repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/Shashankaubaru/NISQ-TDA
Shashankaubaru
# from qiskit.circuit import Parameter #For state vector initializing # from qiskit.aqua.components.initial_states.custom import Custom # from qiskit.quantum_info import Pauli # from qiskit.aqua.operators import MatrixOperator, WeightedPauliOperator, op_converter # from qiskit.aqua.utils import decimal_to_binary, CircuitFactory, get_subsystem_density_matrix # from qiskit.aqua.algorithms import ExactEigensolver # from qiskit.aqua.components.iqfts import Standard as StandardIQFTS # from qiskit.aqua.algorithms import QPE # from qiskit.aqua.operators.op_converter import to_matrix_operator # from qiskit.aqua.circuits import FourierTransformCircuits as Fourier_circ # from qiskit.circuit.quantumregister import Qubit # #from qiskit.circuit import Instruction # from qiskit.extensions.quantum_initializer.initializer import Initialize # #For running # from qiskit import BasicAer # from qiskit.aqua import QuantumInstance # from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute # from qiskit.aqua.utils import summarize_circuits # iqft = QFT(num_ancillae).inverse() # my_phase_estimation_circuit = PhaseEstimationCircuit(iqft=iqft, num_ancillae=num_ancillae, unitary_circuit_factory=test_boundary_factory) # mycirc += my_phase_estimation_circuit.construct_circuit(ancillary_register=myancillae) # # mycirc.measure(myancillae, c_ancilla) # simulator = 'qasm_simulator' # # simulator = 'statevector_simulator' # backend = BasicAer.get_backend(simulator) # result = execute(mycirc, backend=backend).result() # ancilla_counts = result.get_counts(mycirc) # post_select_ancilla_counts = get_subsystems_counts(ancilla_counts,post_select_index=1,post_select_flag='0'*test_boundary_factory._num_projection_bits) # top_measurement_label = \ # sorted([(post_select_ancilla_counts[k], k) for k in post_select_ancilla_counts])[::-1][0][-1][::-1] # _binary_fractions = [1 / 2 ** p for p in range(1, num_ancillae + 1)] # top_measurement_decimal = sum( # [t[0] * t[1] for t in zip(_binary_fractions, # [int(n) for n in top_measurement_label])] # ) # print(top_measurement_label) # print(top_measurement_decimal) # mycirc.count_ops() # summarize_circuits(mycirc) # summarize_circuits(mycirc.decompose()) #mycirc.draw() # ######################################## # ### CALCULATE THE NUMBER OF SIMPLICES # ######################################## # #The quantum circuit to arrive at num_complex_simplices e.g = [3,3,0] # #This can possibly be dequantized! Ken!? -> Yes, according to Ken # num_complex_simplices = np.zeros(num_qubits) # num_complex_simplices[0] = num_qubits # mycirc = QuantumCircuit(mycomplex, mycounter) # #create_unfilled_triangle_circ(mycirc, mycomplex) # mycirc.initialize(state_vector, mycomplex) # split_k(mycirc, mycomplex, mycounter) # simulator = 'statevector_simulator' # backend = BasicAer.get_backend(simulator) # result = execute(mycirc, backend=backend).result() # mystate=result.get_statevector(mycirc).reshape(num_basis, num_counts, order='F') # projected_state = mystate[:, 1] # total_num_simplices = num_qubits/norm(projected_state)**2 # for k in range(1, num_qubits): # projected_state = mystate[:, k+1] # print(projected_state) # num_complex_simplices[k] = (norm(projected_state)**2)*total_num_simplices # print("Number of complex simplices of each degree:") # print(num_complex_simplices) # ######################################## # mycirc.count_ops() # summarize_circuits(mycirc.decompose()) # mycirc.draw() ######################################## ### Construct Vitoris Vector ######################################## # vit_vec = construct_unfilled_triangle() # vit_vec = construct_unfilled_square() # vit_vec_no_signs = np.abs(vit_vec) # num_qubits = num_underlying_vertices_vector_length(len(vit_vec_no_signs)) # num_basis = 1 << num_qubits # state_vector = 1/norm(vit_vec_no_signs)*vit_vec_no_signs # print("State Vector: ", state_vector) # print("Num qubits: ", num_qubits) # mycomplex = QuantumRegister(num_qubits) # #mycirc = QuantumCircuit(mycomplex, mycounter) # mycirc = QuantumCircuit(mycomplex) # mycirc.initialize(state_vector, mycomplex) # simulator = 'statevector_simulator' # backend = BasicAer.get_backend(simulator) # result = execute(mycirc, backend=backend).result() # backend = BasicAer.get_backend(simulator) # result = execute(mycirc, backend=backend).result() # mystate=result.get_statevector(mycirc).reshape(num_basis, 1, order='F') # print_matrix(mystate) # b = transpile(circuit, basis_gates=['u1', 'u2', 'u3', 'cx'], optimization_level=3) #full_circ.isometry(state_vector, None, simplicial_complex_register) # temp_reg = QuantumRegister(boundary_evolution_instruction.num_qubits) # temp_circ = QuantumCircuit(temp_reg) # temp_circ.append(boundary_evolution_instruction, qargs=temp_reg) # boundary_evolution_unitary = execute(temp_circ, backend=UnitarySimulatorPy()).result().get_unitary() # num_ancillae = 5 # exact_eigensolver = NumPyMinimumEigensolver(PrimitiveOp(boundary_evolution_unitary)) # results = exact_eigensolver.run() # ref_eigenval = results.eigenvalue # ref_eigenvec = results.eigenstate # ws, vs = np.linalg.eig(boundary_sum_matrix) # ref_eigenval = ws[0] # ref_eigenvec = vs[0] # print('The exact eigenvalue is: %s', ref_eigenval) # print('The corresponding eigenvector: %s', ref_eigenvec) # #qubit_op = boundary_evolution_operator # qubit_op = boundary_sum # state_in = Custom(qubit_op.num_qubits, state_vector=ref_eigenvec) # iqft = QFT(num_ancillae).inverse() # qpe = QPE(qubit_op, state_in, iqft, num_time_slices=1, num_ancillae=num_ancillae, # expansion_mode='suzuki', expansion_order=2, # shallow_circuit_concat=True) # backend = BasicAer.get_backend(simulator) # quantum_instance = QuantumInstance(backend, shots=1000, seed_transpiler=1, seed_simulator=1) # # run qpe # result = qpe.run(quantum_instance) # # report result # print('top result str label: %s', result.top_measurement_label) # print('top result in decimal: %s', result.top_measurement_decimal) # print('stretch: %s', result.stretch) # print('translation: %s', result.translation) # print('final eigenvalue from QPE: %s', result.eigenvalue) # print('reference eigenvalue: %s', ref_eigenval) # print('ref eigenvalue (transformed): %s', # (ref_eigenval + result.translation) * result.stretch) # print('reference binary str label: %s', decimal_to_binary( # (ref_eigenval.real + result.translation) * result.stretch, # max_num_digits=num_ancillae + 3, # fractional_part_only=True # )) ################### #IF WE COULD CONSTRUCT EQUAL SUP OVER EIGENVECTORS, FOR EG WITH VQE MAXIMISING EXPECTATION, ALTERNATIVELY, WE HAVE THE COMPLEX, WHICH IS CLOSE TO EQUAL SUP, THIS COULD BE A GOOD LOWER BOUND! ################### #OLD PROJECTION EXPERIMENTS ######################################## ### CREATE UNFILLED TRIANGLE ######################################## # def create_unfilled_triangle_circ(circ, qreg): # #create full simplicial complex of unfilled triangle on first three qubits # circ.h(qreg[2]) # circ.ry(1.91063323624902, qreg[1]) # circ.ry(3*np.pi/4, qreg[0]) # circ.cx(qreg[1], qreg[0]) # circ.ry(np.pi/4, qreg[0]) # circ.cx(qreg[1], qreg[0]) # circ.cx(qreg[2], qreg[0]) # circ.cx(qreg[2], qreg[1]) # return circ ######################################## ### PROJECTION ONTO COMPLEX ######################################## # def project_onto_triangle(circ, from_qreg, project_qreg): # # copy into project register (creating entangled copy) # circ.cx(from_qreg, project_qreg) # #create full simplicial complex of unfilled triangle on temp circuit # circ_complex = QuantumCircuit(project_qreg) # create_unfilled_triangle_circ(circ_complex, project_qreg) # #add reverse of circuit to project onto complex # circ += circ_complex.inverse() # def project_onto_complex(complex_vector, circ, from_qreg, project_qreg): # # copy into project register (creating entangled copy) # circ.cx(from_qreg, project_qreg) # #create full simplicial complex of unfilled triangle on temp circuit # # circ_complex = QuantumCircuit(project_qreg) # # circ_complex.initialize(complex_vector, project_qreg) # myinit = Initialize(complex_vector) # # add reverse of circuit to project onto complex # # circ.data.append(circ_complex.data[0][0].gates_to_uncompute()) # circ.append(myinit.gates_to_uncompute().to_instruction(), project_qreg) # # circ += circ_complex.inverse() # #Alternative: # #Collapse only if boundary simplex was in original complex # #This is more complicated, below detects 0-1 errors # #still need 1-0 zero errors and then maybe X and AND and then collapse? # #circ.ccx(from_qreg, project_qreg, myproject) # #Haha, this then reminded Lior about QEEC, so next try to use QEEC for projection, does not work # #KEY PROBLEM IS TENSOR OF SUPERPOSITION ALWAYS CREATES ALL POSSIBILITIES # #same for product of coefficients, Almudena et.al! # simplex_qreg = QuantumRegister(num_qubits) # pairs_qreg = QuantumRegister(num_pairs) # simplex_in = QuantumRegister(num_pairs)
https://github.com/Shashankaubaru/NISQ-TDA
Shashankaubaru
import numpy as np import pdb from pdb import set_trace as bp # Import Qiskit from qiskit import QuantumCircuit, QuantumRegister from qiskit import Aer, transpile from qiskit.tools.visualization import plot_histogram, plot_state_city import qiskit.quantum_info as qi from qiskit.providers.aer import AerError # Create circuit myreg = QuantumRegister(16) circ = QuantumCircuit(myreg) circ.h(myreg) circ.cx(0, 1) circ.measure_all() # Initialize a GPU backend # Note that the cloud instance for tutorials does not have a GPU # so this will raise an exception. try: print(Aer.backends()) simulator_gpu = Aer.get_backend('aer_simulator_statevector_gpu') # simulator_gpu.set_options(device='GPU') # bp() circ = transpile(circ, simulator_gpu) # Run and get counts result = simulator_gpu.run(circ).result() counts = result.get_counts(circ) print(len(counts)) except AerError as e: print(e)
https://github.com/Shashankaubaru/NISQ-TDA
Shashankaubaru
# noqa: E501,E402,E401,E128 # flake8 disable errors # -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= # import warnings # warnings.filterwarnings("ignore", category=DeprecationWarning) # For Homology from classical_homology import \ construct_unfilled_triangle, \ construct_unfilled_square, \ complete_unsigned_complex, \ one_skeleton_triangle, \ one_skeleton_square, \ one_skeleton_pyramid, \ one_skeleton_random, \ one_skeleton_fully_connected, \ one_skeleton_tetrahedron, \ one_skeleton_square_with_diagonal, \ one_skeleton_unfilled_cube, \ one_skeleton_n_disconnected_squares from homology_tools import d_dim_simplices_mask, num_underlying_vertices_vector_length, num_underlying_vertices_simplices, print_signs_simplicial_vector_parts, reshape_vector_to_matrix_and_index, simplices_to_count_vector, count_vector_to_simplices from math_fiddling import binarize, print_matrix, format_basic, format_complex, print_matrix_and_info, format_real, countBits, num_bits, integer_to_binary_as_string, pair_index_to_two_power_2s, two_power_2s_to_pair_index, num_qubits_from_num_pairs, is_power_of_2, first_non_zero_bit, bin_string2int #For General Computing import itertools import numpy as np from numpy.linalg import norm as norm import time import secrets #from scipy.spatial.KDTree import query_pairs as find_pairs from scipy.special import rel_entr, entr import json import copy #For Qiskit use from qiskit.quantum_info import Pauli from qiskit.aqua.operators import PrimitiveOp, MatrixOp from qiskit import BasicAer, Aer import qiskit.providers.aer.noise as qnoise from qiskit.providers.aer import AerSimulator from qiskit.test.mock import fake_pulse_backend from qiskit.aqua import QuantumInstance from qiskit.aqua.utils import decimal_to_binary from qiskit.aqua.algorithms import NumPyMinimumEigensolver from qiskit.aqua.algorithms import QPE from qiskit.circuit.library import QFT from qiskit.aqua.components.initial_states import Custom #from qiskit.aqua.operators.legacy import MatrixOperator, WeightedPauliOperator #from qiskit.aqua.operators.legacy import op_converter from qiskit import AncillaRegister, QuantumRegister, ClassicalRegister, QuantumCircuit, execute from qiskit.aqua.utils import summarize_circuits from qiskit.circuit.quantumregister import Qubit # from qiskit.aqua.circuits import FourierTransformCircuits as Fourier_circ # from qiskit.circuit.library import QFT # from qiskit.circuit import Parameter # from qiskit.aqua.operators import PauliTrotterEvolution, Suzuki from qiskit.extensions.quantum_initializer.initializer import Initialize from qiskit.providers.basicaer import UnitarySimulatorPy from qiskit.aqua import AquaError from qiskit.aqua.utils import CircuitFactory from qiskit.aqua.utils.controlled_circuit import get_controlled_circuit from qiskit.aqua.circuits import PhaseEstimationCircuit from qiskit.aqua.utils.subsystem import get_subsystems_counts from qiskit.circuit.library import TwoLocal from qiskit.compiler import transpile, assemble from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller from qiskit import IBMQ from qiskit.providers.ibmq import least_busy from qiskit.providers.jobstatus import JobStatus from qiskit.providers.ibmq.managed import IBMQJobManager from datetime import datetime, timedelta from dateutil import tz # from qiskit_ionq import IonQProvider from qiskit.providers.honeywell import Honeywell # from qiskit.providers.basicaer import BasicAerJob import matplotlib.pyplot as plot from qiskit.visualization import plot_histogram import glob # import pdb # from pdb import set_trace as bp EPS = 1e-16 JOB_RETRIEVE_LIMIT = 300 JOB_PREVIOUS_DAYS = 20 ####################################################################### ############################################ ### HARDWARE HELPER FUNCTIONS ############################################ def get_post_select_counts(complete_system_counts, post_select_indices_set=None, post_select_flags_set=None): if len(post_select_indices_set)!=len(post_select_flags_set): raise ValueError("indices list not same length as flags list.") mixed_measurements = list(complete_system_counts) num_registers = len(mixed_measurements[0].split()) count_dicts = [{} for _ in range(len(post_select_flags_set))] post_selections = [(i,j,k) for i, (j,k) in enumerate(zip(post_select_indices_set, post_select_flags_set))] for mixed_measurement in mixed_measurements: split_measurement = np.array(mixed_measurement.split()[::-1], dtype=str) #-1 reverses so registers are correct, strings themselves remain in qiskit ordering for i, post_select_indices, post_select_flags in post_selections: if np.all(split_measurement[post_select_indices] == post_select_flags): other_indices = list(range(num_registers)) list(map(other_indices.remove, post_select_indices)) if other_indices: count_dicts[i][" ".join(split_measurement[other_indices])] = \ complete_system_counts[mixed_measurement] else: count_dicts[i][mixed_measurement] = complete_system_counts[mixed_measurement] return count_dicts # remember other_indices registers are in qiskit ordering # TODO: make unittests # get_post_select_counts({'0 0': 10, '1 1' : 20}, [[1],[1]], [['0'],['1']]) # get_post_select_counts({'0 0': 10, '1 1' : 20, '1 2': 30}, [[1],[1]], [['0'],['1']]) def get_fraction_count_for_all_k(complete_system_counts, laplacian, sqrt): # 0 simplicies are points, remember, may not be able to count _num_main_qubits in count register, so let's return size num_main_qubits - 1 # Main # main_0_indices = [0] # main_0_flags = ['0'*laplacian._num_main_qubits] # no, rather let vary count_start = 0 # Ancilla: Not measuring for now! TODO implement error mitigation. # count_start = int((laplacian._num_clean_ancillae > 0)) # ancilla_indices = [1]*count_start #count_start is zero or one only # ancilla_flags = ['0'*laplacian._num_clean_ancillae]*count_start ancilla_indices = [] ancilla_flags = [] # Project Complex count_start += 1 count_end = count_start + laplacian._num_complex_projections project_complex_indices = list(range(count_start, count_end)) project_complex_flags = ['0'*laplacian._num_pairs]*laplacian._num_complex_projections # Split count_start = count_end count_end = count_start + laplacian._num_split_projections matching_split_indices_set = [list(range(count_start, count_end))]*\ (laplacian._num_main_qubits-1) matching_split_flags_set = [] for k in range(0, laplacian._num_main_qubits-1): # k is simplex dim # k+1 is num vertices: k_as_bin_str = integer_to_binary_as_string(k+1, width=laplacian._count_bits_per_projection) matching_split_flags_set.append([k_as_bin_str]*laplacian._num_split_projections) projection_indices = ancilla_indices + project_complex_indices projection_flags = ancilla_flags + project_complex_flags projection_indices_set = list(map(lambda matching_split_indices: \ projection_indices + matching_split_indices, matching_split_indices_set)) projection_flags_set = list(map(lambda matching_split_flags: \ projection_flags + matching_split_flags, matching_split_flags_set)) counts_dicts = get_post_select_counts(complete_system_counts, projection_indices_set, projection_flags_set) #prob0 = [dict_k['00']/sum(dict_k.values()) for dict_k in prob0_dicts], no forgot about footnote 12, go back to over everything else! total_counts = sum(complete_system_counts.values()) # old confused way, when restricted counts to k simplices # frac_counts = [] # for k, dict_k in enumerate(counts_dicts): # valid_keys = [select_key for select_key in dict_k.keys() # if sum(map(int, list(select_key))) == k+1] # frac_counts.append(sum([*map(dict_k.get, valid_keys)])/total_counts) if sqrt: frac_counts = [sum(dict_k.values())/total_counts for dict_k in counts_dicts] else: frac_counts = [dict_k['0'*laplacian._num_main_qubits]/total_counts for dict_k in counts_dicts] return frac_counts ############################################ ### BOUNDARY OPERATOR HELPER FUNCTIONS ############################################ def operator_from_pauli_labels(coeff, paulis): pauli_ops = [] for w, p in zip(coeff, paulis): pauli_ops += [PrimitiveOp(Pauli.from_label(p), coeff=np.real(w) + np.imag(w)*1.j)] return sum(pauli_ops) # We go straight to the Pauli representation of b + b* def boundary_operator_plus_conjugate_as_pauli_labels(num_vertices): boundary_map_pauli_coeff = [1 for _ in range(num_vertices)] first_part = "Z"*(num_vertices-1) last_part = "I"*(num_vertices-1) boundary_map_pauli_strings = map(lambda i: first_part[:i] + "X" + last_part[i:], range(num_vertices)) return boundary_map_pauli_coeff, list(boundary_map_pauli_strings) def boundary_operator_hermitian(num_vertices): qubit_op = operator_from_pauli_labels( *boundary_operator_plus_conjugate_as_pauli_labels( num_vertices)) return qubit_op # return (1/np.sqrt(num_vertices))*qubit_op #normalize def Ri_add(to_add_circ, three_qubits, theta): qubit0 = three_qubits[1] qubit1 = three_qubits[0] target_qubit = three_qubits[2] # Yi-1 # D to_add_circ.x(qubit0) to_add_circ.s(qubit0) to_add_circ.h(qubit0) # CNOT to_add_circ.cx(qubit0, target_qubit) # Xi to_add_circ.h(qubit1) to_add_circ.cx(qubit1, target_qubit) to_add_circ.rz(theta, target_qubit) # Xi\dagger to_add_circ.cx(qubit1, target_qubit) to_add_circ.h(qubit1) # Yi-1\dagger to_add_circ.cx(qubit0, target_qubit) # D\dagger to_add_circ.h(qubit0) to_add_circ.sdg(qubit0) to_add_circ.x(qubit0) def boundary_operator_unitary_circuit(main_qreg=None, target_register=None, control_qubit=None): if isinstance(main_qreg, int): main_qreg = QuantumRegister(main_qreg) num_vertices = len(main_qreg) if target_register is None: target_register = QuantumRegister(1) boundary_circ = QuantumCircuit(main_qreg, target_register) R_circ = QuantumCircuit(main_qreg, target_register) #if isinstance(target_qubit, QuantumRegister): target_qubit = target_register[0] for i in range(1, num_vertices): Ri_add(R_circ, [main_qreg[i-1], main_qreg[i], target_qubit], np.arctan2(np.sqrt(i), 1)) # R boundary_circ += R_circ # P_0 if control_qubit is None: boundary_circ.x(main_qreg[-1]) else: boundary_circ.cx(control_qubit, main_qreg[-1]) # R\dagger boundary_circ += R_circ.inverse() return boundary_circ # Just to check, we can define the boundary operator separately: def boundary_operator_as_pauli_labels(num_vertices): boundary_map_pauli_coeff = [[1/2, 1j/2] for _ in range(num_vertices)] first_part = "Z"*(num_vertices-1) last_part = "I"*(num_vertices-1) boundary_map_pauli_strings = map(lambda i: list(map( lambda B01_term: first_part[:i] + B01_term + last_part[i:], ["X", "Y"])), range(num_vertices)) return list(itertools.chain.from_iterable(boundary_map_pauli_coeff)),\ list(itertools.chain.from_iterable(boundary_map_pauli_strings)) def boundary_operator(num_vertices): qubit_op = operator_from_pauli_labels( *boundary_operator_as_pauli_labels(num_vertices)) return qubit_op # def boundary_operator_conjugate_as_pauli_labels(num_vertices): # coeffs, paulis = boundary_operator_as_pauli_labels(num_vertices) # for i in range(num_vertices): # coeffs[2*i+1] = -coeffs[2*i+1] # return coeffs, paulis # # def boundary_operator_hermitian_derived_separately(num_vertices): # qubit_op = operator_from_pauli_labels( # *boundary_operator_conjugate_as_pauli_labels(num_vertices)) \ # + operator_from_pauli_labels( # *boundary_operator_as_pauli_labels(num_vertices)) # return qubit_op # def boundary_operator_squared_normalized(num_vertices): # # this is automatically hermitian # qubit_op = boundary_operator_hermitian(num_vertices) # qubit_op *= (1/num_vertices)*qubit_op # qubit_op.simplify() # return qubit_op # def boundary_reworked_to_kernel(num_vertices): # qubit_op = boundary_operator_squared_normalized(num_vertices) # return WeightedPauliOperator.from_list([Pauli.from_label("I"*(num_vertices+1))]) + (-1)*qubit_op #Careful, here we take the real part only because we expect only real entries! def classical_matrix_from_pauli_operator(qubit_op): return np.real(qubit_op.to_matrix()) def rbs(circ, pair_reg, angle): circ.h(pair_reg) circ.cz(pair_reg[0], pair_reg[1]) circ.ry(-angle, pair_reg[0]) circ.ry(angle, pair_reg[1]) circ.cz(pair_reg[0], pair_reg[1]) circ.h(pair_reg) return circ def parity(circ, reg): num_left = len(reg) qubit_indices = list(range(num_left)) while num_left > 1: new_qubit_indices = [] for start_index in range(0, num_left-1, 2): circ.cx(reg[qubit_indices[start_index+1]], reg[qubit_indices[start_index]]) new_qubit_indices.append(qubit_indices[start_index]) if start_index < num_left - 2: new_qubit_indices.append(qubit_indices[-1]) qubit_indices = new_qubit_indices[:] num_left = len(qubit_indices) return circ def fbs(circ, reg, i, j, theta): if i+2<j: temp_circ = QuantumCircuit(reg) parity(temp_circ, reg[i+1:j]) circ += temp_circ.inverse() if i+1<j: circ.cz(i+1,i) rbs(circ, [reg[i], reg[j]], theta) if i+1<j: circ.cz(i+1,i) if i+2<j: circ += temp_circ return circ def clifford_loader(circ, reg, theta): temp_circ = QuantumCircuit(reg) num_left = len(reg) qubit_indices = list(range(num_left)) while num_left > 1: new_qubit_indices = [] for start_index in range(0, num_left-1, 2): fbs(temp_circ, reg, qubit_indices[start_index], qubit_indices[start_index+1], theta) new_qubit_indices.append(qubit_indices[start_index]) if start_index < num_left - 2: new_qubit_indices.append(qubit_indices[-1]) qubit_indices = new_qubit_indices[:] num_left = len(qubit_indices) circ += temp_circ.inverse() circ.x(reg[0]) circ += temp_circ return circ ####################################################################### ############################################ ### PROJECT ONTO COMPLEX HELPER FUNCTIONS ############################################ ############################################ ### Controlled Permutation (Add 1 And Cycle) ############################################ def permutation_circuit(qr=None, qancilla=None, circ=None): # By permutation we mean "add 1 with wrapping". The key insight was seeing the 4x4 permutation matrix as a swapped flipped CNOT! Then for the 8x8: swap rows 000 and 100 and so on for higher order. #NB: assumes Qiskit ordering if qr is None: raise Exception("Need to operate on a quantum register.") if circ is None: raise Exception("Need to operate on a circuit.") num_qubits = len(qr) if num_qubits==1: circ.x(qr[0]) return circ else: if num_qubits > 3: if qancilla is None: qancilla = QuantumRegister(num_qubits - 2) circ.add_register(qancilla) print("Warning: adding ancilla ", qancilla.name) for i in range(1, num_qubits): if i > 1: circ.x(qr[i-1]) if i == 1: circ.cx(qr[0], qr[i]) else: if i == 2: circ.ccx(qr[0], qr[1], qr[i]) else: circ.mct(qr[0:i], qr[i], qancilla, mode="v-chain") if i == (num_qubits - 1): circ.x(qr[0:i]) return qancilla def diagonal_permutation_circuit(qr=None, angle=None, circ=None): #default angle for permutation dagger (+ angle) if qr is None: raise Exception("Need to operate on a quantum register.") if circ is None: raise Exception("Need to operate on a circuit.") n = len(qr) if angle is None: angle = 2*np.pi/(1<<n) for i in range(0,n): #circ.u1(angle*(1<<i), qr[i]) circ.p(angle*(1<<i), qr[i]) def multiplex_diagonal_permutation_circuit(qcontrol=None, qr=None, angle=None, circ=None): #create control permutation_dagger_permutation circuit. This circuit comes from Shende and Bullock, a multiplexed diagonal is a multiplexed Rz gate. Since we have very special structure to the diagonal elements, the multiplexed recursion is short-circuited! if circ is None: raise Exception("Need to operate on a circuit.") if (qr is None) or (qcontrol is None): raise Exception("Need to operate on a quantum registers") if (type(qcontrol) != Qubit): raise Exception("Need first argument to be the single control qubit.") n = len(qr) + 1 if angle is None: angle = 2*np.pi/(1<<(n-1)) for i in range(0,n-1): circ.cx(qcontrol, qr[i]) #circ.u1(angle*(1<<i), qr[i]) circ.p(angle*(1<<i), qr[i]) circ.cx(qcontrol, qr[i]) #circ.u1(-angle*((1<<(n-1))-1), qcontrol) circ.p(-angle*((1<<(n-1))-1), qcontrol) # technically need to inverse(), since the algorithm takes desired state to zero but can use circ.mirror(). With mirror we do not take the minus sign of the desired angle, but with inverse we would have had to. Finally, we do not even need to call mirror because recursion is short-circuited and this particular circuit is invariant to mirroring because all the subparts commute: the target of CNOTs between subparts are different and U1 on source commutes with CNOT. def control_permutation_circuit(qcontrol=None, count_register=None, angle=None, qancilla=None, circ=None, leave_out_W=False, leave_out_V=False): if circ is None: raise Exception("Need to operate on a circuit.") if (count_register is None) or (qcontrol is None): raise Exception("Need to operate on a quantum registers") if (type(qcontrol) != Qubit): raise Exception("Need first argument to be the single control qubit.") num_count_qubits = len(count_register) if angle is None: angle = 2*np.pi/(1 << (num_count_qubits + 1)) ########## AAAAAAAAAAAAAA DOCUMENT!!! This is taking the square root! D^2 is the diagonal of the permutation matrix, D is the square root of D^2 count_register_flipped = count_register[::-1] # iqft_inst = QFT(num_count_qubits, inverse=True, # do_swaps=False).to_instruction() iqft_inst = QFT(num_count_qubits, do_swaps=False).inverse().to_instruction() qft_inst = QFT(num_count_qubits, inverse=False, do_swaps=False).to_instruction() # iqft_inst = QFT(num_count_qubits, do_swaps=False).inverse().to_instruction() # qft_inst = QFT(num_count_qubits, inverse=False, # do_swaps=True).to_instruction() # W in paper if not leave_out_W: qancilla = permutation_circuit(count_register, qancilla, circ=circ) # Fourier_circ.construct_circuit(circ, count_register, # inverse=True, do_swaps=False) circ.append(iqft_inst, count_register_flipped)#count_register) #In the forward Fourier circuit, the swaps come at the beginning, for the inverse, the swaps come at the end. Switching off the swaps implies that after this inverse circuit, the ordering significance is now swapped and subsequent placement of gates must be flipped. # diagonal_permutation_circuit(count_register_flipped, angle=angle, circ=circ) diagonal_permutation_circuit(count_register_flipped, angle=angle, circ=circ) #gates are flipped because one swap is missing (the significance is swapped) # (D D^) in paper #multiplex_diagonal_permutation_circuit(qcontrol, count_register_flipped, angle=angle, circ=circ) multiplex_diagonal_permutation_circuit(qcontrol, count_register_flipped, angle=angle, circ=circ) #gates still flipped because one swap is missing # V in paper # Fourier_circ.construct_circuit(circ, count_register, inverse=False, do_swaps=False) if not leave_out_V: circ.append(qft_inst, count_register_flipped) # count_register) #with swaps off at the beginning, the flipped significance is already in the flipped order required for the subsequent placement of gates, thereafter everything is back to normal return qancilla ################################################## # def rccx(circ, qubit0, qubit1, target_qubit): # circ.ry(np.pi/4, target_qubit) # circ.cx(qubit1, target_qubit) # circ.ry(np.pi/4, target_qubit) # circ.cx(qubit0, target_qubit) # circ.ry(-np.pi/4, target_qubit) # circ.cx(qubit1, target_qubit) # circ.ry(-np.pi/4, target_qubit) def num_complex_projections(powers=[1], sqrt=False): sum_projections = 0 coeff = 1 if sqrt else 2 for p in powers: sum_projections += coeff*p + 1 return sum_projections # flag register: n/2 qubits # Code up n-1 rounds of n/2 CCNOTS. Placing the gate only if the pair under consideration is not (is) present in edges_in. # mid-circuit measurement on the flag register # Bail out if flag register is not all ones (zeros) def project_onto_complex(circ, edges_in, simplex_qreg, simplex_in, measure_reg=None, num_resets=1, do_rccx=True): #simplex_in flag register of size n/2 #measure_reg size n C 2 #edges_in are pairs of points. points are identified by their point index (starting at 0) #edges_in must be list of list num_main_qubits = len(simplex_qreg) num_pairs = num_main_qubits*(num_main_qubits - 1)//2 half_num_main_qubits = num_main_qubits//2 if measure_reg is not None: if (half_num_main_qubits != len(simplex_in)): raise ValueError("Size of simplex_in register, " "does not equal n/2.") else: if (num_pairs != len(simplex_in)): raise ValueError("Size of simplex_in register, " "does not equal num_pairs.") if not isinstance(edges_in, list): raise ValueError("edges_in not a list of a list of two ints.") for pair in edges_in: if not isinstance(pair, list) or len(pair) != 2: raise ValueError("edges_in does not contain lists of two ints.") if not isinstance(pair[0], int) or not isinstance(pair[1], int): raise ValueError("edges_in inner lists do not contain ints.") top_qubits = np.arange(num_main_qubits) bottom_qubits = np.arange(num_main_qubits) bottom_qubits = np.roll(bottom_qubits,-1) # gates = [] for count_round in range(1, half_num_main_qubits+1): # R from spreadsheet count_round_from_zero = count_round - 1 pair_qubits = np.array([*zip(top_qubits, bottom_qubits)]) take = 1 << (first_non_zero_bit(count_round)) #the last round only has one inner_round if count_round < half_num_main_qubits: rounds = [0, 1] else: rounds = [0] for inner_round in rounds: take_in_a_row = np.array(range(take)) take_indices = np.zeros((half_num_main_qubits), dtype=int) for i in range((half_num_main_qubits)//take): take_indices[i*take:(i+1)*take] = \ (take_in_a_row + i*(2*take) + inner_round*take) % num_main_qubits for pairs_index, pair in enumerate(pair_qubits[take_indices].tolist()): if pair not in edges_in: # consider using bisect search of sorted list pair.reverse() if pair not in edges_in: if measure_reg is not None: qubits = (pair[0], pair[1], simplex_in[pairs_index]) else: qubits = (pair[0], pair[1], simplex_in[ count_round_from_zero*num_main_qubits + inner_round*half_num_main_qubits + pairs_index]) if do_rccx: circ.rccx(*qubits) # rccx(circ, *qubits) else: circ.ccx(*qubits) if measure_reg is not None: # could use: circ._mid_circuit, but prefer not to delve into internals circ.measure(simplex_in, measure_reg[ count_round_from_zero*num_main_qubits + inner_round*half_num_main_qubits: count_round_from_zero*num_main_qubits + (inner_round+1)*half_num_main_qubits]) for _ in range(num_resets): circ.reset(simplex_in) bottom_qubits = np.roll(bottom_qubits, -1) return circ ####################################################################### ### SPLIT BY SIMPLEX DEGREE K (entangle with counter reg, then PROJECT) ####################################################################### def split_k(circ, from_qreg, counter_qreg, qancilla=None): # , reshuffle=False): # PROJECTION ONTO K-SIMPLICES #warning, code similar to within control_permutation_circuit count_register_flipped = counter_qreg[::-1] num_count_qubits = len(counter_qreg) angle = -2*np.pi/(1 << (num_count_qubits + 1)) # separate by k for k-simplices for i in range(len(from_qreg)): leave_out_W = True if i > 0 else False leave_out_V = True if i < len(from_qreg)-1 else False qancilla = control_permutation_circuit(from_qreg[i], counter_qreg, qancilla=qancilla, circ=circ, leave_out_V=leave_out_V, leave_out_W=leave_out_W) if leave_out_V: diagonal_permutation_circuit(count_register_flipped, angle=angle, circ=circ) return qancilla # #make 1 and 2, 1x neighbours, if we measure counter_qreg[1], it collapses the entangled simplices # if reshuffle: # circ.cx(counter_qreg[0], counter_qreg[1]) #interfere neighbours -> not necessary (maybe it could help later?) #circ.h(counter_qreg[0]) def split_k_inverse(circ, from_qreg, counter_qreg): # TODO: decide what to do about qancilla tempCirc = QuantumCircuit(from_qreg, counter_qreg) split_k(tempCirc, from_qreg, counter_qreg) circ.data += tempCirc.inverse().data def num_split_projections(powers=[1], sqrt=False): sum_projections = 0 add_proj = 0 if sqrt else 1 intdiv = 2 if sqrt else 1 for p in powers: sum_projections += p//intdiv + 1 return sum_projections ####################################################################### ############################################ ### OTHER HELPER FUNCTIONS ############################################ def initialize_register(qcirc, complex_vector, qreg, inverse=False): circ_complex = QuantumCircuit(qreg) myinit = Initialize(complex_vector) circ_complex.append( myinit.gates_to_uncompute().to_instruction(), qreg) if inverse: qcirc += circ_complex else: qcirc += circ_complex.inverse() def unroll_projections(list_projs): unrolled_proj = [] for projs in list_projs: unrolled_proj.extend(projs) return unrolled_proj def advanced_index_selecting_diagonal_of_split_k(laplacian): # Old: # select_dim = [0, 0] # select_dim.extend(list(np.ones( # laplacian._num_complex_projections, dtype=int) # * ((1 << num_pairs) - 1))) # select_dim.extend([np.array(range(1, num_main_qubits + 1), dtype=int) # for _ in # range( # laplacian._num_split_projections)]) num_main_qubits = laplacian._num_main_qubits advanced_index_array_base = np.arange(1, num_main_qubits, dtype=int) # This is counting vertices, 1, num_main_qubits+1 is from 1 to num_main_qubits, inclusive. Careful if complex is fully connected, introduce check or wrap % num_main_qubits - 1, or leave out num_main_qubits, yes do this advanced_index_array = np.zeros(num_main_qubits - 1, dtype=int) for i in range(laplacian._num_split_projections): advanced_index_array += \ advanced_index_array_base*(1 << (i*laplacian._count_bits_per_projection)) return advanced_index_array def reshape_into_tensor_of_dim_main_ancilla_proj_split(circ_output, laplacian): # Old: # reshape_dim = np.zeros(2 + laplacian._num_complex_projections + # laplacian._num_split_projections, dtype=int) # reshape_dim[0] = 1 << num_main_qubits # reshape_dim[1] = 1 << laplacian._num_clean_ancillae # reshape_dim[2:2+laplacian._num_complex_projections] = \ # np.ones(laplacian._num_complex_projections) *\ # (1 << num_pairs) # reshape_dim[2+laplacian._num_complex_projections:] = \ # np.ones(laplacian._num_split_projections) *\ # (1 << laplacian._count_bits_per_projection) # output_tensor = circ_output.reshape(tuple(reshape_dim), # order='F') output_tensor = circ_output.reshape( 1 << laplacian._num_main_qubits, 1 << laplacian._num_clean_ancillae, 1 << laplacian._num_complex_projections*laplacian._num_pairs, 1 << laplacian._num_split_projections* \ laplacian._count_bits_per_projection, order='F') return output_tensor ####################################################################### ####################################################################### ############################################################ ### MAIN CLASSES TO CREATE CIRCUITS FOR MOMENTS OF LAPLACIAN ############################################################ class Projected_Laplacian(QuantumCircuit): # Since Laplacian is implemented using Taylor expansion # a lot of post-processing is required # leave out first projection because assuming only one simplex already in # the complex (Ken) -> yes option open again? -> no, because using # Rademacher vectors """ Direct Unitary Method: boundary_operator_unitary_circuit(num_vertices) """ def __init__(self, *, num_vertices=None, edges_in=None, power=1, num_ancillae_eigenvalue_resolution=0, sqrt=False, mid_circuit=False, num_resets=None, do_rccx=True): # Registers: _main_qreg, _clean_ancilla, _reusable_qreg OR (_complex_qregs AND _split_qregs) # Size: _num_main_qubits, _num_clean_ancillae, ._num_projection_qubits (= _half_num_main_qubits* OR # (_num_complex_projections*_num_pairs + # _num_split_projections*_count_bits_per_projection)) #################################################### # Consume num_vertices, edges_in #################################################### if num_vertices is None: raise(ValueError("num_vertices not specified from which to build up complex.")) if edges_in is None: raise(ValueError("edges_in not specified from which to build up complex.")) # TODO: worry about user inputing the wrong size edges_in self._edges_in = edges_in # self._num_pairs = len(edges_in) # self._num_qubits = num_qubits_from_num_pairs(self._num_pairs) if not is_power_of_2(num_vertices): raise ValueError("For now, num_vertices must be a power of two.") self._num_main_qubits = num_vertices # consider getting from largest vertex in edges_in, nah, see remap self._half_num_main_qubits = num_vertices // 2 self._num_pairs = num_vertices*(num_vertices-1)//2 self._main_qreg = QuantumRegister(self._num_main_qubits, "mainqreg") super().__init__(self._main_qreg) self._count_bits_per_projection = num_bits(self._num_main_qubits) # Should be number + 1, to store the all-vertex simplex. Decided to save that bit (we're in the case of power of 2). We could introduce check for the fully connected one-skeleton and return something meaningful, but rather just say we're not interested in simplices of order num_vertices, which is the case. self._num_permutation_ancillae = max(0, self._count_bits_per_projection - 2) if not mid_circuit: # and self._num_permutation_ancillae > 0: self._num_clean_ancillae = max(self._num_permutation_ancillae, 1) # max(# self._num_pairs, # n^2 vs logn, don't need. The 1 is for boundary. # in NISQ it may be better to have separate registers to limit # noise? or use mid-circuit reset!! self._clean_ancilla = AncillaRegister(self._num_clean_ancillae, # could multiply by numsplit and measure all at the end as a noise detection scheme name="clean_ancillae") self.add_register(self._clean_ancilla) else: # for the case mid_circuit=True, we still don't need extra quantum ancillae, even though we could get classical ancillae answers out. TODO: do just that for error mitigation. self._num_clean_ancillae = 0 self._clean_ancilla = None #################################################### # Consume power, num_ancillae_eigenvalue_resolution #################################################### self.base_power = power self._num_ancillae_eigenvalue_resolution = \ int(num_ancillae_eigenvalue_resolution) if self._num_ancillae_eigenvalue_resolution > 0: self.powers = [int(self.base_power*(2**i)) for i in range( self._num_ancillae_eigenvalue_resolution)] self._control_reg_consolidate = QuantumRegister(1) self.add_register(self._control_reg_consolidate) if self._num_ancillae_eigenvalue_resolution == 1: self._control_reg = None else: self._control_reg = QuantumRegister(self._num_ancillae_eigenvalue_resolution) self.add_register(self._control_reg) else: self.powers = [int(self.base_power)] self._control_reg_consolidate = None #################################################### # Consume sqrt, mid_circuit #################################################### self._sqrt = sqrt self._mid_circuit = mid_circuit self._num_complex_projections = num_complex_projections(self.powers, self._sqrt) self._num_split_projections = num_split_projections(self.powers, self._sqrt) if mid_circuit: self._reusable_qreg = AncillaRegister( max(self._half_num_main_qubits, self._count_bits_per_projection + self._num_permutation_ancillae, 1), name="reusableprojqreg") # Complex projection (always the max), Order projection (count + mct), boundary circ exponentiate Z on target self._num_projection_qubits = len(self._reusable_qreg) self.add_register(self._reusable_qreg) self._boundary_sum_unitary_circuit = \ boundary_operator_unitary_circuit(self._main_qreg, self._reusable_qreg, # don't worry whole reg not used self._control_reg_consolidate) # consider reset -> yes see power else: self._boundary_sum_unitary_circuit = \ boundary_operator_unitary_circuit(self._main_qreg, self._clean_ancilla, self._control_reg_consolidate) self._complex_qregs = [] self._split_qregs = [] for power in self.powers: projections_for_power = [] power_num_complex_projections = num_complex_projections([power], self._sqrt) for projection in range(power_num_complex_projections): projections_for_power.append( AncillaRegister(self._num_pairs, name="power" + str(power) + "complexqproj" + str(projection))) self._complex_qregs.append(projections_for_power) projections_for_power = [] power_num_split_projections = num_split_projections([power], self._sqrt) for projection in range(power_num_split_projections): projections_for_power.append( AncillaRegister(self._count_bits_per_projection, name="power" + str(power) + "splitqproj" + str(projection))) self._split_qregs.append(projections_for_power) self.add_register(*unroll_projections(self._complex_qregs), *unroll_projections(self._split_qregs)) self._num_projection_qubits = self._num_complex_projections*self._num_pairs + \ self._num_split_projections*self._count_bits_per_projection #technically don't need _main_creg at all, if backend is statevector_simulator, but can't check here, because don't know what backend is, no need to pass because no harm if created. if self._sqrt: self._main_creg = ClassicalRegister(self._num_main_qubits) self.add_register(self._main_creg) else: self._main_creg = ClassicalRegister(1) self.add_register(self._main_creg) self._complex_cregs = [] self._split_cregs = [] for power in self.powers: projections_for_power = [] for projection in range(num_complex_projections([power], self._sqrt)): projections_for_power.append( ClassicalRegister(self._num_pairs, name="power" + str(power) + "complexcproj" + str(projection))) self._complex_cregs.append(projections_for_power) projections_for_power = [] for projection in range(num_split_projections([power], self._sqrt)): projections_for_power.append( ClassicalRegister(self._count_bits_per_projection, name="power" + str(power) + "splitcproj" + str(projection))) self._split_cregs.append(projections_for_power) self.add_register(*unroll_projections(self._complex_cregs), *unroll_projections(self._split_cregs)) self._num_total_qubits = self._num_main_qubits + self._num_clean_ancillae + \ self._num_projection_qubits # Uncomment to use as a form of error detection # # put at end (first in count list) to allow for easier removal # if (not mid_circuit) and self._num_permutation_ancillae > 0: # self._clean_ancilla_creg = ClassicalRegister( # self._num_permutation_ancillae) # self.add_register(self._clean_ancilla_creg) # else: # self._clean_ancilla_creg = None # # should actually peal away case of mid-circuit and possibly measure # # for split_projection as a noise detection mechanism! also reset reusable quantum register # Both mid_circuit=True and False need classical registers #################################################### # Consume num_resets and do_rccx #################################################### if num_resets is None: self._num_resets = int(mid_circuit) else: self._num_resets = num_resets if mid_circuit: if num_resets == 0: print("Warning: mid_circuit==True and num_resets==0.") elif num_resets > 0: print("Warning: mid_circuit==False but num_resets>0.") self._do_rccx = do_rccx def measure_all_qregs(self): """Only to be called for "count" backends (sim or hardware), not to be called for statevector backends. Place measurements on projection registers if mid_circuit is false. Always place measurements on main register (sqrt uses all counts on main reg, not sqrt uses 0 of main reg)! Technically don't need to place measurements on ancillae, but could be used to check for errors?""" if self._sqrt: self.measure(self._main_qreg, self._main_creg) else: self.measure(self._main_qreg[0], self._main_creg[0]) if not self._mid_circuit: for qreg_for_power, creg_for_power in zip(unroll_projections(self._complex_qregs), unroll_projections(self._complex_cregs)): self.measure(qreg_for_power, creg_for_power) for qreg_for_power, creg_for_power in zip(unroll_projections(self._split_qregs), unroll_projections(self._split_cregs)): self.measure(qreg_for_power, creg_for_power) # uncomment to use as a form of error detection also introduce such measurements for # mid_circuit=True in the loop # if self._num_clean_ancillae > 0: # self.measure(self._clean_ancilla, self._clean_ancilla_creg) def split_ancillae(self): if self._num_permutation_ancillae > 0: return self._clean_ancilla[:self._num_permutation_ancillae] else: return None def power(self, power, matrix_power=False): # Warning returns first entry only, but should only have one and only one # Note not storing power, so .power(2).control() won't control the square, rather: .control(power=2) -> reconsider this now that control automatically handled? if matrix_power: raise Exception("Matrix Power not supported") power_index = self.powers.index(power) count_complex_projection = 0 count_split_projection = 0 def place_complex_projection(): nonlocal count_complex_projection if self._mid_circuit: complex_qreg = self._reusable_qreg[:self._half_num_main_qubits] # self._num_pairs] complex_creg = self._complex_cregs[power_index][count_complex_projection] else: complex_qreg = self._complex_qregs[power_index][count_complex_projection] complex_creg = None project_onto_complex(self, self._edges_in, self._main_qreg, complex_qreg, complex_creg, self._num_resets, do_rccx=self._do_rccx) count_complex_projection += 1 def place_split_projection(): nonlocal count_split_projection if self._mid_circuit: split_qreg = self._reusable_qreg[:self._count_bits_per_projection] ancilla_qreg = self._reusable_qreg[self._count_bits_per_projection:] else: split_qreg = self._split_qregs[power_index][count_split_projection] ancilla_qreg = self.split_ancillae() split_k(self, self._main_qreg, split_qreg, qancilla=ancilla_qreg) # self.split_ancillae()) if self._mid_circuit: self.measure(split_qreg, self._split_cregs[power_index][count_split_projection]) for _ in range(self._num_resets): self.reset(split_qreg) count_split_projection += 1 place_complex_projection() place_split_projection() if self._sqrt: number_of_PB_pairs = power else: number_of_PB_pairs = 2*power for i in range(number_of_PB_pairs): self += self._boundary_sum_unitary_circuit # automatically caters for control if self._mid_circuit: for _ in range(self._num_resets): self.reset(self._reusable_qreg[0]) # boundary circuit uses the first qubit of the reusable register as the ancilla place_complex_projection() if (i % 2): place_split_projection() def control(self, num_ctrl_qubits=None, label=None, ctrl_state=None, power=1, use_basis_gates=True): # TODO: write unit tests and use in QPE # overloading, not controlling projection since shouldn't change anything? # consider doing the 'wrong' black-box control! if num_ctrl_qubits is None: num_ctrl_qubits = self._num_ancillae_eigenvalue_resolution if label is None: label='c_{}'.format(self.name) if ctrl_state is not None: raise Exception("Not handling ctrl_state=True at the moment.") if self._control_reg is not None: self.mct(self._control_reg, self._control_reg_consolidate) self.power(power) class Project_and_Split(Projected_Laplacian): # TODO: still to write unit_tests def __init__(self, edges_in=None, num_vertices=None, mid_circuit=False): super().__init__(edges_in=edges_in, num_vertices=num_vertices, power=0, mid_circuit=mid_circuit) # self.power(0) class Projected_Boundary(Projected_Laplacian): def __init__(self, edges_in=None, num_vertices=None, power=1, num_ancillae_eigenvalue_resolution=0, mid_circuit=False): super().