images
listlengths
1
1
problem
stringlengths
13
714
answer
stringlengths
1
169
id
stringlengths
1
4
choices
listlengths
4
4
ground_truth
stringclasses
4 values
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAFAAAABLCAAAAADCa18pAAAFWUlEQVR4nK3YW1ATVxgH8P8JQRDqFYUE1GAlFy6GYEgwiRXHFm29oA+ddpyxgq22Rae+WGs7rT502j7U+lAdRztDHUdtO3bsoAVKgIq3GCBcAvVSbkXroNiRoiK3EpLtQyBZdrPJ7sL3tHvOt7+c3bN7dvMRCox4ekZq/Km1SMps5xsUI55utlFUzw/MZt5BmCM8MHwI8LjDxQ6QeWau8jMAJBKxHphHDj6bI9oKCEbPfwTgoUc0yLqG1h/3zH0wU0umDERna2y8XCwXCAQeJIj3WNcQwDlF6dSCJXG7L0xCZN3qnph1zbOKRD8p7BG2DERoy/Muih0gGyxLjkFW+TaxIhu8kTMKLLdu+3WKwP4HqwYBmKxbi6cGtEcpRzAJkQVWmV/w3uvmsnwxZ80CbauHx7bM1/ddEA4y18OeJ1n3x7dTSteTTZMFryREj/h2kkrWQ6jIBK0G+p6ydAPJnRx4Z/uEXWXxBggTGeC9fv3EBlXxRrJxEuDvikhGgro4t3+LePDqy6wMdYnlyS6xoKd5HztFWW0iBSLB25FpAXKW2E3kfXGgVRXwDZ9UbQJfcSJ4jWNCk+xm8p4IcOj+Go40pd1M3hUO1koTufKUN8xkp2DwsoErDVDZzWSHULA62N2humEBD5EO9nZZgqWqbSvIO4LAGnls0FyNzULeFgKW6TnTxsUVZHuIHDrY9Hmon0+2WRBCpIFdfcZQIJJtL5F8vmDV/OiQIFKuryB5PMErq0N7QMr1bCo/SL9/MaAauJ67iZFad/hkkG7/CNug5QVicWVOkLn2g1XJ0/iBkFXmcM+1H6zkdQm9YsUazrn2gaN/r+UNQl6RwzXXPrCRKPmDkFfmILDoAyuSBXiAvGLtSMD10QfatwoCEV9h7j4YBHzemS0MhLzGSA5wg3UxCZQnbCAaQHiAP1eBIs5hIJ9xgpVGuIvOb2nfqOnt4lsdiHMYyafMxvFHz7Ya0iHpZtVOrDsbfJmlhczx3Zcc4L/PVwJXc9FkrnXtrz59a4SZxyWe+IrRNHZ6VXNnwX1z1c5px3adiu375Rg1T6NflhS68CBzGMknAcGVQF3MluV7uvctdmb+7OlwOs99645N02uTgj/hcoeBfBwAdB4GKpZLlXefJkMyAolK9SZGO/5oPPuIitNnpC8JJhrJfhbY+UyP/osHO06u1dC6NJo3MNpRW3+iN1yWakhPDCzGOwzkIyZ4RRWJ7oLomytfZaZLNZo8DLc2NB1/HJagzUxLZBcj4h1G+EUvaM0GlNyLQ2R6OjDY2uw82hO+MG2ZljHWhNos4vtQlQKAu511f7IjKiMjH4Ntzvoj/8xQaA1pMn/XAoeBfEgH/wxfGhr0qjrddvTdbmiufDJdkaFPGSufJDiMZC8NLHtRUGlqpskE9LY0OUv7ohZrM5bKgAWNeuz1gzWv0/Mjwvioc81mYKilofHSwHTFUlPmrVVRBYC3btOnK1xES73zTbDXJD2INGKaZKD7dn1z26huzvmju4kX7FoncdPSPK4InqBf7Xs0HBYtubzIV1n6j7YGkohhjmODqePXSQpXfde8GZn03ofxgkHgr3b36HwzmiUIqz+uKPqC1mU7wHPJpsfRErXlUjkuW0BRe09T32f7S0ODmwqE15MK36Io6n4H9copKWA3nao+5vspd416tuDxDRWeBrAQdeo8CVokS9pmpfr6Li0M5/0K8IWT8i4Ei76GFL9l6XTqDxRjXffqXfag/wUCxvBYiTUOkOBqLqyy8UG5HPvXxyUKBpdF3QUetgOAtMHV2fT4zHRvR8+O18Jqr9UJ+yoBMPvIodR5C3QA8D8OoWJh5QbweAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in Rttriangle ABC, angle BAC = 90.0, rotate triangle ABC clockwise around point A by 90.0 to obtain triangle AB′C′ (the corresponding point of point B is point B′, and the corresponding point of point C is point C ′), connect CC′. If angle CC′B′ = 32.0, then the size of angle AC′B′ is ()
13.0
649
[ "32^\\circ", "45^\\circ", "13^\\circ", "30^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAE0AAAA4CAAAAACdjSoeAAAD7UlEQVR4nK2XbUxbZRiG74MEG3GZCRlNtSQyVp1IVoYIozAcxeGUOEGykWVQF6fDzW831CzRuc6ZbLCiMQtmOjKK4sfGHAsbirRQ00ItAYzZH7cYPxJndNEEM5fhD25/lI3z1Z73ND6/3vd+mqvP/Zyn79sjEdj1vQ2jjftgLqJX067cWKXU0jHxpH0A2HqrSRj+PTS59c8DLfUKkc2LSDJC01Gxlnz2lpBcksbLdrYDg0dnLVcoUQIlAJQISABASPNKfA0A0lzG827E7ve+AEi798ud/oJiAFm3H6pbd5lG7uI0pPcMunFuthgALir7BguAkhLnvhV7hXuW8TkwvLwCGEG+IhHN2EzyWD/P5K8XblmwIMScF0m2WMbkOti1ZMObL78dJVnjHBbFVR4J4CuyzdqlkCVi/Js5x8MAgKdP7/eIWd35c6b/9blfZxvXK3UF22fdI1bbp3f2D/Wd1FhR0ngyb7MYrvCUnpqmrLS++6eysIjVvJCeqqKhPOzwnBCgrZrWlbXlerPbjZ0GC0Z1VB0ae+zbjHGrfTqi2ikANHVP1MSMrBZGdUQ9GtxTN3vOGtBc5/XUBEZabZ0GVguPa7VENL5n25Wc1vCSCRrPLq9LSmu7T6vp9g0A8GD3PyuDSRp3zyWdAU729S05PUmyqzs0UlIafdlvJE4+12iSxuNLmxLmPi4yS2PY5Qonyjk1M5L4KcSjPJLr6UuQyxtXK0Y04EPPDp9+ZtWkRjJwSpJ++3ZdPVAQUikiNAYK18b09MoOlWDsFIB7+qbH9E4Bp7pxQjTgVO0TR7RqmeYcEXFKkp22Vq2onhHB2oCn3j/doBGXqawK01DrnykaUWml6rtG1ClJtthVp0DwbuWMmKKxzepVCqq7xhyNJ3KbFftnNiq24n0DADR0/1ARke1dF1LvG0lyU16fbKe8a0zWBqC3aXvHwm6pckZM10Yes++4vj64Rp5JhcZhZ821UyCgmBHzTgFUf2vZ8kV86c6akiVSogH96x6fPwWU/0dScUqSh22vkCR75XdNyjQO3PEoSXKFbEZkTtsHTJmt9c8Uj2D+rhkbGu4fkzv9wCL8tnAttuX0kgeqSI7W39Za+daC02DpYvNuD1q9DBaESFY/RB8WnAZWLjH/aFvf7dpSZZ0CYt9txGT29QnxOhbfYJ6GDR9deCR/Cjh/abr8916kx9VPRkr7cjBh+EqpCVfE05kLDBWV/njOMk/7emxPZiwLQf8iMZ608LG0zLSLgepw06ZlJdPl6QAw+GrzmkD03kjZXan8NHZLVV/+VYvP4IjXdrnOgb9fs1ytToEFAGf2zrzzx29HH5DX/D/EfyfDWV33XS3iAAAAAElFTkSuQmCC" } ]
<image>Known: As shown in the figure, AB parallel CD, BC bisects angle ABD, and angle C = 40.0, then the degree of angle D is ()
100.0
650
[ "40^\\circ", "80^\\circ", "90^\\circ", "100^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAABrCAAAAAAgdV02AAAJDUlEQVR4nO2be1wTVxbHT0J4CIalULSCVdQtoEK7H3VtbSkLVhcFResuWCiL2n5aq1sf/bBb3XW7aLW2aLUiIqyCQBNBFkoXQdx25SG0qKkL0YoCIg9Bjakib5IQZvaPJJDMTMidRxL28+nvHzJnzrn3y83M3HPPnfBw+D8S39oAtPQzrfn0M635NG5os/1W3TPpJLAACIqOdty4NGDSa5zQyq8lwSLTbuPkSmhY4ojiNk5ouwdAWmDajTc+Zt7ODbj3lukm3axEq1Q6GxrkXZN/YTrMSldCcnCjoWGSNwKstZ4JkTx3JmFWoRU/0+rxFNHY0bjYZKAVroSefQ/rJTNJ5hOVpkOtMLaZtnFtMi+itbzphOlQy4/tnf4PoULwNME6cDpqoulYy9NeDuC1lL7EI1izhSsRYi1/JThdU1/stycY7xZ/gRJr+bFdJi2MfL6BYDy0YgZK7PiYeUty02xR/MZFVtP75dtIsNaivbC+We/omHcgWphV5jLZ4Xuxetdpza14xEAr0KrOFAZ9JNQzZAbNQgy1PO2l0+r9PvqG/MFo1FhL07aLayMiDCwPvn7fATXawrSiktnJhFxRNBNh+aiVRWlr/sF/N5hok6SjN2BBWmXS1ZAo0pee/AbKokEry9FeOOlz8FmSNdvh9zTasBTtnRMPtgSQzbL8fXRasQztk4J/B35KNW0mBs+h045FaMtOT/j0l1QnSu/tpNWQBWgfnOiIDKE8o8yNNXaLyY+FyYKdiVYD2sFKdvB8XD//5OEAfMHgD1dUr7tVqEG3WrDBcM1Jns1ZmaKMlLGqXnQFkKb6V1a+QurAAK+rEnlWoRLO4xnS8mzVzRL7eb695wHX0eLKCVon+9aLr9UPklrp93IFxZnQ8PNDxLUbMRtXEJdLtCQ/vHSJfnO2WFtK3cYg52EMAOwBVDgA3Nu19cUhDVb8tK0UrWATAC7Wb4T0p1eRzhl+9ayGFp51aww1MHybPSfXWZtDd8un2wEAzAz7coFmVfZdz3ZjOXjdcpBUU6SRnN5lq4+06dUJf8yS/XEkBZAdqrdL8gAAiGn6U7wrAPSI1htdMPDPzslsk08j2zkC/U4OAH5e4hFDV+LHM8QjsHjdtiL3JM3n3Z5bqgEgaxIxZRjV4ps1O0JvU5zAuRCW6l6C4zjeE5mntRTH/rlBz2FYhePX3h7WHokidjc2vCmj3w83VwJvxlx7AADhjj0uSwDg7heDaw0uYT4fQDFX90XGLPr64DWfyQw6YjWmo9p8XvO3KjwHx9MjkjrJLkltegfxIWIGvXB1lym1z74Az32Frvy9PmSPskC9u6a79eOFDHrhfOYVujXHhFHYmxyeB3zkcZ74HBNYrmmHviryO0e1mVSe4/+wZYW39qiqaT+j5rmidRACAFw5Pfg+5SoLv+tQXzdZl4eps5dOZdYNk1uKrGyf1a147ydvnkLyFm0eNu1EJY7GdvpBfOJXBbP3IJUxOop2MpyUOKsxdu7viglCc91r81eGnXA0toOiopWxiDlR9XWxaSdqcUNbkfHUMdP7nhphqRuIlXFkcUF7W3w7CmXXQKOT7qGmnYyIPS2WVTY3DWm/HgAAOr45wLwv1rTVGU7b59Pw/3w55eoXTSxpuw61hUXQeRyVdK9l0R072vycBQlT6AR05kaTlt00xIb2VuqTnb+mF5LhQV1ZQBRz2sc55eHraMbU1uxm3B8AC9rigklHPekGiQKeY9ofADCmvZXx6HdUWezYKup8l1l3OjGjTbq8MN6JdlSXOM6GUXcjYkJbler5Fz8Gcem+jBYMeqJPK0tuXruSSQVK+j2NHQZqUT3Z/7V92Ki/Mn+T4/FwRuWypBjSuzR0RTG2in9iRmn+m676hFY1e1SZTuQqHF1R0F4NuI5RT6YPs6TLYhl29NO5nSxvMaCirXWfU0Ptm3t+6gGGqz+AIy/RyX2MiET75Kffym2ohrb+mPIPrzHup7Q9jnHsqEi0BdnJjx8lbSVeueqj1aERQqIzsvryw10ZB4+KRBv56lDZhTVE2PL0qQmo2/JUyhXQ2cQzKhKtUAgyCSEBaM1o2Gi82IqgO9/uZhM+IqrZwW2+wdAO5J8NEKG992JMaYtms4rXyXQ9oSzHfqM/u04qUln+tzoZn3n7eY4A8CClJSSGZR+q1E3cwBqhvZ5938kW75vk2yfxTfBg20eK129QXft3eFPtSulERXu20PbVJY4uNvL/7H952wL6dAQ1fH8Q2dfRvW2s02TaxwmK9fOcAAAk9w+vYLXdp9HxVahlHADefF7nGA/mEdo+PgAAD2v4bOYuV75S0FOT7BI3a3iIbVWPn9f9sgIDABBg2NiuuBMopKrPN0Ua9dA9Ey4VTAQA4KvKp7zAV9vZNUt653vbsmYF+67iX/krAIAnkNk5w5jtKbZ4NG37TCCJsjPmoRtbr6V2GvhgWxycWkW9KxY6q02MBZLSFsYIMADg9ZVGzB6LlocNu8LND/2l9sarKTraKfpFjKqLc6OYLGUo9CP/gHYrXBT4nklvrPED+GGC8acqxRnZEdnq1QzhiFKdDNbCSooR3qBpcbe5UveR8fNkWnFhYByjHyNQqVCxQfPhZsI6hFKC5+2VvjvcxnAg7EPUvrO5jtkOBpXka6SaD1XRuUgBvS39Y502zBPuiy9HRRj7vxhor3A7AEB7QeN7LFMNjQyuhILcWadcuGhVqwrpccDv37l+Q+HXxUmDemNbk9kfizyhowhbahOEqQeUnstuXmkKf4eDFkfGVpF4a9FbHKVKWqX4hODD9tP8eUMOb0jylIz3Rkalo/1GPG0Xu/ofSU1Vf9M+tG29VQ2hHMBqadsTH77FailDpdRXRmYY5QdXUzhpE8dxvH1NypgPDkY6t+7R6MHjPdE9HLSped52cNASQU/Wlxgc/v0GB41qMgjaRW7TOuOyXP9wWMi6ZAfme+uyvuyw3kEejoWxXjCB+WjTFutVzATO2Dyamz/UMtOvikpyROZo1jy/0xk4tdks7ZqHNvEF9N8w0JFZaKW1XCQFFDIHLZ76+jNmaBbMQ5tlw0n5k0JmoL1bGs1tLjcqM9Dm+ZBfT+dI/wNcc07QmyaPDQAAAABJRU5ErkJggg==" } ]
<image>Given that the straight line a parallel b, angle 1 and angle 2 are mutually complementary, angle 3 = 121.0, then angle 4 is equal to ()
149.0
651
[ "159^\\circ", "149^\\circ", "139^\\circ", "21^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHMAAABjCAAAAACN/mChAAAIx0lEQVR4nJ1aYZnrug6c7bcEhoIpmIIvBFPIgbAXwlkIpxQC4RrCM4QjCDsQ+n7Yjp20aZNmu03bxJIljUay248b3jzETPKdkZd3tEkCmL8FvaPz87RCggBgAMi3dJ62kwAgyQkOeEvpaTsBCATytwNF6nxIP97DkGSQpqL+zDjiDd8KAJSvOSAlnY0o8Y5OAgLJAHlHnLUTAHA7ffzcbref2//+3G4/t5/y9txxHkMiINq3GAnoDC1UvJ3nBAIgkjEZTrqWxbkndQqAICQLk5vbJ+fUntVJCBSVAhiUsKTnGdWndAqVeWYFyYfZFm1HfKx68ymdRGH1bBEAAlNj34PD38pPghRnBoODotnZeJ7CkNpJnDUBhOj9d4nnccWnMMSCWYqWJkAAAe8TpMNa600nfMtaPBM9i0q4kDKOE+Dp/FR9ni0CFAgJzqeCx6NIOpefLRGz9wJULGVUOhPOk7lSrZkRQEAOAiHGlE9Ul7dqmVlkIcCqx/tkPNaM1XFnOcGS84VOqNqkRMs41qEQ5+MpSBYBggBZgcNYsIvDnecJO0VojkPs6gsfkoqvXxqrszohJfjKub2eiN5SE/jCUp7kPpGWJxTzrNlEAS4mY+0fnorAqXiWnnIOrppS/VjRG3xSKa1PhbSrR3S2vLgylNpFqOKnJClizlXmC+ce5oRKk2Z+kEq0ZAFEn01D0j4TddC3AiVeva98rhaaqpGalF9T4AlOKBzHLNcZaACLCFBfydTaiL3jBCewpmbwaDUMQ82s2sMM8Fincsy3BJJCCV/X1OQLIANmvHbvQd/Wtit9sWEVWiVio8DCDE/UHs9PVm53nWdW8azmyvtZpZbvqeXRXCmQyZqWRXXpi9aSBcBzrq/3g3osVwgBWb54tv1rU6cJwMWcxQOr4GMYMkUAYofr2GKWDwTnEyuNPxbzcv35U59/brf/pr+ba/Hvdt35c/t7u01/bj+329/b81Xpvp0Nn5RScJvJ90xsphMOiso0uCcc+DJXCErgrLAd2bcRWv5AAALSi+2bl7kiiETO05iNQCufK+EFVQFXYi9d2mcv7YQl7wfD2MvHMpOS7ALkvZUu8JFv2zx3dS4lKylqHSDCyBG0bIYCwV3LVHfNeKKz6cjyBEsHq/Eq1/ehlDxEpSes8JqHBCkjFq7rarRKzJZ3hTTEOGunx27e2urs90oAmFPcjG9GaDR14Sgi8ArqETU86oeE0VUkKMxx5abKuFvqW90xKVUNutN759uNdEGcERav9n7k+T6U87MVEN3vBq58O0Sog4U2T91JnXj00HXlIoHIhRnunDTmCrtrqy2icPUeo/zu/W0x62IMmHICi2e1vthz5cGcAIBXTYuaVk2KIMdHA4SyMHU+WX3P+zuKzhWhqFVlmQUue4jtnqL/cTIsgJ6QSnl4eMc6notrBYpXRlFQC7D6P3eb9hKZmOzeDyPfjjlShIsCZ0QABBtrlxkJtArI3XSBm/4FGhR6uesYWlyC1ngQgOXQV0LaFosn7QAB0PsrbATvEKLLoq/LFCAiIXDRxq6IdRJPclQAg2W3nVt9eekzWZocBwg5t22gjQ1rkD9iGlKQ91dskctR5ziYgOCUnN8Yoz6wA+g+wdpT5HUVtt6oNgwtLqtvZ00PpQGVbl+0lARjSj04PTwjhnp9EJHNl/vvkbKO/f2hZpaLeV012qDL+GbRbYkRFHsarsp1Oe1oZUssRpvHu5bYXlaClokumxXt4ogZmXsB3DrVsl3VQ18nv6rZxSkEviduzVuEaTWJJy4mvJ8r9heHgxvctpnPCGvJa1Gjsl1jKYhec38vkTAMOhfGIXKedmWx6X0O23qni7XAUCJpgsO2Hyr8nrzvZq0OtWkNhX33EIXgZitxpAGOMGgbTwHK6m3XxhoueD1gKUFgMhNI4Prrn39+ZThw/T0vQcDSdnVSZ91Otcxw/HhvgBgzAgAyBhlE8YGddYv/ftbtJK3f7x8CFWSCCQ6i8wTXvhVBZAU++fpWAEt6Lv6/y6lGeMXSybIcZfO3+fL5ZSBfQrDk3e78O3WODe5dTo2xJp3PAqRpcirdymUkX1FlebKDyZpPwpNF0LquS4JXEszFoNqYFQyJ9ZFzdM92YUtj5cQ2oI1d/hu0liSWm66GBJPqvvrnyhvKzt/tidxZOvRq/bwi5WHpT8BxdoTgKnH2XBGppGk04d7IVYe964saJ0KAWTaYn9DyDN23QNmh3Za8jZEUm+ohQZfYqDbEAgEzmeSc9zmn0Dudz0EaDLHdv8/drRqMCcr+qAVXSUY5ei8HBcseqPY334oic46L/U8PDr4ZXFpMhskEkd65SpZEmFNcMPbZ/VxTc/kWg9tHvaSWXGoJVm0lTCYJdHR97gJAn5w3VwR9lhhBrDsHm+5ofCz1Dn2iar0IZFak03UPqBpKb8m5KvdziZGl6JZJP3Os0ECkGiJJyiCd49L6s+MUFBmuKdYF12czSsmFhSZV4DnkeodlvVgNhEkmUYHLr8OargrscnY++4qhj1sVl+bfr8EDALr6WuysuLPat0RvFLN4TdSsr+LGz2K5lENplg71HBIyTMQKLItGLU8L8CiGa/Jg962yfZWd7VcsAxiTmUh6OpRmqxs0bPEKGDdtRD/TQ8RnxX9y32WlW5hm+QM3HwJZFTuGrPYDlHG6q/Go1+rqQBRrPJEb0tagGXOyXRC8iqY1zB+8HMNJQJ6E8PEDQfBnf0x2+qhmmBw/bviePULcLBV3R1oCNz942ylDDwZnM4AXIfg/bgYO/fiSsJQtz6v5PSsJXSFEzClGrwshJU6AVBd/z/98+D2FWeUb9bppsx44PvqZAJKic8593CyZ8OeAa8qRc6R+fbnT4Rfxi79F8QLaV0R6nZbVQ7MvtHf2N6mVIgjoguzIXGrDcykCRHmBV44F6NhBQC4L2fiZrlAOYagCe/MkQCRFXPPkDgF1PV4MulqgPv5mmgsbCtgdZ/9mZ+HLvbrz8WhYhnP8P2Jh8nZD0sUNAAAAAElFTkSuQmCC" } ]
<image>In triangle ABC, AB = AC, D and E are respectively on BC and AC, AD = AE, angle CDE = 20.0, then the degree of angle BAD is ()
40.0
652
[ "36^\\circ", "40^\\circ", "45^\\circ", "50^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIsAAABcCAAAAAB7SRm0AAAPLElEQVR4nL1aaZRV1bGuPZzhDk3T3SDoIy+AiEHFKEMMis95jD6jiBMRx2fCMsp6ITExig+H6HI5LDWiGI0SRJyeSzRPUWGpiAoOKFGiIChRAQG7m77Duefsqer9oLuBpm/f283w/br3nDp7f6d2Ve2qXQeoU2Cx+Tg/rB0yz6GNFDnXudiuBZS5jvjVKX/NT/3JmhatLCHuCS4SOgeLmuWEQNT5vkdURmZXQ3Y+EYPiFwM+WvvFqfsAWWBsj/ApoxdytR8sXBLedwA4Qz4jYnuASxl7Qbv25M/p1iFLyBokF5s9YS+8c4YMV/YbAEf7G0BIIOBlxHYtdpyEjCEAmHdaFuc1e0sISDmPnAUg3L1cOtqL42RA6qZnHvU2fPnQjf2mHXbBYL8QMGIIEuJgdyqIdXAQxT0AyK+5s9d6YMdclX/ommPPHt+nKD0wzhOltNiDXByjhIdOp8EJSCD419WfH+qNOy0gFKCcL3anP3WML5xZxkBC3qYRw0Iy6ATvrrvuW37OMENC8t0bZjquv7UyHTIdUX0I1JImOM2ffe+01ZferSQjb3cy6WSNCAAYIaqs9jZn0nFqzp9mjfzy+aXmlImeJn93rlFHLlsclzOl0yZ0hayDwtVilpOfPfLB/peNMWK3BppOoy4SERKRRczT4v+YS3mit6855jffUuRoSww2Fs02mYQjhzlnUFks6SrjrLNE5KyxxjmKFe2gl+1hlO/CKSsfr01YOl7w9Nozfy0cIC95kpGAiGW2iFn0Yq/ZT0uWqAw3LKxKDYgyKvUBi0xYL2GpCjrn0iM2vnm+YEylTr9uwoLz3hRoTSCswA3Nnt8qlnfNTGd6SZ2kMpiwKoMQkyAD3cSQcWNC7ljXcZ0lce9i6s7l0/Z15Cmfffbs/NHX9CtkWzLCWSnA26JW4xVC8CEOjIKaokhX5frMtdRCS5oHhoJY+JZ1rReGVpLHL2icxxysipkddt1NzeMe7eVqfMeyOhZtkxYDkVjr8yDrqdCz1VEp1GCSKSXGBxsKkryCvVidUozCB1+8bV/iAQi04cb5s9Vvf0YtQXqT69/q4o6S5K53ot45Ov+3sXSmphoyZL1Y9W4p9Hcees7KSj4qQpCxoov4GxnHcwk619jvF/eNv3XiRzWiqaZPW7QxOb/21OTK/77r+FVgdQVltyF31Lj1N03s9dw5awVpIOokZ9gOjLSs4XF60kvza0UtBy9dk3NDL7q34fI/buqdAtUqJkPlHTDw0jGbrhgJaYapqrhkbvjqXVr65IdDPwKjhC8qcQHug8iGcMp+z7b43AJnQZZDZtRNty0bNzfGkgankYpRKJuWH7p6thxwrnMp4SrR0BYgUfyQdaPWr5/wTweSE2flcswdsPi4l1oKuj24WbvpseHjlsalEhqVi030beHGwYNH/LOZdEmVKlYw6GKF0aRx30waXph72Ia4xdqiLpdj7oDDRj21OeTtuxHHXuf/78BLblsHjOtQlYr9ooUPzu4f1lliSVjJpS1wA2zd69f2iq9i7wzdi5CjI+DVqQXYZSuWCGRtf50SJn3LjA//6+/riymRrmlIvsmOHnThwA0lgeBU19oGpcHzcMUPD/145WUrlx7emKqxIstclXpxtN/4p7/wcItiGMaOZB8a9eyV90/+qAhaMf/tk5L+5733eIpYSgVdK4aIA5AKz23+8EIelBYa4gjcuSrtxVHUcsyt1rVZginkaeO/rHabpx78+2W6sOmV459Y8u7M4U+SoVxjhcGsJiqWdKPZpKikS1E+jgkx0RViXTs0hjNn3n8QbtEjFVwaJAcizv5x/frzzll3sy55iRv6qCAHTPhdjkUMyYHHoqY6X4loLzTga84YIyOryY+SEODMkddvvRCJ9s34lYd7nT2qHwA4AcqP0wTVZVzf941UrziDLgBUngBmo2zyReCg81chRpa5TOwAoW7+PdeP0M5mAdsiK0MtfK6iGW+N/sVglggfFQRSQ1UbtbP7FTOyVNt+gRXS9rtpslQfl3mCDOj6YGMfve4HDXP0SXWr+7B8wFsn42DIE1Zl7aIvhg2r751zaV1Me7qqhbd1U+vJOWmDNi7FVBK/lCmkVad6ZS72M80s6+pCozYX7hx3MDaojX2EbePiCAQH5cS6f6z8wUmDvsfQJrVeVI17YvZk4UJudGtCBjIwKW9i1w8ZWP55Y0nVnjSg+OkdZWoB5HjP3JUHnbbldxVMAAAwH0Lsbw2NSYSJLtoyBwnO2CjR+WdGDDjrggG/zKufPhnHMTrVehuRiKxx1NyYU7Ry6piLl1HUktjqAoW2lnTeErYCEGNCNGW2EFQFhfmIpj/gaPGA2wvPjFhLcYJtkyESkTOaSjrKxUTPXfaff/ocVakqKqgcaoXUzpwrIkuGWKfi4DTHRMrNX/aPNvz08lkbxg+Y4wIBbdKMoSMuJaXIhb7RZ00/ffEdjzenoFXtW+tM2vJ3u8E9DQRk22W45CnOymY/JDyOki9n/Wr6wr/l8jD1iRVGUoekgAH5NT5xXxcvf6T/nGlvAEOHiUXGsOCgQCpmqNB0HJwxXwJvP+rgEoAzTwDrDOCliDKKvx4MhyLWDfHhR2NmkGKi7T5wwQCAMQAQglgvW3/j9d4NN6wCjoLzqJCwqBGMkDZC1nEOHgDwbY6ZKph8/L0vikw1D6yBMP/c2H7kXf32El7OUYh5FMuxN/5m7aS/FaRRCZfFTBDUCKVtIE25M9N2Ll3bl0iZAoYreg91zcEzC45uSIL9z77HdW5cRByKmE02Zc6ces4LZ7yeBmJBLw01cV5wZ7BU7rF2A8KuQCpfyhHdP6lA9g9wzyalHH195GwyZeRdrMjmSwXnFt/y80tWki6gMxiXiJRG3eVUiFipJlHS33j/X+BHtbl9zzgdmuoki2a/MLNv55sfWh+t5NYIl3JHfTvspMncECfwAGxznaAK21SlnEHHGfVpk1cM9f7DcikbCKMKvzvsV51HXzIesyWXDnBz5rkFFzTOTn59TA1JmvlQ5uLhn51fcfuusIY6VlHrz8a8RYqsoyeOWFtGGq2yRumSVTfXP0q0fO9HIqL3jr3k1Xm3jZ5JSYW5Km0dXugFQARAUJsVjBzn+YNH32NcURtwHYtVxiWXvvRZ8k7y8lJYeMSRaShO0b8/8eQxffetWP9UW5O0IjJY0ubpI9/NW90cq7iM2HfrV62+bex1h8xzLrpj79VUMF8+8n454XZ0k4vTaA19OeWKYoJRU9ldTDcllNzS/7okws37TyJyLi7GtlITqj2+VKcmVtJCbRh03qpFIk6lbRlxYDW6KWg58KKAs0+SH8aac66EqlCqbLWX7SmVg/ElpPdiBx/7ZyQMsNR5AqYs8vpn3pgyyPig9JBAACAXgV9hdN6+9bSO0zV4KBBA87PYXzJkPK9TeWBcmM8fnnSykA5H17+d57Bp7vxIiM6Et32ubYndFlQohZEQdXPR4pzDv8FS2TYkorrw4jXWOczpxw6cvuzjP56bRLqSvXSTi0FnUSvCryb8D7k4IqRtm5Fo0SIiGXrsmIXkiJx27s3Ro0feadR2x55dcmkfrZVTGfG2u4mdO+pDip2ziCppI4NJVNqsE3S0auzd5Gz79epapz07OyZROvzwh5MS54Ix0X7+SODZFDCbxHfuPxEMbTXCqkbdgcv2plzmLgPW96zVr9UbtAhctrkfh5aM0H4inlxzRYP2K+UrHVGmDwtdu5/DlBl7yKPHSY4oOWOt4ow0I8j3+mzmhJ8Ypr1uNg866oVVqRebiPGFOYGQwm1TPsu+iNI1TR84DsFLTHcbGVVZ1Y42XLIxTTthAxHZrdUQGqQkodtHfkI2F1VbJu2s7VoyhOenHwMH25ycM4aW/HdfvHp4gkBBd3ulPezBCI98M/T4Dz7hcSySttSBuKDg+5uHTHRoazLKdLML1zMuDChlCcZlZmpi3LS/v0MRzWj5XdzIpQbLu9ko7aFe0ABLzN5Hf7w07bmwLeNkGPO3Xph8IKQEKJPqbkuwnE93DcaMkdLC+HeePiDLoDUEMHT+pw8ef2YpVCbwOTckujV6D20XmOMZH7MT314ktWkraR14c9ZM8Z3yEEK0rEKU6oiqDut2gHNZ5pjg+SPGPDWin8XWaC+9+e8/uFdLoGvBulimuzlqD22XCdBJ4tLiD1+/IIO292frbh555MYg9fKtmzhPyVJVfaSd5cI9p4TPwMUDzvm/z1jb2XxyfzQlrvWnT/4kTIqe7+0ZP2Lc96QvpY4vTV5WnMW20QEseP7ufp5QR52YYchAdTzj2E1cgAkGDGRI2cte/4QbSVmXLLv38qO0JnbQWEjS6QJ2t7G+c71vDDw93nuqpJlgHnsNL8U4YA6aC5yXEokV+0gduPRsb2yHRP/Kxe+lN1oZPzn79t6YBudDWF8DYZq1VCpCdsne2AZhXNB47I9nNe1FheZZEw4tCE+VJORVTknM96rYSOqglwp1QoUqAh0LcPLyN1wgr28419WqfCosQhhnWE6mvW4OvnN6IU/aTMu+pz79Dfz9/XFTvlpHmjjP5XIrmBBBqbuOtFPWYi01RS7XdOKDH49+wC0bNFrrzbGbvt/gi74mLKnKAxARESKhq3wuVSUeebE4+M8p+PDaGf/uASVe2W8IOwUWQzLSI/bdLqDC4ZQ1r+5NLFz00N8Sj7mQdcedbdbEexuPcXbVLuACrlAaSFHSEGeoqOryqe4EOUrGTJSE3IIcvCu45IeCxdCE/obaVEHobNwdMrZvsuGrAxuWsV1jL6ByDfnezJkwwjSh6NamiMVw7rW/HHHjDyp8/1IlkmK9YsVa34HQkfXT3aoYsUjBK4vS+6ztWS7VEX9t+DmTwvjO+TYVEnZrUFELi1/Aa5fqnf0uzBmIYMnjfVLg6rQFIaSi7gbQoln72hnD3t1nJ7nYhCKz4nnqAwG6Oub74NeyKlvC7WNovuxn474ODtk5LoUCAGZnHV4bEePW9OzDURt8t2YoLHrzo57VJG0gLU3Nqz8+cUHfKPTBVvt1xPbwyZ4/KB5yQsNO+lHOT6+5qE+/rx/okxLOyh5xQecx2Nyb2Z3zI5uRsHBMav0+6Qwjkj38uJccyhqtsbtnR9tDMLgve0Pm07cKfY0Q4HpERgBgKS2pZyvcDvb+5BtaMo//asYTJcaoymO5jnAWrAWF8v8Bbb0U5O9qn/kAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the vertex A of the line parallel n, Rttriangle ABC is on the line n, angle C = 90.0, AB, CB intersect the line at point D and point E respectively, and DB = DE, if angle B = 25.0, then the degree of angle 1 is ()
65.0
653
[ "60^\\circ", "65^\\circ", "70^\\circ", "75^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAMEAAACbCAAAAAD+PKDRAAALYElEQVR4nNVd+33qPAw97e9b4HQE3xHSEXJHgBFghDBCOkIYIYwQRiAjxCNII+j7ww6kLc8kLrenhRLysqyHZUlOXwzPhr6hzjn69NcZmzIO+zeTPXX0+S9P58Fbpw46ngf/zdiWUdgtSFU3/gJPp0AzKMdz4F/QAw++6Hg1+Af04IVqyvGK8HweWGMAxsvRE3kQul3x5/Bb9YCqCs+/CwdgvCI8jwIFQe+2WoDwv1GKvAOA9m+dKyYo8hN5QACK9SpTAr/Rq1AqiHV7gHKKU/E8HhBKtLsSoE5hwTN5AOj7qkDQgvFceJ4mK/Gx7abIT8ATKOgbre1fmTAW93iCHoRGK7iuprf/CRTo8X3N1RwXfMr8QElwtzvoDEL08zxgVAS/KR2n+EM9nmKLlNANSmLSUBbxJGvq9V2mDcVHPEEPFFT3cojTg983HigI5ZLlHP0PPIEHhJLb9sBAzHT8vB4oPf9Ui+gZ/UJNVhB/XeUnxLg+4wlShK2ve9diBjF6ghTpe533hmgGEn7es+NylUOhgHLS1CYiOQUaHAdVqAIK/UChcGGSOSXS1SO9FGnvCim9A9r3Q3a0o3PowQ9IEcMoBsApsCkyr4RCPcApId+I9LaInz5sfAMHgEoqJoUbe1hyiJmYmZh0VlNMzMw6NOHLyfgBCsxMxKwzM3Fl2KyBbpb2myXXg61GXXYAPlh4KICFRR9vuh4k5wEOJrGvpWFnFmUq8OBfliIx6cykyIMeiJgZSzuqBSQcNebCpzdJqQcHs06qBmL9LfOFddZv4iA9MY+hp7wDOlhKPcg8HNRlVISha98WwaIy/FLHDWnhtP0fsXUBTTiiKYFNwRz9kPA33763IDygGvV7RKwijCG6PQB0YDoKPKm77csber9ovcrzcr1ROHiQUFWO8IsiRz0zghk0pS2SrjRpqii6NcXMjAcxM2sA1hZHiUeva2ayasyK3LqkI1qXm1lddWYidmBjYmJN1pn0dkRGGVMxMSsaaVCZSUIKCqCzBVCKmEleRMNDMbGut0OPs0AC8TVQlqjtR7wKMZPK9VtZM86IXsRrnHj0OjLTa6h5Cvh1PdDETwqsj/yehckYbbof0plJXhy3F/VMPmmP/wBsQZ0lhHkOVHX7Nt/0237nMS311183fvgvbDAML5z86n+PH6ls9yv06T5dhM4KxzyUAhxct98ClC82z2z18n3Bdy5mydacx6umE6AAroMnkQqvJK8p+mRwt20chjFGxSwTmx6vwBfzNiMUCqxrfO4gYp4ZfkQyz0416N16kdOn6aCAZNEWAlRqu58laXwFCeNFCirWxWmCkAYpZzgEN251jNglQtqY3XbfQInfqQdKBdeNAyZVcN1GyogX34scoEJdQjGan4LoqRPcannMc6QTo9kpUIYpgMKvGx/dr4Rj/vwU9NVDiuXKuRAy/V3WVGMRoPtAdUzVpBwREtii4Ou2mwbRkU87KCeSIuimihlLIq05TTMeULf7JjhG40KLDyCBHhAKv3EtFKGkq006JicY0RTEuqqWeyo9gN0yS8qE+cIeEWIiq9ykZG1iXZfnjWvmDK98QYKYndgBnYjVWZYXGVZiPPwqCsTEVSG82dXFwUwkOyQMqs1elaDE2tfRBkVj9Nb9Ju+a2m6F3qmSBJUK/i7PDlhXBEEyTPZBTTogzF/b8pe1gqquL4AKgcFkmI8HCsADO1+BAJwiFkDNUpt8Ga+Iganvkf/r+HYs4eHUrysAcXXWUfyTTjMftl6n8L98+V7MbLEw6xpgFQ8Tsz5/nwgYNEriT9+cT9miwfbFFIZY6cy6rrQOMdEhx5skpeDUyLPNOv0dvs4dKazN7GAmVT4o/EhKwetApDnIqJ0Et3ePY11fn7/4Jo4KYLlYqGqmYIhO8FHtGoNBV8vx0+ee/falfD7h+GXlTMyss86qarAruRQNG/KtvTL4cE6BB7s7HMws1A3lw9Mwa+rvCwbd8+0mZ/O+J0X/fJSYZcWRyGKwK2Xa3XoKvnDhjIDIpz+DHWFCICZWuLhfpGrM+uKDwIPUFNjF3r6Ck9qIWWcdDrHqSprSrDlVQAkTCtENa3pH8lp6nrHsiakIoq+vExPhnC3+iuOIdgfOHBakxqSzVRbrVY5VmGKxeOUHKDjfumEzv1vYzzZKap7UW0xEDqfale5HKLhgec7guyJbF0phJei09cLTHyTuh6zpedy6dWcm1hWZiQy8qU9npeXBzVnmrekhAcB/SEhKxzLGYfVNqmR1jzlmOPTL5mIj51nwdAWTKSAUH1l+cb8O3pNgeqxC+bG/slidg/ckmEGK9KO41cKU0YrpFHC5WF1pn8a04OT7XMJkCnTXlteS9hxbnXwvJuuBLg/XF9TwOMNLg/E88AAUeK94ngWxEEqPW/MgFFcNasZGU6AOHsQ6z516fg8IaSyEmmfZ3AlUqLaDmrEJeqCE193K4VMN2vFOMYimOrMUOY017xGjKSBAde9FDiXOVxsSACMf5pMiT+jwiU3jpQhUblBoXPP3/YCgCMcyi5lA9/KG4RP8RtsiQrn/ECCmL781MSoAZ86JK7oPYrBAe4ItItYllao8534qoD5oQtycB9S9U7jT9UbzwDusXYE+RfD9TvB7DyrAFrNqcpu/YZCQeJwHCg8oHNpt3Zd8nG0f9/s+UjmurRewbW21O91xBA/UBe1d1tfqvpV0rgAADdXuI9p69rq+KDF05sfqgXLjFteE46QbxEzLeMPVdgvgIzt98TAPlLEEbdfd6tkQuJ5jFfUQPkNLd2L+wzyghpH9o7zgDw0OBUAG13o2Kva54r3SaSMaQV3mq1uGXpUJvAq3f3sxN/DsRkkRsfM1bk3hyUF91GyzfVcDimyKFAGEX9chdXlZOAatntezUwU4yS9SAMvCKdzVdQQE6BU+fFSF6jxLJ0gQ4YGiqvB4KR69gAJtu6Li0mh8PK5FDiiwZxbTy3pmIjEaSrAAXoOtuP9HHbhfUElHhvW1Z39UXZbBe4CLHKpelXTUR+935ockg9sOP6auQvm+KPw9D9lOvEQp3uFxPeBGV6FqArhp5/VLpGjOwS0WRz+e4uogMTNwPaw9zP/ERMncQXgxG7FOX5eVghrnxlf6NK4R9L0RInWO1YzHdqAP5DxKd5GZmUkOgPXNoyssQtdXLGdPg4Rkxd0UxHzNgV1IcOS1deiutClc/4CwJjyubk+A+3kg1pmJq2KKDyYHdJe7Ne4oF2Zm3SI/X/IwAx7RA6dYu7BGlL4AN+WViG4sClFVVbRccG7vosfdnp0SwG7fRYe0/fhA567NEMIOp22OvXK2h799x73MEjORrOz1IRerrwlRPKXpqlpsJTyWVs2Ou6WICi6zAoQq2JKaow2l4WcRPGtPeK6rdhEDAgmC8PfrAbFrC0RxavMQ87r8aEAiDALELsduMfh2btzLLLGOTS8KsujEbpwrYnborGP5vYppTtyREY/peVmseiNfOwBYdNcf+iGWg4dDaSWRsNrxHh6EEo/aHYm5pz/l04eE1Tm39SAoH/26VlD7h97EiKi2V84LxwQdTrdQ//b8ID7G4T2rPv2fgjuicL2ip11Rd6cUWemGItT15SuXFUFkWOPyQzVeFxtj1rimL5qLje7/XDqps8EUYZaHpl3AfVLkN6zg+3p8JVTdLek4LmX0TFsdcpPGzkzKLzVO99miU8+Pe9TSfbiLB/tlk9067Gm4Zk1D+oiKTfnvEnBXtGXdHtIHTkbj4vzg1Ob97vAzbRmHi1J0GrrWZcLpyXRclKLIA+VSmx+Ivo3HdR4ouGvrn1gGMR7X58mEboqZ/k9BKgx4oF9fqtBNtoA/R8O3o5/wCjgNoZ/RiZlI7bovyw/uLW7+MdwaD/Y5LlavPB1KwP8PfveKx/0aqHYAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the straight line a parallel b, the straight line c and the straight lines a, b intersect at the points A, B, AM perpendicular b, and the foot of perpendicular is the point M. If angle 1 = 58.0, then angle 2 = ()
32.0
654
[ "32^\\circ", "58^\\circ", "42^\\circ", "122^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAABnCAAAAADX6GgbAAANcUlEQVR4nLWayXNVSXaHfyene+9DQohqEAIxT0IDU0FT89C2y90R1TU4auGohdvhDu8cvfGmF976T/DG4XCEewjbEb3pCEfbVe6uatcAJSiEKIEYJBUUUEJQgEBCevfmdLx47wlJSOi9KsjF1b1PefPLPOfkOSczLzG+RQmQjb0gvg0FZ/5pCu6JY2zf+1fQkBgaw3CZgTIu5O8ORPPkMKR8AcPHN79z9UZDLzY4Gi8k5PjYTtN6FOGJYShDBE63duHAiI1PDIPojb9/5hmg04+qBobTKMYh3Jjcx2je+Rk1MJwGMZTF5Hdd2nnquj6hnhSGPYdb4y9BCOxYdZqeFIYM62M9bYixSHdcKD8pDIIrD/UQjCLsutnA1GkQI7OT2VYCcsUb150BA+W6DKFRE+DhPU0EyFjInov3HGJSVwuNus7hG52IHoG03zdx2WCmPg/aIIb7V28ErEsluHTkBJDYujgNYm5dfhVsUwIk/LOj4167J4EZyHY41kKVQ5Ry9eajKq6o6726MUUAQhjYT2qagBSFIHpmyFouHism5+jiZXsEpAkgmQFY5y8nInusmJbA0H/syoA01gawuvNcnQ6nXkzhyeqrXx4CuOxr2YbZPXi7vgbqxWgyCT7bvT6ikElV7ZE7xRf1vV4vRrgoJs49LQuk2lclVXB28NLMY8U4HTBU6kDm/GwSkImwf+LrumJo3SbAbmbwQEsEESWzP1JbckkAOYdlzLpu3ahs7G4XE9SctJYFdZ/3vtAklomk9XsBOrmunebZL99HfKEYUUZyXCanrh9zY+jwQrD0QW76nAnw/tEqqh/z+YpuO7+tQpd1PHjxDmwgfrQHrRdj/aXnIObPeSFLoE3rToOI9KOVszyGAxChR+7tY0UP+swRWkjIpLffR14uUi+PCdMF58wf7yxZFBwDPKKNCBaeAWAXzhux3KpqeYxa6XwpXr3zfZk4LWKA52gZKq1inuq4Gnz+nTFAYsvyVGtHtACUQUqqSfK0RSpgPfTWwXta2e+KYQujpkZ6lHNahjIY8B7QkhHKUgC9dJbkMkvEZTEx18rr00UPYmnGigSFh5IgLYsgEknRl3ZdcLL0HTHCxJjm57tWlk0URAKpwuAvLBdIIgTyqMLh22NhmfBWh25ipEsTL8HGkOro/Azsx/92iYylCD994VeXuX3DOR38d8NEr+Evtj6FFm0AEFG47t895UBI7N1fXJn4OcLOoeK76oYk/PTQc7Xq7LNicMU7Z79mnXuxYqZ9W9mr7jC8jIteHqOQDaVbamNzxrnPnlvVfiKWDaz/WUf/PySxeccZ9eiAU4cXCPjo6ZohxVKU34g9eHXUKeGz5um+t/fOOOw8dePRfqAOE+Ar9mCsyJ6nEcX/vQBsL52VSPneP/76vX8uzEe//Grg0UJbfv3I6tNtJVQMllZA37zyJmD2f3xAMOLzvVMdLe+feWd8ND6ywwpwSzg+puATQIxffksUyWz1Tza1xiB6TpzZXySr3gLwVd8PD4/1XexksiKYuRMoV9EwAYAA9BJiZcgEgLi4fhceZBn4plcKLVcf+ARpJWaPrPk+1u+6BgejknnTNFUGDARADVyZasFkgkUKmYI4oX/v+Z+pbCaphJrS1U9W3MpZ8PSJ/2wqazGZNn8gPpha+c1700F5zN+XksoyST7SDvXb9RuQa7240LQVejD2mMw2cXWEfZvWlSWBW7/34VsqmGbkR8xEmNk+dH6/i5Bzdc1ORUP5aGs7VNMrOxeXWa3c+smfz3m6c+Gdjsrd1j+8OlcGTVNzq82F/XoGEE0SOYfFw1IEePxKN+4/iMH9sS3A5Shzp/jQI0QEWwYQNp0fW7QJtt4AYjJHQnJR3bC1Lp5s7oAAQvAIETMDe3VhNUIW6OClW4g2WkMekLvS8wAWLhFDmQU5QCQMAhbz4y4K78un/zSgJHzO3sWCh4tXkAFpiCoemJwARWRIFQC8dLzwD+2xxURwjIAALeXD84BS1q+3SwCUKpNrdiN7qGZNKun5AE7O9n9r8hUVyYL+agXWCSAEaIn5u8IYx31Pa2sBKWdCCaIY3SvyoAAjAPHM7Rvpg/xsdccpqRZuE1gLcjkgApZMsjioc2E/tOYAcBFn0pN6HSkhAwAOeGr7ByRm5c37RidlNj/JDlqDpQGEZLmEX7Pe0dHO1SCCBVY0CcnHupoQODgAwQF7hu892I72bVn/Ak/MLkZAECAihSWy7FSn4ze7mGFj5h04JCOiO9pEyhRFVCnQ3f4ZdC3Q6JYd/QssTaTMiDkBgpmWThcGmjdbgAhEeSAc3dhRVaTIGeCk68LMnAH05qMC1ubsZ2OcUiDBgJAQYgnlFNPXuhNN0AJS6VxP3doBUgCcVYaspbg775dVP5UHbGkfkKSUJjnru6wFGVRMIOSLrxrU8O3Dtc4GIvSjsyoMkQsYAxGmR7k6HRIGuq5NQQjJtdjD3hiwAyAERS4tIbZTm5prtz6sKAY7V1ZfjxkVEV/9x780v8xVGyBvXa8bBVyo/QT23oM9AQq8VBT3k5d+ikJXepYAX08+XRsmQGro6N2m1w6jqG6mFDqIUsfJfQSItFpPpB4QGQMqkl8iUsv+dZshHwx0aM262m2MQ+9NHnh5N3y5Gh4hyQCHfzm2QQM+1HykAhABKMUSYAaBRSSwiIJBUYDjp2/4QLUuFHb4JQaLKIBvzh31h/a1I07rrCYgVVYxaVtzeY0upwKIgllEYWFiToCaIUZAZCmKzBp2aZEGK0Nm1WDLVqXK1c4GjOU9TlijcO3EkHr+cApANNGD4WYRMC/84UghRQiqSD2bItWEkDKgEmL2wgDIkAISGRTyFcEnHxxcFZAVlSQimI+2KelKOHtsfM3r+4Dgk4pjLxInhDNWIcKsnbzTQhwSZNBABljFRICigqTMi3kBRzVBpBcmO71DVp285sbI30vIz4/f2fxmL6xQUhaVnQiqXAhCWrN25+/fnTMLgxeUgisinW5KI5gYVLmEkJRTcbp3DSXMBgyAcPTg2rsjH+YH3+gAWBIAJcAEMtCAhgYLguz6zVSqZJFUm1MStkyAUplqBiSoEt0IIKWQYeLaG1VLrwznau/AR/TyfgMAJAFALoiGRAAODA28CFlrjgDoVQwoOn4t4ULT3NRH5YnsHxu7nWeWJQOAGPnd/7Yd6fangpdwKZUVcSSS5AkEIBIxsUgMj51SnKeMmnBEGD4E0NGLeVaOWeFNJKoYM2mg+K+ewxOTTXAmElhwsFMbmmbgXVpQuZmKUKLM+tvDHeuoAKjkitQma/O+vpbuvf6+BlUsmkBUfnMTiMGUp8DcHNhBf/nbv2lhXuAhrFBh9pdp24prv3mtCxFcicB24LhrO9BJeDifVgA4wfylQZA4vqUF8yIEE6Bp9vS2sB+997MdoiwB4YUAimufXmx7bsM6AHmKhUUBBMR53fZEtwf/dn69QmjEmspjgNbZuOPv8cjuchoVxi4Njm/76XpFAJA+cDZzRwPEECU54xQHbbUieWzbFk8SgNUxaqspARDgK0/RokStCdgc/uJQG2j45HjW/npHRfxORK3AzjghnKkuNyoYpSwDYAYDTDzT/7afY3nVWw1beVIsCYW1IjzvfvVacfL6xh/tkIAvkrRIwMyzWVbtT80zGsDMXlT/qu2kAO9TAykfLDtqTwKRogdk6ch///yHu36wkwnlVBFBgskAoAS62tpcTJVdLgFAPLEn4SKBXGgxnCcsyhlBwJY3lieuHbvy7N+1rQKYkBAkoKAWi5HzMT6LLIHz93fJIIGHkhFSPJOVOLdGmWc2Dn6InW+01VZjtS4tmlzOxwQdYtTo79hciUYLCweXqSKolchPnb3V+tLBus4hHsKkIZopfff6n1T8/CKFYDmRNz4fCruf2wWgUHV9B7EgPkdnShh0eyBUIR5ewpFS8LH/xO22F7evAeK0UYLrOfRYgJEJ5MzZfRkqxzQPV5+5d+VDu+/PNpQQILkkqGo1jWE4qDBy+ydAdCkQI4QA4ARA5DXs+S++XPXi3mYAiJA2A6geygJMIWVw5zZlgJQooonECHkayRKl+ubHN6eferu3WrcShOss8zGC2JW/eqf6ACkt51oigUIYfv/O2t4tHbASS5hH3Rifkvpjurn6LwIkaSkBvn5uYLr7ta0KKFhjseV9I5iUrej/QdVEcyMqJwz3r565rPYfagHuG2MiGvv2ZREMsfpC76k+ZAheAjcu913f/hfbo4CHdIa8It/gN0MP+TRvju1eWXsqEhlHjo43df7lWsArUdF5wrZh1Tw0b85P7Z2dL7I48/t7Pa9vaAUA86Dut/jSaGGWfm79ZkRHmtjePHl09cHdmx6apdS4BSzUzTejrzDbFHx3aODW+r/e3rh46sHgPB9yMsXV/tG448ftCpVI/bgxE4MvQLtTfdOtzx5IgSJhyhduXDwGjJ3uvXWiT3fu2yYwo5UA86LBsOFSPV+KEEEi/utY97mVL69fAwSbAkUaH7Gab6RUR+NhnIw3Pk17/mojeQAyA5B+y4/xHi6zp2VsTZy8tGU13OMR06IYB20NANxPFk9NHg8mQsBGTiiIxyWneeX/AYe5JXuXY1gqAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, put the right-angled vertex of a right triangle board on one side of the ruler, if angle 1 = 30.0, then angle 2 is ()
60.0
655
[ "45^\\circ", "50^\\circ", "55^\\circ", "60^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABOCAAAAAAyOaZ0AAAFHklEQVR4nL1Z7ZmrvA6ck2cbmBbcArcEnxK8JXBKICWEEkIJoYRQwlJCXAJTgt8fhnywBGz2PqvN92LGkqWRZP8JyBb1BfNHTXLIH/K3wfFzP+JH7gD9dRWo/YgImVIxhBBuucMeko3IUwhDCMNuxOx1NAQo7HedHMS4eD0A73cD4k9udHS1Nd6ZX0SE9zQ/CMcdiAAgvx8023PiYnbdXsB8RAIQ9Tu+OopA/FJ0jHiAJuP+CiLBX9YxqvcDKt+BuK2eh/xbw2dnqygrKor+qFK+NMCSS+9EXNGTML50aA0ALmDmW1XA8uTvF0iml4O0OLV8RALrnsNOvvYAuGj8vev4VkcRbVkWhfjmkp1WXY2OroDxgpbzdr6OvMMu/1sd0HX9BVw2xY54vMO+iCBALcDiauBOXL5sj44iliZPQKytiI36YKdVl9aR8EqoRnZadQFQQG0TSoO9vvr9d6KDfTedHyFGX13SpS2JMWGvgO711W+3FFoW0LTO/09E3V9mc2jLSfVVsx4wFRFSWikx10Hj+LYwk+rr7vPahgyJHUz1dR8RhhBuIQw2seM6jCoqTvQd/T7JjFcJAAZoHLZiP8phrEBBn1gtzXk1clDfl+8LjRf5ACDUvUNfcTFnv4cdP4oQWweTVuF9QCT6ohQN3sTZq3zjVQLo5UQoZcYHEJA3HnYM3i2Z86qHgM6BUFJNeQAgeR67rLL36dYGQOston23b/EBkbV1tI+7cVVZEc9zE0H1FYDEGR9AqLORgyVA4nqQzHiVEOoio2c+CPAykTi6YwMyln3r8rxi9N6lA+JAgKcCoERX6dN7cLnsG2XOq0JTZrUhkaYmihuu7nyL5LUqp+vj85fL2t45jP4lACRozzo22nSCp7BTW2Y1d4cRjqPbgNVZx27Lqk9m7GjzOthokMdLGEK4lo/csCzV3aqDy9yjOzzlu2gaAvZcNMf+pQOf6UBMCbWxRGJmjfKmenS2bUxJiIwh9xLywESiktzYp6fKt6pjVIjlCf/aSRc+rdvEqwQItjSZuxDfEB8KVafu2AMxPGdKxHkJvi/v3/ci3j2dMOei/uc1y2F6nlddJqfUFURAYw0Cd7HHdlaAjrxKAWxpt4h/GzFSwT11ubP+LTDCuKfbOSh3c2dpHe/MKQCoTv2xf9Jx2gcQUBdFvD7Ld1KC9uoiI4zsOYy8OrjUYvOVARLEXoq68dFfYq8tAmhcQrH5YhogoQuIPuROquNyjvlTQO/t1uAnYaRtpFh1PGu4VeV1OnYYTl9hKK+7jiASrDrynDm5tvZxk4YSeuao+DBZilWnHs2eTX2MpTuB1r3ZIlq7E7iNGON7jIDyZI5t/LljsZ24X/AYu5vNswDNsoZvvHM42rZ6s7f4VrrWwFhGzxm+hvTDqFtV3c72ku4rQ3wO5hx4CX8CIOLTuek8gdr4o+86zwsEGXhSWH+AkikA/7/B/72a2Om0beF7JbUOlAwt1IrG90nb14QvaNCYtj4TH9E1SplqvmzLMrX6L29J0tnCtBYHQWxg7jbdnjAUHS+xF7unb18adsAHRe+NhLTuD1GvTxYqbKKKkYdboPEVgDCE8isMvM086+0zhCGEogpXe52+bQ8JIZxPl+ttCAEhXF0Yvorz7IJVX7+ZWwhFmV79P1qN/HPkEMIQLmYIg7M7xu5DDMGVIQRcdh1gZyMOIYTAr3A7m33n5TtOyoQO6vvusu+0bNepbt8Zo4LJAfkdMYc5xB+esf4HFAWL9WsDf0cAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB perpendicular CD at D, DE perpendicular DF, if angle BDE = 60.0, then angle CDF is equal to ()
60.0
656
[ "30^\\circ", "45^\\circ", "60^\\circ", "120^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAACECAAAAADdWxTvAAAmTElEQVR4nM18Z5Rd1ZHu3ufmvp3UrQwiiiCyJASYoAQCJDIWQQSToxlssGGMwdgYY8YwgEUwxjjgQLJJxuQ0gAQiS0iDhBKKHW86eef63o+WhMeMh3lv6S1UP+7qu9befb5TaVfVrrocYWuSyXhvbDeszEyOEWdbFpHX1VorF3N8WjHLwBhzXzWiL5C3VaMT/ezbx7TkGThj+KoBfYF4Gg1ldM/EsTrLHPeYyX7ViP6BKFsqaV7Ju2MyjOAxtqUBZMyrM5277sLWMSB4nLEtzVAY8zpY8+zHBu8sGPM8Rl81nP+GsmDvDaklixdxxhkcbYFS5ktvPZUVuxIeMqZzWUeMMyK+5Ug7e/bDZvXWs/7atPB3LGrRupkY4xyOeV81so3ECUIPMpm0nDTbrEpKecY5Z1uOuIlrXcgyCttECcYfxhgRvAzbclw3eaacpR6vHRmOwrAToL1sZssyaQ7r2UzGZpnJ9Xc2CY8xBgdvi1FD8qznZTPIiiTXP9SwU9YnlnFOWxAXPc+LPQ1WKidDXVI67YxawpjneVuOt+Gw+qMD6x0eo7iVZdJlF11yBtdUDMsZWWSSFcljqxZ8pksTh4/gjKmCLHDSXn6TJXHHGfOYKDGWdnUtXTZ0px2HDskyl0kzBec8l/E4OGduo9rAg+IFxphlWaapoDOZAW709XQt7ekcM3IcBzcFQwVmTcFjjnePYB9f9FKr386YyDcnXH5j1M+owBgTJabz2vMfe6h/zG688m5+32/uqpqSksdMlrO0tBGhzvGo7DErnv5t91a7br+45qfbnX5kVpYZY8YVGVGWSZQ2vpEoccYYU16OUlbmjDFtS2req3PrNGq3jkpX7+rvnVtijXaeqnYOVSAGqMrHExPoKlmb7YeQN534GfApKiH6Be4ff/l/RE4p59bP3u3CLgn4daJ6CNpAjRBwDv69Bx7zlo4FOdvX9ZcJO/7Ij9I4BSq+1EJj03ICYLWzCsYAkIGCeP3cnab86MXPlLPkwkp06ba/UQ4SgHGAZQgA/eaMtYACPBcL0GOHvpogBUL8bceLF3UpANZIkP3xHr+KMUB60xMbBIHFh57zkYkBEaUCkK5y4/Cr+kgYgAbW288ROuMAJA5QBnj13NGH/3ppaCWAxIIQ2cZZFyQiJOjAAZYlQAz60+lhCESeg4aTS4+bXTWwi087YUkFgAhjB5sgofSSAxZWjEzs50yJEAr8YL9XjAD6BUhCVsn1yfCevc7ooT5CkgCx3LTeOYKTUUAwiVj6g62n3fmZJoCsCGMLyFioSNx/Zg+5lABDlgERIMxjh1LUB8+F8AOYvmuvSMxde9xtaoBOJAAF1FyUuvljbksAmQabpKzx6rTvBa5CTgMBIQEEYBH5d2/99eVWAiIiuE08pA1cVUvvmzHu2hV1B+MLmxIACAlYANGjZ65KCABZy3yHUNVA727/IRojPwUAZZy9dZ8JF64hJ/y6BUhoBIAk9Dl7+b5/dEg28QTR9TNeMkZDEiIFIyAjKJ8MImd/PX7Sm71kHFDfCNFoAEl/z40H7Xjp3KoARN0BAGQjJYD6bUpO0W9+vtAiNCDLkBIUUuWW7nfJas+G1sJpvH3eDuMeJxECgFYWAGQCSFDsPjj2iNepvhHh0wf+S6xrRJaMhZWAwYDyEVTdRq9MOejatVSrbLIUB6iPbpo87Io5ysUEkThAxYmSAMgSAMSEqvv2fSsdlIFlCQwoBXzSv9zZ+4gAiw+P3+/XYTTxVtcLJEBDIkaigcgghYvtMwfOeMQHNPxf7nX0XANhAQMKgQSkAScsYGQqgNiu/t4246+fqwCQs0a/fPv0kWNvWKgEgVJBIGeUAQCjAa0BkAQkuSv+TcAgMdxk6amvdWQzjPW35PM7jRAjl6045MJD272g+Tsr/mpke9T0wop3esbvfOhQ08mSMusayettzz7xTPs2hWXhKVeOynKXCVgbqwzmf/40nte564677Z8F6RITJUZeXIZc+8yjy9tbOsqq2h0cNG7yPiM8LkvClTkz5EocmpMprnh7fpfrGDLkgnadp4zJiR93XljMM8fhMtVpD+zd19SUYdVdVy6y1LztYC+mIivQU3f8aVs6f87YkfuPnvPpex0XH1eIEI1Ush3MeIuWd+7UTBmvEA/KMBa1rPnh85N3L01Ily1dEBx/wTY8auVJyUvKzuWRuFIlrMW5IVu3eJyzyDYVdZ4pnS8w5tJCvvbMMy9vv++eW2X9eve9U2ZvleeRa+sJdqKog5jTkJ8euhpAv4bniBRBCQCNCmjeIQe0/W6ZcT7FLn1m5tTnHNCdABTIfkfObnCOfoTGefvfGNuGoyhupCu+M/a4xQQL1MlaOAnYMJaOCIgjjb8jpdHzi/22OuvpqnJSOdXQ5pEDrqpZoJ9IA9IyNAB669gFawc8NmxKugF0x0CEG3af+i1tEQE6lmRfPPS0fhED/gavHSfK6CgE4ke3vSdxwieEKYCKFQ/ueMzzVmg4ALCABuC0NhZWGisTgSgghJX4/n0HXb4kUeQAbQEoF4vbTv7ERdSfmJhCwyQMVtmPjuqGA0oO8BUAqBD06d43VbrvPciXqDuhQDHZP0x40pkICUJIAcCJAMJfefGZq6KgEgMKQCUFas4+f+S0v1kdkZKAEIhSCwDObfwAbN/L5w268CMl1hoEimC1ToNIwrgXT1gakQHChCyDC2BAb0+eg249zEcEyBoB+PScqXMtqOfjnT6OAEK/QhqLpVOOWUyR0zBAGhEAko/N+LkSIEBpCCRAEgOG9N+OnvqgCQmATgE4LaUyqQMBFFSqL5++41GPp7KvTmRjsnpAZxxWCcSrZ1RqVhBCGpAyZELVCQ8SPLvxIDU/3+F+QagDjXUz7rQGIZAChsxvD7khhEuhDCASh+Vnn7HCptCk1IC3MAkAC23IvHHu6F91UQIIY4x1BACUhISuVy4dP/EPQRoSASolCGgFShOL1MFi3Yen9JBETLBM2wC2DuCzc6a+77kIoQTUI7tftd5ZoeAA9J9/pjJwkCAYJOFV2/7OacDFEohu2fXxOvkEGA1nQdI6wEogtoD0u8/f+6jXLdUJZAwBgHE99x+2+7QHliqXEiykBpKEFKAUIMimZBWJ546PEJAjywwggKQfFLxzaOujdQd037PfrOWWEAJrkcTQ9sEJXVUAfQCpILFrZ231vU/6CHj74lHfahgANaoQAsA5OOiAEBmQT0iFVU8d3H7sb1+3RgBu3Xt3nrDVrhc/3ac1AZAKBhAasDAGcIQoIAANcn85t4uw0loOVbj9yG3LjAVtVB8x44Nw50rj5G+Oth06L1GKmxmrvfLesgW5Uw8fX8wxxlyGMcvX/nU21xWMufh0rzlo620ph62NZrzy8rpq8zY7HjxBxEM5Y0wWGYEy1P/Om0tfb95GrDEdOx42du8hLJPzPEklrnheFrhzeSbMf877ZF3aPmLczCFxMcdExjwYXpa2R2XutwXlI2+eEJW9uJllkky9e/hgj3KMvLjZ5Fh9xUP3f31KZvd5t1THn3YRaVvm/e1FlVfZRjSomXtps83KImM2u+KOJ3Y5YueRwarl73TPvHSkF5cLgpUYY6rAjGTFqCszssyUK2R5hjG/nBt4WyZFm/fx03M/3P2A3bcqVLs+WVC8alqGywIlcrAucMe0Q6oOXALEEmvzLkVgkTr0OzhALDx93G+V7pVOqtsnz9rzcQ0HAmIksBYulnAAoqDLnzH17tQ4V4+cNet+esDkZy16CMLv2eAMAaulHDiCZeJgyKSKTNigJZdvt+/1z9aVqAXOObvilZPPWu2AICGJGlmG1I9Q+dpqF8GR5xSQBECCCEirP9zvCb0aCIAgdg+PffTkMz+jRhVWAcY4WGmQoiERvzL691UXxGkKl0JUrHn38DF3adVPgIsIaUyJHHCCiOsC5IC0ZgER3rDf+F9UwrqDBSDrviMpbz9pceATfWYl+gwLABVg9YRFWGeRb2AdIIAI8PHwwXeGsSMJNEKgYqoH/u7F3R5QSIF+AkiqDWdLz/QLVlg/BIAYiAH0NfTiU/Z6yOignwBpQACckmYAppY2JmDtvUcMvemdqFEjCEoD5RQggap5ffqimGIBCbIMoQGE7T/kWecqeacpMogELNacePxCo5HCaQdoBZj6pRdVTpv+JjWAmiJSFghQp7/s9USNUkClwsASbGQIIjUfnbrHLRJaAURIpQFAVgPWAkDtoSN3Pf+NNDEAlIMGpAAkJBC4tVNWJwTAaMtg0QAEes66ikzW1QFoobX8/n4PaUog4AygFWmQQP890z57Zcq1QQPknDRwFlh70td7XBeFA/E7NMEkKZDASvPJt0Zf/5GzASF2zlpjnVOwElj1hyP2Oe6xyNiBYNcCkgBYh4AASt1/HLmeEBOMZT4sEBpg9c07PMx7EQIK+M2O/97lfKAXkR2wCRirCcHT+33YuH6/+ytJBCQStOLq0Q/LKlGIWMAktCHckQ0KLYy0jZ9+7eC/WBGQ0nZjgrLkxrF7nvFcrzaRoxrJSAEmJVipDAFYo4CGe+2UPou0TpYBjSpsAEuy5zDvpQVIk6VXbH3mmpqViEESGDjyIwM4wK2e+XPVe+Goq+atIHT/+bwxN6XOIAIahD6C08Y6LTUQAUpYIyvp27OGH3LLi2sbBOqa9/Q1kwbvfd3cmk4EYHyNlGBjgpJSA4A2vRaBT5VgzrnrFAiWg/BMad8OWRBNab5wzPIVLDd65umjWJalTRFaWb2j9vhrPuLpU/cqMlAB6mz8ok3f/cLCqGnQHicf3uk3FTyW8lK9Wfz5pdDkOnY7aP8ya7QnmRJjDNyZbPTBix+t9WOwwdsN23fS3rBtXlri1uU5iaYKDeNOF+vL3np3PbU0TzpyF1kK2kjhqfdvyoIKPCrz9Vd+8+AMY2lp/dc+bOdhptkTrJmxuMkzuZ7F986fOr1Ig597MfqXi7zKEFK5Z255erAjgGlWyooS881geNGnd8+bemTZUrRs3ppdzpveN4JXO3mYR97ZJoLMgzHGHGShiTPp5aN8gTHGdB6MB588+9qqHQ6cMIrH8StLxA8PaNMFxqiebat1Egsh0sqMeTEkQBknBzIZhP2Ab+MFZ854RJpK6Mio3m8N/YWNIojKJ2P+YuEiA1hY+KAAq06c+evesKa1syZe/uBZuz/WT8ICA7lf3SelLRFZg7jmAAOQAWSKRvrehTtP/reXE210kmhnFr9/7IxqRImJCP0uNgxdKah38hJEJOA5REAaAyCn0H3x5D+HVoUOqEmsl/E5ByyjCiDUiT/pJzikfYQUCejGCY/0mg3RtLAk182/bKc7tPFpHenUDOB01gGQACWpsREhTGGXXrn/1+5YJ6VLpAOcVo5I/3HG+ohIB0TQlkVEKcJV014k1DGoH7AE6FQhoCcOvKfhIC0QJIAhJOa1iTfaRoI+df03VlNNQsEgwUczL42dUDDKuQ1BoAtWXrj73RGIAC0MOW0BOC02RWGpw9obJ+45+yNpUz2QjhIACePbD49arC2gnIZlASwgqfvYlwVUNgakBox0ZvG5x35gElidKhgDN2DK8XUnP+EgI/PEQXNdqpBUie4Z+4YyFjpxA97NWWMMarrn1B1uaZCWBGgFZwlwEqQNAOe6/zRlu6s+qWqrUgkAERkE1gFVicaK6Sv8hNDvyDL0KHzmYIOjbmvAc1UCGglQveaIn0uypqEBRECILouahh+8NvWKBgC3Yuw8A1iav9/V63xIahBMpBO74fiVlChduX7wZe87BBqwVkuhLEUWDnrBbyfudvbcNIgJFoCNlYCgCjn0KoICLTg6RH/iKDGsQRhwpcnNw+4u1Cl2Dohu2/audVYHFtCIegeKVzACgHP6zt2vDWyq05Ou7qL/POOAdys0cEATnAVIpakyFrAp4l5xz0G73lKzESUbqyVI5105/oBz3+mTAkAcGohIAwpIjEXsbI1kX029c1iNgG5nGboNAI1+rJKX89mLEfe/d8HIC+NEpAYA0AsSNQDVBCqSNTjE9Rs7z3h0FfX9dJ9p4x4KJLooTepk+uWAjgAA/IAoIopCvfCbOx5w3ROLuhSS5a89+qN9SxPumF/X6x20c3IgeQJisj4pOMCQUiRBT53ZRVUnLYfO/3L3Q2qd4Ij5iEse62adux4/cwjlGWPWsFwWi/+4eH190KgrDs5yK5qj1npbxgUvvLR0Ae2yw6JfTciVZKExiLO0qfv3C2vv79I2+uCJI3naxBiLmjJJWWQ8+vCVRSsaVVPYauvOvabulbHZrCx6USGvTZPRxSxrFEqfzet5pvD+dtkx396+XXu5KJt/adHFzZ7xeNQcqQv/ZbIqOFNsjJ0zDDDFjKW8I1XOMlX4683Vs6eUM1j8wtypN4yIskVuLC+yerk2iItSeMxFM1V7rtHmxW/eVD1vp+zkj9OVby4eddaJcVF6zRBlxkRaLILALDIeI11Gmm3iCFoyNsukLmeYri956rncviOn0bguM+/55dfOyjPGWJiPOj3mGOqI5XEvkwSszsRIgEQAIAX4eOeQk18Tsa9EIrt77tjpRxYIAKCfDPUZ9JP6ztkKPmH+iSc+lQahC52RwdKHzt3nkT6CdCDfgQjWHwgcrAYBCH1HkmAVgOTFWaOn37+kroxTLl6v11dmHbNaGAlostI3DD6M6Zm0CFWAPBcbAM5arRHadd84ZI5QAAE2JWWrlxz4goZGaKhqE0qJKiQfmP4xVX444dnQSQcFowzI9v7nNybcGEIghRRAImEITimCNtZaAshAK8QvnT9+2iNRGjikxgzUJ/vVU4ctVAgdIgtYBu1DJWr/V5xGUHQaRhHIkgNuO+SPUpGwMASFBlDRC469rps0gCgV2hJZJ8zCqTfuNzuSgIVPqQGghCW95ppxV68hBTLKAgRy1hFgYaUFFOoJrfr+gfvft1jYUAPWWkdEIJC0y6a9bw1SQkSWCQCEuj/jRkJYrsI4wKSpwocHf6erigSUONgARLCEtPeOQ/7qknjAzMkaA9W4YPvv9hD8GLaPNEQoAYjIpQt+POU7VaEBmyrIgTKmBACkArbrjl1HXbtMWp0S4BICjIRLup1zIu4+/i0LQAuyDD5WAxbq/G+tQUccwSiA4uBbe7+pQ9IIgMgH0AAqEqCeVTNOXG9rTiltLID07an3VW8+ebVPABwqBEAkFgCsWfbDXc5/w6YBoZ9AjgjoVyYkfHTj7rt9e6Wo9pCSgAsEIFMCAdTjAEvzT1+UUEBQlgkoSgBfpPeNuc1zaAC+lvfvcKeoJ6grAWkBY1PqjwhpHJFUv9r9Z7o24Hwr68+d9KauJc9O/KzmW0SG4mTAfafGpYpM70NHTLi/Xqs4Y7Q2jkBq/cuX7z3xXxf6JhGgmADrABcQ0ojQ3+uQEBy9P72HEJKy3GRD1sqYjdsTc+0DPxg/tREte+jtI69ro5LzB2UYkwVSTUyUyGNRC2Oasjy47eGvHTNim3LP268uvG5mUZZkoeecy6dnZNHIFsYsvMxAuh7ncwFb/PDzuWmTR7V2FNN1q/qWvNn7tWP3HtXBclCUz5DnWZ0pMJvVrsill2OcWVXIEps7e3aHV7AeR2jf65lVTJqiVtji99/+2LZNOOHw9iyPmjLgwtpBix9Y9WY0vjRr2oiMTdoYi1qYZE+81LUm2XrSjH1aqkO53xbx+OoRR/31Y391e8eeh00ZzoNSVqTFZm6zjJTqmTtnVeSr0ohtBu9w6OisLnmaFRg4Y8zZnMd0ni146Z2ge11+3E7jvlFgNpu63OvvXtVU6QQPm4FZF47tZLVSkyynYSHHmfUKGZdRKpPP0XPnla/cdvS2n/b//sOjLt/OZW11GCev3iqJmJfLZ2qDANHCwO7/kXfujHT/5WLZi++PPH+WaObgLGlKZb6ZI6U8LDEvk/Gg8jniHrO2SDFrysBjfa88Onf7afu3D98mmt81591ZVxbyaSkqk8gXTIYhRKwOe1NKgkLbOrIg4wCDBkD2ya+dtjCNLcXaquDn438QEqgRk6OB+z1yjgAf6Plg8gULXp72iFakpUpev3i7W9dQLJ2GI8gEsCByzhEJwGmCHajDElB/+Khdznh8VRgL45xztrHumikre1yDJBwBlsEB9fDkx5EihucDEARAxWTwwXEXzJES0EAK7Zv4yuNep5RUHZRuKpkGRFT7wcFvSOc+OepnBhJJ5Pzu70783jqyiIm0g7OklVTaAdqRVco4AE4gePb0vQ5/IpKhg1aAtlDQeu7hb2mrgFRCWRbbCAYrv/EoxYiyrh4EgKAU6MHNBz7ecEYQ4hgQoNjqZw67PkgtGRjApnGqnYHf9fy4+xLnU0jqvON95xM0qnH92j1/vNZAGABmQxptREwiITgFKF8sOmu74/6wNLWxBBRABqpujUxU7+HvW4d1bqBKDON0QF2n/sRqeBERNMG4yJ+/zzfTFI2B6nkUmgiI4OQNkx51SRyhHm14alVed8oqiZCiUKD+1oGrqwSAYujVt+5zwntKGsBaWDOQEUfOBRHBqKU/2X38/X2+IAgNCCJtHEAAoerq057QihCQtaw+EL4addaFvVGLG/DNBn3fmPKOkpCUgFKnDYAEIB9m/olnd1GgCZBJqgnP7nlXLQgAbR0CV1s14ZVIxxHQnVAS/HWPM16zokYIBt5HJQQ4qBcu3m3vG1YKCwUrAJFSrABAxwmJfrvcfjJzFUECsWGEOqoBtFBP73g7X6PQRRaV8/f6TeLIGlqfACkg4gQUEgyUkw/tcdJ6HUoAcdeyabOWaSQ0EPP0EUXRyT/WSKE3uPQ/HbPndUtiO5C8WEdRfeWjM3eYcc+SRCe6XqXehAYK9EDQIEgJmNghWb7XZySJrOWoD9J5ljSrglv5qzuuPDY6cv7SPy6647CWbIO3MwZ4UEUGWUyaYW1J8xwLss/fMPTMESNLve+++cn9BxR7huSEaPPSpvogL2rRmP3kkx3OKxh/ME/Kzi5+6rnGTnvMaGsvpt1r+z/+JNz32AkjcxaulAFjjDOZySEpp6zENSswVh8UUTmHD6753dbV1oLjsPyutnPCVoZ1o0zLrY+zxeNGHD2j0tESl1lStJlcdeGbzy3Odu56+AmjZCYPrqsjeKP4+jPrP4u3nnL0Hpw1hoe5MnhSfv1P6TPlaJ+OA3e++cGdkDR53HgZQ5y7/vlLXg1D3TR8VOeEPbfJIsdlSRdYT2tTkKVinmlXnDPnvb71PkbvOem0Emc8zuWWPnf2IC8o86iZmYsOP6aMtIkn7RFzPClndDPTeZtlYOzmV+moqdsW0g9ffXLs7K3CtqgFSbYg84ozxjOcc3iixCzRn2YPO2PQZJ6b3//e4zl51fmex4yXYS7DHDynsyBwz+Pc45wxMF3QXoaLAmdcr3njqbl7H7zfiJGDsGz5G6+ceVXOY1x4nivW28EEkDZOegiiD0lccFAilcZarR0E8Mfx176fagHS1k8fHHdFxVeAJhmRgkkAAwUEQDx3/399JzUWGkbq6N1vjpi8yNkqAcKSA1wCkLXYUGSEUwO3yo7Q85tpu537fC1Vxjoia9Xy68fNs7GBlQN3Uim06pKH/4FoPfozrh8ArLZEVuDdI854e7WBUOSwhtJYXHPQq259BN9BmRohTBHBCJLhvx4wP3QYOJgAuGD5SeWrelx/OpD9VQKKhANcGpKJUiUcNNCIaO3DR+xz6ouxEp93dghXXzfxeeMTBFUcLEPSgFglZ/0yoS7aeh2FfigBOI3oOxOflG4g20iIfItYf3L0JX3U5+BLUJoQAEQ6enbCXbEF0pgAAZhIg+RrzQecs04ghqkLojqRNQSQb2ig8lJXNGfm2FNfrkkbuL/rjkFI1JjxpFbKESlnmba0Ci6tX3YNkc1on4hIJUkSP33oNVVL1ShVgAoAAQShE7dNvMmgSlhD0JAhYgouO2GpSjZk1zK2IIKJnYonHTPmstfsQKZPBMCJsO6Q9MSEfjn3ol0O+32PqBrAWiM2ItSQgVLpqa/WyRgkzjLUE6oBUFdOmlPvdBSmDpCN/q+f9oFMYMgAykgJEjA+IdRrL5v+TOKDpEFMVE1vH/fbSlVuKDqQgVMaAKGie/79lFsnT/p96hoCCUAEEMWxITQe/9aYGbcvToxRlPQRQJukrBOSBnLJ0WsahNDCMkilCS6uq+fH3u6lmuJKohZcs8/DwgFVmQAuAkhGFqCoz6q6ePHY897qklUfhMpbJ1y0uOLIIRFKDjSVkE6FsiBQ3/0nv/7WWTuc844FlLbOWa1gVv5u+sgj7/001GQA9DhCok24sdsFPQoAaNHkT4M0pqrhYUvQZnLkgQt760++O3r41mzeS+bo44f6g5kouJwsGuSZ09kcaeQyPGzhKn7yz8HR+7c2KvM+brliUpF1D8nrPGOMMcdlPssYecwvJYOYe++W88Y2Pf/rZbsftFu5nJPVXv9v3cWpJ4xtz2U4E7qUZ+CK5bzPm1qrncbLmaQNay/52R5ez1DGqX8oj/N5UYrLXDT/8t3utDBm6v4dWZ3njIGDM+Y8zfNMFVjczBrtNuPB6aWPr2ywQYdM2zqnyrLAmckSPAbuMebAwD3OAZuPzNlHHDPChQveWxkFqjBkZMeBY5qzpsnTWeGVYEyRMY8zZim3EWLUwrjNcBt/9toZw2SROGGg/Y/XO1g8fGU7wL3MP2mQBGcbVjOyAOMbewf/B4rv/eyiPb00KwssKWU4z2xs9cY/2Zo0JcWMLDLAZTljxDf2k3JVcF5LT6bwZY/8v6RM/Nwfv79rO2dRMcckbOlL3snjzGaZzG9c9jlCnWdRa8Ygs5kR9g5z3ZfMPHwwCiIYzv8p5zZRXI54M2U2KebfISwwl8mo7OYe8vHScpi9ZsjV+bTEuM2aL2tSViXmsrLgNnKKNm0oMCdZU53xzU1NrIW+N3j6Io+L2GO5L13eQGiKPN5k3Jt4aFge9WGjuzZ3E3FesQLLyqRV5z2Ry4kv+/9N+QWDnN+56fvn7f95YbMdi0cyu5kRZhlThRRNPVft+j0rOuSXzRtUj3WU7eTJJov63JbB41xeNG3uXnGX8Vha5BzhT7tvHtk74svmDXjn0iHOZjdpHzGJOEaMhJDEqP9d0+9mIsQCKqKYnHrm4P/UQGosEPzzDe1VKFjSAzfOgFcImpoaTbUCt4UmXWLxZmYhC5qsj3JS6uPxxD9f/nzNlLIp/hfTL5xluJJI+j20aj970nbbtw59q5bPm/LmRlh6defttxq5850dfFCze/rxu+qIS1yUky+TtkX29V2Htqk/MPSDbHrKA+v/1BoA6eYWMlnx2nnVdfOH3h0icbTivnNWSQP1PyjTBimjf6vjesNw1KXMEnz0FDX1ektSCLO5EQK/eUUK97eOpb4LKFAPHfqGrZD958/ZiPC8I/q0xuxfehk/KrIF52TXXX3NtjlT3PzDR+KF1lxR7CzXlGWBt8Qzb/rtL5pc5kud2pwXruvIZcJJ2zNLVNOPF1q2ekuRQXWz27JcfmraoKodfp8mpKThKpd+P/oftGkDD0/5dhiG1GtCLxPzQbnffLzqu9MXc5Z2iM3NwsJ/HMbaRMeK6BilTTHOwnXcNujcT/SX7Xt1p0xzsxjiNXssz/iC4vZN5w56V2S5Km4uZJxTDM4lWz0J3LKHjy6WeU43O2559bLvXPEOJYwnlnNuFHH3xbHpbM2rouRZ8qyl9N2J+VK9a2ROlIrh5kLIYtXsCV3yfzG4VGl++Y7DmzljxLOsxEdmJtw7+0c5BE05UUOumGH44km2cyHu1Fb/RTEQmdOWoNE5QiJ12Gy2LBwhJsQvfD918dXDH6xS6iDgrK5Q0mNX3nrBQouIyBEApT/fuEEP3xr80xCLt+6zzHfPd+aaW0dMWUUpUNtsluIcxRarz24ttLSOmrVYExKCRqqgEkoNhY+c9KYiSGMs0cCN2X9BKD/ZubX1zB5rud9mU7+dxc0t1cFc6+bNNUnIRQl+c0YZBh6VWz3LPM8hK4qcGVOiRqd9/2fnHKULWWaR8WA3ubmOFZ067zy+PlfkORTBiSvZGrTD1Idxpk1xcw3qcb9QgnLpYCPLaTOvt+QYS3M5Rikry2AY06pJXzzsxiIbyKn0plxvA0JZYEF7Wsg6j8eytVZiQX4QX8vyTZvN29i2kpPFpsG1XEumrNmgHGPIccd0mbPSMN6bb8mKXw4/b6lvGQdjX0iPSr2sPSpmBZgg6iInyNnEyWTzOWwFpARISshIRDRwORoTYgclQUY4EvKlQz+qE6z5u6hvgx46SgxpQZbTpswV/4tM7P+BwNnnyfHnz+CMMeaUOOfko1sypAoeU5ksqeJGKW/cTh7bNDv//2mKnm/6+C/PGLDIbPlX867ud67oVaN8VvKi+sL+r2yCFWCMeZnMsJsnfPfTDOvraA5EgasvFhT4VzXDSpxzxgBVNHPumnFWvn9QzpkCt9l/lPJXNuq9QRt5tt4xafjs+rlDklxWyv+mZvKVSZlvqF7lOvzMmH/LXd5dhisX/S8WZb46hBv/oPaqHnTRCZe9ThJe2Xxh4Vc60A/GmfX0YMazJ2z370vOF9Tst/3joq/MUv6RqGt2dEeTznmDPhmaZS6zqfa1xczLY9SPxp7fF3DmFbMk5ecBzBaD0LiW0848bX0I4rHNFT+36S1Gyoz7Zb7u29Nm7rG8NcP+4dTbIojrtgzf7oG196bKY+rvTHqLQRhb5iFov6FtlyhSXn5LlLLlWZlPS/bdAzye+bzUvuVI2c9m4gIrZwpjclkD9vk1yBbDw42RI3csg2onMiws5cj7O5v5qmlT5OgxpjtDD3FzLuKJ2HIsZSMprpA/aafhnaOHnGl5U3HLQ5hnjHDnSX9e9ukD5XzAQmwpPwW0iUSpxOOhepR98WjNWnnzlsfDko2CpnfGj1jQ2jSlwGt8y7HljWS8DFMPX23te7uYnAe+5djyRspnbaPw+uPLT2niWU/GYNkt56d2NpDNDVrC9i7tNzRsyrgCZbJbym9SbSSrmX5nn2L+rMJ9F6UtHsMWx8NclnvvXZKLwrs74mZus+BfTF2+WkrLb5zfXcw0of7BrrxeLrL/A9rxt8FVbJyNAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, the measured BD = 120.0, DC = 60.0, EC = 50.0, then the width of the river AB is ()
100.0
657
[ "120m", "100m", "75m", "25m" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJYAAABtCAAAAABmP8fkAAAGdklEQVR4nO1bT4gbVRj/RkX24KFYkKWIhqSHLBWZ3lKosFUwOUboIfbSnmqmiKwgGkFIC8KaokQvjeKh9dLksLDradfTFic0PTXiZS9Otiyl2Vvqxezt5yGT+fvem/fe7KQi/Z1mJt/78pt539/Hewbov4gXnjUBNp7TUsFzWi56fQkhY+GeaDj5ZKGFf61KQYLVwmn1vpISWzCt0e+npOQWTOvarSenZeQWS+vmb8Y7Mqa1WFp9ArpSki9lzCSI/tc7RAc5KVksDBaRgwKRJSG7+HAqBSXb6hmuG/WNm1r/9vRjWUmlebBdcbLV5xBA59QrAzlJNU+8TyMiokrhvOJnIiK6d/bhi1uWnKxigCgTEd3Mv69Kiejwgxu3T157r/SjlLQSrRHlnxD1aXRJldTR9XOXd09srVHzh6dSA1Rso+u0ukAZylGlm2tOgeomgPbasdvWQZ4OqLLTkzSQOR6c+3VwfYl2jqpEVH/wx3F/LQtdq2XD6qoMGtdKAwCYloYAgO2KxCAVWrYNm1pwyJEfM23m3JfwZq+6eay0CkS2Y8Eikuc1MyoAGOfci8DVsdBSx7BUG8+vr9z2HjebiSMzpDWum35MH5r+D9PcmCEeQma0puvFTuDWHAZuNqtJo9XLwKMPZaS2zv49qPu3d0wz8GP16b2k8erfYa2dKDJcre4H76PTFpxSJjRojc0E0xjXzd3wk9ibJL2ajm2J80fEqABgz4yGhKRX06E1j9dMbJuNSfQZI4AmpEYtT+Tnj71KZS/2kOl4IdeMQS9AcPLHZK24HX86NeNMgd1V0R/o0dovsvJHO9dmCXPmS5gaNcMpw5O2i2sTligvBQpToyatWP5gGhUAoMYrg9YbfP26yef2leAd26gAAIMST8W0uM9Vr50Tg57UKbal5CIQpEZtWn7+2DXr/NjYqQt0VHifOEUF4drMfnV1yBeaFEXRfFjiWb0+rXFuCkwaxU2RUELu4/6cot5ab6BTXBcWwPzPMQP3Y6agNV0+IzAqACLjccEzvRSTWHvrQoJIchXKc1RdWtNmrovVXbGMIDDNwQlrmmunvRXaq1H7U6HQ99VcoqJSrsd8rvGlMJg3WkJHk+kHeVI6RbPbvQMYFyd8OW4yDIOZGpVp+d07ICwyxQVVQCGrHFOl5XfvM538+llcfgbA8lc1WsPVWiRScetnuXUsAMyCUIVWvNFi6wQkurYA4o2RAi1Go8XRCUj1uCJhaVqbxXijxSeQ2DaHEF8rkaQV7d6FOoGk+B9FuNaFJC2mUfF1SiXDMKJuK0OLbVR8nTILWBFEJz05J+6shJaEGOhEV56/ubycqDYM07wTfpDwGvxGK4BImpFLhmFExohpCRotgU6ZpeQYwuFXSIvTvccRWqSVTYZhhFOjgBave2fpDNi4cJlJgFAa49KSMioPgYigkAzDCM49h9akYcoYlQ8vfgpLMCGCy0BsWkmNVhxe4KmLY5wIjXXvkkVL2L3z4NJRS4ZhBCw0TkvcvXPhTp5XT+ugW5tfRWklde98tNdCirXgvVSElrpReZiWhhrJMAzPBEK0BjpG5WGzGjRaPcwdJkBrXNMMhHNUf2Ku9KpgHl78zSyf/Jx/TTHvR/DPw5WT6TQQPT6zRRTcsvjn4ctpdX735sW0KujVt4mOeSfl0cpAtdDiwC0DK4ZhGEYlpbKlL26kU3DaMAyjR+SVgWUbsGV2VnFgEZVhybfSHJRtdMnxPbEAtNDS1eZQGbCpJViFlwMBDtkeLbuFltKmi4g2CwAsW7My9WCXgbIFj5bS5oYYWjMtLUevjvdhEc22hrm0Cg7K+tooMPsSmxz4KDgz03IbshHl6V1t/xnRG/5N45dDfUWn81SjDZoHiI2rRJ+Tfnx43b9caivuVwpg44r3jrOPZwMoaDvibBJt12f0S66CA8wYEQDbJatt8y3qzrwIgH6BOqNRwJxWenSJyHeZFOX8HFlshz28MDiRUkUWW62XP0qZGjM6i3F0rltMpyGTjelLzS9Tashmv3x1WT+mEtGzOFAjheenolSQDa2+USGivmFIHVNhICvbMpw8Uf/uLc3hmU3it0T0+DPd0RnR6jkdIjqQOtPDQka0DvJWj+iR9viMaD2iS3eor7zb30NGnniJzv81uqtzYmOGbGjdP090dSOnryC7w1oXC3LHxdhIXUjG0SVqAWk6vP/FYa3F4T9K61/lM0Uene33yAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in triangle ABE, the perpendicular bisector of AE MN intersects BE at point C, angle E = 30.0, and AB = CE, then the degree of angle BAE is ()
90.0
658
[ "80^\\circ", "85^\\circ", "90^\\circ", "105^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKIAAACZCAAAAACJJL6pAAAKeUlEQVR4nM2cf2wUxxXHv2OcXKRc60hx6qO95lJiYrekqpMUAcUUt4HYVoINwS60kEIkIKhQlRQUgpqoRYoEUYhCGkOoXKlUMcqhO9d2cgJf6iaWbFTzIz0jOTKRHHwWbosLaTH2H7ax7/WP3b3bvd09z+zt7vkjGZ+XndnvvjfvzczN7IK4OQZUTP2K/3y7yAMncXaZ6E93z+c93y4IvBLvVO34A/DQ3mJH9aRBABi3xMb/vgkACx52TpAeJv1LXCff+e7z+0HMST2mcFrxn58/rNyU63CHSw6oZYyx8OwSpYbwjZIBgBAPO65Ldd22mhC11/eCMzk1IETUXuFoAkxnatEYDSLGK5HaAexwUpDBJXcQ1ewgzogG4H5AH98FxMpEwoUBwJhTejQMEQBEY3TssV7kCxau9pc6IEkFI6D/zEAREL9dhu2/j5YJJp3hS99yRlkSAj5t31IE4EyVnI9na7MJze+j65yMD4nXvn2NiIhqYjRV8sAYzR7RCfWv8qaE+qATvPDELSIpgwAVRCIRDWC4+Mt7nfBuiskto6F7talDqC1Sc7XDCsfX3BXxpiU3IYksvN5OPXpuVix8bx6gdLsyIs3kmmfMkeanEC89ZHBUxIrUXO211WhpfFa+92XD6wrweNgmcxnS4/uL4XERiXHvmIPZJuLrNP4PbkcTEK72OjfyPrXz7MrkldIuzc8TtvpZ648jxQNmJ3KnbmJDj/7bxmjRDO3opY72IrMzuUc6DOEqO+NZrXBm22CXed0CSef9jdYFGZBy3+TaW1Fv2jEV/BKHPq/MUpSWpBlHV/laPADIZBrML7HpaWfy9sjy8kYAGabp3BFY1mI5eDPRH2ggokzDO26JA96J7PXoifmCmr8NlHI5mgAE13rscayGv1Wf3JC8BGDsbd7btdfPsrGCvouzn8srceArE+q67eFE4ArHWbypO1jrMXWEOFLX8tvT3X7tEUN4k064LjtRWhgA7PzovF97xORkvj76yuKbHnu/MpncMhryclXIGdHBOg/s8TJJ/4w/kx/hHNpxSWRkn58ZAWA3VzzaNA8AQCY9swqu0OsrmM4udolInQ3ipYf5i/GFS2jdvOxsB0DVTj4r37tfoBzXjSyKiFosE92+FpHTuSTa42eFiK9b6HwuR9vjZ5k/7zy7XKwEz33Y6OfEkeK4YC/K0wH2jlRZspfOGgx4qaO7CEyoD+CR2Fxrl59ntl7r8kKwD+Bpi8GfWhOkggCATa6diIrPLkwk1jLGGPsRAKD3VoVlaQoMAEYrfCEL42IDiQSgrSZG1P4IAKB5bVZ+Vro3Gl6+qtFaDYZMVdHU0amjRERU3JFlFEv0B05YK2gsMdF+mI6FpOQQu9+WvH0xbR7Fj5HEBNExADHpr1e2WaxaQ4fPsi9MHF0To2flL41t8XPQd8FyWWOJgxVEb0ofL/ps8POJQL/1wsZJ50wl8GvsBoDT67PP26++010KUC1jjH1tXLS0ce8SPQig9gcAEK74HbKctUTuOlcAgLXVHizDvgVXvWIVGlkxyj54jDH2QSWASxMPWldIADATGvuoAABwZ6oMOLJsHyDUBRpZsZJSqk6vP2hJXZLxZx4/KTeVjwMAsPBTwTs26QBJuc1QvXV1AHBzxeL3lMb81ycBYIHoTNJEolLJpclyi9oAgDC0bMMb8hyP7rRXA8DVR4SryUCC9u2yniyIqM9/MvXH4A4iokGEBCuZZdQd6MzmiyZpHqVU0HCIiKjmx6K1ZJbY7RetT02rrzt1g4mpkhjRIIQVziJxzx7hCokUu53096mOSav0wl6m2ST6xaaTGl4vjlsvrCbj3OUcBKeTKl7s/HuhPd+kZZRo/cumma3Xu+xa08w4vbIscXzdRMS2VZpMEi37eXT11/XzKKGtLGoySbRoRBpevuqE/FGly7rXzSNp2tdjKQItz6NMyCCxM2Cpxgu+oL1LHxki2tIghz7e3PSkzdsTTMVP86ws6eBajxLDXKK4nxNEDdnMo0wwd7S4nxlebTlfBNi8p9VU4nTzh8KVbe87VwDYvevWVOK5u78vWNXk5olOaYnL3mgxTd3v/4SzBpJ/xivvabVriUuDmcSZ5k2cNTDpZ0Q1j7IXM4md95Vx1iAt6g2Vb37DFkF6zCQGuTflMAC4XP6bvbboMcIouxHdKYyJpK5On63LW1pMJHYUi+wxaJEHHM7sHNQ7mgGSn7lD84+/7FiSKmo/hsKnJT/zWeVwqTyPcmj7pXHqluN5VqsQA17s7CqU+hOHjGgssYkznpk8j3L0sSxDidMt5ziLj9cXRJzYBaXGMC9G/Yv4St9aHQh6LM+bONFLJEK4ju+yw8sqT7jw7J1BCE0X9Bkc1dP/TXvnUSYYSYws4kofF32O7kRPYtQWQ3U8vmtf0+TwQxEKetV8fg76YkSUcPDZHAUDiZFFmQrImhoC/Y4+O6TCIC9mXsSX2sCBD88XAcyVhwP1O+8mCy8vmK3U9iuRAtceXdRb8WzxgswXp6mN0x0eyZ5uyNRHdHPdLMn4duV9rUqn54YhdY6eLOzN/LD7SFXVIef0GKCz4tmFmRVeLX/OXYX6tthsnI+VRtdbc/hnjgoyuraWCe+AOv2l4+g8ygStxAS1fE+nLpHqQlp8PW4l7BTatshw6jmw9K/OmeRkkudRrr/4QKt4zKtfckpaLTmPcteQmnAhREsCuptQrLa7p6sw7ZAraCOamffPM5u+7Eyt9rj53L42dY/P70u3oixmvL7g1Dz1AffQhovWz9KmQwDA7YqHgvOku3E9WlISCenjMKYcxvCSde/m7B0mmoge88YNY7Xf78o8ygSNxKalqc8JSuaWHl/Y/YSdQhPRYdX3JKkRdXRrcGXuvAyNo8c81wxuoml+zCVzmaC2Yutiv/4W3n6ry9WXJelRS2w2WH8+ED2veeQ2By9PUqXu8cKBdCvO7LwSKciJLhUqK7ap/CyJmtyIDkdWe4RQ9S7qfQbSVvHK+8LyI7e5JOXo0aI0P1+vdnkeZULKiq1LtQq/WLrlEFJLfLkj1RbD6vVnYr1rDm8Ckkt8uURJkP/zXJc+SD1dpy+Suy5PS1LiyZXqw2GLG2CcINkWw/WqFte455MluXCpMbLUW5KfJee+VmrTvj5bUMKldWkRIAfG7p7zX82ZyfQoEsP1SjennUfNAeTUfdM/JI8Wxtfd3yT68jFnkcOl9YeywtGVJcG5pVCSSDgt7ycZWvpsg3RkDpEgIvqP5wZRgqjP35jr+NWTzwCgbUUhwHCh9t21ObaYEUREtKqRKMOri3ILiIhueG4kiJr8sbnSLWvIB4DWFYXA22915ngeZUI+iOH0BuDAGe08au7ACBgJjHi3Dba5tx4lRj6A0Op76hD1QPC5ZbfIAxB+elVhswcAWLQ3t3IMIRrxfOeAHDxTJbFcxq4x+cDxvF/skvW+8qCrL7vmIw+9h36uKDxe9q+cijEmb+gpel3+HB9b9sCcGilK5AVefkraRUw4sh/CD8C5AZHyZspjAF7IaWAYkwfIvo3fJmp3+sW4VkiOsOPPfwJ8kUsppsjW3Av8g2pcf981D/8HGaOhPYmSZkoAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, D and E are points on edges AB and AC respectively, DE parallel BC, angle ADE = 35.0, angle C = 120.0, then angle A is ()
