repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/maryrbarros2/QuantumAlgorithms_Qiskit
maryrbarros2
from qiskit import QuantumCircuit, Aer, assemble from math import pi import numpy as np from qiskit.visualization import plot_bloch_multivector, plot_histogram, array_to_latex qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.draw() qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) display(qc.draw()) # `display` is a command for Jupyter notebooks # similar to `print`, but for rich content # Let's see the result svsim = Aer.get_backend('aer_simulator') qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() display(array_to_latex(final_state, prefix="\\text{Statevector} = ")) plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.h(0) qc.x(1) qc.h(1) qc.draw() qc = QuantumCircuit(2) qc.h(0) qc.x(1) qc.h(1) display(qc.draw()) # See the result qc1 = qc.copy() qc1.save_statevector() final_state = svsim.run(qc1).result().get_statevector() display(array_to_latex(final_state, prefix="\\text{Statevector} = ")) plot_bloch_multivector(final_state) qc.cx(0,1) display(qc.draw()) qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() display(array_to_latex(final_state, prefix="\\text{Statevector} = ")) plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.h(0) qc.h(1) display(qc.draw()) qc.save_unitary() usim = Aer.get_backend('aer_simulator') qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw()) qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cp(pi/4, 0, 1) qc.draw() qc = QuantumCircuit(2) qc.cp(pi/4, 0, 1) display(qc.draw()) # See Results: qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Controlled-T} = \n") qc = QuantumCircuit(2) qc.h(0) qc.x(1) display(qc.draw()) # See Results: qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.h(0) qc.x(1) # Add Controlled-T qc.cp(pi/4, 0, 1) display(qc.draw()) # See Results: qc.save_statevector() qobj = assemble(qc) final_state = svsim.run(qobj).result().get_statevector() plot_bloch_multivector(final_state)
https://github.com/maryrbarros2/QuantumAlgorithms_Qiskit
maryrbarros2
# initialization import numpy as np import matplotlib # importing Qiskit from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer, assemble, transpile from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram style = {'backgroundcolor': 'lightyellow'} # Style of the circuits # set the length of the n-bit input string. n = 3 # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw(output='mpl', style=style) # use local simulator aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(dj_circuit, aer_sim) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) print(b) print(str(n)) b=7 # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') print(b_str) # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw(output='mpl', style=style) transpiled_dj_circuit = transpile(dj_circuit, aer_sim) qobj = assemble(transpiled_dj_circuit) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/maryrbarros2/QuantumAlgorithms_Qiskit
maryrbarros2
my_list = [1,3,5,2,4,2,5,8,0,7,6] #classical computation method def oracle(my_input): winner =7 if my_input is winner: response = True else: response = False return response for index, trial_number in enumerate(my_list): if oracle(trial_number) is True: print("Winner is found at index %i" %index) print("%i calls to the oracle used " %(index +1)) break #quantum implemenation from qiskit import * import matplotlib.pyplot as plt import numpy as np from qiskit.tools import job_monitor # oracle circuit oracle = QuantumCircuit(2, name='oracle') oracle.cz(0,1) oracle.to_gate() oracle.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit, backend=backend) result= job.result() sv= result.get_statevector() np.around(sv,2) #amplitude amplification reflection = QuantumCircuit(2, name='reflection') reflection.h([0,1]) reflection.z([0,1]) reflection.cz(0,1) reflection.h([0,1]) reflection.to_gate() reflection.draw(output='mpl') #testing circuit on simulator simulator = Aer.get_backend('qasm_simulator') grover_circuit = QuantumCircuit(2,2) grover_circuit.h([0,1]) grover_circuit.append(oracle,[0,1]) grover_circuit.append(reflection, [0,1]) grover_circuit.barrier() grover_circuit.measure([0,1],[0,1]) grover_circuit.draw(output='mpl') job= execute(grover_circuit,backend=simulator,shots=1) result=job.result() result.get_counts() #testing on real backend system IBMQ.load_account() provider= IBMQ.get_provider('ibm-q') qcomp= provider.get_backend('ibmq_manila') job = execute(grover_circuit,backend=qcomp) job_monitor(job) result=job.result() counts=result.get_counts(grover_circuit) from qiskit.visualization import plot_histogram plot_histogram(counts) counts['11']
https://github.com/maryrbarros2/QuantumAlgorithms_Qiskit
maryrbarros2
import numpy as np from qiskit import QuantumCircuit, transpile from qiskit.providers.aer import QasmSimulator from qiskit.visualization import plot_histogram # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) #default, each qubit in the register is initialized to |0⟩ # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) circ.draw('mpl') # Import Aer from qiskit import Aer from qiskit import execute # Run the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') # Create a Quantum Program for execution job = execute(circ, backend) job.status() result = job.result() #results object contains the data outputstate = result.get_statevector(circ, decimals=3) print(outputstate) from qiskit.visualization import plot_state_city plot_state_city(outputstate) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() output = result.get_unitary(circ, decimals=3) # Show the results print(output) plot_state_city(output) # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3), range(3)) # The Qiskit circuit object supports composition using # the addition operator. qc = circ + meas #drawing the circuit qc.draw() # Use Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = execute(qc, backend_sim, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) #Trying with different shots to compare: job_sim2 = execute(qc, backend_sim, shots=3000) # Grab the results from the job. result_sim2 = job_sim2.result() counts2 = result_sim2.get_counts(qc) plot_histogram(counts2)
https://github.com/maryrbarros2/QuantumAlgorithms_Qiskit
maryrbarros2
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector ### Creating 3 qubit and 2 classical bits in each separate register qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) ### A third party eve helps to create an entangled state def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a, b) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, a, b): qc.cx(a, b) qc.h(a) teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): qc.barrier() qc.measure(a,0) qc.measure(b,1) teleportation_circuit.barrier() measure_and_send(teleportation_circuit, 0, 1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) qc.z(qubit).c_if(crz, 1) teleportation_circuit.barrier() bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() from qiskit.extensions import Initialize import math qc = QuantumCircuit(1) initial_state = [0,1] init_gate = Initialize(initial_state) # qc.append(initialize_qubit, [0]) qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical registers crx = ClassicalRegister(1) qc = QuantumCircuit(qr, crz, crx) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) # Bob decodes qubits bob_gates(qc, 2, crz, crx) qc.draw() backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) inverse_init_gate = init_gate.gates_to_uncompute() qc.append(inverse_init_gate, [2]) qc.draw() cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw() backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1024).result().get_counts() plot_histogram(counts) def bob_gates(qc, a, b, c): qc.cz(a, c) qc.cx(b, c) qc = QuantumCircuit(3,1) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) qc.barrier() # Alice sends classical bits to Bob bob_gates(qc, 0, 1, 2) # We undo the initialisation process qc.append(inverse_init_gate, [2]) # See the results, we only care about the state of qubit 2 qc.measure(2,0) # View the results: qc.draw() from qiskit import IBMQ IBMQ.save_account('### IMB TOKEN ') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) job_exp = execute(qc, backend=backend, shots=8192) exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_result) plot_histogram(exp_measurement_result) error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \ * 100./ sum(list(exp_measurement_result.values())) print("The experimental error rate : ", error_rate_percent, "%")
https://github.com/Sinestro38/Generalized-Quantum-Fourier-Transform
Sinestro38
import numpy as np from numpy import pi from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) #Qiskit's least significant bit has the lowest index (0), thus the circuit will be mirrored through the horizontal qc.h(2) #Next, we want to turn this an extra quarter turn if qubit 1 is in the state |1> qc.cp(pi/2, 1, 2) # CROT from qubit 1 to qubit 2 #And another eighth turn if the least significant qubit (0) is |1> qc.cp(pi/4, 0, 2) # CROT from qubit 2 to qubit 0 qc.h(1) qc.cp(pi/2, 0, 1) # CROT from qubit 0 to qubit 1 qc.h(0) qc.swap(0,2) qc.draw() def qft_rotations(circuit, n): if n == 0: # Exit function if circuit is empty return circuit n -= 1 # Indexes start from 0 circuit.h(n) # Apply the H-gate to the most significant qubit for qubit in range(n): # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cp(pi/2**(n-qubit), qubit, n) # At the end of our function, we call the same function again on # the next qubits (we reduced n by one earlier in the function) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): """QFT on the first n qubits in circuit""" qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc1 = QuantumCircuit(4) qft(qc1,4) qc1.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 qc.x(0) # since we need '1' at first qubit and at last qubit qc.x(2) qc.draw() # And let's check the qubit's states using the aer simulator: sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() # making a copy so that we can work on the original one qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) # we can see the state below as '101' qft(qc,3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector) def inverse_qft(circuit, n): """Does the inverse QFT on the first n qubits in circuit""" # First we create a QFT circuit of the correct size: qft_circ = qft(QuantumCircuit(n), n) # Then we take the inverse of this circuit invqft_circ = qft_circ.inverse() # And add it to the first n qubits in our existing circuit circuit.append(invqft_circ, circuit.qubits[:n]) return circuit.decompose() # .decompose() allows us to see the individual gates nqubits = 3 number = 5 qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) qc.p(number*pi/4,0) qc.p(number*pi/2,1) qc.p(number*pi,2) qc.draw() qc_init = qc.copy() qc_init.save_statevector() sim = Aer.get_backend("aer_simulator") statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qc = inverse_qft(qc, nqubits) qc.measure_all() qc.draw() # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to nqubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= nqubits and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) shots = 2048 transpiled_qc = transpile(qc, backend, optimization_level=3) job = backend.run(transpiled_qc, shots=shots) job_monitor(job) counts = job.result().get_counts() plot_histogram(counts)
https://github.com/ace314/Quantum-Multi-collision-Problem
ace314
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) def inversion_about_average(circuit, register, n, barriers): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) if barriers: circuit.barrier() n_controlled_Z(circuit, [register[j] for j in range(n-1)], register[n-1]) if barriers: circuit.barrier() circuit.x(register) circuit.h(register) def phase_oracle(circuit, qindex, qr): circuit.cx(qindex[1],qr[0]) circuit.cx(qindex[2],qr[1]) def phase_flipping2(circuit, qindex, qr, qanx, T): phase_oracle(groverCircuit, qindex, qr) for i in range(T[1] // 2): circuit.x(qanx[1]) for i in range(T[1] % 2): circuit.x(qanx[2]) groverCircuit.barrier() circuit.cx(qr[0], qanx[1]) circuit.cx(qr[1], qanx[2]) circuit.barrier() circuit.cx(qanx[1], qanx[0]) circuit.cx(qanx[2], qanx[0]) circuit.ccx(qanx[1],qanx[2],qanx[0]) circuit.barrier() circuit.cx(qr[0], qanx[1]) circuit.cx(qr[1], qanx[2]) circuit.x(qanx[0]) groverCircuit.barrier() #print(T[1]) for i in range(T[1] // 2): circuit.x(qanx[1]) for i in range(T[1] % 2): circuit.x(qanx[2]) phase_oracle(groverCircuit, qindex, qr) def phase_flipping3(circuit, qindex, qanx, T): phase_oracle(groverCircuit, qindex, qr) for i in range((T[0] // 4) % 2): circuit.x(qanx[1]) for i in range((T[0] // 2) % 2): circuit.x(qanx[2]) for i in range((T[0] // 1) % 2): circuit.x(qanx[3]) groverCircuit.barrier() circuit.cx(qindex[0], qanx[1]) circuit.cx(qindex[1], qanx[2]) circuit.cx(qindex[2], qanx[3]) circuit.barrier() circuit.cx(qanx[1], qanx[0]) circuit.cx(qanx[2], qanx[0]) circuit.cx(qanx[3], qanx[0]) circuit.ccx(qanx[1], qanx[2], qanx[0]) circuit.ccx(qanx[2], qanx[3], qanx[0]) circuit.ccx(qanx[3], qanx[1], qanx[0]) circuit.ccx(qanx[1], qanx[2], qanx[4]) circuit.ccx(qanx[3], qanx[4], qanx[0]) circuit.ccx(qanx[1], qanx[2], qanx[4]) circuit.barrier() circuit.cx(qindex[0], qanx[1]) circuit.cx(qindex[1], qanx[2]) circuit.cx(qindex[2], qanx[3]) circuit.x(qanx[0]) groverCircuit.barrier() for i in range((T[0] // 4) % 2): circuit.x(qanx[1]) for i in range((T[0] // 2) % 2): circuit.x(qanx[2]) for i in range((T[0] // 1) % 2): circuit.x(qanx[3]) phase_oracle(groverCircuit, qindex, qr) L = np.array([[2,2],[7,3]]) print(L) K = L[:,0] print(K) barriers = True m = 3 n = 2 qindex = QuantumRegister(m) qr = QuantumRegister(n) qanx = QuantumRegister(5) cindex = ClassicalRegister(m) cr = ClassicalRegister(n) groverCircuit = QuantumCircuit(qindex, qr, qanx, cindex, cr) groverCircuit.h(qindex) groverCircuit.x(qanx[0]) groverCircuit.h(qanx[0]) groverCircuit.barrier() #num_loop = int(np.ceil(np.cbrt(2 ** m))) num_loop = int(np.cbrt(2 ** m)) num_loop = 6 print("num_loop = ", num_loop) #phase_oracle(groverCircuit, qindex, qr) for i in range(num_loop): if barriers: groverCircuit.barrier() # the first stage of grover phase_flipping2(groverCircuit, qindex, qr, qanx, L[0,:]) if barriers: groverCircuit.barrier() # the third stage of grover phase_flipping3(groverCircuit, qindex, qanx, L[0,:]) if barriers: groverCircuit.barrier() #the second stage of grover # phase_flipping2(groverCircuit, qindex, qr, qanx, L[1,:]) if barriers: groverCircuit.barrier() # phase_flipping3(groverCircuit, qindex, qanx, L[1,:]) if barriers: groverCircuit.barrier() groverCircuit.barrier() inversion_about_average(groverCircuit, qindex, m, barriers) if barriers: groverCircuit.barrier() groverCircuit.measure(qindex,cindex) %matplotlib inline groverCircuit.draw(output='mpl') # groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 8192 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) print(answer) index = np.argmax(answer) index = 2 print(index) ans = np.zeros(2) flag = False for [i, j] in L: #print([i,j]) #print(index % 4) if j == index % 4: flag = True ans[0] = i ans[1] = index break if flag: print("ans = ", ans) else : print("failed")
https://github.com/Ben-Foxman/Quantum-Exploration
Ben-Foxman
my_list = [1, 3, 5, 2, 4, 9, 5, 8, 0, 7, 6] def the_oracle(my_input): winner = 7 return my_input == winner for index, trial_number in enumerate(my_list): if the_oracle(trial_number): print(f"Found the winner at index {index}!") print(f"{index+1} calls made") break from qiskit import * from qiskit.visualization import plot_histogram, array_to_latex from qiskit.providers.ibmq import least_busy import matplotlib.pyplot as plt import numpy as np grover_circuit = QuantumCircuit(2) def init_state(qc, qubits): for q in qubits: qc.h(q) return qc grover_circuit = init_state(grover_circuit, [0, 1]) grover_circuit.draw("mpl") #define the oracle circuit def oracle(qc, qubits): qc.cz(qubits[0], qubits[1]) qc = QuantumCircuit(2) oracle(qc, [0, 1]) qc.draw("mpl") usim = Aer.get_backend('aer_simulator') qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{One can see that only the state }\ket{11}\\text{ has been flipped: }\n") def diffusion(qc, qubits): qc.h([0, 1]) qc.z([0, 1]) qc.cz(0, 1) qc.h([0, 1]) grover_circuit.barrier() oracle(grover_circuit, [0, 1]) grover_circuit.barrier() diffusion(grover_circuit, [0, 1]) grover_circuit.measure_all() grover_circuit.draw("mpl") # Let's see if the final statevector matches our expectations sv_sim = Aer.get_backend('statevector_simulator') result = sv_sim.run(grover_circuit).result() statevec = result.get_statevector() statevec aer_sim = Aer.get_backend('aer_simulator') result = execute(grover_circuit, aer_sim, shots=1024).result() result.get_counts() # Load IBM Q account and get the least busy backend device # Run the following line with your API token to use IBM's own quantum computers #IBMQ.save_account('') provider = IBMQ.load_account() provider = IBMQ.get_provider("ibm-q") device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_grover_circuit = transpile(grover_circuit, device, optimization_level=3) job = device.run(transpiled_grover_circuit) job_monitor(job, interval=2) # Get the results from the computation results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer) grover_circuit = QuantumCircuit(3) grover_circuit = init_state(grover_circuit, [0, 1, 2]) grover_circuit.draw("mpl") oracle_qc = QuantumCircuit(3) oracle_qc.cz(0, 1) oracle_qc.cz(0, 2) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "U$_\omega$" def diffuser(nqubits): qc = QuantumCircuit(nqubits) # Apply transformation |s> -> |00..0> -> |11..1> for qubit in range(nqubits): qc.h(qubit) qc.x(qubit) # When these are combined, they function as a multi-controlled Z gate # A negative phase is added to |11..1> to flip the state qc.h(nqubits-1) qc.mct(list(range(nqubits-1)), nqubits-1) # multi-controlled-toffoli qc.h(nqubits-1) # Apply transformation |11..1> -> |00..0> -> |s> for qubit in range(nqubits): qc.x(qubit) qc.h(qubit) # We will return the diffuser as a gate U_s = qc.to_gate() U_s.name = "U$_s$" return U_s num_qubits = 3 grover_circuit = QuantumCircuit(num_qubits) grover_circuit = init_state(grover_circuit, [0, 1, 2]) grover_circuit.barrier() grover_circuit.append(oracle_gate, [0, 1, 2]) grover_circuit.barrier() grover_circuit.append(diffuser(num_qubits), [0, 1, 2]) grover_circuit.measure_all() grover_circuit.draw("mpl") qasm_sim = Aer.get_backend('qasm_simulator') transpiled_grover_circuit = transpile(grover_circuit, qasm_sim) results = qasm_sim.run(transpiled_grover_circuit).result() counts = results.get_counts() plot_histogram(counts) backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_grover_circuit = transpile(grover_circuit, device, optimization_level=3) job = device.run(transpiled_grover_circuit) job_monitor(job, interval=2) # Get the results from the computation results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer)
https://github.com/Ben-Foxman/Quantum-Exploration
Ben-Foxman
# Superdense Coding Implementation Ben Foxman import matplotlib.pyplot as plt import numpy as np from qiskit import * bits = input("Enter 2 bits.") # the 2 bits to encode/decode assert bits in ['00', '01', '10', '11'] # p1 encodes by creating map from each of the 4 bell states to each of the 4 2-bit codes def encode(target): bell = QuantumCircuit(2, 2, name="bell") bell.h([0, 1]) # this entangles p1 and p2's qubit (on measurement, they both evaluate to 0 or 1) if target == '01': bell.x([0, 1]) elif target == '10': bell.z(0) elif target == '11': bell.z(0) bell.x([0, 1]) # '00'= identity, keep the initial bell states bell state return bell # now, p2 decodes the circuit def decode(circuit): # step 1: cnot it circuit.cx(0, 1) #step 2: h-gate and measure circuit.h(0) circuit.measure([0, 1], [0, 1]) return circuit backend = Aer.get_backend('statevector_simulator') # encode bits circ = encode(bits) # decode bits message = decode(circ) job = execute(message, backend) result = job.result() # print out the statevector. There should be a 1 at index n, where n (base 10) is the code print(np.round(result.get_statevector(), 2))
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
# !sudo apt install lrslib # !pip install -e git+https://github.com/Pitt-JonesLab/mirror-gates#egg=mirror-gates[core] # !pip install pylatexenc from qiskit.transpiler import CouplingMap coupling_map = CouplingMap.from_line(4) from transpile_benchy.library import CircuitLibrary lib = CircuitLibrary(circuit_list=[]) qc = lib.get_circuit("qft_n4") qc = qc.decompose() display(qc.draw("mpl")) from mirror_gates.pass_managers import Mirage mirage = Mirage( coupling_map, # coupling map name="Mirage-$\sqrt{\texttt{iSWAP}}$", # transpile_benchy and figure labels) parallel=True, # run trials in parallel or serial cx_basis=False, # turning on sets CNOT as the basis gate, # (can take arbitrary basis but parameters are not configured that way yet) cost_function="depth", # switch to "basic" for counting SWAPs fixed_aggression=None, # force aggression level on all iterations layout_trials=None, # how many independent layout trials to run (20) fb_iters=None, # how many forward-backward iterations to run (4) swap_trials=None, # how many independent routing trials to run (20) no_vf2=False, # keep False to use VF2 for finding complete layouts logger=None, # from logging moduel ) mirage_qc = mirage.run(circuit=qc) mirage_qc.draw("mpl") # from qiskit import transpile # from mirror_gates import sqiswap_equiv # mirage_qc = transpile( # qc, # optimization_level=3, # coupling_map=coupling_map, # basis_gates=["u", "xx_plus_yy", "id"], # routing_method="mirage", # layout_method="sabre_layout_v2", # ) # mirage_qc.draw("mpl")
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.transpiler import CouplingMap t = CouplingMap.from_heavy_hex(5) t.size() from transpile_benchy.library import CircuitLibrary from qiskit import transpile from mirror_gates.sqiswap_equiv import sel lib = CircuitLibrary.from_txt("medium_circuits.txt") for circuit in lib: # qc = transpile(circuit, basis_gates=["u", "xx_plus_yy"], optimization_level=0) # print(qc.count_ops()["cx"]) # save the qasm file circuit.qasm(filename=circuit.name + ".qasm") # qc.draw("mpl") # circuit.decompose().decompose().draw("mpl") from transpile_benchy.library import CircuitLibrary lib = CircuitLibrary(circuit_list=[]) for interface in lib.interfaces: print(interface.__class__.__name__) for circuit in interface.circuits: print(circuit) print() lib = CircuitLibrary.from_txt("medium_circuits.txt")
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
"""CNS Transformations for mirror gates.""" import numpy as np from qiskit import QuantumCircuit from qiskit.circuit import Instruction from qiskit.circuit.library import SwapGate from qiskit.dagcircuit import DAGCircuit, DAGOpNode from qiskit.extensions import UnitaryGate from mirror_gates.fast_unitary import FastConsolidateBlocks, NoCheckUnitary # Global CNS Transformations # cx -> iswap cx_replace = QuantumCircuit(2, 0, name="iswap_prime") cx_replace.h(1) cx_replace.rz(-np.pi / 2, 0) cx_replace.rz(-np.pi / 2, 1) cx_replace.iswap(0, 1) # cx_replace.append(SiSwapGate(), [0, 1]) # cx_replace.append(SiSwapGate(), [0, 1]) cx_replace.h(0) # iswap -> cx iswap_replace = QuantumCircuit(2, 0, name="cx_prime") iswap_replace.rz(np.pi / 2, 0) iswap_replace.rz(np.pi / 2, 1) iswap_replace.h(1) iswap_replace.cx(0, 1) iswap_replace.h(1) def _get_node_cns(node: DAGOpNode, use_fast_settings: bool = True) -> Instruction: """Get the CNS transformation for a given node.""" if len(node.qargs) != 2: raise ValueError("Only supports 2Q gates") # NOTE, the UnitaryGate() constructor is a bit expensive if use_fast_settings: new_op = SwapGate().to_matrix() @ node.op.to_matrix() new_unitary = NoCheckUnitary(new_op, label="u+swap") # TODO: calculate mirror coordinate directly # from monodromy.coordinates import mirror_monodromy_coordinate # _monodromy_coord = mirror_monodromy_coordinate(node.op._monodromy_coord) new_unitary._monodromy_coord = FastConsolidateBlocks.unitary_to_coordinate( new_unitary ) else: new_op = SwapGate().to_matrix() @ node.op.to_matrix() new_unitary = UnitaryGate(new_op, label="u+swap") return DAGOpNode(op=new_unitary, qargs=node.qargs) def cns_transform(dag: DAGCircuit, *h_nodes, preserve_layout=False) -> DAGCircuit: """Transform DAG by applying CNS transformations on multiple nodes. Args: dag (DAGCircuit): DAG to be transformed (will not be modified) h_nodes (DAGOpNode): Nodes to be transformed. preserve_layout (bool): If True, the layout of the original DAG is preserved. Use this option if testing equivalence of original and transformed circuits. """ new_dag = dag.copy_empty_like() if preserve_layout: # convert so can be modified h_nodes = list(h_nodes) # Initialize layout for each node layout = {qarg: qarg for node in dag.topological_op_nodes() for qarg in node.qargs} for node in dag.topological_op_nodes(): qargs = [layout.get(qarg, qarg) for qarg in node.qargs] # check if node is in list of nodes to be transformed # FIXME, this is true multiple times, # semantic_eq checks if is a CX but not if the exact same CX if any(node == h_node for h_node in h_nodes): # if any(DAGNode.semantic_eq(node, h_node) for h_node in h_nodes): try: # checks if has a defined CNS transformation node_prime = _get_node_cns(node) new_dag.apply_operation_back(node_prime.op, qargs) # swap values in layout layout[node.qargs[0]], layout[node.qargs[1]] = qargs[1], qargs[0] except ValueError: new_dag.apply_operation_back(node.op, qargs) h_nodes.remove(node) else: new_dag.apply_operation_back(node.op, qargs) if preserve_layout: for h_node in reversed(h_nodes): new_dag.apply_operation_back(SwapGate(), h_node.qargs) return new_dag # legacy code, only works for a single node # def cns_transform(dag: DAGCircuit, h_node, preserve_layout=False): # """Alternative implementation, adds nodes into blank copy of dag.""" # new_dag = dag.copy_empty_like() # flip_flag = False # swap_wires = { # qarg1: qarg2 for qarg1, qarg2 in zip(h_node.qargs, h_node.qargs[::-1]) # } # for node in dag.topological_op_nodes(): # # if node == h_node: # if DAGNode.semantic_eq(node, h_node): # # here we add the cns transformation, and use the flip flag # # flip_flag tells us from this gate onwards, qargs will reverse # # effectively, we are adding the virtual swap here # new_dag.apply_operation_back(_get_node_cns(node).op, node.qargs) # flip_flag = True # else: # if flip_flag: # new_dag.apply_operation_back( # node.op, [swap_wires.get(qarg, qarg) for qarg in node.qargs] # ) # else: # new_dag.apply_operation_back(node.op, node.qargs) # # fix with a swap # # if preserve_layout: # # new_dag.apply_operation_back(SwapGate(), h_node.qargs) # return new_dag
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
"""Noisy fidelity of a circuit.""" import numpy as np from qiskit import transpile from qiskit.circuit import Delay from qiskit.converters import circuit_to_dag from qiskit.quantum_info import state_fidelity from qiskit.transpiler import PassManager from qiskit.transpiler.passes import ASAPSchedule, Optimize1qGatesDecomposition from qiskit_aer import AerSimulator, QasmSimulator # Import from Qiskit Aer noise module from qiskit_aer.noise import ( NoiseModel, RelaxationNoisePass, depolarizing_error, thermal_relaxation_error, ) from mirror_gates.logging import transpile_benchy_logger from mirror_gates.sqiswap_decomposer import SiSwapDecomposePass # 80 microsec (in nanoseconds) T1 = 80e3 # 80 microsec T2 = 80e3 # Instruction times (in nanoseconds) time_u3 = 25 time_cx = 100 time_siswap = int(time_cx / 2.0) # divide by 2 again since # each sqrt(iSwap) is compiled to an RXX and RYY time_rxx = int(time_siswap / 2.0) p1 = 0.0 p2 = 0.00658 class NoiseModelBuilder: """A class to help build a custom NoiseModel from scratch. Many of the functions are based on examples from https://github.com/Qiskit/qiskit-presentations/blob/master/2019-02-26_QiskitCamp/QiskitCamp_Simulation.ipynb """ def __init__(self, basis_gates, coupling_map=None): """Initialize a NoiseModelBuilder.""" self.noise_model = NoiseModel(basis_gates=basis_gates) self.coupling_map = coupling_map def construct_basic_device_model(self, p_depol1, p_depol2, t1, t2): """Emulate qiskit.providers.aer.noise.device.models.basic_device_noise_model(). The noise model includes the following errors: * Single qubit readout errors on measurements. * Single-qubit gate errors consisting of a depolarizing error followed by a thermal relaxation error for the qubit the gate acts on. * Two-qubit gate errors consisting of a 2-qubit depolarizing error followed by single qubit thermal relaxation errors for all qubits participating in the gate. :param p_depol1: Probability of a depolarising error on single qubit gates :param p_depol2: Probability of a depolarising error on two qubit gates :param t1: Thermal relaxation time constant :param t2: Dephasing time constant """ if t2 > 2 * t1: raise ValueError("t2 cannot be greater than 2t1") # Thermal relaxation error # QuantumError objects error_thermal_u3 = thermal_relaxation_error(t1, t2, time_u3) error_thermal_cx = thermal_relaxation_error(t1, t2, time_cx).expand( thermal_relaxation_error(t1, t2, time_cx) ) error_thermal_rxx = thermal_relaxation_error(t1, t2, time_rxx).expand( thermal_relaxation_error(t1, t2, time_rxx) ) # Depolarizing error error_depol1 = depolarizing_error(p_depol1, 1) error_depol2 = depolarizing_error(p_depol2, 2) self.noise_model.add_all_qubit_quantum_error( error_depol1.compose(error_thermal_u3), "u" ) for pair in self.coupling_map: self.noise_model.add_quantum_error( error_depol2.compose(error_thermal_cx), "cx", pair ) self.noise_model.add_quantum_error( error_depol2.compose(error_thermal_rxx), ["rxx", "ryy"], pair ) def heuristic_fidelity(N, duration, T1=None, T2=None): """Get heuristic fidelity of a circuit.""" if T1 is None: T1 = 80e3 if T2 is None: T2 = 80e3 decay_factor = (1 / T1 + 1 / T2) * duration single_qubit_fidelity = np.exp(-decay_factor) total_fidelity = single_qubit_fidelity**N return total_fidelity def get_noisy_fidelity(qc, coupling_map, sqrt_iswap_basis=False): """Get noisy fidelity of a circuit. NOTE: if qc is too big, will use heuristic fidelity function. Args: qc (QuantumCircuit): circuit to run, assumes all gates are consolidated coupling_map (CouplingMap): coupling map of device Returns: fidelity (float): noisy fidelity of circuit duration (int): duration of circuit circ (QuantumCircuit): transpiled circuit expected_fidelity (float): expected fidelity of circuit """ N = coupling_map.size() num_active = len(list(circuit_to_dag(qc).idle_wires())) - qc.num_clbits basis_gates = ["cx", "u", "rxx", "ryy", "id"] # Step 0. Create Noise Model # 0A. Set up Instruction Durations # (inst, qubits, time) instruction_durations = [] for j in range(N): instruction_durations.append(("u", j, time_u3)) for j, k in coupling_map: instruction_durations.append(("cx", (j, k), time_cx)) instruction_durations.append(("rxx", (j, k), time_rxx)) instruction_durations.append(("ryy", (j, k), time_rxx)) instruction_durations.append(("save_density_matrix", list(range(N)), 0.0)) # 0B. If circuit is too big, use heuristic fidelity function # Use heuristic fidelity function circ = transpile( qc, basis_gates=basis_gates, instruction_durations=instruction_durations, scheduling_method="asap", coupling_map=coupling_map, ) duration = circ.duration expected_fidelity = heuristic_fidelity(num_active, duration) if N > 10: return 0, duration, circ, expected_fidelity else: transpile_benchy_logger.debug(f"Expected fidelity: {expected_fidelity:.4g}") # 0C. Build noise model builder = NoiseModelBuilder(basis_gates, coupling_map) builder.construct_basic_device_model(p_depol1=p1, p_depol2=p2, t1=T1, t2=T2) noise_model = builder.noise_model # 0D. Create noisy simulator noisy_simulator = AerSimulator(noise_model=noise_model) # Step 1. Given consolidated circuit, decompose into basis gates if sqrt_iswap_basis: decomposer = PassManager() decomposer.append(SiSwapDecomposePass()) decomposer.append(Optimize1qGatesDecomposition()) qc = decomposer.run(qc) # Step 2. Convert into simulator basis gates # simulator = Aer.get_backend("density_matrix_gpu") simulator = QasmSimulator(method="density_matrix") circ = transpile( qc, simulator, basis_gates=basis_gates, coupling_map=coupling_map, ) # Step 3. transpile with scheduling and durations circ = transpile( qc, noisy_simulator, basis_gates=basis_gates + ["save_density_matrix"], instruction_durations=instruction_durations, scheduling_method="asap", coupling_map=coupling_map, ) # Step 4. Relaxation noise for idle qubits pm = PassManager() pm.append(ASAPSchedule()) pm.append( RelaxationNoisePass( t1s=[T1] * N, t2s=[T2] * N, dt=1e-9, op_types=[Delay], ) ) circ = pm.run(circ) duration = circ.duration # Step 5. Run perfect and noisy simulation and compare circ.save_density_matrix(list(range(N))) perfect_result = simulator.run(circ).result().data()["density_matrix"] noisy_result = noisy_simulator.run(circ).result().data()["density_matrix"] fidelity = state_fidelity(perfect_result, noisy_result) return fidelity, duration, circ, expected_fidelity
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
"""Add custom gates to the session EquivalenceLibrary instance. NOTE: sel is global, so just import this file before calling transpile. """ import numpy as np from qiskit import QuantumCircuit from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel from qiskit.circuit.library.standard_gates import CXGate, SwapGate, XXPlusYYGate # https://arxiv.org/pdf/2110.11537.pdf cx_decomp = QuantumCircuit(2) cx_decomp.u(np.pi / 2, -np.pi / 2, 0, 0) cx_decomp.u(np.pi / 2, np.pi, -np.pi / 2, 1) cx_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) cx_decomp.u(np.pi, -np.pi / 2, np.pi / 2, 0) cx_decomp.u(0, 0, np.pi, 1) cx_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) cx_decomp.u(np.pi / 2, -np.pi / 2, -3 * np.pi / 2, 0) cx_decomp.u(0, -np.pi / 2, -np.pi, 1) sel.add_equivalence(CXGate(), cx_decomp) swap_decomp = QuantumCircuit(2) swap_decomp.append(XXPlusYYGate(-np.pi / 2, 0), [0, 1]) swap_decomp.rx(-np.pi / 2, 0) swap_decomp.rx(-np.pi / 2, 1) swap_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) swap_decomp.rx(np.pi / 2, 0) swap_decomp.rx(np.pi / 2, 1) swap_decomp.ry(-np.pi / 2, 0) swap_decomp.ry(-np.pi / 2, 1) swap_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) swap_decomp.ry(np.pi / 2, 0) swap_decomp.ry(np.pi / 2, 1) sel.add_equivalence(SwapGate(), swap_decomp) # bb = transpile( # circ, basis_gates=["u", "xx_plus_yy"], coupling_map=topo, optimization_level=3 # ) # bb.draw(output="mpl") ####################### # NOTE this is a hack :) # # https://github.com/Qiskit/qiskit-terra/issues/9485 # add I = U(0, 0, 0) to the equivalence library # from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel # from qiskit import QuantumCircuit # from qiskit.circuit.library import IGate # qc = QuantumCircuit(1) # qc.u(0, 0, 0, 0) # sel.add_equivalence(IGate(), qc)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
"""Define the Sycamore gate and its decompositions.""" from qiskit import QuantumCircuit from qiskit.circuit.library import CZGate, iSwapGate from qiskit.quantum_info import Operator qc = QuantumCircuit(2) qc.append(iSwapGate().power(-1), [0, 1]) qc.append(CZGate().power(1 / 6), [0, 1]) syc = Operator(qc) syc.name = "syc" syc.params = [] # # Get the directory of the current file # current_directory = Path(__file__).parent # # Compute the absolute paths to the .qasm files # cx_decomp_path = current_directory / "../circuits/d02_syc_cnot.qasm" # swap_decomp_path = current_directory / "../circuits/d02_syc_swap.qasm" # cx_decomp = QuantumCircuit.from_qasm_file(cx_decomp_path) # cx_decomp = cx_decomp.decompose() # sel.add_equivalence(CXGate(), cx_decomp) # swap_decomp = QuantumCircuit.from_qasm_file(swap_decomp_path) # sel.add_equivalence(SwapGate(), swap_decomp)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit import transpile from qiskit.circuit.library import CZGate, iSwapGate from qiskit.quantum_info import Operator from qiskit import QuantumCircuit import numpy as np qc = QuantumCircuit(2) qc.cz(0, 1) qc.swap(0, 1) qc2 = QuantumCircuit(2) qc2.rz(-np.pi / 2, 0) qc2.rz(-np.pi / 2, 1) qc2.iswap(0, 1) Operator(qc).equiv(qc2) qc2.draw("mpl") from qiskit.circuit.library import QuantumVolume, EfficientSU2, TwoLocal, QFT from qiskit import QuantumCircuit from qiskit.circuit.library.standard_gates import iSwapGate, CXGate from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeQuitoV2 from qiskit.transpiler.coupling import CouplingMap from qiskit.extensions import UnitaryGate from weylchamber import canonical_gate from mirror_gates.pass_managers import Mirage, QiskitLevel3 from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from transpile_benchy.metrics.timer import TimeMetric from mirror_gates.fast_unitary import FastConsolidateBlocks from qiskit.transpiler.passes import ( Collect2qBlocks, Unroll3qOrMore, ConsolidateBlocks, ) from qiskit.transpiler import PassManager import numpy as np from mirror_gates.logging import transpile_benchy_logger N = 8 # coupling_map = FakeQuitoV2().target.build_coupling_map() # coupling_map = CouplingMap.from_grid(4,4) coupling_map = CouplingMap.from_line(N) # coupling_map = CouplingMap.from_heavy_hex(5) # coupling_map.draw() from transpile_benchy.interfaces.mqt_interface import MQTBench from transpile_benchy.interfaces.qasm_interface import QASMBench from transpile_benchy.library import CircuitLibrary lib = CircuitLibrary(circuit_list=[]) qc = lib.get_circuit("qft_n4") qc = qc.decompose() display(qc.draw("mpl")) # qc.remove_final_measurements() # qc.save_density_matrix() # qc.draw("mpl") # # Create an empty noise model # from qiskit_aer.noise import ( # NoiseModel, # QuantumError, # ReadoutError, # pauli_error, # depolarizing_error, # thermal_relaxation_error, # ) # # Error probabilities # prob_1 = 0.001 # 1-qubit gate # prob_2 = 0.01 # 2-qubit gate # # Depolarizing quantum errors # error_1 = depolarizing_error(prob_1, 1) # error_2 = depolarizing_error(prob_2, 2) # # Add errors to noise model # noise_model = NoiseModel() # noise_model.add_all_qubit_quantum_error(error_1, ["u1", "u2", "u3"]) # noise_model.add_all_qubit_quantum_error(error_2, ["cx"]) # print(noise_model) runner = Mirage( coupling_map, cx_basis=0, parallel=0, logger=transpile_benchy_logger, cost_function="depth", # cost_function="basic", anneal_routing=True, layout_trials=20, fb_iters=4, # layout_trials=20, # fb_iters=4, # fixed_aggression=0 # cost_function="basic", use_fast_settings=1, ) runner.seed = 0 metric = DepthMetric(consolidate=False) runner._append_metric_pass(metric) metric = TotalMetric(consolidate=False) runner._append_metric_pass(metric) metric = TotalSwaps(consolidate=False) runner._append_metric_pass(metric) # metric = TimeMetric() # runner._append_metric_pass(metric) transp = runner.run(qc) # print(runner.property_set["accepted_subs"]) print(runner.property_set["monodromy_depth"]) print(runner.property_set["monodromy_total"]) print(runner.property_set["total_swaps"]) display(runner.property_set["mid"].draw("mpl", fold=-1)) # display(runner.property_set["post0"].draw("mpl")) # display(transp.draw(output="mpl", fold=-1)) transpile(transp, basis_gates=["cx", "u"]).draw("mpl") from qiskit import transpile mirage_qc = transpile( qc, optimization_level=3, coupling_map=coupling_map, # basis_gates=["u", "xx_plus_yy", "id"], basis_gates=["u", "cx"], routing_method="mirage", layout_method="sabre_layout_v2", ) mirage_qc.draw(output="mpl") runner = QiskitLevel3(coupling_map, cx_basis=0) metric = DepthMetric(consolidate=False) runner._append_metric_pass(metric) metric = TotalSwaps(consolidate=False) runner._append_metric_pass(metric) transp = runner.run(qc) print(runner.property_set["monodromy_depth"]) print(runner.property_set["total_swaps"]) # print(runner.property_set["monodromy_total"]) display(transp.draw(output="mpl", fold=-1)) # display(runner.property_set["post0"].draw("mpl")) # from qiskit import Aer, transpile # from qiskit.quantum_info import state_fidelity # from qiskit_aer import AerSimulator # simulator = Aer.get_backend("aer_simulator") # circ = transpile(qc, simulator) # result = simulator.run(circ).result() # perfect_density_matrix = result.data()["density_matrix"]
