repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/usamisaori/Grover
usamisaori
import math import numpy as np import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.pyplot import arrow from mpl_toolkits.axisartist.axislines import SubplotZero from matplotlib.patches import Arc %matplotlib inline import warnings warnings.filterwarnings('ignore') def get_line_plot(angle, *, linewidth=1, linestyle="-", color="black"): angle = math.radians(angle) return Line2D([0, math.cos(angle) * 0.92], [0, math.sin(angle) * 0.92], linewidth=linewidth, linestyle=linestyle, color=color) def get_angle_plot(line1, line2, *, offset=1, color=None, origin=(0, 0), len_x_axis = 1, len_y_axis = 1): l1xy = line1.get_xydata() # Angle between line1 and x-axis y1 = l1xy[1][1] - l1xy[0][1] x1 = l1xy[1][0] - l1xy[0][0] slope1 = y1 / float(x1) # Allows you to use this in different quadrants angle1 = math.degrees(math.atan2(y1, x1)) l2xy = line2.get_xydata() # Angle between line2 and x-axis y2 = l2xy[1][1] - l2xy[0][1] x2 = l2xy[1][0] - l2xy[0][0] slope2 = y2 / float(x2) angle2 = math.degrees(math.atan2(y2, x2)) theta1 = min(angle1, angle2) theta2 = max(angle1, angle2) angle = theta2 - theta1 if angle > 180: angle = 360 - angle theta1 = 360 + theta1 if theta1 > theta2: theta1, theta2 = theta2, theta1 if color is None: color = line1.get_color() # Uses the color of line 1 if color parameter is not passed. return Arc(origin, len_x_axis*offset, len_y_axis*offset, 0, theta1, theta2, color=color, label = r'${:.4}^\circ$'.format(float(angle))) def get_angle_text(angle_plot): angle = angle_plot.get_label() # angle = r'${:.4}^\circ$'.format(angle) # Display angle upto 2 decimal places # Get the vertices of the angle arc vertices = angle_plot.get_verts() # Get the midpoint of the arc extremes x_width = (vertices[0][0] + vertices[-1][0]) / 2.0 y_width = (vertices[0][1] + vertices[-1][1]) / 2.0 separation_radius = max(x_width / 2.0, y_width / 2.0) return [x_width + separation_radius, y_width + separation_radius, angle] class AnglePoltter: def __init__(self): self.lines = [] self.arcs = [] self.angles = [] def add_line(self, angle, *, linewidth=1, linestyle="-", color="black"): line = get_line_plot(angle, linewidth=linewidth, linestyle=linestyle, color=color) self.lines.append( [ line.get_xdata()[0], line.get_ydata()[0], line.get_xdata()[1], line.get_ydata()[1], linewidth, linestyle, color ] ) return line def add_angle(self, line1, line2, *, text=False, **kwargs): angle = get_angle_plot(line1, line2, **kwargs) self.arcs.append(angle) if text: self.angles.append(get_angle_text(angle)) def plot(self, *, title, fontsize=18): fig = plt.figure() ax = SubplotZero(fig, 1, 1, 1) # draw a circle theta = np.linspace(0, 2 * np.pi, 200) x = np.cos(theta) y = np.sin(theta) ax.plot(x, y, color="#CCCCCC", linewidth=1.5) fig.add_subplot(ax) for direction in ["left", "right", "bottom", "top"]: # hides borders ax.axis[direction].set_visible(False) for direction in ["xzero", "yzero"]: # adds arrows at the ends of each axis ax.axis[direction].set_axisline_style('-|>') # adds X and Y-axis from the origin ax.axis[direction].set_visible(True) for line in self.lines: if line[4] != 0: ax.arrow(line[0], line[1], line[2], line[3], head_width=0.06, head_length=0.06, linewidth=line[4], linestyle=line[5], color=line[6]) for arc in self.arcs: ax.add_patch(arc) for angle in self.angles: ax.text(*angle) if title != None: fig.suptitle(title, fontsize=fontsize) plt.axis([-1.8, 1.8, -1.35, 1.35]) plt.grid() plt.legend() return ax plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(330, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") x = math.cos(math.radians(30)) y = math.sin(math.radians(30)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(330, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(90, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration") x = math.cos(math.radians(30)) y = math.sin(math.radians(30)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, 0], [-y, 1], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(330, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(90, linewidth=1.5, color="#99CCFF") line_4 = plotter.add_line(-90, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, x, offset=0.8) ax = plotter.plot(title="Apply Oracle(second iteration)") x = math.cos(math.radians(30)) y = math.sin(math.radians(30)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, 0], [-y, 1], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(330, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(90, linewidth=1.5, color="#99CCFF") line_4 = plotter.add_line(-90, linewidth=1.5, color="#FF9900") line_5 = plotter.add_line(150, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, x, offset=0.8) plotter.add_angle(line_5, line_3, offset=0.6) ax = plotter.plot(title="Apply Oracle(second iteration)") x = math.cos(math.radians(30)) y = math.sin(math.radians(30)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, 0], [-y, 1], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x, 0], [y, -1], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) theta = math.degrees(math.asin(1/(8 ** 0.5))) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(-theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") x = math.cos(math.radians(theta)) y = math.sin(math.radians(theta)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(-theta, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(3 * theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration") x = math.cos(math.radians(theta)) y = math.sin(math.radians(theta)) x2 = math.cos(math.radians(3 * theta)) y2 = math.sin(math.radians(3 * theta)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x2], [-y, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(-theta, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(3 * theta, linewidth=1.5, color="#99CCFF") line_4 = plotter.add_line(5 * theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, line_3, offset=0.6) ax = plotter.plot(title="After two Grover iteration") x = math.cos(math.radians(theta)) y = math.sin(math.radians(theta)) x2 = math.cos(math.radians(3 * theta)) y2 = math.sin(math.radians(3 * theta)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x2], [-y, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(-theta, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(3 * theta, linewidth=1.5, color="#99CCFF") line_4 = plotter.add_line(5 * theta, linewidth=1.5, color="#FF9900") line_5 = plotter.add_line(7 * theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, line_3, offset=0.6) plotter.add_angle(line_5, line_4, offset=0.6) ax = plotter.plot(title="After two Grover iteration") x = math.cos(math.radians(theta)) y = math.sin(math.radians(theta)) x2 = math.cos(math.radians(3 * theta)) y2 = math.sin(math.radians(3 * theta)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x2], [-y, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CC33") line_2 = plotter.add_line(-45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") x = math.cos(math.radians(45)) y = math.sin(math.radians(45)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CC33") line_2 = plotter.add_line(-45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_3 = plotter.add_line(3 * 45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration") x = math.cos(math.radians(45)) y = math.sin(math.radians(45)) x2 = math.cos(math.radians(3 * 45)) y2 = math.sin(math.radians(3 * 45)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CC33") line_2 = plotter.add_line(-45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_3 = plotter.add_line(3 * 45, linewidth=1.5, color="#FF9900") line_4 = plotter.add_line(5 * 45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, line_3, offset=0.6) ax = plotter.plot(title="After two Grover iteration") x = math.cos(math.radians(45)) y = math.sin(math.radians(45)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_s = plotter.add_line(40, linewidth=2, color="#6666CC") line_phi = plotter.add_line(25, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_s, x, offset=0.6) plotter.add_angle(line_phi, x, offset=0.4) plotter.plot(title="Grover reflections - initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_s = plotter.add_line(40, linewidth=2, color="#6666CC") line_phi = plotter.add_line(25, linewidth=1.5, linestyle=":", color="#99CC33") line_O_phi = plotter.add_line(335, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_s, x, offset=0.6) plotter.add_angle(line_phi, x, offset=0.4) plotter.add_angle(line_O_phi, x, offset=0.4) ax = plotter.plot(title="Grover reflections - reflection 1") x = math.cos(math.radians(25)) y = math.sin(math.radians(25)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_s = plotter.add_line(40, linewidth=2, color="#6666CC") line_phi = plotter.add_line(25, linewidth=1.5, linestyle=":", color="#99CC33") line_O_phi = plotter.add_line(335, linewidth=1.5, linestyle=":", color="#99CCFF") line_RO_phi = plotter.add_line(285, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_s, x, offset=0.8) plotter.add_angle(line_phi, x, offset=0.6) plotter.add_angle(line_O_phi, x, offset=0.6) plotter.add_angle(line_RO_phi, x, offset=0.4) ax = plotter.plot(title="Grover reflections - reflection 2") x1 = math.cos(math.radians(25)) y1 = math.sin(math.radians(25)) ax.add_line(Line2D([x1, x1], [-y1, y1], linewidth=1.5, linestyle="--", color="#CCCCCC")) x2 = math.cos(math.radians(-75)) y2 = math.sin(math.radians(-75)) ax.add_line(Line2D([x1, x2], [-y1, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) x3 = math.cos(math.radians(130)) * 1.5 y3 = math.sin(math.radians(130)) * 1.5 ax.add_line(Line2D([x3, -x3], [y3, -y3], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_s = plotter.add_line(40, linewidth=2, color="#6666CC") line_phi = plotter.add_line(25, linewidth=1.5, linestyle=":", color="#99CC33") line_O_phi = plotter.add_line(335, linewidth=1.5, linestyle=":", color="#99CCFF") line_RO_phi = plotter.add_line(285, linewidth=1.5, linestyle=":", color="#FF9900") line_mRO_phi = plotter.add_line(105, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_s, x, offset=0.8) plotter.add_angle(line_phi, x, offset=0.6) plotter.add_angle(line_O_phi, x, offset=0.6) plotter.add_angle(line_RO_phi, x, offset=0.4) plotter.add_angle(line_mRO_phi, line_phi, offset=1) ax = plotter.plot(title="Grover reflections - reflection3") x1 = math.cos(math.radians(25)) y1 = math.sin(math.radians(25)) ax.add_line(Line2D([x1, x1], [-y1, y1], linewidth=1.5, linestyle="--", color="#CCCCCC")) x2 = math.cos(math.radians(-75)) y2 = math.sin(math.radians(-75)) ax.add_line(Line2D([x1, x2], [-y1, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) x3 = math.cos(math.radians(130)) * 1.5 y3 = math.sin(math.radians(130)) * 1.5 ax.add_line(Line2D([x3, -x3], [y3, -y3], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_2 = plotter.add_line(-2, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_2 = plotter.add_line(-2, linewidth=1.5, linestyle="-.", color="#FF9900") line_3 = plotter.add_line(92, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_2 = plotter.add_line(40, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_2 = plotter.add_line(40, linewidth=1.5, linestyle="-.", color="#FF9900") line_3 = plotter.add_line(50, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration")
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from qiskit.quantum_info import DensityMatrix, Statevector, Operator def getDensityMatrix(circuit): return DensityMatrix(circuit).data from functools import reduce Dag = lambda matrix: matrix.conj().T Kron = lambda *matrices: reduce(np.kron, matrices) def pm(matrix): for row in range(len(matrix)): for col in range (len(matrix[row])): print("{:.3f}".format(matrix[row][col]), end = " ") print() def initCircuit(n): circuit = QuantumCircuit(n, n) for i in range(n): circuit.h(i) circuit.barrier() return circuit inputCircuit_2q = initCircuit(2) inputCircuit_2q.draw(output='mpl') def createEvenOracle(): circuit = QuantumCircuit(2, 2) circuit.x(0) circuit.x(1) circuit.cz(0, 1) circuit.x(1) circuit.cz(0, 1) circuit.x(0) circuit.barrier() return circuit evenOracle = createEvenOracle() evenOracle.draw(output='mpl') Operator(evenOracle).data # find 0 and 2 def createR_2q(): circuit = QuantumCircuit(2, 2) circuit.z(0) circuit.z(1) circuit.cz(0, 1) return circuit def createDiffuser_2q(): circuit = QuantumCircuit(2, 2) circuit.h(0) circuit.h(1) circuit = circuit.compose(createR_2q()) circuit.h(0) circuit.h(1) circuit.barrier() return circuit diffuserCircuit_2q = createDiffuser_2q() diffuserCircuit_2q.draw(output='mpl') grover_even = initCircuit(2).compose(createEvenOracle()).compose(createDiffuser_2q()) grover_even.draw(output='mpl') grover_even.measure([0, 1], [0, 1]) job = execute(grover_even, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_even) print(counts) plot_histogram(counts, figsize=(5, 5), color="#66CCCC", title="origin grover - find evens")
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import math import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') state_0 = np.array([1, 0]) state_1 = np.array([0, 1]) from functools import reduce Dag = lambda matrix: matrix.conj().T Kron = lambda *matrices: reduce(np.kron, matrices) def getMeasurements(n): psi_0 = np.array([1.0, 0.0]) psi_1 = np.array([0.0, 1.0]) I = np.eye(2) M_0 = psi_0.reshape([2, 1]) @ psi_0.reshape([1, 2]).conj() M_1 = psi_1.reshape([2, 1]) @ psi_1.reshape([1, 2]).conj() M = [M_0, M_1] measurements = [] for i in range(2 ** n): binnum = bin(i)[2:].rjust(n, '0') temp = [] indices = map(lambda x: int(x), list(binnum)) for index in indices: temp.append(M[index]) measurements.append( Kron(*temp) ) return measurements def measure(M, state): return Dag(state) @ Dag(M) @ M @ state initState = Kron( state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0 ) H = np.array([[1,1], [1,-1]]) / (np.sqrt(2)) H_8 = Kron(H, H, H, H, H, H, H, H) H_9 = Kron(H, H, H, H, H, H, H, H, H) N = 2 ** 9 def createTargetState(n): states = [] s = bin(n)[2:].rjust(9, "0") for i in list(s): if i == '0': states.append(state_0) else: states.append(state_1) return Kron(*states) def createTargetStates(p): n = math.floor(p * N) state = createTargetState(0) for i in range(1, n): state = state + createTargetState(i) return state / (np.sqrt(n)) target_states = [ [createTargetStates(0.05), 0.05], # 0.05 [createTargetStates(0.1), 0.1], # 0.1 [createTargetStates(0.15), 0.15], # 0.15 [createTargetStates(0.2), 0.2], # 0.2 [createTargetStates(0.25), 0.25], # 0.25 [createTargetStates(0.3), 0.3], # 0.3 [createTargetStates(0.35), 0.35], # 0.35 [createTargetStates(0.4), 0.4], # 0.4 [createTargetStates(0.45), 0.45], # 0.45 [createTargetStates(0.5), 0.5], # 0.5 [createTargetStates(0.55), 0.55], # 0.55 [createTargetStates(0.6), 0.6], # 0.6 [createTargetStates(0.65), 0.65], # 0.65 [createTargetStates(0.7), 0.7], # 0.7 [createTargetStates(0.75), 0.75], # 0.75 [createTargetStates(0.8), 0.8], # 0.8 [createTargetStates(0.85), 0.85], # 0.85 [createTargetStates(0.9), 0.9], # 0.9 [createTargetStates(0.95), 0.95], # 0.95 [createTargetStates(1), 1] # 1 ] def createOriginalOracle(target_state): O = np.eye(N) - 2 * ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createOriginalDiffuser(): R = 2 * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) - np.eye(N) return H_9 @ R @ Dag(H_9) def createHalfPIOracle(target_state): alpha = np.pi / 2 alpha_phase = np.exp(alpha * 1j) # Oracle = I - (1 - e^(αi))|target><target| O = np.eye(N) - (1 - alpha_phase) * \ ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createHalfPIDiffuser(): beta = -np.pi / 2 beta_phase = np.exp(beta * 1j) # R = (1 - e^(βi))|0><0| + e^(βi)I R = (1 - beta_phase) * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) + beta_phase * np.eye(N) return H_9 @ R @ Dag(H_9) def createOneTenthPIOracle(target_state): alpha = np.pi / 10 alpha_phase = np.exp(alpha * 1j) # Oracle = I - (1 - e^(αi))|target><target| O = np.eye(N) - (1 - alpha_phase) * \ ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createOneTenthPIDiffuser(): beta = -np.pi / 10 beta_phase = np.exp(beta * 1j) # R = (1 - e^(βi))|0><0| + e^(βi)I R = (1 - beta_phase) * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) + beta_phase * np.eye(N) return H_9 @ R @ Dag(H_9) def createYouneOracle(n): O = np.eye(N) for i in range(n): O[i][i] = 0 O[i][i + N // 2] = 1 O[i + N // 2][i + N // 2] = 0 O[i + N // 2][i] = 1 return O def createYouneDiffuser(): R = (2 * Dag(initState).reshape(N, 1) @ initState.reshape(1, N) - np.eye(N)) return Kron(np.eye(2), H_8) @ R @ Dag(Kron(np.eye(2), H_8)) measurements = getMeasurements(9) # test: one grover iteration x_o = [] y_o = [] for target_state, p in target_states: n = math.floor(p * N) O = createOriginalOracle(target_state) diff = createOriginalDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_o.append(p) y_o.append(probability) plt.title("Original Grover - apply one iterator") plt.scatter(x_o, y_o, color="#66CCCC") # test: best probability x_o_best = [] y_o_best = [] for target_state, p in target_states: n = math.floor(p * N) O = createOriginalOracle(target_state) diff = createOriginalDiffuser() final_state = H_9 @ initState theta = math.degrees( math.asin(math.sqrt(p)) ) k_tilde = math.floor( 180 / (4 * theta) - 0.5 ) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) final_state = diff @ O @ final_state probability2 = 0.0 for i in range(N): if i < n: probability2 = probability2 + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_o_best.append(p) y_o_best.append(max(probability, probability2)) plt.title("Original Grover - best Probability") x = np.arange(-0,1,0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.ylim(0, 1.05) plt.scatter(x_o_best, y_o_best, color="#66CCCC") # test: one grover iteration x_half_pi = [] y_half_pi= [] for target_state, p in target_states: n = math.floor(p * N) O = createHalfPIOracle(target_state) diff = createHalfPIDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_half_pi.append(p) y_half_pi.append(probability) plt.title("pi/2 Grover - apply one iterator") plt.scatter(x_half_pi, y_half_pi, color="#66CCCC") # one grover iteration - pi/2 vs origin fig, ax = plt.subplots() plt.title("Apply one iteration") plt.axvline(1/3, linestyle='--', color="#FFCCCC", label="t/N = 1/3") plt.axhline(0.925, linestyle='--', color="#FFCC00", label="P=0.925") plt.scatter(x_o, y_o, color="#66CCCC", label="Original Grover") plt.scatter(x_half_pi, y_half_pi, color="#FF6666", label="pi/2 phase based Grover") ax.legend() # test: one grover iteration x_ot_pi = [] y_ot_pi= [] for target_state, p in target_states: n = math.floor(p * N) O = createOneTenthPIOracle(target_state) diff = createOneTenthPIDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_ot_pi.append(p) y_ot_pi.append(probability) plt.title("0.1pi Grover - apply one iteration") plt.scatter(x_ot_pi, y_ot_pi, color="#66CCCC") # test: best probability x_ot_best = [] y_ot_best = [] diff = createOneTenthPIDiffuser() for target_state, p in target_states: n = math.floor(p * N) O = createOneTenthPIOracle(target_state) # diff = createOneTenthPIDiffuser() final_state = H_9 @ initState p_best = 0.0 k_tilde = math.floor( 5 * np.sqrt(N) ) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) p_best = max(p_best, probability) # print(f'p={p}, probability={probability}') x_ot_best.append(p) y_ot_best.append(p_best) plt.title("0.1pi Grover - best Probability") plt.ylim(0, 1) plt.scatter(x_ot_best, y_ot_best, color="#66CCCC") # best probability - 0.1pi vs origin fig, ax = plt.subplots() plt.title("Best Probability") x = np.arange(-0,1,0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.ylim(0, 1.05) plt.scatter(x_o_best, y_o_best, color="#66CCCC", label="Original Grover") plt.scatter(x_ot_best, y_ot_best, color="#FF6666", label="0.1pi phase based Grover") ax.legend() # test: best probability x_y_best = [] y_y_best = [] for _, p in target_states: n = math.floor(p * (N // 2)) O = createYouneOracle(n) diff = createYouneDiffuser() final_state = Kron( np.eye(2), H_8) @ initState p_best = 0.0 k_tilde = math.floor(np.pi / (2 * np.sqrt(2)) * np.sqrt((N // 2) / n)) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N // 2): if i < n: probability = probability + measure(measurements[i], final_state) + measure(measurements[i + N // 2], final_state) # print(f'p={p}, probability={probability}') x_y_best.append(p) y_y_best.append(probability) fig, ax = plt.subplots() plt.title("Best Probability") x = np.arange(-0, 1, 0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.axhline(0.8472, linestyle='--', color="#99CCFF", label="P=0.8472") plt.axvline(0.308, linestyle='--', color="#FFCCCC", label="P=0.308") plt.ylim(0, 1.05) plt.scatter(x_y_best, y_y_best, color="#FF6666", label="Youne") plt.scatter(x_o_best, y_o_best, color="#66CCCC", label="Original Grover") ax.legend()
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram from qiskit.quantum_info import Operator import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # https://arxiv.org/pdf/quant-ph/9605034.pdf def initCircuit(n): circuit = QuantumCircuit(n, n) for i in range(n): circuit.h(i) circuit.barrier() return circuit inputCircuit_8q = initCircuit(8) inputCircuit_8q.draw(output='mpl') def createOracle_255(): circuit = QuantumCircuit(8, 8) circuit.h(7) circuit.mcx(list(range(7)), 7) circuit.h(7) circuit.barrier() return circuit oracleCircuit_255 = createOracle_255() oracleCircuit_255.draw(output='mpl') Operator(oracleCircuit_255).data for index, row in enumerate(Operator(oracleCircuit_255).data): if abs(row[index] - -1) < 1e-6: print(index) def createR_8q(): circuit = QuantumCircuit(8, 8) circuit.x(7) circuit.x(6) circuit.x(5) circuit.x(4) circuit.x(3) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(7) circuit.mcx(list(range(7)), 7) circuit.barrier(0) circuit.barrier(1) circuit.barrier(2) circuit.barrier(3) circuit.barrier(4) circuit.barrier(5) circuit.barrier(6) circuit.h(7) circuit.x(2) circuit.x(0) circuit.x(1) circuit.x(5) circuit.x(4) circuit.x(3) circuit.x(7) circuit.x(6) return circuit R_8q = createR_8q() R_8q.draw(output='mpl') def createDiffuser_8q(): circuit = QuantumCircuit(8, 8) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.h(4) circuit.h(5) circuit.h(6) circuit.h(7) circuit = circuit.compose(createR_8q()) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.h(4) circuit.h(5) circuit.h(6) circuit.h(7) circuit.barrier() return circuit diffuserCircuit_8q = createDiffuser_8q() diffuserCircuit_8q.draw(output='mpl') def createGroverIteration(oracle, diffuser): return oracle.compose(diffuser) groverIteration_8q = createGroverIteration(createOracle_255(), createDiffuser_8q()) groverIteration_8q.draw(output='mpl') fullCircuit_8q = initCircuit(8).compose(groverIteration_8q) fullCircuit_8q.draw(output='mpl') import math degree = math.degrees( math.asin(1 / np.sqrt(256)) ) degree for k in range(1, 15): print(f'k = {k}: { math.sin(math.radians( (2 * k+1) * degree) ) ** 2 }') def groverMeasurements(k): circuit = initCircuit(8) for i in range(k): circuit = circuit.compose(groverIteration_8q.copy()) circuit.measure(list(range(8)), list(range(8))) job = execute(circuit, simulator, shots = 1) results = job.result() counts = results.get_counts(circuit) return list(counts)[0] from random import randrange def solutionFinding(limit): m = 1 lam = 6 / 5 count = 0 # iteration times while count <= limit * (9/4): if m > 1: j = randrange(0, math.floor(m)) if j != 0: count += j answer = groverMeasurements(j) if answer == '11111111': # print(f'Find! - total times: {count}') return count, True m = min(lam * m, limit) # print(f'Not find! - total times: {count}') return count, False times = 0 best = 1000 worst = 0 success = 0 for i in range(1000): time, flag = solutionFinding(np.sqrt(256)) # √N times += time best = min(best, time) worst = max(worst, time) if flag: success += 1 print(f'total test times: {1000}') print('--------------------------') print(f'Average run times: {times / 1000}') print(f'best run times: {best}') print(f'worst run times: {worst}') print(f'Success rate: {success / 1000 * 100:.2f}%')
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram from qiskit.quantum_info import Operator import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') def createYouneInitCircuit(): circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.h(1) circuit.barrier() return circuit youneInitCircuit = createYouneInitCircuit() youneInitCircuit.draw(output='mpl') def createYouneOracle(): circuit = QuantumCircuit(3, 2) circuit.x(0) circuit.x(1) circuit.ccx(0, 1, 2) circuit.x(0) circuit.x(1) circuit.barrier() circuit.x(0) circuit.ccx(0, 1, 2) circuit.x(0) circuit.barrier() return circuit youneOracle = createYouneOracle() youneOracle.draw(output='mpl') def createYouneDiffuser(): circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.h(1) circuit.barrier(2) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(2) circuit.ccx(0, 1, 2) circuit.barrier(0) circuit.barrier(1) circuit.h(2) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(0) circuit.h(1) # circuit.h(2) circuit.barrier() return circuit youneDiffuser = createYouneDiffuser() youneDiffuser.draw(output='mpl') youneGroverIteration = createYouneOracle().compose(createYouneDiffuser()) grover_youne = createYouneInitCircuit().compose(youneGroverIteration.copy()) grover_youne.draw(output='mpl') grover_youne.measure([0, 1], [0, 1]) job = execute(grover_youne, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_youne) print(counts) plot_histogram(counts, figsize=(4, 5), color="#0099CC", title="youne grover - find evens") def createYouneOracle2(): circuit = QuantumCircuit(3, 2) circuit.x(0) circuit.cx(0, 2) circuit.x(0) circuit.barrier() return circuit youneOracle2 = createYouneOracle2() youneOracle2.draw(output='mpl') # 0 => 4 2 => 6 Operator(youneOracle2).data youneGroverIteration2 = createYouneOracle2().compose(createYouneDiffuser()) grover_youne2 = createYouneInitCircuit().compose(youneGroverIteration2.copy()) grover_youne2.draw(output='mpl') grover_youne2.measure([0, 1], [0, 1]) job = execute(grover_youne2, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_youne2) print(counts) plot_histogram(counts, figsize=(4, 5), color="#66CCFF", title="youne grover(using another Oracle) - find evens")
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram from qiskit.quantum_info import Operator import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # https://towardsdatascience.com/behind-oracles-grovers-algorithm-amplitude-amplification-46b928b46f1e def createSATInitCircuit(var, clause): # input + workspace(clause) + checker(1) circuit = QuantumCircuit(var + clause + 1, var) for i in range(var): circuit.h(i) circuit.barrier() return circuit SATInitCircuit = createSATInitCircuit(4, 3) SATInitCircuit.draw(output='mpl') def createSATOracle(var, clause): circuit = QuantumCircuit(var + clause + 1, var) # (a ∧ b ∧ ¬c) circuit.x(2) circuit.mcx([0, 1, 2], 4) circuit.x(2) circuit.barrier() # (¬b ∧d ) circuit.x(1) circuit.mcx([1, 3], 5) circuit.x(1) circuit.barrier() # ¬d circuit.x(3) circuit.cx(3, 6) circuit.x(3) circuit.barrier() # (a ∧ b ∧ ¬c) ∨ ¬(¬b ∧d ) ∨ ¬d circuit.x(5) circuit.mcx([4, 5, 6], 7) circuit.x(5) circuit.barrier() # uncomputation # ¬d circuit.x(3) circuit.cx(3, 6) circuit.x(3) circuit.barrier() # (¬b ∧d ) circuit.x(1) circuit.mcx([1, 3], 5) circuit.x(1) circuit.barrier() # (a ∧ b ∧ ¬c) circuit.x(2) circuit.mcx([0, 1, 2], 4) circuit.x(2) circuit.barrier() return circuit SATOracleCircuit = createSATOracle(4, 3) SATOracleCircuit.draw(output='mpl') def createSATDiffuser(var, clause): circuit = QuantumCircuit(var + clause + 1, var) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.x(0) circuit.x(1) circuit.x(2) circuit.x(3) circuit.mcx([0, 1, 2, 3], var + clause) circuit.x(0) circuit.x(1) circuit.x(2) circuit.x(3) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) return circuit SATDiffuserCircuit = createSATDiffuser(4, 3) SATDiffuserCircuit.draw(output='mpl') SATCircuit = createSATInitCircuit(4, 3).compose(createSATOracle(4, 3)).compose(createSATDiffuser(4, 3)) SATCircuit.draw(output='mpl') SATCircuit.measure([0, 1, 2, 3], [0, 1, 2, 3]) job = execute(SATCircuit, simulator, shots = 10000) results = job.result() counts = results.get_counts(SATCircuit) print(counts) plot_histogram(counts, figsize=(12, 5), color="#CCCCFF", title="SAT - solving (a ∧ b ∧ ¬c) ∨ ¬(¬b ∧d ) ∨ ¬d, k = 1") SATIteration = Operator(createSATOracle(4, 3).compose(createSATDiffuser(4, 3))) SATCircuit2 = createSATInitCircuit(4, 3) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.draw(output='mpl') SATCircuit2.measure([0, 1, 2, 3], [0, 1, 2, 3]) job = execute(SATCircuit2, simulator, shots = 10000) results = job.result() counts = results.get_counts(SATCircuit2) print(counts) plot_histogram(counts, figsize=(12, 5), color="#6666FF", title="SAT - solving (a ∧ b ∧ ¬c) ∨ ¬(¬b ∧d ) ∨ ¬d, k = 3") import math math.degrees( math.asin(1 / 4)) for k in range(1, 5): print(f'k = {k}: { math.sin(math.radians( (2 * k+1) * 14.47) ) ** 2 }')
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from qiskit.quantum_info import DensityMatrix, Statevector, Operator def getDensityMatrix(circuit): return DensityMatrix(circuit).data state_0 = np.array([1, 0]) # |0> state_1 = np.array([0, 1]) # |1> from functools import reduce Dag = lambda matrix: matrix.conj().T # Dag(M) = M† Kron = lambda *matrices: reduce(np.kron, matrices) def pm(matrix): for row in range(len(matrix)): for col in range (len(matrix[row])): print("{:.3f}".format(matrix[row][col]), end = " ") print() # https://qiskit.org/textbook/ch-algorithms/grover.html def initCircuit(n): circuit = QuantumCircuit(n, n) for i in range(n): circuit.h(i) circuit.barrier() return circuit inputCircuit_2q = initCircuit(2) inputCircuit_2q.draw(output='mpl') def createOracle_3(): circuit = QuantumCircuit(2, 2) # Oracle for find 3 # U_f circuit.cz(0, 1) circuit.barrier() return circuit oracleCircuit_3 = createOracle_3() oracleCircuit_3.draw(output='mpl') O_3 = Operator(oracleCircuit_3).data pm(O_3) # all possible states state_00 = Kron(state_0, state_0) state_01 = Kron(state_0, state_1) state_10 = Kron(state_1, state_0) state_11 = Kron(state_1, state_1) print("O|00>", O_3 @ state_00) print("O|01>", O_3 @ state_01) print("O|10>", O_3 @ state_10) print("O|11>", O_3 @ state_11) # flip phase # H R H, where R = 2|0><0| - I def createR_2q(): circuit = QuantumCircuit(2, 2) circuit.z(0) circuit.z(1) circuit.cz(0, 1) return circuit R_2q = createR_2q() R_2q.draw(output='mpl') R_2q = Operator(R_2q).data pm(R_2q) # flip phase(no work on zero states) => Conditional Phase Shift gate print("RO|00>", R_2q @ O_3 @ state_00) # zero state => would not flip print("RO|01>", R_2q @ O_3 @ state_01) print("RO|10>", R_2q @ O_3 @ state_10) print("RO|11>", R_2q @ O_3 @ state_11) # H R H def createDiffuser_2q(): circuit = QuantumCircuit(2, 2) circuit.h(0) circuit.h(1) circuit = circuit.compose(createR_2q()) circuit.h(0) circuit.h(1) circuit.barrier() return circuit diffuserCircuit_2q = createDiffuser_2q() diffuserCircuit_2q.draw(output='mpl') diff_2q = Operator(diffuserCircuit_2q).data pm(diff_2q) DB = 0.5 * state_00 + 0.5 * state_01 + 0.5 * state_10 + 0.5 * state_11 print("DO|DB>", diff_2q @ O_3 @ DB) def createGroverIteration(oracle, diffuser): return oracle.compose(diffuser) groverIteration_2q = createGroverIteration(createOracle_3(), createDiffuser_2q()) groverIteration_2q.draw(output='mpl') groverIteration_2q = createGroverIteration(createOracle_3(), createDiffuser_2q()) grover_2q_1 = initCircuit(2).compose(groverIteration_2q.copy()) grover_2q_1.draw(output='mpl') grover_2q_1.measure([0, 1], [0, 1]) job = execute(grover_2q_1, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_2q_1) print(counts) plot_histogram(counts, figsize=(1, 5), color="#CC3333", title="one iteration - find 3") grover_2q_2 = initCircuit(2).compose(groverIteration_2q.copy()).compose(groverIteration_2q.copy()) grover_2q_2.draw(output='mpl') grover_2q_2.measure([0, 1], [0, 1]) job = execute(grover_2q_2, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_2q_2) print(counts) plot_histogram(counts, figsize=(7, 5), color="#FF9999", title="two iterations - find 3")
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from qiskit.quantum_info import DensityMatrix, Operator # Quantum circuit to unitary matrix def getDensityMatrix(circuit): return DensityMatrix(circuit).data state_0 = np.array([1, 0]) # |0> state_1 = np.array([0, 1]) # |1> from functools import reduce Dag = lambda matrix: matrix.conj().T # Dag(M) = M† Kron = lambda *matrices: reduce(np.kron, matrices) # Kron(state_0, state_0) is |00> def pm(matrix): for row in range(len(matrix)): for col in range (len(matrix[row])): print("{:.3f}".format(matrix[row][col]), end = " ") print() # https://qiskit.org/textbook/ch-algorithms/grover.html def initCircuit(n): circuit = QuantumCircuit(n, n) for i in range(n): circuit.h(i) circuit.barrier() return circuit inputCircuit_3q = initCircuit(3) inputCircuit_3q.draw(output='mpl') def createOracle_6(): circuit = QuantumCircuit(3, 3) # Oracle for find 6 # U_f circuit.x(0) circuit.h(2) circuit.ccx(0, 1, 2) circuit.h(2) circuit.x(0) circuit.barrier() return circuit oracleCircuit_6 = createOracle_6() oracleCircuit_6.draw(output='mpl') # where the entry that correspond to the marked item will have a negative phase pm(Operator(oracleCircuit_6).data) Operator(oracleCircuit_6).data # H R H, where R = 2|0><0| - I def createR_3q(): circuit = QuantumCircuit(3, 3) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(2) circuit.ccx(0, 1, 2) circuit.barrier(0) circuit.barrier(1) circuit.h(2) circuit.x(2) circuit.x(0) circuit.x(1) return circuit R_3q = createR_3q() R_3q.draw(output='mpl') pm(Operator(R_3q).data) print('|000>', Kron(state_0, state_0, state_0)) print('R|000>',Operator(R_3q).data @ Kron(state_0, state_0, state_0) ) print('|010>', Kron(state_0, state_1, state_0)) print('R|010>',Operator(R_3q).data @ Kron(state_0, state_1, state_0) ) print('|110>', Kron(state_1, state_1, state_0)) print('R|110>',Operator(R_3q).data @ Kron(state_1, state_1, state_0) ) # H R H def createDiffuser_3q(): circuit = QuantumCircuit(3, 3) circuit.h(0) circuit.h(1) circuit.h(2) circuit = circuit.compose(createR_3q()) circuit.h(0) circuit.h(1) circuit.h(2) circuit.barrier() return circuit diffuserCircuit_3q = createDiffuser_3q() diffuserCircuit_3q.draw(output='mpl') pm(Operator(diffuserCircuit_3q).data) def createGroverIteration(oracle, diffuser): return oracle.compose(diffuser) groverIteration_3q = createGroverIteration(createOracle_6(), createDiffuser_3q()) groverIteration_3q.draw(output='mpl') groverIteration_3q = createGroverIteration(createOracle_6(), createDiffuser_3q()) inputCircuit_3q = initCircuit(3) inputCircuit_3q.draw(output='mpl') inputCircuit_3q.measure([0, 1, 2], [0, 1, 2]) job = execute(inputCircuit_3q, simulator, shots = 10000) results = job.result() counts = results.get_counts(inputCircuit_3q) print(counts) plot_histogram(counts, figsize=(10, 5), color="#FFFFCC", title="superposition state - 3 qubits") grover_3q_1 = initCircuit(3).compose(groverIteration_3q.copy()) grover_3q_1.draw(output='mpl') grover_3q_1.measure([0, 1, 2], [0, 1, 2]) job = execute(grover_3q_1, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_3q_1) print(counts) plot_histogram(counts, figsize=(10, 5), color="#FFBB00", title="one iteration - find 6") grover_3q_2 = initCircuit(3).compose(groverIteration_3q.copy()).compose(groverIteration_3q.copy()) # grover_3q_2.draw(output='mpl') grover_3q_2.measure([0, 1, 2], [0, 1, 2]) job = execute(grover_3q_2, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_3q_2) print(counts) plot_histogram(counts, figsize=(10, 5), color="#FF8822", title="two iteration - find 6") grover_3q_3 = initCircuit(3).compose(groverIteration_3q.copy()).compose(groverIteration_3q.copy()).compose(groverIteration_3q.copy()) # grover_3q_3.draw(output='mpl') grover_3q_3.measure([0, 1, 2], [0, 1, 2]) job = execute(grover_3q_3, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_3q_3) print(counts) plot_histogram(counts, figsize=(10, 5), color="#FFFF3F", title="three iteration - find 6")
https://github.com/usamisaori/Grover
usamisaori
import math import numpy as np import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.pyplot import arrow from mpl_toolkits.axisartist.axislines import SubplotZero from matplotlib.patches import Arc %matplotlib inline import warnings warnings.filterwarnings('ignore') def get_line_plot(angle, *, linewidth=1, linestyle="-", color="black"): angle = math.radians(angle) return Line2D([0, math.cos(angle) * 0.92], [0, math.sin(angle) * 0.92], linewidth=linewidth, linestyle=linestyle, color=color) def get_angle_plot(line1, line2, *, offset=1, color=None, origin=(0, 0), len_x_axis = 1, len_y_axis = 1): l1xy = line1.get_xydata() # Angle between line1 and x-axis y1 = l1xy[1][1] - l1xy[0][1] x1 = l1xy[1][0] - l1xy[0][0] slope1 = y1 / float(x1) # Allows you to use this in different quadrants angle1 = math.degrees(math.atan2(y1, x1)) l2xy = line2.get_xydata() # Angle between line2 and x-axis y2 = l2xy[1][1] - l2xy[0][1] x2 = l2xy[1][0] - l2xy[0][0] slope2 = y2 / float(x2) angle2 = math.degrees(math.atan2(y2, x2)) theta1 = min(angle1, angle2) theta2 = max(angle1, angle2) angle = theta2 - theta1 if angle > 180: angle = 360 - angle theta1 = 360 + theta1 if theta1 > theta2: theta1, theta2 = theta2, theta1 if color is None: color = line1.get_color() # Uses the color of line 1 if color parameter is not passed. return Arc(origin, len_x_axis*offset, len_y_axis*offset, 0, theta1, theta2, color=color, label = r'${:.4}^\circ$'.format(float(angle))) def get_angle_text(angle_plot): angle = angle_plot.get_label() # angle = r'${:.4}^\circ$'.format(angle) # Display angle upto 2 decimal places # Get the vertices of the angle arc vertices = angle_plot.get_verts() # Get the midpoint of the arc extremes x_width = (vertices[0][0] + vertices[-1][0]) / 2.0 y_width = (vertices[0][1] + vertices[-1][1]) / 2.0 separation_radius = max(x_width / 2.0, y_width / 2.0) return [x_width + separation_radius, y_width + separation_radius, angle] class AnglePoltter: def __init__(self): self.lines = [] self.arcs = [] self.angles = [] def add_line(self, angle, *, linewidth=1, linestyle="-", color="black"): line = get_line_plot(angle, linewidth=linewidth, linestyle=linestyle, color=color) self.lines.append( [ line.get_xdata()[0], line.get_ydata()[0], line.get_xdata()[1], line.get_ydata()[1], linewidth, linestyle, color ] ) return line def add_angle(self, line1, line2, *, text=False, **kwargs): angle = get_angle_plot(line1, line2, **kwargs) self.arcs.append(angle) if text: self.angles.append(get_angle_text(angle)) def plot(self, *, title, fontsize=18): fig = plt.figure() ax = SubplotZero(fig, 1, 1, 1) # draw a circle theta = np.linspace(0, 2 * np.pi, 200) x = np.cos(theta) y = np.sin(theta) ax.plot(x, y, color="#CCCCCC", linewidth=1.5) fig.add_subplot(ax) for direction in ["left", "right", "bottom", "top"]: # hides borders ax.axis[direction].set_visible(False) for direction in ["xzero", "yzero"]: # adds arrows at the ends of each axis ax.axis[direction].set_axisline_style('-|>') # adds X and Y-axis from the origin ax.axis[direction].set_visible(True) for line in self.lines: if line[4] != 0: ax.arrow(line[0], line[1], line[2], line[3], head_width=0.06, head_length=0.06, linewidth=line[4], linestyle=line[5], color=line[6]) for arc in self.arcs: ax.add_patch(arc) for angle in self.angles: ax.text(*angle) if title != None: fig.suptitle(title, fontsize=fontsize) plt.axis([-1.8, 1.8, -1.35, 1.35]) plt.grid() plt.legend() return ax plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(330, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") x = math.cos(math.radians(30)) y = math.sin(math.radians(30)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(330, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(90, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration") x = math.cos(math.radians(30)) y = math.sin(math.radians(30)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, 0], [-y, 1], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(330, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(90, linewidth=1.5, color="#99CCFF") line_4 = plotter.add_line(-90, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, x, offset=0.8) ax = plotter.plot(title="Apply Oracle(second iteration)") x = math.cos(math.radians(30)) y = math.sin(math.radians(30)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, 0], [-y, 1], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(30, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(330, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(90, linewidth=1.5, color="#99CCFF") line_4 = plotter.add_line(-90, linewidth=1.5, color="#FF9900") line_5 = plotter.add_line(150, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, x, offset=0.8) plotter.add_angle(line_5, line_3, offset=0.6) ax = plotter.plot(title="Apply Oracle(second iteration)") x = math.cos(math.radians(30)) y = math.sin(math.radians(30)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, 0], [-y, 1], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x, 0], [y, -1], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) theta = math.degrees(math.asin(1/(8 ** 0.5))) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(-theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") x = math.cos(math.radians(theta)) y = math.sin(math.radians(theta)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(-theta, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(3 * theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration") x = math.cos(math.radians(theta)) y = math.sin(math.radians(theta)) x2 = math.cos(math.radians(3 * theta)) y2 = math.sin(math.radians(3 * theta)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x2], [-y, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(-theta, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(3 * theta, linewidth=1.5, color="#99CCFF") line_4 = plotter.add_line(5 * theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, line_3, offset=0.6) ax = plotter.plot(title="After two Grover iteration") x = math.cos(math.radians(theta)) y = math.sin(math.radians(theta)) x2 = math.cos(math.radians(3 * theta)) y2 = math.sin(math.radians(3 * theta)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x2], [-y, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(theta, linewidth=1.5, linestyle="-.", color="#6666CC") line_2 = plotter.add_line(-theta, linewidth=1.5, linestyle="-.", color="#99CC33") line_3 = plotter.add_line(3 * theta, linewidth=1.5, color="#99CCFF") line_4 = plotter.add_line(5 * theta, linewidth=1.5, color="#FF9900") line_5 = plotter.add_line(7 * theta, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, line_3, offset=0.6) plotter.add_angle(line_5, line_4, offset=0.6) ax = plotter.plot(title="After two Grover iteration") x = math.cos(math.radians(theta)) y = math.sin(math.radians(theta)) x2 = math.cos(math.radians(3 * theta)) y2 = math.sin(math.radians(3 * theta)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x2], [-y, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CC33") line_2 = plotter.add_line(-45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") x = math.cos(math.radians(45)) y = math.sin(math.radians(45)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CC33") line_2 = plotter.add_line(-45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_3 = plotter.add_line(3 * 45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration") x = math.cos(math.radians(45)) y = math.sin(math.radians(45)) x2 = math.cos(math.radians(3 * 45)) y2 = math.sin(math.radians(3 * 45)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([-x * 1.2, 0], [-y * 1.2, 0], linewidth=1.5, linestyle="--", color="#CCCCCC")) ax.add_line(Line2D([x, x * 1.2], [y, y * 1.2], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CC33") line_2 = plotter.add_line(-45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_3 = plotter.add_line(3 * 45, linewidth=1.5, color="#FF9900") line_4 = plotter.add_line(5 * 45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) plotter.add_angle(line_4, line_3, offset=0.6) ax = plotter.plot(title="After two Grover iteration") x = math.cos(math.radians(45)) y = math.sin(math.radians(45)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_s = plotter.add_line(40, linewidth=2, color="#6666CC") line_phi = plotter.add_line(25, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_s, x, offset=0.6) plotter.add_angle(line_phi, x, offset=0.4) plotter.plot(title="Grover reflections - initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_s = plotter.add_line(40, linewidth=2, color="#6666CC") line_phi = plotter.add_line(25, linewidth=1.5, linestyle=":", color="#99CC33") line_O_phi = plotter.add_line(335, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_s, x, offset=0.6) plotter.add_angle(line_phi, x, offset=0.4) plotter.add_angle(line_O_phi, x, offset=0.4) ax = plotter.plot(title="Grover reflections - reflection 1") x = math.cos(math.radians(25)) y = math.sin(math.radians(25)) ax.add_line(Line2D([x, x], [-y, y], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_s = plotter.add_line(40, linewidth=2, color="#6666CC") line_phi = plotter.add_line(25, linewidth=1.5, linestyle=":", color="#99CC33") line_O_phi = plotter.add_line(335, linewidth=1.5, linestyle=":", color="#99CCFF") line_RO_phi = plotter.add_line(285, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_s, x, offset=0.8) plotter.add_angle(line_phi, x, offset=0.6) plotter.add_angle(line_O_phi, x, offset=0.6) plotter.add_angle(line_RO_phi, x, offset=0.4) ax = plotter.plot(title="Grover reflections - reflection 2") x1 = math.cos(math.radians(25)) y1 = math.sin(math.radians(25)) ax.add_line(Line2D([x1, x1], [-y1, y1], linewidth=1.5, linestyle="--", color="#CCCCCC")) x2 = math.cos(math.radians(-75)) y2 = math.sin(math.radians(-75)) ax.add_line(Line2D([x1, x2], [-y1, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) x3 = math.cos(math.radians(130)) * 1.5 y3 = math.sin(math.radians(130)) * 1.5 ax.add_line(Line2D([x3, -x3], [y3, -y3], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_s = plotter.add_line(40, linewidth=2, color="#6666CC") line_phi = plotter.add_line(25, linewidth=1.5, linestyle=":", color="#99CC33") line_O_phi = plotter.add_line(335, linewidth=1.5, linestyle=":", color="#99CCFF") line_RO_phi = plotter.add_line(285, linewidth=1.5, linestyle=":", color="#FF9900") line_mRO_phi = plotter.add_line(105, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_s, x, offset=0.8) plotter.add_angle(line_phi, x, offset=0.6) plotter.add_angle(line_O_phi, x, offset=0.6) plotter.add_angle(line_RO_phi, x, offset=0.4) plotter.add_angle(line_mRO_phi, line_phi, offset=1) ax = plotter.plot(title="Grover reflections - reflection3") x1 = math.cos(math.radians(25)) y1 = math.sin(math.radians(25)) ax.add_line(Line2D([x1, x1], [-y1, y1], linewidth=1.5, linestyle="--", color="#CCCCCC")) x2 = math.cos(math.radians(-75)) y2 = math.sin(math.radians(-75)) ax.add_line(Line2D([x1, x2], [-y1, y2], linewidth=1.5, linestyle="--", color="#CCCCCC")) x3 = math.cos(math.radians(130)) * 1.5 y3 = math.sin(math.radians(130)) * 1.5 ax.add_line(Line2D([x3, -x3], [y3, -y3], linewidth=1.5, linestyle="--", color="#CCCCCC")) plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_2 = plotter.add_line(-2, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_2 = plotter.add_line(-2, linewidth=1.5, linestyle="-.", color="#FF9900") line_3 = plotter.add_line(92, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.5, text=True) ax = plotter.plot(title="Initial state") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_2 = plotter.add_line(40, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) ax = plotter.plot(title="After applying Oracle") plotter = AnglePoltter() # draw lines x = plotter.add_line(0, linewidth=0) line_1 = plotter.add_line(45, linewidth=1.5, linestyle="-.", color="#99CCFF") line_2 = plotter.add_line(40, linewidth=1.5, linestyle="-.", color="#FF9900") line_3 = plotter.add_line(50, linewidth=1.5, color="#FF6666") # draw angles plotter.add_angle(line_1, x, offset=0.4) plotter.add_angle(line_2, x, offset=0.4) plotter.add_angle(line_3, line_1, offset=0.6) ax = plotter.plot(title="After one Grover iteration")