__init__(edges_in=edges_in, num_vertices=num_vertices, power=power, num_ancillae_eigenvalue_resolution=num_ancillae_eigenvalue_resolution, sqrt=True, mid_circuit=mid_circuit) ####################################################################### ####################################################################### # FUNCTIONS TO RUN CIRCUITS and POST-PROCESS ####################################################################### def print_unitary_and_trace(circ, trace=True): usim = BasicAer.get_backend('unitary_simulator') # usim = Aer.get_backend('aer_simulator') # laplacian.save_unitary() temp_circuit = transpile(circ, backend=usim, optimization_level=0) qobj = assemble(temp_circuit) unitary = usim.run(qobj).result().get_unitary() print_matrix(unitary, vecfunc=format_real) if trace: import pdb pdb.set_trace() def expectation_of_laplacian(*, num_vertices, edges_in, vec_in=None, vec_in_circ=None, power=1, mid_circuit=False, sqrt=True, num_resets=None, job_name=None, backend_name="aer_simulator_statevector", rename_job_after_done=False, do_rccx=True, noise=None, shots=None): def rename_job(job): nonlocal job_name nonlocal backend_local_sim nonlocal rename_job_after_done job_name = job_name + "_" + secrets.token_urlsafe(8) if not backend_local_sim and rename_job_after_done: # not isinstance(job, BasicAerJob) print("Renaming ibmq job to: ", job_name) job.update_name(job_name) if vec_in is not None and vec_in_circ is not None: raise ValueError("Error: vec_in and vec_in_circ specified. Specify one or neither.") # TODO: rather check type of single argument else: qreg_temp = QuantumRegister(num_vertices) vec_circ = QuantumCircuit(qreg_temp) if vec_in is not None: initialize_register(vec_circ, vec_in, qreg_temp) elif vec_in_circ is not None: vec_circ = vec_in_circ else: vec_circ.h(qreg_temp) vec_circ_inst = vec_circ.to_instruction() vec_circ_inverse_inst = vec_circ.copy().inverse().to_instruction() result = None if backend_name is None: backend_any_asked = True else: backend_any_asked = False backend_local_sim = (backend_name == 'qasm_simulator' or # old python simulator backend_name == 'statevector_simulator' or # old python backend_name == 'aer_simulator_statevector' or # new C++ backend_name == 'aer_simulator_statevector_gpu' or # new GPU backend_name == 'aer_simulator_density_matrix' or # new C++ backend_name == 'aer_simulator_density_matrix_gpu') # new GPU gpu = (backend_name == 'aer_simulator_statevector_gpu' or backend_name == 'aer_simulator_density_matrix_gpu') if backend_local_sim: if mid_circuit or noise is not None: if backend_name == 'statevector_simulator': raise ValueError('mid_circuit/noise not compatible with old statevector ' 'simulator') backend = Aer.get_backend(backend_name) if gpu: backend.device="GPU" # should not be needed backend.set_options(batched_shots_gpu=True) backend.set_options(batched_shots_gpu_max_qubits=32) if shots is None: shots = 50000 if noise is not None: # Error probabilities prob_1 = noise[0] # 1-qubit gate prob_2 = noise[1] # 2-qubit gate prob_mat = [[1-prob_2,prob_2],[prob_2,1-prob_2]] # Depolarizing quantum errors error_1 = qnoise.depolarizing_error(prob_1, 1) error_2 = qnoise.depolarizing_error(prob_2, 2) read_err = qnoise.ReadoutError(prob_mat) # Add errors to noise model noise_model = qnoise.NoiseModel() noise_model.add_all_qubit_quantum_error(error_1, ['u1', 'u2', 'u3']) noise_model.add_all_qubit_quantum_error(error_2, ['cx']) noise_model.add_all_qubit_readout_error(read_err) # Get basis gates from noise model basis_gates = noise_model.basis_gates backend.set_options(noise_model=noise_model, basis_gates=basis_gates) else: noise_model = None # mybackend_shots = 80000 # backend._configuration.n_qubits = 24 # if backend_name == 'qasm_simulator': # backend._configuration.max_shots = 2*10**3#10**6 #1000 # 10**7 else: backend = None if backend_name == "ionq_qpu": provider = IonQProvider("YKI565sxYHK1Pe3w4mRRHOQ6EvhbGXeF") # print(provider.backends()) backend = provider.get_backend("ionq_qpu") if shots is None: shots = 100 # backend._configuration.max_shots elif backend_name == "HQS-LT-S1-SIM" or backend_name == "HQS-LT-S2-SIM" \ or backend_name == "HQS-LT-S1" or backend_name == "HQS-LT-S2": Honeywell.load_account() backend = Honeywell.get_backend(backend_name) if shots is None: shots = 2000 else: if IBMQ.active_account() is None: IBMQ.enable_account(\ 'ec1952054b99bc0febe3c3d296521da193190fb4f9c3925d7' 'b7a015c443240f07263c4f9b6bdbf1a0c99f6fe7451af029b' '2c52d06f222e94bc467f14b8e2adf6') provider = IBMQ.get_provider(hub='ibm-q-internal') # ('ibm-q-internal') if backend_name is not None: backend = provider.get_backend(backend_name) if job_name is not None: past_days = datetime.now() - timedelta(days=JOB_PREVIOUS_DAYS) # Add local tz in order to compare to `creation_date` which is tz aware. # past_days_tz_aware = past_days.replace(tzinfo=tz.tzlocal()) if backend is None: myjobs = provider.backends.jobs(limit=JOB_RETRIEVE_LIMIT, start_datetime=past_days) else: myjobs = backend.jobs(limit=JOB_RETRIEVE_LIMIT, start_datetime=past_days) myjob_dict = {myjob.name():myjob for myjob in myjobs} if job_name in list(myjob_dict): myjob_status = myjob_dict[job_name].status() if backend is None: backend = myjob_dict[job_name].backend() backend_name = backend.name() if myjob_status is not JobStatus.DONE: print("Found job: ", job_name, ", Status is: ", myjob_status, ". Rerun later.") return (backend_name, job_name) else: result = myjob_dict[job_name].result() print("Found job: ", job_name, ", Status is: ", myjob_status, ".") rename_job(myjob_dict[job_name]) # Need the laplacian object to choose hardware backend, run and/or to analyse results laplacian = Projected_Laplacian(num_vertices=num_vertices, edges_in=edges_in, power=power, mid_circuit=mid_circuit, sqrt=sqrt, num_resets=num_resets, do_rccx=do_rccx) q_main_reg = laplacian._main_qreg num_main_qubits = laplacian._num_main_qubits num_pairs = laplacian._num_pairs num_total_qubits = laplacian._num_total_qubits if result is None: if backend is None: # when sim is False and no job found available_devices = provider.backends( filters=lambda x: (x.configuration().n_qubits >= num_total_qubits) and (not x.configuration().simulator)) # and x.status().operational==True) if not available_devices: raise AssertionError("No available devices with at least " + str(num_total_qubits) + " qubits.") backend = least_busy(available_devices) backend_name = backend.configuration().backend_name backend_any_asked = True print("Least Busy Backend:", backend_name) if shots is None: shots = backend._configuration.max_shots # CIRCUIT CONSTRUCTION laplacian.append(vec_circ_inst, qargs=q_main_reg) laplacian.power(power) # already taking into account sqrt (during _init_) if not sqrt: # here and below could use laplacian._sqrt to emphasise laplacian, chose not to since did assign local variables to other laplcian variables laplacian.append(vec_circ_inverse_inst, qargs=q_main_reg) # print_unitary_and_trace(laplacian) if backend_name != 'statevector_simulator': # may need to check for ibmq statevector_simulator laplacian.measure_all_qregs() if backend.configuration().n_qubits == 27: if num_main_qubits == 2: if mid_circuit: rqreg = laplacian._reusable_qreg initial_layout = {q_main_reg[0]: 11, q_main_reg[1]: 16, rqreg[0]: 14} else: cqreg = laplacian._complex_qregs[0] sqreg = laplacian._split_qregs[0] aqreg = laplacian._clean_ancilla initial_layout = {q_main_reg[0]: 11, q_main_reg[1]: 16, aqreg[0]: 14, sqreg[0][0]: 13, cqreg[0][0]: 8, cqreg[1][0]: 19} elif num_main_qubits >= 4: if mid_circuit: rqreg = laplacian._reusable_qreg initial_layout = {q_main_reg[0]: 11, q_main_reg[1]: 16, q_main_reg[2]: 15, q_main_reg[3]: 10, rqreg[0]: 14, rqreg[1]: 12} #rqreg[2]: 13} else: cqreg = laplacian._complex_qregs[0] sqreg = laplacian._split_qregs[0] aqreg = laplacian._clean_ancilla initial_layout = {q_main_reg[0]: 11, q_main_reg[1]: 16, q_main_reg[2]: 15, q_main_reg[3]: 10, aqreg[0]: 13, sqreg[0][0]: 14, sqreg[0][1]: 12, cqreg[0][0]: 8, cqreg[0][1]: 19, cqreg[0][2]: 18, cqreg[0][3]: 7, cqreg[0][4]: 5, cqreg[0][5]: 22, cqreg[1][0]: 9, cqreg[1][1]: 20, cqreg[1][2]: 17, cqreg[1][3]: 6, cqreg[1][4]: 21, cqreg[1][5]: 4} else: initial_layout = None else: initial_layout = None # RUN CIRCUIT unrolled_laplacian = transpile(laplacian, backend=backend, seed_transpiler=11, optimization_level=0) optimized_laplacian = transpile(laplacian, backend=backend, seed_transpiler=11, optimization_level=3, initial_layout=initial_layout) print("width: ", optimized_laplacian.width(), "depth: ", optimized_laplacian.depth()) if backend_name == "ionq_qpu": job = backend.run(optimized_laplacian, shots=shots) import time while job.status() is not JobStatus.DONE: print("Job status is", job.status()) time.sleep(60) result = job # sic, weird IonQ convention if rename_job_after_done: print("Warning: Ignoring rename job on IonQ server, no functionality.") rename_job_after_done = False rename_job(job) elif backend_name == "HQS-LT-S1-SIM" or backend_name == "HQS-LT-S2-SIM" \ or backend_name == "HQS-LT-S1" or backend_name == "HQS-LT-S2": job_honey = execute(optimized_laplacian, backend, shots=shots) job_honey_id = job_honey.job_ids()[0] print("Honeywell Job id: ", job_honey_id) return (backend_name, job_honey_id) else: if job_name is None: job_name = str(num_vertices) + "_" \ + ("True" if mid_circuit else "False") + "_" \ + ("True" if sqrt else "False") job = execute(optimized_laplacian, backend, job_name=job_name, shots=shots) # time.sleep(5) if job.status() is JobStatus.DONE or backend_local_sim: result = job.result() rename_job(job) else: print("Job submitted, please rerun to collect results.") return (backend_name, job_name) else: print("Laplacian Original:") print("width: ", laplacian.width()) # print("depth: ", laplacian.depth()) -> zero if reached if backend_name == 'statevector_simulator': circ_output = result.get_statevector(optimized_laplacian) output_tensor = reshape_into_tensor_of_dim_main_ancilla_proj_split(circ_output, laplacian) main_qreg_select = slice(0, None) if sqrt else 0 advanced_index_array = advanced_index_selecting_diagonal_of_split_k(laplacian) expectation_laplacian = output_tensor[ main_qreg_select, 0, 0, advanced_index_array] if sqrt: expectation_laplacian = np.linalg.norm(expectation_laplacian, axis=0)**2 else: # 'qasm_simulator' or hardware counts = result.get_counts() counts_file = open("../output/" + (backend_name + "_" if backend_any_asked else "") + job_name + ".json", "w") json.dump(counts, counts_file) counts_file.close() frac_counts = np.array(get_fraction_count_for_all_k(counts, laplacian, sqrt)) expectation_laplacian = frac_counts if sqrt else np.sqrt(frac_counts) # num_Bs = power*(1 if sqrt else 2) not actual B's, but analytical number # num_Bs = power*2 #expectation_laplacian *= np.sqrt(num_vertices)**(num_Bs) # final correction since B = sqrt(n)RXR # expectation_laplacian *= num_vertices**power times (num_vertices^power) to correct for B, divide by to make largest eigenvalue 1 # expectation_laplacian[0] -= 1/(num_vertices**power) # correction for augmented Laplacian, see Goldeberg Page 42 v^T(P_kP_GBP_GBP_GP_k)v, since v^TUv = 0 for Hadamard vectors, we ignore this term return expectation_laplacian # if power > 0: # # expectation_projections = fraction_in_complex_of_all_orders(num_vertices=num_vertices, # # edges_in=edges_in, # # vec_in_circ=vec_circ) # # # Boundary squared = identity * num_main_qubits # # expectation_boundary_squared = expectation_projections*num_main_qubits # # expectation_laplacian = ((-1)**sqrt)*((expectation_projections - # # expectation_taylor)/(laplacian._time_evolution**2) - # # expectation_boundary_squared*power) # return expectation_laplacian # else: # return expectation_taylor def fraction_in_complex_of_all_orders(*, num_vertices, edges_in, vec_in=None, vec_in_circ=None, mid_circuit=False, sqrt=True, job_name=None, backend_name="statevector_simulator"): return expectation_of_laplacian(num_vertices=num_vertices, edges_in=edges_in, vec_in=vec_in, vec_in_circ=vec_in_circ, power=0, mid_circuit=mid_circuit, sqrt=sqrt, job_name=job_name, backend_name=backend_name) # def average_expectation_over_random_two_local_vec_circs(num_vertices, edges_in, power=1, num_samples=1): # expectation_val = 0 # for i in range(num_samples): # random_circ = TwoLocal(num_vertices, 'ry', 'cx', 'linear', # parameter_prefix='theta', reps=1) # param_dict = {} # for param in random_circ.ordered_parameters: # param_dict[param] = np.random.rand()*2*np.pi # random_circ = random_circ.bind_parameters(param_dict) # expectation_run = expectation_of_laplacian(num_vertices=num_vertices, edges_in=edges_in, # vec_in_circ=random_circ, # power=power, backend_name="statevector_simulator") # expectation_val += expectation_run # expectation_val = expectation_val/num_samples # return expectation_val def expectation_over_random_hadamard_vecs(num_vertices, edges_in, powers=[1], num_samples=10, noise = [0.001,0.1], expt_name= None, gpu = True): # expectation_val = 0 expectation_matrix = np.zeros((num_samples, int(len(powers)), num_vertices-1)) for sample in range(num_samples): random_circ = QuantumCircuit(num_vertices) count_h = 0 for i in range(num_vertices): if (np.random.rand() < 0.5): count_h+=1 random_circ.x(i) if count_h == 0: random_circ.x(np.random.randint(0,num_vertices)) for i in range(num_vertices): random_circ.h(i) for power_index, power in enumerate(powers): if expt_name is not None: job_name = expt_name+"degree"+str(power_index)+"sample"+str(sample) if gpu: b_name = "qasm_simulator" else: b_name = "ibmq_qasm_simulator" temp = expectation_of_laplacian(num_vertices=num_vertices, edges_in=edges_in, vec_in_circ=random_circ, power=power, mid_circuit=True, backend_name=b_name, noise = noise, job_name = job_name, gpu = gpu) if isinstance(temp[0], str): continue else: expectation_matrix[sample, power_index, :] = temp else: expectation_matrix[sample, power_index, :] = \ expectation_of_laplacian(num_vertices=num_vertices, edges_in=edges_in, vec_in_circ=random_circ, power=power, mid_circuit=True, backend_name="qasm_simulator", noise = noise) return expectation_matrix def help_setting_laplacian_arguments(num_vertices=4, mid_circuit=True, do_rccx=True, sqrt=True, num_resets=None, backend_name=None, make_edges_in=10, make_vec_in_circ=5, noise_lvl=None, shots=1000): if make_edges_in == 0: edges_in, min_num_vert, edges_in_type = [], 2, "noedge" elif make_edges_in == 1: edges_in, min_num_vert, edges_in_type = [[0,1]], 2, "edge" elif make_edges_in == 2: edges_in, min_num_vert = one_skeleton_triangle() edges_in_type = "triangle" elif make_edges_in == 3: edges_in, min_num_vert = one_skeleton_square() edges_in_type = "square" elif make_edges_in == 4: edges_in, min_num_vert = one_skeleton_tetrahedron() edges_in_type = "tetrahedron" elif make_edges_in == 5: edges_in, min_num_vert = one_skeleton_square_with_diagonal() edges_in_type = "square_diag" elif make_edges_in == 6: edges_in, min_num_vert = one_skeleton_pyramid() edges_in_type = "pyramid" elif make_edges_in == 7: edges_in, min_num_vert = one_skeleton_unfilled_cube() edges_in_type = "cube" elif make_edges_in == 8: edges_in, min_num_vert = one_skeleton_n_disconnected_squares(num_vertices) edges_in_type = "disconnected_squares" elif make_edges_in == 9: one_skel, _ = one_skeleton_fully_connected(num_vertices) edges_in = one_skel[:len(one_skel)//2] min_num_vert = num_vertices edges_in_type = "half_all_edges" elif make_edges_in == 10: one_skel, _ = one_skeleton_fully_connected(num_vertices//2) edges_in = one_skel + (np.array(one_skel) + [[num_vertices//2, num_vertices//2]]).tolist() min_num_vert = num_vertices edges_in_type = "two_fully_connected_clusters" else: raise ValueError("Unknown option for 'make_edges_in': ", make_edges_in) if min_num_vert > num_vertices: raise ValueError("Need more vertices than requested: " + str(min_num_vert) + " > " + str(num_vertices)) if make_vec_in_circ == 1: vec_in_circ = QuantumCircuit(num_vertices) for i in range(num_vertices): if (np.random.rand() < 0.5): vec_in_circ.x(i) for i in range(num_vertices): vec_in_circ.h(i) print(vec_in_circ._data) vec_in_circ_type = "random_vec" elif make_vec_in_circ == 2: vec_in_circ = QuantumCircuit(num_vertices) vec_in_circ.x(0) vec_in_circ.x(1) vec_in_circ_type = "edge_only_vec" elif make_vec_in_circ == 3: vec_in_circ = None vec_in_circ_type = "uniform_vec" elif make_vec_in_circ == 4: vec_in_circ = QuantumCircuit(num_vertices) vec_in_circ.x(0) vec_in_circ.h(1) vec_in_circ.cx(1, 0) vec_in_circ_type = "two_vertices_vec" elif make_vec_in_circ == 5: vec_in_circ = QuantumCircuit(num_vertices) vec_in_circ.x(0) for i in range(num_vertices): vec_in_circ.h(i) vec_in_circ_type = "fixed_rademacher" else: raise ValueError("Unknown option for 'make_vec_in_circ': ", make_vec_in_circ) if noise_lvl == 0: noise = None elif noise_lvl == 1: noise = [0.0001, 0.001] elif noise_lvl == 2: noise = [0.001, 0.01] elif noise_lvl == 3: noise = [0.01, 0.1] elif noise_lvl == 4: noise = [10**(-5), 10**(-4)] elif noise_lvl == 5: noise = [10**(-4), 0.001] elif noise_lvl == 6: noise = [0.0002, 0.002] elif noise_lvl == 7: noise = [0.0005, 0.005] elif noise_lvl == 8: noise = [0.001, 0.01] else: raise ValueError("Unknown option for 'noise_lvl': ", noise_lvl) job_name = ((backend_name + "_" if backend_name is not None else "") + edges_in_type + "_" + "vert_" + str(num_vertices) + "_" + "mid_circ_" + str(mid_circuit) + "_" + "sqrt_" + str(sqrt) + "_" + (("r_" + str(num_resets) + "_") if mid_circuit and num_resets is not None else "") + vec_in_circ_type + "_" + ("rccx_" if do_rccx else "ccx_") + (str(noise[0])+"_"+str(noise[1]) + "_" if noise is not None else "no_noise_") + "shots_" + ("*" if shots is None else str(shots))) return edges_in, min_num_vert, edges_in_type, vec_in_circ, vec_in_circ_type, noise, job_name ########################################################################## def compare_counts_hellinger(counts1, counts2): if isinstance(counts1, str): counts1 = json.load(open(counts1, "r")) elif not isinstance(counts1, dict): raise ValueError("Argument must be filename string or counts dictionary.") if isinstance(counts2, str): counts2 = json.load(open(counts2, "r")) elif not isinstance(counts2, dict): raise ValueError("Argument must be filename string or counts dictionary.") total1 = sum(counts1.values()) total2 = sum(counts2.values()) all_keys = set(list(counts1.keys()) + list(counts2.keys())) hellinger = 0 for key in all_keys: hellinger += (np.sqrt(counts1.get(key, 0)/total1) - np.sqrt(counts2.get(key, 0)/total2))**2 hellinger /= 2 return hellinger def compare_counts(counts1, counts2, interpret_counts_as_integers=False, wrap_at=0, kl_frac=True): if isinstance(counts1, str): counts1 = json.load(open(counts1, "r")) elif not isinstance(counts1, dict): raise ValueError("Argument must be filename string or counts dictionary.") if isinstance(counts2, str): counts2 = json.load(open(counts2, "r")) elif not isinstance(counts2, dict): raise ValueError("Argument must be filename string or counts dictionary.") total1 = sum(counts1.values()) total2 = sum(counts2.values()) matching_counts = [] if interpret_counts_as_integers: counts1_list_of_reg_strings = list(map(lambda count: count.split(), counts1.keys())) counts1keys = list(map(bin_string2int, counts1_list_of_reg_strings)) counts1values = list(counts1.values()) counts2_list_of_reg_strings = list(map(lambda count: count.split(), counts2.keys())) counts2keys = np.array(list(map(bin_string2int, counts2_list_of_reg_strings))) # if bug_fix_ancilla: # counts2keys = np.delete(counts2keys, -2, axis=1) # # uneccessarily long for noise, but saves me from calc lookup num_vertices_2 = len(counts2_list_of_reg_strings[0][-1]) counts2values = list(counts2.values()) for place_in_counts1, integer_list_key_in_counts1 in enumerate(counts1keys): if wrap_at: source_keys_count_reg = (integer_list_key_in_counts1[0] + np.arange(0, num_vertices_2, wrap_at)).reshape(-1,1) num_source = source_keys_count_reg.shape[0] remaining_regs = integer_list_key_in_counts1[1:] num_remaining = len(remaining_regs) group_keys = np.concatenate((source_keys_count_reg, np.broadcast_to(remaining_regs, (num_source, num_remaining))), axis=1).tolist() else: group_keys = [integer_list_key_in_counts1] accumulate_counts = 0 for integer_list_key_in_group in group_keys: look_for_key = np.all(counts2keys == integer_list_key_in_group, axis=1) place_in_counts2 = np.where(look_for_key)[0] if place_in_counts2.size > 0: accumulate_counts += counts2values[place_in_counts2[0]] if accumulate_counts == 0: print("KL: to infinity and beyond!") return np.inf matching_counts.append((counts1values[place_in_counts1], accumulate_counts)) else: for i in counts1.keys(): count2 = counts2.get(i) if count2 is None: print("KL: to infinity and beyond!") return np.inf matching_counts.append((counts1[i], count2)) matching_counts = np.array(matching_counts) kl_div = sum(rel_entr(matching_counts[:, 0]/total1, matching_counts[:, 1]/total2)) if kl_frac: num_qubits = sum(map(len, next(iter(counts2)).split())) entropy_counts1 = sum(entr(matching_counts[:, 0]/total1)) kl_div = kl_div/(num_qubits*np.log(2)-entropy_counts1) print("KL Fraction: ", kl_div) return kl_div else: print("KL: ", kl_div) return kl_div def merge_counts(dict_or_filenames_list, clip_val=None, keep_keys=None, template=None, salt_rest=False): merged_dict = {} if len(dict_or_filenames_list) == 0: ValueError("Argument must be filename string or counts dictionary list.") for counts_dict in dict_or_filenames_list: if isinstance(counts_dict, str): counts_dict = json.load(open(counts_dict, "r")) elif not isinstance(counts_dict, dict): raise ValueError("Argument must be filename string or counts dictionary list.") if template is not None: template = template[::-1] fixed_counts_dict = {} num_registers = len(template) expected_key_len = sum(template) for key in counts_dict: # if key =='1': # pdb.set_trace() actual_key_len = len(key) padded_key = '0'*(expected_key_len - actual_key_len) + key start_index = 0 end_index = template[0] # Reverse # start_index = -template[0] # end_index = expected_key_len new_key = '' for i in range(num_registers): new_key = padded_key[start_index:end_index] + new_key if i < num_registers-1: new_key = ' ' + new_key start_index = end_index end_index = end_index + template[i+1] # Reverse # end_index = start_index # start_index = start_index - template[i+1] fixed_counts_dict[new_key] = counts_dict[key] counts_dict = fixed_counts_dict for key in counts_dict: # actually don't need to run if only one dict old_val = merged_dict.get(key, 0) merged_dict[key] = old_val + counts_dict[key] normalize_count = sum(list(merged_dict.values())) if keep_keys is not None: new_dict = {} for key in keep_keys: old_val = merged_dict.get(key, 0) if old_val > 0: new_dict[key] = old_val else: new_dict = merged_dict if clip_val is not None: new_dict_2 = {} # normalize_count = 0 for key in new_dict: old_val = new_dict.get(key) # normalize_count += old_val if old_val > clip_val: new_dict_2[key] = old_val # del merged_dict[key] -> problem in for loop new_dict = new_dict_2 if (keep_keys or clip_val): new_dict['rest' + (secrets.token_urlsafe(8) if salt_rest else "")] = normalize_count-sum(new_dict.values()) # new_dict[key] = int((new_dict.get(key)/normalize_count)*10**6) # new_dict['rest'] = int(10**6-sum(new_dict.values())) return new_dict def load_merge_compare(list1, list2, interpret_counts_as_integers=True, wrap_at=0, kl_frac=True): list1_counts = merge_counts(list1) list1_counts_num_shots = sum(list1_counts.values()) list2_counts = merge_counts(list2) list2_counts_num_shots = sum(list2_counts.values()) print("List 1 counts:", list1_counts_num_shots) print("List 2 counts:", list2_counts_num_shots) kl = compare_counts(list1_counts, list2_counts, interpret_counts_as_integers=interpret_counts_as_integers, wrap_at=wrap_at, kl_frac=kl_frac) return kl def expectation_of_laplacian_json(filename, num_vertices, power=1, mid_circuit=True, sqrt=True, num_resets=None, do_rccx=True ): laplacian = Projected_Laplacian(num_vertices=num_vertices, edges_in=[], power=power, mid_circuit=mid_circuit, sqrt=sqrt, num_resets=num_resets, do_rccx=do_rccx) template = [laplacian._count_bits_per_projection]*laplacian._num_split_projections + [laplacian._num_pairs]*laplacian._num_complex_projections + [num_vertices] counts = merge_counts([filename], clip_val=None, keep_keys=None, template=template) frac_counts = np.array(get_fraction_count_for_all_k(counts, laplacian, sqrt)) expectation_laplacian = frac_counts if sqrt else np.sqrt(frac_counts) return expectation_laplacian def calc_circuit_depths(*, log_num_vertices_start=1, log_num_vertices_end=6, power=1, mid_circuit=False, sqrt=True, do_rccx=True, num_resets=None, backend_name_or_Fake="statevector_simulator"): # ibmq_qasm_simulator ibmq_armonk ibmq_montreal ibmq_toronto ibmq_santiago ibmq_bogota ibmq_manhattan ibmq_casablanca ibmq_sydney ibmq_mumbai ibmq_lima ibmq_belem ibmq_quito ibmq_guadalupe ibmq_brooklyn ibmq_jakarta ibmq_manila ibm_hanoi ibm_lagos ibm_cairo # https://github.com/Qiskit/qiskit-terra/tree/795e845bd83deda54c527bb3d750df00d9d03431/qiskit/test/mock/backends # properties = backend.properties() # coupling_map = backend.configuration().coupling_map # simulator = Aer.get_backend('qasm_simulator') depths = [] backend = None honeywell=False if backend_name_or_Fake == "ionq_simulator": from qiskit_ionq import IonQProvider provider = IonQProvider() # backend = provider.get_backend("ionq_simulator") # provider = IonQProvider("YKI565sxYHK1Pe3w4mRRHOQ6EvhbGXeF") # print(provider.backends()) # backend = provider.get_backend("ionq_qpu") elif backend_name_or_Fake in ['HQS-LT-S2-APIVAL', 'HQS-LT-S2-SIM', 'HQS-LT-S1-SIM', 'HQS-LT-S1-APIVAL', 'H1-2E', 'H1-1E']: Honeywell.load_account() # backends = Honeywell.backends() backend = Honeywell.get_backend(backend_name_or_Fake) honeywell=True elif backend_name_or_Fake == "statevector_simulator" or \ backend_name_or_Fake == "qasm_simulator": backend = BasicAer.get_backend(backend_name_or_Fake) elif backend_name_or_Fake.__class__.__bases__[0] is fake_pulse_backend.FakePulseBackend: backend = backend_name_or_Fake else: raise(ValueError("Error: backend_name_or_Fake not sim string or FakeBackend.")) # exec("from qiskit.test.mock import " + backend_name) # # Security risk! # exec("backend = " + backend_name + "()") # pass # Wow, weird error if leave out for log_num in range(log_num_vertices_start, log_num_vertices_end): num_vertices = 1 << log_num vec_circ = QuantumCircuit(num_vertices) for i in range(num_vertices//2): vec_circ.x(i) for i in range(num_vertices): vec_circ.h(i) vec_circ_inst = vec_circ.to_instruction() vec_circ_inverse_inst = \ vec_circ.copy().inverse().to_instruction() one_skel, _ = one_skeleton_fully_connected(num_vertices) half_one_skel = one_skel[:len(one_skel)//2] laplacian = Projected_Laplacian(num_vertices=num_vertices, edges_in=half_one_skel, power=power, mid_circuit=mid_circuit, sqrt=sqrt, num_resets=num_resets, do_rccx=do_rccx) q_main_reg = laplacian._main_qreg num_main_qubits = laplacian._num_main_qubits num_pairs = laplacian._num_pairs num_total_qubits = laplacian._num_total_qubits # CIRCUIT CONSTRUCTION laplacian.append(vec_circ_inst, qargs=q_main_reg) laplacian.power(power) # already taking into account sqrt (during _init_) if not sqrt: # here and below could use laplacian._sqrt to emphasise laplacian, chose not to since did assign local variables to other laplcian variables laplacian.append(vec_circ_inverse_inst, qargs=q_main_reg) # print_unitary_and_trace(laplacian) if backend_name_or_Fake != 'statevector_simulator': #may need to check for ibmq statevector_simulator laplacian.measure_all_qregs() unrolled_laplacian = transpile(laplacian, backend=backend, seed_transpiler=11, optimization_level=0) print(unrolled_laplacian.count_ops()) unrolled_depth = unrolled_laplacian.depth() print("width: ", unrolled_laplacian.width(), "depth: ", unrolled_depth) print("Laplacian Optimized:") optimized_laplacian = transpile(laplacian, backend=backend, seed_transpiler=11, optimization_level=3) print(optimized_laplacian.count_ops()) optimized_depth = optimized_laplacian.depth() print("width: ", optimized_laplacian.width(), "depth: ", optimized_depth) # if honeywell: # job = execute(unrolled_laplacian, backend) # print("HQC: ", job.__dict__)#job._experiment_results)#[0]['cost']) depths.append((num_vertices, unrolled_depth, optimized_depth)) return depths def produce_depths_plot(do_rccx=True): import matplotlib.pyplot as plot # depths_False_True = np.array(calc_circuit_depths(mid_circuit=False, # sqrt=True, do_rccx=do_rccx)) depths_True_True = np.array(calc_circuit_depths(log_num_vertices_end=8, mid_circuit=True, sqrt=True, do_rccx=do_rccx, power=3, backend_name_or_Fake="qasm_simulator")) # depths_True_True_Honeywell2 = np.array(calc_circuit_depths(log_num_vertices_end=4, mid_circuit=True, # sqrt=True, do_rccx=do_rccx, # backend_name_or_Fake='H1-2E')) depths_True_True_Honeywell1 = np.array(calc_circuit_depths(log_num_vertices_end=4, mid_circuit=True, sqrt=True, do_rccx=do_rccx, power=3, backend_name_or_Fake='H1-1E')) # backend_name_or_Fake="HQS-LT-S1-APIVAL")) # from qiskit.test.mock import FakeManhattan # fake_backend = FakeManhattan() # depths_True_True_fake = \ # np.array(calc_circuit_depths(mid_circuit=True, # sqrt=True, do_rccx=do_rccx, # backend_name_or_Fake=fake_backend)) # depths_True_True_IonQ = np.array(calc_circuit_depths(mid_circuit=True, # sqrt=True, do_rccx=do_rccx, # backend_name_or_Fake="ionq_simulator")) # mycolors = ('green', 'blue', 'orange', 'red') # mycirc_names = ('Statevector Simulation', 'Mid-circuit QASM all-to-all connectivity', 'Mid-circuit IonQ all-to-all connectivity', 'Mid-circuit IBM hardware connectivity') # circuits = [depths_False_True, depths_True_True, depths_True_True_IonQ, # depths_True_True_fake] # mycolors = ('blue', 'magenta') mycolors = ("#0c276c", "#7b1547") mydarkcolors = ("#648fff", "#dc006c") mycirc_names = ('QASM all-to-all connectivity', 'Ion-trap') circuits = [depths_True_True, depths_True_True_Honeywell1] fig, ax = plot.subplots() ax.set_title("Depth vs Num Vertices") ax.set_xlabel("Number of Vertices") ax.set_ylabel("Depth") for i, depths in enumerate(circuits): print("Depths: ", depths) ax.plot(depths[:, 0], depths[:, 1], label="Non-optimized " + mycirc_names[i], color=mycolors[i]) ax.plot(depths[:, 0], depths[:, 2], label="Optimized " + mycirc_names[i], color=mydarkcolors[i])#'dark'+mycolors[i]) ax.legend() plot.show() # plot.savefig("../output/circuit_depth_vs_vertices_with_honeywell" + ("rccx" if do_rccx else "ccx") + ".png") def honeywell_save_account_and_info(): Honeywell.save_account('lhoresh@us.ibm.com') Honeywell.load_account() # backend = Honeywell.get_backend('HQS-LT-S1-APIVAL') # backend = Honeywell.get_backend('HQS-LT-S2-APIVAL') backends = Honeywell.backends() print("Backends: ", backends) # for backend in honey_backends: # # backend = Honeywell.get_backend(backend_name) # print(backend._configuration.n_qubits) # raise(ValueError("Stop, but keep interpreter.")) # backend = Honeywell.get_backend('HQS-LT-S1-APIVAL') # backend = Honeywell.get_backend('HQS-LT-S2-APIVAL') def honeywell_retrieve_counts(backend_name, job_honey_id): Honeywell.load_account() backend = Honeywell.get_backend(backend_name) job = backend.retrieve_job(job_honey_id) result = job.result() counts = result.get_counts() print(counts) json.dump(counts, open('../output/' + job_honey_id + '.json', 'w')) edge_2_qasm = \ "../output/qasm_simulator_edge_2_True_True_r_None_uniform_vec_rccx_*.json" # wQwZaMMxCsc.json" square_4_qasm = \ "../output/qasm_simulator_square_4_True_True_r_None_uniform_vec_rccx_*.json" # Oo7V2RA5lHI.json" cube_8_qasm = \ "../output/qasm_simulator_cube_8_True_True_r_None_uniform_vec_rccx_2Wh8W7eFp9k.json" #_*.json" #DB7w1fJK6e4.json" edge_2_honeywell = \ "../output/32f5839d79674998aa80c261dfe8a1bb.json" square_4_honeywell = \ "../output/c90c48da23c448dc97f6054bd9d45cee.json" cube_8_honeywell = \ "../output/5b5a56527ed24073aab10011699e493d.json" if __name__ == '__main__': # depths = calc_circuit_depths(log_num_vertices_start=3, log_num_vertices_end=3, power=1, mid_circuit=True, backend_name_or_Fake='qasm_simulator') # print("Depths: ", depths) # raise(ValueError("Stop, but keep interpreter.")) # depths = calc_circuit_depths(log_num_vertices_end=4, mid_circuit=True, backend_name_or_Fake='HQS-LT-S1-APIVAL') # print("Depths: ", depths) # raise(ValueError("Stop, but keep interpreter.")) ##################################### # Depth plots ##################################### honeywell_save_account_and_info() produce_depths_plot(do_rccx=True) # raise ValueError("Exiting, but keeping interpreter.") ##################################### # Unit test all ##################################### # import unittest # unittest.main(module='test.test_quantum_homology_advanced') ##################################### # Unit test specific ##################################### # import test.test_quantum_homology_advanced # mylaplace = test.test_quantum_homology_advanced.Expectation_of_Laplacian_TestCase() # mylaplace.setUp() # mylaplace.test_expectation_01() # (backend="ionq_qpu") # mylaplace.test_expectation_02() # (backend="ionq_qpu") # mylaplace.test_expectation_03() # (backend="ionq_qpu") # mylaplace.test_expectation_04() # (backend="ionq_qpu") # mylaplace.test_expectation_05() # (backend="ionq_qpu") # # mylaplace.test_expectation_05() # mylaplace.test_run_random() # raise(ValueError("Stop, but keep interpreter.")) # honeywell_save_account_and_info() # honeywell_retrieve_counts('HQS-LT-S2', 'c90c48da23c448dc97f6054bd9d45cee') # honeywell_retrieve_counts('HQS-LT-S2', '5b5a56527ed24073aab10011699e493d') pass # job.result() # Result(backend_name='ionq_qpu', backend_version='0.0.1', qobj_id='None', job_id='5286dc3f-fdbd-4a6b-8231-af79375e143d', success=True, results=[ExperimentResult(shots=100, success=True, meas_level=2, data=ExperimentResultData(counts={'0x1': 1, '0x2': 4, '0x4': 2, '0x5': 44, '0x6': 38, '0x7': 1, '0xd': 4, '0xe': 1, '0xf': 2, '0x14': 1, '0x16': 2}, probabilities={'0x1': 0.01, '0x2': 0.04, '0x4': 0.02, '0x5': 0.44, '0x6': 0.38, '0x7': 0.01, '0xd': 0.04, '0xe': 0.01, '0xf': 0.02, '0x14': 0.01, '0x16': 0.02}), header=QobjExperimentHeader(memory_slots=5, global_phase=2.356194490192344, n_qubits=6, name='circuit-16', creg_sizes=[['c0', 2], ['power1complexcproj0', 1], ['power1complexcproj1', 1], ['power1splitcproj0', 1]], clbit_labels=[['c0', 0], ['c0', 1], ['power1complexcproj0', 0], ['power1complexcproj1', 0], ['power1splitcproj0', 0]], qreg_sizes=[['mainqreg', 2], ['clean_ancillae', 1], ['power1complexqproj0', 1], ['power1complexqproj1', 1], ['power1splitqproj0', 1]], qubit_labels=[['mainqreg', 0], ['mainqreg', 1], ['clean_ancillae', 0], ['power1complexqproj0', 0], ['power1complexqproj1', 0], ['power1splitqproj0', 0]]))], time_taken=2.579)
https://github.com/Shashankaubaru/NISQ-TDA
Shashankaubaru
import qiskit from qiskit import IBMQ from qiskit.providers.aer import AerSimulator import qiskit.providers.aer.noise as qnoise # Generate 3-qubit GHZ state circ = qiskit.QuantumCircuit(3) circ.h(0) circ.cx(0, 1) circ.cx(1, 2) circ.measure_all() # Construct an ideal simulator aersim = AerSimulator() # Perform an ideal simulation result_ideal = qiskit.execute(circ, aersim).result() counts_ideal = result_ideal.get_counts(0) print('Counts(ideal):', counts_ideal) # Counts(ideal): {'000': 493, '111': 531} # Construct a noisy simulator backend from an IBMQ backend # This simulator backend will be automatically configured # using the device configuration and noise model # provider = IBMQ.load_account() # backend = provider.get_backend('ibmq_athens') # aersim_backend = AerSimulator.from_backend(backend) noise = [0.00001, 0.0001] gpu = True # Error probabilities prob_1 = noise[0] # 1-qubit gate prob_2 = noise[1] # 2-qubit gate prob_mat = [[1-prob_2,prob_2],[prob_2,1-prob_2]] # Depolarizing quantum errors error_1 = qnoise.depolarizing_error(prob_1, 1) error_2 = qnoise.depolarizing_error(prob_2, 2) read_err = qnoise.ReadoutError(prob_mat) # Add errors to noise model noise_model = qnoise.NoiseModel() noise_model.add_all_qubit_quantum_error(error_1, ['u1', 'u2', 'u3']) noise_model.add_all_qubit_quantum_error(error_2, ['cx']) noise_model.add_all_qubit_readout_error(read_err) # Get basis gates from noise model basis_gates = noise_model.basis_gates if gpu: # backend = Aer.get_backend('aer_simulator_statevector_gpu') if noise is not None: backend = AerSimulator(device="GPU", noise_model = noise_model, basis_gates= basis_gates, batched_shots_gpu_max_qubits = 32) else: backend = AerSimulator(device="GPU", batched_shots_gpu_max_qubits = 32) else: # Perform noisy simulation if noise is not None: backend = AerSimulator(device="CPU", noise_model = noise_model, basis_gates= basis_gates) else: backend = AerSimulator(device="CPU") result_noise = qiskit.execute(circ, backend).result() counts_noise = result_noise.get_counts(0) print('Counts(noise):', counts_noise)
https://github.com/EavCmr/QKD-E91
EavCmr
#!pip install qiskit from qiskit import QuantumCircuit, Aer, transpile, assemble, execute, IBMQ from qiskit.visualization import plot_histogram import numpy as np import random import math import warnings warnings.filterwarnings('ignore') # Determine the amount of entanglement between these bits using the CHSH value def entanglement_amount(alice_choices, alice_bits, bob_choices, bob_bits): # count the different measurement results # rows correspond to Alice and Bob's circuit choices: 00, 02, 20, 22 # NOTE: We do not consider circuits 1 or 3 for this test # columns correspond to Alice and Bob's qubit measurements: 00, 01, 10, and 11 circuits = {'00': 0, '02': 1, '20': 2, '22': 3} counts = [[0]*4 for i in range(4)] for i in range(len(alice_choices)): circuit = str(alice_choices[i]) + str(bob_choices[i]) state = int(alice_bits[i]) + 2*int(bob_bits[i]) if circuit in circuits: counts[circuits[circuit]][state] += 1 # expectation values calculated by # adding times Alice and Bob's bits agreed and # subtracting times Alice and Bob's bits disagreed expectations = [] for circuit in range(4): expectations += [counts[circuit][0] + counts[circuit][3] - counts[circuit][1] - counts[circuit][2]] total = sum(counts[circuit]) if total != 0: expectations[circuit] /= total # returning CHSH correlation return expectations[0] - expectations[1] + expectations[2] + expectations[3] print("Libraries Imported Successfully!") alice_bob_qubits = QuantumCircuit(2, 2) alice_bob_qubits.# COMPLETE THIS CODE alice_bob_qubits.# COMPLETE THIS CODE alice_bob_qubits.# COMPLETE THIS CODE alice_bob_qubits.# COMPLETE THIS CODE alice_bob_qubits.draw() alice_option_1 = QuantumCircuit(1, 1) alice_option_1.h(0) alice_option_1.measure(0, 0) alice_option_2 = QuantumCircuit(1, 1) alice_option_2.rz(math.pi# COMPLETE THIS LINE alice_option_2.h(0) alice_option_2.measure(0, 0) alice_option_3 = QuantumCircuit(1, 1) alice_option_3.# COMPLETE THIS LINE alice_alice_option_3.h(0) alice_option_3.measure(0, 0) alice_options = [alice_option_1, # COMPLETE THIS LINE WITH THE OTHER OPTIONS alice_choice = random.randint(0, 2) alice_circuit = options[alice_choice] alice_circuit.draw() alice_bob_qubits = alice_bob_qubits.compose(alice_circuit, qubits = 0, clbits = 0) alice_bob_qubits.draw() bob_option_1 = QuantumCircuit(1, 1) bob_option_1.# COMPLETE THIS LINE bob_option_1.# COMPLETE THIS LINE bob_option_1.measure(0, 0) bob_option_2 # COMPLETE THIS CODE bob_option_3 # COMPLETE THIS CODE bob_options = # COMPLETE THIS LINE bob_choice = random.randint(0, 2) bob_circuit = options[bob_choice] bob_circuit.draw() alice_bob_qubits = alice_bob_qubits.compose(bob_circuit, qubits = 1, clbits = 1) alice_bob_qubits.draw() backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() bits = random.choices(list(counts.keys()), weights = counts.values(), k = 1)[0] alice_bits = bits[0] bob_bits = bits[1] plot_histogram(counts) alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] # MATCHING CHOICE if alice_options[alice_choice] == bob_options[bob_choice]: alice_key += [int(alice_bits[0])] bob_key += [1 - int(bob_bits[0])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choice] bob_mismatched_choices += [bob_choice] alice_mismatched_choice_bits += [alice_bits[0]] bob_mismatched_choice_bits += [bob_bits[0]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) #======== # STEP 1 #======== alice_bob_qubits = QuantumCircuit(2, 2) # COMPLETE THIS CODE #======== # STEP 2 #======== alice_choice = random.randint(0, 2) alice_circuit = # COMPLETE THIS LINE #======== # STEP 3 #======== alice_bob_qubits = alice_bob_qubits.compose(# COMPLETE THIS LINE #======== # STEP 4 #======== bob_choice = random.randint(0, 2) bob_circuit = # COMPLETE THIS LINE #======== # STEP 5 #======== alice_bob_qubits = alice_bob_qubits.compose(# COMPLETE THIS LINE #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() bits = random.choices(list(counts.keys()), weights = counts.values(), k = 1)[0] alice_bits = bits[0] bob_bits = bits[1] plot_histogram(counts) #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] # MATCHING CHOICE if alice_options[alice_choice] == bob_options[bob_choice]: alice_key += [int(# COMPLETE THIS LINE bob_key += [1 - int(# COMPLETE THIS LINE # MISMATCHING CHOICE else: alice_mismatched_choices += [# COMPLETE THIS LINE bob_mismatched_choices += [# COMPLETE THIS LINE alice_mismatched_choice_bits += [# COMPLETE THIS LINE bob_mismatched_choice_bits += [# COMPLETE THIS LINE entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) n = 100 alice_bob_qubits = [] for i in range(# COMPLETE THIS LINE alice_bob_qubits += [QuantumCircuit(# COMPLETE THIS LINE alice_bob_qubits[i].# COMPLETE THIS LINE alice_bob_qubits[i].# COMPLETE THIS LINE alice_bob_qubits[i].# COMPLETE THIS LINE alice_bob_qubits[i].# COMPLETE THIS LINE alice_choices = [] alice_circuits = [] for # COMPLETE THIS LINE alice_choices += [random.randint(0, 2)] alice_circuits += [# COMPLETE THIS LINE # COMPLETE THIS LINE alice_bob_qubits[i] = alice_bob_qubits[i].compose(# COMPLETE THIS LINE # COMPLETE THIS CODE # COMPLETE THIS CODE backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] for # COMPLETE THIS LINE # MATCHING CHOICE if alice_options[alice_choices[i]] == # COMPLETE THIS LINE alice_key += [int(alice_bits[i])] bob_key += [1 - int(# COMPLETE THIS LINE # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [ # COMPLETE THIS LINE alice_mismatched_choice_bits += [ # COMPLETE THIS LINE bob_mismatched_choice_bits += [# COMPLETE THIS LINE entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) #======== # STEP 1 #======== n = 100 #======== # STEP 2 #======== #======== # STEP 3 #======== #======== # STEP 4 #======== #======== # STEP 5 #======== #====================== # SIMULATE THE CIRCUIT #====================== #======== # STEP 6 #======== #======== # STEP 1 #======== n = 100 # COMPLETE THIS CODE WITH YOUR SOLUTION FROM PART 2 #================ # EVE INTERCEPTS! #================ for i in range(# COMPLETE THIS LINE alice_bob_qubits[i].measure(# COMPLETE THIS LINE backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() eve_alice_bits = [] eve_bob_bits = [] for # COMPLETE THIS LINE # Looks at measurement results bits = list(counts[i].keys())[0] eve_alice_bits += [bits[0]] eve_bob_bits += [# COMPLETE THIS LINE # Prepares new qubits for Alice and Bob alice_bob_qubits[i] = QuantumCircuit(# COMPLETE THIS LINE # Makes sure they are in the same state she measured if eve_alice_bits[i] == 1: alice_bob_qubits[i].# COMPLETE THIS LINE if # COMPLETE THIS LINE #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] eve_key = [] # COMPLETE THIS CODE entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Eve's Key: " + str(eve_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits between Alice and Bob: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Alice and Eve: " + str(sum([alice_key[i] != eve_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Bob and Eve: " + str(sum([bob_key[i] != eve_key[i] for i in range(len(alice_key))])))
https://github.com/EavCmr/QKD-E91
EavCmr
#!pip install qiskit from qiskit import QuantumCircuit, Aer, transpile, assemble, execute, IBMQ from qiskit.visualization import plot_histogram import numpy as np import random import math import warnings warnings.filterwarnings('ignore') # Determine the amount of entanglement between these bits using the CHSH value def entanglement_amount(alice_choices, alice_bits, bob_choices, bob_bits): # count the different measurement results # rows correspond to Alice and Bob's circuit choices: 00, 02, 20, 22 # NOTE: We do not consider circuits 1 or 3 for this test # columns correspond to Alice and Bob's qubit measurements: 00, 01, 10, and 11 circuits = {'00': 0, '02': 1, '20': 2, '22': 3} counts = [[0]*4 for i in range(4)] for i in range(len(alice_choices)): circuit = str(alice_choices[i]) + str(bob_choices[i]) state = int(alice_bits[i]) + 2*int(bob_bits[i]) if circuit in circuits: counts[circuits[circuit]][state] += 1 # expectation values calculated by # adding times Alice and Bob's bits agreed and # subtracting times Alice and Bob's bits disagreed expectations = [] for circuit in range(4): expectations += [counts[circuit][0] + counts[circuit][3] - counts[circuit][1] - counts[circuit][2]] total = sum(counts[circuit]) if total != 0: expectations[circuit] /= total # returning CHSH correlation return expectations[0] - expectations[1] + expectations[2] + expectations[3] print("Libraries Imported Successfully!") alice_bob_qubits = QuantumCircuit(2, 2) alice_bob_qubits.h(0) alice_bob_qubits.cx(0,1) alice_bob_qubits.x(0) alice_bob_qubits.z(0) alice_bob_qubits.draw() alice_option_1 = QuantumCircuit(1, 1) alice_option_1.rz(0,0) alice_option_1.h(0) alice_option_1.measure(0, 0) alice_option_2 = QuantumCircuit(1, 1) alice_option_2.rz(math.pi/4,0) # COMPLETE THIS LINE alice_option_2.h(0) alice_option_2.measure(0, 0) alice_option_3 = QuantumCircuit(1, 1) alice_option_3.rz(math.pi/2,0) # COMPLETE THIS LINE alice_option_3.h(0) alice_option_3.measure(0, 0) alice_options = [alice_option_1,alice_option_2,alice_option_3] # COMPLETE THIS LINE WITH THE OTHER OPTIONS alice_choice = random.randint(0, 2) alice_circuit = alice_options[alice_choice] alice_circuit.draw() alice_bob_qubits = alice_bob_qubits.compose(alice_circuit, qubits = [0] , clbits = [0]) alice_bob_qubits.draw() bob_option_1 = QuantumCircuit(1, 1) bob_option_1.rz(math.pi/4,0)# COMPLETE THIS LINE bob_option_1.h(0) # COMPLETE THIS LINE bob_option_1.measure(0, 0) bob_option_2 = QuantumCircuit(1, 1) bob_option_2.rz(math.pi/4,0)# COMPLETE THIS LINE bob_option_2.h(0) # COMPLETE THIS CODE bob_option_2.measure(0, 0) bob_option_3= QuantumCircuit(1, 1) # COMPLETE THIS CODE bob_option_3.rz(math.pi*3/4,0) bob_option_3.h(0) bob_option_3.measure(0, 0) bob_options = [bob_option_1,bob_option_2,bob_option_3]# COMPLETE THIS LINE bob_choice = random.randint(0, 2) bob_circuit = bob_options[bob_choice] bob_circuit.draw() alice_bob_qubits = alice_bob_qubits.compose(bob_circuit, qubits = [1], clbits = [1]) alice_bob_qubits.draw() backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() bits = random.choices(list(counts.keys()), weights = counts.values(), k = 1)[0] alice_bits = bits[0] bob_bits = bits[1] plot_histogram(counts) alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] # MATCHING CHOICE if alice_options[alice_choice] == bob_options[bob_choice]: alice_key += [int(alice_bits[0])] bob_key += [1 - int(bob_bits[0])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choice] bob_mismatched_choices += [bob_choice] alice_mismatched_choice_bits += [alice_bits[0]] bob_mismatched_choice_bits += [bob_bits[0]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) #======== # STEP 1 #======== alice_bob_qubits = QuantumCircuit(2, 2) alice_bob_qubits.h(0) alice_bob_qubits.cx(0,1) alice_bob_qubits.x(0) alice_bob_qubits.z(0) alice_bob_qubits.draw() #======== # STEP 2 #======== alice_choice = random.randint(0, 2) alice_circuit = alice_options[alice_choice] alice_circuit.draw() #======== # STEP 3 #======== alice_bob_qubits = alice_bob_qubits.compose(alice_circuit, qubits = [0], clbits = [0]) #======== # STEP 4 #======== bob_choice = random.randint(0, 2) bob_circuit = bob_options[bob_choice] #======== # STEP 5 #======== alice_bob_qubits = alice_bob_qubits.compose(bob_circuit, qubits = [1], clbits = [1]) #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1024) result = job.result() counts = result.get_counts() bits = random.choices(list(counts.keys()), weights = counts.values(), k = 1)[0] alice_bits = bits[0] bob_bits = bits[1] plot_histogram(counts) #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] # MATCHING CHOICE if alice_options[alice_choice] == bob_options[bob_choice]: alice_key += [int(alice_bits[0])] bob_key += [1 - int(bob_bits[0])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choice] bob_mismatched_choices += [bob_choice] alice_mismatched_choice_bits += [alice_bits[0]] bob_mismatched_choice_bits += [bob_bits[0]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) n = 100 alice_bob_qubits = [] for i in range(n): alice_bob_qubits += [QuantumCircuit(2,2)] alice_bob_qubits[i].h(0) alice_bob_qubits[i].cx(0,1) alice_bob_qubits[i].x(0) alice_bob_qubits[i].z(0) alice_choices = [] alice_circuits = [] for i in range(n): alice_choices += [random.randint(0, 2)] alice_circuits += [alice_options[alice_choices[i]]] for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0]) bob_choices = [] bob_circuits = [] for i in range(n): bob_choices += [random.randint(0, 2)] bob_circuits += [bob_options[bob_choices[i]]] for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1]) backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] for i in range(n): # MATCHING CHOICE if alice_options[alice_choices[i]] == bob_options[bob_choices[i]]: alice_key += [int(alice_bits[i])] bob_key += [1 - int(bob_bits[i])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [bob_choices[i]] # COMPLETE THIS LINE alice_mismatched_choice_bits += [alice_bits[i]] # COMPLETE THIS LINE bob_mismatched_choice_bits += [bob_bits[i]] # COMPLETE THIS LINE entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) #======== # STEP 1 #======== n = 100 #======== # STEP 2 #======== alice_bob_qubits = [] for i in range(n): alice_bob_qubits += [QuantumCircuit(2,2)] alice_bob_qubits[i].h(0) alice_bob_qubits[i].cx(0,1) alice_bob_qubits[i].x(0) alice_bob_qubits[i].z(0) #======== # STEP 3 #======== alice_choices = [] alice_circuits = [] for i in range(n): alice_choices += [random.randint(0, 2)] alice_circuits += alice_options[alice_choice] for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0]) #======== # STEP 4 #======== bob_choices = [] bob_circuits = [] for i in range(n): bob_choices += [random.randint(0, 2)] bob_circuits += bob_options[bob_choice] #======== # STEP 5 #======== for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1]) #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] for i in range(n): # MATCHING CHOICE if alice_options[alice_choices[i]] == bob_options[bob_choices[i]]: alice_key += [int(alice_bits[i])] bob_key += [1 - int(bob_bits[i])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [bob_choices[i]] alice_mismatched_choice_bits += [alice_bits[i]] bob_mismatched_choice_bits += [bob_bits[i]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) #======== # STEP 1 #======== n = 100 # COMPLETE THIS CODE WITH YOUR SOLUTION FROM PART 2 #================ # EVE INTERCEPTS! #================ for i in range(n): alice_bob_qubits[i].measure(0,0) backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() eve_alice_bits = [] eve_bob_bits = [] for i in range(100):# COMPLETE THIS LINE # Looks at measurement results bits = list(counts[i].keys())[0] eve_alice_bits += [bits[0]] eve_bob_bits += [bits[1]] # Prepares new qubits for Alice and Bob alice_bob_qubits[i] = QuantumCircuit(2,2) # Makes sure they are in the same state she measured if eve_alice_bits[i] == 1: alice_bob_qubits[i] == 1 if eve_bob_bits[i] == 1: alice_bob_qubits[i] ==1 alice_choices = [] alice_circuits = [] for i in range(n): alice_choices += [random.randint(0, 2)] alice_circuits += alice_options[alice_choice] for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0]) #======== # STEP 4 #======== bob_choices = [] bob_circuits = [] for i in range(n): bob_choices += [random.randint(0, 2)] bob_circuits += bob_options[bob_choice] #======== # STEP 5 #======== for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1]) #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] eve_key = [] eve_mismatched_choices = [] eve_mismatched_choice_bits = [] for i in range(n): # MATCHING CHOICE if alice_options[alice_choices[i]] == bob_options[bob_choices[i]]: alice_key += [int(alice_bits[i])] bob_key += [1 - int(bob_bits[i])] eve_key += [int(eve_bob_bits[i])] else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [bob_choices[i]] bob_mismatched_choices += [bob_choices[i]] alice_mismatched_choice_bits += [alice_bits[i]] bob_mismatched_choice_bits += [bob_bits[i]] entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Eve's Key: " + str(eve_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits between Alice and Bob: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Alice and Eve: " + str(sum([alice_key[i] != eve_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Bob and Eve: " + str(sum([bob_key[i] != eve_key[i] for i in range(len(alice_key))]))) n = 100 # COMPLETE THIS CODE WITH YOUR SOLUTION FROM PART 2 alice_bob_qubits = [] for i in range(n):# COMPLETE THIS LINE alice_bob_qubits += [QuantumCircuit(2,2)]# COMPLETE THIS LINE alice_bob_qubits[i].h(0) # COMPLETE THIS LINE alice_bob_qubits[i].cx(0,1) # COMPLETE THIS LINE alice_bob_qubits[i].x(0) # COMPLETE THIS LINE alice_bob_qubits[i].z(0) # COMPLETE THIS LINE #======== # STEP 3 #======== alice_choices = [] alice_circuits = [] for i in range(n): # COMPLETE THIS LINE alice_choices += [random.randint(0, 2)] alice_circuits += [alice_options[alice_choices[i]]] # COMPLETE THIS LINE for i in range(100): # COMPLETE THIS LINE alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0])# COMPLETE THIS LINE #======== # STEP 4 #======== bob_choices = [] bob_circuits = [] for i in range(n): # COMPLETE THIS LINE bob_choices += [random.randint(0, 2)] bob_circuits += [bob_options[bob_choices[i]]]# COMPLETE THIS CODE #======== # STEP 5 #======== for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1])# COMPLETE THIS CODE #================ # EVE INTERCEPTS! #================ for i in range(n):# COMPLETE THIS LINE alice_bob_qubits[i].measure(0,0)# COMPLETE THIS LINE backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() #================ #================ eve_alice_bits = [] eve_bob_bits = [] for i in range(100):# COMPLETE THIS LINE # Looks at measurement results bits = list(counts[i].keys())[0] eve_alice_bits += [bits[0]] eve_bob_bits += [bits[1]]# COMPLETE THIS LINE # Prepares new qubits for Alice and Bob alice_bob_qubits[i] = QuantumCircuit(2,2)# COMPLETE THIS LINE # Makes sure they are in the same state she measured if eve_alice_bits[i] == 1: alice_bob_qubits[i].measure(0,0)# COMPLETE THIS LINE if eve_bob_bits[i] == 1: alice_bob_qubits[i].measure(0,0) # COMPLETE THIS LINE #================ #================ alice_choices = [] alice_circuits = [] for i in range(n): # COMPLETE THIS LINE alice_choices += [random.randint(0, 2)] alice_circuits += [alice_options[alice_choices[i]]] # COMPLETE THIS LINE for i in range(100): # COMPLETE THIS LINE alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [0] , clbits = [0])# COMPLETE THIS LINE #======== # STEP 4 #======== bob_choices = [] bob_circuits = [] for i in range(n): # COMPLETE THIS LINE bob_choices += [random.randint(0, 2)] bob_circuits += [bob_options[bob_choices[i]]]# COMPLETE THIS CODE #======== # STEP 5 #======== for i in range(100): alice_bob_qubits[i] = alice_bob_qubits[i].compose(alice_circuit, qubits = [1] , clbits = [1])# COMPLETE THIS CODE #====================== # SIMULATE THE CIRCUIT #====================== backend = Aer.get_backend('qasm_simulator') job = execute(alice_bob_qubits, backend = backend, shots = 1) result = job.result() counts = result.get_counts() alice_bits = [] bob_bits = [] for i in range(n): bits = list(counts[i].keys())[0] alice_bits += [bits[0]] bob_bits += [bits[1]] #======== # STEP 6 #======== alice_key = [] alice_mismatched_choices = [] alice_mismatched_choice_bits = [] bob_key = [] bob_mismatched_choices = [] bob_mismatched_choice_bits = [] eve_key = [] eve_mismatched_choices = [] eve_mismatched_choice_bits = [] for i in range(n):# COMPLETE THIS LINE # MATCHING CHOICE if alice_options[alice_choices[i]] == bob_options[bob_choices[i]]: # COMPLETE THIS LINE alice_key += [int(alice_bits[i])] bob_key += [1 - int(bob_bits[i])]# COMPLETE THIS LINE eve_key += [int(eve_bob_bits[i])] # MISMATCHING CHOICE else: alice_mismatched_choices += [alice_choices[i]] bob_mismatched_choices += [bob_choices[i]] # COMPLETE THIS LINE alice_mismatched_choice_bits += [alice_bits[i]] # COMPLETE THIS LINE bob_mismatched_choice_bits += [bob_bits[i]] # COMPLETE THIS LINE# COMPLETE THIS CODE entanglement = entanglement_amount(alice_mismatched_choices, alice_mismatched_choice_bits, bob_mismatched_choices, bob_mismatched_choice_bits) print("Entanglement of Mismatched Choices: " + str(entanglement)) print("Alice's Key: " + str(alice_key)) print("Bob's Key: " + str(bob_key)) print("Eve's Key: " + str(eve_key)) print("Key Length: " + str(len(bob_key))) print("Number of Disagreeing Key Bits between Alice and Bob: " + str(sum([alice_key[i] != bob_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Alice and Eve: " + str(sum([alice_key[i] != eve_key[i] for i in range(len(alice_key))]))) print("Number of Disagreeing Key Bits between Bob and Eve: " + str(sum([bob_key[i] != eve_key[i] for i in range(len(alice_key))])))
https://github.com/JoelJJoseph/QUANTUM-TRADE
JoelJJoseph
import numpy as np import networkx as nx import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble from qiskit.quantum_info import Statevector from qiskit.aqua.algorithms import NumPyEigensolver from qiskit.quantum_info import Pauli from qiskit.aqua.operators import op_converter from qiskit.aqua.operators import WeightedPauliOperator from qiskit.visualization import plot_histogram from qiskit.providers.aer.extensions.snapshot_statevector import * from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost from utils import mapeo_grafo from collections import defaultdict from operator import itemgetter from scipy.optimize import minimize import matplotlib.pyplot as plt LAMBDA = 10 SEED = 10 SHOTS = 10000 # returns the bit index for an alpha and j def bit(i_city, l_time, num_cities): return i_city * num_cities + l_time # e^(cZZ) def append_zz_term(qc, q_i, q_j, gamma, constant_term): qc.cx(q_i, q_j) qc.rz(2*gamma*constant_term,q_j) qc.cx(q_i, q_j) # e^(cZ) def append_z_term(qc, q_i, gamma, constant_term): qc.rz(2*gamma*constant_term, q_i) # e^(cX) def append_x_term(qc,qi,beta): qc.rx(-2*beta, qi) def get_not_edge_in(G): N = G.number_of_nodes() not_edge = [] for i in range(N): for j in range(N): if i != j: buffer_tupla = (i,j) in_edges = False for edge_i, edge_j in G.edges(): if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)): in_edges = True if in_edges == False: not_edge.append((i, j)) return not_edge def get_classical_simplified_z_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # z term # z_classic_term = [0] * N**2 # first term for l in range(N): for i in range(N): z_il_index = bit(i, l, N) z_classic_term[z_il_index] += -1 * _lambda # second term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_jl z_jl_index = bit(j, l, N) z_classic_term[z_jl_index] += _lambda / 2 # third term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 2 # z_ij z_ij_index = bit(i, j, N) z_classic_term[z_ij_index] += _lambda / 2 # fourth term not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) z_classic_term[z_il_index] += _lambda / 4 # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) z_classic_term[z_jlplus_index] += _lambda / 4 # fifthy term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) z_classic_term[z_il_index] += weight_ij / 4 # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) z_classic_term[z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) z_classic_term[z_il_index] += weight_ji / 4 # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) z_classic_term[z_jlplus_index] += weight_ji / 4 return z_classic_term def tsp_obj_2(x, G,_lambda): # obtenemos el valor evaluado en f(x_1, x_2,... x_n) not_edge = get_not_edge_in(G) N = G.number_of_nodes() tsp_cost=0 #Distancia weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # x_il x_il_index = bit(edge_i, l, N) # x_jlplus l_plus = (l+1) % N x_jlplus_index = bit(edge_j, l_plus, N) tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij # add order term because G.edges() do not include order tuples # # x_i'l x_il_index = bit(edge_j, l, N) # x_j'lplus x_jlplus_index = bit(edge_i, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji #Constraint 1 for l in range(N): penal1 = 1 for i in range(N): x_il_index = bit(i, l, N) penal1 -= int(x[x_il_index]) tsp_cost += _lambda * penal1**2 #Contstraint 2 for i in range(N): penal2 = 1 for l in range(N): x_il_index = bit(i, l, N) penal2 -= int(x[x_il_index]) tsp_cost += _lambda*penal2**2 #Constraint 3 for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # x_il x_il_index = bit(i, l, N) # x_j(l+1) l_plus = (l+1) % N x_jlplus_index = bit(j, l_plus, N) tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda return tsp_cost def get_classical_simplified_zz_term(G, _lambda): # recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos N = G.number_of_nodes() E = G.edges() # zz term # zz_classic_term = [[0] * N**2 for i in range(N**2) ] # first term for l in range(N): for j in range(N): for i in range(N): if i < j: # z_il z_il_index = bit(i, l, N) # z_jl z_jl_index = bit(j, l, N) zz_classic_term[z_il_index][z_jl_index] += _lambda / 2 # second term for i in range(N): for l in range(N): for j in range(N): if l < j: # z_il z_il_index = bit(i, l, N) # z_ij z_ij_index = bit(i, j, N) zz_classic_term[z_il_index][z_ij_index] += _lambda / 2 # third term not_edge = get_not_edge_in(G) for edge in not_edge: for l in range(N): i = edge[0] j = edge[1] # z_il z_il_index = bit(i, l, N) # z_j(l+1) l_plus = (l+1) % N z_jlplus_index = bit(j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4 # fourth term weights = nx.get_edge_attributes(G,'weight') for edge_i, edge_j in G.edges(): weight_ij = weights.get((edge_i,edge_j)) weight_ji = weight_ij for l in range(N): # z_il z_il_index = bit(edge_i, l, N) # z_jlplus l_plus = (l+1) % N z_jlplus_index = bit(edge_j, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4 # add order term because G.edges() do not include order tuples # # z_i'l z_il_index = bit(edge_j, l, N) # z_j'lplus l_plus = (l+1) % N z_jlplus_index = bit(edge_i, l_plus, N) zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4 return zz_classic_term def get_classical_simplified_hamiltonian(G, _lambda): # z term # z_classic_term = get_classical_simplified_z_term(G, _lambda) # zz term # zz_classic_term = get_classical_simplified_zz_term(G, _lambda) return z_classic_term, zz_classic_term def get_cost_circuit(G, gamma, _lambda): N = G.number_of_nodes() N_square = N**2 qc = QuantumCircuit(N_square,N_square) z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda) # z term for i in range(N_square): if z_classic_term[i] != 0: append_z_term(qc, i, gamma, z_classic_term[i]) # zz term for i in range(N_square): for j in range(N_square): if zz_classic_term[i][j] != 0: append_zz_term(qc, i, j, gamma, zz_classic_term[i][j]) return qc def get_mixer_operator(G,beta): N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) for n in range(N**2): append_x_term(qc, n, beta) return qc def get_QAOA_circuit(G, beta, gamma, _lambda): assert(len(beta)==len(gamma)) N = G.number_of_nodes() qc = QuantumCircuit(N**2,N**2) # init min mix state qc.h(range(N**2)) p = len(beta) for i in range(p): qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda)) qc = qc.compose(get_mixer_operator(G, beta[i])) qc.barrier(range(N**2)) qc.snapshot_statevector("final_state") qc.measure(range(N**2),range(N**2)) return qc def invert_counts(counts): return {k[::-1] :v for k,v in counts.items()} # Sample expectation value def compute_tsp_energy_2(counts, G): energy = 0 get_counts = 0 total_counts = 0 for meas, meas_count in counts.items(): obj_for_meas = tsp_obj_2(meas, G, LAMBDA) energy += obj_for_meas*meas_count total_counts += meas_count mean = energy/total_counts return mean def get_black_box_objective_2(G,p): backend = Aer.get_backend('qasm_simulator') sim = Aer.get_backend('aer_simulator') # function f costo def f(theta): beta = theta[:p] gamma = theta[p:] # Anzats qc = get_QAOA_circuit(G, beta, gamma, LAMBDA) result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result() final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0] state_vector = Statevector(final_state_vector) probabilities = state_vector.probabilities() probabilities_states = invert_counts(state_vector.probabilities_dict()) expected_value = 0 for state,probability in probabilities_states.items(): cost = tsp_obj_2(state, G, LAMBDA) expected_value += cost*probability counts = result.get_counts() mean = compute_tsp_energy_2(invert_counts(counts),G) return mean return f def crear_grafo(cantidad_ciudades): pesos, conexiones = None, None mejor_camino = None while not mejor_camino: pesos, conexiones = rand_graph(cantidad_ciudades) mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False) G = mapeo_grafo(conexiones, pesos) return G, mejor_costo, mejor_camino def run_QAOA(p,ciudades, grafo): if grafo == None: G, mejor_costo, mejor_camino = crear_grafo(ciudades) print("Mejor Costo") print(mejor_costo) print("Mejor Camino") print(mejor_camino) print("Bordes del grafo") print(G.edges()) print("Nodos") print(G.nodes()) print("Pesos") labels = nx.get_edge_attributes(G,'weight') print(labels) else: G = grafo intial_random = [] # beta, mixer Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,np.pi)) # gamma, cost Hammiltonian for i in range(p): intial_random.append(np.random.uniform(0,2*np.pi)) init_point = np.array(intial_random) obj = get_black_box_objective_2(G,p) res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True}) print(res_sample) if __name__ == '__main__': # Run QAOA parametros: profundidad p, numero d ciudades, run_QAOA(5, 3, None)
