markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
|---|---|---|---|---|
Trying the Koren's triode phenomenological model.
$$E_1 = \frac{E_{G2}}{k_P} log\left(1 + exp^{k_P (\frac{1}{u} + \frac{E_{G1}}{E_{G2}})}\right)$$
$$I_P = \left(\frac{{E_1}^X}{k_{G1}}\right) \left(1+sgn(E_1)\right)atan\left(\frac{E_P}{k_{VB}}\right)$$
Need to fit $X, k_{G1}, k_P, k_{VB}$
|
mu = 11.0
def sgn(val):
if val >= 0:
return 1
if val < 0:
return -1
def funcKoren(x,X,kG1,kP,kVB):
rv = []
for VV in x:
EG2 = VV[0]
EG1 = VV[1]
EP = VV[2]
if kP < 0:
kP = 0
#print EG2,EG1,EP,kG1,kP,kVB,exp(kP*(1/mu + EG1/EG2))
E1 = (EG2/kP) * log(1 + exp(kP*(1/mu + EG1/EG2)))
if E1 > 0:
IP = (pow(E1,X)/kG1)*(1 + sgn(E1))*atan(EP/kVB)
else:
IP = 0
rv.append(IP)
return rv
popt, pcov = curve_fit(funcKoren,x,y,p0=[1.3,1000,40,20])
#print popt,pcov
(X,kG1,kP,kVB) = popt
print "X=%.8f kG1=%.8f kP=%.8f kVB=%.8f"%(X,kG1,kP,kVB)
# koren's values 12AX7 mu=100 X=1.4 kG1=1060 kP=600 kVB=300
|
experiments/02-modeling/pentode/pentode-modeling.ipynb
|
holla2040/valvestudio
|
mit
|
<pre>
SPICE model
see http://www.normankoren.com/Audio/Tubemodspice_article_2.html#Appendix_A
.SUBCKT 6550 1 2 3 4 ; P G1 C G2 (PENTODE)
+ PARAMS: MU=7.9 EX=1.35 KG1=890 KG2=4200 KP=60 KVB=24
E1 7 0 VALUE={V(4,3)/KP*LOG(1+EXP((1/MU+V(2,3)/V(4,3))*KP))}
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1*ATAN(V(1,3)/KVB)}
G2 4 3 VALUE={(EXP(EX*(LOG((V(4,3)/MU)+V(2,3)))))/KG2}
</pre>
|
EG2 = x[0][0]
def IaCalcKoren(EG1,EP):
global X,kG1,kP,kVB,mu
E1 = (EG2/kP) * log(1 + exp(kP*(1/mu + EG1/EG2)))
if E1 > 0:
IP = (pow(E1,X)/kG1)*(1 + sgn(E1))*atan(EP/kVB)
else:
IP = 0
return IP
Vgk = np.linspace(0,-32,9)
Vak = np.linspace(0,400,201)
vIaCalcKoren = np.vectorize(IaCalcKoren,otypes=[np.float])
Iakoren = vIaCalcKoren(Vgk[:,None],Vak[None,:])
plt.figure(figsize=(14,6))
for i in range(len(Vgk)):
plt.plot(Vak,Iakoren[i],label=Vgk[i])
plt.scatter(Vaks,y,marker="+")
plt.legend(loc='upper left')
plt.suptitle('EL34@%dV Child-Langmuir-Compton-Koren Curve-Fit Model (Philips 1949)'%Vg2k, fontsize=14, fontweight='bold')
plt.grid()
plt.ylim((0,0.5))
plt.xlim((0,400))
plt.show()
plt.figure(figsize=(14,6))
for i in range(len(Vgk)):
plt.plot(Vak,Iavdv[i],label=Vgk[i],color='red')
plt.plot(Vak,Iakoren[i],label=Vgk[i],color='blue')
plt.scatter(Vaks,y,marker="+")
plt.legend(loc='upper left')
plt.suptitle('EL34@%dV CLCVDV & CLCK Curve-Fit Model (Philips 1949)'%Vg2k, fontsize=14, fontweight='bold')
plt.grid()
plt.ylim((0,0.5))
plt.xlim((0,400))
plt.show()
|
experiments/02-modeling/pentode/pentode-modeling.ipynb
|
holla2040/valvestudio
|
mit
|
Graf da osnovno idejo o tem, kaj uporabiti
|
ratingsNum=list()
for number in np.arange(1,10):
ratingsNum.append(len(data[data[:,2]==number,2]))
plt.figure()
plt.bar(np.arange(1,10),ratingsNum, 0.8, color="blue")
plt.show()
|
BaseClass/Porazdelitve.ipynb
|
sorter43/PR2017LSBOLP
|
apache-2.0
|
Ker imamo vnaprej dolečen interval, ki ne ustreza Gaussu najbolje, sem se odločil uporabiti beta porazdelitev
|
from scipy.stats import beta
a=8
b=2
n=1000
sample=beta.rvs(a, b, size=n)
xr = np.linspace(0, 1, 100)# interval X
P = [beta.pdf(x, a, b) for x in xr] # porazdelitvena funkcija
# Histogram - porazdelitev naključlnih VZORCEV x glede na P(x)
plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
plt.title("Vzorec")
plt.hist(sample, color="red")
plt.xlabel("X")
plt.ylabel("Število primerov")
# Graf porazdelitvene funkcije
plt.subplot(1, 2, 2)
plt.title("Graf porazdelitve")
plt.plot(xr, P, color="red") # nariši P(x)
plt.ylabel("P(x)")
plt.xlabel("X")
plt.show()
|
BaseClass/Porazdelitve.ipynb
|
sorter43/PR2017LSBOLP
|
apache-2.0
|
这里本身我要输出(1,2,3 )但是在ipython中'_'自动识别成最新的(上一个值) 类似于matlab 中的ans
当然在python中这个多变量赋值字符串中也可以,任何迭代对象
|
s = 'acfun'
a,b,c,d,e = s
a
e
|
data_structure_and_algorithm_py2_1.ipynb
|
zlxs23/Python-Cookbook
|
apache-2.0
|
只要将两边的变量或赋值数对齐就可利用任何迭代对象
1.2 解压可迭代对象赋值给多个变量
Python的星号表达式可以用来解决这个问题:如果一个可迭代对象的元素个数超过变量个数时,会抛出一个 ValueError 。 那么怎样才能从这个可迭代对象中解压出N个元素出来?
其实这里* 表示python中的可变参数
|
record = ('maz',18,'13679259627','62627')
name,age,*tel = record
len(record)
name,age,*tel = record
name,age,**tel = record
|
data_structure_and_algorithm_py2_1.ipynb
|
zlxs23/Python-Cookbook
|
apache-2.0
|
不科学啊,怎么星号没有用了
|
2**4
*ta = record
|
data_structure_and_algorithm_py2_1.ipynb
|
zlxs23/Python-Cookbook
|
apache-2.0
|
2. Uso de Pandas para descargar datos de precios de cierre
Una vez cargados los paquetes, es necesario definir los tickers de las acciones que se usarán, la fuente de descarga (Yahoo en este caso, pero también se puede desde Google) y las fechas de interés. Con esto, la función DataReader del paquete pandas_datareader bajará los precios solicitados.
Nota: Usualmente, las distribuciones de Python no cuentan, por defecto, con el paquete pandas_datareader. Por lo que será necesario instalarlo aparte. El siguiente comando instala el paquete en Anaconda:
*conda install -c conda-forge pandas-datareader *
|
assets = ['AAPL','MSFT','AA','AMZN','KO','QAI']
closes = portfolio_func.get_historical_closes(assets, '2016-01-01', '2017-09-22')
|
02. Parte 2/15. Clase 15/.ipynb_checkpoints/11Class NB-checkpoint.ipynb
|
jdsanch1/SimRC
|
mit
|
Par exemple si nous nous intéressons a l'évolution du cours des actions (valeurs) de différentes entreprises cette année, nous verrons que la pluspart des outils existent et sont disponibles.
Valeurs recherchées :
IBM
YELP
GOOGLE
BRUKER
|
symbols_list = ['IBM','YELP', 'GOOG']
for ticker in symbols_list:
d[ticker] = DataReader(ticker, "yahoo", '2016-01-01')
# L'execution de cette fonction précise que vous ayez accés à Internet
pan = pandas.Panel(d)
df1 = pan.minor_xs('Adj Close')
px=df1.asfreq('B',method='pad')
rets = px.pct_change()
((1+ rets).cumprod() -1).plot()
|
Cours13-DILLMANN-ISEP2016.ipynb
|
DillmannFrench/Intro-PYTHON
|
gpl-3.0
|
2) Visualisation géométrique
|
from mpl_toolkits.mplot3d import *
import matplotlib.pyplot as plt
import numpy as np
from random import random, seed
from matplotlib import cm
#%%%%%%%%% Presentation d'une bulle rouge %%%%%%%%#
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = 10 * np.outer(np.cos(u), np.sin(v))
y = 10 * np.outer(np.sin(u), np.sin(v))
z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(x, y, z, rstride=2, cstride=2, linewidth=0, alpha=1, color='y', antialiased=True, edgecolor=(0,0,0,0))
plt.show()
|
Cours13-DILLMANN-ISEP2016.ipynb
|
DillmannFrench/Intro-PYTHON
|
gpl-3.0
|
Visualisation d'un phénomène physique
L'equation de Biot-et-Savart
|
import numpy as np
# Constantes
my0=4*np.pi*1e-7; # perméabilité du vide
I0=-1; # Amplitude du courant
# le courant circule de gauche à droite
# Dimensions
d=25 # Diametre de la spire (mm)
segments=100 # discretization de la spire
alpha = 2*np.pi/(segments-1) # discretization de l'angle
# initialisarion de la spire
x=[i*0 for i in range(segments)]
y=[d/2*np.sin(i*alpha) for i in range(segments)]
z=[-d/2*np.cos(i*alpha) for i in range(segments)]
#Distance caracteristique, des filaments
distance_char=np.sqrt((z[2]-z[1])**2+(y[2]-y[1])**2);
# Definition du sens du positif du courant : gauche -> droite
# pour le calcul les longeurs sont exprimées en m
x_spire=np.array([x])*1e-3;
y_spire=np.array([y])*1e-3;
z_spire=np.array([z])*1e-3;
#%%%%%%%%%%%%%%% Affichage de la spire %%%%%%%%%%%%%%%%%%%%%%%%%%%#
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca(projection='3d')
plt.plot(([0,0]),([0,0]),([-0.05,0.05]), 'b-', label='ligne', linewidth=2)
plt.plot(y_spire, z_spire, 'g.', label='spire 1', linewidth=2)
plt.show()
#%%%%%%%%%% Calcul du champ magnetique en utilisant Biot et Savart
ndp=50 # Nombre de points
# limites x
xmin=-0.05
xmax= 0.05
# limites y
ymin=-0.05
ymax=+0.05
# limites z
zmin=-0.05
zmax=+0.05
dx=(xmax-xmin)/(ndp-1) #increment x
dy=(ymax-ymin)/(ndp-1) # increment y
dz=(zmax-zmin)/(ndp-1) # increment z
#%%%%%%%%%%%%%%% Calcul magnetostatique %%%%%%%%%%%%%%%%%%%%%%%%%%%#
bxf=np.zeros(ndp) # initialization de la composante Bx du champ
byf=np.zeros(ndp) # initialization de la composante By du champ
bzf=np.zeros(ndp) # initialization de la composante Bz du champ
I0f1=my0*I0/(4*np.pi) # Magnétostatique (on multiplie le courrant
#% $$ \mu_0/(4.\pi)par $$)
# Intégation du champ induit en un point de la ligne bleue
# par le courant circulant sur chanque segment de Boucle verte
bfx=0
bfy=0
bfz=0
nseg=np.size(z_spire)-1
for i in range(ndp):
#Initialisation des positions
xM=(xmin+i*dx)
yM=0
zM=0
#Initialisation des champs locaux
bfx=0
bfy=0
bfz=0
R=np.array([xM,yM,zM])
# vecteur position sur
# le point qui doit être calcul
# en intégrant la contribution
# de tous les courants le long
# de la boucle verte
for wseg in range(nseg):
xs=x_spire[0][wseg]
ys=y_spire[0][wseg]
zs=z_spire[0][wseg]
Rs=np.array([xs, ys, zs])
drsx=(x_spire[0][wseg+1]-x_spire[0][wseg])
drsy=(y_spire[0][wseg+1]-y_spire[0][wseg])
drsz=(z_spire[0][wseg+1]-z_spire[0][wseg])
drs=np.array([drsx, drsy, drsz])
#direction du courant
Delta_R= Rs - R
#vecteur entre l'élement de spire et
#le point où est calcul le champ
Delta_Rdrs=sum(Delta_R * drs)
Delta_Rdist=np.sqrt(Delta_R[0]**2+Delta_R[1]**2+Delta_R[2]**2)
#Delta_Rdis2=Delta_Rdist**2
Delta_Rdis3=Delta_Rdist**3
b2=1.0/Delta_Rdis3
b12=I0f1*b2*(-1)
# Produit vectoriel
Delta_Rxdrs_x=Delta_R[1]*drsz-Delta_R[2]*drsy
Delta_Rxdrs_y=Delta_R[2]*drsx-Delta_R[0]*drsz
Delta_Rxdrs_z=Delta_R[0]*drsy-Delta_R[1]*drsx
#Intégration
bfx=bfx+b12*Delta_Rxdrs_x
bfy=bfy+b12*Delta_Rxdrs_y
bfz=bfz+b12*Delta_Rxdrs_z
# Il faut utiliser un champ définit comme 3 listes :
# une liste pour chaque abscisse
bxf[i]+=bfx
byf[i]+=bfy
bzf[i]+=bfz
#%%%%%%%%%%% Modèle Théorique %%%%%%%%%%%%%%%%%%#
r=d/2; # rayon de la spire en mm
r=r*1e-3; # rayon de la spire en m
bx_analytique=[abs(my0*I0)*(r)**2/(2*((r)**2+(x)**2)**(3/2)) for x in np.linspace(xmin, xmax, ndp, endpoint = True)]
|
Cours13-DILLMANN-ISEP2016.ipynb
|
DillmannFrench/Intro-PYTHON
|
gpl-3.0
|
$$B(x)=\frac{\mu_o}{4\pi}.I_o.\frac{r^2}{2 (r^2 +x^2)^{3/2} }$$
|
#%%%%%%%%%%% Visualisation %%%%%%%%%%%%%%%%%%%%%%%#
plt.plot(np.linspace(xmin, xmax, ndp, endpoint = True) , bxf,'bo')
plt.plot(np.linspace(xmin, xmax, ndp, endpoint = True) , bx_analytique,'r-')
|
Cours13-DILLMANN-ISEP2016.ipynb
|
DillmannFrench/Intro-PYTHON
|
gpl-3.0
|
Une autre manière de définir les fonctions : les Lambdas
|
def my_funct(f,arg):
return f(arg)
my_funct(lambda x : 2*x*x,5)
|
Cours13-DILLMANN-ISEP2016.ipynb
|
DillmannFrench/Intro-PYTHON
|
gpl-3.0
|
Lambda est un racourci pour créer des fonctions anonymes
Elles ne sont pas plus faciles à ecrire
|
a=(lambda x: x*x)(8)
print(a)
def polynome(x):
return x**2 + 5*x + 4
racine=-4
print("La racine d'un polynome est la valeur pour laquelle est {0} " \
.format(polynome(racine)))
print("Avec un lambda c'est plus simple : ",end="")
print((lambda x:x**2 + 5*x + 4)(-4))
X=np.linspace(-10,10,50,endpoint = True)
plt.plot(X,(lambda x:x**2 + 5*x + 4)(X))
plt.show()
|
Cours13-DILLMANN-ISEP2016.ipynb
|
DillmannFrench/Intro-PYTHON
|
gpl-3.0
|
Critical to note that this ignores the queuing and assumes that xx people are processed at each time interval at the counter. This will be used in conjunction with the scanner output to choose the bottle neck at each point in time
|
EXIT_NUMER = zip(FRISK_PATTERN,SCAN_PATTERN)
EXIT_NUMBER = [min(k) for k in EXIT_NUMER]
#plot(EXIT_NUMBER,'o')
#show()
EXIT_PATTERN = []
for index, item in enumerate(EXIT_NUMBER):
EXIT_PATTERN += [index]*item
|
Blog Post Content/Airport Waiting Time.ipynb
|
akshayrangasai/akshayrangasai.github.io
|
mit
|
Minimum number of processed people between the scanners and the frisking is the bottleneck at any given time, and this will be the exit rate at any given time.
