repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/vandnaChaturvedi/Qauntum_algorithms_Qiskit
vandnaChaturvedi
import numpy as np import qiskit from qiskit import QuantumCircuit import matplotlib.pyplot as plt from qiskit.circuit import QuantumCircuit, Parameter import warnings warnings.filterwarnings('ignore') theta = Parameter("θ") phi = Parameter("φ") lamb = Parameter("λ") def sampleCircuitA(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for i in range(qubits - 1): circuit.cx(i, i + 1) circuit.cx(qubits - 1, 0) for i in range(qubits - 1): circuit.cx(i, i + 1) circuit.cx(qubits - 1, 0) circuit.barrier() for i in range(qubits): circuit.u3(theta, phi, lamb, i) return circuit circuitA = sampleCircuitA(qubits=4) circuitA.draw(output='mpl') def sampleCircuitB1(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(qubits): circuit.u1(theta, i) for i in range(layer): for j in range(qubits - 1): circuit.cz(j, j + 1) circuit.cz(qubits - 1, 0) circuit.barrier() for j in range(qubits): circuit.u1(theta, j) return circuit def sampleCircuitB2(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(qubits): circuit.u2(phi, lamb, i) for i in range(layer): for j in range(qubits - 1): circuit.cz(j, j + 1) circuit.cz(qubits - 1, 0) circuit.barrier() for j in range(qubits): circuit.u2(phi, lamb, j) return circuit def sampleCircuitB3(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(qubits): circuit.u3(theta, phi, lamb, i) for i in range(layer): for j in range(qubits - 1): circuit.cz(j, j + 1) circuit.cz(qubits - 1, 0) circuit.barrier() for j in range(qubits): circuit.u3(theta, phi, lamb, j) return circuit circuitB1 = sampleCircuitB1(qubits=4) circuitB1.draw(output='mpl') circuitB2 = sampleCircuitB2(qubits=4) circuitB2.draw(output='mpl') circuitB3 = sampleCircuitB3(qubits=4) circuitB3.draw(output='mpl') def sampleCircuitC(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for j in range(qubits): circuit.ry(theta, j) circuit.crx(theta, qubits - 1, 0) for j in range(qubits - 1, 0, -1): circuit.crx(theta, j - 1, j) circuit.barrier() for j in range(qubits): circuit.ry(theta, j) circuit.crx(theta, 3, 2) circuit.crx(theta, 0, 3) circuit.crx(theta, 1, 0) circuit.crx(theta, 2, 1) return circuit circuitC = sampleCircuitC(qubits=4) circuitC.draw(output='mpl') def sampleCircuitD(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) for j in range(qubits - 1, -1, -1): for k in range(qubits - 1, -1, -1): if j != k: circuit.crx(theta, j, k) circuit.barrier() for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) return circuit circuitD = sampleCircuitD(qubits=4) circuitD.draw(output='mpl') def sampleCircuitE(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) for j in range(1, qubits, 2): circuit.crx(theta, j, j - 1) for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) for j in range(2, qubits, 2): circuit.crx(theta, j, j - 1) return circuit circuitE = sampleCircuitE(qubits=4) circuitE.draw(output='mpl') def sampleCircuitF(layer=1, qubits=4): circuit = QuantumCircuit(qubits) for i in range(layer): for j in range(qubits): circuit.rx(theta, j) circuit.rz(theta, j) circuit.crx(theta, qubits - 1, 0) for j in range(qubits - 1, 0, -1): circuit.crx(theta, j - 1, j) return circuit circuitF = sampleCircuitF(qubits=4) circuitF.draw(output='mpl') def sampleEncoding(qubits): circuit = QuantumCircuit(qubits) for i in range(qubits): circuit.h(i) circuit.ry(theta, i) return circuit circuit = sampleEncoding(4) circuit.draw(output='mpl') # demo: circuit = sampleEncoding(5).compose(sampleCircuitB3(layer=2, qubits=5)) circuit.draw(output='mpl')
https://github.com/sohamch08/Qiskit-Quantum-Algo
sohamch08
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, execute from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") backend = Aer.get_backend('qasm_simulator') # Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # result = Sampler("ibmq_qasm_simulator").run(circuits).result() from qiskit.providers.fake_provider import FakeGuadalupe, FakeKolkata from qiskit_aer import AerSimulator from qiskit_aer.noise import NoiseModel not_gate=QuantumCircuit(1,1) # Create a quantum circuit with 1 qubit and 1 classical bit not_gate.x(0) not_gate.measure(0,0) not_gate.draw(output='mpl') and_gate=QuantumCircuit(3,1) # Create a quantum circuit with 3 qubits and 1 classical bit and_gate.ccx(0,1,2) and_gate.measure(2,0) and_gate.draw(output='mpl') or_gate=QuantumCircuit(3,1) # Create a quantum circuit with 3 qubits and 1 classical bit or_gate.cx(1,2) or_gate.cx(0,2) or_gate.ccx(0,1,2) or_gate.measure(2,0) or_gate.draw(output='mpl') xor_gate=QuantumCircuit(3,1) # Create a quantum circuit with 3 qubits and 1 classical bit xor_gate.cx(0,2) xor_gate.cx(1,2) xor_gate.measure(2,0) xor_gate.draw(output='mpl') # Write your code here myxor_gate=QuantumCircuit(3) # Create a quantum circuit with 3 qubits and 1 classical bit myxor_gate.cx(0,2) myxor_gate.cx(1,2) sudokucheck = QuantumCircuit(9) sudokucheck = sudokucheck.compose(myxor_gate,[0,1,5]) # Check if v_0 = v_1 sudokucheck = sudokucheck.compose(myxor_gate,[2,3,6]) # Check if v_2 = v_3 sudokucheck = sudokucheck.compose(myxor_gate,[0,2,7]) # Check if v_0 = v_2 sudokucheck = sudokucheck.compose(myxor_gate,[1,3,8]) # Check if v_1 = v_3 sudokucheck.mct([5,6,7,8],4) # Take the AND of all the upper results sudokucheck.draw('mpl') # Write your code here oracle = QuantumCircuit(9) oracle.x(4) oracle.h(4) oracle = oracle.compose(sudokucheck, [0,1,2,3,4,5,6,7,8]) oracle.draw('mpl') # Write your code here uncompute = QuantumCircuit(9) uncompute = uncompute.compose(oracle, [0,1,2,3,4,5,6,7,8]) uncompute = uncompute.compose(myxor_gate,[1,3,8]) uncompute = uncompute.compose(myxor_gate,[0,2,7]) uncompute = uncompute.compose(myxor_gate,[2,3,6]) uncompute = uncompute.compose(myxor_gate,[0,1,5]) uncompute.h(4) uncompute.x(4) uncompute.draw('mpl') # Write a code to construct the diffuser operator for the problem def diffuser_operator(n): diffuse = QuantumCircuit(n) controlbit = [] # This will help to list all the control bits for for i in range(n): diffuse.h(i) # First layer of hadamard gates diffuse.x(i) # Layer of X gates if i>0: controlbit.append(i) diffuse.h(0) diffuse.mcx(control_qubits=controlbit, target_qubit=[0]) # applied C^nX diffuse.h(0) for i in range(n): diffuse.x(i) # The second last layer of X gates diffuse.h(i) # The last layer of hadamard gates return diffuse n = 4 diffuser_circuit = diffuser_operator(4) diffuser_circuit.draw('mpl') # Write your code here to put all the pieces together as a single circuit # pi/4 x sqrt{2^4}=pi/4 which is approximately 3. So we will apply the operator = uncompute + diffuser_operator 3 times grover_search = QuantumCircuit(9,4) for i in range(4): grover_search.h(i) for i in range(3): grover_search = grover_search.compose(uncompute, [0,1,2,3,4,5,6,7,8]) # apply the uncompute operator grover_search = grover_search.compose(diffuser_circuit, [0,1,2,3]) # then apply the diffuser operator grover_search.measure([0,1,2,3],[0,1,2,3]) grover_search.draw('mpl') # Write a code to run the final circuit and plot the results to see if there are any satisfying assignments result = execute(grover_search, backend).result() counts = result.get_counts(grover_search) plot_histogram(counts) # List down the satisfying assignments and verify for yourself if they are correct # Write your code here fake_kolkata = FakeKolkata() fake_guadalupe = FakeGuadalupe() fake_kolkata_noisemodel = NoiseModel.from_backend(fake_kolkata) # Created a noisemodel from FakeKolkata backend fake_guadalupe_noisemodel = NoiseModel.from_backend(fake_guadalupe) # Created a noisemodel from FakeGuadalupe backend # simulate with fakekoklkata backend simulate_fake_kolkata = AerSimulator(noise_model = fake_kolkata_noisemodel) fake_kolkata_circ= transpile(grover_search,simulate_fake_kolkata) fake_kolkata_counts = simulate_fake_kolkata.run(fake_kolkata_circ,shots=1000).result().get_counts() plot_histogram(fake_kolkata_counts) # Simulate with fakeguadalupe bakcend simulate_fake_guadalupe = AerSimulator(noise_model = fake_guadalupe_noisemodel) fake_guadalupe_circ= transpile(grover_search,simulate_fake_guadalupe) fake_guadalupe_counts = simulate_fake_guadalupe.run(fake_guadalupe_circ,shots=1000).result().get_counts() plot_histogram(fake_guadalupe_counts) # Write your code here
https://github.com/sohamch08/Qiskit-Quantum-Algo
sohamch08
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def step_1_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) ########## your code goes here ####### ##1 Initialization q0, q1 = qr # apply Hadamard on the auxiliary qubit qc.h(q0) # put the system qubit into the |1> state qc.x(q1) ##2 Apply control-U operator as many times as needed to get the least significant phase bit # controlled-S is equivalent to CPhase with angle pi / 2 s_angle = np.pi / 2 # we want to apply controlled-S 2^k times k = 1 # calculate the angle of CPhase corresponding to 2^k applications of controlled-S cphase_angle = s_angle * 2**k # apply the controlled phase gate qc.cp(cphase_angle, q0, q1) ##3 Measure the auxiliary qubit in x-basis into the first classical bit # apply Hadamard to change to the X basis qc.h(q0) # measure the auxiliary qubit into the first classical bit c0, _ = cr qc.measure(q0, c0) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_1_circuit(qr, cr) qc.draw("mpl") # Submit your circuit from qc_grader.challenges.spring_2023 import grade_ex3a grade_ex3a(qc) def step_2_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits # begin with the circuit from Step 1 qc = step_1_circuit(qr, cr) ########## your code goes here ####### ##1 Reset and re-initialize the auxiliary qubit q0, q1 = qr # reset the auxiliary qubit qc.reset(q0) # apply Hadamard on the auxiiliary qubit qc.h(q0) ##2 Apply phase correction conditioned on the first classical bit c0, c1 = cr with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) ##3 Apply control-U operator as many times as needed to get the next phase bit # controlled-S is equivalent to CPhase with angle pi / 2 s_angle = np.pi / 2 # we want to apply controlled-S 2^k times k = 0 # calculate the angle of CPhase corresponding to 2^k applications of controlled-S cphase_angle = s_angle * 2**k # apply the controlled phase gate qc.cp(cphase_angle, q0, q1) ##4 Measure the auxiliary qubit in x-basis into the second classical bit # apply Hadamard to change to the X basis qc.h(q0) # measure the auxiliary qubit into the first classical bit qc.measure(q0, c1) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_2_circuit(qr, cr) qc.draw("mpl") # Submit your circuit from qc_grader.challenges.spring_2023 import grade_ex3b grade_ex3b(qc) from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def t_gate_ipe_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 3 bits qc = QuantumCircuit(qr, cr) ########## your code goes here ####### # Initialization q0, q1 = qr qc.h(q0) qc.x(q1) # Apply control-U operator as many times as needed to get the least significant phase bit t_angle = np.pi / 4 k = 2 cphase_angle = t_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the first classical bit qc.h(q0) c0, c1, c2 = cr qc.measure(q0, c0) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first classical bit with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit k = 1 cphase_angle = t_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the second classical bit qc.h(q0) qc.measure(q0, c1) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first and second classical bits with qc.if_test((c0, 1)): qc.p(-np.pi / 4, q0) with qc.if_test((c1, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit k = 0 cphase_angle = t_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the third classical bit qc.h(q0) qc.measure(q0, c2) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(3, "c") qc = QuantumCircuit(qr, cr) qc = t_gate_ipe_circuit(qr, cr) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts # Submit your circuit from qc_grader.challenges.spring_2023 import grade_ex3c grade_ex3c(qc) from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) # Initialization q0, q1 = qr qc.h(q0) qc.x(q1) # Apply control-U operator as many times as needed to get the least significant phase bit u_angle = 2 * np.pi / 3 k = 1 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the first classical bit qc.h(q0) c0, c1 = cr qc.measure(q0, c0) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first classical bit with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit k = 0 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the second classical bit qc.h(q0) qc.measure(q0, c1) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() print(counts) success_probability = counts["01"] / counts.shots() print(f"Success probability: {success_probability}") from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 1 bits qc = QuantumCircuit(qr, cr) # Initialization q0, q1 = qr qc.h(q0) qc.x(q1) # Apply control-U operator as many times as needed to get the least significant phase bit u_angle = 2 * np.pi / 3 k = 1 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis qc.h(q0) (c0,) = cr qc.measure(q0, c0) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(1, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") job = sim.run(qc, shots=15) result = job.result() counts = result.get_counts() print(counts) step1_bit = 1 ####### your code goes here ####### print(step1_bit) # Submit your result from qc_grader.challenges.spring_2023 import grade_ex3d grade_ex3d(step1_bit) from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister import numpy as np def u_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit: # qr is a quantum register with 2 qubits # cr is a classical register with 2 bits qc = QuantumCircuit(qr, cr) ########## your code goes here ####### # Initialization q0, q1 = qr if step1_bit: qc.x(q0) qc.x(q1) # Measure the auxiliary qubit c0, c1 = cr qc.measure(q0, c0) # Reset and re-initialize the auxiliary qubit qc.reset(q0) qc.h(q0) # Apply phase correction conditioned on the first classical bit with qc.if_test((c0, 1)): qc.p(-np.pi / 2, q0) # Apply control-U operator as many times as needed to get the next phase bit u_angle = 2 * np.pi / 3 k = 0 cphase_angle = u_angle * 2**k qc.cp(cphase_angle, q0, q1) # Measure the auxiliary qubit in x-basis into the second classical bit qc.h(q0) qc.measure(q0, c1) return qc qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = u_circuit(qr, cr) qc.draw("mpl") # Submit your result from qc_grader.challenges.spring_2023 import grade_ex3e grade_ex3e(qc) from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() print(counts) success_probability = counts["01"] / counts.shots() print(f"Success probability: {success_probability}") from qiskit_ibm_provider import IBMProvider provider = IBMProvider() hub = "qc-spring-23-1" group = "group-1" project = "recIvcxUcc27LvvSh" backend_name = "ibm_peekskill" backend = provider.get_backend(backend_name, instance=f"{hub}/{group}/{project}") from qiskit import transpile qr = QuantumRegister(2, "q") cr = ClassicalRegister(2, "c") qc = QuantumCircuit(qr, cr) qc = step_2_circuit(qr, cr) qc_transpiled = transpile(qc, backend) job = backend.run(qc_transpiled, shots=1000, dynamic=True) job_id = job.job_id() print(job_id) retrieve_job = provider.retrieve_job(job_id) retrieve_job.status() from qiskit.tools.visualization import plot_histogram counts = retrieve_job.result().get_counts() plot_histogram(counts)
https://github.com/sohamch08/Qiskit-Quantum-Algo
sohamch08
# Import all the necessary libraries numpy, math, random, time import numpy as np import math import random import time seed = np.random.seed(0) """ Define parameters n - Problem size in terms of input variables. Change it as per the problem size theta,delta,m1,m2 - Parameters defined in the algorithm """ n = 3 theta = 0.5 # Theta and delta parameters, feel free to change delta = 0.1 # Expression for m1 and m2 m1 = int((1/theta**2)*math.log2(n/(delta*theta**2))) m2 = int((1/theta**4)*math.log2(n*m1/(delta*theta**2))) """ Values of m1 and m2 are usually restricted to be m1<=100 and m2 ,= 5/(theta**2) """ if(m1>=100): m1 = 100 m2_max = math.ceil(5/(theta**2)) if(m2>=m2_max): m2 = m2_max print(m1,m2) def f_val(x): f = [1,1,1,-1,1,1,1,-1] return f[x] """ -Function to generate a random binary string of size l bits """ def generate_binary_string(l): bin_string = [] for i in range(l): bin_string.append(random.randint(0,1)) return bin_string def bin_to_dec(b): n = 0 for i in range(len(b)): n = n + (2**(i))*(b[i]) return n def exponent(a,b): if a == 0: return 1 elif a == 1: return b elif a % 2 == 0: n = exponent(a//2 , b) return n*n else: n = exponent(a//2, b) return (n*n)*b def dot(a,b): length = len(a) norm = 0 for i in range(length): norm = norm + a[i]*b[i] return norm """ - SUBROUTINE Approx(alpha,k) - Returns an estimate of the significance of the fourier coefficient whose prefix is alpha, where length of alpha is k. """ def approx(alpha, k): """ - Special case: k==n; # for k==n case, there is no list of x_i s - Generate yij_list. This has two cases, 2**(k)<=m2 and 2**(k)>m2. We chose the length of yij to be min of either. - Compute A_i by iterating of yij and beta_alpha (Recall that there is only one i in this case) """ min1 = min(m1, exponent(n-k,2)) min2 = min(m2, exponent(k,2)) if(k==n): ## Write your code here for the case when k==n yi = [] for j in range(min2): yij = generate_binary_string(n) yi.append(yij) A_i = 0 for j in range(min2): # value of sum f(yij) xhi_alpha(yij) A_i = (f_val(bin_to_dec(yi[j])))*((-1)**(dot(alpha, yi[j]))) + A_i A_i = A_i/min2 # approximated value of f_alpha(xi) return [A_i**2, A_i] # keeps track of the expected fourier coefficient when n==k else: """ 1. Generate xi_list. This has two cases, 2**(n-k)<=m1 and 2**(n-k)>m1. We chose the length of xi to be min of either. 2. Generate yij_list. This has two cases, 2**(k)<=m2 and 2**(k)>m2. We chose the length of yij to be min of either. 3. Iterate over x_i and y_ij and compute A_i and finally beta_alpha """ # Part-1: Write a code to Generate random Xi string beta_alpha = 0 A = [] for i in range(min1): xi = generate_binary_string(n-k) yi = [] # ----------------------------------------------------------------------- # Part -2 : Write a code to Generate random Yi string for j in range(min2): yij = generate_binary_string(k) yi.append(yij) #------------------------------------------------------------ # Part 3: Iterate over xi and yj and compute Ai and beta_alpha A_i = 0 for j in range(min2): # value of sum f(yij xi) xhi_alpha(yij) A_i = (f_val(bin_to_dec(xi+yi[j])))*((-1)**(dot(alpha, yi[j]))) + A_i A_i = A_i/min2 # value of f_alpha(xi) A.append(A_i) for i in range(min1): beta_alpha = beta_alpha + (A[i]**2) beta_alpha = beta_alpha/min1 return [beta_alpha, beta_alpha] # keeps track of the expected fourier coefficient """ SUBROUTINE Coef(alpha,k) Input: alpha value, k - Size of alpha Output: Set of binary strings corresponding to the monomials with largest fourier coefficients This function is called recursively call till k==n by extending the prefix with both '0' and '1' and pruned as needed (refer to the algorithm). """ def Coef(alpha,k, list): # Compute B_alpha for each value of alpha and keep those alpha values for which B_alpha> threshold # Write your code here B_alpha_list = approx(alpha, k) if B_alpha_list[0] >= (theta**2)/2: if k == n: list.append([alpha, B_alpha_list[1]]) else: Coef(alpha+[0], k+1, list) Coef(alpha+[1], k+1, list) if __name__ == '__main__': k=1 alpha = [0] coephs = [] Coef([], 0, coephs) # starting with 0 then we will recurse on adding new bits print(coephs) # Using the alpha values and the corresponding fourier estimates, create the fourier expansion of the majority function # You can output the expression as a string and print below def bin_to_coefficient(lst): strg = "" flag = True for i in range(len(lst)): if lst[i] == 1: strg = strg + "x_" + str(len(lst)-i) flag = False if flag: strg = strg + '1' return strg return strg to_print = [] for coefficient in coephs: if coefficient[1] < 0: to_print.append('(') to_print.append(str(coefficient[1])) to_print.append(')') else: to_print.append(str(coefficient[1])) to_print.append('*') to_print.append(bin_to_coefficient(coefficient[0])) to_print.append(' + ') for item in to_print[:-1]: print(item, end="") """ Ex. 5: Generate a random function f """ n = 5 N = 2**n f = [] for i in range(N): f.append((-1)**np.random.randint(0,2)) #print(f) #for i in range(len(f)): # f[i] = (-1)**np.random.randint(0,2) print(f) def f_val(a_int): a = a_int % N return f[a] # Generate a random function. One example is shown below #f = (x32 © x8 © x34 © x13) AND (x33 © x20 © x9 © x1 © x15 © x39) OR (x24 © x10 © x27 © x6 © x34) # f = f1 and f2 or f3 n = 40 # Hardcode the f1,f2,f3 lists as f1_list = [32,8,34,13] f2_list = [33,20,9,1,15,39] f3_list = [24,10,27,6,34] f_list = set(f1_list + f2_list + f3_list ) # OR Generate f1_list, f2_list, f3_list randomly as below f1_l1 = 7 f2_l2 = 5 f3_l3 = 8 f4_l4 = 4 f1_list,f2_list,f3_list,f4_list = [],[],[],[] f = [] i=0 while(i<f1_l1): r=random.randint(1,n) if r not in f1_list: f1_list.append(r) i = i+1 else: pass # Write similar code for f2_l2, f3_l3, f4_l4 f_list = set(f1_list + f2_list + f3_list + f4_list) print(f' f1_list data is {f1_list}') print(f' f2_list data is {f2_list}') print(f' f3_list data is {f3_list}') print(f' f4_list data is {f4_list}') print(f' f_list data is {f_list}') def count(f_bits): f_ = f_bits.count(1) if (f_%2==0): return 0 else: return 1 def f_val(a_int): a = bin(a_int)[2:].zfill(n) f1_bits = [] f2_bits = [] f3_bits = [] f4_bits = [] for i in f1_list: f1_bits.append(int(a[n-i])) for i in f2_list: f2_bits.append(int(a[n-i])) for i in f3_list: f3_bits.append(int(a[n-i])) for i in f4_list: f4_bits.append(int(a[n-i])) #print(f1_bits) #print(f2_bits) #print(f3_bits) #print(f4_bits) f1 = count(f1_bits) f2 = count(f2_bits) f3 = count(f3_bits) f4 = count(f4_bits) f = f1 and f2 or f3 return (-1)**f # Write a code to compute fourier coefficients and final alpha values as explained # Verify your end result for following 3 points by compairing it with elements present in the original function # 1. Check for Elements correctly retrieved # 2. Elements retrieved but not present in the original function # 3. Elements present in the original function but not retrieved # Write your code here # Compare total execution times of both and accuracy of the KM """ Ex.3 (4 variables), Ex. Ref. 1 sec. 2.3.1 page no 8 f(x1,x2,x3,x4) = x1 AND x3 (x1 is lsb and x4 is msb, x=x4, y=x3, z=x2, w=x1) f = [1,1,1,1,1,-1,1,-1,1,1,1,1,1,-1,1,-1] """ def f_val(a_int): a = bin(a_int)[2:].zfill(n) f = int(a[1]) and int(a[3]) return (-1)**f """ Ex. 4 (40 variables), Ref. 1, sec. 3.1 page no 15 f = (x32 © x8 © x34 © x13) AND (x33 © x20 © x9 © x1 © x15 © x39) OR (x24 © x10 © x27 © x6 © x34) """ def f_val(a_int): a = bin(a_int)[2:].zfill(n) f1 = int(a[40-32])^int(a[40-8])^int(a[40-34])^int(a[40-13]) f2 = int(a[40-33])^int(a[40-20])^int(a[40-9])^int(a[40-39]) f3 = int(a[40-24])^int(a[40-10])^int(a[40-27])^int(a[40-34]) f = f1 and f2 or f3 return (-1)**f
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program stores the API token of IBM Quantum (can be found in the account settings) for later use in a qiskitrc-file, loads your IBMQ account and it lists all the versions of your qiskit installation. ''' import qiskit from qiskit import IBMQ IBMQ.save_account('***********') IBMQ.load_account print(qiskit.__qiskit_version__)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program sets up the Half Adder and the Full Adder and creates a .tex file with the gate geometry. It also evaluates the result with a qasm quantum simulator ''' from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, \ execute, result, Aer import os import shutil import numpy as np import lib.adder as adder import lib.quantum_logic as logic LaTex_folder_Adder_gates = str(os.getcwd())+'/Latex_quantum_gates/Adder-gates/' if not os.path.exists(LaTex_folder_Adder_gates): os.makedirs(LaTex_folder_Adder_gates) else: shutil.rmtree(LaTex_folder_Adder_gates) os.makedirs(LaTex_folder_Adder_gates) qubit_space = ['0','1'] ## Half Adder (my version) print("Test Half Adder (my version",'\n') for add0 in qubit_space: # loop over all possible additions for add1 in qubit_space: q = QuantumRegister(3, name = 'q') c = ClassicalRegister(2, name = 'c') qc = QuantumCircuit(q,c) for qubit in q: qc.reset(qubit) # initialisation if(add0== '1'): qc.x(q[0]) if(add1 == '1'): qc.x(q[1]) adder.Half_Adder(qc, q[0],q[1],q[2]) qc.measure(q[0], c[0]) qc.measure(q[2], c[1]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) results = job.result() count = results.get_counts() print('|0', add0, '>', '+', '|0', add1, '>', '\t', count) ## Plot a sketch of the gate q = QuantumRegister(3, name = 'q') c = ClassicalRegister(2, name = 'c') qc = QuantumCircuit(q,c) qc.reset(q[2]) adder.Half_Adder(qc, q[0],q[1],q[2]) qc.measure(q[1], c[0]) qc.measure(q[2], c[1]) LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'Half_Adder_gate_Benjamin.tex' with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code) ## Half Adder for two qubits (Beyond Classical book version) print("Test Half Adder Beyond Classical") for add0 in qubit_space: # loop over all possible additions for add1 in qubit_space: q = QuantumRegister(5, name = 'q') c = ClassicalRegister(2, name = 'c') qc = QuantumCircuit(q,c) # initialisation if(add0 == '1'): qc.x(q[0]) if(add1 == '1'): qc.x(q[1]) logic.XOR(qc, q[0],q[1],q[2]) qc.barrier(q) logic.AND(qc, q[0], q[1], q[3]) qc.barrier(q) qc.measure(q[2], c[0]) qc.measure(q[3], c[1]) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) results = job.result() count = results.get_counts() print('|0', add0, '>', '+', '|0', add1, '>', '\t', count) if(add0=='0' and add1=='1'): LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'Half_Adder_gate_Beyond_Classical.tex' with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code) ## Full Adder for addition of two-qubits |q1>, |q2>, and a carry bit |qd> # from another calculation using a anxiliary bit |q0> with a carry qubit |cq> # which is initialised to |0> # iteration over all possible values for |q1>, |q2>, and |qd> print('\n',"Full Adder Test (my version)") for qubit_2 in qubit_space: for qubit_1 in qubit_space: for qubit_d in qubit_space: string_q1 = str(qubit_1) string_q2 = str(qubit_2) string_qd = str(qubit_d) q1 = QuantumRegister(1, name ='q1') q2 = QuantumRegister(1, name = 'q2') qd = QuantumRegister(1, name = 'qd') q0 = QuantumRegister(1, name = 'q0') c = ClassicalRegister(2, name = 'c') qc = QuantumCircuit(q1,q2,qd,q0,c) for qubit in q1: qc.reset(qubit) for qubit in q2: qc.reset(qubit) for qubit in qd: qc.reset(qubit) for qubit in q0: qc.reset(qubit) # initialise qubits which should be added for i, qubit in enumerate(q1): if(string_q1[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") for i, qubit in enumerate(q2): if(string_q2[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") for i, qubit in enumerate(qd): if(string_qd[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") adder.Full_Adder(qc, q1, q2, qd, q0, c[0]) qc.measure(q0, c[1]) # check the results backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) results = job.result() count = results.get_counts() print('|', qubit_1, '>', '+', '|', qubit_2, '>', '+', '|', qubit_d, '> = ' , '\t', count) if(qubit_1 == '0' and qubit_2 == '0' and qubit_d == '0'): LaTex_code = qc.draw(output='latex_source') # draw the circuit f_name = 'Full_Adder_gate_Benjamin.tex' with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code) ## Test for adding two two-qubit numbers |q1> and |q2> for qubit1_0 in qubit_space: for qubit1_1 in qubit_space: for qubit2_0 in qubit_space: for qubit2_1 in qubit_space: string_q1 = str(qubit1_1)+str(qubit1_0) string_q2 = str(qubit2_1)+str(qubit2_0) q1 = QuantumRegister(2, name ='q1') q2 = QuantumRegister(2, name = 'q2') # qubit to store carry over for significiant bit q0 = QuantumRegister(1, name = 'q0') c = ClassicalRegister(3, name = 'c') qc = QuantumCircuit(q1,q2,q0,c) for qubit in q1: qc.reset(qubit) qc.reset(q2) qc.reset(q0) # initialise qubits which should be added for i, qubit in enumerate(q1): if(string_q1[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") for i, qubit in enumerate(q2): if(string_q2[i] == '1'): qc.x(qubit) print(1,end="") else: print(0,end="") print('\t',end="") adder.Half_Adder(qc,q1[-1],q2[-1],q0) qc.measure(q2[-1],c[0]) adder.Full_Adder(qc, q1[-2],q2[-2], q0, q2[-1], c[1]) qc.measure(q2[-1], c[2]) # check the results backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=1000) results = job.result() count = results.get_counts() print('|', qubit1_1, qubit1_0, '>', '+', '|', qubit2_1, qubit2_0, '> = ' , '\t', count) if(qubit1_1 == '0' and qubit1_0 == '1' and qubit2_1 == '0' and qubit2_0 == '0'): LaTex_code = qc.draw(output='latex_source') # draw the circuit # export QASM code qc.qasm(filename="one_plus_one.qasm") f_name = 'Adder_gate_for_two_two-qubit_numbers.tex' with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code) ## Adder for two arbitrary binary numbers # randomly draw number of bits from the numbers to add bit_number_q1 = int(np.ceil(10*np.random.rand()))+2 bit_number_q2 = int(np.ceil(10*np.random.rand()))+2 # prepare two random binary numbers string_q1 = [] string_q2 = [] for i in range(bit_number_q1): #string_q1.append(1) string_q1.append(int(np.round(np.random.rand()))) for i in range(bit_number_q2): string_q2.append(int(np.round(np.random.rand()))) while(len(string_q1)<len(string_q2)): string_q1 = np.insert(string_q1, 0, 0, axis=0) while(len(string_q1)>len(string_q2)): string_q2 = np.insert(string_q2, 0, 1, axis=0) string_q1 = np.array(string_q1) string_q2 = np.array(string_q2) q1 = QuantumRegister(len(string_q1), name = 'q1') q2 = QuantumRegister(len(string_q2), name = 'q2') # qubit to store carry over for initial half adder q0 = QuantumRegister(1, name = 'q0') c = ClassicalRegister(len(string_q1)+1, name = 'c') qc = QuantumCircuit(q1,q2,q0,c) for qubit in q1: qc.reset(qubit) for qubit in q2: qc.reset(qubit) qc.reset(q0) # initialise qubits which should be added for i, qubit in enumerate(q1): if(string_q1[i] == 1): qc.x(qubit) print(1,end="") else: print(0,end="") print('\n',end="") for i, qubit in enumerate(q2): if(string_q2[i] == 1): qc.x(qubit) print(1,end="") else: print(0,end="") print('\n') # initial addition of least significant bits and determining carry bit adder.Half_Adder(qc, q1[-1], q2[-1], q0) qc.measure(q2[-1], c[0]) # adding of next significant bits adder.Full_Adder(qc, q1[-2], q2[-2], q0, q2[-1], c[1]) # adding of other digits by full adder cascade for i in range(2, len(string_q1)): adder.Full_Adder(qc, q1[-i-1], # bit to add q2[-i-1], # bit to add #(and to measure as next significant bit) q2[-i+1], # carry from last calculation q2[-i], # carry for next calculation c[i]) qc.measure(q2[-len(string_q1)+1], c[len(string_q1)]) # check the results backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=10) results = job.result() count = results.get_counts() print(count) LaTex_code = qc.draw(output='latex_source') # draw the circuit f_name = 'Adder_gate_for_'+str(string_q1)+'_and_'+str(string_q2)+'.tex' print(f_name) with open(LaTex_folder_Adder_gates+f_name, 'w') as f: f.write(LaTex_code)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