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit import QuantumCircuit, QuantumRegister import numpy as np # load a dummy circuit # generate network of random cnots n, M = 2, 4 N = n**2 register = QuantumRegister(N) qc = QuantumCircuit(register) for _ in range(M): qc.cx(*np.random.choice(N, 2, replace=False)) qc.name = "random cx circuit" qc.decompose().draw("mpl") from qiskit.transpiler.coupling import CouplingMap qc = QuantumCircuit(3) qc.ccx(0, 1, 2) coupling = CouplingMap.from_line(3) qc.decompose().draw("mpl") from virtual_swap.pass_managers import BruteCNS brute = BruteCNS(coupling) transp = brute.run(qc) transp.draw("mpl") from qiskit.transpiler.passes import OptimizeSwapBeforeMeasure, Unroller from qiskit.converters import dag_to_circuit from qiskit.transpiler import PassManager clean = PassManager() clean.append(OptimizeSwapBeforeMeasure()) clean.append(Unroller(["u", "cx", "iswap", "swap"])) property_set = brute.pm.property_set # Reference for brevity dags, costs, perms = ( property_set["all_dags"], property_set["all_costs"], property_set["all_perms"], ) for dag, cost, perm in zip(dags, costs, perms): print(cost) perm_str = ", ".join( [f"{node.name}[{node.qargs[0].index},{node.qargs[1].index}]" for node in perm] ) print("Permutation:", perm_str) circuit = dag_to_circuit(dag) print(clean.run(circuit).draw(fold=-1))
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit import QuantumCircuit qc1 = QuantumCircuit(3) qc1.cx(1, 0) qc1.cx(0, 1) qc1.cz(1, 2) qc1.cx(0, 1) qc1.cx(1, 0) qc1.draw("mpl") iswap_sub = QuantumCircuit(2) iswap_sub.h(0) iswap_sub.sdg(0) iswap_sub.sdg(1) iswap_sub.iswap(0, 1) iswap_sub.h(1) iswap_sub.draw("mpl") qc1 = QuantumCircuit(3) qc1.cx(1, 0) qc1.cx(0, 1) qc1.cz(1, 2) qc1.h(0) qc1.sdg(0) qc1.sdg(1) qc1.iswap(0, 1) qc1.h(1) qc1.draw("mpl") reverse_cx = QuantumCircuit(2) reverse_cx.h(1) reverse_cx.h(1) reverse_cx.iswap(0, 1) reverse_cx.s(0) reverse_cx.s(1) reverse_cx.h(0) reverse_cx.h(0) reverse_cx.sdg(0) reverse_cx.sdg(1) reverse_cx.draw("mpl") qc0 = QuantumCircuit(2) qc0.cx(1, 0) qc0.cx(0, 1) qc0.draw("mpl") qc2 = QuantumCircuit(3) # qc2.cx(1,0) qc2.cx(0, 1) qc2.cz(1, 2) qc2.cx(0, 1) # qc2.cx(1,0) qc2.draw("mpl") from qiskit.quantum_info import Operator Operator(qc1).equiv(Operator(qc2)) qc3 = QuantumCircuit(2) qc3.cx(0, 1) qc3.cx(1, 0) qc4 = QuantumCircuit(2) qc4.cx(1, 0) qc4.cx(0, 1) Operator(qc3).equiv(Operator(qc4)) qc5 = QuantumCircuit(5) qc5.iswap(0, 1) print(Operator(qc3).equiv(Operator(qc5))) print(Operator(qc4).equiv(Operator(qc5))) from weylchamber import c1c2c3 print(c1c2c3(Operator(qc3).data)) print(c1c2c3(Operator(qc4).data)) # use for making some figures of QFT circuit dag for the paper from qiskit.circuit.library import QFT, TwoLocal qc = QFT(4).decompose() # qc = TwoLocal(4, ['ry'], 'cx', reps=1, entanglement='full', insert_barriers=False) qc.decompose().draw(output="mpl") # , filename="twolocal_base.svg") from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.cx(0, 1) qc.cx(1, 2) qc.barrier() qc.cx(0, 1) qc.cx(2, 1) qc.swap(0, 1) qc.draw("mpl") # line coupling_map from qiskit.transpiler import CouplingMap line = CouplingMap.from_line(3) grid = CouplingMap.from_grid(2, 2) topo = line from qiskit import transpile transp1 = transpile( qc, coupling_map=topo, optimization_level=3 # , initial_layout=[0, 1, 2, 3] ) transp1.draw(output="mpl") # , filename="twolocal_qiskit.svg") from qiskit.converters import circuit_to_dag dag = circuit_to_dag(transp1) # dag only keep 2Q nodes for node in dag.topological_op_nodes(): if node.op.num_qubits < 2: dag.remove_op_node(node) dag.draw() from virtual_swap.pass_managers import SabreMS, SabreQiskit from qiskit.circuit.library import iSwapGate from virtual_swap.pass_managers import SabreMS, SabreQiskit from transpile_benchy.metrics import DepthMetric for _ in range(1): runner = SabreMS(topo) # , cx_basis=True) transp = runner.run(qc) # mid0 = runner.pm.property_set["mid0"] mid = runner.pm.property_set["circuit_progress"] print(runner.pm.property_set["monodromy_depth"]) # if DepthMetric.calculate(transp) <= 22: # break mid.draw(output="mpl", fold=-1) # , filename="twolocal_cns.svg") transp.decompose().draw(output="mpl") # set original qc to use from qiskit import transpile # qc2 = transpile(qc, initial_layout=runner.pm.property_set["layout"], coupling_map=coupling_map) # qc2 = transpile(qc, coupling_map=coupling_map, optimization_level=3) for _ in range(5): pm2 = SabreQiskit(topo) # , cx_basis=True) qc2 = pm2.run(qc) mid = pm2.pm.property_set["circuit_progress"] print(DepthMetric.calculate(qc2)) mid.draw(output="mpl", fold=-1) from qiskit.converters import circuit_to_dag # remove 1Q nodes dag = circuit_to_dag(mid_qc) for node in dag.topological_op_nodes(): if node.op.num_qubits < 2: dag.remove_op_node(node) dag.draw() pm.pm.property_set["layout"]
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from virtual_swap.deprecated.cns_sa import VSwapPass from qiskit import QuantumCircuit from qiskit.quantum_info import Operator qc = QuantumCircuit(3) qc.cx(0, 1) qc.h(1) qc.iswap(1, 2) qc.y(2) original_op = Operator(qc) qc.draw("mpl") from qiskit.converters import circuit_to_dag dag = circuit_to_dag(qc) dag.draw() # manually select the first cx node from qiskit.circuit.library.standard_gates import CXGate, iSwapGate h_node = dag.op_nodes(iSwapGate)[0] import numpy as np # cx -> iswap cx_replace = QuantumCircuit(2, 0) cx_replace.h(1) cx_replace.rz(-np.pi / 2, 0) cx_replace.rz(-np.pi / 2, 1) cx_replace.iswap(0, 1) cx_replace.h(0) cx_replace.draw("mpl") # iswap -> cx iswap_replace = QuantumCircuit(2, 0) iswap_replace.rz(np.pi / 2, 0) iswap_replace.rz(np.pi / 2, 1) iswap_replace.h(1) iswap_replace.cx(0, 1) iswap_replace.h(1) from qiskit.dagcircuit import DAGOpNode, DAGInNode, DAGOutNode, DAGCircuit from qiskit.circuit.library import iSwapGate, SwapGate def cns_transform(dag: DAGCircuit, h_node): """Alternative implementation, adds nodes into blank copy of dag""" new_dag = dag.copy_empty_like() flip_flag = False swap_wires = { qarg1: qarg2 for qarg1, qarg2 in zip(h_node.qargs, h_node.qargs[::-1]) } for node in dag.topological_op_nodes(): if node == h_node: if node.name == "cx": new_dag.apply_operation_back(cx_replace.to_instruction(), node.qargs) elif node.name == "iswap": new_dag.apply_operation_back(iswap_replace.to_instruction(), node.qargs) else: raise ValueError("Unsupported operation") flip_flag = True else: if flip_flag: new_dag.apply_operation_back( node.op, [swap_wires.get(qarg, qarg) for qarg in node.qargs] ) else: new_dag.apply_operation_back(node.op, node.qargs) # fix with a swap new_dag.apply_operation_back(SwapGate(), h_node.qargs) return new_dag def cns_transform_old(dag, h_node): swap_wires = { qarg1: qarg2 for qarg1, qarg2 in zip(h_node.qargs, h_node.qargs[::-1]) } # NOTE, include the node itself, because we want to reference set of all outgoing edges node_list = list(dag.descendants(h_node)) node_list.insert(0, h_node) for source in node_list: # first, update edge arguments for target in dag.successors(source): edge = dag._multi_graph.get_edge_data(source._node_id, target._node_id) dag._multi_graph.update_edge( source._node_id, target._node_id, swap_wires.get(edge, edge) ) # second, update the node's qargs if source == h_node: # here replace the operation... if source.name == "cx": dag.substitute_node(source, cx_replace.to_instruction()) elif source.name == "iswap": dag.substitute_node(source, iswap_replace.to_instruction()) else: raise ValueError("Unsupported operation") # third, update output nodes elif isinstance(source, DAGOpNode): source.qargs = [swap_wires.get(qarg, qarg) for qarg in source.qargs] elif isinstance(source, DAGOutNode): source.wire = swap_wires.get(source.wire, source.wire) # add a swap a swap at end of circuit # NOTE, preserves unitary for equivalence checks # final SWAP gates can be removed by the optimizer dag.apply_operation_back(SwapGate(), h_node.qargs) dag = cns_transform(dag, h_node) # cns_transform_old(dag, h_node) dag.draw() from qiskit.converters import dag_to_circuit qc = dag_to_circuit(dag) # transpile into iswap, cx, u basis from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller pm = PassManager([Unroller(["swap", "iswap", "cx", "u"])]) qc = pm.run(qc) qc.draw("mpl") # verify circuits are equivalent from qiskit.quantum_info import Operator original_op.equiv(Operator(qc)) # get first cx node from qc dag = circuit_to_dag(qc) cx_node = dag.op_nodes(CXGate) from virtual_swap.cns_transform import cns_transform new_dag = cns_transform(dag, *cx_node, preserve_layout=True) new_qc = dag_to_circuit(new_dag) new_qc.draw("mpl")
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.circuit.library import QuantumVolume, EfficientSU2, TwoLocal, QFT from qiskit import QuantumCircuit from qiskit.circuit.library.standard_gates import iSwapGate, CXGate from qiskit import QuantumCircuit from qiskit.providers.fake_provider import FakeQuitoV2 from qiskit.transpiler.coupling import CouplingMap from qiskit.extensions import UnitaryGate from weylchamber import canonical_gate from mirror_gates.pass_managers import Mirage, QiskitLevel3 from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from transpile_benchy.metrics.timer import TimeMetric from mirror_gates.fast_unitary import FastConsolidateBlocks from qiskit.transpiler.passes import ( Collect2qBlocks, Unroll3qOrMore, ConsolidateBlocks, ) from qiskit.transpiler import PassManager import numpy as np from mirror_gates.logging import transpile_benchy_logger from transpile_benchy.interfaces.mqt_interface import MQTBench from transpile_benchy.interfaces.qasm_interface import QASMBench from transpile_benchy.library import CircuitLibrary lib = CircuitLibrary.from_txt("../circuits/medium_circuits.txt") qc = lib.get_circuit("seca_n11") # lib = CircuitLibrary(circuit_list=["qft_n4"]) # qc = lib.get_circuit("qft_n4") qc = qc.decompose() qc = qc.decompose() qc = qc.decompose() qc.remove_final_measurements() display(qc.draw("mpl", fold=-1)) # from qiskit.quantum_info import Operator # from qiskit import QuantumCircuit # import numpy as np # from qutip import Qobj # circ = QuantumCircuit(2) # circ.cx(1, 0) # circ.u(0, 0, -np.pi / 4, 0) # circ.cx(1, 0) # from weylchamber import c1c2c3 # print(c1c2c3(Operator(circ).data)) # Qobj(Operator(circ).data) from mirror_gates.fast_unitary import FastConsolidateBlocks from qiskit.transpiler.passes import ( ConsolidateBlocks, Collect2qBlocks, RemoveBarriers, RemoveFinalMeasurements, ) from mirror_gates.utilities import RemoveAllMeasurements from qiskit.transpiler import PassManager from qiskit.quantum_info import Operator from weylchamber import c1c2c3 for circuit_name in lib.circuit_list: if circuit_name == "portfolioqaoa_n16": continue # if circuit_name != "qpeexact_16": # continue print("\n") qc = lib.get_circuit(circuit_name) qc = qc.decompose().decompose().decompose() qc.remove_final_measurements() list1 = [] pm0 = PassManager() pm0.append(RemoveBarriers()) pm0.append(RemoveAllMeasurements()) pm0.append(Collect2qBlocks()) pm0.append(ConsolidateBlocks(force_consolidate=True)) qc0 = pm0.run(qc) for gate in qc0: if gate.operation.name not in ["barrier"]: # print(gate.operation)\ corrd = c1c2c3(gate.operation.to_matrix()) list1.append(corrd) # print(corrd) print("\n") list2 = [] pm1 = PassManager() pm1.append(RemoveBarriers()) pm1.append(RemoveAllMeasurements()) pm1.append(FastConsolidateBlocks()) qc1 = pm1.run(qc) for gate in qc1: if gate.operation.name not in ["barrier"]: # print(gate.operation) corrd = c1c2c3(gate.operation.to_matrix()) list2.append(corrd) # print(corrd) # compare the two lists print(circuit_name) for x, y in zip(list1, list2): print(x, y) print("list1 == list2: ", list1 == list2)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.transpiler import CouplingMap from qiskit.converters import dag_to_circuit from qiskit.transpiler.layout import Layout import numpy as np from qiskit.transpiler.passes import Unroller from qiskit.transpiler.passes import ( TrivialLayout, BasicSwap, ApplyLayout, SetLayout, SabreLayout, FullAncillaAllocation, EnlargeWithAncilla, ) from qiskit.transpiler.passmanager import PassManager from virtual_swap.deprecated.cns_sabre import CNS_SabreSwap # load a dummy circuit # generate network of random cnots n, M = 3, 8 N = n**2 register = QuantumRegister(N) qc = QuantumCircuit(register) for _ in range(M): qc.cx(*np.random.choice(N, 2, replace=False)) qc.decompose().draw("mpl") # load a dummy coupling map and layout coupling = CouplingMap.from_line(N) layout = Layout({q: i for q, i in zip(register, range(N))}) # print DAG from qiskit.converters import circuit_to_dag dag = circuit_to_dag(qc) dag.draw("mpl") set_pass = SetLayout(layout) dag_p = set_pass.run(dag) apply_pass = ApplyLayout() apply_pass.property_set = set_pass.property_set dag_p = apply_pass.run(dag_p) dag_p.draw("mpl") # get layers of the DAG """A layer is a circuit whose gates act on disjoint qubits, i.e., a layer has depth 1. The total number of layers equals the circuit depth d. The layers are indexed from 0 to d-1 with the earliest layer at index 0. The layers are constructed using a greedy algorithm. Each returned layer is a dict containing {“graph”: circuit graph, “partition”: list of qubit lists}. The returned layer contains new (but semantically equivalent) DAGOpNodes, DAGInNodes, and DAGOutNodes. These are not the same as nodes of the original dag, but are equivalent via DAGNode.semantic_eq(node1, node2).""" # convert generator to list layers = list(dag_p.layers()) for layer in layers: print(layer) # # get serial layers # """A serial layer is a circuit with one gate. The layers have the same structure as in layers().""" # serial_layers = dag.serial_layers() # for layer in serial_layers: # print(layer) # # get multigraph layers # multi_layers = dag.multigraph_layers() # for layer in multi_layers: # print(layer) # want to get topological distance from output F and inputs to F' cns_sub = False F = layers[0]["graph"] F_prime = layers[1]["graph"] F.draw() # F.output_map from virtual_swap.cns_transform import cns_transform from qiskit.circuit.library.standard_gates import CXGate # get cx from F cns_sub = True cns_cx = F.op_nodes(CXGate)[0] F_cns = cns_transform(F, cns_cx) F_cns.draw() # def evaluate_layer(F, F_prime): # # cost from F:output -> F':input # work on getting output permutations from a single layer # this includes virtual swaps + slack swaps that don't affect the depth v_to_p = layout.get_virtual_bits() # FIXME, SABRE does meet in middle to increase parallelism # we need to implement our own here, # tests both CNS subs and slack swaps swapper = BasicSwap(coupling) if cns_sub: F_swapped = swapper.run(F_cns) else: F_swapped = swapper.run(F) F_swapped.draw() # swapper.property_set # XXX this needs to be manually set following a swap pass f_layout = swapper.property_set["final_layout"] if cns_sub: temp = f_layout[cns_cx.qargs[0]] f_layout[cns_cx.qargs[0]] = f_layout[cns_cx.qargs[1]] f_layout[cns_cx.qargs[1]] = temp print(f_layout) f_v_to_p = f_layout.get_virtual_bits() print(f_v_to_p) # for x in F_swapped.output_map.items(): # print(x) F_prime.draw() trial_cost = 0 for x in F_prime.two_qubit_ops(): print(f_v_to_p[x.qargs[0]], f_v_to_p[x.qargs[1]]) print(coupling.distance(f_v_to_p[x.qargs[0]], f_v_to_p[x.qargs[1]])) trial_cost += coupling.distance(f_v_to_p[x.qargs[0]], f_v_to_p[x.qargs[1]]) # FIXME do we want to return sum or max? print(f"Trial cost", trial_cost) # we need to define a cost function, intermediate layer to front layer # the intermediate layer are gates that are physical on the topology # the intermediate layer considers CNS subs and placement of SWAP gates # once a permutation of the intermediate layer is found that minimizes cost to the front layer # move the intermediate layer to the mapped dag, and front layer to intermediate layer # once the front layer is empty, we are done # open question, do we resolve all dependencies between intermediate and front layer at once? # maybe we find a route for one gate, then pop the next gate in # if we have a dynamic layer, makes reasoning about cost and when to move gates harder # but that is how SABRE works, just by iteratively checking what is physical # repeat pushing things over until we can't push anymore # idk, I think conceptually treating it as a set of layers that need to be resolved is easier # we define the minimum about of gates that add to the depth of the circuit for data movement # types of SWAP paths we could take # if 2 qubits can meet, they can SWAP together to meet at midpoint between them # however, we might prefer to meet biased towards one qubit (for sake of lookahead) # then, we incur a higher depth cost on this layer, but hopefully reduces lookahead cost # so define a depth cost on the layer, # maybe we just do the thing that tells us which decomp to use first
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.transpiler import CouplingMap from qiskit.converters import dag_to_circuit from qiskit.transpiler.layout import Layout import numpy as np from qiskit.transpiler.passes import Unroller from qiskit.quantum_info import Operator from qiskit.transpiler.passes import ( TrivialLayout, BasicSwap, ApplyLayout, SetLayout, SabreLayout, FullAncillaAllocation, EnlargeWithAncilla, ) from qiskit.transpiler.passmanager import PassManager # from virtual_swap.cns_sabre import CNS_SabreSwap # from virtual_swap.cns_sabre_v2 import CNS_SabreSwap_V2 as CNS_SabreSwap from virtual_swap.cns_sabre_v3 import SabreMS as CNS_SabreSwap # # load a dummy circuit # # generate network of random cnots # n, M = 2, 5 # N = n**2 # register = QuantumRegister(N) # qc = QuantumCircuit(register) # for _ in range(M): # # choose 2 random qubits # qargs = np.random.choice(N, 2, replace=False) # qc.cx(*qargs) # qc.u(np.random.rand(), np.random.rand(), np.random.rand(), qargs[0]) # qc.u(np.random.rand(), np.random.rand(), np.random.rand(), qargs[1]) # qc.decompose().draw("mpl") N = 3 register = QuantumRegister(N) qc = QuantumCircuit(register) qc.ccx(0, 1, 2) qc = qc.decompose() qc.draw("mpl") # load a dummy coupling map and layout coupling = CouplingMap.from_line(N) layout = Layout({q: i for q, i in zip(register, range(N))}) # print DAG from qiskit.converters import circuit_to_dag dag = circuit_to_dag(qc) # dag.draw("mpl") qc.draw("mpl") from qiskit import transpile qiskit_qc = transpile( qc, coupling_map=coupling, initial_layout=layout, optimization_level=3 ) qiskit_qc.draw("mpl") from qiskit import transpile from virtual_swap.sqiswap_equiv import sel qiskit_qc = transpile( qc, coupling_map=coupling, initial_layout=layout, optimization_level=3, basis_gates=["u", "xx_plus_yy"], ) qiskit_qc.draw("mpl") # for every swap gate, append a swap gate to the end of the circuit # this forces the qubit register ordering to be the same as the input from qiskit.converters import circuit_to_dag temp_dag = circuit_to_dag(qiskit_qc) for node in list(temp_dag.topological_op_nodes())[::-1]: if node.name == "swap": qiskit_qc.append(node.op, node.qargs) print(Operator(qiskit_qc).equiv(qc)) qiskit_qc.draw("mpl") # make sure the old sabre python code works with our new qiskit version from qiskit.transpiler.passes import Optimize1qGates pm = PassManager() routing = CNS_SabreSwap(coupling, heuristic="lookahead") # pm.append(SabreLayout(coupling, routing_pass=routing)) # pm.append(TrivialLayout(coupling)) pm.append(SetLayout(layout)) pm.append([FullAncillaAllocation(coupling), EnlargeWithAncilla(), ApplyLayout()]) pm.append(routing) pm.append(Unroller(["u", "cx", "iswap", "swap"])) pm.append(Optimize1qGates(["u", "cx", "iswap", "swap"])) # pm.append(Unroller(["u", "cx", "iswap", "swap"])) qc_swapped = pm.run(qc) print(pm.property_set["accepted_subs"]) qc_swapped.draw("mpl") # for every swap gate, append a swap gate to the end of the circuit # this forces the qubit register ordering to be the same as the input from qiskit.converters import circuit_to_dag from qiskit.circuit.library import SwapGate temp_dag = circuit_to_dag(qc_swapped) for node in list(temp_dag.topological_op_nodes())[::-1]: if node.name == "swap" or node.name == "iswap": qc_swapped.append(SwapGate(), node.qargs) print(Operator(qc_swapped).equiv(qc)) qc_swapped.draw("mpl") snapshots = pm.property_set["mapped_dag_snaps"] for snap in snapshots: display(snap)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit import QuantumCircuit # from qiskit.test import QiskitTestCase from qiskit.transpiler import CouplingMap, PassManager from qiskit.transpiler.passes import ( Unroller, TrivialLayout, DenseLayout, ApplyLayout, SabreLayout, CountOpsLongestPath, Collect1qRuns, Collect2qBlocks, ConsolidateBlocks, SabreSwap, ) from qiskit.transpiler.passes import OptimizeSwapBeforeMeasure import numpy as np from qiskit.transpiler.passes import ( FullAncillaAllocation, EnlargeWithAncilla, ) from virtual_swap.sqiswap_equiv import sel from qiskit.transpiler.basepasses import TransformationPass from qiskit.converters import dag_to_circuit # this code is buggy, see https://github.com/Qiskit/qiskit-terra/pull/9375 # I can't use this version bc qiskit version missing DAGCircuit functionality from slam.utils.transpiler_pass.weyl_decompose import RootiSwapWeylDecomposition # from virtual_swap.vswap_verbose import VirtualSwap as VirtualSwapVerbose # from virtual_swap.vswap_simple import VirtualSwap as VirtualSwapSimple from virtual_swap.deprecated.cns_sa import VSwapPass as VirtualSwap # # build a toffoli # qc = QuantumCircuit(8) # qc.ccx(0, 1, 2) # qc.cx(1, 7) # qc.ccx(3, 4, 5) # qc.ccx(2, 5, 6) # # build a 2x2 square coupling map # coupling = CouplingMap.from_line(8) # # build a toffoli qc = QuantumCircuit(3) qc.ccx(0, 1, 2) linear = CouplingMap.from_line(10) a2a = CouplingMap.from_full(3) coupling = linear qc.decompose().draw("mpl") # # generate a QFT circuit # from qiskit.circuit.library import QFT # # qc = QuantumCircuit(16) # qc = QFT(8) # coupling = CouplingMap.from_grid(4,4) # generate network of random cnots n, M = 4, 25 N = n**2 qc = QuantumCircuit(N) for _ in range(M): qc.cx(*np.random.choice(N, 2, replace=False)) coupling = CouplingMap.from_grid(n, n) # coupling = CouplingMap.from_line(N + 1) # a2a = CouplingMap.from_full(N) qc.decompose().draw("mpl") from qiskit import transpile qc2 = transpile( qc, coupling_map=coupling, basis_gates=["cx", "u3", "swap", "iswap"], optimization_level=3, ) # from virtual_swap.sqiswap_equiv import sel # qc2 = transpile( # qc, coupling_map=coupling, basis_gates=["xx_plus_yy", "u3"], optimization_level=3 # ) # t0_pm = PassManager([Collect2qBlocks(), ConsolidateBlocks(force_consolidate=True)]) # # , RootiSwapWeylDecomposition()]) # t0_pm.append(RootiSwapWeylDecomposition()) # qc3 = t0_pm.run(qc2) # print(f"Total: {qc3.count_ops().get('riswap', 0)}") # print( # f"Depth: {qc3.depth(filter_function=lambda x: x.operation.name not in ['u3', 'u'])}" # ) qc2.draw(output="mpl") from qiskit import transpile qc2 = transpile( qc, coupling_map=coupling, basis_gates=["cx", "u3", "swap", "iswap"], optimization_level=3, ) # from virtual_swap.sqiswap_equiv import sel # qc2 = transpile( # qc, coupling_map=coupling, basis_gates=["xx_plus_yy", "u3"], optimization_level=3 # ) # t0_pm = PassManager([Collect2qBlocks(), ConsolidateBlocks(force_consolidate=True)]) # , RootiSwapWeylDecomposition()]) t0_pm = PassManager() t0_pm.append( SabreLayout(coupling, skip_routing=True), Unroller(["u", "cx", "iswap", "swap"]) ) qc3 = t0_pm.run(qc) print(f"Total: {qc3.count_ops().get('riswap', 0)}") print( f"Depth: {qc3.depth(filter_function=lambda x: x.operation.name not in ['u3', 'u'])}" ) qc3.draw(output="mpl") # run the pass pm = PassManager() # trivial vs the previously computed layout # pm.append([TrivialLayout(coupling)]) # pm.append([FullAncillaAllocation(coupling), EnlargeWithAncilla(), ApplyLayout()]) # # XXX # from qiskit.transpiler.passes import SetLayout # pm.append(SetLayout(layout=qc2._layout.initial_layout)) pm.property_set = t0_pm.property_set pm.append( VirtualSwap( coupling, visualize=True, ) ) pm.append(SabreSwap(coupling)) pm.append([OptimizeSwapBeforeMeasure()]) pm2 = PassManager() pm2.append( [Collect1qRuns(), Collect2qBlocks(), ConsolidateBlocks(force_consolidate=True)] ) pm2.append([RootiSwapWeylDecomposition()]) new_circ = pm.run(qc3) new_circ_decomp = pm2.run(new_circ) print(f"Total: {new_circ_decomp.count_ops().get('riswap', 0)}") print( f"Depth: {new_circ_decomp.depth(filter_function=lambda x: x.operation.name not in ['u3', 'u'])}" ) print(new_circ.draw()) new_circ_decomp.draw("mpl") # qc == qc2 == new_circ_decomp? # I check with Operator.equiv but false # idk why # from qiskit.circuit.library import XXPlusYYGate, SwapGate, CXGate # from qiskit.quantum_info import Operator # cx_decomp = QuantumCircuit(2) # cx_decomp.u(np.pi / 4, 0, np.pi / 2, 0) # cx_decomp.u(np.pi / 4, 0, np.pi / 2, 1) # cx_decomp.append(XXPlusYYGate(-np.pi / 2, 0), [0, 1]) # cx_decomp.u(np.pi / 4, 0, np.pi / 2, 0) # cx_decomp.u(np.pi / 4, 0, np.pi / 2, 1) # cx_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) # cx_decomp.u(np.pi / 4, 0, np.pi / 2, 0) # cx_decomp.u(np.pi / 4, 0, np.pi / 2, 1) # # sel.add_equivalence(CXGate(), cx_decomp) # assert Operator(CXGate()).equiv(Operator(cx_decomp)) # swap_decomp = QuantumCircuit(2) # swap_decomp.u(np.pi / 4, 0, np.pi / 2, 0) # swap_decomp.u(np.pi / 4, 0, np.pi / 2, 1) # swap_decomp.append(XXPlusYYGate(-np.pi / 2, 0), [0, 1]) # swap_decomp.u(np.pi / 4, 0, np.pi / 2, 0) # swap_decomp.u(np.pi / 4, 0, np.pi / 2, 1) # swap_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) # swap_decomp.u(np.pi / 4, 0, np.pi / 2, 0) # swap_decomp.u(np.pi / 4, 0, np.pi / 2, 1) # swap_decomp.append(XXPlusYYGate(-np.pi / 2), [0, 1]) # swap_decomp.u(np.pi / 4, 0, np.pi / 2, 0) # swap_decomp.u(np.pi / 4, 0, np.pi / 2, 1) # # sel.add_equivalence(SwapGate(), swap_decomp) # assert Operator(SwapGate()).equiv(Operator(swap_decomp))
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.algorithms.optimizers import SLSQP from qiskit.circuit.library import TwoLocal from qiskit.extensions import UnitaryGate from weylchamber import canonical_gate gate = UnitaryGate(canonical_gate(0.5, 0.25, 0.25).full()) # gate ='cx' num_qubits = 2 ansatz = TwoLocal(num_qubits, ["ry", "rz"], gate) optimizer = SLSQP(maxiter=1000) ansatz.decompose().draw("mpl", style="iqx") from qiskit.primitives import Estimator estimator = Estimator() from qiskit.algorithms.minimum_eigensolvers import VQE vqe = VQE(estimator, ansatz, optimizer) from qiskit.quantum_info import SparsePauliOp H2_op = SparsePauliOp.from_list( [ ("II", -1.052373245772859), ("IZ", 0.39793742484318045), ("ZI", -0.39793742484318045), ("ZZ", -0.01128010425623538), ("XX", 0.18093119978423156), ] ) result = vqe.compute_minimum_eigenvalue(H2_op) print(result)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
%matplotlib widget from monodromy.depthPass import MonodromyDepth from qiskit.circuit.library import XXPlusYYGate import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qiskit.extensions import UnitaryGate from weylchamber import canonical_gate gate = XXPlusYYGate(np.pi / 2, np.pi / 6) qc = QuantumCircuit(2) qc.append(gate, [0, 1]) qc.swap(0, 1) gate = UnitaryGate(Operator(qc)) gate = UnitaryGate(canonical_gate(0.5, 0.25, 0.25).full()) MonodromyDepth(basis_gate=gate).coverage_set from slam.utils.polytopes.coverage_plot import plot_coverage_set plot_coverage_set(MonodromyDepth(basis_gate=gate).coverage_set) from qiskit import QuantumCircuit from weylchamber import c1c2c3, WeylChamber from qiskit.quantum_info import Operator import numpy as np from qiskit import transpile # observable = SparsePauliOp("XZ") # qubits = observable.num_qubits # ansatz = RealAmplitudes(observable.num_qubits, reps=3) # display(ansatz.decompose().draw('mpl')) # backend = service.get_backend('ibm_lagos') # transpiled_ansatz = transpile(ansatz, backend=backend, # basis_gates=['u1', 'u2', 'u3', 'rx', 'ry', 'rz', 'cx', 'cz'], # seed_transpiler=42, # optimization_level=3) # display(transpiled_ansatz.decompose().draw('mpl')) # from qiskit.circuit.random import random_circuit # from qiskit.quantum_info import SparsePauliOp # from qiskit.circuit.library import RealAmplitudes # from qiskit_ibm_runtime import QiskitRuntimeService, Session, Estimator, Options # observable = SparsePauliOp("XZ") # qubits = observable.num_qubits # ansatz = RealAmplitudes(observable.num_qubits, reps=3) # display(ansatz.decompose().draw('mpl')) # backend = service.get_backend('simulator_statevector') # transpiled_ansatz = transpile(ansatz, backend=backend, # basis_gates=['u1', 'u2', 'u3', 'rx', 'ry', 'rz', 'cx', 'cz'], # seed_transpiler=42, # optimization_level=3) # service = QiskitRuntimeService() # with Session(service=service, backend="ibmq_qasm_simulator") as session: # estimator = Estimator(session=session, options=options) # job = estimator.run(circuit, observable) # result = job.result() # # Close the session only if all jobs are finished, and you don't need to run more in the session # session.close() # Closes the session # display(circuit.draw("mpl")) # print(f" > Observable: {observable.paulis}") # print(f" > Expectation value: {result.values[0]}") # print(f" > Metadata: {result.metadata[0]}") # from qiskit import QuantumCircuit # qc = QuantumCircuit(2) # qc.cx(0, 1) # qc.swap(0,1) # qc.draw('mpl', filename='cns.svg') # # print(qc.draw("latex_source")) # write circuit for CX decomposed into sqiswaps from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.cx(0, 1) from slam.utils.transpiler_pass.weyl_decompose import ( RootiSwapWeylDecomposition, SiSwapGate, ) # decomposer = RootiSwapWeylDecomposition() # from qiskit.converters import circuit_to_dag, dag_to_circuit # dag = decomposer.run(circuit_to_dag(qc)) # qc2 = dag_to_circuit(dag) from qiskit.transpiler.passmanager import PassManager from qiskit.transpiler.passes import Optimize1qGates pm = PassManager() pm.append(RootiSwapWeylDecomposition()) pm.append(Optimize1qGates()) qc2 = pm.run(qc) qc2.draw("mpl") qc3 = QuantumCircuit(2) from qiskit.circuit.library import iSwapGate import numpy as np # qc3.u(np.pi/2, -np.pi/2, 0, 0) qc3.ry(np.pi / 2, 0) qc3.rz(-np.pi / 2, 0) # qc3.u(np.pi/2, np.pi, -np.pi/2, 1) qc3.rz(np.pi / 2, 1) qc3.ry(-np.pi / 2, 1) qc3.append(SiSwapGate(), [0, 1]) # qc3.u(np.pi, -np.pi/2, np.pi/2, 0) qc3.rx(np.pi, 0) # qc3.u(0, 0, np.pi, 1) qc3.rz(-np.pi, 1) qc3.append(SiSwapGate(), [0, 1]) # qc3.u(np.pi/2, -np.pi/2, -3*np.pi/2, 0) qc3.rx(np.pi / 2, 0) # qc3.u(0, -np.pi/2, -np.pi, 1) qc3.rz(np.pi / 2, 1) qc3.draw("mpl", filename="cx-sqiswap.svg") # from qiskit.quantum_info import Operator # Operator(qc4).equiv(qc) qc3 = QuantumCircuit(2) qc3.u(np.pi / 2, -np.pi / 2, 0, 0) # qc3.ry(np.pi/2, 0) # qc3.rz(-np.pi/2, 0) qc3.u(np.pi / 2, np.pi, -np.pi / 2, 1) # qc3.rz(np.pi/2, 1) # qc3.ry(-np.pi/2, 1) # qc3.append(SiSwapGate(), [0,1]) qc3.barrier() qc3.u(np.pi, -np.pi / 2, np.pi / 2, 0) qc3.u(0, 0, np.pi, 1) # qc3.append(SiSwapGate(), [0,1]) qc3.barrier() qc3.u(np.pi / 2, -np.pi / 2, -3 * np.pi / 2, 0) qc3.u(0, -np.pi / 2, -np.pi, 1) # pm = PassManager() # # pm.append(RootiSwapWeylDecomposition()) # pm.append(Optimize1qGates(basis=['u'])) # qc4 = pm.run(qc3) qc4 = transpile( qc3, basis_gates=["x", "y", "z", "h", "t", "s", "sx", "sy", "sz", "rz", "ry"] ) qc4.draw("mpl", filename="cx_decomp") from virtual_swap.cns_transform import cx_replace from qiskit.transpiler.passes import ( Collect1qRuns, ConsolidateBlocks, Unroller, Optimize1qGates, ) pm = PassManager() # pm.append(Collect1qRuns()) # pm.append(ConsolidateBlocks()) # pm.append(Unroller(['u'])) pm.append(Optimize1qGates(basis=["u"])) # cx_replace.swap(0, 1) cx_replace2 = pm.run(cx_replace) cx_replace2.draw("mpl", filename="cx_decomp.svg") qc = QuantumCircuit(2) qc.crz(np.pi / 2, 0, 1) qc = transpile(qc, basis_gates=["u", "cx"]) qc.draw() # replace the last cx gate with iswap+virtual_swap from qiskit.converters import circuit_to_dag, dag_to_circuit from qiskit.circuit.library import CXGate dag = circuit_to_dag(qc) cx_node = dag.op_nodes(CXGate)[1] from virtual_swap.cns_transform import cns_transform qc2 = dag_to_circuit(cns_transform(dag, cx_node)) qc2.decompose().draw() Operator(qc2).equiv(qc) from slam.utils.transpiler_pass.weyl_decompose import RootiSwapWeylDecomposition from qiskit.transpiler import PassManager from qiskit.transpiler.passes import ConsolidateBlocks, Collect2qBlocks, Unroller pm = PassManager() pm.append(Unroller(["u", "cx", "iswap"])) pm.append(Collect2qBlocks()) pm.append(ConsolidateBlocks(force_consolidate=True)) pm.append(RootiSwapWeylDecomposition()) pm.run(qc2).draw() qc3 = QuantumCircuit(2) qc3.cx(1, 0) qc3.cx(0, 1) qc3.draw() Operator(qc3).equiv(cx_replace) qc = QuantumCircuit(2) qc.cx(0, 1) qc.swap(0, 1) # transpile into CR gates transpile(qc, basis_gates=["rzx", "u"], optimization_level=3).draw("mpl") qc = QuantumCircuit(2) qc.cx(0, 1) qc.draw("mpl") from slam.utils.transpiler_pass.weyl_decompose import RootiSwapWeylDecomposition from qiskit.transpiler import PassManager pm = PassManager() pm.append(RootiSwapWeylDecomposition()) qc = pm.run(qc) qc.draw("mpl") qc1 = QuantumCircuit(2) qc1.rx(np.pi / 2, 1) qc1.rz(-np.pi / 2, 0) qc1.rz(np.pi / 2, 1) qc1.iswap(0, 1) qc1.rx(np.pi / 2, 0) qc1.iswap(0, 1) qc1.rz(np.pi / 2, 1) qc1.draw("mpl") from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc.cx(1, 0) qc.h(1) qc.cx(0, 1) qc.tdg(1) qc2 = QuantumCircuit(2) qc2.s(0) qc2.cx(1, 0) qc2.sx(1) qc2.sdg(0) qc2.t(1) qc3 = QuantumCircuit(2) qc3.cx(1, 0) qc3.cx(0, 1) qc4 = QuantumCircuit(2) qc4.cx(0, 1) qc4.swap(0, 1) c1 = c1c2c3(Operator(qc).data) c2 = c1c2c3(Operator(qc2).data) c3 = c1c2c3(Operator(qc3).data) c4 = c1c2c3(Operator(qc4).data) print(c1, c2, c3, c4) qc3.draw("mpl") qc4.draw("mpl") Operator(qc4).equiv(cx_replace) from virtual_swap.cns_transform import cx_replace, iswap_replace cx_replace.draw("mpl") iswap_replace.draw("mpl") Operator(qc3).equiv(qc4) # visualize weyl chamber coordinates from weylchamber import WeylChamber w = WeylChamber() N = 1000 for _ in range(N): qc = QuantumCircuit(2) # random 1q qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 0, ) qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 1, ) # qc.crz(2 * np.pi * np.random.rand(), 0, 1) qc.cx(0, 1) # random 1q qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 0, ) qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 1, ) # qc.swap(0, 1) # qc.cx(0, 1) qc.iswap(0, 1) # random 1q qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 0, ) qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 1, ) qc.swap(0, 1) op = Operator(qc).data w.add_point(*c1c2c3(op)) w.plot() qc.draw("mpl") # visualize weyl chamber coordinates from qiskit import QuantumCircuit from weylchamber import c1c2c3, WeylChamber from qiskit.quantum_info import Operator import numpy as np w = WeylChamber() N = 1000 for _ in range(N): qc = QuantumCircuit(2) # random 1q qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 0, ) qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 1, ) qc.cx(0, 1) # random 1q qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 0, ) qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 1, ) qc.iswap(0, 1) # random 1q qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 0, ) qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 1, ) qc.swap(0, 1) # random 1q qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 0, ) qc.u( 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 2 * np.pi * np.random.rand(), 1, ) op = Operator(qc).data w.add_point(*c1c2c3(op)) w.plot() import matplotlib.pyplot as plt w = WeylChamber() # generate a color gradient N = 9 color_gradient = [ plt.cm.tab10(i / (N + 1)) for i in range(N + 1) ] # using 'plasma' colormap here w = WeylChamber() # create two lists for the two types of operations op1_list = [] op2_list = [] # iterate from I to CX (theta = 0 to np.pi) for i in range(N + 1): qc = QuantumCircuit(2) qc.cp(np.pi * i / N, 0, 1) op1 = Operator(qc).data t = c1c2c3(op1) # force to use x < 1/2 if t[0] > 0.5: t = (1 - t[0], t[1], t[2]) op1_list.append((t, color_gradient[i])) qc.swap(0, 1) op2 = Operator(qc).data op2_list.append((c1c2c3(op2), color_gradient[i])) # add the operations to the Weyl chamber for coords, color in op1_list: w.scatter(*coords, color=color) for coords, color in op2_list: w.scatter(*coords, color=color) # define a region using line segments between the following points # (0,0,0), (1/2, 1/2, 0); (0,0,0), (1,0,0); (1/2, 1/2, 0), (1,0,0); (0,0,0), (1/2, 1/4, 1/4) lines = [ [(0, 0, 0), (0.5, 0.5, 0)], [(0, 0, 0), (1, 0, 0)], [(0.5, 0.5, 0), (1, 0, 0)], [(0, 0, 0), (0.5, 0.25, 0.25)], [(0.5, 0.5, 0), (0.5, 0.25, 0.25)], [(0.5, 0.25, 0.25), (1, 0, 0)], ] # draw the lines w.labels = {} w.plot() for i in range(len(lines)): w._draw_line( w.ax, origin=lines[i][0], end=lines[i][1], color="blue", linestyle="--" ) w.fig.savefig("cphase_swap.svg", dpi=300) # fig.savefig("cphase_swap.svg", dpi=300) w = WeylChamber() # generate Haar random unitary from qiskit.quantum_info import random_unitary op = random_unitary(4).data qc = QuantumCircuit(2) qc.unitary(op, [0, 1]) op = Operator(qc).data w.scatter(*c1c2c3(op), color="blue") qc.swap(0, 1) op2 = Operator(qc).data w.scatter(*c1c2c3(op2), color="red") w.plot() import numpy as np from qiskit.quantum_info import random_unitary from qiskit.quantum_info import Operator from qiskit import QuantumCircuit from weylchamber import WeylChamber, c1c2c3 import matplotlib.pyplot as plt from matplotlib import cm w = WeylChamber() # Generate many random unitaries N = 1000 coords_initial = [] coords_final = [] for _ in range(N): # Generate Haar random unitary op = random_unitary(4).data qc = QuantumCircuit(2) qc.unitary(op, [0, 1]) op = Operator(qc).data coords_initial.append(c1c2c3(op)) # Apply SWAP qc.swap(0, 1) op2 = Operator(qc).data coords_final.append(c1c2c3(op2)) # Convert to numpy arrays for easier handling coords_initial = np.array(coords_initial) coords_final = np.array(coords_final) # Plot initial points with blue color w.scatter( coords_initial[:, 0], coords_initial[:, 1], coords_initial[:, 2], color="blue" ) # Plot final points with red color w.scatter(coords_final[:, 0], coords_final[:, 1], coords_final[:, 2], color="red") import matplotlib as mpl # Create a color map with 256 colors color_map = mpl.cm.get_cmap("viridis", 256) # Generate colors from the color map colors = color_map(np.linspace(0, 1, N)) # # Plot trajectories # for i in range(N): # w._draw_line( # (coords_initial[i, 0], coords_initial[i, 1], coords_initial[i, 2]), # (coords_final[i, 0], coords_final[i, 1], coords_final[i, 2]), # color=colors[i], # ) w.plot()