25.0
659
[ "60^\\circ", "45^\\circ", "35^\\circ", "25^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGcAAAB3CAAAAAA7/AG+AAAWYUlEQVR4nK16e5RVxZX3b1edc+69fZuGBkEQBAIqBHyAgIL4AN+vqBGjY1wmk3GSMSYTR2fUJOr6MnEmcYwrY5bGSaJJNIkaNY5Kxld84QONCIqaACIigRZ5NN304957TlXtvb8/bj+wb1/afN/sP3r1uaeqfrV37VftfaA9JCWR7lREPLOoZk5VHIv66msWERHmoKoiqioirKqBmUVURbKgmn4hXyzs85NuldC7rrKyahm9j0HYB5FMS6VSVl3KZ56l+kakd5xnVdWQVdKepURUmZmVNezedvKN25ZOfkHKfgBOhB4S4yjxsfEJEYlPlCkSAjFHRPDW9oyrTqg+CgxY1BoQqXY0mWGi5+872bRmuc5hvRP2nAYgFsmjkvDDc8fnCQaABYlaslAyCYDgAkMdM2wSg/NFGADGgLIszqX5JuPilfu7bT/47PycHwDTj6POGjRh/S/H7accxUAEiCMDCw+k6a4dmzZsac9CC0dJsbFYmLHf5IkjcvmI4KM4MiHPMWJd9cwyvumU4YpgaHAcUKKglmc6JxUgKmSgHomhQOXK5rdeeru877TphzUZTItcpdydpmteu2fHsEOOnTmusQFO4hjC6nTnTw/+zbXNJ5gYH4fpx6EE5WLnqw4JMccS+QiIDNr9m//zp/CpBZdOjKyJC72zHZ8YnN+46skfm6PPmlYsAMqVpvwHf/7HCZc+8NIhY3SA2PaQm4+sflg6fkWkSMARgRKUNqy+V+fcMD2OG6qjgkakBCQAgLFzv5BteOqbudPOHN/g49i4Z84cj407Ro0kR6YeTmVYfuPDnylPiJyNEMECpY13r5hy+bRxDQCkOs+C9pRIkmDMrEtWPnL/0X872UTp1ufOaCt/KTszyRIMpD49F+X/mjJlwjfa2UuFS9r1+uWLvvFqW4equD7rqSGpBA27/3jV4d9ZV37iyDEHTP3U4o3iRNO+KVX7Ie3Fo/Dm+qPyj+6+3GSNHc2u5cY1J591QKOPCJmJoVSzwyqxRUchKW/4zbPnfG54fkfBDB/mI4Bt7wQxYlDp44fbnzpri26+6/st7EU/+umia96qeJWUlb2q+rosCQdRlc41lx/325JWMt3ttSPtfz/A77T/eMq0VemXJ0y4slQu/enz5zy6TVU4E1d1L6Fm/V6YztZMRbgj63zo5LNfVO12HcKO6+H4rVt3bEp3bfpwvYZX5/+fHU65IlyuOjo/GEIvOywuYw0c9M/N45en3Y6dZHVxVESZg6rb8qtDH2tV7t7tmKvi4rrcqFRcyJyIpI79t/a544jbuxy3Bh6oB/04yhyCeH1zwujnnIp4lg4ngQOrqvAgGD3b86zeC6sunfKN0ouzrtrhQtbOqqKqUoMjoSLs1G343BR8oJyFoJqKZvVVupcqJRFhr51z91uu8vaS899W3eU1ZKKSSg9Or9lqamLtMOXXLh3z2Pgr2ykyFrCKuJ4+91LQXAGpN1H7j0pHzVDMvGXSPyyX5grbWL3v9wr959nKHO6d973N7sIDbs0qrFW2h6JMNHgR1udnHv1QWZ3ojtsOvkc1iGrZqdTGUyf6xsw7Ktr6s9PmPSTKnlXrHkv/+XgfRFS3nnvpopZS4FS1cvusF1W9qK+ifExuFY1p89cuuDDRhiN2fvbWVTCWFaKDS2sPStWiAndnJKeMKDAljPzfX3LFG4hErWrv/F4cahDsvHzW18uB8o0TDj/z395VUmBoGCrG7Ary/LILV52bU8taCojPWfjDFlghCr3r9x9U1HFddHVzs+Py6EkrL5x4//uI6BPgCLTb01/uP37b4mIUPIeGitcJ3/S/+BCyh1M01aVU4e9e+x+THRpQyM9vCdcuf7xioDI0PyUdVmx/tnXJm3NHQ5IkNo22rOOuf/pJzwrft1EpiWahS/V3C59QFS+Z1/XTtuiq+Y+p8u6gUqW6elAW1RcWLltx7nrVHv8hqvrywgdZfWfo0zcv6ncHXXn8Ax3qRZVFW05+Lvhn5r2mGso8FI4E7br4ux3//K8lddLv17sePukVVe5k6dE3yjRqpI7bDju9SSMAhlBc9HQaLfji1Zvgc0PZqQarv955sV95fAEC+N7fiyctvH07qGB6JCfsRFTuOGmrurI4VlF1Ty/aUdHuy/6upVdqe+GnomvnLZVfXNZaYg3S5z+97jj7p6n2+jfDJnZl3nH33++LKOfJwAviybu7clK8bvu96dAGZLt+tOBEd98pI0UgSHr5Vx19we939k03VlXz7j8OPTWtkCECEIDmiWs0uHE3PPE7Y+os34/zmw++kX8jHExF4yLqE3PUjpOm/Laz71nLTvSNOevUtwVV51WdaOmGb3WlrLL0mFdU9y43t+6ER9PKxT8qq0h5j2HsVNfMfVulRw8UEZV+fM4U5iZWwIoQIXfI21lC3XT6ede1ANC92Kv7wacXJW1rTy6gognKfQZHrJhyzD1dPV7FaAJseeus2CY2JsREZSOwc3bsKgupvWjud3YSnLqa9T1DoYL/3vy1JvfEcfsCBWOpoV/MrCz/+NoGGFA3yDjypTtOm4S+BNCSAI37LyfbgNKoL/MPyxxLzAM5sjZ0Csymu76wH9yDi0YABOyZQxKQnzj33k5RSqCGYLcu++zw/tc5sKJwxOusCoOpX17+bMWYkhloR0a5Ea58y+QzhuENf3iNmZGBkj37xRaC5gATV/ipQ6b2vxcD1ZA7cn05rSDvsgU3/etb5BpqDkg9GU4eXn1VM9yvzxlVc4ISETnMmfIHV90Cd+w8/Snfn9kGlYo4/XDWmyKqTrT7l8et1czVKhozf3jiz1jbd8x/pzaPDKJSCvrAGVtVVCvGNK7unB3178aALCyapq0KxIhI7AVHXbM9jgZsF9qtIbt56hKjDXcdsT+igYKzxFSwOKa0NpCADNLHj2lEXzYMAiwZyZ/yUiesCMMWrqRbKjXyV6bkmVWXjlApP3Lu8MHiBzGpjFrwfAkKGHSuON3uEe4gMFCmme+kUKdUsWGf61c/lgEK9CynAMxIs+3282aYQC+Mnw4fBqIIyEuF4pNWdFXF9L6bmoD6xxkAFNmp8RYgF/mIrM6+9vsvA6lKW2BlwDOzGvfT4gWJ2vTxMw2SGvdkQDlTIMze3uoJamTdtCIw8DpJyB/4jlMgSjKBX/D1W1YhJzK8ArLwxlpL+sLT14wWMRvePWwUeLDwQSAgP2UtG8C4FQsKCDX3SeSOermsgKUk+MT+zUG3tRoHKjoHqAVUd9+85BDKbHj20EnkTV2/Hs1/uQyQqfx5TjxY+hQdubZkAQQTtQkXvi03dhe6YIyoxpQ5Cj8ZdlFe87zj+QtGtDNxHRhER73ZDcDsqkxStYOwPTl6D8SwGRXZyKgr1v/KN3VLLgKThgirHr56jDq41dEUDM/tJT+e3tUJqNkwNvGwg3BdOGxFClEyoTEGdc+6+ldP2KZMI3ilnNl28xmHIotI7j+3ERZZPRSgYfSHAMzaGYkFatwkkJzwagUE2ACUQgNmXX7ru8akSoBG4Z7Sl62YTD/cdFyjpojr45iDNmeA2fQpY0lrxav+0PdLINJyLqAhJjSee9yVW3MIaiF458Er94tcVCg9ctQwolytGvWTnbTdQc2GqQYISQ0/lOyz/yqxQg02IkME1a82/6CzEDnLtv3WU46CJoH8E0saGFCpezzBHrixgi7T2RiJmhq3DzXxjNWZEkzVtnx3PPLGd+9ylKiVRzZfUoThWJeNH5vYgcb3cbFRYzfDmt3DogBbUx5Qj9wRK0v9fssKdMz3frK0QhFvvPOrE6EaKL1v8egq93VxiJq6GHnT1gTpc1x7AiE55KPt/Qqvjd1tdsoVv9zUXklvXniKlxQ52fbBohwApb3gYHgnI4q6GwZ/bcWMHbvm031+y1QalYedv/Oy7uGL193eqBA1/p4jRwPQusUSAEAxDQCKOzUMljRJSbMbrunqj1udIp2iLaOBpt87YZVMdy58NTAH3vutr2XWe5oaIzA8mOAEydFvtPU/Fr1Gin1mAY3zbaeC4vDs2KmioIE1sIGiMQoYywAPGqYUB37Y3vcYEygvyP3DvKbrhrcWmFPKln6mObLGEDCIAfYRR0CIhneNI2tQu6Wg1DRj/acTVEOfOEOVCrkTF68/JB4FQ4KW94/qDedU11BDtCuOoSYJwGCDqIEQH/5aBgAE4e44aX9u8bxjrzXzrVgHjbNfnrmfG/LCRwgRAaaYAiSDJLYxce6YlSWIggy00bbdevVtz963+p/bcpTmKKDrmXOKQ19grWZFAsyYNlYdJP5oEKIZ6abq6ZnIdF3/9v3HTDr888/tJFIEK8unjAvR0EC+bZ8IZKZsCgANYmgZG+Snr3SmKtXulY9/4WCRtvEm7yRfMab88HkNTINFro8TbxqfhzXT3/VEtiZdAUwE6MLXyyDDQUC3Hnuc16xxTZqpowbC+5sW5ON06As51k4uAuaA9zy8+EH8NQKSwz/oBEAiKL9/cs7afPn9xaOSXNByeenRI4k+AYy+OyEHmHHbPRi16s8WmcTjs52pwpDFR+37RQb0/NMXjky1LIWux89vgBSGxgkfNQMwk6J1yJHBQG9hQYUKonmvKAUNgn0LGyKg5bsnHEsRNaLy9OxxBJDW04NQvV+xrm0aDVZTnLzOEQ+SRgiTQdOcl1MmigXFs+5b1bZmyexvD0MogXnpCc1erasNXD1kSQMAU3pjfpMaAt92cady6L/A997jfUVC0HcO26JONQ1p22XTZ8x4dIeUWUrCLy9qUd5ruVGqNd/OC+6tpNoemfl3loo0WAKnYhgTmt+boGytNfF3rohpbFI2Lp+n7J5TR6ZJiGrjfb88rEHQmNaPzyvEYFLjGjNIYhUQeUScW/BC2SqMdOvoiZMmJqlNchrwwbvnWobR+oFUjQHU4N3GMSApGBSPXVZONQwAUg5QgKO5r5VtBJVCic0uVpN4OPJPHbRvXKgYU6mr2EQIPrL+oXlj4QMZ5I9f3RbV7Itip7GoxjN2bwWg8BGFIrVZCd7GbctPSYh4b/d9BdSQtr5+0nCohQEd0Ple7GruYyQUqSrGjtjiVGHzhaA5M0Ik122wtuPInJdGQqFu/u4VxqC0zs4kjW0wHs2nL+3KEZwD7UlFQmRyiI590QEREcV5go0i12SyR48fSZE1BKrZX5/chanM9u5zEyWGNUbojLc3C2ATguwhbqr+aZi+OiMCA0QAiIzF1rWn5vaatAGUqyDkacOGw0aTCshYaZw89QGvbAgYxLrNwR+1AdwXb6VEvHTy5L2CAIDJ25j4ztnTDBABRhm5Lz6/mSDc2379OI0Zv4YZe+RxWnnyM7mhYDQ1ADYv/+IIMBnAcFyJZk2/sxJFGlCb9yjnj1leMX32pZWk48344Pxe8g4AAOXUp+EXsw8Ei0JhLLwWL1q+HogsagvWZO38tzpIKz0vqAH0wNFjhkilAJCawrvPfakJxpKyGpJGxrzjfrMLIMUgeU90UHkL+telUuu7iwulIcM1W+t/vuAQAhlWSyZYY9KGrzz750zBoUaL1KGp6S9l5HoahuqSZeMPGOQe3zehRySG+MWXLy2KQMkQGUPEOQz/p5vaK2LsQPcDipEc/vYuQEsCUYck/fVFI+Dr+RtNJXPqGYTWWy6aaDwpARCjUAWGn9x0m5ZBbmCioAHJ6cs8gDw5RkTZiuZDOeRrNtS7r7zkYiajqNxFF8TS6y+MBRGrGXvpsy8aI+UaxVYxB5W2gjWCGALcI8c0+Yzqng9lTJFl1scfv34/U8r11q9VVSTNlB9c+EfVtCb1DyrtX/pJVu2AqdONx78pUuG9tFNLToPqi0ctZQ2uv28mIEpipbPOu/Y9xJ0DBW+lUpizskIWasBRWDrjUx5JpR4/WqEcpYS3bzjvWANnOnorMr09K88dXz9zZ20/lncGfeHwraohFWXdtugFkSD1G50+sHptufBrO7QU2Pf2MYzCsGNhi/jb8U2lWsejwAzzfgCAYOSVxk9Dw6CZfw//qWjU8rPyVaORM970DjQlgYmMMUzJuOtW/MwPnMfNJRQXvORAMSnalp3dRCZBVt9OC6bsH33yu5OcGkqM771T9h58UPH68rQHvBefibCGoOJYJQ1a/v1ndqqoePfW4s0qIjKIHgTVIOorUknvP3Jpb6+yTw/6GnQg033kFT/4YQU2zrqrGm8EsBb5idt3gQRGHpk7smf0QPIGYiU1lvS//u3S43uH9Pv5vgP34luzxxb/U5sqB1dtKfjgVFVbj3k8UyfcduwyqdNv8BK8cJdoxzXH3ue0s89APt7XRCDaZZrsaf/ecllL1iURCQtgKYI6FGe/2Y2I9Y+jZ9azUEvcXUKD37hk7R2fy0oNAxxg36OmiBD77gXfa/7K8mKcqrXCIEOAIln0KoNses/ZzfWOX3zclM9a37hm3H/upw2FWr/Sy17q2ZfYdfGu7y960qmqSpBqvVuy9Yd9IKrvLNys9fpbocSq6f8cd8OO3ZnsWZL4eN9ZHAcnIW316sq/m3NVq9Nqj5qDKPuO0x9xmt34re56OLzLM3d8++gHy5pWxHW4OjgaOlkk4+BYlJ+7+OTl7aosqipOMk2v/VaXblj0VhfX7XNKZelpF7zA2hmyIL4eP1X3I6oV0aD6l/sW/8vKTFXZKZdZux8/p0X/+/zN7EQ0eM89QBykx1WF9Zcv+NE2FeEBXf6a7yl6tlX9tqXjnetP/OZa59WLsmPeOm19esEjjjnNqiz1nIBURL1qed3Nsy9f39HB5RqHP+D7t14iACGipoMnvPPQV47826k5YgtIYd7Ktm0Hx1JqMABxkAjEYiPKEWy6Zumzs/9zdi5hztUJ6DXmwLDgYGJAO9+5f/X+S44ZYSuNyG5bu3/DVyMTqWq1cERaLZSgvPy+NQsunNEMtk5q+7rV74RqcBQEiEScNQAdG195LJ33+cmJb1r1Rfvz2dZHPSwrIWgszrf89g+jTjt6YjOQZsNAvuYGWgcHGqwBwGDXiDJ2v/eH53fPPnUuzm94aN9YKklctUqlwNtXPPenYXMXzxhZMNAsgQ+F2oJHXRxWYwH1EUStyWylfee6l1bs3j3zs7NQmb4Pcbmrq1R+f+PajxpmHjl9zNjhgMJ5aqDASW0Jsw4OG1IQAiyxQfBJBCDr6i6vaV23PQ2d20STxuFNxfH7TZ4wsjgsBwRLgCoFnx9MCeqdD/UdkxJUJPIx0gLA3rUbmwpgrLU2l+T7R1b/0UF1rZ7caoaxVdrtChHXOsdPQlWcofJxzVSVun61ZM5F227aguwTFHQGpRo7HUCUQ4TX/27Ojxs2/s2SZq53Tfz/xgF1Deu6fOZ3J2LC3DE5g1r7+F/C0eKuhzfeMg6gU0eBwv8rQ0PiIMjPLzksUo3mj4gwdPmwDg2tB/HOzQcmYNC++YpQbUFwKNJPhEMJJ7myBGM0uPzgnby9w6RigE9wz4yYOzg2vOkhT12VvxIF4DwFJ6iJcwPDXqaluw/6dWvn0jPe4w4fdtXP4Aefv5tLnaxp/cZnH98NOx67URpPvmRcMS1k0V/pExQmi424ISu2JITSTrdz6jj2iTfxX6sHAdZ0UjSkfwM6m6oTfAEh4roF0TokEgHwNNTJBptSXgJF8Elq4723rgYjti6HTf8XuoaekHwK8z8AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, points A, B, and C are on circle O, angle AOB = 72.0, then angle ACB is equal to ()
36.0
660
[ "36^\\circ", "54^\\circ", "18^\\circ", "28^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAS8AAABPCAAAAACfNhzqAAAEJ0lEQVR4nO1aMUxTQRj+fmNMXaAupiZicDBpt4dT2RwcYMOtTmCc2GBrB4OJJmUTN1wMYYGRDUYGBVwMJph2owaSdmxcbLqcQ2n7+vra3n93tNe++4aXvte7+//35fvv/vvvkYADA3dG7cCYwfHFg+OLB8cXD44vHhxfPNzldyEgukmIAl+IMmXEfm+CAAGIJmVq+hIANZiLGtj68pFEQOREprM+CgGAyJQrYwG1eGxCABStyZ8bjyFzVqTCUk9fACImMqa+ei6JURGZAX0BiI7IDO4fI7Fc8uJxcIZKmGyNma5PiEkmC0y+ZDZAE75JcvUvHkzzNeHyYvE16VzIwMUjDwy+3GwPpy8u5Ply8gKcvrhwfPEgzZcLRwBOX1zI8jUG8irVhmBkcvS1k9oegpVWfZWap7C9rjJQKxaaUWWi9sfIOP3RqhcOKBxKxJp6ZVWSsNGVbtsOmqrfB4blQJaGEVa622KSnb/EQHeHMNuL/sgiHf5HsyfE5YAhevVvocXXoJcdTNjIsbFy1vd/EpXFnKYNxnnHAAEp60u2o0y74mysf9dzT9atcMvG8gkrcvudVJd+Doho5uZ3bguepoUWX4OjbQwiMh2bDjz5+yErrpAFASht5oq6Fjjro6De0WuFvJAsP3jf+WTqa74+9XBOEAHisJTUtSCbfzXa9CZFgy+T8xdKT/cygUf11R8nUyDsLcTZvnVZNnS+rSMvo3xtrQdb/fIef38CgJC4DF0MWJZ58739U9jaRrnjvv7Wy17tZupAIZ1RpMsPQ98zWaMvAMfJRPvm4BUAZPOoxlFT5ctvuZXDyqa68k+ls2ej7T5hKeRpIZ6X96iPZW7+ZX9EZuLJEBdTVTPVC9b6CIRHhV4yYToea7GQd6FTT3328llu5V+yb9wvCbMDsbN00MXKo3IivDEX/P2Q/RFZPZsNlKbXobvPbkJFLMHA0MztTccjsB/MTCu5vI6+wvJVjUKFdXwBR/F0+6ZSSvduybSsUp8IRKQdW8cObC+u+lzMzZubQZTqOdZPYSvesu8ugUtjI6stdh2S0tWX+Xj8eLF7z/9muiu6dr3QLzDrwvF65h1wPrd2c7u6WDHooGJ91eaIfPz7OYDiQY0AoLp/XDE4ePu89par70OGd5i+DwCIF449g+Oq1u9tFhgA4EUMhwRsHiVemxxW+bzW+n0R4c0/Os2hYHRU9v6xhQZhFobj9fz1z4uTaSwtx+BlqymjDmqIhGCGr9vI7xuta99eqrnU27LG+aMA2SivBggC588W5k1/E6ayf2x3homPkeT1NTp0179UYfkyaRrteCQCQKzrcGORW3UvJw/VS/ZdFfwbBNZH5tXSyauBz8UvC8YHtTyJ0sL2kqEitA+TzNdtYHK+jx4OHF88OL54cHzx4PjiwfHFg+OLh/8juynng5m09wAAAABJRU5ErkJggg==" } ]
<image>Fold a rectangular piece of paper as shown in the picture, and then unfold it. If angle 1 = 56.0, then angle 2 is equal to ()
68.0
661
[ "56^\\circ", "62^\\circ", "66^\\circ", "68^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKwAAACQCAAAAACw4t/SAAALCklEQVR4nNVca4xV1RX+9uOcc58zc4eHPLTybFpEHkUe2oBYQHzUmmqfpmnaxP5o2qaaRhuNf7S2aX+0TZuYkNakf0wf1NYoUkWhgtAoQQRRqoNIeQszwNyZ+zjPvVd/DPciM87onbM3wpfMjzNz57tf1llnrbXXXvuALCMmotfa8KvIABeHZSj4z9y5v3+vNsDFyADJyKgsfnJy/TITVpEGOEZEWH9r9nQ10QiXdTfwSjtXCELVxB20LhZnCs+XMwsrJqis+2wtjzH5k3s+zQxw2X/AEhlIbuYGWncDImQISLDsb35a17Xvs0zB4ZC93bM8QKTyButimVAERNjvzOAsyabiugCWZRpxgp1LuA+JOA2VfZ+FI8CzePoWqQGkcgPr0YASB0qgdvmeSQKxk4rLvs+GQATsmjyWgXiSisu+z2pCRNXdy4VKmGAqDZV9sUWNXL2wblWPlD6ESENlX2wcwsmHXdM7GSSQyg/sixUcwBvO1CwgQRd3BlMigxDP3eqQIqYpVTiwLlYDGvjX7SIhBp2u9rK+UnAQwztzZCYcpEwJF8JnlQB2TO8QAEiky0EXoETknHYucAk6SC72aMASxPTUHQkDzzjAxf2AxR5Q6+vImOCy7wZM83fHXmZiCWZfrBvVnHU3lEw0ZC5ANIhy7J+rZbpy6yzsJwUmzhyfwTwTXPZ91sPm+QUjLms/gwlUt61woE1YxbplfRSeWu4l/JLodTl02pvMBIEAXOwlogy3XzEuhpF1qf3Q5T29jOlLRSy23GTqMbYfuk7EV/kibSU7AOuhS2+ZJRhLUq1qG7DvBts/x7Lpytgm7IlNgBAA/8/1Mgq8ClVOdLzuj4InAnyqEZFNsQLkQOO9gwu0yFQK7JWJfb1ud9gqTd3pLWfYgMvbE8sSxaHw2pezCFCM4lWVaUU9vuWCJheVOurkMMCiWA0NwMEzsyoiH8ETYaHCRNTbasAlr4c8X9YJFsUqMA4g3rqgFCIBdKZrfOS7pVZjGKGTJdl6lsFqNGAcwD53/l43zulAYlo3z+JMy5ZFfyiYmwAWxUpoxMCWBd1fPSajqpd0y4kKR1q2LKOSvzL31JQyLIplUFCo7l455sZHTzntkRyPA25wRcs8PDo0+4FT61e4sCiWwJFB8vK13m+3btCxw8pRqTaaGty5/9Ebcu0zBQO4gZmFDwWDQERH9RQlfvd4JRI1PuHod58l1SpPz5+n3eH5x+90AUgzq6MPQezAxdvzXN9Z8eCWLwJtB3J+RdTzLdKMOzGtXly7bxIHIFM1+UcAjxwovm656KgU7ntstci/P4FRez3f6veJrltKax76/kBHx4YLNJBUrtxTI6qrzrc1qRM6oFrrJDtKpfu+Me2+OhGZ6T58CEhoxU50zHB6Czr4yuHJIjc+9noFtWrZaNZxpiX5GQDsFzaUAoi9kOe27P6J183yQb8aU+UqF3zqQFurSeHeDP53pRpoPsrAvE4AAPEa6L83HI6n9B/LFWUlFwdO8O7YvlarcO27U1h1IA6wVDu/IyF2UJva5eUYCAzEQIxGsfv6waWMtLWuIQl1bJoomMw61jJYAugtS6RRfpu1gbP+8+mGIQbDYtUF9eZsaXRCwF49q/lb7RNZZJLSXt+A49kVeTNto3OUlqCAl5cys/zWxAqceWeRC9ckp8UmR9ekdsPs9sTSxkUejOwoNWFPrPPcjSIyS29PbG3/tSIio6a1J/aNy/MRMzs2Zi/OrruZIw8jfdkG7Fl263JfGurLNsAB0nqEm9VYCg133Q9oANXmP0RAHwHVvfPaGOQn67PsLBrXbcrniJJC8wNCwWGE3bMzgLrIMlgYeipy5bkBdKHhAVi3MkvpBlCHoil2uJXw4L8PJvAU5wooNq41GASY3ng9h9kyxoBlq0Uw4aPZfteQRAlOnvosB/gnnMEGW7iADR2lXx9qFixnnXnHjHZouGZN24yzw9GyYf7e+L1/Yu3Bylx1f2MBIwAGGb+4WkKlG0cfitSWzXY91tH+8IZzwT9WAPydS7jhKgYAJwJjIAJpYnyoKRri2CA0RS/KQM6NdQ3wAR3B8VHBmcPXcGRgIIERNHoiKGCIZUdx3/Iaout6mSdko4C7qBWSAo7ONJVnkz5GY7nPgQ+IZY2fYdD83KBr8nji/eMRSUEIyRMkWchy8JdlpsQ6S4uba2JgA+RcIcOaeltCX0ct//ATuXK7l4BLX+566f19sy579Q+mxPb8/Z65+TOdQy07GrT35f84Nee3M66OlHf9uO1n/tQHCuW3PmMqEIx96fMxOiMGtGBZan7s/Otyx/ojD2aeP/Ttyji6/f0HHsklRWfxE1+LWm3HD4fowLg5taPFap4B0GdBWumRGtDNzw26jtdMcfP5XFXp31+9pr9Pkw509e7fmDgMSkRE0cyv9/z0r6EmImKNYMiI2Ei3bjjLsn5ZzyoRln508IdfcKFC4Z3uvOrxJabKrc1rf+48482ZzgGAiPo1hSNadWRoUkTBd259La4S9VWIkq5JtUp6m+owJqL7tyYn794eJUREPAxQYDoY9fNQA4t5BU+eWjO/nEOtmA+AHfO4AZdlrkTY0z+J1450DhzG4J4DTXz0s7hZH/xwvvbLuyZwhyV5MJ/YxjtSjs0DGJhaq5U7J9TvuueKs04VRxQGRMHob1c/6cptDwV9ZR0HVNYhdU9/R7e8kzgUKtIUnP5m+9TXI+rVRERSVhw31Mod7eZd4uXA3uu71yMP9TYUyY17vDbw1JuBgpOSnvunOss7YU5JAKz6+LESj1VbfZScsdd50q+JEk8m9EQdpzsDN9z/wvcyqRcJYcZVCePk/CCrgiwJAJA5FlQdj2qjtUQuOFBbeJAXw9NhUfaJPq2wbaWTxGkbEjFTCTFSmVOlfIar2AHAqLudVQuIRjuTz0+X0N8ecz8fSCd2APSvfGx2NrVlGSgWAggLqOciTwkM5AJQmmf37P83OWrla99xnMRgq6dJzcHSnoLE+UWF9+/F0kntBYO+YQDG20darv2SQMuzZh8L5ntd4a7reLpTKcPCuFj+bttElnhWTsiat+ympY7WphtHAzAvdv0qTtJO39e82J2zOXFlpe9rjlST1gjplavaYbqJ3IA5sZwRh2DbZxdZbLrJ1fgKU0QK0NACG5ZllbJ0Xt6YWA1oKFbZt4iT0T3QD8CY2AEieqM0ORJc2XlNkTFSoQDwZNNSoRnMNxABmHzAIjCIeONqngWEuLh9FjEYoPbOAeADVkYczYmV5ADb5o/hQMbSzqU5sR6gsWeOQOoj4cPCnFihoeNtS22efzHGTUgge99eaG14GEaTggK6suMuCbGAALZdZ3TLfjCMiWXwlNp0m1WxJkOMivcsNkg3FOZqAw3aMq/N2jguYNCymkNsW2h6A/R8GLNsAko2rOKXxgMmwLqPXWP3SKQ5sQH2THdtjbsPwJwpFF66OX0LeUSYS7fZePNNwu4xXmMrOz/bP7Ena/etq8bIM+rlxTIxO3s4GOYKGbH5Oh6LS8OyOnnx5pSvkPtIGBMrD52ayx3Tk1znw1zV9erVbpKxs1BswJyPbbqFK3aJWLa2fZmQ2u4rCMyJPXQlE+FFL1YBCJIXluXqyIx+FODjwEB+FAjhsc2rJRl5Dc8ISE+fANpj0fM3ci+K7TSRG0gvNlRwgTfjSZp53PAM6iCkF8s5YpRPfAsAI2udIwAGqi6tJQKXHWelLBJyUu1ZfxRSi40lAzFoRgx+DsrmIiy1GzgsTpgOeZ2HjGy1vM/i/7YbyszaSDjQAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, the straight line a parallel b, angle 1 = 72.0, then the degree of angle 2 is ()
108.0
662
[ "118^\\circ", "108^\\circ", "98^\\circ", "72^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIsAAABMCAAAAAB4nxsvAAAHdklEQVR4nO2af3BU1RXHv+e93SybZFeyUUzCr2AwbEKmIUgSpYYm2oGCEQym2E6gFAfqDI7MODrTX9Tp1Hbq0Cm1HTvaah3BUaOCKPI7JiAohgQho5gWzSQpkAQSXbLJxvzY7Dv94723bxezbzf7Hol/9Mzsj3vfffd87rnn/nj3PGJowoTJFCE0Mbko4SyTIax8EMbC0LInTgjB/qAJVx5Zwvpokrm+Tb5rUX79XZ7rOaQ5YjuJAVumXWFhEOD945VpBtUR+c74h0ocwNAnWalylqe50KbPwgSf58nbFBbZfac9WGgMBYRTu1Y1XVxZZO147oE8Boi9WxY+7dCfNpjQ8YIIhQUEE9yWgNGdGwsWNr9+6MEeq0vGS9q0S+XUuU8Vi/aXSe+eqMK0J7MAiYsKjm/rc7vkBgpzEqI2UlMaYkCDnkvdRx8AM8SyP5QN/+siALAQk73VMkJYniGcupx0+Y9rw6ZpT73uAwgggvIVCUS7Zt56dOn89yyyVhZnr97a+atjvSwBYGY968hrAAMh/sIGOynw8dRbSW4lAWL6o+fePFW4oPbc2cUC6ddMkOQCFi3HiDAGTlTZgwkCkDf3w8YaYZVFHRI6M6lyxRKxwDilPilPrVVZb6eULWx+oz/LyjJH9Maa5C/kqX7IqqUAACykLN52y+92XAjEaHSTWKTX7sr4Bh9Atvt/M7LjjW5AHbl6Y9w4CzOA9gtLQsCudEnBRMZDFf2/3wfVWHr7JXP8xV+Xly77LPsa9zc6hC/vvKcwUemZvOzLr9RWuZOidpQJLARc+O96CxMB0hfvDlY8ZSEcf//sD3IUp7XN/nnD7tQl+TbWH0/GWQhAfVqmnKivLSqxg4AlBceqV+erZcQ75n9Qc7w8W980pviu/91VFiKAO498f6ldVuhYseaFq+qMCjiXb8ze/pz/urPwP+6ZAQAY2pdbFMwVc5btGNCWOJp2718dm/Z26Ux5JowjtJ+pAMDgS82lorYOCkXez0IVs33t1qYnOyLXZIJdhveUJ8ku+cn0GwFthk1NOz+iFSMBEKVZtsgVmTCOzvmKAQBMn88La5qY8Z+AlpJosOGVqiJ75J2JcZahene6MlZ7XeGKHAOjISznD/dtd+jNvMZZOltXq/qT+rVsJmBwiqgh7z1/W2ki9NZI4ywHF6Sp+6Gs1nBNnTdZVa6Lz85YN1Mc635NjPkuS2g/tYaYmQGg+POrrJ4bENDTkSc3lXyH/7LiZ5lilM2vIbtIRP4da22Qd0vEGQtr7rNB7YbAyZT5BABS6+GBLbOjHzUZsgsB5waKoWqnxLs/a0XQO7uOrUoGgKEDL0/fnIkoO00YtAvBd7TUyZqWWSu2byywEgD2n9m5eSYY3Pd3rJsjcAxP6wZ9t2nw9lDLCrfP23ay+OYUqf9yY88vZgHkrd9fvhSI6cE0fhYmYPjEAlf4Y1XKr2veCxBYzFl/A4CWdywPZwOIaW8fPwsBaL/wyLWEySvLejzkuDkFDKlu/4qiqTHXaKiP/P9cn3xNiwniVEW71PZmYGvqOJ51DLGcQnHki/3HGxYt1VkJzWUZOFSptVoZJupo4da3rGtvHV99Blik04luLUWhPxw4uvfexUkA8zgmMAMs3o8Wp4x9ZbRtn/e3ruAxwwSwnB1dFJYOTmYjR5rmrxTB4z2LNMCye0NyWJoAgEFfPZtcOVeM47QgbhaudRWEpRXVgw27VpbYx7rj+rF4q58YazvStq//scw4z0/iZql1T/9m5mDdme+UOeOtMl6Wnk/LrxmtTPA+Q5XzhLhjYnGySB9NzQ0qVFT3nX31/rsFefcU17YoHhYG+hrLE4Mk8gBqOeL9ZaaSN5F2oRNO9bmdlT3DoWNLSlRPmUDfJfiq/2QLdYtA107h0ZvCztAniAXSq2XBEzEC8HXdyTuWJYRixGWZuFguNT8eejLZtkf86dygt8Z/OBsPi3Q0LyTWFKjfW1KaHLn0dWRhoL3tR1a19YHu3Z2bZ5oTkIvOwsQgBhNJRGCAT7uyVOUDH57M2TSuzZuORJ+UiIGh5zfUMZMcNRiqWW6FfJbq+dunFZUJUauIUWLqI6nFnf/ntFwiEMBv59/CBAb8jS9VFjvJcFhjXCyc5hZ/fNotAAS0HnxRBEBoOfjlEzMA80LJMbAQxFTAaZeXmpE9FRYmYLjuY/dPbgDAZDQINg4WgMCBnmXEAoAWbyEBuPIS/TDLIl80S0JjWRGEQfA3LHeyAGD4RG4GMNBUvewue5DCJByVhSMFDZgA+JtTknoTWtp6XWLbZjHQWnv58VnmB/lVlsinI0wYeWfnjbY5CX1Om+eDO2fwgdP5VQ5zMZhUFqbIXUQMiN+di979uWtcUzrfX9v3jLhuttXklx+0eCPpxXUILKSno3rOOitGXq5qPlC6nGRGMvlljKDv6kzAxKDAW9utQFOb0F6VR1Bc3TwUrY8AwNcyhSIanqnb6/Hi6xe/yCoW/62Ggdgkw3RflUJipky+5xvtejWPeNKA4Q6nSzD/taZRx5ZsjeXbIZP+TluI/J9lbPkfAMp4ieGdqKgAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the two vertices of a right triangle with 30.0 angle are placed on the opposite side of a rectangle. If angle 1 = 25.0, then the degree of angle 2 is ()
115.0
663
[ "130^\\circ", "105^\\circ", "115^\\circ", "125^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAAB1CAAAAABhFjB8AAASF0lEQVR4nLWaeZxcVZXH73tV1Ul3E7IRlpCQBU2CIkGjRIeP4jCijqLoDPoRcMEF5aMgA4OIiAoo6riM4+AwCKOgDs6MiqJ+QFRcEJAojBoQEpaA2dNbLa/qLXc55zt/VHdnqa6m2s94/qpX7933e+ee/dwTYWZGrhwbg5rX3h6rMWl/NJPF8QzBTF8sAia+7eQdif3w8nxGi2eMZgzGiJgiPmJO38fWfOwvi4bGJaOqPzve7K6WT/zdjBaXZ4qmlI1E5fj3J1UXld0RfkaLZ8xbyRhCX1z85wv6y9vj4fV/WTSjJsLokycdVkqX7rj6JX9hNDGmZBqPP1t1sHn+i181s8X0TKoAITgSmou2FIyYFxfqgwDie3pFz2jO+SAKnqzO94wxi4y5f0yrEIrcam8viXr1JUTGKCbKB+vlfhM0nVeWEtlsW6kYYwKVXl7SM5pEEZg4Mr6iXir5wRI7Kq05EZioV+n3jGaMMSaI9pUkjowvi5SQWcaIUCpHRkq9rO9ZJ8V7MeW+SivE3hRouVyq/MceI1GpXIqM6c059+xLQrlkxh7b+NTmJ55118iSHWbJEQv/d838o5/dV4mN13JPrPW+kzvu+e49+Yrjlz9ncbLuID+Ypn8sv23NUQ9uWH3Cq048MobeNqmbsnppJYQmqoo+9KE1R73uy4/kIOqUDBHyz5o78Dx0wysPOuZjmyFHLYK6AGBnaG+jQWpCE/nTNeuXXfBQNQeCD3jBIgzJMQNbRnC2CQ+e/7zV140WQkKKeCkaLZkZWsFQToHbc/GyV96meNSmqQXUIxLg/WfMTzK1Dj+ah10/P33JhU9AlVEBmBqsO1oLrOX35x56/sNQrYvzAmhQPFoIY333L0vJBHBAlo+8d+HZD9MocElu03xmaJqGpPrRgz84FggBWtY6550tVB1SkL3lQ/ecKFqIbSqyfRRGpXnBso9Vp2NtGrkJ31719gKv6vM8tL9AQYMlwD2HFTecjiUINCwkLWWMJ9+66p49uGFLa2Zo+a6XrP9VA4vLBILzQdFgCw1eHXvefSX/dKGgQTwiqRUYVZDbV7z5PnBkM0P7zZqP4gWbCcEFEBFVUFHUcv9Cmu/8En5ExCMIIp4i0ELPfuntaM9aUqfQXP71yFvwQaYQdoYUrL9Z9MW34wmdt29ceTNNj8NBc3/YDjT1o2j9nOf9XsmgU7ekJvDfx7c0rH5wKh60sA8dfgmaQTZ2oPQ60EaQ0HzlS3dCmoh2fDotpODoWyCd1/K4Tt6RWu2Y12wl8ZDX9/cpnTsp6e+eeQbUcghuipicwhdOJWH7XAoNHZ/TtFDlda99HFp1mvtz14EWuPXwfxG2I+CZSpN3ytLf4rj3OeSB4sC73ltH7i4pPVBH0wNudvK2YdZdaBDSZm6hI7tpEj56WoFy45nByhTet6Zsg+TnlZGi5tlf7h1ou4+5iRoj7QvXmUrJSLrsXnK49Crv6NTZ0CocvqHuyqO0Q6wdYensl56l8+whhVfvNaYj/Okh5538V7bPsOuQ2Ji0I4KVyrNKRvsL85ETTyXSbvGtgQb8uaePUugU8iCBVAvNnji4mRM86zY0tejqERFpnfjplNDKIZfx902iNV2LIW5+7kYaGUE70LTwVmGYN31E8pBrOOYxh6V7IulbzYE7mgHqhGx8T/fytoucexfcCw2m4AxwBT7Tu1ftQnEkS+vgu/OWg99Q2a41fJNQY3+0AqtbDvsxrQBF1ukkAh7JRzj5aqyj8FuXKhI6dXYvnMfftrzhqtSUsQPQMqid8okmgA10+r8Cj3i+vi4jUMB963Bep0GzpPCPr2ePp2XHLWXvTobqD9e1aOCcm8LM8IgFfcbXyCyJuG+8GRu0+0428YVKevy/4wjZgWg1dh/5oAQpHNA80AlMsP+lk8m8IoTLPi0Br121pO4zhXDr+h00CQkH8vbBcwgFgjS9duqaerzIofcIQiKet3wjQO668sYwpAlyxqcKX2hzHM2T4ShIx0rOSugqBx2z1D9xhojgHDnr7/FQhKctpWqDdZ+4CQtQChxNePMn1E5T9CVoPV/wlFVBFWX5Rgh+GnsbJ3/+OaibsG7FEUKTJw+r+bxTFfeSDeGi92QT2to6eBfk0+nkBG1ZMCSk7R03XryqBr3gAkKOnSo8tkmTbYtHbcCBOjYf6qAQ7f78xDLOvwgdT4qMl6AKW5ZusagkXaVetHjDRR6HVdRy+wtxSPDdtWSCmvVDktb4jsSlOIrU+J8+f2Wfj6YpVWbN/u19l8amYgwaVcyWZxsvcdRDVRrPXffdwSDt38aogcYtF6pxpjS766KC8963qO4bREZMZLY8M5TVRE9fJMrA6CU3GDteJ/pg8fLUHIcU0q0SAvQXK7GpQpBM1L/xq54CkaeVW8C6eVvHL2JTqtTL8eWXVUw8Kzamr+PjMtMypmmi93zO9Q00DGL6HeUnl5WHxbi4ZLxYlNCNt5xQece1E1eoCq1n/7YrT0pD6yrXn0QuOYJXnBTLdlpHNuppgJ+6oGmTWMcvnzduWQbvkE3zuz8d8gBZfsytbSeAV1Udm9cMISUwbKsasL77joag9G9te4FY4uDj3xzfVcqRmBLSf92y06qRme2NYCSK6gcNSGlAQrqobz5RoNy1OWNLqHnOr9vqFEdxFJvvvbVrx5bKbM2Txuc/3lyAL1ecxhGiO1ea2I6U/nhQHJ8b24hG168taYn8rB9NvM07srm7pswNADzeKuecTe5VvYiA9/76c70nfLyUiyw43xW4rrpMjeAfWdMWnFErPD6/e1T0kglbjtrdYqeSWxRVkYs/j218+viEndwVJX6sKxY0CbQOHRqXWzlOh59purZNYtMfy1WvPXxwaHGms/s8EqI4HjrUVTZeetOcsNiV55bc/J1dd7JxUIbvL48aY4wplzX0b3hR6O6BfFzedMcjxhxmBo0xFZMOmqBbju6Ta96/ykTCY41SJVrYtc81V/rKlpfd/yxjjIk1lvhPS0rdW0KzUq64cGAy6a0Pmlbc99QKijtf0W/2lGZ96+JZcTa7qwvTUllLfUdsb2+UGMyjq7v7OzVz7rz/H0qTvM8y2he73YeHan3VmDnS3fjwu6xM0znHGC2ZZ2xuoxkTm6Hl0n0nbenKD8/aa079RVxxuxb7yuEDew62LfO5168wpblyYMI/SZEaIl2xrY1WMuXg5tuuzMWzbnDvru3VIl82Pn7yBRVj33lFOdf+l19Z6QO69vBiMbEpDkuMMcaUIyKK/q6cmdh/9rPmoL1KUIqyAb2rYhj855P6wuzfrzzIV0JzfvcXGBMZHbTtn0GDzGtJ12xGrnn9/l5XGvxg7aqbUqo5NGF3C1z3/EQEj9u6tG3dDotx3dOf1spfqdunIM5g50nG9P9PCwS0QCUhdPUlBRTK1oVt6x6vBzu0JDehMKYwVz/3xChuDkzKrS/IEX80g6uu+MyYibWgjInmpFPExSkpEGRucwrHJaj1umfZBlpKc5+P1XBn/+H37Tn9zJE2Qy2XErr6rv13EnDLRzpbBwUNwjDveQeFL9ibWyXBb8FC4c9aX82Cdzg83XNsHELzydVtNEH9mm2dVYZCwG5cWvW5FPvUaeqUauLAtb547K+FZk2laV33tNcRSB9a20azWNY+OMXDLewQr7sMR2vfxoeDYQTnEH/rym8H6jZz+Ol00iF3vriNVpDz8h9OFXFyuP1ZSUoiBD9pIT4nDSPOsx2f//GoL+5gF+wqulpQAK/ccBYAcdnEZvXmzk6FNaTmqvfMGQhFHChP3i/PLgZKh2i5vqTqZ6944Kuf0sP/ZI6Y1dWrR8bEYp5Y09b8kpbM8u2dbrVP+/t+PPR+m0SLauVyOmkhymxL6NOD/YL+dGDhb3edtGv5aJDunk9CJG730vaVF1r3ntBp3dpyetxtyTRFzzhddOLPRQskt7gpLKlB6p0sfrgtt66ZguemE0imSxUBSLj5mb/AV8GlFjqVO9knU+iaBXlG5t3tx562GgwZ982/VqnmOHSo84H9siAhD5x2Y2fXWT75amrhaSsmrw1qy94nBJ+7VidvXtRnX3xr+8IEyRw3/XXHW1rNwx5PpsvcxiknVF1x5qlJItSn6HsV+MAJ/zWO1i0z1/efGQj1pz8QHWlJRvXtq+0ohCk68/tm5l2rju19Y+Tdw94kWTKlFbimsr0K2zvu71d1xCEyiRk8/mcH2snlH1jQ6rORdLOjCaqYfq8DCef96CXfdmZJceD9rOLND06ZCP0T1WKKbaICKTnO/2H5VizJVG3sqUnYcNIFkKIjUN1Hfk4YfHL82igeryOn3B3IUfFOgqMmL/uiqJ0uAziQioxtp56aMewIVvdVrrG7TsBNogkBd92ZVgkOLIjj+0fX8UGm6Zp1UFUZfu8xm6AxCvv0iBL+9isTFfZkB+PoRzMKr2jAel74NYqAnyZIHki2KRly7do766jfhzWt1w9tpnvR2t2Z910MSmapkXLtcYQWqOQ9yy0wggpfPvZ7YENo7P3/vIvQ5rgFTHSeHllW8+2eKK617lvgtQD/9F554q0FWRPPA4d+3FmG967bOn+n0phEG++qvfVKsUHB4a95E3WwKdK73LzUA9Y2GTvlbek+Bwnu4nPAjp/ATHYM/a4SLU9TCPXlPweP87Sma7MdgIalqILoyBtetW2vTxme37D5BLaxkCJA45PnpyB4Lj4bpqs2pyfNw0df9BDgGkjKG68Qiia1oGhhbBMorK+xfcldAk7GFg+HFP0zKUtwXDt45xD4Fsndz2oFDT7gsjxgaCBeUXz9tuOgEP+u88hp/Llo0FQrf1h6E1o0vVv1E80U7x2oiMGTWIJL0NZpV6SezcuGlM5ztV4pUQcJm9a8i0zcZX9XWMYE73OvITEp5BSJCk6eOOIntF7+hYKAyp9JTpIsw5O8/Tjs9w+vQQPnQu6CA5OTKw0g8Sp3HbXh/rWFVOlygtwDBVBb1By1q1fcMXejk23khXov1L1GmOTgoH3fXXVMa+6OJV/7zPC69SUOfmxF51lXbyQyWJuHm+2lmHvF9e8kH/Cn/mJWam4+w0WlOJiSsX3Vi5C5sqR4w9r8+aSzdizsiFO9Un9/vjB3s4somvujS95SmH5X+eZZ1+kv3/lApRIbDQHl4r8vAqki4ZRzcygolOD38+W9kg3OB585PeNV6oVAEY4ekl3mCSUYq7SK7995aK0OFJbtK2/0Taq4AK6V9R5xJuTWzJVQ23uSuZP73oK+8qox54Kh7vnd1Tv+CksIoo4NA7/AOYfzPQ6gHUBjsFtJJ05pCx35ZtmYh6pgvSmocwXbP6BQpNDM+M7iL8DQ+Al0MmM0W+Q0w+UTJ9ABTt3M9eZRIQQjI3yhbMrvHXNgBQ/ZgyvPVKop+KL3iDNBqYUap582cbruZOdxgl9yXdMLMQu2LRr1dx27oNIKfcaWh8zs1Q/XXjE0fyAUpb64t8mpfWigzySVte5zz2iGwbmFVErup+fE6bYdCwcVY9j8N6nw+X/bSasJOUgDqucc90AgVW1MPZUyDal1m5d8CD8xFeE445Hh/LjKMHhrLp4fbdLXmIEPD1FkUkCCD16uWXYLDnrPFCao4PpnfJ0GExMf7UR1XWA3Puk6zXLv2o+guVpBPIgGhbaPP4AEQdRPTrO8/eQ72Gd2o71iPD50nwva+vxj7xby9lRRAA02t51KI54QWlYnJnWWv/k+8Hv9bI9olu8c/baaRfNcEWnX+VOdTFPPIZ2YQrp7N27Y7q2sekTL0uqeSw+7dI8iHgpC3moVna7FpeC3dZ+w2hdNu6K1E8JNb5tz0ePIWF3aIptimKY9PZZOTI9ZXCMrsslatzc0T1rYlFC7cNHLfwaZKEjorB692pFCdt25z2Scss9xam876XYhDSTxfsdXXjj/3U/ZQCim2skmbDzvuauuGy0CCSnBhaLRmoTrDS2lUSfkOBB57PIVi197/aMe3xHTN3311XNWX75pcqKx3YDTyV7EfmgzmtbMVqxd/vzZ8w5ZOBibTS4Z3vLQg9sXrT/1xCNiehtF7RnNlWMz9ujGP20sknojteY50axFq48/9sgFcazBlHqbaO19XlmIShFaMioaV4xEsVGMiZRSbEzoCW5GE8SIaF/JGAmYuBQbTGwEovj/fV45xLHBRMZHcRQZQ4iiKAKiqP1/T/R/z0rX/GEMH64AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, it is known that AB and AD are the chords of circle O, angle ABO = 30.0, angle ADO = 20.0, then angle BAD = ()
50.0
664
[ "30^\\circ", "40^\\circ", "50^\\circ", "60^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJsAAAAUCAAAAAC/7BBdAAAB50lEQVR4nM2WPWsUURSGnzOz2SWIbpINaQQhpSAKgmVcDBg1giBaWqhNsEkr2AREDahYpBONdpZB0PhRiMSkCjbxTwgimMTC7MfsazG72cLsnMmMgTzNPTDvOfPec+5lxsQuuNV66mqm8DXpKGxHN3nhqi30K6aQJHODl3HQ9XYgRdH+FKX7djWJHTjYaAddb8+K4Z+od4ZCrPg8iGqtHs+NMEJhocR0Uz1EKQj656//4y2qN3YUxxkEQSimop6asEWErBXVAsIoILO7RqPejqw9gdfVwazF9oygvV4OEmUwYGZmKSreM6twNactYNvbtXLZEa4PR9Kka65mX6TvdjS7owEzsyUAJEm338ZrEkckaWTCUTEpSePv3HK9GVnTN35LCgB+9V1wT9vHUYBTX5NVsywCnDiZvW/8OM4xrNO382p5/VD1vSTNDjpte5SjYTGfL0mVs5KEpDvAOS8lHvrF5D1ssZrb24POQVMBNhBrb5xGb54BaC4uOTrvuvs8boZztlUCAuqj9+FT0cl4MgZweOh0oqrEMsDGq+zWNhUyzUMAJmBdZRjzR1pjyBvIXValD4dyjHRmRhIrnXf6LMR7WvGVy0A1uzNpWFL7wFnev4b/y8IVgMpPoPs93Y/kv1d7x3729heY4B6vBC7NJAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, C and D are two points on the line segment AB, if CB = 4.0, DB = 7.0, and D is the midpoint of AC, then the length of AB is equal to ()
10.0
665
[ "9cm", "10cm", "12cm", "14cm" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAAYCAAAAAAHAOTlAAAEJklEQVR4nOVXS2skVRT+zumqru5Km0TUmYUzahJkjANBBrfOCG5i3BudlRtBEFyEAUUwILNwoa5cukkWij9Ak41KRodxHzBBREUSJcExkOlOv6rqfC6q0o8h6e6qymbwo5tb93G+e849j1slRF2LgSesVTAyKD3PLTcMvLeuvloeXf5END9tvx8WSS8nTz+6qkZOWDBFswQ4YEmDpgeA1FGppPe5FHmuUvIaDS8qeN6xor3nmgtdngLQCiooAnAgRxV3AkDFQAqYmldr4xo06rCMesUGUtlgVAjgmhiQQY9BEAJ1FApAzVPAASpoqeGWE2YjpDR9BEd//dTOpRTFuSu3naYrWU9v2A6tcr0UOHCTHlytzT7/68Px/Cix1btGwkq7Pv7n+GQbFEnvooRL6O57j1RL5WZ4duEdEyd8/o+3r5geun7s+ka7VPx9pk+HNKhVqm5RYWqaKx8DFxY4BdOMegyB6f551JywAkBMogKDsByEpd7dRt9VGuXDiaZTm0CWotAFgXrBj1oloLcG5c9vSvw7qhyUygJq4n+7N6b/Poa9c6hOMHTUZEA5p0Gkq42hHfnG6iTEFEJAkMpPJrUKa0W35ZmI/DPR9hGqQgQCghDJ53bDvTFtFDV0DytO1C4fPAoIERQapaZbOPDGGBSbPjHwAjMxAaUTCxEdHEyKREcPQRKr05kd1aXcrntlmN71x0IWAIEpBXGZyGc1ySPxo6rjK+tjB+WSFeO8zglLTilzKiaC7DvN43FKHKH59euBAiDIW1tMlUM9S5Xx/SrImIXSaTrJwc64pI6d+xU9NprsKKgAYAzfEWEa8s5SAqJYFX05eC+LepawXBcRuVhPhs6ugnd88ZqqyHpMrDCI6kdPPJkxigTArmySnxcvZJHXhOWLxS3jG5fqnaEzhIDAV6+v8YeF7WRTBbD63N99sZUOwfzSx8Djy9N5NAuDS4KbL3yQh+MUxLET/HINU8mIAsBu9co5HzQgtnqQ5bxvkoYvDz9UgNPTeS7XO08pgKe3OjHf4cpdb2N/3rnq48bSMwmnkTe4s8ReGAejb74999lwiUFURpLLaySjlfkT98nM3iO8AmA76SiA1U/kYs/RMEkEJp0T2r75/c2Z7g04WO6ENqnQ4dfXAMhvz564zzB9BrSdGr2+xZXZ7VhPhezWyI0pALDuKhm1jeW6UZhNHnsv+gB2b76UVn5YKwBowM7hLK7PfRuPKnbffBvYSTrofDWN2gLn5/6AADvrRM9X1+jyoALfTRHAu/MLaeVH4DdR8PtXgL3NmWR0GfiZi8CS9SXCyH8jV/CNcWOeZpnkzcj25S1yB/Pp5Uf7Gxe3GVy+UI01RH/OR6lrRURyA8DS0JWnwzZiD6zl4DiVmzRyQwBg4XjwDN7DH0Cc+XvQA4H/p9X/AdlRhHUqtRy7AAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, C and D are two points on the line segment AB, if AC = 3.0, C is the midpoint of AD and AB = 10.0, then DB = ()
4.0
666
[ "4cm", "5cm", "6cm", "7cm" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAALsAAACFCAAAAAAmi9ZrAAAZJUlEQVR4nM1caYBcRbX+TtVdu2d6JjPZIRAIJCwiAQQVRV9AVgMYdpEdZEcUfeGxCEI0whN9qCiRTQTZfBgQBAL4kE1AliAIaF4gUcgyyay93L2qzvuRZCZMTyfdTMa8708yffue+/W5p05VfXWqyGAzg7Ss5DOnkqei6wW5um8zJEaSVj1IYNBEjCYuFTzIRly52bm70AAyE9CvdrR2VN+I6791s3MnsDJJXpTHv/pw8ujEFqr/VmvkWNUHJsuCi+KnP3NjTm3x9d1l/bdudu7KsgGjf73ydQ/sjJrQgN9pc+cZUhZS6ph56nmZ8KDrDuL/D3kGGQzZ9hIn8r0IpoGQ2XxtlYiNAVHCLDKj2PZXM2mhGjCx2bgnWkhJYDdH8ISY3BmNS9R7LzQQ7puPuyt1GkdRYrJIC0w4a86DPe4rF44tc/0mNltbZWYSBGS2EWAKXzo013vMTU2olzsZ2mzctRAAZ8oTqZ1Grs+VXJyjziavzvs3J3cCG4YgQuQRUqeSD3MGshG/b7Z4z5QhaQnSIIoRJU3GIiXRSJ4Z8X6VajhSe0DXoneWPe9UuhcLlff24PKMHXKHNmJ6pGKGRWyRMNKAEg+VJqQOYkdUmpi1gS2Wvvroc91b7jFtp3xubGFecnFHuadz+d/e+EfTZ2bt065tmThMxMqGMlLCYHDyJEMj5veik2Oq5AIBzbZwkbiAB84riwT+cfsd1s5fmL2d5IorjYuWsjdVswSb8J9v3n3muBMP22JU4pCWtpYWADAP0eGOGPdWDWVLkWcGgY12ExexdmJfL3/otuVHL9iWlcnIagGU1pUwdYRSUojCtLYj7XevO2Hcgae6nW4zxTYYZA3ZhkeMu45sB35Rt6osD+UCkbBNnvPLbnho1+s/ZUVC2ACMkqQkC9sG2WDF7GyBZZPmBQ8/dvP+3y0U3TwAMLEewu8jlmeoyS0r5NrZtuM4YcC3YWPROZ+l39w8HcI22jAgHCk82xFAEGsmy3ZKIW+Z49zxdyyIt/1qrxsECiCQHuIRI8ZdhKsucoRL92jb8xwK4Jbi6OtfmvT0nF3yjgNhSUFsjFFgqDRJ8p4krYGCExuTMaWt85Y3f/4SKSSSQMP9V3I31rirj3rkvWcufaqSwgX1hoUn9+156MJJiqQXBJKZGSQEQLBc34NJY8UMxZ4QvgncVrauezKc8nIPu06mh8y0ZqRQjs2YDvMmXsoSk7DhD748dX6SGdaVSsYmZTZGa60z1ia66tLIaM3MrBVzGGhmzSbMTOWlbc95WTGrcLB51mbk+tW89dhBOVxx8sdFJzsd+MtBzX/5UiwqTLmcZFjMABGRAJPtSICImZkEs+cTMzE8idye/zvu/D+qNPKIUuiMSuu9gBHLM32++/eFBbyyqwwnxtb4n/7nj2eaoFk1NWiGxHm7nD73mKbYLTfHnupqX+/aiPm9tcyPf6/rl3v+1eQ+cM3Ft9x2mIMmShu2E7bPevzCyypeX3Nql9zRyXp+HzHufe3ldJ+2k8bck2BS+Yhnn9ivEnkB5yqN2slF8dSlj5++pKXPQQtV3PXGBiPn9+Jtn2hSf+3cxcF1rd6T43o9n0XKjcYMspy10ls4+YSn3ZIMO/PrD2tGjHvc+uopgZw55vC+ubO/dVeJ272YfTtq2I5dlFtY8tSjLn7HL/vtyYdy5UilyKcAbIkDlj/0KXy/O+JyR4U5YlPUg76nWbH6/rejWnY4jNh0qOJ9ze9HpmKCdfezNiOWZ/6t7CB1jPfaS8dekAf8JkSuV6FCA3NpAEDo06ox4zpHHzbvwN9vk0/89S6N4HhGcZPQLx6286QoQSyYPeJ8rlHq8MFjiUdDHr7PfwSBE4EIxBEwgtwTk7NgLdp/n/mPdTmhaER3GRJ2fo65QnCOsjQ2IscYQe5uiWX8xucmzZmy+x+0bQ/bXsRjv/vEY10M6fgMZDyC3NPWNP3z4fjVZ1d+594+6yN0SoOgUJo6/9xlqdEAldmikRxHsvvKySufnyYmbEOvphi245s7m8W4+4/qBEosDCRGkLtHj5xpX7llIZDZN3+ikmHHO8ZS2d37mG9WbGj4pDGSeuRT5xypLmxHU0ketuIvwzcXM4Qrrlr+SFpgyJGN94VnXn7nXS5laDZ0/L2UDdeeS1GOYueqef8whhU7IxHvRBSnZF47ZvYrB3yiyMRk1OlPdaaKKAINI3bYA7uYsetNkasMG4yE3wMFt2vF0Wd89vUL7CYiyly7eeZtjgEcqlKIGgZ97fHuyPhiROK9J0e+Wr7TZRfdve925AYWYoZ96u8CO8ssqOEPQabM/B4LRA5GgHsrUfzOSXNPSm++KGLkDSwFPW3CArY1YGTDY4LBCC9Z0MdIgRHgzjCdn7nwbGfOMe2j0hiR8TWYzrqzDAEQhi1/uu4JN2doGZGYkUHnQbOPjYL/vkjD9oJ8Agt2ckj3i9rJgLrl9Zog97jf9K5RmjY593Iw9byLTeFne433SoSMbQgYR5z02142wPAba8Rjd3gqzSyMAPdVn73odEuo359tpwUqtmRWoJFQ35lPd2ETeB1oqow55e5UApuQO2VEKZUX73vRZZHKv9Kzl7SZC7A5Z7HHLfKcn2V26ESNrP0ODZu+sGJ5uGnjXQB2Esy8ZD+71UnuO3xwNjziTz3kKr9v2K6X5O/zuCBsQu7Kynpo5T7Hn7wdaQQPnzCY++Sd71NSwx9uwBvL4OjfppuUO0Btbx949sUupb28Wk0ezFFdOL8EKjnDfYoBYe9lKzbpvEmk1pJjZl3gKzg+/XnPqvU6vceo52OnMOw8IwylzrTXFTYld/utzx//nZXsMuex4OAqjhZ95RdAOuxwFwaaZ76YYRNyL1ZmnviteCtGGqP4+qfzg69r7Nf7jhn21A8ApJmxMNiU43f1uRNne60ZZ65EsW+rar+j9ei7uvPJsB9EcHib92NsAu7UB9LUWfzkEee3aLhkK8e8Md2ucrCB+dqdLmyiNbr7wOcSqhwRlUApUZxRoBMyQ60vAQBSC0ZYUxdrHj73vtYMVm/hk+d8aQxlCgzAdE6oXuu3lbGOu0UBoA+/kzRkd2wbRQWTuoAvsibL9Im4VsOwACJ7/CqzCfzeUnKQhgfv95WPCdYMCUAv2WGopVwbZ91fWve8fmqWY6s0KpcdKtroCyMLmc61BPlaCUkgBIlpi/Um4M6FCorH7vijsdDKtQEm8OIdVdWjI4vUTuP+sCYW2PRzj2DbELlmqUfFQUvO50zILmyoG1Aw2GHppuBeJm/xl3e72hMGtgVjWIDe37o6XInZ4hPvLq9l3c9dgpl1amJDvoFeXfFTbk9rl3MwLOhs645NEjNB8eRtrxllICSgNRti2TWq2qyXhUgP7ngjM2sWydZ97iAh12blBWnU/NjY6eNORjFw7JptFcYh1qOKmyJHlnDYHv9pS2HYaC1saWCswBqqcsGG6x/x20QbfKi9ZhIopzZaEu/0L//tta5Hz3P1BmQ0yiSE8DdJjnT3nTK7xUkzIYSQBGYwzBBmK8IpQp37pFoTLf3ctW1Hf77nnqcj0/z14htt4/V9j/cUSNeelBsoaZEajt8pY2RUiXc77NotE+1oZgYzw40slFpRpSU1hSgUJZ96A2SGDg7XfS5S+Ge/X7kkoZdvv3ScouZVpAOuPXbQfsxk3JDpo3MvOSJzQDOO238ckcBAiZrNWFOBNwgG5FDhkN+EmtQ46q/RTxxEE1Rfu2tuPLzFJXTJMJ+LvJr9r4ZtMVgMRxcrqMDB0hO2P2UPAdYDeUNbCjKV1dxlCkvjYzs+oC2LBqYgimGftMPEs0Tpsf236nZKbbf+Wy7dwGjTsEWpVMObr1IO3Wc0/dckCbaF7s8LCgb5gKqf7lpw4pBm36oB1dKfBH2KrKOPOOIQN+T2bHRX83Mvnu94TjhU3QYAQBpAD1NbKkp695hd5rZDKZJC9rctBtDWW/39SAggb2Mn63XTkwzU48kEmcy3QTn+arsvTyecvmfA0RDvbS1sA0j0NQ0rZrD87Knf2JJBYJgByUhAmgkdXNXWXCAFJOdPvy5tztOAX7VnhRUrlGNm/jhs7Ry3+xVWM3kbqPAURknqbBPDiZm+86desVVRQAidGdOfVyy29ITOau4CLLNUKcxa9qZEX79fMyKyXa9Zdf9w+laF3W++Z5SgskTNvslIYgurxg2HuznCv3y8ak0UCWlbVr/jRQZuKVdzR2CkLRw7aDr8QRUObOuwXcU29WV23r1+xTvvH+SmbpSv1J5eKRBBlUcRIHgt+teRB8EwAwOXDVNIOgpo349fOp40WdaavD4weOLU2eHNvqq+hXOCWTLn4zPvCnPcH+9GEGkpLPa4kNsiZwuHPcrX9qmDTLF+aRergfE7rUUa5/usnDpo2/N3CmJviFfrAtsvqh2vqd96xC1pPHS/SYP+HQqZ7Wh3WUMxs467Z5BL1dmFyyeJJglZ1YcoiHTn97KaT9cQp90XDkMey1gk6apJ63Nfx22j9+Z6na5DRn1vm1Iv2RGG2MNmmS2cxTW1ah/xzmOeGAZ3CdiL8g35fV28I2jtncNXbheMLgQQ5WrTGrbc89kN6OxSnHFP9pG1jswFO3+c7uEj+J3zK771/gMugaRr3HwVR9KQ2UHP1+SewksPX7XwI68haE4Mnvu8jY8Q70nvT9+5Id9kmroTi1kEVV+0FMTei3trOZYAR86aH9a4vFEIUtT73u4SDdTprXsh3hkf3Lo12Uq1UeLGuqqGyojYkpOKpTE17NgmynWdNaOn5mR6IxBg6q5MJABicKzQIIg1googJEQB4aDwJzukCVsu2GG3uqkKEGCO+7UuI4y5ek1YIxePLux6b0oxJaQb/gVWYuPeWX5D66tF8kLks1lt1+3S47nVbbQfkYfQPvKhSnNHzk9U1YSfhfZTPvMxE7psfYRuPXW96O7jG6uFyKPHAh3lzJ5sRiFtrrnNlIlg45Px28FoUrasmvAbWFqoveTDjjb170wZgK2xMD/Jb0h/tzpGOSsu7Z67y+qijEOqKUIkXhbbfXTWLcJmZZnqmFAoW7a48GepkcYMWRu+QdBqc+NZ4IZ04GAc4Zr7F2yVtLdFaUtapfOug4CxwOEZfzSd8NBXZd8xsAmVQ7JnLCgSjddIFPpemNHa2NpwLsKprz3LTmxTpYlKNduYw5YVttpNsy5tMUOmMTvMRZwX592QwnyEteIwd/GXJgg0lt+D/3jt1rE5PSpMRgu01hTSGYAkR33zv1WSmebqgGZBBhQe2fuWIWxQvBsSouOZs/1VNhrhXvrRggempZIynyjrtmo+M6Qsc1VktR93rbSFrrKfxV7qUyXnfvoFLdD4oMz78czRZqyIGBuvS02YM2aO/n2nV3QPZ2sG8oOLS4eqJ31lSofhomFeMycYVI1qkhVb97Eqb7Qutd9exiXDlXTVlMU65VJdtfsOEgvdPVf/4fHdg1y69ut19Cjhbqdc22WaVZXevtYAjznkF6mp2eSrsdo00QrfXHVCC2zdVFeOVNrFB23Xvjp34jLbrTTQl8gzH34H4TphsSruLevE+2NRf46Mx4uAJ5ReXnhyq2BJST2ankiQjL3m4Wu/wKO8yKs/L/jIf/O/1Fr1cT29fR1kvOuEp7n+rYcZGUeh5ZKTJ9roYaAejUPlMvrhjfN3TUSTFrmo/ry0MndKeqvPg/X2gS84J96p6n+PuUw4of7hmONsDQ/15UhnhX3FDc9MTXK6V7pZ/ek4HN/rXn/900oP0tvXwbhqv6Vv1dYyBkM6jMKjP/9BQYRJTnFd8W78Oc88N7niaWsUOpO6jymBn42icbec964arLevswur9dC7G+hWExO9PXfe5Ao7Ftm6rnGk+PldN2wTNWurQhidD+v2k3JS5Pb+95PjQXp7v93UUuc9UKp7/hA5svP0Uz8hm3sd2WGyDdYTKGKiMvHcO349vcMPLc4xA37dAWpXXETy8P2P4BIDCRsQjBnwf+xEdvvR8xKBDNxdUzpFiIyIsjhG1wUHH+8btILHkreRMXBYUnk1567f7p5MIKnWeK6xU0oUjz1z6ld9WlFy1sxgMKAXu+xrzHwEMSiUk6Ka7zOXOSlWWn5r1xznDNeXoH4WNbnbXflmS178+E07Lgup5DZe2EhAk6Ktz33hib4xeQIbw0IO5FgZcYrP4AU7cJzIZDXtV+xuOx1fSmnBIze02F0faiA1+2CTcM+8bZ5TKjYm5crGRwGD+/CUOSuF+qnWP6QcsM5S9SHtsGRC5l8fEnQa7rryyrimocSkHGq+ffuXA83FAfvabGA8wz03tC1RXSkzc6oa5s5RwJyyUfOn3FQxzKyVXo97knHGcfaJhVHM+ntX99QaIjFzMTThd/d4oKi5pJP1uNeMGXoX83/8p9HUZq9QGHLRccOI4dnK2IjkoT+/ZXYWA0KY9fZyKstIpa2Tfgq3SFyuWYu1mnuavK4rFlx+UHMW5T40N6/dVqfceNUdU5p0hPFWEFOxUe7MsK0sUT6y/e5fMSsOFYjWW2NwYYwlo2MW/d14xLX1yzGVVvPPMztu/aIpOb760MaRmtzN9TfeO50IfqpUrg2FRrn7SQTYrhXDx5Y37vCFlQFDiIH1PxlDQ3utezy92klbas/dKaa3j5r4k60Sv5DBLW5wX1nKzKy4cvPkP2W93MeDrzeKhDlls/TBqY/0Gi6ZNFsTw/1x++7UUmi+e1l/W2U2yrAOjWIdhIa79fwpd5S61k4ZBlrFUG2VV+lU8fJ7Jz6VhYajYXNPmVNm07nwYz8qa/OBYWbOItVvNzvxtpSvntOfxzhWzInhsmE2HLO5ZbtX+oawO1RbXT1GyAQP/uDWfZY7VGnkeIyhIQFhQO3b/c+TX3w9mUhxkMCyB8LbOuHOLLWyAR6uSDJHl3NpGvUxvbj3DQs+XqChQ6r6B3HY/eDk32WccNmYhnPjYGjNzEliAh38ZvppnSvWfKKzddfDbMaL0Q8u6o+ZUK1ZKgoMB3rZxVPu7zOdpjywB3FDfqeA3WfPuOPgHuWU3TqWEjYGVhpwbPKL7hcfnnbA3e8GRBmvt2ZvHXkb9ED6cBWgOitwyqwvP9L/4/5WpS3IdQ2ZQwf7qaL5V7s8k2WG+3q4m9Ph+p11qtgwr9LMcfH103a77B39obl32rHr3779/f598MymnBoTmPe+sdu5f+ozJtKhVqY8hN+rzkFhcfs3fr9HeUzXaAbHudAf4vc2AgIyLQRkKR1NKZv/vf/JLb58UFO8buRIWsxuLo/52rq/tcWRT6ve+sXS3c6e5kl0tRNTZ94b4hyUKu7mkQvmHSBQbqYgH/pxvUcI1USUA4wAghxUlmMlK8v+/MCSg8/dei2ZSlM5nrF/8+XrBB8q5uWin7/YdMKnt/YzkkSpEMoBD8U99GEEawvoa0W5OXrqtF8eEDWXmwhMTFW3NIx1FpjW/j9hmf71d8+Udtrvc9tbSByO/JPD7a52WQkJmL8vfOL13OdmfcyTG54qkCEyFOkmgKmrnYoF/eD5d+yb+sTBcGOlFoRmGzosld948sW+idO329Vty3fOOuuyRSrpXvLXt5aN2XHvPac5dlIVJENwL3sSlGm7r011j6u88PW5hyojnXLzCFEHAamWDkeErHfpomVvyI7i8lB6u1oyP3Gn6dvkHEtoYW9UmCdDZDJlWQLgjglGnDR/xoyyP/F94qT2LGx4YAaEVlleWBbSIAIKPfark68JvZwUQsg1O8jNRg/WI0PEWlAEJ3Eptl75ymd3LBcWt47rmNrZsKhfJyylhSOMJp2msHO+CZpDN/yWbiViQwLQGQuANrbhlQwRJy6nDqWWYFKvbdVmyMT5brvhMxDqBQFItGNFa054oMTtGbWytdlSYBKCAFYWYeNbcsgQcZ/rI/nlt7dcmPROCP17z/vqNQjyja+/1YvQswEtwQSlQWSvHi1Se22IGAFksJEa2pgwT4bAxpg+jh4orDZaBeXtfxlUOCtxMrgWZVPBsFLMWcQ6zZiZY9NXMqHhp9/sXVP/opk5zjY6fmVtLCQeXPCqj+cyW6hjRx3nMss8b7yhf1SwAENKJgsMQMMFSS3Ou5WVZMkgBpy6FgCtYiHIVyzxz9Yl02jps5+KnfUEkH8F/NgziJuvHD21laB03MAmIlGgHNqttDD+nw5GL+naZQRpDgnyVgu487bp6sqSRMiNdUnrQ5gPKCQ8c/AnX4hWH3vxXUf+C10OADA0llZ0W3uNLdiCG9vxJ7AF/Biv7aw976bbnzyp8UNWhokspsrYm/cbu3WBbIvr17QBiEx0lt3OKfHo5d+ZNPr5PRvWA4YLx03yD16/11SlkkRgyHPEakG4aPdo4Vb5aQ83H5f87sBh78VvFETuP95euOiOnVzbFetprXXAQphzDnzVPDph/9Nuv2rV9t0jRrIGIm/J1+5sFR9olJosQ1YjAc+GudTbk+nAxL09PSPVJdVEPHf0qKcq5xf8i5YaE6mq+sxaSDmrdazmvw5R2LO1vbQ1afE029TI+LXxIpBNDG0jsSnMgdhIIKqXe5y2bHbuQmnYQscsbZFpr+44INBmj5mMHcTkMsCCDde9vmJ6xf8B/S4IyPKlgakAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in circle O, AC is the diameter, MA and MB are tangent to circle O at points A, B, angle BAC = 25.0, then the size of angle AMB is ()
50.0
667
[ "25^\\circ", "30^\\circ", "45^\\circ", "50^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABYCAAAAAAL7+ChAAAGGElEQVR4nM3aWWxUVRgH8P9dZusyk3Y67UwXmJYWaEsHxLAoi9AAZVHEGHd8EEmMDyQkxoQHTYzGhRfQSGLCEhK3YMBIoIksVkREtmr3hZY6W6ely9BOO9udu/mACjO2ndty72W+1/vlzi/nO/fMl3MOIYKjiE7fEiPkj0hXmDE9ghBNapLm0qLAkpFvcqoVcCB85KIjWLM9g2GSQ0ieMUQaPDpCAQZrXrPjq63fhzk6I3k2KdC4wyzNlN8Bmow4Nc7bG3NELiohO2T0f5EXqFQAQvHjfa2ntr1KkiIvAZKFpmA/ZVICQnWZjtXvXbQcBC0Bwp4K7/efjCgAAXzzs+yhMWm55KEPo+Ejh0975WdwN+rSW943zIEQlFAawhMoyOgLGvLSZYf0ftpgZjP3lBMiRyf/KAlRJAAIhPzfrxACKxgpUJKyiRiTAZGhJUynmUVYK+3VhAiE9zXtXhwFIVByDgsRQ5pBejoNwPv54MgGhtGDI+WEkBHdS6XTglAFgfJ5HAlRkHNEREF3+cBendR0QgSC14ZX22Qk/Bfud1/eOB2IUhFOO/rbJxaJyXLOisTQYyv7q9RkJSEkzFvO9qcABMAm+hKTEhDjtrqRlIBgWfo5aYlKQ0xrzvlTAoK1ecck5SkOydx0pTslIMLjRXVSFk3FIWTapqt9qQABVuZ+J6FVVAFCvnDdmRIQLFp6PHmSGhBqVWNrSkDgWHwi6T+OKhDdU86GlICgYsEZNiUgeK7rjyQZKkHsy2q5lIDg6f4rUyeoBbEv+WHq5VUtCGqCdVM+Vw1SvLR2yqZRNQieZH6f6rF6EOuSH0eneKwShOGAZ0IXHz5ESwPmzedGHzZkqH10gMMa8szkKYrtFN0fPftvO4LvGC3rTqzNmyxHjREZ+Lj8oCcrDViZfV54iBDuZ35HxL+ZDrLm9RecACBO0NYrD4kyzCrDQY+Z00RRrb8MAMIEe/PKQ7SG7O4D7nW1XToD0l681A2I1ASbfMpPVhLr+6/tyjxtBg0sP3nBrmHremICsaEqLk3Jrat7wVMsDQIAGg7unscf/bJa17z47bgUVT5fULh7hCUEM4a+fY9aQr3mG+4T4/Yw1YEAAEKe2z23/P5gTNvTfyh9W0X8XqpKEMHVfut2QMgrd+TpdOGujvM70xIyVIBwQ81Nvqgmp7LSng0AGBncV1+YmKXwZB294+1sHzUWzZ5lv7elfG5wO3xtq/VqQcJun6+rV1OyoNhivu+4lb3+2UKH7sTinfHFUKg0orPNNTgcy3M8X5SZcObLtOk9PkZfnfDLCowI39/R6GX1mfaFc6dxiiszZMzvausKmAoLi0typ3fUISMk5PI5e/r1ZWWzbZbpV1wmCO/uvNU7Atu8qqLMmU07GSD8SOuf3pg2e1ZViWnmJ08PCBkL9DY3jZttRcUlkzaBikNCXq/rVp+2pMKemyP5xExuCOe8+VffaMy6sMJm1D4wYoYQfqCj0cNqTSWVZTLebZgmZHzE3dgRysy3z7Fb5O0ypwGJOHvdTh9dWm63WOQpxwwggrvFNXyHsS5w2NKT3xdSCMIPtzb6GMpUXDUnWxGDFMjYHXd721hWUb69NFc5RBJIyOd19fg0JeWzrRZlypEMIpCAp8U16OeslXMLTMoiuLPRmowJIQI53FnvYvRZc+aXGQHgbtsvgARkb14I3Ng2cnwLJurQrh70EqyuMN9KdHdEeZEkSBocJ5IEwcvfzxHaG30YwoSQ7AKz2WSICbGoCBAEj7tXf2iRFyXe0plGiFTRVt1yYILS8DFSJ7IiqyEBgPi3GoT8ZfnnxQKvIyeCABDHlbjKmST+V5qwmy4WYvIv4ZPGyHiIoArSEiHNp+ttK4wrFFxCE2PgI1f+0GN74kojEhf3vLEl/IHjTeUXsHs/ut9SM7T30fgRGTyw8RUNNtgUuN06acTo8tzcmsNxEOKn4A4NxOoMFTcr0BIrAKoSJmvbLCtA5KjIAG4arICnML7N0gVCAPxBVfaz7garLSUw+PX8eMgTA78gcKxLzcp0tJWi4y3rzvgFLVh7JFDy7Bqpd8cePHjnrjPVArn+9fS/AbafMZu4DTX0AAAAAElFTkSuQmCC" } ]
<image>Given: AB parallel CD, angle ABE = 120.0, angle C = 25.0, then the degree of angle α is ()
85.0
668
[ "60^\\circ", "75^\\circ", "85^\\circ", "80^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKIAAAB2CAAAAABuNhf+AAAMYklEQVR4nNWc6XcU17HAq+7tZXaN9l0IKUgYsSkYAUYxhmCDMRD7PPJykpPnl/wBOef9N+/De/mUkxxigxJsy4aAiWUCtgRiSdgMAmSE0DKDlhnNTE9331v5IFkBNKNZejSK65Ok6a75dd1bt+pW3RYS/LsLW22AzPI9QFRWRq0kBhIQENCxrpVBTEwkNCAJis/vcsy4Qoh3L87567Tw3IbdtY6/YWXmok8dOHFDX+O6ezPiXNnKWJFDTOvcXd5Y4qngjpWtDKIRCgfXuR4Gu9XSf1N3ERPXp5Q7k9eOHHI5N+LKzEW83weN0+euxpUCEK6IFSl0+UHHTxtuj79SEO0rgZgcGgxt2tG0PsrCpZpzdbkMtJkwbdOyZYbLrKmbdyrr/cBmv7qXdMK2IDlY0QpPJBjXA6X+ZZ/Ljo8OxcoS9/HRANQDAAjmzKuzRyQR7huI1ZdVtG+uXG74yDICXWriSvzxkyOvaADGtObTi4OIaqX36je/Kbncu+dYq5r+OjWwdX2SSBoRo7VaAWukt2lnrRM75jDQXERiLa9v1I4f9/5X2TJjrWl+ACAhBVdAGPc/PrzdAWBu7jJ+G7a2Nzb7bl17JjJejIrmUgGYNT4T9DqajDkgJoZua9urVFWBUCQzIgAgAkDiqbfWmyfcvOSAGLo7Wb61RJo2KJj1beLZUHWFs8Uxe0R6fNtc0+KaG51saKvMOrAln462lOZFtig5ID55oG2qhgf9Uxv2V2WNaDyTG0qc7TKz9WiKPx4cKSsJ3f3o4Q8Ody6z5rwkyYinyVOcpdueujpaVRa9evvBhtf2lGdtRIqGg1VacRDRteboPlEZ3NpZ25w9IcDMREXQYUaWLaIS3LJFRA2fx5WTTeTcdIfbYeKdtbuofr8e7hvS9Jy+kBlmsyt3qhckl3yRy3tfRl8L5qJ+NsSbnKakuQRAtWln4sPzT+0cbhkd9pY53RwsIppWxmsx2HU4efrL8ayiHwAAWMMjQb/TPSADEEkAEKaR2Tpq9YGj8nxfONulmOYeTNb4nO7gGFAyaQJwVctiQNSqw+8ler6YznKscfahsX4xhxB5BhkFUEMNALJLjJl3l/nJB8bBquxGbyakVX/nLWaS63lNSwVAycXlMLDb9+knkCVjOOINLlxoG5bC89rF5LwiKKU/dJ/qtfZls5bYY7IpsPAzKqSquROSlcc+Wg1ulT0XaW+DlskPyAhpjd8FI65zJQ/HsSMij3WV+7axU5fmDrViJqPEosHGxenH85qIiPkgAni3Q8+nU79szXTzdLypzZ3PF/xLlPI8CyZ6J5ln6JcZwi+OzGyuc14xyQ+RtE0uzyD/ycblAUaivgLUdPJDRCWw4Wd8ANV1y9iR6IksLUBZK08ViN5NqNw7dagj/ZJPkSfu6gLUL/N/Sm2zu/eaVNelTSDtiemG0syIIpOnOxgIpZ3juUf/80q6Bdkajpdn3lklk2oGp3cyEGzt27uH//iPeJr0IPYPaPBm1M9YJis5ms7q2p9W9PfGNgdTfWjP3PE2Zu5dqTzTUzjzOHeLX/3qVLzbl+IzMf2ktT6LiJLZznmAPSdq7f5Nw59ei6ZIxK1QpLG2AMui43I81h/lf+uBrUsnXfyhuabEoXYAKEDfRWl879j0by/HlnwQfRosd6ocAArRGlJq3ngr/PvLS/qRibmmKsfKAQrSd+Gle/DL00ZX+Qvem4zY7dXOlUNhGmy89uDb4szZ0At/TEya9cECKC9QD5CVvr4n8dmFqefX8MS4KCuEPxesTRl87aB28tz0c39JjPmqFCe1T/ru5gIhUume//SePD3+L6ZnIxU1Ts5uUNJYUFYgROQlr74f6Pns6eI3hKeDgeXuyCQkSc4HhIL1o3lgy5Hy/ovhhV9jIV7pqGrHdB2MJEEBm72o+Pfo574Q++aLABOPvJXOdHMypKViQbv6WNL9Jv3hk2cEAHL0cUWt46odSYsKfPDAu/Nw6Ym/hAlAhOdqnIY/IYBMSjnQhC/9Slk7pm+n6+PT9EYdmuNyrcOOEDBEpmMqRDs0zDVV5YDIEIEpiqIxhgAsY/UBWMk236mzswdbIo+gweMU0SWBQypE+fikqbtdTMyXOHRN0V0K58B1zjkyZIwzZFxVFcYRUZl/EuQIIID5t4rjA55AdMrrPBHD+cm8FBE5RSOKYpvEQUhCAIacoWSawjljwCUAMMXldmmcMdXFVU1jXNUVBSVTmNq0/+IVr89qXsjECZwevsMlMYqi43GbMVsQSWkJaSdNS0qRNGySQFLYsWg8YdsSAGyLg6Iobp3rLt2lMqZwVdW1by/I2rG971RbyDgyBJw/JIioMAaINN8FznqGL0UEkJJgTnoUACQiApKERIKQJABJYQuwZdKyklOhhDGXFMKyAJkQgqxIOC4AEmYSWjuCNrrcPo9CDIAAmO7xeV2qqgJwhgjAGVcQERFw3tKIhABEwF/IP1Itr4zZoa/1XcFlH5OklKYphC2lFIJASCGkiIaipglMPvl8OqmjGTfnkEwStmVYwFRFVVRECYgAjCm6S+NsnhKRAWOIgEAsuL72+RpHyghA4b6PftiVwfycL9bHCQCIJAGYhk2CiE1V9nm2riVBIEhIaVuWELYgQWQZSWnbpi1t04gSEAAAA0CQQACShCUag+VGElVElaspFx0AmLz44fW2HGY5AgACBwDVK0U8bmP9e74733a08nkEkCRJCiElCWFaJGzbJilJkiS5MCmJJBFJItMqrcaHfU9LyhR/e6sfUyLO3B24/lDNr6gKsYdDETID296kG9F31+dRACUCNGc+728+MHt/87HNeirE5J1h5q705ZcEzH7xmdFSNXTz/tG38FTk/Y7cE29EAOZ26R3/PfCXkZa2VIizA2cbfLo/kBdi6K//N/b+kZqvr57w/+zd5PmTkI8dAezRsHeTa9IKeFiKNGLq6xP3Z0IxNWM/IJVEL/7vjd1vtQZ82q3rxppfH/32TwN5HaaN3hoLsJ7e+iM7PEvdJXL3Zt0W32SsRMkjJojHl275u+o0MTcNkrDyAOvvMXblnnzT6C2rHf86sv/HjfxlREr8fdCzr+bZN3llaWR9eweaX/GDOTpcWa8DNr1pXfjIsyXnRmVy6FHwjc1XpmIqh5dJ7Dt/6q/dWMtNgFgeRw/tZxOwvt5lj1wPtW33AWjN7x0cP34jmutGcPZqdENn+1p4MGrDy1aUdkN9E7eUTp3Vy+zTxAVBMpP6Oj/Grg1Udm/xA4DSeIif+v/3t+fWk7a/+cLzWt2T4dB6uXTvorbVMS/y2je7pTePdE8Nls2pzBr+amzHgZp5zRUH9RMncUcup8Zi9z+63/DszLVLDV0/0JYgstIAIqLPu5CN5Iq47tWpe1dpcKT72MaFKrdSsZ+dO2N15ZCCW8mGX+h62PtO/e5mFVJnOnmLjAyc0dusMbajy7v47DR17gLb212etc8YEcM24ujyBHwqKzQiiOh4FEENVPieH4PJvrPWO3vLsh0WksCEwMXmdWERAYgELtnkTPcfN361LXs7viiFRkwtka/+mDywtyG/HUJxEGn2Ru9E96H6vG5eoRebXhIMbsPPrqh76/IJq8VBBPB1inPnI+805HHCu2hvsPlf3R8805vDSalFKZYVAfxd7t+f0Q/l/i5WcdxlXow7v3u84+32XOdjMRFlcuiDuxt/siVHxOINNABzt/28d5CCtbkdri0mIoDebhm3PjjQ4suFsbiIwNcd5Z/H/qMtl+OuRUYEzwaf74I81sFzKCQU/f1oMd7T37p/c/blx2JbEYBVHFT7T8ntWZ+lLj4i6s1vwZVPaLs7y8hWfEQAdc0R18c9eluWx+aLPxcBAMT4udOBIzsrsrp4dRDBnjv7QeDoPj8AANmmRUxjPM2IrhIiwMyXn9rvvu5HkZwZuRcy/cHa9TWpJ+dqzEUAAAjusr4ebOyA8I3ByfLKkuj56to05xRWDRHKuitHmExc/nCo89VWfWwonq4UuXqIvLp0g8YfnelrPNTtg+CP7Mo0i9DqIQJoFWBfuoC7d3gR3Lt4uiLfaiICyNCV4c7dpQxArUu7kK8uIo49tasaGQBgepDVRSRimseDIOLoThtqVvl/mFSt8cUmE8mJm4+MtNes8kBX77p9988uZXBse0vaiusqI6p76FLoz25auzZ9Hr5qAXBeyJ5+OhbTahrL0/eQVhkRSEghmLLcOxKrjZiFfA/+K9H3APGfqfWhrZu4aeoAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the straight lines AB and CD intersect at point O, OD bisects angle AOE, angle BOC = 50.0, then angle EOB = ()
80.0
669
[ "50^\\circ", "60^\\circ", "70^\\circ", "80^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAAA/CAAAAADoe5ieAAAIXElEQVR4nO1ZaVRURxb+Hq+7aWQTUFFRRBzjNi5xwyATHRckwROd5MQt8QSj0RgzcSZz9ExcZhCIBAc1OcrEICYKsgwgJmrApVkCGGVTUcQREAQUVBCQpRfo7js/3nvQTTcCfUB/ZO6vW9+tut+rW9utegzhJYrZyyT/P/tvlF1kCN1IlxMtdHsh9GQgfozdYKthZzWGlj4XI5FX0aWiFMc/V72ArhthZySTB85a1Kx4AexGxl2i3uFQFvf28JfDLtZ+L1Eq5lr2wktR7DonU9iNRF7Bpt6tiA6L5kotPXCiKEg4Ywq5MXYtO97WxrvuEAA0BPgENnfr5FSZj8okdiORR+s2Oybj/iYAkO1G/ITl3fgoz9mU9bSv2F1cY8yg2bcZAP7wQdzQ4qphzHN9pNpNlLEmsTOG57tapSaIrLhC7Xb/lILRS0c8x0Vi7ubBmSkbh3IlDRkLZxdiZNxFlrYDB/LkkEhs1m5lI2K6Hvy6S4sGw6M+ny9ejuk5ebenjEbdiuEfLb69N6KrGkn2bgBYvsfNF3NK+o6dk5m7vGr+XdxmzJRX+h4LoE3MF9UD8vqaHeavf2b/w6G8ZwaG5lAvVwAQqwEAyphl0p6T9/x8F63aNiLuoMHREz/69wCANSlyAM1Rc8c1SvqBHbBbsdXt28P63S/O8bQAAEwsVwDIvrHKftq9+v5gB4a98a6FX6zO9Ncmj5zMaU2sBKg7u0aEWf+t7rHDXixOAJgypfLnrxaP49c2fqzews82llVYQ2b7KkDs8/cmXel1XjfSZ07KvkJOr0xfMISHbT2jUJXqbQ60tpn32Fkv+w5AutS9MN5ipTMAmfVcAWVHpOLHEVMBuIzPHtXTfdeUnNbew8cpJLQB1x6t7/j4NsfsJyskAGxdc5Q99WRaRu28Zqd10LmQd110HN0/tXAsAEDOivuXHbBZ/WZSbkZZBzDouu10ThslfgQApU39xw64Dg9uPpGjEYrjvl7C52IeTAaApI/Lu/fR+1nHy5OvVrvPv3My1c2dizO7QLCwIhUgz3I6P7bbyW9y32UOr0I8JWDyxfC7nU1yC+Ci2vfJ1W6dmMpekbbUAoDkjQDJoe8K9G3j6lobU+ePmp/a0E/s1UffmcZpzHtbRNHJrbrGlbdqZYM84Pn0TnduTBz3K3J3oaXZhPFlJ36d5u7QbhxgXnntTSlEo4te02t0p3bGAH03pvW9JmmFdUeJcd29JDc4qn36U+OxEe4A1mU+0G305KOFnbN+k9ifnVowVQ8Qzd6zoPbAFb7EDrFZDgB288N1K0W2vRNR0wfs2QUrDDKYxZ+4nvfjT58du7hDcHHNFZ0a+VZuxZ3YjdzfSZ2amK3i9br1tQb2xk0FRm/jdRcDw8v1kJO+ynY93eGM3OOTbu/vFzat+dBny80ue65Me32SUYPd4tVlR47o5t5e9WmCqggaO7HF+1ymXgvD28Rdd8f9lurEnwOXA0D9tiCHThVij60y0+oCrOXMUYKel/XUzbPdQgm5f7fl1AZHe5dWTf43n+m2NFhxLftcI18BFkw0mj8DwCveDXqfLM0rPN5emDFDlvWLt7vQt5HnG3n2I06fqsgqPXLNIN22nQevatQ2vbE0Mu6k1hVShexr07U+y9ofWsi/+qiCwjilePgGIqI082D188adMW/tDBkIqyvqSOZTvQjazF5fH334mgYAJIuuc0ddtOVeAJi3MVQ39TBg16q4kylT1u1HAACUJ2m9RSfMdvs6u9jjLQAwffQFLQB8EMVNn79G6VXuHFXlzt9lEFGsa1jXkdcRbWjgg+qKJ4aGiogtpxuI6P6GckOjIIZzvnjZ42Dn7MBJiXaA0TmvLzcTmrRqm/EWGsmUoVowVu0GTVFixerpEsTc29llYyP39+sx8U2Ob21yBgA0bAuyfy47SM2gLqGGZdUKBswcRyLM5DP60jizWXMaDv9pRi/YgZvPnFx5Vfm3Az1Nz4vuioHblSJixrCMVuLpBDSn3XLYGCZ9v1fsHaIOC5y3tctPNyLyRpGauVXFgGqboB6w1Dot94pk5eYuesCzU3K1GCBz6TMyA4gVq4gBYJ6zvxUfLpMDIFaiJAYASaDiV4qIUbIAQCJWyUMSqcIMIgaMtqSCEbVeeUhVDGGDVxvITKIiBmQmVrqN4dn5lUrV9yUAq82o9bIgwFpW6yUigB04qWbaJC5FsU6uWSImwAxxs50JAEStpyZP0gAgaSrzGkMAGKuztFDLMCBp2d0lUu0wFWvVcs7DoQQgaU71IhGRtKDgoMCut+LaQr8sJCKi3K/LOCA84WoNb8w6wGHqHxKE+pFx/CZXtv0hD2WECvV3J/NL+KigfJFFRES+59oJdXepxxFj3nYAgKS8910AoPbYEG/+LaA01HKtCwA8PTbEm4Majzu8xTV/enIq96p743vXtfwCjZByL/zV4RP+yCEnbKcBoFjzeR2UHT0v8btERESahGBuh3n8ZazwSH8tQNZARESPAv7DY4//dZrXHgXEa4mIKDkgtYWDtCeCm4mIqMj3Au+i9C+5RETpHys6KDvYb+xM56IdcZAjqvQ/K9gyfG8Tj53hoTK/RF6r2PMTp/z0z3tCg/y13A6XvyONR5o/zyYiqg4830HewZ71xVWuVug3jUREVMyHgoiSdpdwSomfjIcKdwnWe3s4TRXj/0BoUBaQriUiurojS4CiAoiI6B+ROuTt7EX+t4iISB0VwgWvOiiDN7Wd9q3gtMf7MjlFk7vjF07T3vK/zGmqX4WZRw8/57GCfAHSXm4gIsrZ22iMXc4fJtoafhorHglVKo8KbpUCJo/KFj4tMo8MpDLEEOOkvkmv2M1e18/yW/4b+D/NeKfuyV/CMwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, a big tree breaks at B whose height is 9.0 from the ground, and the top A of the tree falls at 12.0 from the bottom C of the tree. The height before the break is ()
