repo
stringclasses
900 values
file
stringclasses
754 values
content
stringlengths
4
215k
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
import sys sys.path.append("..") # the following is from Qiskits two_qubit_decomp, (doesn't work as import since need to adjust parameters and return vals) import cmath from qiskit.quantum_info.synthesis.two_qubit_decompose import * import scipy.linalg as la _ipx = np.array([[0, 1j], [1j, 0]], dtype=complex) _ipy = np.array([[0, 1], [-1, 0]], dtype=complex) _ipz = np.array([[1j, 0], [0, -1j]], dtype=complex) _id = np.array([[1, 0], [0, 1]], dtype=complex) def KAKDecomp(unitary_matrix, *, fidelity=(1.0 - 1.0e-9)): """Perform the Weyl chamber decomposition, and optionally choose a specialized subclass. The flip into the Weyl Chamber is described in B. Kraus and J. I. Cirac, Phys. Rev. A 63, 062309 (2001). FIXME: There's a cleaner-seeming method based on choosing branch cuts carefully, in Andrew M. Childs, Henry L. Haselgrove, and Michael A. Nielsen, Phys. Rev. A 68, 052311, but I wasn't able to get that to work. The overall decomposition scheme is taken from Drury and Love, arXiv:0806.4015 [quant-ph]. """ pi = np.pi pi2 = np.pi / 2 pi4 = np.pi / 4 # Make U be in SU(4) U = np.array(unitary_matrix, dtype=complex, copy=True) detU = la.det(U) U *= detU ** (-0.25) global_phase = cmath.phase(detU) / 4 Up = transform_to_magic_basis(U, reverse=True) M2 = Up.T.dot(Up) # M2 is a symmetric complex matrix. We need to decompose it as M2 = P D P^T where # P ∈ SO(4), D is diagonal with unit-magnitude elements. # # We can't use raw `eig` directly because it isn't guaranteed to give us real or othogonal # eigenvectors. Instead, since `M2` is complex-symmetric, # M2 = A + iB # for real-symmetric `A` and `B`, and as # M2^+ @ M2 = A^2 + B^2 + i [A, B] = 1 # we must have `A` and `B` commute, and consequently they are simultaneously diagonalizable. # Mixing them together _should_ account for any degeneracy problems, but it's not # guaranteed, so we repeat it a little bit. The fixed seed is to make failures # deterministic; the value is not important. state = np.random.default_rng(2020) for _ in range(100): # FIXME: this randomized algorithm is horrendous M2real = state.normal() * M2.real + state.normal() * M2.imag _, P = np.linalg.eigh(M2real) D = P.T.dot(M2).dot(P).diagonal() if np.allclose(P.dot(np.diag(D)).dot(P.T), M2, rtol=0, atol=1.0e-13): break else: raise ValueError d = -np.angle(D) / 2 d[3] = -d[0] - d[1] - d[2] cs = np.mod((d[:3] + d[3]) / 2, 2 * np.pi) # Reorder the eigenvalues to get in the Weyl chamber cstemp = np.mod(cs, pi2) np.minimum(cstemp, pi2 - cstemp, cstemp) order = np.argsort(cstemp)[[1, 2, 0]] cs = cs[order] d[:3] = d[order] P[:, :3] = P[:, order] # Fix the sign of P to be in SO(4) if np.real(la.det(P)) < 0: P[:, -1] = -P[:, -1] # Find K1, K2 so that U = K1.A.K2, with K being product of single-qubit unitaries K1 = transform_to_magic_basis(Up @ P @ np.diag(np.exp(1j * d))) K2 = transform_to_magic_basis(P.T) K1l, K1r, phase_l = decompose_two_qubit_product_gate(K1) K2l, K2r, phase_r = decompose_two_qubit_product_gate(K2) global_phase += phase_l + phase_r K1l = K1l.copy() # Flip into Weyl chamber if cs[0] > pi2: cs[0] -= 3 * pi2 K1l = K1l.dot(_ipy) K1r = K1r.dot(_ipy) global_phase += pi2 if cs[1] > pi2: cs[1] -= 3 * pi2 K1l = K1l.dot(_ipx) K1r = K1r.dot(_ipx) global_phase += pi2 conjs = 0 if cs[0] > pi4: cs[0] = pi2 - cs[0] K1l = K1l.dot(_ipy) K2r = _ipy.dot(K2r) conjs += 1 global_phase -= pi2 if cs[1] > pi4: cs[1] = pi2 - cs[1] K1l = K1l.dot(_ipx) K2r = _ipx.dot(K2r) conjs += 1 global_phase += pi2 if conjs == 1: global_phase -= pi if cs[2] > pi2: cs[2] -= 3 * pi2 K1l = K1l.dot(_ipz) K1r = K1r.dot(_ipz) global_phase += pi2 if conjs == 1: global_phase -= pi if conjs == 1: cs[2] = pi2 - cs[2] K1l = K1l.dot(_ipz) K2r = _ipz.dot(K2r) global_phase += pi2 if cs[2] > pi4: cs[2] -= pi2 K1l = K1l.dot(_ipz) K1r = K1r.dot(_ipz) global_phase -= pi2 a, b, c = cs[1], cs[0], cs[2] return global_phase, (a, b, c), K1l, K1r, K2l, K2r from qiskit.circuit import Parameter class ParamIter: def __iter__(self): self.index = 0 return self def __next__(self): x = self.index self.index += 1 return Parameter(f"p{x}") # print(next(myiter)) # print(next(myiter)) from clonk.utils.riswap_gates.riswap import RiSwapGate """ Efficient compiler consturction of parameterized circuits https://qiskit.org/documentation/tutorials/circuits_advanced/01_advanced_circuits.html """ def template_circuit(param_list, base=None): myiter = iter(ParamIter()) if base is None: qc = QuantumCircuit(2) qc.u(*[next(myiter) for _ in range(3)], 0) qc.u(*[next(myiter) for _ in range(3)], 1) else: qc = base.copy() for param in param_list: qc.append(RiSwapGate(1 / param), [0, 1]) qc.u(*[next(myiter) for _ in range(3)], 0) qc.u(*[next(myiter) for _ in range(3)], 1) return qc qc = template_circuit([2]) qc.draw() from qiskit.quantum_info import random_unitary, Operator from qiskit import QuantumCircuit target_qc = QuantumCircuit(2) target_qc.append(random_unitary(dims=(2, 2)), [0, 1]) global_phase, (a, b, c), K1l, K1r, K2l, K2r = KAKDecomp(Operator(target_qc).data) target_coordinates = (a, b, c) print(target_coordinates) def unitary_distance_function(A, B): # return (1 - np.abs(np.sum(np.multiply(B,np.conj(np.transpose(A))))) / 4) # return (1 - (np.abs(np.sum(np.multiply(B,np.conj(A)))))**2+4 / 20) # quantum volume paper return 1 - np.abs(np.sum(np.multiply(B, np.conj(A)))) / 4 %matplotlib inline from scipy.optimize import minimize def sample(param_list, N=1000): # iter = [] current_best = [] nuop_distance = [] # minimum_qc = None min_distance = None modified_template = None for template_index in range(0, len(param_list)): modified_params = param_list[: 1 + template_index] template_qc = template_circuit(modified_params, base=modified_template) initial_guess = np.random.random(len(template_qc.parameters)) * 2 * np.pi # qc = template_circuit(modified_params, base=modified_template) def min_fun(x): temp_qc = qc.assign_parameters( {parameter: i for parameter, i in zip(qc.parameters, x)} ) _, (a, b, c), _, _, _, _ = KAKDecomp(Operator(temp_qc).data) temp_coordinates = (a, b, c) return np.linalg.norm( np.array(target_coordinates) - np.array(temp_coordinates) ) min_result = minimize(fun=min_fun, x0=initial_guess) # # # for _ in range(N): # qc = template_circuit(modified_params, base=modified_template) # parameters = qc.parameters # temp_qc = qc.assign_parameters({parameter:np.random.random()*2*np.pi for parameter in parameters}) # global_phase, (a, b, c), K1l, K1r, K2l, K2r = KAKDecomp(Operator(temp_qc).data) # temp_coordinates = (a,b,c) # temp_dist = np.linalg.norm(np.array(target_coordinates)-np.array(temp_coordinates)) # if min_distance is None or temp_dist < min_distance: # minimum_qc = temp_qc # min_distance = temp_dist # # # current_best.append(min_distance) # nuop_distance.append(unitary_distance_function(Operator(minimum_qc).data, Operator(target_qc).data)) # # # modified_template = template_qc.assign_parameters({parameter:i for parameter,i in zip(template_qc.parameters,min_result.x)}) min_distance = min_result.fun print(min_distance) modified_template = template_qc.assign_parameters( {parameter: i for parameter, i in zip(template_qc.parameters, min_result.x)} ) # import matplotlib.pyplot as plt # plt.plot(range(len(current_best)), current_best, label="coords") # plt.plot(range(len(current_best)), nuop_distance, label="nuop") # plt.yscale('log') return modified_template, min_result.fun minimum_qc, min_distance = sample([2, 4, 8]) print(min_distance) minimum_qc.draw(output="mpl") %matplotlib inline from scipy.optimize import minimize def sample(param_list, N=1000): # iter = [] current_best = [] nuop_distance = [] # minimum_qc = None min_distance = None modified_template = None for template_index in range(0, len(param_list)): modified_params = param_list[template_index : 1 + template_index] template_qc = template_circuit(modified_params, base=modified_template) initial_guess = np.random.random(len(template_qc.parameters)) * 2 * np.pi # qc = template_circuit(modified_params, base=modified_template) def min_fun(x): temp_qc = qc.assign_parameters( {parameter: i for parameter, i in zip(qc.parameters, x)} ) _, (a, b, c), _, _, _, _ = KAKDecomp(Operator(temp_qc).data) temp_coordinates = (a, b, c) return np.linalg.norm( np.array(target_coordinates) - np.array(temp_coordinates) ) min_result = minimize(fun=min_fun, x0=initial_guess) # # # for _ in range(N): # qc = template_circuit(modified_params, base=modified_template) # parameters = qc.parameters # temp_qc = qc.assign_parameters({parameter:np.random.random()*2*np.pi for parameter in parameters}) # global_phase, (a, b, c), K1l, K1r, K2l, K2r = KAKDecomp(Operator(temp_qc).data) # temp_coordinates = (a,b,c) # temp_dist = np.linalg.norm(np.array(target_coordinates)-np.array(temp_coordinates)) # if min_distance is None or temp_dist < min_distance: # minimum_qc = temp_qc # min_distance = temp_dist # # # current_best.append(min_distance) # nuop_distance.append(unitary_distance_function(Operator(minimum_qc).data, Operator(target_qc).data)) # # modified_template = template_qc.assign_parameters( {parameter: i for parameter, i in zip(template_qc.parameters, min_result.x)} ) min_distance = min_result.fun print(min_distance) modified_template = template_qc.assign_parameters( {parameter: i for parameter, i in zip(template_qc.parameters, min_result.x)} ) # import matplotlib.pyplot as plt # plt.plot(range(len(current_best)), current_best, label="coords") # plt.plot(range(len(current_best)), nuop_distance, label="nuop") # plt.yscale('log') return modified_template, min_result.fun minimum_qc, min_distance = sample([2, 2, 2]) print(min_distance) minimum_qc.draw(output="mpl") def sample(param_list, N=1000): # want to characterize the vectors from 2,2, template qc = template_circuit(param_list[:1]) temp_qc = qc.assign_parameters( {parameter: np.random.random() * 2 * np.pi for parameter in qc.parameters} ) global_phase, (a, b, c), K1l, K1r, K2l, K2r = KAKDecomp(Operator(temp_qc).data) starting_coordinates = (a, b, c) list_coordinates = [] for _ in range(N): qc = template_circuit(param_list) parameters = qc.parameters temp_qc = qc.assign_parameters( {parameter: np.random.random() * 2 * np.pi for parameter in parameters} ) global_phase, (a, b, c), K1l, K1r, K2l, K2r = KAKDecomp(Operator(temp_qc).data) temp_coordinates = (a, b, c) list_coordinates.append(temp_coordinates) c1, c2, c3 = weylchamber.c1c2c3(gate) w.add_point(c1, c2, c3) temp_vector = np.array(temp_coordinates) - np.array(starting_coordinates) # print(temp_vector) return list_coordinates w = WeylChamber() list_coordinates = sample(param_list=[3, 2]) w.plot() # print(list_coordinates) import scipy.spatial as ss import numpy as np hull = ss.ConvexHull(list_coordinates) print("volume inside points is: ", hull.volume) import numpy as np import qutip import matplotlib import matplotlib.pylab as plt import weylchamber from weylchamber.visualize import WeylChamber WeylChamber().plot() IDENTITY = qutip.identity([2, 2]) CNOT = qutip.qip.operations.cnot() CPHASE = qutip.qip.operations.cphase(np.pi) BGATE = qutip.qip.operations.berkeley() iSWAP = qutip.qip.operations.iswap() sqrtISWAP = qutip.qip.operations.sqrtiswap() sqrtSWAP = qutip.qip.operations.sqrtswap() MGATE = weylchamber.canonical_gate(3 / 4, 1 / 4, 0) w = WeylChamber() list_of_gates = [ ("Identity", IDENTITY), ("CNOT", CNOT), ("CPHASE", CPHASE), ("BGATE", BGATE), ("iSWAP", iSWAP), ("sqrtISWAP", sqrtISWAP), ("sqrtSWAP", sqrtSWAP), ("MGATE", MGATE), ] print("Weyl Chamber Coordinates") print("----------------------------------") for name, gate in list_of_gates: c1, c2, c3 = weylchamber.c1c2c3(gate) print("%10s: \t%.2fπ %.2fπ %.2fπ" % (name, c1, c2, c3)) w.add_point(c1, c2, c3) w.plot() w.scatter( *zip( *[ weylchamber.c1c2c3(qutip.qip.operations.cphase(phase)) for phase in np.linspace(0, 2 * np.pi, 20) ] ) ) w.plot() print("Local Invariants") print("----------------------------------") for name, gate in list_of_gates: g1, g2, g3 = weylchamber.g1g2g3(gate) print("%10s: \t%5.2f %5.2f %5.2f" % (name, g1, g2, g3))
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A module for visualizing device coupling maps.""" import math from typing import List import numpy as np from qiskit.exceptions import MissingOptionalLibraryError, QiskitError from qiskit.providers.backend import BackendV2 from qiskit.tools.visualization import HAS_MATPLOTLIB, VisualizationError from qiskit.visualization.utils import matplotlib_close_if_inline def plot_gate_map( backend, figsize=None, plot_directed=False, label_qubits=True, qubit_size=None, line_width=4, font_size=None, qubit_color=None, qubit_labels=None, line_color=None, font_color="w", ax=None, filename=None, qubit_coordinates=None, ): """Plots the gate map of a device. Args: backend (BaseBackend): The backend instance that will be used to plot the device gate map. figsize (tuple): Output figure size (wxh) in inches. plot_directed (bool): Plot directed coupling map. label_qubits (bool): Label the qubits. qubit_size (float): Size of qubit marker. line_width (float): Width of lines. font_size (int): Font size of qubit labels. qubit_color (list): A list of colors for the qubits qubit_labels (list): A list of qubit labels line_color (list): A list of colors for each line from coupling_map. font_color (str): The font color for the qubit labels. ax (Axes): A Matplotlib axes instance. filename (str): file path to save image to. Returns: Figure: A Matplotlib figure instance. Raises: QiskitError: if tried to pass a simulator, or if the backend is None, but one of num_qubits, mpl_data, or cmap is None. MissingOptionalLibraryError: if matplotlib not installed. Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: from qiskit import QuantumCircuit, execute, IBMQ from qiskit.visualization import plot_gate_map %matplotlib inline provider = IBMQ.load_account() accountProvider = IBMQ.get_provider(hub='ibm-q') backend = accountProvider.get_backend('ibmq_vigo') plot_gate_map(backend) """ if not HAS_MATPLOTLIB: raise MissingOptionalLibraryError( libname="Matplotlib", name="plot_gate_map", pip_install="pip install matplotlib", ) if isinstance(backend, BackendV2): pass elif backend.configuration().simulator: raise QiskitError("Requires a device backend, not simulator.") qubit_coordinates_map = {} qubit_coordinates_map[1] = [[0, 0]] qubit_coordinates_map[5] = [[1, 0], [0, 1], [1, 1], [1, 2], [2, 1]] qubit_coordinates_map[7] = [[0, 0], [0, 1], [0, 2], [1, 1], [2, 0], [2, 1], [2, 2]] qubit_coordinates_map[20] = [ [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4], ] qubit_coordinates_map[15] = [ [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 7], [1, 6], [1, 5], [1, 4], [1, 3], [1, 2], [1, 1], [1, 0], ] qubit_coordinates_map[16] = [ [1, 0], [1, 1], [2, 1], [3, 1], [1, 2], [3, 2], [0, 3], [1, 3], [3, 3], [4, 3], [1, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], ] qubit_coordinates_map[27] = [ [1, 0], [1, 1], [2, 1], [3, 1], [1, 2], [3, 2], [0, 3], [1, 3], [3, 3], [4, 3], [1, 4], [3, 4], [1, 5], [2, 5], [3, 5], [1, 6], [3, 6], [0, 7], [1, 7], [3, 7], [4, 7], [1, 8], [3, 8], [1, 9], [2, 9], [3, 9], [3, 10], ] qubit_coordinates_map[28] = [ [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 2], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [3, 0], [3, 4], [3, 8], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], ] qubit_coordinates_map[53] = [ [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [1, 2], [1, 6], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [3, 0], [3, 4], [3, 8], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [5, 2], [5, 6], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [7, 0], [7, 4], [7, 8], [8, 0], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [9, 2], [9, 6], ] qubit_coordinates_map[65] = [ [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [1, 0], [1, 4], [1, 8], [2, 0], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [3, 2], [3, 6], [3, 10], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [4, 9], [4, 10], [5, 0], [5, 4], [5, 8], [6, 0], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [6, 9], [6, 10], [7, 2], [7, 6], [7, 10], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8], [8, 9], [8, 10], ] if isinstance(backend, BackendV2): num_qubits = backend.num_qubits coupling_map = backend.plot_coupling_map else: config = backend.configuration() num_qubits = config.n_qubits coupling_map = config.coupling_map # don't reference dictionary if provided as a parameter if qubit_coordinates is None: qubit_coordinates = qubit_coordinates_map.get(num_qubits) # try to adjust num_qubits to match the next highest hardcoded grid size if qubit_coordinates is None: if any([num_qubits < key for key in qubit_coordinates_map.keys()]): num_qubits_roundup = max(qubit_coordinates_map.keys()) for key in qubit_coordinates_map.keys(): if key < num_qubits_roundup and key > num_qubits: num_qubits_roundup = key qubit_coordinates = qubit_coordinates_map.get(num_qubits_roundup) return plot_coupling_map( num_qubits, qubit_coordinates, coupling_map, figsize, plot_directed, label_qubits, qubit_size, line_width, font_size, qubit_color, qubit_labels, line_color, font_color, ax, filename, ) def plot_coupling_map( num_qubits: int, qubit_coordinates: List[List[int]], coupling_map: List[List[int]], figsize=None, plot_directed=False, label_qubits=True, qubit_size=None, line_width=4, font_size=None, qubit_color=None, qubit_labels=None, line_color=None, font_color="w", ax=None, filename=None, ): """Plots an arbitrary coupling map of qubits (embedded in a plane). Args: num_qubits (int): The number of qubits defined and plotted. qubit_coordinates (List[List[int]]): A list of two-element lists, with entries of each nested list being the planar coordinates in a 0-based square grid where each qubit is located. coupling_map (List[List[int]]): A list of two-element lists, with entries of each nested list being the qubit numbers of the bonds to be plotted. figsize (tuple): Output figure size (wxh) in inches. plot_directed (bool): Plot directed coupling map. label_qubits (bool): Label the qubits. qubit_size (float): Size of qubit marker. line_width (float): Width of lines. font_size (int): Font size of qubit labels. qubit_color (list): A list of colors for the qubits qubit_labels (list): A list of qubit labels line_color (list): A list of colors for each line from coupling_map. font_color (str): The font color for the qubit labels. ax (Axes): A Matplotlib axes instance. filename (str): file path to save image to. Returns: Figure: A Matplotlib figure instance. Raises: MissingOptionalLibraryError: if matplotlib not installed. QiskitError: If length of qubit labels does not match number of qubits. Example: .. jupyter-execute:: from qiskit.visualization import plot_coupling_map %matplotlib inline num_qubits = 8 coupling_map = [[0, 1], [1, 2], [2, 3], [3, 5], [4, 5], [5, 6], [2, 4], [6, 7]] qubit_coordinates = [[0, 1], [1, 1], [1, 0], [1, 2], [2, 0], [2, 2], [2, 1], [3, 1]] plot_coupling_map(num_qubits, coupling_map, qubit_coordinates) """ if not HAS_MATPLOTLIB: raise MissingOptionalLibraryError( libname="Matplotlib", name="plot_coupling_map", pip_install="pip install matplotlib", ) import matplotlib.patches as mpatches import matplotlib.pyplot as plt input_axes = False if ax: input_axes = True if font_size is None: font_size = 12 if qubit_size is None: qubit_size = 24 if num_qubits > 20: qubit_size = 28 font_size = 10 if qubit_labels is None: qubit_labels = list(range(num_qubits)) else: if len(qubit_labels) != num_qubits: raise QiskitError("Length of qubit labels does not equal number of qubits.") if qubit_coordinates is not None: grid_data = qubit_coordinates else: if not input_axes: fig, ax = plt.subplots(figsize=(5, 5)) ax.axis("off") if filename: fig.savefig(filename) return fig x_max = max(d[1] for d in grid_data) y_max = max(d[0] for d in grid_data) max_dim = max(x_max, y_max) if figsize is None: if num_qubits == 1 or (x_max / max_dim > 0.33 and y_max / max_dim > 0.33): figsize = (5, 5) else: figsize = (9, 3) if ax is None: fig, ax = plt.subplots(figsize=figsize) ax.axis("off") # set coloring if qubit_color is None: qubit_color = ["#648fff"] * num_qubits if line_color is None: line_color = ["#648fff"] * len(coupling_map) if coupling_map else [] # Add lines for couplings if num_qubits != 1: for ind, edge in enumerate(coupling_map): is_symmetric = False if edge[::-1] in coupling_map: is_symmetric = True y_start = grid_data[edge[0]][0] x_start = grid_data[edge[0]][1] y_end = grid_data[edge[1]][0] x_end = grid_data[edge[1]][1] if is_symmetric: if y_start == y_end: x_end = (x_end - x_start) / 2 + x_start elif x_start == x_end: y_end = (y_end - y_start) / 2 + y_start else: x_end = (x_end - x_start) / 2 + x_start y_end = (y_end - y_start) / 2 + y_start ax.add_artist( plt.Line2D( [x_start, x_end], [-y_start, -y_end], color=line_color[ind], linewidth=line_width, zorder=0, ) ) if plot_directed: dx = x_end - x_start dy = y_end - y_start if is_symmetric: x_arrow = x_start + dx * 0.95 y_arrow = -y_start - dy * 0.95 dx_arrow = dx * 0.01 dy_arrow = -dy * 0.01 head_width = 0.15 else: x_arrow = x_start + dx * 0.5 y_arrow = -y_start - dy * 0.5 dx_arrow = dx * 0.2 dy_arrow = -dy * 0.2 head_width = 0.2 ax.add_patch( mpatches.FancyArrow( x_arrow, y_arrow, dx_arrow, dy_arrow, head_width=head_width, length_includes_head=True, edgecolor=None, linewidth=0, facecolor=line_color[ind], zorder=1, ) ) # Add circles for qubits for var, idx in enumerate(grid_data): # add check if num_qubits had been rounded up if var >= num_qubits: break _idx = [idx[1], -idx[0]] ax.add_artist( mpatches.Ellipse( _idx, qubit_size / 48, qubit_size / 48, # This is here so that the changes color=qubit_color[var], zorder=1, ) ) # to how qubits are plotted does if label_qubits: # not affect qubit size kwarg. ax.text( *_idx, s=qubit_labels[var], horizontalalignment="center", verticalalignment="center", color=font_color, size=font_size, weight="bold", ) ax.set_xlim([-1, x_max + 1]) ax.set_ylim([-(y_max + 1), 1]) ax.set_aspect("equal") if not input_axes: matplotlib_close_if_inline(fig) if filename: fig.savefig(filename) return fig return None def plot_circuit_layout(circuit, backend, view="virtual", qubit_coordinates=None): """Plot the layout of a circuit transpiled for a given target backend. Args: circuit (QuantumCircuit): Input quantum circuit. backend (BaseBackend): Target backend. view (str): Layout view: either 'virtual' or 'physical'. Returns: Figure: A matplotlib figure showing layout. Raises: QiskitError: Invalid view type given. VisualizationError: Circuit has no layout attribute. Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: import numpy as np from qiskit import QuantumCircuit, IBMQ, transpile from qiskit.visualization import plot_histogram, plot_gate_map, plot_circuit_layout from qiskit.tools.monitor import job_monitor import matplotlib.pyplot as plt %matplotlib inline IBMQ.load_account() ghz = QuantumCircuit(3, 3) ghz.h(0) for idx in range(1,3): ghz.cx(0,idx) ghz.measure(range(3), range(3)) provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_vigo') new_circ_lv3 = transpile(ghz, backend=backend, optimization_level=3) plot_circuit_layout(new_circ_lv3, backend) """ if circuit._layout is None: raise QiskitError("Circuit has no layout. Perhaps it has not been transpiled.") if isinstance(backend, BackendV2): num_qubits = backend.num_qubits else: num_qubits = backend.configuration().n_qubits qubits = [] qubit_labels = [None] * num_qubits bit_locations = { bit: {"register": register, "index": index} for register in circuit._layout.get_registers() for index, bit in enumerate(register) } for index, qubit in enumerate(circuit._layout.get_virtual_bits()): if qubit not in bit_locations: bit_locations[qubit] = {"register": None, "index": index} if view == "virtual": for key, val in circuit._layout.get_virtual_bits().items(): bit_register = bit_locations[key]["register"] if bit_register is None or bit_register.name != "ancilla": qubits.append(val) qubit_labels[val] = bit_locations[key]["index"] elif view == "physical": for key, val in circuit._layout.get_physical_bits().items(): bit_register = bit_locations[val]["register"] if bit_register is None or bit_register.name != "ancilla": qubits.append(key) qubit_labels[key] = key else: raise VisualizationError("Layout view must be 'virtual' or 'physical'.") qcolors = ["#648fff"] * num_qubits for k in qubits: qcolors[k] = "k" if isinstance(backend, BackendV2): cmap = backend.plot_coupling_map else: cmap = backend.configuration().coupling_map lcolors = ["#648fff"] * len(cmap) for idx, edge in enumerate(cmap): if edge[0] in qubits and edge[1] in qubits: lcolors[idx] = "k" fig = plot_gate_map( backend, qubit_color=qcolors, qubit_labels=qubit_labels, line_color=lcolors, qubit_coordinates=qubit_coordinates, ) return fig def plot_error_map(backend, figsize=(12, 9), show_title=True): """Plots the error map of a given backend. Args: backend (IBMQBackend): Given backend. figsize (tuple): Figure size in inches. show_title (bool): Show the title or not. Returns: Figure: A matplotlib figure showing error map. Raises: VisualizationError: Input is not IBMQ backend. VisualizationError: The backend does not provide gate errors for the 'sx' gate. MissingOptionalLibraryError: If seaborn is not installed Example: .. jupyter-execute:: :hide-code: :hide-output: from qiskit.test.ibmq_mock import mock_get_backend mock_get_backend('FakeVigo') .. jupyter-execute:: from qiskit import QuantumCircuit, execute, IBMQ from qiskit.visualization import plot_error_map %matplotlib inline IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_vigo') plot_error_map(backend) """ try: import seaborn as sns except ImportError as ex: raise MissingOptionalLibraryError( libname="seaborn", name="plot_error_map", pip_install="pip install seaborn", ) from ex if not HAS_MATPLOTLIB: raise MissingOptionalLibraryError( libname="Matplotlib", name="plot_error_map", pip_install="pip install matplotlib", ) import matplotlib import matplotlib.pyplot as plt from matplotlib import gridspec, ticker color_map = sns.cubehelix_palette(reverse=True, as_cmap=True) props = backend.properties().to_dict() config = backend.configuration().to_dict() num_qubits = config["n_qubits"] # sx error rates single_gate_errors = [0] * num_qubits for gate in props["gates"]: if gate["gate"] == "sx": _qubit = gate["qubits"][0] for param in gate["parameters"]: if param["name"] == "gate_error": single_gate_errors[_qubit] = param["value"] break else: raise VisualizationError( f"Backend '{backend}' did not supply an error for the 'sx' gate." ) # Convert to percent single_gate_errors = 100 * np.asarray(single_gate_errors) avg_1q_err = np.mean(single_gate_errors) single_norm = matplotlib.colors.Normalize( vmin=min(single_gate_errors), vmax=max(single_gate_errors) ) q_colors = [color_map(single_norm(err)) for err in single_gate_errors] cmap = config["coupling_map"] directed = False line_colors = [] if cmap: directed = False if num_qubits < 20: for edge in cmap: if [edge[1], edge[0]] not in cmap: directed = True break cx_errors = [] for line in cmap: for item in props["gates"]: if item["qubits"] == line: cx_errors.append(item["parameters"][0]["value"]) break else: continue # Convert to percent cx_errors = 100 * np.asarray(cx_errors) avg_cx_err = np.mean(cx_errors) cx_norm = matplotlib.colors.Normalize(vmin=min(cx_errors), vmax=max(cx_errors)) line_colors = [color_map(cx_norm(err)) for err in cx_errors] # Measurement errors read_err = [] for qubit in range(num_qubits): for item in props["qubits"][qubit]: if item["name"] == "readout_error": read_err.append(item["value"]) read_err = 100 * np.asarray(read_err) avg_read_err = np.mean(read_err) max_read_err = np.max(read_err) fig = plt.figure(figsize=figsize) gridspec.GridSpec(nrows=2, ncols=3) grid_spec = gridspec.GridSpec( 12, 12, height_ratios=[1] * 11 + [0.5], width_ratios=[2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2], ) left_ax = plt.subplot(grid_spec[2:10, :1]) main_ax = plt.subplot(grid_spec[:11, 1:11]) right_ax = plt.subplot(grid_spec[2:10, 11:]) bleft_ax = plt.subplot(grid_spec[-1, :5]) if cmap: bright_ax = plt.subplot(grid_spec[-1, 7:]) qubit_size = 28 if num_qubits <= 5: qubit_size = 20 plot_gate_map( backend, qubit_color=q_colors, line_color=line_colors, qubit_size=qubit_size, line_width=5, plot_directed=directed, ax=main_ax, ) main_ax.axis("off") main_ax.set_aspect(1) if cmap: single_cb = matplotlib.colorbar.ColorbarBase( bleft_ax, cmap=color_map, norm=single_norm, orientation="horizontal" ) tick_locator = ticker.MaxNLocator(nbins=5) single_cb.locator = tick_locator single_cb.update_ticks() single_cb.update_ticks() bleft_ax.set_title(f"H error rate (%) [Avg. = {round(avg_1q_err, 3)}]") if cmap is None: bleft_ax.axis("off") bleft_ax.set_title(f"H error rate (%) = {round(avg_1q_err, 3)}") if cmap: cx_cb = matplotlib.colorbar.ColorbarBase( bright_ax, cmap=color_map, norm=cx_norm, orientation="horizontal" ) tick_locator = ticker.MaxNLocator(nbins=5) cx_cb.locator = tick_locator cx_cb.update_ticks() bright_ax.set_title(f"CNOT error rate (%) [Avg. = {round(avg_cx_err, 3)}]") if num_qubits < 10: num_left = num_qubits num_right = 0 else: num_left = math.ceil(num_qubits / 2) num_right = num_qubits - num_left left_ax.barh(range(num_left), read_err[:num_left], align="center", color="#DDBBBA") left_ax.axvline(avg_read_err, linestyle="--", color="#212121") left_ax.set_yticks(range(num_left)) left_ax.set_xticks([0, round(avg_read_err, 2), round(max_read_err, 2)]) left_ax.set_yticklabels([str(kk) for kk in range(num_left)], fontsize=12) left_ax.invert_yaxis() left_ax.set_title("Readout Error (%)", fontsize=12) for spine in left_ax.spines.values(): spine.set_visible(False) if num_right: right_ax.barh( range(num_left, num_qubits), read_err[num_left:], align="center", color="#DDBBBA", ) right_ax.axvline(avg_read_err, linestyle="--", color="#212121") right_ax.set_yticks(range(num_left, num_qubits)) right_ax.set_xticks([0, round(avg_read_err, 2), round(max_read_err, 2)]) right_ax.set_yticklabels( [str(kk) for kk in range(num_left, num_qubits)], fontsize=12 ) right_ax.invert_yaxis() right_ax.invert_xaxis() right_ax.yaxis.set_label_position("right") right_ax.yaxis.tick_right() right_ax.set_title("Readout Error (%)", fontsize=12) else: right_ax.axis("off") for spine in right_ax.spines.values(): spine.set_visible(False) if show_title: fig.suptitle(f"{backend.name()} Error Map", fontsize=24, y=0.9) matplotlib_close_if_inline(fig) return fig
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
# from cirq import cphase import numpy as np import qiskit.circuit.library.standard_gates as g import qiskit.circuit.quantumcircuit as qc from qiskit.circuit.equivalence import EquivalenceLibrary from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary from qiskit.circuit.library.standard_gates.equivalence_library import ( StandardEquivalenceLibrary, ) SessionEquivalenceLibrary = EquivalenceLibrary(base=StandardEquivalenceLibrary) # https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/circuit/library/standard_gates/equivalence_library.py from qiskit.quantum_info.operators import Operator circuit = qc.QuantumCircuit(2, name="rootswap") cx = Operator( [ [1, 0, 0, 0], [0, 0.5 * (1 + 1j), 0.5 * (1 - 1j), 0], [0, 0.5 * (1 - 1j), 0.5 * (1 + 1j), 0], [0, 0, 0, 1], ] ) circuit.unitary(cx, [0, 1]) rootSwap = circuit.to_gate() # define rootiswap circuit = qc.QuantumCircuit(2, name="rootiswap") cx = Operator( [ [1, 0, 0, 0], [0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0], [0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0], [0, 0, 0, 1], ] ) circuit.unitary(cx, [0, 1]) rootiSwap = circuit.to_gate() def iswap(alpha): return np.matrix( [ [1, 0, 0, 0], [0, np.cos(np.pi * alpha / 2), 1j * np.sin(np.pi * alpha / 2), 0], [0, 1j * np.sin(np.pi * alpha / 2), np.cos(np.pi * alpha / 2), 0], [0, 0, 0, 1], ] ) # class rootiswap_gate(qe.UnitaryGate): # def __init__(self): # super().__init__( # data=np.array( # [ # [1, 0, 0, 0], # [0, 1 / np.sqrt(2), 1j / np.sqrt(2), 0], # [0, 1j / np.sqrt(2), 1 / np.sqrt(2), 0], # [0, 0, 0, 1], # ] # ), # label=r"rootiswap", # ) # SWAP out of rootSWAP _rootSwapEquiv = qc.QuantumCircuit(2) _rootSwapEquiv.append(rootSwap, [0, 1]) _rootSwapEquiv.append(rootSwap, [0, 1]) SessionEquivalenceLibrary.add_equivalence(g.SwapGate(), _rootSwapEquiv) # CX out of rootSWAP _cxEquiv = qc.QuantumCircuit(2) _cxEquiv.ry(np.pi / 2, 1) _cxEquiv.append(rootSwap, [0, 1]) _cxEquiv.z(0) _cxEquiv.append(rootSwap, [0, 1]) _cxEquiv.rz(-np.pi / 2, 0) _cxEquiv.rz(-np.pi / 2, 1) _cxEquiv.ry(-np.pi / 2, 1) SessionEquivalenceLibrary.add_equivalence(g.CXGate(), _cxEquiv) # rootSWAP out of CX _rootSwapEquiv = qc.QuantumCircuit(2) _rootSwapEquiv.cx(0, 1) _rootSwapEquiv.h(0) _rootSwapEquiv.rz(np.pi / 4, 0) _rootSwapEquiv.rz(-np.pi / 4, 1) _rootSwapEquiv.h(0) _rootSwapEquiv.h(1) _rootSwapEquiv.cx(0, 1) _rootSwapEquiv.h(0) _rootSwapEquiv.h(1) _rootSwapEquiv.rz(-np.pi / 4, 0) _rootSwapEquiv.h(0) _rootSwapEquiv.cx(0, 1) _rootSwapEquiv.rz(-np.pi / 2, 0) _rootSwapEquiv.rz(np.pi / 2, 1) SessionEquivalenceLibrary.add_equivalence(rootSwap, _rootSwapEquiv) # add decomp rule for CZ out of Cphase _czEquiv = qc.QuantumCircuit(2) _czEquiv.append(g.CPhaseGate(np.pi), [0, 1]) SessionEquivalenceLibrary.add_equivalence(g.CZGate(), _czEquiv)
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
import sys sys.path.append("../..") from qiskit.quantum_info.random import random_unitary, random_clifford from qiskit import QuantumCircuit from clonk.utils.transpiler_passes.pass_manager_v2 import level_0_pass_manager from clonk.backend_utils import FakeAllToAll from clonk.utils.riswap_gates.riswap import RiSwapGate from clonk.utils.transpiler_passes.weyl_decompose import RootiSwapWeylDecomposition from qiskit.transpiler.passes import CountOps from qiskit.transpiler import PassManager from qiskit.circuit.library import CXGate N = 2000 basis_gate = RiSwapGate(0.5) pm0 = PassManager() pm0.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm0.append(CountOps()) res = 0 for _ in range(N): qc = QuantumCircuit(2) qc.append(random_clifford(2), [0, 1]) # random_unitary(dim=4) pm0.run(qc) res += pm0.property_set["count_ops"]["riswap"] print(res / N) N = 2000 basis_gate = CXGate() pm0 = PassManager() pm0.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm0.append(CountOps()) res = 0 for _ in range(N): qc = QuantumCircuit(2) qc.append(random_clifford(2), [0, 1]) # random_unitary(dim=4) pm0.run(qc) res += ( pm0.property_set["count_ops"]["cx"] if "cx" in pm0.property_set["count_ops"].keys() else 0 ) print(res / N) from qiskit.circuit.library import CPhaseGate import numpy as np basis_gate = CXGate() pm0 = PassManager() pm0.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm0.append(CountOps()) qc = QuantumCircuit(2) qc.append(CPhaseGate(np.pi / 2), [0, 1]) # random_unitary(dim=4) transp = pm0.run(qc) transp.draw(output="mpl") from qiskit import transpile transp = transpile(qc, basis_gates=["rz", "sx", "cx"], optimization_level=3) print(transp.draw(output="latex_source")) from qiskit.circuit.library import CPhaseGate import numpy as np basis_gate = RiSwapGate(0.5) pm0 = PassManager() pm0.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm0.append(CountOps()) qc = QuantumCircuit(2) qc.append(CPhaseGate(np.pi / 2), [0, 1]) # random_unitary(dim=4) transp = pm0.run(qc) print(transp.draw(output="latex"))
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
%reload_ext autoreload %autoreload 2 import sys sys.path.append("../..") from clonk.backend_utils import FakeHatlab backend_hatlab = FakeHatlab(dimension=1, router_as_qubits=False) from clonk.utils.transpiler_passes import level_0_pass_manager pm_hypercube = level_0_pass_manager( backend_hatlab, basis_gate="riswap", routing="basic", decompose_swaps=False, decompose_1q=False, ) from qiskit import QuantumCircuit circuit = QuantumCircuit(20) circuit.cx(1, 4) circuit.cx(3, 2) circuit.cx(6, 8) # circuit.draw() transp = pm_hypercube.run(circuit) transp.draw(output="mpl") from qiskit.converters import circuit_to_dag from qiskit.visualization import dag_drawer dag = circuit_to_dag(transp) dag_drawer(dag)
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
from typing import Optional from qiskit.circuit.gate import Gate from qiskit.circuit.parameterexpression import ParameterValueType import numpy as np class RiSwapGate(Gate): r"""RiSWAP gate. **Circuit Symbol:** .. parsed-literal:: q_0: ─⨂─ R(alpha) q_1: ─⨂─ """ def __init__(self, alpha: ParameterValueType, label: Optional[str] = None): """Create new iSwap gate.""" super().__init__("riswap", 2, [alpha], label=label) def __array__(self, dtype=None): """Return a numpy.array for the RiSWAP gate.""" alpha = self.params[0] return np.array( [ [1, 0, 0, 0], [0, np.cos(np.pi * alpha / 2), 1j * np.sin(np.pi * alpha / 2), 0], [0, 1j * np.sin(np.pi * alpha / 2), np.cos(np.pi * alpha / 2), 0], [0, 0, 0, 1], ], dtype=dtype, ) # from Qiskits two_qubit_decomp #FIXME moving functions around still this won't need to be copied once SQiSwap inside of that same pass import cmath from qiskit.quantum_info.synthesis.two_qubit_decompose import * import scipy.linalg as la _ipx = np.array([[0, 1j], [1j, 0]], dtype=complex) _ipy = np.array([[0, 1], [-1, 0]], dtype=complex) _ipz = np.array([[1j, 0], [0, -1j]], dtype=complex) _id = np.array([[1, 0], [0, 1]], dtype=complex) def KAKDecomp(unitary_matrix, *, fidelity=(1.0 - 1.0e-9)): """Perform the Weyl chamber decomposition, and optionally choose a specialized subclass. The flip into the Weyl Chamber is described in B. Kraus and J. I. Cirac, Phys. Rev. A 63, 062309 (2001). FIXME: There's a cleaner-seeming method based on choosing branch cuts carefully, in Andrew M. Childs, Henry L. Haselgrove, and Michael A. Nielsen, Phys. Rev. A 68, 052311, but I wasn't able to get that to work. The overall decomposition scheme is taken from Drury and Love, arXiv:0806.4015 [quant-ph]. """ pi = np.pi pi2 = np.pi / 2 pi4 = np.pi / 4 # Make U be in SU(4) U = np.array(unitary_matrix, dtype=complex, copy=True) detU = la.det(U) U *= detU ** (-0.25) global_phase = cmath.phase(detU) / 4 Up = transform_to_magic_basis(U, reverse=True) M2 = Up.T.dot(Up) # M2 is a symmetric complex matrix. We need to decompose it as M2 = P D P^T where # P ∈ SO(4), D is diagonal with unit-magnitude elements. # # We can't use raw `eig` directly because it isn't guaranteed to give us real or othogonal # eigenvectors. Instead, since `M2` is complex-symmetric, # M2 = A + iB # for real-symmetric `A` and `B`, and as # M2^+ @ M2 = A^2 + B^2 + i [A, B] = 1 # we must have `A` and `B` commute, and consequently they are simultaneously diagonalizable. # Mixing them together _should_ account for any degeneracy problems, but it's not # guaranteed, so we repeat it a little bit. The fixed seed is to make failures # deterministic; the value is not important. state = np.random.default_rng(2020) for _ in range(100): # FIXME: this randomized algorithm is horrendous M2real = state.normal() * M2.real + state.normal() * M2.imag _, P = np.linalg.eigh(M2real) D = P.T.dot(M2).dot(P).diagonal() if np.allclose(P.dot(np.diag(D)).dot(P.T), M2, rtol=0, atol=1.0e-13): break else: raise ValueError d = -np.angle(D) / 2 d[3] = -d[0] - d[1] - d[2] cs = np.mod((d[:3] + d[3]) / 2, 2 * np.pi) # Reorder the eigenvalues to get in the Weyl chamber cstemp = np.mod(cs, pi2) np.minimum(cstemp, pi2 - cstemp, cstemp) order = np.argsort(cstemp)[[1, 2, 0]] cs = cs[order] d[:3] = d[order] P[:, :3] = P[:, order] # Fix the sign of P to be in SO(4) if np.real(la.det(P)) < 0: P[:, -1] = -P[:, -1] # Find K1, K2 so that U = K1.A.K2, with K being product of single-qubit unitaries K1 = transform_to_magic_basis(Up @ P @ np.diag(np.exp(1j * d))) K2 = transform_to_magic_basis(P.T) K1l, K1r, phase_l = decompose_two_qubit_product_gate(K1) K2l, K2r, phase_r = decompose_two_qubit_product_gate(K2) global_phase += phase_l + phase_r K1l = K1l.copy() # Flip into Weyl chamber if cs[0] > pi2: cs[0] -= 3 * pi2 K1l = K1l.dot(_ipy) K1r = K1r.dot(_ipy) global_phase += pi2 if cs[1] > pi2: cs[1] -= 3 * pi2 K1l = K1l.dot(_ipx) K1r = K1r.dot(_ipx) global_phase += pi2 conjs = 0 if cs[0] > pi4: cs[0] = pi2 - cs[0] K1l = K1l.dot(_ipy) K2r = _ipy.dot(K2r) conjs += 1 global_phase -= pi2 if cs[1] > pi4: cs[1] = pi2 - cs[1] K1l = K1l.dot(_ipx) K2r = _ipx.dot(K2r) conjs += 1 global_phase += pi2 if conjs == 1: global_phase -= pi if cs[2] > pi2: cs[2] -= 3 * pi2 K1l = K1l.dot(_ipz) K1r = K1r.dot(_ipz) global_phase += pi2 if conjs == 1: global_phase -= pi if conjs == 1: cs[2] = pi2 - cs[2] K1l = K1l.dot(_ipz) K2r = _ipz.dot(K2r) global_phase += pi2 if cs[2] > pi4: cs[2] -= pi2 K1l = K1l.dot(_ipz) K1r = K1r.dot(_ipz) global_phase -= pi2 a, b, c = cs[1], cs[0], cs[2] return global_phase, (a, b, c), K1l, K1r, K2l, K2r # Reference: https://arxiv.org/pdf/2105.06074.pdf from qiskit.circuit.library import RZGate, RXGate, RYGate, IGate from qiskit.extensions.unitary import UnitaryGate from qiskit import QuantumCircuit from qiskit.quantum_info import Operator # from clonk.utils.riswap_gates.riswap import RiSwapGate def decomp(U): """Decompose U into single qubit gates and the SQiSW gates""" qc = QuantumCircuit(2) _, (x, y, z), A1, A2, B1, B2 = KAKDecomp(U) if np.abs(z) <= x - y: C1, C2 = interleavingSingleQubitRotations(x, y, z) V = RiSwapGate(0.5).to_matrix() @ np.kron(C1, C2) @ RiSwapGate(0.5).to_matrix() _, (x, y, z), D1, D2, E1, E2 = KAKDecomp(V) qc.append(UnitaryGate(np.matrix(E1).H @ B1), [1]) qc.append(UnitaryGate(np.matrix(E2).H @ B2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(C1), [1]) qc.append(UnitaryGate(C2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(A1 @ np.matrix(D1).H), [1]) qc.append(UnitaryGate(A2 @ np.matrix(D2).H), [0]) else: (x, y, z), F1, F2, G1, G2, H1, H2 = canonicalize(x, y, z) C1, C2 = interleavingSingleQubitRotations(x, y, z) V = RiSwapGate(0.5).to_matrix() @ np.kron(C1, C2) @ RiSwapGate(0.5).to_matrix() _, (x, y, z), D1, D2, E1, E2 = KAKDecomp(V) qc.append(UnitaryGate(H1 @ B1), [1]) qc.append(UnitaryGate(H2 @ B2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(np.matrix(E1).H @ G1), [1]) qc.append(UnitaryGate(np.matrix(E2).H @ G2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(C1), [1]) qc.append(UnitaryGate(C2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(A1 @ F1 @ np.matrix(D1).H), [1]) qc.append(UnitaryGate(A2 @ F2 @ np.matrix(D2).H), [0]) return qc def interleavingSingleQubitRotations(x, y, z): """Output the single qubit rotations given the interaction coefficients (x,y,z) \in W' when sandiwched by two SQiSW gates""" C = np.sin(x + y - z) * np.sin(x - y + z) * np.sin(-x - y - z) * np.sin(-x + y + z) alpha = np.arccos(np.cos(2 * x) - np.cos(2 * y) + np.cos(2 * z) + 2 * np.sqrt(C)) beta = np.arccos(np.cos(2 * x) - np.cos(2 * y) + np.cos(2 * z) - 2 * np.sqrt(C)) _num = 4 * (np.cos(x) ** 2) * (np.cos(z) ** 2) * (np.cos(y) ** 2) _den = _num + np.cos(2 * x) + np.cos(2 * y) * np.cos(2 * z) gamma = np.arccos(np.sign(z) * np.sqrt(_num / _den)) return ( RZGate(gamma).to_matrix() @ RXGate(alpha).to_matrix() @ RZGate(gamma).to_matrix(), RXGate(beta).to_matrix(), ) def canonicalize(x, y, z): """Decompose an arbitrary gate into one SQISW and one L(x,y',z) where (x',y',z') \in W' and output the coefficients (x',y',z') and the interleaving single qubit rotations""" A1 = IGate().to_matrix() A2 = IGate().to_matrix() B1 = RYGate(-np.pi / 2).to_matrix() B2 = RYGate(np.pi / 2).to_matrix() C1 = RYGate(np.pi / 2).to_matrix() C2 = RYGate(-np.pi / 2).to_matrix() s = np.sign(z) z = np.abs(z) if x > np.pi / 8: y = y - np.pi / 8 z = z - np.pi / 8 B1 = RZGate(np.pi / 2).to_matrix() @ B1 B2 = RZGate(-np.pi / 2).to_matrix() @ B2 C1 = C1 @ RZGate(-np.pi / 2).to_matrix() C2 = C2 @ RZGate(np.pi / 2).to_matrix() else: x = x + np.pi / 8 z = z - np.pi / 8 if np.abs(y) < np.abs(z): # XXX typo in alibaba here (?) z = -z A1 = RXGate(np.pi / 2).to_matrix() A2 = RXGate(-np.pi / 2).to_matrix() B1 = RXGate(-np.pi / 2).to_matrix() @ B1 B2 = RXGate(np.pi / 2).to_matrix() @ B2 if s < 0: z = -z A1 = RZGate(np.pi).to_matrix() @ A1 @ RZGate(np.pi).to_matrix() B1 = RZGate(np.pi).to_matrix() @ B1 @ RZGate(np.pi).to_matrix() C1 = RZGate(np.pi).to_matrix() @ C1 @ RZGate(np.pi).to_matrix() return (x, y, z), A1, A2, B1, B2, C1, C2 # qc = QuantumCircuit(2) # qc.swap(0,1) # new_qc = decomp(Operator(qc).data) # Operator(new_qc).equiv(qc) new_qc.decompose().draw(output="mpl") from qiskit.transpiler import PassManager pm = PassManager() from qiskit.transpiler.passes import ( BasisTranslator, UnrollCustomDefinitions, Optimize1qGates, Optimize1qGatesDecomposition, Optimize1qGatesSimpleCommutation, ) from qiskit.transpiler import PassManager from qiskit.circuit.equivalence_library import StandardEquivalenceLibrary as _sel from elim_small_ import ElimSmallRZ pass_ = [ UnrollCustomDefinitions(_sel, ["u3", "riswap"]), Optimize1qGatesDecomposition(basis=["rz", "sx", "riswap"]), Optimize1qGatesDecomposition(basis=["rz", "sx", "x", "riswap"]), ] pm = PassManager(pass_) new_circ = pm.run(new_qc) new_circ.draw(output="mpl") Operator(new_circ).equiv(CXGate()) import sys sys.path.append("../..") # qc.draw(output='mpl') from qiskit import transpile b = transpile(qc, basis_gates=basis) b.draw(output="mpl") from qiskit.circuit.library.basis_change import QFT from qiskit import QuantumCircuit qc = QuantumCircuit(2) qc = QFT(4).decompose() # qc.cz(0,1) from clonk.utils.riswap_gates.riswap import RiSwapGate from qiskit.circuit.library.standard_gates import CXGate basis = ["u3", "cx"] basis_gate = CXGate() # basis = ["u3", "riswap"] # basis_gate = RiSwapGate(0.5) from clonk.utils.riswap_gates.equivalence_library import ( SessionEquivalenceLibrary as _sel, ) from qiskit.transpiler import PassManager from qiskit.transpiler.passes import ( Collect2qBlocks, ConsolidateBlocks, ResourceEstimation, ) from clonk.utils.transpiler_passes.weyl_decompose import RootiSwapWeylDecomposition pm = PassManager() # pm.append(BasisTranslator(equivalence_library=_sel, target_basis=basis)) pm.append(Collect2qBlocks()) pm.append(ConsolidateBlocks(kak_basis_gate=basis_gate, force_consolidate=True)) pm.append(RootiSwapWeylDecomposition(basis_gate=basis_gate)) pm.append(ResourceEstimation()) a = pm.run(qc) print(pm.property_set["count_ops"]) a.draw(output="mpl")
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
import numpy as np from scipy.linalg import expm from qiskit.circuit.library import * S = expm( -1j * np.pi * (XGate().to_matrix() + YGate().to_matrix() + ZGate().to_matrix()) / np.sqrt(33) ) from qiskit.extensions.unitary import UnitaryGate from qiskit import QuantumCircuit S_gate = UnitaryGate(S) qc = QuantumCircuit(1) qc.append(S_gate, [0]) qc.draw(output="mpl") from qiskit.transpiler.passes import ( BasisTranslator, UnrollCustomDefinitions, Optimize1qGates, ) from qiskit.transpiler import PassManager from qiskit.circuit.equivalence_library import StandardEquivalenceLibrary as _sel pass_ = [UnrollCustomDefinitions(_sel, ["u3"]), BasisTranslator(_sel, ["rz", "sx"])] pm = PassManager(pass_) new_circ = pm.run(qc) new_circ.draw(output="mpl") # verify correctness from qiskit.quantum_info.operators import Operator Operator(new_circ).equiv(qc) from qiskit.quantum_info.synthesis.one_qubit_decompose import OneQubitEulerDecomposer decomposer = OneQubitEulerDecomposer("ZSXX") euler_circ = decomposer(S) euler_circ.draw(output="mpl") # verify correctness Operator(new_circ).equiv(qc) from qiskit.quantum_info.synthesis.one_qubit_decompose import OneQubitEulerDecomposer decomposer = OneQubitEulerDecomposer("ZXZ") euler_decomp = decomposer(S) euler_decomp.draw(output="mpl") alpha, gamma, delta = [gate[0].params[0] for gate in euler_decomp] new_circ2 = QuantumCircuit(1) new_circ2.rz(alpha - np.pi / 2, 0) new_circ2.sx(0) new_circ2.rz(np.pi - gamma, 0) new_circ2.sx(0) new_circ2.rz(delta - np.pi / 2, 0) new_circ2.draw(output="mpl") # verify correctness Operator(new_circ).equiv(qc)
https://github.com/Pitt-JonesLab/clonk_transpilation
Pitt-JonesLab
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Weyl decomposition of two-qubit gates in terms of echoed cross-resonance gates.""" import cmath import numpy as np import scipy.linalg as la from qiskit import QuantumCircuit from qiskit.circuit.library import IGate, RXGate, RYGate, RZGate from qiskit.converters import circuit_to_dag from qiskit.dagcircuit import DAGCircuit from qiskit.extensions.unitary import UnitaryGate from qiskit.quantum_info.synthesis.two_qubit_decompose import * from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler.exceptions import TranspilerError from clonk.utils.qiskit_patch.two_qubit_decompose import TwoQubitBasisDecomposer from clonk.utils.riswap_gates.equivalence_library import SessionEquivalenceLibrary # from qiskit.circuit.library.standard_gates import * from clonk.utils.riswap_gates.riswap import RiSwapGate, fSim _sel = SessionEquivalenceLibrary class RootiSwapWeylDecomposition(TransformationPass): """Rewrite two-qubit gates using the Weyl decomposition. This transpiler pass rewrites two-qubit gates in terms of root iswap gates according to the Weyl decomposition. A two-qubit gate will be replaced with at most 3 root i swap gates. """ def __init__(self, basis_gate=False): """RootiSwapWeylDecomposition pass. Args: instruction_schedule_map (InstructionScheduleMap): the mapping from circuit :class:`~.circuit.Instruction` names and arguments to :class:`.Schedule`\\ s. """ super().__init__() # self.requires = [ # BasisTranslator(_sel, ["u3", "cu3", "cp", "swap", "riswap", "id"]) # ] # self.decompose_swaps = decompose_swaps self.basis_gate = basis_gate # @staticmethod # def _improper_orthogonal_decomp(x, y, z): # alpha = np.arccos( # np.cos(2 * z) - np.cos(2 * y) + np.sqrt((np.cos(4 * z) + np.cos(4 * y)) / 2) # ) # beta = np.arccos( # np.cos(2 * z) - np.cos(2 * y) - np.sqrt((np.cos(4 * z) + np.cos(4 * y)) / 2) # ) # gamma = 0 # psi = -np.arccos(np.sqrt((1 + np.tan(y - z)) / 2)) # phi = np.arccos(np.sqrt((1 + np.tan(y + z)) / 2)) # def_Lxyz = QuantumCircuit(2) # # ISwap # if np.isclose(x, y) and np.isclose(z, 0): # def_Lxyz.append(RiSwapGate(0.5), [0, 1]) # def_Lxyz.rz(2 * x, 0) # def_Lxyz.rz(-2 * x + np.pi, 1) # def_Lxyz.append(RiSwapGate(0.5), [0, 1]) # def_Lxyz.rz(-np.pi, 1) # return def_Lxyz # # CPhase # if np.isclose(y, 0) and np.isclose(z, 0): # def_Lxyz.rz(np.arcsin(np.tan(x)), 1) # def_Lxyz.rx(-np.pi / 2, 1) # def_Lxyz.append(RiSwapGate(0.5), [0, 1]) # def_Lxyz.z(1) # def_Lxyz.ry(2 * np.arcsin(np.sqrt(2) * np.sin(x)), 1) # def_Lxyz.append(RiSwapGate(0.5), [0, 1]) # def_Lxyz.rx(-np.pi / 2, 1) # def_Lxyz.rz(np.arcsin(np.tan(x)) - np.pi, 1) # return def_Lxyz # # Canonicalized SWAP # elif np.isclose(x, np.pi / 4) and y + np.abs(z) <= np.pi / 4: # def_Lxyz.rx(phi + psi, 0) # def_Lxyz.rz(np.pi / 2, 1) # def_Lxyz.rx(phi - psi, 1) # def_Lxyz.append(RiSwapGate(0.5), [0, 1]) # def_Lxyz.rx(alpha, 0) # def_Lxyz.rx(beta, 1) # def_Lxyz.append(RiSwapGate(0.5), [0, 1]) # def_Lxyz.rx(phi + psi, 0) # def_Lxyz.rx(phi - psi, 1) # def_Lxyz.rz(-np.pi / 2, 1) # return def_Lxyz # else: # raise NotImplementedError # @staticmethod # def cphase_decomp(unitary): # # assuming unitary is a CPhase, is true per self.requires pass # # TODO function structure needs to be reoganized to use canonicalize function # x, y, z = weyl_coordinates(Operator(unitary).data) # def_CPhase = RootiSwapWeylDecomposition._improper_orthogonal_decomp(x, y, z) # return def_CPhase # # Note this is the way suggested by alibaba paper, but google has a swap->riswap(1/2) decomp rule that uses less 1Q gates # @staticmethod # def swap_decomp(unitary): # # FIXME: green, blue, maroon rules # def_swap = QuantumCircuit(2) # def_swap.z(0) # def_swap.rx(np.pi / 2, 0) # def_swap.z(0) # def_swap.rx(-np.pi / 2, 1) # x, y, z = weyl_coordinates(Operator(unitary).data) # def_swap += RootiSwapWeylDecomposition._improper_orthogonal_decomp( # x, y - np.pi / 4, z - np.pi / 4 # ) # def_swap.z(0) # def_swap.rx(-np.pi / 2, 0) # def_swap.rz(np.pi / 2, 0) # def_swap.ry(-np.pi / 2, 0) # def_swap.z(0) # def_swap.rx(np.pi / 2, 1) # def_swap.rz(-np.pi / 2, 1) # def_swap.ry(np.pi / 2, 1) # def_swap.append(RiSwapGate(0.5), [0, 1]) # def_swap.z(0) # def_swap.ry(np.pi / 2, 0) # def_swap.rz(-np.pi / 2, 0) # def_swap.z(0) # def_swap.ry(-np.pi / 2, 1) # def_swap.rz(np.pi / 2, 1) # return def_swap # reference: https://arxiv.org/pdf/2105.06074.pdf # from Qiskits two_qubit_decomp #FIXME moving functions around still this won't need to be copied once SQiSwap inside of that same pass def KAKDecomp(self, unitary_matrix, *, fidelity=(1.0 - 1.0e-9)): _ipx = np.array([[0, 1j], [1j, 0]], dtype=complex) _ipy = np.array([[0, 1], [-1, 0]], dtype=complex) _ipz = np.array([[1j, 0], [0, -1j]], dtype=complex) _id = np.array([[1, 0], [0, 1]], dtype=complex) """Perform the Weyl chamber decomposition, and optionally choose a specialized subclass. The flip into the Weyl Chamber is described in B. Kraus and J. I. Cirac, Phys. Rev. A 63, 062309 (2001). FIXME: There's a cleaner-seeming method based on choosing branch cuts carefully, in Andrew M. Childs, Henry L. Haselgrove, and Michael A. Nielsen, Phys. Rev. A 68, 052311, but I wasn't able to get that to work. The overall decomposition scheme is taken from Drury and Love, arXiv:0806.4015 [quant-ph]. """ pi = np.pi pi2 = np.pi / 2 pi4 = np.pi / 4 # Make U be in SU(4) U = np.array(unitary_matrix, dtype=complex, copy=True) detU = la.det(U) U *= detU ** (-0.25) global_phase = cmath.phase(detU) / 4 Up = transform_to_magic_basis(U, reverse=True) M2 = Up.T.dot(Up) # M2 is a symmetric complex matrix. We need to decompose it as M2 = P D P^T where # P ∈ SO(4), D is diagonal with unit-magnitude elements. # # We can't use raw `eig` directly because it isn't guaranteed to give us real or othogonal # eigenvectors. Instead, since `M2` is complex-symmetric, # M2 = A + iB # for real-symmetric `A` and `B`, and as # M2^+ @ M2 = A^2 + B^2 + i [A, B] = 1 # we must have `A` and `B` commute, and consequently they are simultaneously diagonalizable. # Mixing them together _should_ account for any degeneracy problems, but it's not # guaranteed, so we repeat it a little bit. The fixed seed is to make failures # deterministic; the value is not important. state = np.random.default_rng(2020) for _ in range(100): # FIXME: this randomized algorithm is horrendous M2real = state.normal() * M2.real + state.normal() * M2.imag _, P = np.linalg.eigh(M2real) D = P.T.dot(M2).dot(P).diagonal() if np.allclose(P.dot(np.diag(D)).dot(P.T), M2, rtol=0, atol=1.0e-13): break else: raise ValueError d = -np.angle(D) / 2 d[3] = -d[0] - d[1] - d[2] cs = np.mod((d[:3] + d[3]) / 2, 2 * np.pi) # Reorder the eigenvalues to get in the Weyl chamber cstemp = np.mod(cs, pi2) np.minimum(cstemp, pi2 - cstemp, cstemp) order = np.argsort(cstemp)[[1, 2, 0]] cs = cs[order] d[:3] = d[order] P[:, :3] = P[:, order] # Fix the sign of P to be in SO(4) if np.real(la.det(P)) < 0: P[:, -1] = -P[:, -1] # Find K1, K2 so that U = K1.A.K2, with K being product of single-qubit unitaries K1 = transform_to_magic_basis(Up @ P @ np.diag(np.exp(1j * d))) K2 = transform_to_magic_basis(P.T) K1l, K1r, phase_l = decompose_two_qubit_product_gate(K1) K2l, K2r, phase_r = decompose_two_qubit_product_gate(K2) global_phase += phase_l + phase_r K1l = K1l.copy() # Flip into Weyl chamber if cs[0] > pi2: cs[0] -= 3 * pi2 K1l = K1l.dot(_ipy) K1r = K1r.dot(_ipy) global_phase += pi2 if cs[1] > pi2: cs[1] -= 3 * pi2 K1l = K1l.dot(_ipx) K1r = K1r.dot(_ipx) global_phase += pi2 conjs = 0 if cs[0] > pi4: cs[0] = pi2 - cs[0] K1l = K1l.dot(_ipy) K2r = _ipy.dot(K2r) conjs += 1 global_phase -= pi2 if cs[1] > pi4: cs[1] = pi2 - cs[1] K1l = K1l.dot(_ipx) K2r = _ipx.dot(K2r) conjs += 1 global_phase += pi2 if conjs == 1: global_phase -= pi if cs[2] > pi2: cs[2] -= 3 * pi2 K1l = K1l.dot(_ipz) K1r = K1r.dot(_ipz) global_phase += pi2 if conjs == 1: global_phase -= pi if conjs == 1: cs[2] = pi2 - cs[2] K1l = K1l.dot(_ipz) K2r = _ipz.dot(K2r) global_phase += pi2 if cs[2] > pi4: cs[2] -= pi2 K1l = K1l.dot(_ipz) K1r = K1r.dot(_ipz) global_phase -= pi2 a, b, c = cs[1], cs[0], cs[2] return global_phase, (a, b, c), K1l, K1r, K2l, K2r # Reference: https://quantumai.google/reference/python/cirq/transformers/decompose_two_qubit_interaction_into_four_fsim_gates def SYCDecomposer(self, U): qc = QuantumCircuit(2) # totally ignorning 1Q gates because we are just using this method for counting 2Q gate durations qc.append(fSim(np.pi / 2, np.pi / 6), [0, 1]) qc.append(fSim(np.pi / 2, np.pi / 6), [0, 1]) qc.append(fSim(np.pi / 2, np.pi / 6), [0, 1]) qc.append(fSim(np.pi / 2, np.pi / 6), [0, 1]) return qc # Reference: https://arxiv.org/pdf/2105.06074.pdf def riswapWeylDecomp(self, U): """Decompose U into single qubit gates and the SQiSW gates.""" qc = QuantumCircuit(2) _, (x, y, z), A1, A2, B1, B2 = self.KAKDecomp(U) if np.abs(z) <= x - y: C1, C2 = self.interleavingSingleQubitRotations(x, y, z) V = ( RiSwapGate(0.5).to_matrix() @ np.kron(C1, C2) @ RiSwapGate(0.5).to_matrix() ) _, (x, y, z), D1, D2, E1, E2 = self.KAKDecomp(V) qc.append(UnitaryGate(np.matrix(E1).H @ B1), [1]) qc.append(UnitaryGate(np.matrix(E2).H @ B2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(C1), [1]) qc.append(UnitaryGate(C2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(A1 @ np.matrix(D1).H), [1]) qc.append(UnitaryGate(A2 @ np.matrix(D2).H), [0]) else: (x, y, z), F1, F2, G1, G2, H1, H2 = self.canonicalize(x, y, z) C1, C2 = self.interleavingSingleQubitRotations(x, y, z) V = ( RiSwapGate(0.5).to_matrix() @ np.kron(C1, C2) @ RiSwapGate(0.5).to_matrix() ) _, (x, y, z), D1, D2, E1, E2 = self.KAKDecomp(V) qc.append(UnitaryGate(H1 @ B1), [1]) qc.append(UnitaryGate(H2 @ B2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(np.matrix(E1).H @ G1), [1]) qc.append(UnitaryGate(np.matrix(E2).H @ G2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(C1), [1]) qc.append(UnitaryGate(C2), [0]) qc.append(RiSwapGate(0.5), [0, 1]) qc.append(UnitaryGate(A1 @ F1 @ np.matrix(D1).H), [1]) qc.append(UnitaryGate(A2 @ F2 @ np.matrix(D2).H), [0]) return qc.decompose() def interleavingSingleQubitRotations(self, x, y, z): """Output the single qubit rotations given the interaction coefficients (x,y,z) \in W' when sandiwched by two SQiSW gates.""" C = ( np.sin(x + y - z) * np.sin(x - y + z) * np.sin(-x - y - z) * np.sin(-x + y + z) ) alpha = np.arccos( np.cos(2 * x) - np.cos(2 * y) + np.cos(2 * z) + 2 * np.sqrt(C) ) beta = np.arccos(np.cos(2 * x) - np.cos(2 * y) + np.cos(2 * z) - 2 * np.sqrt(C)) _num = 4 * (np.cos(x) ** 2) * (np.cos(z) ** 2) * (np.cos(y) ** 2) _den = _num + np.cos(2 * x) + np.cos(2 * y) * np.cos(2 * z) gamma = np.arccos(np.sign(z) * np.sqrt(_num / _den)) return ( RZGate(gamma).to_matrix() @ RXGate(alpha).to_matrix() @ RZGate(gamma).to_matrix(), RXGate(beta).to_matrix(), ) def canonicalize(self, x, y, z): """Decompose an arbitrary gate into one SQISW and one L(x,y',z) where (x',y',z') \in W' and output the coefficients (x',y',z') and the interleaving single qubit rotations.""" A1 = IGate().to_matrix() A2 = IGate().to_matrix() B1 = RYGate(-np.pi / 2).to_matrix() B2 = RYGate(np.pi / 2).to_matrix() C1 = RYGate(np.pi / 2).to_matrix() C2 = RYGate(-np.pi / 2).to_matrix() s = np.sign(z) z = np.abs(z) if x > np.pi / 8: y = y - np.pi / 8 z = z - np.pi / 8 B1 = RZGate(np.pi / 2).to_matrix() @ B1 B2 = RZGate(-np.pi / 2).to_matrix() @ B2 C1 = C1 @ RZGate(-np.pi / 2).to_matrix() C2 = C2 @ RZGate(np.pi / 2).to_matrix() else: x = x + np.pi / 8 z = z - np.pi / 8 if np.abs(y) < np.abs(z): # XXX typo in alibaba here (?) z = -z A1 = RXGate(np.pi / 2).to_matrix() A2 = RXGate(-np.pi / 2).to_matrix() B1 = RXGate(-np.pi / 2).to_matrix() @ B1 B2 = RXGate(np.pi / 2).to_matrix() @ B2 if s < 0: z = -z A1 = RZGate(np.pi).to_matrix() @ A1 @ RZGate(np.pi).to_matrix() B1 = RZGate(np.pi).to_matrix() @ B1 @ RZGate(np.pi).to_matrix() C1 = RZGate(np.pi).to_matrix() @ C1 @ RZGate(np.pi).to_matrix() return (x, y, z), A1, A2, B1, B2, C1, C2 def run(self, dag: DAGCircuit): """Run the RootiSwapWeylDecomposition pass on `dag`. Rewrites two-qubit gates in an arbitrary circuit in terms of echoed cross-resonance gates by computing the Weyl decomposition of the corresponding unitary. Modifies the input dag. Args: dag (DAGCircuit): DAG to rewrite. Returns: DAGCircuit: The modified dag. Raises: TranspilerError: If the circuit cannot be rewritten. """ # pylint: disable=cyclic-import from qiskit.quantum_info import Operator if len(dag.qregs) > 1: raise TranspilerError( "RootiSwapWeylDecomposition expects a single qreg input DAG," f"but input DAG had qregs: {dag.qregs}." ) # trivial_layout = Layout.generate_trivial_layout(*dag.qregs.values()) if isinstance(self.basis_gate, RiSwapGate): self.decomposer = self.riswapWeylDecomp elif isinstance(self.basis_gate, fSim): self.decomposer = self.SYCDecomposer else: self.decomposer = TwoQubitBasisDecomposer(self.basis_gate) # add something which caches the result to SWAP so we don't have to do it every time swap_sub = None cnot_sub = None for node in dag.two_qubit_ops(): # denote 2 different decomp rules, either for swap gates, or for U gates in CPhase basis # if node.name == "riswap": # continue # FIXME need to convert unitary to a special unitary first to preserve 1Qs? unitary = Operator(node.op).data if node.name == "swap": if swap_sub is None: swap_sub = circuit_to_dag(self.decomposer(unitary)) dag.substitute_node_with_dag(node, swap_sub) continue if node.name == "cx": if cnot_sub is None: cnot_sub = circuit_to_dag(self.decomposer(unitary)) dag.substitute_node_with_dag(node, cnot_sub) continue # special_unitary = unitary dag_sub = circuit_to_dag(self.decomposer(unitary)) dag.substitute_node_with_dag(node, dag_sub) # if node.name == "swap": # if self.decompose_swaps: # dag_weyl = circuit_to_dag(self.swap_decomp(unitary)) # dag.substitute_node_with_dag(node, dag_weyl) # elif node.name == "cp": # dag_weyl = circuit_to_dag(self.cphase_decomp(unitary)) # dag.substitute_node_with_dag(node, dag_weyl) # # FIXME # # FIXME # # FIXME # # I need to double check the x,y,z coordinates -> why is CX and CPhase both (np.pi/4 ,0 ,0) # # that tells me I need to write CX in CPhase basis first to preverse 1Q gates # # but CU is 2 CPhase gates and yet still a (np.pi/4, 0, 0)- how do I preserve 1Q gates? # elif node.name == "cu3": # dag_weyl = circuit_to_dag(self.cphase_decomp(unitary)) # dag.substitute_node_with_dag(node, dag_weyl) return dag
https://github.com/annabsouza/qft-qiskit
annabsouza
