], q[14]) circuit.cx(q[94], q[14]) circuit.cx(q[102], q[14]) circuit.cx(q[126], q[14]) circuit.cx(q[39], q[15]) circuit.cx(q[55], q[15]) circuit.cx(q[87], q[15]) circuit.cx(q[95], q[15]) circuit.cx(q[103], q[15]) circuit.cx(q[127], q[15]) circuit.cx(q[40], q[16]) circuit.cx(q[56], q[16]) circuit.cx(q[64], q[16]) circuit.cx(q[72], q[16]) circuit.cx(q[96], q[16]) circuit.cx(q[120], q[16]) circuit.cx(q[41], q[17]) circuit.cx(q[57], q[17]) circuit.cx(q[65], q[17]) circuit.cx(q[73], q[17]) circuit.cx(q[97], q[17]) circuit.cx(q[121], q[17]) circuit.cx(q[42], q[18]) circuit.cx(q[58], q[18]) circuit.cx(q[66], q[18]) circuit.cx(q[74], q[18]) circuit.cx(q[98], q[18]) circuit.cx(q[122], q[18]) circuit.cx(q[43], q[19]) circuit.cx(q[59], q[19]) circuit.cx(q[67], q[19]) circuit.cx(q[75], q[19]) circuit.cx(q[99], q[19]) circuit.cx(q[123], q[19]) circuit.cx(q[44], q[20]) circuit.cx(q[60], q[20]) circuit.cx(q[68], q[20]) circuit.cx(q[76], q[20]) circuit.cx(q[100], q[20]) circuit.cx(q[124], q[20]) circuit.cx(q[45], q[21]) circuit.cx(q[61], q[21]) circuit.cx(q[69], q[21]) circuit.cx(q[77], q[21]) circuit.cx(q[101], q[21]) circuit.cx(q[125], q[21]) circuit.cx(q[46], q[22]) circuit.cx(q[62], q[22]) circuit.cx(q[70], q[22]) circuit.cx(q[78], q[22]) circuit.cx(q[102], q[22]) circuit.cx(q[126], q[22]) circuit.cx(q[47], q[23]) circuit.cx(q[63], q[23]) circuit.cx(q[71], q[23]) circuit.cx(q[79], q[23]) circuit.cx(q[103], q[23]) circuit.cx(q[127], q[23]) circuit.cx(q[32], q[24]) circuit.cx(q[48], q[24]) circuit.cx(q[64], q[24]) circuit.cx(q[72], q[24]) circuit.cx(q[104], q[24]) circuit.cx(q[112], q[24]) circuit.cx(q[33], q[25]) circuit.cx(q[49], q[25]) circuit.cx(q[65], q[25]) circuit.cx(q[73], q[25]) circuit.cx(q[105], q[25]) circuit.cx(q[113], q[25]) circuit.cx(q[34], q[26]) circuit.cx(q[50], q[26]) circuit.cx(q[66], q[26]) circuit.cx(q[74], q[26]) circuit.cx(q[106], q[26]) circuit.cx(q[114], q[26]) circuit.cx(q[35], q[27]) circuit.cx(q[51], q[27]) circuit.cx(q[67], q[27]) circuit.cx(q[75], q[27]) circuit.cx(q[107], q[27]) circuit.cx(q[115], q[27]) circuit.cx(q[36], q[28]) circuit.cx(q[52], q[28]) circuit.cx(q[68], q[28]) circuit.cx(q[76], q[28]) circuit.cx(q[108], q[28]) circuit.cx(q[116], q[28]) circuit.cx(q[37], q[29]) circuit.cx(q[53], q[29]) circuit.cx(q[69], q[29]) circuit.cx(q[77], q[29]) circuit.cx(q[109], q[29]) circuit.cx(q[117], q[29]) circuit.cx(q[38], q[30]) circuit.cx(q[54], q[30]) circuit.cx(q[70], q[30]) circuit.cx(q[78], q[30]) circuit.cx(q[110], q[30]) circuit.cx(q[118], q[30]) circuit.cx(q[39], q[31]) circuit.cx(q[55], q[31]) circuit.cx(q[71], q[31]) circuit.cx(q[79], q[31]) circuit.cx(q[111], q[31]) circuit.cx(q[119], q[31]) circuit.cx(q[32], q[8]) circuit.cx(q[32], q[24]) circuit.cx(q[64], q[32]) circuit.cx(q[88], q[32]) circuit.cx(q[96], q[32]) circuit.cx(q[104], q[32]) circuit.cx(q[33], q[9]) circuit.cx(q[33], q[25]) circuit.cx(q[65], q[33]) circuit.cx(q[89], q[33]) circuit.cx(q[97], q[33]) circuit.cx(q[105], q[33]) circuit.cx(q[34], q[10]) circuit.cx(q[34], q[26]) circuit.cx(q[66], q[34]) circuit.cx(q[90], q[34]) circuit.cx(q[98], q[34]) circuit.cx(q[106], q[34]) circuit.cx(q[35], q[11]) circuit.cx(q[35], q[27]) circuit.cx(q[67], q[35]) circuit.cx(q[91], q[35]) circuit.cx(q[99], q[35]) circuit.cx(q[107], q[35]) circuit.cx(q[36], q[12]) circuit.cx(q[36], q[28]) circuit.cx(q[68], q[36]) circuit.cx(q[92], q[36]) circuit.cx(q[100], q[36]) circuit.cx(q[108], q[36]) circuit.cx(q[37], q[13]) circuit.cx(q[37], q[29]) circuit.cx(q[69], q[37]) circuit.cx(q[93], q[37]) circuit.cx(q[101], q[37]) circuit.cx(q[109], q[37]) circuit.cx(q[38], q[14]) circuit.cx(q[38], q[30]) circuit.cx(q[70], q[38]) circuit.cx(q[94], q[38]) circuit.cx(q[102], q[38]) circuit.cx(q[110], q[38]) circuit.cx(q[39], q[15]) circuit.cx(q[39], q[31]) circuit.cx(q[71], q[39]) circuit.cx(q[95], q[39]) circuit.cx(q[103], q[39]) circuit.cx(q[111], q[39]) circuit.cx(q[40], q[0]) circuit.cx(q[40], q[16]) circuit.cx(q[72], q[40]) circuit.cx(q[80], q[40]) circuit.cx(q[96], q[40]) circuit.cx(q[104], q[40]) circuit.cx(q[41], q[1]) circuit.cx(q[41], q[17]) circuit.cx(q[73], q[41]) circuit.cx(q[81], q[41]) circuit.cx(q[97], q[41]) circuit.cx(q[105], q[41]) circuit.cx(q[42], q[2]) circuit.cx(q[42], q[18]) circuit.cx(q[74], q[42]) circuit.cx(q[82], q[42]) circuit.cx(q[98], q[42]) circuit.cx(q[106], q[42]) circuit.cx(q[43], q[3]) circuit.cx(q[43], q[19]) circuit.cx(q[75], q[43]) circuit.cx(q[83], q[43]) circuit.cx(q[99], q[43]) circuit.cx(q[107], q[43]) circuit.cx(q[44], q[4]) circuit.cx(q[44], q[20]) circuit.cx(q[76], q[44]) circuit.cx(q[84], q[44]) circuit.cx(q[100], q[44]) circuit.cx(q[108], q[44]) circuit.cx(q[45], q[5]) circuit.cx(q[45], q[21]) circuit.cx(q[77], q[45]) circuit.cx(q[85], q[45]) circuit.cx(q[101], q[45]) circuit.cx(q[109], q[45]) circuit.cx(q[46], q[6]) circuit.cx(q[46], q[22]) circuit.cx(q[78], q[46]) circuit.cx(q[86], q[46]) circuit.cx(q[102], q[46]) circuit.cx(q[110], q[46]) circuit.cx(q[47], q[7]) circuit.cx(q[47], q[23]) circuit.cx(q[79], q[47]) circuit.cx(q[87], q[47]) circuit.cx(q[103], q[47]) circuit.cx(q[111], q[47]) circuit.cx(q[48], q[8]) circuit.cx(q[48], q[24]) circuit.cx(q[72], q[48]) circuit.cx(q[80], q[48]) circuit.cx(q[112], q[48]) circuit.cx(q[120], q[48]) circuit.cx(q[49], q[9]) circuit.cx(q[49], q[25]) circuit.cx(q[73], q[49]) circuit.cx(q[81], q[49]) circuit.cx(q[113], q[49]) circuit.cx(q[121], q[49]) circuit.cx(q[50], q[10]) circuit.cx(q[50], q[26]) circuit.cx(q[74], q[50]) circuit.cx(q[82], q[50]) circuit.cx(q[114], q[50]) circuit.cx(q[122], q[50]) circuit.cx(q[51], q[11]) circuit.cx(q[51], q[27]) circuit.cx(q[75], q[51]) circuit.cx(q[83], q[51]) circuit.cx(q[115], q[51]) circuit.cx(q[123], q[51]) circuit.cx(q[52], q[12]) circuit.cx(q[52], q[28]) circuit.cx(q[76], q[52]) circuit.cx(q[84], q[52]) circuit.cx(q[116], q[52]) circuit.cx(q[124], q[52]) circuit.cx(q[53], q[13]) circuit.cx(q[53], q[29]) circuit.cx(q[77], q[53]) circuit.cx(q[85], q[53]) circuit.cx(q[117], q[53]) circuit.cx(q[125], q[53]) circuit.cx(q[54], q[14]) circuit.cx(q[54], q[30]) circuit.cx(q[78], q[54]) circuit.cx(q[86], q[54]) circuit.cx(q[118], q[54]) circuit.cx(q[126], q[54]) circuit.cx(q[55], q[15]) circuit.cx(q[55], q[31]) circuit.cx(q[79], q[55]) circuit.cx(q[87], q[55]) circuit.cx(q[119], q[55]) circuit.cx(q[127], q[55]) circuit.cx(q[56], q[0]) circuit.cx(q[56], q[16]) circuit.cx(q[64], q[56]) circuit.cx(q[88], q[56]) circuit.cx(q[112], q[56]) circuit.cx(q[120], q[56]) circuit.cx(q[57], q[1]) circuit.cx(q[57], q[17]) circuit.cx(q[65], q[57]) circuit.cx(q[89], q[57]) circuit.cx(q[113], q[57]) circuit.cx(q[121], q[57]) circuit.cx(q[58], q[2]) circuit.cx(q[58], q[18]) circuit.cx(q[66], q[58]) circuit.cx(q[90], q[58]) circuit.cx(q[114], q[58]) circuit.cx(q[122], q[58]) circuit.cx(q[59], q[3]) circuit.cx(q[59], q[19]) circuit.cx(q[67], q[59]) circuit.cx(q[91], q[59]) circuit.cx(q[115], q[59]) circuit.cx(q[123], q[59]) circuit.cx(q[60], q[4]) circuit.cx(q[60], q[20]) circuit.cx(q[68], q[60]) circuit.cx(q[92], q[60]) circuit.cx(q[116], q[60]) circuit.cx(q[124], q[60]) circuit.cx(q[61], q[5]) circuit.cx(q[61], q[21]) circuit.cx(q[69], q[61]) circuit.cx(q[93], q[61]) circuit.cx(q[117], q[61]) circuit.cx(q[125], q[61]) circuit.cx(q[62], q[6]) circuit.cx(q[62], q[22]) circuit.cx(q[70], q[62]) circuit.cx(q[94], q[62]) circuit.cx(q[118], q[62]) circuit.cx(q[126], q[62]) circuit.cx(q[63], q[7]) circuit.cx(q[63], q[23]) circuit.cx(q[71], q[63]) circuit.cx(q[95], q[63]) circuit.cx(q[119], q[63]) circuit.cx(q[127], q[63]) circuit.cx(q[64], q[16]) circuit.cx(q[64], q[24]) circuit.cx(q[64], q[32]) circuit.cx(q[64], q[56]) circuit.cx(q[104], q[64]) circuit.cx(q[120], q[64]) circuit.cx(q[65], q[17]) circuit.cx(q[65], q[25]) circuit.cx(q[65], q[33]) circuit.cx(q[65], q[57]) circuit.cx(q[105], q[65]) circuit.cx(q[121], q[65]) circuit.cx(q[66], q[18]) circuit.cx(q[66], q[26]) circuit.cx(q[66], q[34]) circuit.cx(q[66], q[58]) circuit.cx(q[106], q[66]) circuit.cx(q[122], q[66]) circuit.cx(q[67], q[19]) circuit.cx(q[67], q[27]) circuit.cx(q[67], q[35]) circuit.cx(q[67], q[59]) circuit.cx(q[107], q[67]) circuit.cx(q[123], q[67]) circuit.cx(q[68], q[20]) circuit.cx(q[68], q[28]) circuit.cx(q[68], q[36]) circuit.cx(q[68], q[60]) circuit.cx(q[108], q[68]) circuit.cx(q[124], q[68]) circuit.cx(q[69], q[21]) circuit.cx(q[69], q[29]) circuit.cx(q[69], q[37]) circuit.cx(q[69], q[61]) circuit.cx(q[109], q[69]) circuit.cx(q[125], q[69]) circuit.cx(q[70], q[22]) circuit.cx(q[70], q[30]) circuit.cx(q[70], q[38]) circuit.cx(q[70], q[62]) circuit.cx(q[110], q[70]) circuit.cx(q[126], q[70]) circuit.cx(q[71], q[23]) circuit.cx(q[71], q[31]) circuit.cx(q[71], q[39]) circuit.cx(q[71], q[63]) circuit.cx(q[111], q[71]) circuit.cx(q[127], q[71]) circuit.cx(q[72], q[16]) circuit.cx(q[72], q[24]) circuit.cx(q[72], q[40]) circuit.cx(q[72], q[48]) circuit.cx(q[96], q[72]) circuit.cx(q[112], q[72]) circuit.cx(q[73], q[17]) circuit.cx(q[73], q[25]) circuit.cx(q[73], q[41]) circuit.cx(q[73], q[49]) circuit.cx(q[97], q[73]) circuit.cx(q[113], q[73]) circuit.cx(q[74], q[18]) circuit.cx(q[74], q[26]) circuit.cx(q[74], q[42]) circuit.cx(q[74], q[50]) circuit.cx(q[98], q[74]) circuit.cx(q[114], q[74]) circuit.cx(q[75], q[19]) circuit.cx(q[75], q[27]) circuit.cx(q[75], q[43]) circuit.cx(q[75], q[51]) circuit.cx(q[99], q[75]) circuit.cx(q[115], q[75]) circuit.cx(q[76], q[20]) circuit.cx(q[76], q[28]) circuit.cx(q[76], q[44]) circuit.cx(q[76], q[52]) circuit.cx(q[100], q[76]) circuit.cx(q[116], q[76]) circuit.cx(q[77], q[21]) circuit.cx(q[77], q[29]) circuit.cx(q[77], q[45]) circuit.cx(q[77], q[53]) circuit.cx(q[101], q[77]) circuit.cx(q[117], q[77]) circuit.cx(q[78], q[22]) circuit.cx(q[78], q[30]) circuit.cx(q[78], q[46]) circuit.cx(q[78], q[54]) circuit.cx(q[102], q[78]) circuit.cx(q[118], q[78]) circuit.cx(q[79], q[23]) circuit.cx(q[79], q[31]) circuit.cx(q[79], q[47]) circuit.cx(q[79], q[55]) circuit.cx(q[103], q[79]) circuit.cx(q[119], q[79]) circuit.cx(q[80], q[0]) circuit.cx(q[80], q[8]) circuit.cx(q[80], q[40]) circuit.cx(q[80], q[48]) circuit.cx(q[104], q[80]) circuit.cx(q[120], q[80]) circuit.cx(q[81], q[1]) circuit.cx(q[81], q[9]) circuit.cx(q[81], q[41]) circuit.cx(q[81], q[49]) circuit.cx(q[105], q[81]) circuit.cx(q[121], q[81]) circuit.cx(q[82], q[2]) circuit.cx(q[82], q[10]) circuit.cx(q[82], q[42]) circuit.cx(q[82], q[50]) circuit.cx(q[106], q[82]) circuit.cx(q[122], q[82]) circuit.cx(q[83], q[3]) circuit.cx(q[83], q[11]) circuit.cx(q[83], q[43]) circuit.cx(q[83], q[51]) circuit.cx(q[107], q[83]) circuit.cx(q[123], q[83]) circuit.cx(q[84], q[4]) circuit.cx(q[84], q[12]) circuit.cx(q[84], q[44]) circuit.cx(q[84], q[52]) circuit.cx(q[108], q[84]) circuit.cx(q[124], q[84]) circuit.cx(q[85], q[5]) circuit.cx(q[85], q[13]) circuit.cx(q[85], q[45]) circuit.cx(q[85], q[53]) circuit.cx(q[109], q[85]) circuit.cx(q[125], q[85]) circuit.cx(q[86], q[6]) circuit.cx(q[86], q[14]) circuit.cx(q[86], q[46]) circuit.cx(q[86], q[54]) circuit.cx(q[110], q[86]) circuit.cx(q[126], q[86]) circuit.cx(q[87], q[7]) circuit.cx(q[87], q[15]) circuit.cx(q[87], q[47]) circuit.cx(q[87], q[55]) circuit.cx(q[111], q[87]) circuit.cx(q[127], q[87]) circuit.cx(q[88], q[0]) circuit.cx(q[88], q[8]) circuit.cx(q[88], q[32]) circuit.cx(q[88], q[56]) circuit.cx(q[96], q[88]) circuit.cx(q[112], q[88]) circuit.cx(q[89], q[1]) circuit.cx(q[89], q[9]) circuit.cx(q[89], q[33]) circuit.cx(q[89], q[57]) circuit.cx(q[97], q[89]) circuit.cx(q[113], q[89]) circuit.cx(q[90], q[2]) circuit.cx(q[90], q[10]) circuit.cx(q[90], q[34]) circuit.cx(q[90], q[58]) circuit.cx(q[98], q[90]) circuit.cx(q[114], q[90]) circuit.cx(q[91], q[3]) circuit.cx(q[91], q[11]) circuit.cx(q[91], q[35]) circuit.cx(q[91], q[59]) circuit.cx(q[99], q[91]) circuit.cx(q[115], q[91]) circuit.cx(q[92], q[4]) circuit.cx(q[92], q[12]) circuit.cx(q[92], q[36]) circuit.cx(q[92], q[60]) circuit.cx(q[100], q[92]) circuit.cx(q[116], q[92]) circuit.cx(q[93], q[5]) circuit.cx(q[93], q[13]) circuit.cx(q[93], q[37]) circuit.cx(q[93], q[61]) circuit.cx(q[101], q[93]) circuit.cx(q[117], q[93]) circuit.cx(q[94], q[6]) circuit.cx(q[94], q[14]) circuit.cx(q[94], q[38]) circuit.cx(q[94], q[62]) circuit.cx(q[102], q[94]) circuit.cx(q[118], q[94]) circuit.cx(q[95], q[7]) circuit.cx(q[95], q[15]) circuit.cx(q[95], q[39]) circuit.cx(q[95], q[63]) circuit.cx(q[103], q[95]) circuit.cx(q[119], q[95]) circuit.cx(q[96], q[8]) circuit.cx(q[96], q[16]) circuit.cx(q[96], q[32]) circuit.cx(q[96], q[40]) circuit.cx(q[96], q[72]) circuit.cx(q[96], q[88]) circuit.cx(q[97], q[9]) circuit.cx(q[97], q[17]) circuit.cx(q[97], q[33]) circuit.cx(q[97], q[41]) circuit.cx(q[97], q[73]) circuit.cx(q[97], q[89]) circuit.cx(q[98], q[10]) circuit.cx(q[98], q[18]) circuit.cx(q[98], q[34]) circuit.cx(q[98], q[42]) circuit.cx(q[98], q[74]) circuit.cx(q[98], q[90]) circuit.cx(q[99], q[11]) circuit.cx(q[99], q[19]) circuit.cx(q[99], q[35]) circuit.cx(q[99], q[43]) circuit.cx(q[99], q[75]) circuit.cx(q[99], q[91]) circuit.cx(q[100], q[12]) circuit.cx(q[100], q[20]) circuit.cx(q[100], q[36]) circuit.cx(q[100], q[44]) circuit.cx(q[100], q[76]) circuit.cx(q[100], q[92]) circuit.cx(q[101], q[13]) circuit.cx(q[101], q[21]) circuit.cx(q[101], q[37]) circuit.cx(q[101], q[45]) circuit.cx(q[101], q[77]) circuit.cx(q[101], q[93]) circuit.cx(q[102], q[14]) circuit.cx(q[102], q[22]) circuit.cx(q[102], q[38]) circuit.cx(q[102], q[46]) circuit.cx(q[102], q[78]) circuit.cx(q[102], q[94]) circuit.cx(q[103], q[15]) circuit.cx(q[103], q[23]) circuit.cx(q[103], q[39]) circuit.cx(q[103], q[47]) circuit.cx(q[103], q[79]) circuit.cx(q[103], q[95]) circuit.cx(q[104], q[0]) circuit.cx(q[104], q[24]) circuit.cx(q[104], q[32]) circuit.cx(q[104], q[40]) circuit.cx(q[104], q[64]) circuit.cx(q[104], q[80]) circuit.cx(q[105], q[1]) circuit.cx(q[105], q[25]) circuit.cx(q[105], q[33]) circuit.cx(q[105], q[41]) circuit.cx(q[105], q[65]) circuit.cx(q[105], q[81]) circuit.cx(q[106], q[2]) circuit.cx(q[106], q[26]) circuit.cx(q[106], q[34]) circuit.cx(q[106], q[42]) circuit.cx(q[106], q[66]) circuit.cx(q[106], q[82]) circuit.cx(q[107], q[3]) circuit.cx(q[107], q[27]) circuit.cx(q[107], q[35]) circuit.cx(q[107], q[43]) circuit.cx(q[107], q[67]) circuit.cx(q[107], q[83]) circuit.cx(q[108], q[4]) circuit.cx(q[108], q[28]) circuit.cx(q[108], q[36]) circuit.cx(q[108], q[44]) circuit.cx(q[108], q[68]) circuit.cx(q[108], q[84]) circuit.cx(q[109], q[5]) circuit.cx(q[109], q[29]) circuit.cx(q[109], q[37]) circuit.cx(q[109], q[45]) circuit.cx(q[109], q[69]) circuit.cx(q[109], q[85]) circuit.cx(q[110], q[6]) circuit.cx(q[110], q[30]) circuit.cx(q[110], q[38]) circuit.cx(q[110], q[46]) circuit.cx(q[110], q[70]) circuit.cx(q[110], q[86]) circuit.cx(q[111], q[7]) circuit.cx(q[111], q[31]) circuit.cx(q[111], q[39]) circuit.cx(q[111], q[47]) circuit.cx(q[111], q[71]) circuit.cx(q[111], q[87]) circuit.cx(q[112], q[0]) circuit.cx(q[112], q[24]) circuit.cx(q[112], q[48]) circuit.cx(q[112], q[56]) circuit.cx(q[112], q[72]) circuit.cx(q[112], q[88]) circuit.cx(q[113], q[1]) circuit.cx(q[113], q[25]) circuit.cx(q[113], q[49]) circuit.cx(q[113], q[57]) circuit.cx(q[113], q[73]) circuit.cx(q[113], q[89]) circuit.cx(q[114], q[2]) circuit.cx(q[114], q[26]) circuit.cx(q[114], q[50]) circuit.cx(q[114], q[58]) circuit.cx(q[114], q[74]) circuit.cx(q[114], q[90]) circuit.cx(q[115], q[3]) circuit.cx(q[115], q[27]) circuit.cx(q[115], q[51]) circuit.cx(q[115], q[59]) circuit.cx(q[115], q[75]) circuit.cx(q[115], q[91]) circuit.cx(q[116], q[4]) circuit.cx(q[116], q[28]) circuit.cx(q[116], q[52]) circuit.cx(q[116], q[60]) circuit.cx(q[116], q[76]) circuit.cx(q[116], q[92]) circuit.cx(q[117], q[5]) circuit.cx(q[117], q[29]) circuit.cx(q[117], q[53]) circuit.cx(q[117], q[61]) circuit.cx(q[117], q[77]) circuit.cx(q[117], q[93]) circuit.cx(q[118], q[6]) circuit.cx(q[118], q[30]) circuit.cx(q[118], q[54]) circuit.cx(q[118], q[62]) circuit.cx(q[118], q[78]) circuit.cx(q[118], q[94]) circuit.cx(q[119], q[7]) circuit.cx(q[119], q[31]) circuit.cx(q[119], q[55]) circuit.cx(q[119], q[63]) circuit.cx(q[119], q[79]) circuit.cx(q[119], q[95]) circuit.cx(q[120], q[8]) circuit.cx(q[120], q[16]) circuit.cx(q[120], q[48]) circuit.cx(q[120], q[56]) circuit.cx(q[120], q[64]) circuit.cx(q[120], q[80]) circuit.cx(q[121], q[9]) circuit.cx(q[121], q[17]) circuit.cx(q[121], q[49]) circuit.cx(q[121], q[57]) circuit.cx(q[121], q[65]) circuit.cx(q[121], q[81]) circuit.cx(q[122], q[10]) circuit.cx(q[122], q[18]) circuit.cx(q[122], q[50]) circuit.cx(q[122], q[58]) circuit.cx(q[122], q[66]) circuit.cx(q[122], q[82]) circuit.cx(q[123], q[11]) circuit.cx(q[123], q[19]) circuit.cx(q[123], q[51]) circuit.cx(q[123], q[59]) circuit.cx(q[123], q[67]) circuit.cx(q[123], q[83]) circuit.cx(q[124], q[12]) circuit.cx(q[124], q[20]) circuit.cx(q[124], q[52]) circuit.cx(q[124], q[60]) circuit.cx(q[124], q[68]) circuit.cx(q[124], q[84]) circuit.cx(q[125], q[13]) circuit.cx(q[125], q[21]) circuit.cx(q[125], q[53]) circuit.cx(q[125], q[61]) circuit.cx(q[125], q[69]) circuit.cx(q[125], q[85]) circuit.cx(q[126], q[14]) circuit.cx(q[126], q[22]) circuit.cx(q[126], q[54]) circuit.cx(q[126], q[62]) circuit.cx(q[126], q[70]) circuit.cx(q[126], q[86]) circuit.cx(q[127], q[15]) circuit.cx(q[127], q[23]) circuit.cx(q[127], q[55]) circuit.cx(q[127], q[63]) circuit.cx(q[127], q[71]) circuit.cx(q[127], q[87]) # Printing the circuit qc = circuit.draw() print(qc) # Estimating the circuit depth d = QuantumCircuit.depth(circuit) print('The Circuit Depth :=', d)
https://github.com/amitcrypto/ARIA-Blocks-Qiskit
amitcrypto
# Copyright (c) Amit Kumar Chauhan, IIT Ropar, India. # Licensed under the GNU General Public License. # Importing standard Qiskit libraries and configuring account import qiskit from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Creating qubits q = qiskit.QuantumRegister(128) circuit = qiskit.QuantumCircuit(q) # Applying Toffoli gate on the register of qubits circuit.ccx(q[7], q[9], q[16]) circuit.ccx(q[6], q[10], q[16]) circuit.ccx(q[5], q[11], q[16]) circuit.ccx(q[4], q[12], q[16]) circuit.ccx(q[3], q[13], q[16]) circuit.ccx(q[2], q[14], q[16]) circuit.ccx(q[1], q[15], q[16]) circuit.ccx(q[7], q[10], q[17]) circuit.ccx(q[6], q[11], q[17]) circuit.ccx(q[5], q[12], q[17]) circuit.ccx(q[4], q[13], q[17]) circuit.ccx(q[3], q[14], q[17]) circuit.ccx(q[2], q[15], q[17]) circuit.ccx(q[7], q[11], q[18]) circuit.ccx(q[6], q[12], q[18]) circuit.ccx(q[5], q[13], q[18]) circuit.ccx(q[4], q[14], q[18]) circuit.ccx(q[3], q[15], q[18]) circuit.ccx(q[7], q[12], q[19]) circuit.ccx(q[6], q[13], q[19]) circuit.ccx(q[5], q[14], q[19]) circuit.ccx(q[4], q[15], q[19]) circuit.ccx(q[7], q[13], q[20]) circuit.ccx(q[6], q[14], q[20]) circuit.ccx(q[5], q[15], q[20]) circuit.ccx(q[7], q[14], q[21]) circuit.ccx(q[6], q[15], q[21]) circuit.ccx(q[7], q[15], q[22]) # Applying CNOT gate on the register of qubits circuit.cx(q[22], q[23]) circuit.cx(q[20], q[23]) circuit.cx(q[19], q[23]) circuit.cx(q[21], q[22]) circuit.cx(q[19], q[22]) circuit.cx(q[18], q[22]) circuit.cx(q[20], q[21]) circuit.cx(q[18], q[21]) circuit.cx(q[17], q[21]) circuit.cx(q[19], q[20]) circuit.cx(q[17], q[20]) circuit.cx(q[16], q[20]) circuit.cx(q[18], q[19]) circuit.cx(q[16], q[19]) circuit.cx(q[18], q[22]) circuit.cx(q[17], q[18]) circuit.cx(q[17], q[22]) circuit.cx(q[17], q[21]) circuit.cx(q[16], q[17]) circuit.cx(q[16], q[21]) circuit.cx(q[16], q[20]) # Applying Toffoli gate on the register of qubits circuit.ccx(q[7], q[8], q[23]) circuit.ccx(q[6], q[9], q[23]) circuit.ccx(q[5], q[10], q[23]) circuit.ccx(q[4], q[11], q[23]) circuit.ccx(q[3], q[12], q[23]) circuit.ccx(q[2], q[13], q[23]) circuit.ccx(q[1], q[14], q[23]) circuit.ccx(q[0], q[15], q[23]) circuit.ccx(q[6], q[8], q[22]) circuit.ccx(q[5], q[9], q[22]) circuit.ccx(q[4], q[10], q[22]) circuit.ccx(q[3], q[11], q[22]) circuit.ccx(q[2], q[12], q[22]) circuit.ccx(q[1], q[13], q[22]) circuit.ccx(q[0], q[14], q[22]) circuit.ccx(q[5], q[8], q[21]) circuit.ccx(q[4], q[9], q[21]) circuit.ccx(q[3], q[10], q[21]) circuit.ccx(q[2], q[11], q[21]) circuit.ccx(q[1], q[12], q[21]) circuit.ccx(q[0], q[13], q[21]) circuit.ccx(q[4], q[8], q[20]) circuit.ccx(q[3], q[9], q[20]) circuit.ccx(q[2], q[10], q[20]) circuit.ccx(q[1], q[11], q[20]) circuit.ccx(q[0], q[12], q[20]) circuit.ccx(q[3], q[8], q[19]) circuit.ccx(q[2], q[9], q[19]) circuit.ccx(q[1], q[10], q[19]) circuit.ccx(q[0], q[11], q[19]) circuit.ccx(q[2], q[8], q[18]) circuit.ccx(q[1], q[9], q[18]) circuit.ccx(q[0], q[10], q[18]) circuit.ccx(q[1], q[8], q[17]) circuit.ccx(q[0], q[9], q[17]) circuit.ccx(q[0], q[8], q[16]) # Printing the circuit qc = circuit.draw() print(qc) # Estimating the circuit depth d = QuantumCircuit.depth(circuit) print('The Circuit Depth :=', d)
https://github.com/amitcrypto/ARIA-Blocks-Qiskit
amitcrypto
# Copyright (c) Amit Kumar Chauhan, IIT Ropar, India. # Licensed under the GNU General Public License. # Importing standard Qiskit libraries and configuring account import qiskit from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Creating qubits q = qiskit.QuantumRegister(128) circuit = qiskit.QuantumCircuit(q) # Applying CNOT gates on the register of qubits circuit.cx(q[4], q[0]) circuit.cx(q[6], q[0]) circuit.cx(q[5], q[1]) circuit.cx(q[4], q[2]) circuit.cx(q[7], q[2]) circuit.cx(q[5], q[3]) circuit.cx(q[6], q[4]) circuit.cx(q[7], q[4]) circuit.cx(q[6], q[5]) circuit.cx(q[6], q[7]) circuit.cx(q[5], q[6]) circuit.cx(q[4], q[6]) # Printing the circuit qc = circuit.draw() print(qc) # Estimating the circuit depth d = QuantumCircuit.depth(circuit) print('The Circuit Depth :=', d)
https://github.com/MonitSharma/Qiskit-Hindi-Tutorials
MonitSharma
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() !pip install qutip -q !pip install qiskit -q !pip install qiskit[visualization] -q !pip install git+https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src -q import numpy as np np.set_printoptions(precision=3, suppress=True) import qutip as qt from matplotlib import pyplot as plt %matplotlib inline import pandas as pd import sklearn as sk import qiskit as qk # Remember that qiskit has to be already installed in the Python environment. # Otherwise the import command will fail import qiskit as qk # A circuit composed of just one qubit qc = qk.QuantumCircuit(1) qc.draw('mpl') import qiskit as qiskit # A qubit initialized in the state |0> qc = qk.QuantumCircuit(1) qc.initialize([1,0]) qc.draw('mpl') import qiskit as qiskit # A qubit initialized in the state |0> qc = qk.QuantumCircuit(1) qc.initialize([1,0]) qc.draw('mpl') import qiskit as qiskit # A qubit initialized in the state |0> qc = qk.QuantumCircuit(1) qc.initialize([1,0]) qc.draw('mpl') import qiskit as qk qc = qk.QuantumCircuit(1) qc.initialize([1,0],0) qc.measure_all() # Let's choose the statevector simulator from the Aer backend backend = qk.Aer.get_backend('statevector_simulator') # And execute the circuit qc in the simulator backend # getting as final result the counts from 1.000 measures # of the qubit state result = qk.execute(qc, backend, shots=1000).result().get_counts() result import qiskit as qk qc = qk.QuantumCircuit(1) qc.initialize([1,0],0) qc.measure_all() backend = qk.Aer.get_backend('statevector_simulator') result = qk.execute(qc, backend, shots=1000).result().get_counts() qk.visualization.plot_histogram(result) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.measure(0,0) qc.draw('mpl') backend = qk.Aer.get_backend('statevector_simulator') result = qk.execute(qc, backend, shots=1000).result().get_counts() qk.visualization.plot_histogram(result) import numpy as np v0 = np.array([[1],[0]]);v0 v1 = np.array([[0],[1]]); v1 X = np.array([[0,1],[1,0]]); X X.dot(v0) X.dot(v1) import qiskit as qk qr = qk.QuantumRegister(1,"q0") cr = qk.ClassicalRegister(1,"c0") qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.x(0) qc.measure(qr[0], cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=1000).result().get_counts() results qk.visualization.plot_histogram(results) import numpy as np # Notice that we are creating the v0 matrix using the transpose operation v0 = np.array([[1,0]]).T; v0 # Here it is created again de X matrix X = np.array([[0,1],[1,0]]); X # Multiplying v0 by the X matrix twice you get again v0 X.dot(X).dot(v0) # Multiplying the X matrix by itself you get the Identity matrix X.dot(X) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.x(0) qc.x(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') # The result of 1000 measures of the qubit above gives the |0> state as result # in all measures simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=1000).result().get_counts() results qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,2**-0.5],0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np v0 = np.array([[1,0]]).T; v0 H = np.array([[1,1],[1,-1]])/np.sqrt(2); H H.dot(v0) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.h(qr[0]) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,-(2**-0.5)],0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,-(2**-0.5)],0) qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.h(0) qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np # First let's start with the qubit in the state |psi> = (|0> - |1>)/sqrt(2) psi = np.array([[1,-1]]).T/(2**0.5); psi H = np.array([[1,1],[1,-1]])/2**0.5; H # Now let's pass the qubit Psi through an Hadamard gate. # The result is a qubit in the state |1> H.dot(psi) # Let's start with a qubit in the state |1>, pass it through a # a hadamard gate twice and check the result v0 = np.array([[0,1]]).T; v0 H.dot(H).dot(v0) # This means that if we multiply the H gate by itself the result # will be an Identity matrix. Let's check it. H.dot(H) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np psi1 = np.array([[1,0]]).T; psi1 psi2 = np.array([[1,0]]).T; psi2 # In numpy the tensor product is calculated with the function kron np.kron(psi1,psi2) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.h(1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np psi1 = np.array([[1,0]]).T;psi1 psi2 = np.array([[1,0]]).T;psi2 H = np.array([[1,1],[1,-1]])/2**0.5;H # When we want to combine two vector states or gate matrices we tensor product them. psi3 = np.kron(psi1,psi2);psi3 H2 = np.kron(H,H);H2 # When we want to pass a vetor through a gate we calculate the dot product # of the total gate matrix with the total vector. # As we have predicted, the resulting vector state has a=b=c=d=1/2 psi4 = H2.dot(psi3); psi4
https://github.com/MonitSharma/Qiskit-Hindi-Tutorials
MonitSharma
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() !pip install qutip -q !pip install qiskit -q !pip install qiskit[visualization] -q !pip install git+https://github.com/qiskit-community/qiskit-textbook.git#subdirectory=qiskit-textbook-src -q import numpy as np np.set_printoptions(precision=3, suppress=True) import qutip as qt from matplotlib import pyplot as plt %matplotlib inline import pandas as pd import sklearn as sk import qiskit as qk # Remember that qiskit has to be already installed in the Python environment. # Otherwise the import command will fail import qiskit as qk # A circuit composed of just one qubit qc = qk.QuantumCircuit(1) qc.draw('mpl') import qiskit as qiskit # A qubit initialized in the state |0> qc = qk.QuantumCircuit(1) qc.initialize([1,0]) qc.draw('mpl') import qiskit as qiskit # A qubit initialized in the state |0> qc = qk.QuantumCircuit(1) qc.initialize([1,0]) qc.draw('mpl') import qiskit as qiskit # A qubit initialized in the state |0> qc = qk.QuantumCircuit(1) qc.initialize([1,0]) qc.draw('mpl') import qiskit as qk qc = qk.QuantumCircuit(1) qc.initialize([1,0],0) qc.measure_all() # Let's choose the statevector simulator from the Aer backend backend = qk.Aer.get_backend('statevector_simulator') # And execute the circuit qc in the simulator backend # getting as final result the counts from 1.000 measures # of the qubit state result = qk.execute(qc, backend, shots=1000).result().get_counts() result import qiskit as qk qc = qk.QuantumCircuit(1) qc.initialize([1,0],0) qc.measure_all() backend = qk.Aer.get_backend('statevector_simulator') result = qk.execute(qc, backend, shots=1000).result().get_counts() qk.visualization.plot_histogram(result) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.measure(0,0) qc.draw('mpl') backend = qk.Aer.get_backend('statevector_simulator') result = qk.execute(qc, backend, shots=1000).result().get_counts() qk.visualization.plot_histogram(result) import numpy as np v0 = np.array([[1],[0]]);v0 v1 = np.array([[0],[1]]); v1 X = np.array([[0,1],[1,0]]); X X.dot(v0) X.dot(v1) import qiskit as qk qr = qk.QuantumRegister(1,"q0") cr = qk.ClassicalRegister(1,"c0") qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.x(0) qc.measure(qr[0], cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=1000).result().get_counts() results qk.visualization.plot_histogram(results) import numpy as np # Notice that we are creating the v0 matrix using the transpose operation v0 = np.array([[1,0]]).T; v0 # Here it is created again de X matrix X = np.array([[0,1],[1,0]]); X # Multiplying v0 by the X matrix twice you get again v0 X.dot(X).dot(v0) # Multiplying the X matrix by itself you get the Identity matrix X.dot(X) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.x(0) qc.x(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') # The result of 1000 measures of the qubit above gives the |0> state as result # in all measures simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=1000).result().get_counts() results qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,2**-0.5],0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np v0 = np.array([[1,0]]).T; v0 H = np.array([[1,1],[1,-1]])/np.sqrt(2); H H.dot(v0) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.h(qr[0]) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,-(2**-0.5)],0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([2**-0.5,-(2**-0.5)],0) qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(1,'q0') cr = qk.ClassicalRegister(1,'c0') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.h(0) qc.h(0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np # First let's start with the qubit in the state |psi> = (|0> - |1>)/sqrt(2) psi = np.array([[1,-1]]).T/(2**0.5); psi H = np.array([[1,1],[1,-1]])/2**0.5; H # Now let's pass the qubit Psi through an Hadamard gate. # The result is a qubit in the state |1> H.dot(psi) # Let's start with a qubit in the state |1>, pass it through a # a hadamard gate twice and check the result v0 = np.array([[0,1]]).T; v0 H.dot(H).dot(v0) # This means that if we multiply the H gate by itself the result # will be an Identity matrix. Let's check it. H.dot(H) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np psi1 = np.array([[1,0]]).T; psi1 psi2 = np.array([[1,0]]).T; psi2 # In numpy the tensor product is calculated with the function kron np.kron(psi1,psi2) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.h(1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np psi1 = np.array([[1,0]]).T;psi1 psi2 = np.array([[1,0]]).T;psi2 H = np.array([[1,1],[1,-1]])/2**0.5;H # When we want to combine two vector states or gate matrices we tensor product them. psi3 = np.kron(psi1,psi2);psi3 H2 = np.kron(H,H);H2 # When we want to pass a vetor through a gate we calculate the dot product # of the total gate matrix with the total vector. # As we have predicted, the resulting vector state has a=b=c=d=1/2 psi4 = H2.dot(psi3); psi4 import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.initialize([0,1],1) qc.h(0) qc.h(1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np psi1 = np.array([[0,1]]).T;psi1 psi2 = np.array([[0,1]]).T;psi2 H = np.array([[1,1],[1,-1]])/2**0.5;H # When we want to combine two vector states or gate matrices we tensor product them. psi3 = np.kron(psi1,psi2);psi3 H2 = np.kron(H,H);H2 # When we want to pass a vetor through a gate we calculate the dot product # of the total gate matrix with the total vector. # As we have predicted, the resulting vector state has a=b=c=d=1/2 psi4 = H2.dot(psi3); psi4 import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.cnot(0,1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C v00 = np.array([[1,0,0,0]]).T;v00 # C.v00 = v00 C.dot(v00) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([0,1],1) qc.cnot(0,1) qc.measure(qr,cr) qc.draw('mpl') # Please notice that Qiskit's qubits presentation order is reversed. # Therefore 10 in the histogram's x axis should be read as 01 (from # inside out or right to left). simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C v01 = np.array([[0,1,0,0]]).T;v01 C.dot(v01) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.initialize([1,0],1) qc.cnot(0,1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C v10 = np.array([[0,0,1,0]]).T; v10 C.dot(v10) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([0,1],0) qc.initialize([0,1],1) qc.cnot(0,1) qc.measure(qr,cr) qc.draw('mpl') # Again remember to read qiskit qubits state presentation order # from right to left. Therefore 01 in the x axis is in fact 10 simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc, simulator, shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C v11 = np.array([[0,0,0,1]]).T; v11 # C.v11 = v10 C.dot(v11) import qiskit as qk qr = qk.QuantumRegister(2, 'q') cr = qk.ClassicalRegister(2, 'c') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.measure(qr, cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np va = np.array([[1,0]]).T; va vb = np.array([[1,0]]).T; vb H = np.array([[1,1],[1,-1]])/2**0.5;H vaH = H.dot(va); vaH vaHvb = np.kron(vaH,vb); vaHvb C = np.array([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]); C vout = C.dot(vaHvb); vout import qiskit as qk qr = qk.QuantumRegister(2, 'q') cr = qk.ClassicalRegister(2, 'c') qc = qk.QuantumCircuit(qr, cr) qc.initialize([0,1],0) qc.initialize([1,0],1) qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.measure(qr, cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np va = np.array([[0,1]]).T; va vb = np.array([[1,0]]).T; vb H = np.array([[1,1],[1,-1]])/2**0.5;H vaH = H.dot(va); vaH vaHvb = np.kron(vaH,vb); vaHvb vout = C.dot(vaHvb); vout vout = C.dot(vaHvb); vout # Get the IBM API key in: https://quantum-computing.ibm.com # chave = 'My key is already saved in this environment' # qk.IBMQ.save_account(chave) # Load the account in the active session qk.IBMQ.load_account() # The default provider is é hub='ibm-q', group='open, project='main' # The code below is executed as an example provider_1 = qk.IBMQ.get_provider(hub='ibm-q', group='open', project='main') # In the public provider we will use a cloud simulator. backend_1 = provider_1.get_backend('ibmq_qasm_simulator') # The provider listed below has unlimited jobs provider_2 = qk.IBMQ.get_provider(hub='ibm-q', group='open', project='main') # For this provider we will use the ibmq_jakarta machine backend_2 = provider_2.get_backend('ibmq_manila') # With n Qubits we can generate a random number from 0 to 2^n - 1 n = 3 qr = qk.QuantumRegister(n,'q') cr = qk.ClassicalRegister(n,'c') qc = qk.QuantumCircuit(qr, cr) # Applying a Hadamard to each of the three qubits for i in range(n): qc.h(i) # Measuring the three qubits qc.measure(qr,cr) # Visualizing the circuit qc.draw('mpl') new_job = qk.execute(qc, backend_2, shots=1) # this result is stored on the local machine. However, it will only be available # after the job has been executed. It returns a python dictionary. new_job.result().get_counts() int(list(new_job.result().get_counts().keys())[0],2) from qiskit import QuantumCircuit circuit = QuantumCircuit(2, 2) circuit.h(0) circuit.cx(0,1) circuit.measure([0,1], [0,1]) display(circuit.draw('mpl')) from qiskit.providers.aer import AerSimulator print(AerSimulator().run(circuit, shots=1000).result().get_counts()) print(AerSimulator().run(circuit, shots=1000).result().get_counts()) from qiskit import QuantumCircuit circuito = QuantumCircuit(3,3) for i in range(3): circuito.h(i) circuito.measure(i,i) display(circuito.draw('mpl')) from qiskit.providers.aer import AerSimulator AerSimulator().run(circuito, shots = 1000).result().get_counts() from qiskit import QuantumCircuit qc = QuantumCircuit(4,4) qc.x([0,1]) qc.cx([0,1],[2,2]) qc.ccx(0,1,3) qc.measure([0,1,2,3],[0,1,2,3]) display(qc.draw(output='mpl')) from qiskit.providers.aer import AerSimulator AerSimulator().run(qc, shots = 10000).result().get_counts() import qiskit as qk qr = qk.QuantumRegister(1,'q') cr = qk.ClassicalRegister(1,'c') qc = qk.QuantumCircuit(qr, cr) qc.initialize([1,0],0) print("Circuit 1 - Registers Only") display(qc.draw('mpl')) qc.x(qr) print("Circuit 1 - Quantum Register with a Gate X ") display(qc.draw('mpl')) job = qk.execute(experiments = qc, backend = qk.Aer.get_backend('statevector_simulator')) result1 = job.result().get_statevector() print("Quantum Register Vector State") from qiskit.tools.visualization import plot_bloch_multivector display(plot_bloch_multivector(result1)) job = qk.execute(experiments = qc, backend = qk.Aer.get_backend('unitary_simulator')) print("Transformation Matrix (up to this stage)") print(job.result().get_unitary()) qc.measure(qr, cr) print() print("Circuit 1 - Registers, Gate X and Quantum Register Measure") display(qc.draw('mpl')) print("Quantum Register Thousand Measures") job = qk.execute(experiments = qc, backend = qk.Aer.get_backend('statevector_simulator'), shots = 1000) print(job.result().get_counts()) print() print("Result's Histogram") from qiskit.tools.visualization import plot_histogram plot_histogram(data = job.result().get_counts(), figsize=(4,3)) import qiskit as qk from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qr = qk.QuantumRegister(3,'q') cr = qk.ClassicalRegister(3,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.initialize([1,0],2) display(qc.draw('mpl')) sv = Statevector.from_label('000') state_data = lambda qc,sv: np.round(np.asarray(sv.evolve(qc).data),4) state_bloch = lambda qc,sv: plot_bloch_multivector(sv.evolve(qc).data, reverse_bits=True) print(state_data(qc,sv)) state_bloch(qc,sv) qc.x(0) qc.barrier() display(qc.draw('mpl')) print(state_data(qc,sv)) display(state_bloch(qc,sv)) qc.h(1) display(qc.draw('mpl')) print(state_data(qc,sv)) state_bloch(qc,sv) qc.cnot(1,2) display(qc.draw("mpl")) state_data(qc,sv) state_bloch(qc,sv) qc.cnot(0,1) display(qc.draw('mpl')) state_data(qc,sv) qc.h(0) qc.barrier() display(qc.draw('mpl')) state_data(qc,sv) qc.measure(0,0) qc.measure(1,1) qc.barrier() qc.cnot(1,2) qc.cz(0,2) qc.measure(2,2) display(qc.draw('mpl')) simulador = qk.Aer.get_backend('statevector_simulator') resultado = qk.execute(qc, simulador, shots=10000).result() qk.visualization.plot_histogram(resultado.get_counts()) import numpy as np V = np.array([[3+2j],[4-2j]]) modV = np.real(V.T.conjugate().dot(V)[0,0])**0.5 Vn = V/modV; Vn v0 = np.array([[1,0]]).T v1 = np.array([[0,1]]).T Vn[0,0]*v0 + Vn[1,0]*v1 import qiskit as qk qr = qk.QuantumRegister(1,'q') cr = qk.ClassicalRegister(1,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([Vn[0,0],Vn[1,0]],0) qc.measure(qr[0],cr[0]) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) Vn[0,0].conjugate()*Vn[0,0] Vn[1,0].conjugate()*Vn[1,0] import numpy as np CNOT = np.array([[1,0,0,0], [0,1,0,0], [0,0,0,1], [0,0,1,0]]) CNOT.dot(CNOT) import numpy as np H = np.array([[1,1],[1,-1]])/2**0.5 H.dot(H) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.cnot(qr[0],qr[1]) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import qiskit as qk qr = qk.QuantumRegister(2,'q') cr = qk.ClassicalRegister(2,'c') qc = qk.QuantumCircuit(qr,cr) qc.initialize([1,0],0) qc.initialize([1,0],1) qc.h(0) qc.cnot(qr[0],qr[1]) qc.cnot(qr[0],qr[1]) qc.measure(qr,cr) qc.draw('mpl') simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) simulator = qk.Aer.get_backend('statevector_simulator') results = qk.execute(qc,simulator,shots=10000).result().get_counts() qk.visualization.plot_histogram(results) import numpy as np X = np.array([[0,1], [1,0]]) X X.conj().T.dot(X) Y = np.array([[0,-1j], [1j,0]]) Y Y.conj().T.dot(Y) Z = np.array([[1,0], [0,-1]]) Z Z.conj().T.dot(Z) H = (X+Z)/np.sqrt(2); H H.dot(Z).dot(H) H.dot(X).dot(H) -H.dot(Y).dot(H) import numpy as np S = np.array([[1,0], [0,1j]]) S S.conj().T.dot(S) T = np.array([[1,0], [0,np.exp(1j*np.pi/4)]]) T T.conj().T.dot(T) S = np.array([[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]); S S.dot(v00) S.dot(v01) S.dot(v10) S.dot(v11) C_ = np.array([[1,0,0,0], [0,0,0,1], [0,0,1,0], [0,1,0,0]]);C_ C_ = np.array([[1,0,0,0], [0,0,0,1], [0,0,1,0], [0,1,0,0]]);C_ C.dot(C_).dot(C) v = v0 + v1; v n = np.array([[0,0],[0,1]]); n n.dot(v) n_ = np.array([[1,0],[0,0]]);n_ I2 = np.identity(2); I2 I2 - n n_.dot(v) n.dot(n) n_.dot(n_) n.dot(n_) n_.dot(n) n.dot(X) n+n_ X.dot(n_) import numpy as np n = np.array([[0,0],[0,1]]); n n_ = np.array([[1,0],[0,0]]);n_ np.kron(n,n) np.kron(n_,n_) np.kron(n,n_) np.kron(n_,n) np.kron(X,X) np.kron(X,X).dot(np.kron(n,n_)+np.kron(n_,n)) np.kron(n,n) + np.kron(n_,n_) + np.kron(X,X).dot(np.kron(n,n_)+np.kron(n_,n)) np.kron(n,n) np.kron(n_,n_) np.kron(n_,n) np.kron(n,n_) nn = np.kron(n,n) nn_ = np.kron(n,n_) n_n = np.kron(n_,n) n_n_ = np.kron(n_,n_) nn + nn_ + n_n + n_n_ import numpy as np n = np.array([[0,0],[0,1]]); n n_ = np.array([[1,0],[0,0]]);n_ #(n x n).(n_ x n_) np.kron(n,n).dot(np.kron(n_,n_)) np.kron(n,n).dot(np.kron(n_,n_)) np.kron(n.dot(n_),n.dot(n_)) nn.dot(n_n_) # (n_ x n).(n x n_) np.kron(n_,n).dot(np.kron(n,n_)) n_n.dot(nn_) # (n x n_).(n_ x n) np.kron(n, n_).dot(np.kron(n_,n)) n_n_.dot(nn) NOT = np.array([[0,1],[1,0]]); NOT D0 = np.array([[1],[0]]) D1 = np.array([[0],[1]]) NOT.dot(D0) NOT.dot(D1) AND = np.array([[1,1,1,0],[0,0,0,1]]); AND AND.dot(np.kron(D0,D0)) AND.dot(np.kron(D0,D1)) AND.dot(np.kron(D1,D0)) AND.dot(np.kron(D1,D1)) OR = np.array([[1,0,0,0],[0,1,1,1]]); OR OR.dot(np.kron(D0,D0)) OR.dot(np.kron(D0,D1)) OR.dot(np.kron(D1,D0)) OR.dot(np.kron(D1,D1)) NAND = np.array([[0,0,0,1],[1,1,1,0]]); NAND NOT.dot(AND) NOR = np.array([[0,1,1,1],[1,0,0,0]]);NOR NOT.dot(OR) np.kron(NOT,AND) OR.dot(np.kron(NOT,AND)) NOT.dot(AND).dot(np.kron(NOT,NOT)) OR NOT.dot(OR).dot(np.kron(NOT,NOT)) AND import numpy as np k = np.kron XOR = np.array([[1,0,0,1], [0,1,1,0]]) AND = np.array(([1,1,1,0], [0,0,0,1])) k(XOR,AND) def criaCompat(nbits,nvezes): nlins = 2**(nbits*nvezes) ncols = 2**nbits compat = np.zeros(nlins*ncols).reshape(nlins,ncols) for i in range(ncols): formato = "0" + str(nbits) + "b" binario = format(i,formato)*nvezes decimal = int(binario,2) compat[decimal,i] = 1 return(compat) criaCompat(2,2) k(XOR,AND).dot(criaCompat(2,2)) import numpy as np k = np.kron def criaCompat(nbits,nvezes): nlins = 2**(nbits*nvezes) ncols = 2**nbits compat = np.zeros(nlins*ncols).reshape(nlins,ncols) for i in range(ncols): formato = "0" + str(nbits) + "b" binario = format(i,formato)*nvezes decimal = int(binario,2) compat[decimal,i] = 1 return(compat) criaCompat(2,2) NOT = np.array([[0,1], [1,0]]) AND3 = np.array([[1,1,1,1,1,1,1,0], [0,0,0,0,0,0,0,1]]) OR4 = np.array([[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]]) I2 = np.array([[1,0], [0,1]]) t1z = k(NOT,k(NOT,I2)) t2z = k(NOT,k(I2,NOT)) t3z = k(I2,k(NOT,NOT)) t4z = k(I2,k(I2,I2)) ORz = k(AND3,k(AND3,k(AND3,AND3))) ORz = OR4.dot(ORz).dot(k(t1z,k(t2z,k(t3z,t4z)))) t1c = k(NOT,k(I2,I2)) t2c = k(I2,k(NOT,I2)) t3c = k(I2,k(I2,NOT)) t4c = k(I2,k(I2,I2)) ORc = k(AND3,k(AND3,k(AND3,AND3))) ORc = OR4.dot(ORc).dot(k(t1c,k(t2c,k(t3c,t4c)))) compat = criaCompat(3,8) k(ORz,ORc).dot(compat) import numpy as np TOFFOLI = np.array([[1,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0], [0,0,1,0,0,0,0,0], [0,0,0,1,0,0,0,0], [0,0,0,0,1,0,0,0], [0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0]]) TOFFOLI.dot(TOFFOLI) Z1 = np.array([[0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1]]) Z1 ZpY = np.zeros([8,8]) ZpY[0,0] = 1; ZpY[1,2] = 1; ZpY[2,1] = 1; ZpY[3,3] = 1 ZpY[4,4] = 1; ZpY[5,6] = 1; ZpY[6,5] = 1; ZpY[7,7] = 1 ZpY Z1I4 = np.array([[0,0,0,0], [1,0,0,0], [0,0,0,0], [0,1,0,0], [0,0,0,0], [0,0,1,0], [0,0,0,0], [0,0,0,1]]) TOFFOLI.dot(ZpY).dot(TOFFOLI).dot(Z1I4) Zfim = np.array([[1,0,1,0,1,0,1,0], [0,1,0,1,0,1,0,1]]) Zfim = np.array([[1,0,1,0,1,0,1,0], [0,1,0,1,0,1,0,1]]) Zfim.dot(TOFFOLI).dot(ZpY).dot(TOFFOLI).dot(Z1I4) import numpy as np fred = np.identity(8) fred[5,5] = 0; fred[5,6] = 1 fred[6,5] = 1; fred[6,6] = 0 fred fred.dot(fred) import numpy as np Fy0 = np.zeros([8,4]) Fy0[0,0] = 1; Fy0[1,1] = 1; Fy0[4,2] = 1; Fy0[5,3] = 1 Fy0 xYz = np.array([[1,1,0,0,1,1,0,0], [0,0,1,1,0,0,1,1]]) xYz.dot(fred).dot(Fy0)
