markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
|---|---|---|---|---|
For more control over the output function, including the __doc__, __name__, and __signature__ attributes used by the help function, let's revisit the Block class to wrap the functionality seen so far.
All together now
As we've seen, all the information is available for a more informative way to manipulate and evaluate systems of equations.
|
b2 = Block('''c = cos(theta)
s = sin(theta)
x' = x*c - y*s
y' = x*s + y*c
''', '2-D Rotate', 'x y theta', "x' y'")
print('\n',vars(b2))
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
When it comes to function arguments, Python 3.5 has had a lot of development beyond Python 2.7. Since the Block code was originally developed in Python 2.7, let's replace those _Dummy arguments from sympy.lambdify.
|
f = b2.lambdify()
help(f["x'"])
# All lambdify calls are made with the full set of inputs
p = []
# Update the signatures for each compiled expression
for k in f.keys():
sig=inspect.signature(f[k])
if len(p) == 0:
for i,s in zip(sig.parameters.values(), map(str, b2.ins)):
p.append(i.replace(name=s))
f[k].__signature__ = sig.replace(parameters=p)
help(f[k])
import types
# backup functions before overwriting them
Block.__lambdify = Block.lambdify
b2.__lambdify = b2.lambdify
# Rename the old function
b2._lambdify = b2.lambdify
Block._lambdify = Block.lambdify
#test._lambdify = types.MethodType(test.lambdify, test)
#Block._lambdify = types.MethodType(Block.lambdify, Block)
def lambdify(self, *args, **kwargs):
# Call the base function with any arguments
self._lambdify(*args, **kwargs)
# Update the signatures for each compiled expression
for k in self.lambdas.keys():
sig=inspect.signature(self.lambdas[k])
p = []
for i,s in zip(sig.parameters.values(), map(str, self.ins)):
p.append(i.replace(name=s))
self.lambdas[k].__signature__ = sig.replace(parameters=p)
return self.lambdas
# update the old __doc__ string
lambdify.__doc__ = Block._lambdify.__doc__ + ' and set the arguments to the variable names'
# use the new function in the class and existing instance
b2.lambdify = types.MethodType(lambdify, b2)
Block.lambdify = types.MethodType(lambdify, Block)
f = b2.lambdify()
help(f["x'"])
help(inspect.Signature)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
And since it's coming up, let's go ahead and improve the Block.eval function used to call the various lambdify functions. Extra credit to anyone who figures out why I couldn't do the same sort of __signature__ update without getting a NameError exception.
|
help(b2._eval)
help(b2.eval)
# Backup the old functions
b2._eval_save = b2.eval
Block._wrap_eval_save = Block._wrap_eval
# instead of wrapping _eval, just update its help info
def wrap_eval(self):
'''create _eval() wrapper function with useful docstring'''
def tuple_repr(i):
if type(i) == tuple:
o = i
s = repr(i)
else:
ins = (i,)
s = '('+repr(i)+')'
return o, s
ins, s_ins = tuple_repr(self.ins)
outs, s_outs = tuple_repr(self.outs)
f = self._eval
f.__func__.__name__ = str(self.__class__.__name__)+'('+self.name+').eval'
s = 'Given inputs '+s_ins+', calculate outputs '+s_outs+' as follows:'
for e in self.eqn:
s += '\n '+str(e.lhs)+' = '+str(e.rhs)
s += '\n\nBlock.outputMode = '+repr(Block.outputMode)+'\n'
f.__func__.__doc__ = s
return f
b2.eval = wrap_eval(b2)
# use the new function in the class
Block._wrap_eval = types.MethodType(wrap_eval, Block)
help(b2.eval)
b2.eval(1.0,2.0,3.0)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
The outputs were specified when the Block instance was created, so lambdify all of those.
|
f = b2.lambdify()
f, b2.lambdas
help(f["x'"])
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
The functions were made using sympy.lambdify, so they get all the benefits like support for NumPy arrays. The Block class also has an eval function to use that calls all the lambdify results.
|
out = f["x'"](1,0,np.linspace(0, np.pi, 8+1))
print(out, type(out))
help(b2.eval)
b2.eval(1,0,np.linspace(0, np.pi, 8+1))
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Potential Updates:
Set of 2 or more blocks with interconnects
Solve for selected outputs
Solve for selected inputs
Draw interconnect diagram
Create interface tables
Unnecessary Pictures
Because figures are fun. Using the 2-D rotation, we can rotate a constellation of points to best match expectations.
Links: Top
Intro
Text
LaTeX
Solver
Evaluating
Designs
Help
|
from matplotlib import pyplot as plt
from matplotlib import cm
from matplotlib import colors
# for IPython plotting
%pylab inline
# random (x,y) points
xy1 = np.random.normal(0,0.5,(8,2))
x,y = np.hsplit(xy1,2)
# rotate points on a log-scale
a = [0]+np.logspace(-2,1,20,base=5)
b2.verbose = False
xy2 = b2.eval(x,y,a)
xy2["2-D Rotate.x'"].shape
def example(xy1, xy2):
'''Move plot code into a function for cleaner presentation'''
# split original points into separate x/y arrays
x,y = np.hsplit(xy1,2)
# Fetch a matplotlib color map to use for line colors
c = cm.get_cmap('gist_heat')
cNorm = matplotlib.colors.Normalize(vmin=0, vmax=20)
scalarMap = cm.ScalarMappable(norm=cNorm, cmap=c)
# calculate "unit" circles for each point
a = np.reshape(np.linspace(0,2*np.pi,60), (60,1))
unit = np.cos(a) + 1j*np.sin(a)
circ = np.abs(x + 1j*y) * unit.T
# set up the figure
plt.figure(figsize=(12,9))
x = xy2["2-D Rotate.x'"].T
y = xy2["2-D Rotate.y'"].T
# "unit" circles for background
for i in range(circ.shape[0]):
s = '|iq{:d}|={:0.3f}'.format(i, np.abs(circ[i][0]))
plt.plot(circ[i].real, circ[i].imag, ls=':', color='k', label=s)
#plt.text(circ[i][0].real, circ[i][0].imag, str(i)+' ')
# plot each rotation point
for i in range(x.shape[0]):
plt.plot(x[i], y[i], color=scalarMap.to_rgba(i), marker='o', ls='none')
# label the first rotation points
for i in range(x.shape[1]):
plt.text(x[0][i]+0.04, y[0][i]+0.04, str(i), color='blue')
plt.axis('equal')
plt.grid()
plt.legend()
example(xy1, xy2)
# Fetch a matplotlib color map to use for line colors
c = cm.get_cmap('gist_heat')
cNorm = matplotlib.colors.Normalize(vmin=0, vmax=20)
scalarMap = cm.ScalarMappable(norm=cNorm, cmap=c)
# calculate "unit" circles for each point
a = np.reshape(np.linspace(0,2*np.pi,60), (60,1))
unit = np.cos(a) + 1j*np.sin(a)
circ = np.abs(x + 1j*y) * unit.T
# set up x/y
x = xy2["2-D Rotate.x'"].T
y = xy2["2-D Rotate.y'"].T
circ.shape
plt.figure(figsize=(12,6))
for i in range(circ.shape[0]): # "unit" circles for background
s = '|iq{:d}|={:0.3f}'.format(i, np.abs(circ[i][0]))
plt.plot(circ[i].real, circ[i].imag, ls=':', color='k', label=s)
for i in range(x.shape[0]): # plot each rotation point
plt.plot(x[i], y[i], color=scalarMap.to_rgba(i), marker='o', ls='none')
for i in range(x.shape[1]): # label the first rotation points
plt.text(x[0][i]+0.04, y[0][i]+0.04, str(i), color='blue')
plt.axis('equal')
plt.grid()
i = plt.legend()
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
More Information
SymPy Help
Links: Top
Intro
Text
LaTeX
Solver
Evaluating
Designs
Help
sympy.*.subs(*args, **kwargs)
sympy.lambdify(args, expr, modules=None)
|
print(type(b.eqn[0]),'\n')
help(b.eqn[0].subs)
help(sympy.lambdify)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Upgrading Code to Python 3
I originally made this notebook using Python 2.7. Fortunately, there's a Python library for that too lib2to3, although the canned 2to3 application worked just fine for me. Although this doesn't usually change functionality, there may be some slight changes as seen when running help on the sympy.lambdify output functions.
|
%%file process.py
import sympy
import numpy as np
def parseExpr(expr=''):
'''Helper function to iterate through a list of equations'''
err = 'Malformed expression! Does not match "y = f(x)"\n {0:s}'
for s in expr.strip().split('\n'):
# Parse anything that looks like an equation and isn't commented out
if ('=' in s) and (s[0] != '#'):
# convert expression to sympy
y, f = map(str.strip, s.split('=',1))
y = sympy.Symbol(y)
f = sympy.sympify(f)
assert type(y) == sympy.symbol.Symbol, err.format(s)
yield (y, f)
class Block(object):
'''Block(expr, inputs='', outputs='', functions={})
Generic processing block that performs specified calculations on given inputs
in such a way to ease documentation
'''
verbose = True # Enable verbose output
outputMode = 'dict' # eval() return type ('dict' or 'tuple')
def __init__(self, expr, name='', inputs='', outputs='', functions={}):
'''Create a Block instance'''
if Block.verbose:
s = 'Creating Block(expr={:s}, name={:s}, inputs={:s}, outputs={:s}, functions='
s = s.format(*map(repr,[expr, name, inputs, outputs]))+'{'
if functions:
s_functions = []
for k, v in functions.iteritems():
s2 = k+':'+v.__name__
args, varargs, keywords, defaults = getargspec(v)
if varargs != None:
args += ['*args']
if keywords != None:
args += ['*kwargs']
s2 += '('+','.join(args)+')'
s_functions.append(s2)
s += ','.join(s_functions)
print s+'})'
self.name = name
self.user = functions
# save in list form for ordered outputs
eqn = tuple(parseExpr(expr))
self.eqn = tuple([ sympy.Eq(k, v) for k, v in eqn ])
# placeholder for compiled expressions
self.lambdas = {}
# Extract inputs and functions used
expr_inputs = set()
expr_functs = set()
for k, v in eqn:
for arg in sympy.preorder_traversal(v):
if arg.is_Symbol:
expr_inputs.add(arg)
elif arg.is_Function:
expr_functs.add(arg.func)
# save SymPy style .args and .func attributes
self.args = tuple(expr_inputs)
self.func = tuple(expr_functs)
if inputs:
self.ins = sympy.symbols(inputs)
else: # extract inputs from expr
self.ins = tuple(self.args)
outs = tuple([ i[0] for i in eqn ])
if outputs:
self.outs = sympy.symbols(outputs)
print 'outs='+repr(outs)
self.hidden = tuple([ i for i in outs if i not in self.outs ])
else: # extract inputs from expr
self.outs = outs
self.hidden = tuple()
if Block.verbose:
print ' Extracting outputs:', self.outs
# create _eval() wrapper function with useful docstring
self.eval = self._wrap_eval()
def _wrap_eval(self):
'''create _eval() wrapper function with useful docstring'''
if type(self.ins) == tuple:
ins = self.ins
s = repr(self.ins)
else:
ins = (self.ins,)
s = '('+repr(self.ins)+')'
# not sure how to do a decorator with non-generic dynamic args
func = sympy.lambdify(self.ins, '_eval'+s, {'_eval':self._eval})
func.__name__ = 'Block.eval'
s = repr(self.outs)
if type(self.outs) != tuple:
s = '('+s+')'
func.__doc__ = 'Calculate outputs '+s+' as follows:\n '
func.__doc__ += '\n '.join(map(str,self.eqn))
func.__doc__ += '\n\nBlock.outputMode = '+repr(Block.outputMode)+'\n'
return func
def __str__(self):
'''Support str calls on Block instances'''
s = 'Block: '+str(self.name)+'\n'
s += '\n'.join( str(e).replace('==','=') for e in self.eqn )
return s
def __repr__(self):
'''return representation that sympy will automatically show as LaTeX'''
s = 'Block'
if self.name:
s += '('+self.name +')'
return repr({s:[ sympy.Eq(sympy.Symbol(k), v) for k,v in self.eqn.items() ]})
# method doesn't work currently
__repr__ = __str__
def pretty(self):
'''Show a SymPy pretty print version of Block equations'''
print '\nBlock:', self.name
print '\n'.join( sympy.pretty(e) for e in self.eqn )
@property
def latex(self):
'''generate a latex version of Block equations'''
# \verb;*; leaves contents unformatted
s = r'\underline{\verb;Block: '+str(self.name)+';} \\\\ \n'
s += ' \\\\ \n'.join( sympy.latex(e) for e in self.eqn )
return s
def lambdify(self, unknowns=None):
'''generate an executable function using NumPy'''
lookup='numpy'
# by default, unknowns are everything but outputs
if unknowns == None:
unknowns = self.outs+self.hidden
if self.verbose:
print 'Compiling Block '+repr(self.name)+' expressions:'
# check for missing functions
defined = set(dir(np) + self.user.keys())
missing = [ f for f in self.func if str(f) not in defined ]
if missing:
s = 'Unable to find functions '+str(missing)+' in '+str(lookup)
s += ' or user-defined functions ' + self.user.keys()
raise LookupError, s
# solve equations in terms of unknowns
eqn = sympy.solve(self.eqn, unknowns, dict=True)
if self.verbose:
print 'Solving equations for unknowns:', unknowns
print self.eqn
print ' =', eqn, '\n'
s = " {0:s} = sympy.lambdify({1:s}, {2:s}, '{3:s}')" # verbose string
for k, v in eqn[0].iteritems():
if k in self.hidden: # skip intermediate values
continue
k = str(k) # convert output variable from sympy.Symbol
if self.verbose:
print s.format(*map(str, (k, self.ins, v, (lookup, self.user.keys()) )))
f = sympy.lambdify(self.ins, v, (lookup, self.user))
# Update the function name and doc string from "<lambda> lambda x, y, theta"
f.__name__ = "Block"
if self.name:
f.__name__ += '('+self.name+')'
f.__name__ += '.lambdas['+k+']'
f.__doc__ = k+' = '+str(v)
self.lambdas[k] = f
return self.lambdas
def _eval(self, *args, **kwargs):
'''evaluate outputs for given inputs'''
# make sure in/ouputs are iterable
if hasattr(self.ins, '__iter__'):
ins = self.ins
else:
ins = [self.ins]
# make sure all inputs are given
assert len(args) == len(ins)
# default kwargs values
if not kwargs.has_key('output'):
output=Block.outputMode
# compile expressions if needed
if not self.lambdas:
self.lambdify()
if self.verbose:
s = '\nBlock.eval('
s += ', '.join( map(lambda k, v: str(k)+'='+str(v), ins, args) )
s += ', output='+repr(output)
print s+')\n'
if output == 'dict':
if self.name:
prefix=self.name+'.'
else:
prefix=''
return { prefix+k:v(*args) for k, v in self.lambdas.iteritems() }
else: # output tuple in order of .outs
return tuple( self.lambdas[k](*args) for k in self.outs )
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Let's test the conversion of the rewritten Python 2.7 code
|
!2to3 -w process.py
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Success!
|
from process import *
for s in (parseExpr, Block):
help(s)
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
Interesting Links / References
Python and Jupyter Notebooks
SymPy and LaTeX
SciPy and matplotlib
Python and Jupyter Notebooks
Markdown syntax
Notebook reveal-based slideshow tutorial
A brief tour of the IPython notebook: Same presentation, just later on
2to3 - Automated Python 2 to 3 code translation
But do I really want to use Python 3? Yes, it's been around since 2008
LaTeX documentation
Python Exceptions
SymPy and LaTeX
Scientific Python Lectures: Symbolic algebra
Live SymPy console
Wolfram Alpha-style search engine powered by SymPy
SymPy Tutorial
SymPy Modules
SymPy solvers module: Algebraic/Differential/Recurrence/Diophantine equations, Utilities, Systems of Polynomial Equations
Equations, Inequalities
SymPy Simplification Functions: Function/Trigonometric/Powers/Exponentials/logarithms Simplification, Special Functions
SymPy Basic Operations: Substitution, string inputs, evalf, lambdify
SymPy Basics of Expressions
SymPy Expression Trees and Manipulations
Embed LaTeX math equations into Microsoft Word
Type math formulas in LaTeX way in Microsoft Word?
pyvideo.org videos for SymPy
SciPy and matplotlib
SciPy Signal Processing module: Convolution, Filters, Linear Systems, Function Generators, Windowing, Wavelets, Peak finding, Spectral Analysis
SciPy Special Function module: Elliptic, Bessel, Gamma, Error, Legendre, Hypergeometric, Mathieu, Wave, and other functions
SciPy Cookbook: BPSK: A simple BPSK example with AWGN (no coding)
Matplotlib Gallery: Example plots
Any Questions?