import numpy as np from numpy import pi from qiskit import QuantumCircuit, transpile, assemble, Aer, IBMQ from qiskit.providers.ibmq import least_busy from qiskit.tools.monitor import job_monitor from qiskit.visualization import plot_histogram, plot_bloch_multivector qc = QuantumCircuit(3) #Qiskit's least significant bit has the lowest index (0), thus the circuit will be mirrored through the horizontal qc.h(2) #Next, we want to turn this an extra quarter turn if qubit 1 is in the state |1> qc.cp(pi/2, 1, 2) # CROT from qubit 1 to qubit 2 #And another eighth turn if the least significant qubit (0) is |1> qc.cp(pi/4, 0, 2) # CROT from qubit 2 to qubit 0 qc.h(1) qc.cp(pi/2, 0, 1) # CROT from qubit 0 to qubit 1 qc.h(0) qc.swap(0,2) qc.draw() def qft_rotations(circuit, n): if n == 0: # Exit function if circuit is empty return circuit n -= 1 # Indexes start from 0 circuit.h(n) # Apply the H-gate to the most significant qubit for qubit in range(n): # For each less significant qubit, we need to do a # smaller-angled controlled rotation: circuit.cp(pi/2**(n-qubit), qubit, n) # At the end of our function, we call the same function again on # the next qubits (we reduced n by one earlier in the function) qft_rotations(circuit, n) def swap_registers(circuit, n): for qubit in range(n//2): circuit.swap(qubit, n-qubit-1) return circuit def qft(circuit, n): """QFT on the first n qubits in circuit""" qft_rotations(circuit, n) swap_registers(circuit, n) return circuit qc1 = QuantumCircuit(4) qft(qc1,4) qc1.draw() # Create the circuit qc = QuantumCircuit(3) # Encode the state 5 qc.x(0) # since we need '1' at first qubit and at last qubit qc.x(2) qc.draw() # And let's check the qubit's states using the aer simulator: sim = Aer.get_backend("aer_simulator") qc_init = qc.copy() # making a copy so that we can work on the original one qc_init.save_statevector() statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) # we can see the state below as '101' qft(qc,3) qc.draw() qc.save_statevector() statevector = sim.run(qc).result().get_statevector() plot_bloch_multivector(statevector) def inverse_qft(circuit, n): """Does the inverse QFT on the first n qubits in circuit""" # First we create a QFT circuit of the correct size: qft_circ = qft(QuantumCircuit(n), n) # Then we take the inverse of this circuit invqft_circ = qft_circ.inverse() # And add it to the first n qubits in our existing circuit circuit.append(invqft_circ, circuit.qubits[:n]) return circuit.decompose() # .decompose() allows us to see the individual gates nqubits = 3 number = 5 qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) qc.p(number*pi/4,0) qc.p(number*pi/2,1) qc.p(number*pi,2) qc.draw() qc_init = qc.copy() qc_init.save_statevector() sim = Aer.get_backend("aer_simulator") statevector = sim.run(qc_init).result().get_statevector() plot_bloch_multivector(statevector) qc = inverse_qft(qc, nqubits) qc.measure_all() qc.draw() # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to nqubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= nqubits and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) shots = 2048 transpiled_qc = transpile(qc, backend, optimization_level=3) job = backend.run(transpiled_qc, shots=shots) job_monitor(job) counts = job.result().get_counts() plot_histogram(counts)
https://github.com/nunofernandes-plight/Qiskit_Textbook_Worstation
nunofernandes-plight
from qiskit import QuantumCircuit, execute, Aer from qiskit.visualization import plot_histogram, plot_bloch_vector from math import sqrt, pi qc = QuantumCircuit(1) # Create a quantum circuit with one qubit qc = QuantumCircuit(1) # Create a quantum circuit with one qubit initial_state = [0,1] # Define initial_state as |1> qc.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit qc.draw() # Let's view our circuit backend = Aer.get_backend('statevector_simulator') # Tell Qiskit how to simulate our circuit qc = QuantumCircuit(1) # Create a quantum circuit with one qubit initial_state = [0,1] # Define initial_state as |1> qc.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit result = execute(qc,backend).result() # Do the simulation, returning the result output_state = result.get_statevector() print(output_state) # Display the output state vector qc.measure_all() qc.draw() result = execute(qc,backend).result() counts = result.get_counts() plot_histogram(counts) initial_state = [1/sqrt(2), 1j/sqrt(2)] # Define state |q_0> qc = QuantumCircuit(1) # Must redefine qc qc.initialize(initial_state, 0) # Initialise the 0th qubit in the state `initial_state` state = execute(qc,backend).result().get_statevector() # Execute the circuit print(state) # Print the result results = execute(qc,backend).result().get_counts() plot_histogram(results) vector = [1,1] qc.initialize(vector, 0) qc = QuantumCircuit(1) # We are redefining qc initial_state = [0.+1.j/sqrt(2),1/sqrt(2)+0.j] qc.initialize(initial_state, 0) qc.draw() state = execute(qc, backend).result().get_statevector() print("Qubit State = " + str(state)) qc.measure_all() qc.draw() state = execute(qc, backend).result().get_statevector() print("State of Measured Qubit = " + str(state)) from qiskit_textbook.widgets import plot_bloch_vector_spherical coords = [pi/2,0,1] # [Theta, Phi, Radius] plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordinates import qiskit qiskit.__qiskit_version__
https://github.com/nunofernandes-plight/Qiskit_Textbook_Worstation
nunofernandes-plight
!pip install qiskit import qiskit import matplotlib as plt import numpy as np import pandas as pd import math from qiskit import( QuantumCircuit, execute, Aer) from qiskit.visualization import plot_histogram # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') # Create a Quantum Circuit acting on the q register circuit = QuantumCircuit(2, 2) # Add a H gate on qubit 0 circuit.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1 circuit.cx(0, 1) # Map the quantum measurement to the classical bits circuit.measure([0,1], [0,1]) # Execute the circuit on the qasm simulator job = execute(circuit, simulator, shots=1000) # Grab results from the job result = job.result() # Returns counts counts = result.get_counts(circuit) print("\nTotal count for 00 and 11 are:",counts) # Draw the circuit circuit.draw() !pip install ./qiskit-textbook-src from qiskit import (qiskit_texbook) from qiskit_textbook.widgets import binary_widget binary_widget(nbits=5) n = 10 n_q = n n_b = n qc_output = QuantumCircuit(n_q,n_b) for j in range(n): qc_output.measure(j,j) qc_output.draw() counts = execute(qc_output,Aer.get_backend('qasm_simulator')).result().get_counts() plot_histogram(counts) qc_encode = QuantumCircuit(n) qc_encode.x(9) qc_encode.draw() qc = qc_encode + qc_output qc.draw() counts = execute(qc,Aer.get_backend('qasm_simulator')).result().get_counts() plot_histogram(counts) qc_encode = QuantumCircuit(n) qc_encode.x(2) qc_encode.x(3) qc_encode.x(5) qc_encode.draw() qc_cnot = QuantumCircuit(2) qc_cnot.cx(0,1) qc_cnot.draw() qc = QuantumCircuit(2,2) qc.x(0) qc.cx(0,1) qc.measure(0,0) qc.measure(1,1) qc.draw() qc = QuantumCircuit(2,2) qc.x(1) qc.cx(1,0) qc.measure(0,0) qc.measure(1,1) qc.draw() qc = QuantumCircuit(2,2) qc.x(0) qc.cx(1,0) qc.measure(0,1) qc.measure(1,0) qc.draw() qc = QuantumCircuit(2,2) qc.x(1) qc.cx(0,1) qc.measure(1,0) qc.measure(0,1) qc.draw() qc = QuantumCircuit(2,2) qc.x(1) qc.cx(0,1) qc.measure(0,0) qc.measure(1,1) qc.draw() qc_half_adder = QuantumCircuit(4,2) # encode inputs in qubits 0 and 1 qc_half_adder.x(0) # For a=0, remove this line. For a=1, leave it. qc_half_adder.x(1) # For b=0, remove this line. For b=1, leave it. qc_half_adder.barrier() # use cnots to write the XOR of the inputs on qubit 2 qc_half_adder.cx(0,2) qc_half_adder.cx(1,2) qc_half_adder.barrier() # extract outputs qc_half_adder.measure(2,0) # extract XOR value qc_half_adder.measure(3,1) qc_half_adder.draw() qc_half_adder = QuantumCircuit(4,2) # encode inputs in qubits 0 and 1 qc_half_adder.x(0) # For a=0, remove the this line. For a=1, leave it. qc_half_adder.x(1) # For b=0, remove the this line. For b=1, leave it. qc_half_adder.barrier() # use cnots to write the XOR of the inputs on qubit 2 qc_half_adder.cx(0,2) qc_half_adder.cx(1,2) # use ccx to write the AND of the inputs on qubit 3 qc_half_adder.ccx(0,1,3) qc_half_adder.barrier() # extract outputs qc_half_adder.measure(2,0) # extract XOR value qc_half_adder.measure(3,1) # extract AND value qc_half_adder.draw() counts = execute(qc_half_adder,Aer.get_backend('qasm_simulator')).result().get_counts() plot_histogram(counts)
https://github.com/grossiM/Qiskit_workshop1019
grossiM
a= 1 + 1 a #print(a) a = 1 b = 0.5 a + b an_integer = 42 # Just an integer a_float = 0.1 # A non-integer number, up to a fixed precision a_boolean = True # A value that can be True or False a_string = '''just enclose text between two 's, or two "s, or do what we did for this string''' # Text none_of_the_above = None # The absence of any actual value or variable type a_list = [0,1,2,3] a_list = [ 42, 0.5, True, [0,1], None, 'Banana' ] a_list[0] a_tuple = ( 42, 0.5, True, [0,1], None, 'Banana' ) a_tuple[0] a_list[5] = 'apple' print(a_list) a_tuple[5] = 'apple' a_list.append( 3.14 ) print(a_list) a_dict = { 1:'This is the value, for the key 1', 'This is the key for a value 1':1, False:':)', (0,1):256 } a_dict['This is the key for a value 1'] a_dict['new key'] = 'new_value' for j in range(5): print(j) for j in a_list: print(j) for key in a_dict: value = a_dict[key] print('key =',key) print('value =',value) print() if 'strawberry' in a_list: print('We have a strawberry!') elif a_list[5]=='apple': print('We have an apple!') else: print('Not much fruit here!') import numpy numpy.sin( numpy.pi/2 ) import numpy as np np.sin( np.pi/2 ) from numpy import * sin( pi/2 ) def do_some_maths ( Input1, Input2 ): the_answer = Input1 + Input2 return the_answer x = do_some_maths(1,72) print(x) def add_sausages ( input_list ): if 'sausages' not in input_list: input_list.append('sausages') print('List before the function') print(a_list) add_sausages(a_list) # function called without an output print('\nList after the function') print(a_list) import random for j in range(5): print('* Results from sample',j+1) print('\n Random number from 0 to 1:', random.random() ) print("\n Random choice from our list:", random.choice( a_list ) ) print('\n')
https://github.com/grossiM/Qiskit_workshop1019
grossiM
a= 1 + 1 a #print(a) a = 1 b = 0.5 a + b an_integer = 42 # Just an integer a_float = 0.1 # A non-integer number, up to a fixed precision a_boolean = True # A value that can be True or False a_string = '''just enclose text between two 's, or two "s, or do what we did for this string''' # Text none_of_the_above = None # The absence of any actual value or variable type a_list = [0,1,2,3] a_list = [ 42, 0.5, True, [0,1], None, 'Banana' ] a_list[0] a_tuple = ( 42, 0.5, True, [0,1], None, 'Banana' ) a_tuple[0] a_list[5] = 'apple' print(a_list) a_tuple[5] = 'apple' a_list.append( 3.14 ) print(a_list) a_dict = { 1:'This is the value, for the key 1', 'This is the key for a value 1':1, False:':)', (0,1):256 } a_dict['This is the key for a value 1'] a_dict['new key'] = 'new_value' for j in range(5): print(j) for j in a_list: print(j) for key in a_dict: value = a_dict[key] print('key =',key) print('value =',value) print() if 'strawberry' in a_list: print('We have a strawberry!') elif a_list[5]=='apple': print('We have an apple!') else: print('Not much fruit here!') import numpy numpy.sin( numpy.pi/2 ) import numpy as np np.sin( np.pi/2 ) from numpy import * sin( pi/2 ) def do_some_maths ( Input1, Input2 ): the_answer = Input1 + Input2 return the_answer x = do_some_maths(1,72) print(x) def add_sausages ( input_list ): if 'sausages' not in input_list: input_list.append('sausages') print('List before the function') print(a_list) add_sausages(a_list) # function called without an output print('\nList after the function') print(a_list) import random for j in range(5): print('* Results from sample',j+1) print('\n Random number from 0 to 1:', random.random() ) print("\n Random choice from our list:", random.choice( a_list ) ) print('\n')
https://github.com/grossiM/Qiskit_workshop1019
grossiM
# initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram nQubits = 2 # number of physical qubits used to represent s s = 3 # the hidden integer # make sure that a can be represented with nqubits s = s % 2**(nQubits) # Creating registers # qubits for querying the oracle and finding the hidden integer qr = QuantumRegister(nQubits) # bits for recording the measurement on qr cr = ClassicalRegister(nQubits) bvCircuit = QuantumCircuit(qr, cr) barriers = True # Apply Hadamard gates before querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier if barriers: bvCircuit.barrier() # Apply the inner-product oracle for i in range(nQubits): if (s & (1 << i)): bvCircuit.z(qr[i]) else: bvCircuit.iden(qr[i]) # Apply barrier if barriers: bvCircuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier if barriers: bvCircuit.barrier() # Measurement bvCircuit.measure(qr, cr) bvCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(bvCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q')provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(bvCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results from the computation results = job.result() answer = results.get_counts() plot_histogram(answer) import qiskit qiskit.__qiskit_version__
https://github.com/grossiM/Qiskit_workshop1019
grossiM
import numpy as np from qiskit import * %matplotlib inline # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) #circ.draw() circ.draw(output='mpl') # Import Aer from qiskit import Aer # Run the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') # Create a Quantum Program for execution job = execute(circ, backend) result = job.result() outputstate = result.get_statevector(circ, decimals=3) print(outputstate) from qiskit.visualization import plot_state_city plot_state_city(outputstate) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() # Show the results print(result.get_unitary(circ, decimals=3)) # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3),range(3)) # The Qiskit circuit object supports composition using # the addition operator. qc = circ+meas #drawing the circuit qc.draw() # Use Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = execute(qc, backend_sim, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) from qiskit import IBMQ #IBMQ.save_account('APIKEY') IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') provider.backends() simulator_backend = provider.get_backend('ibmq_qasm_simulator') job_cloud = execute(qc, backend=simulator_backend) result_cloud = job_cloud.result() counts_cloud = result_cloud.get_counts(qc) plot_histogram(counts_cloud) #example of backend filtering, you can modify the filters or ask just for the least_busy device from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) #here we ask for the backend properties backend.configuration() from qiskit.tools.monitor import job_monitor job_exp = execute(qc, backend=backend) job_monitor(job_exp) result_exp = job_exp.result() counts_exp = result_exp.get_counts(qc) plot_histogram([counts_exp,counts], legend=['Device', 'Simulator']) #uncomment the line below in case you are not able to specify 'latex' in the draw method #!pip install pylatexenc #!pip install pillow from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import BasicAer qr0 = QuantumRegister(1,name='qb') # qb for "qubit", but the name is optional cr0 = ClassicalRegister(1,name='b') # b for "bit", but the name is optional qc0 = QuantumCircuit(qr0,cr0) qc0.draw(output='latex') from qiskit.tools.visualization import plot_bloch_vector import math theta = math.pi/2 # You can try to change the parameters theta and phi phi = math.pi/4 # to see how the vector moves on the sphere plot_bloch_vector([math.cos(phi)*math.sin(theta),math.sin(phi)*math.sin(theta),math.cos(theta)]) # Entries of the # input vector are # coordinates [x,y,z] qc0.measure(qr0,cr0) #Select the output method to use for drawing the circuit. Valid choices are text, latex, latex_source, or mpl. By default the ‘text’ drawer is used unless a user config file has an alternative backend set as the default. #If the output kwarg is set, that backend will always be used over the default in a user config file. qc0.draw('latex') #backend_sim = Aer.get_backend('qasm_simulator') already defined above job = execute(qc0, backend_sim, shots=1024) result = job.result() counts = result.get_counts() print(counts) qc1 = QuantumCircuit(qr0,cr0) qc1.x(0) # A X gate targeting the first (and only) qubit in register qr0 qc1.measure(qr0,cr0) qc1.draw(output='mpl') job1 = execute(qc1, backend_sim, shots=1024) result1 = job1.result() counts1 = result1.get_counts() print(counts1) from qiskit.tools.visualization import plot_bloch_multivector vec_backend = Aer.get_backend('statevector_simulator') result_vec0 = execute(qc0, vec_backend).result() result_vec1 = execute(qc1, vec_backend).result() psi0 = result_vec0.get_statevector() psi1 = result_vec1.get_statevector() plot_bloch_multivector(psi0) plot_bloch_multivector(psi1) qc2 = QuantumCircuit(qr0,cr0) qc2.h(0) qc2.measure(qr0,cr0) qc2.draw(output='mpl') job2 = execute(qc2, backend_sim, shots=1024) result2 = job2.result() counts2 = result2.get_counts() print(counts2) result_vec2 = execute(qc2, vec_backend).result() psi2 = result_vec2.get_statevector() plot_bloch_multivector(psi2) qc3 = QuantumCircuit(qr0,cr0) qc3.h(0) qc3.s(0) # Use sdg instead of s for the adjoint qc3.measure(qr0,cr0) qc3.draw(output='mpl') job3 = execute(qc3, backend_sim, shots=1024) result3 = job3.result() counts3 = result3.get_counts() print(counts3) result_vec3 = execute(qc3, vec_backend).result() psi3 = result_vec3.get_statevector() plot_bloch_multivector(psi3) qc4 = QuantumCircuit(qr0,cr0) qc4.h(0) qc4.t(0) # Use tdg instead of t for the adjoint qc4.measure(qr0,cr0) qc4.draw(output='mpl') job4 = execute(qc4, backend_sim, shots=1024) result4 = job4.result() counts4 = result4.get_counts() print(counts4) result_vec4 = execute(qc4, vec_backend).result() psi4 = result_vec4.get_statevector() plot_bloch_multivector(psi4) qc4b = QuantumCircuit(qr0) qc4b.tdg(0) qc4b.draw('mpl') backend_unit = BasicAer.get_backend('unitary_simulator') job = execute(qc4b, backend_unit) job.result().get_unitary(qc4b, decimals=3) lmbd = 1.2 # Change this value to rotate the output vector on the equator of the Bloch sphere qc5 = QuantumCircuit(qr0,cr0) qc5.h(0) qc5.u1(lmbd,0) qc5.measure(qr0,cr0) qc5.draw(output='mpl') result_vec5 = execute(qc5, vec_backend).result() psi5 = result_vec5.get_statevector() plot_bloch_multivector(psi5) qc6 = QuantumCircuit(qr0,cr0) qc6.u2(0,math.pi, 0) qc6.measure(qr0,cr0) result_vec6 = execute(qc6, vec_backend).result() psi6 = result_vec6.get_statevector() plot_bloch_multivector(psi6) theta = math.pi phi = math.pi lmb = math.pi qc7 = QuantumCircuit(qr0,cr0) qc7.u3(theta,phi, lmb, 0) qc7.measure(qr0,cr0) result_vec7 = execute(qc7, vec_backend).result() psi7 = result_vec7.get_statevector() plot_bloch_multivector(psi7) qr = QuantumRegister(2,name='qr') # we need a 2-qubit register now cr = ClassicalRegister(2,name='cr') cnot_example = QuantumCircuit(qr,cr) cnot_example.x(0) cnot_example.cx(0,1) # First entry is control, the second is the target cnot_example.measure(qr,cr) cnot_example.draw(output='mpl') job_cnot = execute(cnot_example, backend_sim, shots=1024) result_cnot = job_cnot.result() counts_cnot = result_cnot.get_counts() print(counts_cnot) cnot_reversed = QuantumCircuit(qr,cr) cnot_reversed.x(0) # This part uses cx(qr[1],qr[0]) but is equivalent to cx(qr[0],qr[1]) cnot_reversed.h(0) cnot_reversed.h(1) cnot_reversed.cx(1,0) cnot_reversed.h(0) cnot_reversed.h(1) # cnot_reversed.measure(qr,cr) cnot_reversed.draw(output='mpl') job_cnot_rev = execute(cnot_reversed, backend_sim, shots=1024) result_cnot_rev = job_cnot_rev.result() counts_cnot_rev = result_cnot_rev.get_counts() print(counts_cnot_rev) bell_phi_p = QuantumCircuit(qr,cr) bell_phi_p.h(0) bell_phi_p.cx(0,1) bell_phi_p.measure(qr,cr) bell_phi_p.draw(output='mpl') job_bell_phi_p = execute(bell_phi_p, backend_sim, shots=1024) result_bell_phi_p = job_bell_phi_p.result() counts_bell_phi_p = result_bell_phi_p.get_counts() print(counts_bell_phi_p) cz_example = QuantumCircuit(qr) cz_example.cz(0,1) cz_example.draw(output='mpl') job_cz = execute(cz_example, backend_unit) job_cz.result().get_unitary(cz_example, decimals=3) cz_from_cnot = QuantumCircuit(qr) #notice here a more verbose way of writing gates and assign them to qubits cz_from_cnot.h(qr[1]) cz_from_cnot.cx(qr[0],qr[1]) cz_from_cnot.h(qr[1]) cz_from_cnot.draw(output='mpl') swap_test = QuantumCircuit(qr) swap_test.swap(qr[0],qr[1]) swap_test.draw(output='mpl') swap_from_cnot = QuantumCircuit(qr) swap_from_cnot.cx(qr[0],qr[1]) swap_from_cnot.cx(qr[1],qr[0]) swap_from_cnot.cx(qr[0],qr[1]) swap_from_cnot.draw(output='mpl') qr_many = QuantumRegister(5) control_example = QuantumCircuit(qr_many) control_example.cy(qr_many[0],qr_many[1]) control_example.ch(qr_many[1],qr_many[2]) control_example.crz(0.2,qr_many[2],qr_many[3]) control_example.cu3(0.5, 0, 0, qr_many[3],qr_many[4]) control_example.draw(output='mpl') qrthree = QuantumRegister(3) toffoli_example = QuantumCircuit(qrthree) toffoli_example.ccx(0,1,2) toffoli_example.draw(output='mpl') toffoli_from_cnot = QuantumCircuit(qrthree) toffoli_from_cnot.h(qrthree[2]) toffoli_from_cnot.cx(qrthree[1],qrthree[2]) toffoli_from_cnot.tdg(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[2]) toffoli_from_cnot.t(qrthree[2]) toffoli_from_cnot.cx(qrthree[1],qrthree[2]) toffoli_from_cnot.tdg(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[2]) toffoli_from_cnot.tdg(qrthree[1]) toffoli_from_cnot.t(qrthree[2]) toffoli_from_cnot.h(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[1]) toffoli_from_cnot.tdg(qrthree[1]) toffoli_from_cnot.cx(qrthree[0],qrthree[1]) toffoli_from_cnot.s(qrthree[1]) toffoli_from_cnot.t(qrthree[0]) toffoli_from_cnot.draw(output='mpl') # Initializing a three-qubit quantum state import math desired_vector = [ 1 / math.sqrt(16) * complex(0, 1), 1 / math.sqrt(8) * complex(1, 0), 1 / math.sqrt(16) * complex(1, 1), 0, 0, 1 / math.sqrt(8) * complex(1, 2), 1 / math.sqrt(16) * complex(1, 0), 0] q = QuantumRegister(3) qc = QuantumCircuit(q) qc.initialize(desired_vector, [q[0],q[1],q[2]]) qc.draw(output='latex') backend = BasicAer.get_backend('statevector_simulator') job = execute(qc, backend) qc_state = job.result().get_statevector(qc) qc_state state_fidelity(desired_vector,qc_state)
https://github.com/grossiM/Qiskit_workshop1019
grossiM
# initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(2,name='qr') crsingle = ClassicalRegister(1) deutsch = QuantumCircuit(qr,crsingle) deutsch.x(qr[1]) deutsch.h(qr[1]) deutsch.draw(output='latex') deutsch.h(qr[0]) deutsch.draw(output='mpl') deutsch.cx(qr[0],qr[1]) deutsch.h(qr[0]) deutsch.measure(qr[0],crsingle[0]) deutsch.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(deutsch, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # set the length of the $n$-bit string. n = 2 # set the oracle, b for balanced, c for constant oracle = "b" # if the oracle is balanced, set the hidden bitstring, b if oracle == "b": b = 3 # np.random.randint(1,2**n) uncomment for a random value # if the oracle is constant, set c = 0 or 1 randomly. if oracle == "c": c = np.random.randint(2) # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) cr = ClassicalRegister(n) djCircuit = QuantumCircuit(qr, cr) barriers = True # Since all qubits are initialized to |0>, we need to flip the second register qubit to the the |1> state djCircuit.x(qr[n]) # Apply barrier if barriers: djCircuit.barrier() # Apply Hadamard gates to all qubits djCircuit.h(qr) # Apply barrier if barriers: djCircuit.barrier() # Query the oracle if oracle == "c": # if the oracle is constant, return c if c == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # otherwise, the oracle is balanced and it returns the inner product of the input with b (non-zero bitstring) for i in range(n): if (b & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier if barriers: djCircuit.barrier() # Apply Hadamard gates to the first register after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measure the first register for i in range(n): djCircuit.measure(qr[i], cr[i]) djCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(djCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits #IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(djCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results of the computation results = job.result() answer = results.get_counts() plot_histogram(answer) N = 4 qrQFT = QuantumRegister(N,'qftr') QFT = QuantumCircuit(qrQFT) for i in range(N): QFT.h(qrQFT[i]) for k in range(i+1,N): l = k-i+1 QFT.cu1(2*math.pi/(2**l),qrQFT[k],qrQFT[i]) QFT.draw(output='mpl') import qiskit qiskit.__qiskit_version__
https://github.com/grossiM/Qiskit_workshop1019
grossiM
# initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram nQubits = 2 # number of physical qubits used to represent s s = 3 # the hidden integer # make sure that a can be represented with nqubits s = s % 2**(nQubits) # Creating registers # qubits for querying the oracle and finding the hidden integer qr = QuantumRegister(nQubits) # bits for recording the measurement on qr cr = ClassicalRegister(nQubits) bvCircuit = QuantumCircuit(qr, cr) barriers = True # Apply Hadamard gates before querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier if barriers: bvCircuit.barrier() # Apply the inner-product oracle for i in range(nQubits): if (s & (1 << i)): bvCircuit.z(qr[i]) else: bvCircuit.iden(qr[i]) # Apply barrier if barriers: bvCircuit.barrier() #Apply Hadamard gates after querying the oracle for i in range(nQubits): bvCircuit.h(qr[i]) # Apply barrier if barriers: bvCircuit.barrier() # Measurement bvCircuit.measure(qr, cr) bvCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(bvCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(bvCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results from the computation results = job.result() answer = results.get_counts() plot_histogram(answer) import qiskit qiskit.__qiskit_version__
https://github.com/grossiM/Qiskit_workshop1019
grossiM
import numpy as np from qiskit import * %matplotlib inline # Create a Quantum Circuit acting on a quantum register of three qubits circ = QuantumCircuit(3) # Add a H gate on qubit 0, putting this qubit in superposition. circ.h(0) # Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting # the qubits in a Bell state. circ.cx(0, 1) # Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting # the qubits in a GHZ state. circ.cx(0, 2) #circ.draw() circ.draw(output='mpl') # Import Aer from qiskit import Aer # Run the quantum circuit on a statevector simulator backend backend = Aer.get_backend('statevector_simulator') # Create a Quantum Program for execution job = execute(circ, backend) result = job.result() outputstate = result.get_statevector(circ, decimals=3) print(outputstate) from qiskit.visualization import plot_state_city plot_state_city(outputstate) # Run the quantum circuit on a unitary simulator backend backend = Aer.get_backend('unitary_simulator') job = execute(circ, backend) result = job.result() # Show the results print(result.get_unitary(circ, decimals=3)) # Create a Quantum Circuit meas = QuantumCircuit(3, 3) meas.barrier(range(3)) # map the quantum measurement to the classical bits meas.measure(range(3),range(3)) # The Qiskit circuit object supports composition using # the addition operator. qc = circ+meas #drawing the circuit qc.draw() # Use Aer's qasm_simulator backend_sim = Aer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. job_sim = execute(qc, backend_sim, shots=1024) # Grab the results from the job. result_sim = job_sim.result() counts = result_sim.get_counts(qc) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) from qiskit import IBMQ #IBMQ.save_account('APIKEY') IBMQ.load_account() IBMQ.providers() provider = IBMQ.get_provider(group='open') provider.backends() simulator_backend = provider.get_backend('ibmq_qasm_simulator') job_cloud = execute(qc, backend=simulator_backend) result_cloud = job_cloud.result() counts_cloud = result_cloud.get_counts(qc) plot_histogram(counts_cloud) #example of backend filtering, you can modify the filters or ask just for the least_busy device from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) #here we ask for the backend properties backend.configuration() from qiskit.tools.monitor import job_monitor job_exp = execute(qc, backend=backend) job_monitor(job_exp) result_exp = job_exp.result() counts_exp = result_exp.get_counts(qc) plot_histogram([counts_exp,counts], legend=['Device', 'Simulator']) #uncomment the line below in case you are not able to specify 'latex' in the draw method #!pip install pylatexenc #!pip install pillow from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import BasicAer qr0 = QuantumRegister(1,name='qb') # qb for "qubit", but the name is optional cr0 = ClassicalRegister(1,name='b') # b for "bit", but the name is optional qc0 = QuantumCircuit(qr0,cr0) qc0.draw(output='latex') from qiskit.tools.visualization import plot_bloch_vector import math theta = math.pi/2 # You can try to change the parameters theta and phi phi = math.pi/4 # to see how the vector moves on the sphere plot_bloch_vector([math.cos(phi)*math.sin(theta),math.sin(phi)*math.sin(theta),math.cos(theta)]) # Entries of the # input vector are # coordinates [x,y,z] qc0.measure(qr0,cr0) #Select the output method to use for drawing the circuit. Valid choices are text, latex, latex_source, or mpl. By default the ‘text’ drawer is used unless a user config file has an alternative backend set as the default. #If the output kwarg is set, that backend will always be used over the default in a user config file. qc0.draw('latex') #backend_sim = Aer.get_backend('qasm_simulator') already defined above job = execute(qc0, backend_sim, shots=1024) result = job.result() counts = result.get_counts() print(counts) qc1 = QuantumCircuit(qr0,cr0) qc1.x(0) # A X gate targeting the first (and only) qubit in register qr0 qc1.measure(qr0,cr0) qc1.draw(output='mpl') job1 = execute(qc1, backend_sim, shots=1024) result1 = job1.result() counts1 = result1.get_counts() print(counts1) from qiskit.tools.visualization import plot_bloch_multivector vec_backend = Aer.get_backend('statevector_simulator') result_vec0 = execute(qc0, vec_backend).result() result_vec1 = execute(qc1, vec_backend).result() psi0 = result_vec0.get_statevector() psi1 = result_vec1.get_statevector() plot_bloch_multivector(psi0) plot_bloch_multivector(psi1) qc2 = QuantumCircuit(qr0,cr0) qc2.h(0) qc2.measure(qr0,cr0) qc2.draw(output='mpl') job2 = execute(qc2, backend_sim, shots=1024) result2 = job2.result() counts2 = result2.get_counts() print(counts2) result_vec2 = execute(qc2, vec_backend).result() psi2 = result_vec2.get_statevector() plot_bloch_multivector(psi2) qc3 = QuantumCircuit(qr0,cr0) qc3.h(0) qc3.s(0) # Use sdg instead of s for the adjoint qc3.measure(qr0,cr0) qc3.draw(output='mpl') job3 = execute(qc3, backend_sim, shots=1024) result3 = job3.result() counts3 = result3.get_counts() print(counts3) result_vec3 = execute(qc3, vec_backend).result() psi3 = result_vec3.get_statevector() plot_bloch_multivector(psi3) qc4 = QuantumCircuit(qr0,cr0) qc4.h(0) qc4.t(0) # Use tdg instead of t for the adjoint qc4.measure(qr0,cr0) qc4.draw(output='mpl') job4 = execute(qc4, backend_sim, shots=1024) result4 = job4.result() counts4 = result4.get_counts() print(counts4) result_vec4 = execute(qc4, vec_backend).result() psi4 = result_vec4.get_statevector() plot_bloch_multivector(psi4) qc4b = QuantumCircuit(qr0) qc4b.tdg(0) qc4b.draw('mpl') backend_unit = BasicAer.get_backend('unitary_simulator') job = execute(qc4b, backend_unit) job.result().get_unitary(qc4b, decimals=3) lmbd = 1.2 # Change this value to rotate the output vector on the equator of the Bloch sphere qc5 = QuantumCircuit(qr0,cr0) qc5.h(0) qc5.u1(lmbd,0) qc5.measure(qr0,cr0) qc5.draw(output='mpl') result_vec5 = execute(qc5, vec_backend).result() psi5 = result_vec5.get_statevector() plot_bloch_multivector(psi5) qc6 = QuantumCircuit(qr0,cr0) qc6.u2(0,math.pi, 0) qc6.measure(qr0,cr0) result_vec6 = execute(qc6, vec_backend).result() psi6 = result_vec6.get_statevector() plot_bloch_multivector(psi6) theta = math.pi phi = math.pi lmb = math.pi qc7 = QuantumCircuit(qr0,cr0) qc7.u3(theta,phi, lmb, 0) qc7.measure(qr0,cr0) result_vec7 = execute(qc7, vec_backend).result() psi7 = result_vec7.get_statevector() plot_bloch_multivector(psi7) qr = QuantumRegister(2,name='qr') # we need a 2-qubit register now cr = ClassicalRegister(2,name='cr') cnot_example = QuantumCircuit(qr,cr) cnot_example.x(0) cnot_example.cx(0,1) # First entry is control, the second is the target cnot_example.measure(qr,cr) cnot_example.draw(output='mpl') job_cnot = execute(cnot_example, backend_sim, shots=1024) result_cnot = job_cnot.result() counts_cnot = result_cnot.get_counts() print(counts_cnot) cnot_reversed = QuantumCircuit(qr,cr) cnot_reversed.x(0) # This part uses cx(qr[1],qr[0]) but is equivalent to cx(qr[0],qr[1]) cnot_reversed.h(0) cnot_reversed.h(1) cnot_reversed.cx(1,0) cnot_reversed.h(0) cnot_reversed.h(1) # cnot_reversed.measure(qr,cr) cnot_reversed.draw(output='mpl') job_cnot_rev = execute(cnot_reversed, backend_sim, shots=1024) result_cnot_rev = job_cnot_rev.result() counts_cnot_rev = result_cnot_rev.get_counts() print(counts_cnot_rev) bell_phi_p = QuantumCircuit(qr,cr) bell_phi_p.h(0) bell_phi_p.cx(0,1) bell_phi_p.measure(qr,cr) bell_phi_p.draw(output='mpl') job_bell_phi_p = execute(bell_phi_p, backend_sim, shots=1024) result_bell_phi_p = job_bell_phi_p.result() counts_bell_phi_p = result_bell_phi_p.get_counts() print(counts_bell_phi_p) cz_example = QuantumCircuit(qr) cz_example.cz(0,1) cz_example.draw(output='mpl') job_cz = execute(cz_example, backend_unit) job_cz.result().get_unitary(cz_example, decimals=3) cz_from_cnot = QuantumCircuit(qr) #notice here a more verbose way of writing gates and assign them to qubits cz_from_cnot.h(qr[1]) cz_from_cnot.cx(qr[0],qr[1]) cz_from_cnot.h(qr[1]) cz_from_cnot.draw(output='mpl') swap_test = QuantumCircuit(qr) swap_test.swap(qr[0],qr[1]) swap_test.draw(output='mpl') swap_from_cnot = QuantumCircuit(qr) swap_from_cnot.cx(qr[0],qr[1]) swap_from_cnot.cx(qr[1],qr[0]) swap_from_cnot.cx(qr[0],qr[1]) swap_from_cnot.draw(output='mpl') qr_many = QuantumRegister(5) control_example = QuantumCircuit(qr_many) control_example.cy(qr_many[0],qr_many[1]) control_example.ch(qr_many[1],qr_many[2]) control_example.crz(0.2,qr_many[2],qr_many[3]) control_example.cu3(0.5, 0, 0, qr_many[3],qr_many[4]) control_example.draw(output='mpl') qrthree = QuantumRegister(3) toffoli_example = QuantumCircuit(qrthree) toffoli_example.ccx(0,1,2) toffoli_example.draw(output='mpl') toffoli_from_cnot = QuantumCircuit(qrthree) toffoli_from_cnot.h(qrthree[2]) toffoli_from_cnot.cx(qrthree[1],qrthree[2]) toffoli_from_cnot.tdg(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[2]) toffoli_from_cnot.t(qrthree[2]) toffoli_from_cnot.cx(qrthree[1],qrthree[2]) toffoli_from_cnot.tdg(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[2]) toffoli_from_cnot.tdg(qrthree[1]) toffoli_from_cnot.t(qrthree[2]) toffoli_from_cnot.h(qrthree[2]) toffoli_from_cnot.cx(qrthree[0],qrthree[1]) toffoli_from_cnot.tdg(qrthree[1]) toffoli_from_cnot.cx(qrthree[0],qrthree[1]) toffoli_from_cnot.s(qrthree[1]) toffoli_from_cnot.t(qrthree[0]) toffoli_from_cnot.draw(output='mpl') # Initializing a three-qubit quantum state import math desired_vector = [ 1 / math.sqrt(16) * complex(0, 1), 1 / math.sqrt(8) * complex(1, 0), 1 / math.sqrt(16) * complex(1, 1), 0, 0, 1 / math.sqrt(8) * complex(1, 2), 1 / math.sqrt(16) * complex(1, 0), 0] q = QuantumRegister(3) qc = QuantumCircuit(q) qc.initialize(desired_vector, [q[0],q[1],q[2]]) qc.draw(output='latex') backend = BasicAer.get_backend('statevector_simulator') job = execute(qc, backend) qc_state = job.result().get_statevector(qc) qc_state state_fidelity(desired_vector,qc_state)
https://github.com/grossiM/Qiskit_workshop1019
grossiM
# initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(2,name='qr') crsingle = ClassicalRegister(1) deutsch = QuantumCircuit(qr,crsingle) deutsch.x(qr[1]) deutsch.h(qr[1]) deutsch.draw(output='latex') deutsch.h(qr[0]) deutsch.draw(output='mpl') deutsch.cx(qr[0],qr[1]) deutsch.h(qr[0]) deutsch.measure(qr[0],crsingle[0]) deutsch.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(deutsch, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # set the length of the $n$-bit string. n = 2 # set the oracle, b for balanced, c for constant oracle = "b" # if the oracle is balanced, set the hidden bitstring, b if oracle == "b": b = 3 # np.random.randint(1,2**n) uncomment for a random value # if the oracle is constant, set c = 0 or 1 randomly. if oracle == "c": c = np.random.randint(2) # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) cr = ClassicalRegister(n) djCircuit = QuantumCircuit(qr, cr) barriers = True # Since all qubits are initialized to |0>, we need to flip the second register qubit to the the |1> state djCircuit.x(qr[n]) # Apply barrier if barriers: djCircuit.barrier() # Apply Hadamard gates to all qubits djCircuit.h(qr) # Apply barrier if barriers: djCircuit.barrier() # Query the oracle if oracle == "c": # if the oracle is constant, return c if c == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # otherwise, the oracle is balanced and it returns the inner product of the input with b (non-zero bitstring) for i in range(n): if (b & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier if barriers: djCircuit.barrier() # Apply Hadamard gates to the first register after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measure the first register for i in range(n): djCircuit.measure(qr[i], cr[i]) djCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(djCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits #IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(djCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results of the computation results = job.result() answer = results.get_counts() plot_histogram(answer) N = 4 qrQFT = QuantumRegister(N,'qftr') QFT = QuantumCircuit(qrQFT) for i in range(N): QFT.h(qrQFT[i]) for k in range(i+1,N): l = k-i+1 QFT.cu1(2*math.pi/(2**l),qrQFT[k],qrQFT[i]) QFT.draw(output='mpl') import qiskit qiskit.__qiskit_version__
https://github.com/grossiM/Qiskit_workshop1019
grossiM
# initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(2,name='qr') crsingle = ClassicalRegister(1) deutsch = QuantumCircuit(qr,crsingle) deutsch.x(qr[1]) deutsch.h(qr[1]) deutsch.draw(output='latex') deutsch.h(qr[0]) deutsch.draw(output='mpl') deutsch.cx(qr[0],qr[1]) deutsch.h(qr[0]) deutsch.measure(qr[0],crsingle[0]) deutsch.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(deutsch, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # set the length of the $n$-bit string. n = 2 # set the oracle, b for balanced, c for constant oracle = "b" # if the oracle is balanced, set the hidden bitstring, b if oracle == "b": b = 3 # np.random.randint(1,2**n) uncomment for a random value # if the oracle is constant, set c = 0 or 1 randomly. if oracle == "c": c = np.random.randint(2) # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) cr = ClassicalRegister(n) djCircuit = QuantumCircuit(qr, cr) barriers = True # Since all qubits are initialized to |0>, we need to flip the second register qubit to the the |1> state djCircuit.x(qr[n]) # Apply barrier if barriers: djCircuit.barrier() # Apply Hadamard gates to all qubits djCircuit.h(qr) # Apply barrier if barriers: djCircuit.barrier() # Query the oracle if oracle == "c": # if the oracle is constant, return c if c == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # otherwise, the oracle is balanced and it returns the inner product of the input with b (non-zero bitstring) for i in range(n): if (b & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier if barriers: djCircuit.barrier() # Apply Hadamard gates to the first register after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measure the first register for i in range(n): djCircuit.measure(qr[i], cr[i]) djCircuit.draw(output='mpl') # use local simulator backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(djCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits #IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(djCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results of the computation results = job.result() answer = results.get_counts() plot_histogram(answer) N = 4 qrQFT = QuantumRegister(N,'qftr') QFT = QuantumCircuit(qrQFT) for i in range(N): QFT.h(qrQFT[i]) for k in range(i+1,N): l = k-i+1 QFT.cu1(2*math.pi/(2**l),qrQFT[k],qrQFT[i]) QFT.draw(output='mpl') import qiskit qiskit.__qiskit_version__
https://github.com/grossiM/Qiskit_workshop1019
grossiM
# qiskit packages from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import Aer, IBMQ, execute # visualization packages from qiskit.tools.visualization import plot_histogram, qx_color_scheme, plot_state_city, plot_bloch_multivector, plot_state_paulivec, plot_state_hinton, plot_state_qsphere backend = Aer.get_backend('qasm_simulator') # select the qasm simulator # to use a real processor uncomment the following lines: #IBMQ.load_accounts() #from qiskit.providers.ibmq import least_busy #backend = least_busy(IBMQ.backends(simulator=False)) #print("the best backend is " + backend.name()) # Create the registers q2 = QuantumRegister(2) c2 = ClassicalRegister(2) # Create the Bell's State bell = QuantumCircuit(q2, c2) bell.h(q2[0]) bell.cx(q2[0], q2[1]) # Measure the qubits in the standard base (Z) measureZZ = QuantumCircuit(q2, c2) measureZZ.measure(q2[0], c2[0]) measureZZ.measure(q2[1], c2[1]) bellZZ = bell+measureZZ # Measure the qubits in the superposition base (X) measureXX = QuantumCircuit(q2, c2) measureXX.h(q2) measureXX.measure(q2, c2) bellXX = bell+measureXX bellZZ.draw(output='mpl') circuits = [bellZZ,bellXX] job = execute(circuits, backend) result = job.result() #plot_histogram(result.get_counts(bellZZ)) legend = ['bellZZ', 'bellXX'] plot_histogram([result.get_counts(bellZZ), result.get_counts(bellXX)], legend=legend, sort='desc', figsize=(15,12), color=['orange', 'black'], bar_labels=False) # Create a circuit that measures the qubits in 0 and one that flips and measures them in 1: mixed1 = QuantumCircuit(q2, c2) mixed2 = QuantumCircuit(q2, c2) mixed2.x(q2) mixed1.measure(q2[0], c2[0]) mixed1.measure(q2[1], c2[1]) mixed2.measure(q2[0], c2[0]) mixed2.measure(q2[1], c2[1]) mixed1.draw(output='mpl') mixed2.draw(output='mpl') mixed_state = [mixed1,mixed2] job = execute(mixed_state, backend) result = job.result() counts1 = result.get_counts(mixed_state[0]) counts2 = result.get_counts(mixed_state[1]) from collections import Counter ground = Counter(counts1) excited = Counter(counts2) plot_histogram(ground+excited) backend = Aer.get_backend('') # select the appropriate backend # Create registers q2 = QuantumRegister(2) c2 = ClassicalRegister(2) # Create the Bell's State bell = QuantumCircuit(q2, c2) bell.h(q2[0]) bell.cx(q2[0], q2[1]) # Run the job to see the matrix that creates the entanglement circuit = bell job = execute(circuit, backend) result = job.result() print(result.get_unitary(bell, decimals=3)) backend = Aer.get_backend('') # select the appropriate simulator # Create registers q2 = QuantumRegister(2) c2 = ClassicalRegister(2) # Create the mixed state mix1 = QuantumCircuit(q2, c2) mix2 = QuantumCircuit(q2, c2) mix1.iden(q2) mix2.x(q2) # Execute the circuits to obtain the matrices mixed_state = [mix1,mix2] job = execute(mixed_state, backend) result = job.result() print(result.get_unitary(mixed_state[0], decimals=3),'\n \n',result.get_unitary(mixed_state[1],decimals=3)) backend= Aer.get_backend('qasm_simulator') q2 = QuantumRegister(2) c2 = ClassicalRegister(2) # Create Bell's State env = QuantumCircuit(q2, c2) env.h(q2[0]) env.cx(q2[0], q2[1]) # Apply the X gates env.x(q2[0]) env.iden(q2[1]) env.iden(q2[0]) env.x(q2[1]) meas = QuantumCircuit(q2, c2) meas.measure(q2[0], c2[0]) meas.measure(q2[1], c2[1]) env = env+meas env.draw(output='mpl') circuit = env job = execute(circuit, backend) result = job.result() plot_histogram(result.get_counts(env))
https://github.com/grossiM/Qiskit_workshop1019
grossiM
# useful additional packages import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import Aer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister import qiskit as qk #from qiskit.wrapper.jupyter import * # import basic plot tools from qiskit.tools.visualization import circuit_drawer, plot_histogram #IBMQ.save_account('APItoken') # Load our saved IBMQ accounts IBMQ.load_account() n = 2 # n is the length of the first register # Let's choose ranomly the type of oracle. The probability that it is balanced is 50% and that is constant is 50% # In order to do so we will use a function from numpy module oracleType, oracleValue = np.random.randint(2), np.random.randint(2) if oracleType == 0: print("The oracle is constant ", oracleValue) else: print("The oracle is balanced") a = np.random.randint(1,2**n) # let's save an hidden value for the balanced function. # create quantum and classical registers all initialized at zero # 2 qubits for oracle interrogation, and the other one is to save the result qr = QuantumRegister(n+1) # we only need the classical register for the measurement of the first quantum circuit cr = ClassicalRegister(n) circuitName = "DeutschJozsa" djCircuit = QuantumCircuit(qr, cr) # Superpose the first register. for i in range(n): djCircuit.h(qr[i]) # Invert the second register and apply H. djCircuit.x(qr[n]) djCircuit.h(qr[n]) # Let's visualize a barrier of the oracle (this is only for stylistical purpose) djCircuit.barrier() if oracleType == 0:#The function is constant if oracleValue == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # The function is balanced, in that case the oracle applies a CNOT on the qubit i controlling the qubit n for i in range(n): if (a & (1 << i)): djCircuit.cx(qr[i], qr[n]) # End of the oracle, let's close the barrier djCircuit.barrier() # Apply H to each qubit for i in range(n): djCircuit.h(qr[i]) # Measure djCircuit.barrier() for i in range(n): djCircuit.measure(qr[i], cr[i]) #draw the circuit circuit_drawer(djCircuit) backend = Aer.get_backend('qasm_simulator') shots = 1024 job = qk.execute(djCircuit, backend=backend, shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer) from qiskit.tools.monitor import job_monitor backend = IBMQ.get_backend('ibmq_16_melbourne') shots = 1024 job = qk.execute(djCircuit, backend=backend, shots=shots) job_monitor(job, interval=5) results = job.result() answer = results.get_counts() threshold = int(0.03 * shots) # set a threshold for significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} # filter for an optimal visualization of the results removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) # filteredAnswer['other_bitstring'] = removedCounts # plot_histogram(answer) print(answer)
https://github.com/grossiM/Qiskit_workshop1019
grossiM
import qiskit qiskit.__qiskit_version__ # useful additional packages import numpy as np import matplotlib.pyplot as plt %matplotlib inline # importing Qiskit from qiskit import BasicAer, IBMQ from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.compiler import transpile from qiskit.tools.monitor import job_monitor # import basic plot tools from qiskit.tools.visualization import plot_histogram #IBMQ.save_account('API-TOKEN') # Load our saved IBMQ accounts IBMQ.load_accounts() n = 13 # the length of the first register for querying the oracle # Choose a type of oracle at random. With probability half it is constant, # and with the same probability it is balanced oracleType, oracleValue = np.random.randint(2), np.random.randint(2) if oracleType == 0: print("The oracle returns a constant value ", oracleValue) else: print("The oracle returns a balanced function") a = np.random.randint(1,2**n) # this is a hidden parameter for balanced oracle. # Creating registers # n qubits for querying the oracle and one qubit for storing the answer qr = QuantumRegister(n+1) #all qubits are initialized to zero # for recording the measurement on the first register cr = ClassicalRegister(n) circuitName = "DeutschJozsa" djCircuit = QuantumCircuit(qr, cr) # Create the superposition of all input queries in the first register by applying the Hadamard gate to each qubit. for i in range(n): djCircuit.h(qr[i]) # Flip the second register and apply the Hadamard gate. djCircuit.x(qr[n]) djCircuit.h(qr[n]) # Apply barrier to mark the beginning of the oracle djCircuit.barrier() if oracleType == 0:#If the oracleType is "0", the oracle returns oracleValue for all input. if oracleValue == 1: djCircuit.x(qr[n]) else: djCircuit.iden(qr[n]) else: # Otherwise, it returns the inner product of the input with a (non-zero bitstring) for i in range(n): if (a & (1 << i)): djCircuit.cx(qr[i], qr[n]) # Apply barrier to mark the end of the oracle djCircuit.barrier() # Apply Hadamard gates after querying the oracle for i in range(n): djCircuit.h(qr[i]) # Measurement djCircuit.barrier() for i in range(n): djCircuit.measure(qr[i], cr[i]) #draw the circuit djCircuit.draw(output='mpl',scale=0.5) backend = BasicAer.get_backend('qasm_simulator') shots = 1000 job = execute(djCircuit, backend=backend, shots=shots) results = job.result() answer = results.get_counts() plot_histogram(answer) backend = IBMQ.get_backend('ibmq_16_melbourne') djCompiled = transpile(djCircuit, backend=backend, optimization_level=1) djCompiled.draw(output='mpl',scale=0.5) job = execute(djCompiled, backend=backend, shots=1024) job_monitor(job) results = job.result() answer = results.get_counts() threshold = int(0.01 * shots) # the threshold of plotting significant measurements filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} # filter the answer for better view of plots removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) # number of counts removed filteredAnswer['other_bitstrings'] = removedCounts # the removed counts are assigned to a new index plot_histogram(filteredAnswer) print(filteredAnswer)
https://github.com/grossiM/Qiskit_workshop1019
grossiM
# Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * # qiskit-ibmq-provider has been deprecated. # Please see the Migration Guides in https://ibm.biz/provider_migration_guide for more detail. from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Estimator, Session, Options # Loading your IBM Quantum account(s) service = QiskitRuntimeService(channel="ibm_quantum") # Invoke a primitive. For more details see https://qiskit.org/documentation/partners/qiskit_ibm_runtime/tutorials.html # result = Sampler("ibmq_qasm_simulator").run(circuits).result() # Built-in modules import math # Imports from Qiskit from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, MCMT, ZGate from qiskit.visualization import plot_distribution # Imports from Qiskit Runtime from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session # Add your token below service = QiskitRuntimeService(channel="ibm_quantum") from qiskit import IBMQ IBMQ.save_account('33b329939cf6fe545c64afb41b84e0993a774c578c2d3e3a07b2ed8644261511d4712974c684ae3050ca82dd8f4ca161930bb344995de7934be32214bdb17079')
https://github.com/grossiM/Qiskit_workshop1019
grossiM
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def phase_oracle(circuit, register): circuit.cz(qr[2],qr[0]) circuit.cz(qr[2],qr[1]) def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) def inversion_about_average(circuit, register, n, barriers): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) if barriers: circuit.barrier() n_controlled_Z(circuit, [register[j] for j in range(n-1)], register[n-1]) if barriers: circuit.barrier() circuit.x(register) circuit.h(register) barriers = True qr = QuantumRegister(3) cr = ClassicalRegister(3) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) if barriers: groverCircuit.barrier() phase_oracle(groverCircuit, qr) if barriers: groverCircuit.barrier() inversion_about_average(groverCircuit, qr, 3, barriers) if barriers: groverCircuit.barrier() groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(groverCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results from the computation results = job.result() answer = results.get_counts(groverCircuit) plot_histogram(answer) import qiskit qiskit.__qiskit_version__
https://github.com/grossiM/Qiskit_workshop1019
grossiM
import pylab import numpy as np from qiskit import BasicAer from qiskit.tools.visualization import plot_histogram from qiskit.aqua import QuantumInstance from qiskit.aqua import run_algorithm from qiskit.aqua.algorithms import Grover from qiskit.aqua.components.oracles import LogicalExpressionOracle, TruthTableOracle input_3sat_instance = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' oracle = LogicalExpressionOracle(input_3sat_instance) grover = Grover(oracle) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) result = grover.run(quantum_instance) print(result['result']) plot_histogram(result['measurement']) params = { 'problem': { 'name': 'search', }, 'algorithm': { 'name': 'Grover' }, 'oracle': { 'name': 'LogicalExpressionOracle', 'expression': input_3sat_instance }, 'backend': { 'shots': 1000, }, } result_dict = run_algorithm(params, backend=backend) plot_histogram(result_dict['measurement']) expression = '(w ^ x) & ~(y ^ z) & (x & y & z)' oracle = LogicalExpressionOracle(expression) grover = Grover(oracle) result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024)) plot_histogram(result['measurement']) truthtable = '1000000000000001' oracle = TruthTableOracle(truthtable) grover = Grover(oracle) result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024)) plot_histogram(result['measurement']) #solution from hide_toggle import hide_toggle hide_toggle(for_next=True) sat_cnf = ''' c prova.cnf c p cnf 2 2 1 -2 0 -1 2 0 ''' print(sat_cnf) oracle_2 = LogicalExpressionOracle(sat_cnf) my_grover = Grover(oracle_2) backend = BasicAer.get_backend('qasm_simulator') quantum_grover = QuantumInstance(backend, shots=1024) result = grover.run(quantum_grover) print(result['result'])
https://github.com/grossiM/Qiskit_workshop1019
grossiM
from hide_toggle import hide_toggle #usage: #1 create a cell with: hide_toggle(for_next=True) #2 put the commented solution in the next cell import qiskit as qk import numpy as np from scipy.linalg import expm import matplotlib.pyplot as plt import math # definition of single qubit operators sx = np.array([[0.0, 1.0],[1.0, 0.0]]) sy = np.array([[0.0, -1.0*1j],[1.0*1j, 0.0]]) sz = np.array([[1.0, 0.0],[0.0, -1.0]]) idt = np.array([[1.0, 0.0],[0.0, 1.0]]) psi0 = np.array([1.0, 0.0]) thetas = np.linspace(0,4*math.pi,200) avg_sx_tot = np.zeros(len(thetas)) for i in range(len(thetas)): psi_theta = expm(-1j*0.5*thetas[i]*(sx+sz)/math.sqrt(2)).dot(psi0) avg_sx_tot[i] = np.real(psi_theta.conjugate().transpose().dot(sx.dot(psi_theta))) plt.plot(thetas,avg_sx_tot) plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.show() #solution hide_toggle(for_next=True) avg_sx_zx = np.zeros(len(thetas)) avg_sx_xz = np.zeros(len(thetas)) for i in range(len(thetas)): psi_theta_zx = expm(-1j*0.5*thetas[i]*(sz)/math.sqrt(2)).dot(expm(-1j*0.5*thetas[i]*(sx)/math.sqrt(2)).dot(psi0)) psi_theta_xz = expm(-1j*0.5*thetas[i]*(sx)/math.sqrt(2)).dot(expm(-1j*0.5*thetas[i]*(sz)/math.sqrt(2)).dot(psi0)) avg_sx_zx[i] = np.real(psi_theta_zx.conjugate().transpose().dot(sx.dot(psi_theta_zx))) avg_sx_xz[i] = np.real(psi_theta_xz.conjugate().transpose().dot(sx.dot(psi_theta_xz))) plt.plot(thetas,avg_sx_tot) plt.plot(thetas,avg_sx_zx) plt.plot(thetas,avg_sx_xz) plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.legend(['Around x = z', 'x first', 'z first'],loc=1) plt.show() # Try this with e.g. ntrot = 1, 5, 10, 50. # You can also try to do sx and sz slices in the reverse order: both choices will become good approximations for large n ntrot = 8 avg_sx_n = np.zeros(len(thetas)) for i in range(len(thetas)): rot = expm(-1j*0.5*thetas[i]*(sx)/(ntrot*math.sqrt(2))).dot(expm(-1j*0.5*thetas[i]*(sz)/(ntrot*math.sqrt(2)))) for j in range(ntrot-1): rot = expm(-1j*0.5*thetas[i]*(sx)/(ntrot*math.sqrt(2))).dot(expm(-1j*0.5*thetas[i]*(sz)/(ntrot*math.sqrt(2)))).dot(rot) psi_theta_n = rot.dot(psi0) avg_sx_n[i] = np.real(psi_theta_n.conjugate().transpose().dot(sx.dot(psi_theta_n))) plt.plot(thetas,avg_sx_tot) plt.plot(thetas,avg_sx_n,'--') plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.legend(['Exact', 'ntrot = ' + str(ntrot)],loc=1) plt.show() #solution hide_toggle(for_next=True) # commutation function def comm_check(a,b): aa = np.kron(a,a) bb = np.kron(b,b) return (np.dot(aa,bb) - np.dot(bb,aa)) comm_check(sx,sy) delta = 0.1 qr = qk.QuantumRegister(2,name='qr') zz_example = qk.QuantumCircuit(qr) zz_example.cx(qr[0],qr[1]) zz_example.u1(2*delta,qr[1]) zz_example.cx(qr[0],qr[1]) zz_example.draw(output='mpl') #solution J = 1 c_times = np.linspace(0,0.5*math.pi/abs(J),1000) q_times = np.linspace(0,0.5*math.pi/abs(J),10) ### Classical simulation of the Heisenberg dimer model psi0 = np.kron( np.array([0,1]), np.array([1,0]) ) H = J * ( np.kron(sx,sx) + np.kron(sy,sy) + np.kron(sz,sz) ) sz1_t = np.zeros(len(c_times)) sz2_t = np.zeros(len(c_times)) sz1 = np.kron(sz,idt) sz2 = np.kron(idt,sz) for i in range(len(c_times)): t = c_times[i] psi_t = expm(-1j*H*t).dot(psi0) sz1_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) ### Digital quantum simulation of the Heisenberg dimer model using qiskit nshots = 1024 sz1q_t = np.zeros(len(q_times)) sz2q_t = np.zeros(len(q_times)) #Solution: try to write the circuit and the quantum evolution, #hints: start with: #for k in range(len(q_times)): #delta = #define QuantumRegister, ClassicalRegister and QuantumCircuit (Heis2) #define initial state #define each part of the circuit: ZZ, YY, XX #measurement # Post processing of outcomes to get sz expectation values #sz1q = 0 #sz2q = 0 #for key,value in counts.items(): #if key == '00': #sz1q += value #sz2q += value #elif key == '01': #sz1q -= value #sz2q += value #elif key == '10': #sz1q += value #sz2q -= value #elif key == '11': #sz1q -= value #sz2q -= value #sz1q_t[k] = sz1q/nshots #sz2q_t[k] = sz2q/nshots # Run the quantum algorithm and colect the result, counts hide_toggle(for_next=True) for k in range(len(q_times)): delta = J*q_times[k] qr = qk.QuantumRegister(2,name='qr') cr = qk.ClassicalRegister(2,name='cr') Heis2 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis2.x(qr[0]) # ZZ Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) # YY Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis2.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[1]) # measure Heis2.measure(qr,cr) # Run the quantum algorithm backend = qk.BasicAer.get_backend('qasm_simulator') job = qk.execute(Heis2, backend, shots=nshots) result = job.result() counts = result.get_counts() # Post processing of outcomes to get sz expectation values sz1q = 0 sz2q = 0 for key,value in counts.items(): if key == '00': sz1q += value sz2q += value elif key == '01': sz1q -= value sz2q += value elif key == '10': sz1q += value sz2q -= value elif key == '11': sz1q -= value sz2q -= value sz1q_t[k] = sz1q/nshots sz2q_t[k] = sz2q/nshots plt.plot(abs(J)*c_times,0.5*sz1_t,'b--') plt.plot(abs(J)*c_times,0.5*sz2_t,'c') plt.plot(abs(J)*q_times,0.5*sz1q_t,'rd') plt.plot(abs(J)*q_times,0.5*sz2q_t,'ko') plt.legend(['sz1','sz2','sz1q','sz2q']) plt.xlabel(r'$\delta = |J|t$') plt.show() # WARNING: all these cells can take a few minutes to run! ntrotter = 5 J12 = 1 J23 = 1 c_times = np.linspace(0,math.pi/abs(J12),1000) q_times = np.linspace(0,math.pi/abs(J12),20) ### Classical simulation of the Heisenberg trimer model psi0 = np.kron( np.kron( np.array([0,1]), np.array([1,0]) ) , np.array([1,0]) ) # SOLUTION: #sxsx12 = np.kron(sx, np.kron(sx,idt)) #sysy12 = #szsz12 = #sxsx23 = #sysy23 = #szsz23 = #H12 = J12 * ( sxsx12 + sysy12 + szsz12 ) #H23 = #H = H12 + H23 hide_toggle(for_next=True) sxsx12 = np.kron(sx, np.kron(sx,idt)) sysy12 = np.kron(sy, np.kron(sy,idt)) szsz12 = np.kron(sz, np.kron(sz,idt)) sxsx23 = np.kron(idt, np.kron(sx,sx)) sysy23 = np.kron(idt, np.kron(sy,sy)) szsz23 = np.kron(idt, np.kron(sz,sz)) H12 = J12 * ( sxsx12 + sysy12 + szsz12 ) H23 = J23 * ( sxsx23 + sysy23 + szsz23 ) H = H12 + H23 sz1_t = np.zeros(len(c_times)) sz2_t = np.zeros(len(c_times)) sz3_t = np.zeros(len(c_times)) sz1 = np.kron(sz, np.kron(idt,idt)) sz2 = np.kron(idt, np.kron(sz,idt)) sz3 = np.kron(idt, np.kron(idt,sz)) #SOLUTION: #for i in range(len(c_times)): #t = c_times[i] #psi_t = #sz1_t[i] = #sz2_t[i] = #sz3_t[i] = hide_toggle(for_next=True) for i in range(len(c_times)): t = c_times[i] psi_t = expm(-1j*H*t).dot(psi0) sz1_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) sz3_t[i] = np.real(psi_t.conjugate().transpose().dot(sz3.dot(psi_t))) ### Classical simulation of the Heisenberg trimer model WITH SUZUKI TROTTER DIGITALIZATION sz1st_t = np.zeros(len(c_times)) sz2st_t = np.zeros(len(c_times)) sz3st_t = np.zeros(len(c_times)) for i in range(len(c_times)): t = c_times[i] Ust = expm(-1j*H23*t/ntrotter).dot(expm(-1j*H12*t/ntrotter)) for j in range(ntrotter-1): Ust = expm(-1j*H23*t/ntrotter).dot(expm(-1j*H12*t/ntrotter)).dot(Ust) psi_t = Ust.dot(psi0) sz1st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) sz3st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz3.dot(psi_t))) ### Digital quantum simulation of the Heisenberg model using qiskit hide_toggle(for_next=True) ### Digital quantum simulation of the Heisenberg model using qiskit nshots = 1024 sz1q_t = np.zeros(len(q_times)) sz2q_t = np.zeros(len(q_times)) sz3q_t = np.zeros(len(q_times)) for k in range(len(q_times)): delta12n = J12*q_times[k]/ntrotter delta23n = J23*q_times[k]/ntrotter qr = qk.QuantumRegister(3,name='qr') cr = qk.ClassicalRegister(3,name='cr') Heis3 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis3.x(qr[0]) for n in range(ntrotter): # 1-2 bond mapped on qubits 0 and 1 in the quantum register # ZZ Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) # YY Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis3.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis3.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[1]) # 2-3 bond mapped on qubits 1 and 2 in the quantum register # ZZ Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) # YY Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[2]) # XX Heis3.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis3.u3(-math.pi/2, 0.0, 0.0, qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[1]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[2]) # measure Heis3.measure(qr,cr) # Run the quantum algorithm backend = qk.BasicAer.get_backend('qasm_simulator') job = qk.execute(Heis3, backend, shots=nshots) result = job.result() counts = result.get_counts() # Post processing of outcomes to get sz expectation values sz1q = 0 sz2q = 0 sz3q = 0 for key,value in counts.items(): if key == '000': sz1q += value sz2q += value sz3q += value elif key == '001': sz1q -= value sz2q += value sz3q += value elif key == '010': sz1q += value sz2q -= value sz3q += value elif key == '011': sz1q -= value sz2q -= value sz3q += value elif key == '100': sz1q += value sz2q += value sz3q -= value elif key == '101': sz1q -= value sz2q += value sz3q -= value elif key == '110': sz1q += value sz2q -= value sz3q -= value elif key == '111': sz1q -= value sz2q -= value sz3q -= value sz1q_t[k] = sz1q/nshots sz2q_t[k] = sz2q/nshots sz3q_t[k] = sz3q/nshots fig = plt.figure() ax = plt.subplot(111) ax.plot(abs(J12)*c_times,0.5*sz1_t,'b', label='sz1 full') ax.plot(abs(J12)*c_times,0.5*sz2_t,'r', label='sz2 full') ax.plot(abs(J12)*c_times,0.5*sz3_t,'g', label='sz3 full') ax.plot(abs(J12)*c_times,0.5*sz1st_t,'b--',label='sz1 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*c_times,0.5*sz2st_t,'r--', label='sz2 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*c_times,0.5*sz3st_t,'g--', label='sz3 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*q_times,0.5*sz1q_t,'b*',label='sz1 n = ' + str(ntrotter) + ' (quantum)') ax.plot(abs(J12)*q_times,0.5*sz2q_t,'ro', label='sz2 n = ' + str(ntrotter) + ' (quantum)') ax.plot(abs(J12)*q_times,0.5*sz3q_t,'gd', label='sz3 n = ' + str(ntrotter) + ' (quantum)') chartBox = ax.get_position() ax.set_position([chartBox.x0, chartBox.y0, chartBox.width*1, chartBox.height]) ax.legend(loc='upper center', bbox_to_anchor=(1.3, 0.8), shadow=True, ncol=1) plt.xlabel(r'$\delta_{12} = |J_{12}|t$') plt.show() Heis3.count_ops() import Qconfig from qiskit.tools.monitor import job_monitor qk.IBMQ.enable_account(Qconfig.APItoken, **Qconfig.config) delta = 0.5*math.pi qr = qk.QuantumRegister(2,name='qr') cr = qk.ClassicalRegister(2,name='cr') Heis2 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis2.x(qr[0]) # ZZ Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) # YY Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis2.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[1]) # measure Heis2.measure(qr,cr) my_backend = qk.IBMQ.get_backend('ibmqx4') job = qk.execute(Heis2, backend=my_backend, shots=1024) job_monitor(job, interval=5) result = job.result() counts = result.get_counts() print(counts) plot_histogram(counts) my_backend.configuration().coupling_map # In the output, the first entry in a pair [a,b] is a control, second is the # corresponding target for a CNOT