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from qiskit.quantum_info import DensityMatrix, Statevector, Operator def getDensityMatrix(circuit): return DensityMatrix(circuit).data from functools import reduce Dag = lambda matrix: matrix.conj().T Kron = lambda *matrices: reduce(np.kron, matrices) def pm(matrix): for row in range(len(matrix)): for col in range (len(matrix[row])): print("{:.3f}".format(matrix[row][col]), end = " ") print() def initCircuit(n): circuit = QuantumCircuit(n, n) for i in range(n): circuit.h(i) circuit.barrier() return circuit inputCircuit_2q = initCircuit(2) inputCircuit_2q.draw(output='mpl') def createEvenOracle(): circuit = QuantumCircuit(2, 2) circuit.x(0) circuit.x(1) circuit.cz(0, 1) circuit.x(1) circuit.cz(0, 1) circuit.x(0) circuit.barrier() return circuit evenOracle = createEvenOracle() evenOracle.draw(output='mpl') Operator(evenOracle).data # find 0 and 2 def createR_2q(): circuit = QuantumCircuit(2, 2) circuit.z(0) circuit.z(1) circuit.cz(0, 1) return circuit def createDiffuser_2q(): circuit = QuantumCircuit(2, 2) circuit.h(0) circuit.h(1) circuit = circuit.compose(createR_2q()) circuit.h(0) circuit.h(1) circuit.barrier() return circuit diffuserCircuit_2q = createDiffuser_2q() diffuserCircuit_2q.draw(output='mpl') grover_even = initCircuit(2).compose(createEvenOracle()).compose(createDiffuser_2q()) grover_even.draw(output='mpl') grover_even.measure([0, 1], [0, 1]) job = execute(grover_even, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_even) print(counts) plot_histogram(counts, figsize=(5, 5), color="#66CCCC", title="origin grover - find evens")
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import math import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') state_0 = np.array([1, 0]) state_1 = np.array([0, 1]) from functools import reduce Dag = lambda matrix: matrix.conj().T Kron = lambda *matrices: reduce(np.kron, matrices) def getMeasurements(n): psi_0 = np.array([1.0, 0.0]) psi_1 = np.array([0.0, 1.0]) I = np.eye(2) M_0 = psi_0.reshape([2, 1]) @ psi_0.reshape([1, 2]).conj() M_1 = psi_1.reshape([2, 1]) @ psi_1.reshape([1, 2]).conj() M = [M_0, M_1] measurements = [] for i in range(2 ** n): binnum = bin(i)[2:].rjust(n, '0') temp = [] indices = map(lambda x: int(x), list(binnum)) for index in indices: temp.append(M[index]) measurements.append( Kron(*temp) ) return measurements def measure(M, state): return Dag(state) @ Dag(M) @ M @ state initState = Kron( state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0 ) H = np.array([[1,1], [1,-1]]) / (np.sqrt(2)) H_8 = Kron(H, H, H, H, H, H, H, H) H_9 = Kron(H, H, H, H, H, H, H, H, H) N = 2 ** 9 def createTargetState(n): states = [] s = bin(n)[2:].rjust(9, "0") for i in list(s): if i == '0': states.append(state_0) else: states.append(state_1) return Kron(*states) def createTargetStates(p): n = math.floor(p * N) state = createTargetState(0) for i in range(1, n): state = state + createTargetState(i) return state / (np.sqrt(n)) target_states = [ [createTargetStates(0.05), 0.05], # 0.05 [createTargetStates(0.1), 0.1], # 0.1 [createTargetStates(0.15), 0.15], # 0.15 [createTargetStates(0.2), 0.2], # 0.2 [createTargetStates(0.25), 0.25], # 0.25 [createTargetStates(0.3), 0.3], # 0.3 [createTargetStates(0.35), 0.35], # 0.35 [createTargetStates(0.4), 0.4], # 0.4 [createTargetStates(0.45), 0.45], # 0.45 [createTargetStates(0.5), 0.5], # 0.5 [createTargetStates(0.55), 0.55], # 0.55 [createTargetStates(0.6), 0.6], # 0.6 [createTargetStates(0.65), 0.65], # 0.65 [createTargetStates(0.7), 0.7], # 0.7 [createTargetStates(0.75), 0.75], # 0.75 [createTargetStates(0.8), 0.8], # 0.8 [createTargetStates(0.85), 0.85], # 0.85 [createTargetStates(0.9), 0.9], # 0.9 [createTargetStates(0.95), 0.95], # 0.95 [createTargetStates(1), 1] # 1 ] def createOriginalOracle(target_state): O = np.eye(N) - 2 * ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createOriginalDiffuser(): R = 2 * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) - np.eye(N) return H_9 @ R @ Dag(H_9) def createHalfPIOracle(target_state): alpha = np.pi / 2 alpha_phase = np.exp(alpha * 1j) # Oracle = I - (1 - e^(αi))|target><target| O = np.eye(N) - (1 - alpha_phase) * \ ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createHalfPIDiffuser(): beta = -np.pi / 2 beta_phase = np.exp(beta * 1j) # R = (1 - e^(βi))|0><0| + e^(βi)I R = (1 - beta_phase) * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) + beta_phase * np.eye(N) return H_9 @ R @ Dag(H_9) def createOneTenthPIOracle(target_state): alpha = np.pi / 10 alpha_phase = np.exp(alpha * 1j) # Oracle = I - (1 - e^(αi))|target><target| O = np.eye(N) - (1 - alpha_phase) * \ ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createOneTenthPIDiffuser(): beta = -np.pi / 10 beta_phase = np.exp(beta * 1j) # R = (1 - e^(βi))|0><0| + e^(βi)I R = (1 - beta_phase) * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) + beta_phase * np.eye(N) return H_9 @ R @ Dag(H_9) def createYouneOracle(n): O = np.eye(N) for i in range(n): O[i][i] = 0 O[i][i + N // 2] = 1 O[i + N // 2][i + N // 2] = 0 O[i + N // 2][i] = 1 return O def createYouneDiffuser(): R = (2 * Dag(initState).reshape(N, 1) @ initState.reshape(1, N) - np.eye(N)) return Kron(np.eye(2), H_8) @ R @ Dag(Kron(np.eye(2), H_8)) measurements = getMeasurements(9) # test: one grover iteration x_o = [] y_o = [] for target_state, p in target_states: n = math.floor(p * N) O = createOriginalOracle(target_state) diff = createOriginalDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_o.append(p) y_o.append(probability) plt.title("Original Grover - apply one iterator") plt.scatter(x_o, y_o, color="#66CCCC") # test: best probability x_o_best = [] y_o_best = [] for target_state, p in target_states: n = math.floor(p * N) O = createOriginalOracle(target_state) diff = createOriginalDiffuser() final_state = H_9 @ initState theta = math.degrees( math.asin(math.sqrt(p)) ) k_tilde = math.floor( 180 / (4 * theta) - 0.5 ) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) final_state = diff @ O @ final_state probability2 = 0.0 for i in range(N): if i < n: probability2 = probability2 + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_o_best.append(p) y_o_best.append(max(probability, probability2)) plt.title("Original Grover - best Probability") x = np.arange(-0,1,0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.ylim(0, 1.05) plt.scatter(x_o_best, y_o_best, color="#66CCCC") # test: one grover iteration x_half_pi = [] y_half_pi= [] for target_state, p in target_states: n = math.floor(p * N) O = createHalfPIOracle(target_state) diff = createHalfPIDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_half_pi.append(p) y_half_pi.append(probability) plt.title("pi/2 Grover - apply one iterator") plt.scatter(x_half_pi, y_half_pi, color="#66CCCC") # one grover iteration - pi/2 vs origin fig, ax = plt.subplots() plt.title("Apply one iteration") plt.axvline(1/3, linestyle='--', color="#FFCCCC", label="t/N = 1/3") plt.axhline(0.925, linestyle='--', color="#FFCC00", label="P=0.925") plt.scatter(x_o, y_o, color="#66CCCC", label="Original Grover") plt.scatter(x_half_pi, y_half_pi, color="#FF6666", label="pi/2 phase based Grover") ax.legend() # test: one grover iteration x_ot_pi = [] y_ot_pi= [] for target_state, p in target_states: n = math.floor(p * N) O = createOneTenthPIOracle(target_state) diff = createOneTenthPIDiffuser() final_state = diff @ O @ H_9 @ initState probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_ot_pi.append(p) y_ot_pi.append(probability) plt.title("0.1pi Grover - apply one iteration") plt.scatter(x_ot_pi, y_ot_pi, color="#66CCCC") # test: best probability x_ot_best = [] y_ot_best = [] diff = createOneTenthPIDiffuser() for target_state, p in target_states: n = math.floor(p * N) O = createOneTenthPIOracle(target_state) # diff = createOneTenthPIDiffuser() final_state = H_9 @ initState p_best = 0.0 k_tilde = math.floor( 5 * np.sqrt(N) ) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N): if i < n: probability = probability + measure(measurements[i], final_state) p_best = max(p_best, probability) # print(f'p={p}, probability={probability}') x_ot_best.append(p) y_ot_best.append(p_best) plt.title("0.1pi Grover - best Probability") plt.ylim(0, 1) plt.scatter(x_ot_best, y_ot_best, color="#66CCCC") # best probability - 0.1pi vs origin fig, ax = plt.subplots() plt.title("Best Probability") x = np.arange(-0,1,0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.ylim(0, 1.05) plt.scatter(x_o_best, y_o_best, color="#66CCCC", label="Original Grover") plt.scatter(x_ot_best, y_ot_best, color="#FF6666", label="0.1pi phase based Grover") ax.legend() # test: best probability x_y_best = [] y_y_best = [] for _, p in target_states: n = math.floor(p * (N // 2)) O = createYouneOracle(n) diff = createYouneDiffuser() final_state = Kron( np.eye(2), H_8) @ initState p_best = 0.0 k_tilde = math.floor(np.pi / (2 * np.sqrt(2)) * np.sqrt((N // 2) / n)) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(N // 2): if i < n: probability = probability + measure(measurements[i], final_state) + measure(measurements[i + N // 2], final_state) # print(f'p={p}, probability={probability}') x_y_best.append(p) y_y_best.append(probability) fig, ax = plt.subplots() plt.title("Best Probability") x = np.arange(-0, 1, 0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.axhline(0.8472, linestyle='--', color="#99CCFF", label="P=0.8472") plt.axvline(0.308, linestyle='--', color="#FFCCCC", label="P=0.308") plt.ylim(0, 1.05) plt.scatter(x_y_best, y_y_best, color="#FF6666", label="Youne") plt.scatter(x_o_best, y_o_best, color="#66CCCC", label="Original Grover") ax.legend()
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram from qiskit.quantum_info import Operator import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # https://arxiv.org/pdf/quant-ph/9605034.pdf def initCircuit(n): circuit = QuantumCircuit(n, n) for i in range(n): circuit.h(i) circuit.barrier() return circuit inputCircuit_8q = initCircuit(8) inputCircuit_8q.draw(output='mpl') def createOracle_255(): circuit = QuantumCircuit(8, 8) circuit.h(7) circuit.mcx(list(range(7)), 7) circuit.h(7) circuit.barrier() return circuit oracleCircuit_255 = createOracle_255() oracleCircuit_255.draw(output='mpl') Operator(oracleCircuit_255).data for index, row in enumerate(Operator(oracleCircuit_255).data): if abs(row[index] - -1) < 1e-6: print(index) def createR_8q(): circuit = QuantumCircuit(8, 8) circuit.x(7) circuit.x(6) circuit.x(5) circuit.x(4) circuit.x(3) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(7) circuit.mcx(list(range(7)), 7) circuit.barrier(0) circuit.barrier(1) circuit.barrier(2) circuit.barrier(3) circuit.barrier(4) circuit.barrier(5) circuit.barrier(6) circuit.h(7) circuit.x(2) circuit.x(0) circuit.x(1) circuit.x(5) circuit.x(4) circuit.x(3) circuit.x(7) circuit.x(6) return circuit R_8q = createR_8q() R_8q.draw(output='mpl') def createDiffuser_8q(): circuit = QuantumCircuit(8, 8) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.h(4) circuit.h(5) circuit.h(6) circuit.h(7) circuit = circuit.compose(createR_8q()) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.h(4) circuit.h(5) circuit.h(6) circuit.h(7) circuit.barrier() return circuit diffuserCircuit_8q = createDiffuser_8q() diffuserCircuit_8q.draw(output='mpl') def createGroverIteration(oracle, diffuser): return oracle.compose(diffuser) groverIteration_8q = createGroverIteration(createOracle_255(), createDiffuser_8q()) groverIteration_8q.draw(output='mpl') fullCircuit_8q = initCircuit(8).compose(groverIteration_8q) fullCircuit_8q.draw(output='mpl') import math degree = math.degrees( math.asin(1 / np.sqrt(256)) ) degree for k in range(1, 15): print(f'k = {k}: { math.sin(math.radians( (2 * k+1) * degree) ) ** 2 }') def groverMeasurements(k): circuit = initCircuit(8) for i in range(k): circuit = circuit.compose(groverIteration_8q.copy()) circuit.measure(list(range(8)), list(range(8))) job = execute(circuit, simulator, shots = 1) results = job.result() counts = results.get_counts(circuit) return list(counts)[0] from random import randrange def solutionFinding(limit): m = 1 lam = 6 / 5 count = 0 # iteration times while count <= limit * (9/4): if m > 1: j = randrange(0, math.floor(m)) if j != 0: count += j answer = groverMeasurements(j) if answer == '11111111': # print(f'Find! - total times: {count}') return count, True m = min(lam * m, limit) # print(f'Not find! - total times: {count}') return count, False times = 0 best = 1000 worst = 0 success = 0 for i in range(1000): time, flag = solutionFinding(np.sqrt(256)) # √N times += time best = min(best, time) worst = max(worst, time) if flag: success += 1 print(f'total test times: {1000}') print('--------------------------') print(f'Average run times: {times / 1000}') print(f'best run times: {best}') print(f'worst run times: {worst}') print(f'Success rate: {success / 1000 * 100:.2f}%')
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram from qiskit.quantum_info import Operator import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') def createYouneInitCircuit(): circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.h(1) circuit.barrier() return circuit youneInitCircuit = createYouneInitCircuit() youneInitCircuit.draw(output='mpl') def createYouneOracle(): circuit = QuantumCircuit(3, 2) circuit.x(0) circuit.x(1) circuit.ccx(0, 1, 2) circuit.x(0) circuit.x(1) circuit.barrier() circuit.x(0) circuit.ccx(0, 1, 2) circuit.x(0) circuit.barrier() return circuit youneOracle = createYouneOracle() youneOracle.draw(output='mpl') def createYouneDiffuser(): circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.h(1) circuit.barrier(2) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(2) circuit.ccx(0, 1, 2) circuit.barrier(0) circuit.barrier(1) circuit.h(2) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(0) circuit.h(1) # circuit.h(2) circuit.barrier() return circuit youneDiffuser = createYouneDiffuser() youneDiffuser.draw(output='mpl') youneGroverIteration = createYouneOracle().compose(createYouneDiffuser()) grover_youne = createYouneInitCircuit().compose(youneGroverIteration.copy()) grover_youne.draw(output='mpl') grover_youne.measure([0, 1], [0, 1]) job = execute(grover_youne, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_youne) print(counts) plot_histogram(counts, figsize=(4, 5), color="#0099CC", title="youne grover - find evens") def createYouneOracle2(): circuit = QuantumCircuit(3, 2) circuit.x(0) circuit.cx(0, 2) circuit.x(0) circuit.barrier() return circuit youneOracle2 = createYouneOracle2() youneOracle2.draw(output='mpl') # 0 => 4 2 => 6 Operator(youneOracle2).data youneGroverIteration2 = createYouneOracle2().compose(createYouneDiffuser()) grover_youne2 = createYouneInitCircuit().compose(youneGroverIteration2.copy()) grover_youne2.draw(output='mpl') grover_youne2.measure([0, 1], [0, 1]) job = execute(grover_youne2, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_youne2) print(counts) plot_histogram(counts, figsize=(4, 5), color="#66CCFF", title="youne grover(using another Oracle) - find evens")
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram from qiskit.quantum_info import Operator import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # https://towardsdatascience.com/behind-oracles-grovers-algorithm-amplitude-amplification-46b928b46f1e def createSATInitCircuit(var, clause): # input + workspace(clause) + checker(1) circuit = QuantumCircuit(var + clause + 1, var) for i in range(var): circuit.h(i) circuit.barrier() return circuit SATInitCircuit = createSATInitCircuit(4, 3) SATInitCircuit.draw(output='mpl') def createSATOracle(var, clause): circuit = QuantumCircuit(var + clause + 1, var) # (a ∧ b ∧ ¬c) circuit.x(2) circuit.mcx([0, 1, 2], 4) circuit.x(2) circuit.barrier() # (¬b ∧d ) circuit.x(1) circuit.mcx([1, 3], 5) circuit.x(1) circuit.barrier() # ¬d circuit.x(3) circuit.cx(3, 6) circuit.x(3) circuit.barrier() # (a ∧ b ∧ ¬c) ∨ ¬(¬b ∧d ) ∨ ¬d circuit.x(5) circuit.mcx([4, 5, 6], 7) circuit.x(5) circuit.barrier() # uncomputation # ¬d circuit.x(3) circuit.cx(3, 6) circuit.x(3) circuit.barrier() # (¬b ∧d ) circuit.x(1) circuit.mcx([1, 3], 5) circuit.x(1) circuit.barrier() # (a ∧ b ∧ ¬c) circuit.x(2) circuit.mcx([0, 1, 2], 4) circuit.x(2) circuit.barrier() return circuit SATOracleCircuit = createSATOracle(4, 3) SATOracleCircuit.draw(output='mpl') def createSATDiffuser(var, clause): circuit = QuantumCircuit(var + clause + 1, var) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.x(0) circuit.x(1) circuit.x(2) circuit.x(3) circuit.mcx([0, 1, 2, 3], var + clause) circuit.x(0) circuit.x(1) circuit.x(2) circuit.x(3) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) return circuit SATDiffuserCircuit = createSATDiffuser(4, 3) SATDiffuserCircuit.draw(output='mpl') SATCircuit = createSATInitCircuit(4, 3).compose(createSATOracle(4, 3)).compose(createSATDiffuser(4, 3)) SATCircuit.draw(output='mpl') SATCircuit.measure([0, 1, 2, 3], [0, 1, 2, 3]) job = execute(SATCircuit, simulator, shots = 10000) results = job.result() counts = results.get_counts(SATCircuit) print(counts) plot_histogram(counts, figsize=(12, 5), color="#CCCCFF", title="SAT - solving (a ∧ b ∧ ¬c) ∨ ¬(¬b ∧d ) ∨ ¬d, k = 1") SATIteration = Operator(createSATOracle(4, 3).compose(createSATDiffuser(4, 3))) SATCircuit2 = createSATInitCircuit(4, 3) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.draw(output='mpl') SATCircuit2.measure([0, 1, 2, 3], [0, 1, 2, 3]) job = execute(SATCircuit2, simulator, shots = 10000) results = job.result() counts = results.get_counts(SATCircuit2) print(counts) plot_histogram(counts, figsize=(12, 5), color="#6666FF", title="SAT - solving (a ∧ b ∧ ¬c) ∨ ¬(¬b ∧d ) ∨ ¬d, k = 3") import math math.degrees( math.asin(1 / 4)) for k in range(1, 5): print(f'k = {k}: { math.sin(math.radians( (2 * k+1) * 14.47) ) ** 2 }')
https://github.com/usamisaori/Grover
usamisaori
import qiskit from qiskit import QuantumCircuit from qiskit.visualization import plot_histogram import numpy as np from qiskit import execute, Aer simulator = Aer.get_backend('qasm_simulator') import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from qiskit.quantum_info import DensityMatrix, Statevector, Operator def getDensityMatrix(circuit): return DensityMatrix(circuit).data state_0 = np.array([1, 0]) state_1 = np.array([0, 1]) from functools import reduce Dag = lambda matrix: matrix.conj().T Kron = lambda *matrices: reduce(np.kron, matrices) def pm(matrix): for row in range(len(matrix)): for col in range (len(matrix[row])): print("{:.3f}".format(matrix[row][col]), end = " ") print() def getMeasurements(n): psi_0 = np.array([1.0, 0.0]) psi_1 = np.array([0.0, 1.0]) I = np.eye(2) M_0 = psi_0.reshape([2, 1]) @ psi_0.reshape([1, 2]).conj() M_1 = psi_1.reshape([2, 1]) @ psi_1.reshape([1, 2]).conj() M = [M_0, M_1] measurements = [] for i in range(2 ** n): binnum = bin(i)[2:].rjust(n, '0') temp = [] indices = map(lambda x: int(x), list(binnum)) for index in indices: temp.append(M[index]) measurements.append( Kron(*temp) ) return measurements def measure(M, state): return Dag(state) @ Dag(M) @ M @ state # https://qiskit.org/textbook/ch-algorithms/grover.html def initCircuit(n): circuit = QuantumCircuit(n, n) for i in range(n): circuit.h(i) circuit.barrier() return circuit inputCircuit_2q = initCircuit(2) inputCircuit_2q.draw(output='mpl') def createOracle_3(): circuit = QuantumCircuit(2, 2) # Oracle for find 3 # U_f circuit.cz(0, 1) circuit.barrier() return circuit oracleCircuit_3 = createOracle_3() oracleCircuit_3.draw(output='mpl') O_3 = Operator(oracleCircuit_3).data pm(O_3) # all possible states state_00 = Kron(state_0, state_0) state_01 = Kron(state_0, state_1) state_10 = Kron(state_1, state_0) state_11 = Kron(state_1, state_1) print("O|00>", O_3 @ state_00) print("O|01>", O_3 @ state_01) print("O|10>", O_3 @ state_10) print("O|11>", O_3 @ state_11) # flip phase # H R H, where R = 2|0><0| - I def createR_2q(): circuit = QuantumCircuit(2, 2) circuit.z(0) circuit.z(1) circuit.cz(0, 1) return circuit R_2q = createR_2q() R_2q.draw(output='mpl') R_2q = Operator(R_2q).data pm(R_2q) # flip phase(no work on zero states) => Conditional Phase Shift gate print("RO|00>", R_2q @ O_3 @ state_00) # zero state => would not flip print("RO|01>", R_2q @ O_3 @ state_01) print("RO|10>", R_2q @ O_3 @ state_10) print("RO|11>", R_2q @ O_3 @ state_11) def createDiffuser_2q(): circuit = QuantumCircuit(2, 2) circuit.h(0) circuit.h(1) circuit = circuit.compose(createR_2q()) circuit.h(0) circuit.h(1) circuit.barrier() return circuit diffuserCircuit_2q = createDiffuser_2q() diffuserCircuit_2q.draw(output='mpl') diff_2q = Operator(diffuserCircuit_2q).data pm(diff_2q) DB = 0.5 * state_00 + 0.5 * state_01 + 0.5 * state_10 + 0.5 * state_11 print("DO|DB>", diff_2q @ O_3 @ DB) def createGroverIteration(oracle, diffuser): return oracle.compose(diffuser) groverIteration_2q = createGroverIteration(createOracle_3(), createDiffuser_2q()) groverIteration_2q.draw(output='mpl') groverIteration_2q = createGroverIteration(createOracle_3(), createDiffuser_2q()) grover_2q_1 = initCircuit(2).compose(groverIteration_2q.copy()) grover_2q_1.draw(output='mpl') grover_2q_1.measure([0, 1], [0, 1]) job = execute(grover_2q_1, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_2q_1) print(counts) plot_histogram(counts, figsize=(1, 5), color="#CC3333", title="one iteration - find 3") grover_2q_2 = initCircuit(2).compose(groverIteration_2q.copy()).compose(groverIteration_2q.copy()) grover_2q_2.draw(output='mpl') grover_2q_2.measure([0, 1], [0, 1]) job = execute(grover_2q_2, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_2q_2) print(counts) plot_histogram(counts, figsize=(7, 5), color="#FF9999", title="two iteration - find 3") # https://www.quantum-inspire.com/kbase/grover-algorithm/ inputCircuit_3q = initCircuit(3) inputCircuit_3q.draw(output='mpl') def createOracle_6(): circuit = QuantumCircuit(3, 3) # Oracle for find 6 # U_f circuit.x(0) circuit.h(2) circuit.ccx(0, 1, 2) circuit.h(2) circuit.x(0) circuit.barrier() return circuit oracleCircuit_6 = createOracle_6() oracleCircuit_6.draw(output='mpl') # where the entry that correspond to the marked item will have a negative phase pm(Operator(oracleCircuit_6).data) Operator(oracleCircuit_6).data # H R H, where R = 2|0><0| - I def createR_3q(): circuit = QuantumCircuit(3, 3) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(2) circuit.ccx(0, 1, 2) circuit.barrier(0) circuit.barrier(1) circuit.h(2) circuit.x(2) circuit.x(0) circuit.x(1) return circuit R_3q = createR_3q() R_3q.draw(output='mpl') pm(Operator(R_3q).data) print('|000>', Kron(state_0, state_0, state_0)) print('R|000>',Operator(R_3q).data @ Kron(state_0, state_0, state_0) ) print('|010>', Kron(state_0, state_1, state_0)) print('R|010>',Operator(R_3q).data @ Kron(state_0, state_1, state_0) ) print('|110>', Kron(state_1, state_1, state_0)) print('R|110>',Operator(R_3q).data @ Kron(state_1, state_1, state_0) ) def createDiffuser_3q(): circuit = QuantumCircuit(3, 3) circuit.h(0) circuit.h(1) circuit.h(2) circuit = circuit.compose(createR_3q()) circuit.h(0) circuit.h(1) circuit.h(2) circuit.barrier() return circuit diffuserCircuit_3q = createDiffuser_3q() diffuserCircuit_3q.draw(output='mpl') pm(Operator(diffuserCircuit_3q).data) groverIteration_3q = createGroverIteration(createOracle_6(), createDiffuser_3q()) groverIteration_3q.draw(output='mpl') inputCircuit_3q = initCircuit(3) inputCircuit_3q.draw(output='mpl') inputCircuit_3q.measure([0, 1, 2], [0, 1, 2]) job = execute(inputCircuit_3q, simulator, shots = 10000) results = job.result() counts = results.get_counts(inputCircuit_3q) print(counts) plot_histogram(counts, figsize=(10, 5), color="#FFFFCC", title="superposition state - 3 qubits") grover_3q_1 = initCircuit(3).compose(groverIteration_3q.copy()) grover_3q_1.draw(output='mpl') grover_3q_1.measure([0, 1, 2], [0, 1, 2]) job = execute(grover_3q_1, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_3q_1) print(counts) plot_histogram(counts, figsize=(10, 5), color="#FFBB00", title="one iteration - find 6") grover_3q_2 = initCircuit(3).compose(groverIteration_3q.copy()).compose(groverIteration_3q.copy()) # grover_3q_2.draw(output='mpl') grover_3q_2.measure([0, 1, 2], [0, 1, 2]) job = execute(grover_3q_2, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_3q_2) print(counts) plot_histogram(counts, figsize=(10, 5), color="#FF8822", title="two iteration - find 6") grover_3q_3 = initCircuit(3).compose(groverIteration_3q.copy()).compose(groverIteration_3q.copy()).compose(groverIteration_3q.copy()) # grover_3q_3.draw(output='mpl') grover_3q_3.measure([0, 1, 2], [0, 1, 2]) job = execute(grover_3q_3, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_3q_3) print(counts) plot_histogram(counts, figsize=(10, 5), color="#FFFF3F", title="three iteration - find 6") import math theta = math.degrees( math.asin(1 / math.sqrt(8)) ) theta k_tilde = 180 / (4 * theta) - 0.5 k_tilde for k in range(1, 4): print(f'k = {k}: { math.sin(math.radians( (2 * k+1) * theta) ) ** 2 }') # H R H, where R = 2|0><0| - I # A R A^(-1) def initAACircuit(n): circuit = QuantumCircuit(n, n) circuit.x(0) circuit.h(1) circuit.z(1) circuit.h(0) circuit.barrier() return circuit inputAACircuit = initAACircuit(2) inputAACircuit.draw(output='mpl') A = Operator(initAACircuit(2)) np.allclose(A.data @ Dag(A.data), np.eye(4)) inputAACircuit.measure([0, 1], [0, 1]) job = execute(inputAACircuit, simulator, shots = 10000) results = job.result() counts = results.get_counts(inputAACircuit) print(counts) plot_histogram(counts, figsize=(7, 5), color="#CCCC66", title="measurements result of A") oracleCircuit_3 = createOracle_3() oracleCircuit_3.draw(output='mpl') def createAADiffuser(): circuit = QuantumCircuit(2, 2) circuit.append(A, [0, 1]) circuit = circuit.compose(createR_2q()) circuit.append(A.conjugate(), [0, 1]) circuit.barrier() return circuit diffuserAACircuit = createAADiffuser() diffuserAACircuit.draw(output='mpl') aaGroverIteration = createGroverIteration(createOracle_3(), createAADiffuser()) aaGroverIteration.draw(output='mpl') incorrectGroverIteration = createGroverIteration(createOracle_3(), createDiffuser_2q()) grover_incorrect_diffuser = initAACircuit(2).compose(incorrectGroverIteration) grover_incorrect_diffuser.draw(output='mpl') grover_incorrect_diffuser.measure([0, 1], [0, 1]) job = execute(grover_incorrect_diffuser, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_incorrect_diffuser) print(counts) plot_histogram(counts, figsize=(1, 5), color="#99CC33", title="using incorrect diffuser - find 3") grover_correct_diffuser = initAACircuit(2).compose(aaGroverIteration) grover_correct_diffuser.draw(output='mpl') grover_correct_diffuser.measure([0, 1], [0, 1]) job = execute(grover_correct_diffuser, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_correct_diffuser) print(counts) plot_histogram(counts, figsize=(1, 5), color="#339933", title="using correct diffuser - find 3") inputCircuit_2q = initCircuit(2) inputCircuit_2q.draw(output='mpl') def createEvenOracle(): circuit = QuantumCircuit(2, 2) circuit.x(0) circuit.x(1) circuit.cz(0, 1) circuit.x(1) circuit.cz(0, 1) circuit.x(0) circuit.barrier() return circuit evenOracle = createEvenOracle() evenOracle.draw(output='mpl') Operator(evenOracle).data # find 0 and 2 diffuserCircuit_2q = createDiffuser_2q() diffuserCircuit_2q.draw(output='mpl') grover_even = initCircuit(2).compose(createEvenOracle()).compose(createDiffuser_2q()) grover_even.draw(output='mpl') grover_even.measure([0, 1], [0, 1]) job = execute(grover_even, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_even) print(counts) plot_histogram(counts, figsize=(5, 5), color="#66CCCC", title="origin grover - find evens") initState = Kron( state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0, state_0 ) H = np.array([[1,1], [1,-1]]) / (np.sqrt(2)) H_9 = Kron(H, H, H, H, H, H, H, H, H) H_10 = Kron(H, H, H, H, H, H, H, H, H, H) def createTargetState(n): states = [] s = bin(n)[2:].rjust(10, "0") for i in list(s): if i == '0': states.append(state_0) else: states.append(state_1) return Kron(*states) def createTargetStates(p): n = math.floor(p * 1024) state = createTargetState(0) for i in range(1, n): state = state + createTargetState(i) return state / (np.sqrt(n)) target_states = [ [createTargetStates(0.05), 0.05], # 0.05 [createTargetStates(0.1), 0.1], # 0.1 [createTargetStates(0.15), 0.15], # 0.15 [createTargetStates(0.2), 0.2], # 0.2 [createTargetStates(0.25), 0.25], # 0.25 [createTargetStates(0.3), 0.3], # 0.3 [createTargetStates(0.35), 0.35], # 0.35 [createTargetStates(0.4), 0.4], # 0.4 [createTargetStates(0.45), 0.45], # 0.45 [createTargetStates(0.5), 0.5], # 0.5 [createTargetStates(0.55), 0.55], # 0.55 [createTargetStates(0.6), 0.6], # 0.6 [createTargetStates(0.65), 0.65], # 0.65 [createTargetStates(0.7), 0.7], # 0.7 [createTargetStates(0.75), 0.75], # 0.75 [createTargetStates(0.8), 0.8], # 0.8 [createTargetStates(0.85), 0.85], # 0.85 [createTargetStates(0.9), 0.9], # 0.9 [createTargetStates(0.95), 0.95], # 0.95 [createTargetStates(1), 1] # 1 ] def createOriginalOracle(target_state): N = 1024 O = np.eye(N) - 2 * ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createOriginalDiffuser(): N = 1024 R = 2 * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) - np.eye(N) return H_10 @ R @ Dag(H_10) def createHalfPIOracle(target_state): N = 1024 alpha = np.pi / 2 alpha_phase = np.exp(alpha * 1j) # Oracle = I - (1 - e^(αi))|target><target| O = np.eye(N) - (1 - alpha_phase) * \ ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createHalfPIDiffuser(): N = 1024 beta = -np.pi / 2 beta_phase = np.exp(beta * 1j) # R = (1 - e^(βi))|0><0| + e^(βi)I R = (1 - beta_phase) * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) + beta_phase * np.eye(N) return H_10 @ R @ Dag(H_10) def createOneTenthPIOracle(target_state): N = 1024 alpha = np.pi / 10 alpha_phase = np.exp(alpha * 1j) # Oracle = I - (1 - e^(αi))|target><target| O = np.eye(N) - (1 - alpha_phase) * \ ( Dag(target_state).reshape(N, 1) @ target_state.reshape(1, N) ) return O def createOneTenthPIDiffuser(): N = 1024 beta = -np.pi / 10 beta_phase = np.exp(beta * 1j) # R = (1 - e^(βi))|0><0| + e^(βi)I R = (1 - beta_phase) * ( Dag(initState).reshape(N, 1) @ initState.reshape(1, N) ) + beta_phase * np.eye(N) return H_10 @ R @ Dag(H_10) def createYouneOracle(n): O = np.eye(1024) for i in range(n): O[i][i] = 0 O[i][i + 512] = 1 O[i + 512][i + 512] = 0 O[i + 512][i] = 1 return O def createYouneDiffuser(): N = 512 R = (2 * Dag(initState).reshape(N * 2, 1) @ initState.reshape(1, N * 2) - np.eye(N * 2)) return Kron(np.eye(2), H_9) @ R @ Dag(Kron(np.eye(2), H_9)) measurements = getMeasurements(10) # test: one grover iteration x_o = [] y_o = [] for target_state, p in target_states: n = math.floor(p * 1024) O = createOriginalOracle(target_state) diff = createOriginalDiffuser() final_state = diff @ O @ H_10 @ initState probability = 0.0 for i in range(1024): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_o.append(p) y_o.append(probability) plt.title("Original Grover - apply one iterator") plt.scatter(x_o, y_o, color="#66CCCC") # test: best probability x_o_best = [] y_o_best = [] for target_state, p in target_states: n = math.floor(p * 1024) O = createOriginalOracle(target_state) diff = createOriginalDiffuser() final_state = H_10 @ initState theta = math.degrees( math.asin(math.sqrt(p)) ) k_tilde = math.floor( 180 / (4 * theta) - 0.5 ) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(1024): if i < n: probability = probability + measure(measurements[i], final_state) final_state = diff @ O @ final_state probability2 = 0.0 for i in range(1024): if i < n: probability2 = probability2 + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_o_best.append(p) y_o_best.append(max(probability, probability2)) plt.title("Original Grover - best Probability") x = np.arange(-0,1,0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.ylim(0, 1.05) plt.scatter(x_o_best, y_o_best, color="#66CCCC") # test: one grover iteration x_half_pi = [] y_half_pi= [] for target_state, p in target_states: n = math.floor(p * 1024) O = createHalfPIOracle(target_state) diff = createHalfPIDiffuser() final_state = diff @ O @ H_10 @ initState probability = 0.0 for i in range(1024): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_half_pi.append(p) y_half_pi.append(probability) plt.title("pi/2 Grover - apply one iterator") plt.scatter(x_half_pi, y_half_pi, color="#66CCCC") # one grover iteration - pi/2 vs origin fig, ax = plt.subplots() plt.title("Apply one iteration") plt.axvline(1/3, linestyle='--', color="#FFCCCC", label="t/N = 1/3") plt.axhline(0.925, linestyle='--', color="#FFCC00", label="P=0.925") plt.scatter(x_o, y_o, color="#66CCCC", label="Original Grover") plt.scatter(x_half_pi, y_half_pi, color="#FF6666", label="pi/2 phase based Grover") ax.legend() # test: one grover iteration x_ot_pi = [] y_ot_pi= [] for target_state, p in target_states: n = math.floor(p * 1024) O = createOneTenthPIOracle(target_state) diff = createOneTenthPIDiffuser() final_state = diff @ O @ H_10 @ initState probability = 0.0 for i in range(1024): if i < n: probability = probability + measure(measurements[i], final_state) # print(f'p={p}, probability={probability}') x_ot_pi.append(p) y_ot_pi.append(probability) plt.title("0.1pi Grover - apply one iteration") plt.scatter(x_ot_pi, y_ot_pi, color="#66CCCC") # test: best probability x_ot_best = [] y_ot_best = [] for target_state, p in target_states: n = math.floor(p * 1024) O = createOneTenthPIOracle(target_state) diff = createOneTenthPIDiffuser() final_state = H_10 @ initState p_best = 0.0 k_tilde = math.floor( 5 * np.sqrt(1024) ) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(1024): if i < n: probability = probability + measure(measurements[i], final_state) p_best = max(p_best, probability) # print(f'p={p}, probability={probability}') x_ot_best.append(p) y_ot_best.append(p_best) plt.title("0.1pi Grover - best Probability") plt.ylim(0, 1) plt.scatter(x_ot_best, y_ot_best, color="#66CCCC") # best probability - 0.1pi vs origin fig, ax = plt.subplots() plt.title("Best Probability") x = np.arange(-0,1,0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.ylim(0, 1.05) plt.scatter(x_o_best, y_o_best, color="#66CCCC", label="Original Grover") plt.scatter(x_ot_best, y_ot_best, color="#FF6666", label="0.1pi phase based Grover") ax.legend() # test: best probability x_y_best = [] y_y_best = [] for _, p in target_states: n = math.floor(p * 512) O = createYouneOracle(n) diff = createYouneDiffuser() final_state = Kron( np.eye(2), H_9) @ initState p_best = 0.0 k_tilde = math.floor(np.pi / (2 * np.sqrt(2)) * np.sqrt(512 / n)) for i in range(k_tilde): final_state = diff @ O @ final_state probability = 0.0 for i in range(512): if i < n: probability = probability + measure(measurements[i], final_state) + measure(measurements[i + 512], final_state) # print(f'p={p}, probability={probability}') x_y_best.append(p) y_y_best.append(probability) fig, ax = plt.subplots() plt.title("Best Probability") x = np.arange(-0, 1, 0.01) y = 1 - x plt.plot(x, y, ls='--', color="#FFCC00") plt.axhline(0.8472, linestyle='--', color="#99CCFF", label="P=0.8472") plt.axvline(0.308, linestyle='--', color="#FFCCCC", label="P=0.308") plt.ylim(0, 1.05) plt.scatter(x_y_best, y_y_best, color="#FF6666", label="Youne") plt.scatter(x_o_best, y_o_best, color="#66CCCC", label="Original Grover") ax.legend() def createYouneInitCircuit(): circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.h(1) circuit.barrier() return circuit youneInitCircuit = createYouneInitCircuit() youneInitCircuit.draw(output='mpl') def createYouneOracle(): circuit = QuantumCircuit(3, 2) circuit.x(0) circuit.x(1) circuit.ccx(0, 1, 2) circuit.x(0) circuit.x(1) circuit.barrier() circuit.x(0) circuit.ccx(0, 1, 2) circuit.x(0) circuit.barrier() return circuit youneOracle = createYouneOracle() youneOracle.draw(output='mpl') def createYouneDiffuser(): circuit = QuantumCircuit(3, 2) circuit.h(0) circuit.h(1) circuit.barrier(2) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(2) circuit.ccx(0, 1, 2) circuit.barrier(0) circuit.barrier(1) circuit.h(2) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(0) circuit.h(1) # circuit.h(2) circuit.barrier() return circuit youneDiffuser = createYouneDiffuser() youneDiffuser.draw(output='mpl') youneGroverIteration = createYouneOracle().compose(createYouneDiffuser()) grover_youne = createYouneInitCircuit().compose(youneGroverIteration.copy()) grover_youne.draw(output='mpl') grover_youne.measure([0, 1], [0, 1]) job = execute(grover_youne, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_youne) print(counts) plot_histogram(counts, figsize=(4, 5), color="#0099CC", title="youne grover - find evens") def createYouneOracle2(): circuit = QuantumCircuit(3, 2) circuit.x(0) circuit.cx(0, 2) circuit.x(0) circuit.barrier() return circuit youneOracle2 = createYouneOracle2() youneOracle2.draw(output='mpl') # 0 => 4 2 => 6 Operator(youneOracle2).data youneGroverIteration2 = createYouneOracle2().compose(createYouneDiffuser()) grover_youne2 = createYouneInitCircuit().compose(youneGroverIteration2.copy()) grover_youne2.draw(output='mpl') grover_youne2.measure([0, 1], [0, 1]) job = execute(grover_youne2, simulator, shots = 10000) results = job.result() counts = results.get_counts(grover_youne2) print(counts) plot_histogram(counts, figsize=(4, 5), color="#66CCFF", title="youne grover(using another Oracle) - find evens") # https://towardsdatascience.com/behind-oracles-grovers-algorithm-amplitude-amplification-46b928b46f1e def createSATInitCircuit(var, clause): # input + workspace(clause) + checker(1) circuit = QuantumCircuit(var + clause + 1, var) for i in range(var): circuit.h(i) circuit.barrier() return circuit SATInitCircuit = createSATInitCircuit(4, 3) SATInitCircuit.draw(output='mpl') def createSATOracle(var, clause): circuit = QuantumCircuit(var + clause + 1, var) # (a ∧ b ∧ ¬c) circuit.x(2) circuit.mcx([0, 1, 2], 4) circuit.x(2) circuit.barrier() # (¬b ∧d ) circuit.x(1) circuit.mcx([1, 3], 5) circuit.x(1) circuit.barrier() # ¬d circuit.x(3) circuit.cx(3, 6) circuit.x(3) circuit.barrier() # (a ∧ b ∧ ¬c) ∧ ¬(¬b ∧d ) ∧ ¬d circuit.x(5) circuit.mcx([4, 5, 6], 7) circuit.x(5) circuit.barrier() # uncomputation # ¬d circuit.x(3) circuit.cx(3, 6) circuit.x(3) circuit.barrier() # (¬b ∧d ) circuit.x(1) circuit.mcx([1, 3], 5) circuit.x(1) circuit.barrier() # (a ∧ b ∧ ¬c) circuit.x(2) circuit.mcx([0, 1, 2], 4) circuit.x(2) circuit.barrier() return circuit SATOracleCircuit = createSATOracle(4, 3) SATOracleCircuit.draw(output='mpl') def createSATDiffuser(var, clause): circuit = QuantumCircuit(var + clause + 1, var) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.x(0) circuit.x(1) circuit.x(2) circuit.x(3) circuit.mcx([0, 1, 2, 3], var + clause) circuit.x(0) circuit.x(1) circuit.x(2) circuit.x(3) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) return circuit SATDiffuserCircuit = createSATDiffuser(4, 3) SATDiffuserCircuit.draw(output='mpl') SATCircuit = createSATInitCircuit(4, 3).compose(createSATOracle(4, 3)).compose(createSATDiffuser(4, 3)) SATCircuit.draw(output='mpl') SATCircuit.measure([0, 1, 2, 3], [0, 1, 2, 3]) job = execute(SATCircuit, simulator, shots = 10000) results = job.result() counts = results.get_counts(SATCircuit) print(counts) plot_histogram(counts, figsize=(12, 5), color="#CCCCFF", title="SAT - solving (a ∧ b ∧ ¬c) ∧ ¬(¬b ∧d ) ∧ ¬d, k = 1") SATIteration = Operator(createSATOracle(4, 3).compose(createSATDiffuser(4, 3))) SATCircuit2 = createSATInitCircuit(4, 3) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.append(SATIteration, list(range(8))) SATCircuit2.draw(output='mpl') SATCircuit2.measure([0, 1, 2, 3], [0, 1, 2, 3]) job = execute(SATCircuit2, simulator, shots = 10000) results = job.result() counts = results.get_counts(SATCircuit2) print(counts) plot_histogram(counts, figsize=(12, 5), color="#6666FF", title="SAT - solving (a ∧ b ∧ ¬c) ∧ ¬(¬b ∧d ) ∧ ¬d, k = 3") import math math.degrees( math.asin(1 / 4)) for k in range(1, 5): print(f'k = {k}: { math.sin(math.radians( (2 * k+1) * 14.47) ) ** 2 }') # https://arxiv.org/pdf/quant-ph/9605034.pdf inputCircuit_8q = initCircuit(8) inputCircuit_8q.draw(output='mpl') def createOracle_255(): circuit = QuantumCircuit(8, 8) circuit.h(7) circuit.mcx(list(range(7)), 7) circuit.h(7) circuit.barrier() return circuit oracleCircuit_255 = createOracle_255() oracleCircuit_255.draw(output='mpl') Operator(oracleCircuit_255).data for index, row in enumerate(Operator(oracleCircuit_255).data): if abs(row[index] - -1) < 1e-6: print(index) def createR_8q(): circuit = QuantumCircuit(8, 8) circuit.x(7) circuit.x(6) circuit.x(5) circuit.x(4) circuit.x(3) circuit.x(2) circuit.x(0) circuit.x(1) circuit.h(7) circuit.mcx(list(range(7)), 7) circuit.barrier(0) circuit.barrier(1) circuit.barrier(2) circuit.barrier(3) circuit.barrier(4) circuit.barrier(5) circuit.barrier(6) circuit.h(7) circuit.x(2) circuit.x(0) circuit.x(1) circuit.x(5) circuit.x(4) circuit.x(3) circuit.x(7) circuit.x(6) return circuit R_8q = createR_8q() R_8q.draw(output='mpl') def createDiffuser_8q(): circuit = QuantumCircuit(8, 8) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.h(4) circuit.h(5) circuit.h(6) circuit.h(7) circuit = circuit.compose(createR_8q()) circuit.h(0) circuit.h(1) circuit.h(2) circuit.h(3) circuit.h(4) circuit.h(5) circuit.h(6) circuit.h(7) circuit.barrier() return circuit diffuserCircuit_8q = createDiffuser_8q() diffuserCircuit_8q.draw(output='mpl') groverIteration_8q = createGroverIteration(createOracle_255(), createDiffuser_8q()) groverIteration_8q.draw(output='mpl') fullCircuit_8q = initCircuit(8).compose(groverIteration_8q) fullCircuit_8q.draw(output='mpl') degree = math.degrees( math.asin(1 / np.sqrt(256)) ) degree for k in range(1, 15): print(f'k = {k}: { math.sin(math.radians( (2 * k+1) * degree) ) ** 2 }') def groverMeasurements(k): circuit = initCircuit(8) for i in range(k): circuit = circuit.compose(groverIteration_8q.copy()) circuit.measure(list(range(8)), list(range(8))) job = execute(circuit, simulator, shots = 1) results = job.result() counts = results.get_counts(circuit) return list(counts)[0] from random import randrange def solutionFinding(limit): m = 1 lam = 6 / 5 count = 0 # iteration times while count <= limit * (9/4): if m > 1: j = randrange(0, math.floor(m)) if j != 0: count += j answer = groverMeasurements(j) if answer == '11111111': # print(f'Find! - total times: {count}') return count, True m = min(lam * m, limit) # print(f'Not find! - total times: {count}') return count, False times = 0 best = 1000 worst = 0 success = 0 for i in range(1000): time, flag = solutionFinding(np.sqrt(256)) # √N times += time best = min(best, time) worst = max(worst, time) if flag: success += 1 print(f'total test times: {1000}') print('--------------------------') print(f'Average run times: {times / 1000}') print(f'best run times: {best}') print(f'worst run times: {worst}') print(f'Success rate: {success / 1000 * 100:.2f}%')
https://github.com/westernquantumclub/qiskit-intro
westernquantumclub
#In case you don't have qiskit, install it now %pip install qiskit --quiet #Installing/upgrading pylatexenc seems to have fixed my mpl issue #If you try this and it doesn't work, try also restarting the runtime/kernel %pip install pylatexenc --quiet !pip install -Uqq ipdb !pip install qiskit_optimization import networkx as nx import matplotlib.pyplot as plt from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import BasicAer from qiskit.compiler import transpile from qiskit.quantum_info.operators import Operator, Pauli from qiskit.quantum_info import process_fidelity from qiskit.extensions.hamiltonian_gate import HamiltonianGate from qiskit.extensions import RXGate, XGate, CXGate from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, execute import numpy as np from qiskit.visualization import plot_histogram import ipdb from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * #quadratic optimization from qiskit_optimization import QuadraticProgram from qiskit_optimization.converters import QuadraticProgramToQubo %pdb on # def ApplyCost(qc, gamma): # Ix = np.array([[1,0],[0,1]]) # Zx= np.array([[1,0],[0,-1]]) # Xx = np.array([[0,1],[1,0]]) # Temp = (Ix-Zx)/2 # T = Operator(Temp) # I = Operator(Ix) # Z = Operator(Zx) # X = Operator(Xx) # FinalOp=-2*(T^I^T)-(I^T^T)-(T^I^I)+2*(I^T^I)-3*(I^I^T) # ham = HamiltonianGate(FinalOp,gamma) # qc.append(ham,[0,1,2]) task = QuadraticProgram(name = 'QUBO on QC') task.binary_var(name = 'x') task.binary_var(name = 'y') task.binary_var(name = 'z') task.minimize(linear = {"x":-1,"y":2,"z":-3}, quadratic = {("x", "z"): -2, ("y", "z"): -1}) qubo = QuadraticProgramToQubo().convert(task) #convert to QUBO operator, offset = qubo.to_ising() print(operator) # ham = HamiltonianGate(operator,0) # print(ham) Ix = np.array([[1,0],[0,1]]) Zx= np.array([[1,0],[0,-1]]) Xx = np.array([[0,1],[1,0]]) Temp = (Ix-Zx)/2 T = Operator(Temp) I = Operator(Ix) Z = Operator(Zx) X = Operator(Xx) FinalOp=-2*(T^I^T)-(I^T^T)-(T^I^I)+2*(I^T^I)-3*(I^I^T) ham = HamiltonianGate(FinalOp,0) print(ham) #define PYBIND11_DETAILED_ERROR_MESSAGES def compute_expectation(counts): """ Computes expectation value based on measurement results Args: counts: dict key as bitstring, val as count G: networkx graph Returns: avg: float expectation value """ avg = 0 sum_count = 0 for bitstring, count in counts.items(): x = int(bitstring[2]) y = int(bitstring[1]) z = int(bitstring[0]) obj = -2*x*z-y*z-x+2*y-3*z avg += obj * count sum_count += count return avg/sum_count # We will also bring the different circuit components that # build the qaoa circuit under a single function def create_qaoa_circ(theta): """ Creates a parametrized qaoa circuit Args: G: networkx graph theta: list unitary parameters Returns: qc: qiskit circuit """ nqubits = 3 n,m=3,3 p = len(theta)//2 # number of alternating unitaries qc = QuantumCircuit(nqubits,nqubits) Ix = np.array([[1,0],[0,1]]) Zx= np.array([[1,0],[0,-1]]) Xx = np.array([[0,1],[1,0]]) Temp = (Ix-Zx)/2 T = Operator(Temp) I = Operator(Ix) Z = Operator(Zx) X = Operator(Xx) FinalOp=-2*(Z^I^Z)-(I^Z^Z)-(Z^I^I)+2*(I^Z^I)-3*(I^I^Z) beta = theta[:p] gamma = theta[p:] # initial_state for i in range(0, nqubits): qc.h(i) for irep in range(0, p): #ipdb.set_trace(context=6) # problem unitary # for pair in list(G.edges()): # qc.rzz(2 * gamma[irep], pair[0], pair[1]) #ApplyCost(qc,2*0) ham = HamiltonianGate(operator,2 * gamma[irep]) qc.append(ham,[0,1,2]) # mixer unitary for i in range(0, nqubits): qc.rx(2 * beta[irep], i) qc.measure(qc.qubits[:n],qc.clbits[:m]) return qc # Finally we write a function that executes the circuit on the chosen backend def get_expectation(shots=512): """ Runs parametrized circuit Args: G: networkx graph p: int, Number of repetitions of unitaries """ backend = Aer.get_backend('qasm_simulator') backend.shots = shots def execute_circ(theta): qc = create_qaoa_circ(theta) # ipdb.set_trace(context=6) counts = {} job = execute(qc, backend, shots=1024) result = job.result() counts=result.get_counts(qc) return compute_expectation(counts) return execute_circ from scipy.optimize import minimize expectation = get_expectation() res = minimize(expectation, [1, 1], method='COBYLA') expectation = get_expectation() res = minimize(expectation, res.x, method='COBYLA') res from qiskit.visualization import plot_histogram backend = Aer.get_backend('aer_simulator') backend.shots = 512 qc_res = create_qaoa_circ(res.x) backend = Aer.get_backend('qasm_simulator') job = execute(qc_res, backend, shots=1024) result = job.result() counts=result.get_counts(qc_res) plot_histogram(counts)
https://github.com/CapacitorSet/qiskit-fast-shor
CapacitorSet
"""The following is python code utilizing the qiskit library that can be run on extant quantum hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding, for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1, results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>). To find the factor, use the equivalence a^r mod 15. From this: (a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15 Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients, gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15, so the result of running shors algorithm to find the prime factors of an integer using quantum hardware are demonstrated. Note, this is not the same as the technical implementation of shor's algorithm described in this section for breaking the discrete log hardness assumption, though the proof of concept remains.""" # Import libraries from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from numpy import pi from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram # Initialize qubit registers qreg_q = QuantumRegister(5, 'q') creg_c = ClassicalRegister(5, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.reset(qreg_q[0]) circuit.reset(qreg_q[1]) circuit.reset(qreg_q[2]) circuit.reset(qreg_q[3]) circuit.reset(qreg_q[4]) # Apply Hadamard transformations to qubit registers circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) # Apply first QFT, modular exponentiation, and another QFT circuit.h(qreg_q[1]) circuit.cx(qreg_q[2], qreg_q[3]) circuit.crx(pi/2, qreg_q[0], qreg_q[1]) circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4]) circuit.h(qreg_q[0]) circuit.rx(pi/2, qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) # Measure the qubit registers 0-2 circuit.measure(qreg_q[2], creg_c[2]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[0], creg_c[0]) # Get least busy quantum hardware backend to run on provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) # Run the circuit on available quantum hardware and plot histogram from qiskit.tools.monitor import job_monitor job = execute(circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(circuit) plot_histogram(answer) #largest amplitude results correspond with r values used to find the prime factor of N.