24.0
670
[ "9米", "15米", "21米", "24米" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABnCAAAAAAvCJPsAAAJo0lEQVR4nO2afVyUVRbHz0MgCAMoCsOKIgoI4buC4Wuki2laiZ/Wl3bVfPm4ibmrbubqZmplr6apaWWa2+pnU4PIcEkKVDRd3XxJxRfMNwhJBAVEGYeZ+Z39Ywacl+c+3BHyr+5f8zz3zP3ee+6555x7ZhSmB9g8HiTsN9pvtAdOYybWOlKeTQqrIq/b3n6eikigadf2lf74kc+H7xYuT2ptLJysUyuO7k8U/8T5FoIvyKyNS2TdW95TpCjxPdJF/TI0pY3k2qoPDiUiavVLY2gkCeOjHK8QUXmzRtFkW1ayHxEZTj79QGh7BhCxaVrPTiJlNOF54zMnsslSNps/F2q+6Wh89sM2r1nOBs1JFO+z0nSxu24kDZtqQppEa/oYwOZfl8bMXO/6+eo4sboabyVs3nqi5c3m5jcVIiIuG1cmlm00jctHD33Tk16Isz2+eqC9lnQjm7HfNDBjxykwM2Np2NJOEAo3loblEdXMjAoLMzPWh57a3l5Mc89KrBN0aGnj/YhICfQgIs5dltaZasXfl903JiILzpTr2SPKy4Pqz/Dtc28R2R45f9qKfuTv30gaE46lHym6wDry9y41+D0cN+CxcC9SiEjn0bpeqmLsqBSFTcJ4I0NjurP10B6PHoMjo/RhRGS8UlR2audiY9KIZ/xJobb74ojIXOtLd8ZEr1SIQjQ02ZCVAHnPhEYuzCoHANheATAdfjUmYOoeYF+3Y0DN/J9gmhxfCmZk9Lpfm4Q5/emg586Z60AO07Dsn+XT/xguT538/KICYHaHEjAzdsTcHw043EO35BdXUn1/+aywaccBAMiOLLKeuM0aJ0CDhhsTfBaVCFlW3vXxujeMYJzX59n0/NV90ZDbasJBTZaVt29ov8uoip5ik0TG/fiSO4u93rY0xGJmRtWbrdMGJNfWPe7o7TYNVUmP5smwmJmR7jvwTv3D5iR3PRcXJwZkDZTNx+lgeOFSU/1TiVhQ9XRzSXKndOlYxNkff998eO0K2+R0Ri1ZFc1U95pkltQiM/bqvgXOd5lpsT5+0cWtfUPZ0PG1rq9FsB/bbwEzjugXWs/bxnj3aKmdK+VhJd1nWSmn2mSAmbG9pzs0pPnslbVGZuOQMTalY2frq2DGf9w53TgbnC4Pw0uPG+o/zxwIZnzqzumuHT3WDdiGWMO9p1uRWWBsjZanYU3oJWkasnRH7YSRMc3EWOXG2owRGfKwXN0mB2HLnz4HSidK07B+oPRJw7nQ1Y4Do7jtLWRqxDcnz1W9fLp0FnZ7TPILjs5N0YevI48wWV+CDf3k9Th28F2XdzkRZasSxUM4ecO0Z2VXhsUFWS7ZlTLYKy9Kw0866I1L946UhPHrm7aEqgSJ579uphU6HBSxaIKkIrGzlWr4w+VOHw+WtElT131yNBx5KFddEonhGvtmr0m+UdhSWwV1D4Vj/yGKtY8VVYsV6bBv37aPE4zBR2aufaVPrhXH10YlLfESDDiM2olp9prExL8JlGBZO6oS2B18A8zMtwdMEYckS3vZvKQ0VjCjbzZ+EqAoSaH7iYh4SdTqQOHsldAa8dLsaabTfuqwm3M/baUQUdVNIuLs7JW+4gEp8Z6OXa/7doosDS9XVQLm9AUz4zJdAONrf834h9z6E4D/OQs6rI2C1I3kymgiItrWrgPxwT+vSdFM/Qrq17FmiXOfPa3SIBjgABERF77+7I2XU56cM1E7z/S+aoMdm5fg3GfvJyt9BAMMa0bE1Skpr03ZQkHTG0hqPW0WVLNW71LLsF9bqWiAlz6ruHV00MQNnuVEN4u1KmPMl3b9bP307t+9Q1xmYvc5TuC9lbityyp67fNXAIVTHhavjS27PskK8Sci4pzuHa65hko7a/rFV3wvBJix9Hc/HLeIrfH2pp7N//JTRh8wo7z3Ky96umSK9rSiEE2fjH8HXBTf53B7Rdtma4uB7f3BXLOwAjlU5iztEE0ra9SPt1UJOalpHURulIzblnm/OsaXFK5uQ8TLOgYS+QW6iNuRLbrvxYvDBd8Ngl6gbGVoWKb1bokhk2BZ5H8cZ54IeV9Dk4zIb8SKqhgwXT0bAy7M7pCcUW37qiViCxgAQ6UQ4WA2CcIzQHeGhq1+SE2HOD089vqH2U/rbFqz1MQQKYpCiqK46t1+lh8kC41yxtAKlT4gM0k/udDufo7drUvlMgVcaeGSs9l6PupSpFKfqdrYvcW8qw4Kw+w/aBi2Y14Smq8eBL4JPOzcAVzbENdunfOZQOx7sjT88Q3VRKq4pfPlALg0N7hPmsHZEHC22XfStCy17AxlEQscXgPIHakM22tyFcZ8LUU63ToM0V+qjDBmmMN24kZO75jUfNXSDcJy5GlYleoibJzzTJWdBAzLO+pfUzlLzMzIHGlQe69O4+rWhc47sTjiav0roHBxVNd3q0XzN3Zfqulqne9vqeOcbOxfLQrq8wzsX+TZ/QuD2OHkxxi1YC60M7qTDsfnpHedd4QhM9l33FmtSps54WXtzN7l3v1pZImdZ6jQz7CVHWu/7NV5QYF2tTLtIZcYo01jy6AZ97yvof+4SmZmIL23fu71BqqVteHLGri0uNZLLurq80Xz1MQKMFCzu0ebDxpiMRZo1K8FNMZXT5y3aW+T/icAN9d3DJl7ueEqbK6vOGAJaYwpI0zMzNjllQ/8/M8WUZ8ZG2QxTrTa3KCQGq2070QTM/4bsA5n53tH5dyRuEKiNG5hw2Kq9cnSvvOAc0HvHRoZODHLLHVdvTvlKYkqo2pdGVci51+Jiu3WavpRqUI2s2VC/xIJSfUqNopjW1LM2+UNb5dVvPKvMddlREU181TPh29JshhnEkbclZJ1Tp6ZmYm4YOTlkKRKYU7k+I1tfRI2a1ZJVLMgZr57Oj+vxAgGYF7ss0TCQnDpuaDNslpwotUeCP1oY8x2ax56qEPsngbGAT4LfvakJMs1BqSFA68k2HxJ1TvB489p8IBzjwTvkF0Yu+7b10lEF2y/WygBL34XFJ+SaVH7jxYzV68b8njX80+qJKmS+4boj09PaX8vzwOqU4PbvV5ggl2iDQCmorRRzTquuunGwpjZ8T8YnN/n5ZLszYn2s+WavHd+COgb2C26a7DiQ2Q0VRX+eCLvfOffvxAp/ZchW3Oivb8zhzInXHKsLTDVHMkyX9xf5ePh6200GM0tegc9GZHg6SaKXH414niitrdqghxnRH6DBhHVVtHPF2q6U5Bvcx25u6q68e137arfflSMekRw20Vdc2erxPtmmpTzaJsy/Xz9fc1bojntm+3lrwSj/wOGCjOh3vLypQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, cross point A on circle O to draw a tangent of circle O, and it intersects the extended line of diameter BC at point D, connect AB, if angle B = 25.0, then the degree of angle D is ()
40.0
671
[ "25^\\circ", "40^\\circ", "45^\\circ", "50^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHgAAABZCAAAAADQ/7+dAAAIrElEQVR4nO2aeVRU1x3Hv++9mYGRzQFkVRYF08CIa6JhEUGl4tYFo8TaxsTTxtqYNtrWeFzRxiW2xsTanvT0aJr2nPRoNSiLKCLLqCDiggLihjMgyiIBZxgGZnm3f8xDlHkz84bOkH96/5r7u/e+z/vd37u/+/vdO1QWXF6yCLGk0K7ngoDa9l2Ad4LikQ4DmCUsD8b14G2EzqKIxVy7HiwCm8XDEbkczIIBWJ73cXE5QKitQBbZvfFlucunWkPRAFhKP0jucrBRsgVAlmTwZFPD4Ll4y3B4rv+DAQAU+Y7ArtbYZK3BtQ5EW3hnYSx/kys1NtVs/ZCNtNLoQo1VBSXVkWkjhhvcef4YM8fr1Thr7S4C9107eicto8ozWTy84HvZRfIdU3QXwqwq7BLw09KjkjVJMpzsTrL+eOeDdVeOKuctDgMelcdOtN7N6eDb35RN3DGRAVCkt6Gws8GthSe81s3wBgBVeZx1CzsZrL2Y3Zy+KNRcKaFnMsMErskun7YmhvOFjy9Pktvq7DxwU+FJv99P8+iv5ktS+RIIp4M1pcc7Fy8Iel5XVsZH2RzgHDBbfbwqYen4ARXZk9IU20OcAladyQ/Y9LrbC5KauuRwl4O7So93L5vr/6LIeM4jyc6o/xlsrMyuTcqIfll4+27KGBeDGwvOjtsVN/j7vRRkx8KAqNkBCqGhM7oz5rCFsBLm2Y1/tWemy9pYQvrZrJGR1F+YKXpsM4oUG6jNAngUAAKaUDQaH44P6wUAUJ6GB7WtgRPCxTpCsyzFkU2smFF0zRrZx4H5+YxBFGgPK/FEtx4goECzYtSwY9QEoKWGumtdkemjRX1GLwLWRHNgwrjf7oqXa8wvR6yAxXpKa4fLqG+4TXYzmd+diLo/C1tpJGAkTwrymHfipcQcvw5MNWhyQPu+n9H2U0VGkbVgrL8YLh3ueO8nkv6qW/ijjkDAWJrdmL6If7auNmQEwWrIwxWx3fC2oW/n4n+XD9Rj2yqAW/v2irNW8nN1ub6v2XsoBCwn75lBsgf1Cc/rk6/WRdaeGPGbRGtTVf74TT9ngIMoSCO8Bupukz4pGTVv8Shr/bvLQoQobB9MAQ99Jw3Ur5/TTl0VbX3Hu9z+po9TwIBWGfHcIyoLzsl2TJNY76y5GDpZCFcAmL3p8QanoPpsXtePF/ja6l2hXC5IYQHgp8/ivL8VewGkKrdy+uZxPF1MjT7c2+gU4YIsLAD8+EuVqicgzQv380oCt/DOsvKYdgUHLm8XqLB9cEvDQyX9waiuwhzd0vSRPB06FF+XbOCSUXV++AxhXPtg+X4TkYoVp+oTM/liClJ2sr0tIZULZEs0y+y5LMFgiQR4cKo4ZNskvq61BRcjflXgy2X9redfmSKQK2Q5teefJm/P9eZpacs5g7fnn+9ayKl5RjPLVgzvGNhQktuQkhnC06IvyWlIfSukRxHEpSpPrsltxvAOgW+drBz3sZxvK6nOvjJ+TyyN4o407lMv6ku14VocAj/JPStenSLla8krplbPlgLqyjDOrk1XJlg54XEUrD+X05z6Ft/m11eU15KW4Q8AVzuWeJqFJb3xDoSONrpez60av+dVvu2gKu96zK/HAwB6KgI4CysrHbCwDXDTKYX7mmR3npbGU6Uea5M4a9Y0LuKcVjHSHImVrfTtqCxsmpPhz9OiPZPzbMGP+jcKw/mA6eZfj65PecUBrjXw1bUTD/ItoZ7as5cnbBrIA+vuLeTCjRyS7AjXGjgkRdPAB27Z3r4/fmBxkaLARPOv+qrEsQ6BrQR78t2xe/45+P4CgM/0MT0vDLl593VzDGTK957jENfqIar/+vSv9ndYiP1+N/vg18/vNYxnvOPNv+4oX7OXpQ0qVj/EEWvGfNG03mL6pKuYY73LuVS4+n5KAADAUOQe7xjXxrExtXhT27ZKC7HbLzLz/m5OP4wKj36F6+IinAYG4j+R7fzGIvehlr5berALAOrvTQ4DABjO+zj2SdsBIzIr8dBBjYV4/urrf2oBSKWUiwLrb89w0ML2Tuhl61fm72qxEKeuU+5VQXVTbl7QxsJRjlrY7tWAaMWGu5trLMTTN6g/vXfZNNWs8I266QEOg+1f/1R/rl0110J6/4hK84OVNAAY9urXjXQYbP8yZOKu7x04bOFLoj4I8ZlmHlyhSnCcK+jCS3fkxOxfWjy7Sz1KCgDqfeIPvSzG2C1CdjLp6sDDLWsHnxCO5F6lvHXZELjC7p3ojM3t28v529SXwqcNgSv0wuuN3f5Zx3itUtGaKDBpGRIY4VsSvviz2lKuLgsXHMO/VARFK8biEQl+GyP/oVofzElIr7t5DV/pmDcUCwvTmP3y3TJAtOK3D7b2+5Kn+3a0A0BPacTUIXEFgQnl6wkA399p3FJkFikuXPy8FoCibSZf1O0kMPPTH5qP0eR/kH96RA9AdXr+H3Vb8qA5Fy0wD7cogmzM9p/ThS66f/jJe37I0afFrPvrV0RnmDXU419B40z9wU6fIin4cNNHxhspMQjZ+pfPPDInDZErDEwIZ5GK+5nJwYc2m+KWABAHN8bOEJyWDglMcd30lQETMCNkz9+oXk+g7j/uSxze/58XQQ6E4v5jUNc21RcI277z0ju10GfXJsQPWWFh4Nxj2VcBoL43EgACNn589+eKWzf8Zo8eMlfYVPv/TCYFAK0fd6O1POqj96ONCVNEgPkAn2VpmlCEZcCCBljCgDvBJhbppvkwnyq0A6VYUO4jTDo9xfTmmBZ6GwjFGCiva4duRy9PMLmFirQe3drgBpFPW2in2KPBO6T5W9nY1iY3UVQbZJ6dtWGjVZ1uYhMV1WoKVQU+6w2l1bLRFCA6bQdMEwKaISxhaF0tUywxEEpkMtFe6X69T0qfiZM8OoKbayKDg40mpqU3RimLcFOVxYz1uoeozmZ5s8a9q+ZuRF8jjegwaXF1ZDRdGMgGjwbwXzi07maCr+8gAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, place the right-angled vertex of the triangular plate (angle A = 30.0) with 30.0 angle on one of the two parallel lines. If angle 1 = 38.0, then the degree of angle 2 ()
22.0
672
[ "28^\\circ", "22^\\circ", "32^\\circ", "38^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIQAAABUCAAAAABmEcBUAAAGBElEQVR4nO2ae0xTdxTHv/e2pS0tgghBok6oqIMNHxm6+Zgx0yga9wBfKGqWuWw+5gNNDM6pGYtEESabmSzOxxDBiM5J1GVOTa0PDLopPpGxwUAHCEKRQUuh5bd/dNz2tvfe0svtEj1/ted8b3+fnp6e37kPisDrRtHeJgCAFxDP7HmEME1MwQfzHL1yaSGshgBc+MfRK3EmVLQvtL1wap2Z6ZUyE5ZKtIIC5ZuXiPZML0HUfAYrkUN7ecVbW8OYASkhwvLRoeqAJSA31j4gcU0oQGAJdmCQGuICkYGyOXolhbidFEt8AAA70uwCRDIzz9PgS20i0UUQEh7ICEiZCeXqsceSWoyIrd27t17JjFDSzhMd30RPwq5a+PWbz2CQGAJooTSOLsmHmlsh37OdUkPYTO1sp8S7KCjIUOprauvfx4sQgAybj48Mv5kdw/BJ1ycIIYTcQCa5ixyCGd7pE/9ZG0qLNcMYDul/DgD4pVw5k/HWO4PuR7nvxxu8DdGK5EovQ2jhh6zAUV0O6WtCjlTsKzp0YkKXS+q9o0K3Z3GppsWs82cwOGbilHzqlaqZYubnRsmzVzQF/AWDWkMBlSYAwJQgAKxmFRRO3sYTMdvTEi5CAyGEsGrCXwstpbJV6kTLxKZlgK8KDeXm+UB4tSWZMUlgEAB2YdIERGVZkb1xo0IkiNBQoOoa9F8jTkUPy6gLj2ZJmBAtyWY8ioQPiS1cGCpewVpXGy8+QNQun8XA2DpY2AomhDLBip87QLfJb0fKRFm/taZiEWAhK+YgJBhA+pWspZ3cEIrxgMYKC31KKwaBvhLZ5xEH5c7Apy2xvGDGG86UjjXRSUGUNlq9FgVmTPs2OJ7hvHSpzIcfonRrxRgANlS3RHSbpM6o3wzYkDUK4WpmwFIT3EHxQeTd2jY80IZOIkPSMWP3fpKjzUip9J+MATvYserkLZHFfBBPto0/MqEBNGkmzdbu/DuuZnQeBZaNHPqm03DSK3HOj2NCLJ0YGjBQi/SmJXTjGDf/HhVt+7IByPQhiHQhuVuwzkXI6QZmIiq3GPYS23KbLgaj13KpXv+jASgembmKxcDeqggoX+HrExzJbz4DpIaMH8KtzCnLcBViQxzYUuAqoY5WQj69ABnd/z6NwbziQuNc4RD1ZWYnOpYZ81G3CaOnYtZMfjGA8pJpVgBWtAmBUPD3qk5sL3p4DT57ZO/2FkQA4Izhei8AugMx7Jj748sdJFZBIRuTB+UA4UfVJq96GQACFzoJugdxX4/i3Zj+Kta85tZxsGZp3lO7jAqGsAErH9ypgC4HC9wDAAAqZdZE11FhEKY/6+e2w5de8DH8+/DL2XZPPZAjKgDCcAcnTmOeHGl9u7M+AOBDVXq3IaxoXGq53IRJudp3ug0A4ODN77jCHBB1NddXgvaj0iajr+uiEmLGw30T3IWQAThci6xSdQIC0kWYcPQnz3GOzWwIJeiyDTjdjKSMfiM8BwBQtW3BME6BHECpiempQKylHmmDERbYcQOKKM8z0Xl1bhC3ghASwRH2afH4FKxzQ9g5TgEoApxtfLpiOy0HfsreHgaQp3OGerrHw39T70XZnALK7lx0+FeEkN0o9/jL21m8bz23wG7HNN/MuQeY8MTT725nhsLlPBVhB7Ge/rVI1PUBAIdqN/NJmBAnA6IrTC6V3bRG41Dez2RCaBSDvigTG+J8/q5gNyAyH+7sTbeKzNCQksDdqAC7jlnUOHu2Ke6RWNclAADkdMkmvrJkZqLoGvbf+q3ukKjX86jESfH8qq4l/VJVWlWqUtMgJsTaoM8FqLogoqIADAFuiwlx1jKKX+RkF3V68u6uHb9OVJrFfobHy4Soe+ay8sE4bcTxpCbb/jreRgU4y4QZVk8ZHv8weJWy3Se0MDtXya+Gkzs/l9ZXe7pl5UFPCCHmWWMrhcidZGLcOE8TARrtADqmXNz9kkB9D1g7egFQ2NYkCtP3yK2GETFZw9X6M+eFNt8eyUR03IHff5xjZT0n4cp65n5H64a/W6d/IphB8hv2ziCex8fenNsLiP+V/Qt6k1uQxifX4QAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, Xiaoming walks from point A in the direction of 80.0 to the north by east to point B, and then from point B to the direction of 25.0 to the south by west to point C, then the degree of angle ABC is ()
55.0
673
[ "55^\\circ", "50^\\circ", "45^\\circ", "40^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKgAAAB7CAAAAADFipTpAAAF6ElEQVR4nO2cb0xVZRzHv8+5zDsUkxQwG0Qgi0gxY+F8IWau2I1GLaB/uOZKc65cyxgvQnPV2pquIa5wYW5tbVpzNTZetGasEpptmFOSgJSLYDYm4ULwTxj3/HrBuRJ5uec5z/N7Dmvr++bw4jmf8z2/3/P/PBcQtwoAANlyhRuAUqqWKWmBW8crLhL13C1TNCx6iHaLHJmy/EZxZT6asjbIlMyp3gVkVWfLlOU32luJ1jlWmUTJfdgJwMrJkuLqVMeYagZwVaokGjxg2SNKe8NUkShTMgypnDviN9qXjWdB3Fh+o9+sA8poj0TJxeglAGFJsFpFnF6hCBGVvCVTtAHNRF+X2lJcZqOdzuuPSZU+DAGp3p6IBHNtsuXrUsdSACQkS3MblYdS4p9emAZGJgC2RJG5PZ6QJoySDLWuKt0TNEHRTDzJVLuuA8c9Qg3UUbLcoZmdc7xBTaReIqLP1Hj0OUOt/of1p9mZKnKF3nE24JVppntyUcUOzz5nxOi+6xu93zQTqU/9XYE5AxHNbVe5y3+j9UW3q9zme+qvLRpWYvoe0dxhtfv8NvqSQoMHYGZSMr3sxp/3Kt7qcx1dNKDK9Df1T32gfKuvRuuD5cr3+pr6FW3qTD8bk+jSudlARO1ATOg72K4B9S/1f6w+pcM0k/pY2wrpv2ghfYvoqxlV7ExdxVqFdof69KBGImrdvFMy95Jmj21kp+Tml3/gE90H+bOub0x5QhvqS2NKG9Rm+jLWpx3WZ/gR0R3BbexMHv2r1bM8w0TqbZpidN44B9TEEGphS8Yjy6O7+Ru2ym7Tu0BNaNXAyyLUDwA4evZNnmeof6qZXiAiakl6joho4UUeprnuqWh0wUbg4br5PDij3dOLRcEvDjEzWXUDKlJUNu5iyuzIlPg6G8pkRO3dHR9zM3kVhc66zsc0mfplequkqTIyhE5cakrkTrXIyVzqux/nDKhBo2m/BjmZzKm3AZq4hN5n9ck9ewoAQB4stCY8zUtmTr0gwLYEcaySpspAq7cAZLRwUw1EFBB7xqq4I8Bu1LYI1pIOViqAGxPnYee6mgXKsfgonHpwKxrR7F4GNgDAtg4e+VBE/1bGODuXJKKQCb8fpcqd/ZJRbyobisoA4DRR9Mhb5/eSh9RkhMtsKKLKlsgZnCTH6FgDPchmdM1XE9cICw1EhEvkLO62b0LeLK2KOakjycUAMCQC4kl92tUlwL2hWwCAaOwzAPks709EGCciuw4UiWCT3InL6WU3IXpyMgFAhNB7TP/tAcBe+VMAoJ21NiyQaNDEif0DC08EhxYAsGAXVgLHrnHYBA5k5gMYrOkXAIb0eSO3iYL0d20A2AX8RSGgnKM1DUz0TCXFRET0pe42jP1pPZGNNiIiOK1zjKXVP3SSiIhwioiI1qzV5T12mWynq09w5k8sjb42bRkAjCMLAM5/d04P13UPkoB0h6L70v/QuRznD7QSUSS1SBcYoclug3P2JCLO0N6wmQCR282HZl2KlB+NTkFe+E0AYS+/W3AXX0R/XNfNsrU8jfiMGll4T4ptxVBwhosUW1xGa5dK/c5LXUwJswMRw98AmfCLw6a/VfJEdFvKVg5MPLEYvRA6wUCJL5YOX+2MrTdxVK3KukwGiosYUn9hRT+DETcxGDU8JDnST32B+YYEMBj9PGU5gw136eZt8K5hFh+u0oyovbaVx4erNI3WFOfz+HCVXuqZvyXFk57RO9vncRlxk1bqn3/FN59aY31HO99XblfppD55mM2GuzRSv/JbPhvuUk693Ri8j9OIm9RTz3m8QUKqqR9P7uO04S7ViO4feY3XiJv8mUwyaEZ+wKoiNaMzkAYFo+VCWMLkxl1MKRg9tH6I6G0h8e8TOKVgNDB6K/BG2aP8ZuJJwej5ZAvA7GF/Q+rdKL23GQCKR/3tMLw/TTQXAqARzvNsElKYlNwPAGJLE7eV+PIe0bZcAPaq7FJ+M/HkfQhNC88OcH9EkpBXo1eSAAAdeX6Pvf9PSrj1nzH6N5nn2v4cUlHuAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, given that the straight lines AB and CD intersect at point O, OE perpendicular AB, angle EOC = 30.0, then the degree of angle BOD is ()
120.0
674
[ "60^\\circ", "30^\\circ", "120^\\circ", "150^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIEAAACQCAAAAAAKQVeyAAALYElEQVR4nM2bXWwU1xXH/3cNhAeIierAupgGlE1ttBHZyI6EAi24odhR3cWmECcKkUil2AmOVFpQ46qR/FCi2I2toMomMX4o+ZD6YQMOcdououBIpooK0kKVhESxiwlEWdJUNTFRFu/6/vswMzuzu/PtoemRxczOzLn3d849996Zew+CsJHDSx6wux2ICDuC2cqF50vmWsOR0gcAUPgi6Buet2mP76qVSmerbjkfsqzegeDGyj8v/M67S+3UnQmcraC1dDxEtjfbPOBC0uHkhbKU3RM2BKmyCTJd8ba/qqVy6Gh2ssKGYPdukhyKZv0hkCRTZeNOVlgTjJelKEnWd8+BQLMi44eguUM5OjSjtUjJcVXXzgpLgmQ4rZ4905xrVa/S3KGo2llhSbCpVztLV4z6JEiWa1a0N1sWYUIgSfJERA9An8EodStkumLUypHmPpC8d8igUecvGN1ZYdEKr1fnWOg7GGNDhjIsg7GIQJJkOjKad9HXyJizgqSNFeY+2N9gwKFkumLU9Dk7Ua2QWmO2P+SBYCp8ruBKrhndd4r9DfnPWllhStCxs+hSfben6smpcLLgylA0a1aCGUGqdLLgipQeglGpxcoKVwStu00uPtNML05IlV4qunbhdjMrTAjGy6ZMHnQfjJI0sULSokuZEDR1mhbsaWQ0t+KrFSZWFBOcyU1JBVLf456g0cqKWRcEGwZI0xb3EIzWVhQHo06g1jlSZfk2YTWmFItihYkoVuSZV+iDbGzYslzXwThSZRkyxcFYSHBovU3JWjA6dMps7KjlvRtFVhQQpCvGbIqWD+aa0Q7ClRVWBPsbbZT1YJR2BPZWsP4FO4KpsndtCVxN0+ZW5JA/KOhS+QTtxYN5fiHpilGnkdnaCm2abpbGVjQSyFSpY493HhntrWBRl8rzwc52JwDnDxjPVhgJ3jUdzAvEaWR8vJ106q95VhgJGvc7A1DaB6N3KwwEYxUWg3m+2I+MTW6syOtSBoL1h9y9gtgFo2KFfSlSs0IWEByNuZ3/rYNRrj/krgiDFTmCbNWISwCbYNStcHKmbkWOYGCDWwD1ndFEXFqhfk1LjUA5SYfPuCewCkYvVuSCEarDOu2nJF0kKS0WRdLL/FihtsJU2binJQLTYHRtBUk9GFWC3a2uPwa0r+mix31ZIQmSkpPOg3mBmIyMu1s9laB8hknVBzs7PAKYrND5tQIkmQznBnPXfiwaGXd2eF3wSi8f1Qga9ueqd19GQTAmy11MSQUyFJ1VCEYjrqakArkQThmBraywMim3tAOS1a/7Wq1r32H44dOKihQFMfxwu6+1+xudY+tyP2t++qjNEr9lGb+48pog/nDB4UELEVzdrJ2/0axb4WU75UbnmO0ei7Notf3xfUcbBCFYjFc1R4I8DH+KIe3H3Bj83RUAEKLhh08REPn1ZO6+rl1I1AKXhBBCiFZkqkROll5XHy7cBsvcfV0tKlELTmq6WTNdE4MU+WTZIu1CXXUXsJEk+wDMm5YzlYMkObNUezhUUM78XT9Ti6qr7hL4nqrLedMs0jWVhBBi1UkREkIIUbtX9LS3AEi0qrcvLfhwuxCiVlcoJMATf1NM3Ct62lshdd3JIl1TqSO5Z1AZ4uSpbjK+Gch56PiqthbyIl40JVBcvuC9xUIIca6bjH9fCVeh6D6t6pYA9rGXGYkoJwLAgfu3GW5tZu9WIR5nTL80Tz9dSQDoGzql/j5w/7ZLEFRr20wkBDYSmVmDTaZyslyvINEGNAMTKvHefmCwZpXAr8x8oHOruu1dBCaUXyV7hKgfvDgqRJdN3Sr6qBqztUgciZ//7Eiu5JJuZiq3n6XkM9YE2pXEkXjyX0dyV2d7OFO5/Sxp0LWQxBeS7GsheQoneyB7tgKJg10gMAvM+4CvifPG5w0zlWF7uIU/n44neXEj4+jsa+FMdJok40hqp1YiGR+kSkCS8STJBJ7uJDkTne4DgEFKvRSjD7pJsm8jSfajaxGAlacSx9qwqx8ADgghjg3GnDwgDnyxDQWROlnXshq4uPRDYBfJnBMI2rSCqlvfEgUnV+i65xwIJtteJPKnwcSqJ/oBiGhldrEQQohjuHfBNQCCwoxAwqjb0k8IRL6dXSxCqu5ntgS9Q1dDISHaBoQ2eGx5bPog7mwXq+pxy7T20jRTCqhhbwgDYw9rkYwn47dPk38B0Glo/Jk103T7Pim1f2weD2J2thPnmbu4FYKpWDsxASiw+SYRFFfMXNUF99wQEB7fYFhwVOs1bxBvceD7fcxGTAn4/shX5/9z7RzuWXLbmlt/UBV8tWYEunmnh46ioWx1uDSGs19e+Sj11sLGh+4reio4ISml/qmV3lcWe65gaTr5bDTcPes7EcNBoI0ZihwKNxfut5Ikxxsrhm5K/UYCSZ6IbjpDC1vH1lfbblzMmUBKyV9GT5JSwZFZw4GklHLkji4plSFW2m6yeBNBNb745SPpwSWgUP8MB6g/Pt/6zVcWQFD9AgsoKEPauDGxdvmflgCg1QAhUHZ8/rpP1IElwD6htsJ46UuUuR0sdTrTZzXt333ll8msx9UWe4GycTYd2S8N9ZoRKH8d96WlDJRAEITAD5e/rLQ4gaIDBUAIUBB4ZP6r2pd4QC1Bknx2U9atUem1c8mUMxGQ5InIlDOAdv9qJNhxASSz0VFmpet2Pbo2UIIQgN+u2IAS4bpVG3HYssv6i4N0Ud6Og4xG3O4HufTB8/Uxb9Dfvbs3QBdAZkvHvWKfCQfpAzG6+k6v1DVLzgbnghCONnrTIIDGN4IjACscUg7MZCwaYCucXRj1vpq49t8Tgbkg9HYDvM+1JfUngiO4uNKP2sorwRFcDftRC6eCI7iy0o9akD741JcPlgXog5QvgvIACbL+VvazwRGUp/y8bX26LDiCCh/+JK6uCI4g7COqBS77ih5zgmW++tWVAAnumvSjdumOwAjw94jHuUySzIY9v9VYz433pd/z1h8FgHe+4fmtxlJC2DLieW7kSFNgAAihadi71vCW4AjAr/1NFSU/2WcEckP9nJ/NemsfeP5ikaN32fwXLc8Ckgfr3datHNYeDhCAIQA/vvy2O38pXWYYW4NsBP3r3a0HUpGxQJc2QwTwwMPbZt164Ebjk+sCXdpV1pUZX/6yS4WH578WZP3Q9pmmI67yS8mOmJ+cGzvRdromSnttn1NlX/jjoFe4lcw4kuPR1izz1vGKJb2j+nKgtZNKbxQAcOc7n9RfU2PDOFUZBsnPN2ROVwQcBMZ9pkVv1tT8NW/PhYCR5a2apt/fMseUGTMxrtqeiG5Kas7R20E5e+emru7r8nXtcBgkva8sts+4piGVXZ4XlDC9CRs9gkXbV6d/N4KGstXlt8Zw9svUhdRbCxserVF3G/QYCWxcLNrtowDw3shX56euJbHmttvuWfy/2u372iR/19cUp8hLwRL8n/kgoeRMKPk+x2u1JKnQk3k5bSvM89ICIThRv1cIcaxdhEQtNld3QclL6yVgyEsrDRQgjyDzZh0G1UHglJaXdtxjXtqcCAbKYwD2dhFNQ+imbNwMveMnVrW1yPyctmDEkJeW+U05gMlXm0LAcEs/X1r7o0nkkifqiOMhbCQyN4/g4LcyAHuj/f3YsmM7jqs5bVDmxz0DLMxpC0YMrfDxCwAHlmPvYUAgcTSe/EzPS0OPnKncfoYu8tL8E3SVhiBamvB8x3UAJ7sBJaft1+qQMf8Dvi7+EXD9ea0ASHy0A5jf1gegC1Dy0naxDUAJDrQBGFyDoAdF3QcEQ5mJCICnVEcLYPLBligwufTDWUNeWrCZIDqBgJAD6xblXVVz2hCtzN6ay2mzz0ubAwEA/PMpAJkqcboeQIhbHpvuV3Pa5l3T3igccnU9y38B81PcKEHJuuEAAAAASUVORK5CYII=" } ]
<image>The three views of a geometry are shown in the figure, where the front view and the left view are both equilateral triangles with edge length 2.0, then the surface area of ​​the geometry is ()
3\pi
675
[ "4\\pi", "3\\pi", "2\\pi", "\\pi" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAABaCAAAAABsl7AFAAAG9ElEQVR4nM2bf2yVVxnHP+e5xEZt0rhY0QVYC+2KsRkrwQlE1sbgWrLIDzfTmbg0ZGxd1IxCjICKTZ0ZI5uBGat3RsPY4gaCq79LlzipnRqnUCQI1Am9NQsJkIgg/0Byz+Mf533f+6O390f73vfe7819f5z3fc/53uc5z3Oe85z3oqqq6wF+qqqa1KoCbrf+iA5zsrJUckEAuH2hi6UAWKoKAihvfrKWrb1t3nk1QdWqfg+qUbWecvWNkzq4fLzCgsoFAcPUjTa7pWWk0lxyQAD9bafKpYkmDo9UmWUggBnpNLe76rs4++Dq3/kXNGNXKQiMmF8uNzUfufJ+9OvbHmv/I4DFuOumkuRAoDOpqvp7DNB98dHPr3u7evyLkC4hRbZMbtyw6VTF+GRBFAwoChgBYr2Jjk8/cp6qGEHEKIAJOCq8Z+vk8jWbJ6uAHaIGwIJiADVgeN9XJxbd98VLlReguI7nTMH4/VC4Y+DsHa3bL1faRFLtmywn98FvT2jLrquRM8rAzOIxUr9v4lrz7uvphVF76Tzas+j87595965nbkZHJxt56IkYZMGPT5xe/J1bflnUg0jBvi9LXv3DWw37k5Wx4SJMU5YODY80/LD8XHK1ne+i9W3hnuEjrze8GgmhTOSlJyk/uPKNV37w0cOR++li/a5lzdj+59qGJFrfUiw9ATr/9s2BVSORGm/xo5YFNp3q6+sYhaSNSIbF0xMs0H1uc88DfzFioumFRdFLl5XtufDQwxv+DpH0wqLoaSqssUKsd3Jt18PnIxlCCtOzEAMLlqR198/bmvj4mkemyk6uGHouCwMIMf9uW7Nj8p5lj79bRmKpxgvDZN0nUPu1qQ+3PnEFf55iAWzY9jKHcLju6Xfq7t521c1TXEUiIZvL7Okp1D83QfPO66BOajZ0c5k9PWMt1O87899F/deN6Nwqmwmzr9GKgLAgfvpi096bhrJE+rOnJ9aLtxa+Mjbe/MKtsvjBOehDvHhLWHpo+HjTi8mqkp6DJ8F7h47+vPHlMAhlYq70goj1vuFDB5oOp10JxQWGZmyG1cfj+1uH3JkFsWDnSjI8X2Bh7Z/3fmv5CNZVKyBzrT88egbgwfHdfavGQqszbHqw6VxfT8efwqo0XEevYOm++IXudW+HU2GI9KxiFAHZkti4YdM/wqgzRNOQID1IrDdxf3sYCWABVDUEh5/5Q2u2JdpWbp7KKi25GQGMKcdwWbtjatGKJ72AerZCLGd2tm7g7Afa+i6D9WahlDz99OmpKjpP3IG/JaX1tGK3hE4xPaJ+zxladl0V3CBCyeLwbzcYjLWocfl5gwY7r8A/N25v8ncI656cv/+f15r7b5ROLJNeao1Pfb7pu+DI+JtCvVUwrst9KH4msWjvzdn1voCe8WYMpoBUSoA3K2bBwRPjjftuMQsLkZS8NI3XDMulpTmGlGaWHBp7q3EwWbqCJSDmKU9VwaBueUjVLXekF2vap2gsHfrNrxpenFZcqAbJVqc788q8k8xiY0zwLQHLjv3stYafpEJAt5ZXQN1pplHmjI6w4vjL8ZYhv0lDqnfmecghjGGtEIT7x777TNvr01vP84hDiAY7A5waO0/0P72q+Hc+olty9FvaON7X1zHqsS3CNKKFtXSf29yz7q9AMc49IlhvIwL0XNj42c+cKuKpyOhJRmux3n+vXfe586TUm9vDVGy5O7Y1sWLNo1MBvdxE8tMr6+JAzY7Jxcsev+SfJnPdk05vuhmVWba1A1N3tn75ims55tLrMxPIMqOSxtRZQIG6gXfee/f2q8HCRLY8TDqFfu9FEYXR9oGycvNfTLHC5WdfenJnXe6bcqkvR2RVBrhIXCzz952+dlf/zWSurj4vnRYMYB3hfr+SstGDIKO/ML7rG41f+VLtdFmJpiJPA2jknkYhLQGcBfFDAYNqml6Vcio2HUYJEsBx511SSha897rAGHVXLMXNdsJBIJF7h478YslBj1SKnvFDQ0yQN4xwRT5NCCuHDx5oPpzeuiOq3lHwS7x9VCwDbbYfj7/QOpTydpl+b7TdPxylvfzxvUOqvxvA6K9Ptj37QC56o29mPBUNu+lQw+pO/1h1EDpuPaWqatV6b4NX5o8RNrtASJjTag/U3AneO5pApQItA8HyJnBsXG539cYxDdubInR1eaHGE43e7kN+9J/nFVi8GBPFZLIwPP1ZzO6FzbTsya/9qJEMtoOvfex/MtHkuLp0Y+WE5sMlfUQ1ceMT8/0gQZyHKUuSuXSowejzO00T0vIvQBNHcYnQnBF/1DBAfNA0GuSpXUfh2GMPWee0Y5Wmhsv3JG6oHW4AHQZ6VZ1VVMNXVfXCp6zq4B7/f2rBBVvpvaqqbodxXQ9P/B+7FWaZ/z26mgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the right triangle ABC, angle C = 90.0, AB = 5.0, AC = 4.0, then the value of sinangle B is ()
\frac{4}{5}
676
[ "\\frac{3}{5}", "\\frac{4}{5}", "\\frac{3}{4}", "\\frac{4}{3}" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJoAAABaCAAAAABlfBB/AAAHRElEQVR4nL2be2wURRzHv3NbUxOriCnWR0kDLXK1TYBYQhUrTQArwvGSSBVIkfIyYKDSCyW0tgk1RQoBIpoeuaoEUAgiJQiiR2MREQgNj1hoCXvECkaINQFTHyW39/OP3du73vXuZm937ptruzs7O/OZ329+87jdggzJBTjIaeyeRGUDpwiAl8lEW1mOeiZcRtoBJxH5nR5BZgoTt9UA7MQmgFjOMGF26ifG7RpizLU0cCgKJ1T8fY15MVw7TgoZP1ryxY3GkI0bAOD1iKPpL/6I8bvgIfJMFxeT/WVo8PgOQJLGWyLij9Cky1gYJLUdxtDUUSNJgAYHj48OIlnDmoHZAAB6hmDc4QwgKROCMauVDF78x9BqICmWM4T2+YU3n/ZWNz55OpgksN8ZQetbVJ4OvPfryOLSe4E0gdYzgjb7ITcDkLH1kbScvaKAgjKAdvLYbtV/VVvc32wtviIKKSADaGseO/A7ALj6FqKgfVbxul7tgqD+xo+2i7oz8tqBO7VuAFjVcSv3qIolqr/xTra30y8SXXxq+PlFDYGkNvu0m+QXMrUTGVh5vF5FRFT76qC8+zqNr35QvU8YG59DCcfO1QEAxnbteUB3oLT+8tn8H4Q4E7x9jfUu25UKAhieGB16IevI5vkLekSAcYdBzaQJAANFBuPUzszc7fqZlcHKg0Zo39cIICIWCQDSGtq+LGjXUqwMVh40pizcnB7JBDD1IO9UxZSKexG3mRWXQzcPnRfJBUC30jz5X7vlUxcPWndDE4UAsVC/ab1vUNOhLcVdyUcrq8li0XoRC6QXXphVVNNnFRbAhbardzVX6K3quD7yKGBZmMZH66lqkvhCL+OL5tWOW5aFaVw0qigt4C2MTewoHPOBYo5IVyw0AgDPqY3chRFS17e3jToNIgu8GguNAehb6krlLowByDpWP2fBn1HDxoDiObS6sMRokTOvZz67E6rRzdguDlr7nh1GS2RIa/h+9/OXwGAuImKjKcs3psfMEC7NSnmnyie/a3bqio22La3MWHG6lRZf/ce+H6Y8GhOte8OuhAse0tSycbLXjEdjoi1fl5V4yRh38ZXCOhNTVyy0vTcrEy8YANZ0XBn5bcJ3x0DrqfxMMjlyZhxoXjnrToI3x0BzlhaYnw8ndozK35JYNERFo5OeDSaQdKXWnT2e/1MiLYyKdr/MlWbGm8F7sz31ry1JYNdlA6AoAywW6gqnmvKmfi8BM68/mutGSAI3mgQpIv2Ke3tk5oTEAKQ1epqLLoUk8CiKQ5Wyhsct3VSOPlM22dmLgXay0RRAUxRFdazq3I8Gv8WIhbhaPVJsNgAKFAWGF4yLO+8+0xLcS3CIiMgX/FE/3elX/b5gevBKba2PfD4f+XzaBUP6MW+KnNjXMYoEQFEIWLUiV2td0P5S8EDCAL2TQ+MvTzQwdelokuYhSUqh/TdqAskWbUG0FkprOi7nt/Kjhfca5a/VrgGiw9RuRG9hxqEd5aV8U5cNmiMhKRIASVGkyhnj/IoiAZKiKBKgqMmApNhsEhQo0D6JqOSaPX9Lv5QoexwbIPXrN5J08vhmSGqi+kdCIJPk96uJ6icxpdadPT7mXEhClD1O0HOKVlXf8g/TBD/myfZUzVwed30eHNcCRq23zxTGBEANibldD+e44+QLoElSinpwtalJIBaghcSgRk9z0RW1k9HA82pEKJbXZ4glC0xVo8/ML173NxD2rVhQ4Wgfs2ViyUKmqmWdt3NbomcMQ7tV+4kgooGU/um+6ind0a6Gob2zwh4lI8U4S1wvXC4ueD/KANkfraVrHV+RVo0uzLb24tn8k/p5aJNtoYn33nZH/VpI0FDHkHlkW5k6dVH/WmzBPMDaGePjlmXl+lIrq+TaiPztiGh9qEPPHd4UvzgrX6cJsKRuOPVVQTsiOrSu/+wHYyzs1Ad4tZG3WaR9GSvuRl1KNthnc7RQhbTEaCH2AeZeSxkR9lREh+xMvxm/bbVafuutRkTnn5vQGXIatNqS6kwDjRShgvY3imp69Qp0NJdvFXcZwtZMy7p+yT2qV6BZ7/aQDh6bqw71i3EoEWkP9Iko6NCV5Xlc7WL6L0Ga8POLY9WnIoxADGiZ43yQON6vagvMKbUxs5kQA/3mtrte0kdQ9y2+G9tQrPKLekksUG6p3cjgnox3mEPrsIWgxaFMxst++sAOwKadnPDy1D2dMWYTjjidMRtr1QcP8H1P4pCJnOJGjkAtHvJA1qpxOrTUOK/hOIiIHIJfG/aDSIasjmuul49oxoztrRMjQSC7xc//w9XqBCqc2SkA4GXDHOAJQU8JGFiOYLQbjY2Qs2EDCK6lsIMnDDZNAgA52tbGIn0tkyvHCxCRiwGVPJ1AdhIRyTghtKvJDiKCi1IAL/w4cSN+Y4i15gBAhWOiSJtR6zTAi+GACuly8bQHMpEMR/yMpuSQiQAiOAGZHIH/I4g1dmj/neGJl8+c1FocRP7/AVeaaC81Sz5pAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in Rttriangle ABC, angle C is a right angle, CD perpendicular AB at D, it is known that AC = 3.0, AB = 5.0, then tanangle BCD is equal to ()
\frac{4}{3}
677
[ "\\frac{3}{4}", "\\frac{4}{3}", "\\frac{3}{5}", "\\frac{4}{5}" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGEAAABuCAAAAAASOyKqAAAGmElEQVR4nM1aXWwUVRg9d9OFgjVQk/4YjbAIsqaJWXggmxDdYoLWYLoLKLQPIuoD8mLAxkQSs9VEjNGI+mBoDQRMigUToSVKwQfKj6UkGtEXt0lLW2LIUhPbhyVdnNE5Pszs/OzO7MzOThNPttu5d769537fvfebM3cG9I35Q57MauAb79R5MgtV3DC1r6PTjy0Qg1C/Jpav9GZfOYOK/Bftk5EFZTh4wLOpn1mk8AqAVTOejH34QIiJy+T4Q0vpxdzHbBX4/swRICtDgMJDj3wADSPsAlbNcDaSdzX2w2Agte4clfImfueSip6mN07BLVDVeJCJ5WeXuRlVw5CPZcjEsIuVz7wEANi3Jwp0nHT9gW+cTpHk5CMuZv4ZJmOzJMn4tfJ2/ufSK5/WAwDaz5a3E55Wvg26xbvqwdSm6fKWPuKjkBxO6MVoJvAoCWBu/zHd+R39gftAKqnTRrK4EQvcB6C3aauRLGJzU4H7kInlzenu7Q/KGfthyMcyBoFCDrc65VfFJ8Oew0XtNGdtWi7AxzgMzLxurRDJgSITS0J377JiLRSyhQmmxVGKyqNUmq6VfHMJqYGKo9SdaC2uErVtg2V+4dZlqR0Atv2ixaoQEOvkURM5Sb6pjkKfcc49SvMbR3hr98Oq/JqNTdrZ5JfpkqOrj5RSI5Uw5Nty5Pz6NEkyddreaGe/diC9MMNPcsdMctB1HPhT/X3AktZxAOhp2mpv9ewFLRFO1zZO3Kjb3WiccmEgxMAWAUBM3QXGej9zsEudl9SD4b7QmlWWUy4MAvlrmwHI45E63Ovsr7W5YBFAfewiCEAe+lHptd65uEbp9upGALdGt6jawkZ+CQBIDkIA/PfOGizabO1GuUFWSPamSUrt8Rz7wuV6soQkeaWTJI+MmKaz21zKrx+h9N3GeM4uW5iRuERSau8jpS/jOdMJNwYAQMtRuoq7T/eRbFD9SZtPeNYa3Xiv7Pmpp52udC4+FFA2fZIk46P29e4rDgAwt/+4m+EzQ1X5kPzW1SQT9ekDAKCneZurr1GM2Z7wwEBkHLOFAYHUAGynjYcQ5WOZ4guCHUbjtkZeGIq1hRNW3LSr9RClM8Xawglb7XV+2V4p9trCAfZrxj1KrreCRn9KlBnpIUo22sIBFG3nK44SORp3n0Q6zrXZVLowOGgLB9gqM5covZr2thGmojZxobSyHANxfLmDtnBAasCumTLIxFz3dnQopEWZeYrSvc7+Ws/dFwBQu2kIxckpBECWZdsfHdgV9UygIXlW4zLRkKRk67chd71jtnm+uMqZIRv1mi3MeGq4uKYwDrIsq9GSZQCUZbnjcL0pfuqR9g1Zhn1g0Vm6GVTwQfvTP+m0UW+qpkRJkihJJY6raz/bVHwpMe+GymGg0LfrF64CMO926oovLIdNJR0CAEVz5Hrcqjz12RrWmg6HwwDm9vbrP6sAAkgOAtYZS2oOS+ZApU4bUSmOkqlgg8mVNiMth3XnEZblGuDEA8/LYSAsy3IYkIGwbJRlyNA+Nogs/7WoxiAzOlVJtihBOm0tGwwFAoX52Jh25AfFysxYD8ZoHdi11s8wa4jmrRK5wKBOIQDAmen9fjf/AACdp6zlEi+z0Vmf8dEwGqc5wqUMiUvVNE+SzVlzF0uuD92JREmKrxDJAcsQFqgUw8WqYsRiZVYUpcq0hQOsksMaJVamLRyw+LlBU5wNBgL4qkJtYQ/xouXBiskfpapsYQ6TWXKYo/R350nv2qIcatsGjELINDEL2aJ6WJSZ4Y4fbeGA2WYjTAZDdq0fbWEPpe2cvqiMcejoqQ8iQARAsfMbfTLp+xr6M5HqOQRwZ11WVxGaL6PxwEJE0nxvFlL9mtv7dUAeaP3uOKkva5WosMtZbdLT25hcYfLBfCfi78JphQCAyIPXtWIIgBj7/HAALVuR1LfCqe1bBA1dcoTg607EHfpmkCAPntgRPAFwOdoDAKiBaNm+EASIb1H/C8LTCwv+EUIwU7Qcg5wUQoiX7i4cQ3iwq49Tv38cbLvTr4nG96+eABAC5JsRrtw0HijBxAYp92fj9ggAkONP5qQPPb5m4xHjDWmS860z6oq7ePX+RX/91ujWrUrQ8+hbAGseXwoAlFIjGmdgKDyXIkmG8M+9J7D65R/uolpBbOD2H6YHNSH8vKGu0HZgC2OxWZtKqRHe6jI/BAwsSkM5kkQDALQESkB2NfQp0iH1wWKV7y85QPqoAS3ak0vfb4R4RnVvSP0/GP4DknKRqSns7X8AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, DE parallel BC, if AD = 3.0, DB = 6.0, DE = 2.5, then the length of BC is ()
7.5
678
[ "5", "5.5", "7.5", "10" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJsAAAB0CAAAAAC3GB8HAAAJCklEQVR4nM1cXWwcVxk9QylKC1KSKhZCqJnEVErUB7RBAiwqdY1wyfIA2VRCDlIKBqE4hYfaoIrwgOs+UEOK1giVBPGyBRpvEOqGp8SJRLephGJaOUtfAAll7USlC0q1blGdNZ5lDg8zs/N35+fOvZX4lHh3dsZnz3z3O/fe+e53bRBazPrGCzj98JtH9aA59j49MDcPfpz86BdNPWieUYetj56mzf7EbS1onqn7jQCe3/dtGLjrU/eo+ypgho5425o48qT7loYGPNe0xNu/ug94bzVS06SFuzWLwDEt3D685w8A8Lu3dID5poXbjkeevQ6cW9+jAyxgBfVth49eAHBavdcIm6JOdcoyZiptSsIAsHH+5K4NaBr7gqbCzTCAS98/NPr70jtHtXYeHn6x+6UB4M/LV5cr5UoJMGq3FrXSAlB8XFi7/PLy/srDX3BR7K9Uj+kj5VoRbhuXX15GZfzw7gDK1mfPHNJIy0UNHiXLbnjm0ivLa5Xxw/ujKGuPtnbpJpe3CyPJ9kIFlYV2/BxItsoauzaSpMGcfZQTYOWK8KRBALU3ajqdBsAmVwCcSHNdb2naNKeXegJX+n4jJxt6/QZuPzbxLu88lDDi2Lx46tDOybOdDBSS7I+1NXObn9gkeW7iXcHZ9kIFlWeyv9GN2k6pp5XbysgqSZ478FbwY5vsnJncWTp1MXx5QqPCPadXD+9/7ugnAODv9wfn+k4PVj27OxqdBkADNET6MYDxI7M6x4eHmiS5fdyPt4unSpkBJvIbSXLyvC6vkTiwSpJuy/L6M14PJocyfOfqwU5StBTq6AU6z5fsnBUEmCw3nXrA/MQm10dPkBj5ZsOBlb/n4OjSKhdBEKJuHwdGVkk27jdrd0Ln8n9DaOSrzWhhRhp8498POqpY/MuHLjzx+I4iggrPGI5Vj+mZrK8AJ8j+lzfJyUZ3xqwVCZfwjEHX+IDHeQ4GDtx2Mbsz5pw8u8hsRpMeQqidUo/sPSXPLjrTcsYHVUWEUR3MjTlZdrFZoBY9RFBdzI0583tdiRuPoNh65kvRO/YwewvmTLcQijMk6NCDj+o4ycG0SfZr+dkJZvYa9BBDDWD2a+ZMN1e7ip461PUQQ7Vb4/5Bv7Z3Ks+ERMTNVtaDADWE2a+bX8tmJ0CxaavqQXTHk0uhw+cjvhM0k/hJUlUPItT+2PXwB3Uz1rJhgglPuYp6EKLGMetm9broyjQUqj4/iFFDmI6LXixV25IoVBwfElBFmBeS2SVnLlw9FOpKklCFGmuWqi0JLdAO9uWauLmYAsRmudzKi+KYgh7ifW8EM0qwJWKXlm0vrodk1ERMAbvUlYDCekhBTcZslceaZMCn6asURceHtNxgMqZ9rVpqhlC2U76j/+m2NC8HNenrya20MaddLb1Iz3Xgesp32AX1kNoandIGKewBbIed5ztwPTXL4MWuXCoiPVIyNNaumnWSpJHqN5K1WfeNDLmMtbYsjXWmzLqDYqd/72RDvgPO4JY9B+tMmXWC/I+d9OWFnx+ycvg5NNaZMtH3fyPpKid2ZSxz/bRzKFtjazBr/ayL5MeHtHVAAsD+WnatzD6s3Dq4uJV+0fiXviOTpwHS152dNsox5oDszmT6TnZ8SG9TOycmSGaneWT1AJKWZSWet3NhwrmJrptISdKE5PgAkkymlhNz6P3enDmXtLQkvf6Qi1smZiBz0Zvb+1TynUjNlzydDgYDDAYDYDDwDv0XjB/57mAwPB5gMMBALC1j99NtPjj7zwTlzXZ/K6lTy/8//Bd4IW1rsjE8tiyLlhVydkRRsTSP38gy6w9BbhZJy7IE3Gj1x9oC/iJuNm2yv2g+IU5CSejBjzcrSCXGjZ1SLx831/o1c0aYSMm//gCPlM9N6DfypbItw43s1/xURZBMbj2A9Ho3l4VDNPjitDVrM86xF29WCEVogkQKnb48d7wFucXMR0keH+LcvN8Sscs7PviomdRSMJO52aybU+2Il3LqwUNNG7eyMdNH5fowkeJxzJdvlat/SxofslCa0TRPLj1I1uYlYGajRNnlmS/J1g16mLnyliFrlpxURXCtIGzRNs7PzcUUPj+kodiBKAskUnLoQbreck2EmRclyM7Vg0N8HoCzGKnCTaiH/Citcvmi48jw+sN8k24VjQo31mZkIiP22NqqlJqMrj9sP/Ya+WrEcUVqaCPrD3Iotp9ICehhvbIZrzsqwi22/iCFYpO2m4Tyn6dXTpDX0AxfWaj2OKYxaRS7XS3VA7E7/xm32kKZW0wPRVDaU2bd68vFuzKK1feOH5kt9HtBK9VbV/fd1z0PAK+PCkvRC9wxGR1ziqJ0psyPten0IHErhBpbfyjKjb2fjd7V4yiiMiBZoNbdK5hZe/SlYH1vkVZ1ynF3/bqZVMtT9I5DepBH8ctxk+dLCnsEFv0acjmUcL03cLJ0cuipUBmTvMM8C4w5+VF6jWnTnD4fWo/ql69RNAsuzC20/pATJalasjsmfJJV8Ftg/SEJxR7+YDuhWtKmTV4ri9KKStyGeshA6Zyd3JVQLem2ZGMyfExSeb+Mq4cUlI3LVy8Zh/0NBW60B4KeBoAZUzDSKPnN04OwPoShABM+8Nl+PqkSd6uKTklvDobIp2SoB8tjvZKrB5+uot/IG6VeHGVYjiuxTvTXMXfipYWbA9Iqh1F656dNc7ohvyrZrEY+UNKCE9CLN386RAnuWJEuVf3ROwsBWFUteOsPIOMBJl94Ub1AnfHmrD9Aod47YJGHfWUtkGQHwHBbrFLR8U5uHweAiU3q2O8M4CO/JIdt6GfeCtjbuPs38032+89BYT9gUEM/fltwQVH/WTdM7HjkBhS4+QLn0pUH0q7MbwSAN28fxFLjh1DZRzn0y63bn1en5UP+cfmDxj/+tgeKe4oJAFtPfv2Gxq3Y1pVVrv/iWUBxb6wBAD85o3XH/3/vHKT51St3oLg3FgD+9IORD7y6Vw8vAHj9k/d60aLah9z8Fbm+/15VRkOzfv454On5b90DqM7f1iub5IpwT1wxGwWAkddIehUxJOVfSdoYWeW8mw0tipOIr+VvTbxHpulvm7wn9v/M7X+bzUxQ4EltiQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in Rttriangle ABC, angle BAC = 90.0, AB = 3.0, AC = 4.0, point P is any point on BC, connect PA, take PA and PC as adjacent edges to make parallelogram PAQC, connect PQ, then the minimum value of PQ is ()
\frac{12}{5}
679
[ "\\frac{6}{5}", "\\frac{12}{5}", "\\frac{5}{3}", "2" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIYAAABmCAAAAAArVrbPAAAGIklEQVR4nO2bTWwbRRTH/y7FhHCIBY0UCZBDKtGcqFUh2AqpbKOUujdHHEgPKfGBKukpRQjoAcU9QIpSySAB7gFpU0TqC6pBHJaWD1OJyoqqyO3JlaLWtlBxCkWbHlJ7HaPHYW3HH7vemdm16YG/nDhej9e/nTfz5u17Ew/hYdCO/xrA0P8YjbLC0L/sKcZOi+NnnugphkVvXLi826UvqBzzeDyeQw9EMPL3XnOJAju/ilykUvELAQz9vems3y2OStaPxw6tdW5kOjbOft7vFgRw569RXIhftWlF7VoBsOeeyRtCWgawaNfIxCj580S53Y+71BmVy6uUi521adWOkT+xCNwtu0SBf0qj8B+7xD1Thq/dxOmXf9r3tzsYN15kGmduDQELbb25ShTBRZtmni4v9LtvAxj8YZ9Ns25jMMpqTcHTf7hx+md+Z2tnudD/LMUcD4ys/D0rr+U5ijOTRWcUGTnN2rTTTIkHMk4o0lKWuW3HCZsJxMUpVEljb9x5ppTCvmgfq3mbtfRdnOOTnWPRvvjegzeFKM5d4aGw96JpKSFgkfkZvvb27msjPLzAa5iwP8L3AfsbBF/Cf2Sd65yliVc5KdiWttSoytHBWjDBZxGymbANZ55nPmNBTnJTmEVfZoZRcZDRMLmJqMxrEUajEBElA0wXyeM6G8Qe9hTkBftGSbkgQsFoFAAYSt4/smHT5tuPE0MCFuEwChGRGkh1fF8Jia7JfLFoVo52eHd+WhCCxygAMKzmj1oaZhaKmEF4jUJEFJfSpseL006iNf4bhIxpdFgMKQ4oBDCoODPdNhI1icfdu4JBpLRGh1kLS3UXgzJSU3SYljO0AuB4jzFIm5zZNkxazm5NjW9S6RXbBILLGESx+uKhShpFxjeJaHl8s9cYlA4kiMhwnSuDq0REy8LJGfH0bCB5/iSAT67E+yqfTewDgLVnRZMzDrLEvoR///qpvNKHO1eDAFC5dVg4ZyZsFCKi1MBbRES5PatEVDNNb40CoHT6o7UIAGzlAehvv2uXxuhKb2hBlWheLhBFxjcpNyLuNhzMlFrsmwykaGsKELeII4y6Ay9IDNGhjYTHxvWJeMD4ayh1f2JDeFA4GxuqrDW8SthEh7YSxIiHtKbXWdlZispDQBnw8nXh0iWl5e66dHIj5nNoFJ2T3TT2tYoOmSSCMTNvejgjKcIYHgJQ9qIMeMuAF2V4UbfTtrmMv8qAtxQ+MFuGt9xux9IsYoIpqnpvVH/qj4anxnfoz9DXuk66btqFiiSYO2zE0IlI13ULDOO3NqY2MLUpLYnlDrfHht7yraYYWekadcJojg7ZtQNoreBYVHTKAK6HlRc629gX33skJzQ29Op1Va/Y6JrGJ712ODW2phsHjYe5UtXokEcNXtR22jY7cGtpofd5MbaXNpMZ2KylT1UfUwf7EgP7+XKH9aVNt+zjmhZ40gYpthRVXczVpVNY4Lm69aNcuVHWeCM8wEWBoSQObnC0Z+qzYlDh6mMiIkqOsgchTBiaLJQ2KEhRNzGysmhsNdcSHTnB4CiZtSkRYPusPYZg3reqLFsB0xaD1XVaqTgzyXACO4zW2FdAcYYgxAYj5rQWS0SUCSh2TTp70cjdGJfTslBpts+mgNnRi4bhCgX6FNsCpnVHFSdt+5JdNtGhNYYWclCSNjnd5FyHYWaJIejAOygqZ7kxsozuj0epgOWVWWA4c51W0oJW0aH5TPn1ZGLYlTnSLJ86YFXANGNTg1oX+oKILAuYZhhK0AXXaaWCPG9y1MQoZ66oojfEDBpKwqyA2QY2x32TwSu1PTpsxShOR7tNQVSQo0RbUwBQrTnUMLamgMWViw5LZqwqzoW06j49o+hQxciNLBItD64+2b1B0aJdVHpjk2qlIGMXXH5s9h3gdcXv0rZIJt0Y6Edte68xU5ZGTgB45CW39qoySQ0CAG4/qGHoPx7uB7DzQxe3ENtK/+0AgMqtkf4axnrBrV3lHFp//imgVhEyjPKoa9u52XX1OQCVD8Yn6hhDu34BgG96OUD1c2NAfk8harwkIqLI4CrRsnAVVUTGt9c291b9BtNm8C7qIdnE+5D/m0yP9S+FXJ5/lvCGxQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB parallel CD, AB = 6.0, CD = 9.0, AD = 10.0, then the length of OD is ()
6.0
680
[ "4", "5", "6", "7" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGMAAABjCAAAAACqUOFJAAAGhklEQVR4nLVZa2wUVRg9d4uQDTXwo5VVN1aw0mKNLLYkEDA2KlKC1CKQoIQQEilNMCmkGEExwaAJRohAUlAh8RFMjK2hPwhsI0gTJGJa3G1SU0hauwYxJcVYW+iUPub4Yx47s3v3MbPT0+7O/b77zZz9HnPvnTuC8AStc0Ip+3zeUIzXp+n0iGPfY8UACMjC4gUHcTz0NwAIQEwRh4gNLy3Mh9wJLzgI4NA7mA8AYopiJYDjjWIuAJBTFqvYMBmeB0AIebCm5U6x9RJFr9YWoMwR5ogGIMJqoJa8cFJukjNHHN2ztss7PLoHAdxZs6FT3pMiTc5xf2Xlrjn38mRdHvih/cq6wP5ZgetSAw84BAB8fP0bYHHHVHEAQMuJlulAKCrvzaGQVLPVHugiVYaXS+08qd2bRWGSZH/+lHEMl3+qtwLdsn7X+aD+TWDzkp26pkJ6h7jmEPq3wN67Rw2NPOm519XXLWfyDLfK5cWbQx5UkmwL9sQ1fQWqxC7XnPcGf7ayFsQkNq5iFR/j/lv94TKLUlgSEjdywmGUUnxCnVy/fovRJwCiIp6Q+GTlhEMbo41zCaAu/4D1iiJFYblJgqp91CPlo1YVye6AXaZKZzmvBoDgkCmfDd5MssnvV0lVM0WlRuLIj+oI2VA4rEtdgUiyyfKzcdNwrdZ2ko+xiRBwaOluTbpddSKUbFMRBQiMj4XGj77wlKZzwMFLQQB48oZGWLOzRlPb1oYLOwAB/PQ8Tj7yQD1IZxzix5cAYJ4mbSpt0NW2teHiCECid6/Y8SQAIZxxjIdXAcAf8wFg/8Ap6eK29J87EAKtUb5WbCqzz3hfLUn2oZnk6eKBFFZLLpDsqyQPmyoHfpybBwD1leuAX3eHC+RGXNhB4NwqYhfe0nXZc4wfWwnGxNAl4M+a00+kMiuPCKD1ZQHxatAkzhJhzbyJ5HDZFxID/c5uX2CYIqL3uFgnqquHVmgtIck6DwzlJ6hcjO0N01YAAOVPTWJO0pzu5PlDe7ZobLuc+ENtuNWxLEHjhEMAwMWDv8xMaxVKntOzzbmO7oL2DBZXy6wrSNLxfD5Q3KzKlgUWDM0YTdA4y/n9tVvXCdkTnwUPzo0maJxx1D3+bmajikQOR8+1H/VcyMIqFEnUOEhGc1GqgdCGtvIEhQOO9gLpqjwJg75Jtxw3g+EsLYsjdjnrnN9ds2dllqaJd2HWHK8v25GtaWJh+QAoipLmDG3ce3viqEVKj9C1xEuQHMkY4pOlwxltTPTnT9jkbDhUtgVizDCEWBG0F6CRD0VRtJhpcVOsB9G7sfkhZdSUFSgK0oW3wh4sg8Ov/yl+vwIofuthqOrQs34/DFmB4ofiT0OyMGrLm7WuFD8MP6yYrN64CYDfkP3wWySpH+22dZ05XvkVv36FRGwvPJBVOcURitr243xIimyCfPj304BINkuDoL/XNgGQI3pZaQdNGhkZUbXD2WD/iFWtfWn/KVHVnFS7Vo4E/Bboyr5mTezZY5XiOVdkabxdfarM6QqMQEXUdpLhRJLrKsnR8iPOnVDJnoBVkX6duGHWKYdO6JjdFYwLacfd9wc/d0eBUIflPUUSh6Xv2++apfucGUAAi6P2+8MO4x0GcWVPeJYLCgjow7tJI8mYhp45bc7zbaA7aBFSzufDpV+5u7xKkhP5/fG5IFXOJ9e+sgXZTXuSUCHv6WjmPZn6mZ+YJ7hBeTTelq8TeezKZb3lkiXUar2cLJ7ni5J3W5whUhxvS3PelfEhIyMm8gbNEpVxDBSd0VsO1gkGjFPK20xJkvP7a7bVuH8rYuRP2/UT8j0Zvln6nn6ru2UigEVRkzKZ44PYZ8ZPyvTIlArmaGJwJqBZ321xkQobRmeYK0uTQ7/mVfnWvwuUXTVaPqt/wF/rT5e6i08S4lu9lnyQGK7a96JHFFgUTZqjCCHwxortKd+0O0VFh1Extvl8V0+Lm4lPjruz783Qm5YsnSxz8JCRGQuMAcky7l6s23zIMy8AjF+r0BqWWB3910sGQjxn1A/1ffQmL8NkB0iq1d/zvLn75yUagcqxeh+Aid5VKPXqraoFMdFJfjn9YVDb36+u9doHdaykliQbmqB5hE6vKchG7S1GYwQkazrZ6H06xkoO6i0fEBt8BttKWjOG1yFu3TD2sn3AuSqrwnMQPqB1JcarCqs0WVcz9+OjJb0AEPsB0DbHK73OBslGNJHhShI5T6qpEQZQS/J/U/EO7uQd4kwAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, DE parallel BC, intersect AB and AC at points D and E respectively. If AD = 2.0, DB = 3.0, BC = 6.0, then the length of DE is ()
\frac{12}{5}
681
[ "4", "2.5", "\\frac{12}{5}", "10" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABoCAAAAAD58KDRAAALBklEQVR4nLVbbWxT1xl+btoaMaW7IIzqtaZmJB2moWpK2i1SWQMjVdOKtZmWKf2RLkFlDVImkUopuIMROsGaqpWWSdmaCVVyNaZlU6QglVFLC+BuVEsXpLDlw20JbZBDcAktZgnUdsx99uP6436ce30d4PkR33POe9/nvOe+5+s9J6AFFN2PuUCTVIRyJLmwCwA2XLEigVXBzUMhmdozQb5tSV8CCxAELUpswPyPBIDp1cCLtb+xkLZklyBBsiixgaSX+XTJUuCub5//Wix9p50qa1w98/HFMKVz0wC85bzrce8DVaUCuVObAMA3BArrvAj26eOD4YsbV5W9UorVPgDnpzA//MHhU95NT9beoxdN/rMRAM77llroKtKVIh3lnsbeiKhorKfB7d8zmXU4kpx5nSQvVJ+w0GbDfgxojndrc2b/ULWqI6JVb+x+Yy97Nh6K51UESWVhV/P1YtlnqveRM9XBnGIl1l7adFTHJXgi+xvlwKz6mGyYIGeqX7Ait2RPPruPJHuPZzOiO+SOmEjSPM5E2+T2GMkx9dueEApZsSskeUwdIUITat5cwN05a1FRAWKBlZ0JB3IWtiefDWqTRzytRm4La3L8Tb4QhxbJPqN102jtw0M2ZBZF4fvlB68UYLcY6zQDJk4/tmnkezYDnLjo9EFly/wF67fs+num5Wc+JHe6Q0KRhV0SAIh702SDpyfNfne/RdfMwMrnj+EEOdp8Ld0CX78mX6NlITBBju4TqI61LjswR5LD3oCFfnt2/hfAPsbrHtg4sMHfJ6p7cvf15EByIF8vRZWKB3IdnrGqhjlDpR2xkyTHyl8qC5Ohal+2C2jUjAb5t7xvZgu+7pJfiuWTiaaKSWv9tuwhuSdYQ1JhuMb3dtrAdAxYM2F4I93jaTCwdcnhRbGPyaHEmuyrQ3X39SS0ti/8YiK17yvqmqPPVzus16GQAystrbdkVzi7pofdW/M5w/We7rl88kLbdR65Tg19qLJq0MRN8kDFHMWwtj1d28aEZ0Rr20ijuyun6FiQ5MLvr2dJhmr8/UYdmSo01RfNvrM2ze7sa9kVbqRJ7oyTpLKwZ5xc2JX1xshz3kOaT5B7VBSSierOItmD5ZdU0/XaeL6l9NVZclQdqzJuF21Z+ZbdrBL1DhTFPuSOkF3CFou2qhNoDrPt8t6rNtwkh91jRbBHvSEy7rZw1mi73BbNJuY65bYv7LlJ9vtEE7QFe20Xyc4WS2WxDrl1iiTT3e7GqYLcJPc2kKYxz8yukOyrSpNx91nraVyZDcgtn/Owd6uwSY0KyYQ/ZNYmtH3OO0xb00mS8c5SecOp7EbOvgIKOehPmOSE7B2tJGNWXz2rI1z9YIu7YaQQcw6NB0xZIvZJd5xke7utrpGnvYfJRLenvuD6KYOYO2ZsJhF7SyfJmGySzUAhOdXo7lZnnUTvqqdOOaM32yPwupjIdF09Ym3uA3O5/PQh3xODBT89SVWxPTvbAyRj8kUhMcn4XneHofMGy6tDVJRC7rejsyD7rBwj+bOOLK1BY6JL3h7VZqjlff7KAXOuAZNuw2RnZu9uUchJt2joVMhez3MRzRyiKRyorOgTUWpRH9SnzeyVYYVs2S+sfn95zZCWVy9ytNovWIBpMVBTgH3Ex2yfM2KwqiqkjRApipEkVOMLpmmNtFs/KpvY2ztJNnea3xyuLdesHsT7VzJc5+1NWztfu16xid0bIUc8cWPIbKLe06vjsmQY2urptpzrh9bZskfuIVnfbciNbpe7EnaUOozUe7r0zp17L10a02bAINHbSI54EroQ4GyHHBD5gRgKyUij+0DckKeiTtcv8rtIdTN4cjPwWmCJGmOSAGD+4Lq5T16XbaN0xk2lv+9fk75ffpndKkICM1vSzSftdpGeiGp6rql6PJnVg7NWzwtObZdfNQc7hvzalIF9aiVZ83Ze0WFf3QgzK9OiEW1d1m7iXxLPV9DIPljDcHmuxx6tqLbeBdkioz7WXtoa1ZdUDmssMbD3bGdNMLNaObXRP7B44gxmA3KLboRpOKyRMcQuJv0fXGiSCAnjP3z+p5F6vYs49ro8Vrw+6Xt428f5DP9ZrYy+4nVHa4KkwmhTZvWwqA9uaIx418rG3Nrz8E80RXnbCQKxyctNwKWX15d/vvMOsyWLgiTv/uzR2h/9BwAB7yVtmf5rla8bYHyv3F5EbM4ZEt3euiGSHN6Qb5Sc142rGzK5IvGWuylaXIM7E77R660NkxG/5oUMe7JBDTtLrQ62BxoM+isdLilJMujbGIp6NRmS6siHht9YDuD5v6z5wX3OvqYa7v/dZXhfdCYKABj9x11fBfbnslSve997TQJAP1641xm5Y3eUdKIPtW0CgHRAkiTpJEAyef5PF9rUoF/pnH7dUOiTFtfyJKm2/MKuE8romok7AZS89+IVr3p2UXqtVLKothBbIg6bIIf5uwFAmX5EWnE/SgD8/edL780cGpXOF6tNheP5F/PfAIBPy5fd+O0T60qAi/EkR1enUkilUqX/S6UAIKX7yT1l/iKVQgoAxiRJ6gSKGZSulQJA9FfSd5pfQwkuHqwHoiVwwQWXZ9rlSgEpl/YHQMrlQjadQsqFlCsF9DZfYeJMp2NmAJheCSD94QR7tkZQ0nvv+1M3dj+z7ddAygX/ZzlrjXDlH1yAi0Dv0KllWHLwaLwY9k8rAMzGV2PL+n+jZAfPrbvjDUXZnwKA8nGXy1XgfRUSxt7cbXXMZoOJBwCceWwpvry0CiVACvnv5j+rpgUwZt/4Y9M6AIgWxz65Fkh/+F2kdqQ2AGQyqfbEJMmpFWoqqf1JMiuUTCbVP8kk5545rvbcfUX19yXxTKyv+bpubZMkSY/wmFGEmU0TJDlqilPbYmitdgDLz+8pFwDUfOC0CVd8MwYgtUdtf0cgEN6k7ZxZ9qyrbzqZlSsE19Pvfo2LGyv3OyaHBIQ36+ujR8TjuBEXdgmOBwogXaqLBgl3kbcPH+k2E+bzuIY+5y1ZLIg/NxpyMshumEd8Ds1YzGo37T5va7tUudyh1y9mtftexf26dI49p6zl3UWodYh3txkyTA2qRsxuC0wRM5PXSe5t3bfL9DfbDPdSJPO4Mv3IpHxbyL9Ye96gWHAC7t1qdTXoJtG1zWSV8PNcuR1f/aLb5FCClgdemeu9DaY//9AeU56olnOe07fe9MEycxRPfCbVV6VGT27B7j0DJeEXXGEQ3bsgGpe/BeCW7N4zkA6sf0pEJUTUK75ssWg4Pg1USEU9Cb1lUIo6CVXIYNmtil8oxZwCZz1tZ61dpL0oJKr3iwuE/R0AcKNubc8tcrkX5o5YlFjXeLa859Z0uczNB4Eua3aFY/JNOH7+GGFgRfG3PkgyJPfcvPGLvfFCjpW33eSgl2h50Oa2j+V9WgBAxelztVeBxQ96lx+f/6jMutieHfLRikfHF8kMYPiRJ/8qumabQ8G2C3oW7Xv9HvENnBwc3Kcd9piP7Z3gxl5fobBnIXaFZHRLpdMTfg3C/q2XCsk4u0s8YL7VaYK+W8SafO8X1lvA6zKoP7t83f7LtN1XS5pt9xevri/7pM6BYke20+Y2r0C0bdnOGJ2cZBVxizvWfndTyNDAivk/FwYa5cCsw9GpMLtG0WxvlTdgu+oYf/lbGw/FHY+N1jOsGB+/c2S+ZnONX1A0Hg6H3T/elhvaxBf2dXDGTkmja/r4YHjm+6vKHtPe3j8XPeXdXKu/vU+pUBWKtT2Dq2cisTBwbhrAqjWw/M+FAvg/UFJ66tg6wEsAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of circle O, C is the point on circle O, chord AD bisects angle BAC, intersects BC at point E, AB = 6.0, AD = 5.0, then the length of DE is ()
2.2
682
[ "2.2", "2.5", "2", "1.8" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAB2CAAAAAAIQCnsAAAGgUlEQVR4nL1af2hVVRz/nG3VCEHBVw1ZDabBajDfNFDoxwL74wmGSgNbGg3cMpEoFuR/GxKEFEiEf8w26U0aDJPeIJsaGk4qJgWJDJ+BqLBRK6EWGm/2nvfTH/fHu/e+e+855777/LC9+96555zP+XzP93zPj3sFUQUuPNqmk72uGq7S23r5qyL7sOWJ+0Y2tnZBr0AVZPN31q98+H6RfboPWu5RDdnYx+JxzdKxyebvkNOtemUa4nL1TwE3dEsxFgaBPHuAAa1SIlYEoYhTKmafWVz37guZicnTmgVimdGyYueaL/XKxVJmck3i+z80y8V3kM6hH1L7NcvFRS7NfItekfhk6Rz57FmtIrG9cRLbgL0jNTejYQtjIXWr1soEaApD446xWitzhJGzbbVWRqvHALSvmDYTaqksnbO67rNdGqVikRm5tElF3m5aVC+nbUYCEAeG7MC/bGvWTq2RGXPp8vef20naOiXQJjNou6JFsH5GlUvfjKLsiib6h53JtBZmTE+aGg2DJBdXLqpKizHOJrHV1CgEACzfPqEsLYawnOuHQc6kw3JWp4xOVLQhgA3/XbRdn2DkMFBoUA8ANP9rC/vKf//wHk9OZMIqUjJjT54ctNhynRW3F1N3SBqGlXP6nWrIit0k2TNAGr4es7BruJyzOFocDXNOlT77sRkAnrwCCF+Pmf2Et7J2zhcxvqphd6hzKigbnCLJbIYk07mgZrf9Yl6zAPLhFSkoK53sAoDrT1uuGNDsvmHzeibP16K22XJhcwMkOYcpkutygVluNS2R5FyGPBJRk3x/xnOtALA/sxl49bdLlwIzdU28AeDcFvBNvP9RWFVyM947tAmYF3+dIvBdV0iD+ocJ4MwmCOxsCR/YMiNOm9mmSO885sOaWV6wagz3EJ3YaKzNhd47+G45W+gcoEOW6wiaS8yUhdSSLyU2mVk8KHg46P5CwkTVqC8A/wTtR9+IK2sYlJTJhbHUnJcJ05jPooWhfu9RqTB1ZZXzmBdzTfdkVSgrmxTbozM0PyPfzitoKu/HInHyJVkOVdePCB42Ss03JTlUXf/AkHQ9X997JBkzKggjbzaXojMoeqO8x0gycyJ6ZaxkRkrGmJ2tb9QZZsE2l7VW0RVJyl1EqkxAGjwc1O8alWhXUKYojLwW7SIqylSFAavboo8gFdpr7cdUMPFy1F2QLBQKUVmUxpiFu4/NRdytA9CIxijtB4YUjQjgwdePycyYhDBrOF9piXARm6xQKJjmNE1aKF/MecxMsD5ZKIQ28LnTcjL73/mzL8c7SW+y2a4wtvFuNTKr7U6tRoH26t6suaJBAVhKLTBsKeKMs8Yl69roeIuo2EEr4KEdWYYuRUjLIgVvw61L+jiNgOQAZbaY2ZYoM9qjzDJV2UEMFo6vs61XTrb7LIxtY+gptSuCBHWCclR0MY7skJMFcBk6wcMpdDt1iwxc1tkOsrTk70uY54raEMteGQvb90U1Mo4wkj+FnVKHkmnNYz6sPx+cHjqfac1jPvSP6q9BNOYxL/5OBZ9SR8zU9rmiPlZsyQbfiBCWiymMnGnXVBa7xwBswEU9ZbL9WCQ+6Q2K+6FkAeeKGlhcHuQiQWQ6i+AwOEeQMjLF/VgkzqfNehTIws4VNdA2U5kW5I3W87F47w9YFaDvc2VvrLLHSP65/HaFGQPHmeJ+LBKPZMYrlyL+FiXhiiTJsxsrkiqU6ezHIrHp90sVaUHKkhBG4+Aef1KQg1Q7xiy4jyDDyWLPYz5sy8rJEhJGnva7SABZIj1GkqWWWW9C5ThLxBUBAPW9/sODSmHVzGNezKWWPDGkQpn0XFEDzRtPeGOIizix4OEg94InPHrNWP085q3OOqW24TWj0rmiOkRd79EIMyYqjOTNVNH1y+eNifYYSW6ecHVaHYCdQghxCkhyjNnYPer2R5LsmTKmka+FMJZWXvMqK/3aJVprIwz1fe4oQnJ6gOx5rybCyGtNJdqLkQYK3Dh0CPk2YPJqyBPNqlDKdQPHepH5eqhOAN9eYfapq8BdzXf6JLDegtzXgHlxmRx5YBXMB77FjsMkJU+kdGFYH8X2AZIcPFkHnNsCLFw2XwmOvzANgF3Z+D8fAETrahjsybPY4byBkTxsq5G4AEC4XuEwEr6S8/jG+tbwvBN3zQ4VPhtUewXofHdF/UT7y4WmjusAMH/KHfUT9UQ3spgiz2eqeSdVA9Mw3xL/H0VAsWB7lH8YAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in triangle ABC, DE parallel BC, frac {AD}{DB}=frac {1.0}{2.0},DE=4.0, then the length of BC is ()
12.0
683
[ "8", "10", "12", "16" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIwAAAByCAAAAACkM2aLAAAIf0lEQVR4nM2bb2gb5x3Hv4+c4bV402AGq0RDzawRp3KITPrCmRPsYaf1RpSGzVm60RIXQlvIIAmrsvRFyV4ElnWBJswFKx7UZaN1qEtazyPaZDN1VYiHPeQRp8moVOzFZRlJt3jxwN6s++7F3Um6fzrZOp32Jcnd/Z7ndJ88z+95nt/zPHeCqIkmtjQbjR73OQAAe82MNYI5GTEpGIiaVFOsea/Zc2tSMlmxJQLAwFMDGCL2PFoAiP8DGHHxnAiapmxymQRAFhImPjFLcR8me2IMMGUB6LKiQIYRIEqSlDRpLjZtGhxWLxcdWGX54F3ApF27CwMCIGI9KcCkXbsMIwCIHwz8Im2ZwV2fWT646a2ltrsWOdzt9BbaW8a+4BeLtYcR+GP78dcE8NiN2sPgrQMjRwCgbc68MbnVA1MAr4yk5CDmsT+YNyY3SoYABFa/++FMs1wg4TmLnC7ACAD4e4d30qt0wttu5moGAwDpx58dqlMvGr5yq5Yw731r8BiQ95TwrHk2Vxz4pwMTIaAwVIYsnMaFkll97r10CIBaMERbDWDkvuTe3rVkY7FZoPW6+zACAG7sevKX9bqERz9bMr+jyoFd/JFRE+vOlGnmKvvM60fGvmP8/6Nt1jR31VoTBZA7dvWa35hk6TRVKxkBLO379EMTFgBh83G7etXEbMf2yw3maaFZi3uqpZRvWD8VyUvyz1fTgfcLIURxXPBm37uHLSIFAK3pKs4OOBb5mIzmn82Xz6a+bh1ei9YbVZwdCIgg8GrkpNzvLn97dqrZslhgNVQ6VU0TWwFg6y1AAIt7No9/sWT20HWzwNMpmN89AQBfA0DM7DoyUFd6LrttYdUsg0NtR/6dl6KkNOqL2+cPTVv+SIWSmImSZAYJ8kzwehm3HBo2MTpSTQKTQQA4EelZffb9a62AxVykoO2zSsUUGx3ymRe6gazA2L2u5Y//ogBaEhGFGYLWc5yopQn5pxKcC/yEo96i+MCsB5ZIct5nkurocBD3jZLSqHeqjLzeu0abQw5Mkhzwy01kxJu2v2f3hNHmSDwjACB3dObaZgoAh1a+kdxRIjsFgB1z3YaEymGU+cdS35eSDcrlYXReDVnfIU8rZ2gcR52oJpKZ4MvFl4O+j+QTixiCTO002hyCSfp+pTWc993UsBig/lm/5jiM/JAhn6EBnfdlSt8ZuOk4DElKx0P5wK1QAmcDptFcXvveMZgq7oGJ5f23pgIa5wQA/Ki/c6HUjeE/G0wVw4jF9sAV07j7x/2dViuJANBqMuGutI6mfYOWaae23bG+cS5gMG0cRvaOEZ9JT5rX8RZrmrX6B87BkCRPB/VtQtuGj5WgCRsm3JX4DFefnvxTi86o7VTPd/daLDgA4Tl9hFEJzD86HkqWjruBgXDXEqBuYmjUel0/GlQAMxv+3ht1trne2NG1BGUTQwdjbE4bdpfLj4xbDjwaPbPb4KkkydtevQUkc7nc+lnO+edscqioa327H6hXGvzGRd0dHgCe9VYWket/O10iSABQ2D2qG/F9c1mpI01NGdYiNuQzYqlr5WqjfTblWHep8eCqSXRuWPRUYSRJgiRJgCSpl4VD/kz591bHEyOfWwe8520cWDXusxmXg0kyV/ib/1N0oNacm/SP5HIs388kcqW3d8VgnA7pMhbD5EjmcjkLGDWfNOifVhPLIyHJlZ4+QzD1r/r/WsAwp3u2FczR0F+5DhhVD3YbaYJp7bUHkHQVp78uNnP5qYWpzXZzVzM1XLnztH5nR7/O6AEgeQDAI3kAeCTJA3ik4oNUMC90Bn/9MCQByRLaXETDlb/165pUSB9fFQrJptwlkinf0Poqh5QK/dz9cL82bbRXe12AKcMHhn3my+w2OBY0EjN+c5hyhoRTLTYBvy3Q/fDRYutag3bCrXZ6Ho9dX7x8cGbK7BWysqR0xt745Ikia91WrQeXPRwsdn057t0oiywSTcnfyjSyI+sWPcuFmdn13KB98GIjATT9Pv4KQKWotusGhPLqW140LC9+sfmt+cDp/GWyXZNaXnB1NmAXvJTJIpGcf/S0Sna3Yd0wK/3tJstMG9d84Jx66te0zzJ85l7PWrJxIyOAlQLxn11Qfq9FswtmD6PseDr51k9L8uwFAdDQnOzKNO4z2/GsVB8p48pwX7HVDkZdNHRSEslZ7zBJpoMkyQgAYF9pmLUXdt6mE03aqLR3mOSKMuGOZMhE1NJnCGCp97OkH9b7aZVoR/LYJaA+qLww0oyhnmCpksm0nJJPqlEy5JR3lDw0RJKJGGOJkj6T8pntfDiolHeUZ46TZAxAphTMxoKXddKMj3eSEiMZRlgC5qXQhoOXciTX/IT3zUaSmQgZs4Z5cKD3fjVZVMW9D98mYzGSjFoMB7f3bB6vMHgpT09eWo0D490AIkGTHlgip/0DbhQLSfL75xIKWNa0mkabytjxdEoDzxTO8zBS/nAm6EzwUp5S4UI/phmMKYDVw59etl/tcEDq1lDTv/PhrMaBBXCv46FkI2w3Xx2QUgxeX+ENQl1rutGmLBpWYzjS08iHoqBcC/Obnp//sPoUWoWLYdQKIXDhxSsH3GZB66zydGBTvkJE7sX0TJPrLJRfBhNAcTUtdd9Puc8C0XInv6Cfh8k+vuedz7vPAtRty+8hqFvJHzy1pe60qMmXYCvpDuVMefjS6/9xHSKvPep2e22+ibOQB8prbZM1Q7goxH6cVGHGIgkmerK1QcmKDPma8l0aSQlkBlWNMq0lf3UVTZDyxH8yCpyIbniJrCJdxKsAEdyilowyUXBdEknECuf0ABjPMBZUXMbNxiWALL6aPwc8QBbNeB6TRUa3pZaAB5zcV0TosprFJwBEVnmFTF4BcP8TRkWDSJCJiHwBeaIQqRELmYD6TSX5PzdOJYT1wbkaAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, AD•AB = AE•AC, angle ADE = 80.0, angle A = 60.0, then angle B = ()
40.0
684
[ "40^\\circ", "60^\\circ", "80^\\circ", "100^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAI0AAABfCAAAAADwwxtdAAAIL0lEQVR4nM2bbWxbVx3G/7cgQMgiEnM1jxpcmk7xFF5chQ+uNi1h6oY/VJkLFf5SsUwqCaKTai0VDdKE+VBpRupGgKXKNCGCmETWDIWXqnNE1HpSJTICuquU4Q3a5qKsEOQJZfWgd4l3Hj6ce6/v+z3HdlKeD/W99/zvOb/z4vPyOFVAIXr0t0S0+0YsLCZQUNwXkdoVmt9v8irwjX3vtUVj6Jyy68tbxc5poGzpGaKzB8fbwlCIiDTlKvCzj9zTOY1Clz5DRLj3Wls0RERbudHnifaO7++UBkT0+4eJSNnH2oXBC/9+hoiot1f0hRBt9jcAYHw0LCg0g76yVHzoKL55f4yItGcebq9hCDff6g39zroVSnOxl4jo5NDRtmgUUsgYy92g2frxI0SacusyH0RSteTa03ediEibE305uBMrPOB86wmTHjhTdB5YeEg0XBGB/ukaycyovJYK0eEv0UKOaPR50ZdEaP6+t//Ih6RQeMbvLF79qPRL/rI1xdsHe//1y4wsDhEd+eL3Jd8Q6M1yEWd7zkqPGbC1u/4i94YADUurgNo/uC7PMzkoFx8633D98WMZosyfD/T9Srqrnnjv513qKca/0AzfmuSfi4nHGnJVZViJS7VoIA0zp5dmom48qudTS3I4wEShKzSW5vOt6+lYqcmvRCdCPVWRCI+mOTJvu6kNZK8JchhaSOniwZE09UTTftt8KvYCIFJZI4IVJrpI88MimK1oxq6k8hvi+QPr8ZXu0RxYAq+nhbRxLFGVwZnOdo1GTft0ymzPKYnBgOy0o3k7oCn6bSXZ2mDmDeeTsNJWEuakE8UUQdNMrLkz4Tfl2GREzjaVRCedUBqGSs5G4JCaPiRaY+jp+S7QAIXZwOIaY3HBMoBqUmxNCVungI2Ed7S20C7EjzecTwI1UuyQBgCmx4LTGFDP7RdcuOqJZRHqMBqG7BWrZH/9JHZGDGdmoBmeUyQNaqnIUmqZBzQhnEGR72AozUQpOoPmRM+LIjS13Z65Qo6mmdREptDqnq+LLFxn8tExYTvRam9K5Aw1+IbyuVejwyb+9utOdqJsZEagygCAmdjEB5FBS8GTjtkFIT3VSDSEj7paNlOLGhVs7ERUNiE0MyOiLABQij0XFfJuImp2CqEZrErZAEv7D9cjQmb7m+EBwTRaUgIFAGscj1ciYnKt/QkDhvnInQukYTxiCEBJYj9rZD8fP3E7NEbr0axoBgyrwOYXbGPb0zbDKsMrowBSNTkaAFg/lFYRNJoZwMo5W+pmDngW9qHtpnk/h83JzUmgKr6bNcsCgMlYqO/YHLBtUSplrI463nbTVMqYmgOA49NyNKZW+ofWvJDW7XLyXetmioic7G6a54hIBaAnNqyjuJz0Ys9sSHKxtUnJq0bNA2nyKvtqA8Cs1PkZjkZYvOdY8MLVSC4ZwasPARXVkejytrTHL9OzTxLRvVlufwv5gi3x8P/+7p9f+3RQyJuX1rj/dq5x2p3WWjVBRHQxR/QkPUFv1/fZnooLBCL6eOHBF6vuN80FOH3X0/xi4StW9lassx2HVQYMl/EDsX1scJ9dyxr2gXfsrcVr4P6v6kpxjhvDISYVaU+grD4ocfvAR5MPGhee7wgB0HXdlbyU6QTEyGUplfdfuJoDQVsVAgDPMWVM4iAZzNQYuXvRN2klEbC+Oml4rVgz8U7nNAAw21P0tQ8mRszSnJ1l0ui6zntM18Hm80bntfqQXxn/Qte97WlonIjU0+ZKuDbYr/oE6Sl/z8Vqm9sGFaAjf966MUrVbfcc3B9nlUYBDNsOheXYWbMdbKqkdb953qIxC9N1vb77Pz40jjjdZ7DB+q1u1baNYWraz/culPwq0xo3ulX4j4p2PBma8SGfGuvfNu0DW9p6wm/DQiZGi0bPvKaDBfdUMM1mX9l3na0Y9oFdvv4bAeZINcrV1TSYYxTzHrTuzXHjxVmlOfCNwlVnQv2w1z7ITvvPfrDTBJhrQuI0WBjyJk33lADYO2slse4Z3C0aE2bLa64JiVmDeKrs835tIKs5w79XCKRpzSyGudaWKjQHvvn2qjkRcy4IetpzxPCeYAphO7co3SDiJw4/VZNHN+zNcdlj+nto/Mw1WQV180YhUbWnjbgPSR6aMHOtc/2i55TtuFm/22X6u093lrm2TdIeyNh+65xxTTruthEw1zrUGcs+YMCg85zkphEx1zoTW07nrO1NLe6YTlw0zaQxKbRxkBJWYyx+wSyi5PDfLBq+9Vkcst1uny7Ex4yFq9k/70fDNTIT8XtKl7R+KL3Mrxz+m5OmkWjsDA0wafreY0XA7AsnjZy51plWDN97I/kn65mTZvDVnaNh+qlPvAQAswPWhOig0ZIRvlyXVU0c2wCQs85LDprSd3cUBtg4mroCaHHT8XHQtGOutSvjqzITe6qJp81Jx04ja651BUnLDtSamZe9NGNtmmsdqhSbXk5y+8nmFr2/980eObemS3qt8Pk9NE3k8K5eOj1yR2CINl956/Yfsi6amqyv1h1BIfrHp+4rkLSvt83aRUSE/xekXUREikILr99hECKyPNGtk3cW41FFUZSXTU/0O480tnmDFSIGYHgOFVJ525zLrEv+JXA3pRBtXc9Rn9FTWuPgJ2NOpxo7+3np/hidHM0QAJzAjVF7s+3kJ9cUEan89/BzU8o+e7Pt6CfXgoqpA6/TLiLtFlD5bKvhdriTiIi0Wxn6Zt8CfZi0xy8TXVeICM6/a9/B1rmYI7r5116icSIVw0Rt/5+FbmhYxWbf7obI3xdvuxaIiLs+/wMaraUi9ZRLDwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, DC parallel EF parallel AB, iffrac {EG}{AB}=frac {1.0}{2.0},DC=6.0, then the length of GF is ()