https://github.com/TRSasasusu/qiskit-quantum-zoo
TRSasasusu
from typing import Optional import math import numpy as np import matplotlib.pyplot as plt from sympy import gcdex from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, assemble from qiskit.visualization import plot_histogram from sympy import Rational, gcdex from sympy.ntheory.continued_fraction import continued_fraction, continued_fraction_convergents from qft import qft from elementary import ax_modM from order_finding import order_finding from classical_utils import decode_bin def discrete_log(a: int, b: int, p: int, show_hist: Optional[bool] = False, coef_t: Optional[int] = 1) -> int: """Shor's discrete log algorithm: given $a,b,p\in\mathbb{Z}$, it finds $s$ such that $a^s\equiv b\pmod p$. Args: a (int): $a$ b (int): $b$ p (int): $p$ """ r = order_finding(x=a, N=p, show_hist=False) t = coef_t * int(np.ceil(np.log2(p))) first_register = QuantumRegister(t) second_register = QuantumRegister(t) third_register = QuantumRegister(2 * t) auxiliary_register_mid = QuantumRegister(t) auxiliary_register_end = QuantumRegister(6 * t - 2) classical_register = ClassicalRegister(2 * t) qc = QuantumCircuit( first_register, second_register, third_register, auxiliary_register_mid, auxiliary_register_end, classical_register, ) qc.h(first_register) qc.h(second_register) qc.append(ax_modM(a=b, M=p, N_len=t), list(first_register) + list(auxiliary_register_mid) + list(third_register) + list(auxiliary_register_end)) qc.append(ax_modM(a=a, M=p, N_len=t, x_0_at_first=False), list(second_register) + list(auxiliary_register_mid) + list(third_register) + list(auxiliary_register_end)) qc.append(qft(n=t).inverse(), first_register) qc.append(qft(n=t).inverse(), second_register) qc.measure(list(first_register) + list(second_register), classical_register) #qc.measure(third_register, classical_register) backend = Aer.get_backend('aer_simulator_matrix_product_state')#('aer_simulator') qc = transpile(qc, backend) job = backend.run(qc, shots=10000) hist = job.result().get_counts() if show_hist: figsize_x = max(7 * (len(hist) // 8), 7) plot_histogram(hist, figsize=(figsize_x, 5)) plt.savefig(f'img/discrete_log_a{a}_b{b}_p{p}_r{r}_t{t}.png', bbox_inches='tight') for measured_key, _ in sorted(hist.items(), key=lambda x: x[1], reverse=True): tilde_l_per_r = Rational(decode_bin(measured_key[:t]), 2 ** t) # decoded from second register: $\widetilde{l/r}$ if tilde_l_per_r == 0: continue l = None for fraction in continued_fraction_convergents(continued_fraction(tilde_l_per_r)): if fraction.denominator == r: l = fraction.numerator # get correct $l$ break if l is None: continue tilde_beta_per_r = Rational(decode_bin(measured_key[-t:]), 2 ** t) # decoded from first register: $\widetilde{\beta/r}$ if tilde_beta_per_r == 0: if pow(a, 0, p) == b: # the case where b == 1 return r # returning 0 is also ok continue beta = None for fraction in continued_fraction_convergents(continued_fraction(tilde_beta_per_r)): if fraction.denominator == r: beta = fraction.numerator # get correct $\beta$ break if beta is None: continue s, alpha, _ = gcdex(l, -r) s = int(s * beta) if pow(a, s, p) == b: return s raise Exception('s is NOT found!') if __name__ == '__main__': #print(discrete_log(a=2, b=4, p=7, show_hist=True)) #print(discrete_log(a=3, b=5, p=11, show_hist=True, coef_t=2)) print(discrete_log(a=2, b=1, p=3, show_hist=True, coef_t=1))
https://github.com/TRSasasusu/qiskit-quantum-zoo
TRSasasusu
""" Implementing [arXiv:quant-ph/9511018](https://arxiv.org/abs/quant-ph/9511018) """ from typing import Optional import numpy as np from qiskit import QuantumCircuit, QuantumRegister from qiskit.circuit import Gate def carry() -> Gate: """CARRY. It requires 4 qubits. Returns: its gate """ qc = QuantumCircuit(4) qc.ccx(1, 2, 3) qc.cx(1, 2) qc.ccx(0, 2, 3) return qc.to_gate() def qsum() -> Gate: """SUM. It requires 3 qubits. Returns: its gate """ qc = QuantumCircuit(3) qc.cx(1, 2) qc.cx(0, 2) return qc.to_gate() def adder(n: int) -> Gate: r"""ADDER: $a,b\to a,a+b$. It requires $3n+1$ qubits: $a$ uses $n$ qubits, $b$ uses $n+1$ qubits, and $c$ uses $n$ qubits. Args: n (int): $n$ bits for representing $a$. Returns: its gate """ qubits = QuantumRegister(n + (n + 1) + n) a = qubits[:n] b = qubits[n:n + (n + 1)] c = qubits[n + (n + 1):] qc = QuantumCircuit(qubits) carry_gate = carry() carry_gate_dag = carry_gate.inverse() sum_gate = qsum() for i in range(n - 1): qc.append(carry_gate, [c[i]] + [a[i]] + [b[i]] + [c[i + 1]]) qc.append(carry_gate, [c[n - 1]] + [a[-1]] + [b[n - 1]] + [b[n]]) qc.cx(a[-1], b[n - 1]) qc.append(sum_gate, [c[n - 1]] + [a[-1]] + [b[n - 1]]) for i in reversed(range(n - 1)): qc.append(carry_gate_dag, [c[i]] + [a[i]] + [b[i]] + [c[i + 1]]) qc.append(sum_gate, [c[i]] + [a[i]] + [b[i]]) return qc.to_gate() def adder_modM(M: int, N_len: int) -> Gate: r"""ADDER MOD: $a,b\to a,a+b\mod M$. It requires $4N_\mathit{len}+2$ qubits: $a$ uses $N_\mathit{len}$ qubits, $b$ uses $N_\mathit{len}+1$ qubits, $c$ uses $N_\mathit{len}$ qubits, $M$ uses $N_\mathit{len}$ qubits, and $t$ uses 1 qubit. Args: M (int): $N$ in the paper, but we uses $M$ instead. N_len (int): a number of bits for representing $a$. Returns: its gate """ M_val = M qubits = QuantumRegister(N_len + (N_len + 1) + N_len + N_len + 1) a, left_qubits = qubits[:N_len], qubits[N_len:] b, left_qubits = left_qubits[:N_len + 1], left_qubits[N_len + 1:] c, left_qubits = left_qubits[:N_len], left_qubits[N_len:] M, left_qubits = left_qubits[:N_len], left_qubits[N_len:] t = left_qubits[:1] qc = QuantumCircuit(qubits) adder_gate = adder(N_len) adder_gate_dag = adder_gate.inverse() for i, char in enumerate(bin(M_val)[2:][::-1]): if char == '1': qc.x(M[i]) qc.append(adder_gate, a + b + c) qc.append(adder_gate_dag, M + b + c) qc.x(b[-1]) qc.cx(b[-1], t[0]) qc.x(b[-1]) for i, char in enumerate(bin(M_val)[2:][::-1]): if char == '1': qc.cx(t[0], M[i]) qc.append(adder_gate, M + b + c) for i, char in enumerate(bin(M_val)[2:][::-1]): if char == '1': qc.cx(t[0], M[i]) qc.append(adder_gate_dag, a + b + c) qc.cx(b[-1], t[0]) qc.append(adder_gate, a + b + c) for i, char in enumerate(bin(M_val)[2:][::-1]): if char == '1': qc.x(M[i]) return qc.to_gate() def ctrl_multi_modM(a: int, M: int, N_len: int) -> Gate: r"""Ctrl MULT MOD: $x,0\to x,ax\mod M$ if $c=1$, otherwise $x,0\to x,x$. It requires $9N_\mathit{len}-1$ qubits: $\mathit{ctrl}$ uses 1 qubit, $x$ uses $N_\mathit{len}$ qubits, $y$ uses $2N_\mathit{len}$ qubits, $\mathit{xx}$ (which is a register in the middle of Fig. 5 in the paper) uses $2N_\mathit{len}-1$ qubits, $c$ (which is $c$ for ADDER MOD) uses $2N_\mathit{len}-1$ qubits, $M$ (which is $M$ for ADDER MOD) uses $2N_\mathit{len}-1$ qubits, and $t$ (which is $t$ for ADDER MOD) uses 1 qubit. Args: a (int): $a$ M (int): $M$ (see `adder_modM`) N_len (int): a number of bits for representing $x$ Returns: its gate """ M_val = M N_len = N_len qubits = QuantumRegister(9 * N_len - 1) ctrl, left_qubits = qubits[:1], qubits[1:] x, left_qubits = left_qubits[:N_len], left_qubits[N_len:] y, left_qubits = left_qubits[:2 * N_len], left_qubits[2 * N_len:] xx, left_qubits = left_qubits[:2 * N_len - 1], left_qubits[2 * N_len - 1:] c, left_qubits = left_qubits[:2 * N_len - 1], left_qubits[2 * N_len - 1:] M, left_qubits = left_qubits[:2 * N_len - 1], left_qubits[2 * N_len - 1:] t, left_qubits = left_qubits[:1], qubits[1:] qc = QuantumCircuit(qubits) adder_modM_gate = adder_modM(M=M_val, N_len=2 * N_len - 1) for i in range(N_len): for j, char in enumerate(bin(2 ** i * a % M_val)[2:][::-1]): if char == '1': qc.ccx(ctrl[0], x[i], xx[j]) qc.append(adder_modM_gate, xx + y + c + M + t) for j, char in enumerate(bin(2 ** i * a % M_val)[2:][::-1]): if char == '1': qc.ccx(ctrl[0], x[i], xx[j]) qc.x(ctrl[0]) for x_bit, y_bit in zip(x, y): qc.ccx(ctrl[0], x_bit, y_bit) qc.x(ctrl[0]) return qc.to_gate() def ax_modM(a: int, M: int, N_len: Optional[int] = None, x_0_at_first: bool = True) -> Gate: r"""Modular exponentiation, $a^x\mod M$. It requires $10N_\mathit{len}-2$ qubits: $x$ uses $N_\mathit{len}$ qubits, $\mathit{x\ for\ Ctrl\ MULT\ MOD}$ uses $N_\mathit{len}$ qubits, $y$ uses $2N_\mathit{len}$ qubits, $\mathit{xx}$ uses $2N_\mathit{len}-1$ qubits, $c$ (which is $c$ for ADDER MOD) uses $2N_\mathit{len}-1$ qubits, $M$ (which is $M$ for ADDER MOD) uses $2N_\mathit{len}-1$ qubits, and $t$ (which is $t$ for ADDER MOD) uses 1 qubit. Args: a (int): $a$ M (int): $M$ (see `adder_modM`) N_len (int): a number of bits for representing $x$ x_0_at_first (bool): if True, it adds 1 into the target register before calculating modular exponentiation Returns: its gate """ M_val = M if N_len is None: N_len = int(np.ceil(np.log2(M))) qubits = QuantumRegister(10 * N_len - 2) x, left_qubits = qubits[:N_len], qubits[N_len:] x_for_ctrl_multi_modM_gate, left_qubits = left_qubits[:N_len], left_qubits[N_len:] y, left_qubits = left_qubits[:2 * N_len], left_qubits[2 * N_len:] xx, left_qubits = left_qubits[:2 * N_len - 1], left_qubits[2 * N_len - 1:] c, left_qubits = left_qubits[:2 * N_len - 1], left_qubits[2 * N_len - 1:] M, left_qubits = left_qubits[:2 * N_len - 1], left_qubits[2 * N_len - 1:] t, left_qubits = left_qubits[:1], qubits[1:] qc = QuantumCircuit(qubits) if x_0_at_first: qc.x(x_for_ctrl_multi_modM_gate[0]) for i in range(N_len): ctrl_multi_modM_gate = ctrl_multi_modM(pow(a, 2 ** i, M_val), M_val, N_len) ctrl_multi_modM_gate_dag = ctrl_multi_modM(pow(a, -2 ** i, M_val), M_val, N_len).inverse() qc.append(ctrl_multi_modM_gate, [x[i]] + x_for_ctrl_multi_modM_gate + y + xx + c + M + t) for j in range(N_len): qc.cswap(x[i], x_for_ctrl_multi_modM_gate[j], y[j]) qc.append(ctrl_multi_modM_gate_dag, [x[i]] + x_for_ctrl_multi_modM_gate + y + xx + c + M + t) return qc.to_gate()
https://github.com/TRSasasusu/qiskit-quantum-zoo
TRSasasusu
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>) out of four possible values.""" #import numpy and plot library import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_histogram # define variables, 1) initialize qubits to zero n = 2 grover_circuit = QuantumCircuit(n) #define initialization function def initialize_s(qc, qubits): '''Apply a H-gate to 'qubits' in qc''' for q in qubits: qc.h(q) return qc ### begin grovers circuit ### #2) Put qubits in equal state of superposition grover_circuit = initialize_s(grover_circuit, [0,1]) # 3) Apply oracle reflection to marked instance x_0 = 3, (|11>) grover_circuit.cz(0,1) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") # 4) apply additional reflection (diffusion operator) grover_circuit.h([0,1]) grover_circuit.z([0,1]) grover_circuit.cz(0,1) grover_circuit.h([0,1]) # 5) measure the qubits grover_circuit.measure_all() # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer) #highest amplitude should correspond with marked value x_0 (|11>)
https://github.com/TRSasasusu/qiskit-quantum-zoo
TRSasasusu
from typing import Optional from math import gcd import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, assemble from qiskit.visualization import plot_histogram from sympy import Rational from sympy.ntheory.continued_fraction import continued_fraction, continued_fraction_convergents from qft import qft from elementary import ax_modM from classical_utils import lcm def order_finding(x: int, N: int, show_hist: Optional[bool] = False) -> int: #def order_finding(x: int, N: int, epsilon: Optional[float] = 0.2, show_hist: Optional[bool] = False) -> int: r"""Order-finding algorithm: it finds $r$ of $x^r\equiv 1\pmod N$. It requires Args: x (int): $x$ N (int): $N$ Returns: order $r$ Examples: ``` >>> order_finding(x=3, N=5, show_hist=True) 4 ``` and get below image in `img` directory: ![](../img/order_finding_x3_N5.png) It represents $0/2^6=0$, $2^4/2^6=1/4$, $2^5/2^6=1/2$, and $(2^4+2^5)/2^6=3/4$ from the left. This answer is $r=4$, so $1/2$ looks wrong. However, $\tilde{r}=2$ is a factor of $r$, so we can get correct $r$ by lcm with another $\tilde{r}$. """ L = int(np.ceil(np.log2(N))) t = 2 * L# + 1 + int(np.ceil(np.log2(3 + 1 / (2 * epsilon)))) # epsilon requires too many qubits to run this program... first_register = QuantumRegister(t) second_register = QuantumRegister(2 * t) auxiliary_register_mid = QuantumRegister(t) auxiliary_register_end = QuantumRegister(6 * t - 2) classical_register = ClassicalRegister(len(first_register)) qc = QuantumCircuit(first_register, auxiliary_register_mid, second_register, auxiliary_register_end, classical_register) # qc.add_register(first_register) # qc.add_register(second_register) # qc.add_register(classical_register) qc.h(first_register) #import pdb; pdb.set_trace() #qc.append(ax_modM(a=x, M=N, N_len=len(first_register)), [first_register, auxiliary_register_mid, second_register, auxiliary_register_end]) qc.append(ax_modM(a=x, M=N, N_len=len(first_register)), qc.qubits[:10 * t - 2]) qc.append(qft(n=len(first_register)).inverse(), first_register) qc.measure(first_register, classical_register) backend = Aer.get_backend('aer_simulator_matrix_product_state')#('aer_simulator') qc = transpile(qc, backend) job = backend.run(qc, shots=10000) hist = job.result().get_counts() if show_hist: plot_histogram(hist) plt.savefig(f'img/order_finding_x{x}_N{N}.png', bbox_inches='tight') #plt.savefig(f'img/order_finding_x{x}_N{N}_eps{epsilon}.png', bbox_inches='tight') all_fractions = [] for measured_key, _ in sorted(hist.items(), key=lambda x: x[1], reverse=True): tilde_s_per_r = Rational(int(measured_key[-t:], 2), 2 ** t) if tilde_s_per_r == 0: continue fractions = [] for fraction in continued_fraction_convergents(continued_fraction(tilde_s_per_r)): if pow(x, fraction.denominator, N) == 1: return fraction.denominator fractions.append(fraction) for other_fraction in all_fractions: if math.gcd(fraction.numerator, other_fraction.numerator) == 1: r_candidate = lcm(fraction.denominator, other_fraction.denominator) if pow(x, r_candidate, N) == 1: return r_candidate raise Exception('r is NOT found!') if __name__ == '__main__': #print(order_finding(x=5, N=21, show_hist=True)) print(order_finding(x=3, N=5, show_hist=True))
https://github.com/TRSasasusu/qiskit-quantum-zoo
TRSasasusu
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ This module contains the definition of a base class for quantum fourier transforms. """ from abc import abstractmethod from qiskit import QuantumRegister, QuantumCircuit from qiskit.aqua import Pluggable, AquaError class QFT(Pluggable): """Base class for QFT. This method should initialize the module and its configuration, and use an exception if a component of the module is available. Args: configuration (dict): configuration dictionary """ @abstractmethod def __init__(self, *args, **kwargs): super().__init__() @classmethod def init_params(cls, params): qft_params = params.get(Pluggable.SECTION_KEY_QFT) kwargs = {k: v for k, v in qft_params.items() if k != 'name'} return cls(**kwargs) @abstractmethod def _build_matrix(self): raise NotImplementedError @abstractmethod def _build_circuit(self, qubits=None, circuit=None, do_swaps=True): raise NotImplementedError def construct_circuit(self, mode='circuit', qubits=None, circuit=None, do_swaps=True): """Construct the circuit. Args: mode (str): 'matrix' or 'circuit' qubits (QuantumRegister or qubits): register or qubits to build the circuit on. circuit (QuantumCircuit): circuit for construction. do_swaps (bool): include the swaps. Returns: The matrix or circuit depending on the specified mode. """ if mode == 'circuit': return self._build_circuit(qubits=qubits, circuit=circuit, do_swaps=do_swaps) elif mode == 'matrix': return self._build_matrix() else: raise AquaError('Unrecognized mode: {}.'.format(mode))
https://github.com/TRSasasusu/qiskit-quantum-zoo
TRSasasusu
"""The following is python code utilizing the qiskit library that can be run on extant quantum hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding, for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1, results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>). To find the factor, use the equivalence a^r mod 15. From this: (a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15 Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients, gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15, so the result of running shors algorithm to find the prime factors of an integer using quantum hardware are demonstrated. Note, this is not the same as the technical implementation of shor's algorithm described in this section for breaking the discrete log hardness assumption, though the proof of concept remains.""" # Import libraries from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from numpy import pi from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram # Initialize qubit registers qreg_q = QuantumRegister(5, 'q') creg_c = ClassicalRegister(5, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.reset(qreg_q[0]) circuit.reset(qreg_q[1]) circuit.reset(qreg_q[2]) circuit.reset(qreg_q[3]) circuit.reset(qreg_q[4]) # Apply Hadamard transformations to qubit registers circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) # Apply first QFT, modular exponentiation, and another QFT circuit.h(qreg_q[1]) circuit.cx(qreg_q[2], qreg_q[3]) circuit.crx(pi/2, qreg_q[0], qreg_q[1]) circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4]) circuit.h(qreg_q[0]) circuit.rx(pi/2, qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) # Measure the qubit registers 0-2 circuit.measure(qreg_q[2], creg_c[2]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[0], creg_c[0]) # Get least busy quantum hardware backend to run on provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) # Run the circuit on available quantum hardware and plot histogram from qiskit.tools.monitor import job_monitor job = execute(circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(circuit) plot_histogram(answer) #largest amplitude results correspond with r values used to find the prime factor of N.
https://github.com/TRSasasusu/qiskit-quantum-zoo
TRSasasusu
import unittest import numpy as np from sympy.physics.quantum.qubit import matrix_to_qubit from qiskit import QuantumCircuit, Aer, transpile from qqz.elementary import ( adder, adder_modN, ctrl_multi_modN, ax_modN, ) def run_qc_and_get_ket_vector(qc): backend = Aer.get_backend('aer_simulator_statevector') qc = transpile(qc, backend) qc.save_statevector() job = backend.run(qc) statevector = job.result().get_statevector(qc) return matrix_to_qubit(np.array(statevector)[:, np.newaxis]) class TestElementary(unittest.TestCase): def test_adder(self): qc = QuantumCircuit(2 + (2 + 1) + 2) qc.x([0, 1]) qc.x(2) qc.append(adder(2), range(2 + (2 + 1) + 2)) ket_vector = run_qc_and_get_ket_vector(qc) self.assertEqual(str(ket_vector), '1.0*|0010011>') def test_adder_modN(self): qc = QuantumCircuit(2 + (2 + 1) + 2 + 2 + 1) qc.x([0, 1]) qc.x(2) qc.append(adder_modN(3), range(2 + (2 + 1) + 2 + 2 + 1)) ket_vector = run_qc_and_get_ket_vector(qc) self.assertEqual(str(ket_vector), '1.0*|0000000111>') def test_ctrl_multi_modN(self): qc = QuantumCircuit(9 * 2 - 1) qc.h(0) qc.x(2) qc.append(ctrl_multi_modN(a=2, N=3), range(9 * 2 - 1)) ket_vector = run_qc_and_get_ket_vector(qc) self.assertEqual(str(ket_vector), '0.707106781186547*|00000000000001101> + 0.707106781186548*|00000000000010100>') def test_ax_modN(self): qc = QuantumCircuit(10 * 2 - 2) qc.h([0, 1]) qc.append(ax_modN(a=2, N=3), range(10 * 2 - 2)) ket_vector = run_qc_and_get_ket_vector(qc) self.assertEqual(str(ket_vector), '0.5*|000000000000000100> + 0.5*|000000000000000110> + 0.5*|000000000000001001> + 0.5*|000000000000001011>') if __name__ == '__main__': unittest.main()
https://github.com/animeshnanda1/my_QAOA_qiskit
animeshnanda1
import qiskit qiskit.__qiskit_version__ # import warnings; warnings.filterwarnings("ignore") import numpy as np import networkx as nx import matplotlib.pyplot as plt from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer from qiskit.visualization import plot_histogram G = nx.Graph() Lx=6 G.add_nodes_from([i for i in range(Lx)]) G.add_edges_from([[i,i+1] for i in range(Lx-1)]) G.add_edges_from([[Lx-1,0]]) options = { 'node_color': 'y', 'node_size': 1000, 'width': 3, } nx.draw(G, with_labels=True,pos=nx.circular_layout(G),**options) print(list(G.edges())) print(G.number_of_nodes()) def ham_rot(G,gamma): L=G.number_of_nodes() qc=QuantumCircuit(L,L) for i,j in list(G.edges()): qc.cx(i,j) qc.rz(2*gamma,j) qc.cx(i,j) return qc qc = ham_rot(G, np.pi/3) print(G.edges()) qc.draw() def x_field_rot(G, beta): N = G.number_of_nodes() qc = QuantumCircuit(N,N) for n in G.nodes(): qc.rx(2*beta, n) return qc qc = x_field_rot(G, np.pi/3) qc.draw() def qaoa_circuit(G,beta,gamma): assert(len(beta)==len(gamma)) layer=len(beta) L=G.number_of_nodes() qc=QuantumCircuit(L,L) qc.h(range(L)) for k in range(layer): qc=qc+ham_rot(G,gamma[k]) qc=qc+x_field_rot(G,beta[k]) qc.measure(range(L), range(L)) return qc qc = qaoa_circuit(G,[np.pi/3], [np.pi/2]) qc.draw() def invert_counts(counts): return {k[::-1]:v for k, v in counts.items()} backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend,shots=2048) # this is just a test run for the above circuit result = job.result() print(result.get_counts()) def ising_energy(x,G): ener = 0 for i, j in G.edges(): if x[i] != x[j]: # the edge is cut ener -= 1 elif x[i] == x[j]: # the edge is cut ener += 1 return ener ising_energy('010101', G),ising_energy('111110', G) def compute_ising_energy(counts, G): energy = 0 total_counts = 0 for meas, meas_count in counts.items(): # meas and meas_count are the state and freq # print(type(meas),meas_count) obj_for_meas = ising_energy(meas, G) # calling the state to compute the energy energy += obj_for_meas * meas_count total_counts += meas_count # energy is total energy of all the states return energy / total_counts # total_counts is total number of sampling compute_ising_energy(invert_counts(result.get_counts()), G) invert_counts(result.get_counts()); # here p is the number of layer used for the optimize def get_black_box_objective(G,p,list1): backend = Aer.get_backend('qasm_simulator') def f(theta): # let's assume first half is betas, second half is gammas # theta is a 2*p length array, first 'p' entries are gamma and rest are beta beta = theta[:p] gamma = theta[p:] qc = qaoa_circuit(G,beta, gamma) counts = execute(qc, backend,shots=1024, seed_simulator=100).result().get_counts() # return the energy ener=compute_ising_energy(invert_counts(counts), G) list1.append(ener) return ener, list1 return f # p is the number of QAOA alternating operators p = 5 energy_qasm=[] obj = get_black_box_objective(G, p, energy_qasm) init_point = np.array([0.81069872, 2.2067517 , 1.83830696, 2.15579759, 0.37060699, 2.42068091, 6.1575306 , 2.2453419 , 0.85060091, 3.137845 ]) # We are going to limit the number of iterations to 2500 res_sample = minimize(obj, init_point, method='COBYLA', options={'maxiter':2500, 'disp': True}) res_sample # Once we have gotten the optimum beta and gamma we run the circuit again with the optimal_theta = res_sample['x'] qc = qaoa_circuit(G, optimal_theta[:p], optimal_theta[p:]) counts = invert_counts(execute(qc, backend,shots=2048).result().get_counts()) counts plot_histogram(counts,figsize=(12,4)) # get the best solution: best_cut, best_solution = min([(ising_energy(x,G),x) for x in counts.keys()], key=itemgetter(0)) print(f"Best string: {best_solution} with cut: {-best_cut}") # color the graph nodes by part colors = ['c' if best_solution[node] == '0' else 'y' for node in G] options = { 'node_size': 1000, 'width': 3, } nx.draw(G, with_labels=True,node_color = colors,pos=nx.circular_layout(G),**options) len(energy_qasm); def state_to_ampl_counts(vec, eps=1e-15): """Converts a statevector to a dictionary of bitstrings and corresponding amplitudes """ qubit_dims = np.log2(vec.shape[0]) if qubit_dims % 1: raise ValueError("Input vector is not a valid statevector for qubits.") qubit_dims = int(qubit_dims) counts = {} str_format = '0{}b'.format(qubit_dims) for kk in range(vec.shape[0]): val = vec[kk] if val.real**2+val.imag**2 > eps: counts[format(kk, str_format)] = val return counts def compute_ising_energy_sv(sv, G): """Compute objective from statevector For large number of qubits, this is slow. """ counts = state_to_ampl_counts(sv) return sum(ising_energy(np.array([int(x) for x in k]), G) * (np.abs(v)**2) for k, v in counts.items()) def get_qaoa_circuit_sv(G, beta, gamma): assert(len(beta) == len(gamma)) p = len(beta) # infering number of QAOA steps from the parameters passed N = G.number_of_nodes() qc = QuantumCircuit(N,N) # first, apply a layer of Hadamards qc.h(range(N)) # second, apply p alternating operators for k in range(p): qc=qc+ham_rot(G,gamma[k]) qc=qc+x_field_rot(G,beta[k]) # no measurement in the end! return qc def get_black_box_objective_sv(G,p,list1): backend = Aer.get_backend('statevector_simulator') def f(theta): # let's assume first half is betas, second half is gammas beta = theta[:p] gamma = theta[p:] qc = get_qaoa_circuit_sv(G,beta, gamma) sv = execute(qc, backend).result().get_statevector() # the sv is np.array with complex entries # return the energy ener=compute_ising_energy_sv(sv, G) list1.append(ener) return ener, list1 return f # p is the number of QAOA alternating operators energy_sv=[] obj = get_black_box_objective_sv(G, p, energy_sv) init_point = np.array([0.81069872, 2.2067517 , 0.83830696, 2.15579759, 0.37060699, 2.42068091, 6.1575306 , 2.2453419 , 3.85060091, 6.137845 ]) p = len(init_point)//2 # We are going to limit the number of iterations to 2500 res_sv = minimize(obj, init_point, method='COBYLA', options={'maxiter':2500, 'disp': True}) res_sv # Once we have gotten the optimum beta and gamma we run the circuit again with the backend = Aer.get_backend('qasm_simulator') optimal_theta = res_sv['x'] qc = qaoa_circuit(G, optimal_theta[:p], optimal_theta[p:]) counts = invert_counts(execute(qc, backend,shots=2048).result().get_counts()) counts plot_histogram(counts,figsize=(8,4)) len(energy_sv); ms=6 x_sv=np.arange(1,len(energy_sv)+1) x_qasm=np.arange(1,len(energy_qasm)+1) plt.figure(figsize=(7,6)) plt.plot(x_sv,energy_sv,'b-',markersize=ms,label='Statevector') plt.plot(x_qasm,energy_qasm,'r--',markersize=ms,label='QASM') plt.xlabel('Iterations',fontsize=16) plt.ylabel('Energy',fontsize=16) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.legend(fontsize=16) # plt.title('Plot of gap for different $t_2$, at $t_1=0$ ') plt.grid() plt.tight_layout() # plt.yscale('log') # plt.legend(loc='upper right',fontsize=16) # plt.savefig('%s/gap_t2.pdf'%(loc), bbox_inches='tight') plt.show() print(f"Angles found with samples: beta={res_sample['x'][:p]}, gamma={res_sample['x'][p:]}") print(f"Angles found with full state: beta={res_sv['x'][:p]}, gamma={res_sv['x'][p:]}")
https://github.com/animeshnanda1/my_QAOA_qiskit
animeshnanda1
import qiskit qiskit.__qiskit_version__ # import warnings; warnings.filterwarnings("ignore") import numpy as np import networkx as nx import matplotlib.pyplot as plt from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer from qiskit.visualization import plot_histogram G = nx.Graph() Lx=6 G.add_nodes_from([i for i in range(Lx)]) G.add_edges_from([[i,i+1] for i in range(Lx-1)]) G.add_edges_from([[Lx-1,0]]) options = { 'node_color': 'y', 'node_size': 1000, 'width': 3, } nx.draw(G, with_labels=True,pos=nx.circular_layout(G),**options) print(list(G.edges())) print(G.number_of_nodes()) def ham_rot(G,gamma): L=G.number_of_nodes() qc=QuantumCircuit(L,L) for i,j in list(G.edges()): qc.cx(i,j) qc.rz(2*gamma,j) qc.cx(i,j) return qc qc = ham_rot(G, np.pi/3) print(G.edges()) qc.draw() def x_field_rot(G, beta): N = G.number_of_nodes() qc = QuantumCircuit(N,N) for n in G.nodes(): qc.rx(2*beta, n) return qc qc = x_field_rot(G, np.pi/3) qc.draw() def qaoa_circuit(G,beta,gamma): assert(len(beta)==len(gamma)) layer=len(beta) L=G.number_of_nodes() qc=QuantumCircuit(L,L) qc.h(range(L)) for k in range(layer): qc=qc+ham_rot(G,gamma[k]) qc=qc+x_field_rot(G,beta[k]) qc.measure(range(L), range(L)) return qc qc = qaoa_circuit(G,[np.pi/3], [np.pi/2]) qc.draw() def invert_counts(counts): return {k[::-1]:v for k, v in counts.items()} backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend,shots=2048) # this is just a test run for the above circuit result = job.result() print(result.get_counts()) def ising_energy(x,G): ener = 0 for i, j in G.edges(): if x[i] != x[j]: # the edge is cut ener += 1 elif x[i] == x[j]: # the edge is cut ener -= 1 return ener ising_energy('010101', G),ising_energy('111110', G) def compute_ising_energy(counts, G): energy = 0 total_counts = 0 for meas, meas_count in counts.items(): # meas and meas_count are the state and freq # print(type(meas),meas_count) obj_for_meas = ising_energy(meas, G) # calling the state to compute the energy energy += obj_for_meas * meas_count total_counts += meas_count # energy is total energy of all the states return energy / total_counts # total_counts is total number of sampling compute_ising_energy(invert_counts(result.get_counts()), G) invert_counts(result.get_counts()); # here p is the number of layer used for the optimize def get_black_box_objective(G,p,list1): backend = Aer.get_backend('qasm_simulator') def f(theta): # let's assume first half is betas, second half is gammas # theta is a 2*p length array, first 'p' entries are gamma and rest are beta beta = theta[:p] gamma = theta[p:] qc = qaoa_circuit(G,beta, gamma) counts = execute(qc, backend,shots=1024, seed_simulator=100).result().get_counts() # return the energy ener=compute_ising_energy(invert_counts(counts), G) list1.append(ener) return ener, list1 return f # p is the number of QAOA alternating operators p = 5 energy_qasm=[] obj = get_black_box_objective(G, p, energy_qasm) init_point = np.array([0.81069872, 2.2067517 , 1.83830696, 2.15579759, 0.37060699, 2.42068091, 6.1575306 , 2.2453419 , 0.85060091, 3.137845 ]) # We are going to limit the number of iterations to 2500 res_sample = minimize(obj, init_point, method='COBYLA', options={'maxiter':2500, 'disp': True}) res_sample # Once we have gotten the optimum beta and gamma we run the circuit again with the optimal_theta = res_sample['x'] qc = qaoa_circuit(G, optimal_theta[:p], optimal_theta[p:]) counts = invert_counts(execute(qc, backend,shots=2048).result().get_counts()) counts plot_histogram(counts,figsize=(12,4)) # get the best solution: best_cut, best_solution = min([(ising_energy(x,G),x) for x in counts.keys()], key=itemgetter(0)) print(f"Best string: {best_solution} with cut: {-best_cut}") # color the graph nodes by part colors = ['c' if best_solution[node] == '0' else 'y' for node in G] options = { 'node_size': 1000, 'width': 3, } nx.draw(G, with_labels=True,node_color = colors,pos=nx.circular_layout(G),**options) len(energy_qasm); def state_to_ampl_counts(vec, eps=1e-15): """Converts a statevector to a dictionary of bitstrings and corresponding amplitudes """ qubit_dims = np.log2(vec.shape[0]) if qubit_dims % 1: raise ValueError("Input vector is not a valid statevector for qubits.") qubit_dims = int(qubit_dims) counts = {} str_format = '0{}b'.format(qubit_dims) for kk in range(vec.shape[0]): val = vec[kk] if val.real**2+val.imag**2 > eps: counts[format(kk, str_format)] = val return counts def compute_ising_energy_sv(sv, G): """Compute objective from statevector For large number of qubits, this is slow. """ counts = state_to_ampl_counts(sv) return sum(ising_energy(np.array([int(x) for x in k]), G) * (np.abs(v)**2) for k, v in counts.items()) def get_qaoa_circuit_sv(G, beta, gamma): assert(len(beta) == len(gamma)) p = len(beta) # infering number of QAOA steps from the parameters passed N = G.number_of_nodes() qc = QuantumCircuit(N,N) # first, apply a layer of Hadamards qc.h(range(N)) # second, apply p alternating operators for k in range(p): qc=qc+ham_rot(G,gamma[k]) qc=qc+x_field_rot(G,beta[k]) # no measurement in the end! return qc def get_black_box_objective_sv(G,p,list1): backend = Aer.get_backend('statevector_simulator') def f(theta): # let's assume first half is betas, second half is gammas beta = theta[:p] gamma = theta[p:] qc = get_qaoa_circuit_sv(G,beta, gamma) sv = execute(qc, backend).result().get_statevector() # the sv is np.array with complex entries # return the energy ener=compute_ising_energy_sv(sv, G) list1.append(ener) return ener, list1 return f # p is the number of QAOA alternating operators energy_sv=[] obj = get_black_box_objective_sv(G, p, energy_sv) init_point = np.array([0.81069872, 2.2067517 , 0.83830696, 2.15579759, 0.37060699, 2.42068091, 6.1575306 , 2.2453419 , 3.85060091, 6.137845 ]) p = len(init_point)//2 # We are going to limit the number of iterations to 2500 res_sv = minimize(obj, init_point, method='COBYLA', options={'maxiter':2500, 'disp': True}) res_sv # Once we have gotten the optimum beta and gamma we run the circuit again with the backend = Aer.get_backend('qasm_simulator') optimal_theta = res_sv['x'] qc = qaoa_circuit(G, optimal_theta[:p], optimal_theta[p:]) counts = invert_counts(execute(qc, backend,shots=2048).result().get_counts()) counts plot_histogram(counts,figsize=(8,4)) len(energy_sv); ms=6 x_sv=np.arange(1,len(energy_sv)+1) x_qasm=np.arange(1,len(energy_qasm)+1) plt.figure(figsize=(7,6)) plt.plot(x_sv,energy_sv,'b-',markersize=ms,label='Statevector') plt.plot(x_qasm,energy_qasm,'r--',markersize=ms,label='QASM') plt.xlabel('Iterations',fontsize=16) plt.ylabel('Energy',fontsize=16) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.legend(fontsize=16) # plt.title('Plot of gap for different $t_2$, at $t_1=0$ ') plt.grid() plt.tight_layout() # plt.yscale('log') # plt.legend(loc='upper right',fontsize=16) # plt.savefig('%s/gap_t2.pdf'%(loc), bbox_inches='tight') plt.show() print(f"Angles found with samples: beta={res_sample['x'][:p]}, gamma={res_sample['x'][p:]}") print(f"Angles found with full state: beta={res_sv['x'][:p]}, gamma={res_sv['x'][p:]}")
https://github.com/ayushidubal/qram
ayushidubal