import numpy as np from qiskit import * from qiskit.visualization import plot_histogram from matplotlib.pyplot import plot, draw, show def SendState(qc1, qc2, qc1_name): ''' This function takes the output of circuit qc1 (made up of only H and X gates) and initialises another circuit qc2 with the same state ''' qs = qc1.qasm().split(sep=';')[4:-1] # process the code to get the instructions for i, instruction in enumerate(qs): qs[i] = instruction.lstrip() # parse the instructions and apply to new circuit for instruction in qs: instruction_gate = instruction[0] instruction_qubit_list = [] i = 0 while instruction[i] != '[': i += 1 i += 1 while instruction[i] != ']': instruction_qubit_list.append(instruction[i]) i += 1 instruction_qubit = 0 for i, dec in enumerate(reversed(instruction_qubit_list)): instruction_qubit += int(dec)*10**i if(instruction_gate == 'x'): old_qr = int(instruction_qubit) qc2.x(qr[old_qr]) elif instruction_gate == 'h': old_qr = int(instruction_qubit) qc2.h(qr[old_qr]) elif instruction_gate == 'm': # exclude measuring pass else: raise Exception('Unable to parse instruction') # declare classical and quantum register n = 16 # for local backend 'n' can go up to 23, #after which a memery error is raised qr = QuantumRegister(n, name='q') cr = ClassicalRegister(n, name='c') # create Alice's circuit alice = QuantumCircuit(qr, cr, name='Alice') # generate a random number expressible by the available qubits alice_key = np.random.randint(0,high=2**n) # cast key to binary representation alice_key = np.binary_repr(alice_key,n) # encode key as alice qubits for i, digit in enumerate(alice_key): if(digit == '1'): alice.x(qr[i]) # switch randomly about half qubits to Hadamard basis alice_table = [] for qubit in qr: if(np.random.rand()>0.5): alice.h(qubit) alice_table.append('H') # indicate the Hadamard-basis else: alice_table.append('Z') # indicate the Z-basis # create Bob's circuit bob = QuantumCircuit(qr, cr, name='Bob') SendState(alice,bob, 'Alice') # Bob does not know which basis to use bob_table = [] for qubit in qr: if(np.random.rand()>0.5): bob.h(qubit) bob_table.append('H') # indicate the Hadamard-basis else: bob_table.append('Z') # indicate the Z-basis # measure all qubits for i, qubit in enumerate(qr): bob.measure(qubit, cr[i]) backend = BasicAer.get_backend('qasm_simulator') # Bob has only one chance of measuring correctly result = execute(bob, backend=backend, shots=1).result() #plot_histogram(result.get_counts(bob)) #draw() #show(block=True) # result of the measurement is Bob's key candidate bob_key = list(result.get_counts(bob))[0] # key is reversed so that first qubit is the first element of the list bob_key = bob_key[::-1] # compare basis and discard qubits not measured in the same basis keep = [] discard = [] print('\n', "Compare Bob's and Alice's basis (without eavesdropping): ") for qubit, basis in enumerate(zip(alice_table,bob_table)): if(basis[0] == basis[1]): print("Same choice for qubit: {}, basis: {}".format(qubit, basis[0])) keep.append(qubit) else: print("Different choice for qubit: {}, Alice has {}, Bob has {}".format(qubit, basis[0], basis[1])) discard.append(qubit) # measure the percentage of qubits to be discarded acc = 0 for bit in zip(alice_key, bob_key): if(bit[0]==bit[1]): acc += 1 print('\n Percentage of qubits to be discarded according to table comparison: ', len(keep)/n) print('Measurement convergence by additional chance: ', acc/n) new_alice_key = [alice_key[qubit] for qubit in keep] new_bob_key = [bob_key[qubit] for qubit in keep] acc = 0 for bit in zip(new_alice_key, new_bob_key): if(bit[0] == bit[1]): acc += 1 print('Percentage of similarity between the keys: ', acc/len(new_alice_key)) if(acc//len(new_alice_key) == 1): print('Key exchange has been succesfull') print("New Alice's key: ", new_alice_key) print("New Bob's key: ", new_bob_key) else: print('Key exchange has been tampered! ---> Check for eavesdropper or try again') print("New Alice's key is invalid: ", new_alice_key) print("New Bob's key is invalid: ", new_bob_key) # let's intrude a eavesdropper Eve (which is initialised to Alice's state) eve = QuantumCircuit(qr, cr, name='Eve') SendState(alice, eve, 'Alice') eve_table = [] for qubit in qr: if(np.random.rand()>0.5): eve.h(qubit) eve_table.append('H') else: eve_table.append('Z') for i, qubit in enumerate(qr): eve.measure(qubit,cr[i]) # Execute (build and run) the quantum circuit backend = BasicAer.get_backend('qasm_simulator') result = execute(eve, backend=backend, shots=1).result() # Result of the measurement is Eve's key eve_key = list(result.get_counts(eve))[0] eve_key = eve_key[::-1] # Update states to new eigenstates (of wrongly chosen basis) print('\n', "Compare Eve's and Alice's basis: ") for i, basis in enumerate(zip(alice_table,eve_table)): if(basis[0] == basis[1]): print("Same choice for qubit: {}, basis: {}".format(qubit, basis[0])) keep.append(i) else: print("Different choice for qubit: {}, Alice has {}, Eve has {}".format(qubit, basis[0], basis[1])) discard.append(i) if eve_key[i] == alice_key[i]: eve.h(qr[i]) else: if (basis[0] == 'H' and basis[1] == 'Z'): alice.h(qr[i]) eve.x(qr[i]) else: eve.x(qr[i]) eve.h(qr[i]) # Eve's state is now sent to Bob SendState(eve, bob, 'Eve') bob_table = [] for qubit in qr: if(np.random.rand()>0.5): bob.h(qubit) bob_table.append('H') else: bob_table.append('Z') for i, qubit in enumerate(qr): bob.measure(qubit, cr[i]) result = execute(bob, backend, shots=1).result() #plot_histogram(result.get_counts(bob)) #draw() #show(block=True) bob_key = list(result.get_counts(bob))[0] bob_key = bob_key[::-1] # Now Alice and Bob will share their table data and perform checking operations keep = [] discard = [] print('\n', "Compare Bob's and Alice's basis (with eavesdropping by Eve): ") for qubit, basis in enumerate(zip(alice_table, bob_table)): if(basis[0] == basis[1]): print("Same choice for qubit: {}, basis: {}".format(qubit, basis[0])) keep.append(qubit) else: print("Different choice for qubit: {}, Alice has {}, Bob has {}".format(qubit, basis[0], basis[1])) discard.append(qubit) # measure the percentage of qubits to be discarded acc = 0 for bit in zip(alice_key, bob_key): if(bit[0]==bit[1]): acc += 1 print('Percentage of qubits to be discarded according to table comparison: ', len(keep)/n) print('Measurement convergence by additional chance: ', acc/n) new_alice_key = [alice_key[qubit] for qubit in keep] new_bob_key = [bob_key[qubit] for qubit in keep] acc = 0 for bit in zip(new_alice_key, new_bob_key): if(bit[0] == bit[1]): acc += 1 print('\n Percentage of similarity between the keys: ', acc/len(new_alice_key)) if(acc//len(new_alice_key) == 1): print('Key exchange has been succesfull') print("New Alice's key: ", new_alice_key) print("New Bob's key: ", new_bob_key) else: print('Key exchange has been tampered! --->', 'Check for eavesdropper or try again') print("New Alice's key is invalid: ", new_alice_key) print("New Bob's key is invalid: ", new_bob_key)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This code creates the gates for all four Bell states and prints the LaTex code for the circuit ''' from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit import os import shutil use_classical_register = True LaTex_folder_Bell_states = str(os.getcwd())+'/Latex_quantum_gates/Bell_measurement/' if not os.path.exists(LaTex_folder_Bell_states): os.makedirs(LaTex_folder_Bell_states) else: shutil.rmtree(LaTex_folder_Bell_states) os.makedirs(LaTex_folder_Bell_states) qr = QuantumRegister(2) # initialise a two-bit quantum register cr = ClassicalRegister(2) # initialise a two-bit classical register if(not use_classical_register): circuit = QuantumCircuit(qr) # put only quantum registers into circuit else: circuit = QuantumCircuit(qr, cr) # put classical and quantum registers into circuit circuit.cx(qr[0],qr[1]) # at a CNOT gate to the second qubit depending on the state of the first one circuit.h(qr[0]) # add a Hadamard gate to first qubit if(use_classical_register): circuit.measure(qr,cr) # measure the quantum bits LaTex_code = circuit.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Bell_state_measurement.tex' with open(LaTex_folder_Bell_states+f_name, 'w') as f: f.write(LaTex_code)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This code creates the gates for all four Bell states and prints the LaTex code for the circuit ''' from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit import os import shutil use_classical_register = False LaTex_folder_Bell_states = str(os.getcwd())+'/Latex_quantum_gates/Bell_states/' if not os.path.exists(LaTex_folder_Bell_states): os.makedirs(LaTex_folder_Bell_states) else: shutil.rmtree(LaTex_folder_Bell_states) os.makedirs(LaTex_folder_Bell_states) for not0 in [False,True]: for not1 in [False,True]: qr = QuantumRegister(2,name='q') # initialise a two-bit quantum register cr = ClassicalRegister(2, name='c') # initialise a two-bit classical register if(not use_classical_register): circuit = QuantumCircuit(qr) # put only quantum registers into circuit else: circuit = QuantumCircuit(qr, cr) # put classical and quantum registers into circuit if(not0): circuit.x(qr[0]) if(not1): circuit.x(qr[1]) circuit.h(qr[0]) # add a Hadamard gate to first qubit circuit.cx(qr[0],qr[1]) # at a CNOT gate to the second qubit depending on the state of the first one if(use_classical_register): circuit.measure(qr,cr) # measure the quantum bits LaTex_code = circuit.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Bell_state_creator_beta_' if(not0): f_name += '1' else: f_name += '0' if(not1): f_name += '1' else: f_name += '0' f_name += '.tex' with open(LaTex_folder_Bell_states+f_name, 'w') as f: f.write(LaTex_code)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program performs the Berstein-Vazirani algorithm to guess a secret code ''' from qiskit import * from qiskit.visualization import plot_histogram from matplotlib.pyplot import plot, draw, show import numpy as np import os, shutil LaTex_folder_Berstein_Vazirani = str(os.getcwd())+'/Latex_quantum_gates/Berstein_Vazarani/' if not os.path.exists(LaTex_folder_Berstein_Vazirani): os.makedirs(LaTex_folder_Berstein_Vazirani) else: shutil.rmtree(LaTex_folder_Berstein_Vazirani) os.makedirs(LaTex_folder_Berstein_Vazirani) ## guess a secret binary number s = '110101' #secret number/code n = len(s) qc = QuantumCircuit(n+1,n) qc.x(n) qc.barrier() qc.h(range(n+1)) qc.barrier() # to separate steps for i, tf in enumerate(reversed(s)): if(tf == '1'): qc.cx(i,n) qc.barrier() qc.h(range(n+1)) qc.barrier() qc.measure(range(n), range(n)) # create a LaTex file for the algorithm LaTex_code = qc.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Berstein_Vazirani.tex' with open(LaTex_folder_Berstein_Vazirani+f_name, 'w') as f: f.write(LaTex_code) # simulate the algorithm simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=1) results = job.result() count = results.get_counts() plot_histogram(results.get_counts(qc)) print(count) draw() show(block=True) ## guess a secret string string = 'Thank you for the nice book' bit_string = [] # convert string to bit-string for c in string: bits_letter = format(ord(c), 'b') for bit in bits_letter: bit_string.append(bit) n = len(bit_string) qc = QuantumCircuit(n+1,n) qc.x(n) qc.barrier() qc.h(range(n+1)) qc.barrier() # to separate steps for i, tf in enumerate(reversed(bit_string)): if(tf == '1'): qc.cx(i,n) qc.barrier() qc.h(range(n+1)) qc.barrier() qc.measure(range(n), range(n)) simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=1) results = job.result() count = results.get_counts() plot_histogram(results.get_counts(qc)) print(len(bit_string),'\n', count) draw() show(block=True)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit import numpy as np import os from matplotlib.pyplot import draw, show import shutil ''' LaTex_folder = str(os.getcwd())+'/Latex_quantum_gates/circuits/' if not os.path.exists(LaTex_folder): os.makedirs(LaTex_folder) ## A decomposition of the CU(theta,phi,lambda, alpha) qr = QuantumRegister(2,name='q') circuit = QuantumCircuit(qr) circuit.rz(np.pi/2,qr[1]) # angle (lambda+pi)/2 circuit.cx(qr[0],qr[1]) circuit.rz(-np.pi/2,qr[1]) # angle -(lambda+pi)/2 circuit.ry(np.pi/4,qr[1]) # angle theta/2 circuit.cx(qr[0],qr[1]) circuit.ry(-np.pi/4,qr[1]) # angle -theta/2 circuit.rz(np.pi/8,qr[1]) # angle (phi+pi)/2 circuit.cx(qr[0],qr[1]) circuit.rz(-np.pi/8,qr[1]) # angle -(phi+pi)/2 circuit.cx(qr[0],qr[1]) # global phase gate to target qubit circuit.x(qr[1]) circuit.u(0,0,np.pi/16,qr[1]) # angle alpha circuit.x(qr[1]) circuit.u(0,0,np.pi/16,qr[1]) # angle alpha LaTex_code = circuit.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'CU_Gate.tex' with open(LaTex_folder+f_name, 'w') as f: f.write(LaTex_code) ## The qiskit CU-gate circuit = QuantumCircuit(qr) circuit.cu(np.pi/4,np.pi/8,np.pi/2,np.pi/16,qr[0],qr[1]) LaTex_code = circuit.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'CU_Gate_compact.tex' with open(LaTex_folder+f_name, 'w') as f: f.write(LaTex_code) ''' QASM_folder = str(os.getcwd())+'/OpenQASM_pictures/' if not os.path.exists(QASM_folder): os.makedirs(QASM_folder) n= 5 qr = QuantumRegister(n,name='q') cr = ClassicalRegister(n,name='c') circuit = QuantumCircuit(qr, cr) for q in qr: circuit.h(q) for i in range(len(qr)): circuit.cx(qr[i],qr[(i+1)%len(qr)]) circuit.u(np.pi/8,np.pi/4,0,qr[0]) circuit.rx(np.pi/2,qr[0]) circuit.ccx(qr[0],qr[1],qr[2]) circuit.toffoli(qr[0],qr[1],qr[2]) circuit.measure(qr,cr) circuit.sdg(qr[0]) qasm = circuit.qasm() print(qasm)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import plot, draw, show import os, shutil from qiskit import BasicAer, IBMQ, QuantumCircuit, ClassicalRegister,\ QuantumRegister, execute from qiskit.compiler import transpile from qiskit.transpiler import CouplingMap from qiskit.tools.monitor import job_monitor from qiskit.tools.visualization import plot_histogram LaTex_folder_Deutsch_Josza = str(os.getcwd())+'/Latex_quantum_gates/Deutsch_Josza_algorithm/' if not os.path.exists(LaTex_folder_Deutsch_Josza): os.makedirs(LaTex_folder_Deutsch_Josza) else: shutil.rmtree(LaTex_folder_Deutsch_Josza) os.makedirs(LaTex_folder_Deutsch_Josza) n = 4 # number of qubits in state |0> # Choose a type of oracle at random. # With probability one-half it is constant # and with the same probability it is balanced oracleType, oracleValue = np.random.randint(2), np.random.randint(2) if oracleType == 0: print("Oracle is constant with value = ", oracleValue) else: print("Oracle is balanced ") # this is a hidden parameter for balanced oracles a = np.random.randint(1,2**n) # Creating registers # n qubits for querying the oracle and one qubit forstoring the answer qr = QuantumRegister(n+1, 'q') #all qubits are initialised to |0> # for recording the measurement on the first register cr = ClassicalRegister(n, 'c') circuitName = "DeutschJosza" djCircuit = QuantumCircuit(qr, cr) # Create the superposition of all input queries in the first register # by applying the Hadamard gate to each qubit. for qubit in qr[0:-2]: djCircuit.h(qubit) # Flip the second register and apply the Hadamard gate djCircuit.x(qr[n]) djCircuit.h(qr[n]) # Apply the barrier to mark the beginning of the oracle djCircuit.barrier() if oracleType == 0:#If the oracleType is "0", the oracle returns oracleValue #for all inputs if oracleValue == 1: djCircuit.x(qr[n]) else: djCircuit.id(qr[n]) else: #otherwise, it returns the inner product of the input with #a (non-zero) bitstring for i, qubit in enumerate(qr[0:-2]): if(a & (1 << i)): djCircuit.cx(qubit, qr[n]) # Apply barrier to mark the end of the oracle djCircuit.barrier() # Apply Hadamard gates after querying the oracle for qubit in qr[0:-2]: djCircuit.h(qubit) # Measurement djCircuit.barrier() for i in range(n): djCircuit.measure(qr[i], cr[i]) # create a LaTex file for the algorithm LaTex_code = djCircuit.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Deutsch_Josza_algorithm.tex' with open(LaTex_folder_Deutsch_Josza+f_name, 'w') as f: f.write(LaTex_code) ## execute on a simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1000 job = execute(djCircuit, backend=backend, shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer) draw() show(block=True) ## execute on a real device provider = IBMQ.load_account() for backend in IBMQ.providers()[0].backends(): print(backend.name(),) backend = provider.backend.ibmq_lima djCompiled = transpile(djCircuit, backend=backend, optimization_level=1) djCompiled.draw(output='mpl', scale=0.5) draw() show(block=True) print("This step might take some time!!!") job = execute(djCompiled, backend=backend, shots=shots) job_monitor(job) results = job.result() answer = results.get_counts() threshold = int(0.01 *shots) # the threshld of plotting significant measurements # filter the answer for better view of plots filteredAnswer = {k: v for k,v in answer.items() if v>= threshold} # number of counts removed removedCounts = np.sum([ v for k,v in answer.items() if v < threshold]) # the removed counts are assigned to a new index filteredAnswer['other_bitstrings'] = removedCounts plot_histogram(filteredAnswer) draw() show(block=True) # Quantum computers have noise so they would not produce discrete outputs # like simulators - that only demonstrates the superiority # of quantum over classical print(filteredAnswer)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
import os, shutil from qiskit import * from qiskit.visualization import plot_histogram from qiskit.visualization import circuit_drawer as drawer import numpy as np from matplotlib.pyplot import draw, plot, show N = 1000 # number of circuits with random errors p = 0.1 # error probability LaTex_folder_Error_Correction = str(os.getcwd())+'/Latex_quantum_gates/Error_Correction/' if not os.path.exists(LaTex_folder_Error_Correction): os.makedirs(LaTex_folder_Error_Correction) else: shutil.rmtree(LaTex_folder_Error_Correction) os.makedirs(LaTex_folder_Error_Correction) def ERROR_X(circuit, q): if(np.random.rand()<p): circuit.x(q) def ERROR_Y(circuit, q): if(np.random.rand()<p): circuit.y(q) def ERROR_Z(circuit, q): if(np.random.rand()<p): circuit.z(q) def All_Errors(circuit, q): for qubit in q: ran = np.random.rand() if(ran < 1/3): ERROR_X(circuit, qubit) elif(ran < 2/3): ERROR_Y(circuit, qubit) else: ERROR_Z(circuit, qubit) def Shor_error_correction(Circuit_FUNC, qr, qr_Shor): # This function creates the Shor error correction circuit # for a error-prone function Circuit_FUNC and its related # qubit(s) qr (qr_Shor are the ancilla qubits) # it returns this error corrected circuit qc_preprocess = QuantumCircuit(qr, qr_Shor) for i, qubit in enumerate(qr): qc_preprocess.cx(qubit, qr_Shor[8*i+2]) qc_preprocess.cx(qubit, qr_Shor[8*i+5]) qc_preprocess.h(qubit) qc_preprocess.h(qr_Shor[8*i+2]) qc_preprocess.h(qr_Shor[8*i+5]) qc_preprocess.cx(qubit, qr_Shor[8*i]) qc_preprocess.cx(qubit, qr_Shor[8*i+1]) qc_preprocess.cx(qr_Shor[8*i+2], qr_Shor[8*i+3]) qc_preprocess.cx(qr_Shor[8*i+2], qr_Shor[8*i+4]) qc_preprocess.cx(qr_Shor[8*i+5], qr_Shor[8*i+6]) qc_preprocess.cx(qr_Shor[8*i+5], qr_Shor[8*i+7]) #qc_preprocess.barrier() qc_preprocess.barrier() qc = qc_preprocess # apply main function (with possible errors) to qr # and the error ancilla qubits Circuit_FUNC(qc, qr) for j in range(8): Circuit_FUNC(qc, qr_Shor[j:j+8*len(qr):8]) qc.barrier() qc_postprocess = QuantumCircuit(qr,qr_Shor) for i, qubit in enumerate(qr): qc_postprocess.cx(qubit, qr_Shor[8*i]) qc_postprocess.cx(qubit, qr_Shor[8*i+1]) qc_postprocess.cx(qr_Shor[8*i+2], qr_Shor[8*i+3]) qc_postprocess.cx(qr_Shor[8*i+2], qr_Shor[8*i+4]) qc_postprocess.cx(qr_Shor[8*i+5], qr_Shor[8*i+6]) qc_postprocess.cx(qr_Shor[8*i+5], qr_Shor[8*i+7]) qc_postprocess.ccx(qr_Shor[8*i], qr_Shor[8*i+1], qubit) qc_postprocess.ccx(qr_Shor[8*i+3], qr_Shor[8*i+4], qr_Shor[8*i+2]) qc_postprocess.ccx(qr_Shor[8*i+6], qr_Shor[8*i+7], qr_Shor[8*i+5]) qc_postprocess.h(qubit) qc_postprocess.h(qr_Shor[8*i+2]) qc_postprocess.h(qr_Shor[8*i+5]) qc_postprocess.cx(qubit, qr_Shor[8*i+2]) qc_postprocess.cx(qubit, qr_Shor[8*i+5]) qc_postprocess.ccx(qr_Shor[8*i+2], qr_Shor[8*i+5], qubit) #qc_postprocess.barrier() qc = QuantumCircuit.compose(qc, qc_postprocess) return qc ## X-Error print("X error") for qubit in [0, 1]: answer_plot = {} print("|",qubit,'> : ',end='') for i in range(N): q = QuantumRegister(1,'q') q_Shor = QuantumRegister(8*len(q),'q_shor') c = ClassicalRegister(len(q), 'c') qc = QuantumCircuit(q,q_Shor, c) if(qubit): qc.x(q) qc_Shor = Shor_error_correction(ERROR_X, q, q_Shor) qc_Shor.barrier() qc_Shor = QuantumCircuit.compose(qc, qc_Shor) qc_Shor.measure(q, c) # evaluate result simulator = Aer.get_backend('qasm_simulator') result = execute(qc_Shor, backend=simulator, shots=100).result() answer = result.get_counts() for measureresult in answer.keys(): measureresults_input = measureresult if measureresults_input in answer_plot: answer_plot[measureresults_input] += answer[measureresult] else: answer_plot[measureresults_input] = answer[measureresult] # Plot the categorised results print(answer_plot) #plt = plot_histogram(answer_plot) #draw() #show(block=True) LaTex_code = qc_Shor.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Shor_error_correction_XERROR.tex' with open(LaTex_folder_Error_Correction+f_name, 'w') as f: f.write(LaTex_code) ## Y-Error print("Y error") for qubit in [0, 1]: answer_plot = {} print("|",qubit,'> : ',end='') for i in range(N): q = QuantumRegister(1,'q') q_Shor = QuantumRegister(8*len(q),'q_shor') c = ClassicalRegister(len(q), 'c') qc = QuantumCircuit(q,q_Shor, c) if qubit: qc.x(q) qc.h(q) # y error is detected in Hadamard basis qc_Shor = Shor_error_correction(ERROR_Y, q, q_Shor) qc_Shor.barrier() qc_Shor = QuantumCircuit.compose(qc, qc_Shor) qc_Shor.h(q) # y error is detected in Hadamard basis qc_Shor.measure(q, c) # evaluate result simulator = Aer.get_backend('qasm_simulator') result = execute(qc_Shor, backend=simulator, shots=100).result() answer = result.get_counts() for measureresult in answer.keys(): measureresults_input = measureresult if measureresults_input in answer_plot: answer_plot[measureresults_input] += answer[measureresult] else: answer_plot[measureresults_input] = answer[measureresult] # Plot the categorised results print(answer_plot) #plt = plot_histogram(answer_plot) #draw() #show(block=True) LaTex_code = qc_Shor.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Shor_error_correction_YERROR.tex' with open(LaTex_folder_Error_Correction+f_name, 'w') as f: f.write(LaTex_code) ## Z-Error print("Z error") for qubit in [0, 1]: answer_plot = {} print("|",qubit,'> : ',end='') for i in range(N): q = QuantumRegister(1,'q') q_Shor = QuantumRegister(8*len(q),'q_shor') c = ClassicalRegister(len(q), 'c') qc = QuantumCircuit(q,q_Shor, c) if qubit: qc.x(q) qc.h(q) # z error is detected in Hadamard basis qc_Shor = Shor_error_correction(ERROR_Z, q, q_Shor) qc_Shor.barrier() qc_Shor = QuantumCircuit.compose(qc, qc_Shor) qc_Shor.h(q) # z error is detected in Hadamard basis qc_Shor.measure(q, c) # evaluate result simulator = Aer.get_backend('qasm_simulator') result = execute(qc_Shor, backend=simulator, shots=100).result() answer = result.get_counts() for measureresult in answer.keys(): measureresults_input = measureresult if measureresults_input in answer_plot: answer_plot[measureresults_input] += answer[measureresult] else: answer_plot[measureresults_input] = answer[measureresult] # Plot the categorised results print(answer_plot) #plt = plot_histogram(answer_plot) #draw() #show(block=True) LaTex_code = qc_Shor.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Shor_error_correction_ZERROR.tex' with open(LaTex_folder_Error_Correction+f_name, 'w') as f: f.write(LaTex_code) ## All three errors possible before CX-gate print("CX with all error types") for qubit1 in [0, 1]: for qubit2 in [0, 1]: print("|",qubit1,qubit2,'> : ',end='') answer_plot = {} for i in range(N): q = QuantumRegister(2,'q') c = ClassicalRegister(len(q), 'c') q_Shor = QuantumRegister(8*len(q),'q_shor') qc = QuantumCircuit(q, q_Shor, c) if(qubit1): qc.x(q[0]) if(qubit2): qc.x(q[1]) qc.barrier() qc_Shor = Shor_error_correction(All_Errors, q, q_Shor) qc_Shor.barrier() qc_Shor = QuantumCircuit.compose(qc, qc_Shor) qc_Shor.cx(q[0],q[1]) for i, qubit in enumerate(reversed(q)): qc_Shor.measure(qubit, c[i]) # evaluate result simulator = Aer.get_backend('qasm_simulator') result = execute(qc_Shor, backend=simulator, shots=10).result() answer = result.get_counts() for measureresult in answer.keys(): measureresults_input = measureresult if measureresults_input in answer_plot: answer_plot[measureresults_input] += answer[measureresult] else: answer_plot[measureresults_input] = answer[measureresult] # Plot the categorised results print(answer_plot) plt = plot_histogram(answer_plot) draw() show(block=True)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
from qiskit import * print("GHZ") c2 = QuantumCircuit(3,3) c2.h(0) c2.h(1) c2.ccz(0,1,2) c2.x(2) c2.ccz(0,1,2) c2.x(2) c2.h(1) c2.h(2) c2.ccz(0,1,2) c2.h(2) c2.measure([i for i in range(3)], [i for i in range(3)]) simulator = Aer.get_backend('qasm_simulator') result = execute(c2, backend=simulator, shots=1000).result() answer = result.get_counts() print(answer)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
from argparse import ArgumentParser, Namespace, BooleanOptionalAction from qiskit import QuantumCircuit as qc from qiskit import QuantumRegister as qr from qiskit import transpile from qiskit_aer import AerSimulator from qiskit.result import Counts from matplotlib.pyplot import show, subplots, xticks, yticks from math import pi, sqrt from heapq import nlargest class GroversAlgorithm: def __init__(self, title: str = "Grover's Algorithm", n_qubits: int = 5, search: set[int] = { 11, 9, 0, 3 }, shots: int = 1000, fontsize: int = 10, print: bool = False, combine_states: bool = False) -> None: """ _summary_ Args: title (str, optional): Window title. Defaults to "Grover's Algorithm". n_qubits (int, optional): Number of qubits. Defaults to 5. search (set[int], optional): Set of nonnegative integers to search for using Grover's algorithm. Defaults to { 11, 9, 0, 3 }. shots (int, optional): Amount of times the algorithm is simulated. Defaults to 10000. fontsize (int, optional): Histogram's font size. Defaults to 10. print (bool, optional): Whether or not to print quantum circuit(s). Defaults to False. combine_states (bool, optional): Whether to combine all non-winning states into 1 bar labeled "Others" or not. Defaults to False. """ # Parsing command line arguments self._parser: ArgumentParser = ArgumentParser(description = "Run grover's algorithm via command line", add_help = False) self._init_parser(title, n_qubits, search, shots, fontsize, print, combine_states) self._args: Namespace = self._parser.parse_args() # Set of nonnegative ints to search for self.search: set[int] = set(self._args.search) # Set of m N-qubit binary strings representing target state(s) (i.e. self.search in base 2) self._targets: set[str] = { f"{s:0{self._args.n_qubits}b}" for s in self.search } # N-qubit quantum register self._qubits: qr = qr(self._args.n_qubits, "qubit") def _print_circuit(self, circuit: qc, name: str) -> None: """Print quantum circuit. Args: circuit (qc): Quantum circuit to print. name (str): Quantum circuit's name. """ print(f"\n{name}:\n{circuit}") def _oracle(self, targets: set[str]) -> qc: """Mark target state(s) with negative phase. Args: targets (set[str]): N-qubit binary string(s) representing target state(s). Returns: qc: Quantum circuit representation of oracle. """ # Create N-qubit quantum circuit for oracle oracle = qc(self._qubits, name = "Oracle") for target in targets: # Reverse target state since Qiskit uses little-endian for qubit ordering target = target[::-1] # Flip zero qubits in target for i in range(self._args.n_qubits): if target[i] == "0": # Pauli-X gate oracle.x(i) # Simulate (N - 1)-control Z gate # 1. Hadamard gate oracle.h(self._args.n_qubits - 1) # 2. (N - 1)-control Toffoli gate oracle.mcx(list(range(self._args.n_qubits - 1)), self._args.n_qubits - 1) # 3. Hadamard gate oracle.h(self._args.n_qubits - 1) # Flip back to original state for i in range(self._args.n_qubits): if target[i] == "0": # Pauli-X gate oracle.x(i) # Display oracle, if applicable if self._args.print: self._print_circuit(oracle, "ORACLE") return oracle def _diffuser(self) -> qc: """Amplify target state(s) amplitude, which decreases the amplitudes of other states and increases the probability of getting the correct solution (i.e. target state(s)). Returns: qc: Quantum circuit representation of diffuser (i.e. Grover's diffusion operator). """ # Create N-qubit quantum circuit for diffuser diffuser = qc(self._qubits, name = "Diffuser") # Hadamard gate diffuser.h(self._qubits) # Oracle with all zero target state diffuser.append(self._oracle({"0" * self._args.n_qubits}), list(range(self._args.n_qubits))) # Hadamard gate diffuser.h(self._qubits) # Display diffuser, if applicable if self._args.print: self._print_circuit(diffuser, "DIFFUSER") return diffuser def _grover(self) -> qc: """Create quantum circuit representation of Grover's algorithm, which consists of 4 parts: (1) state preparation/initialization, (2) oracle, (3) diffuser, and (4) measurement of resulting state. Steps 2-3 are repeated an optimal number of times (i.e. Grover's iterate) in order to maximize probability of success of Grover's algorithm. Returns: qc: Quantum circuit representation of Grover's algorithm. """ # Create N-qubit quantum circuit for Grover's algorithm grover = qc(self._qubits, name = "Grover Circuit") # Intialize qubits with Hadamard gate (i.e. uniform superposition) grover.h(self._qubits) # # Apply barrier to separate steps grover.barrier() # Apply oracle and diffuser (i.e. Grover operator) optimal number of times for _ in range(int((pi / 4) * sqrt((2 ** self._args.n_qubits) / len(self._targets)))): grover.append(self._oracle(self._targets), list(range(self._args.n_qubits))) grover.append(self._diffuser(), list(range(self._args.n_qubits))) # Measure all qubits once finished grover.measure_all() # Display grover circuit, if applicable if self._args.print: self._print_circuit(grover, "GROVER CIRCUIT") return grover def _outcome(self, winners: list[str], counts: Counts) -> None: """Print top measurement(s) (state(s) with highest frequency) and target state(s) in binary and decimal form, determine if top measurement(s) equals target state(s), then print result. Args: winners (list[str]): State(s) (N-qubit binary string(s)) with highest probability of being measured. counts (Counts): Each state and its respective frequency. """ print("WINNER(S):") print(f"Binary = {winners}\nDecimal = {[ int(key, 2) for key in winners ]}\n") print("TARGET(S):") print(f"Binary = {self._targets}\nDecimal = {self.search}\n") if not all(key in self._targets for key in winners): print("Target(s) not found...") else: winners_frequency, total = 0, 0 for value, frequency in counts.items(): if value in winners: winners_frequency += frequency total += frequency print(f"Target(s) found with {winners_frequency / total:.2%} accuracy!") def _show_histogram(self, histogram_data) -> None: """Print outcome and display histogram of simulation results. Args: data: Each state and its respective frequency. """ # State(s) with highest count and their frequencies winners = { winner : histogram_data.get(winner) for winner in nlargest(len(self._targets), histogram_data, key = histogram_data.get) } # Print outcome self._outcome(list(winners.keys()), histogram_data) # X-axis and y-axis value(s) for winners, respectively winners_x_axis = [ str(winner) for winner in [*winners] ] winners_y_axis = [ *winners.values() ] # All other states (i.e. non-winners) and their frequencies others = { state : frequency for state, frequency in histogram_data.items() if state not in winners } # X-axis and y-axis value(s) for all other states, respectively other_states_x_axis = "Others" if self._args.combine else [*others] other_states_y_axis = [ sum([*others.values()]) ] if self._args.combine else [ *others.values() ] # Create histogram for simulation results figure, axes = subplots(num = "Grover's Algorithm — Results", layout = "constrained") axes.bar(winners_x_axis, winners_y_axis, color = "green", label = "Target") axes.bar(other_states_x_axis, other_states_y_axis, color = "red", label = "Non-target") axes.legend(fontsize = self._args.fontsize) axes.grid(axis = "y", ls = "dashed") axes.set_axisbelow(True) # Set histogram title, x-axis title, and y-axis title respectively axes.set_title(f"Outcome of {self._args.shots} Simulations", fontsize = int(self._args.fontsize * 1.45)) axes.set_xlabel("States (Qubits)", fontsize = int(self._args.fontsize * 1.3)) axes.set_ylabel("Frequency", fontsize = int(self._args.fontsize * 1.3)) # Set font properties for x-axis and y-axis labels respectively xticks(fontsize = self._args.fontsize, family = "monospace", rotation = 0 if self._args.combine else 70) yticks(fontsize = self._args.fontsize, family = "monospace") # Set properties for annotations displaying frequency above each bar annotation = axes.annotate("", xy = (0, 0), xytext = (5, 5), xycoords = "data", textcoords = "offset pixels", ha = "center", va = "bottom", family = "monospace", weight = "bold", fontsize = self._args.fontsize, bbox = dict(facecolor = "white", alpha = 0.4, edgecolor = "None", pad = 0) ) def _hover(event) -> None: """Display frequency above each bar upon hovering over it. Args: event: Matplotlib event. """ visibility = annotation.get_visible() if event.inaxes == axes: for bars in axes.containers: for bar in bars: cont, _ = bar.contains(event) if cont: x, y = bar.get_x() + bar.get_width() / 2, bar.get_y() + bar.get_height() annotation.xy = (x, y) annotation.set_text(y) annotation.set_visible(True) figure.canvas.draw_idle() return if visibility: annotation.set_visible(False) figure.canvas.draw_idle() # Display histogram id = figure.canvas.mpl_connect("motion_notify_event", _hover) show() figure.canvas.mpl_disconnect(id) def run(self) -> None: """ Run Grover's algorithm simulation. """ # Simulate Grover's algorithm locally backend = AerSimulator(method = "density_matrix") # Generate optimized grover circuit for simulation transpiled_circuit = transpile(self._grover(), backend, optimization_level = 2) # Run Grover's algorithm simulation job = backend.run(transpiled_circuit, shots = self._args.shots) # Get simulation results results = job.result() # Get each state's histogram data (including frequency) from simulation results data = results.get_counts() # Display simulation results self._show_histogram(data) def _init_parser(self, title: str, n_qubits: int, search: set[int], shots: int, fontsize: int, print: bool, combine_states: bool) -> None: """ Helper method to initialize command line argument parser. Args: title (str): Window title. n_qubits (int): Number of qubits. search (set[int]): Set of nonnegative integers to search for using Grover's algorithm. shots (int): Amount of times the algorithm is simulated. fontsize (int): Histogram's font size. print (bool): Whether or not to print quantum circuit(s). combine_states (bool): Whether to combine all non-winning states into 1 bar labeled "Others" or not. """ self._parser.add_argument("-H, --help", action = "help", help = "show this help message and exit") self._parser.add_argument("-T, --title", type = str, default = title, dest = "title", metavar = "<title>", help = f"window title (default: \"{title}\")") self._parser.add_argument("-n, --n-qubits", type = int, default = n_qubits, dest = "n_qubits", metavar = "<n_qubits>", help = f"number of qubits (default: {n_qubits})") self._parser.add_argument("-s, --search", default = search, type = int, nargs = "+", dest = "search", metavar = "<search>", help = f"nonnegative integers to search for with Grover's algorithm (default: {search})") self._parser.add_argument("-S, --shots", type = int, default = shots, dest = "shots", metavar = "<shots>", help = f"amount of times the algorithm is simulated (default: {shots})") self._parser.add_argument("-f, --font-size", type = int, default = fontsize, dest = "fontsize", metavar = "<font_size>", help = f"histogram's font size (default: {fontsize})") self._parser.add_argument("-p, --print", action = BooleanOptionalAction, type = bool, default = print, dest = "print", help = f"whether or not to print quantum circuit(s) (default: {print})") self._parser.add_argument("-c, --combine", action = BooleanOptionalAction, type = bool, default = combine_states, dest = "combine", help = f"whether to combine all non-winning states into 1 bar labeled \"Others\" or not (default: {combine_states})") if __name__ == "__main__": GroversAlgorithm().run()
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