This presentation courtesy of Python
jupyter nbconvert --to slides Process.ipynb --post serve
[NbConvertApp] Converting notebook Process.ipynb to slides
[NbConvertApp] Writing 341651 bytes to Process.slides.html
[NbConvertApp] Redirecting reveal.js requests to https://cdn.jsdelivr.net/reveal.js/2.6.2
Serving your slides at http://127.0.0.1:8000/Process.slides.html
Use Control-C to stop this server
WARNING:tornado.access:404 GET /custom.css (127.0.0.1) 4.00ms
WARNING:tornado.access:404 GET /custom.css (127.0.0.1) 3.00ms
|
%%file slides.bat
jupyter nbconvert --to slides Process.ipynb --post serve
|
files/Process.ipynb
|
jimaples/jimaples.github.io
|
mit
|
First, we'll load the dataset from scikit-learn. The Iris Dataset contains 3 classes for each of the iris species (iris setosa, iris virginica, and iris versicolor). It has 50 samples per class with 150 samples in total, making it a very balanced dataset. Each sample is characterized by four features (or dimensions): sepal length, sepal width, petal length, petal width.
Load the iris dataset
|
data = load_iris()
# Store the features as X and the labels as y
X = data.data
y = data.target
|
docs/examples/usecases/train_neural_network.ipynb
|
ljvmiranda921/pyswarms
|
mit
|
Constructing a custom objective function
Recall that neural networks can simply be seen as a mapping function from one space to another. For now, we'll build a simple neural network with the following characteristics:
* Input layer size: 4
* Hidden layer size: 20 (activation: $\tanh(x)$)
* Output layer size: 3 (activation: $softmax(x)$)
Things we'll do:
1. Create a forward_prop method that will do forward propagation for one particle.
2. Create an overhead objective function f() that will compute forward_prop() for the whole swarm.
What we'll be doing then is to create a swarm with a number of dimensions equal to the weights and biases. We will unroll these parameters into an n-dimensional array, and have each particle take on different values. Thus, each particle represents a candidate neural network with its own weights and bias. When feeding back to the network, we will reconstruct the learned weights and biases.
When rolling-back the parameters into weights and biases, it is useful to recall the shape and bias matrices:
* Shape of input-to-hidden weight matrix: (4, 20)
* Shape of input-to-hidden bias array: (20, )
* Shape of hidden-to-output weight matrix: (20, 3)
* Shape of hidden-to-output bias array: (3, )
By unrolling them together, we have $(4 * 20) + (20 * 3) + 20 + 3 = 163$ parameters, or 163 dimensions for each particle in the swarm.
The negative log-likelihood will be used to compute for the error between the ground-truth values and the predictions. Also, because PSO doesn't rely on the gradients, we'll not be performing backpropagation (this may be a good thing or bad thing under some circumstances).
Now, let's write the forward propagation procedure as our objective function. Let $X$ be the input, $z_l$ the pre-activation at layer $l$, and $a_l$ the activation for layer $l$:
Neural network architecture
|
n_inputs = 4
n_hidden = 20
n_classes = 3
num_samples = 150
def logits_function(p):
""" Calculate roll-back the weights and biases
Inputs
------
p: np.ndarray
The dimensions should include an unrolled version of the
weights and biases.
Returns
-------
numpy.ndarray of logits for layer 2
"""
# Roll-back the weights and biases
W1 = p[0:80].reshape((n_inputs,n_hidden))
b1 = p[80:100].reshape((n_hidden,))
W2 = p[100:160].reshape((n_hidden,n_classes))
b2 = p[160:163].reshape((n_classes,))
# Perform forward propagation
z1 = X.dot(W1) + b1 # Pre-activation in Layer 1
a1 = np.tanh(z1) # Activation in Layer 1
logits = a1.dot(W2) + b2 # Pre-activation in Layer 2
return logits # Logits for Layer 2
# Forward propagation
def forward_prop(params):
"""Forward propagation as objective function
This computes for the forward propagation of the neural network, as
well as the loss.
Inputs
------
params: np.ndarray
The dimensions should include an unrolled version of the
weights and biases.
Returns
-------
float
The computed negative log-likelihood loss given the parameters
"""
logits = logits_function(params)
# Compute for the softmax of the logits
exp_scores = np.exp(logits)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
# Compute for the negative log likelihood
corect_logprobs = -np.log(probs[range(num_samples), y])
loss = np.sum(corect_logprobs) / num_samples
return loss
|
docs/examples/usecases/train_neural_network.ipynb
|
ljvmiranda921/pyswarms
|
mit
|
Now that we have a method to do forward propagation for one particle (or for one set of dimensions), we can then create a higher-level method to compute forward_prop() to the whole swarm:
|
def f(x):
"""Higher-level method to do forward_prop in the
whole swarm.
Inputs
------
x: numpy.ndarray of shape (n_particles, dimensions)
The swarm that will perform the search
Returns
-------
numpy.ndarray of shape (n_particles, )
The computed loss for each particle
"""
n_particles = x.shape[0]
j = [forward_prop(x[i]) for i in range(n_particles)]
return np.array(j)
|
docs/examples/usecases/train_neural_network.ipynb
|
ljvmiranda921/pyswarms
|
mit
|
Performing PSO on the custom-function
Now that everything has been set-up, we just call our global-best PSO and run the optimizer as usual. For now, we'll just set the PSO parameters arbitrarily.
|
%%time
# Initialize swarm
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}
# Call instance of PSO
dimensions = (n_inputs * n_hidden) + (n_hidden * n_classes) + n_hidden + n_classes
optimizer = ps.single.GlobalBestPSO(n_particles=100, dimensions=dimensions, options=options)
# Perform optimization
cost, pos = optimizer.optimize(f, iters=1000)
|
docs/examples/usecases/train_neural_network.ipynb
|
ljvmiranda921/pyswarms
|
mit
|
Checking the accuracy
We can then check the accuracy by performing forward propagation once again to create a set of predictions. Then it's only a simple matter of matching which one's correct or not. For the logits, we take the argmax. Recall that the softmax function returns probabilities where the whole vector sums to 1. We just take the one with the highest probability then treat it as the network's prediction.
Moreover, we let the best position vector found by the swarm be the weight and bias parameters of the network.
|
def predict(pos):
"""
Use the trained weights to perform class predictions.
Inputs
------
pos: numpy.ndarray
Position matrix found by the swarm. Will be rolled
into weights and biases.
"""
logits = logits_function(pos)
y_pred = np.argmax(logits, axis=1)
return y_pred
|
docs/examples/usecases/train_neural_network.ipynb
|
ljvmiranda921/pyswarms
|
mit
|
And from this we can just compute for the accuracy. We perform predictions, compare an equivalence to the ground-truth value y, and get the mean.
|
(predict(pos) == y).mean()
|
docs/examples/usecases/train_neural_network.ipynb
|
ljvmiranda921/pyswarms
|
mit
|
In order account for initial out-of-straightness and partial yielding, notional lateral loads equal to 0.005 times the factored gravity loads contributed by each level are added to each level (CSA S16-09 8.4.1). At node H that will be $45 \times (10+10.5+10) \times 0.005 = 6.9\ kN$ and at node G it is $55 \times (10+10.5+10) \times 0.005 = 8.4\ kN$. These notional loads will be added to the forces already there.
|
frame = f2d.Frame2D()
frame.read_data('KG82') # read the CSV files in directory 'KG82.d'
%matplotlib inline
frame.plot()
frame.doall()
frame.saveStructuralData(frame.dsname)
|
Devel/Old/frame2d-v03/example-KG82.ipynb
|
nholtz/structural-analysis
|
cc0-1.0
|
The above are the results of a first-order analysis and should be compared with those shown in the following figure from Kulak & Grondin:
Compare book values (end bending moments)
|
import pandas as pd
BM = [('AB',44.2,-57.5), # values given on figure, above
('BC',-232.,-236.),
('DE',181.,227.),
('EF',287.,330.),
('BE',290.,-515.),
('CF',236.,-330.)]
BOOK = pd.DataFrame({m:{'MZJ':a,'MZK':b} for m,a,b in BM}).T
BOOK
R = frame.get_mefs() # get our member end forces for the same members
#R[['MZJ']] - BOOK[['MZJ']]
R = R.ix[BOOK.index]
R
|
Devel/Old/frame2d-v03/example-KG82.ipynb
|
nholtz/structural-analysis
|
cc0-1.0
|
% Difference in End Moments
|
m = R[['MZJ','MZK']]*1E-6
(100*(m - BOOK[['MZJ','MZK']])/m).round(2)
|
Devel/Old/frame2d-v03/example-KG82.ipynb
|
nholtz/structural-analysis
|
cc0-1.0
|
Max. difference is 5.5%, which I think is a little large.
|
frame.get_reactions()[['FY']]*1E-3
|
Devel/Old/frame2d-v03/example-KG82.ipynb
|
nholtz/structural-analysis
|
cc0-1.0
|
The reactions agree very closely.
$P-\Delta$ Analysis
|
frame.doall(pdelta=True,showinput=False)
|
Devel/Old/frame2d-v03/example-KG82.ipynb
|
nholtz/structural-analysis
|
cc0-1.0
|
The above are the results of a second-order ($P-\Delta$) analysis and should be compared with the following figure from Kulak & Grondin:
|
import pandas as pd
BM = [('AB',64.0,-39.2), # values given on gigure, above
('BC',-236.,-237.),
('DE',207.,244.),
('EF',301.,347.),
('BE',276.,-544.),
('CF',237.,-347.)]
BOOK = pd.DataFrame({m:{'MZJ':a,'MZK':b} for m,a,b in BM}).T
BOOK
R = frame.get_mefs() # get our member end forces for the same members
#R[['MZJ']] - BOOK[['MZJ']]
R = R.ix[BOOK.index]
R
|
Devel/Old/frame2d-v03/example-KG82.ipynb
|
nholtz/structural-analysis
|
cc0-1.0
|
Request the open events from the Meetup.com API.
|
r = requests.get("https://api.meetup.com/2/open_events", params={'topic': TOPIC, 'key': API_KEY})
r.raise_for_status()
df = pd.DataFrame(r.json()['results'])
|
notebooks/document.ipynb
|
ibm-et/defrag2015
|
mit
|
Convert the times since epoch in $\mu s$ to datetime objects, accounting for timezone offset. Hereafter, the times will be local to the meetup venue.
|
df['localtime'] = pd.to_datetime(df.time+df.utc_offset, unit='ms')
|
notebooks/document.ipynb
|
ibm-et/defrag2015
|
mit
|
Create a human readable description of the location down to the city level, if possible.
|
def text_location(venue):
'''
Return city, state, country, omitting any piece that isn't available.
'''
loc = []
if pd.isnull(venue): return ''
if 'city' in venue:
loc.append(venue['city'])
if 'state' in venue:
loc.append(venue['state'])
if 'country' in venue:
loc.append(venue['country'].upper())
return ', '.join(loc)
df['location'] = df.venue.apply(text_location)
|
notebooks/document.ipynb
|
ibm-et/defrag2015
|
mit
|
Turn the event name into a link to its page on meetup.com.
|
df['link_name'] = df.apply(lambda row: '<a href="{row[event_url]}" target="_blank">{row[name]}</a>'.format(row=row), axis=1)
|
notebooks/document.ipynb
|
ibm-et/defrag2015
|
mit
|
Use the HTML output feature instead of static markup so that the topic name appears.
|
HTML('<h2>Table of Upcoming <em>{}</em> Meetups</h2>'.format(TOPIC))
HTML(df[['link_name', 'localtime', 'location', 'yes_rsvp_count']].to_html(escape=False))
HTML('<h2>Map of Upcoming <em>{}</em> Meetups</h2>'.format(TOPIC))
def map_marker(row):
'''
Returns a dictionary with the lat/long location of an event venue as well
as a popup containing a link to its meetup.com page. Filters events
with no valid lat/long location.
'''
if pd.isnull(row['venue']): return None
lat = row['venue'].get('lat', 0.)
lon = row['venue'].get('lon', 0.)
if lat == 0 or lon == 0: return None
return dict(
location=[lat, lon],
popup=row['link_name']
)
m = folium.Map(location=[45, -40], zoom_start=2)
for i, row in df.iterrows():
marker = map_marker(row)
if marker:
m.simple_marker(**marker)
m._build_map()
|
notebooks/document.ipynb
|
ibm-et/defrag2015
|
mit
|
Idea: We might want show the venues of RSVPs in realtime on a map along with the locations of our meetups.
|
HTML('<iframe srcdoc="{srcdoc}" style="width: 100%; height: 510px; border: none"></iframe>'.format(srcdoc=m.HTML.replace('"', '"')))
|
notebooks/document.ipynb
|
ibm-et/defrag2015
|
mit
|
Filling the Swear Jar
A tale of three languages
Alec Reiter (@justanr)
Brainfuck
Urban Mueller, 1993
Turning ~~Complete~~ Tarpit
8 commands
Tape, Tape Pointer, Instruction Pointer
++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.
Why the...
Rust! (but we'll get to that)
Different
Oddly fun
The 8 Commands
| Command | Meaning |
|---------|------------------------------------|
| + | Incr Cell |
| - | Decr Cell |
| > | Move Right |
| < | Move Left |
| [ | Conditional Jump (if cell is 0) |
| ] | Conditional Jump (if cell isn't 0) |
| . | Output Cell |
| , | Read into Cell |
Common Constructs
[-] set current cell to 0
[->+<] add current cell to another
[->++<] multiplication
[<] find last zero cell
Ambiguities
"Infinite tape" -- reference impl uses 30,000 cells
How big are cells? -- u8 or u32? or signed?
So, implementations...
Turns out I have no idea what I'm doing
Python to the rescue
First Attempt
|
def run(prog: str, stdin: str="") -> StringIO:
stdout = StringIO()
memory = [0] * 30_000
memptr = 0
instrptr = 0
progsize = len(prog)
# stores the location of the last [ s we encountered
brackets = []
while instrptr < progsize:
op = progsize[instrptr]
instrptr += 1
if op == '+':
memory[memptr] += 1
elif op == '-':
memory[memptr] -= 1
# and so on
else:
# not a BF command
pass
stdout.seek(0)
return stdout
|
fillingtheswearjar.ipynb
|
justanr/notebooks
|
mit
|
Pros
Very simple
Jumping back is easy
Cons
Very naive
Jumping forward isn't easy
Incorrect programs not detected
Parsing
|
class BFToken(Enum):
Incr = '+'
Decr = '-'
MoveL = '<'
MoveR = '>'
StdIn = ','
StdOut = '.'
JumpF = '['
JumpB = ']'
partners = {
BFToken.Incr: BFToken.Decr,
BFToken.Decr: BFToken.Incr,
BFToken.MoveL: BFToken.MoveR,
BFToken.MoveR: BFToken.MoveL
}
def _parse(prog: str) -> Iterator[BFToken]:
for char in prog:
try:
yield BFToken(char)
except ValueError:
pass
def parse(prog: str) -> List[BFToken]:
return list(_parse(prog))
parse('++a+--')
|
fillingtheswearjar.ipynb
|
justanr/notebooks
|
mit
|
Optimizing
Jump table
Combine like tokens
|
def collapse(prog: List[BFToken]) -> List[BFToken]:
program = []
for token in prog:
...