%matplotlib inline from qiskit import QuantumCircuit, QuantumRegister, transpile, ClassicalRegister from qiskit.quantum_info import Statevector from qiskit.visualization import array_to_latex, plot_histogram, plot_bloch_multivector from qiskit.circuit.library import CHGate from qiskit_aer import AerSimulator from functools import partial import numpy as np from utils import get_image_path show_unitary = partial(array_to_latex, max_size=100000) show_state = lambda qc: Statevector(qc).draw('latex') def get_unitary(qc, sim=AerSimulator()): qc_copy = qc.copy() qc_copy.save_unitary() unitary = sim.run(transpile(qc_copy, sim), shots=1000).result().get_unitary() return unitary def measure(qc, sim=AerSimulator(), qubits=None): qc_copy = qc.copy() if(not qubits): qc_copy.measure_all() else: qc_copy.measure(qubits, list(range(len(qubits)))) result = sim.run(transpile(qc_copy, sim), shots=1000).result().get_counts() return result mem = QuantumCircuit(2, name="QROM") mem.cz(0,1) display(mem.draw('mpl')) show_unitary(get_unitary(mem)) qc = QuantumCircuit(2) qc.x(range(2)) qc.append(mem, [0,1]) qc.x(range(2)) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) show_state(qc) mem = QuantumCircuit(2, name="QROM") mem.cp(np.pi/3,0,1) display(mem.draw('mpl')) show_unitary(get_unitary(mem)) qc = QuantumCircuit(2) qc.x(range(2)) qc.append(mem, [0,1]) qc.x(range(2)) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) show_state(qc) plot_bloch_multivector(qc) qc = QuantumCircuit(3) qc.x(range(2)) qc.h(2) qc.barrier() qc.append(mem, [0,1]) qc.barrier() qc.cx(2,1) qc.x(range(2)) qc.h(2) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc))) qc = QuantumCircuit(1) #qc.h(0) qc.p(np.pi/2, 0) #qc.barrier() #qc.cx(1,0) qc.h(0) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc))) mem = QuantumCircuit(2, name="QROM") mem.cp(np.pi/3,0,1) mem.x(range(2)) mem.cp(np.pi/7,0,1) mem.x(range(2)) display(mem.draw('mpl')) show_unitary(get_unitary(mem)) qc = QuantumCircuit(2) #qc.x(range(2)) qc.append(mem, [0,1]) #qc.x(range(2)) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) show_state(qc) mem = QuantumCircuit(2, name="qrom") mem.ch(0,1) mem.x(0) mem.cry(np.pi/3, 0, 1) mem.x(0) display(mem.draw('mpl', filename=get_image_path("qrom_1.png"))) display(show_unitary(get_unitary(mem))) show_state(mem) addr = QuantumRegister(1, name="addr") out = QuantumRegister(1, name="out") q = QuantumRegister(1,name="q") result = ClassicalRegister(1, "m") qc = QuantumCircuit(addr, out, q, result) qc.x(addr) qc.barrier(addr) qc.append(mem, [addr, out]) qc.cx(out, q) display(qc.draw('mpl')) display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[2]))) addr = QuantumRegister(1, name="addr") out = QuantumRegister(1, name="out") q = QuantumRegister(1,name="q") result = ClassicalRegister(1, "m") qc = QuantumCircuit(addr, out, q) qc.h(addr) qc.barrier(addr) qc.append(mem, [addr, out]) qc.cx(out, q) display(qc.draw('mpl', filename=get_image_path("qrom_1_usage.png"))) display(show_unitary(get_unitary(qc))) display(show_state(qc)) #display(plot_histogram(measure(qc, qubits=[2]))) CCH = CHGate().control(1) addr = QuantumRegister(2, name="addr") data = QuantumRegister(2, name="data") mem = QuantumCircuit(addr, data, name="qrom") mem.x(addr[0]) mem.ccx(addr[0], addr[1], data[0]) mem.x(addr[0]) mem.barrier() mem.append(CCH, [addr[0], addr[1], data[0]]) mem.ccx(addr[0], addr[1], data[1]) display(mem.draw('mpl')) display(show_unitary(get_unitary(mem))) show_state(mem) addr = QuantumRegister(2, name="addr") data = QuantumRegister(2, name="data") q = QuantumRegister(1, name="q") out = ClassicalRegister(1, name="c") qc = QuantumCircuit(addr, data, q, out) qc.x(range(2)) qc.barrier(addr) qc.append(mem, [*addr, *data]) qc.cx(data[1], q[0]) qc.cx(data[0], q[0]) qc.append(mem, [*addr, *data]) qc.barrier(addr) qc.x(range(2)) display(qc.draw('mpl')) #display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[4]))) #memory with teleportation addr = QuantumRegister(1, name="addr") data = QuantumRegister(1, name="data") mem = QuantumCircuit(addr, data, name="qrom") mem.cry(np.pi/5, 0, 1) display(mem.draw('mpl')) display(show_unitary(get_unitary(mem))) show_state(mem) addr = QuantumRegister(1, name="addr") data = QuantumRegister(2, name="data") q = QuantumRegister(1, name="q") out = ClassicalRegister(1, name="c") qc = QuantumCircuit(addr, data, q, out) qc.x(addr) qc.barrier(addr) qc.append(mem, [addr, data[0]]) qc.cx(data[0], q) qc.barrier(addr) qc.append(mem, [addr, data[0]]) qc.x(addr) display(qc.draw('mpl')) #display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[3]))) addr = QuantumRegister(1, name="addr") data = QuantumRegister(2, name="data") q = QuantumRegister(1, name="q") out = ClassicalRegister(1, name="c") qc = QuantumCircuit(addr, data, q, out) qc.x(addr) qc.barrier(addr) qc.append(mem, [addr, data[0]]) qc.h(data[1]) qc.cx(data[1], q) qc.cx(data[0], data[1]) qc.h(data[0]) qc.cx(data[1], q) qc.cz(data[0], q) display(qc.draw('mpl')) #display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[3]))) display(plot_histogram(measure(qc, qubits=[1]))) (np.cos(np.pi/5/2))**2, (np.sin(np.pi/5/2))**2 qc = QuantumCircuit(3,3) qc.ry(np.pi/5, 0) qc.barrier() qc.h(1) qc.cx(1,2) qc.barrier() qc.cx(0,1) qc.h(0) qc.cx(1,2) qc.cz(0,2) qc.draw('mpl') display(qc.draw('mpl')) #display(show_unitary(get_unitary(qc))) display(show_state(qc)) display(plot_histogram(measure(qc, qubits=[2]))) data = QuantumRegister(1, name="data") teleportation_provider = QuantumRegister(1, name="t") q = QuantumRegister(1, name="q") meas = ClassicalRegister(1, name="out") qram = QuantumCircuit(data, teleportation_provider, q,meas) qram.h(teleportation_provider) qram.cx(teleportation_provider, data) qram.barrier() qram.ry(np.pi/7, q) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) display(qram.draw('mpl')) #display(show_unitary(get_unitary(qram))) display(show_state(qram)) display(plot_histogram(measure(qram, qubits=[0]))) display(plot_histogram(measure(qram, qubits=[2]))) np.cos(np.pi/7/2)**2, np.sin(np.pi/7/2)**2 data = QuantumRegister(2, name="data") teleportation_provider = QuantumRegister(2, name="t") q = QuantumRegister(2, name="q") meas = ClassicalRegister(1, name="out") qram = QuantumCircuit(data, teleportation_provider, q,meas) qram.h(teleportation_provider) qram.cx(teleportation_provider, data) qram.barrier() qram.ry(np.pi/3, q[0]) qram.ry(np.pi/7, q[1]) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) display(qram.draw('mpl', filename=get_image_path('qram.png'))) #display(show_unitary(get_unitary(qram))) display(show_state(qram)) display(plot_histogram(measure(qram, qubits=[0]))) display(plot_histogram(measure(qram, qubits=[4]))) display(plot_histogram(measure(qram, qubits=[1]))) display(plot_histogram(measure(qram, qubits=[5]))) np.cos(np.pi/3/2)**2, np.sin(np.pi/3/2)**2 data = QuantumRegister(2, name="data") teleportation_provider = QuantumRegister(2, name="t") q = QuantumRegister(2, name="q") meas = ClassicalRegister(1, name="out") qram = QuantumCircuit(data, teleportation_provider, q,meas) qram.h(teleportation_provider) qram.cx(teleportation_provider, data) qram.barrier() qram.h(q[0]) qram.h(q[1]) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) qram.barrier(label='second') qram.cz(q, data) qram.cx(teleportation_provider, data) qram.h(q) qram.cx(q, teleportation_provider) qram.barrier() qram.h(q[0]) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) display(qram.draw('mpl')) #display(show_unitary(get_unitary(qram))) display(show_state(qram)) display(plot_histogram(measure(qram, qubits=[0]))) display(plot_histogram(measure(qram, qubits=[4]))) display(plot_histogram(measure(qram, qubits=[1]))) display(plot_histogram(measure(qram, qubits=[5]))) data = QuantumRegister(2, name="data") teleportation_provider = QuantumRegister(1, name="t") q = QuantumRegister(2, name="q") meas = ClassicalRegister(1, name="out") qram = QuantumCircuit(data, teleportation_provider, q,meas) qram.h(teleportation_provider) qram.cx(teleportation_provider, data) qram.barrier() qram.ry(np.pi/3, q[0]) qram.ry(np.pi/7, q[1]) qram.barrier() qram.cx(q, teleportation_provider) qram.h(q) qram.cx(teleportation_provider, data) qram.cz(q, data) display(qram.draw('mpl', filename=get_image_path('qram.png'))) #display(show_unitary(get_unitary(qram))) display(show_state(qram)) display(plot_histogram(measure(qram, qubits=[0]))) display(plot_histogram(measure(qram, qubits=[4]))) display(plot_histogram(measure(qram, qubits=[1]))) display(plot_histogram(measure(qram, qubits=[5])))
https://github.com/ayushidubal/qram
ayushidubal
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.circuit.library import ZGate from qiskit.quantum_info import Operator, Statevector from qiskit.extensions import Initialize from qiskit.providers.aer import AerSimulator from qiskit.providers.aer.backends import statevector_simulator, qasm_simulator from qiskit.visualization import plot_histogram, plot_state_city from qiskit import Aer, execute, transpile import numpy as np def targets(n): state1 = "" state2 = "" bits = ["0", "1"] for i in range(n): state1 += bits[i%2] state2 += bits[1-(i%2)] return state1, state2 def getData(input_array, mem_bits): state = "" for i in input_array: state += bin(i)[2:].rjust(mem_bits, '0') return state[::-1] def decoder(addr_bits, aux_bits, n): addr = QuantumRegister(addr_bits) tau = QuantumRegister(aux_bits) decoder = QuantumCircuit(addr, tau) decoder.x(tau[0]) decoder.cx(addr[addr_bits-1], tau[1]) decoder.cx(tau[1], tau[0]) c = 1 for i in range(1, addr_bits-1): p = 2**i for j in range(p): decoder.ccx(addr[addr_bits-i-1], tau[j], tau[p+j]) c += 1 for j in range(p): decoder.cx(tau[p+j], tau[j]) p = aux_bits - 1 - c for j in range(p): decoder.ccx(addr[0], tau[j], tau[p+j]) c += 1 for j in range(p): decoder.cx(tau[p+j], tau[j]) return decoder.to_gate(label = "Decoder") def groverOracle(aux_bits, mem_bits, n): winners = targets(mem_bits) tau = QuantumRegister(aux_bits) mem = QuantumRegister(mem_bits*n) oracle = QuantumCircuit(tau, mem) gate1 = ZGate().control(num_ctrl_qubits=mem_bits, ctrl_state=winners[0]) gate2 = ZGate().control(num_ctrl_qubits=mem_bits, ctrl_state=winners[1]) for i in range(aux_bits): qubits = [mem[mem_bits*i + j] for j in range(mem_bits)] oracle.append(gate1, qubits + [tau[i]]) oracle.append(gate2, qubits + [tau[i]]) return oracle.to_gate(label="Oracle") def groverDiffuser(addr_bits): d = 2**addr_bits s = np.array([[1.0/np.sqrt(d)] for i in range(d)]) op = np.matmul(s, s.T) U_S = Operator((2*op)-np.identity(d)) return U_S def qram(input_array): n = len(input_array) if n < 8: input_array += [0 for i in range(8-n)] n = len(input_array) addr_bits = len(bin(n-1)) - 2 # number of address bits aux_bits = n # number of memory locations mem_bits = len(bin(max(input_array))) - 2 # size of one memory location addr = QuantumRegister(addr_bits, name="a") # address register tau = QuantumRegister(aux_bits, name="tau") # auxillary register to store selected address mem = QuantumRegister(mem_bits*n, name="m") # memory register cr = ClassicalRegister(addr_bits) # to store final output qram_circ = QuantumCircuit(addr, tau, mem, cr) for i in range(addr_bits): qram_circ.h(addr[i]) # Load data into qRAM data = getData(input_array[::-1], mem_bits) for i in range(len(data)): if data[i] == "1": qram_circ.x(mem[i]) # End of loading # Entangle tau with addr decode = decoder(addr_bits, aux_bits, n) qram_circ.append(decode, addr[:] + tau[:]) # Grover oracle oracle = groverOracle(aux_bits, mem_bits, n) qram_circ.append(oracle, tau[:] + mem[:]) # End of grover oracle # Detangle tau from addr encode = decode.inverse() encode.label = "Encoder" qram_circ.append(encode, addr[:] + tau[:]) # Diffuser U_S = groverDiffuser(addr_bits) qram_circ.append(U_S, [addr[i] for i in range(addr_bits)]) # Measure qram_circ.measure([addr[i] for i in range(addr_bits)], [cr[i] for i in range(addr_bits)]) return qram_circ circ = qram([3, 2, 0, 1]) circ.draw('mpl') backend = Aer.get_backend("qasm_simulator") job = execute(circ, backend) res = job.result() counts = res.get_counts() print(counts) plot_histogram(counts) circ = qram([1, 0, 3, 2, 3]) circ.draw('mpl') backend = Aer.get_backend("qasm_simulator") job = execute(circ, backend) res = job.result() counts = res.get_counts() print(counts) plot_histogram(counts) circ = qram([0, 1, 3, 2, 2]) circ.draw('mpl') backend = Aer.get_backend("qasm_simulator") job = execute(circ, backend) res = job.result() counts = res.get_counts() print(counts) plot_histogram(counts)
https://github.com/mickahell/qiskit-ecosystem_template
mickahell
"""Docstring.""" from qiskit import QuantumCircuit, execute, QuantumRegister, ClassicalRegister from qiskit_aer import Aer class Random: """Demo random.""" def __init__(self): """Demo random.""" self.pow = 2 self.qasm = Aer.get_backend("aer_simulator") def run(self, number: int) -> int: """Run method.""" nb_qubits = number print("Generate random number") circ = QuantumRegister(nb_qubits, "the number") meas = ClassicalRegister(nb_qubits, "measurement") quant_circ = QuantumCircuit(circ, meas) for i in range(0, nb_qubits): quant_circ.x(i) quant_circ.measure(circ, meas) job = execute(quant_circ, self.qasm, shots=1, memory=True) result_sim = job.result() memory = result_sim.get_memory() result = int(memory[0], 2) + 1 return result def __repr__(self): return f"Random(circuit of: {self.pow})"
https://github.com/qiskit-community/qiskit-tket-passes
qiskit-community
from qiskit_tket_passes import ToQiskitPass import pytket.passes as tkps _pass1 = ToQiskitPass(tkps.SynthesiseTket) # If TKET pass' constructor expects some arguments, pass them after the class name _pass2 = ToQiskitPass(tkps.FullPeepholeOptimise, allow_swaps=True, target_2qb_gate='cx') from pytket.architecture import Architecture arc = Architecture([(0, 1), (1, 0), (1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 3)]) _pass = ToQiskitPass(tkps.AASRouting, arc=arc) _pass = ToQiskitPass(tkps.AASRouting, arc=[[0, 1], [1, 0], [1, 2], [1, 3], [2, 1], [3, 1], [3, 4], [4, 3]]) from qiskit.providers.fake_provider import FakeQuitoV2 backend = FakeQuitoV2() _pass = ToQiskitPass(tkps.AASRouting, target=backend.target) print(_pass.tket_argument('arc').to_dict()) from qiskit.circuit.random import random_circuit from pytket.extensions.qiskit import AerBackend from qiskit_tket_passes import TketPassManager qc = random_circuit(3, 10, seed=1) pm = TketPassManager(AerBackend(), optimization_level=2) transpiled_qc = pm.run(qc) from qiskit.circuit.random import random_circuit circ = random_circuit(7, 30, seed=1) circ.draw('mpl', fold=-1) from qiskit.transpiler.passes import ( UnitarySynthesis, Collect2qBlocks, ConsolidateBlocks, Unroll3qOrMore, ) from qiskit.transpiler import PassManager, StagedPassManager basis_gates = ["rx", "ry", "rxx"] init = PassManager([UnitarySynthesis(basis_gates, min_qubits=3), Unroll3qOrMore()]) translate = PassManager( [ Collect2qBlocks(), ConsolidateBlocks(basis_gates=basis_gates), UnitarySynthesis(basis_gates), ] ) staged_pm = StagedPassManager( stages=["init", "translation"], init=init, translation=translate ) tr_circ = staged_pm.run(circ) print('Depth:', tr_circ.depth()) optimize = PassManager( [ ToQiskitPass(tkps.RemoveRedundancies) ] ) staged_pm = StagedPassManager( stages=["init", "translation", "optimization"], init=init, translation=translate, optimization=optimize ) tr_circ = staged_pm.run(circ) print('Depth:', tr_circ.depth()) from pytket.extensions.qiskit import IBMQBackend from qiskit_tket_passes import TketPassManager qbackend = IBMQBackend('ibmq_jakarta') pm = TketPassManager(qbackend, optimization_level=2) #pm.draw() tr_circ = pm.run(circ) print('CNOTs:', tr_circ.count_ops()['cx']) print('Depth:', tr_circ.depth()) from qiskit_ibm_provider import IBMProvider provider = IBMProvider() backend = provider.get_backend('ibmq_jakarta') from qiskit import transpile tr_circ = transpile(circ, backend=backend, optimization_level=3) print('CNOTs:', tr_circ.count_ops()['cx']) print('Depth:', tr_circ.depth()) print('init:') circ_init = transpile(circ, backend=backend, optimization_level=3, init_method='tket') print('CNOTs:', circ_init.count_ops()['cx']) print('Depth:', circ_init.depth()) print('\ntranslation:') circ_trans = transpile(circ, backend=backend, optimization_level=3, translation_method='tket') print('CNOTs:', circ_trans.count_ops()['cx']) print('Depth:', circ_trans.depth()) print('\noptimization:') circ_opt = transpile(circ, backend=backend, optimization_level=3, optimization_method='tket') print('CNOTs:', circ_opt.count_ops()['cx']) print('Depth:', circ_opt.depth()) from colorama import Fore, Style def _callback(pass_, dag, time, property_set, count): is_tket_pass = pass_.name().startswith('TketPass_') print(Fore.GREEN if is_tket_pass else Fore.WHITE, pass_.name()) Style.RESET_ALL circ_layout = transpile(circ, backend=backend, optimization_level=3, init_method='tket', translation_method='tket', optimization_method='tket', callback=_callback)
https://github.com/qiskit-community/qiskit-tket-passes
qiskit-community
import re from collections import OrderedDict from qiskit import QuantumCircuit from qiskit.transpiler import TransformationPass from qiskit.transpiler.target import Target, target_to_backend_properties from pytket.architecture import Architecture from pytket.circuit import OpType from pytket.passes import BasePass from pytket.passes._decompositions import _TK1_to_X_SX_Rz, _TK1_to_U from pytket.transform import CXConfigType, PauliSynthStrat from pytket.extensions.qiskit import qiskit_to_tk from pytket.placement import GraphPlacement, LinePlacement, NoiseAwarePlacement from .utils import get_arguments_from_doc, qiskit_dag_to_tk, tk_to_qiskit_dag def ToQiskitPass(tket_pass, target: Target = None, **kwargs): class TketPassClass(TransformationPass): def __init__(self, target: Target = None, **kwargs): if isinstance(tket_pass, BasePass): self._pass = tket_pass _dict = tket_pass.to_dict() class_name = _dict[_dict['pass_class']]['name'] self.requires = [] self.preserves = [] else: self.target = target super().__init__() class_name = tket_pass.__name__ self._args_dict = OrderedDict() parsed_args = get_arguments_from_doc(tket_pass) for parsed_arg in parsed_args: arg_name = parsed_arg[0] arg_type = parsed_arg[1] if arg_type.endswith('architecture.Architecture'): if arg_name in kwargs: arc = kwargs.pop(arg_name) if type(arc) == list: connections = [] for edge in arc: connections.append(tuple(edge)) arc = Architecture(connections) self._args_dict[arg_name] = arc elif self.target: arc = self._arch_from_target() self._args_dict[arg_name] = arc elif arg_type.endswith('placement.Placement'): if arg_name in kwargs: placer_str = kwargs.pop(arg_name) else: placer_str = 'NoiseAware' if placer_str == 'Graph': placer = GraphPlacement(self._arch_from_target()) self._args_dict[arg_name] = placer elif placer_str == 'Line': placer = LinePlacement(self._arch_from_target()) self._args_dict[arg_name] = placer elif placer_str == 'NoiseAware': if self.target: placer = self._noise_aware_placer_from_target() self._args_dict[arg_name] = placer else: raise ValueError('Unsupported placer type:', placer_str) elif arg_type.endswith('circuit.Circuit'): if arg_name in kwargs: circ = kwargs.pop(arg_name) tkcirc = qiskit_to_tk(circ) self._args_dict[arg_name] = tkcirc elif self.target: if class_name == 'DecomposeSwapsToCircuit' and arg_name == 'replacement_circuit': # Construct SWAP replacement circuit based on target's gate set. circ = self._swap_decomposition_from_target() tkcirc = qiskit_to_tk(circ) self._args_dict[arg_name] = tkcirc elif class_name == 'RebaseCustom' and arg_name == 'cx_replacement': # Construct CNOT replacement circuit based on target's gate set. circ = self._cnot_decomposition_from_target() tkcirc = qiskit_to_tk(circ) self._args_dict[arg_name] = tkcirc elif arg_type.endswith('circuit.OpType'): if arg_name in kwargs: op_str = kwargs.pop(arg_name) op_type = self._optype_from_str(op_str) self._args_dict[arg_name] = op_type elif re.match("Set\[.+\.circuit\.OpType\]", arg_type) is not None: if arg_name in kwargs: _value = kwargs.pop(arg_name) if all(isinstance(elem, str) for elem in _value): op_types = set() for op_str in _value: op_types.add(self._optype_from_str(op_str)) self._args_dict[arg_name] = op_types elif isinstance(_value, set) and all(isinstance(elem, OpType) for elem in _value): self._args_dict[arg_name] = _value elif self.target and class_name == 'RebaseCustom' and arg_name == 'gateset': # Get the target's gate set. self._args_dict[arg_name] = self._gateset_from_target() elif arg_type.endswith('transform.PauliSynthStrat'): if arg_name in kwargs: strategy = kwargs.pop(arg_name) strategies_map = { 'Individual': PauliSynthStrat.Individual, 'Pairwise': PauliSynthStrat.Pairwise, 'Sets': PauliSynthStrat.Sets, } value = strategies_map[strategy] self._args_dict[arg_name] = value elif arg_type.endswith('transform.CXConfigType'): if arg_name in kwargs: cx_config = kwargs.pop(arg_name) cx_config_map = { 'Snake': CXConfigType.Snake, 'Star': CXConfigType.Star, 'Tree': CXConfigType.Tree, 'MultiQGate': CXConfigType.MultiQGate } value = cx_config_map[cx_config] self._args_dict[arg_name] = value elif arg_name == 'tk1_replacement': if self.target: self._args_dict[arg_name] = self._tk1_replacement_from_target() else: self._args_dict[arg_name] = _TK1_to_U else: if arg_name in kwargs: value = kwargs.pop(arg_name) self._args_dict[arg_name] = value args = self._args_dict.values() self._pass = tket_pass(*args, **kwargs) __class__.__name__ = 'TketPass_' + class_name def run(self, dag): tkcirc = qiskit_dag_to_tk(dag) self._pass.apply(tkcirc) return tk_to_qiskit_dag(tkcirc) def tket_argument(self, arg_name): if arg_name in self._args_dict: return self._args_dict[arg_name] else: raise ValueError(f"{__class__.__name__} has no argument with the name {arg_name}.") #TODO: May be we should move the following methods to utils file instead of having them as class methods def _optype_from_str(self, op_str): for op_type in dir(OpType): if op_str.upper() == op_type.upper(): return OpType.from_name(op_type) ops_map = { 'id': 'noop', 'u': 'U3', 'cu': 'CU3', 'iswap': 'ISWAPMax', 'rxx': 'XXPhase', 'ryy': 'YYPhase', 'rzz': 'ZZPhase', 'p': 'U1', 'cp': 'CU1', 'r': 'PhasedX', } return OpType.from_name(ops_map[op_str]) def _gateset_from_target(self): operation_names = list(self.target.operation_names) for op in ['delay', 'if_else', 'rzx']: if op in operation_names: operation_names.remove(op) return { self._optype_from_str(op_str) for op_str in operation_names } def _arch_from_target(self): _coupling_map = self.target.build_coupling_map() if _coupling_map is None: return Architecture([]) else: return Architecture(_coupling_map.get_edges()) def _cnot_decomposition_from_target(self): circ = QuantumCircuit(2) circ.cx(0, 1) if 'cx' not in self.target.operation_names: from qiskit import transpile circ = transpile(circ, basis_gates=list(self.target.operation_names)) return circ def _swap_decomposition_from_target(self): from qiskit import transpile circ = QuantumCircuit(2) circ.swap(0, 1) return transpile(circ, basis_gates=list(self.target.operation_names)) def _tk1_replacement_from_target(self): if {'x', 'sx', 'rz'}.issubset(self.target.operation_names): return _TK1_to_X_SX_Rz else: return _TK1_to_U def _noise_aware_placer_from_target(self): """ Get noise data from target. This code is a modified copy from `process_characterisation` & `get_avg_characterisation` functions in pytket-qiskit module. """ from collections import defaultdict from pytket.circuit import Node node_errors = defaultdict(dict) edge_errors = defaultdict(dict) readout_errors = {} coupling_map = target.build_coupling_map() arc = self._arch_from_target() properties = target_to_backend_properties(target) if properties is None: return None else: for gate in properties.gates: for param in gate.parameters: if param.name == 'gate_error': optype = self._optype_from_str(gate.gate) gate_error = param.value if len(gate.qubits) == 1: node_errors[Node(gate.qubits[0])].update({optype: gate_error}) else: edge_errors[(Node(gate.qubits[0]), Node(gate.qubits[1]))].update({optype: gate_error}) if gate.qubits[::-1] not in coupling_map: edge_errors[(Node(gate.qubits[1]), Node(gate.qubits[0]))].update({optype: 2 * gate_error}) props_dict = properties.to_dict() for n in range(target.num_qubits): if len(props_dict['qubits']) > n: readout_error = properties.readout_error(n) else: readout_error = 0 readout_errors[Node(n)] = [ [1.0 - readout_error, readout_error], [readout_error, 1.0 - readout_error], ] avg = lambda xs: sum(xs.values()) / len(xs) avg_mat = (lambda xs: (xs[0][1] + xs[1][0]) / 2.0) map_values = lambda f, d: { k: f(v) for k, v in d.items() } avg_node_errors = map_values(avg, node_errors) avg_edge_errors = map_values(avg, edge_errors) avg_readout_errors = map_values(avg_mat, readout_errors) return NoiseAwarePlacement( arc, avg_node_errors, avg_edge_errors, avg_readout_errors ) return TketPassClass(target, **kwargs)
https://github.com/qiskit-community/qiskit-tket-passes
qiskit-community
import pydoc import re import pytket.passes as tkps def get_arguments_from_doc(tket_pass): arguments = [] _doc = pydoc.getdoc(tket_pass) if 'Overloaded function.' in _doc: #Return the first signature #TODO: We should return all possible signatures. This would requires changes in ToQiskitPass also. matches = re.findall("[1-9]\. (" + tket_pass.__name__ + '[^\n]+)', _doc) synopsis_line = matches[0] else: synopsis_line = pydoc.splitdoc(_doc)[0] # To avoid issue caused by callable parentheses: synopsis_line = re.sub('Callable\[\[[^\[]+\][^\[]+\]', 'Callable', synopsis_line) match = re.search("\(([^(]+)\)", synopsis_line) if match is not None: splitted_args = match.group(1).split(', ') for arg_str in splitted_args: if arg_str == '**kwargs': continue else: argument = arg_str.split(': ') eq_index = argument[1].find('=') if eq_index > 0: (_type, _default) = argument[1].split(' = ') arguments.append((argument[0], _type, _default)) else: arguments.append(tuple(argument)) return arguments # This is **temp**. Conversion should be done in a better way # https://github.com/CQCL/pytket-qiskit/blob/develop/pytket/extensions/qiskit/qiskit_convert.py from pytket.extensions.qiskit import qiskit_to_tk, tk_to_qiskit from qiskit.converters import dag_to_circuit, circuit_to_dag from pytket.circuit import Circuit from qiskit.dagcircuit import DAGCircuit def qiskit_dag_to_tk(dag: DAGCircuit): # Replace any gate that is not known to pyket by its definition from pytket.extensions.qiskit.qiskit_convert import _known_qiskit_gate for node in dag.op_nodes(): if not type(node.op) in _known_qiskit_gate: dag.substitute_node_with_dag(node, circuit_to_dag(node.op.definition)) return qiskit_to_tk(dag_to_circuit(dag)) def tk_to_qiskit_dag(tkcirc: Circuit): return circuit_to_dag(tk_to_qiskit(tkcirc))
https://github.com/qiskit-community/qiskit-tket-passes
qiskit-community
import unittest from qiskit.transpiler.preset_passmanagers.plugin import ( list_stage_plugins, passmanager_stage_plugins, ) import qiskit_tket_passes.plugins as plgn class TestPassManagerStagePlugins(unittest.TestCase): def test_plugins_are_installed(self): for stage_name in ['init', 'layout', 'routing', 'translation', 'optimization']: installed_plugins = list_stage_plugins(stage_name) self.assertIn('tket', installed_plugins) def test_plugins_are_used(self): plugins = passmanager_stage_plugins('init') self.assertIsInstance(isinstance(plugins['tket'], plgn.TketInitPassManager)) plugins = passmanager_stage_plugins('layout') self.assertIsInstance(plugins['tket'], plgn.TketLayoutPassManager) plugins = passmanager_stage_plugins('routing') self.assertIsInstance(plugins['tket'], plgn.TketRoutingPassManager) plugins = passmanager_stage_plugins('translation') self.assertIsInstance(plugins['tket'], plgn.TketTranslationPassManager) plugins = passmanager_stage_plugins('optimization') self.assertIsInstance(plugins['tket'], plgn.TketOptimizationPassManager) if __name__ == '__main__': unittest.main()
https://github.com/ArunSehrawat/Quantum_Machine_Learning_use_cases_with_Qiskit
ArunSehrawat
import numpy as np import matplotlib.pyplot as plt import time, copy, warnings from sklearn import linear_model, svm from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.neural_network import MLPClassifier '''datasets:''' from sklearn.datasets import (load_iris, load_wine, load_breast_cancer) from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split dataset = load_wine() # choose one of the above datasets X, y = dataset.data, dataset.target X = MinMaxScaler().fit_transform(X) # this will put all the feature (X) values in the interval [0,1] num_examples, num_features = X.shape print("number of examples = ", num_examples) print("number of features = ", num_features) X[:3,:], y[:3] # first 3 examples X_train_, X_test_, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) print(X_train_.shape, X_test_.shape) feature_names = dataset.feature_names print(f'feature_names = {feature_names} \n') k = 4 print(f'number of features to be selected = {k}\n') # Pearson correlation coefficient between features x_i and x_j xx_pcc = np.corrcoef(X_train_.T) xx_pcc = np.abs(np.triu(xx_pcc, 1)) plt.matshow(xx_pcc, cmap='Reds') plt.xticks(np.arange(num_features)) plt.yticks(np.arange(num_features)) cb = plt.colorbar(shrink=0.7) plt.title('abs corr upp-tri matrix') plt.show() # Pearson correlation coefficient between feature x_i and target y xy_pcc = [np.abs(np.corrcoef(X_train_[:,l], y_train)[0,1]) for l in range(num_features)] # alpha is the weight attached to the off-diagonal terms, 0 <= alpha <=1 # 1- alpha is the weight attached to the diagonal terms of Q alpha = 0.5 Q = alpha*xx_pcc - (1-alpha)*np.diag(xy_pcc) def plot_Q_matrix(): plt.matshow(Q, cmap='bwr') plt.xticks(np.arange(num_features)) plt.yticks(np.arange(num_features)) cb = plt.colorbar(shrink=0.7) plt.title(f'Q matrix (alpha = {alpha})') plt.show() plot_Q_matrix() from qiskit_optimization import QuadraticProgram #!pip install qiskit[optimization] from qiskit.algorithms.minimum_eigensolvers import SamplingVQE, NumPyMinimumEigensolver, QAOA from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit_optimization.converters import QuadraticProgramToQubo from qiskit.primitives import Sampler from qiskit.circuit.library import TwoLocal from qiskit.algorithms.optimizers import SPSA, COBYLA qp = QuadraticProgram() for i in range(num_features): qp.binary_var(f'v{i}') linear = [Q[i,i] for i in range(num_features)] quadratic = {} for i in range(num_features): for j in range(i+1, num_features): quadratic[(f'v{i}', f'v{j}')] = Q[i,j] qp.minimize(linear=linear, quadratic=quadratic) linear_const = {f'v{i}':1 for i in range(num_features)} # the constraint to select k number of features qp.linear_constraint(linear=linear_const, sense="==", rhs=k, name="lin_const") qp %%time exact = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) print() %%time ansatz = TwoLocal(num_features, "ry", "cz", reps=3, entanglement="linear") # construct ansatz for VQE vqe = SamplingVQE(sampler=Sampler(), ansatz=ansatz, optimizer=COBYLA(maxiter=10)) # construct VQE meo_vqe = MinimumEigenOptimizer(min_eigen_solver=vqe) # run VQE result_vqe = meo_vqe.solve(qp) print(result_vqe.prettyprint()) print() %%time qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=10), reps=3) # construct QAOA meo_qaoa = MinimumEigenOptimizer(min_eigen_solver=qaoa) # run QAOA result_qaoa = meo_qaoa.solve(qp) print(result_qaoa.prettyprint()) print() sol = np.append(np.ones(k, dtype=int), np.zeros(num_features-k, dtype=int)) Emin = np.linalg.multi_dot([sol, Q , sol]) print(f'inital sol = {sol}') print(f'initial Emin = {round(Emin,3)}\n') for l in range(10000): s = np.random.permutation(sol) E = np.linalg.multi_dot([s, Q , s]) if E < Emin: sol, Emin = s, E print(f'l = {l:5d} Emin = {round(Emin,3)} sol = {sol}') pos = np.where(sol==1)[0] print() print(f'selected_feature_positions = {pos}\n') plot_Q_matrix() from sklearn.feature_selection import SelectKBest, mutual_info_classif f = SelectKBest(mutual_info_classif, k=4).fit(X_train_, y_train) selected_features = f.get_feature_names_out(feature_names) selected_features_pos = [np.where(np.array(feature_names) == sf)[0][0] for sf in selected_features] print(f'selected_features = {selected_features}\n') print(f'selected_feature_positions = {selected_features_pos}\n') print(f'selected_feature_positions = {pos}\n') print(f'selected_features = {np.array(feature_names)[pos]}\n') X_train, X_test = X_train_[:,pos], X_test_[:,pos] print(f"number selected of features = k = {k}:", k==X_train.shape[1]) from qiskit.circuit.library import PauliFeatureMap, ZFeatureMap, ZZFeatureMap fm = ZZFeatureMap(feature_dimension=k, reps=1) fm.decompose().draw() from qiskit.circuit.library import RealAmplitudes pqc = RealAmplitudes(num_qubits=k, reps=3) pqc.decompose().draw() from qiskit.algorithms.optimizers import COBYLA # This defines where to train our classifier: on a simulator or a real quantum computer from qiskit.primitives import Sampler # here we have chosen a simulator from qiskit_machine_learning.algorithms.classifiers import VQC # !pip install qiskit[machine-learning] #------------------------------------------------------------------------------------------------ optimizer = COBYLA(maxiter=250) # maxiter = Maximum number of iterations (function evaluations) sampler = Sampler() #------------------------------------------------------------------------------------------------ from IPython.display import clear_output objective_func_vals = [] # a callback that can access the intermediate data during the optimization def callback(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() #------------------------------------------------------------------------------------------------ vqc = VQC( sampler=sampler, feature_map=fm, ansatz=pqc, optimizer=optimizer, callback=callback, ) %%time '''Training time increases with the number of features''' vqc.fit(X_train, y_train) train_score = vqc.score(X_train, y_train) test_score = vqc.score(X_test, y_test) print(f"VQC train score: {train_score:.2f}") print(f"VQC test score: {test_score:.2f}") %%time warnings.filterwarnings('ignore') def train_test(ML_model): print(15*'-', ML_model, 15*'-','\n') ML_model.fit(X_train, y_train) # fit model train_score_ML = ML_model.score(X_train, y_train) # evaluate model test_score_ML = ML_model.score(X_test, y_test) print(f"ML train score: {train_score_ML:.2f}") print(f"ML test score: {test_score_ML:.2f}") print() #---------------------------------------------------------------------------------- ML_model = linear_model.LogisticRegression() # create model instance train_test(ML_model) ML_model = MLPClassifier() train_test(ML_model) ML_model = svm.SVC() train_test(ML_model) ML_model = RandomForestClassifier() train_test(ML_model)
https://github.com/ArunSehrawat/Quantum_Machine_Learning_use_cases_with_Qiskit
ArunSehrawat
import numpy as np import pandas as pd import matplotlib.pyplot as plt import time, copy, warnings from sklearn import linear_model, svm from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, roc_auc_score data = pd.read_csv("creditcard.csv") histogram = data.hist(bins=20) data # See: 'Time' and 'Amount' are bigger than other features V1, ..., V28 values data.plot.box() # See: features V1, ..., V28 are not correlated as they are the principal components obtained with PCA plt.matshow(data.corr(), cmap='bwr') cb = plt.colorbar(shrink=0.7) plt.title('Correlation Matrix', fontsize=16) plt.show() normal = data[data.Class==0] # Set of all normal (y = 0) cases fraud = data[data.Class==1] # Set of all fraud (y = 1) cases num_normal = normal.shape[0] num_fraud = fraud.shape[0] print(f"Number of normal examples = {num_normal}") print(f"Number of fraud examples = {num_fraud}\n") ratio = num_normal/num_fraud print(f'normal to fraud ratio in the whole data = {round(ratio,2)}') 'A choice of normal_fraud_ratio has effects on precision and recall given below.' normal_fraud_ratio = 1 # normal_fraud_ratio = 1 means balance sample normal_sample = normal.sample(normal_fraud_ratio*num_fraud) # joining row-wise (axis=0) normal and fraud cases to get a sample sample = pd.concat([fraud, normal_sample], axis=0) for i in range(100): sample = np.random.permutation(sample) # random shuffling of sample examples 100 times #============================================================================== X, y = sample[:, :-1], sample[:, -1] X = MinMaxScaler().fit_transform(X) # this will put all the feature (X) values in the interval [0,1] num_examples, num_features = X.shape print("number of examples = ", num_examples) print("number of features = ", num_features) X[:3,:], y[:3] # see first 3 examples ''' Zero padding is to make the number of features equal to a power of 2. it is required for 'amplitude encoding' given below. ''' n = int(np.ceil(np.log2(num_features))) dim = 2**n print(f'(number of qubits, dimension of the Hilbert space) = {(n, dim)}') zeros = np.zeros((num_examples, dim-num_features)) X = np.append(X, zeros, axis=1) num_examples, num_features = X.shape num_examples, num_features = X.shape print("number of examples = ", num_examples) print("number of features = ", num_features) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) print(X_train.shape, X_test.shape) from qiskit.circuit.library import PauliFeatureMap, ZFeatureMap, ZZFeatureMap fm = ZZFeatureMap(feature_dimension=num_features, reps=1) # ZZFeatureMap seems better fm.decompose().draw() from qiskit_machine_learning.circuit.library import RawFeatureVector fm = RawFeatureVector(feature_dimension=num_features) fm.draw() from qiskit.circuit.library import RealAmplitudes ''' For angle encoding, num_qubits = num_features For amplitude encoding, num_qubits = n = np.log2(num_features) ''' pqc = RealAmplitudes(num_qubits=n, reps=3) pqc.decompose().draw() from qiskit.algorithms.optimizers import COBYLA # This defines where to train our classifier: on a simulator or a real quantum computer from qiskit.primitives import Sampler # here we have chosen a simulator from qiskit_machine_learning.algorithms.classifiers import VQC # !pip install qiskit[machine-learning] #------------------------------------------------------------------------------------------------ optimizer = COBYLA(maxiter=150) # maxiter = Maximum number of iterations (function evaluations) sampler = Sampler() #------------------------------------------------------------------------------------------------ from IPython.display import clear_output objective_func_vals = [] # a callback that can access the intermediate data during the optimization def callback(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() #------------------------------------------------------------------------------------------------ vqc = VQC( sampler=sampler, feature_map=fm, ansatz=pqc, optimizer=optimizer, callback=callback, ) %%time '''Training time seems to increase with the number of features''' vqc.fit(X_train, y_train) y_train_pred = vqc.predict(X_train) y_test_pred = vqc.predict(X_test) print(classification_report(y_train, y_train_pred)) print(confusion_matrix(y_train, y_train_pred), "= confusion matrix for train set \n") print(classification_report(y_test, y_test_pred)) print(confusion_matrix(y_test, y_test_pred), "= confusion matrix for test set \n ") print(round(roc_auc_score(y_test, y_test_pred),2), "= roc_auc_score for test set \n") %%time warnings.filterwarnings('ignore') def train_test(ML_model): print(20*' ', ML_model,'\n') ML_model.fit(X_train, y_train) # fit model y_train_pred = ML_model.predict(X_train) # predict with the trained model y_test_pred = ML_model.predict(X_test) print(classification_report(y_train, y_train_pred)) # evaluate model performance print(confusion_matrix(y_train, y_train_pred), "= confusion matrix for train set \n") print(classification_report(y_test, y_test_pred)) print(confusion_matrix(y_test, y_test_pred), "= confusion matrix for test set \n") print(round(roc_auc_score(y_test, y_test_pred),2), "= roc_auc_score for test set \n") print(70*'=') #---------------------------------------------------------------------------------- print(70*'=') ML_model = linear_model.LogisticRegression() # create model instance train_test(ML_model) ML_model = MLPClassifier() train_test(ML_model) ML_model = svm.SVC() train_test(ML_model) ML_model = RandomForestClassifier() train_test(ML_model)