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger # N = 4 # coupling_map = CouplingMap.from_line(N) # coupling_map = CouplingMap.from_heavy_hex(5) coupling_map = CouplingMap.from_grid(6, 6) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../../circuits/medium_circuits.txt") # library = CircuitLibrary.from_txt("../../circuits/debug.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ # QiskitLevel3(coupling_map, cx_basis=True), # Mirage(coupling_map, cx_basis=True, parallel=0), QiskitLevel3(coupling_map), Mirage(coupling_map, logger=transpile_benchy_logger), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=5, ) benchmark.run() # print(benchmark) print(benchmark) benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark(benchmark, save=1, legend_show=0, filename="grid", color_override=[0, 3])
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
# TODO, show differences related to post-selecting for depth vs post-selectng for total gates added from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from transpile_benchy.metrics.gate_counts import DepthMetric, TotalMetric from mirror_gates.logging import transpile_benchy_logger from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/medium_circuits.txt") coupling_map = CouplingMap.from_heavy_hex(5) transpilers = [ QiskitLevel3(coupling_map), # 20,4,20 Mirage( coupling_map, name="Mirage-Min-Swaps", cost_function="basic", fixed_aggression=1, ), Mirage( coupling_map, name="Mirage-Min-Depth", fixed_aggression=1, ), ] metrics = [DepthMetric(consolidate=False), TotalMetric(consolidate=False)] from transpile_benchy.benchmark import Benchmark # only interested in TimeMetric, is there by default benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, num_runs=5, logger=transpile_benchy_logger, ) benchmark.run() benchmark.summary_statistics(transpilers[0], transpilers[1]) benchmark.summary_statistics(transpilers[1], transpilers[2]) benchmark.summary_statistics(transpilers[0], transpilers[2]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=1, legend_show=1, filename="post", override_legend=["Qiskit", "MIRAGE-Swaps", "MIRAGE-Depth"], ) print(benchmark)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
# TODO, show how different aggression configurations impact results from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from transpile_benchy.metrics.abc_metrics import MetricInterface from transpile_benchy.metrics.gate_counts import DepthMetric from mirror_gates.utilities import DoNothing from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/aggression_select.txt") # library = CircuitLibrary.from_txt("../../circuits/small_circuits.txt") # library = CircuitLibrary.from_txt("speedups.txt") coupling_map = CouplingMap.from_heavy_hex(5) transpilers = [ QiskitLevel3(coupling_map), Mirage(coupling_map, name="Mirage-a0", fixed_aggression=0, no_vf2=True), Mirage(coupling_map, name="Mirage-a1", fixed_aggression=1, no_vf2=True), Mirage(coupling_map, name="Mirage-a2", fixed_aggression=2, no_vf2=True), Mirage(coupling_map, name="Mirage-a3", fixed_aggression=3, no_vf2=True), ] metrics = [DepthMetric(consolidate=False)] from transpile_benchy.benchmark import Benchmark # only interested in TimeMetric, is there by default benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, num_runs=1, ) benchmark.run() print(benchmark.summary_statistics(transpilers[0], transpilers[1])["monodromy_depth"]) print(benchmark.summary_statistics(transpilers[0], transpilers[2])["monodromy_depth"]) print(benchmark.summary_statistics(transpilers[0], transpilers[3])["monodromy_depth"]) print(benchmark.summary_statistics(transpilers[0], transpilers[4])["monodromy_depth"]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=0, legend_show=1, filename="aggression", color_override=[0, 2, 4, 5, 6], auto_sort=0, override_legend=[ "Qiskit", "Mirage-a0", "Mirage-a1", "Mirage-a2", "Mirage-a3", ], )
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
# make a graph that shows convergence as a function of layout trials and swap trials # very important point to not forget # NOTE, these layout trials are after multiple SWAP trials and through forward-backwards pass # this means it has already gone through 2 stages of optimization and we still have large variance # ultimate question is how much time do we need to spend on swap restarts, forward-backward passes, and layout restarts # maybe we work from bottom up, collect data to get a fair estimate of how much time we need to spend on each? from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from transpile_benchy.metrics.abc_metrics import MetricInterface from transpile_benchy.metrics.gate_counts import DepthMetric from mirror_gates.utilities import ( DoNothing, LayoutTrialsStdMetric, LayoutTrialsMetric, ) from mirror_gates.logging import transpile_benchy_logger from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/iters_select.txt") coupling_map = CouplingMap.from_heavy_hex(5) total_work = 80 transpilers = [ # QiskitLevel3(coupling_map), Mirage(coupling_map, name="Qiskit", fixed_aggression=0), Mirage(coupling_map, name="Mirage"), # Mirage( # coupling_map, # name="Mirage-b3", # layout_trials=20, # fb_iters=total_work // 20, # anneal_routing=True, # parallel=False, # something is broken # ), ] metrics = [LayoutTrialsMetric()] # , DepthMetric(consolidate=False)] # coupling_map = CouplingMap.from_heavy_hex(5) # transpilers = [ # # QiskitLevel3(coupling_map), # Mirage(coupling_map, name="Mirage-MinSwaps", cost_function="basic"), # Mirage(coupling_map, name="Mirage-MinDepth"), # ] # metrics = [DepthMetric(consolidate=False)] # , TotalMetric(consolidate=False)] from transpile_benchy.benchmark import Benchmark # only interested in TimeMetric, is there by default benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, num_runs=10, logger=transpile_benchy_logger, ) benchmark.run() print(benchmark) benchmark.metrics[0].saved_results import matplotlib.pyplot as plt import numpy as np # Assuming benchmark.metrics[0].saved_results.items() is a dictionary # where keys are circuit names and values are lists of costs for each trial for k, v in benchmark.metrics[0].saved_results.items(): print(k) for circuit, result in v.items(): # print(circuit) # print(result.data) # find cumulative min trial-wise min_trials = np.minimum.accumulate(result.data, axis=1) print(min_trials.shape) # print(min_trials) # average element-wise across all trials avg = np.mean(min_trials, axis=0) # print(avg) # plot cumulative min vs trial # also plot average cumulative min vs trial # at each trial we also want to scatter plot each individual trial, # plot with latex with plt.style.context(["ipynb", "colorsblind10"]): plt.rcParams["text.usetex"] = True for j, trials in enumerate(min_trials): plt.plot( trials, color="blue", alpha=0.1, label="Individual Trials" if j == 0 else None, ) plt.plot(avg, color="red", label="Average") plt.xlabel("Layout Trials") plt.ylabel("Cumulative Min Cost") plt.title(f"{k} {circuit}") plt.ticklabel_format(style="plain") # Turn off scientific notation plt.legend() plt.show() # # explictly print results # for k, v in benchmark.metrics[0].saved_results.items(): # for circuit, result in v.items(): # print(result.data)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
# TODO, show how different aggression configurations impact results from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from transpile_benchy.metrics.abc_metrics import MetricInterface from transpile_benchy.metrics.gate_counts import DepthMetric from mirror_gates.utilities import DoNothing from mirror_gates.logging import transpile_benchy_logger from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/select.txt") coupling_map = CouplingMap.from_heavy_hex(5) total_work = 80 transpilers = [ QiskitLevel3(coupling_map), Mirage(coupling_map, name="Mirage"), # Mirage( # coupling_map, # name="Mirage-b2", # layout_trials=3, # fb_iters=total_work // 3, # anneal_routing=True, # ), Mirage( coupling_map, name="Mirage-b3", layout_trials=4, fb_iters=total_work // 4, anneal_routing=True, ), ] metrics = [DepthMetric(consolidate=False)] from transpile_benchy.benchmark import Benchmark # only interested in TimeMetric, is there by default benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, num_runs=1, logger=transpile_benchy_logger, ) benchmark.run() print(benchmark.summary_statistics(transpilers[0], transpilers[1])["monodromy_depth"]) print(benchmark.summary_statistics(transpilers[0], transpilers[2])["monodromy_depth"]) # print(benchmark.summary_statistics(transpilers[0], transpilers[3])["monodromy_depth"]) from transpile_benchy.render import plot_benchmark plot_benchmark(benchmark, save=0, legend_show=1, filename="annealing")
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.logging import transpile_benchy_logger from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/iters_select.txt") coupling_map = CouplingMap.from_line(64) # coupling_map = CouplingMap.from_heavy_hex(5) # XXX we hardcoded layout to not be parallelized to avoid a pipe error # before collecting data for this result -> change the hardcoded value # maybe requires downgrading to 3.9 to get this to work....???? transpilers = [ QiskitLevel3(coupling_map, python_sabre=True), Mirage( coupling_map, use_fast_settings=True, name="Mirage", parallel=True, swap_trials=6, layout_trials=6, ), ] from transpile_benchy.benchmark import Benchmark # only interested in TimeMetric, is there by default benchmark = Benchmark( transpilers=transpilers, circuit_library=library, num_runs=1, logger=transpile_benchy_logger, ) benchmark.run() benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=1, legend_show=1, filename="speed", plot_type="trendline", color_override=[0, 3], ) print(benchmark)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger from clonk.backend_utils.coupling_map import Tree, Corral tree = Tree() corral = Corral(num_snails=18) # N = 4 # coupling_map = CouplingMap.from_line(N) # coupling_map = CouplingMap.from_heavy_hex(5) square = CouplingMap.from_grid(6, 6) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/medium_circuits.txt") # library = CircuitLibrary.from_txt("../../circuits/debug.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ QiskitLevel3(square, name="Qiskit-square"), Mirage(square, name="Mirage-square"), # QiskitLevel3(tree, name="Qiskit-tree"), # Mirage(tree, name="Mirage-tree"), QiskitLevel3(corral, name="Qiskit-corral"), Mirage(corral, name="Mirage-corral"), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=1, ) benchmark.run() # print(benchmark) # print(benchmark) benchmark.summary_statistics(transpilers[2], transpilers[3]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=0, legend_show=1, filename="grid", color_override=[0, 3, 6, 7], )
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger # N = 4 # coupling_map = CouplingMap.from_line(N) coupling_map = CouplingMap.from_heavy_hex(5) # coupling_map = CouplingMap.from_grid(6, 6) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../../circuits/medium_circuits.txt") # library = CircuitLibrary.from_txt("../../circuits/debug.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ # QiskitLevel3(coupling_map, cx_basis=True), # Mirage(coupling_map, cx_basis=True, parallel=0), QiskitLevel3(coupling_map), Mirage(coupling_map, logger=transpile_benchy_logger), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=5, ) benchmark.run() # print(benchmark) print(benchmark) benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark(benchmark, save=1, legend_show=1, filename="hex", color_override=[0, 3])
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger # N = 4 # coupling_map = CouplingMap.from_line(N) # coupling_map = CouplingMap.from_heavy_hex(5) coupling_map = CouplingMap.from_grid(6, 6) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../../circuits/medium_circuits.txt") # library = CircuitLibrary.from_txt("../../circuits/debug.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ # QiskitLevel3(coupling_map, cx_basis=True), # Mirage(coupling_map, cx_basis=True, parallel=0), QiskitLevel3(coupling_map), Mirage(coupling_map, logger=transpile_benchy_logger), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=5, ) benchmark.run() # print(benchmark) print(benchmark) benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark(benchmark, save=1, legend_show=0, filename="grid", color_override=[0, 3])
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger # N = 4 # coupling_map = CouplingMap.from_line(N) coupling_map = CouplingMap.from_heavy_hex(5) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../../circuits/medium_circuits.txt") # library = CircuitLibrary.from_txt("../../circuits/debug.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ QiskitLevel3(coupling_map, cx_basis=True), Mirage(coupling_map, logger=transpile_benchy_logger, cx_basis=True), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=5, ) benchmark.run() # print(benchmark) print(benchmark) benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=1, legend_show=1, filename="cnot_hex", color_override=[6, 9], )
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger # N = 4 # coupling_map = CouplingMap.from_line(N) coupling_map = CouplingMap.from_grid(6, 6) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../../circuits/medium_circuits.txt") # library = CircuitLibrary.from_txt("../../circuits/debug.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ QiskitLevel3(coupling_map, syc_basis=True), Mirage( coupling_map, logger=transpile_benchy_logger, syc_basis=True, ), ] benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=5, ) benchmark.run() # print(benchmark) print(benchmark) benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=1, legend_show=1, filename="syc_sl", color_override=[7, 8], )
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger N = 8 coupling_map = CouplingMap.from_line(N) # coupling_map = CouplingMap.from_heavy_hex(5) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../../circuits/twolocal.txt") # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), ] transpilers = [ QiskitLevel3(coupling_map, cx_basis=True), Mirage( coupling_map, logger=transpile_benchy_logger, cx_basis=True, ), QiskitLevel3(coupling_map, cx_basis=False), Mirage( coupling_map, logger=transpile_benchy_logger, cx_basis=False, ), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=3, ) benchmark.run() # print(benchmark) print(benchmark) benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=1, legend_show=1, filename="twolocal", color_override=[6, 9, 0, 3], fixed_bar_width=3, )
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
# determine depolarizing error rate # such that the fidelity of each two-qubit gate is 0.99 # https://qiskit.org/documentation/locale/de_DE/tutorials/simulators/2_device_noise_simulation.html from mirror_gates.noisy_fidelity import NoiseModelBuilder from qiskit.transpiler.coupling import CouplingMap N = 2 coupling_map = CouplingMap.from_line(N) basis_gates = ["cx", "u", "rxx", "ryy", "id"] builder = NoiseModelBuilder(basis_gates=basis_gates, coupling_map=coupling_map) from mirror_gates.noisy_fidelity import T1, T2 p1, p2 = 0, 0.00658 builder.construct_basic_device_model(p_depol1=p1, p_depol2=p2, t1=T1, t2=T2) noise_model = builder.noise_model from qiskit_aer import AerSimulator, QasmSimulator noisy_simulator = AerSimulator(noise_model=noise_model) simulator = QasmSimulator(method="density_matrix") from qiskit.circuit.library import SiSwapGate from qiskit import QuantumCircuit, transpile qc = QuantumCircuit(2) qc.append(SiSwapGate(), [0, 1]) qc = transpile(qc, noisy_simulator, basis_gates=basis_gates, coupling_map=coupling_map) qc.save_density_matrix(list(range(N))) qc.draw("mpl") # test fidelity from qiskit.quantum_info import state_fidelity perfect_result = simulator.run(qc).result().data()["density_matrix"] noisy_result = noisy_simulator.run(qc).result().data()["density_matrix"] fidelity = state_fidelity(perfect_result, noisy_result) print(fidelity) import numpy as np from scipy.optimize import minimize from qiskit.circuit.library import SiSwapGate from qiskit import QuantumCircuit, transpile from qiskit_aer import AerSimulator, QasmSimulator from qiskit.quantum_info import state_fidelity, random_unitary from mirror_gates.noisy_fidelity import T1, T2, NoiseModelBuilder from qiskit.transpiler.coupling import CouplingMap def fidelity_difference_1Q(p1, desired_fidelity): # Create a 1Q quantum circuit with a random unitary gate each iteration u = random_unitary(2).data qc = QuantumCircuit(1) qc.h(0) qc.unitary(u, 0) return get_fidelity_for_p(p1[0], 0, qc, desired_fidelity) def fidelity_difference_2Q(p2, p1, desired_fidelity): # 2Q quantum circuit qc = QuantumCircuit(2) qc.append(SiSwapGate(), [0, 1]) return get_fidelity_for_p(p1, p2[0], qc, desired_fidelity) def get_fidelity_for_p(p1, p2, qc, desired_fidelity): N = qc.num_qubits coupling_map = CouplingMap.from_line(N) basis_gates = ["cx", "u", "rxx", "ryy", "id"] builder = NoiseModelBuilder(basis_gates=basis_gates, coupling_map=coupling_map) builder.construct_basic_device_model(p_depol1=p1, p_depol2=p2, t1=T1, t2=T2) noise_model = builder.noise_model noisy_simulator = AerSimulator(noise_model=noise_model) simulator = QasmSimulator(method="density_matrix") qc = transpile( qc, noisy_simulator, basis_gates=basis_gates, coupling_map=coupling_map ) qc.save_density_matrix(list(range(N))) perfect_result = simulator.run(qc).result().data()["density_matrix"] noisy_result = noisy_simulator.run(qc).result().data()["density_matrix"] fidelity = state_fidelity(perfect_result, noisy_result) return abs(fidelity - desired_fidelity) if __name__ == "__main__": desired_fidelity_1Q = 0.9995 res_1Q = minimize( fidelity_difference_1Q, [0], args=(desired_fidelity_1Q,), bounds=[(0, 0.1)], method="L-BFGS-B", ) p1_optimal = res_1Q.x[0] desired_fidelity_2Q = 0.99 res_2Q = minimize( fidelity_difference_2Q, [0], args=(p1_optimal, desired_fidelity_2Q), bounds=[(0, 0.1)], method="L-BFGS-B", ) p2_optimal = res_2Q.x[0] print(p1_optimal, p2_optimal)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.transpiler.coupling import CouplingMap import numpy as np # Import from Qiskit Aer noise module from mirror_gates.noisy_fidelity import get_noisy_fidelity from tqdm import tqdm from qiskit.circuit.random import random_circuit import matplotlib.pyplot as plt import numpy as np from qiskit.circuit.library import QFT from qiskit.transpiler import CouplingMap from mirror_gates.noisy_fidelity import T1, T2 N = 8 # coupling_map = CouplingMap.from_full(N) coupling_map = CouplingMap.from_line(N) data1 = [] for i in tqdm(range(2, 100, 4)): qc = random_circuit(N, i, max_operands=2, measure=False) fid, duration, transp, expected_fid = get_noisy_fidelity(qc, coupling_map) data1.append((i, duration, fid)) # Added depth (i) here # sort by duration data1 = sorted(data1, key=lambda x: x[1]) depths_sorted, durations_sorted, fidelities_sorted = zip(*data1) fig, ax1 = plt.subplots() # Plotting the fidelity vs. duration (main line) ax1.set_xlabel("Duration") ax1.set_ylabel("Fidelity") ax1.plot(durations_sorted, fidelities_sorted, label="Fidelity") # Setting the secondary x-axis for the depth of the random circuit ax2 = ax1.twiny() ax2.set_xlabel("Depth of Random Circuit") ax2.set_xticks(durations_sorted) ax2.set_xticklabels(depths_sorted) n_qubits = N duration_samples = np.linspace(min(durations_sorted), max(durations_sorted), 500) decay_factor = [(1 / T1 + 1 / T2) * duration for duration in duration_samples] single_qubit_fidelity = [np.exp(-factor) for factor in decay_factor] total_fidelity = [fidelity**n_qubits for fidelity in single_qubit_fidelity] label_string = r"$\left( e^{(-D/T_1 -D/T_2)} \right)^{N}$" ax1.plot(duration_samples, total_fidelity, label=label_string, linestyle="--") ax1.legend() plt.title("Random Circuit (8-qubits) Fidelity vs Duration with Circuit Depth Reference") plt.tight_layout() # Adjust layout to prevent overlap plt.show() N = 8 coupling_map = CouplingMap.from_full(N) data2 = [] for i in tqdm(range(2, N + 1)): qc = QFT(i) fid, duration, transp = get_noisy_fidelity(qc, coupling_map) data2.append((i, duration, fid)) # sort by duration data2 = sorted(data2, key=lambda x: x[1]) sizes_sorted, durations_sorted, fidelities_sorted = zip(*data2) fig, ax1 = plt.subplots() # Plotting the fidelity vs. duration (main line) ax1.set_xlabel("Duration") ax1.set_ylabel("Fidelity") ax1.plot(durations_sorted, fidelities_sorted, label="Fidelity") ax1.tick_params(axis="y") # Setting the secondary x-axis for the size of QFT ax2 = ax1.twiny() ax2.set_xlabel("Size of QFT") ax2.set_xticks(durations_sorted) ax2.set_xticklabels(sizes_sorted) ax2.tick_params(axis="x") # Adjusting the reference line calculation unique_sizes = list(set(sizes_sorted)) reference_y_total = [] duration_samples_total = [] for size in unique_sizes: min_duration = min( [ duration for size_curr, duration in zip(sizes_sorted, durations_sorted) if size_curr == size ] ) max_duration = max( [ duration for size_curr, duration in zip(sizes_sorted, durations_sorted) if size_curr == size ] ) duration_samples = np.linspace(min_duration, max_duration, 100) reference_y = [ np.exp(-size * duration / (T1 + T2)) for duration in duration_samples ] reference_y_total.extend(reference_y) duration_samples_total.extend(duration_samples) ax1.plot( duration_samples_total, reference_y_total, label="e^{-nD / (T_1+T_2)}", linestyle="--", ) plt.title("n-QFT Fidelity vs Duration with QFT Size Reference") plt.tight_layout() # Adjust layout to prevent overlap plt.show()
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.transpiler.coupling import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from qiskit.transpiler import PassManager from mirror_gates.logging import transpile_benchy_logger from mirror_gates.sqiswap_decomposer import SiSwapDecomposePass from qiskit.transpiler.passmanager import PassManager from qiskit.transpiler.passes import Optimize1qGatesDecomposition N = 3 # coupling_map = FakeQuitoV2().target.build_coupling_map() # coupling_map = CouplingMap.from_heavy_hex(5) coupling_map = CouplingMap.from_line(N) # coupling_map = CouplingMap.from_heavy_hex(5) # coupling_map = CouplingMap.from_grid(3, 3) # coupling_map.draw() cx_basis = False from transpile_benchy.library import CircuitLibrary lib = CircuitLibrary(circuit_list=[]) qc = lib.get_circuit("fredkin_n3") qc = qc.decompose() # display(qc.draw("mpl", fold=-1)) runner = Mirage( coupling_map, cx_basis=cx_basis, logger=transpile_benchy_logger, ) routed = runner.run(qc) if not cx_basis: decomposer = PassManager() decomposer.append(SiSwapDecomposePass()) decomposer.append(Optimize1qGatesDecomposition()) mirage_output = decomposer.run(routed) else: mirage_output = routed # mirage_output.draw("mpl", fold=-1) runner = QiskitLevel3(coupling_map, cx_basis=cx_basis) routed = runner.run(qc) if not cx_basis: decomposer = PassManager() decomposer.append(SiSwapDecomposePass()) decomposer.append(Optimize1qGatesDecomposition()) qiskit_output = decomposer.run(routed) else: qiskit_output = routed # qiskit_output.draw("mpl", fold=-1) from mirror_gates.noisy_fidelity import get_noisy_fidelity a, b, c, d = get_noisy_fidelity(qiskit_output, coupling_map) print(f"Fidelity: {a:.3f}, Duration: {b:.3f}") # display(c.draw("mpl", fold=-1)) a, b, c, d = get_noisy_fidelity(mirage_output, coupling_map) print(f"Fidelity: {a:.3f}, Duration: {b:.3f}") # display(c.draw("mpl", fold=-1))
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.transpiler.coupling import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.transpiler import PassManager import numpy as np from mirror_gates.logging import transpile_benchy_logger from mirror_gates.sqiswap_decomposer import SiSwapDecomposePass from qiskit.transpiler.passmanager import PassManager from qiskit import Aer, transpile from qiskit.quantum_info import state_fidelity from qiskit_aer import AerSimulator # Import from Qiskit Aer noise module from qiskit_aer.noise import ( NoiseModel, QuantumError, ReadoutError, pauli_error, depolarizing_error, thermal_relaxation_error, RelaxationNoisePass, ) from qiskit.circuit import Delay from qiskit.transpiler.passes import PadDelay, ASAPSchedule from qiskit import QuantumCircuit from transpile_benchy.metrics.gate_counts import ( DepthMetric, TotalMetric, TotalSwaps, ) from qiskit.circuit.library import iSwapGate from qiskit.transpiler import CouplingMap from mirror_gates.pass_managers import Mirage, QiskitLevel3 from mirror_gates.utilities import SubsMetric from mirror_gates.logging import transpile_benchy_logger N = 8 coupling_map = CouplingMap.from_line(8) from transpile_benchy.library import CircuitLibrary library = CircuitLibrary.from_txt("../../circuits/small_circuits.txt") # new metric for simulating fidelity from transpile_benchy.metrics.abc_metrics import MetricInterface from qiskit.transpiler.basepasses import AnalysisPass from mirror_gates.noisy_fidelity import get_noisy_fidelity from qiskit.converters import dag_to_circuit from mirror_gates.utilities import DoNothing # TODO: we could move gate times and T1,T2 to be parameters # currently, are just hardcoded at the top of the file class FidelityAnalysis(AnalysisPass): def __init__(self, coupling_map, sqrt_iswap_basis): super().__init__() self.coupling_map = coupling_map self.sqrt_iswap_basis = sqrt_iswap_basis def run(self, dag): qc = dag_to_circuit(dag) fid, duration, _, expected_fid = get_noisy_fidelity( qc, self.coupling_map, sqrt_iswap_basis=self.sqrt_iswap_basis ) self.property_set["noisy_fidelity"] = fid self.property_set["scheduled_duration"] = duration self.property_set["expected_fidelity"] = expected_fid return dag class FidelityMetric(MetricInterface): """Calculate the noisy simulated fidelity.""" def __init__(self, coupling_map): """Initialize the metric.""" super().__init__(name="noisy_fidelity", pretty_name="Noisy Fidelity") self.use_geometric_mean = True self.coupling_map = coupling_map def _construct_pass(self, basis_gate): """Return the pass associated with this metric.""" sqrt_iswap_basis = basis_gate == iSwapGate().power(1 / 2) return FidelityAnalysis(self.coupling_map, sqrt_iswap_basis) class DurationMetric(MetricInterface): """Calculate the noisy simulated fidelity.""" def __init__(self): """Initialize the metric.""" super().__init__(name="scheduled_duration", pretty_name="Circuit Duration (ns)") self.use_geometric_mean = True def _construct_pass(self): """Return the pass associated with this metric.""" return DoNothing() class ExpectedFidelityMetric(MetricInterface): """Calculate the noisy simulated fidelity.""" def __init__(self): """Initialize the metric.""" super().__init__(name="expected_fidelity", pretty_name="Expected Fidelity") self.use_geometric_mean = True def _construct_pass(self): """Return the pass associated with this metric.""" return DoNothing() # XXX set consolidate to False # this is allowed only because my pass manager will preserve consolidation # see post_stage, I call fastconsolidate manually # NOTE: use TotalSwaps to verify baselines have > 0 swaps # otherwise, there is no room for improvement. # we can include these if we want to show our methods will still work # but somewhat trivial since we just append VF2Layout metrics = [ DepthMetric(consolidate=False), TotalMetric(consolidate=False), TotalSwaps(consolidate=False), SubsMetric(), FidelityMetric(coupling_map), DurationMetric(), ExpectedFidelityMetric(), ] transpilers = [ # QiskitLevel3(coupling_map, cx_basis=True), # Mirage( # coupling_map, # logger=transpile_benchy_logger, # cx_basis=True, # ), QiskitLevel3(coupling_map, cx_basis=False), Mirage( coupling_map, logger=transpile_benchy_logger, cx_basis=False, ), ] from transpile_benchy.benchmark import Benchmark benchmark = Benchmark( transpilers=transpilers, circuit_library=library, metrics=metrics, logger=transpile_benchy_logger, num_runs=1, ) benchmark.run() print(benchmark) benchmark.summary_statistics(transpilers[0], transpilers[1]) from transpile_benchy.render import plot_benchmark plot_benchmark( benchmark, save=1, legend_show=1, filename="twolocal", color_override=[0, 3], )
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from mirror_gates.noisy_fidelity import heuristic_fidelity import numpy as np import matplotlib.pyplot as plt import LovelyPlots.utils as lp # noqa: F401 import matplotlib.pyplot as plt import numpy as np import scienceplots # noqa: F401 # Constants N = 16 start_value = 0 end_value = 10_000 num_points = 1000 # Generate Qiskit data qiskit_durations = np.linspace( start_value, end_value, num_points ) # Define start_value, end_value, and num_points as per your data qiskit_fidelities = heuristic_fidelity(N, qiskit_durations) # Generate MIRAGE data (shifted by depth reduction) mirage_durations_hh = qiskit_durations * (1 - 0.3119) # 31.19% reduction for heavy-hex mirage_fidelities_hh = heuristic_fidelity(N, mirage_durations_hh) with plt.style.context(["ieee"]): # Plot Qiskit data plt.plot(qiskit_durations, qiskit_fidelities, label="Qiskit", color="blue") # Plot MIRAGE data using Qiskit's durations as the x-axis plt.plot( qiskit_durations, mirage_fidelities_hh, label="MIRAGE (Heavy-Hex)", color="green", ) # Add labels, title, legend, etc. plt.xlabel("Baseline Circuit Duration (Qiskit)") plt.ylabel("Fidelity") plt.title("Fidelity vs. Baseline Circuit Duration") plt.legend() plt.grid(True) # Show the plot plt.show() circuits = [ "ae_n16", "bigadder_n18", "knn_n25", "multiplier_n15", "portfolioqaoa_n16", "qec9xz_n17", "qft_n18", "qftentangled_n16", "qpeexact_n16", "qram_n20", "sat_n11", "seca_n11", "swap_test_n25", ] # Values taken from outputs of previous runs # experiment 1 sqrtiswap_mirage_hh = [ 71.369, 103.163, 70.141, 168.167, 113.540, 21.699, 58.570, 51.719, 70.866, 81.952, 225.484, 37.187, 70.141, ] sqrtiswap_qiskit_hh = [ 122.362, 131.494, 79.406, 195.946, 250.689, 30.773, 108.342, 120.588, 167.700, 94.756, 286.870, 49.257, 79.700, ] # experiment 2 sqrtiswap_mirage_sl = [ 67.312, 87.793, 64.635, 147.498, 90.500, 15.751, 52.341, 52.662, 66.810, 76.280, 209.375, 33.892, 64.635, ] sqrtiswap_qiskit_sl = [ 120.638, 109.040, 69.573, 175.528, 236.824, 22.211, 108.948, 95.484, 139.716, 83.561, 235.682, 49.288, 69.392, ] # experiment 3 cnot_mirage_hh = [ 151.813, 158.463, 126.188, 303.863, 181.000, 37.859, 121.184, 97.834, 150.797, 135.909, 356.949, 55.177, 126.188, ] cnot_qiskit_hh = [ 261.086, 192.257, 131.488, 283.823, 431.180, 42.951, 215.338, 223.833, 325.028, 148.078, 440.340, 69.558, 130.761, ] # experiment 4 syc_mirage_sl = [ 136.397, 194.039, 148.365, 336.419, 181.000, 41.089, 100.184, 101.762, 136.397, 155.747, 458.447, 76.565, 148.365, ] syc_qiskit_sl = [ 213.839, 217.868, 143.501, 365.007, 398.886, 49.669, 209.958, 219.996, 271.189, 163.659, 483.290, 96.168, 143.910, ] # sort so circuits appear as same order they do in the paper sorted_circuits = [ "qec9xz_n17", "seca_n11", "knn_n25", "swap_test_n25", "qram_n20", "qft_n18", "qftentangled_n16", "ae_n16", "bigadder_n18", "qpeexact_n16", "multiplier_n15", "portfolioqaoa_n16", "sat_n11", ] # Create a dictionary with circuits as keys and their index in sorted_circuits as values index_map = {circuit: index for index, circuit in enumerate(sorted_circuits)} # Sort all your lists based on the order in sorted_circuits sqrtiswap_mirage_hh = [ x for _, x in sorted( zip(circuits, sqrtiswap_mirage_hh), key=lambda pair: index_map[pair[0]] ) ] sqrtiswap_qiskit_hh = [ x for _, x in sorted( zip(circuits, sqrtiswap_qiskit_hh), key=lambda pair: index_map[pair[0]] ) ] sqrtiswap_mirage_sl = [ x for _, x in sorted( zip(circuits, sqrtiswap_mirage_sl), key=lambda pair: index_map[pair[0]] ) ] sqrtiswap_qiskit_sl = [ x for _, x in sorted( zip(circuits, sqrtiswap_qiskit_sl), key=lambda pair: index_map[pair[0]] ) ] cnot_mirage_hh = [ x for _, x in sorted( zip(circuits, cnot_mirage_hh), key=lambda pair: index_map[pair[0]] ) ] cnot_qiskit_hh = [ x for _, x in sorted( zip(circuits, cnot_qiskit_hh), key=lambda pair: index_map[pair[0]] ) ] syc_mirage_sl = [ x for _, x in sorted( zip(circuits, syc_mirage_sl), key=lambda pair: index_map[pair[0]] ) ] syc_qiskit_sl = [ x for _, x in sorted( zip(circuits, syc_qiskit_sl), key=lambda pair: index_map[pair[0]] ) ] circuits = sorted_circuits import matplotlib.pyplot as plt import numpy as np # Function to convert depth to duration def depth_to_duration(depth, gate_time_1q=25, gate_time_2q=100): return (gate_time_1q * depth + gate_time_2q * depth) + gate_time_1q def hf(n, d): return heuristic_fidelity(n, d, T1=1600_000, T2=1600_000) # Calculate durations for all experiments durations_mirage_hh = [depth_to_duration(d) for d in sqrtiswap_mirage_hh] durations_qiskit_hh = [depth_to_duration(d) for d in sqrtiswap_qiskit_hh] durations_mirage_sl = [depth_to_duration(d) for d in sqrtiswap_mirage_sl] durations_qiskit_sl = [depth_to_duration(d) for d in sqrtiswap_qiskit_sl] durations_cnot_mirage_hh = [depth_to_duration(d) for d in cnot_mirage_hh] durations_cnot_qiskit_hh = [depth_to_duration(d) for d in cnot_qiskit_hh] durations_syc_mirage_sl = [depth_to_duration(d) for d in syc_mirage_sl] durations_syc_qiskit_sl = [depth_to_duration(d) for d in syc_qiskit_sl] # Calculate fidelities for all experiments fidelities_mirage_hh = [ hf(int(circuit.split("_")[-1][1:]), d) for circuit, d in zip(circuits, durations_mirage_hh) ] fidelities_qiskit_hh = [ hf(int(circuit.split("_")[-1][1:]), d) for circuit, d in zip(circuits, durations_qiskit_hh) ] fidelities_mirage_sl = [ hf(int(circuit.split("_")[-1][1:]), d) for circuit, d in zip(circuits, durations_mirage_sl) ] fidelities_qiskit_sl = [ hf(int(circuit.split("_")[-1][1:]), d) for circuit, d in zip(circuits, durations_qiskit_sl) ] fidelities_cnot_mirage_hh = [ hf(int(circuit.split("_")[-1][1:]), d) for circuit, d in zip(circuits, durations_cnot_mirage_hh) ] fidelities_cnot_qiskit_hh = [ hf(int(circuit.split("_")[-1][1:]), d) for circuit, d in zip(circuits, durations_cnot_qiskit_hh) ] fidelities_syc_mirage_sl = [ hf(int(circuit.split("_")[-1][1:]), d) for circuit, d in zip(circuits, durations_syc_mirage_sl) ] fidelities_syc_qiskit_sl = [ hf(int(circuit.split("_")[-1][1:]), d) for circuit, d in zip(circuits, durations_syc_qiskit_sl) ] # Calculate relative changes in fidelity for all experiments relative_changes_hh = [ (fm - fq) / fq for fm, fq in zip(fidelities_mirage_hh, fidelities_qiskit_hh) ] relative_changes_sl = [ (fm - fq) / fq for fm, fq in zip(fidelities_mirage_sl, fidelities_qiskit_sl) ] relative_changes_cnot_hh = [ (fm - fq) / fq for fm, fq in zip(fidelities_cnot_mirage_hh, fidelities_cnot_qiskit_hh) ] relative_changes_syc_sl = [ (fm - fq) / fq for fm, fq in zip(fidelities_syc_mirage_sl, fidelities_syc_qiskit_sl) ] relative_changes_hh = [ (fm - fq) for fm, fq in zip(fidelities_mirage_hh, fidelities_qiskit_hh) ] relative_changes_sl = [ (fm - fq) for fm, fq in zip(fidelities_mirage_sl, fidelities_qiskit_sl) ] relative_changes_cnot_hh = [ (fm - fq) for fm, fq in zip(fidelities_cnot_mirage_hh, fidelities_cnot_qiskit_hh) ] relative_changes_syc_sl = [ (fm - fq) for fm, fq in zip(fidelities_syc_mirage_sl, fidelities_syc_qiskit_sl) ] # # Zip all data together using circuits as the key # data = list( # zip( # circuits, # relative_changes_hh, # relative_changes_sl, # relative_changes_cnot_hh, # relative_changes_syc_sl, # ) # ) # # Sort the data by the values of sqrtiswap_mirage_hh (Experiment 1) # sorted_data = sorted(data, key=lambda x: x[1]) # # Unzip the sorted data back into individual lists # ( # circuits, # relative_changes_hh, # relative_changes_sl, # relative_changes_cnot_hh, # relative_changes_syc_sl, # ) = map(list, zip(*sorted_data)) # arithmetic mean relative_changes_hh.append(np.mean(relative_changes_hh)) relative_changes_sl.append(np.mean(relative_changes_sl)) relative_changes_cnot_hh.append(np.mean(relative_changes_cnot_hh)) relative_changes_syc_sl.append(np.mean(relative_changes_syc_sl)) circuits.append("Average") from typing import List, Tuple import LovelyPlots.utils as lp # noqa: F401 import matplotlib.pyplot as plt import numpy as np import scienceplots # noqa: F401 from matplotlib.colors import ListedColormap from matplotlib.figure import Axes, Figure from matplotlib.ticker import MaxNLocator from transpile_benchy.benchmark import Benchmark from transpile_benchy.metrics.abc_metrics import MetricInterface def _initialize_plot(legend_show: bool) -> Tuple[Figure, Axes]: """Initialize the plot and returns the fig and ax.""" ref_size = 1.25 # Assume need .4 for legend legend_offset = 0.5 if legend_show: fig, axs = plt.subplots( 2, figsize=( 3.5, ref_size + legend_offset, ), # 2 inch for plot + 1 inch for legend sharex=True, gridspec_kw={ "height_ratios": [legend_offset, ref_size + legend_offset], "hspace": 0.01, }, # 1:2 ratio for legend:plot ) ax = axs[1] else: fig, ax = plt.subplots(figsize=(3.5, ref_size)) # Just 2 inch for the plot return fig, ax names = [ "HH-$\sqrt{\mathrm{iSWAP}}$", "SL-$\sqrt{\mathrm{iSWAP}}$", "HH-$\mathrm{CNOT}$", "SL-$\mathrm{SYC}$", ] cmap = plt.cm.get_cmap("tab10", 10) plt.rc("legend", fontsize=8) plt.rc("axes", labelsize=8) with plt.style.context(["ieee"]): # Set up the figure and axes fig, ax = _initialize_plot(True) bar_width = 0.2 index = np.arange(len(circuits)) # Add bars for each experiment using the relative changes ax.bar( index - 1.5 * bar_width, relative_changes_hh, width=bar_width, label=r"HH-$\sqrt{\texttt{iSWAP}}$", color=cmap(0), ) ax.bar( index - 0.5 * bar_width, relative_changes_sl, width=bar_width, label=r"SL-$\sqrt{\texttt{iSWAP}}$", # color="red", color=cmap(1), ) ax.bar( index + 0.5 * bar_width, relative_changes_cnot_hh, width=bar_width, label=r"HH-$\texttt{CNOT}$", # color="green", color=cmap(2), ) ax.bar( index + 1.5 * bar_width, relative_changes_syc_sl, width=bar_width, label=r"SL-$\texttt{SYC}$", # color="orange", color=cmap(3), ) # Add labels, title, and legend ax.set_ylabel("Absolute Fidelity Change") ax.set_xticks(index) ax.set_xticklabels( circuits, rotation=30, ha="right", fontsize=7, ) # ax.set_yscale("log") ax.get_yaxis().set_major_formatter(plt.ScalarFormatter()) # we need more ticks on y-axis ax.yaxis.set_major_locator(MaxNLocator(5)) ax.set_yticklabels(["{:.0f}%".format(val * 100) for val in ax.get_yticks()]) for j, name in enumerate(names): fig.axes[0].bar(0, 0, color=cmap(j), label=f"{name}") fig.axes[0].legend( loc="upper center", ncol=2, fontsize=8, frameon=False, bbox_to_anchor=(0.5, 1.5), # 1.10 ) fig.axes[0].axis("off") # show grid # fig.axes[1].grid(True, axis="y", which="major", linestyle="--", alpha=0.5) # Show the plot plt.tight_layout() fig fig.savefig( "test.pdf", bbox_inches="tight", pad_inches=0, )