https://github.com/lzylili/grovers-algo
lzylili
#Import libraries from qiskit import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import * from qiskit.providers.ibmq import least_busy import math # Initializing circuit: define as 2 qubits q = QuantumRegister(2, 'q') c = ClassicalRegister(2, 'c') # Create the quantum circuit qc = QuantumCircuit(q,c) ## Step 1: Apply a Hadarmard gate to all qubits qc.h(q) ## Step 2: Implement the Oracle circuit for state |11> + Grover diffusion qc.cz(q[1],q[0]) qc.barrier(q) qc.h(q) qc.x(q) qc.cz(q[1],q[0]) qc.x(q) qc.h(q) qc.barrier(q) qc.draw(output='mpl') ## Don't forget about the measurement gates! qc.measure(q[0],c[0]) qc.measure(q[1],c[1]) qc.draw(output='mpl') ## Step 4: Run on backend simulator and print results simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 2048).result() counts = result.get_counts() print('RESULT: ',counts,'\n') from qiskit.tools.visualization import plot_histogram plot_histogram(counts) ## Step 4: Run on real device from IBM - load account and get least busy backend provider = IBMQ.load_account() device = least_busy(provider.backends(simulator=False)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(qc, backend=device, shots=1024, max_credits=10) job_monitor(job, interval = 2) ## Print results from device from IBM results = job.result() answer = results.get_counts(qc) plot_histogram(answer) pi = math.pi # Initializing circuit: define as 3 qubits q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') # Create the quantum circuit qc = QuantumCircuit(q,c) ## Step 1: Apply a Hadarmard gate to all qubits qc.h(q) ## Step 2: Implement the Oracle circuit for state |111> + Grover diffusion qc.cz(q[2],q[0]) qc.barrier(q) qc.h(q) qc.x(q) qc.barrier(q) qc.cx(q[1],q[0]) qc.z(q[0]),-pi/4 qc.cx(q[2],q[0]) qc.z(q[0]),pi/4 qc.cx(q[1],q[0]) qc.z(q[0]),-pi/4 qc.barrier(q) qc.cx(q[2],q[0]) qc.z(q[0]),pi/4 qc.z(q[1]),pi/4 qc.barrier(q) qc.cx(q[2],q[1]) qc.z(q[1]),-pi/4 qc.cx(q[2],q[1]) qc.z(q[2]),pi/4 qc.barrier(q) qc.x(q) qc.h(q) qc.barrier(q) qc.draw(output='mpl') ## Don't forget about the measurement gates! qc.measure(q[0],c[0]) qc.measure(q[1],c[1]) qc.measure(q[2],c[2]) qc.draw(output='mpl') ## Step 4: Run on backend simulator and print results simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 2048).result() counts = result.get_counts() print('RESULT: ',counts,'\n') from qiskit.tools.visualization import plot_histogram plot_histogram(counts) ## Note: accuracy of this implementation is not 100% (may need to run a couple iterations before achieving desired result) ## Step 4: Run on real device from IBM - load account and get least busy backend provider = IBMQ.load_account() device = least_busy(provider.backends(simulator=False)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(qc, backend=device, shots=1024, max_credits=10) job_monitor(job, interval = 2) ## Print results from device from IBM results = job.result() answer = results.get_counts(qc) plot_histogram(answer) # Initializing circuit: define as 2 qubits q = QuantumRegister(4, 'q') c = ClassicalRegister(4, 'c') # Create the quantum circuit qc = QuantumCircuit(q,c) ## Step 1: Apply a Hadarmard gate to all qubits qc.h(q) ## Step 2: Implement the Oracle circuit for state |111> + Grover diffusion qc.cz(q[3],q[0]) qc.barrier(q) qc.h(q) qc.x(q) qc.barrier(q) qc.h(q[1]) qc.cx(q[2],q[1]) qc.tdg(q[1]) qc.cx(q[3],q[1]) qc.t(q[1]) qc.cx(q[2],q[1]) qc.tdg(q[1]) qc.cx(q[3],q[1]) qc.barrier(q) qc.t(q[1]) qc.tdg(q[2]) qc.h(q[1]) qc.barrier(q) qc.h(q[2]) qc.h(q[3]) qc.cx(q[3],q[2]) qc.h(q[2]) qc.h(q[3]) qc.tdg(q[2]) qc.barrier(q) qc.h(q[2]) qc.h(q[3]) qc.cx(q[3],q[2]) qc.h(q[2]) qc.h(q[3]) qc.s(q[2]) qc.t(q[3]) qc.barrier(q) qc.cx(q[1],q[0]) qc.t(q[0]) qc.cx(q[1],q[0]) qc.tdg(q[0]) qc.tdg(q[1]) qc.h(q[1]) qc.cx(q[2],q[1]) qc.tdg(q[1]) qc.cx(q[3],q[1]) qc.t(q[1]) qc.cx(q[2],q[1]) qc.tdg(q[1]) qc.cx(q[3],q[1]) qc.t(q[1]) qc.tdg(q[2]) qc.h(q[1]) qc.barrier(q) qc.h(q[2]) qc.h(q[3]) qc.cx(q[3],q[2]) qc.h(q[2]) qc.h(q[3]) qc.tdg(q[2]) qc.barrier(q) qc.h(q[2]) qc.h(q[3]) qc.cx(q[3],q[2]) qc.h(q[2]) qc.h(q[3]) qc.s(q[2]) qc.t(q[3]) qc.barrier(q) qc.cx(q[1],q[0]) qc.tdg(q[0]) qc.cx(q[1],q[0]) qc.t(q[0]) qc.t(q[1]) qc.barrier(q) qc.h(q[2]) qc.h(q[3]) qc.cx(q[3],q[2]) qc.h(q[2]) qc.h(q[3]) qc.cx(q[1],q[0]) qc.h(q[0]) qc.h(q[1]) qc.cx(q[1],q[0]) qc.h(q[0]) qc.h(q[1]) qc.cx(q[1],q[0]) qc.h(q[0]) qc.h(q[1]) qc.barrier(q) qc.cx(q[2],q[1]) qc.u1(pi/8,q[1]) qc.cx(q[2],q[1]) qc.u1(-pi/8,q[1]) qc.u1(pi/8,q[2]) qc.barrier(q) qc.h(q[2]) qc.h(q[3]) qc.cx(q[3],q[2]) qc.h(q[2]) qc.h(q[3]) qc.cx(q[2],q[1]) qc.u1(pi/8,q[1]) qc.cx(q[2],q[1]) qc.u1(pi/8,q[1]) qc.u1(pi/8,q[2]) qc.cx(q[3],q[1]) qc.u1(-pi/8,q[1]) qc.cx(q[3],q[1]) qc.u1(pi/8,q[1]) qc.u1(pi/8,q[3]) qc.barrier(q) qc.cx(q[1],q[0]) qc.h(q[0]) qc.h(q[1]) qc.cx(q[1],q[0]) qc.h(q[0]) qc.h(q[1]) qc.cx(q[1],q[0]) qc.h(q[0]) qc.h(q[1]) qc.barrier(q) qc.x(q) qc.h(q) qc.barrier(q) qc.draw(output='mpl') ## Don't forget about the measurement gates! qc.measure(q[0],c[0]) qc.measure(q[1],c[1]) qc.measure(q[2],c[2]) qc.measure(q[3],c[3]) qc.draw(output='mpl') ## Step 4: Run on backend simulator and print results simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend = simulator, shots = 2048).result() counts = result.get_counts() print('RESULT: ',counts,'\n') from qiskit.tools.visualization import plot_histogram plot_histogram(counts) ## Note: accuracy of this implementation not 100% (may need to run a couple iterations before achieving desired result) ## Step 4: Run on real device from IBM - load account and get least busy backend provider = IBMQ.load_account() device = least_busy(provider.backends(simulator=False)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(qc, backend=device, shots=1024, max_credits=10) job_monitor(job, interval = 2) ## Print results from device from IBM results = job.result() answer = results.get_counts(qc) plot_histogram(answer)
https://github.com/DEBARGHYA4469/quantum-compiler
DEBARGHYA4469
from qiskit import register, available_backends , get_backend # Establish connection with IBMQuantum Experience try : import sys sys.path.append('../') import Qconfig qx_config = { # configuration details 'APItoken' : Qconfig.APItoken , 'url' : Qconfig.config['url']} except Exception as e : print(e) print("Check your API token") register(qx_config['APItoken'],qx_config['url']) def lowest_pending_jobs(): # find the best backend available list_backends = available_backends({'local':False,'simulator':False}) device_status = [get_backend(backend).status for backend in list_backends] best = min([x for x in device_status if x['available'] is True],key = lambda x: x['pending_jobs']) return best['name'] def get_qc(): backend = lowest_pending_jobs() print("The best backend is",backend) return backend
https://github.com/DEBARGHYA4469/quantum-compiler
DEBARGHYA4469
#THIS PROGRAM IS MODIFIED FROM THE DJ ALGORITHM PRESENT IN QISKIT TUTORIAL WHERE I FEEL THAT THE NOTION OF TAKING THE RANDOM BALANCED #FUNCTION IS QUITE ABSTRACT AND DIFFICULT TO GRASP FOR A BEGINNER.SO I ADDED SOME PIECE OF CODE FOR PRINTING THE RANDOM FUNCTION #AND PROVE THERE IS A DETERMINISTIC WAY OF DERIVING A BALANCED FUNCTION BY SEEDING A RANDOM NUMBER!! from connection import * import numpy as np import random import matplotlib.pyplot as plt from qiskit import QuantumCircuit,ClassicalRegister,QuantumRegister,QuantumJob from qiskit import available_backends,execute,register,get_backend from qiskit.tools.visualization import plot_histogram,circuit_drawer backend = get_qc() # get the quantum computer with least jobs queued up def flip_x(arr,binlength,l): if(l == 0): newstr = "" for b in range(binlength):newstr = newstr + str(arr[b]) print("f(",newstr,")=1") else: for pv in range(2): acopy = [] for i in range(binlength): acopy.append(arr[i]) for k in range(binlength): if(acopy[k] == -1): acopy[k] = pv break flip_x(acopy,binlength,l-1) def mark_ones(j,shift,pos_ones,arr): for i in range(j): arr[pos_ones[shift+i]] = 1 return arr def rec_util(j,binlength,pos_ones,shift): if(shift+j-1 >= len(pos_ones)): return arr = [] for i in range(binlength): arr.append(-1) arr = mark_ones(j,shift,pos_ones,arr) flip_x(arr,binlength,binlength-j) rec_util(j,binlength,pos_ones,shift+1) def ones_in_binary(r): # Decimal to binary conversion num = r bry = 0 m = [] j = 0 f=1 while(num>0): bry = bry + (num%2)*f if(num%2 == 1): m.append(j) num = num//2 f=f*10 j=j+1 for i in range(len(m)): m[i] = j -1- m[i] pos_ones = [] for i in range(len(m)): pos_ones.append(m[len(m)-i-1]) print(pos_ones) return pos_ones,j def print_fx(r,n): j=1 pos_ones,binlength = ones_in_binary(r)#position of the ones and total length of binary string binlength = n while(j <= len(pos_ones)): #only odd results in flip by CNOT shift = 0 # to traverse the pos_ones rec_util(j,binlength,pos_ones,shift) j=j+2 print("\n................DEUTSCH JOZSA ALGORITHM....................\n") print("\nInput the size of the domain of the function..\n") n = int(input()) print("\nInput 0 if you want a constant function,1 otherwise\n") oracle_Type = int(input()) # constant or balanced if(oracle_Type == 0): # constant function print("What is the constant value 0/1 ?") oracle_val = int(input()) else: print("The function is balanced...Generating a random f(x)") fx_generator = np.random.randint(1,2**n) # this variable creates the quantum circuit of the f(x) print("\nYour Balanced Function is .........................") print(fx_generator) print_fx(fx_generator,n) # print the function print("\nn Rest all values are 0s") print("\nTHIS FUNCTION WILL REMAIN HIDDEN AND ONLY BE QUERIED TO ITS EQUIVALENT QUANTUM CIRCUIT") #Print the quantum circuit for your random balanced oracle file = open("oracle.qasm","a") # append mode file.write("\n") # Interfacing with quantum computer qr = QuantumRegister(n+1) # query string cr = ClassicalRegister(n) # first register circuitName = "Deutsch_Joszsa" djCircuit = QuantumCircuit(qr,cr) for i in range(n+1): file.write(" qubit q"+str(i)+"\n") #superposition of all input queries by hadamard transform for i in range(n): file.write(" h q"+str(i)+"\n") djCircuit.h(qr[i]) #FLip the second register and apply hadamard djCircuit.x(qr[n]) file.write(" X q"+str(n)+"\n") djCircuit.h(qr[n]) file.write(" h q"+str(n)+"\n") djCircuit.barrier() # IMPLEMENTING THE ORACLE BUT ITS VALUES ARE HIDDEN if(oracle_Type == 0): # if constant if(oracle_val==1): djCircuit.x(qr[n]) file.write(" X q"+str(n)+"\n") else: djCircuit.iden(qr[n]) else: for i in range(n): if(fx_generator & (1 << i)): djCircuit.cx(qr[i],qr[n]) file.write(" cnot q"+str(i)+",q"+str(n)+"\n") djCircuit.barrier() #apply hadamard after querying the oracle for i in range(n): djCircuit.h(qr[i]) file.write(" h q"+str(i)+"\n") #measurements for i in range(n): djCircuit.measure(qr[i],cr[i]) file.write(" measure q"+str(i)+"\n") #circuit_drawer(djCircuit) file.close() #backend = "local_qasm_simulator" #FOR local testing... shots = 1000 job = execute(djCircuit,backend=backend,shots=shots) results=job.result() answer = results.get_counts() plot_histogram(answer)
https://github.com/DEBARGHYA4469/quantum-compiler
DEBARGHYA4469
from qiskit import register, available_backends , get_backend # Establish connection with IBMQuantum Experience try : import sys sys.path.append('../') import Qconfig qx_config = { # configuration details 'APItoken' : Qconfig.APItoken , 'url' : Qconfig.config['url']} except Exception as e : print(e) print("Check your API token") register(qx_config['APItoken'],qx_config['url']) def lowest_pending_jobs(): # find the best backend available list_backends = available_backends({'local':False,'simulator':False}) device_status = [get_backend(backend).status for backend in list_backends] best = min([x for x in device_status if x['available'] is True],key = lambda x: x['pending_jobs']) return best['name'] def get_qc(): backend = lowest_pending_jobs() print("The best backend is",backend) return backend
https://github.com/DEBARGHYA4469/quantum-compiler
DEBARGHYA4469
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>) out of four possible values.""" #import numpy and plot library import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_histogram # define variables, 1) initialize qubits to zero n = 2 grover_circuit = QuantumCircuit(n) #define initialization function def initialize_s(qc, qubits): '''Apply a H-gate to 'qubits' in qc''' for q in qubits: qc.h(q) return qc ### begin grovers circuit ### #2) Put qubits in equal state of superposition grover_circuit = initialize_s(grover_circuit, [0,1]) # 3) Apply oracle reflection to marked instance x_0 = 3, (|11>) grover_circuit.cz(0,1) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") # 4) apply additional reflection (diffusion operator) grover_circuit.h([0,1]) grover_circuit.z([0,1]) grover_circuit.cz(0,1) grover_circuit.h([0,1]) # 5) measure the qubits grover_circuit.measure_all() # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer) #highest amplitude should correspond with marked value x_0 (|11>)
https://github.com/DEBARGHYA4469/quantum-compiler
DEBARGHYA4469
from qiskit import ClassicalRegister,QuantumRegister,QuantumJob from qiskit import available_backends,execute,register,get_backend from qiskit.tools.visualization import plot_histogram from qiskit import QuantumCircuit from zy_decomposition import * from control_U2 import * #................................................................. def swaper(ckt,ctr,tgt,q): # swap control and target bit ckt.cx(q[ctr],q[tgt]) ckt.h(q[ctr]) ckt.h(q[tgt]) ckt.cx(q[ctr],q[tgt]) ckt.h(q[ctr]) ckt.h(q[tgt]) ckt.cx(q[ctr],q[tgt]) return ckt #................................................................. #.........................................................n-Q Toffolli................................................... def nQ_tofolli(ckt,n,q): # always take first n-1 as ctr,n as tgt i = 0 anc = n # ancillas are from n to 2*n-1 while(i < n-2): if(i==0): ckt.ccx(q[0],q[1],q[anc]) else : ckt.ccx(q[i+1],q[anc+i-1],q[anc+i]) i = i + 1 i = i - 1 # Perform the controlled operations ckt.cx(q[anc+i],q[n-1]) # Controlled-U operation # Free the ancillas.... while(i >= 0): if(i==0): ckt.ccx(q[0],q[1],q[anc]) else : ckt.ccx(q[i+1],q[anc+i-1],q[anc+i]) i = i - 1 return ckt #.......................................................n-Q Tofolli ...................................................... #................................................Controlled-U operations ................................................. def Control_U(ckt,V_tilde,q,n): # n is no of qubits i = 0 anc = n # ancillas are from n to 2*n-1 while(i < n-2): if(i==0): ckt.ccx(q[0],q[1],q[anc]) else : ckt.ccx(q[i+1],q[anc+i-1],q[anc+i]) i = i + 1 i = i - 1 # Perform the controlled operations ckt = CU2(V_tilde,ckt,q,n) # Controlled-U operation # Free the ancillas.... while(i >= 0): if(i==0): ckt.ccx(q[0],q[1],q[anc]) else : ckt.ccx(q[i+1],q[anc+i-1],q[anc+i]) i = i - 1 return ckt #................................................Controlled-U operations ................................................. def test_block(): q = QuantumRegister(5+4) # Quantum bits c = ClassicalRegister(9) #Classical Register U = np.array([[1,1],[1,-1]])/math.sqrt(2.0) ckt = QuantumCircuit(q,c) for j in range(5): ckt.x(q[j]) ckt.x(q[4]) ckt = Control_U(ckt,U,q,5) for i in range(9): ckt.measure(q[i],c[i]) get_result(ckt)
https://github.com/DEBARGHYA4469/quantum-compiler
DEBARGHYA4469
# Implement the control_U2 gate # Written by Debarghya Kundu # Email : debarghya4469@iitg.ernet.in from zy_decomposition import * from qiskit import ClassicalRegister,QuantumRegister,QuantumJob from qiskit import available_backends,execute,register,get_backend from qiskit.tools.visualization import plot_histogram from qiskit import QuantumCircuit def Rzz(ckt,theta,q,n): # Phase-Shift gate ckt.u1(theta,q[n-1]) # Rzz for last qubit is required ckt.x(q[n-1]) ckt.u1(theta,q[n-1]) ckt.x(q[n-1]) return ckt def Rz(ckt,theta,q,n): #rotation along -z axis ckt.u1(theta,q[n-1]) ckt = Rzz(ckt,-1.0*theta/2.0,q,n) return ckt def Ry(ckt,theta,q,n): #rotation along -y axis ckt.u3(theta,0,0,q[n-1]) return ckt def CU2(U,ckt,q,n): alpha,beta,gama,delta = zy_decompose(U) ckt = Rz(ckt,(delta-beta)/2.0,q,n) # Apply :: C ckt.cx(q[2*n-3],q[n-1]) # ancilla as ctr,tgt ckt = Rz(ckt,-1.0*(beta+delta)/2.0,q,n) # Apply :: B ckt = Ry(ckt,-1.0*gama/2.0,q,n) # Apply :: B ckt.cx(q[2*n-3],q[n-1]) # ancilla as ctr,tgt ckt = Ry(ckt,gama/2.0,q,n) # Apply :: A ckt = Rz(ckt,beta,q,n) # Apply :: A ckt.u1(alpha,q[2*n-3]) # phase to ancilla -> ref: N&C return ckt def get_result(ckt): shots = 10000 backend = 'local_qasm_simulator' job = execute(ckt,backend=backend,shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer) def test_main(): q = QuantumRegister(3+1) c = ClassicalRegister(4) a = math.cos(3.0) b = math.sin(3.0) U = np.array([[a,-1.0*b.conjugate()],[b,a.conjugate()]]) ckt = QuantumCircuit(q,c) # ckt.x(q[3]) ckt = CU2(U,ckt,q,3) for i in range(4): ckt.measure(q[i],c[i]) get_result(ckt)
https://github.com/DEBARGHYA4469/quantum-compiler
DEBARGHYA4469
# Main routine for synthesis of n-qubit unitary # Written by Debarghya Kundu # Email : debarghya4469@iitg.ernet.in from two_level_decompose import * from two_dimensionalise import * from block import * import numpy as np import math from random import randint from graycode import * from nontrivial import * from qiskit import ClassicalRegister,QuantumRegister from qiskit import available_backends,execute,register from qiskit import get_backend,QuantumJob from zy_decomposition import * from control_U2 import * def dagger(U): return U.conjugate().transpose() def get_Vk(U,dim,l):# call only once ......... VSET = dcmp(U,dim) # set of all two-level-matrices Vk = [] for V in VSET: V = dagger(V) Vk.append(V) V_tilde = [] ntv_cols = [] for V in Vk : V_tilde.append(twoD(V,dim)[0]) # only matrix... ntv_cols.append([twoD(V,dim)[1],twoD(V,dim)[2]]) return Vk,V_tilde,ntv_cols #------------------------------------------------------TRAVERSAL --------------------------------------------------------- # # U = V1 x V2 x V3 x V4 x .....................x Vk # # <--------- V1 ------------------------------> <--------------------V2--------------------------> .......Vk........> # g11 g21 g31 g41 ............gm-1,1 C~U gm-1,1 ........g12 g22............gm........................................... # [ Call this part a BLOCK 1 ] # # g(i,j)'s are represented by n qubit tofolli gate. Stimulate this by 3-Q Tofollis # Controlled-U by SWAP and Tofolli operations ............ # # 1. Get the set of matrices Vi's # 2. Get the two-dimensional form of it # 3. get the set of non-trivial qubits g1 and gm from Vk # 4. Get the Grey code sequence # 5. Traverse g1 to gm-1 # 6. Apply controlled-U # 7. Traverse gm-1 to gm # 8. Go to step 1 unless set replenishes #----------------------------------------------------TRAVERSAL------------------------------------------------------------ def bitflip(gi,gj,n): # checked.................................. for i in range(n): if(gi[i] != gj[i]): return i def cUop2(ckt,V_tilde,q,n): alpha,beta,gama,delta = zy_decompose(V_tilde) ckt = Rz(ckt,(delta-beta)/2.0,q,n) # Apply :: C ckt.cx(q[0],q[1]) # ancilla as ctr,tgt ckt = Rz(ckt,-1.0*(beta+delta)/2.0,q,n) # Apply :: B ckt = Ry(ckt,-1.0*gama/2.0,q,n) # Apply :: B ckt.cx(q[0],q[1]) # ancilla as ctr,tgt ckt = Ry(ckt,gama/2.0,q,n) # Apply :: A ckt = Rz(ckt,beta,q,n) # Apply :: A ckt.u1(alpha,q[0]) # phase to ancilla -> ref: N&C return ckt def synth(U,dim,nqubit): q = QuantumRegister(2*nqubit-1) c = ClassicalRegister(2*nqubit-1) ckt = QuantumCircuit(q,c) Vk,V_tilde,ntv_cols = get_Vk(U,dim,dim) # all the two-level matrices for block in range(len(Vk)): #print("\n--------------------------NEW BLOCK----------------------------------\n") #print(np.round(Vk[block],decimals=2)) #print(np.round(V_tilde[block],decimals=2)) g1,gm = ntvl(ntv_cols[block][0],ntv_cols[block][1],nqubit) # correct Gcode_sq = [] g1_list = [] gm_list = [] for k in range(nqubit): g1_list.append(g1[k]) gm_list.append(gm[k]) Gcode_sq = graycodes(g1_list,gm_list) # all the gray codes for Vk m = len(Gcode_sq) # g1----->gm #print(g1,gm,Gcode_sq,m) # correct j = 1 #....................................................DEBUGGED........................................................................ while(j<=m-2): # all the first m-2 tofollis #print("\n.........Each tofollis...................\n") bflip=bitflip(Gcode_sq[j-1],Gcode_sq[j],nqubit) #print("bitflip:-->",bflip) for bi in range(nqubit): if(bflip==bi):continue if(Gcode_sq[j][bi]=='0'): ckt.x(q[bi]) # X # print("x is done on:",bi) if(bflip != nqubit-1):#not last bit flip ckt = swaper(ckt,bflip,nqubit-1,q) # print("swap",bflip,nqubit-1) if(nqubit ==2): ckt.cx(q[0],q[1]) if(nqubit > 2): ckt = nQ_tofolli(ckt,nqubit,q) #print("Toffoli") if(bflip != nqubit-1):#not last bit flip ckt = swaper(ckt,bflip,nqubit-1,q) # print("swap",bflip,nqubit-1) for bi in range(nqubit): if(bflip==bi):continue if(Gcode_sq[j][bi]=='0'): ckt.x(q[bi]) # X # print("x is done on:",bi) j = j + 1 # Apply controlled-U for change from gm-1 to gm #--------------------------------------------------------------------------------------------------------------------- bflip = bitflip(Gcode_sq[m-2],Gcode_sq[m-1],nqubit) for bi in range(nqubit): if(bflip==bi):continue if(Gcode_sq[j][bi]=='0'): ckt.x(q[bi]) # X if(bflip != nqubit-1):#not last bit flip ckt = swaper(ckt,bflip,nqubit-1,q) if(nqubit == 2): ckt = cUop2(ckt,V_tilde,q,nqubit) if(nqubit > 2): ckt = Control_U(ckt,V_tilde[block],q,nqubit) if(bflip != nqubit-1):#not last bit flip ckt = swaper(ckt,bflip,nqubit-1,q) for bi in range(nqubit): if(bflip==bi):continue if(Gcode_sq[j][bi]=='0'): ckt.x(q[bi]) # X #---------------------------------------------------------------------------------------------------------------------- # Reverse the states ...................................... j = m-2 while(j >= 1): # all the first m-2 tofollis bflip=bitflip(Gcode_sq[j-1],Gcode_sq[j],nqubit) #print("bitflip:",j,"-->",bflip) for bi in range(nqubit): if(bflip==bi):continue if(Gcode_sq[j][bi]=='0'): ckt.x(q[bi]) # X if(bflip != nqubit-1):#not last bit flip ckt = swaper(ckt,bflip,nqubit-1,q) if(nqubit ==2): ckt.cx(q[0],q[1]) if(nqubit > 2): ckt = nQ_tofolli(ckt,nqubit,q) #print("Toffoli") if(bflip != nqubit-1):#not last bit flip ckt = swaper(ckt,bflip,nqubit-1,q) for bi in range(nqubit): if(bflip==bi):continue if(Gcode_sq[j][bi]=='0'): ckt.x(q[bi]) # X j = j - 1 for i in range(2*nqubit-1): ckt.measure(q[i],c[i]) get_result(ckt) def kronecker(str): # find the kroncker product z=0 if(str[0]=='0'): z=np.array([[1],[0]]) if(str[0]=='1'): z=np.array([[0],[1]]) for i in range(len(str)-1): if(str[i+1]=='0'): z = np.kron(z,np.array([[1],[0]])) if(str[i+1]=='1'): z = np.kron(z,np.array([[0],[1]])) print(z) def handle_1Qgates(U,dim,n): q = QuantumRegister(n) c = ClassicalRegister(n) ckt = QuantumCircuit(q,c) alpha,beta,gama,delta = zy_decompose(U) # decompose ckt = Rz(ckt,(delta-beta)/2.0,q,n) # Apply :: C ckt.x(q[0]) # ancilla as ctr,tgt ckt = Rz(ckt,-1.0*(beta+delta)/2.0,q,n) # Apply :: B ckt = Ry(ckt,-1.0*gama/2.0,q,n) # Apply :: B ckt.x(q[0]) # ancilla as ctr,tgt ckt = Ry(ckt,gama/2.0,q,n) # Apply :: A ckt = Rz(ckt,beta,q,n) # Apply :: A ckt.u1(alpha,q[0]) # phase to ancilla -> ref: N&C for i in range(n): ckt.measure(q[i],c[i]) get_result(ckt) #u1 = np.array([[0,1],[1,0]]) # Pauli-X #u2 = np.array([[1,1],[1,-1]])/math.sqrt(2.0) # Hadamard #u2 = np.array([[1,1],[1,-1]])/math.sqrt(2.0) #u= np.kron(u1,u1) #u= np.kron(u,u1) #u = unitary() #u= np.kron(u,u2) #u= np.kron(u,u2) #u = np.array([[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0]]) #u = np.identity(16) #for i in range(16): # u[i][i]=0 # u[i][15-i]=1 #print(u) #kk = np.array([[1],[0],[0],[0],[0],[0],[0],[0]]) #print(np.matmul(u,kk)) #synth(u,8,3) # test .....................2018 #Vk,V_tilde,ntv_cols = get_Vk(u,8,8) # all the two-level matrices #for V in range(len(Vk)): # print(np.round(Vk[V],decimals=2),"\n") # print(np.round(V_tilde[V],decimals=2),"\n") # print("gcodes-->",ntv_cols[V][0],ntv_cols[V][1]) #print(np.allclose(np.identity(8),Vk[len(Vk)-1]))
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
import numpy as np from qiskit import QuantumCircuit as QC from qiskit import execute from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * provider = IBMQ.load_account() from qiskit.visualization import plot_histogram def oracle(case, n): ##creating an oracle oracle_qc = QC(n+1) if case=="balanced": for i in range(n): oracle_qc.cx(i,n) if case=="constant": pass ##converting circuit to a indivsual gate oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" return oracle_gate def dj_algo(n, case="random"): dj_crc = QC(n+1,n) for i in range(n): dj_crc.h(i) dj_crc.x(n) dj_crc.h(n) if case=="random": rnd = np.random.randint(2) if rnd == 0: case = "constant" else: case = "balanced" dj_oracle = oracle(case, n) dj_crc.append(dj_oracle, range(n+1)) for i in range(n): dj_crc.h(i) dj_crc.measure(i,i) return dj_crc n = 3 dj_crc = dj_algo(n) dj_crc.draw('mpl') #simulating backend=BasicAer.get_backend('qasm_simulator') shots = 1024 dj_circuit = dj_algo(n, "balanced") results = execute(dj_circuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) #running on real quantum computer backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational == True)) print("Using least busy backend: ", backend) %qiskit_job_watcher dj_circuit = dj_algo(n, "balanced") job = execute(dj_circuit, backend=backend, shots=shots, optimization_level=3) result = job.result() answer = result.get_counts() plot_histogram(answer)
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram from qiskit.quantum_info import Statevector import numpy as np import matplotlib backend = BasicAer.get_backend('qasm_simulator') shots = 1024 style = {'backgroundcolor': 'lightyellow'} # Style of the circuits qreg1 = QuantumRegister(2) # The quantum register of the qubits, in this case 2 qubits register1 = ClassicalRegister(1) qc = QuantumCircuit(qreg1, register1) #qc.x(0) qc.x(1) qc.barrier() qc.draw(output='mpl', style=style) qc.h(0) qc.h(1) qc.barrier() qc.draw(output='mpl', style=style) qc.cx(0,1) qc.barrier() qc.draw(output='mpl', style=style) qc.h(0) qc.draw(output='mpl', style=style) qc.measure(qreg1[0],register1) qc.draw(output='mpl', style=style) results = execute(qc, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) def oracleBalance1(qcir): qcir.cx(0,1) qcir.barrier() return qcir def oracleBalance2(qcir): qcir.x(1) qcir.cx(0,1) qcir.barrier() return qcir def oracleConstant1(qcir): qcir.x(1) qcir.barrier() return qcir def oracleConstant2(qcir): qcir.barrier() return qcir def deutsch(oracle): Qreg = QuantumRegister(2) Creg = ClassicalRegister(1) qcirc = QuantumCircuit(Qreg, Creg) qcirc.x(1) qcirc.h(0) qcirc.h(1) qcirc.barrier() qcirc = oracle(qcirc) qcirc.h(0) qcirc.barrier() qcirc.measure(Qreg[0],Creg) return qcirc resultBalanced1 = deutsch(oracleBalance1) resultBalanced1.draw(output='mpl', style=style) resultsB1 = execute(resultBalanced1, backend=backend, shots=shots).result() answerB1 = resultsB1.get_counts() plot_histogram(answerB1) resultBalanced2 = deutsch(oracleBalance1) resultBalanced2.draw(output='mpl', style=style) resultsB2 = execute(resultBalanced2, backend=backend, shots=shots).result() answerB2 = resultsB2.get_counts() plot_histogram(answerB2) resultConstant1 = deutsch(oracleConstant1) resultConstant1.draw(output='mpl', style=style) resultsC1= execute(resultConstant1, backend=backend, shots=shots).result() answerC1 = resultsC1.get_counts() plot_histogram(answerC1) resultConstant2 = deutsch(oracleConstant2) resultConstant2.draw(output='mpl', style=style) resultsC2= execute(resultConstant2, backend=backend, shots=shots).result() answerC2 = resultsC2.get_counts() plot_histogram(answerC2)
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
import numpy as np import networkx as nx import matplotlib.pyplot as plt from scipy.optimize import minimize from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer style = {'backgroundcolor': 'lightyellow'} # Style of the drawing of the quantum circuit Graph_Example_1 = nx.Graph() Graph_Example_1.add_edges_from([[1,2],[2,3],[1,3]]) nx.draw(Graph_Example_1,with_labels=True,font_weight='bold') nx.draw(Graph_Example_1,node_color = ['b','b','r']) Graph_Example_2 = nx.Graph() Graph_Example_2.add_edges_from([[1,2],[1,3],[4,2],[4,3]]) nx.draw(Graph_Example_2,with_labels=True,font_weight='bold') nx.draw(Graph_Example_2,node_color = ['r','b','b','r']) Graph_Example_3 = nx.Graph() Graph_Example_3.add_edges_from([[1,4],[1,2],[2,5],[4,5],[5,3],[2,3]]) nx.draw(Graph_Example_3,with_labels=True,font_weight='bold') nx.draw(Graph_Example_3,node_color = ['r','b','b','r','b']) Graph = nx.Graph() Graph.add_edges_from([[0,1],[0,3],[3,4],[1,4],[1,2],[4,2]]) nx.draw(Graph,with_labels=True) Graph.edges() N = Graph.number_of_nodes() # The number of nodes in the graph qc = QuantumCircuit(N,N) # Quantum circuit with N qubits and N classical register gamma = np.pi/8 # parameter gamma for the cost function (maxcut hamiltonian) #Apply the operator to each edge for i, j in Graph.edges(): qc.cx(i,j) qc.rz(2*gamma, j) qc.cx(i,j) qc.barrier() qc.draw(output='mpl', style=style) # Draw the quantum circuit beta = np.pi/8 # parameter for the mixer hamiltonian for n in Graph.nodes(): qc.rx(2*beta, n) # measure the result qc.barrier(range(N)) qc.measure(range(N), range(N)) qc.draw(output='mpl', style=style,fold= 35) def qaoa_circuit(G, theta,p): r""" ############################################ # Compute the QAOA circuit for the graph G # # |psi(theta) > = |psi(beta,gamma) > = e^{-i*beta_p*B} e^{-i*gamma_p*C}... e^{-i*beta_1*B} e^{-i*gamma_1*C} H^{otimes n}|0> # # where C is the Maxcut hamiltonian, B is the mixer hamiltonian. # # G: graph # theta: parameters,first half is betas, second half is gammas # p: number of QAOA steps # return: The QAOA circuit ########################################### """ beta = theta[:p] #Parameters beta for the mixer hamiltonian gamma = theta[p:]#Parameters gamma for the maxcut hamiltonian N = G.number_of_nodes()#Number of nodes of the graph G qc = QuantumCircuit(N,N)# Quantum circuit wiht N qubits and N classical register qc.h(range(N))# Apply the Hadamard gate to all the qubits # Apply p operators for k in range(p): for i, j in G.edges(): #Representation of the maxcut hamiltonian qc.cx(i,j) qc.rz(2*gamma[k], j) qc.cx(i,j) qc.barrier() for n in G.nodes(): # Representation of the mixer hamiltonian qc.rx(2*beta[k], n) # Measurement in all the qubits qc.barrier(range(N)) qc.measure(range(N), range(N)) return qc #Returns the quantum circuit # p is the number of QAOA alternating operators p = 1 theta = np.array([np.pi/8,np.pi/8]) circuit = qaoa_circuit(Graph, theta,p) circuit.draw(output='mpl', style=style,fold= 35) # Draw the quantum circuit #Qiskit uses the least significant bit in the bistring, we need to invert this string def invert_counts(counts): r""" ############################################ # Inverted the binary string # # counts: The result of running the quantum circuit # return: The results with binary string inverted ########################################### """ inv_counts = {} for k, v in counts.items(): inv_counts[k[::-1]] = v return inv_counts def maxcut_objective_function(x,G): r""" ############################################ # Compute the maxcut objective function for the binary string x and graph G # # G: graph # x: binary string # return: The cost of the binary string x ########################################### """ cut = 0 for i, j in G.edges(): if x[i] != x[j]: cut -= 1# the edge is cut return cut # Sum of all the edges that are cut def function_to_minimize(G,p): r""" ############################################ # Define the function to minimize given the graph G and the number of parameters # # G: graph # p: number of parameters # return: The function to minimize ########################################### """ backend = Aer.get_backend('qasm_simulator') def f(theta): r""" ############################################ # Function that gives the energy for parameters theta # # theta: parameters # return: Energy ########################################### """ qc = qaoa_circuit(G,theta,p) # Gives the circuit of QAOA fot a graph G, parameters theta and p operators counts = execute(qc, backend, seed_simulator=10).result().get_counts()# Run the circuit and get the results using the backedn "qasm_simulator" E = 0 # Initial energy total_counts = 0 # Initial counts #Qiskit uses the least significant bit in the bistring, we need to invert this string InvertedCounts = invert_counts(counts) #Inverted the binary string # meas is the binary string measure # meas_count is the number of times that the binary string has been measure for meas, meas_count in InvertedCounts.items(): objective_function = maxcut_objective_function(meas, G)#Compute the maxcut objetive function fot the binary string meas E += objective_function*meas_count # Define the energy as the value of the objective functions times the counts of that measure total_counts += meas_count # The total number of measures in the system return E/total_counts # Returns the energy given the parameters theta return f p = 5 # p is the number of QAOA alternating operators objective_function = function_to_minimize(Graph, p) x0=np.random.randn(10)#Initial parameters minim_solution = minimize(objective_function, x0) # Minimization of scalar function of one or more variable from scipy minim_solution optimal_theta = minim_solution['x'] # The optimal parameters to use optimal_theta backend = Aer.get_backend('qasm_simulator') qc = qaoa_circuit(Graph, optimal_theta,p) # Define the quantum circuit with the optimal parameters counts = invert_counts(execute(qc, backend).result().get_counts()) # Get the results #energies = {bs: maxcut_objective_function(bs, Graph) for bs, _ in counts.items()} #energies_sorted = {bs: en for bs, en in sorted(energies.items(), key=lambda item: item[1])} #print(energies_sorted) #print({bs: counts[bs] for bs, energy in energies_sorted.items()}) # Compute the maxcut objective function for the optimal parameters results = [] for x in counts.keys(): results.append([maxcut_objective_function(x,Graph),x]) # Get the best solution given the results of the maxcut objective function best_cut, best_solution = min(results) print(f"Best string: {best_solution} with cut: {-best_cut}") # Define the colors of the nodes for the best solution colors = ['r' if best_solution[node] == '0' else 'b' for node in Graph] nx.draw(Graph,node_color = colors) def solution_max_cut(G): r""" ############################################ # Compute the solution for the maxcut problem given a graph G # # G: graph # return:The draw of the best solution with two colors. Print the solution in the binary string form and the number of cuts ############### """ p = 5 # p is the number of QAOA alternating operators objective_function = function_to_minimize(G, p) x0=np.random.randn(10)#Initial parameters new_parameters = minimize(objective_function, x0) # Minimization of scalar function of one or more variable from scipy optimal_theta = new_parameters['x']# The optimal parameters to use qc = qaoa_circuit(G, optimal_theta,p) # Define the quantum circuit with the optimal parameters counts = invert_counts(execute(qc, backend).result().get_counts()) # Get the results # Compute the maxcut objective function for the optimal parameters results = [] for x in counts.keys(): results.append([maxcut_objective_function(x,G),x]) best_cut, best_solution = min(results) # Get the best solution given the results of the maxcut objective function colors = ['r' if best_solution[node] == '0' else 'b' for node in G] # Define the colors of the nodes for the best solution return nx.draw(G,node_color = colors),print(f"Best string: {best_solution} with cut: {-best_cut}") Graph1 = nx.Graph() Graph1.add_edges_from([[0,1],[0,2],[2,1]]) nx.draw(Graph1,with_labels=True) solution_max_cut(Graph1) graph2 = nx.random_regular_graph(3, 4, seed=1234) nx.draw(graph2) #drawing the graph plt.show() #plotting the graph solution_max_cut(graph2) graph3 = nx.random_regular_graph(3, 12, seed=1234) nx.draw(graph3) #drawing the graph plt.show() #plotting the graph solution_max_cut(graph3)
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile, assemble from qiskit.tools.monitor import job_monitor import matplotlib as mpl # import basic plot tools from qiskit.visualization import plot_histogram, plot_bloch_multivector import numpy as np from numpy import pi qft_circuit = QuantumCircuit(3) qft_circuit.clear() #input state= 5 qft_circuit.x(0) qft_circuit.x(2) qft_circuit.h(0) qft_circuit.cp(pi/2,0,1) qft_circuit.cp(pi/4,0,2) qft_circuit.h(1) qft_circuit.cp(pi/2,1,2) qft_circuit.h(2) #qft_circuit.swap(0,2) qft_circuit.draw('mpl') #output is the bloch sphere representation in the fourier basis sim = Aer.get_backend("aer_simulator") qft_circuit_init = qft_circuit.copy() qft_circuit_init.save_statevector() statevector = sim.run(qft_circuit_init).result().get_statevector() plot_bloch_multivector(statevector) IBMQ.save_account('') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 2 and not b.configuration().simulator and b.status().operational==True)) print(backend) t_qc = transpile(qft_circuit, backend, optimization_level=3)#transpile=assembling the circuit and everything job = backend.run(t_qc)#backend means device job_monitor(job)
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
from qiskit import ClassicalRegister , QuantumCircuit, QuantumRegister import numpy as np qr = QuantumRegister(2) cr = ClassicalRegister(3) #For tree classicals bites qc = QuantumCircuit(qr , cr) qc.h(qr[0]) #auxiliary qubit qc.x(qr[1]) # eigenvector #qc.cp((3/2)*np.pi , qr[0] , qr[1]) qc.cp(3*np.pi , qr[0] , qr[1]) qc.h(qr[0]) qc.measure(qr[0] , cr[0]) # this is the controlled-U^(2^n-1) operator for determine phi_n qc.draw("mpl") qc.reset(qr[0]) qc.h(qr[0]) # la valeur du bit du poids le plus faible est dans cr[0]. #Si cr[0] = 1 on enléve le bit de poids le plus faible en fesant la rotation alpha_2 #et on continu le bit n-1 devient le bit le bit de poids le plus faible #si cr[0] est à 0 alors on peut appliquer directement la matrice unitaire associé sans avoir #à faire de rotation inverse alpha_k with qc.if_test((cr[0] , 1)) as else_: qc.p(-np.pi/2 , qr[0]) #qc.cp((3/8)*np.pi , qr[0] ,qr[1]) qc.cp((3/2)*np.pi , qr[0] ,qr[1]) qc.h(qr[0]) # For make measure in X basis {|0> , |1>} qc.measure(qr[0] , cr[1]) qc.draw("mpl") qc.reset(qr[0]) qc.h(qr[0]) # la valeur du bit du poids le plus faible est dans cr[0]. #Si cr[0] = 1 on enléve le bit de poids le plus faible en fesant la rotation alpha_2 #et on continu le bit n-1 devient le bit le bit de poids le plus faible #si cr[0] est à 0 alors on peut appliquer directement la matrice unitaire associé sans avoir #à faire de rotation inverse alpha_k with qc.if_test((cr[1] , 1)) as else_: qc.p(-(3/4)*np.pi , qr[0]) qc.cp((3/4)*np.pi , qr[0] ,qr[1]) qc.h(qr[0]) # For make measure in X basis {|0> , |1>} qc.measure(qr[0] , cr[2]) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts import qiskit.tools.jupyter %qiskit_version_table
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer import math from qiskit.visualization import plot_histogram backend = BasicAer.get_backend('statevector_simulator') from wordcloud import WordCloud import numpy as np import pandas as pd # primary data structure library import matplotlib.pyplot as plt reg = QuantumRegister(8, name='reg') # The quantum register of the qubits, in this case 8 qubits reg_c = ClassicalRegister(8, name='regc') # Where the measurements of the qubits will be saved qc = QuantumCircuit(reg, reg_c) qc.h(reg) # Apply Hadamard gate to put it into a superposition of 0 and 1 all the qubits qc.measure(reg, reg_c) # read the result as a digital bit job = execute(qc, backend) # Execute the circuit in the statevector_simulator result = job.result() outputstate = result.get_statevector(qc, decimals=5) counts = result.get_counts(qc) #print(outputstate) qc.draw() state, value = list(counts.items())[0] # key is de state of the system after the measuremnt, for example '11100001' state number = int(state, 2) # The state is converted into a number ASCII_Character = chr(number) # The number in ASCII character print('The random number is:',number) print('The random ASCII character:',ASCII_Character) def Quantum_random_number_and_ASCII_Character_generator(n): reg = QuantumRegister(n, name='reg') # The quantum register of the n qubits reg_c = ClassicalRegister(n, name='regc')# Where the measurements of the qubits will be saved qc = QuantumCircuit(reg, reg_c) qc.h(reg) # put it into a superposition of 0 and 1 qc.measure(reg, reg_c) # read the result as a digital bit job = execute(qc, backend) result = job.result() counts = result.get_counts(qc) key, value = list(counts.items())[0] number = int(key, 2) ASCII_Character = chr(number) return ASCII_Character, number Quantum_random_number_and_ASCII_Character_generator(8)[0] # Resturns the ASCII Character Quantum_random_number_and_ASCII_Character_generator(8)[1] # Resturns the Random number L = [] num = [] counter = [] for x in range(800): string = Quantum_random_number_and_ASCII_Character_generator(8)[0] # ASCII_Character number = Quantum_random_number_and_ASCII_Character_generator(8)[1] # Random_number L.append(string) # Save the ASCII_Character in a the list "L" num.append(number) # Save the Random_number in a the list "number" counter.append(x) # Convert the list to a dataframe df1 = pd.DataFrame(counter, columns=['Counter']) df2 = pd.DataFrame(L, columns=['Random_Character']) df3 = pd.DataFrame(num, columns=['Random_Number']) #Join the results in a dataframe re = df1.join(df2) Quantum_Random = re.join(df3) Quantum_Random.head() Quantum_Random.plot(x='Counter', y='Random_Number', figsize=(25,6.5), xlabel='Iteration', ylabel='Randon Number', legend = False, grid = True, fontsize = 14) Quantum_Random['Random_Number'].describe() #generate the word cloud wordcloud = WordCloud(background_color='white').generate(' '.join(Quantum_Random['Random_Character'])) # display the word cloud fig = plt.figure() fig.set_figwidth(14) fig.set_figheight(18) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show()
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
import cirq import numpy as np from qiskit import QuantumCircuit, execute, Aer import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (15,10) q0, q1, q2 = [cirq.LineQubit(i) for i in range(3)] circuit = cirq.Circuit() #entagling the 2 quibits in different laboratories #and preparing the qubit to send circuit.append(cirq.H(q0)) circuit.append(cirq.H(q1)) circuit.append(cirq.CNOT(q1, q2)) #entangling the qubit we want to send to the one in the first laboratory circuit.append(cirq.CNOT(q0, q1)) circuit.append(cirq.H(q0)) #measurements circuit.append(cirq.measure(q0, q1)) #last transformations to obtain the qubit information circuit.append(cirq.CNOT(q1, q2)) circuit.append(cirq.CZ(q0, q2)) #measure of the qubit in the receiving laboratory along z axis circuit.append(cirq.measure(q2, key = 'Z')) circuit #starting simulation sim = cirq.Simulator() results = sim.run(circuit, repetitions=100) sns.histplot(results.measurements['Z'], discrete = True) 100 - np.count_nonzero(results.measurements['Z']), np.count_nonzero(results.measurements['Z']) #in qiskit the qubits are integrated in the circuit qc = QuantumCircuit(3, 1) #entangling qc.h(0) qc.h(1) qc.cx(1, 2) qc.cx(0, 1) #setting for measurment qc.h(0) qc.measure([0,1], [0,0]) #transformation to obtain qubit sent qc.cx(1, 2) qc.cz(0, 2) qc.measure(2, 0) print(qc) #simulation simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=100) res = job.result().get_counts(qc) plt.bar(res.keys(), res.values()) res
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer from qiskit.visualization import plot_histogram from qiskit.quantum_info import Statevector import numpy as np import matplotlib style = {'backgroundcolor': 'lightyellow'} # Style of the circuits backend = BasicAer.get_backend('qasm_simulator') shots = 1024 qreg = QuantumRegister(6) register1 = ClassicalRegister(5) qc = QuantumCircuit(qreg, register1 ) qc.x(5) qc.barrier() qc.draw(output='mpl', style=style) qc.h(0) qc.h(1) qc.h(2) qc.h(3) qc.h(4) qc.h(5) qc.barrier() qc.draw(output='mpl', style=style) qc.cx(0,5) qc.cx(1,5) qc.cx(4,5) qc.barrier() qc.draw(output='mpl', style=style) qc.h(0) qc.h(1) qc.h(2) qc.h(3) qc.h(4) qc.h(5) qc.barrier() qc.draw(output='mpl', style=style) qc.measure(0, register1[0]) qc.measure(1, register1[1]) qc.measure(2, register1[2]) qc.measure(3, register1[3]) qc.measure(4, register1[4]) qc.draw(output='mpl', style=style) results = execute(qc, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram, plot_state_qsphere from qiskit.quantum_info import Statevector, partial_trace import random import numpy as np import matplotlib backend_statevector = BasicAer.get_backend('statevector_simulator')# This backend executes a single shot of a Qiskit QuantumCircuit and returns the final quantum statevector of the simulation. style = {'backgroundcolor': 'lightyellow'} # Style of the circuits backend_qasm = BasicAer.get_backend('qasm_simulator')# This backend is designed to mimic an actual device. #It executes a Qiskit QuantumCircuit and returns a count dictionary containing the final values of any classical registers in the circuit. shots = 1024 #Number of individual shots qreg = QuantumRegister(2) registerBell = ClassicalRegister(2) qBell = QuantumCircuit(qreg,registerBell ) qBell.h(0) qBell.cx(0,1) qBell.draw(output='mpl', style=style) out_vectorBell = execute(qBell, backend_statevector).result().get_statevector() plot_state_qsphere(out_vectorBell) qBell.measure(qreg[0],registerBell [0]) qBell.measure(qreg[1],registerBell [1]) qBell.draw(output='mpl', style=style) results = execute(qBell, backend=backend_qasm, shots=shots).result() answer = results.get_counts() plot_histogram(answer) def gate_errorX(): ############################################################ # This function will return ['X'] with a probability 0.2 # # ['Z'] with a probability 0.2 # # and ['I'] with a probability 0.6 # ########################################################## random_gate = random.choices(population= ['Z', 'X', 'I'],weights=[0.2,0.2, 0.6],k=1) return(random_gate) def noise(qcirc): if gate_errorX() == ['X']: ### Bit-flip in the qubit 0 ##### qcirc.x(0) elif gate_errorX() == ['Z']: ### phase-flip in the qubit 0 ##### qcirc.z(0) else: qcirc.i(0) if gate_errorX() == ['X']: ### Bit-flip in the qubit 1 ##### qcirc.x(1) elif gate_errorX() == ['Z']: ### phase-flip in the qubit 0 ##### qcirc.z(1) else: qcirc.i(1) return qcirc qregNoise = QuantumRegister(2) registerBellNoise = ClassicalRegister(2) qBellNoise = QuantumCircuit(qregNoise,registerBellNoise ) qBellNoise.h(0) qBellNoise.barrier() noise(qBellNoise) #qBellNoise.z(0) qBellNoise.barrier() qBellNoise.cx(0,1) qBellNoise.draw(output='mpl', style=style) out_vectorBellNoise = execute(qBellNoise, backend_statevector).result().get_statevector() plot_state_qsphere(out_vectorBellNoise) plot_state_qsphere(out_vectorBell) qBellNoise.measure(qregNoise[0],registerBellNoise[0]) qBellNoise.measure(qregNoise[1],registerBellNoise[1]) qBellNoise.draw(output='mpl', style=style) resultsNoise = execute(qBellNoise, backend=backend_qasm, shots=shots).result() answerNoise = resultsNoise.get_counts() plot_histogram(answerNoise) qreg_X1_Noise = QuantumRegister(2) registerBell_X1_Noise = ClassicalRegister(2) qBell_X1_Noise = QuantumCircuit(qreg_X1_Noise,registerBell_X1_Noise ) qBell_X1_Noise.h(0) qBell_X1_Noise.barrier() #noise(qBellNoise) qBell_X1_Noise.x(1) qBell_X1_Noise.barrier() qBell_X1_Noise.cx(0,1) qBell_X1_Noise.draw(output='mpl', style=style) out_vectorBell_X1_Noise = execute(qBell_X1_Noise, backend_statevector).result().get_statevector() plot_state_qsphere(out_vectorBell_X1_Noise) Qreg1 = QuantumRegister(1) Qreg2 = QuantumRegister(2) qc_bit_flip = QuantumCircuit(Qreg1,Qreg2) state_to_protect = [np.sqrt(0.2),np.sqrt(0.8)] qc_bit_flip.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit qc_bit_flip.barrier() Initial_state = Statevector.from_instruction(qc_bit_flip) plot_bloch_multivector(Initial_state, title='Initial state') qc_bit_flip.cx(0,1) qc_bit_flip.cx(0,2) qc_bit_flip.draw(output='mpl', style=style) qc_bit_flip.barrier() qc_bit_flip.x(0) qc_bit_flip.barrier() qc_bit_flip.cx(0,2) qc_bit_flip.cx(0,1) qc_bit_flip.barrier() qc_bit_flip.ccx(2,1,0) qc_bit_flip.draw(output='mpl', style=style) out_vector = execute(qc_bit_flip, backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector, title='Final state') plot_bloch_multivector(Initial_state, title='Initial state') qregister1 = QuantumRegister(1) qregister2 = QuantumRegister(2) cregister = ClassicalRegister(2, 'c') qc_bit_flip_measurements = QuantumCircuit(qregister1,qregister2,cregister) qc_bit_flip_measurements.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit Initial_state1 = Statevector.from_instruction(qc_bit_flip_measurements) plot_bloch_multivector(Initial_state1, title='Initial state') ### Perfmoing the encoding ##### qc_bit_flip_measurements.barrier() qc_bit_flip_measurements.cx(0,1) qc_bit_flip_measurements.cx(0,2) ### Apply some noise ##### qc_bit_flip_measurements.barrier() #noise(qc) qc_bit_flip_measurements.x(0) ### Aplying the inverse of the encoding procedure ### qc_bit_flip_measurements.barrier() qc_bit_flip_measurements.cx(0,2) qc_bit_flip_measurements.cx(0,1) qc_bit_flip_measurements.barrier() qc_bit_flip_measurements.measure(qregister2,cregister) qc_bit_flip_measurements.x(0).c_if(cregister, 3) qc_bit_flip_measurements.draw(output='mpl', style=style) out_vector1 = execute(qc_bit_flip_measurements, backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector1, title='Final state') plot_bloch_multivector(Initial_state1, title='Initial state') qEncoding = QuantumRegister(3) qAncillas = QuantumRegister(2, 'ancilla') AncillasRegister = ClassicalRegister(2, 'c') qc_bit_flip_ancillas_measuremnts = QuantumCircuit(qEncoding,qAncillas,AncillasRegister) qc_bit_flip_ancillas_measuremnts.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit Initial_state2 = Statevector.from_instruction(qc_bit_flip_ancillas_measuremnts) plot_bloch_multivector(Initial_state2, title='Initial state') ### Perfmoing the encoding ##### qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.cx(0,1) qc_bit_flip_ancillas_measuremnts.cx(0,2) ### Apply some noise ##### qc_bit_flip_ancillas_measuremnts.barrier() #noise(qc) qc_bit_flip_ancillas_measuremnts.x(0) qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.cx(0,4) qc_bit_flip_ancillas_measuremnts.cx(1,4) qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.cx(1,3) qc_bit_flip_ancillas_measuremnts.cx(2,3) qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.measure(qAncillas,AncillasRegister) qc_bit_flip_ancillas_measuremnts.x(0).c_if(AncillasRegister, 2) qc_bit_flip_ancillas_measuremnts.x(1).c_if(AncillasRegister, 3) qc_bit_flip_ancillas_measuremnts.x(2).c_if(AncillasRegister, 1) qc_bit_flip_ancillas_measuremnts.barrier() qc_bit_flip_ancillas_measuremnts.cx(0,2) qc_bit_flip_ancillas_measuremnts.cx(0,1) qc_bit_flip_ancillas_measuremnts.draw(output='mpl', style=style) out_vector2 = execute(qc_bit_flip_ancillas_measuremnts,backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector2, title='Final state') plot_bloch_multivector(Initial_state2, title='Initial state') qregister_to_protect = QuantumRegister(1) qregister = QuantumRegister(2) creg = ClassicalRegister(2, 'c') qc_phase_flip = QuantumCircuit(qregister_to_protect,qregister,creg) qc_phase_flip.