3.0
685
[ "2", "3", "4", "1.5" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABzCAAAAABmhBVUAAAH0klEQVR4nM1bf2wUxxl9c/b2KuUkQJD6KpxAwJGdXFQs4Qoq2uC2VD7HvyMkiIJCo4JTiUhAkdrwR1SkIkFUqgapLm5IFZAS1SmkBuWAc2ICURMFC1RTyZVJC7WjUmLkVKKcI+Eb377+sXfns292d/a8a/r8x93szjd+971vvp35dlcQwaKvolarXyhYGpA7NTsGTIQvP7wSANz9HjCRI6tuCQAQ95nIaOpbD0b0ugZL5NDP8CiA+y7Nb7vEI5Yo91ea0RSZXKHZuTxAHs9fAG5od2dQ2AMMshXo1OsugsysdA+NPIKLEc4IUdffGxwRAZx/p7B1v4gAf2s/qd85QCI3m/afzeh3D2zWpGLdrPmIJGlqdA/MI5mOlhfQkQCgk1eDk4bPLj4ANLyrbRBUHtn7SV+YIrNwaJmmQUAeee3U6TAEypqS2iaBBGpi+WfWl7fiuiaBELkcHcp+G1uQ0rQJQprPOt6MZb9WPPaxppH/RPjFhv3fz7ea/wToLNB8jRErb91b+/OC5uVKTWP/p2/7ojcKm1/vj9n1nAHfpdmdeX1Guy2hJYzvRA7/+Q9lMw7EE1oZ3u88cnLZ2HTDJMlU+I6WpW8eIQB8+GKyYvqQAMBIvV5y9Y2IAHBtU0910eHGXr0BfNRlbFmP4ug/lkzNqzTARNPuTYrDVUuu6Fj7RyTzzHfUtZCWU/NL5Mflv1afaNCKVt8y676+i2H1lspcMFzpbu+XR46/9W4Y6tVpKH5GZwR/Jkx/5XWbMyZ5rFljBH+IDFVcdjg7FrnnPoQv0txs+n0dYLvsqHjigvsYfhD57w9eagJgv39psLY3zvNi7rrcW/+SS49Ly4KQpk0IIb42Mf0Lt0YPOFtwzeQ112G9EzndOkg+t2Iil4P2/ue4Cw+B5tO5RpsQQojvqrp5RfopkmzNVaS6Yy4bBpPkyfX5ZutV8pyinOXdIx88BACP/t1qJQ6cc6noCgANn0xkW3JqlTz8vceLu3kn8v4GAMhWLQeeP/OQhk3kyVxy/eBJHF36FdXV0bMysRRpck+nSfJ6tN/dwiR5aEu20QVgUNXLGxGTHOkkyX/ihEmOVx3TNByOTlm7nta/8mllUHkp+FII8NwKANhVvxGYbFk+uk/TduGVNQAwevcbXKcMKi8xIgBMHY4Do+LuBQCbV63TXEQQcSu5nm0EfoIXlX08IbvGOUGSO5qnNKpj2R7J1STJ9kGSrQcV/UpP8QdX61YcSHIqMpb9GUIdrR6JTHugp3ArpWHR3u3cz2MeEbkrzIe7khXQqTfkrshPua1cvXkkh+HoJY8Wn0emHAuupa1HbsePrPFoEq3udyy4lkRkIr673bNRo4s2Hj1skpzasMujFUleqnI87cUjhOXcbRGbrZQj6iYcV0chAFJKraGyCu+73lMCD5Q5b29CAAwYHgY8/nYiXAoRxJ2DhCTTHqTurxwpIUBImqnwXY0YkVJaElkyyRkf1jcCUg5s6V0uISX01CyAeGDtew6nc0SM7J80DAlIo/ADgDQMCEjj1sajdRLSgDS8M2lMOJ3OSZPOfqTT6ZkHOC1e+k5Ndzp3xoueFoajGtIg9wsNwz5yJ9s2vuDVDwWoiQzYnwyhSG0bn0ug85FfzIEH2HDOkQikAQCGNAAYUhqAIQs/JGDItIG940dk2oBEGpC2hO0hmvucaObhJvqrblspV9yL2K9hplO8dMlqpw4lNR+OsUW43v5m43QecRlkYHuyEnp3XuzhpI2mV69XXpyjLiR5O2Jb/NUkMr5SVVT2jtp+u1Wa3jLgy5btqqKyd8STdqs0rTprpn1pty88MPDDYairsVoe2YEuf3ig7otroLoaq2H9ypX8Xam51qnL4u/ZaKNB5O3X8wnEy0NDajTbZnm3ODcvLrUrKpeCO2Gb9GzvkawKw5vfWTlXNxRgwTf71SfsiVgq3GzwvJVyRrPdEtpJFTIVe9VHXUhyyGZ1ZOsRAgKZjkbdJ3R1Efuq+s6aLREBANsW/zLHyjc09CmHc5y++0aOW0ZznrUF6Eiok4CDnN01ejexvSEVGVPVJxw8cmZ/coGPnsgh8u2kysX2RK5s6304AB5Auzq5FvvOcttoZTIAXUiT/1LWjuxi5E7NMb1H+0pgElMt9oqlIQBMtm3a6u9kyUOgRbX1tFkYdSx8AwDF3C+3Cny8bViHCAWweyhZ5sdFX43M4r8UPxteLI0ADr/fW4aAlAFQFlfNG0Xc9GoWlUtGj+LBQQWRS9HhYHlwPFK8OiqW5trGnpqANMlhyRPnMftKGsKsQ7fjh9YH/RaSlVxnheAsD02sfiVgXUhyMFqULPPSWF7IbK77adDuAFBbfnX2lAyB1t1p6xH2HeVH5oEH0FRcFiDJ1hNM4ipNHlir8aSHH0isJUmT7ALq0ztJwiQnYymOYJB8s2p8fngw9cDnJDmCTnIEB0mWC+DCugh2bq/F+a3P/GZehAGwqH8LIOOdvwOW76mC9aLPjdeOcrAWmasvBz5v8/jRIgBHv/wVKLDCeoOObB1kl/o+eaAw09UF911DwOjdWmyvdqo8BoRbnxZsZkPA2Tjw7091X9ryDzNXICGgrwEy/mDjPP37gv++tPoGAIxaKcy6m1M/7xFCkl34I5m0/ndw79fYouAqk0T+rbVA30rzgqDf99XG/w2R/wFntv5oVlNn2QAAAABJRU5ErkJggg==" } ]
<image>As shown on the right, in triangle ABC, DE parallel BC, frac {AD}{AB}=frac {2.0}{5.0},DE=3.0,then the length of BC is ()
7.5
686
[ "7.5", "4.5", "8", "6" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAMgAAABOCAAAAABA2gaHAAAKmElEQVR4nN1bbWxUVRp+zrROuzjdmtBqZZsMpcQ0W2MKCtSNZUwowrpltz9IABmXksAWbTaiabWbbTCbIBJplF0bwW12HUwTcUHMRtYdYcpHKRZLtOxaAT/oiHa1lKrFwaVTeu+zP+7H3JnOdO7ce+mPfdJO53y973k/zjnvfc+tIJwDhfzurDkAANnlIN1kkF0AfF0AQABwlJ8AqoTy9UbLoTA45hsgm8QNYNjsKwFUHU0DBEqI53xPwkFBCAB7VnSpDKYHJxZCAAt74aAgAkAYxYuB6TMI3loBAHcCDrvWroexEJg+g2BHFQD0L4SzguzZkaVsWdNlknATAIR3rACQ7SBZECcGAEybSbp+CgDrfVVw0iLh9euAAcfImUGdDwgLHAMA0CE0AQP0QTSRJCWnyE4BZYPEccokKZx05xt+nCdhSKHwdZK17AIgc1qWugwAcCnL0QXAUYvgzTOA40QToBGnwOjgnRuL1WrHdi0KXP3twWzPQwCcddhERsqf8YHPLlxxb9LkcE4QgZNr511eXeN3iuBUOBl8+4Pqe4er/lpIfad3ag+ZaLm5nVzytlP0UuJcW21O+eaD0lbPy8bd0Y5FaDj3zq/J/cgLXCqwQU8jS5e+H2ks1P1wpDMYmqiu3X0bLi7+4XRZ3F5lVTGyTIlU9nCyzbOFJDnrS1vaToCmb5kk5VDjfNfynf0kyY785on4s8qma8kkZQ5Vl/Uq5Zxr9uilQv/On2dVNIbU0qi/6HhiDyfWyL6ChgglUpYjMxwgp0KmpJjkUsBfNKtu77De0u1dOap6QmyR2BNEIhlZXxDUWH/qtUVOI6l7LCf+sbk8p/bFc0qTRMqcaPEEYh102F7sJ9fOO1uolAVGZtogp8ClkgJw+kjn4fkP7qqKa7rgx5nSZPG1Pf1NtHjaDQp8a5k9cjF83r6qYG79/tHE+nbP0xM0cNQtY+tA5Mdrcvu9iOnHAYtQ4OrhI6GvH1jyTCkgK5sxAEB24cqG06FFgIGjbhkbQSPx0oJf9ngNZVwuMjMsdQlA79Z7854vCoz+rb4UgAtCmyEFjpfl/mtRCrI2LDLsHzyywFAWwLeFJsYZD7p4X78QCgWLlzz5YE6y5wEhNbfvXp0yiLMuyBubVr3pSZjh5dL044T+Ae3EpgCuhIKHf1iy7IViUCT1k/NrPP3FUzxEW1yMkTpt09UgkfzFPiu0JHY33y2W7ujTKuTEdpK7PVunJGLJIhSGTVeDCxQjt2VEhQIU598JHZ679JnqrFhLgtpdwOX1Hx9ZMPUTqBUVjrfc3J60ofRcZoSGO+qKi+o6vkr3jB8s2BBJQ8qKIOcqKj9P3jJzOHl9UgQbK7Jq1CBQ1j9USIYvY48VHEhLzYIgWqRLLRjSMZ5llkZf6/KsimYtCJwUb8T3LfcNpadoQhBJ4ySRNES6OqLqU+HrX906aWQMslb8co//du8GJQicWgSSZGt+a/pOGVlEIim/UdAw2VujdT3kterhD+8wVMr6JA2zHTu4uTzvV23nTIigdBiqLu8zNbvMXCtSVxBMsjCvPfQ9d33z1PeHfzbl6N7ti1HZ0m2am0z5wMyGMXOdzQiiK6/bW5t0NZ/Yxk8eJfnayiSNEknKA+2r8ufW74+YzkHKJCP16mFlwgPTCqK7thbpJukSAPCsTO6qT9oeOVBfmr9yd9gohKxKmFQudd7vldWY3wXTHoh6vHBejXQn4/rRnsrAjFfXYSRJ6uG9tw+dum/FawsSDjqhxqtJjzil3zPbtz9iPqY1e7LzpeYn/iAnb7v4XTnKcB0YKourl8PBUGjWAy3VOWqQqwpCM7cOg/4rp8sA0wnltIIoXIfXDh69J1XM/25lHioBYOSWWOWVYOjQf5fVvqikAkWMlDl59m7a+Gy27ALo0tLU6SZqBvv1TTfRp2VyfF2PWtDSc1Lod/OwvLXPxBrVIRlpR+qKjmUwljS3a02OdI3oBgp7GCbJ8l6SfKEmp6IpOJHhRDRIJE95V056xk0HkIxGo8kblQio21s7nGRzkeLqJJKc9UGH+/biuo4he/c8T3vaM7GlApBkCjlIapuuStg4wcSDeyLYCHfNjFNatURrF1fhyspPEziYQTpBzlUsikW6crwgsqzz6mtdLuY/nhM31IIUMuWAZ8tErGgemiDRaFRxMcXNVG+L/rFQjXSj0Sgl6dpYlGSU0ahB+C8C/gLvhr3f6uk5OTNdGjG6ytttzZC6RdRf/YdR8svqsl5lwmNKtaxIoUoikWMHG8o8tW2KL/TMtzp/DceK/Rmv8iSCRElGFbOQjHJ/4aMRRfNSlBInCdu7/T5UbjlFqjpMSM9lrNfrLfl7rY2kIURxj7sBQM7VKiKNB/c8qH6ffGsaPhQKFSx54p8evcOk9FxmKTOK82tn9JVYGKkgG1AkiL2/pZRP/vquj/KNPcfdWjYtcrTz6NDy6lYv4o9cM+m5lOCfn2r6vY0L7mxoM78p6pZdcI/DDbivbXt52wbZNQ64gXG3Wp0zDvn9YOjU/ctfuds9Dop45X1jJj2XRAQB4PJv+kP3AC5TcVgKQVSDqGGuGwDOr8k97YULbshqlVLdGTo0+4GW6hyloxwXBFGMzLUkhgDQ6a/5IE+ZhVXoqyUaW2Jtni2JFxUcfm2Dt8gfmOpqzVp6juRYY/4BGh99LEBb7OMxLxl6eLBzYdxFBTpDwQ+rlzbcFXOkZM6cUXrOoMqz/vxPboXh0ccamUTsS0gv9O9ckVXRGFRuC6nHWKryYkffRMbpORXP57daP0F16IKoE1MjXZXwUMe6ouK6jvgHTsl4f2d0hozScxouLSvrS4xArSDBIkp6QSbJieDmcnfNzrNKgwlG5tNzBhwsMJsmSQMYkwCx9EJfazXmN3dnELdJ/Pq2jLlfqy94J+NByZGtrmoC+Hh1br8XGAyGOm9eumnfLYCZ7VDd+V0YyTf5OK7jzJrZZ+1f1mnz0NHm2cKxAw1lnpW7P4tL1sjmzKKk5zJYtq2eNv277TWix1qX/IMv/qequ7ImsAiQ45I1JrU8cnsGnYGh1WqaBDFONqC9WfXmxtHsvJKS0psM73VN7pUSxwF8HbnDpxW1Ab5UA8A/bdyaA1AonGy/RZit0PniTMO/Z/8YUBaLIJAlG0SZSg6923U3juNC7k8gCKYVXvzdRwBCtaFjFkkJVVVmV/Hjsx8zzzxG1P5rnQmCWCRoOWZ1Di6A9wshxAkAoEXFiPGHhRBCLLtqqrv8qhD340lrvFLABYhjvi6pa3EYNoJo91/W9ZDdXk/6rkQ4q598RZRbZZYULgA4XuUqVplYAQHI18vHds2fZ4KCwJym54CSpjmWmKWCC8CJJmB9UwmsWkQAeP/OvNdn/ugRM5HAHjxHAOXFabtmBJIBAAP2zlU5ABT2pO9HkgiQzr897wLwygADc8K21HH9aE90hYkXUQCEMUePHByECwijBOvQZYvMxe/K3ffkml5jLiLFpZFluICu9Yqa7ODdyjw8ktN81YQoJRgABC6esMVwMkjfAGnzlcBoXQ8Z9W8jtczvFEFwAF1kl88Wwxi0taa6lB2yMrsVnRSeJJUU/dQruQtAkw2GSXFD/0NiOjHd/4Nzw/B/I8j/AIc7RDZaaOrKAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in the parallelogram ABCD, E is the midpoint of BC, and AE and BD intersect at point F. If the area of ​​triangle BFE is 3.0, then the area of ​​triangle ABF is ()
6.0
687
[ "3", "6", "9", "12" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAFoAAABqCAAAAAAZuRlzAAAFSElEQVR4nLWaP2gkVRzHv7NIGotrNlxA4Ug2kHQ3clZykibCFZljRcHCJjYBsTAWe6TLqVcId5Ars7FJkVLdRa+bBNIIgkVSCBGdPSwXqwWbHU3ma/Hmzb75s/N+szv3JdnMvHnz2e/83v83cQix6MQfp8stQXanAnpy02BFkKsxA/mRJyHLXdPRn0cr7zE+LZXYtaM/B1j29Gk96ETdHayLMlZGHz11VmVBfK0i+SWIs8GrQL/c/RGQkQFWUQcI6AEdSeaZmoxMszSZV4P+vg+AgORZqwXkZv31S3FmsWsCwMkbTl9upEoFGb/5c89lJMxdKdaHb7/TRl/QfVR2/c/SBaOeS1LkvIrrZ5sunDb6EHV8VVyPmgFJKtv1un78QQsA2ujL6rXc9fDWUB1Ibctd739yWx2oaNfoOmiO9KHQttW1juqTz27pJKltoemLpdHkRGZbim4/N8/cfnxQ1nRE6Ii/LI3NBJFtoeuN47Q/t2dv6xJ0xNPV/9JJEtsy1+53WZNv9epBF3jsubT1fxL09fqLfKLbs91mR0c83ihItvfbAtfj1nkRwWpbgH6+VZhsrSR29HjpoviC25s3IE8+JAsZNttWdDxsFckSbSt6b3vqJYttGzoZtopUbnuCLiyRaHe35OZy2xbXQbPEtKXftqC396ffyrTtKJuxAB1NLv+2OMpfN2X027lvL3edHrYKVBbtMnR0sTS2DSYl/XYW7SXDfERuHJZzafbbHgAH3nQ0vYDsqNTz1rUVbdRtLyB9Y9mXR5Ok1yHJeyd2Mn9Iou2RXXYnV7Kzp9N1AFj7HUD/5mPBFOl9PZU63cLRCnamz546Pkl2PfI6aQ/l0pWkCyAwCz2LBsmInQ55fF9ETqLtBfRS6Znl/6ADwBk89XHz9buPZavKta/aAAZoYSuVnon12SoAfOFt4nD5jgALAGvsAzjbAnbwyLyQeoYIARngYcmwVaCeq+JBekYFIUiGYahOfLWy8kk+a5OyNRxJt+/HRs0RCSQZ5jKPmldi02TvblHqlFXBwZZs60qpPVm5m+Ueuw7DUAUmDEkOF/8ISXKsQxUHLf5kGKaeNOq50zrVcPKrfnY/10cxIjTOlYt0FFXdTtNNdOwr5F+LwyiHzn59Cl3UbyexXvhXbc8sLCzgy09vy7cPVLSLFmVk/Gzqz5gMg+bfLAlI2nUchN5ddZweG3VRhWREjkO2v9Hlp4tNZ4oLWsU6XWXzcxKjNeqsF+nVllD5+fYEnZh4YBtri5WzrdFJY+f5qmDYKlCukuQGsOj+sXTfKqPsfDuH7rmzmc7bzqHtK6upytyaRZ/cE+/j5ZSxnUFft85nBTNrO4P+dmMOcsZ2Gj1e+nUedHq+nUYfVBm2CpSynUKPKoy1xTL3SVLo/W3O45lp2yZ62PxzHizJ1HzbRJeutoQy9kkwCcDw1nC+aJA067bhentvbi7NfnuCHjRHNZg2bE/QH+3XwKVRSfSKaMZhq0i6345dR/Yloljatg7I+Z0x52wuieJoI6ZtHNdCJZnYjl2/WI+Hrbl9R9S2Y7SeDtYQkUjbVsuk/tXlJSQvsCWTQAe86rf1MincA9R7nPnfbDqAsxdixn8ssEk9vp4E1/oNKrCN1FmtagB46DiOc1o/myQ9nz6mbkJWVxfw2GkAwE+bEP1bhkwDJyAPnFVQbb14orfuAkWReoHf8cF4J6MmMtlVDbw7AEkvYNcJWFPHB70F0FA7GTs8Qz01cJAUW0PtZAxqK0ej7ZHegIz3ReqIiApI4BM+4ACe7Qa5uvBJ35O/FKwgH0CHjP4HdhwNKTUrvPQAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, D and E are the midpoints of AB and AC respectively. It is known that the area of ​​triangle ADE is 1.0, then the area of ​​triangle ABC is ()
4.0
688
[ "2", "3", "4", "5" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAACKCAAAAAB+qawqAAAKGElEQVR4nM2cf2wT5xnHv+/52mRaWKINxhCBiJ9hC2hmikSCly2dEyU0NMCAkQhaQGTQNdkoCwg6mLauQYUVKG1JmwwkqNoIJIgIIIhNDA3qUqhmlCA1a+gUSDTYhohWAllLiO1nf7zn8/nnne07218pOd977919/Dzv8753z71nUIqqESh+sllASmqA3SA6+vQkRskmCaWxeT9tBrC1IDWtd/i/+wFg+syUsx4xYGze+u18LeWsxwDcvTlDWks5PH+lJN7k3H4AGGgFkt2/BavzIDXiJJGtmCj18I7gD0Q2ABuJSEyyH4O0rX0dgDKpQ0mxtje6sqcrR7GeWnj3LFm2TGVBSuH15q85LPCuDyAASKW2Z1/33lIwgIhBgkwhvOaGc/n8E5PLUgevrvNqdlBhquCNVONaRnBxioTGnaKccyHoUgTvb4UbDoXckBLObfvVsTL+iZj/llTAe/sNR54EFkCXAnju2uvOicFgXEnHG65K/ygDwW7lSnJo0KBl7ukMIJz1Eo/nd+91veDlNyJVTrxzlWZqrfvQGrFyUtve7mOOPGJhmh2ApOK5a/qujgcL1+wAJDM0hq1fd45XSwIkDa+/oOhEWiTDAUiec7tW7FmroVqS8Fq2nrJoqZccvD+2/HWGei0kB2907V1npno1ICmhMVT8jU6NdInFI4DQV7D4qEnrHgl1LgPYlaqDqyKNE/5KtHOPVLWtUowTat1ygkNjW/s1ZQoltbrl0TUPPvlWVHskxLmSC+9ZsmzR0SUGj7uwN//5w5pDVlJinEtMSvBEq8TgMWWCJxolAI8YgLrOT6bIK9qVADymTPBER5eY0LhTNDVkgkddCcAjZ2FNY4z7JsC5Z+QET/QyHu+tfY68mHc2Gs9d63ROjH13A/GIAcNV6Z2xBQWXgaHBgAFvgifWh9qGRq6zkCd4KNruTpaRbU9O8LCoRwuvDMTb+54iZGM0n2F47po+5/i4j2JU2xu2fn0lfjqj8PoLik48rcNxjHFu14rX1+lyIEPw5ARPjPHqkxF4PMFDDGDx8umPN1oz4MyE1JXEy6dvaBBwv1h0KBI8cVpPXzyGvoWLj6bpd0CdnXul6uAqPY+nr/V4ggexX6EESlfr+RI88XYoXumIN7rmQVdm/F2dn/Rz7hCfwcP08yx0xOudX+1N8OhoPxEAuYkJnFO7awJqxpTgUZcAgIlMELhPtM909dIRAUBzzbml+sP5hQYjsOgdwwCg9srVbACRH37GIpEfFS4wE1wmgdwQBMDFt7hkfheYSVp3k0DETLwEUCR4Ij/8jEWCdBtlggnMJIBEkTxwC6LghncBwC2IzFtsgsckklsUpYYQbgaPPnj8+178jHN4XC4CIEBQLPgnQVHMzeQBgJ7CmtAzeHTB46d3bwY8HgFgoigK3p4rME5CxU3boqZaw+ggMnjIxHZOnSm4BQDkEUCMeQQwQFoEFisVV4JHAx7APK5msw2MCQBElwciTC4PM8G7cDNBWeyGR5D+PHVxJXi04Ym3Ryq+nSHZRVT8lxYm/2KT/BdvgkddAgDs347ZWkbKgCryDB7jJAB4t5FNYy5SHX7J/4NTZQaPHhKAgUdEtmmiGt0SJghMsAJS39v63Ic1el6chMEbWL8d6Fc/0ZnKbqL2md7VvfUOq+6DRJDErQeox7zkLG41q9Qce2Iee/elPr7CEzw6D7AhJOzzkJnaiJpxbDBizcvFODz5qc0ApBk8frYzyMsCADAGYOSN3Fkvtg4rtvmfsn8Hq5Vcy2fw+MkgO/oCImPljuPTmrIKf98V+pT2bvo5x+v68Y7XjKGJgAcgf3vH410jm9Kfe6tXKvENvgMjZlgyAKBlxSkt84t0ke9ylJOkVVTgnsOxz1VSYs2WDciAC6XEfou6Q9pn8Oghn/V8rpy4+ug/Pypo+8HcLedHZXJ7OQOWTBl9/pIzcXRh79Tm1J5+2JzRkF7U8CnAYGdn5zPGzhb6J3iShMcdbXnt6qP6/6xjyxr7yvhrRn/foGuCR12hswSyozOWLsWdS44GsdxqnaB7gkddGpIY2WvXotf2/pp5k66dLwxdxbDhQ0uWgIC8+nbXrCviwtI/O+UyxXbDBjcteAwARld++ZuXHrx4qzqr6sigf5dt4MirNccyZMmypSFzedM/bjxj/6Fv9DP4ikojXu/86sMmjpKz6eSD49OasvJfuQRuOQMRteHZS96pVzoxf/tF127XVpGPfgY6V1P6sbnhXH5AcDJTWRmG7PLoZ5C04G3puJod0kTjV69Gn6OtLttaUmLMPZE63ki1K9QrWl7NmVOHTx37lxWULVrgLdOvGwzf9nwJnnY1yyzY+fHjXUPrxi1r5Nf6+jXGsHiSBXrCvaIVoLSKQ59/vvTaM1PWt9zTCQ2IgMfp2hY11QEa+47Jaz/4t818Imfulotu5S5xdDyRO5a3f+2ogPqoRZyAAcjbfO5xc/rvxNK91+XNcfg6UmjIM3jUju/L+RIDYLG8PuzoqL5fWlIiX7nqPxNjZGX0CR4vROby5Rh0dOzKKCkrzVRuiFLhnTtYMCeGBI+ineVsOHH/dG5zVv4rl2MhAxABz1n48psxHC/ASuatF127XfXiov09AKKPknDOba1tifyKllbx0e+y453/WUvKsxng1w7VmmQYvD1Nl/TLyRIb/4uV7FaHfUu21VqaoYwjtSYZ0rnu9WecOmaM+Yvo0zedfHRs0oFx3jSEpmvsUHhSgkc3+Rrcgp0fS2mIPm1XiiHwQiR44pOfldIq3vxssKqHj36qiMF4UoLHyKv0764+Ko1+50cjuzgIr2XFqRcA4y6BCYrRb1xDetFuZ4TagZH76gcGJ3iUX9ti+dOIw+E/+vm7TYlHGK0ZuJ7IFApPQwx2OHZ9s9Ra8h3p9XDpQRQDd67Ey9hQghM8knJqTtxvm/P+9360zc7B5Osf+eEiABpakNAEj58XzfUXxvaJO8Rn9/coG4Di6fz643MXRzxeJ4p1xWOKJSOAEb66PfjFV7NvyC/F+PCGD415V41/IAAA5DOTdFq+/uW4BsirRESVAHBS+XtBnuCfEPKEKddNoY7Nf0mp8iTZ0G3gqcMq5PetBIAJj4j4c76x/nLkqrhiCWOMMdaqs4dDNqMzlT1EL3x/BNy5to1ElRtVvmVlN9GTvEe62y/4TPSknIgTCQSg/y+MvRr2mRqBADbmMuPAU8UGP78FwIDLUwFg1heAwADYu6lxfk/4+gzA5Z9g4CaMm3Mhi4COUgCYDt4t335oxi9z7RHqA+jfwaZNNx4OYBizlQNA/2yO114O/Otm2HPz1mvvpsYEPW+5uzADoIEDpYAAkL0MY2UTFkXcZeChGTNmRqyimy7MAMA2Fy8HQDYAQLFKNDXuMTxkvXqS2010Gz8j0vYDdx4iquwmY8cMWdxc0iDGKGBsDrm0lwPdZq/x1evrswSx/wOcqNesH+833QAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, it is known that AB, CD, and EF are parallel to each other, and AB = 1.0, CD = 4.0, then the length of EF is ()
\frac{4}{5}
689
[ "\\frac{1}{3}", "\\frac{2}{3}", "\\frac{3}{4}", "\\frac{4}{5}" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGEAAABbCAAAAABGjLS0AAAEMUlEQVR4nO3ZT2gcVRwH8O/vzWpscqiwFkSRtFtpPIkU8SLGIokU6cFAQXKw3ZwK9VQQqofCVgSrWaiXCqW1GwNpK4XNzcacWkzACtsmnoRSu4sEUwl0PaRO2n3z9TCzk+yf+dd5e8sPltn39u1+5vfm7ez+ZoTocaheA9tC99i42NLMmBfODLQ0zedweX5vb4Xa2vutHaaFjZP5+4M9FYrn+tu7aDRuARhaa+kym0PtB7K6d0dLn9HVWjt+DXjwuK3X5BxhV4WF9mmS7XNrR9ivnuutYI/nBtq6zAr2+LGX2/uMCvWxYwc7Ok0K9bGTnYDJb1x97OwbXbrN5RAAmBOCAGNCIGBKCAYMCdVgwIxQnQgGjKzW6kRpd/CrBnIIBwwIEUB6IQpILUQCaYWlSCClsHQiEki3WpdOzD4fOShNDrGABELjiIjI6KNYwGkREZFZIMk/sidHK2TB/7t158DDbqPyJZJkoey9Icn/Vm2/Bnz2Qik6A6Dx1zC+f3xoEImOw/LOfqBv9C4A4Eb4MVjpy9Zu9x/OJhOuuz/zfz4CMPd1+EFe/E5273Gfxhc2FoYBNO7l+oG58+FAY77CGa+ci/99WN2XBbCyWAQuTJ/6NXAYAOiVQTw7nFRY3AOgcWpkDHPFF78KHHb3IIDlXBaHcXXffiD+arXfqZDV3Mg6r3/4X8i4fIl88nGZ5K2RdZKMLbh7WGYEwHyJzLmDJ0mSsWepWclc/fHKc1Fj721tZADQASTmopr6ORpojQwAsbSSmMDNK8k+P+m5depmKSngr1YNWHREQUOU24S/aT6bWrioLWgoB6J0zJltCpa2IKLgWNAUrYSOgrcBoJU4zvTCBaGjLO1Y0NqCjpWDvxvKAQFSa5AQCOFtAFAEavqX815beY9YlbKXg0AcUnlrqvOdBL5dvuTE2ulOgVQCQDkCiOMoUOAoCrwNAIHzxb+XNttJQgGgFgDiJk+tBRa1o9DcaAfqS1Vsdms4/iNeDmJtYs2G1+U3TqPgt60tj5g5uBF22Aou8FTRFKhDZjgN4H8fJCTnVECcs8bnqYAYwsTOVED0r+jEu/lUQGQOqYEoIT0QIRgAwgUTQJhgGwFCBHvcCBC8Wu3xLlfUniaCcjAGBAnmgADBINBdMAl0FeomgW5C1+uyJoX62Nn0QOOISPG3WV/YWoyHXBOMH7Wh18mXDrk3tdy6olCm/fYkyYcH7sStWYIrlGpukqQ9skY2K/bG/UG3UjaSAaZyxwFYb+3YzKH6wTpnhtbSZ0DmS95sNMM9Ly3+NIDJP/D70U/qN1Lu/yqw+vfWO6MZAGjMV/bX3sOnZzIzKT8f+OcV4JmW+5YkaX+0Thbc4tRAeLN0zb2KowBg+c2Om5lpom/0m9vA5WrWz8G9cISyoRRIzqBZTbsVew4AdlXMAS2xfU8xTvwPyHuzRlns1ZkAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, DE parallel BC, intersect AB and AC at points D and E respectively. If AE = 3.0, EC = 6.0, then the value of frac DEBC is ()
\frac{1}{3}
690
[ "\\frac{1}{9}", "\\frac{1}{6}", "\\frac{1}{4}", "\\frac{1}{3}" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAACDCAAAAABuRPCTAAAMcklEQVR4nM1bfXBU1RU/78XKFLauNBtdYId0gmgktoR0GBmbmdipH1iqxiGVQVRioZPWtdUpCAyFFKfMQKdUQs0UpkxxFSyhYLRTwMwUBWeiJXbGVZOAM0QmdSmEaDE0FDbvvXt+/eN97Nvdt7t3kxfaMwN5991z7u+ec+8999xz9ykgv4hVVlk9QbOIVShyMqpv6KRCJVVbT0QqFJaTucY/eFKIadfkqUSsyqrlm/ZMBFLfKL8CFNGoj8Ynhc4Oz77+WoWJSHJK+QavErHx+oMUmUQKEV39qUf0ZnTitKQJLTn1fIMH0fkvmLsriAh81ace0bmND4A+JYAUVVJ5IvhF26nihP4sUTOzgJAUUvzyeqyS6fhkHR4R+Wh8hZigkkIKEUtPPd+0JyKifSUNZBnifwB/Zs7cw0REJD0AvsGDS/i+G/afmlbUePo39iW08/T2e/+omi3KrjzfFh76gu+hvbo4Gf/gjdp1gBGKFyXkn9fbcmkDk7okVpyUP6oLxIM9YKArZBQj55fxk7O2ABBCVLYXI+aX8dd9dQURkao27iOSjjb8Mn5noB9gAEgEhq6y9kyXlmwttyKcSG1bMbK+KL+s3nkUe+YBkN1xfYE/GBpMFYYDfYb0fu+H8T9b/vuyVCnQ8HKJtC/3Y8v5fuBFd/Htpf3ym+7YTR+LXHQXhZh+TFp27MY/89SegLusqo0xaeGxG//OOVszLP3x3M8nSAqPWftt5zdnNlJ52+vj7/UEA8DJQFf2ItsxHwCbXjA/jRreBNVqNma6GAaGAgnJVkZtfFNw47WrMgaQFaLggleI5AKu0WoPAOgK9Hn6t/Y5kg2MCT5Z2QoIZA9yKuYq4H3HMvN5RSRKRB6H+ZJHX0obo3Ex/pFgwlTPrSILAIhLxlxjgB+KvJK7cvZBqTaKNz6IiAlET817JDfX4t2SrY2WDkwZzFEjACQCF8AekzKDRgFvNjlQ1pEHHZi/I/XsK7xJC5pyVgkAaJsn08po4XfeNAwgj3WTwX4urP0o1/0nK2PmJp/zID/hoV2KxIZatN4CAkbtmnwMAIBj5RKNFa+9SiptubQhHwMREdfhbYk9R0ZhhgCEsAdSxINxCanmxsI8heFNVCEYALMQQLL6VxLo6A9e8WHLUVUwkaoqzERQVaINgRUSezmXf/3Pfmw5+rNERAq9xaYundf1yyhvxVz5SWbs9bUngJFHPgcA5uEZO+XQceErBWMumZlvGNPpda32yyAiRVk5a7lU2opp8nf3FeSS0KI7hn9uAoSAgOgIDcjpbgAdBfNcMvCHiChmPZ8PH5BDhwCMcLwAU2Hjw3inlw9HiIhA9ORdC2UsT0QqU8nil9gch5zDVVALPvvkJfT0wgCAPZEhRzcJiocMwMjDLmH8gzHL3zEngkfksQGg2oq5ckkUNr7+7lxrX1PoiUe/Qyx5MGQioicKxVyF+v8hUUWvdV5rrUzK35MAYAxYea5cYYHE2DvCfROfuyCPbfbTjLlykuR+LxgQNROr6MEXcwWYWcQAsLc2L4/sfZtC2EynJi+457Up9+78TEpGISJ6qPsfYxp7y/ICXYGTMNbMeG9498KSuu3nILkAmpozOYXVJENu7AUAJG9uAYCD4R0CV9oWTbj9hTPs4slJneXCAjXMcMHqimAhBW8FHM/UmXL9NUuGwUjuXzLxm8+flshglB+zNXC1aHdZItoBABxzEhbJaFUPAEBrfzw4+9enAORVv3m5rS8ECwEWIpV4IQCGpmkFxnE4sidVaAs7Z8tXl5VWbTqZtwf91yVNZR0IYR2DLXiwVsiGjQutBzOfVLUs6VQdXnbjzObuPKmkujYTExhZRURESy+hOPj28KANzgCQbKzuc1UfbZo6Y3V3LuGX7oWTiVp7AuhuZueFBS80TYehCbCmGQBrmgbnDwZDB7WkDhiaNgJomtC0XWV/0kZcGMejU6c/HfeEd+W5RlZdGnkt+ZqliUt71gDogA5oDI1h6IDGwtAB3L9cY+jCes2aBtY+rPhZEk5yQwCIP/218ujfPPAfbrGfPvqDOPxXQEAI89jgGN/QwQKsaZomWAdYg64DPALsLL+oA4D1mjUGazzc8K1PXRgMAPHVM6ZGj6bK5v8d1fa0OExU0evORVnwADTWTQSzbFmENfQHOt2vbXjwb8s6zCOfm7p/fvMNTYfTXmmROCAYQl97Qv/FBfPY4sAbOusADE0A0ATA0AywDmiGYB13rAS7Xzvw2vHI+kz9AeDkL6tKl/3FeSew5mmAAXE2ehmvXnavEQIMzZz4mqmhpgGsaTqsP1uqhkXaa03T7H9ffK92EMLx4ql+nNo0O/h4u12MhwQgwIdeFELov7sMgF1Tz6TMVJjJ0JPjOGkBbg532kVOrzn9fPXER/brEADmdAACxtpeQF8VA0Nw5pZjpK99azob1ZvzO8TO8OacdYkXbp+0aO8VoGURgG5zi63odXHY8IaWobw1pdbX5s4Pmj0crJvveXFoapPYXjdh4e7T116wJewql9vJTceDn+RngADWTevKfpmis80RmrDNe1PIDz88Uyo91hFuzck00HJLVevJn9aa7WQy5YdvuhdA4eQgEvMaPAfAaHswFO0BRDLY79lSXvg3QrK3EsazM+JZL99vKm04YCnctD6ruhD8YGQvAMEolKATANqn7LRUYwMABloqq1rPOyxd5Z4mzAe/aFEx56m+mieGbW6jrT4U7bFDKgGGqPS8W8wD3xaRDukBAMmmWWbcE/9hqGE/4Lg2AQaam+wslRS8SISO2K4snwmE67p695Q20+h2v12/XesPJrOFPeDtoGx+NA+om93156NIRWm0R2RrCTvmKghvye64yau3eXsRbwrV31nTxx7rG0DsPjl4AEBf4Lg0tAAYA89XVr0waGDnlHbv48dw0CMplANe3L6u0DUou2JnY1992U+6mRmMeMUKhpF5wwTgsZbMJnJOvY2ztTzITkdNgHhTqGG/+cwAhhbWOlGYcClwyCPP5Q0fD/QURjfhBlpurWodFO6J0rv1xjftDrrIiMTlfH6yakuWsCcZbfWhJ3vcY8QAGMcjzR4Dt+aZrFee8CvrJO6+gXhTaYNXlo+B8/PvzvZZJ280MjvlBd8ZSHhonhEMWT5dsEelAWBjuNNtPwaAmqzLLwc+xTlcHsvkcrEIANDa6kNRc3oI57CcQe+EN9ut2m23PJwTPtXC8vp0Fk4lJEyKN4Uco3t5GMvVDtYuGHKWAwwAg1m/53IbXwgw0F52Po2DndUjAOBcyy1Vrefd3WXvKSqANeVdtv7mnl2/I+fYWxWDpe1pCgl3tWV0V70wslIXrnJHuNV9pBLtdRmsadoDQH0jkIFvi79vGj19PPN4RgEkahYNuxrTghkXIZkzPxb5t0czDAy03JzaSF3kgZ7aggVGopU9Lsam5rzwiYnHvLyN0VZfFu3x1jPrLac/Hwi7FtLx8rzwdSutXrvJPdOLJkZfdWPSKdyaHnOlw7fMytrkz22rnOVldGkSIrm86pS9QDelX3ynwZ+cFE8XteP0YkJOD+KYcwWTSI+50mZ+9cY0qfdz+PRRUE9l1LrUSI+53PDr5hlAVpyew6vIkhWrDi+qMY8ssbS7RRf88UCfPWnT43Qg3+ouRLbPbA13AJkxVwo+eVOrBZMZp/tEXdPXCAg0umOuFHz0LpjRS3qcDpiJsLGCC2Co/o4B4Jg75iJhBZRHQglD6HvrQ9Gc6cmx9+A34WMwIvHUPkhgBgQPRdpM9zJmNfNSZ2QjVj/DbG8kijCvUx67dOeOkh8/XGpfrhTxdUlR9NniL21o6C+xiwqgENHLSyd8Y26Z6xeW/n4w4yLl6AfKvrtVS79riACVriyeaf2q3fqmZbzQCXXV1ysqW1+QOFo61malmK+aiiITQ5RAsbVUoa9WFEU5qtq/rVQVIpb+okyaQEQqEYhKSHlDUR+/sI2ICNBXvYXuihMyPzAbA1m30ABwdl4zcHbuLgAqESeqqXQaEaQ/YRwNWWNNjOSP7nmOKPyD6UR0DejjmZONrd++lVRWSZTkb8SPbrx1JgZSlPIpRETAIaKKXturjq/XAcAjD8RSl4kqGe+cQOv9H6tMDJ8/DfUi5V/npqvOZ8IqDV6cTnW3/Z1UUuQ/4xsDCfe6UumDuZPo4mCEiJSSq6A9bphyRiHwuXeJiMhY24vkAzUXsm4Txo0O0RHwR0svAwARKURL/8Pep8XxIO4mIuu4MW5bixyN+1j/X8P/FwTYvWhD/QPSAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, BE and CF are the two heights of triangle ABC. If AB = 6.0, BC = 5.0, EF = 3.0, then the length of AE is ()
\frac{18}{5}
691
[ "\\frac{18}{5}", "4", "\\frac{21}{5}", "\\frac{24}{5}" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAACFCAAAAABTKqiNAAAKEElEQVR4nMWbe1QU1x3Hv3eXUSG2yWkrmpb0NGrMoyaip6VCTkx9BB8YjlUxFRHf7zdgFSOCiRGC+OYhiFErKLRWEw3RRuSIirFpmqNHc1IPakvwUaSVYwCFHdhf/5jXMjs7M7vsLr89Z+fOnXvv5/5+93cfc2eGEbpCnuQmAoClS+D8779Hl9Fp/4kBXUe/VRuNLqM/Wbb8zvNdRk87+Ki5vxAkv0sBgL51RETkf91v1pH9fHAQACDA7/DZn4F9K5352+7oVWWLlkzPumasA0Csa3xeUJiha+hMDvmdTsjZZ+8yOlu79BMBSuT/Hrc6C8FiPcjvuqfuClrRJIaZv+kJB2wpb3WTT/1LT66NH7rCpgwx/qMT8P7JhOsJgT8M7AI6w8qKUxf/G0Pt7XKc33ye2IbLOT1PpwKtLf6ns3WX976aHDYKTBnq/EfPPPbRq9dOHgMcR1p/0VPKy/ph7cQBAGxt/qYf+Wt2P5S0LQQAi+Lp/qHnbD8cBuyc8lMAsPrZ8hmHjoYCm3+8UH3BH/Sc/H2hQE1xXqD6ih/oWwtKwwDsHD4MEBZUsvh+rNtTkh4GoPKfc52v+Vz3/RsL3gaA9b8NJQa5swsm8CmdGHZnnhkIAPm9kySw3SJXwqeWZ9iy/fBAAsAXRD8txdqt8hTr23YvPLL7DTAAWa9MVmItsuP51PLFmw+9DgCoPZoepEQrqwtf0vekHxTgSH8xElD1Nh/TszadChd4n14tBUBMDfchfd1fSsPBiAEomhACx4nV9/Q/nsgbISL3NK52kchX9P0ZWSMgtPTDY3GuUvmInpOXO5KYoHr+0/FO7uZTen7q/pFiO9N3p5O1mtw3dGLAwcyDUdI5ywkZ4zKx1+kM2JeePVY+rzxf6DqxDyyfv3WHBCfWuGPMQH/S81NSxkthhvLvjuuk9To9q/igYnY0bUvQS+xtekHuThFODMAHQdP8SD+68923xSADcOPUp7rJvTu/lyeumeNw2pQ3JkQ3vfd0J4Z9uftHOEZdLb+un8d7ujMc3ri8Axwb5xnk8WK7Z5RuilfOiOH47RUGWbyne9mhBfGAsG4iAgO/badRHq/pXpK6VRhkGDFhVsn+SZRuDi/SSwpTpRFOnNDu5f3JBdImBztveQKAirzJsar41ZNCDfN2ns4AHF21VH13fOmbGY5rZ1/RCbictjhGHZ249CXNhaSX6Qwnl6QskKsiqnumca6x6t7wuo8zFr2jVEVQtzXlQxNwL9AvZyyOV8fRxpejXNqdefFOqmrBKgHuuG69X1LmMoOjRTrb7pcWLxRnNUdNp89+2WUOZpEfjHRW94qk5XMAUEcrVzyar5dJoXdO9/J10+cAgOr+8L21wXq5vLQ/X7UmbpVG9IHnJmvEepteuXzRUo3o+u0zjXJK/AAAPMB5AL+0Zp7GJhiQED5Sl8zaZS+xAOA8gn8+e4rTzicAfPlwCvRGmg5PfomIbB48Sz43ONeueWH8LoOcZ8cTkZBX6nE8wPEABx4c5MZQ2kQIif8BbbiwdrGm2XGETXB1vywrDPV+HSf+eI7jAZ5zPADgOQ7SOY827vy8mBnaRRdFPWc0syni6PM8B4DnXaSUfIM4cJfWx7vYDNn01ALtC/p0UUlwnIELMqBy/sRUqS4dL35zdL5zpC5drawL5ZXov62ctdKhLko1CIWvjILxokKWAIgWB8dzADgenOSA0oHnOkSf2TE9gec5MZtjNVjV1/lSZUzVIEA90nAO/w4nSqg8LSoBnPYAlf/LlxwqY4ouCm9uyKlaFp+sFU8MOHz3E1NlONFdebqacDZp2WJX8Ja8iT09o5tSnOGL5BhnuLQxlwetGc8M3ZxcSpixRKtSAED/PrbRTbj5GZYAXF831RkudW6W12+E00UDMa07A12dFadxSyx5d8VnFe7C3VldXFg4NdHlRULBaN3llKaYb/cr70b/AQAxzYGE/bnhkNtw87rXLpmwDhDuVjqsD4S/hl3TPFiimKETgCsxv1PM7qg8E/6KeacbGhNixvKM2LX50Ul6Se4VHvAAbs7yrGnFuPV6CSilV6gndFNed2tZ5BrdBBWVFz2Bm9L9+swRa/XnrC3L+viKfidhRJL+cqXcIoxCbr8laWz5+oXD1hvM13PFrm5+OSmKoe63Bv9K1+EAZIa+AQ8Uh7HuN2PHphkkuVWaDXigOAx1r3ln1F4jtbYPC/cADEBfd2L34kZuhoFat8+d8BSuqzu7GTMoEzDQPXZmX88a3YB+Ze7QbKEa2tcJAMqaklynMBIdy99MiNhsmJ+WFHkGBqCne+30AQZwRqDE4a93gu5S9ztTwrc5bUap8agr+dhDowPQ1J0A4NtpEdvgtBnlJAmLwjoB16IzAA2JEVtN5K48txTtbnu83lvcBODhuLB0M0WuWvUMrG57vN6OGQP+FTc4zUyRS55d7Xard1BKy+dvznst10xB9ZVJ6uKMhRnsFjbOGpwBM8WmRQ4XinOvBj1+IAede1xD9JubpFrqyrV/yOOBGfs/akZ7c9tTrS1fWOU4p6827MN/fsjc1sOEPntMQGWZe793U8DjoCZrbct1qXxFdyGiYdJvMqGnjFyv47Xp7sCb/hM5ui2g4RmGsgvyO08KnQFA/djBmfqlyPXKjnX9BEBDePub4q7K7b/LN2OK1xGAhmHhe02Wlhm43B04AuwtondauQ67xIIwoCZu9G6Thd0+PdvNxxrdpGHJZofUSxx7XP2sn20BTPQfAvb0mchMpZWkjeSk7dB4r7J+4vMFHADVTaoGm+HLr1YKJ6bHular9LlEUIMcqdCbYobsk8K6ZTIA7w36tVmsKN2Vvq285Cg3nj32F4YP62UpefCRuFVkWncuoFEM1T1xpk86W1gRZH8gnKstrzCIMbvVlvWjmhPPsu+twhcvLvb6xE5t7xbQ1s4H3q3+vO1xcxDfLeii8jq1ZI97uVdsdmuQuQ/WAm0B1sbg/7X2tFg4jllt2t+5SVW2dmtpox7NdX0Dm+1o7d7QfZy80cDIxUaMjhADWru7l0dbLGC4yBgrvlBsrDYBSYwxS3gT3IR3LDuJMcZYLACyRfetI0rsVUXaT3lUkj+VngyZ6s7zIyL5KZAkiUMb6fGQoY0WfvKDq8HA+/366/czsfZ8WRR6uL0nKe+mioVUR/ZEYOmtLcjvVUVEZPvAnA7VL9aRmMVj1e3VIReJyBY91VI2KgIAuGTx2YaBVNzoze4+iHBPcdVdAasIGSSELHdecDSOkffbyoqoOm+De3B1qXxZZE8AbXdesNSqU5CLIwCg5sZb6B9f/EAnndERqPl6NAj0Ve1oy3PVAIG2Sx/sydVQHwEAFUOCwVcHB+mkMzoC90NeA0PLylEROI8NRLboIrV/qI9EJKSzJ6JIJ53RkcgWvYGI8rGBCFTdCzDpxOcBmE6sVwgDhjYS0f8B7X0Fl5w3pWoAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the inclination angle angle ABD of the stairs AB with the length 4.0 is 60.0. In order to improve the safety performance of the stairs, the stairs are prepared to be rebuilt so that the inclination angle angle ACD is 45.0, then the length of the adjusted stairs AC is ()
2\sqrt{6}m
692
[ "2\\sqrt{3}m", "2\\sqrt{6}m", "(2\\sqrt{3}-2)m", "(2\\sqrt{6}-2)m" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAMUAAABoCAAAAABk0WscAAAIv0lEQVR4nM2ccWwT1x3Hvy/JLRVES1ShxeocwgITpmyMDaYwAbIrEuFs0RQpTGsoUonIRibGFoLaaatGs7FWWreSaE1U1m7DbWgXpKCy1ZBEkBFngQm1WlFLMaishOJKQUNb0qYS8dn57Y+72Gff+fzO7126Dyg6n+/9fu/3fu/93u/dPR8j8LDzzwC815dwXbz4FPFd9mpLlKh19Sey1PK1HTecViRUH/DLrYcENBEA7GSMsdMAExBkAacVF5cDwBevCmhiAOjVljMUabwm2xmcVozWAUCNqDaWuO7XpMh1Bp8VibAfAN73iaq7GFiCxzuFxZggHm53EhHdxhmuq20IAYiKCjGT1xcEAKM1APB4sEG0zUaiFFpzTVSKiZJ8FzAAiSMngFhVcAiXhhxrYCCgoRYAEPuvD48cGZXeo/KPC6Jx5e0HGas6MwQ89m/HGojAkk0REIDRRmDqbeEgYaUkL/OpozdWF9ZvD7V5wkRE342Sus47myFTBjwxKh0V+w4UEucJ7PND7Scwzk6sYcoDt5dCdqTNOy6M3Bl+vhDtDMD6s8HZPZLzDoMGfsnEnpr+jXMNpBt+K9h20HlpPhxYgeSKiWoBVXeCjYcFitvBmYEQAAxsEjEClefP/VCkvA2cVjAA6C64El1dAFBx9nprEoD0xJzXCgC4lPQLKisLTz88B0hPzJ1Y0b1PRBEBQOngfU2zIlJywD+6Y1+fLE0FnMJpfzdcLirDBL8vft9WKqMrHN0SuCssJBtuX8yteMMrwRUAfh0665Ugxgj33N0f8Bbuii50pT/8pGLL6MoCBeWA24q+owAgxRt7ywLDa8XFGOC1IlKsrRCkxMhHlta9vlGGoBScue+O41JT6XOeiExxnFZMehMytRL9Q1twSFpncEba3vZiuVnDpqH2E4C0WTy/ofNE9zxTQo325JPmc9HqF0REZsAxuhmxULBSTpulG4/5InUfyVpw8MQohp5+YlJmPINMVE9sm5a14OBx2LnN0nxPZBjR0xv2yZHINbp7OiQ1mUbKqeXnr7TKkcgRev7lv1UsRZmZuR33DUiQzXOHs3e/aJjV1noWsktPFTfGxWQDHFYwzAy0S1+cAQCBAcUD3m3i6yaOcXG8Uf6yBkgNjxc3bZ0RlpU/AKy6IieQWKBFq1/5pgTl5J8vTq+Qm0Ub0dzxREVtROgeEYcv6l4TbCg79Kkj5L0qJCavFdFVSSEFRGSdR2Uw6HlLRL7t6CYAPe0ObvYUTHOo4YJAcdsqMmDmZJuAdF4I2wd3jBRePt/c/ezN59yYKyy4HOxrLriwfYdLVLvwRDQHUW+o0KJ5Iu2pNfKfTZvaUXe2b6Ju+seFyrDFP1xo82SQN0ZpTK3lu86EfQC6/OF2155iWVB5IXygoIL2VvR1uJIHWkEAUD72Zqv+wVHr2caou19+r0ygYs4hNtdUZlhw8K6SbX3xwq7FNQIMpWE0zqVcwXsv3O665ErZd4W5aL0x5LTx7Hwx+FVZRuRY61nzp42OFxw5rSCgx61Hovaw7m9vuuOsiM2s9+bH28SqUzC/uL92fLmjEkQUj8etppJd8u5A8pK6UxXyXM06YwuIiDKMWCg3tewezcvdOuOAQc8/jZXJg2lcpEL0822lYIs155loDn3zAvQtYhwQEcW1XhWPx4nic0RE8fjH3g+MfU070v9SPE6WnTAXnHmUjuaACQ9/DrfgC0X/pyqfUQFVUf7yjSqoiqKoAABVUbS/igoVqgJV/8INtA6weWj3Sd4SxhilKgAWKtfdnXWlkjpQFcMnVyAGYP35+tlHeQuQPrq1ThKf144nNsS181rPSf+NG/67zWR1L9+FJboLUjBKKAB6fqQbmfpCdbf5LaDqS4HpJ3iuZARV7x5aNbVPk1ujZcSgAor2hXZaBRSogKJCUV3uVQCAmUD9M0De5JZZN/ZPS6RuK8vYe8CHXu/ZBt+LFqezSM8XRiPm/vDppFAG9NqWnYs9nDSfzmLBCjUjcPZLfxpZMKWnk01z+S6yXl986Y+18uvjlFTnab0ZzrPgsMzM//bZ/wMj0hz7WkBbcOTMRiyteK7Dneo4hBZqfaRh8x3AbqOCxRxyQ/amD4d5lAW/XTVp97XVKunoXrceqTpHHxwHK7acXZ3bFRZWzB5/x606OWeh5nvKHhpan/sys3t62yT/rkCOtLBnIqc0Cyt8b0nRKp2xyuFcDWKMUQSAMFJp47lPE39498lcQ8NkV3CQZP9URTxGaVzxHrOuWMboJgbciDZB9kZwWffd145t+8Rym3iGFQxAz375YVZam6ycqLdccBjzKGLAzKob5ZCzbTaDLtNBYdytb3jafNY4uhmAUHO5vs/EFcbGBAUsG/v7D8xns3La5Jq/uvogr4DlUjaz31kWyu70Wdng69WuGOHonnkeyk7d22FYcBBgsqKvQ546tygdqGhMb6liQNoKrWO9O/mtRa+Uc4qPra7PfMKxEGkZQMy1JxZdqSM5U0fvzwPD6TX1+OcMPYphJrxbihIbJAW/w7sCtwCtURL7UQT9lQqsATjaXK5/I/23aLI5eNB/DSBGwNPVy4ugvyYj8iDmew8AenNJaTOtPUhujNJpe6ruMhgY+r/yIUoAJFRf4qVH36PXEv3SlQGgIhqTNncbqAqM1AKxjx7yLCkBsYsBvPJAyR4k9krTAKQnVEYISBWss337xMZi/O6ZmA8g116psCiEAHRSEYCRKO2skt1S2eHBnXARmyWK1KBEe6WCf6muS1oamCVIepIMAIh9bwi4CYDopV4iosdc9HlQ/Zns1SMRER0CotQCdICoJUpELZxPbZzyATqJbmNBuktPnjGm+9+d4a2u6yQiOiT8Uhd7SvyuztKv/OcwANR8wU0lzt574AxiQGLD9/cRc3HtqOPoTRqOYACm3qkBk//TehMub79epKTSVSvIs+59AIg5f0eQU02u8jLOEEWC7iohYpQ5q8qeY8f9QOezcmWa+R+SqeY3wIGTMQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, the cross section of the dam, the horizontal width of the slope AB is 12.0, and the slope of the slope is 1.0:2.0, then the length of the slope AB is ()
6\sqrt{5}m
693
[ "4\\sqrt{3}m", "6\\sqrt{5}m", "12\\sqrt{5}m", "24m" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJAAAABpCAAAAADwsPW1AAAHQ0lEQVR4nN1bXWsUVxh+jlZT60ovmtRIUoW41YIXrmChH1tQ6EWEot60wUILBY1CCyppNVB/wApKoTQS8aJXhdgIxV60m1psL3IhRLoWLb1oJGlXSmmkiLu00STn6cXM7M7HmZlzzowp9E10z5zZ95nnvB/na04EkY/8trFdXlppj7PCSot43C15n9jp1AMdgMOH62yghaWFPL2WfrRgh21nIVA4H6FaO7CAWBJyGy9CtaFvLaeFIjWPeYVCuy5MUEdyjiGKrDFkoRTT7pVLUUxBY3hbCz0yIMsYiooXOll55W4hCtrEcktys5Anwiq32pI7oaySlZDwBE+3StkA84qhdQ3fRYYw+j+l/Tkhdi8cy0og3A5rQrPiR/LT1Ru8aysnkUE9AqCdPNw6SJJDl9zrbzBnBgCsDpJb41CxtdCFv84CQN9m5/LOm3jL1DgPWtxIkn97PaulgSqkbF+Xj2FPxQzBK0gGOFgSmsG4/7JSmsfcpkljGBnlkI2Qa6Optbe4kpO9dXMyJIFVvmrjGHI83bN1GiB+vQQAzQNnt2EJL793YClRNSi+9FoMBpeVfIJxsrqLJOXBfpKgZP8wKQOxpSMAfBq2hFgFMEiSHOuec4HmNlXNgUJmsSbUknpXldIFqpmFEUlSdORISJIsH/MBnS8vGoPA8bcr2aYfAjjdrPiGo8Ged41BngT8I0gW45CcKtxyCgWntlEcs7BQ7JU+EVcaxdFQ71brvL28hIKMDva3gLx8v1CaX15CfnEyPgR0+HCrqNUj5Uio3tnud9pA8yWzMMqRkJvxYaDpzh/+G0IVf7T4gcaKDbek47MghQxz8+u7r23zdUl+oCP3xgDdxUeIgrV9GsXRmHZKzr8wqj/E5uWydsYrgOq9NeoO+zkR8mV8CEiS5ESxqYuUDyF/xiuBhvupIZKUIhdC/oxXAi2WdSf9uVioEhkfIkD17kmtIJJ5EJpad9ODiwf6dpPe2jHI2opQe4xvgymAKv2Gs2vSsmM8dOfrtO4NFMCe8ofm4MZNkJGMj7MQ53rNJ/0WLotkfCyQnOxOnPSrTGJEyJmDlY+pQkMNVCkvMr7H9nSkok5fKqUHquoYoP3DCVCQjLA1JjRVuKmsjwFqFOPCSJIgUOAarPH5zZCQvF88r3aBAkhKkrXemVg0gCTcHztC4TE+kRBJSY6W5mO7I5mZ0Fj3XQ9Ig5DztYHDcWEt6RLqtSWkzvgUoPi1I9xACltISt0uPjLG6xDiz93TCToql+nyiY7xWoR4sTSvbjMAEGCBHZ6+INIm4627wVl9ylgWkCNLF7RfN7gWklI6rnOaItsf7rAuZaM4KpecrqxVrWchzpdGk277wVouc/+1fn0f7sXBfo+NilFydkx31tSBEan0E5IkpWOmICFJSY51342Q1ibkrh0VnGSIWDuoZdAgYQvVO6tRK+oT4vsDymqVhWSIkNpl5Q/cWLMktFhODCO/hWTAapGgdm6cef4f79qLIcO5cP2Za+owip3kJ/VGU4WfUp6X3uVXe9ST/jhCSSNgs5ictlqE4taO6t0Pxr2Co4B6Vm/SMTqytOu1k+ma6Q0jxzakr7B0gP5QvjAyXCjKxDHejBAnVWtH8w2rV3Z+lP4lvQXe6SsTkQNzQc3UnXzidLOi8ywtObHqVOoD06S1V5+Dy8i53mp4GDSKIRneuctKiNG1o3YMUQAUGhkPwOBkw+hn3wfDqOOBrsskWzt36XNK/cn5wHAQ0MhlbsZrzHH1CTWKXyRopuCUj+s+xmD5Uuv8xZKQTJrV2xPiaADWgFDcOj4rIQ4c8emBuu9cdTPenJD/hRGwyk8oKe0HNTPeLO0BALfLk5s9RSBwikjB380p5c5dPhYiLz7nvTACuvRc5r6PfySEJHl4wC2Ezn5EcTwSCev4zITYXjvK0KmqWJxKwrZOHoTk9FM1VxMicQPeuXldb4zPQIjVYtNZ0yBlA57079U/GkKSJIcH2qqth8Vkq+4Yb5v2AIClXfuHoqrKBkwaZbyFhRyp90Z3spwuqcO4dUFZL56w0Gqvu1avbVfmdfTUUiLbWMpJ/rKQdP8QI3L0VIYYEMbHSNn636QlIvDRJrQiVCsAYOKGCR2xTwgh1jdNW0JFSe2yhaMGsIK4vLdGvt3XNKLjp+9riEMoZOpTG4tGuAsPS8CZF4fM+OwTQojx8PNXhBkCOLf9dzPoqxsB4NlpM63Le8c58caNUNAqXDbbeKmrEK1OkCuvAkCfNNEhFm73Y0sk7hSEzpzEFiM+C9U9ADhjpCVwtVzA8cFS+Eak7x6Bd4RTTyRnBklyBp+bDBuSIwBq3kVLIhaabZLVzQY9isBXfQBwdNfrZha6coMjO24geIox4rLZd04At2nSoyx8vAeYFfe/M+EDzN7bjkNbJxCOoqAhhyBq3Gvks6qDOB4xfoqMVCLnxMmsxwazyN4aH27taoSr/4O/DSIATIgvd4iOnj8j/cu/vWMwkpAqSFwAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the cable is fixed at the height of 5.0 from the ground to fix the pole, the cable and the ground form an angle 60.0, then the length of the cable AC is ()
\frac{10\sqrt{3}}{3}m
694
[ "10m", "\\frac{10\\sqrt{3}}{3}m", "\\frac{5\\sqrt{2}}{2}m", "5\\sqrt{3}m" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHYAAABmCAAAAAA7GjpWAAAGuklEQVR4nM1abYhUVRh+zqwo0doN2k2lrclVdGMrxx8hYdCGKw4qq8WGI62VP1qhIjcU6kexEv3Y6IP94VpR4EYbru2GUn7MoKaWgRA0Rkub4OaIGZoS2go59+vpx/2Yz3vv2Z07Qw9c7vl4z3nu+865533Pe0cQYSM1JxYoEwmdVdsqIRQ+7Rv3LawhLe1rV+xPp1gLWmFdmclHG2fb1VrQAgCI917DIgnBcGnFrgExX0YwXNrMJJlslhCcESrr5uPgRMDPaoHhYRvwMzuALaQZICrC36UAgDVdyS6CDB3qdlFYqAmtq59I7a8hratmKv6xjHDI+F4ZwtVAqbBpTyujXLuz1rRpZZgcXlZj2vGGQZKTt2dqSGvy3Nx+kmRXbw1pmYn2WYVkSw1pLy/cYZf0hnSAbHjv7bW2tb12sa7rs1q9tzdiW3KV001abbS9uSr2YW47XjbrJAB6b9Ah0WZXN30q8vxO1xAA4e2JwvG32fUz9tchz81OxK7N8hsQirZGAqN1QJ5yCxYd8B0RCm3i2oitm2u7Z4dAH9cbhpE3/3KivrjtSvSK4jMkBG1fPnMsn9XSY07bsN+Yymm3H0sW6GX/vhv3+I6a7vbghKS90ctl+ydnX6zidvHO4Mk5ZTvqV39RDW0t9M8959V1IOYzrhJak4N3/WoVynTqDWe8h1ZiZPFlz9EHgPJboKjb4LeWK9B2VDnt130q6t1XAW1SOeUvED3h2TV9I5/csHe5v8SmYW/PNzUNTXf9nFL2BQmP36mXm4CcvpHTymiwUGyf10FXltYsuHFcGZQY07/BLXcAANqc8TK06wGgcTKvZXzeznyDe+Fi/aT7rB1pMvmC0yOlbUea3JbHm4m+JzOMbHdtoq6m2q/2T4VWjZNkR7dTvxztlWPlYLtTSvVxYCTXIUOb7CbJbW0Oa8t2SVbzRr3jngYApHM9ge8twSMrAcBJN92Ir3hX6sUGxB3xYXuSVJpP5aVAA2kF9GQcIH63kno3V8R2SrICeOZza5IL/8SwvCAGCcT5bpLMYIQkJx/rlLQwSVJXxi0b95HkS/JGBg41A8ArbZ0Ask837JVMxgAA6hKWlVNxAOvudduDI0f14eEYMvPbjgMwWo1EnTQnAFw4+OIOpOIWUXqJ4yIDc46pOJYCGOkEYCT+fdZiDcqyuYiql8BVJboF0tpDCADPXx6bLUnnInurbBRA0lBV1ZBYHy/ErgelMEuRbsi5odxokKSp+U3n9PW0XJ8yKclYskyjxEq2V92byRN+xwtPJMqGVJa2hqaqNFSDpqYapKmpKt0bSVN7qzlj1zXV0FTN1NSAE7sN2w0VwjGyqZHUSY3UTGomdaukW3Nr/Y0ThmnVTU21LzkrPz7sbWQR0UEBUtNIUiAC2DcA3N33XXMETn2GfcltG11DnkYmqZm6XaKpkqbm3EgONf6U16yZ7iWD6/Wlqc8IYOgAgIguAAEToBAmANg34KtXv1mSa54qlPavymlrqKpJkraiqlqwpEzyUOMppzmrkpqqupcU9j1W0pTngbx2jKNKuTdPFiZ5SylJfeZoDbNI3A2ID1TASpJ8/m0vWr14e3TiwrQyGvhVJwgnWpwpi2m9MCYTEAdBb0oXtQRsjr+1v/PcdFZvIeoSJSd738fMNPX79ssi3aRbFpY6FVyUDoh9YJJka9GZ08/IV1Zu3DGFuMkDAgA2DRZtpd6Peb21p/jENW2cV24VzFKirftMN9oe+cCJR2QjJ0/c/9DhgllKaJ2+m2se3F0xWw5FaXyvgDW7qmHv1EJTf1xt/iM/NvFYUtn1t4XKisb2kfxqeVqjS7ey4eF8yyaARIGzL2/kxKXDJRniCpGdM9aUq5XVdvPZZLisBGY9ubegpXRT6WmdVkDsBft1PZqf+iyzXbzeUj5DXCGMprFcJVJgCQDYsefI3aFa2IbozI/Tix+qvynw4+s08WM0Vy6m/WjueJVYyZYfytKa5KAyVioeFnpzHx9ztCbJUSVdPVZmGnTHCeWO1QI4uGHl/v3SB/WpQ0uusUsRAuuEEGIUyI69sSwEJ+eNnpySJNkxwiTSFfvyKSBCQJuIY3FV1XSwS4gntB4AEQF8u7weW7tjlYdNAciIn8ndM+cBAEvSkFWCqS62UqYjtDbHVJoDS89UWVWIT/5+HwCaF1ranm8j1cV91da2gCICHIoDl84uqLa2BRQRILUKWrwxXm1aBwSASEp8vVTMnPdXPeB+Ta/K/Z7FEwCQsTIKlUf8shjACJm0Uv+h/ynNB0kA9neOKv29MghV+nvl/5T2P3sPm7PaFjGwAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in triangle ABC, points D and E are the midpoints of AB and AC respectively. If the area of ​​triangle ADE is 4.0, then the area of ​​triangle ABC is ()
16.0
695
[ "8", "12", "14", "16" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJwAAABrCAAAAACnRLQwAAAJF0lEQVR4nM1bf2wUxxX+5mwnqeLI/xi8iAukGGISS40RprhAhJGKMFVqaOuKIqUNUQOpcFJQhUQjUbVSI9VRg0gljlIFKa6CVEd2WohIfUcSQyUsAXZ6SMGlaQ12BJEIUAl6lurs7u3XP/b2bu+8uzezt9f0k+5uZ2/mzTfvvXnzY2cFkUeqqQ3/V4gVLo09KgVzjdoSE0LMn4mSUgGxQk0HFi1VKCjsgie/mSZ/sGSGZbIrICU2AJgWYgPoIPGH1oxFVejfIMmtu5QLBslsSZOc2sW8WaczHfPqhXIzR+IA0PyP6BQHACkAH+8umPXX+/Fo3pPkcfrrALAkUmojb745A0w8kSMnkDgivgzHk+RhpDYDwLVHoyQ3saorCaMm31unZ8hUiPbfWFsPYPrgxgi5GTXY+B5GFgIxEMD0D/cDk2oyCADDSwBwT2dPhOQ+XYhNNy+NdAEgyX1Amt3A8+r96q/kFDqj7Kv8bYZM9B0kibJ5A5CymzoYEascDpKcwiAL5Kzc5wtHAugj2ZMhKdzB4xf6faG8REQ4PtjSvt9cLJdCOZA4+HkkpFwY/ft4E0oaLRZ/0BxClCAYtl1emHn2sz82AkWzEgA7j4aUFyW3v3U0nWm0L93OiNtaJoQPV9Tj52BIG/AUDO44GkJcpOT2L72cvy72OevDHZfV7RBhZ72zvXagIZ8q9jnR/tAHkVUUAuMrOocbXGlHhZZtn4Gt6paIzKz9WtLFZo7P0YxPKcuMiNzsc62TxcOU26wEWPOjBELMOSPAjbXmh80lQanA0yJo8Wbjf1SbHInmzmmHgwWDpPX066ozgFDkSup4RTtXRjBI8nyraj2Vay7Ts+6Wx+3YHNuvfugv/zM/AwACVzuazs7z/G+OCo73KLa7Us0NNfVLCLYTZvy6mvAKyf3UNWAVY65ZUbMjUW1TOlYDcG/zpfFWv9DloYKb2qxS0yvR3Fj8gKRgJ7HtmFIFFZArDFhe8cuT3Pk2pRpCkzN3t04G/e/hc8DqmlHHJaqJG6v/dT54l8FTBf3bSPmloqLmHLFeA1aA4HxiVrvuFqMiQxqHtNFyWbzMStz/3O+AaJctJZj57tsX15TN5a2C6yrRJIRZJ1t7TUXBrsS24/K1qZv1lOYzYAUIdiXOrZSvSpncS0vHpPLV+lh7bfbC6mi9LI+72zHeUD4bSldfLvQeioxNMS6tWjEsx82vQ5CfazdlrSRlVics9TedkJVbsqh2J16q/aVk+xQW1dm9Z07K7xX5k/tk3XRNCBmBuLFd639QNnOAz2Fxx4C8GDmMruoZfBCQH7X9nedsh6RryIaSw14rrCD4hRIA6zMXviqi2xXM7L4yFlcr4m9WYG8i/E5sHo4Fr36tYTSuOg0LsM+sZDQJNGsuhCT9VljSgktr2feyugxvHIjLDVjF8A8lAKaflIomZUPJve/B3hJU9OAgn8Mj7UNKwrzBifa24QYC6hPEQPu8v1pG+2XM2q8NFRJKe0RB5Cxy+UVVGaUwex8PXGEFIcisAth7JLw5AQB3Oj+7EP45NklT1/WstwoymtfWVAkCNHdO6wurtrxg3WOD2HaPfS+XdxN/csoDlpdgT3IkyclFJlnGj4uKuXLO7lipuF9VAsfnDMNAFhZgGGYuCdAwFn3lBAAI+4ZhGIBh0DDMXMY5KESLaytrR+NAJTsHjuZ0WwW6nbBoGqRu0Xx3HUnqWRrZ/G099/HSXF5/Sa2/0ufLeXKmQQu0dF3Xs5ZOUqf905KmfZVL207gfHzIkX1xdxQKRzLmGKOGtACIurq64vDyYpitxHubh9OrXOYJN7mJAVnbd2KmAAQtgAKm/eDaBMUzp+5AwHVbAhMr25xHpgDC72uQpm7bRydIS9d1kva3/dP7q2zRbV3X8x9vsw40DZXeCgWXYNMnYE0uLrOtUShmkaTZ+7jfDrQiCv6V9RvJmh87IWsGAeBO562LrSHNWIocSVM3fEN9an1wA4uKnV9YyYAVINhvHPJ9UOAuZkeLw9r7lZNyEDgTdpD4KPDURKGY/vxHJxRXWEEInAk7ePrte1LCPlmD0XiE29xS5Bq2HZPIxVTHzjfuty8roeQWOcd5PHBlsRHgGrlifaFWWEGQ0hyWP3aqXJZ73zqVbq9YVcWQI4cXyg2wE+3LzzaWyaMOD/uUwiLNZVf8tQ9ySIv4hN9cPgGLgVcDjkzC3FcmEoaEHDmLd7W7/jLWfecuuwEg4tObcj4n0LDlmF98GMdTQw042Z0mk8sicrYcilQQ0IorS33+OKyBJPUu6q/pr0WkMxuSvRVY/si7+fa4bn/+7BtjAICRTry+sE7prYXycDMN3Ff4U5fHzesrn5m1iyUApCM+MCtPLrt4bjRJaoedYt1pfjvMscUgyJPjq71k8YHivoVjTrGpTvv08RdF7m5jLprkuM30rLudL5boI8neaMlJdwigYetx+8JeS020z3cNWKlNALY8zGjPBchrjpeXuhx+qLAlCCZzwtLRak6FHNen8uwKZ3ysiI/iulBy8jAYLx7KmfTOk5fHW3MFqngQQElzZnySJK2xeNEKq2qaA1kIDWVr6dtLFp3xyRWr0ssKxZoLrMQib2sZzu5om3TSeRnVYVdyiDnIAQTQ+NTvL67B+WYAhHA5aZUcz81UlG1LehF+RtKtqir2VpD2PHGQ8gFUlKirauQskt2DTCIt5TlRj+2BiAnAuNqFliJVeFg/91uP6JbMZREDMLK2Hnt2tQXmOy02AABxWrzibkNKiPkzL1SLHZ15og1fyybnZUiLesugK5fe0knqLZG+QOo2K4BUmokVl3wHI4IAptoAAD0Lely5ehacAep+HO1LmgXEgOl/t2FnS8rX4+wH/Ze/dBUQRx7ucv2TeucQACwJ88qTDGqBP3cBn35cpgJj2QP/fALTmQcK+SiO2o7a5VeoUsSA1CYYXfO6gjvhyPolV2H0/iRZYCKMK7Y9q9Z7Yynxzgpx34Jb9cFD0EQbgANvjaz1OO1TtUlTbBNJ8ox/DgKgWYPma0dW1b+30cWkruUaABi/qRY5yaEnmeYU+qi32iOEc1gEfeS1eVUbNeTIdQPpqV1MAEVMrCkAndV79fS/ckEGhCKagpkAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the rectangle ABCD, AB = 4.0, BC = 2.0, point M is on BC, connect AM to make angle AMN = angle AMB, point N is on the straight line AD, MN intersects CD at point E, then the maximum value of BM•AN is ()
10.0
696
[ "\\frac{17}{2}", "10", "17", "20" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKoAAABlCAAAAAD4oyc/AAAJSElEQVR4nM1ce3BU1Rn/fWfZlBYc2ipMi8WQFyCFmdiZKhIyhkAIlPdjUFGQFsIrpJiXSSC8bWUmBoUQppZWcJSXIpZHMRAIQoA6zvDsTIsCEgotECmxRdHc3T1f/7j37m6Su7v3bvbe9DcTzj33nPOd337nO+d853EhhrNgAp8aAux8+PozatQshH2kjEFQps5oZD49sbcaNQ3HqUJ57vb57sCKPokWC3ayhU44bD22tysA1/geFguS07aqPPfdt4JaXZpvVscNwPt5MoEBCUBaqt9xqjcbAZBasbXKHafa88eXGQBXfw1VtabhONXOa99eDShTH+wCQMBCV3G8WwFXMm6g+95BACzNAB1BFdYY+uH8FACwf45iK8bqvFYZpGvVmnI7QKt0/hKBYdkMnKfKa54afQcEttL7gQ6g+teMPUMuFQJMVuu2n6qEqj61B60bM6DmiaEf77Ti/Wmw37MSAOlW+Vl+w2uT8OWjOUuf+lE0ghwAARCQW0Z1q50EoPnZnxZbF+IAVb33XJ+2evXWngDgQ9XJ7S3SzMABqlrj78r+5tA00ur8SdmKu0FppuBItwLwxezCvD1J+huJnIELrQqyn6qABA5nXK6Z729uKYDKUzv+75xAhrif+6uZHz0K6NwEgPjyZbfUn2EW9lMlnMo8t6NQfQyqbnb/EmuC7KfavPyZ9OODDeqpqt9uqX4bpwB1MXp+UdOWTMP0XiUrRjxoQZ6NWhUAo2LcgBOZho6pxNyBv7YozyZIAJ+PffP1DQ8AoLb1CKDi5E7A9DxgG1UpGJuyvl8/ESHHJE4oX3YLpucBGw3gi8kVq95+KEwlhNl9LYwCtlEV29Kp9nkgfPtWn9hhXmJ7KYXAnVlLF+6KBxC+fXsVL79jVmRsqUpdgwcy/1GTFz6rGswbkG9WeOyoSjCEqsHmRfOmHUwBEKb1BQBmoKJ+l8kKYkZVqgt1hsSxtDN7S7VmD9n6+qiQuGRJo7kaYkZVCIAABi+fkVmbCoqwHSEAEAGYlWJyFIjxxMriXG7zO+nQeZiAqM7Y+bSpjNHTMgJVjH/saHogbsbHiy9ZZmoUiC3Vv496a8OGB4IIhhcv1Zzz+heYEd5+qv4+7sMfR/+wbqwFoULL+erx94Ggoc4Y7bdV0k8ebhSeq5gclYik0sXpPcARfmEMDEAAYGDHcF9tdEyBOX1LI3stMbFVCW6cvqTog4RoBYiquvciZ4pWekshh4fe/nOOtQVoAFIfBSKPxO3GvdycmYf6iSiFsQAwv2++jFA+FlSPDbvwXnHUu9/a1ltl/Z4IItpP9dulz4889rjUtsytl9d6U1LZ4n+HzxgNVQbA+qbz2ez921b52z6akxMNOckRdgctU5UqHyL1xOOVCT87mR5tf2rJZP3R8O6g5SlABM6aCZ8tvL1xNGJi8VIkFC8d9oNwNVuWGVRiw6iHj4+2ziqU2NyURWr7GDdSlPpgANcnVr28uZseiwVeO75b34A1gADgUxTForURsGWY+8iz/lhMkFRaHsYdFABcbritarfxl6sK3+3ZHl5GmJNYGjoxCgOQYOzLuFk7N7hwbGxAVB35IHSiVpOieOBTJFhRvAArigJ/oKWzFvcqzfMWvPBhL8UTJCdGNpBQtKQplN+qD91uuOESAt64OMnwuOOEB3oAwOOOg/7afXTwxb353ji3HSfJC5Nf1JfoIaiCXB6wALOigJkILoYWAGAiuAUzwcXNixf84mAqOiF2PT8YlfW7Q6RoUwDB5WNfJ4DcULcS0IqKVBfPOF3g2zTUpqN5JiCluDy9u2GqALweEACXR0BdvUuCFyBoAQCwFOrrNVOfODzEFp76jYa5CWXGc4AAiD2dALhIAHB7FUXALRWvG3qgSNJeX8ja+ofXO8PDHvUvhkSl3jPF+trdxuMS++HlCPD9Ln5mY6RMJlAw0+ClDDyu73dXGuQI8PdFGmKvjq+s3GzlnMEaAhtHeckFRmOAzs+rRLqesXVElyPRrkhNgIKOC9bW/ckgR6dWoR+tmP+r4HTpLDh0KJ/y0uIhD7V5G7Jq//0iMID9Wf85MMuegdQI83uXtX0ZUUsEQtO8BbM/TAJkrFyoSBBVh9pOBGGpapZ+NPPi3nxJTt7JSSpa2tT6XdjaSQC4X/jCpLpUCNKvnDqCvMSC1pWFXVsxQZ7L9e0YrEatXzltByqz9o1tWVl4rbJcNeHJ4ypThmPdigH0eankbktvMMQUpoUXs/a8sbazGifEbmUSAQQA8+NLWnqDxlS1LOvGJH40iuEYxZYc1h0KrAgYRlT9Sr86YeNvN3VzhJYRqE9heZMEA6xf1GqTRQs3D/9e/dPoGI2qWJhQIEAABW68tIEEbs14uWxbD7+OnRqjWkCsrdunPgT92zoP3s9sqpsN+HXaEZeHgT5FpXfg15Mhh3s5xTn74uHP1RE6lQCQ+0gZ/ByNqNamNezPD07uCJ0KABDrg3yBNizkN4U5E2v6O0gqHFIKAr5AMFUJAH8ZfvLdlS7HORmAASCvd5EeD1CVEID8zdRBRx/vAF4GUDcFKw/vl2pfCbgrAuDzL375zlArHxZFByvdtF9R6SB1RdCC1cYp/euHsu29yOU2/+0CI6/3MvUxyAm8VPy3NVPQHOVnG+YhPM3NFrK7K0aq9wUCWzq+yXsSHrmv/lpbv8EQN5REE0rVzJDYfWHMzlakPrnpUWxXKQCKo29N5mQAoO8MTAnEHAQT++/em1KLP5MAMJ6IaJdDLj6BdFfJ3AKY9AU+mJnH7eIanFH3pWKwJxUR0vAxPGrOCgCeK9noq/lQtk/3JUQkaHqQzkyA4VkEAaAurSvy56Q6YwFrStK+4vufDvla4xAREgChvFeyAHDl90TL3wDI8ndFUcB7JbsLOm+/VqlxiAgBydiYehMCwMGzXP3YOTDIgdXJtY+zAOo16LJ5WxPUcO/J7l0F0PDfVOT0PcjkiAXUxw+wXujVEuoDARwYCfzz00QKbg62JZSAsn9EVwDea8nqS2mm3MZq6g0I4GA2PCO7j1KTtDxkSyhYXv9kBACcachusWIOW67hHnNNAlADAMiwY/hsBcmS+UTaVz7J938+nU2PqVczmbl6DUNKtYyUaslAPLahOrk0T1nJzG9iJfu0pIjlC4Gzchwwx2EfQO0NaTVdLf3PACr+B6Nij2BNRjxxAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in triangle ABC, angle ACB = 90.0, CD perpendicular AB at D, CD = 4.0, BC = 5.0, then AC = ()
\frac{20}{3}
697
[ "3", "4", "\\frac{16}{3}", "\\frac{20}{3}" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKMAAAB8CAAAAAAgb1+mAAAKaElEQVR4nO1cXUwc1xk9d+2AiZGDH6C4dkyM5RRFKlnz0E4cx5iorTdpS5w2akyUB6w8pJWixC6Wiit37fRHbqvIjvtCaKusG9mBhxYcqYZEUQ2sg4lVR/BQFRxSU9dJAFcybtjsDMwypw/zs7PL7O7MepfdSj0Smp378+2Z79zv/g4riKKHr9AEXOD/HHODYuJoD42LQoizF88CKC6OwvqkPtE6S459d4ueXmxxTQGoT918txyQH32rCgBWF5qTDRT6H0Ij58oBrP52FYAi9CMA9am1b9rvi6k9moh9vC3hvgg58pMb1kcAxcfx9EaIjfdOAgBORvRILy6Oyv6hT4myV7uOAuoTVeWGI1kc0Ehy3B8iSHKyEqgcNvOKKa5Pn+qqc+poiqd/VH6AkTXmjd5VsqjaIzHxUGNojT0Bwhwci8SP4vSprjr7vXGlQFFwpEjUGQY1wOBaBFqLZJ11arSCp6B+pO6nJJ0NxGdqBeUoACzTeTkKp7Uh5URTks5ORQs4rpDskkYTMxwIFUhrI3CVA7f71mcsXCCtdYoTTQ92r09cazki36KmwTKdyeLRmgKAcuB2f4Wr4gXRWgCYaPJ3V7grXqj+sftUh99t2UJwpHAXzyYKobWYaPJ3u6dYAD9SdP/GrjNFyqIGVp7jwkv/OV+BOLeMFFde64mm7Xo8Z+ZmIe89dSL0ftscreMfLBS8Dzfj2fKhK2euqNYe49nESvrRS79tx8pxVA7O9VXATV+TjBXQWl88GfMwT/Ect7AicJyHOaFgce1tfE7GSsQ1p3ZnFc9xA/lHj3/UfeE4Iat/z7/WyuF/XsjKiVZw5U9r6vE8Fdjccyc6G6byAVOoHv+I5jAqpwZI8sNKBEm2AS10DPVcwGAlH9g757GmQaitdoZk5xmSzJPWeluaCmzurciqvny94i+AOvYEkd+xsPenHVI2Yx/AK3sjf34G179YDuSJo75+NuI5G4riH49/9vNLO4YeBZD7uCag05oK3NubRTwPAoBQP6mqaXhH/aDeMJof9Dw4krGMljwfl0N1u6CR/PBPZFi68jM9Mz8c5QN7b3msovFae3XruE7o98Ok3NBgnCLlIa6JqcBmzzoP7Wu65+8hfc9Z/aAeWNNUUm9azDE0ssc/YrtzAznkb+zSP4IMA9I8OWlInWutNVI+qOvsfnCZbq9pHTVvHAjlWGsRj2e3fc7lfdvvuRzypyty575LQK8/czzbEfJLXQkux3IBcstxeTynVXw6WB0XOTWhnGo9FajpXQ/7EVVKxQm8v9+P0fQim4Vzhx7/pfhNppAJSVLIKd2B0J1xtBNJ1jkMQLr5nGO96WB1a4p2m1utafzBnG+b8zDCfBvr11UbHQ42xvZLGA1JAF2cexhaa2okEnXvvB8CAIKJif2J4/NCszRPkoeGmYwuyf+6nNp6Sq1jaSotx6EWcrKyxZ7UHkiM507jjY3QbGLV6ePVT6fvnHLDcbE5SDKMM1Z7nJGOJxdpWVaN5HhrTft0ButpOMbUiBJVo4oSU6MKGVMjcvxCMqZGFIUxdV5WrtYOf65+PtdwJEadZV9dsmsmK/XH0Ade40m6GutCcsYFWJq9lFVLaxfKtLKFu3wLJb6F1b7FMq4yL6XAkm+xDOqSb/FurrqwYatvqVSGT1kLCODw2CXnSc4j0Z3fehl6HznX+Zp0bDeQzbzcimvfEoiFEi0WUxRCwKcf0+v5hIDPVwIBHxbf+XqVKMXMjftBADMP3dOfRJGoeWgSAK7c2KOnTOx/4PZA92490zsMrcmYFqWixaiQWowKY5T1i5lgJH+46aKmUO2onYloTjqTGhnW18d6cPcE6kKy24mQc3tciilLCqmpUSqMLSnUlNiSosVoXkgrWdZindJtTeHVTUFGNCOeHb492gAAZ6jdOrF5b58rduk4ampEJml4TFUjshkiZqQsKfHk+eajakRuqzwixyLXpONMWJaYsBLGn68+cI0kNbfTyfRjoUYls4mw3kKkeTrrnIC+QF2Hp56Xjhzjr6ARi6UZG6+gcH1Ata7igRcf8xwfad6J0zTVxdAtIExuM0+mDdGpX719fWyLZ4aOMIn5VpeVZnSj1XMQ/U0nU+QBQP9jTf5R5Iii9/mj3vjbA7dSTuvkjppAn3PLcoFczM2EcOy3LUwd3DI20O+9HaZDFo/aVzdCzdlPfXtrTtzSbB7xsj0ar5UxKRPMediyqnJHXaBH/6hlZ9q5lmetU+o8dXjLWG//k/pNFht6aeDxMW39dkLVge/VHE8aFnPmR0+GNEtnjSQsPnKoztyuydZ0ulqeDE0nzLdheG26vbp13N23ucAdchxIHJ/1qiNPVx533mtcWY76zCbYOKffxKvKoe3ScpG9mHZTy1VcCwjM7sZghRGyxqp65vC2oddH9iG7ybUHuHy8Af9AUsoIqo8PVxrr7GjDckM586Orsw+Ko0P91QlJpzuBaeD6Tv32JzeGszmHcQdXWs/uxqCd4szRDUMnRwBg9L5JAPjt21/bkTeKrjgOBl5+2Xb7/v7t+nYNgMtfmYoAH/1r6zbnqrlB5hYSbLTvLXRZe3JCY/S5sDTPaOCDTcv3dVYwrmfsOs/8csO5kyOtxtMJ/LVpw1yUx/5wZVN9iuq5QIaY4dDBVxvNm7FTAy2jCaFz7fHPPv/oXP36898ozw89ABk5HovHc/cp5aWOxDfi1emqdVXn1h1RPv5RftjpSMtxZl/jIACAtztfk05KtiwKANe3YdWmi+/ijZJ8Sp02Zqx+e7y1uv1aYp6mEc3AmcWnZicrgdqZPMZMGkNmPHc11oUSVvL2tYC3b3MBLxw/3RWkRt46UbPvgp2Zew5ZcHReJSGxhAVdZ2u7JhsO2fhRS65lLowc1m7BxmmyJ/12zYr50Yf4bCsez7sxWHryvjdeHP/+GiDvUy8TG4RPOI76Dk8z4B+4ZomceoGccz8iRS2HpKONbwZqXOzJ5ZFjGwDUztrTSZKLvyBJTu/8Zk3gvGuT+eHITml+0TiGss8p2v8GAF1fvrppoP9xIN4KV/a/dgUAqP0vlN8Vn+6ZDzGEIMlwzmeqXg2WkuTkl2Y5hDMGNXO8/uhU8/0Admrup/ypSuZg0TB99QtosfQztFZP/A6A7X91M+CQEMInxFGnvBxI8VaQ8tVnTJLGGdGPny37eKsHI690SvNk2/2p8g8JIYQQW296sGmdFFMe2IM1z1/+dwLH9155+O4bmgd76vkXyk/f/E7K3WT9GcJfrfJg09pqF1dK6oGrtqgltclnyXBt0jFuWkSl2WhgnkzVxy82n+HkH623iLxhsTlItsVPyEFy8pF5stPsjVwhDP011BTQotIsDw173sS1bANWVJMgm1E5vNhs/yGDjNDaggwH0xQYgm2cuFMgrpbbK8lowzDfG06dz7Yg5cC8N7tOdkiSvnhf4fYK4EpJPR7eET6bKl8e2INVj5R7s+tgJx4znqG/ihB2WsToCHtq3JmQDUejUacOGv2NCx3ZxU0C7uB3PqyfBErGxV1Ay5sOGVmimH6LJBWK4LcfMuJ/geN/AYJE7xbRj4ZPAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, there is a square DEFG in triangle ABC, where D is on AC, E and F are on AB, and the straight line AG intersects DE and BC at M and N points respectively. If angle B = 90.0, AB = 8.0, BC = 6.0, EF = 2.0, then the length of BN is ()
\frac{24}{7}
698
[ "\\frac{8}{3}", "\\frac{16}{5}", "\\frac{24}{7}", "\\frac{7}{2}" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABbCAAAAABiufkxAAAGU0lEQVR4nOWaa2wUVRTHz26h0wZpDeERoGBYMKI1pb4psaYgBSG1lGgU1iiUqDVAeSgGE8oH0SiPALYEbE1AygdpUFJA/EDQWkp41FBhRZ4lFKu1tCU4Ldvx3p3H8cNsuzvd2Zm53Zktif9sMzN37kx/87/n3p179roQ7hO5Hb07MjynoyRSvc96ZUdJ7qxjuL2TJP5dSWnWaztIQg8/xFLdORK56d60Icn3A4l//2vi+PuBhB7YNGaKyHCBUyTSTSD+Os/AkwR+L/ECuS6zmIJOSCgBj4/3crDK+jWu/8P3DgYklurOkeDtnPdYDHeMRPnjnWUNrSxXOBKxiOKFWefIF2sV61c4RBKom92ISvuUv61f4kzr0O+37psErqEvfzPArSNULOIREeXGzO4B9cS/7VJFKgCAe2zuHstX2U+CXR9BKafuc+/uFgaMBNsWPbOu9+4sptgcIvLNmTXhh9YjxWZPpN8Kt08PO2YxxVZHAidymrUlcuMUi6bY6gk9svHQOG2Re/QTP8Tfk+7yBSSiUDr9ghxnT9C/8fJ+LqI4IWPsUUvX20aCHatTSvVOJBVvVeJJojSvnLlG94xlU+wJEelqXk3Uc9YixR4SsX7Wxehn/QsPx4uEHn+p2eC0dDrbwhuTHXFCDu6sGmdwPuFxrt78LjaQCF8dq0o1rJFUtMP83TpmErz3ScveyGFEo8Gz/zRPLsVKgh3vj9lkWitpxRZzU2KLVfnW/Cor9bqyz5tViY1E9OWdslQx8K3XrPvERBKoyzcYRjQyNyUWEnJ0ntEwopG5KTGQCF+/zluvzU9uMa5gLWshKgDgStSUdX95o9Sk94aLlrd+7oq57/BeAA7SW8OKlM7V660bgohKe2avKQFCCCFUW8Fa6/BLfCisS28L3ff2WxVMIIih+TrvBeA4yBf6QdKxWEDkvcU9x3LT3GpGkHBT+CU+JHUrtOctjbHSxdRkgMQJTULPcdGGAushosqVsrgsGJQSTOKrMp/VnncDAKXU+CZibS4AJExwqyEnnlm78ylWEIBE7zE1syNdTpcPDx/6RiQJByZ9wH8uCwCkGxOSAXpSEuxypSwqAwAA5coHKSURrxFWWke589gwAPn6gVkAAP9WHqkc2Q8QgMRXjggAAEK9j8+P+JWjh4RSqraS2lI0fCOeHQ+U3N6YMZ1S6t92qSyVUjBpUD25huftAQCl5d7DydOSIxKTiIgk9Nf7CW3kv3J+6RQaPAUCQaVz6aeEECQEIydZplLn63RvGSLe/VjbiXFQGBTlACKfVTo5B7Ipl7J3LlClbWVuIVBOkjhJSmB3ZdSMPcsVvnYphc5VWX1+53BhLwJHueAuBPe0BQDdDYVZHjcoPR9mIf/jmYY5AADUU50RQaIihEhCCBoSyknni59/UImFBJTW9OVRMZEEW1zdqEckfEPU4sCJnBuEqIXqp7+Roquw0d7kzuS7OQwvAdEkfLjDlMQERDclwS6p4bkoU9PQeGLcwPopCXYlPOKJNl+39CQK//YWGwxBNJivW+oASnNhlJREP0yJmsSw8hgGKQn7TLFAYpySYFeUJIY5iUlKgl1RTDGNE7OUhG2RYkZinpJgV+LCfTpzG2MSKykJdg3OaddJYhiSWEtJsEs/iWEQWvKtBZZSEuzSm68bkIg+O4cRjfTm69FJGFIS7NIxJSoJS0qCXTqmRCNhS0mwK9KUKH2ne+fZSruHEY0SF1b26T66JNi1vqvc9mFES/JqbZ9FB3ok2F48eYOjHJr5eu+/jZB8a361kyGiKjyzg4h6ESteyLWW2YxRfVdiqCQBQghRv6oDdbMb4wESYQogBtNNI6oVRCQH57XpXmi/ek2RCKEoqp7wbx4Vf0o7H1olEQ8Fl6coXeUc5DeVqH2HdmS5hg1zh1ZJxEPq8hT5QuZVIn/24ohBAADSFc+Qu1tnZAhrRm7uT2Kkn8IF3mVJd4ryt4Pbs3jiIAAA5dquXZ6qp5XWU42b48YBAAlPdrkO0fUAkPDoOEBE/GeJj+5O+zVeARKutqmlwT03qOmmxLy0k/G0Iyilvb1nlaYbAKRz2clyS/vEASABAAQAQAXcAApfO5W2Fj2QNQAY7lGjGxUA6drPACjWcBzHQYFg2J5Oie4ecZD4jxcITq2ssy6xhlMXr/4H9H25O/taQNAAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, points D and E are points on edges AB and AC respectively, and DE parallel BC, if AD = 5.0, BD = 10.0, DE = 3.0, then the length of BC is ()
9.0
699