https://github.com/ArunSehrawat/Quantum_Machine_Learning_use_cases_with_Qiskit
ArunSehrawat
import numpy as np import matplotlib.pyplot as plt import time, copy, warnings from sklearn import linear_model, svm from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.neural_network import MLPClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix, accuracy_score size = 4 # size of image binaries = np.array([[int(i) for i in np.binary_repr(a, size)] for a in range(1, 2**size - 1)]) #-------------------------------------------------------------------------------------------------- ones = np.ones((size, size)) X = [] # X collects (size x size) feature matrices y = [] # y collects class labels 1 or 0 for b in binaries: x = b*ones X.append(x.flatten()) # image with vertical strips, class 1 y.append(1) X.append((x.T).flatten()) # image with horizontal strips, class 0 y.append(0) X, y = np.array(X), np.array(y) #-------------------------------------------------------------------------------------------------- num_examples, num_features = X.shape print(f'number of examples = {num_examples}') print(f'number of features = {num_features}') num_features == size*size idx = np.random.choice(num_examples) x = X[idx].reshape(size,size) print(f'x_{idx} of size {x.shape} :') plt.imshow(x, cmap='gray', vmin=0, vmax=1) plt.show() if y[idx]==1: class_ = 'vertical' elif y[idx]==0: class_ = 'horizontal' print(f'true label = y = {y[idx]} = image of {class_} strips \n') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0) num_train_examples, num_test_examples = X_train.shape[0], X_test.shape[0] print(f'number of train examples = {num_train_examples}') print(f'number of test examples = {num_test_examples}\n') print(f'number of features = {num_features}') num_train_examples + num_test_examples == num_examples from qiskit.circuit.library import PauliFeatureMap, ZFeatureMap, ZZFeatureMap 'For angle encoding, num_qubits = num_features' #fm = PauliFeatureMap(feature_dimension=num_features, reps=1, paulis=['Z']) fm = ZZFeatureMap(feature_dimension=num_features, reps=1) fm.decompose().draw() from qiskit_machine_learning.circuit.library import RawFeatureVector 'For amplitude encoding, num_qubits = n = np.log2(num_features)'' fm = RawFeatureVector(feature_dimension=n) fm.draw() from qiskit.circuit.library import RealAmplitudes ''' For angle encoding, num_qubits = num_features For amplitude encoding, num_qubits = n = np.log2(num_features) ''' pqc = RealAmplitudes(num_qubits=num_features, reps=3) pqc.decompose().draw() from qiskit.algorithms.optimizers import COBYLA # This defines where to train our classifier: on a simulator or a real quantum computer from qiskit.primitives import Sampler # here we have chosen a simulator from qiskit_machine_learning.algorithms.classifiers import VQC # !pip install qiskit[machine-learning] #------------------------------------------------------------------------------------------------ optimizer = COBYLA(maxiter=60) # maxiter = Maximum number of iterations (function evaluations) sampler = Sampler() #------------------------------------------------------------------------------------------------ from IPython.display import clear_output objective_func_vals = [] # a callback that can access the intermediate data during the optimization def callback(weights, obj_func_eval): clear_output(wait=True) objective_func_vals.append(obj_func_eval) plt.xlabel("Iteration") plt.ylabel("Objective function value") plt.plot(range(len(objective_func_vals)), objective_func_vals) plt.show() #------------------------------------------------------------------------------------------------ vqc = VQC( sampler=sampler, feature_map=fm, ansatz=pqc, optimizer=optimizer, callback=callback, ) %%time '''Training time seems to increase with the number of features, examples, and learnable-parameters''' vqc.fit(X_train, y_train) %%time def performance_VQC(X, y, name): y_pred = vqc.predict(X) print(classification_report(y, y_pred)) print(f'{confusion_matrix(y, y_pred)} = confusion matrix for {name} set \n') return y_pred y_pred_train = performance_VQC(X_train, y_train, 'train') y_pred_test = performance_VQC(X_test, y_test, 'test') idx = np.random.choice(len(X_test)) x = X_test[idx] print(f'x of size {(size,size)} :') plt.imshow(x.reshape(size,size), cmap='gray') plt.show() if y[idx]==1: class_ = 'vertical' elif y[idx]==0: class_ = 'horizontal' print(f'true label = y = {y[idx]} = image with {class_} strips \n') y_pred_ = vqc.predict(x) print(f'predicted label = {y_pred_}\n') %%time warnings.filterwarnings('ignore') def train_test(ML_model): print(20*' ', ML_model,'\n') ML_model.fit(X_train, y_train) # fit model on train set y_train_pred = ML_model.predict(X_train) # predict with the trained model y_test_pred = ML_model.predict(X_test) print(classification_report(y_train, y_train)) # evaluate model performance print(confusion_matrix(y_train, y_train_pred), "= confusion matrix for train set \n") print(classification_report(y_test, y_test_pred)) print(confusion_matrix(y_test, y_test_pred), "= confusion matrix for test set \n") print(70*'=') #---------------------------------------------------------------------------------- print(70*'=') ML_model = linear_model.LogisticRegression() # create model instance train_test(ML_model) ML_model = MLPClassifier() train_test(ML_model) ML_model = svm.SVC() train_test(ML_model) ML_model = RandomForestClassifier() train_test(ML_model)
https://github.com/ArunSehrawat/Quantum_Machine_Learning_use_cases_with_Qiskit
ArunSehrawat
import numpy as np import matplotlib.pyplot as plt import time, copy, warnings import networkx as nx n = 17 # = number of qubits dim = 2**n # = dimension of the n-qubit Hilbert space Q = np.random.randint(-10, 10, (n, n)) Q = np.triu(Q) print(f'{Q} = Q matrix') def plot_Q_matrix(): plt.matshow(Q, cmap='bwr') plt.xticks(np.arange(n)) plt.yticks(np.arange(n)) cb = plt.colorbar(shrink=0.7) plt.title(f'Q matrix') plt.show() plot_Q_matrix() #---------------------------------------------------------------------------- 'In the graph, a node represents a qubit (binary variables), width of the edge (i,j) is proportional to Q_ij' plt.subplots(figsize=(10,8)) g = nx.Graph() edges = [] for i in range(n): for j in range(i, n): if Q[i,j]!=0: edges.append((i, j, Q[i,j])) g.add_weighted_edges_from(edges) pos = nx.spring_layout(g, seed=0) nx.draw_networkx(g, pos, node_size= 700, node_color='magenta', width=list(nx.get_edge_attributes(g, "weight").values())) %%time def energy(x, Q): # x in an integer, one-to-one correspondence: x <--> x_bin x_bin = np.array([int(i) for i in np.binary_repr(x, n)]) # x_bin has n components, each one is either 0 (spin-up) or 1(spin-down) E = np.linalg.multi_dot([x_bin, Q, x_bin]) # E_x = energy for a given x return E def energies(Q): n = Q.shape[0] # number of qubits dim = 2**n # dimension of the n-qubit Hilbert space xE = [] for x in range(dim): E = energy(x, Q) xE.append([x, E]) return np.array(xE) # collection of all possible 2**n energies for different x #---------------------------------------------------------------------------- xE = energies(Q=Q) engs = xE[:,1] print(f'energies for different x = [...E_x...] = {engs}') #============================================================================== min_eng = np.min(engs) max_eng = np.max(engs) plt.rcParams["figure.figsize"] = (12,10) plt.scatter(np.arange(dim), engs, s=1, c='blue') plt.axhline(y = 0, color = 'black', linestyle = '-') plt.axhline(y = min_eng, color = 'red', linestyle = '-') plt.ylabel(r'energy = $E_x = \langle x|H|x\rangle$', fontsize=20) plt.xlabel('x', fontsize=20) plt.show() xmins = np.where(engs==min_eng)[0] xmins_bin = [[int(i) for i in np.binary_repr(xmin, n)] for xmin in xmins] print(f'global min_energy = {min_eng}') print(f'global min_energy eigenstates = {xmins} = {xmins_bin}\n') print(f'global max_energy = {max_eng}') from qiskit_optimization import QuadraticProgram #!pip install qiskit[optimization] from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver, SamplingVQE, QAOA from qiskit_optimization.algorithms import MinimumEigenOptimizer from qiskit.primitives import Sampler from qiskit.circuit.library import TwoLocal from qiskit.algorithms.optimizers import SPSA, COBYLA qp = QuadraticProgram() for i in range(n): qp.binary_var(f'x{i}') linear = [Q[i,i] for i in range(n)] quadratic = {} for i in range(n): for j in range(i+1, n): quadratic[(f'x{i}', f'x{j}')] = Q[i,j] qp.minimize(linear=linear, quadratic=quadratic) qp %%time exact = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver()) result = exact.solve(qp) print(result.prettyprint()) print() %%time ansatz = TwoLocal(n, "ry", "cx", reps=3, entanglement="linear") # construct ansatz for VQE vqe = SamplingVQE(sampler=Sampler(), ansatz=ansatz, optimizer=COBYLA(maxiter=10)) # construct VQE meo_vqe = MinimumEigenOptimizer(min_eigen_solver=vqe) # run VQE result_vqe = meo_vqe.solve(qp) print(result_vqe.prettyprint()) print() %%time qaoa = QAOA(sampler=Sampler(), optimizer=COBYLA(maxiter=10), reps=3) # construct QAOA meo_qaoa = MinimumEigenOptimizer(min_eigen_solver=qaoa) # run QAOA result_qaoa = meo_qaoa.solve(qp) print(result_qaoa.prettyprint()) print()
https://github.com/Subhamdg/QAOA_qiskit_MAXCUT
Subhamdg
%%capture !pip install qiskit from qiskit import * import numpy as nm import math import matplotlib.pyplot as plt import networkx as nx v=nm.arange(0,8,1) e=[(0,1,1),(1,3,4),(1,3,1),(0,5,2),(2,4,7),(3,4,6),(4,5,3),(4,6,4),(2,6,3),(3,6,1),(4,7,5),(6,7,1),(1,7,2)] g=nx.Graph() g.add_nodes_from(v) g.add_weighted_edges_from(e) nx.draw_networkx(g) step=0.05 g=b=nm.arange(0,math.pi,step) g,b=nm.meshgrid(g,b) k=3-((nm.sin(2*b)**2)*(nm.sin(2*g)**2)-(0.5*nm.sin(4*b))*(nm.sin(4*g)))*(1+nm.cos(4*g)**2) res=nm.where(k==nm.amax(k)) a=list(zip(res[0],res[1]))[0] gam=a[0]*step; bet=a[1]*step; from matplotlib import cm fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(g,b,k,cmap=cm.coolwarm,linewidth=0,antialiased=True) plt.show() pi=math.pi q=QuantumRegister(len(v)) c=ClassicalRegister(len(v)) qc=QuantumCircuit(q,c) for i in range(len(v)): qc.u3(pi/2,0,pi,q[i]) qc.barrier() for i in e: k = i[0] l = i[1] qc.u3(0,0,-gam,q[l]) qc.cx(q[l],q[k]) qc.u3(0,0,gam,q[k]) qc.cx(q[l],q[k]) qc.u3(0,0,-gam,q[k]) qc.u3(0,0,gam, k) qc.u3(0,0,gam, l) qc.barrier() for i in range(len(v)): qc.u3(2*bet,3*pi/2,pi/2,q[i]) qc.barrier() for i in range(len(v)): qc.measure(q[i],c[i]) qc.draw(output="mpl") sim = Aer.get_backend('qasm_simulator') res=execute(qc, backend=sim).result() from qiskit.visualization import plot_histogram as ph ph(res.get_counts(qc),figsize=(150,50))
https://github.com/harshdeeps036/QiskitFallFest21-AU
harshdeeps036
# Importing standard Qiskit libraries and configuring account from qiskit import QuantumRegister, ClassicalRegister, execute from qiskit import QuantumCircuit, execute, Aer from qiskit.tools.jupyter import * import matplotlib.pyplot as plt import numpy as np from math import pi %matplotlib inline def real_map(value, leftMin, leftMax, rightMin, rightMax): # Maps one range to another # Figure out how 'wide' each range is leftSpan = leftMax - leftMin rightSpan = rightMax - rightMin # Convert the left range into a 0-1 range (float) valueScaled = float(value - leftMin) / float(leftSpan) # Convert the 0-1 range into a value in the right range. return rightMin + (valueScaled * rightSpan) # Quantum Random Number generator def QRandom(a, b, qubits): q = QuantumRegister(qubits, 'q') circ = QuantumCircuit(q) c0 = ClassicalRegister(1, 'c0') circ.add_register(c0) for i in range(qubits): circ.h(q[i]) for i in range(qubits): circ.measure(q[i], c0) backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() output = result.get_statevector(circ, decimals=5) n1 = 0 n2 = 0 n3 = 0 for i in range( output.size ): if abs(output[i]) != 0: n1 = i n2 = np.real(output[i]) n3 = np.imag(output[i]) y = real_map(n1+n2+n3, -qubits, len(output)-1+qubits, a, b) return y y = [] for i in range(20): y.append(QRandom(0,100,3)) plt.plot(y) # Example of number of unique random numbers: # Generating 40 random numbers with our QRNG y = [] for i in range(40): y.append(QRandom(0,100,3)) count = 0 z=[] #Counting the number of unique elements for num in y: if num not in z: count = count+1 z.append(num) print('The number of unique elements in provided random distribution is:') print(count) # Variational Quantum Random Number generator def VarQRandom(a, b, theta, depth, qubits): q = QuantumRegister(qubits, 'q') circ = QuantumCircuit(q) c0 = ClassicalRegister(2, 'c0') circ.add_register(c0) for j in range(depth): for i in range(qubits): circ.h(q[i]) #rotating the axis by an angle theta along y-axis circ.ry(theta, q[i]) #rotating the axis by an angle theta along x-axis circ.rx(theta, q[i]) for i in range(qubits): circ.measure(q[i], c0) backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() output = result.get_statevector(circ, decimals=5) n1 = 0 n2 = 0 n3 = 0 for i in range( output.size ): if abs(output[i]) != 0: n1 = i n2 = np.real(output[i]) n3 = np.imag(output[i]) y = real_map(n1+n2+n3, -qubits, len(output)-1+qubits, a, b) return y #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 x=[] n=1 while length!=number: y = VarQRandom(low,high,theta,depth,3) while (y in x): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,3) if(i==(16*n)): depth = depth+1 n=n+1 x.append(y) length=len(x) plt.plot(x) count = 0 z=[] #Counting the number of unique elements for num in x: if num not in z: count = count+1 z.append(num) print('The number of unique elements in provided random distribution is:') print(count) y2 = [] for i in range(20): y2.append(QRandom(0,100,2)) plt.plot(y2) z2=[] count = 0 #Counting the number of unique elements for num in y2: if num not in z2: count = count+1 z2.append(num) print('The number of unique elements in provided random distribution is:') print(count) #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 x2=[] n=1 while length!=number: y = VarQRandom(low,high,theta,depth,2) while (y in x2): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,2) if(i==(16*n)): depth = depth+1 n=n+1 x2.append(y) length=len(x2) plt.plot(x2) z2=[] count = 0 #Counting the number of unique elements for num in x2: if num not in z2: count = count+1 z2.append(num) print('The number of unique elements in provided random distribution is:') print(count) from datetime import datetime start_time = datetime.now() y3 = [] for i in range(100): y3.append(QRandom(0,100,2)) end_time = datetime.now() print('Duration: {}'.format(end_time - start_time)) #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 x2=[] n=1 start_time = datetime.now() while length!=number: y = VarQRandom(low,high,theta,depth,3) while (y in x2): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,3) if(i==(16*n)): depth = depth+1 n=n+1 x2.append(y) length=len(x2) end_time = datetime.now() print('Duration: {}'.format(end_time - start_time)) #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 x4=[] n=1 start_time = datetime.now() while length!=number: y = VarQRandom(low,high,theta,depth,2) while (y in x2): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,2) if(i==(16*n)): depth = depth+1 n=n+1 x4.append(y) length=len(x4) end_time = datetime.now() print('Duration: {}'.format(end_time - start_time)) import random testpy=[] for i in range(20): y=random.randint(1,100) if y not in testpy: testpy.append(y) plt.plot(testpy) #initialization m=0 length = 0 theta = 0 #taking input from the user number = int(input('Enter the number of random numbers required')) low = int(input('Enter lower limit')) high = int(input('Enter higher limit')) depth=1 testvc=[] n=1 while length!=number: y = VarQRandom(low,high,theta,depth,2) while (y in testvc): i=i+1 theta = theta + pi/16 y= VarQRandom(low,high,theta,depth,2) if(i==(16*n)): depth = depth+1 n=n+1 testvc.append(y) length=len(testvc) plt.plot(testvc)
https://github.com/1ucian0/qiskit-openqasm2
1ucian0
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Created on Wed Mar 11 18:03:12 2020 Functional interface to Qasm2 source loading and exporting Supersede QuantumCircuit member functions Provide for pluggable qasm translator Based on conversation with Dr. Luciano Bello @author: jax """ from importlib import import_module from os import linesep from typing import List, BinaryIO, TextIO from qiskit import QuantumCircuit, QiskitError from qiskit_openqasm2 import Qasm from .funhelp import qasm_load, qasm_export def _load_from_string(qasm_src: str or List[str], loader: str = None, include_path: str = '') -> QuantumCircuit: """ Parameters ---------- qasm_src : str or List[str] Qasm program source as string or list of string. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is ''. Raises ------ QiskitError If unknown loader. Returns ------- QuantumCircuit Circuit factoried from Qasm src. """ circ = None if not loader: if isinstance(qasm_src, list): qasm_src = ''.join(s + linesep for s in qasm_src) qasm = Qasm(data=qasm_src) circ = qasm_load(qasm) else: m_m = import_module(loader) circ = getattr(m_m, 'load')(data=qasm_src, include_path=include_path) return circ def _load_from_file(filename: str, loader: str = None, include_path: str = '') -> QuantumCircuit: """ Parameters ---------- filename : str Filepath to qasm program source. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is ''. Returns ------- QuantumCircuit Circuit factoried from Qasm src. """ circ = None if not loader: qasm = Qasm(filename=filename) circ = qasm_load(qasm) else: m_m = import_module(loader) circ = getattr(m_m, 'load')(filename=filename, include_path=include_path) return circ def load(data: str or List[str] = None, filename: str = None, loader: str = None, include_path: str = None) -> QuantumCircuit: """ Parameters ---------- data : str or List[str], optional Qasm program source as string or list of string. The default is None. filename : str, optional Filepath to qasm program source. The default is None. loader : str, optional Name of module with functional attribute load(filename: str = None, data: str = None, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. include_path : str, optional Loader-specific include path for qasm include directives. The default is None. Raises ------ QiskitError If both filename and data or neither filename nor data. Returns ------- QuantumCircuit The factoried circuit. """ if (not data and not filename) or (data and filename): raise QiskitError("To load, either filename or data (and not both) must be provided.") circ = None if data: circ = _load_from_string(data, loader=loader, include_path=include_path) elif filename: circ = _load_from_file(filename, loader=loader, include_path=include_path) return circ def export(qc: QuantumCircuit, exporter: str = None, file: BinaryIO or TextIO = None, filename: str = None, include_path: str = None,) -> str: """ Decompile a QuantumCircuit into Return OpenQASM string Parameters ---------- qc : QuantumCircuit Circuit to decompile ("export") exporter : str, optional Name of module with functional attribute export(qc: QuantumCircuit, include_path: str = None) -> QuantumCircuit: ... to use for qasm translation. None means "use Qiskit qasm" The default is None. file : BinaryIO or TextIO, optional File object to write to as well as return str Written in UTF-8 Caller must close file. Mutually exclusive with filename= The default is None. filename : str, optional Name of file to write export to as well as return str Mutually exclusive with file= The default is None. include_path: str, optional Unloader-specific include path for qasm include directives Raises ------ QiskitError If both filename and file Returns ------- str OpenQASM source for circuit. """ if filename and file: raise QiskitError("export: file= and filename= are mutually exclusive") qasm_src = None if not exporter: qasm_src = qasm_export(qc) else: m_m = import_module(exporter) qasm_src = getattr(m_m, 'export')(qc, include_path=include_path) if filename: f_f = open(filename, 'w') f_f.write(qasm_src) f_f.close() elif file: if 'b' in file.mode: file.write(bytes(qasm_src, 'utf-8')) else: file.write(qasm_src) return qasm_src
https://github.com/1ucian0/qiskit-openqasm2
1ucian0
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Created on Wed Mar 11 18:03:12 2020 Support via qiskit.qasm for functional interface to Qasm2 source loading and exporting in functions.py @author: jax """ # from importlib import import_module # from os import linesep # from typing import List from qiskit import QuantumCircuit # , QiskitError from qiskit.converters import ast_to_dag from qiskit.converters import dag_to_circuit from qiskit_openqasm2 import Qasm def qasm_load(qasm: Qasm) -> QuantumCircuit: """ Factory OpenQASM src into QuantumCircuit using qiskit.qasm code. Parameters ---------- qasm : Qasm The Qasm object of source to load. Returns ------- QuantumCircuit The resulting QuantumCircuit. """ ast = qasm.parse() dag = ast_to_dag(ast) return dag_to_circuit(dag) def qasm_export(qc: QuantumCircuit) -> str: """ Return OpenQASM string using qiskit.qasm code. Parameters ---------- qc : QuantumCircuit The circuit to be disassembled into OpenQASM source Returns ------- str OpenQASM source for the circuit. """ string_temp = qc.header + "\n" string_temp += qc.extension_lib + "\n" for register in qc.qregs: string_temp += register.qasm() + "\n" for register in qc.cregs: string_temp += register.qasm() + "\n" unitary_gates = [] for instruction, qargs, cargs in qc._data: if instruction.name == 'measure': qubit = qargs[0] clbit = cargs[0] string_temp += "%s %s[%d] -> %s[%d];\n" % (instruction.qasm(), qubit.register.name, qubit.index, clbit.register.name, clbit.index) else: string_temp += "%s %s;\n" % (instruction.qasm(), ",".join(["%s[%d]" % (j.register.name, j.index) for j in qargs + cargs])) if instruction.name == 'unitary': unitary_gates.append(instruction) # this resets them, so if another call to qasm() is made the gate def is added again for gate in unitary_gates: gate._qasm_def_written = False return string_temp
https://github.com/kaelynj/Qiskit-IsingModel
kaelynj
%reset -f #%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister from qiskit.providers.aer import QasmSimulator, StatevectorSimulator, UnitarySimulator from qiskit.compiler import transpile, assemble from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.quantum_info import * import numpy as np provider = IBMQ.load_account() # Loading your IBM Q account(s) #provider = IBMQ.load_account() #constants n = 4 lambd = 1.2 def thetak(k,lamb): num = lamb - np.cos(2*np.pi*k/n) denom = np.sqrt( (lamb-np.cos(2*np.pi*k/n))**2 + np.sin(2*np.pi*k/n)**2) theta = np.arccos(num/denom) return theta #Create functions based on the decomposition included in appendix of Ising paper def bog(qcirc, q1, q2, theta): qcirc.x(q2) qcirc.cx(q2, q1) #Controlled RX gate qcirc.rz(np.pi/2, q2) qcirc.ry(theta/2, q2) qcirc.cx(q1, q2) qcirc.ry(-theta/2, q2) qcirc.cx(q1, q2) #changed from qc to qcirc here - Bruna qcirc.rz(-np.pi/2, q2) ##################### qcirc.cx(q2, q1) qcirc.x(q2) qcirc.barrier() return qcirc def fourier(qcirc, q1, q2, phase): qcirc.rz(phase, q1) qcirc.cx(q1, q2) #Controlled Hadamard qcirc.sdg(q1) qcirc.h(q1) qcirc.tdg(q1) qcirc.cx(q2, q1) qcirc.t(q1) qcirc.h(q1) qcirc.s(q1) #################### qcirc.cx(q1, q2) qcirc.cz(q1, q2) qcirc.barrier() return qcirc def digit_sum(n): num_str = str(n) sum = 0 for i in range(0, len(num_str)): sum += int(num_str[i]) return sum def ground_state(lamb, backend_name): # backend is now an imput, so we can plot # different ones easily - Bruna qc = QuantumCircuit(4, 4) #Set correct ground state if lambda < 1 if lamb < 1: qc.x(3) qc.barrier() #magnetization mag = [] #Apply disentangling gates qc = bog(qc, 0, 1, thetak(1.,lamb)) qc = fourier(qc, 0, 1, 2*np.pi/n) qc = fourier(qc, 2, 3, 0.) qc = fourier(qc, 0, 1, 0.) qc = fourier(qc, 2, 3, 0.) #Set measurement step for i in range(0,4): qc.measure(i,i) backend = Aer.get_backend(backend_name) shots = 1024 max_credits = 10 #Max number of credits to spend on execution job = execute(qc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job) result = job.result() counts = result.get_counts(qc) ##while not '0000' in counts: # job = execute(qc, backend=backend, shots=shots, max_credits=max_credits) # job_monitor(job) # result = job.result() # counts = result.get_counts(qc) #Check what ground state is based on lambda r1=list(counts.keys()) r2=list(counts.values()) M=0 for j in range(0,len(r1)): M=M+(4-2*digit_sum(r1[j]))*r2[j]/shots #print("$\lambda$: ",lam,", $<\sigma_{z}>$: ",M/4) mag.append(M/4) return mag # if lamb < 1: # return counts['0001'] # return counts['0000']/shots # it does not always works, sometimes it returns keyword error # maybe we can add another else for the possibility of other states, but # do not use it for plotting - Bruna print(ground_state(lambd, 'qasm_simulator')) #print(ground_state(.8,'statevector_simulator')) lmbd = np.arange(.2, 1.75, 0.1) sigmaz = [] for l in lmbd: sigmaz.append(ground_state(l, 'qasm_simulator')) print(sigmaz) plt.plot(lmbd, sigmaz,'bo') plt.ylabel("$\sigma_z$") plt.xlabel("$\lambda$") plt.ylim(0., 1.1) plt.xlim(0., 1.8) #Start up and initialize circuit #Measurement qc = QuantumCircuit(4, 4) #Set correct ground state if lambda < 1 if lambd < 1: qc.x(3) qc.barrier() #Apply disentangling gates qc = bog(qc, 0, 1, thetak(1.,1.2)) qc = fourier(qc, 0, 1, 2*np.pi/n) qc = fourier(qc, 2, 3, 0.) qc = fourier(qc, 0, 1, 0.) qc = fourier(qc, 2, 3, 0.) #Set measurement step for i in range(0,4): qc.measure(i,i) #Choose provider and backend #provider = IBMQ.get_provider() #provider = AerProvider() #backend = Aer.get_backend('statevector_simulator') backend = Aer.get_backend('qasm_simulator') #backend = provider.get_backend('ibmq_qasm_simulator') #backend = provider.get_backend('ibmqx4') #backend = provider.get_backend('ibmqx2') #backend = provider.get_backend('ibmq_16_melbourne') shots = 1024 max_credits = 10 #Max number of credits to spend on execution job = execute(qc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job) result = job.result() counts = result.get_counts(qc) #print(counts['0000']) plot_histogram(counts) # had to comment this part because qc is a local variable in groundstate function now - Bruna phi = np.arccos(lambd/np.sqrt(1+lambd**2))/2 #print(result.get_statevector(qc)) print("|0000> probability should be: ",np.cos(phi)**2) print("|0011> probability should be: ",np.sin(phi)**2 ) #print(counts['0000']) def Time_Evo(t, lamb, backend_name): quc = QuantumCircuit(4, 4) #step 1. we are already in the |111> state # time evolution of computational basis, step 2 quc.u3(np.arccos(lamb/np.sqrt(1+lamb**2)), np.pi/2 + 4*t*np.sqrt(1+lamb**2),0,0) quc.cx(0,1) #magnetization mag = [] #step 3 #Apply disentangling gates quc = bog(quc, 0, 1, thetak(1.,lamb)) quc = fourier(quc, 0, 1, 2*np.pi/n) quc = fourier(quc, 2, 3, 0.) quc = fourier(quc, 0, 1, 0.) quc = fourier(quc, 2, 3, 0.) #Set measurement step for i in range(0,4): quc.measure(i,i) #provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend(backend_name) #backend = Aer.get_backend('statevector_simulator') #backend = Aer.get_backend('qasm_simulator') #backend = provider.get_backend('ibmq_qasm_simulator') #backend = provider.get_backend('ibmqx4') #backend = provider.get_backend('ibmqx2') #backend = provider.get_backend('ibmq_16_melbourne') shots = 1024 max_credits = 10 #Max number of credits to spend on execution job = execute(quc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job) result = job.result() counts = result.get_counts(quc) ##while not '0000' in counts: # job = execute(qc, backend=backend, shots=shots, max_credits=max_credits) # job_monitor(job) # result = job.result() # counts = result.get_counts(qc) #Check what ground state is based on lambda r1=list(counts.keys()) r2=list(counts.values()) M=0 for j in range(0,len(r1)): M=M+(4-2*digit_sum(r1[j]))*r2[j]/shots #print("$\lambda$: ",lam,", $<\sigma_{z}>$: ",M/4) mag.append(M/4) return mag #f = Time_Evo(qc,1,lambd,'qasm_simulator') #print(f) # ti = 0 tf = 2 time = np.arange(ti,tf,(tf-ti)/10) f = [] for t in time: f.append(Time_Evo(t,0.5,'ibmq_athens')) #step 4 plt.plot(time, f) plt.ylim(0., 1) plt.xlim(0., 1.8) plt.ylabel("Magnetization") plt.xlabel("t") plt.show()
https://github.com/kaelynj/Qiskit-IsingModel
kaelynj
%reset -f #%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister from qiskit.providers.aer import QasmSimulator, StatevectorSimulator, UnitarySimulator from qiskit.compiler import transpile, assemble from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.quantum_info import * import numpy as np provider = IBMQ.load_account() # Loading your IBM Q account(s) #provider = IBMQ.load_account() #constants n = 4 lambd = 1.2 def thetak(k,lamb): num = lamb - np.cos(2*np.pi*k/n) denom = np.sqrt( (lamb-np.cos(2*np.pi*k/n))**2 + np.sin(2*np.pi*k/n)**2) theta = np.arccos(num/denom) return theta #Create functions based on the decomposition included in appendix of Ising paper def bog(qcirc, q1, q2, theta): qcirc.x(q2) qcirc.cx(q2, q1) #Controlled RX gate qcirc.rz(np.pi/2, q2) qcirc.ry(theta/2, q2) qcirc.cx(q1, q2) qcirc.ry(-theta/2, q2) qcirc.cx(q1, q2) #changed from qc to qcirc here - Bruna qcirc.rz(-np.pi/2, q2) ##################### qcirc.cx(q2, q1) qcirc.x(q2) qcirc.barrier() return qcirc def fourier(qcirc, q1, q2, phase): qcirc.rz(phase, q1) qcirc.cx(q1, q2) #Controlled Hadamard qcirc.sdg(q1) qcirc.h(q1) qcirc.tdg(q1) qcirc.cx(q2, q1) qcirc.t(q1) qcirc.h(q1) qcirc.s(q1) #################### qcirc.cx(q1, q2) qcirc.cz(q1, q2) qcirc.barrier() return qcirc def digit_sum(n): num_str = str(n) sum = 0 for i in range(0, len(num_str)): sum += int(num_str[i]) return sum def ground_state(lamb, backend_name): # backend is now an imput, so we can plot # different ones easily - Bruna qc = QuantumCircuit(4, 4) #Set correct ground state if lambda < 1 if lamb < 1: qc.x(3) qc.barrier() #magnetization mag = [] #Apply disentangling gates qc = bog(qc, 0, 1, thetak(1.,lamb)) qc = fourier(qc, 0, 1, 2*np.pi/n) qc = fourier(qc, 2, 3, 0.) qc = fourier(qc, 0, 1, 0.) qc = fourier(qc, 2, 3, 0.) #Set measurement step for i in range(0,4): qc.measure(i,i) backend = Aer.get_backend(backend_name) shots = 1024 max_credits = 10 #Max number of credits to spend on execution job = execute(qc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job) result = job.result() counts = result.get_counts(qc) ##while not '0000' in counts: # job = execute(qc, backend=backend, shots=shots, max_credits=max_credits) # job_monitor(job) # result = job.result() # counts = result.get_counts(qc) #Check what ground state is based on lambda r1=list(counts.keys()) r2=list(counts.values()) M=0 for j in range(0,len(r1)): M=M+(4-2*digit_sum(r1[j]))*r2[j]/shots #print("$\lambda$: ",lam,", $<\sigma_{z}>$: ",M/4) mag.append(M/4) return mag # if lamb < 1: # return counts['0001'] # return counts['0000']/shots # it does not always works, sometimes it returns keyword error # maybe we can add another else for the possibility of other states, but # do not use it for plotting - Bruna print(ground_state(lambd, 'qasm_simulator')) #print(ground_state(.8,'statevector_simulator')) lmbd = np.arange(.2, 1.75, 0.1) sigmaz = [] for l in lmbd: sigmaz.append(ground_state(l, 'qasm_simulator')) print(sigmaz) plt.plot(lmbd, sigmaz,'bo') plt.ylabel("$\sigma_z$") plt.xlabel("$\lambda$") plt.ylim(0., 1.1) plt.xlim(0., 1.8) #Start up and initialize circuit #Measurement qc = QuantumCircuit(4, 4) #Set correct ground state if lambda < 1 if lambd < 1: qc.x(3) qc.barrier() #Apply disentangling gates qc = bog(qc, 0, 1, thetak(1.,1.2)) qc = fourier(qc, 0, 1, 2*np.pi/n) qc = fourier(qc, 2, 3, 0.) qc = fourier(qc, 0, 1, 0.) qc = fourier(qc, 2, 3, 0.) #Set measurement step for i in range(0,4): qc.measure(i,i) #Choose provider and backend #provider = IBMQ.get_provider() #provider = AerProvider() #backend = Aer.get_backend('statevector_simulator') backend = Aer.get_backend('qasm_simulator') #backend = provider.get_backend('ibmq_qasm_simulator') #backend = provider.get_backend('ibmqx4') #backend = provider.get_backend('ibmqx2') #backend = provider.get_backend('ibmq_16_melbourne') shots = 1024 max_credits = 10 #Max number of credits to spend on execution job = execute(qc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job) result = job.result() counts = result.get_counts(qc) #print(counts['0000']) plot_histogram(counts) # had to comment this part because qc is a local variable in groundstate function now - Bruna phi = np.arccos(lambd/np.sqrt(1+lambd**2))/2 #print(result.get_statevector(qc)) print("|0000> probability should be: ",np.cos(phi)**2) print("|0011> probability should be: ",np.sin(phi)**2 ) #print(counts['0000']) def Time_Evo(t, lamb, backend_name): quc = QuantumCircuit(4, 4) #step 1. we are already in the |111> state # time evolution of computational basis, step 2 quc.u3(np.arccos(lamb/np.sqrt(1+lamb**2)), np.pi/2 + 4*t*np.sqrt(1+lamb**2),0,0) quc.cx(0,1) #magnetization mag = [] #step 3 #Apply disentangling gates quc = bog(quc, 0, 1, thetak(1.,lamb)) quc = fourier(quc, 0, 1, 2*np.pi/n) quc = fourier(quc, 2, 3, 0.) quc = fourier(quc, 0, 1, 0.) quc = fourier(quc, 2, 3, 0.) #Set measurement step for i in range(0,4): quc.measure(i,i) #provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend(backend_name) #backend = Aer.get_backend('statevector_simulator') #backend = Aer.get_backend('qasm_simulator') #backend = provider.get_backend('ibmq_qasm_simulator') #backend = provider.get_backend('ibmqx4') #backend = provider.get_backend('ibmqx2') #backend = provider.get_backend('ibmq_16_melbourne') shots = 1024 max_credits = 10 #Max number of credits to spend on execution job = execute(quc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job) result = job.result() counts = result.get_counts(quc) ##while not '0000' in counts: # job = execute(qc, backend=backend, shots=shots, max_credits=max_credits) # job_monitor(job) # result = job.result() # counts = result.get_counts(qc) #Check what ground state is based on lambda r1=list(counts.keys()) r2=list(counts.values()) M=0 for j in range(0,len(r1)): M=M+(4-2*digit_sum(r1[j]))*r2[j]/shots #print("$\lambda$: ",lam,", $<\sigma_{z}>$: ",M/4) mag.append(M/4) return mag #f = Time_Evo(qc,1,lambd,'qasm_simulator') #print(f) # ti = 0 tf = 2 time = np.arange(ti,tf,(tf-ti)/10) f = [] for t in time: f.append(Time_Evo(t,0.5,'ibmq_athens')) #step 4 plt.plot(time, f) plt.ylim(0., 1) plt.xlim(0., 1.8) plt.ylabel("Magnetization") plt.xlabel("t") plt.show()
https://github.com/qiskit-community/qiskit-scheduling-extension
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the CompactScheduling pass""" from qiskit import QuantumCircuit from qiskit.test import QiskitTestCase from qiskit.transpiler.instruction_durations import InstructionDurations from qiskit.transpiler.passes import PadDelay from qiskit.transpiler.passmanager import PassManager from qiskit_scheduling_extension.compact import CompactScheduleAnalysis class TestCompactScheduling(QiskitTestCase): """Tests the CompactScheduling pass""" def test_compact(self): """Test if Compact scheduling yields expected schedule. (input) ┌───┐ ┌───┐ ░ ┌─┐ q_0: ┤ H ├──■─────────■──┤ H ├─░─┤M├────── └───┘┌─┴─┐ ┌─┴─┐└───┘ ░ └╥┘┌─┐ q_1: ─────┤ X ├──■──┤ X ├──────░──╫─┤M├─── ┌───┐└───┘┌─┴─┐├───┤ ░ ║ └╥┘┌─┐ q_2: ┤ H ├─────┤ X ├┤ H ├──────░──╫──╫─┤M├ └───┘ └───┘└───┘ ░ ║ ║ └╥┘ meas: 3/═════════════════════════════╩══╩══╩═ 0 1 2 (Compact scheduled) ┌───┐ ┌────────────────┐ ┌───┐ ░ ┌─┐ q_0: ──────┤ H ├─────────■──┤ Delay(900[dt]) ├──■────────┤ H ├────────░─┤M├────── ┌─────┴───┴──────┐┌─┴─┐└────────────────┘┌─┴─┐┌─────┴───┴──────┐ ░ └╥┘┌─┐ q_1: ┤ Delay(200[dt]) ├┤ X ├────────■─────────┤ X ├┤ Delay(200[dt]) ├─░──╫─┤M├─── ├────────────────┤├───┤ ┌─┴─┐ ├───┤├────────────────┤ ░ ║ └╥┘┌─┐ q_2: ┤ Delay(700[dt]) ├┤ H ├──────┤ X ├───────┤ H ├┤ Delay(700[dt]) ├─░──╫──╫─┤M├ └────────────────┘└───┘ └───┘ └───┘└────────────────┘ ░ ║ ║ └╥┘ meas: 3/════════════════════════════════════════════════════════════════════╩══╩══╩═ 0 1 2 """ qc = QuantumCircuit(3) qc.h([0, 2]) qc.cx(0, 1) qc.cx(1, 2) qc.cx(0, 1) qc.h([0, 2]) qc.measure_all() durations = InstructionDurations( [("h", None, 200), ("cx", [0, 1], 700), ("cx", [1, 2], 900), ("measure", None, 1000)] ) pm = PassManager([CompactScheduleAnalysis(durations), PadDelay()]) compact_qc = pm.run(qc) expected = QuantumCircuit(3) expected.delay(200, 1) expected.delay(700, 2) expected.h([0, 2]) expected.cx(0, 1) expected.cx(1, 2) expected.delay(900, 0) expected.cx(0, 1) expected.h([0, 2]) expected.delay(200, 1) expected.delay(700, 2) expected.measure_all() self.assertEqual(expected, compact_qc) def test_compact_can_shift_block(self): """Test if Compact scheduling can shift front blocks towards the back and back blocks towards the front. (input) ░ ┌─┐ q_0: ──■─────────────────────────────■─────────────░─┤M├───────── ┌─┴─┐ ┌─┴─┐ ░ └╥┘┌─┐ q_1: ┤ X ├────────────■─────────■──┤ X ├───────────░──╫─┤M├────── └───┘ ┌───┐┌─┴─┐ ┌─┴─┐├───┤ ░ ║ └╥┘┌─┐ q_2: ───────■──┤ H ├┤ X ├──■──┤ X ├┤ H ├──■────────░──╫──╫─┤M├─── ┌───┐┌─┴─┐├───┤└───┘┌─┴─┐├───┤└───┘┌─┴─┐┌───┐ ░ ║ ║ └╥┘┌─┐ q_3: ┤ H ├┤ X ├┤ H ├─────┤ X ├┤ H ├─────┤ X ├┤ H ├─░──╫──╫──╫─┤M├ └───┘└───┘└───┘ └───┘└───┘ └───┘└───┘ ░ ║ ║ ║ └╥┘ meas: 4/═════════════════════════════════════════════════╩══╩══╩══╩═ 0 1 2 3 (Compact scheduled) ┌─────────────────┐ » q_0: ────────■─────────┤ Delay(1000[dt]) ├────────────────────────────» ┌─┴─┐ └─────────────────┘ » q_1: ──────┤ X ├────────────────────────────────────────────■─────────» ┌─────┴───┴──────┐ ┌───┐ ┌─┴─┐ » q_2: ┤ Delay(750[dt]) ├─────────────────────■──┤ H ├──────┤ X ├───────» ├────────────────┤ ┌───┐ ┌─┴─┐├───┤┌─────┴───┴──────┐» q_3: ┤ Delay(700[dt]) ├───────┤ H ├───────┤ X ├┤ H ├┤ Delay(400[dt]) ├» └────────────────┘ └───┘ └───┘└───┘└────────────────┘» meas: 4/═════════════════════════════════════════════════════════════════» » « » « q_0: ───────────────────────────────■────────────────────────────────» « ┌────────────────┐ ┌─┴─┐ » « q_1: ┤ Delay(200[dt]) ├──■────────┤ X ├──────────────────────────────» « └────────────────┘┌─┴─┐ ├───┤ ┌────────────────┐» « q_2: ────────■─────────┤ X ├──────┤ H ├─────────■──┤ Delay(750[dt]) ├» « ┌─┴─┐ ├───┤┌─────┴───┴──────┐┌─┴─┐└─────┬───┬──────┘» « q_3: ──────┤ X ├───────┤ H ├┤ Delay(400[dt]) ├┤ X ├──────┤ H ├───────» « └───┘ └───┘└────────────────┘└───┘ └───┘ » «meas: 4/════════════════════════════════════════════════════════════════» « » « ░ ┌─┐ « q_0: ───────────────────░─┤M├───────── « ░ └╥┘┌─┐ « q_1: ───────────────────░──╫─┤M├────── « ░ ║ └╥┘┌─┐ « q_2: ───────────────────░──╫──╫─┤M├─── « ┌────────────────┐ ░ ║ ║ └╥┘┌─┐ « q_3: ┤ Delay(700[dt]) ├─░──╫──╫──╫─┤M├ « └────────────────┘ ░ ║ ║ ║ └╥┘ «meas: 4/══════════════════════╩══╩══╩══╩═ « 0 1 2 3 """ qc = QuantumCircuit(4) qc.cx(0, 1) qc.h(3) qc.cx(2, 3) qc.h([2, 3]) qc.cx(1, 2) qc.cx(2, 3) qc.cx(1, 2) qc.h([2, 3]) qc.cx(2, 3) qc.h(3) qc.cx(0, 1) qc.measure_all() durations = InstructionDurations( [ ("h", None, 50), ("cx", [0, 1], 1000), ("cx", [1, 2], 400), ("cx", [2, 3], 200), ("measure", None, 1000), ] ) pm = PassManager([CompactScheduleAnalysis(durations), PadDelay()]) compact_qc = pm.run(qc) expected = QuantumCircuit(4) expected.delay(750, 2) expected.delay(700, 3) expected.cx(0, 1) expected.h(3) expected.cx(2, 3) expected.h([2, 3]) expected.delay(400, 3) expected.cx(1, 2) expected.delay(1000, 0) expected.delay(200, 1) expected.cx(2, 3) expected.cx(1, 2) expected.h([2, 3]) expected.delay(400, 3) expected.cx(2, 3) expected.h(3) expected.cx(0, 1) expected.delay(750, 2) expected.delay(700, 3) expected.measure_all() self.assertEqual(expected, compact_qc)