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.circuit.library import SwapGate, CXGate from qiskit.quantum_info import random_unitary from qiskit.extensions import UnitaryGate from monodromy.haar import expected_cost from qiskit.circuit.library import iSwapGate, XXPlusYYGate, CXGate import numpy as np from monodromy.render import gates_to_coverage_plot from monodromy.haar import expected_cost from monodromy.coverage import coverage_lookup_cost import h5py import json import matplotlib.pyplot as plt from scipy import stats from collections import Counter import scienceplots import LovelyPlots.utils as lp from tqdm import tqdm # %matplotlib widget class ErrorModel: """Use exponential decay error model. Define fidelity model as some function of (time) cost. """ def __init__(self, unit_fidelity=0.99): """Unit fidelity is the fidelity of operation with unit cost 1.0 NOTE: simple convention is that CX, iSWAP have unit cost 1.0, then sqrt(CX) and sqrt(iSWAP) have unit cost 0.5, etc. """ assert 0 <= unit_fidelity and unit_fidelity <= 1 self.unit_fidelity = unit_fidelity self.normalized_lifetime = -1.0 / np.log(unit_fidelity) def fidelity(self, cost): """Convert (time) cost to fidelity""" return np.exp(-cost / self.normalized_lifetime) def infidelity(self, cost): """Convert (time) cost to infidelity""" return 1 - self.fidelity(cost) # ErrorModel(0.99).fidelity(1.5) indx = 2.0 U = iSwapGate().power(1 / indx) safe_basis_str = f"sqrt_{indx}_iswap" basis_str = r"$\sqrt[" + f"{indx}" + r"]{\texttt{iSWAP}}$" basis_cost = 1.0 / indx unit_fidelity = 0.99 affine_error_model = ErrorModel(unit_fidelity=unit_fidelity) coverage_1 = gates_to_coverage_plot(U, costs=[basis_cost]) no_mirror_haar_exact = expected_cost(coverage_1) print(no_mirror_haar_exact) average_fidelity = affine_error_model.fidelity(no_mirror_haar_exact) print(average_fidelity) coverage_2 = gates_to_coverage_plot(U, SwapGate(), costs=[basis_cost, 0]) mirror_haar_exact = expected_cost(coverage_2) print(mirror_haar_exact) average_fidelity = affine_error_model.fidelity(mirror_haar_exact) print(average_fidelity) def data_collection(coverage_set, error_model, allow_approx, N=1000, save_to=None): """Collects data for Haar score calculations. Args: coverage_set (List[CircuitPolytopeData]): List of coverage sets. error_model (ErrorModel): Error model to use for cost calculation. allow_approx (bool): Whether to allow approximate decomposition. N (int, optional): Number of iterations. Defaults to 1000. check_every (int, optional): Check the running average every `check_every` iterations. Defaults to 100. save_to (str, optional): Path to the HDF5 file to save the data. If None, data won't be saved. Defaults to None. Returns: dict: Collected data. """ costs = [] running_avgs = [] conf_intervals = [] fidelities = [] progress_bar = tqdm(total=N, desc="Starting") for _ in range(N): target = UnitaryGate(random_unitary(4)) # NOTE fidelity here is circuit cost and decomposition fidelity combined cost, fidelity = coverage_lookup_cost( coverage_set, target, error_model, allow_approx=allow_approx ) costs.append(cost) fidelities.append(fidelity) running_avgs.append(np.mean(costs)) if len(np.unique(costs)) > 1: confidence = 0.95 conf_interval = stats.t.interval( confidence, len(costs) - 1, loc=np.mean(costs), scale=stats.sem(costs), ) conf_intervals.append(conf_interval) else: conf_intervals.append((np.nan, np.nan)) if len(np.unique(costs)) > 1: progress_bar.set_description( f"Current average cost: {running_avgs[-1]:.4f}, Std. Error: {stats.sem(costs):.4f}" ) else: progress_bar.set_description( f"Current average cost: {running_avgs[-1]:.4f}" ) progress_bar.update() progress_bar.close() # print frequency of each cost print(Counter(costs)) print("Monte Carlo: Haar score", np.mean(costs)) # print average fidelity print("Monte Carlo: Average fidelity", np.mean(fidelities)) data = { "costs": costs, "running_avgs": running_avgs, "conf_intervals": conf_intervals, "fidelities": fidelities, } if save_to is not None: with h5py.File(save_to, "w") as f: for key, value in data.items(): f.create_dataset(key, data=json.dumps(value)) return data coverage_sets = [coverage_1, coverage_1, coverage_2, coverage_2] allow_approx = [False, True, False, True] mirror_flags = ["no_mirror", "no_mirror", "mirror", "mirror"] labels = [ "mirror_data/" + rf"{mirror_flag}-{safe_basis_str}-approx{approx_bool}-{affine_error_model.unit_fidelity}" for mirror_flag, approx_bool in zip(mirror_flags, allow_approx) ] # # NOTE uncomment if want to actually run the data collection # for coverage_set, approx_bool, label in zip(coverage_sets, allow_approx, labels): # print(f"Running: {label}") # data_collection( # coverage_set, affine_error_model, approx_bool, save_to=label + ".hdf5" # ) # print("\n") def plot_data(data, labels, pretty_labels, exact_convergence=None): """Plots running averages and confidence intervals from data. Args: data (List[dict]): List of dictionaries containing data from each run. labels (List[str]): List of labels for each data set (used for exact_convergence matching). pretty_labels (List[str]): List of 'pretty' labels for each data set (used for plotting). exact_convergence (dict, optional): Dictionary containing values of exact convergence for each data set. If None, it won't be plotted. Defaults to None. """ assert len(labels) == len( pretty_labels ), "Labels and pretty_labels must have the same length." with plt.style.context(["ieee", "science"]): plt.rc("text", usetex=True) for d, label, pretty_label in zip(data, labels, pretty_labels): running_avgs = d["running_avgs"] conf_intervals = d["conf_intervals"] plt.plot(running_avgs, label=f"{pretty_label}") # plt.fill_between( # range(len(running_avgs)), # [ci[0] for ci in conf_intervals], # [ci[1] for ci in conf_intervals], # alpha=0.1, # ) if exact_convergence and label in exact_convergence: plt.axhline( y=exact_convergence[label], color="k", linestyle="--", alpha=0.5, # label=f"Exact Convergence - {pretty_label}", ) # # Extract basis gate name and error value from the first label # directory, label_info = labels[0].split('/') # basis_gate, name, error_value = label_info.split('-') # Use the extracted information to build the title # plt.title( # f"Haar Score vs Iteration" #, {basis_str}, unit fidelity {unit_fidelity}" # ) plt.xlabel("Iteration") plt.ylabel("Haar Score") # use log scales # plt.yscale("log") plt.xscale("log") # plt.legend() # put legend above plot in 2 columns plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.26), ncol=2) # shrink figure height plt.gcf().set_size_inches(3.5, 1.85) fig = plt.gcf() plt.show() # return fig so can be saved return fig def load_hdf5_data(filename): """Load data from an HDF5 file. Args: filename (str): Path to the HDF5 file. Returns: dict: Data loaded from the file. """ with h5py.File(filename, "r") as f: data = {key: json.loads(value[()]) for key, value in f.items()} return data data = [load_hdf5_data(f"{label}.hdf5") for label in labels] exact_convergence = { labels[0]: no_mirror_haar_exact, labels[2]: mirror_haar_exact, } # Replace with actual values pretty_labels = [ "Exact", "Approximate", "Exact + Mirrors", "Approximate + Mirrors", ] fig = plot_data(data, labels, pretty_labels, exact_convergence=exact_convergence) fig.savefig( "weyl_mirror_sqrt[2].pdf", bbox_inches="tight", pad_inches=0, )
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
# !pip uninstall -y matplotlib && pip install matplotlib==3.7.2 from qiskit.circuit.library import SwapGate, CXGate from qiskit.quantum_info import random_unitary from qiskit.extensions import UnitaryGate from monodromy.haar import expected_cost from qiskit.circuit.library import iSwapGate, XXPlusYYGate, CXGate import numpy as np from monodromy.render import gates_to_coverage_plot from monodromy.haar import expected_cost from monodromy.coverage import coverage_lookup_cost import h5py import json import matplotlib.pyplot as plt from scipy import stats from collections import Counter import scienceplots import LovelyPlots.utils as lp from tqdm import tqdm # %matplotlib widget from qiskit import QuantumCircuit from qiskit.circuit.library import CZGate from qiskit.quantum_info.operators import Operator from qiskit.circuit import Gate from monodromy.haar import gates_to_haar from qiskit.circuit.library import CXGate, iSwapGate import numpy as np qc = QuantumCircuit(2) qc.append(iSwapGate().power(-1), [0, 1]) qc.append(CZGate().power(1 / 6), [0, 1]) syc = Operator(qc) syc.name = "syc" syc.params = [] print(gates_to_haar(syc)) from monodromy.render import gates_to_coverage_plot gates_to_coverage_plot(syc, overlap=False) class ErrorModel: """Use exponential decay error model. Define fidelity model as some function of (time) cost. """ def __init__(self, unit_fidelity=0.99): """Unit fidelity is the fidelity of operation with unit cost 1.0 NOTE: simple convention is that CX, iSWAP have unit cost 1.0, then sqrt(CX) and sqrt(iSWAP) have unit cost 0.5, etc. """ assert 0 <= unit_fidelity and unit_fidelity <= 1 self.unit_fidelity = unit_fidelity self.normalized_lifetime = -1.0 / np.log(unit_fidelity) def fidelity(self, cost): """Convert (time) cost to fidelity""" return np.exp(-cost / self.normalized_lifetime) def infidelity(self, cost): """Convert (time) cost to infidelity""" return 1 - self.fidelity(cost) # ErrorModel(0.99).fidelity(1.5) U = syc safe_basis_str = "syc" basis_str = "syc" basis_cost = 1.0 unit_fidelity = 0.99 affine_error_model = ErrorModel(unit_fidelity=unit_fidelity) coverage_1 = gates_to_coverage_plot(U, costs=[basis_cost]) no_mirror_haar_exact = expected_cost(coverage_1) print(no_mirror_haar_exact) average_fidelity = affine_error_model.fidelity(no_mirror_haar_exact) print(average_fidelity) coverage_2 = gates_to_coverage_plot(U, SwapGate(), costs=[basis_cost, 0]) mirror_haar_exact = expected_cost(coverage_2) print(mirror_haar_exact) average_fidelity = affine_error_model.fidelity(mirror_haar_exact) print(average_fidelity)
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from mirror_gates.sycamore import syc from transpile_benchy.utilities.numerical_decomp import ( Advanced2QDecomposer, BasicDecomposer, ) from qiskit import QuantumCircuit from qiskit.quantum_info import Operator from qiskit.circuit.parameter import Parameter from qiskit.circuit.library import CXGate, SwapGate, CZGate, iSwapGate decomposer = BasicDecomposer(basis_gates=[(syc, 2)]) from qiskit.transpiler.passes import Optimize1qGates from qiskit.transpiler import PassManager ansatz = QuantumCircuit(2) ansatz.u(Parameter("p000"), Parameter("p001"), Parameter("p002"), 0) ansatz.u(Parameter("q000"), Parameter("q001"), Parameter("q002"), 1) ansatz.append(iSwapGate().power(-1), [0, 1]) ansatz.append(CZGate().power(1 / 6), [0, 1]) ansatz.u(Parameter("p003"), Parameter("p004"), Parameter("p005"), 0) ansatz.u(Parameter("q003"), Parameter("q004"), Parameter("q005"), 1) ansatz.append(iSwapGate().power(-1), [0, 1]) ansatz.append(CZGate().power(1 / 6), [0, 1]) ansatz.u(Parameter("p006"), Parameter("p007"), Parameter("p008"), 0) ansatz.u(Parameter("q006"), Parameter("q007"), Parameter("q008"), 1) ret = decomposer.decompose_from_ansatz(target=CXGate(), ansatz=ansatz) pm = PassManager() pm.append(Optimize1qGates()) ret = pm.run(ret) ret.draw("mpl") ret.qasm(filename="d02_syc_cnot.qasm") ansatz = QuantumCircuit(2) ansatz.u(Parameter("p000"), Parameter("p001"), Parameter("p002"), 0) ansatz.u(Parameter("q000"), Parameter("q001"), Parameter("q002"), 1) ansatz.append(iSwapGate().power(-1), [0, 1]) ansatz.append(CZGate().power(1 / 6), [0, 1]) ansatz.u(Parameter("p003"), Parameter("p004"), Parameter("p005"), 0) ansatz.u(Parameter("q003"), Parameter("q004"), Parameter("q005"), 1) ansatz.append(iSwapGate().power(-1), [0, 1]) ansatz.append(CZGate().power(1 / 6), [0, 1]) ansatz.u(Parameter("p006"), Parameter("p007"), Parameter("p008"), 0) ansatz.u(Parameter("q006"), Parameter("q007"), Parameter("q008"), 1) ansatz.append(iSwapGate().power(-1), [0, 1]) ansatz.append(CZGate().power(1 / 6), [0, 1]) ansatz.u(Parameter("p009"), Parameter("p010"), Parameter("p011"), 0) ansatz.u(Parameter("q009"), Parameter("q010"), Parameter("q011"), 1) ret = decomposer.decompose_from_ansatz(target=SwapGate(), ansatz=ansatz) pm.append(Optimize1qGates()) ret = pm.run(ret) ret.draw("mpl") ret.qasm(filename="d02_syc_swap.qasm")
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
from qiskit.circuit.library import SwapGate, iSwapGate from qiskit import QuantumCircuit from qiskit.quantum_info import random_unitary from weylchamber import g1g2g3, c1c2c3, WeylChamber from qiskit.quantum_info import Operator import matplotlib.pyplot as plt N = 500 # generate (a,b,c) ->swap-> (a',b',c') pairs a_pairs, b_pairs, c_pairs = [], [], [] for _ in range(N): U = random_unitary(4).data U_prime = SwapGate().to_matrix() @ U abc = g1g2g3(U) abc_prime = g1g2g3(U_prime) a_pairs.append((abc[0], abc_prime[0])) b_pairs.append((abc[1], abc_prime[1])) c_pairs.append((abc[2], abc_prime[2])) # plot fig, axes = plt.subplots(1, 3, figsize=(15, 5)) for i, (pairs, label) in enumerate(zip([a_pairs, b_pairs, c_pairs], ["a", "b", "c"])): axes[i].scatter(*zip(*pairs), s=1) axes[i].set_xlabel(f"{label}") axes[i].set_ylabel(f"{label}'") axes[i].set_title(f"{label} vs {label}'") plt.show() # experiment with random scattering N = 400 # generate U + SWAP + U + SWAP U = iSwapGate().power(3 / 4) coords = [] for _ in range(N): qc = QuantumCircuit(2) qc.append(U, [0, 1]) # random 1Q gate qc.append(random_unitary(2).to_instruction(), [0]) qc.append(random_unitary(2).to_instruction(), [1]) qc.append(U, [0, 1]) qc.append(random_unitary(2).to_instruction(), [0]) qc.append(random_unitary(2).to_instruction(), [1]) qc.swap(0, 1) # get coordinates coords.append(c1c2c3(Operator(qc).data)) # plot w = WeylChamber() for c in coords: w.add_point(*c) w.plot()
https://github.com/Pitt-JonesLab/mirror-gates
Pitt-JonesLab
"""Test the CNS transformation on a circuit DAG.""" # from qiskit import QuantumCircuit # from qiskit.converters import circuit_to_dag, dag_to_circuit # from qiskit.quantum_info import Operator # from mirror_gates.cns_transform import cns_transform # def generate_circuit(): # """Generate a circuit to test the CNS transformation.""" # qc = QuantumCircuit(3) # qc.t(2) # qc.iswap(0, 2) # qc.s(0) # qc.h(1) # qc.swap(0, 1) # qc.h(1) # qc.cx(1, 2) # qc.t(1) # qc.rzz(0.5, 2, 0) # qc.cx(0, 2) # qc.h(1) # qc.h(2) # return qc # def test_single_nodecns_transform(): # """Test the CNS transformation on a single node.""" # # Generate the original circuit and calculate its operator # qc_original = generate_circuit() # dag_original = circuit_to_dag(qc_original) # op_original = Operator(qc_original) # # Identify the node to be transformed # node_to_transform = dag_original.two_qubit_ops()[0] # # Apply the CNS transformation # dag_transformed = cns_transform( # dag_original, node_to_transform, preserve_layout=True # ) # qc_transformed = dag_to_circuit(dag_transformed) # # Test equivalence of original and transformed circuits # assert op_original.equiv(Operator(qc_transformed)) # def test_multiple_nodescns_transform(): # """Test the CNS transformation on multiple nodes.""" # # Generate the original circuit and calculate its operator # qc_original = generate_circuit() # dag_original = circuit_to_dag(qc_original) # op_original = Operator(qc_original) # # Identify the nodes to be transformed # # should test the function works if passed neither a CX nor an iSWAP # nodes_to_transform = dag_original.op_nodes() # # Apply the CNS transformation # dag_transformed = cns_transform( # dag_original, *nodes_to_transform, preserve_layout=True # ) # qc_transformed = dag_to_circuit(dag_transformed) # # Test equivalence of original and transformed circuits # assert op_original.equiv(Operator(qc_transformed)) # if __name__ == "__main__": # test_single_nodecns_transform() # test_multiple_nodescns_transform()
https://github.com/msramalho/grover-max-cut
msramalho
##Mar 1, 2019 # #code designed by Yasuhiro Okura and Takahiko Satoh and Miguel Ramalho and Lakshmi Prakash # useful additional packages import matplotlib.pyplot as plt import matplotlib.axes as axes %matplotlib inline import numpy as np import networkx as nx from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute %matplotlib inline # from qiskit import IBMQ #TODO from qiskit import LegacySimulators as Aer # Import Aer # from qiskit import BasicAer # qr = QuantumRegister(5, 'q') # cr = ClassicalRegister(5, 'c') # qc = QuantumCircuit(qr, cr) import random n = 4 # number of node edge_direct = random.randint(1, n) weight = 1.0 print(edge_direct) # define edges and weight # elist = [] # while len(elist)<3: # # print("success1") # e_start = random.randint(0, n-1)#it is used to define node connection # e_end = random.randint(0, n-1)#it is used to define node connection # # print("success2") # if e_start != e_end: # edge = (e_start, e_end, weight) # elist.append(edge) # print(elist) # print(elist) elist=[(2,3,1.0), (0, 1, 1.0)] G=nx.Graph() G.add_nodes_from(np.arange(0, n,1)) G.add_weighted_edges_from(elist) colors = ['r' for node in G.nodes()] pos = nx.spring_layout(G) default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos) # Computing the weight matrix from the random graph w = np.zeros([n,n]) for i in range(n): for j in range(n): temp = G.get_edge_data(i,j,default=0) print(temp) if temp != 0: w[i,j] = temp["weight"] print(w) edges = list(G.edges) print(edges) while edges: i, j = edges.pop() # i = int(i) print(i, j) ## difine circuit num_x = n # num of node num_a = 1 num_b = 2 num_c = 1 x = QuantumRegister(num_x, "x") a = QuantumRegister(num_a, "a") b = QuantumRegister(num_b, "b") c = QuantumRegister(num_c, "c") cr = ClassicalRegister(4, "cr") qc = QuantumCircuit(x, a ,b, c, cr) #initialize graph weight #If Threshold >=2 : SUCCESS!! qc = QuantumCircuit(x, a ,b, c, cr) # qc.x(x[0]) # qc.x(x[1]) # qc.x(x[2]) # qc.x(x[3]) qc.h(x[0]) qc.h(x[1]) qc.h(x[2]) qc.h(x[3]) qc.h(c[0]) qc.barrier() qc.draw(output = "mpl") # colors = [] # colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(n)] # nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos) edges = list(G.edges) print(edges) ## V part(Oracle) def cut(qc, x, a, b, i, j): qc.cx(x[i], a) qc.cx(x[j], a) qc.ccx(a[0], b[0], b[1]) qc.cx(a[0], b[0]) qc.cx(x[j], a) qc.cx(x[i], a) ## V inverse def icut(qc, x, a, b, i, j): qc.cx(x[i], a) qc.cx(x[j], a) qc.cx(a[0], b[0]) qc.ccx(a[0], b[0], b[1]) qc.cx(x[j], a) qc.cx(x[i], a) def cnx(qc,*qubits): # C^n-NOT gate if len(qubits) > 3: last = qubits[-1] #A matrix: (made up of a and Y rotation, lemma4.3) qc.crz(np.pi/2, qubits[-2], qubits[-1]) #cry qc.cu3(np.pi/2, 0, 0, qubits[-2],qubits[-1]) #Control not gate cnx(qc,*qubits[:-2],qubits[-1]) #B matrix (cry again, but opposite angle) qc.cu3(-np.pi/2, 0, 0, qubits[-2], qubits[-1]) #Control cnx(qc,*qubits[:-2],qubits[-1]) #C matrix (final rotation) qc.crz(-np.pi/2,qubits[-2],qubits[-1]) elif len(qubits)==3: qc.ccx(*qubits) elif len(qubits)==2: qc.cx(*qubits) print(num_x) ## D part(Diffusion matrix) def diff(qc, N): # Diffusion matrix for k in range(N): qc.h(x[k]) qc.x(x[k]) # qc.h(x[3]) qc.h(x[3]) # cnx(qc, x[0], x[1], x[2], x[3]) cnx(qc, x[0], x[1], x[2], x[3]) # qc.h(x[3]) qc.h(x[3]) for k in range(N): qc.x(x[k]) qc.h(x[k]) # qc.h(x[k]) # qc.x(x[k]) # print(round(np.log(num_x))) # How many times execute V and D # for l in np.arange(round(np.log(num_x))): for l in np.arange(1): qc.barrier() for e in edges: i, j = e print(i, j) cut(qc, x, a, b, int(i), int(j)) # when we should apply int ? Is this right timing? print("success!") qc.barrier() qc.cz(b[1], c[0]) qc.barrier() for e in edges[::-1]: i, j = e print(i, j) icut(qc, x, a, b, int(i), int(j)) # when we should apply int ? Is this right timing? print("success!") qc.barrier() diff(qc, num_x) qc.barrier() qc.barrier() qc.h(c[0]) ## measurement for l in range(num_x): qc.measure(x[l], cr[l]) # qc.measure(a[0], cr[4]) # for m in range(num_a): # qc.measure(a[1], cr[num_x+m-1]) qc.draw(output = "mpl") from qiskit.tools.visualization import plot_histogram print("############ running on QASM simulater ############") backend = Aer.get_backend('qasm_simulator') ## StateVector Sim # Run the quantum circuit on a statevector simulator backend # backend = BasicAer.get_backend('statevector_simulator') # job_sim = execute(qc, backend=backend) # result = job_sim.result() # outputstate = result.get_statevector(qc, decimals=3) # print(outputstate) job_sim = execute(qc, backend=backend) result = job_sim.result() count = result.get_counts(qc) print(sorted(count.items(), key = lambda x: x[1],reverse=True)[0]) print(count) # from qiskit.tools.visualization import plot_state_city # plot_state_city(outputstate) plot_histogram(count) # TODO print("############ running on IBMQ ############")
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
liyaochong
# 导入相应的运算库 import numpy as np from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer desired_vector1 = [6/np.sqrt(200), 8/np.sqrt(200), 1/np.sqrt(2), 0] desired_vector2 = [10/np.sqrt(101), -1/np.sqrt(101)] q0 = QuantumRegister(1,'q0') c0 = ClassicalRegister(1,'c0') q1 = QuantumRegister(2,'q1') c1 = ClassicalRegister(2,'c1') q2 = QuantumRegister(1,'q2') c2 = ClassicalRegister(1,'c2') Circuit = QuantumCircuit() Circuit.add_register(q0,c0) Circuit.add_register(q1,c1) Circuit.add_register(q2,c2) Circuit.initialize(desired_vector1, [q1[0],q1[1]]) Circuit.initialize(desired_vector2, [q2[0]]) Circuit.h(q0[0]) Circuit.ccx(q0[0],q1[1],q2[0]) Circuit.ccx(q0[0],q2[0],q1[1]) Circuit.ccx(q0[0],q1[1],q2[0]) Circuit.h(q0[0]) Circuit.draw(output='mpl') # 对寄存器q0进行测量 Circuit.measure(q0,c0) # 测量次数设置为1024次 backend = BasicAer.get_backend('qasm_simulator') job = execute(Circuit, backend,shots=1024) job.result().get_counts(Circuit) P_0 = 0.5-89/202*0.5 P_1 = 0.5+89/202*0.5 Times_0 = P_0*1024 Times_1 = P_1*1024 print('进行测量之后,辅助量子比特为0态的次数是',Times_0) print('进行测量之后,辅助量子比特为1态的次数是',Times_1)
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
liyaochong
# 导入相应的运算库 import numpy as np from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer desired_vector1 = [np.sqrt(3)/2, 1/2, 0, 0] desired_vector2 = [1/2, 1/2, 1/2, 1/2] q0 = QuantumRegister(1,'q0') c0 = ClassicalRegister(1,'c0') q1 = QuantumRegister(2,'q1') c1 = ClassicalRegister(2,'c1') q2 = QuantumRegister(2,'q2') c2 = ClassicalRegister(2,'c2') Circuit = QuantumCircuit() Circuit.add_register(q0,c0) Circuit.add_register(q1,c1) Circuit.add_register(q2,c2) Circuit.initialize(desired_vector1, [q1[0],q1[1]]) Circuit.initialize(desired_vector2, [q2[0],q2[1]]) Circuit.h(q0[0]) Circuit.ccx(q0[0],q1[1],q2[1]) Circuit.ccx(q0[0],q2[1],q1[1]) Circuit.ccx(q0[0],q1[1],q2[1]) Circuit.ccx(q0[0],q1[0],q2[0]) Circuit.ccx(q0[0],q2[0],q1[0]) Circuit.ccx(q0[0],q1[0],q2[0]) Circuit.h(q0[0]) Circuit.draw(output='mpl') # 对寄存器q0进行测量 Circuit.measure(q0,c0) # 测量次数设置为1024次 backend = BasicAer.get_backend('qasm_simulator') job = execute(Circuit, backend,shots=1024) job.result().get_counts(Circuit) Inner_product = np.sum(np.multiply(np.array(desired_vector1),np.array(desired_vector2))) Overlap = Inner_product**2 P_0 = 1/2 + Overlap/2 print(P_0*1024)
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
liyaochong
# 导入相应的运算库 import numpy as np from math import pi from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer # 定义相应的量子寄存器,并添加至电路当中去 # q0寄存器表示地址寄存器 q0 = QuantumRegister(2,'q0') c0 = ClassicalRegister(2,'c0') # q1寄存器表示数据寄存器,寄存器的位数表示计算的精度,这里设置为3,最后误差在0.125以内 q1 = QuantumRegister(4,'q1') c1 = ClassicalRegister(4,'c1') # q2寄存器表示执行量子算数的的目标寄存器,位数一般与q1寄存器相同 q2 = QuantumRegister(4,'q2') c2 = ClassicalRegister(4,'c2') # q3寄存器用来做辅助量子比特,执行系列的受控旋转操作 q3 = QuantumRegister(1,'q3') c3 = ClassicalRegister(1,'c3') # 定义一个量子电路对象 Circuit = QuantumCircuit() # 往寄存器中添加4个量子寄存器 Circuit.add_register(q0,c0) Circuit.add_register(q1,c1) Circuit.add_register(q2,c2) Circuit.add_register(q3,c3) # 添加量子门操作,注意这里的命名方式为最低有效位 # 执行H门操作,将地址寄存器q0张开,分叉存储,由于两个数据只需要用1个量子比特进行表示 Circuit.h(q0[0]) Circuit.h(q0[1]) # 写入数据至q1寄存器,更为通用的采用的是QRAM算法,或者其他数据制备算法,注意这里的数据用基态表示,本质上以经典的形式出现 Circuit.barrier() Circuit.cx(q0[0],q1[0]) Circuit.x(q1[1]) Circuit.x(q0[0]) Circuit.ccx(q0[0],q0[1],q1[2]) Circuit.x(q0[0]) Circuit.cx(q0[1],q1[3]) # 这里执行的量子算数运算,进行的是类似一个函数的运算过程 Circuit.barrier() Circuit.x(q1[0]) Circuit.cx(q1[0],q2[0]) Circuit.x(q1[0]) Circuit.x(q1[2]) Circuit.ccx(q1[1],q1[2],q2[1]) Circuit.x(q1[2]) Circuit.x(q2[2]) Circuit.x(q1[0]) Circuit.x(q1[2]) Circuit.ccx(q1[0],q1[2],q2[2]) Circuit.x(q1[0]) Circuit.x(q1[2]) Circuit.x(q2[3]) Circuit.x(q1[2]) Circuit.ccx(q1[2],q1[3],q2[3]) Circuit.x(q1[2]) # 执行受控旋转操作,将数据从函数运算的输出,加载到概率幅度上 Circuit.barrier() Circuit.cu3(pi/2, 0, 0, q2[0], q3) Circuit.cu3(pi/4, 0, 0, q2[1], q3) Circuit.cu3(pi/8, 0, 0, q2[2], q3) Circuit.cu3(pi/16, 0, 0, q2[3], q3) # 执行量子算数运算的解运算过程 Circuit.barrier() Circuit.x(q1[2]) Circuit.ccx(q1[2],q1[3],q2[3]) Circuit.x(q1[2]) Circuit.x(q2[3]) Circuit.x(q1[2]) Circuit.x(q1[0]) Circuit.ccx(q1[0],q1[2],q2[2]) Circuit.x(q1[2]) Circuit.x(q1[0]) Circuit.x(q2[2]) Circuit.x(q1[2]) Circuit.ccx(q1[1],q1[2],q2[1]) Circuit.x(q1[2]) Circuit.x(q1[0]) Circuit.cx(q1[0],q2[0]) Circuit.x(q1[0]) # 执行数据的量子制备过程的逆变换(IQRAM),完成解运算 Circuit.barrier() Circuit.cx(q0[1],q1[3]) Circuit.x(q0[0]) Circuit.ccx(q0[0],q0[1],q1[2]) Circuit.x(q0[0]) Circuit.x(q1[1]) Circuit.cx(q0[0],q1[0]) #Circuit.h(q0[0]) #Circuit.h(q0[1]) # 添加测量操作,量子寄存器关联相应的经典寄存器 Circuit.barrier() Circuit.measure(q0,c0) Circuit.measure(q1,c1) Circuit.measure(q2,c2) Circuit.measure(q3,c3) # 绘制整个量子电路图 Circuit.draw(output='mpl') # 使用 Aer's qasm_simulator backend_sim = BasicAer.get_backend('qasm_simulator') # 执行量子仿真器 job_sim = execute(Circuit, backend_sim, shots=8096) # 获得结果 result_sim = job_sim.result() counts = result_sim.get_counts(Circuit) # 打印结果输出 print(counts)
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
liyaochong
# 导入相应的运算库 import numpy as np from math import pi from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer # 定义相应的量子寄存器,并添加至电路当中去 # q0寄存器表示地址寄存器 q0 = QuantumRegister(1,'q0') c0 = ClassicalRegister(1,'c0') # q1寄存器表示数据寄存器,寄存器的位数表示计算的精度,这里设置为3,最后误差在0.125以内 q1 = QuantumRegister(3,'q1') c1 = ClassicalRegister(3,'c1') # q2寄存器表示执行量子算数的的目标寄存器,位数一般与q1寄存器相同 q2 = QuantumRegister(3,'q2') c2 = ClassicalRegister(3,'c2') # q3寄存器用来做辅助量子比特,执行系列的受控旋转操作 q3 = QuantumRegister(1,'q3') c3 = ClassicalRegister(1,'c3') # 定义一个量子电路对象 Circuit = QuantumCircuit() # 往寄存器中添加4个量子寄存器 Circuit.add_register(q0,c0) Circuit.add_register(q1,c1) Circuit.add_register(q2,c2) Circuit.add_register(q3,c3) # 添加量子门操作,注意这里的命名方式为最低有效位 # 执行H门操作,将地址寄存器q0张开,分叉存储,由于两个数据只需要用1个量子比特进行表示 Circuit.h(q0[0]) # 写入数据至q1寄存器,更为通用的采用的是QRAM算法,或者其他数据制备算法,注意这里的数据用基态表示,本质上以经典的形式出现 Circuit.x(q0[0]) Circuit.cx(q0[0],q1[1]) Circuit.x(q0[0]) Circuit.cx(q0[0],q1[0]) Circuit.cx(q0[0],q1[1]) # 这里执行的量子算数运算,进行的是类似一个函数的运算过程 Circuit.barrier() Circuit.x(q1[0]) Circuit.cx(q1[0],q2[0]) Circuit.x(q1[0]) Circuit.cx(q1[1],q2[1]) Circuit.cx(q1[2],q2[2]) # 执行受控旋转操作,将数据从函数运算的输出,加载到概率幅度上 Circuit.barrier() Circuit.cu3(pi/2, 0, 0, q2[0], q3) Circuit.cu3(pi/4, 0, 0, q2[1], q3) Circuit.cu3(pi/8, 0, 0, q2[2], q3) # 执行量子算数运算的解运算过程 Circuit.barrier() Circuit.cx(q1[2],q2[2]) Circuit.cx(q1[1],q2[1]) Circuit.x(q1[0]) Circuit.cx(q1[0],q2[0]) Circuit.x(q1[0]) # 执行数据的量子制备过程的逆变换(IQRAM),完成解运算 Circuit.barrier() Circuit.cx(q0[0],q1[1]) Circuit.cx(q0[0],q1[0]) Circuit.x(q0[0]) Circuit.cx(q0[0],q1[1]) Circuit.x(q0[0]) # 添加测量操作,量子寄存器关联相应的经典寄存器 Circuit.barrier() Circuit.measure(q0,c0) Circuit.measure(q1,c1) Circuit.measure(q2,c2) Circuit.measure(q3,c3) # 绘制整个量子电路图 Circuit.draw(output='mpl') # 使用 Aer's qasm_simulator backend_sim = BasicAer.get_backend('qasm_simulator') # 执行量子仿真器 job_sim = execute(Circuit, backend_sim, shots=8096) # 获得结果 result_sim = job_sim.result() counts = result_sim.get_counts(Circuit) # 打印结果输出 print(counts)
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
liyaochong
# 导入相应的运算库 import numpy as np from math import pi from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer # 定义相应的量子寄存器,并添加至电路当中去 # 定义变量n,即完成n量子比特的移位操作 n = 5 # q0寄存器表示地址寄存器 q0 = QuantumRegister(n,'q0') c0 = ClassicalRegister(n,'c0') # q1寄存器表示辅助寄存器 q1 = QuantumRegister(n-2,'q1') # 定义一个量子电路对象 Circuit = QuantumCircuit() # 往寄存器中添加4个量子寄存器 Circuit.add_register(q0,c0) Circuit.add_register(q1) # 此模块为量子循环加一操作,添加量子门操作,注意这里的命名方式为最低有效位 # 初始化输入量子态 Circuit.x(q0[0]) # 用多受控非门分解策略,执行4个控制位的受控非门分解 Circuit.barrier() Circuit.ccx(q0[0],q0[1],q1[0]) Circuit.ccx(q0[2],q1[0],q1[1]) Circuit.ccx(q0[3],q1[1],q1[2]) Circuit.cx(q1[2],q0[4]) Circuit.ccx(q0[3],q1[1],q1[2]) Circuit.ccx(q0[2],q1[0],q1[1]) Circuit.ccx(q0[0],q0[1],q1[0]) # 用多受控非门分解策略,执行3个控制位的受控非门分解 Circuit.barrier() Circuit.ccx(q0[0],q0[1],q1[0]) Circuit.ccx(q0[2],q1[0],q1[1]) Circuit.cx(q1[1],q0[3]) Circuit.ccx(q0[2],q1[0],q1[1]) Circuit.ccx(q0[0],q0[1],q1[0]) # 执行2个控制位的受控非门操作 Circuit.barrier() Circuit.ccx(q0[0],q0[1],q0[2]) # 执行1个控制位的受控非门操作 Circuit.barrier() Circuit.cx(q0[0],q0[1]) # 执行非门操作 Circuit.barrier() Circuit.x(q0[0]) # 引入测量操作 Circuit.barrier() Circuit.measure(q0,c0) # 绘制整个量子电路图 Circuit.draw(output='mpl') # 使用 Aer's qasm_simulator backend_sim = BasicAer.get_backend('qasm_simulator') # 执行量子仿真器 job_sim = execute(Circuit, backend_sim, shots=8096) # 获得结果 result_sim = job_sim.result() counts = result_sim.get_counts(Circuit) # 打印结果输出 print(counts) # 此模块为量子循环减一操作,添加量子门操作,注意这里的命名方式为最低有效位 # 初始化输入量子态 Circuit.x(q0[0]) # 执行非门操作 Circuit.barrier() Circuit.x(q0[0]) # 执行1个控制位的受控非门操作 Circuit.barrier() Circuit.cx(q0[0],q0[1]) # 执行2个控制位的受控非门操作 Circuit.barrier() Circuit.ccx(q0[0],q0[1],q0[2]) # 用多受控非门分解策略,执行3个控制位的受控非门分解 Circuit.barrier() Circuit.ccx(q0[0],q0[1],q1[0]) Circuit.ccx(q0[2],q1[0],q1[1]) Circuit.cx(q1[1],q0[3]) Circuit.ccx(q0[2],q1[0],q1[1]) Circuit.ccx(q0[0],q0[1],q1[0]) # 用多受控非门分解策略,执行4个控制位的受控非门分解 Circuit.barrier() Circuit.ccx(q0[0],q0[1],q1[0]) Circuit.ccx(q0[2],q1[0],q1[1]) Circuit.ccx(q0[3],q1[1],q1[2]) Circuit.cx(q1[2],q0[4]) Circuit.ccx(q0[3],q1[1],q1[2]) Circuit.ccx(q0[2],q1[0],q1[1]) Circuit.ccx(q0[0],q0[1],q1[0]) Circuit.barrier() Circuit.measure(q0,c0) # 绘制整个量子电路图 Circuit.draw(output='mpl') # 使用 Aer's qasm_simulator backend_sim = BasicAer.get_backend('qasm_simulator') # 执行量子仿真器 job_sim = execute(Circuit, backend_sim, shots=8096) # 获得结果 result_sim = job_sim.result() counts = result_sim.get_counts(Circuit) # 打印结果输出 print(counts)
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
liyaochong
# 导入相应的运算库 import numpy as np from math import pi from qiskit import BasicAer, execute from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit import Aer # 定义相应的量子寄存器,并添加至电路当中去 # q0寄存器表示地址寄存器 q0 = QuantumRegister(5,'q0') c0 = ClassicalRegister(5,'c0') # 定义一个量子电路对象 Circuit = QuantumCircuit() # 往寄存器中添加4个量子寄存器 Circuit.add_register(q0,c0) # 添加量子门操作,注意这里的命名方式为最低有效位 # 执行H门操作,将地址寄存器q0张开,分叉存储,由于两个数据只需要用1个量子比特进行表示 Circuit.h(q0[4]) Circuit.barrier() Circuit.h(q0[3]) Circuit.barrier() Circuit.h(q0[2]) Circuit.barrier() Circuit.h(q0[1]) Circuit.barrier() Circuit.swap(q0[1], q0[0]) Circuit.barrier() Circuit.swap(q0[2], q0[1]) Circuit.swap(q0[1], q0[0]) Circuit.barrier() Circuit.swap(q0[3], q0[2]) Circuit.swap(q0[2], q0[1]) Circuit.swap(q0[1], q0[0]) Circuit.barrier() Circuit.swap(q0[4], q0[3]) Circuit.swap(q0[3], q0[2]) Circuit.swap(q0[2], q0[1]) Circuit.swap(q0[1], q0[0]) # 绘制整个量子电路图 Circuit.draw(output='mpl') # 在单一模拟器后端运行量子电路 backend = Aer.get_backend('unitary_simulator') job = execute(Circuit, backend) result = job.result() # 显示结果 print(result.get_unitary(Circuit, decimals=3))
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
liyaochong
%matplotlib inline from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit import BasicAer import math # 设置寄存器中的量子位的数量 n = 4 # 第一寄存器 m = 1 # 第二寄存器 # 用n个量子位创建一个量子寄存器 q = QuantumRegister(n+m, 'q') # 在q寄存器上创建一个量子电路 register = QuantumCircuit(q) # j=3,2,1,0 for j in range(n-1,-1,-1): register.h(q[j]) register.cu1(math.pi/2,q[2],q[3],q[1]) # 实际上是一个受控相位操作,能够看做一个单比特操作;相应电路见小黄书P165 register.u1(math.pi/float(2**(j)), q[j]) for j in range(n): for k in range(j): register.cu1(-math.pi/float(2**(j-k)), q[j], q[k]) register.h(q[j]) def swap(qc, q, i, j): qc.cx(q[i], q[j]) qc.cx(q[j], q[i]) qc.cx(q[i], q[j]) if n%2==1: for i in range(int((n-1)/2)): swap(register, q, i, n-i-1) else: for i in range(int(n/2)): swap(register, q, i, n-i-1) register.draw(output="mpl") # Create a Classical Register with n bits. c = ClassicalRegister(n+m, 'c') # Create a Quantum Circuit measure = QuantumCircuit(q, c) measure.barrier(q) # map the quantum measurement to the classical bits measure.measure(q,c) # The Qiskit circuit object supports composition using # the addition operator. qc = register+measure #drawing the circuit qc.draw(output="mpl") # Use Aer's qasm_simulator backend_sim = BasicAer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit to be 1024, which is the default. job_sim = execute(qc, backend_sim, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc) print(counts) from qiskit.tools.visualization import plot_histogram plot_histogram(result_sim.get_counts(qc)) import numpy as np 1.38148766/(2*np.sqrt(2))
https://github.com/liyaochong/quantum-algorithm-learning-and-implementation
liyaochong
# 导入相应的依赖库 import numpy as np import math from math import pi import re from qiskit import BasicAer,execute from qiskit import QuantumCircuit,ClassicalRegister,QuantumRegister from qiskit.tools.visualization import circuit_drawer from qiskit import Aer, execute # 实现目标量子态的制备电路 # 输入经典的数据,以向量的形式给出(注意:这里给出的向量元素为实数) classic_vec = [0.234,0.567] # 获得经典向量的二范数,存储至变量x_norm x_norm = np.linalg.norm(classic_vec, ord=None, axis=None, keepdims=False) # 获得归一化之后的向量,即对应量子态上的概率幅 norm_vec = classic_vec/x_norm print(norm_vec) # 计算制备目标量子态所需要的量子比特 num_qubits = int(math.log(len(classic_vec),2)) # 利用Qiskit中的初始化内置函数,生成对应的制备电路 q_inital = QuantumRegister(num_qubits,'q_inital') Circuit_inital = QuantumCircuit() Circuit_inital.add_register(q_inital) Circuit_inital.initialize(norm_vec,q_inital) # 对初始化制备电路,生成qsam代码,并截取量子门操作部分的代码 Qasm_Code = Circuit_inital.qasm().split(';')[3:-1] # 去除list中字符串的‘\n’部分 Qasm_Code = [x.strip() for x in Qasm_Code if x.strip()!=''] # 设置参数的提取规则 p1 = re.compile(r'[(](.*?)[)]', re.S) # 提取圆括号中的数据,返回数据类型为list p2 = re.compile(r'[[](.*?)[]]', re.S) # 提取方括号中的数据,返回数据类型为list # 设置数据寄存器和地址寄存器,对应各自的量子比特数量为num_qubits # q0表示address地址寄存器,量子比特与数据制备寄存器相等 q0 = QuantumRegister(num_qubits,'q0') c0 = ClassicalRegister(num_qubits,'c0') # q1表示data数据寄存器,用于数据制备 q1 = QuantumRegister(num_qubits,'q1') c1 = ClassicalRegister(num_qubits,'c1') # 辅助量子比特寄存器B,有一个量子比特 q2 = QuantumRegister(1,'q2') c2 = ClassicalRegister(1,'c2') # 将寄存器添加至量子电路 Circuit = QuantumCircuit() Circuit.add_register(q0,c0) Circuit.add_register(q1,c1) Circuit.add_register(q2,c2) # Circuit.add_register(q0) # Circuit.add_register(q1) # Circuit.add_register(q2) # 制备地址寄存器的状态 for i in range(num_qubits): Circuit.h(q0[i]) # 对目标量子态进行制备(概率幅编码) for i in range(len(Qasm_Code)): code_str = Qasm_Code[i] if code_str[0:2]=='ry': theta = float(re.findall(p1, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[0]) Circuit.u3(theta,0,0,q1[target_qubit]) elif code_str[0:2]=='cx': control_qubit = int(re.findall(p2, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[1]) Circuit.cx(q1[control_qubit],q1[target_qubit]) else: print('The desired vector must be real number!') Circuit.barrier() # 执行Hadamard Test操作 Circuit.h(q2[0]) for i in range(len(Qasm_Code)): code_str = Qasm_Code[len(Qasm_Code)-1-i] if code_str[0:2]=='ry': theta = float(re.findall(p1, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[0]) Circuit.cu3(-theta,0,0,q2[0],q1[target_qubit]) elif code_str[0:2]=='cx': control_qubit = int(re.findall(p2, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[1]) Circuit.ccx(q2[0],q1[control_qubit],q1[target_qubit]) else: print('The desired vector must be real number!') for i in range(num_qubits): Circuit.ccx(q2[0],q0[i],q1[i]) Circuit.h(q2[0]) # 绘制量子电路图 # Circuit.draw(output='mpl') # 定义两个函数(分解为通用量子门) # 定义具有两个控制位的受控旋转门(绕Y轴旋转) def cu3_2(theta,control_1,control_2,target,circuit): circuit.cu3(theta/2,0,0,control_1,target) circuit.cu3(theta/2,0,0,control_2,target) circuit.cx(control_1,control_2) circuit.cu3(-theta/2,0,0,control_2,target) circuit.cx(control_1,control_2) return circuit # 定义具有三个控制位的受控非门(使用两个初始状态为0态的辅助量子比特) def cccx(control_1,control_2,control_3,target,circuit): circuit.ccx(control_1,control_2,q_auxiliary[0]) circuit.ccx(control_3,q_auxiliary[0],q_auxiliary[1]) circuit.cx(q_auxiliary[1],target) circuit.ccx(control_3,q_auxiliary[0],q_auxiliary[1]) circuit.ccx(control_1,control_2,q_auxiliary[0]) return circuit # 执行量子相位估计 # 相位估计的第一寄存器q3,量子比特数量决定了计算精度 qpe_control_qubits = 3 q3 = QuantumRegister(qpe_control_qubits,'q3') c3 = ClassicalRegister(qpe_control_qubits,'c3') Circuit.add_register(q3,c3) # Circuit.add_register(q3) # 三个控制位的受控非门,需要两个辅助量子比特 q_auxiliary = QuantumRegister(2,'q_auxiliary') c_auxiliary = ClassicalRegister(2,'c_auxiliary') Circuit.add_register(q_auxiliary,c_auxiliary) # Circuit.add_register(q_auxiliary) # 对相位估计的第一寄存器进行全Hadamard门操作 for i in range(qpe_control_qubits): Circuit.h(q3[i]) Circuit.barrier() # 对相位估计的第二寄存器执行受控U操作 for i in range(qpe_control_qubits): # 由控制位决定U的阶数,使用for循环进行操作 for j in range(int(math.pow(2, i))): # 执行受控Z门以及受控H门的操作,其中控制位为第一寄存器的第i个比特 Circuit.cz(q3[i],q2[0]) Circuit.ch(q3[i],q2[0]) Circuit.barrier() # 执行多位受控非门的操作 for k in range(num_qubits): cccx(control_1=q3[i],control_2=q2[0],control_3=q0[k],target=q1[k],circuit=Circuit) Circuit.barrier() # 执行两比特控制的U^A操作,用到了两比特控制旋转门以及三比特控制非门的分解电路函数 for t1 in range(len(Qasm_Code)): code_str = Qasm_Code[t1] if code_str[0:2]=='ry': theta = float(re.findall(p1, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[0]) cu3_2(theta=theta,control_1=q3[i],control_2=q2[0],target=q1[target_qubit],circuit=Circuit) elif code_str[0:2]=='cx': control_qubit = int(re.findall(p2, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[1]) cccx(control_1=q3[i],control_2=q2[0],control_3=q1[control_qubit],target=q1[target_qubit],circuit=Circuit) else: print('The desired vector must be real number!') Circuit.barrier() # 执行受控H门操作,其中控制位为第一寄存器的第i个比特 Circuit.ch(q3[i],q2[0]) Circuit.barrier() # 执行单比特控制的U^A+操作,用到了单比特控制的受控旋转门以及TOFFOLI门 for t2 in range(len(Qasm_Code)): code_str = Qasm_Code[len(Qasm_Code)-1-t2] if code_str[0:2]=='ry': theta = float(re.findall(p1, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[0]) Circuit.cu3(-theta,0,0,q3[i],q1[target_qubit]) elif code_str[0:2]=='cx': control_qubit = int(re.findall(p2, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[1]) Circuit.ccx(q3[i],q1[control_qubit],q1[target_qubit]) else: print('The desired vector must be real number!') Circuit.barrier() # 多位受控-Z门的操作 # for k in range(num_qubits): # Circuit.x(q1[k]) # Circuit.ccx(q3[i],q1[0],q_auxiliary[0]) # Circuit.ccx(q1[1],q_auxiliary[0],q_auxiliary[1]) # Circuit.cu3(pi,-pi/2,pi/2,q_auxiliary[1],q2[0]) # Circuit.cu3(pi,pi/2,pi/2,q_auxiliary[1],q2[0]) # Circuit.ccx(q1[1],q_auxiliary[0],q_auxiliary[1]) # Circuit.ccx(q3[i],q1[0],q_auxiliary[0]) # for k in range(num_qubits): # Circuit.x(q1[k]) # Circuit.barrier() Circuit.x(q1[0]) Circuit.ccx(q1[0],q3[i],q_auxiliary[0]) Circuit.cu3(pi,-pi/2,pi/2,q_auxiliary[0],q2[0]) Circuit.cu3(pi,pi/2,pi/2,q_auxiliary[0],q2[0]) Circuit.ccx(q1[0],q3[i],q_auxiliary[0]) Circuit.x(q1[0]) Circuit.barrier() # 执行单比特控制的U^A操作,用到了单比特控制的受控旋转门以及TOFFOLI门 for t3 in range(len(Qasm_Code)): code_str = Qasm_Code[t3] if code_str[0:2]=='ry': theta = float(re.findall(p1, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[0]) Circuit.cu3(theta,0,0,q3[i],q1[target_qubit]) elif code_str[0:2]=='cx': control_qubit = int(re.findall(p2, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[1]) Circuit.ccx(q3[i],q1[control_qubit],q1[target_qubit]) else: print('The desired vector must be real number!') Circuit.barrier() # 执行受控H门操作,其中控制位为第一寄存器的第i个比特 Circuit.ch(q3[i],q2[0]) Circuit.barrier() # 执行两比特控制的U^A+操作,用到了两比特控制旋转门以及三比特控制非门的分解电路函数 for t4 in range(len(Qasm_Code)): code_str = Qasm_Code[len(Qasm_Code)-1-t4] if code_str[0:2]=='ry': theta = float(re.findall(p1, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[0]) cu3_2(theta=-theta,control_1=q3[i],control_2=q2[0],target=q1[target_qubit],circuit=Circuit) elif code_str[0:2]=='cx': control_qubit = int(re.findall(p2, code_str)[0]) target_qubit = int(re.findall(p2, code_str)[1]) cccx(control_1=q3[i],control_2=q2[0],control_3=q1[control_qubit],target=q1[target_qubit],circuit=Circuit) else: print('The desired vector must be real number!') Circuit.barrier() # 执行多位受控非门的操作 for k in range(num_qubits): cccx(control_1=q3[i],control_2=q2[0],control_3=q0[k],target=q1[k],circuit=Circuit) Circuit.barrier() # 执行受控H门的操作,其中控制位为第一寄存器的第i个比特 Circuit.ch(q3[i],q2[0]) Circuit.barrier() # 执行量子相位估计的第二阶段(量子傅里叶逆变换) Circuit.h(q3[0]) Circuit.cu1(-pi/2,q3[0],q3[1]) Circuit.cu1(-pi/4,q3[0],q3[2]) Circuit.h(q3[1]) Circuit.cu1(-pi/2,q3[1],q3[2]) Circuit.h(q3[2]) Circuit.barrier() # Circuit.measure(q0,c0) # Circuit.measure(q1,c1) # Circuit.measure(q2,c2) # Circuit.measure(q3,c3) # Circuit.measure(q_auxiliary,c_auxiliary) Circuit.draw(output='mpl').savefig('QC.pdf',dpi=800) simulator = Aer.get_backend('statevector_simulator') result = execute(Circuit, simulator).result() statevector = result.get_statevector(Circuit) print(statevector)
https://github.com/Benjreggio/psfam