# uh wait a second
|
fillingtheswearjar.ipynb
|
justanr/notebooks
|
mit
|
Missing Something
|
class IRToken(NamedTuple):
token: BFToken
amount: int
def collapse(prog: List[BFToken]) -> List[IRToken]:
program: List[IRToken] = []
for token in prog:
if len(program) == 0 or token not in partners:
program.append(IRToken(token, 1))
continue
previous = program.pop()
if previous.token == token:
new_token = previous._replace(amount=previous.amount+1)
if new_token.amount != 0:
program.append(new_token)
elif previous.token == partners[token]:
new_token = previous._replace(amount=previous.amount-1)
if new_token.amount != 0:
program.append(new_token)
else:
program.append(previous)
program.append(IRToken(token, 1))
return program
def build_jump_table(prog: List[IRToken]):
brackets = []
for idx, token in enumerate(prog, 0):
if token.token == BFToken.JumpF:
brackets.append(idx)
elif token.token == BFToken.JumpB:
try:
partner = brackets.pop()
except IndexError:
raise BFError(f"Unmatched bracket at: {idx}") from None
else:
prog[idx] = prog[idx]._replace(amount=partner)
prog[partner] = prog[partner]._replace(amount=idx)
if brackets:
raise BFError(f"Unmatched brackets at: {', '.join([str(x) for x in brackets])}")
tokens = collapse(parse('++[->++++++++<]'))
build_jump_table(tokens)
tokens
def run(prog: List[IRToken], stdin: str="") -> StringIO:
stdout = StringIO()
stdiniter = iter(stdin)
getc = lambda: ord(next(stdiniter, '\0'))
putc = lambda: stdout.write(chr(memory[memptr]))
memory = [0] * 30_000
memptr = 0
instrptr = 0
proglength = len(prog)
while instrptr < proglength:
op = prog[instrptr]
if op.token == BFToken.StdOut:
putc()
elif op.token == BFToken.StdIn:
memory[memptr] = getc()
elif op.token == BFToken.Incr:
memory[memptr] += op.amount
elif op.token == BFToken.Decr:
memory[memptr] -= op.amount
elif op.token == BFToken.MoveL:
memptr = (memptr - op.amount) % 30_000
elif op.token == BFToken.MoveR:
memptr = (memptr + op.amount) % 30_000
elif op.token == BFToken.JumpF:
if memory[memptr] == 0:
instrptr = op.amount
elif op.token == BFToken.JumpB:
if memory[memptr] != 0:
instrptr = op.amount
instrptr += 1
stdout.seek(0)
return stdout
def bf(source: str, stdin: str="") -> StringIO:
prog = collapse(parse(source))
build_jump_table(prog)
return run(prog, stdin)
%%time
print(bf("++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.").read())
triangle = """
>
+ +
+ +
[ < + +
+ +
+ + + +
> - ] >
+ + + + + + + +
[ >
+ + + +
< - ] >
> + + > > > + >
> > + <
< < < < < < < <
< [ - [ - > + <
] > [ - < + > > > . < < ] > > >
[ [
- > + +
+ + + +
+ + [ > + + + +
< - ] >
. < < [ - > + <
] + > [ - > + +
+ + + + + + + + < < + > ] > . [
- ] > ]
] + < < < [ - [
- > + < ] + > [
- < + > > > - [ - > + < ] + + >
[ - < - > ] < <
< ] < < < < ] + + + + + + + + +
+ . + + + . [ - ] < ] + + + + +
* * * * * M a d e * B y : * N Y Y R I K K I * 2 0 0 2 * * * * *
"""
%%time
result = bf(triangle)
print(result.read())
ZtoA = """>++[<+++++++++++++>-]<[[>+>+<<-]>[<+>-]++++++++
[>++++++++<-]>.[-]<<>++++++++++[>++++++++++[>++
++++++++[>++++++++++[>++++++++++[>++++++++++[>+
+++++++++[-]<-]<-]<-]<-]<-]<-]<-]++++++++++."""
%%time
print(bf(ZtoA).read())
|
fillingtheswearjar.ipynb
|
justanr/notebooks
|
mit
|
Where are we spending time?
[ I-1 ] 26_000_000
[ M1 I10 [ I-1 ] M-1 I-1 ] -> 2_600_000
[ M1 I10 [ M1 I10 [ I-1 ] M-1 I-1 ] M-1 I-1 ] -> 260_000
[ M1 I10 [ M1 I10 [ M1 I10 [ I-1 ] M-1 I-1 ] M-1 I-1 ] M-1 I-1 ] -> 26_000
[ M1 I10 [ M1 I10 [ M1 I10 [ M1 I10 [ I-1 ] M-1 I-1 ] M-1 I-1 ] M-1 I-1 ] M-1 I-1 ] -> 2_600
[ M1 I10 [ M1 I10 [ M1 I10 [ M1 I10 [ M1 I10 [ I-1 ] M-1 I-1 ] M-1 I-1 ] M-1 I-1 ] M-1 I-1 ] M-1 I-1 ] -> 260
Idea
Transform [-] into memory[memptr] = 0
|
def handle_clear(tokens: List[BFToken]) -> List[BFToken]:
program: List[BFToken] = []
clear = [BFToken.JumpF, BFToken.Decr, BFToken.JumpB]
for token in tokens:
program.append(token)
if len(program) < 3:
continue
last_three = program[-3:]
if last_three == clear:
program[-3:] = [BFToken.ZeroOut]
return program
|
fillingtheswearjar.ipynb
|
justanr/notebooks
|
mit
|
38min 34s
Python isn't known for being fast
Cython, numba, etc can help
but...
Rust
🎺🎺🎺
insert hype here
But seriously
Opt-in mutability
Algebraic Data Types
Functional + Imperative
High level but fast
Representation
rust
enum BrainFuckToken {
Move(isize),
JumpF(usize),
JumpB(usize),
Incr(i32)
StdIn,
StdOut,
ZeroOut
}
Parsing
rust
impl BrainFuckToken {
pub fn from_char(c: char) -> Option<BrainFuckToken> {
match c {
'+' => Some(BrainFuckToken::Incr(1)),
'-' => Some(BrainFuckToken::Incr(-1)),
'>' => Some(BrainFuckToken::Move(1)),
'<' => Some(BrainFuckToken::Move(-1)),
'.' => Some(BrainFuckToken::StdOut),
',' => Some(BrainFuckToken::StdIn),
'[' => Some(BrainFuckToken::JumpF(0)),
']' => Some(BrainFuckToken::JumpB(0)),
_ => None,
}
}
}
Jumps
```rust
fn build_jumps(tokens: &mut Vec<BrainFuckToken>) {
let mut brackets = Vec::new();
for idx in 0..tokens.len() {
match tokens[idx] {
BrainFuckToken::JumpF() => brackets.push(idx),
BrainFuckToken::JumpB() => {
let partner = brackets
.pop()
.unwrap_or_else(|| panic!("unmatched bracket at {}", idx));
mem::replace(&mut tokens[idx], BrainFuckToken::JumpB(partner));
mem::replace(&mut tokens[partner], BrainFuckToken::JumpF(idx));
}
_ => {}
}
}
if brackets.len() != 0 {
panic!("Unmatched brackets at: {:?}", brackets);
}
}
```
Run loop
rust
while let Some(instr) = self.ops.get(self.loc) {
match *instr {
BrainFuckToken::JumpF(x) => {
if self.tape.get() == 0 {
self.loc = x;
} else {
self.tracer.trace((self.loc, x));
}
}
BrainFuckToken::JumpB(x) => {
if self.tape.get() != 0 {
self.loc = x;
}
}
BrainFuckToken::Move(x) => self.tape.move_(x),
BrainFuckToken::Incr(x) => self.tape.incr(x),
BrainFuckToken::StdIn => self.tape.putc(input_iter.next().unwrap_or('\0')),
BrainFuckToken::StdOut => out.push(self.tape.getc()).
BrainFuckToken::ZeroOut => self.tape.put(0),
}
self.loc += 1;
}
But how fast?
|
%%bash
time ./bf triangle.bf > /dev/null
%%bash
time ./bf ZtoA.bf > /dev/null
%%bash
time ./bf mandel.bf > /dev/null
|
fillingtheswearjar.ipynb
|
justanr/notebooks
|
mit
|
We can clear the output by either using IPython.display.clear_output within the context manager, or we can call the widget's clear_output method directly.
|
out.clear_output()
|
docs/source/examples/Output Widget.ipynb
|
jupyter-widgets/ipywidgets
|
bsd-3-clause
|
Interacting with output widgets from background threads
Jupyter's display mechanism can be counter-intuitive when displaying output produced by background threads. A background thread's output is printed to whatever cell the main thread is currently writing to. To see this directly, create a thread that repeatedly prints to standard out:
```python
import threading
import time
def run():
for i in itertools.count(0):
time.sleep(1)
print('output from background {}'.format(i))
t = threading.Thread(target=run)
t.start()
```
This always prints in the currently active cell, not the cell that started the background thread.
This can lead to surprising behavior in output widgets. During the time in which output is captured by the output widget, any output generated in the notebook, regardless of thread, will go into the output widget.
The best way to avoid surprises is to never use an output widget's context manager in a context where multiple threads generate output. Instead, we can pass an output widget to the function executing in a thread, and use append_display_data(), append_stdout(), or append_stderr() methods to append displayable output to the output widget.
|
import threading
from IPython.display import display, HTML
import ipywidgets as widgets
import time
def thread_func(something, out):
for i in range(1, 5):
time.sleep(0.3)
out.append_stdout('{} {} {}\n'.format(i, '**'*i, something))
out.append_display_data(HTML("<em>All done!</em>"))
display('Display in main thread')
out = widgets.Output()
# Now the key: the container is displayed (while empty) in the main thread
display(out)
thread = threading.Thread(
target=thread_func,
args=("some text", out))
thread.start()
thread.join()
|
docs/source/examples/Output Widget.ipynb
|
jupyter-widgets/ipywidgets
|
bsd-3-clause
|
Vertex client library: Local text binary classification model for online prediction
<table align="left">
<td>
<a href="https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/community/gapic/custom/showcase_local_text_binary_classification_online.ipynb">
<img src="https://cloud.google.com/ml-engine/images/colab-logo-32px.png" alt="Colab logo"> Run in Colab
</a>
</td>
<td>
<a href="https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/community/gapic/custom/showcase_local_text_binary_classification_online.ipynb">
<img src="https://cloud.google.com/ml-engine/images/github-logo-32px.png" alt="GitHub logo">
View on GitHub
</a>
</td>
</table>
<br/><br/><br/>
Overview
This tutorial demonstrates how to use the Vertex client library for Python to deploy a locally trained custom text binary classification model for online prediction.
Dataset
The dataset used for this tutorial is the IMDB Movie Reviews from TensorFlow Datasets. The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket. The trained model predicts whether a review is positive or negative in sentiment.
Objective
In this notebook, you create a custom model locally in the notebook, then learn to deploy the locally trained model to Vertex, and then do a prediction on the deployed model. You can alternatively create and deploy models using the gcloud command-line tool or online using the Google Cloud Console.
The steps performed include:
Create a model locally.
Train the model locally.
View the model evaluation.
Upload the model as a Vertex Model resource.
Deploy the Model resource to a serving Endpoint resource.
Make a prediction.
Undeploy the Model resource.
Costs
This tutorial uses billable components of Google Cloud (GCP):
Vertex AI
Cloud Storage
Learn about Vertex AI
pricing and Cloud Storage
pricing, and use the Pricing
Calculator
to generate a cost estimate based on your projected usage.
Installation
Install the latest version of Vertex client library.
|
import os
import sys
# Google Cloud Notebook
if os.path.exists("/opt/deeplearning/metadata/env_version"):
USER_FLAG = "--user"
else:
USER_FLAG = ""
! pip3 install -U google-cloud-aiplatform $USER_FLAG
|
notebooks/community/gapic/custom/showcase_local_text_binary_classification_online.ipynb
|
GoogleCloudPlatform/vertex-ai-samples
|
apache-2.0
|
Tutorial
Now you are ready to start locally training a custom model IMDB Movie Reviews, and then deploy the model to the cloud.
Set up clients
The Vertex client library works as a client/server model. On your side (the Python script) you will create a client that sends requests and receives responses from the Vertex server.
You will use different clients in this tutorial for different steps in the workflow. So set them all up upfront.
Model Service for Model resources.
Endpoint Service for deployment.
Prediction Service for serving.
|
# client options same for all services
client_options = {"api_endpoint": API_ENDPOINT}
def create_model_client():
client = aip.ModelServiceClient(client_options=client_options)
return client
def create_endpoint_client():
client = aip.EndpointServiceClient(client_options=client_options)
return client
def create_prediction_client():
client = aip.PredictionServiceClient(client_options=client_options)
return client
clients = {}
clients["model"] = create_model_client()
clients["endpoint"] = create_endpoint_client()
clients["prediction"] = create_prediction_client()
for client in clients.items():
print(client)
|
notebooks/community/gapic/custom/showcase_local_text_binary_classification_online.ipynb
|
GoogleCloudPlatform/vertex-ai-samples
|
apache-2.0
|
Train a model locally
In this tutorial, you train a IMDB Movie Reviews model locally.
Set location to store trained model
You set the variable MODEL_DIR for where in your Cloud Storage bucket to save the model in TensorFlow SavedModel format.
Also, you create a local folder for the training script.
|
MODEL_DIR = BUCKET_NAME + "/imdb"
model_path_to_deploy = MODEL_DIR
! rm -rf custom
! mkdir custom
! mkdir custom/trainer
|
notebooks/community/gapic/custom/showcase_local_text_binary_classification_online.ipynb
|
GoogleCloudPlatform/vertex-ai-samples
|
apache-2.0
|
通常,所有的权重都是可以训练的权重。keras自动的layer中只有BatchNormalization有不可训练的权重。BatchNormalization使用不可训练的权重来跟踪训练过程中输入的mean和variance。
学习在自定义layers,如何使用不可训练权重,请看
guide to writing new layers from scratch.
In general, all weights are trainable weights. The only built-in layer that has
non-trainable weights is the BatchNormalization layer. It uses non-trainable weights
to keep track of the mean and variance of its inputs during training.
To learn how to use non-trainable weights in your own custom layers, see the
guide to writing new layers from scratch.
Example: the BatchNormalization layer has 2 trainable weights and 2 non-trainable
weights
例子:BatchNormalization层有3个可训练权重和2个不可训练权重
|
layer = keras.layers.BatchNormalization()
layer.build((None, 4)) # Create the weights
print("weights:", len(layer.weights))
print("trainable_weights:", len(layer.trainable_weights))
print("non_trainable_weights:", len(layer.non_trainable_weights))
|
tensorflow_learning/tf2/notebooks/.ipynb_checkpoints/transfer_learning-中文-checkpoint-checkpoint.ipynb
|
jeffzhengye/pylearn
|
unlicense
|
Find a genome and download the annotations
You need to find your genome in PATRIC and download the annotations.
Once you have identified the genome you would like to build the model for, choose Feature Table from the menu bar:
<img src="img/patric_ft.png">
Next, choose Download and save as a text file (.txt).
<img src="img/patric_dl.png">
That will save a file called FeatureTable.txt to your Downloads location. That file has the following columns:
| Genome | Genome ID | Accession | PATRIC ID | RefSeq Locus Tag | Alt Locus Tag | Feature ID |
| Annotation | Feature Type | Start | End | Length | Strand | FIGfam ID |
| PATRIC genus-specific families (PLfams) | PATRIC cross-genus families (PGfams) | Protein ID | AA Length | Gene Symbol | Product | GO
The key columns are PATRIC ID (Column 3) and Product (Column 19) [Column numbers are 0 based!]
