repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/daimurat/qiskit-implementation
daimurat
!pip install qulacs from qulacs import QuantumState,QuantumCircuit, Observable, PauliOperator from qulacs.gate import X,Z,RX,RY,RZ,CNOT,merge,DenseMatrix,add from qulacs.state import inner_product import matplotlib.pyplot as plt import numpy as np %matplotlib inline # 量子ビットの数 nqubits = 4 # ダイナミクスをシミュレーションする時間 t = 10 # トロッター分解の分割数 M = 1000 # 時間の刻み幅 delta = t/M ## 横磁場の強さ h = 1000 ## 初期状態(nquibitsに合わせて変更) state = QuantumState(nqubits) initial_states = [0b0000, 0b1101, 0b1010] ## 全磁化に対応するオブザーバブルを準備しておく magnetization_obs = Observable(nqubits) for i in range(nqubits): magnetization_obs.add_operator(PauliOperator("Z "+str(i), 1.0/nqubits)) ## 時間と磁化を記録するリスト x = [i*delta for i in range(M+1)] ylist = [] # トロッター分解の1回分、 # e^{iZ_1Z_2*delta}*e^{iZ_2Z_3*delta}*...e^{iZ_nZ_1*delta} * e^{i X_1*delta}*...*e^{i X_n*delta} を量子ゲートに変換 circuit_trotter_transIsing = QuantumCircuit(nqubits) for i in range(nqubits): circuit_trotter_transIsing.add_CNOT_gate(i,(i+1)%(nqubits)) circuit_trotter_transIsing.add_RZ_gate((i+1)%nqubits,-2*delta) circuit_trotter_transIsing.add_CNOT_gate(i,(i+1)%(nqubits)) circuit_trotter_transIsing.add_RX_gate(i, -2*delta*h) for i in range(len(initial_states)): y = [] state.set_computational_basis(initial_states[i]) #t=0の時の全磁化のみ先に計算 y.append( magnetization_obs.get_expectation_value(state) ) #t=0以降の全磁化を計算 for i in range(M): # delta=t/Mだけ時間発展 circuit_trotter_transIsing.update_quantum_state(state) # 磁化を計算して記録 y.append(magnetization_obs.get_expectation_value(state)) ylist.append(y) #グラフの描画 plt.xlabel("time") plt.ylabel("Value of magnetization") plt.title("Dynamics of Ising model") plt.ylim(-1.1, 1.1) for i in range(len(initial_states)): plt.plot(x, ylist[i], "-",label=bin(initial_states[i])[2:].ljust(nqubits, '0')) plt.legend() plt.show() ## 初期状態 state_trotter = QuantumState(nqubits) state_trotter.set_computational_basis(initial_states[0]) state_exact = QuantumState(nqubits) state_exact.set_computational_basis(initial_states[0]) # トロッター分解の1回分、 # e^{iZ_1Z_2*delta}*e^{iZ_2Z_3*delta}*...e^{iZ_nZ_1*delta} * e^{i X_1*delta}*...*e^{i X_n*delta} を量子ゲートに変換 circuit_trotter_transIsing = QuantumCircuit(nqubits) for i in range(nqubits): circuit_trotter_transIsing.add_CNOT_gate(i,(i+1)%(nqubits)) circuit_trotter_transIsing.add_RZ_gate((i+1)%nqubits,-2*delta) ## RZ(a)=exp(i*a/2*Z)に注意 circuit_trotter_transIsing.add_CNOT_gate(i,(i+1)%(nqubits)) circuit_trotter_transIsing.add_RX_gate(i, -2*delta*h) ## RX(a)=exp(i*a/2*X)に注意 # e^{-iHt}を直接対角化する。Hの行列表現を得るために、gateを生成してそのmatrixを取得する zz_matrix = -np.array([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]]) ## Z_i*Z_{i+1}の行列表示 hx_matrix = -h*np.array( [ [0,1], [1,0] ] ) zz = DenseMatrix([0,1], zz_matrix) ## 0~1間の相互作用 hx = DenseMatrix(0, hx_matrix) ## 0サイトへの横磁場 ## qulacs.gate.addを用いて、1以降のサイトの相互作用と横磁場を足していく for i in range(1, nqubits): zz = add(zz, DenseMatrix([i,(i+1)%nqubits], zz_matrix)) hx = add(hx, DenseMatrix(i, hx_matrix) ) ## 最終的なハミルトニアン ham = add(zz, hx) matrix = ham.get_matrix() #行列の取得 eigenvalue, P = np.linalg.eigh(np.array(matrix)) #取得した行列の固有値、固有ベクトルを取得 ## e^{-i*H*delta}を行列として作る e_iHdelta = np.diag(np.exp(-1.0j*eigenvalue*delta)) e_iHdelta = np.dot(P, np.dot(e_iHdelta, P.T)) ## 回路に変換 circuit_exact_transIsing = QuantumCircuit(nqubits) circuit_exact_transIsing.add_dense_matrix_gate( np.arange(nqubits), e_iHdelta) ## 時間と磁化を記録するリスト x = [i*delta for i in range(M+1)] y_trotter = [] y_exact = [] #t=0の時の全磁化のみ先に計算 y_trotter.append( magnetization_obs.get_expectation_value(state_trotter) ) y_exact.append( magnetization_obs.get_expectation_value(state_exact) ) #t=0以降の全磁化を計算 for i in range(M): # delta=t/Mだけ時間発展 circuit_trotter_transIsing.update_quantum_state(state_trotter) circuit_exact_transIsing.update_quantum_state(state_exact) # 磁化を計算して記録 y_trotter.append( magnetization_obs.get_expectation_value(state_trotter) ) y_exact.append( magnetization_obs.get_expectation_value(state_exact) ) #グラフの描画 plt.xlabel("time") plt.ylabel("Value of magnetization") plt.title("Dynamics of transverse Ising model") plt.plot(x, y_trotter, "-", label="Trotter") plt.plot(x, y_exact, "-", label="exact") plt.ylim(-1.1, 1.1) plt.legend() plt.show() #エラーの描画 plt.xlabel("time") plt.ylabel("Value of magnetization") plt.title("Error") plt.plot(x, np.abs(np.array(y_trotter) - np.array(y_exact)), "-", label="Trotter") plt.legend() plt.show()
https://github.com/daimurat/qiskit-implementation
daimurat
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/daimurat/qiskit-implementation
daimurat
from qiskit import Aer from qiskit.circuit.library import QFT from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.quantum_info import state_fidelity from qiskit.aqua.algorithms import HHL, NumPyLSsolver from qiskit.aqua.components.eigs import EigsQPE from qiskit.aqua.components.reciprocals import LookupRotation from qiskit.aqua.operators import MatrixOperator from qiskit.aqua.components.initial_states import Custom import numpy as np def create_eigs(matrix, num_ancillae, num_time_slices, negative_evals): ne_qfts = [None, None] if negative_evals: num_ancillae += 1 # The QFT and IQFT circuits for handling negative eigenvalues ne_qfts = [QFT(num_ancillae - 1), QFT(num_ancillae - 1).inverse()] """ Specifically, this class is based on PhaseEstimationCircuit with no measurements and has additional handling of negative eigenvalues """ return EigsQPE(MatrixOperator(matrix=matrix), QFT(num_ancillae).inverse(), num_time_slices=num_time_slices, num_ancillae=num_ancillae, expansion_mode='suzuki', expansion_order=2, evo_time=None, # This is t, can set to: np.pi*3/4 negative_evals=negative_evals, ne_qfts=ne_qfts) # 信頼度 def fidelity(hhl, ref): solution_hhl_normed = hhl / np.linalg.norm(hhl) solution_ref_normed = ref / np.linalg.norm(ref) fidelity = state_fidelity(solution_hhl_normed, solution_ref_normed) print("Fidelity:\t\t %f" % fidelity) matrix = [[1, -1/3], [-1/3, 1]] vector = [1, 0] orig_size = len(vector) # 行列Aがハミルトニアンでない場合はtrancate_hermitian利用 matrix, vector, truncate_powerdim, truncate_hermitian = HHL.matrix_resize(matrix, vector) # Initialize eigenvalue finding module eigs = create_eigs(matrix, 3, 50, False) num_q, num_a = eigs.get_register_sizes() # Initialize initial state module init_state = Custom(num_q, state_vector=vector) # Initialize reciprocal rotation module reci = LookupRotation(negative_evals=eigs._negative_evals, evo_time=eigs._evo_time) """ Args: matrix: The input matrix of linear system of equations vector: The input vector of linear system of equations truncate_powerdim: Flag indicating expansion to 2**n matrix to be truncated truncate_hermitian: Flag indicating expansion to hermitian matrix to be truncated eigs: The eigenvalue estimation instance init_state: The initial quantum state preparation reciprocal: The eigenvalue reciprocal and controlled rotation instance num_q: Number of qubits required for the matrix Operator instance num_a: Number of ancillary qubits for Eigenvalues instance orig_size: The original dimension of the problem (if truncate_powerdim) quantum_instance: Quantum Instance or Backend """ algo = HHL(matrix, vector, truncate_powerdim, truncate_hermitian, eigs, init_state, reci, num_q, num_a, orig_size) result = algo.run(QuantumInstance(Aer.get_backend('statevector_simulator'))) print("Solution:\t\t", np.round(result['solution'], 5)) result_ref = NumPyLSsolver(matrix, vector).run() print("Classical Solution:\t", np.round(result_ref['solution'], 5)) print("Probability:\t\t %f" % result['probability_result']) fidelity(result['solution'], result_ref['solution']) algo = HHL(matrix, vector)
https://github.com/daimurat/qiskit-implementation
daimurat
# Import requisite modules import math import operator import logging import traceback import datetime import sys import numpy as np import matplotlib.pyplot as plt %matplotlib inline # Import Qiskit packages import qiskit from qiskit import Aer from qiskit.circuit.library import TwoLocal from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import VQE, QAOA, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import COBYLA # setup aqua logging from qiskit.aqua._logging import set_logging_config, build_logging_config # set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log # The data providers of stock-market data from qiskit.finance.data_providers import * from qiskit.finance.applications.ising import portfolio_diversification # Generate a pairwise time-series similarity matrix n = 3 stocks = [("TICKER%s" % i) for i in range(n)] ## if loading fails, a constant matrix instead # rho = np.ones((n,n)) # rho[0,1] = 0.8 # rho[1,0] = 0.8 data = RandomDataProvider(tickers = stocks, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,30)) data.run() rho = data.get_similarity_matrix() # using dynamic time warping # Actually, we consider the additive inverse to invert the direction of optimisation. rho = -1 * rho plt.imshow(rho) plt.show() print(rho) print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(data._tickers): plt.plot(data._data[cnt], label=s) plt.legend() plt.show() q = 1 # q less or equal than n class ClassicalOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n # number of inner variables self.q = q # number of required selection def compute_allowed_combinations(self): f = math.factorial return int(f(self.n) / f(self.q) / f(self.n - self.q)) def cplex_solution(self): # refactoring rho = self.rho n = self.n q = self.q my_obj = list(rho.reshape(1, n ** 2)[0]) + [0. for x in range(0, n)] my_ub = [1 for x in range(0, n ** 2 + n)] my_lb = [0 for x in range(0, n ** 2 + n)] my_ctype = "".join(['I' for x in range(0, n ** 2 + n)]) my_rhs = [q] + [1 for x in range (0, n)] +[0 for x in range (0, n)] + [0.1 for x in range(0, n ** 2)] my_sense = "".join(['E' for x in range(0, 1+n)]) + "".join(['E' for x in range(0, n)]) + "".join( ['L' for x in range(0, n ** 2)]) try: my_prob = cplex.Cplex() self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs) my_prob.solve() except CplexError as exc: print(exc) return x = my_prob.solution.get_values() x = np.array(x) cost = my_prob.solution.get_objective_value() return x, cost def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs): n = self.n prob.objective.set_sense(prob.objective.sense.minimize) prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype) prob.set_log_stream(None) prob.set_error_stream(None) prob.set_warning_stream(None) prob.set_results_stream(None) rows = [] col = [x for x in range(n**2, n**2+n)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [x for x in range(0+n*ii, n+n*ii)] coef = [1 for x in range(0, n)] rows.append([col, coef]) for ii in range(0, n): col = [ii * n + ii, n ** 2 + ii] coef = [1, -1] rows.append([col, coef]) for ii in range(0, n): for jj in range(0, n): col = [ii*n + jj, n ** 2 + jj] coef = [1, -1] rows.append([col, coef]) prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs) # Instantiate the classical optimizer class classical_optimizer = ClassicalOptimizer(rho, n, q) # Compute the number of feasible solutions: print('Number of feasible combinations= ' + str(classical_optimizer.compute_allowed_combinations())) # Compute the total number of possible combinations (feasible + unfeasible) print('Total number of combinations= ' + str(2 ** (n*(n+1)))) # Visualize the solution def visualize_solution(xc, yc, x, C, n, K, title_str): plt.figure() # 各銘柄の座標 plt.scatter(xc, yc, s=200) for i in range(len(xc)): plt.annotate(i, (xc[i] + 0.015, yc[i]), size=16, color='r') plt.grid() # y_j : which stocks j are in the index fund for ii in range(n ** 2, n **2 + n): if x[ii] > 0: # plot coordinate of the stocks in the index fund plt.plot(xc[ii-n**2], yc[ii-n**2], 'r*', ms=20) # x_ij for ii in range(0, n ** 2): if x[ii] > 0: iy = ii // n # i ix = ii % n # j plt.plot([xc[ix], xc[iy]], [yc[ix], yc[iy]], 'C2') plt.title(title_str +' cost = ' + str(int(C * 100) / 100.)) plt.show() from qiskit.aqua.operators import StateFn class QuantumOptimizer: def __init__(self, rho, n, q): self.rho = rho self.n = n self.q = q # Obtains the least eigenvalue of the Hamiltonian classically def exact_solution(self): qubitOp = portfolio_diversification.get_operator(self.rho, self.n, self.q) result = NumPyMinimumEigensolver(qubitOp).run() return self.decode_result(result) def vqe_solution(self): qubitOp = portfolio_diversification.get_operator(self.rho, self.n, self.q) backend = Aer.get_backend('statevector_simulator') seed = 50 cobyla = COBYLA() cobyla.set_options(maxiter=250) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='full') vqe = VQE(qubitOp, ry, cobyla) vqe.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) result = vqe.run(quantum_instance) return self.decode_result(result) def qaoa_solution(self): qubitOp = portfolio_diversification.get_operator(self.rho, self.n, self.q) backend = Aer.get_backend('statevector_simulator') seed = 50 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa = QAOA(qubitOp, cobyla, 3, 'matrix') qaoa.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) result = qaoa.run(quantum_instance) return self.decode_result(result) def get_portfoliodiversification_solution(self, n, result): v = result.eigenstate if isinstance(v, StateFn): v = v.to_matrix() N = n ** 2 + n index_value = [x for x in range(len(v)) if v[x] == max(v)][0] string_value = "{0:b}".format(index_value) while len(string_value) < N: string_value = '0' + string_value x_state = list() for elements in string_value: if elements == '0': x_state.append(0) else: x_state.append(1) x_state = np.flip(x_state, axis=0) return x_state def decode_result(self, result, offset = 0): quantum_solution = self.get_portfoliodiversification_solution(self.n, result) ground_level = portfolio_diversification.get_portfoliodiversification_value(self.rho, self.n, self.q, quantum_solution) return quantum_solution, ground_level # Instantiate the quantum optimizer class with parameters: quantum_optimizer = QuantumOptimizer(rho, n, q) # Check if the binary representation is correct. This requires CPLEX try: import cplex #warnings.filterwarnings('ignore') quantum_solution, quantum_cost = quantum_optimizer.exact_solution() classical_solution, classical_cost = classical_optimizer.cplex_solution() print(quantum_cost, classical_cost) if np.abs(quantum_cost - classical_cost) < 0.01: print('Binary formulation is correct') else: print('Error in the formulation of the Hamiltonian') except Exception as ex: print(ex) ground_state, ground_level = quantum_optimizer.exact_solution() print(ground_state, ground_level) try: if np.abs(ground_level - classical_cost)<0.01: print('Ising Hamiltonian in Z basis is correct') else: print('Error in the Ising Hamiltonian formulation') except Exception as ex: print(ex) vqe_state, vqe_level = quantum_optimizer.vqe_solution() print(vqe_state, vqe_level) try: if np.linalg.norm(ground_state - vqe_state)<0.01: print('VQE produces the same solution as the exact eigensolver.') else: print('VQE does not produce the same solution as the exact eigensolver, but that is to be expected.') except Exception as ex: print(ex) # qaoa_state, qaoa_level = quantum_optimizer.qaoa_solution() # print(qaoa_state) # try: # if np.linalg.norm(ground_state - qaoa_state)<0.01: # print('QAOA produces the same solution as the exact eigensolver.') # else: print('QAOA does not produce the same solution as the exact eigensolver, but that is to be expected.') # except Exception as ex: # print(ex) xc, yc = data.get_coordinates() # generate random coordinate visualize_solution(xc, yc, ground_state, ground_level, n, q, 'Classical') visualize_solution(xc, yc, vqe_state, vqe_level, n, q, 'VQE')
https://github.com/daimurat/qiskit-implementation
daimurat
from qiskit import Aer from qiskit.circuit.library import TwoLocal from qiskit.aqua import QuantumInstance from qiskit.finance import QiskitFinanceError from qiskit.finance.applications.ising import portfolio from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.finance.data_providers import * from qiskit.aqua.algorithms import VQE, QAOA, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import COBYLA import numpy as np import matplotlib.pyplot as plt %matplotlib inline import datetime import pandas as pd import pandas_datareader.data as web from pandas.plotting import register_matplotlib_converters import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) register_matplotlib_converters() # set number of assets (= number of qubits) num_assets = 4 # # Generate expected return and covariance matrix from (random) time-series # stocks = [("TICKER%s" % i) for i in range(num_assets)] # data = RandomDataProvider(tickers=stocks, # start=datetime.datetime(2016,1,1), # end=datetime.datetime(2016,1,30)) # data.run() # mu = data.get_period_return_mean_vector() # 平均期待リターン # sigma = data.get_period_return_covariance_matrix() # 共分散行列 # print(mu) # print(sigma) # print("The underlying evolution of stock prices:") # for (cnt, s) in enumerate(data._tickers): # plt.plot(data._data[cnt], label=s) # plt.legend() # plt.xticks(rotation=90) # plt.show() # for (cnt, s) in enumerate(data._tickers): # time_data = [(data._data[cnt][i] - data._data[cnt][i-1])/data._data[cnt][i-1] for i in range(1, len(data._data[cnt]))] # print(sum(time_data)/len(data._data[cnt])) stocks = ["GOOG", "AAPL", "FB", "AMZN"] token = "" # API KEYを入れる try: wiki = WikipediaDataProvider( token = token, tickers = stocks, start = datetime.datetime(2016,1,1), end = datetime.datetime(2016,1,30)) wiki.run() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") if wiki._data: if wiki._n <= 1: print("Not enough wiki data to plot covariance or time-series similarity. Please use at least two tickers.") else: mu = wiki.get_period_return_mean_vector() print("A return mean vector:") print(mu) sigma = wiki.get_covariance_matrix() print("A covariance matrix:") print(sigma) plt.imshow(sigma) plt.show() else: print('No wiki data loaded.') if wiki._data: fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 6)) print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): axis = 0 if s in ("GOOG","AMZN") else 1 wiki._data[cnt].plot(ax=axes[axis], label=s, legend=True) else: print('No wiki data loaded.') q = 0.5 # set risk factor budget = num_assets // 2 # set budget (the number of assets to be selected out of n) penalty = num_assets # set parameter to scale the budget penalty term qubitOp, offset = portfolio.get_operator(mu, sigma, q, budget, penalty) def index_to_selection(i, num_assets): s = "{0:b}".format(i).rjust(num_assets) x = np.array([1 if s[i]=='1' else 0 for i in reversed(range(num_assets))]) return x def print_result(result): selection = sample_most_likely(result.eigenstate) value = portfolio.portfolio_value(selection, mu, sigma, q, budget, penalty) np.set_printoptions(formatter={'float': '{:.4f}'.format}) print('Optimal: selection {}, value {}'.format(selection, value)) eigenvector = result.eigenstate if isinstance(result.eigenstate, np.ndarray) else result.eigenstate.to_matrix() probabilities = np.abs(eigenvector)**2 i_sorted = reversed(np.argsort(probabilities)) print('\n----------------- Full result ---------------------') print('selection\tvalue\t\tprobability') print('---------------------------------------------------') for i in i_sorted: x = index_to_selection(i, num_assets) value = portfolio.portfolio_value(x, mu, sigma, q, budget, penalty) probability = probabilities[i] print('%10s\t%.4f\t\t%.4f' %(x, value, probability)) exact_eigensolver = NumPyMinimumEigensolver(qubitOp) result_classical = exact_eigensolver.run() print_result(result_classical) backend = Aer.get_backend('statevector_simulator') seed = 50 cobyla = COBYLA() cobyla.set_options(maxiter=500) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=3, entanglement='full') vqe = VQE(qubitOp, ry, cobyla) vqe.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) result_vqe = vqe.run(quantum_instance) print_result(result_vqe) backend = Aer.get_backend('statevector_simulator') seed = 50 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa = QAOA(qubitOp, cobyla, 3) qaoa.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) result_qaoa = qaoa.run(quantum_instance) print_result(result_qaoa) try: wiki = WikipediaDataProvider( token = token, tickers = stocks, start = datetime.datetime(2016,1,31), end = datetime.datetime(2016,12,31)) wiki.run() except QiskitFinanceError as ex: print(ex) print("Error retrieving data.") if wiki._data: fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 6)) print("The underlying evolution of stock prices:") for (cnt, s) in enumerate(stocks): axis = 0 if s in ("GOOG","AMZN") else 1 wiki._data[cnt].plot(ax=axes[axis], label=s, legend=True) else: print('No wiki data loaded.') selection_classical = sample_most_likely(result_classical.eigenstate) selection_vqe = sample_most_likely(result_vqe.eigenstate) selection_qaoa = sample_most_likely(result_qaoa.eigenstate) selection_cheat = [0,0,0,1] selection_all = {'classical':selection_classical, 'VQE':selection_vqe, 'QAOA':selection_qaoa, 'cheat':selection_cheat} if wiki._data: print("back test") for label, selection in selection_all.items(): total_price = 0 initial_price = 0 for (cnt, s) in enumerate(stocks): if selection[cnt] == 1: total_price += wiki._data[cnt] initial_price += wiki._data[cnt][0] plt.plot(total_price/initial_price, label=label) plt.legend() plt.xticks(rotation=90) plt.show() else: print('No wiki data loaded.')
https://github.com/daimurat/qiskit-implementation
daimurat
# データ取得に必要なpandas, pandas_datareaderのインストール !pip install pandas pandas_datareader import numpy as np import pandas as pd import pandas_datareader.data as web import datetime import matplotlib.pyplot as plt from qiskit import Aer from qiskit.circuit.library import QFT from qiskit.aqua import QuantumInstance, aqua_globals from qiskit.quantum_info import state_fidelity from qiskit.aqua.algorithms import HHL, NumPyLSsolver from qiskit.aqua.components.eigs import EigsQPE from qiskit.aqua.components.reciprocals import LookupRotation from qiskit.aqua.operators import MatrixOperator from qiskit.aqua.components.initial_states import Custom # 銘柄選択 codes = ["GOOG", 'AAPL', 'FB', 'AMZN'] # GAFA # 2017年の1年間のデータを使用 start = datetime.datetime(2017, 1, 1) end = datetime.datetime(2017, 12, 31) # Yahoo! Financeから日次の株価データを取得 data = web.DataReader(codes, 'yahoo', start, end) df = data['Adj Close'] ## 直近のデータの表示 display(df.tail()) ## 株価をプロットしてみる fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 6)) df.loc[:,['AAPL', 'FB']].plot(ax=axes[0]) df.loc[:,['GOOG', 'AMZN']].plot(ax=axes[1]) daily_return = df.pct_change() display(daily_return.tail()) expected_return = daily_return.dropna(how='all').mean() * 252 # 年率換算のため年間の営業日数252を掛ける print(expected_return) cov = daily_return.dropna(how='all').cov() * 252 # 年率換算のため display(cov) R = expected_return.values Pi = np.ones(4) S = cov.values row1 = np.append(np.zeros(2), R).reshape(1,-1) row2 = np.append(np.zeros(2), Pi).reshape(1,-1) row3 = np.concatenate([R.reshape(-1,1), Pi.reshape(-1,1), S], axis=1) W = np.concatenate([row1, row2, row3]) np.set_printoptions(linewidth=200) print(W) mu = 0.1 # ポートフォリオのリターン xi = 1.0 mu_xi_0 = np.append(np.array([mu, xi]), np.zeros_like(R)) print(mu_xi_0) matrix, vector, truncate_powerdim, truncate_hermitian = HHL.matrix_resize(W, mu_xi_0) # 2**3=8次元の行列になっているか確認 print(matrix) def create_eigs(matrix, num_ancillae, num_time_slices, negative_evals): ne_qfts = [None, None] if negative_evals: num_ancillae += 1 # The QFT and IQFT circuits for handling negative eigenvalues ne_qfts = [QFT(num_ancillae - 1), QFT(num_ancillae - 1).inverse()] """ Specifically, this class is based on PhaseEstimationCircuit with no measurements and has additional handling of negative eigenvalues """ return EigsQPE(MatrixOperator(matrix=matrix), # The Hamiltonian Operator object QFT(num_ancillae).inverse(), num_time_slices=num_time_slices, num_ancillae=num_ancillae, expansion_mode='trotter', expansion_order=2, # The suzuki expansion order, has a minimum value of 1 evo_time=None, # This is t, can set to: np.pi*3/4 negative_evals=negative_evals, # Set True to indicate negative eigenvalues need to be handled ne_qfts=ne_qfts) # 扱う問題の次元 orig_size = len(vector) # 固有値探索の初期化 eigs = create_eigs(matrix, 7, 50, True) num_q, num_a = eigs.get_register_sizes() # 制御回転の初期化 c = 0.5*(2 * np.pi * (1. / 2**(num_a) )) reci = LookupRotation(scale=c, negative_evals=eigs._negative_evals, evo_time=eigs._evo_time) # 初期状態の設定 init_state = Custom(num_q, state_vector=vector) algo = HHL( matrix, vector, truncate_powerdim, truncate_hermitian, eigs, # The eigenvalue estimation instance init_state, # The initial quantum state preparation reci, # The eigenvalue reciprocal and controlled rotation instance num_q, # Number of qubits required for the matrix Operator instance num_a, # Number of ancillary qubits for Eigenvalues instance orig_size # The original dimension of the problem (if truncate_powerdim) ) ## 結果 x_HHL = algo.run(QuantumInstance(Aer.get_backend('statevector_simulator'))) ## 厳密解 # x_exact = np.linalg.lstsq(matrix, vector, rcond=0)[0] x_exact = NumPyLSsolver(matrix, vector).run() # 解の信頼度を求める def fidelity(hhl, ref): solution_hhl_normed = hhl / np.linalg.norm(hhl) solution_ref_normed = ref / np.linalg.norm(ref) fidelity = state_fidelity(solution_hhl_normed, solution_ref_normed) print("Fidelity:\t\t %f" % fidelity) fidelity(x_HHL.solution, x_exact.solution) # the number of qubits required print("circuit_width:\t", x_HHL['circuit_info']['width']) # the maximum number of gates print("circuit_depth:\t", x_HHL['circuit_info']['depth']) # To verify whether running the circuit on current real hardware is feasible print("CNOT gates:\t", x_HHL['circuit_info']['operations']['cx']) w_opt_HHL = x_HHL.solution[2:6] w_opt_exact = x_exact.solution[2:6] w_opt = pd.DataFrame(np.vstack([w_opt_exact, w_opt_HHL]).T, index=df.columns, columns=['exact', 'HHL']) w_opt w_opt.plot.bar() # 2018年の1年間のデータを使用 start = datetime.datetime(2017, 12, 30) end = datetime.datetime(2018, 12, 31) # Yahoo! Financeから日次の株価データを取得 data = web.DataReader(codes, 'yahoo', start, end) df2018 = data['Adj Close'] display(df2018.tail()) ## 株価をプロットしてみる fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 6)) df2018.loc[:,['AAPL', 'FB']].plot(ax=axes[0]) df2018.loc[:,['GOOG', 'AMZN']].plot(ax=axes[1]) # ポートフォリオの資産価値の推移 pf_value = df2018.dot(w_opt) pf_value.head() # exact と HHLで初期金額が異なることがありうるので、期初の値で規格化したリターンをみる。 pf_value.exact = pf_value.exact / pf_value.exact[0] pf_value.HHL = pf_value.HHL / pf_value.HHL[0] print(pf_value.tail()) pf_value.plot(figsize=(9, 6)) pf_value.pct_change().std() * np.sqrt(252) ## 年率換算
https://github.com/daimurat/qiskit-implementation
daimurat
from qiskit import * from qiskit import Aer from qiskit.aqua.operators import StateFn from qiskit.circuit import Parameter, QuantumCircuit from qiskit.quantum_info import Operator from functools import reduce import matplotlib.pyplot as plt import numpy as np %matplotlib inline ######## パラメータ ############# nqubit = 3 ## qubitの数 c_depth = 3 ## circuitの深さ # 横磁場イジングモデルのパラメーター time_step = 0.77 ## ランダムハミルトニアンによる時間発展の経過時間 h = 3 # 外部磁場 #### 教師データを準備 ## [x_min, x_max]でランダムにnum_x_train個の点を生成 x_min = - 1.; x_max = 1.; num_x_train = 50 ## 学習したい1変数関数 func_to_learn = lambda x: np.sin(x*np.pi) random_seed = 0 ## 乱数のシード np.random.seed(random_seed) ## 乱数発生器の初期化 x_train = x_min + (x_max - x_min) * np.random.rand(num_x_train) y_train = func_to_learn(x_train) # 現実のデータを用いる場合を想定しノイズを付加 mag_noise = 0.05 y_train = y_train + mag_noise * np.random.randn(num_x_train) plt.plot(x_train, y_train, "o"); plt.show() # 初期状態の準備 q = QuantumCircuit(nqubit) backend = Aer.get_backend('statevector_simulator') result = execute(q, backend).result().get_statevector(q, decimals=3) print(result) # xをエンコード def U_in(x): U = QuantumCircuit(nqubit) angle_y = np.arcsin(x) angle_z = np.arccos(x**2) for i in range(nqubit): U.ry(angle_y, i) U.rz(angle_z, i) return U ## 基本ゲート backend = Aer.get_backend('unitary_simulator') I_mat = np.eye(2, dtype=complex) q = QuantumCircuit(1) q.x(0) job = execute(q, backend) X_mat = job.result().get_unitary(q, decimals=3) q = QuantumCircuit(1) q.z(0) job = execute(q, backend) Z_mat = job.result().get_unitary(q, decimals=3) ##### quantum native dojoから引用 ##### ## fullsizeのgateをつくる関数. def make_fullgate(list_SiteAndOperator, nqubit): ''' list_SiteAndOperator = [ [i_0, O_0], [i_1, O_1], ...] を受け取り, 関係ないqubitにIdentityを挿入して I(0) * ... * O_0(i_0) * ... * O_1(i_1) ... という(2**nqubit, 2**nqubit)行列をつくる. ''' list_Site = [SiteAndOperator[0] for SiteAndOperator in list_SiteAndOperator] list_SingleGates = [] ## 1-qubit gateを並べてnp.kronでreduceする cnt = 0 for i in range(nqubit): if (i in list_Site): list_SingleGates.append( list_SiteAndOperator[cnt][1] ) cnt += 1 else: ## 何もないsiteはidentity list_SingleGates.append(I_mat) return reduce(np.kron, list_SingleGates) ##### quantum native dojoから引用 ##### ham = np.zeros((2**nqubit,2**nqubit), dtype = complex) for i in range(nqubit): ## i runs 0 to nqubit-1 Jx = -1. + 2.*np.random.rand() ## -1~1の乱数 ham += Jx * make_fullgate( [ [i, X_mat] ], nqubit) for j in range(i+1, nqubit): J_ij = -1. + 2.*np.random.rand() ham += J_ij * make_fullgate ([ [i, Z_mat], [j, Z_mat]], nqubit) ## 対角化して時間発展演算子をつくる. H*P = P*D <-> H = P*D*P^dagger diag, eigen_vecs = np.linalg.eigh(ham) time_evol_op = np.dot(np.dot(eigen_vecs, np.diag(np.exp(-1j*time_step*diag))), eigen_vecs.T.conj()) # e^-iHT ## 時間発展演算子が2**3=8次の行列であることを確認 time_evol_op.shape ## 変分量子回路U(\theta)の構築 def U_out(param_list): qc = QuantumCircuit(nqubit) for d in range(c_depth): # 時間発展演算子を回路に組み込む qc.unitary(Operator(time_evol_op), range(nqubit), label="time_evol") # パラメーター回転ゲートを導入 for i in range(nqubit): qc.rx(-2*param_list[3*i], i) qc.rz(-2*param_list[3*i+1], i) qc.rx(-2*param_list[3*i+2], i) return qc # モデルの出力 # 出力状態において最初の量子ビットのZでの期待値を計算 from qiskit.aqua.operators import Z, I def qcl_pred(x, param_list): # 回路を一つにまとめる qcl_cirq = U_in(x) + U_out(param_list) obs = Z ^ I ^ I psi = StateFn(qcl_cirq) expectation_value = (~psi @ obs @ psi).eval() return expectation_value.real # コスト関数Lを計算 def cost_func(theta): # num_x_train個のデータについて計算 y_pred = [qcl_pred(x, theta) for x in x_train] # quadratic loss L = ((y_pred - y_train)**2).mean() return L # パラメータthetaの初期値theta_initにおけるコスト関数の値 # theta: 長さc_depth * nqubit * 3のndarray theta_init = [2.0 * np.pi * np.random.rand() for i in range(c_depth*nqubit*3)] cost_func(theta_init) # パラメータthetaの初期値のもとでのグラフ xlist = np.arange(x_min, x_max, 0.02) y_init = [qcl_pred(x, theta_init) for x in xlist] plt.plot(xlist, y_init) from scipy.optimize import minimize # 学習(注意:数時間かかりました) result = minimize(cost_func, theta_init, method='Nelder-Mead') theta_opt = result.x print(theta_opt) # プロット plt.figure(figsize=(10, 6)) xlist = np.arange(x_min, x_max, 0.02) # 教師データ plt.plot(x_train, y_train, "o", label='Teacher') # パラメータθの初期値のもとでのグラフ plt.plot(xlist, y_init, '--', label='Initial Model Prediction', c='gray') # モデルの予測値 y_pred = np.array([qcl_pred(x, theta_opt) for x in xlist]) plt.plot(xlist, y_pred, label='Final Model Prediction') plt.legend() plt.show()
https://github.com/daimurat/qiskit-implementation
daimurat
from qiskit import * from qiskit.circuit import ParameterVector, QuantumCircuit from qiskit.aqua import QuantumInstance from qiskit.aqua.operators import I, Z from qiskit.aqua.operators.state_fns import StateFn, CircuitStateFn from qiskit.aqua.operators.expectations import PauliExpectation, AerPauliExpectation from qiskit.aqua.operators.converters import CircuitSampler import matplotlib.pyplot as plt import numpy as np %matplotlib inline ######## パラメータ ############# nqubit = 3 ## qubitの数 c_depth = 3 ## circuitの深さ ## [x_min, x_max]のうち, ランダムにnum_x_train個の点をとって教師データとする. x_min = - 1.; x_max = 1.; num_x_train = 50 ## 学習したい1変数関数 func_to_learn = lambda x: np.sin(x*np.pi) ## 乱数のシード random_seed = 0 ## 乱数発生器の初期化 np.random.seed(random_seed) x_train = x_min + (x_max - x_min) * np.random.rand(num_x_train) y_train = func_to_learn(x_train) # 現実のデータを用いる場合を想定しノイズを付加 mag_noise = 0.05 y_train = y_train + mag_noise * np.random.randn(num_x_train) plt.plot(x_train, y_train, "o"); plt.show() def get_expectation_val(psi, op): # define your backend or quantum instance backend = Aer.get_backend('qasm_simulator') q_instance = QuantumInstance(backend, shots=1024) # define the state to sample measurable_expression = StateFn(op, is_measurement=True).compose(psi) # convert to expectation value expectation = PauliExpectation().convert(measurable_expression) # expectation = AerPauliExpectation().convert(measurable_expression) # get state sampler (you can also pass the backend directly) sampler = CircuitSampler(q_instance).convert(expectation) # evaluate return sampler.eval().real def U_in(x): U = QuantumCircuit(nqubit) angle_y = np.arcsin(x) angle_z = np.arccos(x**2) for i in range(nqubit): U.ry(angle_y, i) U.rz(angle_z, i) return U # 横磁場イジングモデルのパラメーター time_step = 0.77 # ランダムハミルトニアンによる時間発展の経過時間 M = 2 # トロッター分解の分割数 delta = time_step/M # 時間の刻み幅 h = 3 # 外部磁場 # 回転ゲートのパラメーター param_list = ParameterVector('theta', c_depth*nqubit*3) def U_out(): qc = QuantumCircuit(nqubit) for d in range(c_depth): for s in range(M): # トロッター分解の1回分、 for i in range(nqubit): qc.cx(i,(i+1)%nqubit) qc.rz(-2*delta,(i+1)%nqubit) qc.cx(i,(i+1)%nqubit) qc.rx(-2*delta*h, i) # 回転ゲートを導入 for i in range(nqubit): qc.rx(-2*param_list[3*(nqubit*d+i)], i) qc.rz(-2*param_list[3*(nqubit*d+i)+1], i) qc.rx(-2*param_list[3*(nqubit*d+i)+2], i) return qc # モデルの出力 # 出力状態において最初の量子ビットのZでの期待値を計算 from qiskit.aqua.operators import Z, I def qcl_pred(x, param_dict): qcl_cirq = U_in(x) + U_out() qcl_cirq.assign_parameters(param_dict, inplace=True) op = Z ^ I ^ I psi = StateFn(qcl_cirq) return 2 * get_expectation_val(psi, op) # cost function Lを計算 def cost_func(theta_list): param_dict = dict(zip(param_list.params, theta_list)) # num_x_train個のデータについて計算 y_pred = [qcl_pred(x, param_dict) for x in x_train] # quadratic loss L = ((y_pred - y_train)**2).mean() return L # パラメータthetaの初期値theta_initにおけるコスト関数の値 # theta: 長さc_depth * nqubit * 3のndarray theta_init = [2.0 * np.pi * np.random.rand() for i in range(c_depth*nqubit*3)] cost_func(theta_init) # パラメータthetaの初期値のもとでのグラフ xlist = np.arange(x_min, x_max, 0.02) theta_init_dict = dict(zip(param_list.params, theta_init)) y_init = [qcl_pred(x, theta_init_dict) for x in xlist] plt.plot(xlist, y_init) from scipy.optimize import minimize # 学習(注意:2.5時間かかりました) result = minimize(cost_func, theta_init, method='Nelder-Mead') theta_opt = result.x print(theta_opt) # プロット plt.figure(figsize=(10, 6)) xlist = np.arange(x_min, x_max, 0.02) # 教師データ plt.plot(x_train, y_train, "o", label='Teacher') # パラメータθの初期値のもとでのグラフ plt.plot(xlist, y_init, '--', label='Initial Model Prediction', c='gray') # モデルの予測値 theta_opt_dict = dict(zip(param_list.params, theta_opt)) y_pred = np.array([qcl_pred(x, theta_opt_dict) for x in xlist]) plt.plot(xlist, y_pred, label='Final Model Prediction') plt.legend() plt.show() 20:57 23:30
https://github.com/daimurat/qiskit-implementation
daimurat
import matplotlib.pyplot as plt import numpy as np # ランダムシードの指定 np.random.seed(1) # 標準正規分布に従う乱数の生成 X_xor = np.random.randn(200, 2) y_xor = np.logical_xor(X_xor[:, 0] > 0, X_xor[:, 1] > 0) # 真の場合は1、偽の場合は-1 y_xor = np.where(y_xor, 1, -1) #データのプロット plt.scatter(X_xor[y_xor==1, 0], X_xor[y_xor==1, 1], c='b', marker='x', label='1') plt.scatter(X_xor[y_xor==-1, 0], X_xor[y_xor==-1, 1], c='r', marker='s', label='-1') plt.xlim([-3, 3]) plt.ylim([-3, 3]) plt.legend(loc='best') plt.tight_layout() plt.show() from qiskit.circuit.library import ZZFeatureMap map_zz = ZZFeatureMap(feature_dimension=2, reps=2) ## カーネルの定義(手組) from qiskit import BasicAer from qiskit_machine_learning.kernels import QuantumKernel from sklearn.svm import SVC # Create the quantum feature map map_zz = ZZFeatureMap(feature_dimension=2, reps=2, entanglement='linear') # Create the quantum kernel adhoc_kernel = QuantumKernel(feature_map=map_zz, quantum_instance=BasicAer.get_backend('statevector_simulator')) # Set the SVC algorithm to use our custom kernel model = SVC(kernel=adhoc_kernel.evaluate) model.fit(X_xor, y_xor) # 決定境界の可視化 from matplotlib.colors import ListedColormap def plot_decision_regisons(X, y, classifier, resolution=0.2): markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # 決定境界のプロット x1_min, x1_max = X[:, 0].min() - 1 , X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1 , X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) # 各特徴量を1次元配列に変換して予測を実行 Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) # グリッドポイントの等高線プロット plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y==cl, 0], y=X[y==cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolors='black') plot_decision_regisons(X_xor, y_xor, classifier=model) plt.legend(loc='upper left') plt.tight_layout() plt.show()
https://github.com/daimurat/qiskit-implementation
daimurat
import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit from qiskit.circuit import Parameter, ParameterVector from qiskit.opflow import StateFn, PauliSumOp, Gradient def generate_random_qnn(qubits, depth): """Generate random QNN's with the same structure from McClean et al.""" param = Parameter('theta') circuit = QuantumCircuit(qubits) for qubit in range(qubits): circuit.ry(np.pi / 4.0, qubit) circuit.barrier() for d in range(depth): # Add a series of single qubit rotations. for qubit in range(qubits): random_n = np.random.uniform() random_rot = np.random.uniform() * 2.0 * np.pi if qubit != 0 or d != 0 else param if random_n > 2. / 3.: # Add a Z. circuit.rz(random_rot, qubit) elif random_n > 1. / 3.: # Add a Y. circuit.ry(random_rot, qubit) else: # Add a X. circuit.rx(random_rot, qubit) circuit.barrier() # Add CZ ladder. for src, dest in zip(range(qubits), range(qubits)[1:]): circuit.cz(src, dest) circuit.barrier() return circuit # 生成される回路の確認(例:3量子ビット) n_qubits = 3 d = 2 qc_test = generate_random_qnn(n_qubits, d) qc_test.draw('mpl') # 勾配の計算 def calc_gradient(qc, hamiltonian, params): expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc) state_grad = Gradient().convert(expectation) value_dict = dict(zip(qc.parameters, params)) result = state_grad.assign_parameters(value_dict).eval() return np.round(np.array(result), 10) # # テスト勾配計算 # test_hamiltonian = PauliSumOp.from_list([('Z', 1.0), ('X', 1.0)]) # test_params = np.random.uniform(0, np.pi, qc_test.num_parameters) # calc_gradient(qc_test, test_hamiltonian, test_params) n_qubits = [2 * i for i in range(2, 7)] depth = 30 n_circuits = 100 hamiltonian = PauliSumOp.from_list([('Z', 1.0), ('X', 1.0)]) theta_vars = [] for n in n_qubits: grads = [] # Generate the random circuits and observable for the given n. qc = generate_random_qnn(n, depth) for _ in range(n_circuits): params = np.random.uniform(0, np.pi, qc.num_parameters) grad = calc_gradient(qc, hamiltonian, params) grads.append(grad) theta_vars.append(np.var(grads)) plt.semilogy(n_qubits, theta_vars) plt.title('Gradient Variance in QNNs') plt.xlabel('n_qubits') plt.ylabel('$\\partial \\theta$ variance') plt.show() def generate_2qubit_qnn(label): circuit = QuantumCircuit(2) circuit.ry(np.pi / 4.0, 0) circuit.ry(np.pi / 4.0, 1) circuit.barrier() for i in range(2): if label[i] == 'x': circuit.rx(Parameter('theta'+str(i)), i) elif label[i] == 'y': circuit.ry(Parameter('theta'+str(i)), i) elif label[i] == 'z': circuit.rz(Parameter('theta'+str(i)), i) circuit.barrier() # Add CZ ladder. circuit.cz(0, 1) return circuit qc_test = generate_2qubit_qnn('xy') qc_test.draw('mpl') # 期待値の計算 from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.opflow import CircuitSampler from qiskit.opflow.expectations import AerPauliExpectation def calculate_exp_val(qc, hamiltonian, params): expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc) test_expectation = AerPauliExpectation().convert(expectation) quantum_instance = QuantumInstance(Aer.get_backend('qasm_simulator'), shots = 32768) sampler = CircuitSampler(quantum_instance) value_dict = dict(zip(qc.parameters, params)) result = sampler.convert(test_expectation, params=value_dict).eval() return np.real(result) hamiltonian = PauliSumOp.from_list([('X', 1.0)]) X = np.linspace(0, 2*np.pi, 30) Y = np.linspace(0, 2*np.pi, 30) Z = np.array([[calculate_exp_val(qc_test, hamiltonian, [x, y]) for x in X] for y in Y]).reshape(len(Y), len(X)) xx, yy = np.meshgrid(X, Y) fig = plt.figure(figsize=plt.figaspect(0.3)) ax = fig.add_subplot(projection="3d") surf = ax.plot_surface(xx, yy, Z) plt.show() import qiskit.tools.jupyter %qiskit_version_table
https://github.com/daimurat/qiskit-implementation
daimurat
import numpy as np import matplotlib.pyplot as plt from qiskit import Aer, QuantumCircuit from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.opflow import StateFn, PauliSumOp, AerPauliExpectation, Gradient from qiskit.utils import QuantumInstance from qiskit.algorithms.optimizers import COBYLA from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier expval = AerPauliExpectation() gradient = Gradient() qi_sv = QuantumInstance(Aer.get_backend('statevector_simulator')) qi_qasm = QuantumInstance(Aer.get_backend('qasm_simulator'), shots=1000) from qiskit_machine_learning.neural_networks import CircuitQNN num_qubits = 3 qc = RealAmplitudes(num_qubits, entanglement='linear', reps=1) qc.draw(output='mpl') # specify circuit QNN qnn = CircuitQNN(qc, [], qc.parameters, sparse=True, sampling=False, quantum_instance=qi_qasm) # define (random) input and weights input = np.random.rand(qnn.num_inputs) weights = np.random.rand(qnn.num_weights) # QNN forward pass # sampling=True: sample # sampling=False: probability qnn.forward(input, weights).todense() # returned as ab sparse matrix meas = QuantumCircuit(num_qubits) meas.measure_all() qc.assign_parameters(weights, inplace=True) qc_sampling = meas.compose(qc, front=True) # frontをTrueにしないと測定が先に来てしまう qi_qasm.execute(qc_sampling).get_counts() # QNN backward pass, returns a tuple of sparse matrices # sampling=True: None # sampling=False: probability gradient result = qnn.backward(input, weights) result[1].todense() # specify circuit QNN parity = lambda x: '{:b}'.format(x).count('1') % 2 # バイナリ表現で1の数/2 output_shape = 2 # this is required in case of a callable with dense output qnn6 = CircuitQNN(qc, [], qc.parameters, sparse=False, interpret=parity, output_shape=output_shape, quantum_instance=qi_qasm) # define (random) input and weights input6 = np.random.rand(qnn6.num_inputs) weights6 = np.random.rand(qnn6.num_weights) # QNN forward pass qnn6.forward(input6, weights6) # QNN backward pass qnn6.backward(input6, weights6) num_inputs = 2 num_samples = 20 X = 2*np.random.rand(num_samples, num_inputs) - 1 # num_sample x num_inpuutsの配列 y01 = 1*(np.sum(X, axis=1) >= 0) # in { 0, 1} y = 2*y01-1 # in {-1, +1} y_one_hot = np.zeros((num_samples, 2)) for i in range(num_samples): y_one_hot[i, y01[i]] = 1 for x, y_target in zip(X, y): if y_target == 1: plt.plot(x[0], x[1], 'bo') else: plt.plot(x[0], x[1], 'go') plt.plot([-1, 1], [1, -1], '--', color='black') plt.show() # 量子回路の準備 num_inputs = 2 feature_map = ZZFeatureMap(num_inputs) ansatz = RealAmplitudes(num_inputs, reps=1) qc = QuantumCircuit(num_inputs) qc.append(feature_map, range(num_inputs)) qc.append(ansatz, range(num_inputs)) qc.decompose().draw(output='mpl') # parity maps bitstrings to 0 or 1 def parity(x): return '{:b}'.format(x).count('1') % 2 output_shape = 2 # corresponds to the number of classes, possible outcomes of the (parity) mapping. # construct QNN circuit_qnn = CircuitQNN(circuit=qc, input_params=feature_map.parameters, weight_params=ansatz.parameters, interpret=parity, output_shape=output_shape, quantum_instance=qi_qasm) # construct classifier circuit_classifier = NeuralNetworkClassifier(neural_network=circuit_qnn, optimizer=COBYLA()) circuit_classifier.fit(X, y01) circuit_classifier.score(X, y01) # 評価用のデータを生成 num_samples_test = 100 X_test = 2*np.random.rand(num_samples_test, num_inputs) - 1 # num_sample x num_inpuutsの配列 y01_test = 1*(np.sum(X_test, axis=1) >= 0) # in { 0, 1} y_test = 2*y01_test-1 # in {-1, +1} # evaluate data points y_predict = circuit_classifier.predict(X_test) # plot results for x, y_target, y_p in zip(X_test, y01_test, y_predict): if y_p == 1: plt.plot(x[0], x[1], 'bo') else: plt.plot(x[0], x[1], 'go') if y_target != y_p: plt.scatter(x[0], x[1], s=200, facecolors='none', edgecolors='r', linewidths=2) plt.plot([-1, 1], [1, -1], '--', color='black') plt.show() import qiskit.tools.jupyter %qiskit_version_table
https://github.com/daimurat/qiskit-implementation
daimurat
import numpy as np import matplotlib.pyplot as plt from qiskit import Aer, QuantumCircuit from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap from qiskit.opflow import StateFn, PauliSumOp, AerPauliExpectation, Gradient from qiskit.utils import QuantumInstance from qiskit.algorithms.optimizers import COBYLA expval = AerPauliExpectation() gradient = Gradient() qi_sv = QuantumInstance(Aer.get_backend('statevector_simulator')) qi_qasm = QuantumInstance(Aer.get_backend('qasm_simulator'), shots=1000) from qiskit_machine_learning.neural_networks import OpflowQNN # 演算子の定義 params1 = [Parameter('input1'), Parameter('weight1')] qc1 = QuantumCircuit(1) qc1.h(0) qc1.ry(params1[0], 0) qc1.rx(params1[1], 0) qc_sfn1 = StateFn(qc1) H1 = StateFn(PauliSumOp.from_list([('Z', 1.0), ('X', 1.0)])) op1 = ~H1 @ qc_sfn1 qc1.draw('mpl') qnn1 = OpflowQNN(op1, [params1[0]], [params1[1]], expval, gradient, qi_sv) input1 = np.random.rand(qnn1.num_inputs) weight1 = np.random.rand(qnn1.num_weights) qnn1.forward(input1, weight1) # 順伝播計算は演算子の期待値を出力していることを確認 from qiskit.opflow.converters import CircuitSampler param_dict = dict(zip(params1, [input1[0], weight1[0]])) op1_binded = op1.assign_parameters(param_dict) expectation = expval.convert(op1_binded) sampler = CircuitSampler(qi_qasm).convert(expectation) sampler.eval().real # output: input gradiend, weight gradient qnn1.backward(input1, weight1) # 逆伝播計算は演算子の期待値関数の入力と重みに対する微分計算であることを確認 state_grad = Gradient(grad_method="param_shift").convert(operator=op1, params=params1) result = state_grad.assign_parameters(param_dict).eval() np.array(result).real from qiskit_machine_learning.neural_networks import TwoLayerQNN from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier num_inputs = 2 num_samples = 20 X = 2*np.random.rand(num_samples, num_inputs) - 1 # num_sample x num_inpuutsの配列 y01 = 1*(np.sum(X, axis=1) >= 0) # in { 0, 1} y = 2*y01-1 # in {-1, +1} y_one_hot = np.zeros((num_samples, 2)) for i in range(num_samples): y_one_hot[i, y01[i]] = 1 for x, y_target in zip(X, y): if y_target == 1: plt.plot(x[0], x[1], 'bo') else: plt.plot(x[0], x[1], 'go') plt.plot([-1, 1], [1, -1], '--', color='black') plt.show() # default observable: Z^n opflow_qnn = TwoLayerQNN(num_inputs, quantum_instance=qi_qasm) opflow_classifier = NeuralNetworkClassifier(opflow_qnn, optimizer=COBYLA()) # QNNを構成している量子回路を確認する opflow_qnn.circuit.draw('mpl') opflow_qnn.feature_map.draw('mpl') opflow_qnn.ansatz.draw('mpl') opflow_classifier.fit(X, y) opflow_classifier.score(X, y) # 評価用のデータを生成 num_samples_test = 100 X_test = 2*np.random.rand(num_samples_test, num_inputs) - 1 # num_sample x num_inpuutsの配列 y01_test = 1*(np.sum(X_test, axis=1) >= 0) # in { 0, 1} y_test = 2*y01_test-1 # in {-1, +1} # plot results def plot_predict_result(X_test, y_test, y_predict): for x, y_target, y_p in zip(X_test, y_test, y_predict): if y_p == 1: plt.plot(x[0], x[1], 'bo') else: plt.plot(x[0], x[1], 'go') if y_target != y_p: plt.scatter(x[0], x[1], s=200, facecolors='none', edgecolors='r', linewidths=2) plt.plot([-1, 1], [1, -1], '--', color='black') plt.show() # evaluate data points y_predict = opflow_classifier.predict(X_test) plot_predict_result(X_test, y_test, y_predict) num_samples = 200 X2 = 2*np.random.rand(num_samples, num_inputs) - 1 # num_sample x num_inpuutsの配列 y01_2 = 1*(np.sum(X2, axis=1) >= 0) # in { 0, 1} y2 = 2*y01_2-1 # in {-1, +1} opflow_classifier.fit(X2, y2) opflow_classifier.score(X2, y2) # evaluate data points y_predict = opflow_classifier.predict(X_test) plot_predict_result(X_test, y_test, y_predict) params2 = [Parameter('test1'), Parameter('test2')] simple_feature_map = QuantumCircuit(num_inputs) for i in range(num_inputs): simple_feature_map.ry(params2[i], [i]) opflow_qnn2= TwoLayerQNN(num_inputs, feature_map=simple_feature_map, quantum_instance=qi_qasm) opflow_classifier2 = NeuralNetworkClassifier(opflow_qnn2, optimizer=COBYLA()) opflow_classifier2.fit(X, y) opflow_classifier2.score(X, y) # evaluate data points y_predict2 = opflow_classifier2.predict(X_test) # plot results plot_predict_result(X_test, y_test, y_predict2) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/daimurat/qiskit-implementation
daimurat
import numpy as np import matplotlib.pyplot as plt %matplotlib notebook from qiskit import QuantumCircuit from qiskit.circuit import Parameter def generate_2qubit_qnn(label): circuit = QuantumCircuit(2) circuit.ry(np.pi / 4.0, 0) circuit.ry(np.pi / 4.0, 1) circuit.barrier() for i in range(2): if label[i] == 'x': circuit.rx(Parameter('theta'+str(i)), i) elif label[i] == 'y': circuit.ry(Parameter('theta'+str(i)), i) elif label[i] == 'z': circuit.rz(Parameter('theta'+str(i)), i) circuit.barrier() # Add CZ ladder. circuit.cz(0, 1) return circuit qc_test = generate_2qubit_qnn('xy') qc_test.draw('mpl') # 期待値の計算 from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.opflow import CircuitSampler, StateFn, PauliSumOp from qiskit.opflow.expectations import PauliExpectation hamiltonian = PauliSumOp.from_list([('X', 1.0)]) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc_test) aerpauli_basis = PauliExpectation().convert(expectation) quantum_instance = QuantumInstance(Aer.get_backend('qasm_simulator'), shots = 32768) sampler = CircuitSampler(quantum_instance) # 期待値の評価 def calculate_exp_val(params): value_dict = dict(zip(qc_test.parameters, params)) result = sampler.convert(aerpauli_basis, params=value_dict).eval() return np.real(result) X = np.linspace(0, 2*np.pi, 30) Y = np.linspace(0, 2*np.pi, 30) Z = np.array([[calculate_exp_val([x, y]) for x in X] for y in Y]).reshape(len(Y), len(X)) xx, yy = np.meshgrid(X, Y) fig = plt.figure() ax = fig.add_subplot(projection="3d") ax.plot_surface(xx, yy, Z, cmap=plt.cm.jet) ax.set_xlabel('theta_1') ax.set_ylabel('theta_2') ax.set_zlabel('loss') plt.show() from qiskit.opflow import Gradient gradient = Gradient().convert(expectation) gradient_in_pauli_basis = PauliExpectation().convert(gradient) # 勾配の評価 def calculate_gradient(params): value_dict = dict(zip(qc_test.parameters, params)) result = sampler.convert(gradient_in_pauli_basis, params=value_dict).eval() return np.real(result) from qiskit.opflow import NaturalGradient ng = NaturalGradient().convert(expectation) ng_in_pauli_basis = PauliExpectation().convert(ng) def calculate_natural_gradient(params): value_dict = dict(zip(qc_test.parameters, params)) result = sampler.convert(ng_in_pauli_basis, params=value_dict).eval() return np.real(result) initial_point = np.array([np.pi, np.pi]) from qiskit.algorithms.optimizers import GradientDescent gd_loss= [] xx_op= [] yy_op= [] def gd_callback(nfevs, x, fx, stepsize): gd_loss.append(fx) xx_op.append(x[0]) yy_op.append(x[1]) gd = GradientDescent(maxiter=50,learning_rate=0.1, callback=gd_callback) x_opt, fx_opt, nfevs = ( gd.optimize(initial_point.size, calculate_exp_val, gradient_function=calculate_gradient, initial_point=initial_point) ) ngd_loss= [] xx_op_ng= [] yy_op_ng= [] def ngd_callback(nfevs, x, fx, stepsize): ngd_loss.append(fx) xx_op_ng.append(x[0]) yy_op_ng.append(x[1]) qng = GradientDescent(maxiter=50,learning_rate=0.1, callback=ngd_callback) x_opt_ng, fx_opt_ng, nfevs_ng = ( qng.optimize(initial_point.size, calculate_exp_val, gradient_function=calculate_natural_gradient, initial_point=initial_point) ) from matplotlib.animation import FuncAnimation fig = plt.figure() ax = fig.add_subplot(projection="3d") ax.plot_surface(xx, yy, Z, cmap=plt.cm.jet, alpha=0.6) gd, = ax.plot([], [], [], '.-k', label='vanilla gradient descent') ngd, = ax.plot([], [], [], '.-r', label='natural gradient descent') ax.set_xlabel('theta_1') ax.set_ylabel('theta_2') ax.set_zlabel('loss') def update(f): gd.set_data(xx_op[:f], yy_op[:f]) gd.set_3d_properties(gd_loss[:f]) ngd.set_data(xx_op_ng[:f], yy_op_ng[:f]) ngd.set_3d_properties(ngd_loss[:f]) anim = FuncAnimation(fig, update, interval=200) plt.legend(loc='upper left') plt.show() anim.save("ngd.gif") import qiskit.tools.jupyter %qiskit_version_table
https://github.com/daimurat/qiskit-implementation
daimurat