https://github.com/qiskit-community/qiskit-scheduling-extension
qiskit-community
# This code is part of Qiskit. # # (C) Copyright IBM 2023. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the CompactScheduling pass""" from qiskit import QuantumCircuit, transpile from qiskit.test import QiskitTestCase from qiskit.transpiler.preset_passmanagers.plugin import list_stage_plugins class TestCompactScheduling(QiskitTestCase): """Tests the CompactScheduling plugin""" def test_plugin_in_list(self): """Test compact scheduling plugin is installed.""" self.assertIn("compact", list_stage_plugins("scheduling")) def test_compact(self): """Test if Compact scheduling yields expected schedule. (input) ┌───┐ ┌───┐ ░ ┌─┐ q_0: ┤ H ├──■─────────■──┤ H ├─░─┤M├────── └───┘┌─┴─┐ ┌─┴─┐└───┘ ░ └╥┘┌─┐ q_1: ─────┤ X ├──■──┤ X ├──────░──╫─┤M├─── ┌───┐└───┘┌─┴─┐├───┤ ░ ║ └╥┘┌─┐ q_2: ┤ H ├─────┤ X ├┤ H ├──────░──╫──╫─┤M├ └───┘ └───┘└───┘ ░ ║ ║ └╥┘ meas: 3/═════════════════════════════╩══╩══╩═ 0 1 2 (Compact scheduled) ┌───┐ ┌────────────────┐ ┌───┐ ░ ┌─┐ q_0: ──────┤ H ├─────────■──┤ Delay(900[dt]) ├──■────────┤ H ├────────░─┤M├────── ┌─────┴───┴──────┐┌─┴─┐└────────────────┘┌─┴─┐┌─────┴───┴──────┐ ░ └╥┘┌─┐ q_1: ┤ Delay(200[dt]) ├┤ X ├────────■─────────┤ X ├┤ Delay(200[dt]) ├─░──╫─┤M├─── ├────────────────┤├───┤ ┌─┴─┐ ├───┤├────────────────┤ ░ ║ └╥┘┌─┐ q_2: ┤ Delay(700[dt]) ├┤ H ├──────┤ X ├───────┤ H ├┤ Delay(700[dt]) ├─░──╫──╫─┤M├ └────────────────┘└───┘ └───┘ └───┘└────────────────┘ ░ ║ ║ └╥┘ meas: 3/════════════════════════════════════════════════════════════════════╩══╩══╩═ 0 1 2 """ qc = QuantumCircuit(3) qc.h([0, 2]) qc.cx(0, 1) qc.cx(1, 2) qc.cx(0, 1) qc.h([0, 2]) qc.measure_all() durations = [ ("h", None, 200), ("cx", [0, 1], 700), ("cx", [1, 2], 900), ("measure", None, 1000) ] actual = transpile( qc, instruction_durations=durations, scheduling_method="compact", optimization_level=0 ) expected = QuantumCircuit(3) expected.delay(200, 1) expected.delay(700, 2) expected.h([0, 2]) expected.cx(0, 1) expected.cx(1, 2) expected.delay(900, 0) expected.cx(0, 1) expected.h([0, 2]) expected.delay(200, 1) expected.delay(700, 2) expected.measure_all() self.assertEqual(expected, actual)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb CX_12 = tp(proj(cb(2,0)),id(2)) + tp(proj(cb(2,1)),pauli(1)); CX_12 CX_21 = tp(id(2),proj(cb(2,0))) + tp(pauli(1),proj(cb(2,1))); CX_21 SWAP = CX_12*CX_21*CX_12; SWAP Cz = tp(proj(cb(2,0)), id(2)) + tp(proj(cb(2,1)), pauli(3)); Cz_12 = Cz Cz_21 = tp(id(2),proj(cb(2,0))) + tp(pauli(3),proj(cb(2,1))) Cz_12, Cz_21 H = (1/sqrt(2))*Matrix([[1,1],[1,-1]]); H Cx12 = tp(id(2),H)*Cz*tp(id(2),H); Cx12 Cx21 = tp(H,id(2))*Cz*tp(H,id(2)); Cx21 CX_21 = tp(id(2),proj(cb(2,0))) + tp(pauli(1),proj(cb(2,1))); CX_21 Cz12 = tp(id(2),H)*Cx12*tp(id(2),H); Cz12 Cz21 = tp(id(2),H)*Cx21*tp(id(2),H); Cz12 CCX = tp(proj(cb(2,0)),id(4)) + tp(proj(cb(2,1)),Cx12); CCX def qc_ry(th): qr = QuantumRegister(1) qc = QuantumCircuit(qr, name = 'RY') qc.ry(th, 0) return qc from qiskit import * qr = QuantumRegister(3) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) qc_ry_ = qc_ry(math.pi) ccry = qc_ry_.to_gate().control(2) qc.append(ccry, [2, 0, 1]) qc.draw(output = 'mpl') from qiskit import * qc = QuantumCircuit(1, 1); qc.h([0]); qc.h([0]); qc.measure([0], [0]); qc.draw(output = 'mpl') qc = QuantumCircuit(1, 1); qc.barrier(); qc.h([0]); qc.barrier(); qc.h([0]); qc.barrier(); qc.measure([0], [0]) qc.draw(output = 'mpl') qc.decompose().draw(output = 'mpl') qc = QuantumCircuit(1, 1) N = 5 for j in range(0, N): qc.id([0]) qc.measure([0], [0]) qc.draw(output = 'mpl') nshots = 8192 qiskit.IBMQ.load_account() #provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(1, 1) N = 0 for j in range(0, N): qc.barrier(); qc.id([0]) qc.barrier(); qc.measure([0], [0]) qc.draw(output = 'mpl') job_exp = execute(qc, backend = device, shots = nshots) print(job_exp.job_id()); job_monitor(job_exp) plot_histogram(job_exp.result().get_counts(qc)) qc = QuantumCircuit(1, 1) N = 10000 for j in range(0, N): qc.barrier(); qc.id([0]) qc.barrier(); qc.measure([0], [0]); #qc.draw(output = 'mpl') job_exp = execute(qc, backend = device, shots = nshots) print(job_exp.job_id()); job_monitor(job_exp) plot_histogram(job_exp.result().get_counts(qc)) qc = QuantumCircuit(4); qc.h([0]); qc.cx([0], [2]); qc.h([1]); qc.cx([1], [3]); qc.draw(output = 'mpl') qc = QuantumCircuit(3); qc.h([0]); qc.cx([0], [1]); qc.reset([0]); qc.h([0]); qc.cx([0], [2]) qc.draw(output = 'mpl')
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb 4312/8192, 8155/8192 a,b,c,d = symbols('a b c d') a, b, c, d X = Matrix([[0,1],[1,0]]); Y = Matrix([[0,-1j],[1j,0]]); Z = Matrix([[1,0],[0,-1]]); I = Matrix([[1,0],[0,1]]) X, Y, Z, I rho = a*X+b*Y+c*Z+d*I; rho tr(X*rho), simplify(tr(Y*rho)), tr(Z*rho), tr(I*rho), pp=4260/8192; pop=4470/8192; p0=8158/8192; pp, pop, p0 Xav = 2*pp-1; Yav = 2*pop-1; Zav = 2*p0-1; Xav, Yav, Zav def rho_1qb_tomo(Xav,Yav,Zav): return (1/2)*(Xav*X+Yav*Y+Zav*Z+I) rho = rho_1qb_tomo(Xav,Yav,Zav); rho, rho.eigenvects() c00, a1, a2, a3, b1, b2, b3 = symbols('c_{00} a_1 a_2 a_3 b_1 b_2 b_3') c11, c12, c13, c21,c22,c23,c31,c32,c33 = symbols('c_{11} c_{12} c_{13} c_{21} c_{22} c_{23} c_{31} c_{32} c_{33}') c00, a1, a2, a3, b1, b2, b3, c11, c12, c13, c21,c22,c23,c31,c32,c33 rho = c00*tp(I,I) + a1*tp(X,I) + a2*tp(Y,I) + a3*tp(Z,I) + b1*tp(I,X) + b2*tp(I,Y) + b3*tp(I,Z) rho += c11*tp(X,X) + c12*tp(X,Y) + c13*tp(X,Z) + c21*tp(Y,X) + c22*tp(Y,Y) + c23*tp(Y,Z) rho += c31*tp(Z,X) + c32*tp(Z,Y) + c33*tp(Z,Z) rho tr(rho), tr(rho*tp(X,I)), simplify(tr(rho*tp(Y,I))), simplify(tr(rho*tp(Z,I))), \ simplify(tr(rho*tp(I,X))), simplify(tr(rho*tp(I,Y))), simplify(tr(rho*tp(I,Z))), \ tr(rho*tp(X,X)), simplify(tr(rho*tp(X,Y))), simplify(tr(rho*tp(X,Z))), \ simplify(tr(rho*tp(Y,X))), simplify(tr(rho*tp(Y,Y))), simplify(tr(rho*tp(Y,Z))), \ tr(rho*tp(Z,X)), simplify(tr(rho*tp(Z,Y))), simplify(tr(rho*tp(Z,Z))) n = 137; N = 4**n-1; N-10**82 p00 = 3906/8192; p01 = 257/8192; p10 = 253/8192; p11 = 3776/8192; p00,p01,p10,p11
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
# importa o qiskit, cujas funcoes podemos entao usar import qiskit # para ver que versoes das ferramentas do qiskit temos instaladas qiskit.__qiskit_version__ # determina o API token a ser usado qiskit.IBMQ.save_account('76cefda2ab77d95541b7cf7a52dc060ae5552c2c67297b954cb056ea1dbf4cc2de3428fc8156cfa85ce0816608b323bf8b9134d8567bcebd3d84d2c4d9473bb9', overwrite = True) # conecta meu computador com minha conta IBMQ na nuvem qiskit.IBMQ.load_account() # determina qual das minhas "contas" vou usar. provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') # mostra quais beckends posso utilizar provider.backends() provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') # para ter um panorama do tipo e status dos backends disponiveis #from qiskit.tools.monitor import backend_overview, backend_monitor #backend_overview() # utilizado para obter informacoes sobre um determinado backend #simulator = provider.get_backend('ibmq_qasm_simulator') #device = provider.get_backend('ibmq_oslo') # informacao detalhada sobre um determinado backend #chip_info = backend_monitor(device); print(chip_info)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb X = Matrix([[0,1],[1,0]]); Y = Matrix([[0,-1j],[1j,0]]); Z = Matrix([[1,0],[0,-1]]); I = Matrix([[1,0],[0,1]]) x,y,z=symbols('x y z'); rho = (1/2)*(x*X+y*Y+z*Z+I); rho rho.eigenvals() from qiskit.visualization import plot_bloch_vector plot_bloch_vector([[0.5,0.5,0.3]]) # Exemplo de representacao de vários estados na esfera de Bloch points = [] r = 0.1; M = 3; dr = 1/M for k in range(0, M): r += dr th = math.pi/2; ph = 0+k*0.01; N = 10; dph = 2*math.pi/N for j in range(0, N): ph += dph x = r*math.sin(th)*math.cos(ph); y = r*math.sin(th)*math.sin(ph); z = r*math.cos(th) points.append([x,y,z]) plot_bloch_vector(points) #bb.savefig('blochb.pdf', format = 'png', dpi = 100) trace(rho**2)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import * # import tudo do qiskit # Determina o número de qubits e de cbits a serem utilizados qr = QuantumRegister(2) # determina quantos qubits serão usados cr = ClassicalRegister(2) # determina quantos cbits serão usados # Constrói o circuito quântico qc = QuantumCircuit(qr, cr) # para o circuitos quânticos ficarem mais apresentáveis %matplotlib inline qc.draw(output='mpl') # mostra o circuito # adiciona a porta lógica de Hadamard ao circuito, aplicada no qubit (registro quântico) 0 qc.h(qr[0]); # tem que usar ; pra não dar aviso qc.draw(output = 'mpl') # o output = 'mpl' é para a figura ficar mais apresentável # adiciona uma controll-not ao circuito, com o controle sendo qr[0] e o target sendo qr[1] qc.cx(qr[0],qr[1]); # é importante sempre mandar mostrar o circuito, pra ter certeza que é realmente o que queremos construir qc.draw(output = 'mpl') # adiciona medidas em todos os qubits (a ser usada quando queremos acessar a distribuições de probabilidades) qc.measure(qr,cr); qc.draw(output = 'mpl') # Determina o backend a ser usado, que poder ser um simulador ou um chip real # Neste caso escolhemos o simulador qasm_simulator simulator = Aer.get_backend('qasm_simulator') # número de medidas para estimativa de uma distribuição de probabilidades nshots = 8192 # executa o circuito qc no backend escolhido result = execute(qc, backend = simulator, shots = nshots).result() # para visualizar o histograma da distribuicao de probabilidades from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) counts = result.get_counts(qc); counts, counts['00'] # carrega minha conta no IBMQ (o ID foi incluido no outro arquivo, nao precisa incluir aqui) qiskit.IBMQ.load_account(); #provider = IBMQ.get_provider('ibm-q') provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') # determina em qual backend vamos executar o circuito device = provider.get_backend('ibmq_casablanca') # se certifica que o backend esta certo device.name() # executa o circuito quantico qc no CQ escolhido job = execute(qc, backend = device, shots = nshots) from qiskit.tools.monitor import job_monitor # para monitorar a execucao do circuito job_monitor(job) result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb !pip install -U qiskit==0.39.4 import qiskit from qiskit import * nshots = 8192 IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_quito') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor qr = QuantumRegister(1) qc = QuantumCircuit(qr) qc.h(qr[0]) qc.draw() from qiskit_experiments.library import StateTomography # essa é com o novo qiskit 039 qcst = StateTomography(qc, measurement_qubits = [0]) data = qcst.run(simulator) rho = data.block_for_results().analysis_results(0).value from qiskit.visualization import array_to_latex array_to_latex(rho) d = rho.dims()[0]; print(rho.dims(), d) rhoM = rho.to_operator().data; print(rhoM) rhoM[0,0], abs(rhoM[0,0]) job_exp = qcst.run(device, shots=nshots)#.block_for_results() print(job_exp.experiment_id) job_exp.job_status() sudo apt install jupyter-core rho = job_exp.block_for_results().analysis_results(0).value rhoM = rho.to_operator().data; print(rhoM) for j in range(0,10): print("\r %d"%j,end=" ") data = device.retrieve_job('03834ee2-0c74-45ff-b744-2cfa3d74f860') rho = data.block_for_results().analysis_results(0).value rhoM = rho.to_operator().data; print(rhoM) !pip install -U qiskit==0.36.2 # como sempre, importa tudo do qiskit from qiskit import * import qiskit qiskit.__qiskit_version__ # importa também funcoes para determinar os circuitos a serem tomografados e pra ajustar os dados from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter # cria os circuitos, sem medidas qr = QuantumRegister(1); qc = qiskit.QuantumCircuit(qr); # cria o circuito qc.h(qr[0]); # visualiza o circuito qc.draw(output='mpl') # Determina de qual circuito e de qual qubit fazer TEQ qstc = state_tomography_circuits(qc, qr[0]) # No. de medidas pra estimar cada dist. de probabilidade nshots = 8192 # testa/executa no simulador job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # 'ajusta' os resultados conforme o esperado do circuit qst qstf = StateTomographyFitter(job.result(), qstc) # extrai o operador densidade tomografado rho = qstf.fit(method='lstsq') # note que o que retorna é um array do numpy rho # funcionou mudando a versao do qiskit com o novo ambiente conda import numpy as np from matplotlib import pyplot as plt # grafica a parte real de um estado de um qubit def plot_rho1qb(rho): from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm result = [rho[0,0], rho[0,1], rho[1,0], rho[1,1]] result = np.array(result, dtype=float) fig = plt.figure(figsize=(4, 4), dpi=100) ax1 = fig.add_subplot(111, projection='3d') xlabels = np.array([r'$|0\rangle$', r'$|1\rangle$']); xpos = np.arange(xlabels.shape[0]) ylabels = np.array([r'$|1\rangle$', r'$|0\rangle$']); ypos = np.arange(ylabels.shape[0]) xposM, yposM = np.meshgrid(xpos, ypos, copy=False); zpos = result dx = 0.5; dy = 0.5; dz = zpos ax1.set_xlim(0, 1.5); ax1.set_ylim(0, 1.5); ax1.set_zlim(-1, 1) ax1.w_xaxis.set_ticks(xpos + dx/2.0); ax1.w_xaxis.set_ticklabels(xlabels) ax1.w_yaxis.set_ticks(ypos + dy/2.0); ax1.w_yaxis.set_ticklabels(ylabels) values = np.linspace(0.2, 1.0, xposM.ravel().shape[0]); colors = cm.rainbow(values) ax1.bar3d(xposM.ravel(), yposM.ravel(), dz*0, dx, dy, dz, color=colors) plt.show() plot_rho1qb(rho.real), plot_rho1qb(rho.imag) # carrega minha conta no IBMQ (o ID foi incluido no outro arquivo, nao precisa incluir aqui) qiskit.IBMQ.load_account(); #provider = IBMQ.get_provider('ibm-q') provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') # determina em qual backend vamos executar o circuito device = provider.get_backend('ibmq_quito') # para monitorar a execucao from qiskit.tools.monitor import job_monitor # executa os circuitos para TEQ no chip job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) # 'ajusta' os resultados conforme o esperado do circuit qst qstf = StateTomographyFitter(job.result(), qstc) # extrai o operador densidade tomografado rho = qstf.fit(method='lstsq'); rho plot_rho1qb(rho.real), plot_rho1qb(rho.imag)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * X = Matrix([[0,1],[1,0]]); Y = Matrix([[0,-1j],[1j,0]]); Z = Matrix([[1,0],[0,-1]]); I = Matrix([[1,0],[0,1]]) xa,ya,za,xb,yb,zb = symbols('x_a y_a z_a x_b y_b z_b') xx,xy,xz,yx,yy,yz,zx,zy,zz = symbols('xx xy xz yx yy yz zx zy zz') rho_ab = (1/4)*(tp(I,I) + xa*tp(X,I) + ya*tp(Y,I) + za*tp(Z,I) + xb*tp(I,X) + yb*tp(I,Y) + zb*tp(I,Z)) rho_ab += (1/4)*(xx*tp(X,X) + xy*tp(X,Y) + xz*tp(X,Z) + yx*tp(Y,X) + yy*tp(Y,Y) + yz*tp(Y,Z)) rho_ab += (1/4)*(zx*tp(Z,X) + xy*tp(Z,Y) + zz*tp(Z,Z)) rho_ab trace(rho_ab) def ptraceA(da, db, rho): rhoB = zeros(db,db) for j in range(0, db): for k in range(0, db): for l in range(0, da): rhoB[j,k] += rho[l*db+j,l*db+k] return rhoB def ptraceB(da, db, rho): rhoA = zeros(da,da) for j in range(0, da): for k in range(0, da): for l in range(0, db): rhoA[j,k] += rho[j*db+l,k*db+l] return rhoA rho_a = ptraceB(2, 2, rho_ab); rho_a rho_b = ptraceA(2, 2, rho_ab); rho_b # alguns resultados prontos que usare de init.ipynb cb(2,0), cb(2,1), id(2), pauli(1), proj(cb(2,0)), tp(cb(2,0),cb(2,0)) CX_ab = tp(proj(cb(2,0)),id(2)) + tp(proj(cb(2,1)),pauli(1)); CX_ab CX_ba = tp(id(2),proj(cb(2,0))) + tp(pauli(1),proj(cb(2,1))); CX_ba SWAP = CX_ab*CX_ba*CX_ab; SWAP SWAP = CX_ba*CX_ab*CX_ba; SWAP # aplica a troca ao estado de 2 qubits rho_ab_swap = SWAP*rho_ab*SWAP # pois a SWAP é hermitiana # verificação que a troca ocorreu rho_a_swap = ptraceB(2, 2, rho_ab_swap); rho_a_swap rho_b_swap = ptraceA(2, 2, rho_ab_swap); rho_b_swap def pTraceL_num(dl, dr, rhoLR): # Returns the left partial trace over the 'left' subsystem of rhoLR rhoR = np.zeros((dr, dr), dtype=complex) for j in range(0, dr): for k in range(j, dr): for l in range(0, dl): rhoR[j,k] += rhoLR[l*dr+j,l*dr+k] if j != k: rhoR[k,j] = np.conj(rhoR[j,k]) return rhoR def pTraceR_num(dl, dr, rhoLR): # Returns the right partial trace over the 'right' subsystem of rhoLR rhoL = np.zeros((dl, dl), dtype=complex) for j in range(0, dl): for k in range(j, dl): for l in range(0, dr): rhoL[j,k] += rhoLR[j*dr+l,k*dr+l] if j != k: rhoL[k,j] = np.conj(rhoL[j,k]) return rhoL qr = QuantumRegister(2); qc = QuantumCircuit(qr) qc.h(qr[1]); qc.s(qr[1]); qc.draw() from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter nshots = 8192 qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); rhoBA # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qc.cx(qr[0],qr[1]); qc.cx(qr[0],qr[1]); qc.draw() # data contém todas as portas lógicas do cicuito quântico em uma lista (ou dicionário) data = qc.data; data # imprime uma componente de qc.data print( data[3] ) # deleta uma componente de data data.pop(3) data.pop(4) data.pop(3) # agora o circuit está como queremos qc.draw() qc.cx(qr[1],qr[0]); qc.draw() data = qc.data; data.pop(3) qc.cx(qr[0],qr[1]); qc.draw() qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qr = QuantumRegister(2); qc = QuantumCircuit(qr) qc.h(qr[1]); qc.s(qr[1]); qc.barrier(); qc.draw() qiskit.IBMQ.load_account(); provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qc.cx(qr[0],qr[1]); qc.cx(qr[1],qr[0]); qc.cx(qr[0],qr[1]); data = qc.data; data.pop(5) qc.draw() qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB def psi(th): return cos(th/2)*cb(2,0) + sin(th/2)*cb(2,1) th, ph = symbols('theta phi'); psi(th) def Psi(th,ph): return CX_ab*tp(psi(th),psi(ph)) th, ph = symbols('theta phi'); Psi(th,ph) th, ph = math.pi/3, math.pi/4; Psi(th,ph) def rhoA(th,ph): return ptraceB(2, 2, proj(Psi(th,ph))) th, ph = symbols('theta phi'); simplify(rhoA(th,ph)) th, ph = math.pi/3, math.pi/4; simplify(rhoA(th,ph)) rhoa = rhoA(th,ph); rhoa.eigenvals() def rhoB(th,ph): return ptraceA(2, 2, proj(Psi(th,ph))) th, ph = symbols('theta phi'); simplify(rhoB(th,ph)) th, ph = math.pi/3, math.pi/4; simplify(rhoB(th,ph)) rhob = rhoB(th,ph); rhob.eigenvals() qr = QuantumRegister(2); qc = QuantumCircuit(qr) th = math.pi/3; ph = math.pi/4 qc.u(th,0,0,qr[0]); qc.u(ph,0,0,qr[1]); qc.cx(qr[0],qr[1]); qc.barrier(); qc.draw() data = qc.data; data.pop(1); qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qc.cx(qr[1],qr[0]); qc.cx(qr[0],qr[1]); qc.cx(qr[1],qr[0]) qc.draw() qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) rhoA = pTraceL_num(2, 2, rhoBA); rhoA rhoB = pTraceR_num(2, 2, rhoBA); rhoB
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb rp = np.arange(0,1.1,0.1); vth = 2*np.arccos(np.sqrt(rp)); rp, vth def ket_rp(th,phi): return Matrix([[cos(th/2)],[(cos(ph)+1j*sin(ph))*sin(th/2)]]) def ket_rm(th,phi): return Matrix([[sin(th/2)],[-(cos(ph)+1j*sin(ph))*cos(th/2)]]) rp,th,ph = symbols('r_{+} theta phi', Real=True); ket_rp(th,ph), ket_rm(th,ph) def rho(rp,rm,th,ph): return rp*proj(ket_rp(th,ph)) + rm*proj(ket_rm(th,ph)) rp,rm,th,ph = symbols('r_{+} r_{-} theta phi', Real=True); simplify(rho(rp,rm,th,ph)) rp = 1/2; vth = 2*math.acos(sqrt(rp)); th = 0*math.pi/4; ph = 0*math.pi/3 simplify(rho(rp,1-rp,th,ph)) print(rp, vth, th, ph) import qiskit qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') simulator = provider.get_backend('ibmq_qasm_simulator') device = provider.get_backend('ibmq_belem') nshots = 8192 from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import job_monitor def pTraceL_num(dl, dr, rhoLR): # Returns the left partial trace over the 'left' subsystem of rhoLR rhoR = np.zeros((dr, dr), dtype=complex) for j in range(0, dr): for k in range(j, dr): for l in range(0, dl): rhoR[j,k] += rhoLR[l*dr+j,l*dr+k] if j != k: rhoR[k,j] = np.conj(rhoR[j,k]) return rhoR qr = qiskit.QuantumRegister(2); qc = qiskit.QuantumCircuit(qr) qc.u(vth,0,0,qr[0]); qc.cx(qr[0],qr[1]); qc.u(th,ph,math.pi,qr[0]); qc.draw() qstc = state_tomography_circuits(qc, [qr[0],qr[1]]); # circuito para TEQ job = qiskit.execute(qstc, backend = simulator, shots = nshots) # executa no simulador qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); rhoA = pTraceL_num(2, 2, rhoBA); rhoA qc.draw() job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc) # ajusta os dados rhoBA = qstf.fit(method='lstsq'); # extrai o operador densidade rhoA = pTraceL_num(2, 2, rhoBA); rhoA a,b,c,d = symbols('a,b,c,d', Real=True, Positive=True); z,w = symbols('z,w', Real=True) rhoX = Matrix([[a,0,0,w],[0,b,z,0],[0,z,c,0],[w,0,0,d]]); rhoX rhoX.eigenvals() rhoX.eigenvects() a,b,g = symbols('alpha beta gamma', Real = True, Positive = True) p00 = (cos(a)*cos(b)*cos(g) + sin(a)*sin(b)*sin(g))**2 p01 = (cos(a)*cos(b)*sin(g) - sin(a)*sin(b)*cos(g))**2 p10 = (cos(a)*sin(b)*cos(g) - sin(a)*cos(b)*sin(g))**2 p11 = (cos(a)*sin(b)*sin(g) + sin(a)*cos(b)*cos(g))**2 p00,p01,p10,p11 simplify(p00+p01+p10+p11) # ok th,ph = symbols('theta phi', Real = True, Positive = True) psi00 = cos(th)*tp(cb(2,0),cb(2,0)) + sin(th)*tp(cb(2,1),cb(2,1)) psi10 = -sin(th)*tp(cb(2,0),cb(2,0)) + cos(th)*tp(cb(2,1),cb(2,1)) psi01 = sin(ph)*tp(cb(2,0),cb(2,1)) + cos(ph)*tp(cb(2,1),cb(2,0)) psi11 = cos(ph)*tp(cb(2,0),cb(2,1)) - sin(ph)*tp(cb(2,1),cb(2,0)) psi00, psi10, psi01, psi11 rho23 = p00*proj(psi00) + p01*proj(psi01) + p10*proj(psi10) + p11*proj(psi11); simplify(rho23) p00,p01,p10,p11 = symbols('p_{00},p_{01},p_{10},p_{11}') rho23 = p00*proj(psi00) + p01*proj(psi01) + p10*proj(psi10) + p11*proj(psi11); rho23 nonlinsolve([((cos(a)*cos(b)*cos(g) + sin(a)*sin(b)*sin(g))**2)*cos(th)**2 + (cos(a)*sin(b)*cos(g) - sin(a)*cos(b)*sin(g))**2*sin(th)**2 - a, ((cos(a)*cos(b)*sin(g) - sin(a)*sin(b)*cos(g))**2)*sin(ph)**2 + ((cos(a)*sin(b)*sin(g) + sin(a)*cos(b)*cos(g))**2)*cos(ph)**2 - b, ((cos(a)*cos(b)*sin(g) - sin(a)*sin(b)*cos(g))**2)*cos(ph)**2 + ((cos(a)*sin(b)*sin(g) + sin(a)*cos(b)*cos(g))**2)*sin(ph)**2 - c, ((cos(a)*cos(b)*cos(g) + sin(a)*sin(b)*sin(g))**2)*sin(ph)**2 + (cos(a)*sin(b)*cos(g) - sin(a)*cos(b)*sin(g))**2*cos(th)**2 - d, ((cos(a)*cos(b)*sin(g) - sin(a)*sin(b)*cos(g))**2-(cos(a)*sin(b)*sin(g) + sin(a)*cos(b)*cos(g))**2)*sin(ph)*cos(ph) - z, ((cos(a)*cos(b)*cos(g) + sin(a)*sin(b)*sin(g))**2-(cos(a)*sin(b)*cos(g) - sin(a)*cos(b)*sin(g))**2)*sin(th)*cos(th) - w], [th,ph,a,b,g])
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb def gell_mann(d, g, j, k): gm = np.zeros((d,d), dtype= complex) if g == 'i': # identity for j in range(0,d): gm[j,j] = 1 elif g == 'd': # diagonal nt = math.sqrt(2/(j*(j+1))) for m in range(0,j): gm[m,m] = nt gm[j,j] = -j*nt elif g == 's': # symmetric gm[j-1,k-1] = 1; gm[k-1,j-1] = 1 elif g == 'a': # anti-symmetric gm[j-1,k-1] = -1j; gm[k-1,j-1] = 1j return gm gell_mann(2, 'i', 0, 0), gell_mann(2, 'd', 1, 1), gell_mann(2, 's', 1, 2), gell_mann(2, 'a', 1, 2) def bloch_vector(A): d = A.shape[0]; bv = np.zeros((d**2-1), dtype = complex) #bv[0] = trace(d,A) for j in range(1,d): # diagonal bv[j-1] = 0 for k in range(1,j+1): bv[j-1] += A[k-1,k-1] bv[j-1] -= j*A[j,j] bv[j-1] *= math.sqrt(2/(j*(j+1))) for k in range(1,d): # symmetric for l in range(k+1,d+1): j += 1 bv[j-1] = A[l-1,k-1] + A[k-1,l-1] for k in range(1,d): # anti-symmetric for l in range(k+1,d+1): j += 1 bv[j-1] = -1j*(A[l-1,k-1] - A[k-1,l-1]) return bv.real s0 = np.array([[1,0],[0,1]]); s1 = np.array([[0,1],[1,0]]) s2 = np.array([[0,-1j],[1j,0]]); s3 = np.array([[1,0],[0,-1]]) A = 0.5*(s0 + 0.1*s1 + 0.2*s2 + 0.3*s3); bloch_vector(A) def corr_mat_dd(da, db, M): cmdd = np.zeros((da-1,db-1), dtype = complex) for j in range(1,da): for k in range(1,db): for m in range(1,j+1): for n in range(1,k+1): cmdd[j-1,k-1] += M[(m-1)*db+(n-1),(m-1)*db+(n-1)] m = j+1 for n in range(1,k+1): cmdd[j-1,k-1] -= j*M[(m-1)*db+(n-1),(m-1)*db+(n-1)] n = k+1 for m in range(1,j+1): cmdd[j-1,k-1] -= k*M[(m-1)*db+(n-1),(m-1)*db+(n-1)] m = j+1 n = k+1 cmdd[j-1,k-1] += j*k*M[(m-1)*db+(n-1),(m-1)*db+(n-1)] cmdd[j-1,k-1] *= 2/sqrt(j*(j+1)*k*(k+1)) return cmdd.real def Pauli(j): if j == 0: return np.array([[1,0],[0,1]]) elif j == 1: return np.array([[0,1],[1,0]]) elif j == 2: return np.array([[0,-1j],[1j,0]]) elif j == 3: return np.array([[1,0],[0,-1]]) def rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33): return (1/4)*(tp(Pauli(0),Pauli(0)) + b1*tp(Pauli(0),Pauli(1)) + b2*tp(Pauli(0),Pauli(2)) + b3*tp(Pauli(0),Pauli(3)) + a1*tp(Pauli(1),Pauli(0)) + c11*tp(Pauli(1),Pauli(1)) + c12*tp(Pauli(1),Pauli(2)) + c13*tp(Pauli(1),Pauli(3)) + a2*tp(Pauli(2),Pauli(0)) + c21*tp(Pauli(2),Pauli(1)) + c22*tp(Pauli(2),Pauli(2)) + c23*tp(Pauli(2),Pauli(3)) + a3*tp(Pauli(3),Pauli(0)) + c31*tp(Pauli(3),Pauli(1)) + c32*tp(Pauli(3),Pauli(2)) + c33*tp(Pauli(3),Pauli(3))) a1, a2, a3, b1, b2, b3 = 0.11, 0.12, 0.13, 0.25, 0.26, 0.27 c11, c12, c13, c21, c22, c23, c31, c32, c33 = 0.11, 0.12, 0.13, 0.21, 0.22, 0.23, 0.31, 0.32, 0.33 corr_mat_dd(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33)) def corr_mat_ds(da, db, M): cmds = np.zeros((da-1,db*(db-1)//2), dtype = complex) for j in range(1,da): n = 0 for k in range(1,db): for l in range(k+1,db+1): n += 1 for m in range(1,j+1): cmds[j-1,n-1] += (M[(m-1)*db+(l-1),(m-1)*db+(k-1)] + M[(m-1)*db+(k-1),(m-1)*db+(l-1)]) m = j+1 cmds[j-1,n-1] -= j*(M[(m-1)*db+(l-1),(m-1)*db+(k-1)] + M[(m-1)*db+(k-1),(m-1)*db+(l-1)]) cmds[j-1,n-1] *= sqrt(2/(j*(j+1))) return cmds.real corr_mat_ds(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33)) def corr_mat_da(da, db, M): cmda = np.zeros((da-1,db*(db-1)//2), dtype = complex) for j in range(1,da): n = 0 for k in range(1,db): for l in range(k+1,db+1): n += 1 for m in range(1,j+1): cmda[j-1,n-1] += (M[(m-1)*db+(l-1),(m-1)*db+(k-1)] - M[(m-1)*db+(k-1),(m-1)*db+(l-1)]) m = j+1 cmda[j-1,n-1] -= j*(M[(m-1)*db+(l-1),(m-1)*db+(k-1)] - M[(m-1)*db+(k-1),(m-1)*db+(l-1)]) cmda[j-1,n-1] *= -1j*sqrt(2/(j*(j+1))) return cmda.real corr_mat_da(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33)) def corr_mat_sd(da, db, M): cmsd = np.zeros((da*(da-1)//2,db-1), dtype = complex) n = 0 for k in range(1,da): for l in range(k+1,da+1): n += 1 for j in range(1,db): for m in range(1,j+1): cmsd[n-1,j-1] += (M[(l-1)*db+(m-1),(k-1)*db+(m-1)] + M[(k-1)*db+(m-1),(l-1)*db+(m-1)]) m = j+1 cmsd[n-1,j-1] -= j*(M[(l-1)*db+(m-1),(k-1)*db+(m-1)] + M[(k-1)*db+(m-1),(l-1)*db+(m-1)]) cmsd[n-1,j-1] *= sqrt(2/(j*(j+1))) return cmsd.real corr_mat_sd(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33)) def corr_mat_ad(da, db, M): cmad = np.zeros((da*(da-1)//2,db-1), dtype = complex) n = 0 for k in range(1,da): for l in range(k+1,da+1): n += 1 for j in range(1,db): for m in range(1,j+1): cmad[n-1,j-1] += (M[(l-1)*db+m-1,(k-1)*db+m-1] - M[(k-1)*db+m-1,(l-1)*db+m-1]) m = j+1 cmad[n-1,j-1] -= j*(M[(l-1)*db+m-1,(k-1)*db+m-1] - M[(k-1)*db+m-1,(l-1)*db+m-1]) cmad[n-1,j-1] *= -1j*sqrt(2/(j*(j+1))) return cmad.real corr_mat_ad(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33)) def corr_mat_ss(da, db, M): cmss = np.zeros((da*(da-1)//2,db*(db-1)//2), dtype = complex) p = 0 for k in range(1,da): for l in range(k+1,da+1): p += 1 q = 0 for m in range(1,db): for n in range(m+1,db+1): q += 1 cmss[p-1,q-1] += (M[(l-1)*db+n-1,(k-1)*db+m-1] + M[(k-1)*db+m-1,(l-1)*db+n-1]) cmss[p-1,q-1] += (M[(l-1)*db+m-1,(k-1)*db+n-1] + M[(k-1)*db+n-1,(l-1)*db+m-1]) return cmss.real corr_mat_ss(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33)) def corr_mat_sa(da, db, M): cmsa = np.zeros((da*(da-1)//2,db*(db-1)//2), dtype = complex) p = 0 for k in range(1,da): for l in range(k+1,da+1): p += 1 q = 0 for m in range(1,db): for n in range(m+1,db+1): q += 1 cmsa[p-1,q-1] -= 1j*(M[(l-1)*db+n-1,(k-1)*db+m-1] - M[(k-1)*db+m-1,(l-1)*db+n-1]) cmsa[p-1,q-1] -= 1j*(M[(k-1)*db+n-1,(l-1)*db+m-1] - M[(l-1)*db+m-1,(k-1)*db+n-1]) return cmsa.real simplify(corr_mat_sa(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33))) def corr_mat_as(da, db, M): cmas = np.zeros((da*(da-1)//2,db*(db-1)//2), dtype = complex) p = 0 for k in range(1,da): for l in range(k+1,da+1): p += 1 q = 0 for m in range(1,db): for n in range(m+1,db+1): q += 1 cmas[p-1,q-1] -= 1j*(M[(l-1)*db+n-1,(k-1)*db+m-1] - M[(k-1)*db+m-1,(l-1)*db+n-1]) cmas[p-1,q-1] -= 1j*(M[(l-1)*db+m-1,(k-1)*db+n-1] - M[(k-1)*db+n-1,(l-1)*db+m-1]) return cmas.real simplify(corr_mat_as(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33))) def corr_mat_aa(da, db, M): cmaa = np.zeros((da*(da-1)//2,db*(db-1)//2), dtype = complex) p = 0 for k in range(1,da): for l in range(k+1,da+1): p += 1 q = 0 for m in range(1,db): for n in range(m+1,db+1): q += 1 cmaa[p-1,q-1] += (M[(l-1)*db+m-1,(k-1)*db+n-1] + M[(k-1)*db+n-1,(l-1)*db+m-1]) cmaa[p-1,q-1] -= (M[(l-1)*db+n-1,(k-1)*db+m-1] + M[(k-1)*db+m-1,(l-1)*db+n-1]) return cmaa.real corr_mat_aa(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33)) def corr_mat(da, db, M): dda = int((da*(da-1))/2); ddb = int((db*(db-1))/2); cm = np.zeros((da**2-1,db**2-1)) k = -1; l = -1 cmdd = corr_mat_dd(da, db, M); cmds = corr_mat_ds(da, db, M); cmda = corr_mat_da(da, db, M) for m in range(0,da-1): k += 1 for n in range(0,db-1): # diagonal-diagonal l += 1; cm[k,l] = cmdd[m,n] for n in range(0,ddb): # diagonal-symmetric l += 1; cm[k,l] = cmds[m,n] for n in range(0,ddb): # diagonal-antisymmetric l += 1; cm[k,l] = cmda[m,n] cmsd = corr_mat_sd(da, db, M); cmss = corr_mat_ss(da, db, M); cmsa = corr_mat_sa(da, db, M) l = -1 for m in range(0,dda): k += 1 for n in range(0,db-1): # symmetric-diagonal l += 1; cm[k,l] = cmsd[m,n] for n in range(0,ddb): # symmetric-symmetric l += 1; cm[k,l] = cmss[m,n] for n in range(0,ddb): # symmetric-antisymmetric l += 1; cm[k,l] = cmsa[m,n] cmad = corr_mat_ad(da, db, M); cmas = corr_mat_as(da, db, M); cmaa = corr_mat_aa(da, db, M) l = -1 for m in range(0,dda): k += 1 for n in range(0,db-1): # antisymmetric-diagonal l += 1; cm[k,l] = cmad[m,n] for n in range(0,ddb): # antisymmetric-symmetric l += 1; cm[k,l] = cmas[m,n] for n in range(0,ddb): # antisymmetric-antisymmetric l += 1; cm[k,l] = cmaa[m,n] return cm.real simplify(corr_mat(2,2,rho2qb(a1, a2, a3, b1, b2, b3, c11, c12, c13, c21, c22, c23, c31, c32, c33)))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb %run 08_gellmann.ipynb def coh_l1(rho): d = rho.shape[0]; C = 0 for j in range(0,d-1): for k in range(j+1,d): C += np.abs(rho[j,k]) return 2*C rho = np.array([[1,0],[0,0]]); rho, coh_l1(rho) rho = np.array([[1,1],[1,1]])/2; rho, coh_l1(rho) def mutual_info(da, db, rhoAB): rhoA = pTraceR_num(da, db, rhoAB); Sa = von_neumann_num(rhoA) rhoB = pTraceL_num(da, db, rhoAB); Sb = von_neumann_num(rhoB) Sab = von_neumann_num(rhoAB) return Sa + Sb - Sab def shannon_num(pv): d = pv.shape[0]; SE = 0.0; j = -1 while (j < d-1): j = j + 1 if pv[j] > 10**-15 and pv[j] < (1.0-10**-15): SE -= pv[j]*math.log(pv[j], 2) return SE import scipy.linalg.lapack as lapak def von_neumann_num(rho): d = rho.shape[0]; b = lapak.zheevd(rho) return shannon_num(b[0]) def pTraceL_num(dl, dr, rhoLR): rhoR = np.zeros((dr, dr), dtype=complex) for j in range(0, dr): for k in range(j, dr): for l in range(0, dl): rhoR[j,k] += rhoLR[l*dr+j,l*dr+k] if j != k: rhoR[k,j] = np.conj(rhoR[j,k]) return rhoR def pTraceR_num(dl, dr, rhoLR): rhoL = np.zeros((dl, dl), dtype=complex) for j in range(0, dl): for k in range(j, dl): for l in range(0, dr): rhoL[j,k] += rhoLR[j*dr+l,k*dr+l] if j != k: rhoL[k,j] = np.conj(rhoL[j,k]) return rhoL rho = proj(tp(cb(2,0),cb(2,0))); rho, mutual_info(2, 2, rho) rho = 0.5*proj(tp(cb(2,0),cb(2,0))) + 0.5*proj(tp(cb(2,1),cb(2,1))); rho, mutual_info(2, 2, rho) psi = (1/math.sqrt(2))*(tp(cb(2,0),cb(2,0))+tp(cb(2,1),cb(2,1))) rho = proj(psi); rho, mutual_info(2, 2, rho) import scipy def Dhellinger(da, db, rhoAB): M = scipy.linalg.sqrtm(rhoAB) A = pTraceR_num(da, db, M); bva = bloch_vector(A)/math.sqrt(2*db) B = pTraceL_num(da, db, M); bvb = bloch_vector(B)/2 cm = corr_mat(da, db, M)/2; ev = lapak.zheevd(bva*bva.T + cm*cm.T) D_he = 2 - 2*math.sqrt((np.trace(A)/math.sqrt(2*db))**2 + (scipy.linalg.norm(bvb))**2 + max(ev[0].real)) D_he = D_he/(2 - 2/math.sqrt(da)) return D_he da = 2; db = 2 M = scipy.linalg.sqrtm(np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])/4) A = pTraceR_num(2, 2, M); bva = bloch_vector(A)/math.sqrt(2*2); bva B = pTraceL_num(da, db, M); bvb = bloch_vector(B)/2; bvb cm = corr_mat(da, db, M)/2; ev = lapak.zheevd(bva*bva.T + cm*cm.T); cm D_he = 2 - 2*math.sqrt((np.trace(A)/math.sqrt(2*db))**2 + (scipy.linalg.norm(bvb))**2 + max(ev[0].real)) D_he = D_he/(2 - 2/math.sqrt(da)); D_he # teste para a raiz quadrada de matriz calculada usando scipy A = np.array([[1,0],[0,-1]]); Asr = scipy.linalg.sqrtm(A); Asr # raiz quadrada (testes) #Asr*Asr def Pauli(j): if j == 0: return np.array([[1,0],[0,1]]) elif j == 1: return np.array([[0,1],[1,0]]) elif j == 2: return np.array([[0,-1j],[1j,0]]) elif j == 3: return np.array([[1,0],[0,-1]]) ev = lapak.zheevd(Pauli(1)); ev, ev[0], ev[0][0], ev[1][0], ev[1][0][0] def Econcurrence(rho): R = rho@tp(Pauli(2),Pauli(2))@np.matrix.conjugate(rho)@tp(Pauli(2),Pauli(2)) ev = lapak.zheevd(R) evm = max(abs(ev[0][0]), abs(ev[0][1]), abs(ev[0][2]), abs(ev[0][3])) Ec = 2*math.sqrt(abs(evm)) - math.sqrt(abs(ev[0][0])) - math.sqrt(abs(ev[0][1]))\ - math.sqrt(abs(ev[0][2])) - math.sqrt(abs(ev[0][3])) if Ec < 0.0: Ec = 0.0 return Ec # Emaranhamento de formação def Eof(rho): Ec = Econcurrence(rho) pv = np.zeros(2); pv[0] = (1+math.sqrt(1-Ec**2))/2; pv[1] = 1 - pv[0] return shannon_num(pv) pv=np.array([1,2]); pv.shape x = np.arange(10**-3,1,0.01); p0 = (1 + np.sqrt(1-x**2))/2; p1 = 1 - p0 ef = np.zeros(x.shape[0]); ef = -p0*np.log2(p0) - p1*np.log2(p1) plt.plot(x , ef); plt.xlabel(r'$E_{c}$'); plt.ylabel(r'$E_{f}$'); plt.show() def rho_werner(w): rho = np.zeros((4,4), dtype = complex) rho =+ ((1-w)/4)*np.identity(4) + (w/2)*np.array([[1,0,0,1],[0,0,0,0],[0,0,0,0],[1,0,0,1]]) return rho rho_werner(0) w = np.arange(0, 1.05, 0.05); C = np.zeros(w.shape[0]); MI = np.zeros(w.shape[0]); D_he = np.zeros(w.shape[0]) Ec = np.zeros(w.shape[0]); Ef = np.zeros(w.shape[0]) for j in range(0, w.shape[0]): rho = rho_werner(w[j]); C[j] = coh_l1(rho); MI[j] = mutual_info(2, 2, rho)/2 D_he[j] = Dhellinger(2, 2, rho); Ec[j] = Econcurrence(rho); Ef[j] = Eof(rho) matplotlib.rcParams.update({'font.size':12}) plt.figure(figsize = (6,4), dpi = 100) plt.plot(w, C, label = r'$C$'); plt.plot(w, MI, label = r'$I/2$'); plt.plot(w, D_he, label = r'$D_{A}^{he}$') plt.plot(w, Ec, '*', label = r'$E_{c}$'); plt.plot(w, Ef, '-.', label = r'$E_{f}$') plt.xlabel(r'$w$'); plt.legend(); plt.show()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * def Uf_c(n): qr = QuantumRegister(n+1); qc = QuantumCircuit(qr, name = 'Uf_c') qc.x(qr[n]) return qc qc = Uf_c(3); qc.draw() def Uf_b(n): qr = QuantumRegister(n+1); qc = QuantumCircuit(qr, name = 'Uf_b') qc.cx(qr[n-1],qr[n]) return qc qc = Uf_b(3); qc.draw() def deutsch_jozsa(n, typ): qr = QuantumRegister(n+1); cr = ClassicalRegister(n); qc = QuantumCircuit(qr,cr) qc.x(qr[n]) for j in range(0,n+1): qc.h(qr[j]) qc.barrier() qrs = [] for j in range(0,n+1): qrs.append(qr[j]) if typ == 'c': qc_uf = Uf_c(n); qc.append(qc_uf, qrs) elif typ == 'b': qc_uf = Uf_b(n); qc.append(qc_uf, qrs) qc.barrier() for j in range(0,n): qc.h(qr[j]) for j in range(0,n): qc.measure(qr[j], cr[j]) return qc qc = deutsch_jozsa(3, 'c'); qc.draw() # exemplo pra funcao constante simulator = Aer.get_backend('qasm_simulator') nshots = 8192 result = execute(qc, backend = simulator, shots = nshots).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import backend_overview, backend_monitor job = execute(qc, backend = device, shots = nshots) from qiskit.tools.monitor import job_monitor job_monitor(job) result = job.result(); plot_histogram(result.get_counts(qc)) qc = deutsch_jozsa(3, 'b'); qc.draw() # exemplo de funcao balanceada result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) result = job.result(); plot_histogram(result.get_counts(qc))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb lbda = symbols('lambda', real=True); E0 = Matrix([[1,0],[0,sqrt(1-lbda)]]); E0 # coefficients of the expansion of E0 in the Pauli basis c0 = trace((id(2)/sqrt(2))*E0); c1 = trace((pauli(1)/sqrt(2))*E0) c2 = trace((pauli(2)/sqrt(2))*E0); c3 = trace((pauli(3)/sqrt(2))*E0) simplify(c0), simplify(c1), simplify(c2), simplify(c3) E1 = Matrix([[0,0],[0,sqrt(lbda)]]); E1 # coefficients for the expansion of E1 in the Pauli basis c0 = trace((id(2)/sqrt(2))*E1); c1 = trace((pauli(1)/sqrt(2))*E1) c2 = trace((pauli(2)/sqrt(2))*E1); c3 = trace((pauli(3)/sqrt(2))*E1) simplify(c0), simplify(c1), simplify(c2), simplify(c3) V00,V10,V20,V30,W00,W01,W02,W03,W10,W11,W12,W13=symbols('V00 V10 V20 V30 W00 W01 W02 W03 W10 W11 W12 W13',real=True) #nonlinsolve([V00**2+V10**2+V20**2+V30**2-1, W00**2+W01**2+W02**2+W03**2-1, # W10**2+W11**2+W12**2+W13**2-1,W10*W00+W11*W01+W12*W02+W13*W03, # W00*V00-(1+sqrt(1-lbda))/2, W01*V10, W02*V20, W03*V30-(1-sqrt(1-lbda))/2, # W10*V00-sqrt(lbda)/2, W11*V10, W12*V20, W13*V30+sqrt(lbda)/2], # [V00,V10,V20,V30,W00,W01,W02,W03,W10,W11,W12,W13]) # took too long for solving (did not return any result) V = Matrix([[sqrt((1+sqrt(1-lbda))/2),0,0,sqrt((1-sqrt(1-lbda))/2)],[0,1,0,0],[0,0,1,0], [sqrt((1-sqrt(1-lbda))/2),0,0,-sqrt((1+sqrt(1-lbda))/2)]]) V V*V.T, V.T*V # verification of unitarity W = Matrix([[0,1,0,0],[sqrt((1-sqrt(1-lbda))/2),0,0,sqrt((1+sqrt(1-lbda))/2)],[0,0,1,0], [sqrt((1+sqrt(1-lbda))/2),0,0,-sqrt((1-sqrt(1-lbda))/2)]]) W W*W.T, W.T*W # verification of unitarity r00,r01,r10,r11 = symbols('r00,r01,r10,r11',real=True) rhoS0 = Matrix([[r00,r01],[r10,r11]]) rhoS0 # initial state rhoS = E0*rhoS0*E0 + E1*rhoS0*E1; simplify(rhoS) # evolved state using the Kraus' operators # Outside these functions, initialize: rhos = zeros(ds,ds), s=A,B def ptraceA(da, db, rho): rhoB = zeros(db,db) for j in range(0, db): for k in range(0, db): for l in range(0, da): rhoB[j,k] += rho[l*db+j,l*db+k] return rhoB def ptraceB(da, db, rho): rhoA = zeros(da,da) for j in range(0, da): for k in range(0, da): for l in range(0, db): rhoA[j,k] += rho[j*db+l,k*db+l] return rhoA # tests the circuit for the PDC rhoSA0 = tp(rhoS0,proj(cb(4,0)))#; rhoSA0 rhoSA1 = tp(id(2),V)*rhoSA0*tp(id(2),V.T)#; rhoSA1 Uc = tp(id(2),proj(cb(4,0))) + tp(id(2),proj(cb(4,1))) + tp(id(2),proj(cb(4,2))) + tp(pauli(3),proj(cb(4,3))) #Uc*Uc.T, Uc.T*Uc rhoSA2 = Uc*rhoSA1*Uc.T; #rhoSA2 rhoSA3 = tp(id(2),W)*rhoSA2*tp(id(2),W.T) # Não precisava pois só mudará a base de A rhoS = ptraceB(2, 4, rhoSA3); simplify(rhoS) # ok! V = Matrix([[sqrt((1+sqrt(1-lbda))/2),sqrt((1-sqrt(1-lbda))/2)], [sqrt((1-sqrt(1-lbda))/2),-sqrt((1+sqrt(1-lbda))/2)]]) W = V; V # tests the (http://arxiv.org/abs/1704.05593) circuit rhoSA0 = tp(rhoS0,proj(cb(2,0))); rhoSA0 rhoSA1 = tp(id(2),V)*rhoSA0*tp(id(2),V.T); rhoSA1 Uc = tp(id(2),proj(cb(2,0))) + tp(pauli(3),proj(cb(2,1))); Uc, Uc*Uc.T, Uc.T*Uc rhoSA2 = Uc*rhoSA1*Uc.T; rhoSA2 rhoSA3 = tp(id(2),W)*rhoSA2*tp(id(2),W.T) rhoS = ptraceB(2, 2, rhoSA3); simplify(rhoS) # also works! lb = np.arange(0,1.05,0.05); th = 2*np.arccos(np.sqrt((1+np.sqrt(1-lb))/2)) th_ = 2*np.arcsin(np.sqrt((1-np.sqrt(1-lb))/2)) plt.plot(lb,th); plt.plot(lb, th_, '*') plt.xlabel(r'$\lambda$'); plt.ylabel(r'$\theta$'); plt.show() # phase damping channel, exact def phase_damping(rho, lb): E0 = Matrix([[1,0],[0,sqrt(1-lb)]]); E1 = Matrix([[0,0],[0,sqrt(lb)]]) return E0*rho*E0 + E1*rho*E1 lb = symbols('lambda') psi = (cb(2,0)+cb(2,1))/sqrt(2); rho = proj(psi); rhopd = phase_damping(rho, lb) rho, rhopd def coh_l1(rho): d = rho.shape[0]; C = 0 for j in range(0, d-1): for k in range(j+1, d): C += abs(rho[j,k]) return 2*C coh = coh_l1(rhopd); coh # simulation from qiskit import * def state_prep(): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name = 'state_prep') qc.h(qr[0]) return qc qc_sp = state_prep(); qc_sp.draw() def qc_sim_pd(lb): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name = 'pd_sim') th = 2*math.acos(math.sqrt((1+math.sqrt(1-lb))/2)) qc.u(th, 0, math.pi, qr[1]); qc.cz(qr[1],qr[0]); qc.u(th, 0, math.pi, qr[1]) return qc lb = 0.5; qc_pd = qc_sim_pd(lb); qc_pd.draw() qr = QuantumRegister(2); qc = QuantumCircuit(qr) qc_sp = state_prep(); qc.append(qc_sp, [qr[0]]); qc.barrier() lb = 0; qc_pd = qc_sim_pd(lb); qc.append(qc_pd, [qr[0],qr[1]]); qc.barrier() qc.draw() from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor lb = np.arange(0,1.05,0.05); d = lb.shape[0]; Cteo = np.zeros(d); Csim = np.zeros(d); Cexp = np.zeros(d) for j in range(0, d): Cteo[j] = np.abs(math.sqrt(1-lb[j])) # theoretical qr = QuantumRegister(2); qc = QuantumCircuit(qr) qc_sp = state_prep(); qc.append(qc_sp, [qr[0]]) # state preparation qc_pd = qc_sim_pd(lb[j]); qc.append(qc_pd, [qr[0],qr[1]]) # apply sim phase damping qstc = state_tomography_circuits(qc, qr[0]) # circuit for state tomography job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') Csim[j] = coh_l1(rho) # 1st I did the simulation, only afterwards I added the code for the experiments job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') Cexp[j] = coh_l1(rho) matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(lb, Cteo, label = r'$C_{teo}$'); plt.plot(lb, Csim, 'o', label = r'$C_{sim}$') plt.plot(lb, Cexp, '*', label = r'$C_{exp}$') plt.legend(); plt.xlabel(r'$\lambda$'); plt.show() 2960/8 750/15