import os from qiskit import (QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer) from scipy.optimize import minimize import matplotlib.pyplot as plt from matplotlib.pyplot import plot, draw, show import numpy as np os.environ["QT_QPA_PLATFORM"] = "xcb" def ansatz_H(theta): qc = QuantumCircuit(2,2) qc.x(0) qc.ry(theta[0],0) qc.rx(theta[0]+2*np.pi,1) qc.cx(0,1) qc.rz(theta[1],0) qc.cx(0,1) qc.ry(theta[0]+2*np.pi,0) qc.rx(theta[0],1) return qc def expectation_H(theta): # See DOI: 10.1103/PhysRevX.6.031007 # Here, we use parameters given for H2 at R=0.75A g0 = -0.4804 g1 = +0.3435 g2 = -0.4347 g3 = +0.5716 g4 = +0.0910 g5 = +0.0910 energy = g0 qc = ansatz_H(theta) qc.measure(0,0) qc.measure(1,1) backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(qc, backend=backend, shots=shots).result() counts = results.get_counts() for key in counts.keys(): if(key[0]=='0'): energy += g1*counts[key]/shots else: energy += -g1*counts[key]/shots if(key[1]=='0'): energy += g2*counts[key]/shots else: energy += -g2*counts[key]/shots if(key[0]==key[1]): energy += g3*counts[key]/shots else: energy += -g3*counts[key]/shots qc = ansatz_H(theta) qc.h(0) qc.h(1) qc.s(0) qc.s(1) qc.measure(0,0) qc.measure(1,1) results = execute(qc, backend=backend, shots=shots).result() counts = results.get_counts() for key in counts.keys(): if(key[0]==key[1]): energy += g4*counts[key]/shots else: energy += -g4*counts[key]/shots qc = ansatz_H(theta) qc.h(0) qc.h(1) qc.measure(0,0) qc.measure(1,1) results = execute(qc, backend=backend, shots=shots).result() counts = results.get_counts() for key in counts.keys(): if(key[0]==key[1]): energy += g5*counts[key]/shots else: energy += -g5*counts[key]/shots return energy nuclear_repulsion = 0.7055696146 theta = [4*np.pi*np.random.uniform(), 4*np.pi*np.random.uniform()] result = minimize(expectation_H,theta, method='Nelder-Mead') theta = result.x val = result.fun print("VQE: ") print(" [+] theta1: {:+2.8} rad, theta2: {:+2.8} rad".format(theta[0],theta[1])) print(" [+] energy: {:+2.8} Eh".format(val + nuclear_repulsion)) ''' import numpy as np from scipy.linalg import block_diag from scipy.optimize import minimize np.set_printoptions(precision=4,suppress=True) # Pauli matrices I = np.array([[ 1, 0], [ 0, 1]]) Sx = np.array([[ 0, 1], [ 1, 0]]) Sy = np.array([[ 0,-1j], [1j, 0]]) Sz = np.array([[ 1, 0], [ 0,-1]]) # Hadamard matrix H = (1/np.sqrt(2))*np.array([[ 1, 1], [ 1,-1]]) # Phase matrix S = np.array([[ 1, 0], [ 0,1j]]) # single qubit basis states |0> and |1> q0 = np.array([[1], [0]]) q1 = np.array([[0], [1]]) # Projection matrices |0><0| and |1><1| P0 = np.dot(q0,q0.conj().T) P1 = np.dot(q1,q1.conj().T) # Rotation matrices as a function of theta, e.g. Rx(theta), etc. Rx = lambda theta : np.array([[ np.cos(theta/2),-1j*np.sin(theta/2)], [-1j*np.sin(theta/2), np.cos(theta/2)]]) Ry = lambda theta : np.array([[ np.cos(theta/2), -np.sin(theta/2)], [ np.sin(theta/2), np.cos(theta/2)]]) Rz = lambda theta : np.array([[np.exp(-1j*theta/2), 0.0], [ 0.0, np.exp(1j*theta/2)]]) # CNOTij, where i is control qubit and j is target qubit CNOT10 = np.kron(P0,I) + np.kron(P1,Sx) # control -> q1, target -> q0 CNOT01 = np.kron(I,P0) + np.kron(Sx,P1) # control -> q0, target -> q1 SWAP = block_diag(1,Sx,1) # See DOI: 10.1103/PhysRevX.6.031007 # Here, we use parameters given for H2 at R=0.75A g0 = -0.4804 g1 = +0.3435 g2 = -0.4347 g3 = +0.5716 g4 = +0.0910 g5 = +0.0910 nuclear_repulsion = 0.7055696146 Hmol = (g0 * np.kron( I, I) + # g0 * I g1 * np.kron( I,Sz) + # g1 * Z0 g2 * np.kron(Sz, I) + # g2 * Z1 g3 * np.kron(Sz,Sz) + # g3 * Z0Z1 g4 * np.kron(Sy,Sy) + # g4 * Y0Y1 g5 * np.kron(Sx,Sx)) # g5 * X0X1 electronic_energy = np.linalg.eigvalsh(Hmol)[0] # take the lowest value print("Classical diagonalization: {:+2.8} Eh".format(electronic_energy + nuclear_repulsion)) print("Exact (from G16): {:+2.8} Eh".format(-1.1457416808)) # initial basis, put in |01> state with Sx operator on q0 psi0 = np.zeros((4,1)) psi0[0] = 1 psi0 = np.dot(np.kron(I,Sx),psi0) # read right-to-left (bottom-to-top?) ansatz = lambda theta: (np.dot(np.dot(np.kron(-Ry(np.pi/2),Rx(np.pi/2)), np.dot(CNOT10, np.dot(np.kron(I,Rz(theta)), CNOT10))), np.kron(Ry(np.pi/2),-Rx(np.pi/2)))) def projective_expected(theta,ansatz,psi0): # this will depend on the hard-coded Hamiltonian + coefficients circuit = ansatz(theta[0]) psi = np.dot(circuit,psi0) # for 2 qubits, assume we can only take Pauli Sz measurements (Sz \otimes I) # we just apply the right unitary for the desired Pauli measurement measureZ = lambda U: np.dot(np.conj(U).T,np.dot(np.kron(Sz,I),U)) energy = 0.0 # although the paper indexes the hamiltonian left-to-right (0-to-1) # qubit-1 is always the top qubit for us, so the tensor pdt changes # e.g. compare with the "exact Hamiltonian" we explicitly diagonalized # <I1 I0> energy += g0 # it is a constant # <I1 Sz0> U = SWAP energy += g1*np.dot(psi.conj().T,np.dot(measureZ(U),psi)) # <Sz1 I0> U = np.kron(I,I) energy += g2*np.dot(psi.conj().T,np.dot(measureZ(U),psi)) # <Sz1 Sz0> U = CNOT01 energy += g3*np.dot(psi.conj().T,np.dot(measureZ(U),psi)) # <Sx1 Sx0> U = np.dot(CNOT01,np.kron(H,H)) energy += g4*np.dot(psi.conj().T,np.dot(measureZ(U),psi)) # <Sy1 Sy0> U = np.dot(CNOT01,np.kron(np.dot(H,S.conj().T),np.dot(H,S.conj().T))) energy += g5*np.dot(psi.conj().T,np.dot(measureZ(U),psi)) return np.real(energy)[0,0] theta = [0.0] result = minimize(projective_expected,theta,args=(ansatz,psi0)) theta = result.x[0] val = result.fun # check it works... #assert np.allclose(val + nuclear_repulsion,-1.1456295) print("VQE: ") print(" [+] theta: {:+2.8} deg".format(theta)) print(" [+] energy: {:+2.8} Eh".format(val + nuclear_repulsion)) '''
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
from qiskit import IBMQ from qiskit import * #provider = IBMQ.enable_account(<INSERT_IBM_QUANTUM_EXPERIENCE_TOKEN>) qc = QuantumCircuit(2,2) qc.h(0) qc.cx(0,1) qc.measure(1,0) backend = IBMQ.get_backend('ibmq_qasm_simulator', hub=None) job=execute(qc, backend, shots=1000) result = job.result() print(result.get_counts())
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program creates a .tex file of several classical logic gates ''' from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit import os import shutil logic_folder = os.getcwd() LaTex_folder_logic_gates = str(os.getcwd())+'/Latex_quantum_gates/logic_gates/' if not os.path.exists(LaTex_folder_logic_gates): os.makedirs(LaTex_folder_logic_gates) else: shutil.rmtree(LaTex_folder_logic_gates) os.makedirs(LaTex_folder_logic_gates) print(LaTex_folder_logic_gates) ## NOT gate q = QuantumRegister(1, name='q') c = ClassicalRegister(1, name='c') qc = QuantumCircuit(q,c) qc.x(q[0]) qc.measure(q[0],c[0]) LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'NOT_gate.tex' with open(LaTex_folder_logic_gates+f_name, 'w') as f: f.write(LaTex_code) ## AND gate q = QuantumRegister(3, name='q') qubit_state = '0' c = ClassicalRegister(1, name='c') qc = QuantumCircuit(q,c) qc.reset(q[2]) qc.ccx(q[0], q[1], q[2]) qc.measure(q[2], c[0]) LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'AND_gate.tex' with open(LaTex_folder_logic_gates+f_name, 'w') as f: f.write(LaTex_code) ## OR gate q = QuantumRegister(3, name='q') c = ClassicalRegister(1, name='c') qc = QuantumCircuit(q,c) qc.reset(q[2]) qc.ccx(q[0], q[1], q[2]) qc.cx(q[0],q[2]) qc.cx(q[1],q[2]) qc.measure(q[2],c[0]) LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'OR_gate.tex' with open(LaTex_folder_logic_gates+f_name, 'w') as f: f.write(LaTex_code) ## XOR gate q = QuantumRegister(3, name='q') c = ClassicalRegister(1, name='c') qc = QuantumCircuit(q,c) qc.reset(q[2]) qc.cx(q[0],q[2]) qc.cx(q[1],q[2]) qc.measure(q[2],c[0]) LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'XOR_gate.tex' with open(LaTex_folder_logic_gates+f_name, 'w') as f: f.write(LaTex_code) ## NOR gate q = QuantumRegister(3, name='q') c = ClassicalRegister(1, name='c') qc = QuantumCircuit(q,c) qc.reset(q[2]) qc.ccx(q[0], q[1], q[2]) qc.cx(q[0],q[2]) qc.cx(q[1],q[2]) qc.x(q[2]) qc.measure(q[2],c[0]) LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit f_name = 'NOR_gate.tex' with open(LaTex_folder_logic_gates+f_name, 'w') as f: f.write(LaTex_code)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program uses some methods from quantum chemistry (and doesn't produce anything good yet) ''' import numpy as np from matplotlib.pyplot import plot, draw, show import pylab, os from qiskit import * #from qiskit.chemistry import QiskitChemistry # does no longer exist from qiskit_nature import * os.environ["QT_QPA_PLATFORM"] = "xcb" # input dictionary to configure Qiskit Chemistry for the chemistry problem qiskit_chemistry_dict = { 'problem': {'random_seed': 750}, 'driver' : {'name': 'PYSCF'}, 'PYSCF': {'atom': '', 'basis' : 'sto3g'}, 'operator': {'name': 'hamiltonian', 'transformation': 'full', 'qubit_mapping': 'parity', 'two_qubit_reduction': True}, 'algorithm': {}, } molecule = 'H .0 .0 -{0}; H .0 .0 {0}' algorithms = [{'name': 'VQE','operator_mode': 'paulis'}, {'name': 'ExactEigensolver'} ] optimizer = {'name': 'SPSA', 'max_trials': 200} variational_form = {'name': 'RYRZ', 'depth': 3, 'entanglement': 'full'} backend = {'provider': 'qiskit.BasicAer', 'name': 'qasm_simulator', 'shots': 1024} start = 0.5 # start distance increment = 0.5 # how much to increase distance by steps = 20 # number of steps to increase by energies = np.empty([len(algorithms), steps+1]) hf_energies = np.empty(steps+1) distances = np.empty(steps+1) print('Processing step __', end='') for i in range(steps+1): print('\b\b{:2d}'.format(i), end='',flush=True) d = start + i*increment/steps qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) for j in range(len(algorithms)): qiskit_chemistry_dict['algorithm'] = algorithms[j] if algorithms[j]['name'] == 'VQE': qiskit_chemistry_dict['optimizer'] = optimizer qiskit_chemistry_dict['variational_form'] = variational_form qiskit_chemistry_dict['backend'] = backend else: # This does no longer work as qiskit.chemistry is deprecated # The functions may be contained in qiskit_nature ''' qiskit_chemistry_dict.pop('optimizer') qiskit_chemistry_dict.pop('variational_form') qiskit_chemistry_dict.pop('backend') solver = QiskitChemistry() result = solver.run(qiskit_chemistry_dict) energies[j][i] = result['energy'] hf_energies[i] = result['hf_energy'] distances[i] = d ''' print(' --- complete') print('Distances: ', distances) print('Energies: ', energies) print('Hartree-Fock energies: ', hf_energies) pylab.plot(distances, hf_energies, label='Hartree-Fock') for j in range(len(algorithms)): pylab.plot(distances, energies[j], label=algorithms[j]) pylab.xlabel('Interatomic distance (Angstrom)') pylab.ylabel('Energy (Hartree)') pylab.title('H2 Ground State Energy') pylab.legend(loc='upper right') draw() show(block=True) pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock') pylab.plot(distances, np.subtract(energies[0], energies[1]), label=algorithms[0]) pylab.xlabel('Interatomic distance (Angstrom)') pylab.ylabel('Energy (Hartree)') pylab.title('Energy difference from ExactEigensolver') pylab.legend(loc='upper left') draw() show(block=True)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program implements the quantum Fourier transform (QFT) ''' from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, IBMQ from qiskit.visualization import circuit_drawer as drawer from qiskit.tools.visualization import plot_histogram from qiskit import execute from qiskit import Aer import numpy as np import time, os, shutil from matplotlib.pyplot import plot, draw, show def QFT(q, c, n): qc = QuantumCircuit(q,c) # First get the most significant bit for k in range(n): j = n - k # now add the Hadamard transform to qubit j-1 qc.h(q[j-1]) # now each qubit from the lowest significance # takes one conditional phase shift for i in reversed(range(j-1)): qc.cp(2*np.pi/2**(j-i), q[i], q[j-1]) # Finally swap the qubits for i in range(n//2): qc.swap(q[i], q[n-i-1]) return qc # QFT is represented in a matrix form with 2^n rows and columns # where n represents the number of qubits def QFTmatrix(n): qft = np.zeros([2**n,2**n], dtype=complex) for i in range(2**n): for k in range(2**n): qft[i,k] = np.exp(i*k*2*2j*np.pi/(2**n)) return(1/np.sqrt(2**n)*qft) def QFTcircuit(n): q = QuantumRegister(n, "q") c = ClassicalRegister(n, "c") qc = QFT(q, c, n) backend = Aer.get_backend('unitary_simulator') job = execute(qc, backend) actual = job.result().get_unitary() np.around(actual, 2) expected = QFTmatrix(n) delta = actual - expected print("Deviation: ", round(np.linalg.norm(delta), 10)) return qc LaTex_folder_QFT = str(os.getcwd())+'/Latex_quantum_gates/Quantum_Fourier_transform/' if not os.path.exists(LaTex_folder_QFT): os.makedirs(LaTex_folder_QFT) else: shutil.rmtree(LaTex_folder_QFT) os.makedirs(LaTex_folder_QFT) n=4 qc = QFTcircuit(n) # create a LaTex file for the algorithm LaTex_code = qc.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'Quantum_Four_transform_'+str(n)+'qubits.tex' with open(LaTex_folder_QFT+f_name, 'w') as f: f.write(LaTex_code) n = 4 q = QuantumRegister(n, "x") c = ClassicalRegister(n, "c") qftCircuit = QFT(q, c, n) initCircuit = QuantumCircuit(q, c) for qubit in q: initCircuit.h(qubit) initCircuit.barrier(q) qc = QuantumCircuit.compose(initCircuit, qftCircuit) qc.barrier(q) qc.measure(q, c) # on simulator backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend) k = job.result().get_counts() print(k) # on a real quantum computer provider = IBMQ.load_account() backend = provider.backend.ibmq_lima print("Status of backened: ", backend.status()) job = execute(qc, backend=backend, shots = 1024) lapse = 0 print("This step might take some time.") time.sleep(3) interval = 60 while((job.status().name != 'DONE') and (job.status().name != 'Cancelled') and (job.status().name != 'ERROR')): print('Status @ {} seconds'.format(interval * lapse)) print(job.status()) print(job.queue_position()) time.sleep(interval) lapse +=1 print(job.status()) plt = plot_histogram(job.result().get_counts())
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program realises the quantum k-means algorithm ''' import numpy as np from qiskit import * from qiskit.tools.visualization import plot_histogram from matplotlib.pyplot import plot, draw, show circuit_name = 'k_means' backend = Aer.get_backend('qasm_simulator') theta_list = [0.01, 0.02, 0.03, 0.04, 0.05, 1.31, 1.32, 1.33, 1.34, 1.35] qr = QuantumRegister(5,'q') cr = ClassicalRegister(5, 'c') qc = QuantumCircuit(qr, cr, name=circuit_name) # define a loop to compute the distance between each pair of points for i in range(len(theta_list)-1): for j in range(1,len(theta_list)-i): # set the parameters theta about different points theta_1 = theta_list[i] theta_2 = theta_list[i+j] qc.h(qr[2]) qc.h(qr[1]) qc.h(qr[4]) qc.u3(theta_1, np.pi, np.pi, qr[1]) qc.u3(theta_2, np.pi, np.pi, qr[4]) qc.cswap(qr[2], qr[1], qr[4]) qc.h(qr[2]) qc.measure(qr[2], cr[2]) qc.reset(qr) job = execute(qc, backend=backend, shots=1024) result = job.result() print(result.get_counts()) print('theta_1: ', theta_1, '\t', 'theta_2: ', theta_2) plot_histogram(result.get_counts())
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program uses quantum computing to solve a linear system of equations ''' import numpy as np from qiskit import * from qiskit.tools.visualization import plot_histogram from matplotlib.pyplot import plot, draw, show circuit_name = 'solve_linear_system' backend = Aer.get_backend('qasm_simulator') qr = QuantumRegister(4, 'q') cr = ClassicalRegister(4, 'c') qc = QuantumCircuit(qr, cr, name=circuit_name) # initilise times that we get the result vector # and duration T of the manipulation n0 = 0 n1 = 0 T = 10 for i in range(T): # set the input |b> state qc.x(qr[2]) # set the phase estimation circuit qc.h(qr[0]) qc.h(qr[1]) qc.p(np.pi, qr[0]) qc.p(np.pi/2, qr[1]) qc.cx(qr[1], qr[2]) # The qunatum inverse Fourier transform qc.h(qr[0]) qc.cp(-np.pi/2, qr[0], qr[1]) qc.h(qr[1]) # R (lambda^-1) rotation qc.x(qr[1]) qc.cu3(np.pi/16, 0, 0, qr[0], qr[3]) qc.cu3(np.pi/8, 0, 0, qr[1], qr[3]) # uncompuation qc.x(qr[1]) qc.h(qr[1]) qc.cp(np.pi/2, qr[0], qr[1]) qc.h(qr[0]) qc.cx(qr[1], qr[2]) qc.p(-np.pi/2, qr[1]) qc.p(-np.pi, qr[0]) qc.h(qr[1]) qc.h(qr[0]) # measure the whole quantum register qc.measure(qr, cr) job = execute(qc, backend=backend, shots=8192,) result = job.result() # get the sum of all results n0 += result.get_counts(circuit_name)['1000'] n1 += result.get_counts(circuit_name)['1100'] #plot_histogram(result.get_counts()) #draw() #show(block=True) # reset the circuit qc.reset(qr) # calculate the scale of the elements in result vector and print it p = n0/n1 print('n0 = ', n0, '\t','n1 = ', n1, '\t','p = ', p)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This is a implementation of the quantum teleportation algorithm ''' from qiskit import * from qiskit.visualization import plot_histogram import os, shutil, numpy from matplotlib.pyplot import plot, draw, show LaTex_folder_Quantum_Teleportation = str(os.getcwd())+'/Latex_quantum_gates/Quantum_Teleportation/' if not os.path.exists(LaTex_folder_Quantum_Teleportation): os.makedirs(LaTex_folder_Quantum_Teleportation) else: shutil.rmtree(LaTex_folder_Quantum_Teleportation) os.makedirs(LaTex_folder_Quantum_Teleportation) qc = QuantumCircuit(3,3) ## prepare the state to be teleported phi = 0*numpy.pi theta= 0.5*numpy.pi lam = 0*numpy.pi qc.u(phi=phi, theta=theta,lam=lam,qubit=0) ## teleport the state qc.barrier() qc.h(1) qc.cx(1,2) qc.cz(0,1) qc.h(0) qc.h(1) qc.barrier() qc.measure([0,1],[0,1]) qc.barrier() qc.x(2).c_if(0,1) qc.z(2).c_if(1,1) qc.h(2) qc.measure(2,2) LaTex_code = qc.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit f_name = 'quantum_teleportation.tex' with open(LaTex_folder_Quantum_Teleportation+f_name, 'w') as f: f.write(LaTex_code) # simulation simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend=simulator, shots=100000).result() counts = {'0':0, '1': 0} print(result.get_counts().keys()) for key, value in result.get_counts().items(): if(key[0] == '0'): counts['0'] += value else: counts['1'] += value print(counts) plt = plot_histogram(counts) draw() show(block=True)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program sets up the circuits for the randamised benchmarking routine ''' import qiskit import numpy as np import os, shutil import matplotlib.pyplot as plt from matplotlib.pyplot import draw, show import qiskit.ignis.verification.randomized_benchmarking as rb from qiskit_aer.noise import NoiseModel from qiskit_aer.noise.errors.standard_errors import depolarizing_error, thermal_relaxation_error os.environ["QT_QPA_PLATFORM"] = "xcb" # for Linux only folder_RBM = os.getcwd()+'/RBM/' if not os.path.exists(folder_RBM): os.makedirs(folder_RBM) else: shutil.rmtree(folder_RBM) os.makedirs(folder_RBM) ## Generate RB circuits (2Q RB) # number of qubits nQ=3 rb_opts = {} # Number of Cliffords in the sequence rb_opts['length_vector'] = [1, 10, 20, 50, 75, 100, 125, 150, 175, 200] # Number of seeds (random sequences) rb_opts['nseeds'] = 5 # Default pattern rb_opts['rb_pattern'] = [ [0, 1, 2] ] rb_circs, xdata = rb.randomized_benchmarking_seq(**rb_opts) print(len(rb_circs)) for i in range(len(rb_circs)): for n, circuit in enumerate(rb_circs[i]): filename = str(folder_RBM+'seed_'+str(i)+'_m_'+str(rb_opts['length_vector'][n]+1)+'.qasm') circuit.qasm(filename=filename) # Run on a noisy simulator noise_model = NoiseModel() # Depolarizing error on the gates u2, u3 and cx (assuming the u1 is virtual-Z gate and no error) p1Q = 0.002 p2Q = 0.01 noise_model.add_all_qubit_quantum_error(depolarizing_error(p1Q, 1), 'u2') noise_model.add_all_qubit_quantum_error(depolarizing_error(2 * p1Q, 1), 'u3') noise_model.add_all_qubit_quantum_error(depolarizing_error(p2Q, 2), 'cx') backend = qiskit.Aer.get_backend('qasm_simulator') # Create the RB fitter backend = qiskit.Aer.get_backend('qasm_simulator') basis_gates = ['u1','u2','u3','cx'] shots = 200 transpiled_circs_list = [] rb_fit = rb.RBFitter(None, xdata, rb_opts['rb_pattern']) for rb_seed, rb_circ_seed in enumerate(rb_circs): print('Compiling seed %d'%rb_seed) new_rb_circ_seed = qiskit.compiler.transpile(rb_circ_seed, basis_gates=basis_gates) transpiled_circs_list.append(new_rb_circ_seed) print('Simulating seed %d'%rb_seed) ## THIS ONE IS FROM OUR RESULTS NOT THE BACKEND job = qiskit.execute(new_rb_circ_seed, backend, shots=shots, noise_model=noise_model) # Add data to the fitter rb_fit.add_data(job.result()) print('After seed %d, alpha: %f, EPC: %f'%(rb_seed,rb_fit.fit[0]['params'][1], rb_fit.fit[0]['epc'])) plt.figure(figsize=(8, 6)) ax = plt.subplot(1, 1, 1) # Plot the essence by calling plot_rb_data rb_fit.plot_rb_data(0, ax=ax, add_label=True, show_plt=False) # Add title and label ax.set_title('%d Qubit RB'%(nQ), fontsize=18) plt.show()
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
''' This program implements Shor's algorithm which determines a number's prime factors. [unfinished] ''' from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit,\ execute, IBMQ, Aer from qiskit.visualization import circuit_drawer as drawer from qiskit.tools.visualization import plot_histogram import numpy as np from matplotlib.pyplot import plot, draw, show M = 15 a = 3 e = 8 print("a**2 mod M = ", (a**2)%M) def NQbitCircuit(p, w, c): circuit = QuantumCircuit(w, p, c) # prepare initial state 1 in primary register circuit.x(p[0]) circuit.barrier(p) circuit.barrier(w) # add a Hadamard gate to the working register for qubit in w: circuit.h(qubit) # add additional multiplication by 'a' to the primary register circuit.cx(w[0], p[1]) circuit.cx(w[0], p[3]) return(circuit) def NBitQFT(q, c, n): circuit = QuantumCircuit(q, c) # Start with the most significant bit for k in range(n): j = n-k # add Hadamard to qubit j-1 circuit.h(q[j-1]) # there is one conditional rotation # for each qubit with lower significance for i in reversed(range(j-1)): circuit.cp(2*np.pi/2**(j-i), q[i], q[j-1]) # swap qubits for i in range(n//2): circuit.swap(q[i], q[n-i-1]) return circuit def Shor_Algorithm(a, n): # create registers and circuit p = QuantumRegister(4, 'p') w = QuantumRegister(n, 'w') c = ClassicalRegister(n, "c") circuit = QuantumCircuit(w, p, c) # add Hadamard gates to working registers for qubit in w: circuit.h(qubit) # add multiplication by 'a' to primary register circuit.cx(w[0], p[1]) circuit.cx(w[0], p[3]) # build the QFT part starting with the most significant bit for k in range(n): j = n - k # add Hadamard to qubit j-1 if(j-1) != 2: circuit.h(w[j-1]) # there is one conditional rotation # for each qubit with lower significance for i in reversed(range(j-1)): circuit.cp(2*np.pi/2**(j-i), w[i], w[j-1]) # add the measurements circuit.barrier(w) for i in range(len(w)): circuit.measure(w[i], c[len(w)-1-i]) return circuit p = QuantumRegister(4, 'p') w = QuantumRegister(3, 'w') c = ClassicalRegister(len(w), 'c') qc = NQbitCircuit(p, w, c) drawer(qc, output='mpl') draw() show(block=True) backend = Aer.get_backend('statevector_simulator') job = execute(qc, backend) state = np.around(job.result().get_statevector(), 2) print('Non-zero states:') for i in range(2**(len(p)+len(w))): if(state[i] != 0): print("|",i,"> --->", state[i]) print('Expected amplitudes up to normalisation:') for s in range(2**(len(w))): x = a**s % M print("|", x*e + s, "> = |", x, ">|", s, ">") # // is the floor division print('Non-zero states and their decomposition: |s> = |s // e> |s mod e> :') for i in range(2**(len(w)+len(p))): if(state[i] != 0): # // is the floor division print("|", i, "> = |", i // e, ">|", i % e, "> ---> ", state[i]) qc = QuantumCircuit.compose(qc, NBitQFT(w, c,3)) qc.barrier(w) qc.measure(w, c) drawer(qc, output='mpl') draw() show(block=True) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend) counts = job.result().get_counts() plt = plot_histogram(counts) draw() show(block=True) qc = Shor_Algorithm(a,3) backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend) counts = job.result().get_counts() plt = plot_histogram(counts) draw() show(block=True)
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
from qiskit import * import matplotlib.pyplot as plt from matplotlib.pyplot import plot, draw, show import numpy as np from qiskit.providers.ibmq import least_busy from qiskit.tools.visualization import plot_histogram import os, shutil def dot(s,z): sum = 0 for i in range(len(str(s))): sum += int(s[i])*int(z[i]) return(sum%2) LaTex_folder_Simon = str(os.getcwd())+'/Latex_quantum_gates/Simon_algorithm/' if not os.path.exists(LaTex_folder_Simon): os.makedirs(LaTex_folder_Simon) else: shutil.rmtree(LaTex_folder_Simon) os.makedirs(LaTex_folder_Simon) s = '10' s_len = len(str(s)) # create quantum register which is double the size of the secret string qr = QuantumRegister(s_len, 'q') qr_ancilla = QuantumRegister(s_len, 'qa') cr = ClassicalRegister(2*s_len, 'c') qc = QuantumCircuit(qr, qr_ancilla, cr) # First Hadamard phase for qubit in qr: qc.h(qubit) # Apply barrier just to separate qc.barrier() # oracle for s for qubit1 in qr: for qubit2 in qr_ancilla: qc.cx(qubit1, qubit2) qc.barrier() # measure ancilla qubits for i, qubit in enumerate(qr_ancilla): qc.measure(qubit, cr[i+s_len]) qc.barrier() # another Hadamard phase for qubit in qr: qc.h(qubit) qc.barrier() # Measure the input register for i, qubit in enumerate(qr): qc.measure(qubit, cr[i]) qc.draw(output='mpl') draw() show(block=True) # create a LaTex file for the algorithm LaTex_code = qc.draw(output='latex_source', initial_state=True, justify=None) f_name = 'Simon_algorithm.tex' with open(LaTex_folder_Simon+f_name, 'w') as f: f.write(LaTex_code) # simulate backend = BasicAer.get_backend('qasm_simulator') shots = 1000 results = execute(qc, backend=backend, shots = shots).result() answer = results.get_counts() # Categorise measurements by input register values answer_plot = {} for measureresult in answer.keys(): measureresults_input = measureresult[s_len:] if measureresults_input in answer_plot: answer_plot[measureresults_input] += answer[measureresult] else: answer_plot[measureresults_input] = answer[measureresult] # Plot the categorised results print(answer_plot) plt = plot_histogram(answer_plot) draw() show(block=True) # Calculate the dot product of the most significant results print('s , z , s.z (mod 2)') for z_rev in answer_plot: if answer_plot[z_rev] >= 0.1*shots: z = z_rev[::-1] print( '{}, {}, {}.{} = {}'.format(s, z, s, z, dot(s,z)))
https://github.com/benkoehlL/Qiskit_Playground
benkoehlL
from qiskit import Aer, execute, QuantumRegister, ClassicalRegister,\ QuantumCircuit from qiskit.visualization import plot_bloch_multivector from matplotlib.pyplot import plot, draw, show # list all the available simulation environments for backend in Aer.backends(): print(backend.name()) if(backend.name() == 'statevector_simulator'): # load a arbitrary quantum circuit of your choice (here Bell state preparation) for not0 in [False,True]: for not1 in [False,True]: print(not0, '\t', not1) qr = QuantumRegister(2,name='q') cr = ClassicalRegister(2, name='c') qc = QuantumCircuit(qr, cr) if(not0): qc.x(qr[0]) if(not1): qc.x(qr[1]) qc.h(qr[0]) qc.cx(qr[0],qr[1]) qc.measure(qr,cr) result = execute(qc, backend).result() stateVectorResult = result.get_statevector(qc) plot_bloch_multivector(stateVectorResult) qc.draw(output='mpl') draw() show(block=True) if(backend.name() == 'pulse_simulator'): print("I do not know how to deal with this yet :)") else: # load a arbitrary quantum circuit of your choice (here Bell state preparation) for not0 in [False,True]: for not1 in [False,True]: print(not0, '\t', not1) qr = QuantumRegister(2,name='q') cr = ClassicalRegister(2, name='c') qc = QuantumCircuit(qr, cr) if(not0): qc.x(qr[0]) if(not1): qc.x(qr[1]) qc.h(qr[0]) qc.cx(qr[0],qr[1]) if(backend.name() != 'aer_simulator_unitary' and backend.name() != 'aer_simulator_superop' and backend.name() != 'unitary_simulator'): qc.measure(qr,cr) job = execute(qc, backend, shots=1000) result = job.result() if(backend.name() != 'aer_simulator_unitary' and backend.name() != 'aer_simulator_superop' and backend.name() != 'unitary_simulator'): count = result.get_counts() print(count)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# import dimod # import numpy as np # import pylab as plt linear = {0: -1, 1: -1} quadratic = {(0, 1): 2} bqm = dimod.BinaryQuadraticModel(linear, quadratic, 0.0, dimod.BINARY) # 0.0 is the value for offset bqm_ising = bqm.change_vartype(dimod.SPIN, inplace=False) response = dimod.ExactSolver().sample(bqm) for sample, energy in response.data(['sample', 'energy']): print(sample, energy) def Test_offset_values(offset): linear = {0: -1, 1: -1} quadratic = {(0, 1): 2} bqm = dimod.BinaryQuadraticModel(linear, quadratic, offset, dimod.BINARY) # 0.0 is the value for offset bqm_ising = bqm.change_vartype(dimod.SPIN, inplace=False) response = dimod.ExactSolver().sample(bqm) for sample, energy in response.data(['sample', 'energy']): print(sample, energy) for offset in [0., 1., 10]: print ('offset=',offset) Test_offset_values(offset) Q = {('x1', 'x2'): 1, ('x1', 'z'): -2, ('x2', 'z'): -2, ('z', 'z'): 3} from dwave.system import DWaveSampler, EmbeddingComposite sampler = DWaveSampler() #from dwave.system import DWaveSampler, EmbeddingComposite #sampler = DWaveSampler() #sampler_embedded = EmbeddingComposite(sampler) linear = {1: 1, 2: 2, 3: 3, 4: 4} # linear term in the Ising hamiltonian h_i s_i terms # And the quadratic terms s_i \dot s_j terms quadratic = {(1, 2): 12, (1, 3): 13, (1, 4): 14, (2, 3): 23, (2, 4): 24, (3, 4): 34} bqm_k4 = dimod.BinaryQuadraticModel(linear, quadratic, 0.5, dimod.SPIN) #bqm_k4 bqm_k4.vartype import dimod >>> linear = {1: 1, 2: 2, 3: 3, 4: 4} >>> quadratic = {(1, 2): 12, (1, 3): 13, (1, 4): 14, ... (2, 3): 23, (2, 4): 24, ... (3, 4): 34} >>> bqm_k4 = dimod.BinaryQuadraticModel(linear, quadratic, 0.5, dimod.SPIN) >>> bqm_k4.vartype <Vartype.SPIN: frozenset([1, -1])> >>> len(bqm_k4.linear) 4 >>> bqm_k4.contract_variables(2, 3) >>> len(bqm_k4.linear) 3 >>> bqm_no3_qubo = bqm_k4.binary
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.u2(pi/2,pi/2,q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.u1(pi/2,q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.iden(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.x(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.y(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.z(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.h(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.s(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.sdg(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.t(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.tdg(q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.rx(pi/2,q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.ry(pi/2,q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.rz(pi/2,q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit import Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.visualization import * from qiskit.providers.aer import UnitarySimulator from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) groverCircuit.draw(output="mpl") job = execute(groverCircuit, backend) job.result().get_unitary(groverCircuit, decimals=3) groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") simulator = Aer.get_backend('qasm_simulator') result = execute(groverCircuit, simulator).result() counts = result.get_counts(groverCircuit) plot_histogram(counts, title='Grover Intermediate measurement') qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) '''oracle w = |00>''' groverCircuit.x(qr) groverCircuit.cz(qr[0],qr[1]) groverCircuit.x(qr) groverCircuit.draw(output="mpl") job = execute(groverCircuit, backend) job.result().get_unitary(groverCircuit, decimals=3) INIT = 0.5*np.array([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]]) CZ = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,-1]]) XX = np.array([[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]) '''Oracle''' ORCL = np.dot(XX,np.dot(CZ,XX)) print(ORCL) '''FUll circuit matrix so far''' np.dot(ORCL,INIT) groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") simulator = Aer.get_backend('qasm_simulator') result = execute(groverCircuit, simulator).result() counts = result.get_counts(groverCircuit) plot_histogram(counts, title='Grover Intermediate measurement') qr = QuantumRegister(2) cr = ClassicalRegister(2) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) '''oracle w = |00>''' groverCircuit.x(qr) groverCircuit.cz(qr[0],qr[1]) groverCircuit.x(qr) '''Grover Transform''' groverCircuit.h(qr) '''Reflection''' groverCircuit.z(qr) groverCircuit.cz(qr[0],qr[1]) '''end of Reflection''' groverCircuit.h(qr) '''end of Grover Transform''' groverCircuit.draw(output="mpl") job = execute(groverCircuit, backend) job.result().get_unitary(groverCircuit, decimals=3) HH = 0.5*np.array([[1,1,1,1],[1,-1,1,-1],[1,1,-1,-1],[1,-1,-1,1]]) ZZ = np.array([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]]) '''Grover Transform''' GT = np.dot(HH,np.dot(CZ,np.dot(ZZ,HH))) print(GT) '''FUll circut matrix''' np.dot(INIT,np.dot(ORCL,GT)) simulator = Aer.get_backend('qasm_simulator') result = execute(groverCircuit, simulator).result() counts = result.get_counts(groverCircuit) plot_histogram(counts, title='Grover Intermediate measurement')
https://github.com/quantumyatra/quantum_computing
quantumyatra