Now that we know that, we need to convert these feature names into functional roles. The key here is to split on adjoiners, such as ' / ', ' # ', and ' @ '.
|
assigned_functions = {}
with open(os.path.join('workspace/Citrobacter_sedlakii_genome_features.txt'), 'r') as f:
for l in f:
p=l.strip().split("\t")
assigned_functions[p[3]]=PyFBA.parse.roles_of_function(p[19])
roles = set([i[0] for i in [list(j) for j in assigned_functions.values()]])
print("There are {} unique roles in this genome".format(len(roles)))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Next, we convert those roles to reactions. We start with a dict of roles and reactions, but we only need a list of unique reactions, so we convert the keys to a set.
|
roles_to_reactions = PyFBA.filters.roles_to_reactions(roles, organism_type="Gram_Negative", verbose=False)
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
If you toggle verbose=True, you will see that there are a lot of roles that we skip, even though we have an EC number for them: for whatever reason, the annotation is not quite right. We can check for those too, because our model seed parsed data has EC numbers with reactions.
|
# ecr2r = PyFBA.filters.roles_to_ec_reactions(roles, organism_type="Gram_Negative", verbose=False)
ecr2r = set()
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
We combine roles_to_reactions and ecr2r and figure out what the unique set of reactions is for our genome.
|
roles_to_reactions.update(ecr2r)
reactions_to_run = set()
for role in roles_to_reactions:
reactions_to_run.update(roles_to_reactions[role])
print("There are {}".format(len(reactions_to_run)) +
" unique reactions associated with this genome".format(len(reactions_to_run)))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Read all the reactions and compounds in our database
We read all the reactions, compounds, and enzymes in the ModelSEEDDatabase into three data structures. Note, the first time you call this it is a bit slow as it has to parse the files, but if we've parsed them once, we don't need to do it again!
We modify the reactions specifically for Gram negative models (there are also options for Gram positive models, Mycobacterial models, general microbial models, and plant models).
|
compounds, reactions, enzymes = \
PyFBA.parse.model_seed.compounds_reactions_enzymes('gramnegative')
print(f"There are {len(compounds):,} compounds, {len(reactions):,} reactions, and {len(enzymes):,} enzymes in total")
for r in reactions:
for c in reactions[r].all_compounds():
if c.uptake_secretion:
print(f"US: {c}")
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Update reactions to run, making sure that all reactions are in the list!
There are some reactions that come from functional roles that do not appear in the reactions list. We're working on tracking these down, but for now we just check that all reaction IDs in reactions_to_run are in reactions, too.
|
tempset = set()
for r in reactions_to_run:
if r in reactions:
tempset.add(r)
else:
sys.stderr.write("Reaction ID {} is not in our reactions list. Skipped\n".format(r))
reactions_to_run = tempset
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Test whether these reactions grow on ArgonneLB media
We can test whether this set of reactions grows on ArgonneLB media. The media is the same one we used above, and you can download the ArgonneLB.txt and text file and put it in the same directory as this iPython notebook to run it.
(Note: we don't need to convert the media components, because the media and compounds come from the same source.)
|
media = PyFBA.parse.read_media_file("/home/redwards/test_media/ArgonneLB.txt")
print("Our media has {} components".format(len(media)))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Define a biomass equation
The biomass equation is the part that says whether the model will grow! This is a metabolism.reaction.Reaction object.
|
biomass_equation = PyFBA.metabolism.biomass_equation()
biomass_equation.equation
with open('rbad.txt', 'w') as out:
for r in reactions_to_run:
out.write(f"{r}\n")
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Run the FBA
With the reactions, compounds, reactions_to_run, media, and biomass model, we can test whether the model grows on this media.
|
print(f"Before running FBA there are {len(reactions)} reactions")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, reactions_to_run,
media, biomass_equation)
print(f"After running FBA there are {len(reactions)} reactions")
print("Initial run has a biomass flux value of {} --> Growth: {}".format(value, growth))
print(f"There are {len(reactions_to_run)} reactions to run")
upsr = 0
for r in reactions_to_run:
if r.startswith('upsr'):
upsr += 1
print(f"There are {upsr} uptake secretion reactions in reactions_to_run")
upsr = 0
for r in reactions:
if r.startswith('upsr'):
upsr += 1
print(f"There are {upsr} uptake secretion reactions in reactions")
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Will gap filling work?
These are the reactions from the C. sedlakii SBML file, and so if we add these, we should get growth!
|
sbml_addnl = {'rxn00868', 'rxn01923', 'rxn02268', 'rxn10215', 'rxn10219', 'rxn08089', 'rxn10212', 'rxn08083', 'rxn10214', 'rxn10211', 'rxn10218', 'rxn08086', 'rxn10217', 'rxn08087', 'rxn08088', 'rxn08085', 'rxn10216', 'rxn08084', 'rxn10213', 'rxn05572', 'rxn05565', 'rxn00541', 'rxn10155', 'rxn10157', 'rxn05536', 'rxn05544', 'rxn12848', 'rxn12851', 'rxn05539', 'rxn05541', 'rxn05537', 'rxn05543', 'rxn12849', 'rxn05533', 'rxn05540', 'rxn05534', 'rxn05547', 'rxn05546', 'rxn05542', 'rxn05535', 'rxn12850', 'rxn05545', 'rxn05538', 'rxn05168', 'rxn05179', 'rxn05161', 'rxn03061', 'rxn09313', 'rxn08354', 'rxn08356', 'rxn09315', 'rxn05549', 'rxn05160', 'rxn05644', 'rxn05330', 'rxn05335', 'rxn05334', 'rxn05329', 'rxn05333', 'rxn05332', 'rxn05331', 'rxn05415', 'rxn05381', 'rxn05386', 'rxn05427', 'rxn05431', 'rxn05373', 'rxn05377', 'rxn05398', 'rxn05419', 'rxn05402', 'rxn05369', 'rxn05361', 'rxn05394', 'rxn05406', 'rxn05365', 'rxn05390', 'rxn05423', 'rxn05462', 'rxn05411', 'rxn03492', 'rxn04050', 'rxn08258', 'rxn04713', 'rxn00990', 'rxn00875', 'rxn08471', 'rxn05737', 'rxn08467', 'rxn10067', 'rxn08468', 'rxn08469', 'rxn08470', 'rxn02160', 'rxn05422', 'rxn05372', 'rxn05341', 'rxn05376', 'rxn05342', 'rxn05337', 'rxn05385', 'rxn05397', 'rxn05340', 'rxn05461', 'rxn05368', 'rxn05418', 'rxn05393', 'rxn05336', 'rxn05426', 'rxn05364', 'rxn05430', 'rxn05410', 'rxn05339', 'rxn05401', 'rxn05338', 'rxn05360', 'rxn05414', 'rxn05405', 'rxn05389', 'rxn05380', 'rxn03164', 'rxn05229', 'rxn07586', 'rxn05054', 'rxn04384', 'rxn00503', 'rxn00183', 'rxn05187', 'rxn05515', 'rxn02056', 'rxn09134', 'rxn09125', 'rxn09157', 'rxn09128', 'rxn09142', 'rxn09161', 'rxn09147', 'rxn09164', 'rxn09152', 'rxn09124', 'rxn09131', 'rxn09133', 'rxn09138', 'rxn09143', 'rxn09153', 'rxn09160', 'rxn09158', 'rxn09148', 'rxn09144', 'rxn09150', 'rxn09130', 'rxn09149', 'rxn09163', 'rxn09159', 'rxn09132', 'rxn09127', 'rxn09140', 'rxn09145', 'rxn09137', 'rxn09154', 'rxn09151', 'rxn09146', 'rxn09123', 'rxn09139', 'rxn09126', 'rxn09141', 'rxn09135', 'rxn09136', 'rxn09155', 'rxn09162', 'rxn09129', 'rxn09156', 'rxn02949', 'rxn03241', 'rxn03245', 'rxn02911', 'rxn02167', 'rxn03250', 'rxn02934', 'rxn03240', 'rxn03247', 'rxn05316', 'rxn09687', 'rxn05198', 'rxn09688', 'rxn05199', 'rxn05200', 'rxn09685', 'rxn05318', 'rxn05205', 'rxn05621', 'rxn05656', 'rxn05585', 'rxn05172', 'rxn05594', 'rxn05552', 'rxn05599', 'rxn05512', 'rxn05620', 'rxn01277', 'rxn05518', 'rxn05145', 'rxn05460', 'rxn05396', 'rxn05363', 'rxn05359', 'rxn05367', 'rxn05417', 'rxn05421', 'rxn05392', 'rxn05413', 'rxn05349', 'rxn05388', 'rxn05429', 'rxn05371', 'rxn05400', 'rxn05425', 'rxn05409', 'rxn05404', 'rxn05375', 'rxn05379', 'rxn05384', 'rxn04139', 'rxn00640', 'rxn05507', 'rxn05506', 'rxn01893', 'rxn00671', 'rxn00501', 'rxn10340', 'rxn10334', 'rxn10337', 'rxn10338', 'rxn10341', 'rxn10335', 'rxn10342', 'rxn10339', 'rxn10336', 'rxn00160', 'rxn01285', 'rxn04143', 'rxn01847', 'rxn01103', 'rxn00227', 'rxn05175', 'rxn05163', 'rxn05958', 'rxn05683', 'rxn05484', 'rxn02933', 'rxn04750', 'rxn03244', 'rxn01451', 'rxn03239', 'rxn03246', 'rxn03242', 'rxn03249', 'rxn06777', 'rxn05500', 'rxn01637', 'rxn01122', 'rxn04602', 'rxn02416', 'rxn04601', 'rxn04928', 'rxn05596', 'rxn02775', 'rxn04046', 'rxn07589', 'rxn03491', 'rxn10117', 'rxn10119', 'rxn08333', 'rxn04673', 'rxn10308', 'rxn10311', 'rxn10315', 'rxn10309', 'rxn10307', 'rxn10312', 'rxn10310', 'rxn10314', 'rxn08040', 'rxn10313', 'rxn12147', 'rxn03931', 'rxn03916', 'rxn04674', 'rxn03397', 'rxn10094', 'rxn02286', 'rxn00555', 'rxn08709', 'rxn04052', 'rxn03512', 'rxn04045', 'rxn12224', 'rxn09188', 'rxn02359', 'rxn02008', 'rxn03643', 'rxn09177', 'rxn12512', 'rxn07587', 'rxn02507', 'rxn05202', 'rxn08291', 'rxn06865', 'rxn00303', 'rxn00222', 'rxn09978', 'rxn09979', 'rxn07588', 'rxn03919', 'rxn03435', 'rxn02187', 'rxn02186', 'rxn03436', 'rxn03068', 'rxn05317', 'rxn01219', 'rxn00364', 'rxn03514', 'rxn04048', 'rxn02792', 'rxn00350', 'rxn02791', 'rxn00171', 'rxn01000', 'rxn00675', 'rxn00175', 'rxn00986', 'rxn03932', 'rxn08712', 'rxn04113', 'rxn04996', 'rxn08756', 'rxn08352', 'rxn06023', 'rxn03136', 'rxn00800', 'rxn05165', 'rxn05181', 'rxn08194', 'rxn09180', 'rxn00670', 'rxn00173', 'rxn03644', 'rxn08619', 'rxn09289', 'rxn00776', 'rxn01360', 'rxn08335', 'rxn08336', 'rxn12500', 'rxn02287', 'rxn02774', 'rxn09167', 'rxn08708', 'rxn05156', 'rxn05151', 'rxn01629', 'rxn12146', 'rxn01123', 'rxn05147', 'rxn05173', 'rxn08707', 'rxn00927', 'rxn01299', 'rxn01226', 'rxn01545', 'rxn02476', 'rxn02011', 'rxn05201', 'rxn01895', 'rxn04604', 'rxn00830', 'rxn01403', 'rxn00179', 'rxn03991', 'rxn03990', 'rxn03975', 'rxn03974', 'rxn00818', 'rxn03838', 'rxn00817', 'rxn02596', 'rxn05555', 'rxn00056', 'rxn00212', 'rxn06979', 'rxn11544', 'rxn03918', 'rxn05559', 'rxn08345', 'rxn00509', 'rxn00006', 'rxn00834', 'rxn05293', 'rxn00634', 'rxn08618', 'rxn06848', 'rxn09997', 'rxn05938', 'rxn04783', 'rxn05206', 'rxn00102', 'rxn05937', 'rxn01644', 'rxn02938', 'rxn00792', 'rxn08711', 'rxn03513', 'rxn04047', 'rxn01265', 'rxn03394', 'rxn00777', 'rxn01106', 'rxn07492', 'rxn03538', 'rxn01480', 'rxn00119', 'rxn01517', 'rxn01966', 'rxn01132', 'rxn05162', 'rxn02277', 'rxn08257', 'rxn01352', 'rxn03540', 'rxn00789', 'rxn00508', 'rxn04386', 'rxn10481', 'rxn05528', 'rxn06077', 'rxn01671', 'rxn02929', 'rxn03917', 'rxn03135', 'rxn00469', 'rxn00791', 'rxn00756', 'rxn03087', 'rxn01329', 'rxn01917', 'rxn01879', 'rxn02285', 'rxn08710', 'rxn07438', 'rxn02321', 'rxn00787', 'rxn01289', 'rxn00851', 'rxn05297', 'rxn00062', 'rxn04132', 'rxn04133', 'rxn05319', 'rxn05467', 'rxn05468', 'rxn02374', 'rxn03012', 'rxn05064', 'rxn02666', 'rxn04457', 'rxn04456', 'rxn01664', 'rxn02916', 'rxn05667', 'rxn10571', 'rxn05195', 'rxn05645', 'rxn05144', 'rxn02988', 'rxn01256', 'rxn12604', 'rxn05039', 'rxn10904', 'rxn05499', 'rxn01152', 'rxn05691', 'rxn12893', 'rxn11116', 'rxn00880', 'rxn05593', 'rxn05469', 'rxn00186', 'rxn05694', 'rxn05491', 'rxn05682', 'rxn01748', 'rxn00327', 'rxn01746', 'rxn09656'}
r2r_plussbml = copy.copy(reactions_to_run)
print(f"Before adding sbml reactions there were {len(r2r_plussbml)}")
r2r_plussbml.update(sbml_addnl)
print(f"After adding sbml reactions there were {len(r2r_plussbml)}")
print(f"Before running FBA there are {len(reactions)} reactions")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, r2r_plussbml,
media, biomass_equation, verbose=True)
print(f"After running FBA there are {len(reactions)} reactions")
print("Initial run has a biomass flux value of {} --> Growth: {}".format(value, growth))
print(f"Before adding upsr reactions there were {len(r2r_plussbml)} reactions")
for r in reactions:
if r.startswith('upsr'):
r2r_plussbml.update({r})
print(f"After adding upsr reactions there were {len(r2r_plussbml)} reactions")
print(f"Before running FBA there are {len(reactions)} reactions")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, r2r_plussbml,
media, biomass_equation, verbose=True)
print(f"After running FBA there are {len(reactions)} reactions")
print("Initial run has a biomass flux value of {} --> Growth: {}".format(value, growth))
# seems like we need EX_cpd00034
upsr = 0
for r in reactions_to_run:
if r.startswith('EX'):
upsr += 1
print(f"There are {upsr} EX reactions in reactions_to_run")
upsr = 0
for r in reactions:
if r.startswith('EX'):
upsr += 1
print(f"There are {upsr} EX reactions in reactions")
biomass_equation = PyFBA.metabolism.biomass_equation('standard')
biomass_equation.equation
print(f"Before running FBA there are {len(reactions)} reactions")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, r2r_plussbml,
media, biomass_equation, verbose=True)
print(f"After running FBA there are {len(reactions)} reactions")
print("Initial run has a biomass flux value of {} --> Growth: {}".format(value, growth))
uptake_secretion_reactions
all_compounds = compounds
# Filter for compounds that are boundary compounds
filtered_compounds = set()
for c in all_compounds:
if not compounds[c].uptake_secretion:
filtered_compounds.add(c)
print(f"There are {len(all_compounds)} total compounds and {len(filtered_compounds)} filtered compounds")
without_ex = set()
with open('rwex.txt', 'r') as fin:
for l in fin:
l = l.strip()
without_ex.add(l)
without_ex
print(f"Before running FBA there are {len(reactions)} reactions")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, without_ex,
media, biomass_equation, verbose=True)
print(f"After running FBA there are {len(reactions)} reactions")
print("Initial run has a biomass flux value of {} --> Growth: {}".format(value, growth))
len(without_ex)
len(reactions_to_run)
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
it is the biomass model that is the problem
Lets take the biomass model from the SBML and see if this work.