https://github.com/grossiM/Qiskit_workshop1019
grossiM
from qiskit import QuantumCircuit, Aer, execute, IBMQ from qiskit.utils import QuantumInstance import numpy as np from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1000) my_shor = Shor(quantum_instance) result_dict = my_shor.factor(15) print(result_dict)
https://github.com/grossiM/Qiskit_workshop1019
grossiM
from hide_toggle import hide_toggle #usage: #1 create a cell with: hide_toggle(for_next=True) #2 put the commented solution in the next cell #import latex from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute, BasicAer import numpy as np %matplotlib inline #define a 2 qubit register and QuantumCircuit hide_toggle(for_next=True) # 2 bit registry creation. #qr = QuantumRegister(2, 'qr') # Circuit creation #qc = QuantumCircuit(qr) #solution: #had_tr = QuantumCircuit(qr) hide_toggle(for_next=True) # Circuit creation of the Hadamard Transform #had_tr = QuantumCircuit(qr) #had_tr.h(qr[0]) #had_tr.h(qr[1]) #had_tr.barrier() #qc = had_tr #qc.draw(output='mpl') #run the circuit on statevector_simulator, save result to state_superposition variable hide_toggle(for_next=True) # execute the quantum circuit on simulator #backend = BasicAer.get_backend('statevector_simulator') #job = execute(qc, backend) #state_superposition = job.result().get_statevector(qc) #print(state_superposition) from qiskit.tools.visualization import plot_bloch_multivector rho_superposition= np.outer(state_superposition, state_superposition.conj()) plot_bloch_multivector(rho_superposition) print("\n\n\n\n===== Welcome! =====\n\n") print(" ~~ Let's take this test ~~ ") print("\n\n") print("Select the winner among:") print("a) Hearts") print("b) Pictures") print("c) Flowers") print("d) Spades") chosen = 0 while (chosen==0): # scelta = getpass.getpass("make your choise. (a, b, c, d, e or f)\n") scelta = input("Choose your card (a, b, c, d)\n") if scelta == "a": bit = "|00>" print("Choice: a) Hearts") if scelta == "b": bit = "|01>" print("Choice: b) Pictures") if scelta == "c": bit = "|10>" print("Choice: c) Flowers") if scelta == "d": bit = "|11>" print("Choice: d) Spades") if scelta in ["a","b","c","d"]: chosen = 1 print ("Linked to:", bit) else: print("wrong selection, retry") #create the circuit orac #orac = QuantumCircuit(qr) hide_toggle(for_next=True) #orac = QuantumCircuit(qr) #orac.h(qr[1]) #orac.cx(qr[0],qr[1]) #orac.h(qr[1]) #orac.barrier() #orac.draw(output='mpl') # The Qiskit circuit object supports concatenating circuits with the addition operator. qc = had_tr + orac qc.draw(output='mpl') orac = QuantumCircuit(qr) if scelta == "a": # |00> orac.x(qr[0]) orac.x(qr[1]) orac.h(qr[1]) orac.cx(qr[0],qr[1]) orac.h(qr[1]) orac.x(qr[0]) orac.x(qr[1]) orac.barrier() if scelta == "b": # |01> orac.x(qr[1]) orac.h(qr[1]) orac.cx(qr[0],qr[1]) orac.h(qr[1]) orac.x(qr[1]) orac.barrier() if scelta == "c": # |10> orac.x(qr[0]) orac.h(qr[1]) orac.cx(qr[0],qr[1]) orac.h(qr[1]) orac.x(qr[0]) orac.barrier() if scelta == "d": # |11> orac.h(qr[1]) orac.cx(qr[0],qr[1]) orac.h(qr[1]) orac.barrier() orac.draw(output='mpl') qc = had_tr qc.draw(output='mpl') backend = BasicAer.get_backend('statevector_simulator') job = execute(qc, backend) state = job.result().get_statevector(qc) state qc = had_tr + orac qc.draw(output='mpl') job = execute(qc, backend) state = job.result().get_statevector(qc) state cphase = QuantumCircuit(qr) cphase.x(qr[0]) cphase.x(qr[1]) cphase.h(qr[1]) cphase.cx(qr[0],qr[1]) cphase.h(qr[1]) cphase.x(qr[0]) cphase.x(qr[1]) cphase.barrier() qc = cphase qc.draw(output='mpl') qc = had_tr + orac + had_tr + cphase + had_tr qc.draw(output='mpl') #solution: #add classical bit register and meas, draw the circuit hide_toggle(for_next=True) # Create a Classical Register with 2 bits. #cr = ClassicalRegister(2, 'cr') # Create a Quantum Circuit #meas = QuantumCircuit(qr, cr) # add measurement operators #meas.measure(qr,cr) #qc = had_tr + orac + had_tr + cphase + had_tr + meas #drawing the circuit #qc.draw(output='mpl') #solution: #from qiskit import BasicAer #... #... #print("Results : ", counts) hide_toggle(for_next=True) # Import Aer #from qiskit import BasicAer # Use Aer's qasm_simulator #backend_sim = BasicAer.get_backend('qasm_simulator') # Execute the circuit on the qasm simulator. # We've set the number of repeats of the circuit # to be 1024, which is the default. #job = execute(qc, backend_sim) # Grab the results from the job. #result = job.result() #counts = result.get_counts(qc) #print("Results : ", counts) from qiskit.tools.visualization import plot_histogram plot_histogram(counts) #1 from qiskit import IBMQ #IBMQ.delete_accounts() #IBMQ.save_account('API_TOKEN') #2 provider = IBMQ.load_account() #3 #solution: hide_toggle(for_next=True) #3 #print("Available backends:") #provider.backends() #from qiskit.tools.monitor import job_monitor, backend_monitor, backend_overview #from qiskit.providers.ibmq import least_busy #backend = least_busy(provider.backends(filters=lambda x: not x.configuration().simulator)) #backend.name() #shots = 1024 # Number of shots to run the program (experiment); maximum is 8192 shots. #max_credits = 3 # Maximum number of credits to spend on executions. #job_exp = execute(qc, backend=backend, shots=shots, max_credits=max_credits) #job_monitor(job_exp) #result_real = job_exp.result() #counts_real = result_real.get_counts(qc) plot_histogram(counts_real) #formulate the classical solution hide_toggle(for_next=True) #counter=0 #for i in ["a","b","c","d"]: #counter=counter+1 #if i == scelta: #print("winner found after ", counter) import webbrowser url_1target = 'https://www.nature.com/articles/s41467-017-01904-7/tables/1' url_2target = 'https://www.nature.com/articles/s41467-017-01904-7/tables/2' webbrowser.open(url_1target) webbrowser.open(url_2target)
https://github.com/grossiM/Qiskit_workshop1019
grossiM
#initialization import matplotlib.pyplot as plt %matplotlib inline import numpy as np # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute # import basic plot tools from qiskit.tools.visualization import plot_histogram def phase_oracle(circuit, register): circuit.cz(qr[2],qr[0]) circuit.cz(qr[2],qr[1]) def n_controlled_Z(circuit, controls, target): """Implement a Z gate with multiple controls""" if (len(controls) > 2): raise ValueError('The controlled Z with more than 2 controls is not implemented') elif (len(controls) == 1): circuit.h(target) circuit.cx(controls[0], target) circuit.h(target) elif (len(controls) == 2): circuit.h(target) circuit.ccx(controls[0], controls[1], target) circuit.h(target) def inversion_about_average(circuit, register, n, barriers): """Apply inversion about the average step of Grover's algorithm.""" circuit.h(register) circuit.x(register) if barriers: circuit.barrier() n_controlled_Z(circuit, [register[j] for j in range(n-1)], register[n-1]) if barriers: circuit.barrier() circuit.x(register) circuit.h(register) barriers = True qr = QuantumRegister(3) cr = ClassicalRegister(3) groverCircuit = QuantumCircuit(qr,cr) groverCircuit.h(qr) if barriers: groverCircuit.barrier() phase_oracle(groverCircuit, qr) if barriers: groverCircuit.barrier() inversion_about_average(groverCircuit, qr, 3, barriers) if barriers: groverCircuit.barrier() groverCircuit.measure(qr,cr) groverCircuit.draw(output="mpl") backend = BasicAer.get_backend('qasm_simulator') shots = 1024 results = execute(groverCircuit, backend=backend, shots=shots).result() answer = results.get_counts() plot_histogram(answer) # Load our saved IBMQ accounts and get the least busy backend device with less than or equal to 5 qubits IBMQ.load_account() IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits <= 5 and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Run our circuit on the least busy backend. Monitor the execution of the job in the queue from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(groverCircuit, backend=backend, shots=shots) job_monitor(job, interval = 2) # Get the results from the computation results = job.result() answer = results.get_counts(groverCircuit) plot_histogram(answer) import qiskit qiskit.__qiskit_version__
https://github.com/grossiM/Qiskit_workshop1019
grossiM
import pylab import numpy as np from qiskit import BasicAer from qiskit.tools.visualization import plot_histogram from qiskit.aqua import QuantumInstance from qiskit.aqua import run_algorithm from qiskit.aqua.algorithms import Grover from qiskit.aqua.components.oracles import LogicalExpressionOracle, TruthTableOracle input_3sat_instance = ''' c example DIMACS-CNF 3-SAT p cnf 3 5 -1 -2 -3 0 1 -2 3 0 1 2 -3 0 1 -2 -3 0 -1 2 3 0 ''' oracle = LogicalExpressionOracle(input_3sat_instance) grover = Grover(oracle) backend = BasicAer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1024) result = grover.run(quantum_instance) print(result['result']) plot_histogram(result['measurement']) params = { 'problem': { 'name': 'search', }, 'algorithm': { 'name': 'Grover' }, 'oracle': { 'name': 'LogicalExpressionOracle', 'expression': input_3sat_instance }, 'backend': { 'shots': 1000, }, } result_dict = run_algorithm(params, backend=backend) plot_histogram(result_dict['measurement']) expression = '(w ^ x) & ~(y ^ z) & (x & y & z)' oracle = LogicalExpressionOracle(expression) grover = Grover(oracle) result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024)) plot_histogram(result['measurement']) truthtable = '1000000000000001' oracle = TruthTableOracle(truthtable) grover = Grover(oracle) result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024)) plot_histogram(result['measurement']) #solution from hide_toggle import hide_toggle hide_toggle(for_next=True) sat_cnf = ''' c prova.cnf c p cnf 2 2 1 -2 0 -1 2 0 ''' #print(sat_cnf) #oracle_2 = LogicalExpressionOracle(sat_cnf) #my_grover = Grover(oracle_2) #backend = BasicAer.get_backend('qasm_simulator') #quantum_grover = QuantumInstance(backend, shots=1024) #result = grover.run(quantum_grover) #print(result['result'])
https://github.com/grossiM/Qiskit_workshop1019
grossiM
from hide_toggle import hide_toggle #usage: #1 create a cell with: hide_toggle(for_next=True) #2 put the commented solution in the next cell import qiskit as qk import numpy as np from scipy.linalg import expm import matplotlib.pyplot as plt import math # definition of single qubit operators sx = np.array([[0.0, 1.0],[1.0, 0.0]]) sy = np.array([[0.0, -1.0*1j],[1.0*1j, 0.0]]) sz = np.array([[1.0, 0.0],[0.0, -1.0]]) idt = np.array([[1.0, 0.0],[0.0, 1.0]]) psi0 = np.array([1.0, 0.0]) thetas = np.linspace(0,4*math.pi,200) avg_sx_tot = np.zeros(len(thetas)) for i in range(len(thetas)): psi_theta = expm(-1j*0.5*thetas[i]*(sx+sz)/math.sqrt(2)).dot(psi0) avg_sx_tot[i] = np.real(psi_theta.conjugate().transpose().dot(sx.dot(psi_theta))) plt.plot(thetas,avg_sx_tot) plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.show() #solution hide_toggle(for_next=True) #avg_sx_zx = np.zeros(len(thetas)) #avg_sx_xz = np.zeros(len(thetas)) #for i in range(len(thetas)): # psi_theta_zx = expm(-1j*0.5*thetas[i]*(sz)/math.sqrt(2)).dot(expm(-1j*0.5*thetas[i]*(sx)/math.sqrt(2)).dot(psi0)) # psi_theta_xz = expm(-1j*0.5*thetas[i]*(sx)/math.sqrt(2)).dot(expm(-1j*0.5*thetas[i]*(sz)/math.sqrt(2)).dot(psi0)) # avg_sx_zx[i] = np.real(psi_theta_zx.conjugate().transpose().dot(sx.dot(psi_theta_zx))) #avg_sx_xz[i] = np.real(psi_theta_xz.conjugate().transpose().dot(sx.dot(psi_theta_xz))) #plt.plot(thetas,avg_sx_tot) #plt.plot(thetas,avg_sx_zx) #plt.plot(thetas,avg_sx_xz) #plt.xlabel(r'$\theta$') #plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') #plt.legend(['Around x = z', 'x first', 'z first'],loc=1) #plt.show() # Try this with e.g. ntrot = 1, 5, 10, 50. # You can also try to do sx and sz slices in the reverse order: both choices will become good approximations for large n ntrot = 10 avg_sx_n = np.zeros(len(thetas)) for i in range(len(thetas)): rot = expm(-1j*0.5*thetas[i]*(sx)/(ntrot*math.sqrt(2))).dot(expm(-1j*0.5*thetas[i]*(sz)/(ntrot*math.sqrt(2)))) for j in range(ntrot-1): rot = expm(-1j*0.5*thetas[i]*(sx)/(ntrot*math.sqrt(2))).dot(expm(-1j*0.5*thetas[i]*(sz)/(ntrot*math.sqrt(2)))).dot(rot) psi_theta_n = rot.dot(psi0) avg_sx_n[i] = np.real(psi_theta_n.conjugate().transpose().dot(sx.dot(psi_theta_n))) plt.plot(thetas,avg_sx_tot) plt.plot(thetas,avg_sx_n,'--') plt.xlabel(r'$\theta$') plt.ylabel(r'$\langle\sigma_x\rangle_\theta$') plt.legend(['Exact', 'ntrot = ' + str(ntrot)],loc=1) plt.show() #solution hide_toggle(for_next=True) # commutation function #def comm_check(a,b): # aa = np.dot(a,a) # bb = np.dot(b,b) # return (np.dot(aa,bb) - np.dot(bb,aa)) #comm_check(sx,sy) delta = 0.1 qr = qk.QuantumRegister(2,name='qr') zz_example = qk.QuantumCircuit(qr) zz_example.cx(qr[0],qr[1]) zz_example.u1(2*delta,qr[1]) zz_example.cx(qr[0],qr[1]) zz_example.draw(output='mpl') #solution J = 1 c_times = np.linspace(0,0.5*math.pi/abs(J),1000) q_times = np.linspace(0,0.5*math.pi/abs(J),10) ### Classical simulation of the Heisenberg dimer model psi0 = np.kron( np.array([0,1]), np.array([1,0]) ) H = J * ( np.kron(sx,sx) + np.kron(sy,sy) + np.kron(sz,sz) ) sz1_t = np.zeros(len(c_times)) sz2_t = np.zeros(len(c_times)) sz1 = np.kron(sz,idt) sz2 = np.kron(idt,sz) for i in range(len(c_times)): t = c_times[i] psi_t = expm(-1j*H*t).dot(psi0) sz1_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) ### Digital quantum simulation of the Heisenberg dimer model using qiskit nshots = 1024 sz1q_t = np.zeros(len(q_times)) sz2q_t = np.zeros(len(q_times)) #Solution: try to write the circuit and the quantum evolution, #hints: start with: #for k in range(len(q_times)): #delta = #define QuantumRegister, ClassicalRegister and QuantumCircuit (Heis2) #define initial state #define each part of the circuit: ZZ, YY, XX #measurement # Post processing of outcomes to get sz expectation values #sz1q = 0 #sz2q = 0 #for key,value in counts.items(): #if key == '00': #sz1q += value #sz2q += value #elif key == '01': #sz1q -= value #sz2q += value #elif key == '10': #sz1q += value #sz2q -= value #elif key == '11': #sz1q -= value #sz2q -= value #sz1q_t[k] = sz1q/nshots #sz2q_t[k] = sz2q/nshots # Run the quantum algorithm and colect the result, counts hide_toggle(for_next=True) #for k in range(len(q_times)): #delta = J*q_times[k] #qr = qk.QuantumRegister(2,name='qr') #cr = qk.ClassicalRegister(2,name='cr') #Heis2 = qk.QuantumCircuit(qr,cr) # Initial state preparation #Heis2.x(qr[0]) # ZZ #Heis2.cx(qr[0],qr[1]) #Heis2.u1(-2*delta,qr[1]) #Heis2.cx(qr[0],qr[1]) # YY #Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) #Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) #Heis2.cx(qr[0],qr[1]) #Heis2.u1(-2*delta,qr[1]) #Heis2.cx(qr[0],qr[1]) #Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) #Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX #Heis2.u3(-math.pi/2, 0.0, 0.0, qr[0]) #Heis2.u3(-math.pi/2, 0.0, 0.0, qr[1]) #Heis2.cx(qr[0],qr[1]) #Heis2.u1(-2*delta,qr[1]) #Heis2.cx(qr[0],qr[1]) #Heis2.u3(math.pi/2, 0.0, 0.0, qr[0]) #Heis2.u3(math.pi/2, 0.0, 0.0, qr[1]) # measure #Heis2.measure(qr,cr) # Post processing of outcomes to get sz expectation values #sz1q = 0 #sz2q = 0 #for key,value in counts.items(): #if key == '00': #sz1q += value #sz2q += value #elif key == '01': #sz1q -= value #sz2q += value #elif key == '10': #sz1q += value #sz2q -= value #elif key == '11': #sz1q -= value #sz2q -= value #sz1q_t[k] = sz1q/nshots #sz2q_t[k] = sz2q/nshots # Run the quantum algorithm #backend = qk.BasicAer.get_backend('qasm_simulator') #job = qk.execute(Heis2, backend, shots=nshots) #result = job.result() #counts = result.get_counts() plt.plot(abs(J)*c_times,0.5*sz1_t,'b--') plt.plot(abs(J)*c_times,0.5*sz2_t,'c') plt.plot(abs(J)*q_times,0.5*sz1q_t,'rd') plt.plot(abs(J)*q_times,0.5*sz2q_t,'ko') plt.legend(['sz1','sz2','sz1q','sz2q']) plt.xlabel(r'$\delta = |J|t$') plt.show() # WARNING: all these cells can take a few minutes to run! ntrotter = 5 J12 = 1 J23 = 1 c_times = np.linspace(0,math.pi/abs(J12),1000) q_times = np.linspace(0,math.pi/abs(J12),20) ### Classical simulation of the Heisenberg trimer model psi0 = np.kron( np.kron( np.array([0,1]), np.array([1,0]) ) , np.array([1,0]) ) # SOLUTION: #sxsx12 = np.kron(sx, np.kron(sx,idt)) #sysy12 = #szsz12 = #sxsx23 = #sysy23 = #szsz23 = #H12 = J12 * ( sxsx12 + sysy12 + szsz12 ) #H23 = #H = H12 + H23 hide_toggle(for_next=True) #sxsx12 = np.kron(sx, np.kron(sx,idt)) #sysy12 = np.kron(sy, np.kron(sy,idt)) #szsz12 = np.kron(sz, np.kron(sz,idt)) #sxsx23 = np.kron(idt, np.kron(sx,sx)) #sysy23 = np.kron(idt, np.kron(sy,sy)) #szsz23 = np.kron(idt, np.kron(sz,sz)) #H12 = J12 * ( sxsx12 + sysy12 + szsz12 ) #H23 = J23 * ( sxsx23 + sysy23 + szsz23 ) #H = H12 + H23 sz1_t = np.zeros(len(c_times)) sz2_t = np.zeros(len(c_times)) sz3_t = np.zeros(len(c_times)) sz1 = np.kron(sz, np.kron(idt,idt)) sz2 = np.kron(idt, np.kron(sz,idt)) sz3 = np.kron(idt, np.kron(idt,sz)) #SOLUTION: #for i in range(len(c_times)): #t = c_times[i] #psi_t = #sz1_t[i] = #sz2_t[i] = #sz3_t[i] = hide_toggle(for_next=True) #for i in range(len(c_times)): #t = c_times[i] #psi_t = expm(-1j*H*t).dot(psi0) #sz1_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) #sz2_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) #sz3_t[i] = np.real(psi_t.conjugate().transpose().dot(sz3.dot(psi_t))) ### Classical simulation of the Heisenberg trimer model WITH SUZUKI TROTTER DIGITALIZATION sz1st_t = np.zeros(len(c_times)) sz2st_t = np.zeros(len(c_times)) sz3st_t = np.zeros(len(c_times)) for i in range(len(c_times)): t = c_times[i] Ust = expm(-1j*H23*t/ntrotter).dot(expm(-1j*H12*t/ntrotter)) for j in range(ntrotter-1): Ust = expm(-1j*H23*t/ntrotter).dot(expm(-1j*H12*t/ntrotter)).dot(Ust) psi_t = Ust.dot(psi0) sz1st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz1.dot(psi_t))) sz2st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz2.dot(psi_t))) sz3st_t[i] = np.real(psi_t.conjugate().transpose().dot(sz3.dot(psi_t))) ### Digital quantum simulation of the Heisenberg model using qiskit hide_toggle(for_next=True) ### Digital quantum simulation of the Heisenberg model using qiskit nshots = 1024 sz1q_t = np.zeros(len(q_times)) sz2q_t = np.zeros(len(q_times)) sz3q_t = np.zeros(len(q_times)) for k in range(len(q_times)): delta12n = J12*q_times[k]/ntrotter delta23n = J23*q_times[k]/ntrotter qr = qk.QuantumRegister(3,name='qr') cr = qk.ClassicalRegister(3,name='cr') Heis3 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis3.x(qr[0]) for n in range(ntrotter): # 1-2 bond mapped on qubits 0 and 1 in the quantum register # ZZ Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) # YY Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis3.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis3.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u1(-2*delta12n,qr[1]) Heis3.cx(qr[0],qr[1]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[1]) # 2-3 bond mapped on qubits 1 and 2 in the quantum register # ZZ Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) # YY Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.u3(math.pi/2, -math.pi/2, math.pi/2, qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis3.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[2]) # XX Heis3.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis3.u3(-math.pi/2, 0.0, 0.0, qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u1(-2*delta12n,qr[2]) Heis3.cx(qr[1],qr[2]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[1]) Heis3.u3(math.pi/2, 0.0, 0.0, qr[2]) # measure Heis3.measure(qr,cr) # Run the quantum algorithm backend = qk.BasicAer.get_backend('qasm_simulator') job = qk.execute(Heis3, backend, shots=nshots) result = job.result() counts = result.get_counts() # Post processing of outcomes to get sz expectation values sz1q = 0 sz2q = 0 sz3q = 0 for key,value in counts.items(): if key == '000': sz1q += value sz2q += value sz3q += value elif key == '001': sz1q -= value sz2q += value sz3q += value elif key == '010': sz1q += value sz2q -= value sz3q += value elif key == '011': sz1q -= value sz2q -= value sz3q += value elif key == '100': sz1q += value sz2q += value sz3q -= value elif key == '101': sz1q -= value sz2q += value sz3q -= value elif key == '110': sz1q += value sz2q -= value sz3q -= value elif key == '111': sz1q -= value sz2q -= value sz3q -= value sz1q_t[k] = sz1q/nshots sz2q_t[k] = sz2q/nshots sz3q_t[k] = sz3q/nshots fig = plt.figure() ax = plt.subplot(111) ax.plot(abs(J12)*c_times,0.5*sz1_t,'b', label='sz1 full') ax.plot(abs(J12)*c_times,0.5*sz2_t,'r', label='sz2 full') ax.plot(abs(J12)*c_times,0.5*sz3_t,'g', label='sz3 full') ax.plot(abs(J12)*c_times,0.5*sz1st_t,'b--',label='sz1 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*c_times,0.5*sz2st_t,'r--', label='sz2 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*c_times,0.5*sz3st_t,'g--', label='sz3 n = ' + str(ntrotter) + ' (classical)') ax.plot(abs(J12)*q_times,0.5*sz1q_t,'b*',label='sz1 n = ' + str(ntrotter) + ' (quantum)') ax.plot(abs(J12)*q_times,0.5*sz2q_t,'ro', label='sz2 n = ' + str(ntrotter) + ' (quantum)') ax.plot(abs(J12)*q_times,0.5*sz3q_t,'gd', label='sz3 n = ' + str(ntrotter) + ' (quantum)') chartBox = ax.get_position() ax.set_position([chartBox.x0, chartBox.y0, chartBox.width*1, chartBox.height]) ax.legend(loc='upper center', bbox_to_anchor=(1.3, 0.8), shadow=True, ncol=1) plt.xlabel(r'$\delta_{12} = |J_{12}|t$') plt.show() import Qconfig from qiskit.tools.monitor import job_monitor qk.IBMQ.enable_account(Qconfig.APItoken, **Qconfig.config) delta = 0.5*math.pi qr = qk.QuantumRegister(2,name='qr') cr = qk.ClassicalRegister(2,name='cr') Heis2 = qk.QuantumCircuit(qr,cr) # Initial state preparation Heis2.x(qr[0]) # ZZ Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) # YY Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(math.pi/2, -math.pi/2, math.pi/2, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[0]) Heis2.u3(-math.pi/2, -math.pi/2, math.pi/2, qr[1]) # XX Heis2.u3(-math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(-math.pi/2, 0.0, 0.0, qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u1(-2*delta,qr[1]) Heis2.cx(qr[0],qr[1]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[0]) Heis2.u3(math.pi/2, 0.0, 0.0, qr[1]) # measure Heis2.measure(qr,cr) my_backend = qk.IBMQ.get_backend('ibmqx4') job = qk.execute(Heis2, backend=my_backend, shots=1024) job_monitor(job, interval=5) result = job.result() counts = result.get_counts() print(counts) plot_histogram(counts) my_backend.configuration().coupling_map # In the output, the first entry in a pair [a,b] is a control, second is the # corresponding target for a CNOT
https://github.com/grossiM/Qiskit_workshop1019
grossiM
from IPython.display import IFrame IFrame("https://www.youtube.com/embed/hOlOY7NyMfs?start=75&end=126",560,315) # Example of Brute force period finding algorithm def find_period_classical(x, N): n = 1 t = x while t != 1: t *= x t %= N n += 1 return n N = 4 qrQFT = QuantumRegister(N,'qftr') QFT = QuantumCircuit(qrQFT) for i in range(N): QFT.h(qrQFT[i]) for k in range(i+1,N): l = k-i+1 QFT.cu1(2*math.pi/(2**l),qrQFT[k],qrQFT[i]) QFT.draw(output='mpl') import logging logger = logging.getLogger() logger.setLevel(logging.CRITICAL) from qiskit import IBMQ IBMQ.load_account() import qiskit qiskit.__version__ qiskit.__qiskit_version__ from qiskit.aqua.algorithms.quantum_algorithm import QuantumAlgorithm from qiskit.aqua.algorithms import Shor from qiskit import Aer from qiskit.tools.visualization import plot_histogram backend = Aer.get_backend("qasm_simulator") logger.setLevel(logging.CRITICAL) shor = Shor(15,11) result = shor.run(backend) result circuit = shor.construct_circuit(measurement=True) print(qiskit.aqua.utils.summarize_circuits(circuit)) circuit.draw() cloud_backend = IBMQ.get_provider(group='open').get_backend('ibmq_qasm_simulator') cloud_backend execution = qiskit.execute(circuit,cloud_backend) plot_histogram(execution.result().get_counts()) print('i(M/r)= 10000000=', int('10000000',2), ' M=', pow(2,8), ' r/i=', pow(2,8)/int('10000000',2), ' (i=1)') logger.setLevel(logging.DEBUG) counts = execution.result().get_counts() for output_desired in list(counts.keys()): # Get the x_value from the final state qubits success = shor._get_factors(output_desired, int(2 * shor._n)) if success: logger.info('Found factors {} from measurement {}.\n'.format( shor._ret['results'][output_desired], output_desired )) else: logger.info('Cannot find factors from measurement {} because {}\n'.format( output_desired, shor._ret['results'][output_desired] )) logger.setLevel(logging.CRITICAL) shor = Shor(15,7) result = shor.run(backend) result circuit = shor.construct_circuit(measurement=True) print(qiskit.aqua.utils.summarize_circuits(circuit)) circuit.draw() execution = qiskit.execute(circuit,backend) plot_histogram(execution.result().get_counts()) print('i(M/r)= 01000000=', int('01000000',2), ' M=', pow(2,8), ' r/i=', pow(2,8)/int('01000000',2), ' (i=1)') print('i(M/r)= 10000000=', int('10000000',2), ' M=', pow(2,8), ' r/i=', pow(2,8)/int('10000000',2), ' (i=2)') print('i(M/r)= 11000000=', int('11000000',2), ' M=', pow(2,8), ' r/i=', pow(2,8)/int('11000000',2), ' (i=3)') logger.setLevel(logging.DEBUG) counts = execution.result().get_counts() for output_desired in list(counts.keys()): # Get the x_value from the final state qubits success = shor._get_factors(output_desired, int(2 * shor._n)) if success: logger.info('Found factors {} from measurement {}.\n'.format( shor._ret['results'][output_desired], output_desired )) else: logger.info('Cannot find factors from measurement {} because {}\n'.format( output_desired, shor._ret['results'][output_desired] ))
https://github.com/ichen17/Learning-Qiskit
ichen17
from qiskit import * from qiskit.tools.visualization import plot_histogram %matplotlib inline secretnumber = '11100011' circuit = QuantumCircuit(len(secretnumber)+1,len(secretnumber)) circuit.h(range(len(secretnumber))) circuit.x(len(secretnumber)) circuit.h(len(secretnumber)) circuit.barrier() for ii, yesno in enumerate(reversed(secretnumber)): if yesno == '1': circuit.cx(ii,len(secretnumber)) circuit.barrier() circuit.h(range(len(secretnumber))) circuit.barrier() circuit.measure(range(len(secretnumber)),range(len(secretnumber))) circuit.draw(output = 'mpl')
https://github.com/ichen17/Learning-Qiskit
ichen17
from qiskit import * from qiskit.tools.jupyter import * from qiskit import pulse from qiskit import IBMQ from qiskit.ignis.mitigation.measurement import (complete_meas_cal, tensored_meas_cal, CompleteMeasFitter, TensoredMeasFitter) IBMQ.save_account("26595118309e0ea848015d3f7458b040ec723a9c11afd2d777038533a5a2b8079312af1e3713e370053f85bf7dd5d77f72993b0f04c2cd561e4c31f5a40c910c") IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science') backend = provider.get_backend('ibmq_rome') backend_config = backend.configuration() assert backend_config.open_pulse, "Backend doesn't support Pulse" dt = backend_config.dt print(f"Sampling time: {dt*1e9} ns") backend_defaults = backend.defaults() import numpy as np # unit conversion factors -> all backend properties returned in SI (Hz, sec, etc) GHz = 1.0e9 # Gigahertz MHz = 1.0e6 # Megahertz us = 1.0e-6 # Microseconds ns = 1.0e-9 # Nanoseconds # We will find the qubit frequency for the following qubit. #qubit = 0 frequencies_GHzs = [] for qubit in range(5): # The sweep will be centered around the estimated qubit frequency. center_frequency_Hz = backend_defaults.qubit_freq_est[qubit] # The default frequency is given in Hz # warning: this will change in a future release print(f"Qubit {qubit} has an estimated frequency of {center_frequency_Hz / GHz} GHz.") # scale factor to remove factors of 10 from the data scale_factor = 1e-14 # We will sweep 40 MHz around the estimated frequency frequency_span_Hz = 40 * MHz # in steps of 1 MHz. frequency_step_Hz = 1 * MHz # We will sweep 20 MHz above and 20 MHz below the estimated frequency frequency_min = center_frequency_Hz - frequency_span_Hz / 2 frequency_max = center_frequency_Hz + frequency_span_Hz / 2 # Construct an np array of the frequencies for our experiment frequencies_GHz = np.arange(frequency_min / GHz, frequency_max / GHz, frequency_step_Hz / GHz) frequencies_GHzs.append(frequencies_GHz) print(f"The sweep will go from {frequency_min / GHz} GHz to {frequency_max / GHz} GHz in steps of {frequency_step_Hz / MHz} MHz.") def get_closest_multiple_of_16(num): return int(num + 8 ) - (int(num + 8 ) % 16) from qiskit import pulse # This is where we access all of our Pulse features! from qiskit.pulse import Play # This Pulse module helps us build sampled pulses for common pulse shapes from qiskit.pulse import library as pulse_lib # Drive pulse parameters (us = microseconds) #drive_sigma_us = 0.004444 # This determines the actual width of the gaussian #0.0075 drive_sigma_us = 0.009 drive_samples_us = drive_sigma_us*8 # This is a truncating parameter, because gaussians don't have # a natural finite length drive_sigma = get_closest_multiple_of_16(drive_sigma_us * us /dt) # The width of the gaussian in units of dt drive_samples = get_closest_multiple_of_16(drive_samples_us * us /dt) # The truncating parameter in units of dt drive_amp = 0.05 # Drive pulse samples drive_pulse = pulse_lib.gaussian(duration=drive_samples, sigma=drive_sigma, amp=drive_amp, name='freq_sweep_excitation_pulse') drive_pulse = pulse_lib.gaussian(duration=drive_samples, sigma=drive_sigma, amp=drive_amp, name='freq_sweep_excitation_pulse') drive_sigma meas_map_idx = None for i, measure_group in enumerate(backend_config.meas_map): if qubit in measure_group: meas_map_idx = i break assert meas_map_idx is not None, f"Couldn't find qubit {qubit} in the meas_map!" inst_sched_map = backend_defaults.instruction_schedule_map measure = inst_sched_map.get('measure', qubits=backend_config.meas_map[meas_map_idx]) drive = [] meas = [] acq = [] for qubit in range(5): drive_chan = pulse.DriveChannel(qubit) drive.append(drive_chan) meas_chan = pulse.MeasureChannel(qubit) meas.append(meas_chan) acq_chan = pulse.AcquireChannel(qubit) acq.append(acq_chan) schedule = pulse.Schedule(name='Frequency sweep') schedule_frequencies = [] for i, j in enumerate(drive): schedule += Play(drive_pulse, j) # The left shift `<<` is special syntax meaning to shift the start time of the schedule by some duration # Create the frequency settings for the sweep (MUST BE IN HZ) frequencies_Hz = frequencies_GHzs[i]*GHz schedule_frequencies += [{j: freq} for freq in frequencies_Hz] schedule += measure << schedule.duration schedule.draw(label=True) from qiskit import assemble num_shots_per_frequency = 1024 frequency_sweep_program = assemble(schedule, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_frequency, schedule_los=schedule_frequencies) job = backend.run(frequency_sweep_program) from qiskit import pulse with pulse.build(name='Pulse') as arb: pulse.play(drive_pulse, pulse.DriveChannel(0)) arb.draw() from qiskit.tools.monitor import job_monitor job_monitor(job) frequency_sweep_results = job.result(timeout=120) scale_factor = 1e-7 import matplotlib.pyplot as plt qubit = 0 sweep_values_total = [] for j in range(5): sweep_values = [] #for i in range(len(frequency_sweep_results.results)): for i in range(41*j,41*(j+1)): # Get the results from the ith experiment res = frequency_sweep_results.get_memory(i)*scale_factor # Get the results for `qubit` from this experiment sweep_values.append(res[j]) #frequency_q= list(frequency_for_qubits[j])*7 print(len(sweep_values)) sweep_values_total.append(sweep_values) plt.scatter(frequencies_GHzs[j], np.real(sweep_values), color='black') # plot real part of sweep values plt.xlim([min(frequencies_GHzs[j]), max(frequencies_GHzs[j])]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured signal [a.u.]") plt.show() from scipy.optimize import curve_fit def fit_function(x_values, y_values, function, init_params): fitparams, conv = curve_fit(function, x_values, y_values, init_params) y_fit = function(x_values, *fitparams) return fitparams, y_fit Q_freq=[] for i in range(5): fit_params, y_fit = fit_function(frequencies_GHzs[i], np.real(np.real(sweep_values_total[i])), lambda x, A, q_freq, B, C: (A / np.pi) * (B / ((x - q_freq)**2 + B**2)) + C, [0.02, frequencies_GHzs[i][20], 0.002, -2.17] # initial parameters for curve_fit ) plt.scatter(frequencies_GHzs[i], np.real(sweep_values_total[i]), color='black') plt.plot(frequencies_GHzs[i], y_fit, color='red') plt.xlim([min(frequencies_GHzs[i]), max(frequencies_GHzs[i])]) plt.xlabel("Frequency [GHz]") plt.ylabel("Measured Signal [a.u.]") plt.show() Q_freq.append(fit_params[1]) Q_freq num_rabi_points = 50 # Drive amplitude values to iterate over: 50 amplitudes evenly spaced from 0 to 0.75 drive_amp_min = 0 drive_amp_max = 0.20 drive_amps = np.linspace(drive_amp_min, drive_amp_max, num_rabi_points) rabi_schedules = [] for drive_amp in drive_amps: rabi_pulse = pulse_lib.gaussian(duration=drive_samples, amp=drive_amp, sigma=drive_sigma, name=f"Rabi drive amplitude = {drive_amp}") this_schedule = pulse.Schedule(name=f"Rabi drive amplitude = {drive_amp}") this_schedule += Play(rabi_pulse, drive[0]) # Reuse the measure instruction from the frequency sweep experiment this_schedule += measure << this_schedule.duration rabi_schedules.append(this_schedule) rabi_schedules[-1].draw(label=True) num_shots_per_point = 1024 rabi_experiment_program = assemble(rabi_schedules, backend=backend, meas_level=1, meas_return='avg', shots=num_shots_per_point, schedule_los=[{drive_chan: Q_freq[0]*GHz}] * num_rabi_points) print(job.job_id()) job = backend.run(rabi_experiment_program) job_monitor(job) rabi_results = job.result(timeout=120) def baseline_remove(values): return np.array(values) - np.mean(values) rabi_values = [] for i in range(num_rabi_points): # Get the results for `qubit` from the ith experiment rabi_values.append(rabi_results.get_memory(i)[qubit]*scale_factor) rabi_values = np.real(baseline_remove(rabi_values)) plt.xlabel("Drive amp [a.u.]") plt.ylabel("Measured signal [a.u.]") plt.scatter(drive_amps, rabi_values, color='black') # plot real part of Rabi values plt.show() fit_params, y_fit = fit_function(drive_amps, rabi_values, lambda x, A, B, drive_period, phi: (A*np.cos(2*np.pi*x/drive_period - phi) + B), [2, 0, 0.2, 0]) plt.scatter(drive_amps, rabi_values, color='black') plt.plot(drive_amps, y_fit, color='red') drive_period = fit_params[2] # get period of rabi oscillation plt.axvline(drive_period/4*3, color='red', linestyle='--') plt.axvline(drive_period, color='red', linestyle='--') #plt.annotate("", xy=(drive_period, 0), xytext=(drive_period/2,0), arrowprops=dict(arrowstyle="<->", color='red')) #plt.annotate("$\pi$", xy=(drive_period/2-0.03, 0.1), color='red') plt.xlabel("Drive amp [a.u.]", fontsize=15) plt.ylabel("Measured signal [a.u.]", fontsize=15) plt.show() print(fit_params) fit_params[2] pi_half_amp = abs(drive_period / 4) pi_amp= abs(drive_period / 2) print(f"Square root x (amp.)= {pi_half_amp}") print(f"Square root x (amp.)= {pi_amp}") time_max_us = 1.5 time_step_us = 0.025 times_us = np.arange(0.025, time_max_us, time_step_us) # Convert to units of dt delay_times_dt = times_us * us / dt # Drive parameters # The drive amplitude for pi/2 is simply half the amplitude of the pi pulse drive_amp = pi_amp / 2 # x_90 is a concise way to say pi_over_2; i.e., an X rotation of 90 degrees x90_pulse = pulse_lib.gaussian(duration=drive_samples, amp=drive_amp, sigma=drive_sigma, name='x90_pulse') ramsey_schedules = [] for delay in delay_times_dt: this_schedule = pulse.Schedule(name=f"Ramsey delay = {delay * dt / us} us") this_schedule |= Play(x90_pulse, drive[0]) this_schedule |= Play(x90_pulse, drive[0]) << int(this_schedule.duration + delay) this_schedule |= measure << int(this_schedule.duration) ramsey_schedules.append(this_schedule) ramsey_schedules[0].draw(label=True) num_shots = 256 detuning_MHz = -1 ramsey_frequency = round(Q_freq[0]*GHz + detuning_MHz * MHz, 6) # need ramsey freq in Hz ramsey_program = assemble(ramsey_schedules, backend=backend, meas_level=1, meas_return='avg', shots=num_shots, schedule_los=[{drive_chan: ramsey_frequency}]*len(ramsey_schedules) ) job = backend.run(ramsey_program) # print(job.job_id()) job_monitor(job) ramsey_results = job.result(timeout=120) ramsey_values = [] for i in range(len(times_us)): ramsey_values.append(ramsey_results.get_memory(i)[0]*scale_factor) plt.scatter(times_us, np.real(ramsey_values), color='black') plt.xlim(0, np.max(times_us)) plt.title("Ramsey Experiment", fontsize=15) plt.xlabel('Delay between X90 pulses [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.show() fit_params, y_fit = fit_function(times_us, np.real(ramsey_values), lambda x, A, del_f_MHz, C, B: ( A* np.cos(2*np.pi*del_f_MHz*x - 0.56) + B*x**(C) ), [0.15588132, 0.0554278, -0.04492174, 2.21367894] ) # Off-resonance component _, del_f_MHz, _, _, = fit_params # freq is MHz since times in us plt.scatter(times_us, np.real(ramsey_values), color='black') plt.plot(times_us, y_fit, color='red', label=f"df = {del_f_MHz:.2f} MHz") plt.xlim(0, np.max(times_us)) plt.xlabel('Delay between X90 pulses [$\mu$s]', fontsize=15) plt.ylabel('Measured Signal [a.u.]', fontsize=15) plt.title('Ramsey Experiment', fontsize=15) plt.legend() plt.show() fit_params precise_qubit_freq = Q_freq[0]*GHz + (del_f_MHz - detuning_MHz) * MHz # get new freq in Hz print(f"Our updated qubit frequency is now {round(precise_qubit_freq/GHz, 6)} GHz. " f"It used to be {round(Q_freq[0]*GHz / GHz, 6)} GHz") ramsey_results.get_memory(0) pi_half_pulse = pulse_lib.gaussian(duration=drive_samples, amp=pi_half_amp, sigma=drive_sigma, name='Square root x') from qiskit import pulse with pulse.build(name='Square root x') as xrx: pulse.play(pi_half_pulse, pulse.DriveChannel(0)) xrx.draw() def X_circuit1(n=20,qubit=0): Xcircuit = [] for i in range(n): xcircuit_z_q0 = QuantumCircuit(5,1) xcircuit_x_q0 = QuantumCircuit(5,1) xcircuit_y_q0 = QuantumCircuit(5,1) for j in range(i): xcircuit_z_q0.sx(qubit) xcircuit_z_q0.sx(qubit) xcircuit_z_q0.barrier() xcircuit_z_q0.sx(qubit) xcircuit_z_q0.sx(qubit) xcircuit_z_q0.barrier() xcircuit_x_q0.sx(qubit) xcircuit_x_q0.sx(qubit) xcircuit_x_q0.barrier() xcircuit_x_q0.sx(qubit) xcircuit_x_q0.sx(qubit) xcircuit_x_q0.barrier() xcircuit_y_q0.sx(qubit) xcircuit_y_q0.sx(qubit) xcircuit_y_q0.barrier() xcircuit_y_q0.sx(qubit) xcircuit_y_q0.sx(qubit) xcircuit_y_q0.barrier() xcircuit_x_q0.h(qubit) xcircuit_y_q0.sdg(qubit) xcircuit_y_q0.h(qubit) xcircuit_z_q0.measure(qubit,0) xcircuit_x_q0.measure(qubit,0) xcircuit_y_q0.measure(qubit,0) xcircuit_z_q0.add_calibration('sx', [0], xrx) xcircuit_x_q0.add_calibration('sx', [0], xrx) xcircuit_y_q0.add_calibration('sx', [0], xrx) xcircuit_z_q0 = transpile(xcircuit_z_q0, backend) xcircuit_x_q0 = transpile(xcircuit_x_q0, backend) xcircuit_y_q0 = transpile(xcircuit_y_q0, backend) Xcircuit.append(xcircuit_z_q0) Xcircuit.append(xcircuit_x_q0) Xcircuit.append(xcircuit_y_q0) return Xcircuit q=0 qr = QuantumRegister(5) qubit_list = [q] meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list, qr=qr, circlabel='mcal') circuit_x = X_circuit1(20,0) reps=2 all_jobs = [] all_jobs_mit = [] for ii in range(reps): # Run QPT on backend shots = 8192 il = [0,1,2,3,4] #job_backend = execute(stabilizer_circuits, Aer.get_backend('qasm_simulator'), shots=shots, initial_layout=il,basis_gates=basis_gates,noise_model=noise_model) job_backend = execute(circuit_x, backend, shots=shots, initial_layout=il) #job_mit_backend = execute(meas_cal_circuits, Aer.get_backend('qasm_simulator'), shots=shots, initial_layout=il,basis_gates=basis_gates,noise_model=noise_model) job_mit_backend = execute(meas_calibs, backend, shots=shots, initial_layout=il) print('Job IDs ({}/{}): \n measurement calibration: {}\n stabilizer measurements: {}'.format( ii+1, reps, job_mit_backend.job_id(), job_backend.job_id())) all_jobs.append(job_backend) all_jobs_mit.append(job_mit_backend) for job in all_jobs: job_monitor(job) try: if job.error_message() is not None: print(job.error_message()) except: pass cal_results = all_jobs_mit[1].result() results = all_jobs[1].result() meas_fitter = CompleteMeasFitter(cal_results, state_labels, qubit_list=qubit_list, circlabel='mcal') print(meas_fitter.cal_matrix) meas_fitter.plot_calibration() from qiskit.tools.visualization import * import matplotlib.pyplot as plt import math import numpy as np Result_nomit = results.get_counts(0) mitigated_counts = meas_fitter.filter.apply(results).get_counts(0) plot_histogram([Result_nomit, mitigated_counts], legend=['raw', 'mitigated']) (0.719/0.990)**(1/80)
https://github.com/ichen17/Learning-Qiskit
ichen17
# initialization import numpy as np import matplotlib # importing Qiskit from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer, assemble, transpile from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram style = {'backgroundcolor': 'lightyellow'} # Style of the circuits # set the length of the n-bit input string. n = 3 # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw(output='mpl', style=style) # use local simulator aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(dj_circuit, aer_sim) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) print(b) print(str(n)) b=7 # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') print(b_str) # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw(output='mpl', style=style) transpiled_dj_circuit = transpile(dj_circuit, aer_sim) qobj = assemble(transpiled_dj_circuit) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/ichen17/Learning-Qiskit
ichen17
pip install pylatexenc !pip install qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector from qiskit.visualization import plot_histogram # Create a Quantum Register called "qr" with 2 qubits. qr = QuantumRegister(2,'qr') # Create a Classical Register called "cr" with 2 bits. cr = ClassicalRegister(2,'cr') qc = QuantumCircuit(qr,cr) # Add the H gate in the Qubit 1, putting this qubit in superposition. qc.h(qr[1]) # Add the CX gate on control qubit 1 and target qubit 0, putting the qubits in a Bell state i.e entanglement qc.cx(qr[1], qr[0]) # Add a Measure gate to see the state. qc.measure(qr[0],cr[0]) qc.measure(qr[1],cr[1]) # Compile and execute the Quantum Program in the ibmqx5 qc.draw(output='mpl') qasm_simulator = Aer.get_backend('qasm_simulator') shots = 1024 result = results = execute(qc, backend=qasm_simulator, shots=shots).result() Ans=result.get_counts() plot_histogram(Ans)
https://github.com/ichen17/Learning-Qiskit
ichen17
# Importing Packages from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile, assemble, QuantumRegister, ClassicalRegister from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle bb = input("Enter the input string:\n") ### Using in-built "simon_oracle" from QISKIT # importing Qiskit from qiskit import IBMQ, Aer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, transpile, assemble # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle n = len(bb) simon_circuit = QuantumCircuit(n*2, n) # Apply Hadamard gates before querying the oracle simon_circuit.h(range(n)) # Apply barrier for visual separation simon_circuit.barrier() simon_circuit += simon_oracle(bb) # Apply barrier for visual separation simon_circuit.barrier() # Apply Hadamard gates to the input register simon_circuit.h(range(n)) # Measure qubits simon_circuit.measure(range(n), range(n)) simon_circuit.draw(output="mpl") # use local simulator aer_sim = Aer.get_backend('aer_simulator') shots = 500 qobj = assemble(simon_circuit, shots=shots) results = aer_sim.run(qobj).result() counts = results.get_counts() print(counts) plot_histogram(counts) # Calculate the dot product of the results def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) for z in counts: print( '{}.{} = {} (mod 2)'.format(b, z, bdotz(b,z)) ) b = input("Enter a binary string:\n") # Actual b = 011 b_rev = b[::-1] flagbit = b_rev.find('1') n=len(b) q1=QuantumRegister(n,'q1') q2=QuantumRegister(n,'q2') c1=ClassicalRegister(n) qc = QuantumCircuit(q1,q2,c1) qc.barrier() qc.h(q1) qc.barrier() for i in range(n): qc.cx(q1[i],q2[i]) qc.barrier() if flagbit != -1: # print("test1") for ind, bit in enumerate(b_rev): # print("test2") if bit == "1": # print("test3") qc.cx(flagbit, q2[ind]) qc.barrier() qc.h(q1) qc.barrier() qc.measure(q1,c1) qc.draw("mpl") aer_sim = Aer.get_backend('aer_simulator') shots = 500 qobj = assemble(qc, shots=shots) results = aer_sim.run(qobj).result() counts = results.get_counts() print(counts) plot_histogram(counts) # Actual b = 011 b="1" b_rev = "1" flagbit = b_rev.find('1') n=len(b) q1=QuantumRegister(n,'q1') q2=QuantumRegister(n,'q2') c1=ClassicalRegister(n) qc = QuantumCircuit(q1,q2,c1) qc.barrier() qc.h(q1) qc.barrier() for i in range(n): qc.cx(q1[i],q2[i]) qc.barrier() if flagbit != -1: # print("test1") for ind, bit in enumerate(b_rev): # print("test2") if bit == "1": # print("test3") qc.cx(flagbit, q2[ind]) qc.barrier() qc.h(q1) qc.barrier() # qc.measure(q1,c1) # qc.draw("mpl") # Simulate the unitary usim = Aer.get_backend('aer_simulator') qc.save_unitary() qobj = assemble(qc) unitary = usim.run(qobj).result().get_unitary() # Display the results: array_to_latex(unitary, prefix="\\text{Circuit = } ")
https://github.com/ichen17/Learning-Qiskit
ichen17
from qiskit import * import numpy as np from qiskit.visualization import plot_histogram qb_Alice = QuantumRegister(1, name='qr') # Alice's qubit qb_Bob = QuantumRegister(1, name='qr1') # Bob's qubit Superdense_Code = QuantumCircuit(qb_Alice, qb_Bob) def buid_Bell_pair(qc,q1,q2): #To build up the a bell pair state qc.h(q1) #Applying the Hadamard gate on qubit for alice qc.cx(q1,q2) #Applying the Cnot gate with the control qubit Alice's and target qubit bob's def operation_from_Alice(qc,q1,classical_info): if classical_info =='00': #The classical information Alice want to send return elif classical_info =='01':#The classical information Alice want to send qc.z(q1) elif classical_info =='10':#The classical information Alice want to send qc.x(q1) else: #'11': #The classical information Alice want to send qc.x(q1) qc.z(q1) def Bell_decoding(qc,q1,q2): # In this step, Bob get the qubit operated by Alice and another qubit of Bell pair state. qc.cx(q1,q2) # Bob applies the CNOT gate with the control qubit Alice's and target qubit bob's qc.h(q1) # Applying the Hadamard gate on qubit for Alice's qubit classical_info='01' # The classical information Alice wants to send buid_Bell_pair(Superdense_Code, 0, 1) Superdense_Code.barrier() operation_from_Alice(Superdense_Code,0,classical_info) Superdense_Code.barrier() Bell_decoding(Superdense_Code,0,1) Superdense_Code.measure_all() #measure all of qubits Superdense_Code.draw(output = "mpl") backend = Aer.get_backend('qasm_simulator') job_sim = execute(Superdense_Code, backend, shots=10) sim_result = job_sim.result() measurement_result = sim_result.get_counts(Superdense_Code) print(measurement_result) plot_histogram(measurement_result)
https://github.com/ichen17/Learning-Qiskit
ichen17
from qiskit import * import numpy as np from random import random from qiskit.extensions import Initialize from qiskit.visualization import plot_histogram, plot_bloch_multivector ## SETUP # Protocol uses 3 qubits and 1 classical bit in a register qr = QuantumRegister(3, name="q") # Protocol uses 4 qubits cr1 = ClassicalRegister(1, name="cr1") # and 2 classical bit #cr2 = ClassicalRegister(1, name="cr2") bit_flip_circuit = QuantumCircuit(qr,cr1) def encoding(qc, q0, q1, q2): """Creates encoding process using qubits q0 & q1 & q2""" qc.cx(q0,q1) # CNOT with q1 as control and q0 as target qc.cx(q0,q2) # CNOT with q2 as control and q0 as target # initialization instruction to create # |ψ⟩ from the state |0⟩: p = 0.25 # p stands for the probability of fliping the state of the qubit psi = [np.sqrt(p), np.sqrt(1-p)] init_gate = Initialize(psi) # initialize the superposition state init_gate.label = "init" def measure(qc, q0, cr): """Measures qubit q0 """ qc.barrier() qc.measure(q0,cr) def decoding(qc, q0, q1, q2): """Creates decoding process using qubits q0 & q1 & q2""" qc.cx(q0,q1) # CNOT with q1 as control and q0 as target qc.cx(q0,q2) # CNOT with q2 as control and q0 as target qc.ccx(q2,q1,q0) # Apply a Toffoli gate |011> <-> |111> encoding(bit_flip_circuit, 0, 1, 2) # step 2. error simulation #bit_flip_circuit.append(Er,[0,1,2,3]) #error_simulation(bit_flip_circuit, 0, 1, 2, p) bit_flip_circuit.barrier() bit_flip_circuit.ry(np.pi/3,0)# Here rotate the spin around x axis by pi/3 so that the state will become 1/2|0>+sqrt(3)/2|1> bit_flip_circuit.ry(np.pi/3,1)# Here rotate the spin around x axis by pi/3 so that the state will become 1/2|0>+sqrt(3)/2|1> bit_flip_circuit.ry(np.pi/3,2)# Here rotate the spin around x axis by pi/3 so that the state will become 1/2|0>+sqrt(3)/2|1> bit_flip_circuit.barrier() # step 3. decoding decoding(bit_flip_circuit, 0, 1, 2) # step 4. measurement measure(bit_flip_circuit, 0, 0) # View the circuit: %matplotlib inline bit_flip_circuit.draw(output='mpl') backend = BasicAer.get_backend('qasm_simulator') counts = execute(bit_flip_circuit, backend, shots=1024).result().get_counts() # No. of measurement shots = 1024 plot_histogram(counts)
https://github.com/ichen17/Learning-Qiskit
ichen17
from qiskit import * import numpy as np from random import random from qiskit.extensions import Initialize from qiskit.visualization import plot_histogram, plot_bloch_multivector import qiskit.providers.aer.noise as noise # Protocol uses 3 qubits and 1 classical bit in a register qr = QuantumRegister(3, name="q") # Protocol uses 4 qubits cr1 = ClassicalRegister(1, name="cr1") # and 2 classical bit #cr2 = ClassicalRegister(1, name="cr2") bit_flip_circuit = QuantumCircuit(qr,cr1) def encoding(qc, q0, q1, q2): """Creates encoding process using qubits q0 & q1 & q2""" qc.cx(q0,q1) # CNOT with q1 as control and q0 as target qc.cx(q0,q2) # CNOT with q2 as control and q0 as target def measure(qc, q0, cr): """Measures qubit q0 """ qc.barrier() qc.measure(q0,cr) def decoding(qc, q0, q1, q2): """Creates decoding process using qubits q0 & q1 & q2""" qc.cx(q0,q1) # CNOT with q1 as control and q0 as target qc.cx(q0,q2) # CNOT with q2 as control and q0 as target qc.ccx(q2,q1,q0) # Apply a Toffoli gate |011> <-> |111> prob_1 = 0.25 # 1-qubit gate #prob_2 = 0.01 # 2-qubit gate # Depolarizing quantum errors error_1 = noise.phase_amplitude_damping_error(prob_1, 0.1, 1) #error_1 = noise.amplitude_damping_error(prob_1, 1) #error_2 = noise.depolarizing_error(prob_2, 2) # Add errors to noise model noise_model = noise.NoiseModel() noise_model.add_all_qubit_quantum_error(error_1, ['id']) #noise_model.add_all_qubit_quantum_error(error_2, ['cx']) # Get basis gates from noise model basis_gates = noise_model.basis_gates encoding(bit_flip_circuit, 0, 1, 2) # step 2. error simulation #bit_flip_circuit.append(Er,[0,1,2,3]) #error_simulation(bit_flip_circuit, 0, 1, 2, p) bit_flip_circuit.barrier() bit_flip_circuit.i(0) bit_flip_circuit.i(1) bit_flip_circuit.i(2) bit_flip_circuit.barrier() # step 3. decoding decoding(bit_flip_circuit, 0, 1, 2) # step 4. measurement measure(bit_flip_circuit, 0, 0) # View the circuit: %matplotlib inline bit_flip_circuit.draw(output='mpl') result = execute(bit_flip_circuit, Aer.get_backend('qasm_simulator'), basis_gates=basis_gates, noise_model=noise_model).result() counts = result.get_counts(0) plot_histogram(counts) nocor = QuantumCircuit(1,1) nocor.i(0) measure(nocor, 0, 0) nocor.draw(output='mpl') result = execute(nocor, Aer.get_backend('qasm_simulator'), basis_gates=basis_gates, noise_model=noise_model).result() counts = result.get_counts(0) plot_histogram(counts)
https://github.com/ichen17/Learning-Qiskit
ichen17
# Import libraries for use from qiskit import * import numpy as np from random import random from qiskit.extensions import Initialize from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit_textbook.tools import random_state, array_to_latex ## SETUP # Protocol uses 4 qubits and 1 classical bit in a register qr = QuantumRegister(4, name="q") # Protocol uses 4 qubits cr = ClassicalRegister(1, name="cr") # and 1 classical bit cr sign_flip_circuit = QuantumCircuit(qr, cr) def encoding(qc, q0, q1, q2): """Creates encoding process using qubits q0 & q1 & q2""" qc.cx(q0,q1) # CNOT with q1 as control and q0 as target (Use q1 to control q0.) qc.cx(q0,q2) # CNOT with q2 as control and q0 as target # initialization instruction to create # |ψ⟩ from the state |0⟩: p = 1 # p stands for the probability of sign-fliping the state of the qubit psi = [np.sqrt(1-p), np.sqrt(p)] init_gate = Initialize(psi) # initialize the superposition state init_gate.label = "init" def error_simulation(qc, q0, q1, q2, q3): """Creates error simulation using qubits q0 & q1 & q2 & q3""" qc.append(init_gate, [3]) # create the superposition state for |q3> measure(qc, 3, 0) # measure the state on |q3> qc.z(q0).c_if(cr, 1) # apply z gate on q0 if |1> was measured by |q3> qc.append(init_gate, [3]) measure(qc, 3, 0) qc.z(q1).c_if(cr, 1) # apply z gate on q1 if |1> was measured by |q3> qc.append(init_gate, [3]) measure(qc, 3, 0) qc.z(q2).c_if(cr, 1) # apply z gate on q2 if |1> was measured by |q3> def measure(qc, q0, cr): """Measures qubit q0 """ qc.barrier() qc.measure(q0,cr) def decoding(qc, q0, q1, q2): """Creates decoding process using qubits q0 & q1 & q2""" qc.cx(q0,q1) # CNOT with q1 as control and q0 as target qc.cx(q0,q2) # CNOT with q2 as control and q0 as target qc.ccx(q2,q1,q0) # Apply a Toffoli gate |011> <-> |111> # Let's apply the process above to our circuit: # step 0. input |0> -> |+> sign_flip_circuit.h(0) # step 1. encoding encoding(sign_flip_circuit, 0, 1, 2) sign_flip_circuit.h(0) sign_flip_circuit.h(1) sign_flip_circuit.h(2) # step 2. error simulation error_simulation(sign_flip_circuit, 0, 1, 2, p) sign_flip_circuit.barrier() # step 3. decoding sign_flip_circuit.h(0) sign_flip_circuit.h(1) sign_flip_circuit.h(2) decoding(sign_flip_circuit, 0, 1, 2) # step 4. measurement sign_flip_circuit.h(0) measure(sign_flip_circuit, 0, 0) # View the circuit: %matplotlib inline sign_flip_circuit.draw(output='mpl') backend = BasicAer.get_backend('qasm_simulator') counts = execute(sign_flip_circuit, backend, shots=1024).result().get_counts() # No. of measurement shots = 1024 plot_histogram(counts)
https://github.com/ichen17/Learning-Qiskit
ichen17
# Import libraries for use from qiskit import * import numpy as np from random import random from qiskit.extensions import Initialize from qiskit.visualization import plot_histogram, plot_bloch_multivector from qiskit_textbook.tools import random_state, array_to_latex ## SETUP # Protocol uses 4 qubits and 1 classical bit in a register qr = QuantumRegister(4, name="q") # Protocol uses 4 qubits cr = ClassicalRegister(1, name="cr") # and 1 classical bit cr bit_flip_circuit = QuantumCircuit(qr, cr) def encoding(qc, q0, q1, q2): """Creates encoding process using qubits q0 & q1 & q2""" qc.cx(q0,q1) # CNOT with q1 as control and q0 as target (Use q1 to control q0.) qc.cx(q0,q2) # CNOT with q2 as control and q0 as target # initialization instruction to create # |ψ⟩ from the state |0⟩: p = 0.25 # p stands for the probability of fliping the state of the qubit psi = [np.sqrt(1-p), np.sqrt(p)] init_gate = Initialize(psi) # initialize the superposition state init_gate.label = "init" def error_simulation(qc, q0, q1, q2, q3): """Creates error simulation using qubits q0 & q1 & q2 & q3""" qc.append(init_gate, [3]) # create the superposition state for |q3> measure(qc, 3, 0) # measure the state on |q3> qc.x(q0).c_if(cr, 1) # apply x gate on q0 if |1> was measured by |q3> qc.append(init_gate, [3]) measure(qc, 3, 0) qc.x(q1).c_if(cr, 1) # apply x gate on q1 if |1> was measured by |q3> qc.append(init_gate, [3]) measure(qc, 3, 0) qc.x(q2).c_if(cr, 1) # apply x gate on q2 if |1> was measured by |q3> def measure(qc, q0, cr): """Measures qubit q0 """ qc.barrier() qc.measure(q0,cr) def decoding(qc, q0, q1, q2): """Creates decoding process using qubits q0 & q1 & q2""" qc.cx(q0,q1) # CNOT with q1 as control and q0 as target qc.cx(q0,q2) # CNOT with q2 as control and q0 as target qc.ccx(q2,q1,q0) # Apply a Toffoli gate |011> <-> |111> # Let's apply the process above to our circuit: # step 1. encoding encoding(bit_flip_circuit, 0, 1, 2) # step 2. error simulation error_simulation(bit_flip_circuit, 0, 1, 2, p) bit_flip_circuit.barrier() # step 3. decoding decoding(bit_flip_circuit, 0, 1, 2) # step 4. measurement measure(bit_flip_circuit, 0, 0) # View the circuit: %matplotlib inline bit_flip_circuit.draw(output='mpl') backend = BasicAer.get_backend('qasm_simulator') counts = execute(bit_flip_circuit, backend, shots=1024).result().get_counts() # No. of measurement shots = 1024 plot_histogram(counts) ## SETUP # Protocol uses 4 qubits and 1 classical bit in a register qr = QuantumRegister(4, name="q") # Protocol uses 4 qubits cr = ClassicalRegister(1, name="cr") # and 1 classical bit cr bit_flip_random_circuit = QuantumCircuit(qr, cr) # Create random 1-qubit state psi_random = random_state(1) # Display it nicely array_to_latex(psi_random, pretext="|\\psi\\rangle =") # Show it on a Bloch sphere plot_bloch_multivector(psi_random) # initialization instruction to create # |ψ⟩ from the state |0⟩: #(Initialize is technically not a gate since it contains a reset operation.) init_gate_random = Initialize(psi_random) init_gate_random.label = "init_random" #Since all quantum gates are reversible, #we can find the inverse of these gates using: inverse_init_gate_random = init_gate_random.gates_to_uncompute() # Let's apply the process above to our circuit: ## STEP 0 # First, let's initialize Alice's q0 bit_flip_random_circuit.append(init_gate_random, [0]) bit_flip_random_circuit.barrier() # step 1. encoding encoding(bit_flip_random_circuit, 0, 1, 2) # step 2. error simulation error_simulation(bit_flip_random_circuit, 0, 1, 2, p) bit_flip_random_circuit.barrier() # step 3. decoding decoding(bit_flip_random_circuit, 0, 1, 2) ## STEP 4 # reverse the initialization process bit_flip_random_circuit.append(inverse_init_gate_random, [0]) # step 5. measurement measure(bit_flip_random_circuit, 0, 0) # View the circuit: %matplotlib inline bit_flip_random_circuit.draw(output='mpl') backend = BasicAer.get_backend('qasm_simulator') counts = execute(bit_flip_random_circuit, backend, shots=1024).result().get_counts() # No. of measurement shots = 1024 plot_histogram(counts)
https://github.com/josejad42/quantum_algorithms_and_protocols
josejad42
pip install qiskit pip install qiskit_aer from qiskit import QuantumCircuit def deustch_func(value): c = QuantumCircuit(2) if value in [2,3]: c.cx(0,1) if value in [3,4]: c.x(1) return c num = 2 deustch_func(num).draw() def deustch_algorithm(func): n = func.num_qubits - 1 qc = QuantumCircuit(n+1,n) qc.x(n) qc.h(range(n+1)) qc.barrier() qc.compose(func, inplace=True) qc.barrier() qc.h(range(n)) qc.measure(range(n),range(n)) return qc deustch_algorithm(deustch_func(2)).draw() from qiskit_aer import AerSimulator def execute_deutsch(function): qc = deustch_algorithm(function) result = AerSimulator().run(qc,shots=1,memory=True).result() measurements = result.get_memory() if measurements[0] == '0': return "constant" return "balanced" f = deustch_func(2) display(f.draw()) execute_deutsch(f)
https://github.com/josejad42/quantum_algorithms_and_protocols
josejad42