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit Initial_state3 = Statevector.from_instruction(qc_phase_flip) plot_bloch_multivector(Initial_state3, title='Initial state') ### Perfmoing the encoding ##### qc_phase_flip.barrier() qc_phase_flip.cx(0,1) qc_phase_flip.cx(0,2) ### Apply thje hadamard gates ##### qc_phase_flip.barrier() qc_phase_flip.h(0) qc_phase_flip.h(1) qc_phase_flip.h(2) ### Apply some noise ##### qc_phase_flip.barrier() #noise(qc) qc_phase_flip.z(0) qc_phase_flip.barrier() ### Apply thje hadamard gates ##### qc_phase_flip.h(0) qc_phase_flip.h(1) qc_phase_flip.h(2) ### Aplying the inverse of the encoding procedure ### qc_phase_flip.barrier() qc_phase_flip.cx(0,2) qc_phase_flip.cx(0,1) qc_phase_flip.barrier() qc_phase_flip.measure(qregister,creg) qc_phase_flip.x(0).c_if(cregister, 3) qc_phase_flip.draw(output='mpl', style=style) out_vector4 = execute(qc_phase_flip, backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector4) plot_bloch_multivector(Initial_state3, title='Initial state') qregA = QuantumRegister(1) qr1 = QuantumRegister(2) qregB = QuantumRegister(1) qr2 = QuantumRegister(2) qregC = QuantumRegister(1) qr3 = QuantumRegister(2) r1 = ClassicalRegister(2, 'c1') r2 = ClassicalRegister(2, 'c2') r3 = ClassicalRegister(2, 'c3') registerBC = ClassicalRegister(2, 'c') qc_shor_code = QuantumCircuit(qregA, qr1,qregB, qr2,qregC,qr3,r1,r2,r3,registerBC) qc_shor_code.initialize(state_to_protect,0) # Apply initialisation operation to the 0th qubit qc_shor_code.barrier() Initial_state4 = Statevector.from_instruction(qc_shor_code) plot_bloch_multivector(Initial_state4, title='Initial state') qc_shor_code.cx(0,3) qc_shor_code.cx(0,6) qc_shor_code.h(0) qc_shor_code.h(3) qc_shor_code.h(6) qc_shor_code.barrier() qc_shor_code.cx(0,1) qc_shor_code.cx(0,2) qc_shor_code.cx(3,4) qc_shor_code.cx(3,5) qc_shor_code.cx(6,7) qc_shor_code.cx(6,8) qc_shor_code.draw(output='mpl', style=style) ### Apply some gate error, in this case X y Z gate ### qc_shor_code.barrier() qc_shor_code.x(0) qc_shor_code.z(6) ## This is the saame as the bit-flip code with measurements (Part 3.2) repeated 3 times ## qc_shor_code.barrier() qc_shor_code.cx(0,2) qc_shor_code.cx(0,1) qc_shor_code.cx(3,5) qc_shor_code.cx(3,4) qc_shor_code.cx(6,8) qc_shor_code.cx(6,7) qc_shor_code.barrier() qc_shor_code.measure(qr1,r1) qc_shor_code.measure(qr2,r2) qc_shor_code.measure(qr3,r3) qc_shor_code.x(qregA).c_if(r1, 3) qc_shor_code.x(qregB).c_if(r2, 3) qc_shor_code.x(qregC).c_if(r3, 3) ### Aplying the inverse of the encoding procedure ### qc_shor_code.barrier() qc_shor_code.h(0) qc_shor_code.h(3) qc_shor_code.h(6) qc_shor_code.cx(0,6) qc_shor_code.cx(0,3) qc_shor_code.measure(qregB,registerBC[0]) qc_shor_code.measure(qregC,registerBC[1]) qc_shor_code.x(qregA).c_if(registerBC, 3) qc_shor_code.draw(output='mpl', style=style, fold= 30) out_vector5 = execute(qc_shor_code,backend_statevector).result().get_statevector() plot_bloch_multivector(out_vector5) reduced_state_shor_code = partial_trace(out_vector5 , [1,2,3,4,5,6,7,8]) plot_bloch_multivector(reduced_state_shor_code) plot_bloch_multivector(Initial_state4, title='Initial state') reduced_intial_state_shor_code = partial_trace(Initial_state4 , [1,2,3,4,5,6,7,8]) plot_bloch_multivector(reduced_intial_state_shor_code) def shor_encoding(qc_shor_encode): ## Encoding for the shor code ## ################################ qc_shor_encode.cx(0,3) qc_shor_encode.cx(0,6) qc_shor_encode.h(0) qc_shor_encode.h(3) qc_shor_encode.h(6) qc_shor_encode.barrier() qc_shor_encode.cx(0,1) qc_shor_encode.cx(0,2) qc_shor_encode.cx(3,4) qc_shor_encode.cx(3,5) qc_shor_encode.cx(6,7) qc_shor_encode.cx(6,8) qc_shor_encode.barrier() return(qc_shor_encode) def shor_correct(qc_shor_code_correct,qCorrect_regA, qCorrect_r1,qCorrect_regB, qCorrect_r2,qCorrect_regC,qCorrect_r3,rCorrect1,rCorrect2,rCorrect3,registerCorrectBC ): ## Correction of the error in the shor code ## ############################################## qc_shor_code_correct.barrier() qc_shor_code_correct.cx(0,2) qc_shor_code_correct.cx(0,1) qc_shor_code_correct.cx(3,5) qc_shor_code_correct.cx(3,4) qc_shor_code_correct.cx(6,8) qc_shor_code_correct.cx(6,7) qc_shor_code_correct.barrier() qc_shor_code_correct.measure(qCorrect_r1,rCorrect1) qc_shor_code_correct.measure(qCorrect_r2,rCorrect2) qc_shor_code_correct.measure(qCorrect_r3,rCorrect3) qc_shor_code_correct.x(qCorrect_regA).c_if(rCorrect1, 3) qc_shor_code_correct.x(qCorrect_regB).c_if(rCorrect2, 3) qc_shor_code_correct.x(qCorrect_regC).c_if(rCorrect3, 3) qc_shor_code_correct.barrier() qc_shor_code_correct.h(0) qc_shor_code_correct.h(3) qc_shor_code_correct.h(6) qc_shor_code_correct.cx(0,6) qc_shor_code_correct.cx(0,3) qc_shor_code_correct.measure(qCorrect_regB,registerCorrectBC[0]) qc_shor_code_correct.measure(qCorrect_regC,registerCorrectBC[1]) qc_shor_code_correct.x(qCorrect_regA).c_if(registerCorrectBC, 3) return(qc_shor_code_correct) ### Ciruit to encode the state for the bit-flip code #### q_Encoding_bit_flip_reg1 = QuantumRegister(1) q_Encoding_bit_flip_reg2 = QuantumRegister(2) qc_Encoding_bit_flip = QuantumCircuit(Qreg1,Qreg2) qc_Encoding_bit_flip.cx(0,1) qc_Encoding_bit_flip.cx(0,2) ### Ciruit to correct the state for the bit-flip code #### qBit_flip_correct_register1 = QuantumRegister(1) qBit_flip_correct_register2 = QuantumRegister(2) cBit_flip_correct_register = ClassicalRegister(2, 'c') qcBit_flip_correct = QuantumCircuit(qBit_flip_correct_register1,qBit_flip_correct_register2,cBit_flip_correct_register) qcBit_flip_correct.barrier() qcBit_flip_correct.cx(0,2) qcBit_flip_correct.cx(0,1) qcBit_flip_correct.barrier() qcBit_flip_correct.measure(qBit_flip_correct_register2,cBit_flip_correct_register) qcBit_flip_correct.x(0).c_if(cBit_flip_correct_register, 3) qcBit_flip_correct.barrier() q_To_Protect1 = QuantumRegister(1, name = 'state_to_protect1') qCorrect_r1 = QuantumRegister(2) qCorrect_regB = QuantumRegister(1) qCorrect_r2 = QuantumRegister(2) qCorrect_regC = QuantumRegister(1) qCorrect_r3 = QuantumRegister(2) rCorrect1 = ClassicalRegister(2, 'c1') rCorrect2 = ClassicalRegister(2, 'c2') rCorrect3 = ClassicalRegister(2, 'c3') registerCorrectBC = ClassicalRegister(2, 'c') q_To_Protect2 = QuantumRegister(1, name = 'state_to_protect2') qregister_test2 = QuantumRegister(2) qbell_test = QuantumCircuit(q_To_Protect1, qCorrect_r1,qCorrect_regB, qCorrect_r2,qCorrect_regC,qCorrect_r3,rCorrect1,rCorrect2,rCorrect3,registerCorrectBC, q_To_Protect2, qregister_test2) qbell_test.h(0) qbell_test.barrier() qbell_test.draw(output='mpl', style=style) shor_encoding(qbell_test) new_qc1 = qbell_test.compose(qc_Encoding_bit_flip,[9,10,11]) new_qc1.draw(output='mpl', style=style) new_qc1.barrier() new_qc1.x(0) new_qc1.z(9) new_qc2 = new_qc1.compose(qcBit_flip_correct,[9,10,11]) shor_correct(new_qc2,q_To_Protect1, qCorrect_r1,qCorrect_regB, qCorrect_r2,qCorrect_regC,qCorrect_r3,rCorrect1,rCorrect2,rCorrect3,registerCorrectBC) new_qc2.barrier() new_qc2.cx(0,9) new_qc2.draw(output='mpl', style=style, fold= 42) out_vector8 = execute(new_qc2,backend_statevector).result().get_statevector() reduced_state1 = partial_trace(out_vector8 , [1,2,3,4,5,6,7,8,10,11]) plot_state_qsphere(reduced_state1) q_To_Protect1_ZX = QuantumRegister(1, name = 'state_to_protect1') qCorrect_r1_ZX = QuantumRegister(2) qCorrect_regB_ZX = QuantumRegister(1) qCorrect_r2_ZX = QuantumRegister(2) qCorrect_regC_ZX = QuantumRegister(1) qCorrect_r3_ZX = QuantumRegister(2) rCorrect1_ZX = ClassicalRegister(2, 'c1') rCorrect2_ZX = ClassicalRegister(2, 'c2') rCorrect3_ZX = ClassicalRegister(2, 'c3') registerCorrectBC_ZX = ClassicalRegister(2, 'c') q_To_Protect2_ZX = QuantumRegister(1, name = 'state_to_protect2') qregister_test2_ZX = QuantumRegister(2) qbell_test_ZX = QuantumCircuit(q_To_Protect1_ZX, qCorrect_r1_ZX,qCorrect_regB_ZX, qCorrect_r2_ZX,qCorrect_regC_ZX,qCorrect_r3_ZX,rCorrect1_ZX,rCorrect2_ZX,rCorrect3_ZX,registerCorrectBC_ZX, q_To_Protect2_ZX, qregister_test2_ZX) qbell_test_ZX.h(0) qbell_test_ZX.barrier() shor_encoding(qbell_test_ZX) new_qc1_ZX = qbell_test_ZX.compose(qc_Encoding_bit_flip,[9,10,11]) #### Error gates ###### new_qc1_ZX.barrier() new_qc1_ZX.z(0) new_qc1_ZX.x(9) new_qc2_ZX = new_qc1_ZX.compose(qcBit_flip_correct,[9,10,11]) shor_correct(new_qc2_ZX,q_To_Protect1_ZX , qCorrect_r1_ZX ,qCorrect_regB_ZX, qCorrect_r2_ZX,qCorrect_regC_ZX,qCorrect_r3_ZX,rCorrect1_ZX,rCorrect2_ZX,rCorrect3_ZX,registerCorrectBC_ZX) new_qc2_ZX.barrier() new_qc2_ZX.cx(0,9) new_qc2_ZX.draw(output='mpl', style=style, fold= 42) out_vector8 = execute(new_qc2,backend_statevector).result().get_statevector() reduced_state1 = partial_trace(out_vector8 , [1,2,3,4,5,6,7,8,10,11]) plot_state_qsphere(reduced_state1) q_To_Protect1_YX = QuantumRegister(1, name = 'state_to_protect1') qCorrect_r1_YX = QuantumRegister(2) qCorrect_regB_YX = QuantumRegister(1) qCorrect_r2_YX = QuantumRegister(2) qCorrect_regC_YX = QuantumRegister(1) qCorrect_r3_YX = QuantumRegister(2) rCorrect1_YX = ClassicalRegister(2, 'c1') rCorrect2_YX = ClassicalRegister(2, 'c2') rCorrect3_YX = ClassicalRegister(2, 'c3') registerCorrectBC_YX = ClassicalRegister(2, 'c') q_To_Protect2_YX = QuantumRegister(1, name = 'state_to_protect2') qregister_test2_YX = QuantumRegister(2) qbell_test_YX = QuantumCircuit(q_To_Protect1_YX, qCorrect_r1_YX,qCorrect_regB_YX, qCorrect_r2_YX,qCorrect_regC_YX,qCorrect_r3_YX,rCorrect1_YX,rCorrect2_YX,rCorrect3_YX,registerCorrectBC_YX, q_To_Protect2_YX, qregister_test2_YX) qbell_test_YX.h(0) qbell_test_YX.barrier() qbell_test_YX.draw(output='mpl', style=style) shor_encoding(qbell_test_YX) new_qc1_YX = qbell_test_YX.compose(qc_Encoding_bit_flip,[9,10,11]) #### Error gates ###### new_qc1_YX.barrier() new_qc1_YX.y(0) new_qc1_YX.x(9) new_qc2_YX = new_qc1_YX.compose(qcBit_flip_correct,[9,10,11]) shor_correct(new_qc2_YX,q_To_Protect1_YX , qCorrect_r1_YX ,qCorrect_regB_YX, qCorrect_r2_YX,qCorrect_regC_YX,qCorrect_r3_YX,rCorrect1_YX,rCorrect2_YX,rCorrect3_YX,registerCorrectBC_YX) new_qc2_YX.barrier() new_qc2_YX.cx(0,9) new_qc2_YX.draw(output='mpl', style=style, fold= 42) out_vector9 = execute(new_qc2_YX,backend_statevector).result().get_statevector() reduced_state2 = partial_trace(out_vector9 , [1,2,3,4,5,6,7,8,10,11]) plot_state_qsphere(reduced_state2) def random_error_gate(qcirc): if gate_errorX() == ['X']: ### Bit-flip in the qubit 0 ##### qcirc.x(0) elif gate_errorX() == ['Z']: ### phase-flip in the qubit 0 ##### qcirc.z(0) else: qcirc.i(0) if gate_errorX() == ['X']: ### Bit-flip in the qubit 9 ##### qcirc.x(9) elif gate_errorX() == ['Z']: ### phase-flip in the qubit 9 ##### qcirc.z(9) else: qcirc.i(9) return qcirc q_To_Protect1_Random = QuantumRegister(1, name = 'state_to_protect1') qCorrect_r1_Random = QuantumRegister(2) qCorrect_regB_Random = QuantumRegister(1) qCorrect_r2_Random = QuantumRegister(2) qCorrect_regC_Random = QuantumRegister(1) qCorrect_r3_Random = QuantumRegister(2) rCorrect1_Random = ClassicalRegister(2, 'c1') rCorrect2_Random = ClassicalRegister(2, 'c2') rCorrect3_Random = ClassicalRegister(2, 'c3') registerCorrectBC_Random = ClassicalRegister(2, 'c') q_To_Protect2_Random = QuantumRegister(1, name = 'state_to_protect2') qregister_test2_Random = QuantumRegister(2) qbell_test_Random = QuantumCircuit(q_To_Protect1_Random, qCorrect_r1_Random,qCorrect_regB_Random, qCorrect_r2_Random,qCorrect_regC_Random,qCorrect_r3_Random,rCorrect1_Random,rCorrect2_Random,rCorrect3_Random,registerCorrectBC_Random, q_To_Protect2_Random, qregister_test2_Random) qbell_test_Random.h(0) qbell_test_Random.barrier() shor_encoding(qbell_test_Random) new_qc1_Random = qbell_test_Random.compose(qc_Encoding_bit_flip,[9,10,11]) #### Error gates ###### new_qc1_Random.barrier() random_error_gate(new_qc1_Random) ################################ new_qc2_Random = new_qc1_Random.compose(qcBit_flip_correct,[9,10,11]) shor_correct(new_qc2_Random,q_To_Protect1_Random , qCorrect_r1_Random ,qCorrect_regB_Random, qCorrect_r2_Random,qCorrect_regC_Random,qCorrect_r3_Random,rCorrect1_Random,rCorrect2_Random,rCorrect3_Random,registerCorrectBC_Random) new_qc2_Random.barrier() new_qc2_Random.cx(0,9) new_qc2_Random.draw(output='mpl', style=style, fold= 42) out_vector10 = execute(new_qc2_Random,backend_statevector).result().get_statevector() reduced_state3 = partial_trace(out_vector10 , [1,2,3,4,5,6,7,8,10,11]) plot_state_qsphere(reduced_state3)
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
import qutip as qt # I use QuTip for the tensor and trace function import numpy as np H = qt.Qobj(np.matrix([[1.0 , 0.0 , 0.0 , 0.0 ] ,[0.0 , 0.0 ,-1.0 , 0.0 ] ,[0.0 ,-1.0 , 0.0 , 0.0 ] ,[0.0 , 0.0 , 0.0 , 1.0 ]])) H Id = qt.qeye(2); Sx = qt.sigmax(); Sy = qt.sigmay(); Sz = qt.sigmaz(); Pauli = [Id,Sx,Sy,Sz] PauliLabels = ['Id' , 'Sx' , 'Sy' , 'Sz'] aij = 0; for i in range(4): for j in range(4): PauliTensor = qt.Qobj(qt.tensor(Pauli[i], Pauli[j]).data.toarray(),dims=[[4],[4]]) # Tensor product of the pauli matrices (sigma_i (tensor) sigma_j), dims[[4],[4]] equal to dimens of H aij = 0.25*( (PauliTensor*H ).tr()) #Elements of the descomposition label1 = PauliLabels[i] #Label i to print label2 = PauliLabels[j] #Label j to print if aij!= 0: print(aij, '*', label1, '(tensor)', label2 ) # Print the descomposition of the matrix Id_tensor_Id = qt.tensor(Pauli[0], Pauli[0]) sx_tensor_sx = qt.tensor(Pauli[1], Pauli[1]) sy_tensor_sy = qt.tensor(Pauli[2], Pauli[2]) sz_tensor_sz = qt.tensor(Pauli[3], Pauli[3]) H_descomposition = 0.5*Id_tensor_Id - 0.5*sx_tensor_sx - 0.5*sy_tensor_sy + 0.5*sz_tensor_sz H_descomposition_Dim = qt.Qobj(H_descomposition.data.toarray(),dims=[[4],[4]]) H_descomposition_Dim from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram import matplotlib.pyplot as plt def ansatz(circuit,angle): circuit.h(0); circuit.id(1) #Apply (H \otimes I) |00> circuit.cx(0,1) #Apply (CX) circuit.rx(angle, 0); circuit.id(1) #Apply (Rx \otimes I) return circuit ansatzCircuit = QuantumCircuit(2) ansatzCircuit = ansatz(ansatzCircuit,np.pi/4) ansatzCircuit.draw() def zz_meas(angle): qc = QuantumCircuit(2) # qc is the quantum register of the qubits, in this case 2 qubits qc = ansatz(qc,angle) qc.measure_all() return qc zz = zz_meas(np.pi/4) zz.draw() def yy_meas(angle): qc = QuantumCircuit(2) # qc is the quantum register of the qubits, in this case 2 qubits qc = ansatz(qc,angle) qc.barrier() qc.h(0); qc.h(1) #Apply (H \otimes H) |00> qc.sdg(0); qc.sdg(1) #Apply (S^{\dagger} \otimes S^{\dagger}) qc.measure_all() return qc yy = yy_meas(np.pi/4) yy.draw() def xx_meas(angle): qc = QuantumCircuit(2) # qc is the quantum register of the qubits, in this case 2 qubits qc = ansatz(qc,angle) qc.barrier() qc.h(0); qc.h(1) #Apply (H \otimes H) |00> qc.measure_all() return qc xx = xx_meas(np.pi/4) xx.draw() def expectation(qcGiven): simulator = Aer.get_backend('qasm_simulator') #Simulator for the measures result = execute(qcGiven, backend = simulator, shots=10000).result() # Execute the quantum circuit (qcGiven) 10000 times counts = result.get_counts(qcGiven) #Count the results # 'if' for the times that there are not measure in the state [3] if '00' not in counts: counts['00'] = 0 if '01' not in counts: counts['01'] = 0 if '10' not in counts: counts['10'] = 0 if '11' not in counts: counts['11'] = 0 total_counts = counts['00'] + counts['11'] + counts['01'] + counts['10'] zzCounts = counts['00'] + counts['11'] - counts['01'] - counts['10'] zzCounts = zzCounts / total_counts #plot_histogram(counts) return zzCounts E = []; # List where the estimations of the eigenvalue will be stored anglelist = np.linspace(0.0,2*np.pi,200) # Parameter \theta for the minimization def Eigenvalue_Approx(xx,yy,zz): xx_value = expectation(xx) yy_value = expectation(yy) zz_value = expectation(zz) EigenValue = 0.5 - (0.5)*xx_value - (0.5)*yy_value + (0.5)*zz_value # Estimate the expectation value of the matriz H return EigenValue for theta in anglelist: xx = xx_meas(theta) yy = yy_meas(theta) zz = zz_meas(theta) E.append(Eigenvalue_Approx(xx,yy,zz)) plt.figure(figsize = (10,4)) plt.plot(anglelist,E , linewidth=5) plt.grid() plt.xlabel(r'$\theta$', fontsize = 22) plt.ylabel(r'$<{\psi(\theta)} | H |{\psi(\theta)} >$' , fontsize = 20) plt.yticks(fontsize = 16) plt.xticks([0.0, np.pi/4, np.pi/2, 3*np.pi/4 , np.pi, 5*np.pi/4 , 3*np.pi/2, 7*np.pi/4 , 2*np.pi], [r'$0$', r'$\pi/4$', r'$\pi/2$', r'$3\pi/4$', r'$\pi$', r'$5\pi/4$', r'$3\pi/2$' , r'$7\pi/4$', r'$2\pi$' ], fontsize = 16) plt.show() MimimumEigenvalue = np.amin(E) print('The estimated minimum eigenvalue of the matrix H from VQE algorithm is: {}'.format(MimimumEigenvalue)) evalsH, eketsH =H.eigenstates() MimimumEigenvalue_Exact = np.amin(evalsH) print('The exact minimum eigenvalue of the matrix H is: {}'.format(MimimumEigenvalue_Exact)) evalsH evalsH[0]
https://github.com/victor-onofre/Quantum_Algorithms
victor-onofre
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer import math from qiskit.visualization import plot_histogram backend = BasicAer.get_backend('statevector_simulator') from wordcloud import WordCloud import numpy as np import pandas as pd # primary data structure library import matplotlib.pyplot as plt reg = QuantumRegister(8, name='reg') # The quantum register of the qubits, in this case 8 qubits reg_c = ClassicalRegister(8, name='regc') # Where the measurements of the qubits will be saved qc = QuantumCircuit(reg, reg_c) qc.h(reg) # Apply Hadamard gate to put it into a superposition of 0 and 1 all the qubits qc.measure(reg, reg_c) # read the result as a digital bit job = execute(qc, backend) # Execute the circuit in the statevector_simulator result = job.result() outputstate = result.get_statevector(qc, decimals=5) counts = result.get_counts(qc) #print(outputstate) qc.draw() state, value = list(counts.items())[0] # key is de state of the system after the measuremnt, for example '11100001' state number = int(state, 2) # The state is converted into a number ASCII_Character = chr(number) # The number in ASCII character print('The random number is:',number) print('The random ASCII character:',ASCII_Character) def Quantum_random_number_and_ASCII_Character_generator(n): reg = QuantumRegister(n, name='reg') # The quantum register of the n qubits reg_c = ClassicalRegister(n, name='regc')# Where the measurements of the qubits will be saved qc = QuantumCircuit(reg, reg_c) qc.h(reg) # put it into a superposition of 0 and 1 qc.measure(reg, reg_c) # read the result as a digital bit job = execute(qc, backend) result = job.result() counts = result.get_counts(qc) key, value = list(counts.items())[0] number = int(key, 2) ASCII_Character = chr(number) return ASCII_Character, number Quantum_random_number_and_ASCII_Character_generator(8)[0] # Resturns the ASCII Character Quantum_random_number_and_ASCII_Character_generator(8)[1] # Resturns the Random number L = [] num = [] counter = [] for x in range(800): string = Quantum_random_number_and_ASCII_Character_generator(8)[0] # ASCII_Character number = Quantum_random_number_and_ASCII_Character_generator(8)[1] # Random_number L.append(string) # Save the ASCII_Character in a the list "L" num.append(number) # Save the Random_number in a the list "number" counter.append(x) # Convert the list to a dataframe df1 = pd.DataFrame(counter, columns=['Counter']) df2 = pd.DataFrame(L, columns=['Random_Character']) df3 = pd.DataFrame(num, columns=['Random_Number']) #Join the results in a dataframe re = df1.join(df2) Quantum_Random = re.join(df3) Quantum_Random.head() Quantum_Random.plot(x='Counter', y='Random_Number', figsize=(25,6.5), xlabel='Iteration', ylabel='Randon Number', legend = False, grid = True, fontsize = 14) Quantum_Random['Random_Number'].describe() #generate the word cloud wordcloud = WordCloud(background_color='white').generate(' '.join(Quantum_Random['Random_Character'])) # display the word cloud fig = plt.figure() fig.set_figwidth(14) fig.set_figheight(18) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show()
https://github.com/abhilash1910/EuroPython-21-QuantumDeepLearning
abhilash1910
!pip install pennylane %load_ext tensorboard import pennylane as qml from pennylane import numpy as np from pennylane.templates import RandomLayers import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import os from datetime import datetime %tensorboard --logdir logs/scalars/ tensorboard_callback = keras.callbacks.TensorBoard( log_dir= "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S"), histogram_freq=0, write_graph=True, write_grads=True ) n_epochs = 30 # Number of optimization epochs n_layers = 1 # Number of random layers n_train = 50 # Size of the train dataset n_test = 30 # Size of the test dataset SAVE_PATH = "quanvolution/" # Data saving folder PREPROCESS = True # If False, skip quantum processing and load data from SAVE_PATH np.random.seed(0) # Seed for NumPy random number generator tf.random.set_seed(0) # Seed for TensorFlow random number generator mnist_dataset = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist_dataset.load_data() # Reduce dataset size train_images = train_images[:n_train] train_labels = train_labels[:n_train] test_images = test_images[:n_test] test_labels = test_labels[:n_test] # Normalize pixel values within 0 and 1 train_images = train_images / 255 test_images = test_images / 255 # Add extra dimension for convolution channels train_images = np.array(train_images[..., tf.newaxis], requires_grad=False) test_images = np.array(test_images[..., tf.newaxis], requires_grad=False) dev = qml.device("default.qubit", wires=4) # Random circuit parameters rand_params = np.random.uniform(high=2 * np.pi, size=(n_layers, 4)) @qml.qnode(dev) def circuit(phi): # Encoding of 4 classical input values for j in range(4): qml.RY(np.pi * phi[j], wires=j) # Random quantum circuit RandomLayers(rand_params, wires=list(range(4))) # Measurement producing 4 classical output values return [qml.expval(qml.PauliZ(j)) for j in range(4)] def quanv(image): """Convolves the input image with many applications of the same quantum circuit.""" out = np.zeros((14, 14, 4)) # Loop over the coordinates of the top-left pixel of 2X2 squares for j in range(0, 28, 2): for k in range(0, 28, 2): # Process a squared 2x2 region of the image with a quantum circuit q_results = circuit( [ image[j, k, 0], image[j, k + 1, 0], image[j + 1, k, 0], image[j + 1, k + 1, 0] ] ) # Assign expectation values to different channels of the output pixel (j/2, k/2) for c in range(4): out[j // 2, k // 2, c] = q_results[c] return out if PREPROCESS == True: q_train_images = [] print("Quantum pre-processing of train images:") for idx, img in enumerate(train_images): print("{}/{} ".format(idx + 1, n_train), end="\r") q_train_images.append(quanv(img)) q_train_images = np.asarray(q_train_images) q_test_images = [] print("\nQuantum pre-processing of test images:") for idx, img in enumerate(test_images): print("{}/{} ".format(idx + 1, n_test), end="\r") q_test_images.append(quanv(img)) q_test_images = np.asarray(q_test_images) # Save pre-processed images if (os.path.exists(SAVE_PATH))==False: os.makedirs(SAVE_PATH) np.save(SAVE_PATH + "q_train_images.npy", q_train_images) np.save(SAVE_PATH + "q_test_images.npy", q_test_images) # Load pre-processed images q_train_images = np.load(SAVE_PATH + "q_train_images.npy") q_test_images = np.load(SAVE_PATH + "q_test_images.npy") n_samples = 4 n_channels = 4 def plotter(): fig, axes = plt.subplots(1 + n_channels, n_samples, figsize=(10, 10)) for k in range(n_samples): axes[0, 0].set_ylabel("Input") if k != 0: axes[0, k].yaxis.set_visible(False) axes[0, k].imshow(train_images[k, :, :, 0], cmap="gray") # Plot all output channels for c in range(n_channels): axes[c + 1, 0].set_ylabel("Output [ch. {}]".format(c)) if k != 0: axes[c, k].yaxis.set_visible(False) axes[c + 1, k].imshow(q_train_images[k, :, :, c], cmap="gray") plt.tight_layout() plt.show() plotter() def Model(): """Initializes and returns a custom Keras model which is ready to be trained.""" model = keras.models.Sequential([ keras.layers.Conv2D(32,(3,3),activation='relu'), keras.layers.Flatten(), keras.layers.Dense(12), keras.layers.Dense(10, activation="softmax") ]) model.compile( optimizer='adam', loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model q_model = Model() q_history = q_model.fit( q_train_images, train_labels, validation_data=(q_test_images, test_labels), batch_size=4, epochs=n_epochs, verbose=2,callbacks=[tensorboard_callback] ) c_model = Model() c_history = c_model.fit( train_images, train_labels, validation_data=(test_images, test_labels), batch_size=4, epochs=n_epochs, verbose=2,callbacks=[tensorboard_callback] ) print(q_model.summary()) print(c_model.summary()) def plot_model(model,filename): tf.keras.utils.plot_model(model, to_file=filename, show_shapes=False, show_dtype=False,show_layer_names=True, rankdir='TB', expand_nested=False, dpi=96) plot_model(q_model,'QConv.png') plot_model(c_model,'CConv.png')
https://github.com/abhilash1910/EuroPython-21-QuantumDeepLearning
abhilash1910
!pip install pennylane # example of training a gan on mnist from numpy import expand_dims from numpy import zeros from numpy import ones from numpy import vstack from numpy.random import randn from numpy.random import randint import tensorflow as tf from keras.datasets.mnist import load_data from keras.optimizers import Adam from keras.models import Sequential from keras.layers import Dense from keras.layers import Reshape from keras.layers import Flatten from keras.layers import Conv2D from keras.layers import Conv2DTranspose from keras.layers import LeakyReLU from keras.layers import Dropout from matplotlib import pyplot import pennylane as qml import numpy as np num_wires=5 dev = qml.device('default.qubit', wires=5) # variables phi = [np.pi] * 12 for i in range(len(phi)): phi[i] = phi[i] / np.random.randint(2, 12) num_epochs = 30 eps = 1 initial_generator_weights = np.array([np.pi] + [0] * 44) + np.random.normal(scale=eps, size=(45,)) initial_discriminator_weights = np.random.normal(scale=eps, size=(35,)) generator_weights = tf.Variable(initial_generator_weights) discriminator_weights = tf.Variable(initial_discriminator_weights) opt = tf.keras.optimizers.Adam(0.4) def real_data(phi, **kwargs): # phi is a list with length 12 qml.Hadamard(wires=0) qml.CNOT(wires=[0,1]) qml.RX(phi[0], wires=0) qml.RY(phi[1], wires=0) qml.RZ(phi[2], wires=0) qml.RX(phi[3], wires=0) qml.RY(phi[4], wires=0) qml.RZ(phi[5], wires=0) qml.CNOT(wires=[0, 1]) qml.RX(phi[6], wires=1) qml.RY(phi[7], wires=1) qml.RZ(phi[8], wires=1) qml.RX(phi[9], wires=1) qml.RY(phi[10], wires=1) qml.RZ(phi[11], wires=1) # the discriminator acts on wires 0, 1, and 4 def discriminator_layer(w, **kwargs): qml.RX(w[0], wires=0) qml.RX(w[1], wires=1) qml.RX(w[2], wires=4) qml.RZ(w[3], wires=0) qml.RZ(w[4], wires=1) qml.RZ(w[5], wires=4) qml.MultiRZ(w[6], wires=[0, 1]) qml.MultiRZ(w[7], wires=[1, 4]) def discriminator(w, **kwargs): qml.Hadamard(wires=0) qml.CNOT(wires=[0,1]) discriminator_layer(w[:8]) discriminator_layer(w[8:16]) discriminator_layer(w[16:32]) qml.RX(w[32], wires=4) qml.RY(w[33], wires=4) qml.RZ(w[34], wires=4) def generator_layer(w): qml.RX(w[0], wires=0) qml.RX(w[1], wires=1) qml.RX(w[2], wires=2) qml.RX(w[3], wires=3) qml.RZ(w[4], wires=0) qml.RZ(w[5], wires=1) qml.RZ(w[6], wires=2) qml.RZ(w[7], wires=3) qml.MultiRZ(w[8], wires=[0, 1]) qml.MultiRZ(w[9], wires=[2, 3]) qml.MultiRZ(w[10], wires=[1, 2]) def generator(w, **kwargs): qml.Hadamard(wires=0) qml.CNOT(wires=[0,1]) generator_layer(w[:11]) generator_layer(w[11:22]) generator_layer(w[22:33]) # includes w[22], doesnt include w[33] qml.RX(w[33], wires=0) qml.RY(w[34], wires=0) qml.RZ(w[35], wires=0) qml.RX(w[36], wires=1) qml.RY(w[37], wires=1) qml.RZ(w[38], wires=1) qml.CNOT(wires=[0, 1]) qml.RX(w[39], wires=0) qml.RY(w[40], wires=0) qml.RZ(w[41], wires=0) qml.RX(w[42], wires=1) qml.RY(w[43], wires=1) qml.RZ(w[44], wires=1) @qml.qnode(dev, interface='tf') def real_discriminator(phi, discriminator_weights): real_data(phi) discriminator(discriminator_weights) return qml.expval(qml.PauliZ(4)) @qml.qnode(dev, interface='tf') def generator_discriminator(generator_weights, discriminator_weights): generator(generator_weights) discriminator(discriminator_weights) return qml.expval(qml.PauliZ(4)) def probability_real_real(discriminator_weights): # probability of guessing real data as real discriminator_output = real_discriminator(phi, discriminator_weights) # the output of the discriminator classifying the data as real probability_real_real = (discriminator_output + 1) / 2 return probability_real_real def probability_fake_real(generator_weights, discriminator_weights): # probability of guessing real fake as real # incorrect classification discriminator_output = generator_discriminator(generator_weights, discriminator_weights) probability_fake_real = (discriminator_output + 1) / 2 return probability_fake_real def discriminator_cost(discriminator_weights): accuracy = probability_real_real(discriminator_weights) - probability_fake_real(generator_weights, discriminator_weights) # accuracy = correct classification - incorrect classification cost = -accuracy return cost def generator_cost(generator_weights): accuracy = probability_fake_real(generator_weights, discriminator_weights) # accuracy = probability that the generator fools the discriminator cost = -accuracy return cost def train_discriminator(): for epoch in range(num_epochs): cost = lambda: discriminator_cost(discriminator_weights) # you need lambda because discriminator weights is a tensorflow object opt.minimize(cost, discriminator_weights) if epoch % 5 == 0: cost_val = discriminator_cost(discriminator_weights).numpy() print('Epoch {}/{}, Cost: {}, Probability class real as real: {}'.format(epoch, num_epochs, cost_val, probability_real_real(discriminator_weights).numpy())) if epoch == num_epochs - 1: print('\n') def train_generator(): for epoch in range(num_epochs): cost = lambda: generator_cost(generator_weights) opt.minimize(cost, generator_weights) if epoch % 5 == 0: cost_val = generator_cost(generator_weights).numpy() print('Epoch {}/{}, Cost: {}, Probability class fake as real: {}'.format(epoch, num_epochs, cost_val, probability_fake_real(generator_weights, discriminator_weights).numpy())) if epoch == num_epochs - 1: print('\n') train_discriminator() train_generator()
https://github.com/abhilash1910/EuroPython-21-QuantumDeepLearning
abhilash1910
!pip install pennylane !pip install qiskit import pennylane as qml from pennylane.templates import AmplitudeEmbedding,BasisEmbedding,AngleEmbedding import tensorflow as tf from tensorflow import keras device = qml.device('default.qubit', wires=2) @qml.qnode(device) def amplitude_circuit(inputs=None): AmplitudeEmbedding(features=inputs, wires=range(2),normalize=True,pad_with=0.) return qml.expval(qml.PauliZ(0)) @qml.qnode(device) def basis_circuit(inputs=None): BasisEmbedding(features=inputs, wires=range(2)) return qml.expval(qml.PauliZ(0)) @qml.qnode(device) def angle_circuit(inputs=None): AngleEmbedding(features=inputs, wires=range(2)) return qml.expval(qml.PauliZ(0)) inputs=[0.05,0.43] z_a=amplitude_circuit(inputs) z_an=angle_circuit(inputs) print(f"Amplitude Embeddings: {z_a}") print(f"Amplitude Embeddings: {z_an}") from qiskit.visualization import plot_bloch_vector %matplotlib inline rot_1=[0,0,z_a] rot_2=[0,0,z_an] print("Bloch sphere for Amplitude Embedding") plot_bloch_vector([rot_1], title="Bloch Sphere") print("Bloch sphere for Angle Embedding") plot_bloch_vector([rot_2], title="Bloch Sphere") print("For Basis Embeddings, we need to encode n binary features to a basis state of n qubits.") input_basis=[1,0] z_b=basis_circuit(input_basis) print(z_b) print("Bloch sphere for Basis Embedding") plot_bloch_vector([0,0,z_b], title="Bloch Sphere") import tensorflow as tf from tensorflow import keras import os from datetime import datetime (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() assert x_train.shape == (60000, 28, 28) assert x_test.shape == (10000, 28, 28) assert y_train.shape == (60000,) assert y_test.shape == (10000,) %load_ext tensorboard %tensorboard --logdir logs/scalars/ tensorboard_callback = keras.callbacks.TensorBoard( log_dir= "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S"), histogram_freq=0, write_graph=True, write_grads=True ) '''Cerate 2 qubit node circuit with angle embedding and entangled layers''' n_qubits = 2 @qml.qnode(device) def qnode(inputs, weights): qml.templates.AngleEmbedding(inputs, wires=range(n_qubits)) qml.templates.BasicEntanglerLayers(weights, wires=range(n_qubits)) return [qml.expval(qml.PauliZ(wires=i)) for i in range(n_qubits)] def create_CQC_model(x_train,y_train,x_test,y_test): '''Convert the q node circuit into a keras layer with a weight mapping''' n_layers = 6 weight_shapes = {"weights": (n_layers, n_qubits)} qlayer = qml.qnn.KerasLayer(qnode, weight_shapes, output_dim=n_qubits) '''Initial layers for flattening the Image inputs and compress the features to pass it through the 2-bit node ''' clayer_0 = tf.keras.layers.Flatten(input_shape=(28,28)) clayer_1=tf.keras.layers.Dense(2) '''Terminal layer with softmax activation for classification''' clayer_2 = tf.keras.layers.Dense(10, activation="softmax") model = tf.keras.models.Sequential([clayer_0,clayer_1,qlayer, clayer_2]) opt = tf.keras.optimizers.SGD(learning_rate=0.2) model.compile(opt, loss="mae", metrics=["accuracy"]) model.fit(x_train,y_train,batch_size=128,epochs=10,verbose=2,validation_data=(x_test,y_test),callbacks=[tensorboard_callback]) model.summary() '''Testing circuit on a small batch ''' x_train_n,y_train_n,x_test_n,y_test_n=x_train[:1000],y_train[:1000],x_test[:1000],y_test[:1000] create_CQC_model(x_train_n,y_train_n,x_test_n,y_test_n) import random %load_ext tensorboard %tensorboard --logdir logs/scalars/ tensorboard_callback = keras.callbacks.TensorBoard( log_dir= "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S"), histogram_freq=0, write_graph=True, write_grads=True ) n_qubits = 9 n_layer_steps = 3 n_layers_to_add = 2 batch_size = 128 epochs = 5 device = qml.device("default.qubit", wires=n_qubits) def random_gates(n_qubits): gates = [qml.RX, qml.RY, qml.RZ] chosen_gates = [] for i in range(n_qubits): chosen_gate = random.choice(gates) chosen_gates.append(chosen_gate) return chosen_gates def apply_layer(gates, weights): for i in range(n_qubits): gates[i](weights[i], wires = i) for i in range(n_qubits-1): qml.CZ(wires=[i, i+1]) def apply_frozen_layers(frozen_layer_gates, frozen_layer_weights): for i in range(len(frozen_layer_gates)): apply_layer(frozen_layer_gates[i], frozen_layer_weights[i]) @qml.qnode(device,interface='tf') def qnode(inputs,weights): layer_gates = [] layer_weights = [] AngleEmbedding(inputs, wires=range(n_qubits)) # Apply frozen layers new_gates = [random_gates(n_qubits) for i in range(n_layers_to_add)] apply_frozen_layers(layer_gates, layer_weights) # Apply layers with trainable parameters for i in range(n_layers_to_add): apply_layer(new_gates[i], weights[i]) # Expectation value of the last qubit return [qml.expval(qml.PauliZ(wires=i)) for i in range(n_qubits)] def create_CQC_frozen_model(x_train,y_train): '''Convert the q node circuit into a keras layer with a weight mapping''' # n_layers_to_add = 10 # Define shape of the weights weight_shapes = {"weights": (n_layers_to_add, n_qubits)} qlayer = qml.qnn.KerasLayer(qnode, weight_shapes,output_dim=n_qubits) '''Initial layers for flattening the Image inputs and compress the features to pass it through the 2-bit node ''' clayer_0 = tf.keras.layers.Flatten(input_shape=(28,28)) clayer_1=tf.keras.layers.Dense(2) '''Terminal layer with softmax activation for classification''' clayer_2 = tf.keras.layers.Dense(2, activation="sigmoid") model = tf.keras.models.Sequential([clayer_0,clayer_1,qlayer, clayer_2]) opt = tf.keras.optimizers.SGD(learning_rate=0.2) model.compile(opt, loss="mae", metrics=["accuracy"]) print(model.summary()) model.fit(x_train,y_train,batch_size=128,epochs=10,verbose=2,callbacks=[tensorboard_callback]) model.summary() '''Testing circuit on a small batch ''' #x_train_n,y_train_n,x_test_n,y_test_n=x_train[:1000],y_train[:1000],x_test[:1000],y_test[:1000] create_CQC_frozen_model(modif_x_train,modif_y_train) import numpy as np import tensorflow as tf from tensorflow import keras import os from datetime import datetime (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() assert x_train.shape == (60000, 28, 28) assert x_test.shape == (10000, 28, 28) assert y_train.shape == (60000,) assert y_test.shape == (10000,) modif_x_train=[] modif_y_train=[] for i in range(len(y_train)): if y_train[i]==4: modif_y_train.append(0) modif_x_train.append(x_train[i]) elif y_train[i]==8: modif_y_train.append(0) modif_x_train.append(x_train[i]) modif_x_train,modif_y_train=np.asarray(modif_x_train),np.asarray(modif_y_train) modif_x_train.shape,modif_y_train.shape,y_train.shape,x_train.shape
https://github.com/abhilash1910/EuroPython-21-QuantumDeepLearning
abhilash1910
!pip install qiskit !pip install pennylane import pennylane as qml from pennylane import numpy as np #Create a basic default Quantum circuit #First , create a device to use the qubits def create_device(): return qml.device("default.qubit",wires=1) dev=create_device() #Create an instance of Qnode() class which takes as parameters: the device name @qml.qnode(dev) def create_circuit(inputs): qml.RX(inputs[0],wires=0) qml.RY(inputs[1],wires=0) #qml.CNOT(wires=[0,1]) return qml.expval(qml.PauliZ(0))#,qml.expval(qml.PauliZ(1)) d_circuit=qml.grad(create_circuit,argnum=0) #Create a cost function to optimize def cost_function(x): return create_circuit(x) #Creating an optimizer for gradient descent def optimize(inputs): grad_list=[] opt=qml.AdagradOptimizer(stepsize=0.6,eps=1e-8) steps=100 for i in range(steps): inputs=opt.step(cost_function,inputs) if (i + 1) % 5 == 0: print("Cost after step {:5d}: {: .7f}".format(i + 1, cost_function(inputs))) grad_list.append(cost_function(inputs)) print("Optimized rotation angles: {}".format(inputs)) return inputs,grad_list inp=[0.011,0.012] print("Cost Function values") print(create_circuit(inp)) print(cost_function(inp)) print("Computing Adagrad Gradients") inputs = np.array([0.011, 0.012]) angles,point=optimize(inputs) print("Finalized gradients") print(point[-1]) from qiskit.visualization import plot_bloch_vector %matplotlib inline rot_x=[0,0,point[-1]] plot_bloch_vector(rot_x, title="Bloch Sphere") dev = qml.device('default.qubit.tf', wires=["a","b"]) @qml.qnode(dev) def dual_circuit(a): qml.Hadamard("a") qml.RX(a[0], wires=["a"]) qml.RY(a[1],wires=["b"]) return qml.expval(qml.PauliZ(0) @ qml.PauliZ(1)) def cost_fun(x): return dual_circuit(x) def plotter(circuit): return qml.draw(circuit) print("Input states to the Circuit") inputs=[0.011,0.012] print("Results after convergence") results=optimize(inputs) print("Drawing the circuit") drawer=plotter(dual_circuit) print(drawer(inputs))
https://github.com/abhilash1910/EuroPython-21-QuantumDeepLearning
abhilash1910
!pip install pennylane !pip install qiskit import pennylane as qml from pennylane import numpy as np import tensorflow as tf import matplotlib.pyplot as plt device=qml.device("default.qubit",wires=2) @qml.qnode(device,interface='tf') def create_circuit(inputs): qml.RX(inputs[0],wires=0) qml.RY(inputs[1],wires=1) qml.CNOT(wires=[0, 1]) return qml.expval(qml.PauliZ(0)) # return qml.expval(qml.PauliZ(0)@qml.PauliZ(1)) @tf.function def cost_function(x,step): val=-(-1)**(step//100) #delta=tf.abs(tf.square(create_circuit(x)-val)) delta= tf.reduce_mean(tf.square(create_circuit(x)-val)) return delta def initialize_tensor(angle_1,angle_2): tensors=[] phi=tf.Variable(angle_1) theta=tf.Variable(angle_2) tensors.append(phi) tensors.append(theta) return tensors def optimize_circuit(tensors,steps): g0,g1,g2,g3=[],[],[],[] opt = tf.keras.optimizers.SGD(learning_rate=0.1) for i in range(steps): with tf.GradientTape() as tape: loss=cost_function(tensors,i) grads=tape.gradient(loss,tensors) opt.apply_gradients(zip(grads, tensors)) g0.append(grads[0].numpy()[0]) g1.append(grads[0].numpy()[1]) g2.append(grads[1].numpy()[0]) g3.append(grads[1].numpy()[1]) if (i+1)%5==0: print(f"Gradients after {i} iterations:") print(f"Gradient 1:{grads[0]} ,Gradient 2:{grads[1]} For the provided input tensor") plt.plot(g0) #plt.plot(g1) plt.plot(g2) #plt.plot(g3) plt.show() return g0,g1,g2,g3 phi=[0.05,0.87] theta=[0.43,0.034] tf_tensors=initialize_tensor(phi,theta) conj_angles=[phi,theta] #create_circuit(conj_angles) steps=200 g0,g1,g2,g3=optimize_circuit(tf_tensors,steps) from qiskit.visualization import plot_bloch_vector %matplotlib inline final_anglex=g0[-1] final_angley=g1[-1] final_anglex1=g2[-1] final_angley1=g3[-1] rot_1=[final_anglex,final_angley,0] rot_2=[final_anglex1,final_angley1,0] plot_bloch_vector([rot_1], title="Bloch Sphere")
https://github.com/abhilash1910/EuroPython-21-QuantumDeepLearning
abhilash1910
# This cell is added by sphinx-gallery # It can be customized to whatever you like %matplotlib inline !pip install pennylane import pennylane as qml from matplotlib import pyplot as plt import numpy as np import scipy import networkx as nx import copy qubit_number = 4 qubits = range(qubit_number) ising_graph = nx.cycle_graph(qubit_number) print(f"Edges: {ising_graph.edges}") nx.draw(ising_graph) target_weights = [0.56, 1.24, 1.67, -0.79] target_bias = [-1.44, -1.43, 1.18, -0.93] def create_hamiltonian_matrix(n_qubits, graph, weights, bias): full_matrix = np.zeros((2 ** n_qubits, 2 ** n_qubits)) # Creates the interaction component of the Hamiltonian for i, edge in enumerate(graph.edges): interaction_term = 1 for qubit in range(0, n_qubits): if qubit in edge: interaction_term = np.kron(interaction_term, qml.PauliZ.matrix) else: interaction_term = np.kron(interaction_term, np.identity(2)) full_matrix += weights[i] * interaction_term # Creates the bias components of the matrix for i in range(0, n_qubits): z_term = x_term = 1 for j in range(0, n_qubits): if j == i: z_term = np.kron(z_term, qml.PauliZ.matrix) x_term = np.kron(x_term, qml.PauliX.matrix) else: z_term = np.kron(z_term, np.identity(2)) x_term = np.kron(x_term, np.identity(2)) full_matrix += bias[i] * z_term + x_term return full_matrix # Prints a visual representation of the Hamiltonian matrix ham_matrix = create_hamiltonian_matrix(qubit_number, ising_graph, target_weights, target_bias) plt.matshow(ham_matrix, cmap="hot") plt.show() low_energy_state = [ (-0.054661080280306085 + 0.016713907320174026j), (0.12290003656489545 - 0.03758500591109822j), (0.3649337966440005 - 0.11158863596657455j), (-0.8205175732627094 + 0.25093231967092877j), (0.010369790825776609 - 0.0031706387262686003j), (-0.02331544978544721 + 0.007129899300113728j), (-0.06923183949694546 + 0.0211684344103713j), (0.15566094863283836 - 0.04760201916285508j), (0.014520590919500158 - 0.004441887836078486j), (-0.032648113364535575 + 0.009988590222879195j), (-0.09694382811137187 + 0.02965579457620536j), (0.21796861485652747 - 0.06668776658411019j), (-0.0027547112135013247 + 0.0008426289322652901j), (0.006193695872468649 - 0.0018948418969390599j), (0.018391279795405405 - 0.005625722994009138j), (-0.041350974715649635 + 0.012650711602265649j), ] res = np.vdot(low_energy_state, (ham_matrix @ low_energy_state)) energy_exp = np.real_if_close(res) print(f"Energy Expectation: {energy_exp}") ground_state_energy = np.real_if_close(min(np.linalg.eig(ham_matrix)[0])) print(f"Ground State Energy: {ground_state_energy}") def state_evolve(hamiltonian, qubits, time): U = scipy.linalg.expm(-1j * hamiltonian * time) qml.QubitUnitary(U, wires=qubits) def qgrnn_layer(weights, bias, qubits, graph, trotter_step): # Applies a layer of RZZ gates (based on a graph) for i, edge in enumerate(graph.edges): qml.MultiRZ(2 * weights[i] * trotter_step, wires=(edge[0], edge[1])) # Applies a layer of RZ gates for i, qubit in enumerate(qubits): qml.RZ(2 * bias[i] * trotter_step, wires=qubit) # Applies a layer of RX gates for qubit in qubits: qml.RX(2 * trotter_step, wires=qubit) def swap_test(control, register1, register2): qml.Hadamard(wires=control) for reg1_qubit, reg2_qubit in zip(register1, register2): qml.CSWAP(wires=(control, reg1_qubit, reg2_qubit)) qml.Hadamard(wires=control) # Defines some fixed values reg1 = tuple(range(qubit_number)) # First qubit register reg2 = tuple(range(qubit_number, 2 * qubit_number)) # Second qubit register control = 2 * qubit_number # Index of control qubit trotter_step = 0.01 # Trotter step size # Defines the interaction graph for the new qubit system new_ising_graph = nx.complete_graph(reg2) print(f"Edges: {new_ising_graph.edges}") nx.draw(new_ising_graph) def qgrnn(weights, bias, time=None): # Prepares the low energy state in the two registers qml.QubitStateVector(np.kron(low_energy_state, low_energy_state), wires=reg1 + reg2) # Evolves the first qubit register with the time-evolution circuit to # prepare a piece of quantum data state_evolve(ham_matrix, reg1, time) # Applies the QGRNN layers to the second qubit register depth = time / trotter_step # P = t/Delta for _ in range(0, int(depth)): qgrnn_layer(weights, bias, reg2, new_ising_graph, trotter_step) # Applies the SWAP test between the registers swap_test(control, reg1, reg2) # Returns the results of the SWAP test return qml.expval(qml.PauliZ(control)) N = 15 # The number of pieces of quantum data that are used for each step max_time = 0.1 # The maximum value of time that can be used for quantum data rng = np.random.default_rng(seed=42) def cost_function(weight_params, bias_params): # Randomly samples times at which the QGRNN runs times_sampled = rng.random(size=N) * max_time # Cycles through each of the sampled times and calculates the cost total_cost = 0 for dt in times_sampled: result = qgrnn_qnode(weight_params, bias_params, time=dt) total_cost += -1 * result return total_cost / N # Defines the new device qgrnn_dev = qml.device("default.qubit", wires=2 * qubit_number + 1) # Defines the new QNode qgrnn_qnode = qml.QNode(qgrnn, qgrnn_dev) steps = 20 optimizer = qml.AdamOptimizer(stepsize=0.5) weights = rng.random(size=len(new_ising_graph.edges)) - 0.5 bias = rng.random(size=qubit_number) - 0.5 initial_weights = copy.copy(weights) initial_bias = copy.copy(bias) for i in range(0, steps): (weights, bias), cost = optimizer.step_and_cost(cost_function, weights, bias) # Prints the value of the cost function if i % 5 == 0: print(f"Cost at Step {i}: {cost}") print(f"Weights at Step {i}: {weights}") print(f"Bias at Step {i}: {bias}") print("---------------------------------------------") new_ham_matrix = create_hamiltonian_matrix( qubit_number, nx.complete_graph(qubit_number), weights, bias ) init_ham = create_hamiltonian_matrix( qubit_number, nx.complete_graph(qubit_number), initial_weights, initial_bias ) fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(6, 6)) axes[0].matshow(ham_matrix, vmin=-7, vmax=7, cmap="hot") axes[0].set_title("Target", y=1.13) axes[1].matshow(init_ham, vmin=-7, vmax=7, cmap="hot") axes[1].set_title("Initial", y=1.13) axes[2].matshow(new_ham_matrix, vmin=-7, vmax=7, cmap="hot") axes[2].set_title("Learned", y=1.13) plt.subplots_adjust(wspace=0.3, hspace=0.3) plt.show() # We first pick out the weights of edges (1, 3) and (2, 0) # and then remove them from the list of target parameters weights_noedge = [] weights_edge = [] for ii, edge in enumerate(new_ising_graph.edges): if (edge[0] - qubit_number, edge[1] - qubit_number) in ising_graph.edges: weights_edge.append(weights[ii]) else: weights_noedge.append(weights[ii]) print("Target parameters Learned parameters") print("Weights") print("-" * 41) for ii_target, ii_learned in zip(target_weights, weights_edge): print(f"{ii_target : <20}|{ii_learned : >20}") print("\nBias") print("-"*41) for ii_target, ii_learned in zip(target_bias, bias): print(f"{ii_target : <20}|{ii_learned : >20}") print(f"\nNon-Existing Edge Parameters: {[val.unwrap() for val in weights_noedge]}")
https://github.com/abhilash1910/EuroPython-21-QuantumDeepLearning
abhilash1910
!apt-get install -y xvfb python-opengl > /dev/null 2>&1 !pip install gym pyvirtualdisplay > /dev/null 2>&1 !pip install pennylane !pip install pyvirtualdisplay #PPO-A2C for CartPole import gym import numpy as np import tensorflow as tf from tensorflow import keras from datetime import datetime from keras.models import Sequential from keras.layers import Dense, Reshape, Flatten from keras.optimizers import Adam from keras.layers.convolutional import Convolution2D import matplotlib.pyplot as plt from IPython import display as ipythondisplay from pyvirtualdisplay import Display from keras import backend as k import pennylane as qml from pennylane.templates import AmplitudeEmbedding,BasisEmbedding,AngleEmbedding import random %load_ext tensorboard %tensorboard --logdir logs/scalars/ log_dir= "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard( log_dir= "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S"), histogram_freq=0, write_graph=True, write_grads=True ) train_names = ['train_loss'] display = Display(visible=0, size=(400, 300)) display.start() n_qubits = 9 n_layer_steps = 3 n_layers_to_add = 2 batch_size = 128 epochs = 5 device = qml.device("default.qubit", wires=n_qubits) def random_gates(n_qubits): gates = [qml.RX, qml.RY, qml.RZ] chosen_gates = [] for i in range(n_qubits): chosen_gate = random.choice(gates) chosen_gates.append(chosen_gate) return chosen_gates def apply_layer(gates, weights): for i in range(n_qubits): gates[i](weights[i], wires = i) for i in range(n_qubits-1): qml.CZ(wires=[i, i+1]) def apply_frozen_layers(frozen_layer_gates, frozen_layer_weights): for i in range(len(frozen_layer_gates)): apply_layer(frozen_layer_gates[i], frozen_layer_weights[i]) @qml.qnode(device,interface='tf') def qnode(inputs,weights): layer_gates = [] layer_weights = [] AngleEmbedding(inputs, wires=range(n_qubits)) # Apply frozen layers new_gates = [random_gates(n_qubits) for i in range(n_layers_to_add)] apply_frozen_layers(layer_gates, layer_weights) # Apply layers with trainable parameters for i in range(n_layers_to_add): apply_layer(new_gates[i], weights[i]) # Expectation value of the last qubit return [qml.expval(qml.PauliZ(wires=i)) for i in range(n_qubits)] def write_log(callback, names, logs, batch_no): writer = tf.summary.create_file_writer(log_dir) with writer.as_default(): for step in range(batch_no): tf.summary.scalar(names[0], logs, step=step) writer.flush() # summary = tf.Summary() # summary_value = summary.value.add() # summary_value.simple_value = logs # summary_value.tag = names # callback.writer.add_summary(summary, batch_no) # callback.writer.flush() class PPOAgent: def __init__(self,state_size,action_size): self.state_size=state_size self.action_size=action_size self.gamma=0.99 self.learning_rate=0.001 self.states=[] self.rewards=[] self.labels=[] self.prob=[] self.Actor=self.build_actor_model() self.Critic=self.build_critic_model() self.Critic.summary() def build_actor_model(self): logdir= "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback=keras.callbacks.TensorBoard(log_dir=logdir) weight_shapes = {"weights": (n_layers_to_add, n_qubits)} qlayer = qml.qnn.KerasLayer(qnode, weight_shapes,output_dim=n_qubits) clayer_0= tf.keras.layers.Dense(64,input_dim=self.state_size,activation='relu',kernel_initializer='glorot_uniform') clayer_1= tf.keras.layers.Dense(9,activation='relu',kernel_initializer='glorot_uniform') clayer_2= tf.keras.layers.Dense(64,activation='relu',kernel_initializer='glorot_uniform') clayer_3= tf.keras.layers.Dense(self.action_size,activation='softmax') Actor = tf.keras.models.Sequential([clayer_0,clayer_1,qlayer, clayer_2,clayer_3]) def trpo_ppo_clip_loss(y_true,y_pred): entropy=2e-5 clip_loss=0.2 old_log= k.sum(y_true) print(old_log) pred_log=k.sum(y_pred) print(pred_log) r=pred_log/(old_log + 1e-9) advantage=pred_log-old_log p1=r*advantage p2=k.clip(r,min_value=1-clip_loss,max_value=1+clip_loss)*advantage prob=1e-2 loss=-k.mean(k.minimum(p1,p2) + entropy*(-(prob*k.log(prob+1e-10)))) return loss def trpo_ppo_penalty_loss(y_true,y_pred): entropy=2e-5 clip_loss=0.2 old_log= k.sum(y_true) print(old_log) pred_log=k.sum(y_pred) print(pred_log) r=pred_log/(old_log + 1e-9) kl_divergence= k.sum(old_log* k.log(old_log/pred_log)) advantage=kl_divergence p1=r*advantage p2=k.clip(r,min_value=1-clip_loss,max_value=1+clip_loss)*advantage prob=1e-2 loss=-k.mean(k.minimum(p1,p2) + entropy*(-(prob*k.log(prob+1e-10)))) return loss Actor.compile(optimizer=Adam(learning_rate=self.learning_rate),loss=trpo_ppo_penalty_loss) return Actor def build_critic_model(self): logdir= "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback=keras.callbacks.TensorBoard(log_dir=logdir) Critic=Sequential() Critic.add(Dense(64,input_dim=self.state_size,activation='relu',kernel_initializer='glorot_uniform')) Critic.add(Dense(64,activation='relu',kernel_initializer='glorot_uniform')) Critic.add(Dense(self.action_size,activation='softmax')) Critic.compile(optimizer=Adam(learning_rate=self.learning_rate),loss='categorical_crossentropy') return Critic def memory(self,state,action,prob,reward): y=np.zeros([self.action_size]) y[action]=1 self.labels.append(np.array(y).astype('float32')) self.states.append(state) self.rewards.append(reward) def act(self,state): state=state.reshape([1,state.shape[0]]) probs=self.Critic.predict(state,batch_size=1).flatten() self.prob.append(probs) action=np.random.choice(self.action_size,1,p=probs)[0] return action,probs def discount_rewards(self, rewards): discounted_rewards = np.zeros_like(rewards) running_sum = 0 for t in reversed(range(len(rewards))): if rewards[t] != 0: running_add = 0 running_add = running_add * self.gamma + rewards[t] discounted_rewards[t] = running_add return discounted_rewards def train(self,batch_no): labels=np.vstack(self.labels) rewards=np.vstack(self.rewards) rewards=self.discount_rewards(rewards) rewards=(rewards-np.mean(rewards))/np.std(rewards) labels*=-rewards x=np.squeeze(np.vstack([self.states])) y=np.squeeze(np.vstack([self.labels])) tensorboard_callback.set_model(self.Actor) logs_actor=self.Actor.train_on_batch(x,y) logs_critic=self.Critic.train_on_batch(x,y) write_log(tensorboard_callback, train_names, logs_actor, batch_no) self.states,self.probs,self.labels,self.rewards=[],[],[],[] def load_model(self,name): self.Actor.load_weights(name) self.Critic.load_weights(name) def save_model(self,name): self.Actor.save_weights(name) self.Critic.save_weights(name) self.Critic.save_weights(name) if __name__=="__main__": env=gym.make('CartPole-v0') state=env.reset() score=0 episode=0 state_size=env.observation_space.shape[0] action_size=env.action_space.n agent=PPOAgent(state_size,action_size) j=0 while j is not 2000: screen = env.render(mode='rgb_array') action,prob=agent.act(state) state_1,reward,done,_=env.step(action) score+=reward agent.memory(state,action,prob,reward) state=state_1 plt.imshow(screen) ipythondisplay.clear_output(wait=True) ipythondisplay.display(plt.gcf()) if done: j+=1 agent.rewards[-1]=score agent.train(j) print("Episode: %d - Score: %f."%(j,score)) score=0.0 state=env.reset() env.close()
https://github.com/JavaFXpert/think2020
JavaFXpert
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Create a quantum circuit containing three quantum bits, and three classical bits to hold measurement results. # REPLACE THIS WITH CODE # REPLACE THIS WITH CODE def answer(result): for key in result.keys(): state = key print('The Quantum 8-ball says:') if state == '000': print('It is certain.') elif state == '001': print('Without a doubt.') elif state == '010': print('Yes - definitely.') elif state == '011': print('Most likely.') elif state == '100': print("Don't count on it.") elif state == '101': print('My reply is no.') elif state == '110': print('Very doubtful.') else: print('Concentrate and ask again.') job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1) counts = job.result().get_counts(qc) answer(counts) from qiskit.quantum_info import Statevector # REPLACE THIS WITH CODE THAT USES THE from_instruction() # AND sample_counts() METHODS OF THE Statevector class
https://github.com/JavaFXpert/think2020
JavaFXpert
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Create a quantum circuit containing three quantum bits, and three classical bits to hold measurement results. qc = QuantumCircuit(3, 3) qc.h(0) qc.h(1) qc.h(2) qc.measure(range(3),range(3)) qc.draw() def answer(result): for key in result.keys(): state = key print('The Quantum 8-ball says:') if state == '000': print('It is certain.') elif state == '001': print('Without a doubt.') elif state == '010': print('Yes - definitely.') elif state == '011': print('Most likely.') elif state == '100': print("Don't count on it.") elif state == '101': print('My reply is no.') elif state == '110': print('Very doubtful.') else: print('Concentrate and ask again.') job = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1) counts = job.result().get_counts(qc) answer(counts) from qiskit.quantum_info import Statevector qc = QuantumCircuit(3) qc.h(0) qc.h(1) qc.h(2) sv = Statevector.from_instruction(qc) counts = sv.sample_counts(shots = 1) answer(counts)
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
from qiskit.aqua.algorithms import NumPyMinimumEigensolver from qiskit.optimization.algorithms import GroverOptimizer, MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram from qiskit import BasicAer from docplex.mp.model import Model backend = BasicAer.get_backend('statevector_simulator') model = Model() x0 = model.binary_var(name='x0') x1 = model.binary_var(name='x1') x2 = model.binary_var(name='x2') model.minimize(-x0+2*x1-3*x2-2*x0*x2-1*x1*x2) qp = QuadraticProgram() qp.from_docplex(model) print(qp.export_as_lp_string()) grover_optimizer = GroverOptimizer(6, num_iterations=10, quantum_instance=backend) results = grover_optimizer.solve(qp) print("x={}".format(results.x)) print("fval={}".format(results.fval)) import matplotlib.pyplot as plt import matplotlib.axes as axes %matplotlib inline import numpy as np import networkx as nx from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.optimization.converters import IsingToQuadraticProgram n = 4 num_qubits = n ** 2 ins = tsp.random_tsp(n, seed=123) G = nx.Graph() G.add_nodes_from(np.arange(0, n, 1)) colors = ['r' for node in G.nodes()] pos = {k: v for k, v in enumerate(ins.coord)} default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos) print('distance\n', ins.w) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) qp = QuadraticProgram() qp.from_ising(qubitOp, offset, linear=True) qp.to_docplex().prettyprint() grover_optimizer = GroverOptimizer(6, num_iterations=10, quantum_instance=backend) results = grover_optimizer.solve(qp) print("x={}".format(results.x)) print("fval={}".format(results.fval)) # Test with classical EigenOptimizer from qiskit.aqua.algorithms import NumPyMinimumEigensolver from qiskit.optimization.algorithms import MinimumEigenOptimizer exact_solver = MinimumEigenOptimizer(NumPyMinimumEigensolver()) exact_result = exact_solver.solve(qp)` print("x={}".format(exact_result.x)) print("fval={}".format(exact_result.fval))
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
import numpy as np from qiskit import BasicAer from qiskit.visualization import plot_histogram from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import Grover from qiskit.aqua.components.oracles import LogicalExpressionOracle, TruthTableOracle """ Examples: c This is an example DIMACS CNF file with 3 satisfying assignments: 1 -2 3, -1 -2 -3, 1 2 -3. p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 (¬𝑥1∨¬𝑥2∨¬𝑥3)∧(𝑥1∨¬𝑥2∨𝑥3)∧(𝑥1∨𝑥2∨¬𝑥3)∧(𝑥1∨¬𝑥2∨¬𝑥3)∧(¬𝑥1∨𝑥2∨𝑥3) """ input_3sat = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' oracle = LogicalExpressionOracle(input_3sat) oracle.circuit.draw('mpl') grover = Grover(oracle) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) result = grover.run(quantum_instance) print(result['result']) ## Non deterministic solutions, could be [1,-2,3], [-1, -2, -3], [1,2,-3] plot_histogram(result['measurement']) ## REAL DEVICE LIMITATIONS from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_16_melbourne') from qiskit.compiler import transpile # transpile the circuit for ibmq_16_melbourne grover_compiled = transpile(result['circuit'], backend=backend, optimization_level=3) print('gates = ', grover_compiled.count_ops()) print('depth = ', grover_compiled.depth()) grover_compiled.draw('mpl') from qiskit import execute from qiskit.tools.monitor import job_monitor job_exp = execute(grover_compiled, shots=1024, backend=backend) job_monitor(job_exp) # Get the results from the computation results = job_exp.result() answer = results.get_counts(grover_compiled) plot_histogram(answer) # Too much noise!