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit,QuantumRegister,ClassicalRegister, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * def qft_1(): n=1 qc = QuantumCircuit() q = QuantumRegister(n, 'q') c = ClassicalRegister(n, 'c') qc.add_register(q) qc.add_register(c) qc.h(q[0]) return qc,q,c qc,q,c = qft_1() qc.measure(q[0], c[0]) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} qc.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator).result() counts = result.get_counts(qc) plot_histogram(counts, title='QFT counts') from qiskit.providers.aer import UnitarySimulator qc,q,c = qft_1() # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(qc, simulator).result() unitary = result.get_unitary(qc) print( unitary) HI = np.array([[1,0,1,0],[0,1,0,1],[1,0,-1,0],[0,1,0,-1]]) CU1 = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,0.+1.j]]) IH = np.array([[1,1,0,0],[1,-1,0,0],[0,0,1,1],[0,0,1,-1]]) SWAP = np.array([[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]) np.dot(HI,np.dot(CU1,np.dot(IH,SWAP))) import numpy as np def qft_2(): n=2 qc = QuantumCircuit() q = QuantumRegister(n, 'q') c = ClassicalRegister(n, 'c') qc.add_register(q) qc.add_register(c) qc.h(q[1]) qc.cu1(np.pi / 2, q[0], q[1]) qc.h(q[0]) qc.swap(q[0], q[1]) return qc,q,c qc,q,c = qft_2() qc.measure(q, c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} qc.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator).result() counts = result.get_counts(qc) plot_histogram(counts, title='QFT counts') from qiskit.providers.aer import UnitarySimulator qc,q,c = qft_2() # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(qc, simulator).result() unitary = result.get_unitary(qc) print( unitary) def qft_3(): n = 3 qc = QuantumCircuit() q = QuantumRegister(n, 'q') c = ClassicalRegister(n, 'c') qc.add_register(q) qc.add_register(c) qc.h(q[2]) qc.cu1(np.pi / 2, q[1], q[2]) qc.h(q[1]) qc.cu1(np.pi / 4, q[0], q[2]) qc.cu1(np.pi / 2, q[0], q[1]) qc.h(q[0]) qc.swap(q[0], q[2]) return qc,q,c qc,q,c = qft_3() qc.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} qc.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator).result() counts = result.get_counts(qc) plot_histogram(counts, title='QFT counts') from qiskit.providers.aer import UnitarySimulator qc,q,c = qft_3() # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(qc, simulator).result() unitary = result.get_unitary(qc) print( unitary) def qft_4(): n = 4 qc = QuantumCircuit() q = QuantumRegister(n, 'q') c = ClassicalRegister(n, 'c') qc.add_register(q) qc.add_register(c) qc.h(q[3]) qc.cu1(np.pi / 2, q[2], q[3]) qc.h(q[2]) qc.cu1(np.pi / 4, q[1], q[3]) qc.cu1(np.pi / 2, q[1], q[2]) qc.h(q[1]) qc.cu1(np.pi / 8, q[0], q[3]) qc.cu1(np.pi / 4, q[0], q[2]) qc.cu1(np.pi / 2, q[0], q[1]) qc.h(q[0]) qc.swap(q[0], q[3]) qc.swap(q[1], q[2]) return qc,q,c qc,q,c = qft_4() qc.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} qc.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(qc, simulator).result() counts = result.get_counts(qc) plot_histogram(counts, title='QFT counts') import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.providers.aer import UnitarySimulator qc = qft_circuit(4) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(qc, simulator).result() unitary = result.get_unitary(qc) print( unitary)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(2) qc = QuantumCircuit(q) qc.cx(q[0],q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cy(q[0],q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cz(q[0],q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.ch(q[0],q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.crz(pi/2,q[0],q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cu1(pi/2,q[0], q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cu3(pi/2, pi/2, pi/2, q[0], q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.swap(q[0], q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(3) qc = QuantumCircuit(q) qc.ccx(q[0], q[1], q[2]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) qc = QuantumCircuit(q) qc.cswap(q[0], q[1], q[2]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(1) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(1) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q) qc.u3(pi/2,pi/2,pi/2,q) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(2) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(2) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(2) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(2) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(3) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[2]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.u3(pi/2,pi/2,pi/2,q[2]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.u3(pi/4,pi/4,pi/4,q[1]) qc.u3(3*pi/4,3*pi/4,3*pi/4,q[1]) qc.u3(pi/6,pi/6,pi/6,q[2]) qc.u3(5*pi/6,5*pi/6,5*pi/6,q[2]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from math import pi from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.visualization import circuit_drawer from qiskit.quantum_info import state_fidelity from qiskit import BasicAer backend = BasicAer.get_backend('unitary_simulator') q = QuantumRegister(2) qc = QuantumCircuit(q) qc.cu1(pi/2,q[0], q[1]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(3) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.cu1(pi/2,q[0], q[1]) qc.u3(pi/2,pi/2,pi/2,q[1]) qc.cu1(pi/2,q[1], q[2]) qc.u3(pi/2,pi/2,pi/2,q[2]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3) q = QuantumRegister(4) qc = QuantumCircuit(q) qc.u3(pi/2,pi/2,pi/2,q[0]) qc.cu1(pi/2,q[0], q[1]) qc.u2(pi/2,pi/2,q[1]) qc.u1(pi/2,q[2]) qc.x(q[0]) qc.ccx(q[1],q[2],q[3]) qc.y(q[1]) qc.z(q[2]) qc.cx(q[2],q[3]) qc.z(q[3]) qc.h(q[3]) qc.s(q[0]) qc.cu1(pi/2,q[1], q[2]) qc.swap(q[0],q[2]) qc.cswap(q[0],q[1],q[3]) qc.draw(output='mpl') job = execute(qc, backend) job.result().get_unitary(qc, decimals=3)
https://github.com/quantumyatra/quantum_computing
quantumyatra
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, QuantumRegister,ClassicalRegister, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.providers.aer import UnitarySimulator n =1 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightblue'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') n =1 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[1]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[1]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.h(q[1]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') n =2 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.h(q[1]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n = 3 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.h(q[1]) circ.h(q[2]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') n =3 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.h(q[1]) circ.h(q[2]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) n = 8 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) for k in range(8): circ.h(q[k]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightpink'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts') n =8 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) for k in range(8): circ.h(q[k]) # Select the UnitarySimulator from the Aer provider simulator = Aer.get_backend('unitary_simulator') # Execute and get counts result = execute(circ, simulator).result() unitary = result.get_unitary(circ) print( unitary) unitary.shape
https://github.com/quantumyatra/quantum_computing
quantumyatra
%matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit,QuantumRegister,ClassicalRegister, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * num_qubits = 2; num_bits = 2; bell = QuantumCircuit(2,2) bell.h(0) bell.cx(0, 1) bell.measure([0,1], [0,1]) bell.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(bell, simulator).result() counts = result.get_counts(bell) plot_histogram(counts, title='Bell-State counts') num_qubits = 2; num_bits = 2; bell = QuantumCircuit(2,2) bell.h(0) bell.cx(0, 1) bell.h(1) bell.cx(0, 1) bell.measure([0,1], [0,1]) bell.draw(output='mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(bell, simulator).result() counts = result.get_counts(bell) plot_histogram(counts, title='Bell-State counts') n =3 q = QuantumRegister(n) c = ClassicalRegister(n) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.cx(q[0], q[1]) circ.h(q[1]) circ.cx(q[1], q[2]) circ.h(q[2]) circ.measure(q,c) # Change the background color in mpl style = {'backgroundcolor': 'lightgreen'} circ.draw(output='mpl', style = style) simulator = Aer.get_backend('qasm_simulator') result = execute(circ, simulator).result() counts = result.get_counts(circ) plot_histogram(counts, title='Bell-State counts')
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open', project='main') backend = provider.get_backend('ibmq_armonk') backend_config = backend.configuration() assert backend_config.open_pulse, "Backend doesn't support Pulse" dt = backend_config.dt print(f"Sampling time: {dt*1e9} ns") backend_defaults = backend.defaults() import numpy as np # unit conversion factors -> all backend properties returned in SI (Hz, sec, etc) GHz = 1.0e9 # Gigahertz MHz = 1.0e6 # Megahertz us = 1.0e-6 # Microseconds ns = 1.0e-9 # Nanoseconds # We will find the qubit frequency for the following qubit. qubit = 0 # The sweep will be centered around the estimated qubit frequency. # The default frequency is given in Hz # warning: this will change in a future release center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.") # scale factor to remove factors of 10 from the data scale_factor = 1e-14 # We will sweep 40 MHz around the estimated frequency frequency_span_Hz = 40 * MHz # in steps of 1 MHz. frequency_step_Hz = 1 * MHz # We will sweep 20 MHz above and 20 MHz below the estimated frequency frequency_min = center_frequency_Hz - frequency_span_Hz / 2 frequency_max = center_frequency_Hz + frequency_span_Hz / 2 # Construct an np array of the frequencies for our experiment frequencies_GHz = np.arange(frequency_min / GHz, frequency_max / GHz, frequency_step_Hz / GHz) print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz \ in steps of {frequency_step_Hz / MHz} MHz.") # samples need to be multiples of 16 def get_closest_multiple_of_16(num): return int(num + 8 ) - (int(num + 8 ) % 16) from qiskit import pulse from qiskit.pulse import pulse_lib #from qiskit.pulse import library as pulse_lib from qiskit import pulse # This is where we access all of our Pulse features! #from qiskit.pulse import Play # This Pulse module helps us build sampled pulses for common pulse shapes #from qiskit.pulse import library as pulse_lib from qiskit.pulse import pulse_lib # Drive pulse parameters (us = microseconds) drive_sigma_us = 0.075 # This determines the actual width of the gaussian drive_samples_us = drive_sigma_us*8 # This is a truncating parameter, because gaussians don't have # a natural finite length drive_sigma = get_closest_multiple_of_16(drive_sigma_us * us /dt) # The width of the gaussian in units of dt drive_samples = get_closest_multiple_of_16(drive_samples_us * us /dt) # The truncating parameter in units of dt drive_amp = 0.05 # Drive pulse samples drive_pulse = pulse_lib.gaussian(duration=drive_samples, sigma=drive_sigma, amp=drive_amp, name='freq_sweep_excitation_pulse') # Find out which group of qubits need to be acquired with this qubit meas_map_idx = None for i, measure_group in enumerate(backend_config.meas_map): if qubit in measure_group: meas_map_idx = i break assert meas_map_idx is not None, f"Couldn't find qubit {qubit} in the meas_map!" inst_sched_map = backend_defaults.instruction_schedule_map measure = inst_sched_map.get('measure', qubits=backend_config.meas_map[meas_map_idx]) measure ### Collect the necessary channels drive_chan = pulse.DriveChannel(qubit) meas_chan = pulse.MeasureChannel(qubit) acq_chan = pulse.AcquireChannel(qubit) # Create the base schedule # Start with drive pulse acting on the drive channel schedule = pulse.Schedule(name='Frequency sweep') schedule += Play(drive_pulse, drive_chan) # The left shift `<<` is special syntax meaning to shift the start time of the schedule by some duration schedule += measure << schedule.duration # Create the frequency settings for the sweep (MUST BE IN HZ) frequencies_Hz = frequencies_GHz*GHz schedule_frequencies = [{drive_chan: freq} for freq in frequencies_Hz] schedule.draw(label=True) from qiskit import assemble num_shots_per_frequency = 1024 frequency_sweep_program = assemble(schedule, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_frequency, schedule_los=schedule_frequencies) job = backend.run(frequency_sweep_program) # print(job.job_id()) from qiskit.tools.monitor import job_monitor job_monitor(job) frequency_sweep_results = job.result(timeout=120) # timeout parameter set to 120 seconds import matplotlib.pyplot as plt sweep_values = [] for i in range(len(frequency_sweep_results.results)): # Get the results from the ith experiment res = frequency_sweep_results.get_memory(i)*scale_factor # Get the results for `qubit` from this experiment sweep_values.append(res[qubit]) plt.scatter(frequencies_GHz, np.real(sweep_values), color='black') # plot real part of sweep values plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured signal [a.u.]") plt.show() from scipy.optimize import curve_fit def fit_function(x_values, y_values, function, init_params): fitparams, conv = curve_fit(function, x_values, y_values, init_params) y_fit = function(x_values, *fitparams) return fitparams, y_fit fit_params, y_fit = fit_function(frequencies_GHz, np.real(sweep_values), lambda x, A, q_freq, B, C: (A / np.pi) * (B / ((x - q_freq)**2 + B**2)) + C, [-5, 4.975, 1, 5] # initial parameters for curve_fit ) plt.scatter(frequencies_GHz, np.real(sweep_values), color='black') plt.plot(frequencies_GHz, y_fit, color='red') plt.xlim([min(frequencies_GHz), max(frequencies_GHz)]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured Signal [a.u.]") plt.show()
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, transpile, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) qc.draw() def qft_rotations(circuit, n): if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc = QuantumCircuit(4) qft(qc,4) qc.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 (101 in binary) qc.x(0) qc.x(2) qc.draw() sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qft(qc, 3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram ckt=QuantumCircuit(1) ckt.x(0) ckt.y(0) ckt.z(0) ckt.draw(output='mpl') sim_uni = Aer.get_backend('unitary_simulator') job_uni = execute(ckt, sim_uni, shots=1000) res_uni = job_uni.result() uni_matrix = res_uni.get_unitary(ckt) print (uni_matrix)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# Useful additional packages import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram #!pip3 install qiskit for backend in Aer.backends(): print(backend.name() ) sim_qsm = Aer.get_backend('qasm_simulator') sim_svec = Aer.get_backend('statevector_simulator') sim_uni = Aer.get_backend('unitary_simulator') circuit = QuantumCircuit(2,2) circuit.draw() from qiskit import QuantumRegister, ClassicalRegister # construct a circuit # syntax QuantumCircuit(QuantumRegister(2), ClassicalRegister(2)) #qr=QuantumRegister(2); print (qr) #cr=ClassicalRegister(2); print (cr) #circuit1 = QuantumCircuit(qr, cr) #circuit1.draw() # Add a Hadamart (H gate) on qubit 0 circuit.h(0) circuit.cx(0, 1) #circuit.measure([0,1], [0,1]) job_uni = execute(circuit, sim_uni, shots=1000) res_uni = job_uni.result() counts_uni = res_uni.get_counts(circuit) plot_histogram(counts_uni) job_qsm = execute(circuit, sim_qsm, shots=1000) res_qsm = job_qsm.result() counts_qsm = res_qsm.get_counts(circuit) circuit.draw() from qiskit.visualization import plot_histogram plot_histogram(counts_qsm) job_svec = execute(circuit, sim_svec, shots=1000) res_svec = job_svec.result() counts_svec = res_svec.get_counts(circuit) plot_histogram(counts_svec) #This produced errors. #job_uni = execute(circuit, sim_uni, shots=1000) #res_uni = job_uni.result() #counts_uni = res_uni.get_counts(circuit) #plot_histogram(counts_uni) ckt = QuantumCircuit(2,2) ckt.h(0) ckt.x(0) ckt.cx(0,1) ckt.draw('mpl') qc = QuantumCircuit(5) qc.h([0, 2]) qc.cx(0, range(1, 5)) qc.measure_all() job_qsm = execute(qc, sim_qsm, shots=1000) res_qsm = job_qsm.result() #print (res_qsm) counts_qsm = res_qsm.get_counts() qc.draw('mpl') plot_histogram(counts_qsm) qc = QuantumCircuit(3,3) qc.h(0) qc.cx(0, 1) qc.cx(0, 2) qc.measure([0,1,2],[0,1,2]) qc.draw() backend = Aer.get_backend('qasm_simulator') # we choose the simulator as our backend result = execute(qc, backend, shots = 2000).result() # we run the simulation counts = result.get_counts() # we get the counts plot_histogram(counts)
https://github.com/quantumyatra/quantum_computing
quantumyatra
#!/usr/bin/env python3 from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.visualization import plot_bloch_multivector, plot_histogram import numpy as np import pylab as plt import sys sys.path.append("/Users/gshyam/projects/work_projects/machine_learning/QuantumComputing/quantum_computing/utils") from utils import get_statevector def get_state_bell_ckt(qc): backend = Aer.get_backend('statevector_simulator') res = execute(qc, backend=backend).result() final_state = res.get_statevector() counts = res.get_counts() return (final_state, counts) qc1 = QuantumCircuit(2) qc1.h(0) qc1.cx(0,1) fig, ax = plt.subplots(1, 2, constrained_layout=True) qc1.draw(output='mpl', ax=ax[0], scale=1.5) sv, counts = get_state_bell_ckt(qc1) plot_histogram(counts, ax=ax[1]) qc1 = QuantumCircuit(2) qc1.h(0) qc1.cx(0,1) qc1.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') res = execute(qc1, backend=backend).result() final_state = res.get_statevector() counts = res.get_counts() print (final_state, counts) plot_histogram(counts) qc2 = QuantumCircuit(2) qc2.h(0) qc2.cx(0,1) qc2.x(0) qc2.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') res = execute(qc2, backend=backend).result() final_state = res.get_statevector() counts = res.get_counts() print (final_state, counts) plot_histogram(counts) qc3 = QuantumCircuit(2) qc3.h(0) qc3.cx(0,1) qc3.x(1) qc3.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') res = execute(qc3, backend=backend).result() final_state = res.get_statevector() counts = res.get_counts() print (final_state, counts) plot_histogram(counts) qc4 = QuantumCircuit(2) qc4.h(0) qc4.cx(0,1) qc4.x(1) qc4.x(0) qc4.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') res = execute(qc4, backend=backend).result() final_state = res.get_statevector() counts = res.get_counts() print (final_state, counts) plot_histogram(counts) #!/usr/bin/env python3 from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute from qiskit.visualization import plot_histogram # Define quantum circuit N_qubits=2; N_bits=2; bell= QuantumCircuit(N_qubits, N_bits); bell.h(0) # Add a hadamard bell.cx(0, 1) # add a Cnot gate # similar to Last week's discussion # Measure the result : Syntax QuantumCircuit.measure(qubit, cbit) #bell.measure([0,1],[0,1]) #bell.draw() bell.draw(output='mpl') for backend in Aer.backends(): print(backend.name() ) backend = Aer.get_backend('unitary_simulator') job_uni = execute(bell, backend) res_uni = job_uni.result() print(res_uni.get_unitary(bell, decimals=1)) bell.measure([0,1],[0,1]) backend = Aer.get_backend('unitary_simulator') N=2 q=QuantumRegister(N) c=ClassicalRegister(N) circ = QuantumCircuit(q,c) circ.h(q[0]) circ.cx(q[0],q[1]) circ.h(q[1]) job = execute(circ, backend) result = job.result() print(result.get_unitary(circ, decimals=1)) sim_qsm = Aer.get_backend('qasm_simulator') job_qsm = execute(bell, sim_qsm, shots=1024) # shots=1024 (default) res_qsm = job_qsm.result() print (res_qsm) counts_qsm = res_qsm.get_counts(bell) print (counts_qsm) plot_histogram( counts_qsm, title='Bell-State counts') # Define quantum circuit N_qubits=2; N_bits=2; ckt2= QuantumCircuit(N_qubits, N_bits); ckt2.h(0) ckt2.cx(0, 1) ckt2.h(1) # this time on quibit 1 ckt2.cx(0, 1) ckt2.measure([0,1],[0,1]) #ckt2.draw() ckt2.draw(output='mpl', style = {'backgroundcolor':'lightblue'}) sim_qsm = Aer.get_backend('qasm_simulator') job_qsm = execute(ckt2, sim_qsm, shots=2000) res_qsm = job_qsm.result() counts_qsm = res_qsm.get_counts(ckt2) print (counts_qsm) plot_histogram( counts_qsm, title='Bell-State counts') # Define quantum circuit import pylab as plt %matplotlib inline def ckt_(N, init_state, axis): q=QuantumRegister(N) c=ClassicalRegister(N) ckt3= QuantumCircuit(q, c); #print (q, c, q[0], c[0], q[1], q[2]) ckt3.h(q[init_state]) ckt3.cx(q[0], q[1]) ckt3.h(q[1]) # this time on quibit 1 ckt3.cx(q[1], q[2]) ckt3.h(q[2]) ckt3.cx(q[0], q[2]) ckt3.measure(q, c) ckt3.draw(output='mpl', ax=axis) fig, ax = plt.subplots(1, 2) #figsize=(7, 7) ckt_(3, 0, axis=ax[0]) ckt_(3, 1, axis=ax[1]) N=3; q=QuantumRegister(N) c=ClassicalRegister(N) ckt3= QuantumCircuit(q, c, name='ckt3'); ckt3.h(q[0]) ckt3.cx(q[0], q[1]) ckt3.h(q[1]) ckt3.cx(q[1], q[2]) ckt3.h(q[2]) ckt3.cx(q[0], q[2]) ckt3.measure(q, c) ckt3.draw(output='mpl') sim_uni = Aer.get_backend('unitary_simulator') job_uni = execute(ckt3, sim_uni) res_uni = job_uni.result() print (res_uni) #print (res_uni.get_unitary(ckt3,decimals=1)) sim_qsm = Aer.get_backend('qasm_simulator') job_qsm = execute(ckt3, sim_qsm, shots=2000) res_qsm = job_qsm.result() counts_qsm = res_qsm.get_counts(ckt3) print (counts_qsm, sum(counts_qsm.values())) plot_histogram( counts_qsm, title='Bell-State counts') #ckt3.to_matrix() N=4; q=QuantumRegister(N) c=ClassicalRegister(N) circ = QuantumCircuit(q, c); for i in range(0, N-1): circ.h(q[i]) circ.cx(q[i], q[i+1]) circ.measure(q, c) sim_qsm = Aer.get_backend('qasm_simulator') job_qsm = execute(circ, sim_qsm, shots=2000) res_qsm = job_qsm.result() counts_qsm = res_qsm.get_counts(circ) print (len(counts_qsm.values())) print("Time taken: {} sec".format(res_qsm.time_taken)) %matplotlib inline plot_histogram( counts_qsm)
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute, BasicAer from qiskit.visualization import plot_bloch_multivector import numpy as np import matplotlib.pyplot as plt %matplotlib inline qc = QuantumCircuit(3, 2) print(qc.qregs) print(qc.cregs) ##This is equivalent to the following. qr = QuantumRegister(3, name='q') cr = ClassicalRegister(2, name='c') qc = QuantumCircuit(qr, cr) # Checking the quantum and classical registers print(qc.qregs) print(qc.cregs) bell = QuantumCircuit(2, 2) bell.h(0) bell.cx(0, 1) #Syntax: QuantumCircuit.measure(qubit, cbit) bell.measure([0,1], [0,1]) bell.draw(output='mpl') qr1 = QuantumRegister(1, 'q1') qr2 = QuantumRegister(1, 'q2') cr = ClassicalRegister(2, 'c') circuit = QuantumCircuit(qr2, qr1, cr) print('Qubit ordering:', circuit.qubits) # quantum print('Classical bit ordering:', circuit.clbits) # classical circuit.h([1,0]) # hadamard gate on both 1 and 0 qubits circuit.measure(1, [0,1]) # 1 qubit and 2 clbit circuit.draw(output='mpl') from qiskit.circuit import Gate # Syntax Gate(name, num_qubits, params, label=None) my_gate = Gate(name='my_gate', num_qubits=2, params=[]) print (my_gate.params) circ = QuantumCircuit(qr) circ.h(0) circ.append(my_gate, [qr[0], qr[1]]) circ.append(my_gate, [qr[1], qr[2]]) circ.draw(output='mpl') from qiskit.circuit import QuantumCircuit, Parameter theta = Parameter('theta') test_ckt = QuantumCircuit(3) #Syntax crz(theta, control_qubit, target_qubit, *, ctl=None, tgt=None) test_ckt.crz(theta,0,2) test_ckt.crz(theta,1,2) test_ckt.barrier(0) test_ckt.barrier() test_ckt.draw(output='mpl') from qiskit.extensions import HGate print (f"Matrix(HGate):\n {HGate().to_matrix() } \n") qcN = QuantumCircuit(2, 2) qcN.h(0) #qcN.cx(0, 1) qcN.measure([0, 1], [0, 1]) backend = BasicAer.get_backend('statevector_simulator') res = execute(qcN, backend).result() out_state = res.get_statevector(qcN, decimals=3) print (out_state) plot_bloch_multivector(out_state) # Build a sub-circuit sub_q = QuantumRegister(2) sub_circ = QuantumCircuit(sub_q, name='sub_circ') sub_circ.h(sub_q[0]) sub_circ.crz(1, sub_q[0], sub_q[1]) sub_circ.barrier() sub_circ.i(sub_q[1]) sub_circ.u3(1, 2, -2, sub_q[0]) sub_circ.draw('mpl') # Convert to a gate and stick it into an arbitrary place in the bigger ckt sub_inst = sub_circ.to_instruction() q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circ = QuantumCircuit(q, c) circ.h(q[0]) circ.cx(q[0], q[1]) #circ.cx(qr[1], qr[2]) #circ.append(sub_inst, [q[1], q[2]]) #circ.append(sub_circ, [q[1], q[2]]) circ.draw('mpl') decomposed_circ = circ.decompose() # Does not modify original circuit decomposed_circ.draw(output='mpl') from qiskit.circuit import Parameter %matplotlib inline n=5 theta = Parameter('theta') qc = QuantumCircuit(n, 1) qc.h(0) for i in range(n-1): qc.cx(i, i+1) qc.barrier() qc.rz(theta, range(n)) #qc.rz(theta, [0,4]) qc.barrier() for i in reversed(range(n-1)): qc.cx(i, i+1) qc.h(0) qc.measure(0, 0) qc.draw(output='mpl') theta_range = np.linspace(0, 2 * np.pi, 128) circuits = [qc.bind_parameters({theta: theta_val}) for theta_val in theta_range] print(circuits[-1].draw(fold=120)) print(circuits[-1].parameters)### Binding parameters to values job = execute(qc, backend=BasicAer.get_backend('qasm_simulator'), parameter_binds=[{theta: theta_val} for theta_val in theta_range], shots=2000) counts = [job.result().get_counts(i) for i in range(len(job.result().results))] plt.figure(figsize=(8,4)) plt.plot(theta_range, list(map(lambda c: c.get('0', 0), counts)), '-.', label='0', color='green') plt.plot(theta_range, list(map(lambda c: c.get('1', 0), counts)), '-.', label='1', color='maroon') labs = ['0', r'$\frac{\pi}{2}$', r'$\pi$', r'$\frac{3\pi}{2}$', r'$2\pi$'] plt.xticks([i * np.pi / 2 for i in range(5)], labs, fontsize=16) plt.xlabel('$\\theta$', fontsize=16); plt.legend(); import time from itertools import combinations from qiskit.compiler import transpile, assemble from qiskit.test.mock import FakeTokyo start = time.time() qcs = [] theta_range = np.linspace(0, 2*np.pi, 16) for n in theta_range: qc = QuantumCircuit(5) for k in range(8): for i,j in combinations(range(5), 2): qc.cx(i,j) qc.rz(n, range(5)) for i,j in combinations(range(5), 2): qc.cx(i,j) qcs.append(qc) compiled_circuits = transpile(qcs, backend=FakeTokyo()) qobj = assemble(compiled_circuits, backend=FakeTokyo()) end = time.time() print('Time compiling over set of bound circuits: ', end-start) start = time.time() qc = QuantumCircuit(5) theta = Parameter('theta') for k in range(4): for i,j in combinations(range(5), 2): qc.cx(i,j) qc.rz(theta, range(5)) for i,j in combinations(range(5), 2): qc.cx(i,j) transpiled_qc = transpile(qc, backend=FakeTokyo()) qobj = assemble([transpiled_qc.bind_parameters({theta: n}) for n in theta_range], backend=FakeTokyo()) end = time.time() print('Time compiling over parameterized circuit, then binding: ', end-start) phi = Parameter('phi') sub_circ1 = QuantumCircuit(2, name='sc_1') sub_circ1.rz(phi, 0) sub_circ1.rx(phi, 1) sub_circ2 = QuantumCircuit(2, name='sc_2') sub_circ2.rx(phi, 0) sub_circ2.rz(phi, 1) qc = QuantumCircuit(4) qr = qc.qregs[0] qc.append(sub_circ1.to_instruction(), [qr[0], qr[1]]) qc.append(sub_circ2.to_instruction(), [qr[0], qr[1]]) qc.append(sub_circ2.to_instruction(), [qr[2], qr[3]]) print(qc.draw()) # The following raises an error: "QiskitError: 'Name conflict on adding parameter: phi'" # phi2 = Parameter('phi') # qc.u3(0.1, phi2, 0.3, 0) p = Parameter('p') qc = QuantumCircuit(3, name='oracle') qc.rz(p, 0) qc.cx(0, 1) qc.rz(p, 1) qc.cx(1, 2) qc.rz(p, 2) theta = Parameter('theta') phi = Parameter('phi') gamma = Parameter('gamma') qr = QuantumRegister(9) larger_qc = QuantumCircuit(qr) larger_qc.append(qc.to_instruction({p: theta}), qr[0:3]) larger_qc.append(qc.to_instruction({p: phi}), qr[3:6]) larger_qc.append(qc.to_instruction({p: gamma}), qr[6:9]) print(larger_qc.draw()) print(larger_qc.decompose().draw())
https://github.com/quantumyatra/quantum_computing
quantumyatra
import matplotlib.pyplot as plt %matplotlib inline import numpy as np import sys, math, time from qiskit import BasicAer, execute from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister def get_circuit(Nbits): q = QuantumRegister(Nbits) c = ClassicalRegister(Nbits) ckt = QuantumCircuit(q, c) ckt.h(q) ckt.barrier() ckt.measure(q,c) return ckt Nbits = 5; ckt = get_circuit(Nbits) ckt.draw(output = 'mpl') ckt=get_circuit(Nbits) n_qubits = ckt.n_qubits backend=BasicAer.get_backend("qasm_simulator") job = execute(ckt, backend=backend, shots=1000, memory=True) res = job.result() bit_str = ''.join(job.result().get_memory()) #print (res) def get_random_Float(ckt, vmin=0., vmax =10.0, size=20 ): nbits = 100 n_qubits = ckt.n_qubits #print (n_qubits) Nshots = (nbits * size + n_qubits -1) // n_qubits; #print ('Nshots=',Nshots) backend=BasicAer.get_backend("qasm_simulator"); job = execute(ckt, backend=backend, shots=Nshots, memory=True); #print (job.result()) bit_str = ''.join(job.result().get_memory()) #print (bit_str, len(bit_str)) scale = float(vmax-vmin)/float(2**nbits-1) random_vec = np.array([ vmin + scale*float(int(bit_str[i:i+nbits], 2)) for i in range(0, nbits*size, nbits)], dtype=float) return random_vec ckt=get_circuit(Nbits) Rvec=get_random_Float(ckt) print (Rvec, len(Rvec)) # Draw a sample from uniform distribution. t1 = time.time() sample = get_random_Float(ckt, vmin=-7.67, vmax=19.52, size=100) #sample = uniform_rand_float64(circuit, glo_num_qubits, size=4321, vmin=-7.67, vmax=19.52) t2 = time.time() - t1 print (t2) # Print out some details. print("Uniform distribution over floating point numbers:") print(" sample type:", type(sample), ", element type:", sample.dtype,", shape:", sample.shape) print(" sample min: {:.4f}, max: {:.4f}".format(np.amin(sample), np.amax(sample))) print(" sampling time: {:.2f} secs".format(t2)) # Plotting the distribution. plt.hist(sample.ravel(), bins=min(int(np.ceil(np.sqrt(sample.size))), 100), density=True, facecolor='b', alpha=0.75) plt.xlabel("value", size=12) plt.ylabel("probability", size=12) plt.title("Uniform distribution over float64 numbers in\ [{:.2f} ... {:.2f}]".format( np.amin(sample), np.amax(sample)), size=12) plt.grid(True) # plt.savefig("uniform_distrib_float.png", bbox_inches="tight") plt.show()
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import IBMQ #token = open('/Users/gshyam/projects/work_projects/machine_learning/ANPA_dataScience/Python2020/TOKEN_BMQ','r') #print (token) #IBMQ.save_account(token) #IBMQ.save_account('dbf31c5ec55e2b7914fe280fe04980f4edd8efa6063471bd9bc4e3617e7cc8348819917b6a01a4e106d8ef02c33f9abbf2920ceb9bbe44056eaec59eb1e910d3') from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute, BasicAer from qiskit.visualization import plot_bloch_multivector import numpy as np import matplotlib.pyplot as plt %matplotlib inline import qiskit print (qiskit.__version__) print (qiskit.__qiskit_version__) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() for backend in provider.backends(): print(backend.status()) real_device = provider.get_backend('ibmq_16_melbourne') properties = real_device.properties() coupling_map = real_device.configuration().coupling_map from qiskit.providers.aer.noise import NoiseModel noise_model = NoiseModel.from_backend(properties) qc = QuantumCircuit(2,2) qc.x(1) # CNOT gate converts (00) qc.measure(0,0) qc.measure(1,1) simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=1024, noise_model=noise_model, coupling_map=coupling_map, basis_gates=noise_model.basis_gates) job.result().get_counts() n=8 qc_encode = QuantumCircuit(n) qc_encode.x(7) qc_encode.draw(output='mpl') qc_output = QuantumCircuit(n, n) for j in range(n): qc_output.measure(j,j) qc_output.draw(output='mpl') job = execute(qc_output, Aer.get_backend('quasm_simulator'))#.result().get_counts()
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute, BasicAer from qiskit.visualization import plot_bloch_multivector, plot_histogram import numpy as np import matplotlib.pyplot as plt %matplotlib inline qc = QuantumCircuit(3) # apply Hadamard for q in range(3): qc.h(q) qc.draw(output='mpl') backend = Aer.get_backend('statevector_simulator') res = execute(qc, backend=backend).result() final_state = res.get_statevector() print (final_state) print (1./np.sqrt(8)) 𝑋=[[0, 1] ,[1, 0]] qc = QuantumCircuit(2) qc.h(0) qc.x(1) qc.draw('mpl') backend = Aer.get_backend('unitary_simulator') res = execute(qc, backend=backend).result() unitary = res.get_unitary() print (unitary.round(2).real) qc = QuantumCircuit(3) qc.z(0) qc.h(1) qc.x(2) qc.draw('mpl') backend = Aer.get_backend('unitary_simulator') res = execute(qc, backend=backend).result() unitary = res.get_unitary() print (unitary.round(2).real) qc = QuantumCircuit(2) qc.h(0) qc.cx(0,1) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') final_state = execute(qc,backend).result().get_statevector() print (final_state.round(2)) results = execute(qc,backend).result().get_counts() plot_histogram(results) qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.draw() backend_sv =Aer.get_backend('statevector_simulator') final_state = execute(qc,backend_sv).result().get_statevector() print (final_state.round(2)) plot_bloch_multivector(final_state) import qiskit qiskit.__version__ qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.z(1) qc.draw() final_state = execute(qc,backend_sv).result().get_statevector() plot_bloch_multivector(final_state) qc.cx(0,1) qc.draw() final_state = execute(qc,backend_sv).result().get_statevector() print (final_state) plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.h(0) qc.h(1) display(qc.draw()) backend_uni = Aer.get_backend('unitary_simulator') unitary = execute(qc,backend_uni).result().get_unitary() print (unitary.round(2).real) #array_to_latex(unitary, pretext="\\text{Circuit = }\n") qc.cx(1,0) display(qc.draw()) backend_uni = Aer.get_backend('unitary_simulator') unitary = execute(qc,backend_uni).result().get_unitary() print (unitary.round(2).real)
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import QuantumCircuit, Aer, execute from math import pi import numpy as np from qiskit.visualization import plot_bloch_multivector, plot_histogram qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.draw() # Let's see the result statevector_backend = Aer.get_backend('statevector_simulator') final_state = execute(qc,statevector_backend).result().get_statevector() # In Jupyter Notebooks we can display this nicely using Latex. # If not using Jupyter Notebooks you may need to remove the # array_to_latex function and use print(final_state) instead. from qiskit_textbook.tools import array_to_latex array_to_latex(final_state, pretext="\\text{Statevector} = ", precision=1) plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.z(1) qc.draw() final_state = execute(qc,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Statevector} = ", precision=1) plot_bloch_multivector(final_state) qc.cx(0,1) qc.draw() final_state = execute(qc,statevector_backend).result().get_statevector() array_to_latex(final_state, pretext="\\text{Statevector} = ", precision=1) plot_bloch_multivector(final_state) qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.h(0) qc.h(1) display(qc.draw()) # `display` is an IPython tool, remove if it cases an error unitary_backend = Aer.get_backend('unitary_simulator') unitary = execute(qc,unitary_backend).result().get_unitary() array_to_latex(unitary, pretext="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw()) unitary_backend = Aer.get_backend('unitary_simulator') unitary = execute(qc,unitary_backend).result().get_unitary() array_to_latex(unitary, pretext="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cu1(pi/4, 0, 1) qc.draw() unitary_backend = Aer.get_backend('unitary_simulator') unitary = execute(qc,unitary_backend).result().get_unitary() array_to_latex(unitary, pretext="\\text{Controlled-T} = \n") qc = QuantumCircuit(2) qc.h(0) qc.x(1) display(qc.draw()) final_state = execute(qc,statevector_backend).result().get_statevector() plot_bloch_multivector(final_state) qc.cu1(pi/4, 0, 1) display(qc.draw()) final_state = execute(qc,statevector_backend).result().get_statevector() plot_bloch_multivector(final_state) import qiskit qiskit.__qiskit_version__