!pip install qiskit qiskit-aer pylatexenc --quiet import numpy as np from qiskit import QuantumCircuit qc = QuantumCircuit(3,2) # QuantumCircuit(num. bits quânticos, num. bits clássicos) qc.x(0) qc.ccx(0,1,2) qc.y(0) qc.barrier() qc.h(1) qc.h(2) qc.measure(1,0) # É possível medir epecificamente um qubit: measure(qubit,bit clássico) qc.measure(2,1) qc.draw('mpl') qc = QuantumCircuit(3) # Não passamos nenhum bit clássico qc.x(0) qc.ccx(0,1,2) qc.y(0) qc.barrier() qc.h(1) qc.h(2) qc.measure_all() # É possível medir todos os qubits de uma vez qc.draw('mpl') qc = QuantumCircuit(3) #matrizes de pauli qc.x(0) qc.y(1) qc.z(2) #rotações parametrizadas - r_ (ângulo, posicão) qc.rx(30,0) qc.ry(45,1) qc.rz(np.pi/2,2) #hadamard gate qc.h(0) #outras portas qc.s(1) qc.t(2) qc.draw('mpl') qc = QuantumCircuit(4) #rotações controladas - cr_ (angulo, controle, alvo) qc.crz(30,0,1) qc.cry(np.pi,1,0) #porta CNOT - cx(controle, alvo) qc.cx(0,1) #porta Tofolli - ccx (controles, alvo) qc.ccx(0,1,2) #CNOT multicontrolada - mcx([lista de controles], alvo) qc.mcx([0,1,2],3) qc.draw('mpl') circuit = QuantumCircuit(2) matrix = [[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]] circuit.unitary(matrix, [0 ,1]) # unitary([[matriz]], [lista de bits]) circuit.draw('mpl') from qiskit.circuit.library import UnitaryGate circuit = QuantumCircuit(3) matrix = [[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0]] gate = UnitaryGate(matrix) cGate = gate.control(1) circuit.append(cGate, [0, 1, 2]) # append(operador, [controles, alvos]) circuit.draw('mpl') c = QuantumCircuit(3) c.x(0) c.x(1) c.h(2) c.ccx(0,1,2) gate = c.to_gate(label='Death Note') c.draw('mpl') qc = QuantumCircuit(4) qc.append(gate, [0,1,2]) qc.draw('mpl') qc = QuantumCircuit(6) cGate = gate.control(3) qc.x(0) qc.x(1) qc.x(2) qc.append(cGate, [0,1,2,3,4,5]) qc.draw('mpl') from qiskit_aer import Aer from qiskit.visualization import plot_histogram from qiskit import transpile sim = Aer.get_backend('aer_simulator') qc.measure_all() qc = transpile(qc, basis_gates=['u', 'cx']) # o simulador nao consegue trabalhar com a caixa-preta, # precisamos decompor o circuito em operadores mais simples # não precisaríamos da transpilação se o circuito fosse simples counts = sim.run(qc).result().get_counts() plot_histogram(counts) #Circuito após a transpilação #qc.draw('mpl')
https://github.com/josejad42/quantum_algorithms_and_protocols
josejad42
pip install qiskit pylatexenc qiskit-aer --quiet from qiskit import QuantumCircuit, Aer, transpile from qiskit.visualization import plot_histogram, plot_bloch_multivector from numpy.random import randint from qiskit.visualization import visualize_transition import numpy as np import matplotlib.pyplot as plt qc = QuantumCircuit(1, 1) # Alice prepara o qubit no estado |-> (1 na base de Hadamard) qc.x(0) qc.h(0) qc.s(0) qc.barrier() # Alice envia o qubit para Bob # Bob mede o qubit na base X qc.sdg(0) qc.h(0) qc.measure(0, 0) # Backend display(qc.draw('mpl')) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(qc) plot_h1 = plot_histogram(job.result().get_counts()) plot_h1 qc = QuantumCircuit(1, 1) # Alice prepara o qubit no estado |-> (1 na base de Hadamard) qc.x(0) qc.h(0) qc.barrier() # Alice envia o qubit para Bob # Bob mede o qubit na base X qc.h(0) qc.measure(0, 0) # Backend display(qc.draw('mpl')) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(qc) plot_h1 = plot_histogram(job.result().get_counts()) plot_h1 qc = QuantumCircuit(1,1) # Alice prepara o qubit no estado |-> e envia para Bob qc.x(0) qc.h(0) # Eve intersepta e tenta ler o qubit qc.barrier() qc.measure(0, 0) qc.barrier() # Eve manda a mensagem para Bob # Bob mede o qubit na base X qc.h(0) qc.measure(0,0) # Backend display(qc.draw('mpl')) aer_sim = Aer.get_backend('aer_simulator') job = aer_sim.run(qc) plot_h2 = plot_histogram(job.result().get_counts()) plot_h2 n = 100 alice_bits = randint(2, size=n) print(alice_bits) #Lista representando a base escolhida para encodar cada bit de alice_bits. #0 significa preparar na base Z e 1 significa preparar na base X alice_bases = randint(2, size=n) print(alice_bases) #Função que cria uma lista de QuantumCircuits #Cada um representa um bit da mensagem de Alice def encode_message(bits, bases): message = [] for i in range(n): qc = QuantumCircuit(1,1) if bases[i] == 0: # Prepara qubit na base Z if bits[i] == 0: pass else: qc.x(0) else: # Prepara qubit na base X if bits[i] == 0: qc.h(0) else: qc.x(0) qc.h(0) qc.barrier() message.append(qc) return message #Estamos agora codificando a mensagem de Alice message = encode_message(alice_bits, alice_bases) #Exemplo para o primeiro bit print('bit = %i' % alice_bits[0]) print('basis = %i' % alice_bases[0]) message[0].draw('mpl') #Array representando a base escolhida para medir cada bit de alice_bits. bob_bases = randint(2, size=n) print(bob_bases) #Função que mede cada qubit da mensagem def measure_message(message, bases): backend = Aer.get_backend('aer_simulator') measurements = [] for q in range(n): if bases[q] == 0: # mede na base Z message[q].measure(0,0) if bases[q] == 1: # mede na base X message[q].h(0) message[q].measure(0,0) aer_sim = Aer.get_backend('aer_simulator') result = aer_sim.run(message[q], shots=1, memory=True).result() measured_bit = int(result.get_memory()[0]) measurements.append(measured_bit) return measurements #Estamos agora medindo cada qubit da mensagem de Alice bob_results = measure_message(message, bob_bases) print(bob_results) #primeiro bit message[0].draw('mpl') #segundo bit message[1].draw('mpl') #Função que retorna apenas os qubits em que as bases foram iguais def remove_garbage(a_bases, b_bases, bits): good_bits = [] for q in range(n): if a_bases[q] == b_bases[q]: # If both used the same basis, add # this to the list of 'good' bits good_bits.append(bits[q]) return good_bits #Chave da Alice alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) print(alice_key) #Chave do Bob bob_key = remove_garbage(alice_bases, bob_bases, bob_results) print(bob_key) def sample_bits(bits, selection): sample = [] for i in selection: #usamos o np.mod para garantir que o bit i = np.mod(i, len(bits)) # pop(i) remove o elemento da lista sample.append(bits.pop(i)) return sample sample_size = 15 bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) print(" bob_sample = " + str(bob_sample)) alice_sample = sample_bits(alice_key, bit_selection) print("alice_sample = "+ str(alice_sample)) #Verificamos se o protocolo funcionou corretamente sem interferências bob_sample == alice_sample np.random.seed() n = 100 # PASSO 1 alice_bits = randint(2, size=n) # PASSO 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) # PASSO 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) # PASSO 4 alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) bob_key = remove_garbage(alice_bases, bob_bases, bob_results) # PASSO 5 sample_size = 15 bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) print(" bob_sample = " + str(bob_sample)) alice_sample = sample_bits(alice_key, bit_selection) print("alice_sample = "+ str(alice_sample)) # PASSO 1 np.random.seed(seed=3) alice_bits = randint(2, size=n) print(alice_bits) # PASSO 1 np.random.seed(seed=3) alice_bits = randint(2, size=n) # PASSO 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) print(alice_bases) message[0].draw('mpl') # PASSO 1 np.random.seed(seed=3) alice_bits = randint(2, size=n) # PASSO 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) # Interceptação eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) print(intercepted_message) message[0].draw('mpl') # PASSO 1 np.random.seed(seed=3) alice_bits = randint(2, size=n) # PASSO 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interceptação eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) # PASSO 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) message[0].draw('mpl') # PASSO 1 np.random.seed(seed=3) alice_bits = randint(2, size=n) # PASSO 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) ## Interceptação eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) # PASSO 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) # PASSO 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) # PASSO 1 np.random.seed(seed=3) alice_bits = randint(2, size=n) # PASSO 2 alice_bases = randint(2, size=n) message = encode_message(alice_bits, alice_bases) # Interceptação! eve_bases = randint(2, size=n) intercepted_message = measure_message(message, eve_bases) # PASSO 3 bob_bases = randint(2, size=n) bob_results = measure_message(message, bob_bases) # PASSO 4 bob_key = remove_garbage(alice_bases, bob_bases, bob_results) alice_key = remove_garbage(alice_bases, bob_bases, alice_bits) # PASSO 5 sample_size = 15 bit_selection = randint(n, size=sample_size) bob_sample = sample_bits(bob_key, bit_selection) print(" bob_sample = " + str(bob_sample)) alice_sample = sample_bits(alice_key, bit_selection) print("alice_sample = "+ str(alice_sample)) #Ao comparar as seleções arbitrárias de qubits de Alice e Bob #Percebemos que elas não são iguais bob_sample == alice_sample
https://github.com/levchCode/RSA-breaker
levchCode
# # This is a toy RSA encryption breaker using Shor's algorithm (params: a = 2, N = 85) # To use your custom alphabet, please change alphabet var # from qiskit import QuantumProgram from fractions import gcd from math import pi qp = QuantumProgram() qr = qp.create_quantum_register('qr', 8) cr = qp.create_classical_register('cr', 4) qc = qp.create_circuit('Shor',[qr],[cr]) def Oracle(): qc.cx(qr[2], qr[6]) qc.cx(qr[3], qr[7]) def findPQ(a, N): qc.h(qr[0]) qc.h(qr[1]) qc.h(qr[2]) qc.h(qr[3]) Oracle() qc.h(qr[0]) qc.cu1(pi/2, qr[0], qr[1]) qc.h(qr[1]) qc.cu1(pi/4, qr[0], qr[2]) qc.cu1(pi/2, qr[1], qr[2]) qc.h(qr[2]) qc.cu1(pi/8, qr[0], qr[3]) qc.cu1(pi/4, qr[1], qr[3]) qc.cu1(pi/2, qr[2], qr[3]) qc.h(qr[3]) qc.measure(qr[0], cr[0]) qc.measure(qr[1], cr[1]) qc.measure(qr[2], cr[2]) qc.measure(qr[3], cr[3]) result = qp.execute(['Shor'])#, backend='ibmqx_qasm_simulator', shots=1024, wait=5, timeout=1200) res = result.get_counts('Shor') mult_list = [] for k in res.keys(): p = int(k, 2) if p % 2 == 0: k1 = a**(p/2) - 1 k2 = a**(p/2) + 1 mult_list.append((gcd(k1, N), gcd(k2, N))) else: print("Period is odd, skipping") print("mult_list: {}".format(mult_list)) return mult_list def decrypt(public_key, message): m_list = findPQ(2, public_key[1]) #alphabet84 = " !(),-./0123456789:?АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшщъыьэюя" #alphabet50 = " !(),-.0123456789:?АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ" alphabet = " !(),-./0123456789:?АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯабвгдежзийклмнопрстуфхцчшщъыьэюя" message = [alphabet.find(i) for i in message] for m in m_list: fi = (m[0]-1)*(m[1]-1) if(fi == 0): print("N = N * 1, skipping") else: d = 0 while True: rem = (d*public_key[0]) % fi if rem == 1: break else: d = d + 1 text = '' for i in message: text += alphabet[i**d % public_key[1]] print("The message is: {}".format(text)) if __name__ == '__main__': decrypt((11, 85), "Ы97 3хД7УЙ НЖ3 Жл2Ж, Н9ще7 НЖ?32Ж Дхнх9лЖ,д")
https://github.com/stevvwen/QAlgoImplementation
stevvwen
# initialization import numpy as np import matplotlib # importing Qiskit from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ, BasicAer, assemble, transpile from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_bloch_multivector,plot_bloch_vector, plot_histogram style = {'backgroundcolor': 'lightyellow'} # Style of the circuits # set the length of the n-bit input string. n = 3 # set the length of the n-bit input string. n = 3 const_oracle = QuantumCircuit(n+1) output = np.random.randint(2) if output == 1: const_oracle.x(n) const_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() balanced_oracle.draw(output='mpl', style=style) balanced_oracle = QuantumCircuit(n+1) b_str = "101" # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Use barrier as divider balanced_oracle.barrier() # Controlled-NOT gates for qubit in range(n): balanced_oracle.cx(qubit, n) balanced_oracle.barrier() # Place X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': balanced_oracle.x(qubit) # Show oracle balanced_oracle.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle dj_circuit.draw(output='mpl', style=style) dj_circuit = QuantumCircuit(n+1, n) # Apply H-gates for qubit in range(n): dj_circuit.h(qubit) # Put qubit in state |-> dj_circuit.x(n) dj_circuit.h(n) # Add oracle dj_circuit += balanced_oracle # Repeat H-gates for qubit in range(n): dj_circuit.h(qubit) dj_circuit.barrier() # Measure for i in range(n): dj_circuit.measure(i, i) # Display circuit dj_circuit.draw(output='mpl', style=style) # use local simulator aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(dj_circuit, aer_sim) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer) def dj_oracle(case, n): # We need to make a QuantumCircuit object to return # This circuit has n+1 qubits: the size of the input, # plus one output qubit oracle_qc = QuantumCircuit(n+1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1,2**n) print(b) print(str(n)) b=7 # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, '0'+str(n)+'b') print(b_str) # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for qubit in range(n): oracle_qc.cx(qubit, n) # Next, place the final X-gates for qubit in range(len(b_str)): if b_str[qubit] == '1': oracle_qc.x(qubit) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(n) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate def dj_algorithm(oracle, n): dj_circuit = QuantumCircuit(n+1, n) # Set up the output qubit: dj_circuit.x(n) dj_circuit.h(n) # And set up the input register: for qubit in range(n): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(n+1)) # Finally, perform the H-gates again and measure: for qubit in range(n): dj_circuit.h(qubit) for i in range(n): dj_circuit.measure(i, i) return dj_circuit n = 4 oracle_gate = dj_oracle('balanced', n) dj_circuit = dj_algorithm(oracle_gate, n) dj_circuit.draw(output='mpl', style=style) transpiled_dj_circuit = transpile(dj_circuit, aer_sim) qobj = assemble(transpiled_dj_circuit) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/stevvwen/QAlgoImplementation
stevvwen
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() qc= QuantumCircuit(2, 1) qc.h(0) qc.cx(0, 1) qc.h(0) qc.measure(0, 0) qc.draw() # use local simulator aer_sim = Aer.get_backend('aer_simulator') qobj = assemble(qc, aer_sim) results = aer_sim.run(qobj).result() answer = results.get_counts() plot_histogram(answer)
https://github.com/stevvwen/QAlgoImplementation
stevvwen
# Do the necessary imports import numpy as np from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, BasicAer, IBMQ from qiskit.visualization import plot_histogram, plot_bloch_multivector ### Creating 3 qubit and 2 classical bits in each separate register qr = QuantumRegister(3) crz = ClassicalRegister(1) crx = ClassicalRegister(1) teleportation_circuit = QuantumCircuit(qr, crz, crx) ### A third party eve helps to create an entangled state def create_bell_pair(qc, a, b): qc.h(a) qc.cx(a, b) create_bell_pair(teleportation_circuit, 1, 2) teleportation_circuit.draw() def alice_gates(qc, a, b): qc.cx(a, b) qc.h(a) teleportation_circuit.barrier() alice_gates(teleportation_circuit, 0, 1) teleportation_circuit.draw() def measure_and_send(qc, a, b): qc.barrier() qc.measure(a,0) qc.measure(b,1) teleportation_circuit.barrier() measure_and_send(teleportation_circuit, 0, 1) teleportation_circuit.draw() def bob_gates(qc, qubit, crz, crx): qc.x(qubit).c_if(crx, 1) qc.z(qubit).c_if(crz, 1) teleportation_circuit.barrier() bob_gates(teleportation_circuit, 2, crz, crx) teleportation_circuit.draw() from qiskit.extensions import Initialize import math qc = QuantumCircuit(1) initial_state = [0,1] init_gate = Initialize(initial_state) # qc.append(initialize_qubit, [0]) qr = QuantumRegister(3) # Protocol uses 3 qubits crz = ClassicalRegister(1) # and 2 classical registers crx = ClassicalRegister(1) qc = QuantumCircuit(qr, crz, crx) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) # Bob decodes qubits bob_gates(qc, 2, crz, crx) qc.draw() backend = BasicAer.get_backend('statevector_simulator') out_vector = execute(qc, backend).result().get_statevector() plot_bloch_multivector(out_vector) inverse_init_gate = init_gate.gates_to_uncompute() qc.append(inverse_init_gate, [2]) qc.draw() cr_result = ClassicalRegister(1) qc.add_register(cr_result) qc.measure(2,2) qc.draw() backend = BasicAer.get_backend('qasm_simulator') counts = execute(qc, backend, shots=1024).result().get_counts() plot_histogram(counts) def bob_gates(qc, a, b, c): qc.cz(a, c) qc.cx(b, c) qc = QuantumCircuit(3,1) # First, let's initialise Alice's q0 qc.append(init_gate, [0]) qc.barrier() # Now begins the teleportation protocol create_bell_pair(qc, 1, 2) qc.barrier() # Send q1 to Alice and q2 to Bob alice_gates(qc, 0, 1) qc.barrier() # Alice sends classical bits to Bob bob_gates(qc, 0, 1, 2) # We undo the initialisation process qc.append(inverse_init_gate, [2]) # See the results, we only care about the state of qubit 2 qc.measure(2,0) # View the results: qc.draw() from qiskit import IBMQ IBMQ.save_account('### IMB TOKEN ') IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() from qiskit.providers.ibmq import least_busy backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and not b.configuration().simulator and b.status().operational==True)) job_exp = execute(qc, backend=backend, shots=8192) exp_result = job_exp.result() exp_measurement_result = exp_result.get_counts(qc) print(exp_measurement_result) plot_histogram(exp_measurement_result) error_rate_percent = sum([exp_measurement_result[result] for result in exp_measurement_result.keys() if result[0]=='1']) \ * 100./ sum(list(exp_measurement_result.values())) print("The experimental error rate : ", error_rate_percent, "%")
https://github.com/henotrix/quantum-practice
henotrix
from qiskit import * from oracle_generation import generate_oracle get_bin = lambda x, n: format(x, 'b').zfill(n) def gen_circuits(min,max,size): circuits = [] secrets = [] ORACLE_SIZE = size for i in range(min,max+1): cur_str = get_bin(i,ORACLE_SIZE-1) (circuit, secret) = generate_oracle(ORACLE_SIZE,False,3,cur_str) circuits.append(circuit) secrets.append(secret) return (circuits, secrets)
https://github.com/LohitPotnuru/GroverAlgorithm_Qiskit
LohitPotnuru
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/pedrotelez/QuantumHelloWorld
pedrotelez
# Importing Qiskit from qiskit import * # Init 2 qubits and 2 classical bits number_of_qubits = 2 # qubits number_of_classical_bits = 2 # classical bits Qr = QuantumRegister(number_of_qubits) # quantum register Cr = ClassicalRegister(number_of_classical_bits) # classical register # Building the circuit circuit = QuantumCircuit(Qr, Cr) # Adding gates to the circuit circuit.h(Qr[0]) # Hadamard gate on Qubit 0 circuit.cx(Qr[0], Qr[1]) # CNOT gate on control Qubit 0 and target Qubit 1 # Measure the qubits [0, 1] and store the result in classical bits [0, 1] circuit.measure(Qr, Cr) # Draw the circuit circuit.draw(output='mpl') # the hello world of quantum computing # 2 qubits, 2 classical bits # Hadamard gate on Qubit 0 # CNOT gate on control Qubit 0 and target Qubit 1 # Measure the qubits [0, 1] and store the result in classical bits [0, 1] # Hadamard gate means that the qubit is in superposition, so it has a 50% chance of being 0 or 1 # CNOT gate means that the qubit 1 is entangled with qubit 0, so if qubit 0 is 0, qubit 1 is 0, and if qubit 0 is 1, qubit 1 is 1 # Simulating the circuit in the local simulator simulator = Aer.get_backend('qasm_simulator') # simulator result = execute(circuit, backend=simulator).result() # execute the circuit on the simulator # Plot the result from qiskit.visualization import plot_histogram plot_histogram(result.get_counts(circuit)) # plot the result
https://github.com/pedrotelez/QuantumHelloWorld
pedrotelez
from qiskit import QuantumCircuit, execute, Aer, BasicAer from qiskit.visualization import plot_state_qsphere, plot_histogram, plot_bloch_multivector from qiskit.quantum_info import Statevector import numpy as np # numero de qubits do circuito n = 4 # inicializando o circuito qft = QuantumCircuit(n, n, name = "QFT") for i in range(n-1, -1, -1): #começa do último bit que só tem uma porta H qft.h(i) fase = 0 for j in range(i): #conecta as portas de fase nos bits anteriores fase +=1 qft.cp(np.pi/(2**fase), i - j -1, i) #para melhorar a visualização qft.barrier() for i in range(int(n/2)): #Operação de swap qft.swap(i, n-1-i) qft.draw('mpl') sv = Statevector.from_label("1010") plot_bloch_multivector(sv) qft_sv = sv.evolve(qft) #aplica a QFT nos qubits plot_bloch_multivector(qft_sv)
https://github.com/0xCAB0/shor_algorithm
0xCAB0
from qiskit import QuantumCircuit, Aer, execute, IBMQ from qiskit.utils import QuantumInstance import numpy as np from qiskit.algorithms import Shor IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here provider = IBMQ.get_provider(hub='ibm-q') backend = Aer.get_backend('qasm_simulator') quantum_instance = QuantumInstance(backend, shots=1000) my_shor = Shor(quantum_instance) result_dict = my_shor.factor(15) print(result_dict)
https://github.com/samabwhite/Grover-Search-Implementation
samabwhite
from qiskit import QuantumCircuit from qiskit.tools.visualization import circuit_drawer import numpy as np from matplotlib import pyplot as plt n=5 qc = QuantumCircuit(n) qc.x(1) qc.ccx(0, 1, 3) qc.ccx(2, 3, 4) qc.ccx(0, 1, 3) qc.x(1) qc.draw('mpl') def phase_oracle(n, name = 'Uf'): qc = QuantumCircuit(n, name = name) qc.x(1) qc.ccx(0, 1, 3) qc.ccx(2, 3, 4) qc.ccx(0, 1, 3) qc.x(1) return qc n=5 qc = QuantumCircuit(n) for i in range(n-2): qc.x(i) qc.ccx(0, 1, 3) qc.ccx(2, 3, 4) qc.ccx(0, 1, 3) for i in range(n-2): qc.x(i) qc.draw('mpl') def diffuser(n, name= 'V'): qc = QuantumCircuit(n, name =name) for qb in range(n-2): # First layer of Hadamards in diffuser qc.h(qb) for i in range(n-2): qc.x(i) qc.ccx(0, 1, 3) qc.ccx(2, 3, 4) qc.ccx(0, 1, 3) for i in range(n-2): qc.x(i) for qb in range(n-2): # Second layer of Hadamards in diffuser qc.h(qb) return qc n=5 gr = QuantumCircuit(n, n-2) mu = 1 #number of solutions r = int(np.floor(np.pi/4*np.sqrt(2**(n-2)/mu))) #determine r print('r = ',r) gr.h(range(n-2)) #step1: apply Hadamard gates on all working qubits #put ancilla in state |-> gr.x(n-1) gr.h(n-1) #step 2: apply r rounds of the phase oracle and the diffuser for j in range(r): gr.append(phase_oracle(n), range(n)) gr.append(diffuser(n), range(n)) gr.measure(range(n-2), range(n-2)) #step 3: measure all qubits gr.draw('mpl') from qiskit import BasicAer, Aer, execute, IBMQ from qiskit.visualization import plot_histogram simulator = Aer.get_backend('qasm_simulator') result = execute(gr, backend = simulator, shots = 1024).result() counts = result.get_counts() plot_histogram(counts) from qiskit import IBMQ IBMQ.save_account('e19ab1a54fb68a1937a725b48b02eafb8af0db9189107e78762686e5bf12dff5642e1597470d966ea9d2e121cc86f4a0f08bea5d5e760de66c7be7be04fd2974') IBMQ.load_account() provider = IBMQ.get_provider(hub = 'ibm-q') device = provider.get_backend('ibmq_qasm_simulator') job = execute(gr, backend=device, shots=1024) print(job.job_id()) from qiskit.tools.monitor import job_monitor job_monitor(job) device_result = job.result() plot_histogram(device_result.get_counts(gr))
https://github.com/nagarx/Quantum-KNN-Classifier-using-Qiskit
nagarx
from qiskit import QuantumCircuit, QuantumRegister def swap_test(N): ''' `N`: Number of qubits of the quantum registers. ''' a = QuantumRegister(N, 'a') b = QuantumRegister(N, 'b') d = QuantumRegister(1, 'd') # Quantum Circuit qc_swap = QuantumCircuit(name = ' SWAP \nTest') qc_swap.add_register(a) qc_swap.add_register(b) qc_swap.add_register(d) qc_swap.h(d) for i in range(N): qc_swap.cswap(d, a[i], b[i]) qc_swap.h(d) return qc_swap
https://github.com/nagarx/Quantum-KNN-Classifier-using-Qiskit
nagarx
# Classical computing modules import numpy as np import pandas as pd import seaborn as sns from statistics import mode # Dataset from sklearn import datasets, preprocessing from sklearn.model_selection import train_test_split # Quantum computing modules from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, execute from qiskit.visualization import plot_histogram from qiskit.quantum_info import Statevector # Load the dataset iris = datasets.load_iris() feature_labels = iris.feature_names class_labels = iris.target_names # Extract the data X = iris.data y = np.array([iris.target]) M = 4 # Print the features and classes print("Features: ", feature_labels) print("Classes: ", class_labels) df = pd.DataFrame(data = np.concatenate((X, y.T), axis = 1), columns = feature_labels[0:M] + ["Species"]) sns.pairplot(df, hue = 'Species') min_max_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)) min_max_scaler.fit(X) X_normalized = min_max_scaler.transform(X) df2 = pd.DataFrame(data = np.concatenate((X_normalized, y.T), axis = 1), columns = feature_labels[0:M] + ["Species"]) sns.pairplot(df2, hue = 'Species') N_train = 100 # Training dataset size X_train, X_test, y_train, y_test = train_test_split(X_normalized, y[0], train_size=N_train) # Select a sample test sample for classification test_index = int(np.random.rand()*len(X_test)) phi_test = X_test[test_index] # Create the encoded feature vector for i in range(M): phi_i = [np.sqrt(phi_test[i]), np.sqrt(1- phi_test[i])] if i == 0: phi = phi_i else: phi = np.kron(phi_i, phi) # Validate the statevector print('Valid statevector: ', Statevector(phi).is_valid()) N = int(np.ceil(np.log2(N_train))) psi = np.zeros(2**(M + N)) # Task 9 for i in range(N_train): # Encode |i> i_vec = np.zeros(2**N) i_vec[i] = 1 # Encode |x> x = X_train[i, :] for j in range(M): dummy = [np.sqrt(x[j]), np.sqrt(1- x[j])] if j == 0: x_vec = dummy else: x_vec = np.kron(dummy, x_vec) psi_i = np.kron(x_vec, i_vec) # Task 9 psi += psi_i psi /= np.sqrt(N_train) # Check the validity of the statevector assert Statevector(psi).is_valid(), "The statevector is not square-normalized." index_reg = QuantumRegister(N, 'i') train_reg = QuantumRegister(M, 'train') test_reg = QuantumRegister(M, 'test') p = QuantumRegister(1, 'similarity') # Create the quantum circuit qknn = QuantumCircuit() # Add registers to the circuit qknn.add_register(index_reg) qknn.add_register(train_reg) qknn.add_register(test_reg) qknn.add_register(p) # Draw the quantum circuit qknn.draw('mpl') # Initialize the training register qknn.initialize(psi, index_reg[0:N] + train_reg[0:M]) # Initialize the test register qknn.initialize(phi, test_reg) # Draw qknn qknn.draw('mpl') from modules import swap_test # Apply the Quantum SWAP Test module to the quantum circuit qknn.append(swap_test(M), train_reg[0:M] + test_reg[0:M] + [p[0]]) # Draw qknn qknn.draw('mpl') # Create the classical register meas_reg_len = N + 1 meas_reg = ClassicalRegister(meas_reg_len, 'meas') qknn.add_register(meas_reg) # Measure the qubits qknn.measure(index_reg[0::] + p[0::], meas_reg) # Draw qknn qknn.draw('mpl', fold = -1) backend = Aer.get_backend('qasm_simulator') counts_knn = execute(qknn, backend, shots = 15000).result().get_counts() result_arr = np.zeros((N_train, 3)) for count in counts_knn: i_dec = int(count[1::], 2) phase = int(count[0], 2) if phase == 0: result_arr[i_dec, 0] += counts_knn[count] else: result_arr[i_dec, 1] += counts_knn[count] for i in range(N_train): prob_1 = result_arr[i][1]/(result_arr[i][0] + result_arr[i][1]) result_arr[i][2] = 1 - 2*prob_1 # Find the indexes of minimum distance k = 10 k_min_dist_arr = result_arr[:, 2].argsort()[::-1][:k] # Determine the class of the test sample y_pred = mode(y_train[k_min_dist_arr]) y_exp = y_test[test_index] print('Predicted class of the test sample is {}.'.format(y_pred)) print('Expected class of the test sample is {}.'.format(y_exp)) def q_knn_module(test_index, psi, k=10): phi_test = X_test[test_index] # Create the encoded feature vector for i in range(M): phi_i = [np.sqrt(phi_test[i]), np.sqrt(1- phi_test[i])] if i == 0: phi = phi_i else: phi = np.kron(phi, phi_i) # Create the quantum circuit qknn = QuantumCircuit() # Add registers to circuit qknn.add_register(index_reg) qknn.add_register(train_reg) qknn.add_register(test_reg) qknn.add_register(p) # Initialize train reg qknn.initialize(psi, index_reg[0:N] + train_reg[0:M]) # Initialize test reg qknn.initialize(phi, test_reg) # Apply the swap test module to the quantum circuit qknn.append(swap_test(M), train_reg[0:M] + test_reg[0:M] + [p[0]]) # Create the classical register meas_reg_len = N+1 meas_reg = ClassicalRegister(meas_reg_len, 'meas') qknn.add_register(meas_reg) # Measure the qubits qknn.measure(index_reg[0::] + p[0::], meas_reg) # Circuit execution backend = Aer.get_backend('qasm_simulator') counts_knn = execute(qknn, backend, shots = 10000).result().get_counts() # Decoding the results result_arr = np.zeros((N_train, 3)) for count in counts_knn: i_dec = int(count[1::], 2) phase = int(count[0], 2) if phase == 0: result_arr[i_dec, 0] += counts_knn[count] else: result_arr[i_dec, 1] += counts_knn[count] # Computing similarity for i in range(N_train): prob_1 = result_arr[i][1]/(result_arr[i][0] + result_arr[i][1]) result_arr[i][2] = 1 - 2*prob_1 # Find the indices of minimum distance k_min_dist_arr = result_arr[:, 2].argsort()[::-1][:k] # Determine the class of the test sample y_pred = mode(y_train[k_min_dist_arr]) y_exp = y_test[test_index] return y_pred, y_exp y_pred_arr = [] y_exp_arr = [] for test_indx in range(len(X_test)): y_pred, y_exp = q_knn_module(test_indx, psi) y_pred_arr.append(y_pred) y_exp_arr.append(y_exp) t = 0 f = 0 for i in range(len(X_test)): if y_pred_arr[i] == y_exp_arr[i]: t += 1 else: f += 1 print('Model accuracy is {}%.'.format(t/(t+f) *100))
https://github.com/varunpalakodeti20/Grover-Algo
varunpalakodeti20
import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() from qiskit.circuit.library.standard_gates import XGate, HGate from operator import * n = 3 N = 8 #2**n index_colour_table = {} colour_hash_map = {} index_colour_table = {'000':"yellow", '001':"red", '010':"blue", '011':"red", '100':"green", '101':"blue", '110':"orange", '111':"red"} colour_hash_map = {"yellow":'100', "red":'011', "blue":'000', "green":'001', "orange":'010'} def database_oracle(index_colour_table, colour_hash_map): circ_database = QuantumCircuit(n + n) for i in range(N): circ_data = QuantumCircuit(n) idx = bin(i)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) # qiskit maps the rightmost bit as the 0th qubit -> qn, ..., q0 # we therefore reverse the index string -> q0, ..., qn data_gate = circ_data.to_gate(label=colour).control(num_ctrl_qubits=n, ctrl_state=idx, label="index-"+colour) circ_database.append(data_gate, list(range(n+n))) return circ_database # drawing the database oracle circuit print("Database Encoding") database_oracle(index_colour_table, colour_hash_map).draw() circ_data = QuantumCircuit(n) m = 4 idx = bin(m)[2:].zfill(n) # removing the "0b" prefix appended by the bin() funtion colour = index_colour_table[idx] colour_hash = colour_hash_map[colour][::-1] for j in range(n): if colour_hash[j] == '1': circ_data.x(j) print("Internal colour encoding for the colour green (as an example)"); circ_data.draw() def oracle_grover(database, data_entry): circ_grover = QuantumCircuit(n + n + 1) circ_grover.append(database, list(range(n+n))) target_reflection_gate = XGate().control(num_ctrl_qubits=n, ctrl_state=colour_hash_map[data_entry], label="Reflection of " + "\"" + data_entry + "\" Target") # control() missing 1 required positional argument: 'self' .... if only 'XGate' used instead of 'XGate()' # The “missing 1 required positional argument: 'self'” error is raised when you do not instantiate an object of a class before calling a class method. This error is also raised when you incorrectly instantiate a class. circ_grover.append(target_reflection_gate, list(range(n, n+n+1))) circ_grover.append(database, list(range(n+n))) return circ_grover print("Grover Oracle (target example: orange)") oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), "orange").decompose().draw() def mcz_gate(num_qubits): num_controls = num_qubits - 1 mcz_gate = QuantumCircuit(num_qubits) target_mcz = QuantumCircuit(1) target_mcz.z(0) target_mcz = target_mcz.to_gate(label="Z_Gate").control(num_ctrl_qubits=num_controls, ctrl_state=None, label="MCZ") mcz_gate.append(target_mcz, list(range(num_qubits))) return mcz_gate.reverse_bits() print("Multi-controlled Z (MCZ) Gate") mcz_gate(n).decompose().draw() def diffusion_operator(num_qubits): circ_diffusion = QuantumCircuit(num_qubits) qubits_list = list(range(num_qubits)) # Layer of H^n gates circ_diffusion.h(qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of Multi-controlled Z (MCZ) Gate circ_diffusion = circ_diffusion.compose(mcz_gate(num_qubits), qubits_list) # Layer of X^n gates circ_diffusion.x(qubits_list) # Layer of H^n gates circ_diffusion.h(qubits_list) return circ_diffusion print("Diffusion Circuit") diffusion_operator(n).draw() # Putting it all together ... !!! item = "green" print("Searching for the index of the colour", item) circuit = QuantumCircuit(n + n + 1, n) circuit.x(n + n) circuit.barrier() circuit.h(list(range(n))) circuit.h(n+n) circuit.barrier() unitary_oracle = oracle_grover(database_oracle(index_colour_table, colour_hash_map).to_gate(label="Database Encoding"), item).to_gate(label="Oracle Operator") unitary_diffuser = diffusion_operator(n).to_gate(label="Diffusion Operator") M = countOf(index_colour_table.values(), item) Q = int(np.pi * np.sqrt(N/M) / 4) for i in range(Q): circuit.append(unitary_oracle, list(range(n + n + 1))) circuit.append(unitary_diffuser, list(range(n))) circuit.barrier() circuit.measure(list(range(n)), list(range(n))) circuit.draw() backend_sim = Aer.get_backend('qasm_simulator') job_sim = backend_sim.run(transpile(circuit, backend_sim), shots=1024) result_sim = job_sim.result() counts = result_sim.get_counts(circuit) if M==1: print("Index of the colour", item, "is the index with most probable outcome") else: print("Indices of the colour", item, "are the indices the most probable outcomes") from qiskit.visualization import plot_histogram plot_histogram(counts)
https://github.com/Sinestro38/Shors-Algorithm
Sinestro38
import matplotlib.pyplot as plt import numpy as np from qiskit import QuantumCircuit, Aer, transpile, assemble from qiskit.visualization import plot_histogram from math import gcd from numpy.random import randint import pandas as pd from fractions import Fraction print("Imports Successful") def c_amod15(a, power): """Controlled multiplication by a mod 15""" if a not in [2,7,8,11,13]: raise ValueError("'a' must be 2,7,8,11 or 13") U = QuantumCircuit(4) p for iteration in range(power): if a in [2,13]: U.swap(0,1) U.swap(1,2) U.swap(2,3) if a in [7,8]: U.swap(2,3) U.swap(1,2) U.swap(0,1) if a == 11: U.swap(1,3) U.swap(0,2) if a in [7,11,13]: for q in range(4): U.x(q) U = U.to_gate() U.name = "%i^%i mod 15" % (a, power) c_U = U.control() return c_U def qft_dagger(n): """n-qubit QFTdagger the first n qubits in circ""" qc = QuantumCircuit(n) # Don't forget the Swaps! for qubit in range(n//2): qc.swap(qubit, n-qubit-1) for j in range(n): for m in range(j): qc.cp(-np.pi/float(2**(j-m)), m, j) qc.h(j) qc.name = "QFT†" return qc # Specify variables n_count = 8 # number of counting qubits a = 7 # Create QuantumCircuit with n_count counting qubits # plus 4 qubits for U to act on qc = QuantumCircuit(n_count + 4, n_count) # Initialize counting qubits # in state |+> for q in range(n_count): qc.h(q) # And auxiliary register in state |1> qc.x(3+n_count) # Do controlled-U operations for q in range(n_count): qc.append(c_amod15(a, 2**q), # second one is power of 2 [q] + [i+n_count for i in range(4)]) # i+n_count will be 0+8, 1+8, 2+8, 3+8 where n_count = 8 # Do inverse-QFT qc.append(qft_dagger(n_count), range(n_count)) # Measure circuit qc.measure(range(n_count), range(n_count)) qc.draw(fold=-1) # -1 means 'do not fold' aer_sim = Aer.get_backend('aer_simulator') t_qc = transpile(qc, aer_sim) qobj = assemble(t_qc) results = aer_sim.run(qobj).result() counts = results.get_counts() plot_histogram(counts) rows, measured_phases = [], [] for output in counts: decimal = int(output, 2) # Convert (base 2) string to decimal phase = decimal/(2**n_count) # Find corresponding eigenvalue measured_phases.append(phase) # Add these values to the rows in our table: rows.append([f"{output}(bin) = {decimal:>3}(dec)", f"{decimal}/{2**n_count} = {phase:.2f}"]) # Print the rows in a table headers=["Register Output", "Phase"] df = pd.DataFrame(rows, columns=headers) print(df) rows = [] for phase in measured_phases: frac = Fraction(phase).limit_denominator(15) rows.append([phase, f"{frac.numerator}/{frac.denominator}", frac.denominator]) # Print as a table headers=["Phase", "Fraction", "Guess for r"] df = pd.DataFrame(rows, columns=headers) print(df) def qpe_amod15(a): n_count = 8 qc = QuantumCircuit(4+n_count, n_count) for q in range(n_count): qc.h(q) # Initialize counting qubits in state |+> qc.x(3+n_count) # And auxiliary register in state |1> for q in range(n_count): # Do controlled-U operations qc.append(c_amod15(a, 2**q), [q] + [i+n_count for i in range(4)]) qc.append(qft_dagger(n_count), range(n_count)) # Do inverse-QFT qc.measure(range(n_count), range(n_count)) # Simulate Results aer_sim = Aer.get_backend('aer_simulator') # Setting memory=True below allows us to see a list of each sequential reading t_qc = transpile(qc, aer_sim) qobj = assemble(t_qc, shots=1) result = aer_sim.run(qobj, memory=True).result() readings = result.get_memory() print("Register Reading: " + readings[0]) phase = int(readings[0],2)/(2**n_count) print("Corresponding Phase: %f" % phase) return phase N = 15 a = 7 factor_found = False attempt = 0 while not factor_found: attempt += 1 print("\nAttempt %i:" % attempt) phase = qpe_amod15(a) # Phase = s/r frac = Fraction(phase).limit_denominator(N) # Denominator should (hopefully!) tell us r r = frac.denominator print("Result: r = %i" % r) if phase != 0: # Guesses for factors are gcd(x^{r/2} ±1 , 15) guesses = [gcd(a**(r//2)-1, N), gcd(a**(r//2)+1, N)] print("Guessed Factors: %i and %i" % (guesses[0], guesses[1])) for guess in guesses: if guess not in [1,N] and (N % guess) == 0: # Check to see if guess is a factor print("*** Non-trivial factor found: %i ***" % guess) factor_found = True
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from qiskit_chemistry import FermionicOperator, QMolecule from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit_chemistry import QMolecule as qm from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua import Operator from qiskit_aqua.algorithms import VQE, ExactEigensolver from qiskit import Aer from scipy import linalg as la import numpy as np import yaml as yml from yaml import SafeLoader as Loader import os import Load_Hamiltonians as lh #################### WALK ROOT DIR ############################ root_dir = 'IntegralData/vqe-data-master/Li2_cc-pVTZ/4_ORBITALS' data_file_list = [] data_file_list_oe = [] for dirName, subdirList, fileList in os.walk(root_dir): print('Found directory: %s' % dirName) for fname in sorted(fileList): if fname.endswith('.yaml'): data_file_list.append(fname) #I added an x in front of the 10s for distance to force the sorting, else it sees 13 as 1 #If any distance is in the 100s (unlikely) then add a 'y' in front of dist in file name ############################################################### ############# Output Files to Plot stuff ############### Fout = open('Li2_ExactEnergies_wMP2_4-orbitals_060319.dat',"w") #Fout = open('Li2_ExactEnergiesG&FE_wMP2_4-orbitals_052919.dat',"w") ########################################################### #Variables that can be assigned outside of Loop map_type = str('jordan_wigner') truncation_threshold = 0.01 ################# IBM BACKEND ##################### backend1 = Aer.get_backend('statevector_simulator') backend2 = Aer.get_backend('qasm_simulator') ################################################### output_data = [] #Looping over all of the yaml files in a particular directory and saving the energies from VQE and Exact ind = 0 for key, file in enumerate(data_file_list): NW_data_file = str(os.path.join(root_dir,file)) print(NW_data_file) try: doc = open(NW_data_file, 'r') data = yml.load(doc, Loader) finally: doc.close() #Import all the data from a yaml file n_spatial_orbitals = data['integral_sets'][0]['n_orbitals'] nuclear_repulsion_energy = data['integral_sets'][0]['coulomb_repulsion']['value'] n_orbitals = 2 * n_spatial_orbitals n_particles = data['integral_sets'][0]['n_electrons'] dist = 2 * data['integral_sets'][0]['geometry']['atoms'][1]['coords'][2] print('Bond distance is {}'.format(dist)) if map_type == 'parity': # For two-qubit reduction n_qubits = n_orbitals - 2 else: n_qubits = n_orbitals # Populating the QMolecule class with the data to make calculations easier qm.num_orbitals = n_spatial_orbitals qm.num_alpha = n_particles // 2 qm.num_beta = n_particles // 2 qm.core_orbitals = 0 qm.nuclear_repulsion_energy = nuclear_repulsion_energy qm.hf_energy = data['integral_sets'][0]['scf_energy']['value'] #Importing the integrals one_electron_import = data['integral_sets'][0]['hamiltonian']['one_electron_integrals']['values'] two_electron_import = data['integral_sets'][0]['hamiltonian']['two_electron_integrals']['values'] #Getting spatial integrals and spin integrals to construct Hamiltonian one_electron_spatial_integrals, two_electron_spatial_integrals = lh.get_spatial_integrals(one_electron_import, two_electron_import, n_spatial_orbitals) one_electron_spatial_integrals, two_electron_spatial_integrals = lh.trunctate_spatial_integrals( one_electron_spatial_integrals, two_electron_spatial_integrals, .001) h1, h2 = lh.convert_to_spin_index(one_electron_spatial_integrals, two_electron_spatial_integrals, n_spatial_orbitals, truncation_threshold) #For the MP2 Calculation qm.mo_eri_ints = two_electron_spatial_integrals #Constructing the fermion operator and qubit operator from integrals data fop = FermionicOperator(h1, h2) qop_paulis = fop.mapping(map_type) qop = Operator(paulis=qop_paulis.paulis) ################### EXACT RESULT ################################## exact_eigensolver = ExactEigensolver(qop, k=12) ret = exact_eigensolver.run() print('The electronic energy is: {:.12f}'.format(ret['eigvals'][0].real)) print('The total FCI energy is: {:.12f}'.format(ret['eigvals'][0].real + nuclear_repulsion_energy)) exact_energy = ret['eigvals'][0].real + nuclear_repulsion_energy exact_energy_fe = ret['eigvals'][1].real + nuclear_repulsion_energy # qop.to_matrix() # #print(qop) # eigval, eigvec = np.linalg.eigh(qop.matrix.toarray()) # exact_energy = eigval[0].real + nuclear_repulsion_energy # exact_energy_fe = eigval[1].real + nuclear_repulsion_energy # print('{} is the groundstate energy and {} is the first excited state'.format(eigval[0].real,eigval[1].real)) ################################################################### # my_info = [dist, exact_energy,eigval[1].real + nuclear_repulsion_energy, eigval[2].real + nuclear_repulsion_energy, eigval[3].real\ # + nuclear_repulsion_energy, eigval[4].real + nuclear_repulsion_energy, eigval[5].real + nuclear_repulsion_energy, \ # eigval[6].real + nuclear_repulsion_energy, eigval[7].real + nuclear_repulsion_energy, eigval[8].real + nuclear_repulsion_energy, eigval[9].real + nuclear_repulsion_energy, \ # eigval[10].real + nuclear_repulsion_energy, eigval[11].real + nuclear_repulsion_energy] my_info = [dist, ret['eigvals'][0].real + nuclear_repulsion_energy, exact_energy,ret['eigvals'][1].real + nuclear_repulsion_energy, ret['eigvals'][2].real + nuclear_repulsion_energy, ret['eigvals'][3].real\ + nuclear_repulsion_energy, ret['eigvals'][4].real + nuclear_repulsion_energy, ret['eigvals'][5].real + nuclear_repulsion_energy, \ ret['eigvals'][6].real + nuclear_repulsion_energy, ret['eigvals'][7].real + nuclear_repulsion_energy, ret['eigvals'][8].real + nuclear_repulsion_energy, ret['eigvals'][9].real + nuclear_repulsion_energy, \ ret['eigvals'][10].real + nuclear_repulsion_energy, ret['eigvals'][11].real + nuclear_repulsion_energy] output_data.append(my_info) my_info_to_str = " ".join(str(e) for e in my_info) Fout.write(my_info_to_str + "\n") print(output_data) Fout.close() # output_data[:,0] = np.sort(output_data[:,0],axis=0) # print(output_data)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from qiskit_chemistry import FermionicOperator, QMolecule from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit_chemistry import QMolecule as qm from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua import Operator from qiskit_aqua.algorithms import VQE, ExactEigensolver from qiskit import Aer from scipy import linalg as la import numpy as np import yaml as yml from yaml import SafeLoader as Loader import os import Load_Hamiltonians as lh ##Carefully upgrade terra to see if qasm/state-vector simulator perform quicker.## #################### WALK ROOT DIR ############################ root_dir = 'IntegralData/vqe-data-master/Li2_cc-pVTZ/4_ORBITALS' data_file_list = [] data_file_list_oe = [] for dirName, subdirList, fileList in os.walk(root_dir): print('Found directory: %s' % dirName) for fname in sorted(fileList): if fname.endswith('.yaml'): data_file_list.append(fname) if fname.endswith('.FOCK'): data_file_list_oe.append(fname) #This 'del' is four the 4-orbital case since the OEs are missing for the distance 13... #This should be resolved for the future del data_file_list[-1] #I added an x in front of the 10s for distance to force the sorting, else it sees 13 as 1 #If any distance is in the 100s (unlikely) then add a 'y' in front of dist in file name ############################################################### ############# Output Files to Plot stuff ############### print(data_file_list) Fout = open('Li2_ExactEnergies_wMP2_4-orbitals_061219.dat',"w") Fout_op = open('Li2_OptimalParams_wMP2_4-orbitals_061219.dat',"w") #Fout = open('Li2_ExactEnergiesG&FE_wMP2_4-orbitals_052919.dat',"w") ########################################################### #Variables that can be assigned outside of Loop map_type = str('jordan_wigner') truncation_threshold = 0.01 ################# IBM BACKEND ##################### backend1 = Aer.get_backend('statevector_simulator') backend2 = Aer.get_backend('qasm_simulator') ################################################### output_data = [] #Looping over all of the yaml files in a particular directory and saving the energies from VQE and Exact ind = 0 for file1, file2 in zip(data_file_list, data_file_list_oe): NW_data_file = str(os.path.join(root_dir,file1)) OE_data_file = str(os.path.join(root_dir+'/DOWNFOLDED_ORBITAL_ENERGIES',file2)) try: doc = open(NW_data_file, 'r') doc_oe = open(OE_data_file,'r') data = yml.load(doc, Loader) content_oe = doc_oe.readlines() finally: doc.close() doc_oe.close() #Import all the data from a yaml file print('Getting data') n_spatial_orbitals = data['integral_sets'][0]['n_orbitals'] nuclear_repulsion_energy = data['integral_sets'][0]['coulomb_repulsion']['value'] n_orbitals = 2 * n_spatial_orbitals n_particles = data['integral_sets'][0]['n_electrons'] dist = 2 * data['integral_sets'][0]['geometry']['atoms'][1]['coords'][2] print('Bond distance is {}'.format(dist)) if map_type == 'parity': # For two-qubit reduction n_qubits = n_orbitals - 2 else: n_qubits = n_orbitals # Populating the QMolecule class with the data to make calculations easier qm.num_orbitals = n_spatial_orbitals qm.num_alpha = n_particles // 2 qm.num_beta = n_particles // 2 qm.core_orbitals = 0 qm.nuclear_repulsion_energy = nuclear_repulsion_energy qm.hf_energy = data['integral_sets'][0]['scf_energy']['value'] ###################Get Orbital Energies from FOCK file######################## orbital_energies = [] found = False count = 0 for line in content_oe: if 'Eigenvalues:' in line.split()[0]: found = True if found and len(line.split()) > 1: orbital_energies.append(float(line.split()[1])) count += 1 if count >= n_spatial_orbitals: break qm.orbital_energies = orbital_energies print('OEs:\n',orbital_energies) ############################################################################## #Importing the integrals one_electron_import = data['integral_sets'][0]['hamiltonian']['one_electron_integrals']['values'] two_electron_import = data['integral_sets'][0]['hamiltonian']['two_electron_integrals']['values'] #Getting spatial integrals and spin integrals to construct Hamiltonian one_electron_spatial_integrals, two_electron_spatial_integrals = lh.get_spatial_integrals(one_electron_import, two_electron_import, n_spatial_orbitals) one_electron_spatial_integrals, two_electron_spatial_integrals = lh.trunctate_spatial_integrals( one_electron_spatial_integrals, two_electron_spatial_integrals, .001) h1, h2 = lh.convert_to_spin_index(one_electron_spatial_integrals, two_electron_spatial_integrals, n_spatial_orbitals, truncation_threshold) #For the MP2 Calculation qm.mo_eri_ints = two_electron_spatial_integrals #Constructing the fermion operator and qubit operator from integrals data fop = FermionicOperator(h1, h2) qop_paulis = fop.mapping(map_type) qop = Operator(paulis=qop_paulis.paulis) #Get Variational form and intial state init_state = HartreeFock(n_qubits, n_orbitals, n_particles, map_type, two_qubit_reduction=False) var_op = UCCSD(n_qubits, 1, n_orbitals, n_particles, active_occupied=None, active_unoccupied=None, initial_state=init_state, qubit_mapping=map_type, mp2_reduction=True) ######################## VQE RESULT ############################### # setup a classical optimizer for VQE max_eval = 200 optimizer = COBYLA(maxiter=max_eval, disp=True, tol=1e-3) #Choosing initial params based on previous iteration if ind == 0: # initial_params = var_op._mp2_coeff initial_params = None ind += 1 elif len(vqe_params) == var_op.num_parameters: initial_params = vqe_params else: initial_params = None print('Doing VQE') algorithm = VQE(qop_paulis,var_op,optimizer,'paulis', initial_point=initial_params, ) #VQE_Circ = algorithm.construct_circuit(dumpy_params, backend1) #print('The VQE circuit:\n',VQE_Circ) result = algorithm.run(backend1) vqe_energy = result['energy'] + nuclear_repulsion_energy vqe_params = result['opt_params'] # print('The VQE energy is: ',vqe_energy) # print('The optimized params are {}.'.format(vqe_params)) ################################################################### ################### EXACT RESULT ################################## exact_eigensolver = ExactEigensolver(qop, k=2) ret = exact_eigensolver.run() print('The electronic energy is: {:.12f}'.format(ret['eigvals'][0].real)) print('The total FCI energy is: {:.12f}'.format(ret['eigvals'][0].real + nuclear_repulsion_energy)) exact_energy = ret['eigvals'][0].real + nuclear_repulsion_energy exact_energy_fe = ret['eigvals'][1].real + nuclear_repulsion_energy qop.to_matrix() #print(qop) # eigval, eigvec = np.linalg.eigh(qop.matrix.toarray()) # exact_energy = eigval[0].real + nuclear_repulsion_energy # exact_energy_fe = eigval[1].real + nuclear_repulsion_energy # print('{} is the groundstate energy and {} is the first excited state'.format(eigval[0].real,eigval[1].real)) # print('Groundstate: \n', eigv[:,0]) # print('First excited state: \n', eigv[:, 0]) ################################################################### # The outputs to plot my_info = [dist,exact_energy,vqe_energy] param_info = [dist,vqe_params] # my_info = [dist, exact_energy,eigval[1].real + nuclear_repulsion_energy, eigval[2].real + nuclear_repulsion_energy, eigval[3].real\ # + nuclear_repulsion_energy, eigval[4].real + nuclear_repulsion_energy, eigval[5].real + nuclear_repulsion_energy, \ # eigval[6].real + nuclear_repulsion_energy, eigval[7].real + nuclear_repulsion_energy, eigval[8].real + nuclear_repulsion_energy, eigval[9].real + nuclear_repulsion_energy, \ # eigval[10].real + nuclear_repulsion_energy, eigval[11].real + nuclear_repulsion_energy] output_data.append(my_info) my_info_to_str = " ".join(str(e) for e in my_info) params_to_str = " ".join(str(e) for e in param_info) Fout.write(my_info_to_str + "\n") Fout_op.write(params_to_str + "\n") print(output_data) Fout.close() Fout_op.close() # output_data[:,0] = np.sort(output_data[:,0],axis=0) # print(output_data)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from qiskit_chemistry import FermionicOperator, QMolecule from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit_chemistry import QMolecule as qm from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua import Operator from qiskit_aqua.algorithms import VQE, ExactEigensolver from qiskit import Aer from scipy import linalg as la import numpy as np import yaml as yml from yaml import SafeLoader as Loader import os import Load_Hamiltonians as lh ##Carefully upgrade terra to see if qasm/state-vector simulator perform quicker.## #################### WALK ROOT DIR ############################ #root_dir = 'IntegralData/vqe-data-master/Li2_cc-pVTZ/4_ORBITALS' root_dir = 'IntegralData/H2_MEKENA' data_file_list = [] for dirName, subdirList, fileList in os.walk(root_dir): print('Found directory: %s' % dirName) for fname in sorted(fileList): if fname.endswith('.yaml'): data_file_list.append(fname) #This 'del' is four the 4-orbital case since the OEs are missing for the distance 13... #This should be resolved for the future #del data_file_list[-1] # print(data_file_list) # print(data_file_list_oe) #I added an x in front of the 10s for distance to force the sorting, else it sees 13 as 1 #If any distance is in the 100s (unlikely) then add a 'y' in front of dist in file name ############################################################### ############# Output Files to Plot stuff ############### print(data_file_list) Fout = open('H2_VQEEnergies_noMP2_4-orbitals_071519.dat',"w") Fout_op = open('H2_OptimalParams_noMP2_4-orbitals_071519.dat',"w") #Fout = open('Li2_ExactEnergiesG&FE_wMP2_4-orbitals_052919.dat',"w") ########################################################### #Variables that can be assigned outside of Loop map_type = str('jordan_wigner') truncation_threshold = 0.01 ################# IBM BACKEND ##################### backend1 = Aer.get_backend('statevector_simulator') backend2 = Aer.get_backend('qasm_simulator') ################################################### output_data = [] #Looping over all of the yaml files in a particular directory and saving the energies from VQE and Exact ind = 0 for key, file in enumerate(data_file_list): NW_data_file = str(os.path.join(root_dir,file)) print('First File', NW_data_file) try: doc = open(NW_data_file, 'r') data = yml.load(doc, Loader) finally: doc.close() #Import all the data from a yaml file print('Getting data') n_spatial_orbitals = data['integral_sets'][0]['n_orbitals'] print('{} spatial orbitals'.format(n_spatial_orbitals)) nuclear_repulsion_energy = data['integral_sets'][0]['coulomb_repulsion']['value'] print('{} Coloumb repulsion'.format(nuclear_repulsion_energy)) n_orbitals = 2 * n_spatial_orbitals n_particles = data['integral_sets'][0]['n_electrons'] print('{} particles'.format(n_particles)) dist = 2 * data['integral_sets'][0]['geometry']['atoms'][1]['coords'][2] print('Bond distance is {}'.format(dist)) if map_type == 'parity': # For two-qubit reduction n_qubits = n_orbitals - 2 else: n_qubits = n_orbitals # Populating the QMolecule class with the data to make calculations easier qm.num_orbitals = n_spatial_orbitals qm.num_alpha = n_particles // 2 qm.num_beta = n_particles // 2 qm.core_orbitals = 0 qm.nuclear_repulsion_energy = nuclear_repulsion_energy qm.hf_energy = data['integral_sets'][0]['scf_energy']['value'] #Importing the integrals one_electron_import = data['integral_sets'][0]['hamiltonian']['one_electron_integrals']['values'] two_electron_import = data['integral_sets'][0]['hamiltonian']['two_electron_integrals']['values'] #Getting spatial integrals and spin integrals to construct Hamiltonian one_electron_spatial_integrals, two_electron_spatial_integrals = lh.get_spatial_integrals(one_electron_import, two_electron_import, n_spatial_orbitals) one_electron_spatial_integrals, two_electron_spatial_integrals = lh.trunctate_spatial_integrals( one_electron_spatial_integrals, two_electron_spatial_integrals, .001) h1, h2 = lh.convert_to_spin_index(one_electron_spatial_integrals, two_electron_spatial_integrals, n_spatial_orbitals, truncation_threshold) #For the MP2 Calculation qm.mo_eri_ints = two_electron_spatial_integrals #Constructing the fermion operator and qubit operator from integrals data fop = FermionicOperator(h1, h2) qop_paulis = fop.mapping(map_type) print(qop_paulis) qop = Operator(paulis=qop_paulis.paulis) #Get Variational form and intial state # init_state = HartreeFock(n_qubits, n_orbitals, n_particles, map_type, two_qubit_reduction=False) # var_op = UCCSD(n_qubits, 1, n_orbitals, n_particles, active_occupied=None, active_unoccupied=None, initial_state=init_state, qubit_mapping=map_type, mp2_reduction=False) # # ######################## VQE RESULT ############################### # # setup a classical optimizer for VQE # max_eval = 200 # optimizer = COBYLA(maxiter=max_eval, disp=True, tol=1e-2) # # #Choosing initial params based on previous iteration # if ind == 0: # # initial_params = var_op._mp2_coeff # initial_params = None # ind += 1 # elif len(vqe_params) == var_op.num_parameters: # initial_params = vqe_params # else: # initial_params = None # # # print('Doing VQE') # algorithm = VQE(qop_paulis,var_op,optimizer,'paulis', initial_point=initial_params, ) # #VQE_Circ = algorithm.construct_circuit(dumpy_params, backend1) # #print('The VQE circuit:\n',VQE_Circ) # result = algorithm.run(backend1) # vqe_energy = result['energy'] + nuclear_repulsion_energy # vqe_params = result['opt_params'] # # print('The VQE energy is: ',vqe_energy) # # print('The optimized params are {}.'.format(vqe_params)) # ################################################################### # # ################### EXACT RESULT ################################## # exact_eigensolver = ExactEigensolver(qop, k=2) # ret = exact_eigensolver.run() # print('The electronic energy is: {:.12f}'.format(ret['eigvals'][0].real)) # print('The total FCI energy is: {:.12f}'.format(ret['eigvals'][0].real + nuclear_repulsion_energy)) # exact_energy = ret['eigvals'][0].real + nuclear_repulsion_energy # exact_energy_fe = ret['eigvals'][1].real + nuclear_repulsion_energy # qop.to_matrix() # #print(qop) # # eigval, eigvec = np.linalg.eigh(qop.matrix.toarray()) # # exact_energy = eigval[0].real + nuclear_repulsion_energy # # exact_energy_fe = eigval[1].real + nuclear_repulsion_energy # # print('{} is the groundstate energy and {} is the first excited state'.format(eigval[0].real,eigval[1].real)) # # print('Groundstate: \n', eigv[:,0]) # # print('First excited state: \n', eigv[:, 0]) # ################################################################### # # The outputs to plot # my_info = [dist,exact_energy,vqe_energy] # param_info = [dist,vqe_params] # # my_info = [dist, exact_energy,eigval[1].real + nuclear_repulsion_energy, eigval[2].real + nuclear_repulsion_energy, eigval[3].real\ # # + nuclear_repulsion_energy, eigval[4].real + nuclear_repulsion_energy, eigval[5].real + nuclear_repulsion_energy, \ # # eigval[6].real + nuclear_repulsion_energy, eigval[7].real + nuclear_repulsion_energy, eigval[8].real + nuclear_repulsion_energy, eigval[9].real + nuclear_repulsion_energy, \ # # eigval[10].real + nuclear_repulsion_energy, eigval[11].real + nuclear_repulsion_energy] # output_data.append(my_info) # my_info_to_str = " ".join(str(e) for e in my_info) # params_to_str = " ".join(str(e) for e in param_info) # Fout.write(my_info_to_str + "\n") # Fout_op.write(params_to_str + "\n") print(output_data) Fout.close() Fout_op.close() # output_data[:,0] = np.sort(output_data[:,0],axis=0) # print(output_data)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from qiskit_chemistry import FermionicOperator, QMolecule from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit_chemistry import QMolecule as qm from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua import Operator from qiskit_aqua.algorithms import VQE, ExactEigensolver from qiskit import Aer from scipy import linalg as la import numpy as np import yaml as yml from yaml import SafeLoader as Loader import os from dask.distributed import Client, LocalCluster import dask import Load_Hamiltonians as lh #Define functions that can be used in parallel algorithm def read_variables(root_dir, file1, file2): Ham_data_file = str(os.path.join(root_dir, file1)) OrbE_data_file = str(os.path.join(root_dir + '/DOWNFOLDED_ORBITAL_ENERGIES', file2)) try: doc_nw = open(Ham_data_file, 'r') doc_orbe = open(OrbE_data_file, 'r') dat = yml.load(doc_nw, Loader) content_orbe = doc_orbe.readlines() finally: doc_nw.close() doc_orbe.close() # Import all the data from a yaml file print('Getting data') #Importing the integrals one_e = dat['integral_sets'][0]['hamiltonian']['one_electron_integrals']['values'] two_e = dat['integral_sets'][0]['hamiltonian']['two_electron_integrals']['values'] num_spatial_orbitals = dat['integral_sets'][0]['n_orbitals'] coulomb_energy = dat['integral_sets'][0]['coulomb_repulsion']['value'] num_orbitals = 2 * num_spatial_orbitals num_particles = dat['integral_sets'][0]['n_electrons'] d = 2 * dat['integral_sets'][0]['geometry']['atoms'][1]['coords'][2] print('Bond distance is {}'.format(d)) if map_type == 'parity': # For two-qubit reduction num_qubits = num_orbitals - 2 else: num_qubits = num_orbitals # Populating the QMolecule class with the data to make calculations easier - No need for returns # qm.num_orbitals = num_spatial_orbitals # qm.num_alpha = num_particles // 2 # qm.num_beta = num_particles // 2 # qm.core_orbitals = 0 # qm.nuclear_repulsion_energy = coulomb_energy # qm.hf_energy = dat['integral_sets'][0]['scf_energy']['value'] ###################Get Orbital Energies from FOCK file######################## orbital_energies = [] found = False count = 0 for line in content_orbe: if 'Eigenvalues:' in line.split()[0]: found = True if found and len(line.split()) > 1: orbital_energies.append(float(line.split()[1])) count += 1 if count >= num_spatial_orbitals: break qm.orbital_energies = orbital_energies return num_spatial_orbitals, num_orbitals, num_particles, num_qubits, d, coulomb_energy, one_e, two_e def get_molecular_qubit_operator(one_ints, two_ints, n_orbitals, thresh, qubit_map): # Getting spatial integrals and spin integrals to construct Hamiltonian one_electron_spatial_integrals, two_electron_spatial_integrals = lh.get_spatial_integrals(one_ints, two_ints, n_orbitals) h1, h2 = lh.convert_to_spin_index(one_electron_spatial_integrals, two_electron_spatial_integrals, n_orbitals, thresh) # For the MP2 Calculation qm.mo_eri_ints = two_electron_spatial_integrals # Constructing the fermion operator and qubit operator from integrals data fop = FermionicOperator(h1, h2) qop_paulis = fop.mapping(qubit_map) return qop_paulis def run_vqe(pauli_operator, num_orbitals, num_particles, num_qubits, coulomb_energy, mapping, backend): var_energy = 0 #Get Variational form and intial state initial_state = HartreeFock(num_qubits, num_orbitals, num_particles, mapping, two_qubit_reduction=False) var_op = UCCSD(num_qubits, 1, num_orbitals, num_particles, active_occupied=None, active_unoccupied=None, initial_state=initial_state, qubit_mapping=mapping, mp2_reduction=True) ######################## VQE RESULT ############################### # setup a classical optimizer for VQE max_eval = 200 optimizer = COBYLA(maxiter=max_eval, disp=True, tol=1e-3) print('Doing VQE') algorithm = VQE(pauli_operator, var_op, optimizer,'paulis', initial_point=None, ) result = algorithm.run(backend) var_energy = result['energy'] + coulomb_energy # vqe_params = result['opt_params'] return var_energy def run_exact(pauli_operator, coulomb_energy): exact_eigensolver = ExactEigensolver(pauli_operator, k=1) ret = exact_eigensolver.run() print('The electronic energy is: {:.12f}'.format(ret['eigvals'][0].real)) print('The total FCI energy is: {:.12f}'.format(ret['eigvals'][0].real + coulomb_energy)) ed_energy = ret['eigvals'][0].real + coulomb_energy return ed_energy ##Carefully upgrade terra to see if qasm/state-vector simulator perform quicker.## #################### WALK ROOT DIR ############################ root_dir = 'IntegralData/vqe-data-master/Li2_cc-pVTZ/4_ORBITALS' data_file_list = [] data_file_list_oe = [] for dirName, subdirList, fileList in os.walk(root_dir): print('Found directory: %s' % dirName) for fname in sorted(fileList): if fname.endswith('.yaml'): data_file_list.append(fname) if fname.endswith('.FOCK'): data_file_list_oe.append(fname) #This 'del' is four the 4-orbital case since the OEs are missing for the distance 13... #This should be resolved for the future del data_file_list[-1] #I added an x in front of the 10s for distance to force the sorting, else it sees 13 as 1 #If any distance is in the 100s (unlikely) then add a 'y' in front of dist in file name ############################################################### ############# Output Files to Plot stuff ############### print(data_file_list) Fout = open('Li2_ExactEnergies_wMP2_4-orbitals_061219.dat',"w") ########################################################### #Variables that can be assigned outside of Loop map_type = str('jordan_wigner') truncation_threshold = 0.01 ################# IBM BACKEND ##################### backend1 = Aer.get_backend('statevector_simulator') backend2 = Aer.get_backend('qasm_simulator') ################################################### @dask.delayed def final(root_dir, file1, file2): spatial_orbitals, spin_orbitals, particle_num, qubits_num, dist, nuclear_energy, one_electron_import, two_electron_import = read_variables( root_dir, file1, file2) qop = get_molecular_qubit_operator(one_electron_import, two_electron_import, spatial_orbitals, truncation_threshold, map_type) # vqe_energy = run_vqe(qop, spin_orbitals, particle_num, qubits_num, nuclear_energy, map_type, backend1) vqe_energy = 0 exact_energy = run_exact(qop, nuclear_energy) my_info = [dist, exact_energy, vqe_energy] return my_info # print(output_data) Fout.close() if __name__ == "__main__": computations = [] cluster = LocalCluster() client = Client(cluster, asyncronous=True) for file1, file2 in zip(data_file_list, data_file_list_oe): computations.append(final(root_dir, file1, file2)) # my_info_to_str = " ".join(str(e) for e in final_energies) # Fout.write(my_info_to_str + "\n") output_data = dask.compute(*computations, scheduler='distributed')