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb S = Matrix([[1,0],[0,1j]]); Sd = Matrix([[1,0],[0,-1j]]); H = (1/sqrt(2))*Matrix([[1,1],[1,-1]])#; S, H S*H*S from qiskit import * def qc_mzi_sim(ph): # quantum circuit for the Mach-Zehnder interferometer qr = QuantumRegister(1); qc = QuantumCircuit(qr) qc.u(math.pi/2, math.pi/2, -math.pi/2, qr[0]); # DF #qc.s(qr[0]); qc.h(qr[0]); qc.s(qr[0]) # DF qc.z(qr[0]); qc.y(qr[0]) # espelho qc.p(ph, qr[0]); # fase qc.u(math.pi/2, math.pi/2, -math.pi/2, qr[0]) # DF #qc.s(qr[0]); qc.h(qr[0]); qc.s(qr[0]) # DF return qc qcmzi = qc_mzi_sim(math.pi/8); qcmzi.draw() def state_prep(th, ph): qr = QuantumRegister(1); qc = QuantumCircuit(qr) qc.u(th, ph, 0, qr[0]) return qc from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor # for error mitigation from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter qr = qiskit.QuantumRegister(1) qubit_list = [0] # os qubits para os quais aplicaremos calibracao de medidas meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr) job = execute(meas_calibs, backend = device, shots = nshots); job_monitor(job) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels) phmax = 2*math.pi; dph = phmax/20; ph = np.arange(0, phmax+dph, dph)#; ph d = ph.shape[0]; PD0teo = np.zeros(d); PD0sim = np.zeros(d); PD0exp = np.zeros(d) for j in range(0, d): PD0teo[j] = (1+math.cos(ph[j]))/2 # theoretical qr = QuantumRegister(1); qc = QuantumCircuit(qr) qc_sp = state_prep(0, 0); qc.append(qc_sp, [qr[0]]) # state preparation (estado |0>) qc_mzi = qc_mzi_sim(ph[j]); qc.append(qc_mzi, [qr[0]]) # apply sim mzi qstc = state_tomography_circuits(qc, qr[0]) # circuit for state tomography job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0sim[j] = rho[0,0].real # 1º fiz as simulações, só depois adicionei o código para os experimentos job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0exp[j] = rho[0,0].real matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, PD0teo, label = r'$P_{teo}(D_{0})$') plt.plot(ph, PD0sim, 'o', label = r'$P_{sim}(D_{0})$') plt.plot(ph, PD0exp, '*', label = r'$P_{exp}(D_{0})$') plt.legend(); plt.xlabel(r'$\phi$'); plt.show() # gráfico para estado inicial |+> phmax = 2*math.pi; dph = phmax/20; ph = np.arange(0, phmax+dph, dph)#; ph d = ph.shape[0]; PD0teo = np.zeros(d); PD0sim = np.zeros(d); PD0exp = np.zeros(d) for j in range(0, d): c0 = 1/math.sqrt(2); c1 = c0; PD0teo[j] = (abs(c0)**2*(1+math.cos(ph[j])) + abs(c1)**2*(1-math.cos(ph[j]))\ - 2*((c0*np.conjugate(c1)).real)*math.sin(ph[j]))/2 qr = QuantumRegister(1); qc = QuantumCircuit(qr) qc_sp = state_prep(math.pi/2, 0); qc.append(qc_sp, [qr[0]]) # state preparation (estado |+>) qc_mzi = qc_mzi_sim(ph[j]); qc.append(qc_mzi, [qr[0]]) # apply sim phase damping qstc = state_tomography_circuits(qc, qr[0]) # circuit for state tomography job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0sim[j] = rho[0,0].real matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, PD0teo, label = r'$P_{teo}(D_{0})$') plt.plot(ph, PD0sim, 'o', label = r'$P_{sim}(D_{0})$') plt.legend(); plt.xlabel(r'$\phi$'); plt.show() phmax = 4*math.pi; dph = phmax/50; ph = np.arange(0, phmax+dph, dph); d = ph.shape[0] w = 1; pw1 = (1+(2*w-1)*np.cos(ph))/2; w = 0.25; pw025 = (1+(2*w-1)*np.cos(ph))/2 w = 0.5; pw05 = (1+(2*w-1)*np.cos(ph))/2; w = 0.75; pw075 = (1+(2*w-1)*np.cos(ph))/2 w = 0; pw0 = (1+(2*w-1)*np.cos(ph))/2 matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, pw1, label = r'$w=1$'); plt.plot(ph, pw075, label = r'$w=0.75$') plt.plot(ph, pw05, label = r'$w=0.5$'); plt.plot(ph, pw025, label = r'$w=0.25$') plt.plot(ph, pw0, label = r'$w=0$') plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left'); plt.xlabel(r'$\phi$'); plt.show() def shannon_num(pv): d = pv.shape[0]; SE = 0.0; j = -1 while (j < d-1): j = j + 1 if pv[j] > 10**-15 and pv[j] < (1.0-10**-15): SE -= pv[j]*math.log(pv[j], 2) return SE import scipy.linalg.lapack as lapak def von_neumann_num(rho): d = rho.shape[0]; b = lapak.zheevd(rho) return shannon_num(b[0]) def V(pd): return (np.max(pd)-np.min(pd))/(np.max(pd)+np.min(pd)) def pd_ph(w): phmax = 4*math.pi; dph = phmax/100; ph = np.arange(0, phmax+dph, dph) return (1+(2*w-1)*np.cos(ph))/2 def rhow(w): return np.array([[w,0],[0,1-w]]) w = np.arange(0, 1.05, 0.05); d = w.shape[0]; Vis = np.zeros(d); Svn = np.zeros(d) for j in range(0, d): pd = pd_ph(w[j]); Vis[j] = V(pd); rho = rhow(w[j]); Svn[j] = von_neumann_num(rho) matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(w, Vis, label = 'V'); plt.plot(w, Svn, label = r'$S_{vn}$') plt.xlabel(r'$w$'); plt.legend(); plt.show()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb Udfp = (1/sqrt(2))*Matrix([[1,1j,0,0],[1j,1,0,0],[0,0,1,1j],[0,0,1j,1]]); Udfp Udfp*conjugate(Udfp), conjugate(Udfp)*Udfp # ok! Udf = (1/sqrt(2))*Matrix([[1,1j],[1j,1]]); Udf X = Matrix([[0,1],[1,0]]); C_Udf = tp(proj(cb(2,0)),id(2)) + tp(proj(cb(2,1)),Udf) C_Udf, tp(X,id(2))*C_Udf*tp(X,id(2)), tp(X,id(2))*C_Udf*tp(X,id(2))*C_Udf, C_Udf*tp(X,id(2))*C_Udf*tp(X,id(2)) C_Udf*tp(X,id(2))*C_Udf*tp(X,id(2)) def P(al): return Matrix([[1,0],[0,cos(al)+1j*sin(al)]]) S = Matrix([[1,0],[0,1j]]); Sd = Matrix([[1,0],[0,-1j]]); H = (1/sqrt(2))*Matrix([[1,1],[1,-1]]) X = Matrix([[0,1],[1,0]]); Y = Matrix([[0,-1j],[1j,0]]); Z = Matrix([[1,0],[0,-1]]) def U(th,ph,lb): return Matrix([[cos(th/2),-(cos(lb)+1j*sin(lb))*sin(th/2)],[(cos(ph)+1j*sin(ph))*sin(th/2),cos(th/2)]]) th, ph, lb = symbols('theta phi lambda'); U(pi,-pi/2,pi/2)*S*X*H*X*S A = U(pi,-pi/2,pi/2)*S; B = H; C = S; A*B*C # = Udf^dagger != I a,b,c,d, x, y, z, w = symbols('a,b,c,d, x, y, z, w') A = Matrix([[a,b],[c,d]]); B = Matrix([[x,y],[z,w]]); A, B, A*B a = -1/sqrt(2); b = 1j/sqrt(2); c = b; d = a # para trocar o sinal dos elementos da diagonal principal solve([a*x+b*z+a, a*y+b*w-b, c*x+d*z-c, c*y+d*w+d], [x,y,z,w]) from qiskit import * from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor def state_prep(th, ph): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name = 'prep') qc.u(th, ph, 0, qr[0]) qc.u(th, ph, 0, qr[1]) return qc def qc_dfp(): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='DFP') '''qc.x(qr[1]) qc.cu(math.pi/2, math.pi/2, -math.pi/2, 0.0, qr[1], qr[0]) # Udf controlada qc.x(qr[1]) qc.cu(math.pi/2, math.pi/2, -math.pi/2, 0.0, qr[1], qr[0])''' qc.cu(math.pi, math.pi/2, -math.pi/2, 0.0, qr[0], qr[1]) return qc qc_dfp_ = qc_dfp(); qc_dfp_.draw() ###### Para ver a matriz unitário implementada por um certo circuito quântico ########## backend = Aer.get_backend('unitary_simulator'); qc_dfp_ = qc_dfp(); job = execute(qc_dfp_, backend) result = job.result(); print(result.get_unitary(qc_dfp_, decimals=3)) # agora tá certo, mas ao contrário em relação aos qubits... qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='DFP') #qc.cx(qr[0],qr[1]) # Sai a matrix para C21 qc.cx(qr[1],qr[0]) # Sai a matrix para C12 job = execute(qc, backend); result = job.result(); print(result.get_unitary(qc, decimals=3)) qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='DFP') qc.h(qr[0]) #qc.cx(qr[0], qr[1]) # sai o estado certo, |00>+|11> qc.cx(qr[1], qr[0]) # sai |+0> qstc = state_tomography_circuits(qc, [qr[0],qr[1]]) job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') rho # Verificação da Udf controlada qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='DFP') qc.x(qr[1]) qc.cu(math.pi/2, math.pi/2, -math.pi/2, 0.0, qr[1], qr[0]) # a sequência é target depois control qc.x(qr[1]) job = execute(qc, backend); result = job.result(); print(result.get_unitary(qc, decimals=3)) qc.draw() # Verificação da Udf controlada qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='DFP') qc.cx(qr[1], qr[0]) # a sequência é target depois control job = execute(qc, backend); result = job.result(); print(result.get_unitary(qc, decimals=3)) def qc_mzi_dfp(ph): # quantum circuit for the Mach-Zehnder interferometer com DFP qr = QuantumRegister(2); qc = QuantumCircuit(qr) state_prep_ = state_prep(0, 0); qc.append(state_prep_, [qr[0],qr[1]]) # estado prep qc_dfp_ = qc_dfp(); qc.append(qc_dfp_, [qr[0],qr[1]]) # DFP qc.z(qr[1]); qc.y(qr[1]) # espelho qc.p(ph, qr[1]); # fase qc.s(qr[1]); qc.h(qr[1]); qc.s(qr[1]) # DF return qc qcmzi = qc_mzi_dfp(math.pi/8); qcmzi.draw() phmax = 2*math.pi; dph = phmax/20; ph = np.arange(0, phmax+dph, dph)#; ph d = ph.shape[0]; PD0teo = np.zeros(d); PD0sim = np.zeros(d); PD0exp = np.zeros(d) for j in range(0, d): PD0teo[j] = 1/2 # theoretical qr = QuantumRegister(2); qc = QuantumCircuit(qr) state_prep_ = state_prep(0, 0); qc.append(state_prep_, [qr[0],qr[1]]) # state preparation (estado |00>) qc_mzi_dfp_ = qc_mzi_dfp(ph[j]); qc.append(qc_mzi_dfp_, [qr[0],qr[1]]) # apply sim mzip qstc = state_tomography_circuits(qc, qr[1]) # circuit for state tomography job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0sim[j] = rho[0,0].real #print(rho[0,0].real) # 1º fiz as simulações, só depois adicionei o código para os experimentos '''job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0exp[j] = rho[0,0].real''' matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, PD0teo, label = r'$P_{teo}(D_{0})$') plt.plot(ph, PD0sim, 'o', label = r'$P_{sim}(D_{0})$') #plt.plot(ph, PD0exp, '*', label = r'$P_{exp}(D_{0})$') plt.legend(); plt.xlabel(r'$\phi$'); plt.ylim(-0.02,1.02); plt.show() def state_prep_psip(): qr = QuantumRegister(3); qc = QuantumCircuit(qr, name = 'prep') qc.h(qr[0]); qc.cx(qr[0],qr[1]); qc.x(qr[1]) # prepara psi+_01 return qc state_prep_psip_ = state_prep_psip(); state_prep_psip_.draw() def qc_dfp(): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='DFP') qc.cu(math.pi, math.pi/2, -math.pi/2, 0.0, qr[0], qr[1]) return qc qc_dfp_ = qc_dfp(); qc_dfp_.draw() def qc_df(): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name='DF') qc.s(qr[0]); qc.h(qr[0]); qc.s(qr[0]) return qc qc_df_ = qc_df(); qc_df_.draw() def qc_pmo(): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='PMO') qc.cx(qr[1],qr[0]) return qc qc_pmo_ = qc_pmo(); qc_pmo_.draw() def qc_pqo(): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name='PQO') qc.h(qr[0]); qc.s(qr[0]) return qc qc_pqo_ = qc_pqo(); qc_pqo_.draw() def qc_apagador(ph): qr = QuantumRegister(3); qc = QuantumCircuit(qr) state_prep_psip_ = state_prep_psip(); qc.append(state_prep_psip_, [qr[0],qr[1],qr[2]]) qc_dfp_ = qc_dfp(); qc.append(qc_dfp_, [qr[1],qr[2]]) # DFP qc_pmo_ = qc_pmo(); qc.append(qc_pmo_, [qr[1],qr[2]]) # PMO qc_pqo_ = qc_pqo(); qc.append(qc_pqo_, [qr[0]]) qc.z(qr[2]); qc.y(qr[2]) # espelho qc.p(ph, qr[2]); # fase qc_df_ = qc_df(); qc.append(qc_df_, [qr[2]]) # DF return qc qc_apagador_ = qc_apagador(math.pi/3); qc_apagador_.draw() phmax = 2*math.pi; dph = phmax/20; ph = np.arange(0, phmax+dph, dph)#; ph d = ph.shape[0]; PD0teo = np.zeros(d); PD0sim = np.zeros(d); PD0exp = np.zeros(d) for j in range(0, d): PD0teo[j] = (2+math.cos(ph[j])+math.sin(ph[j]))/4 # theoretical qr = QuantumRegister(3); qc = QuantumCircuit(qr) qc_apagador_ = qc_apagador(ph[j]); qc.append(qc_apagador_, [qr[0],qr[1],qr[2]]) # apagador q qstc = state_tomography_circuits(qc, qr[2]) # circuit for state tomography job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0sim[j] = rho[0,0].real #print(rho[0,0].real) # 1º fiz as simulações, só depois adicionei o código para os experimentos '''job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0exp[j] = rho[0,0].real''' matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, PD0teo, label = r'$P_{teo}(D_{0})$') plt.plot(ph, PD0sim, 'o', label = r'$P_{sim}(D_{0})$') #plt.plot(ph, PD0exp, '*', label = r'$P_{exp}(D_{0})$') plt.legend(); plt.xlabel(r'$\phi$'); plt.ylim(-0.02,1.02); plt.show() H = (1/sqrt(2))*Matrix([[1,1],[1,-1]]); S = Matrix([[1,0],[0,1j]]); X = Matrix([[0,1],[1,0]]) def U(th, ph, lb): return Matrix([[cos(th/2),-(cos(lb)+1j*sin(lb))*sin(th/2)], [(cos(ph)+1j*sin(ph))*sin(th/2),(cos(ph+lb)+1j*sin(ph+lb))*cos(th/2)]]) def dfp(): return tp(proj(cb(2,0)), id(2)) + tp(proj(cb(2,1)), U(math.pi, math.pi/2, -math.pi/2)) def pmo(): return tp(id(2), proj(cb(2,0))) + tp(X, proj(cb(2,1))) th, ph, lb = symbols('theta phi lambda');# U(th, ph, lb) psi0 = tp(tp(cb(2,0),cb(2,0)),cb(2,0))#; psi0 dfp_ = dfp(); psi1 = tp(id(2), dfp_)*psi0; psi1 pmo_ = pmo(); psi2 = tp(id(2), pmo_)*psi1; psi2
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb import qiskit from qiskit import * from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor def state_prep_psip(): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name = 'sprep') qc.h(qr[0]); qc.cx(qr[0],qr[1]); qc.x(qr[1]) # prepara psi+_01 return qc state_prep_psip_ = state_prep_psip(); state_prep_psip_.draw(output = 'mpl') def qc_dfp(): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='DFP') qc.cz(qr[0],qr[1]); qc.cy(qr[0], qr[1]) return qc qc_dfp_ = qc_dfp(); qc_dfp_.draw(output = 'mpl') def qc_df(): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name='DF') qc.s(qr[0]); qc.h(qr[0]); qc.s(qr[0]) return qc qc_df_ = qc_df(); qc_df_.draw(output = 'mpl') def qc_pmo(): qr = QuantumRegister(2); qc = QuantumCircuit(qr, name='PMO') qc.cx(qr[1],qr[0]) return qc qc_pmo_ = qc_pmo(); qc_pmo_.draw(output = 'mpl') def qc_pqo(): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name='PQO') qc.h(qr[0]); qc.s(qr[0]) return qc qc_pqo_ = qc_pqo(); qc_pqo_.draw(output = 'mpl') def qc_espelho(): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name='espelho') qc.z(qr[0]); qc.y(qr[0]) return qc qc_espelho_ = qc_espelho(); qc_espelho_.draw(output = 'mpl') import math def qc_fase(ph): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name='fase') qc.p(ph, qr[0]) return qc qc_fase_ = qc_fase(math.pi); qc_fase_.draw(output = 'mpl') def qc_apagador(ph): qr = QuantumRegister(3); qc = QuantumCircuit(qr, name = 'apagador') state_prep_psip_ = state_prep_psip(); qc.append(state_prep_psip_, [qr[0],qr[1]]) # sprep qc.barrier() qc_dfp_ = qc_dfp(); qc.append(qc_dfp_, [qr[1],qr[2]]) # DFP qc_pmo_ = qc_pmo(); qc.append(qc_pmo_, [qr[1],qr[2]]) # PMO qc_pqo_ = qc_pqo(); qc.append(qc_pqo_, [qr[0]]) # PQO qc_espelho_ = qc_espelho(); qc.append(qc_espelho_, [qr[2]]) # espelho qc_fase_ = qc_fase(ph); qc.append(qc_fase_, [qr[2]]) # fase qc_df_ = qc_df(); qc.append(qc_df_, [qr[2]]) # DF return qc qc_apagador_ = qc_apagador(math.pi/3) qc_apagador_.draw(output = 'mpl') qc_apagador_.decompose().draw(output = 'mpl') import numpy as np from numpy import random phmax = 2*math.pi; dph = phmax/20; ph = np.arange(0, phmax+dph, dph)#; ph d = ph.shape[0]; PD0teo = np.zeros(d); PD0sim = np.zeros(d); PD0exp = np.zeros(d) ri = random.randint(0,d) for j in range(0, d): PD0teo[j] = 1/2 # theoretical qr = QuantumRegister(3); qc = QuantumCircuit(qr) qc_apagador_ = qc_apagador(ph[j]); qc.append(qc_apagador_, [qr[0],qr[1],qr[2]]) # apagador q qstc = state_tomography_circuits(qc, qr[2]) # circuit for state tomography job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0sim[j] = rho[0,0].real #if j == ri: # print(rho) # 1º fiz as simulações, só depois adicionei o código para os experimentos '''job = qiskit.execute(qstc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0exp[j] = rho[0,0].real''' import matplotlib from matplotlib import pyplot as plt matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, PD0teo, label = r'$P_{teo}(D_{0})$') plt.plot(ph, PD0sim, 'o', label = r'$P_{sim}(D_{0})$') #plt.plot(ph, PD0exp, '*', label = r'$P_{exp}(D_{0})$') plt.legend(); plt.xlabel(r'$\phi$'); plt.ylim(-0.02,1.02); plt.title('IMZ com info de caminho'); plt.show() # Nesse caso, não foram feitas medidas projetivas para obtenção de informação de caminho qr = QuantumRegister(1); cr = ClassicalRegister(1); qc = QuantumCircuit(qr,cr) qc.h(qr[0]); qc.measure(qr[0],cr[0]) job = qiskit.execute(qc, Aer.get_backend('qasm_simulator'), shots=10) res = job.result().get_counts() if '0' in res: print('z = 0, ', res, ', ', res['0']) elif '1' in res: print('z = 1, ', res, ', ', res['1']) qc.draw(output = 'mpl') for j in range(0,1): qr = QuantumRegister(2); cr = ClassicalRegister(2); qc = QuantumCircuit(qr,cr) qc.h(qr[0]); qc.measure(qr[0],cr[0]) qc.h(qr[1]); qc.measure(qr[1],cr[1]) job = qiskit.execute(qc, Aer.get_backend('qasm_simulator'), shots=10) res = job.result().get_counts() print(res) if '00' in res: P00 = 1; print('P00',P00) elif '01' in res: P01 = 1; print('P01',P01) qc.draw(output = 'mpl') # O apagador quântico mesmo, com as medidas def apagadorM(ph): qr = QuantumRegister(3); cr = ClassicalRegister(2); qc = QuantumCircuit(qr, cr) qc_apagador_ = qc_apagador(ph); qc.append(qc_apagador_, [qr[0],qr[1],qr[2]]) qc.measure(qr[0],cr[0]) # medida da polarização de A qc.measure(qr[2],cr[1]) # medida do caminho de B return qc apagadorM_ = apagadorM(math.pi/8); apagadorM_.draw(output = 'mpl') qc = apagadorM(math.pi/8) job = qiskit.execute(qc, Aer.get_backend('qasm_simulator'), shots=1) res = job.result().get_counts(); print(res) nshots = 1000 phmax = 2*math.pi; dph = phmax/20; ph = np.arange(0, phmax+dph, dph); d = ph.shape[0] PD0teo0 = np.zeros(d); PD0sim0 = np.zeros(d); PD0exp0 = np.zeros(d) PD0teo1 = np.zeros(d); PD0sim1 = np.zeros(d); PD0exp1 = np.zeros(d) for j in range(0, d): PD0teo0[j] = (1 + math.cos(ph[j]))/2; PD0teo1[j] = (1 - math.cos(ph[j]))/2 qc = apagadorM(ph[j]) N0 = 0; N1 = 0; N0e = 0; N1e = 0 for k in range(0, nshots): # não usar esse loop job = qiskit.execute(qc, Aer.get_backend('qasm_simulator'), shots=1) res = job.result().get_counts()#; print(res) if '00' in res or '10' in res: N0 += 1 elif '01' in res or '11' in res: N1 += 1 if '00' in res: PD0sim0[j] += 1 elif '01' in res: PD0sim1[j] += 1 '''job = qiskit.execute(qc, Aer.get_backend(device), shots=1) res = job.result().get_counts() if '00' in res or '10' in res: N0e += 1 elif '01' in res or '11' in res: N1e += 1 if '00' in res: PD0exp0[j] += 1 elif '01' in res: PD0exp1[j] += 1''' PD0sim0 = PD0sim0/N0; PD0sim1 = PD0sim1/N1 #PD0exp0 = PD0exp0/N0e; PD0exp1 = PD0exp1/N1e # sem o loop em k matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (5,3.3), dpi = 100) plt.plot(ph, PD0teo0, '-', label = r'$P_{teo}(0,0)$') plt.plot(ph, PD0teo1, '-.', label = r'$P_{teo}(1,0)$') plt.plot(ph, PD0sim0, 'o', label = r'$2P_{sim}(0,0)$') plt.plot(ph, PD0sim1, '*', label = r'$2P_{sim}(1,0)$') #plt.plot(ph, PD0exp0, '+', label = r'$2P_{exp}(0,0)$') #plt.plot(ph, PD0exp1, 'd', label = r'$2P_{exp}(1,0)$') plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.xlabel(r'$\phi$'); plt.ylim(-0.05,1.05); plt.title('IMZ com apagador de info de caminho'); plt.show() def qc_MBB(): qr = QuantumRegister(2); qc = QuantumCircuit(qr) qc.h(qr[0]); qc.cx(qr[0],qr[1]) return qc qc_MBB_ = qc_MBB(); qc_MBB_.draw(output = 'mpl') def qc_apagadorE(ph): qr = QuantumRegister(3); qc = QuantumCircuit(qr, name = 'apagador') state_prep_psip_ = state_prep_psip(); qc.append(state_prep_psip_, [qr[0],qr[1]]) # sprep qc_dfp_ = qc_dfp(); qc.append(qc_dfp_, [qr[1],qr[2]]) # DFP qc_pmo_ = qc_pmo(); qc.append(qc_pmo_, [qr[1],qr[2]]) # PMO qc_pqo_ = qc_pqo(); qc.append(qc_pqo_, [qr[0]]) # PQO qc_espelho_ = qc_espelho(); qc.append(qc_espelho_, [qr[2]]) # espelho qc_fase_ = qc_fase(ph); qc.append(qc_fase_, [qr[2]]) # fase qc_df_ = qc_df(); qc.append(qc_df_, [qr[2]]) # DF return qc qc_apagador_ = qc_apagador(math.pi/3); qc_apagador_.draw(output = 'mpl')
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb N = 2**10; th = asin(1/sqrt(N)); N, float(th), float(sin(th)), float(th*180/pi), sqrt(N) my_list = [1,3,5,2,4,9,5,8,0,7,6] def my_oracle(my_input): solution = 2 if my_input == solution: response = True else: response = False return response my_input = 7; res = my_oracle(my_input); print(res) for j in range(0,len(my_list)): if my_oracle(my_list[j]) == True: print('Solução encontrada no índice',j, ', após ', j+1, ' consultas ao oráculo.') from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram def qc_Uz(n): # 2|0><0| - I qc = QuantumCircuit(n, name = 'Uz') qrl = [] for j in range(0, n): qrl.append(j) qc.z(0); qc.x(0); qc.z(0); qc.x(0) qc.x(qrl) # 00...0 -> 11...1 qc.h(n-1); qc.mcx(qrl[0:n-1],n-1); qc.h(n-1) # Cz multicontrolada. Multiplica 11...1 por -1 qc.x(qrl); # 11...1 -> 00...0 return qc qc_Uz_ = qc_Uz(3); qc_Uz_.draw() def qc_Uh(n): # 2|h><h| - I qc = QuantumCircuit(n, name = 'Uh') qrl = [] for j in range(0, n): qrl.append(j) qc.h(qrl) # transforma Uz em Uh qc_Uz_ = qc_Uz(n); qc.append(qc_Uz_, qrl) qc.h(qrl) return qc qc_Uh_ = qc_Uh(3); qc_Uh_.draw() def qc_oracle(n): # Nielsen & Chuang, Box 6.1 (N=4) qc = QuantumCircuit(n+1, name = 'Oracle') qc.ccx(0,1,2) # para a solução sendo o estado |11> return qc qc_oracle_ = qc_oracle(2) qc_oracle_.draw('mpl') def qc_grover_iteration(n): qc = QuantumCircuit(n+1, name = 'G') qrl = [] for j in range(0, n+1): qrl.append(j) qc_oracle_ = qc_oracle(n) qc.append(qc_oracle_, qrl) qc_Uh_ = qc_Uh(n); qc.append(qc_Uh_, qrl[0:n]) return qc qc_grover_iteration_ = qc_grover_iteration(2) qc_grover_iteration_.draw('mpl') def qc_hadamard_state(n): # aplica a Hadamard em n qubits qc = QuantumCircuit(n, name = 'H state') # começarei a não usar mais os qr[j] qrl = [] # lista de registros quânticos for j in range(0, n): qrl.append(j) qc.h(qrl) # aplica a hadamard em toda a lista de registros quânticos return qc qc_hadamard_state_ = qc_hadamard_state(3); qc_hadamard_state_.draw() def qc_grover_search(n): qc = QuantumCircuit(n+1, n) qc.x(n) qrl = [] # lista de registros quânticos for j in range(0, n+1): qrl.append(j) qc_hadamard_state_ = qc_hadamard_state(n+1); qc.append(qc_hadamard_state_, qrl) for j in range(0, int((math.pi*math.sqrt(2**n))/4 - 1/2)): qc_grover_iteration_ = qc_grover_iteration(n); qc.append(qc_grover_iteration_, qrl) qc.measure(qrl[0:n], qrl[0:n]) return qc qc_grover_search_ = qc_grover_search(2); qc_grover_search_.draw() qc_grover_search_ = qc_grover_search(2) result = execute(qc_grover_search_, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc_grover_search_)) job = execute(qc_grover_search_, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc_grover_search_))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (5,3), dpi = 100) p = np.arange(0,1.01,0.01) plt.plot(p, p, label = r'$p$'); plt.plot(p, 3*p**2-2*p**3, label = r'$p_{e}$') plt.xlim(0,1); plt.ylim(-0.01,1.01); plt.legend(); plt.xlabel('p'); plt.show() from qiskit import * def qc_coding_bf(th, ph): qc = QuantumCircuit(3, name = 'Coding BF') qc.u(th, ph, 0, 0) qc.barrier() qc.cx(0,1); qc.cx(1,2) return qc qc_coding_bf_ = qc_coding_bf(math.pi, math.pi/4); qc_coding_bf_.draw(output = 'mpl') qc = QuantumCircuit(3, 1); qc.cx([0], [2]); qc.cx([1], [2]); qc.measure([2], 0); qc.draw(output = 'mpl') qc = QuantumCircuit(5, 2); qc.u(0.1, 0.2, 0.2, [0]); qc.cx([0], [1]); qc.cx([1], [2]); qc.barrier() qc.cx([0], [3]); qc.cx([1], [3]); qc.cx([1], [4]); qc.cx([2], [4]); qc.barrier(); qc.measure([3, 4], [0, 1]) qc.draw(output = 'mpl') def qc_ec_bf(th, ph, lb, j): qc = QuantumCircuit(5, name = 'EC_BF') qc.u(th, ph, lb, [0]) # qubit state preparation qc.barrier() qc.cx([0], [1]); qc.cx([1], [2]) # encoding qc.barrier() if j == 0 or j == 1 or j == 2: # error qc.x([j]) qc.barrier() qc.cx([0], [3]); qc.cx([1], [3]); qc.cx([1], [4]); qc.cx([2], [4]) # syndrome detection qc.barrier() qc.x([3]); qc.ccx([4], [3], [2]); qc.x([3]); qc.ccx([4], [3], [1]) # correction qc.x([4]); qc.ccx([4], [3], [0]); qc.x([4]) # correction qc.barrier() return qc th, ph, lb = math.pi, 0.0, 0.0; j = 2; qc_ec_bf_ = qc_ec_bf(th, ph, lb, j) qc_ec_bf_.draw(output = 'mpl') from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() #provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #device = provider.get_backend('ibmq_jakarta') provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(5, 3); j = 0 # sets the error qc_ec_bf_ = qc_ec_bf(math.pi/2, 0.0, 0.0, j); qc.append(qc_ec_bf_, [0, 1, 2, 3, 4]) qc.measure([0, 1, 2], [0, 1, 2]) qc.decompose().draw(output = 'mpl') job_sim = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(job_sim.get_counts(qc)) job_exp = execute(qc, backend = device, shots = nshots) print(job_exp.job_id()); job_monitor(job_exp) plot_histogram(job_exp.result().get_counts(qc)) qc = QuantumCircuit(2, 1) qc.u(1,2,3, [1]) qc.barrier() qc.h([0]); qc.cz(0, 1); qc.h([0]); qc.measure(0,0); qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1); qc.u(1,2,3, 1); qc.barrier() qc.cx(1,0); qc.measure(0,0); qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1); qc.u(1,2,3, 1) qc.barrier() qc.h(0); qc.cx(0,1); qc.h(0); qc.measure(0,0); qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1); qc.u(1,2,3, [1]); qc.barrier() qc.h(1); qc.cx(1,0); qc.h(1); qc.measure(0,0); qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1); qc.u(0.1, 0.2, 0.3, [1]) qc.barrier() qc.h(0); qc.cu(0.4, 0.5, 0.6, 0.0, [0], [1]); qc.h([0]); qc.measure([0], [0]) qc.draw(output = 'mpl') qc = QuantumCircuit(2, 1) th, ph, lb = math.pi, 0.0, 0.0; qc.u(th, ph, lb, [0]) # state preparation qc.barrier(); qc.cx([0], [1]); qc.barrier() qc.x([0]); qc.barrier() qc.cx([0], [1]); qc.cx([1], [0]) qc.measure([0], [0]) qc.draw(output = 'mpl') job = execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) job = execute(qc, backend = device, shots = nshots); job_monitor(job) plot_histogram(job.result().get_counts(qc)) # quantum circuit for bit flip error mitigation def qc_em_bf(): qc = QuantumCircuit(2, name = 'EM_BF') qc.cx([0], [1]); qc.cx([0], [1]); qc.cx([1], [0]); qc.reset([1]) return qc qc_em_bf_ = qc_em_bf(); qc_em_bf_.draw(output = 'mpl') N = 5; qc = QuantumCircuit(1, N); qc.x([0]); for j in range(0, N): qc.id([0]); qc.measure([0],[j]) job = execute(qc, backend = simulator, shots = nshots) qc.draw(output = 'mpl') plot_histogram(job.result().get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) N = 5; qc = QuantumCircuit(2, N); qc.x([0]); for j in range(0, N): qc_em_bf_ = qc_em_bf(); qc.append(qc_em_bf_, [0, 1]); qc.measure([0],[j]) job = execute(qc, backend = simulator, shots = nshots) qc.decompose().draw(output = 'mpl') plot_histogram(job.result().get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) import math qc = QuantumCircuit(2, 1) th, ph, lb = math.pi, 0.0, 0.0; qc.u(th, ph, lb, [0]) # state preparation qc.barrier(); qc.cx([0], [1]); qc.barrier() qc.z([0]); qc.x([0]); qc.h([0]); qc.barrier() qc.cx([0], [1]); qc.cx([1], [0]); qc.measure([0], [0]) qc.draw(output = 'mpl')
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * thc, phc, lbc = math.pi/2, 0, 0; tha, pha, lba = math.pi/2, math.pi/4, math.pi/8 qc = QuantumCircuit(2, 1); qc.u(thc, phc, lbc, 0); qc.u(tha, pha, lba, 1) qc.cx(0, 1); qc.measure(0, 0); qc.draw()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb simplify(cos(pi/8)), simplify(sin(pi/8)) from qiskit.visualization import plot_bloch_vector th, ph = pi/4, 0 #plot_bloch_vector([[math.sin(th)*math.cos(ph), math.sin(th)*math.sin(ph), math.cos(th)]]) float(1+1/sqrt(2))/2 X = Matrix([[0,1],[1,0]]); Z = Matrix([[1,0],[0,-1]]); O = (X+Z)/sqrt(2); O.eigenvects() from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(1, 1) qc.h(0) # preparação do estado qc.barrier() # medida de O=H th = math.pi/4; ph = 0; lb = math.pi - ph; qc.u(th, ph, lb, 0) qc.measure(0, 0) qc.draw() result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) def qc_bb_cb(): qc = QuantumCircuit(2, name = 'BB->CB') qc.cx(0,1); qc.h(0)#; qc.measure([0,1],[0,1]) return qc qc_bb_cb_ = qc_bb_cb(); qc_bb_cb_.draw() qc = QuantumCircuit(2, 2) qc.x(1); qc.h([0,1]) # preparação do estado |+-> qc.barrier() qc_bb_cb_ = qc_bb_cb(); qc.append(qc_bb_cb_, [0,1]); qc.measure([0,1],[0,1]) qc.draw() result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * def Hxxx(): H = tp(tp(pauli(1),pauli(1)),id(2)) + tp(id(2),tp(pauli(1),pauli(1)))\ + tp(tp(pauli(2),pauli(2)),id(2)) + tp(id(2),tp(pauli(2),pauli(2)))\ + tp(tp(pauli(3),pauli(3)),id(2)) + tp(id(2),tp(pauli(3),pauli(3))) return H H = Hxxx(); H #eig #eig = H.eigenvects(); eig[0], eig[0][0], eig[0][2][0] def mat_exp(A): d = A.shape[0]; eig = A.eigenvects(); Aexp = zeros(d,d); ne = 0; j = 0; lk = 0 while ne < d: mult = eig[j][1]; ne += mult for k in range(0,mult): Proj = proj(eig[j][2][k]); Aexp += exp(eig[j][0])*(Proj/trace(Proj)) j += 1 return Aexp simplify(mat_exp(pauli(1))) def UHxxx(t): H = Hxxx() return mat_exp(-1j*t*H) U = UHxxx(0); U psi0 = tp(tp(cb(2,1),cb(2,1)),cb(2,0)); #psi0 dt = 0.05; t = np.arange(0, 2*pi+dt, dt); d = len(t); F = np.zeros(d); psit = psi0 for j in range(0, d): U = UHxxx(t[j]); psit = U*psi0 ip = inner_product(psi0, psit); F[j] = ip*conjugate(ip) #print(t[j], F[j]) plt.figure(figsize = (6,4), dpi = 100) plt.plot(t, F); plt.xlabel(r'$t$'); plt.ylabel(r'$F$'); plt.grid(); plt.show() t = symbols('t'); U = UHxxx(t); psit = U*psi0; simplify(psit) tp(tp(cb(2,0),cb(2,0)), cb(2,0)).T, tp(tp(cb(2,0),cb(2,0)), cb(2,1)).T, tp(tp(cb(2,0),cb(2,1)), cb(2,0)).T,\ tp(tp(cb(2,1),cb(2,0)), cb(2,0)).T, tp(tp(cb(2,0),cb(2,1)), cb(2,1)).T, tp(tp(cb(2,1),cb(2,0)), cb(2,1)).T,\ tp(tp(cb(2,1),cb(2,1)), cb(2,0)).T, tp(tp(cb(2,1),cb(2,1)), cb(2,1)).T 1/3, 1/6 H12 = tp(tp(pauli(1),pauli(1)),id(2)) + tp(tp(pauli(2),pauli(2)),id(2)) + tp(tp(pauli(3),pauli(3)),id(2)) H23 = tp(id(2),tp(pauli(1),pauli(1))) + tp(id(2),tp(pauli(2),pauli(2))) + tp(id(2),tp(pauli(3),pauli(3))) dH = comm(H12,H23); dH, dH.norm() H1 = tp(tp(pauli(1),pauli(1)),id(2)) + tp(id(2),tp(pauli(1),pauli(1))) + tp(id(2),tp(pauli(3),pauli(3))) H2 = tp(tp(pauli(2),pauli(2)),id(2)) + tp(id(2),tp(pauli(2),pauli(2))) + tp(tp(pauli(3),pauli(3)),id(2)) dH = comm(H1,H2); dH, dH.norm() comm(tp(pauli(1),pauli(1)),tp(pauli(2),pauli(2))) XX = tp(pauli(1), pauli(1)); YY = tp(pauli(2), pauli(2)); ZZ = tp(pauli(3), pauli(3)); XX, YY, ZZ XX.eigenvects(), YY.eigenvects()#, ZZ.eigenvects() def Hxxx12(): H = tp(pauli(1),pauli(1)) + tp(pauli(2),pauli(2)) + tp(pauli(3),pauli(3)) return tp(H,id(2)) def Hxxx23(): H = tp(pauli(1),pauli(1)) + tp(pauli(2),pauli(2)) + tp(pauli(3),pauli(3)) return tp(id(2),H) def UHxxx12(t): H = Hxxx12() return mat_exp(-1j*t*H) def UHxxx23(t): H = Hxxx23() return mat_exp(-1j*t*H) dt = 0.05; t = np.arange(0, 2*pi+dt, dt); d = len(t) F1 = np.zeros(d); F2 = np.zeros(d); F3 = np.zeros(d); F4 = np.zeros(d); F5 = np.zeros(d) psit1 = psi0; psit2 = psi0; psit3 = psi0; psit4 = psi0; psit5 = psi0 for j in range(0, d): U12 = UHxxx12(t[j]); U23 = UHxxx23(t[j]); U1 = U12*U23; psit1 = U1*psi0 ip = inner_product(psi0,psit1); F1[j] = ip*conjugate(ip) #U12 = UHxxx12(t[j]/2); U23 = UHxxx23(t[j]/2); U2 = U12*U23*U12*U23; psit2 = U2*psi0 #ip = inner_product(psi0,psit2); F2[j] = ip*conjugate(ip) #U12 = UHxxx12(t[j]/3); U23 = UHxxx23(t[j]/3); U3 = U12*U23*U12*U23*U12*U23; psit3 = U3*psi0 #ip = inner_product(psi0,psit3); F3[j] = ip*conjugate(ip) #U12 = UHxxx12(t[j]/4); U23 = UHxxx23(t[j]/4); U4 = U12*U23*U12*U23*U12*U23*U12*U23; psit4 = U4*psi0 #ip = inner_product(psi0,psit4); F4[j] = ip*conjugate(ip) #U12 = UHxxx12(t[j]/5); U23 = UHxxx23(t[j]/5); U5 = U12*U23*U12*U23*U12*U23*U12*U23*U12*U23; psit5 = U5*psi0 #ip = inner_product(psi0,psit5); F5[j] = ip*conjugate(ip) plt.figure(figsize = (6,3), dpi = 100) plt.plot(t, F, '^', label = r'$F$'); plt.plot(t, F1, '--', label = r'$F_{1}$') #plt.plot(t, F2, '-.', label = r'$F_{2}$'); plt.plot(t, F3, ':', label = r'$F_{3}$') #plt.plot(t, F4, '.', label = r'$F_{4}$'); plt.plot(t, F5, '*', label = r'$F_{5}$') plt.xlabel(r'$t$'); plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.grid(); plt.show() # esse cálculo "simbólico" demora muito. Melhor usar o numpy! # matrizes de Pauli I = np.array([[1,0],[0,1]]); #print(I) X = np.array([[0,1],[1,0]]); #print(X) Y = np.array([[0,-1j],[1j,0]]);# print(Y) Z = np.array([[1,0],[0,-1]]); #print(Z) def Hxxx_num(): H = np.kron(np.kron(X,X),I) + np.kron(I,np.kron(X,X))\ + np.kron(np.kron(Y,Y),I) + np.kron(I,np.kron(Y,Y))\ + np.kron(np.kron(Z,Z),I) + np.kron(I,np.kron(Z,Z)) return H H = Hxxx_num(); print(H.real) # para calcular a função de matriz (teve problemas de pequenas oscilações) def proj_num(psi): #return np.outer(psi, np.ndarray.conjugate(psi)) d = len(psi); proj = np.zeros((d, d), dtype = complex) for j in range(0, d): for k in range(0, d): proj[j,k] = psi[j]*np.conj(psi[k]) return proj proj_num(np.array([[1],[1j]])) import cmath #from math import e # para calcular a função de matriz (teve problemas de pequenas oscilações) def mat_exp_num(A): d = A.shape[0]; Aexp = np.zeros((d,d), dtype = complex); eva, eve = np.linalg.eig(A); # eva, eve = scipy.linalg.eig(A) for j in range(0, d): Aexp += cmath.exp(eva[j])*proj_num(eve[:,j]) #Aexp += e**(eva[j])*proj_num(eve[:,j]) return Aexp mat_exp_num(Y) def UHxxx_num(t): H = Hxxx_num() #return mat_exp_num(-1j*t*H) return scipy.linalg.expm(-1j*t*H) # resolveu o problema das pequenas flutuações U = UHxxx_num(0*math.pi); U.real def ip_num(a, b): d = len(a); ip = 0 for j in range(0, d): ip += np.conj(a[j])*b[j] return ip a = np.array([[1],[1j]]); b = np.array([[1],[1j]]); ip_num(a, b) ket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); #ket0, ket1 dt = 0.05; t = np.arange(0, math.pi+dt, dt); d = len(t); F = np.zeros(d); psit = np.zeros(d, dtype = complex) psi0_ = np.zeros(d, dtype = complex); psi0_ = np.kron(ket1, np.kron(ket1, ket0)); #psi0 for j in range(0, d): U = UHxxx_num(t[j]); psit = np.dot(U, psi0_) #ip = ip_num(psi0_, psit); F[j] = np.abs(ip)**2 F[j] = qiskit.quantum_info.state_fidelity(psi0_, psit) plt.figure(figsize = (6,4), dpi = 100) plt.plot(t, F); plt.xlabel(r'$t$'); plt.ylabel(r'$F$'); plt.grid(); plt.show() H2 = np.kron(X, X) + np.kron(Y, Y) + np.kron(Z, Z) def UHxxx12_num(t): H = np.kron(H2, I) return scipy.linalg.expm(-1j*t*H) def UHxxx23_num(t): H = np.kron(I, H2) return scipy.linalg.expm(-1j*t*H) dt = 0.05; t = np.arange(0, math.pi+dt, dt); d = len(t) #F = np.zeros(d); F1 = np.zeros(d); F2 = np.zeros(d); F3 = np.zeros(d); F4 = np.zeros(d); F5 = np.zeros(d) F6 = np.zeros(d); F7 = np.zeros(d); F8 = np.zeros(d); F9 = np.zeros(d); F10 = np.zeros(d); F11 = np.zeros(d) #psi0_ = np.zeros(d, dtype = complex); psi0_ = np.kron(ket1, np.kron(ket1, ket0)) for j in range(0, d): U12 = UHxxx12_num(t[j]); U23 = UHxxx23_num(t[j]) B = np.dot(U12, U23); U1 = np.linalg.matrix_power(B, 1); psit1 = np.dot(U1, psi0_) #ip = ip_num(psi0_, psit1); F1[j] = np.abs(ip)**2 F1[j] = qiskit.quantum_info.state_fidelity(psi0_, psit1) U12 = UHxxx12_num(t[j]/2); U23 = UHxxx23_num(t[j]/2) B = np.dot(U12, U23); U2 = np.linalg.matrix_power(B, 2); psit2 = np.dot(U2, psi0_) #ip = ip_num(psi0_, psit2); F2[j] = np.abs(ip)**2 F2[j] = qiskit.quantum_info.state_fidelity(psi0_, psit2) U12 = UHxxx12_num(t[j]/3); U23 = UHxxx23_num(t[j]/3) B = np.dot(U12, U23); U3 = np.linalg.matrix_power(B, 3); psit3 = np.dot(U3, psi0_) #ip = ip_num(psi0_, psit3); F3[j] = np.abs(ip)**2 F3[j] = qiskit.quantum_info.state_fidelity(psi0_, psit3) U12 = UHxxx12_num(t[j]/4); U23 = UHxxx23_num(t[j]/4) B = np.dot(U12, U23); U4 = np.linalg.matrix_power(B, 4); psit4 = np.dot(U4, psi0_) #ip = ip_num(psi0_, psit4); F4[j] = np.abs(ip)**2 F4[j] = qiskit.quantum_info.state_fidelity(psi0_, psit4) U12 = UHxxx12_num(t[j]/5); U23 = UHxxx23_num(t[j]/5) B = np.dot(U12, U23); U5 = np.linalg.matrix_power(B, 5); psit5 = np.dot(U5, psi0_) #ip = ip_num(psi0_, psit5); F5[j] = np.abs(ip)**2 F5[j] = qiskit.quantum_info.state_fidelity(psi0_, psit5) U12 = UHxxx12_num(t[j]/6); U23 = UHxxx23_num(t[j]/6) B = np.dot(U12, U23); U6 = np.linalg.matrix_power(B, 6); psit6 = np.dot(U6, psi0_) #ip = ip_num(psi0_, psit6); F6[j] = np.abs(ip)**2 F6[j] = qiskit.quantum_info.state_fidelity(psi0_, psit6) U12 = UHxxx12_num(t[j]/7); U23 = UHxxx23_num(t[j]/7) B = np.dot(U12, U23); U7 = np.linalg.matrix_power(B, 7); psit7 = np.dot(U7, psi0_) #ip = ip_num(psi0_, psit7); F7[j] = np.abs(ip)**2 F7[j] = qiskit.quantum_info.state_fidelity(psi0_, psit7) U12 = UHxxx12_num(t[j]/8); U23 = UHxxx23_num(t[j]/8) B = np.dot(U12, U23); U8 = np.linalg.matrix_power(B, 8); psit8 = np.dot(U8, psi0_) #ip = ip_num(psi0_, psit8); F8[j] = np.abs(ip)**2 F8[j] = qiskit.quantum_info.state_fidelity(psi0_, psit8) U12 = UHxxx12_num(t[j]/9); U23 = UHxxx23_num(t[j]/9) B = np.dot(U12, U23); U9 = np.linalg.matrix_power(B, 9); psit9 = np.dot(U9, psi0_) #ip = ip_num(psi0_, psit9); F9[j] = np.abs(ip)**2 F9[j] = qiskit.quantum_info.state_fidelity(psi0_, psit9) U12 = UHxxx12_num(t[j]/10); U23 = UHxxx23_num(t[j]/10) B = np.dot(U12, U23); U10 = np.linalg.matrix_power(B, 10); psit10 = np.dot(U10, psi0_) #ip = ip_num(psi0_, psit10); F10[j] = np.abs(ip)**2 F10[j] = qiskit.quantum_info.state_fidelity(psi0_, psit10) U12 = UHxxx12_num(t[j]/11); U23 = UHxxx23_num(t[j]/11) B = np.dot(U12, U23); U11 = np.linalg.matrix_power(B, 11); psit11 = np.dot(U11, psi0_) #ip = ip_num(psi0_, psit11); F11[j] = np.abs(ip)**2 F11[j] = qiskit.quantum_info.state_fidelity(psi0_, psit11) if j == d-1: print('F5 = ', F5[j], ', F6 = ', F6[j]) plt.figure(figsize = (8,5), dpi = 100) plt.plot(t, F, '^', label = r'$F$'); plt.plot(t, F1, '-.', label = r'$F_{1}$') plt.plot(t, F2, '', label = r'$F_{2}$'); plt.plot(t, F3, '-.', label = r'$F_{3}$') plt.plot(t, F4, '', label = r'$F_{4}$'); plt.plot(t, F5, '-.', label = r'$F_{5}$') plt.plot(t, F6, '', label = r'$F_{6}$'); plt.plot(t, F7, '-.', label = r'$F_{7}$') plt.plot(t, F8, '', label = r'$F_{8}$'); plt.plot(t, F9, '-.', label = r'$F_{9}$') plt.plot(t, F10, '*', label = r'$F_{10}$'); plt.plot(t, F11, 'o', label = r'$F_{11}$') plt.xlabel(r'$t$'); plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.grid(); plt.show() def qc_ezz(t): qc = QuantumCircuit(2, name = 'e^(-itZZ)') qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1) return qc qc_ezz_ = qc_ezz(math.pi); qc_ezz_.draw(output='mpl') def qc_exx(t): qc = QuantumCircuit(2, name = 'e^(-itXX)') qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]) #qc.h([0,1]); qc_ezz_ = qc_ezz(t); qc.append(qc_ezz_, [0, 1]); qc.h([0,1]) return qc qc_exx_ = qc_exx(math.pi); qc_exx_.draw(output='mpl') #qc_exx_.decompose().draw(output='mpl') def qc_eyy(t): qc = QuantumCircuit(2, name = 'e^(-itYY)') qc.sdg([0,1]); qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]); qc.s([0,1]) #qc.sdg([0,1]); qc_exx_ = qc_exx(t); qc.append(qc_exx_, [0, 1]); qc.s([0,1]) return