markdown
stringlengths
0
37k
code
stringlengths
1
33.3k
path
stringlengths
8
215
repo_name
stringlengths
6
77
license
stringclasses
15 values
(b) The real, reactive, and apparent power consumed by Load 1 and by Load 2 respectively are:
S1o = V*conj(I1) S1o S2o = V*conj(I2) S2o
Chapman/Ch1-Problem_1-19.ipynb
dietmarw/EK5312_ElectricalMachines
unlicense
Let's pretty-print that:
print(''' S1o = {:>6.1f} VA P1o = {:>6.1f} W Q1o = {:>6.1f} var ---------------- S2o = {:>6.1f} VA P2o = {:>6.1f} W Q2o = {:>6.1f} var ================'''.format(abs(S1o), S1o.real, S1o.imag, abs(S2o), S2o.real, S2o.imag))
Chapman/Ch1-Problem_1-19.ipynb
dietmarw/EK5312_ElectricalMachines
unlicense
As expected, the real and reactive power supplied by the source are equal to the sum of the real and reactive powers consumed by the loads. (c) With the switch closed, all three loads are connected to the source. The current in Loads 1 and 2 is the same as before. The current $\vec{I}_3$ in Load 3 is:
I3 = V/Z3 I3_angle = arctan(I3.imag/I3.real) print('I3 = {:.1f} A ∠{:.1f}°'.format(abs(I3), I3_angle/pi*180))
Chapman/Ch1-Problem_1-19.ipynb
dietmarw/EK5312_ElectricalMachines
unlicense
Therefore the total current from the source is $\vec{I} = \vec{I}_1 + \vec{I}_2 + \vec{I}_3$:
I = I1 + I2 + I3 I_angle = arctan(I.imag/I.real) print('I = {:.1f} A ∠{:.1f}°'.format(abs(I), I_angle/pi*180)) print('=================')
Chapman/Ch1-Problem_1-19.ipynb
dietmarw/EK5312_ElectricalMachines
unlicense
lagging (because current laggs behind voltage). The real, reactive, and apparent power supplied by the source are $$S = VI^* \quad P = VI\cos\theta = real(S) \quad Q = VI\sin\theta = imag(S)$$
Sc = V*conj(I) # I use index "c" for closed switch Sc
Chapman/Ch1-Problem_1-19.ipynb
dietmarw/EK5312_ElectricalMachines
unlicense
Let's pretty-print that:
print(''' Sc = {:.1f} VA Pc = {:.1f} W Qc = {:.1f} var ==============='''.format(abs(Sc), Sc.real, Sc.imag))
Chapman/Ch1-Problem_1-19.ipynb
dietmarw/EK5312_ElectricalMachines
unlicense
(d) The real, reactive, and apparent power consumed by Load 1, Load 2 and by Load 3 respectively are:
S1c = V*conj(I1) S1c S2c = V*conj(I2) S2c S3c = V*conj(I3) S3c print(''' S1c = {:>7.1f} VA P1c = {:>7.1f} W Q1c = {:>7.1f} var ----------------- S2c = {:>7.1f} VA P2c = {:>7.1f} W Q2c = {:>7.1f} var ----------------- S3c = {:>7.1f} VA P3c = {:>7.1f} W Q3c = {:>7.1f} var ================='''.format(abs(S1c), S1c.real, S1c.imag, abs(S2c), S2c.real, S2c.imag, abs(S3c), S3c.real, S3c.imag))
Chapman/Ch1-Problem_1-19.ipynb
dietmarw/EK5312_ElectricalMachines
unlicense
Building Path If any argument to join begins with os.sep, all of the previous arguments are discarded and the new one becomes the beginning of the return value.
import os.path PATHS = [ ('one', 'two', 'three'), ('/', 'one', 'two', 'three'), ('/one', '/two', '/three'), ] for parts in PATHS: print('{} : {!r}'.format(parts, os.path.join(*parts))) import os.path for user in ['', 'gaufung', 'nosuchuser']: lookup = '~' + user print('{!r:>15} : {!r}'.format( lookup, os.path.expanduser(lookup))) import os.path import os os.environ['MYVAR'] = 'VALUE' print(os.path.expandvars('/path/to/$MYVAR'))
FileSystem/Path.ipynb
gaufung/PythonStandardLibrary
mit
Normal Path
import os.path PATHS = [ 'one//two//three', 'one/./two/./three', 'one/../alt/two/three', ] for path in PATHS: print('{!r:>22} : {!r}'.format(path, os.path.normpath(path))) import os import os.path os.chdir('/usr') PATHS = [ '.', '..', './one/two/three', '../one/two/three', ] for path in PATHS: print('{!r:>21} : {!r}'.format(path, os.path.abspath(path)))
FileSystem/Path.ipynb
gaufung/PythonStandardLibrary
mit
File Time
import os.path import time print('File :', '~/WorkSpace/PythonStandardLibrary/FileSystem/Path.ipynb') print('Access time :', time.ctime(os.path.getatime('/Users/gaufung/WorkSpace/PythonStandardLibrary/FileSystem/Path.ipynb'))) print('Modified time:', time.ctime(os.path.getmtime('/Users/gaufung/WorkSpace/PythonStandardLibrary/FileSystem/Path.ipynb'))) print('Change time :', time.ctime(os.path.getctime('/Users/gaufung/WorkSpace/PythonStandardLibrary/FileSystem/Path.ipynb'))) print('Size :', os.path.getsize('/Users/gaufung/WorkSpace/PythonStandardLibrary/FileSystem/Path.ipynb'))
FileSystem/Path.ipynb
gaufung/PythonStandardLibrary
mit
You can write and use Python files and call their functions inside your notebooks to keep them simples.
import helpers print('You can use and tweak the python code in the helpers.py file (example: "{}")'.format(helpers.foobar()))
son-scikit/src/son_scikit/resources/tutorials/Basic_anomalies_detection.ipynb
cgeoffroy/son-analyze
apache-2.0
Fetching metrics To keep this example self-contained, the data is read from a static file. The metrics are stored held in a all_dataframes variable.
import reprlib import json import arrow import requests from son_analyze.core.prometheus import PrometheusData from son_scikit.hl_prometheus import build_sonata_df_by_id all_dataframes = None with open('empty_vnf1_sonemu_rx_count_packets_180.json') as raw: x = PrometheusData(raw.read()) all_dataframes = build_sonata_df_by_id(x)
son-scikit/src/son_scikit/resources/tutorials/Basic_anomalies_detection.ipynb
cgeoffroy/son-analyze
apache-2.0
Each VNF has its own dataframe where metrics have a corresponding column. Here, the empty_vnf1 VNF has a sonemu_rx_count_packets column for the monitored received packets on the network.
print('The dictonnary of all dataframes by VNF names: {}'.format(reprlib.repr(all_dataframes))) print(all_dataframes['empty_vnf1'].head())
son-scikit/src/son_scikit/resources/tutorials/Basic_anomalies_detection.ipynb
cgeoffroy/son-analyze
apache-2.0
Basic plotting From there we use the df and ddf variables as shortcuts, before plotting them. * df is the main dataframe we are going to work with * ddf contains the discrete difference of df
import matplotlib import matplotlib.pyplot as plt matplotlib.style.use('ggplot') %matplotlib inline matplotlib.rcParams['figure.figsize'] = (20.0, 5.0) df = all_dataframes['empty_vnf1'] ddf = df.diff().dropna() df.plot(); ddf.plot();
son-scikit/src/son_scikit/resources/tutorials/Basic_anomalies_detection.ipynb
cgeoffroy/son-analyze
apache-2.0
Injecting errors in the metrics For this tutorial, we inject two errors in the metrics. This is done inside the error_ddf dataframe.
error_ddf = ddf.copy() error_ddf.sonemu_rx_count_packets[1111] *= 2.6 error_ddf.sonemu_rx_count_packets[3333] *= 2.7
son-scikit/src/son_scikit/resources/tutorials/Basic_anomalies_detection.ipynb
cgeoffroy/son-analyze
apache-2.0
Detecting anomalies We use the pyculiarity package to detect anomalies in a dataframe using the detect_ts function.
from pyculiarity import detect_ts import pandas as pd import time def f(x): dt = x.to_datetime() return time.mktime(dt.timetuple()) target = error_ddf u = pd.DataFrame({'one': list(target.index.map(f)), 'two': target.sonemu_rx_count_packets}) results = detect_ts(u, max_anoms=0.004, alpha=0.01, direction='both') #, threshold='med_max')
son-scikit/src/son_scikit/resources/tutorials/Basic_anomalies_detection.ipynb
cgeoffroy/son-analyze
apache-2.0
The resulting plot clearly shows the 2 anomalies.