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import QuantumCircuit, execute from qiskit import Aer, execute, BasicAer, IBMQ from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram import numpy as np def dj_oracle(case, n): oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant elif case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n=4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw('mpl') backend = BasicAer.get_backend('qasm_simulator') results = execute(dj_circuit, backend=backend, shots=1024).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with greater than or equal to (n+1) qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(dj_circuit, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) # Get the results of the computation results = job.result() counts = results.get_counts() plot_histogram(counts)
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np import pylab as plt from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.draw('mpl') # UROT_2 gate to x1 depending on x2 from numpy import pi qc.cu1(pi/2, 1, 2) # CROT from qubit 1 to qubit 2 hence the angle: pi/2^{2-1} qc.draw('mpl') qc.cu1(pi/4, 0, 2) # CROT from qubit 2 to qubit 0 hence the angle: pi/2^{2-0} qc.draw('mpl') # Repeat the process for 2 and 3 qc.h(1) # Hadamard on 1 qc.cu1(pi/2, 0, 1) # CROT from qubit 0 to qubit 1 hence the angle: pi/2^{1-0} qc.h(0) # Hadamard on 0 qc.draw('mpl') # Now swap the qubit 0 and 2 to complete QFT. [NOT CLEAR TO ME] qc.swap(0,2) qc.draw('mpl') def qft_rotations(ckt, n): if n == 0: return ckt n -= 1 ckt.h(n) for qubit in range(n): ckt.cu1( pi/2**(n-qubit), qubit, n ) qc = QuantumCircuit(4) qft_rotations(qc,4) qc.draw('mpl') def qft_rotations(ckt, n): if n == 0: return ckt n -= 1 ckt.h(n) for qubit in range(n): ckt.cu1( pi/2**(n-qubit), qubit, n ) qft_rotations(ckt, n) qc = QuantumCircuit(4) qft_rotations(qc,4) qc.draw('mpl') from qiskit_textbook.widgets import scalable_circuit scalable_circuit(qft_rotations) def swap_registers(ckt, n): for qubit in range(n//2): ckt.swap(qubit, n-qubit-1) return ckt def qft(ckt, n): qft_rotations(ckt, n) swap_registers(ckt, n) return ckt qc = QuantumCircuit(4) qft(qc, 4) qc.draw('mpl') print (f"5 and it's binary: {bin(5)}") #bin(9) qc = QuantumCircuit(3) qc.x(0) qc.x(2) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) print (sv.real) qft(qc, 3) qc.draw('mpl') sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) print ('The statevectors are:\n', sv.round(1)) print ('Angle subtended by each states (as a factor of pi):\n',(np.angle(sv)/np.pi).round(2)) # 10 qc = QuantumCircuit(2) qc.x(0) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) qft(qc, 2) qc.draw('mpl') backend = Aer.get_backend('statevector_simulator') sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) def inverse_qft(circuit, n): """Does the inverse QFT on the first n qubits in circuit""" # First we create a QFT circuit of the correct size: qft_circ = qft(QuantumCircuit(n), n) # Then we take the inverse of this circuit invqft_circ = qft_circ.inverse() # And add it to the first n qubits in our existing circuit circuit.append(invqft_circ, circuit.qubits[:n]) # use .decompose() which allows us to see the individual gates return circuit.decompose() nqubits = 3 number = 6 qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) qc.u1(number*pi/4,0) qc.u1(number*pi/2,1) qc.u1(number*pi,2) qc.draw('mpl') backend = Aer.get_backend("statevector_simulator") sv = execute(qc, backend=backend).result().get_statevector() plot_bloch_multivector(sv) print ('The statevectors are:\n', sv.round(1)) print ('Angle subtended by each states (as a factor of pi):\n',(np.angle(sv)/np.pi).round(2)) qc = inverse_qft(qc,nqubits) qc.measure_all() qc.draw('mpl') backend = Aer.get_backend("qasm_simulator") shots = 2048 job = execute(qc, backend=backend, shots=shots, optimization_level=3) counts = job.result().get_counts() plot_histogram(counts) from qiskit import circuit, quantum_info num_qubits = 6 qft = circuit.library.QFT(num_qubits, approximation_degree=0, insert_barriers=False) qft.draw('mpl', fold=500, reverse_bits = True) # Plot classical vs. quantum Fourier transform, for all basis states.. # By linearity of Fourier transform, all states map correctly. # The difference in height is due to normalization in quantum. plt.figure(figsize=(16,16)) for i, basis_state in enumerate([0, 1, 2, 3]): state = quantum_info.Statevector.from_int(basis_state, dims=2**num_qubits) #print (state) classical_fourier = np.fft.ifft(state.data) # classical library function quantum_fourier = state.evolve(qft).data # quantum library (simulation via quantum_info) width = 0.5 #fig.suptitle('Input State: ' + str(basis_state), fontsize=16) plt.subplot(4,2, 2*i+1) plt.title('state: %1i real'%i) plt.bar(np.arange(2**num_qubits)-width/2., classical_fourier.real, width, label='classical') plt.bar(np.arange(2**num_qubits)+width/2., quantum_fourier.real, width, label='quantum') plt.legend(frameon=False) plt.subplot(4,2, 2*i+2) plt.title('state: %1i Imaginary part'%i) plt.bar(np.arange(2**num_qubits)-width/2., classical_fourier.imag, width, label='classical') plt.bar(np.arange(2**num_qubits)+width/2., quantum_fourier.imag, width, label='quantum') plt.legend(frameon=False) import matplotlib.pyplot as plt Nt = 256 t = np.arange(Nt) fft = np.fft.fft(np.sin(t)) ifft = np.fft.ifft(np.sin(t)) freq = np.fft.fftfreq(Nt) plt.figure(figsize=(16,4)) plt.subplot(121) plt.title('real') plt.plot(freq, fft.real, '-o', label='fft (real)') plt.plot(freq, Nt*ifft.real, '-o', label='Nt * ifft (real)') plt.legend(fontsize='large') plt.xlabel('frequency', fontsize='large') plt.subplot(122) plt.title('imag') plt.plot(freq, fft.imag, '-o', label='fft (imag)') plt.plot(freq, Nt*ifft.imag, '-o', label='Nt * ifft (imag)') plt.legend(fontsize='large') plt.xlabel('frequency', fontsize='large') plt.show() from qiskit import circuit, quantum_info num_qubits = 6 qft = circuit.library.QFT(num_qubits, insert_barriers=False) qft.draw('mpl', fold=500, reverse_bits = True) basis_state = 2 state = quantum_info.Statevector.from_int(basis_state, dims=2**num_qubits) quantum_fourier = state.evolve(qft).data width = 0.5 plt.subplot(121) plt.bar(np.arange(2**num_qubits)+width/2., quantum_fourier.real, width, label='real') plt.subplot(122) plt.bar(np.arange(2**num_qubits)+width/2., quantum_fourier.imag, width, label='imag') plt.legend(frameon=False)
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np import pylab as plt from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector qpe = QuantumCircuit(4,3) qpe.x(3) qpe.draw('mpl') #Apply Hadamard gate to all the quits for q in range(3): qpe.h(q) qpe.draw('mpl') repetitions = 1 for q in range(3): for i in range(repetitions): qpe.cu1(np.pi/4., q, 3) # controlled U gate : for T gate angle = pi/4 repetitions *= 2 qpe.draw('mpl') from qiskit.circuit.library import QFT def qft_dagger(qc, n): """n-qubit QFTdagger the first n qubits in the circuit qc""" for q in range(n//2): qc.swap(q, n-q-1) for j in range(n): for m in range(j): qc.cu1(-np.pi/(float(2**(j-m))), m, j) qc.h(j) def qft_dagger2(qc, n): """n-qubit QFTdagger the first n qubits in the circuit qc""" ### WRITE YOUR CODE BETWEEN THESE LINES - START gate = QFT(n, inverse=True, do_swaps=True ) qc.append(gate, range(n)) ### WRITE YOUR CODE BETWEEN THESE LINES - END # measure the counting register qpe.barrier() qft_dagger(qpe, 3) qpe.barrier() for n in range(3): qpe.measure(n,n) qpe.draw('mpl') backend = Aer.get_backend('qasm_simulator') shots = 2048 results = execute(qpe, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) def bin2decimal(binary_str): if '1' not in binary_str: return 0 else: binary = int(binary_str.lstrip('0')) binary1 = binary decimal, i = 0, 0 while(binary != 0): dec = binary % 10 decimal = decimal + dec * pow(2, i) binary = binary//10 i += 1 return decimal bin2decimal('001010') def QPE(N=3): qc = QuantumCircuit(N+1, N) qc.x(N) #Apply Hadamard gate to all the quits for q in range(N): qc.h(q) #Next we perform the controlled unitary operations repetitions = 1 for q in range(N): for i in range(repetitions): qc.cu1(np.pi/4., q, N) # controlled U gate, angle is pi/4 for T gate repetitions *=2 # measure the counting register qc.barrier() qft_dagger(qc, N) qc.barrier() for n in range(N): qc.measure(n,n) # execute the circuit backend = Aer.get_backend('qasm_simulator') Nshots = 2048 results = execute(qc, backend=backend, shots=Nshots).result() counts = results.get_counts() for binary in counts: dec = bin2decimal(binary) phase = dec/(2**N) print ('binary:', binary,', decimal:', dec, 'Count ratio:', counts[binary]/Nshots) print ('phase:', phase) return counts #print (counts) counts = QPE(4) print (counts) plot_histogram(counts) def getting_more_precision(N=3): qc = QuantumCircuit(N+1, N) # Prepare our eigenstate |psi>: qc.x(N) #Apply Hadamard gate to all the quits for q in range(N): qc.h(q) #controlled-U operations angle = 2*np.pi/3. repetitions = 1 for q in range(N): for i in range(repetitions): qc.cu1(angle, q, N) # controlled U gate repetitions *=2 # measure the counting register qc.barrier() qft_dagger(qc, N) qc.barrier() for n in range(N): qc.measure(n,n) # execute the circuit backend = Aer.get_backend('qasm_simulator') Nshots = 2048 results = execute(qc, backend=backend, shots=Nshots).result() counts = results.get_counts() return counts def calcPhase(counts, Nqubit): kL = list(counts.items()) vL = list(counts.values()) maxval1 = max(vL); (k1,v1) = kL[vL.index(maxval1)]; vL.remove(maxval1) maxval2 = max(vL); (k2,v2) = kL[vL.index(maxval2)]; k1_dec = bin2decimal(k1) k2_dec = bin2decimal(k2) phase1 = k1_dec/(2**Nqubit) phase2 = k2_dec/(2**Nqubit) print ('the phase lies between [',phase1, ',', phase2, ']') N=5 counts = getting_more_precision(N) print (counts) calcPhase(counts, N) plot_histogram(counts) #'11010': 1385 26/32 print ( 6/8, 4/8) d = {'001': 60, '011': 1397, '010': 358} list(d.keys())[0]
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit.extensions import Initialize from qiskit.quantum_info import random_statevector from utility import * qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical bits crx = ClassicalRegister(1) # in 2 different registers teleportation_circuit = QuantumCircuit(qr, crz, crx) def create_bell_pair(qc, a, b, print_state_vec=False): "creates a bell pair in qc using qubits a and b" qc.h(a) qc.cx(a,b) if print_state_vec : state = get_state_vector(qc) print (state) def test_bell_pair(): qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) state = get_state_vector(qc) print (state) test_bell_pair() qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw(output='mpl') def alice_gates(qc, psi, a): qc.cx(psi, a) qc.h(psi) qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw(output='mpl') def measure_and_send(qc, a, b): """Measures qubits a & b and 'sends' the results to Bob""" qc.barrier() qc.measure(a,0) qc.measure(b,1) #Set up qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) # step 1 create_bell_pair(teleportation_circuit, 1, 2) #step 2 teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) #step 3 measure_and_send(teleportation_circuit, 0, 1) teleportation_circuit.draw(output='mpl') def bob_gates(qc, qubit, crz, crx): # Here we use c_if to control our gates with a classical # bit instead of a qubit qc.x(qubit).c_if(crx, 1) # Apply gates if the registers qc.z(qubit).c_if(crz, 1) # are in the state '1' #Set up qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) # step 1 create_bell_pair(teleportation_circuit, 1, 2) #step 2 teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) #step 3 measure_and_send(teleportation_circuit, 0, 1) # step 4 teleportation_circuit.barrier() bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw(output='mpl') from qiskit.quantum_info import random_statevector psi = random_statevector(2).data print (psi) plot_bloch_multivector(psi) from IPython.display import display, Markdown, Latex display(Latex('$\psi$')) init_gate = Initialize(psi) #Set up qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) qc = QuantumCircuit(qr, crz, crx) psi = random_statevector(2).data init_gate = Initialize(psi) init_gate.label = "init" # step 0 qc.append(init_gate, [0] ) qc.barrier() # step 1 create_bell_pair(qc, 1, 2) qc.barrier() #step 2 alice_gates(qc, 0, 1) #step 3 measure_and_send(qc, 0, 1) # step 4 #qc.barrier() bob_gates(qc, 2, crz, crx) qc.draw(output='mpl')
https://github.com/quantumyatra/quantum_computing
quantumyatra
# importing Qiskit from qiskit import IBMQ, BasicAer #from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute # import basic plot tools from qiskit.visualization import plot_histogram s='11' n = 2*len(str(s)) ckt = QuantumCircuit(n) barriers = True ckt.h(range(len(str(s)))) # Apply barrier ckt.barrier() # Apply the query function ## 2-qubit oracle for s = 11 ckt.cx(0, len(str(s)) + 0) ckt.cx(0, len(str(s)) + 1) ckt.cx(1, len(str(s)) + 0) ckt.cx(1, len(str(s)) + 1) # Apply barrier ckt.barrier() # Apply Hadamard gates to the input register ckt.h(range(len(str(s)))) # Measure ancilla qubits ckt.measure_all() ckt.draw(output='mpl')
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit.extensions import Initialize from qiskit.quantum_info import random_statevector from utility import * #create_bell_pair(qc, a, b): coded in utility.py def encode_message(qc, qubit, msg): if msg == "00": pass # To send 00 we do nothing elif msg == "10": qc.x(qubit) # To send 10 we apply an X-gate elif msg == "01": qc.z(qubit) # To send 01 we apply a Z-gate elif msg == "11": qc.z(qubit) # To send 11, we apply a Z-gate qc.x(qubit) # followed by an X-gate else: print("Invalid Message: Sending '00'") def decode_message(qc, a, b): qc.cx(a,b) qc.h(a) #put everything together qc = QuantumCircuit(2) create_bell_pair(qc, 0, 1) qc.barrier() message = "10" encode_message(qc, 0, message) qc.barrier() decode_message(qc, 0, 1) qc.measure_all() qc.draw(output = "mpl") backend = Aer.get_backend('qasm_simulator') res = execute(qc, backend, shots=1024).result() measurement_result = res.get_counts(qc) print(measurement_result) plot_histogram(measurement_result) from qiskit import IBMQ from qiskit.providers.ibmq import least_busy shots = 256 # Load local account information IBMQ.load_account() # Get the least busy backend provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit job = execute(qc, backend=backend, shots=shots) from qiskit.tools.monitor import job_monitor job_monitor(job) # Plotting our result result = job.result() plot_histogram(result.get_counts(qc)) correct_results = result.get_counts(qc)[message] accuracy = (correct_results/shots)*100 print("Accuracy = %.2f%%" % accuracy)
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np np.random.seed(999999) target_distr = np.random.rand(2) # We now convert the random vector into a valid probability vector target_distr /= sum(target_distr) print (target_distr) from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister def get_var_form(params): qr = QuantumRegister(1, name="q") cr = ClassicalRegister(1, name='c') qc = QuantumCircuit(qr, cr) qc.u3(params[0], params[1], params[2], qr[0]) qc.measure(qr, cr[0]) return qc params = [0.1, 0, 0] qcc = get_var_form(params) qcc.draw('mpl') from qiskit import Aer, execute backend = Aer.get_backend("qasm_simulator") num_shots = 10000 def get_probability_distribution(counts): output_distr = [v / num_shots for v in counts.values()] if len(output_distr) == 1: output_distr.append(0) return output_distr def objective_function(params): # Obtain a quantum circuit instance from the paramters qc = get_var_form(params) # Execute the quantum circuit to obtain the probability distribution associated with the current parameters result = execute(qc, backend, shots=num_shots).result() # Obtain the counts for each measured state, and convert those counts into a probability vector output_distr = get_probability_distribution(result.get_counts(qc)) # Calculate the cost as the distance between the output distribution and the target distribution cost = sum([np.abs(output_distr[i] - target_distr[i]) for i in range(2)]) return cost from qiskit.aqua.components.optimizers import COBYLA # Initialize the COBYLA optimizer optimizer = COBYLA(maxiter=50, tol=0.0001) # Create the initial parameters (noting that our single qubit variational form has 3 parameters) params = np.random.rand(3) ret = optimizer.optimize(num_vars=3, objective_function=objective_function, initial_point=params) # Obtain the output distribution using the final parameters qc = get_var_form(ret[0]) counts = execute(qc, backend, shots=num_shots).result().get_counts(qc) output_distr = get_probability_distribution(counts) print("Target Distribution:", target_distr) print("Obtained Distribution:", output_distr) print("Output Error (Manhattan Distance):", ret[1]) print("Parameters Found:", ret[0]) from qiskit.circuit.library import EfficientSU2 entanglements = ["linear", "full"] for entanglement in entanglements: form = EfficientSU2(num_qubits=4, entanglement=entanglement) if entanglement == "linear": print("=============Linear Entanglement:=============") else: print("=============Full Entanglement:=============") # We initialize all parameters to 0 for this demonstration display(form.draw("mpl", fold=100)) print() from qiskit.aqua.algorithms import VQE, NumPyEigensolver import matplotlib.pyplot as plt import numpy as np from qiskit.chemistry.components.variational_forms import UCCSD from qiskit.chemistry.components.initial_states import HartreeFock from qiskit.circuit.library import EfficientSU2 from qiskit.aqua.components.optimizers import COBYLA, SPSA, SLSQP from qiskit.aqua.operators import Z2Symmetries from qiskit import IBMQ, BasicAer, Aer from qiskit.chemistry.drivers import PySCFDriver, UnitsType from qiskit.chemistry import FermionicOperator from qiskit import IBMQ from qiskit.aqua import QuantumInstance from qiskit.ignis.mitigation.measurement import CompleteMeasFitter from qiskit.providers.aer.noise import NoiseModel def get_qubit_op(dist): driver = PySCFDriver(atom="Li .0 .0 .0; H .0 .0 " + str(dist), unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g') molecule = driver.run() freeze_list = [0] remove_list = [-3, -2] repulsion_energy = molecule.nuclear_repulsion_energy num_particles = molecule.num_alpha + molecule.num_beta num_spin_orbitals = molecule.num_orbitals * 2 remove_list = [x % molecule.num_orbitals for x in remove_list] freeze_list = [x % molecule.num_orbitals for x in freeze_list] remove_list = [x - len(freeze_list) for x in remove_list] remove_list += [x + molecule.num_orbitals - len(freeze_list) for x in remove_list] freeze_list += [x + molecule.num_orbitals for x in freeze_list] ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals) ferOp, energy_shift = ferOp.fermion_mode_freezing(freeze_list) num_spin_orbitals -= len(freeze_list) num_particles -= len(freeze_list) ferOp = ferOp.fermion_mode_elimination(remove_list) num_spin_orbitals -= len(remove_list) qubitOp = ferOp.mapping(map_type='parity', threshold=0.00000001) qubitOp = Z2Symmetries.two_qubit_reduction(qubitOp, num_particles) shift = energy_shift + repulsion_energy return qubitOp, num_particles, num_spin_orbitals, shift dist = 1. qubitOp, num_particles, num_spin_orbitals, shift = get_qubit_op(dist) print ( qubitOp, num_particles, num_spin_orbitals, shift ) backend = BasicAer.get_backend("statevector_simulator") distances = np.arange(0.5, 4.0, 0.1) exact_energies = [] vqe_energies = [] optimizer = SLSQP(maxiter=5) for dist in distances: qubitOp, num_particles, num_spin_orbitals, shift = get_qubit_op(dist) result = NumPyEigensolver(qubitOp).run() exact_energies.append(np.real(result.eigenvalues) + shift) initial_state = HartreeFock( num_spin_orbitals, num_particles, qubit_mapping='parity' ) var_form = UCCSD( num_orbitals=num_spin_orbitals, num_particles=num_particles, initial_state=initial_state, qubit_mapping='parity' ) vqe = VQE(qubitOp, var_form, optimizer) vqe_result = np.real(vqe.run(backend)['eigenvalue'] + shift) vqe_energies.append(vqe_result) print("Interatomic Distance:", np.round(dist, 2), "VQE Result:", vqe_result, "Exact Energy:", exact_energies[-1]) print("All energies have been calculated") plt.plot(distances, exact_energies, label="Exact Energy") plt.plot(distances, vqe_energies, label="VQE Energy") plt.xlabel('Atomic distance (Angstrom)') plt.ylabel('Energy') plt.legend() plt.show()
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector import numpy as np import pylab as plt def NOT(input_bit): # initialize the QC q = QuantumRegister(1) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) # for input 1 flip the q[0] to 1 if input_bit=='1': qc.x(q[0]) # now do a NOT gate by flipping the q[0] qc.x(q[0]) qc.measure( q[0], c[0] ) # now exectue the circuit backend = Aer.get_backend('qasm_simulator') counts = execute(qc,backend,shots=1000).result().get_counts() return counts NOT('1') def XOR(input1, input2): # initialize the QC q = QuantumRegister(2) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) #################################### # # DO something here... # the code in the book doesn't do anything # so it gives 0 always irrespective of the inputs #################################### qc.measure( q[1], c[0] ) # now exectue the circuit backend = Aer.get_backend('qasm_simulator') counts = execute(qc,backend,shots=1000, memory=True).result().get_memory()[0] return counts XOR('1', '1') def AND(input1, input2): # initialize the QC q = QuantumRegister(3) c = ClassicalRegister(1) qc = QuantumCircuit(q,c) #################################### # # DO something here... # the code in the book only gives 0 always #################################### qc.measure( q[2], c[0] ) # now exectue the circuit backend = Aer.get_backend('qasm_simulator') counts = execute(qc,backend,shots=1000, memory=True).result().get_memory()[0] return counts XOR('1', '1') def AND(input1,input2): q = QuantumRegister(3) # two qubits in which to encode the input, and one for the output c = ClassicalRegister(1) # a bit to store the output qc = QuantumCircuit(q, c) # this is where the quantum program goes # YOUR QUANTUM PROGRAM GOES HERE qc.measure(q[2],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO # We'll run the program on a simulator backend = Aer.get_backend('qasm_simulator') # Since the output will be deterministic, we can use just a single shot to get it job = execute(qc,backend,shots=1,memory=True) output = job.result().get_memory()[0] return output
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np #from qiskit import * from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.visualization import plot_histogram, plot_gate_map, plot_circuit_layout from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt %matplotlib inline IBMQ.load_account() provider = IBMQ.get_provider(group='open') ghz = QuantumCircuit(5,5) ghz.h(0) for idx in range(1,5): ghz.cx(0,idx) ghz.barrier(range(5)) ghz.measure(range(5), range(5)) ghz.draw(output='mpl') from qiskit import transpile import inspect inspect.signature(transpile) provider = IBMQ.get_provider(group='open') provider.backends(simulator=False) backend = provider.get_backend('ibmqx2') backend.configuration().basis_gates qc = QuantumCircuit(2,1) qc.h(0) qc.x(1) qc.cu1(np.pi/4, 0, 1) # cu1 is controlled u1 just like CNOT is controlled NOT qc.h(0) qc.measure([0], [0]) qc.draw(output='mpl') qc_basis = qc.decompose() qc_basis.draw(output='mpl') print(qc.depth(), ',', qc_basis.depth()) swap_circ = QuantumCircuit(2) display ( swap_circ.draw(output='mpl') ) swap_circ.swap(0, 1) display ( swap_circ.decompose().draw(output='mpl') ) ccx_circ = QuantumCircuit(3) ccx_circ.ccx(0, 1, 2) ccx_circ.decompose().draw(output='mpl') backend = provider.get_backend('ibmq_16_melbourne') plot_gate_map(backend, plot_directed=True) new_circ_lv0 = transpile(ghz, backend=backend, optimization_level=0) plot_circuit_layout(new_circ_lv0, backend ) backend = provider.get_backend('ibmq_16_melbourne') new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) print('Depth:', new_circ_lv3.depth()) plot_circuit_layout(new_circ_lv3, backend) #job1 = execute(new_circ_lv3, backend) #job_monitor(job1) # Virtual -> physical # 0 -> 11 # 1 -> 12 # 2 -> 10 # 3 -> 2 # 4 -> 4 good_ghz = transpile(ghz, backend, initial_layout=[11,12,10,2,4]) print('Depth:', good_ghz.depth()) plot_circuit_layout(good_ghz, backend)
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram # For Jupyter Notebooks %config InlineBackend.figure_format = 'svg' # Makes the images look nice from qiskit_textbook.widgets import binary_widget binary_widget(nbits=5) n = 8 n_q = n n_b = n qc_output = QuantumCircuit(n_q,n_b) for j in range(n): qc_output.measure(j,j) qc_output.draw(output='mpl') counts = execute(qc_output,Aer.get_backend('qasm_simulator')).result().get_counts() plot_histogram(counts) qc_encode = QuantumCircuit(n) qc_encode.x(7) qc_encode.draw(output='mpl') qc = qc_encode + qc_output qc.draw(output='mpl',justify='none') counts = execute(qc,Aer.get_backend('qasm_simulator')).result().get_counts() plot_histogram(counts) qc_encode = QuantumCircuit(n) qc_encode.x(1) qc_encode.x(5) qc_encode.draw(output='mpl') qc_cnot = QuantumCircuit(2) qc_cnot.cx(0,1) qc_cnot.draw(output='mpl') qc = QuantumCircuit(2,2) qc.x(0) qc.cx(0,1) qc.measure(0,0) qc.measure(1,1) qc.draw(output='mpl') qc_ha = QuantumCircuit(4,2) # encode inputs in qubits 0 and 1 qc_ha.x(0) # For a=0, remove this line. For a=1, leave it. qc_ha.x(1) # For b=0, remove this line. For b=1, leave it. qc_ha.barrier() # use cnots to write the XOR of the inputs on qubit 2 qc_ha.cx(0,2) qc_ha.cx(1,2) qc_ha.barrier() # extract outputs qc_ha.measure(2,0) # extract XOR value qc_ha.measure(3,1) qc_ha.draw(output='mpl') qc_ha = QuantumCircuit(4,2) # encode inputs in qubits 0 and 1 qc_ha.x(0) # For a=0, remove the this line. For a=1, leave it. qc_ha.x(1) # For b=0, remove the this line. For b=1, leave it. qc_ha.barrier() # use cnots to write the XOR of the inputs on qubit 2 qc_ha.cx(0,2) qc_ha.cx(1,2) # use ccx to write the AND of the inputs on qubit 3 qc_ha.ccx(0,1,3) qc_ha.barrier() # extract outputs qc_ha.measure(2,0) # extract XOR value qc_ha.measure(3,1) # extract AND value qc_ha.draw(output='mpl') counts = execute(qc_ha,Aer.get_backend('qasm_simulator')).result().get_counts() plot_histogram(counts) import qiskit qiskit.__qiskit_version__
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np from sklearn.datasets.samples_generator import make_blobs from qiskit.aqua.utils import split_dataset_to_data_and_labels from sklearn import svm from utility import breast_cancer_pca from matplotlib import pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 n = 2 # number of principal components kept training_dataset_size = 20 testing_dataset_size = 10 sample_Total, training_input, test_input, class_labels = breast_cancer_pca(training_dataset_size, testing_dataset_size, n) data_train, _ = split_dataset_to_data_and_labels(training_input) data_test, _ = split_dataset_to_data_and_labels(test_input) print (f"data_train[0].shape: {data_train[0].shape}" ) print (f"data_train[1].shape: {data_train[1].shape}" ) # We use the function of scikit learn to generate linearly separable blobs centers = [(2.5,0),(0,2.5)] x, y = make_blobs(n_samples=100, centers=centers, n_features=2,random_state=0,cluster_std=0.5) fig,ax=plt.subplots(1,2,figsize=(12,4)) ax[0].scatter(data_train[0][:,0],data_train[0][:,1],c=data_train[1]) ax[0].set_title('Breast Cancer dataset'); ax[1].scatter(x[:,0],x[:,1],c=y) ax[1].set_title('Blobs linearly separable'); plt.scatter(data_train[0][:,0],data_train[0][:,1],c=data_train[1]) plt.title('Breast Cancer dataset'); model= svm.LinearSVC() model.fit(data_train[0], data_train[1]) #small utility function # some utility functions def make_meshgrid(x, y, h=.02): x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy def plot_contours(ax, clf, xx, yy, **params): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) out = ax.contourf(xx, yy, Z, **params) return out accuracy_train = model.score(data_train[0], data_train[1]) accuracy_test = model.score(data_test[0], data_test[1]) X0, X1 = data_train[0][:, 0], data_train[0][:, 1] xx, yy = make_meshgrid(X0, X1) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) fig,ax=plt.subplots(1,2,figsize=(15,5)) ax[0].contourf(xx, yy, Z, cmap=plt.cm.coolwarm) ax[0].scatter(data_train[0][:,0], data_train[0][:,1], c=data_train[1]) ax[0].set_title('Accuracy on the training set: '+str(accuracy_train)); ax[1].contourf(xx, yy, Z, cmap=plt.cm.coolwarm) ax[1].scatter(data_test[0][:,0], data_test[0][:,1], c=data_test[1]) ax[1].set_title('Accuracy on the test set: '+str(accuracy_test)); clf = svm.SVC(gamma = 'scale') clf.fit(data_train[0], data_train[1]); accuracy_train = clf.score(data_train[0], data_train[1]) accuracy_test = clf.score(data_test[0], data_test[1]) X0, X1 = data_train[0][:, 0], data_train[0][:, 1] xx, yy = make_meshgrid(X0, X1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) fig,ax=plt.subplots(1,2,figsize=(15,5)) ax[0].contourf(xx, yy, Z, cmap=plt.cm.coolwarm) ax[0].scatter(data_train[0][:,0], data_train[0][:,1], c=data_train[1]) ax[0].set_title('Accuracy on the training set: '+str(accuracy_train)); ax[1].contourf(xx, yy, Z, cmap=plt.cm.coolwarm) ax[1].scatter(data_test[0][:,0], data_test[0][:,1], c=data_test[1]) ax[1].set_title('Accuracy on the test set: '+str(accuracy_test)); import qiskit as qk # Creating Qubits q = qk.QuantumRegister(2) # Creating Classical Bits c = qk.ClassicalRegister(2) circuit = qk.QuantumCircuit(q, c) circuit.draw('mpl') # Initialize empty circuit circuit = qk.QuantumCircuit(q, c) # Hadamard Gate on the first Qubit circuit.h(q[0]) # CNOT Gate on the first and second Qubits circuit.cx(q[0], q[1]) # Measuring the Qubits circuit.measure(q, c) circuit.draw('mpl') # Using Qiskit Aer's Qasm Simulator: Define where do you want to run the simulation. simulator = qk.BasicAer.get_backend('qasm_simulator') # Simulating the circuit using the simulator to get the result job = qk.execute(circuit, simulator, shots=100) result = job.result() # Getting the aggregated binary outcomes of the circuit. counts = result.get_counts(circuit) print (counts) from qiskit.aqua.components.feature_maps import SecondOrderExpansion feature_map = SecondOrderExpansion(feature_dimension=2, depth=1) x = np.array([0.6, 0.3]) #feature_map.construct_circuit(x) print(feature_map.construct_circuit(x)) from qiskit.aqua.algorithms import QSVM qsvm = QSVM(feature_map, training_input, test_input) #from qiskit.aqua import run_algorithm, QuantumInstance from qiskit.aqua import algorithm, QuantumInstance from qiskit import BasicAer backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=10598, seed_transpiler=10598) result = qsvm.run(quantum_instance) plt.scatter(training_input['Benign'][:,0], training_input['Benign'][:,1]) plt.scatter(training_input['Malignant'][:,0], training_input['Malignant'][:,1]) length_data = len(training_input['Benign']) + len(training_input['Malignant']) print("size training set: {}".format(length_data)) #print("Matrix dimension: {}".format(result['kernel_matrix_training'].shape)) print("testing success ratio: ", result['testing_accuracy']) test_set = np.concatenate((test_input['Benign'], test_input['Malignant'])) y_test = qsvm.predict(test_set, quantum_instance) plt.scatter(test_set[:, 0], test_set[:,1], c=y_test) plt.show() plt.scatter(test_input['Benign'][:,0], test_input['Benign'][:,1]) plt.scatter(test_input['Malignant'][:,0], test_input['Malignant'][:,1]) plt.show()
https://github.com/quantumyatra/quantum_computing
quantumyatra
from qiskit import QuantumRegister, QuantumCircuit, execute, Aer cq = QuantumRegister(2,'code\_qubit') lq = QuantumRegister(1,'link\_qubit') qc = QuantumCircuit(cq,lq) qc.cx(cq[0],lq[0]) qc.cx(cq[1],lq[0]) print(qc) qc.draw('mpl') from qiskit.ignis.verification.topological_codes import RepetitionCode from qiskit.ignis.verification.topological_codes import GraphDecoder from qiskit.ignis.verification.topological_codes import lookuptable_decoding, postselection_decoding d = 2 T = 1 code = RepetitionCode(d,T) code.circuit print ( 'code_bits:', code.code_bit, ' d=', code.d, ' T=', code.T) code.qubit_registers code.code_qubit for bit in ['0','1']: print('\n========= logical',bit,'=========\n') print( code.circuit[bit] ) d = 2 T = 1 code = RepetitionCode(d,T) for bit in ['0','1']: print('\n========= logical',bit,'=========\n') print( code.circuit[bit] ) empty_code = RepetitionCode(3,0) def print_circuits(code): for log in ['0','1']: print('\n========= logical',log,'=========\n') print( code.circuit[log] ) print_circuits(empty_code) empty_code.syndrome_measurement() print_circuits(empty_code) empty_code.x() print_circuits(empty_code) empty_code.readout() print_circuits(empty_code) circuits = code.get_circuit_list() job = execute( circuits, Aer.get_backend('qasm_simulator') ) raw_results = {} for log in ['0','1']: raw_results[log] = job.result().get_counts(log) print('\n========= logical',log,'=========\n') print(raw_results[log])
https://github.com/quantumyatra/quantum_computing
quantumyatra