[ "3", "6", "9", "12" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAFUAAABUCAAAAADWwiQjAAAHyklEQVR4nK1Zf2xbVxX+XmPB2Kq50ozyqrrKuljCU9Dqkm4KLJBNTVOD6pKJoPxTRJA6RbSAOqlOI1HJVEyiG0NEEEHcTSJSU2lANlMWbdXsCWsLIhBEOpGSiD1vgXTEJUg4pGJe3vP9+OP9fv71EnH+iO89997vfvfcc89990QimsnN4pvScnHjbXbu3t+Ox1ujrlZKNYZITVDfyMzsPtSOT98V6sCNjTvzWH5bOz7waDMmrC/lqcFg99iKSyfIwnOdoZMvag6dEJ6RDVAn5Pjz67WbihM94Sn3XP5QM9HuuareDsl3xq5vF3W2OzpTH1GQFJxu652v06EmqnpGnqjJwQ2sjYXO+Uct9cZL1RjOOczSenf/Jj1tJLnL7RAA8O7hT8wEPf7n+Oss3Zfb03XL01bbs3LyZKOle2VcnrMrCR1SVKFOOnv5kaw8bXNIKGQSVXbNhlfoVwywJQePBEkmkrZdCQCFr7zU1uw0OqxLAohODdwyNLkoAESX3bu1Eb/0iG9QAJIEAEfOJe7otF4/RgARd3SpxD/5Q6BOHPKI1YcS8LVSRp+FADDi9oFvxDXuSMrdo5ubpJIkSQVZG1UwL5fqjmsia3d/hmQ6TZKJhMsHuia3DycoSBYH8DBJKIIKEq4Tm+nY4fo5EYp+ri2fNfyATlQt0iBK1eFJCnKpu2s+kr8Sc7TYqBM9OwAltVRojONxMvairbRQy/LCNlFJkrPR40WW9y6Q+YhmhQ8LdfL4DjBLw3KG5Fg/SfZkLL2FOjDlHdJcpuXhEslSeIEkx09VoZaDDXw1CyBZpS3Go7MkydRXSZKrsuVDOqrg9d76oEmQQjJgrWth7OMpHaUUUvSmTit2wTDw8Hg9TJFMkOTr7pi50NWzZEyRGjJ0T4+6uZLyar34n4Wi/zh05dHQCybxYnDV0C5GPajzncJenlsS+tLTsJvfaBsoWu1nz1rFiOJGnRquTZQUyDrBBbk+FLa/L3j7XnuCQfN0GlH7llwvjr6LAwCQe2VYj6C4+mBo6Zjd/u3TrVZ5r3knBPSwW3R/PjqkHe+1AziabAcA/O3Uv1477AjahWt/tWO8vGYUDK5r9oReSf4IKEjJZwGg8szB3oXDOmcAIJ4+vce+OFqLZkk3RFeD6zoBoEBmgdFYr+cG/osr0F+Pu3erbZXNBAB+4PWS/jGn4yya0dBA/UjzgA1A91wHzIL8gbPLumwUDLs2vVRvf3kvkG73dL44elft7vrUzSwwERotO+s63XzEvUTLAgF9avn9cAOiy09q2ZiLik43daHFpbllepJhgf1rqCviO58d+J0Oan6S6KBvvn/S6iQRQHG/UTNOQfh2XdDfnoosmhzc5j9/qcWuSACK+2xUCY5T4RRKwMb5az/trz3dr8pf8misE2pYIFx0t9OY/qUolvurWwAAF1PeedaszdE3rXYkXDPvkFoy3Vml8kbCmlF7LJSqcTiMblok7x1gR+0AJQgBPHHtjOck3Pj6R9+qFcmMblP7eqoMbduKJMWW8N6GH54PPV938TrVKoM5bkOSFKpw3NyCZM64Q4RD55Lx/iq99+YWqlAHr1BTBYWqVrg+9MCrKkmhqqqBqqqaWVdVod4J/0lVPUYff9Kax3wXtMR/jhZJgggExNUHQzc+L1WASktAqgAAKi0B0Ki3oBJ44ZGHAi2e1MIvv2Cb3eDK/4YXhKBQ1ULfp/6gkUKl0H9ICs38K1QKVWzsWxQUqushaoUaYVmA5E8e00ixdWnPJQrVGO5BNdRbIjWk6qgOu+pfmpZdNU1oJD/smCHnHu5boaBaodBo/uiLsdRC/XfoHRPVgr0aIynSEhJMEmSlHwCyfLnjP8nQFVVVSbGlatYeUd9E1ayrampYVVVaW0mS5bY8qSApWECaEkHpxLd6c0eVA62b0b67DS9ucDlId378zXu8yt/jNUBKPiMBI8eO7AIkvNKLAxDSwa1//N19gGoKZw/dY7wKrW6F33wPuIxnJQCR+wFSZJPkiZEKeebQwVjG6+9uEWQxWPT4v9L3sadIIm35gCDTMG5PrfdsJtYMl6dS7qO2eSHY+UWSCrJmA0gmFKZ12FL7JOvj6kOUkPurfHrvye/GNg1UWqhKwmavtM6RmdihBnyHUs7aYk9sNhfWb2gdQ8mS0F+f1jy58ArZgC+Xwpt2pXQuOG5nHdLIktkTOteEQtpv70l5jhQWblWwcn4D/Sw0/E/m5GlTkQUwQpLQX58Je1hO1h/JtfkuyNbXxnxX17wnm2NKjXyWEjmt1sXtnzAK68OhScHyUMdqjQU1zpK97MW1AtN48FypfpascUavim+Pbp3ZWM/idjN6dGUfM7FYxmSSj2okiyflaQpOtx3ZVvaRNDKlJAWFzbcrQ6E9F7ywSeY7D247U0raWV1h8c3EyFw0rrA48djOsrokP5ga3N09rr8EMrFYhrHMav/9M8pYZ7BJBtp/tvydi8XWh37x6H1/9pEtb4YK4GbxLdxc37iBtrXQ4L2Pt0ZByY7rO8rsu+SPh3129I/qJ81nyq7mXWzQnEJ/JHyjSgCOSpI/wr5RAYwk2v1S8L9blx/oEz67+uda4IHjfvv6R00Po24SYceol78vRXwzCPjsVwCRfe//jFp46tfAil/Qhv81syUJKEzUSuvVlv8BAZJ+IQ2mXZAAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, triangle ABC is inscribed in circle O, angle BAC = 120.0, AB = AC, BD is the diameter of circle O, AB = 3.0, then the value of AD is ()
3\sqrt{3}
700
[ "6", "3\\sqrt{5}", "5", "3\\sqrt{3}" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGUAAABhCAAAAADqhjAFAAAIv0lEQVR4nK1abWhb1xl+rmzHG9N6GybPKqhOydTZoEGVeWNeq1QKcUHZjEmJh/sjDLMFB5aWBhKYytylY4FpLC2B2pm7/ElYfpi4zIWZRSExUagDGW5RVpo5oU7szGFVpnRRJpepV1fn2Y+rjyvdD+kqe37o6rznvec53/ec5xyJaAxKzUSd7w5aebmaIIE1iS6q8Kq1V2MWWgZqwxM9/kdgkSwDACSwxHUi+M/y31ZYrMEyrwSs5b7f9VWTbDwaC2tSJI79HN+09paa6GP87PqNT5PAhxuAux8dz/meDsq1LicOAOPvWKbQ3oji/sKlhcJT2+RfAf1u4OE1qO9fO7P25Z07BuVKR17LEeev2WXUDpnp0NdeOrlmEnNrekQePJnVArcjJKfi1unYscyNdI4tmNhF6Tm/t/OlBMlDQIrDwH5h4tyAZeaZ4KmcTR5IMnuyb2CugY8dy1zpdcvslSNngsFECyyC5MpgwOpVofvVMO8fWnfMQuYn5LjaMH9VrtmfyEft/U1YMv2DjfJWmym/bykcztq5GMf+B9sGL/hsh1DdQJ7s2/v6QuA7121fqcOsfMpJQciMZ7kYinNSTgitDk06TD1LrGvJvl8Z8PIBct27yKRsPSxrWf6zp99Rk5D8uydDwYQvw1uBsbxF169hyQX3NBqHBkR/RwoyFiWz0VDevMpqWIZGnHIw4df6sBqKk2p0r3lt61km+vOV/022jRqYK/37h3eRzPUda8Qy412vJN5sB5gOV/4mfBlyRTadM6osS/LVJpOuIutNVQOxXSQvyss2LGLdd8YxCWNjuoC6PU7y7W9krFnyAxPOSdbke/rguneR5IFB45xWZolFnZNw9EhtOOHLkGo4bmjWEsuy7HQ0krzqzddZXouapwWSghw074H2GDhVn+dCKE5ywjDstLLMBMp16WAOO9NvtK17F8l8T313Bkmq/mTziZeR9y2a5OmcL0POBc1YzoTpqBQkyaPm01EsSjI4b8ISnHfMwbRnxdSuhuKlbNexGArYDPYdtsjYuvcKVf8lLTAMAGcJQUZnnJOkvFmrSk74MpweLQWGzzKBFMiMXN/tm8DgJEkLntguZuUcBUklkOMqUiCPj5m52kLM99osjdRQnLu11UNinGJ4nCAHHHdjofbN23WXde/in7QZawpAigTTXocUJN/eae+T8P1LzpHkcIpTuEZwZtT+DRNkPR838IhFowmSqxGy0BunC5eitks8M7yxJ9DA4+hGexLAX3YBd29uBehNOx2RK550Q591Tw8phlNUertyxJrfIQe522bXVUHUnU0AACIkcWHI6eyS3NLE+FLd312qhlw3/XYCiBkO/razgQeBD3yBm1VD+4q1rmGO018abeQiAZfDT35SZpTguuGQ5YvY8WbcLu3wa1sNSZIAV7rbSjwxx2/C32vCS12MeDOopNz+YLOtMgXWxt49/hFgq5gBAD70dX/6EJWUXZ9/xd5fKmso2uO1V3oAu3xpbskw3BtVY/uDzfYslWxLwMLL4v6dBu6ad3IMj2drUqGqKEpTY6YP2NqMn8i708zKuvHSVkRbOzqaHTNdzThJyW91o7CpanBtfmD/hlbP5yVJ2o/JJ/GDRgwEwMsR4KGMau/dskYKRRQUlaoiKBSlSApFKbDyIA/5Hij53nGhfBQ4yoIiCooqFMX6czmQIFO6NQuCKVIoFAWSKqmSBbJAqmrlwUORAqkmuh6Q6e17/6sUKBRVe8XYJqTIdebIZFjXLt57mvwoFUEXKAoFkhLgIkoPnH/zLQloIyTg6+fwwmftANosBrMESFe2uYF0Fysurr5PJEBLREiAq6OjQ0LNEMGJ8SAA3AYBdP5xZ2QZ9vNFMgJgJSBVBEuX/1axqAmpBRcgkQAlCEBC6aHcfAGCwIUX3QKQcOSN8IL9fKGxPF0qGgAsDKmKQpIssNLgpabVHqtIsago55DSwgXlStcflAILimnDkBudOZKhpepyTfetLFp0GKV3lhRK73jVdCdw0MKZpDg/QJIencrk2rJxTyuUsJKWO4amgDubwhUhl+i5cuPFDQt3SOciAG549GIw950hSVWxKgq1NXWq1qTuD65bfcr7rgpy8jB1NSaaWI+ZpjbpWzIzk2m3SjKq349pa0vHuxeSnO+eM7XPREmqsl43cqH7qctO1xcafrjwyltmo+ZSBMSfn3Xrh1RLa/4S0v0/Lc1l+srou0py9ymKqhFk5rEW9i8a8iNGVTTtVslsTYXRBXiefa+VCgOAzrPbB27V2ZKhNmAm6q4xssV9ZRmnvYu1hv1x49a+vEduGWLRWyva9v21vEeuaRfjxtkZVvr0ctSKW7XY77ekXVSRDY9Uxdffj1ppFzodpiUU9/VXpLfRd/jFFlMdhnz+GNniFECSPOYr7wG9y5zYXR9dYvm4FX1Mjzmvlv9lL5dlwxFXWes73IrWp8eSb5IUnB5Vw0cNkVXd8hePSHM3eKBIjk7/bND4Ca0ovS1psCSrrZnbHc3R+7rfRoNtTU+uIzoYSGy21ZOpaeOPQEGSJ9s6Ekartc7fGnI9PybJKSCivKqz65cUv35ir6PNnwHFHz1/GliT/kae2vRE3ZxczUpwxPH5i65ustFQnlR6xynIQ7MWZYH7fUTuOi5B+XN+6znvxU7g5L/fhARsrdl712Us5llia1ONdi4mlN6KflI38+tN7z7m8IyvhMnSycttzJbTM2GpYMkXc86hHvCXpstVzBqj/w9nryRXtLNXQVLpjQuSq2dJ3drS5J18rIlzZN06KH9E/mXVfwpnyURET2Jx8r5cPhOv7wbCpF/M+4fW9M4JAOO1Llbn+++aXQ8QJp1vJtjE2sTmrkJQu6tgKI7uf/WugjAch+ovAtjcuxBzI51jF23iy/cu6rmNZ9amLBWPzHTIM2p6h2RFf4ekIQy3buo1qfJ9mB2Qvl2+D3P/+mrpPow9Kmk1c7cH90t3ez5n+W7PM4838VoV/wM8ACTY6iPeBgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in circle O, angle ABC = 130.0, then angle AOC is equal to ()
100.0
701
[ "50^\\circ", "80^\\circ", "90^\\circ", "100^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKQAAABeCAAAAACI1+DiAAAMcUlEQVR4nLVbf3AU5Rl+9oCi9iSooZwamyqMHITG62n1RPTsTFpOSzVMca5YbGNLyx/wRyZpp3GGOcYpM9KOWlriNAwzNY5pG0fEOg0MTrEkiG3A6IUWEtR0jByMIaV6cEJDuH2f/rE/bm+zd7e7mT4zN/v9fp993/f79vt1oFeokgSAFocs8dyYO8yERzAg3YtiD1z+ys0bRVH0RAkAABRrOWVqyC8CXisoomAkjlmNHyJAAIDorUhxOWuI0+LonSQCyqlPrhKM3AwEwNJN0BKapi49kxTgjW8isPmtHwBWfYm9KYsqRYq17BWKd0twzUtAYo/JSfO5Y8eHgMMTwHtjwO1BhBYBy65eRkW8G8sOzx0HOH2OErD0Bzk0OHz80MKl9YqsvxZYFAIGLuDU+1CeOjcYjUYi90yXpA9NvvmnZ3R2CKivvjZwIlq/9I7Y7KkFJQD0DQymj0ejyx+eOx2W3ket5BBVksL8rrXBeMeRSuVlondrYkaye5KqNTnvXqJnkhkAQ1Ql/8u1wcTOMy5GcCHJ8Z3xYNPrxWn/P5Iahpuu+tx9o66LC6lyrCMW2pD2I80HSWF6dU3Hp+OJ2l73VTRk2sOJfntiZXgkqZLsT9R2khR2VrVNeKioeWR3ONFvIeiKqQeSmpz98bpuI2U0Hj5iZLlrgCS7Fxe06a77uCepqiT3x2K7SVJUIalyW3Bz3iVJKfDsvjXRT1LcvZsnTeaZfTy8z2ah4Vhk2HULhZrdi9dm3Uv24pM9oSem+qCkglvNiOrS8FTzqfn7XAt2T3J8deRtJ3FMR+IfeRr5NE/pDzdlzVrla1f++gsAEK/ULxm4wyE7gEj/srod+qTH1XRHARDAXYOfD79hzDUrzOVcvLiQY4lIukyR/oWJMS3kytyG3nprNuTc2MDFPEpRMBC5cyBSpsid6QWLXtIV60qV2rQmfuyzpYfdzIjdvHlP6M8Vy+wPrR5305YNr1bvYUX9uyHZEUq7KJVtCu11UawYwiOhnRVLuSDZHHY5k9hV3ZRzV9KKkYWpSn5ZlqRKysQjcXfDrpDjD7ufcxQwHl1X4eNYSZPZu5OuJxEkn69q9lJcQ27lqvKVypEU8ky4zZvATHxRf+VSNuTXxcpaq7wmc9E2an3P/WS/PZgyCrudQJCbouW8uexCTB665kU34545nClUgBOPT3TV6Q24XM5KYOPpV8uULs1f5fqve9cJKfyFZc7hEvmVzaUzS5NUmarzMaKQJNOR2IeeKghzde0lc8tosrM240mQFfm2YGmZzsjU9pSyWGmffP2xg2EvDmnD4R9e/2LI4lXnB4HBT4Al8xWE5zu53+CDr33Vua2SJI/fvyuu9wR/yD3R9dx3AQD/Ghh4u292DIhUKTxxBhicVRdfsrTO2lOoAHs2HKpxbquUvaJezWWDCPtqVo9zVzI4f2XqwATNb59KZnpSiZrQ+l7b5/DXUW3BZDd6KZJbGjRR02BJySZmXxHvOGnP0YeM4a2R0Pr9RTkrnzKkFvF0IKmSaro6Q5Xehh47JrbVxNZd25Q1GnXAyfZ7w51SWDVmQo6rOmdNXo50TYOdQbFplBx/pOaA1RyWha2G/kRtR97I4PMxlyRVMvVtoy2fqpzYFkrqSums2lB++pBuDG0zIw3POMh0JHmkxs8k24K+2sa0tgHXQo41hPudfdtgk45HB6m5Yib00dRyTuaeqNvth5kYj4mfVfeQTNVc4GR9i5DtwU32CYqNded1bf/VQu1xdyS3fM8PR1MxR8KrxylMJUiyt+YzIUdj9WknbmZNdawx3KeF41OXEw4ks6Exn74oJLmlupMk+zBEihysuUBS1K1l5hwa813V2sg8GsrapTuQTDXT5wApZP6xiPbFX9NCktJZc0HLSUdiIyTVki2rI+FmUsjmlD1rKslsaMwXRZUkc4mGHEnhpfo9JMmkeQaZT+lzjpKNn4snJ0iOVtun6VNJtpWZ2JWDkDIeXZsnVaGawRBJtRdDhRKHw/GxqfXUgm3za2NZkk2/qmTuj+c6NOQSowvadLo8jb0kJ+s1o6skVeFEc1Vn+RY2RXPkSI1tYJ1CstmnIklmw09TjFlEKkFmphw4H6hdNc5y3fKnDXly7bbiRDvJsSp/Hkmq+YaNWkirnwRQvKWhksw2Vb9Mi19OkZVsItOhYlXaSU5Dkd9PXLJGPzou+qyrmMi+6qYsSVVM4kXIN7SRjcWqBEmKbiRhvsrHkkGrvFVfEemU+oBWko9esEy8tMf46lCvailpQy66k+lQ0RcKRsPa9uvuuHeOmuw3QkU7RpkWdgLAsBOTP1ZtyBVI2zFWM8Ll+625JkkNyQ4/Hilk7os9WlBswi1hVdOpkGMrFvTTWZUqpSuW37bOmmaQlMtCyvk545rlpehhhkSEFKHovwKR5rVlXmKKxoTtwTIHVY1bMtV5Ft7Cam5VulfmjYgUHmYBI7mQbaC/elwrVsRHe7EinmbK6PLSG9xj89PLreuKgrmFZGOXKqKa8YIMsRYTSw1N+sSiboNigaU4hApQuTW4xYmhkOyqe9ZqbytJyc4558imHEmS5JZVTuIqYThyl7GkEdV4P+0l489eZ+nf0HyMJEV2JnnZD8lc9Ygfksyngu3OPfzQwmX7C5RBi9817C7qIWaELO44tp4j25p8cSTV/lvjowUymkgKKY2PWuxt/eLkgzlfk90J54Wou7o/sc05dALp2uvypqmsJI9EfcmR3/rySAO9tQ9aln1m11t1/bAeLxw2kcC7JfaLKkCeTfmpZmxCxY/dsOQVMzUA/XZZ6uI7ehxFe0FNlU9UnLC/wacOzW2ffSGHg+XQo2bQugXXf7cfjaA76asaQAQkABArTkyEX9fSxLyYt/IAzHDhpXLBST/ayIemuZNAkny5aoOt1/4TJh1TkwEcjszyo4/epfN8atKK1e+NLD1ctLO6dPbvjaAlfSDm556jdCenez1SQGD+vk0NT1wy0wgs/p0RsZDsv8PPPUf2NMJ+wdMjAlAAyLpjf7990GhKAb52tCDExMJhPxsXxyPT8EQDhting5sLDP6iGOtWiyaz1X4upr4bmY4SdRhiW9/uuecE9DH0tsBRWzaAs9f4af+o08UM3wgf/sbtz+hXMuaofzOSTY2PV/myVMMhnyYuhXQ4rq+WZq3Qk/TPDqCcnwc/HWDwtuI4p9nVERm8e+kLAIC57+hJ2gVnBVDOzpl6ebgMNC48NTdoI1jyxrZL+pz91N7ND4wBqPr0kkFSgabA7Bc8jUDajRTl4xutadTcyZmnoriykwK551jtl18B5lT9WydJjSpwtsoTSUIRAOev0S43afIDwJuKctNFx9tIfcqMmz5z03QgEOzo2vjIuWuvPqsnmK1lq+nFnxQwAOB8MEAIlAAAQtB3H3Bq0QWHCn33A6cXX3TZ/IoTM8JXVv1Hi8ykAu1O/ct80uP3TSFwNJOyKk35KwCc+vHCqaUPAOCpHznkOOPWqweu1DU5U4EoCpSD8+Kak3ngSQCXrnDrIzPcNwwAUG64YuZZQxJVkpP1QyWGrZLQvl+pVPG3tBcAas47lNdyLrhrthggKeST37pA/8edNpY1Dus50XJMju4unkgnkJhsC4BQ8EL9aaDiBcEp+I6iKMo+ImAZcuIqM8Hif+ZoTTNOnryKetyN8Xkq8A9y5+duhEoysz2T8KxHIZncy14MGTtJxo5p0WaLy3ucTtB33FN7AwEAv9mIJaBC8fL3HgW4/MG9WKBAARQgoCAA4KCizGi1alKxPU3lVsQfPvk5AdzyJWiGd/zLV0X0teoHNQVtbdYOFB0V8xAUpEi2rnGpyO16CGRmO9m7nTR2OF1DOgHtcM5M2ZwgqZ/V2bADL5IH0cWL0S5Xs+uMcS6ggpkEhZ0GafckhbJmiJ04bsSFop8t9TqQ3IG3SLI1lnv/XnfXjTLoIUmVghQwzKQve2cSlMm67dS7ikquaRGheaCovwtJ8v15KZLC1ljug13ump+sf44kM3uN/Uljf8z9U8jO7aZNRG9W2zg3DxTN8my95QxJTj4U09SoVpYjndhL9iZ8/9VF4zLEyXqrZU9iSBu1h+wudzGqdZYP5qU8COgF0CLmF4f0/OwFACSk4MbqZP1eCifrW2g/pzHI6Qp1J8eMWDZRPT9p+4uFyk1FB4qWff2L9SlS69wW+WXbt5yl+dekam7sWw4ikgCGpFgESbJj3ltkK7pIqlTVou3sCpoUmY5PuoWQ5A4A7gbxqfgfN8Br0jOoFWgAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AC and BC are the diameters of two semicircles, angle ACP = 30.0, if AB = 20.0, the value of PQ is ()
10\sqrt{3}cm
702
[ "10cm", "10\\sqrt{3}cm", "12cm", "16cm" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIwAAAByCAAAAACkM2aLAAALBklEQVR4nMVbcWwbVxn/zhGEddGCNI/cNLeuOld162p4ZKhGzXAZGTUkk4IW1HbNtAw6OhSkmSmMgLoFUMcyLbCiBpGSSjMisFTrlEiELhVBcli0RUs1D0hxUF3qzkHzyKR5Sgoud34//rg7+8737mw3dvJF0b33ve/e/e573/ve9z6/E0A6euhlInIt3kwEgdafHIbabw/Ega97/0O0EViKwOQkL9GP7n2aiMCXX0cwb24BEW3/O22Maoxgpr8kENG2fH2d1WMAI08GiYj+uUtjrLN6DGDS+zYR0dKP7yM6fZ42wG6go8hJADgUApI33eIfAxjWlfSakX/WSrQkfPgakXtnfduo+zRbZ/UUcM0ojHMAAHHGM7jQJQ5mUNBPzfVEfPZKPdL+MJJHxb60xqv9mDn46kp4qOn1hYddw++Q//GrCrP2UysPBnrjEC5vJ2qYlNpXm55b3BZ4+KIqU2P7yYMxvveih4jqX3bv+4gan7oSbHtghohIqLVy9GNWsIruEYVxfEcSADDm/9xEzU3GyoBbomphxLWgFKaC3sgGgRFTWmlcnFVLb3a4hrIbACZTXxixWXFcK8a7nf3LNZzjPDAMb/t11QXXSL6cCovhlF6y5mCAsQf1taT3eKHyQb/Ynag+DgBcpwei+HY9wz03/ni+cusPL/n3fe0CCTXwOSYwIIHoqtfAa4xePXQ9397wRLL9ofvP18LncPUViBYx5K7WVQPjbLN/DKzKg8UH40zrawwAwv40wHS2Eg25R+SqYuGDyTRwmIOeRBEndkAcXKk5mHk/jzvqimlFTT1Xv+FUQ4yqjBcXzOgBruykWGxKQLr31qPJagABLOKZS9t5XGqbOHimmNf0wuXN+RCjJrOpy2pJjLuHOQOSHXa3z3KkKyYumACnawaAIeU7xjMPNuoLjNcITGOaxwUAZPYc4TdMtqw9xDCBYQyZRpsbsu0dFnHEbNtaQwyTAQuCEnNaUf2E84sfcVv2Tk5dcD2rtOUXLvMKZrOm8WbTosfujrqRe/e+r3WrkwOR76XYe57vLBF/J6HKCtaQeGCueO23Jc99a8+iuqLq5AQiItdQvOHuRy8XcbUiuHw9XjMdiJTyp2PiW9aNK4Ni57xSLOqnVLc8MPfMlbgJmBanintmhafJI+7Waf6NEaKQ9IMKwNyybPMKalNMHLWWgRpimO5N0ZNAik6WD2a50fYxKpxL7hP2YtOtphDjf3eFAeCZc+WDmQ2UtQin/b2wF5zvNIYYLOK6BgZE4uWDiXSVRgIAK8HDpYKrRLfzWMGbS3cN2YtzpnbCzufpqOH89Y5Ve5E7X4qt7tayGEj/dZu9OAfMpbLAAFT/yh33851xgVwvxjffo4QYZUTwZmX5S89sQLWWfq9tZKVYVHbI9cBsYZhSVvbLs5mGTFlgFNISAzxD1vEi7pZ5IEKTwMxXLDszr9rvO8uHwoBxsbQi2XsdnoF2KGnDsLWcWTPRPSgvvlZlZsTJUpJDzmNZ2V06VDaDiXSXAURPMV1igNseaIkDON5bYFm8qxlMX3+FYJD0Dlg/ItvnPAUASDtLRl7mvXZiZzkzW0/u11/5NhFxcwHnd1xZ+CYRCE2h0cqntn/e6iWtaaX1ANcZLx/cMpWvzPkq1oySDqkoxQBqmKIQxxmf2rn14v58bc8n3qhUMynxxraqYf9yvqx0EG8JxAwio50l+jCBibbcCBQAA3cm9W+RPebUYgyNnRXfte/CNEzlrUyGQVLoe0+3/KXAiO5e+NsTalUb8/ruX1U4TH3HDW9TCRUSA8vdd/A8YcplP7sdBlxE2qbpRpJkbRMHXyUiol/vvG2xjSPgCpytRDMMvnduQCcaxV3DQCLYPG/RHg3Y3q4HwwCgfk25qJT3mX7noGUz89muqkbNMCTFtWABpuo3p2yah21DWgLAJEnKqYqJfn4tUDJHbn/FMjEAACvisnUjHEQk1FGdQ7XZxRJhqi2d8TTEOyc+uf8jy716Q9epUgbMpPxM7h24YbUkW9WAte9u6/xOwiVbew11akOWcwSZUWKHzIggyzLlL1q7WpdlJssMssz0LyU//+nWC3uIiOi5R/YsWr37tt0TNl5D1QyTAOQA39uQGCQGloN2ASAxyDm1ziQJTJLBJPWFGIA5X0gXyY2JVpMbUzbLTX6YWA4sB+m2a5KUYzLAJKgXQIWksSWW/1cp0+M8Y9D+tGix8Qc8C6XAAJBYDriyTaszSbuoMHTsYjBnxaP5HYXKm28y7/sVOmGRFFTAsByTATApB0zflwMYpJwyTDlNJ5KOXQwmFfLOqiB02olvsUgMZJyWWyEHEbGcg4gEcoASdzJZFqiOycxB2kVmQp2OndP9EdHzd7cs7FUdg842vW9Fvs810sYHT9sacEHB4RcsdcinC/7gZX2dFZSTCXZzY9EFj1W+oLBqg4go4Sn3BzYQEa1+N9QbNbhJoZA/bDyf6chy7vRtnbLoUwMDGQIRJbaXGzsIRPSH7R/EDxegFbVS/XjTF0yJARAeP2nVqUFPct318kco3eGNlgrC+r2cZVN2W2SLjGCS7jJAqM8/cUt/GfnwYRfnwQM9xq74YKaC5YKJBYJWyTAjnRXnTA9dFrWgydhgBHPyaDn9M6z0NY6Y+yoSUilqTAwwAOge4t5tjPTCJTKYKk25u5ZLh+yaQMwVKcKHC94ihhkMEBovA0q602258HAp6THFJQFuD8bzM54y7OCUsy9vuOUME8CW/eGiU2Sj7SXByPUl58fFQGCh8k3VamuXMaaSXbzUkWFHmRQ/buvocP3pYNebvso3VTdPSqFrekbdI8OlnN5kq9WrKa817e58r1KlaNTTbAjF087/mmUMYE70mAUK9O8u15RdewkaMGZpD3BybwYwPXYze6Sxb2VNP+yPFE4MAHidc6rAACbEzVsyAIgHm29s31uAz/QnBhj85t+rSdcMqwUM2X5nee7QnuYKx7eAEfMZB71m5HqLqCfqbdd2Qms4dMoKx7cYgKzTtKDrwcS3cDtZPiL+ntNxhTgUuurtzzP7jtktlOMhXkejznCVDskwAJlAfi1OuooHQu/0ru4w+B8iIrp8/+C5FxsqdXJ8Eoio8Y//6lSPb7n9Y0UCOjCIb9XfKRBR7tlAa+yz1YFCSnDaMHHT/lWlHB4yCRSotdinzfpCKVT/SF6vX50O3qJNcB4MA9wJtaA8PnNUPFtVEFrP7OfKkzBUlDrSaSZrnNljuj1rtWlUjAFApih1pAOz4NHxk1+2T7+tkaaUxECPMerSgRlvz1uHPOA8Ltf0CPu8OAYgbpzdOjA/VX+wY5jzt1bthJkVxd2/YMB+zSpZEZij6k/gK2Gn/TmH6lB6dx8wGdSzHHkHoOXGJzyricNVcy3W1DQ7+1gudMVwqi4Pi7mTANJt3uh6faOS7ejIDup3agUw2ToZGHT2V/nwqB3JRwLvNur8RwFMzItYc5l71qrRMd+hQUAbCg3Mn+Pj7b1OZeu3nh8S/fJ2XdwigCAQyc1nfve8d/+mdTDcIrr46m/y00VN0/9k65a9j351A7DQriduJnrIIQjCa+psikx85to6jo2ZDp3DDMUdIKKl1eZPbYRWNIL8jyBtI3IIRHSyR9hV8o4akvDGvk301JNeAhAhoic3dJQiJFAccBAtrQIzSv50I75xJSI6H2eRnYvkoKXHeoiuKDg25PNf0NKHXhy+609EzxDFcWhjxykyBKTonNX3TetJDIcWIflc1yy+FlxXmhVe9gof25zaRP8HmNGifNUee+gAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the quadrilateral ABCD, AB = AC = AD, angle CBD = 23.0, then angle CAD is ()
46.0
703
[ "47^\\circ", "46^\\circ", "45^\\circ", "44^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABrCAAAAACk33hdAAAKi0lEQVR4nK1abWxcRxU9b+0SRLddBJtmq2zrtnGbTS0al02FSxbZAVcyIjKpZMmNZFQDaQxEqBvFKFvk4vzIj60oIkJJ5IoijJIK0xi5QhVdI0O2NFRuXeFUcnBCHOx2HbrtgnCzrpr67c7hx/t+b3bzXtoj+ePdmblnZu7MnZk7oxC+QUX70X7pv52Y3NAqKRjyzwFF/9G1SzjUx6UFg5BYZLLmE8DQ7c2fFIm0EVCA463/lma/PhIdhKNNS+UH14c/cRLF2aafHsQ90nH0sUicOH5cuVPakWj0q2LlzfPv5IFLlwnEN+GG7fG7k2H7KF4qE5NnZePaH8nyn6dOF1O3bfpRGHc0AVh6C6szL588s/GrX3voFl3r4ndOA5fkLQFrQBj/zA82x3pH5oVdpmPuaE+05cmLJDkIzLIbeEymqyaJhtJIMj74j3o55tKx1C9X6mupS1LcH+570fp0N8TA+CPr7i8FJDF0FQYig8Vaip15T3wuki4GItFQzkQP/ac+g4lC7FOLmejw1aAkE7GBElm7i7QELbWaeiqZZ7EvngtEUuhsna6hV4JMFweyJPOJne/5IdH0zMQO19AnQy5e4mgPKVgZumPOBwlJcjRaq90yFGJnyPmY9jEeHfdFUtnXLK1ODVRSWZIM64NrJp7xdquHZKUrdY2p5USmiyTZZbSgmOwpu/O4vfC5bU35iB9/pvv0yZMnAACtb+jCDX/7dNul+r4rFzkapBmaQQTJXMoSZiN5Zy6TRJDkXCSIyU2DkCyGK5Z4IrogJyHJUvNRk+9aEKRpEJJsnrUlHm5x2MVOUunc50e9xZOLW36xd8Se1LfLQ6JXPd1ZYRAUYmesjyN77Ekftg27STSMNtf11zZolaqksraenU440gvxCRnJdHTeJ4cOm0FIfrTOOT1monNmFUyS5Zo+VApBu0FIsm3KOWJONZnpJklnloHgMAhJfu8p17gc6jEEBslYMpjRK6msa6SfdAwoIXg1YfSNTlKOzwTiYObrbsn8rY5PITiVuOogGRzwrV6Q9BiEpIgu0dVhvfqyBEGSC9EAnleQy26DkGTXmFtSjGoLQEgBgMP7fHlezdEqqD6S3u5N+dIbbsmGvqzlhYtBGkL3DDHal2tzN5jF6AqFbpN0JhCHxCAkWQp7B+jAMKmRlCJ1NmZeeGaIgcTrHtFCtExtZXzu4Vv8WgRAdbfMIACw9e8O2wHAptTvdZvcn/e1guiQGUTD0X77l7b7m2gnCcHZpgAUDoO46vbaFk9uUYkukSDTw6Tw2xaXQRzFKo2efQpFepgEeVsAF1/ZXs+Ptkkc+fQWMoTzasKPvTVDDt10UCbW0faGN3Fb4V2E8HK7O68UCghMnjjhEdtJzngTG1J5hHB6hztvTZrl/t9Fja9JRVEGXNVOnpUU6zgNMObbJNYuizywvsy1zXtdOWIL9GA6QSxF/XLYZog40EGSufWu4eR1xCTXrTQutPjoKQBUJk/OGlGoP/1s1psOIDXd6y255WLo/N3+SJTlR8eihu2O790KAPaNtQIA26YlJZsvhBZ8DWCgunu/6bLUCw8pADD5sCso9OBs1V2OSFwMnU/4CxAOha0ZcvnCPQAw+YfvuzLdfKdn4VKQOBcqbqw/fF3nEADAxs0XAFQe39vqzr3trFdDvBRavakuh26F5f6xqCW7YedxYOmG9mc8uVOnvRpuXMWtfhYs2wwRpCC7AcxKMs4kvLL5BMJX6uu3n0OEIKc2t75iJXhqE/auzIU4QApVVav1eOxrSAK4387vqlHbpEf8fiQEQGlAQ70w4WW7Qa4Acy9ow8EzYqgg9apHTCUUXq2tXRtZ1d3p7QRAEPhF9a7WX//wGe+IpMaafM2TUg4j9g4p1qqqWqFQqxSqWtU6kMafTBcpVLUiKNQDD7xDVX37vh9XhapWJR0mcYXzCWy6RApVCJVklayQqqAqKKqkKlit5uIlUhWsVLm6u3OlSqGq/+t49CMKVWZAr1OfSYZuugIAUBoECJCVCkhFAQSoKFCWvzUWBUMKGkIr3Q25mwWAhs++pH5jFfT4Csqm4wfhUOyyZkNFkCEg1NjYGDKmOYHqowe+rPf4cvuDJxr0gut+c1/qXa9hFCCVdwuX14cSCxTaOlkFoAgBUIEAQlAg8ORnDioAKHCu/QeHhBWtfvrb2//pIQGw7U235GILjj4mVFWQpErT1pqdKdQ/3vUeqVYp1L/GJ/REVVWpqip/G39VMl+urHNHCXtOYqrdyOMeKrZziOCEZAOcj01ILJ+YdmlqnbGWX9f+TtB0WYIcictiYHPxEVtuHXuOuHKte9/YSAiZYzEX9UxLQeqrCvd6Dx0jjzhZpxOEcAZF7DBcVqWvXXpIEoIr7X2uQ4mYbXYKsgMMKR2SJUAberrLWu1SJ6WnPUVBJKd2Of2S8oXiuw5BfgdgxijdMNaQ4tZ0raaSFCLd6lqRUjl7z1bCRYKMy3d3ukHmb3cb0o0jTU4FmSH713SCAuT+n8iK6gaZjsn2a06MxfRItSApxJjjlKQfHaSHIP0c8mLs9DU5HBNGkMWw/o8gWVmvHYLYmvcU0w3ybHzWB4d9wpBOR6wd50ge6acbT3SR5HBi0RcHWbj3CeujZ9T6f9coax2xX4qXyMqeNn16+DjrrbT3mbM5awVqtCO2NFhQiJ0hr+zcVfNCRIKrvZ3GFj+/zZRawQIWnGGPyleyZCk5YG+Cj8aYE6ZsRgqLkRWThP3D9tyZLnKhOWAkj7YJ0zKtVyytzWOQwhWKysVLnImdDMxhTZiBp7VvIxTlDaq9HTvDqdjUdXCYE2akV/s0g2pab5djRniwsj0rTsQCBgtNaBNmrokkOdXsDA9yLFklSSEOdjHbLDlf+kShJaM5RfLDLa5ApxmyzcVLA0m/kW4v9BWmc4JayFYnMa8uN+YEWdjwl107y/R58yDF1d7OciZDjkuCz5yOzrOaGm77brAAsRdif+toJ2ei1q7AeSGQaU8M6zk/TmN+ftuNb8cnLAWKudWksn/8vw07vlhjMfYF48r/3HhLzyFLHALwTUVRlHEFTytr3QZHgDczNij64aQl3HjILifJ7nHmMEuW4sGuzWricEvZ3tkgudZS5iLOMvjFmRPmnbN+cXYM6Fh7XCfJ7SV3aQEf8wrw+q1OZpEnuYi95CKyFITGaJ6X55r3Xd8QNmt1tb9lgRR6nGrwFLWWdM/ymMmy0iXfLvpFSb+WPaaFqY7NaiSLHeTa5qxRoYAXzBYESc7EtcXeVEiN5FiWXMQpSzYaC2x+o7PGY/pF87/sCkF2z3Jtsy0GJ2SX/r4eZFSGmoxOWMTzVhnkAAAdzjK25wsBhlk+sdP0iXp3LZ4yrzYkMB5i+EexrylHy+kdw/NkTqu8k8RW7XImOhyApviE+0lJDoAeba3zAqcwEBn0dbEiWNgXSRdrd23dB0vF/eG+l65tloneSCboMx87z3sjyY2ZutHpuXQs9eyKVYKSSunrCXUfLfl7/lcvrLbvaJcFXc/l8y9/vqd/k82nS/UofhYO4xHZA/ojsreW8MHrl5Zfie/o7NygKasbLfVFAgDvn9Wewy1Dfw638Z6k9KmgBP8HLG5rPcKTHHkAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, angle BCO = 40.0, then the degree of angle A is equal to ()
50.0
704
[ "60^\\circ", "50^\\circ", "45^\\circ", "40^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG4AAABwCAAAAADa7BrMAAAK5klEQVR4nL1abWhk1Rl+7mRtKC7mh0l3WgeC7izOEqmxWXFkR7LFtE5xYqcQyUpTGmG7K6zSSDMSypaUInS1oS400sQUNq0pTWk0LaY4mIjZNmJsVuOP6EacbFdi3Vlj6chsMTe5c57+uF/nzr135s5mtw8kc8/Xfe57znnPOe97XoXwBxXp4c1Pl9bWoS5CIRJ1uLn57hsPVGjrDcVNZ5FYidLc3GtvtXw5cdM+XHe3AuAMsHpx/pNzd329415Xk4pgOURZujDWgfjAnKtUkFq2vw2p8WJ5E3+46RwoTXbXdf2xWKFGYSJV3zN1Vei0X0faRjaqviM/3BoZ0XZKp41EkouBXkLOtwcj9Kf7UyS9bCWqj84b9zXPiKr1XHRGg/c62haDsEiYb0ldqFbHWzptoHG4Fiaj1VDjidroBEmKjURX9QnihXwyWaiFjiS5Eh28IjKS7GvJBaMzx0lkw4HVyAPj4YVAdCbjqcjSDtjIhfBYQDqSWm/bpR2xkRdajvuWhZwr6GeHtNe/5FhSg6/2JpoX//Wtyz5lNh0BqKnE8/UOtsBLPWj97Z5ufrDkXcm5AT1c+l3g11dEZ/QZ70+Ve3YovrnDcTMgii3WfHGsTDLdTCRf06rlzaT/XAjPe5VKdCvh5R2T2ViIeOm7TbfRvBPtdmMsdrkC3Wbip1eVjexLyjug3snWzMz8cwqoaeZXQyl1z4/9Zua74Y0at7fqWG+0979OAJjVO1NQtI9cXSqS5Mm0KYFg5yxnkTOkm2y7BmzUYlnao8acSbcZPnst6DgfNWfLbD/ZmTFm5qn0tSATgu3jhnCjAHKGImiR5WtBRwpLvAdyHEVO34AmDrRewUYTAEr7TRPvfghgjXtxFK8CJLXo29bnXG355r/ybZIcHSVzmGUIwNxNd1ifc7XlW/k4AQAz9wJRdAAUPFzhcLEzaMcQ7aWYBQB0kgRZaKh8NjQgXA9V6pEbiXT4xYailBUCJr/REGjYA3a4Xfzu3cn0Xd858Be5BZmYDtw5orpwNqbDU1p0meMpSWiwWO+xL/lQ1YKTkRWOp8n8bmkfArPxGt8TCJvdiQ1q0WWSMclIDGHu/uDTGphTFOWJ6tU+OvjFM42YuK0VQGpOKmDsjRo+OgOSyFSrthQZJsWmvjZK3SdQqA9mVQuSzHSS5GwV/wEnwlnSWviLdTYDzrYGYiNJvoIPqtIJciCaI8nPzZNds30m27UaDT5wv8pEAWDNtwIVKJcf0s42AMBovFXP27e616wQ+iAWjIoAXvomAOCvGb8qCpCLN7/cAADq0JCRd2vOqhJaDUinAGu4GQBefemYbxW8fk9mWE+NdOw18vafs+u0LQZXYMySFSemGLFs103jFC0osh32G2IrAbmEYKaTzFVg0463rJvPp3qFQccFWxPQXNUXIiEFIEc/M6nQ3mV5zwqRnLXuLd9h0zUUgi+Ges0Zn+1xJfoTi0EM9toFF5pturrtwGw6Xqy70dO34HBYFBol+2ej0aartkK4cAPgsaiLpxwOi8HvS31WaLAed9WV6oJpgoEXPgfKDG8qUB9ZfbvJzvns2UXF0EMA29dZBaHdfk6CMhgnw08feyZ2/WFnkYJLBzEvseGZ7r0AFGMX/+/1dklNM5Ps6iePnyzLXIqccqQL4bycfNteloPrHUlyMrYpOJl0Zk7pG4CNwT5HUta7tqAOWZIiv2eJZC7syB2Iln3xZw7hBKVVJRTNITCUR44cALAXq/aAXn7w7NkWONxLg4f3OEY2Z20I2BVbRUBQ+e2FSQBA/K1bFSoAFXx4/6HJOgBQLDP70un3nQ3P7bceQ/tWze+sBuWj/tO6Byv+dwUKAAWvx/uG60wpDPz84T3O970vbalLrdRUVS0FGLrkoDEYZ0xbd8zDeZm/IV+W05yzNh385wsaRSC2sQPmelesL5KkdrzFQ4v6nNOSwnFWYWwxGN1HjfYEbF0gWUim9Q1AyIt8Plzuxs7G7TNxCKl5ANja2kJpS4BbWxrAra0tWD/600P9LXp6a0vceUbjyte+Oq0vF4psNZw82lg25vMpaWCZjVOopZJKcpvcItUS1RK3t2n+kFRLw3HVSAtVnUirM01/UD36IB8ulJ8O9kuaDRbri0ItUdumKFGoqqqWhEoKlcYPSbH9YeM5Wtmlc02/jCx5DsEPBs0nk7TMRmBiWqgk1dI2KbZJ0k2nJoak7NImWj5myYMu1+iyFcfvlxIh4Lu/BwDUaSFAEQIQCjQgBOMHAJ5VfmRlA58eimT2eNp5Tx5vKFfhiYfklOC/my6VSNKQQ1XN/+aPWso1vaeqFHpa/Ufk5M8eU6luugbPQ7j1Bvn2DyS79cOH/ylCiz+rPwiSnArPGGaG65Tz8KAjKUgO9ci1QDLbTpKav+4NtUtvGIyukMV6r+OYWzjB1qz8VbpfZZnbqr9wK5KjsPhgoiDotBEt9D4l8eiwvWIWHccrusS0tjHr+9Zvf1RvfmyIrs7MRSSRjbL2cUcV3SdWwekt+GQHTSfAQti81hs9bFcwWXtOlTfmfFTzcOzrhp/3+fadxnWzTLq9OhehdSg3D8th93i2jztfavozfW+1tFarOx617uYEtd3l2wzTDuEE6Ro5y9M+6et+GEwZD4VkStag5B/LKnoIp92WtZgddKLd6+AvyKWwYdPkYgP2V5M8MVBW2SmcrnOuKWie2VfCno6xzdsm9Ids2DnFXO4YD+EuNrp2X8tE6O/yohswvm/YdWW5sVtzdFPaNS215JOu90m3JIOuQrGob81ab9u6q3C/Q9GXdZ2T52FfUnPNdfkO6AWWtdiMTZHkRqLbY8nqcdw8pI2+tg8Sv4l5RGZUuOES7OsmyZVIuU1AkhzplhKuGS+q3XAJzkTy5iNJciG8QXIqPO3FxuWolChbq4Lc39m3kzrdZnSaQpxs9rFZZEV3CSfdTvrQCZK9PVLR8R7y867Ehp/t3j5jP5YLl3rcu43TVt5M2Lo8Hylwve2Iv4NuwFL08oWYx5I+zZx0opDoMfqz2DzDpXCluI5py46ShRNkMZ30Cxcqo6PW25YnBXnkCE+H53xakZROdK85R65SVIDb8aDHPMxFiv2VgzPIfcv6r3PkFsJj/o5rDz9HNjzFQmSmWugJ2a0retY0vQVJng4e0WFgJTrY+72WPo8SJ4Z1z1DrtJQXOF5Fwsbt9U3j1V35izGS/LPk7s0nk5V9Xj6xRj9sGmHVuCitvkDy9hetjKFwjbFGFs51tFWPkom/TE5bwi20pC7UHLhFUszmSE5F0stV5Bs4YYycIBeTzTN6YFStdESOrBYFJ0hOJk3h5tsjo1o1Lh86/bZAJ2wb+UQmcCK/m63TZoxfILeoR5zYiHRPoE127eqa9I1gDD/fWphI1XdPBb2RckuXG811yunCWAfiJ+bo8Uat/b5WpMYrxVOWwR19+sRT50efhiPYwog+PRjZh10HAeBvxOrFM/nV+KGOe50hsVXgonvuGJB52plHBcCbF9/RY2sBPbb2zj21x9buKkuvgZg7X/axCgDchXTNb3fBCtzSpVx7/ChwXiKpGFgMPKcoDyDAfZ7dRkYGyLETyMgnOMkpVG7QIUPmMBp8qtTsaHc07ifJzCvBW4Sqy++L5/ALAIjeEjw2zyMMOygYGj1aa5sdSHcet5jE/wc6iSN4YMaV0yl7dY1Zm6slqvKKp6XgKGbJ2c7qVW3sSBFmgep36A78D3/pjnUfV28BAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, A, B, and C are three points on circle O, angle ABC = 25.0, then the degree of angle AOC is ()
50.0
705
[ "25^\\circ", "30^\\circ", "40^\\circ", "50^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGsAAABuCAAAAAAFGbJjAAAKnElEQVR4nL1afWxT1xU/z9Bkk6y6XY14CIPZMIppqi2VQYtKNMNINVfNIN1cWVPTKlVpMhUmIpFO2ZopnZSp0cakVkrWAJqabnTLSiCAMmQ0PtyRalnNZFADgTUUU0N5nZlkZrb5peb+9sf79nvP9kuzHkXx/Tjv/u4999yPc87lQJ8buT4/KFpcPevtc5duJoiu3ACRbzXds8G3JuR2gsVVJ8Prp/6UuNm0YvV6N63yE+GjNN1JXslM+jY1Ny9dSKxLvz6SD28KBy2qLrxzOuGNtq+uDgwVKDsc8nXPlOOY7uKb9uWYlGFlGCtgCV3utomyHAwAxmL39WTL4lTCYplOT/fNikAAgMz2e7uE+WPle7x9WVPTtp0Xerx9hbJDs8ca5zv1SMyUMKO1+ePzwfqo+eGpSm2bKbG2Re2f+TsbrCTf7wBCo2Kvf9q20hprxBsHnA1JoQPeMSdYxe0B+85VpKSvp3qsXKQpp6TnMzIhFM1bfmfe5y+s8yc86hZW3eZjoKWTX2j8sKo9Ku4ZnMdYJFJHM+BJWFSXYk171CUyH/kpHx72zpbHYkA2MP9RGai/Pm/qrf5MAXc3Ujc4jxmyoqfvHOLkVq3nq6u5uDDDAgqNfVJCG5wBayRg3Gs/E2V842p6iGjj3E7SgU95y56J1ZIykKRX3hGuUgdwlQZ048osL7tLO6cxfxYAxLrnAWDXmA6reWBhoYDeKAAMLckDwFBKw/p9aMH0QpFiIRgH5uqUMahYeV9Sz7YwdCIo4iodkHPqfvjTx9cRzW8DtKfNX/sFEalLWMac9ebsOvdZSPAmZRlePSDLkKG97/8BBUTrMURvA/GN6nwJD+Rk0IWlsVp3DnEi6oCExYCunoXHAbDPQ8/0qTlpXFlPpXvkvKi/fjg0680ro3AREeitJ6o2NhzQjvF3339sddNB1UABADQkFl6ExVhzngX+gvGwUkIAkPLDAVZlRgYgH4kVMeMtouhN62RIb7bDwSqWGaH7byAQR3R746rRRXR88yJa1PaG0jQA+BbkLNFTJtgPAJFRMEwF5UICMMM7bSpOxHWUqb/oGwaAvFsAWNEtaFjDMUdADLuW5DFXZw+W5A8CAP7YCACIjErFLiI69U1Hqsx1/+0fbrrntfE7NgzHv73/O0REdLSFiIjCp7X54p1NV5xSABCXjkCzVo7yKTnll8wqZcIISHsdQWGLJLxfSVgmGvRLXWdM1YNaabN1Ec3WOxLhp5cfJSKi+BOWjpSfvP5XyTnBcUcictnaD4iIaDHRpTWSMCstMJnhxuUAEdHxo+etmJ6fflc1PE5sA0dE4AKX1xERuYhmgwSqYi1zRESg5XVXiOjTnR1fNbOITwqajXPnTISTvgtK43IRXQo6OvkXtwwSpWvCe8xVd771xSO1chp04mEFNniBiEAuImG5AySOuN33ctyXz1tA3frG+t+4NMb4ViXtyxIRRwQELMwXO2KGlFHf0wHjBVNVfSRDAAAC+OrPSanx0RNWdRd8I4b8tLbzzQQBBhDgtl4ntjThqv2zuXSSHzcWDGxTkxkfAIAqur9M9CXiVkopnQwn+MkStibN95DzzBNr2kW0KFuCNeJL6XkYkK/Nqzw5D5iE5b7jCCv8QrDhu51GxdgdSJeyjYa1tCZDB7oB4A/1RSDHn9OXdTeYm9g2oGnqTJ2C5UTncVual8FmrajYHrbQLv3hIeu8i8idd7CW+x7bQET0/ZsHlRKxNXfcsAuDCHR2cZ1W8m+p3kXE31BYKtPF375CRIRFr+0SpZLbzcsO1Rq+54g4Ovm47gp0fYmCFfz73BxVeY967mdLpeY2r99NRESfPNK0l1MgdKSeJxwRfSCfWsDgNrHa2RpRbE+Ga54MgFm/te8lW6ufwuh+AAABJ8LVYuX4KS3TGwNS/H7rm+loRJ9rSCpYaa8IiAURoigCoghASqo/SqqjUxQBiBBFiIUVkwneznPQtlufk+8ABIB/H4DUiPan+1EySV9WApLARv1Lp+xu3IbrknK3cREhfEaaurkaIpqbs1GLGvrBjx+QEjVENUT5my983Ual3nPrAyKJMCl6yG06Q0Q1MkZNTY0N2B56Tt/wz395+PWcJSPo2GZ9PrFJqYB40QcABaMYTTL8mE/qGbavz6Gzy2a6GvXzqL9ji6JkO8itmnVDBFAQOzvBCpL2iPjP95r/KULwzsBqxgSPXuMNtgO6+jQsO5ridU6Jf0ViRQDYHbFUjv16jWdS6zIWS62qCFUMvaFlcqFOubTOMogUG9R1oehVzhsCGNCQ0FaSiRgADDdpWcm4YgAQDxQ0Hq31Wd2XJTYsXm23HxEAQPBq0YEZybiSqMXCOadOEAMDWtUrj+xzuK/CedmuadxZfkw3itklgmnKevXqOetV9US+bHT1lLG4GZvi1Q/ivPHG1vOUiT8UB8DkBjtfVstlrExZ11exflRJasaVPJy8sh+rnRXcBe1TwaM1TDKb6vsyjY8Br25UShXjSkf7Q4avGEZadE116eRZjU9PUH3OvfUW89q4z5iP6VRH8Oo+UC+H3Z22WDElyLSt0apDSd5wtSm6tfsbi+lDdpoPlk/aQCV8UluFaEvBkqGtRy/CyaBWczKgj5Zql97RUNHyMCo+JF2W8+E2G+ezYAjU9GihtkLQcJaafOYGq4cBGIgAYMg2dFsjARho0XWyQVsTks/chMWAjM/qRM9InU6vKeO9LwS0LwW3Ono5FmDCApQYR4kco70AMF1iXKkkcU8EVYDhKGSRJL0lUc+ysRsGxFcWAEzyh6yhFIqod5moovH62I0FljkmVQhOwMq4KqUZZR0V3YI01P8qMSk7rGLzdmN1fwuAkeWpClDAi7IVmaiXC9paTTwlht4tYwwx7UlbGldmysnLU9H4/nqz7VImNgqw1n6G7gahGvfsPsl/F5SkPV4pNgrAGPOdCBTuWhpXJmIMDaMArrvvAlrM19hJs7E8HdhelHgKK+OFllbrfclMk76C7PYstNdbmo8WhvntSFjaYvuiuaZt5no7ir0EtIyAZUNRa1GUeXsw60k92APGWJX+9IwnXXQLeG+5g7cHDBjh40DkRRvjyo76o/EQDhiuI5WwALDksv5J/9K3nEUjCv5nXnL8VoQBmeYH73ccls2u8LeUebpU5m3PEsPbnipGKGzljpWrt3+n1/rh/WtfvqXly9nuIKJPfvTQ3ehjZZjs3pjFUwCQ6fR0V+nUyezwzPMt1lxdSkoIXe6n5GkrJ8PDMU+P8TGVFbcZiwH44aPqaszuCfl6ygQLGKa7ljXtqyaKa8SSezP0O8MuPdMd4GPDlnjTg1FvsLdKh5bh/aHsgb82Gnv2tHFWr5888c7H2ltHupam/FmLt45bjxLR209aq4bVW8cdg+lXFDe1LkJw+9wl4TTR7A0i8q2mmkdWBMxvOLc+HT0eSTVUoYcMAIZICgfrpWolaSuaq8/jKqWsmYzriyOidB6If0VfYuxb2ZV2aoObdnY0WH1o8Q42/ewpoiv2renbMIdgruzdS3YSNMlwF1EKW3RCLBVG6QnDDMktKQzReRsBO3WYl6erG/VvQ0ppYd8tH4sQ3bgsvcC1igYvJG1JYa7OJt63sDKMExHRRtv6/wGc0oMikSq4EAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, A, B, and C are points on circle O, angle ACB = 32.0, then angle AOB is equal to ()
64.0
706
[ "16^\\circ", "64^\\circ", "148^\\circ", "32^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGsAAABkCAAAAACkgpEFAAAJzklEQVR4nLVaf2xT1xX+7MLcatnciRfFFe7SgVlMQ7fQMCkTtAlbSj2VsTCiBmmZyqSSaEolvDUaYUIN05DmqUxlUsKC6NZU2rRshKXduuFoDMLEtNBQHKSEJMMsgcBw50yEOYjnYN63P95P28/Pz176JdLzve/e+51zz333xznXQdjDndHJW0PA1ZsEvKuxfKN3TXWJzboKHHa4bpz+89CtTY+v/kIJnigHcG0GCyNXZ895N9fXly0l1+TP303Ubq71m7waP3tmSGjctdouGS0R76n2tk9YlRgLejYdm5fkhGTZmCVXLFjS/J5ldYkk+5se7Yjn4cnDNdvqbr+Vl0gu2vbJYKx4rkSH0BnPajqn8LEOoVPMo1ourgFPq5FJyvqRzdZcHi6G63r9+uF8bWdjaO1WTT6zeqZcI56DBVDoSO0vH7N4bcbVK4TJwlRScVzoL4Qr1eazEi4PRrwd9rnmA5vm5V9SUZrFqhsTOeo5M6edDeVDbmX6gsPu5GNA2bmHa/5pa44Ku7uK0EWGpk3IPWRaIJ1rzK19IsX0n1rxHSFqzSWRcV/xWqXhYGXCJFdfU+h4EKjoKsJCZvjmwoDSaA57BetTS6MWKdZ0ZmcauHp98ez3xWLWO8BMo4Nq1rBguSYWipEVWTOCpteNlXlm6ULRX57ZTRpXfWhpqcj9jTm4fl29ZONCNZLoP2nKlfCOGIstDU75xbS0Mh/+4IUNAIqaAHPjy58/lPZ1yXpFhfkl1UhBTJA3PNsA4DhBUuKuzo+CigwG5ee241IYl0CSsRWyWktrLpIxub8WKxPSNCJOEAjtdoNLbi4AZTveAIDTG0sce1qqQDLuzr+PLBJRIUGyG0BEHoe/2l7AYaMwrN50AsBghN3rRwFKrBqyb6oCTCqRlAbqyOk6crHix3TCMXq71r6gBZjUAcDx1bHr+FMAuDm1Ck7g7V38CIaFsgY/1PwLDD6P+4HSAEB6l3QtycRwKQCgjuQyTKbMjoxLhTtH4ld8yk7AibN2rWX3FG/EoP+i/wPVQE6c/pLNeoWbNPGtlr7K9WfUpBN/fdZu1UGHw9FaANXZp1zjtbGNZ7WMGcHWh0KJ7aUJLlbstlGWJJlo84RJ+sdc6hrijFbmlc9BAI72C/8uwfKfvrNgXVZTat3dyS0E5oS1VyAbe9nkGgCZm0aTBgZ/EskrlI7EvhNvbwGAB3PCmqkNchPOqN/GFE/gSEsVAFy1LqXg7FN3J7cAAOaEhyquKLnOSb+tAXZ/6jkAwOD23E4opR0uvLLz6FvKwWquDP5xRYxlsZXWJHQAcODmlA8ABn9/yaooHQDfb9o86VaNEnsM3jnlvXPhE9ZcirArK6IA7u9p+ZxVUQcgfn/r4bfcWr25Ffh4Qkk5F+w55pZv7QZmPlZ7NKdS8uP809HLDYbsOQEld9W3JWYnJTNsAzBKnvJXnTP7rCSSkthh8ANIJNnxQ856lYx8jrYs+IGaLCIFw/7GTGfPyz2cdyvpZbZ60IB7wH8zshTTJA+82bND7k+Hms+YoJdzltwthInJZWWfjn/lgsmr81XRiR1p5AAccx4ktNHnsb+Hkkg2t1JKdXkaMtfX1GuefkMxDb4JTvqV3/BFKYrpe3wLHK4RSVIMCc2zxpYvVgXMZS5J8EK1ylUVIW1TnfMqDJzvdLdpradeW9GbVVYiSdFFDtUqOU7PTdkQdqx1Y2efV/npPhB9pGJfHAAwuuH98ZeyCjsAIF4K3ChVWnf6owCAxWQSyWQSSCYByD+1h/Ir+bX2DUkASSSTTAqvT91+8sACHhyoD54syyFrrAz4R6UyWJy+MQCAS/lLulxJIOnSHvcIAEmXC2jz73G5kriHpAuLriTKei5Mfua7Tw+Pv2S2TpAAPiwFLq9Rcpz+K9rbpAuqXjqcaiuuox8cAQA+AhfgAgCU973YfW17qalKDgeAWwIQrVCb8o0DAOFSOFwul3l3/O3AHx4G9JUDACa/OH59sH/Vb8xrAPiPB5hQ9QI9l+RxKFIkKar/2kMeT7y+6lR6AZEMCV0SyaGayt9lj1mJJNtDHFY/L0Jq6lKGvPyQvzXR+BApceGZQ2paFEWKIsVLNbUzSivvVdWcotnBormXoVaNiz1NNHLlQGtTZs6PBKNTrm9N7bBJtUCYgT6d67JH1tiS6liVuvQosl/WlVIye7xbI1mO/OqRVIn2yatnB+t5asQbNRKRISHL0yiJh4WmaEY/emd1cxHkdzqtNCLJuDfdV3Vtk1EpHYmD7ta0aZIuMai3DkqRJ6x4JDL1TEhPkOwSXs9Ver5DCMZ1qnhJStClgkRWmbuCNbZggzE582yN1YEtFnTvn1fZJnwDdforkDy8KxcLSfKX/oTBUl1CPofc7MvukDKSztU0qAuAJBEk449arZcXjU7pmVpFKfMzupI70eg5nCIlntgsLJDsAuoW98j+qGBHzuO9FC83RPa6VoTSGs3BKTES8B4j2fNkJzmNFnIaIZlrNqfrS0oFOrOVylLEpOK5On8/97luc7GiRSL56nGClKj7vtLrSmRHQEv15rVUOsLVVd8Okt2lCZLsumjl05NI9vnU+SIWqIoUREXyj0KMixWahMpWtL3VtPBYmdppvUJnShXANpoOktM4nsGV8IyYlJ33KfswXalCfESnfKIZF/uqU9ntBPbKeapShUH0nyQlpQ+nj2f5zNPo9gdSpKpU4X5MxWfejd+S4TqqXBI5mzG/kgNyzKNP6LxfMA8NsYAwgBbSGE+RYxy6+FEhIpHxRn9EzSlItREhd4wjM3aT8PWR7Bc6xKIil3LsJidXekxqezsZb/SbLeyWkKW6lycmxVR9m9ZRB2tTilJFobnBJDPtWDmnxRDD3ni6UoV1onkM0Tw2GvVE/g+lOJAvNkpSjfkmKn+2y//3Ypm0mG9mX2Qezcd8bSm++IKnza57IAvirkpTrUxj9HUdpeXKDkSVrABrxasbc4mZzhWOkKkGfD2hty8VNi5GVtq8e7BYESHJvZ6wjXsopuj39Oeukcb1vefkHVNRd0Uk8oH1XRHjPYcj6/8ln682jAytP6+fsuzBgbOVoxcqrWrotNOhaX3jmHG3x0Zfxr6R726PrhcP7cVnZXYADVc+tfbAnC5SPn/mh/vW+aaez1NIY+0GsNs4yGdb3e02nTqzr7iVu1hW+mt6zSTI8GpVfAcAb89Uytc8qIhkIe67O9eVRN8oM+ifo7TCOVNHsjtrAxjvqfbum8gtsMSx4GObjtmL4ip7gFeBCLcpa3U6Jtp9nqYe06PJWFej4N+fY0bKhp27jrz5l1NLe9fRLBpgyLszOhk7A1y9AeUO5+M+7Q6nZSBBx/8AlwKgPj0McQ0AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, points A, B, and C are on circle O, if angle ABC = 35.0, then the degree of angle AOC is ()
70.0
707
[ "20^\\circ", "40^\\circ", "60^\\circ", "70^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIAAAACGCAAAAAAwDN0KAAAMgUlEQVR4nMVbbWxb1Rl+nZYxrQZPqksv4zK3xGjpwoqLkQjCnVtRCW/LRKaFRRGZiEaYkaJqWeimSHTNflRTJgUR1CCC+gMjghRpKflBV1IRhgOulmE0IzWdQXUh4CBcgobBRXXx5Tz7cT98P8+9dsJ4lI97zz3nvM8573u+3nOOD9QsXruurem0dbQ0mkAjLB3cAPFNEPCpD38J3fiNEFCAZ2/90Oce7esj8OGl6HXf+aYIgIieGKQfboT8pgj4iJ4bb7lRI/N/J0C0+jnY4k0gnU02i81NyX/oJaL31i+ciIjQOI4Q5dFLNNxEWgt8jSoRPvl3o9AwgY1Gs/1AHessQdMEcOIVWfQ61dFAK1A1f251qVAkWrpCRGERtDO094Y2Y5QG0JAN4N1XF3PnbvtedOcO39kno5dn6e2LROeLb5TeitwS339TM5XhncDFFxfT/vj+jpD8+ovue2959CHt64WldLq6L94VbJiBt9Zane4MPDhTqgcURAmZawuGSMXpAX/3jNRYP+CJwELflp+bMk4+DmAkZpZWnU4E+jMbSIABON0RerxkDMKaUAYgRUatSVbHxXh6wwgAc5G2lDV09BEAQMG/pGOlQjoeumMeAGPmZI0TyEQiszbBVaEoZz4VrmiBenHTbR1ZD9LdCKz1CQbxqgg29YAalEjCUk4GANPBZHm9NTAZHKnoxNYfpHBO4xicc0hdHgra6K4BAoWOA287fJo7UH8+GSxZ60BGLhb/oHkCs8KkY6LYvO4leY9z7mPCvPNHRwIMQDUpZrUXM5Yi+rdKeMo5+0zwDy4dk30NFCKJsnOaLqNus/68XSy5EX4S6yg2TiAXPMpJUhBNhToa4ZXykGjLj0cgHZjmJRkcNwVIsRFe/KlreV2CDYFZ4RVefnIvbMBKwLn7Z8AczxQtBFhKXObJZ6ND1rCUWLGJqiEr2HWnZgKKvc+KK9wOrCqu2IR29znFZwCQd64Dcw0sbFuGfeNTwo7biWIfizNOEgAAS1uXHLI1EGDIBhe4GQH1XtiAhSC/tc1tc2gLGgEGAOeFGd2bbUb7HD4M7eOmw1TInqGhBqoRXvsHAMRfkv9bJFUj5tZpwiHL9MlKIJlwk59td/jAkAvk7IhpkGIjdl/1BGZCa24Eum1GWDXX8UiVm7Zo2xR0BArbcm7yCyJPRnyI03oAZAQbM6gboRTljGpKRkNjvBhFbhNiwFicQwCTCfBUCADlIGeMBDBzg4sOO6yDjEagJHAHLQDAUWsvrAdDXze/BFmxbC6jRqCPO6IBAC6LBZcYlZBqpFYiDAxIDpqDSZk5pG/gmzAApHpco5wJ2I0UdZQF89Cs1oA6/edVYdsbrgQwspc/BUvF7AnMRdzln3TqhTUwQNrD70ylsGnZphCIzLllDsRPuscBCn7+kij1YxMBBgAvROzi6sCAf7d5kQ9MhbnWJIXTTF/RBAAswp0Eygx6jrv0EioSSe7nybjhlcCA+VZ3r8IKtxfWYy3I1dVlIQOdsbWQj+iZg5tcPSkTD1/t0ecSTPV/wvn87d8+R3rfGoDKNW6jIEN5m6UPc0ayU0lli5WAvr5biOjE3Vs5PiQiIh9N3R8gnxevJIho/O2niRw9iKHIi4YEQHzOtUySWPBcfjBk/bzoqS7dC4EVBXcTfKbbs3gAwNGo5Mygoh9UCZjiNxsAQPuSOYQZ/pkhxQ5zcuvRzeFbiF7d76rY+eAdBpuAm4t40/SxM872sv9V3QuDcNG1AixW4m4QqVDFMVJe16kS/uPexebCrlGs6O53/ibU/Y4t9HrcVQOPHdK9eHAug4joqYUTjpHjaV3kHv6qDkBRrOprkwFYJKIhF004rtaY3u4J8pKJl9XQqDnkiPgFq7W7bVoNHXD6kq+PvlQNuhlUWTD31KM/BYBF8QvnRIwB1ciEw9evAnUCuaiLfIybJ5KvUd6VAAAoqzXAWsHh99Snlnd2uVjWV8d+bwp5argNRPSeq0lG/tR/RX4y9xpt76hPLflWuwg6TO9pNQZI5+4mHxGd/pXr9vkj3z1s/yGsESBeI2AAEMmY6rCoaIDcVzIobjVvHShe9gFNBSXBuQA+InrFf5epirbvfpeIpIPDHo6QiE/2mSYnckbbtdCWz7fwsxh7xBxyVdcxotWrDjxGBNduqWffQQKZbAV0zafay80XUKvVHOswF7YZq3vJ56X+AQCVkN2EN6u1PRJKgLN89PPX7B6QCRTNzZDphiPyfw7mTKAkVK2NWHl/uS2S8TIuWvfWgKKoESAANaBWq8mqkNWhaKX2xz8rIuQA5S9qNdRYG9EdrtIBSBGrW6Mc0Aj4ZALqr/aDGlArC6WaLF8XLHNFbTvRpoe5bl0FhS053QyKGQm0bLmk2aO0mYgkSWeuqXu3y/vR0G1zb6bNRJuuJAOte/624972pz9TLNts6xpaH+u9orZjn/xQ8WtfNSOsaRWh1cAVsaALMNRSMfobeaWU6Q/0ue7LWFZr+V2aCsKFmolAXQXTXaqBGjXD8LowqVluJRUTD3P8EgxYC5o4Zm/TCESyai+giNIZYeQftS8BfGkMrtVqk+Lr0HcehUPb489c5lTBSd2QzgAsxDUC9X1eS2NM32mfW7U/aprrMGCuJzDA8Qwku3RxgTnttUUo6U3QAGsvTERExRidEY1BPqKumfORX+964qLxg2aV48tP1+MSXawvBkdH5eJbu+Nlu14YyAjHHMuZSwa6Z9ViGruobKCgq4HfaXMlmrnfKbd+253LKYF7PEB6PiEcsvXmHe2QVPEMnZpROk/JSoKNR0IabHewd6b9LY6GOo5XzF+Mq7WwlgtVA4yZO3QGACM2q7u1WDd3d0rFQl+gP20+QLASyGhk/FqoOi23oGKzYsuKHGe1sRDl49HQWNFYtJR22EA/LXdYmLCJAUtYSjjtLN/KJj8kdKonT2Qe3WqehoWJ7eqcSSHzjEMabC94GX31mO0OJs/WX9dExR+rKzQZlqp1zHSaAtZi3c7LXWeUJsLtU5+qbwtbZX2ri1MGkGGpqoYCUdNslqt+PpYGtOGKDSUA8/Lc1gjSUWNpU+4nETiopuLKcFWNTMLok3Fw0XQaSMnqXxdWDt8YT1WB3LZloGemPj8hwMZJlTe4TsuJhKfW7wwGAPN9wYEsxiPVyladk6qFSPzBSfN481e96/Tc7ZGX/OYYngFtALrnucLtD+3afHn0xN4AEdGzPt/PpEcJJr8dAJQEXYlnDXvvTTQEQ9LlZJD2vACgSMNAkSYJQMW/Zsz3sG7/aCS83JRU2zQMgDT5rf8CX+4eBoAjpwgAeoyOhGq9mZYTP+Hv1DWBI0kGpGTnQipPDMC8MvIrrCf61eflsPtemleoVVIVMkBttzrWy1s2hg0LKXxWPU3BOXrRNIEn4wCKdMpAwLBnNav2ws2qnwt518pMoL5pxYCONMDAyolEuU58w4ik4oCmguIpZtq2A1hafiy0WTY51w1W37ZL0SlgMWHcuJRL2TUNAPOCl7N4jSO1V3lIE9Gw3BXL76o39HxIAjAmejwQ6Rly7p+pW7eaSkl9VjevByaAyn0x17MUzRGw3byWoWzffySUUWgfbPBwsFdkRUu3Vj/AcCwBAKOHvjb1g3+AAVJ0CqgKH228+jU4HOFQ7aEQzGHyl/fdteHqV5HZvmpLQMNM6OPw1V+X+vnHeHqJiE4huWfTur1yjpDush3YlBroPYVFylf9DwIb2O0a4HSUiwEMtdsuoUj5tTOC7TJpfVDc09zDbIvDQO8wgGywgYPxDYjH37dyj/OliBTn70LQi+evYSwFLVuvBgK9eaQUBrPi+xsq2tORzmJCN0lKiWedIjeLN+szK4uBEwCkJvVzlFlhcWPlnxTmNd+MBQQAvXnUdouX1LCX+QebG8VUQKd/uxpYJCKihOxHZgxuR7sbhOFot7UKPB1uX0fPtOZ2uN3+rlnrUuiWN+uvjV3JAwGqizKz686M6BLdAbwLDm7Qamzs+mYuOCgodBzIK7k1qYJcLM6vfj4B+ZJL8+r3eMnFxgY0hQ/mV29+wRjkHc+HLxce8BLRgZhScvmiU+PVoF10clUgTwWyZ9/2qhcX0vFQx2mvtF3vmgHzHd+fKLlHgyKyOC7G097rzAMBYKHP3zkjWXzaNtjw634qrkx3XjugXXh0INLUhcemr3yaoF35bPTeqycCWqYX0uncuej10Z07iMRWIvnS6+q/Sm/d+qP4/lYtbgMsmrh5/dbFf174wEcr7xNRq0i0c0dMaG84FxX/A3SLQ0iYR8LDAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, points A, B, and C are on circle O and connect AB and AC. If angle BOC = 100.0, then the degree of angle B + angle C is ()
50.0
708
[ "25^\\circ", "50^\\circ", "100^\\circ", "无法计算" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKAAAAB3CAAAAAChnxRmAAANoklEQVR4nL1cbWxb1Rl+3QLZJg8X6ii32x0urSFe3SGXMC0bYW41A54IURhm7rZsuKvXIAVpnhqmIMICm7UFUbRMcsEoTBgtE9kaFCaKlkKqGSmIQJgciZSkIqUuzlazVJs7V5rbuffZj/vhe+17fT9s9vzxPeeej+e85+t933OubaBPCMdsd/APsCl/zcHWdIICj8ueKz41FLbISoYNjTOqgsBo4vPLY6mtzzXefnwyKLnTADJh5lCxsYKaL0EeSY+fiHyT8yvXP3pOJg7zJTVFXjUoMRn+gUN+0PlgDmLIND4hCY51+vgHG7U9udq264crQsg8miUzBQrOVemZA1BKsL1vg+MsiLBxgmp1jkRqolIe/5+tFN8wQRm/YxnhIS8TYCXhdKdvUiWXDprYxZfaM8JTLKaagEsHXeOXZWEjpTaR4E9vF5a8vCOvlSazd4u0MBqTYvNm8dO+vwtPwz9q00rke/EtaWE0NqWbRjBb/GqbnYiITr08XCeda3yptOOBM2R40W60Y0UM4PQB/ikyop6i0qWFuLNvyWC5zSKYICKeYIYpQHWAyVfBUoLtnjM0DJvUxdkLwMw2IiJ6fMhBqgPMJotsGciFore9amQYGpRQ/bae3g3g8CgvwJLRnNOd3gndihvo4krNB4ky6OH72P+s4p02PQ5AOuhKluRRtcnNadTnF1fOpgmnc0TEbqervsbeeLNdocy/EV3ZWNNJNm29enH0jdgDDtI2CIwTXDs+mz57G7v9y3ba6iKiM1lbceFUbm5LIBBoIwLZCDbs2Xe/ItcxulOn3DPxl/f/RFw4VWga68jlQTcTTi6rJVhKhFo9jwib7/SOciUfB5Tdno6puj0NID/o7M9qvTQyBteTHeygKjmJZKy167kCAN+0PJpDyo/ZgCelV4O0MNY2RJ9gPmbvO6o6fuVMMBV2DK1P7VDG85bJfC+bLKnmq+QvJdi759ReaRIU+OQOOAY1t34lcgMOx2ckQXMAMNbNB5aMGE8pT9dREwQBAMUh58i6MXoAENs4owhfbMuIj9mo82fresup2sJYl+A00y8WakQ3esv2c1mIA0bvkYVzMWdMty+EhVFWmypB/n0u4Js3QEtC5tO7lM0otJ5ShNeHnFHN2SqSyoSZ0YIsWluCC0xckbMeOIBbbrs6o4yqtUwKowbUmGzUOVQRtSbB550zWq/Ui2Xu7lXGiJaJooGlMbZ3Xq/R+cHN0SzHrxy1BDkAKA+4+XWJk0VqggOy1w1XW0oalkl53BWY1S6IRyHuDGcAaEmwEOwq8Ml1+5dPcNYzXN2hWpYJB0x6O6d1CkQpwQbTWgSX3P1ltXhNFDyxj3kBVhoUHdRY3AupbgqmShqNl0WmPJ3TVQT5tzOOhCl6KPiiiMWUOtaqUzYXZar0RGijP7leRUUN5ckQBVIXVSS4tMnc9MCFru/XdmjksZp0XHkq3NKZyFeTVsNsxO5N5KHWxevuhGHDnwOAkj9URnRQ+WZxS6E68XTE7h3Livm4GpaV+fjeAOMeFqYcVb8vBwYMshP5BYNlZYcCQO+YlIQDgONRpyeu4hCpRTbuZvoXpBpqJBgLGJ4f/IIUCpRqTU2lZTLfv8U9rFQjNEpbT3ba+xQqQ7UEU27dLV2JcFdRNDVl8CcrXGOsK6a6fXBVgdJEL/VOVClmVRKcdy6bc+FFdhUB9I4pc6XdQjcsD7nZgXlVOtU42mfvTNaqTgqCXI41NIGlMY6YtwBgsU3ZbM6fAoBTcc/m/rSRArHQz3hGVRUJpQQDoybkxwHDnjyg6FAAwLS3jOyY1xFRaW5NBRxWh7ez6oOgmuBkh5kNhEPclQWA9A1V2XzJRKe9b9pQKfmEb1N0li9Pj2CRXVBNo4Uxhu8Uv9Io4qap5dsvliGpGtq9UkwFN4Yny/VSyQkO9htgVSlnnHkfAN+higTxiWJ9XgKmwi2B8Zr1XJMgt+o8b4CghAlHhn+oNjWN4c2o05vI6aeTSVDLr6eOqU3CeJjymcnGN+D9IZfr0eVKuA4qBPPVu1WdCoAZh2DFlt1q2idXp97cmNfZb9jaqRCMDRkhJmDWMSNEpfxGqwIAFMYDLQbnNw+J4Dlt13wt5hyvCE+878DY0OPKk+GN3dV7mQ4kgmMRwxUh45iSsnUbIMb/zEZbO1T2Mh2QaHj4jO1JALDkSInVSqeaevSWYqw7npWCxvURUYIZl2F+y0xlZxvtrZNQZMJlR2+8ZsCoW78KIsHYiNFWZdkxqXL+VLN+vvVkl4O1B0pWDotlBNllgwV85BqpBEbEgauV9z8T927s/lbbXdcDAHqIiI5YIrjM8BXpIu+RrUZ552rdLDMRu/+XP2AeypXteQAceo5ghjJWCCbDxpIXvHJ3gdapJgAgM8B4D03efV2iCCA4CQCXvEWctkYwnKyfTECxIyITs2hqqkhx9Rdu1+DyhK9D8PeN9gPAzAGg54ApfiJBZsUQv66QLMRVm5oi8skOZ/9c4RAbkpy68x4AOExkUn4iwazTSNpSsFeuutWYmgCA4kR3S98UcoOtUbmV2VIAh54MDptlyBOc9RtIWu4OXpTxU9V+pvtaup8vYqGPiSv2DM63AC67G7jUPmqO4BVERLRyg/5BzuW9/zp+FRER2Yhgo8WZlaoUbz//kmvfoTZ69cm1oedapIMYGxHZ3Cdvsb0aJPrbyW36VcnBEzzj0U+5f+11RaX8qaYUsfL73111//x2uvjcE1sfukv2gj878nxAOPY4/TfY+k1zBPkuDqr4/6vQ7yso5qvCd7CW8DIDGYBbj2/uy6hlnwjNEBHRbnMdzI9BDj7VQkVwAGLt68qYiqlZTAXs98+AA1ajzOBH6ut92m+WmUSQA+DWc+uM3JTngBkSj9WRvkmwlKbCG0N/KAHAXC+rfVqz0GGZIAC01VNWOWC0PQvgIFvEpfYDAIfLd6QAYC7q6BrnRTvR0VHvdHrZ0xBBe7HunjrGrAI4uBsAXmstArPbtpWxPMi2H+LtsuIY252ue+KTYxsiWP9ALOVcBsRd/rXWIuBpPfzUzdIJ6EeDTFRvjBQ2fXIEJ3kD+L4DADgu2VoEPkdXXfem8Hqpzzmso8hzQMHREEH7v7VTTDneAYBL7bwi13MAwHe3dQrb7NGAe7wENY+ukmCDXcyc1UwgGsC8msQp1LnyC+6uaU1OCjQ4SbSXmbRDcKFdaj8CcJfaD0j1r8eZPsPepgaWGQ7QXqjnHdPi48HdwGmStLlsvzNmwLUiIm16CxFQf6vLOCYrgR4iWhSe50LsIUOeEhETIXOubwm8suBZVd2nV+74TVjUDYj+JMW/9KvSw0fMbfkfeK1dsaUNICJyL6m9O7XnEf4SjLxkXDi89YUnlr4nBvWrABHRCbelS9RE/Bh83a8i3KxLrlsK/ZM/2BoxdB5TBd9CPeu0DrRV/rx7pCZuKcIM5y0NpRZTI1YG0Wiqubez/sUam3Im4HrGnGtKwrzVZVCYJOR/Q6ZTw0Z0/vav/1oxFC5PPHlN7F5Lo4iI0n6rOXmFFc/sVfIudirPzwtxJrQAWFgq+AzBSZ1kmlC4PiSUukJlGZXsADOgfZ/EAHjXhyXInEcVlILdspOF+RBjblGuAtfIEJTusIYmZcNtL01Jd1tfum1/99pBB1mHDTQZtp5dICp3YIa6RNOilHAFta6QmEDZaX2ACJOEdwHzK2mkQ+B3dpiJWPSLVsABmPZbz7+BhJ0skhIuEj+4eNxORHRi35do8XlvRdQWO5iIXthnvYclZX9d8KUN8iess92uRBEWNZAqrDob+PBKJMgJBzkjrjxQTnk7p+pkMgqhdf0jDZRRMZdyzgIwxmahcOw1AXlHI4uU7LQzMoJk63J2wFlZlJvRwVqOYoOQGZyrzmccf6xx7FkuWbTz8k7LuwjAEzxMtPvSj4G7r/TtSNU9/raCcLyhAok3hD6kUSw5rn26ebwAABzwutuihiaABEPy4BEg9+LNZangZoADSh6TN9WqsWH8n08REW1zE7F7rz1UWV2bABtRfKfeXX49KJzaBi/2GAHfCVOu9bpOL31UnZ3NO99viFYVFpwN7+VVnwx95VDPOcvbbg3W7hn36qeqjw3tp4iIslNC+P7u71xu1hC8eN/+3sZLOUxHOBzbLQ0SMxccddDX24TVgOSecQD8FdGmIO4195GkOmRbnVjMCUdTpvL0ZiseiBqoOX9NX1MWIZfUqMP4LY16UPVOv+ceMHfRuwaliLcp8tP4MnHnX09947zp6YbKz7lbL8xvb2DmyqD+6eTVr+y85YTZomzSz7u7bj9iJ2rOgqomVg5AirE4VThMMc2wFwRofK4B/oMXK+tDedi1pCypIdR0sfRt4C0L6V3vmO+kN3Yuvivsb83ZkGooy9rNf3RlBvk+l2xkNEOEtZNE1u7eD67Z8di5mhRqzSQioo8f3rn95J0VqTdFhDoNyPU7DkpGT/0vVHIDjli+SXKrQOcLbbDJk5fdfcd4IUkSkY9MIfLlvd7Prv66zeof81iWIAD849kOdkjj41PxdiDTJVw41rs6bRa63xfzAln57csX/Hv8apdDTqTTaWdon8nbJoah/wG02GVrx2f/ku/6Qs0H0OyeQEDzjx/+HwTlOL+4nE8TPlwjInY7XXkre0OHvSZVU0fh/wBpH8HJahRxQQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, place the vertex of the right triangle 45.0 angle on the center O, the hypotenuse and the leg intersect circle O at two points A and B respectively, and C is any point on the major arc AB (not coincident with A and B) , Then the degree of angle ACB is ()
22.5
709
[ "30^\\circ", "22.5^\\circ", "90^\\circ", "15^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHsAAABkCAAAAACDLBDtAAAMPUlEQVR4nKVabXBVxRl+doPE1tAL5WbIyMWICRDEQUBEVDSI4UNEqiUVVHDAaoLiQKg4RcUwjgpYtNYaEKEVtGVEgzhWTKKCJBpbQAGlASImIUwiJqFVILFwIbtPf5yPe+6959yP8Py4d8/Zd99n33ff/TwriLjQEhSAltaLk18fOvYpUd8MIJCF7tf2G3BVmi0bXlQLEf3agEiAO1RUSzRv377juxsv6T+qBy/tJ7U82oiO3Q1Nn/W7KS+vD0ChpSGoIQRISAoPrQlwm8QUQO1rW37KHZc7wMWKA5WVlf782VmGOAUIAQ0BoSWFu+GMB20l2tYMDyw65C6kSJI1RRlj1p2IzFkFjAsucCkUn9tEa1GPmVvDlGqTkfY/yc3Tfb9vI0nVqUkq1qOArMeyrnArklTNhb5FrcotKwpN83xF39tPwUEPUGtVVNoVbpKq/TF/cZv5oMP+XKvSsthffMZ4pVant5Pk6n1d4VbkOxmFbZHvTNVhFVFkp8k+M7NcUVEHBy2LqFgy3GzKG/avuEJRqMy5rY2aDXibVMquZRjcQt/qWyCA3VeP3Tc6bj+MQm7NlSMPCCUgACEgXXni1H+DvyJ5ow1s7r2ZpwctUyTrSztdBGJzn52XfcAjnGPBKKF2BRZzFUo1y8a6inlza6oTk8ac8Mz3hrZ+W0bkt5cDeMA91rzbW+DQyEsqexgNk1RbC+u3zz+7j/6R5Fogyfau8L1sea9LxiutOtcDH7kOBmQsn9f4zChLjtnB076yb/5vp/u/IVWCPtfG3/Hbn51oJGN0Q5eyQpsKWoovq/289OJBRb9uh4TUtmYb0YolNAB198R5ybCGtEkJQDfOHXFu/9pMCDwx/F4zK1Kdi3otATyCl5IlduCLu68dcHh5hqH8L98vjTLZQHQzKJIbstsiGi8JbMvL3tBpFi8uJpsCW5IYz3emH+wSK0luGjZ6c+ipuJjkLn+NZYWzDq7cTYEKSy5Jy8+syZxSzVA5VVxMkpsz21yEXcNpzsMTrVjwWue54uSzfXd+8P71jCo3beY8F3E37rd+eCQZRgvNC3O+/2r95WG8lvol//7QSDiDzoW7Y9Er3RJntIbb2jlX+/eXBLS7oy4sKToDQIf5w4X7qVtHJcSqHco+u23SyKNPpHsPRDcPewEaMrwtHG2vSWrW+ROdu+yY3TJmyEYPGSPWSLb4WyKHZ2c9CQWBZx7qkZDZlrPV64NXL6mZEU/cP3NFlFcirWjpfSLhfqWpTz4fyN/l4grb7qVWqiXKn6GaSMOWFQ/4BKLHfVeI1uKs2upSR3jIqHL21J8+7Y9ReeFo87WYJsVHY2HG4hYvgy27i+1knb/dy24Db97RBwDjjyncPWP0gG+X93F4LQ6yxrwT7s7IMhtmA96jmbZduH3CPbc0PZIWn9GBe9dH0Dl8oMl9lyTg68j5IhYcPmenv9HT5wJ4fXb86gdfvfRvqz6flpTJhv6Zr4U9h/dvbL4LcWL85LOBnR9s7cJOhZAzNsXgru3MASBdl8RaA2heOPjYvvWDQ3uchPoiAEBAjzjW6sqtNSSqck0xF2opUTtnpP/rVQFnhZNZ0skLxlS6cksJYMdN3gWN+eLxdKMmSMZkG7k7XLmhActuuOxE3r3hwRmND6YylC3B5PYr4E1VzsfQTC2Bo505WmoJqBQRdjCk/r6i35KJgLTqmgIg7qKGgiLsHEtc03jSF3oMa6+6Iab2lLCMjhcu3fr6RxOTdrKACPnPKJzzjSM/jPvQgMjiGmh9sr85XyS9VXDCKJxd58atNdCQ46giAEAcnTuss2ZdZrJbUadWJ3Jq3bilBA7mhL/D7rtGD/h2eZ/ohWcCrLZW57ucg47HsFVha9+w4tufO/LkxhQAghAAzf/E4NZAEoH/eHCzo4d9eqrlWysuXGQN2gJaQiRnvClbbCkXAPCzUx7coiPNqm9ww7KhJdc6xy/Xw9iYUGF7CyPxi9MOAXOlBADQHRcBgMbJZwI7y9+/3pnXhSCXYfFptH9aBwD+SgghSu35u2wPSZCabFqYMa8pgdMGbf+EDhQdMDSjmM4F2AkfSXJqKcuwVwLQ4NmFEpoAUDvn6t77XzbnCx3ZR5wQwfFi2mnTJymxPBAKEwLQOFs/CTmw7H50wimSae3VUzJLThuvFHXsBeO5QgBFntlQtt2hHW1TgIosKyCnFtCItdVXlgkAHQPPjZndtizBaFYfAyi/sLtXvuGKqqWm7QSA/wYB6Ma1a7FnOLpBSxz53+Q+aQB6XTfEuUQVtLqGCyhETwC9UukhUwxQwJ64DF3BboCWH+29cs1Ve4aD7OQC1VBARQ7dZznIirSYXj+TB1ifEuKsz63sylyleGQcdXDQckrolNUvpVwGSuDi74BQb9KIM5ikfsxdc941JN27IAGac70RZ83pkCgbD9H8TRYkZMNJsixbABh6xCok4aVOQ4PqYyFEIYCrd8zfaB2LIfoITRgTqVFQAPrw5QA/nIizk9NvgUTDA4+R9ecAqP5fJTJFS3DRfe08XVVI8PIdj6+zBmLptcwMmXNwoCyX/xghUvu2pQG/A/ZyKjCP5LbcWM1rQxeNoyLL0ts1FZtyVsSICntvoBVJDttlyCpFZY4+iprUbPTHH80UWYG9BvcpapJtwxYb2mNyG/ypJ0wdJGlsWo1JSmVecDiu0yXw14LhkFBHjLZk+o7quUbjxissvujvA2hFkrRHfELghqr4U4YOHpykQcjKO9KMRUXP8sZZKpF1ja7KhRX5AKSRIiAgMe6TuOXJ7w9cKiFQUVpomfrz905PC2r3b55OSHP9LwBAQwpKDZpL2Rs/jetzIS4eVA/g7MKCEVa/Fhe81WvqT5Tx9guqeiyMvkCtJSQEpN0Jc7odjsetZffbXgEaUnNfsUceIVPWDxx/CvFm+S8D6YDR62XUmbbIfzMetwT+kCZE1p5Xw4v+OS+31dwruTc9gU13eu79qbgv0+yIsWB+B9IRg/jKgY2kiuhpzj521nvvr7XE0J5VQsZpNW2MnYIRTlv0aG4tZIwZYOuQzEgX2kkJyDkb4HZS5XSUSCGkNkbxMMH7nxv/VaxKvzEnUlU4rDOuhPyuVMQ67YOMncYXdzefxz3j6n3fi7FHCW0aD2hGrdNu2XTHJ/CIdr3yochjKbsWZmWb4h/lare0mdiVsSVMNmR3S88T4S6JONMEEJgcdfQYCeGWNhOjts3f6PCPA8/N9kW6JNIoVef/oYvfhwzUZa5RIUcUW+vz1vSoQIpqGpk1+7GkN51OZFX/aaUmIMzIACCg9fwFfaJEo+qt2jN2Rb1MCm3DF5tLArL4SePdtuwzUXIu3yTTXnxQnYfdQPqO6rmQ5pcTw/zgwyWpthtsJpeyM375/Hlxw1feOEuFaX7mCvO4Js63GmD9Sx+eH3nae2fygxaDBt55Y7ULlSt34N17at3eJ47UTT1v7bApds8tS0ci36AB6GteuO34+ZGnrM+ZcNJMN09bN1i7cEVxa2hIzJpy9/nFG1By89hWgNDB39x3u+v9lqh3RiDKF7igq+daFp6eOfYoBOT9GU+5C7jfndMSx68reuh8hhhQYN2zFW8idePOi7y2ay5QJFnj+/D8hhhFbgrcP91f5yUQ425Nha/k/MhJbu2eWumZGetO0YHseZHLryRxZvbAOtJrG+8S50ZTALz8y/pxpyLzk8Hx6zr2ZAFe23ivwUZAAz0+uGJkTXidksEXIyaUpgGa9Cgcx2sbMiqSuFhkXyjUJN/J2EzFqQBEerubdGxuRe7KeDoBUkcBE51LMvdrpcmpe6iL0k8lx20t4PKGJTGf24c6OVPaSCoGJylSTylIjtvGlozC44kRWwvkllmZ1nW/sgKS+pFxLuIx7ytqAATv+LbX4KXG3OIVNTC20caRUsvjV/T/xryIhW3jAYjLuhJrJpoKfYtavO6CWVabovN8RS0kO6kVGRzSTpJFhS4FEuRWbJmfNjPOtUlFcst03+I2M9IVyYYCUrMOb3edmyTb1owIPHbI+6aRsu9CO5yzarki9VS35k6Gm+ShRdkZd6455OJ6VVOS789Z4pw3FNkZHLSHrIcrNRO7++5A8/Ztn7SO6XfZqDT2zwRw9Cg7djc0VQduujkvI1K4fDIAoDTfVVUy3PZZzo/7a49VwXnnP3tk1D7PcdVfu8/f/wePzWTZlYHCpgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, the line segment AB is the diameter of circle O, the chord CD 丄 AB, angle CAB = 20.0, then angle AOD is equal to ()
140.0
710