# make a nice plot matplotlib.rcParams['figure.figsize'] = (20.0, 10.0) f, ax = plt.subplots(2, 1, sharex=True) ax[0].plot(target.index, target.sonemu_rx_count_packets, 'b') ax[0].plot(results['anoms'].index, results['anoms']['anoms'], 'ro') ax[0].set_title('Detected Anomalies') ax[1].set_xlabel('Time Stamp') ax[0].set_ylabel('Count') ax[1].plot(results['anoms'].index, results['anoms']['anoms'], 'b') ax[1].set_ylabel('Anomaly Magnitude') plt.show()
son-scikit/src/son_scikit/resources/tutorials/Basic_anomalies_detection.ipynb
cgeoffroy/son-analyze
apache-2.0
Recomendacion de productos, Content-Based A continuación veremos paso a paso como se puede realizar un sistema de recomendacion basado en el contenido en python. http://www.p.valienteverde.com/sistemas-de-recomendacion-basados-en-el-contenido-content-based/ Basado en el Contenido (ContendBased) Por medio de la descripción del producto. Relaciones de tags Vectorizacion del contenido, es decir, generar los tags Ponderar los tags Generar el motor de buscada de los productos similares <img src='imagenes/contect_based.png'>
import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from sklearn.neighbors import NearestNeighbors import ContendBased as CB datos = pd.read_csv("./BD/people_wiki.tar.gz", compression='gzip') datos.head(3) entrada_elton_john=datos.query('name == "Elton John"') entrada_elton_john
ElCuadernillo/20160725_SistemasDeRecomendacionContentBased/Content-Based paso a paso.ipynb
pvalienteverde/ElCuadernillo
mit
Normalizacion
tf_transformer = TfidfTransformer(use_idf=False).fit(bag_of_words) matrix_elton_john_tf=tf_transformer.transform(bag_of_words[entrada_elton_john.index.values]) pesos_tf=CB.mostrar_pesos_tags(matrix_elton_john_tf,vectorizacion,descripcion='tf') pesos_tf
ElCuadernillo/20160725_SistemasDeRecomendacionContentBased/Content-Based paso a paso.ipynb
pvalienteverde/ElCuadernillo
mit
Prediccion Una vez que ya hemos extraidos los tags de los productos, buscamos por similitud los mas parecidos
vecinos = NearestNeighbors(n_neighbors=5,metric='cosine',algorithm='brute') datos_por_tags = tfidf_vectorizer.transform(datos.text) vecinos.fit(datos_por_tags)
ElCuadernillo/20160725_SistemasDeRecomendacionContentBased/Content-Based paso a paso.ipynb
pvalienteverde/ElCuadernillo
mit
Con nuestro motor de recomendacion creado, podemos utilizarlo como un buscador de articulos. Como se verá, de los 5 actores propuestos, 4 de ellos al menos ha ganado un oscar !!!!
buscador = tfidf_vectorizer.transform(['Award Actor Oscar']) distancia,indices = vecinos.kneighbors(buscador) datos.iloc[indices[0],:]
ElCuadernillo/20160725_SistemasDeRecomendacionContentBased/Content-Based paso a paso.ipynb
pvalienteverde/ElCuadernillo
mit
Veamos que famosos nos relaciona con Al Pacino...
al_pacino_vectorizado = tfidf_vectorizer.transform(datos.query('name == "Al Pacino"').text) distancia,indices = vecinos.kneighbors(al_pacino_vectorizado) datos.iloc[indices[0],:]
ElCuadernillo/20160725_SistemasDeRecomendacionContentBased/Content-Based paso a paso.ipynb
pvalienteverde/ElCuadernillo
mit
Benchmarking We can benchmark our learner's efficiency by running a couple of experiments on the Iris dataset. Our classifier will be L1-regularized logistic regression.
%%time ss = sklearn.model_selection.ShuffleSplit(n_splits=2, test_size=0.2) for train, test in ss.split(np.arange(len(X))): # Make an SGD learner, nothing fancy here classifier = sklearn.linear_model.SGDClassifier(verbose=0, loss='log', penalty='l1', n_iter=1) # Again, build a streamer object batches = pescador.Streamer(batch_sampler, X[train], Y[train]) # And train the model on the stream. n_steps = 0 for batch in batches(max_iter=5e3): classifier.partial_fit(batch['X'], batch['Y'], classes=classes) n_steps += 1 # How's it do on the test set? print('Test-set accuracy: {:.3f}'.format(sklearn.metrics.accuracy_score(Y[test], classifier.predict(X[test])))) print('# Steps: ', n_steps)
examples/Pescador demo.ipynb
bmcfee/pescador
isc
Parallelism It's possible that the learner is more or less efficient than the data generator. If the data generator has higher latency than the learner (SGDClassifier), then this will slow down the learning. Pescador uses zeromq to parallelize data stream generation, effectively decoupling it from the learner.
%%time ss = sklearn.model_selection.ShuffleSplit(n_splits=2, test_size=0.2) for train, test in ss.split(np.arange(len(X))): # Make an SGD learner, nothing fancy here classifier = sklearn.linear_model.SGDClassifier(verbose=0, loss='log', penalty='l1', n_iter=1) # First, turn the data_generator function into a Streamer object batches = pescador.Streamer(batch_sampler, X[train], Y[train]) # Then, send this thread to a second process zmq_stream = pescador.ZMQStreamer(batches, 5156) # And train the model on the stream. n_steps = 0 for batch in zmq_stream(max_iter=5e3): classifier.partial_fit(batch['X'], batch['Y'], classes=classes) n_steps += 1 # How's it do on the test set? print('Test-set accuracy: {:.3f}'.format(sklearn.metrics.accuracy_score(Y[test], classifier.predict(X[test])))) print('# Steps: ', n_steps)
examples/Pescador demo.ipynb
bmcfee/pescador
isc
Set up and run non-dithered metric bundles. Use a lower value of nside to make the notebook run faster, although at lower spatial resolution.
nside = 16 # Set up metrics, slicer and summaryMetrics. m1 = kConsecutiveGapMetric(k=2) m2 = metrics.AveGapMetric() slicer = slicers.HealpixSlicer(nside=nside) summaryMetrics = [metrics.MinMetric(), metrics.MeanMetric(), metrics.MaxMetric(), metrics.MedianMetric(), metrics.RmsMetric(), metrics.PercentileMetric(percentile=25), metrics.PercentileMetric(percentile=75)] # And I'll set a plotDict for the nvisits and coadded depth, because otherwise the DD fields throw the # scale in the plots into too wide a range. # (we could also generate plots, see this effect, then set the dict and regenerate the plots) #nvisitsPlotRanges = {'xMin':0, 'xMax':300, 'colorMin':0, 'colorMax':300, 'binsize':5} #coaddPlotRanges = {'xMin':24, 'xMax':28, 'colorMin':24, 'colorMax':28, 'binsize':0.02} filterlist = ['u', 'g', 'r', 'i', 'z', 'y'] filterorder = {'u':0, 'g':1, 'r':2, 'i':3, 'z':4, 'y':5} # Create metricBundles for each filter. # For ease of access later, I want to make a dictionary with 'kgap[filter]' first. kgap = {} avegap = {} for f in filterlist: sqlconstraint = 'filter = "%s"' %(f) # Add displayDict stuff that's useful for showMaf to put things in "nice" order. displayDict = {'subgroup':'Undithered', 'order':filterorder[f], 'group':'kgap'} kgap[f] = MetricBundle(m1, slicer, sqlconstraint=sqlconstraint, runName=runName, summaryMetrics=summaryMetrics, #plotDict=nvisitsPlotRanges, displayDict=displayDict) displayDict['group'] = 'AveGap' avegap[f] = MetricBundle(m2, slicer, sqlconstraint=sqlconstraint, runName=runName, summaryMetrics=summaryMetrics, #plotDict=nvisitsPlotRanges, displayDict=displayDict) blistAll = [] for f in filterlist: blistAll.append(kgap[f]) blistAll.append(avegap[f]) bdict = makeBundlesDictFromList(blistAll) # Set the metricBundleGroup up with all metricBundles, in all filters. bgroup = MetricBundleGroup(bdict, opsdb, outDir=outDir, resultsDb=resultsDb) bgroup.runAll() bgroup.writeAll() bgroup.plotAll() print 'Kgap --' for f in filterlist: print kgap[f].summaryValues print 'Avegap --' for f in filterlist: print avegap[f].summaryValues
notebooks/k_consecutive_visits.ipynb
LSSTTVS/WhitepaperNotebooks
bsd-3-clause
Now let's try to combine the histograms.