https://github.com/DLR-RB/QUEASARS
DLR-RB
from pathlib import Path import os import sys main_directory = Path(os.path.abspath("")).parent sys.path.append(str(main_directory)) from queasars.job_shop_scheduling.problem_instances import Machine, Operation, Job, JobShopSchedulingProblemInstance machines = (Machine(name="m0"), Machine(name="m1"), Machine("m2")) j0op1 = Operation(name="j0op0", machine=machines[2], processing_duration=1, job_name="j0") j0op2 = Operation(name="j0op1", machine=machines[0], processing_duration=1, job_name="j0") j0op3 = Operation(name="j0op2", machine=machines[1], processing_duration=2, job_name="j0") job0 = Job(name="j0", operations=(j0op1, j0op2, j0op3)) j1op1 = Operation(name="j1op1", machine=machines[2], processing_duration=2, job_name="j1") j1op2 = Operation(name="j1op2", machine=machines[0], processing_duration=1, job_name="j1") j1op3 = Operation(name="j1op3", machine=machines[1], processing_duration=1, job_name="j1") job1 = Job(name="j1", operations=(j1op1, j1op2, j1op3)) jssp_instance = JobShopSchedulingProblemInstance(name="2_jobs_3_machines_seed_121", machines=machines, jobs=(job0, job1)) from queasars.job_shop_scheduling.visualization import plot_jssp_problem_instance_gantt plot = plot_jssp_problem_instance_gantt(problem_instance=jssp_instance) from queasars.job_shop_scheduling.domain_wall_hamiltonian_encoder import JSSPDomainWallHamiltonianEncoder encoder = JSSPDomainWallHamiltonianEncoder(jssp_instance=jssp_instance, makespan_limit=6, max_opt_value=100, opt_all_operations_share=0.19, encoding_penalty=319, overlap_constraint_penalty=319, precedence_constraint_penalty=275) print("needed qubits: ", encoder.n_qubits) hamiltonian = encoder.get_problem_hamiltonian() from qiskit_aer.primitives import Sampler from qiskit_algorithms.optimizers import SPSA from dask.distributed import LocalCluster from queasars.minimum_eigensolvers.base.termination_criteria import BestIndividualRelativeChangeTolerance from queasars.utility.spsa_termination import SPSATerminationChecker from queasars.minimum_eigensolvers.evqe.evqe import EVQEMinimumEigensolverConfiguration # The EVQEMinimumEigensolver needs at least a sampler and can also use an estimator. # Here we only use a sampler, as the Critical Value at Risk objective value can # can only be used when only using the sampler. sampler_primitive = Sampler() estimator_primitive = None # If only a sampler is used, the expectation value with respect to the Hamiltonian # is calculated using the measurement distribution provided by the sampler. This # expectation value can also be calculated over only the lower tail of that distribution. # In that case the objective score is also called the Critical Value at Risk. distribution_alpha_tail = 0.5 # The EVQEMinimumEigensolver also needs a qiskit optimizer. It should be # configured to terminate quickly, so that mutations are not overtly expensive. # Here we use the SPSA optimizer with a very limited amount of iterations and a # large step size. termination_checker = SPSATerminationChecker(minimum_relative_change=0.01, allowed_consecutive_violations=2) optimizer = SPSA(maxiter=33, perturbation=0.35, learning_rate=0.43, trust_region=True, last_avg=1, resamplings=1, termination_checker=termination_checker.termination_check) # To help the EVQEMinimumEigensolver deal correctly with terminations based # on the amount of circuit evaluations used, an estimate can be given for how # many circuit evaluations the optimizer uses per optimization run. # SPSA makes two measurements per gradient approximation, which means in total it will # need 66 circuit evaluations for 33 iterations. optimizer_n_circuit_evaluations = 66 # To specify when the EVQEMinimumEigensolver should terminate either max_generations, # max_circuit_evaluations or a termination_criterion should be given. max_generations = None max_circuit_evaluations = None termination_criterion = BestIndividualRelativeChangeTolerance(minimum_relative_change=0.01, allowed_consecutive_violations=1) # A random seed can be provided to control the randomness of the evolutionary process. random_seed = None # The population size determines how many individuals are evaluated each generation. # With a higher population size, fewer generations might be needed, but this also # makes each generation more expensive to evaluate. A reasonable range might be # 10 - 100 individuals per population. population_size = 10 # The initial individuals in the starting population can be initialized with # an arbitrary amount of layers and fully randomized parameter values. This # can be particularly useful if the state |0 .. 0> is a local minima and # the individuals should not start in that state n_initial_layers = 2 randomize_initial_parameter_values = True # Determines how many circuit layers apart two individuals need to be, to be considered to # be of a different species. Reasonable values might be in the range 1 - 5. speciation_genetic_distance_threshold = 1 # This implementation of EVQE offers both roulette wheel selection and tournament selection. # Since tournament selection is more robust, we use it here. use_tournament_selection = True tournament_size = 2 # The alpha and beta penalties penalize quantum circuits of increasing depth (alpha) and # increasing amount of controlled rotations (beta). increase them if the quantum circuits get to # deep or complicated. selection_alpha_penalty = 0.15 selection_beta_penalty = 0.02 # The parameter search probability determines how likely an individual is mutated by optimizing # all it's parameter values. This should not be too large as this is costly. parameter_search_probability = 0.39 # The topological search probability determines how likely a circuit layer is added to an individual # as a mutation. topological_search_probability = 0.79 # The layer removal probability determines how likely circuit layers are removed from an individual # as a mutation. This is a very disruptive mutation and should only be used sparingly to counteract # circuit growth. layer_removal_probability = 0.02 # An executor for launching parallel computation can be specified. # This can be a dask Client or a python ThreadPoolExecutor. If None is # specified a ThreadPoolExecutor with population_size many threads will # be used parallel_executor = LocalCluster(n_workers=10, processes=True, threads_per_worker=1).get_client() # Discerns whether to only allow mutually exclusive access to the Sampler and # Estimator primitive respectively. This is needed if the Sampler or Estimator are not threadsafe and # a ThreadPoolExecutor with more than one thread or a Dask Client with more than one thread per process is used. # For safety reasons this is enabled by default. If the sampler and estimator are threadsafe disabling this # option may lead to performance improvements mutually_exclusive_primitives = False configuration = EVQEMinimumEigensolverConfiguration( sampler=sampler_primitive, estimator=estimator_primitive, distribution_alpha_tail=distribution_alpha_tail, optimizer=optimizer, optimizer_n_circuit_evaluations=optimizer_n_circuit_evaluations, max_generations=max_generations, max_circuit_evaluations=max_circuit_evaluations, termination_criterion=termination_criterion, random_seed=random_seed, population_size=population_size, n_initial_layers=n_initial_layers, randomize_initial_population_parameters=randomize_initial_parameter_values, speciation_genetic_distance_threshold=speciation_genetic_distance_threshold, use_tournament_selection=use_tournament_selection, tournament_size=tournament_size, selection_alpha_penalty=selection_alpha_penalty, selection_beta_penalty=selection_beta_penalty, parameter_search_probability=parameter_search_probability, topological_search_probability=topological_search_probability, layer_removal_probability=layer_removal_probability, parallel_executor=parallel_executor, mutually_exclusive_primitives=mutually_exclusive_primitives, ) from queasars.minimum_eigensolvers.evqe.evqe import EVQEMinimumEigensolver eigensolver = EVQEMinimumEigensolver(configuration=configuration) import logging logger = logging.getLogger("queasars.minimum_eigensolvers.base.evolving_ansatz_minimum_eigensolver") handler = logging.StreamHandler() logger.setLevel(logging.INFO) logger.addHandler(handler) result = eigensolver.compute_minimum_eigenvalue(operator=hamiltonian) quasi_distribution = result.eigenstate.binary_probabilities() from qiskit.visualization import plot_distribution plot_distribution(quasi_distribution, number_to_keep=10) solutions = [] for bitstring, probability in quasi_distribution.items(): if probability < 0.05: continue solution = encoder.translate_result_bitstring(bitstring=bitstring) print("probability: ", probability, "is valid: ", solution.is_valid) print(solution) if solution.is_valid: solutions.append(solution) from queasars.job_shop_scheduling.visualization import plot_jssp_problem_solution_gantt for solution in solutions: plot = plot_jssp_problem_solution_gantt(result=solution)
https://github.com/DLR-RB/QUEASARS
DLR-RB
from pathlib import Path import os import sys main_directory = Path(os.path.abspath("")).parent sys.path.append(str(main_directory)) from docplex.mp.model import Model # set up the model for optimization in docplex optimization_problem = Model() # add the needed variables x = optimization_problem.integer_var(0, 15, "x") y = optimization_problem.integer_var(0, 15, "y") a = optimization_problem.binary_var("a") b = optimization_problem.binary_var("b") # formally describe the minimization task optimization_problem.minimize((2*x-y)**2 + 100*a*x - 100*b*y + (a + b - 1)**2) from qiskit_optimization.translators import from_docplex_mp, to_ising from qiskit_optimization.converters import IntegerToBinary # convert to a quadratic program quadratic_program = from_docplex_mp(model=optimization_problem) # some variables are still integers, convert them to binary variables integer_converter = IntegerToBinary() quadratic_program = integer_converter.convert(problem=quadratic_program) # convert the quadratic program to an ising hamiltonian hamiltonian, offset = to_ising(quad_prog=quadratic_program) from qiskit_aer.primitives import Sampler, Estimator from qiskit_algorithms.optimizers import SPSA from queasars.minimum_eigensolvers.base.termination_criteria import BestIndividualRelativeChangeTolerance from queasars.minimum_eigensolvers.evqe.evqe import EVQEMinimumEigensolverConfiguration # The EVQEMinimumEigensolver needs a sampler and can also use an estimator. # Here we use the sampler and estimator provided by the qiskit_aer simulator. sampler_primitive = Sampler() estimator_primitive = Estimator() # The EVQEMinimumEigensolver also needs a qiskit optimizer. It should be # configured to terminate quickly, so that mutations are not overtly expensive. # Here we use the SPSA optimizer with a very limited amount of iterations and a # large step size. optimizer = SPSA(maxiter=10, perturbation=0.2, learning_rate=0.2, trust_region=True) # To help the EVQEMinimumEigensolver deal correctly with terminations based # on the amount of circuit evaluations used, an estimate can be given for how # many circuit evaluations the optimizer uses per optimization run. # SPSA makes two measurements per iteration, which means in total it will # need 20 circuit evaluations for 10 iterations. optimizer_n_circuit_evaluations = 20 # To specify when the EVQEMinimumEigensolver should terminate either max_generations, # max_circuit_evaluations or a termination_criterion should be given. # Here we choose to terminate once the expectation value of the best individual of a generation # changes by less than 0.5% between generations. max_generations = None max_circuit_evaluations = None termination_criterion = BestIndividualRelativeChangeTolerance(minimum_relative_change=0.005) # A random seed can be provided to control the randomness of the evolutionary process. random_seed = 0 # The population size determines how many individuals are evaluated each generation. # With a higher population size, fewer generations might be needed, but this also # makes each generation more expensive to evaluate. A reasonable range might be # 10 - 100 individuals per population. Here we use a population size of 25. population_size = 25 # If the optimization algorithm can't deal with parameter values of 0 at the beginning # of the optimization, they can be randomized here. For this example we don't need this. randomize_initial_population_parameters = False # Determines how many circuit layers apart two individuals need to be, to be considered to # be of a different species. Reasonable values might be in the range 2 - 5. Here we use 3. speciation_genetic_distance_threshold = 3 # The alpha and beta penalties penalize quantum circuits of increasing depth (alpha) and # increasing amount of controlled rotations (beta). increase them if the quantum circuits get to # deep or complicated. For now we will use values of 0.1 for both penalties. selection_alpha_penalty = 0.1 selection_beta_penalty = 0.1 # The parameter search probability determines how likely an individual is mutated by optimizing # all it's parameter values. This should not be too large as this is costly. Here we will use # a probability of 0.25. parameter_search_probability = 0.25 # The topological search probability determines how likely a circuit layer is added to an individual # as a mutation. This should be a higher probability to encourage exploration of different circuits. # Here we will use a likelihood of 0.5 topological_search_probability = 0.5 # The layer removal probability determines how likely circuit layers are removed from an individual # as a mutation. This is a very disruptive mutation and should only be used sparingly to counteract # circuit growth. Here we will use a probability of 0.1 layer_removal_probability = 0.1 # An executor for launching parallel computation can be specified. # This can be a dask Client or a python ThreadPoolExecutor. If None is # specified a ThreadPoolExecutor with population_size many threads will # be used parallel_executor = None # Discerns whether to only allow mutually exclusive access to the Sampler and # Estimator primitive respectively. This is needed if the Sampler or Estimator are not threadsafe and # a ThreadPoolExecutor with more than one thread or a Dask Client with more than one thread per process is used. # For safety reasons this is enabled by default. If the sampler and estimator are threadsafe disabling this # option may lead to performance improvements mutually_exclusive_primitives = True configuration = EVQEMinimumEigensolverConfiguration( sampler=sampler_primitive, estimator=estimator_primitive, optimizer=optimizer, optimizer_n_circuit_evaluations=optimizer_n_circuit_evaluations, max_generations=max_generations, max_circuit_evaluations=max_circuit_evaluations, termination_criterion=termination_criterion, random_seed=random_seed, population_size=population_size, randomize_initial_population_parameters=randomize_initial_population_parameters, speciation_genetic_distance_threshold=speciation_genetic_distance_threshold, selection_alpha_penalty=selection_alpha_penalty, selection_beta_penalty=selection_beta_penalty, parameter_search_probability=parameter_search_probability, topological_search_probability=topological_search_probability, layer_removal_probability=layer_removal_probability, parallel_executor=parallel_executor, mutually_exclusive_primitives=mutually_exclusive_primitives, ) from queasars.minimum_eigensolvers.evqe.evqe import EVQEMinimumEigensolver eigensolver = EVQEMinimumEigensolver(configuration=configuration) import logging logger = logging.getLogger("queasars.minimum_eigensolvers.base.evolving_ansatz_minimum_eigensolver") handler = logging.StreamHandler() logger.setLevel(logging.INFO) logger.addHandler(handler) result = eigensolver.compute_minimum_eigenvalue(operator=hamiltonian) quasi_distribution = result.eigenstate.binary_probabilities() from qiskit.visualization import plot_distribution plot_distribution(quasi_distribution, number_to_keep=10) for bitstring, probability in quasi_distribution.items(): if probability < 0.05: continue bitlist = [int(char) for char in bitstring][::-1] converted_variables = integer_converter.interpret(bitlist) print("probability: ", probability) print("variable values: ", converted_variables) print("")
https://github.com/DLR-RB/QUEASARS
DLR-RB
from pathlib import Path import os import sys main_directory = Path(os.path.abspath("")).parent sys.path.append(str(main_directory)) from queasars.job_shop_scheduling.problem_instances import Machine, Operation, Job, JobShopSchedulingProblemInstance machines = (Machine(name="m0"), Machine(name="m1")) j0op1 = Operation(name="j0op0", machine=machines[0], processing_duration=2, job_name="j0") j0op2 = Operation(name="j0op1", machine=machines[1], processing_duration=1, job_name="j0") job0 = Job(name="j0", operations=(j0op1, j0op2)) j1op1 = Operation(name="j1op1", machine=machines[0], processing_duration=1, job_name="j1") j1op2 = Operation(name="j1op2", machine=machines[1], processing_duration=2, job_name="j1") job1 = Job(name="j1", operations=(j1op1, j1op2)) jssp_instance = JobShopSchedulingProblemInstance(name="Simple Instance", machines=machines, jobs=(job0, job1)) from queasars.job_shop_scheduling.visualization import plot_jssp_problem_instance_gantt plot = plot_jssp_problem_instance_gantt(problem_instance=jssp_instance) from queasars.job_shop_scheduling.domain_wall_hamiltonian_encoder import JSSPDomainWallHamiltonianEncoder encoder = JSSPDomainWallHamiltonianEncoder(jssp_instance=jssp_instance, makespan_limit=5, opt_all_operations_share=0.19, max_opt_value=100, encoding_penalty=319, overlap_constraint_penalty=319, precedence_constraint_penalty=275) print("needed qubits: ", encoder.n_qubits) hamiltonian = encoder.get_problem_hamiltonian() from qiskit import QuantumCircuit from qiskit.primitives import SamplerResult from qiskit.primitives.base import BaseSamplerV1 from qiskit.primitives.primitive_job import PrimitiveJob from qiskit.transpiler import PassManager # Sampler Primitive Wrapper to adjust for qiskit_ibm_runtime_primitives no longer # offering cloud transpilation for free class TranspilingSampler(BaseSamplerV1): def __init__(self, sampler: BaseSamplerV1, pass_manager: PassManager): super().__init__() self._sampler = sampler self._pass_manager = pass_manager def _run( self, circuits: tuple[QuantumCircuit, ...], parameter_values: tuple[tuple[float, ...], ...], **run_options ) -> PrimitiveJob[SamplerResult]: applied_circuits = [circuit.assign_parameters(params) for circuit, params in zip(circuits, parameter_values)] transpiled_circuits = self._pass_manager.run(applied_circuits) return self._sampler.run(transpiled_circuits, **run_options) import logging from qiskit_algorithms.optimizers import SPSA from qiskit_ibm_runtime import QiskitRuntimeService, Batch, Sampler from qiskit_ibm_runtime.fake_provider.backends import FakeOsaka from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from queasars.utility.spsa_termination import SPSATerminationChecker from queasars.minimum_eigensolvers.evqe.evqe import EVQEMinimumEigensolverConfiguration, EVQEMinimumEigensolver # Connect to the runtime service using your IBM quantum token runtime_service = QiskitRuntimeService(channel="ibm_quantum", token="Your token here!") # Uncomment the second line and replace the backend name accordingly if you want to use real Quantum Hardware! backend = FakeOsaka() #backend = runtime_service.backend("ibm_kyoto") # setup a pass manager to setup the transpilation process pass_manager = generate_preset_pass_manager(optimization_level=1, backend=backend) # Set up a session so that consecutive jobs may run in short succession. with Batch(service=runtime_service, backend=backend) as batch: # The EVQEMinimumEigensolver needs at least a sampler and can also use an estimator. # Here we only use a sampler, as the Critical Value at Risk objective value can # can only be used when only using the sampler. sampler = Sampler(session=batch, options={"shots": 512, "optimization_level": 0, "resilience_level": 0}) sampler = TranspilingSampler(sampler, pass_manager) estimator = None # If only a sampler is used, the expectation value with respect to the Hamiltonian # is calculated using the measurement distribution provided by the sampler. This # expectation value can also be calculated over only the lower tail of that distribution. # In that case the objective score is also called the Critical Value at Risk. distribution_alpha_tail = 0.5 # The EVQEMinimumEigensolver also needs a qiskit optimizer. It should be # configured to terminate quickly, so that mutations are not overtly expensive. # Here we use the SPSA optimizer with a very limited amount of iterations and a # large step size. termination_checker = SPSATerminationChecker(minimum_relative_change=0.01, allowed_consecutive_violations=2) optimizer = SPSA(maxiter=33, perturbation=0.35, learning_rate=0.43, trust_region=True, last_avg=1, resamplings=1, termination_checker=termination_checker.termination_check) # To help the EVQEMinimumEigensolver deal correctly with terminations based # on the amount of circuit evaluations used, an estimate can be given for how # many circuit evaluations the optimizer uses per optimization run. # SPSA makes two measurements per gradient approximation, which means in total it will # need 66 circuit evaluations for 33 iterations. optimizer_n_circuit_evaluations = 66 # To specify when the EVQEMinimumEigensolver should terminate either max_generations, # max_circuit_evaluations or a termination_criterion should be given. # Here we set a fixed generation limit, to reduce the runtime usage. max_generations = 3 max_circuit_evaluations = None termination_criterion = None # A random seed can be provided to control the randomness of the evolutionary process. random_seed = None # The population size determines how many individuals are evaluated each generation. # With a higher population size, fewer generations might be needed, but this also # makes each generation more expensive to evaluate. population_size = 5 # The initial individuals in the starting population can be initialized with # an arbitrary amount of layers and fully randomized parameter values. This # can be particularly useful if the state |0 .. 0> is a local minima and # the individuals should not start in that state n_initial_layers = 1 randomize_initial_parameter_values = True # Determines how many circuit layers apart two individuals need to be, to be considered to # be of a different species. Reasonable values might be in the range 1 - 5. speciation_genetic_distance_threshold = 1 # This implementation of EVQE offers both roulette wheel selection and tournament selection. # Since tournament selection is more robust, we use it here. use_tournament_selection = True tournament_size = 2 # The alpha and beta penalties penalize quantum circuits of increasing depth (alpha) and # increasing amount of controlled rotations (beta). increase them if the quantum circuits get to # deep or complicated. selection_alpha_penalty = 0.15 selection_beta_penalty = 0.02 # The parameter search probability determines how likely an individual is mutated by optimizing # all it's parameter values. This should not be too large as this is costly. parameter_search_probability = 0.39 # The topological search probability determines how likely a circuit layer is added to an individual # as a mutation. This should be a higher probability to encourage exploration of different circuits. topological_search_probability = 0.79 # The layer removal probability determines how likely circuit layers are removed from an individual # as a mutation. This is a very disruptive mutation and should only be used sparingly to counteract # circuit growth. layer_removal_probability = 0.02 # An executor for launching parallel computation can be specified. # This can be a dask Client or a python ThreadPoolExecutor. If None is # specified a ThreadPoolExecutor with population_size many threads will # be used parallel_executor = None # Discerns whether to only allow mutually exclusive access to the Sampler and # Estimator primitive respectively. This is needed if the Sampler or Estimator are not threadsafe and # a ThreadPoolExecutor with more than one thread or a Dask Client with more than one thread per process is used. # For safety reasons this is enabled by default. If the sampler and estimator are threadsafe disabling this # option may lead to performance improvements mutually_exclusive_primitives = True configuration = EVQEMinimumEigensolverConfiguration( sampler=sampler, estimator=estimator, distribution_alpha_tail=distribution_alpha_tail, optimizer=optimizer, optimizer_n_circuit_evaluations=optimizer_n_circuit_evaluations, max_generations=max_generations, max_circuit_evaluations=max_circuit_evaluations, termination_criterion=termination_criterion, random_seed=random_seed, population_size=population_size, n_initial_layers=n_initial_layers, randomize_initial_population_parameters=randomize_initial_parameter_values, speciation_genetic_distance_threshold=speciation_genetic_distance_threshold, use_tournament_selection=use_tournament_selection, tournament_size=tournament_size, selection_alpha_penalty=selection_alpha_penalty, selection_beta_penalty=selection_beta_penalty, parameter_search_probability=parameter_search_probability, topological_search_probability=topological_search_probability, layer_removal_probability=layer_removal_probability, parallel_executor=parallel_executor, mutually_exclusive_primitives=mutually_exclusive_primitives, ) eigensolver = EVQEMinimumEigensolver(configuration=configuration) logger = logging.getLogger("queasars.minimum_eigensolvers.base.evolving_ansatz_minimum_eigensolver") handler = logging.StreamHandler() logger.setLevel(logging.INFO) logger.addHandler(handler) result = eigensolver.compute_minimum_eigenvalue(operator=hamiltonian) from json import dump from queasars.minimum_eigensolvers.base.serialization import EvolvingAnsatzMinimumEigensolverResultJSONEncoder file_path = Path(main_directory, "examples", "queasars_result.json") with open(file_path, "w") as file: dump(obj=result, fp=file, indent=2, cls=EvolvingAnsatzMinimumEigensolverResultJSONEncoder) from qiskit.visualization import plot_distribution quasi_distribution = result.eigenstate.binary_probabilities() plot_distribution(quasi_distribution, number_to_keep=10) solutions = [] for bitstring, probability in quasi_distribution.items(): if probability < 0.1: continue solution = encoder.translate_result_bitstring(bitstring=bitstring) print("probability: ", probability) print(solution) solutions.append(solution) from queasars.job_shop_scheduling.visualization import plot_jssp_problem_solution_gantt for solution in solutions: if solution.is_valid: plot = plot_jssp_problem_solution_gantt(result=solution)
https://github.com/KathrinKoenig/QuantumTopologicalDataAnalysis
KathrinKoenig
import numpy as np import qtda_module as qtda from qiskit.visualization import plot_histogram import matplotlib.pyplot as plt from scipy.spatial import distance_matrix from qiskit import ClassicalRegister, Aer, execute def generate_circles(): phi_values = np.linspace(0, 2*np.pi, 10) small_circle = [[np.cos(phi), np.sin(phi)] for phi in phi_values] phi_values = np.linspace(0, 2*np.pi, 12) large_circle = [[3 + 2*np.cos(phi), 2*np.sin(phi)] for phi in phi_values] return np.array(small_circle + large_circle) point_data = generate_circles() plt.scatter(point_data[:,0], point_data[:,1]) # alternatively a distance matrix (here generated from the point data for exemplification) # can be used dist_mat = distance_matrix(point_data, point_data) filtration = qtda.DataFiltration( data=point_data, # distance_matrix=dist_mat, max_dimension=4, max_edge_length=10 ) filtration.plot_persistence_diagram() n_vertices = 4 # number of qubits to represent the simplicial complex num_eval_qubits = 5 # number of numerical evaluation qubits for the QPE algorithm S0 = [(0,0,0,1),(0,0,1,0), (0,1,0,0),(1,0,0,0)] # 0-simplex: points in the graph S1 = [(0,0,1,1),(0,1,1,0),(1,1,0,0),(1,0,0,1),(1,0,1,0)] # 1-simplex: connection lines between points S2 = [(1,0,1,1)] # 2-simplex: filled triangle S3 = [] state_dict = {0: S0, 1: S1, 2: S2, 3: S3} k = 1 # order of the combinatorial Laplacian qc = qtda.QTDAalgorithm(num_eval_qubits, k, state_dict) qc.draw('mpl') qc.add_register(ClassicalRegister(num_eval_qubits)) #add classical register to measure evaluation qubits for q in qc.eval_qubits: qc.measure(q,q) shots = 1000 backend = Aer.get_backend('qasm_simulator') job = execute(qc, backend, shots=shots) counts = job.result().get_counts(qc) dim = len(state_dict[1]) # dimension of 1-simplex space prob = counts.get("0"*num_eval_qubits)/shots # probability of eigenvalue 0 print('The number of 1-holes is', dim * prob) plot_histogram(counts) shots = 1000 num_eval_qubits = 10 data = qtda.Q_top_spectra(state_dict, num_eval_qubits, shots) spectra = data.get_spectra() for top_order in spectra.keys(): print() print('Topological order: ', top_order) print('Number of holes: ', spectra[top_order][0.0]) print('Dimension of the k-simplex subspace: ', len(data.state_dict[top_order])) print('Eigenvalues of the combinatorial laplacian with dimension of corresponding eigenspaces: ') print(spectra[top_order]) display(plot_histogram(data.get_counts()[top_order])) n_vertices = 4 S0 = [(0,0,0,1),(0,0,1,0), (0,1,0,0),(1,0,0,0)] S1 = [(0,0,1,1),(0,1,1,0),(1,1,0,0),(1,0,0,1),(1,0,1,0)] S2 = [] S3 = [] state_dict = {0: S0, 1: S1, 2: S2, 3: S3} shots = 1000 num_eval_qubits = 10 data = qtda.Q_top_spectra(state_dict, num_eval_qubits, shots) spectra = data.get_spectra() for top_order in spectra.keys(): print() print('Topological order: ', top_order) print('Number of holes: ', spectra[top_order][0.0]) print('Dimension of the k-simplex subspace: ', len(data.state_dict[top_order])) print('Eigenvalues of the combinatorial laplacian with dimension of corresponding eigenspaces: ') print(spectra[top_order]) display(plot_histogram(data.get_counts()[top_order])) import qiskit qiskit.__qiskit_version__
https://github.com/KathrinKoenig/QuantumTopologicalDataAnalysis
KathrinKoenig
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 24 11:04:02 2021 @author: Eric Brunner, Kathrin König, Andreas Woitzik """ import itertools as it import numpy as np import gudhi as gd from scipy.sparse import csr_matrix from scipy.linalg import expm from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import Aer from qiskit import execute from qiskit.extensions import UnitaryGate def vec_to_state(vec): '''converts vec to state''' n_vertices = int(np.log2(len(vec))) basis_list = list(it.product(range(2), repeat=n_vertices)) indices = np.nonzero(vec)[0] return {basis_list[i]: vec[i] for i in indices} def state_to_vec(state): '''state is a list of state''' n_vertices = len(state[0]) basis_list = list(it.product(range(2), repeat=n_vertices)) basis_dict = {basis_list[i]: i for i in range(2**n_vertices)} vec = np.zeros(2**n_vertices) for stat in state: vec[basis_dict[stat]] = 1 return vec def boundary_operator(x_tuple): '''calculates the boundary of a simplex desribed by x_tuple''' x_np = np.array(x_tuple) indices = np.nonzero(x_np)[0] dictionary = {} k = len(indices) for i in range(k): helper = x_np.copy() helper[indices[k-1-i]] = 0.0 dictionary[tuple(helper)] = (-1.)**(i) return dictionary def boundary_operator_dict(n_vertices): ''' returns the boundary operator on n vertices as a dictionary ''' dictionary = {} dictionary[ ( tuple([0]*n_vertices), tuple([0]*n_vertices) ) ] = 0 for bound in it.product(range(2), repeat=n_vertices): helper = boundary_operator(bound) for key in helper: dictionary[(tuple(bound), key)] = helper[key] return dictionary def boundary_operator_dict_k(n_vertices, k): ''' returns the boundary operator of order k on n vertices as a dictionary ''' dictionary = {} dictionary[ ( tuple([0]*n_vertices), tuple([0]*n_vertices) ) ] = 0 for bound in it.product(range(2), repeat=n_vertices): if np.sum(bound) == k+1: helper = boundary_operator(bound) for key in helper: dictionary[(tuple(bound), key)] = helper[key] return dictionary def boundary_operator_crsmat(n_vertices): ''' returns boundary operator on n vertices as sparse crs matrix ''' dictionary = boundary_operator_dict(n_vertices) basis_list = list(it.product(range(2), repeat=n_vertices)) basis_dict = {basis_list[i]: i for i in range(2**n_vertices)} col = np.array([basis_dict[index[0]] for index in dictionary]) row = np.array([basis_dict[index[1]] for index in dictionary]) data = np.array(list(dictionary.values())) return csr_matrix((data, (row, col)), shape=(2**n_vertices, 2**n_vertices)) def boundary_operator_crsmat_k(n_vertices, k): ''' returns boundary operator of order k on n vertices as sparse crs matrix ''' dictionary = boundary_operator_dict_k(n_vertices, k) basis_list = list(it.product(range(2), repeat=n_vertices)) basis_dict = {basis_list[i]: i for i in range(2**n_vertices)} col = np.array([basis_dict[index[0]] for index in dictionary]) row = np.array([basis_dict[index[1]] for index in dictionary]) data = np.array(list(dictionary.values())) return csr_matrix((data, (row, col)), shape=(2**n_vertices, 2**n_vertices)) def combinatorial_laplacian(n_vertices, k): ''' returns combinatorial Laplacian of order k on n vertices as sparse crs matrix ''' delta_k = boundary_operator_crsmat_k(n_vertices, k) delta_kplus1 = boundary_operator_crsmat_k(n_vertices, k+1) return delta_k.conj().T @ delta_k + delta_kplus1 @ delta_kplus1.conj().T def projector_onto_state(n_vertices, state): '''projector onto simplex state''' basis_list = list(it.product(range(2), repeat=n_vertices)) basis_dict = {basis_list[i]: i for i in range(2**n_vertices)} indices = [basis_dict[s] for s in state] return csr_matrix( (np.ones(len(indices)), (indices, indices)), shape=(2**n_vertices, 2**n_vertices) ) def projected_combinatorial_laplacian(n_vertices, k, state_dict): ''' returns the projected combinatorial Laplacian of order k on n vertices as sparse crs matrix ''' p_k = projector_onto_state(n_vertices, state_dict[k]) p_kp1 = projector_onto_state(n_vertices, state_dict[k+1]) delta_k = boundary_operator_crsmat_k(n_vertices, k) @ p_k delta_kplus1 = boundary_operator_crsmat_k(n_vertices, k+1) @ p_kp1 return delta_k.conj().T @ delta_k + delta_kplus1 @ delta_kplus1.conj().T def initialize_projector( state, circuit=None, initialization_qubits=None, circuit_name=None ): ''' initializes projector onto subspace spanned by list of states input circuit has to have classical register ''' if circuit is None: n_vertices = len(state[0]) qr1 = QuantumRegister(n_vertices, name="state_reg") copy_reg = QuantumRegister(n_vertices, name="copy_reg") quantum_circuit = QuantumCircuit(qr1, copy_reg) state_vec = state_to_vec(state) state_vec = state_vec/np.linalg.norm(state_vec) quantum_circuit.initialize(state_vec, qr1) # quantum_circuit.barrier() for k in range(n_vertices): quantum_circuit.cx(qr1[k], copy_reg[k]) # quantum_circuit.barrier() else: n_vertices = len(state[0]) qr1 = QuantumRegister(n_vertices, name="state_reg") copy_reg = QuantumRegister(n_vertices, name="copy_reg") if circuit.num_qubits - n_vertices > 0: anr = QuantumRegister( circuit.num_qubits - n_vertices, name="an_reg" ) quantum_circuit = QuantumCircuit(anr, qr1, copy_reg) else: quantum_circuit = QuantumCircuit(qr1, copy_reg) state_vec = state_to_vec(state) state_vec = state_vec/np.linalg.norm(state_vec) quantum_circuit.initialize(state_vec, qr1) # quantum_circuit.barrier() for k in range(n_vertices): quantum_circuit.cx(qr1[k], copy_reg[k]) # quantum_circuit.barrier() if initialization_qubits is None: init = list(range(n_vertices)) else: init = initialization_qubits rest = list(set(range(circuit.num_qubits)) - set(init)) sub_inst = circuit.to_instruction() if circuit_name is not None: sub_inst.name = circuit_name quantum_circuit.append(sub_inst, rest + init) return quantum_circuit def simplices_to_states(test_list, n_vertices): ''' converts the simplices to a matrix ''' n_states = len(test_list) arr = np.zeros((n_states, n_vertices)) for k in range(n_states): arr[k, test_list[k]] = 1 return arr class DataFiltration: ''' data: point data given by (number_data_points x dim_points)-numpy-array distance_matrix: (n x n)-numpy-array describing the pair-wise distances of n data points Either one of them has to be given! ''' def __init__( self, data=None, distance_matrix=None, max_dimension=None, max_edge_length=None ): if data is not None: self.skeleton = gd.RipsComplex( points=data, max_edge_length=max_edge_length ) elif distance_matrix is not None: self.skeleton = gd.RipsComplex( distance_matrix=distance_matrix, max_edge_length=max_edge_length ) else: print('Either point data or distance matrix has to be provided!') self.Rips_simplex_tree = self.skeleton.create_simplex_tree( max_dimension=max_dimension ) self.num_vertices = self.Rips_simplex_tree.num_vertices() self.num_simplices = self.Rips_simplex_tree.num_simplices() self.filtration = list(self.Rips_simplex_tree.get_filtration()) def get_filtration_states(self, epsilons=None): ''' epsilons: different radia for the filtration returns a dictionary of the filtration ''' if epsilons is None: epsilons = set([x[1] for x in self.filtration]) filt_dict = {} for eps in epsilons: helper_list = [x[0] for x in self.filtration if x[1] <= eps] filt_dict[eps] = simplices_to_states( helper_list, self.num_vertices ) return filt_dict def plot_persistence_diagram(self): ''' plots a diagram for the persistent topologial features ''' bar_codes = self.Rips_simplex_tree.persistence() gd.plot_persistence_diagram(bar_codes, legend=True) def controled_u(unitary, quantum_circuit, num_eval_qubits, n_vertices): # , k, state_dict): ''' returns a quantum circuit with the controled unitary for the quantum phase estimation routine. ''' unit = unitary gate = UnitaryGate(unit) for counting_qubit in range(num_eval_qubits): quantum_circuit.append( gate.control(1), [counting_qubit] + list( range(num_eval_qubits, num_eval_qubits+n_vertices) ) ) unit = unit@unit gate = UnitaryGate(unit) return quantum_circuit def qft_dagger(quantum_circuit, num): """n-qubit QFTdagger the first n qubits in circ""" # Don't forget the Swaps! for qubit in range(num//2): quantum_circuit.swap(qubit, num-qubit-1) for j in range(num): for k in range(j): quantum_circuit.cp(-np.pi/float(2**(j-k)), k, j) quantum_circuit.h(j) def qpe_total(num_eval_qubits, n_vertices, unitary): # , k, state_dict): ''' returns the full circuit of the quantum phase estimation ''' quantum_circuit = QuantumCircuit(num_eval_qubits + n_vertices) for qubit in range(num_eval_qubits): quantum_circuit.h(qubit) controled_u(unitary, quantum_circuit, num_eval_qubits, n_vertices) # , k, state_dict) # Apply inverse QFT qft_dagger(quantum_circuit, num_eval_qubits) return quantum_circuit class QTDAalgorithm(QuantumCircuit): ''' Class that contains the QTDA algorithm. num_eval_qubits: number of qubits for the evaluation in the quantum phase estimation top_order: the topological order state_dict: the dictionary of states ''' def __init__(self, num_eval_qubits, top_order, state_dict, name='QTDA'): n_vertices = len(state_dict[0][0]) qr_eval = QuantumRegister(num_eval_qubits, 'eval') qr_state = QuantumRegister(n_vertices, 'state') qr_copy = QuantumRegister(n_vertices, 'copy') super().__init__(qr_eval, qr_state, qr_copy, name=name) unitary = expm( 1j*projected_combinatorial_laplacian( n_vertices, top_order, state_dict ).toarray() ) ''' we can also directly use the PhaseEstimation routine from Qiskit, which, however, leads to a larger circuit depth than our designed qpe_total implementation ''' # gate = UnitaryGate(unitary) # qpe = qiskit.circuit.library.PhaseEstimation( # num_eval_qubits, unitary=gate, iqft=None, name='QPE' # ) qpe = qpe_total(num_eval_qubits, n_vertices, unitary) sub_inst = qpe.to_instruction() sub_inst.name = ' QPE ' state_vec = state_to_vec(state_dict[top_order]) state_vec = state_vec/np.linalg.norm(state_vec) self.initialize(state_vec, qr_state) # for a better visualisation one can imput barriers, but they slow # down the computation. # self.barrier() for k in range(n_vertices): self.cx(qr_state[k], qr_copy[k]) # self.barrier() self.append(sub_inst, list(range(num_eval_qubits + n_vertices))) self.eval_qubits = list(range(num_eval_qubits)) class Q_top_spectra: ''' data: point data given by (number_data_points x dim_points)-numpy-array distance_matrix: (n x n)-numpy-array describing the pair-wise distances of n data points Either one of them has to be given! ''' def __init__(self, state_dict, num_eval_qubits=6, shots=1000): self.shots = shots self.state_dict = state_dict self.counts = {} for top_order in self.state_dict: print('Topological order: ', top_order) if len(self.state_dict[top_order]) == 0: print( "calculation terminated because no simplex of dimension %s" % (top_order) ) break quantum_circuit = QTDAalgorithm(num_eval_qubits, top_order, self.state_dict) quantum_circuit.add_register(ClassicalRegister(num_eval_qubits, name="phase")) for qubit in quantum_circuit.eval_qubits: quantum_circuit.measure(qubit, qubit) backend = Aer.get_backend('qasm_simulator') job = execute(quantum_circuit, backend, shots=self.shots) self.counts[top_order] = job.result().get_counts(quantum_circuit) def get_counts(self): ''' returns the number of counts ''' return self.counts def get_spectra(self, chop=None): ''' defaul chop: eigenvalues with less then 2% of all shots are regarded as noise (can be adjusted) exception: the eigenspace of eigenvalue 0 is important, even if it is 0-dimensional; hence, this is always included ''' if chop is None: chop = self.shots/50 eigenvalue_dict = {} for top_order in self.counts: eigenvalue_dict[top_order] = {} eigenvalue_dict[top_order][0.0] = 0 vals = np.fromiter(self.counts[top_order].values(), dtype=float) keys = list(self.counts[top_order].keys()) indices = np.where(vals >= chop) new_vals = vals[indices] new_keys = [keys[i] for i in indices[0]] for i in range(len(new_keys)): eigenvalue_dict[top_order][ 2*np.pi*int(new_keys[i], 2)/int(len(new_keys[i])*'1', 2) ] = ( new_vals[i] * len(self.state_dict[top_order]) / self.shots ) return eigenvalue_dict class Q_persistent_top_spectra: ''' data: point data given by (number_data_points x dim_points)-numpy-array distance_matrix: (n x n)-numpy-array describing the pair-wise distances of n data points Either one of them has to be given! ''' def __init__( self, data=None, distance_matrix=None, max_dimension=None, max_edge_length=None, num_eval_qubits=6, shots=1000, epsilons=None ): self.shots = shots self.filt_dict = DataFiltration( data=data, distance_matrix=distance_matrix, max_dimension=max_dimension, max_edge_length=max_edge_length ).get_filtration_states(epsilons=epsilons) self.state_dict = {} for key in sorted(self.filt_dict.keys()): self.state_dict[key] = {} for k in range(1, max_dimension+1): mask = np.sum(self.filt_dict[key], axis=1) == k self.state_dict[key][k-1] = [ tuple(s) for s in self.filt_dict[key][mask, :] ] self.state_dict[key][max_dimension] = [] # an empty state has to be included # on order max_dimension for consistency self.counts = {} for eps in self.state_dict: print() print('Filtration scale: ', eps) print() self.counts[eps] = {} for top_order in self.state_dict[eps]: print('Topological order: ', top_order) if len(self.state_dict[eps][top_order]) == 0: print( "calculation terminated because no simplex of dimension %s" % (top_order) ) break quantum_circuit = QTDAalgorithm( num_eval_qubits, top_order, self.state_dict[eps] ) quantum_circuit.add_register( ClassicalRegister(num_eval_qubits, name="phase") ) for qubit in quantum_circuit.eval_qubits: quantum_circuit.measure(qubit, qubit) backend = Aer.get_backend('qasm_simulator') job = execute(quantum_circuit, backend, shots=self.shots) self.counts[eps][top_order] = job.result().get_counts(quantum_circuit) def get_counts(self): ''' returns the number of counts ''' return self.counts def get_eigenvalues(self, chop=None): ''' defaul chop: eigenvalues with less then 2% of all shots are regarded as noise (can be adjusted) exception: the eigenspace of eigenvalue 0 is important, even if it is 0-dimensional; hence, this is always included ''' if chop is None: chop = self.shots/50 eigenvalue_dict = {} for eps in self.counts: eigenvalue_dict[eps] = {} for top_order in self.counts[eps]: eigenvalue_dict[eps][top_order] = {} eigenvalue_dict[eps][top_order][0.0] = 0 vals = np.fromiter( self.counts[eps][top_order].values(), dtype=float ) keys = list(self.counts[eps][top_order].keys()) indices = np.where(vals >= chop) new_vals = vals[indices] new_keys = [keys[i] for i in indices[0]] for i, key in enumerate(new_keys): eigenvalue_dict[eps][top_order][ 2*np.pi*int(key, 2)/int(len(new_keys[i])*'1', 2) ] = ( new_vals[i] * len(self.state_dict[eps][top_order]) / self.shots ) return eigenvalue_dict
https://github.com/KathrinKoenig/QuantumTopologicalDataAnalysis
KathrinKoenig
import numpy as np import qtda_module as qtda from qiskit.visualization import plot_histogram point_data = np.array([ [0.,0.], [1.,0.], [1.,1.], [0.,1.], ]) # alternatively a distance matrix (here generated from the point data for exemplification) # can be used from scipy.spatial import distance_matrix dist_mat = distance_matrix(point_data, point_data) filtration = qtda.DataFiltration( data=point_data, # distance_matrix=dist_mat, max_dimension=3, max_edge_length=2 ) filtration.plot_persistence_diagram() shots = 1000 num_eval_qubits = 10 # epsilons = [0.1, 1.1, 1.5] data = qtda.Q_persistent_top_spectra( data = point_data, # distance_matrix=distance_matrix, max_dimension=3, max_edge_length=2, num_eval_qubits=num_eval_qubits, shots=shots) eigenvalue_dict = data.get_eigenvalues() for eps in eigenvalue_dict.keys(): print() print() print('Filtration scale: ', eps) for top_order in eigenvalue_dict[eps].keys(): print() print('Topological order: ', top_order) print('Number of holes: ', eigenvalue_dict[eps][top_order][0.0]) print('Dimension of the k-simplex subspace: ', len(data.state_dict[eps][top_order])) print('Eigenvalues of the combinatorial laplacian with dimension of corresponding eigenspaces: ') print(eigenvalue_dict[eps][top_order]) display(plot_histogram(data.get_counts()[eps][top_order])) import qiskit qiskit.__qiskit_version__
https://github.com/KathrinKoenig/QuantumTopologicalDataAnalysis
KathrinKoenig
import numpy as np import qtda_module as qtda from qiskit.visualization import plot_histogram from qiskit import IBMQ from qiskit import execute, QuantumRegister, QuantumCircuit, ClassicalRegister, Aer from qiskit.compiler import transpile provider = IBMQ.load_account() accountProvider = IBMQ.get_provider(hub='ibm-q-fraunhofer',group = 'fhg-all',project = 'ticket') backend = accountProvider.get_backend('ibmq_brooklyn') n_vertices = 3 # number of vertices num_eval_qubits = 3 # number of evaluation qubits S0 = [(0,0,1),(0,1,0), (1,0,0)] # points S1 = [(1,0,1),(0,1,1),(1,1,0)] # lines S2 = [] state_dict = {0: S0, 1: S1, 2: S2} k = 1 # order of the combinatorial Laplacian qc = qtda.QTDAalgorithm(num_eval_qubits, k, state_dict) qc.add_register(ClassicalRegister(num_eval_qubits)) # adding a classical register for measuring for q in qc.eval_qubits: # measure all evaluation qubits qc.measure(q,q) qc.draw('mpl') qcc = transpile(qc, basis_gates=['id', 'rz', 'sx', 'x', 'cx'], layout_method='sabre',optimization_level=3) qa = transpile(qc, backend=backend, basis_gates=['id', 'rz', 'sx', 'x', 'cx'],layout_method='sabre',optimization_level=3) qa.depth() # depth of ibmq_brooklyn qcc.depth() # depth of an arbitrary backend shots = 8192 job = execute(qa, backend, shots=shots) counts = job.result().get_counts(qa) dim = len(state_dict[1]) # dimension of 1-simplex space prob = counts.get("0"*num_eval_qubits)/shots # probability of eigenvalue 0 print('The number of 1-holes is', dim * prob) plot_histogram(counts) import qiskit qiskit.__qiskit_version__
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
##The following statement imports Qiskit libraries in the notebook! import qiskit ##To create a Quantum Circuit with 1 qubit from qiskit import QuantumCircuit as qc cirq = qc(1) ##To plot the circuit using MatplotLib cirq.draw('mpl') #To make a state vector and see it from qiskit.quantum_info import Statevector sv = Statevector.from_label('0') sv #To see the specific Array data sv.data #To apply the new state vector over the constructed circuit new_sv = sv.evolve(cirq) new_sv #To check the State Fidelity from qiskit.quantum_info import state_fidelity state_fidelity(sv , new_sv) #To plot the Q-Sphere from qiskit.visualization import plot_state_qsphere plot_state_qsphere(new_sv.data) #Adding an X gate for qubit flip cirq1 = qc(1) cirq1.x(0) cirq1.draw('mpl') #Adding a hadamard gate to create a superposition cirq2 = qc(1) cirq2.h(0) cirq2.draw('mpl') #Adding a t gate cirq3 = qc(1) cirq3.t(0) cirq3.draw('mpl') #Adding a s gate cirq4 = qc(1) cirq4.s(0) cirq4.draw('mpl') #Creating a multi state vector |00> sv = Statevector.from_label('10010') plot_state_qsphere(sv.data) my_cirq = qc(3, 3) my_sv = Statevector.from_label('000') my_cirq.h(0) my_cirq.cx(0 , 1) my_cirq.cx(0 , 2) display(my_cirq.draw('mpl')) print(my_sv) new_my_sv = my_sv.evolve(my_cirq) print(new_my_sv) plot_state_qsphere(new_my_sv.data) ##Setting numer of shots and plotting the Histogram counts = new_my_sv.sample_counts(shots = 1000) from qiskit.visualization import * from matplotlib import style style.use('bmh') style.use('dark_background') plot_histogram(counts) plot_state_city(my_sv) my_cirq.measure([0,1], [0,1]) my_cirq.draw('mpl') from qiskit import * #SIMULATION simulator = Aer.get_backend('qasm_simulator') result = execute(my_cirq, simulator, shots=10000).result() count = result.get_counts(my_cirq) plot_histogram(count)
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
from qiskit import * %matplotlib inline import numpy as np qc = QuantumCircuit(2, 2) qc.h(0) qc.cx(0, 1) qc.draw('mpl') from qiskit.visualization import plot_state_hinton sim = Aer.get_backend('statevector_simulator') # qasm_simulator, statevector_simulator, unitary_simulator result = execute(qc, backend=sim).result() state = result.get_statevector(qc) plot_state_hinton(state) from qiskit.visualization import * from matplotlib import style style.use('bmh') style.use('dark_background') plot_state_city(state) plot_state_paulivec(result.get_statevector(qc)) from qiskit import IBMQ IBMQ.load_account() from qiskit.tools.monitor import job_monitor provider = IBMQ.get_provider(hub='ibm-q', group='open') backend = provider.get_backend('ibmq_santiago') job = execute(qc, backend=backend, shots=8192) job_monitor(job) from qiskit.visualization import plot_histogram result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
from qiskit import * %matplotlib inline from qiskit.tools.visualization import plot_histogram secretnumber = '101101' circuit = QuantumCircuit(6+1, 6) circuit.h([0,1,2,3,4,5]) circuit.x([6]) circuit.h([6]) circuit.barrier() circuit.cx(5, 6) circuit.cx(3, 6) circuit.cx(2, 6) circuit.cx(0, 6) circuit.barrier() circuit.h([0,1,2,3,4,5]) circuit.barrier() circuit.measure([0,1,2,3,4,5], [0,1,2,3,4,5]) circuit.draw('mpl') from matplotlib import style style.use('bmh') style.use('dark_background') simulator = Aer.get_backend('qasm_simulator') result = execute(circuit, backend = simulator, shots = 1).result() counts = result.get_counts() print(counts) plot_histogram(counts)
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
from qiskit import * import numpy as np %matplotlib inline from matplotlib import style style.use('bmh') style.use('dark_background') def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit display(oracle_qc.draw('mpl')) return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('constant', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw('mpl') from qiskit.visualization import plot_histogram backend = Aer.get_backend('qasm_simulator') results = execute(dj_circuit, backend=backend, shots=1024).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with greater than or equal to (n+1) qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_ourense') # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(dj_circuit, backend=backend, shots=shots, optimization_level=3) job_monitor(job) # Get the results of the computation results = job.result() answer = results.get_counts() plot_histogram(answer)
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
from qiskit import * %matplotlib inline from matplotlib import style style.use('bmh') style.use('dark_background') from math import pi, log def new_mcrz(qc, theta, q_controls, q_target): n = len(q_controls) newtheta = -theta/2**n a = lambda n: log(n-(n&(n-1)), 2) qc.cx(q_controls[n-1], q_target) qc.u1(newtheta, q_target) for i in range(1, 2**n): qc.cx(q_controls[int(a(i))], q_target) qc.u1((-1)**i*newtheta,q_target) QuantumCircuit.new_mcrz = new_mcrz def new_mcz(qc, q_controls, q_target): L = q_controls + [q_target] n = len(L) qc.u1(pi/2**(n-1), L[0]) for i in range(2, n+1): qc.new_mcrz(pi/2**(n-i), L[0:i-1], L[i-1]) QuantumCircuit.new_mcz = new_mcz Search_key = '1010' # Total number of qubits to represent the search space num_qubits = len(Search_key) # Search space size search_space = 2**num_qubits print('Number of Qubits:', num_qubits) print('Search-space size:', search_space) from math import sqrt, ceil def Uw(qc, key): ctrl_on = '' if num_qubits % 4 == 0: ctrl_on = '1' elif num_qubits % 4 == 2: ctrl_on = '0' for i, bin_val in enumerate(reversed(key)): if bin_val == ctrl_on: qc.x(i) qc.new_mcz([range(num_qubits-1)], num_qubits-1) for i, bin_val in enumerate(reversed(key)): if bin_val == ctrl_on: qc.x(i) return qc def Us(qc): qc.h(range(num_qubits)) qc.x(range(num_qubits)) qc.new_mcz([range(num_qubits-1)], num_qubits-1) qc.x(range(num_qubits)) qc.h(range(num_qubits)) return qc def GroverSearch(qc, key): steps = 0 if num_qubits < 4: steps = int(sqrt(search_space) * pi / 4) else: steps = ceil(sqrt(search_space) * pi / 4) if len(key) > num_qubits: print('Invalid length of key, please check the key input.') return qc.h(range(num_qubits)) for i in range(steps): qc = Uw(qc, key) qc = Us(qc) return qc qc = QuantumCircuit(num_qubits, num_qubits) qc = GroverSearch(qc, Search_key) qc.measure(range(num_qubits), range(num_qubits)) qc.draw(output='mpl') print('Depth of Circuit:', qc.depth()) from qiskit.visualization import plot_histogram from qiskit.tools.monitor import job_monitor simulator = Aer.get_backend('qasm_simulator') result = execute(qc, backend=simulator, shots=8192).result() plot_histogram(result.get_counts(qc)) from qiskit import IBMQ IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q', group='open') device = provider.get_backend('ibmq_ourense') job = execute(qc, backend=device, shots=8192) job_monitor(job) result = job.result() plot_histogram(result.get_counts(qc)) provider = IBMQ.get_provider(hub='ibm-q', group='open') device = provider.get_backend('ibmq_ourense') job = execute(qc, backend=device, shots=8192) job_monitor(job) result = job.result() plot_histogram(result.get_counts(qc))
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
from qiskit.quantum_info import Operator from qiskit import QuantumCircuit, Aer, execute import numpy as np from qiskit.visualization import plot_state_qsphere def phase_oracle(n, indices_to_mark, name = 'Oracle'): # create a qAertum circuit on n qubits qc = QuantumCircuit(n, name=name) ### WRITE YOUR CODE BETWEEN THESE LINES - START oracle_matrix = np.identity(2**n) for i in indices_to_mark: oracle_matrix[i][i] = -1 ### WRITE YOUR CODE BETWEEN THESE LINES - END # convert your matrix (called oracle_matrix) into an operator, and add it to the quantum circuit qc.unitary(Operator(oracle_matrix), range(n)) return qc def diffuser(n): # create a quantum circuit on n qubits qc = QuantumCircuit(n, name='Diffuser') ### WRITE YOUR CODE BETWEEN THESE LINES - START qc.h(range(n)) qc.append(phase_oracle(n, [0]), range(n)) qc.h(range(n)) ### WRITE YOUR CODE BETWEEN THESE LINES - END return qc def simulate_and_display(qc, step, it): sim = Aer.get_backend('statevector_simulator') res = execute(qc, backend=sim, shots=1).result() display(plot_state_qsphere(res.get_statevector(qc)))#.savefig(('./pics/out_'+step+it+'.png')) def Grover(n, indices_of_marked_elements): # Create a quantum circuit on n qubits qc = QuantumCircuit(n, n) # Determine r r = int(np.floor(np.pi/4*np.sqrt(2**n/len(indices_of_marked_elements)))) print(f'{n} qubits, basis states {indices_of_marked_elements} marked, {r} rounds') # Display the initial state simulate_and_display(qc, 'init', '0') # step 1: apply Hadamard gates on all qubits qc.h(range(n)) simulate_and_display(qc, 'hadamard', '0') # step 2: apply r rounds of the phase oracle and the diffuser for it in range(r): qc.append(phase_oracle(n, indices_of_marked_elements), range(n)) simulate_and_display(qc, 'oracle', str(it)) qc.append(diffuser(n), range(n)) simulate_and_display(qc, 'diff', str(it)) # step 3: measure all qubits qc.measure(range(n), range(n)) return qc mycircuit = Grover(5, [2, 29]) mycircuit.draw(output='text') from qiskit import Aer, execute simulator = Aer.get_backend('qasm_simulator') counts = execute(mycircuit, backend=simulator, shots=1000).result().get_counts(mycircuit) from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