[ "160^\\circ", "150^\\circ", "140^\\circ", "120^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAABuCAAAAADAayjyAAAKWklEQVR4nMVbf2wUxxV+i1uBxIVDeF0u+IgT/wgHjpQrJoXWdgzhUJ3EOBQcnD/c1FUR19atdH/QcrQkJqolLBU1bmoIkkkLEpVcxdTIQcZVneRojOr2SJy0xnaJaZzaKoZzUhPb5Jyu9+sfu3u3v3fWuTSfhG9m9s18M2/ezM6+NxB9juDwOZJ/wW0FcER0++2RGzGi6xNE5C+gL5b6i0o8OhkGuB/5+Gu9scnStQUPebh77iWi98doNn59vM+/LRT6EsfK64YcJDU68tL52YptFQETkauxWIyvqS9wQU5gx9TJjf4Dw3YSgxFfWds0c4Ps5JMRT90FOS2qH4iafEetN3pLK/CpycfD3gOTjKIN3sjNTJGLImYOZjcm2KgBYDLKH0lmhhzo9IUTkiLt1Zl+OlmX15MR8vFQsN9ZSo9YoMpRV87kcV+T04i1kHUkHM4b1JW5Jj/NX3RBrEEH32HD7EwuNBQO2kvYIZ4blVPm/PY73O2nZi943WxZqa1L2hBvPn7fr++yllpi18TVTXmxFYvhJo5ARLT68rIt123EbLTW421dnLrVSm72xizlbMj/7u1xZeUW6ORH3ZMnChc5bj2aimcsnlganPDo/ccXNd1GfHO20/x8YWlwP6IXMsRNp24cIfMzhoVGThcmMjHhEsb9nablFuT9/HDGqAH8lTfdqkzJxXE/wzvJDTryzN4y5ga3Y3s0UxMu45mRl5nmXER7iQB3bzJHzAdMdGmm9hl/PKPEAIDegPFsY7bUnqvaJO/NGYHU0vYHj9mqXZTGO8qzH35dYJI3HEDVI+eknaCpwUsZHLiC1XXN+iKjtd98YHRRr3BHGBtWj1zqR/O+z4abVu95Xl+kn4eEl/HbwCVEYDRH93ozWPtvv7H6Mxk3R1RQeo6gsSZ9D4PWBw95ALqEC3RWaPN68oG8RTTKCoEf0+T1aj9T70KVkP+yrsusut/oGtDCb/v9/WnRH7Ab+Yhg5nSwGLJ7bJq4qc7qyC9VOFRv5riHx59OH4ouchy3h5k8qyxmSQ56fZtt5SsFceAXW1cp4hTeP4G5sT1yzhlbX9dktZPis53yuY01ALD/hFKwv3QKQHf+xOImXeuHG7Of8hemW4iICvxy/mLnS9ks401j83u3VZv3EiKa38lxHHeCiK4X29Wce7k6l4joxzul5TV/onwnEdE7LtjXv6vKLCGipR1Vx9F95BWikfvtKo5MFylJjjiihX9vJyKavxzMZaQGFf5DR46FqScoZxURRtfZV9ViaG4tgaj3L/WM3MRR4JqOnLu0Jjf5s+Iq4oZsp3zDyneJCG+1yR3ZsHycOLrzrKR8BgAUGNIWAEeJcroAIDhga6tH6TjQXT6VMvbyKcTzd7OaOgDEKlQZApCs7sLRnC4AhZZfsxK6iUjFlawiynkFAPtLLl4iVSOi8ikCEA99gLmNEQA++4OEjdeTFcMBAB9XdwHdu7GEiP5YvIqGpouIaHa5g70QQTY8cETca+u/fJlxvmV4ZolIFL5253DFeiJJ63Mb8yfgxg0sgSfyu6ziBdAdwdHjEh0REZVOAfi/hDyQNnDVWEUg61GnjtdXqXO9gWCfm2En9vrvBpLVXcldRkWvzjvpUH22yEnCBu18dCAAxENT+MmUgbyo3XPdoYE+RwkrTFYG+xEvgXg0AuDj+iksUYyXQETL10X3zNtPWWl0z4LLSZZ+jq/bfGUzzXnokz8/QjT/5Mps3fu88oJQFjXvNwCIogjYSlhiuOKrQwDEszXdUl9yuiS1C4IAACIQacGYx/7gDlnC1QYjNPMtUurZRlUxAYAAiVxs3Qe0+52c9M4SOgwEQ8qB/cmzql6ryAH0VgDY+5RTY7W1bAOXhJJR/nSqKBg3IRcEAYLwT14UhBl/mzIT8k8qJf+dyT+V7rATLgVq0ooSl6odD6mRS/98Q4DQ570m9wiKVgRVXhCEvpxrjOwzDb5OVVZ7gFQfnReyqOKNhQUq/eF3TFZTVjqRVfq9p9nW2x+K5kd2qVZcTPtdoIwcAgTgxToAEMqjxpGnNSQA81t+yjDyRG2etHRS81zZrn5OMqv8M5wPUQCuefus1Q4BEEa9bzhyt/NRnTdA8GgODAQoRiUAgH9IAIBT+dOAZGCixJk2QMk22/IdfFaTlcZwnO5DUbXDCQAQaZSUVFtr3zRQu9f2ceuKRmX7SCPSaEEuiSrOgVv+sw5rOeFvt344XLHF5MNL7xxQyFMrWnGLxDxaQSNid43rSpTeCs18i1nP7dwiIkSg5dtyLlrmZM9WEgPBHeYd33XGmhwAxJQrTAg2WbGKaQnjAKXdVNSKAgBG+Y/syEUAEfmNKY56+vTVdRj1GMPLsUDNLYsq4UZR25rxvPov/racOlloFZNS+mSQmGnwnbfq76RXvzhNDsvfOqL4n3fVW5NDJyECQI9vn/Xqj0T0JSbkaZe37WqCCCDh/126ILWbmsLE5W32mXAgrKR6vPrVpEcPn5Iw7qaqXgK1Rvs1DXP44koyUuZAjkiF9DtZ+WB/msnI3VuYFPUPTT+QpAAPACSDzZomjJAlWr2NtkGhJGuABwgplBj0vGXVXkpiAMMPm+2mahyuMSk0J1cF9VoLZx3YWwua+Bb746x4zjSoZx3OVJKVYXORFAY8a8YcXkLxHOZwpggpkCshwXeaSshIHuJb+Quyq8CiC24CuSIAREKKAalWkxGxQE3CWkI+O29pNH9s6Q4QQj9Qqn83ZCWknE3DX7fuHlC3y/UlndS1BXF+3TFTCTG1myYDLdbcTcUfWTwxD2EDAAa9iskPeAfMeqfaTVUS+kEu6sKG+qrKMZMorLybylw/D1rcQVvkVRVgsLBB3upC+vVmOJvuaDBUF4FkfbGNa8/e/zRduVWa1HG+R6NOeTdVKXmc74G2BECipMbmSOB4Mev7hVcBQDzPK+teNDmbigA6fYZNLO639yPYkosATvukEYUrUx1q5n9pJp2WkHHO12G/8zm5/UTpMh4wo6w81Ze+FjOFGkeVcDhv0OErnv0a4oBnEEAyyp+BxT76tmdY7jCAS4HHM3ANEcB5XzgBNAeTiK2vsWmyObXeMnYBE8DMQb4xgdIG7Ze+EbKjajKa3Zihq6ciAEyEVxx4lR5wbK5XunTLFoN3dd14i7Mroq2z1nuI1VnFSC4CQOJkiT+qXuCi/ibuYCSnrG2a2UXn8n57Zq+YM5ODI+r5pJpo4tXe2I2ytQVfWU735hHR+2PcjHK5fmXNBSLK/xNjnI2VHBzRna3PyEGs2+8M34iBM/63gvm9+6q4cHc/Izvr/AAIlzsGbOcemxKRrNoN+9OsDNt7r1o0r/mvptf6URARXVqWzWHpmsQHZHHxUAN28jc/fMyzTMWqb5wjIjq/nYij+xibZCaf/9VBynYKWN/52xNERO/lZDOZEiM56Pkz/EOS2m30OZSXS0RXekMsSmcm5658CHTf4yTWezcRzT+Xu5etVUbyK4cOMgTp7/z+EaI3N/yncxVbq2xLbT/ldCWrNUFcE8jRk+NMTQLA/wBpL4BGK2q39gAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, the vertices A, B, and D of parallelogram ABCD are on circle O, and the vertex C is on the diameter BE of circle O, connect AE, angle E = 36.0, then the degree of angle ADC is ()
54.0
711
[ "44^\\circ", "54^\\circ", "72^\\circ", "53^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ0AAABqCAAAAACD2gyrAAAObElEQVR4nLWbfXAc5X3HfxsMuojUh4lVzg3xWuZFF5igVTyNz7XN2o5KljDAKnV64JHNuQ0+p6bl6DTh6DQXkTa5RikHQylnnGkPT2qf+8LJdMJhGpq10sKdk8hrkymrtPVadgsrKlgzk8rPITH77R93utfdu9uT9B3pTvs8zz77eX7Py/6eF3GgxQpcfcj0pPo/F26lQ30DJ++hTR7y+zrMesXiqWrgTipv/PfE1X23mz+7labTp8/cQ6GbrjhD2/uk/lXuH8F1bLtGk51Uxse37Ljyh+OPXfPo5JBGHIgDrVF9Q/d69938792felD2NLvf7iFLpB+Er7lVOhlJwPDhWBDGdQAt/Pg11gXsDAe77h5bSG+1k+mi6SzAgpHwX7vHVAVkJcBrqkIFzfCBdUEVAF5n3sPyx+7Jtg+4FLbTQ947tawE+AzmZQjkWBfgMywCCKoAVcDRIHQeigjc9ftSz3NtwuEjnTa7ss781kZx8s11289cIumER8hTv+rp1cj7PkdEhPe9lN9Ibwg0vh2KSGfeejq14gef+QMi4ohaNfqO6UoZa4N77+mWfENJj/QiieMkvULrLpJ/knzTREQcN9VLv+ijyT4aF7nxHXQwTMkH/2n3Pw4cp3Y6Rsf1aQFgMUHMIhGBKiAzBJ2HKiAjIxpHMA0e1jrEH4WUhW8avM68lw2eMd6AnFHvuCnX+hmLancKv4upApiXYSjDvAx+DT5D8yMTQSRTTBN7HoJpekvNLhZD5l6oA4Cc2PRHrLasS0hngYXEH/svQc4gkoAqIJhGJIGEjkhDYvMbSIUQizF+GuJJhJPISkD/jblyZvbq3HbardthFSvV4BkC+XQQuu6YXNcRUpPhUnImaFZW0gLV5ltKukcFLZwEBBVSFsG0lZFZtNoEtuZInEckgVgMTz4MJmjQ1wrqMtCx0M1PgwlaqReoAqBUxzuOZUxgjJ82eIZ4FEzQtA0Hlpzu1O0pJmh4PQCEk+hXETPtklm2V3oCwaOY5hmCaZifFtPOZXFPZwH6zbcDuQAQi8EQDNW5tdmyWpoEyBkkIoCUZV+QHW/pxHbHtmjROBCLgYk5pNsYtxqVlaBIDLEYjMCuKBzaQgd0yoYBBjkDJubwZn/zTuco1TQEAxnZuhxQEQ85pHJPp4pmVoIZ0KAJl5HOtr6jQRYAJFToggkpC7CNUp3xrA7pzvW+CiQi0AUTyWgHaBUxQUM4CZhSOhZrqFnLNZ0FUzglqkDkCWQ/D5iViA6UziIetXBeVMDW1xR0ITuXtmM3H4YpqhakLBKxTpBqlAkBmqjClA5Lik0ZXdpOTolZmKIKtlGF2ZHFqnUJyAV06KKC6Y8fLj+l/Ic7umQYppyGKarQlQrzIvgU0YS2TcV78tNCZUQfISLqm3FHp/kOACyYgCmqiyACUCqSBbOAXECHKb6M7PbKqH50cHZ+eHDWjW9cuF+5YdO059jFR1aNXXLrS9eLK36s6lIey/ae3/GURO+c/v5C5Hz2QPeKG935xjufAXKCAiScRs9OTGgyqIIOMxSa8hul0KnbZpCnF9z0iuyn/RnA2BYHMrYv/Q7xoIgmsp9KAUf8pcA8Ee2Dmz7LBM2Q79SBqNzh26sBqyTTvByVDCDj33GsGDIyCrb5QTd0d+0CkPXHGbLnloKuSoYQB8yQbBqCAQBs6wSsI30z7dPp6+8QVYA9JuQWNYRUqZKNDrweSAFscxcA5HfMAiNu6OQMFCGoA9riXq4OhNGABny96zYCMDc8CozQaPs1e6r7bxiQ9keWrj9UE0biwFFvz0ugYpcgohfQPp38XIiPm2AJvhOXqQ2d4j+aqOIp2rRNulO3AEaUj+gwjdapO9AfXrWHVXhc+ih3rQ7pgJngw6y4JrZ4VeeRCwSNap726SwABm+m1sk/ApBmWBq4qlyMUCBX4w2XY9qzXXAXgIwYSC8JVq1Y3J+qXFV42veN+c0DaQD5oLiUXACAMX+0ehio5rHaobOQC0AN8s8vyQusVqoo106GqcmVQ5O6uz/NoIf4xBLzmRFBqQuq5an37+xWIws/++rx3r0XUvmLSme+nMMC7JMDa9VtLe5srYwMmCmRj7a3IrGgFj07a/veaV6zdtpZXCbS4xGXYwnbTMU3UqN0SdJgNWZnQ9di+O/dQGI0a7pDs4AjNAbkeyYazWhG/Q4vRBu6uDeUvuz4HNMLKHHJK0TddYojPRMA5ob3NcQk/XGnrOxq1nw+6A2mHNyP7/ApHQDUJHPzmphaX1zXHqmnU4R9zpVVS1faxQNXOP7K2KZ7ZZu9yofMLoW2i2Kvu476+L+92E2Euc/dcqg6eDoy/ZRQ6ZP1Y0TdrmI1ajbsExJafXGkLKCnQjz/ett2A1DYPAoAyFMGWLC5xWL8saa3NdTsCBFRz0TxWo34/VG1OoXlfaFY5bqrZleq2LnhwdlKYJqPtciksd397eAsjvTNAMUivhkX+IiywAbzCtHrFcNxxZ1jV9g8Clg40jNRbqoVP8kF3dzwKHC+r7rj6wnRFypt1qgCYCrJqOhyPjHSM1H6AAALRjjgeu+JgKm+idKwVC0jJXcF0yaQDnbo0I1QccoMAGB/7k+2c1NDnz31Jy92X9gR/lpD/ykcP35i++f/8xkuQBTo4rZts+tkjiqlBEfgaOyP5a+tqgpyVG2fXUF04tWriTJDxNXf5bnvPjp+4vvXf+V6H+UZpojsvQSH55S/uMn9q7K9Dsccmgts6wSa1Z18/85PCrGGcaZ9mRG/UhPQrJ3Ue1Bnu9YVCo3leZzjOO4j3ChdVN+dP/PNDZ4bX21aSMeYJwfWatvsrNqO5naPonoMKhfsyOAsMJKBlAUAJf3QRl84U19URzMsRNj7Se3ajohotG6EtCwAc7sz+PuZn05AVBZCjaTsDaXbH5MzkTOypAGWiz5v4wUwgDEGxhjAmAWAsUuDM4UvvccYvCUjbwPAjO8FvfIhkzE4QpZJMh/jrmowdmd0C7/lnzwR/S6Ay6JSjrkMgLG/203iX2pFPKuGp5bvfo5WuoVzmFeAiAoeIioUipcn/gz59UTErSotEXtKzdnz24cw8oY08MQklVd/a8UREfIDnls++u3Wnaa5FmwHVjYhwHB562v46WsA2IJPJdbaV/1qvbtQLSMYOG1nT5e2owWsCh0DGPKD7wIsnwGLJKqCa2pfiwt8+KTNI1iM73TVoLFmCx4iIk/BQ0SeQsFD5PnlM9d/nOjsA59lnpXvFwon8z/81lMF8hQKBQ8VqEBUICr4o+qPhG9cs3esUFsdx/w0ed8iqrOuZkslLn1bpQU+juhBAL9O1CWKYtRpKmCm5JXVXr/ahp/Uru0qV05DRKr15gRLh7zyswYAGPuEsp/UiWdjO6+gApHH3rgvP/0y0cmp8+Ob4s3qYOyVF/ngnccPP7x/UVVZ66O0Prv4Dh+YunD7DZ/cXn96c8HlKLs2+W+fWPnl+/rdvEdb0LU+97mye//GXiLCO4Va63J135OPe37xQXrvpaF7xcXw1ah1UwimDSUeFj2+bLOmZEb8WQsoev2N7kJn7a45nQUAB8gnRg8qrGkjT/CJyi3GQdkbTFdedctEBwBQxOL3eWf3RPFHSsss1sK+azrYJafcDy2u6S55AT31AM+Haj21ygxOFu1cZysT8okJd6tqHayQrZV5PlRcS7GpKDPqzzTGlC6VCN8f0xbn3zWTBXxxpw4ASszuEEWT9aSi1FifP6LW5rhkdAByASgxkcRYYy3lAuG3q68bd1osAFpCuG5/ti0Luqdj3STGFIA9odRGGMF2pvfFbpyUvKGjzouEndNhTxyAEfXVTmDY1+v9JKvmq95WZirolVPv2UUtii4XgBbyxWu77NHSelIdkj1ZSYVMyCslm40zHdDBJ/pTALRw+SCfKpb9pHY7ZCld7SJh/c0d0Flf3AuwVMCfLJnPCAuKC656nYn4+0pef10rsDqxnSroUT6UAwwDAIv7n3U61NlKC+km4wIfVhpv7YQO1/fEDUAP8y8BWSFquuBxlJ7c5guN1QF2RJcRADXIP8vwkiQtYsWnTuVFwjJhR3SQY6JwFPjJmpWVbZBQ1W/lo+aPB2xjEAKsUggTg145GVyI6Yxu10oFYJ+7MlJVoVT1W/mg+qjGGItggaxyaCZMGxN6JRvXdJAz+NOrfqNmyKPS/q5rOpvo3MM8xbT6/eI26SzrdN91q1+tDezYdg7RMf/aR+znZM18++Is4Vf+bxH/3tWOOBDRFR8SEdFPNhKNrXmrjdOBpSnML8srTktzpKJBFgB8SEQ0v3vPDHD27nUt6GyMxTnOCB0ti6aXDZr/nenTq4ke7V/bgo4jolPhSq7fPF33GNQkrr4CyqnqilNJh7o9u+LXP7zynW4iumJodbNe8cFfAUB+cBZT62kUwONEPbZzQbfvsaaaG97XzlmekX0Apr4wCxRPw8E6kinuHyyrWGl3Ek3/2+3UyA1ElPpyNxEV3lr9r0Qf/vwOz3efc77DoUE1BDdreMA7RvlvWzoQEV343vBNRIXXthIRnb3z904Qvb3mavLl33XM2aG7NAQ3W8jguOvW/BcREf76MmdLxxHR/MEEEdFZ6iYiurh1y/hpem0L0a/d9uMmeS+FPE8c+i7R/J5ru53/UzD+pasu8ETnCEQ0P7N6zWf/Zf7nfqKFoGXUxqmDHPeJR4ac292pkQ3dk0RUNOTb6+jKA//8H2u6qRy0XAIR8eeA//0McfY1S3ThsIXctWuJbiAiotyvEvrZQ1uIiOjGZWSrK7kNHYgu7P8LonOf6Cbq/2CSaP7sLcR5fnOFn4g+nN66rHS1JDYDztxu6pmYGy4eZRh5AXmiwVlg6ikAyDceflkutXH+7vxtM6ga5OeGJ5bo3Gc7au3f5StHNizMDXe8qtmJ2vA+p75S+XtkbNlI7PT/nj2hI4B7LH0AAAAASUVORK5CYII=" } ]
<image>The diameter of the protractor coincides with the hypotenuse AB of the right triangle ABC, where the endpoint N of the scale line of the protractor O coincides with point A, the radial CP starts from CA and rotates clockwise at a speed of 3.0 degrees per second, and CP and the semicircular arc of the protractor intersect at point E, when the 20.0 second, the corresponding reading of point E on the protractor is ()
120.0
712
[ "150^\\circ", "120^\\circ", "75^\\circ", "60^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABkCAAAAACpnOFCAAAJ4ElEQVR4nLVaf2wT1x3/nGGmomndCVe4rZERMaqrIC00TM02b4Hitp6IJ6pGyyQyNVKpMppNTaW4SqVs2dRMSylSUZdJuAg105iK1GxhbaZmcgDDMildkMJEaEBcGGAQt7nSDM6k2Jj77I87n+/OZ/scsk+k+N73/fi87/vxfe993xMIe7h97uKtBLBwk4C3Hl/5lndzU53NvBoEO2w3TsYTt4Ib6r9eh40+gNevYnFmITnl3REKrV9ZtotH/pRp2dESsIi6cPpUwt3WWW+fjhWROtTk7Z2vlGKuxxM8nJaVgFy5NFZkk3rqOsYrZpdJcrT9kb5UVabKbHKyy9V7qyoVSTLZ/XCPdD9smT73QKqk8LIKSH3ugaWq6pVjG/N06bnkko9Svg7fxPLYroe2TlcrvRSJp1q1Glrns2Sb8QzWQFJEvt83VzGBFduIe4KsTa0CPnaP1saW7/ZXrmBFzHj7amFLh4PpwvdytJOa2jJl8znMxmibL+HSzJp9k6Rh/dQDzVdsWq4J1/Ay9FGgaTTkSpRJYmSbc2lTZjmtWMh43C1WY5PJlH/5mhkw2JCxlBdXHAr3wk8OL6OnrPDDxTG10LL91hPKr4xq5FLzgJVYxzbiT1mlWB6S3jGWdj5YEE67K66adlEgmFlnYSM03ZJPVLXgtWHUV9pUGltoaGXJyP62smwfNa3YCCm05VLgszJsGe+MPuHKYDKwZJKodvIXu7YByzOM5bHzawfUWWacb6I7XVq1+4fklkh9izkAEIPdLuvq3R/WdwwBhhYjSWmdotrKdhtJyW0s2AECQ6+6QKx0twFY/9J7MGhHMuWys/NcFkS3YTFwgPj9izUdVGpBffAPhjDJxkRtXWY3rUyZYy3KVwyIMOoAzv2npbYK2zrzARAgIHLhGogrgki+J/gdwG87WeMAqSHxqo4PIcAf3Q/URzeB9Na20sQBRO0nnw6QMcWGxERw3mO7GyiTUZCsgS5fJxExtasdOG231wRAwJvzBBB/135TBhML2KS2/Wqc3Gk3IwVMviva5lFynN1+apsWduDMd+zmFYD3o/UAsGCPC8LC8y23z9TjCgAsnACuuu33OIk4STJSod90szHTu27/WmlNOoY4GY+QmGypgUyESJJxlNkLG2lHPJ3SZCMbZ7RxvPri5kIL20A9/lkP4LmoDRfJ2Z/cPf4MDobhv7QtpNoDhxioxfxH3wcWhOj+qgm/fPW7Pzr7DDCxEwHdwApXdoiY+yQC2GnGA+7eNElKdXkeLe69VktP2NMKACDgEzvJTrz+WKIBAJAIroI3pUgpYPXiQzWw2cKNN6Z/vVv9HmsFHlxUvgUKjsWa3X4A9NsoE7K/3LJFLJDhTAh48L9qQADqrE9aFl2mYNLfOFUheszblixK/+4jmfRq4WpOvBL4gOYSjgLmQg2T+vCvukimXVrYfMqvhos3gIwWMq6rt6Pbw3M7lXZWIk7sMLV73WItmiV9/QFf3bRepDnbRtx7U0aP2OIDGRpb0lPLfisdOETymGu2NGqm6RtnzbKJZpKcf7LI5heZzWbtkWWa3yYpc6SETur0jJDmjuwaVOpRZGucJe2Ryflwt7KR4mGPYXeRL5gOEwLTJJloKbKFx8msvV3b99u1z4OeL9QqkJwMhEQtoIPozpM0WC7VZt4FnDnAiRycAHLQ/wDIga/fGVfCOWd2H56f8ikz9sa+87/ZpU1fPeKhVQBwuUGTOPxzAACn+pdzOnNAzqn/AZBzOt/+x8d5p9OZQw65Ndj3yrPXQCD7063Nl3ZZz5aT2wkAFzYXRZMtSr9l1Z9sNmsUkCSzHA6kdeIs+TOfRI56266Xa/h8nTLcG2eK/XbVTWYpk1lD4Wa2Y76kTixnyWxv4HSooZz/jMpOkiTXFAcQ6DmvlJg1Vt3I9mfPvEGcJbPprcI7hXFhNcj6emU9KUk62PLXnBMAnDknAGcu5wScOf1PDp+/8ukmLZxDDsjhyOZvvvzRnYIJs+i2REgAgIR+v8pDhXFdftbNexJFBWSZJKeavj1Ddjamy+qWqrtDkgwfK8rALzxK8vJk13xjhrBMqdNzlCTZEcyUm6rHwiSLY0VlU04dltZLKeffgcNGcf6Aq09dFfNtwXLr417FuaTvNoLsGSiTXkGm8R2jYMIfFrWq5NtCZheMqqtq3Aylg/LsxkpkSy29hqYSW+sNu7SlcNhMR5KFo1PefVXPJisnYQvIJJnf3aGXZfrdg3mdAiSXwq1WLrKhvSSpnoQ1NpIHOy3ZSJJ7dUXJHPW0m7w7JJeCbXdLM6pDcfeImS31iNWKKpNkX1DXTHNByw0QM0G9b1CpyR2XRFJeMHowQJI9fWVG8YHGotVJdz9a6lFX8mWaSlpHWbbZNWCQgiST1k41+ai/qPSwu7u82znd+LJJ0ttHkpLLWDBImewsVMGg47hXG09TjcHZkng9XUOPUaAs2z0maQWP4ZRnTi1eavdUvOgiKQUMBUsP5al5DM1s7O0qyT/rUYfEvUF3f/UNtRTo14UO7ybJdvOlYcHT65kxRYhedRKP+1vtnER51TdAranbD5GM+83zvrAxP9aUp36xkjYqZlds9U/IVbZIcoFOc7vn3WIlL3bBQy+r/9INB0gy0+8a0s/uyrSi56CabjrACh56mUx6J4oVXQr2keRRT6ekr301zHuGZcoyOdSl3j6YMhaPOMrNimIcd+0lORNssjQdJSgWOe9SDFXzOGfclW5W9LdGe9rIVLf7kC0uA2ZdIyQzazLKrVEFNu1GrDe0xGFXz7Kc9rOuUXK0pfqNmJwPdZPk0NOZqYaW5d5C/801yq6hjt2WkYajaco/TB4OnG/bUM10VMCU6zPfaw3Wt9Alt7Sjj/faMR0VMFG39tEy9kB3lqUA/OWl3JrHdz1sva+3CeFI8ncd+N6nAOIhY1Tx3E1hcgEvfL7W9wOX3XdQRhL1997xpdMdwCeROOPPmV2Lej1Fkunw9vu6QUo93ab0AzSXXxE6tmiEJJl/zX+e1OasXNtdgfYqIh61cGMW2T6IF74/9EzYeCtjiVFtIYwBEM35NTYxthDRKric1ywyeU/3miUiMiaYh6bGFqX4plaTZOGlTk2qJQLFlzpihCRiZdhiMN4p/NH4CskGrbTHN1FMGPuAvCzETWkcildoAWTcrxuqL17+6lM//7J0fFuBAP711hb/pReKCcefBTYzZE4qa3rHYkYdkl2uXpuOouSPXerrMWWdjwMAIiXpQJJRQGSk9HpGeqNuj3rDX6klj7e7+uw9cbDx6u+t+fJ0Mud6HgsetmsP7LxoPL5Y7kVjIlHbi0Y7N3e8eWJS/1oT1/4/rzV1dxK3z12UTgHiTagvUTf4tZeo9q4uAPwPNARqqXl4jbgAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the three points A, B, and C are on circle O, and angle ABO = 50.0, then angle ACB is equal to ()
40.0
713
[ "100^\\circ", "80^\\circ", "50^\\circ", "40^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAACUCAAAAAB0YhKNAAAPo0lEQVR4nMVcfXRU1bX/3TsZJgmRFMEolA9DAgWiBBPUCAjykSiJtLEiAVyiXQSqZT0ttOutpxWptLSvVniv9GO1Qi30PRGoVIsIRUEhIhBAIhC+BELEUAGFBJJM7nzc83t/3Htn7szcO3NnxrXeXsCce+7e+3f2Pufs83mRiJSJElCXN1RLpEJy6tiQgOC/AUSK2GmBA/jFwAEpQ6cLvqb4QjriaYG3dJTmZf9/ga+Yj+HpyKcDvubXUv90sNMBb+kgdw1KBzwjdey5W4FzxlNqXZ0pkCC5CDjBmcDCVBToJCUb4aJNTDW6AWkHGaQRYpIANzyUDljK4NGgNP2bKiXX2oUM4FjDZ8ePH80bmJWtNLdMDuQ0nQj2ue2+Pt8a0jNZ8CQanDdTVj9+d9vRvqNvLxxwOwDgz7Wa+L8ufXDm8KWbJ1WXJIfuvGOoa0ffWrH043B3a/dvHrSfVEntn8aXxuVWLm92rtEeXJh/u7q2zyqYtT/6/d+HLI6SOvDjEeWvXNCFBeNTPMuFJqxSHP1J4azNMcUi35g6LiaPDXMKaxsSwCYGJztJkhfmlK40lymc3FDbR7GSWzd26jmtOkiyK2lwlYqGdP6Hha/YMW2onb4ttkgkWVcw86Ke7BRkh6W4bT+Xgx4AHdKTT0w+Nde+vX53vZ6IigP3npk6aZFXBXzIlgLobo1hqzYjgC4cGlzyepWMgB2TNHGPdaRRMbOx79DXIDyAcNvIx4lwLmTc8+dd8/IAuH02POImd4tudGQRXK3AU+dP3nUEaJdtA6FddbaTa0s3JegtG2r59Ks2PApJ9XTp71UGQ3lRnLaW5+CFtw5OTTyOTHvThscDQC482PJwkytkaBSnLfhHD/VZb/cuRATG7LV+pWoM4hdPzjhk5MWUMsZdmmveKWyjZReOYFs7l2rNTvtQJkjyWM2vLJ1u5XYlAGLFptO5HR4Ke6MNK+Q73rcf5CUAGP6a8iwA+GK4YsA7stwILLvyMjpyIMkOxryp/7DMpv4Xqur6jyELAoBHgT8BeA66Aj/tfD4HObjmaN4y/LLPykGS/hcuV7Db94bNAAKZ6JYAPICsh0tfcHsB5Ca0mwBR/laC6VAGMG/+Q3D7gWtR8jFt5JnNJOklGQwPDta0di7Juofjsum9/KNqsj1qqI0ptLQitwoAsqDC5WiKd9encdlcBIDW0dXzkKNXY6ixRvMu++pFAEAAruhXduRuivtaIoCemF36XPSbMLhWwRsPLNE1mnNtSB14HaCn9rX4hdPNneteGc6jBfh7f10HwBctaEUEXHIQkHDbzrjYRvnlF9fVAV4ACBiDkalhdIkHDvByVICKR/WVJKnk285VzNpVspef5olF2HIXfJnzp4zCTfA5mk4TgOQDIDzF+xJyu7ogA3vL4TNNLMwNzrMu8LQCwGP4WmKcOpcASEEQfnxnQ+KCZgHA4Ht/7vGa88P+rS8nGX84MZMg6yeSJE+NSMyth4IpDfSG8sxBpmI320i72Z4V+L4KCpLq3WecibTx/GCSbNceTW5fN3iMkgvAZrYX40oJEC5KAOQhuxPz+wDkov/8/4SKnLDbhWZH4RVnxTdR/STtd0elc5lRl0JJWWs6BB5fdKMji8OmA0aDHHzVudjip0Pjiz5iS/yweXak4oQkAZIeLPp7TjoGfzCwHbk6uKRBSctfMKMmu/8w7nXnvEt+ZqRkAJCIxkuT1FRQdarZ6IyPAIry3gk9kuwkp69jkBSJI2qIBEP9nCr7tztvcsfvNDU4ZOPQhRq4RKgOnZCZU+aEzc73Z4b1OKWtn/R+/od5AOyXNQlKEID0wIfOyy3++zFjwCb9bOvn3Glm+uB+I5WchtLmkNvd2FKdrMm64aEAmXPrZ5otjuTK1wEAZIAIrHksNXA5tJPmuvefWnESCwlgxpsGuITAZ3elBp6hhpIVbyYhV5y9XwcH3qhIDRvuoJ4g7nEc42QAs36viZG8ozGJ/m2mxrHh9IR9SehoH2g0uLavilKMbJlKOD1tfRI6cr55RPfBobtTQgaRYVr5TdmZTJQYfUAHf3dsauASsjvDT/nK9SRkq95FEDKAfeVpbl1rNH6zQ0YCGPVJIAMy8GXL8K9lC/+RvzpklADkdP8EkFWcG/g1IAO4p9EZn+blqr2A7MKnxV8PeNatJxzUnnHmXHwckIHGIV9HjYOYutVB7Rks2Z8jKAMHi1KucSki/eBWh2IEUHQKGTLw6W2w2920EIqTMfywQy0S0DWwGZDRHuwJjzNwCWAAAIS+xxd5PCQ/+E6sjIUWAshC8TnICGQ6Q9Yl3VDhlX1yCwC4Iyus3BE4tAlzdgdktOcmGWJkZMMj9QOAtsj6qvzAsSoJvS9BxvXcJEIMVa3gCgAf0D1yYy0386IzVQQ08Ku9HEMDkgsKAGQC8ABXciJfT3YYYSUAvVoh42qPJMB1XJ1EX9OOlR9A1RvO9XTvgox2ZyviMBGokyTpR4B8/nw4uxvA4n91OFbjViHD3y0xYwRJWPxoJ/3bfwTm3Rz5pmevFtvjmCiiDMi4oT1JcCze/3k23L/d4PV3b4ca8apmg+Otw9aePhk924CkzqLrlvyXnvJsAeRW87uyrU7PxKVghkdGTofP50tmQP/jwqEAcA4Qoy80Sj29AKgXfmSLw0gNeLtDRrcuj9PwCgAIHpsMANg2PVt25ywGsn0wohYw+T2neq7fABm3fIFkvO67eGQQANS9Phcd3+id8zcBjz68SQAeW6WxJVb41Y0A2YteUlEUKopCKgqpPYZ/QilFURgo2kRFCZQsJEn5ctlVYy6ukuTVvoL0O5m6l5wlyAFdCrW9P8X0x/TDyOznKxSexUKFJF1c832TQkFOqHe4bhjYTpnod9bwqAeAz67FeAx//qxXplRwYhkAeG/E7JMnAwC041YJmLQ7zpGUmbzdAfKZVzQXRxoaY7mFdwTdFKdvjzDo2ARnhteXkzKQ3xTZOmxMt8iWAEiFNUvMeb07lFhGC2q9CZCJkQczAcDj8wDw+HwewOMz//gis33wQf9DAPjJui9NSvPyGhyBHx4OgLxcQJNrnVB4OeomyddmmV/+bkGiMymS5P3vkSDVosupYgs3SfKR/zVlny90tN7uf4WUAbnsfdo3cguSIlIq8Ku/tIaz+/svO9BxIu9GbZVatUmCx5NMiDWTC8ivMJ0bofpNBwPFxmqAoOCFghQ3JvQ6J1nSFs7b/R0HghPrqZ80FHyRIrYB3tlg2h/x9nEgmEvq25+PbkrR5QZlF4/Yes2YV2QOP5qIX91eqe3Xk2wcnabl5JW+oTMcvvRsQrnqbaTuduXOU+mCc+UCQaGSgjw+MqHcwCCpu91Tk/huRiKq3dUUkGQVEjCstTUB89qJ2lSPJNlUnEp7F4blgiQ/vlMfyFU+tCmB5B3HGLIc+QPeTWGNLpkTaknlcu3oWcYj78SbyBANWfoVaa0om2YH6eDgNoZCdS4E/UVtmg7li9L4Uov+pP0aJ4olh8lA0tjsFkoJcmOt8VB61IZf+Kmyq6/+ZEyzl7wcQAYcTkLCZMRkqhLw3aMfAhAAJtfb1ZQ7IGNR6AqB4eyyeppuUDmlmyNOzveX6/btmWBZg4IUbGfoUCJ0kLu5hqSjkdhMt34V8bhssfbb9c1Oe5ln/xADzulvJwlMkoMvhtMqVZY1aeWv2m3NL8jmktBTGPx0cdJ2k0PMQ5JK/qNaS65YZIksSN63K5QRXtcVVi4NPThewETccJMFvg1tT6h8Z2csswSJWN97XHguairZbeeTtrwgdB4d1G/nllwg2cb+bVbsgsoIqkEjoJhXtH+cG7XaTsZylxbwMh//NSByUblde29mFpDw+C99ssuIjWFwFWP6r3f5oCa1WI9mVZ/efxAyMFWbIphqRUAWeHXIGA/DFhoe+ZL0snqzlbPi0KBLEY+CZEMZGaR/oNVs+MqEs+bHyFthn49L4jDYApwkuWA5Sd55LGqxqlCLZH6GwokJ3Evyjae0k2ynlB8FLkh6xzaT/PnSyLFCkN6lKyO5w3XuywLwcN5yVzIn+NGcErzI+sFzAKrejtgWpgQeORx9ahplivLUnktJjKwWblfJSfWkUhT9qq4mmtUErmEGp+9xjm0BrpI8PYZkRfgqvhAUbK6KuQpjtly/TD/+kLN9DWtwsot86Xly3fxQjp9k+6jY5h976faaOvaoIZEw2FuBi06qY5vZkk/T7kxT2dXOkHn24GTzrFcp2tjFxFs7VuD0k2uqyZLT4bJ/NNZKV8yGoQoMWP3eRqkHMgmv23G7N5Ebvtnd/o7xe2RtIzaAMys+VDrcsROlmOJ4SfIHq7SHRHMb6wbHTl4uU+omG3kNJVfbNdWRF85s7rcrtXOssmM6oaXbSZIvPqvNLi+RP52mkrwW24BswAVXTvmcoe0K255v3c9JkqMaJjQJlf7OquVefWYcHbutwVUq3DF+Q9jrwqYAdparZMPoZT8mWVdSZ+TEKLHeoZbhwcT3dzym79xTuwFmQfnN1m1OBkaOubYLrUuX7LvXyIlVYl1yzeFb8n8T9qPlgDPJdrNTpTqiz19KXiZpntREqLDdm/cAXVOazt3/kTHfiB1w4sw5VMiQH7pl84EFUAK5xqSN0SrsSq5TfWXthTiBztJyheR1fjmn/G2hNZp2C6tJmwYnSF4jFaokVxU8c9m2tdu6vXPhyFUkV0t4IPCcnbSl2yUAPXzwQAJa55wZVvZUADGbr7FOD+eceG5o/t45aJGPCK5y97WtHesyCaOTaTav6VHxP34ydpvS0vKNo8teJsnAiIUk+cIWO8vj1rnJ28ee6PPIDiWm2mLA1QNPDJhdr7Gt7tdJkqtP0iZKxPtSL0rgbzNzpi5rihybxn1sjv9nfzujd81bRs8KjPidrXKN7L7OpBR5JZESpk3rOLxnck7+qBEFhca63BMAXICSefzKJ9sO9656csU3tIFQyNBPggDohxixbcuqs1p/4itkALhw/NTho+eVEnlQ0eWsjk0VeZ2+xnbvmeG3FE+824MO07FyS/8tU2xMiwduUYqAG1CNo0pCOXzD9oCnU/iIvM7R3brdESN6tburdN58AC1HpwCt1t+sJqiW8Mcf2h6EPyLb/rJqkBSrsYXc9UAEfwSl9Al4dNHsaCeAH8Z5n/Qn4NH1Eu8T8ESfh6f1CfgMSZbkrfYjTMKVT1oun7mFu3AiZQ1pWC4heGo84v2PB0xQp2m5fe992fj3hd+yhZAS+T11t5OrgTScnpbbgW0nuHqYdt81pU6TDnhL61A8WrQDKf+vLumA73gQuHgsHyl/D5AO+LZJCFb1uy8NDSm3ll0AgCQ+YIml/wMV08rVVK3txgAAAABJRU5ErkJggg==" } ]
<image>AB is the diameter of circle O, point C is on circle O, if angle C = 15.0, then angle BOC = ()
30.0
714
[ "60^\\circ", "45^\\circ", "30^\\circ", "15^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHUAAABxCAAAAADO/rN2AAANf0lEQVR4nK1af3Bc1XX+3tNiGTAViVd0BZtsMALJVUazVmKsJo4lD56ywQaWxHShI+i6UUdpnIwd223dVoikuEUZHI86KFMbtcPSiMSdGDmZGlBaAWsiF1vOoBkjaTNjEWSvJ7OWp7BmZbLS7rtf/3i/d9/uPnt9Rtp377n3ne+ec3+dd+4FXZAg8zEgtPT3FG7qVyQZLkjCBc8ZcmhZAyQ39SuTq7Ytte4iyb5Xr4umrnQl8JMPnyGAxjt5fVSVKsohpNyab34bxPUyL+CpWEMCLk7fdR0hAbgcTYC4jqDuUG9rfR8SkHz9OnWrCwsDuGFX9O77cbz/dSEBEDKAUxfOzFxC5l0AaLsFvqagf631FVFCH0qAm9EEAOJXncCuH6rphTfefGt6zR/ee88d0o33UgJOZTH32xOp6WDnfZ0rtBfK2ZCSO1QDXT43PDK9cWPHOlMwJf15Ih6Pf3HzEwGtrABZrSdkUHKxSgiSiiDJi+mh9b7tJ0vWIsm3erzrX0hrjOLl83hCkKSbtUmor79347LIsUJRQpi1tMeRrTU9c86Scq0JukUlSU5Gli2bL7n42/nzvXXRBKnYaihU+P0tC4J0ufoD5x5+8I5PPXAAUtHEVbP2JaT+Hz9o3vjYRZtsSYb8UuvvtJpu9Mz2efcvrYmlfBNW5VRVFFKxa6W9s8/7g7zdCMnnkyFSoXBl4WOBcEoZ6CBjbfkia5amuVDz/+htVATJPbywS329HKoqPtsdGKVIehMkN/WTToqVoKO+nXkzFwOwS01W1HU2uDVNcsvTJDlXN+sek+R8qD2pp88/Lxh/nqRSGXWkYZAkD7eojR7YoKG6NXN//ZiaSD4g8ow9r75aAbW/cYIkP7ztpFo93zakFrhSWZDKr/yHqCjsA6YZAXaV11UhFe5omycp2NOjs9/zXnSDp2GSZLLlKYMhNG45XbORTRlBCp70pfWW8B/CFomu6HL7N/IFrDKo2VCXWjvXcljnCWabR64CUSHJbDictzGcUPNqkYh0aXX6Q9bi8Yb0VcCSJP87bPSQKIWq0c6QtiTM1dnX8m89KRRWNrJCCirk/HP+Ld9a1WcrK4na3/axlgr120dsxh83t7Hd6io7bEWz1n7vG97ts+w5sPqgG9Qjd+sbjD5VTTr22ayZ2f244FL4hLOUw+sbBzMkoy8l/aOWxjihKuRs/aSWSfveKaoQ2WPYd+mhYR7IvGhOJ9Pwl/pvf3BUTW49whO+pCnAAVUhs8GD+tvmVDUrzJubz9mmi2e7rIX6e5NR33ZjPGw5RvavzxuFzhbuiegAJ32XHcZNLKhb/RAA20hRF4LhLzUezJjMjjiphPYaeUfUkYD+Rrb5FcdmfbVfBVh8qI+HhgsKU//kf3hMwxdCkGw7TXLeN6Z3rRNqNjCqJ/vCRaWCJOe8M1RInvW/I8btQ2lim3dnodvUMkVax6UTaq9uXya8SYdykhzoECT5QnuG5NumtsPtzUOZoskcOEeSDO0vjTrrS+nJjoESoMy3/yvJpYf6FPLQKm0Ip/p8Xx9TND/WSprEOW+qJGp4QHeLVI+lkNTOmfImSc1Re5yCCie6fLvnnFesuo9IUrAvWgp1slGHmm84XXLdU/QuV9QdLB9raxnK6stS4e4Llacs+mdLoIYNq0Z3loCkIJk1dyKmnvJtjdsbZaVsrZ7SlC1CTfj05S7u/7iwUGuyaoCTvnmVdbLLuzdpqWCHVATTdXomrQ7PItToPpIU+kbqZGHdI9gZJbkUa22JZR1qWWguoLWX3L2zCFUh5+v0T6OnH9G2qiJI3QXP+MeSvd7IeHlIkrONRjJVt1CISnJAW1SV0lPV7LUf3ryyN0lScfT+TZoMmukHY3ZUhSTbX9eSRVO1UG421hJs31EOzKDx9Wb6cMiKqgpN+PMkKYypau1XxZJL7vV2jXPeN+HGcxvbZGnsyqTlm04WAPByVw0ASBf3/HsNFHuISchGMOb4o2tvmPrxl1G//y/yLoIzH68w07VbXy76pmvWvsQje1mSskMta2K6vUP7KmpKDlt34NfXFVo4dZNq19FAtrgj1fzcnpVdJy2W9iYq2zgWtWQytRnFbuG3NtQAxGLPoVo1mFEYKxl7tP2mmR+vM+3u/962ymG3y7fSlLRizQlLVEgGEN8IQML32u/X4l+GPAFgYWj1U+ELT99mk7gdP6qACXyyXLK0rDMum/2qUO/WKW/Kbl+FJOe+642eVtM2i/7Ge77Sp1bf09bcaLt9vqZr8yS5TvNdTeGCo2HfvpRz//VtqQDKnf9izWVr8gaqIHk6SJIH2wulZw42rh82m1FQnG/5aQXUHpsLzsD7RhxRAjDdBOBib1wyAmaAkM89958P/Cxo9DKlgsEj/dsj93nLDqilWlrLV5+xRmc42wRwR3eLhSdee/BLDTMvBi0ghTLlex/7m/KjOHOLrbzpfdsqET6iTlVjdGQGG79i7t0KFedxkzGdSkfa/F+27FDUhvqFCWYDo0LvuNkeb3SqrDidfhnIlCvusPkZHOuwWfjKLextv1+bW69+tfPOmRdXlzUdtHXkTzY+ZaSdLHyTLbtiEYq5lwj/3ITmlaQHAx1HXKmp0nyDcyhVpZZJW89MtkAohkfCuv9ri5HkbLe3e4rCGhEtQwoFebiljBcTsH8LzAVAwcVcTm1LzYFOkiP3BZ6bd4FmopJkuM+5VJBsSNlY816Q4nEAOCZI1CfS+wObjhS85Ao3uXJKjRY54NbZIxnpP4Ag2fUa38YMiUi39y8TbnAc6GB7yaKCTXx+JUgurc2IczjDV7BqIJ3LkWQut6g+clpNNaX9Mpdjzi5JkOsHnC2jmE64SnOfA8n4LjKymx9H65PMkUtkjoqW0qTn9D/mmMvZYA2kkl7lR3W2RnC6BYL8DwAzOTLXPMNcLmeI1x+235y1CXbaFypikSQ/8NtR31knS8CrUyL2R2fzwE0LgMfj6mDJabX4u+TLxSsFAeVGK0PGleUycP5yk/RnrW9C8LPnASDvLLYEWycJkF/cc6noZEACFm62t+ODO2UgvtmDi2dWecQNnz8DTz7vATx56yMPGzuPPLS/Alr72C5VGzstWBxTENLM52XgtfuQ2+zfAKIxAaoG9lgfHgCWvMfjgfpXQET/+KtaykrZ5XbdE6sQBwCEBHPkRNDVEliG4n6Hzedo2L60Bma1r2h1Jmp+0zWRov5HtxcXvRyxZbM1OVlVmjUeD1B356+dBoorkgHIAgOvnCqycM42hhFf69FQJQkCQEccAAWu9WhZRt1gdLHQy0nfakftLPDCN8YBSDJcnkE70debni1k2UZTASoAdI4rVR9iD/5ouoDzyTJrbuHdLxeg3ub/tYTSnogr8j/Trdg5mU9bO2y8bUUBqrT150C1lxS+WTtoZ3ziscL8PAzr96uiUCQ+c+1zx6DfeO0ey5/HrPPGm7Sdv8oSpHvq36hKTwBA0+5uW/6KdUX8RdBvH6sSID/5k+pR8dcfvmTN2sbwT7uAolNfNd50FaedjnTal6K+3wt2xM0oaqouw+IT7vpHBoEqpisAQHwxugPQNj0JCzeb4vZvW+GgqxZHLPFB45qyjUfNTMukkdTiiEVKNbcfAiBXpyxqh76zoM1RYuFTegoHtvhRoKsgSUWND1/zjqe/2N2jiqMRCSdFtmR82BIgrobSDUZU03TCS8fCRcKXKmJeA400/54FGB+ovao4nnH8bcSB6ZaE8RPuVTnZGr3s/h9oc9IJ9fe3j1bRsQalvOontxEJP7y65HmOIHk0kBFVTh2SHFLjrnN+VYVLPv3SRqVzuupow36SnL1bRS17TidIZoNahKgajQXn6uaY1yPhz643t7MSp76z3kmSrG7bE8r+DmqRcGXcd95UotRZ8yt3qTclqqNcW4wc6yCZ9FuDQ46oguSzbRlWvfdw0pviyMNkutkW1HNcbyVA7P3jRxW4vXRVkoLd38Yny7G4ZWuPlV1KrIzBFVFRhQOleXzfnz6av1F5rPkZNa/tCGVuBi6GvbGaa4fV7gIef2LbR0kcqTEYAKUK92DUk7pqdlvRU9fQrc8F/f5N+ZtG29uuJvDkTImaDQrJCCDBf0XlVbjf9M93n6pyII/7/0o9145Mk33+TIWbRirWiG+wGkz2+8Y4SyrMfY2kiOwgSZYOfcgQMvBI69b40K3XOpguPZk+fTvuAmSc+BwAqWkCqHD3VSaAu07eGvzltaHiaGvz234N4c1NILBKFezqPuJnwinaDpHLrZRGpd+GGscM7lLbFZLsU68Gurt72evdbxlSTuCFl1yZ3Ve/zzz7EcmdJHkex9yjkrPhOwZKBIAd9c70+yLnrQz1TmAkpMZF3KAqVMjJyMp9toBrobdhyc731m1LaE1SG5VrnSHPIyQq3SArwj4bre06pooyrrY62fjInxr3h/WAcRwAJM28V4MqSKZfKHFX2jyFjvd4vzKUtjeDgkJYQ07Cxb1wIVMCQElAks4Nj0xv7Oxc5zTnTsTfiq/d/ETA8ibAgn2LlK/2NjoA4PKbbxyfCvruvecOafk64w78/6amgp2bOlYUVdeabDQDUHc68xa7i6d2if3UhTOJlJx5FxKN+/7u5fw/kc+Idx8OhWcAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the two chords AB and CD in the circle intersect at E, angle D = 35.0, angle AEC = 105.0, then angle C = ()
70.0
715
[ "60^\\circ", "70^\\circ", "80^\\circ", "85^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHIAAABqCAAAAABFM1pXAAAKJElEQVR4nK1af2wcRxX+Nk51KHF7lF7IlV5w21zEBRf7sB1qKVbd0FNrREApNXUiXJSIqAZMVcs1akpM3ApLGNGqkWKoS0C9ikJc4eJKVKkrOeRcEkjlBjupk3MbJ3J0bnvB+cPlbFjjy378Mbt3e3v70/Eny7Pz4/ab92bm7XszIxFeQAnAJ+OTHyeAizMAQhtxw9bQpupSQxsbSN4okfrrcCK9dcPGLaXS528HcHka86MXUydC22Kxz0oWbIXFrigJ8ZvJ370+X7+tPmLS5FwikQg07t7optt0i6t9VaGOpF2LibZg3eE5xxe5pUy3lTa/oT4r+gqlID/Q5N/3r8IGhVDcUqZa/B1pd31LtfrbrhgLdwFAaEFRSBeUisLMk7d0zbojJMn0vsDTspEzSR4IzdMVJTkYbJkVqrJRWEFturlsqKBq6VskuavdHWUqFj3l3C0jEpHter2MtJPkgQaS5CqHCf3ulnvH7vaydkXbeyaiNedyORyLAcCdrhZJPPCmdxEFBgIDmrKXqhZI8qftJBV7xWZbwxPLZSRHQ/vUp5l2kkxJR0lSsaOca6hzXthmUCdSuroxQ5KM95JkkxhKO8qJcEvWfo46kcrN5VOkslSRJFNoUOusKYf8vddDJ9Ie/585IibNUa3ekvI9/5DDOnSFh3HMWGRFORtepoyFkMtvLs8YyizWZXbX/a0eFqMlHt+0VPnd/HK1W5dtsexKCNkfyYTO1nYVFppTxsOzKzGQyeBF7nglFRp0pjwVSK4AITPhfoVdHRwNFBgUE0olFRoqLl0Gdv6I5GCMHCjT23gzKWM/XxHGg3VZkik/yc5GO0qF/dVZOn0bXeBEMEWSDEyTckSnt2IpM6HR66RTSHK2bFjkYoMkhyN5P6F4XT6zvUaCR++2EBKAbOMP7hO5mtMA7qt81mRdCl+IU4HlfT0Mgu7TjDj7t5NkOpBz14oUu7uLKzCQQ+Fcx5MhkmRbmxVlekWEnAqM5Z6zpWkq+hfnx1IMX89e//UMo3jTYmN3NJcriY5TAtY/9HzRWJIkZ/0uPWRbtOzV51p7hOTrMkYpAQB/eHD9dQuJF9/p1WejYwCAjVtfA8EiKaOJ5cumzbmxwFRB+VhYpIP1Ii2kHCtbPqOGuU0GC50tERrNBqZJGhX78m4vCjS3Fzsfur+wYtWXzgAASppfUn+nR8g2fnSFnvqij/vegyI9FSFpUGwyeN2Mw7fPFtmR3t0izZamSYNiR+q96fVtSZKeKCj7sPmVQNF+QXRcpCV1CQDQURLHt3mhlLq+s8ClYT3ntZ0dW4sbViYXxcO9xwWRDkFPQylitxE1UCUVsq3JtGVkVKRiMPWU0wEvjCM4T5KJ0EKuqD9s9FkFHj6sPvjmWDiWU+Ve9NrXvpkEpvMlF9teLzVtWvWu+rD5AvRjSUxu8sCYPReDJAFvPbxG/fn89uct+lxzRm0Sfh/A6ly5hKmI016YDumzdwDA20eS2s/33rvTom3lxLUSABIiH6BgxmJys3tGBCsuAcg+1vYFteDFDw/CwiIFPn0BAInIeQPllc+5Z8TqHYeAmRtiz6vdPPn0ER+ttgxrTgOQJIRmDZSZGz1Q4pmbJWlD8jk1d3VnPAQJFmqqHBfp2nkD5bwnSvyRZG4H8ZHvP2DTVLM/pQtGyjVWXwdzHNv85ZPq41PYb9mMQM2oSjkP5K2P6/28PCJArXgaus1hw22d+FTO+fWmwMNkLcLlvW8ErGsJoHIsn9crVojtHr2R6LMAsbijM2rTTAJQ808AQOZG6k0BULpgbq+scF9SvPHxu1qcmkZfAQDMl0rXJ6WKl9/5rWObynGAwPxaGKTMeOejNN5xyufYbNPclfUSsFCKQimDH3mnlOa//RsXe/glYmXOBFTKxUXx1Y5c8E6JRxofdNGKwv5cuIuC0gehmfCEd8ZfXO2GCwMiCZf9XNgwfZYh5ckXjojPkhNqTgPAVEQLEGRSlmV+sE5WKMukyOaT3JP6n7JMmSRToRMuLdW1kgxVR0SjpExyXZIy1T9dkstofBpntq7HVfirkIye0NwtvWIXvzoCqFOpGL78g0/NdQafVJVqM5hU7c+7QKIe0I2lbxHYdhzw+ZxXmYpXB17SqGwGU62KjgMJ4SeT6rjIlJNBN4rV/vTRuTNORLkkAgSQ2hSRyVDSbPqIiZPLy/+VKcv8pKrfAyMzPvkdEQatAnx7JEmSjgJAYz+EXn36xAfoi32f8sHnw6NbmtyOAACU3vHeEfUHJLnrKEdwhp5C2r6o7G2vpunXakgrEcje/bc1lzaeqQBwq+l5aMFsEDPmo1e/dxPgfAqsw2Q6AUDM2L/fswad7RUEEB64CmtHDVCXg/SfV795k+iBa0ac3aO9gowDUGOu2TW3Xnajr4ZOLzolSU4FdJswbyUZ3zwJAAg8WvnAVeeeP42f0Zs3CPyyVfM5FKYayKUK9YxiJrC/et7Jig1t8HCCqiLtFxtqI5OrJBzbrgU1BG7bvrp2xyIstkdF4czeP9k4dBbo2eMHgexjBLkryf9VaIGpMhWYa2q06S0p1/Z5ljG3OfrMNxYgTqQa8pUdLdmGFjvFtphH51YQr2rqJknGX69agL6cJJkJjmZqTSak2kTp/6J5dG7LOByWSSqp3lSDIShQSLK/OjsX+ZXVj8eCU8VVTtC283/MVDv1MYmGWA9TZf0m01YhM2FPxlyFemgRB9BuEvooTIWGmAyaHs8oTU943wRXXhNHM6lecqTX8gCKo8FTogMF6Klb8szI0XUTJJlqIBk3o1QojtmGg+eLarTjFk9Qj9kOAOe5C2g3p2RbbIkDoWlDVbrMrUOXfxNl3WGi3R2RbKyVfCGis2uK6tB5RvMOw+jYHgx3V+eWoEJyX4NFYzt0l//bUGJ2mEiSnPAPka0x3ZWWv1js0NliMFC0jO0O+Q+ROnN70ZNDp6LHX3w+YHuVoTWbbWihkFuOHva2IhVS3l1uYqrsL2zUz+XM7e4W46UpR8xqFza0LjhTMvvD8Lm5yCFSOHROfIbq/LWUQthQKiTjwaFUWT85FpoSBe6lfC04YN7afntJ4WiwOxkcmi0ztbg2yHaWTVh0z81Fqniw3lxFplBIciTydUv3yNV1sar6a7rXOaPouphXSv7D/xlvl+Ju6TJeivNKybR69c+NkKlWf5v9GajL3Ukl3Vba7GIKDTb5n3JSiBOlEgcaln5CcravOrRPf3dEMd4HzF3jtNeGA2UK7WQKqiuf7AgHm/pMj4wmehsDkf2uPDH7+7HZ6thzALpqv6aVzBwbTnxct2HjV9bi9jIAl6eljHYld70a+TkEgPaUL3e+vwbA77cURJ2fnEl+nKBkdfHYEZbyK+RSufcLXM5W0fpOpQRcOXdnvmuGnhp7rvuZQ5zrdI0Txp0dFmYB8/xyKddXXIIEzLzp/n1uYKv2OI6SI8vxsmxgO33IEQDtK8uo/B/b7xVm03NsAAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB and CD are the two chords of circle O, connect AD and BC. If angle BCD = 70.0, then the degree of angle BAD is ()
70.0
716
[ "40^\\circ", "50^\\circ", "60^\\circ", "70^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHYAAAB3CAAAAADzkOtoAAAKlklEQVR4nL1bXWwcVxX+xoqYTdXG9YOTrYBMUyjePJRMIyGWImVskNoVD8kGVXFTIWXbB1xRJDYKUOehG1qhukJkTZ6c9IENKNX2BTctitOC5HUSwjoPsEYg1sbtOmlV1s7D2qEiM2PDHB7m787Mnd2Zjc0ny7tz/75zzj1z7u+CusAJAEh/2k1VCz3oAj8/d5Turn+3m6oWuqLduPQtbB+6B1YgrnkMIlocWKFz/dfJIOP/ZWQBwPTCLuGT209AgNClst0YeePSBVqcONUlo4kuLLQ4sEJ04pGVLg3clZGJML1/JzYWd953D8pui85n9qOAjUtHgJPvXrg/JhUxjiBQzEokmF+uPxGT1YPItJsES/rofRuUr43EoYUtm0WnDb6ibV5aNosI1wSh581rb7pp0V3Kg6VblZXFP91x+khJDsh7ZHj9xhZh4+m/rezED79znUmL27ckLL0/M7329QMPpfb1OalXmvW/LtWHlIwcrLHx9O3f3w+o37i4i2kmHmojn5NGykP9TU6eOjUq9w5P+pPP9f+BiGj9p0xaLNql1/bKEw2i48XMlD/PGhRa5WxypMYk0PrBo8xTfNq5rPRSnYiMUo7yxfByzQlZZlS+u78QLBOJ1iCiWtZuq6qoNDHSdshzCxMt9r/cJS1Rw22nkW4SzaZdgcKIK2b+3f1HiYio+ClTPhKtWkg5wqvpGhG1egOF/BLUlGHT766hQLR+8AKbGYV2Si6ozsOhSSIiI8lzZR/eSpkesNgP9F/3ZHWmVfOZujt7OTlmfgZdmWPxVl5pksHL6Rgc54d2X045s5e3GqPml9R8sKgAJhgTgL7xQ4/+WoAbK93Y1EHXUnqOEbaq2NYu5SJM3yrKgcfSozxTdKAt5FrMUyPt9OicHIFUqeSLNJZRg3ntaXPMK2dYTmxCFe1UH+yEiqJUqJQjoillNRatmil5Wj7Mhtu99TBCIqJaVqk4fVIdbDgljI60qjLlFDPIoNExw5qQG0SUnaTQaGEGKaMlW3Q1peErEU6rZpl3xCAqDzNCEI2OhVV0IqNSsZM+lFuO9B1ocyXPYuOPitczysMdSOk4M1zUlJanVCitT5tm2menms+VDYfUEnUyy2ZcynqkDqMt5j2P6oGqr4Aqsh3rktoP87LXOpNZYnwhhNZv0uFyoEiq7rRikR6S33ZyHXdy4Bmi+bT+SmOjFHBbnyTM0EhkOboHqsIYjE+bK9nfDCK3m4Ki2GUaOcnDUygw1S3U97kWDNIaZAYXF7U0J7zR5CGn0UZOKnnzbDkZWoON4zxtm7JnMG2mG7ywUB+wWnVJHTHkFqcC+yLzaF0TE/Gc2IKoekndGnLdIwXZQtUd7+bQVtOeR44Tm5BrXFKeO9lwgkGQlh1niPUcP4bLflJTPd8r72lbWjaHgyCt120ns6EB/0eP+TU1iIgqSiirK1KQVq4xD6YT+3kNImrm+/fzGg5zJ7OWKi3zaSezDIk3bDAjQzMvFespTtueoMBBMc83MqusmpnmmriZl4oqUa9XL8Mgg3Ln27KSKjWJgrRWz5pcIxO8mhYpGemgYm3cyWrULAFfquX8TAk/6Q9MUq5U9syyzaSyKWnk19ZoSqpTZSrjl5RoOW+TGhyxrPDWfiabmQrQ0sSI87WebvnbaOZ3m6RGUC7q7E4mysNBWre7ggNmKy8VNTahmTQ/bcnyxSg7rmqy5e/bhuRkZqa9bbQKu+0+dWZyXlf2jVuhyJU8ayABuOLsTecPDbG7PKunZMwdT1jrF2uxI+z9B7MCqp6f6LSeMqFc8e9LXVGsL+PbX2CSV089jrlX7H0Zcw9IALDvz0yZ75USEWkr8BlZsvrT4yytglRwvctgyluubBCZY2mEniUikhqGx6XsSajlxF5SDpghMny2HkS+6PFkw3p9GCe2SEPUcLcSPJG8E8rD3hcof5qIrBfaII+m/FbtrYS/yxo3n4+a7KXNTJHhTmjVsXDzuhWIiFrpwPKvHdQE9bB7sPUUBJxVjwOANp66U3ulL8wdTVhbCc//OBXNiU0kdi1tY95OrbkHqFy8CECbOHP4xq7QijYG5gDg1JcPx2EF9i6wRq7J1uRAHZfy3g2gEIepponocoafGY58cRtghx1hrRerz5b7tIkzh2eTXvlCdqwH6sDSyel4ugI71noA0td19bTZ8rOFh8f33pod99o3ZM+Z0Ld9Wft2ua/t/j0XPYAgoueZfwFYTh7/5vzAR9VfJBntCKG6CqB0NfdSKrxECB5aMTftz797BIB28+N/Zm9EM6+VmfrlF56JxQgASOjbAODDWwf/o0Ncu/Hib5K6LgLQAebD+Wb9F3WIuggScN+N38ZnBQAiupu5vf+6RlQ6RqTZf8wHeZM1TSNNI43IIPUmf0+xPc7negD85I07//4iAf8FAF0PkU90v4jWk4CEBHZPMaqq6AHe+NnuRzeQ0LHjDgGiKHauZ9Z1/8dkXX2wBx80Sbu68z4AfasAAJ3fnN8KAoCNQz2CEPsgV1jb0fPB89/XxToAUd9GAkRdFwFRW9dFQNR13XIk3X3WocP8e+MzR4iuvvpmTJ0JAPqr6weBR1ZIqw90iIU+nDO3xE/EvgoxMuHGZI0M8W6cyov95r5IbFojXbWncLoOCHtuxbHV2QdeJAI2FmNZGATh5sM2rSiKQKoeo7Za+cpOQQBuVZ+MdW4tYFVNeiasqYUYtT/5+EsAgLMPvBiHFcDCXu8RhTwXo/JnPy8QgKunX90Zh5OAuX2CZy7lrkWi4Fz/daITuNC5pA+5km/plYo1FTsH4Ci7FR8RvS0vrdHuoLIN4rHWZMPbt8KBq3G6ya0XtVcBAJVBwV16EQAMzmpd8UZitYX73ZPMik8AgAflypazLteH/AtN4divtorW6YiLmQQ8Z3wGkZpc7cqpYiBdJe+JpgAkMhe7G7ojY2EtjeAtk/wZ6vrKVyScNW/u+W0Qvhm8KWhKKhFnz9F/rLTJyI8Tl3Zr1bWU5dBW07HnvVFgNmlHX85ZwVapaxA1H1ZDaRsp3rHPpsDRiHMTYc+R17fo5bmsHbZjAkcmNbW0Jbra50NcbQmJiWNbouzYQXdnhSuXdTIYe97Ag2H/Z09qeLQG0WDlnun88Jwchhwb+04XNwPuuSKF3qlJjj+3yfOMk5lB5inswuHg2tG3N5P1dYyyQ1voDaLsUy9s4sh7fmHMvvxqIqwrDOegexMw9ZTr0ERE1O565fHtr22Sru+UfRv67a5pje94TnPsfA/2Hr/iZ+1wmfT8O+UEcy2Vc0E1Ak5q48GaHTpFjrUq4qCVHSMy/MGu06W0ulxiH2PHyqrMHb3b0JoUau7YPQy/xcBNKRNtXMrsjkRp8PHL6M6l5gc/em8PPyuCyI1MppsIrb6UqoR1S7Q7rFNSoeU/9OqEkvRaeOGIV2fVglSIo7FaknJNCpcy8v3k1stSnu8enLJFKde+bGdaR2CtKKUnOpxHERGVh3vznSwTWVvDIKLqSO9wqdGmg1uTI72hl3AYRLxpbx3ZAHjr/ZmEMvhVznuxOnt1pj701HCHkzKQ0N2PN+ZnZmZvKckB2SWYWZ6fw9eUwXSkBkjo+jcjM8vzf1l1nhTPrwxYAn7t/wEIFYSBLg1UDwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, A, B, and C are on circle O, if angle BAC = 24.0, then the degree of angle BOC is ()
48.0
717
[ "12^\\circ", "24^\\circ", "48^\\circ", "84^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAABkCAAAAABLQPo7AAAKR0lEQVR4nK1af2wT1x3/OsxlZdbcqdfhakeNiilOQ7N06bSoTWUhMmEJJoU1IqSkWiYFRVVA8iDTYPVwu6E10tigVaTRomnuygTTMoWujIIIq7OlUqRsMhqmToXZQh2EkTvNzEEzd8d99sfdvfvpsx3lozj37v36vB/f933vfb/nAdWHO5fnbqWIrt8EEb+OvM/x69t9dZZV4KmHauHPF1O3Otes+7qP1gaJ8Ok8Lc5ez0/zm7q6Vi8j1dyv3itHNkXCDklXpz5McT0D6+rkgiuKx9v5kaxbjkws0HmiJCsvsltOV6pCzNd/1rUpMgCM9z50oOhO404l54f8I7dq8gAA8sNfjBWWTFU+wCWKtpqrNr1wgEtU3DtWjWoiMGQkkm0BO1l/8PwSqD7tenqmVtV2pJq3seY5lHOkmg0cboBBhxQPZqqnOlElufNVGlYTv+fGG6CShkMuTauFWf5A3VSlaGdJCy+lX4X2nrJzuSarrnkmmPIzrVWnxjFi9fTnO/5Zj2I67x9bQk8UsL6M+lNO6WaqjJ8tjaUMnlbwDJdzpZKBYmjpfTLhcEvZ+Jokioo/NFJJXcPLwwT0d2uVAnnaB+RpzDiAsS5puagqHQktKLbuA4BD5wxUyVDRVmTJyPMTUDqV5BcBIDlHUGMww7lugfVCE6fZhxVFILSOqZGsV/mvuOvlhjEeLAJAns6pEWwJf3fvliUsWBe88NLLbO2alvCp9mUTCW0IK+EPoA4gkD+nDWCZnzXmWh5Mhu8BSNI5YCrK5mpkaFlJVKzpBoAUEe2DRpXjSm5FlgIZGF/xhYL+BgIgYyCx7DzACX7VyzFDJAFA4eGSnmO5cDj8UaDAlfRKmwhEo7v9BFra/lQNeyZm/rdh9QtHyaPKOghA0V/zuNgopN6uMt4YRo7TVXwTgX67vf7rRH1Y3EbnfXSlmdZ1/oHYBQRAW2qZp6nUMQQAnSngTITFEpAOwoVKbrwR+XACAOAvAve5ea2CJqJ3BuAiEZ6GZWXuuViCiGjByxE19f+aVQDwy7J5MMwGTiuByQgAzIS1BEI2UFcNU0S0v458k4FJKPMxNgQAkk8T7yaaitQzKolddyFe3F8z3+/6399MynzMNRMRVnSm2ADueKuOth6KAsAUf7dGvreCWSZGkUkAwOuaJicE6piqKcoCQKoWVSKc1184Jcwmi+a5GjQygL59AICkTuW4BIY6DBtE0a8GVqqRTbmWGqPvIUhXNxMR0YUdq7Td27YEQPd33rjo1yOuPqUGmq8pz6a59WpOF7LCPx4nIvrLqUGC0woEETyLUc+fjOaZK2E1LfSJSpUL11bqgdZ/EZG0d1+zYz54iDx3Nm04ZbrWXN+otJPCrFfhGnsHiD7X/SbRgrfr5+TQfaWfNzq6x8zxmZAaCF9Vi7Wla4gFAKCPiFRJdTwCZ/kT1ih+Xg2kIsqTQk73ExdUgpfs8jcTsF2BSz52zm1Xnk2LtS1tpjE7/OR3FqxDfqH79LetA5vZoGXy3VWr8JWt7akCpZE5Lj/WXjGnnA6k7dlPDGihPK88a5nOrIiOAoM9GrUMAGNBJ30TO6KFSv4lUU00S4AUMVpQ4i0FJ+WxmZncSn71JuJbrJtHRuWxSQAoBs+wyMEO59NqMKcUMQxgoJHTUrxXeV7RZqfSs7WiVWlqVXklu25kN6hUoRwEQaiPKcdpivuscnkqd/VbLzDqFM62sRgm7L4yeclbU+CJiGjPCK+Gtu7efo/os+efeneFJY9H+V3dqKhGIrqrLqemwE372qmCM/MjLPzK2j104/mdv6hWNhMm8ijEC4+oVOEcERFJokiiKBKJIhEpQfYgIlEU7sXGZFEkIoFEkX6ZPti5/wesI1bM6XvTNS04NggIYD/2Z3hAhgAI8V7lXRAECAL+uOKQeYZMCOr6ruekKhaTEXPNgmCngiwAOS5vbM5Z/u1AdfVZ0QUQbbMq1TwHCJABQa/ZRgUBiI6yaBnCSf5vOBmqegFMt+hhbcMnBDJKdQJMY6g/ZAACJlokCLIWfSx4XQDiW6rd1U/2sCA7xjQh8lfRS0TkFb1E5BVFL5FXNDw8IpF3cf8bK8griaKXRBIP/uajx0mkn3hHHCTCIhUpds7EcVUDwHUdx3vBJl8a1Ayh5RbbjqigW9+/ouq5GoSPA4AqZNWh6wmgsr2b7SLza6Yd8zPzr6wfpLXrQQ3lFB1lwXJkQNKlOxWYdzgSVh5gk2i8HiCWcCMBAEyEWdFC2whgWEhvt5n3VhkALjMBlPXaCXJ6bS2mSnBSC86vP2JJHO42UQMAxru1kMRppxmQrFxQXRHfoTU4zSf1tiv/pa64rUDiFS11IsIiCcCxAVteE3SZmA7Y3FkySqFx6zW25yQAGTLQnTRRFR9y3x6ZTJwNaPImG59ZbtZSoiXNWqnPJAFA7IDb3VqRCRlI8mnnHOeD5rZKK7XVMPSqHksAkHezZjGZOBKaB5yvOz/rMJ7X5ExIDRX8hooJkKGbsxzq+VGvEj3S5jLMA/3Gt/FutaqYzZzlZqTLcXlAhjQQKTs3BQBwr1NbAzKAhOrtKXDG1tU0PUZHAdmkjBxR4N/XX/rVFdFr8rhpBtWAVYhUKDJR6hysZdpNP6qfcdXN8FLI5OjUDren2yWn0VFk4nZbVf+XjnHmEZBWlgGgEjab09k5umsUsM9FvBdALnhMeXNbEjISEbXnuaBStsecg7Q68ryDST/H5YE0f7ImEQCgR/XeTGwDmEnfSgVojgpzfdFRIGVXRhZoCrH8tOKTOjwCYJazeixd3S8TYQkTgZkaTDrygRSgCKDifqlGZXMqVYKTOME34k6d5nMA2qdR+UbClmiksrrK4r3yaHgejSAZLgO+Evq329NMN7nPTA7AHJePtTXq0optww3e6gB0oDK6NYHoT/u/qZWo26oqRUfOdtVyawIwOWsnntja466MHFEOvfis6qy1tM96Fc6EhiUZACqPNQ/as9eBjx98wvksb7t134lGSgDwPb/9yFAPis9sq2KeqPa5wEWPqpXlxnqmfi7QR0TM8+dApVWZDJy//EBfA/XrGNcsQH3nNNOoIxUATGUB/P2RB/mG/YEycD8ezCjtFb+2iDxlTSNioRJbswCQf7alfnXEkAqzD1am9jErrBOVDOC1b6nWWctnOHXMV2GX+hmODCBJRFZzkMEw6SF656s31Zfua19qfu3fpsSqABHdPrgx9MkWlvVCFsnmOXM2kw10YbH9y6vUsO/19K1137/twmBoxsLeDZXMqytJMyzc/E+YdrVecqF6c5ie1N/443NS6KULesur4b2dG325o6tZlwiT24hU27IBhsFMkuJVNaB4vJ0/mK0+WTIysUc7T1iPdn1ZCK1W+7+BKj8mY8r+bUd2JBToPe7oYsiM9XDhuE0NTRERUdQarX8fuLD7A6J3/ztsHyDcvDRp/BSRbrh8iuhoiFfGVqNK/Jiy4RdPUewo9LyG4J3Lc4UPiXI3Sf3Ack2IfWAJc+3GV0P4/0cM+KTVrVlhAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, points A, B, and C are all on circle O, if angle C = 34.0, then angle AOB is ()
68.0
718
[ "34^\\circ", "56^\\circ", "60^\\circ", "68^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIkAAACFCAAAAABKjYRuAAALpUlEQVR4nO1bf3BU1RX+bh66qJsu2tAsJWXBhBJYKaFgRQETapB1EjBqqnakQzITQRtaaImKI7px1CG2cYgdwoAwNY7MgIKNFqwbDUNScMCCkzgkEppENkU7gWQ0ceM0Mfv29I/33u7bvF93X0j0Dz4y7Lu/v3fOueeed999jMCDtybdwVVvNCAjrMJW+nZWExERDbomhw0rXiYkGVJ8pzqIq34vXVdNuXbPWIvEmAnSzwGDWSDgYuWdvvL+747JLOD8NIABZSXXuwueAgA+q7IHY8WdTwuVEhHRaXfI7+9JOftd2QnY0I4SAMD655xAyuY/jKE8YKqdH99AWQDQOFwCABuDzWPKZIJJ2Ut5AIDsDwEQkpodY8rESCbDdwWnZsvXDgAMzDGW5mogE2L4IlB8SZUBBoBJRePJhAHTYwIgMAYiRgqbsYGRdlSaYExiN3YkjJiMrTkYQocJi/6nAo05QRN/EocxVw43k7HHqJlcNqWNmsllU5qZt7cHsslu9HYyUj3MppRGz0Q7sD0q35+5M2o7oU97j/Y3YeBjgP3ciZsnLUnxjh+T6ILc1ljfcM2NS713s1uvBjB0Eu1d/s+Gs3OXpSfcKePzB+Uo1+R9/sae/y3LyfFoCjqPNh5zPvqrHyVIhS/c9ftH5hz3uUqOG9SOENUXOfNPSZecsMmkoyCtZtBoHCk3tNN9/4VILG0FW3Pn0voFS9vXOIzmq5TrXNf+s5se7wXvrLbBZKDcm9z1x4mxDIr9kjrL+VRHePaLQ5zdJs6kbmZX09YfqA1dsXomh7qIiiFl2+nTMxs5O07UTirT/sXXRMFx906uegn6k6FHzpxOTazJbSfyz/yFQ/RmVUiT7M0Nf5ggEbDpJ7/I79d2lwgTFt+YoXVh/uuOxIMjZ+28RZ3WU8hUd9VgOd9ukO0kEnDXJuKqoogQ7XU3WNUyk0mQfUKRV6+eIic/LXqvQCMoHjDgoYOrP7OoZcJk2Ld2FzB9k7yY9ebtyVI6ThyLK/IGbDPZ/eVLAGhGBgBg6J5H8wD7EfRDBfeLphWM1+LhucVPyAEAsXJ0hV9XSmw+pa/M2GbW0lgmX5xLR/SB8JsTbbHNR1tECPs+2GPW0syzye2IobU6qWOU+zgMzncXzcw2rmAsk6mzOgAgeJABU21H7Gp4Dq4xWw7NnMkBokAOEZE/yzcnlLgj0aBgm3GZWfT4/gpg7S4AF2eVOIdOBCYaV+VE563tLqMyrjh2baqA8t8M1I6aCdZf82cYTD6e+KT1UBkDasKPjJ7J0zVBGEw+HiZbNrsIlLTvkxdGzSS19FmjIo74pLFlPwAG56GlqSW2OcgaKZvZnKVfgUMmz2+RXUlK4Nl3YdffyxpxbnnBqL3lzAu6BiNK9NiScnK0E7nP2UOkF1xYy2Tfgw4GWRTeAwVtfCLQuXEpy5X3lkpEKlgzea0Yse2ZnO2+z7mYGLvk4hr9fEsmbeFb1B3f9+TyPmsedc16uUQAkBu8aI9J4x0ENZV1hSstn6WGN+hph0lrl5DdYI/J4WWylSh9P5f5oHnIA2yZlmGkHQKWHbbFRGzIkXuI9r0zXGreZse8/xqWMeD2eltMzrhTlR4gUxIOfuI3axIM3TbZaVI+O9xlh8lnXnl8BQxwBN7cpWTq2EPlE/ipaZ/eDhtMqH2uMr4KrsDWt6VMnVV1RzWbYd7pTXaYsLZMiVF8tufd3zbqMASA4ABRIN10Schs05OlORPCea/urrP3wK9bdVsEix8HOsk06p7bnriPZei9XtLCyJLF1Xl6dlc2o7EZd5duXmfWq6tfTyZWUUH/dTKlkbjnku+kNhKsrATwjkWfyV/ZWXdCyUYl6x7wqZ3tkdnzP7ToS4FzQM+KrJj0Gz/mlM8rFGPOd/255jJOJhP7EotjyTChoHrCI6rXcvwBlH5NYybSAK4hVWIEhP1tT0cT2zOzKjmZDE3SyzW1WGJIHjRUDzHH4cVuZQ264ywnD2DwOiMmIiDoNmHApD6XcqlT6goscd+rKuLbRfjqBr3cJACCAREA+OFXhusLAKQF1h8zLtUFoX+SERMzzGjV92wKMt++rzUmCh6RMLRkmDERRRGiKAKiKCcJgCjOkSJoxkRRrgWIEEUo0dItNXd1JbKPQMDZTDMmgvxPFAQREAVBiABhQbixjaRqAqRsESJEAaKgUMl7xtebABMGC5kAgChAkUm0VfoZ5YajtiRAUKUIJatXfpOQqVgwUe5REOLMd+6XF0ka0AAMeGpeoZjAllfbVdrXZBKTkfGxnJbcuLC4gcVla0HY6Szm5gE05ureWBJkrUAQBQCCKAqAIIriBDBBFEXfUYhAJEnJFiBChPwHAGDA3v88yc/kaL7uJEsC4tUhpWQdJQlC9hEIACKxbEEQIP1F4Th06GVeImJjjm5+zGJFHffGgMwJH8HaUSQfqXqDk0n9dP23ITF/YtSy6FXimBmp75Ud4eFBeLXIqIhj10LvLa0GJ91N+tsRUURUuxZaWO8VeG7ez3Oz+MWelV0w1SMDAXt9KXZlQg0ZgzwyIarJ6LasE5IkZ0smyL5pJ5dQsKbE6s0JUOnLMiriuNcWd185j0witDFXNK/SnRIcmXVaNi3LnWFiwMNuQeeEgx4eZPtMu9LuDPcvnvLyHF6ZULerjEcmRDSY+5gsHh1EqCOlT5td5Sq9RJznClI36m95xN0wAMBR+8FLgP4MIoayLTrb9hs6MLMaYKZbIQqGtrnzJut3PhLf7F7ujSulpKgBXHjrd/pxak8gtM96j5qSCI6MT18Le6ZN+0n80FIi3tSuW/PXa2dILKLFcqv+NwuNA2ZrO5E0/sydi/69d51XyPbXD8YVqC6U31PuU7o9hby79YfoKXVVJXASpnh1hKintmwRFmw8qOvBotTq3R1KSm25+Rv1+65ylfZQAkwGl1RIl+EGf64jo2i3cvw+JpuIcrnfo0N1s0/3044+b24LUQJMyqnHcziWPlVV6E4prDoVzyWKyqzQyOy9mQav707LvwmcP2lRLRkRIurYXZThyPU3hNVs5N+y3BGnmI6ndVgMkchJmPfctWomRBHqPrhxARaV1apX+ggR0f0PxLXnOOFgyiQAYG2MCbV4KnRqDdX7c4TMkr1BtQzCyxX7jFCENs+2kog5k02TQ/TtrLWRKBPqWbJ6UO5+BD6qzHelPbC9KTr81wsqlEqhAp+Ok1dQjQragSYzJptyiIgCk0NE5C+X8gaLFnRTJGYVcU6lZedqj9P3fIOU7M6okYqCc0rD+vQlnM+priAzmQTQrGLiV7Irp6r9lqbzC/tLs7Bk8+EBomDaYSKeE1OrKsiMSWSVZCHVI5hQwF10QetY1QgFtixBVun+991BChamNRjXlFBdQWSyFofPLQcA1N3jjA/tV7R75j/Zb7JPQc4Vzx2jqik191712IaFCzuyDWtKGD7SabrunEcTEVFA+omPY7tLXZUGlhsnm9JrywwCeTUe/9Ibqo0Yy0Q6ajG8YW0WNKt/6vaPj2e8NqS9UbXsBnbd2HvuT0aBfBQ72MLr05OnM5O1eNMvKXJedicJnkol5VRqhFYBwAFrwZj6k1WANH10mRBdqMz0FNVoImSijt2rPd7t3ZLuVh1QNGwBroiaWNyZ4Ziuzv6zvmFi+lLPTCxyQD69fKwzLJ1eJgZgeP6J5OCM5nlWSrJ3epniXjG19jb0SSe6sUB7orvub7twt3sXxxAm0aP0FZNOqKr6tokYvLjd8EUoQ+crr6Api4OI2S4oUw2pkVzsSKyJp2CEumaqnt9sttegvILgfIOgGUw7Osm9xp3hDX49Dw/PqjN/bmcWTBI9rMXkXuPa/cOnHIyzxBh/DVG3AsO+yb7vnEkd+/t8dvWUS06e3drL//2OCiuiBDhUPQ7fqnDuXo8DE07TH5fvd7ikMi5MuKTy/fmm6QoTLa4w0eIKEy2uMNHiChMtOJmMw/f6nEw4H4tGg/8Dqgt/tOfmc1cAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, circle A with a diameter of 10.0 passes through point C(0.0,5.0) O(0.0,0.0), B is a point on the circle A major arc on the right side of the y-axis, then the degree of angle OBC is ()
30.0
719
[ "30^\\circ", "40^\\circ", "50^\\circ", "60^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHMAAAB2CAAAAADe5fOJAAALl0lEQVR4nL1af3BU1RX+7kMXh6aN1EWWsna1rHYjNC6BdnCMbLSZMbZpu1WcyEzGYocxM8UZU8aOdIrxj+KYttCmldE4tOO2Yo01hVYR1hmUBdJK+aNLHUmwBF2JygJWYwOT3e2++/WP997ue29fsu9t0p5J9t3f3z333J/nHEF4JKkAAIf8EeG1qk6K5xoaUvF+CADSc5drxiQeC4UAQKmFV++YBCB+2/i+FqqFauCTxHsTK6+ch/+fPCEEf3U/rq8RsDZM8nc/E1cBAGsb3lrk+d4FydQ1AARrGt5LvFd5/769AhkBoFaJ0iOpDwsMswPYSJKq6rU+SeFRIlKhkIqxG9VGXqsqEFIhoJjmj/xfYEpAQgIgASg8BkBAaGBSegV1hakAChQAQgAE/vmq1NABQFEUxdua8SDP88PHsq8LOXIewPxG4ObAsmg9AMDjkqmOSQjIfxxKHcituvZztwKRhcDuOxJXFw+9++7h+S0tLUvhdUo5LQf9K/XvYEd9aF3i7XKKymhglCQ5uqMzuKBzT7mqZHWqxFSLFvijXf6mpzL2QrsQKqWd3L4ssOFNSy+nX7UOmObIzkh4S4aSVGnlINoWyWpJkuTo5tANg6SsAjYlZolkcUeoOWk0a4JUSb4S7Y2Om5N2rYgk3EE6YRoVB4K3pWxJJoolNjf/29KXZCy0p7KcO0yNTrZG/2LFMlqXkiRT4eKG1pw5nUxd1z5WM6ZafMS/VQtZ4MoBlbEE18WLJNVy14pb/L3mKegF850V8awpKkuja/qkwkV1Tac5lZLMtDWf8YqpkuTuQL+Lddbez1xblz1V3RrYX6WyA5/F7vCx6ohkelGOE80PVaS/HvzR9ONbwpSSGpcTrWsm3EBSxvvIieWPVWR81B7PucI0aLxpg9vjPx3Ikeci22mf38V1LdN1246ZifSSknSzbzL+S5JjoZ0WREmSm27IOtZwwsyEfu0GTKeR4DjJzOJdlVlbI1NPXyvmucgOD5DkPT0kObIoad+pVG5dfsEV5kRTb7mSGxr1j5Pk0cCQHZLcFJtqImmYmvRyrfe7QtJJklzXQ5IcCqQr8zvjU3Qc+uamkuxa4wVSJUuMcl9wpKJA8fZNznMR5WF8LuxuXVqANzwoVZIcvKriXOe5YFKWu2fB1GuP+tOuFoiVsvX6okiEK1fHUMDxmDEwZS7a7x2RZHe3xofat3S8gqPem5x2QRhD3qMJ0zOr2fqs0cKKStm09jm0CD1tZFGWbleIiST5QLcR6W6pWB0Z/1glqDG2sT7vaBqd066dKsn17UUrgMqeuJFpx5QDTcVaXnUkyZ51peCau2yQnIwkp+AzFziisgZhkiQ/8o8aweJt6+03xFfCFdNIW5/b4zWh6fRImdFc84OW8VLJ1Tvt5UGShfAQWSub5PgVBqOSEyt69HBRv0ftiVZiSjIRmwEiyT7TMI1HjNloNBi1H3UgKcMpzohyi9KlsMyGElbQXU0OmKnIzCCtjDITGtRD2u2XQdumCpJdveV4bSOcs5xlI4FXLLmbNllLg8zVVx4JXukXcZLSuEil/ZYzPB20LheQg7EZQ6pF65Q4HEjT9KhYvt+GKeM7at6CSEMaiZhFKslF+hmuSpLb1llkBhbrspzRSiFVshhOWdoYDJoENhKwFAePRLwfJzZAqmRitRY1gBOhs+X8wIgZQkEqVotCtUyK9t/5wasAymrH7/yg5RwMJVLsoAWCbQMz4bLMy66oOaaSW6ITeoT9HVZ51mWp1nBam0hvb7l9j3vwZuMMHwma05Hxu5w+Uk7fM3VX1J7d1aaDFueO652TJJUTS4U7FaEQ0+uIlW/jz7ak/vpOFQAwp+EEQOotKG8tcz+FKKZVJm75sWrLfjb3XS3wpROgEABAQBm+Vg9VId1iNCWnEvj6Z3basue88MH3AQBfeAs6ogAQ2093JGVVwafCJolqwYlVm0lyMF7S9JDKJ1dUZVEj6srbaSi2+JlyRCEA1CV3bwOw4GNjBASIUIb5ybwrRjk9pyqZChesjEryTGQHmY6SZAcA7CX8WdINpHoIuq1hOmp90tpLksyEBngiTEnKtXtlCsOom6iGqQmmJ3hRLTRuJLk/Eh1yKKVSJdMLJyuzRoJ7xhaTUi00XeAYhgUIFHwoAL4C4EMBPgAFmD8UePjoSz6KA/e8MR8NJxBcp9g109SMSn+4+iuVqvKzz37z5Y8FcPClrbh78TbDjuQr+OAr+FD6K30uFRB4bcswIAoKfAXfHACQdlChLYbYsysrbaIL7/7NZQJAZts2DDcAn9LHNq9/8vm8NYEkuXYjSeYTwYt57l8aHcpPKZB4n8NhnJu3iKRcOywTOG6aQ3kThAkzR5KFppdIMt+xUU5S5kuZDpQOjlcmJm9YQnLsa2Sh8XEq83IF20jY4wDO/n0JJoHDz68XrGKYi7b+3CZoAMkvfxrAq7cDZ9+4Boim83qPdRY1pssfqU6ysPTFPFlofCCfl8zn88xPMj8Foyf9H1WkNTwRk2THMAuNwYtULv+Xz2fulhbzlT9CuYyX3vnEJfJ9X2ufzyfg8/lw6WWwVgOgG87C7X2wbFgSp85/dr44KJ6/XviCp+cBXYbMp+i21O5uawEcd6MHlDzpt0lU9nf0mFWuSsNJQAAFBykCAITmEPB7ktdPf5QZFL5zi62JP33j7QZzQjLGqjcTWb2ImUr6G51ydWeiR8x8Ro5jeusgAUFQ0WTkhtGF9/7EHJWpZQtGIpYm67JubtTG079qSbWS0e7N1juYIm9KVbGFE/pICLiwmisAFtzba05Kth+8yVJEaTlQpRV3M8fS6EMDp4ywxKkPVx641dqtWw8BcvpmBUBISLqyXRMI3Feaugr2f3XOwdXWEsW6MzN7sFSSVMd1/Y1KyradIwst2QrmtL48E8O/87jUf2+LziUKQ60v324bCQ7EZpdLkpTj/lHdZppcxWjSkjlLb/syqfpvb1x/0Hdvtr/tFWLuXQOzOK6K1Ma0+8ib2oRLtj9/9xz72Koz19VUMkr2adfoUX8xmLZunSDJmeqkHCkXSEuS/R2OOilN9zaLpG2QfXGSsm1ndLdtx4SmgBgykmeky7DSZDhFNVf3TFTbp8sta/rb7fFZRdMpESOTq2I7SarSpB8u6YxnG1Bq+pvutdc66YxJ8rkV1U3f3ikR43WhZMUIWm0As7rvqiwueXHet7T7VMVaIdWRwIy1YQ509lHfGElKi/OLfuVQIvdtQM1+bM5E4MrUT4MAIKTFrclgO1+j7WpqUsneZpWkfBqirbCp9GIu21xH/elZBuVQYEwlx7CR6mk8XpKpyc47UIMt0olUklJS8nwwSUrtoSx79pH6hCnbIlV2rZnVmVts+yFJmQheJMnE8dJUMtuzc60bZg+R7IwXSRYat9szrDb0Fb32/NpJt6Gfxl6SlreAxUe0bt/qK9aDYkaekdpqENuSh+cCgBCQCiGEyTnO2rnM1d4cFKakrZGsxl2h8XGSHNtL2x5vAm2Y+fBKi+9HAnvJVJvJo8TZx6UGUnU0lWTx3php2aVgU2ZV+jFeuKP+6Toj4kGwZa3QJ52XDMydMtfpFVi3b+HyY6Vs108VGiXl35YtGzRD0lChmsrahCHJwcBTNY0vSXJrIGlLUW0HlrMP2mhTPEuPp7i2+DJtzWMOm5kF01leS442Lts2x5svrwCgPrqyJRV0EJj1kHTqsiR5stVJezk1SapMNbSPudiwp/RjVDkQbEt52fJNvpMV9w1LO9P5qus+ou5wd62MJKqXqopJwxeWNF25rV3QYqObQ9FBuqWqPvlHu/w39tsfixbc0e3RwIY3PVzg3Phw//GF5OW3tLR8XkjTjNR2qFMHDqZybR3tXia4rIapH2zHDqZey98YNny48d6o8p9Dp98Zmt/ScktEKSmt3TmQT4NpX7znh49l/ypw/ENALPwiRLPmqy69mk/5X9CYCpuccQKjAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, triangle ABC is inscribed in circle O, angle A = 15.0, connect OB, then angle OBC is equal to ()
75.0
720
[ "30^\\circ", "60^\\circ", "65^\\circ", "75^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG4AAABiCAAAAACU8rlcAAAJDElEQVR4nK2abWxbVxnHn9sOLE0RFpJLzHq3bK2LMsyCWQR11YAHi6irVWoQgRIWtIwPy1CGGmVFCqi0mlSVCEWiHzJRKR/qwRCZmpEhodYTmXDaFDxcyd2U1ZmWqi+utHQumovTce/inj8fzr3X9+Vc33vd/lWlx+c85/7O+7sECiBIXj6QTJ5nvtBpM98QhEZ2Guw+HKR51n/u+MB9gXB07sOldz6mK1eJpK2baVP8qw9sd0/P0Y6HHOn1XZh35v+eW0pGOx+L0INbiGj5Bq2W3qssfv2J3ieFEV75/Etn77d7wkMMAFDNpDemJ4v6T7MKv+mlvldrVnsA5alraYexJw5gmNnXNjjXzGJWYPALlEdbwWU6ejI1L6Pq9OOdM5ZYRDQWHHeiI5WzlCETFCgAIJs0Aa9NAQtTDlN3HAOAxUQq55UgMzBZ4DHLaQCZKYeFGKclqjIUnRW1DndlIiNVAIeIShgQlGazwsxGxj3rzK7qaGSxSXAT3O/kAncEyR6wGJ1GPRiOAcpQdzkQRovIsPLlvXW3NIrHTIlu9tbPyX4HHHNEiWgH7bnFh2qngTBrKMoTTk9/WoyvsvFYSRwoLszZaNbgBKs5NkWLAGY3ZSFKoxA327EUiNFQfZiOAwAKclYUbscxAMWIS1GIZcrDrR7apzkLkRUfOAA3xAnzoaVYLGH01NdiVT84pWeyRVo2ejCy0hhSD6ad3c+JG/pJi7QJORd7w+yxx8cENJlUgo0jmq0ylKykxy0Btfi0Fy7b0cJYAuDm40PKRMpSegwrsn38tOFWo4WWaAV5kmU7KjZflpNtzcWGGxxHK5qNZlFuF0wFwyPuOIZF+X+t0A7GlqAkjwtCPm4vuuJQj8+2AKv9IFUFhvcJA6eT7rhMqgVaOTFSB15N1MTNuduSAzOuHguwLtGVj04BKOpDloM5lzB7m3HBM8eQieYA1GJzriaJOVMSTLhgmePfGI2vAEDatUEzLXtO3EwqAA0AUE3vqgGArX/blDCN+CZcX8YPolEy7IP4AQYA847+bdGxIRGuEg64ystFefrK0XNN7cwfbuCODyHQ2PxyNA8AUHpE/dsk1tdYyzdwqUCTan1YXxe69G8DBsz0OXG18HoAWrWnXyuhmYRnHdTCRksycNk0/Jfle7HDmqsYueRtviPvwB1wbldclY3qI1OT/t0QO3LEgev0v/qakI1JcY+vCStvjNM6rhrxEY0BfJVggJv2b0P1Nt1sA4FARMtx0YresQMgurmTchHt91u/n93oZ+ewIfaB7uK7CFp+xHFGI9T5rw2cCGnu64N/ijQ1NpLZsay59GOc5Ud9RXz9hcwu3a0OHN7pKxJR5/uaY4O2LVr+knck0K/H53cRePHT/s3P+4OBHjXlTiIiuupjM3f72cr5MCSJR3nt7bP+aCSRfFlz6tvJWptnrOvfbH/rc0YNX3hh1juKrrY13cUHEtZ+w6s1/ytqHgh89W9DpU7Nofe7Nq+RL7PJmOsZ5jvDg75ZDKwsW3DM8/RIWyVo6iTa7hsHoBrWHBu0yiQi4dad69bu5fxWIqIzkiS9SPSJ8yTVn/Sm0rZGjk9AT8GlnV853UZEdOjp21iff5F+9hkaCEJpNEQwKIqC6Kp7UeirBBxKA8CCfJthZlsqB98zlrWpKEDsoiAq95n6ojZdLVCJ49YAINPRm3fEcFG+W3MYhXlbUBsSEd15/sS/tfPm42OdRESXueUzl/r7d1/wUZIgWtMLU8c9fFklVVWJVJWIuBOkqh+l/pOTuUf93V5VVYne/P79qkoqbRy+kt79vYueOIno+iM2XGwlRCEKkRoKqURqKBRSSVJDKzu/c7KNiNRQiFYvPhAKhdQzf/6p+llSQyrRxv1Xnkj9SB8PYfpry95yzHDzuss8AygAFEVRNBegvBk9qUCzwKddb4BhrWuMG/AA1CYiQ1ctdS1oAn1zjabCoAD5lKJDYOCOyoWGB8Oh7zKUaQwWHFA9HH7OsqFnjoOthL4yIUCBAlQjGo5pn2IKXyUoAMC43z4iegd2HEN1PDxi6Ug23B1j8UCAogBAZ0nLh8L/KpXuIV6yWiFr3vwP/9f4euVAeNQEtOHySd3HtPBTLCYF2Tg8YvZviOrow9HIeMWl+gQLv2zaYjvbfloUsRmwPBw+LDgGA5B824ZjSoXq/CMM4GcJHhIQy8+Gj9ScoaJFO76lZ4eh1p8SJ9MTf/mHkQnF4gPxloRvuHgiEyO+VqtClfqjx6ytAMINl7Hry0edlyn+xVDsk4+bk1uhNSPMvFk+AQDaWcJdqZDenGkkmG+WM0TpT39lPQpgwGh8pfWsGfWVT3XM6B6JLFCmMeAaTdkOOqrpdOB7GAENQK5Hu++aSwDrXaMMwKFTBGCAiOgUkEmtxA/YYt2FssnEHICuOSAj3waATEkCEf346afOpEqddx6udvRTkPtYyzTDp2cJjbvtv17oPvrJS0Wqdz83wn3uI6L6+9+mLUS0tv18P0nwsfMSyVjN6TQJe/fSP//4W6Ib724xEgUsjAEDY2j1gLGpppMAyvQ37SeBX5PyCWlRVtzitaZqtAhgvetlACifAgEYKOEPGm/wl/cKxFvb8AgDgAydAhbSAPF70vU432+sRgv3pFVqSOPoe4GIxhhA/Ea2TKd4klo92BdqRbaflhEwUMJ6F+8Y0K4t7o1q8Wl7D6YFIiLSnwswhqHBe9PLwfbsN//iOIeVkpy0WLSsg71+rpyw2vKFmkUz/i7UAl8XiuX7uvBuLkMbNDkrqgvPq97W9Dr/gIPosicvPjghDvCloBfZQCU51HL/+29/r9tCzvkqgE8/kRztvE5NTgfcdWlHezbsFuieyGNywXpL36QfNhbEWIw6rkAbaoJj2ci46drKX6f3eEDS5FmatKu0uu0vjZ+uhmj898q29UtNTx2bJ/ZcoMc/p5PJQvNi8HzalHnIL/D0DuNpkyvRx8OtE14PtxiA6nS3N8wXDp7P0nDSy8ATZ+0A1Ux6467JosiwMPGk+dFdc/lewoLNz/9De1Iob4XEnxRe/OjsN1K9vT6/EXjFfO56SXswSbHNtCn+mLzdM46RYIno//nzyHAnMeZqAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in circle O, angle ABC = 40.0, then angle AOC = () degrees.