|
sbml_equation = '(0.00778132482043096) cpd00063: Ca2 (location: c) + (0.352889948968272) cpd00156: L_Valine (location: e) + (0.00778132482043096) cpd00030: Mn2 (location: e) + (0.00778132482043096) cpd00205: K (location: c) + (0.428732289454499) cpd00035: L_Alanine (location: e) + (0.128039715997337) cpd00060: L_Methionine (location: e) + (0.15480760087483) cpd00066: L_Phenylalanine (location: c) + (0.00778132482043096) cpd00017: S_Adenosyl_L_methionine (location: c) + (0.00778132482043096) cpd00010: CoA (location: c) + (0.0609084652443221) cpd15665: Peptidoglycan_polymer_n_subunits (location: c) + (0.0841036156544863) cpd00052: CTP (location: c) + (0.00778132482043096) cpd10516: fe3 (location: e) + (0.01468498342018) cpd00357: TTP (location: c) + (0.00778132482043096) cpd00099: Cl_ (location: e) + (0.01468498342018) cpd00356: dCTP (location: c) + (0.00778132482043096) cpd10515: Fe2 (location: e) + (0.00778132482043096) cpd00254: Mg (location: c) + (0.242249358141304) cpd00322: L_Isoleucine (location: e) + (0.00778132482043096) cpd00058: Cu2 (location: e) + (0.00778132482043096) cpd00149: Co2 (location: c) + (0.201205267995816) cpd00041: L_Aspartate (location: e) + (1) cpd17043: RNA_transcription (location: c) + (0.219496655995436) cpd00023: L_Glutamate (location: e) + (0.219496655995436) cpd00053: L_Glutamine (location: e) + (0.376088782528765) cpd00107: L_Leucine (location: e) + (0.00778132482043096) cpd00220: Riboflavin (location: e) + (0.179790960093822) cpd00054: L_Serine (location: e) + (0.0472899299502361) cpd00065: L_Tryptophan (location: e) + (0.0609084652443221) cpd02229: Bactoprenyl_diphosphate (location: c) + (0.00778132482043096) cpd11493: ACP (location: c) + (1) cpd17041: Protein_biosynthesis (location: c) + (0.184698405654696) cpd00129: L_Proline (location: e) + (0.135406821203723) cpd00038: GTP (location: c) + (0.01468498342018) cpd00241: dGTP (location: c) + (1) cpd17042: DNA_replication (location: c) + (0.211466290532188) cpd00161: L_Threonine (location: e) + (40.1101757365074) cpd00002: ATP (location: c) + (0.00778132482043096) cpd00016: Pyridoxal_phosphate (location: c) + (0.00778132482043096) cpd00048: Sulfate (location: e) + (0.00778132482043096) cpd00003: NAD (location: c) + (0.01468498342018) cpd00115: dATP (location: c) + (0.115101904973216) cpd00069: L_Tyrosine (location: e) + (0.00778132482043096) cpd00015: FAD (location: c) + (0.201205267995816) cpd00132: L_Asparagine (location: e) + (0.00778132482043096) cpd00006: NADP (location: c) + (35.5386858537513) cpd00001: H2O (location: e) + (0.0762884719008526) cpd00084: L_Cysteine (location: c) + (0.0794113918032267) cpd00119: L_Histidine (location: e) + (0.285970236774541) cpd00039: L_Lysine (location: e) + (0.0908319049068452) cpd00062: UTP (location: c) + (0.00778132482043096) cpd00034: Zn2 (location: e) + (0.247156803702178) cpd00051: L_Arginine (location: e) + (0.510820469745475) cpd00033: Glycine (location: e) > (40) cpd00008: ADP (location: c) + (39.9922186751796) cpd00009: Phosphate (location: e) + (0.00778132482043096) cpd12370: apo_ACP (location: c) + (1) cpd11416: Biomass (location: c) + (40) cpd00067: H (location: e) + (0.0609084652443221) cpd15666: Peptidoglycan_polymer_n_1_subunits (location: c) + (0.405833094852252) cpd00012: PPi (location: e)'
sbml_left_compounds = {'cpd00066: L_Phenylalanine (location: c)' : 0.15480760087483, 'cpd00016: Pyridoxal_phosphate (location: c)' : 0.00778132482043096, 'cpd00132: L_Asparagine (location: e)' : 0.201205267995816, 'cpd00156: L_Valine (location: e)' : 0.352889948968272, 'cpd00099: Cl_ (location: e)' : 0.00778132482043096, 'cpd00038: GTP (location: c)' : 0.135406821203723, 'cpd00003: NAD (location: c)' : 0.00778132482043096, 'cpd17041: Protein_biosynthesis (location: c)' : 1.0, 'cpd00033: Glycine (location: e)' : 0.510820469745475, 'cpd00322: L_Isoleucine (location: e)' : 0.242249358141304, 'cpd00254: Mg (location: c)' : 0.00778132482043096, 'cpd17043: RNA_transcription (location: c)' : 1.0, 'cpd00048: Sulfate (location: e)' : 0.00778132482043096, 'cpd10515: Fe2 (location: e)' : 0.00778132482043096, 'cpd02229: Bactoprenyl_diphosphate (location: c)' : 0.0609084652443221, 'cpd11493: ACP (location: c)' : 0.00778132482043096, 'cpd00161: L_Threonine (location: e)' : 0.211466290532188, 'cpd00006: NADP (location: c)' : 0.00778132482043096, 'cpd00060: L_Methionine (location: e)' : 0.128039715997337, 'cpd00119: L_Histidine (location: e)' : 0.0794113918032267, 'cpd00052: CTP (location: c)' : 0.0841036156544863, 'cpd00051: L_Arginine (location: e)' : 0.247156803702178, 'cpd15665: Peptidoglycan_polymer_n_subunits (location: c)' : 0.0609084652443221, 'cpd00017: S_Adenosyl_L_methionine (location: c)' : 0.00778132482043096, 'cpd00030: Mn2 (location: e)' : 0.00778132482043096, 'cpd10516: fe3 (location: e)' : 0.00778132482043096, 'cpd00065: L_Tryptophan (location: e)' : 0.0472899299502361, 'cpd00084: L_Cysteine (location: c)' : 0.0762884719008526, 'cpd00023: L_Glutamate (location: e)' : 0.219496655995436, 'cpd17042: DNA_replication (location: c)' : 1.0, 'cpd00356: dCTP (location: c)' : 0.01468498342018, 'cpd00035: L_Alanine (location: e)' : 0.428732289454499, 'cpd00069: L_Tyrosine (location: e)' : 0.115101904973216, 'cpd00220: Riboflavin (location: e)' : 0.00778132482043096, 'cpd00129: L_Proline (location: e)' : 0.184698405654696, 'cpd00357: TTP (location: c)' : 0.01468498342018, 'cpd00205: K (location: c)' : 0.00778132482043096, 'cpd00149: Co2 (location: c)' : 0.00778132482043096, 'cpd00063: Ca2 (location: c)' : 0.00778132482043096, 'cpd00054: L_Serine (location: e)' : 0.179790960093822, 'cpd00001: H2O (location: e)' : 35.5386858537513, 'cpd00010: CoA (location: c)' : 0.00778132482043096, 'cpd00015: FAD (location: c)' : 0.00778132482043096, 'cpd00062: UTP (location: c)' : 0.0908319049068452, 'cpd00107: L_Leucine (location: e)' : 0.376088782528765, 'cpd00241: dGTP (location: c)' : 0.01468498342018, 'cpd00053: L_Glutamine (location: e)' : 0.219496655995436, 'cpd00039: L_Lysine (location: e)' : 0.285970236774541, 'cpd00034: Zn2 (location: e)' : 0.00778132482043096, 'cpd00058: Cu2 (location: e)' : 0.00778132482043096, 'cpd00002: ATP (location: c)' : 40.1101757365074, 'cpd00041: L_Aspartate (location: e)' : 0.201205267995816, 'cpd00115: dATP (location: c)' : 0.01468498342018}
sbml_right_compounds = {'cpd00067: H (location: e)' : 40.0, 'cpd00012: PPi (location: e)' : 0.405833094852252, 'cpd00008: ADP (location: c)' : 40.0, 'cpd11416: Biomass (location: c)' : 1.0, 'cpd12370: apo_ACP (location: c)' : 0.00778132482043096, 'cpd00009: Phosphate (location: e)' : 39.9922186751796, 'cpd15666: Peptidoglycan_polymer_n_1_subunits (location: c)' : 0.0609084652443221}
sbml_biomass = PyFBA.metabolism.Reaction('sbml_biomass', 'sbml_biomass')
sbml_biomass.equation = sbml_equation
parsecomp = re.compile('^(cpd\\d+): (.*?) \(location: (.)\)')
for c in sbml_left_compounds:
m = parsecomp.match(c)
if not m:
sys.stderr.write(f"Can't parse {c}\n")
if m.group(1) in compounds:
if False and compounds[m.group(1)] != m.group(2):
sys.stderr.write(f"We had |{compounds[m.group(1)]}| for {m.group(1)} in the SBML, but now have |{m.group(2)}|\n")
newcomp = PyFBA.metabolism.CompoundWithLocation.from_compound(compounds[m.group(1)], m.group(3))
sbml_biomass.add_left_compounds({newcomp})
sbml_biomass.set_left_compound_abundance(newcomp, sbml_left_compounds[c])
else:
print(f"{m.group(1)} not found")
for c in sbml_right_compounds:
m = parsecomp.match(c)
if not m:
sys.stderr.write(f"Can't parse {c}\n")
if m.group(1) in compounds:
if True and compounds[m.group(1)] != m.group(2):
sys.stderr.write(f"We had |{compounds[m.group(1)]}| for {m.group(1)} in the SBML, but now have |{m.group(2)}|\n")
newcomp = PyFBA.metabolism.CompoundWithLocation.from_compound(compounds[m.group(1)], m.group(3))
sbml_biomass.add_right_compounds({newcomp})
sbml_biomass.set_right_compound_abundance(newcomp, sbml_right_compounds[c])
else:
print(f"{m.group(1)} not found")
print(f"Before running FBA there are {len(reactions)} reactions")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, reactions_to_run,
media, sbml_biomass, verbose=True)
print(f"After running FBA there are {len(reactions)} reactions")
print("Initial run has a biomass flux value of {} --> Growth: {}".format(value, growth))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Add the missing reactions
|
all_reactions = {'rxn00868', 'rxn01923', 'rxn02268', 'rxn10215', 'rxn10219', 'rxn08089', 'rxn10212', 'rxn08083', 'rxn10214', 'rxn10211', 'rxn10218', 'rxn08086', 'rxn10217', 'rxn08087', 'rxn08088', 'rxn08085', 'rxn10216', 'rxn08084', 'rxn10213', 'rxn05572', 'rxn05565', 'rxn00541', 'rxn10155', 'rxn10157', 'rxn05536', 'rxn05544', 'rxn12848', 'rxn12851', 'rxn05539', 'rxn05541', 'rxn05537', 'rxn05543', 'rxn12849', 'rxn05533', 'rxn05540', 'rxn05534', 'rxn05547', 'rxn05546', 'rxn05542', 'rxn05535', 'rxn12850', 'rxn05545', 'rxn05538', 'rxn05168', 'rxn05179', 'rxn05161', 'rxn09313', 'rxn08354', 'rxn08356', 'rxn09315', 'rxn05549', 'rxn05160', 'rxn05644', 'rxn05330', 'rxn05335', 'rxn05334', 'rxn05329', 'rxn05333', 'rxn05332', 'rxn05331', 'rxn05415', 'rxn05381', 'rxn05386', 'rxn05427', 'rxn05431', 'rxn05373', 'rxn05377', 'rxn05398', 'rxn05419', 'rxn05402', 'rxn05369', 'rxn05361', 'rxn05394', 'rxn05406', 'rxn05365', 'rxn05390', 'rxn05423', 'rxn05462', 'rxn05411', 'rxn03492', 'rxn04050', 'rxn08258', 'rxn04713', 'rxn00990', 'rxn00875', 'rxn08471', 'rxn05737', 'rxn08467', 'rxn10067', 'rxn08468', 'rxn08469', 'rxn08470', 'rxn01302', 'rxn01301', 'rxn05422', 'rxn05372', 'rxn05341', 'rxn05376', 'rxn05342', 'rxn05337', 'rxn05385', 'rxn05397', 'rxn05340', 'rxn05461', 'rxn05368', 'rxn05418', 'rxn05393', 'rxn05336', 'rxn05426', 'rxn05364', 'rxn05430', 'rxn05410', 'rxn05339', 'rxn05401', 'rxn05338', 'rxn05360', 'rxn05414', 'rxn05405', 'rxn05389', 'rxn05380', 'rxn03164', 'rxn05229', 'rxn07586', 'rxn05054', 'rxn04384', 'rxn00503', 'rxn00183', 'rxn05187', 'rxn05515', 'rxn02056', 'rxn09134', 'rxn09125', 'rxn09157', 'rxn09128', 'rxn09142', 'rxn09161', 'rxn09147', 'rxn09164', 'rxn09152', 'rxn09124', 'rxn09131', 'rxn09133', 'rxn09138', 'rxn09143', 'rxn09153', 'rxn09160', 'rxn09158', 'rxn09148', 'rxn09144', 'rxn09150', 'rxn09130', 'rxn09149', 'rxn09163', 'rxn09159', 'rxn09132', 'rxn09127', 'rxn09140', 'rxn09145', 'rxn09137', 'rxn09154', 'rxn09151', 'rxn09146', 'rxn09123', 'rxn09139', 'rxn09126', 'rxn09141', 'rxn09135', 'rxn09136', 'rxn09155', 'rxn09162', 'rxn09129', 'rxn09156', 'rxn02949', 'rxn03241', 'rxn03245', 'rxn02911', 'rxn02167', 'rxn03250', 'rxn02934', 'rxn03240', 'rxn03247', 'rxn05316', 'rxn09687', 'rxn05198', 'rxn09688', 'rxn05199', 'rxn05200', 'rxn09685', 'rxn05318', 'rxn05205', 'rxn05621', 'rxn05656', 'rxn05585', 'rxn05172', 'rxn05594', 'rxn05552', 'rxn05599', 'rxn05512', 'rxn05620', 'rxn01277', 'rxn05518', 'rxn05145', 'rxn05460', 'rxn05396', 'rxn05363', 'rxn05359', 'rxn05367', 'rxn05417', 'rxn05421', 'rxn05392', 'rxn05413', 'rxn05349', 'rxn05388', 'rxn05429', 'rxn05371', 'rxn05400', 'rxn05425', 'rxn05409', 'rxn05404', 'rxn05375', 'rxn05379', 'rxn05384', 'rxn04139', 'rxn00640', 'rxn05507', 'rxn05506', 'rxn01893', 'rxn00671', 'rxn00501', 'rxn10340', 'rxn10334', 'rxn10337', 'rxn10338', 'rxn10341', 'rxn10335', 'rxn10342', 'rxn10339', 'rxn10336', 'rxn00160', 'rxn01285', 'rxn04143', 'rxn01847', 'rxn01103', 'rxn00227', 'rxn05175', 'rxn05163', 'rxn05683', 'rxn05484', 'rxn02933', 'rxn04750', 'rxn03244', 'rxn01451', 'rxn03239', 'rxn03246', 'rxn03242', 'rxn03249', 'rxn06777', 'rxn05500', 'rxn01637', 'rxn01122', 'rxn04602', 'rxn02416', 'rxn04601', 'rxn04928', 'rxn05596', 'rxn02762', 'rxn02521', 'rxn02522', 'rxn03483', 'rxn02775', 'rxn04046', 'rxn07589', 'rxn03491', 'rxn10117', 'rxn10119', 'rxn08333', 'rxn04673', 'rxn10308', 'rxn10311', 'rxn10315', 'rxn10309', 'rxn10307', 'rxn10312', 'rxn10310', 'rxn10314', 'rxn08040', 'rxn10313', 'rxn12147', 'rxn03931', 'rxn03916', 'rxn04674', 'rxn03397', 'rxn10094', 'rxn02286', 'rxn02474', 'rxn00555', 'rxn08709', 'rxn04052', 'rxn03512', 'rxn12224', 'rxn09188', 'rxn02359', 'rxn02008', 'rxn08179', 'rxn08178', 'rxn03643', 'rxn09177', 'rxn12512', 'rxn07587', 'rxn02507', 'rxn08291', 'rxn06865', 'rxn00303', 'rxn00222', 'rxn09978', 'rxn09979', 'rxn07588', 'rxn04413', 'rxn03537', 'rxn03536', 'rxn03919', 'rxn03435', 'rxn02187', 'rxn02186', 'rxn03436', 'rxn03068', 'rxn05317', 'rxn01219', 'rxn00364', 'rxn03514', 'rxn04048', 'rxn00544', 'rxn02792', 'rxn00350', 'rxn02791', 'rxn05221', 'rxn00675', 'rxn00175', 'rxn00986', 'rxn01507', 'rxn02400', 'rxn01670', 'rxn00363', 'rxn00708', 'rxn01218', 'rxn01521', 'rxn01445', 'rxn00913', 'rxn01145', 'rxn00132', 'rxn01961', 'rxn00831', 'rxn08712', 'rxn04113', 'rxn04996', 'rxn08756', 'rxn08352', 'rxn06023', 'rxn02449', 'rxn05165', 'rxn05181', 'rxn08194', 'rxn01093', 'rxn09180', 'rxn03644', 'rxn08619', 'rxn09289', 'rxn00776', 'rxn01360', 'rxn08335', 'rxn08336', 'rxn12500', 'rxn02287', 'rxn02774', 'rxn09167', 'rxn08708', 'rxn05156', 'rxn05151', 'rxn01629', 'rxn12146', 'rxn01123', 'rxn05147', 'rxn05173', 'rxn08707', 'rxn00927', 'rxn01299', 'rxn01226', 'rxn01545', 'rxn02476', 'rxn02011', 'rxn05201', 'rxn01895', 'rxn04604', 'rxn00830', 'rxn00179', 'rxn03991', 'rxn03990', 'rxn03975', 'rxn03974', 'rxn00818', 'rxn03838', 'rxn00817', 'rxn02596', 'rxn05555', 'rxn00056', 'rxn06979', 'rxn11544', 'rxn03918', 'rxn05559', 'rxn08345', 'rxn00509', 'rxn00205', 'rxn00006', 'rxn02473', 'rxn00834', 'rxn05293', 'rxn00105', 'rxn00634', 'rxn08618', 'rxn06848', 'rxn09997', 'rxn05938', 'rxn04783', 'rxn05206', 'rxn00102', 'rxn01644', 'rxn02938', 'rxn00792', 'rxn08711', 'rxn03513', 'rxn04047', 'rxn01265', 'rxn01404', 'rxn03394', 'rxn00777', 'rxn01106', 'rxn07492', 'rxn03538', 'rxn01480', 'rxn00119', 'rxn01517', 'rxn01966', 'rxn01132', 'rxn05162', 'rxn02277', 'rxn08257', 'rxn05197', 'rxn01352', 'rxn03540', 'rxn00789', 'rxn00508', 'rxn04386', 'rxn10481', 'rxn05528', 'rxn06077', 'rxn01671', 'rxn02929', 'rxn03917', 'rxn03135', 'rxn00469', 'rxn00756', 'rxn03087', 'rxn01329', 'rxn01917', 'rxn01879', 'rxn01538', 'rxn02285', 'rxn08710', 'rxn07438', 'rxn02321', 'rxn00787', 'rxn01289', 'rxn00851', 'rxn05297', 'rxn00062', 'rxn04132', 'rxn04133', 'rxn05319', 'rxn05467', 'rxn05468', 'rxn02374', 'rxn03012', 'rxn05064', 'rxn02666', 'rxn04457', 'rxn04456', 'rxn01664', 'rxn02916', 'rxn05667', 'rxn10571', 'rxn05195', 'rxn05645', 'rxn05144', 'rxn02988', 'rxn01256', 'rxn12604', 'rxn05039', 'rxn10904', 'rxn05499', 'rxn01152', 'rxn05691', 'rxn12893', 'rxn11116', 'rxn00880', 'rxn05593', 'rxn05469', 'rxn00186', 'rxn05694', 'rxn05491', 'rxn05682', 'rxn01748', 'rxn00327', 'rxn01746', 'rxn09656'}