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
#Once debugged, put this in Jupyter notebook from math import pi import numpy as np import scipy as sp # importing Qiskit from qiskit import Aer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit.tools.visualization import plot_histogram, matplotlib_circuit_drawer from scipy import linalg as las def xx_unitary(qcirc,theta, qa, qi, qj): # This is the circuit to do simulate an X_iX_j exponentiated Pauli operator where i < j qcirc.h(qi) qcirc.h( qj) qcirc.cx(qj, qi) qcirc.crz(2.0 *theta,qa,qi) qcirc.cx(qj, qi) qcirc.h(qi) qcirc.h( qj) def yy_unitary(qcirc,theta, qa, qi, qj): # This is the circuit to do simulate an Y_iY_j exponentiated Pauli operator where i < j qcirc.rx(pi/2.,qi) qcirc.rx(pi / 2., qj) qcirc.cx(qj, qi) qcirc.crz(2.0 * theta,qa,qi) qcirc.cx(qj, qi) qcirc.rx(-pi/2.,qi) qcirc.rx(-pi / 2., qj) def zz_unitary(qcirc,theta, qa, qi, qj): # This is the circuit to do simulate an Z_iZ_j exponentiated Pauli operator where i < j #I had to add a multiple of 2 for the CZ and now the eigenvalues match the unitaries in Miro's code qcirc.cx(qj, qi) qcirc.crz(2.0 * theta,qa,qi) qcirc.cx(qj, qi) def z_unitary(qcirc,theta, qa, qi): qcirc.crz(2.0 * theta, qa, qi) def unitary_specifiedtrotter(qcirc, h0, h1, h2, h3, h4, qa, q0, q1): z_unitary(qcirc, h0, qa, q0) z_unitary(qcirc, h1, qa, q1) xx_unitary(qcirc, h2, qa, q0, q1) yy_unitary(qcirc, h3, qa, q0, q1) # Expectation value of the following term can be computed classically with HF state. zz_unitary(qcirc, h4, qa, q0, q1) # print(qcirc) return 0 # Now begins main() backend = Aer.get_backend('qasm_simulator') # backend = Aer.get_backend('unitary_simulator') # qr = QuantumRegister(2,name='qr') # a = QuantumRegister(1, name='a') # cr = ClassicalRegister(1) # Circuit = QuantumCircuit(qr,cr) # Circuit.add_register(a) # Hamiltonian Values - Interestingly the entangling XX and YY terms are dominant when R is large - why? # R = 1.55 hI = -0.2265 h0 = 0.1843 h1 = -0.0549 h2 = 0.1165 h3 = 0.1165 h4 = 0.4386 #Strangly there is a t_0 being used for U(2^k t_0) = (e^i\theta Ht_0)^(2^k) #remember is trotter expansion dt = t_0 t_0 = 9.830 # Digit of precision bits = 8 # Circuit.h(a[0]) # Circuit.rz(0,a[0]) # This is identity, but will be needed in the circuit to get increased bits of precision # Circuit.x(qr[0]) # Initialize HF state for two qubit system # unitary_specifiedtrotter(Circuit,(2**bits)*h0*t_0, (2**bits)*h1*t_0, (2**bits)*h2*t_0, (2**bits)*h3*t_0,\ # (2**bits)*h4*t_0, a[0], qr[0], qr[1]) # # # Circuit.u1(t_0 * hI * (2 ** bits), qr[0]) # Circuit.h(a[0]) # Circuit.measure(a[0], cr[0]) # # # print('Circuit for least significant bit\n',Circuit) # #Circuit.draw(output='mpl') # # # alg = execute(Circuit, backend) # result = alg.result() # count = result.get_counts(Circuit) # print(count) # x = 1 if count['1'] > count['0'] else 0 # c1 = count['1']/1024 # c2 = count['0']/1024 # print('The distribution of measurements are {} with population percentage {}'.format(x, c1)) if count['1'] > count['0']\ # else print('The distribution of measurements are {} with population percentage {}'.format(x, c1)) # Execute unitary_sim # result = execute(Circuit, backend).result() # unitary = result.get_unitary(Circuit) # print("Circuit unitary:\n", unitary) # eval, evec = las.eigh(unitary) # print(eval[0]) binary_phase = [] x = 0 omega_coef = 0 for k in range(bits,0, -1): it_num = k-1 print('exponent: ', it_num) omega_coef /= 2.0 # omega_coef = 0 # for j in range(1,k-1): # print('j = ',j) # omega_coef += -pi*binary_phase[j-1]/(2**j) print(' {} is phase kickback'.format(omega_coef)) qr = QuantumRegister(2, name='qr') a = QuantumRegister(1, name='a') cr = ClassicalRegister(1) qc = QuantumCircuit(qr, cr) qc.add_register(a) qc.h(a[0]) qc.u1(-pi*2.*omega_coef,a[0]) qc.x(qr[0]) # Initialize HF state for two qubit system unitary_specifiedtrotter(qc,(2**it_num)*h0*t_0, (2**it_num)*h1*t_0, (2**it_num)*h2*t_0, (2**it_num)*h3*t_0,\ (2**it_num)*h4*t_0, a[0], qr[0], qr[1]) # qc.u1(t_0 * hI * (2 ** bits), a[0]) qc.h(a[0]) qc.measure(a[0], cr[0]) alg = execute(qc, backend) result = alg.result() count = result.get_counts(qc) x = 1 if count['1'] > count['0'] else 0 omega_coef = omega_coef + x / 2 print('phase is {} with a bit {} for k = {}'.format(omega_coef, x, k)) binary_phase.insert(0,x) E = (omega_coef-3*pi)/t_0 print(E+hI) print(binary_phase)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from math import pi import numpy as np import scipy as sp # importing Qiskit from qiskit import Aer from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister from qiskit import execute from qiskit.tools.visualization import plot_histogram from qiskit.tools.monitor import job_monitor # We first define controlled gates used in the IPEA def cu1fixed(qProg, c, t, a): qProg.u1(-a, t) qProg.cx(c, t) qProg.u1(a, t) qProg.cx(c, t) def cu5pi8(qProg, c, t): cu1fixed(qProg, c, t, -5.0*pi/8.0) backend = Aer.get_backend('statevector_simulator') # backend = Aer.get_backend('qasm_simulator') # We then prepare quantum and classical registers and the circuit qr = QuantumRegister(2) cr = ClassicalRegister(1) Circuit = QuantumCircuit(qr,cr) # Apply IPEA Circuit.h(qr[0]) cu5pi8(Circuit, qr[0], qr[1]) # for i in range(8): # cu5pi8(Circuit, qr[0], qr[1]) # Circuit.u1(-3*pi/4,qr[0]) Circuit.h(qr[0]) #Circuit.measure(qr[0], cr[0]) print('Circuit for least significant bit',Circuit) alg = execute(Circuit, backend) result = alg.result() print(result) vec = result.get_statevector(Circuit) vecx = np.conj(vec) print(vec) #plot_histogram(result.get_counts()) ''' Circuit.h(qr[0]) Circuit.u1(-pi/4., qr[1]) Circuit.cx(qr[0], qr[1]) Circuit.u1(pi/4., qr[1]) Circuit.cx(qr[0], qr[1]) Circuit.h(qr[0]) Circuit.measure(qr[0], cr[0]) print(Circuit) alg = execute(Circuit, backend) result = alg.result() count = result.get_counts(Circuit) print(count) # state_vec = result.get_statevector(Circuit) # vecx = np.conj(state_vec) # print(np.outer(vecx,state_vec)) '''
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from qiskit_chemistry import FermionicOperator, QMolecule from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua import Operator from qiskit_aqua.algorithms import VQE, ExactEigensolver from qiskit import Aer from scipy import linalg as la import numpy as np import yaml as yml from yaml import SafeLoader as Loader import os from dask.distributed import Client, LocalCluster import dask import Load_Hamiltonians as lh #Define functions that can be used in parallel algorithm def read_variables(root_dir, file1): #print('Root directory\n',root_dir) #print('The file: \n', file1) Ham_data_file = str(os.path.join(root_dir, file1[0])) try: doc_nw = open(Ham_data_file, 'r') dat = yml.load(doc_nw, Loader) finally: doc_nw.close() # Import all the data from a yaml file print('Getting data') #Importing the integrals one_e = dat['integral_sets'][0]['hamiltonian']['one_electron_integrals']['values'] two_e = dat['integral_sets'][0]['hamiltonian']['two_electron_integrals']['values'] num_spatial_orbitals = dat['integral_sets'][0]['n_orbitals'] coulomb_energy = dat['integral_sets'][0]['coulomb_repulsion']['value'] num_orbitals = 2 * num_spatial_orbitals num_particles = dat['integral_sets'][0]['n_electrons'] d = 2 * dat['integral_sets'][0]['geometry']['atoms'][1]['coords'][2] print('Bond distance is {}'.format(d)) if map_type == 'parity': # For two-qubit reduction num_qubits = num_orbitals - 2 else: num_qubits = num_orbitals return num_spatial_orbitals, num_orbitals, num_particles, num_qubits, d, coulomb_energy, one_e, two_e def get_molecular_qubit_operator(one_ints, two_ints, n_orbitals, thresh, qubit_map): # Getting spatial integrals and spin integrals to construct Hamiltonian one_electron_spatial_integrals, two_electron_spatial_integrals = lh.get_spatial_integrals(one_ints, two_ints, n_orbitals) h1, h2 = lh.convert_to_spin_index(one_electron_spatial_integrals, two_electron_spatial_integrals, n_orbitals, thresh) # Constructing the fermion operator and qubit operator from integrals data fop = FermionicOperator(h1, h2) qop_paulis = fop.mapping(qubit_map) return qop_paulis def run_vqe(pauli_operator, num_orbitals, num_particles, num_qubits, coulomb_energy, mapping, backend): var_energy = 0 #Get Variational form and intial state initial_state = HartreeFock(num_qubits, num_orbitals, num_particles, mapping, two_qubit_reduction=False) var_op = UCCSD(num_qubits, 1, num_orbitals, num_particles, active_occupied=None, active_unoccupied=None, initial_state=initial_state, qubit_mapping=mapping) ######################## VQE RESULT ############################### # setup a classical optimizer for VQE max_eval = 200 optimizer = COBYLA(maxiter=max_eval, disp=True, tol=1e-3) print('Doing VQE') algorithm = VQE(pauli_operator, var_op, optimizer,'paulis', initial_point=None, ) result = algorithm.run(backend) var_energy = result['energy'] + coulomb_energy # vqe_params = result['opt_params'] return var_energy def run_exact(pauli_operator, coulomb_energy): exact_eigensolver = ExactEigensolver(pauli_operator, k=1) ret = exact_eigensolver.run() print('The electronic energy is: {:.12f}'.format(ret['eigvals'][0].real)) print('The total FCI energy is: {:.12f}'.format(ret['eigvals'][0].real + coulomb_energy)) ed_energy = ret['eigvals'][0].real + coulomb_energy return ed_energy ##Carefully upgrade terra to see if qasm/state-vector simulator perform quicker.## #################### WALK ROOT DIR ############################ #U root_dir = '/Users/mmetcalf/Dropbox/Quantum Embedding/Codes/Lithium_Downfolding/Qiskit Chem/HamiltonianDownfolding_w_IBM/IntegralData/vqe-data-master/Li2_cc-pVTZ/4_ORBITALS/' data_file_list = [] for dirName, subdirList, fileList in os.walk(root_dir): print('Found directory: %s' % dirName) for fname in sorted(fileList): if fname.endswith('.yaml'): data_file_list.append(fname) ############# Output Files to Plot stuff ############### print(data_file_list) Fout = open('Mekena_OutputData.dat',"w") ########################################################### #Variables that can be assigned outside of Loop map_type = str('jordan_wigner') truncation_threshold = 0.01 ################# IBM BACKEND ##################### backend1 = Aer.get_backend('statevector_simulator') ################################################### @dask.delayed def final(root_dir, file1): #print('Starting Loop') spatial_orbitals, spin_orbitals, particle_num, qubits_num, dist, nuclear_energy, one_electron_import, two_electron_import = read_variables( root_dir, file1) #print('Have variables') qop = get_molecular_qubit_operator(one_electron_import, two_electron_import, spatial_orbitals, truncation_threshold, map_type) #print('Have qubit operator') # vqe_energy = run_vqe(qop, spin_orbitals, particle_num, qubits_num, nuclear_energy, map_type, backend1) vqe_energy = 0 exact_energy = run_exact(qop, nuclear_energy) #print('Obtained the energy') my_info = [dist, exact_energy, vqe_energy] #print('info: ',my_info) return my_info # print(output_data) Fout.close() if __name__ == "__main__": computations = [] cluster = LocalCluster() client = Client(cluster, asyncronous=True) for file1 in zip(data_file_list): computations.append(final(root_dir, file1)) # final(root_dir, file1) # my_info_to_str = " ".join(str(e) for e in final_energies) # Fout.write(my_info_to_str + "\n") output_data = dask.compute(*computations, scheduler='distributed') print(output_data)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from qiskit_chemistry import FermionicOperator, QMolecule from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit_aqua.components.optimizers import COBYLA from qiskit_aqua import Operator from qiskit_aqua.algorithms import VQE, ExactEigensolver from qiskit import Aer from scipy import linalg as la import numpy as np import yaml as yml from yaml import SafeLoader as Loader import os from qiskit.tools.parallel import parallel_map from qiskit.tools.events import TextProgressBar import Load_Hamiltonians as lh #Define functions that can be used in parallel algorithm def read_variables(root_dir, file1): #print('Root directory\n',root_dir) #print('The file: \n', file1) Ham_data_file = str(os.path.join(root_dir, file1)) try: doc_nw = open(Ham_data_file, 'r') dat = yml.load(doc_nw, Loader) finally: doc_nw.close() # Import all the data from a yaml file print('Getting data') #Importing the integrals one_e = dat['integral_sets'][0]['hamiltonian']['one_electron_integrals']['values'] two_e = dat['integral_sets'][0]['hamiltonian']['two_electron_integrals']['values'] num_spatial_orbitals = dat['integral_sets'][0]['n_orbitals'] coulomb_energy = dat['integral_sets'][0]['coulomb_repulsion']['value'] num_orbitals = 2 * num_spatial_orbitals num_particles = dat['integral_sets'][0]['n_electrons'] d = 2 * dat['integral_sets'][0]['geometry']['atoms'][1]['coords'][2] print('Bond distance is {}'.format(d)) if map_type == 'parity': # For two-qubit reduction num_qubits = num_orbitals - 2 else: num_qubits = num_orbitals return num_spatial_orbitals, num_orbitals, num_particles, num_qubits, d, coulomb_energy, one_e, two_e def get_molecular_qubit_operator(one_ints, two_ints, n_orbitals, thresh, qubit_map): # Getting spatial integrals and spin integrals to construct Hamiltonian one_electron_spatial_integrals, two_electron_spatial_integrals = lh.get_spatial_integrals(one_ints, two_ints, n_orbitals) h1, h2 = lh.convert_to_spin_index(one_electron_spatial_integrals, two_electron_spatial_integrals, n_orbitals, thresh) # Constructing the fermion operator and qubit operator from integrals data fop = FermionicOperator(h1, h2) qop_paulis = fop.mapping(qubit_map, num_workers=1) return qop_paulis def run_vqe(pauli_operator, num_orbitals, num_particles, num_qubits, coulomb_energy, mapping, backend): var_energy = 0 #Get Variational form and intial state initial_state = HartreeFock(num_qubits, num_orbitals, num_particles, mapping, two_qubit_reduction=False) var_op = UCCSD(num_qubits, 1, num_orbitals, num_particles, active_occupied=None, active_unoccupied=None, initial_state=initial_state, qubit_mapping=mapping) ######################## VQE RESULT ############################### # setup a classical optimizer for VQE max_eval = 200 optimizer = COBYLA(maxiter=max_eval, disp=True, tol=1e-3) print('Doing VQE') algorithm = VQE(pauli_operator, var_op, optimizer,'paulis', initial_point=None, ) result = algorithm.run(backend) var_energy = result['energy'] + coulomb_energy # vqe_params = result['opt_params'] return var_energy def run_exact(pauli_operator, coulomb_energy): exact_eigensolver = ExactEigensolver(pauli_operator, k=1) ret = exact_eigensolver.run() print('The electronic energy is: {:.12f}'.format(ret['eigvals'][0].real)) print('The total FCI energy is: {:.12f}'.format(ret['eigvals'][0].real + coulomb_energy)) ed_energy = ret['eigvals'][0].real + coulomb_energy return ed_energy def final(file, root_directory, backend): # print('Starting Loop') spatial_orbitals, spin_orbitals, particle_num, qubits_num, dist, nuclear_energy, one_electron_import, two_electron_import = read_variables(root_directory, file) # print('Have variables') qop = get_molecular_qubit_operator(one_electron_import, two_electron_import, spatial_orbitals, truncation_threshold, map_type) # print('Have qubit operator') # vqe_energy = run_vqe(qop, spin_orbitals, particle_num, qubits_num, nuclear_energy, map_type, backend) vqe_energy = 0 exact_energy = run_exact(qop, nuclear_energy) # print('Obtained the energy') my_info = [dist, exact_energy, vqe_energy] # print('info: ',my_info) return my_info ##Carefully upgrade terra to see if qasm/state-vector simulator perform quicker.## #################### WALK ROOT DIR ############################ #U root_dir = '/Users/mmetcalf/Dropbox/Quantum Embedding/Codes/Lithium_Downfolding/Qiskit Chem/HamiltonianDownfolding_w_IBM/IntegralData/vqe-data-master/Li2_cc-pVTZ/4_ORBITALS/' data_file_list = [] for dirName, subdirList, fileList in os.walk(root_dir): print('Found directory: %s' % dirName) for fname in sorted(fileList): if fname.endswith('.yaml'): data_file_list.append(fname) ############# Output Files to Plot stuff ############### # print(data_file_list) Fout = open('Mekena_OutputData.dat',"w") ########################################################### #Variables that can be assigned outside of Loop map_type = str('jordan_wigner') truncation_threshold = 0.01 ################# IBM BACKEND ##################### backend1 = Aer.get_backend('statevector_simulator') ################################################### result = parallel_map(final, data_file_list, task_args=(root_dir, backend1)) print(result) # print(output_data) Fout.close()
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from qiskit.chemistry import FermionicOperator from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD from qiskit.chemistry import QMolecule as qm from qiskit.aqua.components.optimizers import COBYLA from qiskit.aqua import Operator from qiskit.aqua.algorithms import VQE, ExactEigensolver from qiskit import Aer from qiskit.tools.visualization import circuit_drawer from qiskit.chemistry.drivers import PySCFDriver, UnitsType import numpy as np import yaml as yml from yaml import SafeLoader as Loader import Load_Hamiltonians as lh import os #Importing data generated from NW Chem to run experiments #Li2_cc-pVTZ_4_ORBITALS_Li2-4_ORBITALS-ccpVTZ-2_1384 root_dir = '/Users/mmetcalf/Dropbox/Quantum Embedding/Codes/Lithium_Downfolding/Qiskit Chem/HamiltonianDownfolding_w_IBM/IntegralData/H2_MEKENA/' NW_data_file = str(root_dir+'h2_ccpvtz_ccsd_0_80au_ducc_1_3.yaml') # NW_data_file = str('H2.yaml') OE_data_file = str(root_dir+ 'h2_ccpvtz_ccsd_0_80au.FOCK') # NW_data_file = 'H2.yaml' doc_nw = open(NW_data_file,'r') doc_oe = open(OE_data_file,'r') data = yml.load(doc_nw,Loader) content_oe = doc_oe.readlines() ################# backend1 = Aer.get_backend('statevector_simulator') backend2 = Aer.get_backend('qasm_simulator') ################# ########################################################### #Initialize Variables map_type = str('jordan_wigner') truncation_threshold = 0.1 n_spatial_orbitals = data['integral_sets'][0]['n_orbitals'] nuclear_repulsion_energy = data['integral_sets'][0]['coulomb_repulsion']['value'] print('repulsion: ',nuclear_repulsion_energy) n_orbitals = 2*n_spatial_orbitals n_particles = data['integral_sets'][0]['n_electrons'] #Populating the QMolecule class with the data to make calculations easier qm.num_orbitals = n_spatial_orbitals qm.num_alpha = n_particles//2 qm.num_beta = n_particles//2 #This is just a place holder for freezing the core that I need for the MP2 calculations qm.core_orbitals = 0 qm.nuclear_repulsion_energy = nuclear_repulsion_energy qm.hf_energy = data['integral_sets'][0]['scf_energy']['value'] ###################Get Orbital Energies from FOCK file######################## orbital_energies = [] found = False count = 0 for line in content_oe: if 'Eigenvalues:' in line.split()[0]: found =True if found and len(line.split()) > 1: orbital_energies.append(float(line.split()[1])) count += 1 if count >= n_spatial_orbitals: break qm.orbital_energies = orbital_energies print(orbital_energies) #7 orbitals #qm.orbital_energies = [-2.4533,-2.4530,-0.1817,0.0065, 0.0273, 0.0273, 0.0385] ############################################################################## dist = 2*data['integral_sets'][0]['geometry']['atoms'][1]['coords'][2] if map_type == 'parity': #For two-qubit reduction n_qubits = n_orbitals-2 else: n_qubits = n_orbitals active_occ = n_particles//2 active_virt = (n_orbitals-n_particles)//2 active_occ_list = np.arange(active_occ) active_occ_list = active_occ_list.tolist() #print('Orbitals {} are occupied'.format(active_occ_list)) active_virt_list = np.arange(active_virt) active_virt_list = active_virt_list.tolist() #print('Orbitals {} are unoccupied'.format(active_virt_list)) ########################################################### #Output Files to Plot stuff Fout = open('ErrorFromTruncation_Li2_Orb-{}_Dist-{}'.format(n_spatial_orbitals,dist),"w") ########################################################### ###Running Pyscf driver to check integrals # driver = PySCFDriver(atom='Li .0 .0 .0; Li .0 .0 {}'.format(dist), # unit=UnitsType.ANGSTROM, # basis='cc-pvtz') # molecule = driver.run() # print(molecule.num_orbitals) # print('Spatial Integrals from Pyscf\n',molecule.mo_eri_ints) # Get Hamiltonian in array form from data and get excitations #Setting singles so they are not us dumpy_singles = [[0,0]] one_electron_import = data['integral_sets'][0]['hamiltonian']['one_electron_integrals']['values'] two_electron_import = data['integral_sets'][0]['hamiltonian']['two_electron_integrals']['values'] one_electron_spatial_integrals, two_electron_spatial_integrals = lh.get_spatial_integrals(one_electron_import,two_electron_import,n_spatial_orbitals) one_electron_spatial_integrals, two_electron_spatial_integrals = lh.trunctate_spatial_integrals(one_electron_spatial_integrals,two_electron_spatial_integrals,.001) #print('Spatial Integrals from my program\n',two_electron_spatial_integrals) #print('The difference\n',molecule.mo_eri_ints-two_electron_spatial_integrals) #For the MP2 calculation qm.mo_eri_ints = two_electron_spatial_integrals # qm.mo_onee_ints = one_electron_spatial_integrals h1, h2 = lh.convert_to_spin_index(one_electron_spatial_integrals,two_electron_spatial_integrals,n_spatial_orbitals, .001) #print(h1) # h1 = qm.onee_to_spin(one_electron_spatial_integrals) # h2 = qm.twoe_to_spin(np.einsum('ijkl->ljik', two_electron_spatial_integrals)) #fop = FermionicOperator(one_temp,two_temp) fop = FermionicOperator(h1, h2) qop_paulis = fop.mapping(map_type) qop = Operator(paulis=qop_paulis.paulis) ########################################### #Exact Result to compare to: This can also be obtained via the yaml file once we verify correctness. #Don't use trunctated Hamiltonian # print('Getting energy') # exact_eigensolver = ExactEigensolver(qop, k=2) # ret = exact_eigensolver.run() # print('The electronic energy is: {:.12f}'.format(ret['eigvals'][0].real)) # print('The total FCI energy is: {:.12f}'.format(ret['eigvals'][0].real + nuclear_repulsion_energy)) ########################################### init_state = HartreeFock(n_qubits, n_orbitals, n_particles, map_type,two_qubit_reduction=False) #Keep in mind Jarrod didn't use any singles for his ansatz. Maybe just stick to some local doubles, diagonal cancel var_op = UCCSD(num_qubits=n_qubits, depth=1, num_orbitals=n_orbitals, num_particles=n_particles, active_occupied=active_occ_list,\ active_unoccupied=active_virt_list,initial_state=init_state, qubit_mapping=map_type, mp2_reduction=True) dumpy_params = np.random.rand(var_op.num_parameters) #var_cirq = var_op.construct_circuit(dumpy_params) # singles, doubles = var_op.return_excitations() # setup a classical optimizer for VQE # max_eval = 200 # #WOuld using a different optimizer yield better results at long distances? # optimizer = COBYLA(maxiter=max_eval,disp=True, tol=1e-2) # print('params: ',var_op.num_parameters) # dumpy_params = np.random.rand(var_op.num_parameters) # #Call the VQE algorithm class with your qubit operator for the Hamiltonian and the variational op # # print('Doing VQE') # algorithm = VQE(qop_paulis,var_op,optimizer,'paulis', initial_point=var_op._mp2_coeff) # VQE_Circ = algorithm.construct_circuit(dumpy_params, backend=None) # print('The VQE circuit:\n',circuit_drawer(VQE_Circ, output='text')) # result = algorithm.run(backend1) # print('The VQE energy is: ',result['energy']+nuclear_repulsion_energy) # print('the params are {}.'.format(result['opt_params'])) # print(qop) # exact_eigensolver = ExactEigensolver(qop, k=2) # ret = exact_eigensolver.run() # print('The total FCI energy is: {:.12f}'.format(ret['eigvals'][0].real + nuclear_repulsion_energy)) Fout.close() # Junk Code I don't want to delete # Determining a method to reduce the excitation list with MP2 # All I am missing are the orbital energies and then I am good to go # It might be worth integrating this into the UCCSD class, so you can get the right circuit # without having to redo it. # mp2 = MP2Info(qm) # mp2_coeff, new_energies = mp2.mp2_get_term_info(var_op._double_excitations) # # print('{} are the new MP2 coeffs with energies {}'.format(mp2_coeff,new_energies)) # new_doubles = [] # for i, val in enumerate(doubles): # if mp2_coeff[i] != 0: # new_doubles.append(val) #print('These are the new doubles {}'.format(new_doubles))
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ This trial wavefunction is a Unitary Coupled-Cluster Single and Double excitations variational form. For more information, see https://arxiv.org/abs/1805.04340 """ import logging import sys import numpy as np from qiskit import QuantumRegister, QuantumCircuit from qiskit.tools import parallel_map from qiskit.tools.events import TextProgressBar from qiskit.aqua import Operator, aqua_globals from qiskit.aqua.components.variational_forms import VariationalForm from qiskit.chemistry.fermionic_operator import FermionicOperator from qiskit.chemistry import MP2Info from qiskit.chemistry import QMolecule as qm logger = logging.getLogger(__name__) class UCCSD(VariationalForm): """ This trial wavefunction is a Unitary Coupled-Cluster Single and Double excitations variational form. For more information, see https://arxiv.org/abs/1805.04340 """ CONFIGURATION = { 'name': 'UCCSD', 'description': 'UCCSD Variational Form', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'uccsd_schema', 'type': 'object', 'properties': { 'depth': { 'type': 'integer', 'default': 1, 'minimum': 1 }, 'num_orbitals': { 'type': 'integer', 'default': 4, 'minimum': 1 }, 'num_particles': { 'type': 'integer', 'default': 2, 'minimum': 1 }, 'active_occupied': { 'type': ['array', 'null'], 'default': None }, 'active_unoccupied': { 'type': ['array', 'null'], 'default': None }, 'qubit_mapping': { 'type': 'string', 'default': 'parity', 'oneOf': [ {'enum': ['jordan_wigner', 'parity', 'bravyi_kitaev']} ] }, 'two_qubit_reduction': { 'type': 'boolean', 'default': False }, 'mp2_reduction': { 'type': 'boolean', 'default': False }, 'num_time_slices': { 'type': 'integer', 'default': 1, 'minimum': 1 }, }, 'additionalProperties': False }, 'depends': [ { 'pluggable_type': 'initial_state', 'default': { 'name': 'HartreeFock', } }, ], } def __init__(self, num_qubits, depth, num_orbitals, num_particles, active_occupied=None, active_unoccupied=None, initial_state=None, qubit_mapping='parity', two_qubit_reduction=False, mp2_reduction=False, num_time_slices=1, cliffords=None, sq_list=None, tapering_values=None, symmetries=None, shallow_circuit_concat=True): """Constructor. Args: num_orbitals (int): number of spin orbitals depth (int): number of replica of basic module num_particles (int): number of particles active_occupied (list): list of occupied orbitals to consider as active space active_unoccupied (list): list of unoccupied orbitals to consider as active space initial_state (InitialState): An initial state object. qubit_mapping (str): qubit mapping type. two_qubit_reduction (bool): two qubit reduction is applied or not. num_time_slices (int): parameters for dynamics. cliffords ([Operator]): list of unitary Clifford transformation sq_list ([int]): position of the single-qubit operators that anticommute with the cliffords tapering_values ([int]): array of +/- 1 used to select the subspace. Length has to be equal to the length of cliffords and sq_list symmetries ([Pauli]): represent the Z2 symmetries shallow_circuit_concat (bool): indicate whether to use shallow (cheap) mode for circuit concatenation """ self.validate(locals()) super().__init__() self._cliffords = cliffords self._sq_list = sq_list self._tapering_values = tapering_values self._symmetries = symmetries if self._cliffords is not None and self._sq_list is not None and \ self._tapering_values is not None and self._symmetries is not None: self._qubit_tapering = True else: self._qubit_tapering = False self._num_qubits = num_orbitals if not two_qubit_reduction else num_orbitals - 2 self._num_qubits = self._num_qubits if not self._qubit_tapering else self._num_qubits - len(sq_list) if self._num_qubits != num_qubits: raise ValueError('Computed num qubits {} does not match actual {}' .format(self._num_qubits, num_qubits)) self._depth = depth self._num_orbitals = num_orbitals self._num_particles = num_particles if self._num_particles > self._num_orbitals: raise ValueError('# of particles must be less than or equal to # of orbitals.') self._initial_state = initial_state self._qubit_mapping = qubit_mapping self._two_qubit_reduction = two_qubit_reduction self._num_time_slices = num_time_slices self._shallow_circuit_concat = shallow_circuit_concat self._single_excitations, self._double_excitations = \ UCCSD.compute_excitation_lists(num_particles, num_orbitals, active_occupied, active_unoccupied) self._single_excitations = [] print('{} are the old doubles'.format(self._double_excitations)) print(mp2_reduction) if mp2_reduction: print('Getting new doubles') self._double_excitations = get_mp2_doubles(self._single_excitations,self._double_excitations) print('{} are the new doubles'.format(self._double_excitations)) self._hopping_ops, self._num_parameters = self._build_hopping_operators() self._bounds = [(-np.pi, np.pi) for _ in range(self._num_parameters)] self._logging_construct_circuit = True def _build_hopping_operators(self): from .uccsd import UCCSD hopping_ops = [] if logger.isEnabledFor(logging.DEBUG): TextProgressBar(sys.stderr) results = parallel_map(UCCSD._build_hopping_operator, self._single_excitations + self._double_excitations, task_args=(self._num_orbitals, self._num_particles, self._qubit_mapping, self._two_qubit_reduction, self._qubit_tapering, self._symmetries, self._cliffords, self._sq_list, self._tapering_values), num_processes=aqua_globals.num_processes) hopping_ops = [qubit_op for qubit_op in results if qubit_op is not None] num_parameters = len(hopping_ops) * self._depth return hopping_ops, num_parameters @staticmethod def _build_hopping_operator(index, num_orbitals, num_particles, qubit_mapping, two_qubit_reduction, qubit_tapering, symmetries, cliffords, sq_list, tapering_values): def check_commutativity(op_1, op_2): com = op_1 * op_2 - op_2 * op_1 com.zeros_coeff_elimination() return True if com.is_empty() else False h1 = np.zeros((num_orbitals, num_orbitals)) h2 = np.zeros((num_orbitals, num_orbitals, num_orbitals, num_orbitals)) if len(index) == 2: i, j = index h1[i, j] = 1.0 h1[j, i] = -1.0 elif len(index) == 4: i, j, k, m = index h2[i, j, k, m] = 1.0 h2[m, k, j, i] = -1.0 dummpy_fer_op = FermionicOperator(h1=h1, h2=h2) qubit_op = dummpy_fer_op.mapping(qubit_mapping) qubit_op = qubit_op.two_qubit_reduced_operator(num_particles) \ if two_qubit_reduction else qubit_op if qubit_tapering: for symmetry in symmetries: symmetry_op = Operator(paulis=[[1.0, symmetry]]) symm_commuting = check_commutativity(symmetry_op, qubit_op) if not symm_commuting: break if qubit_tapering: if symm_commuting: qubit_op = Operator.qubit_tapering(qubit_op, cliffords, sq_list, tapering_values) else: qubit_op = None if qubit_op is None: logger.debug('Excitation ({}) is skipped since it is not commuted ' 'with symmetries'.format(','.join([str(x) for x in index]))) return qubit_op def construct_circuit(self, parameters, q=None): """ Construct the variational form, given its parameters. Args: parameters (numpy.ndarray): circuit parameters q (QuantumRegister): Quantum Register for the circuit. Returns: QuantumCircuit: a quantum circuit with given `parameters` Raises: ValueError: the number of parameters is incorrect. """ from .uccsd import UCCSD if len(parameters) != self._num_parameters: raise ValueError('The number of parameters has to be {}'.format(self._num_parameters)) if q is None: q = QuantumRegister(self._num_qubits, name='q') if self._initial_state is not None: circuit = self._initial_state.construct_circuit('circuit', q) else: circuit = QuantumCircuit(q) if logger.isEnabledFor(logging.DEBUG) and self._logging_construct_circuit: logger.debug("Evolving hopping operators:") TextProgressBar(sys.stderr) self._logging_construct_circuit = False num_excitations = len(self._hopping_ops) results = parallel_map(UCCSD._construct_circuit_for_one_excited_operator, [(self._hopping_ops[index % num_excitations], parameters[index]) for index in range(self._depth * num_excitations)], task_args=(q, self._num_time_slices), num_processes=aqua_globals.num_processes) for qc in results: if self._shallow_circuit_concat: circuit.data += qc.data else: circuit += qc return circuit @staticmethod def _construct_circuit_for_one_excited_operator(qubit_op_and_param, qr, num_time_slices): qubit_op, param = qubit_op_and_param qc = qubit_op.evolve(None, param * -1j, 'circuit', num_time_slices, qr) return qc @property def preferred_init_points(self): """Getter of preferred initial points based on the given initial state.""" if self._initial_state is None: return None else: bitstr = self._initial_state.bitstr if bitstr is not None: return np.zeros(self._num_parameters, dtype=np.float) else: return None @staticmethod def compute_excitation_lists(num_particles, num_orbitals, active_occ_list=None, active_unocc_list=None, same_spin_doubles=True): """ Computes single and double excitation lists Args: num_particles: Total number of particles num_orbitals: Total number of spin orbitals active_occ_list: List of occupied orbitals to include, indices are 0 to n where n is num particles // 2 active_unocc_list: List of unoccupied orbitals to include, indices are 0 to m where m is (num_orbitals - num particles) // 2 same_spin_doubles: True to include alpha,alpha and beta,beta double excitations as well as alpha,beta pairings. False includes only alpha,beta Returns: Single and double excitation lists """ if num_particles < 2 or num_particles % 2 != 0: raise ValueError('Invalid number of particles {}'.format(num_particles)) if num_orbitals < 4 or num_orbitals % 2 != 0: raise ValueError('Invalid number of orbitals {}'.format(num_orbitals)) if num_orbitals <= num_particles: raise ValueError('No unoccupied orbitals') if active_occ_list is not None: active_occ_list = [i if i >= 0 else i + num_particles // 2 for i in active_occ_list] for i in active_occ_list: if i >= num_particles // 2: raise ValueError('Invalid index {} in active active_occ_list {}' .format(i, active_occ_list)) if active_unocc_list is not None: active_unocc_list = [i + num_particles // 2 if i >= 0 else i + num_orbitals // 2 for i in active_unocc_list] for i in active_unocc_list: if i < 0 or i >= num_orbitals // 2: raise ValueError('Invalid index {} in active active_unocc_list {}' .format(i, active_unocc_list)) if active_occ_list is None or len(active_occ_list) <= 0: active_occ_list = [i for i in range(0, num_particles // 2)] if active_unocc_list is None or len(active_unocc_list) <= 0: active_unocc_list = [i for i in range(num_particles // 2, num_orbitals // 2)] single_excitations = [] double_excitations = [] logger.debug('active_occ_list {}'.format(active_occ_list)) logger.debug('active_unocc_list {}'.format(active_unocc_list)) beta_idx = num_orbitals // 2 for occ_alpha in active_occ_list: for unocc_alpha in active_unocc_list: single_excitations.append([occ_alpha, unocc_alpha]) for occ_beta in [i + beta_idx for i in active_occ_list]: for unocc_beta in [i + beta_idx for i in active_unocc_list]: single_excitations.append([occ_beta, unocc_beta]) for occ_alpha in active_occ_list: for unocc_alpha in active_unocc_list: for occ_beta in [i + beta_idx for i in active_occ_list]: for unocc_beta in [i + beta_idx for i in active_unocc_list]: double_excitations.append([occ_alpha, unocc_alpha, occ_beta, unocc_beta]) if same_spin_doubles and len(active_occ_list) > 1 and len(active_unocc_list) > 1: for i, occ_alpha in enumerate(active_occ_list[:-1]): for j, unocc_alpha in enumerate(active_unocc_list[:-1]): for occ_alpha_1 in active_occ_list[i + 1:]: for unocc_alpha_1 in active_unocc_list[j + 1:]: double_excitations.append([occ_alpha, unocc_alpha, occ_alpha_1, unocc_alpha_1]) up_active_occ_list = [i + beta_idx for i in active_occ_list] up_active_unocc_list = [i + beta_idx for i in active_unocc_list] for i, occ_beta in enumerate(up_active_occ_list[:-1]): for j, unocc_beta in enumerate(up_active_unocc_list[:-1]): for occ_beta_1 in up_active_occ_list[i + 1:]: for unocc_beta_1 in up_active_unocc_list[j + 1:]: double_excitations.append([occ_beta, unocc_beta, occ_beta_1, unocc_beta_1]) logger.debug('single_excitations ({}) {}'.format(len(single_excitations), single_excitations)) logger.debug('double_excitations ({}) {}'.format(len(double_excitations), double_excitations)) return single_excitations, double_excitations def get_mp2_doubles(single_excitations, double_excitations): print('Is the class still populated with the correct info: ', qm.nuclear_repulsion_energy) mp2 = MP2Info(qm, single_excitations, double_excitations, threshold=1e-3) mp2_doubles = mp2._mp2_doubles return mp2_doubles
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
from __future__ import print_function from imp import reload import matplotlib reload(matplotlib) matplotlib.use('nbagg') import matplotlib.backends.backend_nbagg reload(matplotlib.backends.backend_nbagg) import matplotlib.backends.backend_webagg_core reload(matplotlib.backends.backend_webagg_core) import matplotlib.pyplot as plt plt.interactive(False) fig1 = plt.figure() plt.plot(range(10)) plt.show() plt.plot([3, 2, 1]) plt.show() print(matplotlib.backends.backend_nbagg.connection_info()) plt.close(fig1) plt.plot(range(10)) print(matplotlib.backends.backend_nbagg.connection_info()) plt.show() plt.figure() plt.plot(range(5)) plt.show() plt.interactive(True) plt.figure() plt.plot([3, 2, 1]) plt.plot(range(3)) print(matplotlib.backends.backend_nbagg.connection_info()) plt.interactive(False) plt.gcf().canvas.manager.reshow() fig = plt.figure() plt.axes() plt.show() plt.plot([1, 2, 3]) plt.show() from matplotlib.backends.backend_nbagg import new_figure_manager,show manager = new_figure_manager(1000) fig = manager.canvas.figure ax = fig.add_subplot(1,1,1) ax.plot([1,2,3]) fig.show() import matplotlib.animation as animation import numpy as np fig, ax = plt.subplots() x = np.arange(0, 2*np.pi, 0.01) # x-array line, = ax.plot(x, np.sin(x)) def animate(i): line.set_ydata(np.sin(x+i/10.0)) # update the data return line, #Init only required for blitting to give a clean slate. def init(): line.set_ydata(np.ma.array(x, mask=True)) return line, ani = animation.FuncAnimation(fig, animate, np.arange(1, 200), init_func=init, interval=32., blit=True) plt.show() import matplotlib matplotlib.rcParams.update({'figure.facecolor': 'red', 'savefig.facecolor': 'yellow'}) plt.figure() plt.plot([3, 2, 1]) plt.show() import itertools fig, ax = plt.subplots() x = np.linspace(0,10,10000) y = np.sin(x) ln, = ax.plot(x,y) evt = [] colors = iter(itertools.cycle(['r', 'g', 'b', 'k', 'c'])) def on_event(event): if event.name.startswith('key'): fig.suptitle('%s: %s' % (event.name, event.key)) elif event.name == 'scroll_event': fig.suptitle('%s: %s' % (event.name, event.step)) else: fig.suptitle('%s: %s' % (event.name, event.button)) evt.append(event) ln.set_color(next(colors)) fig.canvas.draw() fig.canvas.draw_idle() fig.canvas.mpl_connect('button_press_event', on_event) fig.canvas.mpl_connect('button_release_event', on_event) fig.canvas.mpl_connect('scroll_event', on_event) fig.canvas.mpl_connect('key_press_event', on_event) fig.canvas.mpl_connect('key_release_event', on_event) plt.show() import time fig, ax = plt.subplots() text = ax.text(0.5, 0.5, '', ha='center') def update(text): text.set(text=time.ctime()) text.axes.figure.canvas.draw() timer = fig.canvas.new_timer(500, [(update, [text], {})]) timer.start() plt.show() fig, ax = plt.subplots() text = ax.text(0.5, 0.5, '', ha='center') timer = fig.canvas.new_timer(500, [(update, [text], {})]) timer.single_shot = True timer.start() plt.show() fig, ax = plt.subplots() text = ax.text(0.5, 0.5, '', ha='center') timer = fig.canvas.new_timer(500, [(update, [text], {})]) timer.start() timer.stop() plt.show() fig, ax = plt.subplots() text = ax.text(0.5, 0.5, '', ha='center') timer = fig.canvas.new_timer(500, [(update, [text], {})]) timer.single_shot = True timer.start() timer.stop() plt.show() fig, ax = plt.subplots() ax.plot(range(5)) plt.show() fig.canvas.manager.reshow()
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# Copyright 2019 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from qiskit import Aer from qiskit.compiler import assemble from qiskit.providers.aer.noise import NoiseModel from pytket.backends import Backend from pytket.qiskit import tk_to_qiskit from pytket.backends.ibm.ibm import _convert_bin_str from pytket._circuit import Circuit from pytket._transform import Transform from pytket._simulation import pauli_tensor_matrix, operator_matrix import numpy as np class AerBackend(Backend) : def __init__(self, noise_model:NoiseModel=None) : """Backend for running simulations on Qiskit Aer Qasm simulator. :param noise_model: Noise model to use in simulation, defaults to None. :type noise_model: NoiseModel, optional """ self._backend = Aer.get_backend('qasm_simulator') self.noise_model = noise_model def run(self, circuit:Circuit, shots:int, fit_to_constraints=True, seed:int=None) -> np.ndarray: """Run a circuit on Qiskit Aer Qasm simulator. :param circuit: The circuit to run :type circuit: Circuit :param shots: Number of shots (repeats) to run :type shots: int :param fit_to_constraints: Compile the circuit to meet the constraints of the backend, defaults to True :type fit_to_constraints: bool, optional :param seed: random seed to for simulator :type seed: int :return: Table of shot results, each row is a shot, columns are ordered by qubit ordering. Values are 0 or 1, corresponding to qubit basis states. :rtype: numpy.ndarray """ c = circuit.copy() if fit_to_constraints : Transform.RebaseToQiskit().apply(c) qc = tk_to_qiskit(c) qobj = assemble(qc, shots=shots, seed_simulator=seed, memory=True) job = self._backend.run(qobj, noise_model=self.noise_model) shot_list = job.result().get_memory(qc) return np.asarray([_convert_bin_str(shot) for shot in shot_list]) def get_counts(self, circuit, shots, fit_to_constraints=True, seed=None) : """ Run the circuit on the backend and accumulate the results into a summary of counts :param circuit: The circuit to run :param shots: Number of shots (repeats) to run :param fit_to_constraints: Compile the circuit to meet the constraints of the backend, defaults to True :param seed: Random seed to for simulator :return: Dictionary mapping bitvectors of results to number of times that result was observed (zero counts are omitted) """ c = circuit.copy() if fit_to_constraints : Transform.RebaseToQiskit().apply(c) qc = tk_to_qiskit(c) qobj = assemble(qc, shots=shots, seed_simulator=seed) job = self._backend.run(qobj, noise_model=self.noise_model) counts = job.result().get_counts(qc) return {tuple(_convert_bin_str(b)) : c for b, c in counts.items()} class AerStateBackend(Backend) : def __init__(self) : self._backend = Aer.get_backend('statevector_simulator') def get_state(self, circuit, fit_to_constraints=True) : """ Calculate the statevector for a circuit. :param circuit: circuit to calculate :return: complex numpy array of statevector """ c = circuit.copy() if fit_to_constraints : Transform.RebaseToQiskit().apply(c) qc = tk_to_qiskit(c) qobj = assemble(qc) job = self._backend.run(qobj) return np.asarray(job.result().get_statevector(qc, decimals=16)) def run(self, circuit, shots, fit_to_constraints=True) : raise Exception("Aer State Backend cannot currently generate shots. Use `get_state` instead.") def get_pauli_expectation_value(self, state_circuit, pauli, shots=1000) : state = self.get_state(state_circuit) pauli_op = pauli_tensor_matrix(pauli, state_circuit.n_qubits) return np.vdot(state, pauli_op.dot(state)) def get_operator_expectation_value(self, state_circuit, operator, shots=1000) : """ Calculates expectation value for an OpenFermion QubitOperator by summing over pauli expectations Note: This method is significantly faster using the ProjectQBackend than the AerStateBackend. """ state = self.get_state(state_circuit) n_qubits = state_circuit.n_qubits op_as_lists = [(list(p),c) for p,c in operator.terms.items()] op = operator_matrix(op_as_lists, n_qubits) return np.vdot(state, op.dot(state)) class AerUnitaryBackend(Backend) : def __init__(self) : self._backend = Aer.get_backend('unitary_simulator') def run(self, circuit, shots, fit_to_constraints=True) : raise Exception("Aer Unitary Backend cannot currently generate shots. Use `get_unitary` instead.") def get_unitary(self, circuit, fit_to_constraints=True) : """ Obtains the unitary for a given quantum circuit :param circuit: The circuit to inspect :type circuit: Circuit :param fit_to_constraints: Forces the circuit to be decomposed into the correct gate set, defaults to True :type fit_to_constraints: bool, optional :return: The unitary of the circuit. Qubits are ordered with qubit 0 as the least significant qubit """ c = circuit.copy() if fit_to_constraints : Transform.RebaseToQiskit().apply(c) qc = tk_to_qiskit(c) qobj = assemble(qc) job = self._backend.run(qobj) return job.result().get_unitary(qc)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# Copyright 2019 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import qiskit from typing import Tuple, Iterable from qiskit import IBMQ, QuantumCircuit from qiskit.compiler import assemble from qiskit.tools.monitor import job_monitor from pytket.backends import Backend from pytket.qiskit import tk_to_qiskit from pytket._routing import route, Architecture from pytket._transform import Transform from pytket._circuit import Circuit import numpy as np VALID_BACKEND_GATES = ( qiskit.extensions.standard.u1.U1Gate, qiskit.extensions.standard.u2.U2Gate, qiskit.extensions.standard.u3.U3Gate, qiskit.extensions.standard.cx.CnotGate, qiskit.circuit.measure.Measure ) def _qiskit_circ_valid(qc: QuantumCircuit, coupling:Iterable[Tuple[int]] ) -> bool: valid = True measure_count = 0 for instruction in qc: if type(instruction[0]) not in VALID_BACKEND_GATES: valid = False break if isinstance(instruction[0], qiskit.circuit.measure.Measure): measure_count += 1 if len(instruction[1]) > 1: control = instruction[1][0][1] target = instruction[1][1][1] if [control, target] not in coupling: valid =False break return valid, (measure_count > 0) def _routed_ibmq_circuit(circuit:Circuit, arc: Architecture) -> QuantumCircuit: c = circuit.copy() Transform.RebaseToQiskit().apply(c) physical_c = route(c, arc) physical_c.decompose_SWAP_to_CX() physical_c.redirect_CX_gates(arc) Transform.OptimisePostRouting().apply(physical_c) qc = tk_to_qiskit(physical_c) return qc def _convert_bin_str(string) : return [int(b) for b in string.replace(' ', '')][::-1] class IBMQBackend(Backend) : def __init__(self, backend_name:str, monitor:bool=True) : """A backend for running circuits on remote IBMQ devices. :param backend_name: name of ibmq device. e.g. `ibmqx4`, `ibmq_16_melbourne`. :type backend_name: str :param monitor: Use IBM job monitor, defaults to True :type monitor: bool, optional :raises ValueError: If no IBMQ account has been set up. """ if len(IBMQ.stored_accounts()) ==0: raise ValueError('No IBMQ credentials found on disk. Store some first.') IBMQ.load_accounts() self._backend = IBMQ.get_backend(backend_name) self.config = self._backend.configuration() self.coupling = self.config.coupling_map self.architecture = Architecture(self.coupling) self._monitor = monitor def run(self, circuit:Circuit, shots:int, fit_to_constraints:bool=True) -> np.ndarray : if fit_to_constraints: qc = _routed_ibmq_circuit(circuit, self.architecture) else: qc = tk_to_qiskit(circuit) valid, measures = _qiskit_circ_valid(qc, self.coupling) if not valid: raise RuntimeWarning("QuantumCircuit does not pass validity test, will likely fail on remote backend.") if not measures: raise RuntimeWarning("Measure gates are required for output.") qobj = assemble(qc, shots=shots, memory=self.config.memory) job = self._backend.run(qobj) if self._monitor : job_monitor(job) shot_list = [] if self.config.memory: shot_list = job.result().get_memory(qc) else: for string, count in job.result().get_counts().items(): shot_list += [string]*count return np.asarray([_convert_bin_str(shot) for shot in shot_list]) def get_counts(self, circuit, shots, fit_to_constraints=True) : """ Run the circuit on the backend and accumulate the results into a summary of counts :param circuit: The circuit to run :param shots: Number of shots (repeats) to run :param fit_to_constraints: Compile the circuit to meet the constraints of the backend, defaults to True :param seed: Random seed to for simulator :return: Dictionary mapping bitvectors of results to number of times that result was observed (zero counts are omitted) """ if fit_to_constraints: qc = _routed_ibmq_circuit(circuit, self.architecture) else: qc = tk_to_qiskit(circuit) valid, measures = _qiskit_circ_valid(qc, self.coupling) if not valid: raise RuntimeWarning("QuantumCircuit does not pass validity test, will likely fail on remote backend.") if not measures: raise RuntimeWarning("Measure gates are required for output.") qobj = assemble(qc, shots=shots) job = self._backend.run(qobj) counts = job.result().get_counts(qc) return {tuple(_convert_bin_str(b)) : c for b, c in counts.items()}
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# Copyright 2019 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Engine for the Quantum Subspace Expansion algorithm """ import time import logging import itertools from typing import List import numpy as np from multiprocessing import Pool, cpu_count from _pickle import PicklingError from qiskit import QuantumCircuit, ClassicalRegister from pytket.chemistry.aqua.qse_subs import QseMatrices from qiskit.aqua import QuantumAlgorithm, AquaError, Operator from qiskit.aqua.components.variational_forms import VariationalForm logger = logging.getLogger(__name__) logger = logging.getLogger('qiskit.aqua') class QSE(QuantumAlgorithm): """ :py:class:`qiskit.aqua.QuantumAlgorithm` implementation for Quantum Subspace Expansion (QSE) [See Phys. Rev. A 95, 042308 (2017)]. """ CONFIGURATION = { 'name': 'QSE', 'description': 'QSE Algorithm', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'qse_schema', 'type': 'object', 'properties': { 'operator_mode': { 'type': 'string', 'default': 'matrix', 'oneOf': [ {'enum': ['matrix', 'paulis', 'grouped_paulis']} ] }, 'initial_point': { 'type': ['array', 'null'], "items": { "type": "number" }, 'default': None } }, 'additionalProperties': False }, 'problems': ['energy', 'ising'], 'depends': ['variational_form', 'initial_state'], 'defaults': { 'variational_form': { 'name': 'UCCSD' }, 'initial_state': { 'name': 'ZERO' } } } def __init__(self, qse_operators:QseMatrices, operator_mode:str, var_form:VariationalForm, opt_init_point:np.ndarray=None, aux_operators:List[Operator]=[]): """ :param qse_operators: Qubit operator generator :param operator_mode: Operator mode to be used for evaluation of the operator :param var_form: Parametrized variational form :param opt_init_point: Initial point for the optimisation :param aux_operators: Auxiliary operators to be evaluated at each eigenvalue """ super().__init__() self._qse_operators = qse_operators self._operator = None self._operator_mode = operator_mode self._var_form = var_form self.opt_var_params = opt_init_point self._aux_operators = aux_operators self._ret = {} self._eval_count = 0 self._eval_time = 0 if opt_init_point is None: self.opt_var_params = var_form.preferred_init_points else: self.opt_circuit = self._var_form.construct_circuit(self.opt_var_params) self._quantum_state = None @property def setting(self): ret = "Algorithm: {}\n".format(self._configuration['name']) params = "" for key, value in self.__dict__.items(): if key != "_configuration" and key[0] == "_": if "opt_init_point" in key and value is None: params += "-- {}: {}\n".format(key[1:], "Random seed") else: params += "-- {}: {}\n".format(key[1:], value) ret += "{}".format(params) return ret def print_setting(self) -> str: """ Presents the QSE settings as a string. :return: The formatted settings of the QSE instance """ ret = "\n" ret += "==================== Setting of {} ============================\n".format(self.configuration['name']) ret += "{}".format(self.setting) ret += "===============================================================\n" ret += "{}".format(self._var_form.setting) ret += "===============================================================\n" return ret def _energy_evaluation(self, operator): """ Evaluate the energy of the current input circuit with respect to the given operator. :param operator: Hamiltonian of the system :return: Energy of the Hamiltonian """ if self._quantum_state is not None: input_circuit = self._quantum_state else: input_circuit = [self.opt_circuit] if operator._paulis: mean_energy, std_energy = operator.evaluate_with_result(self._operator_mode, input_circuit, self._quantum_instance.backend, self.ret) else: mean_energy = 0.0 std_energy = 0.0 operator.disable_summarize_circuits() logger.debug('Energy evaluation {} returned {}'.format(self._eval_count, np.real(mean_energy))) return np.real(mean_energy), np.real(std_energy) def _h_qse_finder(self, pair): i, j = pair term = self._qse_operators.hamiltonian_term(i, j) term.chop(1e-10) result, std_ij = self._energy_evaluation(term) return result #Measure elements of the overlap matrix def _s_qse_finder(self, pair): i, j = pair term = self._qse_operators.overlap_term(i, j) result, std_ij = self._energy_evaluation(term) return result def _linear_compute(self, terms, _n_qubits): matrix = np.zeros((_n_qubits**2, _n_qubits**2), dtype=np.float) pairs = filter(lambda x: x[1]>=x[0], itertools.product(range(_n_qubits**2), repeat=2)) completed = 0 total = _n_qubits**4 for pair, term in zip(pairs, terms): i, j = pair result, std = self._energy_evaluation(term) matrix[[i,j], [j,i]] = result completed += 2 if completed % 1 ==0: logger.info("Matrix Filled: {0:.2%}".format(completed/total)) return matrix def _parallel_compute(self, terms, _n_qubits): matrix = np.zeros((_n_qubits**2, _n_qubits**2), dtype=np.float) N_CORES = cpu_count() pairs = filter(lambda x: x[1]>=x[0], itertools.product(range(_n_qubits**2), repeat=2)) n_calcs = N_CORES*5 next_terms = list(itertools.islice(terms, n_calcs)) next_pairs = list(itertools.islice(pairs, n_calcs)) completed = 0 total = _n_qubits**4 with Pool(N_CORES) as p: while next_terms: start = time.time() results, stdev = zip(*p.map(self._energy_evaluation, next_terms)) i_s, j_s = zip(*next_pairs) results = np.array(list(results)) matrix[i_s, j_s] = results matrix[j_s, i_s] = results next_terms = list(itertools.islice(terms, n_calcs)) next_pairs = list(itertools.islice(pairs, n_calcs)) completed += n_calcs*2 logger.debug("{} calculations in {}".format(n_calcs, time.time() - start)) logger.info("Matrix Filled: {0:.2%}".format(completed/total)) return matrix def _generate_terms(self): n_qubits = self._qse_operators.n_qubits pairs = list(filter(lambda x: x[1]>=x[0], itertools.product(range(n_qubits**2), repeat=2))) def chop(term): term.chop(1e-10) return term h_terms = (chop(term) for term in(self._qse_operators.hamiltonian_term(i, j) for i, j in pairs)) s_terms = (self._qse_operators.overlap_term(i, j) for i, j in pairs) return h_terms, s_terms def _solve(self, parallel=True): h_terms, s_terms = self._generate_terms() n_qubits = self._qse_operators.n_qubits if parallel: h_qse_matrix = self._parallel_compute(h_terms, n_qubits) s_qse_matrix = self._parallel_compute(s_terms, n_qubits) else: h_qse_matrix = self._linear_compute(h_terms, n_qubits) s_qse_matrix = self._linear_compute(s_terms, n_qubits) eigvals, vectors = np.linalg.eig(np.matmul(np.linalg.pinv(s_qse_matrix),h_qse_matrix)) eigvals = np.real(eigvals) eigvals.sort() self._ret['eigvals'] = eigvals def _eval_aux_ops(self, threshold=1e-12): wavefn_circuit = self._var_form.construct_circuit(self._ret['opt_params']) values = [] for operator in self._aux_operators: mean, std = 0.0, 0.0 if not operator.is_empty(): mean, std = operator.eval(self._operator_mode, wavefn_circuit, self._backend, self._execute_config, self._qjob_config) mean = mean.real if abs(mean.real) > threshold else 0.0 std = std.real if abs(std.real) > threshold else 0.0 values.append((mean, std)) if len(values) > 0: aux_op_vals = np.empty([1, len(self._aux_operators), 2]) aux_op_vals[0, :] = np.asarray(values) self._ret['aux_ops'] = aux_op_vals def _run(self) -> dict: """ Runs the QSE algorithm to compute the eigenvalues of the Hamiltonian. :return: Dictionary of results """ if not self._quantum_instance.is_statevector: raise AquaError("Can only calculate state for QSE with statevector backends") ret = self._quantum_instance.execute(self.opt_circuit) self.ret = ret self._eval_count = 0 self._solve() self._ret['eval_count'] = self._eval_count self._ret['eval_time'] = self._eval_time return self._ret
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# import common packages import itertools import numpy as np from numpy import array, concatenate, zeros import qiskit from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.quantum_info import Pauli # lib from Qiskit AQUA Chemistry from qiskit.chemistry import FermionicOperator # lib from optimizer and algorithm from qiskit.aqua.operator import Operator # lib for driver from collections import OrderedDict from abc import ABC, abstractmethod import time def _jordan_wigner_mode(n): """ Jordan_Wigner mode. Args: n (int): number of modes """ a = [] for i in range(n): xv = np.asarray([1] * i + [0] + [0] * (n - i - 1)) xw = np.asarray([0] * i + [1] + [0] * (n - i - 1)) yv = np.asarray([1] * i + [1] + [0] * (n - i - 1)) yw = np.asarray([0] * i + [1] + [0] * (n - i - 1)) a.append((Pauli(xv, xw), Pauli(yv, yw))) return a def _one_body_mapping(a_i, a_j, threshold=0.000001): """ Subroutine for one body mapping. Args: a_i (Pauli): pauli at index i a_j (Pauli): pauli at index j threshold: (float): threshold to remove a pauli Returns: Operator: Operator for those paulis """ pauli_list = [] for alpha in range(2): for beta in range(2): pauli_prod = Pauli.sgn_prod(a_i[alpha], a_j[beta]) coeff = 1.0/4 * pauli_prod[1] * np.power(-1j, alpha) * np.power(1j, beta) pauli_term = [coeff, pauli_prod[0]] if np.absolute(pauli_term[0]) > threshold: pauli_list.append(pauli_term) return Operator(paulis=pauli_list) class QseMatrices(): def __init__(self, qubit_hamiltonian, n_qubits): self.qubit_hamiltonian = qubit_hamiltonian self.n_qubits = n_qubits self.c_i = None paulis_test = _jordan_wigner_mode(n_qubits) excit_operator = [] excit_operator_conjugated = [] #Construct operators C_i C_j^+ and conjugated operators #C_i : 2nd quantization annihilation operator #C_i^+ : 2nd quantization creation operator k = 0 for i, j in itertools.product(range(n_qubits), repeat=2): second_q_operator = _one_body_mapping(paulis_test[i],paulis_test[j]) excit_operator.append(second_q_operator) second_q_op_conjugated = _one_body_mapping(paulis_test[j],paulis_test[i]) excit_operator_conjugated.append(second_q_op_conjugated) k += 1 self.excit_operator = excit_operator self.excit_operator_conjugated = excit_operator_conjugated def overlap(self): return np.outer(self.excit_operator_conjugated, self.excit_operator) def overlap_term(self, i, j): return self.excit_operator_conjugated[j]*self.excit_operator[i] def hamiltonian_term(self, i, j): return self.excit_operator_conjugated[j]*self.qubit_hamiltonian*self.excit_operator[i] def unroll_paulis(paulis): coeffs = np.zeros(len(paulis), dtype=np.complex) bools = np.zeros((len(paulis), 2*paulis[0][1].numberofqubits), dtype=np.int) for i, pauli in enumerate(paulis): coeffs[i] = pauli[0] bools[i, :4] = pauli[1].v bools[i, 4:] = pauli[1].w return coeffs, bools