# Set more complicated plot labels directly in the bundles. for f in filterlist: kgap[f].setPlotDict({'label':'%s %1.f/%.1f/%1.f' %(f, kgap[f].summaryValues['25th%ile'], kgap[f].summaryValues['Median'], kgap[f].summaryValues['75th%ile'])}) # Set up the plotHandler. ph = plots.PlotHandler(outDir=outDir, resultsDb=resultsDb) # Instantiate the healpix histogram plotter, since we'll use it a lot. healpixhist = plots.HealpixHistogram() ph.setMetricBundles(kgap) # Add min/max values to the plots, which will be used for the combo histogram for nvisits. #ph.setPlotDicts(nvisitsPlotRanges) ph.plot(plotFunc=healpixhist)
notebooks/k_consecutive_visits.ipynb
LSSTTVS/WhitepaperNotebooks
bsd-3-clause
1. PCFG In this lab we will show you a way to represent a PCFG using python objects. We will introduce the following classes: Symbol Terminal Nonterminal Rule At first glance, this might seem like a lot of work. But, hopefully, by the time you get to implementing CKY you will be confinced of the benefits of these constructions. Symbol Recall that: * Terminal symbols are the words of the sentence: I, ate, salad, the etc. * Nonterminal symbols are the syntactic categories of the various constituents: S, NP, VP, Det etc. In our representation, Symbol is going to be a container class. The classes Terminal and Nonterminal will inherit from the Symbol class and will hence both become a type of symbol. The classes themselves are effectively a container for the underlying python strings.
class Symbol: """ A symbol in a grammar. This class will be used as parent class for Terminal, Nonterminal. This way both will be a type of Symbol. """ def __init__(self): pass class Terminal(Symbol): """ Terminal symbols are words in a vocabulary E.g. 'I', 'ate', 'salad', 'the' """ def __init__(self, symbol: str): assert type(symbol) is str, 'A Terminal takes a python string, got %s' % type(symbol) self._symbol = symbol def is_terminal(self): return True def is_nonterminal(self): return False def __str__(self): return "'%s'" % self._symbol def __repr__(self): return 'Terminal(%r)' % self._symbol def __hash__(self): return hash(self._symbol) def __len__(self): """The length of the underlying python string""" return len(self._symbol) def __eq__(self, other): return type(self) == type(other) and self._symbol == other._symbol def __ne__(self, other): return not (self == other) @property def obj(self): """Returns the underlying python string""" return self._symbol class Nonterminal(Symbol): """ Nonterminal symbols are the grammatical classes in a grammar. E.g. S, NP, VP, N, Det, etc. """ def __init__(self, symbol: str): assert type(symbol) is str, 'A Nonterminal takes a python string, got %s' % type(symbol) self._symbol = symbol def is_terminal(self): return False def is_nonterminal(self): return True def __str__(self): return "[%s]" % self._symbol def __repr__(self): return 'Nonterminal(%r)' % self._symbol def __hash__(self): return hash(self._symbol) def __len__(self): """The length of the underlying python string""" return len(self._symbol) def __eq__(self, other): return type(self) == type(other) and self._symbol == other._symbol def __ne__(self, other): return not (self == other) @property def obj(self): """Returns the underlying python string""" return self._symbol
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Let's try out the classes by initializing some terminal an nonterminal symbols:
dog = Terminal('dog') the = Terminal('the') walks = Terminal('walks') S = Nonterminal('S') NP = Nonterminal('NP') NP_prime = Nonterminal('NP') VP = Nonterminal('VP') V = Nonterminal('V') N = Nonterminal('N') Det = Nonterminal('Det')
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
The methods __eq__ and __ne__ make it possible to compare our objects using standard Python syntax. But more importantly: compare in the way that we are interested in, namely whether the underlying representation is the same. To see the difference, try commenting out the method __eq__ in the class above, and notice different result of the equality test NP==NP_prime.
print(dog) print(NP) print() print(NP==Det) print(NP!=Det) print(NP==NP) print(NP==NP_prime)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Note the difference between calling print(NP) and simply calling NP. The first is taken care of by the method __str__ and the second by the method __repr__.
dog
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
We can also easily check if our symbol is a terminal or not:
dog.is_terminal() NP.is_terminal()
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Finally the method __hash__ makes our object hashable, and hence usable in a datastructure like a dictionary. Try commenting out this method above in the class and then retry constructing the dictionary: notice the error.
d = {NP: 1, S: 2} d
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Rules In a PCFG a rule looks something like this $$NP \to Det\;N,$$ with a corresponding probability, for example $1.0$ (if we lived in a world where all noun phrases had this grammatical structure). In our representation, Rule will be an object made of a left-hand side (lhs) symbol, a sequence of right-hand side symbols (rhs) and a probability prob. If we use the above defined symbols, we can call rule = Rule(NP, [Det, N], 1.0). This will construct an instance called rule which represent the rule above [NP] -&gt; [Det] [N] (1.0).
class Rule: def __init__(self, lhs, rhs, prob): """ Constructs a Rule. A Rule takes a LHS symbol and a list/tuple of RHS symbols. :param lhs: the LHS nonterminal :param rhs: a sequence of RHS symbols (terminal or nonterminal) :param prob: probability of the rule """ assert isinstance(lhs, Symbol), 'LHS must be an instance of Symbol' assert len(rhs) > 0, 'If you want an empty RHS, use an epsilon Terminal EPS' assert all(isinstance(s, Symbol) for s in rhs), 'RHS must be a sequence of Symbol objects' self._lhs = lhs self._rhs = tuple(rhs) self._prob = prob def __eq__(self, other): return self._lhs == other._lhs and self._rhs == other._rhs and self._prob == other._prob def __ne__(self, other): return not (self == other) def __hash__(self): return hash((self._lhs, self._rhs, self._prob)) def __repr__(self): return '%s -> %s (%s)' % (self._lhs, ' '.join(str(sym) for sym in self._rhs), self.prob) def is_binary(self): """True if Rule is binary: A -> B C""" return len(self._rhs) == 2 def is_unary(self): """True if Rule is unary: A -> w""" return len(self._rhs) == 1 @property def lhs(self): """Returns the lhs of the rule""" return self._lhs @property def rhs(self): """Returns the rhs of the rule""" return self._rhs @property def prob(self): """Returns the probability of the rule""" return self._prob
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Just as with Terminal and Nonterminal you can print an instance of Rule, you can access its attributes, and you can hash rules with containers such as dict and set.
r1 = Rule(S, [NP, VP], 1.0) r2 = Rule(NP, [Det, N], 1.0) r3 = Rule(N, [dog], 1.0) r4 = Rule(Det, [the], 1.0) r5 = Rule(VP, [walks], 1.0) print(r1) print(r2) print(r3) print(r4) print(r1.prob) r1 in set([r1]) d = {r1: 1, r2: 2} d
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Grammar A PCFG is a container for Rules. The Rules are stored in the PCFG in such a way that they can be accesed easily in different ways.