from qiskit import QuantumCircuit alice_key = '11100100010001001001001000001111111110100100100100010010010001010100010100100100101011111110001010100010010001001010010010110010' alice_bases = '11000110011000100001100101110000111010011001111111110100010111010100000100011001101010100001010010101011010001011001110011111111' def alice_prepare_qubit(qubit_index): ## WRITE YOUR CODE HERE qc = QuantumCircuit(1, 1) if alice_key[qubit_index] == '1': qc.x(0) if alice_bases[qubit_index] == '1': qc.h(0) return qc ## WRITE YOUR CODE HERE
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
import matplotlib as mpl import numpy as np import matplotlib.pyplot as plt from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) qc.barrier() # Alice now sends the qubit to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) # Alice now sends the qubit to Bob # but Eve intercepts and tries to read it qc.measure(0, 0) qc.barrier() # Eve then passes this on to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(assemble(qc)) plot_histogram(job.result().get_counts()) n = 100 ## Step 1 # Alice generates bits. alice_bits = np.random.randint(0,2,n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = np.random.randint(0,2,n) # Function to compare the bits & bases generated by alice, and then 'encode' the message. Basically determines the state of the qubit/photon to send. def encode_message(bits, bases): message = [] for i in range(n): qc = QuantumCircuit(1,1) if bases[i] == 0: # Prepare qubit in Z-basis if bits[i] == 0: pass else: qc.x(0) else: # Prepare qubit in X-basis if bits[i] == 0: qc.h(0) else: qc.x(0) qc.h(0) qc.barrier() message.append(qc) return message # Alice computes the encoded message using the function defined above. message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = np.random.randint(0,2,n) # Function to decode the message sent by alice by comparing qubit/photon states with Bob's generated bases. def measure_message(message, bases): backend = Aer.get_backend('aer_simulator') measurements = [] for q in range(n): if bases[q] == 0: # measuring in Z-basis message[q].measure(0,0) if bases[q] == 1: # measuring in X-basis message[q].h(0) message[q].measure(0,0) aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(message[q], shots=1, memory=True) result = aer_sim.run(qobj).result() measured_bit = int(result.get_memory()[0]) measurements.append(measured_bit) return measurements # Decode the message according to his bases bob_results = measure_message(message, bob_bases) ## Step 4 # Function to perform sifting i.e. disregard the bits for which Bob's & A;ice's bases didnot match. def remove_garbage(a_bases, b_bases, bits): good_bits = [] for q in range(n): if a_bases[q] == b_bases[q]: # If both used the same basis, add # this to the list of 'good' bits good_bits.append(bits[q]) return good_bits # Performing sifting for Alice's and Bob's bits. alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) print("Alice's key after sifting (without interception)", alice_key) print("Bob's key after sifting (without interception) ", bob_key) # # Step 5 # # Function for parameter estimation i.e. determining the error rate by comparing subsets taen from both Alice's key & Bob's key. # def sample_bits(bits, selection): # sample = [] # for i in selection: # # use np.mod to make sure the # # bit we sample is always in # # the list range # i = np.mod(i, len(bits)) # # pop(i) removes the element of the # # list at index 'i' # sample.append(bits.pop(i)) # return sample # # Performing parameter estimation & disregarding the bits used for comparison from Alice's & Bob's key. # sample_size = 15 # bit_selection = np.random.randint(0,n,size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") ## Step 1 alice_bits = np.random.randint(2, size=n) ## Step 2 alice_bases = np.random.randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = np.random.randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = np.random.randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) print("Alice's key after sifting (with interception)", alice_key) print("Bob's key after sifting (with interception) ", bob_key) # ## Step 5 # sample_size = 15 # bit_selection = np.random.randint(n, size=sample_size) # bob_sample = sample_bits(bob_key, bit_selection) # alice_sample = sample_bits(alice_key, bit_selection) num = 0 for i in range(0,len(bob_key)): if alice_key[i] == bob_key[i]: num = num + 1 matching_bits = (num/len(bob_key))*100 print(matching_bits,"% of the bits match.") plt.rcParams['axes.linewidth'] = 2 mpl.rcParams['font.family'] = ['Georgia'] plt.figure(figsize=(10.5,6)) ax=plt.axes() ax.set_title('') ax.set_xlabel('$n$ (Number of bits drawn from the sifted keys for determining error rate)',fontsize = 18,labelpad=10) ax.set_ylabel(r'$P(Eve\ detected)$',fontsize = 18,labelpad=10) ax.xaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.yaxis.set_tick_params(which='major', size=8, width=2, direction='in', top='on') ax.tick_params(axis='x', labelsize=20) ax.tick_params(axis='y', labelsize=20) ax. xaxis. label. set_size(20) ax. yaxis. label. set_size(20) n = 30 x = np.arange(n+1) y = 1 - 0.75**x ax.plot(x,y,color = plt.cm.rainbow(np.linspace(0, 1, 5))[0], marker = "s", markerfacecolor='r')
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
import numpy as np coeff_list = [] for y in range(16): coeff = 0 coeff += np.exp(-np.pi * 1j * 3 * y / 8) coeff += np.exp(-np.pi * 1j * 7 * y / 8) coeff += np.exp(-np.pi * 1j * 11 * y / 8) coeff += np.exp(-np.pi * 1j * 15 * y / 8) if np.abs(coeff.real) > 1e-14 or np.abs(coeff.imag) > 1e-14: coeff_list.append(coeff) else: coeff_list.append(0) for c in range(len(coeff_list)): print(f'{c} : {coeff_list[c]}')
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
import numpy as np from matplotlib import pyplot as plt from matplotlib import style %matplotlib inline style.use('bmh') style.use('dark_background') a = 13; N = 15; num_iter = 15 # Finding the period values = [] for x in range(num_iter): values.append((a**x) % N) print(values) plt.plot(values) start = values[0] period = 0 for i in range(1, len(values)): if values[i] == start: period = i break print('Period:', period) a = 18; N = 77; num_iter = 80 # Finding the period values = [] for x in range(num_iter): values.append((a**x) % N) print(values) plt.plot(values) start = values[0] period = 0 for i in range(1, len(values)): if values[i] == start: period = i break print('Period:', period)
https://github.com/AbeerVaishnav13/Quantum-Programs
AbeerVaishnav13
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import IBMQ, Aer, transpile, assemble from qiskit.visualization import plot_histogram, plot_bloch_multivector, array_to_latex from qiskit.extensions import Initialize from qiskit.ignis.verification import marginal_counts from qiskit.quantum_info import random_statevector # Loading your IBM Quantum account(s) provider = IBMQ.load_account() ## SETUP # Protocol uses 3 qubits and 2 classical bits in 2 different registers qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical bits crx = ClassicalRegister(1, name="crx") # in 2 different registers teleportation_circuit = QuantumCircuit(qr, crz, crx) def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a,b) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, psi, a): qc.cx(psi, a) qc.h(psi) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): """Measures qubits a & b and 'sends' the results to Bob""" qc.barrier() qc.measure(a,0) qc.measure(b,1) qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) measure_and_send(teleportation_circuit, 0 ,1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) # Apply gates if the registers qc.z(qubit).c_if(crz, 1) # are in the state '1' qr = QuantumRegister(3, name="q") crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx") teleportation_circuit = QuantumCircuit(qr, crz, crx) ## STEP 1 create_bell_pair(teleportation_circuit, 1, 2) ## STEP 2 teleportation_circuit.barrier() # Use barrier to separate steps alice_gates(teleportation_circuit, 0, 1) ## STEP 3 measure_and_send(teleportation_circuit, 0, 1) ## STEP 4 teleportation_circuit.barrier() # Use barrier to separate steps bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() # Create random 1-qubit state psi = random_statevector(2) # Display it nicely display(array_to_latex(psi, prefix="|\\psi\\rangle =")) # Show it on a Bloch sphere plot_bloch_multivector(psi) init_gate = Initialize(psi) init_gate.label = "init" ## SETUP qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits crz = ClassicalRegister(1, name="crz") # and 2 classical registers crx = ClassicalRegister(1, name="crx") qc = QuantumCircuit(qr, crz, crx) ## STEP 0 # First, let's initialize Alice's q0 qc.append(init_gate, [0]) qc.barrier() ## STEP 1 # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) ## STEP 3 # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) ## STEP 4 # Bob decodes qubits bob_gates(qc, 2, crz, crx) # Display the circuit qc.draw() sim = Aer.get_backend('aer_simulator') qc.save_statevector() out_vector = sim.run(qc).result().get_statevector() plot_bloch_multivector(out_vector)
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# (1) Run this cell for obtaining the suitable Grover's operator for the defined satisfiability problem from sat_circuits_engine import SATInterface # Defining constraints and varibales in a high-level fashion high_level_constraints_string = ( "(x0 != x1)," \ "(x3 != x4)," \ "(x1 != x3)," \ "(x3 != x5)," \ "(x5 != x6)," \ "(x0 != x2)," \ "(x1 != x6)," \ "(x4 != x6)" ) high_level_vars = {"x0": 1, "x1": 1, "x2": 1, "x3": 2, "x4": 1, "x5": 1, "x6": 1} # Initialization of the interface, `save_data=True` for exporting data into a dedicated directory demo_1 = SATInterface( high_level_constraints_string=high_level_constraints_string, high_level_vars=high_level_vars, name="demo_1", save_data=True ) # `obtain_grover_operator()` returns a dictionary of the form: `{ # 'operator': QC_OBJ, # 'decomposed_operator': QC_OBJ, # 'transpiled_operator': QC_OBJ, # 'high_level_to_bit_indexes_map': MAP_OBJ # }`. # Transpilation is done according to the `transpile_kwargs` arg, which by default is set to: # {'basis_gates': ['u', 'cx'], 'optimization_level': 3}. grover_operator_data = demo_1.obtain_grover_operator( transpile_kwargs={'basis_gates': ['u', 'cx'], 'optimization_level': 3} ) demo_1.save_display_grover_operator(grover_operator_data, display=True) # (2) Run this cell for obtaining the overall SAT circuit: # A `QuantumCircuit` object that solves the satisfiability problem, ready for execution on a backend. from qiskit_aer import AerSimulator # The number of iterations over Grover's iterator (= operator + diffuser) depends on the number of solutions. # If the number of solutions is known, it is best to provide it. # If the number of solutions is unknown, `solutions_num=-1` will initiate an classical # iterative stochastic process that looks for an adequate number of iterations for the problem. # Needless to mention, this process add some computational overheads. # `solutions_num=-2` will generate a dynamic circuit to overcome the need for providing the number of solutions. # NOTE - this is a BETA feature which is currently under development. For now it failes # to scale and works properly only for small circuits (~ < 15 qubits). overall_circuit_data = demo_1.obtain_overall_sat_circuit( grover_operator=grover_operator_data['operator'], solutions_num=6, backend=AerSimulator() ) demo_1.save_display_overall_circuit(overall_circuit_data, display=True) # (3) Run this cell for executing the overall SAT circuit and obtaining the results. results_data = demo_1.run_overall_sat_circuit( circuit=overall_circuit_data['circuit'], backend=AerSimulator(), shots=300 ) demo_1.save_display_results(results_data, display=True) # (1) Run this cell to obtain Grover's operator for the defined constraints from sat_circuits_engine import SATInterface # Initialization of the interface, `save_data=False` = not saving and exporting data demo_2 = SATInterface( constraints_string="([4][3][2] == [0]),([2] == [3]),([3] == [4]),([0] != [1]),([8][7] == [3][2])", num_input_qubits=9, name="demo_2", save_data=False ) # Obtaining Grover's operator objects grover_operator_data = demo_2.obtain_grover_operator( transpile_kwargs={'basis_gates': ['u', 'cx'], 'optimization_level': 3} ) operator = grover_operator_data['operator'] decomposed_operator = grover_operator_data['decomposed_operator'] transpiled_operator = grover_operator_data['transpiled_operator'] # Displaying results print("The high level operator circuit diagram:") display(operator.draw('mpl', fold=-1)) print("The decomposed operator circuit diagram:") display(decomposed_operator.draw('mpl', fold=-1)) print(f"Gates count in the transpiled operator: {transpiled_operator.count_ops()}") # Run this cell to initiate an interactive user interface from sat_circuits_engine import SATInterface SATInterface() # (1) Run this cell for obtaining the suitable Grover's operator for the defined satisfiability problem from sat_circuits_engine import SATInterface # Defining constraints and varibales in a high-level fashion high_level_constraints_string = ( "(x0 != x1)," \ "(x2 + 2 != x3)," \ "(x3 != x4)," \ "(x3 != x1)," \ "(x5 != x6)," \ "(x0 != x2)," \ "(x1 != x5)," \ "(x4 != x6)," \ "(x3 == 2)," \ "(x2 + x4 + x3 == 3)" ) high_level_vars = {"x0": 1, "x1": 1, "x2": 1, "x3": 2, "x4": 1, "x5": 1, "x6": 1} # Initialization of the interface, `save_data=True` for exporting data into a dedicated directory benchmark_demo = SATInterface( high_level_constraints_string=high_level_constraints_string, high_level_vars=high_level_vars, name="benchmark_demo", save_data=True ) grover_operator_data = benchmark_demo.obtain_grover_operator( transpile_kwargs={'basis_gates': ['u', 'cx'], 'optimization_level': 3} ) benchmark_demo.save_display_grover_operator(grover_operator_data, display=True) # (2) Run this cell for obtaining the overall SAT circuit: # a `QuantumCircuit` object that solves the satisfiability problem, ready for execution on a backend. from qiskit_aer import AerSimulator overall_circuit_data = benchmark_demo.obtain_overall_sat_circuit( grover_operator=grover_operator_data['operator'], solutions_num=1, backend=AerSimulator() ) benchmark_demo.save_display_overall_circuit(overall_circuit_data, display=True) # (3) Run this cell for executing the overall SAT circuit and obtaining the results. # WARNING: this specific circuit is heavy for a classical computer to simualte, it might take a while. results_data = benchmark_demo.run_overall_sat_circuit( circuit=overall_circuit_data['circuit'], backend=AerSimulator(), shots=50 ) benchmark_demo.save_display_results(results_data, display=True) from sat_circuits_engine import SATInterface SATInterface()
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GroverConstraintsOperator class. """ from itertools import chain from typing import Optional from qiskit import QuantumCircuit, QuantumRegister from qiskit.transpiler.passes import RemoveBarriers from sat_circuits_engine.constraints_parse import ParsedConstraints from sat_circuits_engine.circuit.single_constraint import SingleConstraintBlock class GroverConstraintsOperator(QuantumCircuit): """ A quantum circuit implementation of Grover's operator constructed for a specific combination of constraints defined by a user. """ def __init__( self, parsed_constraints: ParsedConstraints, num_input_qubits: int, insert_barriers: Optional[bool] = True, ) -> None: """ Args: parsed_constraints (ParsedConstraints): a dict-like object that associates every (single) constraint string (the keys) with its `SingleConstraintParsed` object (the values). num_input_qubits (int): number of qubits in the input register. insert_barriers (Optional[bool] = True): if True, barriers will be inserted to separate between constraints. """ self.num_input_qubits = num_input_qubits self.parsed_constraints = parsed_constraints self.insert_barriers = insert_barriers # Construction a `SingleConstraintBlock` object for every constraint. A few more # attributes defined within self.constraints_blocks_build(), see its docstrings for details. self.constraints_blocks_build() # Initializing the quantum circuit that implements the Grover operator we seek for self.input_reg = QuantumRegister(self.num_input_qubits, "input_reg") self.comparison_aux_reg = QuantumRegister(self.comparison_aux_width, "comparison_aux_reg") self.left_aux_reg = QuantumRegister(self.left_aux_width, "left_aux_reg") self.right_aux_reg = QuantumRegister(self.right_aux_width, "right_aux_reg") self.out_reg = QuantumRegister(self.out_qubits_amount, "out_reg") self.ancilla = QuantumRegister(1, "ancilla") super().__init__( self.input_reg, self.left_aux_reg, self.right_aux_reg, self.comparison_aux_reg, self.out_reg, self.ancilla, name="Operator", ) # Assembling `self` to a complete Grover operator self.assemble() def __repr__(self) -> str: if self.parsed_constraints.high_level_constraints_string is not None: repr_string = self.parsed_constraints.high_level_constraints_string else: repr_string = self.parsed_constraints.constraints_string return f"{self.__class__.__name__}('{repr_string}')" def constraints_blocks_build(self) -> None: """ Parses the `self.parsed_constraints` attribute and defines the attributes: - `self.single_constraints_objects` (List[SingleConstraintBlock]): a list of `SingleConstraintBlock` objects, each built from a single constraint string. - `self.comparison_aux_qubits_needed` (List[int]): a list of auxiliary qubits needed for implementing the comparison between the two sides of the constraint's equation. - `self.left_aux_qubits_needed` (List[int]): a list of auxiliary qubits needed for implementing arithmetics on the left side of the constraint's equation. - `self.right_aux_qubits_needed` (List[int]): a list of auxiliary qubits needed for implementing arithmetics on the right side of the constraint's equation. - `self.comparison_aux_width` (int): Total number of comparison aux qubits. - `self.left_aux_width` (int): Total number of left aux qubits. - `self.right_aux_width` (int): Total number of right aux qubits. - `self.out_qubits_amount` (int): the number of "out qubits" needed, while each "out qubit" is used to write the result of applying a single constraint into (|1> if the constraint is satisfied, |0> otherwise). """ # For each constraint we build a `SingleConstraintBlock` object self.single_constraints_objects = list( map(SingleConstraintBlock, self.parsed_constraints.values()) ) # Sorting the constraints such that the most costly ones will be the first and last # (First and last constraint are not uncomputed - only when the whole operator is uncomputed). self.single_constraints_objects.sort(key=lambda x: x.transpiled.count_ops()["cx"], reverse=True) self.single_constraints_objects.append(self.single_constraints_objects[0]) self.single_constraints_objects.pop(0) self.comparison_aux_qubits_needed = [] self.left_aux_qubits_needed = [] self.right_aux_qubits_needed = [] # For each we count which and how many aux qubits are needed for constraint_block in self.single_constraints_objects: if "comparison_aux" in constraint_block.regs.keys(): self.comparison_aux_qubits_needed.append(len(constraint_block.regs["comparison_aux"][0])) else: self.comparison_aux_qubits_needed.append(0) self.left_aux_qubits_needed.append(len(constraint_block.regs["sides_aux"][0])) self.right_aux_qubits_needed.append(len(constraint_block.regs["sides_aux"][1])) # Total number of qubits for each type self.comparison_aux_width = sum(self.comparison_aux_qubits_needed) self.left_aux_width = sum(self.left_aux_qubits_needed) self.right_aux_width = sum(self.right_aux_qubits_needed) self.out_qubits_amount = len(self.single_constraints_objects) def assemble(self) -> None: """ Assembles a whole Grover operator (`self`) by performing the following steps: (1) Allocating qubits for each `SingleConstraintBlock` object (from `self.single_constraints_objects`) - for input qubits, auxiliary qubits of all kinds and a single "out" qubit for each constraint. (2) Appending all the `SingleConstraintBlock` objects. (3) Applying a "marking" operation by applying some controlled-not gate to the ancilla qubit. (4) Appending an uncomputation of the entire operation assembled in (1) + (2). """ # Iterating over constraints, appending one `SingleConstraintBlock` object in each iteration for count, constraint_block in enumerate(self.single_constraints_objects): # Defining the `qargs` paramater for the `constraint_block` to be appended to `self` qargs = [] # Appending the input bits indexes from both sides of the constraint's equation to `qargs` left_input_qubits = list(chain(*constraint_block.parsed_data.sides_bit_indexes[0])) if left_input_qubits: qargs += self.input_reg[left_input_qubits] right_input_qubits = list(chain(*constraint_block.parsed_data.sides_bit_indexes[1])) if right_input_qubits: qargs += self.input_reg[right_input_qubits] # Appending the various aux bits indexes to `qargs` for aux_tuple in [ (self.left_aux_qubits_needed, self.left_aux_reg), (self.right_aux_qubits_needed, self.right_aux_reg), (self.comparison_aux_qubits_needed, self.comparison_aux_reg), ]: if aux_tuple[0][count] != 0: aux_bottom_index = sum(aux_tuple[0][0:count]) aux_top_index = aux_bottom_index + aux_tuple[0][count] qargs += aux_tuple[1][aux_bottom_index:aux_top_index][::-1] # Appending blocks of constraints to `self` # First constraint if count == 0: qargs.append(self.out_reg[count]) self.append(instruction=constraint_block, qargs=qargs) # If there is only one constraint if self.out_qubits_amount == 1: # Saving inverse for future uncomputation qc_dagger = self.inverse() qc_dagger.name = "Uncomputation" # "Marking" states by writing to ancilla self.cx(self.out_reg[count], self.ancilla) # Last constraint elif count == len(self.single_constraints_objects) - 1: qargs.append(self.out_reg[count]) self.append(instruction=constraint_block, qargs=qargs) # Barriers are used for visualization purposes and should be removed before transpiling if self.insert_barriers: self.barrier() # Saving inverse for future uncomputation qc_dagger = RemoveBarriers()(self.inverse()) qc_dagger.name = "Uncomputation" # "Marking" states by writing to ancilla self.ccx(self.out_reg[count - 1], self.out_reg[count], self.ancilla) # Intermidate constraints else: qargs.append(self.out_reg[count + 1]) # Chaining constraints with RCCX gates, to avoid costly MCX gate all over the out qubits self.append(instruction=constraint_block, qargs=qargs) self.rccx(self.out_reg[count + 1], self.out_reg[count - 1], self.out_reg[count]) self.append(instruction=constraint_block.inverse(), qargs=qargs) # Barriers are used for visualization purposes and should be removed before transpiling if self.insert_barriers: self.barrier() # Applying uncomputation self.append(instruction=qc_dagger, qargs=self.qubits)
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GroverDiffuser class. """ from typing import Optional from qiskit import QuantumCircuit, QuantumRegister class GroverDiffuser(QuantumCircuit): """ Implementation of Grover's diffuser operator. """ def __init__(self, num_input_qubits: int, num_ancilla_qubits: Optional[int] = 0) -> None: """ Initializes a `QuantumCircuit` object. Implements the gate-combination needed for Grover's diffuser operator. Args: num_input_qubits (int): number of input qubits. num_ancilla_qubits (Optional[int] = 0): number of ancilla qubits available, for the purpose of decomposing the MCX gate needed for implementing Grover's diffuser, in an efficient and shallow-as-possible manner. """ input_reg = QuantumRegister(num_input_qubits, "input_reg") ancilla_reg = QuantumRegister(num_ancilla_qubits, "ancilla_reg") super().__init__(input_reg, ancilla_reg, name="Diffuser") # Pre-settings. Choosing the shallowest possible MCX decomposing mode target_qubit = input_reg[num_input_qubits - 1] if num_ancilla_qubits == 0: mode = "noancilla" elif num_ancilla_qubits < num_input_qubits - 2: mode = "recursion" else: mode = "v-chain" # Diffuser implementation self.h(input_reg) self.x(input_reg) self.h(target_qubit) self.mcx( control_qubits=input_reg[list(range(num_input_qubits - 1))], target_qubit=target_qubit, ancilla_qubits=ancilla_reg, mode=mode, ) self.h(target_qubit) self.x(input_reg) self.h(input_reg)
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SATCircuit class. """ from typing import Optional from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from sat_circuits_engine.circuit.grover_constraints_operator import GroverConstraintsOperator from sat_circuits_engine.circuit.grover_diffuser import GroverDiffuser class SATCircuit(QuantumCircuit): """ Assembles an overall circuit for the given SAT problem from the building blocks: - Input state preparation. - Grover's iterator - consists of: * `GroverConstraintsOperator` object (Grover's operator). * `GroverDiffuser` object (Grover's diffuser). - Measurement. """ def __init__( self, num_input_qubits: int, grover_constraints_operator: GroverConstraintsOperator, iterations: Optional[int] = None, insert_barriers: Optional[bool] = True, ) -> None: """ Args: num_input_qubits (int): the number of qubits in the input register. grover_constraints_operator (GroverConstraintsOperator): a child object of `QuantumCircuit` which is Grover's operator implementation for the specific constraints entered by the user. iterations (Optional[int] = None): number of required iterations over Grover's iterator. # If `None` (default) - the number of iterations is unknown and a dynamic circuit approach should be applied (TODO THIS IS A FUTURE FEATURE). insert_barriers (Optional[bool] = True): if True, barriers will be inserted to separate between segments and iterations. """ self.num_input_qubits = num_input_qubits self.operator = grover_constraints_operator self.iterations = iterations self.insert_barriers = insert_barriers # Total number of auxiliary qubits (of all kinds) self.total_aux_width = ( self.operator.comparison_aux_width + self.operator.left_aux_width + self.operator.right_aux_width ) self.input_reg = QuantumRegister(num_input_qubits, "input_reg") self.aux_reg = QuantumRegister(self.total_aux_width, "aux_reg") self.out_reg = QuantumRegister(self.operator.out_qubits_amount, "out_reg") self.ancilla = QuantumRegister(1, "ancilla") self.results = ClassicalRegister(num_input_qubits, "results") # Input, auxiliary and out Qubit objects stacked in one list self.input_aux_out_qubits = self.input_reg[:] + self.aux_reg[:] + self.out_reg[:] diffuser_ancillas = len(self.input_aux_out_qubits) - num_input_qubits self.diffuser = GroverDiffuser( num_input_qubits=num_input_qubits, num_ancilla_qubits=diffuser_ancillas ) # No `iterations` specified = dynamic circuit # TODO this feature is not supported yet and shouldn't be used if iterations is None: # Register to apply weak measurements with self.probe = QuantumRegister(1, "probe") self.probe_result = ClassicalRegister(1, "probe_result") super().__init__( self.input_reg, self.aux_reg, self.out_reg, self.ancilla, self.probe, self.results, self.probe_result, ) # Initializing input state self.set_init_state() # Applying dynamic while loop over Grover's iterator coditioned by `probe` self.dynamic_loop() # `iterations` specified = static circuit else: super().__init__( self.input_reg, self.aux_reg, self.out_reg, self.ancilla, self.results, ) # Initializing input state self.set_init_state() # Appending `iterations` iterations over Grover's iterator for _ in range(iterations): self.add_iteration() def dynamic_loop(self) -> None: """ TODO this feature is not supported yet and shouldn't be used. """ condition = (self.probe_result, 0) qargs_with_probe = self.input_aux_out_qubits[:] + self.probe[:] with self.while_loop(condition): self.append(self.diffuser, qargs=self.input_aux_out_qubits) self.add_iteration() self.append(self.operator, qargs=qargs_with_probe) self.measure(self.probe, self.probe_result) def set_init_state(self) -> None: """ Setting the input register to 2^(self.num_input_qubits) = N equal superposition of states, and the ancilla to an eigenstate of the NOT gate: |->. """ self.h(self.input_reg) self.x(self.ancilla) self.h(self.ancilla) if self.insert_barriers: self.barrier() def add_iteration(self) -> None: """ Appends an iteration over Grover's iterator (`operator` + `diffuser`) to `self`. """ qargs_with_ancilla = self.input_aux_out_qubits[:] + self.ancilla[:] self.append(self.operator, qargs=qargs_with_ancilla) self.append(self.diffuser, qargs=self.input_aux_out_qubits) if self.insert_barriers: self.barrier() def add_input_reg_measurement(self) -> None: """ Appends a final measurement of the input register to `self`. """ self.measure(self.input_reg, self.results)
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ `SingleConstraintBlock` and `ArithmeticExprBlock` classes. """ from typing import Union, Optional, List, Dict, Any import numpy as np from qiskit import QuantumCircuit, QuantumRegister, transpile from qiskit.circuit import Qubit from qiskit.circuit.library import QFT from sat_circuits_engine.constraints_parse import SingleConstraintParsed from sat_circuits_engine.util.settings import TRANSPILE_KWARGS class SingleConstraintBlock(QuantumCircuit): """ A quantum circuit implementation of a single constraint. To be integrated as a block in a `GroverConstriantsOperator` object. """ def __init__( self, parsed_data: SingleConstraintParsed, transpile_kwargs: Optional[Dict[str, Any]] = None ) -> None: """ Args: parsed_data (SingleConstraintParsed): an object contains all necessary information for a single constraint, in a specific API (see `help(SingleConstraintParsed)` for API annotation). transpile_kwargs (Optional[Dict[str, Any]] = None): keyword arguments for self-transpilation that takes place in this class. If None (default) - `TRANSPILE_KWARGS` constant is used. """ self.parsed_data = parsed_data self.constraint_index = self.parsed_data.constraint_index if transpile_kwargs is None: transpile_kwargs = TRANSPILE_KWARGS self.transpile_kwargs = transpile_kwargs # Handling arithmetic expressions and constructing the container - `self.regs` self.handle_arithmetics() # Creating a unified list of registers to unpack as args for `super().__init__` regs_list = [] for item in self.regs.values(): regs_list.extend(item) # Initializing circuit super().__init__(*regs_list, name=self.parsed_data.string_to_show) # Assembling a circuit implementation of the given constraint self.assemble() # Saving a transpiled version of `self`. # Used by `GroverConstraintsOperator` to set the order of constraints. self.transpiled = transpile(self, **self.transpile_kwargs) def __repr__(self) -> str: return f"{self.__class__.__name__}" f"('{self.parsed_data.string_to_show}')" def handle_arithmetics(self) -> None: """ Handles arithmetic operations from both sides of the constraint's equation, if needed. Initiates some of the quantum registers that compose the circuit (`self`). The left side of the constraint's equation is indexed as 0, and the right side is inexed as 1. Defines attributes: self.regs (Dict[str, List[QuantumRegister]]): container for quantum registers. self.arith_blocks (List[Optioanl[ArithmeticExprBlock] = None]): Indexed containter for `ArithmeticExprBlock` objects. None (default) - if no artihmetics in a specific side. self.integer_flags (List[bool]): Indexed container for boolean values. True for a side that contains bare integer only, otherwise False. """ self.regs = { # Initializing empty input registers "inputs": [QuantumRegister(0, "input_left"), QuantumRegister(0, "input_right")], # Initializing empty auxiliary register for performing arithmetics "sides_aux": [ QuantumRegister(0, f"c{self.constraint_index}_aux_left"), QuantumRegister(0, f"c{self.constraint_index}_aux_right"), ], } self.arith_blocks = [None, None] self.integer_flags = [False, False] # Iterating over the 2 sides of the constraint's equation and constructing the needed registers for side, (bit_indexes, int_bitstring) in enumerate( zip(self.parsed_data.sides_bit_indexes, self.parsed_data.sides_int_bitstrings) ): # Case A - arithmetic expression if (len(bit_indexes) > 1) or (len(bit_indexes) == 1 and int_bitstring is not None): # Case A.1 -the other side of the equations is a bare integer compared_value = None if ( not self.parsed_data.sides_bit_indexes[side ^ 1] and self.parsed_data.sides_int_bitstrings[side ^ 1] ): compared_value = int(self.parsed_data.sides_int_bitstrings[side ^ 1], 2) # Generating the arithmetic expression block self.arith_blocks[side] = ArithmeticExprBlock( bit_indexes, int_bitstring, compared_value=compared_value ) # Creating an input register that fits with the arithmetic expression block self.regs["inputs"][side] = QuantumRegister( self.arith_blocks[side].total_operands_width, self.regs["inputs"][side].name ) # Creating an auxiliary register for arithmetics self.regs["sides_aux"][side] = QuantumRegister( self.arith_blocks[side].result_reg_width, self.regs["sides_aux"][side].name ) # Case B - single variable expression elif len(bit_indexes) == 1 and int_bitstring is None: self.regs["inputs"][side] = QuantumRegister( len(bit_indexes[0]), self.regs["inputs"][side].name ) # Case C - bare integer expression else: self.integer_flags[side] = True def assemble(self) -> None: """ Assembles a complete circuit implementation of the given constraint. """ compare_operands = [] # Figuring the compared operand for each of the contraint's equation sides for arith_block, input_reg, side_aux_reg, integer_flag, int_bitstring in zip( self.arith_blocks, self.regs["inputs"], self.regs["sides_aux"], self.integer_flags, self.parsed_data.sides_int_bitstrings, ): # Arithmetic block operand if arith_block is not None: # Appeding the arithmetic block to the `self` self.append(arith_block, qargs=input_reg[:] + side_aux_reg[::-1]) compare_operands.append(side_aux_reg) else: # Integer bitstring operand if integer_flag: compare_operands.append(int_bitstring) # A bundle of qubits (from the input register) operand else: compare_operands.append(input_reg) # Applying the methods for the necessary comparison if self.integer_flags[0]: self.qubits_int_comparison( qubits_bundle=compare_operands[1], int_bitstring=compare_operands[0], operator=self.parsed_data.operator, ) elif self.integer_flags[1]: self.qubits_int_comparison( qubits_bundle=compare_operands[0], int_bitstring=compare_operands[1], operator=self.parsed_data.operator, ) else: self.unbalanced_qubits_comparison( qubits_bundle_1=compare_operands[0], qubits_bundle_2=compare_operands[1], operator=self.parsed_data.operator, ) def qubits_int_comparison( self, qubits_bundle: Union[List[Union[Qubit, int]], QuantumRegister], int_bitstring: str, *, operator: Optional[str] = "==", ) -> None: """ Compares a bundle of qubits to an integer. Args: qubits_bundle (Union[List[Union[Qubit, int]], QuantumRegister]): compared qubits. int_bitstring (str): compared integer (in a bitstring form). operator (Optional[str] = "=="): comparison operator, default is "==", and the other option is "!=". Raises: AssertionError: If `int_bitstring` is an integer larger than any integer that can be possibly represented by `qubits_bundle`. """ # Adding an "out" qubit to write the result into self.add_out_reg() # Creating pointers for convenience len_int = len(int_bitstring) len_qubits_bundle = len(qubits_bundle) # Catching non-logical input assert len_int <= len_qubits_bundle, ( f"The integer ({int_bitstring}) length is longer than compared" f"qubits ({qubits_bundle}), no solution." ) # In the case the equation is unbalanced, filling the integer with zeros from the left if len_int < len_qubits_bundle: int_bitstring = int_bitstring.zfill(len_qubits_bundle) # Setting `len_int` again after filling `int_bitstring` with zeros from the left len_int = len(int_bitstring) # Flipping bits in `qubits_bundle` in order to compare them to '0' digits in `int_bitstring` flipping_zeros = QuantumCircuit(len_int, name=f"{int_bitstring}_encoding") for digit, qubit in zip(int_bitstring, flipping_zeros.qubits): if digit == "0": flipping_zeros.x(qubit) self.append(flipping_zeros, qargs=qubits_bundle) # Writing results to the "out" qubit # TODO need to generalize RCCX and RCCCX to the n-control qubits case if len_qubits_bundle == 2: self.rccx(qubits_bundle[0], qubits_bundle[1], self.regs["out"][0]) elif len_qubits_bundle == 3: self.rcccx(qubits_bundle[0], qubits_bundle[1], qubits_bundle[2], self.regs["out"][0]) else: self.mcx(qubits_bundle, self.regs["out"][0]) # Flipping outcome in the case the operator is "!=" if operator == "!=": self.x(self.regs["out"][0]) # Uncomputing flipped bits self.append(flipping_zeros, qargs=qubits_bundle) def unbalanced_qubits_comparison( self, qubits_bundle_1: Union[List[Union[Qubit, int]], QuantumRegister], qubits_bundle_2: Union[List[Union[Qubit, int]], QuantumRegister], *, operator: Optional[str] = "==", ) -> None: """ The most general case of comparing 2 bundles of qubits. The bundles might be of the same length ("balanced") or not ("unbalanced"). Args: qubits_bundle_1, qubits_bundle_2 (Union[List[Union[Qubit, int]], QuantumRegister]): - Qubits of bundle_1 are compared to qubits of bundle_2. operator (Optional[str] = "=="): comparison operator, default is "==", and the other option is "!=". """ # Creating pointers for convenience len_bundle_1 = len(qubits_bundle_1) len_bundle_2 = len(qubits_bundle_2) # The case where a comparison aux register is needed if len_bundle_1 > 1 or len_bundle_2 > 1: self.add_comparison_aux_reg(min(len_bundle_1, len_bundle_2)) # Adding an "out" qubit to write the result into self.add_out_reg() # In this case, only 2 qubits comparison is needed, and then the method's execution halts if len_bundle_1 == 1 and len_bundle_2 == 1: self.two_qubits_comparison( qubits_bundle_1, qubits_bundle_2, self.regs["out"][0], operator=operator ) return # Setting short and long bundles and cutting the long bundle to 2 parts. # The right part of the long bundle is comparble to the short bundle. if len_bundle_1 > len_bundle_2: long = qubits_bundle_1 short = qubits_bundle_2 long_right_cut = qubits_bundle_1[-len_bundle_2:] else: long = qubits_bundle_2 short = qubits_bundle_1 long_right_cut = qubits_bundle_2[-len_bundle_1:] len_short = len(short) len_long = len(long) long_left_cut = long[: len_long - len_short] # Comparing the rightmost bits in the longer bundle to the bits of the shorter bundle self.balanced_qubits_comparison( short, long_right_cut, self.regs["comparison_aux"][0][:len_short] ) # Flipping the left bits in the longer bundle (in order to check whether they all zeros) if long_left_cut: self.x(long_left_cut) # Writing results to the "out" qubit # TODO need to generalize RCCX and RCCCX to the n-control qubits case q = long_left_cut + self.regs["comparison_aux"][0][:] if len(q) == 2: self.rccx(q[0], q[1], self.regs["out"][0]) elif len(q) == 3: self.rcccx(q[0], q[1], q[2], self.regs["out"][0]) else: self.mcx(q, self.regs["out"][0]) # Flipping outcome in the case the operator is "!=" if operator == "!=": self.x(self.regs["out"][0]) # Uncomputing flipping left bits in the longer bundle if long_left_cut: self.x(long_left_cut) def balanced_qubits_comparison( self, qubits_bundle_1: Union[List[Union[Qubit, int]], QuantumRegister], qubits_bundle_2: Union[List[Union[Qubit, int]], QuantumRegister], aux_qubits: Union[List[Union[Qubit, int]], QuantumRegister], out_qubit: Optional[Union[Qubit, QuantumRegister, int]] = None, *, operator: Optional[str] = "==", ) -> None: """ Comparing 2 bundles of qubits. The bundles must be of the same length ("balanced"). Args: qubits_bundle_1, qubits_bundle_2 (Union[List[Union[Qubit, int]], QuantumRegister]): - Qubits of bundle_1 are compared to qubits of bundle_2. aux_qubits (Union[List[Union[Qubit, int]], QuantumRegister]): auxiliary qubits for comparing `qubits_bundle_1` with `qubits_bundle_2`. out_qubit (Optional[Union[Qubit, QuantumRegister, int]] = None): A qubit to write the result into. If None - not writing result, probably the method is being used by another method and not intended to write results. operator (Optional[str] = "=="): comparison operator, default is "==", and the other option is "!=". """ # No auxilliary qubits = the case of comparing 1 single qubit from each side if len(aux_qubits) == 0: aux_qubits = out_qubit # Implementation of: qubits_bundle_1 == qubits_bundle_2. # Comparing each pair of qubits and writing results to auxilliary qubits. for q1, q2, aux in zip(qubits_bundle_1, qubits_bundle_2, aux_qubits): self.two_qubits_comparison(q1, q2, aux, operator="==") if out_qubit is not None: print("============ CHECK CHECK CHECK CHECK CHECK ======================") # Writing overall outcome to the "out" qubit # TODO need to generalize RCCX and RCCCX to the n-control qubits case if len(aux) == 2: self.rccx(aux[0], aux[1], out_qubit) elif len(aux) == 3: self.rcccx(aux[0], aux[1], aux[2], out_qubit) else: self.mcx(aux, out_qubit) # Flipping outcome in the case the operator is "!=" if operator == "!=": self.x(out_qubit) def two_qubits_comparison( self, qubit_1: Union[Qubit, QuantumRegister, int], qubit_2: Union[Qubit, QuantumRegister, int], qubit_result: Union[Qubit, QuantumRegister, int], *, operator: Optional[str] = "==", ) -> None: """ Compares values of 2 qubits. Args: qubit_1 (Union[Qubit, QuantumRegister, int]): first qubit to compare. qubit_2 (Union[Qubit, QuantumRegister, int]): second qubit to compare. qubit_result (Union[Qubit, QuantumRegister, int]): qubit to write the results to. operator (Optional[str] = "=="): comparison operator, default is "==", and the other option is "!=". """ # XOR implementaion for qubit_1 != qubit_2 self.cx(qubit_1, qubit_result) self.cx(qubit_2, qubit_result) # Flipping the result for qubit_1 == qubit_2 if operator == "==": self.x(qubit_result) def add_comparison_aux_reg(self, width: int) -> None: """ Appends an auxilliary register for the comparison (between sides of equation) operations. Adds it also to self.regs under the key "comparison_aux" (accessible via `self.regs['comparison_aux'][0]). Args: width (int): number of qubits in the register. """ aux_reg = QuantumRegister(width, f"c{self.constraint_index}_aux_comparison") self.add_register(aux_reg) self.regs["comparison_aux"] = [aux_reg] def add_out_reg(self) -> None: """ Appends a single-qubit "out" register to this object. Adds it also to self.regs under the key "out" (accessible via `self.regs['out'][0]). """ out_reg = QuantumRegister(1, f"c{self.constraint_index}_out") self.add_register(out_reg) self.regs["out"] = [out_reg] class ArithmeticExprBlock(QuantumCircuit): """ A quantum circuit implementation of an arithmetic expression. To be integrated as a block in a `SingleConstraintBlock` object. """ def __init__( self, single_side_bits_indexes: List[List[int]], single_side_integer_bitstring: Optional[str] = None, compared_value: int = None, block_name: Optional[str] = None, ) -> None: """ Args: single_side_bits_indexes (List[List[int]]): A list of lists, each list contains bit indexes that form a single bundle. single_side_integer_bitstring (Optional[str] = None): If exists, the binary string of the integer in an arithmetic expression. compared_value (int = None): - An integer value that the arithmetic expression is compared to (in the "other side" of the constraint's equation). - If defined - this class will try to reduce the width of its results register using modular addition, after negating collisions possibilities. block_name (Optional[str] = None): a name for this circuit block. If None, a meaningful name is given by this class automatically. """ self.bits_indexes = single_side_bits_indexes self.integer_bitstring = single_side_integer_bitstring # Translating qubits bundles into a list of number of qubits in each bundle self.operands_widths = list(map(lambda x: len(x), self.bits_indexes)) self.total_operands_width = sum(self.operands_widths) # Computing the necessary width for the results aux register self.result_reg_width = self.compute_addition_result_width( self.operands_widths, self.integer_bitstring, compared_value ) # Defining registers self.bundles_regs = list( map(lambda x: QuantumRegister(x[1], f"reg_bundle_{x[0]}"), enumerate(self.operands_widths)) ) self.result_reg = QuantumRegister(self.result_reg_width, "result_reg") # Initiazling circuit super().__init__(*self.bundles_regs, self.result_reg) # Performing addition of all operands self.add() # Assigning name to this circuit block if block_name is None: block_name = f"Addition:{self.bits_indexes} + {self.integer_bitstring}" self.name = block_name def add(self) -> None: """ Performing addition of all operands. NOTE: Supports only non-repeated values (VALID = [3][2] + [1] + 5, NOT VALID = [3][2] + [2][1]). """ # Assigning `default_bitstring` value to `results_qubits` if self.integer_bitstring is None: self.integer_bitstring = "".zfill(self.result_reg_width) else: self.integer_bitstring = self.integer_bitstring.zfill(self.result_reg_width) for digit, result_qubit in zip(reversed(self.integer_bitstring), self.result_reg): if digit == "1": self.x(result_qubit) # Performing "default addition" (= copying values of each bit with CNOTS) of one # operand (the most suitable one) to `self.result_reg`, if possible (Before applying QFT). default_added_operand_index = self.default_addition() if default_added_operand_index is not None: self.bundles_regs.pop(default_added_operand_index) if self.bundles_regs: # Transforming `results_qubits` to Fourier basis self.append(QFT(self.result_reg_width), qargs=self.result_reg) # Fourier addition of all bundles for reg in self.bundles_regs: self.fourier_add_single_bundle(reg, self.result_reg) # Transforming `results_qubits` back to the computational basis self.append(QFT(self.result_reg_width, inverse=True), qargs=self.result_reg) def default_addition(self) -> int: """ Performs in bit-to-bit addition of one of the operands to `self.result_reg` if possible. Returns: (int): the index of the operand that has been added. """ # Counting the number of trailing zeros (i.e, number of available bits to copy values into) try: trailing_zeros_num = self.integer_bitstring[::-1].index("1") except ValueError: trailing_zeros_num = self.result_reg_width # Finding the best operand to copy its value (the longest one that's shorter # or equal in length to the number of trailing zeros). operand_index = None for num_zeros in reversed(range(1, trailing_zeros_num + 1)): try: operand_index = self.operands_widths.index(num_zeros) trailing_zeros_num = num_zeros break except ValueError: pass # If possible, performing the optimal bit-to-bit addition if operand_index is not None: self.cx(self.bundles_regs[operand_index], self.result_reg[:trailing_zeros_num][::-1]) return operand_index def fourier_add_single_bundle( self, qubits_to_add: Union[List[Union[Qubit, int]], QuantumRegister], target_qubits: Union[List[Union[Qubit, int]], QuantumRegister], ) -> None: """ Perform an addition in Fourier basis. Args: qubits_to_add (Union[List[Union[Qubit, int]], QuantumRegister]): a bundle of qubits to sum their values. target_qubits (Union[List[Union[Qubit, int]], QuantumRegister]): qubits to write the result into, must be already in Fourier basis. """ # `qubits_to_add` are reversed due to bits ordering issues (consistency with little-endian) for control_index, control_q in enumerate(reversed(qubits_to_add)): for target_index, target_q in enumerate(target_qubits): k = len(target_qubits) - target_index phase = (2 * np.pi * (2**control_index)) / (2**k) # Phase shifts of 2pi multiples are indistinguishable = Breaking from the inner loop if phase == 2 * np.pi: break self.cp(theta=phase, control_qubit=control_q, target_qubit=target_q) @staticmethod def compute_addition_result_width( regs_widths: List[int], default_bitstring: Optional[str] = None, compared_value: Optional[int] = None, ) -> int: """ Calculates `width` - the (minimal) width of the register that should contain the sum of values of the registers (whose widths are stored in `regs_width`) with `default_bitstring`. Args: regs_widths (List[int]): number of bits in each of the summed registers. default_bitstring (Optional[str] = None): integer bitstring operand. compared_value (Optional[int] = None): - An integer value that the arithmetic expression is compared to (in the "other side" of the constraint's equation). Returns: (int) - `width`. """ if default_bitstring is None: default_bitstring = "0" # Just 1 operand = no addition if len(regs_widths) == 1 and default_bitstring == "0": return 0 # The maximum possible sum integer value max_sum = sum(map(lambda x: (2**x) - 1, regs_widths)) + int(default_bitstring, 2) # The bitstring length of the maximum possible sum width = len(bin(max_sum)[2:]) # Trying to reduce width if modular addition can't cause collisions w.r.t to `compared_value` if compared_value is not None: if max_sum - compared_value < compared_value and width > len(bin(compared_value)[2:]): width -= 1 return width
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ `calc_iterations`, `find_iterations_unknown` functions. `is_circuit_match` and `randint_exclude` functions can be considered as sub-functions of `find_iterations_unknown`. """ import random import copy from typing import Tuple, Optional import numpy as np from qiskit import transpile, QuantumCircuit from qiskit.providers.backend import Backend from sat_circuits_engine.util import timer_dec from sat_circuits_engine.util.settings import BACKENDS from sat_circuits_engine.circuit import SATCircuit, GroverConstraintsOperator from sat_circuits_engine.classical_processing.classical_verifier import ClassicalVerifier from sat_circuits_engine.constraints_parse import ParsedConstraints, SATNoSolutionError def calc_iterations(num_input_qubits: int, num_solutions: int) -> int: """ Simple classical calculation of the number of iterations over Grover's iterator when the number of solutions for the SAT problem is known. Args: num_input_qubits (int): number of input qubits. num_solutions (int): known number of solutions to the SAT problem. Returns: (int): the exact number of iterations needed for the given SAT problem. """ # N is the dimension of the Hilbert space spanned by `num_input_qubits` N = 2**num_input_qubits # The formula for calculating the number of iterations iterations = int((np.pi / 4) * np.sqrt(N / num_solutions)) return iterations @timer_dec("Found number of iterations in ") def find_iterations_unknown( num_input_qubits: int, grover_constraints_operator: GroverConstraintsOperator, parsed_constraints: ParsedConstraints, precision: Optional[int] = 10, backend: Optional[Backend] = BACKENDS(0), step: Optional[float] = 6 / 5, ) -> Tuple[SATCircuit, int]: """ Finds an adequate (optimal or near optimal) number of iterations suitable for a given SAT problem when the number of "solutions" or "marked states" is unknown. The method being used is described in https://arxiv.org/pdf/quant-ph/9605034.pdf (section 4). - In short, the original method steps are: * Drawing a random number of iterations which is smaller than some number M. * Executing the circuit. * If a solution has been found (easy to verify classically) - done. * If not - M is being multiplied by a fixed step size. * Repeat. - Here we implement a variation of the described method above - with the goal of finding ad adequate number of iterations for the SAT problem, and not just a single solution. * Instead of exiting the process when finding a solution, we then execute the circuit `precision` times. * If `precision` execution shots gives 100% "good" solutions - done, we have found a number of iterations precise enough. * If not - we continue with the original method scheme. * If we couldn't find an adequate number of iterations for the given `precision`, the precision is decremented and we iterate over the process again with a lower precision. * If `precision` has been decremented to 0 - then we halt, and probably the SAT problem has no solution. - `precision` can be thought as the degree of accuracy - for large values of `precision` more optimal results will be obtained, in a price of extra computational overhead. Args: num_input_qubits (int): number of input qubits. grover_constraints_operator (GroverConstraintsOperator): Grover's operator for the SAT problem. parsed_constraints (ParsedConstraints): a series of constraints, already parsed to a specific format. precision (Optional[int] = 10): number of "valid solutions" which is enough to determine ad adequate number of iterations for the SAT problem. backend (Optional[Backend] = BACKENDS(0)): a backend to run the circuits upon. Default is the local AerSimulator (BACKENDS(0)). step (Optional[float] = 6/5): step size to increment M in each iteration. Returns: Tuple[SATCircuit, int]: (SATCircuit): the overall SAT circuit obtained after finding number of iterations. (int): the calculated number of iterations for the given SAT problem. Raises: SATNoSolutionError - if no adequate number of iterations has been found for any level of precision. """ verifier = ClassicalVerifier(parsed_constraints) # Diemnsion of the Hilbert space spanned by the input qubits N = 2**num_input_qubits # A container for SATCircuit objects with various numbers of iterations qc_storage = {} # If `precision == 0`` then probably there is no solution while precision > 0: # M is the upper limit for drawing a random number of iterations M = 1 checked_iterations = set() # For each level of precision we are looking for an adequate number of iterations print(f"\nChecking iterations for precision = {precision}:") while M <= np.sqrt(N): # Figuring a guess for the number of iterations iterations = False while not iterations: M = step * M iterations = randint_exclude(start=0, end=int(M), exclude=checked_iterations) print(f" Checking iterations = {iterations}") # Obtaining the necessary SATCircuit object (preferably from the `qc_storage`) if iterations in qc_storage.keys(): qc = qc_storage[iterations] else: qc = SATCircuit(num_input_qubits, grover_constraints_operator, iterations) qc.add_input_reg_measurement() qc_storage[iterations] = copy.deepcopy(qc) # Checking whether `qc` with `iterations` iterations gives 100% correct solutions (= match) match = is_circuit_match(qc, verifier, precision, backend) if match: return qc, iterations checked_iterations.add(iterations) # Degrading precision if failed to find an adequate number of iterations precision -= 2 if precision <= 0: raise SATNoSolutionError( "Didn't find an suitable number of iterations." "Probably the SAT problem has no solution." ) def randint_exclude(start, end, exclude): """ Guessing a number of iterations which haven't been tried yet. If it fails (`count >= 50`), returns False. """ randint = random.randint(start, end) count = 0 while randint in exclude: randint = random.randint(start, end) count += 1 if count >= 50: return False return randint def is_circuit_match( qc: QuantumCircuit, verifier: ClassicalVerifier, precision: int, backend: Backend ) -> bool: """ Checks classically whether running `qc` `precision` times gives `precision` correct solutions. Args: qc (QuantumCircuit): the quantum circuit to run. verifier (ClassicalVerifier): classical verifier object to verify solutions with. precision (int): number of correct solutions required. backend (Backend): backend to run circuits upon. Returns: (bool): True if the execution of `qc` yielded 100% correct solutions (`precision` times). False otherwise. """ job = backend.run(transpile(qc, backend), shots=precision, memory=True) outcomes = job.result().get_memory() # In `outcomes` we have `precision` results - If all of them are solutions, we have a match. match = True for outcome in outcomes: match = verifier.verify(outcome) if not match: break return match