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# Copyright 2019 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Methods to allow conversion between Qiskit and pytket circuit classes """ from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.circuit import Instruction, Measure from qiskit.extensions.standard import * from pytket._circuit import Circuit, Op, OpType from pytket._routing import PhysicalCircuit from sympy import pi _known_qiskit_gate = { IdGate : OpType.noop, XGate : OpType.X, YGate : OpType.Y, ZGate : OpType.Z, SGate : OpType.S, SdgGate : OpType.Sdg, TGate : OpType.T, TdgGate : OpType.Tdg, HGate : OpType.H, RXGate : OpType.Rx, RYGate : OpType.Ry, RZGate : OpType.Rz, U1Gate : OpType.U1, U2Gate : OpType.U2, U3Gate : OpType.U3, CnotGate : OpType.CX, CyGate : OpType.CY, CzGate : OpType.CZ, CHGate : OpType.CH, SwapGate : OpType.SWAP, ToffoliGate : OpType.CCX, FredkinGate : OpType.CSWAP, CrzGate : OpType.CRz, Cu1Gate : OpType.CU1, Cu3Gate : OpType.CU3, Measure : OpType.Measure } _known_qiskit_gate_rev = {v : k for k, v in _known_qiskit_gate.items()} def qiskit_to_tk(qcirc: QuantumCircuit) -> Circuit : """Convert a :py:class:`qiskit.QuantumCircuit` to a :py:class:`Circuit`. :param qcirc: A circuit to be converted :type qcirc: QuantumCircuit :return: The converted circuit :rtype: Circuit """ tkc = Circuit() qregmap = {} for reg in qcirc.qregs : tk_reg = tkc.add_q_register(reg.name, len(reg)) qregmap.update({reg : tk_reg}) cregmap = {} for reg in qcirc.cregs : tk_reg = tkc.add_c_register(reg.name, len(reg)) cregmap.update({reg : tk_reg}) for i, qargs, cargs in qcirc.data : if i.control is not None : raise NotImplementedError("Cannot convert conditional gates from Qiskit to tket") optype = _known_qiskit_gate[type(i)] qubits = [qregmap[r][ind] for r, ind in qargs] bits = [cregmap[r][ind] for r, ind in cargs] if optype == OpType.Measure : tkc.add_measure(*qubits, *bits) continue params = [p/pi for p in i.params] tkc.add_gate(optype, params, qubits, []) return tkc def tk_to_qiskit(tkcirc: Circuit) -> QuantumCircuit : """Convert back :param tkcirc: A circuit to be converted :type tkcirc: Circuit :return: The converted circuit :rtype: QuantumCircuit """ tkc = tkcirc if isinstance(tkcirc, PhysicalCircuit) : tkc = tkcirc._get_circuit() qcirc = QuantumCircuit() qregmap = {} for _, reg in tkc.q_regs.items() : if reg.size() == 0 : continue name = reg.name if len(name) == 0 : name = None qis_reg = QuantumRegister(reg.size(), name) qregmap.update({reg : qis_reg}) qcirc.add_register(qis_reg) cregmap = {} for _, reg in tkc.c_regs.items() : if reg.size() == 0 : continue name = reg.name if len(name) == 0 : name = None qis_reg = ClassicalRegister(reg.size(), name) cregmap.update({reg : qis_reg}) qcirc.add_register(qis_reg) tempregmap = {} for command in tkc : op = command.op qubits = command.qubits qargs = [qregmap[q.reg][q.index] for q in qubits] if len(command.controls) != 0 : raise NotImplementedError("Cannot convert conditional gates from tket to Qiskit") if op.get_type() == OpType.Measure : bits = [_convert_bit(b, cregmap, qcirc, tempregmap) for b in command.bits] qcirc.measure(*qargs, *bits) continue params = [p * pi for p in op.get_params()] try : gatetype = _known_qiskit_gate_rev[op.get_type()] except KeyError as error : raise NotImplementedError("Cannot convert tket Op to Qiskit gate: " + op.get_name()) from error g = gatetype(*params) qcirc.append(g, qargs=qargs) return qcirc def _convert_bit(bit, cregmap, qcirc, tempregmap) : index = bit.index if bit.temp : if bit not in tempregmap : new_reg = ClassicalRegister(1, "temp"+str(index)) qcirc.add_register(new_reg) tempregmap.update({bit : new_reg}) return new_reg[0] return tempregmap[bit][0] return cregmap[bit.reg][index]
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
import qiskit from qiskit.dagcircuit import DAGCircuit from qiskit.providers import BaseBackend from qiskit.transpiler.basepasses import TransformationPass, BasePass from qiskit.converters import circuit_to_dag, dag_to_circuit from pytket._transform import Transform from pytket._routing import route, Architecture from pytket.qiskit import qiskit_to_tk, tk_to_qiskit class TketPass(TransformationPass): """The :math:`\\mathrm{t|ket}\\rangle` compiler to be plugged in to the Qiskit compilation sequence""" filecount = 0 def __init__(self,backend:BaseBackend, DROP_CONDS:bool=False,BOX_UNKNOWN:bool=True,name:str="T|KET>") : BasePass.__init__(self) self.DROP_CONDS=DROP_CONDS self.BOX_UNKNOWN=BOX_UNKNOWN self.name = name my_backend = None if isinstance(backend, BaseBackend): my_backend = backend else: raise RuntimeError("Requires BaseBackend instance") self.coupling_map = my_backend.configuration().to_dict().get('coupling_map', None) def process_circ(self, circ): num_qubits = circ.n_qubits if num_qubits == 1 or self.coupling_map == "all-to-all": coupling_map = None else: coupling_map = self.coupling_map # pre-routing optimise Transform.OptimisePhaseGadgets().apply(circ) circlay = list(range(num_qubits)) if coupling_map: directed_arc = Architecture(coupling_map) # route_ibm fnction that takes directed Arc, returns dag with cnots etc. circ, circlay = route(circ,directed_arc) circ.apply_boundary_map(circlay[0]) # post route optimise Transform.OptimisePostRouting().apply(circ) circ.remove_blank_wires() return circ, circlay def run(self, dag:DAGCircuit) -> DAGCircuit: """ Run one pass of optimisation on the circuit and route for the given backend. :param dag: The circuit to optimise and route :return: The modified circuit """ qc = dag_to_circuit(dag) circ = qiskit_to_tk(qc) circ, circlay = self.process_circ(circ) qc = tk_to_qiskit(circ) newdag = circuit_to_dag(qc) newdag.name = dag.name finlay = dict() for i, qi in enumerate(circlay): finlay[('q', i)] = ('q', qi) newdag.final_layout = finlay return newdag
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Utils for reading a user preference config files.""" import configparser import os from qiskit import exceptions DEFAULT_FILENAME = os.path.join(os.path.expanduser("~"), '.qiskit', 'settings.conf') class UserConfig: """Class representing a user config file The config file format should look like: [default] circuit_drawer = mpl """ def __init__(self, filename=None): """Create a UserConfig Args: filename (str): The path to the user config file. If one isn't specified ~/.qiskit/settings.conf is used. """ if filename is None: self.filename = DEFAULT_FILENAME else: self.filename = filename self.settings = {} self.config_parser = configparser.ConfigParser() def read_config_file(self): """Read config file and parse the contents into the settings attr.""" if not os.path.isfile(self.filename): return self.config_parser.read(self.filename) if 'default' in self.config_parser.sections(): circuit_drawer = self.config_parser.get('default', 'circuit_drawer') if circuit_drawer: if circuit_drawer not in ['text', 'mpl', 'latex', 'latex_source']: raise exceptions.QiskitUserConfigError( "%s is not a valid circuit drawer backend. Must be " "either 'text', 'mpl', 'latex', or 'latex_source'" % circuit_drawer) self.settings['circuit_drawer'] = circuit_drawer def get_config(): """Read the config file from the default location or env var It will read a config file at either the default location ~/.qiskit/settings.conf or if set the value of the QISKIT_SETTINGS env var. It will return the parsed settings dict from the parsed config file. Returns: dict: The settings dict from the parsed config file. """ filename = os.getenv('QISKIT_SETTINGS', DEFAULT_FILENAME) if not os.path.isfile(filename): return {} user_config = UserConfig(filename) user_config.read_config_file() return user_config.settings
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=wrong-import-order """Main Qiskit public functionality.""" import pkgutil # First, check for required Python and API version from . import util # qiskit errors operator from .exceptions import QiskitError # The main qiskit operators from qiskit.circuit import ClassicalRegister from qiskit.circuit import QuantumRegister from qiskit.circuit import QuantumCircuit # pylint: disable=redefined-builtin from qiskit.tools.compiler import compile # TODO remove after 0.8 from qiskit.execute import execute # The qiskit.extensions.x imports needs to be placed here due to the # mechanism for adding gates dynamically. import qiskit.extensions import qiskit.circuit.measure import qiskit.circuit.reset # Allow extending this namespace. Please note that currently this line needs # to be placed *before* the wrapper imports or any non-import code AND *before* # importing the package you want to allow extensions for (in this case `backends`). __path__ = pkgutil.extend_path(__path__, __name__) # Please note these are global instances, not modules. from qiskit.providers.basicaer import BasicAer # Try to import the Aer provider if installed. try: from qiskit.providers.aer import Aer except ImportError: pass # Try to import the IBMQ provider if installed. try: from qiskit.providers.ibmq import IBMQ except ImportError: pass from .version import __version__ from .version import __qiskit_version__
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import copy import itertools from functools import reduce import logging import json from operator import iadd as op_iadd, isub as op_isub import sys import numpy as np from scipy import sparse as scisparse from scipy import linalg as scila from qiskit import ClassicalRegister, QuantumCircuit from qiskit.quantum_info import Pauli from qiskit.qasm import pi from qiskit.assembler.run_config import RunConfig from qiskit.tools import parallel_map from qiskit.tools.events import TextProgressBar from qiskit.aqua import AquaError, aqua_globals from qiskit.aqua.utils import PauliGraph, compile_and_run_circuits, find_regs_by_name from qiskit.aqua.utils.backend_utils import is_statevector_backend logger = logging.getLogger(__name__) class Operator(object): """ Operators relevant for quantum applications Note: For grouped paulis representation, all operations will always convert it to paulis and then convert it back. (It might be a performance issue.) """ def __init__(self, paulis=None, grouped_paulis=None, matrix=None, coloring="largest-degree"): """ Args: paulis ([[float, Pauli]]): each list contains a coefficient (real number) and a corresponding Pauli class object. grouped_paulis ([[[float, Pauli]]]): each list of list contains a grouped paulis. matrix (numpy.ndarray or scipy.sparse.csr_matrix) : a 2-D sparse matrix represents operator (using CSR format internally) coloring (bool): method to group paulis. """ self._paulis = paulis self._coloring = coloring self._grouped_paulis = grouped_paulis if matrix is not None: matrix = matrix if scisparse.issparse(matrix) else scisparse.csr_matrix(matrix) matrix = matrix if scisparse.isspmatrix_csr(matrix) else matrix.to_csr(copy=True) self._matrix = matrix self._to_dia_matrix(mode="matrix") # use for fast lookup whether or not the paulis is existed. self._simplify_paulis() self._summarize_circuits = False def _extend_or_combine(self, rhs, mode, operation=op_iadd): """ Add two operators either extend (in-place) or combine (copy) them. The addition performs optimized combiniation of two operators. If `rhs` has identical basis, the coefficient are combined rather than appended. Args: rhs (Operator): to-be-combined operator mode (str): in-place or not. Returns: Operator: the operator. """ if mode == 'inplace': lhs = self elif mode == 'non-inplace': lhs = copy.deepcopy(self) if lhs._paulis is not None and rhs._paulis is not None: for pauli in rhs._paulis: pauli_label = pauli[1].to_label() idx = lhs._paulis_table.get(pauli_label, None) if idx is not None: lhs._paulis[idx][0] = operation(lhs._paulis[idx][0], pauli[0]) else: lhs._paulis_table[pauli_label] = len(lhs._paulis) new_pauli = copy.deepcopy(pauli) new_pauli[0] = operation(0.0, pauli[0]) lhs._paulis.append(new_pauli) elif lhs._grouped_paulis is not None and rhs._grouped_paulis is not None: lhs._grouped_paulis_to_paulis() rhs._grouped_paulis_to_paulis() lhs = operation(lhs, rhs) lhs._paulis_to_grouped_paulis() elif lhs._matrix is not None and rhs._matrix is not None: lhs._matrix = operation(lhs._matrix, rhs._matrix) lhs._to_dia_matrix(mode='matrix') else: raise TypeError("the representations of two Operators should be the same. ({}, {})".format( lhs.representations, rhs.representations)) return lhs def __add__(self, rhs): """Overload + operation""" return self._extend_or_combine(rhs, 'non-inplace', op_iadd) def __iadd__(self, rhs): """Overload += operation""" return self._extend_or_combine(rhs, 'inplace', op_iadd) def __sub__(self, rhs): """Overload - operation""" return self._extend_or_combine(rhs, 'non-inplace', op_isub) def __isub__(self, rhs): """Overload -= operation""" return self._extend_or_combine(rhs, 'inplace', op_isub) def __neg__(self): """Overload unary - """ ret = copy.deepcopy(self) ret.scaling_coeff(-1.0) return ret def __eq__(self, rhs): """Overload == operation""" if self._matrix is not None and rhs._matrix is not None: return np.all(self._matrix == rhs._matrix) if self._paulis is not None and rhs._paulis is not None: if len(self._paulis) != len(rhs._paulis): return False for coeff, pauli in self._paulis: found_pauli = False rhs_coeff = 0.0 for coeff2, pauli2 in rhs._paulis: if pauli == pauli2: found_pauli = True rhs_coeff = coeff2 break if not found_pauli and rhs_coeff != 0.0: # since we might have 0 weights of paulis. return False if coeff != rhs_coeff: return False return True if self._grouped_paulis is not None and rhs._grouped_paulis is not None: self._grouped_paulis_to_paulis() rhs._grouped_paulis_to_paulis() return self.__eq__(rhs) def __ne__(self, rhs): """ != """ return not self.__eq__(rhs) def __str__(self): """Overload str()""" curr_repr = "" length = "" group = None if self._paulis is not None: curr_repr = 'paulis' length = len(self._paulis) elif self._grouped_paulis is not None: curr_repr = 'grouped_paulis' group = len(self._grouped_paulis) length = sum([len(gp) - 1 for gp in self._grouped_paulis]) elif self._matrix is not None: curr_repr = 'matrix' length = "{}x{}".format(2 ** self.num_qubits, 2 ** self.num_qubits) ret = "Representation: {}, qubits: {}, size: {}{}".format( curr_repr, self.num_qubits, length, "" if group is None else " (number of groups: {})".format(group)) return ret def copy(self): """Get a copy of self.""" return copy.deepcopy(self) def chop(self, threshold=1e-15): """ Eliminate the real and imagine part of coeff in each pauli by `threshold`. If pauli's coeff is less then `threshold` in both real and imagine parts, the pauli is removed. To align the internal representations, all available representations are chopped. The chopped result is stored back to original property. Note: if coeff is real-only, the imag part is skipped. Args: threshold (float): threshold chops the paulis """ def chop_real_imag(coeff, threshold): temp_real = coeff.real if np.absolute(coeff.real) >= threshold else 0.0 temp_imag = coeff.imag if np.absolute(coeff.imag) >= threshold else 0.0 if temp_real == 0.0 and temp_imag == 0.0: return 0.0 else: new_coeff = temp_real + 1j * temp_imag return new_coeff if self._paulis is not None: for i in range(len(self._paulis)): self._paulis[i][0] = chop_real_imag(self._paulis[i][0], threshold) paulis = [x for x in self._paulis if x[0] != 0.0] self._paulis = paulis self._paulis_table = {pauli[1].to_label(): i for i, pauli in enumerate(self._paulis)} if self._dia_matrix is not None: self._to_dia_matrix('paulis') elif self._grouped_paulis is not None: grouped_paulis = [] for group_idx in range(1, len(self._grouped_paulis)): for pauli_idx in range(len(self._grouped_paulis[group_idx])): self._grouped_paulis[group_idx][pauli_idx][0] = chop_real_imag( self._grouped_paulis[group_idx][pauli_idx][0], threshold) paulis = [x for x in self._grouped_paulis[group_idx] if x[0] != 0.0] grouped_paulis.append(paulis) self._grouped_paulis = grouped_paulis if self._dia_matrix is not None: self._to_dia_matrix('grouped_paulis') elif self._matrix is not None: rows, cols = self._matrix.nonzero() for row, col in zip(rows, cols): self._matrix[row, col] = chop_real_imag(self._matrix[row, col], threshold) self._matrix.eliminate_zeros() if self._dia_matrix is not None: self._to_dia_matrix('matrix') def _simplify_paulis(self): """ Merge the paulis (grouped_paulis) whose bases are identical but the pauli with zero coefficient would not be removed. Usually used in construction. """ if self._paulis is not None: new_paulis = [] new_paulis_table = {} for curr_paulis in self._paulis: pauli_label = curr_paulis[1].to_label() new_idx = new_paulis_table.get(pauli_label, None) if new_idx is not None: new_paulis[new_idx][0] += curr_paulis[0] else: new_paulis_table[pauli_label] = len(new_paulis) new_paulis.append(curr_paulis) self._paulis = new_paulis self._paulis_table = new_paulis_table elif self._grouped_paulis is not None: self._grouped_paulis_to_paulis() self._simplify_paulis() self._paulis_to_grouped_paulis() def __mul__(self, rhs): """ Overload * operation. Only support two Operators have the same representation mode. Returns: Operator: the multipled Operator. Raises: TypeError, if two Operators do not have the same representations. """ if self._paulis is not None and rhs._paulis is not None: ret_pauli = Operator(paulis=[]) for existed_pauli in self._paulis: for pauli in rhs._paulis: basis, sign = Pauli.sgn_prod(existed_pauli[1], pauli[1]) coeff = existed_pauli[0] * pauli[0] * sign if abs(coeff) > 1e-15: pauli_term = [coeff, basis] ret_pauli += Operator(paulis=[pauli_term]) return ret_pauli elif self._grouped_paulis is not None and rhs._grouped_paulis is not None: self._grouped_paulis_to_paulis() rhs._grouped_paulis_to_paulis() mul_pauli = self * rhs mul_pauli._paulis_to_grouped_paulis() ret_grouped_pauli = Operator(paulis=mul_pauli._paulis, grouped_paulis=mul_pauli._grouped_paulis) return ret_grouped_pauli elif self._matrix is not None and rhs._matrix is not None: ret_matrix = self._matrix.dot(rhs._matrix) return Operator(matrix=ret_matrix) else: raise TypeError("the representations of two Operators should be the same. ({}, {})".format( self.representations, rhs.representations)) @property def coloring(self): """Getter of method of grouping paulis""" return self._coloring @coloring.setter def coloring(self, new_coloring): """Setter of method of grouping paulis""" self._coloring = new_coloring @property def aer_paulis(self): if getattr(self, '_aer_paulis', None) is None: self.to_paulis() aer_paulis = [] for coeff, p in self._paulis: new_coeff = [coeff.real, coeff.imag] new_p = p.to_label() aer_paulis.append([new_coeff, new_p]) self._aer_paulis = aer_paulis return self._aer_paulis def _to_dia_matrix(self, mode): """ Convert the reprenetations into diagonal matrix if possible and then store it back. For paulis, if all paulis are Z or I (identity), convert to dia_matrix. Args: mode (str): "matrix", "paulis" or "grouped_paulis". """ if mode not in ['matrix', 'paulis', 'grouped_paulis']: raise ValueError( 'Mode should be one of "matrix", "paulis", "grouped_paulis"') if mode == 'matrix' and self._matrix is not None: dia_matrix = self._matrix.diagonal() if not scisparse.csr_matrix(dia_matrix).nnz == self._matrix.nnz: dia_matrix = None self._dia_matrix = dia_matrix elif mode == 'paulis' and self._paulis is not None: if self._paulis == []: self._dia_matrix = None else: valid_dia_matrix_flag = True dia_matrix = 0.0 for idx in range(len(self._paulis)): coeff, pauli = self._paulis[idx][0], self._paulis[idx][1] if not (np.all(np.logical_not(pauli.x))): valid_dia_matrix_flag = False break dia_matrix += coeff * pauli.to_spmatrix().diagonal() self._dia_matrix = dia_matrix.copy() if valid_dia_matrix_flag else None elif mode == 'grouped_paulis' and self._grouped_paulis is not None: self._grouped_paulis_to_paulis() self._to_dia_matrix(mode='paulis') self._paulis_to_grouped_paulis() else: self._dia_matrix = None @property def paulis(self): """Getter of Pauli list.""" return self._paulis @property def grouped_paulis(self): """Getter of grouped Pauli list.""" return self._grouped_paulis @property def matrix(self): """Getter of matrix; if matrix is diagonal, diagonal matrix is returned instead.""" return self._dia_matrix if self._dia_matrix is not None else self._matrix def enable_summarize_circuits(self): self._summarize_circuits = True def disable_summarize_circuits(self): self._summarize_circuits = False @property def representations(self): """ Return the available representations in the Operator. Returns: list: available representations ([str]) """ ret = [] if self._paulis is not None: ret.append("paulis") if self._grouped_paulis is not None: ret.append("grouped_paulis") if self._matrix is not None: ret.append("matrix") return ret @property def num_qubits(self): """ number of qubits required for the operator. Returns: int: number of qubits """ if self._paulis is not None: if self._paulis != []: return len(self._paulis[0][1]) else: return 0 elif self._grouped_paulis is not None and self._grouped_paulis != []: return len(self._grouped_paulis[0][0][1]) else: return int(np.log2(self._matrix.shape[0])) @staticmethod def load_from_file(file_name, before_04=False): """ Load paulis in a file to construct an Operator. Args: file_name (str): path to the file, which contains a list of Paulis and coefficients. before_04 (bool): support the format < 0.4. Returns: Operator class: the loaded operator. """ with open(file_name, 'r') as file: return Operator.load_from_dict(json.load(file), before_04=before_04) def save_to_file(self, file_name): """ Save operator to a file in pauli representation. Args: file_name (str): path to the file """ with open(file_name, 'w') as f: json.dump(self.save_to_dict(), f) @staticmethod def load_from_dict(dictionary, before_04=False): """ Load paulis in a dict to construct an Operator, \ the dict must be represented as follows: label and coeff (real and imag). \ E.g.: \ {'paulis': \ [ \ {'label': 'IIII', \ 'coeff': {'real': -0.33562957575267038, 'imag': 0.0}}, \ {'label': 'ZIII', \ 'coeff': {'real': 0.28220597164664896, 'imag': 0.0}}, \ ... \ ] \ } \ Args: dictionary (dict): dictionary, which contains a list of Paulis and coefficients. before_04 (bool): support the format < 0.4. Returns: Operator: the loaded operator. """ if 'paulis' not in dictionary: raise AquaError('Dictionary missing "paulis" key') paulis = [] for op in dictionary['paulis']: if 'label' not in op: raise AquaError('Dictionary missing "label" key') pauli_label = op['label'] if 'coeff' not in op: raise AquaError('Dictionary missing "coeff" key') pauli_coeff = op['coeff'] if 'real' not in pauli_coeff: raise AquaError('Dictionary missing "real" key') coeff = pauli_coeff['real'] if 'imag' in pauli_coeff: coeff = complex(pauli_coeff['real'], pauli_coeff['imag']) pauli_label = pauli_label[::-1] if before_04 else pauli_label paulis.append([coeff, Pauli.from_label(pauli_label)]) return Operator(paulis=paulis) def save_to_dict(self): """ Save operator to a dict in pauli representation. Returns: dict: a dictionary contains an operator with pauli representation. """ self._check_representation("paulis") ret_dict = {"paulis": []} for pauli in self._paulis: op = {"label": pauli[1].to_label()} if isinstance(pauli[0], complex): op["coeff"] = {"real": np.real(pauli[0]), "imag": np.imag(pauli[0]) } else: op["coeff"] = {"real": pauli[0]} ret_dict["paulis"].append(op) return ret_dict def print_operators(self, print_format='paulis'): """ Print out the paulis in the selected representation. Args: print_format (str): "paulis", "grouped_paulis", "matrix" Returns: str: a formated operator. Raises: ValueError: if `print_format` is not supported. """ ret = "" if print_format == 'paulis': self._check_representation("paulis") for pauli in self._paulis: ret = ''.join([ret, "{}\t{}\n".format(pauli[1].to_label(), pauli[0])]) if ret == "": ret = ''.join([ret, "Pauli list is empty."]) elif print_format == 'grouped_paulis': self._check_representation("grouped_paulis") for i in range(len(self._grouped_paulis)): ret = ''.join([ret, 'Post Rotations of TPB set {} '.format(i)]) ret = ''.join([ret, ': {} '.format(self._grouped_paulis[i][0][1].to_label())]) ret = ''.join([ret, '\n']) for j in range(1, len(self._grouped_paulis[i])): ret = ''.join([ret, '{} '.format(self._grouped_paulis[i][j][1].to_label())]) ret = ''.join([ret, '{}\n'.format(self._grouped_paulis[i][j][0])]) ret = ''.join([ret, '\n']) if ret == "": ret = ''.join([ret, "Grouped pauli list is empty."]) elif print_format == 'matrix': self._check_representation("matrix") ret = str(self._matrix.toarray()) else: raise ValueError('Mode should be one of "matrix", "paulis", "grouped_paulis"') return ret def construct_evaluation_circuit(self, operator_mode, input_circuit, backend, use_simulator_operator_mode=False): """ Construct the circuits for evaluation. Args: operator_mode (str): representation of operator, including paulis, grouped_paulis and matrix input_circuit (QuantumCircuit): the quantum circuit. backend (BaseBackend): backend selection for quantum machine. use_simulator_operator_mode (bool): if aer_provider is used, we can do faster evaluation for pauli mode on statevector simualtion Returns: [QuantumCircuit]: the circuits for evaluation. """ if is_statevector_backend(backend): if operator_mode == 'matrix': circuits = [input_circuit] else: self._check_representation("paulis") if use_simulator_operator_mode: circuits = [input_circuit] else: n_qubits = self.num_qubits q = find_regs_by_name(input_circuit, 'q') circuits = [input_circuit] for idx, pauli in enumerate(self._paulis): circuit = QuantumCircuit() + input_circuit if np.all(np.logical_not(pauli[1].z)) and np.all(np.logical_not(pauli[1].x)): # all I continue for qubit_idx in range(n_qubits): if not pauli[1].z[qubit_idx] and pauli[1].x[qubit_idx]: circuit.u3(np.pi, 0.0, np.pi, q[qubit_idx]) # x elif pauli[1].z[qubit_idx] and not pauli[1].x[qubit_idx]: circuit.u1(np.pi, q[qubit_idx]) # z elif pauli[1].z[qubit_idx] and pauli[1].x[qubit_idx]: circuit.u3(np.pi, np.pi/2, np.pi/2, q[qubit_idx]) # y circuits.append(circuit) else: if operator_mode == 'matrix': raise AquaError("matrix mode can not be used with non-statevector simulator.") n_qubits = self.num_qubits circuits = [] base_circuit = QuantumCircuit() + input_circuit c = find_regs_by_name(base_circuit, 'c', qreg=False) if c is None: c = ClassicalRegister(n_qubits, name='c') base_circuit.add_register(c) if operator_mode == "paulis": self._check_representation("paulis") for idx, pauli in enumerate(self._paulis): circuit = QuantumCircuit() + base_circuit q = find_regs_by_name(circuit, 'q') c = find_regs_by_name(circuit, 'c', qreg=False) for qubit_idx in range(n_qubits): if pauli[1].x[qubit_idx]: if pauli[1].z[qubit_idx]: # Measure Y circuit.u1(-np.pi/2, q[qubit_idx]) # sdg circuit.u2(0.0, np.pi, q[qubit_idx]) # h else: # Measure X circuit.u2(0.0, np.pi, q[qubit_idx]) # h circuit.barrier(q) circuit.measure(q, c) circuits.append(circuit) else: self._check_representation("grouped_paulis") for idx, tpb_set in enumerate(self._grouped_paulis): circuit = QuantumCircuit() + base_circuit q = find_regs_by_name(circuit, 'q') c = find_regs_by_name(circuit, 'c', qreg=False) for qubit_idx in range(n_qubits): if tpb_set[0][1].x[qubit_idx]: if tpb_set[0][1].z[qubit_idx]: # Measure Y circuit.u1(-np.pi/2, q[qubit_idx]) # sdg circuit.u2(0.0, np.pi, q[qubit_idx]) # h else: # Measure X circuit.u2(0.0, np.pi, q[qubit_idx]) # h circuit.barrier(q) circuit.measure(q, c) circuits.append(circuit) return circuits def evaluate_with_result(self, operator_mode, circuits, backend, result, use_simulator_operator_mode=False): """ Use the executed result with operator to get the evaluated value. Args: operator_mode (str): representation of operator, including paulis, grouped_paulis and matrix circuits (list of qiskit.QuantumCircuit): the quantum circuits. backend (str): backend selection for quantum machine. result (qiskit.Result): the result from the backend. use_simulator_operator_mode (bool): if aer_provider is used, we can do faster evaluation for pauli mode on statevector simualtion Returns: float: the mean value float: the standard deviation """ avg, std_dev, variance = 0.0, 0.0, 0.0 if is_statevector_backend(backend): if operator_mode == "matrix": self._check_representation("matrix") if self._dia_matrix is None: self._to_dia_matrix(mode='matrix') quantum_state = np.asarray(result.get_statevector(circuits[0])) if self._dia_matrix is not None: avg = np.sum(self._dia_matrix * np.absolute(quantum_state) ** 2) else: avg = np.vdot(quantum_state, self._matrix.dot(quantum_state)) else: self._check_representation("paulis") if use_simulator_operator_mode: temp = result.data(circuits[0])['snapshots']['expectation_value']['test'][0]['value'] avg = temp[0] + 1j * temp[1] else: quantum_state = np.asarray(result.get_statevector(circuits[0])) circuit_idx = 1 for idx, pauli in enumerate(self._paulis): if np.all(np.logical_not(pauli[1].z)) and np.all(np.logical_not(pauli[1].x)): avg += pauli[0] else: quantum_state_i = np.asarray(result.get_statevector(circuits[circuit_idx])) avg += pauli[0] * (np.vdot(quantum_state, quantum_state_i)) circuit_idx += 1 else: if logger.isEnabledFor(logging.DEBUG): logger.debug("Computing the expectation from measurement results:") TextProgressBar(sys.stderr) num_shots = sum(list(result.get_counts(circuits[0]).values())) if operator_mode == "paulis": self._check_representation("paulis") results = parallel_map(Operator._routine_paulis_with_shots, [(pauli, result.get_counts(circuits[idx])) for idx, pauli in enumerate(self._paulis)], num_processes=aqua_globals.num_processes) for result in results: avg += result[0] variance += result[1] else: self._check_representation("grouped_paulis") results = parallel_map(Operator._routine_grouped_paulis_with_shots, [(tpb_set, result.get_counts(circuits[tpb_idx])) for tpb_idx, tpb_set in enumerate(self._grouped_paulis)], num_processes=aqua_globals.num_processes) for result in results: avg += result[0] variance += result[1] std_dev = np.sqrt(variance / num_shots) return avg, std_dev @staticmethod def _routine_grouped_paulis_with_shots(args): tpb_set, measured_results = args avg_paulis = [] avg = 0.0 variance = 0.0 for pauli_idx, pauli in enumerate(tpb_set): if pauli_idx == 0: continue observable = Operator._measure_pauli_z(measured_results, pauli[1]) avg_paulis.append(observable) avg += pauli[0] * observable # Compute the covariance matrix elements of tpb_set # and add up to the total standard deviation # tpb_set = grouped_paulis, tensor product basis set for pauli_1_idx, pauli_1 in enumerate(tpb_set): for pauli_2_idx, pauli_2 in enumerate(tpb_set): if pauli_1_idx == 0 or pauli_2_idx == 0: continue variance += pauli_1[0] * pauli_2[0] * \ Operator._covariance(measured_results, pauli_1[1], pauli_2[1], avg_paulis[pauli_1_idx-1], avg_paulis[pauli_2_idx-1]) return avg, variance @staticmethod def _routine_paulis_with_shots(args): pauli, measured_results = args curr_result = Operator._measure_pauli_z(measured_results, pauli[1]) avg = pauli[0] * curr_result variance = (pauli[0] ** 2) * Operator._covariance(measured_results, pauli[1], pauli[1], curr_result, curr_result) return avg, variance def _eval_directly(self, quantum_state): self._check_representation("matrix") if self._dia_matrix is None: self._to_dia_matrix(mode='matrix') if self._dia_matrix is not None: avg = np.sum(self._dia_matrix * np.absolute(quantum_state) ** 2) else: avg = np.vdot(quantum_state, self._matrix.dot(quantum_state)) return avg def eval(self, operator_mode, input_circuit, backend, backend_config=None, compile_config=None, run_config=None, qjob_config=None, noise_config=None): """ Supporting three ways to evaluate the given circuits with the operator. 1. If `input_circuit` is a numpy.ndarray, it will directly perform inner product with the operator. 2. If `backend` is a statevector simulator, use quantum backend to get statevector \ and then evaluate with the operator. 3. Other cases: it use with quanutm backend (simulator or real quantum machine), \ to obtain the mean and standard deviation of measured results. Args: operator_mode (str): representation of operator, including paulis, grouped_paulis and matrix input_circuit (QuantumCircuit or numpy.ndarray): the quantum circuit. backend (BaseBackend): backend selection for quantum machine. backend_config (dict): configuration for backend compile_config (dict): configuration for compilation run_config (RunConfig): configuration for running a circuit qjob_config (dict): the setting to retrieve results from quantum backend, including timeout and wait. noise_config (dict) the setting of noise model for the qasm simulator in the Aer provider. Returns: float, float: mean and standard deviation of avg """ backend_config = backend_config or {} compile_config = compile_config or {} if run_config is not None: if isinstance(run_config, dict): run_config = RunConfig(**run_config) else: run_config = RunConfig() qjob_config = qjob_config or {} noise_config = noise_config or {} if isinstance(input_circuit, np.ndarray): avg = self._eval_directly(input_circuit) std_dev = 0.0 else: if is_statevector_backend(backend): run_config.shots = 1 circuits = self.construct_evaluation_circuit(operator_mode, input_circuit, backend) result = compile_and_run_circuits(circuits, backend=backend, backend_config=backend_config, compile_config=compile_config, run_config=run_config, qjob_config=qjob_config, noise_config=noise_config, show_circuit_summary=self._summarize_circuits) avg, std_dev = self.evaluate_with_result(operator_mode, circuits, backend, result) return avg, std_dev def to_paulis(self): self._check_representation('paulis') def to_grouped_paulis(self): self._check_representation('grouped_paulis') def to_matrix(self): self._check_representation('matrix') def convert(self, input_format, output_format, force=False): """ A wrapper for conversion among all representations. Note that, if the output target is already there, it will skip the conversion. The result is stored back into its property directly. Args: input_format (str): case-insensitive input format, should be one of "paulis", "grouped_paulis", "matrix" output_format (str): case-insensitive output format, should be one of "paulis", "grouped_paulis", "matrix" force (bool): convert to targeted format regardless its present. Raises: ValueError: if the unsupported output_format is specified. """ input_format = input_format.lower() output_format = output_format.lower() if input_format not in ["paulis", "grouped_paulis", "matrix"]: raise ValueError( "Input format {} is not supported".format(input_format)) if output_format not in ["paulis", "grouped_paulis", "matrix"]: raise ValueError( "Output format {} is not supported".format(output_format)) if output_format == "paulis" and (self._paulis is None or force): if input_format == "matrix": self._matrix_to_paulis() elif input_format == "grouped_paulis": self._grouped_paulis_to_paulis() elif output_format == "grouped_paulis" and (self._grouped_paulis is None or force): if self._grouped_paulis == []: return if input_format == "paulis": self._paulis_to_grouped_paulis() elif input_format == "matrix": self._matrix_to_grouped_paulis() elif output_format == "matrix" and (self._matrix is None or force): if input_format == "paulis": self._paulis_to_matrix() elif input_format == "grouped_paulis": self._grouped_paulis_to_matrix() def _grouped_paulis_to_paulis(self): """ Convert grouped paulis to paulis, and save it in internal property directly. Note: Ideally, all paulis in grouped_paulis should be unique. No need to check whether it is existed. """ if self._grouped_paulis == []: return paulis = [] for group in self._grouped_paulis: for idx in range(1, len(group)): # the first one is the header. paulis.append(group[idx]) self._paulis = paulis self._matrix = None self._grouped_paulis = None def _matrix_to_paulis(self): """ Convert matrix to paulis, and save it in internal property directly. Note: Conversion from Paulis to matrix: H = sum_i alpha_i * Pauli_i Conversion from matrix to Paulis: alpha_i = coeff * Trace(H.Pauli_i) (dot product of trace) where coeff = 2^(- # of qubits), # of qubit = log2(dim of matrix) """ if self._matrix.nnz == 0: return num_qubits = self.num_qubits coeff = 2 ** (-num_qubits) paulis = [] # generate all possible paulis basis for basis in itertools.product('IXYZ', repeat=num_qubits): pauli_i = Pauli.from_label(''.join(basis)) trace_value = np.sum(self._matrix.dot(pauli_i.to_spmatrix()).diagonal()) alpha_i = trace_value * coeff if alpha_i != 0.0: paulis.append([alpha_i, pauli_i]) self._paulis = paulis self._matrix = None self._grouped_paulis = None def _paulis_to_grouped_paulis(self): """ Convert paulis to grouped_paulis, and save it in internal property directly. Groups a list of [coeff,Pauli] into tensor product basis (tpb) sets """ if self._paulis == []: return if self._coloring is not None: self._grouped_paulis = PauliGraph(self._paulis, mode=self._coloring).grouped_paulis else: temp_paulis = copy.deepcopy(self._paulis) n = self.num_qubits grouped_paulis = [] sorted_paulis = [] def check_pauli_in_list(target, pauli_list): ret = False for pauli in pauli_list: if target[1] == pauli[1]: ret = True break return ret for i in range(len(temp_paulis)): p_1 = temp_paulis[i] if not check_pauli_in_list(p_1, sorted_paulis): paulis_temp = [] # pauli_list_temp.extend(p_1) # this is going to signal the total # post-rotations of the set (set master) paulis_temp.append(p_1) paulis_temp.append(copy.deepcopy(p_1)) paulis_temp[0][0] = 0.0 # zero coeff for HEADER for j in range(i+1, len(temp_paulis)): p_2 = temp_paulis[j] if not check_pauli_in_list(p_2, sorted_paulis) and p_1[1] != p_2[1]: j = 0 for i in range(n): # p_2 is identity, p_1 is identity, p_1 and p_2 has same basis if not ((not p_2[1].z[i] and not p_2[1].x[i]) or (not p_1[1].z[i] and not p_1[1].x[i]) or (p_2[1].z[i] == p_1[1].z[i] and p_2[1].x[i] == p_1[1].x[i])): break else: # update master, if p_2 is not identity if p_2[1].z[i] or p_2[1].x[i]: paulis_temp[0][1].update_z(p_2[1].z[i], i) paulis_temp[0][1].update_x(p_2[1].x[i], i) j += 1 if j == n: paulis_temp.append(p_2) sorted_paulis.append(p_2) grouped_paulis.append(paulis_temp) self._grouped_paulis = grouped_paulis self._matrix = None self._paulis = None def _matrix_to_grouped_paulis(self): """ Convert matrix to grouped_paulis, and save it in internal property directly. """ if self._matrix.nnz == 0: return self._matrix_to_paulis() self._paulis_to_grouped_paulis() self._matrix = None self._paulis = None def _paulis_to_matrix(self): """ Convert paulis to matrix, and save it in internal property directly. If all paulis are Z or I (identity), convert to dia_matrix. """ if self._paulis == []: return p = self._paulis[0] hamiltonian = p[0] * p[1].to_spmatrix() for idx in range(1, len(self._paulis)): p = self._paulis[idx] hamiltonian += p[0] * p[1].to_spmatrix() self._matrix = hamiltonian self._to_dia_matrix(mode='matrix') self._paulis = None self._grouped_paulis = None def _grouped_paulis_to_matrix(self): """ Convert grouped_paulis to matrix, and save it in internal property directly. If all paulis are Z or I (identity), convert to dia_matrix. """ if self._grouped_paulis == []: return p = self._grouped_paulis[0][1] hamiltonian = p[0] * p[1].to_spmatrix() for idx in range(2, len(self._grouped_paulis[0])): p = self._grouped_paulis[0][idx] hamiltonian += p[0] * p[1].to_spmatrix() for group_idx in range(1, len(self._grouped_paulis)): group = self._grouped_paulis[group_idx] for idx in range(1, len(group)): p = group[idx] hamiltonian += p[0] * p[1].to_spmatrix() self._matrix = hamiltonian self._to_dia_matrix(mode='matrix') self._paulis = None self._grouped_paulis = None @staticmethod def _measure_pauli_z(data, pauli): """ Appropriate post-rotations on the state are assumed. Args: data (dict): a dictionary of the form data = {'00000': 10} ({str: int}) pauli (Pauli): a Pauli object Returns: float: Expected value of paulis given data """ observable = 0.0 num_shots = sum(data.values()) p_z_or_x = np.logical_or(pauli.z, pauli.x) for key, value in data.items(): bitstr = np.asarray(list(key))[::-1].astype(np.bool) sign = -1.0 if np.logical_xor.reduce(np.logical_and(bitstr, p_z_or_x)) else 1.0 observable += sign * value observable /= num_shots return observable @staticmethod def _covariance(data, pauli_1, pauli_2, avg_1, avg_2): """ Compute the covariance matrix element between two Paulis, given the measurement outcome. Appropriate post-rotations on the state are assumed. Args: data (dict): a dictionary of the form data = {'00000': 10} ({str:int}) pauli_1 (Pauli): a Pauli class member pauli_2 (Pauli): a Pauli class member avg_1 (float): expectation value of pauli_1 on `data` avg_2 (float): expectation value of pauli_2 on `data` Returns: float: the element of the covariance matrix between two Paulis """ cov = 0.0 num_shots = sum(data.values()) if num_shots == 1: return cov p1_z_or_x = np.logical_or(pauli_1.z, pauli_1.x) p2_z_or_x = np.logical_or(pauli_2.z, pauli_2.x) for key, value in data.items(): bitstr = np.asarray(list(key))[::-1].astype(np.bool) sign_1 = -1.0 if np.logical_xor.reduce(np.logical_and(bitstr, p1_z_or_x)) else 1.0 sign_2 = -1.0 if np.logical_xor.reduce(np.logical_and(bitstr, p2_z_or_x)) else 1.0 cov += (sign_1 - avg_1) * (sign_2 - avg_2) * value cov /= (num_shots - 1) return cov def two_qubit_reduced_operator(self, m, threshold=10**-13): """ Eliminates the central and last qubit in a list of Pauli that has diagonal operators (Z,I) at those positions Chemistry specific method: It can be used to taper two qubits in parity and binary-tree mapped fermionic Hamiltonians when the spin orbitals are ordered in two spin sectors, (block spin order) according to the number of particles in the system. Args: m (int): number of fermionic particles threshold (float): threshold for Pauli simplification Returns: Operator: a new operator whose qubit number is reduced by 2. """ if self._paulis is None or self._paulis == []: return self operator_out = Operator(paulis=[]) par_1 = 1 if m % 2 == 0 else -1 par_2 = 1 if m % 4 == 0 else -1 n = self.num_qubits last_idx = n - 1 mid_idx = n // 2 - 1 for pauli_term in self._paulis: # loop over Pauli terms coeff_out = pauli_term[0] # Z operator encountered at qubit n/2-1 if pauli_term[1].z[mid_idx] and not pauli_term[1].x[mid_idx]: coeff_out = par_2 * coeff_out # Z operator encountered at qubit n-1 if pauli_term[1].z[last_idx] and not pauli_term[1].x[last_idx]: coeff_out = par_1 * coeff_out # TODO: can change to delete z_temp = [] x_temp = [] for j in range(n - 1): if j != mid_idx: z_temp.append(pauli_term[1].z[j]) x_temp.append(pauli_term[1].x[j]) pauli_term_out = [coeff_out, Pauli(np.asarray(z_temp), np.asarray(x_temp))] if np.absolute(coeff_out) > threshold: operator_out += Operator(paulis=[pauli_term_out]) operator_out.chop(threshold=threshold) return operator_out def get_flat_pauli_list(self): """ Get the flat list of paulis Returns: list: The list of pauli terms """ if self._paulis is not None: return [] + self._paulis else: if self._grouped_paulis is not None: return [pauli for group in self._grouped_paulis for pauli in group[1:]] elif self._matrix is not None: self._check_representation('paulis') return [] + self._paulis @staticmethod def construct_evolution_circuit(slice_pauli_list, evo_time, num_time_slices, state_registers, ancillary_registers=None, ctl_idx=0, unitary_power=None, use_basis_gates=True, shallow_slicing=False): """ Construct the evolution circuit according to the supplied specification. Args: slice_pauli_list (list): The list of pauli terms corresponding to a single time slice to be evolved evo_time (int): The evolution time num_time_slices (int): The number of time slices for the expansion state_registers (QuantumRegister): The Qiskit QuantumRegister corresponding to the qubits of the system ancillary_registers (QuantumRegister): The optional Qiskit QuantumRegister corresponding to the control qubits for the state_registers of the system ctl_idx (int): The index of the qubit of the control ancillary_registers to use unitary_power (int): The power to which the unitary operator is to be raised use_basis_gates (bool): boolean flag for indicating only using basis gates when building circuit. shallow_slicing (bool): boolean flag for indicating using shallow qc.data reference repetition for slicing Returns: QuantumCircuit: The Qiskit QuantumCircuit corresponding to specified evolution. """ if state_registers is None: raise ValueError('Quantum state registers are required.') qc_slice = QuantumCircuit(state_registers) if ancillary_registers is not None: qc_slice.add_register(ancillary_registers) # for each pauli [IXYZ]+, record the list of qubit pairs needing CX's cnot_qubit_pairs = [None] * len(slice_pauli_list) # for each pauli [IXYZ]+, record the highest index of the nontrivial pauli gate (X,Y, or Z) top_XYZ_pauli_indices = [-1] * len(slice_pauli_list) for pauli_idx, pauli in enumerate(reversed(slice_pauli_list)): n_qubits = pauli[1].numberofqubits # changes bases if necessary nontrivial_pauli_indices = [] for qubit_idx in range(n_qubits): # pauli I if not pauli[1].z[qubit_idx] and not pauli[1].x[qubit_idx]: continue if cnot_qubit_pairs[pauli_idx] is None: nontrivial_pauli_indices.append(qubit_idx) if pauli[1].x[qubit_idx]: # pauli X if not pauli[1].z[qubit_idx]: if use_basis_gates: qc_slice.u2(0.0, pi, state_registers[qubit_idx]) else: qc_slice.h(state_registers[qubit_idx]) # pauli Y elif pauli[1].z[qubit_idx]: if use_basis_gates: qc_slice.u3(pi / 2, -pi / 2, pi / 2, state_registers[qubit_idx]) else: qc_slice.rx(pi / 2, state_registers[qubit_idx]) # pauli Z elif pauli[1].z[qubit_idx] and not pauli[1].x[qubit_idx]: pass else: raise ValueError('Unrecognized pauli: {}'.format(pauli[1])) if len(nontrivial_pauli_indices) > 0: top_XYZ_pauli_indices[pauli_idx] = nontrivial_pauli_indices[-1] # insert lhs cnot gates if cnot_qubit_pairs[pauli_idx] is None: cnot_qubit_pairs[pauli_idx] = list(zip( sorted(nontrivial_pauli_indices)[:-1], sorted(nontrivial_pauli_indices)[1:] )) for pair in cnot_qubit_pairs[pauli_idx]: qc_slice.cx(state_registers[pair[0]], state_registers[pair[1]]) # insert Rz gate if top_XYZ_pauli_indices[pauli_idx] >= 0: if ancillary_registers is None: lam = (2.0 * pauli[0] * evo_time / num_time_slices).real if use_basis_gates: qc_slice.u1(lam, state_registers[top_XYZ_pauli_indices[pauli_idx]]) else: qc_slice.rz(lam, state_registers[top_XYZ_pauli_indices[pauli_idx]]) else: unitary_power = (2 ** ctl_idx) if unitary_power is None else unitary_power lam = (2.0 * pauli[0] * evo_time / num_time_slices * unitary_power).real if use_basis_gates: qc_slice.u1(lam / 2, state_registers[top_XYZ_pauli_indices[pauli_idx]]) qc_slice.cx(ancillary_registers[ctl_idx], state_registers[top_XYZ_pauli_indices[pauli_idx]]) qc_slice.u1(-lam / 2, state_registers[top_XYZ_pauli_indices[pauli_idx]]) qc_slice.cx(ancillary_registers[ctl_idx], state_registers[top_XYZ_pauli_indices[pauli_idx]]) else: qc_slice.crz(lam, ancillary_registers[ctl_idx], state_registers[top_XYZ_pauli_indices[pauli_idx]]) # insert rhs cnot gates for pair in reversed(cnot_qubit_pairs[pauli_idx]): qc_slice.cx(state_registers[pair[0]], state_registers[pair[1]]) # revert bases if necessary for qubit_idx in range(n_qubits): if pauli[1].x[qubit_idx]: # pauli X if not pauli[1].z[qubit_idx]: if use_basis_gates: qc_slice.u2(0.0, pi, state_registers[qubit_idx]) else: qc_slice.h(state_registers[qubit_idx]) # pauli Y elif pauli[1].z[qubit_idx]: if use_basis_gates: qc_slice.u3(-pi / 2, -pi / 2, pi / 2, state_registers[qubit_idx]) else: qc_slice.rx(-pi / 2, state_registers[qubit_idx]) # repeat the slice if shallow_slicing: logger.info('Under shallow slicing mode, the qc.data reference is repeated shallowly. ' 'Thus, changing gates of one slice of the output circuit might affect other slices.') qc_slice.data *= num_time_slices qc = qc_slice else: qc = QuantumCircuit() for _ in range(num_time_slices): qc += qc_slice return qc @staticmethod def _suzuki_expansion_slice_matrix(pauli_list, lam, expansion_order): """ Compute the matrix for a single slice of the suzuki expansion following the paper https://arxiv.org/pdf/quant-ph/0508139.pdf Args: pauli_list (list): The operator's complete list of pauli terms for the suzuki expansion lam (complex): The parameter lambda as defined in said paper expansion_order (int): The order for the suzuki expansion Returns: numpy array: The matrix representation corresponding to the specified suzuki expansion """ if expansion_order == 1: left = reduce( lambda x, y: x @ y, [scila.expm(lam / 2 * c * p.to_spmatrix().tocsc()) for c, p in pauli_list] ) right = reduce( lambda x, y: x @ y, [scila.expm(lam / 2 * c * p.to_spmatrix().tocsc()) for c, p in reversed(pauli_list)] ) return left @ right else: pk = (4 - 4 ** (1 / (2 * expansion_order - 1))) ** -1 side_base = Operator._suzuki_expansion_slice_matrix( pauli_list, lam * pk, expansion_order - 1 ) side = side_base @ side_base middle = Operator._suzuki_expansion_slice_matrix( pauli_list, lam * (1 - 4 * pk), expansion_order - 1 ) return side @ middle @ side @staticmethod def _suzuki_expansion_slice_pauli_list(pauli_list, lam_coef, expansion_order): """ Similar to _suzuki_expansion_slice_matrix, with the difference that this method computes the list of pauli terms for a single slice of the suzuki expansion, which can then be fed to construct_evolution_circuit to build the QuantumCircuit. """ if expansion_order == 1: half = [[lam_coef / 2 * c, p] for c, p in pauli_list] return half + list(reversed(half)) else: pk = (4 - 4 ** (1 / (2 * expansion_order - 1))) ** -1 side_base = Operator._suzuki_expansion_slice_pauli_list( pauli_list, lam_coef * pk, expansion_order - 1 ) side = side_base * 2 middle = Operator._suzuki_expansion_slice_pauli_list( pauli_list, lam_coef * (1 - 4 * pk), expansion_order - 1 ) return side + middle + side def evolve( self, state_in=None, evo_time=0, evo_mode=None, num_time_slices=0, quantum_registers=None, expansion_mode='trotter', expansion_order=1 ): """ Carry out the eoh evolution for the operator under supplied specifications. Args: state_in: The initial state for the evolution evo_time (int): The evolution time evo_mode (str): The mode under which the evolution is carried out. Currently only support 'matrix' or 'circuit' num_time_slices (int): The number of time slices for the expansion quantum_registers (QuantumRegister): The QuantumRegister to build the QuantumCircuit off of expansion_mode (str): The mode under which the expansion is to be done. Currently support 'trotter', which follows the expansion as discussed in http://science.sciencemag.org/content/273/5278/1073, and 'suzuki', which corresponds to the discussion in https://arxiv.org/pdf/quant-ph/0508139.pdf expansion_order (int): The order for suzuki expansion Returns: Depending on the evo_mode specified, either return the matrix vector multiplication result or the constructed QuantumCircuit. """ if num_time_slices < 0 or not isinstance(num_time_slices, int): raise ValueError('Number of time slices should be a non-negative integer.') if not (expansion_mode == 'trotter' or expansion_mode == 'suzuki'): raise NotImplementedError('Expansion mode {} not supported.'.format(expansion_mode)) pauli_list = self.get_flat_pauli_list() if evo_mode == 'matrix': self._check_representation("matrix") if num_time_slices == 0: return scila.expm(-1.j * evo_time * self._matrix.tocsc()) @ state_in else: if len(pauli_list) == 1: approx_matrix_slice = scila.expm( -1.j * evo_time / num_time_slices * pauli_list[0][0] * pauli_list[0][1].to_spmatrix().tocsc() ) else: if expansion_mode == 'trotter': approx_matrix_slice = reduce( lambda x, y: x @ y, [ scila.expm(-1.j * evo_time / num_time_slices * c * p.to_spmatrix().tocsc()) for c, p in pauli_list ] ) # suzuki expansion elif expansion_mode == 'suzuki': approx_matrix_slice = Operator._suzuki_expansion_slice_matrix( pauli_list, -1.j * evo_time / num_time_slices, expansion_order ) else: raise ValueError('Unrecognized expansion mode {}.'.format(expansion_mode)) return reduce(lambda x, y: x @ y, [approx_matrix_slice] * num_time_slices) @ state_in elif evo_mode == 'circuit': if num_time_slices == 0: raise ValueError('Number of time slices should be a positive integer for {} mode.'.format(evo_mode)) else: if quantum_registers is None: raise ValueError('Quantum registers are needed for circuit construction.') if len(pauli_list) == 1: slice_pauli_list = pauli_list else: if expansion_mode == 'trotter': slice_pauli_list = pauli_list # suzuki expansion else: slice_pauli_list = Operator._suzuki_expansion_slice_pauli_list( pauli_list, 1, expansion_order ) return self.construct_evolution_circuit( slice_pauli_list, evo_time, num_time_slices, quantum_registers ) else: raise ValueError('Evolution mode should be either "matrix" or "circuit".') def is_empty(self): """ Check Operator is empty or not. Returns: bool: is empty? """ if self._matrix is None and self._dia_matrix is None \ and (self._paulis == [] or self._paulis is None) \ and (self._grouped_paulis == [] or self._grouped_paulis is None): return True else: return False def _check_representation(self, targeted_representation): """ Check the targeted representation is existed or not, if not, find available representations and then convert to the targeted one. Args: targeted_representation (str): should be one of paulis, grouped_paulis and matrix Raises: ValueError: if the `targeted_representation` is not recognized. """ if targeted_representation == 'paulis': if self._paulis is None: if self._matrix is not None: self._matrix_to_paulis() elif self._grouped_paulis is not None: self._grouped_paulis_to_paulis() else: raise AquaError( "at least having one of the three operator representations.") elif targeted_representation == 'grouped_paulis': if self._grouped_paulis is None: if self._paulis is not None: self._paulis_to_grouped_paulis() elif self._matrix is not None: self._matrix_to_grouped_paulis() else: raise AquaError( "at least having one of the three operator representations.") elif targeted_representation == 'matrix': if self._matrix is None: if self._paulis is not None: self._paulis_to_matrix() elif self._grouped_paulis is not None: self._grouped_paulis_to_matrix() else: raise AquaError( "at least having one of the three operator representations.") else: raise ValueError( '"targeted_representation" should be one of "paulis", "grouped_paulis" and "matrix".' ) @staticmethod def row_echelon_F2(matrix_in): """ Computes the row Echelon form of a binary matrix on the binary finite field Args: matrix_in (numpy.ndarray): binary matrix Returns: numpy.ndarray : matrix_in in Echelon row form """ size = matrix_in.shape for i in range(size[0]): pivot_index = 0 for j in range(size[1]): if matrix_in[i, j] == 1: pivot_index = j break for k in range(size[0]): if k != i and matrix_in[k, pivot_index] == 1: matrix_in[k, :] = np.mod(matrix_in[k, :] + matrix_in[i, :], 2) matrix_out_temp = copy.deepcopy(matrix_in) indices = [] matrix_out = np.zeros(size) for i in range(size[0] - 1): if np.array_equal(matrix_out_temp[i, :], np.zeros(size[1])): indices.append(i) for row in np.sort(indices)[::-1]: matrix_out_temp = np.delete(matrix_out_temp, (row), axis=0) matrix_out[0:size[0] - len(indices), :] = matrix_out_temp matrix_out = matrix_out.astype(int) return matrix_out @staticmethod def kernel_F2(matrix_in): """ Computes the kernel of a binary matrix on the binary finite field Args: matrix_in (numpy.ndarray): binary matrix Returns: [numpy.ndarray]: the list of kernel vectors """ size = matrix_in.shape kernel = [] matrix_in_id = np.vstack((matrix_in, np.identity(size[1]))) matrix_in_id_ech = (Operator.row_echelon_F2(matrix_in_id.transpose())).transpose() for col in range(size[1]): if (np.array_equal(matrix_in_id_ech[0:size[0], col], np.zeros(size[0])) and not np.array_equal(matrix_in_id_ech[size[0]:, col], np.zeros(size[1]))): kernel.append(matrix_in_id_ech[size[0]:, col]) return kernel def find_Z2_symmetries(self): """ Finds Z2 Pauli-type symmetries of an Operator Returns: [Pauli]: the list of Pauli objects representing the Z2 symmetries [Pauli]: the list of single - qubit Pauli objects to construct the Cliffors operators [Operators]: the list of Clifford unitaries to block diagonalize Operator [int]: the list of support of the single-qubit Pauli objects used to build the clifford operators """ Pauli_symmetries = [] sq_paulis = [] cliffords = [] sq_list = [] stacked_paulis = [] if self.is_empty(): logger.info("Operator is empty.") return [], [], [], [] self._check_representation("paulis") for pauli in self._paulis: stacked_paulis.append(np.concatenate((pauli[1].x, pauli[1].z), axis=0).astype(np.int)) stacked_matrix = np.array(np.stack(stacked_paulis)) symmetries = Operator.kernel_F2(stacked_matrix) if len(symmetries) == 0: logger.info("No symmetry is found.") return [], [], [], [] stacked_symmetries = np.stack(symmetries) symm_shape = stacked_symmetries.shape for row in range(symm_shape[0]): Pauli_symmetries.append(Pauli(stacked_symmetries[row, : symm_shape[1] // 2], stacked_symmetries[row, symm_shape[1] // 2:])) stacked_symm_del = np.delete(stacked_symmetries, (row), axis=0) for col in range(symm_shape[1] // 2): # case symmetries other than one at (row) have Z or I on col qubit Z_or_I = True for symm_idx in range(symm_shape[0] - 1): if not (stacked_symm_del[symm_idx, col] == 0 and stacked_symm_del[symm_idx, col + symm_shape[1] // 2] in (0, 1)): Z_or_I = False if Z_or_I: if ((stacked_symmetries[row, col] == 1 and stacked_symmetries[row, col + symm_shape[1] // 2] == 0) or (stacked_symmetries[row, col] == 1 and stacked_symmetries[row, col + symm_shape[1] // 2] == 1)): sq_paulis.append(Pauli(np.zeros(symm_shape[1] // 2), np.zeros(symm_shape[1] // 2))) sq_paulis[row].z[col] = False sq_paulis[row].x[col] = True sq_list.append(col) break # case symmetries other than one at (row) have X or I on col qubit X_or_I = True for symm_idx in range(symm_shape[0] - 1): if not (stacked_symm_del[symm_idx, col] in (0, 1) and stacked_symm_del[symm_idx, col + symm_shape[1] // 2] == 0): X_or_I = False if X_or_I: if ((stacked_symmetries[row, col] == 0 and stacked_symmetries[row, col + symm_shape[1] // 2] == 1) or (stacked_symmetries[row, col] == 1 and stacked_symmetries[row, col + symm_shape[1] // 2] == 1)): sq_paulis.append(Pauli(np.zeros(symm_shape[1] // 2), np.zeros(symm_shape[1] // 2))) sq_paulis[row].z[col] = True sq_paulis[row].x[col] = False sq_list.append(col) break # case symmetries other than one at (row) have Y or I on col qubit Y_or_I = True for symm_idx in range(symm_shape[0] - 1): if not ((stacked_symm_del[symm_idx, col] == 1 and stacked_symm_del[symm_idx, col + symm_shape[1] // 2] == 1) or (stacked_symm_del[symm_idx, col] == 0 and stacked_symm_del[symm_idx, col + symm_shape[1] // 2] == 0)): Y_or_I = False if Y_or_I: if ((stacked_symmetries[row, col] == 0 and stacked_symmetries[row, col + symm_shape[1] // 2] == 1) or (stacked_symmetries[row, col] == 1 and stacked_symmetries[row, col + symm_shape[1] // 2] == 0)): sq_paulis.append(Pauli(np.zeros(symm_shape[1] // 2), np.zeros(symm_shape[1] // 2))) sq_paulis[row].z[col] = True sq_paulis[row].x[col] = True sq_list.append(col) break for symm_idx, Pauli_symm in enumerate(Pauli_symmetries): cliffords.append(Operator([[1 / np.sqrt(2), Pauli_symm], [1 / np.sqrt(2), sq_paulis[symm_idx]]])) return Pauli_symmetries, sq_paulis, cliffords, sq_list @staticmethod def qubit_tapering(operator, cliffords, sq_list, tapering_values): """ Builds an Operator which has a number of qubits tapered off, based on a block-diagonal Operator built using a list of cliffords. The block-diagonal subspace is an input parameter, set through the list tapering_values, which takes values +/- 1. Args: operator (Operator): the target operator to be tapered cliffords ([Operator]): list of unitary Clifford transformation sq_list ([int]): position of the single-qubit operators that anticommute with the cliffords tapering_values ([int]): array of +/- 1 used to select the subspace. Length has to be equal to the length of cliffords and sq_list Returns: Operator : the tapered operator, or empty operator if the `operator` is empty. """ if len(cliffords) == 0 or len(sq_list) == 0 or len(tapering_values) == 0: logger.warning("Cliffords, single qubit list and tapering values cannot be empty.\n" "Return the original operator instead.") return operator if len(cliffords) != len(sq_list): logger.warning("Number of Clifford unitaries has to be the same as length of single" "qubit list and tapering values.\n" "Return the original operator instead.") return operator if len(sq_list) != len(tapering_values): logger.warning("Number of Clifford unitaries has to be the same as length of single" "qubit list and tapering values.\n" "Return the original operator instead.") return operator if operator.is_empty(): logger.warning("The operator is empty, return the empty operator directly.") return operator operator.to_paulis() for clifford in cliffords: operator = clifford * operator * clifford operator_out = Operator(paulis=[]) for pauli_term in operator.paulis: coeff_out = pauli_term[0] for idx, qubit_idx in enumerate(sq_list): if not (not pauli_term[1].z[qubit_idx] and not pauli_term[1].x[qubit_idx]): coeff_out = tapering_values[idx] * coeff_out z_temp = np.delete(pauli_term[1].z.copy(), np.asarray(sq_list)) x_temp = np.delete(pauli_term[1].x.copy(), np.asarray(sq_list)) pauli_term_out = [coeff_out, Pauli(z_temp, x_temp)] operator_out += Operator(paulis=[pauli_term_out]) operator_out.zeros_coeff_elimination() return operator_out def zeros_coeff_elimination(self): """ Elinminate paulis or grouped paulis whose coefficients are zeros. The difference from `_simplify_paulis` method is that, this method will not remove duplicated paulis. """ if self._paulis is not None: new_paulis = [pauli for pauli in self._paulis if pauli[0] != 0] self._paulis = new_paulis self._paulis_table = {pauli[1].to_label(): i for i, pauli in enumerate(self._paulis)} elif self._grouped_paulis is not None: self._grouped_paulis_to_paulis() self.zeros_coeff_elimination() self._paulis_to_grouped_paulis() self._paulis = None def scaling_coeff(self, scaling_factor): """ Constant scale the coefficient in an operator. Note that: the behavior of scaling in paulis (grouped_paulis) might be different from matrix Args: scaling_factor (float): the sacling factor """ if self._paulis is not None: for idx in range(len(self._paulis)): self._paulis[idx] = [self._paulis[idx][0] * scaling_factor, self._paulis[idx][1]] elif self._grouped_paulis is not None: self._grouped_paulis_to_paulis() self._scale_paulis(scaling_factor) self._paulis_to_grouped_paulis() elif self._matrix is not None: self._matrix *= scaling_factor if self._dia_matrix is not None: self._dia_matrix *= scaling_factor