import numpy as np import matplotlib as plt %matplotlib inline input_param=[1, 0.5, -0.765, 0.1, 0, -0.654] exp_output=[0, 0, 0, 0, -0.4553474723, 0] from qiskit.circuit import QuantumCircuit, ParameterVector n = 3 qc = QuantumCircuit(n) param_list = ParameterVector('Parameter', 2*n) for i in range(len(param_list)//n): qc.rx(param_list[3*i], 0) qc.ry(param_list[3*i+1], 1) qc.rz(param_list[3*i+2], 2) qc.cnot(0, 1) qc.cnot(1, 2) qc.cnot(2, 0) qc.draw(output='mpl') from qiskit.opflow import I, X, Y, Z hamiltonian = Z ^ I ^ Y from qiskit.opflow import StateFn, AerPauliExpectation expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc) pauli_basis = AerPauliExpectation().convert(expectation) from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.opflow import CircuitSampler quantum_instance = QuantumInstance(Aer.get_backend('qasm_simulator'), # we'll set a seed for reproducibility shots = 32768, seed_simulator = 2718, seed_transpiler = 2718) sampler = CircuitSampler(quantum_instance) def evaluate_expectation(params): value_dict = dict(zip(qc.parameters, params)) result = sampler.convert(pauli_basis, params=value_dict).eval() return np.real(result) def calc_gradient(params): gradient = np.zeros_like(params) for i in range(len(params)): shifted = params.copy() shifted[i] += np.pi/2 forward = evaluate_expectation(shifted) shifted[i] -= np.pi backward = evaluate_expectation(shifted) gradient[i] = 0.5 * (forward - backward) return np.round(gradient, 10) calc_gradient(input_param) from qiskit.opflow import Gradient def calc_gradient_with_framework(params): state_grad = Gradient(grad_method="param_shift").convert(operator=expectation) value_dict = dict(zip(qc.parameters, params)) result = state_grad.assign_parameters(value_dict).eval() return np.round(np.array(result).real, 10) calc_gradient_with_framework(input_param) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/daimurat/qiskit-implementation
daimurat
import numpy as np import matplotlib.pyplot as plt # %matplotlib notebook from qiskit import QuantumCircuit from qiskit.circuit import Parameter from qiskit.opflow import StateFn, PauliSumOp def generate_2qubit_qnn(label): circuit = QuantumCircuit(2) circuit.ry(np.pi / 4.0, 0) circuit.ry(np.pi / 4.0, 1) circuit.barrier() for i in range(2): if label[i] == 'x': circuit.rx(Parameter('theta'+str(i)), i) elif label[i] == 'y': circuit.ry(Parameter('theta'+str(i)), i) elif label[i] == 'z': circuit.rz(Parameter('theta'+str(i)), i) circuit.barrier() # Add CZ ladder. circuit.cz(0, 1) return circuit # # RealAmplitudesの場合 # from qiskit.circuit.library import RealAmplitudes # qc_test = RealAmplitudes(num_qubits=2, reps=1, # entanglement='linear').decompose() qc_test = generate_2qubit_qnn('xy') qc_test.draw('mpl') # 期待値の計算 from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.opflow import CircuitSampler from qiskit.opflow.expectations import PauliExpectation hamiltonian = PauliSumOp.from_list([('ZZ', 1.0)]) expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc_test) aerpauli_basis = PauliExpectation().convert(expectation) quantum_instance = QuantumInstance(Aer.get_backend('qasm_simulator'), shots = 32768) sampler = CircuitSampler(quantum_instance) # 期待値の評価 def calculate_exp_val(params): value_dict = dict(zip(qc_test.parameters, params)) result = sampler.convert(aerpauli_basis, params=value_dict).eval() return np.real(result) # コスト関数の可視化 X = np.linspace(0, 2*np.pi, 30) Y = np.linspace(0, 2*np.pi, 30) Z = np.array([[calculate_exp_val([x, y]) for x in X] for y in Y]).reshape(len(X), len(Y)) xx, yy = np.meshgrid(X, Y) fig = plt.figure(figsize=plt.figaspect(1)) ax = fig.add_subplot(projection="3d") ax.plot_surface(xx, yy, Z, cmap=plt.cm.jet) plt.show() from qiskit.opflow import Gradient gradient = Gradient().convert(expectation) gradient_in_pauli_basis = PauliExpectation().convert(gradient) # 勾配の評価 def calculate_gradient(params): value_dict = dict(zip(qc_test.parameters, params)) result = sampler.convert(gradient_in_pauli_basis, params=value_dict).eval() return np.real(result) # initial_point = 2*np.pi*np.random.random(qc_test.num_parameters) # アニメーション用初期値 initial_point = np.array([np.pi, 2.0]) from qiskit.algorithms.optimizers import GradientDescent gd_loss= [] xx_op= [] yy_op= [] def gd_callback(nfevs, x, fx, stepsize): gd_loss.append(fx) xx_op.append(x[0]) yy_op.append(x[1]) gd = GradientDescent(maxiter=100,learning_rate=0.05, callback=gd_callback) x_opt, fx_opt, nfevs = ( gd.optimize(initial_point.size, calculate_exp_val, gradient_function=calculate_gradient, initial_point=initial_point) ) from qiskit.algorithms.optimizers import SPSA spsa_loss= [] xx_op_spsa= [] yy_op_spsa= [] # コールバック処理の定義 def spsa_callback(nfevs, x, fx, stepsize, accepted): spsa_loss.append(fx) xx_op_spsa.append(x[0]) yy_op_spsa.append(x[1]) # インスタンス化 spsa = SPSA(maxiter=100,learning_rate=0.05,perturbation=0.05, callback=spsa_callback) # 最適化処理の実行 x_opt_spsa, fx_opt_spsa, nfevs_spsa = ( spsa.optimize(initial_point.size, calculate_exp_val, initial_point=initial_point) ) # from qiskit.opflow import NaturalGradient # ng = NaturalGradient().convert(expectation) # ng_in_pauli_basis = PauliExpectation().convert(ng) # def calculate_natural_gradient(params): # value_dict = dict(zip(qc_test.parameters, params)) # result = sampler.convert(ng_in_pauli_basis, params=value_dict).eval() # return np.real(result) # ngd_loss= [] # xx_op_ng= [] # yy_op_ng= [] # def ngd_callback(nfevs, x, fx, stepsize): # ngd_loss.append(fx) # xx_op_ng.append(x[0]) # yy_op_ng.append(x[1]) # qng = GradientDescent(maxiter=50,learning_rate=0.1, callback=ngd_callback) # x_opt_ng, fx_opt_ng, nfevs_ng = ( # qng.optimize(initial_point.size, # calculate_exp_val, # gradient_function=calculate_natural_gradient, # initial_point=initial_point) # ) # from qiskit.algorithms.optimizers import QNSPSA # qnspsa_loss = [] # xx_op_qnspsa= [] # yy_op_qnspsa= [] # def qnspsa_callback(nfev, x, fx, stepsize, accepted): # qnspsa_loss.append(fx) # xx_op_qnspsa.append(x[0]) # yy_op_qnspsa.append(x[1]) # fidelity = QNSPSA.get_fidelity(qc_test, # quantum_instance, # expectation=PauliExpectation()) # qnspsa = QNSPSA(fidelity, maxiter=50, learning_rate=0.1, # perturbation=0.1, # callback=qnspsa_callback) # x_opt_qnspsa, fx_opt_qnspsa, nfevs = qnspsa.optimize(initial_point.size, # calculate_exp_val, # initial_point=initial_point) from matplotlib.animation import FuncAnimation fig = plt.figure() ax = fig.add_subplot(projection="3d") ax.plot_surface(xx, yy, Z, cmap=plt.cm.jet, alpha=0.6) gd, = ax.plot([], [], [], '.-k', label='Gradient Descent') spsa, = ax.plot([], [], [], '.-r', label='SPSA') # ngd, = ax.plot([], [], [], '.-b', label='Quantum Natural Gradient') # spsa_ngd, = ax.plot([], [], [], '.-y', label='QN-SPSA') ax.set_xlabel('theta_1') ax.set_ylabel('theta_2') ax.set_zlabel('loss') def update(f): gd.set_data(xx_op[:f], yy_op[:f]) gd.set_3d_properties(gd_loss[:f]) spsa.set_data(xx_op_spsa[:f], yy_op_spsa[:f]) spsa.set_3d_properties(spsa_loss[:f]) # ngd.set_data(xx_op_ng[:f], yy_op_ng[:f]) # ngd.set_3d_properties(ngd_loss[:f]) # spsa_ngd.set_data(xx_op_qnspsa[:f], yy_op_qnspsa[:f]) # spsa_ngd.set_3d_properties(qnspsa_loss[:f]) anim = FuncAnimation(fig, update, interval=200) plt.legend(loc='upper left') plt.show() # 結果のプロット plt.figure(figsize=(7, 3)) plt.plot(gd_loss, 'C0', label='vanilla gradient descent') plt.plot(spsa_loss, 'C0', ls='--', label='SPSA') plt.ylabel('loss') plt.xlabel('iterations') plt.legend() plt.show() anim.save("spsa.gif") import qiskit.tools.jupyter %qiskit_version_table
https://github.com/daimurat/qiskit-implementation
daimurat
# スピン多重度 multiplicity = 1 # 全電荷 charge = 0 # 原子核配置 distance = 0.977 geometry = [["H", [0, 0, 0]], ["H", [0, 0, distance]]] !pip install qulacs pyscf openfermion openfermionpyscf from openfermion.transforms import get_fermion_operator, jordan_wigner from openfermion.hamiltonians import MolecularData from openfermionpyscf import run_pyscf from pyscf import fci # 分子軌道を表現するための基底関数(Slator Type Orbital - 3 gaussian) basis = "sto-3g" # 計算結果の保存場所 description = "tmp" molecule = MolecularData(geometry, basis, multiplicity, charge, description) molecule = run_pyscf(molecule, run_scf=1, run_fci=1) n_qubit = molecule.n_qubits n_electron = molecule.n_electrons # get_molecular_hamiltonianで第二量子化形式のハミルトニアンを計算 fermionic_hamiltonian = get_fermion_operator( molecule.get_molecular_hamiltonian()) # Jordan-Wigner変換によりハミルトニアンをパウリ行列のテンソル積形式に変換 jw_hamiltonian = jordan_wigner(fermionic_hamiltonian) print(jw_hamiltonian) from qiskit.chemistry.drivers import PySCFDriver, UnitsType, Molecule from qiskit.chemistry.transformations import FermionicTransformation,FermionicTransformationType, FermionicQubitMappingType basis = "sto3g" molecule = Molecule(geometry=geometry, charge=charge, multiplicity=multiplicity) driver = PySCFDriver(molecule = molecule, unit=UnitsType.ANGSTROM, basis=basis) transformation = FermionicTransformation( transformation=FermionicTransformationType.FULL, qubit_mapping=FermionicQubitMappingType.JORDAN_WIGNER, two_qubit_reduction=False, freeze_core=False) qubit_op, _ = transformation.transform(driver) print(qubit_op)
https://github.com/daimurat/qiskit-implementation
daimurat
import sys sys.path.append('../../') import numpy as np from qiskit import QuantumCircuit from qiskit.opflow import I, X, Y, Z import matplotlib.pyplot as plt from volta.observables import sample_hamiltonian from volta.hamiltonians import BCS_hamiltonian EPSILONS = [3, 3] V = -2 hamiltonian = BCS_hamiltonian(EPSILONS, V) print(hamiltonian) eigenvalues, _ = np.linalg.eigh(hamiltonian.to_matrix()) print(f"Eigenvalues: {eigenvalues}") def create_circuit(n: int) -> list: return [QuantumCircuit(n) for _ in range(2)] n = hamiltonian.num_qubits init_states = create_circuit(n) def copy_unitary(list_states: list) -> list: out_states = [] for state in list_states: out_states.append(state.copy()) return out_states import textwrap def apply_initialization(list_states: list) -> None: for ind, state in enumerate(list_states): b = bin(ind)[2:] if len(b) != n: b = '0'*(n - len(b)) + b spl = textwrap.wrap(b, 1) for qubit, val in enumerate(spl): if val == '1': state.x(qubit) apply_initialization(init_states) initialization = copy_unitary(init_states) from qiskit.circuit.library import TwoLocal ansatz = TwoLocal(hamiltonian.num_qubits, ['ry','rz'], 'cx', reps=2) def apply_ansatz(ansatz: QuantumCircuit, list_states: list) -> None: for states in list_states: states.append(ansatz, range(n)) apply_ansatz(ansatz, init_states) init_states[1].draw('mpl') w = np.arange(n, 0, -1) w def _apply_varform_params(ansatz, params: list): """Get an hardware-efficient ansatz for n_qubits given parameters. """ # Define variational Form var_form = ansatz # Get Parameters from the variational form var_form_params = sorted(var_form.parameters, key=lambda p: p.name) # Check if the number of parameters is compatible assert len(var_form_params) == len(params), "The number of parameters don't match" # Create a dictionary with the parameters and values param_dict = dict(zip(var_form_params, params)) # Assing those values for the ansatz wave_function = var_form.assign_parameters(param_dict) return wave_function from qiskit import BasicAer from qiskit.utils import QuantumInstance def cost_function(params:list) -> float: backend = BasicAer.get_backend('qasm_simulator') backend = QuantumInstance(backend, shots=10000) cost = 0 # Define Ansatz for i, state in enumerate(init_states): qc = _apply_varform_params(state, params) # Hamiltonian hamiltonian_eval = sample_hamiltonian(hamiltonian=hamiltonian, ansatz=qc, backend=backend) cost += w[i] * hamiltonian_eval return cost from qiskit.aqua.components.optimizers import COBYLA optimizer = COBYLA(maxiter=1000) n_parameters = len(init_states[0].parameters) params = np.random.rand(n_parameters) optimal_params, mean_energy, n_iters = optimizer.optimize(num_vars=n_parameters, objective_function=cost_function, initial_point=params) mean_energy # Optimized first ansatz ansatz_1 = _apply_varform_params(ansatz, optimal_params) ansatz_1.name = 'U(θ)' apply_ansatz(ansatz_1, init_states) init_states[2].draw() from qiskit.aqua import QuantumInstance def cost_function_ind(ind: int, params:list) -> float: backend = BasicAer.get_backend('qasm_simulator') backend = QuantumInstance(backend, shots=10000) cost = 0 # Define Ansatz qc = _apply_varform_params(init_states[ind], params) # Hamiltonian hamiltonian_eval = sample_hamiltonian(hamiltonian=hamiltonian, ansatz=qc, backend=backend) cost += hamiltonian_eval return - cost from functools import partial cost = partial(cost_function_ind, 2) n_parameters = len(init_states[0].parameters) params = np.random.rand(n_parameters) optimal_params, energy_gs, n_iters = optimizer.optimize(num_vars=n_parameters, objective_function=cost, initial_point=params) energy_gs eigenvalues # Optimized second ansatz ansatz_2 = _apply_varform_params(ansatz, optimal_params) ansatz_2.name = 'V(ϕ)'
https://github.com/qctrl/python-qiskit
qctrl
# General import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec # Q-CTRL Open Controls from qctrlopencontrols import new_quadratic_sequence, new_ramsey_sequence # Q-CTRL Qiskit Adapter from qctrlqiskit import convert_dds_to_qiskit_quantum_circuit # Q-CTRL Visualizer from qctrlvisualizer import plot_sequences # Qiskit ##To define a backend (simulated or real), transpile and assemble a circuit from qiskit import BasicAer from qiskit.compiler import transpile, assemble ##To plot the outcome from qiskit.tools.visualization import plot_histogram ## To handle account information,find a suitable device and monitor a job from qiskit import IBMQ from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor ## Quadratic sequence, total duration: 20us quadratic_sequence = new_quadratic_sequence( duration=20e-6, inner_offset_count=2, outer_offset_count=2, pre_post_rotation=True, name="Quadratic sequence", ) # Ramsey sequence, total duration: 20us ramsey_sequence = new_ramsey_sequence( duration=20e-6, pre_post_rotation=True, name="Ramsey sequence" ) print(quadratic_sequence) print(ramsey_sequence) ## Prepare the Qiskit related parameters """ target_qubits : list A list of integers specifying the target qubits within the set of qubit registers """ target_qubits = [0] """ gate_time : float Time delay (in seconds) introduced by identity gate """ gate_time = 0.4e-6 """ add_measurement : bool Indicates if the circuit requires a measurement step. Required for 'qasm_simulator' and real device backends """ add_measurement = True """ circuit_name : str An optional string as a name to the circuit """ circuit_name = "quadratic-sequence-circuit" ## convert the quadratic sequence to QuantumCircuit quadratic_quantum_circuit = convert_dds_to_qiskit_quantum_circuit( dynamic_decoupling_sequence=quadratic_sequence, target_qubits=target_qubits, gate_time=gate_time, add_measurement=add_measurement, circuit_name=circuit_name, ) ## convert the ramsey sequence to QuantumCircuit circuit_name = "ramsey-sequence-circuit" ramsey_quantum_circuit = convert_dds_to_qiskit_quantum_circuit( dynamic_decoupling_sequence=ramsey_sequence, target_qubits=target_qubits, gate_time=gate_time, add_measurement=add_measurement, circuit_name=circuit_name, ) formatted_plot_data = quadratic_sequence.export() figure = plt.figure() plt.suptitle("Quadratic Sequence") plot_sequences(figure, formatted_plot_data) formatted_plot_data = ramsey_sequence.export() figure = plt.figure() plt.suptitle("Ramsey Sequence") plot_sequences(figure, formatted_plot_data) ##Drawing the Quadratic Circuit quadratic_quantum_circuit.draw() ramsey_quantum_circuit.draw() print(ramsey_quantum_circuit.count_ops()["id"]) ## Prepares the simulator backend """ backend : str One of 'unitary_simulator', 'statevector_simulator' or 'qasm_simulator'; defaults to 'qasm_simulator' """ backend = "qasm_simulator" backend_simulator = BasicAer.get_backend(backend) """ number_of_shots : int Number of repeats the experiment has to be carried out; defaults to 1 """ number_of_shots = 1024 ## Run the quadratic sequence circuit, Get the result (counts of state |1> and |0>), plot the histogram # Transpile and assemble the circuits so that the identity gates are preserved transpiled_quadratic_circuit = transpile( quadratic_quantum_circuit, backend=backend_simulator, optimization_level=0 ) assembled_quadratic_circuit = assemble( transpiled_quadratic_circuit, shots=number_of_shots ) # run the circuit job = backend_simulator.run(assembled_quadratic_circuit) result = job.result() counts = result.get_counts(quadratic_quantum_circuit) plot_histogram(counts) ## Run the ramsey sequence circuit, Get the result (counts of state |1> and |0>), plot the histogram # Transpile and assemble the circuits so that the identity gates are preserved transpiled_ramsey_circuit = transpile( ramsey_quantum_circuit, backend=backend_simulator, optimization_level=0 ) assembled_ramsey_circuit = assemble(transpiled_ramsey_circuit, shots=number_of_shots) job = backend_simulator.run(assembled_ramsey_circuit) result = job.result() counts = result.get_counts(ramsey_quantum_circuit) plot_histogram(counts) # NBVAL_SKIP """ account_token : str Token to enable IBM Q device access """ account_token = "insert-your-ibmq-token-here" IBMQ.enable_account(account_token) provider = IBMQ.get_provider(hub="ibm-q", group="open") backends = provider.backends() backends = [backend for backend in backends if backend.name() != "ibmq_qasm_simulator"] backend = least_busy(backends) print("Least busy device is {}".format(backend.name())) # NBVAL_SKIP job = backend.run(assembled_quadratic_circuit) job_monitor(job) result = job.result() counts = result.get_counts(quadratic_quantum_circuit) plot_histogram(counts) # NBVAL_SKIP job = backend.run(assembled_ramsey_circuit) job_monitor(job) result = job.result() counts = result.get_counts(ramsey_quantum_circuit) plot_histogram(counts) # NBVAL_SKIP IBMQ.disable_account()
https://github.com/qctrl/python-qiskit
qctrl
from qiskit import QuantumCircuit as QiskitQuantumCircuit from qiskit.quantum_info import Operator, Statevector, DensityMatrix, StabilizerState from qiskit import QuantumCircuit, AncillaRegister, ClassicalRegister, QuantumRegister class QuantumCircuit(QiskitQuantumCircuit): def get_unitary_matrix(self, input_dims=None, output_dims=None): return Operator(self, input_dims, output_dims).data def get_density_matrix(self, dims: int | tuple | list | None = None): return DensityMatrix(self, dims) def get_state_vector(self, dims: int | tuple | list | None = None): return Statevector(self, dims) def get_stabilizer_state(self, validate: bool = True): return StabilizerState(self, validate) @staticmethod def from_qiskit_circuit(qiskit_circuit : QiskitQuantumCircuit): custom_circuit = QuantumCircuit(qiskit_circuit.qubits) custom_circuit.add_register(qiskit_circuit.clbits) custom_circuit.data = qiskit_circuit.data.copy() # Copy the operations custom_circuit.global_phase = qiskit_circuit.global_phase # Copy the global phase custom_circuit.metadata = qiskit_circuit.metadata # Copy the metadata if any return custom_circuit if __name__ == "__main__": qc = QuantumCircuit(2) qc.x(0) qc.h(1) for func in [qc.draw, qc.get_unitary_matrix, qc.get_density_matrix, qc.get_stabilizer_state, qc.get_state_vector]: print(f"### Function : {func.__name__} ###") print(func()) print() qc = QiskitQuantumCircuit(5) print(qc.draw()) qc = QuantumCircuit.from_qiskit_circuit(qc) print(qc.draw()) # print(qc.draw()) # print(qc.get_unitary_matrix()) # print(qc.get_density_matrix()) # print(qc.get_state_vector()) # print(qc.get_stabilizer_state())
https://github.com/qctrl/python-qiskit
qctrl
# Copyright 2022 Q-CTRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests conversion to Qiskit Circuit """ import numpy as np from qctrlopencontrols import ( new_carr_purcell_sequence, new_cpmg_sequence, new_periodic_sequence, new_quadratic_sequence, new_spin_echo_sequence, new_uhrig_sequence, new_walsh_sequence, new_x_concatenated_sequence, new_xy_concatenated_sequence, ) from qiskit import ( BasicAer, execute, ) from qctrlqiskit import convert_dds_to_qiskit_quantum_circuit _callable = { "Spin echo": new_spin_echo_sequence, "Carr-Purcell": new_carr_purcell_sequence, "Carr-Purcell-Meiboom-Gill": new_cpmg_sequence, "Uhrig single-axis": new_uhrig_sequence, "periodic single-axis": new_periodic_sequence, "quadratic": new_quadratic_sequence, "Walsh single-axis": new_walsh_sequence, "Quadratic": new_quadratic_sequence, "X concatenated": new_x_concatenated_sequence, "XY concatenated": new_xy_concatenated_sequence, } def _create_test_sequence(sequence_scheme, pre_post_rotation): """ Create a DD sequence of choice. Parameters ---------- sequence_scheme : str One of 'Spin echo', 'Carr-Purcell', 'Carr-Purcell-Meiboom-Gill', 'Uhrig single-axis', 'Periodic single-axis', 'Walsh single-axis', 'Quadratic', 'X concatenated', 'XY concatenated' pre_post_rotation : bool If True, adds a :math:`X_{\\pi/2}` gate on either ends Returns ------- DynamicDecouplingSequence The Dynamical Decoupling Sequence instance built from supplied schema information """ dd_sequence_params = {} dd_sequence_params["duration"] = 4 dd_sequence_params["pre_post_rotation"] = pre_post_rotation # 'spin_echo' does not need any additional parameter if sequence_scheme in [ "Carr-Purcell", "Carr-Purcell-Meiboom-Gill", "Uhrig single-axis", "periodic single-axis", ]: dd_sequence_params["offset_count"] = 2 elif sequence_scheme in ["Walsh single-axis"]: dd_sequence_params["paley_order"] = 5 elif sequence_scheme in ["quadratic"]: dd_sequence_params["duration"] = 16 dd_sequence_params["outer_offset_count"] = 4 dd_sequence_params["inner_offset_count"] = 4 elif sequence_scheme in ["X concatenated", "XY concatenated"]: dd_sequence_params["duration"] = 16 dd_sequence_params["concatenation_order"] = 2 sequence = _callable[sequence_scheme](**dd_sequence_params) return sequence def _check_circuit_unitary(pre_post_rotation, algorithm): """ Checks that the unitary of a dynamic decoupling operation is the identity. """ backend = "unitary_simulator" number_of_shots = 1 backend_simulator = BasicAer.get_backend(backend) for sequence_scheme in [ "Carr-Purcell", "Carr-Purcell-Meiboom-Gill", "Uhrig single-axis", "periodic single-axis", "Walsh single-axis", "quadratic", "X concatenated", "XY concatenated", ]: sequence = _create_test_sequence(sequence_scheme, pre_post_rotation) quantum_circuit = convert_dds_to_qiskit_quantum_circuit( dynamic_decoupling_sequence=sequence, add_measurement=False, algorithm=algorithm, ) job = execute(quantum_circuit, backend_simulator, shots=number_of_shots) result = job.result() unitary = result.get_unitary(quantum_circuit) assert np.isclose(np.abs(np.trace(unitary)), 2.0) def test_identity_operation(): """Tests if the Dynamic Decoupling Sequence gives rise to Identity operation in Qiskit """ _check_circuit_unitary(False, "instant unitary") _check_circuit_unitary(True, "instant unitary") _check_circuit_unitary(False, "fixed duration unitary") _check_circuit_unitary(True, "fixed duration unitary") if __name__ == "__main__": pass
https://github.com/derwind/qiskit_applications
derwind
import numpy as np from qiskit.visualization import plot_bloch_vector %matplotlib inline I = np.array([ [1., 0.], [0., 1.] ]) X = np.array([ [0., 1.], [1., 0.] ]) Y = np.array([ [0., -1.j], [1.j, 0.] ]) Z = np.array([ [1., 0.], [0., -1.] ]) def Rx(theta): return np.cos(theta/2) * I - 1.j * np.sin(theta/2) * X def Ry(theta): return np.cos(theta/2) * I - 1.j * np.sin(theta/2) * Y def Rz(theta): return np.cos(theta/2) * I - 1.j * np.sin(theta/2) * Z def density_matrix(state): if len(state.shape) == 1: state = state.reshape(-1, 1) return state * np.conjugate(state.T) def state2bloch(state): rho = density_matrix(state) x, y, z = np.trace(X @ rho), np.trace(Y @ rho), np.trace(Z @ rho) return np.real(np.array([x, y, z])) def bloch2state(vec, epsilon = 1e-10): x, y, z = np.real(vec) cos = np.sqrt((1 + z)/2) if z > 1 - epsilon: # theta = 0 return np.array([1., 0.]) elif z < -1 + epsilon: # theta = pi return np.array([0., 1.]) else: sin = np.sqrt(x**2 + y**2) / (2*cos) if x < 0: sin = -sin if abs(x) < epsilon: # phi = pi/2, 3pi/2 if y >= 0: phi = np.pi/2 else: phi = 3 * np.pi/2 else: phi = np.arctan(y/x) return np.array([cos, np.exp(1.j*phi)*sin]) #print(state2bloch(np.array([1., 0.]))) #print(bloch2state(np.array([0., 0., 1.]))) init_vec = np.array([0., 0., 1.]) print(init_vec) display(plot_bloch_vector(init_vec)) final_vec = state2bloch(Rx(np.pi/4) @ bloch2state(init_vec)) print(final_vec) display(plot_bloch_vector(final_vec)) init_state = np.array([1., 0.]) final_state = Rx(np.pi/4) @ Ry(np.pi/4) @ init_state final_vec = state2bloch(final_state) print(final_vec) display(plot_bloch_vector(final_vec)) def rot(theta): return np.array([ [np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)], ]) init_vec = np.array([0., 0., 1.]) vec = init_vec[:] vec[[2,0]] = rot(np.pi/4)@vec[[2,0]] # rotate only 2:z, 0:x around Y-axis vec[[1,2]] = rot(np.pi/4)@vec[[1,2]] # rotate only 1:y, 2:z around X-axis print(vec) display(plot_bloch_vector(vec)) from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector qc = QuantumCircuit(1) # First, rotate around Y-axis qc.ry(np.pi/4, 0) state = Statevector.from_instruction(qc) print('First, rotate around Y-axis...') display(plot_bloch_multivector(state)) # Then, rotate around X-axis qc.rx(np.pi/4, 0) print('Then, rotate around X-axis.') state = Statevector.from_instruction(qc) display(plot_bloch_multivector(state))
https://github.com/derwind/qiskit_applications
derwind
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/OscarCharlieST/QISKIT_lab
OscarCharlieST
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from qiskit.tools.visualization import circuit_drawer qr = QuantumRegister(1) cr = ClassicalRegister(1) circuit = QuantumCircuit(qr, cr) circuit.h(qr[0]) circuit.measure(qr[0],cr[0]) circuit_drawer(circuit) from qiskit import Aer backend = Aer.get_backend('qasm_simulator') job = execute(circuit, backend,shots=1024) result=job.result() result.get_counts(circuit) expectation =(result.get_counts(circuit)['0']-result.get_counts(circuit)['1'])/(result.get_counts(circuit)['0'] +result.get_counts(circuit)['1']) print(expectation)
https://github.com/OscarCharlieST/QISKIT_lab
OscarCharlieST
import matplotlib.pyplot as plt from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from qiskit.tools.visualization import circuit_drawer import numpy as np import time qr = QuantumRegister(1) cr = ClassicalRegister(1) circuit = QuantumCircuit(qr, cr) circuit.h(qr[0]) circuit.measure(qr[0],cr[0]) backend = Aer.get_backend('qasm_simulator') exponent = np.arange(2,20,1) # 2^25 iterations is as much as I can calulate in a reasonable amound of time. expectation = [] for s in [2**n for n in exponent]: job = execute(circuit, backend, shots=s) result=job.result().get_counts(circuit) expectation.append((result['0']-result['1'])/(result['0']+result['1'])) fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot() ax.scatter(exponent, expectation) ax.plot(exponent, exponent*0, c=(0.7,.7,0.7)) ax.set_ylabel('<Z> expectation value') ax.set_xlabel('log2(number of itterations)') import matplotlib.pyplot as plt from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from qiskit.visualization import circuit_drawer import numpy as np import pandas as pd import time def measure_z(circuit, c_bit, shots=1024): """ Takes a circuit and a classical bit, and returns the expectation value of the Z operator. """ circuit.measure([0],c_bit) job = execute(circuit, backend, shots=shots) result = job.result().get_counts(circuit) keys = list(result.keys()) if set(keys) == set(['0','1']): return (result['0']-result['1'])/(result['0']+result['1']) elif keys == ['0']: return 1.0 elif keys == ['1']: return -1.0 def measure_x(circuit, c_bit, shots=1024): """ Takes a circuit and a classical bit, and returns the expectation value of the X operator. """ circuit.h([0]) circuit.measure([0],c_bit) job = execute(circuit, backend, shots=shots) result = job.result().get_counts(circuit) keys = list(result.keys()) if set(keys) == set(['0','1']): return (result['0']-result['1'])/(result['0']+result['1']) elif keys == ['0']: return 1.0 elif keys == ['1']: return -1.0 def measure_y(circuit, c_bit, shots=1024): """ Takes a circuit and a classical bit, and returns the expectation value of the Y operator. """ circuit.s([0]) circuit.s([0]) circuit.s([0]) # using S^-1 = S^3 circuit.h([0]) circuit.measure([0],c_bit) job = execute(circuit, backend, shots=shots) result = job.result().get_counts(circuit) keys = list(result.keys()) if set(keys) == set(['0','1']): return (result['0']-result['1'])/(result['0']+result['1']) elif keys == ['0']: return 1.0 elif keys == ['1']: return -1.0 def measure_method_2(theta, circuit, cr, shots=1024): """ Takes a parameter for the matrix M, and an input state circuit with an attached a classical register, and returns <M> via the standard VQE method. """ xcircuit = circuit.copy() x = measure_x(xcircuit, cr[0], shots=shots) ycircuit = circuit.copy() circuit_drawer(ycircuit) y = measure_y(ycircuit, cr[0], shots=shots) M = np.cos(theta)*x + np.sin(theta)*y return M def measure_method_1(theta, circuit, cr, shots=1024): """ Takes a parameter for the matrix M, and an input state circuit with an attached a classical register, and returns <M> via the unitary basis rotation method. """ zcircuit = circuit.copy() zcircuit.p(-theta, [0]) zcircuit.h([0]) M = measure_z(zcircuit, cr[0], shots=shots) return M qr = QuantumRegister(1) cr = ClassicalRegister(1) backend = Aer.get_backend('qasm_simulator') shots = 2**0 # Number of shots to obtain expectation value N = 2**9 # The number of iterations used to see statistics of method # Method 1 zcircuit = QuantumCircuit(qr, cr) M1_1 = [] start=time.time() for i in range(N): M1_1.append(measure_method_1(np.pi/4, zcircuit, cr, shots=shots)) t1_1 = time.time()-start print(f'Method 1: \nTime elapsed for {N} iterations of {shots} shots: ', t1_1) print('Mean:', np.mean(M1_1)) print('Std. dev.:', np.std(M1_1)) # Method 2 circuit = QuantumCircuit(qr, cr) M2_1 = [] start=time.time() for i in range(N): M2_1.append(measure_method_2(np.pi/4, circuit, cr, shots=shots)) t2_1 = time.time()-start print(f'Method 2: \nTime elapsed for {N} iterations of {shots} shots: ', t2_1) print('Mean:', np.mean(M2_1)) print('Std. dev.:', np.std(M2_1)) fig1, ax1 = plt.subplots(figsize=(8,5)) bins=np.histogram(np.hstack((M1_1,M2_1)), bins=40)[1] ax1.hist(M1_1, bins, color='b', alpha=0.5, label=f'method 1 ({round(t1/N*1000, 2)} ms/iter)') ax1.hist(M2_1, bins, color='r', alpha=0.5, label=f'method 2 ({round(t2/N*1000, 2)} ms/iter)') ax1.axvline(0.0, linestyle='-', c='g', label='True value') ax1.set_xlabel(r'Estimate of $\langle M\rangle$') ax1.set_ylabel('Frequency') ax1.set_title(f'Results of {N} simulations of {shots} shots for '+r'$\theta=\pi/4, \phi=\pi/8$') ax1.legend() def init_circuit(phi, qr, cr): circuit = QuantumCircuit(qr, cr) circuit.h([0]) circuit.p(-2*phi, [0]) circuit.h([0]) # Ignoring global phase return circuit # Method 1 zcircuit = init_circuit(np.pi/4, qr, cr) M1_2 = [] start=time.time() for i in range(N): M1_2.append(measure_method_1(np.pi/8, zcircuit, cr, shots=shots)) t1_2 = time.time()-start print(f'Method 1: \nTime elapsed for {N} iterations of {shots} shots: ', t1_2) print('Mean:', np.mean(M1_2)) print('Std. dev.:', np.std(M1_2)) # Method 2 circuit = init_circuit(np.pi/4, qr, cr) M2_2 = [] start=time.time() for i in range(N): M2_2.append(measure_method_2(np.pi/8, circuit, cr, shots=shots)) t2_2 = time.time()-start print(f'Method 2: \nTime elapsed for {N} iterations of {shots} shots: ', t2_2) print('Mean:', np.mean(M2_2)) print('Std. dev.:', np.std(M2_2)) fig1, ax1 = plt.subplots(figsize=(8,5)) bins=np.histogram(np.hstack((M1_2,M2_2)), bins=40)[1] ax1.hist(M1_2, bins, color='b', alpha=0.5, label=f'method 1 ({round(t1/N*1000, 2)} ms/iter)') ax1.hist(M2_2, bins, color='r', alpha=0.5, label=f'method 2 ({round(t2/N*1000, 2)} ms/iter)') ax1.axvline(0.3827, linestyle='-', c='g', label='True value') ax1.set_xlabel(r'Estimate of $\langle M\rangle$') ax1.set_ylabel('Frequency') ax1.set_title(f'Results of {N} simulations of {shots} shots for '+r'$\theta=\pi/4, \phi=\pi/8$') ax1.legend() shots = np.arange(1000, 100000, 1000) s_exps = np.linspace(7, 17, 200) #shots = [(2**exp)//1 for exp in s_exps] # Method 1 zcircuit = init_circuit(np.pi/4, qr, cr) M1 = [] t1 = [] for s in shots: start=time.time() M1.append(measure_method_1(np.pi/8, zcircuit, cr, shots=s)) end=time.time() t1.append(end-start) # Method 2 circuit = init_circuit(np.pi/4, qr, cr) M2 = [] t2 = [] for s in shots: start=time.time() M2.append(measure_method_2(np.pi/8, circuit, cr, shots=s)) end=time.time() t2.append(end-start) fig, axs = plt.subplots(1,2,figsize=(16,5)) axs[0].plot(shots,t1, label='method 1') axs[0].plot(shots,t2, label='method 2') axs[0].set_xlabel('Number of shots') axs[0].set_ylabel('Time taken') axs[0].legend() axs[1].scatter(shots,M1, label='method 1') axs[1].scatter(shots,M2, label='method 2') axs[1].axhline(np.sin(np.pi/8), label='expected value', c=(.7,.7,.7)) #axs[1].set_xlabel(r'$log_2(shots)$') axs[1].set_ylabel(r'$\langle M\rangle') axs[1].legend() tps_1 = np.mean(np.array(t1)/np.array(shots)) tps_2 = np.mean(np.array(t2)/np.array(shots)) print('Ratio of time taken (method 2:method 1) = ', round(tps_2/tps_1, 3)) #s_exps = np.linspace(7, 14, 10) #shots = [(2**exp)//1 for exp in s_exps] shots_std = np.linspace(500,2000,15) N=50 # Method 1 zcircuit = init_circuit(np.pi/4, qr, cr) std1 = [] for s in shots_std: m = [] for i in range(N): m.append(measure_method_1(np.pi/8, zcircuit, cr, shots=s)) std1.append(np.std(m)) # Method 2 circuit = init_circuit(np.pi/4, qr, cr) std2=[] for s in shots_std: m=[] for i in range(N): m.append(measure_method_2(np.pi/8, circuit, cr, shots=s)) std2.append(np.std(m)) fig, axs = plt.subplots(1,2,figsize=(16,5)) axs[0].plot(shots,t1, label='method 1', c='r') axs[0].plot(shots,t2, label='method 2', c='b') axs[0].set_xlabel('Number of shots') axs[0].set_ylabel('Time taken') axs[0].legend() rt_s = np.sqrt(1/np.array(shots_std)) axs[1].scatter(rt_s, std1, label='method 1', c='r') axs[1].plot(rt_s, rt_s*np.polyfit(rt_s, std1,1)[0]+ np.polyfit(rt_s, std1,1)[1], c='r', alpha=.5, label='m='+str(round(np.polyfit(rt_s, std1,1)[0],3))) axs[1].scatter(rt_s, std2, label='method 2', c='b') axs[1].plot(rt_s, rt_s*np.polyfit(rt_s, std2,1)[0]+ np.polyfit(rt_s, std2,1)[1], c='b', alpha=.5, label='m='+str(round(np.polyfit(rt_s, std2,1)[0],3))) axs[1].set_xlabel(r'shots$^{-1/2}$') axs[1].set_ylabel(r'$\Delta\langle M\rangle$') axs[1].legend()
https://github.com/OscarCharlieST/QISKIT_lab
OscarCharlieST
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, Aer from qiskit.tools.visualization import circuit_drawer from qiskit import Aer import matplotlib.pyplot as plt import math import numpy as np import time import pandas as pd from tqdm import tqdm #Function that returns the expectation value of a measurement def get_expectation(circuit,backend,logshots): job = execute(circuit, backend,shots=2**logshots) counts = job.result().get_counts(circuit) runtime = job.result().time_taken keys = list(counts.keys()) if set(keys) == set(['0','1']): return (counts['0']-counts['1'])/(counts['0']+counts['1']) , runtime elif keys == ['0']: return 1.0, runtime elif keys == ['1']: return -1.0, runtime #Given an angle phi determines the state in our defined set of states def initial_state(phi): state = math.cos(phi)*np.array([1,0]) + 1j*math.sin(phi)* np.array([0,1]) return state #Given data as a csv file and shots, returns histogram comparing the results with the true value of the expectation #value and the mean of each method def exp_value_histogram(data, state, shots,backend, mean=0.0, save = False): #data = pd.read_csv(f'{backend}_state_1.csv') M1 = data['Method 1'] M2 = data['Method 2'] n_simulations = len(M1) fig1, ax1 = plt.subplots(figsize=(8,5)) bins=np.histogram(np.hstack((M1,M2)), bins=40)[1] ax1.hist(M1, bins, color='b', alpha=0.5, label=f'method 1') ax1.hist(M2, bins, color='r', alpha=0.5, label=f'method 2') ax1.axvline(mean, linestyle='-', c='g', label='True value') ax1.axvline(np.mean(M1), linestyle='-', c='b', label='Method 1 mean') ax1.axvline(np.mean(M2), linestyle='-', c='r', label='Method 2 mean') ax1.set_xlabel(r'Estimate of $\langle M\rangle$') ax1.set_ylabel('Frequency') ax1.set_title(f'Results of {n_simulations} simulations of {2**shots} shots for {state} on {backend}') ax1.legend() if save == True: fig1.savefig(f'figures/{state}_{backend}.png') def time_benchmarking(M1,M2,t1,t2,shots,exp_value): fig, axs = plt.subplots(1,2,figsize=(16,5)) axs[0].plot(shots,t1, label='method 1') axs[0].plot(shots,t2, label='method 2') axs[0].set_xlabel('Number of shots') axs[0].set_ylabel('Time taken') axs[0].legend() axs[1].scatter(shots,M1, label='method 1') axs[1].scatter(shots,M2, label='method 2') axs[1].axhline(exp_value, label='expected value', c=(.7,.7,.7)) axs[1].set_xlabel('Number of shots (log_2 scale)') axs[1].set_ylabel('Expectation value of M') axs[1].set_ylim([min(M1+M2)-0.05,max(M1+M2)+0.05]) axs[1].legend() # Method 1 - apply HU^dagger(theta) and measure Z #Build the cirquit def method_1_circuit(theta, phi): qr = QuantumRegister(1) cr = ClassicalRegister(1) circuit = QuantumCircuit(qr, cr) circuit.initialize(initial_state(phi), qr[0]) circuit.p(-theta, qr[0]) circuit.h(qr[0]) circuit.measure(qr[0],cr[0]) return circuit circuit_drawer(method_1_circuit(theta=math.pi/8, phi=math.pi/4)) # Method 2 # M(theta) = cos(theta)X + sin(theta)Y # alpha = cos(theta) ; beta = sin(theta) #Build the cirquits #Measure X expectation value circuit def method_2_X_circuit(theta,phi): qr = QuantumRegister(1) cr = ClassicalRegister(1) circuit = QuantumCircuit(qr, cr) circuit.initialize(initial_state(phi), qr[0]) circuit.h(qr[0]) circuit.measure(qr[0],cr[0]) circuit_drawer(circuit) return circuit circuit_drawer(method_2_X_circuit(theta=math.pi/4, phi=0)) def method1(theta,phi,backend,shots): circuit = method_1_circuit(theta, phi) return get_expectation(circuit,backend,shots) #Measure Y expectation value circuit def method_2_Y_circuit(theta,phi): qr = QuantumRegister(1) cr = ClassicalRegister(1) circuit = QuantumCircuit(qr, cr) circuit.initialize(initial_state(phi), qr[0]) circuit.p(-math.pi/2,qr[0]) circuit.h(qr[0]) circuit.measure(qr[0],cr[0]) circuit_drawer(circuit) return circuit circuit_drawer(method_2_Y_circuit(theta=math.pi/4, phi=0)) def method2(theta,phi,backend,shots): ''' Output: expectation value, job status of circuit X, job status of circuit Y ''' circuit_X = method_2_X_circuit(theta, phi) expectation_X, runtime_X = get_expectation(circuit_X,backend,shots) circuit_Y = method_2_Y_circuit(theta,phi) expectation_Y, runtime_Y = get_expectation(circuit_Y,backend,shots) expectation_M = math.cos(theta)*expectation_X + math.sin(theta)*expectation_Y return expectation_M, runtime_X + runtime_Y #Establish number of simulations, shots and backend simulator n_simulations = 500 shots = 10 #log scale backend = Aer.get_backend('qasm_simulator') #State 1 theta_1=math.pi/4 phi_1=0 method_1_state_1 = [] runtime_method_1_state_1 = [] for n in tqdm(range(n_simulations)): exp_value,runtime = method1(theta_1,phi_1,backend,shots) method_1_state_1.append(exp_value) runtime_method_1_state_1.append(runtime) m1_dict = {'Method 1':method_1_state_1, 'Method 1 runtime':runtime_method_1_state_1} pd.DataFrame(m1_dict).to_csv(f'{backend}_state_1.csv') method_2_state_1 = [] runtime_method_2_state_1 = [] for n in tqdm(range(n_simulations)): exp_value,runtime = method2(theta_1,phi_1,backend,shots) method_2_state_1.append(exp_value) runtime_method_2_state_1.append(runtime) m1_dict.update({'Method 2':method_2_state_1, 'Method 2 runtime':runtime_method_2_state_1}) pd.DataFrame(m1_dict).to_csv(f'{backend}_state_1.csv') #State 2 theta_2=math.pi/8 phi_2=math.pi/4 method_1_state_2 = [] runtime_method_1_state_2 = [] for n in tqdm(range(n_simulations)): exp_value, runtime = method1(theta_2,phi_2,backend,shots) method_1_state_2.append(exp_value) runtime_method_1_state_2.append(runtime) m2_dict = {'Method 1':method_1_state_2,'Method runtime':runtime_method_1_state_2} pd.DataFrame(m2_dict).to_csv(f'{backend}_state_2.csv') method_2_state_2 = [] runtime_method_2_state_2 = [] for n in tqdm(range(n_simulations)): exp_value, runtime = method2(theta_2,phi_2,backend,shots) method_2_state_2.append(exp_value) runtime_method_2_state_2.append(runtime) m2_dict.update({'Method 2':method_2_state_2,'Method 2 runtime':runtime_method_2_state_2}) pd.DataFrame(m2_dict).to_csv(f'{backend}_state_2.csv') state_1_data = pd.read_csv(f'{backend}_state_1.csv') state_1 = r'$\theta=\pi/4, \phi=0$' exp_value_histogram(state_1_data, 'state_1', shots,backend, save = True) state_2_data = pd.read_csv(f'{backend}_state_2.csv') state_2 = r'$\theta=\pi/8, \phi=\pi/4$' exp_value_histogram(state_2_data, 'state_2', shots,backend, mean=0.3827, save = True) shots = np.arange(1000, 100000, 1000) shots_log = list(map(lambda x: math.log(x,2), shots)) method_1_state_1 = [] runtime_method_1_state_1 = [] for s in tqdm(shots_log): exp_value,runtime = method1(theta_1,phi_1,backend,s) method_1_state_1.append(exp_value) runtime_method_1_state_1.append(runtime) method_2_state_1 = [] runtime_method_2_state_1 = [] for s in tqdm(shots_log): exp_value,runtime = method2(theta_1,phi_1,backend,s) method_2_state_1.append(exp_value) runtime_method_2_state_1.append(runtime) time_benchmarking(method_1_state_1, method_2_state_1,runtime_method_1_state_1,runtime_method_2_state_1,shots,0) tps_1 = np.mean(np.array(runtime_method_1_state_1)/np.array(shots)) tps_2 = np.mean(np.array(runtime_method_2_state_1)/np.array(shots)) print('Ratio of time taken (method 2:method 1) = ', round(tps_2/tps_1, 3)) shots_std = np.linspace(500,2000,15) shots_log = list(map(lambda x: math.log(x,2), shots_std)) n_simulations = 50 std1 = [] rt1 = [] for s in tqdm(shots_log): method_1_state_1 = [] runtime_method_1_state_1 = [] for i in range(n_simulations): exp_value,runtime = method1(theta_1,phi_1,backend,s) method_1_state_1.append(exp_value) runtime_method_1_state_1.append(runtime) std1.append(np.std(method_1_state_1)) rt1.append(np.mean(runtime_method_1_state_1)) std2 = [] rt2 = [] for s in tqdm(shots_log): method_2_state_1 = [] runtime_method_2_state_1 = [] for i in range(n_simulations): exp_value,runtime = method2(theta_1,phi_1,backend,s) method_2_state_1.append(exp_value) runtime_method_2_state_1.append(runtime) std2.append(np.std(method_2_state_1)) rt2.append(np.mean(runtime_method_2_state_1)) fig, axs = plt.subplots(1,2,figsize=(16,5)) axs[0].plot(shots_std,rt1, label='method 1', c='r') axs[0].plot(shots_std,rt2, label='method 2', c='b') axs[0].set_xlabel('Number of shots') axs[0].set_ylabel('Mean time taken') axs[0].legend() rt_s = np.sqrt(1/np.array(shots_std)) axs[1].scatter(rt_s, std1, label='method 1', c='r') axs[1].plot(rt_s, rt_s*np.polyfit(rt_s, std1,1)[0]+ np.polyfit(rt_s, std1,1)[1], c='r', alpha=.5, label='m='+str(round(np.polyfit(rt_s, std1,1)[0],3))) axs[1].scatter(rt_s, std2, label='method 2', c='b') axs[1].plot(rt_s, rt_s*np.polyfit(rt_s, std2,1)[0]+ np.polyfit(rt_s, std2,1)[1], c='b', alpha=.5, label='m='+str(round(np.polyfit(rt_s, std2,1)[0],3))) axs[1].set_xlabel(r'shots$^{-1/2}$') axs[1].set_ylabel(r'$\Delta\langle M\rangle$') axs[1].legend() from qiskit import IBMQ from qiskit.providers.ibmq import least_busy mykey = 'd0db27e06149ec7280499124f8a6a11cf87d70d35c06147d3f70a8f9c0ae5a136f33ae887c14b0b44c10c1dc64e3249cc89aa7104fc3e01c940a3e1f1dead7fc' IBMQ.save_account(mykey) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() small_devices = provider.backends(filters=lambda x: x.configuration().n_qubits == 5 and not x.configuration().simulator) backend=least_busy(small_devices) print(backend) n_simulations = 20 shots = 10 #log scale #State 1 theta_1=math.pi/4 phi_1=0 method_1_state_1 = [] runtime_method_1_state_1 = [] for n in tqdm(range(n_simulations)): exp_value,runtime = method1(theta_1,phi_1,backend,shots) method_1_state_1.append(exp_value) runtime_method_1_state_1.append(runtime) m1_dict = {'Method 1':method_1_state_1, 'Method 1 runtime':runtime_method_1_state_1} pd.DataFrame(m1_dict).to_csv(f'{backend}_state_1.csv') method_2_state_1 = [] runtime_method_2_state_1 = [] for n in tqdm(range(n_simulations)): exp_value,runtime = method2(theta_1,phi_1,backend,shots) method_2_state_1.append(exp_value) runtime_method_2_state_1.append(runtime) m1_dict.update({'Method 2':method_2_state_1, 'Method 2 runtime':runtime_method_2_state_1}) pd.DataFrame(m1_dict).to_csv(f'{backend}_state_1.csv') #State 2 theta_2=math.pi/8 phi_2=math.pi/4 method_1_state_2 = [] runtime_method_1_state_2 = [] for n in tqdm(range(n_simulations)): exp_value, runtime = method1(theta_2,phi_2,backend,shots) method_1_state_2.append(exp_value) runtime_method_1_state_2.append(runtime) m2_dict = {'Method 1':method_2_state_1,'Method 1 runtime':runtime_method_1_state_2} pd.DataFrame(m2_dict).to_csv(f'{backend}_state_2.csv') method_2_state_2 = [] runtime_method_2_state_2 = [] for n in tqdm(range(n_simulations)): exp_value, runtime = method2(theta_2,phi_2,backend,shots) method_2_state_2.append(method2(exp_value)) runtime_method_2_state_2.append(runtime) m2_dict.update({'Method 2':method_2_state_2,'Method 2 runtime':runtime_method_2_state_2}) pd.DataFrame(m2_dict).to_csv(f'{backend}_state_2.csv') n_simulations = 20 shots = 10 #log scale backend = 'ibmq_belem' state_1_data = pd.read_csv(f'{backend}_state_1.csv') state_1 = r'$\theta=\pi/4, \phi=0$' exp_value_histogram(state_1_data, 'state_1', shots,backend, save = True) state_2_data = pd.read_csv(f'{backend}_state_2.csv') state_2 = r'$\theta=\pi/8, \phi=\pi/4$' exp_value_histogram(state_2_data, 'state_2', shots,backend, mean=0.3827, save = True) #State 1 runtime_method_1_state_1_mean = np.mean(state_1_data['Method 1 runtime']) print(f'The mean runtime for method 1 for state 1 is: {runtime_method_1_state_1_mean} s') runtime_method_2_state_1_mean = np.mean(state_1_data['Method 2 runtime']) print(f'The mean runtime for method 2 for state 1 is: {runtime_method_2_state_1_mean} s')
https://github.com/ncitron/qiskit-hack
ncitron
from qiskit import * from qiskit.tools.visualization import plot_histogram as ph %matplotlib inline # Battleship Grid ## 0 1 2 3 4 5 6 7 8 9 #A - - - - - X X - - - #B - - X - - - - X X X #C - - X - - - - - - - #D - - X - - X - - - - #E - - - - - X - - - - #F - - - - - X - - - - #G - - - - - X - - - - #H - - - - - - - - - - #I - - - - - - - - - - #J - - - - - X X X X X #Acceptable solutions: sol = [ '0000101', '0000110', '0001100', '0010001', '0010010', '0010011', '0010110', '0100000', '0101010', '0101101', '0110111', '1000001', '1001011', '1101100', '1101101', '1101110', '1101111' ] tot = len(sol) n = 7 s = [] for i in range(n-1): s.append(i) # 17 - 2 # 16 - 2 # 15 - 2 # 14 - 2 # 13 - 2 # 12 - 2 # 11 - 2 # 10 - 2 # 9 - 2 # 8 - 3 # 7 - 3 # 6 - 3 # 5 - 3 # 4 - 4 # 3 - 5 # 2 - 6 # 1 - 8 if tot > 8: rep = 2 elif tot > 4: rep = 3 elif tot == 4: rep = 4 elif tot == 3: rep = 5 elif tot == 2: rep = 6 else: rep = 8 def build_oracle(circuit, solutions): for i in range(tot): temp = solutions[i] for j, yesno in enumerate(reversed(temp)): if yesno == '0': circuit.x(j) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) for k, noyes in enumerate(reversed(temp)): if noyes == '0': circuit.x(k) def amplify(circuit): circuit.h(range(n)) circuit.x(range(n)) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) circuit.x(range(n)) circuit.h(range(n)) qc = QuantumCircuit(n) qc.h(range(n)) for i in range(rep): qc.barrier() build_oracle(qc, sol) qc.barrier() amplify(qc) qc.measure_all() bknd = Aer.get_backend('qasm_simulator') ph(execute(qc,backend=bknd,shots=1000000).result().get_counts()) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts)
https://github.com/ncitron/qiskit-hack
ncitron
class QuantComp: def __init__(qboard, classical): qboard.classical = classical def convert(cboard): ret = [] for i in range(len(cboard)): if cboard[i] == 1: hold = str(bin(i)) while(len(hold) < 7): hold = '0' + hold ret.append(hold) return ret def setup(array): tot = len(array) n = 7 s = [] for i in range(n-1): s.append(i) if tot > 8: rep = 2 elif tot > 4: rep = 3 elif tot == 4: rep = 4 elif tot == 3: rep = 5 elif tot == 2: rep = 6 else: rep = 8 return rep, n def build_oracle(circuit, solutions, n): for i in range(tot): temp = solutions[i] for j, yesno in enumerate(reversed(temp)): if yesno == '0': circuit.x(j) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) for k, noyes in enumerate(reversed(temp)): if noyes == '0': circuit.x(k) def amplify(circuit, n): circuit.h(range(n)) circuit.x(range(n)) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) circuit.x(range(n)) circuit.h(range(n)) def guess(qboard): sol = convert(qboard.classical) rep, n = setup(sol) qc = QuantumCircuit(n) qc.h(range(n)) for i in range(rep): build_oracle(qc, sol, n) amplify(qc, n) qc.measure_all() simulator = Aer.get_backend('qasm_simulator') return execute(qc, backend = simulator, shots = 1).result().get_counts() q = QuantComp([0,0,0,0,0,1]) q.guess()
https://github.com/ncitron/qiskit-hack
ncitron
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/ncitron/qiskit-hack
ncitron
import os import json import asyncio import websockets import threading from random import randint from qiskit import * from flask import Flask, send_from_directory class Board: def place(self): arr = [] for i in range(100): arr.append(0) arr = self.ship(arr, 5) arr = self.ship(arr, 4) arr = self.ship(arr, 3) arr = self.ship(arr, 3) arr = self.ship(arr, 2) return arr def ship(self, array, length): nope = True while nope: head = randint(0, 99) orient = randint(0, 3) truf = self.check(head, length, orient, array) nope = not truf array = self.put(head, length, orient, array) return array def check(self, h, l, o, a): if a[h] != 0: return False if o == 0: end = h+(l-1) if (h - (h%10)) != (end - (end%10)): return False for i in range(l): if a[h+i] != 0: return False elif o == 1: end = h - 10*(l-1) if end < 0: return False for i in range(l): if a[h - 10*i] != 0: return False elif o == 2: end = h-(l-1) if (h - (h%10)) != (end - (end%10)): return False for i in range(l): if a[h-i] != 0: return False elif o == 3: end = h + 10*(l-1) if end > 99: return False for i in range(l): if a[h + 10*i] != 0: return False return True def put(self, h, l, o, a): if o == 0: for i in range(l): a[h+i] = 1 elif o == 1: for i in range(l): a[h-10*i] = 1 elif o == 2: for i in range(l): a[h-i] = 1 elif o == 3: for i in range(l): a[h+10*i] = 1 return a class QuantComp: def __init__(self): print('created board') def setBoard(self, classical): self.classical = classical def convert(self, cboard): ret = [] for i in range(len(cboard)): if cboard[i] == 1: hold = str(bin(i).replace("0b","")) while(len(hold) < 7): hold = '0' + hold ret.append(hold) return ret def setup(self, array): tot = len(array) n = 7 s = [] for i in range(n-1): s.append(i) if tot > 8: rep = 2 elif tot > 4: rep = 3 elif tot == 4: rep = 4 elif tot == 3: rep = 5 elif tot == 2: rep = 6 else: rep = 8 return rep, n, tot, s def build_oracle(self, circuit, solutions, n, tot, s): for i in range(tot): temp = solutions[i] for j, yesno in enumerate(reversed(temp)): if yesno == '0': circuit.x(j) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) for k, noyes in enumerate(reversed(temp)): if noyes == '0': circuit.x(k) def amplify(self, circuit, n, s): circuit.h(range(n)) circuit.x(range(n)) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) circuit.x(range(n)) circuit.h(range(n)) def guess(self): sol = self.convert(self.classical) rep, n, tot, s = self.setup(sol) qc = QuantumCircuit(n) qc.h(range(n)) for i in range(rep): self.build_oracle(qc, sol, n, tot, s) self.amplify(qc, n, s) qc.measure_all() simulator = Aer.get_backend('qasm_simulator') stng = list(execute(qc, backend = simulator, shots = 1).result().get_counts().keys())[0] return int(stng, 2) app = Flask(__name__, static_folder="./QuantumBattleship/build") @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def serve(path): if path != "" and os.path.exists(app.static_folder + '/' + path): return send_from_directory(app.static_folder, path) else: return send_from_directory(app.static_folder, 'index.html') q = QuantComp() async def websocket_server(websocket, path): async for cmd in websocket: cmdDict = json.loads(cmd) print(cmdDict) #quantum bot if cmdDict['event'] == 'start': sep = ', ' await websocket.send('{"event": "q-board", "quantumBoard": ' + str(Board().place()) + '}') if cmdDict['event'] == 'p-board': board = cmdDict['playerBoard'] for i in range(0, len(board)): if board[i] == 3: board[i] = 1 else: board[i] = 0 q.setBoard(board) if cmdDict['event'] == 'turn': guess = q.guess() q.classical[guess] = 0 await websocket.send('{"event": "guess", "target": ' + str(guess) + '}') def thread(): app.run(use_reloader=False, port=8080, threaded=True) if __name__ == '__main__': threading.Thread(target=thread).start() start_server = websockets.serve(websocket_server, "localhost", 8081) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()