Benjreggio
''' runtests.py @author: Andrew Lytle Reorganized by Ben Reggio Unit tests for psfam ''' from psfam.pauli_organizer import PauliOrganizer import functools,itertools from scipy.stats import unitary_group import scipy.sparse as sp import qiskit from qiskit.quantum_info.states import Statevector from qiskit.circuit.random import random_circuit import numpy as np from numpy.random import normal import operator op_I = sp.eye(2) op_Z = sp.dia_matrix([[1,0],[0,-1]]) op_X = sp.dia_matrix([[0,1],[1,0]]) op_Y = -1j * op_Z @ op_X pauli_ops = { "I" : op_I, "Z" : op_Z, "X": op_X, "Y" : op_Y } def sp_kron_dok(mat_A, mat_B): """Kronecker (tensor) product of two sparse matrices. Args: mat_A, mat_B: 2d numpy arrays Returns: Sparse matrix in "dictionary of keys" format (to eliminate zeros) """ return sp.kron(mat_A, mat_B, format = "dok") def contribution_to_EV(m, fam, counts, nshots): cfs = fam.get_coefficients() #cfs = [_.real for _ in cfs] #print(f"{np.sum(np.array(cfs)).real = }") measurement = 0 for i in range(2**m): bi = bin(i)[2:] while(len(bi)<m): bi = '0' + bi if(bi in counts): measurement += counts[bi]*cfs[i]/nshots return measurement def to_pauli_vec(mat): """Pauli string decomposition of a matrix. Args: 2d numpy array, mat Returns: Dictionary pauli_vec, e.g. {'XX': 0.5, 'XY': 0.5} """ pauli_vec = {} # the dictionary we are saving mat_vec = np.array(mat).ravel() num_qubits = int(np.log2(np.sqrt(mat_vec.size))) for pauli_string in itertools.product(pauli_ops.keys(), repeat = num_qubits): # construct this pauli string as a matrix ops = [ pauli_ops[tag] for tag in pauli_string ] op = functools.reduce(sp_kron_dok, ops) # compute an inner product, same as tr(A @ B) but faster op_vec = op.transpose().reshape((1, 4**num_qubits)) coefficient = (op_vec * mat_vec).sum() / 2**num_qubits #if coefficient != 0: pauli_vec["".join(pauli_string)] = coefficient return pauli_vec def statedict_to_arr(statedict): "Convert state dictionary to numpy array." keys = list(statedict.keys()) m = len(keys[0]) #print(m) result = np.zeros(2**m, dtype='complex') bitstrings = itertools.product('01',repeat=m) for i, bitstring in enumerate(bitstrings): key = functools.reduce(operator.add, bitstring) if key in keys: result[i] = statedict[key] else: result[i] = 0.0 return result def direct_EV_eval(Hmat, state_circuit): psi = Statevector(state_circuit) state = statedict_to_arr(psi.to_dict()) # array. direct_eval = np.vdot(state,np.dot(Hmat,state)) return direct_eval def random_evals(N): "List of Gaussian distributed numbers [(0,1),...]." vals = [] for i in range(N): vals.append(normal()) return vals def dot_all(Ms): "Dot product of [M1, M2, ...]" res = np.identity(Ms[0].shape[0]) for M in Ms[::-1]: res = np.dot(M, res) return res def hc(M): "Hermitian conjugate of M." return M.conj().T def random_H(N): "Random NxN Hermitian matrix." evs = random_evals(N) D = np.diag(evs) U = unitary_group.rvs(N) H = dot_all([U, D, hc(U)]) return H def families_EV_eval(m, Hmat, state_circuit, backend, nshots): decomp = to_pauli_vec(Hmat) PO = PauliOrganizer(m) PO.input_pauli_decomps(decomp) PO.calc_coefficients() fams = PO.f total = 0 for fam in fams: _circuit = state_circuit.copy() fam.apply_to_circuit(_circuit) job = backend.run(qiskit.transpile(_circuit, backend), shots=nshots) result = job.result() counts = result.get_counts(_circuit) #logging.info(f"{counts = }") contribution = contribution_to_EV(m, fam, counts, nshots).real #logging.info(f"{contribution = }") total += contribution return total def random_unit_test(m): nshots = 1 # statevector_simulator backend. N = 2**m Hmat = random_H(N) nominal_depth = 4 rc = random_circuit(m, nominal_depth, measure=False) direct_eval = direct_EV_eval(Hmat, rc) backend_sim = qiskit.Aer.get_backend('statevector_simulator') total = families_EV_eval(m, Hmat, rc, backend_sim, nshots) print(f"{total = }") print(f"{direct_eval = }") return np.isclose(total, direct_eval.real) results = [] for m in range(1,6): # Slows down for m >~ 5. for test in range(1, 101): print(f"{m = } , {test = }") passed = random_unit_test(m) results.append(passed) if passed: continue else: print(f"Test failed with {m = }") break if not passed: break print(f"Performed {len(results)} tests, " f"all tests passed = {np.array(results).all()==True}")
https://github.com/hugosc/quantum-phase-estimation
hugosc
from qiskit import ClassicalRegister , QuantumCircuit, QuantumRegister import numpy as np qr = QuantumRegister(2) cr = ClassicalRegister(3) #For tree classicals bites qc = QuantumCircuit(qr , cr) qc.h(qr[0]) #auxiliary qubit qc.x(qr[1]) # eigenvector #qc.cp((3/2)*np.pi , qr[0] , qr[1]) qc.cp(3*np.pi , qr[0] , qr[1]) qc.h(qr[0]) qc.measure(qr[0] , cr[0]) # this is the controlled-U^(2^n-1) operator for determine phi_n qc.draw("mpl") qc.reset(qr[0]) qc.h(qr[0]) # la valeur du bit du poids le plus faible est dans cr[0]. #Si cr[0] = 1 on enléve le bit de poids le plus faible en fesant la rotation alpha_2 #et on continu le bit n-1 devient le bit le bit de poids le plus faible #si cr[0] est à 0 alors on peut appliquer directement la matrice unitaire associé sans avoir #à faire de rotation inverse alpha_k with qc.if_test((cr[0] , 1)) as else_: qc.p(-np.pi/2 , qr[0]) #qc.cp((3/8)*np.pi , qr[0] ,qr[1]) qc.cp((3/2)*np.pi , qr[0] ,qr[1]) qc.h(qr[0]) # For make measure in X basis {|0> , |1>} qc.measure(qr[0] , cr[1]) qc.draw("mpl") qc.reset(qr[0]) qc.h(qr[0]) # la valeur du bit du poids le plus faible est dans cr[0]. #Si cr[0] = 1 on enléve le bit de poids le plus faible en fesant la rotation alpha_2 #et on continu le bit n-1 devient le bit le bit de poids le plus faible #si cr[0] est à 0 alors on peut appliquer directement la matrice unitaire associé sans avoir #à faire de rotation inverse alpha_k with qc.if_test((cr[1] , 1)) as else_: qc.p(-(3/4)*np.pi , qr[0]) qc.cp((3/4)*np.pi , qr[0] ,qr[1]) qc.h(qr[0]) # For make measure in X basis {|0> , |1>} qc.measure(qr[0] , cr[2]) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts import qiskit.tools.jupyter %qiskit_version_table
https://github.com/hugosc/quantum-phase-estimation
hugosc
# Import the Qiskit SDK from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import available_backends, execute, register, get_backend, compile from qiskit.tools.visualization import plot_histogram, circuit_drawer import time pi = 3.14159265359 qx_config = { "APItoken": "4c79a44d415dcf5c0c967e7fb488a39c3c6042baacfd60861d6bca9326aeeb64022892979076e63e0bd6c6e007d4ef3d004b697a022bfaf469e8b0a999efdb63", "url":"https://quantumexperience.ng.bluemix.net/api"} register(qx_config['APItoken'], qx_config['url']) available_backends() from qiskit import least_busy least_busy(available_backends({'simulator': False})) # couplingMap = [(0,1),(0,2),(1,2),(2,3),(4,2),(4,3)] couplingMap = [(1,0),(2,0),(2,1),(3,2),(3,4),(4,2)] def cRotation(qc, q, i, j, angle): half_a = angle / 2 if i != 2 and j != 2: swap(qc, q, 2, j) cRotation(qc, q, i, 2, angle) swap(qc, q, 2, j) else: qc.u1(half_a, q[i]) if(j,i) in couplingMap: qc.cx(q[j], q[i]) else: invertCNOT(qc, q, i, j) qc.u1(-half_a, q[i]) if(j,i) in couplingMap: qc.cx(q[j], q[i]) else: invertCNOT(qc, q, i, j) qc.u1(half_a, q[j]) def invertCNOT(qc, q, i, j): qc.h(q[i]) qc.h(q[j]) qc.cx(q[i], q[j]) qc.h(q[i]) qc.h(q[j]) def swap(qc, q, i, j): if i != 2 and j != 2: swap(qc, q, 2, j) swap(qc, q, i, 2) swap(qc, q, 2, j) else: if (i,j) in couplingMap: qc.cx(q[i], q[j]) invertCNOT(qc, q, i, j) qc.cx(q[i], q[j]) else: qc.cx(q[j], q[i]) invertCNOT(qc, q, j, i) qc.cx(q[j], q[i]) def inverse_qft(qc, q, indices): rev = list(reversed(indices)) #swaps need to happen N = len(rev) for i in range(int(N / 2)): j = N - i - 1 swap(qc, q, i, j) for n, i in enumerate(rev): angle = -pi/2**n for j in rev[:n]: cRotation(qc, q, i, j, angle) angle *= 2 qc.h(q[i]) # Create a Quantum Register with 5 qubits. q = QuantumRegister(5) # Create a Classical Register with 5 bits for storing results. c = ClassicalRegister(5) # Create a Quantum Circuit qc = QuantumCircuit(q, c) # Add a H gate on 4 qubits, putting the qubits in superposition. qc.h(q[0]) qc.h(q[1]) qc.h(q[2]) qc.h(q[3]) #Put qubit to |1> qc.x(q[4]) cRotation(qc, q, 3, 4, pi/8) cRotation(qc, q, 2, 4, pi/4) cRotation(qc, q, 1, 4, pi/2) cRotation(qc, q, 0, 4, pi) inverse_qft(qc, q, range(4)) qc.measure(q, c) # See a list of available local simulators print("Local backends: ", available_backends({'local': True})) # Compile and run the Quantum circuit on a simulator backend job = execute(qc, "local_qasm_simulator") my_backend = get_backend('ibmqx4') qobj = compile(qc, backend=my_backend, shots=1024) job = my_backend.run(qobj) lapse = 0 interval = 30 while not job.done: print('Status @ {} seconds'.format(interval * lapse)) print(job.status) time.sleep(interval) lapse += 1 print(job.status) result = job.result() counts = result.get_counts() print(result) print(counts) plot_histogram(counts) circuit_drawer(qc) print(qc.qasm())
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
# useful additional packages import matplotlib.pyplot as plt import copy %matplotlib inline import numpy as np from qiskit import Aer from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import NumPyMinimumEigensolver, VQE from qiskit.circuit.library import TwoLocal from qiskit.aqua.components.optimizers import SPSA from qiskit.chemistry.core import Hamiltonian, TransformationType, QubitMappingType from qiskit.chemistry.drivers import HDF5Driver import warnings warnings.filterwarnings('ignore') # setup qiskit.chemistry logging import logging from qiskit.chemistry import set_qiskit_chemistry_logging set_qiskit_chemistry_logging(logging.ERROR) # choose among DEBUG, INFO, WARNING, ERROR, CRITICAL and NOTSET # from qiskit import IBMQ # provider = IBMQ.load_account() # First, we use classical eigendecomposition to get ground state energy (including nuclear repulsion energy) as reference. driver = HDF5Driver('H2/H2_equilibrium_0.735_sto-3g.hdf5') molecule = driver.run() operator = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY, two_qubit_reduction=True, freeze_core=False, orbital_reduction=None) qubit_op, aux_ops = operator.run(molecule) result = NumPyMinimumEigensolver(qubit_op).run() print('Ground state energy (classical): {:.12f}'.format(result.eigenvalue.real)) # Second, we use variational quantum eigensolver (VQE) var_form = TwoLocal(qubit_op.num_qubits, ['ry', 'rz'], 'cz', reps=3, entanglement='full') optimizer = SPSA(max_trials=350) algo = VQE(qubit_op, var_form, optimizer, max_evals_grouped=1) result = algo.run(QuantumInstance(Aer.get_backend('statevector_simulator'))) result = operator.process_algorithm_result(result) print('Ground state energy (quantum) : {:.12f}'.format(result.energy)) print("====================================================") # You can also print out other info print(result) # select H2 or LiH to experiment with molecule='H2' if molecule == 'LiH': mol_distances = np.arange(0.6, 5.1, 0.1) else: mol_distances = np.arange(0.2, 4.1, 0.1) algos = ['NumPyMinimumEigensolver', 'VQE'] energy = np.zeros((len(algos), len(mol_distances))) for j, algo_name in enumerate(algos): print("Using {}".format(algo_name)) for i, dis in enumerate(mol_distances): print("Processing atomic distance: {:1.1f} Angstrom".format(dis), end='\r') if molecule == 'LiH': operator = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY, two_qubit_reduction=True, freeze_core=True, orbital_reduction=[-3, -2]) else: operator = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY, two_qubit_reduction=True, freeze_core=False, orbital_reduction=None) driver = HDF5Driver("{}/{:1.1f}_sto-3g.hdf5".format(molecule, dis)) qubit_op, aux_ops = operator.run(driver.run()) if algo_name == 'VQE': if molecule == 'LiH': var_form = TwoLocal(qubit_op.num_qubits, ['ry', 'rz'], 'cz', reps=5, entanglement='full') optimizer = SPSA(max_trials=2500) else: var_form = TwoLocal(qubit_op.num_qubits, ['ry', 'rz'], 'cz', reps=3, entanglement='full') optimizer = SPSA(max_trials=350) algo = VQE(qubit_op, var_form, optimizer, max_evals_grouped=1) result = algo.run(QuantumInstance(Aer.get_backend('qasm_simulator'), shots=1024)) else: result = NumPyMinimumEigensolver(qubit_op).run() result = operator.process_algorithm_result(result) energy[j][i] = result.energy print("\n") for i, algo in enumerate(algos): plt.plot(mol_distances, energy[i], label=algo) plt.xlabel('Atomic distance (Angstrom)') plt.ylabel('Energy') plt.legend() plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
# import common packages import numpy as np from qiskit import Aer # lib from Qiskit Aqua from qiskit.aqua import QuantumInstance from qiskit.aqua.algorithms import VQE, NumPyMinimumEigensolver from qiskit.aqua.operators import Z2Symmetries from qiskit.aqua.components.optimizers import COBYLA # lib from Qiskit Aqua Chemistry from qiskit.chemistry import FermionicOperator from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry.components.variational_forms import UCCSD from qiskit.chemistry.components.initial_states import HartreeFock # using driver to get fermionic Hamiltonian # PySCF example driver = PySCFDriver(atom='Li .0 .0 .0; H .0 .0 1.6', unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() # please be aware that the idx here with respective to original idx freeze_list = [0] remove_list = [-3, -2] # negative number denotes the reverse order map_type = 'parity' h1 = molecule.one_body_integrals h2 = molecule.two_body_integrals nuclear_repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 print("HF energy: {}".format(molecule.hf_energy - molecule.nuclear_repulsion_energy)) print("# of electrons: {}".format(num_particles)) print("# of spin orbitals: {}".format(num_spin_orbitals)) # prepare full idx of freeze_list and remove_list # convert all negative idx to positive remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] # update the idx in remove_list of the idx after frozen, since the idx of orbitals are changed after freezing remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] # prepare fermionic hamiltonian with orbital freezing and eliminating, and then map to qubit hamiltonian # and if PARITY mapping is selected, reduction qubits energy_shift = 0.0 qubit_reduction = True if map_type == 'parity' else False ferOp = FermionicOperator(h1=h1, h2=h2) if len(freeze_list) > 0: ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) if len(remove_list) > 0: ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type=map_type, threshold=0.00000001) qubitOp = Z2Symmetries.two_qubit_reduction(qubitOp, num_particles) if qubit_reduction else qubitOp qubitOp.chop(10**-10) print(qubitOp.print_details()) print(qubitOp) # Using exact eigensolver to get the smallest eigenvalue exact_eigensolver = NumPyMinimumEigensolver(qubitOp) ret = exact_eigensolver.run() print('The computed energy is: {:.12f}'.format(ret.eigenvalue.real)) print('The total ground state energy is: {:.12f}'.format(ret.eigenvalue.real + energy_shift + nuclear_repulsion_energy)) # from qiskit import IBMQ # provider = IBMQ.load_account() backend = Aer.get_backend('statevector_simulator') # setup COBYLA optimizer max_eval = 200 cobyla = COBYLA(maxiter=max_eval) # setup HartreeFock state HF_state = HartreeFock(num_spin_orbitals, num_particles, map_type, qubit_reduction) # setup UCCSD variational form var_form = UCCSD(num_orbitals=num_spin_orbitals, num_particles=num_particles, active_occupied=[0], active_unoccupied=[0, 1], initial_state=HF_state, qubit_mapping=map_type, two_qubit_reduction=qubit_reduction, num_time_slices=1) # setup VQE vqe = VQE(qubitOp, var_form, cobyla) quantum_instance = QuantumInstance(backend=backend) results = vqe.run(quantum_instance) print('The computed ground state energy is: {:.12f}'.format(results.eigenvalue.real)) print('The total ground state energy is: {:.12f}'.format(results.eigenvalue.real + energy_shift + nuclear_repulsion_energy)) print("Parameters: {}".format(results.optimal_point)) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
import numpy as np import numpy.fft import matplotlib.pyplot as plt from qiskit.aqua.circuits import StateVectorCircuit from qiskit.circuit.library import QFT, Barrier from qiskit import QuantumCircuit, QuantumRegister, execute, Aer def normalize(ψ): n = np.linalg.norm(ψ) return ψ if n == 0 else ψ / n def wavefunction(circuit): backend = Aer.get_backend('statevector_simulator') return execute(circuit.copy(), backend).result().get_statevector() def exercise1(): l = 4 # Number of qubits N = 2**l L = 8 Δx = L/N x = -L/2 + Δx * np.arange(N) # # Discretize our function, and normalize it to turn it into a # quantum state f = normalize(np.exp(-x**2/2.0)) # # Use Qiskit to build a quantum circuit that constructs the # quantum state associated to the discretize function 'f' f_qc = StateVectorCircuit(f).construct_circuit() fig, ax = plt.subplots(nrows=1,ncols=1,figsize=(8,4)) ax.plot(x, f, '-') ax.plot(x, np.abs(wavefunction(f_qc)), '.') ax.set_title(f'$f$ with $N={N}$') exercise1() from qiskit.circuit.library import QFT QFT(3, insert_barriers=True).draw() def fQFT(nqubits, **kwdargs): circuit = QuantumCircuit(nqubits) return circuit.compose(QFT(nqubits, **kwdargs), qubits=list(reversed(range(0,nqubits)))) fQFT(3).draw() fQFT(3, insert_barriers=True, do_swaps=True, inverse=True).draw() def exercise3(): l = 4 # Number of qubits N = 2**l L = 8 Δx = L/N x = -L/2 + Δx * np.arange(N) # # The original function f = normalize(np.exp(-x**2/2.0)) # # Construct the circuit for the function 'f' f_qc = StateVectorCircuit(f).construct_circuit() # # Construct the circuit for the Quantum Fourier Transform qft_circuit = QFT(l, do_swaps=True) # # The QFT acts on the qubits of the circuit in the opposite # order than we would like. We explicit this order when # we compose the circuits qft_order = list(reversed(range(0, l))) # Ff = f_qc.compose(qft_circuit, qubits=qft_order) # # We can also compute the classical fourier transform using # Python's numpy library DFTf = np.fft.fft(f) fig, ax = plt.subplots(nrows=1,ncols=1,figsize=(8,4)) ax.plot(x, f, '-', label='f') ax.plot(x, normalize(np.abs(DFTf)), label='$\\tilde{f}$') ax.plot(x, np.abs(wavefunction(Ff)), '.', label='$QFT$') ax.set_title(f'$f$ with $N={N}$') ax.legend() exercise3() aux=QuantumCircuit(4) aux.cx(1,3) aux.cx(1,2) aux.draw() steps = QuantumCircuit(4) steps.compose(fQFT(3, insert_barriers=True), qubits=[0,1,2], inplace=True) steps.cx(2,3) steps.compose(fQFT(4, insert_barriers=True), inplace=True) steps.draw() def exercise6(): l = 4 # Number of input qubits N = 2**l L = 8 Δx = L/N x = -L/2 + Δx * np.arange(N) lfinal = l+2 # Number of qubits for interpolation xfinal = -L/2 + (Δx/2**(lfinal-l)) * np.arange(2**lfinal) # # Our circuit (with the final number of qubits) steps = QuantumCircuit(lfinal) # # The original function f = normalize(np.exp(-x**2/2.0)) # # The interpolated one ffinal = normalize(np.exp(-xfinal**2/2.0)) # # Construct the circuit for the function 'f' f_qc = StateVectorCircuit(f).construct_circuit() steps.compose(f_qc, qubits=range(0,l), inplace=True) # # Construct the circuit for the Quantum Fourier Transform steps.compose(fQFT(l, insert_barriers=True), qubits=list(range(0, l)), inplace=True) # # Implement padding for i in range(l, lfinal): steps.cx(l-1,i) # # Implement the inverse transform steps.compose(fQFT(lfinal, inverse=True, insert_barriers=True), inplace=True) #print(steps.draw()) fig, ax = plt.subplots(nrows=1,ncols=1,figsize=(8,4)) ax.plot(xfinal, ffinal, '-', label='exact') ax.plot(xfinal, np.abs(wavefunction(steps)), '.', label='interpolated') ax.set_title(f'Interpolate $f$ from {l} to {lfinal} qubits') ax.legend() exercise6()
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def cz(circuit,qr): circuit.h(qr[1]) circuit.cx(qr[0],qr[1]) circuit.h(qr[1]) qr2 = QuantumRegister(2) czCircuit = QuantumCircuit(qr2) cz(czCircuit,qr2) czCircuit.draw(output="mpl") def ccz(circuit,qr): circuit.h(qr[2]) # ccx is the Toffoli gate circuit.ccx(qr[0], qr[1], qr[2]) circuit.h(qr[2]) qr3 = QuantumRegister(3) cczCircuit = QuantumCircuit(qr3) ccz(cczCircuit,qr3) cczCircuit.draw(output="mpl") def cccz(circuit,qr): pi = math.pi circuit.cu1(pi/4,qr[0],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(-pi/4, qr[1],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(pi/4, qr[1],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) qr4 = QuantumRegister(4) ccczCircuit = QuantumCircuit(qr4) cccz(ccczCircuit,qr4) ccczCircuit.draw(output="mpl") def n_controlled_Z(circuit, qr): """Implement a Z gate with multiple controls""" if (len(qr) > 4): raise ValueError('The controlled Z with more than 3 controls is not implemented') # This is the case n = 2 (1 control + 1 target qubit) elif (len(qr) == 2): cz(circuit,qr) # This is the case n = 3 (2 control + 1 target qubit) elif (len(qr) == 3): ccz(circuit,qr) # This is the case n = 4 (3 control + 1 target qubit) elif (len(qr) == 4): cccz(circuit,qr) def phase_oracle(circuit,qr,element): # element is an array that defines the searched element, for example, element = [0,1,0,1] n = len(element) for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) n_controlled_Z(circuit,qr) for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) def inversion_about_average(circuit, register, n): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) n_controlled_Z(circuit, qr) circuit.x(register) circuit.h(register) #Let's plot it! qr = QuantumRegister(4) qAverage = QuantumCircuit(qr) inversion_about_average(qAverage, qr, 4) qAverage.draw(output='mpl')
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
from qiskit import Aer from qiskit.circuit.library import TwoLocal from qiskit.aqua import QuantumInstance from qiskit.finance.applications.ising import portfolio from qiskit.optimization.applications.ising.common import sample_most_likely from qiskit.finance.data_providers import RandomDataProvider from qiskit.aqua.algorithms import VQE, QAOA, NumPyMinimumEigensolver from qiskit.aqua.components.optimizers import COBYLA import numpy as np import warnings import matplotlib.pyplot as plt import datetime warnings.filterwarnings('ignore') # set number of assets (= number of qubits) num_assets = 5 # Generate expected return and covariance matrix from (random) time-series stocks = [("TICKER%s" % i) for i in range(num_assets)] data = RandomDataProvider(tickers=stocks, start=datetime.datetime(2016,1,1), end=datetime.datetime(2016,1,30)) data.run() mu = data.get_period_return_mean_vector() sigma = data.get_period_return_covariance_matrix() # plot sigma plt.imshow(sigma, interpolation='nearest') plt.show() q = 0.5 # set risk factor budget = num_assets // 2 # set budget penalty = num_assets # set parameter to scale the budget penalty term qubitOp, offset = portfolio.get_operator(mu, sigma, q, budget, penalty) def index_to_selection(i, num_assets): s = "{0:b}".format(i).rjust(num_assets) x = np.array([1 if s[i]=='1' else 0 for i in reversed(range(num_assets))]) return x def print_result(result): selection = sample_most_likely(result.eigenstate) value = portfolio.portfolio_value(selection, mu, sigma, q, budget, penalty) print('Optimal: selection {}, value {:.4f}'.format(selection, value)) eigenvector = result.eigenstate if isinstance(result.eigenstate, np.ndarray) else result.eigenstate.to_matrix() probabilities = np.abs(eigenvector)**2 i_sorted = reversed(np.argsort(probabilities)) print('\n----------------- Full result ---------------------') print('selection\tvalue\t\tprobability') print('---------------------------------------------------') for i in i_sorted: x = index_to_selection(i, num_assets) value = portfolio.portfolio_value(x, mu, sigma, q, budget, penalty) probability = probabilities[i] print('%10s\t%.4f\t\t%.4f' %(x, value, probability)) exact_eigensolver = NumPyMinimumEigensolver(qubitOp) result = exact_eigensolver.run() print_result(result) backend = Aer.get_backend('statevector_simulator') seed = 50 cobyla = COBYLA() cobyla.set_options(maxiter=500) ry = TwoLocal(qubitOp.num_qubits, 'ry', 'cz', reps=5, entanglement='linear') vqe = VQE(qubitOp, ry, cobyla) vqe.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) result = vqe.run(quantum_instance) print_result(result) backend = Aer.get_backend('statevector_simulator') seed = 50 cobyla = COBYLA() cobyla.set_options(maxiter=250) qaoa = QAOA(qubitOp, cobyla, 3) qaoa.random_seed = seed quantum_instance = QuantumInstance(backend=backend, seed_simulator=seed, seed_transpiler=seed) result = qaoa.run(quantum_instance) print_result(result) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def ising_gate(circuit,qrj,qrl,Jt): circuit.cx(qrj,qrl) circuit.u1(-2*Jt,qrl) circuit.cx(qrj,qrl) def fieldx_gate(circuit,qrj,Bt): # We use rotation around x circuit.rx(-2*Bt,qrj) def fieldz_gate(circuit,qrj,Bt): circuit.rz(-2*Bt,qrj) def initialize_qa(circuit,qr): circuit.h(qr) qr = QuantumRegister(2) cr = QuantumRegister(2) circuit = QuantumCircuit(qr) initialize_qa(circuit,qr) ising_gate(circuit,qr[0],qr[1],1) fieldx_gate(circuit,qr,1) circuit.draw(output='mpl')
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
import numpy as np import matplotlib.pyplot as plt plt.rc('font', size=16, family='serif') from PIL import Image, ImageOps import urllib.request urllib.request.urlretrieve("https://raw.githubusercontent.com/juanjosegarciaripoll/uimp-2020/master/cat.png", "cat.png") cat = ImageOps.grayscale(Image.open('cat.png')) cat cat_array = np.asarray(cat) cat_array[1,1] cat_array[100,300] (np.min(cat_array), np.max(cat_array)) cat_I = cat_array.flatten()+0.0 cat_ψ = np.sqrt(cat_I)/np.sqrt(np.sum(cat_I)) np.linalg.norm(cat_ψ) def order_by_size(ψ, q): size = [2 for i in range(2*q)] ndx = [i + j for i in range(q) for j in [0, q]] return ψ.reshape(size).transpose(ndx) def order_by_dimension(ψ, q): size = [2 for i in range(2*q)] ndx = [2*i + j for j in [0,1] for i in range(q)] return ψ.reshape(size).transpose(ndx) def image2state(image, reorder=True): # Convert image to an array image = ImageOps.grayscale(image) image_I = np.asarray(image) # Reshape to fit some qubit size, the same for both dimensions L1, L2 = image_I.shape q1 = int(round(np.log2(L1))) q2 = int(round(np.log2(L2))) q = max(q1, q2) L = 2**q new_I = np.zeros((L, L), dtype=np.float64) new_I[0:L1,0:L2] = image_I I_t = np.sum(new_I.flatten()) ψ = np.sqrt(new_I.flatten())/np.sqrt(I_t) if reorder: ψ = order_by_size(ψ, q) return ψ def intensity2image(I): I = np.uint8(np.round(I/np.max(I) * 255.0)) return Image.fromarray(I) def state2image(ψ, reorder=True): q = int(round(np.log2(ψ.size))) // 2 L = 2**q if reorder: ψ = order_by_dimension(ψ, q) return intensity2image(np.abs(ψ*ψ).reshape((L,L))) state2image(image2state(cat, reorder=True), reorder=True) def resample(ψ, nqubits=None, reorder=True): q = int(np.round(np.log2(ψ.size))) if nqubits is None: nqubits = q-2 elif nqubits < 0: nqubits = q + nqubits L1 = 2**nqubits L2 = ψ.size // L1 # # We are now going to extract the diagonal of # the reduced density matrix, and output it as a # new image if True: I = np.einsum('kii->k', ψ.reshape((L1, L2, 1)) * ψ.conj().reshape(L1, 1, L2)) else: # This is very slow and consumes a lot of memory ρ = ψ.reshape((L1,L2)) @ ψ.reshape((L1,L2)).T.conj() I = np.diag(ρ) # We may need to undo the ordering of qubits I = order_by_dimension(I, nqubits//2) # Intensity is now a vector. We have to rearrange it into # a square matrix for converting it to an image L = 2**(nqubits//2) return intensity2image(I.reshape((L,L))) resample(image2state(cat), -2) resample(image2state(cat), -4) resample(image2state(cat), -6) resample(image2state(cat), -8) def enlarge(ψ, nqb): ψ = ψ.reshape((ψ.size,1)) * np.ones((1,2**nqb)) ψ = ψ.flatten() return ψ / np.linalg.norm(ψ) state2image(enlarge(image2state(resample(image2state(cat), -8)), 8)) def Gaussian(nqb, σ=0.1, reorder=True): x = np.linspace(-1, 1, 2**nqb) f = np.exp(-0.5 * (x/σ)**2) f /= np.linalg.norm(f) ψ = f.reshape((1,2**nqb)) * f.reshape((2**nqb,1)) if reorder: ψ = order_by_size(ψ, nqb) return ψ / np.linalg.norm(ψ.flatten()) aux = state2image(Gaussian(9, 0.2)) aux resample(image2state(aux), -2) resample(image2state(aux), -4) resample(image2state(aux), -6) resample(image2state(aux), -8) state2image(enlarge(image2state(resample(image2state(aux), -8)), 8)) def Schmidt(ψ, qubits_left=1): Lleft = 2**qubits_left Lright = ψ.size // Lleft ψ = ψ / np.linalg.norm(ψ) A = ψ.reshape((Lleft, Lright)) Φ, sqrtΛ, Ξ = np.linalg.svd(A) return (sqrtΛ)**2 ψGaus = Gaussian(9, 0.2) ψcat = image2state(cat) fig, ax = plt.subplots() ax.plot(Schmidt(ψcat, 9), label='cat') ax.plot(Schmidt(ψGaus, 9), label='Gaussian') ax.set_ylabel('$\\lambda_i$') ax.set_xlabel('#eigenvalue') ax.set_yscale('log') ax.set_ylim([1e-12,1.2]) ax.legend();
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
# Importing matplotlib, "in line" %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # In Jupyter Notebooks we can display this nicely using Latex. # If not using Jupyter Notebooks you may need to remove the # array_to_latex function and use print() instead. from qiskit_textbook.tools import array_to_latex # Create a Quantum Register for 2 Qubits (Quantum Bits), with a Total of 4 (2^2) Possible Processed States qr = QuantumRegister(2) # Create a Classical Register for 2 Bits (Classical Bits), with a Total of 2 Possible Processed States cr = ClassicalRegister(2) # Create a Quantum Circuit, with the two previously created Quantum and Classical Registers qc = QuantumCircuit(qr,cr) # Let's setup the set of necessary instructions, in order to build a Quantum Circuit, # that implements a Quantum Maximally Entangled State in Quantum System with 2 Qubits (Quantum Bits), # in which if a Qubit it's measured, independently of its outcome, the other Qubit (Quantum Bit) # will collapse automatically, no matter the distance that separates the both Qubits (Quatum Bits), # holding the same outcome, i.e., what's it's called, a Bell State, in Quantum Physics/Mechanics # Per example: # a) If the 1st Qubit (Quantum Bit) it's measured and collapse to the Classical State |0>, # it's possible to state with certainty that the 2nd Qubit (Quantum Bit) will also collapse to # the Classical State |0>, for sure; # b) If the 1st Qubit (Quantum Bit) it's measured and collapse to the Classical State |1>, # it's possible to state with certainty that the 2nd Qubit (Quantum Bit) will also collapse to # the Classical State |1>, for sure; # Note: # - The observations derived from this experiment it's also valid, following the same idea, # when the 2nd Qubit (Quantum Bit) it's measured instead of the 1st Qubit (Quantum Bit) # Any Quantum Entanglement of States, it's implemented using the CX/CNOT Quantum Logic Gate # (Controlled-X/Controlled-NOT), which acts on 2 Qubits (Quantum Bits), described as the following: # - 1) Control Qubit (Quantum Bit); # - 2) Target Qubit (Quantum Bit); # This CX/CNOT Quantum Logic Gate (Controlled-X/Controlled-NOT) it's simple and # has the following behaviour: # - If the Control Qubit (Control Quantum Bit) it's set as |1>, # performs the Pauli-X Quantum Logic Gate Operator (X Quantum Logic Gate Operator) # onto the the Target Qubit (Target Quantum Bit); # - Otherwise, if the Control Qubit (Control Quantum Bit) it's set as |0>, # don't perform any Quantum Logic Gate Operator (X Quantum Logic Gate Operator) # onto the the Target Qubit (Target Quantum Bit), letting it unchanged; # The CX/CNOT Quantum Logic Gate (Controlled-X/Controlled-NOT) has a behaviour practically equal to a # XOR Classical Logic Gate Operator (eXclusive OR Classical Logic Gate Operator): # - CNOT x |q1,q2> = |q1, (q1 ⊕ q2)>; # Note: # - In Mathematics, the XOR Classical Logic Gate Operator (eXclusive OR Classical Logic Gate Operator) # it's represented by the Modulo 2 Arithmetic Addition Operator # (i.e., represented by the mathematically notation of ⊕); # Initially, the Quantum Circuit has the both Qubits (Quantum Bits) set as |0>, # thus the Quantum Circuit, it's represented as the Tensor Product of that two Qubits (Quantum Bits), # forming a new Quantum State defined as |00>: # - |Ψ> = |q1>|q2> = |0>|0> = |0> ⊗ |0> = |00>; # Steps to build this Quantum Circuit: # 1) In order to, explore all the possible situations of this Experiment, # let's put the Control Qubit (Control Quantum Bit) in this Quantum Circuit, # in a Quantum Superposition of States, applying the Hadamard Quantum Logic Gate Operator to it, # letting the Quantum System defined as: # - |Ψ> = 1/√2 x (|00> + |10>), # where the 1st Qubit (Quantum Bit) it's in Quantum Superposition of States; qc.h(0) # 2) In order to, explore all the possible situations of this Experiment, # let's put the Control Qubit (Control Quantum Bit) in this Quantum Circuit, # in a Quantum Superposition of States, applying the Hadamard Quantum Logic Gate Operator to it, # letting the Quantum System defined as: # - |Ψ> = 1/√2 x (|00> + |11>), where: # - The 1st Qubit (Quantum Bit) it's in Quantum Superposition of States; # - The 2nd Qubit (Quantum Bit) it's a result of the Pauli-X Quantum Logic Quantum Gate Operator, # in the cases that the Control Qubit (Control Quantum Bit) it's set as |1>, i.e., # the 2nd term of the Quantum System, where |10> => |11>, # after being applied the CX/CNOT Quantum Logic Gate (Controlled-X/Controlled-NOT); qc.cnot(0,1) # Draw the Quantum Circuit for the Bell State, in a graphically representation qc.draw() # Print the Quantum Circuit for the Bell State, in a text representation print(qc) # Print the Backends available in the Aer Module of the IBM Qiskit Library: # - The Aer Module, it's the Module responsible for the Simulator of the IBM Qiskit Libraries; Aer.backends() # Getting the Backend for the Unitary Representation # (i.e., the Quantum State represented as an Unitary Matrix) backend = Aer.get_backend('unitary_simulator') unitary = execute(qc,backend).result().get_unitary() array_to_latex(unitary, pretext="\\text{Quantum Circuit (Unitary Matrix) = }\n") # Getting the Backend for the Statevector Representation # (i.e., the Quantum State represented as State Vector) statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(qc,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Quantum Circuit (Statevector) = }\n", precision = 1) # Plot the Bloch Spheres of the previously defined Quantum System (or, try it...), # representing a Bell State # Note: # - In fact it's not possible to plot Bloch Spheres representing a whole Quantum System, # which it's currently in a Quantum Entanglement of States, in IBM Qiskit; plot_bloch_multivector(final_state) # But, it's possible to plot the Q-Sphere of this Quantum Circuit # (a "linear" combination of the several Bloch Spheres, involved) of # the previously defined Quantum System, representing a Bell State plot_state_qsphere(final_state) # Now, that the Quantum Circuit it's practically defined, let's apply a Barrier to it, in order to, # ensure that all the previous Quantum Logic Gate Operators are applied correctly qc.barrier() # Draw the Quantum Circuit again, after the Barrier be applied in it qc.draw() # Measure the State of the both Qubits (Quantum Bits), contained in the Quantum Circuit qc.measure(0,0) qc.measure(1,1) # Draw the Quantum Circuit again, after the Measurement of the States be applied in it qc.draw() # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(qc,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) # Import the IBM Q Experience, from the IBM Qiskit Library from qiskit import IBMQ # Update your account info saved locally IBMQ.update_account() # Run everytime to load your account info saved locally IBMQ.load_account() # Get a Provider, from the IBM Q Hub provider = IBMQ.get_provider(hub='ibm-q') # Print available Backends, from the Provider set before provider.backends() # Import the "Least Busy" function, in order to get a "Least Busy" Backend from qiskit.providers.ibmq import least_busy # Filter the available Backends, in order to get a list of "Large Enough Real Quantum Devices", # i.e., containing 2 or more 2 Qubits (Quantum Bits) large_enough_devices = provider.backends(filters = lambda b: b.configuration().n_qubits >= 2 and not b.configuration().simulator and b.status().operational==True) # Or, select the "Least Busy" Backend, from the list of "Large Enough Real Quantum Devices" backend = least_busy(large_enough_devices) # Print the Best Backend available (i.e., the Least Busy Backend) print("The Best Backend is: " + backend.name()) # Execute a Job for this Quantum Circuit, executing the Experiment, for 8192 Shots job_exp = execute(qc,backend=backend,shots=8192) # Get the Experiment Result from the previous executed Job for this Quantum Circuit exp_result = job_exp.result() # Get the Measurement Results, from the previous Experiment Result, # executed by the Job for this Quantum Circuit exp_measurement_result = exp_result.get_counts(qc) # Print the Measurement Results, from the previous Experiment Result, # executed by the Job for this Quantum Circuit print(exp_measurement_result) # Plot the Histogram (i.e., Frequencies) for the Measurement Results, # from the previous Experiment Result, executed by the Job for this Quantum Circuit plot_histogram(exp_measurement_result)
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