class PCFG(object): """ Constructs a PCFG. A PCFG stores a list of rules that can be accessed in various ways. :param rules: an optional list of rules to initialize the grammar with """ def __init__(self, rules=[]): self._rules = [] self._rules_by_lhs = defaultdict(list) self._terminals = set() self._nonterminals = set() for rule in rules: self.add(rule) def add(self, rule): """Adds a rule to the grammar""" if not rule in self._rules: self._rules.append(rule) self._rules_by_lhs[rule.lhs].append(rule) self._nonterminals.add(rule.lhs) for s in rule.rhs: if s.is_terminal(): self._terminals.add(s) else: self._nonterminals.add(s) def update(self, rules): """Add a list of rules to the grammar""" for rule in rules: self.add(rule) @property def nonterminals(self): """The list of nonterminal symbols in the grammar""" return self._nonterminals @property def terminals(self): """The list of terminal symbols in the grammar""" return self._terminals @property def rules(self): """The list of rules in the grammar""" return self._rules @property def binary_rules(self): """The list of binary rules in the grammar""" return [rule for rule in self._rules if rule.is_binary()] @property def unary_rules(self): """The list of unary rules in the grammar""" return [rule for rule in self._rules if rule.is_unary()] def __len__(self): return len(self._rules) def __getitem__(self, lhs): return self._rules_by_lhs.get(lhs, frozenset()) def get(self, lhs, default=frozenset()): """The list of rules whose LHS is the given symbol lhs""" return self._rules_by_lhs.get(lhs, frozenset()) def __iter__(self): """Iterator over rules (in arbitrary order)""" return iter(self._rules) def iteritems(self): """Iterator over pairs of the kind (LHS, rules rewriting LHS)""" return self._rules_by_lhs.items() def __str__(self): """Prints the grammar line by line""" lines = [] for lhs, rules in self.iteritems(): for rule in rules: lines.append(str(rule)) return '\n'.join(lines)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Initialize a grammar
G = PCFG()
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
We can add rules individually with add, or as a list with update:
G.add(r1) G.update([r2,r3,r4,r5])
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
We can print the grammar
print(G)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
We can get the set of rewrite rules for a certain LHS symbol.
G.get(S) G.get(NP)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
We can also iterate through rules in the grammar. Note that the following is basically counting how many rules we have in the grammar.
sum(1 for r in G)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
We can access the set of terminals and nonterminals of the grammar:
print(G.nonterminals) print(G.terminals) S in G.nonterminals dog in G.terminals
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Finally we can easily access all the binary rules and all the unary rules in the grammar:
G.unary_rules G.binary_rules
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
For the following sections you will need to have the Natural Language Toolkit (NLTK) installed. We will use a feature of the NLTK toolkit that lets you draw constituency parses. Details for download can be found here: http://www.nltk.org/install.html. Visualizing a tree For the sake of legacy let's reiterate an age-old NLP schtick, the well-known example of structural ambiguity from the Groucho Marx movie, Animal Crackers (1930): One morning I shot an elephant in my pajamas. How he got into my pajamas, I don't know. Let's take a closer look at the ambiguity in the phrase: I shot an elephant in my pajamas. The ambiguity is caused by the fact that the sentence has two competing parses represented in: (S (NP I) (VP (VP (V shot) (NP (Det an) (N elephant))) (PP (P in) (NP (Det my) (N pajamas))))) and (S (NP I) (VP (V shot) (NP (Det an) (NP (N elephant) (PP (P in) (NP (Det my) (N pajamas))))))) We can write these parses down as strings and then let NLTK turn them into trees using the NLTK Tree class. (See http://www.nltk.org/api/nltk.html#nltk.tree.Tree as reference for this class, if you want to know more.)
parse1 = "(S (NP I) (VP (VP (V shot) (NP (Det an) (N elephant))) (PP (P in) (NP (Det my) (N pajamas)))))" parse2 = "(S (NP I) (VP (V shot) (NP (Det an) (NP (N elephant) (PP (P in) (NP (Det my) (N pajamas)))))))" pajamas1 = Tree.fromstring(parse1) pajamas2 = Tree.fromstring(parse2)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
We can then pretty-print these trees:
pajamas1.pretty_print() pajamas2.pretty_print()
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Parsing with CKY Let's stick with this sentence for the rest of this lab. We will use CKY to find the 'best' parse for this sentence.
# Turn the sentence into a list sentence = "I shot an elephant in my pajamas".split() # The length of the sentence num_words = len(sentence)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
A PCFG for this sentence can be found in the file groucho-grammar.txt. We read this in with the function read_grammar_rules.
def read_grammar_rules(istream): """Reads grammar rules formatted as 'LHS ||| RHS ||| PROB'.""" for line in istream: line = line.strip() if not line: continue fields = line.split('|||') if len(fields) != 3: raise ValueError('I expected 3 fields: %s', fields) lhs = fields[0].strip() if lhs[0] == '[': lhs = Nonterminal(lhs[1:-1]) else: lhs = Terminal(lhs) rhs = fields[1].strip().split() new_rhs = [] for r in rhs: if r[0] == '[': r = Nonterminal(r[1:-1]) else: r = Terminal(r) new_rhs.append(r) prob = float(fields[2].strip()) yield Rule(lhs, new_rhs, prob) # Read in the grammar istream = open('groucho-grammar-1.txt') grammar = PCFG(read_grammar_rules(istream)) print("The grammar:\n", grammar, "\n")
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
We will also need the following two dictionaries: nonterminal2index mapping from nonterminals to integers (indices); and its inverse, an index2nonterminal dictionary.
num_nonterminals = len(grammar.nonterminals) # Make a nonterminal2index and a index2nonterminal dictionary n2i = defaultdict(lambda: len(n2i)) i2n = dict() for A in grammar.nonterminals: i2n[n2i[A]] = A # Stop defaultdict behavior of n2i n2i = dict(n2i) n2i
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
The charts Now we are ready to introduce the chart datastructures. We need a chart to store the scores and a chart to store the backpointers. Both of these will be 3-dimensional numpy arrays: one named score (also named table in J&M) holding the probabilities of intermediate results; one named back to store the backpointers in. We will use the following indexing convention for these charts: Format for the chart holding the scores: score[A][begin][end] = probability (naming as in slides) table[A][i][j] = probability (naming as in J&amp;M) Format for the chart holding the backpointers: back[A][begin][end] = (split,B,C) (naming as in slides) back[A][i][j] = (k,B,C) (naming as in J&amp;M) This indexing convention is convenient for printing. See what happens when we print back below: we get num_nonterminal slices, each a numpy array of shape [n_words+1, n_words+1]. This is easier to read than the format table[i][j][A]. [Note] Here we pretended A is both the nonterminal as well as the index. In actual fact, in our implementation A will be the nonterminal and the index for A will be n2i[A]. Let's show you what we mean:
# A numpy array zeros score = np.zeros((num_nonterminals, num_words + 1, num_words + 1)) # A numpy array that can store arbitrary data (we set dtype to object) back = np.zeros((num_nonterminals, num_words + 1, num_words + 1), dtype=object)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
The following illustrates the way you will use the back chart. In this example, your parser recognized that the words between 0 and 2 form an NP and the words between 2 and the end of the sentence form a VP (and nothing else yet):
# Illustration of the backpointer array back[n2i[S]][0][-1] = (2,NP,VP) back
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Exercise 1. (80 points) Implement the CKY algorithm. Follow the pseudo-code given in the lecture-slides (or alternatively in J&M). The code must comply to the following: The function cky takes a sentence (list of words) a grammar (an instance of PCFG) and a n2i nonterminals2index dictionary. The function cky returns the filled-in score-chart and backpointer-chart, following the format established above. [Hint] This is the moment to make good use of the methods of the classes PCFG, Rule, Nonterminal, and Terminal!
def cky(sentence, grammar, n2i): """ The CKY algorithm. Follow the pseudocode from the slides (or J&M). :param sentence: a list of words :param grammar: an instance of the class PCFG :param n2i: a dictionary mapping from Nonterminals to indices :return score: the filled in scores chart :return back: the filled in backpointers chart """ num_words = len(sentence) num_nonterminals = len(grammar.nonterminals) # A numpy array to store the scores of intermediate parses score = np.zeros((num_nonterminals, num_words + 1, num_words + 1)) # A numpy array to store the backpointers back = np.zeros((num_nonterminals, num_words + 1, num_words + 1), dtype=object) # YOUR CODE HERE raise NotImplementedError return score, back # Run CKY score, back = cky(sentence, grammar, n2i)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Check your CKY Use the code in the following two cell to check your cky implementation. Take the Nonterminal S to inspect your filled in score and backpointer charts. Leave the code in this cell unchanged. We will use this to evaluate the corectness your cky function.