|
RESIDUAL_ARRIVAL_PATTERN = ARRIVAL_LIST[0:len(EXIT_PATTERN)]
WAIT_TIMES = [m-n for m,n in zip(EXIT_PATTERN,RESIDUAL_ARRIVAL_PATTERN)]
#print EXIT_PATTERN
'''
for i,val in EXIT_PATTERN:
WAIT_TIMES += [ARRIVAL_PATTERN(i) - val]
'''
plot(WAIT_TIMES,'r-')
ylabel('Wait times for people entering the queue')
xlabel("Order of entering the queue")
ylim([0,40])
show()
|
Blog Post Content/Airport Waiting Time.ipynb
|
akshayrangasai/akshayrangasai.github.io
|
mit
|
Building predictive models
First we will split our data into features and the target:
|
data.head()
X_train = data.drop(columns='species')
y_train = data['species'].values
|
rampwf/tests/kits/iris/iris_starting_kit.ipynb
|
paris-saclay-cds/ramp-workflow
|
bsd-3-clause
|
A basic predictive model using the scikit-learn random forest classifier will be presented below:
|
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=1, max_leaf_nodes=2, random_state=61)
|
rampwf/tests/kits/iris/iris_starting_kit.ipynb
|
paris-saclay-cds/ramp-workflow
|
bsd-3-clause
|
We can cross-validate our classifier (clf) using cross_val_score. Below we will have specified cv=8 meaning KFold cross-valdiation splitting will be used, with 8 folds. The accuracy classification score is calculated for each split. The output score will be an array of 8 scores from each KFold. The score mean and standard of the 8 scores is printed at the end.
|
from sklearn.model_selection import cross_val_score
scores = cross_val_score(clf, X_train, y_train, cv=8, scoring='accuracy')
print("mean: %e (+/- %e)" % (scores.mean(), scores.std()))
|
rampwf/tests/kits/iris/iris_starting_kit.ipynb
|
paris-saclay-cds/ramp-workflow
|
bsd-3-clause
|
RAMP submissions
For submitting to the RAMP site, you will need to write a submission.py file that defines a get_estimator function that returns a scikit-learn estimator.
For example, to submit our basic example above, we would define our classifier clf within the function and return clf at the end. Remember to include all the necessary imports at the beginning of the file.
|
from sklearn.ensemble import RandomForestClassifier
def get_estimator():
clf = RandomForestClassifier(n_estimators=1, max_leaf_nodes=2,
random_state=61)
return clf
|
rampwf/tests/kits/iris/iris_starting_kit.ipynb
|
paris-saclay-cds/ramp-workflow
|
bsd-3-clause
|
If you take a look at the sample submission in the directory submissions/starting_kit, you will find a file named classifier.py, which has the above code in it.
You can test that the sample submission works by running ramp_test_submission in your terminal (ensure that ramp-workflow has been installed and you are in the iris ramp kit directory). Alternatively, within this notebook you can run:
|
!ramp_test_submission
|
rampwf/tests/kits/iris/iris_starting_kit.ipynb
|
paris-saclay-cds/ramp-workflow
|
bsd-3-clause
|
Path to configuration file with login information to the AAS SQL server
|
config_filename = "/Users/adrian/projects/aas-abstract-sorter/sql_login.yml"
with open(config_filename) as f:
config = yaml.load(f.read())
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
Establish a database connection
|
engine = create_engine('mysql+pymysql://{user}:{password}@{server}/{database}'.format(**config))
engine.connect()
_presentation_cache = dict()
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
Get all presentations and sessions from AAS 227
|
query = """
SELECT session.so_id, presentation.title,
presentation.abstract, presentation.id
FROM session, presentation
WHERE session.meeting_code = 'aas227'
AND session.so_id = presentation.session_so_id
AND presentation.status IN ('Sessioned', '')
AND session.type IN (
'Oral Session'
, 'Special Session'
, 'Splinter Meeting'
)
ORDER BY presentation.id;
"""
result = engine.execute(query)
all_results = result.fetchall()
presentation_df = pd.DataFrame(all_results, columns=all_results[0].keys())
presentation_df['abstract'] = presentation_df['abstract'].str.replace('<[^<]+?>', '')
query = """
SELECT session.title, session.start_date_time, session.end_date_time, session.so_id
FROM session
WHERE session.meeting_code = 'aas227'
AND session.type IN (
'Oral Session'
, 'Special Session'
, 'Splinter Meeting'
)
ORDER BY session.so_id;
"""
result = engine.execute(query)
session_results = result.fetchall()
session_df = pd.DataFrame(session_results, columns=session_results[0].keys())
session_df['start_date_time'] = pd.to_datetime(session_df['start_date_time'])
session_df['end_date_time'] = pd.to_datetime(session_df['end_date_time'])
session_df = session_df[1:] # zero-th entry has a corrupt date
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
Define a scikit-learn count vectorizer with a custom word tokenizer
|
# based on http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html
stemmer = PorterStemmer()
def stem_tokens(tokens, stemmer):
stemmed = []
for item in tokens:
stemmed.append(stemmer.stem(item))
return stemmed
def tokenize(text):
# remove non letters
text = re.sub("[^a-zA-Z]", " ", text)
# tokenize
tokens = nltk.word_tokenize(text)
# stem
stems = stem_tokens(tokens, stemmer)
return stems
vectorizer = text.CountVectorizer(
analyzer='word',
tokenizer=tokenize,
lowercase=True,
stop_words='english',
)
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
Fit the count vectorizer to all AAS abstracts from AAS 227
|
count_matrix = vectorizer.fit_transform(presentation_df['abstract']).toarray()
count_matrix.shape
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
As a quick check, what are the 10 most common words in AAS abstracts?
|
ten_most_common_idx = count_matrix.sum(axis=0).argsort()[::-1][:10]
feature_words = np.array(vectorizer.get_feature_names())
print(feature_words[ten_most_common_idx])
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
For each pair of abstracts, compute the cosine similarity
|
similiarity_matrix = np.zeros((count_matrix.shape[0],count_matrix.shape[0]))
for ix1 in range(count_matrix.shape[0]):
for ix2 in range(count_matrix.shape[0]):
num = count_matrix[ix1].dot(count_matrix[ix2])
denom = np.linalg.norm(count_matrix[ix1]) * np.linalg.norm(count_matrix[ix2])
if num < 1: # if no common words, the vectors are orthogonal
v = 0.
else:
v = num / denom
similiarity_matrix[ix1,ix2] = v
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
Find the top ten most similar abstracts
|
similiarity_matrix_1d = np.triu(similiarity_matrix).ravel()
top_ten = sorted(np.unique(similiarity_matrix_1d[~np.isclose(similiarity_matrix_1d,1.)]), reverse=True)[:10]
for ix1,ix2 in zip(list(ix[0]), list(ix[1])):
pres1 = get_presentation(presentation_ids[ix1])
pres2 = get_presentation(presentation_ids[ix2])
print(pres1['title'])
print(pres2['title'])
print()
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
Those seem pretty similar! Looks like the code is working...
Now we'll predict which simultaneous sessions have the most overlap
For now, we'll start with the first day of conference talks, 5 Jan. We'll also only check for sessions that have the same start time (of course, we should really be looking at any overlapping sessions, but this is fine as a first pass...).
|
def session_similarity(so_id1, so_id2):
"""
Compute the similarity between two sessions by getting the sub-matrix of the
similarity matrix for all pairs of presentations from each session.
"""
presentations_session1 = presentation_df[presentation_df['so_id'] == so_id1]
presentations_session2 = presentation_df[presentation_df['so_id'] == so_id2]
if len(presentations_session1) == 0 or len(presentations_session2) == 0:
# no presentations in session
return np.array([])
index_pairs = cartesian((presentations_session1.index,presentations_session2.index)).T
sub_matrix = similiarity_matrix[(index_pairs[0],index_pairs[1])]
shape = (len(presentations_session1), len(presentations_session2))
sub_matrix = sub_matrix.reshape(shape)
return sub_matrix
for name,group in session_df[session_df['start_date_time'] >= datetime(2016, 1, 5)].groupby('start_date_time'):
for title1,so_id1 in zip(group['title'],group['so_id']):
for title2,so_id2 in zip(group['title'],group['so_id']):
if so_id1 >= so_id2: continue
scores = session_similarity(so_id1, so_id2)
if len(scores) == 0: # no presentations in one of the sessions
continue
if scores.max() > 0.5: # totally arbitrary threshold
print(title1)
print(title2)
print(scores.max(), np.median(scores))
print()
|
notebooks/AAS abstract similarity.ipynb
|
adrn/AASAbstractSorter
|
mit
|
Toy data from HTF, p. 339
|
def htf_p339(n_samples=2000, p=10, random_state=None):
random_state=check_random_state(random_state)
## Inputs
X = random_state.normal(size=(n_samples, max(10, p)))
## Response: \chi^2_10 0.5-prob outliers
y = (np.sum(X[:, :10]**2, axis=1) > 9.34).astype(int).reshape(-1)
return X, y
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Fix the RNG
|
random_state = np.random.RandomState(0xC01DC0DE)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Generate four samples
|
X_train, y_train = htf_p339(2000, 10, random_state)
X_test, y_test = htf_p339(10000, 10, random_state)
X_valid_1, y_valid_1 = htf_p339(2000, 10, random_state)
X_valid_2, y_valid_2 = htf_p339(2000, 10, random_state)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
<hr/>
Ensemble methods
In general any ensemble methods can be broken down into the following two
stages, possibly overlapping:
1. Populate a dictionary of base learners;
2. Combine them to get a composite predictor.
Many ML estimators can be considerd ensemble methods:
1. Regression is a linear ensemble of basis functions: predictors $x\in \mathbb{R}^{p\times 1}$;
2. Any model with additive structure, like regression/classificatio trees;
3. Feedforward Neural network is a bunch of layers of nonlinear predictors stacked one atop
the other, in a specific DAG-like manner;
Trees
A regression tree is a piecewise constant function $T:\mathcal{X} \mapsto \mathbb{R}$
having the following expression
$$ T(x) = \sum_{j=1}^J w_j 1_{R_j}(x) \,, $$
where $(R_j){j=1}^J$, $J\geq 1$, is a tree-partition of the input space,
and $(w_j){j=1}^J$ are estimated values at terminal nodes.
In a multiclass problem, a classification tree is a composition of a majority
voting decision function
$$ \mathtt{MAJ}(y) = \mathop{\text{argmax}}_{k=1\,\ldots, K} y_k \,, $$
with a scoring funciton $T:\mathcal{X} \mapsto \mathbb{R}^K$ of similar structure
as in the regression case
$$ T(x) = \sum_{j=1}^J w_j 1_{R_j}(x) \,, $$
where $(w_j)_{j=1}^J\in\mathbb{R}^K$ are vectors of class likelihoods (probabilities)
at the terminal nodes.
The tree-partition $(R_j){j=1}^J$ and node values $(w_j){j=1}^J$ result from running
a variant of the standard greedy top-down tree-induction algorithm (CART, C.45, et c.).
|
from sklearn.tree import DecisionTreeClassifier
clf1_ = DecisionTreeClassifier(max_depth=1,
random_state=random_state).fit(X_train, y_train)
clf2_ = DecisionTreeClassifier(max_depth=3,
random_state=random_state).fit(X_train, y_train)
clf3_ = DecisionTreeClassifier(max_depth=7,
random_state=random_state).fit(X_train, y_train)
clf4_ = DecisionTreeClassifier(max_depth=None,
random_state=random_state).fit(X_train, y_train)
print "Decision tree (1 levels) error:", 1 - clf1_.score(X_test, y_test)
print "Decision tree (3 levels) error:", 1 - clf2_.score(X_test, y_test)
print "Decision tree (7 levels) error:", 1 - clf3_.score(X_test, y_test)
print "Decision tree (max levels) error:", 1 - clf4_.score(X_test, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Bagging
Bagging is meta algortihm that aims at constructing an esimator by averaging
many noisyб but approximately unbiased models. The general idea is that averaging
a set of unbiased estimates, yields an estimate with much reduced variance
(provided the base estimates are uncorrelated).