https://github.com/ncitron/qiskit-hack
ncitron
from qiskit import * from qiskit.tools.visualization import plot_histogram as ph %matplotlib inline import math #0 1 2 #3 4 5 #6 7 8 mat = [0,1,0,0,0,0,1,0,0] circuit = QuantumCircuit(len(mat)) circuit.h(range(len(mat))) circuit.barrier() for i in range(len(mat)): if mat[i] == 1: circuit.y(i) circuit.barrier() circuit.h(range(len(mat))) circuit.measure_all() circuit.draw('mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend = simulator, shots = 100).result() counts = result.get_counts() print(counts) def oracle(circuit): circuit.cz(0,2) circuit.cz(1,2) def diffuser(circuit): """Apply inversion about the average step of Grover's algorithm.""" qbits = circuit.qubits nqbits = len(qbits) for q in range(nqbits): circuit.h(q) circuit.x(q) #Do controlled-Z circuit.h(2) circuit.ccx(0,1,2) circuit.h(2) for q in range(nqbits): circuit.x(q) circuit.h(q) n=3 barriers = True grover = QuantumCircuit(n) for qb in range(n): grover.h(qb) if barriers: grover.barrier() oracle(grover) if barriers: grover.barrier() diffuser(grover) grover.measure_all() grover.draw('mpl') be = Aer.get_backend('qasm_simulator') sh = 1024 ph(execute(grover,backend=be,shots=sh).result().get_counts()) from qiskit.quantum_info.operators import Operator controls = QuantumRegister(2) circuit = QuantumCircuit(controls) dd = Operator([ [0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0] ]) circuit.unitary(dd, [0, 1], label='dd') circuit.h(0) circuit.draw('mpl') # 4-qubit grover's algorithm pi = math.pi qc = QuantumCircuit(4) shots = 2048 qc.h([0,1,2,3]) ## Oracle for 0010 AND 1100 ## qc.barrier() qc.x([0,2,3]) qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.x([0,2,3]) qc.x([0,1]) qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.x([0,1]) qc.barrier() ## Amplification ## qc.h([0,1,2,3]) qc.x([0,1,2,3]) #Start cccz qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) #end cccz qc.x([0,1,2,3]) qc.h([0,1,2,3]) qc.barrier() #### Repeat 1 ## Oracle for 0010 AND 1100 ## qc.x([0,2,3]) qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.x([0,2,3]) qc.x([0,1]) qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.x([0,1]) qc.barrier() ## Amplification ## qc.h([0,1,2,3]) qc.x([0,1,2,3]) #Start cccz qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) #end cccz qc.x([0,1,2,3]) qc.h([0,1,2,3]) qc.measure_all() qc.draw('mpl') bcn = Aer.get_backend('qasm_simulator') ph(execute(qc,backend=bcn,shots=shots).result().get_counts()) # one acceptable answer (0010) circ = QuantumCircuit(4) circ.h([0,1,2,3]) circ.barrier() circ.x([0,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,2,3]) circ.barrier() circ.h([0,1,2,3]) circ.x([0,1,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,1,2,3]) circ.h([0,1,2,3]) circ.barrier() circ.x([0,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,2,3]) circ.barrier() circ.h([0,1,2,3]) circ.x([0,1,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,1,2,3]) circ.h([0,1,2,3]) circ.barrier() circ.x([0,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,2,3]) circ.barrier() circ.h([0,1,2,3]) circ.x([0,1,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,1,2,3]) circ.h([0,1,2,3]) circ.measure_all() circ.draw('mpl') bcnd = Aer.get_backend('qasm_simulator') ph(execute(circ,backend=bcnd,shots=1024).result().get_counts()) # three acceptable answers (0101, 1111, 1000) n = 7 s = [] for i in range(n-1): s.append(i) qcqc = QuantumCircuit(n) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.measure_all() qcqc.draw('mpl') bknd = Aer.get_backend('qasm_simulator') ph(execute(qcqc,backend=bknd,shots=1024).result().get_counts())
https://github.com/ncitron/qiskit-hack
ncitron
from qiskit import * from qiskit.tools.visualization import plot_histogram as ph %matplotlib inline # Battleship Grid ## 0 1 2 3 4 5 6 7 8 9 #A - - - - - X X - - - #B - - X - - - - X X X #C - - X - - - - - - - #D - - X - - X - - - - #E - - - - - X - - - - #F - - - - - X - - - - #G - - - - - X - - - - #H - - - - - - - - - - #I - - - - - - - - - - #J - - - - - X X X X X #Acceptable solutions: sol = [ '0000101', '0000110', '0001100', '0010001', '0010010', '0010011', '0010110', '0100000', '0101010', '0101101', '0110111', '1000001', '1001011', '1101100', '1101101', '1101110', '1101111' ] tot = len(sol) n = 7 s = [] for i in range(n-1): s.append(i) # 17 - 2 # 16 - 2 # 15 - 2 # 14 - 2 # 13 - 2 # 12 - 2 # 11 - 2 # 10 - 2 # 9 - 2 # 8 - 3 # 7 - 3 # 6 - 3 # 5 - 3 # 4 - 4 # 3 - 5 # 2 - 6 # 1 - 8 if tot > 8: rep = 2 elif tot > 4: rep = 3 elif tot == 4: rep = 4 elif tot == 3: rep = 5 elif tot == 2: rep = 6 else: rep = 8 def build_oracle(circuit, solutions): for i in range(tot): temp = solutions[i] for j, yesno in enumerate(reversed(temp)): if yesno == '0': circuit.x(j) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) for k, noyes in enumerate(reversed(temp)): if noyes == '0': circuit.x(k) def amplify(circuit): circuit.h(range(n)) circuit.x(range(n)) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) circuit.x(range(n)) circuit.h(range(n)) qc = QuantumCircuit(n) qc.h(range(n)) for i in range(rep): qc.barrier() build_oracle(qc, sol) qc.barrier() amplify(qc) qc.measure_all() bknd = Aer.get_backend('qasm_simulator') ph(execute(qc,backend=bknd,shots=1000000).result().get_counts()) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts)
https://github.com/ncitron/qiskit-hack
ncitron
class QuantComp: def __init__(qboard, classical): qboard.classical = classical def convert(cboard): ret = [] for i in range(len(cboard)): if cboard[i] == 1: hold = str(bin(i)) while(len(hold) < 7): hold = '0' + hold ret.append(hold) return ret def setup(array): tot = len(array) n = 7 s = [] for i in range(n-1): s.append(i) if tot > 8: rep = 2 elif tot > 4: rep = 3 elif tot == 4: rep = 4 elif tot == 3: rep = 5 elif tot == 2: rep = 6 else: rep = 8 return rep, n def build_oracle(circuit, solutions, n): for i in range(tot): temp = solutions[i] for j, yesno in enumerate(reversed(temp)): if yesno == '0': circuit.x(j) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) for k, noyes in enumerate(reversed(temp)): if noyes == '0': circuit.x(k) def amplify(circuit, n): circuit.h(range(n)) circuit.x(range(n)) circuit.h(n-1) circuit.mct(s, n-1) circuit.h(n-1) circuit.x(range(n)) circuit.h(range(n)) def guess(): sol = convert(qboard.classical) rep, n = setup(sol) qc = QuantumCircuit(n) qc.h(range(n)) for i in range(rep): build_oracle(qc, sol, n) amplify(qc, n) qc.measure_all() simulator = Aer.get_backend('qasm_simulator') return execute(qc, backend = simulator, shots = 1).result().get_counts()
https://github.com/ncitron/qiskit-hack
ncitron
from qiskit import * from qiskit.tools.visualization import plot_histogram as ph %matplotlib inline import math #0 1 2 #3 4 5 #6 7 8 mat = [0,1,0,0,0,0,1,0,0] circuit = QuantumCircuit(len(mat)) circuit.h(range(len(mat))) circuit.barrier() for i in range(len(mat)): if mat[i] == 1: circuit.y(i) circuit.barrier() circuit.h(range(len(mat))) circuit.measure_all() circuit.draw('mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend = simulator, shots = 100).result() counts = result.get_counts() print(counts) def oracle(circuit): circuit.cz(0,2) circuit.cz(1,2) def diffuser(circuit): """Apply inversion about the average step of Grover's algorithm.""" qbits = circuit.qubits nqbits = len(qbits) for q in range(nqbits): circuit.h(q) circuit.x(q) #Do controlled-Z circuit.h(2) circuit.ccx(0,1,2) circuit.h(2) for q in range(nqbits): circuit.x(q) circuit.h(q) n=3 barriers = True grover = QuantumCircuit(n) for qb in range(n): grover.h(qb) if barriers: grover.barrier() oracle(grover) if barriers: grover.barrier() diffuser(grover) grover.measure_all() grover.draw('mpl') be = Aer.get_backend('qasm_simulator') sh = 1024 ph(execute(grover,backend=be,shots=sh).result().get_counts()) from qiskit.quantum_info.operators import Operator controls = QuantumRegister(2) circuit = QuantumCircuit(controls) dd = Operator([ [0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0] ]) circuit.unitary(dd, [0, 1], label='dd') circuit.h(0) circuit.draw('mpl') # 4-qubit grover's algorithm pi = math.pi qc = QuantumCircuit(4) shots = 2048 qc.h([0,1,2,3]) ## Oracle for 0010 AND 1100 ## qc.barrier() qc.x([0,2,3]) qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.x([0,2,3]) qc.x([0,1]) qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.x([0,1]) qc.barrier() ## Amplification ## qc.h([0,1,2,3]) qc.x([0,1,2,3]) #Start cccz qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) #end cccz qc.x([0,1,2,3]) qc.h([0,1,2,3]) qc.barrier() #### Repeat 1 ## Oracle for 0010 AND 1100 ## qc.x([0,2,3]) qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.x([0,2,3]) qc.x([0,1]) qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.x([0,1]) qc.barrier() ## Amplification ## qc.h([0,1,2,3]) qc.x([0,1,2,3]) #Start cccz qc.cu1(pi/4, 0, 3) qc.cx(0, 1) qc.cu1(-pi/4, 1, 3) qc.cx(0, 1) qc.cu1(pi/4, 1, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) qc.cx(1, 2) qc.cu1(-pi/4, 2, 3) qc.cx(0, 2) qc.cu1(pi/4, 2, 3) #end cccz qc.x([0,1,2,3]) qc.h([0,1,2,3]) qc.measure_all() qc.draw('mpl') bcn = Aer.get_backend('qasm_simulator') ph(execute(qc,backend=bcn,shots=shots).result().get_counts()) # one acceptable answer (0010) circ = QuantumCircuit(4) circ.h([0,1,2,3]) circ.barrier() circ.x([0,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,2,3]) circ.barrier() circ.h([0,1,2,3]) circ.x([0,1,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,1,2,3]) circ.h([0,1,2,3]) circ.barrier() circ.x([0,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,2,3]) circ.barrier() circ.h([0,1,2,3]) circ.x([0,1,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,1,2,3]) circ.h([0,1,2,3]) circ.barrier() circ.x([0,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,2,3]) circ.barrier() circ.h([0,1,2,3]) circ.x([0,1,2,3]) circ.h(3) circ.mct([0,1,2], 3) circ.h(3) circ.x([0,1,2,3]) circ.h([0,1,2,3]) circ.measure_all() circ.draw('mpl') bcnd = Aer.get_backend('qasm_simulator') ph(execute(circ,backend=bcnd,shots=1024).result().get_counts()) # three acceptable answers (0101, 1111, 1000) n = 7 s = [] for i in range(n-1): s.append(i) qcqc = QuantumCircuit(n) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.barrier() qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([1,3]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x([0,1,2]) qcqc.barrier() qcqc.h(range(n)) qcqc.x(range(n)) qcqc.h(n-1) qcqc.mct(s, n-1) qcqc.h(n-1) qcqc.x(range(n)) qcqc.h(range(n)) qcqc.measure_all() qcqc.draw('mpl') bknd = Aer.get_backend('qasm_simulator') ph(execute(qcqc,backend=bknd,shots=1024).result().get_counts())
https://github.com/alexao8/QC-Qiskit
alexao8
# Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ, assemble, transpile from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.ibmq import least_busy # Loading your IBM Q account(s) provider = IBMQ.load_account() # Build # Create a Quantum Circuit acting on the q register circuit = QuantumCircuit(2, 2) #Add a NOT gate on qubit 1 circuit.x(1) # Add a H gate on qubit 0 and 1 circuit.h(0) circuit.h(1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0, 1) # Add a H gate on qubit 0 and 1 circuit.h(0) circuit.h(1) # Map the quantum measurement to the classical bits circuit.measure([0,1], [0,1]) circuit.draw(output = 'mpl') # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # Grab results from the job result = job.result() # Return counts counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) # Import draw_circuit, then use it to draw the circuit from ibm_quantum_widgets import draw_circuit draw_circuit(circuit) # Analyze #-------- # Plot a histogram plot_histogram(counts) # Load our saved IBMQ accounts and get the least busy backend device with greater than or equal to (n+1) qubits n=2 IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_dj_circuit = transpile(circuit, backend, optimization_level=3) job = backend.run(transpiled_dj_circuit) job_monitor(job, interval=2) results = job.result() answer = results.get_counts() plot_histogram(answer)
https://github.com/alexao8/QC-Qiskit
alexao8
#!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # Importing standard Qiskit libraries from qiskit import * from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.tools.monitor import job_monitor from qiskit.visualization import * from ibm_quantum_widgets import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # In[2]: from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr, cr) # In[3]: circuit.draw(output = 'mpl') # In[4]: circuit.h(qr[0]) # In[5]: circuit.draw(output = 'mpl') # In[6]: circuit.cx(qr[0], qr[1]) # In[7]: circuit.measure(qr,cr) # In[8]: circuit.draw(output = 'mpl') # In[9]: simulator = Aer.get_backend('qasm_simulator') # In[10]: result = execute(circuit, backend = simulator).result() # In[11]: plot_histogram(result.get_counts(circuit)) # In[12]: provider = IBMQ.get_provider('ibm-q') # In[14]: qcomp = provider.get_backend('ibmq_16_melbourne') # In[15]: job = execute(circuit, backend = qcomp) # In[ ]: job_monitor(job)
https://github.com/apcarrik/qiskit-dev
apcarrik
''' helloworld.py This file is intended as a simple template for qiskit files. The code can be found at: https://qiskit.org/documentation/intro_tutorial1.html ''' ### 1. Import Packages import numpy as np from matplotlib import pyplot from qiskit import QuantumCircuit, transpile # instructions of quantum system from qiskit.providers.aer import QasmSimulator # Aer high performance circuit simulator from qiskit.visualization import plot_histogram # creates histograms of circuit output ### 2. Initialize Variables circuit = QuantumCircuit(2,2) # initialize the 2 qubits in zero state, and 2 classical bits set to 0 ### 3. Add gates circuit.h(0) # add Hadamard gate on qubit 0 circuit.cx(0, 1) # add CNOT gate with control qubit 0 and target qubit 1 circuit.measure([0,1], [0,1]) # Measure the two qubits and saves the result to the two classical bits # Note: this circuit implements a simple Bell state, where there is equal chance of measuring |00> and |11> ### 4. Visualize the Circuit circuit.draw(output='mpl') # draw the circuit as matplotlib figure pyplot.show() # show the figure ### 5. Simulate the Experiment simulator = QasmSimulator() # Create instance of Aer's qasm_simulator compiled_circuit = transpile(circuit, simulator) # Compile the circuit down to low-level QASM instructions. # Supported by the backend (not needed for simple circuits) job = simulator.run(compiled_circuit, shots=1000) # Execute circuit on qasm simulator result = job.result() # Fetch results counts = result.get_counts(circuit) # Get the counts of outcomes from results print("\nTotal count for 00 and 11 are:", counts) # Print total count for each outcome ### 6. Visualize the Results plot_histogram(counts) # plots the results as a histogram pyplot.show() # show the figure
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np from qiskit import QuantumCircuit from matplotlib import pyplot circ = QuantumCircuit(3) # Create 3-qubit GHZ state: (1/sqrt(2))*(|000> + |111>) circ.h(0) circ.cx(0,1) circ.cx(1,2) ### Visualize Circuit circ.draw('mpl') pyplot.show() ### Simulate Circuit from qiskit.quantum_info import Statevector state = Statevector.from_int(0,2**3) state = state.evolve(circ) lat = state.draw('latex') # This is not working in Pycharm - I think this needs to be a jupyter notebook qsp = state.draw('qsphere') hin = state.draw('hinton') pyplot.show() ### Unitary Representation of Circuit from qiskit.quantum_info import Operator U = Operator(circ) print(U.data) # show results ### OpenQASM Backend Simulation meas = QuantumCircuit(3,3) meas.barrier(range(3)) meas.measure(range(3), range(3)) qc = meas.compose(circ, range(3), front=True) qc.draw('mpl') pyplot.show() from qiskit import transpile from qiskit.providers.aer import QasmSimulator backend = QasmSimulator() qc_compiled = transpile(qc, backend) job_sim = backend.run(qc_compiled, shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(qc_compiled) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) pyplot.show()
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np from qiskit import * from matplotlib import pyplot # Initialize quantum circuit with 3 qubits (and no classical bits) circ = QuantumCircuit(3) # Set circuit into 3-qubit GHZ state circ.h(0) circ.cx(0,1) circ.cx(0,2) # Visualize circuit circ.draw('mpl') pyplot.show() ### Simulating circuits with Qiskit Aer from qiskit import Aer backend = Aer.get_backend('statevector_simulator') job = execute(circ, backend) result = job.result() outputstate = result.get_statevector(circ, decimals=3) print(outputstate) from qiskit.visualization import plot_state_city plot_state_city(outputstate) pyplot.show() ### Unitary Backend backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() print(result.get_unitary(circ, decimals=3)) ### Open QASM Backend # New circuit with classical bits meas = QuantumCircuit(3,3) meas.barrier(range(3)) meas.measure(range(3),range(3)) qc = circ + meas qc.draw('mpl') pyplot.show() # Simulate backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(qc, backend_sim, shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(qc) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) pyplot.show()
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import * from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor from matplotlib import pyplot # Quanum ciruit to make a Bell state bell = QuantumCircuit(2,2) bell.h(0) bell.cx(0,1) meas = QuantumCircuit(2,2) meas.measure([0,1],[0,1]) # execute quantum circuit backend = BasicAer.get_backend('qasm_simulator') circ = bell + meas result = execute(circ,backend,shots=1000).result() counts = result.get_counts(circ) print(counts) plot_histogram(counts).show() # don't need pyplot.show() anymore # could also call .savefig('output.png') to save to file second_result = execute(circ,backend, shots=1000).result() second_counts = second_result.get_counts(circ) legend = ['first execution', 'second execution'] plot_histogram([counts, second_counts], legend=legend, sort='desc', figsize=(15,12), color=['orange', 'black'], bar_labels=False).savefig('histogram1.png') ### Advanced Visualizations from qiskit.visualization import plot_state_city, plot_bloch_multivector from qiskit.visualization import plot_state_paulivec, plot_state_hinton from qiskit.visualization import plot_state_qsphere # execute quantum circuit backend = BasicAer.get_backend('statevector_simulator') result = execute(bell,backend).result() psi = result.get_statevector(bell) plot_state_city(psi, title = "My City", color = ['black', 'orange']).show() plot_state_hinton(psi, title = "My Hinton").show() plot_state_qsphere(psi).show() plot_state_paulivec(psi, title = "My Paulivec", color = ['purple', 'orange', 'green']).show() plot_bloch_multivector(psi, title = "My Bloch Spheres").show() # note: there is no vector in block multivector since system is in an entangled state ### Plotting Bloch Vectors from qiskit.visualization import plot_bloch_vector plot_bloch_vector([0,1,0], title = "My Bloch Sphere").show()
https://github.com/apcarrik/qiskit-dev
apcarrik
import matplotlib.pyplot as plt import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') #### === Single Qubit Gates === q = QuantumRegister(1) ## general unitary gate qc = QuantumCircuit(q) theta = pi/2 phi = pi/2 lambd = pi/2 qc.u(theta,phi,lambd,q) # previously qc.u3 qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("u gate:", res) # u2 gate = u(pi/2, phi, lambda) is useful to create superpositions qc = QuantumCircuit(q) phi = pi/3 lambd = pi/4 qc.u(pi/2,phi,lambd,q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("u2 gate:", res) # u1 gate = u3(0,0,lambda) is useful to apply a quantum phase qc = QuantumCircuit(q) lambd = pi/5 qc.p(lambd, q)# or, alternativley qc.u(0,0,lambd,q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("u1 gate:", res) ## Identity gate qc = QuantumCircuit(q) qc.id(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Identity gate:", res) ## Pauli gates # X (bit-flip) gate = u(pi,0,pi) qc = QuantumCircuit(q) qc.x(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("X gate:", res) # Y (bit- and phase-flip) gate = u(pi,pi/2,pi/2) qc = QuantumCircuit(q) qc.y(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Y gate:", res) # Z (bit-flip) gate = u(pi,0,pi) qc = QuantumCircuit(q) qc.x(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Z gate", res) ## Clifford Gates # Hadamard gate = u3(pi/2, 0, pi) qc = QuantumCircuit(q) qc.h(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Hadamard gate", res) # S (sqrt(Z) phase) gate = u1(pi/2) qc = QuantumCircuit(q) qc.s(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("S gate", res) # S-dagger (conjugate of sqrt(Z) phase) gate = u3(-pi/2) qc = QuantumCircuit(q) qc.sdg(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("S-dagger gate", res) ## C3 Gates # T (sqrt(S)) gate = u1(pi/4) qc = QuantumCircuit(q) qc.t(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("T gate", res) # T-dagger (conjugate of sqrt(S)) gate = u1(-pi/4) qc = QuantumCircuit(q) qc.tdg(q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("T-dagger gate", res) ## Standard Rotations # Rotation around X-axis = u3(theta, -pi/2, pi/2) qc = QuantumCircuit(q) theta=pi/2 qc.rx(theta, q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("X-axis rotation gate", res) # Rotation around Y-axis = u3(theta, 0, 0) qc = QuantumCircuit(q) theta=pi/2 qc.ry(theta, q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Y-axis rotation gate", res) # Rotation around Z-axis = u1(phi) qc = QuantumCircuit(q) phi=pi/2 qc.rz(phi, q) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Z-axis rotation gate", res) #### === Multi-Qubit Gates === ### Two-Qubit Gates q= QuantumRegister(2) ## Controlled Pauli Gates # Controled-X Gate qc = QuantumCircuit(q) qc.cx(q[0], q[1]) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Controlled-X gate", res) # Controled-Y Gate qc = QuantumCircuit(q) qc.cy(q[0], q[1]) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Controlled-Y gate", res) # Controled-Z Gate qc = QuantumCircuit(q) qc.cz(q[0], q[1]) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Controlled-Z gate", res) ## Controled Hadamard Gate qc = QuantumCircuit(q) qc.ch(q[0], q[1]) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Controlled Hadamard gate", res) ## Controlled Rotation Gates # Controled-Z Rotation Gate qc = QuantumCircuit(q) lambd = pi/2 qc.crz(lambd, q[0], q[1]) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Controlled Rotation Around Z-axis gate", res) # Controled-Phase Rotation Gate qc = QuantumCircuit(q) lambd = pi/2 qc.cp(lambd, q[0], q[1]) # previously qc.cu1 qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Controlled-Phase Roatation gate", res) # Controled-u Rotation Gate qc = QuantumCircuit(q) theta = pi/2 phi = pi/2 lambd = pi/2 qc.cu(theta,phi,lambd, 0, q[0], q[1]) # previously qc.cu3 qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Controlled-u Rotation gate", res) # SWAP Gate qc = QuantumCircuit(q) qc.swap(q[0], q[1]) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("SWAP gate", res) ### Three-Qubit Gates q= QuantumRegister(3) ## Toffoli Gate qc = QuantumCircuit(q) qc.ccx(q[0], q[1], q[2]) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Toffoli gate", res) ## Controlled Swap (Fredkin) Gate qc = QuantumCircuit(q) qc.cswap(q[0], q[1], q[2]) qc.draw('mpl') plt.show() job = execute(qc, backend) res = job.result().get_unitary(qc, decimals=3) print("Controlled Swap gate", res) #### === Non-Unitary Operations === q = QuantumRegister(1) c = ClassicalRegister(1) ### Measurements # qubit in state |0> only qc = QuantumCircuit(q,c) qc.measure(q,c) qc.draw('mpl') plt.show() backend = BasicAer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1024) res = job.result().get_counts(qc) print("Measurement Results: ", res) # qubit in state |0> and |1> with equal probability qc = QuantumCircuit(q,c) qc.h(q) qc.measure(q,c) qc.draw('mpl') plt.show() backend = BasicAer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1024) res = job.result().get_counts(qc) print("Measurement Results: ", res) ### Reset # Resets all qubits to |0> state qc = QuantumCircuit(q,c) qc.h(q) qc.reset(q[0]) qc.measure(q,c) qc.draw('mpl') plt.show() backend = BasicAer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1024) res = job.result().get_counts(qc) print("Measurement Results: ", res) ### Conditional Operators # classical bit always takes value 0 so qubit state is always flipped qc = QuantumCircuit(q,c) qc.x(q[0]).c_if(c,0) qc.measure(q,c) qc.draw('mpl') plt.show() backend = BasicAer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1024) res = job.result().get_counts(qc) print("Measurement Results: ", res) # classical bit by first measurement is random, but conditional operation results in qubit being # deterministically put to 1. qc = QuantumCircuit(q,c) qc.h(q) qc.measure(q,c) qc.x(q[0]).c_if(c,0) qc.measure(q,c) qc.draw('mpl') plt.show() backend = BasicAer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1024) res = job.result().get_counts(qc) print("Measurement Results: ", res) ### Arbitrary Initialization # Initialize qubit register to arbitrary state: # |psi> = i/4|000> + 1/sqrt(8)|001> + (1+i)/4|010> + (1 + 2i)/sqrt(8)|101> + 1/4|110> import math desired_vector = [ 1 / math.sqrt(16) * complex(0, 1), 1 / math.sqrt(8) * complex(1, 0), 1 / math.sqrt(16) * complex(1, 1), 0, 0, 1 / math.sqrt(8) * complex(1, 2), 1 / math.sqrt(16) * complex(1, 0), 0 ] q = QuantumRegister(3) qc = QuantumCircuit(q) qc.initialize(desired_vector, [q[0],q[1],q[2]]) qc.draw('mpl') plt.show() backend = BasicAer.get_backend('statevector_simulator') job = execute(qc, backend) qc_state = job.result().get_statevector(qc) print("QC state:", qc_state) # you should check the Fidelity to ensure the state matches the desired vector fid = state_fidelity(desired_vector, qc_state) print("Fidelity: ", fid)
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np from qiskit import * from matplotlib import pyplot ### Opaque Gates from qiskit.circuit import Gate my_gate = Gate(name='my_gate', num_qubits=2, params=[]) qr = QuantumRegister(3, 'q') circ = QuantumCircuit(qr) circ.append(my_gate, [qr[0], qr[1]]) circ.append(my_gate, [qr[1], qr[2]]) circ.draw('mpl') pyplot.show() ### Composite Gates # build a sub-circuit sub_q = QuantumRegister(2) sub_circ = QuantumCircuit(sub_q, name="sub_circ") sub_circ.h(sub_q[0]) sub_circ.crz(1, sub_q[0], sub_q[1]) sub_circ.barrier() sub_circ.id(sub_q[1]) sub_circ.u(1,2,-2, sub_q[0]) # convert to a gate and stick it into an arbitrary place in the bigger circuit sub_inst = sub_circ.to_instruction() qr = QuantumRegister(3, 'q') circ = QuantumCircuit(qr) circ.h(qr[0]) circ.cx(qr[0], qr[1]) circ.cx(qr[1], qr[2]) circ.append(sub_inst, [qr[1], qr[2]]) circ.draw('mpl') pyplot.show() # decompose sub-circuit decomposed_circ = circ.decompose() decomposed_circ.draw('mpl') pyplot.show() ### Parameterized Circuits from qiskit.circuit import Parameter theta = Parameter('θ') n=5 qc = QuantumCircuit(n,1) qc.h(0) for i in range(n-1): qc.cx(i, i+1) qc.barrier() qc.rz(theta, range(5)) qc.barrier() for i in reversed(range(n-1)): qc.cx(i, i+1) qc.h(0) qc.measure(0,0) qc.draw('mpl') pyplot.show() print(qc.parameters) # binding parameters import numpy as np theta_range = np.linspace(0, 2*np.pi, 128) circuits = [qc.bind_parameters({theta: theta_val}) for theta_val in theta_range] circuits[-1].draw('mpl') # Last of 128 circuits pyplot.show() job = execute(qc, backend=BasicAer.get_backend('qasm_simulator'), parameter_binds=[{theta: theta_val} for theta_val in theta_range] ) counts = job.result().get_counts() print(len(counts)) # plot oscillation in qubit 0 as theta value changes fig = pyplot.figure(figsize=(8,6)) ax = fig.add_subplot(111) ax.plot(theta_range, list(map(lambda c: c.get('0', 0), counts)), '.-', label='0') ax.plot(theta_range, list(map(lambda c: c.get('1', 0), counts)), '.-', label='1') ax.set_xticks([i * np.pi / 2 for i in range(5)]) ax.set_xticklabels(['0', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$'], fontsize = 14) ax.set_xlabel('θ', fontsize=14) ax.set_ylabel('Counts', fontsize=14) ax.legend(fontsize=14) pyplot.show() ### Reducing Compilation Cost import time from itertools import combinations from qiskit.compiler import assemble from qiskit.test.mock import FakeVigo # start with compiling over bound circuits start = time.time() qcs = [] theta_range = np.linspace(0, 2*np.pi, 32) for n in theta_range: qc = QuantumCircuit(5) for k in range(8): for i,j in combinations(range(5),2): qc.cx(i,j) qc.rz(n, range(5)) for i,j in combinations(range(5), 2): qc.cx(i,j) qcs.append(qc) compiled_circuits = transpile(qcs, backend=FakeVigo()) qobj = assemble(compiled_circuits, backend=FakeVigo()) end = time.time() print('Time compiling over set of bound circuits: ', end-start, 's') # now, compile over parametrized circuits, then bind start = time.time() qc = QuantumCircuit(5) theta = Parameter('theta') for k in range(8): for i,j in combinations(range(5), 2): qc.cx(i,j) qc.rz(theta, range(5)) for i,j in combinations(range(5), 2): qc.cx(i,j) transpiled_qc = transpile(qc, backend = FakeVigo()) qobj = assemble([transpiled_qc.bind_parameters({theta: n}) for n in theta_range], backend=FakeVigo()) end = time.time() print('Time compiling over parameterized circuit, then binding: ', end-start, 's') ### Composition # Parameterized circuits can be composed like standard quantum circuits, but # the parameter names in each circuit must be unique across all circuits, unless # the circuits use the same parameter phi = Parameter('phi') sub_circ1 = QuantumCircuit(2, name='sc_1') sub_circ1.rz(phi, 0) sub_circ1.rx(phi, 1) sub_circ2 = QuantumCircuit(2, name='sc_2') sub_circ2.rz(phi, 0) sub_circ2.rx(phi, 1) qc = QuantumCircuit(4) qr = qc.qregs[0] qc.append(sub_circ1.to_instruction(), [qr[0], qr[1]]) qc.append(sub_circ2.to_instruction(), [qr[0], qr[1]]) qc.append(sub_circ2.to_instruction(), [qr[2], qr[3]]) print(qc.draw()) # The following raises an error: "QiskitError: 'Name conflict on adding parameter: phi'" # phi2 = Parameter('phi') # qc.u(0.1, phi2, 0.3, 0) # To insert a subcircuit under a different parameterization, the to_instruction method accepts an # optional argument (parameter_map) which, when present, will generate instructions with the source parameter # replaced by a new parameter. p = Parameter('p') qc = QuantumCircuit(3, name='oracle') qc.rz(p, 0) qc.cx(0,1) qc.rz(p,1) qc.cx(1, 2) qc.rz(p, 2) theta = Parameter('theta') phi = Parameter('phi') gamma = Parameter('gamma') qr = QuantumRegister(9) larger_qc = QuantumCircuit(qr) larger_qc.append(qc.to_instruction({p: theta}), qr[0:3]) larger_qc.append(qc.to_instruction({p: phi}), qr[3:6]) larger_qc.append(qc.to_instruction({p: gamma}), qr[6:9]) print(larger_qc.draw()) print(larger_qc.decompose().draw())
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, BasicAer from qiskit.compiler import transpile from qiskit.quantum_info.operators import Operator, Pauli from qiskit.quantum_info import process_fidelity from qiskit.extensions import RXGate, XGate, CXGate ### Operator Class # Create two-qubit Pauli-XX operator XX = Operator([[0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,0,0]]) # Show operator properties print(XX) print(XX.data) input_dim, output_dim = XX.dim print(input_dim, output_dim) # See input and output dimensions op = Operator(np.random.rand(2**1, 2**2)) print('Input dimensions: ', op.input_dims()) print('Output dimensions: ', op.output_dims()) # If input matrix is not divisible into qubit systems, # it will be stored as single-qubit operator op = Operator(np.random.rand(6, 6)) print('Input dimensions: ', op.input_dims()) print('Output dimensions: ', op.output_dims()) # The input and output can also be manually specified when initializing new operator op = Operator(np.random.rand(2**1, 2**2), input_dims=[4]) print('Input dimensions: ', op.input_dims()) print('Output dimensions: ', op.output_dims()) op = Operator(np.random.rand(6, 6), # system is qubit and qutrit input_dims=[2,3], output_dims=[2,3]) print('Input dimensions: ', op.input_dims()) print('Output dimensions: ', op.output_dims()) # extract input/output dimensions of subset of subsystem print('Dimension of input system 0:', op.input_dims([0])) print('Dimension of input system 1:', op.input_dims([1])) ### Converting Classes to Operators # Create operator from a Pauli object pauliXX = Pauli('XX') op = Operator(pauliXX) print(op) # Create operator from a Gate object op = Operator(CXGate()) print(op) # Create operator from a parameterized Gate object op = Operator(RXGate(np.pi/2)) print(op) # Create operator from a QuantumCircuit object circ = QuantumCircuit(10) circ.h(0) for j in range(1,10): circ.cx(j-1, j) op = Operator(circ) #converts circuit into operator by implicit unitary simulation print(op) ### Using Operators in circuits from matplotlib import pyplot # Create new operator XX = Operator(Pauli('XX')) circ = QuantumCircuit(2,2) circ.append(XX, [0,1]) circ.measure([0,1],[0,1]) circ.draw('mpl') pyplot.show() # Can also directly insert Pauli object into circuit, to convert into sequence of # single-qubit Pauli gates backend = BasicAer.get_backend('qasm_simulator') job = execute(circ, backend, basis_gates=['u1','u2','u3','cx']) job.result().get_counts(0) circ2 = QuantumCircuit(2,2) circ2.append(Pauli('XX'), [0,1]) circ2.measure([0,1],[0,1]) circ2.draw('mpl') pyplot.show() ### Combining Operators # Tensor Product A = Operator(Pauli('X')) B = Operator(Pauli('Z')) tens = A.tensor(B) print(tens) # Tensor Expansion A = Operator(Pauli('X')) B = Operator(Pauli('Z')) tens = A.expand(B) print(tens) # Composition (matrix multiplication B.A) A = Operator(Pauli('X')) B = Operator(Pauli('Z')) comp = A.compose(B) print(comp) # Reverse order composition (matrix multiplication A.B) A = Operator(Pauli('X')) B = Operator(Pauli('Z')) comp = A.compose(B, front=True) print(comp) # Subsystem Composition # compose XZ with a 3-qubit identity operator op = Operator(np.eye(2**3)) XZ = Operator(Pauli('XZ')) combop = op.compose(XZ, qargs=[0,2]) print(combop) # compose YX in front of the previous operator op = Operator(np.eye(2**3)) YX = Operator(Pauli('YX')) combop = op.compose(XZ, qargs=[0,2], front=True) print(combop) # Linear Combinations XX = Operator(Pauli('XX')) YY = Operator(Pauli('YY')) ZZ = Operator(Pauli('ZZ')) op = 0.5 * (XX + YY - 3* ZZ) print(op) print("Operator is unitary?: ", op.is_unitary()) # Implicit conversion to Operators op = Operator(np.eye(2)).compose([[0,1], [1,0]]) print(op) ### Comparison of Operators print( Operator(Pauli('X')) == Operator(XGate()) ) # Unitaries that differ by a global phase are not considered equal print( Operator(XGate()) == np.exp(1j * 0.5) * Operator(XGate()) ) # Process Fidelity - information theoretic quantification of how close two quantum # channels are to each other, does not depend on global phase (must both be unitary) op_a = Operator(XGate()) op_b = np.exp(1j * 0.5) * Operator(XGate()) F = process_fidelity(op_a, op_b) print('Process fidelity = ', F)
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import QuantumCircuit from qiskit.compiler import transpile from qiskit.transpiler import PassManager # Create simple circuit with toffoli gate circ = QuantumCircuit(3) circ.ccx(0,1,2) circ.draw('mpl').show() # Unroll circuit (show base gates) from qiskit.transpiler.passes import Unroller pass_ = Unroller(['u1', 'u2', 'u3', 'cx']) pm = PassManager(pass_) new_circ = pm.run(circ) new_circ.draw('mpl').show() # Show transpiler pass options from qiskit.transpiler import passes qis_passes = [pass_ for pass_ in dir(passes) if pass_[0].isupper()] print(qis_passes) ### Different Variants of the Same Pass from qiskit.transpiler import CouplingMap, Layout from qiskit.transpiler.passes import BasicSwap, LookaheadSwap, StochasticSwap coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] circuit = QuantumCircuit(7) circuit.h(3) circuit.cx(0, 6) circuit.cx(6, 0) circuit.cx(0, 1) circuit.cx(3, 1) circuit.cx(3, 0) circuit.draw('mpl').show() coupling_map = CouplingMap(couplinglist=coupling) bs = BasicSwap(coupling_map=coupling_map) pass_manager = PassManager(bs) basic_circ = pass_manager.run(circuit) basic_circ.draw('mpl').show() ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(circuit) lookahead_circ.draw('mpl').show() ss = StochasticSwap(coupling_map=coupling_map) pass_manager = PassManager(ss) stochastic_circ = pass_manager.run(circuit) stochastic_circ.draw('mpl').show() ### Preset Pass Managers # Optimizes circuit baed on 4 optimization levels (0-3) import math from qiskit.test.mock import FakeTokyo backend = FakeTokyo() qc = QuantumCircuit(10) random_state = [ 1 / math.sqrt(4) * complex(0,1), 1 / math.sqrt(8) * complex(0,1), 0, 0, 0, 0, 0, 0, 1 / math.sqrt(8) * complex(1,0), 1 / math.sqrt(8) * complex(0,1), 0, 0, 0, 0, 1 / math.sqrt(4) * complex(1,0), 1 / math.sqrt(8) * complex(1,0) ] qc.initialize(random_state, range(4)) qc.draw('mpl').show() # Map to 20 qubit Tokyo device with different optimization levels optimized_0 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=0) print('Optimization level: 0') print('gates = ', optimized_0.count_ops()) print('depth = ', optimized_0.depth()) optimized_1 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=1) print('Optimization level: 1') print('gates = ', optimized_1.count_ops()) print('depth = ', optimized_1.depth()) optimized_2 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=2) print('Optimization level: 2') print('gates = ', optimized_2.count_ops()) print('depth = ', optimized_2.depth()) optimized_3 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=3) print('Optimization level: 3') print('gates = ', optimized_3.count_ops()) print('depth = ', optimized_3.depth()) ##### Introducing the DAG ##### from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.dagcircuit import DAGCircuit q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.measure(q[0], c[0]) circ.rz(0.5, q[1]).c_if(c,2) circ.draw('mpl').show() # Show the DAG representation of circuit from qiskit.converters import circuit_to_dag from qiskit.tools.visualization import dag_drawer dag = circuit_to_dag(circ) dag_drawer(dag) # Get all op nodes in DAG & examine Node details op_nodes = dag.op_nodes() print(op_nodes) for i,node in enumerate(dag.op_nodes()): print('node ', i) print('node name: ', node.name) print('node op: ', node.op) print('node qargs: ', node.qargs) print('node cargs: ', node.cargs) print('node condition: ', node.condition) # Add an operation to the back from qiskit.circuit.library import HGate dag.apply_operation_back(HGate(), qargs=[q[0]]) dag_drawer(dag) # Add an operation to the front from qiskit.circuit.library import CCXGate dag.apply_operation_front(CCXGate(), qargs=[q[0], q[1], q[2]], cargs=[]) dag_drawer(dag) # Substitute a node within a circuit from qiskit.circuit.library import CHGate, U2Gate, CXGate mini_dag = DAGCircuit() p = QuantumRegister(2, "p") mini_dag.add_qreg(p) mini_dag.apply_operation_back(CHGate(), qargs=[p[0], p[1]]) mini_dag.apply_operation_back(U2Gate(0.1,0.2), qargs=[ p[1]]) # Substitute the cx node with above mini-dag cx_node = dag.op_nodes(op=CXGate).pop() dag.substitute_node_with_dag(node=cx_node, input_dag=mini_dag, wires=[p[0], p[1]]) dag_drawer(dag) # Convert back to regular QuantumCircuit object from qiskit.converters import dag_to_circuit circuit = dag_to_circuit(dag) circuit.draw('mpl').show() ### Implementing a BasicMapper Pass from copy import copy from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler import Layout from qiskit.circuit.library import SwapGate class BasicSwap(TransformationPass): """ Maps (with minimum effort) a DAGCircuit onto a `coupling_map` adding swap gates.""" def __init__(self, coupling_map, initial_layout=None): """Maps a DAGCircuit onto a `coupling_map` using swap gates. Args: coupling_map (CouplingMap): Directed graph representing a coupling map. initial_layout (Layout): initial layout of qubits in mapping. """ super().__init__() self.coupling_map = coupling_map self.initial_layout = initial_layout def run(self, dag): """Runs the BasicSwap pass on `dag`. Args: dag (DAGCircuit): DAG to map. Returns: DAGCircuit: A mapped DAG. Raises: TranspilerError: if the coupling map or the layout are not compatible with the DAG. """ new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) if self.initial_layout is None: if self.property_set["layout"]: self.initial_layout = self.property_set["layout"] else: self.initial_layout = Layout.generate_trivial_layout(*dag.qregs.values()) if len(dag.qubits) != len(self.initial_layout): raise TranspilerError("The layout does not match the amount of qubits in the DAG") if len(self.coupling_map.physical_qubits) != len(self.initial_layout): raise TranspilerError("Mappers require to have the layout to be the same size as the coupling map") canonical_register = dag.qregs['q'] trivial_layout = Layout.generate_trivial_layout(canonical_register) current_layout = trivial_layout.copy() for layer in dag.serial_layers(): subdag = layer['graph'] for gate in subdag.two_qubit_ops(): physical_q0 = current_layout[gate.qargs[0]] physical_q1 = current_layout[gate.qargs[1]] if self.coupling_map.distance(physical_q0, physical_q1) != 1: # Insert a new layer with the SWAP(s). swap_layer = DAGCircuit() swap_layer.add_qreg(canonical_register) path = self.coupling_map.shortest_undirected_path(physical_q0,physical_q1) for swap in range(len(path) - 2): connected_wire_1 = path[swap] connected_wire_2 = path[swap+1] qubit_1 = current_layout[connected_wire_1] qubit_2 = current_layout[connected_wire_2] # create the swap operation swap_layer.apply_operation_back(SwapGate(), qargs=[qubit_1, qubit_2], cargs=[]) # layer insertion order = current_layout.reorder_bits(new_dag.qubits) new_dag.compose(swap_layer, qubits=order) # update current_layout for swap in range(len(path) - 2): current_layout.swap(path[swap], path[swap+1]) order = current_layout.reorder_bits(new_dag.qubits) new_dag.compose(subdag, qubits=order) return new_dag ### Test pass on example circuit q = QuantumRegister(7, 'q') in_circ = QuantumCircuit(q) in_circ.h(q[0]) in_circ.cx(q[0], q[4]) in_circ.cx(q[2], q[3]) in_circ.cx(q[6], q[1]) in_circ.cx(q[5], q[0]) in_circ.rz(0.1, q[2]) in_circ.cx(q[5], q[0]) # Create pass manager, pass example circuit to it, and obtain transformed circuit from qiskit.transpiler import PassManager from qiskit.transpiler import CouplingMap from qiskit import BasicAer pm = PassManager() coupling = [[0,1], [1,2], [2,3], [3,4], [4,5], [5,6]] coupling_map = CouplingMap(couplinglist=coupling) pm.append([BasicSwap(coupling_map)]) out_circ = pm.run(in_circ) in_circ.draw('mpl').show() out_circ.draw('mpl').show() ### Transpiler Logging # Set up Python logging import logging logging.basicConfig(level='DEBUG') # Make test circuit to see debug log statements from qiskit.test.mock import FakeTenerife log_circ = QuantumCircuit(2,2) log_circ.h(0) log_circ.h(1) log_circ.h(1) log_circ.x(1) log_circ.cx(0,1) log_circ.measure([0,1], [0,1]) backend = FakeTenerife() transpile(log_circ,backend) # Adjust log level for the transpiler logging.getLogger('qiskit.transpiler').setLevel('INFO') transpile(log_circ, backend) # Setting up logging to deal with parallel execution (naieve way) logging.getLogger('qiskit_transpiler').setLevel('DEBUG') circuits = [log_circ, log_circ, log_circ] transpile(circuits, backend) # Format logging to deal with parallel execution better formatter = logging.Formatter('%(name)s - %(processName)-10s - %(levelname)s: %(message)s') handler = logging.getLogger().handlers[0] handler.setFormatter(formatter) transpile(circuits, backend)
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from matplotlib import pyplot ### Drawing a Quantum Circuit # Build a quantum circuit circuit = QuantumCircuit(3,3) circuit.x(1) circuit.h(range(3)) circuit.cx(0,1) circuit.measure(range(3), range(3)) # Print ASCII art version of circuit diagram to stdout print(circuit) ### Alternative Renderers for Circuits # Create matplotlib circuit diagram circuit.draw('mpl') pyplot.show() # # Create matplotlib circuit diagram # circuit.draw('latex') # # TODO: this does not work - need to figure out why ### Customizing the Output # Draw a new circuit with barriers and more registers q_a = QuantumRegister(3, name='qa') q_b = QuantumRegister(5, name='qb') c_a = ClassicalRegister(3) c_b = ClassicalRegister(5) circuit = QuantumCircuit(q_a, q_b, c_a, c_b) circuit.x(q_a[1]) circuit.x(q_b[1]) circuit.x(q_b[2]) circuit.x(q_b[4]) circuit.barrier() circuit.h(q_a) circuit.barrier(q_a) circuit.h(q_b) circuit.cswap(q_b[0], q_b[1], q_b[2]) circuit.cswap(q_b[2], q_b[3], q_b[4]) circuit.cswap(q_b[3], q_b[4], q_b[0]) circuit.barrier(q_b) circuit.measure(q_a, c_a) circuit.measure(q_b, c_b) # Draw the circuit circuit.draw('mpl') pyplot.show() # Draw the circuit with reversed bit order circuit.draw('mpl', reverse_bits=True) pyplot.show() # Draw the circuit without barriers circuit.draw('mpl', plot_barriers=False) pyplot.show() ### Backend-specific Customizations # Set the line length to 80 for above circuit print(circuit) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circuit.draw('mpl', style=style) pyplot.show() # Scale the mpl output to 1/2 the normal size circuit.draw('mpl', scale=0.5) pyplot.show() ### Display using circuit_drawer() as function from qiskit.tools.visualization import circuit_drawer circuit_drawer(circuit, output='mpl', plot_barriers=False)
https://github.com/apcarrik/qiskit-dev
apcarrik
import pylab import numpy as np from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.tools.visualization import plot_histogram from qiskit.algorithms import Grover, AmplificationProblem from qiskit.circuit.library.phase_oracle import PhaseOracle ### Finding Solutions to 3-SAT Problems input_3sat_instance = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' # example problem has 3 solutions: (1 -2 3), (-1 -2 -3), (1 2 -3) # Create corresponding oracle for Grover search using PhaseOracle (supports DIMACS-CNF format strings) import os import tempfile from qiskit.exceptions import MissingOptionalLibraryError fp = tempfile.NamedTemporaryFile(mode='w+t', delete=False) fp.write(input_3sat_instance) file_name = fp.name fp.close() oracle = None try: oracle = PhaseOracle.from_dimacs_file(file_name) except MissingOptionalLibraryError as ex: print(ex) finally: os.remove(file_name) # create Grover instance using oracle problem = None if oracle is not None: problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) # configure backend & run Grover instance to obtain result backend = Aer.get_backend('aer_simulator') quantum_instance = QuantumInstance(backend, shots=1024) grover = Grover(quantum_instance=quantum_instance) result = None if problem is not None: result = grover.amplify(problem) print(result.assignment) plot_histogram(result.circuit_results[0]).show() ### Boolean Logical Expressions # Construct oracle using arbitrary Boolean logic expression expression = '(w ^ x) & ~(y ^ z) & (x & y & z)' try: oracle = PhaseOracle(expression) problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) grover = Grover(quantum_instance=QuantumInstance(Aer.get_backend('aer_simulator'), shots=1024)) result = grover.amplify(problem) plot_histogram(result.circuit_results[0]).show() except MissingOptionalLibraryError as ex: print(ex)
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import QuantumCircuit from qiskit.algorithms import AmplificationProblem ### Specify oracle for Grover's algorithm circuit # the state we desire to find is '11' good_state = ['11'] # specify the oracle that marks the state '11' as a good solution oracle = QuantumCircuit(2) oracle.cz(0, 1) # define Grover's algorithm problem = AmplificationProblem(oracle, is_good_state=good_state) # now we can have a look at the Grover operator aht is used in running the algorithm problem.grover_operator.draw(output='mpl').show() ### Specify backend and call run method of Grover with backend to execute circuits from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.algorithms import Grover aer_simulator = Aer.get_backend('aer_simulator') grover = Grover(quantum_instance=aer_simulator) result = grover.amplify(problem) print('Using QuantumCircuit as oracle') print('Result type:', type(result)) print('Success!' if result.oracle_evaluation else 'Failure') print(f'Top measurement: {result.top_measurement}') ### Using different types of classes as oracle for Grover's algorithm # using statevector as oracle from qiskit.quantum_info import Statevector oracle = Statevector.from_label('11') problem = AmplificationProblem(oracle, is_good_state=['11']) grover = Grover(quantum_instance=aer_simulator) result = grover.amplify(problem) print('\nUsing Statevector as oracle') print('Result type:', type(result)) print('Success!' if result.oracle_evaluation else 'Failure') print(f'Top measurement: {result.top_measurement}') problem.grover_operator.oracle.draw(output='mpl').show() # using phase oracle from qiskit.circuit.library.phase_oracle import PhaseOracle from qiskit.exceptions import MissingOptionalLibraryError # `Oracle` (`PhaseOracle`) as the `oracle` argument expression = '(a & b)' try: oracle = PhaseOracle(expression) problem = AmplificationProblem(oracle) problem.grover_operator.oracle.draw(output='mpl').show() except MissingOptionalLibraryError as ex: print(ex) ### Amplitude Amplification # specifying `state preparation` to prepare a superposition of |01>, |10>, and |11> import numpy as np oracle = QuantumCircuit(3) oracle.h(2) oracle.ccx(0,1,2) oracle.h(2) theta = 2 * np.arccos(1 / np.sqrt(3)) state_preparation = QuantumCircuit(3) state_preparation.ry(theta, 0) state_preparation.ch(0,1) state_preparation.x(1) state_preparation.h(2) # we only care about the first two bits beign in state 1, thus add both possiblities for the last qubit problem = AmplificationProblem(oracle, state_preparation=state_preparation, is_good_state=['110','111']) # state preperation print('Printing state preperation circuit') problem.grover_operator.state_preparation.draw(output='mpl').show() # run circuit grover = Grover(quantum_instance=aer_simulator) result = grover.amplify(problem) print('Success!' if result.oracle_evaluation else 'Failure :(') print(f'Top measurement: {result.top_measurement}') ### Full Flexibility # set good state as |111> but with 5 qubits from qiskit.circuit.library import GroverOperator, ZGate oracle = QuantumCircuit(5) oracle.append(ZGate().control(2), [0,1,2]) oracle.draw(output='mpl').show() # Grover operator implements zero reflection on all 5 qubits, as default grover_op = GroverOperator(oracle, insert_barriers=True) grover_op.draw(output='mpl').show() # since we only need to consider first 3 qubits, set that as parameter to GroverOperator grover_op = GroverOperator(oracle, reflection_qubits=[0,1,2], insert_barriers=True) grover_op.draw(output='mpl').show() ### Specify good_state in different ways # list of binary strings good state oracle = QuantumCircuit(2) oracle.cz(0,1) good_state = ['11', '00'] problem = AmplificationProblem(oracle, is_good_state=good_state) print('Binary strings good state') print(f'State 11 is a good state: {problem.is_good_state("11")}') # list of integers good state oracle = QuantumCircuit(2) oracle.cz(0,1) good_state = [0, 1] problem = AmplificationProblem(oracle, is_good_state=good_state) print('Integer good state') print(f'State 11 is a good state: {problem.is_good_state("11")}') # `Statevector` good state from qiskit.quantum_info import Statevector oracle = QuantumCircuit(2) oracle.cz(0,1) good_state = Statevector.from_label('11') problem = AmplificationProblem(oracle, is_good_state=good_state) print('Statevector good state') print(f'State 11 is a good state: {problem.is_good_state("11")}') # Callable good state def callable_good_state(bitstr): if bitstr == '11': return True return False oracle = QuantumCircuit(2) oracle.cz(0,1) problem = AmplificationProblem(oracle, is_good_state=callable_good_state) print('Callable good state') print(f'State 11 is a good state: {problem.is_good_state("11")}') ### Change number of iterations # integer iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=['11']) grover = Grover(iterations=1) # list iteration oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=['11']) grover = Grover(iterations=[1,2,3]) # using sample_from_iterations oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=['11']) grover = Grover(iterations=[1,2,3], sample_from_iterations=True) # use optimal_num_iterations when number of solutions is known iterations = Grover.optimal_num_iterations(num_solutions=1, num_qubits=8) print(f'Optimal number of iterations: {iterations}') ### Apply post processing # convert bit-representation of measurement to DIMACS CNF format def to_DIMACS_CNF_format(bit_rep): return [index+1 if val==1 else -1 * (index+1) for index, val in enumerate(bit_rep)] oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=['11'], post_processing = to_DIMACS_CNF_format) print("DIMACS CNF format: ", problem.post_processing([1, 0, 1]))