#!/usr/bin/env python3 from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, execute, BasicAer import numpy as np import matplotlib.pyplot as plt def get_state_vector(qc): backend = BasicAer.get_backend('statevector_simulator') res = execute(qc, backend).result() return res.get_statevector(qc, decimals=3) def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a,b) import numpy as np import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA def breast_cancer_pca(training_size, test_size, n, PLOT_DATA=False): class_labels = [r'Benign', r'Malignant'] # First the dataset must be imported. cancer = sklearn.datasets.load_breast_cancer() # Here the data is divided into 70% training, 30% testing. X_train, X_test, Y_train, Y_test = train_test_split(cancer.data, cancer.target, test_size=0.3, random_state=109) # features will be standardized to fit a normal distribution. scaler = StandardScaler().fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # To be able to use this data with the given # number of qubits, the data must be broken down from # 30 dimensions to `n` dimensions. # This is done with Principal Component Analysis (PCA), # which finds patterns while keeping variation. pca = PCA(n_components=n).fit(X_train) X_train = pca.transform(X_train) X_test = pca.transform(X_test) # The last step in the data processing is # to scale the data to be between -1 and 1 samples = np.append(X_train, X_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) X_train = minmax_scale.transform(X_train) X_test = minmax_scale.transform(X_test) # Now some sample should be picked to train the model from training_input = {key: (X_train[Y_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (X_train[Y_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: for k in range(0, 2): x_axis_data = X_train[Y_train == k, 0][:training_size] y_axis_data = X_train[Y_train == k, 1][:training_size] label = 'Malignant' if k==1 else 'Benign' plt.scatter(x_axis_data, y_axis_data, label=label) plt.title("Breast Cancer Dataset (Dimensionality Reduced With PCA)") plt.legend() plt.show() return X_train, training_input, test_input, class_labels
https://github.com/quantumyatra/quantum_computing
quantumyatra
from jupyter_widget_engine import jupyter_widget_engine def start(engine): # set text under screen engine.screen['text'].description = 'Press any button to begin...' # set some parameters engine.started = False engine.pos = (8,8) engine.f = 0 def next_frame (engine): if not engine.started: # record that the game has started engine.started = True # change text under screen engine.screen['text'].description = 'The game is afoot!' # set initial player position (x,y) = engine.pos engine.screen[x,y].button_style = 'info' else: # display frame number in top left corner engine.f += 1 engine.screen[0,0].description = str(engine.f) # get current position (x,y) = engine.pos # removed player from current position engine.screen[x,y].button_style = '' # update based on controller input if engine.controller['up'].value: y -= 1 if engine.controller['down'].value: y += 1 if engine.controller['left'].value: x -= 1 if engine.controller['right'].value: x += 1 # put player at new position engine.screen[x,y].button_style = 'info' # store new position engine.pos = (x,y) engine = jupyter_widget_engine(start,next_frame,L=16)
https://github.com/quantumyatra/quantum_computing
quantumyatra
import numpy as np import pylab as plt from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector damage = 0 # damage to the enemy def attack(damage): damage = min ( (damage +1/3.), 1 ) return damage damage = attack(damage) print (damage) %matplotlib inline def plot_satevector(qc): backend_sv = Aer.get_backend('statevector_simulator') sv = execute(qc, backend=backend_sv).result().get_statevector() fig = plot_bloch_multivector(sv) return fig qcc = QuantumCircuit(1,1) qcc.x(0) fig = plot_satevector(qcc) fig damage_qc = QuantumCircuit(1,1) def attack(damage_qc): damage_qc.rx(np.pi/3,0) fig = plot_satevector(damage_qc) fig return fig meas = QuantumCircuit(1,1) meas.measure(0,0) fig = attack(damage_qc) fig #qc = damage_qc+meas #counts = execute(qc, Aer.get_backend('qasm_simulator'), shots=1000).result().get_counts() #print(counts) #qc.draw('mpl') def get_damage(damage_qc): meas = QuantumCircuit(1,1) meas.measure(0,0) attack(damage_qc) Nshots=1000 counts = execute(damage_qc+meas, backend=Aer.get_backend('qasm_simulator'), shots=Nshots).result().get_counts() damage = counts['1']/Nshots return damage damage_qc = QuantumCircuit(1,1) damage = get_damage(damage_qc) print(damage) #damage = attack(damage_qc) #get_damage(damage) #damage_qc.draw() meas = QuantumCircuit(1,1) meas.measure(0,0) damage_qc = attack(damage_qc) qc = damage_qc+meas counts = execute(qc, Aer.get_backend('qasm_simulator'), shots=1000).result().get_counts() print(counts) qc.draw() #some tests qc = QuantumCircuit(1,1) backend = Aer.get_backend('qasm_simulator') counts = execute(qc, backend=Aer.get_backend('qasm_simulator'), shots=1000).result().get_counts() counts !git clone https://github.com/quantumjim/jupyter-widget-game-engine/ !mv jupyter-widget-game-engine/jupyter_widget_engine.py jupyter_widget_engine.py !mv jupyter-widget-game-engine/jupyter_widget_game.ipynb jupyter_widget_game.ipynb !rm -r jupyter-widget-game-engine from jupyter_widget_engine import jupyter_widget_engine L = 8 def start(engine): pass def next_frame(engine): pass engine = jupyter_widget_engine(start, next_frame, L=L) def get_terrain(x,y): return 'grass' L = 8 def start(engine): engine.get_terrain = get_terrain engine.next_frame(engine) def next_frame(engine): for x in range(L): for y in range(L): #terrain = engine.get_terrain(x,y) if engine.get_terrain(x,y) == 'grass': engine.screen[x,y].button_style = 'success' engine = jupyter_widget_engine(start, next_frame, L=L) def get_terrain(x,y): qc = QuantumCircuit(1,1) # make a circuit # perform rotations, whose angles depend on x and y qc.rx( (np.pi/16)*(x+y) ,0) qc.rx( (np.pi/16)*(x-y) ,0) # calculate probability for outcome 1 qc.measure(0,0) counts = execute(qc, Aer.get_backend('qasm_simulator'), shots=1000).result().get_counts() if '1' in counts: h = counts['1']/1000 else: h = 0 # return terrain depending on this probability # the chosen values here are fairly arbitrarily if h<0.3: terrain = 'sea' elif h<0.7: terrain = 'sand' else: terrain = 'grass' return terrain L = 8 def start(engine): engine.get_terrain = get_terrain engine.next_frame(engine) def next_frame(engine): for x in range(L): for y in range(L): terrain = engine.get_terrain(x,y) if terrain == 'grass': engine.screen[x,y].button_style = 'success' elif terrain == 'sand': engine.screen[x,y].button_style = 'warning' else: engine.screen[x,y].button_style = 'info' engine = jupyter_widget_engine(start, next_frame, L=L) L = 8 def start(engine): engine.get_terrain = get_terrain engine.p_x = 4 engine.p_y = 4 engine.next_frame(engine) def next_frame(engine): if engine.controller['up'].value: engine.p_y -= 1 if engine.controller['down'].value: engine.p_y += 1 if engine.controller['left'].value: engine.p_x -= 1 if engine.controller['right'].value: engine.p_x += 1 s_x = np.floor(engine.p_x/L) s_y = np.floor(engine.p_y/L) for x in range(L): for y in range(L): terrain = engine.get_terrain(L*s_x+x,L*s_y+y) if terrain == 'grass': engine.screen[x,y].button_style = 'success' elif terrain == 'sand': engine.screen[x,y].button_style = 'warning' else: engine.screen[x,y].button_style = 'info' engine.screen[engine.p_x%L, engine.p_y%L].button_style = 'danger' engine = jupyter_widget_engine(start, next_frame, L=L)
https://github.com/quantumyatra/quantum_computing
quantumyatra
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Utils for using with Qiskit unit tests.""" import logging import os import unittest from enum import Enum from qiskit import __path__ as qiskit_path class Path(Enum): """Helper with paths commonly used during the tests.""" # Main SDK path: qiskit/ SDK = qiskit_path[0] # test.python path: qiskit/test/python/ TEST = os.path.normpath(os.path.join(SDK, '..', 'test', 'python')) # Examples path: examples/ EXAMPLES = os.path.normpath(os.path.join(SDK, '..', 'examples')) # Schemas path: qiskit/schemas SCHEMAS = os.path.normpath(os.path.join(SDK, 'schemas')) # VCR cassettes path: qiskit/test/cassettes/ CASSETTES = os.path.normpath(os.path.join(TEST, '..', 'cassettes')) # Sample QASMs path: qiskit/test/python/qasm QASMS = os.path.normpath(os.path.join(TEST, 'qasm')) def setup_test_logging(logger, log_level, filename): """Set logging to file and stdout for a logger. Args: logger (Logger): logger object to be updated. log_level (str): logging level. filename (str): name of the output file. """ # Set up formatter. log_fmt = ('{}.%(funcName)s:%(levelname)s:%(asctime)s:' ' %(message)s'.format(logger.name)) formatter = logging.Formatter(log_fmt) # Set up the file handler. file_handler = logging.FileHandler(filename) file_handler.setFormatter(formatter) logger.addHandler(file_handler) # Set the logging level from the environment variable, defaulting # to INFO if it is not a valid level. level = logging._nameToLevel.get(log_level, logging.INFO) logger.setLevel(level) class _AssertNoLogsContext(unittest.case._AssertLogsContext): """A context manager used to implement TestCase.assertNoLogs().""" # pylint: disable=inconsistent-return-statements def __exit__(self, exc_type, exc_value, tb): """ This is a modified version of TestCase._AssertLogsContext.__exit__(...) """ self.logger.handlers = self.old_handlers self.logger.propagate = self.old_propagate self.logger.setLevel(self.old_level) if exc_type is not None: # let unexpected exceptions pass through return False if self.watcher.records: msg = 'logs of level {} or higher triggered on {}:\n'.format( logging.getLevelName(self.level), self.logger.name) for record in self.watcher.records: msg += 'logger %s %s:%i: %s\n' % (record.name, record.pathname, record.lineno, record.getMessage()) self._raiseFailure(msg)
https://github.com/PKXH/quantum-algorithms
PKXH
from random import randint,sample def get_random_bitstring(sz): return [randint(0,1) for i in range(sz)] from qiskit import (QuantumCircuit, execute, Aer) default_backend = Aer.get_backend('qasm_simulator') X_BASIS = 0 Z_BASIS = 1 def encode_key_bit(qbit, tx_bit, tx_base): ''' Append encoding of the specified classical bit 'tx_bit' into the specified base 'tx_base' to the quantum circuit ''' # flip the quantum 0 to quantum 1 if we received a '1' bit; otherwise leave # it as a quantum 0. if tx_bit: qbit.x(0) # if we're transmitting using the x-basis, then leave it in the x-basis; # otherwise flip the qubit into the z-basis if tx_base == Z_BASIS: qbit.h(0) return qbit def decode_key_bit(qbit, rx_base): ''' Append measurement of the specified qubit 'qbit' in the specified base 'rx_base' to the quantum circuit ''' # flip the qubit if we're measureing in the Z_BASIS so if the qubit # is originally in the X_BASIS, it will not be in superposition. Then # go ahead and measure it. if rx_base == Z_BASIS: qbit.h(0) qbit.measure([0],[0]) return qbit datum = 1 tx_base = 1 rx_base = 1 test_qc = QuantumCircuit(1,1) test_qc = encode_key_bit(test_qc,datum,tx_base) test_qc.barrier(0) test_qc = decode_key_bit(test_qc,rx_base) test_qc.draw('mpl') num_bits = 32 # set up Alice's transmission bits random_tx_bits = get_random_bitstring(num_bits) random_tx_bases = get_random_bitstring(num_bits) # set up Bob's receiving bits random_rx_bases = get_random_bitstring(num_bits) decoded_rx_bits = [] class SharedChannel: def __init__(self): self.datum = None self.active = False def transmit_datum(self, datum): self.datum = datum self.active = True def receive_datum(self): return_datum = self.datum self.active = False self.datum = [] return return_datum class SharedQuantumChannel(SharedChannel): def __init__(self): super().__init__() class SharedClassicalChannel(SharedChannel): def __init__(self): super().__init__() def transmit_data(self, datum): super().transmit_datum(datum) def receive_data(self): return super().receive_datum() # create shared quantum and classical channels that Alice and Bob will # use to communicate to each other sqc = SharedQuantumChannel() scc = SharedClassicalChannel() scc.transmit_datum('1') print(scc.receive_datum()) # Clear decoded bits list and transmit the qbits one by one until the # receiver has measured every one decoded_rx_bits = [] for i in range(num_bits): # create a qubit, encode it, transmit it, receive it, # and decode it qbit = QuantumCircuit(1,1) tx_qbit = encode_key_bit(qbit, random_tx_bits[i], random_tx_bases[i]) sqc.transmit_datum(tx_qbit) rx_qbit = sqc.receive_datum() full_circuit = decode_key_bit(rx_qbit, random_rx_bases[i]) job = execute(full_circuit, backend=default_backend, shots=1) results = job.result() counts = results.get_counts() decoded_rx_bits.append(int(max(counts, key=counts.get))) # decoder reports rx bases to transmitter scc.transmit_data(random_rx_bases) rx_bases_used = scc.receive_data() # sender determines which random rx bases were right assert(len(rx_bases_used) == len(random_tx_bits)) rx_base_hits = [rx_bases_used[i] == random_tx_bases[i] for i in range(len(random_tx_bits))] # sender notifies receiver of key hits scc.transmit_data(rx_base_hits) rcvd_rx_base_hits = scc.receive_data() # sender and receiver drop non-hit key bits sender_key_candidate = [j for i,j in enumerate(random_tx_bits) if rx_base_hits[i]] receiver_key_candidate = [j for i,j in enumerate(decoded_rx_bits) if rcvd_rx_base_hits[i]] assert(sender_key_candidate == receiver_key_candidate) # the receiver chooses some verification bits (1/4th of the decoded key bits) num_verify_bits = len(receiver_key_candidate)//4 verify_bits_ix = sample(range(len(receiver_key_candidate)), num_verify_bits) verify_bits = {i:receiver_key_candidate[i] for i in verify_bits_ix} # the receiver shares verification bits with sender scc.transmit_data(verify_bits) chk_verify_bits = scc.receive_data() assert(verify_bits == chk_verify_bits) # verify the check bits verified = all([verify_bits[i] == sender_key_candidate[i] for i in verify_bits.keys()]) # if the check bits check out, strip them out of the key and we're done if verified: sender_key = [j for i,j in enumerate(sender_key_candidate) if i not in chk_verify_bits.keys()] receiver_key = [j for i,j in enumerate(receiver_key_candidate) if i not in verify_bits.keys()] assert(sender_key == receiver_key) print('skey: ' + str(sender_key)) print('rkey: ' + str(receiver_key))
https://github.com/PKXH/quantum-algorithms
PKXH
from qiskit import (QuantumCircuit, execute, Aer) from functools import partial default_backend = Aer.get_backend('qasm_simulator') def run_qc_using_backend(backend, qc): job = execute(qc, backend) return job.result() def get_quantum_random_bitstring(sz=1, dump_circuit=False, runner = partial(run_qc_using_backend, default_backend)): qc = QuantumCircuit(sz,sz) for ch in range(sz): qc.h(ch) qc.measure([ch],[ch]) if dump_circuit: return qc else: return runner(qc) t = get_quantum_random_bitstring(8,dump_circuit=True) t.draw('mpl') from random import randint,sample def get_random_bitstring(sz): return [randint(0,1) for i in range(sz)] t = get_random_bitstring(16) print(t)
https://github.com/codigoscupom/QuantumAlgs
codigoscupom
import qiskit as q from qiskit.visualization import plot_histogram, plot_bloch_multivector import math qasm_sim = q.Aer.get_backend('qasm_simulator') statevec_sim = q.Aer.get_backend("statevector_simulator") c = q.QuantumCircuit(2,2) c.ry(math.pi/4,0) c.ry(math.pi/4,1) orig_statevec = q.execute(c, backend=statevec_sim).result().get_statevector() c.measure([0,1], [0,1]) # measuring qubit 3, which is impacted by those cnots: orig_counts = q.execute(c, backend=qasm_sim, shots=1024).result().get_counts() plot_bloch_multivector(orig_statevec)
https://github.com/codigoscupom/QuantumAlgs
codigoscupom
import numpy as np from qiskit import * # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) # circ.draw('mpl')
https://github.com/codigoscupom/QuantumAlgs
codigoscupom
## Programming Quantum Computers ## by Eric Johnston, Nic Harrigan and Mercedes Gimeno-Segovia ## O'Reilly Media ## ## More samples like this can be found at http://oreilly-qc.github.io ## This sample generates a single random bit. from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer import math ## Uncomment the next line to see diagrams when running in a notebook #%matplotlib inline ## Example 2-1: Random bit # Set up the program reg = QuantumRegister(1, name='reg') reg_c = ClassicalRegister(1, name='regc') qc = QuantumCircuit(reg, reg_c) qc.reset(reg) # write the value 0 qc.h(reg) # put it into a superposition of 0 and 1 result = qc.measure(reg, reg_c) # read the result as a digital bit backend = BasicAer.get_backend('statevector_simulator') job = execute(qc, backend) result = job.result() print('result: ', result) counts = result.get_counts(qc) print('counts:',counts) # outputstate = result.get_statevector(qc, decimals=3) # print(outputstate) # qc.draw() # draw the circuit
https://github.com/codigoscupom/QuantumAlgs
codigoscupom
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import logging import math import numpy as np from sklearn.utils import shuffle from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.aqua import Pluggable, PluggableType, get_pluggable_class, AquaError from qiskit.aqua.components.feature_maps import FeatureMap from qiskit.aqua.utils import get_feature_dimension from qiskit.aqua.utils import map_label_to_class_name from qiskit.aqua.utils import split_dataset_to_data_and_labels from qiskit.aqua.utils import find_regs_by_name from qiskit.aqua.algorithms.adaptive.vq_algorithm import VQAlgorithm logger = logging.getLogger(__name__) def assign_label(measured_key, num_classes): """ Classes = 2: - If odd number of qubits we use majority vote - If even number of qubits we use parity Classes = 3 - We use part-parity {ex. for 2 qubits: [00], [01,10], [11] would be the three labels} Args: measured_key (str): measured key num_classes (int): number of classes """ measured_key = np.asarray([int(k) for k in list(measured_key)]) num_qubits = len(measured_key) if num_classes == 2: if num_qubits % 2 != 0: total = np.sum(measured_key) return 1 if total > num_qubits / 2 else 0 else: hamming_weight = np.sum(measured_key) is_odd_parity = hamming_weight % 2 return is_odd_parity elif num_classes == 3: first_half = int(np.floor(num_qubits / 2)) modulo = num_qubits % 2 # First half of key hamming_weight_1 = np.sum(measured_key[0:first_half + modulo]) # Second half of key hamming_weight_2 = np.sum(measured_key[first_half + modulo:]) is_odd_parity_1 = hamming_weight_1 % 2 is_odd_parity_2 = hamming_weight_2 % 2 return is_odd_parity_1 + is_odd_parity_2 else: total_size = 2**num_qubits class_step = np.floor(total_size / num_classes) decimal_value = measured_key.dot(1 << np.arange(measured_key.shape[-1] - 1, -1, -1)) key_order = int(decimal_value / class_step) return key_order if key_order < num_classes else num_classes - 1 def cost_estimate(probs, gt_labels, shots=None): """Calculate cross entropy # shots is kept since it may be needed in future. Args: shots (int): the number of shots used in quantum computing probs (numpy.ndarray): NxK array, N is the number of data and K is the number of class gt_labels (numpy.ndarray): Nx1 array Returns: float: cross entropy loss between estimated probs and gt_labels """ mylabels = np.zeros(probs.shape) for i in range(gt_labels.shape[0]): whichindex = gt_labels[i] mylabels[i][whichindex] = 1 def cross_entropy(predictions, targets, epsilon=1e-12): predictions = np.clip(predictions, epsilon, 1. - epsilon) N = predictions.shape[0] tmp = np.sum(targets*np.log(predictions), axis=1) ce = -np.sum(tmp)/N return ce x = cross_entropy(probs, mylabels) return x def cost_estimate_sigmoid(shots, probs, gt_labels): """Calculate sigmoid cross entropy Args: shots (int): the number of shots used in quantum computing probs (numpy.ndarray): NxK array, N is the number of data and K is the number of class gt_labels (numpy.ndarray): Nx1 array Returns: float: sigmoid cross entropy loss between estimated probs and gt_labels """ #Error in the order of parameters corrected below - 19 Dec 2018 #x = cost_estimate(shots, probs, gt_labels) x = cost_estimate(probs, gt_labels, shots) loss = (1.) / (1. + np.exp(-x)) return loss def return_probabilities(counts, num_classes): """Return the probabilities of given measured counts Args: counts ([dict]): N data and each with a dict recording the counts num_classes (int): number of classes Returns: numpy.ndarray: NxK array """ probs = np.zeros(((len(counts), num_classes))) for idx in range(len(counts)): count = counts[idx] shots = sum(count.values()) for k, v in count.items(): label = assign_label(k, num_classes) probs[idx][label] += v / shots return probs class VQC(VQAlgorithm): CONFIGURATION = { 'name': 'VQC', 'description': 'Variational Quantum Classifier', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'vqc_schema', 'type': 'object', 'properties': { 'override_SPSA_params': { 'type': 'boolean', 'default': True }, 'max_evals_grouped': { 'type': 'integer', 'default': 1 }, 'minibatch_size': { 'type': 'integer', 'default': -1 } }, 'additionalProperties': False }, 'problems': ['classification'], 'depends': [ { 'pluggable_type': 'optimizer', 'default': { 'name': 'SPSA' }, }, { 'pluggable_type': 'feature_map', 'default': { 'name': 'SecondOrderExpansion', 'depth': 2 }, }, { 'pluggable_type': 'variational_form', 'default': { 'name': 'RYRZ', 'depth': 3 }, }, ], } def __init__( self, optimizer=None, feature_map=None, var_form=None, training_dataset=None, test_dataset=None, datapoints=None, max_evals_grouped=1, minibatch_size=-1, callback=None ): """Initialize the object Args: optimizer (Optimizer): The classical optimizer to use. feature_map (FeatureMap): The FeatureMap instance to use. var_form (VariationalForm): The variational form instance. training_dataset (dict): The training dataset, in the format: {'A': np.ndarray, 'B': np.ndarray, ...}. test_dataset (dict): The test dataset, in same format as `training_dataset`. datapoints (np.ndarray): NxD array, N is the number of data and D is data dimension. max_evals_grouped (int): The maximum number of evaluations to perform simultaneously. minibatch_size (int): The size of a mini-batch. callback (Callable): a callback that can access the intermediate data during the optimization. Internally, four arguments are provided as follows the index of data batch, the index of evaluation, parameters of variational form, evaluated value. Notes: We use `label` to denotes numeric results and `class` the class names (str). """ self.validate(locals()) super().__init__( var_form=var_form, optimizer=optimizer, cost_fn=self._cost_function_wrapper ) self._optimizer.set_max_evals_grouped(max_evals_grouped) self._callback = callback if feature_map is None: raise AquaError('Missing feature map.') if training_dataset is None: raise AquaError('Missing training dataset.') self._training_dataset, self._class_to_label = split_dataset_to_data_and_labels( training_dataset) self._label_to_class = {label: class_name for class_name, label in self._class_to_label.items()} self._num_classes = len(list(self._class_to_label.keys())) if test_dataset is not None: self._test_dataset = split_dataset_to_data_and_labels(test_dataset, self._class_to_label) else: self._test_dataset = test_dataset if datapoints is not None and not isinstance(datapoints, np.ndarray): datapoints = np.asarray(datapoints) self._datapoints = datapoints self._minibatch_size = minibatch_size self._eval_count = 0 self._ret = {} self._feature_map = feature_map self._num_qubits = feature_map.num_qubits @classmethod def init_params(cls, params, algo_input): algo_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) override_spsa_params = algo_params.get('override_SPSA_params') max_evals_grouped = algo_params.get('max_evals_grouped') minibatch_size = algo_params.get('minibatch_size') # Set up optimizer opt_params = params.get(Pluggable.SECTION_KEY_OPTIMIZER) # If SPSA then override SPSA params as reqd to our predetermined values if opt_params['name'] == 'SPSA' and override_spsa_params: opt_params['c0'] = 4.0 opt_params['c1'] = 0.1 opt_params['c2'] = 0.602 opt_params['c3'] = 0.101 opt_params['c4'] = 0.0 opt_params['skip_calibration'] = True optimizer = get_pluggable_class(PluggableType.OPTIMIZER, opt_params['name']).init_params(params) # Set up feature map fea_map_params = params.get(Pluggable.SECTION_KEY_FEATURE_MAP) feature_dimension = get_feature_dimension(algo_input.training_dataset) fea_map_params['feature_dimension'] = feature_dimension feature_map = get_pluggable_class(PluggableType.FEATURE_MAP, fea_map_params['name']).init_params(params) # Set up variational form, we need to add computed num qubits # Pass all parameters so that Variational Form can create its dependents var_form_params = params.get(Pluggable.SECTION_KEY_VAR_FORM) var_form_params['num_qubits'] = feature_map.num_qubits var_form = get_pluggable_class(PluggableType.VARIATIONAL_FORM, var_form_params['name']).init_params(params) return cls(optimizer, feature_map, var_form, algo_input.training_dataset, algo_input.test_dataset, algo_input.datapoints, max_evals_grouped, minibatch_size) def construct_circuit(self, x, theta, measurement=False): """ Construct circuit based on data and parameters in variational form. Args: x (numpy.ndarray): 1-D array with D dimension theta ([numpy.ndarray]): list of 1-D array, parameters sets for variational form measurement (bool): flag to add measurement Returns: QuantumCircuit: the circuit """ qr = QuantumRegister(self._num_qubits, name='q') cr = ClassicalRegister(self._num_qubits, name='c') qc = QuantumCircuit(qr, cr) qc += self._feature_map.construct_circuit(x, qr) qc += self._var_form.construct_circuit(theta, qr) if measurement: qc.barrier(qr) qc.measure(qr, cr) return qc def _get_prediction(self, data, theta): """ Make prediction on data based on each theta. Args: data (numpy.ndarray): 2-D array, NxD, N data points, each with D dimension theta ([numpy.ndarray]): list of 1-D array, parameters sets for variational form Returns: numpy.ndarray or [numpy.ndarray]: list of NxK array numpy.ndarray or [numpy.ndarray]: list of Nx1 array """ # if self._quantum_instance.is_statevector: # raise ValueError('Selected backend "{}" is not supported.'.format( # self._quantum_instance.backend_name)) circuits = {} circuit_id = 0 num_theta_sets = len(theta) // self._var_form.num_parameters theta_sets = np.split(theta, num_theta_sets) for theta in theta_sets: for datum in data: if self._quantum_instance.is_statevector: circuit = self.construct_circuit(datum, theta, measurement=False) else: circuit = self.construct_circuit(datum, theta, measurement=True) circuits[circuit_id] = circuit circuit_id += 1 results = self._quantum_instance.execute(list(circuits.values())) circuit_id = 0 predicted_probs = [] predicted_labels = [] for _ in theta_sets: counts = [] for _ in data: if self._quantum_instance.is_statevector: temp = results.get_statevector(circuits[circuit_id]) outcome_vector = (temp * temp.conj()).real # convert outcome_vector to outcome_dict, where key is a basis state and value is the count. # Note: the count can be scaled linearly, i.e., it does not have to be an integer. outcome_dict = {} bitstr_size = int(math.log2(len(outcome_vector))) for i in range(len(outcome_vector)): bitstr_i = format(i, '0' + str(bitstr_size) + 'b') outcome_dict[bitstr_i] = outcome_vector[i] else: outcome_dict = results.get_counts(circuits[circuit_id]) counts.append(outcome_dict) circuit_id += 1 probs = return_probabilities(counts, self._num_classes) predicted_probs.append(probs) predicted_labels.append(np.argmax(probs, axis=1)) if len(predicted_probs) == 1: predicted_probs = predicted_probs[0] if len(predicted_labels) == 1: predicted_labels = predicted_labels[0] return predicted_probs, predicted_labels # Breaks data into minibatches. Labels are optional, but will be broken into batches if included. def batch_data(self, data, labels=None, minibatch_size=-1): label_batches = None if 0 < minibatch_size < len(data): batch_size = min(minibatch_size, len(data)) if labels is not None: shuffled_samples, shuffled_labels = shuffle(data, labels, random_state=self.random) label_batches = np.array_split(shuffled_labels, batch_size) else: shuffled_samples = shuffle(data, random_state=self.random) batches = np.array_split(shuffled_samples, batch_size) else: batches = np.asarray([data]) label_batches = np.asarray([labels]) return batches, label_batches def is_gradient_really_supported(self): return self.optimizer.is_gradient_supported and not self.optimizer.is_gradient_ignored def train(self, data, labels, quantum_instance=None, minibatch_size=-1): """Train the models, and save results. Args: data (numpy.ndarray): NxD array, N is number of data and D is dimension labels (numpy.ndarray): Nx1 array, N is number of data quantum_instance (QuantumInstance): quantum backend with all setting minibatch_size (int): the size of each minibatched accuracy evalutation """ self._quantum_instance = self._quantum_instance if quantum_instance is None else quantum_instance minibatch_size = minibatch_size if minibatch_size > 0 else self._minibatch_size self._batches, self._label_batches = self.batch_data(data, labels, minibatch_size) self._batch_index = 0 if self.initial_point is None: self.initial_point = self.random.randn(self._var_form.num_parameters) self._eval_count = 0 grad_fn = None if minibatch_size > 0 and self.is_gradient_really_supported(): # we need some wrapper grad_fn = self._gradient_function_wrapper self._ret = self.find_minimum( initial_point=self.initial_point, var_form=self.var_form, cost_fn=self._cost_function_wrapper, optimizer=self.optimizer, gradient_fn = grad_fn # func for computing gradient ) if self._ret['num_optimizer_evals'] is not None and self._eval_count >= self._ret['num_optimizer_evals']: self._eval_count = self._ret['num_optimizer_evals'] self._eval_time = self._ret['eval_time'] logger.info('Optimization complete in {} seconds.\nFound opt_params {} in {} evals'.format( self._eval_time, self._ret['opt_params'], self._eval_count)) self._ret['eval_count'] = self._eval_count del self._batches del self._label_batches del self._batch_index self._ret['training_loss'] = self._ret['min_val'] # temporary fix: this code should be unified with the gradient api in optimizer.py def _gradient_function_wrapper(self, theta): """Compute and return the gradient at the point theta. Args: theta (numpy.ndarray): 1-d array Returns: numpy.ndarray: 1-d array with the same shape as theta. The gradient computed """ epsilon = 1e-8 f_orig = self._cost_function_wrapper(theta) grad = np.zeros((len(theta),), float) for k in range(len(theta)): theta[k] += epsilon f_new = self._cost_function_wrapper(theta) grad[k] = (f_new - f_orig) / epsilon theta[k] -= epsilon # recover to the center state if self.is_gradient_really_supported(): self._batch_index += 1 # increment the batch after gradient callback return grad def _cost_function_wrapper(self, theta): batch_index = self._batch_index % len(self._batches) predicted_probs, predicted_labels = self._get_prediction(self._batches[batch_index], theta) total_cost = [] if not isinstance(predicted_probs, list): predicted_probs = [predicted_probs] for i in range(len(predicted_probs)): curr_cost = cost_estimate(predicted_probs[i], self._label_batches[batch_index]) total_cost.append(curr_cost) if self._callback is not None: self._callback( self._eval_count, theta[i * self._var_form.num_parameters:(i + 1) * self._var_form.num_parameters], curr_cost, self._batch_index ) self._eval_count += 1 if not self.is_gradient_really_supported(): self._batch_index += 1 # increment the batch after eval callback logger.debug('Intermediate batch cost: {}'.format(sum(total_cost))) return total_cost if len(total_cost) > 1 else total_cost[0] def test(self, data, labels, quantum_instance=None, minibatch_size=-1, params=None): """Predict the labels for the data, and test against with ground truth labels. Args: data (numpy.ndarray): NxD array, N is number of data and D is data dimension labels (numpy.ndarray): Nx1 array, N is number of data quantum_instance (QuantumInstance): quantum backend with all setting minibatch_size (int): the size of each minibatched accuracy evalutation params (list): list of parameters to populate in the variational form Returns: float: classification accuracy """ # minibatch size defaults to setting in instance variable if not set minibatch_size = minibatch_size if minibatch_size > 0 else self._minibatch_size batches, label_batches = self.batch_data(data, labels, minibatch_size) self.batch_num = 0 if params is None: params = self.optimal_params total_cost = 0 total_correct = 0 total_samples = 0 self._quantum_instance = self._quantum_instance if quantum_instance is None else quantum_instance for batch, label_batch in zip(batches, label_batches): predicted_probs, predicted_labels = self._get_prediction(batch, params) total_cost += cost_estimate(predicted_probs, label_batch) total_correct += np.sum((np.argmax(predicted_probs, axis=1) == label_batch)) total_samples += label_batch.shape[0] int_accuracy = np.sum((np.argmax(predicted_probs, axis=1) == label_batch)) / label_batch.shape[0] logger.debug('Intermediate batch accuracy: {:.2f}%'.format(int_accuracy * 100.0)) total_accuracy = total_correct / total_samples logger.info('Accuracy is {:.2f}%'.format(total_accuracy * 100.0)) self._ret['testing_accuracy'] = total_accuracy self._ret['test_success_ratio'] = total_accuracy self._ret['testing_loss'] = total_cost / len(batches) return total_accuracy def predict(self, data, quantum_instance=None, minibatch_size=-1, params=None): """Predict the labels for the data. Args: data (numpy.ndarray): NxD array, N is number of data, D is data dimension quantum_instance (QuantumInstance): quantum backend with all setting minibatch_size (int): the size of each minibatched accuracy evalutation params (list): list of parameters to populate in the variational form Returns: list: for each data point, generates the predicted probability for each class list: for each data point, generates the predicted label (that with the highest prob) """ # minibatch size defaults to setting in instance variable if not set minibatch_size = minibatch_size if minibatch_size > 0 else self._minibatch_size batches, _ = self.batch_data(data, None, minibatch_size) if params is None: params = self.optimal_params predicted_probs = None predicted_labels = None self._quantum_instance = self._quantum_instance if quantum_instance is None else quantum_instance for i, batch in enumerate(batches): if len(batches) > 0: logger.debug('Predicting batch {}'.format(i)) batch_probs, batch_labels = self._get_prediction(batch, params) if not predicted_probs and not predicted_labels: predicted_probs = batch_probs predicted_labels = batch_labels else: np.concatenate((predicted_probs, batch_probs)) np.concatenate((predicted_labels, batch_labels)) self._ret['predicted_probs'] = predicted_probs self._ret['predicted_labels'] = predicted_labels return predicted_probs, predicted_labels def _run(self): self.train(self._training_dataset[0], self._training_dataset[1]) if self._test_dataset is not None: self.test(self._test_dataset[0], self._test_dataset[1]) if self._datapoints is not None: predicted_probs, predicted_labels = self.predict(self._datapoints) self._ret['predicted_classes'] = map_label_to_class_name(predicted_labels, self._label_to_class) return self._ret def get_optimal_cost(self): if 'opt_params' not in self._ret: raise AquaError("Cannot return optimal cost before running the algorithm to find optimal params.") return self._ret['min_val'] def get_optimal_circuit(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal circuit before running the algorithm to find optimal params.") return self._var_form.construct_circuit(self._ret['opt_params']) def get_optimal_vector(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal vector before running the algorithm to find optimal params.") qc = self.get_optimal_circuit() if self._quantum_instance.is_statevector: ret = self._quantum_instance.execute(qc) self._ret['min_vector'] = ret.get_statevector(qc, decimals=16) else: c = ClassicalRegister(qc.width(), name='c') q = find_regs_by_name(qc, 'q') qc.add_register(c) qc.barrier(q) qc.measure(q, c) ret = self._quantum_instance.execute(qc) self._ret['min_vector'] = ret.get_counts(qc) return self._ret['min_vector'] @property def optimal_params(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal params before running the algorithm.") return self._ret['opt_params'] @property def ret(self): return self._ret @ret.setter def ret(self, new_value): self._ret = new_value @property def label_to_class(self): return self._label_to_class @property def class_to_label(self): return self._class_to_label def load_model(self, file_path): model_npz = np.load(file_path) self._ret['opt_params'] = model_npz['opt_params'] def save_model(self, file_path): model = {'opt_params': self._ret['opt_params']} np.savez(file_path, **model) @property def test_dataset(self): return self._test_dataset @property def training_dataset(self): return self._training_dataset @property def datapoints(self): return self._datapoints