qc qc_eyy_ = qc_eyy(math.pi); qc_eyy_.draw(output='mpl') #qc_eyy_.decompose().draw(output='mpl') def qc_Bj(t): qc = QuantumCircuit(3, name = 'B_j') qc_ezz_ = qc_ezz(t); qc_eyy_ = qc_eyy(t); qc_exx_ = qc_exx(t) qc.append(qc_ezz_, [1, 2]); qc.append(qc_eyy_, [1, 2]); qc.append(qc_exx_, [1, 2]) qc.append(qc_ezz_, [0, 1]); qc.append(qc_eyy_, [0, 1]); qc.append(qc_exx_, [0, 1]) return qc qc_Bj_ = qc_Bj(math.pi/2); qc_Bj_.draw(output='mpl') qc_Bj_.decompose().draw(output='mpl') def F_psi_rho_num(psi, rho): d = rho.shape[0]; F = 0 for j in range(0, d): for k in range(0, d): F += np.conj(psi[j])*rho[j,k]*psi[k] return F.real psi = [1/math.sqrt(2),1j/math.sqrt(2)]; rho = 0.5*np.array([[1,-1j],[1j,1]]) F = F_psi_rho_num(psi, rho); print(F) # ok! nshots = 8192 qiskit.IBMQ.load_account() #provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #device = provider.get_backend('ibmq_jakarta') provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor backend_overview() def qc_psi0(): qc = QuantumCircuit(3, name = 'psi0') qc.x([0,1]) return qc qc_psi0_ = qc_psi0(); qc_psi0_.draw(output = 'mpl') psi0_ = np.kron(ket1, np.kron(ket1, ket0)); psi0__ = np.kron(ket0, np.kron(ket1, ket1)) # para calcular a fidelidade com o estado da tomografia psi0_.T, psi0__.T nshots = 500 dt = 0.2; t = np.arange(0, math.pi+dt, dt); d = len(t) F_teo = np.zeros(d); F_sim = np.zeros(d); F_exp = np.zeros(d) for j in range(0, d):fidelity # teórico U12 = UHxxx12_num(t[j]/2); U23 = UHxxx23_num(t[j]/2) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, 2); psit = np.dot(U, psi0_) F_teo[j] = qiskit.quantum_info.state_fidelity(psi0_, psit) # circuito quântico qc = QuantumCircuit(3) qc_psi0_ = qc_psi0(); qc.append(qc_psi0_, [0, 1, 2]) qc_Bj_ = qc_Bj(t[j]/2); qc.append(qc_Bj_, [0, 1, 2]); qc.append(qc_Bj_, [0, 1, 2]) # 2 passos de Trotter qstc = state_tomography_circuits(qc, [0, 1, 2]) # simulação job = qiskit.execute(qstc, backend = simulator, shots = nshots) qstf = StateTomographyFitter(job.result(), qstc) rho = qstf.fit(method = 'lstsq') F_sim[j] = qiskit.quantum_info.state_fidelity(psi0__, rho) # experimento jobE = qiskit.execute(qstc, backend = device, shots = nshots) print(jobE.job_id()); job_monitor(jobE) qstfE = StateTomographyFitter(jobE.result(), qstc) rhoE = qstfE.fit(method = 'lstsq') F_exp[j] = qiskit.quantum_info.state_fidelity(psi0__, rhoE) qc.draw(output = 'mpl') plt.figure(figsize = (8,5), dpi = 100) plt.plot(t, F_teo, '-.', label = r'$F_{teo}$'); plt.plot(t, F_sim, '-.', label = r'$F_{sim}$') plt.plot(t, F_exp, '-.', label = r'$F_{exp}$') plt.xlabel(r'$t$'); plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.grid(); plt.show() device = provider.get_backend('ibmq_jakarta') jakarta_info = backend_monitor(device); print(jakarta_info) nshots = 500 t = math.pi for j in range(0, 7): # muda o No. de passos de Trotter # teórico U12 = UHxxx12_num(t/(j+1)); U23 = UHxxx23_num(t/(j+1)) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, j+1); psit = np.dot(U, psi0_) F_teo = qiskit.quantum_info.state_fidelity(psi0_, psit) # circuit q qc = QuantumCircuit(3) qc_psi0_ = qc_psi0(); qc.append(qc_psi0_, [0, 1, 2]) qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.append(qc_Bj_, [0, 1, 2]) qstc = state_tomography_circuits(qc, [0, 1, 2]) # simulação job = qiskit.execute(qstc, backend = simulator, shots = nshots) qstf = StateTomographyFitter(job.result(), qstc) rho = qstf.fit(method = 'lstsq') F_sim = qiskit.quantum_info.state_fidelity(psi0__, rho) # experimento jobE = qiskit.execute(qstc, backend = device, shots = nshots) print(jobE.job_id()); job_monitor(jobE) qstfE = StateTomographyFitter(jobE.result(), qstc) rhoE = qstfE.fit(method = 'lstsq') F_exp = qiskit.quantum_info.state_fidelity(psi0__, rhoE) print('No. passos=', j+1, ',F_teo=', F_teo, ',F_sim=', F_sim, ',F_exp=', F_exp) qc.draw(output = 'mpl') nshots = 500; Npt = 7 # Número de passos de Trotter ph = 2*math.pi # ângulo para a transformação de simetria t = math.pi for j in range(0, Npt): # muda o No. de passos de Trotter # teórico U12 = UHxxx12_num(t/(j+1)); U23 = UHxxx23_num(t/(j+1)) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, j+1); psit = np.dot(U, psi0_) F_teo = qiskit.quantum_info.state_fidelity(psi0_, psit) # circuit q qc = QuantumCircuit(3) qc_psi0_ = qc_psi0(); qc.append(qc_psi0_, [0, 1, 2]) # estado inicial qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.rz(ph/(j+1), [0, 1, 2]) # transformação de simetria qc.append(qc_Bj_, [0, 1, 2]) qc.rz(-ph, [0, 1, 2]) # revertendo a transformação de simetria if j == 1: qc.draw(output = 'mpl') qstc = state_tomography_circuits(qc, [0, 1, 2]) # simulação job = qiskit.execute(qstc, backend = simulator, shots = nshots) qstf = StateTomographyFitter(job.result(), qstc) rho = qstf.fit(method = 'lstsq') F_sim = qiskit.quantum_info.state_fidelity(psi0__, rho) # experimento jobE = qiskit.execute(qstc, backend = device, shots = nshots) print(jobE.job_id()); job_monitor(jobE) qstfE = StateTomographyFitter(jobE.result(), qstc) rhoE = qstfE.fit(method = 'lstsq') F_exp = qiskit.quantum_info.state_fidelity(psi0__, rhoE) print('No. passos=', j+1, ',F_teo=', F_teo, ',F_sim=', F_sim, ',F_exp=', F_exp) qc.draw(output = 'mpl') nshots = 1000; Npt = 7 # Número de passos de Trotter ph = 2*math.pi # ângulo para a transformação de simetria RZ th = math.pi # ângulo para a transformação de simetria RX t = math.pi for j in range(0, Npt): # muda o No. de passos de Trotter # teórico U12 = UHxxx12_num(t/(j+1)); U23 = UHxxx23_num(t/(j+1)) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, j+1); psit = np.dot(U, psi0_) F_teo = qiskit.quantum_info.state_fidelity(psi0_, psit) # circuit q qc = QuantumCircuit(3) qc_psi0_ = qc_psi0(); qc.append(qc_psi0_, [0, 1, 2]) # estado inicial qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.rx(th/(j+1), [0, 1, 2]) # transformação de simetria RX qc.rz(ph/(j+1), [0, 1, 2]) # transformação de simetria RZ qc.append(qc_Bj_, [0, 1, 2]) qc.rz(-ph, [0, 1, 2]) # revertendo a transformação de simetria RZ qc.rx(-th, [0, 1, 2]) # revertendo a transformação de simetria RX if j == 1: qc.draw(output = 'mpl') qstc = state_tomography_circuits(qc, [0, 1, 2]) # simulação job = qiskit.execute(qstc, backend = simulator, shots = nshots) qstf = StateTomographyFitter(job.result(), qstc) rho = qstf.fit(method = 'lstsq') F_sim = qiskit.quantum_info.state_fidelity(psi0__, rho) # experimento jobE = qiskit.execute(qstc, backend = device, shots = nshots) print(jobE.job_id()); job_monitor(jobE) qstfE = StateTomographyFitter(jobE.result(), qstc) rhoE = qstfE.fit(method = 'lstsq') F_exp = qiskit.quantum_info.state_fidelity(psi0__, rhoE) print('No. passos=', j+1, ',F_teo=', F_teo, ',F_sim=', F_sim, ',F_exp=', F_exp) qc.draw(output = 'mpl')
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_bogota') from qiskit.tools.visualization import plot_histogram from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import job_monitor, backend_overview, backend_monitor def qc_df(): qc = QuantumCircuit(1, name = 'DF') qc.s(0); qc.h(0); qc.s(0) return qc qc_df_ = qc_df(); qc_df_.draw(output = 'mpl') def qc_bomb(): qc = QuantumCircuit(2, name = 'bomba') qc.cx(0,1) return qc qc_bomb_ = qc_bomb(); qc_bomb_.draw(output = 'mpl') def qc_espelho(): qc = QuantumCircuit(1, name = 'espelho') qc.z(0); qc.y(0) return qc qc_espelho_ = qc_espelho(); qc_espelho_.draw(output = 'mpl') qc = QuantumCircuit(2, 2) qc_df_ = qc_df(); qc.append(qc_df_, [0]) qc_espelho_ = qc_espelho(); qc.append(qc_espelho_, [0]) qc_bomb_ = qc_bomb(); qc.append(qc_bomb_, [0,1]) qc.append(qc_df_, [0]); qc.barrier() qc.measure([0,1],[0,1]) qc.draw(output = 'mpl') job = qiskit.execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) job = qiskit.execute(qc, backend = device, shots = nshots) print(job.job_id()); job_monitor(job) plot_histogram(job.result().get_counts(qc)) T, R = symbols('T R'); Udfg = Matrix([[T,1j*R],[1j*R,T]]); Udfgd = Matrix([[T,-1j*R],[-1j*R,T]]) Udfg*Udfgd, Udfgd*Udfg # ok, é unitária def qc_dfg(th): qc = QuantumCircuit(1, name = 'DFG') qc.rx(-2*th, 0) return qc qc_dfg_ = qc_dfg(math.pi); qc_dfg_.draw(output = 'mpl') def qc_imzg(th, ph): qc = QuantumCircuit(1, name = 'IMZG') qc_dfg_ = qc_dfg(th); qc.append(qc_dfg_, [0]) qc_espelho_ = qc_espelho(); qc.append(qc_espelho_, [0]) qc.p(ph, 0) qc_dfg_ = qc_dfg(th); qc.append(qc_dfg_, [0]) return qc qc_imzg_ = qc_imzg(math.pi, math.pi/2); qc_imzg_.draw(output = 'mpl') phmax = 2*math.pi; dph = phmax/20; ph = np.arange(0, phmax+dph, dph)#; ph th = math.pi/8 print('T = ', math.cos(th), ', R = ', math.sin(th)) d = ph.shape[0]; PD0teo = np.zeros(d); PD0sim = np.zeros(d); for j in range(0, d): PD0teo[j] = 2*math.sin(th)**2*math.cos(th)**2*(1+math.cos(ph[j])) # theoretical qc = QuantumCircuit(1) qc_imzg_ = qc_imzg(th, ph[j]); qc.append(qc_imzg_, [0]) qstc = state_tomography_circuits(qc, [0]) # circuit for state tomography job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots=nshots) qstf = StateTomographyFitter(job.result(), qstc); rho = qstf.fit(method='lstsq') PD0sim[j] = rho[0,0].real matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(ph, PD0teo, label = r'$P_{teo}(D_{0})$') plt.plot(ph, PD0sim, 'o', label = r'$P_{sim}(D_{0})$') #plt.plot(ph, PD0exp, '*', label = r'$P_{exp}(D_{0})$') plt.legend(); plt.xlabel(r'$\phi$'); plt.show() def V(pd): return (np.max(pd)-np.min(pd))/(np.max(pd)+np.min(pd)) def Vt(pd): return np.max(pd)*(np.max(pd)-np.min(pd))/(np.max(pd)+np.min(pd)) def pd_ph(th): phmax = 2*math.pi; dph = phmax/100; ph = np.arange(0, phmax+dph, dph) return 2*math.sin(th)**2*math.cos(th)**2*(1+np.cos(ph)) dth = 0.05; th = np.arange(dth, math.pi/2, dth); d = th.shape[0] Vis = np.zeros(d); VisT= np.zeros(d); Vteo = np.zeros(d) for j in range(0, d): Vteo[j] = 4*math.cos(th[j])**2*math.sin(th[j])**2 pd = pd_ph(th[j]); Vis[j] = V(pd); VisT[j] = Vt(pd) matplotlib.rcParams.update({'font.size':12}); plt.figure(figsize = (6,4), dpi = 100) plt.plot(th, Vis, label = r'$V$'); plt.plot(th, VisT, label = r'$\tilde{V}$') plt.plot(th, Vteo, '*', label = r'$V_{teo}$') plt.xlabel(r'$\theta$'); plt.legend(); plt.show() float(cos(pi/12)**2) float((cos(pi/12)**2)**6), float((cos(pi/24)**2)**12), float((cos(pi/48)**2)**24), float((cos(pi/96)**2)**48) Udf = (1/sqrt(2))*Matrix([[1,1j],[1j,1]]); Ue = Matrix([[0,1j],[1j,0]]); Udf*Ue*Udf T = cos(math.pi/12); T th = +pi-pi/6; float((sin(th/2)**2)**6) T = cos(th); R = sin(th); print('T = ', float(T), ', R = ', float(R)) # ?????????????? N = 6; th = math.pi-math.pi/N; qc = QuantumCircuit(2, N) for j in range(0, N-1): qc.rx(th, 0) qc_espelho_ = qc_espelho(); qc.append(qc_espelho_, [0]) qc.cx(0, 1); qc.measure(1, j); qc.reset(1) qc.barrier() qc.rx(th, 0) # o último DFG é colocado só na última volta qc.measure(0, N-1) #qc.draw(output = 'mpl') qc.decompose().draw(output = 'mpl') matplotlib.rcParams.update({'font.size':12}) #plt.figure(figsize = (6,4), dpi = 100) result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) import numpy as np for j in range(0,20): print(np.random.randint(11))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
import math import numpy as np from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() #provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #device = provider.get_backend('ibmq_jakarta') provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(5) th, ph, lb = 0.1, 0.2, 0.3; qc.u(th, ph, lb, [0]); qc.barrier() # qubit estate preparation qc.cx([0],[1]); qc.cx([1], [2]); qc.h([0, 1, 2]); qc.barrier() # encoding qc.z([0]); qc.barrier() # phase flip error qc.draw(output = 'mpl') qc.h([0, 1, 2]); qc.cx([0], [3]); qc.cx([1], [3]); qc.cx([1], [4]); qc.cx([2], [4]) qc.draw(output = 'mpl') def qc_ec_pf(th, ph, lb, j): qc = QuantumCircuit(5, name = 'EC_PF') qc.u(th, ph, lb, [0]) # qubit state preparation qc.barrier() qc.cx([0], [1]); qc.cx([1], [2]); qc.h([0, 1, 2]) # encoding qc.barrier() if j == 0 or j == 1 or j == 2: # error qc.z([j]) qc.barrier() qc.h([0, 1, 2]); qc.cx([0], [3]); qc.cx([1], [3]); qc.cx([1], [4]); qc.cx([2], [4]) # syndrome detection qc.barrier() qc.x([3]); qc.ccx([4], [3], [2]); qc.x([3]); qc.ccx([4], [3], [1]) # correction qc.x([4]); qc.ccx([4], [3], [0]); qc.x([4]) # correction qc.barrier() return qc th, ph, lb = math.pi, 0.0, 0.0; j = 2; qc_ec_pf_ = qc_ec_pf(th, ph, lb, j) qc_ec_pf_.draw(output = 'mpl') # Teste da funcionalidade do circuito para correção do phase flip qc = QuantumCircuit(5, 3); j = 2 # sets the error qc_ec_pf_ = qc_ec_pf(math.pi/2, 0.0, 0.0, j); qc.append(qc_ec_pf_, [0, 1, 2, 3, 4]) qc.measure([0, 1, 2], [0, 1, 2]); #qc.decompose().draw(output = 'mpl') job_sim = execute(qc, backend = simulator, shots = nshots) plot_histogram(job_sim.result().get_counts(qc)) job_exp = execute(qc, backend = device, shots = nshots) print(job_exp.job_id()); job_monitor(job_exp) plot_histogram(job_exp.result().get_counts(qc)) qc = QuantumCircuit(2, 1) th, ph, lb = math.pi, 0.0, 0.0; qc.u(th, ph, lb, [0]) # state preparation qc.barrier(); qc.cx([0], [1]); qc.h([0]); qc.barrier() qc.z([0]); qc.barrier() qc.h([0]); qc.cx([0], [1]); qc.cx([1], [0]) qc.measure([0], [0]) qc.draw(output = 'mpl') job = execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) job = execute(qc, backend = device, shots = nshots); job_monitor(job) plot_histogram(job.result().get_counts(qc)) def qc_encoding_shor(): qc = QuantumCircuit(9, name = 'encoding') qc.cx([0], [3]); qc.cx([0], [6]) qc.h([0, 3, 6]) qc.cx([0], [1]); qc.cx([0], [2]); qc.cx([3], [4]) qc.cx([3], [5]); qc.cx([6], [7]); qc.cx([6], [8]) return qc qc_encoding_shor_ = qc_encoding_shor(); qc_encoding_shor_.draw(output = 'mpl') def qc_gen_bf(): qc = QuantumCircuit(9+6, name = 'BF') qc.decompose().draw(output = 'mpl') qc.cx([0], [9]); qc.cx([1], [9]); qc.cx([1], [10]); qc.cx([2], [10]) qc.barrier() qc.x([9]); qc.ccx([10], [9], [2]); qc.x([9]); qc.ccx([10], [9], [1]); qc.x([10]); qc.ccx([10], [9], [0]); qc.x([10]) qc.barrier() qc.cx([3], [11]); qc.cx([4], [11]); qc.cx([4], [12]); qc.cx([5], [12]) qc.barrier() qc.x([11]); qc.ccx([12], [11], [5]); qc.x([11]); qc.ccx([12], [11], [4]); qc.x([12]); qc.ccx([12], [11], [3]); qc.x([12]) qc.barrier() qc.cx([6], [13]); qc.cx([7], [13]); qc.cx([7], [14]); qc.cx([8], [14]) qc.barrier() qc.x([13]); qc.ccx([14], [13], [8]); qc.x([13]); qc.ccx([14], [13], [7]); qc.x([14]); qc.ccx([14], [13], [6]); qc.x([14]) return qc qc_gen_bf_ = qc_gen_bf(); qc_gen_bf_.draw(output = 'mpl') #qc.decompose().draw(output = 'mpl') def qc_gen_pf(): qc = QuantumCircuit(9+2, name = 'PF') qc.cx([0], [1]); qc.cx([0], [2]); qc.cx([3], [4]); qc.cx([3], [5]); qc.cx([6], [7]); qc.cx([6], [8]) # destrói o emaranhamento qc.h([0, 3, 6]) # destrói a coerência qc.cx([0], [9]); qc.cx([3], [9]); qc.cx([3], [10]); qc.cx([6], [10]) # medida de síndrome qc.barrier() qc.x([9]); qc.ccx([10], [9], [6]); qc.x([9]); qc.ccx([10], [9], [3]); qc.x([10]); qc.ccx([10], [9], [0]); qc.x([10]) # reversão do erro qc.barrier() qc.h([0, 3, 6]) # passa esses qubits para a base |+>,|-> qc.cx([0], [1]); qc.cx([0], [2]); qc.cx([3], [4]); qc.cx([3], [5]); qc.cx([6], [7]); qc.cx([6], [8]) # recria o emaranhamento return qc qc_gen_pf_ = qc_gen_pf(); qc_gen_pf_.draw(output = 'mpl') def qc_decoding_shor(): qc = QuantumCircuit(9, name = 'decoding') qc.cx([0], [2]); qc.cx([3], [5]); qc.cx([6], [8]) qc.cx([0], [1]); qc.cx([3], [4]); qc.cx([6], [7]) qc.h([0, 3, 6]) qc.cx([0], [3]); qc.cx([0], [6]) return qc qc_decoding_shor_ = qc_decoding_shor(); qc_decoding_shor_.draw(output = 'mpl') def qc_error(): qc = QuantumCircuit(9, name = 'error') qc.x([0]); qc.z([0]) #qc.z(4); qc.x([5]) qc.x([8]) return qc qc_error_ = qc_error(); qc_error_.draw(output = 'mpl') qc = QuantumCircuit(9+6+2, 1) qc.h([0]) # prepara o estado |1> qc.barrier() qc_encoding_shor_ = qc_encoding_shor(); qc.append(qc_encoding_shor_, [0,1,2,3,4,5,6,7,8]) qc.barrier() qc_error_ = qc_error(); qc.append(qc_error_, [0,1,2,3,4,5,6,7,8]) qc.barrier() qc_gen_bf_ = qc_gen_bf(); qc.append(qc_gen_bf_, [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]) qc.barrier() qc_gen_pf_ = qc_gen_pf(); qc.append(qc_gen_pf_, [0,1,2,3,4,5,6,7,8,15,16]) qc.barrier() qc_decoding_shor_ = qc_decoding_shor(); qc.append(qc_decoding_shor_, [0,1,2,3,4,5,6,7,8]) qc.barrier() qc.measure([0], 0) qc.draw(output = 'mpl') job = execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) qc = QuantumCircuit(9) th, ph, lb = math.pi/2, 0.0, 0.0; qc.u(th, ph, lb, [0]) qc.barrier(); qc.x([0]); qc.z([0]); qc.barrier() # o erro qc.cx([0], [1]); qc.cx([0], [2]); qc.cx([3], [4]); qc.cx([3], [5]); qc.cx([6], [7]); qc.cx([6], [8]) qc.ccx([2], [1], [0]); qc.ccx([5], [4], [3]); qc.ccx([8], [7], [6]) qc.h([0, 3, 6]) qc.cx([0], [3]); qc.cx([0], [6]) qc.ccx([6], [3], [0]) qc.draw(output = 'mpl') qc = QuantumCircuit(3, 1) th, ph, lb = math.pi, 0.0, 0.0; qc.u(th, ph, lb, [1]) # state preparation qc.barrier(); qc.cx([1], [2]); qc.barrier() qc.x([1]); qc.z([1]); qc.barrier() qc.cx([1], [2]); qc.cx([2], [1]) qc.measure([1], [0]) qc.draw(output = 'mpl')
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import QuantumCircuit, IBMQ, Aer def qc_ezz(t): qc = QuantumCircuit(2, name = 'e^(-itZZ)') qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1) return qc def qc_exx(t): qc = QuantumCircuit(2, name = 'e^(-itXX)') qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]) return qc def qc_eyy(t): qc = QuantumCircuit(2, name = 'e^(-itYY)') qc.sdg([0,1]); qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]); qc.s([0,1]) return qc def qc_Bj(t): qc = QuantumCircuit(3, name = 'B_j') qc_ezz_ = qc_ezz(t); qc_eyy_ = qc_eyy(t); qc_exx_ = qc_exx(t) qc.append(qc_ezz_, [1, 2]); qc.append(qc_eyy_, [1, 2]); qc.append(qc_exx_, [1, 2]) qc.append(qc_ezz_, [0, 1]); qc.append(qc_eyy_, [0, 1]); qc.append(qc_exx_, [0, 1]) return qc import math qc_Bj_ = qc_Bj(math.pi) qc_Bj_.draw(output = 'mpl') qc_Bj_.decompose().draw(output = 'mpl') nshots = 8192 IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_jakarta') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor def qc_psi0(): qc = QuantumCircuit(3, name = 'psi0') qc.x([0,1]) return qc import numpy as np ket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); #ket0, ket1 psi0_ = np.kron(ket1, np.kron(ket1, ket0)); psi0__ = np.kron(ket0, np.kron(ket1, ket1)) # para calcular a fidelidade com o estado da tomografia psi0_.T, psi0__.T import scipy I = np.array([[1,0],[0,1]]); X = np.array([[0,1],[1,0]]); Y = np.array([[0,-1j],[1j,0]]); Z = np.array([[1,0],[0,-1]]) H2 = np.kron(X, X) + np.kron(Y, Y) + np.kron(Z, Z) def UHxxx12_num(t): H = np.kron(H2, I) return scipy.linalg.expm(-1j*t*H) def UHxxx23_num(t): H = np.kron(I, H2) return scipy.linalg.expm(-1j*t*H) #U = UHxxx23_num(math.pi); print(U.shape[0]) from qiskit import quantum_info, execute from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter t = math.pi for j in range(0, 8): # muda o No. de passos de Trotter # teórico U12 = UHxxx12_num(t/(j+1)); U23 = UHxxx23_num(t/(j+1)) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, j+1); psit = np.dot(U, psi0_) F_teo = quantum_info.state_fidelity(psi0_, psit) # circuit q qc = QuantumCircuit(7) qc.x([5, 3]) # initial state qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.append(qc_Bj_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulação job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim = quantum_info.state_fidelity(psi0__, rho_sim) # experimento job_exp = execute(qstc, backend = device, shots = nshots) job_monitor(job_exp) qstf_exp = StateTomographyFitter(job_exp.result(), qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp = quantum_info.state_fidelity(psi0__, rho_exp) print('No. passos=', j+1, ',F_teo=', F_teo, ',F_sim=', F_sim, ',F_exp=', F_exp) qc.draw(output = 'mpl') npt = 7 dt = math.pi/16; t = np.arange(0, math.pi+dt, dt); d = len(t) F_teo = np.zeros(d); F_sim = np.zeros(d); F_exp = np.zeros(d) for j in range(0, d): # teórico U12 = UHxxx12_num(t[j]/npt); U23 = UHxxx23_num(t[j]/npt) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, npt); psit = np.dot(U, psi0_) F_teo[j] = qiskit.quantum_info.state_fidelity(psi0_, psit) # circuito quântico qc = QuantumCircuit(7); qc.x([5, 3]) # initial state qc_Bj_ = qc_Bj(t[j]/npt) for k in range(0, npt): qc.append(qc_Bj_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulação job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim[j] = quantum_info.state_fidelity(psi0__, rho_sim) # experimento job_exp = execute(qstc, backend = device, shots = nshots) job_monitor(job_exp) qstf_exp = StateTomographyFitter(job_exp.result(), qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp[j] = quantum_info.state_fidelity(psi0__, rho_exp) qc.draw(output = 'mpl') print('t = ', t[j], 'F_exp = ', F_exp[j]) %run init.ipynb plt.figure(figsize = (8,5), dpi = 100) plt.plot(t, F_teo, '-.', label = r'$F_{teo}$'); plt.plot(t, F_sim, '-.', label = r'$F_{sim}$') plt.plot(t, F_exp, '-.', label = r'$F_{exp}$') plt.xlabel(r'$t$'); plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.grid(); plt.show()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
import qiskit qc = qiskit.QuantumCircuit(4, 2) qc.h([0, 2]); qc.cx([0], [1]); qc.cx([2], [3]) # preparacao e distribuicao de emaranhamento qc.barrier() # base de Bell -> base computacional qc.cx([1], [2]); qc.h([1]) qc.barrier() # feedback baseado na info classica qc.x([1, 2]); qc.cx([2], [3]); qc.cz([1], [3]); qc.x([1, 2]) qc.barrier() # para verificacao da funcionalidade do cq (tem que sair Psi-=11) qc.cx([0], [3]); qc.h([0]); qc.measure([0, 3], [0, 1]) qc.draw(output = 'mpl') nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') simulator = qiskit.Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_bogota') from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram job = qiskit.execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) job = qiskit.execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) #from qiskit.circuit.Instruction import c_if from qiskit import * q0 = QuantumRegister(1); q1 = QuantumRegister(1); q2 = QuantumRegister(1); q3 = QuantumRegister(1) c0 = ClassicalRegister(1); c1 = ClassicalRegister(1); c2 = ClassicalRegister(1); c3 = ClassicalRegister(1) qc = qiskit.QuantumCircuit(q0, q1, q2, q3, c0, c1, c2, c3) qc.h(q0); qc.h(q2); qc.cx(q0, q1); qc.cx(q2, q3) # preparacao e distribuicao de emaranhamento qc.barrier() # base de Bell -> base computacional qc.cx(q1, q2); qc.h(q1); qc.measure(q1, c0); qc.measure(q2, c1) qc.barrier() # feedback baseado na info classica qc.x(q3).c_if(c1, 0); qc.z(q3).c_if(c0, 0) qc.barrier() # para verificacao da funcionalidade do cq qc.measure(q0, c2); qc.measure(q3, c3) qc.draw(output = 'mpl') job = qiskit.execute(qc, backend = simulator, shots = nshots) plot_histogram(job.result().get_counts(qc)) # parece que não podemos executar no chip real a c_if job = qiskit.execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) import math def E_Phi(p, q): return 2*math.sqrt(p*(1-p)*q*(1-q))/(p*q+(1-p)*(1-q)) def E_Psi(p, q): return 2*math.sqrt(p*(1-p)*q*(1-q))/(p*(1-q)+(1-p)*q) import numpy as np from matplotlib import pyplot as plt import matplotlib matplotlib.rcParams.update({'font.size':12}) plt.figure(figsize = (6,4), dpi = 100) p = np.zeros(101) Eq0 = np.zeros(101); Eq001 = np.zeros(101); Eq005 = np.zeros(101); Eq025 = np.zeros(101); Eq05 = np.zeros(101) Eq0 = np.zeros(101); Eq099 = np.zeros(101); Eq095 = np.zeros(101); Eq075 = np.zeros(101) for j in range(0, 101): p[j] = j*0.01 if p[j] != 0 and p[j] != 1: q = 0.0; Eq0[j] = E_Phi(p[j], q); q = 0.01; Eq001[j] = E_Phi(p[j], q) q = 0.05; Eq005[j] = E_Phi(p[j], q); q = 0.25; Eq025[j] = E_Phi(p[j],q) q = 0.5; Eq05[j] = E_Phi(p[j],q); q = 0.75; Eq075[j] = E_Phi(p[j],q) q = 0.95; Eq095[j] = E_Phi(p[j],q); q = 0.99; Eq099[j] = E_Phi(p[j],q) plt.plot(p, Eq0); plt.plot(p, Eq001); plt.plot(p, Eq005); plt.plot(p, Eq025); plt.plot(p, Eq05) plt.plot(p, Eq075); plt.plot(p, Eq095); plt.plot(p, Eq099) plt.xlabel('p'); plt.ylabel(r'$E(\rho_{AD})$') plt.legend(('q=0','q=0.01','q=0.05','q=0.25','q=0.5','q=0.75','q=0.95','q=0.99'), bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.title(r'$|\Phi_{\pm}\rangle$') plt.show() matplotlib.rcParams.update({'font.size':12}) plt.figure(figsize = (6,4), dpi = 100) p = np.zeros(101) Eq0 = np.zeros(101); Eq001 = np.zeros(101); Eq005 = np.zeros(101); Eq025 = np.zeros(101); Eq05 = np.zeros(101) Eq0 = np.zeros(101); Eq099 = np.zeros(101); Eq095 = np.zeros(101); Eq075 = np.zeros(101) for j in range(0, 101): p[j] = j*0.01 if p[j] != 0 and p[j] != 1: q = 0.0; Eq0[j] = E_Psi(p[j], q); q = 0.01; Eq001[j] = E_Psi(p[j], q) q = 0.05; Eq005[j] = E_Psi(p[j], q); q = 0.25; Eq025[j] = E_Psi(p[j],q) q = 0.5; Eq05[j] = E_Psi(p[j],q); q = 0.75; Eq075[j] = E_Psi(p[j],q) q = 0.95; Eq095[j] = E_Psi(p[j],q); q = 0.99; Eq099[j] = E_Psi(p[j],q) plt.plot(p, Eq0); plt.plot(p, Eq001); plt.plot(p, Eq005); plt.plot(p, Eq025); plt.plot(p, Eq05) plt.plot(p, Eq075); plt.plot(p, Eq095); plt.plot(p, Eq099) plt.xlabel('p'); plt.ylabel(r'$E(\rho_{AD})$') plt.legend(('q=0','q=0.01','q=0.05','q=0.25','q=0.5','q=0.75','q=0.95','q=0.99'), bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.title(r'$|\Psi_{\pm}\rangle$') plt.show() E_Phi(p,q), E_Psi(p,q) p,q = symbols('p q'); factor(diff(E_Phi(p,q),p)), factor(diff(E_Psi(p,q),p)) E_Phi(1-q,q), E_Psi(q,q) # nos 2 casos, E=1 import numpy as np from matplotlib import pyplot as plt q = np.arange(0.001, 1.0, 0.001); PmaxE = 2*(1-q)*q; plt.plot(q, 1-PmaxE, label = r'$1-Pr(\max E)$'); pred = 1 + q*np.log2(q) + (1-q)*np.log2(1-q); plt.plot(q, pred, label = r'$P_{vn}(\rho_{A})$') plt.legend(); plt.xlabel(r'$q$'); plt.show()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, execute, IBMQ from qiskit.providers.aer import noise from qiskit.providers.aer.noise import NoiseModel from qiskit.visualization import plot_histogram from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter qr = QuantumRegister(5) qubit_list = [2, 3, 4] # os qubits para os quais aplicaremos calibracao de medidas meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr) print(state_labels) meas_calibs # circuitos que serao executados para obter dados para calibracao (uma para cada state_labels) nshots = 8192 simulator = Aer.get_backend('qasm_simulator') job = execute(meas_calibs, backend = simulator, shots = nshots) # executa a calibracao cal_results = job.result() # a matriz de calibracao sem ruido e a identidade meas_fitter = CompleteMeasFitter(cal_results, state_labels) print(meas_fitter.cal_matrix) meas_fitter.plot_calibration() provider = IBMQ.load_account() device = provider.get_backend('ibmq_bogota') noise_model = NoiseModel.from_backend(device) basis_gates = noise_model.basis_gates coupling_map = device.configuration().coupling_map job = execute(meas_calibs, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels) print(meas_fitter.cal_matrix) # visualizacao grafica da matriz de calibracao meas_fitter.plot_calibration() qr = QuantumRegister(5); cr = ClassicalRegister(3); qc_ghz = QuantumCircuit(qr, cr) qc_ghz.h(qr[2]); qc_ghz.cx(qr[2], qr[3]); qc_ghz.cx(qr[3], qr[4]) qc_ghz.measure(qr[2], cr[0]); qc_ghz.measure(qr[3], cr[1]); qc_ghz.measure(qr[4], cr[2]); qc_ghz.draw(output = 'mpl') qubit_list = [2, 3, 4] # os qubits para os quais aplicaremos calibracao de medidas meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr) job = execute(meas_calibs, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels) job = execute(qc_ghz, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) unmitigated_counts = job.result().get_counts() # resultados sem mitigacao de erros # Resultados com mitigacao de erros mitigated_results = meas_fitter.filter.apply(job.result()) mitigated_counts = mitigated_results.get_counts() plot_histogram([unmitigated_counts, mitigated_counts], legend=['sem mit', 'com mit']) qr = QuantumRegister(3); qc = QuantumCircuit(qr); qc.h([0]); qc.cx([0], [1]) qc.draw(output = 'mpl') from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter qstc = state_tomography_circuits(qc, [qr[0], qr[1]]) job = execute(qstc, backend = simulator, shots = nshots) qstf = StateTomographyFitter(job.result(), qstc) rho = qstf.fit(method = 'lstsq') print(rho.real) from qiskit.visualization import plot_state_city plot_state_city(rho, title=r'$|\Phi_{+}^{sim}\rangle$') device = provider.get_backend('ibmq_bogota') noise_model = NoiseModel.from_backend(device) basis_gates = noise_model.basis_gates coupling_map = device.configuration().coupling_map job = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) qstf = StateTomographyFitter(job.result(), qstc) rho = qstf.fit(method='lstsq') print(rho.real) plot_state_city(rho, title=r'$|\Phi_{+}^{simN}\rangle$') qubit_list = [0, 1] meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr) job = execute(meas_calibs, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels) qstc = state_tomography_circuits(qc, [qr[0], qr[1]]) job = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) mitigated_results = meas_fitter.filter.apply(job.result()) qstf = StateTomographyFitter(mitigated_results, qstc) rho = qstf.fit(method = 'lstsq') print(rho.real) plot_state_city(rho, title=r'$|\Phi_{+}^{simNcal}\rangle$') qr = QuantumRegister(3); qc = QuantumCircuit(qr); qc.h([0]); qc.cx([0], [1]) qc.draw(output = 'mpl') provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') from qiskit.tools.monitor import job_monitor qstc = state_tomography_circuits(qc, [qr[0], qr[1]]) job_exp = execute(qstc, backend = device, shots = nshots); job_monitor(job_exp) qstf = StateTomographyFitter(job_exp.result(), qstc) rho = qstf.fit(method = 'lstsq'); print(rho.real) plot_state_city(rho, title=r'$|\Phi_{+}^{exp}\rangle$') qubit_list = [0, 1] # os qubits para os quais aplicaremos calibracao de medidas meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr) job = execute(meas_calibs, backend = device, shots = nshots) job_monitor(job) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels) mitigated_results = meas_fitter.filter.apply(job_exp.result()) qstf = StateTomographyFitter(mitigated_results, qstc) rho = qstf.fit(method = 'lstsq'); print(rho.real) plot_state_city(rho, title=r'$|\Phi_{+}^{ExpCal}\rangle$')
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import QuantumCircuit, execute, IBMQ, Aer from qiskit.visualization import plot_histogram from qiskit.providers.aer.noise import NoiseModel # contruir modelo de ruido a partir das propriedades do chip nshots = 8192 provider = IBMQ.load_account() device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') noise_model = NoiseModel.from_backend(device) # essa funcao constroi o modelo de ruido print(noise_model) # obter mapa de acoplamento do chip coupling_map = device.configuration().coupling_map print(coupling_map) # obter base de portas logicas a partir do modelo de ruido basis_gates = noise_model.basis_gates print(basis_gates) # construir o circuit qc = QuantumCircuit(3, 3) qc.h(0); qc.cx(0, 1); qc.cx(0, 2); qc.measure([0, 1, 2], [0, 1, 2]) qc.draw(output = 'mpl') jobS = execute(qc, backend = simulator, shots = nshots) plot_histogram(jobS.result().get_counts()) # faz a simulacao com o ruido ja incluido jobNS = execute(qc, backend = simulator, coupling_map = coupling_map, basis_gates = basis_gates, noise_model = noise_model, shots = nshots) plot_histogram(jobNS.result().get_counts()) from qiskit.tools.monitor import job_monitor jobE = execute(qc, backend = device, shots = nshots) job_monitor(jobE) plot_histogram(jobE.result().get_counts()) plot_histogram([jobS.result().get_counts(0), jobNS.result().get_counts(0), jobE.result().get_counts(0)], bar_labels = False, legend = ['sim', 'noise_sim', 'exp'])
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import QuantumCircuit def qc_state_prep(): qc = QuantumCircuit(2, name = 'state_prep'); qc.h(0) qc.cx(0, 1) qc.z(0) qc.x(1) return qc qc_state_prep_ = qc_state_prep(); qc_state_prep_.draw(output = 'mpl') from qiskit import IBMQ, Aer, execute nshots = 8192 provider = IBMQ.load_account() device = provider.get_backend('ibmq_quito') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.visualization import plot_state_city qstc = state_tomography_circuits(qc_state_prep_, [0, 1]) job = execute(qstc, backend = simulator, shots = nshots) qstf = StateTomographyFitter(job.result(), qstc) rho = qstf.fit(method = 'lstsq') plot_state_city(rho, title = r'$|\Psi_{-}^{sim}\rangle$') import math def qc_A1B1(): qc = QuantumCircuit(2, name = 'A1B1'); qc.z(0); qc.u(math.pi/4, 0, math.pi, [1]) return qc qc_A1B1_ = qc_A1B1(); qc_A1B1_.draw(output = 'mpl') qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(); qc.append(qc_state_prep_, [0, 1]) qc.barrier() qc_A1B1_ = qc_A1B1(); qc.append(qc_A1B1_, [0, 1]); qc.measure([0, 1], [0, 1]) qc.draw(output = 'mpl') jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); print(resultS , ',', resultS['11']) def AB_avg(result, nshots): avg = 0 if '00' in result: avg += result['00'] if '01' in result: avg -= result['01'] if '10' in result: avg -= result['10'] if '11' in result: avg += result['11'] return avg/nshots A1B1_avg = AB_avg(resultS, nshots); print(A1B1_avg) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A1B1_avgE = AB_avg(jobE.result().get_counts(), nshots) print('<A1B1>_teo = ', -1/math.sqrt(2), ', <A1B1>_sim = ', A1B1_avg, ', <A1B1>_exp = ', A1B1_avgE) def qc_A1B2(): qc = QuantumCircuit(2, name = 'A1B2'); qc.z(0); qc.u(-math.pi/4, 0, math.pi, [1]) return qc qc_A1B2_ = qc_A1B2(); qc_A1B2_.draw(output = 'mpl') qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(); qc.append(qc_state_prep_, [0, 1]) qc_A1B2_ = qc_A1B2(); qc.append(qc_A1B2_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts() A1B2_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A1B2_avgE = AB_avg(jobE.result().get_counts(), nshots) print('<A1B2>_teo = ', -1/math.sqrt(2), ', <A1B2>_sim = ', A1B2_avg, ', <A1B2>_exp = ', A1B2_avgE) def qc_A2B1(): qc = QuantumCircuit(2, name = 'A2B1'); qc.h(0); qc.u(math.pi/4, 0, math.pi, [1]) return qc qc_A2B1_ = qc_A2B1(); qc_A2B1_.draw(output = 'mpl') qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(); qc.append(qc_state_prep_, [0, 1]) qc_A2B1_ = qc_A2B1(); qc.append(qc_A2B1_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts() A2B1_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A2B1_avgE = AB_avg(jobE.result().get_counts(), nshots) print('<A2B1>_teo = ', -1/math.sqrt(2), ', <A2B1>_sim = ', A2B1_avg, ', <A2B1>_exp = ', A2B1_avgE) def qc_A2B2(): qc = QuantumCircuit(2, name = 'A2B2'); qc.h(0); qc.u(-math.pi/4, 0, math.pi, [1]) return qc qc_A2B2_ = qc_A2B2(); qc_A2B2_.draw(output = 'mpl') qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(); qc.append(qc_state_prep_, [0, 1]) qc_A2B2_ = qc_A2B2(); qc.append(qc_A2B2_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts() A2B2_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A2B2_avgE = AB_avg(jobE.result().get_counts(), nshots) print('<A2B2>_teo = ', 1/math.sqrt(2), ', <A2B2>_sim = ', A2B2_avg, ', <A2B2>_exp = ', A2B2_avgE) O_avg = A1B1_avg + A1B2_avg + A2B1_avg - A2B2_avg O_avgE = A1B1_avgE + A1B2_avgE + A2B1_avgE - A2B2_avgE print('<O>_teo = ', -2*math.sqrt(2), ', <O>_sim = ', O_avg, ', <O>_exp = ', O_avgE) import numpy as np from matplotlib import pyplot as plt import matplotlib def qc_state_prep(th): qc = QuantumCircuit(2, name = 'Psi') qc.u(th, 0, 0, [0]); qc.cx([0], [1]); qc.z([0]); qc.x([1]) return qc qc_state_prep_ = qc_state_prep(math.pi); qc_state_prep_.draw(output = 'mpl') p = np.arange(0, math.pi/2+0.1, 0.1); Oavg = -math.sqrt(2)*(1+np.sin(p)) d = p.shape[0]; y = -2*np.ones(d); Oavg_sim = np.zeros(d); Oavg_exp = np.zeros(d) for j in range(0, d): # A1B1 qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(p[j]); qc.append(qc_state_prep_, [0, 1]) qc_A1B1_ = qc_A1B1(); qc.append(qc_A1B1_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); A1B1_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A1B1_avgE = AB_avg(jobE.result().get_counts(), nshots) # A1B2 qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(p[j]); qc.append(qc_state_prep_, [0, 1]) qc_A1B2_ = qc_A1B2(); qc.append(qc_A1B2_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); A1B2_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A1B2_avgE = AB_avg(jobE.result().get_counts(), nshots) # A2B1 qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(p[j]); qc.append(qc_state_prep_, [0, 1]) qc_A2B1_ = qc_A2B1(); qc.append(qc_A2B1_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); A2B1_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A2B1_avgE = AB_avg(jobE.result().get_counts(), nshots) # A2B2 qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(p[j]); qc.append(qc_state_prep_, [0, 1]) qc_A2B2_ = qc_A2B2(); qc.append(qc_A2B2_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); A2B2_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A2B2_avgE = AB_avg(jobE.result().get_counts(), nshots) # O Oavg_sim[j] = A1B1_avg + A1B2_avg + A2B1_avg - A2B2_avg Oavg_exp[j] = A1B1_avgE + A1B2_avgE + A2B1_avgE - A2B2_avgE matplotlib.rcParams.update({'font.size':12}) plt.figure(figsize = (6,4), dpi = 100) plt.plot(p, y, label = 'LHV limit') plt.plot(p, Oavg, label = r'$\langle O\rangle_{\Psi}^{teo}$') plt.plot(p, Oavg_sim, '*', label = r'$\langle O\rangle_{\Psi}^{sim}$') plt.plot(p, Oavg_exp, 'o', label = r'$\langle O\rangle_{\Psi}^{exp}$') plt.xlabel(r'$\theta$'); plt.legend(); plt.show() def qc_A1B1(th): qc = QuantumCircuit(2, name = 'A1B1'); qc.z(0); qc.u(th, 0, math.pi, [1]) return qc def qc_A1B2(): qc = QuantumCircuit(2, name = 'A1B2'); qc.z(0); qc.u(-math.pi/4, 0, math.pi, [1]) return qc def qc_A2B1(th): qc = QuantumCircuit(2, name = 'A2B1'); qc.h(0); qc.u(th, 0, math.pi, [1]) return qc def qc_A2B2(): qc = QuantumCircuit(2, name = 'A2B2'); qc.h(0); qc.u(-math.pi/4, 0, math.pi, [1]) return qc def qc_state_prep(): qc = QuantumCircuit(2, name = 'state_prep'); qc.h(0); qc.cx(0, 1); qc.z(0); qc.x(1) return qc th = np.arange(-math.pi/4, math.pi/4+0.1, 0.1); Oavg = -(math.sqrt(2)+np.cos(th)+np.sin(th)) d = p.shape[0]; y = -2*np.ones(d); Oavg_sim = np.zeros(d); Oavg_exp = np.zeros(d) for j in range(0, d): # A1B1 qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(); qc.append(qc_state_prep_, [0, 1]) qc_A1B1_ = qc_A1B1(th[j]); qc.append(qc_A1B1_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); A1B1_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A1B1_avgE = AB_avg(jobE.result().get_counts(), nshots) # A1B2 qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(); qc.append(qc_state_prep_, [0, 1]) qc_A1B2_ = qc_A1B2(); qc.append(qc_A1B2_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); A1B2_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A1B2_avgE = AB_avg(jobE.result().get_counts(), nshots) # A2B1 qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(); qc.append(qc_state_prep_, [0, 1]) qc_A2B1_ = qc_A2B1(th[j]); qc.append(qc_A2B1_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); A2B1_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A2B1_avgE = AB_avg(jobE.result().get_counts(), nshots) # A2B2 qc = QuantumCircuit(2, 2) qc_state_prep_ = qc_state_prep(); qc.append(qc_state_prep_, [0, 1]) qc_A2B2_ = qc_A2B2(); qc.append(qc_A2B2_, [0, 1]); qc.measure([0, 1], [0, 1]) jobS = execute(qc, backend = simulator, shots = nshots) resultS = jobS.result().get_counts(); A2B2_avg = AB_avg(resultS, nshots) jobE = execute(qc, backend = device, shots = nshots); job_monitor(jobE) A2B2_avgE = AB_avg(jobE.result().get_counts(), nshots) # O Oavg_sim[j] = A1B1_avg + A1B2_avg + A2B1_avg - A2B2_avg Oavg_exp[j] = A1B1_avgE + A1B2_avgE + A2B1_avgE - A2B2_avgE matplotlib.rcParams.update({'font.size':12}) plt.figure(figsize = (6,4), dpi = 100) plt.plot(th, y, label = 'LHV limit') plt.plot(th, Oavg, label = r'$\langle O\rangle_{\Psi}^{teo}$') plt.plot(th, Oavg_sim, '*', label = r'$\langle O\rangle_{\Psi}^{sim}$') plt.plot(th, Oavg_exp, 'o', label = r'$\langle O\rangle_{\Psi}^{exp}$') plt.xlabel(r'$\theta$'); plt.legend(); plt.show() def chsh(rho): cm = zeros(3,3); cm = corr_mat(2, 2, rho) evals = zeros(3,1); W = zeros(3,1); W = eVals(3, cm) return max(0,(sqrt(W[0]**2+W[1]**2+W[2]**2-min(W[0],W[1],W[2])**2)-1)/(sqrt(2)-1))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import QuantumCircuit, IBMQ, Aer def qc_ezz(t): qc = QuantumCircuit(2, name = 'e^(-itZZ)') qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1) return qc def qc_exx(t): qc = QuantumCircuit(2, name = 'e^(-itXX)') qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]) return qc def qc_eyy(t): qc = QuantumCircuit(2, name = 'e^(-itYY)') qc.sdg([0,1]); qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]); qc.s([0,1]) return qc def qc_Bj(t): qc = QuantumCircuit(3, name = 'B_j') qc_ezz_ = qc_ezz(t); qc_eyy_ = qc_eyy(t); qc_exx_ = qc_exx(t) qc.append(qc_ezz_, [1, 2]); qc.append(qc_eyy_, [1, 2]); qc.append(qc_exx_, [1, 2]) qc.append(qc_ezz_, [0, 1]); qc.append(qc_eyy_, [0, 1]); qc.append(qc_exx_, [0, 1]) return qc nshots = 8192 IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_jakarta') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor def qc_psi0(): qc = QuantumCircuit(3, name = 'psi0') qc.x([0,1]) return qc import numpy as np ket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); #ket0, ket1 psi0_ = np.kron(ket1, np.kron(ket1, ket0)); psi0__ = np.kron(ket0, np.kron(ket1, ket1)) # para calcular a fidelidade com o estado da tomografia psi0_.T, psi0__.T import scipy I = np.array([[1,0],[0,1]]); X = np.array([[0,1],[1,0]]); Y = np.array([[0,-1j],[1j,0]]); Z = np.array([[1,0],[0,-1]]) H2 = np.kron(X, X) + np.kron(Y, Y) + np.kron(Z, Z) def UHxxx12_num(t): H = np.kron(H2, I) return scipy.linalg.expm(-1j*t*H) def UHxxx23_num(t): H = np.kron(I, H2) return scipy.linalg.expm(-1j*t*H) #U = UHxxx23_num(math.pi); print(U.shape[0]) from qiskit import quantum_info, execute from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.ignis.mitigation.measurement import (complete_meas_cal, CompleteMeasFitter) from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, execute, IBMQ qr = QuantumRegister(7) qubit_list = [5, 3, 1] # os qubits para os quais aplicaremos calibracao de medidas meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr) job = execute(meas_calibs, backend = device, shots = nshots) job_monitor(job) cal_results = job.result() meas_fitter = CompleteMeasFitter(cal_results, state_labels) t = math.pi for j in range(0, 8): # muda o No. de passos de Trotter # teórico U12 = UHxxx12_num(t/(j+1)); U23 = UHxxx23_num(t/(j+1)) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, j+1); psit = np.dot(U, psi0_) F_teo = quantum_info.state_fidelity(psi0_, psit) # circuit q qc = QuantumCircuit(7) qc.x([5, 3]) # initial state qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.append(qc_Bj_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulação job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim = quantum_info.state_fidelity(psi0__, rho_sim) # experimento job_exp = execute(qstc, backend = device, shots = nshots) job_monitor(job_exp) mitigated_results = meas_fitter.filter.apply(job_exp.result()) qstf_exp = StateTomographyFitter(mitigated_results, qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp = quantum_info.state_fidelity(psi0__, rho_exp) print('No. passos=', j+1, ',F_teo=', F_teo, ',F_sim=', F_sim, ',F_exp=', F_exp)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