https://github.com/apcarrik/qiskit-dev
apcarrik
# Create VQE Optimizer circuit to find minimum eigenvalue from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import SLSQP from qiskit.circuit.library import TwoLocal num_qubits = 2 ansatz = TwoLocal(num_qubits, 'ry', 'cz') opt = SLSQP(maxiter=1000) vqe = VQE(ansatz, optimizer=opt) ansatz.draw('mpl').show() # Run algorithm on backend from qiskit import Aer backend = Aer.get_backend('aer_simulator_statevector') from qiskit.utils import QuantumInstance backend = Aer.get_backend('aer_simulator') quantum_instance = QuantumInstance(backend=backend, shots=800, seed_simulator=99) # vqe = VQE(ansatz, optimizer=opt, quantum_instance=quantum_instance) # operator = #TODO: Figure out what operator is # min_eigen = vqe.compute_minimum_eigenvalue(operator) # print(min_eigen) # Complete working example - create operator from qiskit.opflow import X, Z, I H2_op = (-1.052373245772859 * I ^ I) + \ (0.39793742484318045 * I ^ Z) + \ (-0.39793742484318045 * Z ^ I) + \ (-0.01128010425623538 * Z ^ Z) + \ (0.18093119978423156 * X ^ X) # run VQE and print result object it returns from qiskit.utils import algorithm_globals seed = 50 algorithm_globals.random_seed = seed qi = QuantumInstance(Aer.get_backend('statevector_simulator'), seed_transpiler=seed, seed_simulator=seed) ansatz = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') slsqp = SLSQP(maxiter=1000) vqe = VQE(ansatz, optimizer=slsqp, quantum_instance=qi) result = vqe.compute_minimum_eigenvalue(H2_op) print(result) ### Using VQE Setting QuantumInstance after Construciton # Create VQE instance without quantum instance algorithm_globals.random_seed = seed qi = QuantumInstance(Aer.get_backend('statevector_simulator'), seed_transpiler=seed, seed_simulator=seed) ansatz = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') slsqp = SLSQP(maxiter=1000) vqe = VQE(ansatz, optimizer=slsqp) vqe.quantum_instance = qi result = vqe.compute_minimum_eigenvalue(H2_op) print(result)
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, assemble, Aer from qiskit.tools.visualization import plot_histogram from math import pi import matplotlib.pyplot as plt ### Conditioned gates: the c_if method # example: execute X gate if value of classical register is 0 q = QuantumRegister(1,'q') c = ClassicalRegister(1,'c') qc = QuantumCircuit(q,c) qc.h(0) qc.measure(0,0) qc.x(0).c_if(c, 0) qc.draw('mpl')#.show() # example: perform bit flip on third qubit when measurement of q0 and q1 are both 1 q = QuantumRegister(3,'q') c = ClassicalRegister(3,'c') qc = QuantumCircuit(q,c) qc.h(q[0]) qc.h(q[1]) qc.h(q[2]) qc.barrier() qc.measure(q,c) qc.x(2).c_if(c, 3) # for the 011 case qc.x(2).c_if(c, 7) # for the 111 case qc.draw('mpl')#.show() ### Iterative Phase Estimation (IPE) nq = 2 m = 2 q = QuantumRegister(nq, 'q') c = ClassicalRegister(m, 'c') qc_S = QuantumCircuit(q,c) ## First iteration # initialization qc_S.h(0) qc_S.x(1) qc_S.draw('mpl')#.show() # apply controlled-U gates cu_circ = QuantumCircuit(2) cu_circ.cp(pi/2,0,1) cu_circ.draw('mpl')#.show() for _ in range(2**(m-1)): qc_S.cp(pi/2,0,1) qc_S.draw('mpl')#.show() # measure in X-basis def x_measurement(qc, qubit, cbit): """Measures 'qubit' in the X-basis, and stores the result in 'cbit'""" qc.h(qubit) qc.measure(qubit, cbit) x_measurement(qc_S, q[0], c[0]) qc_S.draw('mpl')#.show() ## Subsequent iterations # initialization with reset qc_S.reset(0) qc_S.h(0) qc_S.draw('mpl')#.show() # phase correction qc_S.p(-pi/2,0).c_if(c,1) qc_S.draw('mpl')#.show() # apply control-U gates and x measurement for _ in range(2**(m-2)): qc_S.cp(pi/2,0,1) x_measurement(qc_S, q[0], c[1]) qc_S.draw('mpl')#.show() ## Execute circuit on simulator sim = Aer.get_backend('qasm_simulator') count0 = execute(qc_S, sim).result().get_counts() key_new = [str(int(key,2)/2**m) for key in list(count0.keys())] count1 = dict(zip(key_new, count0.values())) fig, ax = plt.subplots(1,2) plot_histogram(count0, ax=ax[0]) plot_histogram(count1, ax=ax[1]) plt.tight_layout() plt.show() ### IPE example with a 2-qubit gate # initialize circuit with 3 qubits nq = 3 # number of qubits m = 3 # number of classical bits q = QuantumRegister(nq, 'q') c = ClassicalRegister(m, 'c') qc = QuantumCircuit(q,c) ## First Step # initialization qc.h(0) qc.x([1,2]) qc.draw('mpl')#.show() # apply controlled-U gates cu_circ = QuantumCircuit(nq) cu_circ.mcp(pi/4,[0,1], 2) cu_circ.draw('mpl')#.show() # apply 2^t times MCP(pi/4) for _ in range(2**(m-1)): qc.mcp(pi/4,[0,1],2) qc.draw('mpl')#.show() # measure in x basis x_measurement(qc, q[0], c[0]) qc.draw('mpl')#.show() ## Second Step # initialization with reset qc.reset(0) qc.h(0) qc.draw('mpl')#.show() # phase correction qc.p(-pi/2,0).c_if(c,1) qc.draw('mpl')#.show() # apply Control-U gates and measure in x basis for _ in range(2**(m-2)): qc.mcp(pi/4, [0,1], 2) x_measurement(qc, q[0], c[1]) qc.draw('mpl')#.show() ## Third Step # initialization qc.reset(0) qc.h(0) # phase correction qc.p(-pi/4,0).c_if(c,1) qc.p(-pi/2,0).c_if(c,2) qc.p(-3*pi/4,0).c_if(c,3) # controlled-U operations for _ in range(2**(m-3)): qc.mcp(pi/4,[0,1],2) # X measurement qc.h(0) qc.measure(0,2) qc.draw('mpl').show() # execute circuit on simulator count0 = execute(qc, sim).result().get_counts() key_new = [str(int(key,2)/2**m) for key in list(count0.keys())] count1 = dict(zip(key_new, count0.values())) fig, ax = plt.subplots(1,2) plot_histogram(count0, ax=ax[0]) plot_histogram(count1, ax=ax[1]) plt.tight_layout() plt.show()
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np import pylab from qiskit import Aer from qiskit.opflow import X, Z, I from qiskit.utils import QuantumInstance, algorithm_globals from qiskit.algorithms import VQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SLSQP from qiskit.circuit.library import TwoLocal # Create qubit operator of H2 molecule H2_op = (-1.052373245772859 * I ^ I) + \ (0.39793742484318045 * I ^ Z) + \ (-0.39793742484318045 * Z ^ I) + \ (-0.01128010425623538 * Z ^ Z) + \ (0.18093119978423156 * X ^ X) # Show callback usage over set of optimizers optimizers = [COBYLA(maxiter=80), L_BFGS_B(maxiter=60), SLSQP(maxiter=60)] converge_cnts = np.empty([len(optimizers)], dtype=object) converge_vals = np.empty([len(optimizers)], dtype=object) for i, optimizer in enumerate(optimizers): print('\rOptimizer: {} '.format(type(optimizer).__name__), end='') algorithm_globals.random_seed = 50 ansatz = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) vqe = VQE(ansatz, optimizer, callback=store_intermediate_result, quantum_instance= QuantumInstance( backend=Aer.get_backend('statevector_simulator') )) result = vqe.compute_minimum_eigenvalue(operator=H2_op) converge_cnts[i] = np.asarray(counts) converge_vals[i] = np.asarray(values) print('\rOptimization complete ') # plot energy value at each objective funciton call each optimizer makes pylab.rcParams['figure.figsize'] = (12,8) for i, optimizer in enumerate(optimizers): pylab.plot(converge_cnts[i], converge_vals[i], label=type(optimizer).__name__) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Energy convergence for variaous optimizers') pylab.legend(loc='upper right') pylab.show() # Run classical algorithm to obtain reference solution npme = NumPyMinimumEigensolver() result = npme.compute_minimum_eigenvalue(operator=H2_op) ref_value = result.eigenvalue.real print(f'Reference value: {ref_value:.5f}') # Plot difference from reference solution to optimizations pylab.rcParams['figure.figsize'] = (12,8) for i, optimizer in enumerate(optimizers): pylab.plot(converge_cnts[i], abs(ref_value - converge_vals[i]), label=type(optimizer).__name__) pylab.xlabel('Eval count') pylab.ylabel('Energy difference from solution reference value') pylab.title('Energy convergence for various optimizers') pylab.yscale('log') pylab.legend(loc='upper right') pylab.show() ### Using Gradient framework from qiskit.opflow.gradients import Gradient algorithm_globals.random_seed = 50 ansatz = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') optimizer = SLSQP(maxiter=60) counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) vqe = VQE(ansatz, optimizer, callback=store_intermediate_result, gradient=Gradient(grad_method='fin_diff'), quantum_instance=QuantumInstance( backend=Aer.get_backend('statevector_simulator') )) result = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f'Value using Gradient: {result.eigenvalue.real:.5f}') pylab.rcParams['figure.figsize'] = (12,8) pylab.plot(counts, values, label=type(optimizer).__name__) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Energy convergence using Gradient') pylab.legend(loc='upper right') pylab.show()
https://github.com/apcarrik/qiskit-dev
apcarrik
#------------------------------------------------------------------------------ # Qaoa.py # # Implementation of the Quantum Approximate Optimization Algorithm (QAOA) [1],[2] # specifically tailored for solving the MaxCut problem on graphs [3]. # This class facilitates the creation of QAOA circuits with # various types of mixer operators and allows execution on a quantum simulator # backend provided by Qiskit. # # The `Qaoa` class provides methods to: # - Initialize with QAOA parameters, graph instance, mixer type, and backend settings # - Create cost operator and various mixer operators (x, xx, y, yy, xy) # - Generate the complete QAOA circuit # # Initialization parameters include the number of QAOA layers, angles for the # mixer and cost operators, and options for setting verbosity, measurement, and # random seed. The class checks for consistency in the provided parameters and # supports visualizing the graph and QAOA circuit. # # Refs. # [1] https://arxiv.org/abs/1411.4028 # [2] https://learning.quantum.ibm.com/tutorial/quantum-approximate-optimization-algorithm # [3] https://en.wikipedia.org/wiki/Maximum_cut # # © Leonardo Lavagna 2024 # @ NESYA https://github.com/NesyaLab #------------------------------------------------------------------------------ import numpy as np from matplotlib import pyplot as plt from classes import Problems as P from functions import qaoa_utilities as utils from qiskit import QuantumCircuit from qiskit_aer import Aer from typing import List, Tuple from networkx import Graph from qiskit.circuit import ParameterVector class Qaoa: def __init__(self, p: int = 0, G: Graph = None, betas: List[float] = None, gammas: List[float] = None, mixer: str = "x", backend = Aer.get_backend('qasm_simulator'), measure: bool = True, seed: int = None, verbose: bool = True): """Initialize class QAOA. Args: p (int): Positive number of QAOA layers. The default is 0. G (Graph): A graph created with the Problem class used as MaxCut problem instance. The default is None. betas (float): Angles for the mixer operator. gammas (float): Angles for the cost operator. mixer (str): Type of mixer operator to be used. The default is "x". backend (Qiskit backend): Qiskit backend to execute the code on a quantum simulator. The default is Aer.get_backend('qasm_simulator'). measure (bool): If True measure the qaoa circuit. The default is True. seed (int): Seed for a pseudo-random number generator. The default is None. verbose (bool): If True enters in debugging mode. The default is True. """ # Setup self.p = p self.G = G self.mixer = mixer self.backend = backend self.measure = measure self.verbose = verbose self.seed = seed self.problems_class = P.Problems(p_type="custom", G=self.G) if self.seed is not None: np.random.seed(self.seed) if self.G is None: self.N = 0 self.w = [[]] self.betas = [] self.gammas = [] if self.G is not None: self.N = G.get_number_of_nodes() self.w = G.get_adjacency_matrix() if betas is None or gammas is None: self.betas = utils.generate_parameters(n=self.p, k=1) self.gammas = utils.generate_parameters(n=self.p, k=2) if betas is not None and gammas is not None: self.betas = betas self.gammas = gammas # Checking... if self.problems_class.__class__.__name__ != self.G.__class__.__name__ and G is not None: raise Exception("Invalid parameters. The graph G should be created with the Problems class.") if (self.p == 0 and self.G is not None) or (self.p > 0 and G is None): raise ValueError("If G is not the empty graph p should be a strictly positive integer, and viceversa.") if len(self.betas) != p or len(self.gammas) != p or len(self.betas) != len(self.gammas): raise ValueError("Invalid angles list. The length of betas and gammas should be equal to p.") # Initializing... if self.verbose is True: print(" --------------------------- ") print("| Intializing Qaoa class... |".upper()) print(" --------------------------- ") print("-> Getting problem instance...".upper()) if self.G is not None: self.G.get_draw() plt.show() if self.G is None: print("\t * G = ø") if self.betas is None and self.G is not None: print("-> Beta angles not provided. Generating angles...".upper()) print(f"\t * betas = {self.betas}") if self.gammas is None and self.G is not None: print("-> Gamma angles not provided. Generating angles...".upper()) print(f"\t * gammas = {self.gammas}") print("-> Getting the ansatz...".upper()) if self.G is not None: print(self.get_circuit()) if self.G is None: print("\t * Qaoa circuit = ø") print("-> The Qaoa class was initialized with the following parameters.".upper()) print(f"\t * Number of layers: p = {self.p};") if self.G is None: print(f"\t * Graph: G = ø;") if self.G is not None: print(f"\t * Graph: G = {self.G.p_type};") print("\t * Angles:") print(f"\t\t - betas = {self.betas};") print(f"\t\t - gammas = {self.gammas};") print(f"\t * Mixer Hamiltonian type: '{self.mixer}';") print(f"\t * Random seed: seed = {self.seed};") print(f"\t * Measurement setting: measure = {self.measure}.") def cost_operator(self, gamma: float) -> QuantumCircuit: """Create an instance of the cost operator with angle 'gamma'. Args: gamma (float): Angle for the cost operator. Returns: QuantumCircuit: Circuit representing the cost operator. """ qc = QuantumCircuit(self.N, self.N) for i,j in self.G.get_edges(): qc.cx(i, j) qc.rz(gamma, j) qc.cx(i, j) return qc def x_mixer_operator(self, beta: float) -> QuantumCircuit: """Create an instance of the x-mixer operator with angle 'beta'. Args: beta (float): Angle for the mixer operator. Returns: QuantumCircuit: Circuit representing the mixer operator. """ qc = QuantumCircuit(self.N, self.N) for v in self.G.get_nodes(): qc.rx(beta, v) return qc def xx_mixer_operator(self, beta: float) -> QuantumCircuit: """Create an instance of the xx-mixer operator with angle 'beta'. Args: beta (float): Angle for the mixer operator. Returns: QuantumCircuit: Circuit representing the mixer operator. """ qc = QuantumCircuit(self.N, self.N) for i, j in self.G.get_edges(): if self.w[i, j] > 0: qc.rxx(beta, i, j) return qc def y_mixer_operator(self, beta: float) -> QuantumCircuit: """Create an instance of the y-mixer operator with angle 'beta'. Args: beta (float): Angle for the mixer operator. Returns: QuantumCircuit: Circuit representing the mixer operator. """ qc = QuantumCircuit(self.N, self.N) for v in self.G.get_nodes(): qc.ry(2 * beta, v) return qc def yy_mixer_operator(self, beta: float) -> QuantumCircuit: """Create an instance of the yy-mixer operator with angle 'beta'. Args: beta (float): Time-slice angle for the mixer operator. Returns: QuantumCircuit: Circuit representing the mixer operator. """ qc = QuantumCircuit(self.N, self.N) for i, j in self.G.get_edges(): if self.w[i, j] > 0: qc.ryy(beta / 2, i, j) return qc def xy_mixer_operator(self, phi: float, psi: float) -> QuantumCircuit: """Create an instance of the xy-mixer operator with angle 'beta'. Args: beta (float): Angle for the mixer operator. Returns: QuantumCircuit: Circuit representing the mixer operator. """ qc = QuantumCircuit(self.N, self.N) # X_iX_j for i, j in self.G.get_edges(): if self.w[i, j] > 0: qc.rxx(phi / 2, i, j) # Y_iY_j for i, j in self.G.get_edges(): if self.w[i, j] > 0: qc.ryy(psi / 2, i, j) return qc def get_circuit(self) -> QuantumCircuit: """Create an instance of the Qaoa circuit with given parameters. Returns: QuantumCircuit: Circuit representing the Qaoa. """ qc = QuantumCircuit(self.N, self.N) params = ParameterVector("params", 2 * self.p) betas = params[0 : self.p] gammas = params[self.p : 2 * self.p] qc.h(range(self.N)) qc.barrier(range(self.N)) for i in range(self.p): qc = qc.compose(self.cost_operator(gammas[i])) qc.barrier(range(self.N)) if self.mixer == "x": qc = qc.compose(self.x_mixer_operator(betas[i])) qc.barrier(range(self.N)) elif self.mixer == "xx": qc = qc.compose(self.xx_mixer_operator(betas[i])) qc.barrier(range(self.N)) elif self.mixer == "y": qc = qc.compose(self.y_mixer_operator(betas[i])) qc.barrier(range(self.N)) elif self.mixer == "yy": qc = qc.compose(self.yy_mixer_operator(betas[i])) qc.barrier(range(self.N)) elif self.mixer == "xy": qc = qc.compose(self.xy_mixer_operator(betas[i],betas[i])) qc.barrier(range(self.N)) qc.barrier(range(self.N)) if self.measure: qc.measure(range(self.N), range(self.N)) return qc
https://github.com/apcarrik/qiskit-dev
apcarrik
import math import numpy as np from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit.algorithms import Shor N = 15 backend = Aer.get_backend('aer_simulator') quantum_instance = QuantumInstance(backend, shots=1024) shor = Shor(quantum_instance=quantum_instance) result = shor.factor(N) print(f"The list of factors of {N} as computed by Shor's algorithm is {result.factors[0]}.") print(f"Copmuted of qubits for circuit: {4 * math.ceil(math.log(N,2)) + 2}") print(f"Actual number of qubits of circuit: {shor.construct_circuit(N).num_qubits}")
https://github.com/apcarrik/qiskit-dev
apcarrik
import matplotlib as plt import numpy as np from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.visualization import plot_histogram from math import gcd from numpy.random import randint import pandas as pd from fractions import Fraction print("Imports Successful") ### Problem: Period Finding # Builds circuit for operator U such that U|y> = |ay mod 15> def c_amod15(a, power): """Controlled multiplication by a mod 15""" if a not in [2,7,8,11,13]: raise ValueError("'a' must be 2,7,8,11, or 13") U = QuantumCircuit(4) for iteration in range(power): if a in [2,13]: U.swap(0,1) U.swap(1,2) U.swap(2,3) if a in [7,8]: U.swap(2,3) U.swap(1,2) U.swap(0,1) if a == 11: U.swap(1,3) U.swap(0,2) if a in [7,11,13]: for q in range(4): U.x(q) U = U.to_gate() U.name = "%i^%i mod 15" % (a, power) c_U = U.control() return c_U # Specify variables n_count = 8 # number of counting qubits a = 7 # Import QFT circuit def qft_dagger(n): """n-qubit QFTdagger the first n qubits in circuit""" qc = QuantumCircuit(n) # Don't forget the swaps! for qubit in range(n//2): qc.swap(qubit, n-qubit-1) for j in range(n): for m in range(j): qc.cp(-np.pi/float(2**(j-m)), m, j) qc.h(j) qc.name = "QFTdagger" return qc # Create QuantumCircuit with n_count counting qubits plus 4 qubits for U to act on qc = QuantumCircuit(n_count + 4, n_count) # Initialize counting qubits in state |+> for q in range(n_count): qc.h(q) # Add auxiliary register in state |1> qc.x(3+n_count) # Do controlled-U operations for q in range(n_count): qc.append(c_amod15(a, 2**q), [q] + [i+n_count for i in range(4)]) # Do inverse-QFT qc.append(qft_dagger(n_count), range(n_count)) # Measure circuit qc.measure(range(n_count), range(n_count)) qc.draw(output='mpl', fold=-1).show() # -1 means do not fold # Show histogram results aer_sim = Aer.get_backend('aer_simulator') t_qc = transpile(qc, aer_sim) qobj = assemble(t_qc) results = aer_sim.run(qobj).result() counts = results.get_counts() plot_histogram(counts).show() # Show text results rows, measured_phases = [], [] for output in counts: decimal = int(output, 2) # convert (base 2) string to decimal phase = decimal/(2**n_count) # find corresponding eigenvalue measured_phases.append(phase) rows.append( [f"{output}(bin) = {decimal:>3}(dec)", f"{decimal}/{2**n_count} = {phase:.2f}"] )# add these valeus to the rows in our table headers=["Register Output", "Phase"] df = pd.DataFrame(rows, columns=headers) print(df) # Find s and r using continuded fractions algorithm rows = [] for phase in measured_phases: frac = Fraction(phase).limit_denominator(15) rows.append([phase, f"{frac.numerator}/{frac.denominator}", frac.denominator]) headers = ["Phase", "Fraction", "Guess for r"] df = pd.DataFrame(rows, columns= headers) print(df) ### Modular Exponentiation # Use repeated squaring to calcualte exponential a^(2^j) mod N def a2jmodN(a, j, N): """Compute a^(2^j) (mod N) by repeated squaring""" for i in range(j): a = np.mod(a**2, N) return a print(a2jmodN(7,2049, 53)) ### Factoring and Period Finding # Assume N is the product of two primes N = 15 np.random.seed(1) a = randint(2,15) print("a=",a) # Check a isn't already a non-trivial factor of N from math import gcd assert gcd(a,N) == 1 # Apply Shor's order finding algorithm for N=15 def qpe_amod15(a): n_count = 8 qc = QuantumCircuit(4+n_count, n_count) for q in range(n_count): qc.h(q) # initialize counting qubits in state |+> qc.x(3+n_count) # set auxiliary register in state |1> for q in range(n_count): # do controlled-U operations qc.append(c_amod15(a, 2**q), [q] + [i+n_count for i in range(4)]) qc.append(qft_dagger(n_count), range(n_count)) # Do inverse-QFT qc.measure(range(n_count), range(n_count)) # Simulate results aer_sim = Aer.get_backend('aer_simulator') t_qc = transpile(qc, aer_sim) obj = assemble(t_qc, shots=1) result = aer_sim.run(qobj, memory=True).result() # setting memory=True allows us to see list of each sequential reading readings = result.get_memory() print("Register Reading: ", readings[0]) phase = int(readings[0],2)/(2**n_count) print("Corresponding Phase: %f" % phase) return phase # Find guess for r given phase phase = qpe_amod15(a) # Phase = s/r Fraction(phase).limit_denominator(15) # Denominator should tell us r # Get fraction frac = Fraction(phase).limit_denominator(15) s, r = frac.numerator, frac.denominator print(r) # use r to guess factors of N guesses = [gcd(a**(r//2)-1, N), gcd(a**(r//2)+1, N)] print("guesses:", guesses) # repeat guess algorithm until at least one factor of 15 is found a = 7 factor_found = False attempt = 0 while not factor_found: attempt += 1 print("\nAttempt %i:" % attempt) phase = qpe_amod15(a) # Phase = s/r frac = Fraction(phase).limit_denominator(N) # Denominator should tell us r r = frac.denominator print("Result: r = %i" % r) if phase != 0: # Guesses for factors are gcd(x^(r/2) +/- 1 , 15) guesses = [gcd(a**(r//2)-1, N), gcd(a**(r//2)+1, N)] print("Guessed Factors: %i and %i" % (guesses[0], guesses[1])) for guess in guesses: if guess not in [1,N] and (N % guess) == 0: # check to see if guess is factor print("*** Non-trivial factor found: %i ***" % guess) factor_found = True
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np import pylab from qiskit import Aer from qiskit.utils import QuantumInstance, algorithm_globals from qiskit.algorithms import VQE, NumPyMinimumEigensolver from qiskit.algorithms.optimizers import SPSA from qiskit.circuit.library import TwoLocal from qiskit.opflow import I, X, Z H2_op = (-1.052373245772859 * I ^ I) + \ (0.39793742484318045 * I ^ Z) + \ (-0.39793742484318045 * Z ^ I) + \ (-0.01128010425623538 * Z ^ Z) + \ (0.18093119978423156 * X ^ X) print(f'Number of qubits: {H2_op.num_qubits}') # Compute reference using classical method npme = NumPyMinimumEigensolver() result = npme.compute_minimum_eigenvalue(operator=H2_op) ref_value = result.eigenvalue.real print(f'Reference value: {ref_value:.5f}') ### Performance Without Noise seed = 170 iterations = 125 algorithm_globals.random_seed = seed backend = Aer.get_backend('aer_simulator') qi = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) counts = [] values = [] def store_intermediate_result(eval_count, parameters, mean, std): counts.append(eval_count) values.append(mean) ansatz = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') spsa = SPSA(maxiter=iterations) vqe = VQE(ansatz, optimizer=spsa, callback=store_intermediate_result, quantum_instance=qi) result = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}") print(f"Delta from reference energy value is: {(result.eigenvalue.real-ref_value):.5f}") # Plot energy values pylab.rcParams['figure.figsize'] = (12, 4) pylab.plot(counts,values) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Convergence without noise') pylab.show() ### Performance With Noise import os from qiskit.providers.aer import QasmSimulator from qiskit.providers.aer.noise import NoiseModel from qiskit.test.mock import FakeVigo device_backend = FakeVigo() backend = Aer.get_backend('aer_simulator') counts1 = [] values1 = [] noise_model = None device = QasmSimulator.from_backend(device_backend) coupling_map = device.configuration().coupling_map noise_model = NoiseModel.from_backend(device) basis_gate = noise_model.basis_gates print(noise_model) print() algorithm_globals.random_seed = seed qi = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed, coupling_map=coupling_map, noise_model=noise_model) def store_intermediate_result1(eval_count, parameters, mean, std): counts1.append(eval_count) values1.append(mean) var_form = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') spsa = SPSA(maxiter=iterations) vqe = VQE(ansatz, optimizer=spsa, callback=store_intermediate_result1, quantum_instance=qi) result1 = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}") print(f"Delta from reference energy value is: {(result1.eigenvalue.real-ref_value):.5f}") # Plot energy values if counts1 or values1: pylab.rcParams['figure.figsize'] = (12, 4) pylab.plot(counts1,values1) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Convergence with noise') pylab.show() ### Performance With Noise And Measurement Error Mitigation from qiskit.ignis.mitigation.measurement import CompleteMeasFitter counts2 = [] values2 = [] if noise_model is not None: algorithm_globals.random_seed = seed qi = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed, coupling_map=coupling_map, noise_model=noise_model, measurement_error_mitigation_cls=CompleteMeasFitter, cals_matrix_refresh_period=30) def store_intermediate_result2(eval_count, parameters, mean, std): counts2.append(eval_count) values2.append(mean) ansatz = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') spsa = SPSA(maxiter=iterations) vqe = VQE(ansatz, optimizer=spsa, callback=store_intermediate_result2, quantum_instance=qi) result2 = vqe.compute_minimum_eigenvalue(operator=H2_op) print(f"VQE on Aer qasm simulator (with noise and measurement error mitigation): {result2.eigenvalue.real:.5f}") print(f"Delta from reference energy value is: {(result2.eigenvalue.real - ref_value):.5f}") # Plot energy values if counts2 or values2: pylab.rcParams['figure.figsize'] = (12, 4) pylab.plot(counts2,values2) pylab.xlabel('Eval count') pylab.ylabel('Energy') pylab.title('Convergence with noise and measurement error mitigation') pylab.show() # Summary print('--------- Summary ---------') print(f'Reference value: {ref_value:.5f}') print(f"VQE on Aer qasm simulator (no noise): {result.eigenvalue.real:.5f}") print(f"VQE on Aer qasm simulator (with noise): {result1.eigenvalue.real:.5f}") print(f"VQE on Aer qasm simulator (with noise and measurement error mitigation): {result2.eigenvalue.real:.5f}")
https://github.com/apcarrik/qiskit-dev
apcarrik
### Pauli Operators from qiskit.opflow import I, X, Y, Z # Pauli operators print(I,X,Y,Z) print(1.5*I) # can carry a coefficient print(2.5*X) print(X+2.0*Y) # can be used in a sum print(X ^ Y ^ Z) # tensor products use ^ print(X @ Y @ Z) # composition uses @ # complicated objects print((X + Y) ^ (Y + Z)) # composing two sums print((X + Y) ^ (Y + Z)) # tensoring two sums print(I, X) print(2.0 * X^Y^Z) print(1.1 * ((1.2 * X)^(Y + (1.3 * Z)))) ### Part 1: State Functions and Measurements from qiskit.opflow import (StateFn, Zero, One, Plus, Minus, H, DictStateFn, VectorStateFn, CircuitStateFn, OperatorStateFn) print(Zero, One) # states |0> and |1>, respectively print(Plus, Minus) # states |+> = 1/sqrt(2)*(|0> + |1>) and |-> = 1/sqrt(2)*(|0> - |1>), respectively # the eval method returns the coefficients of hte 0 and 1 basis states print(Zero.eval('0')) print(Zero.eval('1')) print(One.eval('1')) print(Plus.eval('0')) print(Minus.eval('1')) # the adjoint method gives the dual vector of the quantum state (the bra of the ket, or vice versa) print(One.adjoint()) print(~One) ## Algebraic operations and predicates print((2.0 + 3.0j) * Zero) # construct (2 + 3i)|0> print(Zero + One) # adding two DictStateFn returns an object of the same type # you must normalize states by hand import math v_zero_one = (Zero + One) / math.sqrt(2) print(v_zero_one) # symbolic representation of a sum print(Plus + Minus) # composition operator used to perform an inner product print(~One @ One) # symbolic expressions may be evaluated with the eval method print((~One @ One).eval()) print((~v_zero_one @ v_zero_one).eval()) print((~Minus @ One).eval()) # the composition operator @ is equivalent to calling the compose method print((~One).compose(One)) assert (~One).compose(One) == ~One @ One # inner products may also be computed using the eval method directly print((~One).eval(One)) # symbolic tensor products are constructed as follows print(Zero ^ Plus) # |0> + |+> print((Zero ^ Plus).to_circuit_op()) # represented as a simple CircuitStateFn # tensor powers can be constructed using the ^ operator print(600 * ((One ^ 5) + (Zero ^ 5))) # 600(|11111> + |00000>) print((One ^ Zero) ^ 3) #|10>^3 # the method to_matrix_op converts to VectorStateFn print(((Plus^Minus)^2).to_matrix_op()) print(((Plus^One)^2).to_matrix_op()) print(((Plus^Minus)^2).to_matrix_op().sample()) # StateFn class serves as a factory and can take any applicable primitive in its constructor print(StateFn({'0':1})) print(StateFn({'0':1}) == Zero) print(StateFn([0,1,1,0])) from qiskit.circuit.library import RealAmplitudes print(StateFn(RealAmplitudes(2))) ### Part 2: PrimitiveOp's # the basic operators are sublclasses of PrimitiveOp # like StateFn, PrimitiveOp is a factory and can take any applicable primitive in its constructor from qiskit.opflow import X, Y, Z, I, CX, T, H, S, PrimitiveOp ## Matrix elements print(X) print(X.eval('0')) print(X.eval('0').eval('1')) print(CX) print(CX.to_matrix().real) # remove imaginary part print(CX.eval('01')) print(CX.eval('01').eval('11')) ## Applying an operator to a state vector print(X @ One) # X|1> = |0> print((X @ One).eval()) print(X.eval(One)) # composition and tensor products of operators are effected with @ and ^ print(((~One^2) @ (CX.eval('01'))).eval()) print(((H^5) @ ((CX^2)^I) @ (I^CX^2))**2) print((((H^5) @ ((CX^2)^I) @ (I^CX^2))**2) @ (Minus^5)) print(((H^I^I)@(X^I^I)@Zero)) print(~One @ Minus) ### Part 3: ListOp and subclasses # ListOp is a container for effectivley vectorizing operations over a list of operators and states from qiskit.opflow import ListOp print((~ListOp([One, Zero]) @ ListOp([One, Zero]))) # distribute over lists using simplification method reduce print((~ListOp([One, Zero]) @ ListOp([One, Zero])).reduce()) ## OperatorStateFn # construct observable corresponding to Pauli Z operator print(StateFn(Z).adjoint()) StateFn(Z).adjoint() # compute <0|Z|0>, <1|Z|1>, and <+|Z|+> print(StateFn(Z).adjoint().eval(Zero)) print(StateFn(Z).adjoint().eval(One)) print(StateFn(Z).adjoint().eval(Plus)) ### Part 4: Converters # converters manipulate operators and states and perform building blocks of algorithms import numpy as np from qiskit.opflow import (I, X, Y, Z, H, CX, Zero, ListOp, PauliExpectation, PauliTrotterEvolution, CircuitSampler, MatrixEvolution, Suzuki) from qiskit.circuit import Parameter from qiskit import Aer ## Evolutions, exp_i(), and the EvolvedOP # express hamiltonian as linear combination of multi-qubit Pauli operators two_qubit_H2 = (-1.0523732 * I^I) + \ (0.39793742 * I^Z) + \ (-0.3979374 * Z^I) + \ (-0.0112801 * Z^Z) + \ (0.18093119 * X^X) print(two_qubit_H2) # multiply hamiltonian by a Parameter evo_time = Parameter('θ') evolution_op = (evo_time*two_qubit_H2).exp_i() print(evolution_op) # Note: EvolvedOPs print as exponentiations print(repr(evolution_op)) # construct observable for Hamiltonian h2_measurement = StateFn(two_qubit_H2).adjoint() print(h2_measurement) # construct bell state via CX(H tensor I)|00> bell = CX @ (I ^ H) @ Zero print(bell) # evolve bell state evo_and_meas = h2_measurement @ evolution_op @ bell print(evo_and_meas) # approximate exponentiation with two-qubit gates using PauliTrotterEvolution trotterized_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=2, reps=1)).convert(evo_and_meas) print(trotterized_op) # bind_parameters method traverses expression, binding values ot parameter names bound = trotterized_op.bind_parameters({evo_time: .5}) bound[1].to_circuit().draw('mpl').show() ## Exppectations # expectations are converters that enable the computation of expectation values and observables # AerPauliExpectation converts an observable into a CircuitStateFn containin a special expectation snapshot # which Aer can execute nativley with high performance print(PauliExpectation(group_paulis=False).convert(h2_measurement)) # by default, group_paulis=True which uses the AbelianGrouper to convert the SummedOp into groups # of mutually-qubit wise commuting Paulis, reducing circuit execution overhead print(PauliExpectation().convert(h2_measurement)) # converters act recursivley, so we can convert our full evolution and measurement expression diagonalized_meas_op = PauliExpectation().convert(trotterized_op) print(diagonalized_meas_op) evo_time_points = list(range(8)) h2_trotter_expectations = diagonalized_meas_op.bind_parameters({evo_time:evo_time_points}) print(h2_trotter_expectations.eval()) ## Executing CircuitStateFn with the CircuitSampler # CircuitSampler traverses an Operator and converts any CircuitStateFn into approximations of the # resulting state function by a DictStateFn or VectorStateFn using a quantum backend. sampler= CircuitSampler(backend=Aer.get_backend('aer_simulator')) # sampler.quantum_instance.run_config.shots = 1000 sampled_trotter_exp_op = sampler.convert(h2_trotter_expectations) sampled_trotter_energies = sampled_trotter_exp_op.eval() print('Sampled Trotterized energies:\n{}'.format(np.real(sampled_trotter_energies))) # note: circuits are replaced by dicts with square roots of the circuit sampling probablilities print('Before:\n') print(h2_trotter_expectations.reduce()[0][0]) print('After:\n') print(sampled_trotter_exp_op.reduce()[0][0])
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np from qiskit.opflow import Z, X, I, StateFn, CircuitStateFn, SummedOp from qiskit.opflow.gradients import Gradient, NaturalGradient, QFI, Hessian from qiskit.circuit import (QuantumCircuit, QuantumRegister, Parameter, ParameterVector, ParameterExpression) from qiskit.circuit.library import EfficientSU2 ### First Order Gradients ## Gradients with respect to Measurement Operator Parameters # instantiate the quantum state a = Parameter('a') b = Parameter('b') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q) qc.rz(a, q[0]) qc.rx(b, q[0]) # instantiate Hamiltonian observable H = (2 * X) + Z # combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # print the operator corresponding to the expectation value print(op) params = [a, b] # define the values to be asigned to the parameters value_dict = {a: np.pi / 4, b: np.pi} # convert the operator and the gradient target params into the respective operators grad = Gradient().convert(operator= op, params= params) # print the operator corresponding to the gradient print(grad) # assign the parameters and evaluate the gradient grad_result = grad.assign_parameters(value_dict).eval() print("Gradient", grad_result) ## Gradients with respect to State Parameters # define the Hamiltonian with fixed coefficients H = 0.5 * X - 1 * Z # define the parameters w.r.t we want to compute the gradients params = [a,b] # define the values to be assigned to the parameters value_dict = {a: np.pi / 4, b: np.pi} # combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # print the operator corresponding to the expectation value print(op) ## Parameter Shift Gradients # convert the expectation value into an operator corrsponding to the gradient w.r.t # the state parameters using the parameter shift method state_grad = Gradient(grad_method='param_shift').convert(operator=op, params=params) # print the operator corresponding to the gradient print(state_grad) # assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with parameter shift', state_grad_result) ## Linear Combination of Unitaries Gradients # convert the expectation value into an operator corresponding to the gradient w.r.t # the state parameter using a linear combination of unitaries method state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params) # print the operator corresponding to the gradient print(state_grad) # assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with the linear combination method', state_grad_result) ## Finite Difference Gradients # while the previous methods were analytical, this is a numerical approximation method # convert the expectation value into an operator corresponding to the gradient w.r.t # the state parameter using the finite difference method state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params) # print the operator corresponding to the gradient print(state_grad) # assign the parameters and evaluate the gradient state_grad_result = state_grad.assign_parameters(value_dict).eval() print('State gradient computed with the linear combination method', state_grad_result) ## Natural Gradients # besides the method to compute the circuit gradients resp. QFI, a regularization method # can be chosen: 'ridge' or 'lasso' with automatic parameter search or 'perturb_diag' # or 'perturb_diag_elements', which perturb the diagonal elements of the QFI nat_grad = NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full', regularization='ridge').convert(operator=op, params=params) # assign the parameters and evaluate the gradient nat_grad_result = nat_grad.assign_parameters(value_dict).eval() print('Natural gradient computed with the linear combination of unitaries', nat_grad_result) ### Hessians (Second Order Gradients) ## Hessians w.r.t Measurement Operator Parameters # instantiate the Hamiltonian observable H = X # instantiate the quantum state with two parameters a = Parameter('a') b = Parameter('b') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.h(q) qc.rz(a, q[0]) qc.rx(b, q[0]) # combine the Hamiltonian observable and the state op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.) # convert the operator and the Hessian target coefficients into the respective operator hessian = Hessian().convert(operator=op, params=[a,b]) # define the values to be assigned to the parameters value_dict = {a: np.pi/4, b: np.pi/4} # assign the parameters and evaluate the Hessian w.r.t the Hamiltonian coefficients hessian_result = hessian.assign_parameters(value_dict).eval() print('Hessian \n', np.real(np.array(hessian_result))) ## Hessians w.r.t. State Parameters # define parameters params = [a, b] # get the operator object representing the Hessian state_hess = Hessian(hess_method='param_shift').convert(operator=op, params=params) # assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print("Hessian computed using the parameter shift method\n", (np.array(hessian_result))) # get the operator object representing the Hessian state_hess = Hessian(hess_method='lin_comb').convert(operator=op, params=params) # assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print("Hessian computed using the linear combination of unitaries method\n", (np.array(hessian_result))) # get the operator object representing the Hessian using finite difference state_hess = Hessian(hess_method='fin_diff').convert(operator=op, params=params) # assign the parameters and evaluate the Hessian hessian_result = state_hess.assign_parameters(value_dict).eval() print("Hessian computed using the finite difference method\n", (np.array(hessian_result))) ### Quantum Fisher Information (QFI) ## Linear Combination Full QFI # wrap the quantum circuit into a CircuitStateFn state = CircuitStateFn(primitive=qc, coeff=1.) # convert the state and the parameters into the operator object that represents the QFI qfi = QFI(qfi_method='lin_comb_full').convert(operator=state, params=params) # define the values for which the QFI is to be computed values_dict = {a: np.pi/4, b: 0.1} # assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('full QFI \n', np.real(np.array(qfi_result))) ## Block-diagonal and Diagonal Approximation # convert the state and the parameters into the operator object that represents the QFI # and set the approximation to 'block_diagonal' qfi = QFI(qfi_method='overlap_block_diag').convert(operator=state, params=params) # assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('Block-diagonal QFI \n', np.real(np.array(qfi_result))) # convert the state and the parameters into the operator object that represents the QFI # and set the approximation to 'diagonal' qfi = QFI(qfi_method='overlap_diag').convert(operator=state, params=params) # assign the parameters and evaluate the QFI qfi_result = qfi.assign_parameters(values_dict).eval() print('Diagonal QFI \n', np.real(np.array(qfi_result))) ### Application Example: VQE with Gradient-Based Optimization # execution imports from qiskit import Aer from qiskit.utils import QuantumInstance # algorithm imports from qiskit.algorithms import VQE from qiskit.algorithms.optimizers import CG from qiskit.opflow import I, X , Z from qiskit.circuit import QuantumCircuit, ParameterVector from scipy.optimize import minimize # initiate the system Hamiltonian h2_hamiltonian = -1.05 * (I ^ I) + 0.39 * (I ^ Z) - 0.39 * (Z ^ I) - 0.01 * (Z ^ Z) + \ 0.18 * (X ^ X) # this is the target energy h2_energy = -1.85727503 # define the Ansatz wavefunction = QuantumCircuit(2) params = ParameterVector('theta', length=8) it = iter(params) wavefunction.ry(next(it), 0) wavefunction.ry(next(it), 1) wavefunction.rz(next(it), 0) wavefunction.rz(next(it), 1) wavefunction.cx(0, 1) wavefunction.ry(next(it), 0) wavefunction.ry(next(it), 1) wavefunction.rz(next(it), 0) wavefunction.rz(next(it), 1) # define the expectation value corresponding to the energy op = ~StateFn(h2_hamiltonian) @ StateFn(wavefunction) # choose wheither VQE should use Gradient or NaturalGradient grad = Gradient(grad_method='lin_comb') qi_sv = QuantumInstance(Aer.get_backend('aer_simulator_statevector'), shots=1, seed_simulator=2, seed_transpiler=2) # configure Gradient algorithm optimizer = CG(maxiter=50) # Gradient callable vqe = VQE(wavefunction, optimizer=optimizer, gradient=grad, quantum_instance=qi_sv) result = vqe.compute_minimum_eigenvalue(h2_hamiltonian) print("Result:", result.optimal_value, 'Reference:', h2_energy) # define QuantumInstance to execute quantum circuits and run algorithm
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import transpile, QuantumCircuit import qiskit.quantum_info as qi from qiskit.providers.aer import AerSimulator from qiskit.providers.aer.noise import NoiseModel, amplitude_damping_error from qiskit.tools.visualization import plot_histogram ## Creating Matrix Operators # CNOT matrix operator with qubit-0 as control and qubit-1 as target cx_op = qi.Operator([ [1,0,0,0], [0,0,0,1], [0,0,1,0], [0,1,0,0] ]) # iSWAP matrix operator iswap_op = qi.Operator([ [1,0,0,0], [0,0,1j,0], [0,1j,0,0], [0,0,0,1] ]) ## Using Operators in Circuits # CNOT in terms of iSWAP and single-qubit gates cx_circ = QuantumCircuit(2, name='cx<iSWAP>') cx_circ.sdg(1) cx_circ.h(1) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0,1], label='iswap') cx_circ.sdg(0) cx_circ.h(0) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0,1], label='iswap') cx_circ.s(1) print(cx_circ) # Simulate the unitary for the circuit using Operator: unitary = qi.Operator(cx_circ) print(unitary) f_avg = qi.average_gate_fidelity(cx_op, unitary) print("Average gate fidelity: F = {:f}".format(f_avg)) ### Creating a Custom Unitary in a Noise Model print('unitary' in AerSimulator().configuration().basis_gates) # error parameters param_q0 = 0.05 # damping parameter for qubit-0 param_q1 = 0.1 # damping parameter for qubit-1 # construct the error qerror_q0 = amplitude_damping_error(param_q0) qerror_q1 = amplitude_damping_error(param_q1) iswap_error = qerror_q1.tensor(qerror_q0) # Build the noise model by adding the error to the iSWAP gate noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(iswap_error,'iswap') noise_model.add_basis_gates(['unitary']) print(noise_model.basis_gates) ## Simulating a Custom Unitary Noise Model # Bell state circuit where iSWAPS should be placed at barrier locations bell_circ = QuantumCircuit(2,2,name='bell') bell_circ.h(0) bell_circ.append(cx_circ,[0,1]) bell_circ.measure([0,1],[0,1]) print(bell_circ) # create ideal simulator backend and transpile circuit sim_ideal = AerSimulator() tbell_circ = transpile(bell_circ,sim_ideal) ideal_result = sim_ideal.run(tbell_circ).result() ideal_counts = ideal_result.get_counts(0) plot_histogram(ideal_counts, title='Ideal output for iSWAP bell-state preparation').show() ## Noisy Circuit Execution # create noisy simulator and transpile circuit sim_noise = AerSimulator(noise_model=noise_model) tbell_circ_noise = transpile(bell_circ,sim_noise) # run on the simulator with noise noise_result = sim_noise.run(tbell_circ_noise).result() noise_counts = noise_result.get_counts(0) plot_histogram(noise_counts, title='Noisy output for iSWAP bell-state preparation').show()
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import IBMQ, transpile from qiskit import QuantumCircuit from qiskit.providers.aer import AerSimulator from qiskit.tools.visualization import plot_histogram ## Terra Mock Backends from qiskit.test.mock import FakeVigo device_backend = FakeVigo() # Build test circuit circ = QuantumCircuit(3,3) circ.h(0) circ.cx(0,1) circ.cx(1,2) circ.measure([0,1,2], [0,1,2]) sim_ideal = AerSimulator() # Execute circuit and get counts result = sim_ideal.run(transpile(circ,sim_ideal)).result() counts = result.get_counts(0) plot_histogram(counts, title="Ideal counts for 3-qubit GHZ state").show() ## Generate Simulator that Mimics Real Device sim_vigo = AerSimulator.from_backend(device_backend) # Run noisy simulation tcirc = transpile(circ, sim_vigo) result_noise = sim_vigo.run(tcirc).result() counts_noise = result_noise.get_counts() plot_histogram(counts_noise, title="Counts for 3-qubit GHZ state with noisy model").show()
https://github.com/apcarrik/qiskit-dev
apcarrik
### Using the Matrix Product State Simulation Method import numpy as np # import qiskit from qiskit import QuantumCircuit, transpile from qiskit.providers.aer import AerSimulator # construct quantum circuit circ = QuantumCircuit(2,2) circ.h(0) circ.cx(0,1) circ.measure([0,1],[0,1]) # select the AerSimulator from the Aer provider simulator = AerSimulator(method='matrix_product_state') # run and get counts tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() counts = result.get_counts(0) print(counts) # construct quantum circuit circ = QuantumCircuit(2,2) circ.h(0) circ.cx(0,1) # define a snapshot that shows the current state vector circ.save_statevector(label='my_sv') circ.save_matrix_product_state(label='my_mps') circ.measure([0,1],[0,1]) # execute and get saved data tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() data = result.data(0) print(data) ### Testing Large EPR State Circuit num_qubits_arr = [50, 100, 500] for num_qubits in num_qubits_arr: circ = QuantumCircuit(num_qubits, num_qubits) # create EPR state circ.h(0) for i in range(0,num_qubits-1): circ.cx(i,i+1) # measure circ.measure(range(num_qubits), range(num_qubits)) tcirc = transpile(circ, simulator) result = simulator.run(tcirc).result() print("\nFor {} qubits:".format(num_qubits)) print("\tTime taken: {}s".format(result.time_taken)) print("\tCounts: ", counts)
https://github.com/apcarrik/qiskit-dev
apcarrik