print(f"Before updating there are {len(reactions_to_run)} reactions")
r2ra = copy.copy(reactions_to_run)
r2ra.update(all_reactions)
print(f"After updating there are {len(r2ra)} reactions")
print(f"Before running FBA there are {len(reactions)} reactions")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, reactions_to_run,
media, sbml_biomass, verbose=True)
print(f"After running FBA there are {len(reactions)} reactions")
print("Initial run has a biomass flux value of {} --> Growth: {}".format(value, growth))
new_reactions = PyFBA.gapfill.suggest_from_media(compounds, reactions,
reactions_to_run, media, verbose=False)
print(f"There are {len(new_reactions)} new reactions to add")
transrct = set()
for r in new_reactions:
if reactions[r].is_transport:
transrct.add(r)
print(f"There are {len(transrct)} new transport reactions")
reactions_to_run.update(transrct)
print(f"Before running FBA there are {len(reactions)} reactions")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, reactions_to_run,
media, biomass_equation)
print(f"After running FBA there are {len(reactions)} reactions")
print("Initial run has a biomass flux value of {} --> Growth: {}".format(value, growth))
print(f"There are {len(reactions_to_run)} reactions to run")
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Media import reactions
We need to make sure that the cell can import everything that is in the media... otherwise it won't be able to grow. Be sure to only do this step if you are certain that the cell can grow on the media you are testing.
|
update_type = 'media'
new_reactions = PyFBA.gapfill.suggest_from_media(compounds, reactions,
reactions_to_run, media, verbose=True)
added_reactions.append((update_type, new_reactions))
print(f"Before adding {update_type} reactions, we had {len(reactions_to_run)} reactions.")
reactions_to_run.update(new_reactions)
print(f"After adding {update_type} reactions, we had {len(reactions_to_run)} reactions.")
for r in reactions:
if reactions[r].is_transport:
print(r)
for r in reactions:
for c in reactions[r].left_compounds:
if c.location == 'e':
if not reactions[r].is_transport:
print(f"Check {r}")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, reactions_to_run,
media, biomass_equation)
print("Run has a biomass flux value of {} --> Growth: {}".format(value, growth))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Essential reactions
There are ~100 reactions that are in every model we have tested, and we construe these to be essential for all models, so we typically add these next!
|
update_type = 'essential'
new_reactions = PyFBA.gapfill.suggest_essential_reactions()
added_reactions.append((update_type, new_reactions))
print(f"Before adding {update_type} reactions, we had {len(reactions_to_run)} reactions.")
reactions_to_run.update(new_reactions)
print(f"After adding {update_type} reactions, we had {len(reactions_to_run)} reactions.")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, reactions_to_run,
media, biomass_equation)
print("Run has a biomass flux value of {} --> Growth: {}".format(value, growth))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Subsystems
The reactions connect us to subsystems (see Overbeek et al. 2014), and this test ensures that all the subsystems are complete. We add reactions required to complete the subsystem.
|
update_type = 'subsystems'
new_reactions = \
PyFBA.gapfill.suggest_reactions_from_subsystems(reactions,
reactions_to_run,
threshold=0.5)
added_reactions.append((update_type, new_reactions))
print(f"Before adding {update_type} reactions, we had {len(reactions_to_run)} reactions.")
reactions_to_run.update(new_reactions)
print(f"After adding {update_type} reactions, we had {len(reactions_to_run)} reactions.")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, reactions_to_run,
media, biomass_equation)
print("Run has a biomass flux value of {} --> Growth: {}".format(value, growth))
pre_orphan=copy.copy(reactions_to_run)
pre_o_added=copy.copy(added_reactions)
print("Pre orphan has {} reactions".format(len(pre_orphan)))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Orphan compounds
Orphan compounds are those compounds which are only associated with one reaction. They are either produced, or trying to be consumed. We need to add reaction(s) that complete the network of those compounds.
You can change the maximum number of reactions that a compound is in to be considered an orphan (try increasing it to 2 or 3).
|
update_type = 'orphan compounds'
new_reactions = PyFBA.gapfill.suggest_by_compound(compounds, reactions,
reactions_to_run,
max_reactions=1)
added_reactions.append((update_type, new_reactions))
print(f"Before adding {update_type} reactions, we had {len(reactions_to_run)} reactions.")
reactions_to_run.update(new_reactions)
print(f"After adding {update_type} reactions, we had {len(reactions_to_run)} reactions.")
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, reactions_to_run,
media, biomass_equation)
print("Run has a biomass flux value of {} --> Growth: {}".format(value, growth))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
Trimming the model
Now that the model has been shown to grow on ArgonneLB media after several gap-fill iterations, we should trim down the reactions to only the required reactions necessary to observe growth.
|
reqd_additional = set()
# Begin loop through all gap-filled reactions
while added_reactions:
ori = copy.copy(original_reactions_to_run)
ori.update(reqd_additional)
# Test next set of gap-filled reactions
# Each set is based on a method described above
how, new = added_reactions.pop()
sys.stderr.write("Testing reactions from {}\n".format(how))
# Get all the other gap-filled reactions we need to add
for tple in added_reactions:
ori.update(tple[1])
# Use minimization function to determine the minimal
# set of gap-filled reactions from the current method
new_essential = PyFBA.gapfill.minimize_additional_reactions(ori, new, compounds,
reactions, media,
biomass_equation)
sys.stderr.write("Saved {} reactions from {}\n".format(len(new_essential), how))
for r in new_essential:
sys.stderr.write(r + "\n")
# Record the method used to determine
# how the reaction was gap-filled
for new_r in new_essential:
reactions[new_r].is_gapfilled = True
reactions[new_r].gapfill_method = how
reqd_additional.update(new_essential)
# Combine old and new reactions
all_reactions = original_reactions_to_run.union(reqd_additional)
status, value, growth = PyFBA.fba.run_fba(compounds, reactions, all_reactions,
media, biomass_equation)
print("The biomass reaction has a flux of {} --> Growth: {}".format(value, growth))
|
iPythonNotebooks/PATRIC to FBA.ipynb
|
linsalrob/PyFBA
|
mit
|
3. Reading a CSV file and doing common Pandas operations
|
regiones_file='data/chile_regiones.csv'
provincias_file='data/chile_provincias.csv'
comunas_file='data/chile_comunas.csv'
regiones=pd.read_csv(regiones_file, header=0, sep=',')
provincias=pd.read_csv(provincias_file, header=0, sep=',')
comunas=pd.read_csv(comunas_file, header=0, sep=',')
print('regiones table: ', regiones.columns.values.tolist())
print('provincias table: ', provincias.columns.values.tolist())
print('comunas table: ', comunas.columns.values.tolist())
regiones.head()
provincias.head()
comunas.head()
regiones_provincias=pd.merge(regiones, provincias, how='outer')
regiones_provincias.head()
provincias_comunas=pd.merge(provincias, comunas, how='outer')
provincias_comunas.head()
regiones_provincias_comunas=pd.merge(regiones_provincias, comunas, how='outer')
regiones_provincias_comunas.index.name='ID'
regiones_provincias_comunas.head()
#regiones_provincias_comunas.to_csv('chile_regiones_provincia_comuna.csv', index=False)
|
clase_1/02 - Lectura de datos con Pandas.ipynb
|
rpmunoz/topicos_ingenieria_1
|
gpl-3.0
|
4. Loading ful dataset
|
data_file='data/chile_demographic.csv'
data=pd.read_csv(data_file, header=0, sep=',')
data
data.sort_values('Poblacion')
data.sort_values('Poblacion', ascending=False)
(data.groupby(['Region'])['Poblacion','Superficie'].sum())
(data.groupby(['Region'])['Poblacion','Superficie'].sum()).sort_values('Poblacion', ascending=False)
data.sort_values(['RegionID']).groupby(['RegionID','Region'])['Poblacion','Superficie'].sum()
|
clase_1/02 - Lectura de datos con Pandas.ipynb
|
rpmunoz/topicos_ingenieria_1
|
gpl-3.0
|
pandas will let us read the data.
scikit-learn is the machine learning library
matplotlib will let us visualize our model and data
Read the Data
|
# read data
dataframe = pd.read_fwf('brain_body.txt')
x_values = dataframe[['Brain']]
y_values = dataframe[['Body']]
|
01.neural_network/01.first_neural_net-linear_regression_1/01.linear_regression_1.ipynb
|
hadibakalim/deepLearning
|
mit
|
Train model on the Data
|
body_reg = linear_model.LinearRegression()
body_reg.fit(x_values, y_values)
|
01.neural_network/01.first_neural_net-linear_regression_1/01.linear_regression_1.ipynb
|
hadibakalim/deepLearning
|
mit
|
Visualize results
|
plt.scatter(x_values, y_values)
plt.plot(x_values, body_reg.predict(x_values))
plt.show()
|
01.neural_network/01.first_neural_net-linear_regression_1/01.linear_regression_1.ipynb
|
hadibakalim/deepLearning
|
mit
|
← Back to Index
Autocorrelation
The autocorrelation of a signal describes the similarity of a signal against a time-shifted version of itself. For a signal $x$, the autocorrelation $r$ is:
$$ r(k) = \sum_n x(n) x(n-k) $$
In this equation, $k$ is often called the lag parameter. $r(k)$ is maximized at $k = 0$ and is symmetric about $k$.
The autocorrelation is useful for finding repeated patterns in a signal. For example, at short lags, the autocorrelation can tell us something about the signal's fundamental frequency. For longer lags, the autocorrelation may tell us something about the tempo of a musical signal.
Let's load a file:
|
x, sr = librosa.load('audio/c_strum.wav')
ipd.Audio(x, rate=sr)
plt.figure(figsize=(14, 5))
librosa.display.waveplot(x, sr)
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
numpy.correlate
There are two ways we can compute the autocorrelation in Python. The first method is numpy.correlate:
|
# Because the autocorrelation produces a symmetric signal, we only care about the "right half".
r = numpy.correlate(x, x, mode='full')[len(x)-1:]
print(x.shape, r.shape)
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
Plot the autocorrelation:
|
plt.figure(figsize=(14, 5))
plt.plot(r[:10000])
plt.xlabel('Lag (samples)')
plt.xlim(0, 10000)
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
librosa.autocorrelate
The second method is librosa.autocorrelate:
|
r = librosa.autocorrelate(x, max_size=10000)
print(r.shape)
plt.figure(figsize=(14, 5))
plt.plot(r)
plt.xlabel('Lag (samples)')
plt.xlim(0, 10000)
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
librosa.autocorrelate conveniently only keeps one half of the autocorrelation function, since the autocorrelation is symmetric. Also, the max_size parameter prevents unnecessary calculations.