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
from qiskit import QuantumRegister, ClassicalRegister, BasicAer import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute,IBMQ from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import NormalDistribution,UniformDistribution,LogNormalDistribution from kaleidoscope import qsphere, probability_distribution #provider = IBMQ.load_account() #backend = provider.get_backend('ibmq_qasm_simulator') backend = BasicAer.get_backend('qasm_simulator') qubits = 5 q = QuantumRegister(qubits,'q') c = ClassicalRegister(qubits,'c') print("\n Normal Distribution") print("-----------------") circuit = QuantumCircuit(q,c) normal = NormalDistribution(num_qubits = qubits, mu=0, sigma=0.1, bounds=([-1,1])) circuit.append(normal, list(range(qubits))) circuit.measure(q,c) job = execute(circuit, backend, shots=8192) job_monitor(job) counts = job.result().get_counts() print(counts) sortedcounts = [] sortedkeys = sorted(counts) for i in sortedkeys: for j in counts: if(i == j): sortedcounts.append(counts.get(j)) plt.suptitle('Normal Distribution') plt.plot(sortedcounts) plt.show() probability_distribution(counts) circuit.decompose().decompose().draw('mpl') print("\n Uniform Distribution") print("-----------------") circuit = QuantumCircuit(q,c) uniform = UniformDistribution(num_qubits = qubits) circuit.append(uniform, list(range(qubits))) circuit.measure(q,c) job = execute(circuit, backend, shots=8192) job_monitor(job) counts = job.result().get_counts() print(counts) sortedcounts = [] sortedkeys = sorted(counts) for i in sortedkeys: for j in counts: if(i == j): sortedcounts.append(counts.get(j)) plt.suptitle('Uniform Distribution') plt.plot(sortedcounts) plt.show() probability_distribution(counts) circuit.decompose().draw('mpl') print("\n Log-Normal Distribution") print("-----------------") circuit = QuantumCircuit(q,c) lognorm = LogNormalDistribution(num_qubits = qubits, mu=0.5, sigma=0.05, bounds=([0,4])) circuit.append(lognorm, list(range(qubits))) circuit.measure(q,c) job = execute(circuit, backend, shots=8192) job_monitor(job) counts = job.result().get_counts() print(counts) sortedcounts = [] sortedkeys = sorted(counts) for i in sortedkeys: for j in counts: if(i == j): sortedcounts.append(counts.get(j)) plt.suptitle('Log-Normal Distribution') plt.plot(sortedcounts) plt.show() probability_distribution(counts) from qiskit.finance.applications import GaussianConditionalIndependenceModel as GCI print("\n Gaussian Conditional Independence Distribution") print("-----------------") # set problem parameters n_z = qubits z_max = qubits #p_zeros = [0.15, 0.25, 0.09, 0.05, 0.01] #rhos = [0.1, 0.05, 0.04, 0.03, 0.01] p_zeros = [0.15, 0.25] rhos = [0.1, 0.05] circuit = GCI(n_z, z_max, p_zeros, rhos) circuit.measure_all() job = execute(circuit, backend, shots=8192) job_monitor(job) counts = job.result().get_counts() print(counts) sortedcounts = [] sortedkeys = sorted(counts) for i in sortedkeys: for j in counts: if(i == j): sortedcounts.append(counts.get(j)) plt.suptitle('Log-Normal Distribution') plt.plot(sortedcounts) plt.show() probability_distribution(counts) from qiskit.aqua.algorithms import AmplitudeEstimation estimation_qubits = 4 ae_lognormal = AmplitudeEstimation(estimation_qubits, state_preparation=lognorm) ae_uniform = AmplitudeEstimation(estimation_qubits, state_preparation=uniform) ae_normal = AmplitudeEstimation(estimation_qubits, state_preparation=normal) result_lognormal = ae_lognormal.run(quantum_instance=BasicAer.get_backend('qasm_simulator')) result_uniform = ae_uniform.run(quantum_instance=BasicAer.get_backend('qasm_simulator')) result_normal = ae_normal.run(quantum_instance=BasicAer.get_backend('qasm_simulator')) # plot estimated values plt.bar(result_uniform['mapped_a_samples'], result_uniform['probabilities'], width=0.5/len(result_uniform['probabilities'])) plt.bar(result_lognormal['mapped_a_samples'], result_lognormal['probabilities'], width=0.5/len(result_lognormal['probabilities'])) #plt.bar(result_normal['mapped_a_samples'], result_normal['probabilities'], width=0.5/len(result_normal['probabilities'])) plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title('Estimated Values', size=15) plt.ylabel('Probability', size=15) plt.ylim((0,1)) plt.grid() plt.show() print(result_lognormal) print(result_uniform) print(result_normal) estimation_qubits = 7 ae_lognormal = AmplitudeEstimation(estimation_qubits, state_preparation=lognorm) result_lognormal = ae_lognormal.run(quantum_instance=BasicAer.get_backend('qasm_simulator')) plt.bar(result_lognormal['mapped_a_samples'], result_lognormal['probabilities'], width=0.5/len(result_lognormal['probabilities'])) plt.title('Estimated Values', size=15) plt.ylabel('Probability', size=15) plt.ylim((0,1)) plt.grid()
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
import pennylane as qml from pennylane import numpy as np graph = [(0, 1), (0, 3), (1, 2), (2, 3), (3, 4), (1, 4), (4, 5)] n_wires = len(graph) # unitary operator U_B with parameter beta def U_B(beta): for wire in range(n_wires): qml.RX(2 * beta, wires=wire) # unitary operator U_C with parameter gamma def U_C(gamma): for edge in graph: wire1 = edge[0] wire2 = edge[1] qml.CNOT(wires=[wire1, wire2]) qml.RZ(gamma, wires=wire2) qml.CNOT(wires=[wire1, wire2]) def comp_basis_measurement(wires): n_wires = len(wires) return qml.Hermitian(np.diag(range(2 ** n_wires)), wires=wires) dev = qml.device("default.qubit", wires=n_wires, analytic=True, shots=1) pauli_z = [[1, 0], [0, -1]] pauli_z_2 = np.kron(pauli_z, pauli_z) @qml.qnode(dev) def circuit(gammas, betas, edge=None, n_layers=1): # apply Hadamards to get the n qubit |+> state for wire in range(n_wires): qml.Hadamard(wires=wire) # p instances of unitary operators for i in range(n_layers): U_C(gammas[i]) U_B(betas[i]) if edge is None: # measurement phase return qml.sample(comp_basis_measurement(range(n_wires))) # during the optimization phase we are evaluating a term # in the objective using expval return qml.expval(qml.Hermitian(pauli_z_2, wires=edge)) def qaoa_maxcut(n_layers=1): print("\np={:d}".format(n_layers)) # initialize the parameters near zero init_params = 0.01 * np.random.rand(2, n_layers) # minimize the negative of the objective function def objective(params): gammas = params[0] betas = params[1] neg_obj = 0 for edge in graph: # objective for the MaxCut problem neg_obj -= 0.5 * (1 - circuit(gammas, betas, edge=edge, n_layers=n_layers)) return neg_obj # initialize optimizer: Adagrad works well empirically opt = qml.AdagradOptimizer(stepsize=0.5) # optimize parameters in objective params = init_params steps = 30 for i in range(steps): params = opt.step(objective, params) if (i + 1) % 5 == 0: print("Objective after step {:5d}: {: .7f}".format(i + 1, -objective(params))) # sample measured bitstrings 100 times bit_strings = [] n_samples = 100 for i in range(0, n_samples): bit_strings.append(int(circuit(params[0], params[1], edge=None, n_layers=n_layers))) # print optimal parameters and most frequently sampled bitstring counts = np.bincount(np.array(bit_strings)) most_freq_bit_string = np.argmax(counts) print("Optimized (gamma, beta) vectors:\n{}".format(params[:, :n_layers])) print("Most frequently sampled bit string is: {:04b}".format(most_freq_bit_string)) return -objective(params), bit_strings # perform qaoa on our graph with p=1,2 and # keep the bitstring sample lists bitstrings1 = qaoa_maxcut(n_layers=1)[1] bitstrings2 = qaoa_maxcut(n_layers=2)[1] bitstrings3 = qaoa_maxcut(n_layers=3)[1] import matplotlib.pyplot as plt xticks = range(0, 16) xtick_labels = list(map(lambda x: format(x, "08b"), xticks)) bins = np.arange(0, 17) - 0.5 fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 4)) plt.subplot(1, 3, 1) plt.title("n_layers=1") plt.xlabel("bitstrings") plt.ylabel("freq.") plt.xticks(xticks, xtick_labels, rotation="vertical") plt.hist(bitstrings1, bins=bins) plt.subplot(1, 3, 2) plt.title("n_layers=2") plt.xlabel("bitstrings") plt.ylabel("freq.") plt.xticks(xticks, xtick_labels, rotation="vertical") plt.hist(bitstrings2, bins=bins) plt.subplot(1, 3, 3) plt.title("n_layers=3") plt.xlabel("bitstrings") plt.ylabel("freq.") plt.xticks(xticks, xtick_labels, rotation="vertical") plt.hist(bitstrings3, bins=bins) plt.tight_layout() plt.show()
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
# importing Qiskit from qiskit import IBMQ, Aer from qiskit import QuantumCircuit, execute jokes = [ "I also have a wavefunction joke but I'm afraid that it will collapse", "I have a unique quantum joke because I am pretty sure it cannot be cloned.", "I have a joke about quantum physics, but nobody gets it - not even me.", "I have a quantum computing joke, but it may have decohered.", "I could tell an entanglement joke, but you already know the second half.", "I have a quantum computing joke, but it may and may not be more funny than a classical computing joke.", "I have a quantum diamond joke but it has a defect.", "I have a quantum entanglement joke, but finding a witness to it is NP-hard.", "I have a quantum computing opinion, but it's just a projection.", "All quantum computing jokes are so entangling", "I have a quantum computing joke, but it’s too nisqué.", "I have a joke about quantum computing, but I’ll tell you when it’s less noisy.", "I'll probably have a quantum computing joke about 30 years from now.", "I won't tell my joke about Quantum Computing, it's a bit cold.", "I have a joke about quantum computing, but it’s not yet error corrected.", "I have a quantum computing joke. Once built it is going to profoundly change the way we do humor.", "It has come to the University’s attention that people really like science jokes. We aim to form a committee in the next 2-3 months made up of selected candidates that will come up with our own, school-approved joke. Please be patient and be on the lookout for our correspondence.", "There’s a 50/50 chance I have a quantum joke.", "I have a quantum computing joke, but it will take you at least from 5 to 15 years to get it." ] qubits = len(bin(len(jokes))[2:]) print("Jokes: %s, Need %s Qubits" % (len(jokes), qubits)) qc = QuantumCircuit(qubits) qc.h(range(qubits)) # TODO: Interfere or remove additional states not in the length of # the solution. I.e. If 8 strings, max binary rep is 1000 qc.measure_all() qc.draw('mpl') # Clasically it will be easier to just repeat the simulation if we get an out of bounds result :) while True: backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1 ) result = job.result().get_counts() joke = int(list(result)[0],2) if (joke - 1 < len(jokes)): break print(jokes[joke-1])
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math # importing Qiskit from qiskit import IBMQ, Aer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.visualization import plot_histogram from qiskit.circuit.library import QFT def qft_dagger(circ, qubits, n): circ.append(QFT(n).inverse(), qubits) # Add UROTx based on CU1 gates def apply_crot(circ, control_qubit, target_qubit, theta, exponent): circ.cu1(2*math.pi*theta*exponent, control_qubit, target_qubit) def prepare_circuit(n, theta): qpe = QuantumCircuit(n+1,n) qpe.x(n) qpe.h(range(n)) for x in range(n): exponent = 2**(n-x-1) apply_crot(qpe, x, n, theta, exponent) qpe.barrier() qft_dagger(qpe, range(n), n) qpe.barrier() for i in range(n): qpe.measure(i,i) return qpe # The idea is that we are able to estimate theta (the angle) thanks to the QFT Dagger. # The more qubits we apply on top, the more accuracy we get. Take a look import operator backend = Aer.get_backend('qasm_simulator') shots = 2048 theta = 0.24125 for qubits in range(2, 15): circuit = prepare_circuit(qubits, theta) results = execute(circuit, backend=backend, shots=shots).result() counts = results.get_counts(circuit) highest_probability_outcome = max(counts.items(), key=operator.itemgetter(1))[0][::-1] measured_theta = int(highest_probability_outcome, 2)/2**qubits print("Using %d qubits with theta = %.6f, measured_theta = %.6f." % (qubits, theta, measured_theta)) ## Look at the lovely circuit circuit.draw('text')
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
import numpy as np from qiskit import IBMQ, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import plot_histogram, plot_state_city from qiskit import Aer, IBMQ def increment_gate(qc, q, qcoin): qc.ccx(qcoin, q[0], q[1]) qc.cx(qcoin, q[0]) return qc def decrement_gate(qc, q, qcoin): qc.x(q) qc.x(qcoin) increment_gate(qc, q, qcoin) qc.x(qcoin) qc.x(q) return qc n = 2 qnodes = QuantumRegister(n,'qc') qcoin = QuantumRegister(1,'qcoin') cnodes = ClassicalRegister(n,'cr') qc = QuantumCircuit(qnodes, qcoin, cnodes) # Apply Coin qc.h(qcoin[0]) # Initial state qc.x(0) increment_gate(qc, qnodes, qcoin) decrement_gate(qc, qnodes, qcoin) qc.measure(qnodes, cnodes) qc.draw('mpl') # Single Shot, just to test! import matplotlib as mpl backend = Aer.get_backend("qasm_simulator") result = execute(qc, backend=backend).result() plot_histogram(result.get_counts()) # Here goes the magic n = 2 qnodes = QuantumRegister(n,'qc') qcoin = QuantumRegister(1,'qcoin') cnodes = ClassicalRegister(n,'cr') qc = QuantumCircuit(qnodes, qcoin, cnodes) steps = 51 def runQWC(qc, steps): for i in range(steps): qc.h(qcoin[0]) increment_gate(qc, qnodes, qcoin) decrement_gate(qc, qnodes, qcoin) qc.measure(qnodes, cnodes) return qc qc = runQWC(qc, steps) backend = Aer.get_backend("qasm_simulator") result = execute(qc, backend=backend).result() plot_histogram(result.get_counts())
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
from qiskit.quantum_info import Operator from qiskit import QuantumCircuit import numpy as np def phase_oracle(n, solutions, name = 'Oracle'): qc = QuantumCircuit(n, name=name) oracle_matrix = np.identity(2**n) for solution in solutions: oracle_matrix[solution, solution] = -1 qc.unitary(Operator(oracle_matrix), range(n)) return qc def diffuser(n): qc = QuantumCircuit(n, name='Diffuser') qc.h(range(n)) qc.append(phase_oracle(n, [0]), range(n)) qc.h(range(n)) return qc def Grover(n, solutions): qc = QuantumCircuit(n, n) r = int(np.floor(np.pi/4*np.sqrt(2**n/len(solutions)))) print(f'{n} qubits, basis states {solutions} marked, {r} rounds') qc.h(range(n)) for _ in range(r): qc.append(phase_oracle(n, solutions), range(n)) qc.append(diffuser(n), range(n)) qc.measure(range(n), range(n)) return qc circuit = Grover(8, [1, 42, 120, 199, 250]) circuit.draw(output='text') from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') counts = execute(circuit, backend=simulator).result().get_counts(circuit) from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
import math import matplotlib.pyplot as plt %matplotlib inline class TSP: def __init__(self): self.flat_mat = flat_mat self.n = 0 self.melhor_dist = 1e11 self.pontos = [] self.melhores_pontos = [] def busca_exaustiva(self, flat_mat, n, ite): if ite == n: dist = 0 for j in range(1, n): dist += flat_mat[self.pontos[j-1] * n + self.pontos[j]] dist += flat_mat[self.pontos[n-1] * n + self.pontos[0]] if dist < self.melhor_dist: self.melhor_dist = dist self.melhores_pontos = self.pontos[:] return for i in range(n): if self.pontos[i] == -1: self.pontos[i] = ite self.busca_exaustiva(flat_mat, n, ite + 1) self.pontos[i] = -1 def dist_mat(self): x = [] y = [] flat_mat = [] #matriz 1 dimensao contendo todas as distancias possiveis entre os pontos para facilitar cálculo. while True: try: temp = input("Digite a coordenada x y: ").split() x.append(float(temp[0])) y.append(float(temp[1])) except: break for i in range(len(x)): for j in range(len(y)): flat_mat.append(math.sqrt((x[i] - x[j])**2 + (y[i] - y[j])**2)) return flat_mat, x, y def get_results(self): self.flat_mat, x, _ = self.dist_mat() self.n = len(x) self.pontos = [-1]*self.n self.pontos[0] = 0 self.busca_exaustiva(self.flat_mat, self.n, 1) return self.melhor_dist, self.melhores_pontos Tsp = TSP() distancia, pontos = Tsp.get_results() print("Melhor distancia encontrada: ", distancia) print("Melhor caminho encontrado: ", pontos) #plota gráfico def connectpoints(x,y,p1,p2): x1, x2 = x[p1], x[p2] y1, y2 = y[p1], y[p2] plt.plot([x1,x2],[y1,y2],'ro-') for i in range(1, len(pontos)): connectpoints(x,y,pontos[i-1],pontos[i]) connectpoints(x,y,pontos[len(x)-1],pontos[0]) plt.title("Percurso") plt.show() %%time %%cmd python TSP.py < in-1.txt type out-1.txt python TSP.py < in-2.txt type out-2.txt python TSP.py < in-3.txt type out-3.txt python TSP.py < in-4.txt type out-4.txt from qiskit import IBMQ import numpy as np #IBMQ.save_account('seu-tokenIBMQ-para-rodar-localmente') IBMQ.load_account() from qiskit import Aer from qiskit.tools.visualization import plot_histogram from qiskit.circuit.library import TwoLocal from qiskit.optimization.applications.ising import max_cut, tsp from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA from qiskit.aqua import aqua_globals from qiskit.aqua import QuantumInstance from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.algorithms import MinimumEigenOptimizer from qiskit.optimization.problems import QuadraticProgram import logging from qiskit.aqua import set_qiskit_aqua_logging #Preparando os dados segundo os imputs do usuario para serem resolvidos pelo qiskit max 4 pontos por limitação de qubits coord = [] flat_mat, x, y = TSP().dist_mat() dist_mat = np.array(flat_mat).reshape(len(x),len(x)) for i, j in zip(x, y): coord.append([i,j]) ins = tsp.TspData('TSP_Q', dim=len(x), coord=np.array(coord), w=dist_mat) qubitOp, offset = tsp.get_operator(ins) print('Offset:', offset) print('Ising Hamiltonian:') print(qubitOp.print_details()) #Usando o numpyMinimumEigensolver como o solver do problema para resolver de forma quantica ee = NumPyMinimumEigensolver(qubitOp) result = ee.run() print('energy:', result.eigenvalue.real) print('tsp objective:', result.eigenvalue.real + offset) x_Q = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w)) for i in range(1, len(z)): connectpoints(x,y,z[i-1],z[i]) connectpoints(x,y,z[len(x)-1],z[0]) plt.title("Percurso") plt.show() #instanciando o simulador ou o computador real importante lembrar que nao ira funcionar para mais de 4 pontos pelo numero de qubits disponibilizados pela IBM que sao apenas 16 para o simulador qasm e 15 para a maquina quantica provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_16_melbourne') aqua_globals.random_seed = np.random.default_rng(123) seed = 10598 backend = Aer.get_backend('qasm_simulator') #descomentar essa linha caso queira rodar na maquina real #backend = device quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed) #rodando no simulador quantico spsa = SPSA(maxiter=10) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, spsa, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print('energy:', result.eigenvalue.real) print('time:', result.optimizer_time) x = sample_most_likely(result.eigenstate) print('feasible:', tsp.tsp_feasible(x_Q)) z = tsp.get_tsp_solution(x_Q) print('solution:', z) print('solution objective:', tsp.tsp_value(z, ins.w))
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
# Playing with models from qiskit.aqua.algorithms import VQC from qiskit.aqua.components.optimizers import SPSA import matplotlib.pyplot as plt import matplotlib.patches as mpatches from qiskit.ml.datasets import ad_hoc_data, wine # Data to play with # ad_hoc_data - returns ad hoc dataset - ad_hoc_data(training_size, test_size, n, gap, plot_data=False) # sample_ad_hoc_data - returns sample ad hoc data # breast_cancer - returns breast cancer dataset # digits - returns digits dataset # gaussian - returns gaussian dataset # iris - returns iris dataset # wine - returns wine dataset - wine(training_size, test_size, n, plot_data=False) _, training_data, test_data, _ = ad_hoc_data(10, 10, 2, 0.2) markers = ['o', '^'] plt.figure(figsize=(12,6)) plt.title('Training (full) and test (hollow) data') for marker, (label, data) in zip(markers, training_data.items()): plt.scatter(data[:,0], data[:,1], color='tab:blue', label=label, s=60, marker=marker) for marker, (label, data) in zip(markers, test_data.items()): plt.scatter(data[:,0], data[:,1], facecolor='', edgecolor='tab:blue', s=60, marker=marker) plt.legend(loc='best'); _, wine_training_data, wine_data, _ = wine(20, 20, 3) markers = ['o', '^'] plt.figure(figsize=(12,6)) plt.title('Training (full) and test (hollow) data') for marker, (label, data) in zip(markers, wine_training_data.items()): plt.scatter(data[:,0], data[:,1], color='tab:blue', label=label, s=60, marker=marker) for marker, (label, data) in zip(markers, wine_data.items()): plt.scatter(data[:,0], data[:,1], facecolor='', edgecolor='tab:blue', s=60, marker=marker) plt.legend(loc='best'); # Choose which trainint data test_data = wine_data training_data = wine_training_data from qiskit.circuit.library.data_preparation import ZZFeatureMap # can also drop .data_preparation data_preparation = ZZFeatureMap(2) data_preparation.draw(output='mpl') from qiskit.circuit.library.n_local import RealAmplitudes # can also drop .n_local classifier = RealAmplitudes(2) classifier.draw(output='mpl') optimizer = SPSA(max_trials=200) vqc = VQC(optimizer, data_preparation, classifier, training_data) from qiskit import Aer from qiskit.aqua import QuantumInstance backend = Aer.get_backend('qasm_simulator') result = vqc.run(backend) print('Loss:', result['training_loss']) points_a = test_data['A'] points_b = test_data['B'] _, predicted_a = vqc.predict(points_a) _, predicted_b = vqc.predict(points_b) print('Score:', sum(predicted_a == 0) + sum(predicted_b == 1), '/', (len(predicted_a) + len(predicted_b))) plt.figure(figsize=(12,6)) plt.title('Correctly predicted') plt.scatter(points_a[:,0], points_a[:,1], s=60, marker='o', color=['tab:green' if label == 0 else 'tab:red' for label in predicted_a]) plt.scatter(points_b[:,0], points_b[:,1], s=60, marker='^', color=['tab:green' if label == 1 else 'tab:red' for label in predicted_b]) for marker, (label, data) in zip(markers, training_data.items()): plt.scatter(data[:,0], data[:,1], color='tab:blue', label=label, s=60, marker=marker) train = mpatches.Patch(color='tab:blue', label='training data') correct = mpatches.Patch(color='tab:green', label='correctly labeled') wrong = mpatches.Patch(color='tab:red', label='wrongly labeled') plt.legend(handles=[train, correct, wrong])
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
import networkx as nx import numpy as np from qiskit import Aer from qiskit.aqua import aqua_globals, QuantumInstance from qiskit.aqua.algorithms import QAOA, VQE, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import SPSA, COBYLA from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.optimization.applications.ising import tsp from qiskit.optimization.converters import IsingToQuadraticProgram from qiskit.optimization.problems import QuadraticProgram from qiskit.optimization.algorithms import MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer from qiskit.circuit.library import TwoLocal def get_graph(nodes): G = nx.Graph() G.add_nodes_from(np.arange(0, nodes, 1)) # Create random positions in the graph. Distance will be calculated from positions # Note: Dwave and other solvers require a complete graph for i in range(nodes): G.nodes[i]['pos'] = (np.random.uniform(0, 10), np.random.uniform(0, 10)) elist = set() for i in range(nodes): for t in range(i + 1,nodes): y1=G.nodes[i]['pos'][1] x1=G.nodes[i]['pos'][0] y2=G.nodes[t]['pos'][1] x2=G.nodes[t]['pos'][0] dist = np.sqrt(((x2-x1)**2)+((y2-y1)**2)) _tuple = (i, t, dist) elist.add(_tuple) # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) return G def get_cost_matrix(G, nodes): w = np.zeros([nodes,nodes]) for i in range(nodes): for j in range(nodes): temp = G.get_edge_data(i,j,default=0) if temp != 0: w[i,j] = temp['weight'] return w def calculate_cost(cost_matrix, solution): cost = 0 for i in range(len(solution)): a = i % len(solution) b = (i + 1) % len(solution) cost += cost_matrix[solution[a]][solution[b]] return cost nodes = 3 starting_node = 0 #### G = get_graph(nodes) cost_matrix = get_cost_matrix(G, nodes) G.nodes[0]['pos'] coords = [] for node in G.nodes: coords.append(G.nodes[node]['pos']) print(G.nodes[node]['pos']) tsp_instance = tsp.TspData(name = "TSP", dim = len(G.nodes), coord = coords, w = cost_matrix) qubitOp, offset = tsp.get_operator(tsp_instance) #print(qubitOp.print_details()) print("Qubits: ",qubitOp.num_qubits) qp = QuadraticProgram() qp.from_ising(qubitOp, offset, linear=True) qp.to_docplex().prettyprint() backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend) optimizer = SPSA(maxiter=400) #optimizer = COBYLA(maxiter=100, rhobeg=2, tol=0.5, disp=True) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cx', reps=3, entanglement='full') vqe = VQE(operator=qubitOp, optimizer=optimizer, quantum_instance=quantum_instance) result = vqe.run(quantum_instance) print(result) x = sample_most_likely(result.eigenstate) print(x) print(tsp.tsp_feasible(x)) if(tsp.tsp_feasible(x)): z = tsp.get_tsp_solution(x) print('solution with VQE:', z) else: print('No solution found with VQE and such parameters') npes = NumPyMinimumEigensolver(qubitOp) result_classical = npes.run() x = sample_most_likely(result_classical.eigenstate) print(x) if(tsp.tsp_feasible(x)): z = tsp.get_tsp_solution(x) print('solution Numpy classical solver:', z) else: print('No solution found with Classical Eigensolver') ## Try now with the optimizer and the Recursive Optimizer backend = quantum_instance = Aer.get_backend('qasm_simulator') optimizer = COBYLA(maxiter=200, rhobeg=3, tol=1.5, disp=True) # MinimumEigenSolvers qaoa_mes = QAOA(quantum_instance = backend, optimizer=optimizer) vqe_mes = VQE(quantum_instance=backend, optimizer=optimizer, operator=qubitOp) exact_mes = NumPyMinimumEigensolver() # Optimizers qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA vqe = MinimumEigenOptimizer(vqe_mes) # using QAOA exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver # We can try using VQE or QAOA for the minimum eigen optimizer and compare results rqaoa = RecursiveMinimumEigenOptimizer(min_eigen_optimizer=vqe, min_num_vars=1, min_num_vars_optimizer=exact) #rqaoa = RecursiveMinimumEigenOptimizer(min_eigen_optimizer=qaoa, min_num_vars=1, min_num_vars_optimizer=exact) exact_result = exact.solve(qp) print("Result Exact QP: ",exact_result.x) if(tsp.tsp_feasible(exact_result.x)): print(tsp.get_tsp_solution(exact_result.x)) qaoa_result = qaoa.solve(qp) print("Result QAOA with QP: ",qaoa_result.x) if(tsp.tsp_feasible(qaoa_result.x)): print(tsp.get_tsp_solution(qaoa_result.x)) vqe_result = vqe.solve(qp) print("Result VQE with QP: ",vqe_result.x) if(tsp.tsp_feasible(vqe_result.x)): print(tsp.get_tsp_solution(vqe_result.x)) rqaoa_result = rqaoa.solve(qp) print("Result RQAOA (withVQE) QP: ",rqaoa_result.x) if(tsp.tsp_feasible(rqaoa_result.x)): print(tsp.get_tsp_solution(rqaoa_result.x)) # Compare with using VQE directly without optimizer. That is why we send qubit operator to the MES result = vqe_mes.run(quantum_instance) x = sample_most_likely(result_classical.eigenstate) print("Result VQE with Operator: ",x) if(tsp.tsp_feasible(x)): print(tsp.get_tsp_solution(x))
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
import numpy as np from qiskit import QuantumCircuit, execute, Aer from qiskit.quantum_info import Statevector import kaleidoscope.qiskit from kaleidoscope import qsphere, probability_distribution # import basic plot tools from qiskit.visualization import plot_histogram, plot_state_qsphere # A Circuit is something as simple as a Qubit with a 0 or a 1. qc = QuantumCircuit(1) state = Statevector.from_instruction(qc) qsphere(state) # Or a 1 qc.x(0) state = Statevector.from_instruction(qc) qsphere(state) # Now we simulate 3 Qubits qc = QuantumCircuit(3) qc.h(range(3)) qc.cz(0,1) state = Statevector.from_instruction(qc) qsphere(state) qc.draw() # Representing 5 Qubits qc2 = QuantumCircuit(5) qc2.h(range(4)) qc2.x(4) qc2.h(4) #qc2.barrier() # "Mark" |11011> qc2.x(2) qc2.mct([0,1,2,3], 4) qc2.x(2) # "Mark" |11110> #qc2.x(0) #qc2.mct([0,1,2,3], 4) #qc2.x(0) qc2.h(4) #qc2.barrier() qc2.draw('mpl') statevector = Statevector.from_instruction(qc2) qsphere(statevector) qc2.measure_all() backend = Aer.get_backend("qasm_simulator") result = execute(qc2, backend=backend, shots=1000).result() probability_distribution(result.get_counts(qc2)) # Very simple circuit explanation qc3 = QuantumCircuit(3) # 1: No Gates qc3.i(range(3)) # 2: Some Gates #qc3.x(0) #qc3.x(1) # 3: X on all gates #qc3.x(range(3)) # 4: Superposition #qc3.x(range(3)) # 5: With some X as well #qc3.h(range(3)) qc3.draw('mpl') statevector = Statevector.from_instruction(qc3) qsphere(statevector) qc3.measure_all() backend = Aer.get_backend("qasm_simulator") result = execute(qc3, backend=backend, shots=1000).result() probability_distribution(result.get_counts(qc3)) ### NEW CIRCUIT WITH 3 QUBITS ### SOLUTIONS: 101 AND 110 def phase_oracle(circuit): circuit.cz(0, 2) circuit.cz(1, 2) def diffuser(circuit): """Apply inversion about the average step of Grover's algorithm.""" qubits = circuit.qubits nqubits = len(qubits) for q in range(nqubits): circuit.h(q) circuit.x(q) # Do controlled-Z circuit.h(2) circuit.ccx(0,1,2) circuit.h(2) for q in range(nqubits): circuit.x(q) circuit.h(q) ## First we create superposition n = 3 grover_circuit = QuantumCircuit(n) grover_circuit.h(range(n)) grover_circuit.barrier() grover_circuit.draw(output="mpl") statevector = Statevector.from_instruction(grover_circuit) qsphere(statevector) # The Quantum Computer "marks" the solutions phase_oracle(grover_circuit) grover_circuit.draw(output="mpl") statevector = Statevector.from_instruction(grover_circuit) qsphere(statevector) # User interference to keep only the solution states grover_circuit.barrier() diffuser(grover_circuit) grover_circuit.draw(output="mpl") statevector = Statevector.from_instruction(grover_circuit) qsphere(statevector) grover_circuit.measure_all() backend = Aer.get_backend('qasm_simulator') results = execute(grover_circuit, backend=backend, shots=1000).result() probability_distribution(results.get_counts(grover_circuit))
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
from sklearn.datasets import make_blobs # example dataset features, labels = make_blobs(n_samples=20, n_features=2, centers=2, random_state=3, shuffle=True) import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler features = MinMaxScaler(feature_range=(0, np.pi)).fit_transform(features) train_features, test_features, train_labels, test_labels = train_test_split( features, labels, train_size=15, shuffle=False ) # number of qubits is equal to the number of features num_qubits = 2 # number of steps performed during the training procedure tau = 100 # regularization parameter C = 1000 from qiskit import BasicAer from qiskit.circuit.library import ZFeatureMap from qiskit.utils import QuantumInstance, algorithm_globals from qiskit_machine_learning.kernels import QuantumKernel algorithm_globals.random_seed = 12345 pegasos_backend = QuantumInstance( BasicAer.get_backend("statevector_simulator"), seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) feature_map = ZFeatureMap(feature_dimension=num_qubits, reps=1) qkernel = QuantumKernel(feature_map=feature_map, quantum_instance=pegasos_backend) from qiskit_machine_learning.algorithms import PegasosQSVC pegasos_qsvc = PegasosQSVC(quantum_kernel=qkernel, C=C, num_steps=tau) # training pegasos_qsvc.fit(train_features, train_labels) # testing pegasos_score = pegasos_qsvc.score(test_features, test_labels) print(f"PegasosQSVC classification test score: {pegasos_score}") grid_step = 0.2 margin = 0.2 grid_x, grid_y = np.meshgrid( np.arange(-margin, np.pi + margin, grid_step), np.arange(-margin, np.pi + margin, grid_step) ) meshgrid_features = np.column_stack((grid_x.ravel(), grid_y.ravel())) meshgrid_colors = pegasos_qsvc.predict(meshgrid_features) import matplotlib.pyplot as plt plt.figure(figsize=(5, 5)) meshgrid_colors = meshgrid_colors.reshape(grid_x.shape) plt.pcolormesh(grid_x, grid_y, meshgrid_colors, cmap="RdBu", shading="auto") plt.scatter( train_features[:, 0][train_labels == 0], train_features[:, 1][train_labels == 0], marker="s", facecolors="w", edgecolors="r", label="A train", ) plt.scatter( train_features[:, 0][train_labels == 1], train_features[:, 1][train_labels == 1], marker="o", facecolors="w", edgecolors="b", label="B train", ) plt.scatter( test_features[:, 0][test_labels == 0], test_features[:, 1][test_labels == 0], marker="s", facecolors="r", edgecolors="r", label="A test", ) plt.scatter( test_features[:, 0][test_labels == 1], test_features[:, 1][test_labels == 1], marker="o", facecolors="b", edgecolors="b", label="B test", ) plt.legend(bbox_to_anchor=(1.05, 1), loc="upper left", borderaxespad=0.0) plt.title("Pegasos Classification") plt.show()
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit import Aer from qiskit.aqua.utils import split_dataset_to_data_and_labels from qiskit.tools.visualization import plot_bloch_multivector from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import QSVM from qiskit.circuit.library import ZZFeatureMap import pandas as pd import numpy as np import matplotlib.pyplot as plt import sklearn from sklearn.svm import SVC from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA Titanic_DF = pd.read_csv('titanic.csv') Titanic_DF = Titanic_DF.drop(['PassengerId','Name','Cabin','Ticket'],axis=1) lb_make = preprocessing.LabelEncoder() Titanic_DF['Sex'] = lb_make.fit_transform(Titanic_DF['Sex']) Titanic_DF['Embarked'] = lb_make.fit_transform(Titanic_DF['Embarked']) le_name_mapping = dict(zip(lb_make.classes_, lb_make.transform(lb_make.classes_))) pd.DataFrame(Titanic_DF).fillna(inplace=True, method='backfill') FeatureNames = [x for x in list(Titanic_DF.columns) if x not in ['Name','Survived']] Data = Titanic_DF[FeatureNames].values Labels = Titanic_DF['Survived'].values Titanic_DF.info() Titanic_DF feature_dim=2 class_labels = [r'0', r'1'] sample_train, sample_test, label_train, label_test = train_test_split(Data, Labels, test_size=0.3, random_state=12) std_scale = StandardScaler().fit(sample_train, label_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) pca = PCA(n_components=feature_dim).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) sample_test def QuantumFormat(sample_train, sample_test, label_train, label_test, training_size, test_size, class_labels): training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_test[label_test == k, :])[:test_size] for k, key in enumerate(class_labels)} return training_input, test_input training_input, test_input = QuantumFormat(sample_train, sample_test, label_train, label_test, 10, 10, class_labels) datapoints, class_to_label = split_dataset_to_data_and_labels(test_input) training_input, test_input # QSVM feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2, entanglement='linear') qsvm = QSVM(feature_map, training_input, test_input, None) backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) result = qsvm.run(quantum_instance) print("kernel matrix during the training:") kernel_matrix = result['kernel_matrix_training'] img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r') plt.show() # Classical SVM svc = SVC(probability=True, gamma='auto') svc.fit(sample_train, label_train) kernel_matrix2=sklearn.metrics.pairwise.rbf_kernel(sample_train, sample_train) img = plt.imshow(np.asmatrix(kernel_matrix2[0:10,0:10]),interpolation='nearest',origin='upper',cmap='bone_r') plt.show() # Error Rate label_predict=svc.predict(sample_test) print('Error rate: ' + str(sum(label_predict==label_test)/len(label_predict)))
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
# Playing with models from qiskit.aqua.algorithms import VQC from qiskit.aqua.components.optimizers import SPSA import matplotlib.pyplot as plt import matplotlib.patches as mpatches from qiskit.ml.datasets import ad_hoc_data, wine # Data to play with # ad_hoc_data - returns ad hoc dataset - ad_hoc_data(training_size, test_size, n, gap, plot_data=False) # sample_ad_hoc_data - returns sample ad hoc data # breast_cancer - returns breast cancer dataset # digits - returns digits dataset # gaussian - returns gaussian dataset # iris - returns iris dataset # wine - returns wine dataset - wine(training_size, test_size, n, plot_data=False) _, training_data, test_data, _ = ad_hoc_data(10, 10, 2, 0.2) markers = ['o', '^'] plt.figure(figsize=(12,6)) plt.title('Training (full) and test (hollow) data') for marker, (label, data) in zip(markers, training_data.items()): plt.scatter(data[:,0], data[:,1], color='tab:blue', label=label, s=60, marker=marker) for marker, (label, data) in zip(markers, test_data.items()): plt.scatter(data[:,0], data[:,1], facecolor='', edgecolor='tab:blue', s=60, marker=marker) plt.legend(loc='best'); _, wine_training_data, wine_data, _ = wine(20, 20, 3) markers = ['o', '^'] plt.figure(figsize=(12,6)) plt.title('Training (full) and test (hollow) data') for marker, (label, data) in zip(markers, wine_training_data.items()): plt.scatter(data[:,0], data[:,1], color='tab:blue', label=label, s=60, marker=marker) for marker, (label, data) in zip(markers, wine_data.items()): plt.scatter(data[:,0], data[:,1], facecolor='', edgecolor='tab:blue', s=60, marker=marker) plt.legend(loc='best'); # Choose which trainint data test_data = wine_data training_data = wine_training_data from qiskit.circuit.library.data_preparation import ZZFeatureMap # can also drop .data_preparation data_preparation = ZZFeatureMap(2) data_preparation.draw(output='mpl') from qiskit.circuit.library.n_local import RealAmplitudes # can also drop .n_local classifier = RealAmplitudes(2) classifier.draw(output='mpl') optimizer = SPSA(max_trials=200) vqc = VQC(optimizer, data_preparation, classifier, training_data) from qiskit import Aer from qiskit.aqua import QuantumInstance backend = Aer.get_backend('qasm_simulator') result = vqc.run(backend) print('Loss:', result['training_loss']) points_a = test_data['A'] points_b = test_data['B'] _, predicted_a = vqc.predict(points_a) _, predicted_b = vqc.predict(points_b) print('Score:', sum(predicted_a == 0) + sum(predicted_b == 1), '/', (len(predicted_a) + len(predicted_b))) plt.figure(figsize=(12,6)) plt.title('Correctly predicted') plt.scatter(points_a[:,0], points_a[:,1], s=60, marker='o', color=['tab:green' if label == 0 else 'tab:red' for label in predicted_a]) plt.scatter(points_b[:,0], points_b[:,1], s=60, marker='^', color=['tab:green' if label == 1 else 'tab:red' for label in predicted_b]) for marker, (label, data) in zip(markers, training_data.items()): plt.scatter(data[:,0], data[:,1], color='tab:blue', label=label, s=60, marker=marker) train = mpatches.Patch(color='tab:blue', label='training data') correct = mpatches.Patch(color='tab:green', label='correctly labeled') wrong = mpatches.Patch(color='tab:red', label='wrongly labeled') plt.legend(handles=[train, correct, wrong])
https://github.com/sergiogh/qpirates-qiskit-notebooks
sergiogh
# Dependencies and initial configuration %pylab inline from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit from qiskit import execute, Aer from qiskit.tools.visualization import plot_histogram from ipywidgets import interact import matplotlib.pyplot as plt import matplotlib.image as mpimg from qiskit.circuit.library.standard_gates import HGate, IGate, XGate def MoveA1(move_A1): global moveA1; moveA1=move_A1; def MoveB1(move_B1): global moveB1; moveB1=move_B1; def MoveA2(move_A2): global moveA2; moveA2=move_A2; def who_wins(counts): if len(counts)==1 : print('The winner is', 'A' if ("0" in counts) else 'B') if ("0" in counts): img = mpimg.imread('card.jpg') else: img = mpimg.imread('card_reverse.jpg') imgplot = plt.imshow(img) plt.axis('off') plt.show() else: count0=counts["0"] count1=counts["1"] print('The coin is in superposition of |0⟩ and |1⟩') print('A wins with probability', "%.1f%%" % (100.*count0/(count0+count1))) print('B wins with probability', "%.1f%%" % (100.*count1/(count0+count1))) return() def build_circuit(): q = QuantumRegister(1, name="coin") # create a quantum register with one qubit c = ClassicalRegister(1) qc = QuantumCircuit(q, c) # creates the quantum circuit h = HGate(label='MAGIC') i = IGate(label='Do Nothing') x = XGate(label='Flip') # 1. move of A if moveA1 == 0 : qc.append(i, [0]) #qc.i(q[0]) elif moveA1 == 1 : qc.append(x, [0]) #qc.x(q[0]) elif moveA1 == 2 : qc.append(h, [0]) #.h(q[0]) # 1. move of B if moveB1 == 0 : qc.append(i, [0]) elif moveB1 == 1 : qc.append(x, [0]) # 2. move of A if moveA2 == 0 : qc.append(i, [0]) elif moveA2 == 1 : qc.append(x, [0]) elif moveA2 == 2 : qc.append(h, [0]) qc.measure(q, c) # Measure the qubits return qc interact(MoveA1, move_A1={'Not Flip':0,'Flip':1}); interact(MoveB1, move_B1={'Not Flip':0,'Flip':1}); interact(MoveA2, move_A2={'Not Flip':0,'Flip':1}); # The Quantum Circuit qc = build_circuit() qc.draw('mpl') # execute the quantum circiut (coin moves) and identify the winner backend = Aer.get_backend('qasm_simulator') # define the backend job = execute(qc, backend, shots=200) # run the job simulation result = job.result() # grab the result counts = result.get_counts(qc) # results for the number of runs #print(counts); # print the results of the runs who_wins(counts); # celebrate the winner interact(MoveB1, move_B1={'Not Flip':0,'Flip':1}); # Quantum Computer uses Superposition! (2 is a "Hadamard Gate") MoveA1(2) MoveA2(2) qc = build_circuit() qc.draw('mpl') # execute the quantum circiut (coin moves) and identify the winner backend = Aer.get_backend('qasm_simulator') # define the backend job = execute(qc, backend, shots=200) # run the job simulation result = job.result() # grab the result counts = result.get_counts(qc) # results for the number of runs print(counts); # print the results of the runs who_wins(counts); # celebrate the winner plot_histogram(counts) # Visualise the results from qiskit.providers.aer.noise import NoiseModel, thermal_relaxation_error noise_model = NoiseModel() T1 = 0.001 T2 = 0.002 error = 0.001 thermal_error = thermal_relaxation_error(T1, T2, error) noise_model.add_quantum_error(thermal_error, "MAGIC", [0]) job = execute(qc, backend, shots=200, noise_model=noise_model) # run the job simulation result = job.result() # grab the result counts = result.get_counts(qc) # results for the number of runs print(counts); # print the results of the runs who_wins(counts); # celebrate the winner plot_histogram(counts) # Visualise the results
https://github.com/FerjaniMY/Quantum_Steganography
FerjaniMY
from qiskit import * import numpy as np import matplotlib.pyplot as plt from qiskit.visualization import plot_histogram # Creating registers with n qubits n =7 # for a local backend n can go as up as 23, after that it raises a Memory Error qr = QuantumRegister(n, name='qr') cr = ClassicalRegister(n, name='cr') qc = QuantumCircuit(qr, cr, name='QC') """ qr2 = QuantumRegister(n, name='qr') cr2= ClassicalRegister(n, name='cr') qc2 = QuantumCircuit(qr2, cr2, name='QC') for i in range(n): qc2.h(i) qc2.measure(qr2,cr2) qc2.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') execute(qc2, backend = simulator) result = execute(qc2, backend = simulator).result() k=list(result.get_counts(qc2))[0] print(k) """ # Generate a random number in the range of available qubits [0,65536)) alice_key = np.random.randint(0,2**n)# we can remplace it by a key from a quantum key generator alice_key = np.binary_repr(alice_key,n) print(alice_key) for i in range(len(alice_key)): if alice_key[i]=='1': qc.x(qr[i]) B=[] for i in range(len(alice_key)): if 0.5 < np.random.random(): qc.h(qr[i]) B.append("H") else: B.append("S") pass qc.barrier() print("Alice Basis",B) %config InlineBackend.figure_format = 'svg' qc.draw(output='mpl') C=[] for i in range(len(alice_key)): if 0.5 < np.random.random(): qc.h(qr[i]) C.append("H") else: C.append("S") qc.barrier() for i in range(len(alice_key)): qc.measure(qr[i],cr[i]) print("Bob Basis",C) qc.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') execute(qc, backend = simulator) result = execute(qc, backend = simulator).result() print("Bob key :",list(result.get_counts(qc))[0]) print("Bob Basis",C) print("Alice key :",alice_key) print("Alice Basis :",B) def sifted_key(A_basis,B_basis,key): correct_basis=[] sifted_key='' for i in range(len(A_basis)): if A_basis[i]==B_basis[i]: correct_basis.append(i) sifted_key+=key[i] else: pass return sifted_key,correct_basis a=sifted_key(B,C,alice_key) print("sifted key",a[0]) print("Basis",a[1]) BB84_key=a[0] def wordToBV(s) : #convert text to binar a_byte_array = bytearray(s, "utf8") byte_list = [] for byte in a_byte_array: binary_representation = bin(byte) byte_list.append(binary_representation[9-n:]) #chop off the "0b" at the beginning. can also truncate the binary to fit on a device with N qubits #binary has 2 extra digits for "0b", so it starts at 9 for our 7 bit operation. print(byte_list) circuit_array = [] length = len(byte_list) for i in range(length): s = byte_list[i] #do all this stuff for every letter # We need a circuit with n qubits, plus one ancilla qubit # Also need n classical bits to write the output to bv_circuit = QuantumCircuit(n+1, n) # put ancilla in state |-> bv_circuit.h(n) bv_circuit.z(n) # Apply Hadamard gates before querying the oracle for i in range(n): bv_circuit.h(i) # Apply barrier bv_circuit.barrier() # Apply the inner-product oracle s = s[::-1] # reverse s to fit qiskit's qubit ordering for q in range(n): if s[q] == '0': bv_circuit.i(q) else: bv_circuit.cx(q, n) # Apply barrier bv_circuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(n): bv_circuit.h(i) # Measurement for i in range(n): bv_circuit.measure(i, i) circuit_array.append(bv_circuit) return circuit_array circuit_to_run = wordToBV('Qiskit')#Secret Msg circuit_to_run[0].draw(output='mpl') backend = BasicAer.get_backend('qasm_simulator') shots = 4096 results = execute(circuit_to_run[::-1], backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) def encrypt(BB84_key, letter): """Calculates XOR""" b = int(BB84_key, 2) x = ord(letter) return format(b ^ x, "b") def stega_encoder(LM, carrier_msg): """Encodes LM bits message into carrier_msg""" message = "" size = len(LM[0]) i = 0 for j, bitstring in enumerate(LM): for k, digit in enumerate(bitstring): while (not carrier_msg[i].isalpha()): message += carrier_msg[i] i += 1 if digit == "1": letter = carrier_msg[i].upper() message += letter else: message += carrier_msg[i] i += 1 if i < len(carrier_msg): message += carrier_msg[i:] return message def stega_decoder(new_carrier_msg, BB84_key): """Decodes secret message from new_carrier_msg""" b = int(BB84_key, 2) message = "" bitstring = "" for char in new_carrier_msg: if char.isalpha(): if char.isupper(): bitstring += "1" else: bitstring += "0" if len(bitstring) == 7: x = int(bitstring, 2) message += chr(b ^ x) bitstring = "" return message a = chr(1110100) str(a) encrypt(BB84_key,'q') secret_msg='qiskit' L=[] for c in secret_msg: L.append(encrypt(BB84_key,c)) carrier_msg='aaaa aaa aaa aaaa aaaaaaa aaaaaaa aaaaaaa aaabaaa' new_carrier_msg=stega_encoder(L, carrier_msg) new_carrier_msg stega_decoder(new_carrier_msg, BB84_key)
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
from hmmlearn import hmm samples = 10*[[0], [1], [1], [1], [1], [2], [2], [0], [1], [1], [1], [0], [2]] model = hmm.MultinomialHMM(n_components=4) model.fit(samples) model.emissionprob_ model.transmat_
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from datetime import datetime from typing import List, Union, Optional, Callable import numpy as np import qiskit import scipy from qiskit.circuit import Parameter from qiskit.providers.ibmq import IBMQBackend from qiskit.transpiler import PassManager from scipy import sparse from dc_quantum_scheduling import PreparedExperiment from . import get_default_pass_manager from .dsp_common import apply_level, apply_initial, x_measurement, y_measurement from .dsp_independent import index_independent_prep from .dsp_util import create_qobj, extract_evaluations from .qiskit_util import qasm_simulator LOG = logging.getLogger(__name__) class DiscreteStochasticProcess(object): realizations: np.array probabilities: np.array initial_value: float def __init__(self, initial_value: float, probabilities: np.ndarray, realizations: np.ndarray): self.initial_value = initial_value self.probabilities = probabilities self.realizations = realizations @staticmethod def _get_circuit_name(scaling: float) -> str: return f'dsp_simulation({scaling})' @staticmethod def _get_circuit_name_cos(scaling: float) -> str: return f'{DiscreteStochasticProcess._get_circuit_name(scaling)}_cosine' @staticmethod def _get_circuit_name_sin(scaling: float) -> str: return f'{DiscreteStochasticProcess._get_circuit_name(scaling)}_sine' def _proposition_one_circuit(self, scaling: Parameter, level_func=None, index_state_prep=None, with_barrier=False, **kwargs): # per default we use the standard Moettoennen level function level_func = apply_level if level_func is None else level_func # per default we use the independent index state preparation (also Moettoennen) index_state_prep = index_independent_prep if index_state_prep is None else index_state_prep LOG.debug(f"Data: initial value={self.initial_value}, " f"probabilities={list(self.probabilities)}, realizations={list(self.realizations)}," f"applied function={level_func.__name__}.") qc = qiskit.QuantumCircuit() LOG.debug(f"Initializing with {self.initial_value} and scaling {scaling}.") init_qc = apply_initial(self.initial_value, scaling) qc.extend(init_qc) if with_barrier: qc.barrier() for level, (p, r) in enumerate(zip(self.probabilities, self.realizations)): LOG.debug(f"Adding level {level}: {p} with {r} and scaling {scaling}.") qc_index = index_state_prep(level, p, **kwargs) qc_level_l = level_func(level, r, scaling, **kwargs) qc.extend(qc_index) if with_barrier: qc.barrier() qc.extend(qc_level_l) if with_barrier: qc.barrier() return qc def expval_cos_circuit(self, scaling: Parameter, level_func=None, index_state_prep=None, **kwargs): LOG.info(f'Cosine Circuit generation with scaling {scaling} and level_func={level_func}') qc = self._proposition_one_circuit(scaling, level_func, index_state_prep, **kwargs) qc.extend(x_measurement()) qc.name = f'{qc.name}_cosine' LOG.debug(f"Circuit:\n{qc.draw(output='text', fold=-1)}") return qc def expval_sin_circuit(self, scaling: Parameter, level_func=None, index_state_prep=None, **kwargs): LOG.info(f'Sine Circuit generation with scaling {scaling} and level_func={level_func}') qc = self._proposition_one_circuit(scaling, level_func, index_state_prep, **kwargs) qc.extend(y_measurement()) qc.name = f'{qc.name}_sine' LOG.debug(f"Circuit:\n{qc.draw(output='text', fold=-1)}") return qc def characteristic_function(self, evaluations: Union[List[float], np.ndarray, scipy.sparse.dok_matrix], external_id: Optional[str] = None, level_func=None, pm: Optional[PassManager] = None, transpiler_target_backend: Optional[Callable[[], IBMQBackend]] = None, other_arguments: dict = None) -> PreparedExperiment: other_arguments = {} if other_arguments is None else other_arguments backend = transpiler_target_backend() if transpiler_target_backend is not None else qasm_simulator() if external_id is None: tags = other_arguments.get('tags', []) external_id = datetime.now().strftime('%Y%m%d-%H%M%S') + f"-{type(self).__name__}-{'-'.join(tags)}" scaling_v: Parameter = Parameter('v') qc_cos_param: qiskit.QuantumCircuit = self.expval_cos_circuit(scaling_v, level_func, **other_arguments) qc_sin_param: qiskit.QuantumCircuit = self.expval_sin_circuit(scaling_v, level_func, **other_arguments) pre_pm = None if pm is None: LOG.info('No PassManager given, trying to attain one.') pre_pm, pm = get_default_pass_manager( transpiler_target_backend=backend, other_arguments=other_arguments ) qobj_list = create_qobj(qc_cos_param, qc_sin_param, scaling_v, evaluations=evaluations, pass_manager=pm, pre_pass_manager=pre_pm, qobj_id=external_id, other_arguments=other_arguments, transpiler_target_backend=backend) prepared_experiment = PreparedExperiment( external_id=external_id, tags=other_arguments.get('tags', []), arguments=evaluations, parameters={ 'initial_value': self.initial_value, 'probabilities': self.probabilities, 'realizations': self.realizations, 'pass_manager': pm.passes(), 'qc_cos': qc_cos_param, 'qc_sin': qc_sin_param, **other_arguments }, qobj_list=qobj_list, callback=extract_evaluations, transpiler_backend=backend ) return prepared_experiment
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np import qiskit from dc_qiskit_algorithms import UniformRotationGate from qiskit.circuit import Parameter from qiskit.circuit.library import U1Gate from scipy import sparse LOG = logging.getLogger(__name__) def apply_initial(value: float, scaling_factor: Parameter) -> qiskit.QuantumCircuit: """ This function initializes the circuit using Proposition 1 of the paper: First we need a Hadamard and then we rotate by the value * scaling factor * 2 with the R_z rotation. :param value: The initial value :param scaling_factor: The scaling factor to be used when computing the characteristic function :return: The initial quantum circuit with the data system only """ qc = qiskit.QuantumCircuit(name='initial_rotation') qreg_data = qiskit.QuantumRegister(1, 'data') qc.add_register(qreg_data) # BY Proposition 1 we need to start in a superposition state qc.h(qreg_data) # Then the initial rotation # qc.append(RZGate(2*scaling_factor * value), qreg_data) qc.u1(scaling_factor * value, qreg_data) return qc def apply_level(level: int, realizations: np.array, scaling_factor: Parameter, with_debug_circuit: bool = False, **kwargs) -> qiskit.QuantumCircuit: k, = realizations.shape qubits_k = int(np.ceil(np.log2(k))) qc = qiskit.QuantumCircuit(name=f'level_{level}') qreg_index = qiskit.QuantumRegister(qubits_k, f'level_{level}') qreg_data = qiskit.QuantumRegister(1, 'data') qc.add_register(qreg_index) qc.add_register(qreg_data) alpha = sparse.dok_matrix([realizations]).transpose() if with_debug_circuit: LOG.debug(f"Will add a controlled rotations with u1({scaling_factor} * {realizations})") for (i, j), angle in alpha.items(): qc.append( U1Gate(1.0 * scaling_factor * angle).control(num_ctrl_qubits=qubits_k, ctrl_state=int(i)), list(qreg_index) + list(qreg_data) ) else: LOG.debug(f"Will add a uniform rotation gate with u1({scaling_factor} * {realizations})") qc.append(UniformRotationGate(lambda theta: U1Gate(scaling_factor * theta), alpha), list(qreg_index) + list(qreg_data)) return qc def apply_level_two_realizations(level: int, realizations: np.array, scaling_factor: Parameter, **kwargs) -> qiskit.QuantumCircuit: k, = realizations.shape assert k == 2 qubits_k = int(np.ceil(np.log2(k))) qc = qiskit.QuantumCircuit(name=f'level_{level}') qreg_index = qiskit.QuantumRegister(qubits_k, f'level_{level}') qreg_data = qiskit.QuantumRegister(1, 'data') qc.add_register(qreg_index) qc.add_register(qreg_data) x_l1 = realizations[0] x_l2 = realizations[1] qc.cu1(theta=scaling_factor * x_l2, control_qubit=qreg_index, target_qubit=qreg_data) qc.x(qreg_index) qc.cu1(theta=scaling_factor * x_l1, control_qubit=qreg_index, target_qubit=qreg_data) qc.x(qreg_index) return qc def x_measurement() -> qiskit.QuantumCircuit: qc = qiskit.QuantumCircuit(name='initial_rotation') qreg_data = qiskit.QuantumRegister(1, 'data') creg_data = qiskit.ClassicalRegister(1, 'output') qc.add_register(qreg_data) qc.add_register(creg_data) qc.h(qreg_data) qc.measure(qreg_data, creg_data) return qc def y_measurement() -> qiskit.QuantumCircuit: qc = qiskit.QuantumCircuit(name='initial_rotation') qreg_data = qiskit.QuantumRegister(1, 'data') creg_data = qiskit.ClassicalRegister(1, 'output') qc.add_register(qreg_data) qc.add_register(creg_data) qc.z(qreg_data) qc.s(qreg_data) qc.h(qreg_data) qc.measure(qreg_data, creg_data) return qc
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import List, Union import numpy as np import qiskit import scipy from dc_qiskit_algorithms.MöttönenStatePreparation import get_alpha_y from qiskit.circuit import Parameter from scipy import sparse from .benchmark import brute_force_correlated_walk, monte_carlo_correlated_walk from .discrete_stochastic_process import DiscreteStochasticProcess LOG = logging.getLogger(__name__) def index_binary_correlated_walk(level: int, level_p: np.ndarray, **kwargs) -> qiskit.QuantumCircuit: probs = [] probs.append([np.sqrt(level_p[0]), np.sqrt(1 - level_p[0])]) probs.append([np.sqrt(1 - level_p[1]), np.sqrt(level_p[1])]) qc = qiskit.QuantumCircuit(name='index_state_prep') qreg = qiskit.QuantumRegister(1, f'level_{level}') qc.add_register(qreg) if level == 0: vector = sparse.dok_matrix([probs[0]]).transpose() alpha = get_alpha_y(vector, 1, 1) qc.ry(alpha[0, 0], qreg) else: previous_level_qreg = qiskit.QuantumRegister(1, f'level_{level - 1}') qc.add_register(previous_level_qreg) # Activating the 1 path vector = sparse.dok_matrix([probs[1]]).transpose() alpha = get_alpha_y(vector, 1, 1) qc.cry(alpha[0, 0], previous_level_qreg, qreg) # Activating the 0 path vector = sparse.dok_matrix([probs[0]]).transpose() alpha = get_alpha_y(vector, 1, 1) qc.x(previous_level_qreg) qc.cry(alpha[0, 0], previous_level_qreg, qreg) qc.x(previous_level_qreg) return qc def benchmark_brute_force(probabilities, realizations, evaluations: Union[List[float], np.ndarray, scipy.sparse.dok_matrix], func=None) -> np.ndarray: logging.basicConfig(format=logging.BASIC_FORMAT) output: List[complex] = [] for e in list(evaluations): c_func_eval = brute_force_correlated_walk( probabilities=probabilities, realizations=realizations, initial_value=0.0, scaling=e, func=lambda x: np.exp(1.0j * x) if func is None else func ) output.append(c_func_eval) return np.asarray(output) def benchmark_monte_carlo( probabilities, realizations, evaluations: Union[List[float], np.ndarray, scipy.sparse.dok_matrix], initial_value: float = 0.0, samples: int = 100, func=None) -> np.ndarray: c_func_eval = monte_carlo_correlated_walk( probabilities=probabilities, realizations=realizations, initial_value=initial_value, samples=samples, scaling=evaluations, func=lambda v: np.exp(1.0j * v) if func is None else func ) return np.asarray(c_func_eval) class CorrelatedWalk(DiscreteStochasticProcess): def __init__(self, initial_value: float, probabilities: np.ndarray, realizations: np.ndarray): assert probabilities.shape == realizations.shape super().__init__(initial_value, probabilities, realizations) def _proposition_one_circuit(self, scaling: Parameter, level_func=None, index_state_prep=None, **kwargs): index_state_prep = index_binary_correlated_walk if index_state_prep is None else index_state_prep return super(CorrelatedWalk, self)._proposition_one_circuit(scaling, level_func, index_state_prep, **kwargs) def benchmark(self, evaluations: Union[List[float], np.ndarray, scipy.sparse.dok_matrix], func=None, samples: int = 100) -> np.ndarray: return benchmark_monte_carlo( probabilities=self.probabilities, realizations=self.realizations, evaluations=evaluations, initial_value=self.initial_value, samples=samples, func=func )
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import numpy as np import qiskit from dc_qiskit_algorithms import MöttönenStatePreparationGate from dc_qiskit_algorithms.MöttönenStatePreparation import get_alpha_y from scipy import sparse LOG = logging.getLogger(__name__) def index_independent_prep(level: int, probabilities: np.ndarray, **kwargs) -> qiskit.QuantumCircuit: """ The function adds an index register of appropriate size and uses the state preparation by Möttönen et al. > Möttönen, Mikko, et al. "Transformation of quantum states using uniformly controlled rotations." > Quantum Information & Computation 5.6 (2005): 467-473. :param level: The level for register naming purposes :param probabilities: the probabilities for this level :return: the quantum circuit with the state preparation for the index """ k = probabilities.shape qubits_k = int(np.ceil(np.log2(k))) qc = qiskit.QuantumCircuit(name='index_state_prep') assert np.sum(probabilities) == 1 qreg = qiskit.QuantumRegister(qubits_k, f'level_{level}') qc.add_register(qreg) # Möttönen State-prep with row qc.append(MöttönenStatePreparationGate(list(np.sqrt(probabilities))), qreg) return qc def index_independent_prep_two(level: int, probabilities: np.ndarray, **kwargs) -> qiskit.QuantumCircuit: assert probabilities.shape == (2,) qc = qiskit.QuantumCircuit(name='index_state_prep') assert np.sum(probabilities) == 1 qreg = qiskit.QuantumRegister(1, f'level_{level}') qc.add_register(qreg) vector = sparse.dok_matrix([probabilities]).transpose() alpha = get_alpha_y(vector, 1, 1) qc.ry(alpha[0, 0], qreg) return qc
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Tuple import numpy as np import qiskit from qiskit.circuit import Parameter from dc_qiskit_algorithms import MöttönenStatePreparationGate from dc_qiskit_algorithms import ControlledStatePreparationGate from scipy import sparse from .discrete_stochastic_process import DiscreteStochasticProcess from .dsp_common import apply_level LOG = logging.getLogger(__name__) def _index_prep_level_0(probabilities: np.ndarray, **kwargs) -> qiskit.QuantumCircuit: """ The function adds an index register of appropriate size and uses the state preparation by Möttönen et al. > Möttönen, Mikko, et al. "Transformation of quantum states using uniformly controlled rotations." > Quantum Information & Computation 5.6 (2005): 467-473. :param level: The level for register naming purposes :param probabilities: the probabilities for this level :return: the quantum circuit with the state preparation for the index """ _, m = probabilities.shape qubits_target = int(np.ceil(np.log2(m))) # check if we have a probability density assert probabilities.shape[0] == 1 assert np.linalg.norm(np.sum(probabilities) - 1) < 1e-6, "The vector's entries must sum to 1" qc = qiskit.QuantumCircuit(name='index_state_prep') qreg_current = qiskit.QuantumRegister(qubits_target, f'level_0') qc.add_register(qreg_current) # Möttönen State-prep with row amplitudes = np.sqrt(probabilities) vector = sparse.dok_matrix(amplitudes).transpose() gate = MöttönenStatePreparationGate(vector, neglect_absolute_value=False) qc.append(gate, list(qreg_current), []) return qc def _index_prep(level: int, probabilities: np.ndarray, with_debug_circuit: bool = False, **kwargs) -> qiskit.QuantumCircuit: """ The function adds an index register of appropriate size and uses the state preparation by Möttönen et al. > Möttönen, Mikko, et al. "Transformation of quantum states using uniformly controlled rotations." > Quantum Information & Computation 5.6 (2005): 467-473. :param level: The level for register naming purposes :param probabilities: the probabilities for this level :return: the quantum circuit with the state preparation for the index """ assert level > 0, "This call is only for the level 1, and beyond." n, m = probabilities.shape qubits_source = int(np.ceil(np.log2(n))) qubits_target = int(np.ceil(np.log2(m))) # check if we have a stochastic matrix # assert np.linalg.norm(np.sum(probabilities, axis=0) - 1) < 1e-6, "The probability matrix must be a stochastic matrix" assert np.linalg.norm(np.sum(probabilities, axis=1) - 1) < 1e-6, "The probability matrix must be a stochastic matrix" qc = qiskit.QuantumCircuit(name='index_state_prep') qreg_last = qiskit.QuantumRegister(qubits_source, f'level_{level - 1}') qreg_current = qiskit.QuantumRegister(qubits_target, f'level_{level}') qc.add_register(qreg_last) qc.add_register(qreg_current) # Möttönen State-prep with row amplitudes = probabilities ** 0.5 matrix = sparse.dok_matrix(amplitudes) gate = ControlledStatePreparationGate(matrix) if with_debug_circuit: from qiskit import QuantumCircuit qc_def: QuantumCircuit = gate.definition qc = qc.compose(qc_def, qubits=list(qreg_last) + list(qreg_current)) else: qc.append(gate, list(qreg_last) + list(qreg_current), []) return qc def _index(level, probabilities, **kwargs): # Deliver the index register which encodes the joint probability of realizations # Given the initial value, select the row that is encoding the first step level_probabilities = np.asarray(probabilities) if level == 0: return _index_prep_level_0(level_probabilities, **kwargs) else: return _index_prep(level, level_probabilities, **kwargs) def _level(level, realizations, scaling, **kwargs): # Deliver the index register which encodes the joint probability of realizations # Given the initial value, select the row that is encoding the first step return apply_level(level, realizations, scaling, **kwargs) class StateMachineDSP(DiscreteStochasticProcess): def __init__(self, initial_value: float, probabilities: np.ndarray, realizations: np.ndarray): # FIXME: this is wrong, find assertions that reflect this situation # assert probabilities.shape == realizations.shape _probabilities = np.asarray([np.asarray(p) for p in probabilities]) _realizations = np.asarray([np.asarray(r) for r in realizations]) super().__init__(initial_value, _probabilities, _realizations) last_target_states = -1 for step in range(self.length): source_states, target_states = self.number_of_states(step) if last_target_states != -1: assert source_states == last_target_states last_target_states = target_states @property def length(self): return self.probabilities.shape[0] def number_of_states(self, step: int) -> Tuple[int, ...]: return np.asarray(self.probabilities[step]).shape def get_level_transition_matrix(self, level: int) -> np.ndarray: return self.probabilities[level] def _proposition_one_circuit(self, scaling: Parameter, level_func=None, index_state_prep=None, **kwargs): index_state_prep = _index if index_state_prep is None else index_state_prep level_func = _level if level_func is None else level_func return super(StateMachineDSP, self)._proposition_one_circuit(scaling, level_func, index_state_prep, **kwargs) # # def benchmark(self, evaluations: Union[List[float], np.ndarray, scipy.sparse.dok_matrix], # func=None, samples: int = 100) -> Union[NDArray[complex], np.ndarray]: # return benchmark_monte_carlo( # probabilities=self.probabilities, # realizations=self.realizations, # evaluations=evaluations, # initial_value=self.initial_value, # samples=samples, # func=func # )