Bagging works poorly on models, that linearly depend on the data (like linear
regression), and best performs on nonlinear base estimators (like trees). In
other terms bagging succeeds in building a better combined estimator, if the
base estimator is unstable. Indeed, if the learning procedure is stable, and
random perturbation of the train dataset do not affect it by much, the bagging
estimator will not differ much from a single predictor, and may even weak its
performance somewhat.
Bootstrapping
Consider a train sample $Z = (X, y) = (x_i, y_i)_{i=1}^n \in \mathcal{X}\times \mathcal{Y}$,
samplesed form a distribution $P$.
A bootstrap sample $Z^ = (z^i){i=1}^n$ is a subsample of $Z = (z_j){j=1}^n$ with
each element drawn with replacement from $Z$. More technically, a bootstrap sample
of size $l$ is a sample from the empirical distribution of the training data $Z$, denoted
by $\hat{P}$. So $Z^\sim \hat{P}^l$ means that $(z^_i){i=1}^l \sim \hat{P}$ iid, or,
similarly,
$$ z^*_i = \bigl{ z_j \text{ w. prob. } \frac{1}{n}\,,\, j=1, \ldots, n\bigr.\,. $$
An interesting property of a bootstraped sample, is that on average $36.79\%$ of
the original sample are left out of each $Z^{b}$. Indeed, the probability that a
given sample is present in $Z^$ is
$$ 1 - \bigl(1 - \frac{1}{n}\bigr)^n = 1 - e^{-1} + o(n) \approx 63.21\%\,. $$
This means that the observations not selected for the $b$-th bootstrap sample $Z^{b}$,
denoted by $Z\setminus Z^{b}$, $b=1,\ldots,B$, can be used as an independent test set.
The out-of-bag sample, $Z\setminus Z^{b}$, and for estimating the generalization
error, and for defining an OOB*-predictor.
For a given collection of bootstrap samples $(Z^{b})_{b=1}^B$ define the set of samples
the $i$-th observation does not belong to as $\Gamma_i = {b=1,\ldots, n\,:\, z_i \notin Z^{b} }$,
$i=1,\ldots, n$. For a fixed observation $i$ the set $\Gamma_i$ is empty, meaning that
$z_i$ is never out-of-bag, occurs with probability $\bigl(1 - (1-n^{-1})^n\bigr)^B
\approx (1-e^{-1})^B$, which is negligible for $B \geq 65$.
Regression
Let $\mathcal{A}$ is a learning algorithm, taking a learning sample, that learns
regression models $\hat{f}:\mathcal{X} \mapsto \mathbb{R}$, like Regression Tree,
$k$-NN, multi-layer neural netowrk et c. The bagged regression estimator is constructed
as follows:
1. Draw $B$ independent bootstrap samples $(Z^{b})_{b=1}^B$;
2. On each bootstrap sample $Z^{b}$ learn an estimator $\hat{f}^{b} = \hat{f}^{b}(\cdot; Z^{b})
= \mathcal{A}(Z^{b})(\cdot)$;
3. Construct the bagged estimator:
$$ \hat{f}^{\text{bag}}B(x) = B^{-1} \sum{b=1}^B \hat{f}^*(x) \,. $$
The bagged estimator $\hat{f}^{\text{bag}}_B$ is different from the original-sample
estimator $\hat{f}=\hat{f}(\cdot; Z)$ if the ML algorithm is nonlinear on the data,
or adaptive. Bagged estimator $\hat{f}^{\text{bag}}_B$ is a Monte-Carlo approximation
of the ideal Bagging estimator, given by the function
$$ \hat{f}^{\text{bag}}(x) = \mathop{\mathbb{E}}\nolimits_{Z^} \hat{f}^(x; Z^*) \,.$$
By the law of large numbers we have $\hat{f}^{\text{bag}}_B \to \hat{f}^{\text{bag}}$
with probability one (over the empirical distribution $\hat{P}$) as $B\to \infty$.
OOB samples can be used to construct the OOB-predictor -- an estimator, defined only
for the training samples:
$$\hat{f}^{\text{oob}}b (x_i) = \frac{1}{|\Gamma_i|} \sum{b\in \Gamma_i} \hat{f}^{*b}(x_i) \,, $$
and based on it the OOB mean squared error:
$$ \text{oob-MSE} = n^{-1} \sum_{i=1}^n \bigl(y_i - \hat{f}^{\text{oob}}_B(x_i)\bigr)^2 \,, $$
where observations with $\Gamma_i=\emptyset$ are omitted.
Classification
In case of classification the baggin estimator is constructed similarly, but there
are important caveats. In this case the ML algorithm learns a class-score function
$\hat{f}:\mathcal{X} \mapsto \mathbb{R}^K$, and then the class label is predicted
by $\mathtt{MAJ}$ (majority voting) on $\hat{f}(x)$.
The majority vote over $K$ candidates with weights $(w_k){k=1}^K\in \mathbb{R}$ is defined as
$$ \mathtt{MAJ}(w) = \mathop{\text{argmax}}{k=1\,\ldots, K} w_k \,. $$
One option is to define the bagged estimator as
$$ \hat{g}^{\text{bag}}B(x)
= \mathtt{MAJ}\Bigl( B^{-1}\sum{b=1}^B e_{k^{b}(x)} \Bigr)
\,, $$
where $e_k$ is the $k$-th unit vector in ${0,1}^{K\times 1}$, and
$k^{b}(x)=\mathtt{MAJ}\bigl(\hat{f}^{*b}(x)\bigr)$.
Basically, this ensemble classifies according to voting proportions of the population
of bootstrapped classifiers. However, when most calssifiers within the population
classify some class correctly, then its voting poportion will overestimate the
class probability.
A better option, especially for well-calibrated classfiers is to use their scores directly:
$$ \hat{g}^{\text{bag}}B(x)
= \mathtt{MAJ}\bigl( B^{-1}\sum{b=1}^B \hat{f}^{*b}(x) \bigr)
\,, $$
One can construct an OOB-classifier (or generally an OOB-predictor) using the following
idea:
$$ \hat{g}^{\text{oob}}B(x_i)
= \mathtt{MAJ}\Bigl(
\frac{1}{|\Gamma_i|} \sum{b\in \Gamma_i} e_{k^{b}(x_i)}
\Bigr)\,, $$
or
$$ \hat{g}^{\text{oob}}B(x_i)
= \mathtt{MAJ}\Bigl(
\frac{1}{|\Gamma_i|} \sum{b\in \Gamma_i} \hat{f}^{b}(x_i)
\Bigr)\,. $$
Obviously, this classifier is defined only for the observed samples data, and for only those
examples, for which $\Gamma_i\neq\emptyset$.
Bagging a good classifier (one with misclassification rate less than $0.5$) can
improve its accuracy, while bagging a poor one (with higher than $0.5$ error rate)
can seriously degrade predictive accuracy.
Usage
|
from sklearn.ensemble import BaggingClassifier, BaggingRegressor
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Both Bagging Calssifier and Regressor have similar parameters:
- n_estimators -- the number of estimators in the ensemble;
- base_estimator -- the base estimator from which the bagged ensemble is
built;
- max_samples -- the fraction of samples to be used to train each
individual base estimator. Choosing max_samples < 1.0 leads to a reduction
of variance and an increase in bias.
- max_features -- The number of features to draw from X to train each
base estimator;
- bootstrap -- determines whether samples are drawn with replacement;
- bootstrap_features -- determines whether features are drawn with replacement;
- oob_score -- determines whether to use out-of-bag samples to estimate
the generalization error;
Example
|
clf1_ = BaggingClassifier(n_estimators=10,
base_estimator=DecisionTreeClassifier(max_depth=3),
random_state=random_state).fit(X_train, y_train)
clf2_ = BaggingClassifier(n_estimators=10,
base_estimator=DecisionTreeClassifier(max_depth=None),
random_state=random_state).fit(X_train, y_train)
clf3_ = BaggingClassifier(n_estimators=100,
base_estimator=DecisionTreeClassifier(max_depth=3),
random_state=random_state).fit(X_train, y_train)
clf4_ = BaggingClassifier(n_estimators=100,
base_estimator=DecisionTreeClassifier(max_depth=None),
random_state=random_state).fit(X_train, y_train)
print "Bagged (10) decision tree (3 levels) error:", 1 - clf1_.score(X_test, y_test)
print "Bagged (10) decision tree (max levels) error:", 1 - clf2_.score(X_test, y_test)
print "Bagged (100) decision tree (3 levels) error:", 1 - clf3_.score(X_test, y_test)
print "Bagged (100) decision tree (max levels) error:", 1 - clf4_.score(X_test, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
<hr/>
Random Forest
Essentially, a random forest is an bagging ensemble constructed from a large collection
of decorrelated regression/decision trees. The algorithm specifially modifies
the tree induction procedure to produce trees with as low correlation as possible.
1. for $b=1,\ldots, B$ do:
1. Draw a bootstrap sample $Z^{b} = (z^{b}i){i=1}^P$, of size $P = \lfloor \eta n\rfloor$ from $Z$;
2. Grow a tree $T^{b}$ in a specialized manner: the greedy recursive algorithm
is the same, but each time split candidates are chosen from a random subset of
features, and the tree is grown until a minimum node size is reached;
2. Take the tree ensemble $(\hat{T}^{b})_{b=1}^B$, and return the bagged estimator;
Trees benefit the most from bagging and random forest ensembles due to their high nonlinearity.
Usage
|
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
As with Bagging, Random Forest Classifier and Regressor accept similar parametrs:
- criterion -- the function to measure the quality of a split. Supported criteria
are:
* "gini" -- Gini impurity (classification only);
* "entropy" -- the information gain (classification only);
* "mse" -- mean squared error (regression only);
- max_features -- The number of features to consider when looking for the
best split: sqrt, log2 and share in $(0,1]$ are accepted (choosing max_features < n_features
leads to a reduction of variance and an increase in bias);
- max_depth -- maximum depth of the individual regression tree estimators
(the maximum depth limits the number of nodes in the tree, the best value depends
on the interaction of the input variables);
- min_samples_split -- The minimum number of samples required to split an
internal node;
- min_samples_leaf -- The minimum number of samples required to be at a
leaf node;
- min_weight_fraction_leaf -- The minimum weighted fraction of the input
samples required to be at a leaf node;
- max_leaf_nodes -- Grow trees with max_leaf_nodes in best-first
fashion, determined by the relative reduction in impurity;
- bootstrap -- determines whether samples are drawn with replacement;
- oob_score -- determines whether to use out-of-bag samples to estimate
the generalization error.
Note that in Scikit-learn the bootstrap sample size is the same as teh original
sample ($\eta=1$).
RandomForestClassifier also handles imbalanced classification problems via
the class_weight parameter:
class_weight -- weights associated with classes given in the form of a
dictionary with elements {class_label: weight}, or a rebalancing mode:
"balanced" -- mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data;
"balanced__subsample" -- mode is the same as "balanced", except that
weights are re-computed based on the bootstrap sample for every tree grown.
These weights will be used to adjust the sample weight (passed
through the fit method).
Example
|
clf1_ = RandomForestClassifier(n_estimators=10, max_depth=3,
random_state=random_state).fit(X_train, y_train)
clf2_ = RandomForestClassifier(n_estimators=100, max_depth=3,
random_state=random_state).fit(X_train, y_train)
clf3_ = RandomForestClassifier(n_estimators=10, max_depth=None,
random_state=random_state).fit(X_train, y_train)
clf4_ = RandomForestClassifier(n_estimators=100, max_depth=None,
random_state=random_state).fit(X_train, y_train)
print "Random Forest (10, 3 levels) error:", 1 - clf1_.score(X_test, y_test)
print "Random Forest (100, 3 levels) error:", 1 - clf2_.score(X_test, y_test)
print "Random Forest (10, max levels) error:", 1 - clf3_.score(X_test, y_test)
print "Random Forest (100, max levels) error:", 1 - clf4_.score(X_test, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
<hr/>
Boosting
Classification
The underlying idea of boosting is to combine a collection of weak predictors,
into one strong powerful committee model. Most commonly a dictionary of nonlinear
base predictors, like decision trees (regression/classification), is used weak
predictors in boosting.
Consider the following classification problem: learn a hypothesis (algorithm)
$h:\mathcal{X}\mapsto {-1,1}$ that is able to generalize well beyond the given
learning sample $Z = (X, y) = (x_i, y_i){i=1}^n \in \mathcal{X}\times {-1, +1}$.
The empirical risk is the sample average loss
$$ \hat{\mathcal{R}}_Z(h(\cdot))
= n^{-1} \sum{i=1}^n L(h(x_i), y_i)
= \mathbb{E}_{(x,y)\sim Z} L(h(x), y) \,, $$
where $\mathbb{E}_Z$ denotes the expectation over the empirical measure induced
by $Z$.
Theoretically, it would be great to learn such a classifier $g:\mathcal{X}\mapsto{-1,+1}$,
that minimizes the theoretical risk
$$ \mathcal{R}(h(\cdot)) = \mathbb{E}{(x, y)\sim D} 1{y\neq h(x)} \,, $$
where $D$ is the true unknown distribution on $\mathcal{X} \times {-1, +1}$ of
the data. The ideal calssifier given by the Bayes classifier $g^*(x) = \mathbb{P}_D(y=1|X=x)$.
However, this functional is unavailable in real life, and thus we have to get
by minimizing the empirical risk, which is known to be an approximation of the
theoretical risk due to the Law of Large Numbers. We do this, hoping that
$$ \hat{h} \in
\mathop{\text{argmin}}_{g\in \mathcal{F}}
\hat{\mathcal{R}}_Z(g(\cdot)) \,, $$
also more-or-less minimizes the theoretical risk.
Furthermore for a general class of hypotheses $h:\mathcal{X}\mapsto {-1,+1}$, the
empirical risk minimization problem cannot be solved efficiently due to non-convexity
of the objective function.
FSAM
Forward Stagewise Additive Modelling is a general greedy approach
to modelling additive enesembles (generalized additive models). The basic idea
of this approach is to construct a suboptimal model incrementally in a greedy fashion.
The goal is to minimize $\sum_{i=1}^n L(y_i, f(x_i)) + \Omega(f)$ over some class
$f\in \mathcal{F}$, where $\Omega(\cdot)$ is an additive complexity regularizer.