Pitch Estimation
The autocorrelation is used to find repeated patterns within a signal. For musical signals, a repeated pattern can correspond to a pitch period. We can therefore use the autocorrelation function to estimate the pitch in a musical signal.
|
x, sr = librosa.load('audio/oboe_c6.wav')
ipd.Audio(x, rate=sr)
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
Compute and plot the autocorrelation:
|
r = librosa.autocorrelate(x, max_size=5000)
plt.figure(figsize=(14, 5))
plt.plot(r[:200])
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
The autocorrelation always has a maximum at zero, i.e. zero lag. We want to identify the maximum outside of the peak centered at zero. Therefore, we might choose only to search within a range of reasonable pitches:
|
midi_hi = 120.0
midi_lo = 12.0
f_hi = librosa.midi_to_hz(midi_hi)
f_lo = librosa.midi_to_hz(midi_lo)
t_lo = sr/f_hi
t_hi = sr/f_lo
print(f_lo, f_hi)
print(t_lo, t_hi)
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
Set invalid pitch candidates to zero:
|
r[:int(t_lo)] = 0
r[int(t_hi):] = 0
plt.figure(figsize=(14, 5))
plt.plot(r[:1400])
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
Find the location of the maximum:
|
t_max = r.argmax()
print(t_max)
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
Finally, estimate the pitch in Hertz:
|
float(sr)/t_max
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
Indeed, that is very close to the true frequency of C6:
|
librosa.midi_to_hz(84)
|
autocorrelation.ipynb
|
stevetjoa/stanford-mir
|
mit
|
cost
<img style="float: left;" src="../img/linear_cost.png">
|
theta = np.ones(X.shape[1])
lr.cost(theta, X, y)
|
ex5-bias vs variance/2- regularization of linear regression.ipynb
|
icrtiou/coursera-ML
|
mit
|
regularized cost
<img style="float: left;" src="../img/linear_reg_cost.png">
|
lr.regularized_cost(theta, X, y)
|
ex5-bias vs variance/2- regularization of linear regression.ipynb
|
icrtiou/coursera-ML
|
mit
|
gradient
<img style="float: left;" src="../img/linear_gradient.png">
|
lr.gradient(theta, X, y)
|
ex5-bias vs variance/2- regularization of linear regression.ipynb
|
icrtiou/coursera-ML
|
mit
|
regularized gradient
<img style="float: left;" src="../img/linear_reg_gradient.png">
|
lr.regularized_gradient(theta, X, y)
|
ex5-bias vs variance/2- regularization of linear regression.ipynb
|
icrtiou/coursera-ML
|
mit
|
fit the data
regularization term $\lambda=0$
|
theta = np.ones(X.shape[0])
final_theta = lr.linear_regression_np(X, y, l=0).get('x')
b = final_theta[0] # intercept
m = final_theta[1] # slope
plt.scatter(X[:,1], y, label="Training data")
plt.plot(X[:, 1], X[:, 1]*m + b, label="Prediction")
plt.legend(loc=2)
|
ex5-bias vs variance/2- regularization of linear regression.ipynb
|
icrtiou/coursera-ML
|
mit
|
The global collection of tide gauge records at the PSMSL is used to access the data. The other way to access the data is to ask the service desk data at Rijkswaterstaat. There are two types of datasets the "Revised Local Reference" and "Metric". For the Netherlands the difference is that the "Revised Local Reference" undoes the corrections from the NAP correction in 2014, to get a consistent dataset.
|
urls = {
'metric_monthly': 'http://www.psmsl.org/data/obtaining/met.monthly.data/met_monthly.zip',
'rlr_monthly': 'http://www.psmsl.org/data/obtaining/rlr.annual.data/rlr_monthly.zip',
'rlr_annual': 'http://www.psmsl.org/data/obtaining/rlr.annual.data/rlr_annual.zip'
}
dataset_name = 'rlr_annual'
# these compute the rlr back to NAP (ignoring the undoing of the NAP correction)
main_stations = {
20: {
'name': 'Vlissingen',
'rlr2nap': lambda x: x - (6976-46)
},
22: {
'name': 'Hoek van Holland',
'rlr2nap': lambda x:x - (6994 - 121)
},
23: {
'name': 'Den Helder',
'rlr2nap': lambda x: x - (6988-42)
},
24: {
'name': 'Delfzijl',
'rlr2nap': lambda x: x - (6978-155)
},
25: {
'name': 'Harlingen',
'rlr2nap': lambda x: x - (7036-122)
},
32: {
'name': 'IJmuiden',
'rlr2nap': lambda x: x - (7033-83)
}
}
# the main stations are defined by their ids
main_stations_idx = list(main_stations.keys())
main_stations_idx
# download the zipfile
resp = requests.get(urls[dataset_name])
# we can read the zipfile
stream = io.BytesIO(resp.content)
zf = zipfile.ZipFile(stream)
# this list contains a table of
# station ID, latitude, longitude, station name, coastline code, station code, and quality flag
csvtext = zf.read('{}/filelist.txt'.format(dataset_name))
stations = pandas.read_csv(
io.BytesIO(csvtext),
sep=';',
names=('id', 'lat', 'lon', 'name', 'coastline_code', 'station_code', 'quality'),
converters={
'name': str.strip,
'quality': str.strip
}
)
stations = stations.set_index('id')
# the dutch stations in the PSMSL database, make a copy
# or use stations.coastline_code == 150 for all dutch stations
selected_stations = stations.ix[main_stations_idx].copy()
# set the main stations, this should be a list of 6 stations
selected_stations
# show all the stations on a map
# compute the bounds of the plot
sw = (50, -5)
ne = (55, 10)
# transform to web mercator
sw_wm = pyproj.transform(WGS84, WEBMERCATOR, sw[1], sw[0])
ne_wm = pyproj.transform(WGS84, WEBMERCATOR, ne[1], ne[0])
# create a plot
fig = bokeh.plotting.figure(tools='pan, wheel_zoom', plot_width=600, plot_height=200, x_range=(sw_wm[0], ne_wm[0]), y_range=(sw_wm[1], ne_wm[1]))
fig.axis.visible = False
# add some background tiles
fig.add_tile(bokeh.tile_providers.STAMEN_TERRAIN)
# add the stations
x, y = pyproj.transform(WGS84, WEBMERCATOR, np.array(stations.lon), np.array(stations.lat))
fig.circle(x, y)
x, y = pyproj.transform(WGS84, WEBMERCATOR, np.array(selected_stations.lon), np.array(selected_stations.lat))
_ = fig.circle(x, y, color='red')
# show the plot
bokeh.io.show(fig)
|
sealevelmonitor.ipynb
|
openearth/notebooks
|
gpl-3.0
|
Now that we have defined which tide gauges we are monitoring we can start downloading the relevant data.
|
# each station has a number of files that you can look at.
# here we define a template for each filename
# stations that we are using for our computation
# define the name formats for the relevant files
names = {
'datum': '{dataset}/RLR_info/{id}.txt',
'diagram': '{dataset}/RLR_info/{id}.png',
'url': 'http://www.psmsl.org/data/obtaining/rlr.diagrams/{id}.php',
'data': '{dataset}/data/{id}.rlrdata',
'doc': '{dataset}/docu/{id}.txt',
'contact': '{dataset}/docu/{id}_auth.txt'
}
def get_url(station, dataset):
"""return the url of the station information (diagram and datum)"""
info = dict(
dataset=dataset,
id=station.name
)
url = names['url'].format(**info)
return url
# fill in the dataset parameter using the global dataset_name
f = functools.partial(get_url, dataset=dataset_name)
# compute the url for each station
selected_stations['url'] = selected_stations.apply(f, axis=1)
selected_stations
def missing2nan(value, missing=-99999):
"""convert the value to nan if the float of value equals the missing value"""
value = float(value)
if value == missing:
return np.nan
return value
def get_data(station, dataset):
"""get data for the station (pandas record) from the dataset (url)"""
info = dict(
dataset=dataset,
id=station.name
)
bytes = zf.read(names['data'].format(**info))
df = pandas.read_csv(
io.BytesIO(bytes),
sep=';',
names=('year', 'height', 'interpolated', 'flags'),
converters={
"height": lambda x: main_stations[station.name]['rlr2nap'](missing2nan(x)),
"interpolated": str.strip,
}
)
df['station'] = station.name
return df
# get data for all stations
f = functools.partial(get_data, dataset=dataset_name)
# look up the data for each station
selected_stations['data'] = [f(station) for _, station in selected_stations.iterrows()]
# we now have data for each station
selected_stations[['name', 'data']]
|
sealevelmonitor.ipynb
|
openearth/notebooks
|
gpl-3.0
|
Now that we have all data downloaded we can compute the mean.
|
# compute the mean
grouped = pandas.concat(selected_stations['data'].tolist())[['year', 'height']].groupby('year')
mean_df = grouped.mean().reset_index()
# filter out non-trusted part (before NAP)
mean_df = mean_df[mean_df['year'] >= 1890].copy()
# these are the mean waterlevels
mean_df.tail()
# show all the stations, including the mean
title = 'Sea-surface height for Dutch tide gauges [{year_min} - {year_max}]'.format(
year_min=mean_df.year.min(),
year_max=mean_df.year.max()
)
fig = bokeh.plotting.figure(title=title, x_range=(1860, 2020), plot_width=900, plot_height=400)
colors = bokeh.palettes.Accent6
for color, (id_, station) in zip(colors, selected_stations.iterrows()):
data = station['data']
fig.circle(data.year, data.height, color=color, legend=station['name'], alpha=0.5)
fig.line(mean_df.year, mean_df.height, line_width=3, alpha=0.7, color='black', legend='Mean')
fig.legend.location = "bottom_right"
fig.yaxis.axis_label = 'waterlevel [mm] above NAP'
fig.xaxis.axis_label = 'year'
bokeh.io.show(fig)
|
sealevelmonitor.ipynb
|
openearth/notebooks
|
gpl-3.0
|
Methods
Now we can define the statistical model. The "current sea-level rise" is defined by the following formula. Please note that the selected epoch of 1970 is arbitrary.
$
H(t) = a + b_{trend}(t-1970) + b_u\cos(2\pi\frac{t - 1970}{18.613}) + b_v\sin(2\pi\frac{t - 1970}{18.613})
$
The terms are refered to as Constant ($a$), Trend ($b_{trend}$), Nodal U ($b_u$) and Nodal V ($b_v$).
Alternative models are used to detect if sea-level rise is increasing. These models include the broken linear model, defined by a possible change in trend starting at 1993. This timespan is the start of the "satellite era" (start of TOPEX/Poseidon measurements), it is also often referred to as the start of acceleration because the satellite measurements tend to show a higher rate of sea level than the "tide-gauge era" (1900-2000). If this model fits better than the linear model, one could say that there is a "increase in sea-level rise".
$
H(t) = a + b_{trend}(t-1970) + b_{broken}(t > 1993)*(t-1993) + b_{u}\cos(2\pi\frac{t - 1970}{18.613}) + b_{v}\sin(2\pi\frac{t - 1970}{18.613})
$
Another way to look at increased sea-level rise is to look at sea-level acceleration. To detect sea-level acceleration one can use a quadratic model.
$
H(t) = a + b_{trend}(t-1970) + b_{quadratic}(t - 1970)*(t-1970) + b_{u}\cos(2\pi\frac{t - 1970}{18.613}) + b_{v}\sin(2\pi\frac{t - 1970}{18.613})
$
|
# define the statistical model
y = mean_df['height']
X = np.c_[
mean_df['year']-1970,
np.cos(2*np.pi*(mean_df['year']-1970)/18.613),
np.sin(2*np.pi*(mean_df['year']-1970)/18.613)
]
X = sm.add_constant(X)
model = sm.OLS(y, X)
fit = model.fit()
fit.summary(yname='Sea-surface height', xname=['Constant', 'Trend', 'Nodal U', 'Nodal V'])
# things to check:
# Durbin Watson should be >1 for no worries, >2 for no autocorrelation
# JB should be non-significant for normal residuals
# abs(x2.t) + abs(x3.t) should be > 3, otherwise adding nodal is not useful
fig = bokeh.plotting.figure(x_range=(1860, 2020), plot_width=900, plot_height=400)
for color, (id_, station) in zip(colors, selected_stations.iterrows()):
data = station['data']
fig.circle(data.year, data.height, color=color, legend=station['name'], alpha=0.8)
fig.circle(mean_df.year, mean_df.height, line_width=3, legend='Mean', color='black', alpha=0.5)
fig.line(mean_df.year, fit.predict(), line_width=3, legend='Current')
fig.legend.location = "bottom_right"
fig.yaxis.axis_label = 'waterlevel [mm] above N.A.P.'
fig.xaxis.axis_label = 'year'
bokeh.io.show(fig)
|
sealevelmonitor.ipynb
|
openearth/notebooks
|
gpl-3.0
|
Is there a sea-level acceleration?
The following section computes two common models to detect sea-level acceleration. The broken linear model expects that sea level has been rising faster since 1990. The quadratic model assumes that the sea-level is accelerating continuously. Both models are compared to the linear model. The extra terms are tested for significance and the AIC is computed to see which model is "better".
|
# define the statistical model
y = mean_df['height']
X = np.c_[
mean_df['year']-1970,
(mean_df['year'] > 1993) * (mean_df['year'] - 1993),
np.cos(2*np.pi*(mean_df['year']-1970)/18.613),
np.sin(2*np.pi*(mean_df['year']-1970)/18.613)
]
X = sm.add_constant(X)
model_broken_linear = sm.OLS(y, X)
fit_broken_linear = model_broken_linear.fit()
# define the statistical model
y = mean_df['height']
X = np.c_[
mean_df['year']-1970,
(mean_df['year'] - 1970) * (mean_df['year'] - 1970),
np.cos(2*np.pi*(mean_df['year']-1970)/18.613),
np.sin(2*np.pi*(mean_df['year']-1970)/18.613)
]
X = sm.add_constant(X)
model_quadratic = sm.OLS(y, X)
fit_quadratic = model_quadratic.fit()
fit_broken_linear.summary(yname='Sea-surface height', xname=['Constant', 'Trend', 'Trend(year > 1990)', 'Nodal U', 'Nodal V'])
fit_quadratic.summary(yname='Sea-surface height', xname=['Constant', 'Trend', 'Trend**2', 'Nodal U', 'Nodal V'])
fig = bokeh.plotting.figure(x_range=(1860, 2020), plot_width=900, plot_height=400)
for color, (id_, station) in zip(colors, selected_stations.iterrows()):
data = station['data']
fig.circle(data.year, data.height, color=color, legend=station['name'], alpha=0.8)
fig.circle(mean_df.year, mean_df.height, line_width=3, legend='Mean', color='black', alpha=0.5)
fig.line(mean_df.year, fit.predict(), line_width=3, legend='Current')
fig.line(mean_df.year, fit_broken_linear.predict(), line_width=3, color='#33bb33', legend='Broken')
fig.line(mean_df.year, fit_quadratic.predict(), line_width=3, color='#3333bb', legend='Quadratic')
fig.legend.location = "top_left"
fig.yaxis.axis_label = 'waterlevel [mm] above N.A.P.'
fig.xaxis.axis_label = 'year'
bokeh.io.show(fig)
|
sealevelmonitor.ipynb
|
openearth/notebooks
|
gpl-3.0
|
Conclusions
Below are some statements that depend on the output calculated above.
|
msg = '''The current average waterlevel above NAP (in mm),
based on the 6 main tide gauges for the year {year} is {height:.1f} cm.
The current sea-level rise is {rate:.0f} cm/century'''
print(msg.format(year=mean_df['year'].iloc[-1], height=fit.predict()[-1]/10.0, rate=fit.params.x1*100.0/10))
if (fit.aic < fit_broken_linear.aic):
print('The linear model is a higher quality model (smaller AIC) than the broken linear model.')
else:
print('The broken linear model is a higher quality model (smaller AIC) than the linear model.')
if (fit_broken_linear.pvalues['x2'] < 0.05):
print('The trend break is bigger than we would have expected under the assumption that there was no trend break.')
else:
print('Under the assumption that there is no trend break, we would have expected a trend break as big as we have seen.')
if (fit.aic < fit_quadratic.aic):
print('The linear model is a higher quality model (smaller AIC) than the quadratic model.')
else:
print('The quadratic model is a higher quality model (smaller AIC) than the linear model.')
if (fit_quadratic.pvalues['x2'] < 0.05):
print('The quadratic term is bigger than we would have expected under the assumption that there was no quadraticness.')
else:
print('Under the assumption that there is no quadraticness, we would have expected a quadratic term as big as we have seen.')
|
sealevelmonitor.ipynb
|
openearth/notebooks
|
gpl-3.0
|
Detect the corners on the real images and compute A matrix
To detect the corners of each square in each image, we used the function findChessboardCorners(), from OpenCv.