80.0
721
[ "40", "20", "80", "50" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIMAAACNCAAAAACx/JbKAAAOZ0lEQVR4nLVcfWwcxRV/e4Fe2hqOii1eyMGF5KJcFZQcOBWOeujcYqSjTVUjLEyqtHGl0FDcCiuYcm2jHFHdYsColuoWV/mDS5NWkXCVtA3BVS1lnRjhyMAhampQjsapjXpg1F50jrLG5/n1j9nb793b88dT4t2dz9+8efNm5r2ZI6wEZQVKLfyULTF3gJZJIJoR3mE4fO0twpLLWDYtbN0PAAdPL7WAZfOB6A///TkR0Ybbl1qAgOVCKDd8v2N5JSyfD4V3NiyzhBXoi2XT8jFIW/9FRDTz6tKLqEF+XcZ/lk4DI6mljgqg5rHJ7HhGiIT9S4cA3+MCnhqIx3qncSXf8uBdvGD4C+3PSmPwSVCR1MKRa5ZU0/zYhQ/PENH7BSKSNpMw2/C19Yk1S+yNGvQkL39ell9/e7Fh07oda4k2S0Q08wEtfBepi+fr7kg0JZfQqFp0NdjwyJncfU3bG4OWmBeGxx/6Lc29ef7M33c0NTWtqRGE/zE53F6X7B5ziiuKE3duUN9HM42hvaM1jU2/GCa7wpv7Cy6RnXsRi53QPqd7o5EDefXDx8LGHwY5KXVMuMbmQwUEX44b6xzfJ97vyLKlYGAA5GT4xbJHmtYMpiTEj5sC5/uk1OvLx8CbJCcjWS8EGJMUnGnEcLSSSmW/MhBO+eJFNT4UWsNHrKgs1HgYyD4MJLPWROXDUvvscjGUe8SDSpUSBreVgUwakDcu2iJLabHPjKtWDMObd05XQYD56BCA9gGojDDVxoB8c3y0yuDwwLDQGRmqhgDoSwFA0xAAOeooNyekA0ZQtWCYbmgtVodQvDEHBhaZBIDki461zKYSs+4IPDCckvqrI2Do2gMA5TUKAOQkF+HpkWSP/nDAwADG0tFxP1u3fKgAAFMR/tnS55JuNNztXogzH64+3Fz0pWbbDgIA5CT/dGUEZhN7XZWM4xpmbuc1QyEioepy6Lz8YyIimlL3WNsaB8g5kzj8SatSw7xZiHf5YgKQOMyfmQyqMQLY2+gi4w4YpqJuvWohdmKLyt/vZSthLbZ+1xuT2eI88doxFCJZh3ROEMrRiv5IypXAD8SipWYD9cU0ThjjbRhK8V5/EIC+ZrUwFpnSym0/6JHjZwmnrrJiUJqf9AuhKOZUCOXgghaaF700294Wh9Ghjwsuzbul5/QPb+reGedreOGCpK9kN+78lUf2AXq06rhIp8o+hwSmQpqEDSUrmVg1RiiJHlv5BgwMGIqWfCIAdusz0UC7MWJvp1e22cioWpkTBuBiOOcTADAulbT3dMYYU7jBbe0LADgXsUYbMSjxF31DQPJ3+nsbH82VtnU6MkJreU/CIpdGDPva/EM4ETMU1Cib4gohT0YglYapMwwYhqIlW3IXYouxvxrKkabMsY97SgRmbzUvdXUMSszHqkmtBP1Jw6eyZsEYBxRC3kvA4w1lLa0JQ0+rXwhAUcoZmDkZs0LsaocbMQBoHjAGUSV8OjTlkMOljKf2GIOGbLao4hfzAJjLMGeYEI1LfqoEt3osdKw0beb1wD5biswebzXTtdeOAXK02j7CQO1p02e6x5aiKOZtYToxlKScAYOKN+lzwgaAXL1xCmZoO25Pk3GXCABAX4sBA3/I0bJ/70PSsuJuHLPtbFAUJ921PgMUAyNUDMlsVQhaglMxi56T/uOQvKfFlMlWloERxHf3zjskRyobrB0AACVorYoBUKScR7MYFOltHQNQkQZ/vTGQtAS8FXNKZupxK0CAoa+lUh8BQC7slw0MJWncEnbCqh4YAAbl5pxnq5TQlAooQER0ZLdfS5pAzzVvt4RdWm9LRCRQ8KlDnpbS4MMvaZZdoHzrpE82AIXQJWtQp1098IZKblYYzp6xzepngIiGb4z5WkACROkf3GYNvmjlg5o6+PRTLgXx1t+tnNcKxh5/exoGICcWYRXeuFtzy1HZJYaXl1GneAJKoY99YQCA+xwMAu4rlmzSs7ApsVzBMJTyrSKHomVY2VAMuiavwgg0cg4GiOQmv8b2xSeeX0NWv8DFL7mmX3Mg41Ucms4QEVGASG7yCYFe+sK3ALJsYabW24I02v3hKx7SLjSN8BdWCvlVUHb1BAB9XovHwbhngbzqgPDafX4VVG+TVT0REWwqSg0nIsKDdNKjwLovv0FEFCC52SeEj/p6nIIvRhxTqx6lzCHy2H42yxzD6N0+MRx4xKaeiEiYWu+VqYVOeji3GmUiIkLI567CST0BQKjoObRPbPOInI4AABXCvhAwpPocZ/diCI7QNIp7rQvqFAAkJ/1pqCGXZc5YvMrCY9h9fcSwLQcgMBHzpaEW0886D5+p9fB2Zt677phblECxd4kocMFdzRkIR+secJbvqfXV2nCoe9F1ZMTyRBR4f5MfDJ/+pFdwlm+XmdtAyXXHXDm1aZKIAnMhP9anZxJuI/iSs3ow0qHuRbeoG64QUWDu8z4crR/9xlE9ERG81QMRESXD/W7trCsREUUuQFGq7fMecZsTGII+nByaBdk2gMbjAALz11GQrL5jC7174mmXGOGjtaGqfKB444CaXA/jfLlO4dwAlCpDfKfrYm+4PjjqQ7+4mtKnwwCIACiAoii8T3i/KMbHcFTBVUXRvhUoCnihN5EQ8tphV8jNuVIMGTBU/mv/DI/4cVMwhwsFKLV+lui26w9Un3FyknOaYghAoG5O66L5IBHNz1t78/dr2wiky0yQgvwrv6P+z7H4H9+f2XSkukT0OoaXriciEgu8fVA0dpj5oEij9mAFUIakis1itKHRaYUFQBM0FwvyZBQARfKKBYPGdKYAULpbYe8iBfhl2FBvVmr3tkmiPeMUOh4HQPGcchVaK+0yWRDzCpgxWFEUKLMP3vOhsbDLXaFez3VpXiw6DD45CSBQdyW41qjDgkH+t/LI7N4YJMEYHAwGaear0plbjB17/fNvyrFXjEPfQht3/sph1ihdR0SUOgUjG6w0Kc46KI9XbzaZr9T4U9GUxzjNiwVLQQw41gYgEMsTCA7DgdOTadE+Xz77yF/2EBHROUEQntDiv/Fec+OTl904sbHlWUtBAuhCjIio325cNNBIxM6eYovqvkYmPFc5yapSoV08YstQiXPYmLYdA0Cqi9ZF4aoHTIyxE9G0KnwHvw4AI+ErxhzjiYZzLiAcfArxHAAqhD30/bHttqBB6U/q21maBICzOgbGGIBs/W7ncfqRnRF8TYvQnCsEJWw+6MSAdHSi8rqLd0LWzAcApQNit6OE2xgxEwEAQiLniqGnxbrPT6VUdcfYp1tPM0CDYoKa3xk5ZQ5hAFCw2uXlFMeQHuCp7FSwGp3/EU3rCad5V4yQozFreEuzw4GqrnZzTT3PcAxDrn6LjsfMOQallw2fC1tPQTvgbW9CuTfUZZsirKb05jGOwXXvnzc5GZgmCpU6D6YYmyb3nf9sh9hvBWc2patVk2aRsVFLj14f8D9NFDTaReTcEZX+H0/cOWoIg5URqvOFHN0PACCb1NPEprRjKg8EADAYbjW7tiqMYADDUz0VDHZXEACg4ZjhIysNwq9B20SlA6FuxZCvKOb0D7UHCCiFnM6THY3zKhmAcscWP4tGZ5puDQ8aPru5KZ0BzGAbRHufvYFKRDfrzSZafXs+nWh4S1KX5qu680S3kTIMNdiysV4NLsbDLgZp/9Qvdmi81n0K0bEKBqActkn3rDipIkBW8u17dafZjtCv1VfNuTJW8XsQAHTaZL6zQ33horDUmzY6sYnmLcP8tcKIfRkdA7P7UD4QCwDY8kXBSJVxqkgyAKaELpl8zVbPYuWEEReF5XOB09VfiAdKAAaSZqcax2DyqTGMhrl60kVhhWDwcVqOyhXnItMxWBjReARYplZwo9GGxDiySYtvEQCYiRHH4wAw09BWWrl+0Klf/GEhKjv4WI2MUKIygFE/5yeXRMUusTHh4GuGvFGpnBXo3Qmgv7628+o10USzEMrxVwamn8HQDtsVxQko7Q1VD/Muix68DeCTP53WMUyF/s1fOvdhumHP1VWQBJ0mxUsKALSdxlma1M+idLcyAMiLhdURBWObmnkFC3ddwbQRg8JPIrZ299+8iqIAAOx4nI/Ckf3At/cbzuSwoegcMBZ66K7VFQVgNqxOmFm+GDRgwL42hkZqr+FQytIoVZkid00iS+9ZzqoNDF7Tz/GsImln1aZTwMLWfvOZvalbGlZZFACMRgpqE7P9wIxxbAIAXtiwYjO1G6lnFwFg13tY2Bq+wpzOcK4mKYln1K7m/tUUTPf1zt4UI3ooeNTZILMytNgqHrYF6udpF35ERHS00LWaGB4VVOs5txATEXFTMReRQ9+cA4DSnb3Aao0Mr7PNjCF78q4r/OBh5KVVqR+mM95G4oeSBZqZu1f6HAlEVD/SfPnxVemIpwdlZ2cH5wOexLRmTynEu1aDC65n/rlMCkeeF27VUNWfe/s7rl6wpRFIeeCTEReXT4CICDNXgJENqmlTQN2phdTlFcUgfHKfOPgZl8gAEdGHjzxGdMlwATR4fPv2N1YSw2t3pg67H7NgwEGiSewi0g1szOedIL/UI8lawXay3X3QyN/dKAey1fPx/QnPG3Pud4rD58Pb/mYO8nfn1WgYBxGd3NpwTvTM4QVwOFr9rlw1yjdvqbYe8MSAcreYqXlZZeyLUlqsfq3FFYNa0nRLOGsP9Unlw5KL+dwfBo2q3iF1I36H1Adqbz5wZ8BIMjxQMwqlT/J3i9WLD8YGeN8pdsg4vk9UESyHDxb6Z1d4i9vdama0zAKY7o3pd6t9kD8MDIDHHXMtCYDRgzXfMa/pd1EWh2WZ37V3/G2Bubdel5dy176232aBwH9zgOKb1u1YS4ipvzlAc+OXLr659o57kjXf9feHwaHN82MXZmQi4b0CEdVvFujar9y+PrGGp4agP3z9GMP/ARTcEOtMgIkSAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, A, B, C are the three points on circle O, and angle CAO = 25.0, angle BCO = 35.0, then the degree of angle AOB is ()
120.0
722
[ "100^\\circ", "110^\\circ", "120^\\circ", "130^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAABxCAAAAADUwlP4AAAL9UlEQVR4nMVbf2xTxx3/XELNuqbyWN1iCVch2FHdJlXTJV2ZCHVoQ9sIvFKRlkyCkqgMMqUSqYqBqHTONKqmhImsomoCbICga7oGBZFoQO2uzpqqsGRKkBIRxDOQJYxkidSmpFucBn/3x3vPfr/9HljaR1bs+767+9z3e9+7+767CyhNiPsBAH7TBTKQJrBTfo4o5DVdIG3MAHOjpdTzf2AOr8IBNzabL5CufqYWBnAW8qdP587L5HdbyJ825ijcWG2lQNqYP1sNbMb2dDCTbkITnc8A8HvMZBXrNPQaMD8FhETcIGOI8bVZcDEja0cZR/F9TByiTN8oVCo0y23OQAAwz+CZJ7CHmHv7EqH2BPNU/9CNCBAdBeBy465lrtyiexLPiSmbqA2m38ADWwgADpQuESXEMPpZOHKj+MElP83C4mwAw9cw3RMd7V604pmVC6XNuxNm1qKckIb+cHLat8KnmJuJYXyovefuC47ySgsDWtfadAWirsQAYpMnDo5XdHgVWt3qHuJ6eudirtZlGDy03P3Ky3az1Lq+F0VIkhqrzVrfKc/Q1xYszUbhumB44PnSCV7Wts6+cyLVQOBhMKrQTETEfUpEI1t+tO1GsrqRSHBdITzPB9v6iIh6XLuSpUZq7LVjKWmNmVsQIgr5iW7udAQFnWYiTTW++XbfG81d34v59jvPyMqN1TmCsTtiphCAAFG7c8sEEfUcD/oeRPGmhsiENNPNdYUjyoJj67P5xhjZ3MC3eTe4XjX51g/PDV6+kJf72BNuVcgxuK7k95myAgwAuqo9hx3JpDUP49v81d05mU7fW8fPycXi3+MLP9IuN7cre8DYzVJEBkcchZU31fUKdc7U5F3UoiUiojZHm2HVRrMnbm09G/kEWRpGYwAwvPbhc1lqewrptYvX9L5jULnRijG1+kJvHl+RrHYhcXbppmNZ6oUkgcLe0EvTt8U8WJQdsWuvPERA3ZaOaoNmA1j45Q+WRqG3dukzn11W25wpFyWqYGyypP9CkREtAZh/bENhl65V9BxgwM4PyWBQ62m3s8HQfRJod+gFC3rME579pM+819mdemLmsTtPNTZ46Pj2rV88V6NwWj5JjNhU5WT/QiNLS4u8ObShXfOhup8JALbR75VygRisv8gbeSA1q1jk0Fi9Tg4tHPEk5maZteNEdMTZbtLQAkZcmgU0rX1+2xcOrQmXGGLV/d3upOkNdE48c7WX5eapMySsLRl0o+XHvZpDgSFaOO+cG+JAMQq6JM+KmldNGjAnFi1C1WvPyVqf/HlieeDgfAM6Hazd8CsNqboDWovmJCmhn+NENFfrGSAzgY4KM14heJCUVfv29LYP5AsubxJgtGS0Lw/GNtbB/PdrY2I1ItTM9avks6KYueuJ8k+yZK2xgKcf26uSKQ3DOb6RpcVRtdvVbd3KSYw5lGGhSufdNVoB81RZpH+ZVUWT2gEL1zcohErm8c7X5QIGAL35RaH7pCa2Zm4GYOfxKWPmhk12edUE4H3/od/KPcu6ly1cu0/RXLnxJ+w35MMmHgxqxbW3Ac4hX7QUOn/4olOp3MRSx3mXZRXVcBefkCstb1hBRNnUF7Nab2Pq0EK7T5aUM/dlK3LP1Nxfkx5eojnHNf057Gil1BjA8LKpTfyrQhrMnbn+sP4c1lYhjfJwdukvj9n4RBqYUfGxNJVYn4kBl+Zk7011H3UYhpdWUTQ6LgmikqskgEgJ/00AMFnSf6EwncTILI5IUjJrf74i2YovHy07bWcAS08nAwBKPtdj7npKICH8rrxtB0AESlMnA0BJlyQhjcOGE938rRDXJjktbDfp48mrU8nlKEM0JhE4MU7rL/JGTAXUVvHw5eTvjEQ0xzCUy8uOljW+I4YlYh/fscoEAJ5LMmYAQDgKcF4AiFU1da9BMgr6DWOMmdxRNAADAK9cZwDAswCGvEAirhW1ZPz8eqfEPLyDKubtq5cAY4uAE8WKuJYkf3VhtmGuCQAvMMZYWFirWkIgIg8nxLVSBKGxstwuegqJiPyfUghcBgBEkeMHMH2z5HqfxnuIHsKWu//e7wCgYyVyeGvPNlfCC+Db58v/nKXMrG/I8EpY9fl7pgGEA4TXA+55AI7s3YsAgP+8+nW9atu5CxkEAPWqakIAgI05qTbzJIjdBHClsZFddmMeEEXMFr4KAD8GE7w4OWUxX4nmDCYRmaVmow4A6ODcBzycG3HOTzFq+SAWI0zGiGIxIqJY4kuI9HmB8JdiMYoRr7N59+osKLjoIuL8RIQWQgDgYn6GbUTOEaKY+BG/fh0kkotjMQm1ad4zS/Pb6aKXqPkAEYcQP1oEoocuE8ViMR1mkopjokjYD06BeMTnbSV+VPk5IkASh9lmec+z2Wzmeo0AYPvKeJwaU53MnX92Y9XFdQR8lxVmHZ4M5o8DGcCsmOGB6wAkaTmUYgZg+xAxhlCjXsMAAP1l5eVXN/IvwveXEtEtOsX49XnWBgC2WS8H2GZhA2yzEL8YMGuTiWcxa+M/4UZOd90W5YO7zu3s5Fc+Ypfzk48yANG85BmAmLJJv2xysc1mA/95L+AGgCua1AQA0YqS4mtbM8TGDErOLZM7NLPzpWuYKXQ8CwagM6CpNGG46iePX31jfnKi4x5KPheZZ78HPIOwhChyAFC4Y4vm4+vVRdn/3JElnX8v5ia7QWS22WzInjdkiXkJrgJgKwNaJ3PjtfkLLtbbIZ3az+dIdgVksafvb5aYWeA9IMq274HifRuYDDzEuHccigIRnyQhYy75qyVm2gPGPNy7gGTuZgCm6jz/vbRPyQtEVugyd8E0CGA4RYkj56RNp+oXfz2wf6FyfSXc6i7RY/Za7OgkGEEw9PS7nmv9zS6Im8PJLOh1SUNp+btkeat5LnWSAbH3cvq+OJKtna21QlZEMq3H1W/ueqcJklKS33P7nS8o4zjJU8c1aVKiM2MoWGDNu+VKHVrcefqkfhzXkZctTSp2aCoPW+OVeNGHiz9uO/2Y9jMAwNEqRVmZ5Sbsyk3CVNYW0Or1RYx3gTnHtCwt05nBUdVkTWkeJx9vaoo8ZRyINtbco6dznOJEI4oNVzM6nyksaE+Zacz+jdwmUg8DA1yr9pnUU+zGrp/V1vWtSZm9ocquCFLV3aG9y6yDbl92a0p9ydQus7tyh1QjY5wvq6i69rKZnFtrVVsBqtbddPaY0jlOfWtczXOCf/ASXYQ9M0qR+jQhq6n6lhktLr1UVsJtzhT8AzDaRoq9tl915KNxCrxugfrMQYXhDcuLrm2dr3PersTu/OfUQg3TjCySXBDRtPbIJvtunSNWrW5py55Qi7VOvl0n1g9B03IEAjBene8afjNLkKQE663+izpK0D5zf3Kvf1LTcgwM46/nL+CC4jUAE+/Poy8efERDrH3av3F1hY6XTdblY4APsJi5oRd76dU1Whk1mAmEvWyrVi1T9Z6vB/YlRqapDYNNznrNjBrMDAyZfzr7vqqh029nXx9otrg5+HbfMZ0neh6puuEw03Df+mGz/pyA9RsORGfs+4niFAzy57BNzvIhy7zUYFcdyaRmpkFPzZyg81zzg2v6rPPOVObrXwA1uEPzSG/0mSkQgKPuk5+0F1jrXwCTy6a/0r+SaHS71t75aNEgw8e5hz88/aR5QtEzewtW8sfGOoPP2F5HnOszl+p2lSHanMa3tFJt7vTYX5FcRDOPuV3ZQuStVy7VLeqigX89/ncAFvcZu/L7/yFE3rrl9JvtB7+7LdxANIk4SW4gGsHI2n6OKMCIpnc6gv82QShgbIcjqIpArDGvJiLyByhOI1vs28ZTVxYnolGzN00N+jn8MADyDoHB1Xxpzr3hU8hHCIHkAoaTFXn3cvvMTe36jdoWIiJqEf+fZaKl0FWncdUxqfFArbP44DcGOWQwukVNABBgexI7yhf/ePKm72nlLWoAwGDk88j9a6vckO8fGECXma427wEQ9YRKkzKG0fBnkRvLXe4nZDfHR7pdK0pLra2f+jofwGYAP8cpSWt4Zfjb8nRlFIBrCbureFFuoeoUIjV0+wEcxTlT/7UUV/0wAzUzX5zfsJddHk8z/gddWHaGP1PQ7wAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB is the diameter of circle O, chord CD perpendicular AB, E is a point of arc BC, if angle CEA = 28.0, then the degree of angle ABD is ()
28.0
723
[ "14^\\circ", "28^\\circ", "56^\\circ", "无法确定" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAByCAAAAAB45tD5AAAMRElEQVR4nL1af2zV1RX/fL8PR+YKT8djPORhUao+rUGsU5nUgFrkbWDGItplI7GJaBO7zYosdAtijDUQxQ0HiyjbhA1HJwS2UKHGKg9ls1QzMi2tCpjqQ3wUGJXCKOV772d/fH+87+9+33PZSZvcd77n3s8995577rnnXoUojqiQKvDW2KsBqZJqcdWLFAcUKCpw/qeghAql2PojisXTaXl5uaKUUrFo/QCAf5ryebHzUCoeAXz+5Y3Jb/yf8BQAv/mJTJcGV9J4bnhGubREuFLwcgNk9rIS5y+KfUq9U1Lv3OEHdwK9LMk6ATAySZLkUqCbtcAiQYrolU1SIo6LNAe+ZMV0ijp/hpyEAqkvCtD4L4qi6uciKlQAomhlS/Iv+OI4FIAluLSI/pPKyfc/PLIbOHQYwLiTrJo94aobyoqfzijjKY+80Z7NT594+U1luOxSKvx0+pGNH3/y6Z5Lb6uZ9a3i8IZfD92LK5K1a3vsrNwF8ypPkXL/mvmJ9NKDxayHQDxJUrLvharU4h7HQhNk7aRXm2YO6j+7GpPV676kuTxLwbNazz9StuBVd1NS25O6upN18ygM/pbaeFNfJLRg/SR5uH704rzPJ21qyyU5anPrC6xcQ7wxTxnB4XjxBElBMdCUWObf6bXVHHmWPDWt2cb8oimxbHBYtCD9BLcm6/voOyn9yX0DF5KCfel1NrY8uqC8rQQ8QZK5mqkdHqZBDfU8UE6S7J3Qav8isum5fcNZja9+e5PNZEE5x6x0Jfr4TpVZ3mPvlNCWlncViyfI9Ym2YOuuXkuxfbZeltnxPaRpp5LklsTmYvAkSa2hwq+TRgdapg6RL/3I5G5N5RxdZWeqKdRILTxToX9nqvuDtRtM7SH5zCKLsTbdb1UXJJmvmj8Qsi6s/UH3u+y+qTw7CkrQxtY8fTokjhecZv09c8+ZZRUAxv1j5LRDarBXdsK3xVcHdEyQZG88R5L3ryOFubwXztNcosvjuwP1c45nVzx8Cc3Xl/j3TKOQJLU5lqMRBm9rItCHO/Trq1gTCtdeflZQSN78lp07WL200GO91Fx5KgKeVtPgrOci7ZotemFyjy5kSPan17pFF8wLwrOZUmONeyactKbGKIyxOVZBMpfaJkmhj6cgycGblwXgFYovVYR7o74xxrocirk/9SSzJrzRRC61dRi8jkSPr4RF9Q1G4cg4z7c9yS6X39ub2B+AJ/XdLtUWHjDvS/YbpQ+u9H7dWt7r4mwuP+5jC5Z+NStCsEjJ6ufN8uu32L8YfVyb7ivIkiSXzvdpB4Z8y/WaTdSNRbJlqmVMm+72k2qeNuBsYfDq1/zwSJIDqU6/NgqIuuPU6fl6x0dhWMkDc8/TMSXtae+Or/tPPjHnRsD3OCB159o8fbrFOp5wSKiAqgB4ccQDgD0/csd1K70tkiQPJvo9PXFQb/wz07DIhgAfOzijycnIJzzxlgoCeOqheKBDB0As/vlEQDF2kWMX+YuN/Nv23wLSGBMA4xassIbIakuS+bEnw+OON8rtM3H7jiC5XPkWl4LucQMl2bgkBEuQQ+ltdsu99t1A4Z5kuygMPFnvdmsg2Rf3C2sLJFdmHJ7gklygKN9J7rP/PJgYMDtdwFtVF4YmmE90Ozgjz4aIt6Z67QjzNlDaFwlIMTXrV7FACxfTvo4HLgyV3lDRZ0pLcusM51eQ+8rD4TrH2SZdSB6YFC6/omqg8ENL9DpMUQU23BewCAACxMPNtsWiKjj+zdAzKpd85x5h/Yot+IPzBEymwvehjVUUDr+6fbYMCQJIcv4CsyTZkTYKOoE9yYBaekJnIPkOnc0Xol0/kiQHaxaTlJIktbK8vbqK3TMChkcFVOCpmmlwOtbjybDhVAB5wbb2ZwE9exGr3g1b2mQEdt0WlmI49LsPDOwC3tgwPAAqytpuTtUav2a+ea89jcFk6PTd5d2G71/nI+emg+PajUkxJtAg9CaCqgiSOyu8W9iczYyQHehMdhrx70i7D0X7DLNtH9LSrd5vzmjXTVZH2lJGkH293d2qH13hnh8bPTdpjvfbidD5syZq1oo7jgIAJn9kTh2AEQdCMtFHl7/twz05RkbJuqk/zmfeLgOQ/hgAqEChQvXDELyldT4fz/cnIib5Hq35wTkAV3UDeuJMgaLmJwTKv9u61Id7IhE5RffMmPsATDwGwBhoqZ4eBSGEnzR/9qRflHEiNPRwtvDyiUeICwdsLPX0KBlDzE/65aGFfuwvxkRO6yqxbW8/jVH/AYAfKoqivKpi1ACp+ed13vGz9/bx8T1Rk3Mk8xUbP0uRJGt3MosegKRGappGTdNITSNJTdMWL9S5OuklTdPSwK3UNIYf3QrUm3plNEkOVZ3mZ+g28ITUDFzzryeVp8EjeS4LoFEjZSVwqxYKKC3lBUnuGzuaJLOLJGsfJcoGyAIWNV1JMvMrUhPkeZKUj6fOcGjKo5RsT09925J2kMMP2Qb8nymSXA+gm8T4vFFVs6mjsTV9Tv9xXkry8bkkmU2ddo5BMJweE0qS7H36KpKitpvrsZ+oOHhe10GzqamdrWjTdN00kll0kRqzqTOUgXgsHG4t/QZbG9LxO6soZS5DMTRlNdWyAUWokEBMxADEhIgBsdXX1sQAVRNCAcSLiyqFiKEXQsgYBASMPydJVc8TSQAKsP/Z7369ecxL/b8cDUV5Yw6Uo+9PBjKtZpdsHc47EihDU3aQpKx92KuSawjNYe1rqRufur+lnyQ33k2ytptDU1JniMZVXjgusA46gpQ5dJNkFubOPMzq62iqis1e1WNO6LLHmAUAZCiJNffraJoNryM5YLUryfNTWkkOTVnkyLr4K9i7dn5ZuvE1e+fnbyStVeLdbwVZtdFpbcsyZA6LPFgu5MHWhnS8dp37dOHYbx3xhAGybpq70VoA3V69hA22a2UG05bt9ci44wkrXrKa60++56tDIeq14l1jARz7c10ytbCl33esnfHSCMzYrW+q1q7WPPcGu483QjmpmrusVM2DLlQAe7e9/q9ZmSWuRgqUnQFHPLi21j44gj3eQ7eulLB3Xi97rcN7y5r5i/2XPZ7X28isdAPZWpOFvvlbh2dAXfG887yika1Xex2VOyKUhnV0eCS95DmvsNE6YwtysEJPo1k9ku5+y6MtdcnUwk39BtvtM11UaN3Ec5w3V8x11ZR0MDqaqmKZVcNkEgsk3OdNkJy6i2aqNDc25PbQbh1Rrt4lfc/T/HWdZQn3Lg0YoMHtDVda1hH5nl/45QvksXjeaHlPatCvvQ8iW4cDiwH5EDY26SxtaounWl+L4TuET0eGJd98D3NG2umFaqffZkdTleK1jkjBoKQk83FvPosk65aRZH8hNySkYR1t9tVYnHqSbGx0V7PnIxvqzY9e3yGMvbAYEj75SCO/u/hBwa5En6Qku561dpYoN8D+UCTJ2mbPB+jNDiT3smaNbh0TFm7qLxWnMHiCbPc5jMMIGjZVvVH59yVVscxzPe6apeGRg1f6XH4p1J+W4Pa+/ZU1mVmxr/qgpkCPfbjZh2saQe7ilz09LXlQSXJLud/1ve0+Z2xkLxyFOhMf+LFt91XrJ/dZColibd9NuYlB91VCrgcyQ03kIzWaESWW9vaKZl1ycJrhyNzdVnFEfZ988WsTgJV4WLHioGIfGplHbD1XsjD5hP7TY3xDUxaR5GM7SB4b5j41soJPBt+n/jF1hhRc300W7ou/2uSJsPviytW0BSlt+B9ouDwenIAHCpclkmRXxUNa6dpJkoN1lSExiepKplS+98kdpxA5w2InSSjAsVvOdEwOFlIrDwHA4Z2mLcVbr/32ft/AfDg4VQHwbtWdr5SFia3HDjKbseu8PhnhoY4/bRm3JVwAWhbAIiez0/beJnwyRSHZor+38XVidjy3JxEkZa7muiKjMZIim75r2GdhsB5ZOCn4vVQQHV1QvnN4KRUq6djzJACJ7x+4+JrHj0U3m6O/qLz8o0wEQeeRw06O927+IuY2kmu4qMj3bvb2HO/5wk1VkpRba+NLinrPZzMyB7D+XrEpdB/uakxWr+tn1KlWSCgISbjLj3//19MzZ87wS6t378ruGju/znInEUKfSO93D7/5+q789PLLbirDpHIAn/bidOcnuT0TZ9bUjItQv1g8ADj5/kefm+9pU5NxwS0Tr7ihLNJFRIGkiv8CtZduJexa2DEAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, and it is known that angle B = 70.0, then the degree of angle CAO is ()
20.0
724
[ "20^\\circ", "30^\\circ", "35^\\circ", "40^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABrCAAAAACk33hdAAALgklEQVR4nK1af2wcxRX+doNJ1V7qqjmTC1xwSUx9iSVwnJSa5JANXIWrojRtI1lIbrEKwqhR4QKhOUowRYqEURGKqgSioqpWSMElxrQVwjZyEgelrWNCnFYGB2Jil3PJ5fgDx0dLfLmZr3/M7t7+OrNHeUq8t7Pz3vdm3sybeW9GIwKT1EHq6of110bUMBCp92F0V1yIdEDTARrSPawa8klfncsBMWXp8BMlATx69bVfEAgIzfbb/KEDz9R/6MtQJggBFCFoA9GA6bkbl4W+ABBnEzQn/69TuFZ+ASB+cCY984x2jb+8y4IK/fifpz88Cp6dARBdhYoNK65dF7KP4uk5cvCUL28gkJlDQ4ezG1esfCiEb1QDmPoAuTePHjh21S23fqdKB6gBUz89ApwtIYAuksZTmAUT22sirfsmJEkhnXXH92wJ1z16RpJ8EDjJTcA9bnkk6QFxUnbfuuj2txeqMZ6MxJ+bpVyoji+IyZHZFmp71adxLuptXbw2uxCKD4gpK91R+VBGWBhuKZIkC+r381+vTGZIUvpileyuXCr82EdKksXokmC9piOXn90R7rxYSlYpkL5IR5Ys3UXqQ4GUlCL+ZMMwM21X95cFkk7Uj3h1LgWYamFHFymHY7dng4AoaaORXSXk+ZAciGbZvYUULOysHg8AQpLsDg8Ex2A6coyciKiX3nBvIJDC1hpfdUpQId5FkqEMJUk5Gk15u9UD8nFLfLYMDKZaSJItvVSdfb5hS85dx/JwamHg29+qHq4M4s8Mnz54YD8AoP4EQE0CV/ztS43vL+y7Bir3lNMMZRBBciBeLOyqHHbWskAESY5XlmNyyyAkzy8pFIv7wpP+ICSZrdmj8BZ0dzalDIOQZM2Y7eOuOodd7CCFxNbPFm7HGYwWJ1/rPvunts0eEEPx+xMFlkPpyLHiy+677J8+bex0gyjqrvF3Cl5SE0HEu2xTYiRmKiuloExH+3xA5Eh4IiCGQTaDkLy42Dk9RsPjlgoWyEy0rIElOBB1NrxxyDnVD1Zb3y2QxJPBpJsDb8ZuEJLseFI6UXZuMTvWBHmxoTyjFzZ2uVzUAceAkoIXY2bfQGmWi44GlG4ssKnvks6lcmK5o54QPFRrrJXGEN7eERDD6IH+qGckiqppuha21l1KDQiSnAyX4XmFa4aY1NLjLsmE1QKg6wC462eBPK/y1jrEHcmN3i83nHCXLGvrUntmhVjWEsIdt/m1b6DR3WBmwrMUhk2SqbIwrBni9KPZkHeAdnSSkiCZrcyUg+FrEJKsPe4pmlyao1oZX/hBVVCLACUMAgD1Y7YXSQBYddPLhk3WDru36wuQTPkYRNGedvubIEnR10RKCI5VB1mkTLIbxDXnj6/21BaFpdMkyGQnWSi5HbWT9BjEwVZYNOeuTpHsJEFGA7l41djChi46/KCjDxp9HPnIalLH6UIsiL3VlmnnV3dAM6NPAs60QeMJL8/6dBY6jjbB2kUtQDokMLh/vyN0pzPabTzm5NFALIofgY4jzQgWaeuYaT9YZQbXA5qu3WuPsyWw7pSbRwOajwCMBF51rV2WJJNVOc7Xun13ZNLDxJEYMR0OimFb1MUDzSTZX+Xa9nodMcnFs5dN1gXoKQBSH/zDW2aO6/WnTxqdYfsOID7S6uVc/Z5+2jd55CV95s4XqkzbPdtxPUBM2r8D5PoRH86ad/XJQAMYkHdsi5u/L72b0AENr//QkRTStMYxAcAxsCViZ/TTsWAJwkdCv4Ap4N/v1gDA4F/utVUggMprTgAgbf2oI/aOnrnKm+9xtEA9Bg/s11SCSwOurD0D4NL9HfU2DA0g1p8CoDklRj/Sc0sWboGywkx7TxUsS1/+vWeA6cubn7X1i/oUP+yV8JUclgdZsIpxCAUpyE0A3vKpOBrzlk3EEJrzFtvJHocIQQ7V1r9hvXjWiELIu2lPRwEyn88vjGOPQ2LAWju+S6PGQU/xbKUOoAIVC5rlwzt7iuvzBWD8FbJoLhtJDfG/+uSL9dAnpaWrkSXvSG6UACQE8Bu5sv739/3Wv66uYd2oerXNi1wIkXNkXjKfz6tuU12Xtz1SLeqXoMw/0JAh8+nrUsyT3lQe6eMKJ2JY9T6Zp/Xf+mc8RH4gmjVf5loTuXnm8/nZW35cKGFHr1MfbdCXzFntulQB4NIlR3v1c+2GQSpwYXPFQEhDBSoq/5y/7ROflU5CTUcH/TekR4zMd4UhvKJCjQJj3om25I0G6szGxucXGYyLe65LnHdZmIAOxIfdIDNX6LEzl1yF6p3Gor5kh66aNX7jz39lq/X0T7592smn1Fr/DzfIe2uw5+58XplPdbJlcUEy/9rKrGGhNyKvkPn8PI0xwvyLy0ZI0hXEzS12ZQnllgMYajLruC1pxCGSpGCf2m85RtNwpE+VOEpXj7imY/0opsO0N6SoAC2XJch9K8Y9GJTjUTMNURQr797tUnbxrLmR8HUtVhySqkv7ZiDTa7xBx75WJ+rxGCGcSRE7mdveQlvzrN9uWQjONrW5ghIxVuMs6Oog+GxrCQxz25tLtF4kvR6XJPlpa8K1YymEnItHSw9h5SjdZK4hmfpkCS1ISiGS9eecZfEBe88WQpnSG24zDpm42m1Iq4bx3F3tFJDaaX8bqaUAua2TPmQYZCTit19zUk/EyFQLkkL0OBI7RugwVu2joGGQVyPDJYxhp+GIlXeSkpmQMXcEyUKVCoJYP+xhMwzyXHTsM9tBksUJQzodcV+TEf3ubvco+3ALSXbGzgZoB0mm1zxMmnW3dBc/bO6maslHnhD7tWiWLNzdOKs4A8R6Hze1WfnRruJmfzKco1+yQFKmI8fIuds3l54eXrpYnDDD663Sjk6aIGln2qMQ7yKzDR125xCgMcl6o0NyVqYwUzmrQCTJ9sfstVMt5JmaLpZL1oSp+7uhWFLNY5DCkYqSHIhmORo5UDZGccJ0PKXeM+GMCUJSJdVU738QOcahyNDnwLAmzD7DHbYaZz1QvZ1bPmqet23oEs9H3vxcGJLjK/aRHK8mSQ7V2NODJHtUolOIHS3sqpkkXQdzQSldlzId8aerrUSnoQITytAD0WxHQ9BMt5cELzS1FZjoo0rZGiDW0eWVA4JMLzu0+fYcAw1ZJ1ltvtiayKVSZG+1dYpazNWPhCco4p2NdxV8OMshkazvTnB0afFkDEU53TXnU00xw+8Lv41uUHp6xZc/iPYVe0Mzt9+kvu2Ps4tubijjIktJeqe37kePQwWSUDHG9zVN017W8NRl+U1r+f+BqKB0TWjR40Axm0CSm3o5gJNkNlresZk/SXJXXc6+6QMp5+tynMIYyfHKwWLNsoVLkhSkNA7O9gLN8/cpEPbfQ25S9w4Gvma0pewhbNOrC8OSnMI95BS6KAiFiJNGhfGareWdcZhkaXWxvW6SFEae6sGDRks2jXGPhTLb0lReTt1FWXUsK/dWzZHk3jFKQsqpZnK+9gllKVHuAbOrLW9Gf0mSYr5WuSl1tEHufYKcwkFaPrE7YsuKBhsBwqjaGzGOys/ipeJXkJtOyvlaWw5O+B36lxwI9ksHhUeqjQhDTuElqpSFJNGvARqanTqnE9ePSCN7HKglJEn79YX52idIcuqgdbRBUYyYDCjzIkZwyrRV99NM8JB78BLZ30wKElLaZNvUzqXCnVn/ayheksw8XLxSopj6ARgbMPfNAnufdVRuzwSxvGB6a2UyQ7rzRqb23jsS0uRU13xe+2yz9LVWpux968ZZ8MKSILP7Gq5MLZidHk8ujz83W+SgkQkzBhZJcz0hNa3U8/Tv/vTJTbc2xagB1NQKYTzfPvzG0aVb2lcVy/3laDRXlgWeM0OHDp+Pr1h5QwjfqAa1f03jP8fPzgxX35xILAM1lXouza8FWaOoARdOTZwb1vD+DICralCxIfrNdb5XBX3of4ze5aVIJhcCAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, angle OCB = 30.0, then the degree of angle A is equal to ()
60.0
725
[ "60^\\circ", "50^\\circ", "40^\\circ", "30^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABnCAAAAADTHbgmAAAKFklEQVR4nKVaf3BU1RX+3ntRO2btqiyyDIuJSahL0YqAIxRoYEhLWhJN+NGE6VrCyBgwdohtHOOIDbTQ4KijTInDKA4wxWkYYoOEhmQKmpTOgG7GH2NiYgk1mAibbixhsmuXTt77+sd7b/ft7tvdt5vDkL333PPud8+5955777lXINIkClYl2+VSNSGmiwEBiDSMAGHWTgLf7tQz6YOoOJGUADPVBKAue4GWybJa8fVPBq52E5dGALjycdPS2QULbeaiqkH3Oj/WGZZARs6e6bq6bHZ+nY335AD46ksEvF1Hz7lWFhXNMNUC6PnPz899JwybivrrCmZWHOg3K+rdv97hfmHQrChUNdZToWdSgPgPLHTVfZ5MorfWuezN8Th2I4C1JKmkArlaa/OcimYp6mdR1FJhf9YfLeR9hmyv1fOmIGo1w1vtdb64Gk1puMZe6zPkvUVjChuTg5DkRL2jwZ+oMJ589Y6GkJ55AtNPhko0eyUB+Yuz2jKEqu2oJ6cjgYA5yHDR/AuWIRQdqctd4lciqBEJUxCvc7dViEhNJOUdOb1mZWYghx2J9E5JLY4WSyCTTxb0ZYpBel31nIhlCrEu9Hpl4JTdiq9JQP/+qW3FrlimEVEhewuqJzPVQu3vj6TpgzGsGHN13L4/fkanBTM0a1mRvSt6hEWbq29pc/EUTAVgfEntVT74xPl8I9O4aHGsbM8UMW6UVlRDKNv+aCARiLJxdc3UMFhZsBMC8PyDjyUCqcO+qWFg2+RBdck/6NtpYBtWxiOnzme04kfoxZ5uCQDBW44vmV8WKQgPjAsO09UvDTo6x0+SDQ0kFa8j4mHCIMOujH0JSVLhGac6PxoaSJItOX59GIv6rmnzU6unZCqhx9MWNW7XebbpeyVR2zUdu1YH012aVbpcfnBRNOeF3k49qSo04fJqSmdIfvdhPamZS+EZd0g3F0Bw1xq1GZb3uTF0o7RiUwxLwKoHXjZqMuiI39RYJoWcLKvWk2FNSPocvrAmwO6aKXh3AaiZbNKTRprh2RvRxDcVRUjuXhwy5CKa6BWLALB3y1SWKR450naLedGMda+qIgrH7D5OgTpcX0blDZpw0DFBUoSAo+UmW3PL1FPVmmuqIADkL3sHqhc+XDUFjH+VH11kOovVQbDpEAgR+ORaYeYYY6t3rzKfXgQIlPYNCRCBI1WZYwRKt/wyQZEACIDkOQKIQEslMnVb8sYHnk3hJCqbAREDk25k6k+2ZjWlEnloZBQiupP3CBOkQWBnb7OUCkRc1gUR769MKmQ8tgvRBQePdSSYhEZa8X5qTWLrjtBfd5224ihWdEO8POkGLHT8aUEQ1hkZH2xpy7WAgYeHrouD8wCk7vjqp0YYHDKgXCo7Ot8KBuC+KA4UWBGs7v9wFm7d/eHXus6jxa+tsoaBgi+yBudakDvd+tY0ALhZj2kE12ypsIgB90VxwJ1a7Mbry0sB4FNodpUrFz9rFQPuPtE3K5UQIV9ZBQA3zs/XhLdk/dEyBlz+rMBtqYQEfB6cDQDvnX9L5bzwZWcaHiI7kBVIEE8y0vezhwF8u0M1Gt5ouWBhEobJFhQnslPIELh1UfM36Lk/9x0AZ+fmN3SmtVrbAhZiUSRDJcD0kyRJN/CD5HtA4/JLktfs1iJ3t7SFk/9LFBBMSAJEWwCyLCfzKlFlo8GZOVcup4OBidtEWxAipGRNE0DqcIE1z1wZ+n3xWFogNtEWSK48AQiahCCXL/8NUO0pDqYBEswWbRMAAFmWIcsyIMt6Vv3R6lcZj09/GYD8/NL1N+QEAeH4VgZvE51fAwAk7Z8sSTIgS8YfALIkAXh+6JAkQ4a8787Nkmyx/4URh+geDGdlCbomJg2ScODUiZu19hy6tlVjp0a5OE8s6CUAQmsyJMl82RZwYk/b7XrbpeOf/g4ArSjTN0d0X1QAGKMfCVS5sK1jVkTK1nmiCRCsaDJ4b1ZBH2QJECDJEgBJhgRIMgw/sgRJ/qK8eR5kQIIMWYL83bafOCosbaX652TlZF2MWlEkw19DZuxn+wu1vKT+v/vEytutHJgv3GMXUfh3NSMn20IFip5eF8tzt1V9ACB55xPdhRCx8j0g8aDSGlBevD2eu+ho2RdAcpMJ6F4JEYXdQOJBpdIvpr1kxl61vyilG5PPrUAW3Fkpl/nnvjllXrBurPicI/n9k9c1AyKxoTkFxr621kQrYbWneCL5ADtWAUDhxznJIxGtdw8nKX2yKBTDiVq0Jh1DpChg/p3dyfque1uny4StD6mmaZ5kirTNy1HPjJsOJ5EaqGw2dllkh6+n3g5uTfL5kc0AQNJv9yW017CrNYmtSJITi3doKSXOXPoRG3BUvYa4SLdKweL6smTWAIDsjuPaeSvelb1UY9M04bBj3FyVUGF9Kj1Icji3WVdEiQ572CNhD1fJq3FdTwDY5Gw0ZhMQXadrO6HO/Ohq9m5Wd2ia6UwjOHVFVuP2XmfkUscQippuDEXlV5lt0vedaU157tRo0Z/KBuK527fPUK2gYk7M6KFuVp2ac0Yt6kGSLa6hWE3OFGjzVN+lNi+MtUyXM7048QG3n1EdH3J3qAzqMe2KO16JVrWv8l0LxyMDVXuKA3rHEwB237caGkNvyEh08Hk4p5WkklZ4tUZ1Y5Hgs14Q2dRHhdHH3QcyiN5WrCcVDcQYRo9cATz8cml4i3vj0bLqDKItbwe26ovLSPmb88J8wz3DpjUbZc2gnnu0SUhLO9FwZcc//a3Wyg2Plxn4BplXsJ0ABDw9flBjCemdRGwdLaob2+LcaeAbD0HSn5e8/qQAvHiuy+okjCIKtP9t2XQAez6+AAqRdTmq53rtHWRzzlSCq/3OxxpaHdGvDSIungKAzoo97jUb8vTzSCbxvCtv/rDv3R9FR61i6ukru6tI0CHTJPUbufW/nbHxGpLq6RZoIsnx4sIpxdT9C9bH3P0q+mQMlTQp7eoherKmwPS+2xp96FKXuUZg+VePRV/LBheP0HvvSRX48MxMrrcUkmxxtpCkN28t6c2r1fgaSPtahkr0Jw0ZXfqT5OSOnF4qVIIL1iokn2jS4KEq9IdwxIFkes8XItTlLvFTIdmYN0KSL76rFYAkldAjJ9loRGHrTOsPMVS66snVrBxc8Ouwd1VIzUEKn327BL+afdYw6Mr+ecfcnWnEBEafuz9vQDsTfT6eH54AAgCIBICz9znQP/4945yxNX7kK3hmNMGMiMkPP3VvqHfXzQllSDL0yEkGFuSNxC4hvtpsT/KBppBka4W93mjb4ILtJOl9Q2eAZDsAYPlY+KsI+Q8sdNUnWOtV0c9iHywp5F40ke3L/TrD0tMrZ8zTK70lvfvXO9w7LoYZ4Ra2I/LGhyavPcxIf0T2kI25uRRweQgB76Xhf7hWFv34LgvfC7ToDK9/0u/rAi59TWB2Hm5a6pqT6DlcHP0f1EWJjhcPJOkAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, AB is the diameter, if angle BOC = 70.0, then angle A is equal to ()
35.0
726
[ "35^\\circ", "45^\\circ", "40^\\circ", "30^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAABnCAAAAADnZHk6AAAJAUlEQVR4nLVabWhb1xl+bpqqjIho2ZRFpQpuE6XWphSUOYNtcXA+vMUdXXCZNw/qgE03+4cHMdhdMmaW/TDDkJZl4AR3bWnK+sMjZt6W0snMIcrID29OcEqV2l6U2UEOUePQOpUL1rV3n/24utK9V/fjXEV7ELr3HJ1znvc976vz+YJVhqJPnIV0SD5uW3YDvIFuBaTS64L0AZW3fE/alvVKLpVn2cmz1tT5OvB0707bxjZ6JFfx8MbsvSQ4nwEQ3gnft8PPft0PGiV745PXAGBHBID5NxWSaz+asXhpInlvf3jnN/x4ugbAnQUpN3U7czV8sLFxm45l7bmOE25teXOkmb5IqHV4xqpAaqglGO2/XUzPY9StTWFykkvDdeE+S2JNuA97QvVvLisF8gumXx+BPNvjb3uPik07RYy2bj65RJJy7SBJzl94BPJCtUxnoC8rJmWmO9CTJXkWF8jEIYeSYprnTgZPLYlRk2T2ZPBUnkwA6HQqJ0Q+FupaKvSBS6cX6dtq/mbIsKznSK7WyDTGJ8Uo9fh99IVSX9mI7K75VGjAsQUT1FJT9bFP+mtSLpVcyd8OJoRI9ci0h4ZIjgZd/un25ApJrndHUiSpKLpMF+T6A/05kuS/tp+skJwkl5vql1VGQUcjORxqy2jSZut+mKuUPBXpWhcmVQWciO2/psvKt8XSpOLJ29WiicCQB2qSTDVFxkxZg4GkbXEHzVNf9OhqS92BV809pXAsmPZOvhQZ8mBpcnUg0Pep1Q8DMTu7l5MXCNcbuz0wkyPhZjsN25qFyQvoafTia1fr6q4avUopvax+85QouVrrfGRJ/P+Vbgm/W55bqp0JjwmSkyQngzPC9l7uDQysOks6FUwJkyuZsLCjr78W7Haf6EdrrGZka80bB931Vsew9yKNlkqZ0d8iSj5SJ+hsU/tiEwLFFEVZjSZYZhor8lx4yqml4lumIzQk6JUKJ6KrZblW5H1dIu2VJi+7oduI1gEBciUdfCjAPRxqy3gZAJkNlvmlhebtp9xbmojV60yjCEnR0+NOng0uuzWjTl6e9LZsuHyXOviTgPMG68HP9jXONltuWB2x7Qe/ddurPQhYDhlFp1odCPQte9aaJJkO5oz1ysjPtGtklhgJv2g7Pbui+bwxXSTXFmpx+4WHNnlVjLEGG/ICpmvs66Zbwu9W1uFUFVsPLhjyzA73TrvVOQcBPHylLp5+yfKEQQQSgMfa3nZ0uPCMtW7rpwuTV6WakyQno4akiXwmZE0gOnnZQ92D+O85kA+3WlWb2i80eQlI0DSiT5psfvmgZuIS7nZ8vzV1uEJTmwx/4LKDzUOzZmFXipNXNTAZ1ZvUSL4QNBVW1J1X9fCEfnw3HgKmY9pBmvp96fiWi3sBeh7HbfHVW3tLCSP57C5tvpAA3OxLn27WElVCZE4lpwTz2Ws6qj4JUJu8qovov9WnhDLy2agmVv43kS/c6X2sirTqXyj6UendRJ59qiDWHyPXrp8OeD6XdYJqu/ASCDRLkiSNmv5qkTQVKt4mLw/jrUJO1ZEkj15gAtNG8lCWZLol/AfxBj1iJkqScizH+QJ5cQGIHD/tCwxoK2xXpSZq41dFypWwGCYVJjrJo53UztvHt8UBSL+avBpr2KQZydXmZx8g/LIny6+eWQVwrhuYjmsOt3ZcfQ7dav9egRusqr8VoLrd+DTP7vkAILmaz//8u5+RpP8f4h1IkhPRuMdlVWY7yfkD5FrtIDcCeEJ+M56QQAn+Z1WdRYe0wzOFF+EBeGUTgPebgMW5HWq338l960t+SID/c13fiECzjCRaZWUTgPEjWGva+rxKfuYEdskyZHnzZ5BlAJANj+Jb4RuyDNkopqh/fO7HuHRxj+R78r4fGwCcO7fhGQk+PI6v3JV9PhmQffoHANnng5aWIfsg+2RgXJKkLhilcMHiVhyhQoWXAWwAFnKrSmIHANkXTaOoqxm+0otPTfUdy3HtSpcgrYpbsdI7N2Dh5RMSbsMnQ0IkBZ/PZ1/VgL7r9/3Y+LuxFcHyBICbuwAUOkpCL3AjfxToyjPPiYY8qX50j2Iir397X5omycRWT4us+JRuQw0yr7bPPLkQVNRUXv/IUyuUz+fVr3yeR39KkjznjVxbRilUyI06YwI10pw6oxfyfMXv0lshuTZ3DACQeNEv2O0A8M9nCvtvCZJ+GSX7ABy6EhVs5u5cBADG/zrtgRvJBn1KW0zIMkDgQFK0madq0wDWjnfGxcqrA0HyoDHTAHW7JITeA1Tm0UnR0yiSXPcbTh4sNoqiOApgWrg0qZRtFM1b5JYR0X7HX0gK9jkAQCJGWk22MMLpcMCsh2c4HQ4QQHzLFYAC84TAOseoJICLsRpDnp5cAoD284U/oQA9xGczSADe6TBLZMJSIPtopw/2SAdNg2HZIWCw4wwkDxqJoNDY6W7TYFgeLbK4J+1yBFkhPq69Y2q4/Pgz/ELZKWV1MNhRplSZZZT0VteTXy9QCt8WR95WQTqv5Ib/D4r/+LlfwrwwtpA1F3K65qhQ+79HxK45xC94xLnVCx4TLKPCfrTl1ar2uAQM7D5i8YOlqB4u9QS0pnqpVx7qYnud+VG12Elv15n0eJHrBo8XuV6vsB1he4VtHYxHCf9tqh2qkr8dW/mTzSxpK+9SxGu4hg1KYQtmMzoEbNwMVMXlx75cQcBGJaEqBeg1rDBUhfww0v2IXrfaHnO4CXOMe919/fbhh579i6XHg30rk/Zhry5Bt5sv7t570yu5VHxc2/OdC36dPGVw6jSF5PlQhW6ncDT0aCFpVIPxKlqk99ekjC2Jk+uiExrjk97pk/owRK/kejo1ANMLsm01OmvZSW7vcLoRsfnWlq/9+oGIs6me9fEvdu+cO1JyM9stiKAqma5Ab3EBaKlJMVMLunW3lCC5QmZ7/C+ZY10s2h/Two0FvMRLoPX91+vCJ2327ypVqidU/8ayLsNJAsVmSrUyjwQAs2/9eaXhYIPVwc3NZDIZbOnYIdge4CW4XltxL16auJyt324XXO8F3iP7AeDhjZlsEvzPIoDwTjy+L7yrrvxEzPXk/H9eSntEqpJsYgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in circle O, diameter AB = 5.0, chord AC = 4.0, then the distance from point O to line AC is ()
1.5
727
[ "1.5cm", "2cm", "2.5cm", "3cm" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAAB6CAAAAABYLGh/AAAMf0lEQVR4nMVbb3BU1RX/vURZp66NlodsytJtYTXrhI6hScdQsAkSamwppUNqdErrOqbETuyQDjjEDtP4gQ/piNPUIRQHHcPIh7TEYkdGlhFlbYPGCZ1gDQ1ogNBAWdi0RjeWtyS+Xz+893bf//cWYj0TePfdf797zj3v3HPvPQvOOHUBtVc2+KlZhBmmUeFd8oVZpb4qzzDbV8rWk+TG3s+D813/eRoAFiz0U1ngjGJPff3hzaDgs/YMc37+5ELAL/ZMg6vkU5wzBq7gzSsbAYizvT4bzSx14Y9kotZf5ULBZa8KCQDrfXY2A9ruW7ktdN1Vtfro2IkLSfD0OQDhhZj1rfDt3wgW3k3hnJ97/VDywt3hhd8M4qsRAGdHhczRkbG+8D0r6uZ+RuCKcE88//JkzfKamE2F48lkUmyILyxkGgpQtvTOqvCmYYdCmSSHWkPLfn3ad4f+wVOtwXX7KXvo+4fLbxAeT3t/FCR9LCzqtJxrLrtu5MXvQXA2ngSQrChLfycZ/eUlc3tb8gQXAGDyicWlI095qJOAyccefLZ493NnXr1h0ZNZfXvH8fqgfaHmtA/70heJT7Cxh9uXMLUuciCXL8sOTV3BlTZjdRX9npVIqU1MkFx2iKzeSSZj309b6hQCTpIcCG117UGl/lhDmiTLhsghMUVOb4kMXSv4C2LCq4pMTreJLykvYopkWyNlslf0cKacwWWSnG6JDpGkNmsOLAxWrFI/r+likpQiCVLmQLjtKsFJcqJ+2YSC6Cbz6XaxW0unQiRl+WAkQ5KpyoaMy6hdwYeizdOugyNlcriiPpV7HyxXYOKtJElpXflIoeAyKZOJku0e0CTZIe7SvSXqlGc6NKBMVUdJ0rGpC+dDN3uqGjlc/e1R/fuLjcpT7q6cJimT+8SRwsHT0e3edqVTNAlnW6uWqu1UE1vLM77BVcDpuhYvZI7W3GXmqq1DG/CwOKam1q1xaG+17aox3oTfeZn9rqrv9pt3JuOzNWMea/m5Yr/xXOrJwmx7d9TLmqfqqoepWYBczXv3ayl5urxHTY6F99l24QDeLw57zHe32G6XXaVbBvpLJ9TUgDhkV9kWXB4L2yt6bkAX6isGjTkqhfVKsL5ZS/VG0rSSDbhM1nVY+DZk9IrtDtYnkNW9TIRyctjS4A+c7Kl0NWzphpjTGpu50dhRudaRFEvQIic78Ex4wBFYJnvFzZL+XU8jUeP7qnYtdSgmWarbgW9qtsnUaCJuz7bSbV91/lUmOSbmvN3GrZY2NkZmRPzIGTsRanGyVzLJ3lWmrM4aLZ0SU6YGdpzH2x2hJ+IR52WCJHc2mTKmK3OrbWurqcwGPCVOWPJUSkaandimwvnWLebcgVBadurYal47mkosVhAAMPnYA8/udN0OEhdC5ryqxsdVgzt37W8dzas6vvESy9QohX2RuKNIctTYY8nKRDSDNSJmPLS9M64fSg5b2uztSFJxnM2UiGhf5ppuY0kOXHPUKiwaJZPsj/3Izj5aqsbsbHjjE2piX40DuEqDEZvW0205J9hjubF+TiRT4pDScFo0eD0WhdsdN+/tiGNVQ8Nr1Te3rRfx6Yd2+7m5W5uUhsXrXnBQOIXCw2bm9I6xF+OpUvv8atXZ6o8Zsk3gwyEzhMEx9qLBRXa5MofFMWVLEbygLzCJ/c0aRbY5yf/m7pYD/k9aLlo+c6W7WMsvBAAoXvamvsAEfni5Vh8AcKL6wNEm39DA+GxLlsLGr068DACoPWwsNFDohP5Nc4z9HXJQ7zibKRnOkOTbMX1fRvBRUZslkqM1S075RVWprcOxKN5KmWRAbyWNYh8pz6e7qu57a0EBIgdtxa4J/qmedwDgjg90JUbwE7cpTwEXV+756+ZCoAEBOGd3taLoj9j5iAwgelI3IhPnMXWcuxctfdvupM+D0qJtNgGgcf42ALH39SMyTEy94vKnNMdYI78aF7bZE+bajt48Su5p0OUVQW9OU/MA4KVFdx2tsJGcD87nW/NybSNtjwLhNAisEQRB6IVhVWN0xNUxtiWdVDJB15rT5T0cqCRJrt7LBAaL1Dk5+C4ATAbxpzuix+7yyahZKvYGLkfFz7eOBz8BgKlT9SiDxvmVskGSDJ6Px/r92xQeKqvo0zGfc5ydqDU+FiZlJtaTq9dTkAVQwOZjLwUBCF8or7u+gIuDrnGEH8m/Dh970L1+dsf9L0oAdrQAgxUoEgABOyrOAwDBebMECAVcjRnov163DYFm5Vs8OMiuxe8qYj/TcUa5Dwq+F2sza5Gr2GMVfbpXq+NsobH5JM/UklNlHYp53baZtwMAgnP6j/1wEr45XzE8uBQAQAKwcZwtNHkjgFfrgXMnF6IIwDNdgnq6EZws2T+v+ix83wlquIIAgOP2Bs4CfvBeTNXPqUcRMHpZ4gFlCQlmULy9tfqIwrr3AA4WCcKjqpQI4V/e4J8EcVB4ZbEwq/RSEOCZWl5ml7IW1u8nKfeFdvub8o1zMtqFOUnS1nE2kmJeVZ3CRmBQWg38TKIktXZSksiR8g2SRMqUJM3fV1Lq/5QkSuTGWpJMzMnt38SUp6K2t+fBZZCkpP3b3iSREpmur89I+XxS0v4oUZIU9AQGVXDt6K7Y+ytp2KN70S+p2UDsA2SzAG46EKs+bZr1QD4RAALAjvV3EsAp9dsg0rd6fyUjZeqXoeiJxp1EiaNijtHucJ+R87yElL9M2V6S5Gr1HEPmYLk355obJVMmoaCq4Az9PSffN0K77MWu/p1Upa48SDKxwhPbuGsoApANAEBACgA1b2WzASCQzWaX93duzGazASALBHLZAWSRBbL4ctkIgKkN6yvULw3joqfUkzX6tyIgoM6mQKA2qbwFAgFE+s+uuRxQZzufjUAggEAAwVVdwOismme1+cOFUhfboBQklxszNZJIbbuUo7aY41k5ydVAXuZ0dZxVmg4atl4auPZFh40Xtd2hJOl3nXlkl2uxbNkoap9aQBV+Q49BLg+9/ECX1zzm5HrePSZJIHoaTW2MZDkcGKto8brk0aiy30NCbocDBFBxy5sAdXoT/svF+o/88X7JTdsJ4JXyiCFPDy4AQLwbxnvqm/ZWVZ3wBx52KRQA7H7YPCITpW2Owv4QSvhQOQ/HmRwRTUeI1hPI1jZSr98yyYHwds97RZ6KOpWozZrbTflW8DG748+xyiZPtev3cJxTJd7Hn+FVllNKIHxkotZd7YhzdvtjHXU8bD1XNZM8MsfCukyyPerhp1hOnPNtSdnuyNvmXm3hQ8aNORVVfbKjLuHK2b/tPThlsRewoXUuLGd8VsqE7K85BsKdtvkqtThf+8rka1HJkl3QBU+qMu6idjYnznls5YLHRLahKvffss1WgnOPXK5NO0mdKUfHWQC2LrrXro0dOV3qkR0RR7Wzd5wVfeuNqGENBkvheJ35D9tOZPaG9lurk3Q4cVaokOtMul3kDoY79MPJ0XSxoz4UeJFLttY59ZWujlsVl0yVOhlfqbrdvsA+NorANmxwUB8xiZpxrVqexr/ktKA2hdodSpw4Zzrq+N3KHWHrHCbqHDjPhy2YK7gEbBwvMat8vvG+kCX4Z0+jfTf7Zl9FwIZ7qMrxiM5VlUlyW0sukEjP4VWGqpDvRZ39t/SydUa1s3WcpXi5i/PtGoy36G+nVjgtpOKh4qUXDQo3W9U/3WN86aQlpENH7pGAX3xlUdVxh7JA90+qjubBmCpVtT3/OLp45d6gbjwWchO7TLI75HyTeECvdpWmQ1OZvVatNJJHSBqVYDwn8/FetD2XNp8454PxHD0/R/B8i7G6Cscj0Ylla7UIjUDGAJOMrfK8APXmnFoApi1NN1UqUUgfGxzn1LqIbracWPcXdJtpm9PuBL9dCe9QQzVkkky1ie2Sj+2l34jfseaSTbkl09CrnAj1UO84j7Xc3Joy17oWcJlMtQZ/bI51UdLD0S35UI19D5S0pS0jvCZwkuSlnZXhNrtA64matZnfN1EJtN41oRuX+wgKjG93CDH/dMORlR8uPqyEmAN+o/2vJrj+9cMXls3PBdf/8wwmB06988H8FXWfTXC9mRHTzwquXxq+bW6ZhVlP9q/xBxUUQOGqf1FxjT+iEfInCT8QBEG4dfL/CK6jP68eJH+6oBD0mQOfunInsG3Jxs8F/I2vCABue/9zAX+tDgAWFNLhjIFPvXYfCJyOwv/t0IyBn18ShIDRp1fC/5XgjIG/+jUA2HBPQwFtZgp86pl64Izw8esFtSpgVXMh9bRmb2Gt/gdxALQeB6j4pAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB is the diameter of circle O, if angle BAC = 35.0, then angle ADC = ()
55.0
728
[ "110^\\circ", "70^\\circ", "55^\\circ", "35^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHYAAACSCAAAAAC1GWFZAAALs0lEQVR4nL2bf2wT5xnHv++5qyutqzc1yOmgSouDFIa0mY2pmQLYKaGExY4iwRQ00jUpFaWClaRNirumTRBBuCpV0g66JC0LVFQLaiNSCI1TJ8MpZKUSUvIHHZ5md6HAmrRUDZBJsOF79sed7fP5ftpOHkW5u/d97z7v87zv+/j9yQgAgOGHHZhH4cTr2vmEJrAveEVlaX6wjACgy7F2nniicAAQZQ97MW+ailhC11YUAWDzimXd+1nh/NoYdwFR8Bj+Yr6xkedOgL4AAJpHKzcBEfICjTzNo7CUQj01WWNLyRTNVT0T8TwRT1RrsWw8ekt4nFPhkhlgwEMLDrnbf/h4X2zOS1maB77lt0V3aPL1ZbbagBgyR2pzcbig7xL7URQ8d+FcwY4Fz4wRwOZIbUbxhkMMtBulT4UtAIDP3zkeq9rinBsqOMSdIgMY4Co8IEQsa5/8gH69xBcGkHt3zckD9vlvxzmPHPh357erlr4azb27TsM6izuABGfN29/su+BcfvBKjrEpNZlaWogieTOyCnynt9q6suubOajJEnF42mUV2FLde23b4IL1R67PobY0aZtS8lIzb5dZNhy9NVfaoqBun6wKEQDYngpeXXvA9nhfbG60pSnbZVJwyzwR0WRH0oXlVlvYf/8yFNoMA4CCnRfOF9Yv2DaGrBqzEhaNA1qdDcdLF0M/2vzgjglpoMksKGJt9bs0PsSAZfv+dRzeJS+GJYEE8S9jLBrPTug4JrbiwOVD3wkuLJEbZtidKWOtvpd13yS4Or/ZH/5FRi5MGYtt4VFNIgAGECp6vm0+W7iq+1pusNbmFpVyIoiWJOFq2fCX69uCZl2YChY1V4eUy4ml3cC6+f2ZTb33/+a921ljLa/5DH8DgO2JwamyzlQXRpJr/L6SMcYYFN0FAKAK/dJ39SXv6TOR4rb764biAUxyFfrFhBPeCPFNjCk5R0EChXcy8HpRf1He02fU4z1ERN4mVW2xbuF7hjVNyuJdF88sqJO5sKQMLwWAorA6FrtfMV5FAFC8QIr2/PPk9yqlLiwpHz8GAIWqVQqAa3mnGSyT1G1n+5dHviv9SdKFxeW1MgCIFKmXLdH4A9n9qAdqbc4Dl6UhkReIiCIIqmtLcJbsN6Nu8kXx37o/zzSfW7qqK+nCRhwA0FBZpqUtRfJmslKXiOhW70ZL+eHvhAdEiCLwEmliqbY5aywR3TzssZSHiIKCykHSw16+byoXXKIey+uSJ17dSwEAFj3pz6R006Sv/u7Nkkem0YAIAHxHozkY/vRt2bvYnhKijmUAYN/elv3wp2/LqSue1CBtIwMNmr05o9SSkNsc1tb4fJbUI1tOlUxfKDWHRf25iayoh3eGSjC60moSa/W9mDmTcKQ+5CQMlskidLHYEdHqzWkLe3dn6GdgCFSYxlqaWzLGHnk25GRAmIpMY1FzrT9T6s6QEwA+9MpjDGAtbbszo77RKFARkhetESyq0JcR1X9GoM5+6pa7OiNY7PdlMJR+w39aKFEaW2qXuzpD2EcXHjWHJKAjTgWTuyhAcTSfLmcXme3edOT/PXFfdDYt2pC2KFlhqjcH+P2nl8bvp68Up8Ubw6LFb6rz2vqns8mWGii1pP14GsASAKdrX/zWQPrWI59IVgw/qlAYxOmVrTCtbqo311IwKX3Mv5ieRFdbcWLA4fEb1bb18GiB5PGze+WeEYbLFvC/NW1svUKgJjOY7qLMYO1P+jWhcU6ToGsy7UiZNDqRXKdsEzKVFzFQrvVFX6UG3Lz7pkIyw9rCvn1PIqeqiRoGQ/lSzQhjP79XIZ1xLBpOiUNH9XWLhsCoXTY3ddKjlNAwlmCTdm+ESYhKOTVkF9LGhYlFmzGWATskvbkT3gjxwdSmsSMQssenrOJy5asVWWEBWJubJE8OdJcVSqPrxkJ2eROjj8ot2WKxbVLozREw7EH3YtoqpU6E7LKGQmB/lXWQE1FGGxAR0eGV8bsuABHpXHetU8l73rF9qbhOaUpbqpn9ULwdiJBXukGkbmLUpvDG+QceVJx1NYVllhaxNxeFAx4kv1g3EbpP6Y3gGuUvmcICVXQMADDiIWzFLjE09vhESElX4JRX2bVwAHieN8ztaI4RgIE1DKgUrRzbNClQUxEEzI6XKLsWDgBnQmfXwqPAMDtZyDF2UrAgv2lqULBwKoIBQ6uUPCNMGxl41fdfrCGhejoAIFY9NXivirsMKrooCZbnefC8BRAMzqdcEnc8zz9S3MkznocYQbFN04MqKgEjiRolK2IuceXAIQae43iA56QXADzHQXxuefMGz4FnYsSmqY8UqQRCeDbhGWXmkBqZF+qXSs7jKZ2r/8gBnPCd256vVXRlYBh1qXwriRXVAsfpFXdz90z89nYVPla1MDCQNtKTYOXqqagbDyaHd2+S2m9V/c2nmGI3Ko4VjAuO5wBwPM8BHC+98CnBjH+ldxo8wN+uQr9VvVvHzhXY1eI4INWqwhMnvXCpwVz+xj0cB+5/Vei3yr8nUVbDxpIqxRtvwi8diwKzEqqSoRmURnoyrAn/CORtb6PZ9fckdVU09LWL+lj9CiyVhsBn6/M/0LAwAIz8Sj2BaecIALA9V5Hfq9hbkchp1XoM3JURdrb/P3/Qo+LD0+r7zTLSdnb9j9sb9BKFUaTeuDLA0nVXfu/Wq3pzc0PqzScj7A33T9+3WJr1lh4DazQGpuax193OHgBP3OrXTHbnU7fGkrlp7HW3swcEoGW35jB7ZKlsXJIVVqAyAFX3vKs1zA65Ewva2WCFbN9wOXvEZXn492jNzQU8WtsSzAy9gK8f+WVP4tG1sEc9i9OR4mRms8ACwPTq8rclj/tfVp6sIkYIuS3Q2J5qBjvtXt8uzf+K4k5FbRgYjnuEu+yx0+7ydumXCK/4b6hZUb0bZRL7tbu8PSWAYXl5u4o+E0qTUZlgL7nK21P2MgBA80GV7SVDKkMus9hLqzeKFpZa2VG9F4rVNfSYzvf0htXCmHiyQHnAPWWTr7TyREQ3rUqTUWaG1QwgXHLVtirG2uvkqzUMAMaWa/SeAWNGZl+qUYHWvrTdBhBcVNbYS6tVqbDtaJMHESGg0Z8xig2vrE1YMr321AcmZCGMTStPRpnChksbW+MbpBTcjs2XtjhFA8qTUWaw4VLfTuFOjhQ0p23nPpNFsKDKZJRBLAlUFQcobmu2+nfJImKfyBcwzWEZ/lHqe1Zvzrzm6mhqmZ+3LcoKi8/dvp26E/WW1udTcxbS8Yx62ImSFjULS2VzrD/lWWOklxAN5zhuO6zt4uJy3CndSHbz7hu6b2hoO+F+4wn9bANA1felS4+frP6BronUscapwN42SW/uRJn+wo0q1gwVrockS4+j+jVKtWzPGS1XIiLix/MTK62RfAMvqGg7tq7zd4Z1BZizOKHusHYvShBl7N8qDm0yt4WnrW2GhBWiYQPNRxk7VnFogykosMzTwQDGEAuUGViCVMKOVbwjUg3vlSI0H5wGAJwvsBt4UQE7VnFog/iaYUMzODYLG8kGvDBwnicdO1RxaIM4uDIsBODFnmkAFHQbeSENO1R9bIPKL7q6MAD2Z3wAboQNYeUzNUPVx9ZleA7HVxh1IKAxGSWRhLaCTaPVx9ZlggQA2/ZWEiajDJRPivOosWZzLuNm/jgtUlj/VxAplr9orcmCStRRddGIZyT5qcWGcXemJgaA2JvLl3QzI2c9U6tUlQ0AGDE+o0pleXR8v7GTFKlYlxE3riGxIoNzmKlGzvok6LU8Y+mEBtTNWCVeAGV9SDFOrWSMsWFtbJRFiNpZYQ5P653wBim4VmkwKAoRoYmIqCmYVeORCYgiUN8fAqIuEPFEXUY2kRiVYBORt5FUD/KCCF055IkiLt2rCkdROIDcHf4UvjMQpa5CjaLl4r+sOT38GcVibMWIBhYOfAEA0RHkRGUGACMeIIqHNZIRdSFIFKzMWbnyRN4IkezHLVVAwn7/ppxR4+cHKtWOZfNE9H/LmBPL8XPzFwAAAABJRU5ErkJggg==" } ]
<image>A pair of right triangle plates are placed as shown (angle ACB = angle ADB = 90.0 ), angle CAB = 30.0, angle BAD = 45.0, AB intersects CD at E, then the degree of angle CEB is ()
75.0
729
[ "30^\\circ", "45^\\circ", "60^\\circ", "75^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAA/CAAAAADLIMlLAAAGJ0lEQVR4nKWZX2hbVRzHv6l13dPKWOaukJltzbQ61M4ODDhWxTmiJrCH4hQLRigTLbgNmlmwmpeidRQtWrChglX6MFihCBt0ZGOVdSxaNBOqmexmjfTBYHzoyB7ujfF+fbh/kntzb3Lv/FJue+855/c553d+529BBylOCc6yFEkBMSYsedrhIB99dp///vXmn9f+wffwEYEuHw89tDfcoRepz5gPJYi8L9Vg1gnYqPyVa1ewa/+WQ+0IdwD4o4Dq1Xxh2R85HHnAB3MFfYkzAE4fOWwx4tZZ2aFAMD5bsEsSp/s79w3nTE5NgaTClGjJ645XSIZCY9aiJq0kgz3TG3V2Uya8J14uvmVoRX9RVBM24bQ82BnX2y8ibW+rNS/bL4xvKHUI6++apEnh9dz/4xXjgWnJ/MlxpCikNCkMFEndn2ID1Zan6M/qWOdouUWNLEWlD/wzJFNIU0nHGtIbeXXVz4QONw0SOx65Gu7LkWkA1sFuy6tpzH/WI03TlDDvlOTMK/aF9WhzO7cZkftpYNwrb8U/WnWJsWru4Y4fegck2zQn3nn/wr3BqtPBF/fMUn7lwF8eeLP+zD0sEFTKE8LA6tF3SHIs8DPdzi9TwZwpr0t2KSkMFpQP+9SOmPfbRE09z7B6QbCdl22k1D2LJ4XhIrkQLGmJPwZmm/EM3Ko/4wlHKmRhcEeyRHJVuEF9ls35F5vwdJWCcy5xNa0eEybKJLkROlfn/SX/iiVjI086OOqOUTObiQZn/iVJViOjps5e8Odb8eJH3eEMXex7zHDIcNRSn4ke8zhs4E302g9UJ833hM8bL3PdDbN7ZLgpbzGw7gFWnQ1FlkjdtysPatN7nUtLAVPMWHglwW1okpSmAv0rdYDiTpNpDbroLzrz4idd0zbGt71hWq2kg+O288LQgCNvKdis8+qtFd8ThiyeHzzmULF6n5l4UrBhfFp5KnN9SBgpUR/W6repHon2M9/sAQfeZ+6GQi7uV3dQ9VoWnAJNYXjGjqdIQrY1TFnpD0zVvK5o3PUdy87TejZkLKX1vEkXzVuKhBonYVLqSTUrFTHK1PFcNG8h3Duv73hNOvYWSccGKkshG95Mq+bN7eu7aG9z/GCLvcfTCxaeQoaXTHWyvFSng9GMQ/pioMTmWghbeGQu2CT/3QlhYNUpUWxYdRpU3VYweIokySRHko7xVUoKg04rvsJyaK71huPkmGLwKJOsBnLWQtq7tk9wlGUFsFemm2Zeptc+Y2FQSDbtnZFIlc5Dz1AoS5Js047dlQvPo1KpAJUKAPVPsHLj1XD3raRf/6A9Uamgop2P5+fP3mc9u9up/yKon6dlks8sknLdD2XyajQ4c5ckKSu1z7IsU5YpkySzQq6lL0mSixGSJBTVdBll1Zws64YX+56YUzSzMqkY1ajViaXgebrxJlnurFLRxoNMnovIujn1Of9U+LzpA2141b4xd60jGc6QVNqACgH8csDwdAWofrP3qzPXXzZ1QAWNOrH9/Vb9ZujZJQA+kLJM8uic3gaZ0lSg/7pMKpRlvYmyrCbKNPpP5sw+D4ffs3GShOb77qzG48b49riouOgRLge8nH6zYZKKNp9VOyR1TSuONOwTnLQeuOQBx41O0pg/Vx+RZdb2CeaDiL2k3kkvOHJ7SY0XACgKmzbh5pv7d+Y+9gPG+G02it9+/ITrWAEAdP0O+LT7wfJW/vRJZuTLzbC/FmzQpRfwmzcchBIArX13pJdei64PbXYxMan6CPjaI69dhn4feefJUvRRD0XpW/sW7271xvtu1wKg+rPzuTUV5/I61IfdScCt7zXdXwHQrpby6pt70Z1dgH7fqqTFlgOgXg63Va0FjQJPF2UJkPQGjAFAWl2PyETjTV4zXIwk067volVgmmmIavtSnsqmVWd45EGhCLENANawO+q624kvEl0AcNtTtFxK+HAq0QWSTFD00hfaXXHMU/+lAIhqvEx7CzZRd6enEIuJTEFkG5D3kem97j3ThTUAOKJ61aXy6MJxXEYb8qeOA3kP/2ZB4nMg7xs+4yqzZvhyFLiNPcBpQGRMd6ib8a4wBnhzJhm7RQL6emtg3PE8Kw0AiJH8D0rQ5643e1zkAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure below, point C is on the semicircle O with AB as the diameter, angle BAC = 20.0, then angle BOC is equal to ()
40.0
730
[ "20^\\circ", "30^\\circ", "40^\\circ", "50^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABcCAAAAACnnK/GAAAKQElEQVR4nK1abWxT1xl+LtRAFafm40YYYeYygmJkpoamW12VLtmWTZkWM9ohhan9kU7dgkbXZRqm2YYUujI1/RJoitSk3UQqZSqV0NIPT0qVIExFtWRkClVNE8SlJA0VbpO2Tg2tl5veZz/Oufa99o3jJDyK4nPfc+55znvue97zng+FKB6DU0OXP1QSowCCKjb771l3V9HvKkUS8e3Y6TPBDff6trIsCODCFEavxT6+9L2amnsLvaZk/rMY9D60MtTyVjo/IxU9UOVujMknIyfX+lwE0USLr7IjOXf+ZHvAfyjhkGHjnZfoSqOneSS/sfYa402epolcaVh0niwyD5HWoLZ+4tA+Gw1JJlo8D+dS7dLIgyZBQaL0IfVIypkjX5RsVY/M2kqESTIcEU/LCljMWxWjF/7oBqAAyLFOJa+45/C5ge2nLCX6AwARuCjLOzfWoMGWrf2F1HVC1PdUtppIH0l2hsXjnF2X2lNbwNIcYJDkZKgxMwhE1ZFIASKDnKjcP+uUNR/SjaFJkdIiJKmhrwARjXMb2hdDY5Bs88VJkh2dJBmWPTcHUbc3VnjkFELU20OS0EgNJo8TkcG2Cm2xLCQZ93ewT5hev1mlo0bdgYWZQR4+9kfzRpoD0YBPW3S3ScS98Vwmk6gv01kTvjNLpCH5B3UyR5JxRSZRqvKFJdMkG/H9nWI8ZdSSE9/B0Tek33lgY3uBiawgKP3SOw/uuCNx45bjObkk2dFnanaodpbGPLNCYcy2uLv46p506Hmb+BYAuKxslpPH6yeGlkNx8pnF6vT+g6vifqybXPnaXVXVdo0MRqS/YNof46LVMUjymPsISb4XJHuCVicGkp0KIIhaGhbHYSJRHTgvXKWXZF2bnUjrJPs6SXJEdZr6i8crnv3Sd6eXk9RUy5wLamHS6Owkyd3PLYVm+iFvdgIrSZI81MiMZSECaAwDB8kRVbZnUR/ptG+PxXOVaySTnqxKFhfUWt66GAKBdIunK/NgkFUDJNncnEdkkI/hWz2LIjHI4crqMZusLkqSCc81U2AJTt6/889P3PnagocOoOD57+6N+W1i9RoBrN/7d8s4kphdcz/ZUxk4sWCNrlYHh236kTzwHEmDA4EcjUj0lxHYPXz02LZXF6bTP4Lf/m9lNh4TTkWdAqDgbgxCZmVa0tBcKxK9oUD2u86LZIM35iB+4RHx29YkBRljSLn7Q2ap/mr/y4WrzwyAmLfBcTo+WS/KJTyzdiL2hoYrs+Vi1f65tcoOs3Szp9uMOO35Z81WBwbFb8bqztSs+ZyZuLf69Mvdmzq+dv4oGdd+vup8/EHxnHX3oo51yUxNUmY2I9Q7qdobPlDn6ygYRD7tnttlJcpk4kSd+DWJUitT6RW5pQfqfMcclnkCYzsrh+duxNeQbUyUztqIhirJ5fntP7fbeyzt6Pu6PI+nC/nEzETg12hYiLr3kJ4kSSPn7eHd64+l8qpJ7tnkZNQWBOIyURslmTWGS0GgNAVAyZnFK3t6z25++rpNxlOBVe9VA0C/oigRB3shVk/L5HZNigQausnAiHPjjJG9ZW2WlV96v+ekSEVAUs7OOag/KYu3N0mNhDlq5UDJDSdjJpTAK28Pbz48LW34fGX84s8AAJFRAuh71uk175QsHvgAALBMPt5YDbivO72hAEDglaFx/+FpAvjLffti6wkA/c8dtTQnB+qUTJSmJJHA9RJgzWdORJLOf/zdcf8TU+P3nDz3Wyn7a2QLAFzJNMdGlJSJEjtRcjWwcmZuIgD+4+9+5N9691BA1ss3fwQAeNPJGuBJmIlpAsAtpkZuoPSLgkRAydTau7pu/b0qnj7AZgDojx51Krsh23WKVSMAKPmyEAvx1rbV8Z7457f/7mMAwBbRaT88sMWpuDppe1eYt0G6U2Rra6ERmNqvCqNONHuaEyQZCRvUnI2b1PwyMeHLDFgqwOokUJpj3oQ5OQIY/M7F+AMAgPVHL6Li0avAM1imlGvPOHeA51OZ+MJDs+tmdR3u68Cqr+xlpfsnFODwDx7tW2+a1vqjo7du33cVb5B07DcA6lf/E4lUaeYbuehCyTTgvpE7HCj5Lt8THfq1NcP7rLZme9PVOUgAAGWT4vXrbphEUIByDfAkc4eDfPxbZe1ghckt26I+pa3d/vC4rUk2rLsmBsHoliwRgMAlnSVf6oCuA4Bu+ZkKP9n/pDGri2dFwQxmdOhQnxr332FS5S+oVovBomjbbERb33cppTdc0F0uHdBd2Z9/bfNeuFt3uWCKdUVfgRmXDnhax/13/GLUues2TAlF4+V2jS4DK27A1CiD679pfPElNwC4TJELLmCFaK7n8HjFzr2OVOumCCjgpQBoIaq48Blv+xyAy+WylB7cMTFyP/M/QBaex8d23NdwIT9DTSgA8Mmnt0MRRDoAuHcMKnKayKpktNY2v6bKuVDPq0rC/fiVO2vvP58rLhMuOrZzOSA10l0Aat7W16YAl667CJeu6y6M1pwa/JUL0IUYUqxDh/zLUI3V/NhGRUAVI/Z0jSmS6A3N5EQn7e7WIrfsDJLpY976AauwV0TYASnMEKXKkiI6ka9O1pUPsLjFnznDd2ys+3dWei5IkonbckLimZmfd9CXXQn+U23Kj33mw2yHr+6syTvmJUWQb1jDLbI3lI1OUo+o0aKrtyo9+5K/+rSsYyVJVpjdaVmI+UaqzonkoL9+Mr+SIhm7/NUi5FuZIge2mZlZIqOlpfoMSeqH3C8tpP48dPl39pLcqNHY96TZVMuqXFN/0kNypCq0pI1OkjwRCPWycoAJT2aHxLoD2Rg8Qba7W5e0uSXxaiBUHRXLfyOPaOTWjkRt4D9LJhGINXQn1Q/loUsfbSdi5WuvpPeVoPhzMidQAaAYCqJ7p68eB7Drsdr+H2qyyhebsOv1g3U/3efmEnks2PbosE/Upm3VYJDUcJDU0MmWh25Sv5Ek69tIsi9ChiPiG4mQ6WAf0/6zN4FAmlI0OGuQ7ARwiQZosFMEd50a2VOetJZdClHCFyNJI6yxExpBEp3ZQgdqF3XIko906AhJUgsLhmXAZXwzG8Q8u+qxm2II+GX5nwAAp+oFAyxHPCTJL4IdN0OhtpDcYA9rJMBs1xmapBvzxpbuGKKbxEadOHQJU+4So4/s22UWOutbsq+Le4dzRTB5LYuCrqUe6yT8PWTWdI0MUS6OBJZ2UPUNh3M756O3Lsc9uCIR9crNgcyntk/lNgx4221FF4C2jcNO4jwiWfeHwcUej1blHlEJ5B1hy2XBpoGP6sxNlgX48qmar99RnV9wpDdIsqV8wR+q19c2V1ah0/9ef8OCDkUm6gNzn67PdYRNkkwfUtuKDiNzrxkUQ5SF1qC2TtKY3/wSLbc15t3RKIYosz84Jq6CFIBBOl4FKY7IUo/1couTZnNeblkYkUHK6zq9OSerZO51nUIoJuChQgVnTsfEBSSouReQmL8kz8eCIqvByaHLV5EYhUJ5papKKYoFwP8BT4jGQGKa53QAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of circle O, angle ABC = 25.0, then the degree of angle D is ()
65.0
731
[ "70^\\circ", "75^\\circ", "60^\\circ", "65^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABrCAAAAABYylOXAAALr0lEQVR4nKVab2xbVxU/z2npYJ7cgUfeVJewxRPpXFgyd6tRPZyydM2memSaIQWClkod+RABnlRnGRS8SUVkdJryIdOcdpMiKCjSMqVbi0ixp7osZRmOSIZSkinPU4pb1cX94OIgUtd7Pz685/fu+2e/lJ/k5L775/zuPffe884793IgS6TuaQbHPIOTftIf0pTZg6NG2R4ijUBO/sk06yezYgOIBsLNZDpyzjzbBjjLhsfu3XOrQi1hqcks7gnXawxa5ygNbJAFjPZRS73G3Honz8DGSQKOHXV41yXIFjaYZ2cJlPqEzbk+v3QlzSF7GUSeZtq4y3Of37neTWDOln3uXSKV7NJ7qfSV4NbmmJO+3EREKxdpNXPuxPSWbz66p3FddDBBjEhAmCgGAIuHvHx3YlE0qbcwEnG3HBYAwKzYCBM2kWlZSPg9hxZryVqI8sHjRaXtutnUVvmos+e0PtNY8+1u12DB1vBqsOX6Pvu9fC0iNT/X74rmLaqwsNjdHJVeaOP3Tkwrz+aTLud7Rj6+bfuLN25tlQCY5PsKuHuiadhqXKJ+yPmepql6YzNny3W0zgArbuT9fRUtQQ2kW/YVatfQaVKyWrMPtc/tJJrZQY3pq12rxgrmCC207viHQXf1NDnmllTSNwQA/a25OmNiMOGeYJ7CRMSxDEa2Sr93QUr50wCAEc+CfbqMZ5DReFgAYgyFga3YGZT36uqmkpSY5JXprz11IoC8P1JS2UQRCMeUZ/0OuLCjKe2SVDzd5pTyuk71viEX17bCHBE1nr8tkJUnKdXCcUQtS0oFHduZXdFEg9x03l/N3TEzHKtJw2LTb3/gPydJ+NNjRAT2zaXR0YKL2TKd44x+Q/vXaipRg0m3AKA6TTFVk5p5K3hHFGLAlQMkGy0ClQOBok1DD+CIrwQRQgwABEqaslU6+pmnRV4rIe7NSok6nCIA9HQBGB0FgH1htYxli3ZUmEaJ7+jE/I6fqc3DYC0QF0ECIBBDxrKNeTV25+AwdONI8+Nq7+sgx78krYskm6uyzbgXNfVbZgySF5uGbBABAIbu+rzGJohatkserQXP31ExjqHgP1gxZJqgFAkWJpqMJlph26Pr9lTQTMxaV0fJLF8LwddfAQ5HoNd6lW3cr+v04KCpIDHqq2ukp/gxAFhrmdLTyWwlT0bXJHQa5kjwc7XJjlRlpVr0FkFmO9TH5IkAKrdb+hmn+VNMRT2KnR3XqunuI3o2EQAEd1GXP9NiRQbMeRKWZQteZgbybl2XpbH1xvWtRp6xECcCyPmiFqUT/ASYMUd19Ujqg35o6LbqvggAxY7ImvLAYNC7oKmYd2uNKwFAVLv+RAD8IiPciMrBB5ndJFcqdHbqe90X1zwSgILLsCLyTnMWFb/0Lur6kvHEDW6f4NZsTwIw3MtUkL4CxjvrmsNxPs2IFjHWqDFGckHXmJ6tLW0QHNWvXRNM8ydU2ZV+n6AtlsY5GdKwiZhrMkoK1HV7ASx749VkIfh0SeVgKCvuFZYNiMa1X1EASptsWEOgEDgg2bvMFquXgxiNM08EbF3U18B0a10mEQBuRDqKAEZ4a1XMbNOw6T0CABjqM+aZ45BvZa3Xb2GoRQAVZ17Vm4POhcjg3qd32/Xnjv7o62103lN14LSFHBE1BNOcUuKgs7vJ4JXO77BFBSLavpZ7chMrXo/2s0yJYjUYmCnXAiP89JxnpFYN1r7TittY4fh+m1ylSCAnItda9QxNDcIm1Zw5BJ9x8LOtddQnIxtonPZw5Hk/+9SqpSZp27KSdCzdZyw/116DTZV4JhgbaSAicp52t1+1bOD9WGUTjLGz1WVbi+Tlg6eeIWmsDce/u/OCeS2wY6PO0wZlTwVsTVlQ48GN8ykLM34ios5bfotB2en22oMCEV1o86TdbGb3ye//xry6p6CmvYKhM51v1R3ZBD8BkVmCIgBBNdIaZPxKku42vEkrzrphHcUj0CivGOwx+8hbVDeco/Q5vZ7mPF+spUeOe+Lx+VmftBE0s+BK3dx73djAyYZAgHK5rPZERKK71rDCRLTTetBfMU7MdZeSJAJQ1pSau1uyzkQion2aLA2O83qnG8XNStLhXCWNfQDN7jQL+Mg6E5uIaJtU0cxyHDzx+Nu6rNLtKgF/BSiLKJfLkkbLl5wVRbmqjsvlGwDKV9q/TdSFclmnDwYLnmFtBrNKqDkraVL+lTH+BPNQ1bL0UM54hqROnSE5DmxQNZBv7dN8L2X8SqHjjn8rQ765kYhuqmESLTYS/T785vNEG2njwF6gfPR584qN719mI3H4j1OZBwd/WRZ2U/6f3mUuhG48++r0Y0RENLBUJqLkry0qOk9teUQ10tylu5S0o0W4qZU597C5jIu7KuebiYjo7NFXTcrZNZPoZUKHy8w7beTZ6kqQ/p33KctDlFdJGUD5z/yIlC2Wu2Iol1EepRr+9IQ7VU1GTijzSqlQtYXEZu5uiSP8tLqypKhEOFbLd8/wx+VUq7oDVU9BHmFE47jL0DhxAgkAkCSj2ZC7JlVrkb+cNhWVvKoXpOwsXvp0kZ1nuaG/lzW30ti4gRojA4BiqHsNOi9I1BoqM3frjKIUCbEwIOi3mwZSJ9d6AkXt1BBe1xjh8X2GpkNbtKZPRJiIBDsRqLh3WRN41HvmfczngwgApUjwGm4Zva6/sG9LB7VsWGJ2ynS7dgd9EmhMf0F6ZG21jTPM6dcOtHHzT73jaSQiOsZxT9IAAc/9QiXXf0pN8mZL1BKybmcSB/3k6x1OA/hJHPIsCzRK0Hwt6tytQe+cVk49Hvw10RcgX88radkwf+q+CIAGACCW3EDUeue5kKQejmYDjC6u76dZl4ldMgNHND87//f3Wx54cP8jDWr+u74vER2jl4mIvPdIX/lKF5UFJOrCOqIhwWYsjEVD5I0MpQ1eUNcYABqVn7QRDNbdksI6dZW3eOJQqKHp6SPpklmp4C4BAiXlPm4gIveB4V9JR2nLm6uHrp8OnkyZfI9olLf00fzMB/yDX3up1WVSSkRER/udmokAgFw18pToljtVCEYMwSgWwsThdqdnXzxVYAZiXEl5VxGKJrNJEESoUbUe2YplPOomF3VSVk7GQ67GziqRNRWUqNooJYFkGJDeUdWIoRS5xpjFMVHudLzD7e6MT9VwpjXHjdWIYZKT3Bj5DkaslCCiq95iA9GnPz73TrM6AdLZ6NX5Dz6crzwQfOgBj/1rLPu/+jNdjmwN+QxEnOwQgXwwUtKop5CK7+NdoRcnV7A+pLwWkV6M+ysiBgeBaf4VtbSYjnd5nN/4+cSK3dN6Bv/dZojZKBH6R4eAwBQUj6CUPhJp+kzo8ISwfh4Aohyhl9NygqrJnGeq4rzc689BXDs71O29LTQ4vqitvj5Ws9MH9abOh+HXXti8veejzEfLwYdaW++/hUtGLGYfT9/PXFmS1gh7anQn3U2h6Jj1mazdwYnAPz2TJiaVAOmbjFL4lvdvNsXVxVogbpYtjS2cRJIE9rTvVlYGg54u02yq/hVIqJ5k/j8QAYg44jOPphIAJAeAcAyi9pT2lpgAqKe0Bg0RAIxS1WObco2Y11sPhjanLUqkVSJgVPKzxQVvv63zPGus9fqEqkb1cBBRlprph/QeERHnm80+ahKFsI9ru1ZnmtUbglo4iOi9MFGW7pUyXH/YvsMiQFYHICKabdvzlrNGHemmBHv1Y6xGCNwCVaXVcWYISSIi9lRaRIY3HHXYOVJH5XBT7cshZDqh0k0dOzRsDeWmjmWbmreQ1gU7t5Cs7k92Ld+57cVr9pfI1Z9ub/54r7parFeJBXJ9rkN2roRBrN4eq6t1SzYR0s24P9YXMindjLOBGmMDgH8l/FsGjccTDBaifPCNqqdbr1/Wt2yrWHrz5Gpod8gYWgd3IZ1OuyPPeG3fXa7PRuptzYdvl25rXlyh1Uw2N+3Z3dFh97YmOLtsRPJNVKLsJSLaei9t3LXV669hoszxP9ilpjTl/I1qAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, triangle ABC is the inscribed triangle of circle O, BD is the diameter, if angle DBC = 18.0, then the degree of angle A is ()