Algorithm:
1. set $F_0 = 0$;
2. for $k = 1,\ldots, K$ do:
1. using some efficient method find at least a good approximation to the following:
$$ f_k
\leftarrow \mathop{\mathtt{argmin}}\limits_{f\in \mathcal{F}}
\sum_{i=1}^n L\bigl( y_i, F_{k-1}(x_i) + f(x_i)\bigr)
+ \Omega(F_{k-1}) + \Omega(f)
\,; $$
2. set $ F_k = F_{k-1} + f_k$;
3. Return $F_K$.
AdaBoost
The AdaBoost algorithm is based on the Forward-Stagewise Additive Modelling
approach, which implements a greedy strategy of constructing an additive model, such as
an ensemble (or even a tree), from a rich dictionary of basis functions. In classification,
it is a particular example of a convex relaxation of the empirical risk minimization problem:
AdaBoost dominates the $0-1$ loss $(y, p)\mapsto 1_{y p < 0}$ with exp-loss $(y,p)\mapsto e^{-yp}$
and minimizes a convex upper bound of the classification error.
AdaBoost.M1
initialize $\omega_{1i} \leftarrow \frac{1}{n}$, $i=1\ldots, n$;
for $m=1,\ldots, M$ do:
fit a classifier $\hat{g}m$ to $(X, y)$ with sample weights $(\omega{mi})_{i=1}^n$;
get the miscassification error $\epsilon_m = W_m^{-1} \sum_{i\,:\,y_i\neq \hat{g}m(x_i)} \omega{mi}$,
for $W_m = \sum_{i=1}^n \omega_{mi}$;
compute the log-odds ratio $\alpha_m = \log \frac{1-\epsilon_m}{\epsilon_m}$;
update the weights:
$\omega_{m+1,t} \leftarrow \omega_{mi} \text{exp}\bigl( \alpha_m 1_{{i\,:\,y_i\neq \hat{g}_m(x_i)}} \bigr)$;
Output the ensemble $\hat{g} = \mathop{\text{sign}}\bigl{\sum_{m=1}^m \alpha_m \hat{g}_m\bigr}$;
The AdaBoost.M1 algorithm employs an adversarial teaching approach to strengthen
the ensemble. As is visible from the algorithm, the teacher tries to maximize the
classification error of the learner by amplifying the weights of the difficult to
classify examples.
The size of the ensemble $M$ serves as a regularization parameter, since
the greater the $M$, the more boosting overfits. An optimal $M$ can be
chosen by cross-validation (preferably on a single common validation set).
A recent development, called DeepBoost Mohri et al.; 2014,
proposes a new ensemble learning algorithm, that is similar in spirit to
AdaBoost. Its key feature is that the algorithm incorporates a complexity
penalty for convex combinations of models into the convex relaxation of
the loss criterion. This enables selection of better hypotheses that minimize
the upper bound on the theoretical risk.
Usage
|
from sklearn.ensemble import AdaBoostClassifier, AdaBoostRegressor
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Common parameters:
- n_estimators -- the maximum number of estimators at which boosting is
terminated (in case of perfect fit, the learning procedure is stopped early);
- base_estimator -- the base estimator, which supports sample weighting,
from which the boosted ensemble is built;
- learning_rate -- learning rate shrinks the contribution of each classifier
by learning_rate.
AdaBoostClassifier only:
- algorithm -- the AdaBoost version to use:
* "SAMME.R" -- the SAMME.R real boosting algorithm;
* "SAMME" -- the SAMME (M1) discrete boosting algorithm;
The SAMME.R algorithm typically converges faster than SAMME,
achieving a lower test error with fewer boosting iterations.
AdaBoostRegressor only:
- loss -- the loss function to use when updating the weights after each
boosting iteration:
* "linear" -- absolute loss $L(y, p) = |y-p|$;
* "square" -- squared loss $L(y, p) = |y-p|^2$;
* "exponential" -- Exponential loss $L(y, p) = 1-e^{-|y-p|}$.
Examples
|
clf1_ = AdaBoostClassifier(n_estimators=10,
base_estimator=DecisionTreeClassifier(max_depth=1),
random_state=random_state).fit(X_train, y_train)
clf2_ = AdaBoostClassifier(n_estimators=100,
base_estimator=DecisionTreeClassifier(max_depth=1),
random_state=random_state).fit(X_train, y_train)
clf3_ = AdaBoostClassifier(n_estimators=10,
base_estimator=DecisionTreeClassifier(max_depth=3),
random_state=random_state).fit(X_train, y_train)
clf4_ = AdaBoostClassifier(n_estimators=100,
base_estimator=DecisionTreeClassifier(max_depth=3),
random_state=random_state).fit(X_train, y_train)
print "AdaBoost.M1 (10, stumps) error:", 1 - clf1_.score(X_test, y_test)
print "AdaBoost.M1 (100, stumps) error:", 1 - clf2_.score(X_test, y_test)
print "AdaBoost.M1 (10, 3 levels) error:", 1 - clf3_.score(X_test, y_test)
print "AdaBoost.M1 (100, 3 levels) error:", 1 - clf4_.score(X_test, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
<hr/>
Gradient boosting
In certain circumstances in order to minimize a convex twice-differentiable
function $f:\mathbb{R}^p \mapsto \mathbb{R}$ one uses Newton-Raphson iterative
procedure, which repeats until convergence this update step:
$$ x_{m+1} \leftarrow x_m - \bigl(\nabla^2 f(x_m)\bigr)^{-1} \nabla f(x_m) \,, $$
where $\nabla^2 f(x_m)$ is the hessian of $f$ at $x_m$ and $\nabla f(x_m)$ is its
gradient.
In a more general setting, if the function is not twice differentiable, or if
the hessian is expensive to compute, then one resorts to a gradient descent
procedure, which moves in the direction os teh steepest descent and updates
according to
$$ x_{m+1} \leftarrow x_m - \eta \nabla f(x_m) \,,$$
for some step $\eta > 0$.
Gradient Boosting is, to a certain extent, a gradient descent procedure aimed at
minimizing an expected loss functional $\mathcal{L}: \mathcal{F}\mapsto \mathbb{R}$
on some function space $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$. In particular,
it the underlying distribution of the data were known, Gradient Boosting would
attempt to find a minimizer $x\mapsto \hat{f}(x)$ such that for all $x\in \mathcal{X}$
$$ \hat{f}(x)
= \mathop{\text{argmin}}{f\in\mathcal{F}}
\mathbb{E}{y \sim P|x} L(y, f(x)) \,. $$
At each itration it would update the current estimate of the minimizer $\hat{f}m$
in the direction of the steepest-descent towards $\hat{f}$:
$$ \hat{f}{m+1} \leftarrow \hat{f}m - \rho \hat{g}_m \,, $$
where $\hat{g}_m \in \mathcal{F}$ is given by
$$ \hat{g}_m(x) = \biggl. \frac{\partial}{\partial f(x)}
\Bigl( \mathbb{E}{y \sim P|x} L\bigl(y, f(x)\bigr) \Bigr)
\biggr\rvert_{f=\hat{f}m}
= \biggl.
\mathbb{E}{y \sim P|x} \frac{\partial}{\partial f(x)}L\bigl(y, f(x)\bigr)
\biggr\rvert_{f=\hat{f}m} \,, $$
(under some regularity conditions it is possible to interchange the expectation
and differentiation operation). In turn $\rho$ is determined by
$$ \rho = \mathop{\text{argmin}}\rho \mathbb{E}_{(x,y) \sim P} L(y, \hat{f}_m(x) - \rho \hat{g}_m(x)) \,. $$
Since in practice the expectaions are not known, one approximates them with their
empirical counterparts, which makes the gradient undefined outside the observed
sample points. That is why one needs a class of basis functions, which can
generalize the gradient from a point to its neighbourhood.
Gradient Boosting procedure
1. Initialize the ensemble with $\hat{f}0 \leftarrow \mathop{\text{argmin}}\gamma \sum_{i=1}^n L(y_i, \gamma)$;
2. for $m=1,\ldots, M$ do:
1. Gradient approximation: Compute the current sample descent direction (negative
gradient) using the current ensmeble:
$$ r_{mi} = \biggl.
- \frac{\partial}{\partial f(x_i)} L\bigl(y_i, f(x_i)\bigr)
\biggr\rvert_{f=f_{m-1}} \,, $$
this can be thought of as a finte-dimensional approximation of a functional
gradient $\delta \mathcal{L}$ of the loss functional $\mathcal{L}$;
2. Fit an MSE minimizing parametric basis function $h(x;\theta)$ to the approximation
of the gradient $(r_{mi}){i=1}^n$:
$$ (\theta_m, \beta_m)
\leftarrow \mathop{\text{argmin}}{\theta, \beta}
\sum_{i=1}^n \bigl(r_{mi} - \beta h(x_i;\theta) \bigr)^2\,; $$
basically we hope that $h(\cdot;\theta)$ approximates the functional gradient well
enought and extrapolates beyond the point estimates to their immediate neighbourhoods;
3. Line search: determine the optmial step in the direction of the functional
gradient that minimizes the loss functional:
$$ \gamma_m \leftarrow \mathop{\text{argmin}}\gamma
\sum{i=1}^n L\bigl(y_i, f_{m-1}(x_i) + \gamma h(x_i;\theta_m)\bigr)\,;$$
4. Update the ensemble $f_m = f_{m-1} + \eta \, \gamma_m h(\cdot;\theta_m)$;
3. Return $\hat{f}(x) = f_M(x)$;
Here $\eta$>0 is the learning rate.
Gradient Boosted Regression Trees
Gradient Boost algorithm uses basis functions $h(\cdot; \theta)$ from some class
to approximate the gradient. For example, one can use regression splines, or more
generally fit a kernel ridge regression for gradient interpolation, or use regression
trees. Regression trees do not assume a predetermined parametric form, and instead
are constructed according to information derived from the data.
Algorithm
With a given tree-partition structure $(R_j){j=1}^J$, it is really straightforward
to find optimal estimates $(w_j){j=1}^J\in \mathbb{R}$.
Now finding an optimal partition $(R_j)_{j=1}^J$ is entirely different matter: exhaustive
search is out of question, so the algorithm to go is the greedy top-down recursive
partitioning procedure.
Boosted trees is an ensemble $\hat{f}(x) = \sum_{m=1}^M \hat{f}_m(x)$, with weights
incorporated in each base estimator.
GBRT
1. Initialize the ensemble with $\hat{f}0 \leftarrow \mathop{\text{argmin}}\gamma \sum_{i=1}^n L(y_i, \gamma)$;
2. for $m=1,\ldots, M$ do:
1. Compute the current sample descent direction (negative gradient) using the current ensmeble:
$$ r_{mi} = \biggl.
- \frac{\partial}{\partial f(x_i)} L\bigl(y_i, f(x_i)\bigr)
\biggr\rvert_{f=f_{m-1}} \,, $$
this is a finte-dimensional version of the first variation $\delta J$
of a functional $J:\mathbb{R}^{\mathcal{X}}\mapsto \mathbb{R}$ on some
function space;
2. Fit an MSE minimizing regression tree $\hat{T}m = \sum{j=1}^J \beta_j 1_{R_{mj}}(x)$
to the current gradient $(r_{mi}){i=1}^n$ and keep its partition structure;
basically, we want to generalize the point estimates of the variation to
some neighbourhood of each sample point (here the heighbourhoods are the tree
partitions);
3. Line search: determine the optmial node-weights
$$w{mj} \leftarrow \mathop{\text{argmin}}w
\sum{i\,:\,x_i\in R_{mj}} L(y_i, f_{m-1}(x_i) + w)\,;$$
4. Update the ensemble $f_m = f_{m-1} + \sum_{j=1}^J w_{mj} 1_{R_{mj}}$;
3. Return $\hat{f}(x) = f_M(x)$;
Usage
|
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Both Gradient boosting ensembles in scikit accept the following paramters:
- loss -- loss function to be optimized:
* Classification:
* 'deviance' -- refers logistic regression with probabilistic outputs;
* 'exponential' -- gradient boosting recovers the AdaBoost algorithm;
* Regression:
* 'ls' -- refers to least squares regression;
* 'lad' -- (least absolute deviation) is a highly robust loss function solely
based on order information of the input variables;
* 'huber' -- is a combination of the two;
* 'quantile' -- allows quantile regression (use alpha to specify the
quantile);
- learning_rate -- learning rate shrinks the contribution of each tree
by learning_rate;
- n_estimators -- The number of boosting stages to perform. Gradient boosting
is fairly robust to over-fitting so a large number usually results in better performance;
- max_depth -- maximum depth of the individual regression tree estimators (the
maximum depth limits the number of nodes in the tree, the best value depends on the
interaction of the input variables);
- min_samples_split -- The minimum number of samples required to split an
internal node;
- min_samples_leaf -- The minimum number of samples required to be at a
leaf node;
- min_weight_fraction_leaf -- The minimum weighted fraction of the input
samples required to be at a leaf node;
- subsample -- The fraction of samples to be used for fitting the individual
base learners (choosing subsample < 1.0 results in Stochastic Gradient Boosting
and leads to a reduction of variance and an increase in bias);
- max_features -- The number of features to consider when looking for the
best split: sqrt, log2 and share in $(0,1]$ are accepted (choosing max_features < n_features
leads to a reduction of variance and an increase in bias);
- max_leaf_nodes -- Grow trees with max_leaf_nodes in best-first fashion,
with best nodes are defined as relative reduction in impurity;
- alpha -- the alpha-quantile of the huber loss function and the quantile
loss function (only if loss='huber' or loss='quantile').