### Don't change the code in this cell. ### S = Nonterminal('S') print('The whole slice for nonterminal S:') print(score[n2i[S]], "\n") print('The score in cell (S, 0, num_words), which is the probability of the best parse:') print(score[n2i[S]][0][num_words], "\n") print('The backpointer in cell (S, 0, num_words):') print(back[n2i[S]][0][num_words], "\n")
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Exercise 2. (20 points) Write the function build_tree that reconstructs the parse from the backpointer table. This is the function that is called in the return statement of the pseudo-code in Jurafsky and Martin. [Note] This is a challenging exercise! And we have no pseudocode for you here: you must come up with your own implementation. On the other hand, it will also constitute just the last 20 points of your your grade, so don't worry too much if can't finish it. If you finished exercise 1 you already have an 8 for this lab! Here is some additional advice: Use recursion - that is write your function in a recursive way. What is the base case? Hint: $A \to w$. What is the recursive case? Hint: $A \to B\; C$. Use the additional clas Span that we introduce below for the symbols in your recovered rules. Read the documentation in this class for its usage. If you want to use the function make_nltk_tree that we provide (and that turns a derivation into an NLTK tree so that you can draw it) your function must return the list of rules in derivation ordered depth-first. If you write your function recursively this should happen automatically. The following class will be very useful in your solution for the function build_tree.
class Span(Symbol): """ A Span indicates that symbol was recognized between begin and end. Example: Span(Terminal('the'), 0, 1) This means: we found 'the' in the sentence between 0 and 1 Span(Nonterminal('NP'), 4, 8) represents NP:4-8 This means: we found an NP that covers the part of the sentence between 4 and 8 Thus, Span holds a Terminal or a Nonterminal and wraps it between two integers. This makes it possible to distinguish between two instances of the same rule in the derrivation. Example: We can find that the rule NP -> Det N is use twice in the parse derrivation. But that in the first case it spans "an elephant" and in the second case it spans "my pajamas". We want to distinguis these. So: "an elephant" is covered by [NP]:2-4 -> [Det]:2-3 [N]:3-4 "my pajamas" is covered by [NP]:5-7 -> [Det]:5-6 [N]:6-7 Internally, we represent spans with tuples of the kind (symbol, start, end). """ def __init__(self, symbol, start, end): assert isinstance(symbol, Symbol), 'A span takes an instance of Symbol, got %s' % type(symbol) self._symbol = symbol self._start = start self._end = end def is_terminal(self): # a span delegates this to an underlying symbol return self._symbol.is_terminal() def root(self): # Spans are hierarchical symbols, thus we delegate return self._symbol.root() def obj(self): """The underlying python tuple (Symbol, start, end)""" return (self._symbol, self._start, self._end) def translate(self, target): return Span(self._symbol.translate(target), self._start, self._end) def __str__(self): """Prints Symbol with span if Symbol is Nonterminal else without (purely aesthetic distinction)""" if self.is_terminal(): return "%s" % (self._symbol) else: return "%s:%s-%s" % (self._symbol, self._start, self._end) def __repr__(self): return 'Span(%r, %r, %r)' % (self._symbol, self._start, self._end) def __hash__(self): return hash((self._symbol, self._start, self._end)) def __eq__(self, other): return type(self) == type(other) and self._symbol == other._symbol and self._start == other._start and self._end == other._end def __ne__(self, other): return not (self == other)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Example usage of Span:
span_S = Span(S, 0, 10) print(span_S) span_S = Span(dog, 4, 5) print(span_S) spanned_rule = Rule(Span(NP, 2, 4), [Span(Det, 2, 3), Span(NP, 3, 4)], prob=None) print(spanned_rule)
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Your final derivation should look like this: (Note that the rule probabilities are set to None. These are not saved in the backpointer chart so cannot be retrieved at the recovering stage. They also don't matter at this point, so you can set them to None.) If you give this derivation to the functionmake_nltk_tree and then let NLTK draw it, then you get this tree: The exercise
def build_tree(back, sentence, root, n2i): """ Reconstruct the viterbi parse from a filled-in backpointer chart. It returns a list called derivation which hols the rules that. If you want to use the function make_nltk_tree you must make sure that the :param back: a backpointer chart of shape [num_nonterminals, num_words+1, num_words+1] :param sentence: a list of words :param root: the root symbol of the tree: Nonterminal('S') :param n2i: the dictionary mapping from Nonterminals to indices :return derivation: a derivation: a list of Rules with Span symbols that generate the Viterbi tree. If you want to draw them with the function that we provide, then this list should be ordered depth first! """ derivation = [] num_words = len(sentence) # YOUR CODE HERE raise NotImplementedError return derivation
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Get your derivation:
derivation = build_tree(back, sentence, S, n2i) derivation
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
Turn the derivation into an NLTK tree:
def make_nltk_tree(derivation): """ Return a NLTK Tree object based on the derivation (list or tuple of Rules) """ d = defaultdict(None, ((r.lhs, r.rhs) for r in derivation)) def make_tree(lhs): return Tree(str(lhs), (str(child) if child not in d else make_tree(child) for child in d[lhs])) return make_tree(derivation[0].lhs) tree = make_nltk_tree(derivation) tree.pretty_print()
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
That's it! Congratulations, you have made it to the end of the lab. Make sure all your cells are executed so that all your answers are there. Then, continue if you're interested! Optional If you managed to get your entire CKY-parser working and have an appetite for more, it might be fun to try it on some more sentences and grammars. Give the grammars below a try! Alternative Groucho-grammar If you change the probabilities in the grammar, you'll get a different parse as most likely one. Compare groucho-grammar-1.txt with groucho-grammar-2.txt and spot the difference in probabilities.
# YOUR CODE HERE
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
The man with the telescope Another ambiguous sentence: I saw the man on the hill with the telescope. A grammar for this sentence is specified in the file telescope-grammar.txt.
# YOUR CODE HERE
lab3/lab3.ipynb
tdeoskar/NLP1-2017
gpl-3.0
so that is the benchmark to beat.
from numba import njit watrad_numba = mk_rsys(ODEsys, **watrad_data, lambdify=lambda *args: njit(sym.lambdify(*args, modules="numpy"))) watrad_numba.integrate_odeint(tout, y0) %timeit watrad_numba.integrate_odeint(tout, y0) import matplotlib.pyplot as plt %matplotlib inline
notebooks/_37-chemical-kinetics-numba.ipynb
sympy/scipy-2017-codegen-tutorial
bsd-3-clause
Just to see that everything looks alright:
fig, ax = plt.subplots(1, 1, figsize=(14, 6)) watrad_numba.plot_result(tout, *watrad_numba.integrate_odeint(tout, y0), ax=ax) ax.set_xscale('log') ax.set_yscale('log')
notebooks/_37-chemical-kinetics-numba.ipynb
sympy/scipy-2017-codegen-tutorial
bsd-3-clause
Use least_squares to compute w, and visualize the results.
from least_squares import least_squares from plots import visualization def least_square_classification_demo(y, x): # *************************************************** # INSERT YOUR CODE HERE # classify the data by linear regression: TODO # *************************************************** tx = np.c_[np.ones((y.shape[0], 1)), x] # w = least squares with respect to tx err, w = least_squares(y, tx) print(f"MSE: {err}") visualization(y, x, mean_x, std_x, w, "classification_by_least_square") least_square_classification_demo(y, x)
ml/ex05/template/ex05.ipynb
rusucosmin/courses
mit
Logistic Regression Compute your cost by negative log likelihood.