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bisect import logging from multiprocessing import Pool from numpy.random import random import sys from typing import List, Union, Optional, Dict, Tuple import numpy as np import qiskit from qiskit import QuantumCircuit from qiskit.circuit import Parameter from qiskit.providers.backend import BackendV1 from qiskit.providers.ibmq import IBMQBackend from qiskit.providers.models import QasmBackendConfiguration from qiskit.qobj import Qobj from qiskit.result import Result from qiskit.transpiler import PassManager from qiskit.utils.mitigation import CompleteMeasFitter from . import qobj_mapping from dc_quantum_scheduling import FinishedExperiment LOG = logging.getLogger(__name__) def _bind(qc, parameter, v): return qc.bind_parameters({parameter: v}) def create_qobj(qc_cos: QuantumCircuit, qc_sin: QuantumCircuit, parameter: Parameter, evaluations: np.ndarray, qobj_id: str, pass_manager: PassManager, other_arguments: dict, transpiler_target_backend: Union[BackendV1, IBMQBackend], pre_pass_manager: Optional[PassManager] = None) -> List[Qobj]: LOG.info(f'Transpiling {len(evaluations)} cosine and {len(evaluations)} sine circuits with id={qobj_id}.') # We have the same number of circuits for the cosine and sine experiments other_arguments = {} if other_arguments is None else other_arguments if pre_pass_manager: LOG.info(f'Pre running cicuits...') qc_cos = pre_pass_manager.run(qc_cos) qc_sin = pre_pass_manager.run(qc_sin) LOG.info(f'Main run of cicuits...') qc_transpiled_cos_param = pass_manager.run(qc_cos) qc_transpiled_sin_param = pass_manager.run(qc_sin) with Pool() as pool: circuits_cos = pool.starmap(_bind, [(qc_transpiled_cos_param, parameter, v) for v in evaluations]) circuits_sin = pool.starmap(_bind, [(qc_transpiled_sin_param, parameter, v) for v in evaluations]) # circuits_cos = [qc_transpiled_cos_param.bind_parameters({parameter: v}) for v in evaluations] # circuits_sin = [qc_transpiled_sin_param.bind_parameters({parameter: v}) for v in evaluations] config: QasmBackendConfiguration = transpiler_target_backend.configuration() max_shots = config.max_shots max_experiments = config.max_experiments if hasattr(config, 'max_experiments') else sys.maxsize shots = other_arguments.get('shots', max_shots) other_arguments['shots'] = shots mapping_matrix: np.array = qobj_mapping(shots, max_shots, max_experiments, 2*len(evaluations)) shots_per_experiment = int(shots / mapping_matrix.shape[1]) LOG.debug(mapping_matrix) number_of_qobj: int = np.max(mapping_matrix) + 1 LOG.info(f'For #{len(evaluations)} evaluations each {shots} on the device {transpiler_target_backend.name()} ' f'with max shots {max_shots} and max no. of experiments per Qobj {max_experiments} ' f'there are #{number_of_qobj} of Qobj needed. Assembling the circuits now.') all_circuits = list(zip(circuits_cos, circuits_sin)) qobj_list: List[Qobj] = [] circuit_list: List[List[QuantumCircuit]] = [[] for i in range(number_of_qobj)] for row_no, (ccos, csin) in enumerate(all_circuits): # cosine indices = mapping_matrix[2 * row_no] for i, qobj_id in enumerate(indices): qobj_circuits = circuit_list[qobj_id] qobj_circuits.append(ccos) # sine indices = mapping_matrix[2 * row_no + 1] for i, qobj_id in enumerate(indices): qobj_circuits = circuit_list[qobj_id] qobj_circuits.append(csin) LOG.info(f'Assembled circuits, now building a list of Qobj.') for i, cc in enumerate(circuit_list): qobj_id_i = f'{qobj_id}--{i}' LOG.info(f'Assembling circuits for Qobj #{i} with shots {shots_per_experiment} and id {qobj_id_i}.') qobj = qiskit.compiler.assemble(cc, shots=shots_per_experiment, max_credits=shots_per_experiment * 5, qobj_id=qobj_id_i) qobj_list.append(qobj) return qobj_list def get_row_colums_of_qobj_index(qobj_index: int, mapping: np.array): indices: List[Tuple[int, int]] = [] for row_no, row in enumerate(mapping): for column_no, entry in enumerate(row): if entry == qobj_index: indices.append((row_no, column_no)) if entry > qobj_index: break return indices def _get_expval_proposition_one(counts: Dict[str, int]): return (counts.get('0', 0) - counts.get('1', 0)) / (counts.get('0', 0) + counts.get('1', 0)) def extract_evaluations(finished_experiment: FinishedExperiment, meas_fitter: Optional[CompleteMeasFitter] = None) -> np.ndarray: backend: BackendV1 = finished_experiment.transpiler_backend config: QasmBackendConfiguration = backend.configuration() max_shots = config.max_shots max_experiments = config.max_experiments if hasattr(config, 'max_experiments') else sys.maxsize shots = finished_experiment.parameters.get('shots', max_shots) mapping_matrix = qobj_mapping(shots, max_shots, max_experiments, 2*len(finished_experiment.arguments)) number_of_qobj: int = np.max(mapping_matrix) + 1 counts_cos: List[Dict[str, int]] = [{'0': 0, '1': 0} for a in finished_experiment.arguments] counts_sin: List[Dict[str, int]] = [{'0': 0, '1': 0} for a in finished_experiment.arguments] for qobj_index in range(number_of_qobj): indices = get_row_colums_of_qobj_index(qobj_index, mapping_matrix) result: Result = finished_experiment.to_result(qobj_index) measured_qubits = [e.instructions[-1].qubits for e in finished_experiment.qobj_list[qobj_index].experiments] def mitigate_counts(counts: Dict[str, int], q_no: List[int]): if meas_fitter is not None: # build a fitter from the subset meas_fitter_sub = meas_fitter.subset_fitter(qubit_sublist=q_no) # Get the filter object meas_filter = meas_fitter_sub.filter # Results with mitigation mitigated_counts = meas_filter.apply(counts, method='pseudo_inverse') return mitigated_counts else: return counts count: Dict[str, int] for count, (row_no, _), measured_q_no in zip(result.get_counts(), indices, measured_qubits): count = mitigate_counts(count, measured_q_no) if row_no % 2 == 1: argument_no = int((row_no - 1) / 2) counts = counts_sin else: argument_no = int(row_no / 2) counts = counts_cos old_counts = counts[argument_no] counts[argument_no]['0'] = old_counts.get('0', 0) + count.get('0', 0) counts[argument_no]['1'] = old_counts.get('1', 0) + count.get('1', 0) cosine_expvals = [_get_expval_proposition_one(c) for c in counts_cos] sine_expvals = [_get_expval_proposition_one(c) for c in counts_sin] return np.asarray([cos + 1.0j * sin for cos, sin in zip(cosine_expvals, sine_expvals)]) def cdf(weights): """ From https://stackoverflow.com/questions/4113307/pythonic-way-to-select-list-elements-with-different-probability :param weights: :return: """ total = sum(weights) result = [] cumsum = 0 for w in weights: cumsum += w result.append(cumsum / total) return result def choice(population, weights, size=None): """ From https://stackoverflow.com/questions/4113307/pythonic-way-to-select-list-elements-with-different-probability :param population: :param weights: :return: Args: size: """ assert len(population) == len(weights) cdf_vals = cdf(weights) x = random(size=size) if not size: x = [x] for e in x: idx = bisect.bisect(cdf_vals, e) yield population[idx]
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Optional, Dict, Any, Union import numpy as np import qiskit from dc_qiskit_algorithms import UniformRotationGate, QuantumFourierTransformGate from dc_qiskit_algorithms.MöttönenStatePreparation import get_alpha_y from dc_qiskit_algorithms.Qft import get_theta from hmmlearn import hmm from hmmlearn.hmm import MultinomialHMM from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit import Gate, Parameter from qiskit.circuit.library import RYGate, CU1Gate from scipy import sparse LOG = logging.basicConfig(format=logging.BASIC_FORMAT) class DraperAdder(Gate): num_qubits_a: int num_qubits_b: int def __init__(self, num_qubits_a: int, num_qubits_b: int, label: Optional[str] = None) -> None: super().__init__("draper", num_qubits_a + num_qubits_b, [], label) self.num_qubits_a = num_qubits_a self.num_qubits_b = num_qubits_b def _define(self): a = QuantumRegister(self.num_qubits_a, "a") b = QuantumRegister(self.num_qubits_b, "b") qc = QuantumCircuit(a, b, name=self.name) qc.append(QuantumFourierTransformGate(len(a)), a, []) for b_index in reversed(range(len(b))): theta_index = 1 for a_index in reversed(range(b_index + 1)): qc.append(CU1Gate(get_theta(theta_index)), [b[b_index], a[a_index]], []) theta_index += 1 qc.append(QuantumFourierTransformGate(len(a)).inverse(), a, []) self.definition = qc class RYGateSpecial(object): scaling: Parameter def __init__(self, scaling: Parameter): self.scaling = scaling def gate(self): return lambda phi: RYGate(self.scaling * (-phi)) # class MultinomialHmmSpecial(MultinomialHMM): # # def __init__(self, n_components=1, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None, # n_iter=10, tol=1e-2, verbose=False, params="ste", init_params="ste"): # super().__init__(n_components, startprob_prior, transmat_prior, algorithm, random_state, n_iter, tol, verbose, # params, init_params) # # def emitted_symbol(self, state): # return self.emissionprob_[state, :].argmax() # # def _generate_sample_from_state(self, state, random_state=None): # most_likely_emmission = self.emitted_symbol(state) # return [most_likely_emmission] class HiddenMarkovModelAlternative(object): emitted_symbols_map: Dict[int, float] accumulator_register: QuantumRegister state_register: QuantumRegister number_of_qubits: int number_of_states: int model: hmm.MultinomialHMM def __init__(self, model: hmm.MultinomialHMM, emitted_symbols_map: Optional[Dict[int, float]] = None) -> None: self.emitted_symbols_map = emitted_symbols_map or {} self.model = model self.number_of_states = self.model.n_components * self.model.n_features self.number_of_qubits = int(np.ceil(np.log2(self.number_of_states))) self.state_register = QuantumRegister(size=self.number_of_qubits, name='state') self.accumulator_register = QuantumRegister(size=1, name='accumulator') def _create_index(self, level: int, scaling: Parameter): angles = {} for k in range(1, self.number_of_qubits + 1): size_of_vector = 2 ** (2 * self.number_of_qubits - k) vector = sparse.dok_matrix((size_of_vector, 1)) angles[k] = vector transition_matrix: np.ndarray = self.model.transmat_ for state in range(self.number_of_states): transitions: np.ndarray = transition_matrix[state] a = sparse.dok_matrix([transitions]).transpose() for k in range(1, self.number_of_qubits + 1): resulting_angles = angles[k] alpha_vector = get_alpha_y(a, self.number_of_qubits, k) offset = state * 2 ** (self.number_of_qubits - k) for key, alpha in alpha_vector.items(): resulting_angles[offset + key[0], key[1]] = alpha level_register = QuantumRegister(size=self.number_of_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, name=f'circuit_level_{level}') for k in range(1, self.number_of_qubits + 1): alpha_angles = angles[k] control = list(self.state_register) + list(level_register)[0:self.number_of_qubits - k] target = level_register[self.number_of_qubits - k] # FIXME: scaling must be adjusted too! qc.append(UniformRotationGate(gate=RYGateSpecial(scaling).gate(), alpha=alpha_angles), control + [target], []) return qc def _create_accumulator_circuit(self, level: int, scaling: Parameter): angles: sparse.dok_matrix = sparse.dok_matrix((2**(2*self.number_of_qubits), 1)) for state in range(self.number_of_states): for transition in range(self.number_of_states): index = state + transition * self.number_of_states # The emitted symbol that occurs when going from state to state + transition! target_state = (state + transition) % self.model.n_components emitted_symbol = 0 # TODO: do angles[index, 0] = self.emitted_symbols_map.get(emitted_symbol, emitted_symbol) level_register = QuantumRegister(size=self.number_of_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, self.accumulator_register, name=f'circuit_accumulator_{level}') control = list(self.state_register) + list(level_register) target = list(self.accumulator_register)[0] # FIXME: scaling must be adjusted too! qc.append( UniformRotationGate(gate=RYGateSpecial(scaling).gate(), alpha=angles), control + [target], [] ) return qc def _create_adder(self, level: int): level_register = QuantumRegister(size=self.number_of_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, name=f'circuit_adder_{level}') control = list(self.state_register) + list(level_register) if self.number_of_qubits == 1: qc.cx(level_register, self.state_register) else: qc.append( DraperAdder(num_qubits_a=self.number_of_qubits, num_qubits_b=self.number_of_qubits), control, [] ) return qc if __name__ == "__main__": samples = 10*[[0], [1], [1], [1], [1], [2], [2], [0], [1], [1], [1], [0], [2]] model = hmm.MultinomialHMM(n_components=4) model.fit(samples) samples = model.sample(10) q_model = HiddenMarkovModel(model) qc: QuantumCircuit = QuantumCircuit(name='hmm_circuit') scaling_v: Parameter = Parameter('v') steps = 3 for level in range(1, steps + 1): level_qc = q_model._create_index(level, scaling_v) qc.extend(level_qc) # qc.barrier() acc_qc = q_model._create_accumulator_circuit(level, scaling_v) qc.extend(acc_qc) # qc.barrier() update_state_qc = q_model._create_adder(level) qc.extend(update_state_qc) qc.barrier() print(qc.draw(fold=-1)) transpiled_qc = qiskit.transpile( qc, optimization_level=3, basis_gates=[ 'u1', 'u2', 'u3', 'cx', 'id', # 'cu1', 'h' ] ) print(transpiled_qc.draw(fold=-1)) print(transpiled_qc.depth(), transpiled_qc.width())
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import sys from typing import List, Optional import numpy as np import qiskit from qiskit import QuantumCircuit from qiskit.providers.models import QasmBackendConfiguration from qiskit.qobj import Qobj from qiskit.transpiler import PassManager from dc_quantum_scheduling import PreparedExperiment, FinishedExperiment from qiskit.utils.mitigation import CompleteMeasFitter, complete_meas_cal from . import qobj_mapping, get_default_pass_manager LOG = logging.getLogger(__name__) def create_qobj(circuits: List[QuantumCircuit], pass_manager: PassManager, qobj_id, other_arguments, transpiler_target_backend): circuits_assembled = [pass_manager.run(qc) for qc in circuits] config: QasmBackendConfiguration = transpiler_target_backend.configuration() max_shots = config.max_shots max_experiments = config.max_experiments if hasattr(config, 'max_experiments') else sys.maxsize shots = other_arguments.get('shots', max_shots) other_arguments['shots'] = shots mapping_matrix: np.array = qobj_mapping(shots, max_shots, max_experiments, len(circuits_assembled)) shots_per_experiment = int(shots / mapping_matrix.shape[1]) LOG.debug(mapping_matrix) number_of_qobj: int = np.max(mapping_matrix) + 1 LOG.info(f'For #{len(circuits_assembled)} evaluations each {shots} on the device {transpiler_target_backend.name()} ' f'with max shots {max_shots} and max no. of experiments per Qobj {max_experiments} ' f'there are #{number_of_qobj} of Qobj needed. Assembling the circuits now.') qobj_list: List[Qobj] = [] circuit_list: List[List[QuantumCircuit]] = [[] for i in range(number_of_qobj)] for row_no, qc in enumerate(circuits_assembled): indices = mapping_matrix[row_no] for i, qobj_id in enumerate(indices): qobj_circuits = circuit_list[qobj_id] qobj_circuits.append(qc) LOG.info(f'Assembled circuits, now building a list of Qobj.') for i, cc in enumerate(circuit_list): qobj_id_i = f'{qobj_id}--{i}' LOG.info(f'Assembling circuits for Qobj #{i} with shots {shots_per_experiment} and id {qobj_id_i}.') qobj = qiskit.compiler.assemble(cc, shots=shots_per_experiment, max_credits=shots_per_experiment * 5, qobj_id=qobj_id_i) qobj_list.append(qobj) return qobj_list def interpret_output(finished_experiment: FinishedExperiment, meas_fitter: Optional[CompleteMeasFitter] = None) -> CompleteMeasFitter: if meas_fitter is not None: return meas_fitter qubit_list = finished_experiment.parameters['qubit_list'] state_labels = finished_experiment.parameters['state_labels'] # Get results cal_results = [] for qobj_index in range(len(finished_experiment.qobj_list)): r = finished_experiment.to_result(qobj_index) cal_results.append(r) # Calculate the calibration matrix with the noise model return CompleteMeasFitter(cal_results, state_labels, qubit_list=qubit_list, circlabel='mcal') def create_error_mitigation_experiment(exp: PreparedExperiment) -> PreparedExperiment: # def calculate_error_mitigation_matrix(self, backend: Optional[Union[IBMQBackend, AerBackend]] = None): # Get the measured qubits measured_qubits = set([e.instructions[-1].qubits[0] for q in exp.qobj_list for e in q.experiments]) LOG.info(f'Qubits measured are {measured_qubits}') # Generate the calibration circuits qr = qiskit.QuantumRegister(exp.transpiler_backend.configuration().n_qubits) qubit_list = list(measured_qubits) meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list, qr=qr, circlabel='mcal') _, pm = get_default_pass_manager(exp.transpiler_backend, exp.parameters) external_id = f'{exp.external_id}-error_mitigation' qobj_list = create_qobj(meas_calibs, pass_manager=pm, qobj_id=external_id, other_arguments=exp.parameters, transpiler_target_backend=exp.transpiler_backend ) return PreparedExperiment( external_id=f'{exp.external_id}-error_mitigation', tags=exp.tags + ['error mitigation'], qobj_list=qobj_list, arguments=[], transpiler_backend=exp.transpiler_backend, parameters={ 'qubit_list': qubit_list, 'state_labels': state_labels, **exp.parameters, }, callback=interpret_output )
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Optional, Dict, Any, Union import numpy as np import qiskit from dc_qiskit_algorithms import UniformRotationGate, QuantumFourierTransformGate from dc_qiskit_algorithms.MöttönenStatePreparation import get_alpha_y from dc_qiskit_algorithms.Qft import get_theta from hmmlearn import hmm from hmmlearn.hmm import MultinomialHMM from qiskit import QuantumRegister, QuantumCircuit from qiskit.circuit import Gate, Parameter from qiskit.circuit.library import RYGate, CU1Gate from scipy import sparse LOG = logging.basicConfig(format=logging.BASIC_FORMAT) class DraperAdder(Gate): num_qubits_a: int num_qubits_b: int def __init__(self, num_qubits_a: int, num_qubits_b: int, label: Optional[str] = None) -> None: super().__init__("draper", num_qubits_a + num_qubits_b, [], label) self.num_qubits_a = num_qubits_a self.num_qubits_b = num_qubits_b def _define(self): a = QuantumRegister(self.num_qubits_a, "a") b = QuantumRegister(self.num_qubits_b, "b") qc = QuantumCircuit(a, b, name=self.name) qc.append(QuantumFourierTransformGate(len(a)), a, []) for b_index in reversed(range(len(b))): theta_index = 1 for a_index in reversed(range(b_index + 1)): qc.append(CU1Gate(get_theta(theta_index)), [b[b_index], a[a_index]], []) theta_index += 1 qc.append(QuantumFourierTransformGate(len(a)).inverse(), a, []) self.definition = qc class RYGateSpecial(object): scaling: Parameter def __init__(self, scaling: Parameter): self.scaling = scaling def gate(self): return lambda phi: RYGate(self.scaling * (-phi)) class MultinomialHmmSpecial(MultinomialHMM): def __init__(self, n_components=1, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None, n_iter=10, tol=1e-2, verbose=False, params="ste", init_params="ste"): super().__init__(n_components, startprob_prior, transmat_prior, algorithm, random_state, n_iter, tol, verbose, params, init_params) def emitted_symbol(self, state): return self.emissionprob_[state, :].argmax() def _generate_sample_from_state(self, state, random_state=None): most_likely_emmission = self.emitted_symbol(state) return [most_likely_emmission] class HiddenMarkovModel(object): emitted_symbols_map: Dict[int, float] accumulator_register: QuantumRegister state_register: QuantumRegister number_of_state_qubits: int number_of_level_qubits: int model: MultinomialHmmSpecial def __init__(self, model: MultinomialHmmSpecial, emitted_symbols_map: Optional[Dict[int, float]] = None) -> None: self.emitted_symbols_map = emitted_symbols_map or {} self.model = model self.number_of_state_qubits = int(np.ceil(np.log2(model.n_components))) self.number_of_level_qubits = int(np.ceil(np.log2(model.n_features))) self.state_register = QuantumRegister(size=self.number_of_state_qubits, name='state') self.accumulator_register = QuantumRegister(size=1, name='accumulator') def _create_index(self, level: int, scaling: Parameter): angles = {} for k in range(1, self.number_of_state_qubits + 1): size_of_vector = 2 ** (2 * self.number_of_state_qubits - k) vector = sparse.dok_matrix((size_of_vector, 1)) angles[k] = vector transition_matrix: np.ndarray = self.model.transmat_ for state in range(self.model.n_components): transitions: np.ndarray = transition_matrix[state] a = sparse.dok_matrix([transitions]).transpose() for k in range(1, self.number_of_state_qubits + 1): resulting_angles = angles[k] alpha_vector = get_alpha_y(a, self.number_of_state_qubits, k) offset = state * 2 ** (self.number_of_state_qubits - k) for key, alpha in alpha_vector.items(): resulting_angles[offset + key[0], key[1]] = alpha level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, name=f'circuit_level_{level}') for k in range(1, self.number_of_state_qubits + 1): alpha_angles = angles[k] control = list(self.state_register) + list(level_register)[0:self.number_of_state_qubits - k] target = level_register[self.number_of_state_qubits - k] # FIXME: scaling must be adjusted too! qc.append(UniformRotationGate(gate=RYGateSpecial(scaling).gate(), alpha=alpha_angles), control + [target], []) return qc def _create_accumulator_circuit(self, level: int, scaling: Parameter): angles: sparse.dok_matrix = sparse.dok_matrix((2 ** (2 * self.number_of_state_qubits), 1)) for state in range(self.model.n_components): for transition in range(self.model.n_components): index = state + transition * self.model.n_components # The emitted symbol that occurs when going from state to state + transition! target_state = (state + transition) % self.model.n_components # The problem with the HMM is that it associates to a state a random variable # FIXME: for epsilon-machines this is a state/target-state pair! emitted_symbol = self.model.emitted_symbol(target_state) angles[index, 0] = self.emitted_symbols_map.get(emitted_symbol, emitted_symbol) level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, self.accumulator_register, name=f'circuit_accumulator_{level}') control = list(self.state_register) + list(level_register) target = list(self.accumulator_register)[0] # FIXME: scaling must be adjusted too! qc.append( UniformRotationGate(gate=RYGateSpecial(scaling).gate(), alpha=angles), control + [target], [] ) return qc def _create_adder(self, level: int): level_register = QuantumRegister(size=self.number_of_state_qubits, name=f'level_{level}') qc: QuantumCircuit = QuantumCircuit(self.state_register, level_register, name=f'circuit_adder_{level}') control = list(self.state_register) + list(level_register) if self.number_of_state_qubits == 1: qc.cx(level_register, self.state_register) else: qc.append( DraperAdder(num_qubits_a=self.number_of_state_qubits, num_qubits_b=self.number_of_state_qubits), control, [] ) return qc if __name__ == "__main__": samples = 10*[[0], [1], [1], [1], [1], [2], [2], [0], [1], [1], [1], [0], [2]] model = hmm.MultinomialHMM(n_components=4) model.fit(samples) samples = model.sample(10) q_model = HiddenMarkovModel(model) qc: QuantumCircuit = QuantumCircuit(name='hmm_circuit') scaling_v: Parameter = Parameter('v') steps = 3 for level in range(1, steps + 1): level_qc = q_model._create_index(level, scaling_v) qc.extend(level_qc) # qc.barrier() acc_qc = q_model._create_accumulator_circuit(level, scaling_v) qc.extend(acc_qc) # qc.barrier() update_state_qc = q_model._create_adder(level) qc.extend(update_state_qc) qc.barrier() print(qc.draw(fold=-1)) transpiled_qc = qiskit.transpile( qc, optimization_level=3, basis_gates=[ 'u1', 'u2', 'u3', 'cx', 'id', # 'cu1', 'h' ] ) print(transpiled_qc.draw(fold=-1)) print(transpiled_qc.depth(), transpiled_qc.width())
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import re import unittest from typing import List, Optional import numpy as np import qiskit import qiskit.result from ddt import ddt, data as test_data, unpack import dsp_data import dc_qiskit_stochastics.benchmark as benchmark from dc_qiskit_stochastics.dsp_common import apply_initial, x_measurement, y_measurement from dc_qiskit_stochastics.dsp_independent import index_independent_prep logging.basicConfig(format=logging.BASIC_FORMAT, level='DEBUG') LOG = logging.getLogger(__name__) @ddt class QiskitDspCircuitTests(unittest.TestCase): @staticmethod def report_progress(job_id: str, job_status: qiskit.providers.JobStatus, job: qiskit.providers.JobV1): LOG.info(f'Processing {job_id} with status {job_status}...') def assert_statevector(self, probabilities: np.ndarray, realizations: np.ndarray, scaling: float, initial_value: float,job: qiskit.providers.JobV1, measurement: Optional[str] = None): LOG.info(f'Asserting {job.job_id()} with status {job.status()}...') if job.status() == qiskit.providers.JobStatus.DONE: result: qiskit.result.Result = job.result() vector = result.get_statevector() # Gather facts from the probabilities about the number k (realizations) # and the number of qubits to encode a this number k = len(probabilities[0, :]) index_register_size = int(np.ceil(np.log2(k))) # The bits show the string length of bits to encode the Hilbert space of the state vector (dimension of it) bits = int(np.log2(len(vector))) # First assertion: the bits to encode the dimension of the state vector must be # divisible by the index register size if the data bit is removed self.assertTrue((bits - 1) % index_register_size == 0, msg='Bit length of state vector must be 1 data bit + l level index.') # If the last assertion passed, the divisor os the number of levels, so it must be equal levels = (bits - 1) / index_register_size self.assertTrue(levels == len(probabilities), msg='Bit length of state vector must show the correct number of levels.') # Save the resulting expected vector to compare later. We do this because we want to # get the full information first, before we fail the test expected_vector: List[complex] = [] phase_diff_list: List[float] = [] for index, value in enumerate(vector): basis_state_bits = "{0:b}".format(index).zfill(bits) # [::-1] data_state = int(basis_state_bits[-1], 2) values: List[str] = re.findall(''.join(index_register_size*['.']), basis_state_bits[:-1]) values: List[int] = [int(v, 2) for v in values] LOG.debug(f'Found the extraction indices to be {values}.') all_probs = probabilities[np.arange(len(probabilities)), values] LOG.debug(f'Found the extraction probabilities to be {all_probs}.') all_reals = realizations[np.arange(len(realizations)), values] LOG.debug(f'Found the extraction realizations to be {all_reals}.') p = 1 / np.sqrt(2) * np.prod(np.sqrt(all_probs)) x = np.sum(all_reals) if measurement is None: expected_value: complex = p * np.exp( 1.0j * scaling * (initial_value + x) if data_state == 1 else 0.0 ) elif measurement == 'sigma_x': expected_value: complex = p * np.exp( (-1.0)**(1 - data_state) * 1.0j * scaling * (initial_value + x) ) elif measurement == 'sigma_y': expected_value: complex = p * np.exp( (-1.0)**(1 - data_state) * 1.0j * (np.pi/2 + scaling * (initial_value + x)) ) else: self.fail("If a measurement is given, it must either 'sigma_x' or 'sigma_y'.") expected_vector.append(expected_value) # As quantum mechanics is neglecting a global phase, we need to find the phase difference. # If later we find that all phase differences are the same, we have a global phase # and need to adjust for it. phase_diff = np.angle(expected_value) - np.angle(value) phase_diff_list.append(phase_diff if phase_diff > 10e-6 else phase_diff + 2 * np.pi) LOG.info(f'Basis: {basis_state_bits} (data/indices: {data_state}/{values}), ' f'Expected: {np.abs(expected_value):.4f} * e^{np.angle(expected_value):.4f}, ' f'Actual: {np.abs(value):.4f} * e^{np.angle(value):.4f}') # First we check by pairwise comparison, if we have phase differences all within a small # delta, if so, we have found a global phase difference. LOG.info(f"Phase differences: {phase_diff_list}") [self.assertAlmostEqual(x, y, delta=10e-3, msg='Phase Differences have to negligible.') for i, x in enumerate(phase_diff_list) for j, y in enumerate(phase_diff_list) if i != j] # Checking the equality of expect vs. actual values with the global phase taken into account. LOG.info(f"Checking of state vector is as expected (modulo phase shift of): {phase_diff_list[0]}") for expected, actual in zip(expected_vector, vector): actual_phase_shifted = actual * np.exp(1.0j * phase_diff_list[0]) LOG.debug(f'Expected: {np.abs(expected):.4f} * e^{np.angle(expected):.4f}, ' f'Actual: {np.abs(actual_phase_shifted):.4f} * e^{np.angle(actual_phase_shifted):.4f}') self.assertAlmostEqual(expected.real, actual_phase_shifted.real, delta=10e-3) self.assertAlmostEqual(expected.imag, actual_phase_shifted.imag, delta=10e-3) return expected_vector else: self.fail("The job is not done. Cannot assert correctness.") @test_data(*dsp_data.testing_data) @unpack def test_create_circuit(self, scaling: float, initial_value: float, probabilities: np.ndarray, realizations: np.ndarray, apply_func): LOG.info(f"Data: scaling={scaling}, initial value={initial_value}, " f"probabilities={list(probabilities)}, realizations={list(realizations)}," f"applied function={apply_func.__name__}.") qc = qiskit.QuantumCircuit(name='dsp_simulation') LOG.info(f"Initializing with {initial_value} and scaling {scaling}.") init_qc = apply_initial(initial_value, scaling) qc.extend(init_qc) for level, (p, r) in enumerate(zip(probabilities, realizations)): LOG.info(f"Adding level {level}: {p} with {r} and scaling {scaling}.") qc_index = index_independent_prep(level, p) qc_level_l = apply_func(level, r, scaling) qc.extend(qc_index) qc.extend(qc_level_l) LOG.info(f"Circuit:\n{qc.draw(output='text', fold=-1)}") qc_compiled = qiskit.transpile(qc, optimization_level=3,basis_gates=['id', 'u1', 'u2', 'u3', 'cx']) LOG.info(f"Circuit:\n{qc_compiled.draw(output='text', fold=-1)}") backend: qiskit.providers.aer.StatevectorSimulator = qiskit.Aer.get_backend('statevector_simulator') job: qiskit.providers.aer.AerJob = qiskit.execute(qc_compiled, backend) job.wait_for_final_state(callback=QiskitDspCircuitTests.report_progress, wait=1) self.assert_statevector(probabilities, realizations, scaling, initial_value, job) @test_data(*dsp_data.testing_data) @unpack def test_calculate_x_measurement_cos(self, scaling: float, initial_value: float, probabilities: np.ndarray, realizations: np.ndarray, apply_func): LOG.info(f"Data: scaling={scaling}, initial value={initial_value}, " f"probabilities={list(probabilities)}, realizations={list(realizations)}," f"applied function={apply_func.__name__}.") qc = qiskit.QuantumCircuit(name='dsp_simulation') LOG.info(f"Initializing with {initial_value} and scaling {scaling}.") init_qc = apply_initial(initial_value, scaling) qc.extend(init_qc) for level, (p, r) in enumerate(zip(probabilities, realizations)): LOG.info(f"Adding level {level}: {p} with {r} and scaling {scaling}.") qc_index = index_independent_prep(level, p) qc_level_l = apply_func(level, r, scaling) qc.extend(qc_index) qc.extend(qc_level_l) qc.extend(x_measurement()) LOG.info(f"Circuit:\n{qc.draw(output='text', fold=-1)}") qc_compiled = qiskit.transpile(qc, optimization_level=3,basis_gates=['id', 'u1', 'u2', 'u3', 'cx']) LOG.info(f"Circuit:\n{qc_compiled.draw(output='text', fold=-1)}") backend: qiskit.providers.aer.StatevectorSimulator = qiskit.Aer.get_backend('qasm_simulator') job: qiskit.providers.aer.AerJob = qiskit.execute(qc_compiled, backend, shots=2**16) job.wait_for_final_state(callback=QiskitDspCircuitTests.report_progress, wait=1) expected_cos = benchmark.brute_force_rw_ind(probabilities, realizations, initial_value, scaling, np.cos) result: qiskit.result.Result = job.result() counts = result.get_counts() p: float = (counts.get('0', 0) - counts.get('1', 0)) / (counts.get('0', 0) + counts.get('1', 0)) LOG.info(f"Assertion: expected={expected_cos}, actual={p}, diff={np.abs(expected_cos - p)}") self.assertAlmostEqual(expected_cos, p, delta=10e-3) @test_data(*dsp_data.testing_data) @unpack def test_calculate_y_measurement_sin(self, scaling: float, initial_value: float, probabilities: np.ndarray, realizations: np.ndarray, apply_func): LOG.info(f"Data: scaling={scaling}, initial value={initial_value}, " f"probabilities={list(probabilities)}, realizations={list(realizations)}," f"applied function={apply_func.__name__}.") qc = qiskit.QuantumCircuit(name='dsp_simulation') LOG.info(f"Initializing with {initial_value} and scaling {scaling}.") init_qc = apply_initial(initial_value, scaling) qc.extend(init_qc) for level, (p, r) in enumerate(zip(probabilities, realizations)): LOG.info(f"Adding level {level}: {p} with {r} and scaling {scaling}.") qc_index = index_independent_prep(level, p) qc_level_l = apply_func(level, r, scaling) qc.extend(qc_index) qc.extend(qc_level_l) qc.extend(y_measurement()) LOG.info(f"Circuit:\n{qc.draw(output='text', fold=-1)}") qc_compiled = qiskit.transpile(qc, optimization_level=3,basis_gates=['id', 'u1', 'u2', 'u3', 'cx']) LOG.info(f"Circuit:\n{qc_compiled.draw(output='text', fold=-1)}") backend: qiskit.providers.aer.StatevectorSimulator = qiskit.Aer.get_backend('qasm_simulator') job: qiskit.providers.aer.AerJob = qiskit.execute(qc_compiled, backend, shots=2**16) job.wait_for_final_state(callback=QiskitDspCircuitTests.report_progress, wait=1) expected_cos = benchmark.brute_force_rw_ind(probabilities, realizations, initial_value, scaling, np.sin) result: qiskit.result.Result = job.result() counts = result.get_counts() p: float = (counts.get('0', 0) - counts.get('1', 0)) / (counts.get('0', 0) + counts.get('1', 0)) LOG.info(f"Assertion: expected={expected_cos}, actual={p}, diff={np.abs(expected_cos - p)}") self.assertAlmostEqual(expected_cos, p, delta=10e-3)
https://github.com/carstenblank/dc-qiskit-stochastics
carstenblank
# Copyright 2018-2022 Carsten Blank # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest from typing import Optional import matplotlib.pyplot as plt import numpy as np import qiskit from qiskit.circuit import Parameter from dc_qiskit_stochastics.benchmark import char_func_asian_option, char_func_asian_option_sm from dc_qiskit_stochastics.dsp_state_machine import StateMachineDSP from dc_qiskit_stochastics.simulation.asian_option import AsianOptionPricing, StateMachineDescription from dc_quantum_scheduling import processor from dc_quantum_scheduling.models import PreparedExperiment, RunningExperiment, FinishedExperiment from dsp_data import testing_data_state_machine logging.basicConfig(format=f'%(asctime)s::{logging.BASIC_FORMAT}', level='ERROR') LOG = logging.getLogger(__name__) class StateMachineTest(unittest.TestCase): def test_init_success(self): data = { 'initial_value': 0, 'probabilities': np.asarray([ [ [0.1, 0.6] ], [ [0.1, 0.6, 0.3], [0.5, 0.3, 0.1] ], [ [0.1, 0.6], [0.5, 0.3], [0.1, 0.1] ] ]), 'realizations': np.asarray([ [ [1, 1] ], [ [1, 1, 1], [1, 1, 1] ], [ [1, 1], [1, 1], [1, 1] ] ]) } try: StateMachineDSP(data['initial_value'], data['probabilities'], data['realizations']) except AssertionError: self.fail() def test_init_fail(self): data = { 'initial_value': 0, 'probabilities': np.asarray([ [ [0.1, 0.6] ], [ [0.1, 0.6, 0.3], [0.5, 0.3, 0.1], [0.5, 0.3, 0.1] ], [ [0.1, 0.6], [0.5, 0.3], [0.1, 0.1] ] ]), 'realizations': np.asarray([ [ [1, 1] ], [ [1, 1, 1], [1, 1, 1], [1, 1, 1] ], [ [1, 1], [1, 1], [1, 1] ] ]) } try: StateMachineDSP(data['initial_value'], data['probabilities'], data['realizations']) except AssertionError: return self.fail() def test_full(self): for i, data in enumerate(testing_data_state_machine): print(f'Test on data {i}.') process = StateMachineDSP(data['initial_value'], data['probabilities'], data['realizations']) qc = process._proposition_one_circuit(Parameter('v')) qc_t = qiskit.transpile( qc, basis_gates=['uni_rot_rx', 'uni_rot_ry', 'uni_rot_rz', 'uni_rot_rx_dg', 'uni_rot_ry_dg', 'uni_rot_rz_dg', 'uni_rot_u1', 'uni_rot_u1_dg', 'h', 'u1'] ) print(qc_t.draw(fold=-1)) qc_t = qiskit.transpile(qc, basis_gates=['u1', 'u2', 'u3', 'cx'], optimization_level=3) print(qc_t.draw(fold=-1)) print(f'Depth of final circuit: {qc_t.depth()}') def test_log_normal(self): log_normal_data = { 'risk_free_interest': 0.02, 'volatility': 0.05, 'start_value': 80, 'time_steps': np.asarray([5]), 'discretization': 2**4 } s0 = log_normal_data['start_value'] sigma = log_normal_data['volatility'] mu = log_normal_data['risk_free_interest'] time_steps = log_normal_data['time_steps'] discretization = log_normal_data['discretization'] asian_option_model = AsianOptionPricing(s0, sigma, mu, time_steps, discretization) data = asian_option_model.get_state_machine_model() v = np.linspace(-0.3, 0.3, num=400) # TODO: test the benchmark separately with this: # # As this is just the lognormal distribution, we can directly brute-force compute the outcome. # phi_v_sim = [] # for entry in v: # summands = data.probabilities[0] * np.exp(1.0j * entry * data.realizations) # summed = np.sum(summands) # phi_v_sim.append(summed) # phi_v_sim = np.asarray(phi_v_sim) phi_v_sim = char_func_asian_option_sm(v, asian_option_model) # The quantum approach is created here state_machine = StateMachineDSP(data.initial_value, data.probabilities, data.realizations) pre_exp: PreparedExperiment = state_machine.characteristic_function( evaluations=v, other_arguments={'shots': 2000, 'with_barrier': True} ) print(pre_exp.parameters['qc_cos'].draw(fold=-1)) run_exp: RunningExperiment = processor.execute_simulation(pre_exp) fin_exp: Optional[FinishedExperiment] = run_exp.wait() phi_v_qc = fin_exp.get_output() # The MC benchmark computation phi_v = char_func_asian_option( asian_option_model.mu, asian_option_model.sigma, asian_option_model.s0, asian_option_model.time_steps, samples=2000, evaluations=v ) # TODO: remove if not needed # s = sigma * np.sqrt(delta_t) # mu_tilde = (mu - 0.5 * sigma ** 2) * delta_t + np.log(s0) # phi_v_benchmark_m = np.asarray( # [(1.0j * v) ** n / factorial(n) * np.exp(n * mu_tilde + 0.5 * n**2 * s**2) for n in range(1000)] # ) # phi_v = np.sum(phi_v_benchmark_m, axis=0, where=~np.isnan(phi_v_benchmark_m)) # Plotting party plt.plot(v, np.real(phi_v_sim), color='gray', alpha=0.7, label='QC-TH') plt.scatter(x=v, y=np.real(phi_v_qc), color='blue', alpha=1.0, label='QC', marker='.') plt.plot(v, np.real(phi_v), color='black', label='MC') plt.axvline(x=0, color='purple') plt.title(f'StateMachineTest.test_log_normal\nReal part (cosine) at {time_steps}') plt.ylim((-1.1, 1.1)) plt.legend() plt.show() plt.plot(v, np.imag(phi_v_sim), color='gray', alpha=0.7, label='QC-TH') plt.scatter(x=v, y=np.imag(phi_v_qc), color='blue', alpha=0.7, label='QC', marker='.') plt.plot(v, np.imag(phi_v), color='black', label='MC') plt.axvline(x=0, color='purple') plt.title(f'StateMachineTest.test_log_normal\nImaginary part (sine) at {time_steps}') plt.ylim((-1.1, 1.1)) plt.legend() plt.show() def test_asian_option(self): log_normal_data = { 'risk_free_interest': 0.02, 'volatility': 0.05, 'start_value': 80, 'time_steps': np.asarray([5, 10]), 'discretization': 2**4 } s0 = log_normal_data['start_value'] sigma = log_normal_data['volatility'] mu = log_normal_data['risk_free_interest'] time_steps = log_normal_data['time_steps'] discretization = log_normal_data['discretization'] asian_option_model = AsianOptionPricing(s0, sigma, mu, time_steps, discretization) data: StateMachineDescription = asian_option_model.get_state_machine_model() v = np.linspace(-0.3, 0.3, num=400) # The brute force calculation using the state machine description phi_v_sim = char_func_asian_option_sm(v, asian_option_model) # The quantum approach is created here state_machine = StateMachineDSP(data.initial_value, data.probabilities, data.realizations) pre_exp: PreparedExperiment = state_machine.characteristic_function( evaluations=v, other_arguments={'shots': 2000, 'with_barrier': True} ) print(qiskit.transpile(pre_exp.parameters['qc_cos']).draw(fold=-1)) run_exp: RunningExperiment = processor.execute_simulation(pre_exp) fin_exp: Optional[FinishedExperiment] = run_exp.wait() phi_v_qc = fin_exp.get_output() # The MC benchmark computation phi_v = char_func_asian_option( asian_option_model.mu, asian_option_model.sigma, asian_option_model.s0, asian_option_model.time_steps, samples=2000, evaluations=v ) # Plotting party plt.plot(v, np.real(phi_v_sim), color='gray', alpha=0.7, label='QC-TH') plt.scatter(x=v, y=np.real(phi_v_qc), color='blue', alpha=1.0, label='QC', marker='.') plt.plot(v, np.real(phi_v), color='black', label='MC') plt.axvline(x=0, color='purple') plt.title(f'StateMachineTest.test_asian_option\nReal part (cosine) at {time_steps}') plt.ylim((-1.1, 1.1)) plt.legend() plt.show() plt.plot(v, np.imag(phi_v_sim), color='gray', alpha=0.7, label='QC-TH') plt.scatter(x=v, y=np.imag(phi_v_qc), color='blue', alpha=0.7, label='QC', marker='.') plt.plot(v, np.imag(phi_v), color='black', label='MC') plt.axvline(x=0, color='purple') plt.title(f'StateMachineTest.test_asian_option\nImaginary part (sine) at {time_steps}') plt.ylim((-1.1, 1.1)) plt.legend() plt.show()
https://github.com/renatawong/classical-shadow-vqe
renatawong
# Installation of the requirements #!python -m pip install -r requirements.txt ''' (C) Renata Wong 2023 Qiskit code for testing fidelity of derandomised classical shadow on the ground state energy of molecules. Procedure: 1. Derandomize the molecule-in-question's Hamiltonian. 2. Choose a variational ansatz with initial parameters selected at random. 3. Apply the derandomized Hamiltonian as basis change operators to the ansatz. 4. Measure the ansatz in the Pauli Z basis and store the results as a shadow. 5. Obtain the expectation value of the molecular Hamiltonian from the shadow. 6. Optimize for minimum Hamiltonian expectation value. 7. Feed the calculated angles/parameters back to the ansatz. 8. Repeat steps 3-7 till the optimization is completed. 9. Output the minimized expectation value of the molecular Hamiltonian and the mean-square-root-error. Note: Below we perform calculations on the molecular Hamiltonian of H_2. To perform calculations on other molecules, you will need to specify their geometry, charge and spin to replace the values in the driver. Note: predicting_quantum_properties module comes from https://github.com/hsinyuan-huang/predicting-quantum-properties ''' from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import BravyiKitaevMapper from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit.circuit.library import EfficientSU2 from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA import time import numpy as np from functools import partial import matplotlib.pyplot as plt from collections import Counter from predicting_quantum_properties.prediction_shadow import estimate_exp from modified_derandomization import modified_derandomized_classical_shadow # handle deprecation issues import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 # classically obtained ground state energy EXPECTED_EIGENVALUE = -1.86 # specifying the geometry of the molecule in question driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() hamiltonian = problem.hamiltonian # electronic Hamiltonian of the system second_q_op = hamiltonian.second_q_op() # The Bravyi-Kitaev repserentation of the Fermionic Hamiltonian mapper = BravyiKitaevMapper() bkencoded_hamiltonian = mapper.map(second_q_op) print(bkencoded_hamiltonian) def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data #print('HAMILTONIAN\n', observables_xyze) ''' VARIATIONAL ANSATZ Note that for molecules other than H_2 you may need to specify a different number of reps. ''' reps = 1 ansatz = EfficientSU2(system_size, su2_gates=['rx', 'ry'], entanglement='circular', reps=reps, skip_final_rotation_layer=False) ansatz.decompose().draw('mpl') ''' COST FUNCTION ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) elif op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def min_cost(): return min(cost_history) def log_cost(cost): global cost_history cost_history.append(cost) def objective_function(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # generate a separate circuit for each basis change Pauli operator output_str = list(list(counts.keys())[list(counts.values()).index(1)]) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) cost = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: exp_val = sum_product / match_count cost += weight * exp_val log_cost(cost) return cost ''' RUNNING EXPERIMENTS ''' start_time = time.time() rmse_errors = [] print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 100, 200, 600, 1000, 1600] for num_operators in measurement_range: derandomized_hamiltonian = modified_derandomized_classical_shadow(observables_xyz, num_operators, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) optimizer = SPSA(maxiter=2000) cost_function = partial(objective_function, derandomized_hamiltonian) expectation_values = [] num_experiments = 5 for iteration in range(num_experiments): cost_history = [] params = np.random.rand(ansatz.num_parameters) result = optimizer.minimize(fun=cost_function, x0=params) minimal_cost = min_cost() expectation_values.append(minimal_cost) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, minimal_cost)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - EXPECTED_EIGENVALUE)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) points = measurement_range num_points = len(measurement_range) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='SPSA(maxiter=2000)') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1) ''' Above we have assumed a particular ground state energy for the molecule of interest. Below we corroborate this assumption using a classical minimum eigensolver on our Hamiltonian. ''' converter = BravyiKitaevMapper() numpy_solver = NumPyMinimumEigensolver() calc = GroundStateEigensolver(converter, numpy_solver) res = calc.solve(problem) print('Electronic ground state energy:\n', res)
https://github.com/renatawong/classical-shadow-vqe
renatawong
# Installation of the requirements #!python -m pip install -r requirements.txt ''' (C) Renata Wong 2023 Qiskit code for testing fidelity of derandomised classical shadow on the ground state energy of molecules. This notebook implements an optimization: since the derandomized Hamiltonian may contan very few terms, instead of generating a quantum circuit for each and measuring once, we generate a single circuit and specify a shot number that matches the number of occurrences of a derandomized operator. This speeds up the computation significantly. Procedure: 1. Derandomize the molecule-in-question's Hamiltonian. 2. Choose a variational ansatz with initial parameters selected at random. 3. Apply the derandomized Hamiltonian as basis change operators to the ansatz. 4. Measure the ansatz in the Pauli Z basis and store the results as a shadow. 5. Obtain the expectation value of the molecular Hamiltonian from the shadow. 6. Optimize for minimum Hamiltonian expectation value. 7. Feed the calculated angles/parameters back to the ansatz. 8. Repeat steps 3-7 till the optimization is completed. 9. Output the minimized expectation value of the molecular Hamiltonian and the mean-square-root-error. Note: Below we perform calculations on the molecular Hamiltonian of H_2. To perform calculations on other molecules, you will need to specify their geometry, charge and spin to replace the values in the driver. ''' from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import BravyiKitaevMapper from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit.circuit.library import EfficientSU2 from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA import time import numpy as np from functools import partial import matplotlib.pyplot as plt from collections import Counter from predicting_quantum_properties.prediction_shadow import estimate_exp from modified_derandomization import modified_derandomized_classical_shadow # handle deprecation issues import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 # classically obtained ground state energy EXPECTED_EIGENVALUE = -1.86 # specifying the geometry of the molecule in question driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() hamiltonian = problem.hamiltonian # electronic Hamiltonian of the system second_q_op = hamiltonian.second_q_op() # The Bravyi-Kitaev repserentation of the Fermionic Hamiltonian mapper = BravyiKitaevMapper() bkencoded_hamiltonian = mapper.map(second_q_op) print(bkencoded_hamiltonian) def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data #print('HAMILTONIAN\n', observables_xyze) ''' VARIATIONAL ANSATZ Note that for molecules other than H_2 you may need to specify a different number of reps. ''' reps = 1 ansatz = EfficientSU2(system_size, su2_gates=['rx', 'ry'], entanglement='circular', reps=reps, skip_final_rotation_layer=False) ansatz.decompose().draw('mpl') ''' COST FUNCTION ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) elif op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def min_cost(): return min(cost_history) def log_cost(cost): global cost_history cost_history.append(cost) def objective_function(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) cost = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: exp_val = sum_product / match_count cost += weight * exp_val log_cost(cost) return cost ''' RUNNING EXPERIMENTS ''' start_time = time.time() rmse_errors = [] print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 100, 200, 600, 1000, 1600] for num_operators in measurement_range: derandomized_hamiltonian = modified_derandomized_classical_shadow(observables_xyz, num_operators, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) optimizer = SPSA(maxiter=2000) cost_function = partial(objective_function, derandomized_hamiltonian) expectation_values = [] num_experiments = 3 for iteration in range(num_experiments): cost_history = [] params = np.random.rand(ansatz.num_parameters) result = optimizer.minimize(fun=cost_function, x0=params) minimal_cost = min_cost() expectation_values.append(minimal_cost) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, minimal_cost)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - EXPECTED_EIGENVALUE)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) points = measurement_range num_points = len(measurement_range) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='SPSA(maxiter=2000)') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
# Installation of the requirements #!python -m pip install -r requirements.txt ''' (C) Renata Wong 2023 Qiskit code for testing fidelity of randomised classical shadow on the ground state energy of molecules. Procedure: 1. Choose a variational ansatz with initial parameters selected at random. 2. Generate a set of random basis change operators. 3. Apply the random operators to change bases in the ansatz. 4. Measure the ansatz in the Pauli Z basis and store the results as a shadow. 5. Obtain the expectation value of the molecular Hamiltonian from the shadow. 6. Optimize for minimum Hamiltonian expectation value. 7. Feed the calculated angles/parameters back to the ansatz. 8. Repeat steps 3-7 till the optimization is completed. 9. Output the minimized expectation value of the molecular Hamiltonian and the mean-square-root-error. Note: Below we perform calculations on the molecular Hamiltonian of H_2. To perform calculations on other molecules, you will need to specify their geometry, charge and spin to replace the values in the driver. Note: predicting_quantum_properties module comes from https://github.com/hsinyuan-huang/predicting-quantum-properties ''' from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import BravyiKitaevMapper from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit.circuit.library import EfficientSU2 from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA import time import numpy as np from functools import partial import matplotlib.pyplot as plt from collections import Counter from predicting_quantum_properties.data_acquisition_shadow import randomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp # handle deprecation issues import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 # classically obtained ground state energy EXPECTED_EIGENVALUE = -1.86 # specifying the geometry of the molecule in question driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() hamiltonian = problem.hamiltonian # electronic Hamiltonian of the system second_q_op = hamiltonian.second_q_op() # The Bravyi-Kitaev repserentation of the Fermionic Hamiltonian mapper = BravyiKitaevMapper() bkencoded_hamiltonian = mapper.map(second_q_op) print(bkencoded_hamiltonian) def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = False) system_size, observables_xyze, hamiltonian_coefficients = hamiltonian_data #print('HAMILTONIAN\n', observables_xyze) ''' VARIATIONAL ANSATZ Note that for molecules other than H_2 you may need to specify a different number of reps. ''' reps = 1 ansatz = EfficientSU2(system_size, su2_gates=['rx', 'ry'], entanglement='circular', reps=reps, skip_final_rotation_layer=False) ansatz.decompose().draw('mpl') ''' COST FUNCTION ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) elif op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def min_cost(): return min(cost_history) def log_cost(cost): global cost_history cost_history.append(cost) def objective_function(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # generate a separate circuit for each basis change Pauli operator output_str = list(list(counts.keys())[list(counts.values()).index(1)]) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) cost = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: exp_val = sum_product / match_count cost += weight * exp_val log_cost(cost) return cost ''' RUNNING EXPERIMENTS ''' start_time = time.time() rmse_errors = [] print('NUMBER OF OPERATORS | RANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 100, 200, 600, 1000, 1600] for num_operators in measurement_range: basis_change = randomized_classical_shadow(num_operators, system_size) tuples = (tuple(pauli) for pauli in basis_change) counts = Counter(tuples) optimizer = SPSA(maxiter=2000) cost_function = partial(objective_function, basis_change) expectation_values = [] num_experiments = 5 for iteration in range(num_experiments): cost_history = [] params = np.random.rand(ansatz.num_parameters) result = optimizer.minimize(fun=cost_function, x0=params) minimal_cost = min_cost() expectation_values.append(minimal_cost) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, minimal_cost)) rmse_randomised_cs = np.sqrt(np.sum([(expectation_values[i] - EXPECTED_EIGENVALUE)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_randomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_randomised_cs)) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) points = measurement_range num_points = len(measurement_range) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='SPSA(maxiter=2000)') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
# Installation of the requirements #!python -m pip install -r requirements.txt ''' (C) Renata Wong 2023 Qiskit code for testing fidelity of randomised classical shadow on the ground state energy of molecules. Procedure: 1. Choose a variational ansatz with initial parameters selected at random. 2. Generate a set of random basis change operators. 3. Apply the random operators to change bases in the ansatz. 4. Measure the ansatz in the Pauli Z basis and store the results as a shadow. 5. Obtain the expectation value of the molecular Hamiltonian from the shadow. 6. Optimize for minimum Hamiltonian expectation value. 7. Feed the calculated angles/parameters back to the ansatz. 8. Repeat steps 3-7 till the optimization is completed. 