Examples
High learning Rate, small ensemble
|
clf1_ = GradientBoostingClassifier(n_estimators=10,
max_depth=1, learning_rate=0.75,
random_state=random_state).fit(X_train, y_train)
clf2_ = GradientBoostingClassifier(n_estimators=100,
max_depth=1, learning_rate=0.75,
random_state=random_state).fit(X_train, y_train)
clf3_ = GradientBoostingClassifier(n_estimators=10,
max_depth=3, learning_rate=0.75,
random_state=random_state).fit(X_train, y_train)
clf4_ = GradientBoostingClassifier(n_estimators=100,
max_depth=3, learning_rate=0.75,
random_state=random_state).fit(X_train, y_train)
print "GBRT (10, stumps) error:", 1 - clf1_.score(X_test, y_test)
print "GBRT (100, stumps) error:", 1 - clf2_.score(X_test, y_test)
print "GBRT (10, 3 levels) error:", 1 - clf3_.score(X_test, y_test)
print "GBRT (100, 3 levels) error:", 1 - clf4_.score(X_test, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Large ensemble, small learning rate
|
clf1_ = GradientBoostingClassifier(n_estimators=100,
max_depth=1, learning_rate=0.1,
random_state=random_state).fit(X_train, y_train)
clf2_ = GradientBoostingClassifier(n_estimators=1000,
max_depth=1, learning_rate=0.1,
random_state=random_state).fit(X_train, y_train)
clf3_ = GradientBoostingClassifier(n_estimators=100,
max_depth=3, learning_rate=0.1,
random_state=random_state).fit(X_train, y_train)
clf4_ = GradientBoostingClassifier(n_estimators=1000,
max_depth=3, learning_rate=0.1,
random_state=random_state).fit(X_train, y_train)
print "GBRT (100, stumps) error:", 1 - clf1_.score(X_test, y_test)
print "GBRT (1000, stumps) error:", 1 - clf2_.score(X_test, y_test)
print "GBRT (100, 3 levels) error:", 1 - clf3_.score(X_test, y_test)
print "GBRT (1000, 3 levels) error:", 1 - clf4_.score(X_test, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
<hr/>
XGBoost
Briefly, XGBoost, is a higlhy streamlined open-source gradient boosting library, which
supports many useful loss functions and uses second order loss approximation both
to increas the ensemble accuracy and speed of convergence:
1. learning rate $\eta>0$ to regulate the convergence;
2. offer $l_1$ and $l_2$ regularization on the node-weights and bias-varaince tradeoff and sparsity;
3. cost-complexity pruning of the growm trees;
4. Employs specialized regression and classification tree growth algorithms
with random projections, and bagging;
It important to note, that XGBoost implements binary trees, which does not restrict
the model in any way. However this adds the need for an extra preprocessing step for
categorical features. Specifically the binary structure requires that such features
be $0-1$ encoded, which is likely to use excessive volumes of memory, especially
when the set of possible categories is of the order of thousands.
In order to permit the use of arbitrary convex loss functions --
$$ \sum_{i=1}^n L( y_i, \hat{y}i ) + \sum{k=1}^K \Omega(f_k)
\rightarrow \mathop{\mathtt{min}}{f_k\in\mathcal{M} } \,,$$
with prediction $\hat{y}_i = \sum{k=1}^K f_k(x_i)$, the loss $L(y, \hat{y})$,
and the additive complexity regularizer $\Omega(\cdot)$, -- and still achieve
high preformance during learning, the author of XGBoost, implemented a clever
trick: he uses FSAM general approach, but the minimization with respect to the
increment $f(\cdot)$ is performed on the second order Taylor series approximation
of the loss $L$ at $(x_i, y_i)$ and $F(\cdot)$. In particular the minimization
over $f(\cdot)$ is done on a quadratic approximation
$$ q_{y, x}
= L(y, F(x))
+ \frac{\partial L}{\partial \hat{y}}\bigg\vert_{(y,F(x))}!! f(x)
+ \frac{1}{2} \frac{\partial^2 L}{\partial \hat{y}^2}\bigg\vert_{(y,F(x))}! f(x)^2
\,, $$
rather than $L(y, F(x) + f(x))$.
Since $\Omega(F_{k-1})$ and $L( y_i, F_{k-1}(x_i) )$ are unaffected by the
choice of $f\in\mathcal{F}$ at iteration $k$, the greedy step can be reduced
to:
$$ f_k
\leftarrow \mathop{\mathtt{argmin}}\limits_{f\in \mathcal{F}}
\sum_{i=1}^n g^{k-1}i f(x_i) + \frac{1}{2} h^{k-1}_i f(x_i)^2 + \Omega(f)
\,, $$
where $g^{k-1}_i = \frac{\partial l(y, \hat{y})}{\partial \hat{y}}$ and
$h^{k-1}_i = \frac{\partial^2 l(y, \hat{y})}{\partial \hat{y}^2}$ evaluated
at $y=y_i$ and $\hat{y}=F{k-1}(x_i)$.
The values $g^{k-1}_i$ and $h^{k-1}_i$ are the gradient and hessian statistics
on the $i$-th observation, respectively. These statistics have to be recomputed
at each stage for the new $\hat{y}$. The statistics $g^{0}_i$ and $h^{0}_i$ are
initialized to values of the first and second derivatives of $L(y_i, c)$ for some
fixed $c$ at each $i=1,\ldots n$ ($c$ is the sample average in the case or
regression, or the log-odds of the class ratio).
Optimizing the objective
XGBoost uses criteria derived from the objective function that permit automatic
tree-pruning. Consider some tree $f$ with structure
$$ f = \sum_{j=1}^J w_j 1_{R_j} \,,$$
where $(R_j){j=1}^J\subseteq \mathcal{X}$ is its partition and $w\in\mathbb{R}^J$
-- leaf predicted values. For this tree the complexity regularization is
$$ \Omega(f) = \gamma J + \frac{\lambda}{2} \sum{j=1}^J w_j^2 + \alpha \sum_{j=1}^J \bigl|w_j\bigr| \,. $$
As one can see both excessively large leaf values and tree depths are
penalized.
stage $k\geq 1$
Using the map $x\mapsto j(x)$, which gives the unique leaf index $j=1,\ldots,J$ such
that $x\in R_j$, the objective function minimized at each stage $k\geq 1$ is given by
\begin{align}
\mathtt{Obj}k(R, w)
&= \sum{i=1}^n \bigl( g^{k-1}i w{j(x_i)} + \frac{1}{2} h^{k-1}i w{j(x_i)}^2 \bigr)
+ \frac{\lambda}{2} \sum_{j=1}^J w_j^2 + \alpha \sum_{j=1}^J \bigl|w_j\bigr| + \gamma J \
&= \sum_{j=1}^J \bigl( w_j G_{k-1}(R_j) + \frac{1}{2} \bigl( H_{k-1}(R_j) + \lambda \bigr) w_j^2
+ \alpha \bigl|w_j\bigr| + \gamma \bigr) \,,
\end{align}
where for any $P\subseteq X$, the values $G_{k-1}(P) = \sum_{i\,:\,x_i\in P} g^{k-1}i$
and $H{k-1}(P) = \sum_{i\,:\,x_i\in P} h^{k-1}i$ are called the first and the
second order gradient scores respectively. When $P = R_j$ these are the $j$-th leaf
gradinet statistics, which depend only on the ensemble $F{k-1}$ and are constant
relative to the increment $f$.
The structural score of an XGBoost regression tree is the minimal value of the
objective function for a fixed partition structure $R = (R_j){j=1}^J$:
$$ \mathtt{Obj}^*(R)
= \min{w_j} \mathtt{Obj}k(R, w)
= \min{w_j} \sum_{i=1}^n \bigl( g^{k-1}i w{j(x_i)} + \frac{1}{2} h^{k-1}i w{j(x_i)}^2 \bigr)
+ \frac{\lambda}{2} \sum_{j=1}^J w_j^2 + \alpha \sum_{j=1}^J \bigl|w_j\bigr| + \gamma J
\,. $$
This is not an intermediate value of the objective function, but rather its difference
against $\sum_{i=1}^n l(y_i, F_{k-1}(x_i))$.
It is worth noting, that since there are no cross interactions between scores $w_j$
for different leaves, this minimization problem equivalently reduces to $J$ univariate
optimization problems:
$$ w_j G_{k-1}(R_j) + \frac{1}{2} \bigl( H_{k-1}(R_j) + \lambda \bigr) w_j^2
+ \alpha \bigl|w_j\bigr| + \gamma \to \min_{w_j}\,,$$
for $j=1,\ldots, J$. Let's assume that $H_{k-1}(R_j) + \lambda > 0$, since otherwise
this problem has no solution.
The optimal leaf value $w_j^$ in the general case is given by
$$ w^j = - \frac{1}{H{k-1}(R_j) + \lambda}\begin{cases}
G_{k-1}(R_j) + \alpha & \text{ if } G_{k-1}(R_j) \leq -\alpha\
0&\text{ if } G_{k-1}(R_j) \in [-\alpha, \alpha]\
G_{k-1}(R_j) - \alpha & \text{ if } G_{k-1}(R_j) \geq \alpha
\end{cases} \,. $$
Tree construction process
Trees in XGBoost employ a greedy algorithm for recursive tree construction, outlined below:
1. every region $R_j$ in the partition $R$ is probed for the optimal binary split
$R_j\to R_{j_1}!\|R_{j_2}$ according to the structural gain score
$$ \mathtt{Gain}\bigl( R_j\to R_{j_1}!\| R_{j_2} \bigr) = \mathtt{Obj}^( R ) - \mathtt{Obj}^( R' ) \,, $$
where the partition $R'$ is constructed from $R$ by splitting $R_j\to R_{j_1}\|R_{j_2}$;
2. the region $R_j$ with the highest gain from the optimal split is split into $R_{j_1}$ and $R_{j_2}$;
3. the tree growth process continues until no more splits are possible.
The first step is the most computatuionally intensive, since it requires $O( J d n\log n )$
operations. This step which is performed by XGBoost in parallel, since FSAM and tree-induction
are series by nature.
Tree growth gain
For simplicity, let's consider the case when $\alpha = 0$, $L^2$ regularization.
In this case the following weights give optimal leaf scores
$$ w^j = -\frac{G{k-1}(R_j)}{H_{k-1}(R_j) + \lambda}\,.$$
The strucutral score becomes
$$ \mathtt{Obj}^(R) = \gamma J - \frac{1}{2}\sum_{j=1}^J \frac{G_{k-1}^2(R_j)}{H_{k-1}(R_j) + \lambda} \,. $$
Any split $R_j \rightarrow R_{j_1}!\| R_{j_2}$ yields the following gain:
$$ \mathtt{Gain} = \frac{1}{2}\Biggl(
\frac{G_{k-1}^2(R_{j_1})}{H_{k-1}(R_{j_1}) + \lambda}
+ \frac{G_{k-1}^2(R_{j_2})}{H_{k-1}(R_{j_2}) + \lambda}
- \frac{G_{k-1}^2(R_j)}{ H_{k-1}(R_j) + \lambda}
\Biggr) - \gamma\,.$$
Note that $G_{k-1}(\cdot)$ and $H_{k-1}(\cdot)$ are additive by construction:
$$G_{k-1}(R_j) = G_{k-1}(R_{j_1}) + G_{k-1}(R_{j_2}) \,,$$
and
$$H_{k-1}(R_j) = H_{k-1}(R_{j_1}) + H_{k-1}(R_{j_2}) \,.$$
Usage
|
import xgboost as xg
seed = random_state.randint(0x7FFFFFFF)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Scikit-Learn interface
|
clf_ = xg.XGBClassifier(
## Boosting:
n_estimators=50,
learning_rate=0.1,
objective="binary:logistic",
base_score=0.5,
## Regularization: tree growth
max_depth=3,
gamma=0.5,
min_child_weight=1.0,
max_delta_step=0.0,
subsample=1.0,
colsample_bytree=1.0,
colsample_bylevel=1.0,
## Regularization: leaf weights
reg_alpha=0.0,
reg_lambda=1.0,
## Class balancing
scale_pos_weight=1.0,
## Service parameters: missing=None, makes use np.nan as missing.
seed=seed,
missing=None,
nthread=2,
silent=False)
clf_.fit(
X_train, y_train,
early_stopping_rounds=5,
eval_set=[(X_valid_1, y_valid_1),
(X_valid_2, y_valid_2),])
y_pred_ = clf_.predict(X_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Internally XGBoost relies heavily on a custom dataset format DMatrix.
The interface, which is exposed into python has three capabilities:
- load datasets in libSVM compatible format;
- load SciPy's sparse matrices;
- load Numpy's ndarrays.
The DMatrix class is constructed with the following parameters:
- data : Data source of DMatrix. When data is string type, it represents
the path libsvm format txt file, or binary file that xgboost can read from,
or a matrix of observed features $X$ in a numpy or scipy matrix;
- label : the observation labels $y$ (could be categorical or numeric);
- missing : a vector of values that encode missing observations, if None defaults to np.nan;
- feature_names : the columns names of $X$;
- feature_types : defines the python types of each column of $X$, in case of heterogeneous data;
- weight : the vector of nonnegative weights of each observation in the dataset.
|
dtrain = xg.DMatrix(X_train, label=y_train, missing=np.nan)
dtest = xg.DMatrix(X_test, missing=np.nan)
dvalid1 = xg.DMatrix(X_valid_1, label=y_valid_1, missing=np.nan)
dvalid2 = xg.DMatrix(X_valid_2, label=y_valid_2, missing=np.nan)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
The same XGBoost classifier as in the Scikit-learn example.
|
param = dict(
## Boosting:
eta=0.1,
objective="binary:logistic",
base_score=0.5,
## Regularization: tree growth
max_depth=3,
gamma=0.5,
min_child_weight=1.0,
max_delta_step=0.0,
subsample=1.0,
colsample_bytree=1.0,
colsample_bylevel=1.0,
## Regularization: leaf weights
reg_alpha=0.0,
reg_lambda=1.0,
## Class balancing
scale_pos_weight=1.0,
## Service parameters:
seed=seed,
nthread=2,
silent=1)
evals_result = dict()
xgb_ = xg.train(
## XGboost settings
param,
## Train dataset
dtrain,
## The size of the ensemble
num_boost_round=50,
## Early-stopping
early_stopping_rounds=5,
evals=[(dvalid1, "v1"),
(dvalid2, "v2"),],
evals_result=evals_result)
pred_ = xgb_.predict(dtest)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Both the sklearn-compatible and basic python interfaces have the similar
parameters. Except they are passed slightly differently.