def sigmoid(t): """apply sigmoid function on t.""" return 1 / (1 + np.exp(-t)) # sanity checks assert(sigmoid(0) == .5) assert(np.all(sigmoid(np.array([0, 0, 0])) == np.array([.5, .5, .5]))) def calculate_loss(y, tx, w): """compute the cost by negative log likelihood.""" pred = tx @ w return -(y * np.log(sigmoid(pred)) + (1 - y) * np.log(1 - sigmoid(pred))).sum() def calculate_gradient(y, tx, w): """compute the gradient of loss.""" return tx.T @ (sigmoid(tx @ w) - y)
ml/ex05/template/ex05.ipynb
rusucosmin/courses
mit
Using Gradient Descent Implement your function to calculate the gradient for logistic regression.
def learning_by_gradient_descent(y, tx, w, gamma): """ Do one step of gradient descen using logistic regression. Return the loss and the updated w. """ # *************************************************** # INSERT YOUR CODE HERE # compute the cost: TODO # *************************************************** loss = calculate_loss(y, tx, w) # *************************************************** # INSERT YOUR CODE HERE # compute the gradient: TODO # *************************************************** grad = calculate_gradient(y, tx, w) # *************************************************** # INSERT YOUR CODE HERE # update w: TODO # *************************************************** w = w - gamma * grad return loss, w
ml/ex05/template/ex05.ipynb
rusucosmin/courses
mit
Calculate your hessian below
def calculate_hessian(y, tx, w): """return the hessian of the loss function.""" S = np.diag((sigmoid(tx @ w) * (1 - sigmoid(tx @ w))).flatten()) return (tx.T @ S) @ tx
ml/ex05/template/ex05.ipynb
rusucosmin/courses
mit
Using Newton's method Use Newton's method for logistic regression.
def learning_by_newton_method(y, tx, w): """ Do one step on Newton's method. return the loss and updated w. """ loss, gradient, hessian = logistic_regression(y, tx, w) w = w - np.linalg.inv(hessian) @ gradient return loss, w
ml/ex05/template/ex05.ipynb
rusucosmin/courses
mit
Using penalized logistic regression Fill in the function below.
def penalized_logistic_regression(y, tx, w, lambda_): """return the loss, gradient, and hessian.""" loss, gradient, hessian = logistic_regression(y, tx, w) penalised_loss = loss + lambda_ * ((w ** 2).sum()) return loss, gradient + 2 * lambda_ * w, hessian def learning_by_penalized_gradient(y, tx, w, gamma, lambda_): """ Do one step of gradient descent, using the penalized logistic regression. Return the loss and updated w. """ # *************************************************** # INSERT YOUR CODE HERE # return loss, gradient: TODO # *************************************************** loss, gradient, hessian = penalized_logistic_regression(y, tx, w, lambda_) # *************************************************** # INSERT YOUR CODE HERE # update w: TODO # *************************************************** w = w - gamma * gradient return loss, w def logistic_regression_penalized_gradient_descent_demo(y, x): # init parameters max_iter = 10000 gamma = 0.01 lambda_ = 0.01 threshold = 1e-8 losses = [] # build tx tx = np.c_[np.ones((y.shape[0], 1)), x] w = np.zeros((tx.shape[1], 1)) # start the logistic regression for iter in range(max_iter): # get loss and update w. loss, w = learning_by_penalized_gradient(y, tx, w, gamma, lambda_) # log info if iter % 100 == 0: print("Current iteration={i}, loss={l}, wnorm={wnorm}".format(i=iter, l=loss, wnorm=(w ** 2).sum())) # converge criterion losses.append(loss) if len(losses) > 1 and np.abs(losses[-1] - losses[-2]) < threshold: break # visualization visualization(y, x, mean_x, std_x, w, "classification_by_logistic_regression_penalized_gradient_descent") print("loss={l} wnorm={wnorm}".format(l=calculate_loss(y, tx, w), wnorm=(w ** 2).sum())) logistic_regression_penalized_gradient_descent_demo(y, x)
ml/ex05/template/ex05.ipynb
rusucosmin/courses
mit
Now we will start with normalization of the features because size of the house is in different range as compared to number of bedrooms
def featureNormalize(X): mu = X.mean(axis=0) sigma = X.std(axis=0) X_norm = (X - mu)/sigma return (X_norm, mu, sigma)
linear_regression/linear_regression_gradient_descent_with_multiple_variables.ipynb
aryarohit07/machine-learning-with-python
mit
Data Preparation
X_norm, mu, sigm = featureNormalize(X) # now lets add ones to the input feature X for theta0 ones = np.ones((X_norm.shape[0], 1), float) X = np.concatenate((ones,X_norm), axis=1) print(X[:1]) #Cost function def computeCostMulti(X, y, theta): m = X.shape[0] hypothesis = X.dot(theta) # h_theta = theta.T * x = theta0*x0 + theta1*x1 + ... + thetan*xn J = (1/(2*m)) * (np.sum(np.square(hypothesis-y))) return J theta = np.zeros(X.shape[1]) J_cost = computeCostMulti(X, y, theta) print('J_Cost', J_cost) def gradientDescentMulti(X, y, theta, alpha, num_iters): m = X.shape[0] J_history = np.zeros(num_iters) for iter in np.arange(num_iters): h = X.dot(theta) theta = theta - alpha * (1/m) * X.T.dot(h-y) J_history[iter] = computeCostMulti(X, y, theta) return theta, J_history alpha = 0.01; num_iters = 1000; theta, J_history = gradientDescentMulti(X, y, theta, alpha, num_iters) #Lets plot something plt.xlim(0,num_iters) plt.plot(J_history) plt.ylabel('Cost J') plt.xlabel('Iterations') plt.show() print(theta)
linear_regression/linear_regression_gradient_descent_with_multiple_variables.ipynb
aryarohit07/machine-learning-with-python
mit
Now lets predict prices of some houses and compare the result with scikit-learn prediction.
from sklearn.linear_model import LinearRegression clf = LinearRegression() clf.fit(X, y) inputXs = np.array([[1, 100, 3], [1, 200, 3]]) sklearnPrediction = clf.predict(inputXs) gradientDescentPrediction = inputXs.dot(theta) print(sklearnPrediction, gradientDescentPrediction) print("Looks Good :D")
linear_regression/linear_regression_gradient_descent_with_multiple_variables.ipynb
aryarohit07/machine-learning-with-python
mit
Using TT-Matrices we can compactly represent densely connected layers in neural networks, which allows us to greatly reduce number of parameters. Matrix multiplication can be handled by the t3f.matmul method which allows for multiplying dense (ordinary) matrices and TT-Matrices. Very simple neural network could look as following (for initialization several options such as t3f.glorot_initializer, t3f.he_initializer or t3f.random_matrix are available):
class Learner: def __init__(self): initializer = t3f.glorot_initializer([[4, 7, 4, 7], [5, 5, 5, 5]], tt_rank=2) self.W1 = t3f.get_variable('W1', initializer=initializer) self.W2 = tf.Variable(tf.random.normal([625, 10])) self.b2 = tf.Variable(tf.random.normal([10])) def predict(self, x): b1 = tf.Variable(tf.zeros([625])) h1 = t3f.matmul(x, W1) + b1 h1 = tf.nn.relu(h1) return tf.matmul(h1, W2) + b2 def loss(self, x, y): y_ = tf.one_hot(y, 10) logits = self.predict(x) return tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=logits))
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
For convenience we have implemented a layer analogous to Keras Dense layer but with a TT-Matrix instead of an ordinary matrix. An example of fully trainable net is provided below.
from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation, Dropout, Flatten from tensorflow.keras.utils import to_categorical from tensorflow.keras import optimizers (x_train, y_train), (x_test, y_test) = mnist.load_data()
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
Some preprocessing...