import numpy as np from pprint import pprint # import Qiskit from qiskit import QuantumCircuit from qiskit import Aer, transpile from qiskit.tools.visualization import plot_histogram, plot_state_city import qiskit.quantum_info as qi # show all possible backends pprint(Aer.backends()) # use AerSimulator backend sumulator = Aer.get_backend('aer_simulator') ## Simulating a quantum circuit # create circuit consisting of a 2-qubit bell state |phi> = 1/2*(|00> + |11>) circ = QuantumCircuit(2) circ.h(0) circ.cx(0,1) circ.measure_all() # transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ,simulator) # run simulation and get counts result = simulator.run(circ).result() counts = result.get_counts(circ) plot_histogram(counts, title="Bell-State counts").show() # save measurment outcomes result = simulator.run(circ, shots=10, memory=True).result() memory = result.get_memory(circ) print(memory) ### Aer Simulation Options ## Simulation Method # increase shots to reduce sampling variance shots = 1000 # Stabilizer simulation method sim_stabilizer = Aer.get_backend('aer_simulator_stabilizer') job_stabilizer = sim_stabilizer.run(circ, shots=shots) counts_stabilizer = job_stabilizer.result().get_counts(0) # Statevector simulation method sim_statevector = Aer.get_backend('aer_simulator_statevector') job_statevector = sim_statevector.run(circ, shots=shots) counts_statevector = job_statevector.result().get_counts(0) # Density Matrix simulation method sim_density = Aer.get_backend('aer_simulator_density_matrix') job_density = sim_density.run(circ, shots=shots) counts_density = job_density.result().get_counts(0) # Matrix Product State simulation method sim_mps = Aer.get_backend('aer_simulator_matrix_product_state') job_mps = sim_mps.run(circ, shots=shots) counts_mps = job_mps.result().get_counts(0) # plot results plot_histogram([counts_stabilizer, counts_statevector, counts_density, counts_mps], title="Counts for different simulation methods", legend=['stabilizer', 'statevector', 'density_matrix', 'matrix_product_state']).show() ## GPU Simulation from qiskit.providers.aer import AerError # initialize a GPU backend - note that if the target machine does not have a GPU, # this will raise an exception. try: simulator_gpu = Aer.get_backend('aer_simulator') simulator_gpu.set_options(device='GPU') except AerError as e: print(e) # the Aer provider will also contain preconfigured GPU simulator backends if Qiskit Aer was # installed with GPU support on a compatible system: # - aer_simulator_statevector_gpu # - aer_simulator_density_matrix_gpu # - aer_simulator_unitary_gpu # Note: the GPU version of Aer can be installed using `pip install qiskit-aer-gpu` ## Simulation Precision # configure a single-precision statevector simulator backend simulator = Aer.get_backend('aer_simulator_statevector') simulator.set_options(precision='single') # run simulation and get counts result = simulator.run(circ).result() counts = result.get_counts(circ) print(counts) ### Custom Simulator Instructions ## Saving the Simulator State # see https://qiskit.org/documentation/tutorials/simulators/1_aer_provider.html#Saving-the-simulator-state ## Saving the Final Statevector # construct quantum circuit wihtout measure qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc.save_statevector() # transpile for simulator simulator = Aer.get_backend('aer_simulator') qc = transpile(qc,simulator) # run simulation and get statevector result = simulator.run(qc).result() statevector = result.get_statevector(qc) plot_state_city(statevector, title='Bell state').show() ## Saving the Circuit Unitary # construct quantum circuit without measure qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc.save_unitary() # transpile for simulator simulator = Aer.get_backend('aer_simulator') qc = transpile(qc, simulator) # run simulation and get unitary result = simulator.run(qc).result() unitary = result.get_unitary(qc) print("Circuit unitary:\n", unitary.round(5)) ## Saving Multiple States # construct quantum circuit without measure steps = 5 qc = QuantumCircuit(1) for i in range(steps): qc.save_statevector(label=f'psi_{i}') qc.rx(i * np.pi / steps, 0) qc.save_statevector(label=f'psi_{steps}') # transpile for simulator simulator = Aer.get_backend('aer_simulator') qc = transpile(qc, simulator) # run simulation and get saved data result = simulator.run(qc).result() data = result.data(0) pprint(data) ### Setting the Simulator to a Custom State # see https://qiskit.org/documentation/tutorials/simulators/1_aer_provider.html#Setting-the-simulator-to-a-custom-state ## Setting a Custom Statevector # generate a random statevector num_qubits = 2 psi = qi.random_statevector(2 ** num_qubits, seed =100) # set initial state to generated statevector circ = QuantumCircuit(num_qubits) circ.set_statevector(psi) circ.save_state() # transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # run simulation and get saved data result = simulator.run(circ).result() pprint(result.data(0)) ## Use Initialize Instruction # use intialize instruction to set initial state circ = QuantumCircuit(num_qubits) circ.initialize(psi, range(num_qubits)) circ.save_state() # transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # run simulation and get results result = simulator.run(circ).result() pprint(result.data(0)) ## Set Custom Density Matrix num_qubits = 2 rho = qi.random_density_matrix(2 ** num_qubits, seed = 100) circ = QuantumCircuit(num_qubits) circ.set_density_matrix(rho) circ.save_state() # transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # run simulation and get saved data result = simulator.run(circ).result() pprint(result.data(0)) ## Set Custom Unitary # generates a random unitary num_qubits = 2 unitary = qi.random_unitary(2** num_qubits, seed =100) # set initial state to unitary circ = QuantumCircuit(num_qubits) circ.set_unitary(unitary) circ.save_state() # transpile for simulator simulator = Aer.get_backend('aer_simulator') circ = transpile(circ, simulator) # run simulation and get saved data result = simulator.run(circ).result() pprint(result.data(0))
https://github.com/apcarrik/qiskit-dev
apcarrik
from qiskit import QuantumCircuit, transpile from qiskit.providers.aer import AerSimulator from qiskit.tools.visualization import plot_histogram import random circ = QuantumCircuit(40,40) # initialize with a Hadamard layer circ.h(range(40)) # apply some random CNOT and T gates qubit_indicies = [i for i in range(40)] for i in range(10): control, target, t = random.sample(qubit_indicies,3) circ.cx(control,target) circ.t(t) circ.measure(range(40), range(40)) # create statevector simulator statevector_simulator = AerSimulator(method='statevector') # transpile circuit for backend tcirc = transpile(circ, statevector_simulator) # try and run circuit statevector_result = statevector_simulator.run(tcirc, shots=1).result() print('This succeeded?: {}'.format(statevector_result.success)) print('Why not?: {}'.format(statevector_result.status)) # create an extended stablilizer method simulator extended_stabilizer_simulator = AerSimulator(method='extended_stabilizer') # transpile circuit for backend tcirc = transpile(circ, extended_stabilizer_simulator) # run circuit and get results extended_stabilizer_result = extended_stabilizer_simulator.run(tcirc, shots=1).result() print('This succeeded?: {}'.format(extended_stabilizer_result.success)) ### Extended Stabilizer Only Gives Approximate Results small_circ = QuantumCircuit(2,2) small_circ.h(0) small_circ.cx(0,1) small_circ.t(0) small_circ.measure([0,1],[0,1]) # the circuit should give 00 and 11 with equal probability expected_results = {'00': 50, '11':50} tsmall_circuit = transpile(small_circ, extended_stabilizer_simulator) result = extended_stabilizer_simulator.run( tsmall_circuit, shots=100).result() counts = result.get_counts(0) print('100 shots in {}s'.format(result.time_taken)) plot_histogram([expected_results, counts], legend=["Expected", "Extened Stabilizer"]).show() ## Add Runtime Options for Extended Stabilizer Simulator opts = {"extended_stabilizer_approximation_error":0.03} reduced_error_result = extended_stabilizer_simulator.run( tsmall_circuit, shots=100, **opts).result() reduced_error_counts = reduced_error_result.get_counts(0) print('100 shots in {}s'.format(reduced_error_result.time_taken)) plot_histogram([expected_results, reduced_error_counts], legend=["Expected", "Extened Stabilizer"]).show() ## Simulator Options # if you expect your output will be concentrated on a few states, you can optimize the # simulations by reducing the extended_stabilizer_simulator_mixing_time option print("The circuit above, with 100 shots and precision 0.03 " "and default mixing time, needed {}s".format(int(reduced_error_result.time_taken))) opts = {"extended_stabilizer_approximation_error": 0.03, "extended_stabilizer_simulator_mixing_time": 100} optimized_result = extended_stabilizer_simulator.run( tsmall_circuit, shots=100, **opts).result() print('Dialing down the mixing time, the circuit completed in just {}s'.format( optimized_result.time_taken)) # if your circuit has non-zero probability on all amplitudes (e.g. it is a random circuit), # then you can avoid this expensive re-mixing step to take multiple shots from the output # at once. opts = {"extended_stabilizer_simulator_mixing_time": 100} multishot = extended_stabilizer_simulator.run( tcirc, shots=100, **opts).result() print("100 shots took {}s".format(multishot.time_taken)) opts = { 'extended_stabilizer_measure_sampling': True, 'extended_stabilizer_mixing_time': 100 } measure_sampling = extended_stabilizer_simulator.run( tcirc, shots=100, **opts).result() print("With the optimization, 100 shots took {}s".format(measure_sampling.time_taken))
https://github.com/apcarrik/qiskit-dev
apcarrik
import sys # !conda install --yes --prefix {sys.prefix} numpy # !conda install --yes --prefix {sys.prefix} qiskit # !conda install --yes --prefix {sys.prefix} matplotlib # !{sys.executable} -m pip install pyppeteer import numpy as np from qiskit import * from matplotlib import pyplot from math import pi thetas = [i*pi/10 for i in range(0,11)] shots = 100 import matplotlib.pyplot as plt import numpy as np def plot_results(counts_arr): zeros_count = [count[0] for count in counts_arr] #+ [sum([count[0] for count in counts_arr])/len(counts_arr)] ones_count = [count[1] for count in counts_arr] #+ [sum([count[1] for count in counts_arr])/len(counts_arr)] ones_pct = [count/shots for count in ones_count] fig, ax = plt.subplots() labels = [f'{i}/10*pi' for i in range(len(thetas))] #+ ['Average'] x = np.arange(len(labels)) width=0.35 # c1 = ax.bar(x - width/2, zeros_count, width, label='Output = 0') c2 = ax.bar(x + width/2, ones_pct, width, label='Output = 1') ax.set_ylabel('Output 1 Average') ax.set_xlabel('Theta') ax.set_title('Output 1 Averages vs. Theta') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() # ax.bar_label(c1, padding=3) ax.bar_label(c2, padding=3) fig.set_size_inches(12, 9) plt.show() counts_arr = [ [] for i in range(len(thetas)) ] for i, theta in enumerate(thetas): # Build circuit qc = QuantumCircuit(1,1) qc.h(0) qc.rz(theta,0) qc.h(0) qc.measure(0,0) if i==0: qc.draw('mpl') pyplot.show() # Simulate circuit using Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(qc, backend_sim), shots=shots) result_sim = job_sim.result() counts = result_sim.get_counts(qc) # collect counts of simulation output counts_arr[i].append( counts['0'] if '0' in counts else 0 ) counts_arr[i].append( counts['1'] if '1' in counts else 0 ) print(f'theta={i}/10*pi\tcounts: {counts}\tavg: {counts_arr[i][1]/shots*100:.1f}%') plot_results(counts_arr) counts_arr = [ [] for i in range(len(thetas)) ] for i, theta in enumerate(thetas): # Build circuit qc = QuantumCircuit(1,1) qc.h(0) qc.rz(theta/2,0) qc.x(0) qc.rz(theta/2,0) qc.x(0) qc.h(0) qc.measure(0,0) if i==0: qc.draw('mpl') pyplot.show() # Simulate circuit using Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(qc, backend_sim), shots=shots) result_sim = job_sim.result() counts = result_sim.get_counts(qc) # collect counts of simulation output counts_arr[i].append( counts['0'] if '0' in counts else 0 ) counts_arr[i].append( counts['1'] if '1' in counts else 0 ) print(f'theta={i}/10*pi\tcounts: {counts}\tavg: {counts_arr[i][1]/shots:.2f}%') plot_results(counts_arr) deltas = [0.1, 0.2] for delta in deltas: counts_arr = [ [] for i in range(len(thetas)) ] print(f"\n-----\nDelta: {delta}") for i, theta in enumerate(thetas): # Build circuit qc = QuantumCircuit(1,1) qc.h(0) qc.rz(theta/2+delta,0) qc.x(0) qc.rz(theta/2-delta,0) qc.x(0) qc.h(0) qc.measure(0,0) if i==0: qc.draw('mpl') pyplot.show() # Simulate circuit using Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(qc, backend_sim), shots=shots) result_sim = job_sim.result() counts = result_sim.get_counts(qc) # collect counts of simulation output counts_arr[i].append( counts['0'] if '0' in counts else 0 ) counts_arr[i].append( counts['1'] if '1' in counts else 0 ) print(f'theta={i}/10*pi\tcounts: {counts}\tavg: {counts_arr[i][1]/shots:.2f}%') plot_results(counts_arr) from qiskit.quantum_info import Operator from qiskit.extensions import HamiltonianGate from qiskit.opflow import I, X, Y, Z counts_arr = [ [] for i in range(len(thetas)) ] for i, theta in enumerate(thetas): # Define operator in exponent op = X + Y + Z # Define coefficient in exponent c = (theta/4)/2*((1/3)**(1/2)) # Create HamiltonianGate, which is defined as exp(-i*op*c) V_gate = HamiltonianGate(op, c) # Define circuit qc = QuantumCircuit(1,1) qc.append(V_gate, [0]) qc.x(0) qc.append(V_gate, [0]) qc.x(0) qc.append(V_gate, [0]) qc.x(0) qc.append(V_gate, [0]) qc.x(0) qc.measure(0,0) # Draw circuit once if i==0: qc.draw('mpl') pyplot.show() # Simulate circuit using Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(qc, backend_sim), shots=shots) result_sim = job_sim.result() counts = result_sim.get_counts(qc) # collect counts of simulation output counts_arr[i].append( counts['0'] if '0' in counts else 0 ) counts_arr[i].append( counts['1'] if '1' in counts else 0 ) print(f'theta={i}/10*pi\tcounts: {counts}\tavg: {counts_arr[i][1]/shots:.2f}%') plot_results(counts_arr) counts_arr = [ [] for i in range(len(thetas)) ] for i, theta in enumerate(thetas): # Define operator in exponent op = X + Y + Z # Define coefficient in exponent c = (theta/4)/2*((1/3)**(1/2)) # Create HamiltonianGate, which is defined as exp(-i*op*c) V_gate = HamiltonianGate(op, c) # Define circuit qc = QuantumCircuit(1,1) qc.append(V_gate, [0]) qc.x(0) qc.append(V_gate, [0]) qc.y(0) qc.append(V_gate, [0]) qc.x(0) qc.append(V_gate, [0]) qc.y(0) qc.measure(0,0) # Draw circuit once if i==0: qc.draw('mpl') pyplot.show() # Simulate circuit using Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(qc, backend_sim), shots=shots) result_sim = job_sim.result() counts = result_sim.get_counts(qc) # collect counts of simulation output counts_arr[i].append( counts['0'] if '0' in counts else 0 ) counts_arr[i].append( counts['1'] if '1' in counts else 0 ) print(f'theta={i}/10*pi\tcounts: {counts}\tavg: {counts_arr[i][1]/shots:.2f}%') plot_results(counts_arr)
https://github.com/iamr0b0tx/qiskit_practice
iamr0b0tx
import numpy as np # import qiskit libs from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute from qiskit.tools.jupyter import * API_KEY = 'c6f6569ab6b6f9ec1a437d4d1187b7c7ea2ac4bd91679613e204e7bb9728efd9639af14a86f840cbb05e60b6a249e532e3168c7dbff07edc4c37de9c4bb3e0b3' try: provider = IBMQ.enable_account(API_KEY) except Exception as e: print(e) # qiskit plot tool from qiskit.visualization import plot_histogram def dj_oracle(case, n, draw=False): oracle_qc = QuantumCircuit(n+1) if case == "balanced": for qubit in range(n): oracle_qc.cx(qubit, n) if case == "constant": output = np.random.randint(2) if output == 1: oracle_qc.x(n) if draw: print(oracle_qc.draw()) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" return oracle_gate dj_oracle("balanced", 4, True) dj_oracle("constant", 4, True) dj_oracle("constant", 4, True) def dj_algorithm(n, case="random"): dj_circuit = QuantumCircuit(n+1, n) for qubit in range(n): dj_circuit.h(qubit) dj_circuit.x(n) dj_circuit.h(n) if case=="random": random_case = np.random.randint(2) if random_case == 0: case = "constant" else: case="balanced" oracle = dj_oracle(case, n) dj_circuit.append(oracle, range(n+1)) for i in range(n): dj_circuit.h(i) dj_circuit.measure(i, i) return dj_circuit n = 4 dj_circuit = dj_algorithm(n) dj_circuit.draw() # using local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 dj_circuit = dj_algorithm(n, 'constant') results = execute(dj_circuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/iamr0b0tx/qiskit_practice
iamr0b0tx
import numpy as np # import qiskit libs from qiskit import IBMQ, QuantumCircuit, Aer, execute from qiskit.quantum_info import Operator from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * API_KEY = 'c6f6569ab6b6f9ec1a437d4d1187b7c7ea2ac4bd91679613e204e7bb9728efd9639af14a86f840cbb05e60b6a249e532e3168c7dbff07edc4c37de9c4bb3e0b3' try: provider = IBMQ.enable_account(API_KEY) except Exception as e: print(e) # qiskit plot tool from qiskit.visualization import plot_histogram def phase_oracle(n, indices_to_mark, name="Oracle"): qc = QuantumCircuit(n, name=name) oracle_matrix = np.identity(2**n) for index_to_mark in indices_to_mark: oracle_matrix[index_to_mark, index_to_mark] = -1 qc.unitary(Operator(oracle_matrix), range(n)) return qc def diffuser(n): qc = QuantumCircuit(n, name="Diffuser (V)") qc.h(range(n)) qc.append(phase_oracle(n, [0]), range(n)) qc.h(range(n)) return qc def grover(n, marked): qc = QuantumCircuit(n, n) r = int(np.round(np.pi / (4 * np.arcsin(np.sqrt(len(marked) / 2**n))) - 1/2)) print(f'{n} qubits, basis state {marked} marked, {r} rounds') qc.h(range(n)) for _ in range(r): qc.append(phase_oracle(n, marked), range(n)) qc.append(diffuser(n), range(n)) qc.measure(range(n), range(n)) return qc n = 5 x = np.random.randint(2**n) marked = [x] qc = grover(n, marked) qc.draw() # using local simulator backend = Aer.get_backend('qasm_simulator') results = execute(qc, backend=backend, shots=10_000).result() counts = results.get_counts(qc) print(counts) print(np.pi / (4 * np.arcsin(np.sqrt(len(marked) / 2**n))) - 1/2) plot_histogram(counts) x, bin(x)
https://github.com/iamr0b0tx/qiskit_practice
iamr0b0tx
import qiskit
https://github.com/EdoardoZappia/Qiskit-Primitive
EdoardoZappia
#!pip install qiskit #import qiskit.tools.jupyter #%qiskit_version_table #%qiskit_copyright #pip install qcircuit #pip install pdflatex from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute import numpy as np import qiskit.quantum_info as qi import qiskit from qiskit import Aer from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.visualization.circuit import * from qiskit import transpile, assemble import matplotlib.pyplot as plt from qiskit.circuit import Parameter # Supress warnings import warnings warnings.filterwarnings("ignore") # Create a quantum circuit instance with one qubit circuit = QuantumCircuit(2,0) # Apply Hadamard Gate circuit.h(0) # Draw quantum circuit circuit.draw(output = "mpl") # Print all the available quantum simulators Aer.backends() # Load statevector simulator simulator = Aer.get_backend("statevector_simulator") # Create quatum job to execute job = simulator.run(circuit) # Execute the job result = job.result() state_ex=result.get_statevector(circuit) #if possible mantains phases as fractions state = result.get_statevector(circuit, decimals = 4) #using parameter decimals, approximates the fractions state_ex.draw(output='latex') state.draw(output='latex') state.draw(output = "bloch") #to do statevector simulation more easily def statevect_sim(circuit: QuantumCircuit): simulator=Aer.get_backend("statevector_simulator") state=simulator.run(circuit).result().get_statevector(circuit) print(state) return state.draw('latex') # Apply RX / RY / S /T gates circuit2=QuantumCircuit(1,0) circuit2.rx(np.pi/2,0) #rx(theta, n) gate is a single-qubit gate rotation of angle theta around the x-axis of the qubit n circuit2.draw(output='mpl') statevect_sim(circuit2) simulator.run(circuit2).result().get_statevector(circuit2).draw(output = "bloch") circuit3=QuantumCircuit(1,0) circuit3.ry(np.pi*3/2,0) #ry(theta, n) gate is a single-qubit gate rotation of angle theta around the y-axis of the qubit n circuit3.draw(output='mpl') #create the job job3=simulator.run(circuit3) #execute the job result3=job3.result() #create the state state3_ex=result3.get_statevector(circuit3) state3=result3.get_statevector(circuit3,decimals=4) state3_ex.draw(output='latex') state3.draw(output='latex') #or we can just use statevect_sim(circuit3) state3.draw(output='bloch') circuit4=QuantumCircuit(1,0) circuit4.rx(np.pi/4,0) circuit4.s(0) #s(n) gate is a single-qubit gate rotation of angle pi/2 around the z-axis of the qubit n circuit4.draw(output='mpl') statevect_sim(circuit4) simulator.run(circuit4).result().get_statevector(circuit4).draw(output = "bloch") circuit5=QuantumCircuit(1,0) circuit5.h(0) #the state is in |+> circuit5.t(0) #t(n) gate is a single-qubit gate rotation of angle pi/4 around the z-axis of the qubit n circuit5.draw(output='mpl') statevect_sim(circuit5) simulator.run(circuit5).result().get_statevector(circuit5).draw(output = "bloch") # Create quantum circuit with two quantum registers and two classical registers circuit_bell = QuantumCircuit(2, 2) # Create Bell state following the expression above circuit_bell.h(0) circuit_bell.cx(0,1) statevect_sim(circuit_bell) # Visualize the circuit circuit_bell.draw(output = 'mpl') circuit=QuantumCircuit(3) circuit.x(0) circuit.h(0) circuit.cx(0,1) circuit.cx(1,2) statevect_sim(circuit) circuit.draw('mpl') circuit=QuantumCircuit(2) circuit.x(0) circuit.h(0) circuit.x(1) circuit.cx(0,1) circuit.draw('mpl') circuit.swap(0,1) #qiskit visualization of qubits is reversed statevect_sim(circuit) #from qiskit.visualization import plot_state_city, plot_state_hinton, plot_state_qsphere, plot_histogram state2=simulator.run(circuit2).result().get_statevector(circuit2) state2.draw(output='latex') plot_state_city(state2) #Plot two 3d bar graphs (two dimensional) of the real and imaginary part of the density matrix rho plot_state_hinton(state2) #seaborn package required plot_state_qsphere(state2) state=simulator.run(circuit).result().get_statevector(circuit) state.draw('latex') plot_state_city(state) plot_state_hinton(state) plot_state_qsphere(state) state_bell=simulator.run(circuit_bell).result().get_statevector(circuit_bell) state_bell.draw('latex') plot_state_city(state_bell) plot_state_hinton(state_bell) plot_state_qsphere(state_bell) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') #Unitary Simulator is a simulator provided by Qiskit that calculates and returns the unitary matrix that represents the Quantum Circuit # Create job and execute job = backend.run(circuit_bell) result = job.result() # Show the results print(result.get_unitary(circuit_bell, decimals=3)) # Initialize quantum and classical registers qr = QuantumRegister(2) cr = ClassicalRegister(2) #classical registers are needed to store the results of measurements (if we use the command measure(qr,cr)) # Build quantum circuit circuit_qasm = QuantumCircuit(qr, cr) #Create Bell state circuit_qasm.h(0) circuit_qasm.cx(0,1) # Measure qubits circuit_qasm.measure(qr, cr) #circuit_qasm.measure_all() memeasures all qubits, creates a new register to store the measurements and adds a barrier before the measurements circuit_qasm.draw(output = 'mpl') backend = Aer.get_backend("qasm_simulator") shots = 1024 #1024 is the standard number of shots job = execute(circuit_qasm, backend, shots = shots) result = job.result() counts = result.get_counts() plot_histogram(counts) qr=QuantumRegister(2) cr=ClassicalRegister(2) circ_bell=QuantumCircuit(qr,cr) circ_bell.x(0) circ_bell.h(0) circ_bell.cx(0,1) circ_bell.measure(qr,cr) circ_bell.draw('mpl') job_bell=execute(circ_bell,backend,shots=1024) result_bell=job_bell.result() counts_bell=result_bell.get_counts() plot_histogram(counts_bell) #Import the random circuit class from qiskit.circuit.random import random_circuit #Create two random circuits qc1 = random_circuit(2,2) #2 qubits, 2 layers of gates (in this case one layer: two one-qubit gate or one two-qubits gate) qc2 = random_circuit(2,4) #Concatenate the two random circuits qc = qc1.compose(qc2) #Draw the circuit qc.draw('mpl') #Define function to print circuit properties: def print_circuit_props(qc): width = qc.width() #number of gates in the layer with the most gates ("control" operation is counted as a gate (Ex. cx(0,1) width=2, one gate on qubit 0 and one on qubit 1), #also the idenity (do nothing) in the layer with the most gates is counted as one gate, see the next example) depth = qc.depth() #number of layers in witch we can partition the circuit num_operators = qc.count_ops() #gives the list of operations with their number of applications circuit_size = qc.size() #number of gates of the circuit print('Width = ',width) print('Depth = ', depth) print('Circuit size = ',circuit_size) print('Number of operators = ', num_operators) #Pass our quantum circuit to print out the circuit properties print_circuit_props(qc) qc = QuantumCircuit(3) qc.cx(0,1) print_circuit_props(qc) qc.draw('mpl') qc = QuantumCircuit(3) qc.ccx(0,1,2) #Print out the circuit properties print_circuit_props(qc) qc.draw('mpl') qc.decompose().draw('mpl') #Print out the circuit properties print_circuit_props(qc.decompose()) #Create a custom two-qubit composite gate #Create the quantum register qr = QuantumRegister(2, name='qr_c') #name parameter gives a name to qubits #Generate quantum circuit which will make up the composite gate comp_qc = QuantumCircuit(qr, name='my-composite') #my-composite is the name of the circuit #Add any gates you wish to your composite gate comp_qc.h(0) comp_qc.cx(0, 1) #Create the composite instructions by converting the QuantumCircuit to a list of Instructions composite_inst = comp_qc.to_instruction() #Draw the circuit which will represent the composite gate comp_qc.draw('mpl') #Create another 3-qubit circuit qr2 = QuantumRegister(3, 'qr') #Create a quantum circuit using the quantum register qc = QuantumCircuit(qr2) #Add any arbitrary gates that would represent the function of the composite gate qc.h(0) qc.cx(0,1) qc.cx(0,2) #Draw the composite circuit qc.draw('mpl') #Append your composite gate to the specified qubits. qc.append(composite_inst, [qr2[0], qr2[1]]) #Draw the complete circuit qc.draw('mpl') qr=QuantumRegister(2,'qr') circ=QuantumCircuit(qr,name='bell_minus') circ.x(0) circ.h(0) circ.cx(0,1) bell_minus = circ.to_instruction() circ.draw('mpl') qr_new=QuantumRegister(2,'qr_new') circ1=QuantumCircuit(qr_new) circ1.append(bell_minus, [qr_new[0], qr_new[1]]) circ1.draw('mpl') theta = Parameter('θ') n = 5 qc = QuantumCircuit(5, 1) qc.h(0) for i in range(n-1): qc.cx(i, i+1) qc.barrier() qc.rz(theta, range(5)) #theta is the angle of rotation range(5) is a way to apply rz to qubits from 0 to 4 qc.barrier() for i in reversed(range(n-1)): qc.cx(i, i+1) qc.h(0) qc.measure(0, 0) qc.draw('mpl') theta_range = np.linspace(0, 2 * np.pi, 128) #returns a list of 128 values equispaced in[0, 2pi] circuits = [qc.bind_parameters({theta: theta_val}) for theta_val in theta_range] #circuits is a list in whitch each element is the qc circuit with the parameter substituted by a value of theta_range #Ex. circuit[0] = qc with theta=0 circuit[-1] = qc with theta=2pi circuits[-1].draw('mpl') from qiskit import BasicAer, transpile backend = BasicAer.get_backend('qasm_simulator') job = backend.run(transpile(circuits, backend)) #we are running all the circuits contained in circuits list #transpile(circ,syst) optimizes the circuit for the system #Transpilation is the process of rewriting a given input circuit to match the topology of a specific quantum device, # and/or to optimize the circuit for execution on present day noisy quantum systems. #Most circuits must undergo a series of transformations that make them compatible with a given target device, # and optimize them to reduce the effects of noise on the resulting outcomes. # Rewriting quantum circuits to match hardware constraints and optimizing for performance can be far from trivial. # The flow of logic in the rewriting tool chain need not be linear, and can often have iterative sub-loops, conditional branches, and other complex behaviors. #https://docs.quantum.ibm.com/api/qiskit/transpiler counts = job.result().get_counts() plot_histogram(counts) #this are the counts of measurement of the first qubit of all the elements of circuits list job_zero = backend.run(transpile(circuits[0], backend)) #theta = 0 counts_zero = job_zero.result().get_counts() plot_histogram(counts_zero) job_20 = backend.run(transpile(circuits[20], backend)) #theta = 0.9894780011306435 counts_20 = job_20.result().get_counts() plot_histogram(counts_20) import matplotlib.pyplot as plt fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111) #to create subplot of the figure fig #The argument (111) is a shorthand for a subplot grid specification. In this case: #The first digit represents the number of rows in the grid. #The second digit represents the number of columns in the grid. #The third digit represents the index of the subplot. ax.plot(theta_range, list(map(lambda c: c.get('0', 0), counts)), '.-', label='0') ax.plot(theta_range, list(map(lambda c: c.get('1', 0), counts)), '.-', label='1') #lambda c:c.get('0',0), c is the input of the function, c.get('0',0) returns the value associated to the key '0', the other 0 is the default value #The use of map() and lambda functions is one way to apply a function to each element of an iterable #so map(lambda c: c.get('0', 0), counts) returns the number of '0' in each element of counts ax.set_xticks([i * np.pi / 2 for i in range(5)]) ax.set_xticklabels(['0', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$'], fontsize=14) ax.set_xlabel('θ', fontsize=14) ax.set_ylabel('Counts', fontsize=14) ax.legend(fontsize=14) p = Parameter('p') qc = QuantumCircuit(3, name='oracle') qc.rz(p, 0) qc.cx(0, 1) qc.rz(p, 1) qc.cx(1, 2) qc.rz(p, 2) theta = Parameter('theta') phi = Parameter('phi') gamma = Parameter('gamma') qr = QuantumRegister(9) larger_qc = QuantumCircuit(qr) larger_qc.append(qc.to_instruction({p: theta}), qr[0:3]) larger_qc.append(qc.to_instruction({p: phi}), qr[3:6]) larger_qc.append(qc.to_instruction({p: gamma}), qr[6:9]) print(larger_qc.draw()) print(larger_qc.decompose().draw()) # Will execute the circuit on the state vector (sv) simulator # Returns state vector results, circuit diagram, and Bloch sphere from qiskit import Aer, execute from qiskit.tools.jupyter import * from qiskit.visualization import * def execute_circuit_sv(quantum_circuit): #Create a state vector simulator statevector_simulator = Aer.get_backend('statevector_simulator') #Execute the circuit on the simulator result = execute(quantum_circuit, statevector_simulator).result() #Assign state vector results statevector_results = result.get_statevector(quantum_circuit) #Draw the circuit diagram circuit_diagram = quantum_circuit.draw('mpl') #Draw the Bloch sphere result q_sphere = plot_state_qsphere(statevector_results) #Return the results, circuit diagram, and Bloch sphere return statevector_results, circuit_diagram, q_sphere #H-gate #Create the single qubit circuit qc = QuantumCircuit(1) #Add an H gate to the qubit qc.h(0) #Execute the circuit and capture all the results result, img, qsphere = execute_circuit_sv(qc) qsphere #U3-gate from math import pi #Create a single qubit circuit qc = QuantumCircuit(1) #Add a U3 gate and rotate all parameters by pi/2, and apply it to the qubit qc.u(pi/2, pi/2, pi/2, 0) #U3(theta, phi, lambda) executes a rotation of theta around x-axis, of phi around z-axis and pf lambda around y-axis #Execute the circuit and capture all the results result, img, qsphere = execute_circuit_sv(qc) qsphere import qiskit_ibm_provider # Save you credential on disc #IBMProvider.save_account("Your token", overwrite= True) from qiskit_ibm_provider import IBMProvider provider = IBMProvider() from qiskit_ibm_provider import IBMProvider provider = IBMProvider(token=<INSERT_IBM_QUANTUM_TOKEN>) print(provider.backends()) # We use IBMQ ibm_brisbane device_backend = provider.get_backend('ibm_brisbane') # Display device configuration. config = device_backend.configuration() print("This backend is called {} (version {}) with {} qubit{}. " "\nThe basis gates supported on this device are {}." "".format(config.backend_name, config.backend_version, config.n_qubits, '' if config.n_qubits == 1 else 's', config.basis_gates)) #from qiskit.visualization import plot_coupling_map #qubit_coordinates = [[0, 0], [0, 1], [0, 2], [1, 1], [2, 1]] #plot_coupling_map(config.n_qubits, qubit_coordinates, config.coupling_map) props = device_backend.properties() def display_qubit_info(qubit, properties): """Print a string describing some of reported properties of the given qubit.""" # Conversion factors from standard SI units us = 1e6 ns = 1e9 print("Qubit {0} has a \n" " - T1 time of {1:.2f} microseconds\n" " - T2 time of {2:.2f} microseconds\n" " - U2 gate error of {3:.2e}\n" " - Readout error of {4:.2e} ".format( qubit, properties.t1(qubit) * us, properties.t2(qubit) * us, properties.gate_error('sx', qubit), properties.readout_error(qubit))) display_qubit_info(0, props) from qiskit import QuantumCircuit from qiskit.compiler import transpile from qiskit.transpiler import PassManager from qiskit.transpiler import CouplingMap, Layout from qiskit.transpiler.passes import BasicSwap, LookaheadSwap, StochasticSwap coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] circuit = QuantumCircuit(7) circuit.h(3) circuit.cx(0, 6) circuit.cx(6, 0) circuit.cx(0, 1) circuit.cx(3, 1) circuit.cx(3, 0) coupling_map = CouplingMap(couplinglist=coupling) bs = BasicSwap(coupling_map=coupling_map) pass_manager = PassManager(bs) basic_circ = pass_manager.run(circuit) ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(circuit) ss = StochasticSwap(coupling_map=coupling_map) pass_manager = PassManager(ss) stochastic_circ = pass_manager.run(circuit) circuit.draw(output='mpl') lookahead_circ.draw(output='mpl') import math from qiskit.providers.fake_provider import FakeTokyo backend = FakeTokyo() optimized_0 = transpile(circuit, backend=backend, seed_transpiler=11, optimization_level=0) optimized_0.draw('mpl') qc = random_circuit(3,2) qc.measure_all() # Select a backend to run the circuit backend = provider.get_backend('ibmq_qasm_simulator') result = backend.run(transpile(qc, backend), shots=1000).result() counts = result.get_counts(qc) print(counts) # Plot the result plot_histogram(counts, color='green', title="New Histogram") ## Insert your code here from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram #INSERT CODE HERE ## CHECK THE RESULT from qiskit.visualization import plot_bloch_multivector, plot_histogram, array_to_latex display(array_to_latex(Statevector.from_instruction(qc), prefix="\\text{Statevector} = ")) qc = QuantumCircuit(2,2) # this time, we not only want two qubits, but also two classical bits for the measurement #INSERT CODE HERE ## WRITE YOUR CODE HERE: # # # # backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts counts ## WRITE YOUR CODE/calculation HERE: # # # # # inverse circuit #BONUS VISUALIZATION gate_colours = { "displaycolor": { "x": [ # gate name "#da1e28", # box color (red) "#FFFFFF" # box text color (white) ], "h": [ # gate name "#da1e28", # box color (red) "#FFFFFF" # box text color (white) ], "cx": [ # gate name "#da1e28", # box color (red) "#FFFFFF" # box text color (white) ], "ry": [ # gate name "#da1e28", # box color (red) "#FFFFFF" # box text color (white) ], }, } display(qci.draw('mpl',style=gate_colours)) from qiskit import QuantumCircuit import qiskit.quantum_info as qi qc_AB = QuantumCircuit(2) qc_AB.h(0) qc_AB.cx(0,1) qc_AB.draw('mpl') psi_AB = qi.Statevector.from_instruction(qc_AB) psi_AB.draw('latex', prefix='|\\psi_{AB}\\rangle = ') rho_AB = qi.DensityMatrix.from_instruction(qc_AB) rho_AB.draw('latex', prefix='\\rho_{AB} = ') from qiskit.visualization import plot_state_city plot_state_city(rho_AB.data, title='Density Matrix') import numpy as np rho_p = qi.DensityMatrix.from_label('+') display(rho_p.draw('latex', prefix='\\rho_p = ')) gamma_p = rho_p.purity() print("State purity: ", np.round(np.real(gamma_p),3)) rho_m = 1/2*(qi.DensityMatrix.from_label('0') + qi.DensityMatrix.from_label('1')) display(rho_m.draw('latex', prefix='\\rho_m = ')) gamma_m = rho_m.purity() print("State purity: ", np.round(np.real(gamma_m),3)) rho_B = qi.partial_trace(rho_AB,[0]) rho_A = qi.partial_trace(rho_AB,[1]) display(rho_B.draw('latex', prefix=" \\rho_{B} = "), rho_A.draw('latex', prefix=" \\rho_{A} = ")) qc_CD = QuantumCircuit(2) qc_CD.ry(np.pi/3,0) qc_CD.h(1) qc_CD.cx(0,1) qc_CD.cx(1,0) qc_CD.draw("mpl", style="iqx") from qiskit import * from qiskit.circuit import QuantumCircuit from qiskit.quantum_info import partial_trace, entropy import numpy as np import math nQubits = # <--- insert your code here nClassicBits = 4 circuit.draw(output='mpl') # Run the quantum circuit on a statevector simulator backend backend = # <--- insert your code here outputstate = # <--- insert your code here print(outputstate) list_check = [5,7,8,10] for ind in list_check: print(outputstate[ind]) def check_vn_entropy(vn_entropy): if vn_entropy != 0.: print("The state is a mixed state") ## insert your code here --> check_vn_entropy(my_entropy)
https://github.com/EdoardoZappia/Qiskit-Primitive
EdoardoZappia
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram from qiskit.quantum_info import Statevector import numpy as np import matplotlib backend = BasicAer.get_backend('qasm_simulator') shots = 1024 style = {'backgroundcolor': 'lightyellow'} # Style of the circuits qreg1 = QuantumRegister(2) # The quantum register of the qubits, in this case 2 qubits register1 = ClassicalRegister(1) qc = QuantumCircuit(qreg1, register1) #qc.x(0) qc.x(1) qc.barrier() qc.draw(output='mpl', style=style) qc.h(0) qc.h(1) qc.barrier() qc.draw(output='mpl', style=style) qc.cx(0,1) qc.barrier() qc.draw(output='mpl', style=style) qc.h(0) qc.draw(output='mpl', style=style) qc.measure(qreg1[0],register1) qc.draw(output='mpl', style=style) results = execute(qc, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) def oracleBalance1(qcir): qcir.cx(0,1) qcir.barrier() return qcir def oracleBalance2(qcir): qcir.x(1) qcir.cx(0,1) qcir.barrier() return qcir def oracleConstant1(qcir): qcir.x(1) qcir.barrier() return qcir def oracleConstant2(qcir): qcir.barrier() return qcir def deutsch(oracle): Qreg = QuantumRegister(2) Creg = ClassicalRegister(1) qcirc = QuantumCircuit(Qreg, Creg) qcirc.x(1) qcirc.h(0) qcirc.h(1) qcirc.barrier() qcirc = oracle(qcirc) qcirc.h(0) qcirc.barrier() qcirc.measure(Qreg[0],Creg) return qcirc resultBalanced1 = deutsch(oracleBalance1) resultBalanced1.draw(output='mpl', style=style) resultsB1 = execute(resultBalanced1, backend=backend, shots=shots).result() answerB1 = resultsB1.get_counts() plot_histogram(answerB1) resultBalanced2 = deutsch(oracleBalance1) resultBalanced2.draw(output='mpl', style=style) resultsB2 = execute(resultBalanced2, backend=backend, shots=shots).result() answerB2 = resultsB2.get_counts() plot_histogram(answerB2) resultConstant1 = deutsch(oracleConstant1) resultConstant1.draw(output='mpl', style=style) resultsC1= execute(resultConstant1, backend=backend, shots=shots).result() answerC1 = resultsC1.get_counts() plot_histogram(answerC1) resultConstant2 = deutsch(oracleConstant2) resultConstant2.draw(output='mpl', style=style) resultsC2= execute(resultConstant2, backend=backend, shots=shots).result() answerC2 = resultsC2.get_counts() plot_histogram(answerC2)
https://github.com/EdoardoZappia/Qiskit-Primitive
EdoardoZappia
!pip install qiskit==0.42.0 import qiskit.tools.jupyter #%qiskit_version_table #%qiskit_copyright !pip install pylatexenc !pip install qcircuit !pip install pdflatex from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute import numpy as np import qiskit.quantum_info as qi import qiskit from qiskit import Aer from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.visualization.circuit import * from qiskit import transpile, assemble import matplotlib.pyplot as plt from qiskit.circuit import Parameter # Supress warnings import warnings warnings.filterwarnings("ignore") # Create a quantum circuit instance with one qubit circuit = QuantumCircuit(2,0) # Apply Hadamard Gate circuit.h(0) # Draw quantum circuit circuit.draw(output = "mpl") # Print all the available quantum simulators Aer.backends() # Load statevector simulator simulator = Aer.get_backend("statevector_simulator") # Create quatum job to execute job = simulator.run(circuit) # Execute the job result = job.result() state_ex=result.get_statevector(circuit) #if possible mantains phases as fractions state = result.get_statevector(circuit, decimals = 4) #using parameter decimals, approximates the fractions state_ex.draw(output='latex') state.draw(output='latex') state.draw(output = "bloch") #to do statevector simulation more easily def statevect_sim(circuit: QuantumCircuit): simulator=Aer.get_backend("statevector_simulator") state=simulator.run(circuit).result().get_statevector(circuit) print(state) return state.draw('latex') # Apply RX / RY / S / T gates circuit2=QuantumCircuit(1,0) circuit2.rx(np.pi/2,0) #rx(theta, n) gate is a single-qubit gate rotation of angle theta around the x-axis of the qubit n circuit2.draw(output='mpl') statevect_sim(circuit2) simulator.run(circuit2).result().get_statevector(circuit2).draw(output = "bloch") circuit3=QuantumCircuit(1,0) circuit3.ry(np.pi*3/2,0) #ry(theta, n) gate is a single-qubit gate rotation of angle theta around the y-axis of the qubit n circuit3.draw(output='mpl') #create the job job3=simulator.run(circuit3) #execute the job result3=job3.result() #create the state state3_ex=result3.get_statevector(circuit3) state3=result3.get_statevector(circuit3,decimals=4) state3_ex.draw(output='latex') state3.draw(output='latex') #or we can just use statevect_sim(circuit3) state3.draw(output='bloch') circuit4=QuantumCircuit(1,0) circuit4.rx(np.pi/4,0) circuit4.s(0) #s(n) gate is a single-qubit gate rotation of angle pi/2 around the z-axis of the qubit n circuit4.draw(output='mpl') statevect_sim(circuit4) simulator.run(circuit4).result().get_statevector(circuit4).draw(output = "bloch") circuit5=QuantumCircuit(1,0) circuit5.h(0) #the state is in |+> circuit5.t(0) #t(n) gate is a single-qubit gate rotation of angle pi/4 around the z-axis of the qubit n circuit5.draw(output='mpl') statevect_sim(circuit5) simulator.run(circuit5).result().get_statevector(circuit5).draw(output = "bloch") # Create quantum circuit with two quantum registers and two classical registers circuit_bell = QuantumCircuit(2, 0) # Create Bell state following the expression above circuit_bell.h(0) circuit_bell.cx(0,1) statevect_sim(circuit_bell) # Visualize the circuit circuit_bell.draw(output = 'mpl') circuit=QuantumCircuit(3) circuit.x(0) circuit.h(0) circuit.cx(0,1) circuit.cx(1,2) statevect_sim(circuit) circuit.draw('mpl') circuit=QuantumCircuit(2) circuit.x(0) circuit.h(0) circuit.x(1) circuit.cx(0,1) circuit.draw('mpl') circuit.swap(0,1) #qiskit visualization of qubits is reversed statevect_sim(circuit) #from qiskit.visualization import plot_state_city, plot_state_hinton, plot_state_qsphere, plot_histogram state2=simulator.run(circuit2).result().get_statevector(circuit2) state2.draw(output='latex') plot_state_city(state2) #Plot two 3d bar graphs (two dimensional) of the real and imaginary part of the density matrix rho plot_state_hinton(state2) #seaborn package required plot_state_qsphere(state2) state=simulator.run(circuit).result().get_statevector(circuit) state.draw('latex') plot_state_city(state) plot_state_hinton(state) plot_state_qsphere(state) state_bell=simulator.run(circuit_bell).result().get_statevector(circuit_bell) state_bell.draw('latex') plot_state_city(state_bell) plot_state_hinton(state_bell) plot_state_qsphere(state_bell) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') #Unitary Simulator is a simulator provided by Qiskit that calculates and returns the unitary matrix that represents the Quantum Circuit # Create job and execute job = backend.run(circuit_bell) result = job.result() # Show the results print(result.get_unitary(circuit_bell, decimals=3)) # Initialize quantum and classical registers qr = QuantumRegister(2) cr = ClassicalRegister(2) #classical registers are needed to store the results of measurements (if we use the command measure(qr,cr)) # Build quantum circuit circuit_qasm = QuantumCircuit(qr, cr) #Create Bell state circuit_qasm.h(0) circuit_qasm.cx(0,1) # Measure qubits circuit_qasm.measure(qr, cr) #circuit_qasm.measure_all() measures all qubits, creates a new register to store the measurements and adds a barrier before the measurements circuit_qasm.draw(output = 'mpl') backend = Aer.get_backend("qasm_simulator") shots = 1024 #1024 is the standard number of shots job = execute(circuit_qasm, backend, shots = shots) result = job.result() counts = result.get_counts() plot_histogram(counts) qr=QuantumRegister(2) cr=ClassicalRegister(2) circ_bell=QuantumCircuit(qr,cr) circ_bell.x(0) circ_bell.h(0) circ_bell.cx(0,1) circ_bell.measure(qr,cr) circ_bell.draw('mpl') job_bell=execute(circ_bell,backend,shots=1024) result_bell=job_bell.result() counts_bell=result_bell.get_counts() plot_histogram(counts_bell) #Import the random circuit class from qiskit.circuit.random import random_circuit #Create two random circuits qc1 = random_circuit(2,2) #2 qubits, 2 layers of gates (in this case one layer: two one-qubit gate or one two-qubits gate) qc2 = random_circuit(2,4) #Concatenate the two random circuits qc = qc1.compose(qc2) #Draw the circuit qc.draw('mpl') #Define function to print circuit properties: def print_circuit_props(qc): width = qc.width() #number of gates in the layer with the most gates ("control" operation is counted as a gate (Ex. cx(0,1) width=2, one gate on qubit 0 and one on qubit 1), #also the idenity (do nothing) in the layer with the most gates is counted as one gate, see the next example) depth = qc.depth() #number of layers in witch we can partition the circuit num_operators = qc.count_ops() #gives the list of operations with their number of applications circuit_size = qc.size() #number of gates of the circuit print('Width = ',width) print('Depth = ', depth) print('Circuit size = ',circuit_size) print('Number of operators = ', num_operators) #Pass our quantum circuit to print out the circuit properties print_circuit_props(qc) qc = QuantumCircuit(3) qc.cx(0,1) print_circuit_props(qc) qc.draw('mpl') qc = QuantumCircuit(3) qc.ccx(0,1,2) #Print out the circuit properties print_circuit_props(qc) qc.draw('mpl') qc.decompose().draw('mpl') #Print out the circuit properties print_circuit_props(qc.decompose()) #Create a custom two-qubit composite gate #Create the quantum register qr = QuantumRegister(2, name='qr_c') #name parameter gives a name to qubits #Generate quantum circuit which will make up the composite gate comp_qc = QuantumCircuit(qr, name='my-composite') #my-composite is the name of the circuit #Add any gates you wish to your composite gate comp_qc.h(0) comp_qc.cx(0, 1) #Create the composite instructions by converting the QuantumCircuit to a list of Instructions composite_inst = comp_qc.to_instruction() #Draw the circuit which will represent the composite gate comp_qc.draw('mpl') #Create another 3-qubit circuit qr2 = QuantumRegister(3, 'qr') #Create a quantum circuit using the quantum register qc = QuantumCircuit(qr2) #Add any arbitrary gates that would represent the function of the composite gate qc.h(0) qc.cx(0,1) qc.cx(0,2) #Draw the composite circuit qc.draw('mpl') #Append your composite gate to the specified qubits. qc.append(composite_inst, [qr2[0], qr2[1]]) #Draw the complete circuit qc.draw('mpl') qr=QuantumRegister(2,'qr') circ=QuantumCircuit(qr,name='bell_minus') circ.x(0) circ.h(0) circ.cx(0,1) bell_minus = circ.to_instruction() circ.draw('mpl') qr_new=QuantumRegister(2,'qr_new') circ1=QuantumCircuit(qr_new) circ1.append(bell_minus, [qr_new[0], qr_new[1]]) circ1.draw('mpl') theta = Parameter('θ') n = 5 qc = QuantumCircuit(5, 1) qc.h(0) for i in range(n-1): qc.cx(i, i+1) qc.barrier() qc.rz(theta, range(5)) #theta is the angle of rotation range(5) is a way to apply rz to qubits from 0 to 4 qc.barrier() for i in reversed(range(n-1)): qc.cx(i, i+1) qc.h(0) qc.measure(0, 0) qc.draw('mpl') theta_range = np.linspace(0, 2 * np.pi, 128) #returns a list of 128 values equispaced in[0, 2pi] circuits = [qc.bind_parameters({theta: theta_val}) for theta_val in theta_range] #circuits is a list in which each element is the qc circuit with the parameter substituted by a value of theta_range #Ex. circuit[0] = qc with theta=0 circuit[-1] = qc with theta=2pi circuits[-1].draw('mpl') from qiskit import BasicAer, transpile backend = BasicAer.get_backend('qasm_simulator') job = backend.run(transpile(circuits, backend)) #we are running all the circuits contained in circuits list #transpile(circ,syst) optimizes the circuit for the system #Transpilation is the process of rewriting a given input circuit to match the topology of a specific quantum device, # and/or to optimize the circuit for execution on present day noisy quantum systems. #Most circuits must undergo a series of transformations that make them compatible with a given target device, # and optimize them to reduce the effects of noise on the resulting outcomes. # Rewriting quantum circuits to match hardware constraints and optimizing for performance can be far from trivial. # The flow of logic in the rewriting tool chain need not be linear, and can often have iterative sub-loops, conditional branches, and other complex behaviors. #https://docs.quantum.ibm.com/api/qiskit/transpiler counts = job.result().get_counts() plot_histogram(counts) #this are the counts of measurement of the first qubit of all the elements of circuits list job_zero = backend.run(transpile(circuits[0], backend)) #theta = 0 counts_zero = job_zero.result().get_counts() plot_histogram(counts_zero) job_20 = backend.run(transpile(circuits[20], backend)) #theta = 0.9894780011306435 counts_20 = job_20.result().get_counts() plot_histogram(counts_20) import matplotlib.pyplot as plt fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111) #to create subplot of the figure fig #The argument (111) is a shorthand for a subplot grid specification. In this case: #The first digit represents the number of rows in the grid. #The second digit represents the number of columns in the grid. #The third digit represents the index of the subplot. ax.plot(theta_range, list(map(lambda c: c.get('0', 0), counts)), '.-', label='0') ax.plot(theta_range, list(map(lambda c: c.get('1', 0), counts)), '.-', label='1') #lambda c:c.get('0',0), c is the input of the function, c.get('0',0) returns the value associated to the key '0', the other 0 is the default value #The use of map() and lambda functions is one way to apply a function to each element of an iterable #so map(lambda c: c.get('0', 0), counts) returns the number of '0' in each element of counts ax.set_xticks([i * np.pi / 2 for i in range(5)]) ax.set_xticklabels(['0', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$'], fontsize=14) ax.set_xlabel('θ', fontsize=14) ax.set_ylabel('Counts', fontsize=14) ax.legend(fontsize=14) p = Parameter('p') qc = QuantumCircuit(3, name='oracle') qc.rz(p, 0) qc.cx(0, 1) qc.rz(p, 1) qc.cx(1, 2) qc.rz(p, 2) theta = Parameter('theta') phi = Parameter('phi') gamma = Parameter('gamma') qr = QuantumRegister(9) larger_qc = QuantumCircuit(qr) larger_qc.append(qc.to_instruction({p: theta}), qr[0:3]) larger_qc.append(qc.to_instruction({p: phi}), qr[3:6]) larger_qc.append(qc.to_instruction({p: gamma}), qr[6:9]) print(larger_qc.draw()) print(larger_qc.decompose().draw()) # Will execute the circuit on the state vector (sv) simulator # Returns state vector results, circuit diagram, and Bloch sphere from qiskit import Aer, execute from qiskit.tools.jupyter import * from qiskit.visualization import * def execute_circuit_sv(quantum_circuit): #Create a state vector simulator statevector_simulator = Aer.get_backend('statevector_simulator') #Execute the circuit on the simulator result = execute(quantum_circuit, statevector_simulator).result() #Assign state vector results statevector_results = result.get_statevector(quantum_circuit) #Draw the circuit diagram circuit_diagram = quantum_circuit.draw('mpl') #Draw the Bloch sphere result q_sphere = plot_state_qsphere(statevector_results) #Return the results, circuit diagram, and Bloch sphere return statevector_results, circuit_diagram, q_sphere #H-gate #Create the single qubit circuit qc = QuantumCircuit(1) #Add an H gate to the qubit qc.h(0) #Execute the circuit and capture all the results result, img, qsphere = execute_circuit_sv(qc) qsphere #U3-gate from math import pi #Create a single qubit circuit qc = QuantumCircuit(1) #Add a U3 gate and rotate all parameters by pi/2, and apply it to the qubit qc.u(pi/2, pi/2, pi/2, 0) #U3(theta, phi, lambda) executes a rotation of theta around x-axis, of phi around z-axis and pf lambda around y-axis #Execute the circuit and capture all the results result, img, qsphere = execute_circuit_sv(qc) qsphere import qiskit_ibm_provider # Save you credential on disc #IBMProvider.save_account("Your token", overwrite= True) from qiskit_ibm_provider import IBMProvider provider = IBMProvider() from qiskit_ibm_provider import IBMProvider provider = IBMProvider(token=<INSERT_IBM_QUANTUM_TOKEN>) print(provider.backends()) # We use IBMQ ibm_brisbane device_backend = provider.get_backend('ibm_brisbane') # Display device configuration. config = device_backend.configuration() print("This backend is called {} (version {}) with {} qubit{}. " "\nThe basis gates supported on this device are {}." "".format(config.backend_name, config.backend_version, config.n_qubits, '' if config.n_qubits == 1 else 's', config.basis_gates)) #from qiskit.visualization import plot_coupling_map #qubit_coordinates = [[0, 0], [0, 1], [0, 2], [1, 1], [2, 1]] #plot_coupling_map(config.n_qubits, qubit_coordinates, config.coupling_map) props = device_backend.properties() def display_qubit_info(qubit, properties): """Print a string describing some of reported properties of the given qubit.""" # Conversion factors from standard SI units us = 1e6 ns = 1e9 print("Qubit {0} has a \n" " - T1 time of {1:.2f} microseconds\n" " - T2 time of {2:.2f} microseconds\n" " - U2 gate error of {3:.2e}\n" " - Readout error of {4:.2e} ".format( qubit, properties.t1(qubit) * us, properties.t2(qubit) * us, properties.gate_error('sx', qubit), properties.readout_error(qubit))) display_qubit_info(0, props) from qiskit import QuantumCircuit from qiskit.compiler import transpile from qiskit.transpiler import PassManager from qiskit.transpiler import CouplingMap, Layout from qiskit.transpiler.passes import BasicSwap, LookaheadSwap, StochasticSwap coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]] circuit = QuantumCircuit(7) circuit.h(3) circuit.cx(0, 6) circuit.cx(6, 0) circuit.cx(0, 1) circuit.cx(3, 1) circuit.cx(3, 0) coupling_map = CouplingMap(couplinglist=coupling) bs = BasicSwap(coupling_map=coupling_map) pass_manager = PassManager(bs) basic_circ = pass_manager.run(circuit) ls = LookaheadSwap(coupling_map=coupling_map) pass_manager = PassManager(ls) lookahead_circ = pass_manager.run(circuit) ss = StochasticSwap(coupling_map=coupling_map) pass_manager = PassManager(ss) stochastic_circ = pass_manager.run(circuit) circuit.draw(output='mpl') lookahead_circ.draw(output='mpl') import math from qiskit.providers.fake_provider import FakeTokyo backend = FakeTokyo() optimized_0 = transpile(circuit, backend=backend, seed_transpiler=11, optimization_level=0) optimized_0.draw('mpl') qc = random_circuit(3,2) qc.measure_all() # Select a backend to run the circuit backend = provider.get_backend('ibmq_qasm_simulator') result = backend.run(transpile(qc, backend), shots=1000).result() counts = result.get_counts(qc) print(counts) # Plot the result plot_histogram(counts, color='green', title="New Histogram") ## Insert your code here from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram #INSERT CODE HERE ## CHECK THE RESULT from qiskit.visualization import plot_bloch_multivector, plot_histogram, array_to_latex display(array_to_latex(Statevector.from_instruction(qc), prefix="\\text{Statevector} = ")) qc = QuantumCircuit(2,2) # this time, we not only want two qubits, but also two classical bits for the measurement #INSERT CODE HERE ## WRITE YOUR CODE HERE: # # # # backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend counts = execute(qc, backend, shots = 1000).result().get_counts() # we run the simulation and get the counts counts ## WRITE YOUR CODE/calculation HERE: # # # # # inverse circuit #BONUS VISUALIZATION gate_colours = { "displaycolor": { "x": [ # gate name "#da1e28", # box color (red) "#FFFFFF" # box text color (white) ], "h": [ # gate name "#da1e28", # box color (red) "#FFFFFF" # box text color (white) ], "cx": [ # gate name "#da1e28", # box color (red) "#FFFFFF" # box text color (white) ], "ry": [ # gate name "#da1e28", # box color (red) "#FFFFFF" # box text color (white) ], }, } display(qci.draw('mpl',style=gate_colours)) from qiskit import QuantumCircuit import qiskit.quantum_info as qi qc_AB = QuantumCircuit(2) qc_AB.h(0) qc_AB.cx(0,1) qc_AB.draw('mpl') psi_AB = qi.Statevector.from_instruction(qc_AB) psi_AB.draw('latex', prefix='|\\psi_{AB}\\rangle = ') rho_AB = qi.DensityMatrix.from_instruction(qc_AB) rho_AB.draw('latex', prefix='\\rho_{AB} = ') from qiskit.visualization import plot_state_city plot_state_city(rho_AB.data, title='Density Matrix') import numpy as np rho_p = qi.DensityMatrix.from_label('+') display(rho_p.draw('latex', prefix='\\rho_p = ')) gamma_p = rho_p.purity() print("State purity: ", np.round(np.real(gamma_p),3)) rho_m = 1/2*(qi.DensityMatrix.from_label('0') + qi.DensityMatrix.from_label('1')) display(rho_m.draw('latex', prefix='\\rho_m = ')) gamma_m = rho_m.purity() print("State purity: ", np.round(np.real(gamma_m),3)) rho_B = qi.partial_trace(rho_AB,[0]) rho_A = qi.partial_trace(rho_AB,[1]) display(rho_B.draw('latex', prefix=" \\rho_{B} = "), rho_A.draw('latex', prefix=" \\rho_{A} = ")) qc_CD = QuantumCircuit(2) qc_CD.ry(np.pi/3,0) qc_CD.h(1) qc_CD.cx(0,1) qc_CD.cx(1,0) qc_CD.draw("mpl", style="iqx") from qiskit import * from qiskit.circuit import QuantumCircuit from qiskit.quantum_info import partial_trace, entropy import numpy as np import math nQubits = # <--- insert your code here nClassicBits = 4 circuit.draw(output='mpl') # Run the quantum circuit on a statevector simulator backend backend = # <--- insert your code here outputstate = # <--- insert your code here print(outputstate) list_check = [5,7,8,10] for ind in list_check: print(outputstate[ind]) def check_vn_entropy(vn_entropy): if vn_entropy != 0.: print("The state is a mixed state") ## insert your code here --> check_vn_entropy(my_entropy)