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ `SATInterface` class. """ import os import json from typing import List, Tuple, Union, Optional, Dict, Any from sys import stdout from datetime import datetime from hashlib import sha256 from qiskit import transpile, QuantumCircuit, qpy from qiskit.result.counts import Counts from qiskit.visualization.circuit.text import TextDrawing from qiskit.providers.backend import Backend from qiskit.transpiler.passes import RemoveBarriers from IPython import display from matplotlib.figure import Figure from sat_circuits_engine.util import timer_dec, timestamp, flatten_circuit from sat_circuits_engine.util.settings import DATA_PATH, TRANSPILE_KWARGS from sat_circuits_engine.circuit import GroverConstraintsOperator, SATCircuit from sat_circuits_engine.constraints_parse import ParsedConstraints from sat_circuits_engine.interface.circuit_decomposition import decompose_operator from sat_circuits_engine.interface.counts_visualization import plot_histogram from sat_circuits_engine.interface.translator import ConstraintsTranslator from sat_circuits_engine.classical_processing import ( find_iterations_unknown, calc_iterations, ClassicalVerifier, ) from sat_circuits_engine.interface.interactive_inputs import ( interactive_operator_inputs, interactive_solutions_num_input, interactive_run_input, interactive_backend_input, interactive_shots_input, ) # Local globlas for visualization of charts and diagrams IFRAME_WIDTH = "100%" IFRAME_HEIGHT = "700" class SATInterface: """ An interface for building, running and mining data from n-SAT problems quantum circuits. There are 2 options to use this class: (1) Using an interactive interface (intuitive but somewhat limited) - for this just initiate a bare instance of this class: `SATInterface()`. (2) Using the API defined by this class, that includes the following methods: * The following descriptions are partial, for full annotations see the methods' docstrings. - `__init__`: an instance of `SATInterface must be initiated with exactly 1 combination: (a) (high_level_constraints_string + high_level_vars) - for constraints in a high-level format. (b) (num_input_qubits + constraints_string) - for constraints in a low-level foramt. * For formats annotations see `constriants_format.ipynb` in the main directory. - `obtain_grover_operator`: obtains the suitable grover operator for the constraints. - `save_display_grover_operator`: saves and displays data generated by the `obtain_grover_operator` method. - `obtain_overall_circuit`: obtains the suitable overall SAT circuit. - `save_display_overall_circuit: saves and displays data generated by the `obtain_overall_circuit` method. - `run_overall_circuit`: executes the overall SAT circuit. - `save_display_results`: saves and displays data generated by the `run_overall_circuit` method. It is very recommended to go through `demos.ipynb` that demonstrates the various optional uses of this class, in addition to reading `constraints_format.ipynb`, which is a must for using this package properly. Both notebooks are in ther main directory. """ def __init__( self, num_input_qubits: Optional[int] = None, constraints_string: Optional[str] = None, high_level_constraints_string: Optional[str] = None, high_level_vars: Optional[Dict[str, int]] = None, name: Optional[str] = None, save_data: Optional[bool] = True, ) -> None: """ Accepts the combination of paramters: (high_level_constraints_string + high_level_vars) or (num_input_qubits + constraints_string). Exactly one combination is accepted. In other cases either an iteractive user interface will be called to take user's inputs, or an exception will be raised due to misuse of the API. Args: num_input_qubits (Optional[int] = None): number of input qubits. constraints_string (Optional[str] = None): a string of constraints in a low-level format. high_level_constraints_string (Optional[str] = None): a string of constraints in a high-level format. high_level_vars (Optional[Dict[str, int]] = None): a dictionary that configures the high-level variables - keys are names and values are bits-lengths. name (Optional[str] = None): a name for this object, if None than the generic name "SAT" is given automatically. save_data (Optional[bool] = True): if True, saves all data and metadata generated by this class to a unique data folder (by using the `save_XXX` methods of this class). Raises: SyntaxError - if a forbidden combination of arguments has been provided. """ if name is None: name = "SAT" self.name = name # Creating a directory for data to be saved if save_data: self.time_created = timestamp(datetime.now()) self.dir_path = f"{DATA_PATH}{self.time_created}_{self.name}/" os.mkdir(self.dir_path) print(f"Data will be saved into '{self.dir_path}'.") # Initial metadata, more to be added by this class' `save_XXX` methods self.metadata = { "name": self.name, "datetime": self.time_created, "num_input_qubits": num_input_qubits, "constraints_string": constraints_string, "high_level_constraints_string": high_level_constraints_string, "high_level_vars": high_level_vars, } self.update_metadata() # Identifying user's platform, for visualization purposes self.identify_platform() # In the case of low-level constraints format, that is the default value self.high_to_low_map = None # Case A - interactive interface if (num_input_qubits is None or constraints_string is None) and ( high_level_constraints_string is None or high_level_vars is None ): self.interactive_interface() # Case B - API else: self.high_level_constraints_string = high_level_constraints_string self.high_level_vars = high_level_vars # Case B.1 - high-level format constraints inputs if num_input_qubits is None or constraints_string is None: self.num_input_qubits = sum(self.high_level_vars.values()) self.high_to_low_map, self.constraints_string = ConstraintsTranslator( self.high_level_constraints_string, self.high_level_vars ).translate() # Case B.2 - low-level format constraints inputs elif num_input_qubits is not None and constraints_string is not None: self.num_input_qubits = num_input_qubits self.constraints_string = constraints_string # Misuse else: raise SyntaxError( "SATInterface accepts the combination of paramters:" "(high_level_constraints_string + high_level_vars) or " "(num_input_qubits + constraints_string). " "Exactly one combination is accepted, not both." ) self.parsed_constraints = ParsedConstraints( self.constraints_string, self.high_level_constraints_string ) def update_metadata(self, update_metadata: Optional[Dict[str, Any]] = None) -> None: """ Updates the metadata file (in the unique data folder of a given `SATInterface` instance). Args: update_metadata (Optional[Dict[str, Any]] = None): - If None - just dumps `self.metadata` into the metadata JSON file. - If defined - updates the `self.metadata` attribute and then dumps it. """ if update_metadata is not None: self.metadata.update(update_metadata) with open(f"{self.dir_path}metadata.json", "w") as metadata_file: json.dump(self.metadata, metadata_file, indent=4) def identify_platform(self) -> None: """ Identifies user's platform. Writes True to `self.jupyter` for Jupyter notebook, False for terminal. """ # If True then the platform is a terminal/command line/shell if stdout.isatty(): self.jupyter = False # If False, we assume the platform is a Jupyter notebook else: self.jupyter = True def output_to_platform( self, *, title: str, output_terminal: Union[TextDrawing, str], output_jupyter: Union[Figure, str], display_both_on_jupyter: Optional[bool] = False, ) -> None: """ Displays output to user's platform. Args: title (str): a title for the output. output_terminal (Union[TextDrawing, str]): text to print for a terminal platform. output_jupyter: (Union[Figure, str]): objects to display for a Jupyter notebook platform. can handle `Figure` matplotlib objects or strings of paths to IFrame displayable file, e.g PDF files. display_both_on_jupyter (Optional[bool] = False): if True, displays both `output_terminal` and `output_jupyter` in a Jupyter notebook platform. Raises: TypeError - in the case of misusing the `output_jupyter` argument. """ print() print(title) if self.jupyter: if isinstance(output_jupyter, str): display.display(display.IFrame(output_jupyter, width=IFRAME_WIDTH, height=IFRAME_HEIGHT)) elif isinstance(output_jupyter, Figure): display.display(output_jupyter) else: raise TypeError("output_jupyter must be an str (path to image file) or a Figure object.") if display_both_on_jupyter: print(output_terminal) else: print(output_terminal) def interactive_interface(self) -> None: """ An interactive CLI that allows exploiting most (but not all) of the package's features. Uses functions of the form `interactive_XXX_inputs` from the `interactive_inputs.py` module. Divided into 3 main stages: 1. Obtaining Grover's operator for the SAT problem. 2. Obtaining the overall SAT cirucit. 3. Executing the circuit and parsing the results. The interface is built in a modular manner such that a user can halt at any stage. The defualt settings for the interactive user intreface are: 1. `name = "SAT"`. 2. `save_data = True`. 3. `display = True`. 4. `transpile_kwargs = {'basis_gates': ['u', 'cx'], 'optimization_level': 3}`. 5. Backends are limited to those defined in the global-constant-like function `BACKENDS`: - Those are the local `aer_simulator` and the remote `ibmq_qasm_simulator` for now. Due to these default settings the interactive CLI is somewhat restrictive, for full flexibility a user should use the API and not the CLI. """ # Handling operator part operator_inputs = interactive_operator_inputs() self.num_input_qubits = operator_inputs["num_input_qubits"] self.high_to_low_map = operator_inputs["high_to_low_map"] self.constraints_string = operator_inputs["constraints_string"] self.high_level_constraints_string = operator_inputs["high_level_constraints_string"] self.high_level_vars = operator_inputs["high_level_vars"] self.parsed_constraints = ParsedConstraints( self.constraints_string, self.high_level_constraints_string ) self.update_metadata( { "num_input_qubits": self.num_input_qubits, "constraints_string": self.constraints_string, "high_level_constraints_string": self.high_level_constraints_string, "high_level_vars": self.high_level_vars, } ) obtain_grover_operator_output = self.obtain_grover_operator() self.save_display_grover_operator(obtain_grover_operator_output) # Handling overall circuit part solutions_num = interactive_solutions_num_input() if solutions_num is not None: backend = None if solutions_num == -1: backend = interactive_backend_input() overall_circuit_data = self.obtain_overall_sat_circuit( obtain_grover_operator_output["operator"], solutions_num, backend ) self.save_display_overall_circuit(overall_circuit_data) # Handling circuit execution part if interactive_run_input(): if backend is None: backend = interactive_backend_input() shots = interactive_shots_input() counts_parsed = self.run_overall_sat_circuit( overall_circuit_data["circuit"], backend, shots ) self.save_display_results(counts_parsed) print() print(f"Done saving data into '{self.dir_path}'.") def obtain_grover_operator( self, transpile_kwargs: Optional[Dict[str, Any]] = None ) -> Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]]: """ Obtains the suitable `GroverConstraintsOperator` object for the constraints, decomposes it using the `circuit_decomposition.py` module and transpiles it according to `transpile_kwargs`. Args: transpile_kwargs (Optional[Dict[str, Any]]): kwargs for Qiskit's transpile function. The defualt is set to the global constant `TRANSPILE_KWARGS`. Returns: (Dict[str, Union[GroverConstraintsOperator, QuantumCircuit, Dict[str, List[int]]]]): - 'operator' (GroverConstraintsOperator):the high-level blocks operator. - 'decomposed_operator' (QuantumCircuit): decomposed to building-blocks operator. * For annotations regarding the decomposition method see the `circuit_decomposition` module. - 'transpiled_operator' (QuantumCircuit): the transpiled operator. *** The high-level operator and the decomposed operator are generated with barriers between constraints as default for visualizations purposes. The barriers are stripped off before transpiling so the the transpiled operator object contains no barriers. *** - 'high_level_to_bit_indexes_map' (Optional[Dict[str, List[int]]] = None): A map of high-level variables with their allocated bit-indexes in the input register. """ print() print( "The system synthesizes and transpiles a Grover's " "operator for the given constraints. Please wait.." ) if transpile_kwargs is None: transpile_kwargs = TRANSPILE_KWARGS self.transpile_kwargs = transpile_kwargs operator = GroverConstraintsOperator( self.parsed_constraints, self.num_input_qubits, insert_barriers=True ) decomposed_operator = decompose_operator(operator) no_baerriers_operator = RemoveBarriers()(operator) transpiled_operator = transpile(no_baerriers_operator, **transpile_kwargs) print("Done.") return { "operator": operator, "decomposed_operator": decomposed_operator, "transpiled_operator": transpiled_operator, "high_level_to_bit_indexes_map": self.high_to_low_map, } def save_display_grover_operator( self, obtain_grover_operator_output: Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]], display: Optional[bool] = True, ) -> None: """ Handles saving and displaying data generated by the `self.obtain_grover_operator` method. Args: obtain_grover_operator_output(Dict[str, Union[GroverConstraintsOperator, QuantumCircuit]]): the dictionary returned upon calling the `self.obtain_grover_operator` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ # Creating a directory to save operator's data operator_dir_path = f"{self.dir_path}grover_operator/" os.mkdir(operator_dir_path) # Titles for displaying objects, by order of `obtain_grover_operator_output` titles = [ "The operator diagram - high level blocks:", "The operator diagram - decomposed:", f"The transpiled operator diagram saved into '{operator_dir_path}'.\n" f"It's not presented here due to its complexity.\n" f"Please note that barriers appear in the high-level diagrams above only for convenient\n" f"visual separation between constraints.\n" f"Before transpilation all barriers are removed to avoid redundant inefficiencies.", ] for index, (op_name, op_obj) in enumerate(obtain_grover_operator_output.items()): # Generic path and name for files to be saved files_path = f"{operator_dir_path}{op_name}" # Generating a circuit diagrams figure figure_path = f"{files_path}.pdf" op_obj.draw("mpl", filename=figure_path, fold=-1) # Generating a QPY serialization file for the circuit object qpy_file_path = f"{files_path}.qpy" with open(qpy_file_path, "wb") as qpy_file: qpy.dump(op_obj, qpy_file) # Original high-level operator and decomposed operator if index < 2 and display: # Displaying to user self.output_to_platform( title=titles[index], output_terminal=op_obj.draw("text"), output_jupyter=figure_path ) # Transpiled operator elif index == 2: # Output to user, not including the circuit diagram print() print(titles[index]) print() print(f"The transpilation kwargs are: {self.transpile_kwargs}.") transpiled_operator_depth = op_obj.depth() transpiled_operator_gates_count = op_obj.count_ops() print(f"Transpiled operator depth: {transpiled_operator_depth}.") print(f"Transpiled operator gates count: {transpiled_operator_gates_count}.") print(f"Total number of qubits: {op_obj.num_qubits}.") # Generating QASM 2.0 file only for the (flattened = no registers) tranpsiled operator qasm_file_path = f"{files_path}.qasm" flatten_circuit(op_obj).qasm(filename=qasm_file_path) # Index 3 is 'high_level_to_bit_indexes_map' so it's time to break from the loop break # Mapping from high-level variables to bit-indexes will be displayed as well mapping = obtain_grover_operator_output["high_level_to_bit_indexes_map"] if mapping: print() print(f"The high-level variables mapping to bit-indexes:\n{mapping}") print() print( f"Saved into '{operator_dir_path}':\n", " Circuit diagrams for all levels.\n", " QPY serialization exports for all levels.\n", " QASM 2.0 export only for the transpiled level.", ) with open(f"{operator_dir_path}operator.qpy", "rb") as qpy_file: operator_qpy_sha256 = sha256(qpy_file.read()).hexdigest() self.update_metadata( { "high_level_to_bit_indexes_map": self.high_to_low_map, "transpile_kwargs": self.transpile_kwargs, "transpiled_operator_depth": transpiled_operator_depth, "transpiled_operator_gates_count": transpiled_operator_gates_count, "operator_qpy_sha256": operator_qpy_sha256, } ) def obtain_overall_sat_circuit( self, grover_operator: GroverConstraintsOperator, solutions_num: int, backend: Optional[Backend] = None, ) -> Dict[str, SATCircuit]: """ Obtains the suitable `SATCircuit` object (= the overall SAT circuit) for the SAT problem. Args: grover_operator (GroverConstraintsOperator): Grover's operator for the SAT problem. solutions_num (int): number of solutions for the SAT problem. In the case the number of solutions is unknown, specific negative values are accepted: * '-1' - for launching a classical iterative stochastic process that finds an adequate number of iterations - by calling the `find_iterations_unknown` function (see its docstrings for more information). * '-2' - for generating a dynamic circuit that iterates over Grover's iterator until a solution is obtained, using weak measurements. TODO - this feature isn't ready yet. backend (Optional[Backend] = None): in the case of a '-1' value given to `solutions_num`, a backend object to execute the depicted iterative prcess upon should be provided. Returns: (Dict[str, SATCircuit]): - 'circuit' key for the overall SAT circuit. - 'concise_circuit' key for the overall SAT circuit, with only 1 iteration over Grover's iterator (operator + diffuser). Useful for visualization purposes. *** The concise circuit is generated with barriers between segments as default for visualizations purposes. In the actual circuit there no barriers. *** """ # -1 = Unknown number of solutions - iterative stochastic process print() if solutions_num == -1: assert backend is not None, "Need to specify a backend if `solutions_num == -1`." print("Please wait while the system checks various solutions..") circuit, iterations = find_iterations_unknown( self.num_input_qubits, grover_operator, self.parsed_constraints, precision=10, backend=backend, ) print() print(f"An adequate number of iterations found = {iterations}.") # -2 = Unknown number of solutions - implement a dynamic circuit # TODO this feature isn't fully implemented yet elif solutions_num == -2: print("The system builds a dynamic circuit..") circuit = SATCircuit(self.num_input_qubits, grover_operator, iterations=None) circuit.add_input_reg_measurement() iterations = None # Known number of solutions else: print("The system builds the overall circuit..") iterations = calc_iterations(self.num_input_qubits, solutions_num) print(f"\nFor {solutions_num} solutions, {iterations} iterations needed.") circuit = SATCircuit( self.num_input_qubits, grover_operator, iterations, insert_barriers=False ) circuit.add_input_reg_measurement() self.iterations = iterations # Obtaining a SATCircuit object with one iteration for concise representation concise_circuit = SATCircuit( self.num_input_qubits, grover_operator, iterations=1, insert_barriers=True ) concise_circuit.add_input_reg_measurement() return {"circuit": circuit, "concise_circuit": concise_circuit} def save_display_overall_circuit( self, obtain_overall_sat_circuit_output: Dict[str, SATCircuit], display: Optional[bool] = True ) -> None: """ Handles saving and displaying data generated by the `self.obtain_overall_sat_circuit` method. Args: obtain_overall_sat_circuit_output(Dict[str, SATCircuit]): the dictionary returned upon calling the `self.obtain_overall_sat_circuit` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ circuit = obtain_overall_sat_circuit_output["circuit"] concise_circuit = obtain_overall_sat_circuit_output["concise_circuit"] # Creating a directory to save overall circuit's data overall_circuit_dir_path = f"{self.dir_path}overall_circuit/" os.mkdir(overall_circuit_dir_path) # Generating a figure of the overall SAT circuit with just 1 iteration (i.e "concise") concise_circuit_fig_path = f"{overall_circuit_dir_path}overall_circuit_1_iteration.pdf" concise_circuit.draw("mpl", filename=concise_circuit_fig_path, fold=-1) # Displaying the concise circuit to user if display: if self.iterations: self.output_to_platform( title=( f"The high level circuit contains {self.iterations}" f" iterations of the following form:" ), output_terminal=concise_circuit.draw("text"), output_jupyter=concise_circuit_fig_path, ) # Dynamic circuit case - TODO NOT FULLY IMPLEMENTED YET else: dynamic_circuit_fig_path = f"{overall_circuit_dir_path}overall_circuit_dynamic.pdf" circuit.draw("mpl", filename=dynamic_circuit_fig_path, fold=-1) self.output_to_platform( title="The dynamic circuit diagram:", output_terminal=circuit.draw("text"), output_jupyter=dynamic_circuit_fig_path, ) if self.iterations: transpiled_overall_circuit = transpile(flatten_circuit(circuit), **self.transpile_kwargs) print() print(f"The transpilation kwargs are: {self.transpile_kwargs}.") transpiled_overall_circuit_depth = transpiled_overall_circuit.depth() transpiled_overall_circuit_gates_count = transpiled_overall_circuit.count_ops() print(f"Transpiled overall-circuit depth: {transpiled_overall_circuit_depth}.") print(f"Transpiled overall-circuit gates count: {transpiled_overall_circuit_gates_count}.") print(f"Total number of qubits: {transpiled_overall_circuit.num_qubits}.") print() print("Exporting the full overall SAT circuit object..") export_files_path = f"{overall_circuit_dir_path}overall_circuit" with open(f"{export_files_path}.qpy", "wb") as qpy_file: qpy.dump(circuit, qpy_file) if self.iterations: transpiled_overall_circuit.qasm(filename=f"{export_files_path}.qasm") print() print( f"Saved into '{overall_circuit_dir_path}':\n", " A concised (1 iteration) circuit diagram of the high-level overall SAT circuit.\n", " QPY serialization export for the full overall SAT circuit object.", ) if self.iterations: print(" QASM 2.0 export for the transpiled full overall SAT circuit object.") metadata_update = { "num_total_qubits": circuit.num_qubits, "num_iterations": circuit.iterations, } if self.iterations: metadata_update["transpiled_overall_circuit_depth"] = (transpiled_overall_circuit_depth,) metadata_update[ "transpiled_overall_circuit_gates_count" ] = transpiled_overall_circuit_gates_count self.update_metadata(metadata_update) @timer_dec("Circuit simulation execution time = ") def run_overall_sat_circuit( self, circuit: QuantumCircuit, backend: Backend, shots: int ) -> Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]: """ Executes a `circuit` on `backend` transpiled w.r.t backend, `shots` times. Args: circuit (QuantumCircuit): `QuantumCircuit` object or child-object (a.k.a `SATCircuit`) to execute. backend (Backend): backend to execute `circuit` upon. shots (int): number of execution shots. Returns: (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): dict object returned by `self.parse_counts` - see this method's docstrings for annotations. """ # Defines also instance attributes to use in other methods self.backend = backend self.shots = shots print() print(f"The system is running the circuit {shots} times on {backend}, please wait..") print("This process might take a while.") job = backend.run(transpile(circuit, backend), shots=shots) counts = job.result().get_counts() print("Done.") parsed_counts = self.parse_counts(counts) return parsed_counts def parse_counts( self, counts: Counts ) -> Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]: """ Parses a `Counts` object into several desired datas (see 'Returns' section). Args: counts (Counts): the `Counts` object to parse. Returns: (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): 'counts' (Counts) - the original `Counts` object. 'counts_sorted' (List[Tuple[Union[str, int]]]) - results sorted in a descending order. 'distilled_solutions' (List[str]): list of solutions (bitstrings). 'high_level_vars_values' (List[Dict[str, int]]): list of solutions (each solution is a dictionary with variable-names as keys and their integer values as values). """ # Sorting results in an a descending order counts_sorted = sorted(counts.items(), key=lambda x: x[1], reverse=True) # Generating a set of distilled verified-only solutions verifier = ClassicalVerifier(self.parsed_constraints) distilled_solutions = set() for count_item in counts_sorted: if not verifier.verify(count_item[0]): break distilled_solutions.add(count_item[0]) # In the case of high-level format in use, translating `distilled_solutions` into integer values high_level_vars_values = None if self.high_level_constraints_string and self.high_level_vars: # Container for dictionaries with variables integer values high_level_vars_values = [] for solution in distilled_solutions: # Keys are variable-names and values are their integer values solution_vars = {} for var, bits_bundle in self.high_to_low_map.items(): reversed_solution = solution[::-1] var_bitstring = "" for bit_index in bits_bundle: var_bitstring += reversed_solution[bit_index] # Translating to integer value solution_vars[var] = int(var_bitstring, 2) high_level_vars_values.append(solution_vars) return { "counts": counts, "counts_sorted": counts_sorted, "distilled_solutions": distilled_solutions, "high_level_vars_values": high_level_vars_values, } def save_display_results( self, run_overall_sat_circuit_output: Dict[ str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]] ], display: Optional[bool] = True, ) -> None: """ Handles saving and displaying data generated by the `self.run_overall_sat_circuit` method. Args: run_overall_sat_circuit_output (Dict[str, Union[Counts, List[Tuple[Union[str, int]]], List[str], List[Dict[str, int]]]]): the dictionary returned upon calling the `self.run_overall_sat_circuit` method. display (Optional[bool] = True) - If true, displays objects to user's platform. """ counts = run_overall_sat_circuit_output["counts"] counts_sorted = run_overall_sat_circuit_output["counts_sorted"] distilled_solutions = run_overall_sat_circuit_output["distilled_solutions"] high_level_vars_values = run_overall_sat_circuit_output["high_level_vars_values"] # Creating a directory to save results data results_dir_path = f"{self.dir_path}results/" os.mkdir(results_dir_path) # Defining custom dimensions for the custom `plot_histogram` of this package histogram_fig_width = max((len(counts) * self.num_input_qubits * (10 / 72)), 7) histogram_fig_height = 5 histogram_figsize = (histogram_fig_width, histogram_fig_height) histogram_path = f"{results_dir_path}histogram.pdf" plot_histogram(counts, figsize=histogram_figsize, sort="value_desc", filename=histogram_path) if display: # Basic output text output_text = ( f"All counts:\n{counts_sorted}\n" f"\nDistilled solutions ({len(distilled_solutions)} total):\n" f"{distilled_solutions}" ) # Additional outputs for a high-level constraints format if high_level_vars_values: # Mapping from high-level variables to bit-indexes will be displayed as well output_text += ( f"\n\nThe high-level variables mapping to bit-indexes:" f"\n{self.high_to_low_map}" ) # Actual integer solutions will be displayed as well additional_text = "" for solution_index, solution in enumerate(high_level_vars_values): additional_text += f"Solution {solution_index + 1}: " for var_index, (var, value) in enumerate(solution.items()): additional_text += f"{var} = {value}" if var_index != len(solution) - 1: additional_text += ", " else: additional_text += "\n" output_text += f"\n\nHigh-level format solutions: \n{additional_text}" self.output_to_platform( title=f"The results for {self.shots} shots are:", output_terminal=output_text, output_jupyter=histogram_path, display_both_on_jupyter=True, ) results_dict = { "high_level_to_bit_indexes_map": self.high_to_low_map, "solutions": list(distilled_solutions), "high_level_solutions": high_level_vars_values, "counts": counts_sorted, } with open(f"{results_dir_path}results.json", "w") as results_file: json.dump(results_dict, results_file, indent=4) self.update_metadata( { "num_solutions": len(distilled_solutions), "backend": str(self.backend), "shots": self.shots, } )
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Global constants and settings. """ from qiskit.providers.backend import Backend from qiskit import IBMQ from qiskit_aer import AerSimulator def BACKENDS(index: int) -> Backend: """ Returns a backend object according to `index`. This "constants" are assembled as a function in order to avoid errors that may raise from an `IBMQ.load_account()` command if an IBMQ API token isn't saved on the machine. Raises: (ValueError) - if the index entered isn't associated with a backend. """ if index == 0: return AerSimulator() if index == 1: provider = IBMQ.load_account() return provider.get_backend("ibmq_qasm_simulator") raise ValueError(f"No backends are defined for index {index}.") # Paths constants CONSTRAINTS_FORMAT_PATH = "sat_circuits_engine/data/constraints_format.md" DATA_PATH = "sat_circuits_engine/data/generated_data/" TEST_DATA_PATH = "sat_circuits_engine/data/test_data.json" # Default kwargs for Qiskit's transpile TRANSPILE_KWARGS = {"basis_gates": ["u", "cx"], "optimization_level": 3}
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
import json import logging import numpy as np import warnings from functools import wraps from typing import Any, Callable, Optional, Tuple, Union from qiskit import IBMQ, QuantumCircuit, assemble from qiskit.circuit import Barrier, Gate, Instruction, Measure from qiskit.circuit.library import UGate, U3Gate, CXGate from qiskit.providers.ibmq import AccountProvider, IBMQProviderError from qiskit.providers.ibmq.job import IBMQJob def get_provider() -> AccountProvider: with warnings.catch_warnings(): warnings.simplefilter('ignore') ibmq_logger = logging.getLogger('qiskit.providers.ibmq') current_level = ibmq_logger.level ibmq_logger.setLevel(logging.ERROR) # get provider try: provider = IBMQ.get_provider() except IBMQProviderError: provider = IBMQ.load_account() ibmq_logger.setLevel(current_level) return provider def get_job(job_id: str) -> Optional[IBMQJob]: try: job = get_provider().backends.retrieve_job(job_id) return job except Exception: pass return None def circuit_to_json(qc: QuantumCircuit) -> str: class _QobjEncoder(json.encoder.JSONEncoder): def default(self, obj: Any) -> Any: if isinstance(obj, np.ndarray): return obj.tolist() if isinstance(obj, complex): return (obj.real, obj.imag) return json.JSONEncoder.default(self, obj) return json.dumps(circuit_to_dict(qc), cls=_QobjEncoder) def circuit_to_dict(qc: QuantumCircuit) -> dict: qobj = assemble(qc) return qobj.to_dict() def get_job_urls(job: Union[str, IBMQJob]) -> Tuple[bool, Optional[str], Optional[str]]: try: job_id = job.job_id() if isinstance(job, IBMQJob) else job download_url = get_provider()._api_client.account_api.job(job_id).download_url()['url'] result_url = get_provider()._api_client.account_api.job(job_id).result_url()['url'] return download_url, result_url except Exception: return None, None def cached(key_function: Callable) -> Callable: def _decorator(f: Any) -> Callable: f.__cache = {} @wraps(f) def _decorated(*args: Any, **kwargs: Any) -> int: key = key_function(*args, **kwargs) if key not in f.__cache: f.__cache[key] = f(*args, **kwargs) return f.__cache[key] return _decorated return _decorator def gate_key(gate: Gate) -> Tuple[str, int]: return gate.name, gate.num_qubits @cached(gate_key) def gate_cost(gate: Gate) -> int: if isinstance(gate, (UGate, U3Gate)): return 1 elif isinstance(gate, CXGate): return 10 elif isinstance(gate, (Measure, Barrier)): return 0 return sum(map(gate_cost, (g for g, _, _ in gate.definition.data))) def compute_cost(circuit: Union[Instruction, QuantumCircuit]) -> int: print('Computing cost...') circuit_data = None if isinstance(circuit, QuantumCircuit): circuit_data = circuit.data elif isinstance(circuit, Instruction): circuit_data = circuit.definition.data else: raise Exception(f'Unable to obtain circuit data from {type(circuit)}') return sum(map(gate_cost, (g for g, _, _ in circuit_data))) def uses_multiqubit_gate(circuit: QuantumCircuit) -> bool: circuit_data = None if isinstance(circuit, QuantumCircuit): circuit_data = circuit.data elif isinstance(circuit, Instruction) and circuit.definition is not None: circuit_data = circuit.definition.data else: raise Exception(f'Unable to obtain circuit data from {type(circuit)}') for g, _, _ in circuit_data: if isinstance(g, (Barrier, Measure)): continue elif isinstance(g, Gate): if g.num_qubits > 1: return True elif isinstance(g, (QuantumCircuit, Instruction)) and uses_multiqubit_gate(g): return True return False
https://github.com/ohadlev77/sat-circuits-engine
ohadlev77
# Copyright 2022-2023 Ohad Lev. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0, # or in the root directory of this package("LICENSE.txt"). # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `util.py` module.""" import unittest from datetime import datetime from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from sat_circuits_engine.util import flatten_circuit, timestamp class UtilTest(unittest.TestCase): def test_timestamp(self): """Test for the `timestamp` function.""" self.assertEqual(timestamp(datetime(2022, 12, 3, 17, 0, 45, 0)), "D03.12.22_T17.00.45") def test_flatten_circuit(self): """Test for the `flatten_circuit` function.""" bits_1 = 2 bits_2 = 3 qreg_1 = QuantumRegister(bits_1) qreg_2 = QuantumRegister(bits_2) creg_1 = ClassicalRegister(bits_1) creg_2 = ClassicalRegister(bits_2) circuit = QuantumCircuit(qreg_1, qreg_2, creg_1, creg_2) self.assertEqual(circuit.num_qubits, bits_1 + bits_2) self.assertEqual(circuit.num_clbits, bits_1 + bits_2) self.assertEqual(len(circuit.qregs), 2) self.assertEqual(len(circuit.cregs), 2) flat_circuit = flatten_circuit(circuit) self.assertEqual(flat_circuit.num_qubits, bits_1 + bits_2) self.assertEqual(flat_circuit.num_clbits, bits_1 + bits_2) self.assertEqual(len(flat_circuit.qregs), 1) self.assertEqual(len(flat_circuit.cregs), 1) if __name__ == "__main__": unittest.main()
https://github.com/agaviniv/qaoa-maxcut-qiskit
agaviniv
from qiskit import Aer, IBMQ, execute from qiskit import transpile, assemble from qiskit.tools.monitor import job_monitor from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt from qiskit.visualization import plot_histogram, plot_state_city """ Qiskit backends to execute the quantum circuit """ def simulator(qc): """ Run on local simulator :param qc: quantum circuit :return: """ backend = Aer.get_backend("qasm_simulator") shots = 2048 tqc = transpile(qc, backend) qobj = assemble(tqc, shots=shots) job_sim = backend.run(qobj) qc_results = job_sim.result() return qc_results, shots def simulator_state_vector(qc): """ Select the StatevectorSimulator from the Aer provider :param qc: quantum circuit :return: statevector """ simulator = Aer.get_backend('statevector_simulator') # Execute and get counts result = execute(qc, simulator).result() state_vector = result.get_statevector(qc) return state_vector def real_quantum_device(qc): """ Use the IBMQ essex device :param qc: quantum circuit :return: """ provider = IBMQ.load_account() backend = provider.get_backend('ibmq_santiago') shots = 2048 TQC = transpile(qc, backend) qobj = assemble(TQC, shots=shots) job_exp = backend.run(qobj) job_monitor(job_exp) QC_results = job_exp.result() return QC_results, shots def counts(qc_results): """ Get counts representing the wave-function amplitudes :param qc_results: :return: dict keys are bit_strings and their counting values """ return qc_results.get_counts() def plot_results(qc_results): """ Visualizing wave-function amplitudes in a histogram :param qc_results: quantum circuit :return: """ plt.show(plot_histogram(qc_results.get_counts(), figsize=(8, 6), bar_labels=False)) def plot_state_vector(state_vector): """Visualizing state vector in the density matrix representation""" plt.show(plot_state_city(state_vector))
https://github.com/agaviniv/qaoa-maxcut-qiskit
agaviniv
from math import sqrt, pi from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister import oracle_simple import composed_gates def get_circuit(n, oracles): """ Build the circuit composed by the oracle black box and the other quantum gates. :param n: The number of qubits (not including the ancillas) :param oracles: A list of black box (quantum) oracles; each of them selects a specific state :returns: The proper quantum circuit :rtype: qiskit.QuantumCircuit """ cr = ClassicalRegister(n) ## Testing if n > 3: #anc = QuantumRegister(n - 1, 'anc') # n qubits for the real number # n - 1 qubits for the ancillas qr = QuantumRegister(n + n - 1) qc = QuantumCircuit(qr, cr) else: # We don't need ancillas qr = QuantumRegister(n) qc = QuantumCircuit(qr, cr) ## /Testing print("Number of qubits is {0}".format(len(qr))) print(qr) # Initial superposition for j in range(n): qc.h(qr[j]) # The length of the oracles list, or, in other words, how many roots of the function do we have m = len(oracles) # Grover's algorithm is a repetition of an oracle box and a diffusion box. # The number of repetitions is given by the following formula. print("n is ", n) r = int(round((pi / 2 * sqrt((2**n) / m) - 1) / 2)) print("Repetition of ORACLE+DIFFUSION boxes required: {0}".format(r)) oracle_t1 = oracle_simple.OracleSimple(n, 5) oracle_t2 = oracle_simple.OracleSimple(n, 0) for j in range(r): for i in range(len(oracles)): oracles[i].get_circuit(qr, qc) diffusion(n, qr, qc) for j in range(n): qc.measure(qr[j], cr[j]) return qc, len(qr) def diffusion(n, qr, qc): """ The Grover diffusion operator. Given the arry of qiskit QuantumRegister qr and the qiskit QuantumCircuit qc, it adds the diffusion operator to the appropriate qubits in the circuit. """ for j in range(n): qc.h(qr[j]) # D matrix, flips state |000> only (instead of flipping all the others) for j in range(n): qc.x(qr[j]) # 0..n-2 control bits, n-1 target, n.. if n > 3: composed_gates.n_controlled_Z_circuit( qc, [qr[j] for j in range(n - 1)], qr[n - 1], [qr[j] for j in range(n, n + n - 1)]) else: composed_gates.n_controlled_Z_circuit( qc, [qr[j] for j in range(n - 1)], qr[n - 1], None) for j in range(n): qc.x(qr[j]) for j in range(n): qc.h(qr[j])
https://github.com/thyung/qiskit_factorization
thyung
import numpy as np from numpy import pi from qiskit import QuantumCircuit, Aer, transpile from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit.circuit import QuantumRegister, ClassicalRegister from qiskit.circuit.library import QFT sim = Aer.get_backend('statevector_simulator') init_state = '101' qc1 = QuantumCircuit(3) qc1.initialize(init_state) qc1.append(QFT(num_qubits=3), [0, 1, 2]) display(qc1.draw()) sv1 = sim.run(transpile(qc1, sim)).result().get_statevector() plot_bloch_multivector(sv1) sim = Aer.get_backend('statevector_simulator') init_state = '101' qc2 = QuantumCircuit(3) qc2.initialize(init_state) qc2.barrier() qc2.h(2) qc2.cp(pi/2, 1, 2) qc2.cp(pi/4, 0, 2) qc2.h(1) qc2.cp(pi/2, 0, 1) qc2.h(0) qc2.swap(0, 2) display(qc2.draw()) sv2 = sim.run(qc2).result().get_statevector() plot_bloch_multivector(sv2) # implement general QFT def create_qft(n, draw=False): qc = QuantumCircuit(n) for i in reversed(range(n)): qc.h(i) for e, j in enumerate(reversed(range(i))): qc.cp(pi/2**(e+1), j, i) for i in range(n//2): qc.swap(i, n-i-1) if draw: display(qc.draw()) return qc.to_gate(label='myqft{}'.format(n)) sim = Aer.get_backend('statevector_simulator') init_state = '101' qc3 = QuantumCircuit(3) qc3.initialize(init_state) qc3.append(create_qft(3, True), [0, 1, 2]) display(qc3.draw()) sv3 = sim.run(transpile(qc3, sim)).result().get_statevector() plot_bloch_multivector(sv3) def create_carrier_orig(name=None, draw=False): c0 = QuantumRegister(1, 'c0') a0 = QuantumRegister(1, 'a0') b0 = QuantumRegister(1, 'b0') c1 = QuantumRegister(1, 'c1') qc = QuantumCircuit(c0, a0, b0, c1) qc.toffoli(1, 2, 3) qc.cx(1, 2) qc.toffoli(0, 2, 3) if draw: display(qc.draw()) return qc.to_gate(label=name or 'carrier_orig') def create_carrier_orig_inv(name=None): qc = QuantumCircuit(4) qc.append(create_carrier_orig().inverse(), range(4)) return qc.to_gate(label=name or 'carrier_orig_inv') create_carrier_orig('carrier', True) def create_carrier(name=None, draw=False): c0 = QuantumRegister(1, 'c0') a0 = QuantumRegister(1, 'a0') b0 = QuantumRegister(1, 'b0') c1 = QuantumRegister(1, 'c1') qc = QuantumCircuit(c0, a0, b0, c1) qc.toffoli(1, 2, 3) qc.cx(1, 2) qc.toffoli(0, 2, 3) qc.cx(1, 2) if draw: display(qc.draw()) return qc.to_gate(label=name or 'carrier') def create_carrier_inv(name=None): qc = QuantumCircuit(4) qc.append(create_carrier().inverse(), range(4)) return qc.to_gate(label=name or 'carrier_inv') create_carrier('carrier', True) def create_sum(name=None, draw=False): c0 = QuantumRegister(1, 'c0') a0 = QuantumRegister(1, 'a0') b0 = QuantumRegister(1, 'b0') qc = QuantumCircuit(c0, a0, b0) qc.cx(a0, b0) qc.cx(c0, b0) if draw: display(qc.draw()) return qc.to_gate(label=name or 'sum') def create_sum_inv(name=None): qc = QuantumCircuit(3) qc.append(create_sum().inverse(), range(3)) return qc.to_gate(label=name or 'sum_inv') create_sum('sum', True) a = QuantumRegister(3, 'a') b = QuantumRegister(4, 'b') c = QuantumRegister(3, 'c') creg = ClassicalRegister(4, 'creg') qc = QuantumCircuit(a, b, c, creg) qc.x(a[0]) # a = 101(2) qc.x(a[2]) qc.x(b[1]) # b = 110(2) qc.x(b[2]) qc.append(create_carrier_orig(), [c[0], a[0], b[0], c[1]]) qc.append(create_carrier_orig(), [c[1], a[1], b[1], c[2]]) qc.append(create_carrier_orig(), [c[2], a[2], b[2], b[3]]) qc.cx(a[2], b[2]) qc.append(create_sum(), [c[2], a[2], b[2]]) qc.append(create_carrier_orig_inv(), [c[1], a[1], b[1], c[2]]) qc.append(create_sum(), [c[1], a[1], b[1]]) qc.append(create_carrier_orig_inv(), [c[0], a[0], b[0], c[1]]) qc.append(create_sum(), [c[0], a[0], b[0]]) qc.barrier() qc.measure(b, creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) a = QuantumRegister(3, 'a') b = QuantumRegister(4, 'b') c = QuantumRegister(3, 'c') creg = ClassicalRegister(4, 'creg') qc = QuantumCircuit(a, b, c, creg) qc.x(a[0]) # a = 101(2) qc.x(a[2]) qc.x(b[1]) # b = 110(2) qc.x(b[2]) qc.append(create_carrier(), [c[0], a[0], b[0], c[1]]) qc.append(create_carrier(), [c[1], a[1], b[1], c[2]]) qc.append(create_carrier(), [c[2], a[2], b[2], b[3]]) # qc.cx(a[2], b[2]) # this was put into create_carrier() qc.append(create_sum(), [c[2], a[2], b[2]]) qc.append(create_carrier_inv(), [c[1], a[1], b[1], c[2]]) qc.append(create_sum(), [c[1], a[1], b[1]]) qc.append(create_carrier_inv(), [c[0], a[0], b[0], c[1]]) qc.append(create_sum(), [c[0], a[0], b[0]]) qc.barrier() qc.measure(b, creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) def create_adder(n, name=None, draw=False): """create adder with n bits a, n+1 bits b and n bits carrier""" a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') qc = QuantumCircuit(a, b, c) for i in range(n-1): qc.append(create_carrier(), [c[i], a[i], b[i], c[i+1]]) qc.append(create_carrier(), [c[n-1], a[n-1], b[n-1], b[n]]) qc.append(create_sum(), [c[n-1], a[n-1], b[n-1]]) for i in reversed(range(n-1)): qc.append(create_carrier_inv(), [c[i], a[i], b[i], c[i+1]]) qc.append(create_sum(), [c[i], a[i], b[i]]) if draw: display(qc.draw()) return qc.to_gate(label=name or 'adder') def create_adder_inv(n, name=None): qc = QuantumCircuit(3*n+1) qc.append(create_adder(n).inverse(), range(3*n+1)) return qc.to_gate(label=name or 'adder_inv') create_adder(3, 'adder', True) a = QuantumRegister(3, 'a') b = QuantumRegister(4, 'b') c = QuantumRegister(3, 'c') creg = ClassicalRegister(4, 'creg') qc = QuantumCircuit(a, b, c, creg) qc.x(a[0]) # a = 5 qc.x(a[2]) qc.x(b[1]) # b = 6 qc.x(b[2]) qc.append(create_adder(3), range(10)) qc.measure(b, creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) def create_adder_mod(n, bigN, name=None, draw=False): """ :param n: number of bits for a, c and bigN; b has n+1 bits :param bigN: mod number :return: Gate of 4n+2 qubits 0 to n-1 (n qubits) for a n to 2n (n+1 qubits) for b 2n+1 to 3n (n qubits) for c (init to 0) 3n+1 to 4n (n qubits) for bigN (init to bigN when use) 4n+1 (1 qubit) for temp (init to 0) """ a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bigN') t = QuantumRegister(1, 't') qc = QuantumCircuit(a, b, c, bN, t) # block 1 qc.append(create_adder(n), list(a)+list(b)+list(c)) for i in range(n): qc.swap(a[i], bN[i]) qc.append(create_adder_inv(n), list(a)+list(b)+list(c)) qc.x(b[n]) qc.cx(b[n], t[0]) qc.x(b[n]) tempN = bigN i = 0 while tempN != 0: if tempN % 2 != 0: qc.cx(t[0], a[i]) i = i + 1 tempN = tempN // 2 qc.append(create_adder(n), list(a)+list(b)+list(c)) tempN = bigN i = 0 while tempN != 0: if tempN % 2 != 0: qc.cx(t[0], a[i]) i = i + 1 tempN = tempN // 2 for i in range(n): qc.swap(a[i], bN[i]) # block 2 qc.append(create_adder_inv(n), list(a)+list(b)+list(c)) qc.cx(b[n], t[0]) qc.append(create_adder(n), list(a)+list(b)+list(c)) if draw: display(qc.draw()) return qc.to_gate(label=name or 'adder_mod') create_adder_mod(3, 5, 'adder_mod', True) n = 3 bigN = 5 #qc = QuantumCircuit(4*n+2) a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bigN') t = QuantumRegister(1, 't') creg = ClassicalRegister(4, 'creg') qc = QuantumCircuit(a, b, c, bN, t, creg) qc.x(a[2]) # a = 4 qc.x(b[2]) # b = 4 qc.x(bN[0]) # bN = 5 qc.x(bN[2]) qc.append(create_adder_mod(n, bigN), list(a) + list(b) + list(c) + list(bN) + list(t)) qc.measure(b, creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) def create_ctrl_mult_mod(n, bigN, m, name=None, draw=False): """ Calculate zm mod N and output to b :param n: number of bits for a, c and bigN; b has n+1 bits :param bigN: mod number :param m: multiplier :return: Gate of 4n+2 qubits 0 (1 qubit) for x 1 to n (n qubits) for z n+1 to 2n (n qubits) for a 2n+1 to 3n+1 (n+1 qubits) for b 3n+2 to 4n+1 (n qubits) for c (init to 0) 4n+2 to 5n+1 (n qubits) for bigN (init to bigN when use) 5n+2 (1 qubit) for temp (init to 0) """ x = QuantumRegister(1, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') qc = QuantumCircuit(x, z, a, b, c, bN, t) next_mod = m # m 2^0 mod N for j in range(n): temp_mod = next_mod i = 0 while temp_mod != 0: if temp_mod % 2 != 0: qc.ccx(x[0], z[j], a[i]) i = i + 1 temp_mod = temp_mod // 2 qc.append(create_adder_mod(n, bigN), list(a) + list(b) + list(c) + list(bN) + list(t)) temp_mod = next_mod i = 0 while temp_mod != 0: if temp_mod % 2 != 0: qc.ccx(x[0], z[j], a[i]) i = i + 1 temp_mod = temp_mod // 2 next_mod = (next_mod * 2) % bigN # update for m 2^i+1 mod N # seems no need to copy z to b if x=0. may try to remove this block and test # qc.x(x[0]) # for j in range(n): # qc.ccx(x[0], z[j], b[j]) # qc.x(x[0]) if draw: display(qc.draw()) return qc.to_gate(label=name or 'ctrl_mult_mod') def create_ctrl_mult_mod_inv(n, bigN, m): qc = QuantumCircuit(5*n+3) qc.append(create_ctrl_mult_mod(n, bigN, m).inverse(), range(5*n+3)) return qc.to_gate(label='ctrl_mult_mod_inv') create_ctrl_mult_mod(3, 5, 3, 'ctrl_mult_mod', True) n = 3 bigN = 5 m = 3 x = QuantumRegister(1, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') creg = ClassicalRegister(n, 'creg') qc = QuantumCircuit(x, z, a, b, c, bN, t, creg) qc.x(x[0]) # x = 1 qc.x(z[0]) # z = 3 qc.x(z[1]) qc.x(bN[0]) # bN = 5 qc.x(bN[2]) qc.append(create_ctrl_mult_mod(n, bigN, m), list(x) + z[:] + list(a) + list(b) + list(c) + list(bN) + list(t)) # for i in range(n): # qc.measure(b[i], creg[i]) qc.measure(b[0:n], creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) from sympy import mod_inverse def create_mod_exp(n, bigN, y, nx, name=None, draw=False): """ Calculate y^x mod N and output to z :param n: number of bits for z, a, c and bigN; b has n+1 bits :param bigN: mod number :param y: multiplier :param nx: number of bits for x :return: Gate of 4n+2 qubits 0 to nx-1 (n qubit) for x nx to nx+n-1 (n qubits) for z (init to 1 when use) nx+n to nx+2n-1 (n qubits) for a (init to 0) nx+2n to nx+3n (n+1 qubits) for b (init to 0) nx+3n+1 to nx+4n (n qubits) for c (init to 0) nx+4n+1 to nx+5n (n qubits) for bigN (init to bigN when use) nx+5n+1 (1 qubit) for temp (init to 0) """ x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') qc = QuantumCircuit(x, z, a, b, c, bN, t) m = y for i in range(nx): qc.append(create_ctrl_mult_mod(n, bigN, m), [x[i]] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) for j in range(n): qc.cswap(x[i], z[j], b[j]) m_inv = mod_inverse(m, bigN) qc.append(create_ctrl_mult_mod_inv(n, bigN, m_inv), [x[i]] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) m = (m * m) % bigN # update for next cycle if draw: display(qc.draw()) return qc.to_gate(label=name or 'mod_exp') create_mod_exp(3, 5, 3, 3, 'mod_exp', True) n = 3 bigN = 5 y = 3 nx = 3 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') creg = ClassicalRegister(n, 'creg') qc = QuantumCircuit(x, z, a, b, c, bN, t, creg) qc.x(x[0]) # x = 3 qc.x(x[1]) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 5 qc.x(bN[2]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.measure(z, creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) # 3^3 mod 5 = 2 or 010(2) n = 5 bigN = 15 y = 7 nx = 8 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') cregx = ClassicalRegister(nx, 'cregx') qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 15 = 1111(2) qc.x(bN[1]) qc.x(bN[2]) qc.x(bN[3]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(create_qft(nx), x) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) from fractions import Fraction Fraction(192/2**8).limit_denominator(221) import math print(math.gcd(7**2+1, 15)) print(math.gcd(7**2-1, 15)) n = 6 bigN = 55 y = 7 nx = 12 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') cregx = ClassicalRegister(nx, 'cregx') qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 55 = 110111(2) qc.x(bN[1]) qc.x(bN[2]) qc.x(bN[4]) qc.x(bN[5]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(create_qft(nx), x) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) import matplotlib.pyplot as plt import math from fractions import Fraction def is_solution(k, nx, a, N, p, q): r = Fraction(k/2**nx).limit_denominator(N).denominator if r % 2 == 1: return False if math.gcd(a**(r//2)+1, N) == p and math.gcd(a**(r//2)-1, N) == q: return True if math.gcd(a**(r//2)+1, N) == q and math.gcd(a**(r//2)-1, N) == p: return True return False def analyze_result(counts, nx, a, N, p, q): xycorrect = {} xywrong = {} for k,v in counts.items(): if is_solution(int(k, 2), nx, a, N, p, q): xycorrect[int(k, 2)] = v else: xywrong[int(k, 2)] = v plt.title('Factor {}'.format(N)) plt.xlabel('measured values on {} qubits'.format(nx)) plt.ylabel('counts') plt.scatter(xycorrect.keys(), xycorrect.values(), s=1, c='g') plt.scatter(xywrong.keys(), xywrong.values(), s=1, c='r') plt.legend(['correct', 'wrong']) print('correct count {}, wrong count {}, total {}, correct rate {}'.format( sum(xycorrect.values()), sum(xywrong.values()), sum(xycorrect.values()) + sum(xywrong.values()), float(sum(xycorrect.values())) / float(sum(xycorrect.values()) + sum(xywrong.values()),))) analyze_result(counts, 12, 7, 55, 5, 11) from fractions import Fraction Fraction(3891/2**12).limit_denominator(55) import math print(math.gcd(7**10+1, 55)) print(math.gcd(7**10-1, 55)) n = 8 bigN = 221 y = 7 nx = 16 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') cregx = ClassicalRegister(nx, 'cregx') qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 221 = 11011101(2) qc.x(bN[2]) qc.x(bN[3]) qc.x(bN[4]) qc.x(bN[6]) qc.x(bN[7]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(create_qft(nx), x) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) analyze_result(counts, 16, 7, 221, 13, 17) from fractions import Fraction Fraction(1365/2**16).limit_denominator(221) import math print(math.gcd(3**24+1, 221)) print(math.gcd(3**24-1, 221)) 17*13 n = 9 bigN = 437 y = 7 nx = 18 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') cregx = ClassicalRegister(nx, 'cregx') qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 437 = 110110101(2) qc.x(bN[2]) qc.x(bN[4]) qc.x(bN[5]) qc.x(bN[7]) qc.x(bN[8]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(create_qft(nx), x) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) analyze_result(counts, 18, 7, 437, 19, 23) from fractions import Fraction Fraction(123128/2**18).limit_denominator(437) import math print(math.gcd(7**33+1, 437)) print(math.gcd(7**33-1, 437)) 23*19 qc_t = transpile(qc, backend) print('circuit depth {}, operator count {}'.format(qc_t.depth(), qc_t.count_ops())) n = 10 bigN = 851 y = 7 nx = 20 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') cregx = ClassicalRegister(nx, 'cregx') qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 851 = 1101010011(2) qc.x(bN[1]) qc.x(bN[4]) qc.x(bN[6]) qc.x(bN[8]) qc.x(bN[9]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(create_qft(nx), x) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) analyze_result(counts, 20, 7, 851, 23, 37) from fractions import Fraction Fraction(0/2**20).limit_denominator(851) def gen_qc(n, bigN, y, nx): x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') cregx = ClassicalRegister(nx, 'cregx') qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init tmp_bigN = bigN i = 0 while tmp_bigN != 0: if tmp_bigN % 2 == 1: qc.x(bN[i]) tmp_bigN = tmp_bigN // 2 i = i + 1 qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(create_qft(nx), x) qc.measure(x, cregx) backend = Aer.get_backend('qasm_simulator') qc_t = transpile(qc, backend) return qc_t qc_15 = gen_qc(4, 15, 7, 8) qc_55 = gen_qc(6, 55, 7, 12) qc_221 = gen_qc(8, 221, 7, 16) qc_437 = gen_qc(9, 437, 7, 18) qc_851 = gen_qc(10, 851, 7, 20) print(qc_15.depth(), qc_15.count_ops()) print(qc_851.depth(), qc_851.count_ops()) n_array = [4, 6, 8, 9, 10] qc_array = [qc_15, qc_55, qc_221, qc_437, qc_851] depth_array = [] ops_array = [] for qc_i in qc_array: depth_array.append(qc_i.depth()) ops_array.append(sum(qc_i.count_ops().values())) print(depth_array) print(ops_array) import matplotlib.pyplot as plt import numpy opsfit = numpy.polyfit(n_array, ops_array, 3) print(opsfit) opsmodel = numpy.poly1d(opsfit) opsline = numpy.linspace(1, 10, 10) plt.xlabel('n qubits for N') plt.ylabel('depth and count_ops') plt.scatter(n_array, depth_array, marker='o', c='blue') plt.scatter(n_array, ops_array, marker='x', c='orange') plt.plot(opsline, opsmodel(opsline), c='orange') plt.legend(['depth', 'count_ops', 'cout_ops poly deg 3 fit']) plt.show() opsline2 = numpy.linspace(1, 100, 100) plt.xlabel('n qubits for N') plt.ylabel('count_ops') plt.scatter(n_array, ops_array, marker='x', c='orange') plt.plot(opsline2, opsmodel(opsline2), c='orange') plt.legend(['count_ops', 'cout_ops poly deg 3 fit']) plt.show() qc_7663 = gen_qc(13, 7663, 7, 26) qc_35263 = gen_qc(16, 35263, 7, 32) opsline3 = numpy.linspace(1, 20, 20) plt.xlabel('n qubits for N') plt.ylabel('count_ops') plt.scatter(n_array, ops_array, marker='x', c='orange') plt.scatter([13, 16], [sum(qc_7663.count_ops().values()), sum(qc_35263.count_ops().values())]) plt.plot(opsline3, opsmodel(opsline3), c='orange') plt.legend(['count_ops', 'count_ops for 7663 and 35263', 'cout_ops poly deg 3 fit']) plt.xticks(range(0, 22, 2)) plt.show() import qiskit.tools.jupyter %qiskit_version_table
https://github.com/thyung/qiskit_factorization
thyung
N = 37 * 31 a = 29 print(N) import math math.gcd(a, N) import matplotlib.pyplot as plt z = range(N) y = [a**z0 % N for z0 in z] plt.plot(z, y) plt.xlabel('z') plt.ylabel('{}^z mod {}'.format(a, N)) plt.show() r = y[1:].index(1)+1 print(r) if r%2 == 0: x = (a**(r//2)) % N print('x = {}'.format(x)) if ((x+1)%N) != 0: print(math.gcd(int(x)+1, N), math.gcd(int(x)-1, N)) else: print('x+1 % N = 0') else: print('r = {} is odd'.format(r))
https://github.com/thyung/qiskit_factorization
thyung
import numpy as np from numpy import pi # importing Qiskit from qiskit import QuantumCircuit, transpile, assemble, Aer from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) qc.draw() def qft_rotations(circuit, n): if n == 0: return circuit n -= 1 circuit.h(n) for qubit in range(n): circuit.cp(pi/2**(n-qubit), qubit, n) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc = QuantumCircuit(4) qft(qc,4) qc.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 (101 in binary) qc.x(0) qc.x(2) qc.draw() sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qft(qc, 3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector)
https://github.com/thyung/qiskit_factorization
thyung