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
# There exists a theorem in Quantum mechanics called the # No-Cloning Theorem: which states that you cannot simply # make an exact copy of an unknown quantum state. # However by taking advatange of two classical bits and an # entangled qubit pair, we can transfer states. # We call this Teleportation. # To transfer a quantum bit, we must use a third prst to send them # an entangled qubit pair. %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, QuantumRegister,ClassicalRegister,execute, BasicAer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit_textbook.tools import random_state, array_to_latex from qiskit.extensions import Initialize import numpy as np # Loading your IBM Q account(s) provider = IBMQ.load_account() #Ex: #creating our circuit: qr = QuantumRegister(3) # three qubit system crz = ClassicalRegister(1) # two different calssi crx = ClassicalRegister(1) teleportation_Circuit = QuantumCircuit(qr,crz,crx) #STEP1: # creating an entangled pair of qubits. # This pair creates a special pair called a Bell pair. # This is done by first placing one qubit into the X-basis: # \+> and |->, using a Hadamard gate, then applying a CNOT # gate onto the other qubit controlled by the on in the X-basis. def create_bell_pair(qc,a,b): """ Creates a bell pair in qc using qubits a and b""" qc.h(a) #puts a into |+> qc.cx(a,b) #CNOT with a as control #creating our bell pair: create_bell_pair(teleportation_Circuit,1,2) teleportation_Circuit.draw() #STEP2: # We must apply a CNOT gate to the qubit being sent. Then we apply a Hadamard # gate. def teleportation_bit(qc,psi,a): qc.cx(psi,a) qc.h(psi) #applying teleportation bit to our cicuit; teleportation_Circuit.barrier() teleportation_bit(teleportation_Circuit,0,1) teleportation_Circuit.draw() #STEP3: # Measure both qubits and store the result in two classical bits. def measure_and_send(qc,a,b): """Measures qubits a & b and 'sends' the results to bob""" qc.barrier() qc.measure(a,0) qc.measure(b,1) measure_and_send(teleportation_Circuit,0,1) teleportation_Circuit.draw() #STEP4: # Apply gates bepending on the sate of the classical bits: # 00 -> Do nothing. # 01 -> Apply X gate. # 10 -> Apply Z gate. # 11 -> Apply ZX gate. def reciever_gates(qc,qubit,crz,crx): # apply the correct gates if the registers are in the state '1' qc.x(qubit).c_if(crx,1) qc.z(qubit).c_if(crz,1) #Applying reciever gates: teleportation_Circuit.barrier() reciever_gates(teleportation_Circuit,2,crz,crx) teleportation_Circuit.draw() #============================== Begining of testing Protocol ========================================= psi = random_state(1) # create a random 1 qubitstate # Display our random qubit state: array_to_latex(psi,pretext="|\\psi\\rangle =") # Show Block Sphere: plot_bloch_multivector(psi) # gate initialiazation: if the circuit is working correctly then q2 will be in this state at the end init_gate = Initialize(psi) init_gate.label = "init" ## setup: qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) qc = QuantumCircuit(qr,crz,crx) # initial step: 0: # Initialise q0 qc.append(init_gate,[0]) qc.barrier() # step 1: # begin teleportation protocol create_bell_pair(qc,1,2) qc.barrier() # step 2: # send q1 to q0 and q2 to q1 teleportation_bit(qc,0,1) # step 3: #send classical bits from q0 to q1 measure_and_send(qc,0,1) # step 4: #q1 decodes qubits reciever_gates(qc,2,crz,crx) backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) # step 5: # takes advantafe of the reversablilty of quantum circuits to reverse randomization: inverse_init_gate = init_gate.gates_to_uncompute() qc.append(inverse_init_gate, [2]) #Display circuit: qc.draw() # final step: get result using classical bit: cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw() # testing the circuit: backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc,backend,shots=1024).result().get_counts() plot_histogram(counts) # IBM Quantum computers fo not support instructions after measurements # however we can use the deferred measurement principle, to postpone # measurements until the end of our circuit. # To do this we rewrite our reciever_gates: def new_reciever_gate(qc,a,b,c): qc.cz(a,c) qc.cx(b,c) # Using our new reciever function: qc = QuantumCircuit(3,1) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob teleportation_bit(qc, 0, 1) qc.barrier() # Alice sends classical bits to Bob new_reciever_gate(qc, 0, 1, 2) # We undo the initialisation process qc.append(inverse_init_gate, [2]) # See the results, we only care about the state of qubit 2 qc.measure(2,0) # View the results: qc.draw() # now we will use quantum hardware: IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() # get the least-busy backend at IBM and run the quantum circuit there from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) job_exp = execute(qc, backend=backend, shots=8192) # Get results and display: exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_results) plot_histogram(exp_measurement_results)
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
# Superdense Coding: # a procedure that allows you to send two classical bits to another party using # another party using just a single quibt of communication. #import statements: from qiskit import* from qiskit import IBMQ from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor # helps to get nicer images: %config InlineBackend.figure_format = 'svg' # Define a function that takes a QuantumCircuit and two integers a&b def create_bell_pair(qc,a,b): qc.h(a) # Apply a h-gate to the first qubit qc.cx(a,b) # Apply a CNOT, using the first qubit as the control # Define a function that takes a QuantumCircuit (qc) # a wubit index (qubit) and a message string (msg) def encode_message(qc,qubit,msg): if msg == "00": pass # to send 00 we do nothing elif msg == "10": qc.x(qubit) # To send 01 we apply x-gate elif msg == "01": qc.z(qubit) # To send 01 we apply a z-gate elif msg == "11": qc.z(qubit) # To send 11, we apply a z-gate qc.x(qubit) # followed by an x-gate else: print("Ivalid Message: sending '00' ") # uses a cnot gate followed by a H-gate to decode msg def decode_message(qc,a,b): qc.cx(a,b) qc.h(a) # our main code portion where we create our circuit: qc = QuantumCircuit(2) # create a 2 qubit quantum circuit # entangles our qubits: create_bell_pair(qc,0,1) qc.barrier() # used to separate the gates in our diagram # choose and then encode our msg: message ="10" encode_message(qc,0,message) qc.barrier() # decode message decode_message(qc,0,1) # measure qubits to check message qc.measure_all() #draw circuit: qc.draw(output = "mpl") #visualize results: backend = Aer.get_backend('qasm_simulator') job_sim = execute(qc, backend, shots=1024) sim_result = job_sim.result() measurement_result = sim_result.get_counts(qc) print(measurement_result) plot_histogram(measurement_result) # Using a real Quantum Computer: shots = 256 #load local account inoformation: IBMQ.load_account() # Get the lear busy backend: provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit job = execute(qc, backend=backend, shots=shots) job_monitor(job) #plotting results: result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
# Deutsch-Josza: # first example of a quantum algorithm that performs better than the best classical algorithm. # Problem: given a string of bits and a hidden boolean function f, which returns either 0 || 1 # The function is guaranteed to either be balanced or constant: # balance -> return's 0 or 1 with exactly 50/50 probability. # constant -> return's all 0's or all 1's for any input. # determine whether the functionc is balanced or constant. # # Classical Approach: # The classical approach requires two queries per bit. # If the two are the same we have a constant function, otherwise it must be balanced. # Quantum Approach: # Using a quantum circuit we can solve this problem with a single query. # We can express the probability that the function is constatn as a function of k inputs as: # P(k) = 1- 1/2^(k-1), for k <= 2^(n-1) # Steps: # 1. Prepare two quantum registers: # The first is n-qubit register initialised to |0>. # The second is a 1-qubit register initialised to |1>\ # 2. Apply a Hadamard gate to each qubit: # after this step the input register is in an equal superposition of all states. # When the oracle is balanced, phase kick back adds a negative phase to 1/2 of the states. # 3. Apply the wuantym oracle |x>|y> to |x|y NOT f(x)> # 4. Apply a Hadamard gate to each qubit in the first register: # we reverse step 2 to obtain the init. quantum state of the first register. # 5. Measure the first register %matplotlib inline import numpy as np # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.tools.monitor import job_monitor # Loading your IBM Q account(s) provider = IBMQ.load_account() # import basic plot tools from qiskit.visualization import plot_histogram # n = 3 # const_oracle = QuantumCircuit(n+1) # output = np.random.randint(2) # if output == 1: # const_oracle.x(n) # balanced_oracle = QuantumCircuit(n+1) # b_str = "101" # # Place X-gates # for qubit in range(len(b_str)): # if b_str[qubit] == '1': # balanced_oracle.x(qubit) # # Use barrier as divider # balanced_oracle.barrier() # Controlled-NOT gates # for qubit in range(n): # balanced_oracle.cx(qubit, n) # balanced_oracle.barrier() # # Place X-gates # for qubit in range(len(b_str)): # if b_str[qubit] == '1': # balanced_oracle.x(qubit) # # Show oracle # balanced_oracle.draw() def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw() backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(dj_circuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Using a real Quantum Device: provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) shots = 1024 job = execute(dj_circuit, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts() plot_histogram(answer)
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
%matplotlib inline # Importing standard Qiskit libraries and configuring account # initialization import matplotlib.pyplot as plt import numpy as np from qiskit import QuantumCircuit, execute, Aer, IBMQ, BasicAer,ClassicalRegister,QuantumRegister from qiskit.providers.ibmq import least_busy from qiskit.compiler import transpile, assemble from qiskit.tools.monitor import job_monitor from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Bernstein-Vazirani Algorithm: # Much like the Deutsch-Josza Algorithm. # We are given a black-box funtion f, # which takes a string of bits x. # And returns either 0 or 1. # Instead of the function being either balanced or constant # the function is guaranteed to return the bitwise produc of the input # with some string, s. That is to say: # given an input x, f(x) = s * x%2. # Where we are asked to find s # ======= CLASSICAL SOLUTION: ======= # classically the oracle returns: fs(x) = s*x %2 # Given an input x. Thus, the hidden bit string s can be revealed by # querying the oracle with the sequence of inputs: # 1000...00, 0100...00, 0010...00, 0000...01 # Where each query revelas a different s with x = 0100...00 we can find the next least # significant bit of s and so on. # Therefore we would need to call fs(x), a total of n times. # ======= Quantum Solution: ======= # Using a quantum computer, we can solve this problem with 100% confidence # after only one call to the function f(x). # the following is the algorithmic steps: # 1. Initialise the imputs qubits to the |0>^(cnot n) state, and output the qubit to |-> # 2. Apply Hadamard gates to the input register. // place in superposition # 3. Query the oracle # 4. Apply Hadamard gates to the input register //undue super position. # 5. Measure n = 3 s = '011' # we need a circuit with n qubits, plus one ancilla qubit. bv_circuit = QuantumCircuit(n+1,n) # put ancilla in state |-> bv_circuit.h(n) bv_circuit.z(n) # Apply Hadamard gates before querying the oracle for i in range(n): bv_circuit.h(i) # Apply barrier bv_circuit.barrier() # Apply the inner-product oracle s = s[::-1] for q in range(n): if s[q] == '0': bv_circuit.i(q) else: bv_circuit.cx(q,n) # Apply barrier bv_circuit.barrier() # Apply Hadamard gates after querying the oracle for i in range(n): bv_circuit.h(i) # Measurement for i in range(n): bv_circuit.measure(i,i) bv_circuit.draw() # running our circuit on the qasm sumulator: backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(bv_circuit,backend=backend,shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) shots = 1024 job = execute(bv_circuit,backend=backend,shots=shots) job_monitor(job,interval = 2) results = job.result() answer = results.get_counts() plot_histogram(answer)
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
%matplotlib inline # initialization: %matplotlib inline %config InlineBackend.figure_format = 'svg' # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, BasicAer, IBMQ from qiskit.providers.ibmq import least_busy from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.tools.monitor import job_monitor from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # Simon's Algorithm: # Given an unknown blackbox funnction f, # which is quaranteed to be either 1:1 or 2:1. # That is to say # either: f is a 1 to 1 maping, # where for every unique x value maps to a single unique f(x). # or: f is a 2 to 1 maping, # where exactly 2 unique x vals map to the same f(x). # Given this blackbox function how quickly can we determine which type of function f is? # Then is f is 2:1 how quickly can we determine s, where if f is 2:1. # given x1,x2: f(x1) = f(x) # it is guaranteed: x1 CNOT x2 = s # ========== Classical Solution: ============ # The traditional approach requires us to check up to 2^[N-1] + 1 inputs. # Where N is the number of bits in the input. # Therefore we would have to check on avg. half of all inputs to be 100% positve the function was 2:1. # ========== Quantum Solution: ========== # Steps: # 1. Two n-qubit input registers are initialized to the 0 state: # |ψ1> = |0⟩^⊗n |0⟩^⊗n # 2. Apply a Hadamard transform to the first register: # |ψ2⟩ = 1/sqrt(2^n)*∑[x∈{0,1}^n] |x⟩|0⟩⊗n # 3. Apply the query function Qf: # |ψ3⟩=1/sqrt(2^n) * ∑x∈[{0,1}^n] |x⟩|f(x)⟩ # 4. Measure the second register. A certain value of f(x) will be observed. # BC of the setting of the problem, the observed value f(x) could # correspond to two possible inputs: x & y = x⊕s # Therefore the first register becomes: # |ψ4⟩ = [1/sqrt(2)]( |x⟩ + |y⟩ ) # 5. Apply Hadamard on the first regisiter: # |ψ5⟩ = 1/sqrt(2^[n+1])*∑z∈[{0,1}n] [ (−1)^(x⋅z) + (−1)^(y⋅z) ] | z⟩ # 6. Measuring the first register will give an output only if: # (−1)^(x⋅z)=(−1)^(y⋅z) # which means: # x*z = y*z # x*z = (x XOR s)*z # x*z = x*(z XOR s)*z # s*z = 0%2 # A string z whose inner product with s will be measured. Thus, repeating the # algorithm ~~ n times, we will be able to obtain n different values of z & the # following system of equations can be written: # # s*z1 = 0 # s*z2 = 0 # ... # s*zn = 0 # From which we can find s using Gaussian elimination. # currently using a fixed string implementation, should expand to a random general case: # Creating registers # qubits and classical bits for querying the oracle and finding the hidden period s n = 2*len(str(s)) simonCircuit = QuantumCircuit(n) barriers = True # Apply Hadamard gates before querying the oracle simonCircuit.h(range(len(str(s)))) # Apply barrier if barriers: simonCircuit.barrier() # Apply the query function ## 2-qubit oracle for s = 11 simonCircuit.cx(0, len(str(s)) + 0) simonCircuit.cx(0, len(str(s)) + 1) simonCircuit.cx(1, len(str(s)) + 0) simonCircuit.cx(1, len(str(s)) + 1) # Apply barrier if barriers: simonCircuit.barrier() # Apply Hadamard gates to the input register simonCircuit.h(range(len(str(s)))) # Measure ancilla qubits simonCircuit.measure_all() simonCircuit.draw(output='mpl') # use local simalator: backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(simonCircuit,backend=backend,shots=shots).result() answer = results.get_counts() answer_plot = {} for measresult in answer.keys(): measresult_input = measresult[len(str(s)):] if measresult_input in answer_plot: answer_plot[measresult_input] += answer[measresult] else: answer_plot[measresult_input] = answer[measresult] print(answer_plot) plot_histogram(answer_plot) # Calculate the dot product of the results def sdotz(a,b): accum = 0 for i in range(len(a)): accum += int(a[i]) * int(b[i]) return( accum % 2 ) print('a,z,s.z(mod 2)') for z_rev in answer_plot: z = z_rev[::-1] print('{},{},{},{}={}'.format(s,z,s,z,sdotz(s,z))) # Run our circuit on the least busy backend shots = 1024 job = execute(simonCircuit,backend=backend,shots=shots) job_monitor(job,interval=2) # Categorize measurements by input register values answer_plot = {} for measresult in answer.keys(): measresult_input = measresult[len(str(s)):] if measresult_input in answer_plot: answer_plot[measresult_input] += answer[measresult] else: answer_plot[measresult_input] = answer[measresult] # Plot the categorized results print( answer_plot ) plot_histogram(answer_plot) # Calculate the dot product of the most significant results print('s, z, s.z (mod 2)') for z_rev in answer_plot: if answer_plot[z_rev] >= 0.1*shots: z = z_rev[::-1] print( '{}, {}, {}.{}={}'.format(s, z, s,z,sdotz(s,z)) )
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
#in general we can transform a single CNOT inot a controlled #version of any rotaion around the Bloch sphere by an angle pi, #by simply preceding and following it with the correct rotations. %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from qiskit.circuit import Gate from math import pi # Loading your IBM Q account(s) provider = IBMQ.load_account() qc = QuantumCircuit(2) c =0 t =1 #built in controlled-Z #recall a Z-GATE converts a |+> qubit to a |-> and vive-versa qc.cz(c,t) qc.draw() #converting a CNOT into a CONTROLLED-Z qc = QuantumCircuit(2) qc.h(t) qc.cx(c,t) qc.h(t) qc.draw() #CONTROLLED-Y GATE. qc = QuantumCircuit(2) qc.sdg(t) qc.cx(c,t) qc.s(t) qc.draw() #CONTROLLED-H GATE qc = QuantumCircuit(2) qc.ry(pi/4,t) qc.cx(c,t) qc.ry(-pi/4,t) qc.draw() #SWAPPING QUBITS: #sometime we need to move information around in a quantum Computer. #one option is to move the state between two qubits. a = 0 b = 1 #swaps states oc qubits a and b qc = QuantumCircuit(2) qc.swap(a,b) qc.draw() # we will now develope a swap gate using he base gate. #first we will look at the |1> and |0> cases: #swaps 1 from a to b: # puts qubits b in state |1> and qubit a in state |0> qc = QuantumCircuit(2) qc.cx(a,b) #copies 1 from a to b qc.cx(b,a) #uses the 1 on b to rotate the state of a to 0 qc.draw() #swap back to original state qc.cx(b,a) qc.cx(a,b) qc.draw() #more general swap gate: # works for |00>,|01>,|10> and |11> #note you can change the order of the CNOT gates and get the same results qc = QuantumCircuit(2) qc.cx(b,a) qc.cx(a,b) qc.cx(b,a) qc.draw() #controlled Rotations: #this circuit rotates qubits about the Y-AXIS by theta/2 qc = QuantumCircuit(2) theta = pi # theta can be any value qc.ry(theta/2,t) qc.cx(c,t) qc.ry(-theta/2,t) qc.cx(c,t) qc.draw() # we can also create a controlled version of any single #qubit rotation U # We must first find three rotations A,B,and C, #and a phase alpha such that # ABC = I , e^(ialpha)AZBZC =U A = Gate('A',1,[]) B = Gate('B',1,[]) C = Gate('C',1,[]) alpha = 1 #arbitratily define alpha qc = QuantumCircuit(2) qc.append(C,[t]) qc.cz(c,t) qc.append(B,[t]) qc.cz(c,t) qc.append(A,[t]) qc.u1(alpha,c) qc.draw() #TOFFOLI: #The Toffoli is a 3-qubit gate with two control and one target. #It performs an X on the target only if both controls # are in state |1>. # the final state of target is then either the AND or NAND of the two controls, # depending on if the initial state of target was |0> or |1>. # the Toffoli can be thought of as a controlled-controoled-NOT: # note the Toffoli requires at least 6 CNOT gates. # but there are other ways to produce an AND effect using quantum operations. qc = QuantumCircuit(3) a = 0 b = 1 t = 2 #Toffoli with control a and b target t: qc.ccx(a,b,t) qc.draw() # before we built a Toffoli from base quibit operations # we will build a general controlled-controlled-U. #For any single-qubit rotation U. qc = QuantumCircuit(3) qc.cu1(theta,b,t) qc.cx(a,b) qc.cu1(-theta,b,t) qc.cx(a,b) qc.cu1(theta,a,t) qc.draw() #we can built an AND gate using a CONTROLLED-H GATE and CONTROLLED-Z GATES qc = QuantumCircuit(3) qc.ch(a,t) qc.cz(b,t) qc.ch(a,t) qc.draw()
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
# Qubits are subject to noise orginating from: # temperature varations, stray magnetic fields, or operations # on other qubits. # Finding a way to mitigate this noise through # the encoding of our in a way that protects them from noise. # for some roation R(theta), about some axis it is impossible # to impent an angle theta with perfect accuracy,such thta you are # sure that you are not accidentally implement something like # theta + 0.000000001. That is to say there will always be # a limit to the accuracy we can achieve. # As this error adds up through operations the noise will always # be larger than is tolerable. # Therefore implementing rotations in a fault tolerant # Quantum Computer, uses mutiple operations made of T and H # Gates. %matplotlib inline # Importing standard Qiskit libraries and configuring account from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * # Loading your IBM Q account(s) provider = IBMQ.load_account() # The T-GATE: # Is a rotation around the z-axis by theta = pi/4. # and is expressed mathematically as Rz(pi/4) = e^(ipi/8Z) #Ex: # the default T gate rotating about the z-axis: qc = QuantumCircuit(1) qc.t(0) qc.draw() # the T-Gate rotating about the x-axis: qc = QuantumCircuit(1) qc.h(0) qc.t(0) qc.h(0) qc.draw() # Putting the two circuits above together we can make the gate: # Rz(pi/4)Rx(pi/4). # Bc this is a single-qubit gate,we can think of it as a # rotation around the Bloch Sphere. That is as a rotaion # About some axis. It is important to note that this angle # will always be irrational. Due to its irrationality, # the angles that result from different repetitions will never # be the same. Each angle will be somewhere between 0 & 2pi. # Splitting this interval up into n slices of width 2pi/n. # For eacg repetition, the resulting angle will fall in one # of these slices. looking at the angle for the first n+1 # repitioins, it must be true that at least one slicce contains # two of these angles. Using n1 to denote the number of repetitions # required for the first and n2 for the second. # The angle for n2-n1 repetitions stisfies # theta(n2-n1) != 0, -2pi/n <= theta(n2-n1) <= 2pi/n # We therefore have he ability to do rotations around small angles. # We can use this to rotate around angles that are as small as we # like, just by increasing the number of times we repeat this gate. # By using small-angle rotations, we can also rotate by any angle # we like. This won't always be exact, but it is guaranteed to be # accurate up to 2pi/n, which we can be made as small as we like. # Using the RzRx rotations allows us to have arbitrary rotaions # around the Bloch Sphere, through the use of numerous T-Gate operations. # Therefore the complexity of algorithms in quantum computations is # often time given in terms of how many T-Gates they require. qc = QuantumCircuit(1) # Rx gate rotation about the x-axis: qc.h(0) qc.t(0) qc.h(0) # Rz gate rotation about the z-axis: qc.t(0) qc.draw()
https://github.com/Andres8bit/IBMQ-Quantum-Qiskit
Andres8bit
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile, assemble from qiskit.tools.monitor import job_monitor import matplotlib as mpl # import basic plot tools from qiskit.visualization import plot_histogram bv_circuit=QuantumCircuit(4,3) #bv_circuit.clear() bit_string=('111') bv_circuit.x(3) bv_circuit.h([0,1,2,3]) bv_circuit.barrier() bv_circuit.cx(0,3) bv_circuit.cx(1,3) bv_circuit.cx(2,3) bv_circuit.barrier() bv_circuit.h([0,1,2,3]) bv_circuit.measure([0,1,2],[0,1,2]) bv_circuit.draw('mpl') aer_sim = Aer.get_backend('aer_simulator') #Local Simulator shots = 1024 #No. of times the circuit is running qobj = assemble(bv_circuit, shots = shots) results = aer_sim.run(qobj).result() counts = results.get_counts() plot_histogram(counts) #Plotting the result bit_string=('1010') bv_circuit=QuantumCircuit(len(bit_string)+1,len(bit_string)) bv_circuit.clear() #bv_circuit.x(len(bit_string)) bv_circuit.h(range(len(bit_string))) bv_circuit.x(len(bit_string)) bv_circuit.h(len(bit_string)) bv_circuit.barrier() for i, yes in enumerate(reversed(bit_string)): if yes=='1': bv_circuit.cx(i,len(bit_string)) bv_circuit.barrier() bv_circuit.h(range(len(bit_string))) bv_circuit.h(len(bit_string)) bv_circuit.measure(range(len(bit_string)),range(len(bit_string))) bv_circuit.draw('mpl') aer_sim = Aer.get_backend('aer_simulator') #Local Simulator shots = 1024 #No. of times the circuit is running qobj = assemble(bv_circuit, shots = shots) results = aer_sim.run(qobj).result() counts = results.get_counts() plot_histogram(counts) #Plotting the result
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, Aer from qiskit import QuantumCircuit, transpile # import basic plot tools from qiskit.visualization import plot_histogram # set the length of the n-bit input string. n = 3 # Constant Oracle const_oracle = QuantumCircuit(n+1) # Random output output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw() # Balanced Oracle balanced_oracle = QuantumCircuit(n+1) # Binary string length b_str = "101" # For each qubit in our circuit # we place an X-gate if the corresponding digit in b_str is 1 # or do nothing if the digit is 0 balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw() # Creating the controlled-NOT gates # using each input qubit as a control # and the output as a target balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Wrapping the controls in X-gates # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(balanced_oracle) # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw() # Viewing the output # use local simulator aer_sim = Aer.get_backend('aer_simulator') results = aer_sim.run(dj_circuit).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile, assemble from qiskit.tools.monitor import job_monitor import matplotlib as mpl import numpy as np # import basic plot tools from qiskit.visualization import plot_histogram # length of the n-bit string n = 4 constant_oracle = QuantumCircuit(n+1) constant_oracle.clear() output = np.random.randint(2) # random no. 0/1 as output if output == 1: constant_oracle.x(n) balance_oracle = QuantumCircuit(n+1) balance_oracle.clear() b_str = "1000" # implementing x-gates for i in range(len(b_str)): if b_str[i] == '1': balance_oracle.x(i) balance_oracle.barrier() # implementing cnot gates for qubit in range(n): balance_oracle.cx(qubit, n) balance_oracle.barrier() balance_oracle.draw() # implemneting x-gates for i in range (len(b_str)): if b_str[i] == '1': balance_oracle.x(i) balance_oracle.barrier() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(constant_oracle) # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) dj_circuit.draw('mpl') aer_sim = Aer.get_backend('aer_simulator') #Local Simulator shots = 1024 #No. of times the circuit is running qobj = assemble(dj_circuit, shots = shots) results = aer_sim.run(qobj).result() counts = results.get_counts() plot_histogram(counts)
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute, assemble, QuantumRegister, ClassicalRegister from qiskit.tools.monitor import job_monitor import matplotlib as mpl # import basic plot tools from qiskit.visualization import plot_histogram, plot_bloch_multivector import numpy as np from numpy import pi marked = ('11') # state which we want to search n = len(marked) gs_circuit = QuantumCircuit(n+1,n) gs_circuit.clear() gs_circuit.x(n) gs_circuit.h(range(n+1)) gs_circuit.barrier() # oracle operator for i, yes in enumerate(marked): if yes == '0': gs_circuit.x(i) gs_circuit.mcx(list(range(n)),n) for i, yes in enumerate(marked): if yes == '0': gs_circuit.x(i) gs_circuit.barrier() # diffuser operator gs_circuit.h(range(n)) gs_circuit.x(range(n)) gs_circuit.cx(0,1) gs_circuit.x(range(n)) gs_circuit.h(range(n)) gs_circuit.barrier() # measure gs_circuit.measure(range(n),range(n)) gs_circuit.draw('mpl') aer_sim = Aer.get_backend('aer_simulator') #Local Simulator shots = 1024 #No. of times the circuit is running qobj = assemble(gs_circuit, shots = shots) results = aer_sim.run(qobj).result() counts = results.get_counts() plot_histogram(counts) #Plotting the result # Converting the binary string to decimal b_str = list(counts.keys())[0] b = int(b_str,2) print('ans:',b)
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute, assemble, QuantumRegister, ClassicalRegister from qiskit.tools.monitor import job_monitor import matplotlib as mpl # import basic plot tools from qiskit.visualization import plot_histogram, plot_bloch_multivector import numpy as np from numpy import pi # Initializing the Qubits ql = QuantumRegister(3, name="ql") # logic qubits qa = QuantumRegister(2, name="qa") # Ancilla qubits mea = ClassicalRegister(3, name="mea") syn = ClassicalRegister(2, name="syn") qec_circuit = QuantumCircuit(ql,qa,mea,syn) # Encoding qec_circuit.clear() qec_circuit.cx(0,1) qec_circuit.cx(0,2) qec_circuit.barrier() # Bit flip error n = np.random.randint(3) qec_circuit.x(n) qec_circuit.barrier() # Syndrome Circuit qec_circuit.cx(0,3) qec_circuit.cx(1,3) qec_circuit.cx(0,4) qec_circuit.cx(2,4) qec_circuit.barrier() qec_circuit.measure(qa,syn) # Recovery cirucit qec_circuit.barrier() qec_circuit.mct([3,4],0) qec_circuit.x(4) qec_circuit.mct([3,4],1) qec_circuit.x(4) qec_circuit.x(3) qec_circuit.mct([3,4],2) qec_circuit.x(3) qec_circuit.barrier() # Decoding circuit qec_circuit.cx(0,2) qec_circuit.cx(0,1) qec_circuit.barrier() # measurement qec_circuit.measure(ql,mea) qec_circuit.draw("mpl") qec_circuit.draw('mpl') aer_sim = Aer.get_backend('aer_simulator') shots = 1024 t_qec = execute(qec_circuit, aer_sim, shots=shots).result() counts = t_qec.get_counts() plot_histogram(counts)
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile, assemble from qiskit.tools.monitor import job_monitor import matplotlib as mpl # import basic plot tools from qiskit.visualization import plot_histogram, plot_bloch_multivector import numpy as np from numpy import pi qft_circuit = QuantumCircuit(3) qft_circuit.clear() #input state= 5 qft_circuit.x(0) qft_circuit.x(2) qft_circuit.h(0) qft_circuit.cp(pi/2,0,1) qft_circuit.cp(pi/4,0,2) qft_circuit.h(1) qft_circuit.cp(pi/2,1,2) qft_circuit.h(2) #qft_circuit.swap(0,2) qft_circuit.draw('mpl') #output is the bloch sphere representation in the fourier basis sim = Aer.get_backend("aer_simulator") qft_circuit_init = qft_circuit.copy() qft_circuit_init.save_statevector() statevector = sim.run(qft_circuit_init).result().get_statevector() plot_bloch_multivector(statevector) IBMQ.save_account('') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 2 and not b.configuration().simulator and b.status().operational==True)) print(backend) t_qc = transpile(qft_circuit, backend, optimization_level=3)#transpile=assembling the circuit and everything job = backend.run(t_qc)#backend means device job_monitor(job)