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) %matplotlib inline from qiskit import IBMQ from qiskit.tools.monitor import job_monitor IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') def counts_to_prob_1d(counts): # Convert histogram counts to probability vector of size 1 x 2^n states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) # Convert binary to integer index, reversing order as consistent w qiskit convention states_x = [int(s[::-1],2) for s in states] # Create array of probability values probabilities = np.zeros(2**n) probabilities[states_x] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) circuit.x(qcoin[0]) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin,cpos,simulatorType): circuit.h(qcoin) circuit.barrier() increment_gate(circuit, qpos, qcoin) circuit.barrier() decrement_gate(circuit, qpos, qcoin) circuit.barrier() if simulatorType == 'classical': circuit.measure(qpos,cpos) def run(steps,simulatorType): # steps = number of quantum walks steps # simulatorType = 'sim', 'quantum' or 'classical' if simulatorType == 'sim': simulator = Aer.get_backend('qasm_simulator') elif simulatorType == 'quantum': simulator = provider.get_backend('ibmq_5_yorktown') elif simulatorType == 'classical': simulator = Aer.get_backend('qasm_simulator') else: simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(n,'qc') qcoin = QuantumRegister(1,'qanc') cpos = ClassicalRegister(n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) for i in range(steps): step(circuit, qpos, qcoin,cpos, simulatorType) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # # monitor job job_monitor(job) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts seed = 12 random.seed(seed) np.random.seed(seed) def plotCircleGraph(names,propabilities,color=[0,0,1]): G = nx.Graph() colorarray = [] # generate array of colors numProp = len(propabilities) for idx in range(numProp): colorarray.append(color+[0.5*propabilities[idx]]) # generate graph for idx in range(numProp-1): G.add_edge(idx, idx+1) # add last edge G.add_edge(0,numProp-1) # label nodes labels = {} for idx in range(numProp): labels[idx] = names[idx] nx.draw(G, pos=nx.circular_layout(G), node_color=colorarray, cmap=plt.cm.Blues, node_size=3000, edge_color='k', ) pos=nx.circular_layout(G) labels = nx.draw_networkx_labels(G,pos,labels,font_size=16, bbox=dict(facecolor='w', alpha=1, edgecolor='w') ) # run and plot 1D walk steps = 3 n=2 for i in range(steps+1): #run classical random walk countsClassical = run(i,'classical') propClassical = counts_to_prob_1d(countsClassical) #run quantum simulation countsSim = run(i,'sim') propSim = counts_to_prob_1d(countsSim) #run the real thing countsQuantum = run(i,'quantum') propQuantum = counts_to_prob_1d(countsQuantum) names = [] formatLabel = '{0:0'+str(n)+'b}' for idx in range(2**n): names.append('|' + formatLabel.format(idx) +'>') #plotting f, axs = plt.subplots(2,3,figsize=(13,8)) margin=0.4 f.subplots_adjust(margin, margin, 1.-margin, 1.-margin) axs[0,0].set_title('classical random walk', fontsize=14) plt.sca(axs[0,0]) plotCircleGraph(names,propClassical,color=[1,0,0]) plt.sca(axs[1,0]) plt.bar(names,propClassical,edgecolor='black', color=[1,0,0,.4], lw=2) plt.ylim(0,1) plt.xticks(rotation=45) axs[0,1].set_title('simulated quantum walk', fontsize=14) plt.sca(axs[0,1]) plotCircleGraph(names,propSim,color=[0.3,1,0]) plt.sca(axs[1,1]) plt.bar(names,propSim,edgecolor='black', color=[0.3,1,0,.4], lw=2) plt.ylim(0,1) plt.xticks(rotation=45) axs[0,2].set_title('IBM quantum walk', fontsize=14) plt.sca(axs[0,2]) plotCircleGraph(names,propQuantum,color=[0.1,0.3,1]) plt.sca(axs[1,2]) plt.bar(names,propQuantum,edgecolor='black', color=[0.1,0.3,1,.4], lw=2) plt.ylim(0,1) plt.xticks(rotation=45) plt.tight_layout() plt.show()
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit from qiskit import IBMQ from qiskit.tools.monitor import job_monitor IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') #check open servers import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) from matplotlib import cm %matplotlib inline def counts_to_prob_2d(counts): states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) n = int(len(states[0])/2) def sep_xy(states): # Separate x and y coordinates in state vector states_x = [s[:n] for s in states] states_y = [s[n:] for s in states] states_x = np.array([int(s[::-1],2) for s in states_x]) states_y = np.array([int(s[::-1],2) for s in states_y]) return states_x, states_y x,y = sep_xy(states) # Create array of probability values probabilities = np.zeros((2**n,2**n)) probabilities[x,y] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin, cpos, simulatorType): circuit.h(qcoin) circuit.barrier() # y operations increment_gate(circuit, qpos[len(qpos)//2:], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[len(qpos)//2:], qcoin) # x operations circuit.x(qcoin) increment_gate(circuit, qpos[:len(qpos)//2], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[:len(qpos)//2:], qcoin) circuit.barrier() if simulatorType == 'classical': circuit.measure(qpos,cpos) def initialize_2D(circuit, n, pos): # convert position to binary formatLabel = '{0:0'+str(n)+'b}' x = formatLabel.format(pos[0]) y = formatLabel.format(pos[1]) for i in range(len(x)): if x[i]=='1': circuit.x((n-i)-1) for j in range(len(y)): if y[j]=='1': circuit.x((2*n-j)-1) return circuit def run(steps,simulatorType): # steps = number of quantum walks steps # simulatorType = 'sim', 'quantum' or 'classical' if simulatorType == 'sim': simulator = Aer.get_backend('qasm_simulator') elif simulatorType == 'quantum': simulator = provider.get_backend('ibmq_16_melbourne') elif simulatorType == 'classical': simulator = Aer.get_backend('qasm_simulator') else: simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(2*n,'qc') qcoin = QuantumRegister(2,'qanc') cpos = ClassicalRegister(2*n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) circuit = initialize_2D(circuit, n, [round(n/2),round(n/2)]) for i in range(steps): step(circuit, qpos, qcoin, cpos, simulatorType) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # monitor job job_monitor(job) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts n=2 steps = 3 for i in range(steps+1): #run classical random walk countsClassical = run(i,'classical') propClassical = counts_to_prob_2d(countsClassical) #run quantum simulation countsSim = run(i,'sim') propSim = counts_to_prob_2d(countsSim) #run the real thing countsQuantum = run(i,'quantum') propQuantum = counts_to_prob_2d(countsQuantum) #plotting names = [] values = [] formatLabel = '{0:0'+str(n)+'b}' for idx in range(2**n): names.append('|' + formatLabel.format(idx) +'>') values.append(idx) f, axs = plt.subplots(1,3,figsize=(13,8)) margin=0.4 f.subplots_adjust(margin, margin, 1.-margin, 1.-margin) axs[0].set_title('classical random walk') plt.sca(axs[0]) plt.imshow(propClassical,cmap=plt.get_cmap('Reds')) plt.xticks(rotation=45) axs[0].set_xticks(values) axs[0].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[0].set_yticks(values) axs[0].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[1].set_title('simulated quantum walk') plt.sca(axs[1]) plt.imshow(propSim,cmap=plt.get_cmap('Greens')) plt.xticks(rotation=45) axs[1].set_xticks(values) axs[1].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[1].set_yticks(values) axs[1].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[2].set_title('IBM quantum walk') plt.sca(axs[2]) plt.imshow(propQuantum,cmap=plt.get_cmap('Blues')) plt.xticks(rotation=45) axs[2].set_xticks(values) axs[2].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[2].set_yticks(values) axs[2].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) plt.tight_layout() plt.show()
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
# Library for implementing XOR import qiskit import numpy as np from qiskit import( IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute, QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram, plot_state_city if __name__ == "__main__": pass def binary_it(alpha): ''' binary_it: returns a list that is indexed according to power, binaried[0] = is LSB. ''' binaried = [int(x) for x in bin(alpha)[2:]] binaried.reverse() return binaried def invert(alpha): return [ 1 - x for x in alpha] def xor_gate_v_each(circuit, a,b,r, v,c,a0): ''' xor_gate_v_each: See paper 'An Example of the Difference Between Quantum and Classical Random Walks' args: circuit -- the py object that holds the quantum circuit. a -- q. reg. for the vertex. b -- q. reg. for holding neighbor vertex. r -- q. reg. for checking valid edge. f(c, a0) -- function that returns the neighboring -- vertex of a0 using label c for the vertex label. c -- label of the edge a0 -- label of the vertex ''' #vc = v(c,a0); vc = 1 #build in the not's for the a0 check. binaried = binary_it(a0) #match binaried if len(binaried) > len(a): binaried = binaried[:len(a)] elif len(a) > len(binaried): for i in range(len(a)-len(binaried)): binaried.append(0) notMask = invert(binaried) for i in range(len(notMask)): if notMask[i]: circuit.x(a[i]); #build in the cnots for xoring b binaried = binary_it(vc) #match binaried if len(binaried) > len(a): binaried = binaried[:len(a)] elif len(a) > len(binaried): for i in range(len(a)-len(binaried)): binaried.append(0) for i in range(len(binaried)): if binaried[i]: circuit.mct(a,b[i], None, mode='noancilla') #build in the not's for the a0 return. for i in range(len(notMask)): if notMask[i]: circuit.x(a[i]); def xor_gate_f_each(circuit, a,b,r, v,c,a0): ''' xor_gate_v_each: See paper 'An Example of the Difference Between Quantum and Classical Random Walks' args: circuit -- the py object that holds the quantum circuit. a -- q. reg. for the vertex. b -- q. reg. for holding neighbor vertex. r -- q. reg. for checking valid edge. f(c, a0) -- function that returns the neighboring -- vertex of a0 using label c for the vertex label. c -- label of the edge a0 -- label of the vertex ''' #fc = f(c,a0); fc = 1 #build in the not's for the a0 check. binaried = binary_it(a0) #match binaried if len(binaried) > len(a): binaried = binaried[:len(a)] elif len(a) > len(binaried): for i in range(len(a)-len(binaried)): binaried.append(0) notMask = invert(binaried) for i in range(len(notMask)): if notMask[i]: circuit.x(a[i]); #build in the cnots for xoring b binaried = binary_it(fc) #match binaried if len(binaried) > len(r): binaried = binaried[:len(r)] elif len(r) > len(binaried): for i in range(len(r)-len(binaried)): binaried.append(0) for i in range(len(binaried)): if binaried[i]: circuit.mct(a,r[i], None, mode='noancilla') #build in the not's for the a0 return. for i in range(len(notMask)): if notMask[i]: circuit.x(a[i]); n = 2 simulator = Aer.get_backend('qasm_simulator') a = QuantumRegister(n, 'a') b = QuantumRegister(n, 'b') r = QuantumRegister(1, 'r') circuit = QuantumCircuit(a, b, r) a0 = 1 xor_gate_v_each(circuit, a,b,r, 0,0,a0) circuit.barrier() a0 = 2 xor_gate_f_each(circuit, a,b,r, 0,0,a0) circuit.draw()
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
# Practical Implementation of a Quantum String Matching Algorithm # S. Faro, F.P. Marino, and A. Scardace # QUASAR 2024 %%capture !pip install ibm-cloud-sdk-core==3.18.2 !pip install qiskit==0.45.1 !pip install qiskit-aer==0.13.1 !pip install pylatexenc==2.10 from numpy import log2, sqrt from numpy import pi from qiskit.tools.visualization import plot_histogram from qiskit.circuit.gate import Gate from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer from qiskit import transpile def run(circuit: QuantumCircuit, shots: int) -> dict: simulator = Aer.get_backend('aer_simulator') compiled_circuit = transpile(circuit, simulator) job = simulator.run(compiled_circuit, shots=shots) result = job.result() return result.get_counts(compiled_circuit) def init_register(bin_str: str) -> QuantumCircuit: data_qr = QuantumRegister(len(bin_str), 'data') qc = QuantumCircuit(data_qr) for i, bit in enumerate(bin_str): if bit == '1': qc.x(data_qr[i]) return qc classical_value = '1001' init_register(classical_value).draw(fold=255) def rot(n: int, s: int) -> QuantumCircuit: y_qr = QuantumRegister(n, 'y') qc = QuantumCircuit(y_qr, name='ROT_' + str(s)) for i in range(1, (int(log2(n)) - int(log2(s)) + 2)): for j in range(int(n / (s * (2**i)))): for q in range(j * s * (2**i), s * (j*2 ** i+1)): qc.swap(n - 1 - (q+s), n - 1 - (q+2 ** (i-1) * s + s)) return qc num_qubits = 8 shift_value = 2 rot(num_qubits, shift_value).draw(fold=255) def rot_gate(n: int, s: int) -> Gate: rot_circuit = rot(n, s) return rot_circuit.to_gate(label='ROT_' + str(s)) def parameterized_rot(n: int) -> QuantumCircuit: j_qr = QuantumRegister(int(log2(n)), 'j') y_qr = QuantumRegister(n, 'y') qc = QuantumCircuit(j_qr, y_qr) for i in range(int(log2(n))): crot = rot_gate(n, 2**i).control(1) qc = qc.compose(crot, [j_qr[i]] + y_qr[:]) return qc num_qubits = 8 parameterized_rot(num_qubits).draw(fold=255) text = '10110001' text_length = len(text) shift_qr = QuantumRegister(int(log2(text_length)), 'shift') text_qr = QuantumRegister(text_length, 'text') output_cr = ClassicalRegister(text_length, 'output_classic') circ = QuantumCircuit(shift_qr, text_qr, output_cr) circ.h(shift_qr) circ.append(init_register(text), text_qr[:]) circ.append(parameterized_rot(text_length), shift_qr[:] + text_qr[:]) circ.measure(text_qr, output_cr) counts = run(circ, 100) plot_histogram(counts, title='Rotate ' + text + ' Leftward in Superposition') def match(m: int) -> QuantumCircuit: x_qr = QuantumRegister(m, 'x') y_qr = QuantumRegister(m, 'y') out_qr = QuantumRegister(1, 'out') qc = QuantumCircuit(x_qr, y_qr, out_qr) for i in range(m): qc.cx(x_qr[i], y_qr[i]) qc.x(y_qr[i]) qc.mcx(y_qr[:], out_qr) for i in reversed(range(m)): qc.x(y_qr[i]) qc.cx(x_qr[i], y_qr[i]) return qc pattern_length = 4 match(pattern_length).draw(fold=255) text = '1011' text_length = len(text) pattern_qr = QuantumRegister(text_length, 'pattern') text_qr = QuantumRegister(text_length, 'text') output_qr = QuantumRegister(1, 'output') output_cr = ClassicalRegister(text_length + 1, 'output_classic') circ = QuantumCircuit(pattern_qr, text_qr, output_qr, output_cr) circ.h(pattern_qr) circ.append(init_register(text), text_qr[:]) circ.append(match(text_length), pattern_qr[:] + text_qr[:] + output_qr[:]) circ.measure(pattern_qr, output_cr[:-1]) circ.measure(output_qr, output_cr[-1]) counts = run(circ, 100) plot_histogram(counts, title='Matching ' + text) def match_gate(m: int) -> Gate: match_circuit = match(m) return match_circuit.to_gate(label='MATCH') def esm(m: int, n: int) -> QuantumCircuit: j_qr = QuantumRegister(int(log2(n)), 'j') x_qr = QuantumRegister(m, 'x') y_qr = QuantumRegister(n, 'y') out = QuantumRegister(1, 'out') qc = QuantumCircuit( j_qr, x_qr, y_qr, out ) qc = qc.compose(parameterized_rot(n), j_qr[:] + y_qr[:]) qc = qc.compose(match_gate(m), x_qr[:] + y_qr[:m] + out[:]) qc = qc.compose(parameterized_rot(n).inverse(), j_qr[:] + y_qr[:]) return qc pattern_length = 2 text_length = 4 esm(pattern_length, text_length).draw(fold=255) def esm_oracle(m: int, n: int): esm_circuit = esm(m, n) return esm_circuit.to_gate(label='ESMO') def diffuser(n: int) -> Gate: qc = QuantumCircuit(n) qc.h(range(n)) qc.x(range(n)) qc.h(n-1) qc.mcx(list(range(n-1)), n-1) qc.h(n-1) qc.x(range(n)) qc.h(range(n)) return qc.to_gate(label='DIFF') def grover(esmo: Gate, t: int, x: str, y: str) -> QuantumCircuit: n = len(y) m = len(x) logn = int(log2(n)) num_iterations = int(pi/4 * sqrt(n/t)) j_qr = QuantumRegister(logn, 'j') x_qr = QuantumRegister(m, 'x') y_qr = QuantumRegister(n, 'y') out_qr = QuantumRegister(2, 'out') out_cr = ClassicalRegister(logn+1, 'c') qc = QuantumCircuit(j_qr, x_qr, y_qr, out_qr, out_cr) qc.h(j_qr) qc.x(out_qr[0]) qc.h(out_qr[0]) qc = qc.compose(init_register(x), x_qr[:]) qc = qc.compose(init_register(y), y_qr[:]) for _ in range(num_iterations): qc = qc.compose(esmo) qc = qc.compose(diffuser(logn)) qc.measure(j_qr, out_cr[:-1]) qc = qc.compose(esmo, j_qr[:] + x_qr[:] + y_qr[:] + [out_qr[1]]) qc.measure(out_qr[1], out_cr[-1]) return qc x = '11' y = '10101100' esmo = esm_oracle(len(x), len(y)) grover(esmo, 1, x, y).draw(fold=255) x = '00' y = '01010101' esmo = esm_oracle(len(x), len(y)) counts = run(grover(esmo, 1, x, y), 100) plot_histogram(counts, title=f'Search for {x} in {y} - 0 occurrence(s)') x = '00' y = '11010011' esmo = esm_oracle(len(x), len(y)) counts = run(grover(esmo, 1, x, y), 100) plot_histogram(counts, title=f'Search for {x} in {y} - 1 occurrence(s)') x = '00' y = '00111001' esmo = esm_oracle(len(x), len(y)) counts = run(grover(esmo, 2, x, y), 100) plot_histogram(counts, title=f'Search for {x} in {y} - 2 occurrence(s)') def search(x: str, y: str) -> int: m = len(x) n = len(y) esmo = esm_oracle(m, n) for t in range(1, int(n/2) + 1): print('Trying with t =', t) results = run(grover(esmo, t, x, y), 1) results = list(results.keys())[0] outcome = int(results[0]) position = int(results[1:], 2) if outcome: return position else: print('Pattern not found in position', position) return -1 x = input('Enter the value of x: ') y = input('Enter the value of y: ') if len(x) > len(y): raise Exception('The length of x must be shorter than the length of y.') if x.count('0') + x.count('1') < len(x): raise Exception('The pattern must be a binary string.') if y.count('0') + y.count('1') < len(y): raise Exception('The text must be a binary string.') print('') position = search(x, y) if position >= 0: print('Pattern occurrence found in position', str(position)) else: print('Pattern occurrence not found.')
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) %matplotlib qt steps = 5 n=4 def counts_to_prob_1d(counts): # Convert histogram counts to probability vector of size 1 x 2^n states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) # Convert binary to integer index, reversing order as consistent w qiskit convention states_x = [int(s[::-1],2) for s in states] # Create array of probability values probabilities = np.zeros(2**n) probabilities[states_x] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) circuit.x(qcoin[0]) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin): circuit.h(qcoin) circuit.barrier() increment_gate(circuit, qpos, qcoin) circuit.barrier() decrement_gate(circuit, qpos, qcoin) circuit.barrier() def run(steps): simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(n,'qc') qcoin = QuantumRegister(1,'qanc') cpos = ClassicalRegister(n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) for i in range(steps): step(circuit, qpos, qcoin) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts seed = 12 random.seed(seed) np.random.seed(seed) def plotCircleGraph(propabilities): G = nx.Graph() colorarray = [] # generate array of colors numProp = len(propabilities) for idx in range(numProp): colorarray.append([1-prop[idx],1-prop[idx],1]) # generate graph for idx in range(numProp-1): G.add_edge(idx, idx+1) # add last edge G.add_edge(0,numProp-1) nx.draw(G,pos=nx.circular_layout(G),node_color = colorarray,cmap=plt.cm.Blues) for i in range(steps+1): counts = run(i) prop = counts_to_prob_1d(counts) plotCircleGraph(prop) plt.pause(0.3) plt.close()
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit import numpy as np from qiskit import( IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute, QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram, plot_state_city import matplotlib.pyplot as plt def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) circuit.x(qcoin[0]) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin): circuit.h(qcoin) circuit.barrier() increment_gate(circuit, qpos, qcoin) circuit.barrier() decrement_gate(circuit, qpos, qcoin) circuit.barrier() n=2 simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(n,'qc') qcoin = QuantumRegister(1,'qanc') cpos = ClassicalRegister(n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) step(circuit, qpos, qcoin) step(circuit, qpos, qcoin) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) # Draw the circuit circuit.draw(output='mpl') # Plot a histogram plot_histogram(counts) counts
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) %matplotlib inline from qiskit import IBMQ from qiskit.tools.monitor import job_monitor IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') def counts_to_prob_1d(counts): # Convert histogram counts to probability vector of size 1 x 2^n states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) # Convert binary to integer index, reversing order as consistent w qiskit convention states_x = [int(s[::-1],2) for s in states] # Create array of probability values probabilities = np.zeros(2**n) probabilities[states_x] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) circuit.x(qcoin[0]) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin,cpos,simulatorType): circuit.h(qcoin) circuit.barrier() increment_gate(circuit, qpos, qcoin) circuit.barrier() decrement_gate(circuit, qpos, qcoin) circuit.barrier() if simulatorType == 'classical': circuit.measure(qpos,cpos) def run(steps,simulatorType): # steps = number of quantum walks steps # simulatorType = 'sim', 'quantum' or 'classical' if simulatorType == 'sim': simulator = Aer.get_backend('qasm_simulator') elif simulatorType == 'quantum': simulator = provider.get_backend('ibmq_5_yorktown') elif simulatorType == 'classical': simulator = Aer.get_backend('qasm_simulator') else: simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(n,'qc') qcoin = QuantumRegister(1,'qanc') cpos = ClassicalRegister(n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) for i in range(steps): step(circuit, qpos, qcoin,cpos, simulatorType) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # # monitor job job_monitor(job) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts seed = 12 random.seed(seed) np.random.seed(seed) def plotCircleGraph(names,propabilities,color=[0,0,1]): G = nx.Graph() colorarray = [] # generate array of colors numProp = len(propabilities) for idx in range(numProp): colorarray.append(color+[0.5*propabilities[idx]]) # generate graph for idx in range(numProp-1): G.add_edge(idx, idx+1) # add last edge G.add_edge(0,numProp-1) # label nodes labels = {} for idx in range(numProp): labels[idx] = names[idx] nx.draw(G, pos=nx.circular_layout(G), node_color=colorarray, cmap=plt.cm.Blues, node_size=3000, edge_color='k', ) pos=nx.circular_layout(G) labels = nx.draw_networkx_labels(G,pos,labels,font_size=16, bbox=dict(facecolor='w', alpha=1, edgecolor='w') ) # run and plot 1D walk steps = 3 n=2 for i in range(steps+1): #run classical random walk countsClassical = run(i,'classical') propClassical = counts_to_prob_1d(countsClassical) #run quantum simulation countsSim = run(i,'sim') propSim = counts_to_prob_1d(countsSim) #run the real thing countsQuantum = run(i,'quantum') propQuantum = counts_to_prob_1d(countsQuantum) names = [] formatLabel = '{0:0'+str(n)+'b}' for idx in range(2**n): names.append('|' + formatLabel.format(idx) +'>') #plotting f, axs = plt.subplots(2,3,figsize=(13,8)) margin=0.4 f.subplots_adjust(margin, margin, 1.-margin, 1.-margin) axs[0,0].set_title('classical random walk', fontsize=14) plt.sca(axs[0,0]) plotCircleGraph(names,propClassical,color=[1,0,0]) plt.sca(axs[1,0]) plt.bar(names,propClassical,edgecolor='black', color=[1,0,0,.4], lw=2) plt.ylim(0,1) plt.xticks(rotation=45) axs[0,1].set_title('simulated quantum walk', fontsize=14) plt.sca(axs[0,1]) plotCircleGraph(names,propSim,color=[0.3,1,0]) plt.sca(axs[1,1]) plt.bar(names,propSim,edgecolor='black', color=[0.3,1,0,.4], lw=2) plt.ylim(0,1) plt.xticks(rotation=45) axs[0,2].set_title('IBM quantum walk', fontsize=14) plt.sca(axs[0,2]) plotCircleGraph(names,propQuantum,color=[0.1,0.3,1]) plt.sca(axs[1,2]) plt.bar(names,propQuantum,edgecolor='black', color=[0.1,0.3,1,.4], lw=2) plt.ylim(0,1) plt.xticks(rotation=45) plt.tight_layout() plt.show()
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) %matplotlib qt import os print(os.environ.get('QT_API')) n=3 steps = 8 def counts_to_prob_2d(counts): states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) n = int(len(states[0])/2) def sep_xy(states): # Separate x and y coordinates in state vector states_x = [s[:n] for s in states] states_y = [s[n:] for s in states] states_x = np.array([int(s[::-1],2) for s in states_x]) states_y = np.array([int(s[::-1],2) for s in states_y]) return states_x, states_y x,y = sep_xy(states) # Create array of probability values probabilities = np.zeros((2**n,2**n)) probabilities[x,y] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin): circuit.h(qcoin) circuit.barrier() # y operations increment_gate(circuit, qpos[len(qpos)//2:], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[len(qpos)//2:], qcoin) # x operations circuit.x(qcoin) increment_gate(circuit, qpos[:len(qpos)//2], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[:len(qpos)//2:], qcoin) circuit.barrier() def initialize_2D(circuit, n, pos): # convert position to binary x = "{:b}".format(pos[0]) y = "{:b}".format(pos[1]) for i in range(len(x)): if x[i]=='1': circuit.x((n-i)-1) for j in range(len(y)): if y[j]=='1': circuit.x((2*n-j)-1) return circuit def run(steps): simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(2*n,'qc') qcoin = QuantumRegister(2,'qanc') cpos = ClassicalRegister(2*n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) circuit = initialize_2D(circuit, n, (3,3)) for i in range(steps): step(circuit, qpos, qcoin) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts seed = 12 random.seed(seed) np.random.seed(seed) def plotSquareGraph(propMat): colorarray = [] # generate array of colors numProp = len(propMat) for idx in range(numProp): for jdx in range(numProp): colorarray.append([1-propMat[idx][jdx],1-propMat[idx][jdx],1]) G = nx.grid_2d_graph(numProp, numProp) # 5x5 grid # print the adjacency list for line in nx.generate_adjlist(G): pass # write edgelist to grid.edgelist nx.write_edgelist(G, path="grid.edgelist", delimiter=":") nx.draw(G,node_color = colorarray,cmap=plt.cm.Blues) plt.plot() for i in range(steps+1): counts = run(i) prop = counts_to_prob_2d(counts) plt.close() plt.imshow(prop) # plotSquareGraph(prop) plt.pause(1/steps)
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit from qiskit import IBMQ from qiskit.tools.monitor import job_monitor IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') #check open servers import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) from matplotlib import cm %matplotlib inline def counts_to_prob_2d(counts): states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) n = int(len(states[0])/2) def sep_xy(states): # Separate x and y coordinates in state vector states_x = [s[:n] for s in states] states_y = [s[n:] for s in states] states_x = np.array([int(s[::-1],2) for s in states_x]) states_y = np.array([int(s[::-1],2) for s in states_y]) return states_x, states_y x,y = sep_xy(states) # Create array of probability values probabilities = np.zeros((2**n,2**n)) probabilities[x,y] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin, cpos, simulatorType): circuit.h(qcoin) circuit.barrier() # y operations increment_gate(circuit, qpos[len(qpos)//2:], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[len(qpos)//2:], qcoin) # x operations circuit.x(qcoin) increment_gate(circuit, qpos[:len(qpos)//2], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[:len(qpos)//2:], qcoin) circuit.barrier() if simulatorType == 'classical': circuit.measure(qpos,cpos) def initialize_2D(circuit, n, pos): # convert position to binary formatLabel = '{0:0'+str(n)+'b}' x = formatLabel.format(pos[0]) y = formatLabel.format(pos[1]) for i in range(len(x)): if x[i]=='1': circuit.x((n-i)-1) for j in range(len(y)): if y[j]=='1': circuit.x((2*n-j)-1) return circuit def run(steps,simulatorType): # steps = number of quantum walks steps # simulatorType = 'sim', 'quantum' or 'classical' if simulatorType == 'sim': simulator = Aer.get_backend('qasm_simulator') elif simulatorType == 'quantum': simulator = provider.get_backend('ibmq_16_melbourne') elif simulatorType == 'classical': simulator = Aer.get_backend('qasm_simulator') else: simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(2*n,'qc') qcoin = QuantumRegister(2,'qanc') cpos = ClassicalRegister(2*n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) circuit = initialize_2D(circuit, n, [round(n/2),round(n/2)]) for i in range(steps): step(circuit, qpos, qcoin, cpos, simulatorType) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # monitor job job_monitor(job) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts n=2 steps = 3 for i in range(steps+1): #run classical random walk countsClassical = run(i,'classical') propClassical = counts_to_prob_2d(countsClassical) #run quantum simulation countsSim = run(i,'sim') propSim = counts_to_prob_2d(countsSim) #run the real thing countsQuantum = run(i,'quantum') propQuantum = counts_to_prob_2d(countsQuantum) #plotting names = [] values = [] formatLabel = '{0:0'+str(n)+'b}' for idx in range(2**n): names.append('|' + formatLabel.format(idx) +'>') values.append(idx) f, axs = plt.subplots(1,3,figsize=(13,8)) margin=0.4 f.subplots_adjust(margin, margin, 1.-margin, 1.-margin) axs[0].set_title('classical random walk') plt.sca(axs[0]) plt.imshow(propClassical,cmap=plt.get_cmap('Reds')) plt.xticks(rotation=45) axs[0].set_xticks(values) axs[0].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[0].set_yticks(values) axs[0].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[1].set_title('simulated quantum walk') plt.sca(axs[1]) plt.imshow(propSim,cmap=plt.get_cmap('Greens')) plt.xticks(rotation=45) axs[1].set_xticks(values) axs[1].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[1].set_yticks(values) axs[1].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[2].set_title('IBM quantum walk') plt.sca(axs[2]) plt.imshow(propQuantum,cmap=plt.get_cmap('Blues')) plt.xticks(rotation=45) axs[2].set_xticks(values) axs[2].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[2].set_yticks(values) axs[2].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) plt.tight_layout() plt.show()
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit import numpy as np from qiskit import( IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute, QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram, plot_state_city def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin): circuit.h(qcoin) circuit.barrier() # y operations increment_gate(circuit, qpos[len(qpos)//2:], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[len(qpos)//2:], qcoin) # x operations circuit.x(qcoin) increment_gate(circuit, qpos[:len(qpos)//2], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[:len(qpos)//2:], qcoin) circuit.barrier() simulator = Aer.get_backend('qasm_simulator') n=3 qpos = QuantumRegister(2*n,'qc') qcoin = QuantumRegister(2,'qanc') cpos = ClassicalRegister(2*n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) step(circuit, qpos, qcoin) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) # Draw the circuit # circuit.draw() # Plot a histogram plot_histogram(counts)
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit from qiskit import IBMQ from qiskit.tools.monitor import job_monitor IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') #check open servers import numpy as np import time import networkx as nx import matplotlib.pyplot as plt import random from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer) from matplotlib import cm %matplotlib inline def counts_to_prob_2d(counts): states = list(counts.keys()) state_counts = list(counts.values()) nshots = sum(state_counts) n = int(len(states[0])/2) def sep_xy(states): # Separate x and y coordinates in state vector states_x = [s[:n] for s in states] states_y = [s[n:] for s in states] states_x = np.array([int(s[::-1],2) for s in states_x]) states_y = np.array([int(s[::-1],2) for s in states_y]) return states_x, states_y x,y = sep_xy(states) # Create array of probability values probabilities = np.zeros((2**n,2**n)) probabilities[x,y] = state_counts probabilities /= nshots return probabilities def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin, cpos, simulatorType): circuit.h(qcoin) circuit.barrier() # y operations increment_gate(circuit, qpos[len(qpos)//2:], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[len(qpos)//2:], qcoin) # x operations circuit.x(qcoin) increment_gate(circuit, qpos[:len(qpos)//2], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[:len(qpos)//2:], qcoin) circuit.barrier() if simulatorType == 'classical': circuit.measure(qpos,cpos) def initialize_2D(circuit, n, pos): # convert position to binary formatLabel = '{0:0'+str(n)+'b}' x = formatLabel.format(pos[0]) y = formatLabel.format(pos[1]) for i in range(len(x)): if x[i]=='1': circuit.x((n-i)-1) for j in range(len(y)): if y[j]=='1': circuit.x((2*n-j)-1) return circuit def run(steps,simulatorType): # steps = number of quantum walks steps # simulatorType = 'sim', 'quantum' or 'classical' if simulatorType == 'sim': simulator = Aer.get_backend('qasm_simulator') elif simulatorType == 'quantum': simulator = provider.get_backend('ibmq_16_melbourne') elif simulatorType == 'classical': simulator = Aer.get_backend('qasm_simulator') else: simulator = Aer.get_backend('qasm_simulator') qpos = QuantumRegister(2*n,'qc') qcoin = QuantumRegister(2,'qanc') cpos = ClassicalRegister(2*n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) circuit = initialize_2D(circuit, n, [round(n/2),round(n/2)]) for i in range(steps): step(circuit, qpos, qcoin, cpos, simulatorType) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # monitor job job_monitor(job) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) return counts n=2 steps = 3 for i in range(steps+1): #run classical random walk countsClassical = run(i,'classical') propClassical = counts_to_prob_2d(countsClassical) #run quantum simulation countsSim = run(i,'sim') propSim = counts_to_prob_2d(countsSim) #run the real thing countsQuantum = run(i,'quantum') propQuantum = counts_to_prob_2d(countsQuantum) #plotting names = [] values = [] formatLabel = '{0:0'+str(n)+'b}' for idx in range(2**n): names.append('|' + formatLabel.format(idx) +'>') values.append(idx) f, axs = plt.subplots(1,3,figsize=(13,8)) margin=0.4 f.subplots_adjust(margin, margin, 1.-margin, 1.-margin) axs[0].set_title('classical random walk') plt.sca(axs[0]) plt.imshow(propClassical,cmap=plt.get_cmap('Reds')) plt.xticks(rotation=45) axs[0].set_xticks(values) axs[0].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[0].set_yticks(values) axs[0].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[1].set_title('simulated quantum walk') plt.sca(axs[1]) plt.imshow(propSim,cmap=plt.get_cmap('Greens')) plt.xticks(rotation=45) axs[1].set_xticks(values) axs[1].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[1].set_yticks(values) axs[1].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) axs[2].set_title('IBM quantum walk') plt.sca(axs[2]) plt.imshow(propQuantum,cmap=plt.get_cmap('Blues')) plt.xticks(rotation=45) axs[2].set_xticks(values) axs[2].set_xticklabels(names) plt.xlim(-0.5,values[-1]+0.5) axs[2].set_yticks(values) axs[2].set_yticklabels(names) plt.ylim(-0.5,values[-1]+0.5) plt.tight_layout() plt.show()
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
# Library for implementing XOR import qiskit import numpy as np from qiskit import( IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute, QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram, plot_state_city if __name__ == "__main__": pass def binary_it(alpha): ''' binary_it: returns a list that is indexed according to power, binaried[0] = is LSB. ''' binaried = [int(x) for x in bin(alpha)[2:]] binaried.reverse() return binaried def invert(alpha): return [ 1 - x for x in alpha] def xor_gate_v_each(circuit, a,b,r, v,c,a0): ''' xor_gate_v_each: See paper 'An Example of the Difference Between Quantum and Classical Random Walks' args: circuit -- the py object that holds the quantum circuit. a -- q. reg. for the vertex. b -- q. reg. for holding neighbor vertex. r -- q. reg. for checking valid edge. f(c, a0) -- function that returns the neighboring -- vertex of a0 using label c for the vertex label. c -- label of the edge a0 -- label of the vertex ''' #vc = v(c,a0); vc = 1 #build in the not's for the a0 check. binaried = binary_it(a0) #match binaried if len(binaried) > len(a): binaried = binaried[:len(a)] elif len(a) > len(binaried): for i in range(len(a)-len(binaried)): binaried.append(0) notMask = invert(binaried) for i in range(len(notMask)): if notMask[i]: circuit.x(a[i]); #build in the cnots for xoring b binaried = binary_it(vc) #match binaried if len(binaried) > len(a): binaried = binaried[:len(a)] elif len(a) > len(binaried): for i in range(len(a)-len(binaried)): binaried.append(0) for i in range(len(binaried)): if binaried[i]: circuit.mct(a,b[i], None, mode='noancilla') #build in the not's for the a0 return. for i in range(len(notMask)): if notMask[i]: circuit.x(a[i]); def xor_gate_f_each(circuit, a,b,r, v,c,a0): ''' xor_gate_v_each: See paper 'An Example of the Difference Between Quantum and Classical Random Walks' args: circuit -- the py object that holds the quantum circuit. a -- q. reg. for the vertex. b -- q. reg. for holding neighbor vertex. r -- q. reg. for checking valid edge. f(c, a0) -- function that returns the neighboring -- vertex of a0 using label c for the vertex label. c -- label of the edge a0 -- label of the vertex ''' #fc = f(c,a0); fc = 1 #build in the not's for the a0 check. binaried = binary_it(a0) #match binaried if len(binaried) > len(a): binaried = binaried[:len(a)] elif len(a) > len(binaried): for i in range(len(a)-len(binaried)): binaried.append(0) notMask = invert(binaried) for i in range(len(notMask)): if notMask[i]: circuit.x(a[i]); #build in the cnots for xoring b binaried = binary_it(fc) #match binaried if len(binaried) > len(r): binaried = binaried[:len(r)] elif len(r) > len(binaried): for i in range(len(r)-len(binaried)): binaried.append(0) for i in range(len(binaried)): if binaried[i]: circuit.mct(a,r[i], None, mode='noancilla') #build in the not's for the a0 return. for i in range(len(notMask)): if notMask[i]: circuit.x(a[i]); n = 2 simulator = Aer.get_backend('qasm_simulator') a = QuantumRegister(n, 'a') b = QuantumRegister(n, 'b') r = QuantumRegister(1, 'r') circuit = QuantumCircuit(a, b, r) a0 = 1 xor_gate_v_each(circuit, a,b,r, 0,0,a0) circuit.barrier() a0 = 2 xor_gate_f_each(circuit, a,b,r, 0,0,a0) circuit.draw()
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit import numpy as np from qiskit import( IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute, QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram, plot_state_city def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qcoin[:]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin): circuit.h(qcoin) circuit.barrier() # y operations increment_gate(circuit, qpos[len(qpos)//2:], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[len(qpos)//2:], qcoin) # x operations circuit.x(qcoin) increment_gate(circuit, qpos[:len(qpos)//2], qcoin) circuit.x(qcoin[0]) decrement_gate(circuit, qpos[:len(qpos)//2:], qcoin) circuit.barrier() simulator = Aer.get_backend('qasm_simulator') n=3 qpos = QuantumRegister(2*n,'qc') qcoin = QuantumRegister(2,'qanc') cpos = ClassicalRegister(2*n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) step(circuit, qpos, qcoin) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) # # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # # Grab results from the job result = job.result() # # Returns counts counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) # Draw the circuit # circuit.draw() # Plot a histogram plot_histogram(counts) counts
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import numpy as np from qiskit import * from qiskit.tools.visualization import plot_histogram, plot_state_city import matplotlib.pyplot as plt # 1D Graph def increment_gate(circuit, qpos, qcoin): n = len(qpos) for i in range(n): circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') def decrement_gate(circuit, qpos, qcoin): n = len(qpos) circuit.x(qcoin[0]) for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct([qcoin[0]]+qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) def step(circuit, qpos, qcoin): circuit.h(qcoin) circuit.barrier() increment_gate(circuit, qpos, qcoin) circuit.barrier() decrement_gate(circuit, qpos, qcoin) circuit.barrier() # Circuit drawing n=2 qpos = QuantumRegister(n,'qc') qcoin = QuantumRegister(1,'qanc') cpos = ClassicalRegister(n,'cr') circuit = QuantumCircuit(qpos, qcoin, cpos) step(circuit, qpos, qcoin) # # Map the quantum measurement to the classical bits circuit.measure(qpos,cpos) circuit.draw(output='mpl') n=3 qpos = QuantumRegister(n,'qc') # increment def increment_only(circuit): for i in range(n): circuit.mct(qpos[i+1:], qpos[i], None, mode='noancilla') circuit.barrier() return circuit # decrement def decrement_only(circuit): for i in range(n): if i+1 < n: circuit.x(qpos[i+1:]) circuit.mct(qpos[i+1:], qpos[i], None, mode='noancilla') if i+1 < n: circuit.x(qpos[i+1:]) circuit.barrier() # Increment gate circuit = QuantumCircuit(qpos) increment_only(circuit) # increment_gate(circuit, qpos, qcoin) circuit.draw(output='mpl') # Decrement gate circuit = QuantumCircuit(qpos) decrement_only(circuit) # decrement_gate(circuit, qpos, qcoin) circuit.draw(output='mpl')
https://github.com/biswaroopmukherjee/Quantum-Waddle
biswaroopmukherjee
import qiskit qiskit.__qiskit_version__ def cnx(qc, *qubits): if len(qubits) >= 3: last = qubits[-1] # A matrix: (made up of a and Y rotation, lemma4.3) qc.crz(np.pi/2, qubits[-2], qubits[-1]) qc.cu3(np.pi/2, 0, 0, qubits[-2],qubits[-1]) # Control not gate cnx(qc,*qubits[:-2],qubits[-1]) # B matrix (pposite angle) qc.cu3(-np.pi/2, 0, 0, qubits[-2], qubits[-1]) # Control cnx(qc,*qubits[:-2],qubits[-1]) # C matrix (final rotation) qc.crz(-np.pi/2,qubits[-2],qubits[-1]) elif len(qubits)==3: qc.ccx(*qubits) elif len(qubits)==2: qc.cx(*qubits) import numpy as np from qiskit import IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import plot_histogram, plot_state_city n=3 IBMQ.load_accounts() IBMQ.backends() def increment_gate(qwc, q, subnode): cnx(qwc, subnode[0], q[2], q[1], q[0]) cnx(qwc, subnode[0], q[2], q[1]) cnx(qwc, subnode[0], q[2]) qwc.barrier() return qwc def decrement_gate(qwc, q, subnode): qwc.x(subnode[0]) qwc.x(q[2]) qwc.x(q[1]) cnx(qwc, subnode[0], q[2], q[1], q[0]) qwc.x(q[1]) cnx(qwc, subnode[0], q[2], q[1]) qwc.x(q[2]) cnx(qwc, subnode[0], q[2]) qwc.x(subnode[0]) return qwc def ibmsim(circ): ibmqBE = IBMQ.get_backend('ibmq_qasm_simulator') return execute(circ,ibmqBE, shots=1000).result().get_counts(circ) qnodes = QuantumRegister(n,'qc') qsubnodes = QuantumRegister(1,'qanc') csubnodes = ClassicalRegister(1,'canc') cnodes = ClassicalRegister(n,'cr') qwc = QuantumCircuit(qnodes, qsubnodes, cnodes, csubnodes) def runQWC(qwc, times): for i in range(times): qwc.h(qsubnodes[0]) increment_gate(qwc, qnodes, qsubnodes[0]) decrement_gate(qwc,qnodes,qsubnodes[0]) qwc.measure(qnodes, cnodes) return qwc import matplotlib as mpl step = 1 qwc = runQWC(qwc, step) qwc.draw(output="mpl") result = ibmsim(qwc) print(result) def runQWC(qwc, times): for i in range(times): qwc.h(qsubnodes[0]) increment_gate(qwc, qnodes, qsubnodes[0]) decrement_gate(qwc,qnodes,qsubnodes[0]) qwc.measure(qnodes, cnodes) return qwc result = ibmsim(qwc) plot_histogram(result)
https://github.com/chaurasiyag/minor-project-quantum-computing
chaurasiyag
from qiskit import * qr=QuantumRegister(1) qc=ClassicalRegister(1) cir=QuantumCircuit(qr,qc) cir.draw() cir.x(qr[0]) cir.draw() cir.measure(qr,qc) cir.draw() simulator=BasicAer.get_backend("qasm_simulator") res=execute(cir,backend=simulator).result() print(res) from qiskit.tools.visualization import plot_histogram plot_histogram(res.get_counts(cir)) IBMQ.save_account('7cd5664973bf6ce405272fc6fa2bd7684625b387b768de3dd459fa38dd3cdc417387fa4c306562485e0bb6ddb46fd20fcd24da495248304d90d155b52011fd6f') IBMQ.load_account() provider=IBMQ.get_provider('ibm-q') qcomp=provider.get_backend('ibmq_quito') job=execute(cir,backend=qcomp) from qiskit.tools.monitor import job_monitor job_monitor(job) res=job.result() plot_histogram(res.get_counts(cir)) from qiskit import * from math import pi qr=QuantumRegister(1) cr=ClassicalRegister(1) qc=QuantumCircuit(qr,cr) qc.draw() qc.u3(pi,0,0,qr[0]) qc.measure(qr,cr) qc.draw() simulator=BasicAer.get_backend("qasm_simulator") job=execute(qc,backend=simulator) from qiskit.tools.visualization import plot_histogram plot_histogram(job.result().get_counts()) plot_histogram(job.result().get_counts(qc)) qrr=QuantumRegister(1) crr=ClassicalRegister(1) qcc=QuantumCircuit(qrr,crr) qcc.x(qrr[0]) qcc.z(qrr[0]) qcc.draw() qcc.measure(qrr,crr) simu=BasicAer.get_backend("qasm_simulator") result=execute(qcc,backend=simu).result() plot_histogram(result.get_counts(qcc)) qr2=QuantumRegister(2) cr2=ClassicalRegister(2) qc=QuantumCircuit(qr2,cr2) qc.h(qr2[0]) qc.cx(qr2[0],qr2[1]) qc.draw() qc.measure(qr2,cr2) simu=BasicAer.get_backend("qasm_simulator") result=execute(qc,backend=simu).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) IBMQ.save_account('7cd5664973bf6ce405272fc6fa2bd7684625b387b768de3dd459fa38dd3cdc417387fa4c306562485e0bb6ddb46fd20fcd24da495248304d90d155b52011fd6f',overwrite=True) IBMQ.load_account() pr=IBMQ.get_provider('ibm-q') qcomp=pr.get_backend("ibmq_quito") job=execute(qc,backend=qcomp) from qiskit.tools.monitor import job_monitor job_monitor(job) res=job.result() plot_histogram(res.get_counts(qc)) qiskit.tools from qiskit import * from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram qr=QuantumRegister(2) cr=ClassicalRegister(2) qc=QuantumCircuit(qr,cr) qc.x(qr[0]) qc.draw() qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.draw() qc.measure(qr,cr) simu=BasicAer.get_backend("qasm_simulator") result=execute(qc,backend=simu).result() plot_histogram(result.get_counts(qc)) IBMQ.save_account('c10fa12997ad898683c72c5496c720b9657d7b96ce93b3f443366854e87973466f32f0bd9d807b4c147a63ac230eb03987972bdf400193154e11bdd834503a58',overwrite=True) IBMQ.load_account() pr=IBMQ.get_provider("ibm-q") qcomp=pr.get_backend("ibmq_manila") job=execute(qc,backend=qcomp) job_monitor(job) result=job.result() plot_histogram(result.get_counts(qc)) qr1=QuantumRegister(2) cr1=ClassicalRegister(2) qc1=QuantumCircuit(qr1,cr1) qc1.h(qr1[0]) qc1.x(qr1[1]) qc1.cx(qr1[0],qr1[1]) qc1.measure(qr1,cr1) simu=BasicAer.get_backend("qasm_simulator") job=execute(qc1,backend=simu).result() print(job.get_counts()) plot_histogram(job.get_counts(qc1)) qcomp1=pr.get_backend("ibmq_manila") job1=execute(qc1,backend=qcomp1) job_monitor(job1) plot_histogram(job1.result().get_counts(q)) print(job1.result().get_counts()) from qiskit import * from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor qr2=QuantumRegister(2) cr2=ClassicalRegister(2) qc2=QuantumCircuit(qr2,cr2) qc2.x(qr2[0]) qc2.x(qr2[1]) qc2.h(qr2[0]) qc2.cx(qr2[0],qr2[1]) qc2.draw() simu=BasicAer.get_backend("qasm_simulator") qc2.measure(qr2,cr2) job3=execute(qc2,backend=simu) print(job3.result().get_counts()) plot_histogram(job3.result().get_counts()) IBMQ.load_account() pr=IBMQ.get_provider("ibm-q") qcomp2=pr.get_backend("ibmq_manila") job4=execute(qc2,backend=qcomp2) job_monitor(job4) print(job4.result().get_counts()) plot_histogram(job4.result().get_counts()) from qiskit import * bell=QuantumCircuit(2,2) bell.h(0) bell.cx(0,1) meas=QuantumCircuit(2,2) meas.measure([0,1],[0,1]) backend=BasicAer.get_backend('qasm_simulator') circ=bell.compose(meas) result=backend.run(transpile(circ,backend)).result() count=result.get_counts(circ) print(count) from qiskit.visualization import plot_bloch_multivector,plot_state_qsphere,plot_histogram,plot_bloch_vector # bell=QuantumCircuit(1,1) bell.h(0) bell.y(0) backend=BasicAer.get_backend('statevector_simulator') result=backend.run(transpile(bell,backend)).result() ps1=result.get_statevector(bell) plot_bloch_multivector(ps1) !pip install seaborn # plot_state_qsphere(ps1) # plot_bloch_vector(['00','11']) q=QuantumCircuit(1,1) q.y(0) plot_bloch_multivector(q) from qiskit_textbook.widgets import bloch_calc !pip install qiskit_textbook from qiskit_textbook.widgets import binary_widget binary_widget(nbits=5) print("Just adding for update automatically on github repo using shell script cronjob") print("Added Second Line to Check Automatic Update") print("third") print($$$) print(000) print("Last") print("Automatic Updates Successfully") from qiskit import * import numpy as np pi=np.pi def qft(no_of_qbit): qc=QuantumCircuit(no_of_qbit) for qbit in range(no_of_qbit): qc.h(qbit) for other_qbit in range(qbit+1,no_of_qbit): qc.cu1(pi/(2**(other_qbit-qbit)),other_qbit,qbit) return qc display(qft(5).draw()) display(qft(4).draw()) display(qft(3).draw()) print(90)