9. Output the minimized expectation value of the molecular Hamiltonian and the mean-square-root-error. Note: Below we perform calculations on the molecular Hamiltonian of H_2. To perform calculations on other molecules, you will need to specify their geometry, charge and spin to replace the values in the driver. Note: predicting_quantum_properties module comes from https://github.com/hsinyuan-huang/predicting-quantum-properties ''' from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import BravyiKitaevMapper from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit.circuit.library import EfficientSU2 from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA import time import numpy as np from functools import partial import matplotlib.pyplot as plt from collections import Counter from predicting_quantum_properties.data_acquisition_shadow import randomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp # handle deprecation issues import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 # classically obtained ground state energy EXPECTED_EIGENVALUE = -1.86 # specifying the geometry of the molecule in question driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() hamiltonian = problem.hamiltonian # electronic Hamiltonian of the system second_q_op = hamiltonian.second_q_op() # The Bravyi-Kitaev repserentation of the Fermionic Hamiltonian mapper = BravyiKitaevMapper() bkencoded_hamiltonian = mapper.map(second_q_op) print(bkencoded_hamiltonian) def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = False) system_size, observables_xyze, hamiltonian_coefficients = hamiltonian_data #print('HAMILTONIAN\n', observables_xyze) ''' VARIATIONAL ANSATZ Note that for molecules other than H_2 you may need to specify a different number of reps. ''' reps = 1 ansatz = EfficientSU2(system_size, su2_gates=['rx', 'ry'], entanglement='circular', reps=reps, skip_final_rotation_layer=False) ansatz.decompose().draw('mpl') ''' COST FUNCTION ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) elif op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def min_cost(): return min(cost_history) def log_cost(cost): global cost_history cost_history.append(cost) def objective_function(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) cost = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: exp_val = sum_product / match_count cost += weight * exp_val log_cost(cost) return cost ''' RUNNING EXPERIMENTS ''' start_time = time.time() rmse_errors = [] print('NUMBER OF OPERATORS | RANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 100, 200, 600, 1000, 1600] for num_operators in measurement_range: basis_change = randomized_classical_shadow(num_operators, system_size) tuples = (tuple(pauli) for pauli in basis_change) counts = Counter(tuples) optimizer = SPSA(maxiter=2000) cost_function = partial(objective_function, basis_change) expectation_values = [] num_experiments = 5 for iteration in range(num_experiments): cost_history = [] params = np.random.rand(ansatz.num_parameters) result = optimizer.minimize(fun=cost_function, x0=params) minimal_cost = min_cost() expectation_values.append(minimal_cost) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, minimal_cost)) rmse_randomised_cs = np.sqrt(np.sum([(expectation_values[i] - EXPECTED_EIGENVALUE)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_randomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_randomised_cs)) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) points = measurement_range num_points = len(measurement_range) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='SPSA(maxiter=2000)') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer.primitives import Estimator as AerEstimator from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0; H 0 0 1.599", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['BeH2'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() #(num_particles=problem.num_particles) #BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) #estimator = AerEstimator() #estimator.set_options(approximation=False, shots=None) #vqe_solver = VQE(estimator, ansatz, SLSQP()) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, 50, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) print('Original derandomized Hamiltonian', counts) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # adjusting for this issue: while sum(counts.values()) != num_operators: for key, value in zip(counts.keys(), counts.values()): sum_counts = sum(counts.values()) if sum_counts == num_operators: break if sum_counts < num_operators: # generate additional operators from the existing ones by increasing the number of counts counts[key] += 1 if sum_counts > num_operators: # remove the element with highest count max_element_key = [k for k, v in counts.items() if v == max(counts.values())][0] counts[max_element_key] -= 1 print('Size-adjusted derandomized Hamiltonian', counts) # translate the Counter to a set of derandomized operators new_derandomized_hamiltonian = [] for key, value in counts.items(): for _ in range(value): new_derandomized_hamiltonian.append(list(key)) #print('Size-adjusted derandomized Hamiltonian', new_derandomized_hamiltonian) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(new_derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) import matplotlib.pyplot as plt points = measurement_range num_points = len(points) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='derandomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer.primitives import Estimator as AerEstimator from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0; H 0 0 1.599", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['H2'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() #(num_particles=problem.num_particles) #BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) #estimator = AerEstimator() #estimator.set_options(approximation=False, shots=None) #vqe_solver = VQE(estimator, ansatz, SLSQP()) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, 50, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) print('Original derandomized Hamiltonian', counts) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # adjusting for this issue: while sum(counts.values()) != num_operators: for key, value in zip(counts.keys(), counts.values()): sum_counts = sum(counts.values()) if sum_counts == num_operators: break if sum_counts < num_operators: # generate additional operators from the existing ones by increasing the number of counts counts[key] += 1 if sum_counts > num_operators: # remove the element with highest count max_element_key = [k for k, v in counts.items() if v == max(counts.values())][0] counts[max_element_key] -= 1 print('Size-adjusted derandomized Hamiltonian', counts) # translate the Counter to a set of derandomized operators new_derandomized_hamiltonian = [] for key, value in counts.items(): for _ in range(value): new_derandomized_hamiltonian.append(list(key)) #print('Size-adjusted derandomized Hamiltonian', new_derandomized_hamiltonian) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(new_derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) import matplotlib.pyplot as plt points = [50, 250, 500, 750, 1000, 1250, 1500, 1750] num_points = len(points) rmse_errors = [0.1069869635064184, 0.07725001066018326, 0.05225116371481676, 0.042165636875291464, 0.051653435360326294, 0.03145057406737202, 0.03650841505283894, 0.03864886899799828] plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='derandomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer.primitives import Estimator as AerEstimator from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0; H 0 0 1.599", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['H2O'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) #estimator = AerEstimator() #estimator.set_options(approximation=True, shots=None) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, 50, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) print('Original derandomized Hamiltonian', counts) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # adjusting for this issue: while sum(counts.values()) != num_operators: for key, value in zip(counts.keys(), counts.values()): sum_counts = sum(counts.values()) if sum_counts == num_operators: break if sum_counts < num_operators: # generate additional operators from the existing ones by increasing the number of counts counts[key] += 1 if sum_counts > num_operators: # remove the element with highest count max_element_key = [k for k, v in counts.items() if v == max(counts.values())][0] counts[max_element_key] -= 1 print('Size-adjusted derandomized Hamiltonian', counts) # translate the Counter to a set of derandomized operators new_derandomized_hamiltonian = [] for key, value in counts.items(): for _ in range(value): new_derandomized_hamiltonian.append(list(key)) #print('Size-adjusted derandomized Hamiltonian', new_derandomized_hamiltonian) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(new_derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) import matplotlib.pyplot as plt points = measurement_range num_points = len(points) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='derandomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer.primitives import Estimator as AerEstimator from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0; H 0 0 1.599", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['LiH'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() #(num_particles=problem.num_particles) #BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) #estimator = AerEstimator() #estimator.set_options(approximation=False, shots=None) #vqe_solver = VQE(estimator, ansatz, SLSQP()) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, 50, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) print('Original derandomized Hamiltonian', counts) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # adjusting for this issue: while sum(counts.values()) != num_operators: for key, value in zip(counts.keys(), counts.values()): sum_counts = sum(counts.values()) if sum_counts == num_operators: break if sum_counts < num_operators: # generate additional operators from the existing ones by increasing the number of counts counts[key] += 1 if sum_counts > num_operators: # remove the element with highest count max_element_key = [k for k, v in counts.items() if v == max(counts.values())][0] counts[max_element_key] -= 1 print('Size-adjusted derandomized Hamiltonian', counts) # translate the Counter to a set of derandomized operators new_derandomized_hamiltonian = [] for key, value in counts.items(): for _ in range(value): new_derandomized_hamiltonian.append(list(key)) #print('Size-adjusted derandomized Hamiltonian', new_derandomized_hamiltonian) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(new_derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) import matplotlib.pyplot as plt points = measurement_range num_points = len(points) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='derandomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer.primitives import Estimator as AerEstimator from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0; H 0 0 1.599", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['NH3'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() #ParityMapper(num_particles=problem.num_particles) #BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) #estimator = AerEstimator() #estimator.set_options(approximation=True, shots=None) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, 50, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) print('Original derandomized Hamiltonian', counts) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # adjusting for this issue: while sum(counts.values()) != num_operators: for key, value in zip(counts.keys(), counts.values()): sum_counts = sum(counts.values()) if sum_counts == num_operators: break if sum_counts < num_operators: # generate additional operators from the existing ones by increasing the number of counts counts[key] += 1 if sum_counts > num_operators: # remove the element with highest count max_element_key = [k for k, v in counts.items() if v == max(counts.values())][0] counts[max_element_key] -= 1 print('Size-adjusted derandomized Hamiltonian', counts) # translate the Counter to a set of derandomized operators new_derandomized_hamiltonian = [] for key, value in counts.items(): for _ in range(value): new_derandomized_hamiltonian.append(list(key)) #print('Size-adjusted derandomized Hamiltonian', new_derandomized_hamiltonian) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(new_derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) import matplotlib.pyplot as plt points = measurement_range num_points = len(points) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='derandomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The molecule tested is H2. The shadow is constructed based on derandomized Hamiltonian. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit.circuit.library import TwoLocal, RealAmplitudes from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit_nature.second_q.circuit.library import UCCSD from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) print(bkencoded_hamiltonian) def process_hamiltonian(hamiltonian, derandomize = False): """ For use in derandomization and as input in the function estimate_exp, the Hamiltonian needs to be reformatted from SparsePauliOp to a list of the form [[(X/Y/Z, position), (X/Y/Z, position)], [...], ...] For derandomization, the all-identity Hamiltonian term is removed. For use in estimating expectation values, the all-identity Hamiltonian term is retained as the empty list []. hamiltonian: the problem's qubit Hamiltonian of type SparsePauliOp derandomize: if True: return the Hamiltonian formatted for derandomization as well as for use in calculating the expectation value if False: return the Hamiltonian formatted for calculating the expectation value only """ hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data #print('HAMILTONIAN\n', observables_xyze) def basis_change_circuit(pauli_op): """ Generating circuit with just the basis change operators. pauli_op: n-qubit Pauli operator that indicates the change of basis """ basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): """ Calculate the ground state energy from a shadow represeantation of performed measurements. operators: the derandomized Hamiltonian params: set of optimal parameters, obtained from VQE run, to be used in the ansatz for shadow generation """ backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ansatz = RealAmplitudes(num_qubits=system_size, reps=8, entanglement='linear') ansatz.decompose().draw('mpl') ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. estimator.set_options(shots = None) vqe_solver = VQE(estimator, ansatz, SLSQP(maxiter=2000)) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) ''' EXPERIMENTS ''' start_time = time.time() rmse_errors = [] print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = modified_derandomized_classical_shadow(observables_xyz, num_operators, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) points = measurement_range num_points = len(measurement_range) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='derandomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1) ''' ESTIMATE THE HAMILTONIAN ON OPTIMAL PARAMETERS ''' qc = ansatz.bind_parameters(result.raw_result.optimal_point) job_ham = estimator.run(qc, bkencoded_hamiltonian) result_h = job_ham.result() print(f">>> Expectation value of the Hamiltonian: {result_h.values[0]}") expectation_values = [] for index, term in enumerate(bkencoded_hamiltonian.paulis): job = estimator.run(qc, term) #print(f">>> Job ID: {job.job_id()}") #print(f">>> Job Status: {job.status()}") result2 = job.result() #print(f">>> {result2}") expval = result2.values[0] expectation_values.append(expval) print(" > Expectation value of {} with coeff {}: {}".format(term, bkencoded_hamiltonian.coeffs.real[index], expval)) total_expval = 0.0 for index, expval in enumerate(expectation_values): total_expval += expval * bkencoded_hamiltonian.coeffs.real[index] print('>>> Total expectation value from summing up expectation values of all terms', total_expval)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0.5; H 0 0 0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['H2', 'LiH', 'BeH2', 'H2O', 'NH3'] for molecule in MOLECULES: if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = modified_derandomized_classical_shadow(observables_xyz, num_operators, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) points = measurement_range num_points = len(measurement_range) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label=molecule) plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time)))
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0.5; H 0 0 0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['H2', 'LiH', 'BeH2', 'H2O', 'NH3'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50]#, 250, 500, 750, 1000, 1250, 1500, 1750] molecules_avg_rmse = [] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, num_operators, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # Therefore, a modification may be necessary. expectation_values = [] num_experiments = 1 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) print(all_molecules_rmse_errors)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The shadow is constructed based on derandomized Hamiltonian. The molecules tested are: H2 (6-31s basis), LiH (sto3g basis), BeH2 (sto3g), H2O (sto3g), and NH3 (sto3g). The coordinates for NH3 were taken from 'Algorithms for Computer Detection of Symmetry Elementsin Molecular Systems'. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper, JordanWignerMapper, ParityMapper from qiskit_nature.second_q.circuit.library import UCCSD, HartreeFock from qiskit_nature.second_q.algorithms import VQEUCCFactory from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from modified_derandomization import modified_derandomized_classical_shadow from predicting_quantum_properties.data_acquisition_shadow import derandomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 ''' DEFINING DRIVERS FOR THE MOLECULES ''' H2_driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) LiH_driver = PySCFDriver( atom="Li 0 0 0.5; H 0 0 0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) BeH2_driver = PySCFDriver( atom="Be 0 0 0; H 0 0 1.3264; H 0 0 -1.3264", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) H2O_driver = PySCFDriver( atom="O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) NH3_driver = PySCFDriver( atom="N 0 0 0; H 0 0 1.008000; H 0.950353 0 -0.336000; H -0.475176 -0.823029 -0.336000", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) ''' FORMATTING HAMILTONIAN ''' def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients ''' COST FUNCTION AND HELPER FUNCTIONS ''' def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' EXPERIMENTS ''' start_time = time.time() all_molecules_rmse_errors = [] # CALCULATING FERMIONIC HAMILTONIAN AND CONVERTING TO QUBIT HAMILTONIAN MOLECULES = ['H2', 'LiH', 'BeH2', 'H2O', 'NH3'] for molecule in MOLECULES: rmse_errors = [] if molecule == 'H2': problem = H2_driver.run() if molecule == 'LiH': problem = LiH_driver.run() if molecule == 'BeH2': problem = BeH2_driver.run() if molecule == 'H2O': problem = H2O_driver.run() if molecule == 'NH3': problem = NH3_driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() bk_mapper = BravyiKitaevMapper() bkencoded_hamiltonian = bk_mapper.map(second_q_op) #print('Qubit Hamiltonian in Bravyi-Kitaev encoding', bkencoded_hamiltonian) # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = True) system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients = hamiltonian_data ''' VARIATIONAL ANSATZ ''' ansatz = UCCSD( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, initial_state=HartreeFock( problem.num_spatial_orbitals, problem.num_particles, bk_mapper, ), ) ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' #estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. #estimator.set_options(shots = None) vqe_solver = VQE(Estimator(), ansatz, SLSQP()) vqe_solver.initial_point = np.zeros(ansatz.num_parameters) calc = GroundStateEigensolver(bk_mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) #print('NUMBER OF OPERATORS | DERANDOMISED OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: derandomized_hamiltonian = derandomized_classical_shadow(observables_xyz, num_operators, system_size, weight=absolute_coefficients) tuples = (tuple(pauli) for pauli in derandomized_hamiltonian) counts = Counter(tuples) print('Original derandomized Hamiltonian', counts) # derandomized classical shadow will usually either undergenerate or overgenerate derandomized operators # adjusting for this issue: while sum(counts.values()) != num_operators: for key, value in zip(counts.keys(), counts.values()): sum_counts = sum(counts.values()) if sum_counts == num_operators: break if sum_counts < num_operators: # generate additional operators from the existing ones by increasing the number of counts counts[key] += 1 if sum_counts > num_operators: # remove the element with highest count max_element_key = [k for k, v in counts.items() if v == max(counts.values())][0] counts[max_element_key] -= 1 #print('Size-adjusted derandomized Hamiltonian', counts) # translate the Counter to a set of derandomized operators new_derandomized_hamiltonian = [] for key, value in counts.items(): for _ in range(value): new_derandomized_hamiltonian.append(list(key)) #print('Size-adjusted derandomized Hamiltonian', new_derandomized_hamiltonian) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(new_derandomized_hamiltonian, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_derandomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_derandomised_cs) print('{} | {} | {}'.format(num_operators, counts, rmse_derandomised_cs)) all_molecules_rmse_errors.append(rmse_errors) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) print(all_molecules_rmse_errors) # all_molecules_rmse_errors contains a list of lists of errors ''' points = measurement_range num_points = len(measurement_range) for molecule, index in zip(molecules, enumerate(all_molecules_rmse_errors)): plt.plot([i for i in points], [all_molecules_rmse_errors[index][i] for i in range(num_points)], 'r', label=molecule) plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1) '''
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' (C) 2023 Renata Wong Electronic structure problem with classical shadows, as presented in https://arxiv.org/abs/2103.07510 This code uses Qiskit as platform. The molecule tested is H2. The shadow is vanilla, i.e. uses randomized basis change operations. ''' import time import numpy as np from collections import Counter import matplotlib.pyplot as plt from qiskit import QuantumCircuit, execute from qiskit_aer import QasmSimulator from qiskit.quantum_info import SparsePauliOp from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.algorithms import GroundStateEigensolver from qiskit_nature.second_q.mappers import BravyiKitaevMapper from qiskit.circuit.library import TwoLocal from qiskit.algorithms.minimum_eigensolvers import VQE from qiskit.algorithms.optimizers import SLSQP, COBYLA, SPSA # Estimator primitive is based on the Statevector construct = algebraic simulation from qiskit.primitives import Estimator from qiskit.utils import algorithm_globals from predicting_quantum_properties.data_acquisition_shadow import randomized_classical_shadow from predicting_quantum_properties.prediction_shadow import estimate_exp # taking care of deprecation issues import qiskit_nature qiskit_nature.settings.use_pauli_sum_op = False import h5py H5PY_DEFAULT_READONLY=1 driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="6-31g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() hamiltonian = problem.hamiltonian second_q_op = hamiltonian.second_q_op() mapper = BravyiKitaevMapper() bkencoded_hamiltonian = mapper.map(second_q_op) print(bkencoded_hamiltonian) def process_hamiltonian(hamiltonian, derandomize = False): hamiltonian_observables = [] hamiltonian_coefficients = [] for observable in hamiltonian.paulis: op_list = [] for op_index, pauli_op in enumerate(observable): pauli_op = str(pauli_op) if pauli_op == 'I' or pauli_op == 'X' or pauli_op == 'Y' or pauli_op == 'Z': op_list.append((pauli_op, op_index)) hamiltonian_observables.append(op_list) hamiltonian_coefficients = hamiltonian.coeffs.real system_size = len(hamiltonian_observables[0]) # removing all occurrences of Pauli-I, for all-Pauli-I there is an empty list left # these observables are needed for estimate_exp() observables_xyze = [] for observable in hamiltonian_observables: XYZE = [] for pauli in observable: if pauli[0] != 'I': XYZE.append(pauli) observables_xyze.append(XYZE) # derandomisation procedure requires that coefficients are non-negative if derandomize == True: absolute_coefficients = [abs(coeffcient) for coeffcient in hamiltonian_coefficients] # removing the empty list as well # these observables are needed for derandomisation procedure observables_xyz = [] for idx, observable in enumerate(observables_xyze): if observable: observables_xyz.append(observable) else: absolute_coefficients.pop(idx) return system_size, observables_xyze, observables_xyz, hamiltonian_coefficients, absolute_coefficients return system_size, observables_xyze, hamiltonian_coefficients # process the Hamiltonian to obtain properly formatted data hamiltonian_data = process_hamiltonian(bkencoded_hamiltonian, derandomize = False) system_size, observables_xyze, hamiltonian_coefficients = hamiltonian_data #print('HAMILTONIAN\n', observables_xyze) ''' VARIATIONAL ANSATZ Note that for molecules other than H_2 you may need to specify a different number of reps. ''' reps = 5 ansatz = TwoLocal(num_qubits=system_size, reps=reps, rotation_blocks=['ry', 'rz'], entanglement_blocks='cz', skip_final_rotation_layer=False) ansatz.decompose().draw('mpl') def basis_change_circuit(pauli_op): # Generating circuit with just the basis change operators # # pauli_op: n-qubit Pauli operator basis_change = QuantumCircuit(ansatz.num_qubits, ansatz.num_qubits) for idx, op in enumerate(pauli_op): if op == 'X': basis_change.h(idx) if op == 'Y': basis_change.h(idx) basis_change.p(-np.pi/2, idx) return basis_change def ground_state_energy_from_shadow(operators, params): backend = QasmSimulator(method='statevector', shots=1) pauli_op_dict = Counter(tuple(x) for x in operators) shadow = [] for pauli_op in pauli_op_dict: qc = ansatz.bind_parameters(params) qc = qc.compose(basis_change_circuit(pauli_op)) qc.measure(reversed(range(system_size)), range(system_size)) result = execute(qc, backend, shots=pauli_op_dict[pauli_op]).result() counts = result.get_counts() # given in order q0 q1 ... qn-1 after register reversal in qc.measure for count in counts: for _ in range(counts[count]): # number of repeated measurement values output_str = list(count) output = [int(i) for i in output_str] eigenvals = [x+1 if x == 0 else x-2 for x in output] snapshot = [(op, eigenval) for op, eigenval in zip(pauli_op, eigenvals)] shadow.append(snapshot) expectation_value = 0.0 for term, weight in zip(observables_xyze, hamiltonian_coefficients): sum_product, match_count = estimate_exp(shadow, term) if match_count != 0: expectation_value += (weight * sum_product / match_count) return expectation_value ''' Running VQE on the Hamiltonian obtained from PySCFDriver using Statevector simulator (Estimator primitive) ''' estimator = Estimator() # If shots = None, it calculates the exact expectation values. Otherwise, it samples from normal distributions # with standard errors as standard deviations using normal distribution approximation. estimator.set_options(shots = None) vqe_solver = VQE(estimator, ansatz, SPSA(maxiter=3000)) calc = GroundStateEigensolver(mapper, vqe_solver) result = calc.solve(problem) print(result.raw_result) ''' EXPERIMENTS ''' start_time = time.time() rmse_errors = [] print('NUMBER OF RANDOM OPERATORS | AVERAGE RMSE ERROR\n') measurement_range = [50, 250, 500, 750, 1000, 1250, 1500, 1750] for num_operators in measurement_range: randomized_basis_change = randomized_classical_shadow(num_operators, system_size) tuples = (tuple(pauli) for pauli in randomized_basis_change) counts = Counter(tuples) expectation_values = [] num_experiments = 10 for iteration in range(num_experiments): expectation_value = ground_state_energy_from_shadow(randomized_basis_change, result.raw_result.optimal_point) expectation_values.append(expectation_value) print("EXPERIMENT {}: GROUND STATE ENERGY FOUND = {}".format(iteration, expectation_value)) rmse_randomised_cs = np.sqrt(np.sum([(expectation_values[i] - result.raw_result.optimal_value)**2 for i in range(num_experiments)])/num_experiments) rmse_errors.append(rmse_randomised_cs) print('{} | {}'.format(num_operators, rmse_randomised_cs)) elapsed_time = time.time() - start_time print("Execution time = ", time.strftime("%H:%M:%S", time.gmtime(elapsed_time))) points = measurement_range num_points = len(measurement_range) plt.plot([i for i in points], [rmse_errors[i] for i in range(num_points)], 'r', label='randomized classical shadow') plt.xlabel('Number of measurements') plt.ylabel('Average RMSE error') plt.legend(loc=1)
https://github.com/renatawong/classical-shadow-vqe
renatawong
''' CALCULATING NUMBER OF MEASUREMENTS NEEDED AGAINST AN ERROR RATE Example: H2 molecule in sto3g basis ''' import numpy as np from qiskit_nature.units import DistanceUnit from qiskit_nature.second_q.drivers import PySCFDriver from qiskit_nature.second_q.mappers import BravyiKitaevMapper # specifying the geometry of the molecule in question driver = PySCFDriver( atom="H 0 0 0; H 0 0 0.735", basis="sto3g", charge=0, spin=0, unit=DistanceUnit.ANGSTROM, ) problem = driver.run() hamiltonian = problem.hamiltonian # electronic Hamiltonian of the system second_q_op = hamiltonian.second_q_op() # The Bravyi-Kitaev representation of the Fermionic Hamiltonian mapper = BravyiKitaevMapper() bkencoded_hamiltonian = mapper.map(second_q_op) print(bkencoded_hamiltonian) def shadow_bound(error, observables, failure_rate=0.01): """ Method taken from: https://pennylane.ai/qml/demos/tutorial_classical_shadows Calculate the shadow bound for the Pauli measurement scheme. Implements Eq. (S13) from https://arxiv.org/pdf/2002.08953.pdf Args: error (float): The error on the estimator. observables (list) : List of matrices corresponding to the observables we intend to measure. failure_rate (float): Rate of failure for the bound to hold. Returns: An integer that gives the number of samples required to satisfy the shadow bound and the chunk size required attaining the specified failure rate. """ M = len(observables) K = 2 * np.log(2 * M / failure_rate) shadow_norm = ( lambda op: np.linalg.norm( op - np.trace(op) / 2 ** int(np.log2(op.shape[0])), ord=np.inf ) ** 2 ) N = 34 * max(shadow_norm(o) for o in observables) / error ** 2 return int(np.ceil(N * K)), int(K) matrix_observables = [obs.to_matrix().real for obs in bkencoded_hamiltonian] num_measurements, chunk_size = shadow_bound(error=2e-1, observables=matrix_observables, failure_rate=0.01) print('Number of measurements (error=2e-1):', num_measurements)
https://github.com/TendTo/Quantum-random-walk-simulation
TendTo
import numpy as np import networkx as nx from networkx import hypercube_graph from networkx.drawing.nx_agraph import graphviz_layout import matplotlib.pyplot as plt from typing import Callable from qiskit import QuantumCircuit, Aer, QuantumRegister, ClassicalRegister, transpile from qiskit.quantum_info import Operator from qiskit.tools.visualization import plot_histogram, plot_bloch_vector from qiskit_aer import AerSimulator from numpy import pi coords = [1, np.pi / 2, 0] # [Radius, Theta, Phi] plot_bloch_vector(coords, coord_type="spherical") qc = QuantumCircuit(2) qc.h(0) qc.x(1) qc.x(0) qc.y(1) qc.h(0) qc.draw("mpl", initial_state=True) qc = QuantumCircuit(2) qc.x(0) qc.cx(0, 1) qc.x(0) qc.draw("mpl", initial_state=True) pos = {1: [0.75, 1.0], 2: [0.75, 0.15], 3: [0.5, -0.5], 4: [1.0, -0.5]} U = [ [0.1, 0.2, 0.6, 0.1], [0.4, 0.3, 0.2, 0.1], [0.4, 0.2, 0.1, 0.3], [0.1, 0.0, 0.1, 0.8], ] G = nx.DiGraph(directed=True) for i in range(1, 5): G.add_node(i) for j in range(1, 5): G.add_edge(i, j, weight=U[i - 1][j - 1]) nx.draw(G, pos=pos, with_labels=True) nx.draw_networkx_edge_labels( G, pos=pos, edge_labels=nx.get_edge_attributes(G, "weight") ) plt.show() n_steps = 50 # Number of steps the walker will take pr = 0.5 # Probability of the walker stepping to the right initial_position = 0 # Initial position of our walker def random_walk(pr: float, n_steps: int, initial_pos: int) -> int: """Run a random walk with N steps and a probability of stepping to the right of pr. Args: pr: probability of stepping to the right N: number of steps i: initial position Returns: The final position of the walker """ position = initial_pos for _ in range(n_steps): coin_flip = list( np.random.choice(2, 1, p=[1 - pr, pr]) ) # Flips our weighted coin position += 2 * coin_flip[0] - 1 # Moves the walker according to the coin flip return position print(f"The walker is located at: x = {random_walk(pr, n_steps, initial_position)}") def dist(n_runs: int, n_steps: int): """Plot the distribution of the random walk. Args: runs: number of runs N: number of steps """ positions = range(-1 * n_steps, n_steps + 1) instances = [0 for _ in range(-1 * n_steps, n_steps + 1)] for _ in range(n_runs): result = random_walk(pr, n_steps, initial_position) instances[positions.index(result)] += 1 plt.bar(positions, [n / n_runs for n in instances]) plt.show() dist(10000, n_steps) # Number of qubits n = 3 # Initial state initial_state = np.array([1] + [0] * (2**n - 1)) assert initial_state.size == 2**n # Hadamard gate hadamard_gate_base = 1 / np.sqrt(2) * np.array([[1, 1], [1, -1]]) hadamard_gate = hadamard_gate_base for i in range(n - 1): hadamard_gate = np.kron(hadamard_gate, hadamard_gate_base) # Grover's gate grover_gate = np.full((2**n, 2**n), 1 / 2 ** (n - 1)) - np.eye(2**n) # Apply gates hadamard_res = np.dot(initial_state, hadamard_gate) hadamard_res = np.square(hadamard_res) grover_res = np.dot(initial_state, grover_gate) grover_res = np.square(grover_res) # Plot results fig, axes = plt.subplots(2) plt.suptitle("Hadamard vs Grover gates (|000>)") for ax, res in zip(axes, [hadamard_res, grover_res]): ax.set_ylabel("Probability") ax.set_ylim(0, 1) ax.bar(tuple(bin(i)[2:].zfill(n) for i in range(res.size)), res) plt.show() n_walker_qubits = 4 # The number of qubits used to represent the position of the walker def coined_walk_circuit( n_walker_qubits: int, ) -> tuple[QuantumCircuit, QuantumRegister, QuantumRegister, ClassicalRegister]: """Create a quantum circuit for the quantum walk. Args: n_walker_qubits: number of qubits used to represent the position of the walker Returns: a tuple containing the circuit, the walker qubits, the coin qubits and the classical register to store the output """ walker_r = QuantumRegister(n_walker_qubits, name="w") coin_r = QuantumRegister(1, name="c") # The coin requires only one qubit classic_r = ClassicalRegister(n_walker_qubits, name="output") qc = QuantumCircuit(walker_r, coin_r, classic_r) return qc, walker_r, coin_r, classic_r qc, _, _, _ = coined_walk_circuit(n_walker_qubits) qc.draw(output="mpl", initial_state=True) initial_position = 2 ** ( n_walker_qubits - 1 ) # The initial position of the walker is the middle of all possible positions initial_coin_value = 1 # The initial value of the coin is 0 def initialize_coined_walk_circuit( qc: QuantumCircuit, walker_r: QuantumRegister, coin_r: QuantumRegister, initial_position: int, initial_coin_value: int, ) -> QuantumCircuit: """Initialize the circuit with the initial position of the walker and the initial value of the coin. Args: qc: the quantum circuit walker_r: the quantum register containing the walker's position qubits coin_r: the quantum register containing the coin qubit initial_position: the initial position of the walker initial_coin_value: the initial value of the coin Returns: the initialized quantum circuit """ if initial_coin_value == 1: qc.x(coin_r) for i in range(n_walker_qubits): if initial_position & (1 << i): qc.x(walker_r[n_walker_qubits - i - 1]) qc.barrier() return qc qc, walker_r, coin_r, _ = coined_walk_circuit(n_walker_qubits) qc = initialize_coined_walk_circuit( qc, walker_r, coin_r, initial_position, initial_coin_value ) qc.draw(output="mpl", initial_state=True) def coined_walk_step( qc: QuantumCircuit, walker_r: QuantumRegister, coin_r: QuantumRegister ) -> QuantumCircuit: """Single step of the quantum walk. Args: qc: quantum circuit walker_r: the quantum register containing the walker's position qubits coin_r: the quantum register containing the coin qubit Returns: quantum circuit with an added walk step """ # "Flip" the coin vector qc.h(coin_r) # Implement the Addition Operator for i in reversed(range(len(walker_r))): # Qubits with less significant bits than the current one controls = [walker_r[v] for v in range(len(walker_r) - 1, i, -1)] controls.append(coin_r) # The coin qubit is also used as a control qc.mcx(controls, walker_r[i]) # Multi-controlled X gate if i != 0: qc.x(walker_r[i]) # Flip the qubit # Switch the coin vector qc.x(coin_r) # Implement the Subtraction Operator for i in range(len(walker_r)): if i != 0: qc.x(walker_r[i]) # Reverse the flip # Qubits with less significant bits than the current one controls = [walker_r[v] for v in range(len(walker_r) - 1, i, -1)] controls.append(coin_r) # The coin qubit is also used as a control qc.mcx(controls, walker_r[i]) # Multi-controlled X gate # Revert the switch of the coin vector qc.x(coin_r) return qc qc, walker_r, coin_r, _ = coined_walk_circuit(n_walker_qubits) qc = coined_walk_step(qc, walker_r, coin_r) qc.draw(output="mpl", initial_state=True) n_steps = 5 # The number of steps of the quantum walk def coined_walk( n_walker_qubits: int, n_steps: int, initial_position: int, initial_coin_value: int, init_func: Callable, ) -> QuantumCircuit: """Create a quantum circuit for the quantum walk. Args: n_walker_qubits: number of qubits used to represent the position of the walker n_steps: number of steps of the quantum walk initial_position: initial position of the walker initial_coin_value: initial value of the coin init_func: function used to initialize the circuit Returns: quantum circuit for the quantum walk """ qc, walker_r, coin_r, classic_r = coined_walk_circuit(n_walker_qubits) qc = init_func(qc, walker_r, coin_r, initial_position, initial_coin_value) for i in range(n_steps): step_gate = coined_walk_step(QuantumCircuit(walker_r, coin_r), walker_r, coin_r) qc.append(step_gate.to_gate(label=f"Step #{i + 1}"), walker_r[:] + coin_r[:]) qc.barrier() qc.measure(walker_r, reversed(classic_r)) return qc qc = coined_walk( n_walker_qubits, n_steps, initial_position, initial_coin_value, initialize_coined_walk_circuit, ) qc.draw(output="mpl", initial_state=True) n_walker_qubits = 6 # The number of qubits used to represent the position of the walker n_steps = 30 # The number of steps of the quantum walk initial_position = 2 ** ( n_walker_qubits - 1 ) # The initial position of the walker is the middle of all possible positions initial_coin_value = 0 # The initial value of the coin is 0 n_runs = 5000 # The number of runs of the quantum circuit qc = coined_walk( n_walker_qubits, n_steps, initial_position, initial_coin_value, initialize_coined_walk_circuit, ) def plot_results(qc: QuantumCircuit, n_runs: int, title: str): """Plot the results of the quantum walk. Args: qc: quantum circuit for the quantum walk n_runs: number of runs of the quantum circuit Returns: histogram of the results of the quantum walk """ simulator: AerSimulator = Aer.get_backend("aer_simulator") transpiled_qc = transpile(qc, simulator) results = simulator.run(transpiled_qc, shots=n_runs).result() counts = results.get_counts(transpiled_qc) counts = {int(k, 2): v for k, v in counts.items()} return plot_histogram(counts, title=title) plot_results(qc, n_runs, "Quantum Coined Walk") def initialize_balance_coined_walk_circuit( qc: QuantumCircuit, walker_r: QuantumRegister, coin_r: QuantumRegister, initial_position: int, initial_coin_value: int, ) -> QuantumCircuit: """Initialize the circuit with the initial position of the walker and the initial value of the coin. Set the coin qubit to |+> and apply the S gate to it to make sure that the coin operator keeps being balanced. Args: qc: the quantum circuit walker_r: the quantum register containing the walker's position qubits coin_r: the quantum register containing the coin qubit initial_position: the initial position of the walker initial_coin_value: the initial value of the coin Returns: the initialized quantum circuit """ if initial_coin_value == 1: qc.x(coin_r) qc.h(coin_r) qc.s(coin_r) for i in range(n_walker_qubits): if initial_position & (1 << i): qc.x(walker_r[n_walker_qubits - i - 1]) qc.barrier() return qc qc, walker_r, coin_r, _ = coined_walk_circuit(n_walker_qubits) qc = initialize_balance_coined_walk_circuit( qc, walker_r, coin_r, initial_position, initial_coin_value ) qc.draw(output="mpl", initial_state=True) n_walker_qubits = 6 # The number of qubits used to represent the position of the walker n_steps = 30 # The number of steps of the quantum walk initial_position = 2 ** ( n_walker_qubits - 1 ) # The initial position of the walker is the middle of all possible positions initial_coin_value = 0 # The initial value of the coin is 0 n_runs = 5000 # The number of runs of the quantum circuit qc = coined_walk( n_walker_qubits, n_steps, initial_position, initial_coin_value, initialize_balance_coined_walk_circuit, ) plot_results(qc, n_runs, "Balanced Quantum Coined Walk") n = 3 # Number of qubits G = hypercube_graph(n) # Create hypercube graph # Draw graph nx.draw( G, with_labels=True, pos=graphviz_layout(G, prog="dot"), node_color="#dddddd", node_size=2500, ) plt.show() n = 2 # Dimension of the hypercube def graph_walk_circuit( n: int, ) -> tuple[QuantumCircuit, QuantumRegister, QuantumRegister, ClassicalRegister]: """Create a quantum circuit for the graph walk. Args: n: number of qubits used to represent the position of the walker Returns: quantum circuit for the graph walk, walker register, coin register, and output register """ walker_r = QuantumRegister(2**n, name="w") coin_r = QuantumRegister(n, name="c") classic_r = ClassicalRegister(2**n, name="output") qc = QuantumCircuit(walker_r, coin_r, classic_r) return qc, walker_r, coin_r, classic_r qc, _, _, _ = graph_walk_circuit(n) qc.draw(output="mpl", initial_state=True) n = 2 # Dimension of the hypercube def grover_coin(coin_r: QuantumRegister) -> Operator: matrix_size = 2 ** len(coin_r) grover_matrix = np.full((matrix_size, matrix_size), 2 / matrix_size) - np.eye( matrix_size ) return Operator(grover_matrix) coin_r = QuantumRegister(n, name="c") qc = QuantumCircuit(coin_r) gc = grover_coin(coin_r) qc.unitary(gc, coin_r[:], label="Grover Coin") qc.draw(output="mpl", initial_state=True) n = 2 # Dimension of the hypercube def shift_operator( walker_r: QuantumRegister, coin_r: QuantumRegister ) -> QuantumCircuit: """Create a quantum circuit for the shift operator. Args: walker_r: the quantum register containing the walker's position qubits coin_r: the quantum register containing the coin qubit Returns: quantum circuit for the shift operator """ qc = QuantumCircuit(walker_r, coin_r) for i in reversed(range(len(walker_r))): qc.mcx(coin_r, walker_r[i]) qc.x(coin_r[-1]) for j in range(1, len(coin_r)): if i & ((1 << j) - 1) == 0: qc.x(coin_r[-(j + 1)]) return qc qc, walker_r, coin_r, _ = graph_walk_circuit(n) qc = shift_operator(walker_r, coin_r) qc.draw(output="mpl", initial_state=True) n = 2 # Dimension of the hypercube def graph_walk_step( walker_r: QuantumRegister, coin_r: QuantumRegister ) -> QuantumCircuit: """Create a quantum circuit for one step of the graph walk. Args: walker_r: the quantum register containing the walker's position qubits coin_r: the quantum register containing the coin qubit Returns: quantum circuit for one step of the graph walk """ shift = shift_operator(walker_r, coin_r) gc = grover_coin(coin_r) walk_step = QuantumCircuit(walker_r, coin_r) walk_step.unitary(gc, coin_r, label="Grover Coin") walk_step.compose(shift, inplace=True) return walk_step walk_step = graph_walk_step(walker_r, coin_r) walk_step.draw(output="mpl", initial_state=True) n = 2 # Dimension of the hypercube n_steps = 3 # Number of steps of the quantum walk def graph_walk( n: int, n_steps: int, ) -> QuantumCircuit: """Create a quantum circuit for the quantum walk over a graph. Args: n: dimension of the hypercube n_steps: number of steps of the quantum walk initial_position: initial position of the walker initial_coin_value: initial value of the coin Returns: quantum circuit for the quantum walk over a graph """ qc, walker_r, coin_r, classic_r = graph_walk_circuit(n) for i in range(n_steps): step_gate = graph_walk_step(walker_r, coin_r).to_gate(label=f"Step #{i + 1}") qc.append(step_gate, walker_r[:] + coin_r[:]) qc.barrier() qc.measure(walker_r, reversed(classic_r)) return qc qc = graph_walk(n, n_steps) qc.draw(output="mpl", initial_state=True) n = 2 # Dimension of the hypercube n_steps = 30 # Number of steps of the quantum walk n_runs = 5000 # Number of runs of the quantum circuit qc = graph_walk(n, n_steps) plot_results(qc, n_runs, "Quantum Walk on a Hypercube")
https://github.com/deveshq/Qiskit-Fall-Fest
deveshq
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, execute from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers.aer import QasmSimulator from numpy import pi from qiskit.circuit import Parameter, ParameterVector import numpy as np from numpy import pi, sin, cos, exp import cmath degree = 1 scaling = 1 coeffs = [0.15 + 0.15j]*degree coeff0 = 0.1 #Generate a Fourier series. def function(x): res = coeff0 for i,c in enumerate(coeffs): exponent = complex(0, scaling*(i+1)*x) conj_c = np.conjugate(c) res += c * np.exp(exponent) + conj_c * np.exp(-exponent) return np.real(res) #Original data points x = np.linspace(-6,6,70) y_0 = np.array([function(x_) for x_ in x]) from qiskit.circuit.library import TwoLocal from qiskit.opflow import CircuitStateFn, CircuitOp import matplotlib.pyplot as plt n = 2 qc = QuantumCircuit(n) num_parameters = 8 #Data encoding circuit def M(cir, x): for w in range(n): cir.rx(scaling*x, w) return cir #Trainable circuit block (Defining the ansatz) def U(theta): encode = TwoLocal(num_qubits = 2, reps = 1, rotation_blocks=['ry','rz'], entanglement_blocks='cx', entanglement='full', insert_barriers=True) return encode.assign_parameters(theta) #Defining the Quantum Model. Here we are mapping the data to the fourier series. def Quantum_model(cir, weights, x=None): weights = weights.reshape(2,num_parameters) cir = cir.compose(U(weights[0])) cir = cir.compose(M(cir, x)) cir = cir.compose(U(weights[1])) cir = CircuitStateFn(cir) weights = weights.reshape(1,2*num_parameters) circuit = QuantumCircuit(2) circuit.z(0) op = CircuitOp(circuit) return (cir.adjoint().compose(op).compose(cir).eval().real)*scaling scaling = 1 weight = 2*np.pi*np.random.random(size = (1,2*num_parameters)) random_y = [Quantum_model(qc, weight, x = x_) for x_ in x] plt.plot(x,random_y, c='blue') plt.plot(x,y_0, c = 'red') plt.show() def square_loss(targets, predictions): s = 0 for t, p in zip(targets, predictions): s = s + (t - p) ** 2 loss = s / 2*len(targets) return loss def cost(weights): y = y_0 predictions = [Quantum_model(qc,weights, x=x_) for x_ in x] return square_loss(y, predictions) import scipy.optimize as op weight2 = op.fmin(lambda w: cost(w), weight, xtol=0.0001, ftol=0.0001, maxiter=100, maxfun=None, full_output=0, disp=1, retall=0, callback=None) new_weights = np.array(weight2) trained_y = [Quantum_model(qc, new_weights, x = x_) for x_ in x] plt.plot(x, trained_y, c='blue') plt.plot(x,y_0, c = 'red') plt.show() #Computes the first 2*K+1 Fourier coefficients of a 2*pi periodic function. def fourier_coefficients(f, K): n_coeffs = 2*K+1 t = np.linspace(0, 2*np.pi, n_coeffs, endpoint=False) y = np.fft.rfft(f(t)) / t.size return y n_coeffs = len(new_weights) n_samples = 100 coeffs = [] def f(x): return np.array([Quantum_model(qc, new_weights, x=i) for i in x]) coeffs_sample = fourier_coefficients(f, n_coeffs) coeffs.append(coeffs_sample) coeffs = np.array(coeffs) coeffs_real = np.real(coeffs) coeffs_imag = np.imag(coeffs) n_coeffs = len(coeffs_real[0]) fig, ax = plt.subplots(1, n_coeffs, figsize=(15,4)) for idx, ax_ in enumerate(ax): ax_.set_title(r"$c_{}$".format(idx)) ax_.scatter(coeffs_real[:, idx], coeffs_imag[:, idx], s=35, facecolor='white', edgecolor='red') ax_.set_aspect("equal") ax_.set_ylim(-1, 1) ax_.set_xlim(-1, 1) plt.tight_layout(pad=0.5) plt.show()
https://github.com/SunilBoopalan/quantum-chess-Qiskit
SunilBoopalan
from chess import * SquareSet(BB_DIAG_ATTACKS[36][BB_DIAG_MASKS[36] & BB_RANKS[6]]) SquareSet(BB_SQUARES[0] | BB_SQUARES[1]) 3423421312222322111 & 222 board = Board() board.turn = True Nf3 = chess.Move.from_uci("g1f3") Ng5 = chess.Move.from_uci("f3g5") # board.push(Nf3) board.push(Nf3) board.push(Ng5) chess.Piece.from_symbol('P') board em_board = Board(fen = None)
https://github.com/SunilBoopalan/quantum-chess-Qiskit
SunilBoopalan
import qiskit from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import Aer, execute from qiskit.quantum_info.operators import Operator from qiskit.extensions import UnitaryGate, Initialize from qiskit import IBMQ import math backend = Aer.get_backend('qasm_simulator') class quantum_obj: def __init__(self, pos, piece): self.piece = piece self.qnum = { '0': [pos, 1] } self.ent = [] def split(self, i_add, pos1, pos2): ## i_pos = self.qnum[i_add][0] self.qnum[i_add + '0'] = ["", 0] self.qnum[i_add + '1'] = ["", 0] self.qnum[i_add + '0'][0] = pos1 self.qnum[i_add + '1'][0] = pos2 self.qnum[i_add + '0'][1] = self.qnum[i_add][1]/2.0 #probability of split piece is half of original piece self.qnum[i_add + '1'][1] = self.qnum[i_add][1]/2.0 del self.qnum[i_add] def entangle_oneblock(self, i_add, pos1, obj, obj_add): # return quantumobj, pos of quantumobj from in_bw_pieces ''' 1 2 3 a | P Q _ b | _ _ _ c | _ _ _ a1 to a3 If Q is classical, move cannot be made. If Q is not classical, P and Q get entangled. Let P[P at a1] = x Let P[Q at a2] = y After the move, P[P at a3] = x * (1 - y) P[P at a1] = x * y ''' prob_blocked_piece = self.qnum[i_add][1] prob_blocking_piece = obj.qnum[obj_add][1] x = prob_blocked_piece y = prob_blocking_piece a = x*y # prob_not_moved = prob_blocked*prob_blocking b = x*(1-y) # prob_moved = prob_blocked_piece*(1-prob_blocking_piece) self.qnum[i_add + '0'] = ["", 0] self.qnum[i_add + '1'] = ["", 0] self.qnum[i_add + '0'][0] = self.qnum[i_add][0] self.qnum[i_add + '1'][0] = pos1 self.qnum[i_add + '0'][1] = a self.qnum[i_add + '1'][1] = b del self.qnum[i_add] last_state = obj_add[:-1] + str(int(not(int(obj_add[-1])))) obj.ent += [(self, i_add+'1', obj_add), (self, i_add+'0', last_state)] # make sure that obj is quantumobj while calling! self.ent += [(obj, obj_add, i_add+'1'), (obj, last_state, i_add+'0')] def entangle_twoblock(self, i_add, pos1, pos2, obj1, obj1_add, obj2, obj2_add): #change pos parameter to address # Applicable when # - both positions are blocked, so entanglement with 2 pieces # obj1 is blocking pos1 and obj2 is blocking pos2 # return quantumobj, pos of quantumobj from in_bw_pieces ''' 1 2 3 a | P Y R b | X _ _ c | Q _ _ a1 to split (c1, a3) If both Q and R are classical, no move. Else, weighted split. Let P[P at a1] = x Let P[Y at a2] = y Let P[X at b1] = z After the move, P[P at a1] = x * P[both Q and R are there] = x*y*z P[P at a3] = x * ( P[Q not at a2, R at b1] + 0.5 * P[Q, R not there] ) = x*(1-y)*z + 0.5*x*(1-y)*(1-z) P[P at c1] = x * ( P[Q at a2, R not at b1] + 0.5 * P[Q, R not there] ) = x*y*(1-z) + 0.5*x*(1-y)*(1-z) #check Total prob = xyz + xz - xyz + xy - xyz + x - xy - xz + xyz = x # These hold up even if P, Q, R are classical ''' ''' 1. ob1 there, ob2 there - not possible (0) 2. ob1 there, ob2 not there - p(ob1) 3. ob1 not there, ob2 there - p(ob2) 4. ob1 not there, ob2 not there - (1-p(ob1))(1-p(ob2)) at pos1 when ob1 not there - c3 + 0.5*c4 at pos2 when ob2 not there - c2 + 0.5*c4 at ipos when ob1, ob2 there - c1 ''' prob_i_pos = self.qnum[i_add][1] prob_ob1 = obj1.qnum[obj1_add][1] prob_ob2 = obj2.qnum[obj2_add][1] if obj1 == obj2: prob_pos1 = prob_i_pos*prob_ob2 + 0.5*prob_i_pos*(1 - prob_ob1 - prob_ob2) prob_pos2 = prob_i_pos*prob_ob1 + 0.5*prob_i_pos*(1 - prob_ob1 - prob_ob2) self.qnum[i_add + '0'] = ["", 0] self.qnum[i_add + '1'] = ["", 0] self.qnum[i_add + '0'][0] = pos1 self.qnum[i_add + '0'][1] = prob_pos1 self.qnum[i_add + '1'][0] = pos2 self.qnum[i_add + '1'][1] = prob_pos2 last_state1 = obj1_add[:-1] + str(int(not(int(obj1_add[-1])))) last_state2 = obj2_add[:-1] + str(int(not(int(obj2_add[-1])))) obj1.ent += [(self, i_add+'0', obj1_add), (self, i_add+'1', last_state1)] # obj1 cannot coexist with i_add+'0' obj2.ent += [(self, i_add+'1', obj2_add), (self, i_add+'0', last_state2)] # obj2 cannot coexist with i_add+'1' self.ent += [(obj1, obj1_add, i_add+'0'), (obj1, last_state1, i_add+'1'), (obj2, obj2_add, i_add+'1'), (obj2, last_state2, i_add+'0')] else: prob_unmoved = prob_i_pos*prob_ob1*prob_ob2 prob_pos1 = prob_i_pos*(1-prob_ob1)*prob_ob2 + 0.5*prob_i_pos*(1-prob_ob1)*(1-prob_ob2) prob_pos2 = prob_i_pos*prob_ob1*(1-prob_ob2) + 0.5*prob_i_pos*(1-prob_ob1)*(1-prob_ob2) # a(bc+c-bc+b-bc+1-b-c+bc) = a self.qnum[i_add + '00'] = ["", 0] self.qnum[i_add + '01'] = ["", 0] self.qnum[i_add + '10'] = ["", 0] self.qnum[i_add + '00'][0] = self.qnum[i_add][0] self.qnum[i_add + '01'][0] = pos1 self.qnum[i_add + '10'][0] = pos2 self.qnum[i_add + '00'][1] = prob_unmoved self.qnum[i_add + '01'][1] = prob_pos1 self.qnum[i_add + '10'][1] = prob_pos2 last_state1 = obj1_add[:-1] + str(int(not(int(obj1_add[-1])))) last_state2 = obj2_add[:-1] + str(int(not(int(obj2_add[-1])))) obj1.ent += [(self, i_add+'01', obj1_add), (self, i_add+'00', last_state1)] # obj1 cannot coexist with i_add+'01' obj2.ent += [(self, i_add+'10', obj2_add), (self, i_add+'00', last_state2)] # obj2 cannot coexist with i_add+'10' self.ent += [(obj1, obj1_add, i_add+'01'), (obj1, last_state1, i_add+'00'), (obj2, obj2_add, i_add+'10'), (obj2, last_state2, i_add+'00')] del self.qnum[i_add] # classical cases matter here ''' Scaling up probabilities: A - 0.5 - found to not exist B - 0.25 --> (after killing A) 0.5 = 0.25/(0.25+0.25) = B/(B+C) C - 0.25 --> (after killing A) 0.5 ''' def detangle(self, add, obj): probs = 0 all_states = list(self.qnum.keys()) for i in all_states: if i.startswith(add): print('delete', i) del self.qnum[i] else: probs += self.qnum[i][1] for i in self.qnum: self.qnum[i][1] /= probs # for i in range(len(self.ent)): # # nested entanglement to be handled here # if self.ent[i][0] == obj: # self.ent.remove(self.ent[i]) # 2block fixage # peek at nested entanglement (>2 degrees of ent across >2 pieces) def meas(self): ''' 1 2 3 a | X Q Y b | R _ _ c | Z _ W PIECE1 P(b2, 0) - 1 P.split(a2, b1) # final Q(a2, 00) - 0.5 R(b1, 01) - 0.5 PIECE2 W(c3, 00) - 1/2 X(a1, 01) - 1/2 X.split(a3, c1) # final W(c3, 00) - 1/2 X(a1, 0100) - 1/8 Y(a3, 0101) - 3/16 Z(c1, 0110) - 3/16 PIECE2 is killer How to measure? Cannot pad 00 with zeroes, last 2 qubits can be anything (don't care condition) 0000 - 1/4*1/2 0001 - 1/4*1/2 0010 - 1/4*1/2 0011 - 1/4*1/2 0100 - 1/8 0101 - 3/16 0110 - 3/16 0111 - 0 1 2 3 4 0 1 1/2 9/16 9/16 1 0 1/2 7/16 7/16 ''' level = 0 for i in self.qnum: if len(i) > level: level = len(i) # probs = [(0,0)]*level # for i in self.qnum: # for j in range(0, len(i)): # if self.qnum[j][0] == '0': # probs[j][0] += 1 # else: # probs[j][1] += 1 # all_add = self.qnum.keys() # n = len(all_add) # for i in range(0, n): # if all_add[i] ## print(level) ''' states: 000 001 010 011 100 101 110 111 poss_states: 00 01 11 100 101 ''' params = [0+0.j]*(2**(level-1)) states = [bin(i)[2:].zfill(level-1) for i in range(0, 2**(level-1))] poss_states = list(self.qnum.keys()) poss_states = [poss_states[i][1:] for i in range(0, len(poss_states))] for i in range(0, len(poss_states)): if(len(poss_states[i]) < level): index = states.index(poss_states[i] + '0'*(level - 1 - len(poss_states[i]))) params[index] = self.qnum['0'+poss_states[i]][1]**0.5 + 0.j #Initializing: qr = QuantumRegister(level-1) cr = ClassicalRegister(level-1) ckt = QuantumCircuit(qr, cr) ckt.initialize(params, [qr[i] for i in range(level-1)]) # init_gate = Initialize(params) # init_gate.label = "init" # ckt.append(init_gate, [i for i in range(level-1)]) ckt.measure_all() ## print(ckt) job = execute(ckt, backend, shots = 1) res = job.result() # print(res.get_counts()) final_state = list(res.get_counts().keys())[0][:(level-1)] ## print(final_state) ## print(all_add) while(True): if(final_state in poss_states): break final_state = final_state[:-1] final_state = '0' + final_state print('Final state of piece2 : ', final_state) ## detangle print("Piece2 ent list : ", self.ent) for i in range(len(self.ent)): if final_state.startswith(self.ent[i][2]): print("Piece1 ent list : ", self.ent[i][0].ent) print("Entangled guy's states : ", self.ent[i][0].qnum) self.ent[i][0].detangle(self.ent[i][1], self) print("Entangled guy's states : ", self.ent[i][0].qnum) final_pos = self.qnum[final_state][0] self.qnum.clear() self.ent.clear() self.qnum['0'] = [final_pos, 1] print("States of piece2 after measuring : ", self.qnum) # Test cases # ''' # 1 2 3 # a | _ _ Q # b | P R _ # c | _ S _ # P - 00 (0.5) # Q - 010 (0.25) # R - 0110 (0.125) # S - 0111 (0.125) # ''' # piece1 = quantum_obj("a2") # piece1.split("0", "b1", "b2") # piece1.split("01", "a3", "c1") # piece1.split("011", "b2", "c2") # ''' # 1 2 3 # a | Z _ Q # b | P R _ # c | X S Y # P - 00 (0.5) # Q - 010 (0.25) # R - 0110 (0.125) # S - 0111 (0.125) # X - 000 (1/16 = 0.0625) [ignore X since obj1==obj2 for this test case] # Y - 00 (0.5 + 0.5*(1-0.5-0.125) = 0.6875) # Z - 01 (0.125 + 0.5*(1-0.5-0.125) = 0.3125) # piece1.ent - [piece2, "0", "00"] # piece2.ent - [piece1, "00", "0"] # ''' # piece2 = quantum_obj("c1") # piece2.entangle_twoblock("0", "c3", "a1", piece1, "0111", piece1, "00") # piece2.meas() # ''' # to-do # - restore old addresses after detangle (reduce level) # - ent_twoblock obj1 = obj2 case: prob (both being there) = 0 [done] # - integrate with main code # '''
https://github.com/RedHatParichay/qiskit-lancasterleipzig-2023
RedHatParichay
## Blank Code Cell ## Use only if you need to install the grader and/or Qiskit ## If you are running this notebook in the IBM Quantum Lab - you can ignore this cell !pip install qiskit !pip install 'qc-grader[qiskit] @ git+https://github.com/qiskit-community/Quantum-Challenge-Grader.git' event = "Qiskit Fall Fest" ## Write your code below here. Delete the current information and replace it with your own ## ## Make sure to write your information between the quotation marks! name = "Brian" age = "33" school = "UConn" ## Now press the "Run" button in the toolbar above, or press Shift + Enter while you're active in this cell ## You do not need to write any code in this cell. Simply run this cell to see your information in a sentence. ## print(f'My name is {name}, I am {age} years old, and I attend {school}.') ## Run this cell to make sure your grader is setup correctly %set_env QC_GRADE_ONLY=true %set_env QC_GRADING_ENDPOINT=https://qac-grading.quantum-computing.ibm.com from qiskit import QuantumCircuit # Create quantum circuit with 3 qubits and 3 classical bits # (we'll explain why we need the classical bits later) qc = QuantumCircuit(3,3) # return a drawing of the circuit qc.draw() ## You don't need to write any new code in this cell, just run it from qiskit import QuantumCircuit qc = QuantumCircuit(3,3) # measure all the qubits qc.measure([0,1,2], [0,1,2]) qc.draw(output="mpl") from qiskit.providers.aer import AerSimulator # make a new simulator object sim = AerSimulator() job = sim.run(qc) # run the experiment result = job.result() # get the results result.get_counts() # interpret the results as a "counts" dictionary from qiskit import QuantumCircuit from qiskit.providers.aer import AerSimulator ## Write your code below here ## ## Do not modify the code under this line ## qc.draw() sim = AerSimulator() # make a new simulator object job = sim.run(qc) # run the experiment result = job.result() # get the results answer1 = result.get_counts() # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex1a grade_ex1a(answer1) from qiskit import QuantumCircuit qc = QuantumCircuit(2) # We start by flipping the first qubit, which is qubit 0, using an X gate qc.x(0) # Next we add an H gate on qubit 0, putting this qubit in superposition. qc.h(0) # Finally we add a CX (CNOT) gate on qubit 0 and qubit 1 # This entangles the two qubits together qc.cx(0, 1) qc.draw(output="mpl") from qiskit import QuantumCircuit qc = QuantumCircuit(2, 2) ## Write your code below here ## ## Do not modify the code under this line ## answer2 = qc qc.draw(output="mpl") # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex1b grade_ex1b(answer2)
https://github.com/RedHatParichay/qiskit-lancasterleipzig-2023
RedHatParichay
## Blank Code Cell ## Use only if you need to install the grader and/or Qiskit ## If you are running this notebook in the IBM Quantum Lab - you can ignore this cell !pip install qiskit !pip install 'qc-grader[qiskit] @ git+https://github.com/qiskit-community/Quantum-Challenge-Grader.git' ## Run this cell to make sure your grader is setup correctly %set_env QC_GRADE_ONLY=true %set_env QC_GRADING_ENDPOINT=https://qac-grading.quantum-computing.ibm.com from qiskit import QuantumCircuit qc = QuantumCircuit(3, 3) ## Write your code below this line ## ## Do not change the code below here ## answer1 = qc qc.draw() # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex2a grade_ex2a(answer1) from qiskit import QuantumCircuit qc = QuantumCircuit(3, 3) qc.barrier(0, 1, 2) ## Write your code below this line ## ## Do not change the code below this line ## answer2 = qc qc.draw() # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex2b grade_ex2b(answer2) answer3: bool ## Quiz: evaluate the results and decide if the following statement is True or False q0 = 1 q1 = 0 q2 = 1 ## Based on this, is it TRUE or FALSE that the Guard on the left is a liar? ## Assign your answer, either True or False, to answer3 below answer3 = from qc_grader.challenges.fall_fest23 import grade_ex2c grade_ex2c(answer3) ## Quiz: Fill in the correct numbers to make the following statement true: ## The treasure is on the right, and the Guard on the left is the liar q0 = q1 = q2 = ## HINT - Remember that Qiskit uses little-endian ordering answer4 = [q0, q1, q2] # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex2d grade_ex2d(answer4) from qiskit import QuantumCircuit qc = QuantumCircuit(3) ## in the code below, fill in the missing gates. Run the cell to see a drawing of the current circuit ## qc.h(0) qc.barrier(0, 1, 2) qc.x(2) qc.cx(2, 0) qc.barrier(0, 1, 2) qc.cx(2, 1) qc.x(0) ## Do not change any of the code below this line ## answer5 = qc qc.draw(output="mpl") # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex2e grade_ex2e(answer5) from qiskit import QuantumCircuit, Aer, transpile from qiskit.visualization import plot_histogram ## This is the full version of the circuit. Run it to see the results ## quantCirc = QuantumCircuit(3) quantCirc.h(0), quantCirc.h(2), quantCirc.cx(0, 1), quantCirc.barrier(0, 1, 2), quantCirc.cx(2, 1), quantCirc.x(2), quantCirc.cx(2, 0), quantCirc.x(2) quantCirc.barrier(0, 1, 2), quantCirc.swap(0, 1), quantCirc.x(1), quantCirc.cx(2, 1), quantCirc.x(0), quantCirc.x(2), quantCirc.cx(2, 0), quantCirc.x(2) # Execute the circuit and draw the histogram measured_qc = quantCirc.measure_all(inplace=False) backend = Aer.get_backend('qasm_simulator') # the device to run on result = backend.run(transpile(measured_qc, backend), shots=1000).result() counts = result.get_counts(measured_qc) plot_histogram(counts) from qiskit.primitives import Sampler from qiskit.visualization import plot_distribution sampler = Sampler() result = sampler.run(measured_qc, shots=1000).result() probs = result.quasi_dists[0].binary_probabilities() plot_distribution(probs)
https://github.com/RedHatParichay/qiskit-lancasterleipzig-2023
RedHatParichay
## Blank Code Cell ## Use only if you need to install the grader and/or Qiskit ## If you are running this notebook in the IBM Quantum Lab - you can ignore this cell !pip install qiskit !pip install 'qc-grader[qiskit] @ git+https://github.com/qiskit-community/Quantum-Challenge-Grader.git' ## Run this cell to make sure your grader is setup correctly %set_env QC_GRADE_ONLY=true %set_env QC_GRADING_ENDPOINT=https://qac-grading.quantum-computing.ibm.com from qiskit import QuantumCircuit from qiskit.circuit import QuantumRegister, ClassicalRegister qr = QuantumRegister(1) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) # unpack the qubit and classical bits from the registers (q0,) = qr b0, b1 = cr # apply Hadamard qc.h(q0) # measure qc.measure(q0, b0) # begin if test block. the contents of the block are executed if b0 == 1 with qc.if_test((b0, 1)): # if the condition is satisfied (b0 == 1), then flip the bit back to 0 qc.x(q0) # finally, measure q0 again qc.measure(q0, b1) qc.draw(output="mpl", idle_wires=False) from qiskit_aer import AerSimulator # initialize the simulator backend_sim = AerSimulator() # run the circuit reset_sim_job = backend_sim.run(qc) # get the results reset_sim_result = reset_sim_job.result() # retrieve the bitstring counts reset_sim_counts = reset_sim_result.get_counts() print(f"Counts: {reset_sim_counts}") from qiskit.visualization import * # plot histogram plot_histogram(reset_sim_counts) qr = QuantumRegister(2) cr = ClassicalRegister(2) qc = QuantumCircuit(qr, cr) q0, q1 = qr b0, b1 = cr qc.h(q0) qc.measure(q0, b0) ## Write your code below this line ## ## Do not change the code below this line ## qc.measure(q1, b1) qc.draw(output="mpl", idle_wires=False) backend_sim = AerSimulator() job_1 = backend_sim.run(qc) result_1 = job_1.result() counts_1 = result_1.get_counts() print(f"Counts: {counts_1}") # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex3b grade_ex3b(qc) controls = QuantumRegister(2, name="control") target = QuantumRegister(1, name="target") mid_measure = ClassicalRegister(2, name="mid") final_measure = ClassicalRegister(1, name="final") base = QuantumCircuit(controls, target, mid_measure, final_measure) def trial( circuit: QuantumCircuit, target: QuantumRegister, controls: QuantumRegister, measures: ClassicalRegister, ): """Probabilistically perform Rx(theta) on the target, where cos(theta) = 3/5.""" ## Write your code below this line, making sure it's indented to where this comment begins from ## ## Do not change the code below this line ## qc = base.copy_empty_like() trial(qc, target, controls, mid_measure) qc.draw("mpl", cregbundle=False) # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex3c grade_ex3c(qc) def reset_controls( circuit: QuantumCircuit, controls: QuantumRegister, measures: ClassicalRegister ): """Reset the control qubits if they are in |1>.""" ## Write your code below this line, making sure it's indented to where this comment begins from ## ## Do not change the code below this line ## qc = base.copy_empty_like() trial(qc, target, controls, mid_measure) reset_controls(qc, controls, mid_measure) qc.measure(controls, mid_measure) qc.draw("mpl", cregbundle=False) # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex3d grade_ex3d(qc) # Set the maximum number of trials max_trials = 2 # Create a clean circuit with the same structure (bits, registers, etc) as the initial base we set up. circuit = base.copy_empty_like() # The first trial does not need to reset its inputs, since the controls are guaranteed to start in the |0> state. trial(circuit, target, controls, mid_measure) # Manually add the rest of the trials. In the future, we will be able to use a dynamic `while` loop to do this, but for now, # we statically add each loop iteration with a manual condition check on each one. # This involves more classical synchronizations than the while loop, but will suffice for now. for _ in range(max_trials - 1): reset_controls(circuit, controls, mid_measure) with circuit.if_test((mid_measure, 0b00)) as else_: # This is the success path, but Qiskit can't directly # represent a negative condition yet, so we have an # empty `true` block in order to use the `else` branch. pass with else_: ## Write your code below this line, making sure it's indented to where this comment begins from ## ## Do not change the code below this line ## # We need to measure the control qubits again to ensure we get their final results; this is a hardware limitation. circuit.measure(controls, mid_measure) # Finally, let's measure our target, to check that we're getting the rotation we desired. circuit.measure(target, final_measure) circuit.draw("mpl", cregbundle=False) # Grader Cell: Run this to submit your answer from qc_grader.challenges.fall_fest23 import grade_ex3e grade_ex3e(circuit) sim = AerSimulator() job = sim.run(circuit, shots=1000) result = job.result() counts = result.get_counts() plot_histogram(counts)
https://github.com/JavaFXpert/qiskit-plotting-app
JavaFXpert