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile, assemble from qiskit.tools.monitor import job_monitor import matplotlib as mpl # import basic plot tools from qiskit.visualization import plot_histogram game_circuit = QuantumCircuit(2,1) #game_circuit game_circuit.clear() game_circuit.h(0) game_circuit.h(1) game_circuit.cx(0,1) game_circuit.h(1) game_circuit.measure(1,0) game_circuit.draw('mpl') #running on ibm simulator aer_sim=Aer.get_backend('aer_simulator') shots=1024 qobj=assemble(game_circuit, shots=1024) results=aer_sim.run(qobj).result() counts=results.get_counts() plot_histogram(counts) #running on quantum computer #signing in to ibm using api token IBMQ.save_account('eb51948e03130da6b3212b337a0276eb3ddfb106e6e3ff49388aaf14efdded08d2624fa55f7d7158e02266b904d46424988e127c44056949754947d624319860') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 2 and not b.configuration().simulator and b.status().operational==True)) print(backend) t_qc = transpile(game_circuit, backend, optimization_level=3)#transpile=assembling the circuit and everything job = backend.run(t_qc)#backend means device job_monitor(job) exp_result = job.result() exp_counts = exp_result.get_counts(game_circuit) print(exp_counts) plot_histogram(exp_counts)
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
from qiskit import ClassicalRegister , QuantumCircuit, QuantumRegister import numpy as np qr = QuantumRegister(2) cr = ClassicalRegister(3) #For tree classicals bites qc = QuantumCircuit(qr , cr) qc.h(qr[0]) #auxiliary qubit qc.x(qr[1]) # eigenvector #qc.cp((3/2)*np.pi , qr[0] , qr[1]) qc.cp(3*np.pi , qr[0] , qr[1]) qc.h(qr[0]) qc.measure(qr[0] , cr[0]) # this is the controlled-U^(2^n-1) operator for determine phi_n qc.draw("mpl") qc.reset(qr[0]) qc.h(qr[0]) # la valeur du bit du poids le plus faible est dans cr[0]. #Si cr[0] = 1 on enléve le bit de poids le plus faible en fesant la rotation alpha_2 #et on continu le bit n-1 devient le bit le bit de poids le plus faible #si cr[0] est à 0 alors on peut appliquer directement la matrice unitaire associé sans avoir #à faire de rotation inverse alpha_k with qc.if_test((cr[0] , 1)) as else_: qc.p(-np.pi/2 , qr[0]) #qc.cp((3/8)*np.pi , qr[0] ,qr[1]) qc.cp((3/2)*np.pi , qr[0] ,qr[1]) qc.h(qr[0]) # For make measure in X basis {|0> , |1>} qc.measure(qr[0] , cr[1]) qc.draw("mpl") qc.reset(qr[0]) qc.h(qr[0]) # la valeur du bit du poids le plus faible est dans cr[0]. #Si cr[0] = 1 on enléve le bit de poids le plus faible en fesant la rotation alpha_2 #et on continu le bit n-1 devient le bit le bit de poids le plus faible #si cr[0] est à 0 alors on peut appliquer directement la matrice unitaire associé sans avoir #à faire de rotation inverse alpha_k with qc.if_test((cr[1] , 1)) as else_: qc.p(-(3/4)*np.pi , qr[0]) qc.cp((3/4)*np.pi , qr[0] ,qr[1]) qc.h(qr[0]) # For make measure in X basis {|0> , |1>} qc.measure(qr[0] , cr[2]) qc.draw("mpl") from qiskit_aer import AerSimulator sim = AerSimulator() job = sim.run(qc, shots=1000) result = job.result() counts = result.get_counts() counts import qiskit.tools.jupyter %qiskit_version_table
https://github.com/AnshDabkara/Qiskit_Algorithm
AnshDabkara
import cirq import numpy as np from qiskit import QuantumCircuit, execute, Aer import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (15,10) q0, q1, q2 = [cirq.LineQubit(i) for i in range(3)] circuit = cirq.Circuit() #entagling the 2 quibits in different laboratories #and preparing the qubit to send circuit.append(cirq.H(q0)) circuit.append(cirq.H(q1)) circuit.append(cirq.CNOT(q1, q2)) #entangling the qubit we want to send to the one in the first laboratory circuit.append(cirq.CNOT(q0, q1)) circuit.append(cirq.H(q0)) #measurements circuit.append(cirq.measure(q0, q1)) #last transformations to obtain the qubit information circuit.append(cirq.CNOT(q1, q2)) circuit.append(cirq.CZ(q0, q2)) #measure of the qubit in the receiving laboratory along z axis circuit.append(cirq.measure(q2, key = 'Z')) circuit #starting simulation sim = cirq.Simulator() results = sim.run(circuit, repetitions=100) sns.histplot(results.measurements['Z'], discrete = True) 100 - np.count_nonzero(results.measurements['Z']), np.count_nonzero(results.measurements['Z']) #in qiskit the qubits are integrated in the circuit qc = QuantumCircuit(3, 1) #entangling qc.h(0) qc.h(1) qc.cx(1, 2) qc.cx(0, 1) #setting for measurment qc.h(0) qc.measure([0,1], [0,0]) #transformation to obtain qubit sent qc.cx(1, 2) qc.cz(0, 2) qc.measure(2, 0) print(qc) #simulation simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=100) res = job.result().get_counts(qc) plt.bar(res.keys(), res.values()) res
https://github.com/SanNare/qiskit-notebooks
SanNare
from qiskit import * from qiskit.tools.visualization import plot_histogram %matplotlib inline secretnumber = '101001' n = len(secretnumber) circuit = QuantumCircuit(n+1,n) #circuit.h([0,1,2,3,4,5]) circuit.h(range(n)) circuit.x(n) circuit.h(n) circuit.barrier() for ii,yesno in enumerate(reversed(secretnumber)): if yesno == '1': circuit.cx(ii,n) # circuit.cx(5,6) # circuit.cx(3,6) # circuit.cx(0,6) circuit.barrier() circuit.h(range(n)) circuit.barrier() circuit.measure(range(n),range(n)) circuit.draw(output = 'mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit,backend = simulator, shots = 1).result() count = result.get_counts() print(count)
https://github.com/SanNare/qiskit-notebooks
SanNare
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.tools.visualization import plot_bloch_multivector, plot_histogram def logicalAnd(circuit,input_qubits,output_qubit): circuit.mcx(input_qubits,output_qubit) def logicalOr(circuit,input_qubits,output_qubit): for i in input_qubits: circuit.x(i) circuit.x(output_qubit) circuit.mcx(input_qubits,output_qubit) for i in input_qubits: circuit.x(i) # circuit = QuantumCircuit(3) # logicalAnd(circuit,[0,1],2) # logicalOr(circuit,[0,1],2) # %matplotlib inline # circuit.draw('mpl') #implementing the function xy + x'y' circuit = QuantumCircuit(5,1) #change input by commenting/uncommenting these two lines circuit.x(0) # circuit.x(1) logicalAnd(circuit,[0,1],2) circuit.x(0) circuit.x(1) logicalAnd(circuit,[0,1],3) logicalOr(circuit,[2,3],4) circuit.measure(4,0) %matplotlib inline circuit.draw(output = 'mpl') #to run this, remove the classical register and measurement sv = Statevector.from_label('11000') nsv = sv.evolve(circuit) plot_bloch_multivector(nsv.data) from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, simulator, shots=100).result() counts = result.get_counts(circuit) print(counts) plot_histogram(counts) #implementation of circuit for finding a boolean function in DNF #encoding used: x + yz => [[1,0,0],[0,1,1]], xy'z + y'z' => [[1,-1,-1],[0,-1,-1]] def DNF(minterms): n = len(minterms[0]) m = len(minterms) circuit = QuantumCircuit(n+m+1,1) o = n for t in minterms: inp = [] for i in range(0,n): if t[i] == -1: circuit.x(i) inp.append(i) elif t[i] == 1: inp.append(i) logicalAnd(circuit,inp,o) for i in range(0,n): if t[i] == -1: circuit.x(i) o = o+1 logicalOr(circuit,list(range(n,n+m)),n+m) circuit.measure(n+m,0) return circuit circuit = QuantumCircuit(6,1) #comment/uncomment to modify input circuit.x(0) circuit.x(1) #circuit.x(2) circuit.append(DNF([[1,0,0],[0,-1,-1]]),[0,1,2,3,4,5],[0]) #f = x + y'z' circuit.draw(output = 'text') from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, simulator, shots=100).result() counts = result.get_counts(circuit) print(counts) plot_histogram(counts)
https://github.com/SanNare/qiskit-notebooks
SanNare
from qiskit import * qr = QuantumRegister(2) cr = ClassicalRegister(2) circuit = QuantumCircuit(qr,cr) %matplotlib inline circuit.draw(output = 'mpl') circuit.h(qr[0]) circuit.cx(qr[0],qr[1]) circuit.draw(output = 'mpl') circuit.measure(qr,cr) circuit.draw(output = 'mpl') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit,backend = simulator).result() from qiskit.tools.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) IBMQ.load_account() provider = IBMQ.get_provider('ibm-q') qcomp = provider.get_backend('ibmq_16_melbourne') job = execute(circuit,backend = qcomp) from qiskit.tools.monitor import job_monitor job_monitor(job) result = job.result() plot_histogram(result.get_counts(circuit))
https://github.com/SanNare/qiskit-notebooks
SanNare
from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector, DensityMatrix from qiskit.tools.visualization import plot_state_qsphere, plot_histogram def init_message(circuit,n = 1,m = 0,hads = 0): if isinstance(m,int): m = bin(m)[2:] m = m.zfill(n) if isinstance(hads,int): hads = bin(hads)[2:] hads = hads.zfill(n) for i in range(0,n): if m[i] == '1': circuit.x(i) if hads[i] == '1': circuit.h(i) def encrypt(n,key1 = 0,key2 = 0): circuit = QuantumCircuit(n) if isinstance(key1,int): k1 = bin(key1)[2:] k1 = k1.zfill(n) if isinstance(key2,int): k2 = bin(key2)[2:] k2 = k2.zfill(n) for i in range(0,n): if k1[i] == '1': circuit.x(i) if k2[i] == '1': circuit.z(i) return circuit.to_gate() def decrypt(n,key1 = 0,key2 = 0): return encrypt(n,key1,key2).inverse() n = 2 k1,k2 = 3,3 m = 0 hads = 3 circuit = QuantumCircuit(n) init_message(circuit,n,m,hads) #encryption enc = encrypt(n,k1,k2) enc.label = 'Enc({},{},{})'.format(n,k1,k2) circuit.append(enc,list(range(0,n))) # #decryption: uncomment to apply # dec = decrypt(n,k1,k2) # dec.label = 'Dec({},{},{})'.format(n,k1,k2) # circuit.append(dec,list(range(0,n))) %matplotlib inline circuit.draw(output = 'mpl') #Uncomment to view contents of the encryption and/or decryption circuits #circuit.decompose().draw(output = 'mpl') sv = Statevector.from_label("00") dm = DensityMatrix(sv) nsv = sv.evolve(circuit) ndm = dm.evolve(circuit) print(nsv.data) print(ndm.data)
https://github.com/SanNare/qiskit-notebooks
SanNare
! pip install qiskit from qiskit import QuantumCircuit, Aer, IBMQ, execute from qiskit.tools.monitor import job_monitor import math def superpose(n): circuit = QuantumCircuit(n,n) for i in range(0,n): circuit.h(i) circuit.measure(range(n),range(n)) return circuit sample = superpose(6) sample.draw('mpl') def qrandom_sim(a,b): n = math.ceil(math.log2(b)) circuit = superpose(n) simulator = Aer.get_backend('qasm_simulator') result = execute(circuit,backend = simulator, shots = 1).result() v = int(list(result.get_counts(circuit).keys())[0],2) return v%(b-a+1)+a r = qrandom_sim(2,20) print(r) IBMQ.load_account() def qrandom(a,b): n = math.ceil(math.log2(b)) circuit = superpose(n) provider = IBMQ.get_provider('ibm-q') qcomp = provider.get_backend('ibmq_16_melbourne') job = execute(circuit,backend = qcomp,shots = 1) job_monitor(job) result = job.result() v = int(list(result.get_counts(circuit).keys())[0],2) return v%(b-a+1)+a r = qrandom(20,40) print(r)
https://github.com/SanNare/qiskit-notebooks
SanNare
from qiskit import * from qiskit.tools.visualization import plot_histogram,plot_bloch_multivector circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('statevector_simulator') result = execute(circuit,backend = simulator).result() statevector = result.get_statevector() print(statevector) %matplotlib inline circuit.draw(output = 'mpl') plot_bloch_multivector(statevector) circuit.measure([0],[0]) backend = Aer.get_backend('qasm_simulator') result = execute(circuit,backend = backend,shots = 1024).result() counts = result.get_counts() plot_histogram(counts) circuit = QuantumCircuit(1,1) circuit.x(0) simulator = Aer.get_backend('unitary_simulator') result = execute(circuit,backend = simulator).result() unitary = result.get_unitary() print(unitary)
https://github.com/SanNare/qiskit-notebooks
SanNare
from qiskit import QuantumCircuit from qiskit.tools.visualization import plot_histogram from qiskit.extensions import UnitaryGate import numpy as np def logicalAnd(circuit,input_qubits,output_qubit): circuit.mcx(input_qubits,output_qubit) def logicalOr(circuit,input_qubits,output_qubit): for i in input_qubits: circuit.x(i) circuit.x(output_qubit) circuit.mcx(input_qubits,output_qubit) for i in input_qubits: circuit.x(i) def CNF(maxterms): n = len(maxterms[0]) m = len(maxterms) circuit = QuantumCircuit(n+m+1) o = n for t in maxterms: inp = [] for i in range(0,n): if t[i] == -1: circuit.x(i) inp.append(i) elif t[i] == 1: inp.append(i) logicalOr(circuit,inp,o) for i in range(0,n): if t[i] == -1: circuit.x(i) o = o+1 logicalAnd(circuit,list(range(n,n+m)),n+m) return circuit.to_gate() def diffusion(n): m = np.identity(2**n) for i in range(1,2**n): m[i][i] = -1 return UnitaryGate(m) def grover(maxterms,rounds = 0): n = len(maxterms[0]) #number of variables N = 2**n #solution space size m = len(maxterms) #number of maxterms if rounds == 0: r = int(np.ceil(np.pi/(4*np.arcsin(1/np.sqrt(N)))-0.5)) else: r = rounds circuit = QuantumCircuit(n+m+1,n) circuit.x(n+m) circuit.h(n+m) for i in range(n): circuit.h(i) cnf = CNF(maxterms) cnf.label = 'Uf' diff = diffusion(n) diff.label = 'Diff' for i in range(r): circuit.append(cnf,range(n+m+1)) for i in range(n,n+m): circuit.reset(i) for i in range(n): circuit.h(i) circuit.append(diff,range(n)) for i in range(n): circuit.h(i) for i in range(n): circuit.measure(i,i) return circuit maxterms = [[1,1,1],[-1,-1,-1]] # This seems to behave like f(x,y,z) = xyz + x'y'z' (DNF) even though the function is CNF circuit = grover(maxterms) #circuit = grover(maxterms) circuit.draw('mpl') from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, simulator, shots=1000).result() counts = result.get_counts(circuit) print(counts) plot_histogram(counts)
https://github.com/SanNare/qiskit-notebooks
SanNare
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import IBMQ, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector, array_to_latex from qiskit.extensions import Initialize from qiskit.ignis.verification import marginal_counts from qiskit.quantum_info import random_statevector # Loading your IBM Quantum account(s) provider = IBMQ.load_account() ## SETUP # Protocol uses 3 qubits and 2 classical bits in 2 different registers qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical bits crx = ClassicalRegister(1, name="crx") # in 2 different registers teleportation_circuit = QuantumCircuit(qr, crz, crx) def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a,b) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, psi, a): qc.cx(psi, a) qc.h(psi) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): """Measures qubits a & b and 'sends' the results to Bob""" qc.barrier() qc.measure(a,0) qc.measure(b,1) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) measure_and_send(teleportation_circuit, 0 ,1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) # Apply gates if the registers qc.z(qubit).c_if(crz, 1) # are in the state '1' qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) ## STEP 3 measure_and_send(teleportation_circuit, 0, 1) ## STEP 4 teleportation_circuit.barrier() # Use barrier to separate steps bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() # Create random 1-qubit state psi = random_statevector(2) # Display it nicely display(array_to_latex(psi, prefix="|\\psi\\rangle =")) # Show it on a Bloch sphere plot_bloch_multivector(psi) init_gate = Initialize(psi) init_gate.label = "init" ## SETUP qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical registers crx = ClassicalRegister(1, name="crx") qc = QuantumCircuit(qr, crz, crx) ## STEP 0 # First, let's initialize Alice's q0 qc.append(init_gate, [0]) qc.barrier() ## STEP 1 # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) ## STEP 3 # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) ## STEP 4 # Bob decodes qubits bob_gates(qc, 2, crz, crx) # Display the circuit qc.draw() sim = Aer.get_backend('aer_simulator') qc.save_statevector() out_vector = sim.run(qc).result().get_statevector() plot_bloch_multivector(out_vector)
https://github.com/SanNare/qiskit-notebooks
SanNare
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_qsphere, plot_histogram def bellstate(n): #returns a bell state depending on the input integer if n not in [0,1,2,3]: print('Enter 0,1,2 or 3 only. Value taken as n mod 4 = {}.'.format(n%4)) n = 0 n = bin(n)[2:].zfill(2) cir = QuantumCircuit(2) cir.h(0) cir.cx(0,1) sv = Statevector.from_label(n[::-1]) return sv.evolve(cir) psi = bellstate(4) %matplotlib inline plot_state_qsphere(psi.data) def bell(cir,i,j): cir.h(i) cir.cx(i,j) def bell_measure(cir,i,j): cir.cx(i,j) cir.h(i) q = QuantumRegister(6,'q') c0 = ClassicalRegister(1,'c0') c1 = ClassicalRegister(1,'c1') c2 = ClassicalRegister(1,'c2') c3 = ClassicalRegister(1,'c3') c4 = ClassicalRegister(1,'c4') c5 = ClassicalRegister(1,'c5') circuit = QuantumCircuit(q,c0,c1,c2,c3,c4,c5) #initialize states bell(circuit,0,1) circuit.barrier() bell(circuit,2,4) circuit.barrier() bell(circuit,3,5) circuit.barrier() #teleport Alice's first qubit bell_measure(circuit,0,2) circuit.barrier() circuit.measure([0,2],[0,1]) circuit.x(4).c_if(c1,1) circuit.z(4).c_if(c0,1) circuit.barrier() #teleport Alice's second qubit bell_measure(circuit,1,3) circuit.barrier() circuit.measure([1,3],[2,3]) circuit.x(5).c_if(c3,1) circuit.z(5).c_if(c2,1) circuit.barrier() #measure Bob's qubits circuit.measure([4,5],[4,5]) circuit.draw('mpl') from qiskit import Aer, execute from collections import defaultdict simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, simulator, shots=10000).result() counts = result.get_counts(circuit) print(counts) plot_histogram(counts) # count = {s.replace(' ',''):counts[s] for s in counts.keys()} # print(count) count = defaultdict(int) for k in counts.keys(): key = k[0:3] count[key]+=counts[k] print(count)
https://github.com/aaghazaly/quantum-project-using-qiskit
aaghazaly
''' Deutsch-Jozsa Algorithm Consider a function f(x) that takes as input n-bit strings x and returns 0 or 1. Suppose we are promised that f(x) is either a constant function that takes the same value c in {0,1} on all inputs x, or a balanced function that takes each value 0 and 1 on exactly half of the inputs. The goal is to decide whether f is constant or balanced by making as few function evaluations as possible. Classically, it requires 2^{n-1}+1 function evaluations in the worst case. Using the Deutsch-Jozsa algorithm, the question can be answered with just one function evaluation. Deutsch's algorithm is the simpler case of Deutsch-Jozsa Algorithm which has a function f(x) which takes 1-bit as input. Source: https://github.com/Qiskit/ibmqx-user-guides/blob/master/rst/full-user-guide/004-Quantum_Algorithms/080-Deutsch-Jozsa_Algorithm.rst ''' from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.tools.monitor import job_monitor qr = QuantumRegister(2) # Initialize two qubits cr = ClassicalRegister(2) # Initialize two bits for record measurements circuit = QuantumCircuit(qr, cr) circuit.x(qr[1]) # initialize the ancilla qubit in the |1> state circuit.barrier() # First step of quantum algorithms - Prepare the superposition # For superposition, we apply the Hadamard gate on both qubits circuit.h(qr[0]) circuit.h(qr[1]) circuit.barrier() # Oracle function circuit.cx(qr[0], qr[1]) circuit.barrier() # Apply Hadamard gates after querying oracle function circuit.h(qr[0]) circuit.h(qr[1]) circuit.barrier() # Measure qubit circuit.measure(qr[0], cr[0]) # Run our circuit with local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(circuit, backend=backend, shots=shots).result() answer = results.get_counts() print("Simulator result") for c1c0 in answer: print(f'c0 = {c1c0[1]} ({answer[c1c0]} shots)') # C0 observed as 1 in 1024 shots # It indicates f(0) != f(1) # Run our circuit with real devices IBMQ.load_account() IBMQ.backends() backend_lb = least_busy(IBMQ.backends(simulator=False)) backend = backend_lb shots = 1024 job_exp = execute(circuit, backend=backend, shots=shots) job_monitor(job_exp, interval=2) results = job_exp.result() answer = results.get_counts(circuit) print("Real Device Result") for c1c0 in answer: print(f'c0 = {c1c0[1]} ({answer[c1c0]} shots)') # As we can see in results, most of the results for C0 is 1 # It indicates f(0) != f(1) # The results with C0 = 0 occur due to errors in the quantum computation.
https://github.com/aaghazaly/quantum-project-using-qiskit
aaghazaly
from argparse import ArgumentParser, Namespace, BooleanOptionalAction from qiskit import QuantumCircuit as qc from qiskit import QuantumRegister as qr from qiskit import transpile from qiskit_aer import AerSimulator from qiskit.result import Counts from matplotlib.pyplot import show, subplots, xticks, yticks from math import pi, sqrt from heapq import nlargest class GroversAlgorithm: def __init__(self, title: str = "Grover's Algorithm", n_qubits: int = 5, search: set[int] = { 11, 9, 0, 3 }, shots: int = 1000, fontsize: int = 10, print: bool = False, combine_states: bool = False) -> None: """ _summary_ Args: title (str, optional): Window title. Defaults to "Grover's Algorithm". n_qubits (int, optional): Number of qubits. Defaults to 5. search (set[int], optional): Set of nonnegative integers to search for using Grover's algorithm. Defaults to { 11, 9, 0, 3 }. shots (int, optional): Amount of times the algorithm is simulated. Defaults to 10000. fontsize (int, optional): Histogram's font size. Defaults to 10. print (bool, optional): Whether or not to print quantum circuit(s). Defaults to False. combine_states (bool, optional): Whether to combine all non-winning states into 1 bar labeled "Others" or not. Defaults to False. """ # Parsing command line arguments self._parser: ArgumentParser = ArgumentParser(description = "Run grover's algorithm via command line", add_help = False) self._init_parser(title, n_qubits, search, shots, fontsize, print, combine_states) self._args: Namespace = self._parser.parse_args() # Set of nonnegative ints to search for self.search: set[int] = set(self._args.search) # Set of m N-qubit binary strings representing target state(s) (i.e. self.search in base 2) self._targets: set[str] = { f"{s:0{self._args.n_qubits}b}" for s in self.search } # N-qubit quantum register self._qubits: qr = qr(self._args.n_qubits, "qubit") def _print_circuit(self, circuit: qc, name: str) -> None: """Print quantum circuit. Args: circuit (qc): Quantum circuit to print. name (str): Quantum circuit's name. """ print(f"\n{name}:\n{circuit}") def _oracle(self, targets: set[str]) -> qc: """Mark target state(s) with negative phase. Args: targets (set[str]): N-qubit binary string(s) representing target state(s). Returns: qc: Quantum circuit representation of oracle. """ # Create N-qubit quantum circuit for oracle oracle = qc(self._qubits, name = "Oracle") for target in targets: # Reverse target state since Qiskit uses little-endian for qubit ordering target = target[::-1] # Flip zero qubits in target for i in range(self._args.n_qubits): if target[i] == "0": # Pauli-X gate oracle.x(i) # Simulate (N - 1)-control Z gate # 1. Hadamard gate oracle.h(self._args.n_qubits - 1) # 2. (N - 1)-control Toffoli gate oracle.mcx(list(range(self._args.n_qubits - 1)), self._args.n_qubits - 1) # 3. Hadamard gate oracle.h(self._args.n_qubits - 1) # Flip back to original state for i in range(self._args.n_qubits): if target[i] == "0": # Pauli-X gate oracle.x(i) # Display oracle, if applicable if self._args.print: self._print_circuit(oracle, "ORACLE") return oracle def _diffuser(self) -> qc: """Amplify target state(s) amplitude, which decreases the amplitudes of other states and increases the probability of getting the correct solution (i.e. target state(s)). Returns: qc: Quantum circuit representation of diffuser (i.e. Grover's diffusion operator). """ # Create N-qubit quantum circuit for diffuser diffuser = qc(self._qubits, name = "Diffuser") # Hadamard gate diffuser.h(self._qubits) # Oracle with all zero target state diffuser.append(self._oracle({"0" * self._args.n_qubits}), list(range(self._args.n_qubits))) # Hadamard gate diffuser.h(self._qubits) # Display diffuser, if applicable if self._args.print: self._print_circuit(diffuser, "DIFFUSER") return diffuser def _grover(self) -> qc: """Create quantum circuit representation of Grover's algorithm, which consists of 4 parts: (1) state preparation/initialization, (2) oracle, (3) diffuser, and (4) measurement of resulting state. Steps 2-3 are repeated an optimal number of times (i.e. Grover's iterate) in order to maximize probability of success of Grover's algorithm. Returns: qc: Quantum circuit representation of Grover's algorithm. """ # Create N-qubit quantum circuit for Grover's algorithm grover = qc(self._qubits, name = "Grover Circuit") # Intialize qubits with Hadamard gate (i.e. uniform superposition) grover.h(self._qubits) # # Apply barrier to separate steps grover.barrier() # Apply oracle and diffuser (i.e. Grover operator) optimal number of times for _ in range(int((pi / 4) * sqrt((2 ** self._args.n_qubits) / len(self._targets)))): grover.append(self._oracle(self._targets), list(range(self._args.n_qubits))) grover.append(self._diffuser(), list(range(self._args.n_qubits))) # Measure all qubits once finished grover.measure_all() # Display grover circuit, if applicable if self._args.print: self._print_circuit(grover, "GROVER CIRCUIT") return grover def _outcome(self, winners: list[str], counts: Counts) -> None: """Print top measurement(s) (state(s) with highest frequency) and target state(s) in binary and decimal form, determine if top measurement(s) equals target state(s), then print result. Args: winners (list[str]): State(s) (N-qubit binary string(s)) with highest probability of being measured. counts (Counts): Each state and its respective frequency. """ print("WINNER(S):") print(f"Binary = {winners}\nDecimal = {[ int(key, 2) for key in winners ]}\n") print("TARGET(S):") print(f"Binary = {self._targets}\nDecimal = {self.search}\n") if not all(key in self._targets for key in winners): print("Target(s) not found...") else: winners_frequency, total = 0, 0 for value, frequency in counts.items(): if value in winners: winners_frequency += frequency total += frequency print(f"Target(s) found with {winners_frequency / total:.2%} accuracy!") def _show_histogram(self, histogram_data) -> None: """Print outcome and display histogram of simulation results. Args: data: Each state and its respective frequency. """ # State(s) with highest count and their frequencies winners = { winner : histogram_data.get(winner) for winner in nlargest(len(self._targets), histogram_data, key = histogram_data.get) } # Print outcome self._outcome(list(winners.keys()), histogram_data) # X-axis and y-axis value(s) for winners, respectively winners_x_axis = [ str(winner) for winner in [*winners] ] winners_y_axis = [ *winners.values() ] # All other states (i.e. non-winners) and their frequencies others = { state : frequency for state, frequency in histogram_data.items() if state not in winners } # X-axis and y-axis value(s) for all other states, respectively other_states_x_axis = "Others" if self._args.combine else [*others] other_states_y_axis = [ sum([*others.values()]) ] if self._args.combine else [ *others.values() ] # Create histogram for simulation results figure, axes = subplots(num = "Grover's Algorithm — Results", layout = "constrained") axes.bar(winners_x_axis, winners_y_axis, color = "green", label = "Target") axes.bar(other_states_x_axis, other_states_y_axis, color = "red", label = "Non-target") axes.legend(fontsize = self._args.fontsize) axes.grid(axis = "y", ls = "dashed") axes.set_axisbelow(True) # Set histogram title, x-axis title, and y-axis title respectively axes.set_title(f"Outcome of {self._args.shots} Simulations", fontsize = int(self._args.fontsize * 1.45)) axes.set_xlabel("States (Qubits)", fontsize = int(self._args.fontsize * 1.3)) axes.set_ylabel("Frequency", fontsize = int(self._args.fontsize * 1.3)) # Set font properties for x-axis and y-axis labels respectively xticks(fontsize = self._args.fontsize, family = "monospace", rotation = 0 if self._args.combine else 70) yticks(fontsize = self._args.fontsize, family = "monospace") # Set properties for annotations displaying frequency above each bar annotation = axes.annotate("", xy = (0, 0), xytext = (5, 5), xycoords = "data", textcoords = "offset pixels", ha = "center", va = "bottom", family = "monospace", weight = "bold", fontsize = self._args.fontsize, bbox = dict(facecolor = "white", alpha = 0.4, edgecolor = "None", pad = 0) ) def _hover(event) -> None: """Display frequency above each bar upon hovering over it. Args: event: Matplotlib event. """ visibility = annotation.get_visible() if event.inaxes == axes: for bars in axes.containers: for bar in bars: cont, _ = bar.contains(event) if cont: x, y = bar.get_x() + bar.get_width() / 2, bar.get_y() + bar.get_height() annotation.xy = (x, y) annotation.set_text(y) annotation.set_visible(True) figure.canvas.draw_idle() return if visibility: annotation.set_visible(False) figure.canvas.draw_idle() # Display histogram id = figure.canvas.mpl_connect("motion_notify_event", _hover) show() figure.canvas.mpl_disconnect(id) def run(self) -> None: """ Run Grover's algorithm simulation. """ # Simulate Grover's algorithm locally backend = AerSimulator(method = "density_matrix") # Generate optimized grover circuit for simulation transpiled_circuit = transpile(self._grover(), backend, optimization_level = 2) # Run Grover's algorithm simulation job = backend.run(transpiled_circuit, shots = self._args.shots) # Get simulation results results = job.result() # Get each state's histogram data (including frequency) from simulation results data = results.get_counts() # Display simulation results self._show_histogram(data) def _init_parser(self, title: str, n_qubits: int, search: set[int], shots: int, fontsize: int, print: bool, combine_states: bool) -> None: """ Helper method to initialize command line argument parser. Args: title (str): Window title. n_qubits (int): Number of qubits. search (set[int]): Set of nonnegative integers to search for using Grover's algorithm. shots (int): Amount of times the algorithm is simulated. fontsize (int): Histogram's font size. print (bool): Whether or not to print quantum circuit(s). combine_states (bool): Whether to combine all non-winning states into 1 bar labeled "Others" or not. """ self._parser.add_argument("-H, --help", action = "help", help = "show this help message and exit") self._parser.add_argument("-T, --title", type = str, default = title, dest = "title", metavar = "<title>", help = f"window title (default: \"{title}\")") self._parser.add_argument("-n, --n-qubits", type = int, default = n_qubits, dest = "n_qubits", metavar = "<n_qubits>", help = f"number of qubits (default: {n_qubits})") self._parser.add_argument("-s, --search", default = search, type = int, nargs = "+", dest = "search", metavar = "<search>", help = f"nonnegative integers to search for with Grover's algorithm (default: {search})") self._parser.add_argument("-S, --shots", type = int, default = shots, dest = "shots", metavar = "<shots>", help = f"amount of times the algorithm is simulated (default: {shots})") self._parser.add_argument("-f, --font-size", type = int, default = fontsize, dest = "fontsize", metavar = "<font_size>", help = f"histogram's font size (default: {fontsize})") self._parser.add_argument("-p, --print", action = BooleanOptionalAction, type = bool, default = print, dest = "print", help = f"whether or not to print quantum circuit(s) (default: {print})") self._parser.add_argument("-c, --combine", action = BooleanOptionalAction, type = bool, default = combine_states, dest = "combine", help = f"whether to combine all non-winning states into 1 bar labeled \"Others\" or not (default: {combine_states})") if __name__ == "__main__": GroversAlgorithm().run()
https://github.com/aaghazaly/quantum-project-using-qiskit
aaghazaly
''' Shor's Algorithm Shor's algorithm is a quantum computer algorithm for integer factorization. Informally, it solves the following problem: Given an integer N, find its prime factors. It was invented in 1994 by the American mathematician Peter Shor. Source: https://www.wikiwand.com/en/Shor%27s_algorithm Factorization problem can reduce to period finding problem. Consider the sequence of the powers of two 1, 2, 4, 8, 16, 32, 64, 128, ... Now, let's look at the same sequence 'mod 15': 1, 2, 4, 8, 1, 2, 4, 8, ... This is a modulo sequence that repeats every four numbers, that is, a periodic modulo sequence with a period of four. Reduction of factorization of N to the problem of finding the period of an integer 1 < x < N depends on the following result from number theory: The function F(a) = x^a mod N is a periodic function, where x is an integer coprime to N and a >= 0. Source: https://github.com/Qiskit/qiskit-community-tutorials/blob/b9266a4f9c1f6b3f4cf5117d9c443f9f1c3518cb/algorithms/shor_algorithm.ipynb ''' import math from qiskit import IBMQ, BasicAer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # We'll build circuit for a^x mod 15 for a = 2 qr = QuantumRegister(5) cr = ClassicalRegister(5) circuit = QuantumCircuit(qr, cr) # Initialize q[0] to |1> circuit.x(qr[0]) # Apply a**4 mod 15 circuit.h(qr[4]) circuit.h(qr[4]) circuit.measure(qr[4], cr[0]) circuit.reset(qr[4]) # Apply a**2 mod 15 circuit.h(qr[4]) circuit.cx(qr[4], qr[2]) circuit.cx(qr[4], qr[0]) circuit.u1(math.pi/2., qr[4]).c_if(cr, 1) circuit.u1(math.pi/2., qr[4]).c_if(cr, 1) circuit.h(qr[4]) circuit.measure(qr[4], cr[1]) circuit.reset(qr[4]) # Apply a mod 15 circuit.h(qr[4]) circuit.cswap(qr[4], qr[3], qr[2]) circuit.cswap(qr[4], qr[2], qr[1]) circuit.cswap(qr[4], qr[1], qr[0]) circuit.u1(3.*math.pi/4., qr[4]).c_if(cr, 3) circuit.u1(math.pi/2., qr[4]).c_if(cr, 2) circuit.u1(math.pi/4., qr[4]).c_if(cr, 1) circuit.h(qr[4]) circuit.measure(qr[4], cr[2]) # Run our circuit with local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(circuit, backend=backend, shots=shots).result() answer = results.get_counts() print(answer) # We see the measurements yield x = 0, 2, 4 and 6 with equal(ish) probability. # Using the continued fraction expansion for x/2^3, we note that only x = 2 and # 6 give the correct period r = 4, and thus the factors p = gcd(a^{r/2}+1,15) = 3 # and q = gcd(a^{r/2}-1,15) = 5.