This function returns every corner found in an image, given the board dimensions in the real world (6,8).
So, for every image, we executed this function and associated each corner [x,y], found on each image, with it's equivalent in the real world coordinates [X,Y,Z].
Then we calculated all the rows of the A matrix, given the association between real world coordinates and image plane coordinates for every corner.
|
matA = list()
for item in range(NUMIMG):
img = imagesList[item]
_, boardCorners = cv2.findChessboardCorners(img, BOARDDIM, None)
boardCorners = boardCorners.reshape((BOARDDIM[0] * BOARDDIM[1], 2))
for k in range(48):
x, y = boardCorners[k, :]
X, Y, Z = realSquares[k, :]
matA.append([x*X, x*Y, x*Z, x, -y*X, -y*Y, y*Z, -y])
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Now we must compute the parameters of the rotation matrix R and translation vector T, given the results of the SVD (singular values decomposition) of matrix A (remember this matrix was generated, in the loop above, using the product of each square corner real coordinates by it's image plane coordinates, plus a column with -y in the end of each row of A).
First, lets obtain the v vector:
* v[1] = r[2,1]
* v[2] = r[2,2]
* v[3] = r[2,3]
* v[4] = Ty
* v[5] = a*r[1,1]
* v[6] = a*r[1,2]
* v[7] = a*r[1,3]
* v[8] = a*Tx
r[x,y] are the elements of R matrix, Ty and Tx are the elements of T vector, 'a' is the ration between the numbers of pixels on a image horizontal line by vertical line (aspect ratio).
To obtain the v vector of the equation Av=0, we did the singular values decomposition using the function numpy.linalg.svd(), which returns U, D, V.
The vector-solution v is obtained by extracting the column of V corresponding to the column of D that contains the minimal value in the diagonal.
|
matA = np.array(matA, dtype=np.float32)
U, D, V = np.linalg.svd(matA, full_matrices=True)
# The column of V corresponding to the minimal value in the diagonal of D
# In the given sample, D always contains a 0 in the 7th columny
# If we pick another value, v is generated with null values
vecV = V[6,:]
v1, v2, v3, v4, v5, v6, v7, v8 = vecV
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Scale factor = sqrt(r[2,1]^2 + r[2,2]^2 + r[2,3]^2)
|
# Compute the scale factor given the vector v
gamma = np.sqrt(v1**2 + v2**2 + v3**2)
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Aspect ratio = sqrt(v[5]^2 + v[6]^2 + v[7]^2) / Scale factor
|
# Compute the aspect ratio (alpha)
alpha = np.sqrt(v5**2 + v6**2 + v7**2) / gamma
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Extraction of rotation matrix R and translation vector T given the elements of v vector:
|
# First row of R matrix
r11, r12, r13 = [v5 / alpha, v6 / alpha, v7 / alpha]
# Second row of R matrix
r21, r22, r23 = v1/gamma, v2/gamma, v3/gamma
# Third row of R matrix, computed by the cross product of rows 1 and 2
r31, r32, r33 = np.cross([r11, r12, r13], [r21, r22, r23])
# Obtain the elements of the translation vector
Tx, Ty = [v8/alpha, v4]
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Determinate the signal of gamma, to detect a possible signal inversion of the first two rows of R matrix.
Then, we compute the parameters Tz and fx, creating another matrix A and a vector B, and solving the equation system using the least squares technique, made available by the function np.linalg.lstsq(matA,vecB).
|
# If this product is bigger than 0, invert the signal on R[1,:] and R[2,:]
if x*(r11*X + r12*Y + r13*Z + Tx) > 0:
r11 = -r11
r12 = -r12
r13 = -r13
r21 = -r21
r22 = -r22
r23 = -r23
Tx = -Tx
Ty = -Ty
del matA
matA = list()
vecB = list()
# Generate new matrix A and vector B
for item in range(NUMIMG):
_, boardCorners = cv2.findChessboardCorners(imagesList[item], BOARDDIM, None)
boardCorners = boardCorners.reshape((BOARDDIM[0] * BOARDDIM[1], 2))
for k in range(48):
x, y = boardCorners[k, :]
X, Y, Z = realSquares[k]
matA.append([x, (r11*X + r12*Y + r13*Z + Tx)])
vecB.append([-x*(r31*X + r32*Y + r33*Z)])
matA = np.array(matA)
vecB = np.array(vecB)
# Solve by least squares the system Ax = B
vecSol,_, _, _ = np.linalg.lstsq(matA,vecB)
# Obtain Tz and fx
Tz, fx = vecSol
# Compute fy
fy = fx / alpha
# Matrix R and vector T representation in proper numpy objects
matR = np.array([[r11, r12, r13], [r21, r22, r23], [r31, r32, r33]])
vecT = np.array([[Tx], [Ty], [Tz]])
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Prints our results
|
print("Matriz R \n {}".format(matR))
print("\nVetor T\n{}".format(vecT))
print("fx = {}".format(fx))
print("fy ={}".format(fy))
print("alpha = {}".format(alpha))
print("gamma = {}".format(gamma))
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Results given by the Toolbox using Matlab
% Intrinsic and Extrinsic Camera Parameters
%
% This script file can be directly executed under Matlab to recover the camera intrinsic and extrinsic parameters.
% IMPORTANT: This file contains neither the structure of the calibration objects nor the image coordinates of the calibration points.
% All those complementary variables are saved in the complete matlab data file Calib_Results.mat.
% For more information regarding the calibration model visit http://www.vision.caltech.edu/bouguetj/calib_doc/
Intrinsic Camera Parameters
%-- Focal length:
fc = [ 1319.360839018184800 ; 1325.862886727936900 ];
%-- Principal point:
cc = [ 801.687461000126630 ; 398.685724393203370 ];
%-- Skew coefficient:
alpha_c = 0.000000000000000;
%-- Distortion coefficients:
kc = [ 0.094052171503048 ; -0.196804510414059 ; -0.009826260896323 ; 0.003042938250442 ; 0.000000000000000 ];
%-- Focal length uncertainty:
fc_error = [ 7.614776975212465 ; 7.882743402506637 ];
%-- Principal point uncertainty:
cc_error = [ 10.631216021613728 ; 10.799630586885627 ];
%-- Skew coefficient uncertainty:
alpha_c_error = 0.000000000000000;
%-- Distortion coefficients uncertainty:
kc_error = [ 0.022911520624474 ; 0.089089522533125 ; 0.002827995432640 ; 0.003450888593813 ; 0.000000000000000 ];
%-- Image size:
nx = 1600;
ny = 904;
%-- Various other variables (may be ignored if you do not use the Matlab Calibration Toolbox):
%-- Those variables are used to control which intrinsic parameters should be optimized
n_ima = 9; % Number of calibration images
est_fc = [ 1 ; 1 ]; % Estimation indicator of the two focal variables
est_aspect_ratio = 1; % Estimation indicator of the aspect ratio fc(2)/fc(1)
center_optim = 1; % Estimation indicator of the principal point
est_alpha = 0; % Estimation indicator of the skew coefficient
est_dist = [ 1 ; 1 ; 1 ; 1 ; 0 ]; % Estimation indicator of the distortion coefficients
|
img1w = cv2.imread('extrin_param.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(1)
plt.imshow(img_rgb)
img1w = cv2.imread('extrin_param1.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(2)
plt.imshow(img_rgb)
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Extrinsic Camera Parameters
%-- The rotation (omc_kk) and the translation (Tc_kk) vectors for every calibration image and their uncertainties
%-- Image #1:
omc_1 = [ 1.984622e+00 ; 1.845352e-01 ; 2.870369e-01 ];
Tc_1 = [ -1.574390e+02 ; 5.101294e+01 ; 3.756956e+02 ];
omc_error_1 = [ 8.027448e-03 ; 4.932236e-03 ; 8.087287e-03 ];
Tc_error_1 = [ 3.093133e+00 ; 3.203087e+00 ; 2.546667e+00 ];
%-- Image #2:
omc_2 = [ 2.508173e+00 ; -2.174940e-01 ; 2.164566e-01 ];
Tc_2 = [ -1.390132e+02 ; 6.165338e+01 ; 3.904267e+02 ];
omc_error_2 = [ 8.521395e-03 ; 3.432194e-03 ; 1.065160e-02 ];
Tc_error_2 = [ 3.169612e+00 ; 3.282157e+00 ; 2.471550e+00 ];
%-- Image #3:
omc_3 = [ 2.527412e+00 ; -1.619762e-01 ; 2.726591e-01 ];
Tc_3 = [ -1.320341e+02 ; 3.732533e+01 ; 3.677618e+02 ];
omc_error_3 = [ 8.562994e-03 ; 3.575236e-03 ; 1.069876e-02 ];
Tc_error_3 = [ 2.971579e+00 ; 3.088936e+00 ; 2.324621e+00 ];
%-- Image #4:
omc_4 = [ 2.403292e+00 ; 2.859610e-01 ; 3.590933e-01 ];
Tc_4 = [ -1.307800e+02 ; 6.399676e+01 ; 3.768658e+02 ];
omc_error_4 = [ 8.352029e-03 ; 3.534587e-03 ; 9.799631e-03 ];
Tc_error_4 = [ 3.104473e+00 ; 3.162434e+00 ; 2.366463e+00 ];
%-- Image #5:
omc_5 = [ 1.950385e+00 ; 8.878343e-02 ; -3.789958e-02 ];
Tc_5 = [ -8.674013e+01 ; 7.116935e+01 ; 3.170839e+02 ];
omc_error_5 = [ 7.936524e-03 ; 4.988629e-03 ; 8.027915e-03 ];
Tc_error_5 = [ 2.598114e+00 ; 2.646435e+00 ; 2.018596e+00 ];
%-- Image #6:
omc_6 = [ 2.396903e+00 ; -5.169785e-01 ; 4.419722e-02 ];
Tc_6 = [ -8.462341e+01 ; 5.978167e+01 ; 3.749603e+02 ];
omc_error_6 = [ 8.379910e-03 ; 3.952135e-03 ; 1.001740e-02 ];
Tc_error_6 = [ 3.031554e+00 ; 3.096359e+00 ; 2.264016e+00 ];
%-- Image #7:
omc_7 = [ 2.472130e+00 ; -1.340944e+00 ; -3.767778e-01 ];
Tc_7 = [ -7.211444e+01 ; 1.104529e+02 ; 3.959351e+02 ];
omc_error_7 = [ 8.504043e-03 ; 3.186557e-03 ; 1.220480e-02 ];
Tc_error_7 = [ 3.256782e+00 ; 3.260764e+00 ; 2.366755e+00 ];
%-- Image #8:
omc_8 = [ -2.244006e+00 ; 2.066472e+00 ; -2.738894e-01 ];
Tc_8 = [ 5.965238e+01 ; 8.676875e+01 ; 3.136598e+02 ];
omc_error_8 = [ 6.038871e-03 ; 5.565660e-03 ; 1.031145e-02 ];
Tc_error_8 = [ 2.556427e+00 ; 2.563756e+00 ; 1.969765e+00 ];
%-- Image #9:
omc_9 = [ -2.292830e+00 ; 1.862245e+00 ; -4.464243e-02 ];
Tc_9 = [ 2.162723e+01 ; 7.229592e+01 ; 3.928030e+02 ];
omc_error_9 = [ 6.143239e-03 ; 5.905689e-03 ; 1.211607e-02 ];
Tc_error_9 = [ 3.168044e+00 ; 3.163959e+00 ; 2.144994e+00 ];
|
img1w = cv2.imread('corner_1.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(1)
plt.imshow(img_rgb)
img1w = cv2.imread('corner_2.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(2)
plt.imshow(img_rgb)
img1w = cv2.imread('corner_3.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(3)
plt.imshow(img_rgb)
img1w = cv2.imread('corner_4.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(4)
plt.imshow(img_rgb)
img1w = cv2.imread('corner_5.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(5)
plt.imshow(img_rgb)
img1w = cv2.imread('corner_6.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(6)
plt.imshow(img_rgb)
img1w = cv2.imread('corner_7.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(7)
plt.imshow(img_rgb)
img1w = cv2.imread('corner_8.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(8)
plt.imshow(img_rgb)
img1w = cv2.imread('corner_9.png', cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img1w, cv2.COLOR_BGR2RGB)
plt.figure(9)
plt.imshow(img_rgb)
|
quiz1/Quiz1-Calibration.ipynb
|
eugeniopacceli/ComputerVision
|
mit
|
Description
Figure P1-14 shows a simple single-phase ac power system with three loads. The voltage source is
$\vec{V} = 240\,V\angle 0^\circ$, impedances of these three loads are:
$$\vec{Z}_1 = 10\,\Omega\angle 30^\circ \quad \vec{Z}_2 = 10\,\Omega\angle 45^\circ \quad \vec{Z}_3 = 10\,\Omega\angle -90^\circ $$
<img src="figs/FigC_P1-14.jpg" width="80%">
|
V = 240 # [V]
Z1 = 10.0 * exp(1j* 30/180*pi)
Z2 = 10.0 * exp(1j* 45/180*pi)
Z3 = 10.0 * exp(1j*-90/180*pi)
|
Chapman/Ch1-Problem_1-19.ipynb
|
dietmarw/EK5312_ElectricalMachines
|
unlicense
|
Answer the following questions about this power system.
(a)
Assume that the switch shown in the figure is initially open, and calculate the current I , the power factor, and the real, reactive, and apparent power being supplied by the source.
(b)
How much real, reactive, and apparent power is being consumed by each load with the switch open?
(c)
Assume that the switch shown in the figure is now closed, and calculate the current I , the power factor, and the real, reactive, and apparent power being supplied by the source.
(d)
How much real, reactive, and apparent power is being consumed by each load with the switch closed?
(e)
What happened to the current flowing from the source when the switch closed? Why?
SOLUTION
(a)
With the switch open, only loads 1 and 2 are connected to the source. The current $\vec{I}_1$ in Load 1 and the current $\vec{I}_2$ in Load 2 are:
|
I1 = V/Z1
I2 = V/Z2
I1_angle = arctan(I1.imag/I1.real)
I2_angle = arctan(I2.imag/I2.real)
print('''I1 = {:.1f} A ∠{:.1f}°
I2 = {:.1f} A ∠{:.1f}°'''.format(
abs(I1), I1_angle/pi*180,
abs(I2), I2_angle/pi*180))
|
Chapman/Ch1-Problem_1-19.ipynb
|
dietmarw/EK5312_ElectricalMachines
|
unlicense
|
Therefore the total current from the source is $\vec{I} = \vec{I}_1 + \vec{I}_2$:
|
I = I1 + I2
I_angle = arctan(I.imag/I.real)
print('I = {:.1f} A ∠{:.1f}°'.format(
abs(I), I_angle/pi*180))
print('==================')
|
Chapman/Ch1-Problem_1-19.ipynb
|
dietmarw/EK5312_ElectricalMachines
|
unlicense
|
The power factor supplied by the source is:
|
PF = cos(-I_angle)
PF
|
Chapman/Ch1-Problem_1-19.ipynb
|
dietmarw/EK5312_ElectricalMachines
|
unlicense
|
lagging (because current laggs behind voltage).
Note that the angle $\theta$ used in the power factor and power calculations is the impedance angle, which is the negative of the current angle as long as voltage is at $0^\circ$.
The real, reactive, and apparent power supplied by the source are
$$S = VI^* \quad P = VI\cos\theta = real(S) \quad Q = VI\sin\theta = imag(S)$$
|
So = V*conj(I) # I use index "o" for open switch
So
|
Chapman/Ch1-Problem_1-19.ipynb
|
dietmarw/EK5312_ElectricalMachines
|
unlicense
|
Let's pretty-print that:
|
print('''
So = {:>7.1f} VA
Po = {:>7.1f} W
Qo = {:>7.1f} var
================'''.format(abs(So), So.real, So.imag))
|
Chapman/Ch1-Problem_1-19.ipynb
|
dietmarw/EK5312_ElectricalMachines
|
unlicense
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.