Gradient boosting parameters:
- eta, learning_rate ($\eta$) -- step size shirinkage factor;
- n_estimators, num_boost_round ($M$) -- the size of the ensemble, number of boosting rounds;
- objective -- objective functions:
* "reg:linear" -- Linear regression: $(x_i, y_i){i=1}^n \in \mathcal{X} \times \mathbb{R}$,
$\hat{p}:\mathcal{X} \mapsto \mathbb{R}$;
* "reg:logistic" -- Logistic regression for probability regression task: $(x_i, y_i){i=1}^n
\in \mathcal{X} \times [0, 1]$, $\hat{p}:\mathcal{X} \mapsto [0, 1]$;
* "binary:logistic" -- Logistic regression for binary classification task: $(x_i, y_i){i=1}^n
\in \mathcal{X} \times {0, 1}$, $\hat{p}:\mathcal{X} \mapsto {0, 1}$;
* "binary:logitraw" -- Logistic regression for binary classification, output score
before logistic transformation: $\hat{p}:\mathcal{X} \mapsto \mathbb{R}$;
* "multi:softmax" -- Softmax for multi-class classification, output class index:
$\hat{p}:\mathcal{X} \mapsto {1,\ldots,K}$;
* "multi:softprob" -- Softmax for multi-class classification, output probability
distribution: $\hat{p}:\mathcal{X} \mapsto {\omega\in [0,1]^K\,:\, \sum{k=1}^K \omega_k = 1 }$;
- base_score -- global bias of the model: in linear regression ("reg:linear") sets
the bias of the regression function, in binary classification ("reg:logistic",
"binary:logistic" and "binary:logitraw") sets the base class ratio (transformed to log-odds
and added to logistic score).
Regularization - related to tree growth and decorrelation:
- max_depth -- this parameters limits the size of the tree, by setting a
hard bound on the number of tree layers (limits the recursion depth);
- min_child_weight -- the minimal value of the hessian statistic of a leaf
required for it to be considered a candidate for splitting;
- gamma ($\gamma$) -- the complexity cost parameter, imposes minimal structural
score gain for splitting a leaf of the currnt tree;
- subsample -- the share of the training data to use for growing a tree:
determines the size bootstrap smaples $Z^{b}$;
- colsample_bytree -- the size of the random subset of features, that
cam be used in the growth of the whole tree (accessible features);
- colsample_bylevel* -- subsample ratio of features when considering a split:
determines the size of the random subset of accessible features considered as
candidates for node splitting at each level of every tree.
Regularization - tree leaf weights:
- reg_alpha ($\alpha$) -- the importance of the $L^1$ regularizer;
- reg_lambda ($\lambda$) -- the weight of the $L^2$ regularization term;
- max_delta_step -- clips the absolute value of each leaf's score, thereby
making the tree growth step more conservative.
Class balancing (not used in multiclass problems as of commit c9a73fe2a99300aec3041371675a8fa6bc6a8a72):
- scale_pos_weight -- a uniform upscale/downscale factor for the weights of
positive examples ($y=+1$); Useful in imbalanced binary classification problems.
Early-stopping
- early_stopping_rounds -- the validation error on the last validation dataset needs
to decrease at least every early_stopping_rounds round(s) to continue training; If
equal to None, then early stopping is deactivated.
- eval_set -- validation datasets given as a list of tuples (DMatrix, name);
- evals_result -- a dictionary to store the validation results; the keys are the names
of the validation datasets, and values are the dictionaries of key-values pairs:
loss -- list of scores.
Examples
|
clf1_ = xg.XGBClassifier(n_estimators=10,
max_depth=1, learning_rate=0.1,
seed=seed).fit(X_train, y_train)
clf2_ = xg.XGBClassifier(n_estimators=1000,
max_depth=1, learning_rate=0.1,
seed=seed).fit(X_train, y_train)
clf2_ = xg.XGBClassifier(n_estimators=10,
max_depth=3, learning_rate=0.1,
seed=seed).fit(X_train, y_train)
clf2_ = xg.XGBClassifier(n_estimators=1000,
max_depth=3, learning_rate=0.1,
seed=seed).fit(X_train, y_train)
print "XGBoost (10, stumps) error:", 1 - clf1_.score(X_test, y_test)
print "XGBoost (1000, stumps) error:", 1 - clf2_.score(X_test, y_test)
print "XGBoost (10, 3 levels) error:", 1 - clf3_.score(X_test, y_test)
print "XGBoost (1000, 3 levels) error:", 1 - clf4_.score(X_test, y_test)
clf1_ = xg.XGBClassifier(n_estimators=10,
max_depth=1, learning_rate=0.5,
seed=seed).fit(X_train, y_train)
clf2_ = xg.XGBClassifier(n_estimators=1000,
max_depth=1, learning_rate=0.5,
seed=seed).fit(X_train, y_train)
clf2_ = xg.XGBClassifier(n_estimators=10,
max_depth=3, learning_rate=0.5,
seed=seed).fit(X_train, y_train)
clf2_ = xg.XGBClassifier(n_estimators=1000,
max_depth=3, learning_rate=0.5,
seed=seed).fit(X_train, y_train)
print "XGBoost (10, stumps) error:", 1 - clf1_.score(X_test, y_test)
print "XGBoost (1000, stumps) error:", 1 - clf2_.score(X_test, y_test)
print "XGBoost (10, 3 levels) error:", 1 - clf3_.score(X_test, y_test)
print "XGBoost (1000, 3 levels) error:", 1 - clf4_.score(X_test, y_test)
clf1_ = xg.XGBClassifier(n_estimators=1000,
max_depth=1, learning_rate=0.5,
seed=seed).fit(X_train, y_train,
early_stopping_rounds=20,
eval_set=[(X_valid_1, y_valid_1),
(X_valid_2, y_valid_2),])
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
<hr/>
Other methods
Stacking
Every ensemble method comprises of essentially two phases:
1. population of a dictionary of base learners (models, like classification
trees in AdaBoost, or regression trees in GBRT);
2. aggregation of the dictionary into a sinlge estimator;
These phases are not necessarily separated: in Bagging and Random Forests
they are (and so these can be done in parallel), in GBRT and AdaBoost they
are not. In hte latter, the procedure is path dependent (serial), i.e. the
dictionary is populated sequentially, so that each successive base estimator
is learnt conditional on the current dictonary.
Stacking is a method which allows to corectly construct second-level meta
features using ML models atop the first level inputs. By correctly we
mostly mean that there is little train-test leakeage, the resultng meta-
features though not i.i.d, can still to a certain degree comply to the
standard ML assumtions, and allow to focus on the aggregation step of
ensemble methods.
General pipeline
Let $Z = (X, y) = (x_i, y_i)_{i=1}^n$ be a dataset. The model construction
and verification pipeline goes as follows:
1. Split the dataset into nonoverlapping train and test datasets:
$Z^{\text{train}}$ and $Z^{\text{test}}$;
2. Apply stacking to get meta features, $\mathcal{P}^{\text{train}}$ (it is
possible to include the first-level features as well);
3. Split the meta-features, $\mathcal{P}^{\text{train}}$, into train and validation
sets: fit on the former, test and select models on the latter;
4. Use regularization at each stage to choose the best strategy against
overfitting;
For the final prediction:
1. learn a regularized model on the whole $Z^{\text{train}}$;
2. get the meta-features, $\mathcal{P}^{\text{test}}$, on the inputs of $Z^{\text{test}}$;
3. fit a regularized aggregaton model on the whole train sample of
meta-fetatures $\mathcal{P}^{\text{train}}$;
4. use the fitted aggregation model to compute final prediction on
the $\mathcal{P}^{\text{test}}$.
Leave-one-out stacking
The idea is to compute the meta feature of each example based on
a base estimator learnt on the sample with that observation knocked out.
Let $\hat{f}^{-i}m$ the $m$-th base estimator learnt on the sample $Z{-i}$
(without observation $z_i$). Then the meta-features $(\hat{p}{mi}){i=1}^n$
are given by
$$ \hat{p}_{mi} = \hat{f}^{-i}_m(x_i) \,.$$
$K$-fold stacking
Leave-one-out stacking is in general computationally intensive, unless the
base estimator is linear in the targets, in which case this can be done
quite fast. A possible solution to this is inspiured by $K$-fold cross
validation technique.
Let $C_k\subset{1,\ldots, n}$ be the $k$-th fold in $K$-fold, and let
$C_{-k}$ be the rest of the dataset $Z$: $C_{-k} = {i\,:\,i\notin C_k}$.
$C_k$ has approximately $\frac{n}{K}$ observations. The dataset is randomly
shuffled before being partitioned into $K$ folds.
Define $\hat{f}^{-k}m$ as the $m$-th base estimator learnt on $Z^{-k}$
given by $(z_i){i\in C_{-k}}$. then the metafeatures are computed using
$$ \hat{p}{mi} = \hat{f}^{-k_i}_m(x_i) \,, $$
where $k_i$ is the unique index $k$ in the $K$-fold such that $i\in C_k$.
Basically we use the data outside the $k$-th fold, $C{-k}$ to construct
the meta-features inside the $k$-th fold, $C_k$.
Using the meta-features
For example, if we want to compute a linear combination of the regression
estimators, we must solve the following optimization problem (unrestricted
LS):
$$ \sum_{i=1}^n \bigl(y_i - \beta'\hat{p}i \bigr)^2\,, $$
where $\hat{p}_i = (\hat{p}{mi}){m=1}^M$ and $\beta, \hat{p}_i \in \mathbb{R}^{m\times1}$
for all $i$.
If a convex combination is required ($\beta_m\geq 0$ and $\sum{m=1}^M\beta_m = 1$),
one solves a constrained optimization problem. If pruning is desirable,
then one should use either lasso ($L_1$ regularization), or subset-selection
methods.
Usage
Below is a simple $K$-fold stacking procedure. It estimates each model
on the $K-1$ folds and predicts (with the specified method) the on the $K$-th
fold.
|
from sklearn.base import clone
from sklearn.cross_validation import KFold
def kfold_stack(estimators, X, y=None, predict_method="predict",
n_folds=3, shuffle=False, random_state=None,
return_map=False):
"""Splits the dataset into `n_folds` (K) consecutive folds (without shuffling
by default). Predictions are made on each fold while the K - 1 remaining folds
form the training set for the predictor.
Parameters
----------
estimators : list of estimators
The dictionary of estimators used to construct meta-features on
the dataset (X, y). A cloned copy of each estimator is fitted on
remainind data of each fold.
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples], optional
Target values.
predict_method : string, default="predict"
The method of each estimator, to be used for predictiong the
meta features.
n_folds : int, default=3
Number of folds. Must be at least 2.
shuffle : boolean, optional
Whether to shuffle the data before splitting into batches.
random_state : None, int or RandomState
When shuffle=True, pseudo-random number generator state used for
shuffling. If None, use default numpy RNG for shuffling.
Returns
----------
meta : array-like, shape = [n_samples, ...]
Computed meta-features of each estimator.
map : array-like
The map, identifying which estimator each column of `meta`
came from.
"""
stacked_, index_ = list(), list()
folds_ = KFold(X.shape[0], n_folds=n_folds,
shuffle=shuffle, random_state=random_state)
for rest_, fold_ in folds_:
fitted_ = [clone(est_).fit(X[rest_], y[rest_])
for est_ in estimators]
predicted_ = [getattr(fit_, predict_method)(X[fold_])
for fit_ in fitted_]
stacked_.append(np.stack(predicted_, axis=1))
index_.append(fold_)
stacked_ = np.concatenate(stacked_, axis=0)
meta_ = stacked_[np.concatenate(index_, axis=0)]
if not return_map:
return meta_
map_ = np.repeat(np.arange(len(estimators)),
[pred_.shape[1] for pred_ in predicted_])
return meta_, map_
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Examples
Combining base classifiers using Logistic Regression is a typical example of how
first level features $x\in \mathcal{X}$ are transformed by $\hat{f}m:\mathcal{X}\mapsto \mathbb{R}$
into second-level meta features $(\hat{f}_m(x)){m=1}^M \in \mathbb{R}^M$, that
are finally fed into a logistic regression, that does the utlimate prediction.
Here $K$-fold stacking allows proper estimation of the second-level model for a
classification task.
|
seed = random_state.randint(0x7FFFFFFF)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Define the first-level predictors.
|
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
estimators_ = [
RandomForestClassifier(n_estimators=200, max_features=0.5, n_jobs=-1, random_state=seed),
GradientBoostingClassifier(n_estimators=200, max_depth=3, learning_rate=0.75, random_state=seed),
BaggingClassifier(n_estimators=200, base_estimator=DecisionTreeClassifier(max_depth=None),
max_samples=0.5, n_jobs=-1, random_state=seed),
xg.XGBClassifier(n_estimators=200, max_depth=3, learning_rate=0.5, nthread=-1, seed=seed),
## Both SVM and AdaBoost (on stumps) are very good here
SVC(kernel="rbf", C=1.0, probability=True, gamma=1.0),
AdaBoostClassifier(n_estimators=200, base_estimator=DecisionTreeClassifier(max_depth=1),
random_state=seed),
]
estimator_names_ = [est_.__class__.__name__ for est_ in estimators_]
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Create meta features for the train set: using $K$-fold stacking estimate the class-1
probabilities $\hat{p}i = (\hat{p}{mi}){m=1}^M = (\hat{f}^{-k_i}_m(x_i)){m=1}^M$
for every $i=1,\ldots, n$.
|
meta_train_ = kfold_stack(estimators_, X_train, y_train,
n_folds=5, predict_method="predict_proba")[..., 1]
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Now using the whole train, create test set meta features: $p_j = (\hat{f}m(x_j)){m=1}^M$
for $j=1,\ldots, n_{\text{test}}$. Each $\hat{f}_m$ is estimated on the whole train set.
|
fitted_ = [clone(est_).fit(X_train, y_train) for est_ in estimators_]
meta_test_ = np.stack([fit_.predict_proba(X_test) for fit_ in fitted_], axis=1)[..., 1]
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
The prediction error of each individual classifier (trained on the whole train dataset).
|
base_scores_ = pd.Series([1 - fit_.score(X_test, y_test) for fit_ in fitted_],
index=estimator_names_)
base_scores_
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Now using $10$-fold cross validation on the train dataset $(\hat{p}i, y_i){i=1}^n$,
find the best $L_1$ regularization coefficient $C$.
|
from sklearn.grid_search import GridSearchCV
grid_cv_ = GridSearchCV(LogisticRegression(penalty="l1"),
param_grid=dict(C=np.logspace(-3, 3, num=7)),
n_jobs=-1, cv=5).fit(meta_train_, y_train)
log_ = grid_cv_.best_estimator_
grid_cv_.grid_scores_
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
The weights chosen by logisitc regression are:
|
from math import exp
print "Intercept:", log_.intercept_, "\nBase probability:", 1.0/(1+exp(-log_.intercept_))
pd.Series(log_.coef_[0], index=estimator_names_)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Let's see how well the final model works on the test set:
|
print "Logistic Regression (l1) error:", 1 - log_.score(meta_test_, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
and the best model
|
log_
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
<hr/>
Voting Classifier
This is a very basic method of constructing an aggregated classifier from a finite dictionary.