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import logging import numpy as np from qiskit.util import local_hardware_info import qiskit from .aqua_error import AquaError logger = logging.getLogger(__name__) class QiskitAquaGlobals(object): """Aqua class for global properties.""" CPU_COUNT = local_hardware_info()['cpus'] def __init__(self): self._random_seed = None self._num_processes = QiskitAquaGlobals.CPU_COUNT self._random = None @property def random_seed(self): """Return random seed.""" return self._random_seed @random_seed.setter def random_seed(self, seed): """Set random seed.""" self._random_seed = seed self._random = None @property def num_processes(self): """Return num processes.""" return self._num_processes @num_processes.setter def num_processes(self, num_processes): """Set num processes.""" if num_processes < 1: raise AquaError('Invalid Number of Processes {}.'.format(num_processes)) if num_processes > QiskitAquaGlobals.CPU_COUNT: raise AquaError('Number of Processes {} cannot be greater than cpu count {}.' .format(num_processes, QiskitAquaGlobals.CPU_COUNT)) self._num_processes = num_processes # TODO: change Terra CPU_COUNT until issue gets resolved: https://github.com/Qiskit/qiskit-terra/issues/1963 try: qiskit.tools.parallel.CPU_COUNT = self.num_processes except Exception as e: logger.warning("Failed to set qiskit.tools.parallel.CPU_COUNT to value: '{}': Error: '{}'". format(self.num_processes, str(e))) @property def random(self): """Return a numpy random.""" if self._random is None: if self._random_seed is None: self._random = np.random else: self._random = np.random.RandomState(self._random_seed) return self._random # Global instance to be used as the entry point for globals. aqua_globals = QiskitAquaGlobals()
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import logging import time from qiskit import __version__ as terra_version from qiskit.assembler.run_config import RunConfig from qiskit.transpiler import Layout from .utils import (run_qobjs, compile_circuits, CircuitCache, get_measured_qubits_from_qobj, build_measurement_error_mitigation_fitter, mitigate_measurement_error) from .utils.backend_utils import (is_aer_provider, is_ibmq_provider, is_statevector_backend, is_simulator_backend, is_local_backend) logger = logging.getLogger(__name__) class QuantumInstance: """Quantum Backend including execution setting.""" BACKEND_CONFIG = ['basis_gates', 'coupling_map'] COMPILE_CONFIG = ['pass_manager', 'initial_layout', 'seed_transpiler'] RUN_CONFIG = ['shots', 'max_credits', 'memory', 'seed'] QJOB_CONFIG = ['timeout', 'wait'] NOISE_CONFIG = ['noise_model'] # https://github.com/Qiskit/qiskit-aer/blob/master/qiskit/providers/aer/backends/qasm_simulator.py BACKEND_OPTIONS_QASM_ONLY = ["statevector_sample_measure_opt", "max_parallel_shots"] BACKEND_OPTIONS = ["initial_statevector", "chop_threshold", "max_parallel_threads", "max_parallel_experiments", "statevector_parallel_threshold", "statevector_hpc_gate_opt"] + BACKEND_OPTIONS_QASM_ONLY def __init__(self, backend, shots=1024, seed=None, max_credits=10, basis_gates=None, coupling_map=None, initial_layout=None, pass_manager=None, seed_transpiler=None, backend_options=None, noise_model=None, timeout=None, wait=5, circuit_caching=True, cache_file=None, skip_qobj_deepcopy=True, skip_qobj_validation=True, measurement_error_mitigation_cls=None, cals_matrix_refresh_period=30): """Constructor. Args: backend (BaseBackend): instance of selected backend shots (int, optional): number of repetitions of each circuit, for sampling seed (int, optional): random seed for simulators max_credits (int, optional): maximum credits to use basis_gates (list[str], optional): list of basis gate names supported by the target. Default: ['u1','u2','u3','cx','id'] coupling_map (list[list]): coupling map (perhaps custom) to target in mapping initial_layout (dict, optional): initial layout of qubits in mapping pass_manager (PassManager, optional): pass manager to handle how to compile the circuits seed_transpiler (int, optional): the random seed for circuit mapper backend_options (dict, optional): all running options for backend, please refer to the provider. noise_model (qiskit.provider.aer.noise.noise_model.NoiseModel, optional): noise model for simulator timeout (float, optional): seconds to wait for job. If None, wait indefinitely. wait (float, optional): seconds between queries to result circuit_caching (bool, optional): USe CircuitCache when calling compile_and_run_circuits cache_file(str, optional): filename into which to store the cache as a pickle file skip_qobj_deepcopy (bool, optional): Reuses the same qobj object over and over to avoid deepcopying skip_qobj_validation (bool, optional): Bypass Qobj validation to decrease submission time measurement_error_mitigation_cls (callable, optional): the approach to mitigate measurement error, CompleteMeasFitter or TensoredMeasFitter cals_matrix_refresh_period (int): how long to refresh the calibration matrix in measurement mitigation, unit in minutes """ self._backend = backend # setup run config run_config = RunConfig(shots=shots, max_credits=max_credits) if seed: run_config.seed = seed if getattr(run_config, 'shots', None) is not None: if self.is_statevector and run_config.shots != 1: logger.info("statevector backend only works with shot=1, change " "shots from {} to 1.".format(run_config.shots)) run_config.shots = 1 self._run_config = run_config # setup backend config basis_gates = basis_gates or backend.configuration().basis_gates coupling_map = coupling_map or getattr(backend.configuration(), 'coupling_map', None) self._backend_config = { 'basis_gates': basis_gates, 'coupling_map': coupling_map } # setup noise config noise_config = None if noise_model is not None: if is_aer_provider(self._backend): if not self.is_statevector: noise_config = noise_model else: logger.info("The noise model can be only used with Aer qasm simulator. " "Change it to None.") else: logger.info("The noise model can be only used with Qiskit Aer. " "Please install it.") self._noise_config = {} if noise_config is None else {'noise_model': noise_config} # setup compile config if initial_layout is not None and not isinstance(initial_layout, Layout): initial_layout = Layout(initial_layout) self._compile_config = { 'pass_manager': pass_manager, 'initial_layout': initial_layout, 'seed_transpiler': seed_transpiler } # setup job config self._qjob_config = {'timeout': timeout} if self.is_local \ else {'timeout': timeout, 'wait': wait} # setup backend options for run self._backend_options = {} if is_ibmq_provider(self._backend): logger.info("backend_options can not used with the backends in IBMQ provider.") else: self._backend_options = {} if backend_options is None \ else {'backend_options': backend_options} self._shared_circuits = False self._circuit_summary = False self._circuit_cache = CircuitCache(skip_qobj_deepcopy=skip_qobj_deepcopy, cache_file=cache_file) if circuit_caching else None self._skip_qobj_validation = skip_qobj_validation self._measurement_error_mitigation_cls = None if self.is_statevector: if measurement_error_mitigation_cls is not None: logger.info("Measurement error mitigation does not work with statevector simulation, disable it.") else: self._measurement_error_mitigation_cls = measurement_error_mitigation_cls self._measurement_error_mitigation_fitter = None self._measurement_error_mitigation_method = 'least_squares' self._cals_matrix_refresh_period = cals_matrix_refresh_period self._prev_timestamp = 0 if self._measurement_error_mitigation_cls is not None: logger.info("The measurement error mitigation is enable. " "It will automatically submit an additional job to help calibrate the result of other jobs. " "The current approach will submit a job with 2^N circuits to build the calibration matrix, " "where N is the number of measured qubits. " "Furthermore, Aqua will re-use the calibration matrix for {} minutes " "and re-build it after that.".format(self._cals_matrix_refresh_period)) logger.info(self) def __str__(self): """Overload string. Returns: str: the info of the object. """ info = "\nQiskit Terra version: {}\n".format(terra_version) info += "Backend: '{} ({})', with following setting:\n{}\n{}\n{}\n{}\n{}\n{}".format( self.backend_name, self._backend.provider(), self._backend_config, self._compile_config, self._run_config, self._qjob_config, self._backend_options, self._noise_config) info += "\nMeasurement mitigation: {}".format(self._measurement_error_mitigation_cls) return info def execute(self, circuits, **kwargs): """ A wrapper to interface with quantum backend. Args: circuits (QuantumCircuit or list[QuantumCircuit]): circuits to execute Returns: Result: Result object """ qobjs = compile_circuits(circuits, self._backend, self._backend_config, self._compile_config, self._run_config, show_circuit_summary=self._circuit_summary, circuit_cache=self._circuit_cache, **kwargs) if self._measurement_error_mitigation_cls is not None: if self.maybe_refresh_cals_matrix(): logger.info("Building calibration matrix for measurement error mitigation.") qubit_list = get_measured_qubits_from_qobj(qobjs) self._measurement_error_mitigation_fitter = build_measurement_error_mitigation_fitter(qubit_list, self._measurement_error_mitigation_cls, self._backend, self._backend_config, self._compile_config, self._run_config, self._qjob_config, self._backend_options, self._noise_config) result = run_qobjs(qobjs, self._backend, self._qjob_config, self._backend_options, self._noise_config, self._skip_qobj_validation) if self._measurement_error_mitigation_fitter is not None: result = mitigate_measurement_error(result, self._measurement_error_mitigation_fitter, self._measurement_error_mitigation_method) if self._circuit_summary: self._circuit_summary = False return result def set_config(self, **kwargs): """Set configurations for the quantum instance.""" for k, v in kwargs.items(): if k in QuantumInstance.RUN_CONFIG: setattr(self._run_config, k, v) elif k in QuantumInstance.QJOB_CONFIG: self._qjob_config[k] = v elif k in QuantumInstance.COMPILE_CONFIG: self._compile_config[k] = v elif k in QuantumInstance.BACKEND_CONFIG: self._backend_config[k] = v elif k in QuantumInstance.BACKEND_OPTIONS: if is_ibmq_provider(self._backend): logger.info("backend_options can not used with the backends in IBMQ provider.") else: if k in QuantumInstance.BACKEND_OPTIONS_QASM_ONLY and self.is_statevector: logger.info("'{}' is only applicable for qasm simulator but " "statevector simulator is used. Skip the setting.") else: if 'backend_options' not in self._backend_options: self._backend_options['backend_options'] = {} self._backend_options['backend_options'][k] = v elif k in QuantumInstance.NOISE_CONFIG: self._noise_config[k] = v else: raise ValueError("unknown setting for the key ({}).".format(k)) @property def qjob_config(self): """Getter of qjob_config.""" return self._qjob_config @property def backend_config(self): """Getter of backend_config.""" return self._backend_config @property def compile_config(self): """Getter of compile_config.""" return self._compile_config @property def run_config(self): """Getter of run_config.""" return self._run_config @property def noise_config(self): """Getter of noise_config.""" return self._noise_config @property def backend_options(self): """Getter of backend_options.""" return self._backend_options @property def shared_circuits(self): """Getter of shared_circuits.""" return self._shared_circuits @shared_circuits.setter def shared_circuits(self, new_value): self._shared_circuits = new_value @property def circuit_summary(self): """Getter of circuit summary.""" return self._circuit_summary @circuit_summary.setter def circuit_summary(self, new_value): self._circuit_summary = new_value @property def backend(self): """Return BaseBackend backend object.""" return self._backend @property def backend_name(self): """Return backend name.""" return self._backend.name() @property def is_statevector(self): """Return True if backend is a statevector-type simulator.""" return is_statevector_backend(self._backend) @property def is_simulator(self): """Return True if backend is a simulator.""" return is_simulator_backend(self._backend) @property def is_local(self): """Return True if backend is a local backend.""" return is_local_backend(self._backend) @property def circuit_cache(self): return self._circuit_cache @property def has_circuit_caching(self): return self._circuit_cache is not None @property def skip_qobj_validation(self): return self._skip_qobj_validation @skip_qobj_validation.setter def skip_qobj_validation(self, new_value): self._skip_qobj_validation = new_value def maybe_refresh_cals_matrix(self): """ Calculate the time difference from the query of last time. Returns: bool: whether or not refresh the cals_matrix """ ret = False curr_timestamp = time.time() difference = int(curr_timestamp - self._prev_timestamp) / 60.0 if difference > self._cals_matrix_refresh_period: self._prev_timestamp = curr_timestamp ret = True return ret @property def cals_matrix(self): cals_matrix = None if self._measurement_error_mitigation_fitter is not None: cals_matrix = self._measurement_error_mitigation_fitter.cal_matrix return cals_matrix
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np from functools import reduce from qiskit import QuantumRegister, QuantumCircuit from qiskit.quantum_info import Pauli from qiskit.aqua import Operator class QAOAVarForm: """Global X phases and parameterized problem hamiltonian.""" def __init__(self, cost_operator, p, initial_state=None, mixer_operator=None): self._cost_operator = cost_operator self._p = p self._initial_state = initial_state self.num_parameters = 2 * p self.parameter_bounds = [(0, np.pi)] * p + [(0, 2 * np.pi)] * p self.preferred_init_points = [0] * p * 2 # prepare the mixer operator v = np.zeros(self._cost_operator.num_qubits) ws = np.eye(self._cost_operator.num_qubits) if mixer_operator is None: self._mixer_operator = reduce( lambda x, y: x + y, [ Operator([[1, Pauli(v, ws[i, :])]]) for i in range(self._cost_operator.num_qubits) ] ) else: if not type(mixer_operator) == Operator: raise TypeError('The mixer should be a qiskit.aqua.Operator ' + 'object, found {} instead'.format(type(mixer_operator))) self._mixer_operator = mixer_operator def construct_circuit(self, angles): if not len(angles) == self.num_parameters: raise ValueError('Incorrect number of angles: expecting {}, but {} given.'.format( self.num_parameters, len(angles) )) circuit = QuantumCircuit() if self._initial_state: circuit += self._initial_state.construct_circuit('circuit') if len(circuit.qregs) == 0: q = QuantumRegister(self._cost_operator.num_qubits, name='q') circuit.add_register(q) elif len(circuit.qregs) == 1: q = circuit.qregs[0] else: raise NotImplementedError circuit.u2(0, np.pi, q) for idx in range(self._p): beta, gamma = angles[idx], angles[idx + self._p] circuit += self._cost_operator.evolve( evo_time=gamma, evo_mode='circuit', num_time_slices=1, quantum_registers=q ) circuit += self._mixer_operator.evolve( evo_time=beta, evo_mode='circuit', num_time_slices=1, quantum_registers=q ) return circuit @property def setting(self): ret = "Variational Form: {}\n".format(self.__class__.__name__) params = "" for key, value in self.__dict__.items(): if key != "_configuration" and key[0] == "_": params += "-- {}: {}\n".format(key[1:], value) ret += "{}".format(params) return ret
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import logging import math import numpy as np from sklearn.utils import shuffle from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.aqua import Pluggable, PluggableType, get_pluggable_class, AquaError from qiskit.aqua.components.feature_maps import FeatureMap from qiskit.aqua.utils import get_feature_dimension from qiskit.aqua.utils import map_label_to_class_name from qiskit.aqua.utils import split_dataset_to_data_and_labels from qiskit.aqua.utils import find_regs_by_name from qiskit.aqua.algorithms.adaptive.vq_algorithm import VQAlgorithm logger = logging.getLogger(__name__) def assign_label(measured_key, num_classes): """ Classes = 2: - If odd number of qubits we use majority vote - If even number of qubits we use parity Classes = 3 - We use part-parity {ex. for 2 qubits: [00], [01,10], [11] would be the three labels} Args: measured_key (str): measured key num_classes (int): number of classes """ measured_key = np.asarray([int(k) for k in list(measured_key)]) num_qubits = len(measured_key) if num_classes == 2: if num_qubits % 2 != 0: total = np.sum(measured_key) return 1 if total > num_qubits / 2 else 0 else: hamming_weight = np.sum(measured_key) is_odd_parity = hamming_weight % 2 return is_odd_parity elif num_classes == 3: first_half = int(np.floor(num_qubits / 2)) modulo = num_qubits % 2 # First half of key hamming_weight_1 = np.sum(measured_key[0:first_half + modulo]) # Second half of key hamming_weight_2 = np.sum(measured_key[first_half + modulo:]) is_odd_parity_1 = hamming_weight_1 % 2 is_odd_parity_2 = hamming_weight_2 % 2 return is_odd_parity_1 + is_odd_parity_2 else: total_size = 2**num_qubits class_step = np.floor(total_size / num_classes) decimal_value = measured_key.dot(1 << np.arange(measured_key.shape[-1] - 1, -1, -1)) key_order = int(decimal_value / class_step) return key_order if key_order < num_classes else num_classes - 1 def cost_estimate(probs, gt_labels, shots=None): """Calculate cross entropy # shots is kept since it may be needed in future. Args: shots (int): the number of shots used in quantum computing probs (numpy.ndarray): NxK array, N is the number of data and K is the number of class gt_labels (numpy.ndarray): Nx1 array Returns: float: cross entropy loss between estimated probs and gt_labels """ mylabels = np.zeros(probs.shape) for i in range(gt_labels.shape[0]): whichindex = gt_labels[i] mylabels[i][whichindex] = 1 def cross_entropy(predictions, targets, epsilon=1e-12): predictions = np.clip(predictions, epsilon, 1. - epsilon) N = predictions.shape[0] tmp = np.sum(targets*np.log(predictions), axis=1) ce = -np.sum(tmp)/N return ce x = cross_entropy(probs, mylabels) return x def cost_estimate_sigmoid(shots, probs, gt_labels): """Calculate sigmoid cross entropy Args: shots (int): the number of shots used in quantum computing probs (numpy.ndarray): NxK array, N is the number of data and K is the number of class gt_labels (numpy.ndarray): Nx1 array Returns: float: sigmoid cross entropy loss between estimated probs and gt_labels """ #Error in the order of parameters corrected below - 19 Dec 2018 #x = cost_estimate(shots, probs, gt_labels) x = cost_estimate(probs, gt_labels, shots) loss = (1.) / (1. + np.exp(-x)) return loss def return_probabilities(counts, num_classes): """Return the probabilities of given measured counts Args: counts ([dict]): N data and each with a dict recording the counts num_classes (int): number of classes Returns: numpy.ndarray: NxK array """ probs = np.zeros(((len(counts), num_classes))) for idx in range(len(counts)): count = counts[idx] shots = sum(count.values()) for k, v in count.items(): label = assign_label(k, num_classes) probs[idx][label] += v / shots return probs class VQC(VQAlgorithm): CONFIGURATION = { 'name': 'VQC', 'description': 'Variational Quantum Classifier', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'vqc_schema', 'type': 'object', 'properties': { 'override_SPSA_params': { 'type': 'boolean', 'default': True }, 'max_evals_grouped': { 'type': 'integer', 'default': 1 }, 'minibatch_size': { 'type': 'integer', 'default': -1 } }, 'additionalProperties': False }, 'problems': ['classification'], 'depends': [ { 'pluggable_type': 'optimizer', 'default': { 'name': 'SPSA' }, }, { 'pluggable_type': 'feature_map', 'default': { 'name': 'SecondOrderExpansion', 'depth': 2 }, }, { 'pluggable_type': 'variational_form', 'default': { 'name': 'RYRZ', 'depth': 3 }, }, ], } def __init__( self, optimizer=None, feature_map=None, var_form=None, training_dataset=None, test_dataset=None, datapoints=None, max_evals_grouped=1, minibatch_size=-1, callback=None ): """Initialize the object Args: optimizer (Optimizer): The classical optimizer to use. feature_map (FeatureMap): The FeatureMap instance to use. var_form (VariationalForm): The variational form instance. training_dataset (dict): The training dataset, in the format: {'A': np.ndarray, 'B': np.ndarray, ...}. test_dataset (dict): The test dataset, in same format as `training_dataset`. datapoints (np.ndarray): NxD array, N is the number of data and D is data dimension. max_evals_grouped (int): The maximum number of evaluations to perform simultaneously. minibatch_size (int): The size of a mini-batch. callback (Callable): a callback that can access the intermediate data during the optimization. Internally, four arguments are provided as follows the index of data batch, the index of evaluation, parameters of variational form, evaluated value. Notes: We use `label` to denotes numeric results and `class` the class names (str). """ self.validate(locals()) super().__init__( var_form=var_form, optimizer=optimizer, cost_fn=self._cost_function_wrapper ) self._optimizer.set_max_evals_grouped(max_evals_grouped) self._callback = callback if feature_map is None: raise AquaError('Missing feature map.') if training_dataset is None: raise AquaError('Missing training dataset.') self._training_dataset, self._class_to_label = split_dataset_to_data_and_labels( training_dataset) self._label_to_class = {label: class_name for class_name, label in self._class_to_label.items()} self._num_classes = len(list(self._class_to_label.keys())) if test_dataset is not None: self._test_dataset = split_dataset_to_data_and_labels(test_dataset, self._class_to_label) else: self._test_dataset = test_dataset if datapoints is not None and not isinstance(datapoints, np.ndarray): datapoints = np.asarray(datapoints) self._datapoints = datapoints self._minibatch_size = minibatch_size self._eval_count = 0 self._ret = {} self._feature_map = feature_map self._num_qubits = feature_map.num_qubits @classmethod def init_params(cls, params, algo_input): algo_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) override_spsa_params = algo_params.get('override_SPSA_params') max_evals_grouped = algo_params.get('max_evals_grouped') minibatch_size = algo_params.get('minibatch_size') # Set up optimizer opt_params = params.get(Pluggable.SECTION_KEY_OPTIMIZER) # If SPSA then override SPSA params as reqd to our predetermined values if opt_params['name'] == 'SPSA' and override_spsa_params: opt_params['c0'] = 4.0 opt_params['c1'] = 0.1 opt_params['c2'] = 0.602 opt_params['c3'] = 0.101 opt_params['c4'] = 0.0 opt_params['skip_calibration'] = True optimizer = get_pluggable_class(PluggableType.OPTIMIZER, opt_params['name']).init_params(params) # Set up feature map fea_map_params = params.get(Pluggable.SECTION_KEY_FEATURE_MAP) feature_dimension = get_feature_dimension(algo_input.training_dataset) fea_map_params['feature_dimension'] = feature_dimension feature_map = get_pluggable_class(PluggableType.FEATURE_MAP, fea_map_params['name']).init_params(params) # Set up variational form, we need to add computed num qubits # Pass all parameters so that Variational Form can create its dependents var_form_params = params.get(Pluggable.SECTION_KEY_VAR_FORM) var_form_params['num_qubits'] = feature_map.num_qubits var_form = get_pluggable_class(PluggableType.VARIATIONAL_FORM, var_form_params['name']).init_params(params) return cls(optimizer, feature_map, var_form, algo_input.training_dataset, algo_input.test_dataset, algo_input.datapoints, max_evals_grouped, minibatch_size) def construct_circuit(self, x, theta, measurement=False): """ Construct circuit based on data and parameters in variational form. Args: x (numpy.ndarray): 1-D array with D dimension theta ([numpy.ndarray]): list of 1-D array, parameters sets for variational form measurement (bool): flag to add measurement Returns: QuantumCircuit: the circuit """ qr = QuantumRegister(self._num_qubits, name='q') cr = ClassicalRegister(self._num_qubits, name='c') qc = QuantumCircuit(qr, cr) qc += self._feature_map.construct_circuit(x, qr) qc += self._var_form.construct_circuit(theta, qr) if measurement: qc.barrier(qr) qc.measure(qr, cr) return qc def _get_prediction(self, data, theta): """ Make prediction on data based on each theta. Args: data (numpy.ndarray): 2-D array, NxD, N data points, each with D dimension theta ([numpy.ndarray]): list of 1-D array, parameters sets for variational form Returns: numpy.ndarray or [numpy.ndarray]: list of NxK array numpy.ndarray or [numpy.ndarray]: list of Nx1 array """ # if self._quantum_instance.is_statevector: # raise ValueError('Selected backend "{}" is not supported.'.format( # self._quantum_instance.backend_name)) circuits = {} circuit_id = 0 num_theta_sets = len(theta) // self._var_form.num_parameters theta_sets = np.split(theta, num_theta_sets) for theta in theta_sets: for datum in data: if self._quantum_instance.is_statevector: circuit = self.construct_circuit(datum, theta, measurement=False) else: circuit = self.construct_circuit(datum, theta, measurement=True) circuits[circuit_id] = circuit circuit_id += 1 results = self._quantum_instance.execute(list(circuits.values())) circuit_id = 0 predicted_probs = [] predicted_labels = [] for _ in theta_sets: counts = [] for _ in data: if self._quantum_instance.is_statevector: temp = results.get_statevector(circuits[circuit_id]) outcome_vector = (temp * temp.conj()).real # convert outcome_vector to outcome_dict, where key is a basis state and value is the count. # Note: the count can be scaled linearly, i.e., it does not have to be an integer. outcome_dict = {} bitstr_size = int(math.log2(len(outcome_vector))) for i in range(len(outcome_vector)): bitstr_i = format(i, '0' + str(bitstr_size) + 'b') outcome_dict[bitstr_i] = outcome_vector[i] else: outcome_dict = results.get_counts(circuits[circuit_id]) counts.append(outcome_dict) circuit_id += 1 probs = return_probabilities(counts, self._num_classes) predicted_probs.append(probs) predicted_labels.append(np.argmax(probs, axis=1)) if len(predicted_probs) == 1: predicted_probs = predicted_probs[0] if len(predicted_labels) == 1: predicted_labels = predicted_labels[0] return predicted_probs, predicted_labels # Breaks data into minibatches. Labels are optional, but will be broken into batches if included. def batch_data(self, data, labels=None, minibatch_size=-1): label_batches = None if 0 < minibatch_size < len(data): batch_size = min(minibatch_size, len(data)) if labels is not None: shuffled_samples, shuffled_labels = shuffle(data, labels, random_state=self.random) label_batches = np.array_split(shuffled_labels, batch_size) else: shuffled_samples = shuffle(data, random_state=self.random) batches = np.array_split(shuffled_samples, batch_size) else: batches = np.asarray([data]) label_batches = np.asarray([labels]) return batches, label_batches def is_gradient_really_supported(self): return self.optimizer.is_gradient_supported and not self.optimizer.is_gradient_ignored def train(self, data, labels, quantum_instance=None, minibatch_size=-1): """Train the models, and save results. Args: data (numpy.ndarray): NxD array, N is number of data and D is dimension labels (numpy.ndarray): Nx1 array, N is number of data quantum_instance (QuantumInstance): quantum backend with all setting minibatch_size (int): the size of each minibatched accuracy evalutation """ self._quantum_instance = self._quantum_instance if quantum_instance is None else quantum_instance minibatch_size = minibatch_size if minibatch_size > 0 else self._minibatch_size self._batches, self._label_batches = self.batch_data(data, labels, minibatch_size) self._batch_index = 0 if self.initial_point is None: self.initial_point = self.random.randn(self._var_form.num_parameters) self._eval_count = 0 grad_fn = None if minibatch_size > 0 and self.is_gradient_really_supported(): # we need some wrapper grad_fn = self._gradient_function_wrapper self._ret = self.find_minimum( initial_point=self.initial_point, var_form=self.var_form, cost_fn=self._cost_function_wrapper, optimizer=self.optimizer, gradient_fn = grad_fn # func for computing gradient ) if self._ret['num_optimizer_evals'] is not None and self._eval_count >= self._ret['num_optimizer_evals']: self._eval_count = self._ret['num_optimizer_evals'] self._eval_time = self._ret['eval_time'] logger.info('Optimization complete in {} seconds.\nFound opt_params {} in {} evals'.format( self._eval_time, self._ret['opt_params'], self._eval_count)) self._ret['eval_count'] = self._eval_count del self._batches del self._label_batches del self._batch_index self._ret['training_loss'] = self._ret['min_val'] # temporary fix: this code should be unified with the gradient api in optimizer.py def _gradient_function_wrapper(self, theta): """Compute and return the gradient at the point theta. Args: theta (numpy.ndarray): 1-d array Returns: numpy.ndarray: 1-d array with the same shape as theta. The gradient computed """ epsilon = 1e-8 f_orig = self._cost_function_wrapper(theta) grad = np.zeros((len(theta),), float) for k in range(len(theta)): theta[k] += epsilon f_new = self._cost_function_wrapper(theta) grad[k] = (f_new - f_orig) / epsilon theta[k] -= epsilon # recover to the center state if self.is_gradient_really_supported(): self._batch_index += 1 # increment the batch after gradient callback return grad def _cost_function_wrapper(self, theta): batch_index = self._batch_index % len(self._batches) predicted_probs, predicted_labels = self._get_prediction(self._batches[batch_index], theta) total_cost = [] if not isinstance(predicted_probs, list): predicted_probs = [predicted_probs] for i in range(len(predicted_probs)): curr_cost = cost_estimate(predicted_probs[i], self._label_batches[batch_index]) total_cost.append(curr_cost) if self._callback is not None: self._callback( self._eval_count, theta[i * self._var_form.num_parameters:(i + 1) * self._var_form.num_parameters], curr_cost, self._batch_index ) self._eval_count += 1 if not self.is_gradient_really_supported(): self._batch_index += 1 # increment the batch after eval callback logger.debug('Intermediate batch cost: {}'.format(sum(total_cost))) return total_cost if len(total_cost) > 1 else total_cost[0] def test(self, data, labels, quantum_instance=None, minibatch_size=-1, params=None): """Predict the labels for the data, and test against with ground truth labels. Args: data (numpy.ndarray): NxD array, N is number of data and D is data dimension labels (numpy.ndarray): Nx1 array, N is number of data quantum_instance (QuantumInstance): quantum backend with all setting minibatch_size (int): the size of each minibatched accuracy evalutation params (list): list of parameters to populate in the variational form Returns: float: classification accuracy """ # minibatch size defaults to setting in instance variable if not set minibatch_size = minibatch_size if minibatch_size > 0 else self._minibatch_size batches, label_batches = self.batch_data(data, labels, minibatch_size) self.batch_num = 0 if params is None: params = self.optimal_params total_cost = 0 total_correct = 0 total_samples = 0 self._quantum_instance = self._quantum_instance if quantum_instance is None else quantum_instance for batch, label_batch in zip(batches, label_batches): predicted_probs, predicted_labels = self._get_prediction(batch, params) total_cost += cost_estimate(predicted_probs, label_batch) total_correct += np.sum((np.argmax(predicted_probs, axis=1) == label_batch)) total_samples += label_batch.shape[0] int_accuracy = np.sum((np.argmax(predicted_probs, axis=1) == label_batch)) / label_batch.shape[0] logger.debug('Intermediate batch accuracy: {:.2f}%'.format(int_accuracy * 100.0)) total_accuracy = total_correct / total_samples logger.info('Accuracy is {:.2f}%'.format(total_accuracy * 100.0)) self._ret['testing_accuracy'] = total_accuracy self._ret['test_success_ratio'] = total_accuracy self._ret['testing_loss'] = total_cost / len(batches) return total_accuracy def predict(self, data, quantum_instance=None, minibatch_size=-1, params=None): """Predict the labels for the data. Args: data (numpy.ndarray): NxD array, N is number of data, D is data dimension quantum_instance (QuantumInstance): quantum backend with all setting minibatch_size (int): the size of each minibatched accuracy evalutation params (list): list of parameters to populate in the variational form Returns: list: for each data point, generates the predicted probability for each class list: for each data point, generates the predicted label (that with the highest prob) """ # minibatch size defaults to setting in instance variable if not set minibatch_size = minibatch_size if minibatch_size > 0 else self._minibatch_size batches, _ = self.batch_data(data, None, minibatch_size) if params is None: params = self.optimal_params predicted_probs = None predicted_labels = None self._quantum_instance = self._quantum_instance if quantum_instance is None else quantum_instance for i, batch in enumerate(batches): if len(batches) > 0: logger.debug('Predicting batch {}'.format(i)) batch_probs, batch_labels = self._get_prediction(batch, params) if not predicted_probs and not predicted_labels: predicted_probs = batch_probs predicted_labels = batch_labels else: np.concatenate((predicted_probs, batch_probs)) np.concatenate((predicted_labels, batch_labels)) self._ret['predicted_probs'] = predicted_probs self._ret['predicted_labels'] = predicted_labels return predicted_probs, predicted_labels def _run(self): self.train(self._training_dataset[0], self._training_dataset[1]) if self._test_dataset is not None: self.test(self._test_dataset[0], self._test_dataset[1]) if self._datapoints is not None: predicted_probs, predicted_labels = self.predict(self._datapoints) self._ret['predicted_classes'] = map_label_to_class_name(predicted_labels, self._label_to_class) return self._ret def get_optimal_cost(self): if 'opt_params' not in self._ret: raise AquaError("Cannot return optimal cost before running the algorithm to find optimal params.") return self._ret['min_val'] def get_optimal_circuit(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal circuit before running the algorithm to find optimal params.") return self._var_form.construct_circuit(self._ret['opt_params']) def get_optimal_vector(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal vector before running the algorithm to find optimal params.") qc = self.get_optimal_circuit() if self._quantum_instance.is_statevector: ret = self._quantum_instance.execute(qc) self._ret['min_vector'] = ret.get_statevector(qc, decimals=16) else: c = ClassicalRegister(qc.width(), name='c') q = find_regs_by_name(qc, 'q') qc.add_register(c) qc.barrier(q) qc.measure(q, c) ret = self._quantum_instance.execute(qc) self._ret['min_vector'] = ret.get_counts(qc) return self._ret['min_vector'] @property def optimal_params(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal params before running the algorithm.") return self._ret['opt_params'] @property def ret(self): return self._ret @ret.setter def ret(self, new_value): self._ret = new_value @property def label_to_class(self): return self._label_to_class @property def class_to_label(self): return self._class_to_label def load_model(self, file_path): model_npz = np.load(file_path) self._ret['opt_params'] = model_npz['opt_params'] def save_model(self, file_path): model = {'opt_params': self._ret['opt_params']} np.savez(file_path, **model) @property def test_dataset(self): return self._test_dataset @property def training_dataset(self): return self._training_dataset @property def datapoints(self): return self._datapoints
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Variational Quantum Eigensolver algorithm. See https://arxiv.org/abs/1304.3061 """ import logging import functools import numpy as np from qiskit import ClassicalRegister, QuantumCircuit from qiskit.aqua.algorithms.adaptive.vq_algorithm import VQAlgorithm from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class from qiskit.aqua.utils.backend_utils import is_aer_statevector_backend from qiskit.aqua.utils import find_regs_by_name logger = logging.getLogger(__name__) class VQE(VQAlgorithm): """ The Variational Quantum Eigensolver algorithm. See https://arxiv.org/abs/1304.3061 """ CONFIGURATION = { 'name': 'VQE', 'description': 'VQE Algorithm', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'vqe_schema', 'type': 'object', 'properties': { 'operator_mode': { 'type': 'string', 'default': 'matrix', 'oneOf': [ {'enum': ['matrix', 'paulis', 'grouped_paulis']} ] }, 'initial_point': { 'type': ['array', 'null'], "items": { "type": "number" }, 'default': None }, 'max_evals_grouped': { 'type': 'integer', 'default': 1 } }, 'additionalProperties': False }, 'problems': ['energy', 'ising'], 'depends': [ {'pluggable_type': 'optimizer', 'default': { 'name': 'L_BFGS_B' } }, {'pluggable_type': 'variational_form', 'default': { 'name': 'RYRZ' } }, ], } def __init__(self, operator, var_form, optimizer, operator_mode='matrix', initial_point=None, max_evals_grouped=1, aux_operators=None, callback=None): """Constructor. Args: operator (Operator): Qubit operator operator_mode (str): operator mode, used for eval of operator var_form (VariationalForm): parametrized variational form. optimizer (Optimizer): the classical optimization algorithm. initial_point (numpy.ndarray): optimizer initial point. max_evals_grouped (int): max number of evaluations performed simultaneously aux_operators (list of Operator): Auxiliary operators to be evaluated at each eigenvalue callback (Callable): a callback that can access the intermediate data during the optimization. Internally, four arguments are provided as follows the index of evaluation, parameters of variational form, evaluated mean, evaluated standard devation. """ self.validate(locals()) super().__init__(var_form=var_form, optimizer=optimizer, cost_fn=self._energy_evaluation, initial_point=initial_point) self._optimizer.set_max_evals_grouped(max_evals_grouped) self._callback = callback if initial_point is None: self._initial_point = var_form.preferred_init_points self._operator = operator self._operator_mode = operator_mode self._eval_count = 0 if aux_operators is None: self._aux_operators = [] else: self._aux_operators = [aux_operators] if not isinstance(aux_operators, list) else aux_operators logger.info(self.print_settings()) @classmethod def init_params(cls, params, algo_input): """ Initialize via parameters dictionary and algorithm input instance. Args: params (dict): parameters dictionary algo_input (EnergyInput): EnergyInput instance Returns: VQE: vqe object """ if algo_input is None: raise AquaError("EnergyInput instance is required.") operator = algo_input.qubit_op vqe_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) operator_mode = vqe_params.get('operator_mode') initial_point = vqe_params.get('initial_point') max_evals_grouped = vqe_params.get('max_evals_grouped') # Set up variational form, we need to add computed num qubits # Pass all parameters so that Variational Form can create its dependents var_form_params = params.get(Pluggable.SECTION_KEY_VAR_FORM) var_form_params['num_qubits'] = operator.num_qubits var_form = get_pluggable_class(PluggableType.VARIATIONAL_FORM, var_form_params['name']).init_params(params) # Set up optimizer opt_params = params.get(Pluggable.SECTION_KEY_OPTIMIZER) optimizer = get_pluggable_class(PluggableType.OPTIMIZER, opt_params['name']).init_params(params) return cls(operator, var_form, optimizer, operator_mode=operator_mode, initial_point=initial_point, max_evals_grouped=max_evals_grouped, aux_operators=algo_input.aux_ops) @property def setting(self): """Prepare the setting of VQE as a string.""" ret = "Algorithm: {}\n".format(self._configuration['name']) params = "" for key, value in self.__dict__.items(): if key != "_configuration" and key[0] == "_": if "initial_point" in key and value is None: params += "-- {}: {}\n".format(key[1:], "Random seed") else: params += "-- {}: {}\n".format(key[1:], value) ret += "{}".format(params) return ret def print_settings(self): """ Preparing the setting of VQE into a string. Returns: str: the formatted setting of VQE """ ret = "\n" ret += "==================== Setting of {} ============================\n".format(self.configuration['name']) ret += "{}".format(self.setting) ret += "===============================================================\n" ret += "{}".format(self._var_form.setting) ret += "===============================================================\n" ret += "{}".format(self._optimizer.setting) ret += "===============================================================\n" return ret def construct_circuit(self, parameter, backend=None, use_simulator_operator_mode=False): """Generate the circuits. Args: parameters (numpy.ndarray): parameters for variational form. backend (qiskit.BaseBackend): backend object. use_simulator_operator_mode (bool): is backend from AerProvider, if True and mode is paulis, single circuit is generated. Returns: [QuantumCircuit]: the generated circuits with Hamiltonian. """ input_circuit = self._var_form.construct_circuit(parameter) if backend is None: warning_msg = "Circuits used in VQE depends on the backend type, " from qiskit import BasicAer if self._operator_mode == 'matrix': temp_backend_name = 'statevector_simulator' else: temp_backend_name = 'qasm_simulator' backend = BasicAer.get_backend(temp_backend_name) warning_msg += "since operator_mode is '{}', '{}' backend is used.".format( self._operator_mode, temp_backend_name) logger.warning(warning_msg) circuit = self._operator.construct_evaluation_circuit(self._operator_mode, input_circuit, backend, use_simulator_operator_mode) return circuit def _eval_aux_ops(self, threshold=1e-12, params=None): if params is None: params = self.optimal_params wavefn_circuit = self._var_form.construct_circuit(params) circuits = [] values = [] params = [] for operator in self._aux_operators: if not operator.is_empty(): temp_circuit = QuantumCircuit() + wavefn_circuit circuit = operator.construct_evaluation_circuit(self._operator_mode, temp_circuit, self._quantum_instance.backend, self._use_simulator_operator_mode) params.append(operator.aer_paulis) else: circuit = None circuits.append(circuit) if len(circuits) > 0: to_be_simulated_circuits = functools.reduce(lambda x, y: x + y, [c for c in circuits if c is not None]) if self._use_simulator_operator_mode: extra_args = {'expectation': { 'params': params, 'num_qubits': self._operator.num_qubits} } else: extra_args = {} result = self._quantum_instance.execute(to_be_simulated_circuits, **extra_args) for operator, circuit in zip(self._aux_operators, circuits): if circuit is None: mean, std = 0.0, 0.0 else: mean, std = operator.evaluate_with_result(self._operator_mode, circuit, self._quantum_instance.backend, result, self._use_simulator_operator_mode) mean = mean.real if abs(mean.real) > threshold else 0.0 std = std.real if abs(std.real) > threshold else 0.0 values.append((mean, std)) if len(values) > 0: aux_op_vals = np.empty([1, len(self._aux_operators), 2]) aux_op_vals[0, :] = np.asarray(values) self._ret['aux_ops'] = aux_op_vals def _run(self): """ Run the algorithm to compute the minimum eigenvalue. Returns: Dictionary of results """ if not self._quantum_instance.is_statevector and self._operator_mode == 'matrix': logger.warning('Qasm simulation does not work on {} mode, changing ' 'the operator_mode to "paulis"'.format(self._operator_mode)) self._operator_mode = 'paulis' self._use_simulator_operator_mode = \ is_aer_statevector_backend(self._quantum_instance.backend) \ and self._operator_mode != 'matrix' self._quantum_instance.circuit_summary = True self._eval_count = 0 self._ret = self.find_minimum(initial_point=self.initial_point, var_form=self.var_form, cost_fn=self._energy_evaluation, optimizer=self.optimizer) if self._ret['num_optimizer_evals'] is not None and self._eval_count >= self._ret['num_optimizer_evals']: self._eval_count = self._ret['num_optimizer_evals'] self._eval_time = self._ret['eval_time'] logger.info('Optimization complete in {} seconds.\nFound opt_params {} in {} evals'.format( self._eval_time, self._ret['opt_params'], self._eval_count)) self._ret['eval_count'] = self._eval_count self._ret['energy'] = self.get_optimal_cost() self._ret['eigvals'] = np.asarray([self.get_optimal_cost()]) self._ret['eigvecs'] = np.asarray([self.get_optimal_vector()]) self._eval_aux_ops() return self._ret # This is the objective function to be passed to the optimizer that is uses for evaluation def _energy_evaluation(self, parameters): """ Evaluate energy at given parameters for the variational form. Args: parameters (numpy.ndarray): parameters for variational form. Returns: float or list of float: energy of the hamiltonian of each parameter. """ num_parameter_sets = len(parameters) // self._var_form.num_parameters circuits = [] parameter_sets = np.split(parameters, num_parameter_sets) mean_energy = [] std_energy = [] for idx in range(len(parameter_sets)): parameter = parameter_sets[idx] circuit = self.construct_circuit(parameter, self._quantum_instance.backend, self._use_simulator_operator_mode) circuits.append(circuit) to_be_simulated_circuits = functools.reduce(lambda x, y: x + y, circuits) if self._use_simulator_operator_mode: extra_args = {'expectation': { 'params': [self._operator.aer_paulis], 'num_qubits': self._operator.num_qubits} } else: extra_args = {} result = self._quantum_instance.execute(to_be_simulated_circuits, **extra_args) for idx in range(len(parameter_sets)): mean, std = self._operator.evaluate_with_result( self._operator_mode, circuits[idx], self._quantum_instance.backend, result, self._use_simulator_operator_mode) mean_energy.append(np.real(mean)) std_energy.append(np.real(std)) self._eval_count += 1 if self._callback is not None: self._callback(self._eval_count, parameter_sets[idx], np.real(mean), np.real(std)) logger.info('Energy evaluation {} returned {}'.format(self._eval_count, np.real(mean))) return mean_energy if len(mean_energy) > 1 else mean_energy[0] def get_optimal_cost(self): if 'opt_params' not in self._ret: raise AquaError("Cannot return optimal cost before running the algorithm to find optimal params.") return self._ret['min_val'] def get_optimal_circuit(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal circuit before running the algorithm to find optimal params.") return self._var_form.construct_circuit(self._ret['opt_params']) def get_optimal_vector(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal vector before running the algorithm to find optimal params.") qc = self.get_optimal_circuit() if self._quantum_instance.is_statevector: ret = self._quantum_instance.execute(qc) self._ret['min_vector'] = ret.get_statevector(qc, decimals=16) else: c = ClassicalRegister(qc.width(), name='c') q = find_regs_by_name(qc, 'q') qc.add_register(c) qc.barrier(q) qc.measure(q, c) ret = self._quantum_instance.execute(qc) self._ret['min_vector'] = ret.get_counts(qc) return self._ret['min_vector'] @property def optimal_params(self): if 'opt_params' not in self._ret: raise AquaError("Cannot find optimal params before running the algorithm.") return self._ret['opt_params']
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Quantum Dynamics algorithm. """ import logging from qiskit import QuantumRegister from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class logger = logging.getLogger(__name__) class EOH(QuantumAlgorithm): """ The Quantum EOH (Evolution of Hamiltonian) algorithm. """ PROP_OPERATOR_MODE = 'operator_mode' PROP_EVO_TIME = 'evo_time' PROP_NUM_TIME_SLICES = 'num_time_slices' PROP_EXPANSION_MODE = 'expansion_mode' PROP_EXPANSION_ORDER = 'expansion_order' CONFIGURATION = { 'name': 'EOH', 'description': 'Evolution of Hamiltonian for Quantum Systems', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'EOH_schema', 'type': 'object', 'properties': { PROP_OPERATOR_MODE: { 'type': 'string', 'default': 'paulis', 'oneOf': [ {'enum': [ 'paulis', 'grouped_paulis', 'matrix' ]} ] }, PROP_EVO_TIME: { 'type': 'number', 'default': 1, 'minimum': 0 }, PROP_NUM_TIME_SLICES: { 'type': 'integer', 'default': 1, 'minimum': 0 }, PROP_EXPANSION_MODE: { 'type': 'string', 'default': 'trotter', 'oneOf': [ {'enum': [ 'trotter', 'suzuki' ]} ] }, PROP_EXPANSION_ORDER: { 'type': 'integer', 'default': 1, 'minimum': 1 } }, 'additionalProperties': False }, 'problems': ['eoh'], 'depends': [ {'pluggable_type': 'initial_state', 'default': { 'name': 'ZERO' } }, ], } def __init__(self, operator, initial_state, evo_operator, operator_mode='paulis', evo_time=1, num_time_slices=1, expansion_mode='trotter', expansion_order=1): self.validate(locals()) super().__init__() self._operator = operator self._operator_mode = operator_mode self._initial_state = initial_state self._evo_operator = evo_operator self._evo_time = evo_time self._num_time_slices = num_time_slices self._expansion_mode = expansion_mode self._expansion_order = expansion_order self._ret = {} @classmethod def init_params(cls, params, algo_input): """ Initialize via parameters dictionary and algorithm input instance Args: params: parameters dictionary algo_input: EnergyInput instance """ if algo_input is None: raise AquaError("EnergyInput instance is required.") # For getting the extra operator, caller has to do something like: algo_input.add_aux_op(evo_op) operator = algo_input.qubit_op aux_ops = algo_input.aux_ops if aux_ops is None or len(aux_ops) != 1: raise AquaError("EnergyInput, a single aux op is required for evaluation.") evo_operator = aux_ops[0] if evo_operator is None: raise AquaError("EnergyInput, invalid aux op.") dynamics_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) operator_mode = dynamics_params.get(EOH.PROP_OPERATOR_MODE) evo_time = dynamics_params.get(EOH.PROP_EVO_TIME) num_time_slices = dynamics_params.get(EOH.PROP_NUM_TIME_SLICES) expansion_mode = dynamics_params.get(EOH.PROP_EXPANSION_MODE) expansion_order = dynamics_params.get(EOH.PROP_EXPANSION_ORDER) # Set up initial state, we need to add computed num qubits to params initial_state_params = params.get(Pluggable.SECTION_KEY_INITIAL_STATE) initial_state_params['num_qubits'] = operator.num_qubits initial_state = get_pluggable_class(PluggableType.INITIAL_STATE, initial_state_params['name']).init_params(params) return cls(operator, initial_state, evo_operator, operator_mode, evo_time, num_time_slices, expansion_mode=expansion_mode, expansion_order=expansion_order) def construct_circuit(self): """ Construct the circuit. Returns: QuantumCircuit: the circuit. """ quantum_registers = QuantumRegister(self._operator.num_qubits, name='q') qc = self._initial_state.construct_circuit('circuit', quantum_registers) qc += self._evo_operator.evolve( evo_time=self._evo_time, evo_mode='circuit', num_time_slices=self._num_time_slices, quantum_registers=quantum_registers, expansion_mode=self._expansion_mode, expansion_order=self._expansion_order, ) return qc def _run(self): qc = self.construct_circuit() qc_with_op = self._operator.construct_evaluation_circuit( self._operator_mode, qc, self._quantum_instance.backend ) result = self._quantum_instance.execute(qc_with_op) self._ret['avg'], self._ret['std_dev'] = self._operator.evaluate_with_result( self._operator_mode, qc_with_op, self._quantum_instance.backend, result ) return self._ret
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import logging import sys import numpy as np from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.tools import parallel_map from qiskit.tools.events import TextProgressBar from qiskit.aqua import aqua_globals from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class from qiskit.aqua.algorithms.many_sample.qsvm._qsvm_binary import _QSVM_Binary from qiskit.aqua.algorithms.many_sample.qsvm._qsvm_multiclass import _QSVM_Multiclass from qiskit.aqua.algorithms.many_sample.qsvm._qsvm_estimator import _QSVM_Estimator from qiskit.aqua.utils.dataset_helper import get_feature_dimension, get_num_classes from qiskit.aqua.utils import split_dataset_to_data_and_labels logger = logging.getLogger(__name__) class QSVM(QuantumAlgorithm): """ Quantum SVM method. Internally, it will run the binary classification or multiclass classification based on how many classes the data have. """ CONFIGURATION = { 'name': 'QSVM', 'description': 'QSVM Algorithm', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'QSVM_schema', 'type': 'object', 'properties': { }, 'additionalProperties': False }, 'problems': ['classification'], 'depends': [ {'pluggable_type': 'multiclass_extension'}, {'pluggable_type': 'feature_map', 'default': { 'name': 'SecondOrderExpansion', 'depth': 2 } }, ], } BATCH_SIZE = 1000 def __init__(self, feature_map, training_dataset, test_dataset=None, datapoints=None, multiclass_extension=None): """Constructor. Args: feature_map (FeatureMap): feature map module, used to transform data training_dataset (dict): training dataset. test_dataset (Optional[dict]): testing dataset. datapoints (Optional[numpy.ndarray]): prediction dataset. multiclass_extension (Optional[MultiExtension]): if number of classes > 2 then a multiclass scheme is needed. Raises: ValueError: if training_dataset is None AquaError: use binary classifer for classes > 3 """ super().__init__() if training_dataset is None: raise ValueError('Training dataset must be provided') is_multiclass = get_num_classes(training_dataset) > 2 if is_multiclass: if multiclass_extension is None: raise AquaError('Dataset has more than two classes. ' 'A multiclass extension must be provided.') else: if multiclass_extension is not None: logger.warning("Dataset has just two classes. " "Supplied multiclass extension will be ignored") self.training_dataset, self.class_to_label = split_dataset_to_data_and_labels( training_dataset) if test_dataset is not None: self.test_dataset = split_dataset_to_data_and_labels(test_dataset, self.class_to_label) else: self.test_dataset = None self.label_to_class = {label: class_name for class_name, label in self.class_to_label.items()} self.num_classes = len(list(self.class_to_label.keys())) if datapoints is not None and not isinstance(datapoints, np.ndarray): datapoints = np.asarray(datapoints) self.datapoints = datapoints self.feature_map = feature_map self.num_qubits = self.feature_map.num_qubits if multiclass_extension is None: qsvm_instance = _QSVM_Binary(self) else: qsvm_instance = _QSVM_Multiclass(self, multiclass_extension) self.instance = qsvm_instance @classmethod def init_params(cls, params, algo_input): """Constructor from params.""" feature_dimension = get_feature_dimension(algo_input.training_dataset) fea_map_params = params.get(Pluggable.SECTION_KEY_FEATURE_MAP) fea_map_params['feature_dimension'] = feature_dimension feature_map = get_pluggable_class(PluggableType.FEATURE_MAP, fea_map_params['name']).init_params(params) multiclass_extension = None multiclass_extension_params = params.get(Pluggable.SECTION_KEY_MULTICLASS_EXTENSION) if multiclass_extension_params is not None: multiclass_extension_params['params'] = [feature_map] multiclass_extension_params['estimator_cls'] = _QSVM_Estimator multiclass_extension = get_pluggable_class(PluggableType.MULTICLASS_EXTENSION, multiclass_extension_params['name']).init_params(params) logger.info("Multiclass classifier based on {}".format(multiclass_extension_params['name'])) return cls(feature_map, algo_input.training_dataset, algo_input.test_dataset, algo_input.datapoints, multiclass_extension) @staticmethod def _construct_circuit(x, num_qubits, feature_map, measurement): x1, x2 = x if x1.shape[0] != x2.shape[0]: raise ValueError("x1 and x2 must be the same dimension.") q = QuantumRegister(num_qubits, 'q') c = ClassicalRegister(num_qubits, 'c') qc = QuantumCircuit(q, c) # write input state from sample distribution qc += feature_map.construct_circuit(x1, q) qc += feature_map.construct_circuit(x2, q, inverse=True) if measurement: qc.barrier(q) qc.measure(q, c) return qc @staticmethod def _compute_overlap(idx, results, is_statevector_sim, measurement_basis): if is_statevector_sim: temp = results.get_statevector(idx)[0] # |<0|Psi^daggar(y) x Psi(x)|0>|^2, kernel_value = np.dot(temp.T.conj(), temp).real else: result = results.get_counts(idx) kernel_value = result.get(measurement_basis, 0) / sum(result.values()) return kernel_value def construct_circuit(self, x1, x2, measurement=False): """ Generate inner product of x1 and x2 with the given feature map. The dimension of x1 and x2 must be the same. Args: x1 (numpy.ndarray): data points, 1-D array, dimension is D x2 (numpy.ndarray): data points, 1-D array, dimension is D measurement (bool): add measurement gates at the end """ return QSVM._construct_circuit((x1, x2), self.num_qubits, self.feature_map, measurement) def construct_kernel_matrix(self, x1_vec, x2_vec=None, quantum_instance=None): """ Construct kernel matrix, if x2_vec is None, self-innerproduct is conducted. Args: x1_vec (numpy.ndarray): data points, 2-D array, N1xD, where N1 is the number of data, D is the feature dimension x2_vec (numpy.ndarray): data points, 2-D array, N2xD, where N2 is the number of data, D is the feature dimension quantum_instance (QuantumInstance): quantum backend with all setting Returns: numpy.ndarray: 2-D matrix, N1xN2 """ self._quantum_instance = self._quantum_instance \ if quantum_instance is None else quantum_instance from .qsvm import QSVM if x2_vec is None: is_symmetric = True x2_vec = x1_vec else: is_symmetric = False is_statevector_sim = self.quantum_instance.is_statevector measurement = not is_statevector_sim measurement_basis = '0' * self.num_qubits mat = np.ones((x1_vec.shape[0], x2_vec.shape[0])) # get all indices if is_symmetric: mus, nus = np.triu_indices(x1_vec.shape[0], k=1) # remove diagonal term else: mus, nus = np.indices((x1_vec.shape[0], x2_vec.shape[0])) mus = np.asarray(mus.flat) nus = np.asarray(nus.flat) for idx in range(0, len(mus), QSVM.BATCH_SIZE): to_be_computed_list = [] to_be_computed_index = [] for sub_idx in range(idx, min(idx + QSVM.BATCH_SIZE, len(mus))): i = mus[sub_idx] j = nus[sub_idx] x1 = x1_vec[i] x2 = x2_vec[j] if not np.all(x1 == x2): to_be_computed_list.append((x1, x2)) to_be_computed_index.append((i, j)) if logger.isEnabledFor(logging.DEBUG): logger.debug("Building circuits:") TextProgressBar(sys.stderr) circuits = parallel_map(QSVM._construct_circuit, to_be_computed_list, task_args=(self.num_qubits, self.feature_map, measurement), num_processes=aqua_globals.num_processes) results = self.quantum_instance.execute(circuits) if logger.isEnabledFor(logging.DEBUG): logger.debug("Calculating overlap:") TextProgressBar(sys.stderr) matrix_elements = parallel_map(QSVM._compute_overlap, range(len(circuits)), task_args=(results, is_statevector_sim, measurement_basis), num_processes=aqua_globals.num_processes) for idx in range(len(to_be_computed_index)): i, j = to_be_computed_index[idx] mat[i, j] = matrix_elements[idx] if is_symmetric: mat[j, i] = mat[i, j] return mat def train(self, data, labels, quantum_instance=None): """ Train the svm. Args: data (numpy.ndarray): NxD array, where N is the number of data, D is the feature dimension. labels (numpy.ndarray): Nx1 array, where N is the number of data quantum_instance (QuantumInstance): quantum backend with all setting """ self._quantum_instance = self._quantum_instance \ if quantum_instance is None else quantum_instance self.instance.train(data, labels) def test(self, data, labels, quantum_instance=None): """ Test the svm. Args: data (numpy.ndarray): NxD array, where N is the number of data, D is the feature dimension. labels (numpy.ndarray): Nx1 array, where N is the number of data quantum_instance (QuantumInstance): quantum backend with all setting Returns: float: accuracy """ self._quantum_instance = self._quantum_instance \ if quantum_instance is None else quantum_instance return self.instance.test(data, labels) def predict(self, data, quantum_instance=None): """ Predict using the svm. Args: data (numpy.ndarray): NxD array, where N is the number of data, D is the feature dimension. quantum_instance (QuantumInstance): quantum backend with all setting Returns: numpy.ndarray: predicted labels, Nx1 array """ self._quantum_instance = self._quantum_instance \ if quantum_instance is None else quantum_instance return self.instance.predict(data) def _run(self): return self.instance.run() @property def ret(self): return self.instance.ret @ret.setter def ret(self, new_value): self.instance.ret = new_value def load_model(self, file_path): """Load a model from a file path. Args: file_path (str): tthe path of the saved model. """ self.instance.load_model(file_path) def save_model(self, file_path): """Save the model to a file path. Args: file_path (str): a path to save the model. """ self.instance.save_model(file_path)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Amplitude Estimation Algorithm. """ import logging from collections import OrderedDict import numpy as np from qiskit import ClassicalRegister from qiskit.aqua import AquaError from qiskit.aqua import Pluggable, PluggableType, get_pluggable_class from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua.circuits import PhaseEstimationCircuit from qiskit.aqua.components.iqfts import Standard from .q_factory import QFactory logger = logging.getLogger(__name__) class AmplitudeEstimation(QuantumAlgorithm): """ The Amplitude Estimation algorithm. """ CONFIGURATION = { 'name': 'AmplitudeEstimation', 'description': 'Amplitude Estimation Algorithm', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'AmplitudeEstimation_schema', 'type': 'object', 'properties': { 'num_eval_qubits': { 'type': 'integer', 'default': 5, 'minimum': 1 } }, 'additionalProperties': False }, 'problems': ['uncertainty'], 'depends': [ { 'pluggable_type': 'uncertainty_problem', 'default': { 'name': 'EuropeanCallDelta' } }, { 'pluggable_type': 'iqft', 'default': { 'name': 'STANDARD', } }, ], } def __init__(self, num_eval_qubits, a_factory, i_objective=None, q_factory=None, iqft=None): """ Constructor. Args: num_eval_qubits (int): number of evaluation qubits a_factory (CircuitFactory): the CircuitFactory subclass object representing the problem unitary q_factory (CircuitFactory): the CircuitFactory subclass object representing an amplitude estimation sample (based on a_factory) iqft (IQFT): the Inverse Quantum Fourier Transform pluggable component, defaults to using a standard iqft when None """ self.validate(locals()) super().__init__() # get/construct A/Q operator self.a_factory = a_factory if q_factory is None: if i_objective is None: i_objective = self.a_factory.num_target_qubits - 1 self.q_factory = QFactory(a_factory, i_objective) else: self.q_factory = q_factory # get parameters self._m = num_eval_qubits self._M = 2 ** num_eval_qubits # determine number of ancillas self._num_ancillas = self.q_factory.required_ancillas_controlled() self._num_qubits = self.a_factory.num_target_qubits + self._m + self._num_ancillas if iqft is None: iqft = Standard(self._m) self._iqft = iqft self._circuit = None self._ret = {} @classmethod def init_params(cls, params, algo_input): """ Initialize via parameters dictionary and algorithm input instance Args: params: parameters dictionary algo_input: Input instance """ if algo_input is not None: raise AquaError("Input instance not supported.") ae_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) num_eval_qubits = ae_params.get('num_eval_qubits') # Set up uncertainty problem. The params can include an uncertainty model # type dependent on the uncertainty problem and is this its responsibility # to create for itself from the complete params set that is passed to it. uncertainty_problem_params = params.get(Pluggable.SECTION_KEY_UNCERTAINTY_PROBLEM) uncertainty_problem = get_pluggable_class( PluggableType.UNCERTAINTY_PROBLEM, uncertainty_problem_params['name']).init_params(params) # Set up iqft, we need to add num qubits to params which is our num_ancillae bits here iqft_params = params.get(Pluggable.SECTION_KEY_IQFT) iqft_params['num_qubits'] = num_eval_qubits iqft = get_pluggable_class(PluggableType.IQFT, iqft_params['name']).init_params(params) return cls(num_eval_qubits, uncertainty_problem, q_factory=None, iqft=iqft) def construct_circuit(self, measurement=False): """ Construct the Amplitude Estimation quantum circuit. Args: measurement (bool): Boolean flag to indicate if measurement should be included in the circuit. Returns: the QuantumCircuit object for the constructed circuit """ pec = PhaseEstimationCircuit( iqft=self._iqft, num_ancillae=self._m, state_in_circuit_factory=self.a_factory, unitary_circuit_factory=self.q_factory ) self._circuit = pec.construct_circuit(measurement=measurement) return self._circuit def _evaluate_statevector_results(self, probabilities): # map measured results to estimates y_probabilities = OrderedDict() for i, probability in enumerate(probabilities): b = "{0:b}".format(i).rjust(self._num_qubits, '0')[::-1] y = int(b[:self._m], 2) y_probabilities[y] = y_probabilities.get(y, 0) + probability a_probabilities = OrderedDict() for y, probability in y_probabilities.items(): if y >= int(self._M / 2): y = self._M - y a = np.power(np.sin(y * np.pi / 2 ** self._m), 2) a_probabilities[a] = a_probabilities.get(a, 0) + probability return a_probabilities, y_probabilities def _run(self): if self._quantum_instance.is_statevector: self.construct_circuit(measurement=False) # run circuit on statevector simlator ret = self._quantum_instance.execute(self._circuit) state_vector = np.asarray([ret.get_statevector(self._circuit)]) self._ret['statevector'] = state_vector # get state probabilities state_probabilities = np.real(state_vector.conj() * state_vector)[0] # evaluate results a_probabilities, y_probabilities = self._evaluate_statevector_results(state_probabilities) else: # run circuit on QASM simulator self.construct_circuit(measurement=True) ret = self._quantum_instance.execute(self._circuit) # get counts self._ret['counts'] = ret.get_counts() # construct probabilities y_probabilities = {} a_probabilities = {} shots = sum(ret.get_counts().values()) for state, counts in ret.get_counts().items(): y = int(state.replace(' ', '')[:self._m][::-1], 2) p = counts / shots y_probabilities[y] = p a = np.power(np.sin(y * np.pi / 2 ** self._m), 2) a_probabilities[a] = a_probabilities.get(a, 0.0) + p # construct a_items and y_items a_items = [(a, p) for (a, p) in a_probabilities.items() if p > 1e-6] y_items = [(y, p) for (y, p) in y_probabilities.items() if p > 1e-6] a_items = sorted(a_items) y_items = sorted(y_items) self._ret['a_items'] = a_items self._ret['y_items'] = y_items # map estimated values to original range and extract probabilities self._ret['mapped_values'] = [self.a_factory.value_to_estimation(a_item[0]) for a_item in self._ret['a_items']] self._ret['values'] = [a_item[0] for a_item in self._ret['a_items']] self._ret['y_values'] = [y_item[0] for y_item in y_items] self._ret['probabilities'] = [a_item[1] for a_item in self._ret['a_items']] self._ret['mapped_items'] = [(self._ret['mapped_values'][i], self._ret['probabilities'][i]) for i in range(len(self._ret['mapped_values']))] # determine most likely estimator self._ret['estimation'] = None self._ret['max_probability'] = 0 for val, prob in self._ret['mapped_items']: if prob > self._ret['max_probability']: self._ret['max_probability'] = prob self._ret['estimation'] = val return self._ret