import numpy as np from numpy import pi from qiskit import QuantumCircuit, Aer, transpile from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit.circuit import QuantumRegister, ClassicalRegister sim = Aer.get_backend('statevector_simulator') qc = QuantumCircuit(3) init_state = '101' qc.initialize(init_state) qc.barrier() qc.h(2) qc.cp(pi/2, 1, 2) qc.cp(pi/4, 0, 2) qc.h(1) qc.cp(pi/2, 0, 1) qc.h(0) qc.swap(0, 2) display(qc.draw()) sv = sim.run(qc).result().get_statevector() plot_bloch_multivector(sv) from qiskit.circuit.library import QFT qc2 = QuantumCircuit(3) qc2.initialize(init_state) qc2.append(QFT(num_qubits=3), [0, 1, 2]) display(qc2.draw()) sv2 = sim.run(transpile(qc2, sim)).result().get_statevector() plot_bloch_multivector(sv2) # implement general QFT def myqft(n): qc = QuantumCircuit(n) for i in reversed(range(n)): qc.h(i) for e, j in enumerate(reversed(range(i))): qc.cp(pi/2**(e+1), j, i) for i in range(n//2): qc.swap(i, n-i-1) return qc.to_gate(label='myqft{}'.format(n)) qc3 = QuantumCircuit(3) qc3.initialize(init_state) qc3.append(myqft(3), [0, 1, 2]) display(qc3.draw()) sv3 = sim.run(transpile(qc3, sim)).result().get_statevector() plot_bloch_multivector(sv3) def create_carrier(name=None): qc = QuantumCircuit(4) qc.toffoli(1, 2, 3) qc.cx(1, 2) qc.toffoli(0, 2, 3) return qc.to_gate(label=name or 'carrier') def create_carrier_inv(name=None): qc = QuantumCircuit(4) qc.append(create_carrier().inverse(), range(4)) return qc.to_gate(label=name or 'carrier_inv') def create_sum(name=None): qc = QuantumCircuit(3) qc.cx(1, 2) qc.cx(0, 2) return qc.to_gate(label=name or 'sum') def create_sum_inv(name=None): qc = QuantumCircuit(3) qc.append(create_sum().inverse(), range(3)) return qc.to_gate(label=name or 'sum_inv') a = QuantumRegister(3, 'a') b = QuantumRegister(4, 'b') c = QuantumRegister(3, 'c') creg = ClassicalRegister(4, 'creg') qc = QuantumCircuit(a, b, c, creg) qc.x(a[0]) qc.x(a[1]) qc.x(b[1]) qc.x(b[2]) qc.append(create_carrier(), [c[0], a[0], b[0], c[1]]) qc.append(create_carrier(), [c[1], a[1], b[1], c[2]]) qc.append(create_carrier(), [c[2], a[2], b[2], b[3]]) qc.cx(a[2], b[2]) qc.append(create_sum(), [c[2], a[2], b[2]]) qc.append(create_carrier_inv(), [c[1], a[1], b[1], c[2]]) qc.append(create_sum(), [c[1], a[1], b[1]]) qc.append(create_carrier_inv(), [c[0], a[0], b[0], c[1]]) qc.append(create_sum(), [c[0], a[0], b[0]]) qc.barrier() qc.measure(b, creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) def create_adder(n): """create adder with n bits a, n+1 bits b and n bits carrier""" a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') qc = QuantumCircuit(a, b, c) for i in range(n-1): qc.append(create_carrier(), [c[i], a[i], b[i], c[i+1]]) qc.append(create_carrier(), [c[n-1], a[n-1], b[n-1], b[n]]) qc.cx(a[n-1], b[n-1]) qc.append(create_sum(), [c[n-1], a[n-1], b[n-1]]) for i in reversed(range(n-1)): qc.append(create_carrier_inv(), [c[i], a[i], b[i], c[i+1]]) qc.append(create_sum(), [c[i], a[i], b[i]]) return qc.to_gate(label='adder') def create_adder_inv(n): qc = QuantumCircuit(3*n+1) qc.append(create_adder(n).inverse(), range(3*n+1)) return qc.to_gate(label='adder_inv') qc = QuantumCircuit(10, 4) qc.x(0) qc.x(1) qc.x(4) qc.x(5) qc.append(create_adder(3), range(10)) qc.measure([3, 4, 5, 6], range(4)) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) def create_adder_mod(n, bigN): """ :param n: number of bits for a, c and bigN; b has n+1 bits :param bigN: mod number :return: Gate of 4n+2 qubits 0-2 qubits for a 3-6 qubits for b 7-9 qubits for c (init to 0) 10-12 qubits for bigN (init to bigN when use) 13 qubit for temp (init to 0) """ a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bigN') t = QuantumRegister(1, 't') qc = QuantumCircuit(a, b, c, bN, t) # block 1 qc.append(create_adder(n), list(a)+list(b)+list(c)) for i in range(n): qc.swap(a[i], bN[i]) qc.append(create_adder_inv(n), list(a)+list(b)+list(c)) qc.x(b[n]) qc.cx(b[n], t[0]) qc.x(b[n]) tempN = bigN i = 0 while tempN != 0: if tempN % 2 != 0: qc.cx(t[0], a[i]) i = i + 1 tempN = tempN // 2 qc.append(create_adder(n), list(a)+list(b)+list(c)) tempN = bigN i = 0 while tempN != 0: if tempN % 2 != 0: qc.cx(t[0], a[i]) i = i + 1 tempN = tempN // 2 for i in range(n): qc.swap(a[i], bN[i]) # block 2 qc.append(create_adder_inv(n), list(a)+list(b)+list(c)) qc.cx(b[n], t[0]) qc.append(create_adder(n), list(a)+list(b)+list(c)) #display(qc.draw()) return qc.to_gate(label='adder_mod') n = 3 bigN = 5 #qc = QuantumCircuit(4*n+2) a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bigN') t = QuantumRegister(1, 't') creg = ClassicalRegister(4, 'creg') qc = QuantumCircuit(a, b, c, bN, t, creg) # qc.x(a[0]) # a = 3 # qc.x(a[1]) qc.x(a[2]) # a = 4 qc.x(b[2]) # b = 4 qc.x(bN[0]) qc.x(bN[2]) # bN = 5 qc.append(create_adder_mod(n, bigN), list(a) + list(b) + list(c) + list(bN) + list(t)) qc.measure(b, creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) def create_ctrl_mult_mod(n, bigN, m): """ Calculate zm mod N and output to b :param n: number of bits for a, c and bigN; b has n+1 bits :param bigN: mod number :param m: multiplier :return: Gate of 4n+2 qubits 0 (1 qubit) for x 1 to n (n qubits) for z n+1 to 2n (n qubits) for a 2n+1 to 3n+1 (n+1 qubits) for b 3n+2 to 4n+1 (n qubits) for c (init to 0) 4n+2 to 5n+1 (n qubits) for bigN (init to bigN when use) 5n+2 (1 qubit) for temp (init to 0) """ x = QuantumRegister(1, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') qc = QuantumCircuit(x, z, a, b, c, bN, t) next_mod = m # m 2^0 mod N for j in range(n): temp_mod = next_mod i = 0 while temp_mod != 0: if temp_mod % 2 != 0: qc.ccx(x[0], z[j], a[i]) i = i + 1 temp_mod = temp_mod // 2 qc.append(create_adder_mod(n, bigN), list(a) + list(b) + list(c) + list(bN) + list(t)) temp_mod = next_mod i = 0 while temp_mod != 0: if temp_mod % 2 != 0: qc.ccx(x[0], z[j], a[i]) i = i + 1 temp_mod = temp_mod // 2 next_mod = (next_mod * 2) % bigN # update for m 2^i+1 mod N qc.x(x[0]) for j in range(n): qc.ccx(x[0], z[j], b[j]) qc.x(x[0]) # display(qc.draw()) return qc.to_gate(label='ctrl_mult_mod') def create_ctrl_mult_mod_inv(n, bigN, m): qc = QuantumCircuit(5*n+3) qc.append(create_ctrl_mult_mod(n, bigN, m).inverse(), range(5*n+3)) return qc.to_gate(label='ctrl_mult_mod_inv') n = 3 bigN = 5 m = 3 x = QuantumRegister(1, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') creg = ClassicalRegister(n, 'creg') qc = QuantumCircuit(x, z, a, b, c, bN, t, creg) qc.x(x[0]) # x = 1 qc.x(z[0]) # z = 3 qc.x(z[1]) qc.x(bN[0]) # bN = 5 qc.x(bN[2]) qc.append(create_ctrl_mult_mod(n, bigN, m), list(x) + z[:] + list(a) + list(b) + list(c) + list(bN) + list(t)) # for i in range(n): # qc.measure(b[i], creg[i]) qc.measure(b[0:n], creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) from sympy import mod_inverse def create_mod_exp(n, bigN, y, nx): """ Calculate y^x mod N and output to z :param n: number of bits for z, a, c and bigN; b has n+1 bits :param bigN: mod number :param y: multiplier :param nx: number of bits for x :return: Gate of 4n+2 qubits 0 to nx-1 (n qubit) for x nx to nx+n-1 (n qubits) for z (init to 1 when use) nx+n to nx+2n-1 (n qubits) for a (init to 0) nx+2n to nx+3n (n+1 qubits) for b (init to 0) nx+3n+1 to nx+4n (n qubits) for c (init to 0) nx+4n+1 to nx+5n (n qubits) for bigN (init to bigN when use) nx+5n+1 (1 qubit) for temp (init to 0) """ x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') qc = QuantumCircuit(x, z, a, b, c, bN, t) m = y for i in range(nx): qc.append(create_ctrl_mult_mod(n, bigN, m), [x[i]] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) for j in range(n): qc.cswap(x[i], z[j], b[j]) m_inv = mod_inverse(m, bigN) qc.append(create_ctrl_mult_mod_inv(n, bigN, m_inv), [x[i]] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) m = (m * m) % bigN # update for next cycle # display(qc.draw()) return qc.to_gate(label='mod_exp') n = 3 bigN = 5 y = 3 nx = 6 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') creg = ClassicalRegister(n, 'creg') qc = QuantumCircuit(x, z, a, b, c, bN, t, creg) #qc.x(x[2]) # x = 4 # qc.x(x[0]) # x = 3 # qc.x(x[1]) qc.x(x[1]) # x = 42 qc.x(x[3]) qc.x(x[5]) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 5 qc.x(bN[2]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.measure(z, creg) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1) counts = job.result().get_counts() print(counts) n = 5 # use 4 qubits may not work, do not know the reason bigN = 15 y = 7 nx = 8 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') # cregz = ClassicalRegister(n, 'cregz') cregx = ClassicalRegister(nx, 'cregx') # qc = QuantumCircuit(x, z, a, b, c, bN, t, cregz, cregx) qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 15 = 1111(2) qc.x(bN[1]) qc.x(bN[2]) qc.x(bN[3]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(myqft(nx).inverse(), x) # qc.measure(z, cregz) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) from fractions import Fraction Fraction(192/2**8).limit_denominator(15) import math print(math.gcd(7**2+1, 15)) print(math.gcd(7**2-1, 15)) n = 6 bigN = 55 y = 7 nx = 12 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') # cregz = ClassicalRegister(n, 'cregz') cregx = ClassicalRegister(nx, 'cregx') # qc = QuantumCircuit(x, z, a, b, c, bN, t, cregz, cregx) qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 55 = 110111(2) qc.x(bN[1]) qc.x(bN[2]) qc.x(bN[4]) qc.x(bN[5]) # qc.x(bN[7]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(myqft(nx).inverse(), x) # qc.measure(z, cregz) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) from fractions import Fraction Fraction(205/2**12).limit_denominator(55) import math print(math.gcd(7**10+1, 55)) print(math.gcd(7**10-1, 55)) n = 8 bigN = 221 y = 7 nx = 16 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') # cregz = ClassicalRegister(n, 'cregz') cregx = ClassicalRegister(nx, 'cregx') # qc = QuantumCircuit(x, z, a, b, c, bN, t, cregz, cregx) qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 221 = 11011101(2) qc.x(bN[2]) qc.x(bN[3]) qc.x(bN[4]) qc.x(bN[6]) qc.x(bN[7]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(myqft(nx).inverse(), x) # qc.measure(z, cregz) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1) counts = job.result().get_counts() print(counts) from fractions import Fraction Fraction(53248/2**16).limit_denominator(221) import math print(math.gcd(7**8+1, 221)) print(math.gcd(7**8-1, 221)) 17*13 n = 9 bigN = 437 y = 7 nx = 18 x = QuantumRegister(nx, 'x') z = QuantumRegister(n, 'z') a = QuantumRegister(n, 'a') b = QuantumRegister(n+1, 'b') c = QuantumRegister(n, 'c') bN = QuantumRegister(n, 'bN') t = QuantumRegister(1, 't') # cregz = ClassicalRegister(n, 'cregz') cregx = ClassicalRegister(nx, 'cregx') # qc = QuantumCircuit(x, z, a, b, c, bN, t, cregz, cregx) qc = QuantumCircuit(x, z, a, b, c, bN, t, cregx) qc.h(x) qc.x(z[0]) # z = 1 init qc.x(bN[0]) # bN = 437 = 110110101(2) qc.x(bN[2]) qc.x(bN[4]) qc.x(bN[5]) qc.x(bN[7]) qc.x(bN[8]) qc.append(create_mod_exp(n, bigN, y, nx), x[:] + z[:] + a[:] + b[:] + c[:] + bN[:] + list(t)) qc.append(myqft(nx).inverse(), x) # qc.measure(z, cregz) qc.measure(x, cregx) display(qc.draw()) backend = Aer.get_backend('qasm_simulator') job = backend.run(transpile(qc, backend), shots=1024) counts = job.result().get_counts() print(counts) from fractions import Fraction Fraction(170791/2**18).limit_denominator(437) import math print(math.gcd(7**33+1, 437)) print(math.gcd(7**33-1, 437))
https://github.com/shell-raiser/Introduction-to-Quantum-Computing-Quantum-Algorithms-and-Qiskit
shell-raiser
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * #from ibm_quantum_widgets import * # Loading your IBM Q account(s) provider = IBMQ.load_account() from qiskit import assemble import numpy as np import matplotlib.pyplot as plt n=4 grover_ckt = QuantumCircuit(n+1, n) marked = [1,0,1,1] # 1101 element is marked (lsb to msb)=>13 def apply_oracle(n,marked,ckt): control0 = [i for i in range(n) if not marked[i]] ckt.x(control0) ckt.mct(list(range(n)),n) ckt.x(control0) ckt.draw() def reflect_uniform(ckt,n): ckt.h(list(range(n))) ckt.x(list(range(n))) ckt.mct(list(range(n)),n) ckt.x(list(range(n))) ckt.h(list(range(n))) ckt.x(n) pass grover_ckt.x(n) grover_ckt.barrier() grover_ckt.h(list(range(n))) grover_ckt.draw() svsim = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = svsim.run(qobj).result() # Do the simulation and return the result statevector = result.data()['statevector'] statevector = statevector[:2**n] marked = [1,0,1,1] # Corresponds to integer 1101 in binary => 13 ket_a = np.zeros(2**n) ket_a[13] =1 ket_e = (np.ones(2**n) - ket_a)/np.sqrt(2**n -1) def get_projection(psi,e,a ): proj = [np.real(np.vdot(e,psi)), np.real(np.vdot(a,psi))] return proj def plt_vector(proj, axes =[0.0,1.0,0.0,1.0]): x_pos = 0 y_pos = 0 x_direct = proj[0] y_direct = proj[1] # Creating plot fig, ax = plt.subplots() ax.quiver(x_pos, y_pos, x_direct, y_direct,scale=1.0) ax.axis(axes) # show plot plt.show() proj = get_projection(statevector, ket_e, ket_a) plt_vector(proj) #grover_ckt.append(oracle, list(range(n+1))) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() grover_ckt.draw() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = svsim.run(qobj).result() # Do the simulation and return the result statevector = result.data()['statevector'] statevector = statevector[:2**n] proj = get_projection(statevector, ket_e, ket_a) plt_vector(proj) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = svsim.run(qobj).result() # Do the simulation and return the result statevector = result.data()['statevector'] statevector = statevector[:2**n] proj = get_projection(statevector, ket_e, ket_a) plt_vector(proj) apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() grover_ckt.draw() svsim = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = svsim.run(qobj).result() # Do the simulation and return the result statevector = result.data()['statevector'] statevector = statevector[:2**n] proj = get_projection(statevector, ket_e, ket_a) plt_vector(proj, axes = [-1.0,1.0,-1.0,1.0]) from math import * N = (math.sqrt(n**2)) theta0 = asin(1/N) theta0 T = int((((3.14/2)/theta0)-1)/2) T n=4 grover_ckt = QuantumCircuit(n+1, n) marked = [1,0,1,1] # 1101 element is marked (lsb to msb)=>13 grover_ckt.x(n) grover_ckt.barrier() grover_ckt.h(list(range(n+1))) grover_ckt.barrier() for _ in range(int(np.floor(T))): apply_oracle(4,marked,grover_ckt) grover_ckt.barrier() reflect_uniform(grover_ckt,n) grover_ckt.barrier() for j in range(n): grover_ckt.measure(j,j) grover_ckt.draw() sim = Aer.get_backend('qasm_simulator') # Tell Qiskit how to simulate our circuit qobj = assemble(grover_ckt) # Create a Qobj from the circuit for the simulator to run result = sim.run(qobj).result() # Do the simulation and return the result result counts = result.get_counts(grover_ckt) plot_histogram(counts)
https://github.com/rowanshah/IBM-Qiskit-Models
rowanshah
import numpy as np from qiskit import * %matplotlib inline # Create a Quantum Register with 3 qubits. q = QuantumRegister(4, 'q') # Create a Quantum Circuit acting on the q register circ = QuantumCircuit(q) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(q[0]) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(q[0], q[1]) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(q[0], q[2]) # Add a CX (CNOT) gate on control qubit 0 and target qubit 3, putting # the qubits in a GHZ state. circ.cx(q[0], q[3]) circ.draw() # Import Aer from qiskit import BasicAer # Run the quantum circuit on a statevector simulator backend backend = BasicAer.get_backend('statevector_simulator') # Create a Quantum Program for execution job = execute(circ, backend) result = job.result() outputstate = result.get_statevector(circ, decimals=3) print(outputstate) from qiskit.visualization import plot_state_city plot_state_city(outputstate) # Run the quantum circuit on a unitary simulator backend backend = BasicAer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() # Show the results print(result.get_unitary(circ, decimals=3)) # Create a Classical Register with 3 bits. c = ClassicalRegister(4, 'c') # Create a Quantum Circuit meas = QuantumCircuit(q, c) meas.barrier(q) # map the quantum measurement to the classical bits meas.measure(q,c) # The Qiskit circuit object supports composition using # the addition operator. qc = circ+meas #drawing the circuit qc.draw() # Use Aer's qasm_simulator backend_sim = BasicAer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = execute(qc, backend_sim, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) from qiskit import IBMQ provider = IBMQ.load_account() print("Available backends:") provider.backends() from qiskit.providers.ibmq import least_busy large_enough_devices = provider.backends(filters=lambda x: x.configuration().n_qubits < 10 and not x.configuration().simulator) backend = least_busy(large_enough_devices) print("The best backend is " + backend.name()) from qiskit.tools.monitor import job_monitor shots = 1024 # Number of shots to run the program (experiment); maximum is 8192 shots. max_credits = 3 # Maximum number of credits to spend on executions. job_exp = execute(qc, backend=backend, shots=shots, max_credits=max_credits) job_monitor(job_exp) result_exp = job_exp.result() counts_exp = result_exp.get_counts(qc) plot_histogram([counts_exp,counts]) simulator_backend = provider.get_backend('ibmq_qasm_simulator') shots = 1024 # Number of shots to run the program (experiment); maximum is 8192 shots. max_credits = 3 # Maximum number of credits to spend on executions. job_hpc = execute(qc, backend=simulator_backend, shots=shots, max_credits=max_credits) result_hpc = job_hpc.result() counts_hpc = result_hpc.get_counts(qc) plot_histogram(counts_hpc) job_id = job_exp.job_id() print('JOB ID: {}'.format(job_id)) retrieved_job = backend.retrieve_job(job_id) retrieved_job.result().get_counts(qc)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
import numpy as np import math from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session from qiskit.providers.basic_provider import BasicProvider from qiskit.visualization import plot_histogram from qiskit import transpile from qiskit.providers.fake_provider import GenericBackendV2 backend = GenericBackendV2(num_qubits=5) def grover_oracle(marked_states, i, j, k): if not isinstance(marked_states, list): marked_states = [marked_states] num_qubits = len(marked_states[0]) qc = QuantumCircuit(num_qubits) for target in marked_states: rev_target = target[::-1] zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)] qc.x(zero_inds) """ZAJ 1""" qc.rx(i,zero_inds) qc.ry(j,zero_inds) qc.rz(k,zero_inds) qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True) qc.x(zero_inds) return qc def printToConsole(): # Format counts data formatted_output = "" #for state in ['000', '001', '010', '011', '100', '101', '110', '111']: for state in ['0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110', '1111']: formatted_output += f"{counts.get(state, 0)} " # Write counts data to a text file with open('counts_data.txt', 'a') as file: file.write(formatted_output) file.write(f"{x} {y} {z}\n") if(printDebug): import matplotlib.pyplot as plt # Parse counts data counts_data = {state: counts.get(state, 0) for state in ['0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110', '1111']} #for state in ['000', '001', '010', '011', '100', '101', '110', '111']} # Plot counts plt.bar(counts_data.keys(), counts_data.values()) plt.xlabel('States') plt.ylabel('Counts') plt.title('Quantum Circuit Measurement Results') plt.show() print(counts_data) marked_states = ["0010", "1000"] printDebug = False randomXYZ = False #RX, RY, RZ trasformators causing error in the grover oracle by rotating state by v/100 fromRot = -100 toRot = 101 XYZ = 2 #1->RX, 2->RY, 3->RZ num_simulations = 10 #averaging this many simulations, (good for graphing) for i in range(fromRot, toRot,1): # Initialize empty dictionary for averages averages = {} x=0 y=0 z=0 # Loop for multiple simulations for _ in range(num_simulations): zaj=i if(randomXYZ): k = random.randrange(-100,100)#-1 - +1 fok kozott random zaj if XYZ == 1: x=zaj/100 elif XYZ == 2: y=zaj/100 elif XYZ == 3: z=zaj/100 oracle = grover_oracle(marked_states, x, y, z) grover_op = GroverOperator(oracle) optimal_num_iterations = math.floor(math.pi / 4 * math.sqrt(2 ** grover_op.num_qubits / len(marked_states))) qc = QuantumCircuit(grover_op.num_qubits) qc.h(range(grover_op.num_qubits)) qc.compose(grover_op.power(optimal_num_iterations), inplace=True) qc.measure_all() backend = GenericBackendV2(num_qubits=4) transpiled_circuit = transpile(qc, backend) job = backend.run(transpiled_circuit) counts = job.result().get_counts() # Update averages for each state #for state in ['000', '001', '010', '011', '100', '101', '110', '111']: for state in ['0000', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110', '1111']: averages[state] = averages.get(state, 0) + counts.get(state, 0) # Calculate averages for state in averages: averages[state] /= num_simulations # Write averages to a text file with open('averages_data.txt', 'a') as file: for state in averages: file.write(f"{int(averages[state])} ") file.write(f"{x} {y} {z}") file.write("\n") if(printDebug): printToConsole() print("All done")
https://github.com/Harcipan/QAI_GroverSim
Harcipan
from qiskit import QuantumCircuit def prepare_bell_state(state_number,qc): if state_number == 1: # |Φ+⟩ qc.h(0) qc.cx(0, 1) elif state_number == 2: # |Φ-⟩ qc.h(0) qc.cx(0, 1) qc.z(0) elif state_number == 3: # |Ψ+⟩ qc.h(0) qc.cx(0, 1) qc.x(1) elif state_number == 4: # |Ψ-⟩ qc.h(0) qc.cx(0, 1) qc.x(1) qc.z(0) else: raise ValueError("State number must be 1, 2, 3, or 4.") return qc from qiskit import execute, Aer from qiskit.visualization import plot_histogram import numpy as np def cxHI_simul(bell_state): # Create a 2-qubit quantum circuit qc = QuantumCircuit(2) prepare_bell_state(bell_state,qc) # Apply CNOT gate with the first qubit as control and the second as target qc.cx(0, 1) # Apply H gate on the first qubit qc.h(0) # Draw the circuit qc.draw(output='mpl') # (Optional) Simulate the circuit simulator = Aer.get_backend('statevector_simulator') result = execute(qc, simulator).result() statevector = result.get_statevector() statevector = np.asarray(result.get_statevector()) rounded_statevector = [round(x.real, 3) + round(x.imag, 3) * 1j for x in statevector] print("Rounded Statevector:", rounded_statevector) qc.measure_all() # szimulálás job = execute(qc, simulator, shots=1024) result = job.result() counts = result.get_counts(qc) print(counts) # bell állapotok előkészítése for i in range(1,5): cxHI_simul(i)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Standard Qiskit könyvtárak importálása from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # IBM Quantum fiók betöltése service = QiskitRuntimeService(channel="ibm_quantum") from qiskit import QuantumCircuit, execute, Aer # quantumáramkör létrehozása circuit = QuantumCircuit(1) # Get the simulator backend simulator = Aer.get_backend('qasm_simulator') def apply_hadamard_and_measure(circuit, simulator,hanyszor): #Hadamard kapuk alkalmazása a qbitekre for i in range(hanyszor): circuit.h(0) # qubit megmérése circuit.measure_all() # szimulálás job = execute(circuit, simulator, shots=1024) result = job.result() counts = result.get_counts(circuit) return counts #Más eredményt kapunk ha két kapuk között mérünk. Szuperpozíciót megzavarja a mérés. # Függvény hívása a Hadamard kapu alkalmazásához és méréshez, majd az eredmények kiírása counts1 = apply_hadamard_and_measure(circuit, simulator, 2) print("Eredmények a két H kapu után:") print(counts1) # Függvény újra hívása a Hadamard kapu alkalmazásához és méréshez, majd az eredmények kiírása counts2 = apply_hadamard_and_measure(circuit, simulator, 1) print("Eredmények az első H kapu után:") print(counts2) # Függvény újra hívása a Hadamard kapu alkalmazásához és méréshez, majd az eredmények kiírása counts3 = apply_hadamard_and_measure(circuit, simulator, 1) print("Eredmények a második H kapu után:") print(counts3) import numpy as np from qiskit.visualization import plot_state_city # Kvantumáramkör létrehozása 2 qubittel circuit = QuantumCircuit(2) # Pauli-X, Y, Z kapuk alkalmazása a qubitekre circuit.x(0) circuit.y(0) circuit.z(1) # Qubit mérése circuit.measure_all() stateVsim = Aer.get_backend('statevector_simulator') # Áramkör futtatása a szimulátoron feladat = execute(circuit, stateVsim, shots=1024) eredmeny = feladat.result() stateVector = eredmeny.get_statevector() print(stateVector) plot_state_city(stateVector) from qiskit import QuantumCircuit, Aer, transpile def set_quantum_state(qc, state): # Validate input state valid_states = [0, 1, 2, 3] if state not in valid_states: raise ValueError("Invalid state code. Choose from 0, 1, 2, or 3.") # Quantum circuit creation # Set the state according to the given state code if state == 0: qc.initialize([1, 0, 0, 0], [0, 1]) # |00> elif state == 1: qc.initialize([0, 1, 0, 0], [0, 1]) # |01> elif state == 2: qc.initialize([0, 0, 1, 0], [0, 1]) # |10> elif state == 3: qc.initialize([0, 0, 0, 1], [0, 1]) # |11> # Transpile the circuit transpiled_circuit = transpile(qc, Aer.get_backend('statevector_simulator')) # Run the transpiled circuit result = Aer.get_backend('statevector_simulator').run(transpiled_circuit).result() statevector = result.get_statevector() return statevector # Example usage: qc = QuantumCircuit(2) state = 3 # Set to the |10> state, for example result_statevector = set_quantum_state(qc, state) print("Result state vector:", result_statevector) from qiskit import Aer, transpile def printStateVector(circuit): simulator = Aer.get_backend('statevector_simulator') # Transpile the circuit transpiled_circuit = transpile(circuit, simulator) # Run the transpiled circuit result = simulator.run(transpiled_circuit).result() statevector = result.get_statevector() rounded_statevector = np.round(statevector, decimals=3) print("Rounded State Vector:", rounded_statevector) # Exercise 2.2 QCCEA from qiskit import QuantumCircuit, Aer, execute from qiskit import QuantumCircuit, Aer, transpile, assemble for i in range (0,4): print(f"\nKezdő állapot: {i}") # Szimulátor definiálása szimulator = Aer.get_backend('qasm_simulator') # HXH=Z---------------------------------------------------------------------- circuit = QuantumCircuit(2) set_quantum_state(circuit,i) # Hadamard és Pauli-X kapu alkalmazása a qubitre circuit.h(0) circuit.x(0) circuit.h(0) # Qubit mérése circuit.measure_all() # Áramkör futtatása a szimulátoron feladat = execute(circuit, szimulator, shots=1) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(f"HXH:{counts}") #eredmény kiiratása állapotvectorokkal printStateVector(circuit) print(circuit) #-------------------------------------------- circuit = QuantumCircuit(2) # Pauli-Z kapu alkalmazása a qubitre set_quantum_state(circuit,i) circuit.z(0) # Qubit mérése circuit.measure_all() # Áramkör futtatása a szimulátoron feladat = execute(circuit, szimulator, shots=1) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(f"Z:{counts}") #eredmény kiiratása állapotvectorokkal printStateVector(circuit) print(circuit) # HYH=-Y--------------------------------------------------------------------- # Hadamard kapu alkalmazása a qubitre circuit = QuantumCircuit(2) set_quantum_state(circuit,i) circuit.h(0) circuit.y(0) circuit.h(0) # Qubit mérése circuit.measure_all() # Áramkör futtatása a szimulátoron feladat = execute(circuit, szimulator, shots=1) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(f"HYH:{counts}") #eredmény kiiratása állapotvectorokkal printStateVector(circuit) print(circuit) #-------------------------------------------- circuit = QuantumCircuit(2) set_quantum_state(circuit,i) # Kapuk alkalmazása circuit.y(0) # Qubit mérése circuit.measure_all() # Áramkör futtatása a szimulátoron feladat = execute(circuit, szimulator, shots=1) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(f"-Y:{counts}") #eredmény kiiratása állapotvectorokkal printStateVector(circuit) print(circuit) # HZH=X--------------------------------------------------------------------- # Kapuk alkalmazása circuit = QuantumCircuit(2) set_quantum_state(circuit,i) circuit.h(0) circuit.z(0) circuit.h(0) # Qubit mérése circuit.measure_all() # Áramkör futtatása a szimulátoron feladat = execute(circuit, szimulator, shots=1) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(f"HZH:{counts}") #eredmény kiiratása állapotvectorokkal printStateVector(circuit) print(circuit) #-------------------------------------------- circuit = QuantumCircuit(2) set_quantum_state(circuit,i) # HZH=X circuit.x(0) # Qubit mérése circuit.measure_all() # Áramkör futtatása a szimulátoron feladat = execute(circuit, szimulator, shots=1) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(f"X:{counts}") #eredmény kiiratása állapotvectorokkal printStateVector(circuit) print(circuit) # Exercise 2.1 QCCEA - HH=I # Kvantumáramkör létrehozása egyetlen qubittel circuit = QuantumCircuit(2) set_quantum_state(circuit,2) circuit.h(0) circuit.h(0) # Qubit mérése circuit.measure_all() # Áramkör futtatása a szimulátoron feladat = execute(circuit, simulator, shots=1024) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(counts) circuit.i(0) # Qubit mérése circuit.measure_all() feladat = execute(circuit, szimulátor, shots=1024) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(counts) # Exercise 2.1 QCCEA HH=I # Kvantumáramkör létrehozása egyetlen qubittel circuit = QuantumCircuit(2) circuit.x(0) # Qubit mérése circuit.measure_all() circuit.swap(1,0) circuit.measure_all() # Áramkör futtatása a szimulátoron feladat = execute(circuit, simulator, shots=1024) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(counts) #3 CNOT = SWAP (in this configuration) circuit.cx(0,1) circuit.cx(1,0) circuit.cx(0,1) # Qubit mérése circuit.measure_all() feladat = execute(circuit, szimulátor, shots=1024) eredmény = feladat.result() counts = eredmény.get_counts(circuit) print(counts)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Standard Qiskit könyvtárak importálása from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # IBM Quantum fiókok betöltése service = QiskitRuntimeService(channel="ibm_quantum") from qiskit import QuantumCircuit, Aer, transpile, assemble # Create a quantum register with 3 qubits qr = QuantumCircuit(3) # Example circuit using the quantum register qr.h(0) qr.cx(0, 1) qr.cx(1, 2) print(qr) qr.i(0)# egy sorba legyenek a h kapuk qr.h([0, 1, 2]) print(qr) from qiskit import QuantumCircuit, Aer, execute # Kvantumáramkör létrehozása megfelelő kvantum bitekkel és segéd bitekkel n = 4 # A N számhoz szükséges kvantumbitek száma circuit = QuantumCircuit(n + 1, n) # Moduláris kitevőkivonatkozás megvalósítása a = 7 # Válassz egy véletlenszerű 'a' értéket x = 3 # Válassz egy 'x' értéket N = 15 # Az faktorizálni kívánt egész szám for i in range(n): circuit.h(i) # Hadamard kapuk alkalmazása szuperpozíció létrehozásához circuit.x(n) # Az segéd qubit beállítása |1>-re for i in range(2 ** n): # Valósítsd meg a moduláris kitevőkivonatkozási áramkört itt binary_x = format(i, f"0{n}b") for j, bit in enumerate(binary_x): if bit == '1': circuit.cx(j, n) circuit.barrier() for _ in range(x): # Valósítsd meg az 'a' moduláris szorzatát # Például, ha a = 7, ez sorozat lesz kontrollált-nem (CNOT) kapukból # és kontrollált-fázis kapukból, 'a' értékétől függően # Ezt a részt az 'a' értékének megfelelően kell megvalósítani # Ebben az egyszerűsített példában feltételezzük, hogy a = 7, amihez CNOT kapuk sorozata szükséges. circuit.cx(0, n) # Kontrollált-X kapu circuit.barrier() circuit.barrier() # Visszafejtés 'a^x' része for j, bit in enumerate(binary_x): if bit == '1': circuit.cx(j, n) circuit.barrier() # Mérjük meg a kvantumáramkört circuit.measure(range(n), range(n)) # Szimuláljuk a kvantumáramkört a mérések eredményeinek eléréséhez szimulátor = Aer.get_backend('qasm_simulator') feladat = execute(circuit, szimulátor, shots=128) eredmény = feladat.result() számok = eredmény.get_counts(circuit) print(számok) from qiskit import QuantumCircuit, transpile, assemble, Aer, execute from qiskit.visualization import plot_histogram from math import pi # Qubits számának meghatározása num_qubits = 3 # Kvantum áramkör létrehozása 'num_qubits' qubittel iqft_circuit = QuantumCircuit(num_qubits) # Az inverz QFT alkalmazása a 'num_qubits' qubitekre for qubit in range(num_qubits): for j in range(qubit): iqft_circuit.cp(-pi/float(2**(qubit-j)), j, qubit) iqft_circuit.h(qubit) # Mérések hozzáadása az áramkörhöz iqft_circuit.measure_all() # Most futtathatod az Inverz QFT áramkört egy szimulátoron vagy egy valós kvantum eszközön simulator = Aer.get_backend('qasm_simulator') munka = execute(iqft_circuit, simulator, shots=1024) eredmeny = munka.result() szamlalok = eredmeny.get_counts() # Az eredmények megjelenítése plot_histogram(szamlalok)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") IBMQ.load_account() from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute, IBMQ from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT import numpy as np pi = np.pi # IBMQ.enable_account('ENTER API KEY HERE') provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_qasm_simulator') q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circuit = QuantumCircuit(q, c) circuit.x(q[2]) circuit.x(q[0]) qft_gate = QFT(num_qubits=3, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name='qft') circuit.append(qft_gate, q) circuit.measure(q, c) circuit.draw(output='mpl', filename='qft1.png') print(circuit) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n QFT Output") print("-------------") print(counts) #Idealis phase estimation from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram # Define the number of qubits and the phase estimation precision n = 3 # number of qubits precision = 2**n # Create quantum and classical registers qreg_upper = QuantumRegister(1, 'q_upper') # Upper qubit qreg_lower = QuantumRegister(n, 'q_lower') # Lower qubits creg = ClassicalRegister(n, 'c') # Classical register for measurement outcomes # Create quantum circuit circuit = QuantumCircuit(qreg_upper, qreg_lower, creg) # Initialize the lower qubits with the eigenvector |u # Note: You need to provide the specific eigenvector |u as initial state # For simplicity, let's assume |u = |0 for demonstration purposes circuit.initialize([1] + [0] * (2**n - 1), qreg_lower) # Apply Hadamard gate to the upper qubit circuit.h(qreg_upper[0]) # Apply controlled unitary operations based on the phase estimation algorithm for qubit in range(n): circuit.cp(2 * 3.141592653589793 / (2**(n - qubit)), qreg_upper[0], qreg_lower[qubit]) # Apply the inverse quantum Fourier transform (IQFT) circuit.h(qreg_upper[0]) for qubit in range(n): circuit.cp(-2 * 3.141592653589793 / (2**(qubit + 1)), qreg_upper[0], qreg_lower[qubit]) # Measure the lower qubits circuit.measure(qreg_lower, creg) # Simulate the circuit simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, simulator, shots=1000) result = job.result() print(circuit) # Display the histogram of measurement outcomes counts = result.get_counts() print("\nMeasurement outcomes:") print("---------------------") print(counts) # Plot the histogram plot_histogram(counts) #Idealis phase estimation #CASE 1 from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram # Define the number of qubits and the phase estimation precision n = 3 # number of qubits precision = 2**n PI = 3.141592653589793 # Create quantum and classical registers qreg_upper = QuantumRegister(1, 'q_upper') # Upper qubit qreg_lower = QuantumRegister(n, 'q_lower') # Lower qubits creg = ClassicalRegister(n, 'c') # Classical register for measurement outcomes # Create quantum circuit circuit = QuantumCircuit(qreg_upper, qreg_lower, creg) # Initialize the lower qubits with the eigenvector |u # Note: You need to provide the specific eigenvector |u as initial state # For simplicity, let's assume |u = |0 for demonstration purposes circuit.initialize([1] + [0] * (2**n - 1), qreg_lower) # Apply Hadamard gate to the upper qubit circuit.h(qreg_upper[0]) """circuit.h(qreg_lower[1]) circuit.h(qreg_lower[2])""" # Apply controlled unitary operations based on the phase estimation algorithm for qubit in range(n): circuit.cp(2 * PI / (2**(n - qubit)), qreg_upper[0], qreg_lower[qubit]) # Apply the inverse quantum Fourier transform (IQFT) circuit.h(qreg_upper[0]) for qubit in range(n): circuit.cp(-2 * PI / (2**(qubit + 1)), qreg_upper[0], qreg_lower[qubit]) # Measure the lower qubits circuit.measure(qreg_lower, creg) # Simulate the circuit simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, simulator, shots=1000) result = job.result() print(circuit) # Display the histogram of measurement outcomes counts = result.get_counts() print("\nMeasurement outcomes:") print("---------------------") print(counts) # Plot the histogram plot_histogram(counts) #CASE 2 from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram import numpy as np PI = np.pi n = 4 # number of qubits #---------INIT----------# # Create quantum and classical registers #qreg_upper = QuantumRegister(1, 'q_upper') # Upper qubit qreg_lower = QuantumRegister(n, 'q_lower') # Lower qubits creg = ClassicalRegister(n, 'c') # Classical register for measurement outcomes # Create quantum circuit #circuit = QuantumCircuit(qreg_upper, qreg_lower, creg) circuit = QuantumCircuit(qreg_lower, creg) # Initialize the lower qubits with the eigenvector |u # Note: You need to provide the specific eigenvector |u as the initial state # For simplicity, let's assume |u = |0 for demonstration purposes circuit.initialize([1] + [0] * (2**n - 1), qreg_lower) #-------------MAKING INPUT----------# # Apply controlled unitary operations based on the phase estimation algorithm for qubit in range(n-1): #circuit.cy(qreg_lower[0], qreg_lower[qubit+1]) #circuit.ch(qreg_lower[0], qreg_lower[qubit+1]) #egyik init circuit.cp(2 * PI / (2**(n - qubit)), qreg_lower[0], qreg_lower[qubit+1]) #masik init circuit.h(qreg_lower[0]) """circuit.h(qreg_lower[1]) circuit.h(qreg_lower[2])""" #--------------IQFT----------------# # preparing for IQFT circuit.x(qreg_lower[2]) circuit.x(qreg_lower[0]) #circuit.x(qreg_lower[4]) # Apply Hadamard gate to the upper qubit #circuit.h(qreg_lower[0]) # Apply inverse QFT qft_gate = QFT(num_qubits=n, approximation_degree=0, do_swaps=True, inverse=True, insert_barriers=True, name='qft') circuit.append(qft_gate, qreg_lower) """for qubit in range(n-1): circuit.cp(-2 * PI / (2**(qubit + 1)), qreg_lower[0], qreg_lower[qubit+1])""" #----------MEASUREMENT-----------# circuit.measure(qreg_lower, creg) # Display the circuit #circuit.draw(output='mpl', filename='qft1.png') print(circuit) # Execute the circuit on the simulator backend = Aer.get_backend('qasm_simulator') job = execute(circuit, backend, shots=1000) # Monitor the job job_monitor(job) # Get and display the measurement results counts = job.result().get_counts() print("\nIQFT Output") print("-------------") print(counts) plot_histogram(counts) #CASE 3 from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram import numpy as np PI = np.pi n = 4 # number of qubits #---------INIT----------# # Create quantum and classical registers #qreg_upper = QuantumRegister(1, 'q_upper') # Upper qubit qreg_lower = QuantumRegister(n, 'q_lower') # Lower qubits creg = ClassicalRegister(n, 'c') # Classical register for measurement outcomes # Create quantum circuit #circuit = QuantumCircuit(qreg_upper, qreg_lower, creg) circuit = QuantumCircuit(qreg_lower, creg) # Initialize the lower qubits with the eigenvector |u # Note: You need to provide the specific eigenvector |u as the initial state # For simplicity, let's assume |u = |0 for demonstration purposes circuit.initialize([1] + [0] * (2**n - 1), qreg_lower) #-------------MAKING INPUT----------# # Apply controlled unitary operations based on the phase estimation algorithm for qubit in range(n-1): #circuit.cy(qreg_lower[0], qreg_lower[qubit+1]) #circuit.ch(qreg_lower[0], qreg_lower[qubit+1]) #egyik init circuit.cp(2 * PI / (2**(n - qubit)), qreg_lower[0], qreg_lower[qubit+1]) #masik init #circuit.h(qreg_lower[0]) """circuit.h(qreg_lower[1]) circuit.h(qreg_lower[2])""" #--------------IQFT----------------# # preparing for IQFT circuit.x(qreg_lower[2]) circuit.x(qreg_lower[0]) #circuit.x(qreg_lower[4]) # Apply Hadamard gate to the upper qubit circuit.h(qreg_lower[0]) # Apply inverse QFT qft_gate = QFT(num_qubits=n, approximation_degree=0, do_swaps=True, inverse=True, insert_barriers=True, name='qft') circuit.append(qft_gate, qreg_lower) """for qubit in range(n-1): circuit.cp(-2 * PI / (2**(qubit + 1)), qreg_lower[0], qreg_lower[qubit+1])""" #----------MEASUREMENT-----------# circuit.measure(qreg_lower, creg) # Display the circuit #circuit.draw(output='mpl', filename='qft1.png') print(circuit) # Execute the circuit on the simulator backend = Aer.get_backend('qasm_simulator') job = execute(circuit, backend, shots=1000) # Monitor the job job_monitor(job) # Get and display the measurement results counts = job.result().get_counts() print("\nIQFT Output") print("-------------") print(counts) plot_histogram(counts) from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram import numpy as np PI = np.pi n = 4 # number of qubits from qiskit import IBMQ #provider = IBMQ.load_account() # Load your IBM Quantum Experience account # Choose an available backend #backend = provider.get_backend('your_preferred_backend_name') #---------INIT----------# # Create quantum and classical registers #qreg_upper = QuantumRegister(1, 'q_upper') # Upper qubit qreg_lower = QuantumRegister(n, 'q_lower') # Lower qubits creg = ClassicalRegister(n, 'c') # Classical register for measurement outcomes # Create quantum circuit #circuit = QuantumCircuit(qreg_upper, qreg_lower, creg) circuit = QuantumCircuit(qreg_lower, creg) # Initialize the lower qubits with the eigenvector |u # Note: You need to provide the specific eigenvector |u as the initial state # For simplicity, let's assume |u = |0 for demonstration purposes circuit.initialize([0] * (2**n - 1)+[1], qreg_lower) #-------------MAKING INPUT----------# # Apply controlled unitary operations based on the phase estimation algorithm for qubit in range(n-1): #circuit.cy(qreg_lower[0], qreg_lower[qubit+1]) #circuit.ch(qreg_lower[0], qreg_lower[qubit+1]) #egyik init circuit.cp(2 * PI / (2**(n - qubit)), qreg_lower[0], qreg_lower[qubit+1]) #masik init for qubit in range(n-1): circuit.h(qreg_lower[qubit+1]) """circuit.h(qreg_lower[1]) circuit.h(qreg_lower[2])""" #--------------IQFT----------------# # preparing for IQFT circuit.x(qreg_lower[2]) circuit.x(qreg_lower[0]) #circuit.x(qreg_lower[4]) # Apply Hadamard gate to the upper qubit #circuit.h(qreg_lower[0]) # Apply inverse QFT qft_gate = QFT(num_qubits=n, approximation_degree=0, do_swaps=True, inverse=True, insert_barriers=True, name='qft') circuit.append(qft_gate, qreg_lower) """for qubit in range(n-1): circuit.cp(-2 * PI / (2**(qubit + 1)), qreg_lower[0], qreg_lower[qubit+1])""" #----------MEASUREMENT-----------# """for i in range(circuit.num_qubits-1): circuit.measure(qreg_lower[i], creg[i])""" circuit.measure(qreg_lower[0], creg[0]) # Display the circuit #circuit.draw(output='mpl', filename='qft1.png') print(circuit) # Execute the circuit on the simulator backend = Aer.get_backend('qasm_simulator') job = execute(circuit, backend, shots=1000) # Monitor the job job_monitor(job) # Get and display the measurement results counts = job.result().get_counts() print("\nIQFT Output") print("-------------") print(counts) plot_histogram(counts) # Phase estimator - in the initialized input 1 is in the first or the second half => output: 0 or 1 from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram import numpy as np from qiskit import IBMQ, Aer, transpile, assemble from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram from qiskit.providers.ibmq import least_busy PI = np.pi n = 4 # number of qubits # Az IBMQ fiókaink betöltése és a legkevésbé leterhelt háttértároló eszköz megszerzése, amelynek (n+1) kubit vagy több van #IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') """backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("Legkevésbé leterhelt backend: ", backend)""" #---------INIT----------# # Create quantum and classical registers qreg = QuantumRegister(n, 'q') #qubits creg = ClassicalRegister(n, 'c') # Classical register for measurement outcomes # Create quantum circuit #circuit = QuantumCircuit(qreg_upper, qreg_lower, creg) circuit = QuantumCircuit(qreg, creg) # Initialize the lower qubits with the eigenvector |u # Note: You need to provide the specific eigenvector |u as the initial state # For simplicity, let's assume |u = |0 for demonstration purposes #circuit.initialize([1 + [0] * (2**n - 1), qreg) #circuit.initialize([0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], qreg) circuit.initialize([1,0], qreg[n-1]) for qubit in range(n-1): circuit.h(qreg[qubit]) #-------------MAKING INPUT----------# # Apply controlled unitary operations based on the phase estimation algorithm for qubit in range(n-1): circuit.cx(qreg[n-qubit-2],qreg[n-1]) #--------------IQFT----------------# # Apply Hadamard gate to the upper qubit #circuit.h(qreg[0]) # Apply inverse QFT circuit.append(QFT(num_qubits=n, inverse=True), qreg) #----------MEASUREMENT-----------# #circuit.measure(qreg[0], creg[0]) for i in range(circuit.num_qubits-1): circuit.measure(qreg[i], creg[i]) # Display the circuit #circuit.draw(output='mpl', filename='qft1.png') print(circuit) # Execute the circuit on the simulator backend = Aer.get_backend('qasm_simulator') job = execute(circuit, backend, shots=1000) """ # futtatas kv.szamitogepen transpiled_circuit = transpile(circuit, backend, optimization_level=3) job = backend.run(transpiled_circuit)""" # Monitor the job job_monitor(job, interval=2) # Get and display the measurement results counts = job.result().get_counts() print("\nIQFT Output") print("-------------") print(counts) plot_histogram(counts) # Phase estimator - in the initialized input 1 is in the first or the second half => output: 0 or 1 from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram import numpy as np from qiskit import IBMQ, Aer, transpile, assemble from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram from qiskit.providers.ibmq import least_busy PI = np.pi t=1 n=4 # Create quantum registers upper_register = QuantumRegister(n, 'upper') bottom_register = QuantumRegister(t, 'bottom') classical_reg = ClassicalRegister(n, 'creg') # Construct quantum circuit qc = QuantumCircuit(upper_register, bottom_register, classical_reg) #qc.initialize([1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], upper_register) #alapbol 0-ra van inicializalva qc.initialize([1,0], bottom_register) # Apply Hadamard gates on upper register qc.h(upper_register) for qubit in range(n-1): qc.cx(upper_register[n-qubit-2],bottom_register) #qc.cx(upper_register,bottom_register) # Apply Inverse Quantum Fourier Transform (IQFT) qc.append(QFT(n, inverse=True), upper_register) # Measure upper register qc.measure(upper_register, classical_reg) print(qc) # Execute the circuit on a simulator simulator = Aer.get_backend('qasm_simulator') job = execute(qc, simulator, shots=1024) result = job.result() # Get the counts counts = result.get_counts(qc) # Visualize the counts plot_histogram(counts) from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, Aer, transpile from qiskit.providers.ibmq import least_busy, IBMQ from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram # Load IBM Quantum Experience account IBMQ.load_account() # Define your quantum and classical registers n = 4 t = 1 upper_register = QuantumRegister(n, 'upper') bottom_register = QuantumRegister(t, 'bottom') classical_reg = ClassicalRegister(n, 'creg') # Construct quantum circuit qc = QuantumCircuit(upper_register, bottom_register, classical_reg) # Initialize the bottom register qc.initialize([1, 0], bottom_register) # Apply Hadamard gates on upper register qc.h(upper_register) # Apply controlled-NOT gates for qubit in range(n - 1): qc.cx(upper_register[n - qubit - 2], bottom_register) # Apply Inverse Quantum Fourier Transform (IQFT) qc.append(QFT(n, inverse=True), upper_register) # Measure the upper register qc.measure(upper_register, classical_reg) # Choose an IBM Quantum device to run the circuit provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= n and not x.configuration().simulator and x.status().operational==True)) # Transpile the circuit for the selected backend qc_transpiled = transpile(qc, backend) # Execute the circuit on the selected backend job = backend.run(qc_transpiled) # Monitor the job job_monitor(job) # Get the results result = job.result() # Get the counts counts = result.get_counts(qc) # Visualize the counts plot_histogram(counts) #Deutsch–Jozsa circuit as a simple phase estimator from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT from qiskit.visualization import plot_histogram import numpy as np from qiskit import IBMQ, Aer, transpile, assemble from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram from qiskit.providers.ibmq import least_busy PI = np.pi n = 2 # number of qubits # Az IBMQ fiókaink betöltése és a legkevésbé leterhelt háttértároló eszköz megszerzése, amelynek (n+1) kubit vagy több van #IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') """backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("Legkevésbé leterhelt backend: ", backend)""" #---------INIT----------# # Create quantum and classical registers qreg = QuantumRegister(n, 'q') #qubits creg = ClassicalRegister(n, 'c') # Classical register for measurement outcomes # Create quantum circuit circuit = QuantumCircuit(qreg, creg) initial_state = [0, 1, 0, 0] # Amplitudes for |00⟩, |01⟩, |10⟩, |11⟩ circuit.initialize(initial_state, qreg) for qubit in range(n): circuit.h(qreg[qubit]) circuit.cx(qreg[0],qreg[1]) circuit.h(qreg[0]) #----------MEASUREMENT-----------# circuit.measure(qreg[0], creg[0]) # Display the circuit print(circuit) # Execute the circuit on the simulator backend = Aer.get_backend('qasm_simulator') job = execute(circuit, backend, shots=1000) """ # futtatas kv.szamitogepen transpiled_circuit = transpile(circuit, backend, optimization_level=3) job = backend.run(transpiled_circuit)""" # Monitor the job job_monitor(job, interval=2) # Get and display the measurement results counts = job.result().get_counts() print("\nIQFT Output") print("-------------") print(counts) plot_histogram(counts)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") IBMQ.load_account() # Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives # result = Sampler().run(circuits).result() from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute, IBMQ from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT import numpy as np pi = np.pi # IBMQ.enable_account('ENTER API KEY HERE') provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_qasm_simulator') q = QuantumRegister(5, 'q') c = ClassicalRegister(5, 'c') circuit = QuantumCircuit(q, c) circuit.x(q[4]) circuit.x(q[2]) circuit.x(q[0]) qft_gate = QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name='qft') circuit.append(qft_gate, q) circuit.measure(q, c) circuit.draw(output='mpl', filename='qft1.png') print(circuit) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n QFT Output") print("-------------") print(counts) q = QuantumRegister(5,'q') c = ClassicalRegister(5,'c') circuit = QuantumCircuit(q,c) circuit.x(q[4]) circuit.x(q[2]) circuit.x(q[0]) qft_gate2 = QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=True, name='qft') qft_gate3 = QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=True, insert_barriers=True, name='qft') circuit.append(qft_gate2, q) circuit.append(qft_gate3, q) circuit.measure(q,c) circuit.draw(output='mpl',filename='qft2.png') print(circuit) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n QFT with inverse QFT Output") print("------------------------------") print(counts)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
from qiskit import QuantumCircuit, Aer, execute, IBMQ from qiskit.utils import QuantumInstance import numpy as np from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1000) my_shor = Shor(quantum_instance) result_dict = my_shor.factor(15) print(result_dict)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile # import basic plot tools from qiskit.visualization import plot_histogram # set the length of the n-bit input string. n = 3 # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(balanced_oracle) dj_circuit.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(balanced_oracle) # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw() # use local simulator aer_sim = Aer.get_backend('aer_simulator') results = aer_sim.run(dj_circuit).result() answer = results.get_counts() plot_histogram(answer) # ...we have a 0% chance of measuring 000. assert answer.get('000', 0) == 0 def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw() transpiled_dj_circuit = transpile(dj_circuit, aer_sim) results = aer_sim.run(transpiled_dj_circuit).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with greater than or equal to (n+1) qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_dj_circuit = transpile(dj_circuit, backend, optimization_level=3) job = backend.run(transpiled_dj_circuit) job_monitor(job, interval=2) # Get the results of the computation results = job.result() answer = results.get_counts() plot_histogram(answer) # ...the most likely result is 1111. assert max(answer, key=answer.get) == '1111' from qiskit_textbook.problems import dj_problem_oracle oracle = dj_problem_oracle(1) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/Harcipan/QAI_GroverSim
Harcipan
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ, execute from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector, plot_histogram class DeutschJozsa: ''' Class to generate a DeutschJozsa object containing: - init functions - oracle function - dj function ''' def __init__(self, case, input_str): ''' Initialization of the object: @case: (str) type of oracle balanced or constant @input_str: (str) string input state values ''' self.case = case self.number_qubit = len(input_str) self.str_input = input_str def oracle(self): ''' Will create the oracle needed for the Deutsch-Jozsa algorithm No input, the function will be used in the dj function @return the oracle in form of a gate ''' # Create the QuantumCircuit with n+1 qubits self.oracle_circuit = QuantumCircuit(self.number_qubit+1) # Balanced case if self.case == "balanced": # apply an X-gate to a qubit when its value is 1 for qubit in range(len(self.str_input)): if self.str_input[qubit] == '1': self.oracle_circuit.x(qubit) # Apply CNOT gates on each qubit for qubit in range(self.number_qubit): self.oracle_circuit.cx(qubit, self.number_qubit) # apply another set of X gates when the input qubit == 1 for qubit in range(len(self.str_input)): if self.str_input[qubit] == '1': self.oracle_circuit.x(qubit) # Constant case if self.case == "constant": # Output 0 for a constant oracle self.output = np.random.randint(2) if self.output == 1: self.oracle_circuit.x(self.number_qubit) # convert the quantum circuit into a gate self.oracle_gate = self.oracle_circuit.to_gate() # name of the oracle self.oracle_gate.name = "Oracle" return self.oracle_gate def dj(self): ''' Create the Deutsch-Jozsa algorithm in the general case with n qubit No input @return the quantum circuit of the DJ ''' self.dj_circuit = QuantumCircuit(self.number_qubit+1, self.number_qubit) # Set up the output qubit: self.dj_circuit.x(self.number_qubit) self.dj_circuit.h(self.number_qubit) # Psi_0 for qubit in range(self.number_qubit): self.dj_circuit.h(qubit) # Psi_1 + oracle self.dj_circuit.append(self.oracle(), range(self.number_qubit+1)) # Psi_2 for qubit in range(self.number_qubit): self.dj_circuit.h(qubit) # Psi_3 # Let's put some measurement for i in range(self.number_qubit): self.dj_circuit.measure(i, i) return self.dj_circuit test = DeutschJozsa('constant', '0110') #circuit = test.oracle() dj_circuit = test.dj() dj_circuit.draw('mpl') qasm_sim = Aer.get_backend('qasm_simulator') transpiled_dj_circuit = transpile(dj_circuit, qasm_sim) qobj = assemble(transpiled_dj_circuit) results = qasm_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) from qiskit import IBMQ #TOKEN = 'paste your token here' #IBMQ.save_account(TOKEN) IBMQ.load_account() # Load account from disk IBMQ.providers() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() provider.backends(filters=lambda x: x.configuration().n_qubits >= 5 and not x.configuration().simulator and x.status().operational==True) backend = provider.get_backend('ibmq_manila') backend mapped_circuit = transpile(dj_circuit, backend=backend) qobj = assemble(mapped_circuit, backend=backend, shots=1024) job = backend.run(qobj) job.status() # 9:17 pm result = job.result() counts = result.get_counts() print(counts) plot_histogram(counts) plot_histogram(counts,figsize=(10,8), filename='DJ.jpeg')