nshots = 500; Npt = 7 # Número de passos de Trotter ph = 2*math.pi # ângulo para a transformação de simetria t = math.pi for j in range(0, Npt): # muda o No. de passos de Trotter # teórico U12 = UHxxx12_num(t/(j+1)); U23 = UHxxx23_num(t/(j+1)) B = np.dot(U12, U23); U = np.linalg.matrix_power(B, j+1); psit = np.dot(U, psi0_) F_teo = qiskit.quantum_info.state_fidelity(psi0_, psit) # circuit q qc = QuantumCircuit(3) qc_psi0_ = qc_psi0(); qc.append(qc_psi0_, [0, 1, 2]) # estado inicial qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.rz(ph/(j+1), [0, 1, 2]) # transformação de simetria qc.append(qc_Bj_, [0, 1, 2]) qc.rz(-ph, [0, 1, 2]) # revertendo a transformação de simetria if j == 1: qc.draw(output = 'mpl') qstc = state_tomography_circuits(qc, [0, 1, 2]) # simulação job = qiskit.execute(qstc, backend = simulator, shots = nshots) qstf = StateTomographyFitter(job.result(), qstc) rho = qstf.fit(method = 'lstsq') F_sim = qiskit.quantum_info.state_fidelity(psi0__, rho) # experimento jobE = qiskit.execute(qstc, backend = device, shots = nshots) print(jobE.job_id()); job_monitor(jobE) qstfE = StateTomographyFitter(jobE.result(), qstc) rhoE = qstfE.fit(method = 'lstsq') F_exp = qiskit.quantum_info.state_fidelity(psi0__, rhoE) print('No. passos=', j+1, ',F_teo=', F_teo, ',F_sim=', F_sim, ',F_exp=', F_exp) qc.draw(output = 'mpl')
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
import sympy from sympy import * import numpy as np from numpy import random import math import scipy init_printing(use_unicode=True) from matplotlib import pyplot as plt %matplotlib inline from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum import TensorProduct as tp from mpmath import factorial as fact import io import base64 #from IPython.core.display import display, HTML, clear_output from IPython import * from ipywidgets import interactive, interact, fixed, interact_manual, widgets import csv import importlib import scipy.interpolate from mpl_toolkits.mplot3d import Axes3D, proj3d from itertools import product, combinations from matplotlib.patches import FancyArrowPatch from matplotlib import cm, colors from sympy.functions.special.tensor_functions import KroneckerDelta from scipy.linalg import polar, lapack import mpmath # constantes físicas e = 1.60217662*10**-19 # C (carga elementar) k = 8.9875517923*10**9 # Nm^2/C^2 (constante de Coulomb) eps0 = 8.8541878128*10**-12 #F/m (permissividade do vácuo) mu0 = 1.25663706212*10**-6 # N/A^2 (permeabilidade do vácuo) h = 6.626069*10**-34 # Js (constante de Planck) heV = h/e # em eV hb = h/(2*math.pi) # hbar hbeV = hb/e # em eV c = 2.99792458*10**8 # m/s (velocidade da luz no vácuo) G = 6.6742*10**-11 # Nm^2/kg^2 (constante gravitacional) kB = 1.38065*10**-23 # J/K (constante de Boltzmann) me = 9.109382*10**-31 # kg (massa do elétron) mp = 1.6726219*10**-27 # kg (massa do próton) mn = 1.67492749804*10**-27 # kg (massa do nêutron) mT = 5.9722*10**24 # kg (massa da Terra) mS = 1.98847*10**30 # kg (massa do Sol) u = 1.660538921*10**-27 # kg (unidade de massa atômica) dTS = 1.496*10**11 # m (distância Terra-Sol) rT = 6.3781*10**6 # m (raio da Terra) sSB = 5.670374419*10**-8 # W⋅m−2⋅K−4 (constante de Stefan-Boltzmann) Ri = 10973734.848575922 # m^-1 (constante de Rydberg) al = (k*e**2)/(hb*c) # ~1/137.035999084 (constante de estrutura fina) a0=(hb**2)/(me*k*e**2) # ~ 0.52917710^-10 m (raio de Bohr) ge = 2 # (fator giromagnetico do eletron) gp = 5.58 # (fator giromagnetico do proton) def id(n): '''retorna a matriz identidade nxn''' id = zeros(n,n) for j in range(0,n): id[j,j] = 1 return id #id(2) def pauli(j): '''retorna as matrizes de Pauli''' if j == 1: return Matrix([[0,1],[1,0]]) elif j == 2: return Matrix([[0,-1j],[1j,0]]) elif j == 3: return Matrix([[1,0],[0,-1]]) #pauli(1), pauli(2), pauli(3) def tr(A): '''retorna o traço de uma matriz''' d = A.shape[0] tr = 0 for j in range(0,d): tr += A[j,j] return tr #tr(pauli(1)) def comm(A,B): '''retorna a função comutador''' return A*B-B*A #comm(pauli(1),pauli(2)) def acomm(A,B): '''retorna a função anti-comutador''' return A*B+B*A #acomm(pauli(1),pauli(2)) def cb(n,j): '''retorna um vetor da base padrão de C^n''' vec = zeros(n,1) vec[j] = 1 return vec #cb(2,0) def proj(psi): '''retorna o projeto no vetor psi''' d = psi.shape[0] P = zeros(d,d) for j in range(0,d): for k in range(0,d): P[j,k] = psi[j]*conjugate(psi[k]) return P #proj(cb(2,0)) def bell(j,k): if j == 0 and k == 0: return (1/sqrt(2))*(tp(cb(2,0),cb(2,0))+tp(cb(2,1),cb(2,1))) elif j == 0 and k == 1: return (1/sqrt(2))*(tp(cb(2,0),cb(2,1))+tp(cb(2,1),cb(2,0))) elif j == 1 and k == 0: return (1/sqrt(2))*(tp(cb(2,0),cb(2,1))-tp(cb(2,1),cb(2,0))) elif j == 1 and k == 1: return (1/sqrt(2))*(tp(cb(2,0),cb(2,0))-tp(cb(2,1),cb(2,1))) #bell(0,0), bell(0,1), bell(1,0), bell(1,1) def inner_product(v,w): d = len(v); ip = 0 for j in range(0,d): ip += conjugate(v[j])*w[j] return ip #a,b,c,d = symbols("a b c d"); v = [b,a]; w = [c,d]; inner_product(v,w) def norm(v): d = len(v) return sqrt(inner_product(v,v)) #v = [2,2]; norm(v) def tp(x,y): return tensorproduct(x,y) A = tp(pauli(3),pauli(1)); A
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb N = 2**10; th = asin(1/sqrt(N)); N, float(th), float(sin(th)), float(th*180/pi), sqrt(N) my_list = [1,3,5,2,4,9,5,8,0,7,6] def my_oracle(my_input): solution = 2 if my_input == solution: response = True else: response = False return response my_input = 7; res = my_oracle(my_input); print(res) for j in range(0,len(my_list)): if my_oracle(my_list[j]) == True: print('Solução encontrada no índice',j, ', após ', j+1, ' consultas ao oráculo.') from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram def qc_Uz(n): # 2|0><0| - I qc = QuantumCircuit(n, name = 'Uz') qrl = [] for j in range(0, n): qrl.append(j) qc.z(0); qc.x(0); qc.z(0); qc.x(0) qc.x(qrl) # 00...0 -> 11...1 qc.h(n-1); qc.mcx(qrl[0:n-1],n-1); qc.h(n-1) # Cz multicontrolada. Multiplica 11...1 por -1 qc.x(qrl); # 11...1 -> 00...0 return qc qc_Uz_ = qc_Uz(3); qc_Uz_.draw() def qc_Uh(n): # 2|h><h| - I qc = QuantumCircuit(n, name = 'Uh') qrl = [] for j in range(0, n): qrl.append(j) qc.h(qrl) # transforma Uz em Uh qc_Uz_ = qc_Uz(n); qc.append(qc_Uz_, qrl) qc.h(qrl) return qc qc_Uh_ = qc_Uh(3); qc_Uh_.draw() def qc_oracle(n): # Nielsen & Chuang, Box 6.1 (N=4) qc = QuantumCircuit(n+1, name = 'Oracle') qc.ccx(0,1,2) # para a solução sendo o estado |11> return qc qc_oracle_ = qc_oracle(2) qc_oracle_.draw('mpl') def qc_grover_iteration(n): qc = QuantumCircuit(n+1, name = 'G') qrl = [] for j in range(0, n+1): qrl.append(j) qc_oracle_ = qc_oracle(n) qc.append(qc_oracle_, qrl) qc_Uh_ = qc_Uh(n); qc.append(qc_Uh_, qrl[0:n]) return qc qc_grover_iteration_ = qc_grover_iteration(2) qc_grover_iteration_.draw('mpl') def qc_hadamard_state(n): # aplica a Hadamard em n qubits qc = QuantumCircuit(n, name = 'H state') # começarei a não usar mais os qr[j] qrl = [] # lista de registros quânticos for j in range(0, n): qrl.append(j) qc.h(qrl) # aplica a hadamard em toda a lista de registros quânticos return qc qc_hadamard_state_ = qc_hadamard_state(3); qc_hadamard_state_.draw() def qc_grover_search(n): qc = QuantumCircuit(n+1, n) qc.x(n) qrl = [] # lista de registros quânticos for j in range(0, n+1): qrl.append(j) qc_hadamard_state_ = qc_hadamard_state(n+1); qc.append(qc_hadamard_state_, qrl) for j in range(0, int((math.pi*math.sqrt(2**n))/4 - 1/2)): qc_grover_iteration_ = qc_grover_iteration(n); qc.append(qc_grover_iteration_, qrl) qc.measure(qrl[0:n], qrl[0:n]) return qc qc_grover_search_ = qc_grover_search(2); qc_grover_search_.draw() qc_grover_search_ = qc_grover_search(2) result = execute(qc_grover_search_, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc_grover_search_)) job = execute(qc_grover_search_, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc_grover_search_))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb simplify(cos(pi/8)), simplify(sin(pi/8)) from qiskit.visualization import plot_bloch_vector th, ph = pi/4, 0 #plot_bloch_vector([[math.sin(th)*math.cos(ph), math.sin(th)*math.sin(ph), math.cos(th)]]) float(1+1/sqrt(2))/2 X = Matrix([[0,1],[1,0]]); Z = Matrix([[1,0],[0,-1]]); O = (X+Z)/sqrt(2); O.eigenvects() from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_belem') from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram qc = QuantumCircuit(1, 1) qc.h(0) # preparação do estado qc.barrier() # medida de O=H th = math.pi/4; ph = 0; lb = math.pi - ph; qc.u(th, ph, lb, 0) qc.measure(0, 0) qc.draw() result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc)) def qc_bb_cb(): qc = QuantumCircuit(2, name = 'BB->CB') qc.cx(0,1); qc.h(0)#; qc.measure([0,1],[0,1]) return qc qc_bb_cb_ = qc_bb_cb(); qc_bb_cb_.draw() qc = QuantumCircuit(2, 2) qc.x(1); qc.h([0,1]) # preparação do estado |+-> qc.barrier() qc_bb_cb_ = qc_bb_cb(); qc.append(qc_bb_cb_, [0,1]); qc.measure([0,1],[0,1]) qc.draw() result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
import qiskit from qiskit import * import math import numpy as np def qc_ezz(t): qc = QuantumCircuit(2, name = 'e^(-itZZ)') qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1) return qc def qc_exx(t): qc = QuantumCircuit(2, name = 'e^(-itXX)') qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]) return qc def qc_eyy(t): qc = QuantumCircuit(2, name = 'e^(-itYY)') qc.sdg([0,1]); qc.h([0,1]); qc.cx(0, 1); qc.rz(2*t, 1); qc.cx(0, 1); qc.h([0,1]); qc.s([0,1]) return qc def qc_Bj(t): qc = QuantumCircuit(3, name = 'B_j') qc_ezz_ = qc_ezz(t); qc_eyy_ = qc_eyy(t); qc_exx_ = qc_exx(t) qc.append(qc_ezz_, [1, 2]); qc.append(qc_eyy_, [1, 2]); qc.append(qc_exx_, [1, 2]) qc.append(qc_ezz_, [0, 1]); qc.append(qc_eyy_, [0, 1]); qc.append(qc_exx_, [0, 1]) return qc qc_Bj_ = qc_Bj(math.pi/2); qc_Bj_.draw(output='mpl') qc_Bj_.decompose().draw(output='mpl') nshots = 8192 IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22') #provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_jakarta') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import backend_overview, backend_monitor from qiskit.providers.aer import noise from qiskit.providers.aer.noise import NoiseModel from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter noise_model = NoiseModel.from_backend(device) basis_gates = noise_model.basis_gates coupling_map = device.configuration().coupling_map ket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); psi0 = np.kron(ket0, np.kron(ket1, ket1)) # initial state to be used for computing the fidelity t = math.pi for j in range(0, 10): # Trotter stepsm_info. # quantum circuit qc = QuantumCircuit(7) qc.x([5, 3]) # prepares the initial state qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.append(qc_Bj_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulation job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim = quantum_info.state_fidelity(psi0, rho_sim) # simulation with simulated noise job_exp = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) qstf_exp = StateTomographyFitter(job_exp.result(), qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp = quantum_info.state_fidelity(psi0, rho_exp) print('No. passos=', j+1, ',F_sim=', F_sim, ',F_exp=', F_exp) inha visto essa reprovação mas não me dei por conta que n# for error mitigation qr = QuantumRegister(7) qubit_list = [5,3,1] # the qubits on which we shall apply error mitigation meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr) job_cal = execute(meas_calibs, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) meas_fitter = CompleteMeasFitter(job_cal.result(), state_labels) ket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); #ket0, ket1 psi0 = np.kron(ket0, np.kron(ket1, ket1)) # initial state to be used for computing the fidelity t = math.pi for j in range(0, 10): # Trotter steps # quantum circuit qc = QuantumCircuit(7) qc.x([5, 3]) # prepares the initial state qc_Bj_ = qc_Bj(t/(j+1)) for k in range(0, j+1): qc.append(qc_Bj_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulation job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim = quantum_info.state_fidelity(psi0, rho_sim) # simulation with simulated noise and error mitigation job_exp = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) mitigated_results = meas_fitter.filter.apply(job_exp.result()) qstf_exp = StateTomographyFitter(mitigated_results, qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp = quantum_info.state_fidelity(psi0, rho_exp) print('No. passos=', j+1, ',F_sim=', F_sim, ',F_exp=', F_exp) def qc_Bj_zz(t, th, ph): qc = QuantumCircuit(3, name = 'B_j_zz') qc_ezz_ = qc_ezz(t); qc_eyy_ = qc_eyy(t); qc_exx_ = qc_exx(t) qc.rz(2*th, [1,2]) qc.append(qc_ezz_, [1, 2]); qc.append(qc_eyy_, [1, 2]); qc.append(qc_exx_, [1, 2]) qc.rz(-2*th, [1,2]) qc.rz(2*ph, [0,1]) qc.append(qc_ezz_, [0, 1]); qc.append(qc_eyy_, [0, 1]); qc.append(qc_exx_, [0, 1]) qc.rz(-2*ph, [0,1]) return qc qc_Bj_zz_ = qc_Bj_zz(math.pi, math.pi/3, math.pi/4); qc_Bj_zz_.draw(output='mpl') ket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); #ket0, ket1 psi0 = np.kron(ket0, np.kron(ket1, ket1)) # initial state to be used for computing the fidelity t = math.pi j = 6; print('N. of Trotter steps = ', j+1) th_max = 2*math.pi; dth = th_max/16; th = np.arange(0, th_max+dth, dth); dim_th = th.shape[0] ph_max = 2*math.pi; dph = ph_max/16; ph = np.arange(0, ph_max+dph, dph); dim_ph = ph.shape[0] for m in range(0, dim_th): for n in range(0, dim_ph): # quantum circuit qc = QuantumCircuit(7) qc.x([5, 3]) # prepares the initial state qc_Bj_zz_ = qc_Bj_zz(t/(j+1), th[m], ph[n]) for k in range(0, j+1): qc.append(qc_Bj_zz_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulation job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim = quantum_info.state_fidelity(psi0, rho_sim) # simulation with simulated noise and error mitigation job_exp = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) mitigated_results = meas_fitter.filter.apply(job_exp.result()) qstf_exp = StateTomographyFitter(mitigated_results, qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp = quantum_info.state_fidelity(psi0, rho_exp) print('th=', th[m], ', ph=', ph[n], ', F_sim=', F_sim, ', F_exp=', F_exp) def qc_Bj_zx(t, th, ph): qc = QuantumCircuit(3, name = 'B_j_zz') qc_ezz_ = qc_ezz(t); qc_eyy_ = qc_eyy(t); qc_exx_ = qc_exx(t) qc.rx(2*th, [1,2]) qc.append(qc_ezz_, [1, 2]); qc.append(qc_eyy_, [1, 2]); qc.append(qc_exx_, [1, 2]) qc.rx(-2*th, [1,2]) qc.rz(2*ph, [0,1]) qc.append(qc_ezz_, [0, 1]); qc.append(qc_eyy_, [0, 1]); qc.append(qc_exx_, [0, 1]) qc.rz(-2*ph, [0,1]) return qc qc_Bj_zx_ = qc_Bj_zx(math.pi, math.pi/3, math.pi/4); qc_Bj_zx_.draw(output='mpl') inha visto essa reprovação mas não me dei por conta que nket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); #ket0, ket1 psi0 = np.kron(ket0, np.kron(ket1, ket1)) # initial state to be used for computing the fidelity t = math.pi j = 6; print('N. of Trotter steps = ', j+1) th_max = 2*math.pi; dth = th_max/16; th = np.arange(0, th_max+dth, dth); dim_th = th.shape[0] ph_max = 2*math.pi; dph = ph_max/16; ph = np.arange(0, ph_max+dph, dph); dim_ph = ph.shape[0] for m in range(0, dim_th): for n in range(0, dim_ph): # quantum circuit qc = QuantumCircuit(7) qc.x([5, 3]) # prepares the initial state qc_Bj_zx_ = qc_Bj_zx(t/(j+1), th[m], ph[n]) for k in range(0, j+1): qc.append(qc_Bj_zx_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulation job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim = quantum_info.state_fidelity(psi0, rho_sim) # simulation with simulated noise and error mitigation job_exp = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) mitigated_results = meas_fitter.filter.apply(job_exp.result()) qstf_exp = StateTomographyFitter(mitigated_results, qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp = quantum_info.state_fidelity(psi0, rho_exp) print('th=', th[m], ', ph=', ph[n], ', F_sim=', F_sim, ', F_exp=', F_exp) def qc_Bj_yx(t, th, ph): qc = QuantumCircuit(3, name = 'B_j_zz') qc_ezz_ = qc_ezz(t); qc_eyy_ = qc_eyy(t); qc_exx_ = qc_exx(t) qc.rx(2*th, [1,2]) qc.append(qc_ezz_, [1, 2]); qc.append(qc_eyy_, [1, 2]); qc.append(qc_exx_, [1, 2]) qc.rx(-2*th, [1,2]) qc.barrier() qc.ry(2*ph, [0,1]) qc.append(qc_ezz_, [0, 1]); qc.append(qc_eyy_, [0, 1]); qc.append(qc_exx_, [0, 1]) qc.ry(-2*ph, [0,1]) return qc qc_Bj_yx_ = qc_Bj_yx(math.pi, math.pi/3, math.pi/4); qc_Bj_yx_.draw(output='mpl') https://arxiv.org/abs/2204.07816ket0 = np.array([[1],[0]]); ket1 = np.array([[0],[1]]); #ket0, ket1 psi0 = np.kron(ket0, np.kron(ket1, ket1)) # initial state to be used for computing the fidelity t = math.pi j = 6; print('N. of Trotter steps = ', j+1) th_max = 2*math.pi; dth = th_max/16; th = np.arange(0, th_max+dth, dth); dim_th = th.shape[0] ph_max = 2*math.pi; dph = ph_max/16; ph = np.arange(0, ph_max+dph, dph); dim_ph = ph.shape[0] for m in range(0, dim_th): for n in range(0, dim_ph): # quantum circuit qc = QuantumCircuit(7) qc.x([5, 3]) # prepares the initial state qc_Bj_yx_ = qc_Bj_yx(t/(j+1), th[m], ph[n]) for k in range(0, j+1): qc.append(qc_Bj_yx_, [5, 3, 1]) qstc = state_tomography_circuits(qc, [5, 3, 1]) # simulation job_sim = execute(qstc, backend = simulator, shots = nshots) qstf_sim = StateTomographyFitter(job_sim.result(), qstc) rho_sim = qstf_sim.fit(method = 'lstsq') F_sim = quantum_info.state_fidelity(psi0, rho_sim) # simulation with simulated noise and error mitigation0.34 job_exp = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model, basis_gates = basis_gates, coupling_map = coupling_map) mitigated_results = meas_fitter.filter.apply(job_exp.result()) qstf_exp = StateTomographyFitter(mitigated_results, qstc) rho_exp = qstf_exp.fit(method = 'lstsq') F_exp = quantum_info.state_fidelity(psi0, rho_exp) print('th=', th[m], ', ph=', ph[n], ', F_sim=', F_sim, ', F_exp=', F_exp) noise_model = NoiseModel.from_backend(device) basis_gates = noise_model.basis_gates coupling_map = device.configuration().coupling_map basis_gates print(coupling_map) 553/3
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
import numpy as np import matplotlib from matplotlib import pyplot as plt import math th = np.arange(0, 2*math.pi, 0.1) prE3 = 2*(1-(math.sqrt(2)*(np.sin(th/2)**2))/(1+math.sqrt(2))) matplotlib.rcParams.update({'font.size':10}) plt.figure(figsize = (5,3), dpi = 100) plt.plot(th, prE3) plt.xlabel(r'$\theta$') plt.ylabel(r'$Pr(E_{3})$') plt.show()
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider= qiskit.IBMQ.get_provider(hub='ibm-q-research-2',group='federal-uni-sant-1',project='main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor from qiskit.quantum_info import state_fidelity cos(pi/8), sin(pi/8) U = (1/sqrt(2))*Matrix([[1,1],[1,-1]]); V1 = Matrix([[1,0],[0,1]]); V2 = V1 D1 = Matrix([[cos(pi/8),0],[0,cos(pi/8)]]); D2 = Matrix([[sin(pi/8),0],[0,sin(pi/8)]]) U, U*U.T, D1, D2 M1 = V1*D1*U; M2 = V2*D2*U; M1, M2 M1*M1, M2*M2, M1*M1 + M2*M2 # não são projetores, mas são operadores de medida 2*float((1/4)*(1+1/sqrt(2))), 2*float((1/4)*(1-1/sqrt(2))) qr = QuantumRegister(2); cr = ClassicalRegister(1); qc = QuantumCircuit(qr, cr) qc.h(qr[0]); qc.x(qr[0]); qc.cry(math.pi/4, 0, 1); qc.x(qr[0]); qc.cry(math.pi/4, 0, 1) # V1=V2=I qc.measure(1,0) qc.draw(output = 'mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp']) def U(xi, et, ga): return Matrix([[(cos(xi)+1j*sin(xi))*cos(ga), (cos(et)+1j*sin(et))*sin(ga)], [-(cos(et)-1j*sin(et))*sin(ga), (cos(xi)-1j*sin(xi))*cos(ga)]]) xi, et, ga = symbols('xi eta gamma'); U(xi, et, ga) def D1(th, ph): return Matrix([[cos(th/2),0],[0,cos(ph/2)]]) def D2(th, ph): return Matrix([[sin(th/2),0],[0,sin(ph/2)]]) th,ph = symbols('theta phi'); D1(th, ph), D2(th, ph) xi1,et1,ga1,xi2,et2,ga2,xi3,et3,ga3 = symbols('xi_1 eta_1 gamma_1 xi_2 eta_2 gamma_2 xi_3 eta_3 gamma_3') simplify(U(xi1,et1,ga1)*D1(th,ph)*U(xi2,et2,ga2) - (1/2)*sqrt(1+1/sqrt(2))*Matrix([[1,1],[1,-1]])) simplify(U(xi3,et3,ga3)*D2(th,ph)*U(xi2,et2,ga2) - (1/2)*sqrt(1+1/sqrt(2))*Matrix([[1,1],[1,-1]])) cos(pi/3), sin(pi/3), cos(2*pi/3), sin(2*pi/3) M1 = sqrt(2/3)*Matrix([[1,0],[0,0]]) M2 = (1/(4*sqrt(6)))*Matrix([[1,sqrt(3)],[sqrt(3),3]]) M3 = (1/(4*sqrt(6)))*Matrix([[1,-sqrt(3)],[-sqrt(3),3]]) M1,M2,M3 M1.T*M1 + M2.T*M2 + M3.T*M3 M1 = sqrt(2/3.)*Matrix([[1,0],[0,0]]); M2 = sqrt(2/3.)*(1/4)*Matrix([[1,sqrt(3.)],[sqrt(3.),3]]) M3 = sqrt(2/3.)*(1/4)*Matrix([[1,-sqrt(3.)],[-sqrt(3.),3]]) M1, M2, M3 M1.T*M1 + M2.T*M2 + M3.T*M3 2/3, 1/6, 2/3+2*(1/6) #th1 = acos(sqrt(2/3)); ph1 = pi; th2 = pi/2; ph2 = pi/2 D11 = Matrix([[sqrt(2/3),0],[0,0]]) D21 = Matrix([[sqrt(1/3),0],[0,1]]) D12 = Matrix([[1/sqrt(2),0],[0,1/sqrt(2)]]) D22 = Matrix([[1/sqrt(2),0],[0,1/sqrt(2)]]) U = Matrix([[1,0],[0,1]]) V11 = Matrix([[1,0],[0,1]]) V21 = (1/sqrt(2))*Matrix([[1,1],[-1,1]]) V12 = (1/2)*Matrix([[1,-sqrt(3)],[sqrt(3),1]]) V22 = -(1/2)*Matrix([[sqrt(3),-1],[1,sqrt(3)]]) M1 = V11*D11*U np.array(M1).astype(np.float64), np.array(Matrix([[sqrt(2/3),0],[0,0]])).astype(np.float64) M2 = V12*D12*V21*D21*U np.array(M2).astype(np.float64), np.array((1/4)*sqrt(2/3)*Matrix([[1,sqrt(3)],[sqrt(3),3]])).astype(np.float64) # não é o resultado que precisamos M3 = V22*D22*V21*D21*U np.array(M3).astype(np.float64), np.array((1/4)*sqrt(2/3)*Matrix([[1,-sqrt(3)],[-sqrt(3),3]])).astype(np.float64) # não é o resultado que precisamos np.array(M1.T*M1 + M2.T*M2 + M3.T*M3).astype(np.float64) # esta ok a relacao de completeza cos(pi/3), sin(pi/3), cos(pi/6) def qc_ry(th): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name = 'RY') qc.ry(th, 0) return qc def qc_u(th,ph,lb): qr = QuantumRegister(1); qc = QuantumCircuit(qr, name = 'U') qc.u(th,ph,lb, 0) return qc qr = QuantumRegister(3); cr = ClassicalRegister(2); qc = QuantumCircuit(qr, cr) # U = I qc.x(qr[0]); qc.cry(math.acos(math.sqrt(2/3)), 0, 1); qc.x(qr[0]); qc.cry(math.pi/2, 0, 1) # V11 = I qc.cu(math.pi/2,math.pi,math.pi,0, 1,0) qc.barrier() qc_ry_ = qc_ry(0); ccry = qc_ry_.to_gate().control(2) # cria a ctrl-ctrl-RY qc.x(0); qc.append(ccry, [0,1,2]); qc.x(0) qc_ry_ = qc_ry(math.pi/2); ccry = qc_ry_.to_gate().control(2) qc.append(ccry, [0,1,2]) # os primeiros sao o controle, os ultimos sao o target qc.x(2) qc_u_ = qc_u(2*math.pi/3,0,0); ccu = qc_u_.to_gate().control(2) qc.append(ccu, [1,2,0]) qc.x(2) qc_u_ = qc_u(4*math.pi/3,0,0); ccu = qc_u_.to_gate().control(2) qc.append(ccu, [1,2,0]) qc.barrier() qc.measure(1,0); qc.measure(2,1) qc.draw(output = 'mpl') qc.decompose().draw(output = 'mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp']) # sequencia: 000 001 010 011 100 101 110 111 = 0 1 2 3 4 5 6 7 Phi_ACD = [math.sqrt(2/3), (1/4)*math.sqrt(2/3), (1/4)*math.sqrt(2/3), 0, 0, (1/4)*math.sqrt(2), -(1/4)*math.sqrt(2), 0] qr = QuantumRegister(3); cr = ClassicalRegister(2); qc = QuantumCircuit(qr,cr) qc.initialize(Phi_ACD, [qr[2],qr[1],qr[0]]) qc.draw(output='mpl') backend = BasicAer.get_backend('statevector_simulator') job = backend.run(transpile(qc, backend)) qc_state = job.result().get_statevector(qc) qc_state sqrt(2/3), 0.25*sqrt(2/3), 0.25*sqrt(2.) state_fidelity(Phi_ACD,qc_state) qc.measure([1,2],[0,1]) qc.draw(output='mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) # tava dando errado o resultado. Me parece que na inicializacao a ordem dos qubits foi trocada plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp']) # sequencia: 000 001 010 011 100 101 110 111 = 0 1 2 3 4 5 6 7 Phi_ACD = [1/math.sqrt(2), 1/(2*math.sqrt(2)), 0, 1/(2*math.sqrt(2)), 0, 1/(2*math.sqrt(2)), 0, -1/(2*math.sqrt(2))] qr = QuantumRegister(3); cr = ClassicalRegister(2); qc = QuantumCircuit(qr,cr) qc.initialize(Phi_ACD, [qr[2],qr[1],qr[0]]) qc.measure([1,2],[0,1]) qc.draw(output='mpl') qc.decompose().decompose().decompose().decompose().decompose().draw(output='mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp']) qr = QuantumRegister(4); cr = ClassicalRegister(3); qc = QuantumCircuit(qr, cr) # U = I qc.x(qr[0]); qc.cry(math.acos(math.sqrt(2/3)), 0, 1); qc.x(qr[0]); qc.cry(math.pi/2, 0, 1) # V11 = I qc.cu(math.pi/2,math.pi,math.pi,0, 1,0) qc.barrier() qc_ry_ = qc_ry(0); ccry = qc_ry_.to_gate().control(2) # cria a ctrl-ctrl-RY qc.x(0); qc.append(ccry, [0,1,2]); qc.x(0) qc_ry_ = qc_ry(math.pi/2); ccry = qc_ry_.to_gate().control(2) qc.append(ccry, [0,1,2]) # os primeiros sao o controle, os ultimos sao o target qc.x(2) qc_u_ = qc_u(2*math.pi/3,0,0); ccu = qc_u_.to_gate().control(2) qc.append(ccu, [1,2,0]) qc.x(2) qc_u_ = qc_u(4*math.pi/3,0,0); ccu = qc_u_.to_gate().control(2) qc.append(ccu, [1,2,0]) qc.barrier() qc_ry_ = qc_ry(math.pi); cccry = qc_ry_.to_gate().control(3) # cria a ctrl-ctrl-ctrl-RY qc.x(0); qc.append(cccry, [0,1,2,3]); qc.x(0) qc_ry_ = qc_ry(math.pi/2); cccry = qc_ry_.to_gate().control(3) qc.append(cccry, [0,1,2,3]) qc_u_ = qc_u(math.pi,0,0); cccu = qc_u_.to_gate().control(3) qc.x(3); qc.append(cccu, [3,2,1,0]); qc.x(3) qc.append(cccu, [3,2,1,0]) qc_u_ = qc_u(math.pi/3,0,0); cccu = qc_u_.to_gate().control(3) qc.barrier() qc.measure(1,0); qc.measure(2,1); qc.measure(3,2) qc.draw(output = 'mpl') qc.decompose().draw(output = 'mpl') %run init.ipynb # 2 element 1-qubit povm (Yordanov) M1 = (1/2)*Matrix([[1,0],[0,sqrt(3)]]); M2 = M1 M1, M2 M1.T*M1 + M2.T*M2 # 3 element 1-qubit povm (Yordanov) M1 = sqrt(2/3)*Matrix([[1,0],[0,0]]) M2 = (1/(4*sqrt(6)))*Matrix([[1,sqrt(3)],[sqrt(3),1]]) M3 = (1/(4*sqrt(6)))*Matrix([[1,-sqrt(3)],[-sqrt(3),1]]) M1,M2,M3 M1.T*M1 + M2.T*M2 + M3.T*M3 # 2-element 1-qubit POVM (Douglas) M1 = (1/(2*sqrt(2)))*Matrix([[1,0],[sqrt(3),2]]) M2 = (1/(2*sqrt(2)))*Matrix([[1,0],[-sqrt(3),2]]) M1,M2 M1.T*M1 + M2.T*M2
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb %run init.ipynb p = symbols('p') Ubf = Matrix([[sqrt(1-p),-sqrt(p),0,0],[0,0,sqrt(p),sqrt(1-p)],[0,0,sqrt(1-p),-sqrt(p)],[sqrt(p),sqrt(1-p),0,0]]) Ubf Ubf*Ubf.T, Ubf.T*Ubf g = symbols('gamma') Uad = Matrix([[sqrt(1-g),0,0,sqrt(g)],[0,1,0,0],[0,0,1,0],[-sqrt(g),0,0,sqrt(1-g)]]) Uad, Uad*Uad.T, Uad.T*Uad
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_bogota') from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram def qc_ent_dist(): qc = QuantumCircuit(2, name = 'E dist') qc.h([1]); qc.cx(1, 0) return qc qc_ent_dist_ = qc_ent_dist() qc_ent_dist_.draw(output = 'mpl') def qc_encoding(cbits): qc = QuantumCircuit(1, name = 'codificação') if cbits == '00': qc.id([0]) elif cbits == '01': qc.z([0]) elif cbits == '10': qc.x([0]) elif cbits == '11': qc.x([0]); qc.z([0]) return qc qc_encoding_ = qc_encoding('11') qc_encoding_.draw(output = 'mpl') def qc_decoding(): qc = QuantumCircuit(2, name = 'decodificação') qc.cx(1, 0); qc.h([1]) return qc qc_decoding_ = qc_decoding(); qc_decoding_.draw(output = 'mpl') cbits = '00' qc = QuantumCircuit(2, 2) qc_ent_dist_ = qc_ent_dist(); qc.append(qc_ent_dist_, [0,1]) qc.barrier() qc_encoding_ = qc_encoding(cbits); qc.append(qc_encoding_, [0]) qc.barrier() qc_decoding_ = qc_decoding(); qc.append(qc_decoding_, [0,1]) qc.measure([0,1],[0,1]) #qc.draw(output = 'mpl') qc.decompose().draw(output = 'mpl') result = execute(qc, backend = simulator, shots = nshots).result() plot_histogram(result.get_counts(qc)) job = execute(qc, backend = device, shots = nshots) job_monitor(job) plot_histogram(job.result().get_counts(qc))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb 1 + cos(2*pi/3) + 1j*sin(2*pi/3) + cos(4*pi/3) + 1j*sin(4*pi/3) 1 + cos(4*pi/3) + 1j*sin(4*pi/3) + cos(8*pi/3) + 1j*sin(8*pi/3) cos(2*pi/3), cos(4*pi/3)
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 qiskit.IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') simulator = Aer.get_backend('qasm_simulator') device = provider.get_backend('ibmq_lima') from qiskit.tools.visualization import plot_histogram from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter from qiskit.tools.monitor import job_monitor, backend_overview, backend_monitor def qc_ent_dist(): qc = QuantumCircuit(2, name = 'E dist') qc.h([0]); qc.cx(0, 1) return qc qc_ent_dist_ = qc_ent_dist(); qc_ent_dist_.draw(output = 'mpl') def qc_bb_cb(): qc = QuantumCircuit(2, name = 'BB->CB') qc.cx(0,1); qc.h(0) return qc qc_bb_cb_ = qc_bb_cb(); qc_bb_cb_.draw(output = 'mpl') def qc_teleport(th, ph, lb): qc = QuantumCircuit(3) qc_ent_dist_ = qc_ent_dist(); qc.append(qc_ent_dist_, [1, 2]) # distribuição de emaranhamento qc.barrier() qc.u(th, ph, lb, [0]) # Preparação do estado a ser teletransportado qc.barrier() qc_bb_cb_ = qc_bb_cb(); qc.append(qc_bb_cb_, [0, 1]) # Base de Bell para base computacional qc.barrier() qc.cx(1, 2); qc.cz(0, 2) # infor clássica + unitária de Bob return qc qc_teleport_ = qc_teleport(0.1, 0.5, 0); qc_teleport_.decompose().draw(output = 'mpl') import numpy as np import math th, ph, lb = 0, 0, 0; rho_teo = np.array([[math.cos(th/2)**2, (math.cos(ph)+1j*math.sin(ph))*math.sin(th/2)*math.cos(th/2)], [(math.cos(ph)+1j*math.sin(ph))*math.sin(th/2)*math.cos(th/2), math.sin(th/2)**2]]) qc_teleport_ = qc_teleport(0.1, 0.5, 0) qstc = state_tomography_circuits(qc_teleport_, [2]) # simulação job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots = nshots) qstf = StateTomographyFitter(job.result(), qstc) rho_sim = qstf.fit(method='lstsq') print('rho_teo = ', rho_teo) print('rho_sim = ', rho_sim) # experimento job = qiskit.execute(qstc, backend = device, shots = nshots) job_monitor(job) qstf = StateTomographyFitter(job.result(), qstc) rho_exp = qstf.fit(method = 'lstsq') print('rho_exp = ', rho_exp) F = qiskit.quantum_info.state_fidelity(rho_teo, rho_exp); print('F = ', F) # variar th em cos(th/2)|0>+exp(i*ph)sin(th/2)|1>
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider= qiskit.IBMQ.get_provider(hub='ibm-q-research-2',group='federal-uni-sant-1',project='main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor from qiskit.quantum_info import state_fidelity
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibm_nairobi') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor, backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram q0 = QuantumRegister(1); q1 = QuantumRegister(1); q2 = QuantumRegister(1); q3 = QuantumRegister(1) c0 = ClassicalRegister(1); c1 = ClassicalRegister(1); c2 = ClassicalRegister(1); c3 = ClassicalRegister(1) qc = QuantumCircuit(q0,q1,q2,q3,c0,c1,c2,c3) # q0 e q1 estao com Alice, q2 com Charlies e q3 com Bob qc.h(q1); qc.cx(q1,q2); qc.cx(q2,q3) # prepara o estado GHZ qc.barrier() #qc.sdg(q0); qc.h(q0) # prepara o estado a ser teletransportado (y+) # prepara o estado |0> qc.barrier() qc.cx(q0,q1); qc.h(q0); qc.measure(q0,c0); qc.measure(q1,c1) # Medida de Alice na base de Bell qc.h(q2); qc.measure(q2,c2) # medida de Charlie na base +,- qc.barrier() qc.z(q3).c_if(c0, 1) # acao de Bob condicionada no 1º cbit enviado por Alice qc.x(q3).c_if(c1, 1) # acao de Bob condicionada no 2º cbit enviado por Alice qc.z(q3).c_if(c2, 1) # acao de Bob condicionada no cbit enviado por Charlie qc.barrier() #qc.sdg(q3); qc.h(q3); qc.measure(q3,c3) # passa da base circular pra computacional qc.measure(q3,c3) # mede na base computacional qc.draw(output='mpl') jobS = execute(qc, backend = simulator, shots = nshots) plot_histogram(jobS.result().get_counts(qc)) jobE = execute(qc, backend = device, shots = nshots) job_monitor(jobE) tqc = transpile(qc, device) jobE = device.run(tqc) job_monitor(jobE) plot_histogram([jobS.result().get_counts(0), jobE.result().get_counts(0)], bar_labels = False, legend = ['sim', 'exp'])
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main') device = provider.get_backend('ibmq_bogota') simulator = Aer.get_backend('qasm_simulator') from qiskit.tools.monitor import job_monitor, backend_overview, backend_monitor from qiskit.tools.visualization import plot_histogram q0 = QuantumRegister(1); q1 = QuantumRegister(1) c0 = ClassicalRegister(1); c1 = ClassicalRegister(1) qc = QuantumCircuit(q0,q1,c0,c1) qc.h(q0); qc.cx(q0,q1) # emaranhamento compartilhado entre Alice e Bob qc.barrier() qc.x(q0); qc.sdg(q0); qc.h(q0); qc.measure(q0,c0) # Medida de Alice qc.barrier() qc.z(q1).c_if(c0, 1) # acao de Bob condicionada no cbit enviado por Alice qc.barrier() qc.sdg(q1); qc.h(q1); qc.measure(q1,c1) # passa da base circular pra computacional qc.draw(output='mpl') jobS = execute(qc, backend = simulator, shots = nshots) plot_histogram(jobS.result().get_counts(qc))
https://github.com/jonasmaziero/computacao_quantica_qiskit
jonasmaziero
%run init.ipynb from qiskit import * nshots = 8192 IBMQ.load_account() provider= qiskit.IBMQ.get_provider(hub='ibm-q-research-2',group='federal-uni-sant-1',project='main') device = provider.get_backend('ibmq_lima') simulator = Aer.get_backend('qasm_simulator') from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor from qiskit.quantum_info import state_fidelity def qc_qft(n): qr = QuantumRegister(n); qc = QuantumCircuit(qr, name = 'QFT') for l in range(0, n): qc.h(qr[l]) if l < n-1: for q in range(l+1, n): lb = 2*math.pi*2**(-q+l-1) qc.cp(lb, qr[q], qr[l]) #qc.barrier() #qc.barrier() if n%2 == 0: ul = n//2 else: ul = (n-1)//2 for p in range(0, ul): qc.swap(p, n-1-p) return qc n = 4; qc_qft_ = qc_qft(n); qc_qft_.draw(output='mpl') def qc_iqft(n): qr = QuantumRegister(n); qc = QuantumCircuit(qr, name = 'IQFT') if n%2 == 0: ul = n//2 else: ul = (n-1)//2 for p in range(ul-1, -1, -1): qc.swap(p, n-1-p) #qc.barrier() for l in range(n-1, -1, -1): if l < n-1: for q in range(n-1, l+1-1, -1): lb = -2*math.pi*2**(-q+l-1)#; print(lb) qc.cp(lb, qr[q], qr[l]) qc.h(qr[l]) #qc.barrier() return qc n = 4; qc_iqft_ = qc_iqft(n); qc_iqft_.draw(output='mpl') #x0 = 1 + 0*1j; x1 = 0 + 0*1j # estado |0> #x0 = 0 + 0*1j; x1 = 1 + 0*1j # estado |1> x0 = 1/math.sqrt(2) + 0*1j; x1 = 1/math.sqrt(2) + 0*1j # estado |+> mx0 = math.sqrt(x0.real**2 + x0.imag**2) if x0.real != 0: ph0 = math.atan(x0.imag/x0.real) elif x0.real == 0 and x0.imag != 0: ph0 = math.pi/2 elif x0.real == 0 and x0.imag == 0: ph0 = 0 mx1 = math.sqrt(x1.real**2 + x1.imag**2) if x1.real != 0: ph1 = math.atan(x1.imag/x1.real) elif x1.real == 0 and x1.imag != 0: ph1 = math.pi/2 elif x1.real == 0 and x1.imag == 0: ph1 = 0 print('|x0|=',mx0,', ph0=', ph0,', |x1|=', mx1,', ph1=', ph1) th = 2*math.acos(mx1); ph = ph1-ph0+math.pi; lb = ph0-math.pi print('th=',th,', ph=', ph,', lb=', lb) n = 1 qr = QuantumRegister(n); qc = QuantumCircuit(qr) qc.x(qr[0]); qc.u(th, ph, lb, qr[0]); qc.barrier() qc_qft_ = qc_qft(n); qft = qc_qft_.to_gate(); qc.append(qft, [0]) qc.draw(output='mpl') svsimulator = Aer.get_backend('statevector_simulator') job = execute(qc, backend = svsimulator, shots = 1, memory = True) print(job.result().get_statevector(qc)) def tfc(x): # classical discrete Fourier transform d = len(x) y = np.zeros(d, dtype = complex) for k in range(0, d): for j in range(0, d): y[k] += x[j]*(math.cos(2*math.pi*j*k/d) + 1j*math.sin(2*math.pi*j*k/d)) return y/math.sqrt(d) d = 4; x = np.zeros(d, dtype = complex); #x = [1/2, 1/2, 1/2, 1/2] x = [-1/2, -1/2, 1/2, 1/2] y = tfc(x); print(y) n = 2 qr = QuantumRegister(n); qc = QuantumCircuit(qr) #qc.h([0,1]); qc.barrier() # ok qc.x([0]); qc.h([0,1]); qc.barrier() # ok a menos de uma fase global de pi qc_qft_ = qc_qft(n); qft = qc_qft_.to_gate(); qc.append(qft, [0,1]) qc.draw(output='mpl') svsimulator = Aer.get_backend('statevector_simulator') job = execute(qc, backend = svsimulator, shots = 1, memory = True) print(job.result().get_statevector(qc)) # para >1 qubit tem a questao da ordem da bc d = 4; x = np.zeros(d, dtype = complex); x = [math.sqrt(1/6), math.sqrt(1/6), math.sqrt(2/3), 0] y = tfc(x); print(y) n = 3 qr = QuantumRegister(n); cr = ClassicalRegister(n); qc = QuantumCircuit(qr, cr) qc.x([0,2]); qc.barrier() qc_qft_ = qc_qft(n); qft = qc_qft_.to_gate(); qc.append(qft, [0,1,2]); qc.barrier() qc_iqft_ = qc_iqft(n); iqft = qc_iqft_.to_gate(); qc.append(iqft, [0,1,2]); qc.barrier() qc.measure([0,1,2],[0,1,2]) qc.draw(output='mpl') job_sim = execute(qc, backend = simulator, shots = nshots) job_exp = execute(qc, backend = device, shots = nshots) job_monitor(job_exp) plot_histogram([job_sim.result().get_counts(), job_exp.result().get_counts()], legend = ['sim', 'exp'])