# Importing matplotlib, "in line" %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # In Jupyter Notebooks we can display this nicely using Latex. # If not using Jupyter Notebooks you may need to remove the # array_to_latex function and use print() instead. from qiskit_textbook.tools import array_to_latex # Create a Quantum Register for 2 Qubits (Quantum Bits), with a Total of 4 (2^2) Possible Processed States qr = QuantumRegister(2) # Create a Classical Register for 2 Bits (Classical Bits), with a Total of 2 Possible Processed States cr = ClassicalRegister(2) # Create a Quantum Circuit, with the two previously created Quantum and Classical Registers qc = QuantumCircuit(qr,cr) # Let's setup the set of necessary instructions, in order to build a Quantum Circuit, # that implements a Quantum Entangled State in Quantum System with 2 Qubits (Quantum Bits), # in which if a Qubit it's measured, independently of its outcome, the other Qubit (Quantum Bit) # will collapse automatically, no matter the distance that separates the both Qubits (Quatum Bits), # holding the opposite outcome, i.e., what's it's called, the Pauli Exclusion Principle, # in Quantum Physics/Mechanics # Per example: # a) If the 1st Qubit (Quantum Bit) it's measured and collapse to the Classical State |0>, # it's possible to state with certainty that the 2nd Qubit (Quantum Bit) will also collapse to # the opposite Classical State |1>, for sure; # b) If the 1st Qubit (Quantum Bit) it's measured and collapse to the Classical State |1>, # it's possible to state with certainty that the 2nd Qubit (Quantum Bit) will also collapse to # the opposite Classical State |0>, for sure; # Note: # - The observations derived from this experiment it's also valid, following the same idea, # when the 2nd Qubit (Quantum Bit) it's measured instead of the 1st Qubit (Quantum Bit) # Any Quantum Entanglement of States, it's implemented using the CX/CNOT Quantum Logic Gate # (Controlled-X/Controlled-NOT), which acts on 2 Qubits (Quantum Bits), described as the following: # - 1) Control Qubit (Quantum Bit); # - 2) Target Qubit (Quantum Bit); # This CX/CNOT Quantum Logic Gate (Controlled-X/Controlled-NOT) it's simple and # has the following behaviour: # - If the Control Qubit (Control Quantum Bit) it's set as |1>, # performs the Pauli-X Quantum Logic Gate Operator (X Quantum Logic Gate Operator) # onto the the Target Qubit (Target Quantum Bit); # - Otherwise, if the Control Qubit (Control Quantum Bit) it's set as |0>, # don't perform any Quantum Logic Gate Operator (X Quantum Logic Gate Operator) # onto the the Target Qubit (Target Quantum Bit), letting it unchanged; # The CX/CNOT Quantum Logic Gate (Controlled-X/Controlled-NOT) has a behaviour practically equal to a # XOR Classical Logic Gate Operator (eXclusive OR Classical Logic Gate Operator): # - CNOT x |q1,q2> = |q1, (q1 ⊕ q2)>; # Note: # - In Mathematics, the XOR Classical Logic Gate Operator (eXclusive OR Classical Logic Gate Operator) # it's represented by the Modulo 2 Arithmetic Addition Operator # (i.e., represented by the mathematically notation of ⊕); # Initially, the Quantum Circuit has the both Qubits (Quantum Bits) set as |0>, # thus the Quantum Circuit, it's represented as the Tensor Product of that two Qubits (Quantum Bits), # forming a new Quantum State defined as |00>: # - |Ψ> = |q1>|q2> = |0>|0> = |0> ⊗ |0> = |00>; # Steps to build this Quantum Circuit: # 1) Initially, let's set the 2nd Qubit (Quantum Bit), # acting as the Control Qubit (Control Quantum Bit) as |1>, # applying the Pauli-X Quantum Logic Quantum Gate Operator; qc.x(1) # 2) Let's apply a Barrier to it, in order to, ensure that all the # previous Quantum Logic Gate Operators are applied correctly; qc.barrier() # 3) In order to, explore all the possible situations of this Experiment, # let's put the Control Qubit (Control Quantum Bit) in this Quantum Circuit, # in a Quantum Superposition of States, applying the Hadamard Quantum Logic Gate Operator to it, # letting the Quantum System defined as: # - |Ψ> = 1/√2 x (|01> + |11>), # where the 1st Qubit (Quantum Bit) it's in Quantum Superposition of States; qc.h(0) # 4) In order to, explore all the possible situations of this Experiment, # let's put the Control Qubit (Control Quantum Bit) in this Quantum Circuit, # in a Quantum Superposition of States, applying the Hadamard Quantum Logic Gate Operator to it, # letting the Quantum System defined as: # - |Ψ> = 1/√2 x (|01> + |10>), where: # - The 1st Qubit (Quantum Bit) it's in Quantum Superposition of States; # - The 2nd Qubit (Quantum Bit) it's a result of the Pauli-X Quantum Logic Quantum Gate Operator, # in the cases that the Control Qubit (Control Quantum Bit) it's set as |1>, i.e., # the 2nd term of the Quantum System, where |11> => |10>, # after being applied the CX/CNOT Quantum Logic Gate (Controlled-X/Controlled-NOT); qc.cnot(0,1) # Draw the Quantum Circuit for the Pauli Exclusion Principle, in a graphically representation qc.draw() # Print the Quantum Circuit for the Pauli Exclusion Principle, in a text representation print(qc) # Print the Backends available in the Aer Module of the IBM Qiskit Library: # - The Aer Module, it's the Module responsible for the Simulator of the IBM Qiskit Libraries; Aer.backends() # Getting the Backend for the Unitary Representation # (i.e., the Quantum State represented as an Unitary Matrix) backend = Aer.get_backend('unitary_simulator') unitary = execute(qc,backend).result().get_unitary() array_to_latex(unitary, pretext="\\text{Quantum Circuit (Unitary Matrix) = }\n") # Getting the Backend for the Statevector Representation # (i.e., the Quantum State represented as State Vector) statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(qc,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Quantum Circuit (Statevector) = }\n", precision = 1) # Plot the Bloch Spheres of the previously defined Quantum System (or, try it...), # representing a Pauli Exclusion Principle # Note: # - In fact it's not possible to plot Bloch Spheres representing a whole Quantum System, # which it's currently in a Quantum Entanglement of States, in IBM Qiskit; plot_bloch_multivector(final_state) # But, it's possible to plot the Q-Sphere of this Quantum Circuit # (a "linear" combination of the several Bloch Spheres, involved) of # the previously defined Quantum System, representing the Pauli Exclusion Principle plot_state_qsphere(final_state) # Now, that the Quantum Circuit it's practically defined, let's apply a Barrier to it, in order to, # ensure that all the previous Quantum Logic Gate Operators are applied correctly qc.barrier() # Draw the Quantum Circuit again, after the Barrier be applied in it qc.draw() # Measure the State of the both Qubits (Quantum Bits), contained in the Quantum Circuit qc.measure(0,0) qc.measure(1,1) # Draw the Quantum Circuit again, after the Measurement of the States be applied in it qc.draw() # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(qc,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) # Import the IBM Q Experience, from the IBM Qiskit Library from qiskit import IBMQ # Update your account info saved locally IBMQ.update_account() # Run everytime to load your account info saved locally IBMQ.load_account() # Get a Provider, from the IBM Q Hub provider = IBMQ.get_provider(hub='ibm-q') # Print available Backends, from the Provider set before provider.backends() # Import the "Least Busy" function, in order to get a "Least Busy" Backend from qiskit.providers.ibmq import least_busy # Filter the available Backends, in order to get a list of "Large Enough Real Quantum Devices", # i.e., containing 2 or more 2 Qubits (Quantum Bits) large_enough_devices = provider.backends(filters = lambda b: b.configuration().n_qubits >= 2 and not b.configuration().simulator and b.status().operational==True) # Or, select the "Least Busy" Backend, from the list of "Large Enough Real Quantum Devices" backend = least_busy(large_enough_devices) # Print the Best Backend available (i.e., the Least Busy Backend) print("The Best Backend is: " + backend.name()) # Execute a Job for this Quantum Circuit, executing the Experiment, for 8192 Shots job_exp = execute(qc,backend=backend,shots=8192) # Get the Experiment Result from the previous executed Job for this Quantum Circuit exp_result = job_exp.result() # Get the Measurement Results, from the previous Experiment Result, # executed by the Job for this Quantum Circuit exp_measurement_result = exp_result.get_counts(qc) # Print the Measurement Results, from the previous Experiment Result, # executed by the Job for this Quantum Circuit print(exp_measurement_result) # Plot the Histogram (i.e., Frequencies) for the Measurement Results, # from the previous Experiment Result, executed by the Job for this Quantum Circuit plot_histogram(exp_measurement_result)
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
# useful additional packages import matplotlib.pyplot as plt import matplotlib.axes as axes import numpy as np import networkx as nx from qiskit import Aer, execute, QuantumCircuit from qiskit.quantum_info import Statevector # auxilliary function to plot graphs def plot_result(G, x): colors = ['r' if x[i] == 0 else 'b' for i in range(n)] pos, default_axes = nx.spring_layout(G), plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos) # create graph G = nx.Graph() # add nodes n = 5 G.add_nodes_from(range(n)) # add edges: tuple is (i,j,weight) where (i,j) is the edge edges = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0), (2, 4, 1.0), (3, 4, 1.0)] G.add_weighted_edges_from(edges) # plot graph plot_result(G, [0]*n) from docplex.mp.model import Model mdl = Model('MaxCut') x = mdl.binary_var_list('x{}'.format(i) for i in range(n)) objective = mdl.sum([ w * (x[i] + x[j] - 2*x[i]*x[j]) for (i, j, w) in edges]) mdl.maximize(objective) mdl.prettyprint() b = 2 mdl.add_constraint(mdl.sum(x) == b) mdl.prettyprint() conda install -c ibmdecisionoptimization cplex from qiskit.optimization import QuadraticProgram from qiskit.optimization.algorithms import CplexOptimizer # convert from DOcplex model to Qiskit Quadratic Program qp = QuadraticProgram() qp.from_docplex(mdl) # Solve Quadratic Program using CPLEX cplex = CplexOptimizer() result = cplex.solve(qp) print(result) plot_result(G, result.x) from qiskit.optimization.converters import ( InequalityToEquality, # converts inequality constraints to equality constraints by adding slack variables LinearEqualityToPenalty, # converts linear equality constraints to quadratic penalty terms IntegerToBinary, # converts integer variables to binary variables QuadraticProgramToQubo # combines the previous three converters ) lineq2penalty = LinearEqualityToPenalty(penalty=1) qp_wo_constr = lineq2penalty.convert(qp) qp_wo_constr # Solve converted Quadratic Program using CPLEX result = cplex.solve(qp_wo_constr) print(result) plot_result(G, result.x) H, offset = qp_wo_constr.to_ising() print('offset =', offset) print() print('H =', H) # print Ising Hamiltonian as matrix H_matrix = np.real(H.to_matrix()) print('dim(H):', H_matrix.shape) print(H_matrix) # plot diagonal of matrix opt_indices = list(np.where(H_matrix.diagonal() == min(H_matrix.diagonal())))[0] plt.figure(figsize=(12, 5)) plt.bar(range(2**n), H_matrix.diagonal()) plt.bar(opt_indices, H_matrix.diagonal()[opt_indices], color='g') plt.xticks(range(2**n), ['('+str(i)+') {0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14) plt.show() from qiskit.circuit.library import RealAmplitudes qc = RealAmplitudes(5, reps=1) qc.draw(fold=120) # run VQE from qiskit.aqua.algorithms import VQE vqe = VQE(H, qc, quantum_instance=Aer.get_backend('statevector_simulator')) result = vqe.run() print('optimal value:', np.round(result.eigenvalue, decimals=4)) # plot probabilities probabilities = np.abs(result.eigenstate)**2 plt.figure(figsize=(12, 5)) plt.bar(range(2**n), probabilities) plt.bar(opt_indices, probabilities[opt_indices], color='g') plt.xticks(range(2**n), ['('+str(i)+') {0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14) plt.show() from qiskit.circuit import Parameter gamma, beta = Parameter('gamma'), Parameter('beta') qc = QuantumCircuit(1) qc.h(0) qc.barrier() qc.rz(gamma, 0) qc.rx(beta, 0) qc.barrier() qc.draw() def construct_schedule(T, N): delta_t = T/N gammas, betas = [], [] # H_C, H_X parameters for i in range(N+1): t = i * delta_t gammas += [ 2 * delta_t * t/T ] # H_C betas += [ -2 * delta_t * (1 - t/T) ] # H_X return gammas, betas T = 5 N = 10 gammas, betas = construct_schedule(T, N) plt.figure(figsize=(10, 4)) plt.plot(np.linspace(0, T, N+1), gammas, label='gammas') plt.plot(np.linspace(0, T, N+1), betas, label='betas') plt.legend(fontsize=14) plt.xticks(fontsize=14) plt.xlabel('time', fontsize=14) plt.yticks(fontsize=14) plt.ylabel('parameters', fontsize=14); # track probabilities during trotterized annealing probabilities = np.zeros((2, N+1)) # construct circuit qc = QuantumCircuit(1) qc.h(0) qc.barrier() for i, (gamma, beta) in enumerate(zip(gammas, betas)): qc.rz(gamma, 0) qc.rx(beta, 0) qc.barrier() probabilities[:, i] = Statevector.from_instruction(qc).probabilities() qc.draw() plt.figure(figsize=(12, 7)) plt.plot(np.linspace(0, T, N+1), probabilities[1, :], 'gd-', label=r'$|1\rangle$') plt.plot(np.linspace(0, T, N+1), probabilities[0, :], 'bo-', label=r'$|0\rangle$') plt.legend(fontsize=14) plt.xticks(fontsize=14) plt.xlabel('time $t$', fontsize=14) plt.yticks(fontsize=14) plt.ylabel('probabilities', fontsize=14); plt.figure(figsize=(12, 7)) plt.plot(np.linspace(0, T, N+1), probabilities[0, :] - probabilities[1, :], 'gd-') plt.xticks(fontsize=14) plt.xlabel('time $t$', fontsize=14) plt.yticks(fontsize=14) plt.ylabel('objective value', fontsize=14); gamma = Parameter('gamma') qc1 = QuantumCircuit(2) qc1.cx(0, 1) qc1.rz(gamma, 1) qc1.cx(0, 1) qc1.draw() qc2 = QuantumCircuit(2) qc2.rzz(gamma, 0, 1) qc2.draw() from qiskit.aqua.algorithms.minimum_eigen_solvers.qaoa.var_form import QAOAVarForm # construct parameters from annealing schedule T = 10 N = 20 gammas, betas = construct_schedule(T, N) # construct variational form var_form = QAOAVarForm(H, N+1) # evaluate circuit qc = var_form.construct_circuit(gammas + betas) sv = Statevector.from_instruction(qc) # plot probabilities probabilities = sv.probabilities() plt.figure(figsize=(12, 5)) plt.bar(range(2**n), probabilities) plt.bar(opt_indices, probabilities[opt_indices], color='g') plt.xticks(range(2**n), ['('+str(i)+') {0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14); # draw trotterized annealing circuit for MaxCut qc.draw() from qiskit.aqua.components.optimizers import COBYLA # QAOA circuit for p = 1 gamma, beta = Parameter('gamma'), Parameter('beta') qc = QuantumCircuit(1) qc.h(0) qc.rz(gamma, 0) qc.rx(beta, 0) def objective(params): qc_ = qc.bind_parameters({gamma: params[0], beta: params[1]}) probs = Statevector.from_instruction(qc_).probabilities() return probs @ [1, -1] optimizer = COBYLA() result = optimizer.optimize(num_vars=2, objective_function=objective, initial_point=[0.5, 0.5]) print('optimal params:', np.round(result[0], decimals=4)) print('optimal value: ', np.round(result[1], decimals=4)) print('optimal state: ', np.round(Statevector.from_instruction(qc.bind_parameters( {gamma: result[0][0], beta: result[0][1]})).data, decimals=4)) # illustrating the QAOA var form p = 1 var_form = QAOAVarForm(H, p) var_form.construct_circuit([gamma, beta]).draw() from qiskit.aqua.algorithms import QAOA qaoa_mes = QAOA(H, p=1, optimizer=optimizer, quantum_instance=Aer.get_backend('statevector_simulator')) result = qaoa_mes.run() print('optimal params: ', result.optimal_parameters) print('optimal value: ', result.optimal_value) print('optimal probability: ', sum(np.abs(result.eigenstate[opt_indices])**2)) # plot probabilities probabilities = np.abs(result['eigenstate'])**2 plt.figure(figsize=(12, 5)) plt.bar(range(2**n), probabilities) plt.bar(opt_indices, probabilities[opt_indices], color='g') plt.xticks(range(2**n), ['('+str(i)+') {0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14) plt.show() from qiskit.optimization.algorithms import MinimumEigenOptimizer # construct QAOA as Minimum Eigensolver qaoa_mes = QAOA(p=1, optimizer=optimizer, quantum_instance=Aer.get_backend('statevector_simulator')) # construct Minimum Eigen Optimizer based on QAOA qaoa = MinimumEigenOptimizer(qaoa_mes) # solve Quadratic Program result = qaoa.solve(qp) print(result) plot_result(G, result.x) # converts two's complement bit string to corresponding integer def twos_complement(val, num_bits): val = int(val, 2) if (val & (1 << (num_bits - 1))) != 0: val = val - (1 << num_bits) return val print(twos_complement('0011', 4)) print(twos_complement('1011', 4)) from qiskit.circuit.library import QFT def encode(num_qubits, k): qc = QuantumCircuit(num_qubits, name='enc({})'.format(k)) for i in range(num_qubits): theta = 2*np.pi * 2**i / 2**num_qubits * k qc.rz(theta, i) return qc num_value_qubits = 4 qc = QuantumCircuit(num_value_qubits, num_value_qubits) qc.h(range(num_value_qubits)) qc.barrier() qc.append(encode(num_value_qubits, 2), range(num_value_qubits)) qc.barrier() qc.append(QFT(num_value_qubits, do_swaps=False).inverse(), qc.qubits) qc.measure(qc.qregs[0], qc.cregs[0][::-1]) qc.draw(fold=120) num_value_qubits = 4 qc = QuantumCircuit(num_value_qubits, num_value_qubits) qc.h(range(num_value_qubits)) qc.barrier() qc.extend(encode(num_value_qubits, 2)) # qc.extend(encode(num_value_qubits, -3)) # qc.extend(encode(num_value_qubits, 4)) qc.barrier() qc.append(QFT(num_value_qubits, do_swaps=False, inverse=True), qc.qubits) qc.measure(qc.qregs[0], qc.cregs[0][::-1]) qc.draw(fold=120) counts = execute(qc, Aer.get_backend('qasm_simulator')).result().get_counts() for key in counts: print(key, ' -->', twos_complement(key, num_value_qubits)) num_input_qubits = 3 num_total_qubits = num_input_qubits + num_value_qubits qc = QuantumCircuit(num_total_qubits) qc.h([0, 1, 2]) qc.barrier() qc.h(range(num_input_qubits, num_total_qubits)) qc.append(encode(num_value_qubits, 2).control(2), [0, 2] + list(range(num_input_qubits, num_total_qubits))) qc.append(encode(num_value_qubits, -3).control(), [1] + list(range(num_input_qubits, num_total_qubits))) qc.append(encode(num_value_qubits, 4).control(), [2] + list(range(num_input_qubits, num_total_qubits))) qc.append(QFT(num_value_qubits, do_swaps=False).inverse(), range(num_input_qubits, num_total_qubits)) qc.measure_all() qc.draw(fold=120) counts = execute(qc, Aer.get_backend('qasm_simulator')).result().get_counts() for key, value in counts.items(): x = key[num_value_qubits:] y_bin = key[:num_value_qubits][::-1] y_int = twos_complement(y_bin, num_value_qubits) print(x, '-->', y_bin, '-->', y_int, '\t(counts: {})'.format(value)) from qiskit.circuit.library import QuadraticForm # get quadratic / linear / constant part of quadratic program A = qp_wo_constr.objective.quadratic.to_array() b = qp_wo_constr.objective.linear.to_array() c = qp_wo_constr.objective.constant # set number of results qubits num_value_qubits = 5 # construct circuit to evaluate quadratic form qf = QuadraticForm(num_value_qubits, A, b, c) qf.draw(fold=115) qc = QuantumCircuit(n + num_value_qubits) qc.h(range(n)) qc.append(qf, range(n + num_value_qubits)) qc.measure_all() qc.draw() counts = execute(qc, backend=Aer.get_backend('qasm_simulator')).result().get_counts() for key, value in counts.items(): x_ = key[num_value_qubits:] x = [0 if x__ == '0' else 1 for x__ in x_][::-1] y_bin = key[:num_value_qubits] y_int = twos_complement(y_bin, num_value_qubits) qx = qp_wo_constr.objective.evaluate(x) print('x =', x_, '\ty_bin =', y_bin, '\ty_int =', y_int, '\tQ(x) =', qx, '\t(counts: {})'.format(value)) qc = QuantumCircuit(n + num_value_qubits, name='U_f') qc.append(qf, range(n + num_value_qubits)) # 1. compute Q(x) qc.z(qc.qubits[-1]) # 2. multiply all |x>|Q(x)> by -1 where Q(x) < 0. qc.append(qf.inverse(), range(n + num_value_qubits)) # 3. uncompute Q(x). qc.draw() qc_grover = QuantumCircuit(n + num_value_qubits) qc_grover.h(range(n)) qc_grover.append(qc, range(qc_grover.num_qubits)) qc_grover.draw() data = Statevector.from_instruction(qc_grover).data x = ['{0:05b}'.format(i) for i in range(2**n)] y = [qp_wo_constr.objective.evaluate([0 if x__ == '0' else 1 for x__ in reversed(x_)]) for x_ in x] plt.figure(figsize=(12, 5)) plt.bar(range(2**n), np.real(data[:2**n])) plt.xticks(range(2**n), ['{} $\leftarrow$ '.format(y[i]) + '{0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14) plt.show() reflection = QuantumCircuit(n, name='reflection') reflection.h(range(reflection.num_qubits)) reflection.barrier() reflection.x(range(reflection.num_qubits)) reflection.barrier() reflection.h(-1) reflection.mct(list(range(reflection.num_qubits - 1)), -1) reflection.h(-1) reflection.barrier() reflection.x(range(reflection.num_qubits)) reflection.barrier() reflection.h(range(reflection.num_qubits)) reflection.draw() qc_grover.append(reflection, range(n)) qc_grover.draw() data = Statevector.from_instruction(qc_grover).data x = ['{0:05b}'.format(i) for i in range(2**n)] y = [qp_wo_constr.objective.evaluate([0 if x__ == '0' else 1 for x__ in reversed(x_)]) for x_ in x] plt.figure(figsize=(12, 5)) plt.bar(range(2**n), -np.real(data[:2**n])) # multiply by -1, since reflection is implemented up to global phase -1 plt.xticks(range(2**n), ['{} $\leftarrow$ '.format(y[i]) + '{0:05b}'.format(i) for i in range(2**n)], rotation=90, fontsize=14) plt.yticks(fontsize=14) plt.show() from qiskit.optimization.algorithms import GroverOptimizer # set up Grover Optimizer grover = GroverOptimizer(num_value_qubits=5, quantum_instance=Aer.get_backend('statevector_simulator')) grover._qubo_converter.penalty = 1 # set to small value to reduce required number of value qubits # solver problem result = grover.solve(qp) print(result) plot_result(G, result.x) from qiskit.finance.applications.ising import portfolio # define tickers and number of assets n = 6 # set budget budget = n // 2 # sample expected returns and covariance matrix mu, sigma = portfolio.random_model(n, seed=4321) # plot mu/sigma plt.figure(figsize=(12, 5)) plt.subplot(1,2,1) plt.title('Expected Returns', fontsize=14) plt.bar(range(n), mu) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.subplot(1,2,2) plt.title('Covariance Matrix', fontsize=14) plt.imshow(sigma, interpolation='nearest') plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.show() def get_qp(n, mu, sigma, budget, q): # create model with docplex mdl = Model('portfolio_optimization') # define variables: # # x_i in {0, 1} # x = mdl.binary_var_list(['x{}'.format(i) for i in range(n)]) # set objective function: # # maximize { mu^T * x - q * x^T * sigma * x } # objective = mdl.sum([mu[i] * x[i] for i in range(n)]) # mu^T * x objective -= q * mdl.sum([sigma[i][j]*x[i]*x[j] for i in range(n) for j in range(n)]) mdl.maximize(objective) # add budget constraint: # # 1^T * x == budget # cost = mdl.sum([x[i] for i in range(n)]) mdl.add_constraint(cost == budget, ctname='budget') # convert to quadratic program qp = QuadraticProgram() qp.from_docplex(mdl) return qp # track resulting risk and return mus = [] sigmas = [] # screen different risk factors for q in [0, 1, 10]: # solve the portfolio optimization problem using QAOA qp = get_qp(n, mu, sigma, budget, q) result = qaoa.solve(qp) # track risk and return mus += [portfolio.portfolio_expected_value(result.x, mu)] sigmas += [portfolio.portfolio_variance(result.x, sigma)] # print resulting portfolio print(result.x) # plot risk/return efficient frontier plt.figure(figsize=(8, 5)) plt.plot(sigmas, mus, '--', linewidth=2) plt.plot(sigmas, mus, 'rD', markersize=7) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.xlabel('Risk (Variance)', fontsize=14) plt.ylabel('Return', fontsize=14) plt.title('Efficient Frontier', fontsize=14) plt.show()
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector def cz(circuit,qr): circuit.h(qr[1]) circuit.cx(qr[0],qr[1]) circuit.h(qr[1]) qr2 = QuantumRegister(2) czCircuit = QuantumCircuit(qr2) cz(czCircuit,qr2) czCircuit.draw(output="mpl") #Since Z=HXH and X=HZH #This is identical to a CZ (controlled Z) def ccz(circuit,qr): circuit.h(qr[2]) # ccx is the Toffoli gate circuit.ccx(qr[0], qr[1], qr[2]) circuit.h(qr[2]) qr3 = QuantumRegister(3) cczCircuit = QuantumCircuit(qr3) ccz(cczCircuit,qr3) cczCircuit.draw(output="mpl") #We are going to check numerically whether this is the CCCZ gate def cccz(circuit,qr): pi = math.pi circuit.x(qr[0]) #we change the inputvalue by applying an X gate at the beggining circuit.x(qr[1]) #second qubit to 1 circuit.x(qr[2]) #third qubit to 1 circuit.x(qr[3]) #fourth qubit to 1 circuit.cu1(pi/4,qr[0],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(-pi/4, qr[1],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(pi/4, qr[1],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) qr4 = QuantumRegister(4) ccczCircuit = QuantumCircuit(qr4) cccz(ccczCircuit,qr4) ccczCircuit.draw(output="mpl") from qiskit.visualization import plot_state_qsphere sv_sim = Aer.get_backend('statevector_simulator') job_sim = execute(ccczCircuit, sv_sim) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex #vector2latex(statevec, pretext="|\\psi\\rangle =") plot_state_qsphere(statevec) def n_controlled_Z(circuit, qr): """Implement a Z gate with multiple controls""" if (len(qr) > 4): raise ValueError('The controlled Z with more than 3 controls is not implemented') # This is the case n = 2 (1 control + 1 target qubit) elif (len(qr) == 2): cz(circuit,qr) # This is the case n = 3 (2 control + 1 target qubit) elif (len(qr) == 3): ccz(circuit,qr) # This is the case n = 4 (3 control + 1 target qubit) elif (len(qr) == 4): cccz(circuit,qr) def phase_oracle(circuit,qr,element): # element is an array that defines the searched element, for example, element = [0,1,0,1] circuit.x(qr[0]) #we change the inputvalue by applying an X gate at the beggining # circuit.x(qr[1]) #for the second qubit circuit.x(qr[2]) # circuit.x(qr[3]) circuit.barrier() #in this part, we are changing the input to the oracle circuit n = len(element) for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) n_controlled_Z(circuit,qr) for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) element=[0,1,0,1] qr4 = QuantumRegister(4) oracleCircuit = QuantumCircuit(qr4) phase_oracle(oracleCircuit,qr4, element) oracleCircuit.draw(output="mpl") oracleCircuit.measure_all() qasm_simulator = Aer.get_backend('statevector_simulator') job_sim = execute(oracleCircuit, sv_sim) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") def inversion_about_average(circuit, register): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) n_controlled_Z(circuit, qr) circuit.x(register) circuit.h(register) #Let's plot it! qr = QuantumRegister(4) qAverage = QuantumCircuit(qr) inversion_about_average(qAverage, qr, 4) qAverage.draw(output='mpl') #implementation of the whole Grover Search Algorithm def cccz(circuit,qr): #first I define again the oracle, since before it was personalized pi = math.pi circuit.cu1(pi/4,qr[0],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(-pi/4, qr[1],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(pi/4, qr[1],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) def phase_oracle(circuit,qr,element): #first I define again the oracle, since before it was personalized circuit.barrier() #in this part, we are changing the input to the oracle circuit n = len(element) for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) n_controlled_Z(circuit,qr) for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) def n_controlled_Z(circuit, qr): """Implement a Z gate with multiple controls""" if (len(qr) > 4): raise ValueError('The controlled Z with more than 3 controls is not implemented') # This is the case n = 2 (1 control + 1 target qubit) elif (len(qr) == 2): cz(circuit,qr) # This is the case n = 3 (2 control + 1 target qubit) elif (len(qr) == 3): ccz(circuit,qr) # This is the case n = 4 (3 control + 1 target qubit) elif (len(qr) == 4): cccz(circuit,qr) def grover_algorithm(Circuit,R,qr,element): for i in range(1,R): phase_oracle(Circuit,qr,element) inversion_about_average(Circuit,qr) #n=2 circuit qr2=QuantumRegister(2) print(len(qr2)) cr2=ClassicalRegister(2) circuit2=QuantumCircuit(qr2,cr2) circuit2.h(0) circuit2.h(1)#quantum superposition of the initial states element2 = [0,1] grover_algorithm(circuit2,2,qr2,[0,1])
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np import math # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram from qiskit.visualization import plot_state_qsphere # Loading your IBM Q account(s) provider = IBMQ.load_account() ##############################EXERCISE 1############################################# #Define multi-qubit controlled Z-gate for n=2,3 or 4. #n=2 def cz(circuit,qr): circuit.h(qr[1]) circuit.cx(qr[0],qr[1]) circuit.h(qr[1]) #n=3 def ccz(circuit,qr): circuit.h(qr[2]) # ccx is the Toffoli gate circuit.ccx(qr[0], qr[1], qr[2]) circuit.h(qr[2]) #n=4 def cccz(circuit,qr): pi = math.pi circuit.cu1(pi/4,qr[0],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(-pi/4, qr[1],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(pi/4, qr[1],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) #Definition def n_controlled_Z(circuit, qr): """Implement a Z gate with multiple controls""" if (len(qr) > 4): raise ValueError('The controlled Z with more than 3 controls is not implemented') # This is the case n = 2 (1 control + 1 target qubit) elif (len(qr) == 2): cz(circuit,qr) # This is the case n = 3 (2 control + 1 target qubit) elif (len(qr) == 3): ccz(circuit,qr) # This is the case n = 4 (3 control + 1 target qubit) elif (len(qr) == 4): cccz(circuit,qr) #Now we check if this fuction ihas the same function as a multi-qubit controlled Z-gate. (ex.|11>->-|11>). #####n=2#### ##Circuitn2, input=all posible states. #Create the circuit qrn2=QuantumRegister(2) crn2=ClassicalRegister(2) circuitn2=QuantumCircuit(qrn2,crn2) #Built all the posible input states using H-gates. circuitn2.h(0) circuitn2.h(1) #Apply our function. n_controlled_Z(circuitn2, qrn2) #Draw the circuit. circuitn2.draw() #Execute the quantum circuit using qasm simulator. backend = BasicAer.get_backend('statevector_simulator') result = execute(circuitn2, backend).result() psin2 = result.get_statevector(circuitn2) #Print and plot the results. plot_state_qsphere(psin2) #Measure. circuitn2.measure([0,1],[0,1]) #Execute the quantum circuit using qasm simulator. backend = BasicAer.get_backend('qasm_simulator') result = execute(circuitn2, backend, shots=10000).result() countsn2 = result.get_counts(circuitn2) #Print and plot the results. print(countsn2) plot_histogram(countsn2) ##Circuitn2Z, input=all posible states. #Create the circuit qrn2Z=QuantumRegister(2) crn2Z=ClassicalRegister(2) circuitn2Z=QuantumCircuit(qrn2Z,crn2Z) #Built all the posible input states using H-gates. circuitn2Z.h(0) circuitn2Z.h(1) #Apply our function. circuitn2Z.cz(qrn2Z[0],qrn2Z[1]) #Draw the circuit. circuitn2Z.draw() #Execute the quantum circuit using state vector simulator. backend = BasicAer.get_backend('statevector_simulator') result = execute(circuitn2Z, backend).result() psin2Z = result.get_statevector(circuitn2Z) #Print and plot the results. plot_state_qsphere(psin2Z) #####n=3#### ##Circuitn3, input=all posible states. #Create the circuit qrn3=QuantumRegister(3) crn3=ClassicalRegister(3) circuitn3=QuantumCircuit(qrn3,crn3) #Built all the posible input states using H-gates. circuitn3.h(0) circuitn3.h(1) circuitn3.h(2) #Apply our function. n_controlled_Z(circuitn3, qrn3) #Draw the circuit. circuitn3.draw() #Execute the quantum circuit using statevector simulator. backend = BasicAer.get_backend('statevector_simulator') result = execute(circuitn3, backend).result() psin3 = result.get_statevector(circuitn3) #Print and plot the results. plot_state_qsphere(psin3) #Measure. circuitn3.measure([0,1,2],[0,1,2]) #Execute the quantum circuit using qasm simulator. backend = BasicAer.get_backend('qasm_simulator') result = execute(circuitn3, backend, shots=10000).result() countsn3 = result.get_counts(circuitn3) #Print and plot the results. print(countsn3) plot_histogram(countsn3) #####n=4#### ##Circuitn4, input=all posible states. #Create the circuit qrn4=QuantumRegister(4) crn4=ClassicalRegister(4) circuitn4=QuantumCircuit(qrn4,crn4) #Built all the posible input states using H-gates. circuitn4.h(0) circuitn4.h(1) circuitn4.h(2) circuitn4.h(3) #Apply our function. n_controlled_Z(circuitn4, qrn4) #Draw the circuit. circuitn4.draw() #Execute the quantum circuit using statevector simulator. backend = BasicAer.get_backend('statevector_simulator') result = execute(circuitn4, backend).result() psin4 = result.get_statevector(circuitn4) #Print and plot the results. plot_state_qsphere(psin4) #Measure. circuitn4.measure([0,1,2,3],[0,1,2,3]) #Execute the quantum circuit using qasm simulator. backend = BasicAer.get_backend('qasm_simulator') result = execute(circuitn4, backend, shots=10000).result() countsn4 = result.get_counts(circuitn4) #Print and plot the results. print(countsn4) plot_histogram(countsn4) ##Circuit0n4, input=|0000>. #Create the circuit qr0n4=QuantumRegister(4) cr0n4=ClassicalRegister(4) circuit0n4=QuantumCircuit(qr0n4,crn4) #The states are already 0. #Apply our function. n_controlled_Z(circuit0n4, qr0n4) #Draw the circuit. circuit0n4.draw() #Execute the quantum circuit using statevector simulator. backend = BasicAer.get_backend('statevector_simulator') result = execute(circuit0n4, backend).result() psi0n4 = result.get_statevector(circuit0n4) #Print and plot the results. plot_state_qsphere(psi0n4) ##############################EXERCISE 2############################################# #Check whether Oracle acts as expected. #Define Oracle def phase_oracle(circuit,qr,element): # element is an array that defines the searched element, for example, element = [0,1,0,1] n = len(element) for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) n_controlled_Z(circuit,qr) for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) # Create Circuite2, input=all posible states. #Create the circuit qre2=QuantumRegister(4) cre2=ClassicalRegister(4) circuite2=QuantumCircuit(qre2,cre2) #Built all the posible input states using H-gates. circuite2.h(0) circuite2.h(1) circuite2.h(2) circuite2.h(3) #Chose element to search. elemente2=[0,1,1,0] #Apply Oracle. phase_oracle(circuite2,qre2,elemente2) #Draw the circuit. circuite2.draw() #Execute the quantum circuit using statevector simulator. backend = BasicAer.get_backend('statevector_simulator') result = execute(circuite2, backend).result() psie2 = result.get_statevector(circuite2) #Print and plot the results. plot_state_qsphere(psie2) #Measure. circuite2.measure([0,1,2,3],[0,1,2,3]) #Execute the quantum circuit using qasm simulator. backend = BasicAer.get_backend('qasm_simulator') result = execute(circuite2, backend, shots=10000).result() countse2 = result.get_counts(circuite2) #Print and plot the results. print(countse2) plot_histogram(countse2) ##############################EXERCISE 3############################################# #Define Inversion def inversion_about_average(circuit, register): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) n_controlled_Z(circuit, qr) circuit.x(register) circuit.h(register) #Circuit that implements the Grover's Algorithm (we define a function in which we introduce our parameters). def grovers_algorithm(element,R,circuit,qr): #circuit=defined input of the circuit. #element=[a,b,c,d] with a,b=0,1, array representing the searched element. #R=number of repetitions. #Apply the algorithm R times. for i in range(1,R): #Apply Oracle. phase_oracle(circuit,qr,element) #Apply Inversion. inversion_about_average(circuit,qr) #Ex. searching |1010> #Create the circuit and set it with input=all posible states (2^4). qr=QuantumRegister(4) cr=ClassicalRegister(4) circuit=QuantumCircuit(qr,cr) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) #Apply the algorithm. grovers_algorithm([0,1,0,1],2,circuit,qr) #Plot the circuit. circuit.draw() #Measure. circuit.measure([0,1,2,3],[0,1,2,3]) #Execute the quantum circuit using qasm simulator. backend = BasicAer.get_backend('qasm_simulator') result = execute(circuit, backend, shots=1000).result() counts = result.get_counts(circuit) #Print and plot the results. print(counts) plot_histogram(counts) #Ex. searching |111> #Create the circuit and set it with input=all posible states (2^4). qr=QuantumRegister(3) cr=ClassicalRegister(3) circuit=QuantumCircuit(qr,cr) circuit.h(0) circuit.h(1) circuit.h(2) #Apply the algorithm. grovers_algorithm([1,1,1],3,circuit,qr) #Plot the circuit. circuit.draw() #Measure. circuit.measure([0,1,2],[0,1,2]) #Execute the quantum circuit using qasm simulator. backend = BasicAer.get_backend('qasm_simulator') result = execute(circuit, backend, shots=1000).result() counts = result.get_counts(circuit) #Print and plot the results. print(counts) plot_histogram(counts) #Ex. searching |00> #Create the circuit and set it with input=all posible states (2^4). qr=QuantumRegister(2) cr=ClassicalRegister(2) circuit=QuantumCircuit(qr,cr) circuit.h(0) circuit.h(1) #Apply the algorithm. grovers_algorithm([0,1],2,circuit,qr) #Plot the circuit. circuit.draw() #Measure. circuit.measure([0,1],[0,1]) #Execute the quantum circuit using qasm simulator. backend = BasicAer.get_backend('qasm_simulator') result = execute(circuit, backend, shots=1000).result() counts = result.get_counts(circuit) #Print and plot the results. print(counts) plot_histogram(counts) ##############################EXERCISE 4############################################# #number of measurements: it's easy to see by changing the parameter shoots that it doesn't really affect the results. #number of iterations: it must be chosen carefully because it follows a repetitive structure, being R~sqrt(n) a good election.