https://github.com/chaurasiyag/minor-project-quantum-computing
chaurasiyag
from qiskit import * qr=QuantumRegister(1) qc=ClassicalRegister(1) cir=QuantumCircuit(qr,qc) cir.draw() cir.x(qr[0]) cir.draw() cir.measure(qr,qc) cir.draw() simulator=BasicAer.get_backend("qasm_simulator") res=execute(cir,backend=simulator).result() print(res) from qiskit.tools.visualization import plot_histogram plot_histogram(res.get_counts(cir)) IBMQ.save_account('7cd5664973bf6ce405272fc6fa2bd7684625b387b768de3dd459fa38dd3cdc417387fa4c306562485e0bb6ddb46fd20fcd24da495248304d90d155b52011fd6f') IBMQ.load_account() provider=IBMQ.get_provider('ibm-q') qcomp=provider.get_backend('ibmq_quito') job=execute(cir,backend=qcomp) from qiskit.tools.monitor import job_monitor job_monitor(job) res=job.result() plot_histogram(res.get_counts(cir)) from qiskit import * from math import pi qr=QuantumRegister(1) cr=ClassicalRegister(1) qc=QuantumCircuit(qr,cr) qc.draw() qc.u3(pi,0,0,qr[0]) qc.measure(qr,cr) qc.draw() simulator=BasicAer.get_backend("qasm_simulator") job=execute(qc,backend=simulator) from qiskit.tools.visualization import plot_histogram plot_histogram(job.result().get_counts()) plot_histogram(job.result().get_counts(qc)) qrr=QuantumRegister(1) crr=ClassicalRegister(1) qcc=QuantumCircuit(qrr,crr) qcc.x(qrr[0]) qcc.z(qrr[0]) qcc.draw() qcc.measure(qrr,crr) simu=BasicAer.get_backend("qasm_simulator") result=execute(qcc,backend=simu).result() plot_histogram(result.get_counts(qcc)) qr2=QuantumRegister(2) cr2=ClassicalRegister(2) qc=QuantumCircuit(qr2,cr2) qc.h(qr2[0]) qc.cx(qr2[0],qr2[1]) qc.draw() qc.measure(qr2,cr2) simu=BasicAer.get_backend("qasm_simulator") result=execute(qc,backend=simu).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(qc)) IBMQ.save_account('7cd5664973bf6ce405272fc6fa2bd7684625b387b768de3dd459fa38dd3cdc417387fa4c306562485e0bb6ddb46fd20fcd24da495248304d90d155b52011fd6f',overwrite=True) IBMQ.load_account() pr=IBMQ.get_provider('ibm-q') qcomp=pr.get_backend("ibmq_quito") job=execute(qc,backend=qcomp) from qiskit.tools.monitor import job_monitor job_monitor(job) res=job.result() plot_histogram(res.get_counts(qc)) qiskit.tools from qiskit import * from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram qr=QuantumRegister(2) cr=ClassicalRegister(2) qc=QuantumCircuit(qr,cr) qc.x(qr[0]) qc.draw() qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.draw() qc.measure(qr,cr) simu=BasicAer.get_backend("qasm_simulator") result=execute(qc,backend=simu).result() plot_histogram(result.get_counts(qc)) IBMQ.save_account('c10fa12997ad898683c72c5496c720b9657d7b96ce93b3f443366854e87973466f32f0bd9d807b4c147a63ac230eb03987972bdf400193154e11bdd834503a58',overwrite=True) IBMQ.load_account() pr=IBMQ.get_provider("ibm-q") qcomp=pr.get_backend("ibmq_manila") job=execute(qc,backend=qcomp) job_monitor(job) result=job.result() plot_histogram(result.get_counts(qc)) qr1=QuantumRegister(2) cr1=ClassicalRegister(2) qc1=QuantumCircuit(qr1,cr1) qc1.h(qr1[0]) qc1.x(qr1[1]) qc1.cx(qr1[0],qr1[1]) qc1.measure(qr1,cr1) simu=BasicAer.get_backend("qasm_simulator") job=execute(qc1,backend=simu).result() print(job.get_counts()) plot_histogram(job.get_counts(qc1)) qcomp1=pr.get_backend("ibmq_manila") job1=execute(qc1,backend=qcomp1) job_monitor(job1) plot_histogram(job1.result().get_counts(q)) print(job1.result().get_counts()) from qiskit import * from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor qr2=QuantumRegister(2) cr2=ClassicalRegister(2) qc2=QuantumCircuit(qr2,cr2) qc2.x(qr2[0]) qc2.x(qr2[1]) qc2.h(qr2[0]) qc2.cx(qr2[0],qr2[1]) qc2.draw() simu=BasicAer.get_backend("qasm_simulator") qc2.measure(qr2,cr2) job3=execute(qc2,backend=simu) print(job3.result().get_counts()) plot_histogram(job3.result().get_counts()) IBMQ.load_account() pr=IBMQ.get_provider("ibm-q") qcomp2=pr.get_backend("ibmq_manila") job4=execute(qc2,backend=qcomp2) job_monitor(job4) print(job4.result().get_counts()) plot_histogram(job4.result().get_counts()) from qiskit import * bell=QuantumCircuit(2,2) bell.h(0) bell.cx(0,1) meas=QuantumCircuit(2,2) meas.measure([0,1],[0,1]) backend=BasicAer.get_backend('qasm_simulator') circ=bell.compose(meas) result=backend.run(transpile(circ,backend)).result() count=result.get_counts(circ) print(count) from qiskit.visualization import plot_bloch_multivector,plot_state_qsphere,plot_histogram,plot_bloch_vector # bell=QuantumCircuit(1,1) bell.h(0) bell.y(0) backend=BasicAer.get_backend('statevector_simulator') result=backend.run(transpile(bell,backend)).result() ps1=result.get_statevector(bell) plot_bloch_multivector(ps1) !pip install seaborn # plot_state_qsphere(ps1) # plot_bloch_vector(['00','11']) q=QuantumCircuit(1,1) q.y(0) plot_bloch_multivector(q) from qiskit_textbook.widgets import bloch_calc !pip install qiskit_textbook from qiskit_textbook.widgets import binary_widget binary_widget(nbits=5) print("Just adding for update automatically on github repo using shell script cronjob") print("Added Second Line to Check Automatic Update") print("third") print($$$) print(000) print("Last") print("Automatic Updates Successfully") from qiskit import * import numpy as np pi=np.pi def qft(no_of_qbit): qc=QuantumCircuit(no_of_qbit) for qbit in range(no_of_qbit): qc.h(qbit) for other_qbit in range(qbit+1,no_of_qbit): qc.cu1(pi/(2**(other_qbit-qbit)),other_qbit,qbit) return qc display(qft(5).draw()) display(qft(4).draw()) display(qft(3).draw()) print(90)
https://github.com/Alfaxad/IBM_QC_Africa_2021
Alfaxad
from qiskit import * from qiskit.visualization import plot_histogram import numpy as np def NOT(inp): """An NOT gate. Parameters: inp (str): Input, encoded in qubit 0. Returns: QuantumCircuit: Output NOT circuit. str: Output value measured from qubit 0. """ qc = QuantumCircuit(1, 1) # A quantum circuit with a single qubit and a single classical bit qc.reset(0) # We encode '0' as the qubit state |0⟩, and '1' as |1⟩ # Since the qubit is initially |0⟩, we don't need to do anything for an input of '0' # For an input of '1', we do an x to rotate the |0⟩ to |1⟩ if inp=='1': qc.x(0) # barrier between input state and gate operation qc.barrier() # Now we've encoded the input, we can do a NOT on it using x qc.x(0) #barrier between gate operation and measurement qc.barrier() # Finally, we extract the |0⟩/|1⟩ output of the qubit and encode it in the bit c[0] qc.measure(0,0) qc.draw() # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp in ['0', '1']: qc, out = NOT(inp) print('NOT with input',inp,'gives output',out) display(qc.draw()) print('\n') def XOR(inp1,inp2): """An XOR gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 1. """ qc = QuantumCircuit(2, 1) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) # barrier between input state and gate operation qc.barrier() # this is where your program for quantum XOR gate goes qc.cx(0, 1) # barrier between input state and gate operation qc.barrier() qc.measure(1,0) # output from qubit 1 is measured #We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') #Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = XOR(inp1, inp2) print('XOR with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def AND(inp1,inp2): """An AND gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(2)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum AND gate goes qc.ccx(0,1,2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc, shots=1, memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = AND(inp1, inp2) print('AND with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def NAND(inp1,inp2): """An NAND gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output NAND circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum NAND gate goes qc.ccx(0,1,2) if inp=='1': qc.x(2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('aer_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc,shots=1,memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = NAND(inp1, inp2) print('NAND with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') def OR(inp1,inp2): """An OR gate. Parameters: inpt1 (str): Input 1, encoded in qubit 0. inpt2 (str): Input 2, encoded in qubit 1. Returns: QuantumCircuit: Output XOR circuit. str: Output value measured from qubit 2. """ qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() # this is where your program for quantum OR gate goes qc.cx(0, 2) qc.cx(1, 2) qc.barrier() qc.measure(2, 0) # output from qubit 2 is measured # We'll run the program on a simulator backend = Aer.get_backend('aer_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = backend.run(qc,shots=1,memory=True) output = job.result().get_memory()[0] return qc, output ## Test the function for inp1 in ['0', '1']: for inp2 in ['0', '1']: qc, output = OR(inp1, inp2) print('OR with inputs',inp1,inp2,'gives output',output) display(qc.draw()) print('\n') from qiskit import IBMQ #IBMQ.save_account("a68a35747d4eccd1d58f275e637909987c789ce5c0edd8a4f43014672bf0301b54b28b1b5f44ba8ff87500777429e1e4ceb79621a6ba248d6cca6bca0e233d23", overwrite=True) IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider('ibm-q') provider.backends() import qiskit.tools.jupyter # run this cell backend = provider.get_backend('ibmq_quito') qc_and = QuantumCircuit(3) qc_and.ccx(0,1,2) print('AND gate') display(qc_and.draw()) print('\n\nTranspiled AND gate with all the required connectivity') qc_and.decompose().draw() from qiskit.tools.monitor import job_monitor # run the cell to define AND gate for real quantum system def AND(inp1, inp2, backend, layout): qc = QuantumCircuit(3, 1) qc.reset(range(3)) if inp1=='1': qc.x(0) if inp2=='1': qc.x(1) qc.barrier() qc.ccx(0, 1, 2) qc.barrier() qc.measure(2, 0) qc_trans = transpile(qc, backend, initial_layout=layout, optimization_level=3) job = backend.run(qc_trans, shots=8192) print(job.job_id()) job_monitor(job) output = job.result().get_counts() return qc_trans, output backend layout = [0, 1, 2] output_all = [] qc_trans_all = [] prob_all = [] worst = 1 best = 0 for input1 in ['0','1']: for input2 in ['0','1']: qc_trans, output = AND(input1, input2, backend, layout) output_all.append(output) qc_trans_all.append(qc_trans) prob = output[str(int( input1=='1' and input2=='1' ))]/8192 prob_all.append(prob) print('\nProbability of correct answer for inputs',input1,input2) print('{:.2f}'.format(prob) ) print('---------------------------------') worst = min(worst,prob) best = max(best, prob) print('') print('\nThe highest of these probabilities was {:.2f}'.format(best)) print('The lowest of these probabilities was {:.2f}'.format(worst)) print('Transpiled AND gate circuit for ibmq_vigo with input 0 0') print('\nThe circuit depth : {}'.format (qc_trans_all[0].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[0].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[0]) ) qc_trans_all[0].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 0 1') print('\nThe circuit depth : {}'.format (qc_trans_all[1].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[1].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[1]) ) qc_trans_all[1].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 1 0') print('\nThe circuit depth : {}'.format (qc_trans_all[2].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[2].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[2]) ) qc_trans_all[2].draw() print('Transpiled AND gate circuit for ibmq_vigo with input 1 1') print('\nThe circuit depth : {}'.format (qc_trans_all[3].depth())) print('# of nonlocal gates : {}'.format (qc_trans_all[3].num_nonlocal_gates())) print('Probability of correct answer : {:.2f}'.format(prob_all[3]) ) qc_trans_all[3].draw()
https://github.com/Alfaxad/IBM_QC_Africa_2021
Alfaxad
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, execute from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers.aer import QasmSimulator backend = Aer.get_backend('statevector_simulator') qc1 = QuantumCircuit(4) # perform gate operations on individual qubits qc1.x(0) qc1.y(1) qc1.z(2) qc1.s(3) # Draw circuit qc1.draw() # Plot blochshere out1 = execute(qc1,backend).result().get_statevector() plot_bloch_multivector(out1) qc2 = QuantumCircuit(4) # initialize qubits qc2.x(range(4)) # perform gate operations on individual qubits qc2.x(0) qc2.y(1) qc2.z(2) qc2.s(3) # Draw circuit qc2.draw() # Plot blochshere out2 = execute(qc2,backend).result().get_statevector() plot_bloch_multivector(out2) qc3 = QuantumCircuit(4) # initialize qubits qc3.h(range(4)) # perform gate operations on individual qubits qc3.x(0) qc3.y(1) qc3.z(2) qc3.s(3) # Draw circuit qc3.draw() # Plot blochshere out3 = execute(qc3,backend).result().get_statevector() plot_bloch_multivector(out3) qc4 = QuantumCircuit(4) # initialize qubits qc4.x(range(4)) qc4.h(range(4)) # perform gate operations on individual qubits qc4.x(0) qc4.y(1) qc4.z(2) qc4.s(3) # Draw circuit qc4.draw() # Plot blochshere out4 = execute(qc4,backend).result().get_statevector() plot_bloch_multivector(out4) qc5 = QuantumCircuit(4) # initialize qubits qc5.h(range(4)) qc5.s(range(4)) # perform gate operations on individual qubits qc5.x(0) qc5.y(1) qc5.z(2) qc5.s(3) # Draw circuit qc5.draw() # Plot blochshere out5 = execute(qc5,backend).result().get_statevector() plot_bloch_multivector(out5) qc6 = QuantumCircuit(4) # initialize qubits qc6.x(range(4)) qc6.h(range(4)) qc6.s(range(4)) # perform gate operations on individual qubits qc6.x(0) qc6.y(1) qc6.z(2) qc6.s(3) # Draw circuit qc6.draw() # Plot blochshere out6 = execute(qc6,backend).result().get_statevector() plot_bloch_multivector(out6) import qiskit qiskit.__qiskit_version__
https://github.com/Alfaxad/IBM_QC_Africa_2021
Alfaxad
from qiskit import * import numpy as np from numpy import linalg as la from qiskit.tools.monitor import job_monitor import qiskit.tools.jupyter qc = QuantumCircuit(1) #### your code goes here # z measurement of qubit 0 measure_z = QuantumCircuit(1,1) measure_z.measure(0,0) # x measurement of qubit 0 measure_x = QuantumCircuit(1,1) # your code goes here # y measurement of qubit 0 measure_y = QuantumCircuit(1,1) # your code goes here shots = 2**14 # number of samples used for statistics sim = Aer.get_backend('qasm_simulator') bloch_vector_measure = [] for measure_circuit in [measure_x, measure_y, measure_z]: # run the circuit with a the selected measurement and get the number of samples that output each bit value counts = execute(qc+measure_circuit, sim, shots=shots).result().get_counts() # calculate the probabilities for each bit value probs = {} for output in ['0','1']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 bloch_vector_measure.append( probs['0'] - probs['1'] ) # normalizing the bloch sphere vector bloch_vector = bloch_vector_measure/la.norm(bloch_vector_measure) print('The bloch sphere coordinates are [{0:4.3f}, {1:4.3f}, {2:4.3f}]' .format(*bloch_vector)) from kaleidoscope.interactive import bloch_sphere bloch_sphere(bloch_vector, vectors_annotation=True) from qiskit.visualization import plot_bloch_vector plot_bloch_vector( bloch_vector ) # circuit for the state Tri1 Tri1 = QuantumCircuit(2) # your code goes here # circuit for the state Tri2 Tri2 = QuantumCircuit(2) # your code goes here # circuit for the state Tri3 Tri3 = QuantumCircuit(2) # your code goes here # circuit for the state Sing Sing = QuantumCircuit(2) # your code goes here # <ZZ> measure_ZZ = QuantumCircuit(2) measure_ZZ.measure_all() # <XX> measure_XX = QuantumCircuit(2) # your code goes here # <YY> measure_YY = QuantumCircuit(2) # your code goes here shots = 2**14 # number of samples used for statistics A = 1.47e-6 #unit of A is eV E_sim = [] for state_init in [Tri1,Tri2,Tri3,Sing]: Energy_meas = [] for measure_circuit in [measure_XX, measure_YY, measure_ZZ]: # run the circuit with a the selected measurement and get the number of samples that output each bit value qc = state_init+measure_circuit counts = execute(qc, sim, shots=shots).result().get_counts() # calculate the probabilities for each computational basis probs = {} for output in ['00','01', '10', '11']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 Energy_meas.append( probs['00'] - probs['01'] - probs['10'] + probs['11'] ) E_sim.append(A * np.sum(np.array(Energy_meas))) # Run this cell to print out your results print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E_sim[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E_sim[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E_sim[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E_sim[3])) # reduced plank constant in (eV) and the speed of light(cgs units) hbar, c = 4.1357e-15, 3e10 # energy difference between the triplets and singlet E_del = abs(E_sim[0] - E_sim[3]) # frequency associated with the energy difference f = E_del/hbar # convert frequency to wavelength in (cm) wavelength = c/f print('The wavelength of the radiation from the transition\ in the hyperfine structure is : {:.1f} cm'.format(wavelength)) provider = IBMQ.load_account() backend = provider.get_backend('ibmq_athens') # run this cell to get the backend information through the widget backend # assign your choice for the initial layout to the list variable `initial_layout`. initial_layout = qc_all = [state_init+measure_circuit for state_init in [Tri1,Tri2,Tri3,Sing] for measure_circuit in [measure_XX, measure_YY, measure_ZZ] ] shots = 8192 job = execute(qc_all, backend, initial_layout=initial_layout, optimization_level=3, shots=shots) print(job.job_id()) job_monitor(job) # getting the results of your job results = job.result() ## To access the results of the completed job #results = backend.retrieve_job('job_id').result() def Energy(results, shots): """Compute the energy levels of the hydrogen ground state. Parameters: results (obj): results, results from executing the circuits for measuring a hamiltonian. shots (int): shots, number of shots used for the circuit execution. Returns: Energy (list): energy values of the four different hydrogen ground states """ E = [] A = 1.47e-6 for ind_state in range(4): Energy_meas = [] for ind_comp in range(3): counts = results.get_counts(ind_state*3+ind_comp) # calculate the probabilities for each computational basis probs = {} for output in ['00','01', '10', '11']: if output in counts: probs[output] = counts[output]/shots else: probs[output] = 0 Energy_meas.append( probs['00'] - probs['01'] - probs['10'] + probs['11'] ) E.append(A * np.sum(np.array(Energy_meas))) return E E = Energy(results, shots) print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E[3])) from qiskit.ignis.mitigation.measurement import * # your code to create the circuits, meas_calibs, goes here meas_calibs, state_labels = # execute meas_calibs on your choice of the backend job = execute(meas_calibs, backend, shots = shots) print(job.job_id()) job_monitor(job) cal_results = job.result() ## To access the results of the completed job #cal_results = backend.retrieve_job('job_id').result() # your code to obtain the measurement filter object, 'meas_filter', goes here results_new = meas_filter.apply(results) E_new = Energy(results_new, shots) print('Energy expection value of the state Tri1 : {:.3e} eV'.format(E_new[0])) print('Energy expection value of the state Tri2 : {:.3e} eV'.format(E_new[1])) print('Energy expection value of the state Tri3 : {:.3e} eV'.format(E_new[2])) print('Energy expection value of the state Sing : {:.3e} eV'.format(E_new[3])) # results for the energy estimation from the simulation, # execution on a quantum system without error mitigation and # with error mitigation in numpy array format Energy_exact, Energy_exp_orig, Energy_exp_new = np.array(E_sim), np.array(E), np.array(E_new) # Calculate the relative errors of the energy values without error mitigation # and assign to the numpy array variable `Err_rel_orig` of size 4 Err_rel_orig = # Calculate the relative errors of the energy values with error mitigation # and assign to the numpy array variable `Err_rel_new` of size 4 Err_rel_new = np.set_printoptions(precision=3) print('The relative errors of the energy values for four bell basis\ without measurement error mitigation : {}'.format(Err_rel_orig)) np.set_printoptions(precision=3) print('The relative errors of the energy values for four bell basis\ with measurement error mitigation : {}'.format(Err_rel_new))
https://github.com/conradhaupt/Qiskit-Bayesian-Inference-Module-QCA19-
conradhaupt
# Import major packages import qiskit as qk import qinfer as qf import numpy as np import matplotlib as mpl # Qiskit imports for IQPE from qiskit import IBMQ from qiskit.aqua.algorithms.single_sample import IQPE,QPE from qiskit.aqua.components import iqfts from qiskit.aqua.operators import WeightedPauliOperator from qiskit.aqua.algorithms import ExactEigensolver from qiskit.aqua.components.initial_states import Custom from qiskit import Aer,execute from qiskit.aqua import QuantumInstance from qiskit.providers.aer import noise # QInfer imports for modelling the IQPE algorithm from qinfer import distributions from qinfer.smc import SMCUpdater # The QInfer Sequantial Monte-Carlo Sampler from qinfer import FiniteOutcomeModel # Tertiary imports import matplotlib.pyplot as plt import time # Intial setup IBMQ.load_account() ibmqx_provider = IBMQ.get_provider(hub='ibm-q-wits', group='internal', project='default') mpl.rc('text', usetex=True) # Function definitions for the entire notebook EPS = 1e-15 def chop(value): if np.abs(value) <= EPS: return 0 else: return value def radiandiff(a,b): FULL_ROTATION = 2 * np.pi return np.min(np.abs([a - b, b - a, a - b + FULL_ROTATION, b - a + FULL_ROTATION])) def complexfromangle(angle): real = chop(np.real(np.exp(1.j * angle))) imag = chop(np.imag(np.exp(1.j * angle))) return real,imag # Set-up unitary with specified phase angle = 4 * np.pi / 5 real,imag = complexfromangle(angle) PAULI_DICT_ZZ = { 'paulis': [ {"coeff": {"imag": imag, "real": real}, "label": "ZZ"} ] } QUBIT_OP_ZZ = WeightedPauliOperator.from_dict(PAULI_DICT_ZZ) eigen_results = ExactEigensolver(QUBIT_OP_ZZ,4).run() eigen_value = eigen_results['eigvals'][0] eigen_vector = eigen_results['eigvecs'][0] print('Eigenvalues',eigen_results['eigvals']) print('Phase is %.4f radians' %(angle)) # Setup initial state as eigenvector state_in = Custom(QUBIT_OP_ZZ.num_qubits, state_vector=eigen_vector) # Use QASM Simulator for testing simulator = Aer.get_backend('qasm_simulator') # Construct IQPE circuit and simulate iqpe_builder = IQPE( QUBIT_OP_ZZ, state_in, num_iterations=1, num_time_slices=1, expansion_mode='suzuki', expansion_order=1, shallow_circuit_concat=True) # This is required to setup iqpe_builder so we can call construct_circuit() later on iqpe_results = iqpe_circ = iqpe_builder.run(simulator,shots=1) # Extend the QInfer FiniteOutcomeModel as IQPE has only one bit per measure class IQPEModel(FiniteOutcomeModel): def __init__(self): super(IQPEModel, self).__init__() # Number of parameters overwhich to conduct the Bayesian Inference @property def n_modelparams(self): # phi return 1 # Number of parameters that are needed for the simulation but are known. # i.e. do not need to be inferred @property def expparams_dtype(self): return [('theta','float64'), ('m','int64')] @property def is_n_outcomes_constant(self): return True # This function will verify whether the new inferred model parameters are valid for our model. @staticmethod def are_models_valid(modelparams): # NOTE: If T2 is included as a model parameter, restrict it to positive return np.logical_and(modelparams[:] >= -2*np.pi, modelparams[:]<=2*np.pi, modelparams[:] > 0).all(axis=1) def n_outcomes(self, expparams): return 2 # This function implements our probability for reading a 0 or 1 on our IQPE circuit. # These equations are taken from [1] and are used by the updater/sampler to modify the posterior def likelihood(self, outcomes, modelparams, expparams): super(IQPEModel, self).likelihood(outcomes, modelparams, expparams) # Probability of getting 0 for IQPE is # P(0) = (1 + cos(M(theta - phi)))/2 # P(1) = (1 - cos(M(theta - phi)))/2 # This is the probability of getting a 0 with T2 depolarisation noise from [1]. # Not currently used. # pr0 = np.exp(-expparams['m'] / expparams['T2']) * (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 + (1 - np.exp(-expparams['m'] / expparams['T2']))/2 pr0 = (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 return FiniteOutcomeModel.pr0_to_likelihood_array(outcomes, pr0) # As our model parameter is an angle, ensure we have the circular mean for the distribution so we allow # for wraparound. This is done by converting angles to x,y points on a unit circle, averaging over # x and y independently, and then combining the resulting average x and y values to create a new # vector. If the resulting magnitude is 0, there is no circular average as all points are equi-distant. # The resulting angle is approximately the circular average of the collection of angles/phases. class PhaseSMCUpdater(SMCUpdater): @staticmethod def particle_mean(weights,locations): locs = [complexfromangle(a) for a in locations.flatten()] loc_x = [] loc_y = [] for x,y in locs: loc_x.append(x) loc_y.append(y) avg_x = np.average(loc_x,weights=weights) avg_y = np.average(loc_y,weights=weights) avg_angle = np.angle(avg_x + 1.j*avg_y) avg_mag = np.sqrt(avg_x**2 + avg_y**2) return avg_angle # Bayesien Inference Parameters N_PARTICLES = 5000 # number of samples for PhaseSMCUpdater N_EXP = 25 # Number of times to choose a new theta USE_QISKIT_QASM_SIMULATOR = True # Toggle parameter if we don't want to run any circuit simulations SIM_N_SHOTS=1024 # number of shots for the circuit execution # DType list for experiment metric logging performance_dtype = [ ('outcome', 'i1'), ('est_mean', 'f8'), ('est_cov_mat', 'f8'), ('true_err', 'f8'), ('resample_count', 'i8'), ('elapsed_time', 'f8'), ('like_count', 'i8'), ('sim_count', 'i8'), ('bme', 'f8'), ('var', 'f8'), ('bme_err', 'f8') ] performance = np.empty((N_EXP), dtype=performance_dtype) # Set-up initial prior and QInfer model # prior = distributions.UniformDistribution([0, 2 * np.pi]) prior = distributions.NormalDistribution(angle,np.pi/4) model = IQPEModel() # Use IBMQX Rochester as the base device for the partially ideal noise-model. We backend_device = ibmqx_provider.get_backend('ibmq_rochester') partially_ideal_model = noise.device.basic_device_noise_model( backend_device.properties(),gate_error=False,readout_error=False, thermal_relaxation=False,standard_gates=True) data_backend = Aer.get_backend('qasm_simulator') # Create a Bayesian Inference Updater updater = PhaseSMCUpdater(model, N_PARTICLES, prior,zero_weight_policy='skip') # Set-up initial experimental parameters THETA = prior.sample()[0][0] M = 1 T2 = 100 posterior_marginal = [] ############################################## # Run for each experiment we defined earlier # ############################################## for idx_exp in range(N_EXP): # Define experimental parameters expparams = np.array([(M,THETA)], dtype=model.expparams_dtype) # Simulate IQPE circuit and get results for inference circuit = iqpe_builder.construct_circuit(k=M,omega=THETA,measurement=True) results = execute(circuit,simulator,shots=SIM_N_SHOTS,memory=True,noise_model=ideal_model) counts = results.result().get_counts() memory = results.result().get_memory() # Start by simulating and recording the data. # # Retrieve the outcome of the simulation either from the circuit simulation or a model simulation if USE_QISKIT_QASM_SIMULATOR: outcomes = np.array([[int(m) for m in memory]]) else: outcomes = model.simulate_experiment(np.array([[angle]]),expparams,repeat=SIM_N_SHOTS) outcomes = outcomes.reshape((1,outcomes.shape[0])) model._sim_count = 0 model._call_count = 0 # Time the update process # tic = toc = None # tic = time.time() # Update the posterior particles using the result of the circuit simulation updater.batch_update(outcomes, expparams) # performance[idx_exp]['elapsed_time'] = time.time() - tic # Record the performance of this updater. est_mean = updater.est_mean() performance[idx_exp]['est_mean'] = est_mean performance[idx_exp]['true_err'] = radiandiff(est_mean,angle) ** 2 performance[idx_exp]['est_cov_mat'] = updater.est_covariance_mtx() performance[idx_exp]['resample_count'] = updater.resample_count performance[idx_exp]['like_count'] = model.call_count performance[idx_exp]['sim_count'] = model.sim_count # Log print(idx_exp,'/',N_EXP,'[',M,THETA,est_mean,']') # Re-evaluate experiment parameters uniform_draw_01 = np.random.uniform(low=0.05,high=0.95) # uniform_draw_01 = np.random.uniform() cumsum_particles = np.cumsum(updater.particle_weights) draw_index = (cumsum_particles<= uniform_draw_01).argmin() THETA = updater.particle_locations[draw_index] # current_variance = updater.est_covariance_mtx()[0][0] # M=idx_exp % 6 + 1 posterior_marginal.append((updater.posterior_marginal())) print('Inference completed') # Plot for each iteration print(angle) fig_iter = plt.figure() ax_iter = plt.subplot(111) for x in posterior_marginal: # print(x[0],x[1]) _ = ax_iter.plot(x[0],x[1]) ax_iter.vlines(angle,ymin=0,ymax=2) _ = ax_iter.legend(['Iter ' + str(x) for x in range(len(posterior_marginal))]) _ = plt.grid() _ = plt.ylabel('PDF') _ = plt.xlabel(r'$\phi$') _ = plt.title('Posterior Marginal for some iterations') ax_qinfer = updater.plot_posterior_marginal(smoothing=0) plt.vlines(angle,ymin=0,ymax=3) plt.grid() _ = plt.ylabel('PDF') _ = plt.xlabel(r'$\phi$') _ = plt.title('IQPE Posterior') fig_true_err = plt.figure() ax_true_err = plt.subplot(111) ax_true_err.semilogy(performance['true_err']) ax_true_err.grid() _ = plt.xlabel('Iteration count') _ = plt.ylabel('True Error') _ = plt.title('True Error over each Iteration') fig_est_mean = plt.figure() ax_est_mean = plt.subplot(111) ax_est_mean.plot(performance['est_mean']) ax_est_mean.grid() ax_est_mean.hlines(angle,xmin=0,xmax=N_EXP) _ = plt.xlabel('Iteration count') _ = plt.ylabel('Estimated $\phi$ (mean)') _ = plt.title('Estimated Mean for each Iteration')
https://github.com/conradhaupt/Qiskit-Bayesian-Inference-Module-QCA19-
conradhaupt
# Import major packages import qiskit as qk import qinfer as qf import numpy as np import matplotlib as mpl # Qiskit imports for IQPE from qiskit import IBMQ from qiskit.aqua.algorithms.single_sample import IQPE,QPE from qiskit.aqua.components import iqfts from qiskit.aqua.operators import WeightedPauliOperator from qiskit.aqua.algorithms import ExactEigensolver from qiskit.aqua.components.initial_states import Custom from qiskit import Aer,execute from qiskit.aqua import QuantumInstance from qiskit.providers.aer import noise # QInfer imports for modelling the IQPE algorithm from qinfer import distributions from qinfer.smc import SMCUpdater # The QInfer Sequantial Monte-Carlo Sampler from qinfer import FiniteOutcomeModel # Tertiary imports import matplotlib.pyplot as plt import time # Intial setup IBMQ.load_account() ibmqx_provider = IBMQ.get_provider(hub='ibm-q-wits', group='internal', project='default') mpl.rc('text', usetex=True) # Function definitions for the entire notebook EPS = 1e-15 def chop(value): if np.abs(value) <= EPS: return 0 else: return value def radiandiff(a,b): FULL_ROTATION = 2 * np.pi return np.min(np.abs([a - b, b - a, a - b + FULL_ROTATION, b - a + FULL_ROTATION])) def complexfromangle(angle): real = chop(np.real(np.exp(1.j * angle))) imag = chop(np.imag(np.exp(1.j * angle))) return real,imag # Set-up unitary with specified phase angle = 4 * np.pi / 5 real,imag = complexfromangle(angle) PAULI_DICT_ZZ = { 'paulis': [ {"coeff": {"imag": imag, "real": real}, "label": "ZZ"} ] } QUBIT_OP_ZZ = WeightedPauliOperator.from_dict(PAULI_DICT_ZZ) eigen_results = ExactEigensolver(QUBIT_OP_ZZ,4).run() eigen_value = eigen_results['eigvals'][0] eigen_vector = eigen_results['eigvecs'][0] print('Eigenvalues',eigen_results['eigvals']) print('Phase is %.4f radians' %(angle)) # Setup initial state as eigenvector state_in = Custom(QUBIT_OP_ZZ.num_qubits, state_vector=eigen_vector) # Use QASM Simulator for testing simulator = Aer.get_backend('qasm_simulator') # Construct IQPE circuit and simulate iqpe_builder = IQPE( QUBIT_OP_ZZ, state_in, num_iterations=1, num_time_slices=1, expansion_mode='suzuki', expansion_order=1, shallow_circuit_concat=True) # This is required to setup iqpe_builder so we can call construct_circuit() later on iqpe_results = iqpe_circ = iqpe_builder.run(simulator,shots=1) # Extend the QInfer FiniteOutcomeModel as IQPE has only one bit per measure class IQPEModel(FiniteOutcomeModel): def __init__(self): super(IQPEModel, self).__init__() # Number of parameters overwhich to conduct the Bayesian Inference @property def n_modelparams(self): # phi return 1 # Number of parameters that are needed for the simulation but are known. # i.e. do not need to be inferred @property def expparams_dtype(self): return [('theta','float64'), ('m','int64')] @property def is_n_outcomes_constant(self): return True # This function will verify whether the new inferred model parameters are valid for our model. @staticmethod def are_models_valid(modelparams): # NOTE: If T2 is included as a model parameter, restrict it to positive return np.logical_and(modelparams[:] >= -2*np.pi, modelparams[:]<=2*np.pi, modelparams[:] > 0).all(axis=1) def n_outcomes(self, expparams): return 2 # This function implements our probability for reading a 0 or 1 on our IQPE circuit. # These equations are taken from [1] and are used by the updater/sampler to modify the posterior def likelihood(self, outcomes, modelparams, expparams): super(IQPEModel, self).likelihood(outcomes, modelparams, expparams) # Probability of getting 0 for IQPE is # P(0) = (1 + cos(M(theta - phi)))/2 # P(1) = (1 - cos(M(theta - phi)))/2 # This is the probability of getting a 0 with T2 depolarisation noise from [1]. # Not currently used. # pr0 = np.exp(-expparams['m'] / expparams['T2']) * (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 + (1 - np.exp(-expparams['m'] / expparams['T2']))/2 pr0 = (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 return FiniteOutcomeModel.pr0_to_likelihood_array(outcomes, pr0) # As our model parameter is an angle, ensure we have the circular mean for the distribution so we allow # for wraparound. This is done by converting angles to x,y points on a unit circle, averaging over # x and y independently, and then combining the resulting average x and y values to create a new # vector. If the resulting magnitude is 0, there is no circular average as all points are equi-distant. # The resulting angle is approximately the circular average of the collection of angles/phases. class PhaseSMCUpdater(SMCUpdater): @staticmethod def particle_mean(weights,locations): locs = [complexfromangle(a) for a in locations.flatten()] loc_x = [] loc_y = [] for x,y in locs: loc_x.append(x) loc_y.append(y) avg_x = np.average(loc_x,weights=weights) avg_y = np.average(loc_y,weights=weights) avg_angle = np.angle(avg_x + 1.j*avg_y) avg_mag = np.sqrt(avg_x**2 + avg_y**2) return avg_angle # Bayesien Inference Parameters N_PARTICLES = 5000 # number of samples for PhaseSMCUpdater N_EXP = 25 # Number of times to choose a new theta USE_QISKIT_QASM_SIMULATOR = True # Toggle parameter if we don't want to run any circuit simulations SIM_N_SHOTS=1024 # number of shots for the circuit execution # DType list for experiment metric logging performance_dtype = [ ('outcome', 'i1'), ('est_mean', 'f8'), ('est_cov_mat', 'f8'), ('true_err', 'f8'), ('resample_count', 'i8'), ('elapsed_time', 'f8'), ('like_count', 'i8'), ('sim_count', 'i8'), ('bme', 'f8'), ('var', 'f8'), ('bme_err', 'f8') ] performance = np.empty((N_EXP), dtype=performance_dtype) # Set-up initial prior and QInfer model # prior = distributions.UniformDistribution([0, 2 * np.pi]) prior = distributions.NormalDistribution(angle,np.pi/4) model = IQPEModel() # Use IBMQX Rochester as the base device for the partially ideal noise-model. We backend_device = ibmqx_provider.get_backend('ibmq_rochester') partially_ideal_model = noise.device.basic_device_noise_model( backend_device.properties(),gate_error=False,readout_error=False, thermal_relaxation=False,standard_gates=True) data_backend = Aer.get_backend('qasm_simulator') # Create a Bayesian Inference Updater updater = PhaseSMCUpdater(model, N_PARTICLES, prior,zero_weight_policy='skip') # Set-up initial experimental parameters THETA = prior.sample()[0][0] M = 1 T2 = 100 posterior_marginal = [] memory_list = [] theta_list = [] ############################################## # Run for each experiment we defined earlier # ############################################## for idx_exp in range(N_EXP): # Define experimental parameters expparams = np.array([(M,THETA)], dtype=model.expparams_dtype) # Simulate IQPE circuit and get results for inference circuit = iqpe_builder.construct_circuit(k=M,omega=THETA,measurement=True) results = execute(circuit,simulator,shots=SIM_N_SHOTS,memory=True,noise_model=ideal_model) counts = results.result().get_counts() memory = results.result().get_memory() memory_list.append(memory) theta_list.append(THETA.flatten()) # Start by simulating and recording the data. # # Retrieve the outcome of the simulation either from the circuit simulation or a model simulation if USE_QISKIT_QASM_SIMULATOR: outcomes = np.array([[int(m) for m in memory]]) else: outcomes = model.simulate_experiment(np.array([[angle]]),expparams,repeat=SIM_N_SHOTS) outcomes = outcomes.reshape((1,outcomes.shape[0])) model._sim_count = 0 model._call_count = 0 # Time the update process # tic = toc = None # tic = time.time() # Update the posterior particles using the result of the circuit simulation updater.batch_update(outcomes, expparams) # performance[idx_exp]['elapsed_time'] = time.time() - tic # Record the performance of this updater. est_mean = updater.est_mean() performance[idx_exp]['est_mean'] = est_mean performance[idx_exp]['true_err'] = radiandiff(est_mean,angle) ** 2 performance[idx_exp]['est_cov_mat'] = updater.est_covariance_mtx() performance[idx_exp]['resample_count'] = updater.resample_count performance[idx_exp]['like_count'] = model.call_count performance[idx_exp]['sim_count'] = model.sim_count # Log print(idx_exp,'/',N_EXP,'[',M,THETA,est_mean,']') # Re-evaluate experiment parameters uniform_draw_01 = np.random.uniform(low=0.05,high=0.95) # uniform_draw_01 = np.random.uniform() cumsum_particles = np.cumsum(updater.particle_weights) draw_index = (cumsum_particles<= uniform_draw_01).argmin() THETA = updater.particle_locations[draw_index] # current_variance = updater.est_covariance_mtx()[0][0] # M=idx_exp % 6 + 1 posterior_marginal.append((updater.posterior_marginal())) print('Inference completed') # Plot for each iteration print(angle) fig_iter = plt.figure() ax_iter = plt.subplot(111) for x in posterior_marginal: # print(x[0],x[1]) _ = ax_iter.plot(x[0],x[1]) ax_iter.vlines(angle,ymin=0,ymax=2) _ = ax_iter.legend(['Iter ' + str(x) for x in range(len(posterior_marginal[0:10]))]) _ = plt.grid() _ = plt.ylabel('Posterior') _ = plt.xlabel(r'$\phi$') _ = plt.title('Posterior Marginal for some iterations') plt.savefig('iterative_posterior.png',dpi=300) ax_qinfer = updater.plot_posterior_marginal(smoothing=0) plt.vlines(angle,ymin=0,ymax=3) plt.grid() _ = plt.ylabel('Posterior') _ = plt.xlabel(r'$\phi$') _ = plt.title('IQPE Posterior') plt.savefig('final_posterior.png',dpi=300) fig_true_err = plt.figure() ax_true_err = plt.subplot(111) ax_true_err.semilogy(performance['true_err']) ax_true_err.grid() _ = plt.xlabel('Iteration count') _ = plt.ylabel('True Error') _ = plt.title('True Error over each Iteration') plt.savefig('true_error.png',dpi=300) fig_est_mean = plt.figure() ax_est_mean = plt.subplot(111) ax_est_mean.plot(performance['est_mean']) ax_est_mean.grid() ax_est_mean.hlines(angle,xmin=0,xmax=N_EXP) _ = plt.xlabel('Iteration count') _ = plt.ylabel('Estimated $\phi$ (mean)') _ = plt.title('Estimated Mean for each Iteration') plt.savefig('mean.png',dpi=300) # Calculate the naive prediction of the IQPE phase, phi E_i = memory_list # Convert to integers theta_i = theta_list phi_i = [] for i,E in enumerate(E_i): # print(i,E) e = [int(v) for v in E] # Naive sum sum = 0 for v in e: sum += v p_i = sum / len(E) # Inverse naive phi approximation using expected value from experimental results phi = theta_i[i][0] - (np.arccos(1 - (2 * p_i))) / M phi_i.append(phi) # Plot the naive phi estimate plt.plot(phi_i) plt.grid() plt.hlines(angle,xmin=0,xmax=25) _ = plt.xlabel('Iteration Count') _ = plt.ylabel(r'$\phi$') _ = plt.title('Naive $\phi$ estimation using expectation values of experimental runs') plt.savefig('naive.png',dpi=300) # Disable TeX text rendering mpl.rc('text', usetex=False) # Render the IQPE circuit for M=1 and the last Theta used circuit = iqpe_builder.construct_circuit(k=1,omega=THETA,measurement=True) circ_fig = circuit.draw(output='mpl') circ_fig.savefig('iqpe_1.png',dpi=300) # Render the IQPE circuit for M=2 and the last Theta used circuit = iqpe_builder.construct_circuit(k=2,omega=THETA,measurement=True) circ_fig = circuit.draw(output='mpl') circ_fig.savefig('iqpe_2.png',dpi=300)
https://github.com/conradhaupt/Qiskit-Bayesian-Inference-Module-QCA19-
conradhaupt
import qiskit as qk import qinfer as qf from qiskit.aqua.algorithms.single_sample import IQPE,QPE from qiskit.aqua.components import iqfts from qiskit.aqua.operators import WeightedPauliOperator from qiskit.aqua.algorithms import ExactEigensolver from qiskit.aqua.components.initial_states import Custom import numpy as np from qiskit import Aer,execute from qiskit.aqua import QuantumInstance # We need distributions to model priors. from qinfer import distributions # The noisy coin model has already been implmented, so let's import it here. from qinfer.test_models import NoisyCoinModel # Next, we need to import the sequential Monte Carlo updater class. from qinfer.smc import SMCUpdater # We'll be demonstrating approximate likelihood evaluation (ALE) as well. from qinfer import ale from qinfer import FiniteOutcomeModel import matplotlib.pyplot as plt from scipy.stats import circmean import time EPS = 1e-15 def chop(value): if np.abs(value) <= EPS: return 0 else: return value def radiandiff(a,b): FULL_ROTATION = 2 * np.pi return np.min(np.abs([a - b, b - a, a - b + FULL_ROTATION, b - a + FULL_ROTATION])) # Set-up unitary with specified phase angle = np.pi / 3 real = chop(np.real(np.exp(1.j * angle))) imag = chop(np.imag(np.exp(1.j * angle))) PAULI_DICT_ZZ = { 'paulis': [ {"coeff": {"imag": imag, "real": real}, "label": "ZZ"} ] } QUBIT_OP_ZZ = WeightedPauliOperator.from_dict(PAULI_DICT_ZZ) eigen_results = ExactEigensolver(QUBIT_OP_ZZ,4).run() eigen_value = eigen_results['eigvals'][0] eigen_vector = eigen_results['eigvecs'][0] print('Eigenvalues',eigen_results['eigvals']) print('Phase is %.4f radians' %(angle)) # Setup initial state as eigenvector state_in = Custom(QUBIT_OP_ZZ.num_qubits, state_vector=eigen_vector) # Use QASM Simulator for testing simulator = Aer.get_backend('qasm_simulator') # Construct IQPE circuit and simulate iqpe_builder = IQPE( QUBIT_OP_ZZ, state_in, num_iterations=1, num_time_slices=1, expansion_mode='suzuki', expansion_order=1, shallow_circuit_concat=True) # This is required to setup iqpe_builder so we can call construct_circuit() later on iqpe_results = iqpe_circ = iqpe_builder.run(simulator,shots=1) class IQPEModel(FiniteOutcomeModel): def __init__(self): super(IQPEModel, self).__init__() ## PROPERTIES ## @property def n_modelparams(self): # phi return 1 # one for just phi, two for phi and T2 @property def expparams_dtype(self): return [('theta','float64'), ('m','int64')] @property def is_n_outcomes_constant(self): return True ## METHODS ## @staticmethod def are_models_valid(modelparams): # NOTE: If T2 is included as a model parameter, restrict it to positive return np.logical_and(modelparams[:] >= 0, modelparams[:]<=2*np.pi).all(axis=1) def n_outcomes(self, expparams): return 2 def likelihood(self, outcomes, modelparams, expparams): # We first call the superclass method, which basically # just makes sure that call count diagnostics are properly # logged. super(IQPEModel, self).likelihood(outcomes, modelparams, expparams) # Probability of getting 0 for IQPE is # P(0) = (1 + cos(M(theta - phi)))/2 # pr0 = np.exp(-expparams['m'] / expparams['T2']) * (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 + (1 - np.exp(-expparams['m'] / expparams['T2']))/2 pr0 = (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 # Concatenate over outcomes. return FiniteOutcomeModel.pr0_to_likelihood_array(outcomes, pr0) class PhaseSMCUpdater(SMCUpdater): @staticmethod def particle_mean(weights,locations): weighted_values = np.multiply(weights, locations) return circmean(weighted_values) N_PARTICLES = 5000 N_EXP = 20 USE_QISKIT_QASM_SIMULATOR = False SIM_N_SHOTS=4096 performance_dtype = [ ('outcome', 'i1'), ('est_mean', 'f8'), ('est_cov_mat', 'f8'), ('true_err', 'f8'), ('resample_count', 'i8'), ('elapsed_time', 'f8'), ('like_count', 'i8'), ('sim_count', 'i8'), ('bme', 'f8'), ('var', 'f8'), ('bme_err', 'f8') ] performance = np.empty((N_EXP), dtype=performance_dtype) # Set-up initial prior and QInfer model prior = distributions.UniformDistribution([0, 2 * np.pi]) # prior = distributions.NormalDistribution(np.pi,0.5) model = IQPEModel() # Set-up initial experimental parameters THETA = prior.sample()[0][0] M = 3 data_backend = Aer.get_backend('qasm_simulator') # Create a Bayesian Inference Updater updater = PhaseSMCUpdater(model, N_PARTICLES, prior) # For each experiment we defined earlier for idx_exp in range(N_EXP): # Define experimental parameters expparams = np.array([(M,THETA)], dtype=model.expparams_dtype) # Simulate IQPE circuit and get results for inference circuit = iqpe_builder.construct_circuit(k=M,omega=THETA,measurement=True) results = execute(circuit,simulator,shots=SIM_N_SHOTS,memory=True) counts = results.result().get_counts() memory = results.result().get_memory() # Start by simulating and recording the data. # Retrieve the outcome of the simulation either from the circuit simulation or a model simulation if USE_QISKIT_QASM_SIMULATOR: outcomes = np.array([[int(m) for m in memory]]) else: outcomes = model.simulate_experiment(np.array([[angle]]),expparams,repeat=SIM_N_SHOTS) outcomes = outcomes.reshape((1,outcomes.shape[0])) # performance['outcome'][idx_exp] = [outcomes] # Reset the like_count and sim_count # properties so that we can count how many were used # by this update. Note that this is a hack; # an appropriate method should be added to # Simulatable. model._sim_count = 0 model._call_count = 0 # Time the update process # tic = toc = None # tic = time.time() # Update the posterior particles using the result of the circuit simulation updater.batch_update(outcomes, expparams) # performance[idx_exp]['elapsed_time'] = time.time() - tic # Record the performance of this updater. est_mean = updater.est_mean() performance[idx_exp]['est_mean'] = est_mean performance[idx_exp]['true_err'] = radiandiff(est_mean,angle) ** 2 performance[idx_exp]['est_cov_mat'] = updater.est_covariance_mtx() performance[idx_exp]['resample_count'] = updater.resample_count performance[idx_exp]['like_count'] = model.call_count performance[idx_exp]['sim_count'] = model.sim_count # Re-evaluate experiment parameters uniform_draw_01 = np.random.uniform() cumsum_particles = np.cumsum(updater.particle_weights) draw_index = (cumsum_particles<= uniform_draw_01).argmin() THETA = updater.particle_locations[draw_index] current_variance = updater.est_covariance_mtx()[0][0] # M modification scheme min_M = 8 - int(np.mod(idx_exp,10)/2) # min_M = 4 M = int(np.max([min_M,np.ceil(1.25/np.sqrt(current_variance))])) print(min_M,M,THETA) print('Inference completed') plot = updater.plot_posterior_marginal()
https://github.com/conradhaupt/Qiskit-Bayesian-Inference-Module-QCA19-
conradhaupt
import qiskit as qk import qinfer as qf from qiskit.aqua.algorithms.single_sample import IQPE,QPE from qiskit.aqua.components import iqfts from qiskit.aqua.operators import WeightedPauliOperator from qiskit.aqua.algorithms import ExactEigensolver from qiskit.aqua.components.initial_states import Custom import numpy as np from qiskit import Aer,execute from qiskit.aqua import QuantumInstance # We need distributions to model priors. from qinfer import distributions # The noisy coin model has already been implmented, so let's import it here. from qinfer.test_models import NoisyCoinModel # Next, we need to import the sequential Monte Carlo updater class. from qinfer.smc import SMCUpdater # We'll be demonstrating approximate likelihood evaluation (ALE) as well. from qinfer import ale from qinfer import FiniteOutcomeModel import matplotlib.pyplot as plt from scipy.stats import circmean EPS = 1e-15 def chop(value): if np.abs(value) <= EPS: return 0 else: return value print(angle) angle = np.pi / 3 real = chop(np.real(np.exp(1.j * angle))) imag = chop(np.imag(np.exp(1.j * angle))) PAULI_DICT_ZZ = { 'paulis': [ {"coeff": {"imag": imag, "real": real}, "label": "ZZ"} ] } QUBIT_OP_ZZ = WeightedPauliOperator.from_dict(PAULI_DICT_ZZ) eigen_results = ExactEigensolver(QUBIT_OP_ZZ,4).run() eigen_value = eigen_results['eigvals'][0] eigen_vector = eigen_results['eigvecs'][0] eigen_results state_in = Custom(QUBIT_OP_ZZ.num_qubits, state_vector=eigen_vector) simulator = Aer.get_backend('qasm_simulator') iqpe_builder = IQPE( QUBIT_OP_ZZ, state_in, num_iterations=6, num_time_slices=1, expansion_mode='suzuki', expansion_order=3, shallow_circuit_concat=True) iqpe_results = iqpe_circ = iqpe_builder.run(simulator,shots=2048) iqpe_results output_results = iqpe_results['top_measurement_label'] output_results iqpe_results class IQPEModel(FiniteOutcomeModel): def __init__(self): super(IQPEModel, self).__init__() ## PROPERTIES ## @property def n_modelparams(self): # phi return 1 @property def expparams_dtype(self): # return [('theta','float64'), ('m','int64'),('T2','float64')] return [('theta','float64'), ('m','int64')] @property def is_n_outcomes_constant(self): return True ## METHODS ## @staticmethod def are_models_valid(modelparams): return np.logical_and(modelparams[:] >= 0, modelparams[:]<=2*np.pi).all(axis=1) def n_outcomes(self, expparams): return 2 def likelihood(self, outcomes, modelparams, expparams): # We first call the superclass method, which basically # just makes sure that call count diagnostics are properly # logged. super(IQPEModel, self).likelihood(outcomes, modelparams, expparams) # Probability of getting 0 for QPE is # P(0) = (1 + cos(M(theta - phi)))/2 # pr0 = np.exp(-expparams['m'] / expparams['T2']) * (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 + (1 - np.exp(-expparams['m'] / expparams['T2']))/2 pr0 = (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 # Concatenate over outcomes. return FiniteOutcomeModel.pr0_to_likelihood_array(outcomes, pr0) N_PARTICLES = 5000 N_EXP = 20 N_TRIALS = 1 prior = distributions.UniformDistribution([0, 2 * np.pi]) # prior = distributions.NormalDistribution(np.pi,0.5) model = IQPEModel() performance_dtype = [ ('outcome', 'i1'), ('est_mean', 'f8'), ('est_cov_mat', 'f8'), ('true_err', 'f8'), ('resample_count', 'i8'), ('elapsed_time', 'f8'), ('like_count', 'i8'), ('sim_count', 'i8'), ('bme', 'f8'), ('var', 'f8'), ('bme_err', 'f8') ] performance = np.empty((N_TRIALS, N_EXP), dtype=performance_dtype) true_params = np.empty((N_TRIALS, model.n_modelparams)) import time def radiandiff(a,b): FULL_ROTATION = 2 * np.pi return np.min(np.abs([a - b, b - a, a - b + FULL_ROTATION, b - a + FULL_ROTATION])) THETA = np.pi/3 # M = np.linspace(1,5) # n = 2 # expected_bit = np.float64(output_results[-n]) M = 3 T2 = 100 # expparams = np.array([(M,THETA,T2)], dtype=model.expparams_dtype) expparams = np.array([(M,THETA)], dtype=model.expparams_dtype) class PhaseSMCUpdater(SMCUpdater): @staticmethod def particle_mean(weights,locations): weighted_values = np.multiply(weights, locations) return circmean(weighted_values) simulator = Aer.get_backend('qasm_simulator') for idx_trial in range(N_TRIALS): # First, make new updaters using the constructors # defined above. updater = PhaseSMCUpdater(model, N_PARTICLES, prior) # # Sample true set of modelparams. # truemp = prior.sample() # true_params[idx_trial, :] = truemp # Now loop over experiments, updating each of the # updaters with the same data, so that we can compare # their estimation performance. print(idx_trial) circuit = iqpe_builder.construct_circuit(k=M,omega=THETA,measurement=True) results = execute(circuit,simulator,shots=4096,memory=True) counts = results.result().get_counts() memory = results.result().get_memory() print(counts) for idx_exp in range(N_EXP): # Make a short hand for indexing the current simulation # and experiment. idxs = np.s_[idx_trial, idx_exp] # Start by simulating and recording the data. ######################################### ######################################### ######################################### ######################################### ######################################### ######################################### ######################################### ######################################### USE_QISKIT_QASM_SIMULATOR = False if USE_QISKIT_QASM_SIMULATOR: outcome = int(memory[idx_exp]) else: outcome = model.simulate_experiment(np.array([[angle]]),expparams) ######################################### ######################################### ######################################### ######################################### ######################################### ######################################### ######################################### ######################################### performance['outcome'][idxs] = outcome # print(outcome) # Reset the like_count and sim_count # properties so that we can count how many were used # by this update. Note that this is a hack; # an appropriate method should be added to # Simulatable. model._sim_count = 0 model._call_count = 0 # Time the actual update. tic = toc = None tic = time.time() updater.update(outcome, expparams) performance[idxs]['elapsed_time'] = time.time() - tic # Record the performance of this updater. # weighted_values = np.multiply(updater.particle_weights, updater.particle_locations) # est_mean = circmean(weighted_values) est_mean = updater.est_mean() performance[idxs]['est_mean'] = est_mean performance[idxs]['true_err'] = radiandiff(est_mean,angle) ** 2 # performance[idxs]['true_err'] = np.abs(est_mean - truemp) ** 2 performance[idxs]['est_cov_mat'] = updater.est_covariance_mtx() performance[idxs]['resample_count'] = updater.resample_count performance[idxs]['like_count'] = model.call_count performance[idxs]['sim_count'] = model.sim_count # Finally, record the ideal stats. # performance[idxs]['bme'], performance[idxs]['var'] = exactBME( # idx_exp + 1 - np.sum(performance[idxs]['outcome']), idx_exp + 1, # ALPHA, BETA # ) # performance[idxs]['bme'], # performance[idxs]['bme_err'] = np.abs(performance[idxs]['bme'] - truemp) ** 2 print('Done!') # plt.semilogy(np.mean(performance['true_err'],axis=0)) updater.plot_posterior_marginal() counts def averageofcounts(counts): # print(dir(counts)) sum = 0 count = 0 for k,v in counts.items(): key_val = int(k) sum += key_val * v count += v return sum / count model = IQPEModel() n_meas = 25 prior = distributions.UniformDistribution([0, 1]) updater = PhaseSMCUpdater(model, 2000, prior) heuristic = qf.ExpSparseHeuristic(updater) true_params = 1 est_hist = [] for m in range(25): print('Infering for m=%d' % (m)) THETA = np.pi M = 4 T2 = 100 experiment = np.array([(M,THETA,T2)], dtype=model.expparams_dtype) # experiment = np.array([(m, n_meas)], dtype=model.expparams_dtype) # datum = model.simulate_experiment(true_params, experiment) circuit = iqpe_builder.construct_circuit(k=M,omega=THETA,measurement=True) n_shots = 4096 results = execute(circuit,simulator,shots=n_shots) counts = results.result().get_counts() datum = averageofcounts(counts) # print(datum) updater.update(datum, experiment) est_hist.append(updater.est_mean()) plt.plot(est_hist, label='Est.') plt.hlines(true_params, 0, 20, label='True') plt.legend(ncol=2) plt.xlabel('# of Times Sampled (25 measurements/ea)') plt.ylabel('Measured value')