Let $\mathcal{V}$ be the set of classifiers (voters), with each calssifier's class probablilites
given by $\hat{f}_v:\mathcal{X}\mapsto\mathbb{[0,1]}^K$ and prediction
$\hat{g}_v(x) = \mathtt{MAJ}(\hat{f}_v(x))$.
The majority vote over $K$ candidates with weights $(w_k){k=1}^K\in \mathbb{R}$ is defined as
$$ \mathtt{MAJ}(w) = \mathop{\text{argmax}}{k=1\,\ldots, K} w_k \,. $$
Hard voting collects label-prediction of each voter, counts the voting proportions and,
then predict the label with the most votes. Mathematically the following aggregation is
used:
$$ \hat{g}^{\text{maj}}\mathcal{V}(x)
= \mathtt{MAJ}\Bigl( W^{-1} \sum{v\in \mathcal{V}} w_v e_{\hat{g}v(x)} \Bigr)
\,, $$
where $e_k$ is the $k$-th unit vector in ${0,1}^{K\times 1}$, and $W = \sum{v\in \mathcal{V}} w_v$.
Soft voting uses the class-probabilities functions directly: it computes the weighted
average probability of each class over all voters, and then selects the class with the
highest posterior probability. Namely,
$$ \hat{g}^{\text{maj}}\mathcal{V}(x)
= \mathtt{MAJ}\bigl( W^{-1} \sum{v\in \mathcal{V}} w_v \hat{f}_v(x) \bigr)
\,. $$
As in Bagging, if the base classifiers are well calibrated, then hard voting
will ovrestimate probabilities.
Usage
|
from sklearn.ensemble import VotingClassifier
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
VotingClassifier options:
- estimators -- The list of classifiers;
- voting -- Vote aggregation strategy:
* "hard" -- use predicted class labels for majority voting;
* "soft" -- use sums of the predicted probalities for determine
the most likely class;
- weights -- weight the occurrences of predicted class labels (hard voting)
or class probabilities while averaging (soft voting);
Examples
Combine the estimators from the stacking example
|
clf1_ = VotingClassifier(list(zip(estimator_names_, estimators_)),
voting="hard", weights=None).fit(X_train, y_train)
clf2_ = VotingClassifier(list(zip(estimator_names_, estimators_)),
voting="soft", weights=None).fit(X_train, y_train)
print "Hard voting classifier error:", 1 - clf1_.score(X_test, y_test)
print "Soft voting classifier error:", 1 - clf2_.score(X_test, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Let's use LASSO Least Angle Regression (LARS, HTF p. 73) to select weights of the
base calssifiers.
|
from sklearn.linear_model import Lars
lars_ = Lars(fit_intercept=False, positive=True).fit(meta_train_, y_train)
weights_ = lars_.coef_
pd.Series(weights_, index=estimator_names_)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Show the RMSE of lars, and the error rates of the base classifiers.
|
print "LARS prediction R2: %.5g"%(lars_.score(meta_test_, y_test),)
base_scores_
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Let's see if there is improvement.
|
clf1_ = VotingClassifier(list(zip(estimator_names_, estimators_)),
voting="soft", weights=weights_.tolist()).fit(X_train, y_train)
print "Soft voting ensemble with LARS weights:", 1 - clf1_.score(X_test, y_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Indeed, this illustrates that clever selection of classifier weights might be profitable.
Another example on Voting Clasifier (from Scikit guide)
|
from sklearn.datasets import make_gaussian_quantiles
def scikit_example(n_samples, random_state=None):
X1, y1 = make_gaussian_quantiles(cov=2., n_samples=int(0.4*n_samples),
n_features=2, n_classes=2,
random_state=random_state)
X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5,
n_samples=int(0.6*n_samples),
n_features=2, n_classes=2,
random_state=random_state)
return np.concatenate((X1, X2)), np.concatenate((y1, 1 - y2))
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Get a train set, a test set, and a $2$-d mesh for plotting.
|
from sklearn.cross_validation import train_test_split
X2, y2 = scikit_example(n_samples=1500, random_state=random_state)
X2_train, X2_test, y2_train, y2_test = \
train_test_split(X2, y2, test_size=1000, random_state=random_state)
min_, max_ = np.min(X2, axis=0) - 1, np.max(X2, axis=0) + 1
xx, yy = np.meshgrid(np.linspace(min_[0], max_[0], num=51),
np.linspace(min_[1], max_[1], num=51))
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Make a dictionary of simple classifers
|
from sklearn.neighbors import KNeighborsClassifier
classifiers_ = [
("AdaBoost (100) DTree (3 levels)",
AdaBoostClassifier(n_estimators=100, base_estimator=DecisionTreeClassifier(max_depth=3),
random_state=random_state)),
("KNN (k=3)", KNeighborsClassifier(n_neighbors=3)),
("Kernel SVM", SVC(kernel='rbf', C=1.0, gamma=1.0,
probability=True)),]
estimators_ = classifiers_ + [("Soft-voting ensemble",
VotingClassifier(estimators=classifiers_,
voting="soft",
weights=[2,1,2])),]
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Show the decision boundary.
|
from itertools import product
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
for i, (name_, clf_) in zip(product([0, 1], [0, 1]), estimators_):
clf_.fit(X2_train, y2_train)
prob_ = clf_.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1].reshape(xx.shape)
axes[i[0], i[1]].contourf(xx, yy, prob_, alpha=0.4, cmap=plt.cm.coolwarm_r,
levels=np.linspace(0,1, num=51), lw=0)
axes[i[0], i[1]].scatter(X2_train[:, 0], X2_train[:, 1], c=y2_train, alpha=0.8, lw=0)
axes[i[0], i[1]].set_title(name_)
plt.show()
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Let's see if this simple soft-voting ensemble improved the test error.
|
for name_, clf_ in estimators_:
print name_, " error:", 1-clf_.score(X2_test, y2_test)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
<hr/>
Example from HTF pp. 339 - 340
Now let's inspect the test error as a function of the size of the ensemble
|
stump_ = DecisionTreeClassifier(max_depth=1).fit(X_train, y_train)
t224_ = DecisionTreeClassifier(max_depth=None, max_leaf_nodes=224).fit(X_train, y_train)
ada_ = AdaBoostClassifier(n_estimators=400, random_state=random_state).fit(X_train, y_train)
bag_ = BaggingClassifier(n_estimators=400, random_state=random_state,
n_jobs=-1).fit(X_train, y_train)
rdf_ = RandomForestClassifier(n_estimators=400, random_state=random_state,
n_jobs=-1).fit(X_train, y_train)
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Get the prediction as a function of the memebers in the ensemble.
|
def get_staged_accuracy(ensemble, X, y):
prob_ = np.stack([est_.predict_proba(X)
for est_ in ensemble.estimators_],
axis=1).astype(float)
pred_ = np.cumsum(prob_[..., 1] > 0.5, axis=1).astype(float)
pred_ /= 1 + np.arange(ensemble.n_estimators).reshape((1, -1))
return np.mean((pred_ > .5).astype(int) == y[:, np.newaxis], axis=0)
bag_scores_ = get_staged_accuracy(bag_, X_test, y_test)
rdf_scores_ = get_staged_accuracy(rdf_, X_test, y_test)
ada_scores_ = np.array(list(ada_.staged_score(X_test, y_test)))
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
Plot the test error.
|
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.set_ylim(0, 0.50) ; ax.set_xlim(-10, ada_.n_estimators)
ax.plot(1+np.arange(ada_.n_estimators), 1-ada_scores_, c="k", label="AdaBoost")
ax.plot(1+np.arange(bag_.n_estimators), 1-bag_scores_, c="m", label="Bagged DT")
ax.plot(1+np.arange(bag_.n_estimators), 1-rdf_scores_, c="c", label="RF")
ax.axhline(y=1 - stump_.score(X_test, y_test), c="r", linestyle="--", label="stump")
ax.axhline(y=1 - t224_.score(X_test, y_test), c="b", linestyle="--", label="DT $J=224$")
ax.legend(loc="best")
ax.set_xlabel("Iterations")
ax.set_ylabel("Test error")
|
year_15_16/machine_learning_course/ensemble_practicum/ensemble_methods_scikit.ipynb
|
ivannz/study_notes
|
mit
|
u > 0
|
def f1_numpy(r, u, c):
return (r*c**2)/2 + (u*c**4)/4
n = 2
T = np.linspace(-n,n,101)
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
f vs c
r(T) > 0
|
fig1 = plt.figure(figsize=(11,8))
ax1 = fig1.gca()
plt.plot(T, f1_numpy(1, 1, T))
plt.xlabel('c', fontsize=14)
plt.ylabel('f', rotation='horizontal',verticalalignment='center', fontsize=14)
ax1.yaxis.set_label_coords(0.53,1)
ax1.xaxis.set_label_coords(1.03,0.22)
ax1.spines['left'].set_position('zero')
ax1.spines['right'].set_color('none')
ax1.spines['top'].set_color('none')
ax1.spines['bottom'].set_position('zero')
ax1.xaxis.set_ticks_position('bottom')
ax1.yaxis.set_ticks_position('left')
plt.ylim(-0.5,2)
yticks1 = ax1.yaxis.get_major_ticks()
yticks1[1].label1.set_visible(False);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
r(T) < 0
|
fig2 = plt.figure(figsize=(11,8))
ax2 = fig2.gca()
# ax2.get_yticklabels()[0].set_visible(False)
plt.plot(T, f1_numpy(-1, 1, T))
plt.xlabel('c', fontsize=16)
plt.ylabel('f', rotation='horizontal',verticalalignment='center', fontsize=16)
ax2.yaxis.set_label_coords(0.53,1)
ax2.xaxis.set_label_coords(1.03,0.22)
ax2.spines['left'].set_position('zero')
ax2.spines['bottom'].set_position('zero')
ax2.spines['right'].set_color('none')
ax2.spines['top'].set_color('none')
ax2.xaxis.set_ticks_position('bottom')
ax2.yaxis.set_ticks_position('left')
yticks2 = ax2.yaxis.get_major_ticks()
yticks2[1].label1.set_visible(False);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
c vs T (or r(T))
Solution for $c_{min}$:
$c_{min} = \pm\sqrt{\dfrac{-r(T)}{u}}$
|
def c1(r,u):
a = []
for i in r:
if i < 0:
a.append(np.sqrt(-i/u))
else:
a.append(0)
return np.array(a)
x = np.linspace(0,2,100)
plt.figure(figsize=(11,8))
plt.plot(x, c1(x-0.5,1),label='+')
plt.plot(x, -c1(x-0.5,1),label='-')
plt.xlabel('T',fontsize=16)
plt.ylabel('c',fontsize=16,rotation='horizontal')
plt.gca().spines['right'].set_color('none')
plt.gca().spines['top'].set_color('none')
plt.gca().spines['bottom'].set_position('zero')
plt.gca().xaxis.set_ticks_position('bottom')
plt.gca().yaxis.set_ticks_position('left')
plt.legend(fontsize=18)
plt.gca().annotate('$\mathregular{T_{C}}$', xy=(0.51, 0.01), xytext=(0.6, 0.15), arrowprops=dict(facecolor='black',width=1,headwidth=7),fontsize=16)
xticks3 = plt.gca().xaxis.get_major_ticks()
xticks3[0].label1.set_visible(False)
plt.gca().xaxis.set_label_coords(1.03,0.515)
plt.gca().yaxis.set_label_coords(0.025,0.99);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
u < 0
|
def f2_numpy(r, u, v, c):
return (r*c**2)/2 - (abs(u)*c**4)/4 + (abs(v)*c**6)/6
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
Large r
|
fig3 = plt.figure(figsize=(11,8))
ax3 = fig3.gca()
plt.plot(T, f2_numpy(1, -1, 1, T))
plt.xlabel('c', fontsize=14)
plt.ylabel('f', rotation='horizontal',verticalalignment='center', fontsize=14)
ax3.yaxis.set_label_coords(0.53,1)
ax3.xaxis.set_label_coords(1.03,0.22)
ax3.spines['left'].set_position('zero')
ax3.spines['right'].set_color('none')
ax3.spines['top'].set_color('none')
ax3.spines['bottom'].set_position('zero')
ax3.xaxis.set_ticks_position('bottom')
ax3.yaxis.set_ticks_position('left')
plt.ylim(-0.05,0.2), plt.xlim(-1.5,1.5)
yticks3 = ax3.yaxis.get_major_ticks()
yticks3[1].label1.set_visible(False);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
Small r
|
fig4 = plt.figure(figsize=(11,8))
ax4 = fig4.gca()
plt.plot(T, f2_numpy(0.23, -1, 1, T))
plt.xlabel('c', fontsize=14)
plt.ylabel('f', rotation='horizontal',verticalalignment='center', fontsize=14)
ax4.yaxis.set_label_coords(0.53,1)
ax4.xaxis.set_label_coords(1.03,0.22)
ax4.spines['left'].set_position('zero')
ax4.spines['bottom'].set_position('zero')
ax4.spines['right'].set_color('none')
ax4.spines['top'].set_color('none')
ax4.xaxis.set_ticks_position('bottom')
ax4.yaxis.set_ticks_position('left')
plt.ylim(-0.05,0.2), plt.xlim(-1.5,1.5)
yticks4 = ax4.yaxis.get_major_ticks()
yticks4[1].label1.set_visible(False);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
Smaller r
|
fig5 = plt.figure(figsize=(11,8))
ax5 = fig5.gca()
plt.plot(T, f2_numpy(0.187302, -1, 1, T))
plt.xlabel('c', fontsize=14)
plt.ylabel('f', rotation='horizontal',verticalalignment='center', fontsize=14)
ax5.yaxis.set_label_coords(0.53,1)
ax5.xaxis.set_label_coords(1.03,0.22)
ax5.spines['left'].set_position('zero')
ax5.spines['bottom'].set_position('zero')
ax5.spines['right'].set_color('none')
ax5.spines['top'].set_color('none')
ax5.xaxis.set_ticks_position('bottom')
ax5.yaxis.set_ticks_position('left')
plt.ylim(-0.05,0.2), plt.xlim(-1.5,1.5)
yticks5 = ax5.yaxis.get_major_ticks()
yticks5[1].label1.set_visible(False);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
Even smaller r
|
fig6 = plt.figure(figsize=(11,8))
ax6 = fig6.gca()
plt.plot(T, f2_numpy(0.15, -1, 1, T))
plt.xlabel('c', fontsize=14)
plt.ylabel('f', rotation='horizontal',verticalalignment='center', fontsize=14)
ax6.yaxis.set_label_coords(0.53,1)
ax6.xaxis.set_label_coords(1.03,0.22)
ax6.spines['left'].set_position('zero')
ax6.spines['bottom'].set_position('zero')
ax6.spines['right'].set_color('none')
ax6.spines['top'].set_color('none')
ax6.xaxis.set_ticks_position('bottom')
ax6.yaxis.set_ticks_position('left')
plt.ylim(-0.05,0.2), plt.xlim(-1.5,1.5)
yticks6 = ax6.yaxis.get_major_ticks()
yticks6[1].label1.set_visible(False);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
c vs r(T) (general)
The solutions for $c_{min}$:
$c_{min} = \pm\sqrt{\dfrac{|u| \pm \sqrt{|u|^{2} - 4r(T)|v|}}{2|v|}}$
Conditions for the following cell:
$c_{min,+} = \pm\sqrt{\dfrac{|u| + \sqrt{|u|^{2} - 4r(T)|v|}}{2|v|}}$ for $\sqrt{|u| + \sqrt{|u|^{2} - 4r(T)|v|}}, \sqrt{|u|^{2} - 4r(T)|v|} > 0$
$c_{min,-} = \pm\sqrt{\dfrac{|u| - \sqrt{|u|^{2} - 4r(T)|v|}}{2|v|}}$ for $\sqrt{|u| - \sqrt{|u|^{2} - 4r(T)|v|}}, \sqrt{|u|^{2} - 4r(T)|v|} > 0$
$c_{min} = 0$ otherwise
|
#might not be the best code to use
def c2(r, u, v):
a = []
for i in r:
if (abs(u)-np.sqrt(abs(u)**2-4*i*abs(v)) > 0) and (np.sqrt(abs(u)**2-4*i*abs(v)) > 0):
a.append(np.sqrt((abs(u)-np.sqrt(abs(u)**2-4*i*abs(v)))/(2*abs(v))))
elif (abs(u)+np.sqrt(abs(u)**2-4*i*abs(v)) > 0) and (np.sqrt(abs(u)**2-4*i*abs(v)) > 0):
a.append(np.sqrt((abs(u)+np.sqrt(abs(u)**2-4*i*abs(v)))/(2*abs(v))))
else:
a.append(np.NaN)
return np.array(a)
s = np.linspace(-1,5,1000)
plt.figure(figsize=(11,8))
plt.scatter(s, c2(s,-1,1),label='+',facecolors='none', edgecolors='b')
plt.scatter(s, -c2(s,-1,1),label='-',facecolors='none', edgecolors='g')
plt.xlabel('T',fontsize=18)
plt.ylabel('c',fontsize=18,rotation='horizontal')
plt.xlim(-1,0.5)
plt.gca().spines['right'].set_color('none')
plt.gca().spines['top'].set_color('none')
plt.gca().spines['bottom'].set_position('zero')
plt.gca().xaxis.set_ticks_position('bottom')
plt.gca().yaxis.set_ticks_position('left')
plt.legend(fontsize=18)
xticks7 = plt.gca().xaxis.get_major_ticks()
xticks7[0].label1.set_visible(False)
plt.gca().xaxis.set_label_coords(1.05,0.52)
plt.gca().yaxis.set_label_coords(0.03,0.99);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
c vs r(T) (specific)
$r_{1} = \dfrac{|u|^{2}}{4|v|}$ for $c_{+} = \sqrt{\dfrac{|u| + \sqrt{|u|^{2} - 4r|v|}}{2|v|}}$
$r_{2} = 0$ for $c_{-} = \sqrt{\dfrac{|u| - \sqrt{|u|^{2} - 4r|v|}}{2|v|}}$
after solving for $\dfrac{dc}{dr} = \infty$ for both cases.