https://github.com/rubenandrebarreiro/summer-school-on-quantum-computing-software-for-near-term-quantum-devices-2020
rubenandrebarreiro
# Expand the Width of the Cells to a ratio of 100% from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) # Update, the Conda's version, if necessary !conda update -n base conda --yes # Install other useful Libraries for Quantum Information Science, # the QuTiP Framework, in this case, based on Python Programming Language !conda install qutip --yes # Import the matplotlib Library import matplotlib.pyplot as plt %matplotlib inline # Import the NumPy and Math Libraries, # based on Python Programming Language import numpy as np import math # Import some basic Modules from Qiskit Library and configuring account from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister, ClassicalRegister from qiskit.compiler import transpile, assemble from qiskit.providers.ibmq import least_busy from qiskit.tools.jupyter import * from qiskit.visualization import * # Import some basic Visualization/Plot Modules/Tools from Qiskit Library from qiskit.tools.visualization import plot_histogram # In Jupyter Notebooks we can display this nicely using Latex. # If not using Jupyter Notebooks you may need to remove the # array_to_latex function and use print() instead. from qiskit_textbook.tools import array_to_latex # Import Operator Module from Qiskit Library, for Custom Operators from qiskit.quantum_info.operators import Operator def cz(circuit, qr): circuit.h(qr[1]) circuit.cx(qr[0],qr[1]) circuit.h(qr[1]) # Create a Classical Register for 2 Bits (Classical Bits), with a Total of 2 Possible Processed States qr2 = QuantumRegister(2) czCircuit = QuantumCircuit(qr2) cz(czCircuit,qr2) czCircuit.draw(output="mpl") def ccz(circuit,qr): circuit.h(qr[2]) # CCX is the Toffoli gate circuit.ccx(qr[0], qr[1], qr[2]) circuit.h(qr[2]) qr3 = QuantumRegister(3) cczCircuit = QuantumCircuit(qr3) ccz(cczCircuit,qr3) cczCircuit.draw(output="mpl") def cccz(circuit,qr): pi = math.pi circuit.cu1(pi/4,qr[0],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(-pi/4, qr[1],qr[3]) circuit.cx(qr[0], qr[1]) circuit.cu1(pi/4, qr[1],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) circuit.cx(qr[1], qr[2]) circuit.cu1(-pi/4, qr[2],qr[3]) circuit.cx(qr[0], qr[2]) circuit.cu1(pi/4, qr[2],qr[3]) qr4 = QuantumRegister(4) ccczCircuit = QuantumCircuit(qr4) cccz(ccczCircuit,qr4) ccczCircuit.draw(output="mpl") def ccccz(circuit, qr): unitaryMatrixCCCCZ = Operator([ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1] ]) circuit.unitary(unitaryMatrixCCCCZ, qr, label='CCCCZ') qr5 = QuantumRegister(5) cccczCircuit = QuantumCircuit(qr5) ccccz(cccczCircuit,qr5) cccczCircuit.draw(output="mpl") def n_controlled_Z(circuit, qr): # Implement a Z-Gate with multiple controls if (len(qr) > 5): raise ValueError('The Controlled-Z with more than 4 Control-Qubits is not implemented!!!') # This is the case n = 2 (1 control + 1 target Qubit) elif (len(qr) == 2): cz(circuit,qr) # This is the case n = 3 (2 control + 1 target Qubit) elif (len(qr) == 3): ccz(circuit,qr) # This is the case n = 4 (3 control + 1 target Qubit) elif (len(qr) == 4): cccz(circuit,qr) # Extra Exercise (Made by Rúben André Barreiro) # This is the case n = 5 (4 control + 1 target Qubit) elif (len(qr) == 5): cccz(circuit,qr) # Getting the Backend for the Unitary Representation of the Controlled-Z Gate # (i.e., the Quantum State represented as an Unitary Matrix) backend = Aer.get_backend('unitary_simulator') unitaryCZ = execute(czCircuit,backend).result().get_unitary() unitaryCCZ = execute(cczCircuit,backend).result().get_unitary() unitaryCCCZ = execute(ccczCircuit,backend).result().get_unitary() unitaryCCCCZ = execute(cccczCircuit,backend).result().get_unitary() array_to_latex(unitaryCZ, pretext="\\text{CZ (Controlled-Z) = }\n") array_to_latex(unitaryCCZ, pretext="\\text{CCZ (Controlled-Controlled-Z) = }\n") array_to_latex(unitaryCCCZ, pretext="\\text{CCCZ (Controlled-Controlled-Controlled-Z) = }\n") # Extra Exercise (not asked by the Professors): # - Multi Controlled-Z Gate for 5 Qubits (Made by Rúben André Barreiro) array_to_latex(unitaryCCCCZ, pretext="\\text{CCCZ (Controlled-Controlled-Controlled-Controlled-Z) = }\n") def phase_oracle(circuit,qr,element): # Element is an Array that defines the searched Element, # for example, Element = [0,1,0,1] for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) circuit.barrier() n_controlled_Z(circuit,qr) circuit.barrier() for j,x in enumerate(element): if (x == 0): circuit.x(qr[j]) def mark_state(element_test_state, testCircuit): for qubit_index, element in enumerate(element_test_state): if element == 1: testCircuit.x(qubit_index) testCircuit.barrier() # Defining some tests, for the Phase Oracle, with n = 2 #element_test_2_states = [0,0] element_test_2_states = [0,1] #element_test_2_states = [1,0] #element_test_2_states = [1,1] qr2 = QuantumRegister(2) testFunctionCircuit2 = QuantumCircuit(qr2) element_test_2_states_binary = ''.join(map(str,element_test_2_states)) print("The Marked State is: |{}⟩".format(element_test_2_states_binary)) element_test_2_states.reverse() mark_state(element_test_2_states, testFunctionCircuit2) phase_oracle(testFunctionCircuit2,qr2,element_test_2_states) testFunctionCircuit2.draw(output="mpl") # Getting the Backend for the Statevector Representation # (i.e., the Quantum State represented as State Vector) statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(testFunctionCircuit2,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1) # Defining some tests, for the Phase Oracle, with n = 3 #element_test_3_states = [0,0,0] #element_test_3_states = [0,0,1] #element_test_3_states = [0,1,0] element_test_3_states = [0,1,1] #element_test_3_states = [1,0,0] #element_test_3_states = [1,0,1] #element_test_3_states = [1,1,0] #element_test_3_states = [1,1,1] qr3 = QuantumRegister(3) testFunctionCircuit3 = QuantumCircuit(qr3) element_test_3_states_binary = ''.join(map(str,element_test_3_states)) print("The Marked State is: |{}⟩".format(element_test_3_states_binary)) element_test_3_states.reverse() mark_state(element_test_3_states, testFunctionCircuit3) phase_oracle(testFunctionCircuit3,qr3,element_test_3_states) testFunctionCircuit3.draw(output="mpl") # Getting the Backend for the Statevector Representation # (i.e., the Quantum State represented as State Vector) statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(testFunctionCircuit3,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1) # Defining some tests, for the Phase Oracle, with n = 4 #element_test_4_states = [0,0,0,0] #element_test_4_states = [0,0,0,1] #element_test_4_states = [0,0,1,0] #element_test_4_states = [0,0,1,1] #element_test_4_states = [0,1,0,0] #element_test_4_states = [0,1,0,1] #element_test_4_states = [0,1,1,0] #element_test_4_states = [0,1,1,1] #element_test_4_states = [1,0,0,0] #element_test_4_states = [1,0,0,1] element_test_4_states = [1,0,1,0] #element_test_4_states = [1,0,1,1] #element_test_4_states = [1,1,0,0] #element_test_4_states = [1,1,0,1] #element_test_4_states = [1,1,1,0] #element_test_4_states = [1,1,1,1] qr4 = QuantumRegister(4) testFunctionCircuit4 = QuantumCircuit(qr4) element_test_4_states_binary = ''.join(map(str,element_test_4_states)) print("The Marked State is: |{}⟩".format(element_test_4_states_binary)) element_test_4_states.reverse() mark_state(element_test_4_states, testFunctionCircuit4) phase_oracle(testFunctionCircuit4,qr4,element_test_4_states) testFunctionCircuit4.draw(output="mpl") # Getting the Backend for the Statevector Representation # (i.e., the Quantum State represented as State Vector) statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(testFunctionCircuit4,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Final State for Marked State (Statevector) = }\n", precision = 1) def inversion_about_average(circuit, qr): # Apply Inversion Operator about the Average step of Grover's Algorithm circuit.h(qr) circuit.x(qr) n_controlled_Z(circuit, qr) circuit.x(qr) circuit.h(qr) # Now, let's plot the Quantum Circuit for the Quantum Average qr = QuantumRegister(4) qAverage = QuantumCircuit(qr) inversion_about_average(qAverage, qr) qAverage.draw(output='mpl') def putAllQubitsInQuantumSuperposition(n, quantumCircuit): for qubit_index in range(n): quantumCircuit.h(qubit_index) def measureAllQubits(n, quantumCircuit, quantumRegister, classicalRegister): for qubit_index in range(n): quantumCircuit.measure(quantumRegister[qubit_index], classicalRegister[qubit_index]) def grover_algorithm(quantumCircuit,quantumRegister,classicalRegister,element,n): putAllQubitsInQuantumSuperposition(n,quantumCircuit) # Experimental Constant Factor, # for incrementing the number of Steps of the Grover's Algorithm additional_steps = 0 #additional_steps = 1 #additional_steps = 2 #additional_steps = 3 #additional_steps = 4 for step in range(1, ( n + additional_steps )): phase_oracle(quantumCircuit,quantumRegister, element) inversion_about_average(quantumCircuit, quantumRegister) measureAllQubits(n, quantumCircuit, quantumRegister, classicalRegister) qr2 = QuantumRegister(2) cr2 = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr2,cr2) #element_2_states = [0,0] element_2_states = [0,1] #element_2_states = [1,0] #element_2_states = [1,1] element_2_states_binary = ''.join(map(str,element_2_states)) print("The Marked State, we're looking for, is: |{}⟩".format(element_2_states_binary)) element_2_states.reverse() grover_algorithm(groverCircuit,qr2,cr2,element_2_states,2) groverCircuit.draw("mpl") # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(groverCircuit,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) qr3 = QuantumRegister(3) cr3 = ClassicalRegister(3) groverCircuit = QuantumCircuit(qr3,cr3) #element_3_states = [0,0,0] #element_3_states = [0,0,1] #element_3_states = [0,1,0] #element_3_states = [0,1,1] #element_3_states = [1,0,0] #element_3_states = [1,0,1] element_3_states = [1,1,0] #element_3_states = [1,1,1] element_3_states_binary = ''.join(map(str,element_3_states)) print("The Marked State, we're looking for, is: |{}⟩".format(element_3_states_binary)) element_3_states.reverse() grover_algorithm(groverCircuit,qr3,cr3,element_3_states,3) groverCircuit.draw("mpl") # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(groverCircuit,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) qr4 = QuantumRegister(4) cr4 = ClassicalRegister(4) groverCircuit = QuantumCircuit(qr4,cr4) #element_4_states = [0,0,0,0] #element_4_states = [0,0,0,1] #element_4_states = [0,0,1,0] #element_4_states = [0,0,1,1] #element_4_states = [0,1,0,0] #element_4_states = [0,1,0,1] #element_4_states = [0,1,1,0] #element_4_states = [0,1,1,1] #element_4_states = [1,0,0,0] #element_4_states = [1,0,0,1] #element_4_states = [1,0,1,0] element_4_states = [1,0,1,1] #element_4_states = [1,1,0,0] #element_4_states = [1,1,0,1] #element_4_states = [1,1,1,0] #element_4_states = [1,1,1,1] element_4_states_binary = ''.join(map(str,element_4_states)) print("The Marked State, we're looking for, is: |{}⟩".format(element_4_states_binary)) element_4_states.reverse() grover_algorithm(groverCircuit,qr4,cr4,element_4_states,4) groverCircuit.draw("mpl") # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(groverCircuit,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) qr5 = QuantumRegister(5) cr5 = ClassicalRegister(5) groverCircuit = QuantumCircuit(qr5,cr5) #element_5_states = [0,0,0,0,0] #element_5_states = [0,0,0,0,1] element_5_states = [0,0,0,1,0] #element_5_states = [0,0,0,1,1] #element_5_states = [0,0,1,0,0] #element_5_states = [0,0,1,0,1] #element_5_states = [0,0,1,1,0] #element_5_states = [0,0,1,1,1] #element_5_states = [0,1,0,0,0] #element_5_states = [0,1,0,0,1] #element_5_states = [0,1,0,1,0] #element_5_states = [0,1,0,1,1] #element_5_states = [0,1,1,0,0] #element_5_states = [0,1,1,0,1] #element_5_states = [0,1,1,1,0] #element_5_states = [0,1,1,1,1] #element_5_states = [1,0,0,0,0] #element_5_states = [1,0,0,0,1] #element_5_states = [1,0,0,1,0] #element_5_states = [1,0,0,1,1] #element_5_states = [1,0,1,0,0] #element_5_states = [1,0,1,0,1] #element_5_states = [1,0,1,1,0] #element_5_states = [1,0,1,1,1] #element_5_states = [1,1,0,0,0] #element_5_states = [1,1,0,0,1] #element_5_states = [1,1,0,1,0] #element_5_states = [1,1,0,1,1] #element_5_states = [1,1,1,0,0] #element_5_states = [1,1,1,0,1] #element_5_states = [1,1,1,1,0] #element_5_states = [1,1,1,1,1] element_5_states_binary = ''.join(map(str,element_5_states)) print("The Marked State, we're looking for, is: |{}⟩".format(element_5_states_binary)) element_5_states.reverse() grover_algorithm(groverCircuit,qr5,cr5,element_5_states,5) groverCircuit.draw("mpl") # Now, let's execute the Quantum Circuit in the QASM Simulator of the Aer Module, # of the IBM Qiskit Library backend = Aer.get_backend('qasm_simulator') counts = execute(groverCircuit,backend,shots=2048).result().get_counts() # Print the Counts of the Frequencies, resulting from this Experiment print(counts) # Plot the Counts of the Frequencies, resulting from this Experiment, through a Histogram # (i.e., a Distribution of the Probabilities) plot_histogram(counts) # Print the current Qiskit's Modules' Version import qiskit qiskit.__qiskit_version__
https://github.com/kurtchahn/QiskitPrx
kurtchahn
import qiskit as qk import qiskit_aer as qaer import numpy as np import math sSimulator = qaer.Aer.backends(name="statevector_simulator")[0] mSimulator = qaer.Aer.backends(name="qasm_simulator")[0] qr = qk.QuantumRegister(1) helloQubit = qk.QuantumCircuit(qr) ## identity operator on q0 helloQubit.id(qr[0]) job = sSimulator.run(helloQubit) result = job.result() result.get_statevector() helloQubit.draw("mpl") qr = qk.QuantumRegister(3) qc = qk.QuantumCircuit(qr) qc.id(qr[0]) qc.id(qr[1]) qc.id(qr[2]) job = sSimulator.run(qc) result = job.result() result.get_statevector() qc.draw("mpl") qr = qk.QuantumRegister(1) cr = qk.ClassicalRegister(1) qc = qk.QuantumCircuit(qr, cr) qc.h(qr[0]) qc.measure(qr, cr) job = mSimulator.run(qc) result = job.result() result.get_counts(qc) qc.draw("mpl") qr = qk.QuantumRegister(2) cr = qk.ClassicalRegister(2) qc = qk.QuantumCircuit(qr, cr) qc.h(qr[0]) qc.h(qr[1]) qc.measure(qr, cr) counts = mSimulator.run(qc).result().get_counts(qc) print(counts) qc.draw("mpl") ## Partial Measurement qr = qk.QuantumRegister(2) cr = qk.ClassicalRegister(2) qc = qk.QuantumCircuit(qr, cr) qc.h(qr[0]) qc.h(qr[1]) qc.measure(qr[0], cr[0]) counts = mSimulator.run(qc).result().get_counts(qc) print(counts) def perfect_coinflip(numFlips): qr = qk.QuantumRegister(1) cr = qk.ClassicalRegister(1) coin = qk.QuantumCircuit(qr, cr) coin.h(qr[0]) coin.measure(qr, cr) counts = mSimulator.run(coin, shots=numFlips).result().get_counts(coin) heads = counts["0"] tails = counts["1"] return heads, tails numHeads, numTails = perfect_coinflip(100) print(f"Heads: {numHeads}") print(f"Tails: {numTails}")
https://github.com/kurtchahn/QiskitPrx
kurtchahn
import qiskit as qk import qiskit_aer as qaer import numpy as np import math sSimulator = qaer.Aer.backends(name="statevector_simulator")[0] mSimulator = qaer.Aer.backends(name="qasm_simulator")[0] qr = qk.QuantumRegister(2, name="qr") cr = qk.ClassicalRegister(2, name="cr") qc = qk.QuantumCircuit(qr, cr, name="qc") qc.h(qr[0]) qc.cx(qr[0], qr[1]) qr1 = qk.QuantumRegister(2, name="qr1") cr1 = qk.ClassicalRegister(2, name="cr1") qc1 = qk.QuantumCircuit(qr1, cr1, name="qc1") qr2 = qk.QuantumRegister(2, name="qr2") cr2 = qk.ClassicalRegister(2, name="cr2") qc2 = qk.QuantumCircuit(qr2, cr2, name="qc2") qc1.h(qr1[0]) qc1.id(qr1[1]) qc2.id(qr2[0]) qc2.h(qr2[1]) qc3 = qc1.compose(qc2) qc1.draw("mpl") qc2.draw("mpl") qc3.draw("mpl")
https://github.com/kurtchahn/QiskitPrx
kurtchahn
import qiskit as qk import qiskit_aer as qaer import numpy as np import math sSimulator = qaer.Aer.backends(name="statevector_simulator")[0] mSimulator = qaer.Aer.backends(name="qasm_simulator")[0] qr = qk.QuantumRegister(1, name="qr") qc = qk.QuantumCircuit(qr, name="qc") qc.h(qr[0]) sSimulator.run(qc).result().get_statevector() qc.draw("mpl") qc.p(math.pi/4, qr[0]) sSimulator.run(qc).result().get_statevector() qc.draw("mpl") qr = qk.QuantumRegister(1, name="qr") qc = qk.QuantumCircuit(qr, name="qc") qc.rx(math.pi/2, qr[0]) sSimulator.run(qc).result().get_statevector() qc.draw("mpl") qr = qk.QuantumRegister(3, name="qr") qc = qk.QuantumCircuit(qr, name="qc") qc.h(qr[0]) qc.x(qr[1]) qc.id(qr[2]) qc.cswap(qr[0], qr[1], qr[2]) sSimulator.run(qc).result().get_statevector() qc.draw("mpl")
https://github.com/kurtchahn/QiskitPrx
kurtchahn
import qiskit as qk import qiskit_aer as qaer import numpy as np import math sSimulator = qaer.Aer.backends(name="statevector_simulator")[0] mSimulator = qaer.Aer.backends(name="qasm_simulator")[0]
https://github.com/kurtchahn/QiskitPrx
kurtchahn
import qiskit as qk import qiskit_aer as qaer import numpy as np import math sSimulator = qaer.Aer.backends(name="statevector_simulator")[0] mSimulator = qaer.Aer.backends(name="qasm_simulator")[0] def create_blackbox(): def F1(x): return 0 def F2(x): return 1 def F3(x): return x%2 def F4(x): return (x+1)%2 functions = [F1, F2, F3, F4] function = functions[ np.random.randint(0, 3) ] return function blackbox = create_blackbox() print("f(0): ", blackbox(0)) print("f(1): ", blackbox(1)) if (blackbox(0) == blackbox(1)): print("f is a constant function") else: print("f is a balanced function") def return_blackbox(): q = qk.QuantumRegister(2) blackbox = qk.QuantumCircuit(q, name=r"$\hat{U}_B$") rand = np.random.randint(0, 3) match rand: case 0: ## f(0,1) -> (0,1) blackbox.cx(q[0], q[1]) print("balanced") case 1: ## f(0,1) -> (1,0) blackbox.x(q[0]) blackbox.cx(q[0], q[1]) blackbox.x(q[0]) print("balanced") case 2: ## f(0,1) -> (0,0) blackbox.id(q[0]) blackbox.id(q[1]) print("constant") case 3: ## f(0,1) -> (1,1) blackbox.id(q[0]) blackbox.x(q[1]) print("constant") return blackbox.to_instruction() q = qk.QuantumRegister(2, name="q") c = qk.ClassicalRegister(1, name="c") deutsch = qk.QuantumCircuit(q, c, name="qc") deutsch.id(q[0]) deutsch.x(q[1]) deutsch.h(q[0]) deutsch.h(q[1]) deutsch.barrier(label=r"$|\psi\rangle_{in}$") blackbox = return_blackbox() deutsch.append(blackbox, [0,1]) deutsch.barrier(label=r"$\hat{U}_B|\psi\rangle_{in}$") deutsch.h(q[0]) deutsch.h(q[1]) deutsch.barrier() ## We only need to measure q0 to determine if f is balanced or constant deutsch.measure(q[0], c) deutsch.draw("mpl") ## We only need 1 shot ## We need to decompose the circuit in order for the simulator to read the blackbox instructions counts = mSimulator.run(deutsch.decompose(), shots=1).result().get_counts(deutsch.decompose()) if ("0" in counts): print(r"0 state measured: f is a constant function") elif ("1" in counts): print(r"1 state measured: f is a balanced function")
https://github.com/kurtchahn/QiskitPrx
kurtchahn
import qiskit as qk import qiskit_aer as qaer import numpy as np import math sSimulator = qaer.Aer.backends(name="statevector_simulator")[0] mSimulator = qaer.Aer.backends(name="qasm_simulator")[0]
https://github.com/kurtchahn/QiskitPrx
kurtchahn
import qiskit as qk import qiskit_aer as qaer import numpy as np import math sSimulator = qaer.Aer.backends(name="statevector_simulator")[0] mSimulator = qaer.Aer.backends(name="qasm_simulator")[0]
https://github.com/crabster/qiskit-learning
crabster
from argparse import ArgumentParser from qiskit import execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt from circuits.test import test_circuit from circuits.quantum_teleportation import quantum_teleportation_example from circuits.superdense_coding import superdense_coding_example from circuits.deutsch_jozsa import deutsch_jozsa_example from circuits.bernstein_vazirani import bernstein_vazirani_example from circuits.quantum_fourier_transform import qft_example from circuits.quantum_phase_estimation import qpe_example parser = ArgumentParser(description='Run quantum circuit.') parser.add_argument('-b', '--backend', metavar='BE', default='qasm_simulator', choices=['auto', 'qasm_simulator', 'ibmqx2', 'ibmq_16_melbourne', 'ibmq_vigo', 'ibmq_ourense', 'ibmq_london', 'ibmq_burlington', 'ibmq_essex', 'ibmq_armonk', 'ibmq_rome'], help='backend BE on which will the circuit run') parser.add_argument('-c', '--circuit', metavar='QC', required=True, choices=['test', 'tp', 'sc', 'dj', 'bv', 'qft', 'qpe'], help='circuit QC to be run') parser.add_argument('--shots', type=int, default=1024, help='plot counts histogram of the result') parser.add_argument('--plot', action="store_true", help='plot counts histogram of the result') args = parser.parse_args() if args.circuit == 'test': qc = test_circuit() if args.circuit == 'tp': qc = quantum_teleportation_example() if args.circuit == 'sc': qc = superdense_coding_example() if args.circuit == 'dj': qc = deutsch_jozsa_example() if args.circuit == 'bv': qc = bernstein_vazirani_example() if args.circuit == 'qft': qc = qft_example() if args.circuit == 'qpe': qc = qpe_example() if args.backend == 'qasm_simulator': backend = BasicAer.get_backend('qasm_simulator') else: IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') if args.backend == 'auto': backends = provider.backends(filters=lambda b: b.configuration().n_qubits >= qc.num_qubits and not b.configuration().simulator and b.status().operational==True) backend = least_busy(backends) else: backend = provider.get_backend(args.backend) job = execute(qc, backend, shots=args.shots) job_monitor(job) counts = job.result().get_counts() print(counts) if args.plot: plot_histogram(counts) plt.show()
https://github.com/crabster/qiskit-learning
crabster
from qiskit import QuantumCircuit from QCLG_lvl3.oracles.secret_number_oracle import SecretNUmberOracle class BernsteinVazirani: @classmethod def bernstein_vazirani(cls, random_binary, eval_mode: bool) -> QuantumCircuit: # Construct secret number oracle secret_number_oracle = SecretNUmberOracle.create_secret_number_oracle(random_binary=random_binary, eval_mode=eval_mode) num_of_qubits = secret_number_oracle.num_qubits # Construct circuit according to the length of the number dj_circuit = QuantumCircuit(num_of_qubits, num_of_qubits - 1) dj_circuit_before_oracle = QuantumCircuit(num_of_qubits, num_of_qubits - 1) # Apply H-gates for qubit in range(num_of_qubits - 1): dj_circuit_before_oracle.h(qubit) # Put output qubit in state |-> dj_circuit_before_oracle.x(num_of_qubits - 1) dj_circuit_before_oracle.h(num_of_qubits - 1) dj_circuit += dj_circuit_before_oracle # Add oracle dj_circuit += secret_number_oracle dj_circuit_after_oracle = QuantumCircuit(num_of_qubits, num_of_qubits - 1) # Repeat H-gates for qubit in range(num_of_qubits - 1): dj_circuit_after_oracle.h(qubit) dj_circuit_after_oracle.barrier() # Measure for i in range(num_of_qubits - 1): dj_circuit_after_oracle.measure(i, i) dj_circuit += dj_circuit_after_oracle if not eval_mode: print("Circuit before the oracle\n") print(QuantumCircuit.draw(dj_circuit_before_oracle)) print("Circuit after the oracle\n") print(QuantumCircuit.draw(dj_circuit_after_oracle)) print(dj_circuit) return dj_circuit
https://github.com/crabster/qiskit-learning
crabster
import qiskit from math import pi from random import random def random_state_gate(): theta = 2*pi*random() phi = 2*pi*random() lam = 2*pi*random() qc = qiskit.QuantumCircuit(1) qc.u3(theta, phi, lam, 0) gate = qc.to_gate() gate.name = f"$U_3$ {theta:.2f},{phi:.2f},{lam:.2f}" return gate def phi_plus_gate(): qc = qiskit.QuantumCircuit(2) qc.h(0) qc.cx(0, 1) gate = qc.to_gate() gate.name = "$\phi^{+}$" return gate def phi_minus_gate(): qc = qiskit.QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.x(0) qc.z(0) gate = qc.to_gate() gate.name = "$\phi^{-}$" return gate def psi_plus_gate(): qc = qiskit.QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.x(0) gate = qc.to_gate() gate.name = "$\psi^{+}$" return gate def psi_minus_gate(): qc = qiskit.QuantumCircuit(2) qc.h(0) qc.cx(0, 1) qc.z(0) gate = qc.to_gate() gate.name = "$\psi^{-}$" return qc
https://github.com/crabster/qiskit-learning
crabster
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 19 19:13:26 2023 @author: abdullahalshihry """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 18 19:15:12 2023 @author: abdullahalshihry """ import qiskit as qs import qiskit.visualization as qv import random import qiskit.circuit as qf def Deutsch_Jozsa(circuit): qr = qs.QuantumRegister(5,'q') cr = qs.ClassicalRegister(4,'c') qc = qs.QuantumCircuit(qr,cr) qc.x(qr[4]) qc.barrier(range(5)) qc.h(qr[0]) qc.h(qr[1]) qc.h(qr[2]) qc.h(qr[3]) qc.h(qr[4]) qc.barrier(range(5)) qc = qc.compose(circuit) qc.barrier(range(5)) qc.h(qr[0]) qc.h(qr[1]) qc.h(qr[2]) qc.h(qr[3]) qc.barrier(range(5)) qc.measure(0,0) qc.measure(1,1) qc.measure(2,2) qc.measure(3,3) job1 = qs.execute(qc, qs.Aer.get_backend('aer_simulator'), shots = 1024) output1 = job1.result().get_counts() print(output1) qc.draw('mpl') def Oracle(): qr = qs.QuantumRegister(5,'q') cr = qs.ClassicalRegister(4,'c') qc = qs.QuantumCircuit(qr,cr) qq = qs.QuantumCircuit(5,name='Uf') v = random.randint(1, 2) if v == 1: qc.cx(0,4) qc.cx(1,4) qc.cx(2,4) qc.cx(3,4) print('Balanced (1)') elif v == 2: qq.i(qr[0]) qq.i(qr[1]) qq.i(qr[2]) qq.i(qr[3]) print('Constant (0)') qq =qq.to_gate() qc.append(qq,[0,1,2,3,4]) return qc Deutsch_Jozsa(Oracle())
https://github.com/crabster/qiskit-learning
crabster
''' This program implements the quantum Fourier transform (QFT) ''' from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, IBMQ from qiskit.visualization import circuit_drawer as drawer from qiskit.tools.visualization import plot_histogram from qiskit import execute from qiskit import Aer import numpy as np import time, os, shutil from matplotlib.pyplot import plot, draw, show def QFT(q, c, n): qc = QuantumCircuit(q,c) # First get the most significant bit for k in range(n): j = n - k # now add the Hadamard transform to qubit j-1 qc.h(q[j-1]) # now each qubit from the lowest significance # takes one conditional phase shift for i in reversed(range(j-1)): qc.cp(2*np.pi/2**(j-i), q[i], q[j-1]) # Finally swap the qubits for i in range(n//2): qc.swap(q[i], q[n-i-1]) return qc # QFT is represented in a matrix form with 2^n rows and columns # where n represents the number of qubits def QFTmatrix(n): qft = np.zeros([2**n,2**n], dtype=complex) for i in range(2**n): for k in range(2**n): qft[i,k] = np.exp(i*k*2*2j*np.pi/(2**n)) return(1/np.sqrt(2**n)*qft) def QFTcircuit(n): q = QuantumRegister(n, "q") c = ClassicalRegister(n, "c") qc = QFT(q, c, n) backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend) actual = job.result().get_unitary() np.around(actual, 2) expected = QFTmatrix(n) delta = actual - expected print("Deviation: ", round(np.linalg.norm(delta), 10)) return qc LaTex_folder_QFT = str(os.getcwd())+'/Latex_quantum_gates/Quantum_Fourier_transform/' if not os.path.exists(LaTex_folder_QFT): os.makedirs(LaTex_folder_QFT) else: shutil.rmtree(LaTex_folder_QFT) os.makedirs(LaTex_folder_QFT) n=4 qc = QFTcircuit(n) # create a LaTex file for the algorithm LaTex_code = qc.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Quantum_Four_transform_'+str(n)+'qubits.tex' with open(LaTex_folder_QFT+f_name, 'w') as f: f.write(LaTex_code) n = 4 q = QuantumRegister(n, "x") c = ClassicalRegister(n, "c") qftCircuit = QFT(q, c, n) initCircuit = QuantumCircuit(q, c) for qubit in q: initCircuit.h(qubit) initCircuit.barrier(q) qc = QuantumCircuit.compose(initCircuit, qftCircuit) qc.barrier(q) qc.measure(q, c) # on simulator backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend) k = job.result().get_counts() print(k) # on a real quantum computer provider = IBMQ.load_account() backend = provider.backend.ibmq_lima print("Status of backened: ", backend.status()) job = execute(qc, backend=backend, shots = 1024) lapse = 0 print("This step might take some time.") time.sleep(3) interval = 60 while((job.status().name != 'DONE') and (job.status().name != 'Cancelled') and (job.status().name != 'ERROR')): print('Status @ {} seconds'.format(interval * lapse)) print(job.status()) print(job.queue_position()) time.sleep(interval) lapse +=1 print(job.status()) plt = plot_histogram(job.result().get_counts())
https://github.com/crabster/qiskit-learning
crabster
from qiskit import QuantumCircuit, transpile, assemble from qiskit.circuit.library import QFT class CtrlMultCircuit(QuantumCircuit): def __init__(self, a, binary_power, N): super().__init__(N.bit_length()) self.a = a self.power = 2 ** binary_power # Convert binary to decimal self.N = N self.name = f'{self.a}^{self.power} mod {self.N}' self._create_circuit() def _create_circuit(self): for dec_power in range(self.power): a_exp = self.a ** dec_power % self.N for i in range(self.num_qubits): if a_exp >> i & 1: self.x(i) for j in range(i + 1, self.num_qubits): if a_exp >> j & 1: self.swap(i, j) class QPECircuit(QuantumCircuit): def __init__(self, a, N): super().__init__(2 * N.bit_length(), N.bit_length()) self.a = a self.N = N self._create_circuit() def _modular_exponentiation(self): for qbit_idx in range(self.num_qubits // 2): self.append( CtrlMultCircuit(self.a, qbit_idx, self.N).to_gate().control(), [qbit_idx] + list(range(self.num_qubits // 2, 2 * self.num_qubits // 2)) ) def _create_circuit(self): self.h(range(self.num_qubits // 2)) # Apply Hadamard gates to the first n qubits self.x(self.num_qubits - 1) self.barrier() self._modular_exponentiation() # Apply controlled modular exponentiation self.barrier() self.append( QFT(self.num_qubits // 2, inverse=True), range(self.num_qubits // 2) # Apply inverse QFT to the first n qubits ) def collapse(self, simulator): self.measure(range(self.num_qubits // 2), range(self.num_qubits // 2)) transpiled_circuit = transpile(self, simulator) self.collapse_result = simulator.run(transpiled_circuit, memory=True).result() return self.collapse_result
https://github.com/crabster/qiskit-learning
crabster
''' This is a implementation of the quantum teleportation algorithm ''' from qiskit import * from qiskit.visualization import plot_histogram import os, shutil, numpy from matplotlib.pyplot import plot, draw, show LaTex_folder_Quantum_Teleportation = str(os.getcwd())+'/Latex_quantum_gates/Quantum_Teleportation/' if not os.path.exists(LaTex_folder_Quantum_Teleportation): os.makedirs(LaTex_folder_Quantum_Teleportation) else: shutil.rmtree(LaTex_folder_Quantum_Teleportation) os.makedirs(LaTex_folder_Quantum_Teleportation) qc = QuantumCircuit(3,3) ## prepare the state to be teleported phi = 0*numpy.pi theta= 0.5*numpy.pi lam = 0*numpy.pi qc.u(phi=phi, theta=theta,lam=lam,qubit=0) ## teleport the state qc.barrier() qc.h(1) qc.cx(1,2) qc.cz(0,1) qc.h(0) qc.h(1) qc.barrier() qc.measure([0,1],[0,1]) qc.barrier() qc.x(2).c_if(0,1) qc.z(2).c_if(1,1) qc.h(2) qc.measure(2,2) LaTex_code = qc.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'quantum_teleportation.tex' with open(LaTex_folder_Quantum_Teleportation+f_name, 'w') as f: f.write(LaTex_code) # simulation simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend=simulator, shots=100000).result() counts = {'0':0, '1': 0} print(result.get_counts().keys()) for key, value in result.get_counts().items(): if(key[0] == '0'): counts['0'] += value else: counts['1'] += value print(counts) plt = plot_histogram(counts) draw() show(block=True)
https://github.com/crabster/qiskit-learning
crabster
import qiskit from .common_gates import * import random def superdense_coding_circuit(msg): qc = qiskit.QuantumCircuit(2) phi_plus = phi_plus_gate() qc.append(phi_plus, [0, 1]) qc.barrier() if msg[1] == '1': qc.z(0) if msg[0] == '1': qc.x(0) qc.barrier() qc.append(phi_plus.inverse(), [0, 1]) qc.name = "SC" return qc def superdense_coding_example(): msg = random.choice(["00", "01", "10", "11"]) qc = qiskit.QuantumCircuit(2, 2) sc_qc = superdense_coding_circuit(msg) qc.append(sc_qc, [0, 1]) if msg[0] == '1': qc.x(1) if msg[1] == '1': qc.x(0) qc.measure([0, 1], [0, 1]) print(msg) print(qc.draw(output="text")) return qc
https://github.com/crabster/qiskit-learning
crabster
""" Test Script """ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister qrx = QuantumRegister(1, 'q0') qry = QuantumRegister(1, 'q1') cr = ClassicalRegister(1, 'c') qc = QuantumCircuit(qrx, qry, cr) qc.h(qrx) qc.x(qry) qc.h(qry) qc.barrier() qc.x(qry) qc.barrier() qc.h(qrx) qc.h(qry) qc.measure(qrx, cr) qc.draw("mpl") from qiskit import execute from qiskit.providers.aer import AerSimulator from qiskit.visualization import plot_histogram sim = AerSimulator() job = execute(qc, backend = sim, shots = 1000) result = job.result() counts = result.get_counts(qc) print("Counts: ", counts) plot_histogram(counts)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