x_train = x_train / 127.5 - 1.0 x_test = x_test / 127.5 - 1.0 y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) model = Sequential() model.add(Flatten(input_shape=(28, 28))) tt_layer = t3f.nn.KerasDense(input_dims=[7, 4, 7, 4], output_dims=[5, 5, 5, 5], tt_rank=4, activation='relu', bias_initializer=1e-3) model.add(tt_layer) model.add(Dense(10)) model.add(Activation('softmax')) model.summary()
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
Note that in the dense layer we only have $1725$ parameters instead of $784 * 625 = 490000$.
optimizer = optimizers.Adam(lr=1e-2) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=3, batch_size=64, validation_data=(x_test, y_test))
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
Compression of Dense layers Let us now train an ordinary DNN (without TT-Matrices) and show how we can compress it using the TT decomposition. (In contrast to directly training a TT-layer from scratch in the example above.)
model = Sequential() model.add(Flatten(input_shape=(28, 28))) model.add(Dense(625, activation='relu')) model.add(Dense(10)) model.add(Activation('softmax')) model.summary() optimizer = optimizers.Adam(lr=1e-3) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5, batch_size=64, validation_data=(x_test, y_test))
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
Let us convert the matrix used in the Dense layer to the TT-Matrix with tt-ranks equal to 16 (since we trained the network without the low-rank structure assumption we may wish start with high rank values).
W = model.trainable_weights[0] print(W) Wtt = t3f.to_tt_matrix(W, shape=[[7, 4, 7, 4], [5, 5, 5, 5]], max_tt_rank=16) print(Wtt)
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
We need to evaluate the tt-cores of Wtt. We also need to store other parameters for later (biases and the second dense layer).
cores = Wtt.tt_cores other_params = model.get_weights()[1:]
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
Now we can construct a tensor network with the first Dense layer replaced by Wtt initialized using the previously computed cores.
model = Sequential() model.add(Flatten(input_shape=(28, 28))) tt_layer = t3f.nn.KerasDense(input_dims=[7, 4, 7, 4], output_dims=[5, 5, 5, 5], tt_rank=16, activation='relu') model.add(tt_layer) model.add(Dense(10)) model.add(Activation('softmax')) optimizer = optimizers.Adam(lr=1e-3) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) model.set_weights(list(cores) + other_params) print("new accuracy: ", model.evaluate(x_test, y_test)[1]) model.summary()
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
We see that even though we now have about 5% of the original number of parameters we still achieve a relatively high accuracy. Finetuning the model We can now finetune this tensor network.
model.fit(x_train, y_train, epochs=2, batch_size=64, validation_data=(x_test, y_test))
docs/tutorials/tensor_nets.ipynb
Bihaqo/t3f
mit
Now that we have our training data we need to create the overall pipeline for the tokenizer
# For the user's convenience `tokenizers` provides some very high-level classes encapsulating # the overall pipeline for various well-known tokenization algorithm. # Everything described below can be replaced by the ByteLevelBPETokenizer class. from tokenizers import Tokenizer from tokenizers.decoders import ByteLevel as ByteLevelDecoder from tokenizers.models import BPE from tokenizers.normalizers import Lowercase, NFKC, Sequence from tokenizers.pre_tokenizers import ByteLevel # First we create an empty Byte-Pair Encoding model (i.e. not trained model) tokenizer = Tokenizer(BPE()) # Then we enable lower-casing and unicode-normalization # The Sequence normalizer allows us to combine multiple Normalizer that will be # executed in order. tokenizer.normalizer = Sequence([ NFKC(), Lowercase() ]) # Our tokenizer also needs a pre-tokenizer responsible for converting the input to a ByteLevel representation. tokenizer.pre_tokenizer = ByteLevel() # And finally, let's plug a decoder so we can recover from a tokenized input to the original one tokenizer.decoder = ByteLevelDecoder()
notebooks/01-training-tokenizers.ipynb
huggingface/pytorch-transformers
apache-2.0
The overall pipeline is now ready to be trained on the corpus we downloaded earlier in this notebook.
from tokenizers.trainers import BpeTrainer # We initialize our trainer, giving him the details about the vocabulary we want to generate trainer = BpeTrainer(vocab_size=25000, show_progress=True, initial_alphabet=ByteLevel.alphabet()) tokenizer.train(files=["big.txt"], trainer=trainer) print("Trained vocab size: {}".format(tokenizer.get_vocab_size()))
notebooks/01-training-tokenizers.ipynb
huggingface/pytorch-transformers
apache-2.0
Et voilà ! You trained your very first tokenizer from scratch using tokenizers. Of course, this covers only the basics, and you may want to have a look at the add_special_tokens or special_tokens parameters on the Trainer class, but the overall process should be very similar. We can save the content of the model to reuse it later.
# You will see the generated files in the output. tokenizer.model.save('.')
notebooks/01-training-tokenizers.ipynb
huggingface/pytorch-transformers
apache-2.0
Now, let load the trained model and start using out newly trained tokenizer
# Let's tokenizer a simple input tokenizer.model = BPE('vocab.json', 'merges.txt') encoding = tokenizer.encode("This is a simple input to be tokenized") print("Encoded string: {}".format(encoding.tokens)) decoded = tokenizer.decode(encoding.ids) print("Decoded string: {}".format(decoded))
notebooks/01-training-tokenizers.ipynb
huggingface/pytorch-transformers
apache-2.0
Comparing Bodies of Text The Differ class works on sequences of text lines and produces human-readable deltas, or change instructions, including differences within individual lines. The default output produced by Differ is similar to the diff command-line tool under Unix. It includes the original input values from both lists, including common values, and markup data to indicate which changes were made. Lines prefixed with - were in the first sequence, but not the second. ines prefixed with + were in the second sequence, but not the first. If a line has an incremental difference between versions, an extra line prefixed with ? is used to highlight the change within the new version. If a line has not changed, it is printed with an extra blank space on the left column so that it is aligned with the other output that may have differences.
d = difflib.Differ() diff = d.compare(text1_lines,text2_lines) print('\n'.join(diff))
text/difflib.ipynb
scotthuang1989/Python-3-Module-of-the-Week
apache-2.0
Other Output Formats While the Differ class shows all of the input lines, a unified diff includes only the modified lines and a bit of context. The unified_diff() function produces this sort of output.
diff = difflib.unified_diff( text1_lines, text2_lines, lineterm='', ) print('\n'.join(list(diff)))
text/difflib.ipynb
scotthuang1989/Python-3-Module-of-the-Week
apache-2.0
SequenceMathcer
from difflib import SequenceMatcher def show_results(match): print(' a = {}'.format(match.a)) print(' b = {}'.format(match.b)) print(' size = {}'.format(match.size)) i, j, k = match print(' A[a:a+size] = {!r}'.format(A[i:i + k])) print(' B[b:b+size] = {!r}'.format(B[j:j + k])) A = " abcd" B = "abcd abcd" print('A = {!r}'.format(A)) print('B = {!r}'.format(B)) print('\nWithout junk detection:') s1 = SequenceMatcher(None, A, B) match1 = s1.find_longest_match(0, len(A), 0, len(B)) show_results(match1) print('\nTreat spaces as junk:') s2 = SequenceMatcher(lambda x: x == " ", A, B) match2 = s2.find_longest_match(0, len(A), 0, len(B)) show_results(match2) match1
text/difflib.ipynb
scotthuang1989/Python-3-Module-of-the-Week
apache-2.0
Modify first text to second
modify_instruction = s2.get_opcodes() modify_instruction s1 = [1, 2, 3, 5, 6, 4] s2 = [2, 3, 5, 4, 6, 1] print('Initial data:') print('s1 =', s1) print('s2 =', s2) print('s1 == s2:', s1 == s2) print() matcher = difflib.SequenceMatcher(None, s1, s2) for tag, i1, i2, j1, j2 in reversed(matcher.get_opcodes()): if tag == 'delete': print('Remove {} from positions [{}:{}]'.format( s1[i1:i2], i1, i2)) print(' before =', s1) del s1[i1:i2] elif tag == 'equal': print('s1[{}:{}] and s2[{}:{}] are the same'.format( i1, i2, j1, j2)) elif tag == 'insert': print('Insert {} from s2[{}:{}] into s1 at {}'.format( s2[j1:j2], j1, j2, i1)) print(' before =', s1) s1[i1:i2] = s2[j1:j2] elif tag == 'replace': print(('Replace {} from s1[{}:{}] ' 'with {} from s2[{}:{}]').format( s1[i1:i2], i1, i2, s2[j1:j2], j1, j2)) print(' before =', s1) s1[i1:i2] = s2[j1:j2] print(' after =', s1, '\n') print('s1 == s2:', s1 == s2)
text/difflib.ipynb
scotthuang1989/Python-3-Module-of-the-Week
apache-2.0
Record and play Record a 3-second sample and save it into a file.