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Alap Qiskit könyvtárak from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # IBM Quantum account betöltése service = QiskitRuntimeService(channel="ibm_quantum") from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, execute from qiskit.circuit import ControlledGate # Tegyük fel, hogy n a qubitek száma n = 3 # Hozzunk létre egy kvantum regisztert n qubittal a függvényhez és 1 qubittal a CNOT céljához qr = QuantumRegister(n + 1) # Hozzunk létre egy klasszikus regisztert a méréshez cr = ClassicalRegister(n + 1) circuit = QuantumCircuit(qr, cr) # Az f függvény implementálása: Bitenkénti NOT művelet minden egyes első n qubit esetén (csak próbaként) for qubit in range(n): circuit.x(qr[qubit]) # Alkalmazzunk CNOT-t az n-edik qubit vezérlésével és az (n+1)-edik qubit célpontjával circuit.cnot(qr[n-1], qr[n]) # Mérjük meg a qubiteket circuit.measure(qr, cr) print(circuit) # szimuláció simulator = Aer.get_backend('qasm_simulator') job = execute(circuit, simulator, shots=1024) result = job.result() counts = result.get_counts(circuit) print(counts)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # result = Sampler("ibmq_qasm_simulator").run(circuits).result() # Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session # Add your token below service = QiskitRuntimeService(channel="ibm_quantum") from qiskit import IBMQ IBMQ.save_account('33b329939cf6fe545c64afb41b84e0993a774c578c2d3e3a07b2ed8644261511d4712974c684ae3050ca82dd8f4ca161930bb344995de7934be32214bdb17079')
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://docs.quantum-computing.ibm.com/run/primitives # result = Sampler().run(circuits).result() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, Aer, transpile, assemble # considering our bit string to be ‘101’ b = '101' n = len(b) # creating two quantum registers of ’n’ qubits and 1 classical register of ’n’ qubits q_reg1 = QuantumRegister(n, 'reg1') q_reg2 = QuantumRegister(n, 'reg2') c_reg = ClassicalRegister(n) circuit = QuantumCircuit(q_reg1, q_reg2, c_reg) # applying H-gate on qubits of the first register circuit.h(q_reg1) circuit.barrier() # copying the data of the first register to the second register circuit.cx(q_reg1, q_reg2) circuit.barrier() # applying bit-wise X-OR from register 1 to register 2 where qubits of the first register are 1 circuit.cx(q_reg1[0], q_reg2[0]) circuit.cx(q_reg1[0], q_reg2[2]) circuit.barrier() # measuring qubits of the second register circuit.measure(q_reg2, c_reg) # applying H-gate to qubits of the first register circuit.h(q_reg1) circuit.barrier() # measuring qubits of the first register circuit.measure(q_reg1, c_reg) circuit.draw() # running the circuit using "qasm simulator" qasm_sim = Aer.get_backend("qasm_simulator") job = assemble(circuit,qasm_sim) result = qasm_sim.run(job).result() counts = result.get_counts() plot_histogram(counts)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import Kraus, SuperOp from qiskit.visualization import plot_histogram from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_aer import AerSimulator # Import from Qiskit Aer noise module from qiskit_aer.noise import ( NoiseModel, QuantumError, ReadoutError, depolarizing_error, pauli_error, thermal_relaxation_error, ) from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() backend = service.backend("ibm_brisbane") noise_model = NoiseModel.from_backend(backend) # Construct a 1-qubit bit-flip and phase-flip errors p_error = 0.05 bit_flip = pauli_error([('X', p_error), ('I', 1 - p_error)]) phase_flip = pauli_error([('Z', p_error), ('I', 1 - p_error)]) print(bit_flip) print(phase_flip) # Compose two bit-flip and phase-flip errors bitphase_flip = bit_flip.compose(phase_flip) print(bitphase_flip) # Tensor product two bit-flip and phase-flip errors with # bit-flip on qubit-0, phase-flip on qubit-1 error2 = phase_flip.tensor(bit_flip) print(error2) # Convert to Kraus operator bit_flip_kraus = Kraus(bit_flip) print(bit_flip_kraus) # Convert to Superoperator phase_flip_sop = SuperOp(phase_flip) print(phase_flip_sop) # Convert back to a quantum error print(QuantumError(bit_flip_kraus)) # Check conversion is equivalent to original error QuantumError(bit_flip_kraus) == bit_flip # Measurement misassignment probabilities p0given1 = 0.1 p1given0 = 0.05 ReadoutError([[1 - p1given0, p1given0], [p0given1, 1 - p0given1]]) # Create an empty noise model noise_model = NoiseModel() # Add depolarizing error to all single qubit u1, u2, u3 gates error = depolarizing_error(0.05, 1) noise_model.add_all_qubit_quantum_error(error, ['u1', 'u2', 'u3']) # Print noise model info print(noise_model) # Create an empty noise model noise_model = NoiseModel() # Add depolarizing error to all single qubit u1, u2, u3 gates on qubit 0 only error = depolarizing_error(0.05, 1) noise_model.add_quantum_error(error, ['u1', 'u2', 'u3'], [0]) # Print noise model info print(noise_model) # System Specification n_qubits = 4 circ = QuantumCircuit(n_qubits) # Test Circuit circ.h(0) for qubit in range(n_qubits - 1): circ.cx(qubit, qubit + 1) circ.measure_all() print(circ) # Ideal simulator and execution sim_ideal = AerSimulator() result_ideal = sim_ideal.run(circ).result() plot_histogram(result_ideal.get_counts(0)) # Example error probabilities p_reset = 0.03 p_meas = 0.1 p_gate1 = 0.05 # QuantumError objects error_reset = pauli_error([('X', p_reset), ('I', 1 - p_reset)]) error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)]) error_gate1 = pauli_error([('X',p_gate1), ('I', 1 - p_gate1)]) error_gate2 = error_gate1.tensor(error_gate1) # Add errors to noise model noise_bit_flip = NoiseModel() noise_bit_flip.add_all_qubit_quantum_error(error_reset, "reset") noise_bit_flip.add_all_qubit_quantum_error(error_meas, "measure") noise_bit_flip.add_all_qubit_quantum_error(error_gate1, ["u1", "u2", "u3"]) noise_bit_flip.add_all_qubit_quantum_error(error_gate2, ["cx"]) print(noise_bit_flip) # Create noisy simulator backend sim_noise = AerSimulator(noise_model=noise_bit_flip) # Transpile circuit for noisy basis gates passmanager = generate_preset_pass_manager(optimization_level=3, backend=sim_noise) circ_tnoise = passmanager.run(circ) # Run and get counts result_bit_flip = sim_noise.run(circ_tnoise).result() counts_bit_flip = result_bit_flip.get_counts(0) # Plot noisy output plot_histogram(counts_bit_flip) # T1 and T2 values for qubits 0-3 T1s = np.random.normal(50e3, 10e3, 4) # Sampled from normal distribution mean 50 microsec T2s = np.random.normal(70e3, 10e3, 4) # Sampled from normal distribution mean 50 microsec # Truncate random T2s <= T1s T2s = np.array([min(T2s[j], 2 * T1s[j]) for j in range(4)]) # Instruction times (in nanoseconds) time_u1 = 0 # virtual gate time_u2 = 50 # (single X90 pulse) time_u3 = 100 # (two X90 pulses) time_cx = 300 time_reset = 1000 # 1 microsecond time_measure = 1000 # 1 microsecond # QuantumError objects errors_reset = [thermal_relaxation_error(t1, t2, time_reset) for t1, t2 in zip(T1s, T2s)] errors_measure = [thermal_relaxation_error(t1, t2, time_measure) for t1, t2 in zip(T1s, T2s)] errors_u1 = [thermal_relaxation_error(t1, t2, time_u1) for t1, t2 in zip(T1s, T2s)] errors_u2 = [thermal_relaxation_error(t1, t2, time_u2) for t1, t2 in zip(T1s, T2s)] errors_u3 = [thermal_relaxation_error(t1, t2, time_u3) for t1, t2 in zip(T1s, T2s)] errors_cx = [[thermal_relaxation_error(t1a, t2a, time_cx).expand( thermal_relaxation_error(t1b, t2b, time_cx)) for t1a, t2a in zip(T1s, T2s)] for t1b, t2b in zip(T1s, T2s)] # Add errors to noise model noise_thermal = NoiseModel() for j in range(4): noise_thermal.add_quantum_error(errors_reset[j], "reset", [j]) noise_thermal.add_quantum_error(errors_measure[j], "measure", [j]) noise_thermal.add_quantum_error(errors_u1[j], "u1", [j]) noise_thermal.add_quantum_error(errors_u2[j], "u2", [j]) noise_thermal.add_quantum_error(errors_u3[j], "u3", [j]) for k in range(4): noise_thermal.add_quantum_error(errors_cx[j][k], "cx", [j, k]) print(noise_thermal) # Run the noisy simulation sim_thermal = AerSimulator(noise_model=noise_thermal) # Transpile circuit for noisy basis gates passmanager = generate_preset_pass_manager(optimization_level=3, backend=sim_thermal) circ_tthermal = passmanager.run(circ) # Run and get counts result_thermal = sim_thermal.run(circ_tthermal).result() counts_thermal = result_thermal.get_counts(0) # Plot noisy output plot_histogram(counts_thermal)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
from qiskit import transpile, QuantumCircuit import qiskit.quantum_info as qi from qiskit_aer import AerSimulator from qiskit_aer.noise import NoiseModel, amplitude_damping_error from qiskit.visualization import plot_histogram # CNOT matrix operator with qubit-0 as control and qubit-1 as target g_op = qi.Operator([[-1/2, 1/2, -1/2, 1/2], [1/2, -1/2, -1/2, 1/2], [1/2,1/2,1/2, 1/2], [1/2, 1/2, -1/2, -1/2]]) from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute, IBMQ from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT import numpy as np pi = np.pi # IBMQ.enable_account('ENTER API KEY HERE') provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_qasm_simulator') q = QuantumRegister(3, 'q') c = ClassicalRegister(3, 'c') circuit = QuantumCircuit(q, c) circuit.h(q[2]) circuit.h(q[1]) circuit.h(q[0]) qft_gate = QFT(num_qubits=3, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name='qft') circuit.append(qft_gate, q) circuit.measure(q, c) circuit.draw(output='mpl', filename='qft1.png') print(circuit) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n QFT Output") print("-------------") print(counts) from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.visualization import plot_histogram from math import pi from qiskit.circuit.library import QFT # Example usage N = 15 t=4 # log_2(N) upper limit n=t # Create quantum registers upper_register = QuantumRegister(n, 'upper') bottom_register = QuantumRegister(t, 'bottom') ancilla = QuantumRegister(1, 'ancilla') classical_reg = ClassicalRegister(n, 'creg') # Construct quantum circuit qc = QuantumCircuit(upper_register, bottom_register, ancilla, classical_reg) # Apply Hadamard gates on upper register qc.h(upper_register) qc.unitary(g_op, [0, 8], label='grover_op') # Apply Inverse Quantum Fourier Transform (IQFT) qc.append(QFT(n, inverse=True), upper_register) # Measure upper register qc.measure(upper_register, classical_reg) print(qc) sim_ideal = AerSimulator() tbell_circ = transpile(qc, sim_ideal) ideal_result = sim_ideal.run(tbell_circ).result() ideal_counts = ideal_result.get_counts(0) plot_histogram(ideal_counts, title='Ideal output for gOp')
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit_ibm_provider import IBMProvider import qiskit_ibm_provider.jupyter #provider = IBMProvider('ibm-q') #backend = provider.get_backend('ibmq_vigo') from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # result = Sampler("ibmq_qasm_simulator").run(circuits).result() # Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session # Add your token below service = QiskitRuntimeService(channel="ibm_quantum") from qiskit import IBMQ IBMQ.save_account('33b329939cf6fe545c64afb41b84e0993a774c578c2d3e3a07b2ed8644261511d4712974c684ae3050ca82dd8f4ca161930bb344995de7934be32214bdb17079') from qiskit.circuit import QuantumCircuit, Gate, Instruction from qiskit.circuit.library.standard_gates import ZGate def MCMT(gate, num_controls, num_targets): """Construct a multi-controlled multi-target gate. Args: gate (Gate): The gate to apply to the target qubits. num_controls (int): The number of control qubits. num_targets (int): The number of target qubits. Returns: Instruction: The multi-controlled multi-target gate as a Qiskit Instruction. """ mcmt_gate = QuantumCircuit(num_controls + num_targets) mcmt_gate.append(gate.control(num_controls), list(range(num_controls + num_targets))) return mcmt_gate.to_instruction() def grover_oracle(marked_states): """Build a Grover oracle for multiple marked states Here we assume all input marked states have the same number of bits Parameters: marked_states (str or list): Marked states of oracle Returns: QuantumCircuit: Quantum circuit representing Grover oracle """ if not isinstance(marked_states, list): marked_states = [marked_states] # Compute the number of qubits in circuit num_qubits = len(marked_states[0]) qc = QuantumCircuit(num_qubits) # Mark each target state in the input list for target in marked_states: # Flip target bit-string to match Qiskit bit-ordering rev_target = target[::-1] # Find the indices of all the '0' elements in bit-string zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)] # Add a multi-controlled Z-gate with pre- and post-applied X-gates (open-controls) # where the target bit-string has a '0' entry qc.x(zero_inds) qc.rx(0.1,zero_inds) qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True) qc.x(zero_inds) return qc marked_states = ["011", "100"] oracle = grover_oracle(marked_states) oracle.draw("mpl") grover_op = GroverOperator(oracle) grover_op.decompose().draw("mpl") optimal_num_iterations = math.floor( math.pi / 4 * math.sqrt(2**grover_op.num_qubits / len(marked_states)) ) qc = QuantumCircuit(grover_op.num_qubits) # Create even superposition of all basis states qc.h(range(grover_op.num_qubits)) # Apply Grover operator the optimal number of times qc.compose(grover_op.power(optimal_num_iterations), inplace=True) # Measure all qubits qc.measure_all() qc.draw("mpl") # Select the simulator with the fewest number of jobs in the queue backend_simulator = service.least_busy(simulator=True, operational=True) backend_simulator.name # Initialize your session sim_session = Session(backend=backend_simulator) sim_sampler = Sampler(session=sim_session) sim_dist = sim_sampler.run(qc, shots=int(1e4)).result().quasi_dists[0] plot_distribution(sim_dist.binary_probabilities()) sim_session.close() # Select the backend with the fewest number of jobs in the queue backend = service.least_busy(simulator=False, operational=True) backend.name # Initialize your session session = Session(backend=backend) real_sampler = Sampler(session=session) real_dist = real_sampler.run(qc, shots=int(1e4)).result().quasi_dists[0] plot_distribution(real_dist.binary_probabilities()) # Close session session.close()
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Batch # To run on hardware, select the backend with the fewest number of jobs in the queue service = QiskitRuntimeService(channel="ibm_quantum") backend = service.least_busy(operational=True, simulator=False) backend.name def grover_oracle(marked_states): """Build a Grover oracle for multiple marked states Here we assume all input marked states have the same number of bits Parameters: marked_states (str or list): Marked states of oracle Returns: QuantumCircuit: Quantum circuit representing Grover oracle """ if not isinstance(marked_states, list): marked_states = [marked_states] # Compute the number of qubits in circuit num_qubits = len(marked_states[0]) qc = QuantumCircuit(num_qubits) # Mark each target state in the input list for target in marked_states: # Flip target bit-string to match Qiskit bit-ordering rev_target = target[::-1] # Find the indices of all the '0' elements in bit-string zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)] # Add a multi-controlled Z-gate with pre- and post-applied X-gates (open-controls) # where the target bit-string has a '0' entry qc.x(zero_inds) qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True) qc.x(zero_inds) return qc marked_states = ["011", "100"] oracle = grover_oracle(marked_states) oracle.draw(output="mpl", style="iqp") grover_op = GroverOperator(oracle) grover_op.decompose().draw(output="mpl", style="iqp") optimal_num_iterations = math.floor( math.pi / (4 * math.asin(math.sqrt(len(marked_states) / 2**grover_op.num_qubits))) ) qc = QuantumCircuit(grover_op.num_qubits) # Create even superposition of all basis states qc.h(range(grover_op.num_qubits)) # Apply Grover operator the optimal number of times qc.compose(grover_op.power(optimal_num_iterations), inplace=True) # Measure all qubits qc.measure_all() qc.draw(output="mpl", style="iqp") # To run on local simulator: # 1. Use the Sampler from qiskit.primitives instead # 2. Remove the Batch context manager below with Batch(backend=backend) as batch: sampler = Sampler() dist = sampler.run(qc, shots=10000).result().quasi_dists[0] plot_distribution(dist.binary_probabilities())
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Batch # To run on hardware, select the backend with the fewest number of jobs in the queue service = QiskitRuntimeService(channel="ibm_quantum") backend = service.least_busy(operational=True, simulator=False) backend.name def grover_oracle(marked_states): """Build a Grover oracle for multiple marked states Here we assume all input marked states have the same number of bits Parameters: marked_states (str or list): Marked states of oracle Returns: QuantumCircuit: Quantum circuit representing Grover oracle """ if not isinstance(marked_states, list): marked_states = [marked_states] # Compute the number of qubits in circuit num_qubits = len(marked_states[0]) qc = QuantumCircuit(num_qubits) # Mark each target state in the input list for target in marked_states: # Flip target bit-string to match Qiskit bit-ordering rev_target = target[::-1] # Find the indices of all the '0' elements in bit-string zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)] # Add a multi-controlled Z-gate with pre- and post-applied X-gates (open-controls) # where the target bit-string has a '0' entry qc.x(zero_inds) qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True) qc.x(zero_inds) return qc marked_states = ["011", "100"] oracle = grover_oracle(marked_states) oracle.draw(output="mpl", style="iqp") grover_op = GroverOperator(oracle) grover_op.decompose().draw(output="mpl", style="iqp") optimal_num_iterations = math.floor( math.pi / (4 * math.asin(math.sqrt(len(marked_states) / 2**grover_op.num_qubits))) ) qc = QuantumCircuit(grover_op.num_qubits) # Create even superposition of all basis states qc.h(range(grover_op.num_qubits)) # Apply Grover operator the optimal number of times qc.compose(grover_op.power(optimal_num_iterations), inplace=True) # Measure all qubits qc.measure_all() qc.draw(output="mpl", style="iqp") # To run on local simulator: # 1. Use the Sampler from qiskit.primitives instead # 2. Remove the Batch context manager below with Batch(backend=backend) as batch: sampler = Sampler() dist = sampler.run(qc, shots=10000).result().quasi_dists[0] plot_distribution(dist.binary_probabilities()) import qiskit_ibm_runtime qiskit_ibm_runtime.version.get_version_info() import qiskit qiskit.version.get_version_info()
https://github.com/Harcipan/QAI_GroverSim
Harcipan
from qiskit import transpile, QuantumCircuit import qiskit.quantum_info as qi from qiskit_aer import AerSimulator from qiskit_aer.noise import NoiseModel, amplitude_damping_error from qiskit.visualization import plot_histogram # CNOT matrix operator with qubit-0 as control and qubit-1 as target cx_op = qi.Operator([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]) # iSWAP matrix operator iswap_op = qi.Operator([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]]) # CNOT in terms of iSWAP and single-qubit gates cx_circ = QuantumCircuit(2, name='cx<iSWAP>') # Add gates cx_circ.sdg(1) cx_circ.h(1) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0, 1], label='iswap') cx_circ.sdg(0) cx_circ.h(0) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0, 1], label='iswap') cx_circ.s(1) print(cx_circ) # Simulate the unitary for the circuit using Operator: unitary = qi.Operator(cx_circ) print(unitary) 'unitary' in AerSimulator().configuration().basis_gates # Error parameters param_q0 = 0.05 # damping parameter for qubit-0 param_q1 = 0.1 # damping parameter for qubit-1 # Construct the error qerror_q0 = amplitude_damping_error(param_q0) qerror_q1 = amplitude_damping_error(param_q1) iswap_error = qerror_q1.tensor(qerror_q0) # Build the noise model by adding the error to the "iswap" gate noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(iswap_error, 'iswap') # Bell state circuit where iSWAPS should be inserted at barrier locations bell_circ = QuantumCircuit(2, 2, name='bell') bell_circ.h(0) bell_circ.append(cx_circ, [0, 1]) bell_circ.measure([0,1], [0,1]) print(bell_circ) noise_model.add_basis_gates(['unitary']) print(noise_model.basis_gates) # Create ideal simulator backend and transpile circuit sim_ideal = AerSimulator() tbell_circ = transpile(bell_circ, sim_ideal) ideal_result = sim_ideal.run(tbell_circ).result() ideal_counts = ideal_result.get_counts(0) plot_histogram(ideal_counts, title='Ideal output for iSWAP bell-state preparation') # Create noisy simulator and transpile circuit sim_noise = AerSimulator(noise_model=noise_model) tbell_circ_noise = transpile(bell_circ, sim_noise) # Run on the simulator without noise noise_result = sim_noise.run(tbell_circ_noise).result() noise_counts = noise_result.get_counts(bell_circ) plot_histogram(noise_counts, title='Noisy output for iSWAP bell-state preparation')
https://github.com/Harcipan/QAI_GroverSim
Harcipan
from qiskit import transpile, QuantumCircuit import qiskit.quantum_info as qi from qiskit_aer import AerSimulator from qiskit_aer.noise import NoiseModel, amplitude_damping_error from qiskit.visualization import plot_histogram # CNOT matrix operator with qubit-0 as control and qubit-1 as target cx_op = qi.Operator([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]) # iSWAP matrix operator iswap_op = qi.Operator([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]]) # CNOT in terms of iSWAP and single-qubit gates cx_circ = QuantumCircuit(2, name='cx<iSWAP>') # Add gates cx_circ.sdg(1) cx_circ.h(1) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0, 1], label='iswap') cx_circ.sdg(0) cx_circ.h(0) cx_circ.sdg(0) cx_circ.unitary(iswap_op, [0, 1], label='iswap') cx_circ.s(1) print(cx_circ) # Simulate the unitary for the circuit using Operator: unitary = qi.Operator(cx_circ) print(unitary) 'unitary' in AerSimulator().configuration().basis_gates # Error parameters param_q0 = 0.05 # damping parameter for qubit-0 param_q1 = 0.1 # damping parameter for qubit-1 # Construct the error qerror_q0 = amplitude_damping_error(param_q0) qerror_q1 = amplitude_damping_error(param_q1) iswap_error = qerror_q1.tensor(qerror_q0) # Build the noise model by adding the error to the "iswap" gate noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(iswap_error, 'iswap') # Bell state circuit where iSWAPS should be inserted at barrier locations bell_circ = QuantumCircuit(2, 2, name='bell') bell_circ.h(0) bell_circ.append(cx_circ, [0, 1]) bell_circ.measure([0,1], [0,1]) print(bell_circ) noise_model.add_basis_gates(['unitary']) print(noise_model.basis_gates) # Create ideal simulator backend and transpile circuit sim_ideal = AerSimulator() tbell_circ = transpile(bell_circ, sim_ideal) ideal_result = sim_ideal.run(tbell_circ).result() ideal_counts = ideal_result.get_counts(0) plot_histogram(ideal_counts, title='Ideal output for iSWAP bell-state preparation') # Create noisy simulator and transpile circuit sim_noise = AerSimulator(noise_model=noise_model) tbell_circ_noise = transpile(bell_circ, sim_noise) # Run on the simulator without noise noise_result = sim_noise.run(tbell_circ_noise).result() noise_counts = noise_result.get_counts(bell_circ) plot_histogram(noise_counts, title='Noisy output for iSWAP bell-state preparation')
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives # result = Sampler().run(circuits).result() from qiskit import QuantumCircuit, ClassicalRegister, transpile from qiskit.providers.fake_provider import GenericBackendV2 # Create a circuit with classical control creg = ClassicalRegister(19) qc = QuantumCircuit(25) qc.add_register(creg) qc.h(0) for i in range(18): qc.cx(0, i + 1) for i in range(18): qc.measure(i, creg[i]) with qc.if_test((creg, 0)): qc.ecr(20, 21) # Define backend with custom basis gates and # control flow instructions backend = GenericBackendV2( num_qubits=25, basis_gates=["ecr", "id", "rz", "sx", "x"], control_flow=True, ) #Transpile transpiled_qc = transpile(qc, backend) job = backend.run(transpiled_qc) #job = execute(qc, simulator, shots=1024) # Wait for the job to finish job_result = job.result() # Get counts from the result counts = job.result()[0].data.meas.get_counts() #counts = job_result.get_counts() """# Plot the histogram plot_histogram(counts)"""
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives # result = Sampler().run(circuits).result() import qiskit print(qiskit.__version__) from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.h(0) qc.h(1) qc.cx(1, 2) qc.measure_all() # Previous from qiskit import BasicAer backend = BasicAer.get_backend("statevector_simulator") statevector = backend.run(qc).result().get_statevector() # Current qc.remove_final_measurements() # no measurements allowed from qiskit.quantum_info import Statevector statevector = Statevector(qc) from qiskit import QuantumCircuit qc = QuantumCircuit(3) qc.h(0) qc.h(1) qc.cx(1, 2) qc.measure_all() """# Previous from qiskit import BasicAer backend = BasicAer.get_backend("qasm_simulator") result = backend.run(qc).result()""" # One current option from qiskit.providers.basic_provider import BasicProvider backend = BasicProvider().get_backend("basic_simulator") result = backend.run(qc).result() # Get counts from the result counts = result.get_counts() from qiskit.visualization import plot_histogram print(counts) data = [counts] plot_histogram(data) print("h") """# Another current option is to specify it directly from qiskit.providers.basic_provider import BasicSimulator backend = BasicSimulator() result = backend.run(qc).result()""" from qiskit import QuantumCircuit from qiskit.providers.basic_provider import BasicProvider from qiskit.visualization import plot_histogram # Create a quantum circuit qc = QuantumCircuit(3) qc.h(0) qc.h(1) qc.cx(1, 2) qc.measure_all() # Get the BasicSimulator backend from the BasicProvider backend = BasicProvider().get_backend("basic_simulator") # Simulate the quantum circuit result = backend.run(qc).result() # Get counts from the result counts = result.get_counts() # Plot the histogram plot_histogram(counts)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
from qiskit import QuantumCircuit, transpile, assemble from qiskit_aer import AerSimulator from qiskit.visualization import plot_histogram # Define the function to create the oracle def create_oracle(n, marked_states): oracle = QuantumCircuit(n) # Apply Z gate to the qubits corresponding to the marked states for state in marked_states: oracle.z(state) # Apply controlled-Z gates for diffusion if n > 2: oracle.h(range(n)) oracle.x(range(n)) oracle.h(n-1) oracle.mct(list(range(n-1)), n-1) oracle.h(n-1) oracle.x(range(n)) oracle.h(range(n)) return oracle # Define the function to create the Grover's diffusion operator def create_diffusion(n): diffusion = QuantumCircuit(n) diffusion.h(range(n)) diffusion.x(range(n)) diffusion.h(n-1) diffusion.mct(list(range(n-1)), n-1) diffusion.h(n-1) diffusion.x(range(n)) diffusion.h(range(n)) return diffusion # Define the function to apply Grover's algorithm def grover_algorithm(oracle, diffusion, n, marked_states, num_iterations): grover_circuit = QuantumCircuit(n) # Apply Hadamard gates to all qubits grover_circuit.h(range(n)) # Apply the Grover iterations for _ in range(num_iterations): grover_circuit.append(oracle, range(n)) grover_circuit.append(diffusion, range(n)) # Measure all qubits grover_circuit.measure_all() return grover_circuit # Define the marked states and the number of qubits n = 3 marked_states = [4, 7] # Corresponding to |100⟩ and |111⟩ num_iterations = 1 # Create the oracle and the diffusion operator oracle = create_oracle(n, marked_states) diffusion = create_diffusion(n) # Apply Grover's algorithm grover_circuit = grover_algorithm(oracle, diffusion, n, marked_states, num_iterations) # Draw the circuit print(grover_circuit.draw()) # Simulate the circuit simulator = AerSimulator() grover_transpiled = transpile(grover_circuit, simulator) qobj = assemble(grover_transpiled) result = simulator.run(qobj).result() # Plot the histogram of the result counts = result.get_counts() print(counts) plot_histogram(counts)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
import numpy as np from qiskit import QuantumCircuit from qiskit.quantum_info import Kraus, SuperOp from qiskit.visualization import plot_histogram from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_aer import AerSimulator # Import from Qiskit Aer noise module from qiskit_aer.noise import ( NoiseModel, QuantumError, ReadoutError, depolarizing_error, pauli_error, thermal_relaxation_error, ) from qiskit_ibm_runtime import QiskitRuntimeService service = QiskitRuntimeService() backend = service.backend("ibm_brisbane") noise_model = NoiseModel.from_backend(backend) # Construct a 1-qubit bit-flip and phase-flip errors p_error = 0.05 bit_flip = pauli_error([('X', p_error), ('I', 1 - p_error)]) phase_flip = pauli_error([('Z', p_error), ('I', 1 - p_error)]) print(bit_flip) print(phase_flip) # Compose two bit-flip and phase-flip errors bitphase_flip = bit_flip.compose(phase_flip) print(bitphase_flip) # Tensor product two bit-flip and phase-flip errors with # bit-flip on qubit-0, phase-flip on qubit-1 error2 = phase_flip.tensor(bit_flip) print(error2) # Convert to Kraus operator bit_flip_kraus = Kraus(bit_flip) print(bit_flip_kraus) # Convert to Superoperator phase_flip_sop = SuperOp(phase_flip) print(phase_flip_sop) # Convert back to a quantum error print(QuantumError(bit_flip_kraus)) # Check conversion is equivalent to original error QuantumError(bit_flip_kraus) == bit_flip # Measurement misassignment probabilities p0given1 = 0.1 p1given0 = 0.05 ReadoutError([[1 - p1given0, p1given0], [p0given1, 1 - p0given1]]) # Create an empty noise model noise_model = NoiseModel() # Add depolarizing error to all single qubit u1, u2, u3 gates error = depolarizing_error(0.05, 1) noise_model.add_all_qubit_quantum_error(error, ['u1', 'u2', 'u3']) # Print noise model info print(noise_model) # Create an empty noise model noise_model = NoiseModel() # Add depolarizing error to all single qubit u1, u2, u3 gates on qubit 0 only error = depolarizing_error(0.05, 1) noise_model.add_quantum_error(error, ['u1', 'u2', 'u3'], [0]) # Print noise model info print(noise_model) # System Specification n_qubits = 4 circ = QuantumCircuit(n_qubits) # Test Circuit circ.h(0) for qubit in range(n_qubits - 1): circ.cx(qubit, qubit + 1) circ.measure_all() print(circ) # Ideal simulator and execution sim_ideal = AerSimulator() result_ideal = sim_ideal.run(circ).result() plot_histogram(result_ideal.get_counts(0)) # Example error probabilities p_reset = 0.03 p_meas = 0.1 p_gate1 = 0.05 # QuantumError objects error_reset = pauli_error([('X', p_reset), ('I', 1 - p_reset)]) error_meas = pauli_error([('X',p_meas), ('I', 1 - p_meas)]) error_gate1 = pauli_error([('X',p_gate1), ('I', 1 - p_gate1)]) error_gate2 = error_gate1.tensor(error_gate1) # Add errors to noise model noise_bit_flip = NoiseModel() noise_bit_flip.add_all_qubit_quantum_error(error_reset, "reset") noise_bit_flip.add_all_qubit_quantum_error(error_meas, "measure") noise_bit_flip.add_all_qubit_quantum_error(error_gate1, ["u1", "u2", "u3"]) noise_bit_flip.add_all_qubit_quantum_error(error_gate2, ["cx"]) print(noise_bit_flip) # Create noisy simulator backend sim_noise = AerSimulator(noise_model=noise_bit_flip) # Transpile circuit for noisy basis gates passmanager = generate_preset_pass_manager(optimization_level=3, backend=sim_noise) circ_tnoise = passmanager.run(circ) # Run and get counts result_bit_flip = sim_noise.run(circ_tnoise).result() counts_bit_flip = result_bit_flip.get_counts(0) # Plot noisy output plot_histogram(counts_bit_flip) # T1 and T2 values for qubits 0-3 T1s = np.random.normal(50e3, 10e3, 4) # Sampled from normal distribution mean 50 microsec T2s = np.random.normal(70e3, 10e3, 4) # Sampled from normal distribution mean 50 microsec # Truncate random T2s <= T1s T2s = np.array([min(T2s[j], 2 * T1s[j]) for j in range(4)]) # Instruction times (in nanoseconds) time_u1 = 0 # virtual gate time_u2 = 50 # (single X90 pulse) time_u3 = 100 # (two X90 pulses) time_cx = 300 time_reset = 1000 # 1 microsecond time_measure = 1000 # 1 microsecond # QuantumError objects errors_reset = [thermal_relaxation_error(t1, t2, time_reset) for t1, t2 in zip(T1s, T2s)] errors_measure = [thermal_relaxation_error(t1, t2, time_measure) for t1, t2 in zip(T1s, T2s)] errors_u1 = [thermal_relaxation_error(t1, t2, time_u1) for t1, t2 in zip(T1s, T2s)] errors_u2 = [thermal_relaxation_error(t1, t2, time_u2) for t1, t2 in zip(T1s, T2s)] errors_u3 = [thermal_relaxation_error(t1, t2, time_u3) for t1, t2 in zip(T1s, T2s)] errors_cx = [[thermal_relaxation_error(t1a, t2a, time_cx).expand( thermal_relaxation_error(t1b, t2b, time_cx)) for t1a, t2a in zip(T1s, T2s)] for t1b, t2b in zip(T1s, T2s)] # Add errors to noise model noise_thermal = NoiseModel() for j in range(4): noise_thermal.add_quantum_error(errors_reset[j], "reset", [j]) noise_thermal.add_quantum_error(errors_measure[j], "measure", [j]) noise_thermal.add_quantum_error(errors_u1[j], "u1", [j]) noise_thermal.add_quantum_error(errors_u2[j], "u2", [j]) noise_thermal.add_quantum_error(errors_u3[j], "u3", [j]) for k in range(4): noise_thermal.add_quantum_error(errors_cx[j][k], "cx", [j, k]) print(noise_thermal) # Run the noisy simulation sim_thermal = AerSimulator(noise_model=noise_thermal) # Transpile circuit for noisy basis gates passmanager = generate_preset_pass_manager(optimization_level=3, backend=sim_thermal) circ_tthermal = passmanager.run(circ) # Run and get counts result_thermal = sim_thermal.run(circ_tthermal).result() counts_thermal = result_thermal.get_counts(0) # Plot noisy output plot_histogram(counts_thermal)
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit_ibm_provider import IBMProvider import qiskit_ibm_provider.jupyter #provider = IBMProvider('ibm-q') #backend = provider.get_backend('ibmq_vigo') from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # result = Sampler("ibmq_qasm_simulator").run(circuits).result() # Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session from qiskit.circuit import QuantumCircuit, Gate, Instruction from qiskit.circuit.library.standard_gates import ZGate def MCMT(gate, num_controls, num_targets): """Construct a multi-controlled multi-target gate. Args: gate (Gate): The gate to apply to the target qubits. num_controls (int): The number of control qubits. num_targets (int): The number of target qubits. Returns: Instruction: The multi-controlled multi-target gate as a Qiskit Instruction. """ mcmt_gate = QuantumCircuit(num_controls + num_targets) mcmt_gate.append(gate.control(num_controls), list(range(num_controls + num_targets))) return mcmt_gate.to_instruction() def grover_oracle(marked_states): """Build a Grover oracle for multiple marked states Here we assume all input marked states have the same number of bits Parameters: marked_states (str or list): Marked states of oracle Returns: QuantumCircuit: Quantum circuit representing Grover oracle """ if not isinstance(marked_states, list): marked_states = [marked_states] # Compute the number of qubits in circuit num_qubits = len(marked_states[0]) qc = QuantumCircuit(num_qubits) # Mark each target state in the input list for target in marked_states: # Flip target bit-string to match Qiskit bit-ordering rev_target = target[::-1] # Find the indices of all the '0' elements in bit-string zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)] # Add a multi-controlled Z-gate with pre- and post-applied X-gates (open-controls) # where the target bit-string has a '0' entry qc.x(zero_inds) #qc.ry(0.1,zero_inds) qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True) qc.x(zero_inds) return qc marked_states = ["011", "100"] oracle = grover_oracle(marked_states) oracle.draw("mpl") grover_op = GroverOperator(oracle) grover_op.decompose().draw("mpl") optimal_num_iterations = math.floor( math.pi / 4 * math.sqrt(2**grover_op.num_qubits / len(marked_states)) ) qc = QuantumCircuit(grover_op.num_qubits) # Create even superposition of all basis states qc.h(range(grover_op.num_qubits)) # Apply Grover operator the optimal number of times qc.compose(grover_op.power(optimal_num_iterations), inplace=True) # Measure all qubits qc.measure_all() qc.draw("mpl") from qiskit import QuantumCircuit from qiskit.providers.basic_provider import BasicProvider from qiskit.visualization import plot_histogram from qiskit import transpile from qiskit.providers.fake_provider import GenericBackendV2 #from qiskit.visualization import plot_histogram # Generate a 5-qubit simulated backend backend = GenericBackendV2(num_qubits=5) """ # Alternative from qiskit_ibm_runtime.fake_provider import FakeProvider backend1 = FakeProvider().get_backend("fake_ourense") from qiskit_ibm_runtime.fake_provider import FakeSherbrooke backend2 = FakeSherbrooke()""" # Transpile the ideal circuit to a circuit that can be directly executed by the backend transpiled_circuit = transpile(qc, backend)#transpiled_circuit = transpile(qc, backend=backend_simulator) transpiled_circuit.draw('mpl') # Run the transpiled circuit using the simulated backend job = backend.run(transpiled_circuit) counts = job.result().get_counts() print(counts) plot_histogram(counts) from qiskit import QuantumCircuit from qiskit.providers.basic_provider import BasicProvider from qiskit.visualization import plot_histogram from qiskit import transpile from qiskit.providers.fake_provider import GenericBackendV2 #from qiskit.visualization import plot_histogram # Generate a 5-qubit simulated backend backend = GenericBackendV2(num_qubits=5) """ # Alternative from qiskit_ibm_runtime.fake_provider import FakeProvider backend1 = FakeProvider().get_backend("fake_ourense") from qiskit_ibm_runtime.fake_provider import FakeSherbrooke backend2 = FakeSherbrooke()""" # Transpile the ideal circuit to a circuit that can be directly executed by the backend transpiled_circuit = transpile(qc, backend)#transpiled_circuit = transpile(qc, backend=backend_simulator) transpiled_circuit.draw('mpl') # Run the transpiled circuit using the simulated backend job = backend.run(transpiled_circuit) counts = job.result().get_counts() print(counts) plot_histogram(counts) from qiskit import QuantumCircuit from qiskit.providers.basic_provider import BasicProvider from qiskit.visualization import plot_histogram #qc.measure_all() from qiskit.providers.basic_provider import BasicProvider backend = BasicProvider().get_backend("basic_simulator") result = backend.run(qc).result() """ # Get the BasicSimulator backend from the BasicProvider backend = BasicProvider().get_backend("basic_simulator") # Simulate the quantum circuit result = backend.run(qc).result()""" # Alternative from qiskit_ibm_runtime.fake_provider import FakeProvider backend1 = FakeProvider().get_backend("fake_ourense") from qiskit_ibm_runtime.fake_provider import FakeSherbrooke backend2 = FakeSherbrooke() # Get counts from the result counts = result.get_counts() # Plot the histogram plot_histogram(counts) backend_simulator = service.least_busy(operational=True, simulator=False) backend_simulator.name # Initialize your session sim_session = Session(backend=backend_simulator) sim_sampler = Sampler(session=sim_session) from qiskit import transpile from qiskit.visualization import plot_histogram # Assuming qc is your quantum circuit # Transpile the circuit to match the target backend transpiled_circuit = transpile(qc, backend=backend_simulator) from qiskit.providers.basic_provider import BasicProvider backend = BasicProvider().get_backend("ibmq_qasm_simulator") job = backend.run(transpiled_circuit) job = execute(qc, simulator, shots=1024) # Wait for the job to finish job_result = job.result() # Get counts from the result counts = job_result.get_counts() # Plot the histogram plot_histogram(counts) from qiskit import transpile from qiskit.visualization import plot_histogram # Assuming qc is your quantum circuit # Transpile the circuit to match the target backend transpiled_circuit = transpile(qc, backend=backend_simulator) # Run the transpiled circuit on the backend job = backend_simulator.run(transpiled_circuit) # Wait for the job to finish job_result = job.result() # Get counts from the result counts = job_result.get_counts() # Plot the histogram plot_histogram(counts) sim_dist = sim_sampler.run(qc, shots=int(1e4)).result().quasi_dists[0] plot_distribution(sim_dist.binary_probabilities()) sim_session.close() # Select the backend with the fewest number of jobs in the queue backend = service.least_busy(simulator=False, operational=True) backend.name # Initialize your session session = Session(backend=backend) real_sampler = Sampler(session=session) real_dist = real_sampler.run(qc, shots=int(1e4)).result().quasi_dists[0] plot_distribution(real_dist.binary_probabilities()) # Close session session.close()
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit_ibm_provider import IBMProvider import qiskit_ibm_provider.jupyter #provider = IBMProvider('ibm-q') #backend = provider.get_backend('ibmq_vigo') from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # result = Sampler("ibmq_qasm_simulator").run(circuits).result()# Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session from qiskit.providers.basic_provider import BasicProvider from qiskit.visualization import plot_histogram from qiskit import transpile from qiskit.providers.fake_provider import GenericBackendV2 def grover_oracle(marked_states, i, j, k): if not isinstance(marked_states, list): marked_states = [marked_states] num_qubits = len(marked_states[0]) qc = QuantumCircuit(num_qubits) for target in marked_states: rev_target = target[::-1] zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)] qc.x(zero_inds) """ZAJ 1""" qc.rx(0.1*i,zero_inds) qc.ry(0.1*j,zero_inds) qc.rz(0.1*k,zero_inds) qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True) qc.x(zero_inds) return qc marked_states = ["011", "100"] printToConsole = False for i in range(0,10): for j in range(0,10): for k in range(0,10): oracle = grover_oracle(marked_states, i, j, k) grover_op = GroverOperator(oracle) optimal_num_iterations = math.floor( math.pi / 4 * math.sqrt(2**grover_op.num_qubits / len(marked_states)) ) qc = QuantumCircuit(grover_op.num_qubits) # Create even superposition of all basis states qc.h(range(grover_op.num_qubits)) # Apply Grover operator the optimal number of times qc.compose(grover_op.power(optimal_num_iterations), inplace=True) """ZAJ 2""" #qc.x(range(grover_op.num_qubits)) # Measure all qubits qc.measure_all() #qc.draw('mpl') grover_op.decompose().draw("mpl") backend = GenericBackendV2(num_qubits=5) transpiled_circuit = transpile(qc, backend) job = backend.run(transpiled_circuit) counts = job.result().get_counts() # Format counts data formatted_output = "" for state in ['000', '001', '010', '011', '100', '101', '110', '111']: formatted_output += f"{counts.get(state, 0)} " # Write counts data to a text file with open('counts_data.txt', 'a') as file: file.write(formatted_output + "\n") """# Write counts data to a text file with open('counts_data.txt', 'a') as file: file.write(f"i={i}j={j}k={k}") file.write("State,Count\n") for state, count in counts.items(): file.write(f"{state},{count}\n") if(printToConsole): # Print counts data print(counts) print("State,Count\n") for state, count in counts.items(): print(f"{state},{count}\n") #plot_histogram(counts)""" print("All done")
https://github.com/Harcipan/QAI_GroverSim
Harcipan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit_ibm_provider import IBMProvider import qiskit_ibm_provider.jupyter #provider = IBMProvider('ibm-q') #backend = provider.get_backend('ibmq_vigo') from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # result = Sampler("ibmq_qasm_simulator").run(circuits).result()# Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session from qiskit.providers.basic_provider import BasicProvider from qiskit.visualization import plot_histogram from qiskit import transpile from qiskit.providers.fake_provider import GenericBackendV2 def grover_oracle(marked_states): if not isinstance(marked_states, list): marked_states = [marked_states] # Compute the number of qubits in circuit num_qubits = len(marked_states[0]) qc = QuantumCircuit(num_qubits) # Mark each target state in the input list for target in marked_states: # Flip target bit-string to match Qiskit bit-ordering rev_target = target[::-1] # Find the indices of all the '0' elements in bit-string zero_inds = [ind for ind in range(num_qubits) if rev_target.startswith("0", ind)] # Add a multi-controlled Z-gate with pre- and post-applied X-gates (open-controls) # where the target bit-string has a '0' entry qc.x(zero_inds) """ZAJ 1""" qc.ry(0.5,zero_inds) qc.compose(MCMT(ZGate(), num_qubits - 1, 1), inplace=True) qc.x(zero_inds) return qc marked_states = ["011", "100"] oracle = grover_oracle(marked_states) grover_op = GroverOperator(oracle) optimal_num_iterations = math.floor( math.pi / 4 * math.sqrt(2**grover_op.num_qubits / len(marked_states)) ) qc = QuantumCircuit(grover_op.num_qubits) # Create even superposition of all basis states qc.h(range(grover_op.num_qubits)) # Apply Grover operator the optimal number of times qc.compose(grover_op.power(optimal_num_iterations), inplace=True) """ZAJ 2""" #qc.x(range(grover_op.num_qubits)) # Measure all qubits qc.measure_all() #qc.draw('mpl') grover_op.decompose().draw("mpl") qc.draw("mpl") backend = GenericBackendV2(num_qubits=5) transpiled_circuit = transpile(qc, backend) job = backend.run(transpiled_circuit) counts = job.result().get_counts() # Write counts data to a text file with open('counts_data.txt', 'w') as file: file.write("State,Count\n") for state, count in counts.items(): file.write(f"{state},{count}\n") # Print counts data print(counts) print("State,Count\n") for state, count in counts.items(): print(f"{state},{count}\n") #plot_histogram(counts)
https://github.com/purvi1508/Quantum_Computing_Fundamentals
purvi1508
!pip install qiskit !pip install pylatexenc import qiskit import pylatexenc from qiskit import * from pylatexenc import * qr= QuantumRegister(2) #quantum register is a system comprising multiple qubits cr= ClassicalRegister(2) circuit = QuantumCircuit(qr,cr) %matplotlib inline import matplotlib.pyplot as plt circuit.draw(initial_state = True) circuit.h(qr[0]) #applying handmard gate circuit.draw(output='mpl',initial_state = True) #logical if circuit.cx(qr[0],qr[1]) circuit.draw(output='mpl') circuit.measure(qr,cr) #measure quantum bits and take those measurements and store in classical bits circuit.draw(output='mpl',initial_state = True) simulator = Aer.get_backend('qasm_simulator') result= execute(circuit,backend=simulator).result() from qiskit.tools.visualization import plot_histogram print(result.get_counts(circuit)) #These outcomes correspond to the basis states |00⟩, |01⟩, |10⟩, and |11⟩, respectively. counts = result.get_counts(circuit) total_shots = sum(counts.values()) # Calculate the probabilities probabilities = {state: count / total_shots for state, count in counts.items()} plot_histogram(probabilities)
https://github.com/purvi1508/Quantum_Computing_Fundamentals
purvi1508
!pip install qiskit import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f=[1,-1,-1,-1] g=[1,1,-1,-1] #The Discrete Fourier Transform (DFT) is a mathematical algorithm used to compute the discrete Fourier transform of a sequence. #It takes a sequence of N complex numbers as input and produces another sequence of N complex numbers as output. #fourier checking would tell how correlated the fourier transforrmation of G is to F #P(f,g)>0.05-> then our function is correlated circ=FourierChecking(f=f,g=g) circ.draw(initial_state = True) zero=qi.Statevector.from_label('00') sv=zero.evolve(circ) probs= sv.probabilities_dict() plot_histogram(probs)
https://github.com/purvi1508/Quantum_Computing_Fundamentals
purvi1508
!pip install qiskit #superpositon, entanglement and interference my_list=[1,3,5,2,4,9,5,8,0,7,6] #eracle is the black box at the disposal->we can call it and ask whether this number is a whinner or not def the_oracle(my_input): winner=7 if my_input is winner: response=True else: response=False return response for index, trial_number in enumerate(my_list): if the_oracle(trial_number)==True: print('winner found at index %i'%index) print('%i calls at the oracle used'%(index+1)) #oracle works here by flipping the sign of the input of the winner #controlled Z gate -> |11> -> [CZ] -> -|11> #amplitute amplification ->reflection operator #Grovvers diffusion operator-> oracle+ Reflection from qiskit import * import matplotlib.pyplot as py import numpy as np #define oracle circuit oracle = QuantumCircuit(2,name='oracle') oracle.cz(0,1) oracle.to_gate()#make oracle into its own gate oracle.draw(initial_state = True) #preparing a supepositon state of all the gates by applying the handmard gate on each one of them #in this way each uery xould be simuntaneousky reached oracle backend=Aer.get_backend('statevector_simulator') # statevector_simulator backend is selected, which allows for simulation of the quantum state vector of the circuit. grover_circ=QuantumCircuit(2,2) #The first argument 2 specifies the number of qubits in the quantum registers, and the second argument 2 specifies the number of classical bits in the classical registers. grover_circ.h([0,1]) #This line applies the Hadamard gate (H gate) to qubits 0 and 1 in the grover_circ circuit. grover_circ.append(oracle,[0,1]) grover_circ.draw(initial_state = True) job= execute(grover_circ,backend) result=job.result() sv=result.get_statevector() np.around(sv,2) #square the state vectors to get back the probabilities reflection = QuantumCircuit(2,name="reflection") reflection.h([0,1]) reflection.z([0,1]) reflection.cz(0,1) reflection.h([0,1]) reflection.to_gate() reflection.draw(initial_state = True) backend=Aer.get_backend('statevector_simulator') # statevector_simulator backend is selected, which allows for simulation of the quantum state vector of the circuit. grover_circ=QuantumCircuit(2,2) #The first argument 2 specifies the number of qubits in the quantum registers, and the second argument 2 specifies the number of classical bits in the classical registers. grover_circ.h([0,1]) #This line applies the Hadamard gate (H gate) to qubits 0 and 1 in the grover_circ circuit. grover_circ.append(oracle,[0,1]) grover_circ.append(reflection,[0,1]) grover_circ.measure([0,1],[0,1]) grover_circ.draw(initial_state = True) job= execute(grover_circ,backend,shots=1) result=job.result() result.get_counts()
https://github.com/purvi1508/Quantum_Computing_Fundamentals
purvi1508
!pip install qiskit !pip install pylatexenc import qiskit import pylatexenc from qiskit import * from pylatexenc import * # Create a quantum circuit with three qubits qc = QuantumCircuit(3, 3) %matplotlib inline qc.draw(initial_state = True) # Create a Bell pair between qubits 1 and 2 qc.h(1) qc.cx(1, 2) # The Hadamard gate qc.h(1) is applied to qubit 1 to create a superposition, and the CNOT gate qc.cx(1, 2) is applied between qubits 1 and 2 to entangle them and create a Bell pair qc.draw(initial_state = True) # Entangle qubit 0 with qubit 1 qc.cx(0, 1) qc.h(0) qc.draw(initial_state = True) # Apply a measurement to qubits 0 and 1 qc.barrier() qc.measure([0,1], [0,1]) qc.draw(initial_state = True) # Apply a controlled-X gate to qubits 1 and 2 qc.cx(1, 2) qc.draw(initial_state = True) # Apply a controlled-Z gate to qubits 0 and 2 qc.cz(0, 2) qc.draw(initial_state = True) # Apply a measurement to qubit 2 qc.measure(2, 2) qc.draw(initial_state = True) # Run the circuit on a simulator backend = Aer.get_backend('qasm_simulator') result = execute(qc, backend).result() # Print the result print(result.get_counts(qc))
https://github.com/bernardomendonca/qiskit-fourier-check
bernardomendonca
import qiskit.quantum_info as qi from qiskit.circuit.library import FourierChecking from qiskit.visualization import plot_histogram f=[1,-1,-1,-1] g=[1,1,-1,-1] circ = FourierChecking(f=f,g=g) circ.draw() zero = qi.Statevector.from_label('00') sv = zero.evolve(circ) probs = sv.probabilities_dict() plot_histogram(probs)
https://github.com/INFINIT27/Grover-s-Algorithm
INFINIT27
from qiskit import QuantumCircuit from qiskit_aer import * from qiskit.visualization import plot_histogram import math import random # val - number to be converted # length - the number of bits for the binary value def toBinary(val, length): binary = '' # declare an empty string loop = val if val == 0: binary = '0' else: while loop > 0: temp = loop % 2 # calculate the bit value loop = loop // 2 binary += str(temp) # add the bit value to the bit string # If the binary value is shorter than the number of bits # passed, append 0's in front of the binary number equal # to the difference between the binary length and the total length . while len(binary) < length: binary += '0' binary = binary[::-1] # reverse the string return binary # Only converts the value to binary, doesn't add extra 0's in front # to match the number of required qubits. def toBinary_only(val): binary = '' # declare an empty string loop = val while loop > 0: temp = loop % 2 # calculate the bit value loop = loop // 2 binary += str(temp) # add the bit value to the bit string binary = binary[::-1] # reverse the string return binary choice_list = [] # Define the length of the array, can be any length array_length = 16 for i in range(array_length): choice_list.append(random.randint(0, 50)) print("Array/Database =",choice_list) binary_length = toBinary_only(array_length) qubits_needed = len(binary_length) # Define a search index (less then array_length) of the list/array/database search_index = 15 search_val = choice_list[search_index] print("Search Value =",search_val) print("Search Index =",search_index) def oracle(circuit, n, val): binary_val = toBinary(val, n) binary_val = binary_val[::-1] # If the input value contains a qubit 0, apply an x gate to it # to switch it to a 1 to affect the axillary bit. 1100 for i in range(len(binary_val)): if binary_val[i] == '0': circuit.x(i) ############ Implement the multi-control conditional gate ################ circuit.ccx(0, 1, n) # Apply the toffoli gate to the first helper qubit. for i in range(2, n): circuit.ccx(i, i+(n-2), i+(n-1)) # Apply a toffoli gate from the second to the last (auxillary) gate. for i in range(n-2, 1, -1): circuit.ccx(i, i+(n-2), i+(n-1)) # Apply the reverse gates from the second helper qubit to the last helper qubit. circuit.ccx(0, 1, n) # Apply the toffoli gate to the first helper qubit. ########################################################################## # Repeat the same step to revert the qubit change from '1' to '0'. for i in range(len(binary_val)): if binary_val[i] == '0': circuit.x(i) return circuit # The diffuser takes in a circuit that applies the appropriate gates. def diffuser(circuit, n): # Apply the hadamard gate to the "n" address bits. for qubit in range(n): circuit.h(qubit) # Apply the flip gate to the "n" address bits. for qubit in range(n): circuit.x(qubit) # Apply the multi-control conditional gate to the circuit to change the auxillary bit. ######################################## circuit.ccx(0, 1, n) for i in range(2, n): circuit.ccx(i, i+(n-2), i+(n-1)) for i in range(n-2, 1, -1): circuit.ccx(i, i+(n-2), i+(n-1)) circuit.ccx(0, 1, n) ######################################## # Reverse the flip gate applied earlier. for qubit in range(n): circuit.x(qubit) # Reverse the hadamard gate applied earlier. for qubit in range(n): circuit.h(qubit) return circuit def ispower2(number): log_val = math.log(number, 2); pow_val = math.pow(2, round(log_val)); return pow_val == number # First "n" qubits will be allocated to the address qubits. if ispower2(array_length): address_bit = qubits_needed - 1 else: address_bit = qubits_needed helper_bits = address_bit - 2 # next "n-2" qubits will be used as helper qubits for the multi-control conditional gate. auxillary_bit = 1 # Last qubit will be reserved to the auxillary qubit. qubits = address_bit + helper_bits + auxillary_bit # Find the total number of qubits needed to implement the circuit. # Define the test value for the cirucit test_value = search_index qc = QuantumCircuit(qubits, address_bit) # Initialise the address qubits and place them into a superposition. for i in range(address_bit): qc.h(i) # Place the auxillary qubit into the |-> state. qc.x(qubits-1) qc.h(qubits-1) # Define the number of needed iterations for the search to occurr. # The optimal value is equal to the square root of the number of values in the array/database. iterations = int(address_bit**(1/2))+1 # The int() value rounds down the number of iterations, thus we add 1 to the number of iterations. # Apply the number of Oracle-Diffusor pair equal to the number of iterations. for i in range(iterations): qc.barrier() oracle(qc, address_bit, test_value) qc.barrier() diffuser(qc, address_bit) qc.barrier() # Measure the address qubits. for i in range(address_bit): qc.measure(i, i) qc.draw('mpl') # Construct an ideal simulator simulator = AerSimulator() results = simulator.run(qc).result() counts = results.get_counts() print(counts) display(plot_histogram(counts)) largest_val = 0 value = '' for entry in counts: if counts[entry] > largest_val: largest_val = counts[entry] value = entry print(value) def toInteger(val: str): num = 0 val = val[::-1] # take the reverse of the string of integers 100 - 001 for i in range(len(val)): if val[i] == '0': continue else: num += 2**i return num print("The estimated index from the simulator is:",toInteger(value))