from qiskit import * from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import numpy as np from IPython.display import display, Math, Latex %matplotlib inline # Loading your IBM Q account(s) provider = IBMQ.load_account() # The '0' state plot_bloch_vector([0,0,1]) # The '1' state plot_bloch_vector([0,0,-1]) qc1 = QuantumCircuit(2,2) # Initializing a quantum ciruit (2 qubits, 2 classical bits) # All initialized to '0' by default. qc1.draw(output='mpl') # Draws the circuit diagram qc1.x(0) # Applying X gate to the first qubit qc1.draw(output='mpl') qc1.x(1) # Applying X gate to the second qubit qc1.draw(output='mpl') # The '+' state plot_bloch_vector([1,0,0]) # The '-' state plot_bloch_vector([-1,0,0]) qc2 = QuantumCircuit(2,2) # A new quantum circuit with 2 qubits and 2 classical bits qc2.h(0) # Applying the Hadamard gate on first qubit qc2.draw(output='mpl') qc2.cx(0,1) # Applying CX gate ('control','target') qc2.draw(output='mpl') qc2.measure(0,0) # Measure first qubit and store it in first classical bit qc2.measure(1,1) # Measure second qubit and store it in second classical bit # The code below plots a histogram of the measurement result. You can copy it for further use. def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc, backend, shots = 2000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc2) print(counts) plot_histogram(counts) qc1.h(0) qc1.cx(0, 1) qc1.draw(output='mpl') qc1.measure(0,0) qc1.measure(1,1) def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend, shots = 2000).result() counts = result.get_counts() return counts counts = run_circuit(qc1) print(counts) plot_histogram(counts) qc3 = QuantumCircuit(3,3) qc3.x(range(3)) # Setting the all qubits to '1' qc3.toffoli(0,1,2) # (control,control,target) qc3.measure(0,0) qc3.measure(1,1) qc3.measure(2,2) def run_circuit(qc3): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc3, backend, shots = 2000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc3) print(counts) plot_histogram(counts) # The output should be '011' as the highest (q2) is flipped because the other two qubits were set to '1' qc4 = QuantumCircuit(2,2) #Applying the Pauli-X gate to quantum bit 0, we turn it into 1 so that the swap outcome is observable. qc4.x(0) qc4.cx(0, 1) qc4.cx(1, 0) qc4.cx(0, 1) qc4.draw(output='mpl') qc4.measure(0,0) qc4.measure(1,1) def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend, shots = 2000).result() counts = result.get_counts() return counts counts = run_circuit(qc4) print(counts) plot_histogram(counts) qc5 = QuantumCircuit(2,2) #We turn quantum bit 1 into 1 so that we can observe the results of HZH on both 0 (from q0) and 1 (from q1). qc5.x(1) qc5.h((0, 1)) qc5.z((0, 1)) qc5.h((0, 1)) qc5.draw(output='mpl') qc5.measure(0,0) qc5.measure(1,1) def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend, shots = 2000).result() counts = result.get_counts() return counts counts = run_circuit(qc5) print(counts) plot_histogram(counts) qc6 = QuantumCircuit(3,3) #Initializing quantum bits using gates: #q0 is initialized to 0. #q1 is initialized to 1. qc6.x(1) #q2 is initialized to the state given above. qc6.x(2) qc6.h(2) qc6.t(2) #We change q2 for the controlled swap now; we'll bring it back to the same state afterwards. qc6.tdg(2) qc6.h(2) #Controlled swap. qc6.toffoli(0, 2, 1) qc6.toffoli(1, 2, 0) qc6.toffoli(0, 2, 1) #We convert q2 back to whatever it was. qc6.h(2) qc6.t(2) qc6.draw(output='mpl') qc6.measure(0, 0) qc6.measure(1, 1) qc6.measure(2, 2) def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend, shots = 2000).result() counts = result.get_counts() return counts counts = run_circuit(qc6) print(counts) plot_histogram(counts)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
from qiskit import * from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import numpy as np from IPython.display import display, Math, Latex %matplotlib inline # Loading your IBM Q account(s) provider = IBMQ.load_account() qc1 = QuantumCircuit(3,3) # All initialized to '0' by default. qc1.x(0) #This is for the purpose of setting the control qubit to '1' qc1.x(2) #As a result, the second target qubit becomes '1' while the first remains '0'. Now, lets's try swapping them. #Fredkin gate: def fredkin(qc): qc.toffoli(0,1,2) qc.toffoli(0,2,1) qc.toffoli(0,1,2) fredkin(qc1) qc1.draw('mpl') #First let's measure all three qubits. #We're using the classical bits to store the result obtained on measuring each corresponding qubit. qc1.measure(0,0) qc1.measure(1,1) qc1.measure(2,2) #Now we use the same function we defined yesterday to run a quantum circuit def run_circuit(qc2): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc2, backend, shots = 2000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts1=run_circuit(qc1) print(counts1) plot_histogram(counts1) qc2 = QuantumCircuit(3,3) # All initialized to '0' by default. qc2.x(2) #The second target qubit is initialised to '1' fredkin(qc2) qc2.measure(0,0) qc2.measure(1,1) qc2.measure(2,2) qc2.draw(output='mpl') counts2=run_circuit(qc2) print(counts2) plot_histogram(counts2) qc = QuantumCircuit(1) #This is how we apply the rotation operators in Qiskit, mentioning the angle of rotation and qubit no. as parameters qc.rx(np.pi/2, 0) qc.draw('mpl') def final_vector(qc): backend = Aer.get_backend('statevector_simulator') job = execute(qc, backend) result = job.result() outputstate = result.get_statevector(qc, decimals=3) return outputstate print(final_vector(qc)) # This prints the vector obtained on applying the above gate to the qubit state '0' # The Pauli-X gate serves this purpose, as demonstrated below: qc3 = QuantumCircuit(1) theta = np.pi/7 qc3.x(0) qc3.ry(theta, 0) qc3.x(0) print(final_vector(qc3)) qc3 = QuantumCircuit(1) qc3.ry(-theta, 0) print(final_vector(qc3)) #Run this code for different values of theta and see if the two vectors printed are equal in each case qc4 = QuantumCircuit(1) alpha = np.pi/2 beta = 0 gamma = np.pi/2 delta = np.pi def A(qc, qbits, beta, gamma): qc.ry(gamma/2, qbits) qc.rz(beta, qbits) def B(qc, qbits, beta, gamma, delta): qc.rz(-(beta+delta)/2, qbits) qc.ry(-gamma/2, qbits) def C(qc, qbits, beta, delta): qc.rz((delta-beta)/2, qbits) C(qc4, 0, beta, delta) qc4.x(0) B(qc4, 0, beta, gamma, delta) qc4.x(0) A(qc4, 0, beta, gamma) qc4.unitary([[1.j, 0.], [0., 1.j]], [0]) print(final_vector(qc4)) qc4 = QuantumCircuit(1) qc4.h(0) print(final_vector(qc4)) qc5 = QuantumCircuit(3, 3) # Target qubit q1 is initially |1> and target qubit q2 is initially |0>. qc5.x(0) # Control qubit initialized to |1> to see effects of controlled Hadamard. qc5.x(1) # One target qubit initialized to |1>. alpha = np.pi/2 beta = 0 gamma = np.pi/2 delta = np.pi def A(qc, qbits, beta, gamma): qc.ry(gamma/2, qbits) qc.rz(beta, qbits) def B(qc, qbits, beta, gamma, delta): qc.rz(-(beta+delta)/2, qbits) qc.ry(-gamma/2, qbits) def C(qc, qbits, beta, delta): qc.rz((delta-beta)/2, qbits) C(qc5, [1, 2], beta, delta) qc5.cx(0, [1, 2]) B(qc5, [1, 2], beta, gamma, delta) qc5.cx(0, [1, 2]) A(qc5, [1, 2], beta, gamma) qc5.s(0) # Using S gate because alpha = pi/2 qc5.measure(0, 0) qc5.measure(1, 1) qc5.measure(2, 2) qc5.draw('mpl') def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend, shots = 10000).result() counts = result.get_counts() return counts counts = run_circuit(qc5) print(counts) plot_histogram(counts) qc_u3=QuantumCircuit(1) qc_u3.u3(np.pi/6,-np.pi/2,np.pi/2,0) print(final_vector(qc_u3)) qc_rx=QuantumCircuit(1) qc_rx.rx(np.pi/6,0) print(final_vector(qc_rx)) #Getting the same results will verify our observation stated above ######### Defining some constants and functions ########## # Constants for the decomposition of Hadamard gate. H_alpha = np.pi/2 H_beta = 0 H_gamma = np.pi/2 H_delta = np.pi # V^2 = X V = [[0.5+0.5j, 0.5-0.5j], [0.5-0.5j, 0.5+0.5j]] # Constants for the decomposition of V (where V^2 = X). V_alpha = np.pi/4 V_beta = np.pi/2 V_gamma = -np.pi/2 V_delta = -np.pi/2 # Functions to implement A, B, C (generalized). def A_gate(qc, qbits, beta, gamma): qc.ry(gamma/2, qbits) qc.rz(beta, qbits) def B_gate(qc, qbits, beta, gamma, delta): qc.rz(-(beta+delta)/2, qbits) qc.ry(-gamma/2, qbits) def C_gate(qc, qbits, beta, delta): qc.rz((delta-beta)/2, qbits) # Higher abstraction functions. def controlled_V(qc, control, target): C_gate(qc, target, V_beta, V_delta) qc.cx(control, target) B_gate(qc, target, V_beta, V_gamma, V_delta) qc.cx(control, target) A_gate(qc, target, V_beta, V_gamma) qc.t(control) # Using T gate because V_alpha = pi/4. def controlled_Vdg(qc, control, target): C_gate(qc, target, V_beta, V_delta) qc.cx(control, target) B_gate(qc, target, V_beta, -V_gamma, V_delta) qc.cx(control, target) A_gate(qc, target, V_beta, -V_gamma) qc.tdg(control) # Using Tdg gate because V_alpha = pi/4, so Vdg_alpha would be -pi/4. def double_controlled_X(qc, control1, control2, target): controlled_V(qc, control2, target) qc.cx(control1, control2) controlled_Vdg(qc, control2, target) qc.cx(control1, control2) controlled_V(qc, control1, target) ############ Constructing the circuit ############## qc6 = QuantumCircuit(7, 5) # No need to measure ancillary qubits :P # q0, q1, q2, q3 are control qubits # q4, q5 are ancillary qubits # q6 is the target qubit # Change the following line to try different combinations of control qubits: qc6.x([0,1,2,3]) C_gate(qc6, 6, H_beta, H_delta) double_controlled_X(qc6, 0, 1, 4) double_controlled_X(qc6, 2, 3, 5) double_controlled_X(qc6, 4, 5, 6) double_controlled_X(qc6, 2, 3, 5) double_controlled_X(qc6, 0, 1, 4) B_gate(qc6, 6, H_beta, H_gamma, H_delta) double_controlled_X(qc6, 0, 1, 4) double_controlled_X(qc6, 2, 3, 5) double_controlled_X(qc6, 4, 5, 6) double_controlled_X(qc6, 2, 3, 5) double_controlled_X(qc6, 0, 1, 4) A_gate(qc6, 6, H_beta, H_gamma) qc6.s([0,1,2,3]) # Using S gate because H_alpha = pi/2. qc6.measure(0, 0) qc6.measure(1, 1) qc6.measure(2, 2) qc6.measure(3, 3) qc6.measure(6, 4) qc6.draw('mpl') def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend, shots = 2000).result() counts = result.get_counts() return counts counts = run_circuit(qc6) print(counts) plot_histogram(counts)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
from qiskit import * from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import numpy as np from IPython.display import display, Math, Latex %matplotlib inline # Loading your IBM Q account(s) provider = IBMQ.load_account() qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(2) # we will need seperates registers for using 'c_if' later. qc = QuantumCircuit(qr,crz,crx) qc.x(0) qc.h(0) # 'psi' can't be unknown to us as we are creating it here. Let us take '-' state as our 'psi' # We will verify later if the '-' is been teleported. qc.h(1) qc.cx(1,2) # creating a bell state qc.barrier() # Use barrier to separate steps, everything till this barrier is just intialisation. qc.cx(0,1) # '0' and '1' are with Alice and '2' is with Bob. # psi_1 prepared. qc.h(0) # psi_2 prepared. qc.barrier() qc.measure(0,0) qc.measure(1,1) qc.draw (output = 'mpl') qc.x(2).c_if(crx,1) # 'c_if' compares a classical register with a value (either 0 or 1) and performs the qc.z(2).c_if(crz,1) # operation if they are equal. qc.draw('mpl') # be careful of the order of applying X and Z! qc.h(2) qc.measure(2,crx[1]) def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc, backend, shots = 10000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc) print(counts) plot_histogram(counts) # the output should be '1xx' if the teleportation is successful. # Refer to above cell for a detailed explanation of the strategy. qc1 = QuantumCircuit(2, 2) # Preparing Alice's Bell state: \beta_{00} qc1.h(0) qc1.cx(0, 1) # Skyler's mischief: # Suppose for this example that she applied Pauli-Y. # You can change 'y' to 'x' or 'z' in the following line for other cases. qc1.y(0) # Alice's strategy: qc1.cx(0, 1) qc1.h(0) qc1.measure(0, 0) qc1.measure(1, 1) qc1.draw('mpl') def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc, backend, shots = 10000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc1) print(counts) if '10' in counts: print('Skyler used Pauli-X!') if '11' in counts: print('Skyler used Pauli-Y!') if '01' in counts: print('Skyler used Pauli-Z!') plot_histogram(counts)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.compiler import * from qiskit.tools.jupyter import * from qiskit.visualization import * import numpy as np import qiskit.quantum_info as qi # Loading your IBM Q account(s) provider = IBMQ.load_account() #This cell is just for seeing what the U tilde matrix looks like a, b, c, d = np.cos(np.pi/8), np.sin(np.pi/8), -np.sin(np.pi/8), np.cos(np.pi/8) u_tilde = np.array([[a,c],[b,d]]).reshape(2,2) print(u_tilde) #This cell defines the controlled variant of the U tilde matrix qc_for_u = QuantumCircuit(1) qc_for_u.ry(np.pi/4, 0) qc_for_u.name = "U" controlled_u_tilde = qc_for_u.to_gate().control(2) qc1 = QuantumCircuit(3) qc1.x(0) qc1.x(1) qc1.toffoli(0,1,2)#Flipping the third bit if the first two are zero qc1.x(0) #Essentially 000 -> 001 qc1.x(1) qc1.x(0) qc1.toffoli(0,2,1)#Flipping the second bit if the first bit is zero and the third is one qc1.x(0) #Essentially 001 -> 011 qc1.append(controlled_u_tilde, [1, 2, 0]) qc1.x(0) qc1.toffoli(0,2,1)#Undoing the flip from before qc1.x(0) qc1.x(0) qc1.x(1) qc1.toffoli(0,1,2)#Undoing the flip from before qc1.x(0) qc1.x(1) qc1.draw('mpl') U_circ = qi.Operator(qc1).data print(U_circ) qc2 = QuantumCircuit(3) # Code for U qc2.x(0) qc2.x(1) qc2.toffoli(0,1,2)#Flipping the third bit if the first two are zero qc2.x(0) #Essentially 000 -> 001 qc2.x(1) qc2.x(0) qc2.toffoli(0,2,1)#Flipping the second bit if the first bit is zero and the third is one qc2.x(0) #Essentially 001 -> 011 qc2.append(controlled_u_tilde, [1, 2, 0]) qc2.x(0) qc2.toffoli(0,2,1)#Undoing the flip from before qc2.x(0) qc2.x(0) qc2.x(1) qc2.toffoli(0,1,2)#Undoing the flip from before qc2.x(0) qc2.x(1) # Code for V qc2.x(0) qc2.toffoli(0,1,2) # |010> -> |011> qc2.x(0) qc2.toffoli(1,2,0) # V-tilde is the same as Toffoli qc2.x(0) qc2.toffoli(0,1,2) # Reversing the flip qc2.x(0) qc2.draw('mpl') def without_global_phase(matrix: np.ndarray, atol: float = 1e-8) : phases1 = np.angle(matrix[abs(matrix) > atol].ravel(order='F')) if len(phases1) > 0: matrix = np.exp(-1j * phases1[0]) * matrix return matrix V_circ = without_global_phase(qi.Operator(qc2).data) print(V_circ) #Function just returns norm ignoring global phase between unitaries def norm(unitary_a: np.ndarray, unitary_b: np.ndarray) : return np.linalg.norm(without_global_phase(unitary_b)-without_global_phase(unitary_a), ord=2) #Make the Pauli Y gate qcy = QuantumCircuit(1) for i in range(6): qcy.t(0) qcy.h(0) for i in range(4): qcy.t(0) qcy.h(0) for i in range(2): qcy.t(0) Y_circ = qi.Operator(qcy).data Y = np.array([[0,-1j],[1j,0]]) print(norm(Y_circ,Y)) print("Final Circuit:") qcy.draw('mpl') uni_q = np.array([[-0.25+0.60355339j, 0.60355339+0.45710678j], [0.60355339-0.45710678j, 0.25+0.60355339j]]).reshape(2,2) while True: qc3 = QuantumCircuit(1) for i in range(5): for j in range(np.random.randint(8)): qc3.t(0) qc3.h(0) for j in range(np.random.randint(8)): qc3.t(0) uni_q_circ = qi.Operator(qc3).data if norm(uni_q_circ,uni_q) < 1e-8: break print("Final Error: ", norm(uni_q_circ,uni_q)) print("Final Circuit:") qc3.draw('mpl') #Defining the gate as controlled_irx from qiskit.extensions import * pi_alpha = np.arccos(0.6) qc_for_irx = QuantumCircuit(1) irx = np.array([[1j*np.cos(pi_alpha/2),np.sin(pi_alpha/2)],[np.sin(pi_alpha/2),1j*np.cos(pi_alpha/2)]]).reshape(2,2) g_irx = UnitaryGate(data=irx,label=None) controlled_irx = g_irx.control(2) def final_vector(qc): backend = Aer.get_backend('statevector_simulator') job = execute(qc, backend) result = job.result() outputstate = result.get_statevector(qc, decimals=3) return outputstate n = 4 qcb = QuantumCircuit(n,n) qcb.x(0)#Ancilla qcb.x(1)#Ancilla You can use these two as control to use the controlled_irx gate count1 = 0 while abs(0.5 - (count1*pi_alpha/np.pi)%2) >= 1e-2 or count1 % 4 != 0: count1 += 1 count2 = 0 while abs(1.5 - (count2*pi_alpha/np.pi)%2) >= 1e-2 or count2 % 4 != 0: count2 += 1 count3 = 0 while abs(4.0 - (count3*pi_alpha/np.pi)%4) >= 1e-2 or count3 % 4 != 2: count3 += 1 for i in range(count1): # Rotation about x by pi/2 (count1 % 4 == 0) qcb.append(controlled_irx, [0, 1, 2]) qcb.cx(2, 3) for i in range(count2): # Rotation about x by -pi/2 (count2 % 4 == 0) qcb.append(controlled_irx, [0, 1, 2]) qcb.x(0) qcb.cx(3, 0) for i in range(count3): # Rotation about x by 0 (count3 % 4 == 2) qcb.append(controlled_irx, [0, 2, 3]) qcb.cx(3, 0) qcb.x(0) print("Executing circuit...") #Get state of qubit which should have the |+> state using the backend simulator i = 3 #Index for the qubit at |+> state qcb.h(i)#Puts the |+> state to |0> for i in range(4): qcb.measure(i, i) def run_circuit(qcb): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qcb, backend, shots = 2000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qcb) print(counts) plot_histogram(counts)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * import numpy as np from fractions import Fraction as frac import qiskit.quantum_info as qi # Loading your IBM Q account(s) provider = IBMQ.load_account() qc=QuantumCircuit(4) #In this particular oracle, the last qubit is storing the value of the function qc.cx(0,3) qc.cx(1,3) qc.cx(2,3) #The last qubit is 1 if there are odd no. of 1s in the other 3 qubits #and 0 otherwise #Hence it is a balanced function qc.draw('mpl') qc1=QuantumCircuit(3) qc1.x(2) qc1.h(0) qc1.h(1) qc1.h(2) qc1.barrier(range(3)) qc1.cx(0,2) qc1.cx(1,2) qc1.barrier(range(3)) qc1.h(0) qc1.h(1) meas = QuantumCircuit(3, 2) meas.measure(range(2),range(2)) # The Qiskit circuit object supports composition using # the addition operator. circ = qc1+meas circ.draw('mpl') backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=1000) result_sim = job_sim.result() counts = result_sim.get_counts(circ) print(counts) plot_histogram(counts) qc2=QuantumCircuit(5) qc2.x(4) qc2.h(0) qc2.h(1) qc2.h(2) qc2.h(3) qc2.h(4) qc2.barrier(range(5)) #Your code for the oracle here #YOU ARE PERMITTED TO USE ONLY SINGLE QUBIT GATES AND CNOT(cx) GATES qc2.cx(0,4) qc2.cx(1,4) qc2.cx(2,4) qc2.cx(3,4) qc2.x(4) qc2.barrier(range(5)) qc2.h(0) qc2.h(1) qc2.h(2) qc2.h(3) meas2 = QuantumCircuit(5, 4) meas2.measure(range(4),range(4)) circ2 = qc2+meas2 circ2.draw('mpl') #verification cell, reinitialising the circuit so that it's easier for you to copy-paste the oracle qc2=QuantumCircuit(5) #Add X gates HERE as required to change the input state qc2.x([0,2]) qc2.barrier(range(5)) qc2.cx(0,4) qc2.cx(1,4) qc2.cx(2,4) qc2.cx(3,4) qc2.x(4) qc2.barrier(range(5)) measv = QuantumCircuit(5, 1) measv.measure(4,0) circv = qc2+measv circv.draw('mpl') #DO NOT RUN THIS CELL WITHOUT EDITING THE ABOVE ONE AS DESIRED #The following code will give you f(x) for the value of x you chose in the above cell backend_sim2 = Aer.get_backend('qasm_simulator') job_sim2 = execute(circv, backend_sim2, shots=1000) result_sim2 = job_sim2.result() counts2 = result_sim2.get_counts(circv) print(counts2) plot_histogram(counts2)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
from qiskit import * from qiskit.compiler import * from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import numpy as np from IPython.display import display, Math, Latex %matplotlib inline # Loading your IBM Q account(s) provider = IBMQ.load_account() qc1=QuantumCircuit(2) qc1.h(0) qc1.h(1) qc1.barrier() #The part between the barriers is our oracle qc1.cz(0,1) #We are using a controlled-Z gate which flips the sign of the second qubit when both qubits are set to '1' qc1.barrier() qc1.draw('mpl') def final_vector(qc): backend = Aer.get_backend('statevector_simulator') job = execute(qc, backend) result = job.result() outputstate = result.get_statevector(qc, decimals=3) return outputstate print(final_vector(qc1)) #We can see that the desired state has been obtained qc2=QuantumCircuit(3) qc2.h(0) qc2.h(1) qc2.h(2) qc2.barrier() #The part between the barriers is our oracle qc2.x(0) qc2.h(1) qc2.x(2) qc2.ccx(0, 2, 1) qc2.x(0) qc2.h(1) qc2.x(2) qc2.barrier() qc2.draw('mpl') def final_vector(qc): backend = Aer.get_backend('statevector_simulator') job = execute(qc, backend) result = job.result() outputstate = result.get_statevector(qc, decimals=3) return outputstate print(final_vector(qc2)) def ccz_gate(qc,a,b,c): qc.h(c) qc.ccx(a,b,c) qc.h(c) #Let's create an oracle which will mark the states 101 and 110 #(This particular oracle won't be using ancilla qubits) def phase_oracle(circuit): circuit.cz(0, 2) circuit.cz(0, 1) n=3 qc2=QuantumCircuit(n,n) for i in range(0,n): qc2.h(i) qc2.barrier([0,1,2]) #This creates a superposition of all states #We will now perform the Grover iteration phase_oracle(qc2) qc2.barrier([0,1,2]) for i in range(0,n): qc2.h(i) #Performing a conditional phase shift qc2.x(0) qc2.x(1) qc2.x(2) ccz_gate(qc2,0,1,2) qc2.x(0) qc2.x(1) qc2.x(2) for i in range(0,n): qc2.h(i) #The Grover iteration is now complete qc2.barrier([0,1,2]) qc2.draw('mpl') qc2.measure(0,0) qc2.measure(1,1) qc2.measure(2,2) qc2.draw('mpl') def counts_circ(circ): backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=2000) result_sim = job_sim.result() counts = result_sim.get_counts(circ) return(counts) plot_histogram(counts_circ(qc2)) qc_mct=QuantumCircuit(5,5) for i in range(0,4): qc_mct.x(i) qc_mct.mct([0,1,2,3],4) qc_mct.draw('mpl') qc_mct.measure(0,0) qc_mct.measure(1,1) qc_mct.measure(2,2) qc_mct.measure(3,3) qc_mct.measure(4,4) plot_histogram(counts_circ(qc_mct)) def c3z_gate(qc, a, b, c, d): qc.h(d) qc.mct([a, b, c], d) qc.h(d) def phase_oracle(qc): qc.x(1) qc.x(3) c3z_gate(qc, 0, 1, 2, 3) # Handles 1010 qc.x(2) c3z_gate(qc, 0, 1, 2, 3) # Handles 1000 qc.x(3) c3z_gate(qc, 0, 1, 2, 3) # Handles 1001 qc.x(2) qc.x(0) qc.x(3) c3z_gate(qc, 0, 1, 2, 3) # Handles 0010 qc.x(0) qc.x(1) qc.x(3) n = 4 qc3 = QuantumCircuit(n, n) for i in range(0,n): qc3.h(i) qc3.barrier([0, 1, 2, 3]) phase_oracle(qc3) qc3.barrier([0, 1, 2, 3]) for i in range(0,n): qc3.h(i) qc3.x(0) qc3.x(1) qc3.x(2) qc3.x(3) c3z_gate(qc3, 0, 1, 2, 3) qc3.x(0) qc3.x(1) qc3.x(2) qc3.x(3) for i in range(0,n): qc3.h(i) qc3.barrier([0, 1, 2, 3]) qc3.measure(0, 0) qc3.measure(1, 1) qc3.measure(2, 2) qc3.measure(3, 3) qc3.draw('mpl') def counts_circ(circ): backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=2000) result_sim = job_sim.result() counts = result_sim.get_counts(circ) return(counts) plot_histogram(counts_circ(qc3))
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
from qiskit import * from qiskit.compiler import * from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import scipy import numpy as np from IPython.display import display, Math, Latex import qiskit.quantum_info as qi %matplotlib inline # Loading your IBM Q account(s) provider = IBMQ.load_account() def qft_rotations(circuit, n): """Performs qft on the first n qubits in circuit (without swaps)""" if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cu1(np.pi/2**(n-qubit), qubit, n) # At the end of our function, we call the same function again on # the next qubits (we reduced n by one earlier in the function) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): """QFT on the first n qubits in circuit""" qft_rotations(circuit, n) swap_registers(circuit, n) return circuit # Let's see how it looks: qc = QuantumCircuit(4,4) qft(qc,4) qc.draw(output = 'mpl') def inverse_qft(circuit, n): """Does the inverse QFT on the first n qubits in circuit""" # First we create a QFT circuit of the correct size: qft_circ = qft(QuantumCircuit(n), n) # Then we take the inverse of this circuit invqft_circ = qft_circ.inverse() # And add it to the first n qubits in our existing circuit circuit.append(invqft_circ, circuit.qubits[:n]) return circuit.decompose() # .decompose() allows us to see the individual gates qc = inverse_qft(qc,4) qc.measure(range(4),range(4)) def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc, backend, shots = 10000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc) print(counts) plot_histogram(counts) # we should get the intial state '0000' qc1 = QuantumCircuit(3,3) qc1.x(0) qc1.x(1) qc1.x(2) # try for different initial values for i in range(4):# choose the number of times you want to do qft) qft(qc1,3) qc1.measure(0,0) qc1.measure(1,1) qc1.measure(2,2) def run_circuit(qc1): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc1, backend, shots = 10000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc1) print(counts) plot_histogram(counts) qc2 = QuantumCircuit(2) for i in range(2): qft(qc2, 2) matrix = qi.Operator(qc2).data print(matrix) def Modulo_increment(qc): qft(qc,4) for i in range(4): qc.u1(np.pi/(2**(3-i)), i) qft(qc, 4) return qc # checking for the case of '1000' qc2 = QuantumCircuit(4,4) qc2.x(3) qc2 = Modulo_increment(qc2) qc2.measure(range(4),range(4)) # qc2.draw('mpl') def run_circuit(qc2): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc2, backend, shots = 10000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc2) print(counts) plot_histogram(counts) # checking for the case of '1101' qc3 = QuantumCircuit(4,4) qc3.x(3) qc3.x(2) qc3.x(0) qc3 = Modulo_increment(qc2) qc3.measure(range(4),range(4)) def run_circuit(qc3): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc3, backend, shots = 10000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc3) print(counts) plot_histogram(counts) # checking for the case of '1111' qc4 = QuantumCircuit(4,4) qc4.x(range(4)) qc4 = Modulo_increment(qc4) qc4.measure(range(4),range(4)) def run_circuit(qc4): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc4, backend, shots = 10000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc4) print(counts) plot_histogram(counts)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
!pip install tabulate %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from tabulate import tabulate import numpy as np # Loading your IBM Q account(s) provider = IBMQ.load_account() def qft_dagger(n): """n-qubit QFTdagger the first n qubits in circ""" qc = QuantumCircuit(n) # Don't forget the Swaps! for qubit in range(n//2): qc.swap(qubit, n-qubit-1) for j in range(n): for m in range(j): qc.cu1(-np.pi/float(2**(j-m)), m, j) qc.h(j) qc.name = "QFT†" return qc def __c_amod15(power): """Controlled multiplication by a mod 15""" U = QuantumCircuit(4) for iteration in range(power): U.swap(2,3) U.swap(1,2) U.swap(0,1) for q in range(4): U.x(q) U = U.to_gate() U.name = "a^%i mod 15" % (power) c_U = U.control() return c_U t=3 qc = QuantumCircuit(t+4,t) for i in range(t): qc.h(i) # The first t qubits are the first register (storing 'x') qc.x(6) #The second register is in state |1> # Oracle for the f(x) mentioned above def Oracle(qc): for q in range(3): qc.append(__c_amod15(2**q), [q] + [i+3 for i in range(4)]) Oracle(qc) qc.append(qft_dagger(t),range(t)) # inverse quantum fourier transform only of the register (first 4 qubits) qc.measure(range(t), range(t)) def run_circuit(qc): backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc, backend, shots = 100000).result() # we run the simulation counts = result.get_counts() # we get the counts return counts counts = run_circuit(qc) print(counts) plot_histogram(counts) rows, eigenvalues = [], [] for output in counts: decimal = int(output, 2) eigenvalue = decimal/(2**t) eigenvalues.append(eigenvalue) rows.append(["%s(bin) = %i(dec)" % (output, decimal), "%i/%i = %.2f" % (decimal, 2**t, eigenvalue)]) print(tabulate(rows, headers=["Register Output", "Phase"])) 0.333333333.as_integer_ratio() rows = [] for eigenvalue in eigenvalues: numerator, denominator = eigenvalue.as_integer_ratio() rows.append([eigenvalue, "%i/%i" % (numerator, denominator), denominator]) print(tabulate(rows, headers=["Phase", "Fraction", "Guess for r"], colalign=('right','right','right')))
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
%matplotlib inline # Importing standard Qiskit libraries import random from qiskit import * from qiskit.tools.jupyter import * from qiskit.visualization import * #Get the library to check the answers %pip install -I git+https://github.com/mnp-club/MnP_QC_Workshop.git from mnp_qc_workshop_2020.bb84 import * # Configuring account provider = IBMQ.load_account() backend = provider.get_backend('ibmq_qasm_simulator') # with this simulator it wouldn't work \ # Initial setup random.seed(64) # do not change this seed, otherwise you will get a different key # This is your 'random' bit string that determines your bases numqubits = 16 bob_bases = str('{0:016b}'.format(random.getrandbits(numqubits))) def bb84(): print('Bob\'s bases:', bob_bases) # Now Alice will send her bits one by one... all_qubit_circuits = [] for qubit_index in range(numqubits): # This is Alice creating the qubit thisqubit_circuit = alice_prepare_qubit(qubit_index) # This is Bob finishing the protocol below bob_measure_qubit(bob_bases, qubit_index, thisqubit_circuit) # We collect all these circuits and put them in an array all_qubit_circuits.append(thisqubit_circuit) # Now execute all the circuits for each qubit results = execute(all_qubit_circuits, backend=backend, shots=1).result() # And combine the results bits = '' for qubit_index in range(numqubits): bits += [measurement for measurement in results.get_counts(qubit_index)][0] return bits # Here is your task def bob_measure_qubit(bob_bases, qubit_index, qubit_circuit): if bob_bases[qubit_index] == '1': qubit_circuit.h(0) qubit_circuit.measure(0,0) bits = bb84() print('Bob\'s bits: ', bits) check_bits(bits) alice_bases = '0100000101011100' # Alice's bases bits key = '' for i in range(16): if (alice_bases[i] == bob_bases[i]): key += bits[i] print(key) check_key(key) message = get_message()# encrypted message decrypted = '' for i in range(43): for j in range(8): decrypted += str((int(message[8*i+j]) + int(key[j]))%2) print(decrypted) check_decrypted(decrypted) decrypted_to_string_ASCII = '' for i in range(43): for i in range(43): decrypted_to_string_ASCII += chr(int(decrypted[8*i:8*(i+1)], 2)) check_message(decrypted_to_string_ASCII)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
!pip install tabulate %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from tabulate import tabulate # Loading your IBM Q account(s) provider = IBMQ.load_account() #Get the library to check the answers %pip install -I git+https://github.com/mnp-club/MnP_QC_Workshop.git from mnp_qc_workshop_2020.discrete_logarithm import qft_dagger, oracle, check_answer n_qubits = 3 #Number of qubits for the registers of |x1> and |x2> #For figuring out you would just need 2*n_qubits classical bits qc_disc_log = QuantumCircuit(4+n_qubits+n_qubits, n_qubits+n_qubits) for i in range(2*n_qubits): qc_disc_log.h(i) qc_disc_log.x(9) qc_disc_log.append(oracle(), range(10)) qc_disc_log.append(qft_dagger(3), range(3)) qc_disc_log.append(qft_dagger(3) ,[3,4,5]) qc_disc_log.measure(range(2*n_qubits), range(2*n_qubits)) qc_disc_log.draw('text') backend = Aer.get_backend('qasm_simulator') results = execute(qc_disc_log, backend, shots=8192).result() counts = results.get_counts() plot_histogram(counts) rows_x_1, eigenvalues_x_1 = [], [] for output in counts: decimal = int(output, 2)//8 eigenvalue = decimal/(2**3) eigenvalues_x_1.append(eigenvalue) rows_x_1.append(["%s(bin) = %i(dec)" % (output[0:3], decimal), "%i/%i = %.2f" % (decimal, 2**3, eigenvalue)]) print(tabulate(rows_x_1, headers=["Register Output", "Phase"])) rows_x_2, eigenvalues_x_2 = [], [] for output in counts: decimal = int(output, 2) - ((int(output, 2)//8)*8) eigenvalue = decimal/(2**3) eigenvalues_x_2.append(eigenvalue) rows_x_2.append(["%s(bin) = %i(dec)" % (output[3:6], decimal), "%i/%i = %.2f" % (decimal, 2**3, eigenvalue)]) print(tabulate(rows_x_2, headers=["Register Output", "Phase"])) #Store your value for s here s = 3 #Do analysis of oracle here qc = QuantumCircuit(10, 4) qc.x(0) qc.x(9) qc.append(oracle(), range(10)) qc.measure([6,7,8,9], range(4)) backend = Aer.get_backend('qasm_simulator') results = execute(qc, backend, shots=8192).result() counts = results.get_counts() plot_histogram(counts) # On x1=1, ans = 2 and on x2=1, ans = 8 #Store values of a and b here a, b = 2, 8 check_answer(s,a,b)
https://github.com/yatharth0610/Quantum-Algorithms-qiskit-
yatharth0610
# Importing standard Qiskit libraries and configuring account from qiskit import * from qiskit.compiler import * from qiskit.tools.jupyter import * from qiskit.visualization import * import matplotlib.pyplot as plotter import scipy import numpy as np from IPython.display import display, Math, Latex import qiskit.quantum_info as qi %matplotlib inline %pip install -I git+https://github.com/mnp-club/MnP_QC_Workshop.git from mnp_qc_workshop_2020.unitary_circuit import * U = get_unitary() print(U.shape) fig, (ax1, ax2) = plotter.subplots(nrows = 1, ncols = 2, figsize=(12,6)) ax1.imshow(np.real(U)) #plot real parts of each element ax2.imshow(np.imag(U)) #plot imaginary parts of each element fig, (ax3, ax4) = plotter.subplots(nrows = 1, ncols = 2, figsize=(12,6)) ax3.imshow(np.abs(U)) #plot the absolute values of each element ax4.imshow(np.angle(U)) #plot the phase angles of each element qc = QuantumCircuit(4) qc.unitary(U, range(4)) matrix = qi.Operator(qc).data print(matrix) # # #Your code here # # # qc = transpile(qc,basis_gates=['cx','u3'],optimization_level=3) # qc.draw('mpl') #Run this cell for getting your circuit checked check_circuit(qc)
https://github.com/danieljaffe/quantum-algorithms-qiskit
danieljaffe
from qiskit import QuantumCircuit from QCLG_lvl3.oracles.secret_number_oracle import SecretNUmberOracle class BernsteinVazirani: @classmethod def bernstein_vazirani(cls, random_binary, eval_mode: bool) -> QuantumCircuit: # Construct secret number oracle secret_number_oracle = SecretNUmberOracle.create_secret_number_oracle(random_binary=random_binary, eval_mode=eval_mode) num_of_qubits = secret_number_oracle.num_qubits # Construct circuit according to the length of the number dj_circuit = QuantumCircuit(num_of_qubits, num_of_qubits - 1) dj_circuit_before_oracle = QuantumCircuit(num_of_qubits, num_of_qubits - 1) # Apply H-gates for qubit in range(num_of_qubits - 1): dj_circuit_before_oracle.h(qubit) # Put output qubit in state |-> dj_circuit_before_oracle.x(num_of_qubits - 1) dj_circuit_before_oracle.h(num_of_qubits - 1) dj_circuit += dj_circuit_before_oracle # Add oracle dj_circuit += secret_number_oracle dj_circuit_after_oracle = QuantumCircuit(num_of_qubits, num_of_qubits - 1) # Repeat H-gates for qubit in range(num_of_qubits - 1): dj_circuit_after_oracle.h(qubit) dj_circuit_after_oracle.barrier() # Measure for i in range(num_of_qubits - 1): dj_circuit_after_oracle.measure(i, i) dj_circuit += dj_circuit_after_oracle if not eval_mode: print("Circuit before the oracle\n") print(QuantumCircuit.draw(dj_circuit_before_oracle)) print("Circuit after the oracle\n") print(QuantumCircuit.draw(dj_circuit_after_oracle)) print(dj_circuit) return dj_circuit