|
plt.figure(figsize=(11,8))
plt.plot(s,np.sqrt((abs(-1)+np.sqrt(abs(-1)**2-4*s*abs(1)))/(2*abs(1))),c='b',label='$\mathregular{c_{min,+}}$')
plt.plot(s,np.sqrt((abs(-1)-np.sqrt(abs(-1)**2-4*s*abs(1)))/(2*abs(1))),c='g',label='$\mathregular{c_{min,-}}$')
# plt.plot(s,-np.sqrt((abs(-1)+np.sqrt(abs(-1)**2-4*s*abs(1)))/(2*abs(1))),c='b')
# plt.plot(s,-np.sqrt((abs(-1)-np.sqrt(abs(-1)**2-4*s*abs(1)))/(2*abs(1))),c='g')
plt.plot((1/4)*np.ones(10),np.linspace(-1.5,1.5,10),'--k')
plt.plot(np.zeros(10),np.linspace(-1.5,1.5,10),'--k')
plt.plot((3/16)*np.ones(10),np.linspace(-1.5,1.5,10),'--k')
plt.xlabel('r',fontsize=18)
plt.ylabel('c',fontsize=18,rotation='horizontal')
plt.xlim(-0.5,0.5), plt.ylim(0,1.5)
plt.gca().spines['right'].set_color('none')
plt.gca().spines['top'].set_color('none')
plt.gca().spines['bottom'].set_position('zero')
plt.gca().xaxis.set_ticks_position('bottom')
plt.gca().yaxis.set_ticks_position('left')
plt.legend(fontsize=18)
xticks8 = plt.gca().xaxis.get_major_ticks()
xticks8[0].label1.set_visible(False)
plt.gca().xaxis.set_label_coords(1.05,0.01)
plt.gca().yaxis.set_label_coords(0.03,0.99)
plt.gca().annotate('$\mathregular{r_{2} = \ 0}$', xy=(-0.01, 0.5), xytext=(-0.2, 0.5), arrowprops=dict(facecolor='black',width=1,headwidth=4),fontsize=16)
plt.gca().annotate('$\mathregular{r_{1} = \ \\frac{|u|^{2}}{4|v|}}$', xy=(0.26, 0.5), xytext=(0.36, 0.5), arrowprops=dict(facecolor='black',width=1,headwidth=4),fontsize=16)
plt.gca().annotate('$\mathregular{r_{T} = \ \\frac{3|u|^{2}}{16|v|}}$', xy=(0.18, 1.2), xytext=(0.01, 1.3), arrowprops=dict(facecolor='black',width=1,headwidth=4),fontsize=16);
|
Smectic/SmAtoSmC.ipynb
|
brettavedisian/Liquid-Crystals-Summer-2015
|
mit
|
Here are some examples of basic symbol operations:
|
x = sympy.Symbol('x')
y = x
x, x*2+1, y, type(y), x == y
try:
x*y+z
except NameError as e:
print(e)
sympy.symbols('x5:10'), sympy.symbols('x:z')
X = sympy.numbered_symbols('variable')
[ next(X) for i in range(5) ]
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
SymPy also handles expressions:
|
e = sympy.sympify('x*(x-1)+(x-1)')
e, sympy.factor(e), sympy.expand(e)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
But most work of interest is more than single expressions, so here is a helper function to handle systems of equations.
|
from process import parseExpr
help(parseExpr)
import inspect
print(inspect.getsource(parseExpr))
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Example Use Case
Let's use a simple example to explore the additional functionality. Performing a 2-D rotation involves multiple dependant variables, independant variables, and functions.
$x' = x \cos \theta - y \sin \theta$
$y' = x \sin \theta + y \cos \theta$
|
inputs='x y theta'
outputs="x' y'"
expr='''
x' = x*cos(theta) - y*sin(theta)
y' = x*sin(theta) + y*cos(theta)
'''
ins = sympy.symbols(inputs)
outs = sympy.symbols(outputs)
eqn = dict(parseExpr(expr))
# No quote marks, the dictionary keys are SymPy symbols
ins, outs, eqn
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Expression Trees
SymPy maintains a tree for all expressions. Everything in SymPy has .args and .func arguments that allow the expression (at that point in the tree) to be reconstructed. The .func argument is essentially the same as calling type and specifies whether the node is a add, multiply, cosine, some other function or a symbol. As you might expect, the .args attribute for leaves is empty.
|
expr_inputs = set()
expr_functs = set()
for arg in sympy.preorder_traversal(eqn[outs[0]]):
print(arg.func, '\t', arg, '\t', arg.args)
if arg.is_Symbol:
expr_inputs.add(arg)
elif arg.is_Function:
expr_functs.add(arg.func)
expr_inputs, expr_functs
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Adding Functionality
Before we go on, let's create a class around parseExpr so we can add object-oriented functionality.
|
from process import Block
print(inspect.getdoc(Block))
b = Block(expr, '2-D Rotate', inputs, outputs)
# spoiler alert!
print(inspect.getsource(Block.__init__))
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Convert SymPy equations to text
Links: Top
Intro
Text
LaTeX
Solver
Evaluating
Designs
Help
|
print('\n'.join( str(k)+' = '+sympy.pretty(v) for k,v in eqn.items() ))
print()
print('\n'.join( str(k)+' = '+str(v) for k,v in eqn.items() ))
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
So our Block instance can do the same thing, it needs to have pretty and __str__ functions defined. A __repr__ function could also be used to return a separate representation of the object.
|
b.pretty()
print(b)
print(inspect.getsource(b.pretty))
print(inspect.getsource(b.__str__))
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Convert SymPy equations to LaTeX
Strings are well and good, but don't quite cut it for publications and presentations
Links: Top
Intro
Text
LaTeX
Solver
Evaluating
Designs
Help
|
# Generate a LaTeX string for the Jupyter notebook to render
print(' \\\\\n'.join([ str(k)+' = '+sympy.latex(v) for k, v in eqn.items() ]))
%%latex
$
x' = x \cos{\left (\theta \right )} - y \sin{\left (\theta \right )} \\
y' = x \sin{\left (\theta \right )} + y \cos{\left (\theta \right )}
$
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
For our Block instance, the latex function doesn't need any arguments, so it can be handled as an attribute
|
print(b.latex)
%%latex
$
\underline{\verb;Block: 2-D Rotate;} \\
x' = x \cos{\left (\theta \right )} - y \sin{\left (\theta \right )} \\
y' = x \sin{\left (\theta \right )} + y \cos{\left (\theta \right )}
$
f = inspect.getsource(Block).split('def ')
for i,s in enumerate(f):
if s.startswith('latex'):
# grab the last 2 lines from the previous code block, suppress the final newline
print('\n'.join(f[i-1].rsplit('\n',2)[-2:]), end="")
print('def '+s.strip())
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
As a property, the latex function above is implicitly called instead of returning the function itself. Attempting to use inspect.getsource results in a TypeError since the LaTeX output isn't source code.
|
try:
inspect.getsource(getattr(Block,'latex'))
except TypeError as e:
print(type(e),' : ', e)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
We've seen a couple SymPy output formats. The init_printing function provides a lot of additional control over how symbols and expressions are shown, including LaTeX.
|
b.eqn
sympy.init_printing(use_latex=True)
#sympy.init_printing(use_latex=False)
b.eqn
sympy.Matrix(b.eqn)
help(sympy.init_printing)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Rearranging Equations
SymPy can also handle sets of equations (sympy.Eq instances) to handle intermediate values or solve equations in terms of desired variables. Block can catch up later.
Links: Top
Intro
Text
LaTeX
Solver
Evaluating
Designs
Help
|
inputs='x y theta'
outputs="x' y'"
expr='''
x' = x*c - y*s
y' = x*s + y*c
c = cos(theta)
s = sin(theta)
'''
ins2 = sympy.symbols(inputs)
outs2 = sympy.symbols(outputs)
hidden2 = sympy.symbols('c s')
eqn2 = tuple(sympy.Eq(k,v) for k, v in parseExpr(expr))
ins2, outs2, eqn2
sympy.solve(eqn2, outs2+hidden2)
help(sympy.solve)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Evaluating Expressions
SymPy can evaluate equations symbolically (.subs function) or numerically (.evalf function), at specified level of precision.
Links: Top
Intro
Text
LaTeX
Solver
Evaluating
Designs
Help
|
x = sympy.Symbol("x'")
eqn[x].subs(zip(ins, (1, 1, 45)))
eqn[x].evalf(4, subs=dict(zip(ins, (1, 1, 45))))
# sanity check with NumPy
import numpy as np
-1*np.sin(45) + np.cos(45)
e = sympy.sympify('sqrt(x)')
print(e.evalf(subs={'x':2}))
print(e.evalf(60, subs={'x':2}))
print(sympy.pi.evalf())
print(sympy.pi.evalf(100))
help(eqn[x].subs)
help(eqn[x].evalf)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Compiling Expressions
For efficiency, sympy.lambdify is preferred for numerical analysis. It supports mathematical functions from math, sympy.Function, or mpmath. Since these library functions are compiled Python, C, or even Fortran, they are significantly faster than sympy.evalf.
|
rad=np.linspace(0, np.pi, 8+1)
f = sympy.lambdify(ins, eqn[x], 'numpy')
%timeit f(1,0,rad)
%%timeit
for i in rad: # evalf doesn't support arrays!
eqn[x].evalf(subs={'x':1.0,'y':0.0,'theta':i})
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
SymPy also supports uFuncify for generating binary functions (using f2py and Cython) and Theano for GPU support. These options are discussed in the SymPy documentation.
|
help(sympy.lambdify)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Note that sympy.lambdify also supports custom functions (e.g. conditional operations or reshaping arrays). These custom functions can also be optimized for computing as easily as including a @jit decorator from the numba library.
|
def my_sample(x):
r = len(x) >> 1
return np.reshape(x[:2*r], (r,2))
x = np.linspace(0, np.pi, 9+1)
print(x*180/np.pi) # degrees
e = sympy.sympify('1+sample(x)')
print(e)
f = sympy.lambdify(sympy.Symbol('x'), e, {'sample':my_sample})
f(x)
f = sympy.lambdify(sympy.Symbol('x'), # inputs
sympy.sympify('sample(cos(x))'), # expressions
('numpy', {'sample':my_sample})) # functions
# Note: Can also use empty function dictionary for consistency
f(x)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
However, the documentation could be better. (Earlier versions didn't even include the expresion.)
|
help(f)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.