pAudio.record(3) pAudio.save("Recording_1.pdm")
Pynq-Z1/notebooks/examples/audio_playback.ipynb
VectorBlox/PYNQ
bsd-3-clause
Load and play Load a sample and play the loaded sample.
pAudio.load("/home/xilinx/pynq/drivers/tests/pynq_welcome.pdm") pAudio.play()
Pynq-Z1/notebooks/examples/audio_playback.ipynb
VectorBlox/PYNQ
bsd-3-clause
Quick aside on Wireframe plots in matplotlib cf. mplot3d tutorial, matplotlib
from mpl_toolkits.mplot3d import axes3d import numpy as np fig = plt.figure() ax = fig.add_subplot(111,projection='3d') X, Y, Z = axes3d.get_test_data(0.05) ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) plt.show() fig print type(X), type(Y), type(Z); print len(X), len(Y), len(Z); print X.shape, Y.shape, Z.shape; X Y Z X[0][0:10]
moreCUDA/samples02/sinsin2dtex.ipynb
ernestyalumni/CompPhys
apache-2.0
EY : At least what I could surmise or infer the 2-dim. (???) python arrays for X,Y,Z of the wireframe plot work like this: imagine a 2-dimensional grid; on top of each grid point is the x-coordinate, then the y-coordinate, and then the z-coordinate. Thus you have 2-dimensional arrays for each. Making X,Y,Z axes for mplot3d from the .csv files
X_sinsin = np.array( [[i*hd[0] for i in range(WIDTH)] for j in range(HEIGHT)] ) Y_sinsin = np.array( [[j*hd[1] for i in range(WIDTH)] for j in range(HEIGHT)] ) Z_sinsinresult = np.array( [[result_list[i][j] for i in range(WIDTH)] for j in range(HEIGHT)] ) Z_sinsinogref = np.array( [[ogref_list[i][j] for i in range(WIDTH)] for j in range(HEIGHT)] ) fig02 = plt.figure() ax02 = fig02.add_subplot(111,projection='3d') ax02.plot_wireframe(X_sinsin, Y_sinsin, Z_sinsinresult ) plt.show() fig02 fig03 = plt.figure() ax03 = fig03.add_subplot(111,projection='3d') ax03.plot_wireframe(X_sinsin, Y_sinsin, Z_sinsinogref ) plt.show() fig03
moreCUDA/samples02/sinsin2dtex.ipynb
ernestyalumni/CompPhys
apache-2.0
As of the latest version, IndexSelector is only supported for interaction along the x-axis. MultiSelector <a class="anchor" id="multiselector"></a> This 1-D selector is equivalent to multiple brush selectors. Usage: The first brush works like a regular brush. Ctrl + click creates a new brush, which works like the regular brush. The active brush has a Green border while all the inactive brushes have a Red border. Shift + click deactivates the current active brush. Now, click on any inactive brush to make it active. Ctrl + Shift + click clears and resets all the brushes. Each brush has a name (0, 1, 2, ... by default), and the selected attribute is a dict {brush_name: brush_extent}
create_figure(MultiSelector, scale=scales['x'])
examples/Interactions/Selectors.ipynb
SylvainCorlay/bqplot
apache-2.0
使用 tf.data 加载 NumPy 数据 <table class="tfo-notebook-buttons" align="left"> <td><a target="_blank" href="https://tensorflow.google.cn/tutorials/load_data/numpy"><img src="https://tensorflow.google.cn/images/tf_logo_32px.png">在 Tensorflow.org 上查看</a></td> <td><a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/zh-cn/tutorials/load_data/numpy.ipynb"><img src="https://tensorflow.google.cn/images/colab_logo_32px.png">在 Google Colab 运行</a></td> <td><a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/zh-cn/tutorials/load_data/numpy.ipynb"><img src="https://tensorflow.google.cn/images/GitHub-Mark-32px.png">在 Github 上查看源代码</a></td> <td><a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/zh-cn/tutorials/load_data/numpy.ipynb"><img src="https://tensorflow.google.cn/images/download_logo_32px.png">下载此 notebook</a></td> </table> 本教程提供了一个将数据从 NumPy 数组加载到 tf.data.Dataset 中的示例。 此示例从 .npz 文件加载 MNIST 数据集。但是,NumPy 数组的来源并不重要。 安装
import numpy as np import tensorflow as tf
site/zh-cn/tutorials/load_data/numpy.ipynb
tensorflow/docs-l10n
apache-2.0
从 .npz 文件中加载
DATA_URL = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz' path = tf.keras.utils.get_file('mnist.npz', DATA_URL) with np.load(path) as data: train_examples = data['x_train'] train_labels = data['y_train'] test_examples = data['x_test'] test_labels = data['y_test']
site/zh-cn/tutorials/load_data/numpy.ipynb
tensorflow/docs-l10n
apache-2.0
使用 tf.data.Dataset 加载 NumPy 数组 假设您有一个示例数组和相应的标签数组,请将两个数组作为元组传递给 tf.data.Dataset.from_tensor_slices 以创建 tf.data.Dataset 。
train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels)) test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels))
site/zh-cn/tutorials/load_data/numpy.ipynb
tensorflow/docs-l10n
apache-2.0
使用该数据集 打乱和批次化数据集
BATCH_SIZE = 64 SHUFFLE_BUFFER_SIZE = 100 train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE) test_dataset = test_dataset.batch(BATCH_SIZE)
site/zh-cn/tutorials/load_data/numpy.ipynb
tensorflow/docs-l10n
apache-2.0
建立和训练模型
model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) model.compile(optimizer=tf.keras.optimizers.RMSprop(), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['sparse_categorical_accuracy']) model.fit(train_dataset, epochs=10) model.evaluate(test_dataset)
site/zh-cn/tutorials/load_data/numpy.ipynb
tensorflow/docs-l10n
apache-2.0
Data pre-processing First we separate the target variable
# # Copy the 'wheat_type' series slice out of X, and into a series # called 'y'. Then drop the original 'wheat_type' column from the X # y = X.wheat_type.copy() X.drop(['wheat_type'], axis=1, inplace=True) y_original = y # Do a quick, "ordinal" conversion of 'y'. # y = y.astype("category").cat.codes
02-Classification/knn.ipynb
Mashimo/datascience
apache-2.0
Fix the invalid values
# # Basic nan munging. Fill each row's nans with the mean of the feature # X.fillna(X.mean(), inplace=True)
02-Classification/knn.ipynb
Mashimo/datascience
apache-2.0
Split the data into training and testing datasets
from sklearn.model_selection import train_test_split # # Split X into training and testing data sets # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
02-Classification/knn.ipynb
Mashimo/datascience
apache-2.0
Data normalisation
from sklearn import preprocessing # # Create an instance of SKLearn's Normalizer class and then train it # using its .fit() method against the *training* data. # # normaliser = preprocessing.Normalizer().fit(X_train) # # With the trained pre-processor, transform both training AND # testing data. # # NOTE: Any testing data has to be transformed with the preprocessor # that has been fit against the training data, so that it exist in the same # feature-space as the original data used to train the models. # X_train_normalised = normaliser.transform(X_train) X_train = pd.DataFrame(X_train_normalised) X_test_normalised = normaliser.transform(X_test) X_test = pd.DataFrame(X_test_normalised)
02-Classification/knn.ipynb
Mashimo/datascience
apache-2.0