# Do the necessary import for our program %matplotlib inline from qiskit import * from qiskit.aqua.algorithms import Grover from qiskit.aqua.components.oracles import LogicalExpressionOracle from qiskit.tools.visualization import plot_histogram import ipywidgets as widgets import matplotlib.pyplot as plt from IPython.display import clear_output SHOW_CIRCUIT = True def create_expanded_button(description, button_style): return widgets.Button(description=description, button_style=button_style, layout=widgets.Layout(height='auto', width='5%')) header_button = create_expanded_button('Header', 'success') left_button = create_expanded_button('Left', 'info') center_button = create_expanded_button('Center', 'warning') right_button = create_expanded_button('Right', 'info') footer_button = create_expanded_button('Footer', 'success') app_ui = widgets.AppLayout(header=None, left_sidebar=None, center=center_button, right_sidebar=None, footer=None) display(app_ui) log_expr_widget = widgets.Text( value='', description='Logical expression:', disabled=True ) out1 = widgets.Output() out2 = widgets.Output() rel_matrix = None names = ["A", "B", "C", "D"] num_names = len(names) REL_NONE = "" REL_GOOD = "good" REL_BAD = "bad" # Compute logical expression from dropdowns def compute_log_expr(): log_expr_str = "" good_rel_exist = False bad_rel_exist = False for col_num in range(num_names + 1): for row_num in range(num_names + 1): if col_num > row_num and row_num > 0: if rel_matrix[col_num][row_num].value == 1: #1 is good good_rel_exist = True break if good_rel_exist: log_expr_str = "(" for col_idx in range(num_names + 1): for row_idx in range(num_names + 1): if col_idx > row_idx and row_idx > 0: if rel_matrix[col_idx][row_idx].value == 1: #1 is good log_expr_str += "(" log_expr_str += rel_matrix[0][row_idx].value log_expr_str += " & " log_expr_str += rel_matrix[col_idx][0].value log_expr_str += ")|" if log_expr_str[-1] == '|': log_expr_str = log_expr_str[:-1] log_expr_str += ")" for col_num in range(num_names + 1): for row_num in range(num_names + 1): if col_num > row_num and row_num > 0: if rel_matrix[col_num][row_num].value == 2: #2 is bad bad_rel_exist = True break if bad_rel_exist: if good_rel_exist: log_expr_str += "&" bad_log_expr_str = "(" for col_idx in range(num_names + 1): for row_idx in range(num_names + 1): if col_idx > row_idx and row_idx > 0: if rel_matrix[col_idx][row_idx].value == 2: #2 is bad bad_log_expr_str += "~(" bad_log_expr_str += rel_matrix[0][row_idx].value bad_log_expr_str += " & " bad_log_expr_str += rel_matrix[col_idx][0].value bad_log_expr_str += ")&" if bad_log_expr_str[-1] == '&': bad_log_expr_str = bad_log_expr_str[:-1] bad_log_expr_str += ")" log_expr_str += bad_log_expr_str log_expr_widget.value = log_expr_str #def handle_log_expr_text_entered(text_widget): def handle_log_expr_text_entered(some_widget): with out1: clear_output() compute_log_expr() algorithm = Grover(LogicalExpressionOracle(log_expr_widget.value)) # Run the algorithm on a QASM simulator, printing the most frequently occurring result qasm_simulator_backend = BasicAer.get_backend('qasm_simulator') qasm_simulator_result = algorithm.run(qasm_simulator_backend) if SHOW_CIRCUIT: circuit = qasm_simulator_result['circuit'] with out1: display(plot_histogram(qasm_simulator_result['measurement'])) if SHOW_CIRCUIT: with out2: clear_output() display(circuit.draw(output='mpl')) log_expr_button = widgets.Button( description = "Run", ) # Relationship model for the grid def compute_rel_matrix_entry(col_num, row_num): entry = None if col_num == 0: if row_num > 0: entry = widgets.Label(value=names[row_num - 1]) else: entry = widgets.Label(value='') elif row_num == 0: entry = widgets.Label(value=names[col_num - 1]) elif col_num < row_num: entry = widgets.Dropdown( options=[('', 0), (REL_GOOD, 1), (REL_BAD, 2)], value=0, layout=widgets.Layout(width='auto', height='auto') ) else: entry = widgets.Label(value='') return entry rel_matrix = [[compute_rel_matrix_entry(i, j) for i in range(num_names + 1)] for j in range(num_names + 1)] for col_num in range(num_names + 1): for row_num in range(num_names + 1): if col_num > row_num and row_num > 0: rel_matrix[col_num][row_num].observe(handle_log_expr_text_entered, names='value') # Make Grid with name headings and dropdown relationships rel_gridbox = widgets.GridBox(children=[rel_matrix[col_idx][row_idx] for row_idx in [0, 1, 2, 3] for col_idx in [0, 2, 3, 4]], layout=widgets.Layout( width='100%', grid_template_columns='70px ' * len(names), grid_template_rows='30px ' * len(names), grid_gap='10px 10px') ) tab = widgets.Tab(children = [out1, out2], layout=widgets.Layout(height='auto', width='auto')) tab.set_title(0, 'Probabilities') if SHOW_CIRCUIT: tab.set_title(1, 'Circuit') app_header = widgets.Label(value = "Grover Search Party") center_pane = widgets.VBox([app_header, rel_gridbox, widgets.VBox([log_expr_widget, tab])]) app_ui.center = center_pane
https://github.com/JavaFXpert/qiskit-plotting-app
JavaFXpert
from qiskit import * from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor # quantum circuit to make a Bell state bell = QuantumCircuit(2, 2) bell.h(0) bell.cx(0, 1) meas = QuantumCircuit(2, 2) meas.measure([0,1], [0,1]) # execute the quantum circuit backend = BasicAer.get_backend('qasm_simulator') # the device to run on circ = bell+meas result = execute(circ, backend, shots=1000).result() counts = result.get_counts(circ) print(counts) plot_histogram(counts)
https://github.com/IffTech/UCLA-Qiskit-Intro
IffTech
# You'll always start off any Quantum circuit with...QuantumCircuit from qiskit import QuantumCircuit # Every quantum circuit has some number of quantum registers and classical registers that you get to define in advance # You can either pass one integer in to denote a fixed number of quantum registers # OR you can pass in two numbers, the first being the # of quantum registers and the second being the number of classical registers qc = QuantumCircuit(5) # creates empty circuit with 5 quantum registers qc = QuantumCircuit(3,1) # creates empty circuit with 3 quantum registers, 1 classical register # For this part of the workshop, we'll start simple with a one-qubit circuit and gradually work towards # larger qubit circuits qc = QuantumCircuit(1,1) # A blank circuit isn't really useful to us so lets add some gates! # There are two ways to add gates, the easier way is to do it like so: ## Apply an X gate to qubit 0 (the only qubit in this circuit) qc.x(0) ## Or to .append() them to the circuit ## The [0] tells qiskit to apply the gate to the 0th qubit (the first). from qiskit.circuit.library import XGate qc.append(XGate(), [0]) # to see the circuit, we can just use the .draw() method qc.draw() # Notice how despite two different methods for adding gates, we still see the same gate! # For a "shinier" representation of our circuit, we can tell Qiskit to leverage matplotlib qc.draw(output='mpl') # Awesome! Your first quantum circuit! # Before we actually run this on something, lets perform some "sanity checks" # We know that applying two pauli operators back to back should return the qubit to its original state (it essentially undoes itself) # So we expect the unitary matrix to be the identity. # We can access this information like so # Credit to Chistopher J. Wood, lead Qiskit Aer developer: https://quantumcomputing.stackexchange.com/a/14283 from qiskit.quantum_info import Operator op = Operator(qc) op.data # We can also see what happens to a qubit initialized to |0> when it goes through the unitary from qiskit.quantum_info import Statevector # .from_instruction automatically defaults to |0> state_vec = Statevector.from_instruction(qc) state_vec.data # so we remain in the |0> state # But a circuit that just ends up being an identity matrix is pretty boring. Why don't we make things more fun with our old friend the # Hadamard gate? # Lets create a new circuit and apply it: qc = QuantumCircuit(1, 1) qc.h(0) qc.draw(output='mpl') # Now lets see what the unitary is Operator(qc).data # And lets see what happens when we send in a qubit with |0> state_vec = Statevector.from_instruction(qc) state_vec.data # Sometimes it's nice to visualize the states themselves # We can always pull out our trusty bloch sphere for one qubit states: # You'll see in a bit why it's called "plot_bloch_multivector" # There IS a single plot_bloch_vector but it requires you to convert your state vector into # cartesian/polar coordinates, which is a lot of unnecessary overhead for what we want to do from qiskit.visualization import plot_bloch_multivector plot_bloch_multivector(state_vec) # This allows you to view the density matrix formulation, # you can see the real and imaginary components of the density matrix from qiskit.visualization import plot_state_city plot_state_city(state_vec) # now lets actually "run" our circuit # In real world quantum computation, we know the only way to get useful information out of the quantum algorithm is to perform # a measurement, which collapses the qubit state to one of two values. # Let's go ahead and add a measurement to our circuit, telling Qiskit to store the result in the classical register qc.measure(0,0) qc.draw(output='mpl') # You can either run your circuit on an ACTUAL quantum computer # (which means you'll have to create an IBM Q account) or # most of the time, you can run in on a simulator (which is what we'll do here). from qiskit.providers.aer import AerSimulator # There's a wide variety of simulators you can select, see: https://qiskit.org/documentation/stubs/qiskit.providers.aer.AerSimulator.html#qiskit.providers.aer.AerSimulator # For the majority of purposes, statevector will do fine backend = AerSimulator(method='statevector') # shots defines how many times your circuit should run job = backend.run(qc, shots=1024) # Every time you run a circuit on a backend (real or simulated) you'll get a "Job" # that you can then access results from result = job.result() # Here's the counts on each type of measurement result.get_counts() # we can also plot the probabilities via histogram from qiskit.visualization import plot_histogram plot_histogram(result.get_counts()) # You can also save the state of the quantum circuit AFTER running it on the simulators # Let's add the following to our quantum circuit qc.save_state() # <- you can save the statevector after running the experiment and view it later job = backend.run(qc, shots=1024) result = job.result() result.get_statevector() # not really that interesting qc = QuantumCircuit(1,1) qc.h(0) # note that we can place the save state at an intermediate point as well! qc.save_state() qc.measure(0,0) job = backend.run(qc, shots=1024) result = job.result() result.get_statevector() # So far we've always started in |0> # What if we want to start in some other initial state, like |1> or (|0> + |1>)/sqrt(2)? # Qiskit lets us do that with ease! # for a basis state we can do the following qc = QuantumCircuit(1) # just for demonstration purposes, we don't need to create a classical register here qc.initialize('1') qc.draw(output='mpl') # we can check it's |1> through the following: Statevector.from_instruction(qc) # For a non 0/1 basis state, (some kind of superposition perhaps) we can do the following from numpy import sqrt qc = QuantumCircuit(1) # just for demonstration purposes, we don't need to create a classical register here qc.initialize([1j/sqrt(2), 1/sqrt(2)]) qc.draw(output='mpl') Statevector.from_instruction(qc) # You may want to build your own gates from matrices at some point # Qiskit makes this a cinch with UnitaryGate import numpy as np custom_gate_matrix = np.eye(2) # 2x2 identity matrix qc = QuantumCircuit(1) from qiskit.extensions import UnitaryGate custom_gate = UnitaryGate(custom_gate_matrix, label="Gate Name Here") qc.append(custom_gate, [0]) qc.draw(output='mpl') # The X, Y, and Z gates are all based on the Pauli matrices and are known for making rotations of pi radians around the bloch sphere # on each respective axis. # What if I want to rotate some fractional amount instead of pi? # Each X,Y,Z gate has a version capable of accepting an argument theta that allows you to explicitly define the amount of rotation # desired on any axis qc = QuantumCircuit(1) import numpy as np qc.rx(np.pi/3, 0) qc.draw(output='mpl') state_vec = Statevector.from_instruction(qc) plot_bloch_multivector(state_vec) qc = QuantumCircuit(1) import numpy as np qc.ry(np.pi/3, 0) qc.draw(output='mpl') state_vec = Statevector.from_instruction(qc) plot_bloch_multivector(state_vec) qc = QuantumCircuit(1) import numpy as np qc.rz(np.pi/3, 0) qc.draw(output='mpl') state_vec = Statevector.from_instruction(qc) plot_bloch_multivector(state_vec) # We can create a two-qubit circuit qc = QuantumCircuit(2,2) # Single qubit gates can be applied as usual qc.z(0) qc.x(1) # You can also apply two-qubit gates like so, with the first integer denoting the "control" qubit # and the second denoting the target qc.cx(0,1) qc.draw(output='mpl') # lets see what the statevector result looks like state_vec = Statevector.from_instruction(qc) state_vec # The current state is separable and can be visualized with TWO bloch spheres plot_bloch_multivector(state_vec) # the statecity plot should also work plot_state_city(state_vec) # We can still obtain the unitary Operator(qc).data # And the syntax for running simulations does not change as well ## Let's add a measurement to the last operators ## For multiple measurements you can use the "measure_all" method ## If you declared the circuit with no quantum registers, like ## QuantumCircuit(2), measure_all will create classical registers automatically. ## If you declared something like QuantumCircuit(2,2) and classical reigsters ALREADY exist ## then you can invoke it with .measure_all(add_bits=False), otherwise, it'll continue to create ## extra classical registers which you don't need qc.measure_all(add_bits=False) qc.draw(output='mpl') backend = AerSimulator(method='statevector') job = backend.run(qc, shots=1024) result = job.result() plot_histogram(result.get_counts()) # You can still save the intermediate statevector as well qc = QuantumCircuit(2,2) # Single qubit gates can be applied as usual qc.z(0) qc.x(1) qc.cx(0,1) qc.save_statevector() qc.measure_all(add_bits=False) qc.draw(output='mpl') backend = AerSimulator(method='statevector') job = backend.run(qc, shots=1024) result = job.result() result.get_statevector() # You can choose one qubit to initalize to a custom state: qc = QuantumCircuit(2,2) # Set qubit 0 to be in equal superposition qc.initialize([1/sqrt(2), 1/sqrt(2)], 0) qc.draw(output='mpl') # You can also set the entire system to be in a certain state qc = QuantumCircuit(2,2) # Set the system to be in a Bell State, note that I don't have to state the qubits being targeted # (Although in Qiskit examples, they'll usually be explicit with which qubits were selected) qc.initialize([1/sqrt(2), 0, 0, 1/sqrt(2)]) qc.draw(output='mpl') # For initalizations where you just want to pick between starting with |0> or |1> you can do the following: qc = QuantumCircuit(2,2) # Keep in mind this sets the SECOND qubit to 1, and the FIRST qubit to 0 qc.initialize("10") qc.draw(output='mpl') Statevector.from_instruction(qc) # You can also just pass in an integer qc = QuantumCircuit(2,2) # Set qubit 0 to be in equal superposition qc.initialize(3) qc.draw(output='mpl') Statevector.from_instruction(qc) # create a quantum circuit to play around with qc = QuantumCircuit(2) # We create a custom gate custom_gate = UnitaryGate(np.eye(2), label="Identity") # Then we get the controlled version, with 1 qubit for control and the qubit in question needing to be in the |1> state to turn on # the gate controlled_custom_gate = custom_gate.control(num_ctrl_qubits=1, label="Controlled Identity") # Add the gate # The [0,1] here tells qiskit we want qubit 0 to be control, qubit 1 to be the target qc.append(controlled_custom_gate, [0,1]) qc.draw(output='mpl') # Note we can pass in ctrl_state as an integer OR as a string of 1s and 0s controlled_custom_gate = custom_gate.control(num_ctrl_qubits=1, ctrl_state=0, label="Controlled Identity") qc.append(controlled_custom_gate, [0,1]) qc.draw(output='mpl') ## When an entangled state is created, by definition it is NON-SEPERABLE ## (you cannot split the vector that constitutes it into two separate vectors). ## This does put a wrench into visualization but only partly. ## Observe the following Bell state generating circuit qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc.draw(output='mpl') # We get the statevector state_vec = Statevector.from_instruction(qc) # and try to visualize it... plot_bloch_multivector(state_vec) # BEHOLD! You don't get anything # This is generally the case whenever you run into entanglement, Qiskit will fail to properly display seperate bloch spheres (because it's impossible!) # You may also still get "something" but the vector is shorter or significantly longer than what it should be (visually) # However, the Density Matrix can give you more information.... # But we still have one way of seeing things, the state city diagram plot_state_city(state_vec) ## You can actually figure out if a system has some degree of entanglment by using the trace and reducing the degrees of freedom to individual qubits ## Credit to "Quantum Mechanic" on Stack Overflow https://quantumcomputing.stackexchange.com/questions/17580/how-to-calculate-the-amount-of-entanglement-for-each-qubit-in-a-quantum-computer # We can define even larger circuits... qc = QuantumCircuit(5,5) # apply some single qubit gates qc.rz(np.pi/8, 1) qc.z(0) qc.y(3) qc.x(2) # apply a CCX or Toffoli gate with 0 and 1 as control qubits, 2 as the target qubit qc.ccx(0,1,2) # apply a controlled swap gate qc.cswap(2,3,4) qc.draw(output='mpl') # lets see what the statevector result looks like state_vec = Statevector.from_instruction(qc) state_vec # can still see what the unitary matrix looks like unitary_mat = Operator(qc) unitary_mat # Should be able to visualize all the qubits too! plot_bloch_multivector(state_vec) # Should be able to visualize all the qubits too! plot_state_city(state_vec) # Rules for simulation remain the same ## Add measurement gets qc.measure_all(add_bits=False) job = backend.run(qc, shots=1024) result = job.result() plot_histogram(result.get_counts()) # We can still initialize our circuits to custom states qc = QuantumCircuit(5,5) qc.initialize(4) # initialized to |00100> qc.draw(output='mpl') Statevector.from_instruction(qc) # Now that we have all these extra qubits, we can do some pretty crazy stuff with defining controlled gates. # For example, lets say we want a controlled X gate that only applies when the control qubits have the state "0011" # In such a case we can just piggyback off of the fact that Qiskit already has an X gate and build up from it from qiskit.circuit.library import XGate # keep in mind that the ordering is flipped for qubits in qiskit! custom_controlled_X = XGate().control(num_ctrl_qubits=4, ctrl_state="0011", label="Crazy Controlled X") qc = QuantumCircuit(5) qc.append(custom_controlled_X, [0,1,2,3,4]) qc.draw(output='mpl') # Let's test the circuit. # We expect that for any other initialized state, nothing should happen and the initialied state stays as is qc = QuantumCircuit(5) qc.initialize(0) qc.append(custom_controlled_X, [0,1,2,3,4]) Statevector.from_instruction(qc) plot_bloch_multivector(Statevector.from_instruction(qc)) # ...and if we set the initial state right then the gate gets applied qc = QuantumCircuit(5) qc.initialize("00011") qc.append(custom_controlled_X, [0,1,2,3,4]) Statevector.from_instruction(qc) plot_bloch_multivector(Statevector(qc)) # Note that we flipped qubit 4, the one we wanted to target! # Sometimes you'll find that it's easier when building custom gates to go ahead and build it out in a separate circuit and then treat # that circuit as a whole gate entirely (kind of like when you write a large computer program and you call multiple functions, # or when you have a long essay with lots of individual paragraphs you work on) # We can do that like so (taken from https://qiskit.org/documentation/tutorials/circuits_advanced/01_advanced_circuits.html#Composite-Gates # slightly modified for this tutorial) sub_circ = QuantumCircuit(2, name='sub_circ') sub_circ.h(0) # theta is set to 1, with control qubit 0 and target 1 sub_circ.crz(1,0,1) # A barrier is usually used as a way to explicitly split up certain parts of the circuit for visual purposes # in most tutorials, although it actually has a role in telling the transpiler not to optimize # "The barrier acts as a directive for circuit compilation to separate pieces of a circuit so that any optimizations or # This only comes into play when using the transpile or execute functions in Qiskit (execute includes a transpile step)." # re-writes are constrained to only act between barriers (and if there are no barriers they act on the whole circuit). - Christopher J. Wood, Lead Developer for Qiskit Aer sub_circ.barrier() sub_circ.id(1) # The U gate takes several parameters and is a kind of universal gate capable of performing a rotation in ANY direction sub_circ.u(1,2,-2,0) sub_circ.draw(output='mpl') # Convert to a gate and stick it into an arbitrary place in the bigger circuit sub_inst = sub_circ.to_instruction() qc = QuantumCircuit(3) qc.h(0) qc.cx(0,1) qc.cx(1,2) qc.append(sub_inst, [1,2]) qc.draw(output='mpl') # register naming code obtained from: # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate # credits to Ali Javadi for their answer # label our qubits # Note that you can also explicitly declare your Quantum and Classical Registers as separate entities and then # initialize a QuantumCircuit with them, although QuantumCircuit(n,m) will do just fine as well if you don't care much for register labeling from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister n = 3 function_inputs = QuantumRegister(n, "x") target = QuantumRegister(1, "f(x)") # store our results here classical_registers = ClassicalRegister(3) circuit = QuantumCircuit(function_inputs, target, classical_registers) # Initialization phase # apply Hadamards to three qubits circuit.h(0) circuit.h(1) circuit.h(2) # Get the last hadamard in the kickback position circuit.x(3) circuit.h(3) circuit.draw(output="mpl") # visualize the current state after execution plot_bloch_multivector(Statevector.from_instruction(circuit)) circuit.barrier() circuit.draw(output='mpl') # Create an Oracle # In this case, we want to solve for (x0 AND x1 AND x2) # Note that when the circuit actually gets run on hardware, the gate actually gets # broken down into smaller gates (so this one may get broken down in CCX gates, and even further # to CX and other single qubit gates) that are native to the hardware (the hardware # may only support # a certain subset of gates, although that subset is capable of generating any other # gate's operations # Inspiration for Oracle from: https://cnot.io/quantum_algorithms/grover/grovers_algorithm.html # as well as Ryan LaRose's QuIC Seminar notes on Grover's Algorithm: # https://www.ryanlarose.com/uploads/1/1/5/8/115879647/grover.pdf circuit.mcx([0,1,2],3) circuit.draw(output="mpl") # oracle complete, put the barrier down circuit.barrier() circuit.draw(output="mpl") # Oracle implementation taken from Eric Li (https://you.stonybrook.edu/qcomputing/2018/07/18/2-3-qubit-grovers-algorithm/) # and Martin Vesely (https://quantumcomputing.stackexchange.com/questions/9531/grover-diffusion-operator-for-a-3-qubit-system) for i in range(3): circuit.h(i) # 2|0><0| - I for i in range(3): circuit.x(i) circuit.h(2) circuit.mcx([0,1],2) circuit.h(2) for i in range(3): circuit.x(i) for i in range(3): circuit.h(i) circuit.barrier() circuit.draw(output="mpl") # get results # .measure_all fails here because there isn't an equal number of classical regsiters, so we have to resort to the next best thing # circuit.measure_all(add_bits=False) # Need to explicitly declare which quantum bit gets measured to which classical bit circuit.measure([0,1,2],[0,1,2]) backend = AerSimulator(method='statevector') job = backend.run(circuit, shots=1024) result = job.result() plot_histogram(result.get_counts()) # Create a custom gate representing the oracle from qiskit.circuit.library import MCXGate oracle = MCXGate(num_ctrl_qubits=3, label="oracle", ctrl_state="111") # create a custom gate representing the diffusion operator grover_op_circ = QuantumCircuit(3, name="Grover's Operator") for i in range(3): grover_op_circ.h(i) # 2|0><0| - I for i in range(3): grover_op_circ.x(i) grover_op_circ.h(2) grover_op_circ.mcx([0,1],2) grover_op_circ.h(2) for i in range(3): grover_op_circ.x(i) for i in range(3): grover_op_circ.h(i) # Now rebuild the original circuit using our newly defined custom gates n = 3 function_inputs = QuantumRegister(n, "x") target = QuantumRegister(1, "f(x)") # store our results here classical_registers = ClassicalRegister(3) qc = QuantumCircuit(function_inputs, target, classical_registers) # apply Hadamards to three qubits qc.h(0) qc.h(1) qc.h(2) # Get the last hadamard in the kickback position qc.x(3) qc.h(3) qc.barrier() qc.append(oracle, [0,1,2,3]) qc.barrier() qc.append(grover_op_circ.decompose(), [0,1,2]) qc.draw(output='mpl') # now we apply the same things again qc.barrier() qc.append(oracle, [0,1,2,3]) qc.barrier() qc.append(grover_op_circ.to_instruction(), [0,1,2]) qc.draw(output='mpl') # Now let's see how the results hold up qc.measure([0,1,2],[0,1,2]) backend = AerSimulator(method='statevector') job = backend.run(qc.decompose(), shots=1024) result = job.result() plot_histogram(result.get_counts()) qc.draw(output='mpl') # Create Sqrt iSWAP gate from qiskit.circuit.library import ZGate # Obtained from: https://github.com/quantumlib/Cirq/blob/a22269dfe41b0da78243bbd210a915d26cc7d25f/cirq-core/cirq/ops/swap_gates.py#L166 sqrt_iSWAP_circ = QuantumCircuit(2, name="sqrt(iSWAP)") sqrt_iSWAP_circ.cx(0,1) sqrt_iSWAP_circ.h(0) sqrt_iSWAP_circ.cx(1,0) sqrt_iSWAP_circ.append(ZGate().power(0.25), [0]) sqrt_iSWAP_circ.cx(1,0) sqrt_iSWAP_circ.append(ZGate().power(-0.25), [0]) sqrt_iSWAP_circ.h(0) sqrt_iSWAP_circ.cx(0,1) sqrt_iSWAP_circ.draw(output='mpl') # Create the full IonQ supported Given's Rotation from qiskit.circuit import Parameter import numpy as np # You can create a Parameter that you later bind values to during execution theta = Parameter('θ') givens_circ = QuantumCircuit(2, name="Givens Rotation") givens_circ.append(sqrt_iSWAP_circ.to_instruction(), [0,1]) givens_circ.rz(-theta, 0) givens_circ.rz(theta + np.pi, 1) givens_circ.append(sqrt_iSWAP_circ.to_instruction(), [0,1]) givens_circ.rz(np.pi, 1) givens_circ.draw(output='mpl') print(givens_circ.parameters) # Full simulation qc = QuantumCircuit(2) # Initialize the circuit to be a full, even superpositon (equivalent of putting two hadamards) full_superposition = [1/np.sqrt(4)] * 4 qc.initialize(full_superposition) qc.append(givens_circ.bind_parameters({theta: np.pi/3}).to_instruction(), [0,1]) qc.draw(output='mpl') # hmmm, close but not quite right np.round(Statevector.from_instruction(qc).data.reshape(4,1), 3) # taken from https://medium.com/mdr-inc/checking-the-unitary-matrix-of-the-quantum-circuit-on-qiskit-5968c6019a45 # All credit to Yuchiro Minato from qiskit import Aer, execute # The Unitary simulator only works with circuits that have NO MEASUREMENT GATES # but allows you to get the unitary representing the matrix. # Operator() fails to work if your circuit contains a custom initialization value backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend) result = job.result() print(result.get_unitary(qc, decimals=3)) # This unitary comes from the correct implementation from: https://github.com/QC-at-Davis/GroveFold/blob/feature/vectoradditionfrombiomoleculesusingbiopython/src/scripts/IonQ-Givens-Cirq-Simulation.ipynb # (literally copied and pasted here, then converted back into a matrix) x =np.array([[-1. -1.34015774e-16j, 0. +0.00000000e+00j, 0. +0.00000000e+00j, 0. -3.72797834e-17j], [ 0. +0.00000000e+00j, -0.5 -5.88784672e-17j, 0.8660254+1.17756934e-16j, 0. +0.00000000e+00j], [ 0. +0.00000000e+00j, -0.8660254+5.88784672e-17j, -0.5 +1.96261557e-16j, 0. +0.00000000e+00j], [ 0. -2.29934717e-17j, 0. -0.00000000e+00j, 0. -0.00000000e+00j, -1. +3.51298275e-16j]]) # Note certain entries seem to be flipped... np.round(x, 3) y = np.array([1/sqrt(4)] * 4).reshape(4, 1) x @ y
https://github.com/Antonio297/Qiskit_Algoritmo_Cuantico
Antonio297
### Original articles: ### ### (1) "Improving the Sequence Alignment Method by Quantum Multi-Pattern Recognition" ### Konstantinos Prousalis & Nikos Konofaos ### Published in: SETN '18 Proceedings of the 10th Hellenic Conference on Artificial Intelligence, Article No. 50 ### Patras, Greece, July 09 - 12, 2018 ### ### (2) "Quantum Pattern Recognition with Probability of 100%" ### Rigui Zhou & Qiulin Ding ### Published in: International Journal of Theoretical Physics, Springer ### Received: 3 August 2007, Accepted: 11 September 2007, Published online: 4 October 2007 ### ### (3) "Initializing the amplitude distribution of a quantum state" ### Dan Ventura & Tony Martinez ### Revised 2nd November 1999 ## Importing libraries %matplotlib inline import qiskit from qiskit import IBMQ from qiskit import Aer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, QiskitError from qiskit.quantum_info.operators import Operator from qiskit.tools.visualization import circuit_drawer from qiskit.tools.visualization import plot_histogram from qiskit.tools.visualization import plot_state_city from qiskit.providers.aer import noise import random from math import * import math import matplotlib import numpy as np ## Initializing global variables # Quantum register is organized like the following: # |t, x, g, c, a>, with (t+x) having n qubits (index+pattern), g having (n-1) qubits and c having 2 qubits # Also, ancilla qubits (a) as support for mct gate genome_file = open("Cromosoma 1-Covid 19.txt", "r") #select the data source seq_x = genome_file.read() genome_file.close() seq_x = seq_x[0:200] #changes the number of characters you want to read from the file seq_y = "TTCT" #string to compare (endonuclease recognition sequence) Q_t = ceil(log2(len(seq_x))) Q_x = len(seq_y) Q_g = Q_t + Q_x - 1 Q_c = 2 Q_anc = 1 total_qubits = Q_t + Q_x + Q_g + Q_c + Q_anc ## Initialization of IBM QX IBMQ.enable_account('My Token') provider = IBMQ.get_provider() # Pick an available backend # If this isn't available pick a backend whose name containes '_qasm_simulator' from the output above backend = provider.get_backend('ibmq_qasm_simulator') # Uncomment if you want to use local simulator #backend= Aer.get_backend('qasm_simulator') ## Functions for recurrence dot matrix def delta(x, y): return 0 if x == y else 1 def M(seq1, seq2, i, j, k): return sum(delta(x, y) for x, y in zip(seq1[i : i+k],seq2[j : j+k])) def makeMatrix(seq1, seq2, k): n = len(seq1) m = len(seq2) return [[M(seq1, seq2, i, j, k) for j in range(m - k + 1)] for i in range(n - k + 1)] def plotMatrix(M, t, seq1, seq2, nonblank = chr(0x25A0), blank = ' '): print(' |' + seq2) print('-' * (2 + len(seq2))) for label, row in zip(seq1, M): line = ''.join(nonblank if s < t else blank for s in row) print(label + '|' + line) return def convertMatrix(M): for i in range(0, len(M)): for j in range(0, len(M[i])): if M[i][j] == 0: M[i][j] = 1 elif M[i][j] == 1: M[i][j] = 0 return M def dotplot(seq1, seq2, k = 1, t = 1): if len(seq1) > len(seq2): raise Exception("Vertical sequence cannot be longer than horizontal sequence!") M = makeMatrix(seq1, seq2, k) plotMatrix(M, t, seq1, seq2) M = convertMatrix(M) return M def getAllDiagonalsFromMatrix(M): D = np.array([]) d_size = -1 for i in range(0, len(M[0])): d = np.diag(M, k=i) if d_size == -1: d_size = len(d) D = d elif d_size > len(d): z = np.zeros((1, (d_size-len(d))), dtype=int) d = np.append(d, z) D = np.vstack((D, d)) else: D = np.vstack((D, d)) return D def convertBinArrayToStr(array): string = "" for bin_digit in array: if bin_digit == 0: string = string + '0' elif bin_digit == 1: string = string + '1' return string ## Functions for Quantum Pattern Recognition def generateInitialState(qc, qr, dot_matrix): D = getAllDiagonalsFromMatrix(dot_matrix) m = len(D) print("Size of Learning Set: {}".format(len(D))) idx = 0 for d in D: print("{}->{}: {}".format(idx, format(idx,'0'+str(Q_t)+'b'), d)) idx = idx + 1 z_values = convertBinArrayToStr(np.zeros(Q_t+Q_x)) ancilla_qubits = [] for qi in range(0, Q_anc): ancilla_qubits.append(qr[Q_t + Q_x + Q_g + Q_c + qi]) for p in range(m, 0, -1): bin_diagonal = convertBinArrayToStr(D[len(D)-p]) index = format((len(D)-p), '0' + str(Q_t) + 'b') instance = index + bin_diagonal #print("Instance #{}, z={}".format(p, instance)) for j in range(1, Q_t + Q_x + 1): if z_values[j-1] != instance[j-1]: #print("F_0 #{} Applied to circuit with ctrl={} and target={}".format(j, Q_t+Q_x+Q_g+Q_c-1,j-1)) qc.x(qr[Q_t+Q_x+Q_g+Q_c-1]) qc.cx(qr[Q_t+Q_x+Q_g+Q_c-1], qr[j-1]) qc.x(qr[Q_t+Q_x+Q_g+Q_c-1]) z_values = instance #print("F_0 Applied to circuit with ctrl={} and arget={}".format(Q_t+Q_x+Q_g+Q_c-1, Q_t+Q_x+Q_g+Q_c-2)) qc.x(qr[Q_t+Q_x+Q_g+Q_c-1]) qc.cx(qr[Q_t+Q_x+Q_g+Q_c-1], qr[Q_t+Q_x+Q_g+Q_c-2]) qc.x(qr[Q_t+Q_x+Q_g+Q_c-1]) #print("S_{},{} Applied to circuit with ctrl={} and arget={}".format(1, p, Q_t+Q_x+Q_g+Q_c-2, Q_t+Q_x+Q_g+Q_c-1)) theta = 2*np.arcsin(1/sqrt(p)) qc.cry(theta, qr[Q_t+Q_x+Q_g+Q_c-2], qr[Q_t+Q_x+Q_g+Q_c-1]) if instance[0]=='0' and instance[1]=='0': #print("A_00 #1 Applied to circuit with ctrl={},{} and target={}".format(0, 1, Q_t+Q_x)) qc.x(qr[0]) qc.x(qr[1]) qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits) qc.x(qr[1]) qc.x(qr[0]) elif instance[0]=='0' and instance[1]=='1': #print("A_01 #1 Applied to circuit with ctrl={},{} and target={}".format(0, 1, Q_t+Q_x)) qc.x(qr[0]) qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits) qc.x(qr[0]) elif instance[0]=='1' and instance[1]=='0': #print("A_10 #1 Applied to circuit with ctrl={},{} and target={}".format(0, 1, Q_t+Q_x)) qc.x(qr[1]) qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits) qc.x(qr[1]) elif instance[0]=='1' and instance[1]=='1': #print("A_11 #1 Applied to circuit with ctrl={},{} and target={}".format(0, 1, Q_t+Q_x)) qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits) for k in range(3, Q_t+Q_x+1): if instance[k-1]=='0': #print("A_01 #{} Applied to circuit with ctrl={},{} and target={}".format(k-1, k-1, Q_t+Q_x+k-3, Q_t+Q_x+k-2)) qc.x(qr[k-1]) qc.mct([qr[k-1], qr[Q_t+Q_x+k-3]], qr[Q_t+Q_x+k-2], ancilla_qubits) qc.x(qr[k-1]) elif instance[k-1]=='1': #print("A_11 #{} Applied to circuit with ctrl={},{} and target={}".format(k-1, k-1, Q_t+Q_x+k-3, Q_t+Q_x+k-2)) qc.mct([qr[k-1], qr[Q_t+Q_x+k-3]], qr[Q_t+Q_x+k-2], ancilla_qubits) #print("F_1 Applied to circuit with ctrl={} and target={}".format(Q_t+Q_x+Q_g-1, Q_t+Q_x+Q_g)) qc.cx(qr[Q_t+Q_x+Q_g-1], qr[Q_t+Q_x+Q_g]) for k in range(Q_t+Q_x, 2, -1): if instance[k-1]=='0': #print("A_01 #{} Applied to circuit with ctrl={},{} and target={}".format(k-1, k-1, Q_t+Q_x+k-3, Q_t+Q_x+k-2)) qc.x(qr[k-1]) qc.mct([qr[k-1], qr[Q_t+Q_x+k-3]], qr[Q_t+Q_x+k-2], ancilla_qubits) qc.x(qr[k-1]) elif instance[k-1]=='1': #print("A_11 #{} Applied to circuit with ctrl={},{} and target={}".format(k-1, k-1, Q_t+Q_x+k-3, Q_t+Q_x+k-2)) qc.mct([qr[k-1], qr[Q_t+Q_x+k-3]], qr[Q_t+Q_x+k-2], ancilla_qubits) if instance[0]=='0' and instance[1]=='0': #print("A_00 #1 Applied to circuit with ctrl={},{} and target={}".format(0, 1, Q_t+Q_x)) qc.x(qr[0]) qc.x(qr[1]) qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits) qc.x(qr[1]) qc.x(qr[0]) elif instance[0]=='0' and instance[1]=='1': #print("A_01 #1 Applied to circuit with ctrl={},{} and target={}".format(0, 1, Q_t+Q_x)) qc.x(qr[0]) qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits) qc.x(qr[0]) elif instance[0]=='1' and instance[1]=='0': #print("A_10 #1 Applied to circuit with ctrl={},{} and target={}".format(0, 1, Q_t+Q_x)) qc.x(qr[1]) qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits) qc.x(qr[1]) elif instance[0]=='1' and instance[1]=='1': #print("A_11 #1 Applied to circuit with ctrl={},{} and target={}".format(0, 1, Q_t+Q_x)) qc.mct([qr[0], qr[1]], qr[Q_t+Q_x], ancilla_qubits) #print("F Applied to circuit at qubit={}".format(Q_t+Q_x+Q_g+Q_c-1)) qc.x(qr[Q_t+Q_x+Q_g+Q_c-1]) return def getIndices(mySet): indices = [] for i in range(0, len(mySet)): tmp = "" for j in range(0, len(mySet[i])): tmp = tmp + str(int(mySet[i][j])) indices.append(int(tmp, 2)) return indices def oracle(query_set): I = np.identity(2**Q_x) b_sum = np.zeros((2**Q_x, 2**Q_x)) indices = getIndices(query_set) for i in indices: vs = np.zeros((1, 2**Q_x)) for j in range(0, 2**Q_x): if j == i: vs[0][j] = 1 b_sum = b_sum + np.dot(np.conjugate(np.transpose(vs)), vs) U = I - (1-1j)*b_sum return U def inversionAboutMean(dot_matrix): I = np.identity(2**(Q_t+Q_x)) b_sum = np.zeros((2**(Q_t+Q_x), 1)) D = getAllDiagonalsFromMatrix(dot_matrix) mySet = np.empty([len(D), Q_t+Q_x]) for i in range(0, len(D)): bin_arr = np.concatenate((convertIntToBinArray(i, Q_t), D[i])) mySet[i] = bin_arr indices = getIndices(mySet) for i in indices: vs = np.zeros((2**(Q_t+Q_x), 1)) for j in range(0, 2**(Q_t+Q_x)): if j == i: vs[j][0] = 1 b_sum = b_sum + vs phi_zero = (1/sqrt(len(D))) * b_sum phi_mtrx = np.dot(phi_zero, np.conjugate(np.transpose(phi_zero))) U = (1 + 1j) * phi_mtrx - 1j * I return U def convertIntToBinArray(j, dim): if not isinstance(j, int): raise Exception("Number of bits must be an integer!") elif (j == 0 or j == 1) and dim < 1: raise Exception("More bits needed to convert j in binary!") elif j > 1 and dim <= log2(j): raise Exception("More bits needed to convert j in binary!") bin_arr = np.array([], dtype=int) j_bin = format(int(j), '0' + str(dim) + 'b') for k in j_bin: if k == '1': bin_arr = np.append(bin_arr, 1) elif k == '0': bin_arr = np.append(bin_arr, 0) return bin_arr def QPR(dot_matrix): qr = qiskit.QuantumRegister(total_qubits) cr = qiskit.ClassicalRegister(Q_t) qc = qiskit.QuantumCircuit(qr, cr) print("Total number of qubits: {}".format(total_qubits)) print("Size of t register: {}".format(Q_t)) print("Size of x register: {}".format(Q_x)) print("Size of g register: {}".format(Q_g)) print("Size of c register: {}".format(Q_c)) print("Number of ancilla qubits: {}".format(Q_anc)) # A query set is manually defined query_set = np.array([[1,1,1], [0,1,1], [1,1,0], [1,0,1]]) O_mtrx = oracle(query_set) U_phi_mtrx = inversionAboutMean(dot_matrix) O = Operator(O_mtrx) U_phi = Operator(U_phi_mtrx) O_qubits = [] for qi in range(Q_x-1, -1, -1): O_qubits.append(Q_t + qi) U_phi_qubits = [] for qi in range(Q_t+Q_x-1, -1, -1): U_phi_qubits.append(qi) generateInitialState(qc, qr, dot_matrix) #simulateStateVector(qc) T = round((math.pi/4)*sqrt(len(dot_matrix[0])/len(query_set))) it = 0 for i in range(0, T): print("Grover Iteration #{}".format(it+1)) qc.unitary(O, O_qubits, label='O') #simulateStateVector(qc) #qc.unitary(U_phi, U_phi_qubits, label='U_phi') #simulateStateVector(qc) it = it + 1 print("Grover's algorithm had {} iterations.".format(int(it))) finalGroverMeasurement(qc, qr, cr) return qc def simulateStateVector(qc): result = qiskit.execute(qc, backend=Aer.get_backend('statevector_simulator')).result() state = result.get_statevector(qc) print("Number of states in vector: {}".format(len(state))) it = 0 for item in state: bin_str = format(it, '0'+str(total_qubits)+'b') bin_str_rev = bin_str[len(bin_str)::-1] if (item.real != 0 or item.imag != 0): print("{}->{}: {}".format(it, bin_str_rev[Q_t:Q_t+Q_x], item)) it = it + 1 return # Final measurement def finalGroverMeasurement(qc, qr, cr): for qi in range(0, Q_t): qc.measure(qr[qi], cr[qi]) return ## Main function if __name__ == '__main__': # Printing some data for testing M = dotplot(seq_y, seq_x) qc = QPR(M) print("Circuit depth: {}".format(qc.depth())) # Total number of gates print("Number of gates: {}".format(len(qc.data))) gate_num = 1 for item in qc.data: qb_list = "" for qb in item[1]: qb_list = qb_list + str(qb.index) + ", " qb_list = qb_list[:len(qb_list)-2] print("#{}: {}, {}".format(gate_num, item[0].name, qb_list)) gate_num = gate_num + 1 # Drawing circuit qc.draw() # Showing histogram # BE CAREFUL! # Qiskit uses a LSB ordering, meaning the first qubit is all the way to the right! # For example, a state of |01> would mean the first qubit is 1 and the second qubit is 0! sim = qiskit.execute(qc, backend=backend, shots=1024) result = sim.result() final=result.get_counts(qc) print(final) plot_histogram(final)
https://github.com/Antonio297/Qiskit_Algoritmo_Cuantico
Antonio297
### Quantum indexed Bidirectional Associative Memory by A. Sarkar, Z. Al-Ars, C. G. Almudever, K. Bertels ### Repository reference: https://gitlab.com/prince-ph0en1x/QaGs (by A. Sarkar) ## Importing libraries %matplotlib inline import qiskit from qiskit import IBMQ from qiskit import Aer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, QiskitError from qiskit.quantum_info.operators import Operator from qiskit.tools.visualization import circuit_drawer from qiskit.tools.visualization import plot_histogram from qiskit.providers.aer import noise from qiskit.providers.aer.noise import NoiseModel, errors import random from math import * import os import re import sys import math import matplotlib.pyplot as plt import numpy as np ## Defining some auxiliary functions def hamming_distance(str1, str2): count = sum(c1 != c2 for c1, c2 in zip(str1, str2)) return count def convertToNumEncoding(genome_str): bin_str = "" for i in range(0, len(genome_str)): if genome_str[i] == 'A': bin_str = bin_str + "0" elif genome_str[i] == 'C': bin_str = bin_str + "1" elif genome_str[i] == 'G': bin_str = bin_str + "2" elif genome_str[i] == 'T': bin_str = bin_str + "3" return bin_str def convertReadToBin(read): bin_read = "" for i in range(0, len(read)): if read[i] == '0': bin_read = bin_read + "00" elif read[i] == '1': bin_read = bin_read + "01" elif read[i] == '2': bin_read = bin_read + "10" elif read[i] == '3': bin_read = bin_read + "11" return bin_read ## Initializing global variables # Alphabet set {0, 1, 2, 3} := {A, C, G, T} for DNA Nucleotide bases AS = {'00', '01', '10', '11'} A = len(AS) ################# Default Test ################# # Reference Genome: "AATTGTCTAGGCGACC" #w = "0033231302212011" #N = len(w) # Short Read: "CA" #p = "10" # Distributed query around zero Hamming distance #pb = "0000" ################################################ ############## Test on HIV genome ############## genome_file = open("HIVgenome.txt", "r") #select the data source w = genome_file.read() genome_file.close() w = convertToNumEncoding(w) w = w[0:128] #changes the number of characters you want to read from the file N = len(w) # Short read: "TCT" #Try with chains of three p = "313" # Distributed query around zero Hamming distance pb = "000000" ################################################ # Short Read size M = len(p) # Number of qubits to encode one character Q_A = ceil(log2(A)) # Number of data qubits Q_D = Q_A * M # Tag Qubits Q_T = ceil(log2(N-M)) #print('valor Q_T:',Q_T) # Ancilla Qubits Q_anc = 8 # Ancilla qubits ids anc = [] for qi in range(0, Q_anc): anc.append(Q_D + Q_T + qi) total_qubits = Q_D + Q_T + Q_anc ## Inizializing Oracle O Matrix gamma = 0.25 SS = 2**Q_D bp = np.empty([1, SS]) for i in range(0, SS): i_binary = format(i, '0'+str(Q_D)+'b') hd = hamming_distance(i_binary, pb) bp[0][i] = sqrt((gamma**hd)*((1 - gamma)**(Q_D - hd))) BO = np.identity(SS) - 2*np.dot(np.conjugate(np.transpose(bp)), bp) orc = Operator(BO) qbsp = [] for qi in range (0, Q_D): qbsp.append(Q_T+qi) qbsp.reverse() ## Initialization of IBM QX IBMQ.enable_account('My Token') provider = IBMQ.get_provider() # Pick an available backend # If this isn't available pick a backend whose name containes '_qasm_simulator' from the output above backend = provider.get_backend('ibmq_qasm_simulator') # Uncomment if you want to use local simulator #backend= Aer.get_backend('qasm_simulator') ## Defining functions def QIBAM(): print('Reference genome:', w) print('Chosen pattern for testing:', p) print('Total number of qubits:', total_qubits) print('Number of ancilla qubits:', Q_anc) qr = qiskit.QuantumRegister(total_qubits) cr = qiskit.ClassicalRegister(Q_T) qc = qiskit.QuantumCircuit(qr, cr) # Initialise generateInitialState(qc, qr) # Transform to Hamming distance evolveToHammingDistances(qc, qr) # Oracle call oracle(qc) # Inversion about mean inversionAboutMean(qc, qr) it = 0 for r in range(0, 2): # Oracle call oracle(qc) # Inversion about mean inversionAboutMean(qc, qr) it = it + 1 print("Grover's algorithm had {} iterations.".format(int(it))) # Measurement finalGroverMeasurement(qc, qr, cr) return qc # Initialization as suggested by L. C. L. Hollenberg def generateInitialState(qc, qr): for qi in range(0, Q_T): qc.h(qr[qi]) control_qubits = [] for ci in range(0,Q_T): control_qubits.append(qr[ci]) ancilla_qubits = [] for qi in anc: ancilla_qubits.append(qr[qi]) for qi in range(0, N - M + 1): qis = format(qi, '0' + str(Q_T) + 'b') for qisi in range(0, Q_T): if qis[qisi] == '0': qc.x(qr[qisi]) wMi = w[qi:qi + M] print("Tag: {} - Data: {} - Hamming distance: {}".format(qis, wMi, hamming_distance(convertReadToBin(wMi), convertReadToBin(p)))) for wisi in range(0, M): wisia = format(int(wMi[wisi]), '0' + str(Q_A) + 'b') for wisiai in range(0, Q_A): if wisia[wisiai] == '1': qc.mct(control_qubits, qr[Q_T + wisi * Q_A + wisiai], ancilla_qubits) for qisi in range(0, Q_T): if qis[qisi] == '0': qc.x(qr[qisi]) wMi = p for qi in range(N - M + 1, 2**Q_T): qis = format(qi, '0' + str(Q_T) + 'b') for qisi in range(0, Q_T): if qis[qisi] == '0': qc.x(qr[qisi]) for wisi in range(0, M): wisia = format(int(wMi[wisi]), '0' + str(Q_A) + 'b') for wisiai in range(0, Q_A): if wisia[wisiai] == '0': qc.mct(control_qubits, qr[Q_T + wisi * Q_A + wisiai], ancilla_qubits) for qisi in range(0, Q_T): if qis[qisi] == '0': qc.x(qr[qisi]) return # Calculate Hamming Distance def evolveToHammingDistances(qc, qr): for pi in range(0, M): ppi = format(int(p[pi]), '0' + str(Q_A) + 'b') for ppii in range(0, Q_A): if ppi[ppii] == '1': qc.x(qr[Q_T + pi * Q_A + ppii]) return # Oracle to mark zero Hamming distance def oracle(qc): qc.unitary(orc, qbsp, label='orc') return # Inversion about mean def inversionAboutMean(qc, qr): for si in range(0, Q_D + Q_T): qc.h(qr[si]) qc.x(qr[si]) control_qubits = [] for sj in range(0, Q_D + Q_T - 1): control_qubits.append(qr[sj]) ancilla_qubits = [] for qi in anc: ancilla_qubits.append(qr[qi]) qc.h(qr[Q_D + Q_T - 1]) qc.mct(control_qubits, qr[Q_D + Q_T - 1], ancilla_qubits) qc.h(qr[Q_D + Q_T - 1]) for si in range(0,Q_D + Q_T): qc.x(qr[si]) qc.h(qr[si]) return # Oracle to mark Memory States def markStoredStates(qc, qr): control_qubits = [] for qsi in range(0, Q_T + Q_D - 1): control_qubits.append(qr[qsi]) ancilla_qubits = [] for qi in anc: ancilla_qubits.append(qr[qi]) for qi in range(0, N - M + 1): qis = format(qi, '0' + str(Q_T) + 'b') wMi = w[qi:qi + M] wt = qis for wisi in range(0, M): hd = int(format(int(wMi[wisi]), '0'+str(Q_A)+'b'), 2) ^ int(format(int(p[wisi]), '0'+str(Q_A)+'b'), 2) wisia = format(hd, '0' + str(Q_A) + 'b') wt = wt + wisia for qisi in range(0, Q_T + Q_D): if wt[qisi] == '0': qc.x(qr[qisi]) qc.h(qr[Q_D + Q_T - 1]) qc.mct(control_qubits, qr[Q_D + Q_T - 1], ancilla_qubits) qc.h(qr[Q_D + Q_T - 1]) if wt[qisi] == '0': qc.x(qr[qisi]) return # Final measurement def finalGroverMeasurement(qc, qr, cr): for qi in range(0, Q_T): qc.measure(qr[qi], cr[qi]) return ## Main function if __name__ == '__main__': # Printing some data for testing qc = QIBAM() print("Circuit depth: {}".format(qc.depth())) # Total number of gates print("Number of gates: {}".format(len(qc.data))) gate_num = 1 for item in qc.data: qb_list = '' for qb in item[1]: qb_list = qb_list + str(qb.index) + ', ' qb_list = qb_list[:len(qb_list)-2] print("#{}: {}, {}".format(gate_num, item[0].name, qb_list)) gate_num = gate_num + 1 # Drawing circuit # qc.draw() # Showing histogram # BE CAREFUL! # Qiskit uses a LSB ordering, meaning the first qubit is all the way to the right! # For example, a state of |01> would mean the first qubit is 1 and the second qubit is 0! sim = qiskit.execute(qc, backend=backend, shots=8192) result = sim.result() final=result.get_counts(qc) print(final) plot_histogram(final)
https://github.com/idriss-hamadi/Qiskit-Quantaum-codes-
idriss-hamadi
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit_aer import AerSimulator # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive inside a session. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # with Session(backend=service.backend("ibmq_qasm_simulator")): # result = Sampler().run(circuits).result() from qiskit import * #importing libraries we need from qiskit.tools.visualization import plot_bloch_multivector from qiskit.visualization import plot_histogram %matplotlib inline import math Aer.backends() #seeing all the availibe simulators def run_on_simulators(circuit): #defining a function to run on two simulators statevector = execute(circuit, backend=Aer.get_backend('statevector_simulator')) result = statevector.result() vec = result.get_statevector() QubitsNumber = circuit.num_qubits circuit.measure([i for i in range(QubitsNumber)], [i for i in range(QubitsNumber)]) Qass = execute(circuit, backend=Aer.get_backend('qasm_simulator'), shots=1024).result() count = Qass.get_counts() return vec, count circuit = QuantumCircuit(2,2) statevec, counts = run_on_simulators(circuit) plot_bloch_multivector(statevec) plot_histogram([counts]) circuit = QuantumCircuit(2,2) circuit.h(0) circuit.cx(0,1) statevec, counts = run_on_simulators(circuit) plot_bloch_multivector(statevec) plot_histogram([counts]) circuit = QuantumCircuit(2,2) circuit.rx(math.pi/4, 0) circuit.rx(math.pi / 2, 1) statevec, counts = run_on_simulators(circuit) plot_bloch_multivector(statevec) plot_histogram([counts]) circuit = QuantumCircuit(2,2) circuit.ry(math.pi/4, 0) circuit.ry(math.pi / 2, 1) statevec, counts = run_on_simulators(circuit) plot_bloch_multivector(statevec) plot_histogram([counts]) circuit.h(0) statevec, counts = run_on_simulators(circuit) plot_bloch_multivector(statevec) plot_histogram([counts]) circuit.h(0) circuit.h(1) statevec, counts = run_on_simulators(circuit) plot_bloch_multivector(statevec) plot_histogram([counts]) statevec, counts = run_on_simulators(circuit) plot_bloch_multivector(statevec) plot_histogram([counts])
https://github.com/idriss-hamadi/Qiskit-Quantaum-codes-
idriss-hamadi
from qiskit import * #qiskit framework # Quantum_Register=QuantumRegister(2) # classical_Register=ClassicalRegister(2) # circut=QuantumCircuit(Quantum_Register,classical_Register) #those 3 lines are the same as the next line circut=QuantumCircuit(2,2) circut.draw(output='mpl') #drawing function circut.h(0) #handmard function circut.cx(0,1) #Cnot function circut.measure([0,1],[0,1]) #measuring between the qubits and calssical bits circut.draw(output='mpl') #drawing simulator=Aer.get_backend('qasm_simulator') #using simulator of quantaum comuter called qasm resault=execute(circut,backend=simulator).result() #storing the resault of computation from qiskit.visualization import plot_histogram #importing function of ploting histogram plot_histogram(resault.get_counts()) #plot from qiskit import * # IBMQ.save_account(open("token.txt","r").read()) #signing in using my token in my txt file IBMQ.load_account() #lading account provider=IBMQ.get_provider("ibm-q") quantaum_computer=provider.get_backend('ibmq_quito') import qiskit.tools.jupyter %qiskit_job_watcher job =execute(circut,backend=quantaum_computer) from qiskit.tools.monitor import job_monitor job_monitor(job) quantaum_resault=job.result() plot_histogram(quantaum_resault.get_counts(circut)) %qiskit_disable_job_watcher
https://github.com/idriss-hamadi/Qiskit-Quantaum-codes-
idriss-hamadi
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit_aer import AerSimulator # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive inside a session. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # with Session(backend=service.backend("ibmq_qasm_simulator")): # result = Sampler().run(circuits).result() from qiskit import * IBMQ.save_account(open("token.txt","r").read()) #signing in using my token in my txt file IBMQ.load_account() #lading account Aer.backends() #show simulators each is special provider=IBMQ.get_provider("ibm-q") #show all the actual quantaum computers and simulators that are avaliable provider.backends() for backend in provider.backends(): #show properties print(backend.properties()) i=0 #code to see if it is simulator or not and how many pending jobs are there for backend in provider.backends(): i+=1 try: qubit_count=len(backend.properties().qubits) except: qubit_count="simulated" if(qubit_count=="simulated"): print(f"{i}-{backend.name()} : there is {backend.status().pending_jobs} waiting jobs in the queue and it is a simulator") else: print(f"{i}-{backend.name()} : there is {backend.status().pending_jobs} waiting jobs in the queue and it has {qubit_count} qubits")
https://github.com/dlyongemallo/qiskit-zx-transpiler
dlyongemallo
from qiskit.circuit import QuantumCircuit from qiskit.converters import circuit_to_dag from qiskit.visualization import dag_drawer import numpy as np # Taken from https://github.com/Quantomatic/pyzx/blob/master/circuits/Fast/mod5_4_before qc = QuantumCircuit(5) qc.x(4) qc.h(4) qc.ccz(0, 3, 4) qc.ccz(2, 3, 4) qc.h(4) qc.cx(3, 4) qc.h(4) qc.ccz(1, 2, 4) qc.h(4) qc.cx(2, 4) qc.h(4) qc.ccz(0, 1, 4) qc.h(4) qc.cx(1, 4) qc.cx(0, 4) qc.draw(output='mpl', style='clifford') dag = circuit_to_dag(qc) dag_drawer(dag) from qiskit.transpiler import PassManager from zxpass import ZXPass zxpass = ZXPass() pass_manager = PassManager(zxpass) zx_qc = pass_manager.run(qc) zx_qc.draw(output='mpl', style='clifford') from qiskit import transpile opt_qc = transpile(qc, basis_gates=['u3', 'cx'], optimization_level=3) opt_qc.draw(output='mpl', style='clifford') from qiskit.quantum_info import Statevector print("original circuit depth: ", qc.depth()) print("transpiled circuit depth: ", opt_qc.depth()) print("PyZX circuit depth: ", zx_qc.depth()) print(Statevector.from_instruction(qc).equiv(Statevector.from_instruction(zx_qc)))
https://github.com/dlyongemallo/qiskit-zx-transpiler
dlyongemallo
import sys; sys.path.append('..') from qiskit import transpile from qiskit.circuit import QuantumCircuit from qiskit.transpiler import PassManager from qiskit.qasm2 import dumps from qiskit.qasm3 import dumps as dumps3 import pyzx as zx from zxpass import ZXPass pass_manager = PassManager(ZXPass()) # Select the benchmark circuit to examine. subdir = "medium" circuit_name = "qft_n18" # Output the original circuit. with open(f"QASMBench/{subdir}/{circuit_name}/{circuit_name}.qasm", "r") as file: qasm_str = file.read() print(f"Benchmark circuit: {circuit_name}") qc = QuantumCircuit.from_qasm_str(qasm_str) # qc.draw(output = "mpl") # Output the ZX diagram for the original circuit. g = zx.Circuit.from_qasm(qasm_str).to_graph() zx.draw(g) # Output the circuit produced by Qiskit optimisation. opt_qc = transpile(qc, basis_gates=['u3', 'cx'], optimization_level=3) # opt_qc.draw(output = "mpl") # Output the ZX diagram for the Qiskit-optimised circuit. opt_g = zx.Circuit.from_qasm(dumps3(opt_qc)).to_graph() zx.draw(opt_g) # Output the ZX-optimised circuit. zx_qc = pass_manager.run(qc) # zx_qc.draw(output = "mpl") # Re-create the graph from the circuit. zx_g = zx.Circuit.from_qasm(dumps(zx_qc)).to_graph() zx.draw(zx_g)
https://github.com/dlyongemallo/qiskit-zx-transpiler
dlyongemallo
# ZX transpiler pass for Qiskit # Copyright (C) 2023 David Yonge-Mallo # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. if __name__ == '__main__': import sys sys.path.append('..') from qiskit import transpile from qiskit.circuit import QuantumCircuit from qiskit.transpiler import PassManager from typing import Dict, List, Tuple import matplotlib.pyplot as plt # type: ignore from zxpass import ZXPass pass_manager = PassManager(ZXPass()) def _benchmark(subdir: str, circuit_name: str, as_plugin: bool = False) -> Tuple[float, float, float]: print(f"Circuit name: {circuit_name}") qc = QuantumCircuit.from_qasm_file(f"QASMBench/{subdir}/{circuit_name}/{circuit_name}.qasm") opt_qc = transpile(qc, basis_gates=['u3', 'cx'], optimization_level=3) if as_plugin: zx_qc = transpile(qc, optimization_method="zxpass", optimization_level=3) else: zx_qc = pass_manager.run(qc) print(f"Size - original: {qc.size()}, " f"optimized: {opt_qc.size()} ({qc.size() / opt_qc.size():.2f}), " f"zx: {zx_qc.size()} ({qc.size() / zx_qc.size():.2f})") print(f"Depth - original: {qc.depth()}, " f"optimized: {opt_qc.depth()} ({qc.depth() / opt_qc.depth():.2f}), " f"zx: {zx_qc.depth()} ({qc.depth() / zx_qc.depth():.2f})") print(f"Number of non-local gates - original: {qc.num_nonlocal_gates()}, ", end="") if qc.num_nonlocal_gates() != 0: print(f"optimized: {opt_qc.num_nonlocal_gates()}, zx: {zx_qc.num_nonlocal_gates()}, " f"ratio: {opt_qc.num_nonlocal_gates() / zx_qc.num_nonlocal_gates():.2f}") else: print("optimized: 0, zx: 0") print() return (qc.depth() / opt_qc.depth(), qc.depth() / zx_qc.depth(), qc.num_nonlocal_gates() / zx_qc.num_nonlocal_gates() if zx_qc.num_nonlocal_gates() != 0 else 0) def _save_plot(title: str, plot_index: List[str], data: Dict[str, List[float]], ylabel: str) -> None: width = 0.35 fig, ax = plt.subplots() ax.set_title(title) ax.set_ylabel(ylabel) x = range(len(plot_index)) ax.bar(x, data['qiskit'], width, label='qiskit') ax.bar([i + width for i in x], data['pyzx'], width, label='pyzx') ax.set_xticks([i + width / 2 for i in x]) ax.set_xticklabels(plot_index, rotation=90) ax.legend() plt.tight_layout() plt.savefig(f"{title.replace(' ', '_')}.png") def run_benchmarks() -> None: # List of circuits to benchmark, based on: https://github.com/Qiskit/qiskit/issues/4990#issuecomment-1157858632 small_benchmarks = ['wstate_n3', 'linearsolver_n3', 'fredkin_n3', 'dnn_n2', 'qrng_n4', 'adder_n4', 'deutsch_n2', 'cat_state_n4', 'basis_trotter_n4', 'qec_en_n5', 'toffoli_n3', 'grover_n2', 'hs4_n4', 'qaoa_n3', 'teleportation_n3', 'lpn_n5', 'vqe_uccsd_n4', 'quantumwalks_n2', 'variational_n4', 'qft_n4', 'iswap_n2', 'bell_n4', 'basis_change_n3', 'vqe_uccsd_n6', 'ising_n10', 'simon_n6', 'qpe_n9', 'qaoa_n6', 'bb84_n8', 'vqe_uccsd_n8', 'adder_n10', 'dnn_n8'] medium_benchmarks = ['bv_n14', 'multiplier_n15', 'sat_n11', 'qft_n18'] depth_ratio: Dict[str, List[float]] = {'qiskit': [], 'pyzx': []} num_nonlocal_ratio: Dict[str, List[float]] = {'qiskit': [], 'pyzx': []} plot_index = [] for benchmark in small_benchmarks: qiskit_depth, zx_depth, non_local_ratio = _benchmark('small', benchmark) depth_ratio['pyzx'].append(zx_depth) depth_ratio['qiskit'].append(qiskit_depth) num_nonlocal_ratio['pyzx'].append(non_local_ratio) num_nonlocal_ratio['qiskit'].append(1 if non_local_ratio != 0 else 0) plot_index.append(benchmark) for benchmark in medium_benchmarks: qiskit_depth, zx_depth, non_local_ratio = _benchmark('medium', benchmark) depth_ratio['pyzx'].append(zx_depth) depth_ratio['qiskit'].append(qiskit_depth) num_nonlocal_ratio['pyzx'].append(non_local_ratio) num_nonlocal_ratio['qiskit'].append(1 if non_local_ratio != 0 else 0) plot_index.append(benchmark) _save_plot('Depth compression ratio', plot_index, depth_ratio, 'depth_ratio') _save_plot('Ratio of non-local gates', plot_index, num_nonlocal_ratio, 'num_nonlocal_ratio') if __name__ == '__main__': run_benchmarks()
https://github.com/dlyongemallo/qiskit-zx-transpiler
dlyongemallo
# ZX transpiler pass for Qiskit # Copyright (C) 2023 David Yonge-Mallo # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Qiskit ZX transpiler.""" from typing import Callable, Optional import pyzx as zx import numpy as np from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.quantum_info import Statevector from qiskit.transpiler import PassManager from qiskit.circuit.random import random_circuit import qiskit.converters from zxpass import ZXPass def _run_zxpass(qc: QuantumCircuit, optimize: Optional[Callable[[zx.Circuit], zx.Circuit]] = None) -> bool: zxpass = ZXPass(optimize) pass_manager = PassManager(zxpass) zx_qc = pass_manager.run(qc) return Statevector.from_instruction(qc).equiv(Statevector.from_instruction(zx_qc)) def test_basic_circuit() -> None: """Test a basic circuit. Taken from https://github.com/Quantomatic/pyzx/blob/master/circuits/Fast/mod5_4_before """ qc = QuantumCircuit(5) qc.x(4) qc.h(4) qc.ccz(0, 3, 4) qc.ccz(2, 3, 4) qc.h(4) qc.cx(3, 4) qc.h(4) qc.ccz(1, 2, 4) qc.h(4) qc.cx(2, 4) qc.h(4) qc.ccz(0, 1, 4) qc.h(4) qc.cx(1, 4) qc.cx(0, 4) assert _run_zxpass(qc) def test_custom_optimize() -> None: """Test custom optimize method. """ qc = QuantumCircuit(4) qc.h(0) qc.h(1) qc.h(2) qc.h(3) qc.cx(0, 1) qc.cx(1, 2) qc.cx(2, 3) qc.cx(3, 0) def optimize(circ: zx.Circuit) -> zx.Circuit: # Any function that takes a zx.Circuit and returns a zx.Circuit will do. return circ.to_basic_gates() assert _run_zxpass(qc, optimize) def test_measurement() -> None: """Test a circuit with a measurement. """ q = QuantumRegister(1, 'q') c = ClassicalRegister(1, 'c') qc = QuantumCircuit(q, c) qc.h(q[0]) qc.measure(q[0], c[0]) qc.h(q[0]) dag = qiskit.converters.circuit_to_dag(qc) zxpass = ZXPass() circuits_and_nodes = zxpass._dag_to_circuits_and_nodes(dag) # pylint: disable=protected-access assert len(circuits_and_nodes) == 3 assert circuits_and_nodes[1] == dag.op_nodes()[1] def test_conditional_gate() -> None: """Test a circuit with a conditional gate. """ q = QuantumRegister(1, 'q') c = ClassicalRegister(1, 'c') qc = QuantumCircuit(q, c) qc.h(q[0]).c_if(c, 0) assert _run_zxpass(qc) def test_unitary() -> None: """Test a circuit with a unitary gate. """ matrix = [[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]] qc = QuantumCircuit(2) qc.unitary(matrix, [0, 1]) assert _run_zxpass(qc) def test_pyzx_issue_102() -> None: """Regression test for PyZX issue #102. This tests for a bug which prevented an earlier attempt at a Qiskit ZX transpiler pass from working. See: https://github.com/Quantomatic/pyzx/issues/102 """ qc = QuantumCircuit(4) qc.ccx(2, 1, 0) qc.ccz(0, 1, 2) qc.h(1) qc.ccx(1, 2, 3) qc.t(1) qc.ccz(0, 1, 2) qc.h(1) qc.t(0) qc.ccz(2, 1, 0) qc.s(1) qc.ccx(2, 1, 0) qc.crz(0.2*np.pi, 0, 1) qc.rz(0.8*np.pi, 1) qc.cry(0.4*np.pi, 2, 1) qc.crx(0.02*np.pi, 2, 0) assert _run_zxpass(qc) def test_random_circuits() -> None: """Test random circuits. """ for _ in range(20): num_qubits = np.random.randint(4, 9) depth = np.random.randint(10, 21) qc = random_circuit(num_qubits, depth) assert _run_zxpass(qc)
https://github.com/bawejagb/Quantum_Computing
bawejagb
#Import Libraries from qiskit import QuantumCircuit, transpile, Aer, assemble from qiskit.providers.aer import QasmSimulator from qiskit.visualization import plot_bloch_multivector, plot_histogram from qiskit.visualization import array_to_latex, plot_state_qsphere # Use Aer's qasm_simulator simulator = QasmSimulator() # Create a Quantum Circuit acting on the q register circuit = QuantumCircuit(2, 2) # Add a H gate on qubit 0 circuit.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0, 1) # Draw the circuit circuit.draw(output='mpl') # Let's get the result: svsim=Aer.get_backend('aer_simulator') circuit.save_statevector() qobj = assemble(circuit) result = svsim.run(qobj).result() # Print the statevector neatly: final_state = result.get_statevector() array_to_latex(final_state, prefix="\\text{Statevector = }") #Plot Sphere plot_state_qsphere(final_state) # Map the quantum measurement to the classical bits circuit.measure([0,1], [0,1]) # Draw the circuit circuit.draw(output='mpl') # compile the circuit down to low-level QASM instructions compiled_circuit = transpile(circuit, simulator) # Execute the circuit on the qasm simulator job = simulator.run(compiled_circuit, shots=1000) # Grab results from the job result = job.result() # Returns counts counts = result.get_counts(compiled_circuit) print("\nTotal count for 00 and 11 are:",counts) #Plot histogram of result plot_histogram(counts)