https://github.com/junayed-hasan/Quantum-Machine-Learning-Qiskit-PyTorch
junayed-hasan
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.draw('mpl') from qiskit.visualization import plot_state_hinton sim = Aer.get_backend('statevector_simulator') # qasm_simulator, statevector_simulator, unitary_simulator result = execute(qc, backend=sim).result() state = result.get_statevector(qc) plot_state_hinton(state) from qiskit.visualization import * from matplotlib import style style.use('bmh') style.use('dark_background') plot_state_city(state) plot_state_paulivec(result.get_statevector(qc)) from qiskit import IBMQ IBMQ.load_account() from qiskit.tools.monitor import job_monitor provider = IBMQ.get_provider(hub='ibm-q', group='open') backend = provider.get_backend('ibmq_santiago') job = execute(qc, backend=backend, shots=8192) job_monitor(job) from qiskit.visualization import plot_histogram result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/AntonSimen06/qGAN
AntonSimen06
from qiskit import * from qiskit.visualization import * import matplotlib.pyplot as plt import numpy as np import math simulator = BasicAer.get_backend('qasm_simulator') prob_distr = [8, 40, 35, 20, 15, 10, 5, 5] #normalization prob_distr = [k/sum(prob_distr) for k in prob_distr] plt.bar(range(len(prob_distr)),prob_distr) def ansatz(param, num_layers): num_q = 3 qc = QuantumCircuit(num_q, num_q) for j in range(num_layers): for i in range(num_q): qc.ry(param[i + j*num_q], i) if j < num_layers-1: qc.cx(0,1) qc.cx(1,2) qc.cx(2,0) qc.barrier() qc.measure(range(num_q), range(num_q)) return qc ansatz(param = np.random.uniform(0, np.pi, 9), num_layers=3).draw('mpl',fold=-1) num_layers = 5 def loss_function(params): num_shots=1024 circ = ansatz(param=params, num_layers=num_layers) counts = execute(circ, backend=simulator, shots=num_shots).result().get_counts(circ) strings = ['000','001','010','011','100','101','110','111'] for i in strings: if i not in counts: counts[i] = 0 p = [counts[string]/num_shots for string in strings] """ cross_entropy = 0 for i in range(len(p)): if p[i]>0: cross_entropy -= prob_distr[i]*math.log2(p[i]) return cross_entropy """ return sum([(p[i] - prob_distr[i])**2 for i in range(len(prob_distr))]) #return sum([abs(p[i] - prob_distr[i]) for i in range(len(prob_distr))]) #return sum([ prob_distr[i]*math.log2(p[i]) for i in range(len(prob_distr))]) from qiskit.algorithms.optimizers import COBYLA,SLSQP,SPSA optimizer = COBYLA(250) ret = optimizer.optimize(num_vars=num_params, objective_function=loss_function, initial_point=np.ones(num_params)) num_shots = 1024 trained_circ = ansatz(param=ret[0], num_layers=num_layers) counts = execute(trained_circ, backend=simulator, shots=num_shots).result().get_counts(trained_circ) strings = ['000','001','010','011','100','101','110','111'] for k in strings: if k not in counts: counts[k]=0 counts = [counts[i]/1024 for i in strings] plt.plot(range(len(counts)),counts, color='r') plt.bar(range(len(prob_distr)), prob_distr) plt.legend(["qGAN approx.", "Reference"]) plt.title("Probability distributions") plt.grid()
https://github.com/mberna/qce23-qiskit-runtime-primitives-tutorial
mberna
# instantiate runtime service from qiskit_ibm_runtime import QiskitRuntimeService QiskitRuntimeService.save_account(channel="ibm_quantum", token="MY_IBM_QUANTUM_TOKEN") service = QiskitRuntimeService(channel="ibm_quantum") # import required libraries and instantiate runtime service from qiskit_ibm_runtime import Session, Estimator, Options from qiskit.circuit.library import RealAmplitudes from qiskit.quantum_info import SparsePauliOp # create circuits and observables psi1 = RealAmplitudes(num_qubits=2, reps=2) psi2 = RealAmplitudes(num_qubits=2, reps=3) H1 = SparsePauliOp.from_list([("II", 1), ("IZ", 2), ("XI", 3)]) H2 = SparsePauliOp.from_list([("IZ", 1)]) H3 = SparsePauliOp.from_list([("ZI", 1), ("ZZ", 1)]) psi1.decompose().draw(output='mpl') psi2.decompose().draw(output='mpl') import numpy as np # generate random theta params np.random.seed(0) theta1 = np.random.rand(6) * np.pi theta2 = np.random.rand(8) * np.pi theta3 = np.random.rand(6) * np.pi print(theta1) print(theta2) print(theta3) options = Options() options.execution.shots = 100 estimator = Estimator(backend="ibmq_qasm_simulator", options=options) from qiskit_ibm_runtime import Options options = Options(resilience_level=0) options.execution.shots = 1024 estimator = Estimator(backend="ibmq_qasm_simulator", options=options) # calculate [ <psi1(theta1)|H1|psi1(theta1)> ] psi1_H1 = estimator.run(circuits=[psi1], observables=[H1], parameter_values=[theta1]) print(psi1_H1.result()) # You can invoke run() multiple times! # calculate [ <psi1(theta1)|H2|psi1(theta1)>, <psi1(theta1)|H3|psi1(theta1)> ] psi1_H23 = estimator.run(circuits=[psi1, psi1], observables=[H2, H3], parameter_values=[theta1]*2) print(psi1_H23.result()) # Ex. 1: Calculate [ <psi2(theta2)|H2|psi2(theta2)> ] # psi2_H2 = ... # Ex. 2 calculate [ <psi1(theta1)|H1|psi1(theta1)>, # <psi2(theta2)|H2|psi2(theta2)>, # <psi1(theta3)|H3|psi1(theta3)> ] # psi12_H23 = ... # Ex. 3: use optimization_level 3 options = Options() # options... # hint: use autocomplete with Session(service=service, backend="ibmq_qasm_simulator") as session: estimator = Estimator(session=session, options=options) theta4 = [0, 1, 1, 2, 3, 5] # calculate [ <psi1(theta1)|H1|psi1(theta1)> ] psi1_H1 = estimator.run(circuits=[psi1], observables=[H1], parameter_values=[theta4]) print(psi1_H1.result()) # Ex. 4: Apply ZNE to the following example # Remeber ZNE is enabled when resilience level is 2 options = Options() # options... # hint: use autocomplete estimator = Estimator(backend="ibmq_qasm_simulator", options=options) theta4 = [0, 1, 1, 2, 3, 5] psi1_H1 = estimator.run(circuits=[psi1], observables=[H1], parameter_values=[theta4]) print(psi1_H1.result()) from qiskit import QuantumCircuit from qiskit_ibm_runtime import Sampler bell = QuantumCircuit(2) bell.h(0) bell.cx(0, 1) bell.measure_all() sampler = Sampler(backend="ibmq_qasm_simulator") # Not passing any options, uses M3 job = sampler.run(circuits=bell) print(job.result()) # You can invoke run() multiple times. job = sampler.run(circuits=bell) print(job.result())
https://github.com/mberna/qce23-qiskit-runtime-primitives-tutorial
mberna
from qiskit_ibm_runtime import QiskitRuntimeService, Estimator, Options # Initialize service service = QiskitRuntimeService(channel="ibm_quantum") # Choose a backend to run on (you can change this to another backend that is available) backend = service.get_backend("ibm_canberra") from pprint import pprint from qiskit import QuantumCircuit from qiskit.circuit import Parameter import qiskit.quantum_info as qi # Specify a 1D chain of device qubits to use initial_layout = [2, 3, 5, 8] num_qubits = len(initial_layout) # Parameterized Trotter layer par_rx = Parameter("a") par_rzz = Parameter("b") trotter_layer = QuantumCircuit(num_qubits) trotter_layer.rx(par_rx, range(num_qubits)) for i in range(num_qubits // 2): trotter_layer.rzz(par_rzz, 2 * i, 1 + 2 * i) for i in range(1, num_qubits // 2 + bool(num_qubits % 2)): trotter_layer.rzz(par_rzz, 2 * i - 1, 2 * i) # Run for 1 to 5 steps trotter_steps = [1, 2, 3, 4, 5] trotter_circuit_list = [] for i in trotter_steps: trotter_circuit = QuantumCircuit(num_qubits) for _ in range(i): trotter_circuit = trotter_circuit.compose(trotter_layer) trotter_circuit_list.append(trotter_circuit) print(f'Trotter circuit with {i} Trotter steps') display(trotter_circuit.draw(fold=-1)) import numpy as np import qiskit.quantum_info as qi # Hamiltonian parameters params = [0.1, -0.2] params_list = [params] * len(trotter_circuit_list) # Observable Zs = np.eye(num_qubits, dtype=bool) Xs = np.zeros((num_qubits, num_qubits), dtype=bool) obs = qi.SparsePauliOp(qi.PauliList.from_symplectic(Zs, Xs), 1/num_qubits) obs_list = [obs]*len(trotter_circuit_list) # If True run jobs, this can be set to false to avoid re-running jobs when re-running the notebok # If you are loading saved jobs run_sim_jobs = True run_device_jobs = False # Store all jobs if run_sim_jobs or run_device_jobs: jobs = {} jobs_ids = {} import numpy as np import scipy.linalg as la import qiskit.quantum_info as qi from qiskit_aer.noise import NoiseModel, coherent_unitary_error backend_simulator = service.get_backend("ibmq_qasm_simulator") # Noise model with measure noise, depolarizing and thermal relaxation gate noise noise_model_rodept1 = NoiseModel.from_backend(backend()) # Noise model without measure noise, with depolarizing and thermal relaxation gate noise noise_model_dept1 = NoiseModel.from_backend(backend(), readout_error=False, gate_error=True, thermal_relaxation=True) # Noise model with measure noise and with depolarizing gate noise noise_model_rodep = NoiseModel.from_backend(backend(), readout_error=True, gate_error=True, thermal_relaxation=False) # Noise model with only measure noise noise_model_ro = NoiseModel.from_backend(backend(), readout_error=True, gate_error=False, thermal_relaxation=False) # Noise model with only depolarizing gate noise noise_model_dep = NoiseModel.from_backend(backend(), readout_error=False, gate_error=True, thermal_relaxation=False) # Noise model with only coherent CX gate noise noise_model_coh = NoiseModel.from_backend(backend(), readout_error=False, gate_error=False, thermal_relaxation=False) # Noise model with measure noise and coherent CX gate noise noise_model_rocoh = NoiseModel.from_backend(backend(), readout_error=True, gate_error=False, thermal_relaxation=False) # Construct the coherent CX noise model errors based on the process fidelity so that they have the # same process fidelity as the depolarizing errors of the depolarizing noise model for qubits, error in noise_model_dep._local_quantum_errors['cx'].items(): cos2 = qi.process_fidelity(error) theta = np.arccos(np.sqrt(cos2)) cx_err = coherent_unitary_error(la.expm(-1j * 0.05 * qi.Operator.from_label("ZZ"))) noise_model_coh.add_quantum_error(cx_err, "cx", qubits) noise_model_rocoh.add_quantum_error(cx_err, "cx", qubits) # Labels for noise models noise_labels = [ "Ideal", "Measure + Depol + Relax", "Depol + Relax", "Measure + Depol", "Measure", "Depol", "Measure + Coherent", "Coherent", ] # List of labeled noise models noise_models = [ None, noise_model_rodept1, noise_model_dept1, noise_model_rodep, noise_model_ro, noise_model_dep, noise_model_rocoh, noise_model_coh, ] # Label for option configuration label_mit = "Unmitigated" if label_mit not in jobs: jobs[label_mit] = {} if run_sim_jobs: # Configure estimator options options = Options() options.resilience_level = 0 options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 options.simulator.basis_gates = backend.configuration().basis_gates options.simulator.coupling_map = backend.configuration().coupling_map options.simulator.seed_simulator = 1337 # Run jobs for label, noise_model in zip(noise_labels, noise_models): options.simulator.noise_model = noise_model estimator = Estimator(backend_simulator, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "Gate Twirling" if label_mit not in jobs: jobs[label_mit] = {} if run_sim_jobs: # Configure estimator options options = Options() options.resilience_level = 0 options.twirling.gates = True options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 options.simulator.basis_gates = backend.configuration().basis_gates options.simulator.coupling_map = backend.configuration().coupling_map options.simulator.seed_simulator = 1337 for label, noise_model in zip(noise_labels, noise_models): options.simulator.noise_model = noise_model estimator = Estimator(backend_simulator, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "TREX wo Gate Twirling" if label_mit not in jobs: jobs[label_mit] = {} if run_sim_jobs: # Configure estimator options options = Options() options.resilience_level = 1 options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 options.simulator.basis_gates = backend.configuration().basis_gates options.simulator.coupling_map = backend.configuration().coupling_map options.simulator.seed_simulator = 1337 for label, noise_model in zip(noise_labels, noise_models): options.simulator.noise_model = noise_model estimator = Estimator(backend_simulator, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "TREX w Gate Twirling" if label_mit not in jobs: jobs[label_mit] = {} if run_sim_jobs: # Configure estimator options options = Options() options.resilience_level = 1 options.twirling.gates = True options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 options.simulator.basis_gates = backend.configuration().basis_gates options.simulator.coupling_map = backend.configuration().coupling_map options.simulator.seed_simulator = 1337 for label, noise_model in zip(noise_labels, noise_models): options.simulator.noise_model = noise_model estimator = Estimator(backend_simulator, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "ZNE w TREX, Gate Twirling" if label_mit not in jobs: jobs[label_mit] = {} if run_sim_jobs: # Configure estimator options options = Options() options.resilience_level = 2 options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 options.simulator.basis_gates = backend.configuration().basis_gates options.simulator.coupling_map = backend.configuration().coupling_map options.simulator.seed_simulator = 1337 for label, noise_model in zip(noise_labels, noise_models): options.simulator.noise_model = noise_model estimator = Estimator(backend_simulator, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "ZNE w TREX wo Gate Twirling" if label_mit not in jobs: jobs[label_mit] = {} if run_sim_jobs: # Configure estimator options options = Options() options.resilience_level = 2 options.execution.shots = 4 ** 7 options.twirling.gates = False options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 options.simulator.basis_gates = backend.configuration().basis_gates options.simulator.coupling_map = backend.configuration().coupling_map options.simulator.seed_simulator = 1337 for label, noise_model in zip(noise_labels, noise_models): options.simulator.noise_model = noise_model estimator = Estimator(backend_simulator, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "ZNE wo TREX, Gate Twirling" if label_mit not in jobs: jobs[label_mit] = {} if run_sim_jobs: # Configure estimator options options = Options() options.resilience_level = 2 options.execution.shots = 4 ** 7 options.twirling.gates = False options.twirling.measure = False options.resilience.measure_noise_mitigation = False options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 options.simulator.basis_gates = backend.configuration().basis_gates options.simulator.coupling_map = backend.configuration().coupling_map options.simulator.seed_simulator = 1337 for label, noise_model in zip(noise_labels, noise_models): options.simulator.noise_model = noise_model estimator = Estimator(backend_simulator, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "PEC" if label_mit not in jobs: jobs[label_mit] = {} if run_sim_jobs: # Configure estimator options options = Options() options.resilience_level = 3 options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 options.simulator.basis_gates = backend.configuration().basis_gates options.simulator.coupling_map = backend.configuration().coupling_map options.simulator.seed_simulator = 1337 for label, noise_model in zip(noise_labels, noise_models): options.simulator.noise_model = noise_model estimator = Estimator(backend_simulator, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "Unmitigated" label = "Real Device" if label_mit not in jobs: jobs[label_mit] = {} if run_device_jobs: # Configure estimator options options = Options() options.resilience_level = 0 options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 estimator = Estimator(backend, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "Gate Twirling" label = "Real Device" if label_mit not in jobs: jobs[label_mit] = {} if run_device_jobs: # Configure estimator options options = Options() options.resilience_level = 0 options.twirling.gates = True options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 estimator = Estimator(backend, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "TREX wo Gate Twirling" label = "Real Device" if label_mit not in jobs: jobs[label_mit] = {} if run_device_jobs: # Configure estimator options options = Options() options.resilience_level = 1 options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 estimator = Estimator(backend, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "TREX w Gate Twirling" label = "Real Device" if label_mit not in jobs: jobs[label_mit] = {} if run_device_jobs: # Configure estimator options options = Options() options.resilience_level = 1 options.twirling.gates = True options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 estimator = Estimator(backend, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "ZNE w TREX, Gate Twirling" label = "Real Device" if label_mit not in jobs: jobs[label_mit] = {} if run_device_jobs: # Configure estimator options options = Options() options.resilience_level = 2 options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 estimator = Estimator(backend, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "ZNE w TREX wo Gate Twirling" label = "Real Device" if label_mit not in jobs: jobs[label_mit] = {} if run_device_jobs: # Configure estimator options options = Options() options.resilience_level = 2 options.execution.shots = 4 ** 7 options.twirling.gates = False options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 estimator = Estimator(backend, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "ZNE wo TREX, Gate Twirling" label = "Real Device" if label_mit not in jobs: jobs[label_mit] = {} if run_device_jobs: # Configure estimator options options = Options() options.resilience_level = 2 options.execution.shots = 4 ** 7 options.twirling.gates = False options.twirling.measure = False options.resilience.measure_noise_mitigation = False options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 estimator = Estimator(backend, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} # Label for option configuration label_mit = "PEC" label = "Real Device" if label_mit not in jobs: jobs[label_mit] = {} if run_device_jobs: # Configure estimator options options = Options() options.resilience_level = 3 options.execution.shots = 4 ** 7 options.transpilation.initial_layout = initial_layout options.transpilation.seed_transpiler = 1337 estimator = Estimator(backend, options=options) job = estimator.run(trotter_circuit_list, obs_list, params_list) jobs[label_mit][label] = job print(job.job_id()) jobs_ids[label_mit] = {label: job.job_id() for label, job in jobs[label_mit].items()} pprint(jobs_ids) import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt # Configure MPL for plotting plt.rcParams.update({"text.usetex": True}) plt.rcParams["figure.figsize"] = (6, 4) mpl.rcParams["figure.dpi"] = 200 load_sim_jobs = True load_device_jobs = True from qiskit_ibm_runtime import QiskitRuntimeService # Re-initialize service if note book has been restarted since jobs ran service = QiskitRuntimeService(channel="ibm_quantum") jobs_ids = # Paste job IDs dict here # Load jobs from job ids jobs = {} for label_mit, jids in jobs_ids.items(): jobs[label_mit] = {} for label_noise, jid in jids.items(): if (label_noise == "Real Device" and load_device_jobs) or (label_noise != "Real Device" and load_sim_jobs): jobs[label_mit][label_noise] = service.job(jid) # Extract expectation value means and standard errors means_mit = {} stderrs_mit = {} for label_mit, jobs_mit in jobs.items(): means_mit[label_mit] = {} stderrs_mit[label_mit] = {} for label_noise, job in jobs_mit.items(): _means = None _stderrs = None if job.done(): result = job.result() _means = np.array(result.values) _stderrs = np.array([metadata["standard_error"] for metadata in result.metadata]) print(f"LOADED \t| {label_mit}\t| {label_noise}") else: print(f"{job.status().name}\t| {label_mit}\t| {label_noise}") means_mit[label_mit][label_noise] = _means stderrs_mit[label_mit][label_noise] = _stderrs # Prefix for saving figures fig_prefix = "estimator_trotter_6q" # Organize mitigation method labels for plotting labels_mit = [ 'Unmitigated', 'Gate Twirling', 'TREX w Gate Twirling', 'TREX wo Gate Twirling', 'ZNE wo TREX, Gate Twirling', 'ZNE w TREX wo Gate Twirling', 'ZNE w TREX, Gate Twirling', 'PEC', ] # Organize noise model labels for plotting labels_noise = [ 'Ideal', 'Real Device', 'Measure', 'Depol', 'Depol + Relax', 'Coherent', 'Measure + Depol', 'Measure + Depol + Relax', 'Measure + Coherent', ] # Generate subplots fig, axs = plt.subplots(3, 3, sharex=True, sharey=True, figsize=(10, 10)) # Flatten the array of axes for easy iteration axs = axs.ravel() # Add error bar plots to each subplot for label_noise in labels_noise: if label_noise == "Real Device": axs[0].plot([5], [0], 's-', c="red", label=label_noise) elif label_noise == "Ideal": continue else: axs[0].plot([5], [0], 'o--', label=label_noise) axs[0].legend() for ax, label_mit in zip(axs[1:], labels_mit): means = means_mit[label_mit] stderrs = stderrs_mit[label_mit] for label_noise in labels_noise: if label_noise != "Ideal" and means[label_noise] is not None and means["Ideal"] is not None: ys = means["Ideal"] - means[label_noise] yerrs = stderrs["Ideal"] + stderrs[label_noise] xs = 1 + np.arange(len(ys)) if label_noise == "Real Device": ax.errorbar(xs, ys, yerrs, fmt = 's-', c="red", capsize=4, label=label_noise) else: ax.errorbar(xs, ys, yerrs, fmt = 'o--', capsize=4, label=label_noise) ax.plot(xs, np.zeros_like(xs), ":", c="black") ax.set_title(label_mit) ax.set_xticks(xs) plt.tight_layout() plt.savefig(f"{fig_prefix}_mit_vs_noise.pdf") plt.show() # Generate subplots fig, axs = plt.subplots(3, 3, sharex=True, sharey=True, figsize=(10, 10)) # Flatten the array of axes for easy iteration axs = axs.ravel() # Add error bar plots to each subplot for ax, label_noise in zip(axs, labels_noise): for label_mit in labels_mit: means = means_mit[label_mit] stderrs = stderrs_mit[label_mit] if means[label_noise] is not None and means["Ideal"] is not None: ys = means["Ideal"] - means[label_noise] yerrs = stderrs["Ideal"] + stderrs[label_noise] xs = 1 + np.arange(len(ys)) if label_mit == "Unmitigated": ax.errorbar(xs, ys, yerrs, fmt = 's-', capsize=4, label=label_mit) else: ax.errorbar(xs, ys, yerrs, fmt = 'o--', capsize=4, label=label_mit) ax.plot(xs, np.zeros_like(xs), ":", c="black") if label_noise == "Real Device": title = label_noise else: title = f"{label_noise} Sim" ax.set_title(title) ax.set_xticks(xs) if label_noise == "Ideal": ax.legend() plt.tight_layout() plt.savefig(f"{fig_prefix}_noise_vs_mit.pdf") plt.show()
https://github.com/LFL-Lab/metal-library
LFL-Lab
# Qiskit Metal imports import qiskit_metal as metal from ... import OpenToGround from ... import RouteMeander # Custom Components imports from metal_library.components.inductive_coupler import InductiveCoupler class QubitCavity(): def __init__(self, design, options: dict component_name: str, ) TransmonCross(design, "transmon", options=options) return design
https://github.com/LFL-Lab/metal-library
LFL-Lab
import metal_library as mlib print(mlib.supported_components) reader = mlib.Reader(component_name='TransmonCross') print(reader) reader.component_types reader.get_characteristic_info(component_type="QubitOnly"); reader.get_characteristic_info(component_type="QubitCavity"); reader.get_characteristic_info(component_type="QubitDriveline"); reader = mlib.Reader(component_name='TransmonCross') reader.read_library(component_type='QubitOnly') #### REMINDER: don't skip the previous cell! selector = mlib.Selector(reader) print(selector) # You can find the supported metrics here... selector.__supported_metrics__ indexes, chars, best_geoms = selector.find_closest(target_params={"Qubit_Frequency_GHz": 5, "Qubit_Anharmonicity_MHz": 200}, num_top=3, metric="Euclidian", display=True) %load_ext autoreload %autoreload 2 # Qiskit Metal imports import qiskit_metal as metal from qiskit_metal import designs, draw from qiskit_metal import MetalGUI, Dict design = designs.DesignPlanar() gui = MetalGUI(design) reader.component_name from qiskit_metal.qlibrary.qubits.transmon_cross import TransmonCross # Parsing the best geometries best_options = best_geoms[0] second_best_options = best_geoms[1] third_best_options = best_geoms[2] # and so on.. so on... TransmonCross(design, "transmon", options=best_options) gui.rebuild() gui.zoom_on_components(['transmon']) gui.screenshot() reader = mlib.Reader(component_name='TransmonCross') reader.read_library(component_type='QubitCavity') # Note, we've change it from "QubitOnly" -> "QubitCavity" selector = mlib.Selector(reader) indexes, chars, best_geoms = selector.find_closest(target_params={"Qubit_Frequency_GHz": 5, "Qubit_Anharmonicity_MHz": 200, "Cavity_Frequency_GHz": 7, "Coupling_Strength_MHz": 70, "Cavity_Wavelength": "half", # acceptable inputs ["half", "quarter"], refers to wavelength of resonator "Feedline_Coupling": 'capacitive' #acceptable inputs ["capacitive", "inductive"], refers to } num_top=3, metric="Euclidian", display=True) %load_ext autoreload %autoreload 2 # Qiskit Metal imports import qiskit_metal as metal from qiskit_metal import designs, draw from qiskit_metal import MetalGUI, Dict design = designs.DesignPlanar() gui = MetalGUI(design) from metal_library.components import QubitCavity # Parsing the best geometries best_options = best_geoms[0] second_best_options = best_geoms[1] # and so on... design = QubitCavity(design, options=best_options) gui.rebuild() gui.autoscale() gui.screenshot()
https://github.com/LFL-Lab/metal-library
LFL-Lab
%load_ext autoreload %autoreload 2 %config IPython.sys.argv=['-Xfrozen_modules=off'] from qiskit_metal.designs.design_multiplanar import MultiPlanar import numpy as np import qiskit_metal as metal from qiskit_metal import designs, draw from qiskit_metal import MetalGUI, Dict, open_docs design = MultiPlanar(metadata={}, overwrite_enabled=True) # Design variables design._chips.main.size.size_x = '5mm' design._chips.main.size.size_y = '5mm' # Check if layer data is useable, if so launch GUI ls_unique = design.ls.is_layer_data_unique() if (ls_unique != True): raise ValueError('Layer data in `MultiPlanar` design is not unique') # gui = MetalGUI(design) metal.__version__ # Transmon from qiskit_metal.qlibrary.qubits.transmon_cross import TransmonCross xmon_options = Dict( connection_pads=Dict( readout = Dict(connector_location = '180')), ) # Create a new Transmon Cross object with name 'Q1' TransmonCross(design, 'transmon', options=xmon_options) # gui.rebuild() # rebuild the design and plot # gui.autoscale() #resize GUI to see QComponent from qiskit_metal.renderers.renderer_ansys_pyaedt.hfss_renderer_eigenmode_aedt import QHFSSEigenmodePyaedt import pyEPR as epr em1_aedt = QHFSSEigenmodePyaedt(design, 'Qubit_Sabrina_proj', 'Qubit_Sabrina_design', initiate=True) hfss_aedt = em1_aedt.current_app def render_design(): em1_aedt.render_design() def run_simulation(): #### Computer's variables num_cores=16 num_gpu=1 #### Setup Name setup_name = 'TransmonSetup' # Change Silicon to Ultracold Silicon hfss_aedt.materials['silicon'].permittivity = 11.45 # Add project variables add_project_level_vars(em1_aedt) # Clear setups if len(hfss_aedt.setups) != 0: hfss_aedt.setups[0].delete() # Add Setup setup_options = dict( name= setup_name, MinimumFrequency = 3, # GHz NumModes= 1, MaxDeltaFreq = 0.1, MaximumPasses= 1, MinimumPasses= None, MinimumConvergedPasses= 2, PercentRefinement= 30, BasisOrder= None ) em1_aedt.add_hfss_em_setup(**setup_options) hfss_aedt.analyze_setup(name=setup_name, num_cores=num_cores, num_gpu=num_gpu) # Make silicon ultra cold hfss_aedt.materials['silicon'].permittivity = 11.45 def add_project_level_vars(renderer): """ Finds all names, inductances, and capacitances of Josephson Junctions rendered into ANSYS. Args: renderer (QHFSSEigenmodePyaedt) """ # Get all josephson junctions from rendered components table geom_table = renderer.path_poly_and_junction_with_valid_comps all_jjs = geom_table.loc[geom_table['name'].str.contains('rect_jj')] all_jjs = all_jjs.reset_index(drop=True) for i, row in all_jjs.iterrows(): ### Parsing Data ### component = str(row['component']) name = str(row['name']) inductance = row['aedt_hfss_inductance'] # Lj in Henries capacitance = row['aedt_hfss_capacitance'] # Cj in Farads # Get ANSYS > Model > Sheet corresponding to JJs rect_name = 'JJ_rect_Lj_' + component + '_' + name # Get ANSYS > Model > Lines corresponding to JJs line_name = 'JJ_Lj_' + component + '_' + name + '_' ### Appending data ### # Add global Lj and Cj variables to ANSYS (for EPR analysis) ansys_Lj_name = f'Lj_{i}' ansys_Cj_name = f'Cj_{i}' renderer.set_variable(ansys_Lj_name, str(inductance * 1E9) + 'nH') renderer.set_variable(ansys_Cj_name, str(capacitance * 1E15) + 'fF') def run_analysis(): ''' After finishing simulation, analyze results ''' em1_aedt.run_epr() # Extract observables of int observables = extract_observables(em1_aedt.epr_quantum_analysis) return observables def extract_observables(epra, cos_trunc: int = 10, fock_trunc: int = 15): ''' Extract observables from EPR quantum analysis Args: epra (epr.QuantumAnalysis): Raw EPR Quanutm analysis class cos_trunc (int, optional): amount of terms to consider in cosine expansion fock_trunc (int, optional): size of fock space before truncation Returns: package (dict): simulated observables ''' # Extraction of variables omegas = epra.get_frequencies() chis = epra.get_chis() other_data = epra.data package = dict(qubit_freq_MHz = omegas['0'][0], qubit_anharmonicity_MHz = chis[0][0], other_data = str(other_data)) return package def run_single_design(): # this will be used as `custom_analysis` render_design() run_simulation() package = run_analysis() return package from metal_library.sweeper import QSweeper sweeper = QSweeper(design) sweep_parameters = dict( connection_pads = dict( readout = dict( connector_type = '0', claw_length = ['185um', '195um', '205um', '215um'], ground_spacing = ['4um', '5um', '7um', '9um', '10um'], claw_gap = ['5.1um'], claw_width = ['10um', '15um'] ) ), cross_width = ['30um'], cross_length = ['185um', '195um', '205um', '215um', '225um', '235um'], cross_gap = ['29um'], aedt_hfss_inductance = [9.686E-9, 10.471E-9, 11.268E-9, 12.679-9, 13.816] ) my_librarian = sweeper.run_single_component_sweep(component_name='transmon', parameters = sweep_parameters, custom_analysis = run_single_design, parameters_slice=slice(1,2), save_path="./Tutorial2_QubitOnly.csv")
https://github.com/Varary73/Visualising-Quantum-Time-Evolution-using-Qiskit
Varary73
# !pip install qiskit # !pip install pylatexenc from qiskit import * import numpy as np from matplotlib import pyplot as plt from qiskit.visualization import plot_histogram from qiskit.circuit.library import QFT import pylatexenc #Number of qubits n=6 #Circuit phi=0.1 #time step iterations=30 #iterations #Potential V=1.75 #Spatial Grid N=2**n #grid points xMin=-4 xMax=4 x = np.linspace(xMin,xMax, num=N) #Wavefunction mu=-2.25 psi= (1/(np.sqrt(2*np.pi)*2*0.4)*np.exp(-(0.5*(x-mu)**2)/(2*0.016)))*np.exp(-300j*x) psi/= np.sqrt(np.sum(np.abs(psi**2))) plt.plot(x,psi) qubits=QuantumRegister(n+1) splitOp=QuantumCircuit(qubits,name="splitOp") '''potential operator''' splitOp.ccx(3,4,0) splitOp.cp(V*phi,0,5) splitOp.ccx(3,4,0) splitOp.barrier() '''momentum operator''' splitOp.append(QFT(n),qubits[1:]) for i in range(n): splitOp.p(phi/2**(n-3+i), n-i) for i in range(n): for j in range(i+1,n): splitOp.cx(n-j,0) splitOp.cx(n-i,0) splitOp.p(phi*(2**(2-i-j)),0) splitOp.cx(n-i,0) splitOp.cx(n-j,0) splitOp.append(QFT(n,inverse=True),qubits[1:]) splitOp.barrier() splitOp.draw('mpl') q=QuantumRegister(n+1) c=ClassicalRegister(n) circuit=QuantumCircuit(q,c) '''initialization''' circuit.initialize(psi,q[1:]) circuit.barrier() '''time steps''' for i in range(iterations): circuit.append(splitOp,q[:]) '''measurement''' for i in range(1,n+1): circuit.measure(i,i-1) #circuit.draw('mpl') answer = execute(circuit, backend=BasicAer.get_backend('qasm_simulator'), shots=5000).result().get_counts() for a in range(N): s = bin(a)[2:] while len(s)!=6: s='0'+s if s not in answer.keys(): answer[s] = 0 plot_histogram(answer, figsize = [20,10]) new_psi=np.zeros(N) count=0 for key in sorted(answer.keys()): new_psi[count]=answer[key] count+=1 new_psi=new_psi/np.sqrt(np.sum(psi**2)) barrier=np.zeros(N) barrier[14:16]=20000 print(np.sum(np.abs(psi**2))) plt.plot(x,new_psi) plt.plot(x,barrier) plt.show()
https://github.com/Shashankaubaru/NISQ-TDA
Shashankaubaru
run test_rank.py import test_rank import importlib importlib.reload(test_rank) for j in range(2,20,2): betti_BP = betti_boundary_projection(vit_vec, project_on_simplices, boundary_sum_matrix, num_vertices,j, nv, 0.3, 2) for i in range(num_vertices): print("Betti Bound_proj",i, " = ", betti_BP[i] , "with deg = ", j) from scipy.sparse.linalg.eigen.arpack import eigsh as largest_eigsh points = np.random.rand(7,4) #points = [[0, 0, 0], [0, 1, 0], [1,0,0],[1,1,0], [0.5,0.5,1]] vit_comp = vitoris_rips_complex(points, 0.4) vit_vec = simplices_to_count_vector(vit_comp) num_basis = len(vit_vec) num_vertices = num_underlying_vertices_vector_length(num_basis) boundary = boundary_operator(num_vertices) boundary_matrix = matrix_from_pauli_operator(boundary) #print("Boundary sum:") boundary_sum = boundary_operator_hermitian(num_vertices) boundary_sum_matrix = matrix_from_pauli_operator(boundary_sum) project_on_simplices = np.zeros(np.shape(boundary_matrix)+(num_vertices,)) for i in range(num_vertices): project_on_simplices[..., i] = np.array(np.diag(d_dim_simplices_mask(i,vit_vec)), dtype=float) laplacian_restricted = np.zeros(np.shape(boundary_sum_matrix)+(num_vertices,)) dim_simplices = np.zeros(num_vertices+1) for i in range(num_vertices): dim_simplices[i] = np.sum(d_dim_simplices_mask(i,vit_vec)) if i>0: project_up_down = project_on_simplices[...,i-1] else: project_up_down = np.zeros(np.shape(boundary_sum_matrix)) if i < num_vertices-1: project_up_down += project_on_simplices[...,i+1] laplacian_restricted[...,i] = \ project_on_simplices[...,i] \ @ boundary_sum_matrix \ @ project_up_down \ @ boundary_sum_matrix \ @ project_on_simplices[...,i] \ betti = np.zeros(num_vertices) for i in range(num_vertices): rows = d_dim_simplices_mask(i, vit_vec) cols = rows if np.any(rows) and np.any(cols): tmp_mat = laplacian_restricted[..., i][rows][:,cols] v, w = np.linalg.eig(tmp_mat) print(tmp_mat.shape) print(v) from scipy.sparse.linalg.eigen.arpack import eigsh as largest_eigsh points = np.random.rand(8,3) #points = [[0, 0, 0], [0, 1, 0], [1,0,0],[1,1,0], [0.5,0.5,1]] vit_comp = vitoris_rips_complex(points, 0.7) vit_vec = simplices_to_count_vector(vit_comp) num_basis = len(vit_vec) num_vertices = num_underlying_vertices_vector_length(num_basis) boundary = boundary_operator(num_vertices) boundary_matrix = matrix_from_pauli_operator(boundary) #print("Boundary sum:") boundary_sum = boundary_operator_hermitian(num_vertices) boundary_sum_matrix = matrix_from_pauli_operator(boundary_sum) project_on_simplices = np.zeros(np.shape(boundary_matrix)+(num_vertices,)) for i in range(num_vertices): project_on_simplices[..., i] = np.array(np.diag(d_dim_simplices_mask(i,vit_vec)), dtype=float) for i in range(num_vertices): i_dim_simplices = d_dim_simplices_mask(i,vit_vec) i_minus_1_dim_simplices = d_dim_simplices_mask(i-1, vit_vec) tmp_mat = project_on_simplices[...,i] @ (boundary_sum_matrix @ project_on_simplices[...,i-1]) tmp_mat = tmp_mat[i_minus_1_dim_simplices][:,i_dim_simplices] v, w = np.linalg.eig(tmp_mat.T @ tmp_mat) # e, vec = largest_eigsh(tmp_mat.T @ tmp_mat, 1, which ='LM') print(tmp_mat.shape) print(v) for j in range(2,20,2): betti_lap = betti_Laplacian_restricted(vit_vec, project_on_simplices, boundary_sum_matrix, num_vertices,j, nv, 0.2, 2) for i in range(num_vertices): print("Betti Bound_proj",i, " = ", betti_lap[i] , "with deg = ", j) run classical_homology.py points = np.random.rand(6,3) points a = range(10) b = np.zeros(10) A = np.diag(np.concatenate([a,b])) rank_estimation(A, 10, 30, 0.1, 1) LA.matrix_rank(A) v = np.random.randn(20) v= v/LA.norm(v) mom = compute_moments(A, v, deg) mom import matplotlib.pyplot as plt from rank_estimation import Chebyshev_step from rank_estimation import compute_Chebyshev_moments import numpy as np deg = 3 x = np.linspace(0,1,num=100) y= np.zeros(len(x)) y1= np.zeros(len(x)) cheb_mom = np.zeros((len(x), deg+1)) for i in range(len(x)): xi = x[i] mom = np.zeros(deg+1) for j in range(deg+1): if j == 0: mom[j] = 1 else: mom[j] = np.dot(xi, mom[j-1]) cheb_mom[i,:] = compute_Chebyshev_moments(mom) mu = Chebyshev_step(deg, 0.1, 1) y[i] = np.dot(mu,cheb_mom[i,:]) mu = Chebyshev_step(deg, 0.1, 2) y1[i] = np.dot(mu,cheb_mom[i,:]) plt.plot(x,y) plt.plot(x,y1) A = boundary_matrix(10) r = rank_estimation((A+A.transpose())/2, 4, 30, 0.01, 2) int(r) qiskit.__version__ np.zeros([2,2]) import numpy as np points = [[0, 0], [1, 0.5], [0,1.5],[1,2]] np.mean(points,0) from scipy.stats import kurtosis kurtosis(points,0) np.var(points,0) from scipy.stats import skew skew(points,0) A = np.array([[ 0., 1., 1., 0.], [ 1., 0., 0., 1.], [ 1., 0., 0., -1.], [ 0., 1., -1., 0.]]) from numpy import linalg as LA LA.matrix_rank(A) B= A @ A from classical_homology import one_skeleton_square, one_skeleton_unfilled_cube from quantum_homology import expectation_over_random_hadamard_vecs edges_in, num_ver= one_skeleton_unfilled_cube() exp_value = expectation_over_random_hadamard_vecs(num_ver, edges_in, powers=range(2), num_samples=1) exp_value eps = 0.01 damp = 2 deg = 4 pwr = range(deg) nv = 4 rank = np.zeros([nv,num_ver-1]) exp_tensor = expectation_over_random_hadamard_vecs(num_ver, edges_in, powers=pwr, num_samples=nv) #exp_tensor = exp_value for l in range(nv): for k in range(num_ver-1): # scal = num_ver**(k+1) exp_value = np.append([1], exp_tensor[l,:,k]) cheb_mom = compute_Chebyshev_moments(exp_value) mu = Chebyshev_step(deg, eps, damp) rk = np.dot(cheb_mom, mu) rank[l,k] = num_ver*rk np.mean(rank,0) for l in range(nv): for k in range(num_ver-1): #scal = num_ver**(k+1) exp_value = np.append([1], exp_tensor[l,:,k]) cheb_mom = compute_Chebyshev_moments(exp_value) print(exp_value) mu = Chebyshev_step(deg, eps, damp) rk = np.dot(cheb_mom, mu) rank[l,k] = num_ver*rk np.mean(rank,0) from classical_homology import vitoris_rips_complex_from_one_skeleton, classical_laplacian_of_vit_vec, simplices_to_count_vector vit_comp = vitoris_rips_complex_from_one_skeleton(num_ver, edges_in) vit_vec = simplices_to_count_vector(vit_comp) laplacian_restricted = classical_laplacian_of_vit_vec(vit_vec) betti = np.zeros(num_ver) for i in range(num_ver): rows = d_dim_simplices_mask(i, vit_vec) cols = rows if np.any(rows) and np.any(cols): tmp_mat = laplacian_restricted[..., i][rows][:, cols] betti[i] = (rank_estimation( (tmp_mat @ tmp_mat.T), deg, nv, eps, damp)) # np.sum(rows) equivalent to d_dim_simplices[i] else: betti[i] = 0 betti import test.test_quantum_homology_advanced mylaplace = test.test_quantum_homology_advanced.Expectation_of_Laplacian_TestCase() mylaplace.setUp() mylaplace.test_expectation_01() #mylaplace.test_run_random() from classical_homology import vitoris_rips_complex_from_one_skeleton, classical_laplacian_of_vit_vec, simplices_to_count_vector from rank_estimation import expectation_hadamard vit_comp = vitoris_rips_complex_from_one_skeleton(num_ver, edges_in) vit_vec = simplices_to_count_vector(vit_comp) laplacian_restricted = classical_laplacian_of_vit_vec(vit_vec) for i in range(num_ver): rows = d_dim_simplices_mask(i, vit_vec) cols = rows if np.any(rows) and np.any(cols): tmp_mat = laplacian_restricted[..., i][rows][:, cols] mom = (expectation_hadamard( (tmp_mat @ tmp_mat.T), deg, nv, eps, damp)) print(mom) else: betti[i] = 0 !pip3 install qiskit-honeywell-provider from qiskit.providers.honeywell import Honeywell Honeywell.save_account('lhoresh@us.ibm.com') Honeywell.load_account() backends = Honeywell.backends() device = 'HQS-LT-S2' backend = Honeywell.get_backend(device) job = backend.retrieve_job('c90c48da23c448dc97f6054bd9d45cee') # Substitute your own job_id here result = job.result() counts = result.get_counts() import sys stdoutOrigin=sys.stdout sys.stdout = open("square_counts.txt", "w") print(counts) sys.stdout.close() sys.stdout=stdoutOrigin backends = Honeywell.backends() device = 'HQS-LT-S2-SIM' backend = Honeywell.get_backend(device) job = backend.retrieve_job('a4a1b5e611834caeb36282d41000b827') # Substitute your own job_id here result = job.result() counts = result.get_counts() stdoutOrigin=sys.stdout sys.stdout = open("Count_square_sim_500_shots_deg3_vec4.txt", "w") print(counts) sys.stdout.close() sys.stdout=stdoutOrigin print(result) with open('Count_cube_sim_1000_shots.txt') as f: data = f.read() print(data) from qiskit.visualization import plot_histogram !pip3 install qiskit-terra from quantum_rank_estimation import quantum_rank_estimation, quantum_Betti_estimation from classical_homology import one_skeleton_square, one_skeleton_unfilled_cube eps = 0.01 damp = 2 deg = 5 nv = 1 pwr = range(deg) edges_in, num_ver= one_skeleton_square() #edges_in, num_ver = [[0,1]] , 2 #edges_in, num_ver= one_skeleton_unfilled_cube() #dimHk = [ 8, 18, 12, 0, 0, 0, 0] dimHk = [4, 4, 0] #rank = quantum_rank_estimation(edges_in, num_ver, pwr, nv, eps, damp) Betti = quantum_Betti_estimation(edges_in, num_ver, dimHk, pwr, nv, eps, damp, [0.00,0.0], expt_name = None, save = False) Betti No noise : array([1.39792841, 1.27119665, 0. ]) Noise (0.001): array([1.42281703, 1.35898137, 0. ]) Noise (0.005): array([1.45420094, 1.45964984, 0. ]) Noise (0.01): array([1.46864872, 1.41010404, 0. ]) Noise (0.05): array([1.58682813, 1.53805871, 0. ]) Noise (0.1): array([1.65800044, 1.67416625, 0. ]) from quantum_rank_estimation import quantum_rank_estimation, quantum_Betti_estimation from classical_homology import one_skeleton_square, one_skeleton_unfilled_cube, one_skeleton_random from classical_homology import complex_one_skeleton, one_skeleton_remap import matplotlib.pyplot as plt import numpy as np # import json # points = json.load(open('cmb_sample_points.json', "r")) # epsilon = 15 # edges_in, num_ver = one_skeleton_remap(complex_one_skeleton(points[0:7], epsilon)) eps = 0.05 damp = 2 deg = 5 nv = 5 pwr = range(deg) #edges_in, num_ver= one_skeleton_random() edges_in, num_ver = [[0,1]] , 2 alpha = range(-2,3) dimHk = [4,4,0] #dimHk = [ 0, 0, 0, 0, 0, 0, 0] #rank = quantum_rank_estimation(edges_in, num_ver, pwr, nv, eps, damp) Betti = np.zeros((3, len(alpha))) fig, axs = plt.subplots(3) for idx, i in enumerate(alpha): Betti[:,idx] = quantum_Betti_estimation(edges_in, num_ver, dimHk, pwr, nv, eps, damp, \ [0.001*(10**i),min(0.01*(10**i),0.1)], save = False) #"edge-surf-"+str(idx) true_betti = [1,1,0] xval =['(0.00001,0.0001)','(0.0001,0.001)','(0.001,0.01)','(0.01,0.1)','(0.1,0.1)'] for k in range(3): axs[k].plot(xval,Betti[k,:],'*-') axs[k].plot(xval,np.tile(true_betti[k],len(alpha)),'k--') #plt.savefig('random8_noise_lvl_quantum.png') from quantum_rank_estimation import quantum_Betti_estimation_json from classical_homology import one_skeleton_square, one_skeleton_unfilled_cube eps = 0.05 damp = 0 deg = 5 nv = 5 pwr = range(deg) #edges_in, num_ver= one_skeleton_square() edges_in, num_ver= one_skeleton_unfilled_cube() dimHk = [ 8, 18, 12, 0, 0, 0, 0] #dimHk = [4, 4, 0] Betti = quantum_Betti_estimation_json( num_ver, dimHk, pwr, nv, eps, damp, expt_name = "cube") Betti import numpy as np import matplotlib.pyplot as plt from quantum_rank_estimation import quantum_rank_estimation, quantum_Betti_estimation from classical_homology import one_skeleton_square, one_skeleton_unfilled_cube from classical_homology import complex_one_skeleton, one_skeleton_remap eps = 0.005 damp = 0 deg = range(2,9) nv = 10 num_vertices = 4 edges_in, num_ver= one_skeleton_square() #edges_in, num_ver= one_skeleton_unfilled_cube() #dimHk = [ 8, 18, 12, 0, 0, 0, 0] dimHk = [4, 4, 0] fig, axs = plt.subplots(3) Betti = np.zeros([num_vertices-1,len(deg)]) for idx,i in enumerate(deg): pwr= range(i) # Betti[:,idx] = classical_betti_from_rank_estimation_of_laplacian(vit_vec, i, nv, eps, damp) Betti[:,idx] = quantum_Betti_estimation(edges_in, num_ver, dimHk, pwr, nv, eps, damp, [0.000,0.000]) true_betti = [1,1,0] for k in range(3): axs[k].plot(deg,Betti[k,:],'*-') axs[k].plot(deg,np.tile(true_betti[k],len(deg)),'k--') plt.savefig('square_deg_quantum.png') import numpy as np import matplotlib.pyplot as plt from quantum_rank_estimation import quantum_rank_estimation, quantum_Betti_estimation from classical_homology import one_skeleton_square, one_skeleton_unfilled_cube eps = 0.005 damp = 0 deg = 4 nv = range(5,31,5) pwr= range(deg) num_vertices = 4 edges_in, num_ver= one_skeleton_square() #edges_in, num_ver= one_skeleton_unfilled_cube() #dimHk = [ 8, 18, 12, 0, 0, 0, 0] dimHk = [4, 4, 0] fig, axs = plt.subplots(3) Betti = np.zeros([num_vertices-1,len(nv)]) for idx,i in enumerate(nv): # Betti[:,idx] = classical_betti_from_rank_estimation_of_laplacian(vit_vec, deg, i, eps, damp) Betti[:,idx] = quantum_Betti_estimation(edges_in, num_ver, dimHk, pwr, i, eps, damp, [0.001,0.01]) true_betti = [1,1,0] for k in range(3): axs[k].plot(nv,Betti[k,:],'*-') axs[k].plot(nv,np.tile(true_betti[k],len(nv)),'k--') plt.savefig('square_nv_quantum_noisy.png') Betti import numpy as np import matplotlib.pyplot as plt from quantum_rank_estimation import quantum_rank_estimation, quantum_Betti_estimation from classical_homology import complex_one_skeleton, one_skeleton_remap import json epsilon = 15 eps = 0.005 damp = 0 deg = 5 nv = 30 pwr = range(deg) points = json.load(open('cmb_sample_points.json', "r")) edges_in, num_ver = one_skeleton_remap(complex_one_skeleton(points[0:7], epsilon)) dimHk = [ 3, 0, 0, 0, 0, 0, 0] Betti = quantum_Betti_estimation(edges_in, num_ver, dimHk, pwr, nv, eps, damp, [0.001,0.01], expt_name = "CMB_8_nv-", save = True) Betti from classical_homology import classical_betti_from_exact_kernel_of_boundary, vitoris_rips_complex_from_one_skeleton, simplices_to_count_vector from classical_homology import complex_one_skeleton, one_skeleton_remap import json points = json.load(open('cmb_sample_points.json', "r")) epsilon = 15 edges_in, num_ver = one_skeleton_remap(complex_one_skeleton(points[0:7], epsilon)) vit_comp = vitoris_rips_complex_from_one_skeleton(num_ver, edges_in) vit_vec = simplices_to_count_vector(vit_comp) true_betti = classical_betti_from_exact_kernel_of_boundary(vit_vec) true_betti #Betti =[[4.08669333, 4.08662073, 4.08645737, 4.08640292, 4.08665703], # [9.19424321, 9.19522336, 9.19567259, 9.19473328, 9.19534588], # [6.13028428, 6.13001277, 6.13020336, 6.1299311 , 6.1299311 ]] Err = Betti[0:1,:] - np.tile(1.5,[2,5]) edge_error = np.sort(np.mean(np.abs(Err),0)) edge_error Betti import numpy as np import json from quantum_rank_estimation import Chebyshev_step, compute_Chebyshev_moments eps = 0.005 damp = 0 deg = 5 nv = 30 num_ver = 7 dimHk = [ 3, 0, 0, 0, 0, 0, 0] rank = np.zeros([nv,num_ver]) mu = Chebyshev_step(deg, eps, damp) temp = np.loadtxt('resultsCMB_8_nv-.txt', dtype=float) exp_tensor = temp.reshape(temp.shape[0], temp.shape[1] // num_ver, num_ver) for l in range(nv): for k in range(num_ver): if np.sum(exp_tensor[l,:,k]) ==0: rank[l,k] = 0 continue exp_value = np.append([1], exp_tensor[l,:,k]) cheb_mom = compute_Chebyshev_moments(exp_value) rank[l,k] = dimHk[k]*np.dot(cheb_mom, mu) Betti = (dimHk - (np.mean(rank,0))) Betti from qiskit.quantum_info import hellinger_distance as compare_counts_hellinger import glob import numpy as np from quantum_homology import merge_counts, calc_circuit_depths names = ["edge","square","cube"] dist = np.zeros([3,5]) for i in range(5): no_noise_data = "edge-no-noisedegree0sample0.json" noisy_data = "edge-noise-"+str(i)+"degree0sample0.json" raw_data_globs = [no_noise_data, noisy_data] dist[0,i] = compare_counts_hellinger(merge_counts(glob.glob(raw_data_globs[0])),merge_counts(glob.glob(raw_data_globs[1]))) no_noise_data = "square-no-noisedegree0sample0.json" noisy_data = "square-noise-"+str(i)+"degree0sample0.json" raw_data_globs = [no_noise_data, noisy_data] dist[1,i] = compare_counts_hellinger(merge_counts(glob.glob(raw_data_globs[0])),merge_counts(glob.glob(raw_data_globs[1]))) no_noise_data = "cube-no-noisedegree0sample0.json" noisy_data = "cube-noise-"+str(i)+"degree0sample0.json" raw_data_globs = [no_noise_data, noisy_data] dist[2,i] = compare_counts_hellinger(merge_counts(glob.glob(raw_data_globs[0])),merge_counts(glob.glob(raw_data_globs[1]))) id = np.nonzero(rank[:,0]) 3.3-rank[id,0] 0.001*(10**-2)