https://github.com/diegour1/QiskitHackaton2021
diegour1
!pip install qiskit !pip install pylatexenc from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_bloch_multivector from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram #from qiskit import * import numpy as np backend = Aer.get_backend('qasm_simulator') # Given the density matrix find the angle of the corresponding rotation def measure_theta(P): w0, v0 = np.linalg.eig(P) v0 = v0*np.sign(v0[0, 0]) theta = np.sign(v0[0, 0])*np.sign(v0[1, 0])*2*np.arccos(abs(v0[0, 0])) return theta # measure_theta(P_1) # Given an rotation angle in the y axis, print its unitary matrix def unitary_matrix(theta): qc = QuantumCircuit(1, 1) qc.ry(theta, 0) unitary_backend = Aer.get_backend('unitary_simulator') unitary = execute(qc, unitary_backend).result().get_unitary().round(10) return unitary #unitary_matrix(-1.0013820370897397) unitary_matrix(1.047184849024927) import copy def round_lambda(lambda_param_2): lambda_param = copy.copy(lambda_param_2) for i in range(4): if lambda_param[i] < 0.00000001: lambda_param[i] = 0.00000001 lambda_param[3] = 1 - lambda_param[0] - lambda_param[1] - lambda_param[2] return lambda_param from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def ArbRot(p0, p1, p2, p3): qr = QuantumRegister(2) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.rx(ang0, qr[1]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.rx(ang1, qr[0]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.crx(ang2, qr[1], qr[0]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbInit" return gate def ArbRotControlled(p0, p1, p2, p3): qr = QuantumRegister(3) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.crx(ang0, qr[0], qr[2]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.crx(ang1, qr[0], qr[1]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.mcrx(ang2, [qr[0], qr[2]], qr[1]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbInit" return gate def ArbRotControlledTranspose(p0, p1, p2, p3): qr = QuantumRegister(3) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.crx(-ang0, qr[0], qr[2]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.crx(-ang1, qr[0], qr[1]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.mcrx(-ang2, [qr[0], qr[2]], qr[1]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbInit" return gate def ArbRotToffTranspose(p0, p1, p2, p3): qr = QuantumRegister(4) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.mcrx(-ang0, [qr[0], qr[1]], qr[3]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.mcrx(-ang1, [qr[0], qr[1]], qr[2]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.mcrx(-ang2, [qr[0], qr[1], qr[3]], qr[2]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbInitCT" return gate def ArbRotToffM2Transpose(p0, p1, p2, p3): qr = QuantumRegister(5) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.mcrx(-ang0, [qr[0], qr[1], qr[2]], qr[4]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.mcrx(-ang1, [qr[0], qr[1], qr[2]], qr[3]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.mcrx(-ang2, [qr[0], qr[1], qr[2], qr[4]], qr[3]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbInitCT" return gate a0 = np.array([0.30507657, 0.9523278250881023]) b0 = np.array([0.75399555, 0.6568795251643924]) c0 = np.array([0.50986323, 0.8602554775727772]) P0 = 0.35*np.outer(a0, a0) + 0.65*np.outer(b0, b0) exp_c = c0.T @ P0 @ c0 P0, exp_c # Find eigenvectors and eigenvalues lambda_P, U = np.linalg.eigh(P0) lambda_P, U vector_0, vector_1 = U[:, 0], U[:, 1] vector_0, vector_1, 0.5*np.dot(vector_0, a0)**2, 0.5*np.dot(vector_1, b0)**2 0.5 * (np.dot(vector_0, c0)**2/(np.dot(vector_0, c0)**2+np.dot(vector_1, c0)**2)) theta_0, theta_1 = measure_theta(U), measure_theta(U.T) theta_0 = theta_0+np.pi theta_1 = theta_0-np.pi/2 theta_0, theta_1 qc = QuantumCircuit(1, 1) qc.ry(2*theta_0, 0) qc.measure(0, 0) counts = execute(qc, backend, shots=15000).result().get_counts() plot_histogram(counts) # 2 x 2 Example qc = QuantumCircuit(2, 2) qc.h(0) qc.x(0) qc.initialize(c0, 1) qc.cry(-(2*theta_0), 0, 1) qc.x(0) qc.cry(-(2*theta_1), 0, 1) qc.measure(0, 0) qc.measure(1, 1) counts = execute(qc, backend, shots=15000).result().get_counts() plot_histogram(counts) ## Works qc.draw('mpl') # 2 x 2 Example with eigenvalues backend = Aer.get_backend('qasm_simulator') qc = QuantumCircuit(3, 2) qc.h(0) qc.initialize(c0, 1) qc.initialize(np.sqrt(lambda_P), 2) qc.barrier() qc.x(0) qc.cry(-(2*theta_0), 0, 1) qc.x(0) qc.cry(-(2*theta_1), 0, 1) qc.cx(0, 2) qc.barrier() qc.measure(1, 0) qc.measure(2, 1) counts = execute(qc, backend, shots=150000).result().get_counts() plot_histogram(counts) qc.draw('mpl') # expected_value = (np.dot(vector_0, c0))**2 * lambda_P[0] + (np.dot(vector_1, c0))**2 * lambda_P[1] expected_value = c0.T @ P0 @ c0 expected_value, (counts["00"]/150000)*2 ## Examples 4x4 , we build the density matrix with b, c, and predict the data a a0 = np.array([0.30507657, 0.9523278250881023]) a1 = np.array([0.69810362, 0.715996742829809]) b0 = np.array([0.75399555, 0.6568795251643924]) b1 = np.array([0.53842219, 0.8426752312223279]) c0 = np.array([0.50986323, 0.8602554775727772]) c1 = np.array([0.58868076, 0.8083656120876385]) a = np.kron(a0, a1) b = np.kron(b0, b1) c = np.kron(c0, c1) a, b, c # Density Matrix and expected value P4 = 0.56*np.outer(b, b) + 0.44*np.outer(c, c) exp_a = a.T @ P4 @ a P4, exp_a # Find eigenvectors and eigenvalues lambda_P4, U4 = np.linalg.eigh(P4) lambda_P4 = round_lambda(lambda_P4) lambda_P4, U4 # 4 x 4 Example with eigenvalues backend = Aer.get_backend('qasm_simulator') qc = QuantumCircuit(6, 4) qc.h(0) qc.h(1) qc.append(ArbRot(*(a**2)), [2, 3]) qc.append(ArbRot(*lambda_P4), [4, 5]) qc.barrier() qc.x(0) qc.x(1) qc.append(ArbRotToffTranspose(*(U4[:, 0]**2)), [0, 1, 2, 3]) qc.x(1) qc.append(ArbRotToffTranspose(*(U4[:, 1]**2)), [0, 1, 2, 3]) qc.x(0) qc.x(1) qc.append(ArbRotToffTranspose(*(U4[:, 2]**2)), [0, 1, 2, 3]) qc.x(1) qc.append(ArbRotToffTranspose(*(U4[:, 3]**2)), [0, 1, 2, 3]) qc.cx(1, 5) qc.cx(0, 4) qc.measure(2, 0) qc.measure(3, 1) qc.measure(4, 2) qc.measure(5, 3) counts = execute(qc, backend, shots=150000).result().get_counts() plot_histogram(counts) qc.draw('mpl') exp_a_calculated = (counts["0000"]/150000)*4 exp_a_theorical = a.T @ P4 @ a exp_a_calculated, exp_a_theorical ## Examples 4x4 , we build the density matrix of class 0 with b, c ## the density matrix of class 1 with d, and predict the data a a0 = np.array([0.30507657, 0.9523278250881023]) a1 = np.array([0.69810362, 0.715996742829809]) b0 = np.array([0.75399555, 0.6568795251643924]) b1 = np.array([0.53842219, 0.8426752312223279]) c0 = np.array([0.50986323, 0.8602554775727772]) c1 = np.array([0.58868076, 0.8083656120876385]) d0 = np.array([0.10894686, 0.9940475751673762]) d1 = np.array([0.38544095, 0.9227325040677268]) a = np.kron(a0, a1) b = np.kron(b0, b1) c = np.kron(c0, c1) d = np.kron(d0, d1) a, b, c, d # Density Matrix and expected value P0 = 0.66*np.outer(b, b) + 0.34*np.outer(c, c) P1 = np.outer(d, d) exp_a_P0 = a.T @ P0 @ a exp_a_P1 = a.T @ P1 @ a exp_a_P0, exp_a_P1 # Find eigenvectors and eigenvalues lambda_P0_temp, U0 = np.linalg.eigh(P0) lambda_P0 = round_lambda(lambda_P0_temp) lambda_P1_temp, U1 = np.linalg.eigh(P1) lambda_P1 = round_lambda(lambda_P1_temp) (lambda_P0, U0), (lambda_P1, U1) # 4 x 4 Example with eigenvalues backend = Aer.get_backend('qasm_simulator') qc = QuantumCircuit(7, 5) qc.h(0) qc.h(1) qc.h(2) qc.append(ArbRot(*(a**2)), [3, 4]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U0[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U0[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U0[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U0[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_P0), [2, 5, 6]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U1[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U1[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U1[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U1[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_P1), [2, 5, 6]) qc.cx(1, 6) qc.cx(0, 5) qc.barrier() qc.measure(2, 0) qc.measure(3, 1) qc.measure(4, 2) qc.measure(5, 3) qc.measure(6, 4) counts = execute(qc, backend, shots=150000).result().get_counts() plot_histogram(counts) qc.draw('mpl') # Expected and calculated for class 0 exp_a_calculated_P0 = (counts["00000"]/150000)*8 exp_a_theorical_P0 = a.T @ P0 @ a # Expected and calculated for class 1 exp_a_calculated_P1 = (counts["00001"]/150000)*8 exp_a_theorical_P1 = a.T @ P1 @ a exp_a_calculated_P0, exp_a_theorical_P0, exp_a_calculated_P1, exp_a_theorical_P1 import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.decomposition import PCA digits, labels = datasets.load_digits(n_class=2, return_X_y=True) print(digits.shape) _, axes = plt.subplots(nrows=1, ncols=4, figsize=(10, 3)) for ax, image, label in zip(axes, digits, labels): ax.set_axis_off() ax.imshow(image.reshape(8,8), cmap=plt.cm.gray_r, interpolation='nearest') sklearn_pca = PCA(n_components=64) sklearn_transf = sklearn_pca.fit_transform(digits) varianza_expl = sklearn_pca.explained_variance_ratio_ plt.figure(figsize = (9, 6)) plt.xlabel('Número de componentes principales') plt.ylabel('Varianza acumulada') cum_var_exp = np.cumsum(varianza_expl) nc = np.arange(1, varianza_expl.shape[0] + 1) plt.plot(nc, cum_var_exp, 'g^') plt.show() print(np.sum(varianza_expl[0:4]), np.sum(varianza_expl[0:8]), np.sum(varianza_expl[0:16]), np.sum(varianza_expl[0:32])) n_comps = 4 pca = PCA(n_components = n_comps) Xpca = pca.fit_transform(digits) plt.figure(figsize=(10,2.5)) for i in range(4): plt.subplot(1,4,i+1) plt.imshow(pca.components_[i].reshape(8,8), cmap=plt.cm.gray) plt.xticks([]); plt.yticks([]) Xpca.shape V0 = [] V1 = [] for i in range(Xpca.shape[0]): if (labels[i] == 0): V0.append(Xpca[i] / np.linalg.norm(Xpca[i])) elif (labels[i] == 1): V1.append(Xpca[i] / np.linalg.norm(Xpca[i])) print(V0[0:9]) print(V1[0:9]) print(len(V0)) print(len(V1)) print((V1[3]**2).round(4)) from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit def ArbRot(p0, p1, p2, p3): qr = QuantumRegister(2) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.rx(ang0, qr[1]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.rx(ang1, qr[0]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.crx(ang2, qr[1], qr[0]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbRot" return gate def ArbRotControlled(p0, p1, p2, p3): qr = QuantumRegister(3) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.crx(ang0, qr[0], qr[2]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.crx(ang1, qr[0], qr[1]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.mcrx(ang2, [qr[0], qr[2]], qr[1]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbRot-C" return gate def ArbRotControlledTranspose(p0, p1, p2, p3): qr = QuantumRegister(3) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.crx(-ang0, qr[0], qr[2]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.crx(-ang1, qr[0], qr[1]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.mcrx(-ang2, [qr[0], qr[2]], qr[1]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbRot-C-dg" return gate def ArbRotToffTranspose(p0, p1, p2, p3): qr = QuantumRegister(4) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.mcrx(-ang0, [qr[0], qr[1]], qr[3]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.mcrx(-ang1, [qr[0], qr[1]], qr[2]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.mcrx(-ang2, [qr[0], qr[1], qr[3]], qr[2]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbRot-2C-dg" return gate def ArbRotToffM2Transpose(p0, p1, p2, p3): qr = QuantumRegister(5) qc = QuantumCircuit(qr) ang0 = 2*np.arccos(np.sqrt(p0+p1)) qc.mcrx(-ang0, [qr[0], qr[1], qr[2]], qr[4]) ang1 = 2*np.arccos(np.sqrt(p0/(p0+p1))) qc.mcrx(-ang1, [qr[0], qr[1], qr[2]], qr[3]) ang2 = 2*np.arccos(np.sqrt(p2/(p2+p3))) - ang1 qc.mcrx(-ang2, [qr[0], qr[1], qr[2], qr[4]], qr[3]) #qc.swap(qr[0], qr[1]) gate = qc.to_gate() gate.label = "ArbRot-3C-dg" return gate import numpy as np a0 = np.array(V0[1]) a1 = np.array(V1[1]) b = np.array(V0[2]) c = np.array(V1[2]) 0.5*np.dot(a0, b)**2, 0.5*(np.dot(a0, c)**2) 0.5*np.dot(a1, b)**2, 0.5*(np.dot(a1, c)**2) # Zero sample qc = QuantumCircuit(3, 3) qc.h(0) qc.append(ArbRot(*(a0**2)), [2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(b**2)), [0,2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(c**2)), [0,2,1]) qc.barrier() qc.measure(0, 0) qc.measure(1, 1) qc.measure(2, 2) shots = 10000 job = execute(qc, Aer.get_backend('qasm_simulator'),shots=shots) counts = job.result().get_counts() plot_histogram(counts) print((int)(counts['000'] < counts['001'])) # One sample qc = QuantumCircuit(3, 3) qc.h(0) qc.append(ArbRot(*(a1**2)), [2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(b**2)), [0,2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(c**2)), [0,2,1]) qc.barrier() qc.measure(0, 0) qc.measure(1, 1) qc.measure(2, 2) shots = 10000 job = execute(qc, Aer.get_backend('qasm_simulator'),shots=shots) counts = job.result().get_counts() plot_histogram(counts) print((int)(counts['000'] < counts['001'])) qc.draw('mpl') qc.decompose().draw('mpl') #Pure state for class 0 S_zero = np.sum(np.abs(V0[0:121]), axis=0) #S_zero = np.sum(V0[0:121], axis=0) S_zero = S_zero / np.linalg.norm(S_zero) print(S_zero) #Pure state for class 1 S_one = np.sum(np.abs(V1[0:121]), axis=0) #S_one = np.sum(V1[0:121], axis=0) S_one = S_one / np.linalg.norm(S_one) print(S_one) # Pure state case test_zeros = [] for i in range(121, 178): qc = QuantumCircuit(3, 3) qc.h(0) qc.append(ArbRot(*(np.array(V0[i])**2)), [2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(S_zero**2)), [0,2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(S_one**2)), [0,2,1]) qc.barrier() qc.measure(0, 0) qc.measure(1, 1) qc.measure(2, 2) shots = 12000 job = execute(qc, Aer.get_backend('qasm_simulator'),shots=shots) counts = job.result().get_counts() test_zeros.append((int)(counts['000'] < counts['001'])) print(test_zeros) # Pure state case test_ones = [] for i in range(121, 182): qc = QuantumCircuit(3, 3) qc.h(0) qc.append(ArbRot(*(np.array(V1[i])**2)), [2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(S_zero**2)), [0,2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(S_one**2)), [0,2,1]) qc.barrier() qc.measure(0, 0) qc.measure(1, 1) qc.measure(2, 2) shots = 12000 job = execute(qc, Aer.get_backend('qasm_simulator'),shots=shots) counts = job.result().get_counts() test_ones.append((int)(counts['000'] < counts['001'])) print(test_ones) ytest = np.concatenate([np.zeros(len(test_zeros)), np.ones(len(test_ones))]) preds = np.concatenate([test_zeros, test_ones]) import sklearn.metrics as metrics cm = metrics.confusion_matrix(ytest, preds) cm_display = metrics.ConfusionMatrixDisplay(cm, display_labels=[0,1]).plot() accuracy = metrics.accuracy_score(ytest,preds) print("Accuracy: ", accuracy) precision, recall, f_score, _ = metrics.precision_recall_fscore_support(ytest, preds, average='binary') print("Precision: ", precision) print("Recall: ", recall) print("F1: ", f_score) Z_zero = np.outer(np.abs(V0[0]), np.abs(V0[0])) for i in range(1, 121): Z_zero += np.outer(np.abs(V0[i]), np.abs(V0[i])) Z_zero *= 1/120 print(Z_zero) lambda_P0_temp, U_zero = np.linalg.eigh(Z_zero) lambda_zero = round_lambda(lambda_P0_temp) print(lambda_zero) print(U_zero) Z_one = np.outer(np.abs(V1[0]), np.abs(V1[0])) for i in range(1, 121): Z_one += np.outer(np.abs(V1[i]), np.abs(V1[i])) Z_one *= 1/120 print(Z_one) lambda_P1_temp, U_one = np.linalg.eigh(Z_one) lambda_one = round_lambda(lambda_P1_temp) print(lambda_one) print(U_one) backend2 = Aer.get_backend('qasm_simulator') # Mixed state case test2_zeros = [] for i in range(121, 178): qc = QuantumCircuit(7, 5) qc.h(0) qc.h(1) qc.h(2) qc.append(ArbRot(*(V0[i]**2)), [3, 4]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_zero), [2, 5, 6]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_one), [2, 5, 6]) qc.cx(1, 6) qc.cx(0, 5) qc.barrier() qc.measure(2, 0) qc.measure(3, 1) qc.measure(4, 2) qc.measure(5, 3) qc.measure(6, 4) counts = execute(qc, backend2, shots=50000).result().get_counts() test2_zeros.append((int)(counts['00000'] < counts['00001'])) print(test2_zeros) # Mixed state case test2_ones = [] for i in range(121, 182): qc = QuantumCircuit(7, 5) qc.h(0) qc.h(1) qc.h(2) qc.append(ArbRot(*(V1[i]**2)), [3, 4]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_zero), [2, 5, 6]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_one), [2, 5, 6]) qc.cx(1, 6) qc.cx(0, 5) qc.barrier() qc.measure(2, 0) qc.measure(3, 1) qc.measure(4, 2) qc.measure(5, 3) qc.measure(6, 4) counts = execute(qc, backend2, shots=50000).result().get_counts() test2_ones.append((int)(counts['00000'] < counts['00001'])) print(test2_ones) ytest = np.concatenate([np.zeros(len(test2_zeros)), np.ones(len(test2_ones))]) preds2 = np.concatenate([test2_zeros, test2_ones]) import sklearn.metrics as metrics cm2 = metrics.confusion_matrix(ytest, preds2) cm2_display = metrics.ConfusionMatrixDisplay(cm2, display_labels=[0,1]).plot() accuracy = metrics.accuracy_score(ytest,preds2) print("Accuracy: ", accuracy) precision, recall, f_score, _ = metrics.precision_recall_fscore_support(ytest, preds2, average='binary') print("Precision: ", precision) print("Recall: ", recall) print("F1: ", f_score) from qiskit import IBMQ, transpile from qiskit import QuantumCircuit from qiskit.providers.aer import AerSimulator from qiskit.tools.visualization import plot_histogram from qiskit.test.mock import FakeCasablanca from qiskit.providers.aer import AerSimulator device_backend = FakeCasablanca() casablanca = AerSimulator.from_backend(device_backend) # Pure state case test_zeros = [] for i in range(121, 178): qc = QuantumCircuit(3, 3) qc.h(0) qc.append(ArbRot(*(np.array(V0[i])**2)), [2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(S_zero**2)), [0,2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(S_one**2)), [0,2,1]) qc.barrier() qc.measure(0, 0) qc.measure(1, 1) qc.measure(2, 2) shots = 12000 job = execute(qc, backend=casablanca, shots=shots) counts = job.result().get_counts() test_zeros.append((int)(counts['000'] < counts['001'])) print(test_zeros) # Pure state case test_ones = [] for i in range(121, 182): qc = QuantumCircuit(3, 3) qc.h(0) qc.append(ArbRot(*(np.array(V1[i])**2)), [2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(S_zero**2)), [0,2,1]) qc.barrier() qc.x(0) qc.append(ArbRotControlledTranspose(*(S_one**2)), [0,2,1]) qc.barrier() qc.measure(0, 0) qc.measure(1, 1) qc.measure(2, 2) shots = 12000 job = execute(qc, backend=casablanca, shots=shots) counts = job.result().get_counts() test_ones.append((int)(counts['000'] < counts['001'])) print(test_ones) ytest = np.concatenate([np.zeros(len(test_zeros)), np.ones(len(test_ones))]) preds = np.concatenate([test_zeros, test_ones]) import sklearn.metrics as metrics cm = metrics.confusion_matrix(ytest, preds) cm_display = metrics.ConfusionMatrixDisplay(cm, display_labels=[0,1]).plot() accuracy = metrics.accuracy_score(ytest,preds) print("Accuracy: ", accuracy) precision, recall, f_score, _ = metrics.precision_recall_fscore_support(ytest, preds, average='binary') print("Precision: ", precision) print("Recall: ", recall) print("F1: ", f_score) # Mixed state case test2_zeros = [] for i in range(121, 178): qc = QuantumCircuit(7, 5) qc.h(0) qc.h(1) qc.h(2) qc.append(ArbRot(*(V0[i]**2)), [3, 4]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_zero), [2, 5, 6]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_one), [2, 5, 6]) qc.cx(1, 6) qc.cx(0, 5) qc.barrier() qc.measure(2, 0) qc.measure(3, 1) qc.measure(4, 2) qc.measure(5, 3) qc.measure(6, 4) counts = execute(qc, backend=casablanca, shots=50000).result().get_counts() test2_zeros.append((int)(counts['00000'] < counts['00001'])) print(test2_zeros) # Mixed state case test2_ones = [] for i in range(121, 182): qc = QuantumCircuit(7, 5) qc.h(0) qc.h(1) qc.h(2) qc.append(ArbRot(*(V1[i]**2)), [3, 4]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_zero[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_zero), [2, 5, 6]) qc.barrier() qc.x(2) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 0]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 1]**2)), [0, 1, 2, 3, 4]) qc.x(0) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 2]**2)), [0, 1, 2, 3, 4]) qc.x(1) qc.append(ArbRotToffM2Transpose(*(U_one[:, 3]**2)), [0, 1, 2, 3, 4]) qc.append(ArbRotControlled(*lambda_one), [2, 5, 6]) qc.cx(1, 6) qc.cx(0, 5) qc.barrier() qc.measure(2, 0) qc.measure(3, 1) qc.measure(4, 2) qc.measure(5, 3) qc.measure(6, 4) counts = execute(qc, backend=casablanca, shots=50000).result().get_counts() test2_ones.append((int)(counts['00000'] < counts['00001'])) print(test2_ones) ytest = np.concatenate([np.zeros(len(test2_zeros)), np.ones(len(test2_ones))]) preds2 = np.concatenate([test2_zeros, test2_ones]) import sklearn.metrics as metrics cm2 = metrics.confusion_matrix(ytest, preds2) cm2_display = metrics.ConfusionMatrixDisplay(cm2, display_labels=[0,1]).plot() accuracy = metrics.accuracy_score(ytest,preds2) print("Accuracy: ", accuracy) precision, recall, f_score, _ = metrics.precision_recall_fscore_support(ytest, preds2, average='binary') print("Precision: ", precision) print("Recall: ", recall) print("F1: ", f_score)
https://github.com/SamScherf/shors-algorithm
SamScherf
import sys import numpy as np from matplotlib import pyplot as plt from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, visualization from random import randint def to_binary(N,n_bit): Nbin = np.zeros(n_bit, dtype=bool) for i in range(1,n_bit+1): bit_state = (N % (2**i) != 0) if bit_state: N -= 2**(i-1) Nbin[n_bit-i] = bit_state return Nbin def modular_multiplication(qc,a,N): """ applies the unitary operator that implements modular multiplication function x -> a*x(modN) Only works for the particular case x -> 7*x(mod15)! """ for i in range(0,3): qc.x(i) qc.cx(2,1) qc.cx(1,2) qc.cx(2,1) qc.cx(1,0) qc.cx(0,1) qc.cx(1,0) qc.cx(3,0) qc.cx(0,1) qc.cx(1,0) def quantum_period(a, N, n_bit): # Quantum part print(" Searching the period for N =", N, "and a =", a) qr = QuantumRegister(n_bit) cr = ClassicalRegister(n_bit) qc = QuantumCircuit(qr,cr) simulator = Aer.get_backend('qasm_simulator') s0 = randint(1, N-1) # Chooses random int sbin = to_binary(s0,n_bit) # Turns to binary print("\n Starting at \n s =", s0, "=", "{0:b}".format(s0), "(bin)") # Quantum register is initialized with s (in binary) for i in range(0,n_bit): if sbin[n_bit-i-1]: qc.x(i) s = s0 r=-1 # makes while loop run at least 2 times # Applies modular multiplication transformation until we come back to initial number s while s != s0 or r <= 0: r+=1 # sets up circuit structure qc.measure(qr, cr) modular_multiplication(qc,a,N) qc.draw('mpl') # runs circuit and processes data job = execute(qc,simulator, shots=10) result_counts = job.result().get_counts(qc) result_histogram_key = list(result_counts)[0] # https://qiskit.org/documentation/stubs/qiskit.result.Result.get_counts.html#qiskit.result.Result.get_counts s = int(result_histogram_key, 2) print(" ", result_counts) plt.show() print("\n Found period r =", r) return r if __name__ == '__main__': a = 7 N = 15 n_bit=5 r = quantum_period(a, N, n_bit)
https://github.com/yellowskydragon/VQAA
yellowskydragon
import matplotlib.pyplot import math import random import numpy as np import networkx as nx import matplotlib.pyplot as plt from pathlib import Path from qiskit import Aer, transpile, assemble, BasicAer, transpiler from qiskit.providers.aer import Aer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit.circuit.library import QFT, PhaseGate from random import uniform from qiskit.providers.aer.library import save_statevector from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.aer.noise.errors import thermal_relaxation_error, pauli_error from qiskit.providers.aer.noise import NoiseModel # GRAPH = nx.random_graphs.random_regular_graph(DEGREE, AES_KEY_LENGTH) error_list = { "1qb" : -1, "2qb" : -1, "spam": -1, "thermal" : [5000,6000] } pauli_Z = np.array([[1, 0], [0, -1]]) def is_noisy(error_type): random_noise = uniform(0.0, 1.0) if error_type == "1qb" or error_type == "2qb": if random_noise <= error_list[error_type]: different_gate_noise = uniform(0.0, 1.0) if 0.0 <= different_gate_noise < 1/3: return "X" elif 1/3 <= random_noise < 2/3: return "Y" else: return "Z" else: return False else: if random_noise <= error_list[error_type]: return True else: return False def generate_circuit_with_state_vector(ansatz_type, if_back_control, plain_text, theta_list): n = len(plain_text) key_space = QuantumRegister(n) data_space = QuantumRegister(n) qc = QuantumCircuit(key_space, data_space) ## Begin ansatz qc.h(key_space) ### 1-qubit gate noise for i in range(n): if_noisy = is_noisy("1qb") if if_noisy == False: continue else: if if_noisy == "X": qc.x(key_space[i]) elif if_noisy == "Y": qc.y(key_space[i]) else: qc.z(key_space[i]) for i in range(n): qc.ry(theta_list[i], key_space[i]) # 1-qubit gate noise if_noisy = is_noisy("1qb") if if_noisy == False: continue else: if if_noisy == "X": qc.x(key_space[i]) elif if_noisy == "Y": qc.y(key_space[i]) else: qc.z(key_space[i]) qc.barrier() if ansatz_type == "rx": for i in range(n - 1): qc.cx(key_space[i], key_space[i+1]) elif ansatz_type == "ry": for i in range(n - 1): qc.cy(key_space[i], key_space[i+1]) elif ansatz_type == "rz": for i in range(n - 1): qc.cz(key_space[i], key_space[i+1]) # 2-qubit gate noise for i in range(n - 1): if_noisy = is_noisy("2qb") if if_noisy == False: continue else: if if_noisy == "X": qc.x(key_space[i + 1]) elif if_noisy == "Y": qc.y(key_space[i + 1]) else: qc.z(key_space[i + 1]) if if_back_control: if ansatz_type == "rx": qc.cx(key_space[n - 1], key_space[0]) elif ansatz_type == "ry": qc.cy(key_space[n - 1], key_space[0]) elif ansatz_type == "rz": qc.cz(key_space[n - 1], key_space[0]) # 2-qubit gate noise if_noisy = is_noisy("2qb") if if_noisy != False: if if_noisy == "X": qc.x(key_space[0]) elif if_noisy == "Y": qc.y(key_space[0]) else: qc.z(key_space[0]) qc.barrier() ## End ansatz ## Prepare plaintext for i in range(n): if plain_text[i] == '1': qc.x(data_space[i]) # 1-qubit gate noise if_noisy = is_noisy("1qb") if if_noisy != False: if if_noisy == "X": qc.x(data_space[i]) elif if_noisy == "Y": qc.y(data_space[i]) else: qc.z(data_space[i]) qc.barrier() ## Begin AES encryption for i in range(n // 2): qc.swap(data_space[i], data_space[n - 1 - i]) qc.barrier() for i in range(n): qc.cx(key_space[i], data_space[i]) #2-qubit gate noise if_noisy = is_noisy("2qb") if if_noisy == False: continue else: if if_noisy == "X": qc.x(data_space[i]) elif if_noisy == "Y": qc.y(data_space[i]) else: qc.z(data_space[i]) qc.barrier() ## End AES encryption ## spam error for i in range(n): if_noisy = is_noisy("spam") if if_noisy == False: continue else: qc.x(data_space[i]) qc.save_statevector(label="final") # qc.measure(data_space, classic_reg) return qc def get_thermal_error(num_qubits): t1 = error_list["thermal"][0] t2 = error_list["thermal"][1] # nanosecond time_u1 = 50 time_x = 10 time_h = 10 time_cx = 10 time_cu1 = 10 time_measure = 1000 # 1 microsecond errors_measure = thermal_relaxation_error(t1, t2, time_measure) errors_u1 = thermal_relaxation_error(t1, t2, time_u1) errors_x = thermal_relaxation_error(t1, t2, time_x) errors_h = thermal_relaxation_error(t1, t2, time_h) errors_cx = thermal_relaxation_error(t1, t2, time_cx).expand( thermal_relaxation_error(t1, t2, time_cx)) errors_cu1 = thermal_relaxation_error(t1, t2, time_cu1).expand( thermal_relaxation_error(t1, t2, time_cu1)) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(errors_u1, "u1") noise_model.add_all_qubit_quantum_error(errors_x, "x") noise_model.add_all_qubit_quantum_error(errors_h, "h") # noise_model.add_all_qubit_quantum_error(errors_cx, "cx") # noise_model.add_all_qubit_quantum_error(errors_cu1, "cu1") noise_model.add_all_qubit_quantum_error(errors_measure, "measure") for i in range(num_qubits - 1): for j in range(i + 1, num_qubits): noise_model.add_quantum_error(errors_cx, "cx", [i, j]) noise_model.add_quantum_error(errors_cu1, "cu1", [i, j]) return noise_model def run_one_sim(qc, if_gpu, error_type): backend = Aer.get_backend("statevector_simulator") if if_gpu: backend.set_options(device="GPU") if error_type == "thermal": noise_thermal = get_thermal_error(qc.num_qubits) job = execute(qc, backend=backend, noise_model=noise_thermal, optimization_level=0) else: tqc = transpile(qc, backend) job = backend.run(tqc) result = job.result() state_vector = result.data()["final"] return state_vector def VQAA(ansatz, if_back, optimization, max_iter, plain, key, cipher, if_GPU, error_type, threshold, end_prob): prev_cost = 114514 learning_rate = 0.72 xerr = -9 gd_time = -1 graph = create_graph(degree=3, aes_key_length=len(plain)) cur_iter = 0 theta_list = [math.pi / 4 for _ in range(len(cipher))] while cur_iter < max_iter: # 进入一轮优化循环 qc = generate_circuit_with_state_vector(ansatz_type=ansatz, if_back_control=if_back, plain_text=plain, theta_list=theta_list) ## 获取这一次的测量结果 from time import perf_counter qc_start_time = perf_counter() state_vector = run_one_sim(qc=qc, if_gpu=if_GPU, error_type=error_type) qc_end_time = perf_counter() qc_run_time = round(qc_end_time - qc_start_time) ## 计算这次的哈密顿量 prob = prob_of_measure_correct_cipher(state_vector, cipher) expectation = cal_expect_of_ham(g=graph, state_vector=state_vector, cipher=cipher) print("---"*60) print(f"Current iter is {cur_iter} . This prob is {prob} . Expectation of Ham is {expectation} . Theta : {theta_list}") if prob > end_prob: if_end = 1 else: if_end = 0 ## 通过哈密顿量和theta的值更新下一轮线路的theta if optimization == "gd": gd_begin_time = perf_counter() cost, theta_list = gd(graph, ansatz, if_back, plain, cipher, if_GPU, error_type, expectation, theta_list, threshold, learning_rate, xerr) # if (prev_cost - cost) <= threshold: # if_end = 1 # else: # prev_cost = cost gd_end_time = perf_counter() gd_time = gd_end_time - gd_begin_time with open(Path(f"./iter_{cur_iter}.txt"), "w") as f: f.write(f"key : {key}\n") f.write(f"plaintext : {plain}\n") f.write(f"cipher : {cipher}\n") f.write(f"error type : {error_type}\n") f.write(f"error level : {error_list[error_type]}\n") f.write(f"ansatz type : {ansatz}\n") f.write(f"optimization method : {optimization}\n") f.write(f"if back : {if_back}\n") f.write(f"max iteration : {max_iter}\n") f.write(f"if gpu : {if_GPU}\n") f.write(f"end prob threshold : {end_prob}") f.write(f"--------------------------------------------------------------------------------------------\n") f.write(f"current iteration : {cur_iter}\n") f.write(f"qc run time : {qc_run_time}\n") f.write(f"gd run time : {gd_time}\n") f.write(f"correct cipher prob : {prob}\n") f.write(f"expectation : {expectation}\n") f.write(f"learning rate : {learning_rate}\n") f.write(f"xerr : {xerr}\n") f.write(f"cost : {cost}\n") f.write(f"optimized theta_list : {theta_list}\n") f.write(f"if end : {if_end}\n") if if_end: return cur_iter += 1 return def create_graph(degree, aes_key_length=8): # G = nx.random_graphs.random_regular_graph(degree, aes_key_length) G = nx.Graph() G.add_node(range(0,aes_key_length)) G.add_edge(0, 1) G.add_edge(0, 6) G.add_edge(0, 7) G.add_edge(1, 7) G.add_edge(1, 3) G.add_edge(2, 4) G.add_edge(2, 5) G.add_edge(2, 7) G.add_edge(3, 4) G.add_edge(3, 6) G.add_edge(4, 5) G.add_edge(5, 6) return G pos = nx.circular_layout(G) options = { "with_labels": True, "font_size": 20, "font_weight": "bold", "font_color": "white", "node_size": 2000, "width": 2 } nx.draw_networkx(G, pos, **options) ax = plt.gca() ax.margins(0.20) plt.axis("off") plt.savefig("g.png", format="png") return G def get_corresponding_beta_vector(state_vector, n, single_i, omega_i=-1, omega_j=-1): # print(state_vector) normalized_v = state_vector / np.linalg.norm(state_vector) # print(normalized_v) if single_i == -1: prob = np.array([0, 0, 0, 0],dtype=float).reshape((-1, 1)) for i in range(2 ** (2 * n)): bin_index = bin(i)[2:].rjust(2 * n, '0') if bin_index[omega_i] == "0" and bin_index[omega_j] == "0": prob[0] = prob[0] + abs(normalized_v[i]) ** 2 elif bin_index[omega_i] == "0" and bin_index[omega_j] == "1": prob[1] = prob[1] + abs(normalized_v[i]) ** 2 elif bin_index[omega_i] == "1" and bin_index[omega_j] == "0": prob[2] = prob[2] + abs(normalized_v[i]) ** 2 elif bin_index[omega_i] == "1" and bin_index[omega_j] == "1": prob[3] = prob[3] + abs(normalized_v[i]) ** 2 else: prob = np.array([0, 0], dtype=float).reshape((-1, 1)) for i in range(2 ** (2 * n)): bin_index = bin(i)[2:].rjust(2 * n, '0') if bin_index[single_i] == "0": prob[0] = prob[0] + abs(normalized_v[i]) ** 2 elif bin_index[single_i] == "1": prob[1] = prob[1] + abs(normalized_v[i]) ** 2 return prob def cal_expect_of_ham(g: nx.Graph, state_vector, cipher): """ :param g: 使用的3-正则图 :param theta_list: 应该是测量的结果向量,如[0,0,1,0,1,0,1,0] :return: """ n = len(cipher) expectation = 0 edge_list = g.edges # print(g.edges) for one_edge in edge_list: V_i, V_j = one_edge[0], one_edge[1] if cipher[V_i] == cipher[V_j]: omega_ij = -1 else: omega_ij = 1 correspond_theta_vector = get_corresponding_beta_vector(state_vector=state_vector, n=n, single_i=-1, omega_i=V_i, omega_j=V_j) # print(f"omega i,j de vector is {correspond_theta_vector}") # print(f"corresponding matrix is {np.kron(pauli_Z, pauli_Z)}") expectation = expectation + omega_ij * (correspond_theta_vector.T.conjugate() @ (np.kron(pauli_Z, pauli_Z)) @ correspond_theta_vector) # for i in range(len(cipher)): if cipher[i] == "0": t_i = -0.5 else: t_i = 0.5 correspond_theta_vector = get_corresponding_beta_vector(state_vector=state_vector, n=n, single_i=i) # print(f"omega i,j de vector is {correspond_theta_vector}") # print(f"corresponding matrix is {pauli_Z}") expectation = expectation + t_i * (correspond_theta_vector.T.conjugate() @ pauli_Z @ correspond_theta_vector) return expectation[0][0] def arr2str(vec: np.array): return ','.join(str(i) for i in vec) def prob_of_measure_correct_cipher(state_vector, cipher): n = len(cipher) prob = 0 normalized_v = state_vector / np.linalg.norm(state_vector) for i in range(2 ** (2 * n)): if_add = 1 bin_index = bin(i)[2:].rjust(2 * n, '0') for j in range(n): if bin_index[j] != cipher[j]: if_add = 0 break if if_add: prob += (normalized_v[i]) ** 2 return prob def gd(graph, ansatz, if_back, plain, cipher, if_GPU, error_type, expectation, thetas, threshold, lr=0.72, xerr=-9): times = 0 x0 = thetas length = len(x0) cost = expectation print("***"*20) print(f"current theta list is {x0}") times += 1 Gd = [0] * length for i in range(length): x = [t for t in x0] x[i] += 0.5 qc = generate_circuit_with_state_vector(ansatz_type=ansatz, if_back_control=if_back, plain_text=plain, theta_list=x) state_vector = run_one_sim(qc=qc, if_gpu=if_GPU, error_type=error_type) cost_ = cal_expect_of_ham(g=graph, state_vector=state_vector, cipher=cipher) print(f"changing the {i}th of parameter of theta list and new cost is {cost_}") times += 1 Gd[i] = (cost_ - cost) / 0.5 r0 = random.uniform(0, 1) print(f"current gradient is : {Gd}") for j in range(length): x0[j] = x0[j] - (lr / abs(cost) + math.log10(times) / times * r0) * Gd[j] def abs_sum(some_list): return sum([abs(tmp) for tmp in some_list]) t_sum = abs_sum(Gd) if t_sum < 0.8: x0 = [random.uniform(0, math.pi / 2) for _ in range(length)] print(f"After one iter of gd, |Gd| is {t_sum}") for i in range(len(x0)): x0[i] = x0[i] % (2 * math.pi) return cost, x0 if __name__ == '__main__': qc = generate_circuit_with_state_vector("rx", 1, "11110001", "00000010", "11100101",[0,0,0,0,0,0,0]) qc.draw(output='mpl') matplotlib.pyplot.savefig("m.png")
https://github.com/sakthianand7/Bernstein_Vazirani_Algorithm
sakthianand7
from qiskit import * from qiskit.tools.visualization import plot_histogram %matplotlib inline secretnumber = '11100011' circuit = QuantumCircuit(len(secretnumber)+1,len(secretnumber)) circuit.h(range(len(secretnumber))) circuit.x(len(secretnumber)) circuit.h(len(secretnumber)) circuit.barrier() for ii, yesno in enumerate(reversed(secretnumber)): if yesno == '1': circuit.cx(ii,len(secretnumber)) circuit.barrier() circuit.h(range(len(secretnumber))) circuit.barrier() circuit.measure(range(len(secretnumber)),range(len(secretnumber))) circuit.draw(output = 'mpl')
https://github.com/calm-cookie/deutsch-jozsa-algorithm
calm-cookie
import qiskit as q import numpy as np import matplotlib as mpl # the oracle function takes n-bit input n = 5 # define an unbalanced oracle def oracle_balanced(n): size = np.random.randint(n) random_qubits = set(np.random.randint(n, size=(size))) qc = q.QuantumCircuit(n + 1) for qubit in random_qubits: qc.x(qubit) for qubit in range(n): qc.cx(qubit, n) for qubit in random_qubits: qc.x(qubit) return qc # define a constant oracle that always returns 0 def oracle_zero(n): qc = q.QuantumCircuit(n + 1) return qc # define a constant oracle that always returns 1 def oracle_one(n): qc = q.QuantumCircuit(n + 1) qc.x(n) return qc # define an oracle function that decides whether to use a 'balanced' or a constant' oracle def oracle(choice, n): if choice == 'balanced': oracle_qc = oracle_balanced(n) elif choice == 'constant': random = np.random.randint(2) if random: oracle_qc = oracle_one(n) else: oracle_qc = oracle_zero(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" return oracle_gate # Suppose the function take n-bit strings as input. # define a query quantum register with n qubits and an answer quantum register with 1 qubit query = q.QuantumRegister(n, 'query') answer = q.QuantumRegister(1, 'answer') classical = q.ClassicalRegister(n) qc = q.QuantumCircuit(query, answer, classical) # apply hadamard gates on all query qubits to create a superposition qc.h(query) # prepare the answer qubit in state |-> qc.x(answer) qc.h(answer) qc.barrier() # apply the oracle oracle_gate = oracle('constant', n) qc.append(oracle_gate, range(n+1)) qc.barrier() # apply hadamard gates on all query qubits to reverse the superposition qc.h(query) # measure the query qubits to calculate the result qc.measure(query, classical) qc.draw(output='mpl') # execute the circuit on a qasm simulator backend = q.Aer.get_backend('qasm_simulator') job = q.execute(qc, backend, shots=1000) result = job.result() counts = result.get_counts() graph = q.visualization.plot_histogram(counts) display(graph) # If the probability of all zeroes = 1, then the function is constant, otherwise it is balanced # Hence, a single calculation solved the problem, which classically takes (2^N - 1) steps
https://github.com/icarosadero/maxima_function_qiskit
icarosadero
%matplotlib inline from qiskit import QuantumCircuit, execute, Aer, IBMQ, QuantumRegister from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * provider = IBMQ.load_account() circ = QuantumCircuit(4,4) #Preparation circ.h(0) circ.h(1) #Oracle function def oracle(circuit, mapping): if mapping=="a": """ 100x 010 101x 011 """ circuit.cx(1,2) circuit.x(2) elif mapping=="b": """ 100x 001 110x 011 """ circuit.cx(0,2) circuit.x(2) elif mapping=="constant": circuit.x(2) oracle(circ,"b") circ.barrier(range(4)) circ.x(2) circ.ch(2,3) circ.x(2) circ.barrier(range(4)) circ.measure(range(4),range(4)) circ.draw("mpl") nruns = 2048 backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=nruns) result_sim = job_sim.result() counts = result_sim.get_counts(circ) plot_histogram(counts) dict(filter(lambda x: x[1]/nruns >= 0.2,counts.items()))
https://github.com/icarosadero/maxima_function_qiskit
icarosadero
%matplotlib inline from qiskit import QuantumCircuit, execute, Aer, IBMQ from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * provider = IBMQ.load_account() circ = QuantumCircuit(9,9) #Hadamard for i in [6,7,8]: circ.h(i) circ.barrier(range(9)) #Function circ.cx(6,5) circ.ccx(6,7,4) circ.cx(8,4) circ.barrier(range(9)) for i,j in zip([3,4,5],[0,1,2]): circ.x(i) circ.ch(i,j) circ.x(i) circ.barrier(range(9)) circ.measure(range(9),range(9)) circ.draw("mpl") nruns = 2048 backend_sim = Aer.get_backend('qasm_simulator') job_sim = execute(circ, backend_sim, shots=nruns) result_sim = job_sim.result() counts = result_sim.get_counts(circ) plot_histogram(counts) result_raw = sorted(counts.items(), key=lambda x: x[1], reverse=True) result = list(map(lambda x: [x[0][:3],x[0][3:6],x[0][6:],x[1]/nruns],result_raw)) result
https://github.com/RakhshandaMujib/Deutsch-Joza-Algorithm
RakhshandaMujib
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile # import basic plot tools from qiskit.visualization import plot_histogram # set the length of the n-bit input string. n = 3 # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(balanced_oracle) dj_circuit.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(balanced_oracle) # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw() # use local simulator aer_sim = Aer.get_backend('aer_simulator') results = aer_sim.run(dj_circuit).result() answer = results.get_counts() plot_histogram(answer) # ...we have a 0% chance of measuring 000. assert answer.get('000', 0) == 0 def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw() transpiled_dj_circuit = transpile(dj_circuit, aer_sim) results = aer_sim.run(transpiled_dj_circuit).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with greater than or equal to (n+1) qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_dj_circuit = transpile(dj_circuit, backend, optimization_level=3) job = backend.run(transpiled_dj_circuit) job_monitor(job, interval=2) # Get the results of the computation results = job.result() answer = results.get_counts() plot_histogram(answer) # ...the most likely result is 1111. assert max(answer, key=answer.get) == '1111' from qiskit_textbook.problems import dj_problem_oracle oracle = dj_problem_oracle(1) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/MarvOdo/Quantum-Counting
MarvOdo
#Implementation of Quantum Counting Algorithm in Qiskit #By Marvin Odobashi import numpy as np from qiskit import * from qiskit.circuit.library.standard_gates import ZGate #qubits that determine precision of algorithm p = 7 #qubits to represent possible inputs to Boolean Function n = 4 upper = QuantumRegister(p, 'upper') #1 ancilla qubit to phase shift "correct" states with oracle lower = QuantumRegister(n+1, 'lower') measurements = ClassicalRegister(p, 'measurements') qc = QuantumCircuit(upper, lower, measurements) #There exists some unknown n-bit input Boolean Function F: {0, 1}^n -> {0, 1} #Assume we have this oracle that will phase shift solution states #In this speific case I have picked n=4, but the "solution state selectors" have been defined for a general n def oracle(qc): w = qc.width() #controlled z gate (phase shift state if it is a solution) ctrlz = ZGate().control(w-1) #ctrlz for |1111..> qc.append(ctrlz, range(w)) #ctrlz for |0000..> qc.x(range(w-1)) qc.append(ctrlz, range(w)) qc.x(range(w-1)) #ctrlz for |10..01> qc.x(range(1, w-2)) qc.append(ctrlz, range(w)) qc.x(range(1, w-2)) #ctrlz for |01..10> qc.x([0, w-2]) qc.append(ctrlz, range(w)) qc.x([0, w-2]) #ctrlz for |0111..> #qc.x([0]) #qc.append(ctrlz, range(w)) #qc.x([0]) #ctrlz for |1011..> #qc.x([1]) #qc.append(ctrlz, range(w)) #qc.x([1]) return qc #Grover operator to be repeated def grover(qc): w = qc.width() #oracle qc = oracle(qc) #Hadamard-All qc.h(range(w-1)) #Check if all are 0 ctrlz = ZGate().control(w-1) qc.x(range(w-1)) qc.append(ctrlz, range(w)) qc.x(range(w-1)) #Hadamard-All qc.h(range(w-1)) return qc from qiskit.circuit.library import QFT #quantum counting def quantumCount(qc): #create controlled gate version of grover operation ctrlGrover = grover(QuantumCircuit(lower)).to_gate(label='CG').control(1) #initialize circuit, flip last (ancilla) qubit so it can be used for phase shifting by oracle qc.h(upper) qc.h(lower[0:-1]) qc.x(lower[-1]) #repeat controlled grover 2^i times for i in {0, p-1} for i in range(p): for j in range(2**i): #controlled grover, ith upper qubit as control, lower register is operated on qc.append(ctrlGrover, [qc.qubits[i]] + qc.qubits[p:]) #apply inverse QFT on upper register #using built-in QFT for convenience iqft = QFT(num_qubits=p, inverse=True).to_gate(label='iQFT') qc.append(iqft, qc.qubits[:p]) #measure upper register qc.measure(range(p), range(p)) return qc #full circuit final = quantumCount(qc) #final.draw('mpl') from qiskit import transpile from qiskit.providers.aer import AerSimulator backend = AerSimulator() qc_compiled = transpile(final, backend) job_sim = backend.run(qc_compiled, shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(qc_compiled) #from qiskit.visualization import plot_histogram #plot_histogram(counts) #take highest counted state measured_n = int(max(counts, key=counts.get), 2) #get theta theta = 2*np.pi*measured_n/(2**p) #compute number of solutions num_sol = (2**n)*np.cos(theta/2)**2 #compute error (formula from https://qiskit.org/textbook/ch-algorithms/quantum-counting.html#finding_m) N = 2**n M = N * np.sin(theta / 2)**2 error = (np.sqrt(2*M*N) + N/(2**(p)))*(2**(-p+1)) print(f"""Actual Number of Solutions = 4\n Quantum Counting Number of Solutions = {num_sol:.1f}\n Quantum Counting Error < {error:.2f}""")
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives # result = Sampler().run(circuits).result() def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set(msg).issubset({"0","1"}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1,0) qc.h(1) return qc # Charlie creates the entangled pair between Alice and Bob qc = create_bell_pair() # We'll add a barrier for visual separation qc.barrier() message = '11' qc = encode_message(qc, 1, message) qc.barrier() # Alice then sends her qubit to Bob. # After receiving qubit 0, Bob applies the recovery protocol: qc = decode_message(qc) # Finally, Bob measures his qubits to read Alice's message qc.measure_all() # Draw our output qc.draw() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qreg_q = QuantumRegister(3, 'q') creg_c0 = ClassicalRegister(1, 'c0') creg_c1 = ClassicalRegister(1, 'c1') creg_c2 = ClassicalRegister(1, 'c2') circuit = QuantumCircuit(qreg_q, creg_c0, creg_c1, creg_c2) #quantum teleportation example circuit.u(0.3, 0.2, 0.1, qreg_q[0]) #creating the first qubit change the values of theta, phi and lambda to create a different qubit circuit.h(qreg_q[1]) circuit.cx(qreg_q[1], qreg_q[2]) circuit.barrier(qreg_q) circuit.cx(qreg_q[0], qreg_q[1]) circuit.h(qreg_q[0]) circuit.measure(qreg_q[0], creg_c0[0]) circuit.measure(qreg_q[1], creg_c1[0]) circuit.z(qreg_q[2]).c_if(creg_c0, 1) circuit.x(qreg_q[2]).c_if(creg_c1, 1) circuit.measure(qreg_q[2], creg_c2[0]) circuit.draw() from qiskit_aer import Aer, AerSimulator from qiskit.compiler import assemble qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.h(0) qc.h(1) display(qc.draw()) qc.save_unitary() usim = Aer.get_backend('aer_simulator') qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw()) qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cp(pi/4, 0, 1) display(qc.draw()) # See Results: qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Controlled-T} = \n")
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
from qiskit import QuantumCircuit, transpile from qiskit.visualization import plot_histogram, plot_bloch_multivector from numpy.random import randint import numpy as np from qiskit_aer import AerSimulator qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) qc.barrier() # Alice now sends the qubit to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = AerSimulator() job = aer_sim.run(qc) plot_histogram(job.result().get_counts()) qc = QuantumCircuit(1,1) # Alice prepares qubit in state |+> qc.h(0) # Alice now sends the qubit to Bob # but Eve intercepts and tries to read it qc.measure(0, 0) qc.barrier() # Eve then passes this on to Bob # who measures it in the X-basis qc.h(0) qc.measure(0,0) # Draw and simulate circuit display(qc.draw()) aer_sim = AerSimulator() job = aer_sim.run(qc) plot_histogram(job.result().get_counts()) np.random.seed(seed=0) n = 100 np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) print(alice_bits) np.random.seed(seed=0) n = 100 ## Step 1 #Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) print(alice_bases) def encode_message(bits, bases): message = [] for i in range(n): qc = QuantumCircuit(1,1) if bases[i] == 0: # Prepare qubit in Z-basis if bits[i] == 0: pass else: qc.x(0) else: # Prepare qubit in X-basis if bits[i] == 0: qc.h(0) else: qc.x(0) qc.h(0) qc.barrier() message.append(qc) return message np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) print('bit = %i' % alice_bits[0]) print('basis = %i' % alice_bases[0]) message[0].draw() print('bit = %i' % alice_bits[4]) print('basis = %i' % alice_bases[4]) message[4].draw() np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) print(bob_bases) def measure_message(message, bases): backend = AerSimulator() measurements = [] for q in range(n): if bases[q] == 0: # measuring in Z-basis message[q].measure(0,0) if bases[q] == 1: # measuring in X-basis message[q].h(0) message[q].measure(0,0) aer_sim = AerSimulator() result = aer_sim.run(message[q], shots=1, memory=True).result() measured_bit = int(result.get_memory()[0]) measurements.append(measured_bit) return measurements np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) message[0].draw() message[6].draw() print(bob_results) def remove_garbage(a_bases, b_bases, bits): good_bits = [] for q in range(n): if a_bases[q] == b_bases[q]: # If both used the same basis, add # this to the list of 'good' bits good_bits.append(bits[q]) return good_bits np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) print(alice_key) np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) print(bob_key) def sample_bits(bits, selection): sample = [] for i in selection: # use np.mod to make sure the # bit we sample is always in # the list range i = np.mod(i, len(bits)) # pop(i) removes the element of the # list at index 'i' sample.append(bits.pop(i)) return sample np.random.seed(seed=0) n = 100 ## Step 1 # Alice generates bits alice_bits = randint(2, size=n) ## Step 2 # Create an array to tell us which qubits # are encoded in which bases alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Step 3 # Decide which basis to measure in: bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) ## Step 5 sample_size = 15 bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) print(" bob_sample = " + str(bob_sample)) alice_sample = sample_bits(alice_key, bit_selection) print("alice_sample = "+ str(alice_sample)) bob_sample == alice_sample print(bob_key) print(alice_key) print("key length = %i" % len(alice_key)) np.random.seed(seed=3) np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) print(alice_bits) np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) print(alice_bases) message[0].draw() np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) print(intercepted_message) message[0].draw() np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) message[0].draw() np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) np.random.seed(seed=3) ## Step 1 alice_bits = randint(2, size=n) ## Step 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interception!! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) ## Step 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) ## Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) ## Step 5 sample_size = 15 bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) print(" bob_sample = " + str(bob_sample)) alice_sample = sample_bits(alice_key, bit_selection) print("alice_sample = "+ str(alice_sample)) bob_sample == alice_sample n = 100 # Step 1 alice_bits = randint(2, size=n) alice_bases = randint(2, size=n) # Step 2 message = encode_message(alice_bits, alice_bases) # Interception! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) # Step 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) # Step 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) # Step 5 sample_size = 15 # Change this to something lower and see if # Eve can intercept the message without Alice # and Bob finding out bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) alice_sample = sample_bits(alice_key, bit_selection) if bob_sample != alice_sample: print("Eve's interference was detected.") else: print("Eve went undetected!") # import qiskit.tools.jupyter # %qiskit_version_table
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
# initialization import numpy as np # importing Qiskit from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile # import basic plot tools from qiskit.visualization import plot_histogram # set the length of the n-bit input string. n = 3 # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw() balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(balanced_oracle) dj_circuit.draw() dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit = dj_circuit.compose(balanced_oracle) # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw() # use local simulator aer_sim = Aer.get_backend('aer_simulator') results = aer_sim.run(dj_circuit).result() answer = results.get_counts() plot_histogram(answer) # ...we have a 0% chance of measuring 000. assert answer.get('000', 0) == 0 def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw() transpiled_dj_circuit = transpile(dj_circuit, aer_sim) results = aer_sim.run(transpiled_dj_circuit).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with greater than or equal to (n+1) qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= (n+1) and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor transpiled_dj_circuit = transpile(dj_circuit, backend, optimization_level=3) job = backend.run(transpiled_dj_circuit) job_monitor(job, interval=2) # Get the results of the computation results = job.result() answer = results.get_counts() plot_histogram(answer) # ...the most likely result is 1111. assert max(answer, key=answer.get) == '1111' from qiskit_textbook.problems import dj_problem_oracle oracle = dj_problem_oracle(1) import qiskit.tools.jupyter %qiskit_version_table
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://docs.quantum.ibm.com/run/primitives # result = Sampler().run(circuits).result() def create_bell_pair(): qc = QuantumCircuit(2) qc.h(1) qc.cx(1,0) return qc def encode_message(qc, qubit, msg): if len(msg) != 2 or not set(msg).issubset({"0","1"}): raise ValueError(f"message '{msg}' is invalid") if msg[1] == "1": qc.x(qubit) if msg[0] == "1": qc.z(qubit) return qc def decode_message(qc): qc.cx(1,0) qc.h(1) return qc # Charlie creates the entangled pair between Alice and Bob qc = create_bell_pair() # We'll add a barrier for visual separation qc.barrier() message = '11' qc = encode_message(qc, 1, message) qc.barrier() # Alice then sends her qubit to Bob. # After receiving qubit 0, Bob applies the recovery protocol: qc = decode_message(qc) # Finally, Bob measures his qubits to read Alice's message qc.measure_all() # Draw our output qc.draw() from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from numpy import pi qreg_q = QuantumRegister(3, 'q') creg_c0 = ClassicalRegister(1, 'c0') creg_c1 = ClassicalRegister(1, 'c1') creg_c2 = ClassicalRegister(1, 'c2') circuit = QuantumCircuit(qreg_q, creg_c0, creg_c1, creg_c2) #quantum teleportation example circuit.u(0.3, 0.2, 0.1, qreg_q[0]) #creating the first qubit change the values of theta, phi and lambda to create a different qubit circuit.h(qreg_q[1]) circuit.cx(qreg_q[1], qreg_q[2]) circuit.barrier(qreg_q) circuit.cx(qreg_q[0], qreg_q[1]) circuit.h(qreg_q[0]) circuit.measure(qreg_q[0], creg_c0[0]) circuit.measure(qreg_q[1], creg_c1[0]) circuit.z(qreg_q[2]).c_if(creg_c0, 1) circuit.x(qreg_q[2]).c_if(creg_c1, 1) circuit.measure(qreg_q[2], creg_c2[0]) circuit.draw() from qiskit_aer import Aer, AerSimulator from qiskit.compiler import assemble qc = QuantumCircuit(2) qc.h(0) qc.h(1) qc.cx(0,1) qc.h(0) qc.h(1) display(qc.draw()) qc.save_unitary() usim = Aer.get_backend('aer_simulator') qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cx(1,0) display(qc.draw()) qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Circuit = }\n") qc = QuantumCircuit(2) qc.cp(pi/4, 0, 1) display(qc.draw()) # See Results: qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() array_to_latex(unitary, prefix="\\text{Controlled-T} = \n")
https://github.com/intrinsicvardhan/QuantumComputingAlgos
intrinsicvardhan
print('hello world')