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Bernstein-Vazirani algorithm. """ import logging import operator import numpy as np from qiskit import ClassicalRegister, QuantumCircuit from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua.utils import get_subsystem_density_matrix logger = logging.getLogger(__name__) class BernsteinVazirani(QuantumAlgorithm): """The Bernstein-Vazirani algorithm.""" CONFIGURATION = { 'name': 'BernsteinVazirani', 'description': 'Bernstein Vazirani', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'bv_schema', 'type': 'object', 'properties': { }, 'additionalProperties': False }, 'problems': ['hiddenstringfinding'], 'depends': [ { 'pluggable_type': 'oracle', 'default': { 'name': 'TruthTableOracle', }, }, ], } def __init__(self, oracle): self.validate(locals()) super().__init__() self._oracle = oracle self._circuit = None self._ret = {} @classmethod def init_params(cls, params, algo_input): if algo_input is not None: raise AquaError("Input instance not supported.") oracle_params = params.get(Pluggable.SECTION_KEY_ORACLE) oracle = get_pluggable_class( PluggableType.ORACLE, oracle_params['name']).init_params(params) return cls(oracle) def construct_circuit(self, measurement=False): """ Construct the quantum circuit Args: measurement (bool): Boolean flag to indicate if measurement should be included in the circuit. Returns: the QuantumCircuit object for the constructed circuit """ if self._circuit is not None: return self._circuit qc_preoracle = QuantumCircuit( self._oracle.variable_register, self._oracle.output_register, ) qc_preoracle.h(self._oracle.variable_register) qc_preoracle.x(self._oracle.output_register) qc_preoracle.h(self._oracle.output_register) qc_preoracle.barrier() # oracle circuit qc_oracle = self._oracle.circuit qc_oracle.barrier() # postoracle circuit qc_postoracle = QuantumCircuit( self._oracle.variable_register, self._oracle.output_register, ) qc_postoracle.h(self._oracle.variable_register) self._circuit = qc_preoracle + qc_oracle + qc_postoracle # measurement circuit if measurement: measurement_cr = ClassicalRegister(len(self._oracle.variable_register), name='m') self._circuit.add_register(measurement_cr) self._circuit.measure(self._oracle.variable_register, measurement_cr) return self._circuit def _run(self): if self._quantum_instance.is_statevector: qc = self.construct_circuit(measurement=False) result = self._quantum_instance.execute(qc) complete_state_vec = result.get_statevector(qc) variable_register_density_matrix = get_subsystem_density_matrix( complete_state_vec, range(len(self._oracle.variable_register), qc.width()) ) variable_register_density_matrix_diag = np.diag(variable_register_density_matrix) max_amplitude = max( variable_register_density_matrix_diag.min(), variable_register_density_matrix_diag.max(), key=abs ) max_amplitude_idx = np.where(variable_register_density_matrix_diag == max_amplitude)[0][0] top_measurement = np.binary_repr(max_amplitude_idx, len(self._oracle.variable_register)) else: qc = self.construct_circuit(measurement=True) measurement = self._quantum_instance.execute(qc).get_counts(qc) self._ret['measurement'] = measurement top_measurement = max(measurement.items(), key=operator.itemgetter(1))[0] self._ret['result'] = top_measurement return self._ret
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Deutsch-Jozsa algorithm. """ import logging import operator import numpy as np from qiskit import ClassicalRegister, QuantumCircuit from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua.utils import get_subsystem_density_matrix logger = logging.getLogger(__name__) class DeutschJozsa(QuantumAlgorithm): """The Deutsch-Jozsa algorithm.""" CONFIGURATION = { 'name': 'DeutschJozsa', 'description': 'Deutsch Jozsa', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'dj_schema', 'type': 'object', 'properties': { }, 'additionalProperties': False }, 'problems': ['functionevaluation'], 'depends': [ { 'pluggable_type': 'oracle', 'default': { 'name': 'TruthTableOracle', }, }, ], } def __init__(self, oracle): self.validate(locals()) super().__init__() self._oracle = oracle self._circuit = None self._ret = {} @classmethod def init_params(cls, params, algo_input): if algo_input is not None: raise AquaError("Input instance not supported.") oracle_params = params.get(Pluggable.SECTION_KEY_ORACLE) oracle = get_pluggable_class( PluggableType.ORACLE, oracle_params['name']).init_params(params) return cls(oracle) def construct_circuit(self, measurement=False): """ Construct the quantum circuit Args: measurement (bool): Boolean flag to indicate if measurement should be included in the circuit. Returns: the QuantumCircuit object for the constructed circuit """ if self._circuit is not None: return self._circuit # preoracle circuit qc_preoracle = QuantumCircuit( self._oracle.variable_register, self._oracle.output_register, ) qc_preoracle.h(self._oracle.variable_register) qc_preoracle.x(self._oracle.output_register) qc_preoracle.h(self._oracle.output_register) qc_preoracle.barrier() # oracle circuit qc_oracle = self._oracle.circuit # postoracle circuit qc_postoracle = QuantumCircuit( self._oracle.variable_register, self._oracle.output_register, ) qc_postoracle.h(self._oracle.variable_register) qc_postoracle.barrier() self._circuit = qc_preoracle + qc_oracle + qc_postoracle # measurement circuit if measurement: measurement_cr = ClassicalRegister(len(self._oracle.variable_register), name='m') self._circuit.add_register(measurement_cr) self._circuit.measure(self._oracle.variable_register, measurement_cr) return self._circuit def _run(self): if self._quantum_instance.is_statevector: qc = self.construct_circuit(measurement=False) result = self._quantum_instance.execute(qc) complete_state_vec = result.get_statevector(qc) variable_register_density_matrix = get_subsystem_density_matrix( complete_state_vec, range(len(self._oracle.variable_register), qc.width()) ) variable_register_density_matrix_diag = np.diag(variable_register_density_matrix) max_amplitude = max( variable_register_density_matrix_diag.min(), variable_register_density_matrix_diag.max(), key=abs ) max_amplitude_idx = np.where(variable_register_density_matrix_diag == max_amplitude)[0][0] top_measurement = np.binary_repr(max_amplitude_idx, len(self._oracle.variable_register)) else: qc = self.construct_circuit(measurement=True) measurement = self._quantum_instance.execute(qc).get_counts(qc) self._ret['measurement'] = measurement top_measurement = max(measurement.items(), key=operator.itemgetter(1))[0] self._ret['result'] = 'constant' if int(top_measurement) == 0 else 'balanced' return self._ret
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>) out of four possible values.""" #import numpy and plot library import matplotlib.pyplot as plt import numpy as np # importing Qiskit from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.quantum_info import Statevector # import basic plot tools from qiskit.visualization import plot_histogram # define variables, 1) initialize qubits to zero n = 2 grover_circuit = QuantumCircuit(n) #define initialization function def initialize_s(qc, qubits): '''Apply a H-gate to 'qubits' in qc''' for q in qubits: qc.h(q) return qc ### begin grovers circuit ### #2) Put qubits in equal state of superposition grover_circuit = initialize_s(grover_circuit, [0,1]) # 3) Apply oracle reflection to marked instance x_0 = 3, (|11>) grover_circuit.cz(0,1) statevec = job_sim.result().get_statevector() from qiskit_textbook.tools import vector2latex vector2latex(statevec, pretext="|\\psi\\rangle =") # 4) apply additional reflection (diffusion operator) grover_circuit.h([0,1]) grover_circuit.z([0,1]) grover_circuit.cz(0,1) grover_circuit.h([0,1]) # 5) measure the qubits grover_circuit.measure_all() # Load IBM Q account and get the least busy backend device provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) from qiskit.tools.monitor import job_monitor job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(grover_circuit) plot_histogram(answer) #highest amplitude should correspond with marked value x_0 (|11>)
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The HHL algorithm. """ import logging import numpy as np from copy import deepcopy from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class from qiskit.ignis.verification.tomography import state_tomography_circuits, \ StateTomographyFitter from qiskit.converters import circuit_to_dag logger = logging.getLogger(__name__) class HHL(QuantumAlgorithm): """The HHL algorithm. The quantum circuit for this algorithm is returned by `generate_circuit`. Running the algorithm will execute the circuit and return the result vector, measured (real hardware backend) or derived (qasm_simulator) via state tomography or calculated from the statevector (statevector_simulator). """ CONFIGURATION = { 'name': 'HHL', 'description': 'The HHL Algorithm for Solving Linear Systems of ' 'equations', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'hhl_schema', 'type': 'object', 'properties': { 'truncate_powerdim': { 'type': 'boolean', 'default': False }, 'truncate_hermitian': { 'type': 'boolean', 'default': False }, 'orig_size': { 'type': ['integer', 'null'], 'default': None } }, 'additionalProperties': False }, 'problems': ['linear_system'], 'depends': [ {'pluggable_type': 'initial_state', 'default': { 'name': 'CUSTOM', } }, {'pluggable_type': 'eigs', 'default': { 'name': 'EigsQPE', 'num_ancillae': 6, 'num_time_slices': 50, 'expansion_mode': 'suzuki', 'expansion_order': 2 } }, {'pluggable_type': 'reciprocal', 'default': { 'name': 'Lookup' } } ], } def __init__( self, matrix=None, vector=None, truncate_powerdim=False, truncate_hermitian=False, eigs=None, init_state=None, reciprocal=None, num_q=0, num_a=0, orig_size=None ): """ Constructor. Args: matrix (np.array): the input matrix of linear system of equations vector (np.array): the input vector of linear system of equations truncate_powerdim (bool): flag indicating expansion to 2**n matrix to be truncated truncate_hermitian (bool): flag indicating expansion to hermitian matrix to be truncated eigs (Eigenvalues): the eigenvalue estimation instance init_state (InitialState): the initial quantum state preparation reciprocal (Reciprocal): the eigenvalue reciprocal and controlled rotation instance num_q (int): number of qubits required for the matrix Operator instance num_a (int): number of ancillary qubits for Eigenvalues instance orig_size (int): The original dimension of the problem (if truncate_powerdim) """ super().__init__() super().validate(locals()) if matrix.shape[0] != matrix.shape[1]: raise ValueError("Input matrix must be square!") if matrix.shape[0] != len(vector): raise ValueError("Input vector dimension does not match input " "matrix dimension!") if not np.allclose(matrix, matrix.conj().T): raise ValueError("Input matrix must be hermitian!") if np.log2(matrix.shape[0]) % 1 != 0: raise ValueError("Input matrix dimension must be 2**n!") if truncate_powerdim and orig_size is None: raise ValueError("Truncation to {} dimensions is not " "possible!".format(self._original_dimension)) self._matrix = matrix self._vector = vector self._truncate_powerdim = truncate_powerdim self._truncate_hermitian = truncate_hermitian self._eigs = eigs self._init_state = init_state self._reciprocal = reciprocal self._num_q = num_q self._num_a = num_a self._circuit = None self._io_register = None self._eigenvalue_register = None self._ancilla_register = None self._success_bit = None self._original_dimension = orig_size self._ret = {} @classmethod def init_params(cls, params, algo_input): """Initialize via parameters dictionary and algorithm input instance Args: params: parameters dictionary algo_input: LinearSystemInput instance """ if algo_input is None: raise AquaError("LinearSystemInput instance is required.") matrix = algo_input.matrix vector = algo_input.vector if not isinstance(matrix, np.ndarray): matrix = np.asarray(matrix) if not isinstance(vector, np.ndarray): vector = np.asarray(vector) if matrix.shape[0] != matrix.shape[1]: raise ValueError("Input matrix must be square!") if matrix.shape[0] != len(vector): raise ValueError("Input vector dimension does not match input " "matrix dimension!") hhl_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) truncate_powerdim = hhl_params.get('truncate_powerdim') truncate_hermitian = hhl_params.get('truncate_hermitian') orig_size = hhl_params.get('orig_size') if orig_size is None: orig_size = len(vector) is_powerdim = np.log2(matrix.shape[0]) % 1 == 0 if not is_powerdim: logger.warning("Input matrix does not have dimension 2**n. It " "will be expanded automatically.") matrix, vector = cls.expand_to_powerdim(matrix, vector) truncate_powerdim = True is_hermitian = np.allclose(matrix, matrix.conj().T) if not is_hermitian: logger.warning("Input matrix is not hermitian. It will be " "expanded to a hermitian matrix automatically.") matrix, vector = cls.expand_to_hermitian(matrix, vector) truncate_hermitian = True # Initialize eigenvalue finding module eigs_params = params.get(Pluggable.SECTION_KEY_EIGS) eigs = get_pluggable_class(PluggableType.EIGENVALUES, eigs_params['name']).init_params(params, matrix) num_q, num_a = eigs.get_register_sizes() # Initialize initial state module tmpvec = vector init_state_params = params.get(Pluggable.SECTION_KEY_INITIAL_STATE) init_state_params["num_qubits"] = num_q init_state_params["state_vector"] = tmpvec init_state = get_pluggable_class(PluggableType.INITIAL_STATE, init_state_params['name']).init_params(params) # Initialize reciprocal rotation module reciprocal_params = params.get(Pluggable.SECTION_KEY_RECIPROCAL) reciprocal_params["negative_evals"] = eigs._negative_evals reciprocal_params["evo_time"] = eigs._evo_time reci = get_pluggable_class(PluggableType.RECIPROCAL, reciprocal_params['name']).init_params(params) return cls(matrix, vector, truncate_powerdim, truncate_hermitian, eigs, init_state, reci, num_q, num_a, orig_size) def construct_circuit(self, measurement=False): """Construct the HHL circuit. Args: measurement (bool): indicate whether measurement on ancillary qubit should be performed Returns: the QuantumCircuit object for the constructed circuit """ q = QuantumRegister(self._num_q, name="io") qc = QuantumCircuit(q) # InitialState qc += self._init_state.construct_circuit("circuit", q) # EigenvalueEstimation (QPE) qc += self._eigs.construct_circuit("circuit", q) a = self._eigs._output_register # Reciprocal calculation with rotation qc += self._reciprocal.construct_circuit("circuit", a) s = self._reciprocal._anc # Inverse EigenvalueEstimation qc += self._eigs.construct_inverse("circuit", self._eigs._circuit) # Measurement of the ancilla qubit if measurement: c = ClassicalRegister(1) qc.add_register(c) qc.measure(s, c) self._success_bit = c self._io_register = q self._eigenvalue_register = a self._ancilla_register = s self._circuit = qc return qc @staticmethod def expand_to_powerdim(matrix, vector): """ Expand a matrix to the next-larger 2**n dimensional matrix with ones on the diagonal and zeros on the off-diagonal and expand the vector with zeros accordingly. Args: matrix (np.array): the input matrix vector (np.array): the input vector Returns: matrix (np.array): the expanded matrix vector (np.array): the expanded vector """ mat_dim = matrix.shape[0] next_higher = int(np.ceil(np.log2(mat_dim))) new_matrix = np.identity(2 ** next_higher) new_matrix = np.array(new_matrix, dtype=complex) new_matrix[:mat_dim, :mat_dim] = matrix[:, :] matrix = new_matrix new_vector = np.zeros((1, 2 ** next_higher)) new_vector[0, :vector.shape[0]] = vector vector = new_vector.reshape(np.shape(new_vector)[1]) return matrix, vector @staticmethod def expand_to_hermitian(matrix, vector): """ Expand a non-hermitian matrix A to a hermitian matrix by [[0, A.H], [A, 0]] and expand vector b to [b.conj, b]. Args: matrix (np.array): the input matrix vector (np.array): the input vector Returns: matrix (np.array): the expanded matrix vector (np.array): the expanded vector """ # half_dim = matrix.shape[0] full_dim = 2 * half_dim new_matrix = np.zeros([full_dim, full_dim]) new_matrix = np.array(new_matrix, dtype=complex) new_matrix[0:half_dim, half_dim:full_dim] = matrix[:, :] new_matrix[half_dim:full_dim, 0:half_dim] = matrix.conj().T[:, :] matrix = new_matrix new_vector = np.zeros((1, full_dim)) new_vector = np.array(new_vector, dtype=complex) new_vector[0, :vector.shape[0]] = vector.conj() new_vector[0, vector.shape[0]:] = vector vector = new_vector.reshape(np.shape(new_vector)[1]) return matrix, vector def _resize_vector(self, vec): if self._truncate_hermitian: half_dim = int(vec.shape[0] / 2) vec = vec[:half_dim] if self._truncate_powerdim: vec = vec[:self._original_dimension] return vec def _resize_matrix(self, matrix): if self._truncate_hermitian: full_dim = matrix.shape[0] half_dim = int(full_dim / 2) new_matrix = np.ndarray(shape=(half_dim, half_dim), dtype=complex) new_matrix[:, :] = matrix[0:half_dim, half_dim:full_dim] matrix = new_matrix if self._truncate_powerdim: new_matrix = np.ndarray(shape=(self._original_dimension, self._original_dimension), dtype=complex) new_matrix[:, :] = matrix[:self._original_dimension, :self._original_dimension] matrix = new_matrix return matrix def _statevector_simulation(self): """The statevector simulation. The HHL result gets extracted from the statevector. Only for statevector simulator available. """ res = self._quantum_instance.execute(self._circuit) sv = np.asarray(res.get_statevector(self._circuit)) # Extract solution vector from statevector vec = self._reciprocal.sv_to_resvec(sv, self._num_q) # remove added dimensions self._ret['probability_result'] = np.real(self._resize_vector(vec).dot(self._resize_vector(vec).conj())) vec = vec/np.linalg.norm(vec) self._hhl_results(vec) def _state_tomography(self): """The state tomography. The HHL result gets extracted via state tomography. Available for qasm simulator and real hardware backends. """ # Preparing the state tomography circuits tomo_circuits = state_tomography_circuits(self._circuit, self._io_register) tomo_circuits_noanc = deepcopy(tomo_circuits) ca = ClassicalRegister(1) for circ in tomo_circuits: circ.add_register(ca) circ.measure(self._reciprocal._anc, ca[0]) # Extracting the probability of successful run results = self._quantum_instance.execute(tomo_circuits) probs = [] for circ in tomo_circuits: counts = results.get_counts(circ) s, f = 0, 0 for k, v in counts.items(): if k[0] == "1": s += v else: f += v probs.append(s/(f+s)) probs = self._resize_vector(probs) self._ret["probability_result"] = np.real(probs) # Filtering the tomo data for valid results with ancillary measured # to 1, i.e. c1==1 results_noanc = self._tomo_postselect(results) tomo_data = StateTomographyFitter(results_noanc, tomo_circuits_noanc) rho_fit = tomo_data.fit() vec = np.diag(rho_fit) / np.sqrt(sum(np.diag(rho_fit) ** 2)) self._hhl_results(vec) def _tomo_postselect(self, results): new_results = deepcopy(results) for resultidx, _ in enumerate(results.results): old_counts = results.get_counts(resultidx) new_counts = {} # change the size of the classical register new_results.results[resultidx].header.creg_sizes = [ new_results.results[resultidx].header.creg_sizes[0]] new_results.results[resultidx].header.clbit_labels = \ new_results.results[resultidx].header.clbit_labels[0:-1] new_results.results[resultidx].header.memory_slots = \ new_results.results[resultidx].header.memory_slots - 1 for reg_key in old_counts: reg_bits = reg_key.split(' ') if reg_bits[0] == '1': new_counts[reg_bits[1]] = old_counts[reg_key] new_results.results[resultidx].data.counts = \ new_results.results[resultidx]. \ data.counts.from_dict(new_counts) return new_results def _hhl_results(self, vec): res_vec = self._resize_vector(vec) in_vec = self._resize_vector(self._vector) matrix = self._resize_matrix(self._matrix) self._ret["output"] = res_vec # Rescaling the output vector to the real solution vector tmp_vec = matrix.dot(res_vec) f1 = np.linalg.norm(in_vec)/np.linalg.norm(tmp_vec) f2 = sum(np.angle(in_vec*tmp_vec.conj()-1+1))/(np.log2(matrix.shape[0])) # "-1+1" to fix angle error for -0.-0.j self._ret["solution"] = f1*res_vec*np.exp(-1j*f2) def _run(self): if self._quantum_instance.is_statevector: self.construct_circuit(measurement=False) self._statevector_simulation() else: self.construct_circuit(measurement=False) self._state_tomography() # Adding a bit of general result information self._ret["matrix"] = self._resize_matrix(self._matrix) self._ret["vector"] = self._resize_vector(self._vector) self._ret["circuit_info"] = circuit_to_dag(self._circuit).properties() return self._ret
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Iterative Quantum Phase Estimation Algorithm. See https://arxiv.org/abs/quant-ph/0610214 """ import logging import numpy as np from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.quantum_info import Pauli from qiskit.aqua import Operator, AquaError from qiskit.aqua import Pluggable, PluggableType, get_pluggable_class from qiskit.aqua.utils import get_subsystem_density_matrix from qiskit.aqua.algorithms import QuantumAlgorithm logger = logging.getLogger(__name__) class IQPE(QuantumAlgorithm): """ The Iterative Quantum Phase Estimation algorithm. See https://arxiv.org/abs/quant-ph/0610214 """ PROP_NUM_TIME_SLICES = 'num_time_slices' PROP_EXPANSION_MODE = 'expansion_mode' PROP_EXPANSION_ORDER = 'expansion_order' PROP_NUM_ITERATIONS = 'num_iterations' CONFIGURATION = { 'name': 'IQPE', 'description': 'Iterative Quantum Phase Estimation for Quantum Systems', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'IQPE_schema', 'type': 'object', 'properties': { PROP_NUM_TIME_SLICES: { 'type': 'integer', 'default': 1, 'minimum': 1 }, PROP_EXPANSION_MODE: { 'type': 'string', 'default': 'suzuki', 'oneOf': [ {'enum': [ 'suzuki', 'trotter' ]} ] }, PROP_EXPANSION_ORDER: { 'type': 'integer', 'default': 2, 'minimum': 1 }, PROP_NUM_ITERATIONS: { 'type': 'integer', 'default': 1, 'minimum': 1 } }, 'additionalProperties': False }, 'problems': ['energy'], 'depends': [ {'pluggable_type': 'initial_state', 'default': { 'name': 'ZERO', }, }, ], } def __init__(self, operator, state_in, num_time_slices=1, num_iterations=1, expansion_mode='suzuki', expansion_order=2, shallow_circuit_concat=False): """ Constructor. Args: operator (Operator): the hamiltonian Operator object state_in (InitialState): the InitialState pluggable component representing the initial quantum state num_time_slices (int): the number of time slices num_iterations (int): the number of iterations expansion_mode (str): the expansion mode (trotter|suzuki) expansion_order (int): the suzuki expansion order shallow_circuit_concat (bool): indicate whether to use shallow (cheap) mode for circuit concatenation """ self.validate(locals()) super().__init__() self._operator = operator self._state_in = state_in self._num_time_slices = num_time_slices self._num_iterations = num_iterations self._expansion_mode = expansion_mode self._expansion_order = expansion_order self._shallow_circuit_concat = shallow_circuit_concat self._state_register = None self._ancillary_register = None self._pauli_list = None self._ret = {} self._setup() @classmethod def init_params(cls, params, algo_input): """ Initialize via parameters dictionary and algorithm input instance. Args: params: parameters dictionary algo_input: EnergyInput instance """ if algo_input is None: raise AquaError("EnergyInput instance is required.") operator = algo_input.qubit_op iqpe_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) num_time_slices = iqpe_params.get(IQPE.PROP_NUM_TIME_SLICES) expansion_mode = iqpe_params.get(IQPE.PROP_EXPANSION_MODE) expansion_order = iqpe_params.get(IQPE.PROP_EXPANSION_ORDER) num_iterations = iqpe_params.get(IQPE.PROP_NUM_ITERATIONS) # Set up initial state, we need to add computed num qubits to params init_state_params = params.get(Pluggable.SECTION_KEY_INITIAL_STATE) init_state_params['num_qubits'] = operator.num_qubits init_state = get_pluggable_class(PluggableType.INITIAL_STATE, init_state_params['name']).init_params(params) return cls(operator, init_state, num_time_slices=num_time_slices, num_iterations=num_iterations, expansion_mode=expansion_mode, expansion_order=expansion_order) def _setup(self): self._pauli_list = self._operator.get_flat_pauli_list() self._ret['translation'] = sum([abs(p[0]) for p in self._pauli_list]) self._ret['stretch'] = 0.5 / self._ret['translation'] # translate the operator self._operator._simplify_paulis() translation_op = Operator([ [ self._ret['translation'], Pauli( np.zeros(self._operator.num_qubits), np.zeros(self._operator.num_qubits) ) ] ]) translation_op._simplify_paulis() self._operator += translation_op # stretch the operator for p in self._pauli_list: p[0] = p[0] * self._ret['stretch'] if len(self._pauli_list) == 1: slice_pauli_list = self._pauli_list else: if self._expansion_mode == 'trotter': slice_pauli_list = self._pauli_list else: slice_pauli_list = Operator._suzuki_expansion_slice_pauli_list(self._pauli_list, 1, self._expansion_order) self._slice_pauli_list = slice_pauli_list def construct_circuit(self, k=None, omega=0, measurement=False): """Construct the kth iteration Quantum Phase Estimation circuit. For details of parameters, please see Fig. 2 in https://arxiv.org/pdf/quant-ph/0610214.pdf. Args: k (int): the iteration idx. omega (float): the feedback angle. measurement (bool): Boolean flag to indicate if measurement should be included in the circuit. Returns: QuantumCircuit: the quantum circuit per iteration """ k = self._num_iterations if k is None else k a = QuantumRegister(1, name='a') q = QuantumRegister(self._operator.num_qubits, name='q') self._ancillary_register = a self._state_register = q qc = QuantumCircuit(q) qc += self._state_in.construct_circuit('circuit', q) # hadamard on a[0] qc.add_register(a) qc.u2(0, np.pi, a[0]) # controlled-U qc_evolutions = Operator.construct_evolution_circuit( self._slice_pauli_list, -2 * np.pi, self._num_time_slices, q, a, unitary_power=2 ** (k - 1), shallow_slicing=self._shallow_circuit_concat ) if self._shallow_circuit_concat: qc.data += qc_evolutions.data else: qc += qc_evolutions # global phase due to identity pauli qc.u1(2 * np.pi * self._ancilla_phase_coef * (2 ** (k - 1)), a[0]) # rz on a[0] qc.u1(omega, a[0]) # hadamard on a[0] qc.u2(0, np.pi, a[0]) if measurement: c = ClassicalRegister(1, name='c') qc.add_register(c) # qc.barrier(self._ancillary_register) qc.measure(self._ancillary_register, c) return qc def _estimate_phase_iteratively(self): """Iteratively construct the different order of controlled evolution circuit to carry out phase estimation.""" self._ret['top_measurement_label'] = '' omega_coef = 0 # k runs from the number of iterations back to 1 for k in range(self._num_iterations, 0, -1): omega_coef /= 2 if self._quantum_instance.is_statevector: qc = self.construct_circuit(k, -2 * np.pi * omega_coef, measurement=False) result = self._quantum_instance.execute(qc) complete_state_vec = result.get_statevector(qc) ancilla_density_mat = get_subsystem_density_matrix( complete_state_vec, range(self._operator.num_qubits) ) ancilla_density_mat_diag = np.diag(ancilla_density_mat) max_amplitude = max(ancilla_density_mat_diag.min(), ancilla_density_mat_diag.max(), key=abs) x = np.where(ancilla_density_mat_diag == max_amplitude)[0][0] else: qc = self.construct_circuit(k, -2 * np.pi * omega_coef, measurement=True) measurements = self._quantum_instance.execute(qc).get_counts(qc) if '0' not in measurements: if '1' in measurements: x = 1 else: raise RuntimeError('Unexpected measurement {}.'.format(measurements)) else: if '1' not in measurements: x = 0 else: x = 1 if measurements['1'] > measurements['0'] else 0 self._ret['top_measurement_label'] = '{}{}'.format(x, self._ret['top_measurement_label']) omega_coef = omega_coef + x / 2 logger.info('Reverse iteration {} of {} with measured bit {}'.format(k, self._num_iterations, x)) return omega_coef def _compute_energy(self): # check for identify paulis to get its coef for applying global phase shift on ancilla later num_identities = 0 self._pauli_list = self._operator.get_flat_pauli_list() for p in self._pauli_list: if np.all(np.logical_not(p[1].z)) and np.all(np.logical_not(p[1].x)): num_identities += 1 if num_identities > 1: raise RuntimeError('Multiple identity pauli terms are present.') self._ancilla_phase_coef = p[0].real if isinstance(p[0], complex) else p[0] self._ret['phase'] = self._estimate_phase_iteratively() self._ret['top_measurement_decimal'] = sum([t[0] * t[1] for t in zip( [1 / 2 ** p for p in range(1, self._num_iterations + 1)], [int(n) for n in self._ret['top_measurement_label']] )]) self._ret['energy'] = self._ret['phase'] / self._ret['stretch'] - self._ret['translation'] def _run(self): self._compute_energy() return self._ret
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
"""The following is python code utilizing the qiskit library that can be run on extant quantum hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding, for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1, results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>). To find the factor, use the equivalence a^r mod 15. From this: (a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15 Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients, gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15, so the result of running shors algorithm to find the prime factors of an integer using quantum hardware are demonstrated. Note, this is not the same as the technical implementation of shor's algorithm described in this section for breaking the discrete log hardness assumption, though the proof of concept remains.""" # Import libraries from qiskit.compiler import transpile, assemble from qiskit.tools.jupyter import * from qiskit.visualization import * from numpy import pi from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute from qiskit.providers.ibmq import least_busy from qiskit.visualization import plot_histogram # Initialize qubit registers qreg_q = QuantumRegister(5, 'q') creg_c = ClassicalRegister(5, 'c') circuit = QuantumCircuit(qreg_q, creg_c) circuit.reset(qreg_q[0]) circuit.reset(qreg_q[1]) circuit.reset(qreg_q[2]) circuit.reset(qreg_q[3]) circuit.reset(qreg_q[4]) # Apply Hadamard transformations to qubit registers circuit.h(qreg_q[0]) circuit.h(qreg_q[1]) circuit.h(qreg_q[2]) # Apply first QFT, modular exponentiation, and another QFT circuit.h(qreg_q[1]) circuit.cx(qreg_q[2], qreg_q[3]) circuit.crx(pi/2, qreg_q[0], qreg_q[1]) circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4]) circuit.h(qreg_q[0]) circuit.rx(pi/2, qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.crx(pi/2, qreg_q[1], qreg_q[2]) circuit.cx(qreg_q[0], qreg_q[1]) # Measure the qubit registers 0-2 circuit.measure(qreg_q[2], creg_c[2]) circuit.measure(qreg_q[1], creg_c[1]) circuit.measure(qreg_q[0], creg_c[0]) # Get least busy quantum hardware backend to run on provider = IBMQ.load_account() device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and not x.configuration().simulator and x.status().operational==True)) print("Running on current least busy device: ", device) # Run the circuit on available quantum hardware and plot histogram from qiskit.tools.monitor import job_monitor job = execute(circuit, backend=device, shots=1024, optimization_level=3) job_monitor(job, interval = 2) results = job.result() answer = results.get_counts(circuit) plot_histogram(answer) #largest amplitude results correspond with r values used to find the prime factor of N.
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
"""Qiskit code for running Simon's algorithm on quantum hardware for 2 qubits and b = '11' """ # importing Qiskit from qiskit import IBMQ, BasicAer from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, execute # import basic plot tools from qiskit.visualization import plot_histogram from qiskit_textbook.tools import simon_oracle #set b equal to '11' b = '11' #1) initialize qubits n = 2 simon_circuit_2 = QuantumCircuit(n*2, n) #2) Apply Hadamard gates before querying the oracle simon_circuit_2.h(range(n)) #3) Query oracle simon_circuit_2 += simon_oracle(b) #5) Apply Hadamard gates to the input register simon_circuit_2.h(range(n)) #3) and 6) Measure qubits simon_circuit_2.measure(range(n), range(n)) # Load saved IBMQ accounts and get the least busy backend device IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= n and not x.configuration().simulator and x.status().operational==True)) print("least busy backend: ", backend) # Execute and monitor the job from qiskit.tools.monitor import job_monitor shots = 1024 job = execute(simon_circuit_2, backend=backend, shots=shots, optimization_level=3) job_monitor(job, interval = 2) # Get results and plot counts device_counts = job.result().get_counts() plot_histogram(device_counts) #additionally, function for calculating dot product of results def bdotz(b, z): accum = 0 for i in range(len(b)): accum += int(b[i]) * int(z[i]) return (accum % 2) print('b = ' + b) for z in device_counts: print( '{}.{} = {} (mod 2) ({:.1f}%)'.format(b, z, bdotz(b,z), device_counts[z]*100/shots)) #the most significant results are those for which b dot z=0(mod 2). '''b = 11 11.00 = 0 (mod 2) (45.0%) 11.01 = 1 (mod 2) (6.2%) 11.10 = 1 (mod 2) (6.4%) 11.11 = 0 (mod 2) (42.4%)'''
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Boolean Logical DNF, CNF, and ESOP Circuits. """ import logging from abc import abstractmethod, ABC from qiskit import QuantumCircuit, QuantumRegister from qiskit.qasm import pi from qiskit.aqua import AquaError from .gates import mct logger = logging.getLogger(__name__) class BooleanLogicNormalForm(ABC): @staticmethod def _get_ast_depth(ast): if ast[0] == 'const' or ast[0] == 'lit': return 0 else: return 1 + max([BooleanLogicNormalForm._get_ast_depth(c) for c in ast[1:]]) @staticmethod def _get_ast_num_vars(ast): if ast[0] == 'const': return 0 all_vars = set() def get_ast_vars(cur_ast): if cur_ast[0] == 'lit': all_vars.add(abs(cur_ast[1])) else: for c in cur_ast[1:]: get_ast_vars(c) get_ast_vars(ast) return max(all_vars) @staticmethod def _lits_to_flags(vs): _vs = [] for v in vs: if v in _vs: continue elif -v in _vs: return None else: _vs.append(v) flags = abs(max(_vs, key=abs)) * [0] for v in _vs: flags[abs(v) - 1] = 1 if v > 0 else -1 return flags """ The base abstract class for: - CNF (Conjunctive Normal Forms), - DNF (Disjunctive Normal Forms), and - ESOP (Exclusive Sum of Products) """ def __init__(self, ast, num_vars=None): """ Constructor. Args: ast (tuple): The logic expression as an Abstract Syntax Tree (AST) tuple num_vars (int): Number of boolean variables """ ast_depth = BooleanLogicNormalForm._get_ast_depth(ast) if ast_depth > 2: raise AquaError('Expressions of depth greater than 2 are not supported.') self._depth = ast_depth inferred_num_vars = BooleanLogicNormalForm._get_ast_num_vars(ast) if num_vars is None: self._num_variables = inferred_num_vars else: if inferred_num_vars > num_vars: raise AquaError('{} variables present, but only {} specified.'.format(inferred_num_vars, num_vars)) self._num_variables = num_vars if ast_depth == 0: self._ast = ast self._num_clauses = 0 self._max_clause_size = 0 else: if ast_depth == 1: if self._depth == 1: self._num_clauses = 1 self._max_clause_size = len(ast) - 1 self._ast = ast else: # depth == 2: if ast[0] == 'and': op = 'or' elif ast[0] == 'or': op = 'and' else: raise AquaError('Unexpected expression root operator {}.'.format(ast[0])) self._num_clauses = len(ast) - 1 self._max_clause_size = 1 self._ast = (ast[0], *[(op, l) for l in ast[1:]]) else: # self._depth == 2 self._num_clauses = len(ast) - 1 self._max_clause_size = max([len(l) - 1 for l in ast[1:]]) self._ast = ast self._variable_register = None self._clause_register = None self._output_register = None self._ancillary_register = None @property def num_variables(self): return self._num_variables @property def num_clauses(self): return self._num_clauses @property def variable_register(self): return self._variable_register @property def clause_register(self): return self._clause_register @property def output_register(self): return self._output_register @property def ancillary_register(self): return self._ancillary_register @staticmethod def _set_up_register(num_qubits_needed, provided_register, description): if provided_register == 'skip': return None else: if provided_register is None: if num_qubits_needed > 0: return QuantumRegister(num_qubits_needed, name=description[0]) else: num_qubits_provided = len(provided_register) if num_qubits_needed > num_qubits_provided: raise ValueError( 'The {} QuantumRegister needs {} qubits, but the provided register contains only {}.'.format( description, num_qubits_needed, num_qubits_provided )) else: return provided_register def _set_up_circuit( self, circuit=None, variable_register=None, clause_register=None, output_register=None, output_idx=None, ancillary_register=None, mct_mode='basic' ): self._variable_register = BooleanLogicNormalForm._set_up_register( self.num_variables, variable_register, 'variable' ) if self._depth > 1: self._clause_register = BooleanLogicNormalForm._set_up_register( self.num_clauses, clause_register, 'clause' ) self._output_register = BooleanLogicNormalForm._set_up_register( 1, output_register, 'output' ) self._output_idx = output_idx if output_idx else 0 max_num_ancillae = max( max( self._num_clauses if self._clause_register else 0, self._max_clause_size ) - 2, 0 ) num_ancillae = 0 if mct_mode == 'basic' or mct_mode == 'basic-dirty-ancilla': num_ancillae = max_num_ancillae elif mct_mode == 'advanced': if max_num_ancillae >= 3: num_ancillae = 1 elif mct_mode == 'noancilla': pass else: raise ValueError('Unsupported MCT mode {}.'.format(mct_mode)) self._ancillary_register = BooleanLogicNormalForm._set_up_register( num_ancillae, ancillary_register, 'ancilla' ) if circuit is None: circuit = QuantumCircuit() if self._variable_register: circuit.add_register(self._variable_register) if self._clause_register: circuit.add_register(self._clause_register) if self._output_register: circuit.add_register(self._output_register) if self._ancillary_register: circuit.add_register(self._ancillary_register) return circuit def _construct_circuit_for_tiny_expr(self, circuit, output_idx=0): if self._ast == ('const', 1): circuit.u3(pi, 0, pi, self._output_register[output_idx]) elif self._ast[0] == 'lit': idx = abs(self._ast[1]) - 1 if self._ast[1] < 0: circuit.u3(pi, 0, pi, self._variable_register[idx]) circuit.cx(self._variable_register[idx], self._output_register[output_idx]) @abstractmethod def construct_circuit(self, *args, **kwargs): raise NotImplementedError class CNF(BooleanLogicNormalForm): """ Class for constructing circuits for Conjunctive Normal Forms """ def construct_circuit( self, circuit=None, variable_register=None, clause_register=None, output_register=None, ancillary_register=None, mct_mode='basic' ): """ Construct circuit. Args: circuit (QuantumCircuit): The optional circuit to extend from variable_register (QuantumRegister): The optional quantum register to use for problem variables clause_register (QuantumRegister): The optional quantum register to use for problem clauses output_register (QuantumRegister): The optional quantum register to use for holding the output ancillary_register (QuantumRegister): The optional quantum register to use as ancilla mct_mode (str): The mode to use for building Multiple-Control Toffoli Returns: QuantumCircuit: quantum circuit. """ circuit = self._set_up_circuit( circuit=circuit, variable_register=variable_register, clause_register=clause_register, output_register=output_register, ancillary_register=ancillary_register, mct_mode=mct_mode ) if self._depth == 0: self._construct_circuit_for_tiny_expr(circuit) elif self._depth == 1: lits = [l[1] for l in self._ast[1:]] flags = BooleanLogicNormalForm._lits_to_flags(lits) circuit.AND( self._variable_register, self._output_register[0], self._ancillary_register, flags=flags, mct_mode=mct_mode ) else: # self._depth == 2: # compute all clauses for clause_index, clause_expr in enumerate(self._ast[1:]): if clause_expr[0] == 'or': lits = [l[1] for l in clause_expr[1:]] elif clause_expr[0] == 'lit': lits = [clause_expr[1]] else: raise AquaError( 'Operator "{}" of clause {} in logic expression {} is unexpected.'.format( clause_expr[0], clause_index, self._ast) ) flags = BooleanLogicNormalForm._lits_to_flags(lits) circuit.OR( self._variable_register, self._clause_register[clause_index], self._ancillary_register, flags=flags, mct_mode=mct_mode ) # collect results from all clauses circuit.mct( self._clause_register, self._output_register[self._output_idx], self._ancillary_register, mode=mct_mode ) # uncompute all clauses for clause_index, clause_expr in enumerate(self._ast[1:]): if clause_expr[0] == 'or': lits = [l[1] for l in clause_expr[1:]] else: # clause_expr[0] == 'lit': lits = [clause_expr[1]] flags = BooleanLogicNormalForm._lits_to_flags(lits) circuit.OR( self._variable_register, self._clause_register[clause_index], self._ancillary_register, flags=flags, mct_mode=mct_mode ) return circuit class DNF(BooleanLogicNormalForm): """ Class for constructing circuits for Disjunctive Normal Forms """ def construct_circuit( self, circuit=None, variable_register=None, clause_register=None, output_register=None, ancillary_register=None, mct_mode='basic' ): """ Construct circuit. Args: circuit (QuantumCircuit): The optional circuit to extend from variable_register (QuantumRegister): The optional quantum register to use for problem variables clause_register (QuantumRegister): The optional quantum register to use for problem clauses output_register (QuantumRegister): The optional quantum register to use for holding the output ancillary_register (QuantumRegister): The optional quantum register to use as ancilla mct_mode (str): The mode to use for building Multiple-Control Toffoli Returns: QuantumCircuit: quantum circuit. """ circuit = self._set_up_circuit( circuit=circuit, variable_register=variable_register, clause_register=clause_register, output_register=output_register, ancillary_register=ancillary_register, mct_mode=mct_mode ) if self._depth == 0: self._construct_circuit_for_tiny_expr(circuit) elif self._depth == 1: lits = [l[1] for l in self._ast[1:]] flags = BooleanLogicNormalForm._lits_to_flags(lits) circuit.OR( self._variable_register, self._output_register[0], self._ancillary_register, flags=flags, mct_mode=mct_mode ) else: # self._depth == 2 # compute all clauses for clause_index, clause_expr in enumerate(self._ast[1:]): if clause_expr[0] == 'and': lits = [l[1] for l in clause_expr[1:]] elif clause_expr[0] == 'lit': lits = [clause_expr[1]] else: raise AquaError( 'Operator "{}" of clause {} in logic expression {} is unexpected.'.format( clause_expr[0], clause_index, self._ast) ) flags = BooleanLogicNormalForm._lits_to_flags(lits) circuit.AND( self._variable_register, self._clause_register[clause_index], self._ancillary_register, flags=flags, mct_mode=mct_mode ) # init the output qubit to 1 circuit.u3(pi, 0, pi, self._output_register[self._output_idx]) # collect results from all clauses circuit.u3(pi, 0, pi, self._clause_register) circuit.mct( self._clause_register, self._output_register[self._output_idx], self._ancillary_register, mode=mct_mode ) circuit.u3(pi, 0, pi, self._clause_register) # uncompute all clauses for clause_index, clause_expr in enumerate(self._ast[1:]): if clause_expr[0] == 'and': lits = [l[1] for l in clause_expr[1:]] else: # clause_expr[0] == 'lit': lits = [clause_expr[1]] flags = BooleanLogicNormalForm._lits_to_flags(lits) circuit.AND( self._variable_register, self._clause_register[clause_index], self._ancillary_register, flags=flags, mct_mode=mct_mode ) return circuit class ESOP(BooleanLogicNormalForm): """ Class for constructing circuits for Exclusive Sum of Products """ def construct_circuit( self, circuit=None, variable_register=None, output_register=None, output_idx=None, ancillary_register=None, mct_mode='basic' ): """ Construct circuit. Args: circuit (QuantumCircuit): The optional circuit to extend from variable_register (QuantumRegister): The optional quantum register to use for problem variables output_register (QuantumRegister): The optional quantum register to use for holding the output output_idx (int): The index of the output register to write to ancillary_register (QuantumRegister): The optional quantum register to use as ancilla mct_mode (str): The mode to use for building Multiple-Control Toffoli Returns: QuantumCircuit: quantum circuit. """ circuit = self._set_up_circuit( circuit=circuit, variable_register=variable_register, clause_register='skip', output_register=output_register, output_idx=output_idx, ancillary_register=ancillary_register, mct_mode=mct_mode ) # compute all clauses if self._depth == 0: self._construct_circuit_for_tiny_expr(circuit, output_idx=output_idx) else: for clause_index, clause_expr in enumerate(self._ast[1:]): if clause_expr[0] == 'and': lits = [l[1] for l in clause_expr[1:]] else: # clause_expr[0] == 'lit': lits = [clause_expr[1]] flags = BooleanLogicNormalForm._lits_to_flags(lits) circuit.AND( self._variable_register, self._output_register[self._output_idx], self._ancillary_register, flags=flags, mct_mode=mct_mode ) return circuit
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Quantum Fourier Transform Circuit. """ import numpy as np from qiskit import QuantumRegister, QuantumCircuit from qiskit.aqua import AquaError from qiskit.aqua.utils.circuit_utils import is_qubit_list class FourierTransformCircuits: @staticmethod def _do_swaps(circuit, qubits): num_qubits = len(qubits) for i in range(num_qubits // 2): circuit.cx(qubits[i], qubits[num_qubits - i - 1]) circuit.cx(qubits[num_qubits - i - 1], qubits[i]) circuit.cx(qubits[i], qubits[num_qubits - i - 1]) @staticmethod def construct_circuit( circuit=None, qubits=None, inverse=False, approximation_degree=0, do_swaps=True ): """ Construct the circuit representing the desired state vector. Args: circuit (QuantumCircuit): The optional circuit to extend from. qubits (QuantumRegister | list of qubits): The optional qubits to construct the circuit with. approximation_degree (int): degree of approximation for the desired circuit inverse (bool): Boolean flag to indicate Inverse Quantum Fourier Transform do_swaps (bool): Boolean flag to specify if swaps should be included to align the qubit order of input and output. The output qubits would be in reversed order without the swaps. Returns: QuantumCircuit. """ if circuit is None: raise AquaError('Missing input QuantumCircuit.') if qubits is None: raise AquaError('Missing input qubits.') else: if isinstance(qubits, QuantumRegister): if not circuit.has_register(qubits): circuit.add_register(qubits) elif is_qubit_list(qubits): for qubit in qubits: if not circuit.has_register(qubit[0]): circuit.add_register(qubit[0]) else: raise AquaError('A QuantumRegister or a list of qubits is expected for the input qubits.') if do_swaps and not inverse: FourierTransformCircuits._do_swaps(circuit, qubits) qubit_range = reversed(range(len(qubits))) if inverse else range(len(qubits)) for j in qubit_range: neighbor_range = range(np.max([0, j - len(qubits) + approximation_degree + 1]), j) if inverse: neighbor_range = reversed(neighbor_range) circuit.u2(0, np.pi, qubits[j]) for k in neighbor_range: lam = 1.0 * np.pi / float(2 ** (j - k)) if inverse: lam *= -1 circuit.u1(lam / 2, qubits[j]) circuit.cx(qubits[j], qubits[k]) circuit.u1(-lam / 2, qubits[k]) circuit.cx(qubits[j], qubits[k]) circuit.u1(lam / 2, qubits[k]) if not inverse: circuit.u2(0, np.pi, qubits[j]) if do_swaps and inverse: FourierTransformCircuits._do_swaps(circuit, qubits) return circuit
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Quantum Phase Estimation Circuit. """ import numpy as np from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister from qiskit.aqua import Operator, AquaError class PhaseEstimationCircuit: def __init__( self, operator=None, state_in=None, iqft=None, num_time_slices=1, num_ancillae=1, expansion_mode='trotter', expansion_order=1, evo_time=2*np.pi, state_in_circuit_factory=None, unitary_circuit_factory=None, shallow_circuit_concat=False, pauli_list=None ): """ Constructor. Args: operator (Operator): the hamiltonian Operator object state_in (InitialState): the InitialState pluggable component representing the initial quantum state iqft (IQFT): the Inverse Quantum Fourier Transform pluggable component num_time_slices (int): the number of time slices num_ancillae (int): the number of ancillary qubits to use for the measurement expansion_mode (str): the expansion mode (trotter|suzuki) expansion_order (int): the suzuki expansion order evo_time (float): the evolution time state_in_circuit_factory (CircuitFactory): the initial state represented by a CircuitFactory object unitary_circuit_factory (CircuitFactory): the problem unitary represented by a CircuitFactory object shallow_circuit_concat (bool): indicate whether to use shallow (cheap) mode for circuit concatenation pauli_list ([Pauli]): the flat list of paulis for the operator """ if ( operator is not None and unitary_circuit_factory is not None ) or ( operator is None and unitary_circuit_factory is None ): raise AquaError('Please supply either an operator or a unitary circuit factory but not both.') self._operator = operator if operator is not None: self._pauli_list = operator.get_flat_pauli_list() if pauli_list is None else pauli_list self._unitary_circuit_factory = unitary_circuit_factory self._state_in = state_in self._state_in_circuit_factory = state_in_circuit_factory self._iqft = iqft self._num_time_slices = num_time_slices self._num_ancillae = num_ancillae self._expansion_mode = expansion_mode self._expansion_order = expansion_order self._evo_time = evo_time self._shallow_circuit_concat = shallow_circuit_concat self._ancilla_phase_coef = 1 self._state_register = None self._ancillary_register = None self._auxiliary_register = None self._circuit = None def construct_circuit( self, state_register=None, ancillary_register=None, auxiliary_register=None, measurement=False, ): """ Construct the Phase Estimation circuit Args: state_register (QuantumRegister): the optional register to use for the quantum state ancillary_register (QuantumRegister): the optional register to use for the ancillary measurement qubits auxiliary_register (QuantumRegister): an optional auxiliary quantum register measurement (bool): Boolean flag to indicate if measurement should be included in the circuit. Returns: the QuantumCircuit object for the constructed circuit """ if self._circuit is None: if ancillary_register is None: a = QuantumRegister(self._num_ancillae, name='a') else: a = ancillary_register self._ancillary_register = a if state_register is None: if self._operator is not None: q = QuantumRegister(self._operator.num_qubits, name='q') elif self._unitary_circuit_factory is not None: q = QuantumRegister(self._unitary_circuit_factory.num_target_qubits, name='q') else: raise RuntimeError('Missing operator specification.') else: q = state_register self._state_register = q qc = QuantumCircuit(a, q) if auxiliary_register is None: num_aux_qubits, aux = 0, None if self._state_in_circuit_factory is not None: num_aux_qubits = self._state_in_circuit_factory.required_ancillas() if self._unitary_circuit_factory is not None: num_aux_qubits = max(num_aux_qubits, self._unitary_circuit_factory.required_ancillas_controlled()) if num_aux_qubits > 0: aux = QuantumRegister(num_aux_qubits, name='aux') qc.add_register(aux) else: aux = auxiliary_register qc.add_register(aux) # initialize state_in if self._state_in is not None: qc.data += self._state_in.construct_circuit('circuit', q).data elif self._state_in_circuit_factory is not None: self._state_in_circuit_factory.build(qc, q, aux) # Put all ancillae in uniform superposition qc.u2(0, np.pi, a) # phase kickbacks via dynamics if self._operator is not None: # check for identify paulis to get its coef for applying global phase shift on ancillae later num_identities = 0 for p in self._pauli_list: if np.all(np.logical_not(p[1].z)) and np.all(np.logical_not(p[1].x)): num_identities += 1 if num_identities > 1: raise RuntimeError('Multiple identity pauli terms are present.') self._ancilla_phase_coef = p[0].real if isinstance(p[0], complex) else p[0] if len(self._pauli_list) == 1: slice_pauli_list = self._pauli_list else: if self._expansion_mode == 'trotter': slice_pauli_list = self._pauli_list elif self._expansion_mode == 'suzuki': slice_pauli_list = Operator._suzuki_expansion_slice_pauli_list( self._pauli_list, 1, self._expansion_order ) else: raise ValueError('Unrecognized expansion mode {}.'.format(self._expansion_mode)) for i in range(self._num_ancillae): qc_evolutions = Operator.construct_evolution_circuit( slice_pauli_list, -self._evo_time, self._num_time_slices, q, a, ctl_idx=i, shallow_slicing=self._shallow_circuit_concat ) if self._shallow_circuit_concat: qc.data += qc_evolutions.data else: qc += qc_evolutions # global phase shift for the ancilla due to the identity pauli term qc.u1(self._evo_time * self._ancilla_phase_coef * (2 ** i), a[i]) elif self._unitary_circuit_factory is not None: for i in range(self._num_ancillae): self._unitary_circuit_factory.build_controlled_power(qc, q, a[i], 2 ** i, aux) # inverse qft on ancillae self._iqft.construct_circuit(mode='circuit', qubits=a, circuit=qc, do_swaps=False) if measurement: c_ancilla = ClassicalRegister(self._num_ancillae, name='ca') qc.add_register(c_ancilla) # qc.barrier(a) qc.measure(a, c_ancilla) self._circuit = qc return self._circuit @property def state_register(self): return self._state_register @property def ancillary_register(self): return self._ancillary_register @property def auxiliary_register(self): return self._auxiliary_register
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
mmetcalf14
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Arbitrary State-Vector Circuit. """ from qiskit import QuantumRegister, QuantumCircuit from qiskit.aqua import AquaError from qiskit.aqua.utils.arithmetic import normalize_vector, is_power_of_2, log2 from qiskit.aqua.utils.circuit_utils import convert_to_basis_gates class StateVectorCircuit: def __init__(self, state_vector): """Constructor. Args: state_vector: vector representation of the desired quantum state """ if not is_power_of_2(len(state_vector)): raise AquaError('The length of the input state vector needs to be a power of 2.') self._num_qubits = log2(len(state_vector)) self._state_vector = normalize_vector(state_vector) def construct_circuit(self, circuit=None, register=None): """ Construct the circuit representing the desired state vector. Args: circuit (QuantumCircuit): The optional circuit to extend from. register (QuantumRegister): The optional register to construct the circuit with. Returns: QuantumCircuit. """ if register is None: register = QuantumRegister(self._num_qubits, name='q') # in case the register is a list of qubits if type(register) is list: # create empty circuit if necessary if circuit is None: circuit = QuantumCircuit() # loop over all qubits and add the required registers for q in register: if not circuit.has_register(q[0]): circuit.add_register(q[0]) # construct state initialization circuit temp = QuantumCircuit(*circuit.qregs) # otherwise, if it is a real register else: if len(register) < self._num_qubits: raise AquaError('The provided register does not have enough qubits.') if circuit is None: circuit = QuantumCircuit(register) else: if not circuit.has_register(register): circuit.add_register(register) # TODO: add capability to start in the middle of the register temp = QuantumCircuit(register) temp.initialize(self._state_vector, [register[i] for i in range(self._num_qubits)]) temp = convert_to_basis_gates(temp) # remove the reset gates terra's unroller added temp.data = [g for g in temp.data if not g[0].name == 'reset'] circuit += temp return circuit