72.0
732
[ "36^\\circ", "72^\\circ", "60^\\circ", "无法确定" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABtCAAAAACOk7CKAAAKDElEQVR4nK1abWxb1Rl+blnDtgaZbTeqJUwNJG0MYZJLYA0iwikLasZKCFqrDCmoqVQSUCdh1kxkUrVUWtEyUY0iJaWoQxQJbWEpSlXtwxFhGKnaugXVTHJJuyYkxUV15SAFnIlc19xnP+71/bDvx3HKI0u+59z3Pc857/m473nPAb82dAHAuKcIfAtJpETpOk8wAU/pNXAHAeDasx4SNlyb24ZGbxEvNgkA9m9oEGT7+wO1eLYv6injaRuVo39oygsachSQPO3oYUkCABbyLXW1gm2bTHFk84eeIq5sEgBIh56XNgmSLXwRxVONk6tjAwAeGZVuFyTDXzuATy/Ur57tUp5q4g5BtsltuNZR11HqA0d8w0N/Yfd7kOZsyp9/eP5KEpi7DODWO7C29ZZN99QCwGQHTgEPnYfeB86Q3Gvyi0NIRR87hb5XtfTld6eSV1pvrb/vJt6+AcAn81ienr18OtT2cPt6gB4sAmwAAEpaKedfO7kc2xqLVL7HuWQyKe/YbbE43drnxWbUdvHtVz7bsFk282xaEoHc2XR0186Ad8092EzDXP3Na23JtmZT1lnn++OJZwa+50Pnt0Jk+gMDV3jshk/8F5PM3kA86ynhw5YflH+VI8nmTSv+dMwOykNect5sE8H+nPb0r+92qwJ0zPaEE9WwqUapmfboGSO7sXlQhI1MRrZrNXSoXeVaIpWGxwf3bU1tMbJ3/+Dkqz5DQMOD6ei95wDnWe5YP5XkG7LNJJngxyEPG9m0T8gnnN+49Vtxb0PaRs6Oielg2kx6Yjo06CjnwrbU0bpUJj/WxT+HM75EGrLNO50+ws5s5xr6i+V5xWCOR5vyrg2zv1jpuWtWkC0RGHEoNH6YjLcXXegqsocDSSG2dMBxOKSiJLt6nckcMCHPllfCgS3XMOKsHk2RKy0HSZGBQvJgU75MspKt2L7XRfvlOMnFhjERJpJkT5f2bzBWssXbKwaIrpGTV0jOhir7wwUrLQd82na8IUc3S3WNkSrPBGdE6TKhCVu6nO2M7FHURAdJciycFeo3ktNy2posY8t4rk7FoDa7h5tF/WeOhxdd2FSyfdhNTSXJ+LD22P+YIJnK/Ttc2MixexxHiMGXimiPxe1xCk6DlYjFWja2fOjfProt+gcv33xYhIokpxrNr7nNkgP9fqqvlCSyZaPNAz/9tSPbrLzko6guBbWKqkzLZ3yES8jKhmtkZesd8lftNlaSqaDDIu+IeNyBLevbNJKJDv1B5fGIgLxesFrBFhdxc4rhBWMwDsVEvD6S/UMsZ1sMXBVQVAcPmInebjG2WTlfznZY7Ms1EzafizFBr6/reDlbVHBpb7HILUWO+sqrJCdiZWypsBgZj1ptsCDm9RXleTtbfEiQbUm2Lsklr88HeukGW0j4o9XzujUl5vWdiZhsKjkTFCVjMmZJqHzFJ3yjkmSx9gqp7wMk4P2YVyzA6skjtnDJsmvA0w8//pWXggQAN7S+D5gRjPe2CnEBEtH7eokYAPhS7R7/OrYltX8NwY8s7faGuhC2y+leH627MbshSx2nsy3I/iwmYlP2dE7A67vxcxr7t9kmQUMCAHYfs6flxL6ktyGBO/8Lo98ubBTnIn7y7pI9q/7tJ857qUhAw4USG3GxIuzipVq7/a2yvC2HO656VA/AnRdLbBLORywv/NF7vDyn+5kfL7tXD0DjORiWzN6ikQnEqgAgdqXCcM/f+6SnSihnsi3fZNZCBE+9UZZBjBaf81DgumUA0OZD0DuGY6A0nzIb9F2jZYJ5e30zEWrzTVGUm4RdbQ1Hvr3xdEU1PL2+TEhnoyJwCFFqhkoys30t0FIp4eX1LQWozW7BgSgBACV89cLmltscJZrGui45vjC7j6TC2s8UhYqikIpCUns0/ownRVGYjDyyoExG7rFbUm+5u9dntWQwq5BULD/Ln/VN9onQKUWholBhAkCfyUTS8PoqV+eZCI11snYZQKEGQKHgYoQaAHj57g0zj6KGqAEGnsyz8H4/bBPnwO27AKeptLzOtGQ0RcXelIq2kTzdHEsbrfx5G0km6spG85cuXl8yprWtACD4qVmL8sbpg6jw+dOPP5c0vhWTv3vJKmKMtG+enHCM9V2ug7aWFGoQmUNNoQZATaFQA9QUjL+1kApATaHwx4ZvXdxZKNSggAJRONJ3FwDMAQQki+lunjw4VV5TABebSpYkR/aUrOWCdGvztDVdaBwnSbWzr1LW0evb8SaNb/dUzINMZX5AHjESJMl57RDR+SyxzOtTSTI6bbIt1CkeTZtY35Mr01Yax0kWGh2aRnKkFHMyZ8KNSyYbgzOuHtDstiaHLcK+NnIefapReRsqAkr/tHpB7HbbPqwMycNlmipVkp0A/mNmlcEW61PJ4X4r21GXrdg7G7uMPhAMhGqV3GKPvHS8RarUv2/8yNEzz3ZtSPgwucHu9X1VmyUrdh22QosvyvsF97oOmA29Zyasuw7SaUd1uqldNGrgAJWnS7E+VS9dNdnOhq2SVHN7gmM25eoxFi75HxW7RUaT1jKP3jxQpfPggN82r2iTbuJB6mwlBusuP3V/a+q6uUj2a6Fe1bLL1+lygVK7l+Lysa+DqxTrc4pgGNGZseAeyzqlrq7PdFXN63OIzqgZeYnkTCzq7jhVj0xogtlAyVkpi6p9uT9w6Gvkosq0vBA3QqfWE9e5+//RfOuP1gHwP5kWgUSJwP9wPL1ez1kD4Igkbb0WB+p3Heresa78o7t6EASkdX+Lrzez5tFHzmOYZD447W2Y1WCqcYWdAFCXJ5TGp0hy3zhJjt3nEcWuGipZimJ3niX31eUxqrlooymV9IrQrxb7d5IsPEKSnf1otJWvnT6sdoJZoZdxIpxTyUQfSe57aE3p/ok2LEInes5XsWn0gASA+ODpv8gS8M7DAHiHuqbkeeoMW158dPG6mUoDWrr8+O+bQFxLdACQPt6kW3J+3Gi+y4nYarDSMkSSnO8jyXmMYxR/IhNtpoj7aV/V6OnSem90WCXZ2UaY+yLjY1A6yVzdYDG3sAf1WGKhMUXOo831lPZ6R6VK8qSsORoJrRPH6cymJgIj1zcLVJLDgaT24bb4zOVs2st0w163c21BspXepgoXSq24g6HtjZo+mPvhF6sf+xIWH8ifqbdOBi3b9VbEz8xbEdW3UrsVUQn3QMnx4GrdZPVEsMobHySngy9Uy0OSLO4Pu50ReAWBbDd1hGHc1GGlWURvIYnC+xaS5x1DdF38zp0HFoW9Bl795d31F7aZY7FC06+ymf7AgGA4Ub89ZjFfdZYkSWbjtT0CJ1ET3YFBP7OLhAqZO9p8y+AM3SaDSqbjwdZj/seoAn4jJVTcaLQGoLUbjb31AmHpKrxU47ZmLW4LQ7+tOZc5Hdra3r7eV7taNsByE1UiQvVY+0BoY7PoDWMA/wcuQdRAfUScMAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB and CD are the chords of circle O, and AB parallel CD, if angle BAD = 36.0, then angle AOC is equal to ()
72.0
733
[ "36^\\circ", "54^\\circ", "72^\\circ", "90^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHAAAABtCAAAAABcw7rSAAAKbElEQVR4nK1af1Bc1RX+7gtp2nF163TprsNGVIgsQ6zLJCpTaUETGx2jokkljqihTRMt2JBhZ0JG6uIUJ+tIx2SSzWC1YxxxjE0oiY0WplHJTJzBSSyxQwSapZKihpV2JAVbksD7+se+3by3+36ufJOw79137v3OOfe+c8+79wrCHBQWApliPd6gsaBk1VIaHw1uVWIXN5u1Z0moy5XBQ9VP89WF80BIpXGh4UlRiUv8e0q/SPdDNoTCqBGhogWA0amyXJehNJBjh40COHdy6GwvMPIZgMXXYeGtiwuXudJoQYHno6PXmw01YTVKAeCzd4/0ni1fXHDzZbgmnwJnRjF9fGTsmP+2lSu9WtFoPbDxRVPtrTAYKvRVtw/qPRrYvdYTaD6tKvk0QvZEzJozI5TJL9uX+RsHSdlQaKDBV/67ySTf7SSjjgnl5J/xLa6aw2a1EzhQ7d46QZKNQD/vBTY5JFQwtskdGremI8mxOneDTdEMQln5P9XkCU/QzJkajDd5np7JmpAyu3ybJtIKrShrck07z4iQJDm2Mthno7IWU7mLVqeUNFRRN9KcuKmy/5bUe2PjRQUA/Pqq74nlp5Qb4zlGR4m9nm71rc1eHPCEHvO/4em0EMuMNHObew6W2LVKpfgP15/Fx+UV99dsN59C0zWYvLN8Uk8zK7SXMRwe9EyOL1s7ZSan6kMCwKnl+b1uOOg5BfHml0EE1rR4P/h22YiqQQsLu927nRsnk6xuIsNhjntiZMTdayysJRy4ottAzgJH8mfI8NNkuJpklyd2SRUzwonCLOwjyZlAF8lwmJzyHZfJ1hLDflS/h3MPraoz874xtgeqlCtXS0gAT5U+YiSqJgxhp3JlLzVMYSi6K3W9IX4QwO/HW4yELxm7t3DCyA86UHfPj3eQikvJrpJZkmP+Lv16SFXu8+jO6jbQsWxWRciKl0jyuGfAmJCkPObPcoBy0qcEeoWwzzdDUu7M13VYsg9Fbf0qZx2X7BJsve8WTcktP9oOQDzw6BNmfbhPcYtTyOzzJUOhYiFj7jhJzgT0fKYQTvuPZ8VHzpbsS14mCdmQSGqOFM9kvvqKS1vuXq44yCnaFldnlD3VOQIAK37QpvOCkaR82pPVDCGT/0xGMbWFbK0iSY57MjOrhIXP1rkdmwZAAL+qK8gwAQj1fQAA3ppIZiWZ5Lhn0ua0no6DAVWqdslC7i1TTMzwnCQARDa4HQYzBdP17YtSZqlR879OAPCueSGjDskJt80kVg2ZJBvWq4tUFrK7cJYkY570aUMC8Pr93gw9LCEAnOp4Xs88AFiVtxsACso7dSwMvu/cQFImy9pV1motZL9vkjLZVZH2Kkrgya8qnRsIAC9i0yVrtVYAwZVtAHDPJ2e0jySIV9dnRSfizS8bRQoBoHVXXAALHn5Fq44EHFjnmIwAsHlDidlUnf+LJhBY92aaUhz0ZdODSt6kgaYPyUlPPynPurSvgITeCscGAsBM/Y5F5hJXNG0DxYLyXk2pxN7bnLMRiKTyJiOI+sF3BVj5flpdn8PMIjHKBz1jqjtdl5IdN5JyX0Dr0jOzAWfWJYbJ481+1Z0BHhYdEDd/+h91mRQrcT4HAq9P19sR29F8HqL47xrCoeuziNvnGqML7MhVFO8GCoc1hCPX2+dJ+WJr1c32hCORcwicVvtQGiy2TygSzfDDQ89Zu0UAwI2rWxA4pRaWxvNS6phomroRAOSf77SdIEReGfH/CwB4nxBCdEKavjyljommmpu2xQ/a5YP3yRbXFAGIQ/f+gd1rT+ZMuyyqqL/YKQB81tZnj4wCQKhwzdcCAC6O3IUiQLIkVC87CODd4qX3ZORNunQJd7ifap0GALxX7sLmjUEB2l65BwAUD8G3Sf9RLyp1Sudav/NfANhTT/QHE9+H1qu0PUKIBI2wuYqcwsDVAgDR81fuKT0JuEwXORQ05k7xQtFGkjwSCB4zkMqIpSTlmfwDfpL8tJK8UBSh5PoapIWFof4vXVi4s2sawIrB/lsd2CfaS0tcAPDOncTnw9chxzXtFRZ92PPbfgcUWpyP/Hn6MgDoeUZcuDP3LkiuKctKezYFAcB0uccI2yuCX7uAHvFWqVh01Zcu5Pg+DyrNCCa2JwRS+yIEBC4OPwIQ6HnARUAIUBBWXlFwLtqHsVxgVepdyAnEAACCAoICqX/JH1n6fHgJKPCXt/oTxQQFaY+xbXUBYiUAQJGQlwoHUk8pAKQPIIG8otMALj65MSindLO5sBLf9RvgkyWJdgCAkAKnlYYVIiG0bRELV0eB0W9VvAgp0YH2w0Sk1g8MF6nVzyk8le4bpofrtvsE8PENzrgAYKRjAMDwEnVZTn7OcFFi34wCgCBEcvwkf3hIiYyCoASqOtocrXVe4MNrNXNZDiqOarIozX6dckORKla6z1YvjhyOAel5r4Tb3gcsInh2X6sINboJJPLe1FCUUHEUgLCKblng5IdbIDB3rJJQ6SwhsHAImYNzHrCtaRGAE4u9mpYlYM2+zLdPH3QS2I7GfgkA+x7UVpKIx/YCJvZlJlH2EG7OATDXUasdA5JA8MqjZhWF+tI+39vxGgD4U0m+tlwCsH6v7Wbso3n7AgB49Wdp5RKAh7vi887XiSoAGDn2gA6hp3bHfPPNNrUBAJ6vS08KcwCgMdiU1VqbMV7PWwEA8X1n0seZBAD+ezJXqL4RzoefAQBEat3p4yyR8jWXbZlXE9tLKwAg3nEq41Fi+bJg/db55DsfCQMANzd834AQ4UMn5pFwe0UQAN77KKQTmJSENdtFdr1EeDKxSqy/yJ7cRqi+sm3eDGy7uwAAWpeu0om9qe+EvWXB7DYuMhDfNQAAna+doE4sTFhIIO9AzdD8EEZq/QBOPP62RzfyXvKus80uwz6MecZJjuV1UXfDUrWd99jqh+bmwcDWOi9x/qcbqkC970D1/mEbTM9r2cPI4S0Q2OBrMci01IQL3uiJfmPCUMgNPNv/mqFA0rcySQ64u/U9b7sP+30z5B9V2zWGfSgAoOTN6mjWWSEAYlvTIjxXe8B42SHte33VB1WDO20to+mxQRyN1c88cfyjAuPkJ/20ScmJkRXnsiMUAMPNX5VP9xWYeCnjeIv7cMnyzEnFJt6JF5fesd9lvpSWiVd9PVkNmpang1t9+xPXhgMvjTAhd9zXmg1h+FFv/oDVGHdyRMnqdVnv+Yl1cDQ6ZpY8hJU8BKbPrn4yXpNvZ2Pe6PRl1ekri5/5d+pjMBOqw58AEN+2tGDY1vxmoDuVg3QWblQej9W5G86SjAKVFzY7tTCptr99eK7w0W6VbgayB9ctvTz2gg+j4m/kK9+6yqmFaky0L/M3DZlJDDT4yl+aJMkLRRtlko37TVs0JEz5cjBU6FvXPqg3ehLHPZOBOpo7RVKO9psSOjrQepML1+QDGD2TONCad/uKO7zJsHnxhtpkcmv2FWmLEAAmPx462wvEviDgL8DCW/1Llmk+VEav3b/WRju2V3e/W+Fo28/2bJE98or+AQCjBwA4PJtoG7JmHEWxn+yutKjzjQjT0ANgo5XQ/wFlNhAaNaD4DgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, A, B, and C are the three points on circle O, if angle C = 35.0, then the degree of angle OAB is ()
55.0
734
[ "35^\\circ", "55^\\circ", "65^\\circ", "70^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAI0AAAB4CAAAAADqai7TAAALfklEQVR4nL2cf2ycdR3H30/ZYSjF03CwK7tw+1HZLZvbjYWkyOS2QEKFJZZkoXZAVqVhS4ZxqcM0UVvEGWcyzBJLrLJkV9JlVYc3A44uKdKOEYtdLEHmldC5LldNmyIUt8m55/a8/eP7PHfP71+97pPL3fN8f76ez/f38/18TyK85PTtKasjJQA4N/3n8wVg6iIkNiwDViS/uiylelPSQmmy4xiAxAe1zllJTjTlhEqbfmNDg/Nvjoyf21S/acVyILEKwMQs8OH0OzPvptdltq4iJGucHV0pdB35oJY2fu40ZXn+7LGbTU6zr44M12W2NiZtI5wfHR4ubsk0x8wepZZXAOyof8E5M7qLkj1x9xX1UvwU+7dF2wdm7cJWvgv97XXbB0pG/9MdJNnV5JybF02hp2CIPfRE3TZzLkYYFZrF/qZo2xl9gO4/kmT24XA0Csl9LHRUXAYbk4dmyhlbUUxSOJjIDJd9ZKHkrg6H0B40JF+GhA4tt1w6lXULbJNH6aVk46DG1kGSBZx0TsGdptBDjvSIXM6kNxx3IFBIhYrDE/enGsdIktkekmx1qTbuJVVoKicy90TchsWf9Md2zZPy+jxZgBuMK00XkGcr0EH23NZ5KSwMOb83lh0RTdilmDxoyjLZ+GA+PAtJjm/+SsFHMM/ejxJe3r31Hh/dpFsS4Is4+pBnyBqvANL/dn/rhvfOC5gwRGKMGF/3h8efveYd2KuU0hu/zIGU2k6dOgovKcbHOLf5Xq/S8qL5a+wnG3MkB9Y0DockUUjlYLNCcl/Co/p50AxH+3NpcTmQzITl4XxMYPRGx8LSKOTx+iGmc5pDdrmVx1fRKd1t6lUuPlgZyXzSaMGzifeZ26DzyCYzo/4hyjITndIux5a6daJuJXU8MUWmc4acf72saTQQCUnu/Y46epDMxwedA7roZij2Pvn7tEkNpd5lTaPBdDMZm9HdvRNzfhxn3YzFhkhdrdHxJJrGg9C0dRtuc7G809M40kzGB0hqDcoYvdQTb/bPMx6fNzr0Jp36HSeaYno/qanG+iTFQ/HmcV/lpbD5kNnt2c32s0dHml1NpE41rFRD9bp4KN7saygdThbNz1Pa3BmIZiA5R9rWmooUD8Yec+NRCTJZqw4L5YZl9LKnmYyNk0bV2MmlA7EWPY9dyeXWGktFTBHP1Bf80ShkaVMvSQ/VlHmmXKuPQxoHMnautrrpEdPFEx6qETz7o21Tzt7ZRgePxn6fNDNxof50zm1MKct8d7RtymGwKDXYjrQKeTYxb3W3o3lC1Phc2m+XO/9ctN2+C+l50DHSrj2+aIYTRZKixP3ohiTnfxDdbeJRSBbjzp3SfNw6u7ChSYtR1r9qSJJzndFdFv3s3+4YXmF2s6V4zTRKuVl7Nygrz54Zg8t8bNIlvE2dsupmg6AwzGv88uyL7tXz7Gt31W42Y/a20FRUE3BGrpDkzF4dz2x0xjk4yVLDsHtJKUz3q1Ahlwcze6P75sRl+z6PsD1bTA5m3Qx+SXTkgWuNjmdPtHOO5GRs3mPKWoyfMTpUaES8FjH8289rPKQcdvrpaOcct+/3jNG9y4mGJHmpTmjZaV7jVwq7ou23FT2DTUWv2dOInLPNJL0Hbz889Td12/T9JsnkDLfldbh4aXpkJ0DgR90hFtxGOX/zuYvJ7k/FStx2eQ4AbX1GT+MDxUtVUg0bs+RUW3S/eO3jVOaXYvN6XwON0itq1QIalCbqA021xA5c0t7GWUQhWwb0HsY21TKgS2khUlqbU6/yLbEDLq/Feg2tylhS8RmyKqrJZsqXSr7l1oP2zUsh8ylHGuFVBdUUk8P6onm/OX7IjkehpgAzjUJNbVVQzaFmLUlVxpuX2vJolUMNC4tPLr2Qbo8kOV8/bnEbb4732K3pDBXHQJMssCqq6Wqzcx1rSvRaefL6eqGnKcaohJrXGEThjNMka9SGpxR1oBnfxBDzGivO3r1OPspoU+Ilk2ODbv2jpxl4fAHzmooUXCdZZzJJ49bJNt3bpRrdsJFvAJ7rdtrl8y0//PZSF9/7hvuOLO/TOTRM2I9TLQPh5jVGycdsh279K47hTHKg7NHbXgmkp8kML3heQ7L5oI9AQ40pjSf3dSNNKwCcJNePVaEbHou7T7K0Jx1sXH1MgGWMNNxxkiPIs2FyY25BJArJjLnNOAYebEzlSI7dTUUoBE0gKd9zhQXkeVt244JgSIVDqxxeotnJa+n0CTE4Kq15cqQDJEc6yNYOsm59LiTFUCr9trjaGGyHL5dOH06QlLdTPiwflgj0tQH5FCAlngrZqF/8CCLuxcFdYsff0RzALBN/+vjfUZz+256+27+GGgCn/s7smjyI1vA7YupE984n1St/MARST90UBS48I7WtAEAWmkh5fQ9ZF3rrciiV1tZpStAOopAg2ZrnjivkEuCNbcDMeyuBm6/UhdTLA3nxqBIgPr4LCrhcR/zzkxQytUANcGqL/NkjiQxwy+WQMJoIBP8FJWhqJemNbcDT+B5qTkvH1t1Ye0ehFqj7JBTDW5IkfVfj6JOkh0vfDxL901uAUw8A2JEU49RVUYLh9ua6ElcorxfGFgV0UCmgJ0j83KPqVjnyijaGy7KMO/4lA7Ks3VZ+ylfqN2QZmkf3Xwq1WPKL3/4XQOmRjhcgJbpWBtHN7K33q1wpaYnqFpEjuOuDCGTto/uBuIF6L0OOyPKSqzcCwFvP59UUKOHoxz8GgJXLg9BMrKtUev1++F3noenGRiKViwgQkUQCv+xIgcAFQELp5521ILBzTZB+a3J1pdKXaSIyVucBRCIR+1gmERmWzj0ISMCpx2rVbkICAjUpTKyppLlEKwsAqycB6O6NYnIWGc68twIA3jqWt0bwJ9dmK9ZfUg2BqxEAiMh1X5hGRJYjQETW/8gwOMuQoX6wdP0FAKVnOlIA4uv/AQDTrweh+XCV/q7S1K5q675A7btJtGuSZFY6SY64WthYxH51p1wle3cHpmErgPIe1QiAjmDDlGHlqxmyyEAEE48GKP4AQ5FbEvXv6lYYWpuKRCJAan7Wf1IqjNaYGcocBhNf1C93Kv0NAWSGAycnlX+D60oCRu7XO9Tovbj1zQBpUXcVbppG4M2t+qhGA6jpe6ZvCJSc5HznSy6vmIzqIhotpRKrXw2UmORy5yFCC8c3f14fscbo+80+XCcRBNmdhkcwmapdrr9gMcRdRLm44WND4RjbFOoeOXodYXDkGyabOlPXONhwbaFv/fyLZUfIzPZQ3TFIIRtsYDmcus/kYuatxh6DT7HuJFpsIZtx4vooBuhfdr+5UzDxqjvQ16Pq2OxAm3UjoRmvBOzIQgnRH89YKqiVWbNcWGSxs1ywM9R9MvHTRVcNsHtJj9XRhlqzeFk8CWLxolkDLarYWgNZrZ0J7J771WKX088+97idsy24akW2GBLQioxk2cJuscTJws7J+H33xdersChwkGtbNju0Wgd61TJzcWTffQEtM4XV6uIMEL3JgkPKzha9Z2OhzdDtRQN4LZYPdEZIZ+1cVRqFJEdDWTurluDVFmEJHsTaWW8lXy1R0xxzPWrkfp7heLzKdec1Nxt5z9MVb0Qrw4nTcS2/opC9UXeDf6+TJ+Ox/dVr6J4nT1wOIom++Pz2+EB0YV2v2ql/9Gjpdwn3kI4nlrTDqKtG71x3dmE0YkX09pp7z3jAeJ9YInk8Xn5VH77MDrjXXyHX7aRbxs9JN180ZE+s8z8hQRRxCrBy5yKeJ91Ece6ZmF79Sthac7Ths8md1O4WWm+E2J8e1R7Yx+lRH+Kfxnqy1py7YnXXn6ytMo311HElXxOZuDWeOq46jY8T2WWxnsiuKo3P0+okHU6re0uoI6ohT/J7S+gDs+JfDu642/ovBxvXZrau0ganYAuPsDQil3dnLf8AEV+rCxF0EfR/Lqn/GhZlGWgAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the vertices A, B, and D of parallelogram ABCD are on circle O, and the vertex C is on the diameter BE of circle O, angle ADC = 54.0, connect AE, then the degree of angle AEB is ()
36.0
735
[ "36^\\circ", "46^\\circ", "27^\\circ", "63^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAB9CAAAAACJsGIsAAAMI0lEQVR4nL1bf2xV1R3/3NuHNfrck/gYb/PBE1r1QQmpK0biagpSxzNAqPK2qjCpxoVsdbOwurENLUazscgiLl1Sp4vPRYzER0qMU7rU2C6wsNSszhVfkSIPWsPDOq17xb15b+9nf9wf7953f7z7YPIhbc8595zzOed7zvf8+H4PoD8oKSAh/dxnbneI8IUJ8V3y2Vlf95fbC75aJS3dRpKPvn5R+kfs/eRxAKhdcBH6p5BSXfcFd8x3/wTg7NGFF94xFT7nC8CLyDd36QcQgIk3/g+EvqT+R7xODibU0XQbZV/wNV/IQQDbLoDGgHBe40KhXIIb/M2X0kYJpZ/80vnk86hOcGyQe3YfOSkA+Gz42JkBYebkBIB5CzHrm/NqG4J+WSrjw8Sb/QNnGo/dfH8Q18Qo4FQW00Mnxg9FVzY3z62QsOyMeq+zNtLak+EUHiqdjyPdyXB8x/FK5qcXn0J+1NMQ7cyQJFM3tDjN/5GOSOPvpy6IT9F/5bYGN72mk7Q8WudSR7o19NPJC+DTML4l1JkzYvng6Wr3rO2hjpzrV08+RfvJbw93mRudbmIk615Pbnu4q1CsoTI+KuyNbJm0JLZ2s2nAq6bcpthBr+8ufCTJ8eb6I9ZWFILjbHvGqyZFGYivnSy22RmO68vbN64YvqmoMQCE/iVRxI97q1bTSP2yo4D36ubQhlTYLpi23WS6xat/JMl0OO2dwc4nt9eOWBIUknJ4TOGwm0IU83Eour0yvqlEo4P29teTzLsrRBG5hmTe3/gRAI4uiw2EYFvwD6wHGLzylPcAAsDcw5cu/8BUoff4HQyVnvzUtkZGSJZRCAO7Qu75rHwjX3FWoUO1JMm2Hk9lNr71hsdKUgwEzH39uOWXqx2FdCAJAIiPeU51Adpe2XJ0/ZGgnuIuT7m5vbSlGmJDJH0phIZN610+mPk6mmV7BoXkcFQNl1EIU5nC8q6yfKlat01lR4dK7Esh1Kyno73ufApJHgln3MrX6fPtax47RAmGwiNOyXr/lPGo6+qeicxoIZ8KQZLK/piTuHR9F+570HlqAti/Vs+1YNRjelqnoXDnvd93SNdr2vdpp2vZ3qQeio/55ROAX4z0OTWEJDkdHXIVTDZkTFv/CkGS/YsKNs3S+rdzzTKV3aGlB9ZV6eGaMjugFauW7rZrPEkqx8MeJ7rGXiPoQyHMHcqFbYcola+ty72CXChfjHgdmRx4OzpsfArJXHjKfR3uSZqq0BTC17VPIXM2uYkCgF0PhNzX4XQLikOrKYSvW4cAzN3wlMP4TYYczqr6OXSq2iRO7ur02zsVY+G8NUEEsPcOh0uOoP0cuC1o6kztmN/eqVjYuN+aIAJIbfYocWC9eU6rCuH7Ngth8/MlOkZlOOYhkHxQXwUV0v8OYUCek7WIX4TwQptTy7RW9TWEtbAAAMHZPo5MZlRtfN4iDRFI3+UoCfXPK9+2tiGeNbfGB+7aZ8ksYlSOO+ckgMKf1he5IQDXjJpb4wPLJs6aM4sYaHLJKQB4c0nUmuh/h9BQ1ThgjoocWOmYTxVCOklYpFdbKR9XvGWNR1yPEeSMfpA08HefRyYDypG4OYps2CNzf32xnPonX82KFhhSqf7MFBPH6jzmWu96I6gNenD2qUpmCwBh0fummDh6nUfp/WZtUIfx+mwlZABQe8zMd+I695yHg3XmqAAAC0YrtSharsViZpF7zgNJe1p8TJeHX974UVNeMXe1e9lXNtjTNIWg/1GMTpryitNXAC5l35lZZk/UjkzCXwRB+LEvvsunTRFx2t2oqCp7CbT+7dx4jl/0+yAkgufM8eC0q+bUOZ3e+6sWHSIfTZDkYPScDwUcj5oiAN30NxNxuJ4xDiznIDL++aZCpogIuB0Q9q+tckiVAKBnWxwAToKVKocYnIbzvdd0bTCl9p2ZPWe3fLQZAND3nct9TNL8FeZYJMcZSZLsIs2GJLts+kMH0y0c18QJj6W+iEycJO8GACTE4DTEAAL2dh5YZ7ElEAAO37l3dc1xRJaeBCD9cJvLTl3Sv8sB4KW7M+TgYjGYtwsNAJG2KrsA4Mia59fg2jEEWn4LTFzS/Bs/dPg8CAKyFJf+cPNiJF4jKVGSJM5ICilJMklJ+nBOnpQkXaaSJHF4ziuSRC48QekeAEedpq8DXkySCge7mXqdFLUDQgABiIIAORAgKAcCr94ahBwICDMAADkQwDvfejIZEGYw/5RctVeSuNjn3Hx7MSDg5INC2wJArB1RU8UZUAQhy+pQ7V8DAqgioFpxxm5/ciNQRVzzfkAAAq71l6Dvd1cAwJ8z3DQfEPXdQiQoAEIgEACAz/rXmQsRoyu336u2JH5C75gf7etrndcEYOKTOG65DEA2LMuUSHX0KCmkokhyaq1MSjIVdZCkbGyPosXTd5KUtJ9yOBQ6WD1FMtVNkg9TjAXepxwAIEIAUDUjy4IQ4Kvrq4AA5ZkqQCY+vPV77YIWj2Vl6P/K4fCa1JULQgD6VgHYGAPY2qM1ZcbUrOK1gSSVszVderCSO4RyKJTmri2quxIAMgR7WtVqzHRMN5ljubjFSOz3Uq0Mh9Pk6pdNKQQzEZKUJdmc3NpdDHOqbqulHr9WpuHQi6QMy2UW5Dz7KlgIjhublPJpfbtBrZDk5h5bAQco/wylSFqPuxSBDS9bZjYB9i+JGnvGueb6bjUkaBvJIl9n+mO3Pb0ZwL5Wa7JCh/tm224jmG9sK/2adnTMlWA0sock5bB1sEGyvnQ85OK1odCUtC2Tfsyu2egekmRvkzUdJPeU9qD/BoMuYadj/lIPIrXj2ZhKx5YX7Hw2e0h7lxaQE4mCQ52Rkx6EKp1Wg80eApLsKPHBRDTT7MyG253ovBVCIXNxjY5bukq+giTHr7KYnTRvA5ls/K9RhxllFKJIlwtNlZQVASC6zmR2onFtuC/3xiWGJpjhrRAfr0js1IK77guVliVJjlnsarEhUiHbGkpkb3R1/x0evZuqN4yCuavOln7V7LudW4pJmreho/5TC4kJXgoxZVqNWp+wfdb48pGiPXlHB0l21LmYYL13iHxDUbn6awu2ZUH3B7zcYOhZ3Vskd8a9/Nuufoh8Y5tBUYg7eBgM/0rzLi2Qichklyedq0LkGzeR1OS/I0n7umfwTej+jiceIHfHTnnRsc1BIRR1NdLtpkzHJh0WWRjt0fw5SkMf98TK7Ki7Op1S/2Ne/Mr4c6j7q7Ih+dlIqZWnFI5+CDnRIhvyG7+6l067iM0ft+e7KdXi5LXjOCmElEwUjGKF5V3F/dmNT25uJxtbQ5my25uDQshJ89K+yc0RY/ApJCcXdueqQsPeXCSdjkytTYViM5+o+7cfPo6EfhR0dSQZKPFDKCTZ1mha/HptZj47n4qDs7Y65zOzKUWF0DtkofPrD1dI+aXadj/XrBI/xEOmpb3QVjfmPv6W/g1myKnVTT5eI6kKodWqdNTrRRRONiSdthUnPmlpRlEo/6B2pOzpy6IQnfXFFlbyXuOxdedIKkxFvB7q2PwQXfHiXSMd8f8eJdX7Dc18MxSxb1wlKCqEaWmXd8QcFzETRMM0ODG97KuXqcFlQwM3/M1+UKDxy2R2/fW+Ad37NLjknbfrbKVKK9HxMMdNLzz191LGcm+GQuMt057YuJbo772U8f7lhSeF+aZmtByfveixfxXdZBYIwCL1Gv70U4Oqg+Lsz5bUHHP1qBeh801Mk4MLi2JD8FfDZ2oePut2Q68ZA4DnnhqcDwATD15fGNlZXZ5Ol+fpBKmkuktkl9sa3PSGRYzGn+E6kil14+ptDW2fNGXwAkiFfERAhnc7PNGd7GmIbh91KJevJl+MvEeOPBRpfNbQv7KMru8HjZKZztrIXT0Zy8RRqESy6ehr3RvC8UfKbc4WVPDedF7NjUFcEwN4Ostz7dUnlejKVbdV+N7Uty926h+jZwaAExMAojWY9dG7z7V+We9pnfDMTfW+H0FfKJ9KdD50/t/rmyEA9wiCKMz7/OLwQTPX3n99xYTnwUcAkKU48Ngtj1wEPgEA/jofAK5978vkM7ty+1cBQOX/7aMSPtNeIR9cAQAnFn+ZfCbkbrkMwMTjzReJ782FAPCTxO0Vl6xksTXwxdIMOY5E5SXPi08z11b0v620veV/Rni5rGHRP98AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, CD is the diameter of circle O, chord DE parallel OA, if the degree of angle D is 50.0, then the degree of angle A is ()
25.0
736
[ "25^\\circ", "30^\\circ", "40^\\circ", "50^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAAB/CAAAAAAF/4mLAAANt0lEQVR4nMVbbWxb13l+rkRFTaZCNcrAzMpE8qSszJitcrnC3OyN2qw0DCItCqpCzZoBKqDMBdyiXiG1HipABeYiypoNGqoiUl2sLuCgGmpMSqNg7MQsVMssapNU3spAak059BTMch0gcqgitHh5nv249/J+f9AVsPeHxPvec85zznvfj3Pecw64TzQACVhupAb2AVUo2MtcRrGBahKxTyQRm93FruAVmvYLOTsO/M14A8jYD4GTJOeAhsRN7tuol4qc695spMZ+QW+iC3+NF/8/oF/sBy5Lv9NQnYY/qrA+C5IcKJKA8tJawoX2R82WAQADjVXaJ7uuNZskKQWpExza2N6NixtXX64C+ZrE1iTwbteDv/vRtqAtNQyt9eA/cj/O49jdXR9rA468D9h9HdW/vPP3r/6oNdn7wFEEHTMaUTNBrk/1IXk6c93yZuK3Wyvk9vNjiVB6KrBfaQB6eybeMZapaDqtUzGcii0pP99dOhVNzFq79htCz/e3jebJuukY4NNTsS+O6s/ZkdahhX2Dls91J5+tuLxciMmt/x2RDZzyuY/Ez2sPrlYeBLoyc3c65/62I7sdYSxvYAkyk+o4K7vWCQo9Hxm+6MDWRjMxzNUkT49Z368ORZc8/ZovdCGVeNUCZqJieIvzw1ztos2L5uMPeqm7D3R5LDzt5ZQF01PkU6fJSMHeOXkqPFG+Rei17qGrRhwzqiC5EJPJE8+QJ8449WwrHV+3dykA9Gz4vNdrkpWOrCDTPyQzCQuqqQ0nbA/o8nCP8VPZawtyYpgkY+uk3Lbl/F0KsVFns3SHLnafcrNkvUx4iyRbKySHZ1wKlUfjW1pXA0G/FvETNsn0FEluR0jyQp9zGSE4Gy3Un/yhs5Gs/3RjISZTkKtJkiy37bgXjKzamS7Q5yNOXsRIgqx0ZEmS88MkyX43MQkyH1kIAi0ozncECX2KjpFTp0mSZ4c8xFSILlil6DjqTDQIcjGs6vSJWZLkdruTWmpwhbvyljdOo169ay3IrFLRMUGmMwrj2JJX8XykYGY4QK9H3MOUgRZiWmSKrSv/nx717PEL0ZIHtCD5q3suMMBcWtMxkq3vKRWKEe8webarXEdxgBZMn/asL9Sqmo5pZk2Sv5fz7vGJ4XobNmiSU8d8IrxCqh8jyZ8ktV8Tp7wrVXpmDU9W6Hxki0FI0TGSdbMm+WqHT61ieM0V+vrdmUDIuo7VzZoko2sOZTUSJOe79fhtWWlODD0YZE1w89RMMwAQAN7srPMfWfSoJAEY7v2ayxJgNVrWe+hBio6phdK6oHI93vXIt1XrFhaByz0XjNJxJYOOkYxt1GvI4ZJjBQOdPab9MkFPp/0qKmTQMSrRWuvpyLSgT7+T5xygdyI+fVabXIjJhsZ1sya5kPJugWQhUrFDT/qYpUoGP0aq0Voba7ndf701Mq2MwQB9I7IdCFr3YySNZi1IDp7zdcHFqDJsg3F9o/+gai7Oq2H1b3H2aRO/dMhgPRxclLwaAYCu5LctxlUJEqSFVcfq0Vql6+1l+tnmz7plCsOo+e0+/ywjJSyWxsy8K53Gp3BPVhm/Bx2+fx6ScdQ9DjM3+5gtOkY9Wqu6Nj3i2wwzKdKgZmsx/yq06RjVSbhOpbDsG+zlaIkGgX93xFfcAIqz/2DhXDvQanruiOZ95A00P/4d6AKXw4GCZfpJK0eZhBvGGcQ7FDoMo34+Hg0w6MXSuJVV6gBMevXJBf924gdW9PRs5rEAyHunvtls5V1RzFo35fhtF/1b+lRGh15JBYD+u+Sf23iXOwGYhu0ZtFXqzUH71qYY4EZFJ31IZ6wKnT/sP4mvtpe1b51RB+3pAj835qAPpQ6rQievXvYddeiPsprAM73Kfy+zeM7qxwAAbx6ycpr7F32h0ZvRBN5R8BYQyUqHwwaa2L7LLt2lY/aCVnq5R/VmldaqayFDfsyBv5qkjSrt/tF3p0351ly/O+QqGvUbbFpipcpXzNpMtz3wvK/A2993pQkApM37fUrSWceM0drQqcHnfBoDGC8qarbR7VWQgGSLlepLwyRcp/7crld7EgDp3o0mgEDxw+5FJUj6nN/28kqnMggTtz2Z8WoPABArNgGSk4WY+4kzyePO71Szthilj8QBoLMEkhT1DKwLOfoxkrZordJ2u2/QzvYpavZrn90ao47R+O/agVYauSodvC/nF7TbdpsIsLp3u/AqZtIxyfiv1Kn+sEr8X72Bgbay4lLufNdVMI7zsbowJ9p6rIkhkuR61G+LcSuqbEPC88OY/ZipaBiSdZaiUOynXi2S3GkPqaKSKYUoNzdBZnMTIBMtUP9tzq5RkimFlGdJZqhGKSRTCr3xjvqRLfKmNPiDj/mJHKQg73yXVZIyWSWrglXBmvKrVmV6SuHV6uw9MgNgnJxoiTsKnKtxHxXf+pDyraP/Q1Ela+Te3t5ejVUqnSBZXYgpPSLrbMFxCBLj5FMJlx2GiM9aphBTHGn7ryGBtSZAamlpaTIaUOXzuh+r+60vrVcBZL4OfCn5WM0kRO2H3zRp9wNNQE3GHbtAsywBgAAISYAAJQE8dfS4kQ0JwPLX/7HexEzoCdNH1n49ugjPSc9uWxPQxL3fugFIUhOAUK1alRAS1VoIUkhUfzn7NGShs+UQZH5z/BBlyCUAwPylr+oYurr1/fya56TnRlsTILXcdugtaJPTlpYWAKGWEACEWr4wFkWoycAmQi0/+HiopQWhF8YBoHXpX+YcMJrTrkGbALjVqajZ18bs+7MkzfmxOhWVAyj1Yz+lqFNK+IJ3Ymb0Gwr0hcHaXs3hvebHrBsmy6Si4AoVnPYXym2uu2uCZCqrQLstM035Ma2e4PgAWdSQBcmskyn1z7tBk2REDZqVVsecrGus7Ifx1I8g57vtM8GztvWwXp47baI+GXb60tbchQdNJWyJDM+gne/RVh/JvGRRQQCLpbHAhyi+nHysZjIm4uAfZN2tK39EW3089BLUCSCgtXDz1Exz0MMWwExo1PQsAY94LHdzaWX1IRyXe/bchRsJkqwcm7Swi+5rSLm9XM+lfNiUjCEFLwXLM+i0E5u1cOKumaHVpJ5V6F0xSAqghM87z/ltVFeH9syZF8yvHl10lXcv6rmUxZSxU8LFjzmSrsWFyE9Mb169z61OT05PXpnSOI7zsSBkdS3RdedyhXuoC7z5r541aafrnN+Tjk+nrxk/xSMuS4Hzn6EucK7FjPZ/KfzWLQyammshSQoy57AEJilHr9CYlFYSldp+hi0/FpROPmzQETms+VeTW7MkKjkzohcIrmN2GqwnSQU5YrU3pch5M/R7elL6ZseLtwYraHEtC05Be61LNkPzzKg27OB+zAnb6FrK7Q5B+xMzyrpD5+xEtpW67uvKYFSKvqB1g4P2oK1tQJi2Xb6g/G8gVhrJ6FrqHvScXYAj07RB7xwskb+Zjqmku5br7YbGBCnMm0317k6neat+zELarEUwZZ0yHrFvsQl1Y3HCtHl0iySmPqru0E+PGhFcNxa5Gi0Xw1vOx40apJP9iqRLES0bKEjyun5YwnKO9LO3r//Zl2/BeRtIXfvw0QPfAQAcnjmqMikBT4SfrK+OSHIOGOA4SV7/YEvWP10aiDTXMmk8+vc9w9Y51Bl1EXMkya/ccaQHHamTk1lz6G2QDK6l0K2zi+E1/eNBW0WMq3nfqWMyS7mZyXQS4dTo5ELu1i2t9KElkuyqi9F8TELit04QAL51vEv5Bg/1PKl+tbffuPTWf73z4zsSB++7N5qw57e8DwdTwht9i0eAsQNf0TRpZ95UQpV0na53fN/MKOfmJx/vbcOf9k+efSnYZq9CQnEt+YQq47PdJoeOou2KyvpdhoNABqvKLUyOpiJI9E1Orzid/HMywPnubcrqeZOlaMlUxAGaq5E1j9ZWs5MnUx2Ip06fyfkbw1SizNEZUjn+ZIZWBV78dwN7SQvdVmjDcyF35m9TccUYXnHBFSRP9stLfSQLtkNV4ByWyeW/MHHP33PJEc9Om7npyVQCH0yNftXFGAZHKu07ylE3M0lE9gFg/O/N6vns2L/1NKLQ1zY2rr5eXmlLRGJ1Y1DL3+w7Xni0c+iZQWsdtwP5Lz5+XpsNa06QkpbCd+3UjYtvXXrj+urN1PsT0XtjB1Vm8o83Li8esdVyvQvw2sDTn3Z55Uu1/Ns/v/LmxRuJA0cP9ES7rnzkxs8O20u5X0PYTPdPtbq9DEYvl1+5tnF560DlvX/+DLKHrAcS3DVoZ6jHJ9kYiAqxgcxYlrTde/I8rjzje1zZn2bDyqxk3HYXxh1akHy1e6gRz1mvVzfIrXRccTtzy7CeTnK/2SSBTKx13v9PPidc7PWgqVDtqcN/uBoHgE0cGrDtDPkNwnAgv7GBky/H05sqZ5zFcWsp/2sIYj4yvNYoOMlXhvT85RwAG7T/VTJpuPQnAw+teBeyfZMf9j72YOlh9WET5HK3rWCgEbhcOREuD+Xv9hivnBQHSM5ZpgWBL9oIzj/8/lHLtRKXyGK9aDMuoSgG7BJv4FLVtQvP7H6yr9fDw1HaXcl+P/LEJ8K2UOMQexqApoSN57LZZG9vIuzU2LXXci9dfKB3qCvYla5buECXXdGvkiVbgd3XgXcubmyvtCZTHz/q1GGXh8DQplo31n7xv/9ZBfI1oDUJ3H4keq85Sgeg/wNd3pbcPUypogAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, it is known that circle O is the circumscribed circle of triangle ABC, angle AOB = 110.0, then the degree of angle C is ()
55.0
737
[ "55^\\circ", "70^\\circ", "60^\\circ", "45^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH8AAABrCAAAAAB7kQJCAAAJo0lEQVR4nLVbbWxb1Rl+T0iF1IYa1NthVJeMxCm3c1elTasFNSyN6qlhRFp/RMs2spEiUKSGH1YbRhgd6SBokWhHNYIWqdJmpKFFW6RUomvXLRVu1rFUjhTUODhQZw3YqK5cUSMnWljc++zH/bB9P891wpOP63PuOe9zznve8/keE1YPyTQ2TNS68gunvBW0KoCIiCnPQgxRil0Dzqzb4ixhzasvQcLKzqMA8Mr5r7n+RmUQMWL07hevEYFqapzyMDil4KNmJcF8Q/cRvoxrVP9Sekpfe4Qz42r5YfHZPMKISveMjIi+/HDuZoRoPsVAvlpat89Xt/u+ghK8O/9DRPT5zBNO0spo/9Sl8cjNpq3+vRvom9VE9OkCLUUTn/3L1xIMPqikeafr3JM08esLHNVx17/ivX5vx3AckOSOpvQ3SEBsqF0QjyfkdJeJ6ChH53XkL2bPDDf4eucM74qSxEIPNZ3JcvBy8xeQDlV1nrNLIGtjtMPTl1l7/mS3pzet0ZgP+cqLZM/m0M215V98UejnrxTSfZ7+Za6UfP3/rD8bPyHwd5HFqc0fbrvINQBwlDEZrJ+0VLgJcr2bT06I/xDbODTmVH8QTe3dP/0d5pBOTUxE79bdnjn2uHglVr9nVo2zVoRjCcPC3zjqrOkn2tTwTwBIehYwKow65XPiz/f4ZzjoVWR6Ng0rHwdbJUR9fdZdhYc/29rkZjQZ8oSyUEbEu4ERIL27PbcK/pi/O8/PfiXQHCsKTnqzkJafCiTK5r/gedtBfQokAOkOn661u7sBYNATKZM/dj+P5cnIvyYc12s6+1BUAjAm2GjAhj/jH+KmP+d/sphEUVq4IQ8ArwesbcDIryo8H3yelz3R5jdoSgKA5tMAgM5DLvhVhIKcppf7pWfQImlcSALAcmO/Wiu9OZnyS4AU9nPONyPezrTly3655knfmEUCq/pPCnEu9tmm+is2r5dFecUQFWKA2bRtwZ/0OZm+BAB3egQHG71YLc/Do9Xm6rTgDw460EMCMCT0ZKRCaUzR0Sc/j7ebJjLnH9mTL7BY4UpD07RTKYG0rHksixfNXpvy53xRx2Ev3ekdARxWYgAw3CgHx8Vlk9Sm/L3ddgIBIH/Sczxnx16ExmE5YceAyUsz/oRwx0xuUdy4/wnbWaUE017Z9NKCST814+/qtxe40Oa3XYfrEepSniEu/rRgO+XnjgsDfGtbLYcvYinYhD/UZyds1NfOu7bXMCYuA4DU3c/Bn/FYD6eINQfshjsrHJKJ5zcZJkIj/+kuSzHZ3o2n+Wy+FFLSsyCXI+zIL9VbLlfOCN3aIOqyEIOtAICxZkf+6WpTARKuNjRF3ZEWIR8YkQDkhQVdwQ38oX5TAekur0F3bjDpzZpKN/D7zObd/Emh134d7QRJXoxOikBJ4+n5416TzOOBIP9wZ4GsNwogvyFdajp6/uEOQ87koS3vaQH3xq9CXoy2jpTG6vef77fototfndixZ75NC3LtQ003pk9XDRHR/vft9p8SvLrmH/O1J1dV70LGuJBUDaAAnf4XhJJgPBgYl4qklK99QFmM3ls6B+j4x5uLAtle4aSDSMlNiZbFc8Cu0kFE1/5zdYWmf0e8/dExh4Zl6tk/zzHmvad7vqLaj4uNQj3/VbMnRNXAph57670/bHaUCcUkuezyYOMJEj9RQ3IWRQ8TcQkAWpWFReZZIeykXpfGIAFIb4r9sd2gfxDln5eLk5YdJqe23594mmT12tTcFRgRPfj6s76MHPxJBWPsgmp/v2pbAiDBnwAQCQRj+tKvvv5ylsdealA+d5zHZYrL/OGzu5cAAN40Uu2+Uavd4uoxLdTJH1b2LiFJ8UoiotTigW+sJyKwL96MTu45PDPDq9Qb5yu/v9VVMzw8I3sQPnh8Pf38qFhBRPS7IxSQ3/5v+PPulgr+tr1wO/13V/S0f2WWERHd+A1j/aeIAIRps3JWL5HLJYZI1OguR3aj/PzxRwhTHBVEqUXcmqghIgKrEt3VZkisP+kuR24jERGl7mynp3ZeokpKPXeB6EbF3QoGoqqlDao7k1FhdFE/gYgRiIGUvwNxd+xEuSoiMLrURpS+VkP0ClEcPyV6AZCAmuuABEmShx5JG4Ek7Vf7U90uLhHdK6s/jpWdviWl/2tEu6clSeZXpRfv73XRZfXOyH4Al4kRUSsAzf8mO8K8N+tpzZyipkgJRPRdjaCCgEKD0rZ5F6JwmTHmNEPqcT1QEqwgxgialflnABAxAEx7KBFqGOrPwDNLWBk/5k5Zs3UlU0cFabMMI2Lix4wxIpL/K49CBGNM/scYoxP/nl9PlW/9+b9cvNoM/2jJZK3zv/pniYjA4DyfT7zqqu+pAuN1JdHq+gdy+arvmSPZg++I4aMiEdENN4UguvqIx5SfKTa//zKnoPxskIiILv5wvRv+SHNpuLD+k6vcol+fW0Fx8U/86Tk39BRp0UXohgdl/+U8tKzsPA+o9zy4ka8q+FABGPc/YuWcOvjb454f/JYotS54ylX1p3yyh16Tb/D/tY8wrrUde9XD2NY5bnpZ5EiHIV4Hi/MHM7gb/5XzB12sof71D/D2AJd7UUaEc4FqXazR/9oVdiXWVRHChw1xBj1lNqZd65YTCcFwiGKsv/DMaSp3n++AN45UGVRiNPXUroTHELkWuPXopwbBJv53X9ubXwM5iAYPm9TLtJnc+Jy5YXr+brrUeiE3rNxz4piHufGjb79sIs+koFLOW/5JpyXG/Wan9ib8koSRhrtrTb8smnr0TOyPMep44A33G3x7DOw4SGYyzUvr7H90CTf+Rwn8/ldOKP5XPn4AALf/mQdJ35jFiL4G/ndnLDf2W72y3mrdbd329hrYHRjRz3Jj1u8t4eb+hSUkAAOu7l8UEPOsSSco9/4JcNFTvgY0cxvcWO79GyDm71mlES532d8/sr//9q2pxIEvCeWPhbf3LU7W2mW352eev+7YM8tQ7jQ4tet7fzEseUrhqMGw18wKjaOJ8Ro8Rr2rvn8HIOodUAS6W5SuvFztfHWP8/7lVV7uQrII1/1LvvuvY17F86uJdypOuvNhrsHD+f4rCDh0/YHtJ25T0bLcuI4q/njrpR21nxzkMlGu+kO7f8zTDMkeT8jmDkEJXNz/ToeqOjl0OtbheTHDbaquvn+SGW7w9cXtlDAb8hbfP3cuBfdRpzIExX9/drG5pVk0vAObjUQiQntXLadAOZu7o1Yw0r5/ULv3PqjfP1iMzn/2wZai7x9wCyvzqLf4+xdba2jdPl9dQ/FAyz1g/x9ZB68TXiwq+QAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB is the diameter of circle O, and point C is on circle O. If angle A = 40.0, then the degree of angle B is ()
50.0
738
[ "80^\\circ", "60^\\circ", "50^\\circ", "40^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAABzCAAAAACZCvLzAAAKOklEQVR4nL1bfWxT1xX/3QRKR9Nl0ww1wyJ8GOERjRlC1VSkfGipFg2kpSojwPIHaGVMSiulLK1SlWHo0JRpTGNaq2YaEukEW7RlcyahkGrpcCgUWFihfBnUUEAOwizdII2zZcK83/54H77v+dl+z8/akZJ377nn3d87537fcwyWjBQ5rWU2AUBgwk68DCUjIae1zG83xcmti/5tJ073EGPnr96JAddHAAQWYOqKwMJlj8sCND7iweY/ANg862fZtUxxjKdWN/LeQCy5Ys78VyowtwrArZtIDQ0eOhFYU18/UwfMaH9qDgAs/JtthS7aMN4W9Dd1xi0lCklefHO9L7Rz2Nrmu/pIsqvBpkqHyCRHO5cF2uJ5BJRLrf66A2My68GyCZLc1eoBOdla0XyksFhPU2X7aCab2EGSCfQVjZzYXtmWdCTJREtla5KavbveJMlNdsZ2hDz+mi8yWlhMp2S7LzJJknywJE4mYAvsBDnq3+4ClyTvNFf1kxxUO3ofaZ5mHCInng2fcYdLkrHQuk8LiBRCPuvf6x6XZHpn1QlPyF2+/qKASb6BbcUjp1uCl4oFJssr2/MV55u3xzamjlQ6nl2tNLJo3ufmHqzIWZ5nrbqyvCqmAxexrpxcObX90drruQWyrKD3//7KN4u3NMmWjmiYHZUxU6US5Wzni5/vt32hMGkv1fYzHFWivuEcYrbICjkaLFZjDTg1bZzRpeTexeP2GuTQOV3fUiSwTifCpBKOks2N9gI5kF+uT3tE7thOMhom/1sbofPZsyvocqbOpnXdVMhwlEwEoo6srZA87cu3A3BG/jipKs0hn918ZKdzImBMme47t/bGFb/6DEdJ9lTZLB9WZIVkfYdrvCw6pPWrP4VJcuf6wsgku2u89i6S2/WvD0dJToayF55s5PHAWe/ArD6tJaJhkhwITRZGbtvuEVQh+dm0cT0bjpJkU9Yyn4U87LvvEZkkj9YaSVXppO+ORSRrrdrbUvzCqK1BAP5ea2Qb0QvgieafFFirkiVRmQ3dmbSq9F3fvfw6d7zgVWUAwAcrMqqpSs98fn9enUcrHW7o81N8lpRRomFS4bAvlU/nw889UQqVB1dKGdGIP0NgwTM9+XQOxzzrq5Dcvs/EUls6usrENCN/WOUZmCT5ldPmfLiXZNp3U+bJ1iZ+s6UUtsbYJ8vNjMhuAOXNB3Nbe7b31ZEk+2utnHCU5OmQvPiZetg1JWSo74Viq63vR/YAWJ64K11kmJBjRpcs5uImQ+eXCwunEb1AeV1MqtaEfGyNkbS+6oYenqzL4kX2AFhzTK7WuGMhGShNM58L2jDDUfJMSGKANJr95oySALOzyWYXFQ2TnCYtCmXMmHZ4sQcTS3RsjU1jNaIXCH2cYZSpMjx+Fbi6sDTIH9XYcSO7gYXXJGT18fAlAMMhuzdc092RZTZcNopes87q48dVc4CrIXobxyqdqi2zmQ8EInsQumxFfmdpEkAyILyNY5XOLLcblEQjegOjFuTbqaVfmg6kKryNY42OrbbjCiCy57GUBfkXLVgMFdkd2Vno4WXbDgagUZyZALC5TAhxFCDZBWAHyYrP3I3bgVDY5ubpdCibp4/p6gBJburjIOJTgJEUcfwigJTN/Xc+eutTbPxuFnfo0d3M1Wb/uEeB9LVVmA8xBbe3HQVuuMPMR7fmQSAbmwK4958yAXywejpe3bEIu4A4NwOtZMV4Tju5sHbuyX889MsA1caNm3dDM6zHgIJkc8hNVuQ8D65ri4dIboqzC3HTzqBywq1lbdozVleeQ/iH6Y7UY8DtsRC+s+Q90/pcMe4K9n0hxA+kvDrEhp6SMpkS4o/dvy+fqAAGvgkkL8w3IftvuwGObJ7ggwEJWjXAyaelTKZEnP9+/+MYmQG8+3Wk1wZWmXaArftdNPGuBpIctPrfJqdld1OF5Gign2Qkot62N1Ch7K8KnnOgqjZe3n8jbmZo9NG8rImQAnj43IvfAHC5cSVVjlCtTXWNCg07QNZw3t4RAoAbBkNr2GOrbN9omfsqAAwvytRRpqYEAAQvO9jtqhLpy/UAgHc3TM/UTwBnn7Z76a2zBwQAnJf3HvK49DveASYQJ8njsL5hW0UskCBpmdLLMh8APHscUA1P08NIkQRIcOayG3zI9Is7LNuY67DZ19xq7g4AAGKroA0xZPbbAgJ45q+AEFQ7BQEKoVmXQkDPCyjikW91ivKRqfXWNeZs2NouwETjXu0cH1ujNoswW1shr82ioiiK6rhWDLbpv87eDMywWFaRrsEkamzVCtMV8rWACZmz49kQVmTFYNvM2jWZ87deGjGujc0rdxlAQgAQJL7dbdczzaSbyq4sdbHGKtd7+Hflmu27m0zCNIICFPLDKiqKqplC45FhaE2hGH8WGrAeX5VL/ku6/ukZWSd3LShAAEu/OCiEAKD+1x4Zhv4fQvuzdrCvmbXCP9ceqNb1P7K4Si603NBs6cpl5AyJ3Mfr2Bqz5MP129Zq3wB0bTUL62ZRLefxVmqWxVHTIt0uD/vMa4kxnlXL+bbuN77RPV3lAlP+wEnpZuSnLZa1xPLVCd992o4XJ9QlqaiQJwJSl0pWWq41rbePgXU/B4s7aRCnluvGIgRG1ndLXapja6VakEtn/Za5KK1D8jXYZLhTqiXpS1rqzD7CvZJ6uxiNAaR8Y9N0fQQ2fqFTKtv41df1glw6c9w/VIy+JPufymil7K2Tdr/KX4IOvAnFe1AibZn0kSrZ1za5SPegZL7NBlkp1mskXafH/edkoJ3PZ0uX0FMmLYL3gj1ySU+VjbOxhN7BeMD4hvqdcoFz72CRHtHOJj3VanL8JmZH7cRL6AXeqvvKD1aPM9NQk7URW/ESer5DZ0hS4emAvG4orjzfRXn79eNrYu6AzN5bneMOpHQRDv11JMnJGtPpLOobzlFN6aI6XlMjZppfkJl6VIcjZIMuBVuMbuZA+fooSe6rk6bJyS3VuWI68scN3W9YNZan2EzqPNI/V9rTjNasT+WUL13E0lCI5Me+IVK30FAgb8RSoSgtv9Morc4mcjx4yMgrPf6ePOIFkZUhp5FpTZ1kQ0bJBzurjI12UciOovEUkgyeY3uDwYiF1hWafwvpTIcRiMmK9OGgvq1NqhGInpCp0FnUZU/DkF8bQcl23259aHmxNkkHkaZK+0uamnqkaUFyE13br+RW4snqfSQZNUfXlgKZHO2sCbTn2jGkyzeQl1r9db92PPe4iqK+0rYgK4papZcf2W8bRZ2H3LpM9MjxJ/XI8RsiNXT92tD0DfX1M12dTUoULT9nniyQ807fK3JpyPtvE2iXduByc/4LASckshK5ybvOAsA7QqxNv+7uvF+KX4KMiAvkr6Z+2eWx29l4zkcPluwg9R9AOKcS6Hz4Xz8CgPnzCgmayfuoStd8r6WY97zrnLwwNzOY/q/IRsQA3PmQvSP7l3wCACN9bl/03re70EcO2v/cIw+VAJmDUP3X7uh/vTL+Id7QTQEAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, if AB is the diameter of circle O, CD is the chord of circle O, angle ABD = 55.0, then the degree of angle BCD is ()
35.0
739
[ "35^\\circ", "45^\\circ", "55^\\circ", "75^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAABpCAAAAAD6wJmiAAAKb0lEQVR4nLVabWybVxU+zjoKzMMbe0PfaW/JtHiqSyCkddEimhJV5Ic38iOwQAhLNSO6RSIgmZIfFgoLSAWC1GkRy1hHxeqijBUR6Ca61kC7JiVIYa5IQdncsWwLdUpNjYQ7p5J3/eY+/Hi/P/2xcH7Y9z333Pvcz3PPPecGQLXR9YuXrs4SvXkFRFIr3bxbujcarLGsRoFawFZf/uPs1a6trZ8K0t0tRLi8QmuZN3Pz0t6eni0bCnbp5y+Wuvd2R1yyXp07Nyv0x1trRoMvFQ5HpdGsn8RSQuw6UuTKB/evzRcsnwgOnfQtzgFgZuC2ZKEakD8Yzw2HRq9WRQIA5EY+lMi/B7BSUhgvOOr2bH4+KYyXq3XOC+yEOGyG4o6EE26oJd0Q2OWeHQvVKnfS7PZevYGu5VzBMuLBOjAMksdalvzy3cBSQhqor1Ma/VqYqQtMHgn7Ns+fMlKyDrBirKuopRvpWz7aX/Iq12TXQLtaZkO6LqtZDxm0Zf79nW/Vpq7SoakGeqOQ3p+J0Ky7hBVsKaRvlUaGUCv4grBcBYwDhXDj/bLQwbaSG9s4YhBYj22bamCW3Gjf2gm1Uq85S/TIG9MxoNw57sI1gaXCBReBBiknnYBj4gkab0HwPSRrJa3+zB1O1aD3LHdXNZ1dJ820OAZKB+uZ2FgsYKzfC+z56IYtDm0gy5HTFv5sVgUrSRmz3MbQmUjZ9FVpz6q68fuf20XUmDL0ps9+8pDp64ctH1V6tiwU3Rv33igvGFZQ6oWda01EBDo4EvJq3nuhLUMTWvLKWvQjtxAA5O9QOraxUwYgr4/YKHIH0EQgmngkRKCNnjIi2vLgE0QgomOHAluJCEAhVIOB2RgtC+8AQG4KmJtCE4Ge+3w9V5G6qLXrt0S0+sjXid5WetYx+3+YLpV+1s0xTpTFINEBAhZbUAMYb6g5U80fXtFrQBPRsThqWBuBBlZP+atHt+4+qtdABEgbcrS4UG5n/B/B2YjBIGTFumqYI6Jv1yQ5v2WKjw/JQePaRTg8UA/WY9INVNoP+AtxcOCIOA9E0ogdN4F96Zl6sGIAMCfdqCYoj7StABlBxsSwvrQIYh1TNkdZAJitClbo6l8DkEgAf9mmc2lFqBGIAxhUxi9VBYy/Ik0A4LK4AGCzfqLQme4awQBeaX8JMDA96Zio2DPpMAB0ZDT+pkv3EpHDmnTfavm/30NEdP7513zlv/WH+VZCgOj4Q0QIhF/fpWZsWo4QAjUqfLH97QiR/M0D253y0FjXv0wLtxIFiNZ+s0gUoMgbmkzTpUiNJwuINvX9hGj15p7HXbI1DfPqro7TtyrnykttrUREkVeV0kTUsVjznAEYJCLf1TsjGvfc3klwALPdGoPC7rebhogjGV7SlXph8zUAQCaq5W9aq92PV3UR3dhXvhDSxX61t5mIiII3tKJNa7fUDBYgIjq7fccp15YQvdl518mQsdamh5SZCq4ZvDqHKkL0gYpt8BT6vZgyM1aC6oWwGNIk7Rf4qrROdPNTzg4T/fhrv3vYzDjaZ0yQduMMrtXaJ6XBD4Q6nhOcBtJaf5ft0hLRbkU5SWORWJ9lNSuVOEb329m5jhHbxSTTrDGyuiauc+mXW04CKIoLVva8+BRgNWQSCR1WX/r1bWqeGAIATO+0sJ8U5w0RBbNitMe0qWMnITPGarudLYiqe7bziMEsx6M5h6Si8JWW6ZfCpsgy3bSJNt1Uy0p8N/6UoKy1J7/7jsZc3U1/lixiIEXhq/RGm56c2g9wVt0o5ADG+vTP4RE1kZGmXIzOUtBYCv3TWorOdAOcccYqkNk6OGMywBlj0P+UVAWLzauMAYxxxq42/41VAKTEtBVL+TjeaXCMw5NWBIAzzisAZKACMA7GISspWdEWjKPCdj7LIVfAGeOcPb2HVyCPtC2bIAzqfcLgmswCiFlwpVa+Ds4YY+u8AvAK1D+ovxM9KptxcCZ3/JJd293v6qPCtc3GDl8wrFTiA4eVuhiX9bqZWqsZLCusMBMYn5fOSV7ujKmYkZ4YNsBweLCijCFbB8DWAQ4mg1eg/QGcrWPPpPqtgmEPnXYZQABA57SRthipr0mMcXBArZYxdT3of2wdnD25W/tmjIExlryn2evM1hU+ADlo6EPTxWLdoygA4LLNs1WMxYoTMQ/h8SEjvWC5WCAxrmD57rWY1dO/FE4CcsQjKhQx3GBcrV0F44t3A5D9FVaqw5I9I84AHOnwuw5JDmQE43SVhRUjj7hyzfWnvLBo/pzQAhN9P3BbIarC5wBwotuUQQAm49XA+sZMlZb692i7aOU2pwqGrCp8Dg70pWxghdv8DlAOzJg9XsttpnNybMCoV6N02GjZsmDe9QQAiaTv4iiYz0rdrAEAlFvOOMTj49DRhr9nziEAyPn7yeLaocuBQzZf4UybfWGVgm/o6XzIUjEBXG2MpRITpVtKWk45HrX7YnsmjTHkgKHwOcy2gQYGfxdgSTqjlc5F42V7dtZuavVO6sm8LU+1UUeH4UUjca2dqlljI8PU4gBQMBQ+H7DF/DS3rZiBO82LWqenTGaNif5rNbVMCv9s2BZy1azv41HZdcLKkRNKQn7YxawBAExHjTTHfdOGQ9ruvLe52k14SnJUNY0KXQOO6dLIbGqtBPVQnZernQM5yS2IkBGVGch4npMAMmJRb6Wh8P2CCGp4xGq8yG3TADhSom8449ERPakPXUbwCY+4Bn7GewEYZo0XFfS4yyuCrDRXCfx4gzlDWktCDkDxMx5mDQB1KA7vVtWjtourhrQg94xY8uTOZwAstY55Q2mSHYqhoSh8DuzrcxOzXDz/Yw1DTnbDev33pnmpBBgW/sGPu46FZ4AVWAktA8lWZTp8jwUODCUBXceeqBpgBWANHXcfQjEWqx434QDwb2FZtfC5Hjp2NNB+f18Kj6jr6UhUXg4n3Uu50MT9qsIvxz3XrsNZcD3WXQSAnLCUFqedBbyoEjmJ3kmgEP1iyat5NjCuP2ToG/+R5KWcXSm97crmAi7U9ZCBA0fFNKY/9oWumh4BGdT3YKzK2nV9d3Vh744/3R6+v/ZAUABEdP3p/ben0m0+Yq5Ol12PXKBPPGAOG8D/LRiIiELbjlxcbPMVde3vfPin1gdDNQxofkhq/qu/iIfrquDyFMqTONSnUNXkdTDnA7Sqj7xMot8INfDIi6eIYpXvqKD5RHAo7WiEg14YCCWVTg0SEZ3ylLaC5egAcJkMlVV4Jiolffy0HEuJO7uOFLXmDJ7ic95+XQuYGmR57JSZmR0NiwOHXStYmuoXImMm5VTZeQM5bzDLPjs29voHifCL+2yPGVfPnpn7l/GYkv65QqULbo8pz7/4OH3lTjfnOBFZH1PK0UdHbPvC2GrXL17KnyNavkJEUiu979Nbw85nosfiRFm3Z5fOfZYjffx8Hkd6LxWOgSxSPq54D7dtwPJnappfbCOQux6hh9rPegqYwcT2t0BEq6e9x8GM5FRLL/cSqfEad51lHoUUnQLOx8wDZRs0brcsLbmDWVTapTXPwbbuszkiOtBoyHqOiIhibm1U6X+Rzj3whzMekQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, points A, B, and C are three points on circle O, angle BAC = 40.0, then the degree of angle BOC is ()
80.0
740
[ "80^\\circ", "40^\\circ", "50^\\circ", "20^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAABkCAAAAABLQPo7AAAH1UlEQVR4nLVabWxbVxl+zvX1itaAqeYu0eoRuriqq5RQlk5UW6QoYEFYmRhatS4igkZa1R/hRwgZymBqqNQfkWAaaPkRxEeNhLYxBbIfVdRKnWpnnTbIJCZI4lRN6IIt5ixBaqgjhfr6PPy4H7m2r6+vk9xHss7Hfe99znvOe16fc94jiKqgsCcA1j9c+DhFsZgFEGnBfY9HDrU3VL609UIJhAtVCbJvv339446HWx5rwOebASx/hPzMUuZGpCsebwRAOBN4orI1buF3f97o7Oo8LCofzyWTyfCpMy0eWsuaWB1vjwylzZJ0kJgdaOr49Z1a36lJtTLQ0Hu5dnsmToeGV21lhxa5U8nMudDQipMilcj0hwZybgJuVPLucHhk1UXAEDMzueHw+c3tUU02nSslklaSgOgu/Lici7ne5ivldc5UJc8z8WPvOTVAkhkMkBmMOTxNxr5ZrR8ctNIJZ5ouVnmFhbZBkjw/5fRQe6l5tvJr5VR2pRL7r1RjYiKyQZKJtKPlcyI84ciFUmmjVOiPzjl/h2ShbcwULBMxijORYdolpJ6gTIwk5Z3uDpcJmRFTTjw25NpP3bV9rgcApqgYTmP65pYDmT/enPyMm4MxfFrVR43vfurEklUnXuuZ4vSTC7pWstCWtpS9EnIyra1GFtrGSDIz5abaaChp5QuP5ZlBGrr8hafy5oPZUHWD0JHAFJnqrtoWkuRkeNFsR2qQ7Bk0xirx1qMbhuBq1FUnkpIpAAM1pHix1RyvBIC0YRaZVzNmG7V4f61veEXvt4xMT5oJpHWqF5gZNBQfiGu7RbV5YoSU5L+69QkC6goO6o8Tj9R0r978PCmZiUySZGKMzGCKKpDNE9OzACjO/qZ/zMPfqWXGrLaO0PGNs4dawavnoZ2MdEJh9mw/cJsARPbN3rCw5o0LkklzFlVlIoCHxk+uTSuvHxHBhzL3A+eBNHsEBknGRz320siIx1586ZmtvN3dvvGoR5OQnqk2Y1uTVNlSOT/0q4DHMfImBmDPqwObZt5GdeHkcc+f8Iz4F182s6pVuZRY3H0m4JdHn2/U7VQBQBDAxX43b75tPNg7avS4AkJAACuXf+B9COqAGP7Dup5TzDEefT7kBxPQ+MwresYcq7VLN6sK7xAvnBhqALYs8LVvN/pF1dLxJ9ipEmf8YgK+d8lO9eF/Ov2jempu2Ub1+z7/mKD0XrJRTTwHLx59exDP/dGkIha0GOpxbXXieHYF5hROdfqnE4BARxLmFL7e5aNOADqvwxyrlI/2BwBdKZNqWYv52H0Avnx73aBabPW1+wAcuWVQpQ/5SwREbwIKCfwz5jdV7BagCAGkfaYiYrNGB+YO+EslEFkzqPKf9pcK2Js3qcpP2nYdDRvQj7Ma7lZdMzriWrjpRl0vyEyEBCWlh+OzEsSAEyRTsHYwtbAeIhV9vbQdjHxng4VrP/QkS2y3A2NtNzjSTZKpSL6WNElmIqSqD1p9dvGVNDB9Ia0vWgUF3LdZ0A1PAcAH7hRkPVQCwPhgDAK4rZdqHQHn9+pUYs+GqriL2kEA0ObiAICrz95vsbtgo8FYcj747y95Z9K/mvv7QQB45/W0p3ey+w2q2BKLFCq1gEINAQXUgCDMBAA1CNUoawxIhtuWWpSA9v1BT+6Tt1oNbxGdFwGoEAEFxWBQEkU1GCjCTAAU1SCkUQ6gqKqBp8dUmQ3GX3alsDpi7pBBFVuEUIsgQBYKJCEgJIwEAIWAqlhlFcDIPuXAw2lvTMDiYejz6naEkgVZJKVGkvIeKe+ZCUlZKKmWlPeklPe8HmFQ7rlDKoAsNiMtENAACEqAQkhAgZEAgL3a7BSPCgHAXw+GAAUQUntiGhBCARAoFgoCgWKhGICZaFKotuoiNJo/j1TJTuhUwWDXdQABABDBYBAQwaAKK1GVkmo1GBTmzytVFwCQlJxvIqXnnq8bWkOO+rmFwBF1vlDLje0AH0QaYY3yqTeDdbimevHGswDMoNLfmn3rPbIQ/oh6B5LAsc+m4Ntm5HJrM6BboADQl0Ad0cD6YG5JDSVXQ66xp51gMaz/UZvGEO77hS8aAfxZ/14jZ0ynTLhmsHB7yIWMD1sHP5GTr/ij1WifeaJkksvF/b6oldtvGoHN6H703/FdV4no+cJPrIKFu00zu66TvBb9n5kvOSZu37XIgYkqx8Q4ve/nu92BF49+fcsH2duQOVArnlQnJpptcY/STcj74TR3ETMP2IOpZXHhRLR2dNszjPBLBZX0J6hkQ7kzL3YfrifW4wJ+Nz9ZVmOH9BIA9IitAKCByhj+bOjqjmkkORleLFsXOWyDawRra7OQRrC2lMtpxz0b7d+RbUhunmldrAiCWd7CZh6tHyx9dX375gCx9kT+Ly2VS23HZmn90X9sWyXjukAFqh1ZJJqueI6VlmGiacKx3plKul7tcEX51Q5XKnOxET/2fv1M9V1YsVBxDccVkmSut7n6pHRYqVu2+PStfUd+uubV8gRWXjzacvNrLrbpisy50JDHtWjJlSkni6p5aJYbaOj18Ic5eTo0/Im7iIfzuU/G2yMvVrndQ5LSut7mPju87QgWfvtWvrOr87Co2O9xPplMhk/1PeJhML1fRbyW1K8i8uDnBLC8zPzMUvYd8yri7lBZqugXLLGUBRCJ8r7HI9Hj3o/3/g9EVjnBDTXrmgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the circle O with a radius of 5.0, if the length of the chord AB is 8.0, then its distance from the chord OC to the centre is equal to ()
3.0
741
[ "2", "3", "4", "6" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGAAAABgCAAAAADH8yjkAAAJEUlEQVR4nK1aXWwU1xX+ZusKG1UYVCwcFeGAWnlRJTrQqmyCyJqIVKYPlRO1MiAHllSw8FJMpaqu0mxMpeCGtov60NoglXVJjZNKbF8qU7VKxkkbvGll1uGBdSRYm6hknVDWRA2M8Xjv14fZ+d2Z3VnTT/LuzL3nnu/ce86ce+esJcILlCgZV3PTmVs5YOpTRFagNbx9Y9josT6Nr0pI3gQGZt4ZVx62P7FhMyCvRmYBc7l/zhZ2PdWxteqwgATzb/y+sCsa3ehq5r3xd8bn9sbD/mY7xCshSJK57ub4hEevjkKyPTwqfLsteBGQZKE3fNGD2K4y1x15y2lTcAI1EU7a9fpgItp13bezCoEYbEsUjevqy5AOxwt1E+Tl8qAgS8zBttfrIRCkImeDKDahdh+vg4Ac7Cx6yVVDsksf4jljF4Eaj6v16ifTkVxZeSWHk+Bu52CwlXchF1H8XOYgyMvKMrSTgsVoyqfPTqBGssvSTpJqp1KboCu9DP0GinLeovMm6Bt4BP1kLuIZfhbBaPcj6SfHOm0TMC9MgomnlhGfTpzp9Wg0CPKRGjklAMSh8/4Ej+RgA2qbaaWZ2kP6tjM1+2zQPbAKGo+/arszNnUhSEaV/8MEyAdyzt0EkoJ/6rJNbZkQJHnJVMQMgHTmEkhB1pmhq8DQ9PD59jtkf8skSDLpFV/LgCCzW0iSiz2775Nc2H0HdDg/iI7q0MNxpOUqSS7+hiCZOli/sb7cSpTkYs9hozUEYDhWXzT6nNX0sOyYnQFKM18xREPAzGxHfQQS/TgA4OAw8HHBJA0Bb+zzNcoJ7XlJkn4BQILPmZEA9v1Rw7rHbhAAfvcACP6QjSBNZlAlpwiSuf3r/05mcJpc7EmToLoqWBodaZkkyf7d9/21k0PydyO/JDm7CWiZJBlCZmtjkPW59dKPtvmvC3Qfz+/JnrsRzwBou0l+sg1ACEq0hmpdwfDnXwCApRt2paZmHZef/MHQkVT0qn10A64dqEEggRIW/hb9IgDcvnJ0pUOpzicBWDg5pbQOfVNG0d4VwvTmGgSABHxc+LJ9IpUCmN7VfLl17uxJIJyx96krArlY3XGarBZEg3KWZHzQ+DCArBwsR4+0TJL9fvqLXXGVZFYmXbkTSjTgJjAC4LBPnxLWieUsBZmK2boa5lorXOaN/fudPrWw0J9RWgFgaLsMCVg3ZxMJLTQF0V7pUytSpztXj7cCwNzZfgBAk2qzuSG4Wpfdxt3wrwcj+tXJeGvlqNDCioD6Z77wV4/W+WfHJ7brl+9njnoIhBof6uZVUU0AWDi0792KRmSePDDcWJ5LLOU1uKE89Wp+lgBgIPq1CxWNPxlXzFUZ2i57jg4YpkqUxWZXWy4yQHNwQTY3dmeYNj4EpCrVEh3zJ9JYs3rGUbYYPntmuzX3fsvDDrc2tOesGXtBL+wc+/FGYNfbNoL5Y01ja6zbqfeGzOsP2m3jQ2ua5qrulxIkYLhpL4At71uSmSe6Ujb9OGTz8Adhh4WdYzUdkA+rpJFpSJIJ12l/MG67af3IdgP2JlkDalQv66jN5c01H0k4JWwepisYwHSX0Ba1aoGUSJR7y8eDlOyuIzkSdLrL3gUWV1NU1a9EjaveJMm7sZj7bc+2doaUjYBytipB+f1Ut03wipyqeNOTp+wDnEd1kH0DQhOaplFogkLTSqTQNI3lr72jpNAbbm7SXo7kNU1oWkkXJEkOHrUIBQuttD+6ICciQhNCI1kil0hNUBMslUhNsKQ/lprgkqC2fluiJISmUf/TVVgeFhSugNLfcMLXNSFEiUJQaJqmswldw82vqiRFiSTFRbwqjInqfxR2DwuSjDgjIATg4AVIkiRICQg1NDTYnuqF759rBAABYP6FP58qwAUJU1aWlghM34s4JcjSvzd9RpZDSbdKK1GUSK2USOi2a4ITO1LaW1FRcs7A2IdN9CaduROk0H6YJMklGn41nfzm0xpJTQih/XzndYr/rv+M1DTN/KtY8rk21Vws0wcsbi7QK2lbEToX6WPZXCcKckEfWR7dPeoS0N/0k72eBUxTejQ8odt13J1XHM+w8cjZNekEaviGGdUWzsd0UTXWXbSaLAjrGTasq8yc5VqFM3/oKOdQTsgp06Z8m1PGtWQeauAtSSuHDkRzhr0km4vW/AWHnB72eqE3CJRO93tOIkGShWifo8NRlSluLjgc5/VCD8O437qM0XNoOqwIszIjTNoyHHlTiEojaS+pOaWLcp5UY13zLnkrd9s8rH/k5buV+q0ZUN2j0Iqw7lEyI6cq5IurLJ2RCXtAqpWlHOcMWJTzwihVpWKWd53Q/ShI4Tj++NbM7HXTnGysYT6sFjod3jVNjaUMe8KOfb/vlKd+i0CQTHfqQahGJ8bCPocN027nzvirmIesg4AkeTmSI8nEi3HfIr/hWYeH1bhvxclV3s9Fxkjl6/KgtzRJNhdJYe0rgmQh6i/v/oGi2JksPrZ12l9/+eyir5TumaxrE6tKQB5bd0Ctfkpi2cNlqdFIvop45SvUK83jyp4qh1X5AoCfHTHeHed6oVQtdphUwvzOfqsj629Ssdl20ir2tbl3GBfcS6SeI0lF7vafdlve8PBCcsNArVpQyD4ZQDt8DwA6sl3fPjHvM+en3x4ORwDgdfnDqb7GWsUyJ9+IWStYSLbGLpevhWMXTB5rL5D5xPoqs7TgJJg93WNlFDXV2dp7qfKBy7YklZfltpfygSoQDgL1e3d3TtobCsmuVXLvGcXGoqRe/ByiiatBlJOk4wfrV+L3v/PmWtcaTikfZqc+XREBgFuziG7csPoEar41mrATjPQA7f9wEhh6FjIA8Pjj7vaasD1ot/5DvPfTlS4Dyt+NHe72gBRWmN46ehi4KfQagfVRiZOSJEnPPAg6BcvdLZOLPZDa77jdJNw3Fw9T3XEk4E8Z1hIRwGuveZgguW6Wxp5D4zO3655BYMxuucORln8FlA7VNsFt0ZVrLdLtT75hzbsq6idYGktzduh0+a7mQtVP8NG1nWg7cP5usJ8ElkHwbmQttBtfagpWq6ynKKhDu/wccOoP6ZW1RQHU/O8cjwEApLV/8Sn1V+J/rrvxek+ECPUAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, point O is the center of circle O, points A, B, and C are on circle O, AO parallel BC, angle AOB = 40.0, then the degree of angle OAC is equal to ()
20.0
742
[ "40^\\circ", "60^\\circ", "50^\\circ", "20^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAAB/CAAAAADAjRMaAAAJSklEQVR4nLVbf2wUxxX+Zh1KVNw6SG7sVhc5PttgekYJxYBbu74jIUorfpQUKFBBzDWRoHIkSMsh0lLZqGmhGDWNRFVLJLpznCqkOII2rgRqK+7OVIVilVS9E3Zt30GxalMsBcqhJhHe1z9m93b37nZ3dn33yVrvzs6bb97Mm7czb+YYwTWGPI8zZxKSGxqlhu1wSOaOjZMc8Nc6FnTbkvSWt51AzrRzpRsAXIfHD6dN6ZrtVx200rGQW7a+HlbnXOohd2RpIgylAIcd544tHYwCKQBgzvjIBUJAmvxAyKmgmxGQr42ofm6sRF805aUUm03fHKUf3U69owaHNnn3g5GpKDAxCUYeL5vX6mlYvkCc3YGVTP7pj9GptsfqVpTj8TAdxo3ryFyZuHnRs3rNmqqistHom7+951/tb1Seu9GdfZeIRaOVm4O1Aipat6Ri2TPvnby17XeNKGzqTU2dSL7RWt+xpQIgZjka7Ifk9L7yHYM5aV1dedkGtlYcvG1TlK1NTu5ZPG+sf61dNmDTqcS9+pdvwThCjLBhy7yyrHr8mKANeE6MPtx0+GOLEWLNdrbhw2vdlYo4waraAICqI4nxxefN31tZyWRw5uwq7ZHBamATf1fVH9tTF6k0yWSuGw2vCPxtlelrIxPA1Ir4E8uak6Y5cyCrN+HKc+bGVcAm9eZZOZBbGkdeSypVnN17PuqD02+zosCmmueGj+hLU2HSknfX/X3YVyC7EBiah/+wJVPgTWG25IqaaIULniyq/vxwy4Qg2/nWvb1lcyED5vc/vzyWl1poBCS/9Ztn58YFAAcWbb7stWeb+cZPi0AGbExuuFRuTMpvydntX+ucOxUB+OGynTmp+Wz78frcybgtvzHdbUzVWpKPLHpr8C9zNBANnzr95Sc3grQZrsbGE/4aips5OWcgBjDPma83+KCN2pyWnNzc35gr5w6coLl37YzOQeSw7XqpKOaYBW3a+V3dZ8rI9u6d7yu5isTGcChxXlPOwJbZ38v70Y0vNsH8E/s+ztbdwHZ4bbPysSoaGfD0E8ezxel9SSoyXmQmAMDrTS8+qhSq6Ub4ceec/L4ZqnYczR8B7Nbgy8UzDz0Ovn2Xctlw9IWKErQjQFWbXsvzJTPh0eIzAQBDqGU//xhouv36m4KTVOeoa3uPctgiHUBp+g14PsyMbB986AdK0m8ANiRv6NgI6OsoCQ9H2Y6wjo0BA9tLRUUAtr2rYwNGHhTpS5MPBqB58paeLeYvFRkAoKwtqmeLri4pG/wXDGyl1Q2BGABIfIDdKF23cbSk7wKQ+ACb8JWWDFjyT2Rb8toih8KOvUC9jm1ssUNhxx6ucUxjGy1xtwGNSY1t2uNEUosuiKvoua2xZcots+bAEF0YYowdsJdZkEH2a+qMTc97oIcAhmN2OcvvQ9Pt0+7YcOAyAYj32GYszwAAjzI4DZ1/RYmXx5EiIjluL3+nQqWRHbHJRCkAKZKJ/Jw0IsD2CJEs8dYvLxRvMIFiHwQGiq0HAIRDtlL3ygEGIpJnZ71TzpRr5S2ZQopIbU9rXGskHgtiTJ53X1w3MGDNmm5iQC0ma4mhPWS/75dZgOy8ZMF/HbAB2ZBd6Edg11nI1v6B++VQxxt7dOoJSESMQQZjgMzrIWeHCL+TAQkyJLmM+P2xAANSIjuak5/L6oYvjkECYwwkSQTIksTk7D/wO+LPJEGWZCZLEgBEiUho+3TMp7F5E0qxJMvc+SmWp31ZeACSgXEh/eJIBMlFmtCSMaasSCVJcvjtEss+3gBAIpAMVpeEqpz6Z6y2IdkNri2CMlOQWc1DIwwMgESyzCCRLEtQ/8lkSJYhg19lcbJLtRUAJIBJEhCIKS0iSVL2qj6w7N1TZYyVlT2FWVlS84iBz+lUgcAFgTgCIepPEcVXOm/T2Go9W/sVAREGoBaRrzqfoM1eDOjZlnwitDIdCqKvDs6WQwRg2FOlsRGw+R0RydQutsvRFAa8RU5thcbGgI4+EclwirSTF+J9N/t2UMcG4MmF+UHnPKRRi2D2SdwLvO+rMbJhV8ReKh4EOiAww8pBn1JFbSdzpn7UKqhADKDV4VogEOxAdzQAQLedaYmJlnRuBKMy+AsrCQYMSTEvYyzWriRFo2Jk6OlUJ5Dat/xm5R3hyUJXF9ltHWmYrlAL1jkfz7qf21VS56wdOJOfBdVonT5ieKjle9ZBPGL8oszMBWOmt/oTal7Dfnfowjr11mYfPIqAcrEDsYFv/6BgqZnPb/+CksWmDCEijvTgv+dr3EQUAfwUIqJTyx/w7pQL97fRSoTw0eJzRH6FSgKlWZIozHwAti48rqgsWnMbEF5d+iwQDaSIQgwg4tPeUJxIppuec/aKOdFtoOY2EVE7EZE/JKGPr718HoDBc3rnSHEU4/YwvOf3lQCGVgHAysuS6h87uGtv6Vk/I1KMLRgAmnzupA8A3t8AAD4mpWHcAOxYt33WthhBfLLlhY0AQD1tBCC5UjJUlQAcx17x8qzxYnU3AOD6fjAg3bNe8iIFAtJxgDuIsnfO/7I4ZD+52g8CAfGlABD0t4EiiBPF/To7+scj2V18M/MUsckzleOKOFJEafiJQBSHduqMvz5XccKmJAG2o5+9wG/iXNM4EaFg/RP1nQ+I5Dno9tEu35j2pBYjFTQy3/DE03fB3PuUmdbMpXrtUbePU2gAVQw2LU+6XmbQ8LJnTheM9+SrqyBS7e7Eh0w0UD2Qk6Kai7nUlepXTXvOyGbM8+BQTcKkTPNlCmu+Ev3SZaHjZYbejTVdHTZdKJjqRkR0pnr37QK1t2jJqR01Fh1gvQTbOLZwSfdMbu3N8Z9XltaPWuxh2yz4yo9cnW7YPy3GNfnSov8luua7Pz0GeHpHZht2WpzRUnF2W9Nnxl+rgmVDWPabzC+3e5d7Dl6z6rfEvuq2k3cKdrEe1mcMlRBJ5e7dI2+uz+hONOrBTzRerNPLmJXn8rQmuvlpzdS/SnBaU4V2EhV4zIsSnkTVQTn54thnu/59gCu4PEPvso5u2AKMSWzIFbnleDOBP05DAqHkfLjqN0ZIe1PKz2Oc2Iqb3wcMhYDvZAPXDsgcb3IQEUUAV+0ocIK4AMIpinivuxB0Y5Np1KKDCUSOisIWDxLSlHtYUQgubDIQriXJ3fh2rNsQi3mZ5HfnTP4PlpGWPGUxyC4AAAAASUVORK5CYII=" } ]
<image>It is known that: as shown in the figure, the diameter AB of circle O is perpendicular to the chord CD, and the foot of perpendicular is E. If AB = 10.0, CD = 6.0, then the length of BE is ()
1.0
743
[ "1", "2", "3", "4" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABwCAAAAAAMScCpAAAKS0lEQVR4nL1afXBVxRX/7d4AjkRftYlECY1DEvMwjkNULAO0CYpg1UFRlGkHK3Ra0mnsBC11cOiE0tGWGa2jbUSmVUFtR6dGoHYKSUUIttNBoQnTSfgMSEzUEBiLvKfykd1f/9h777vv6368Us8f9969e8/+zjl79uzu2QsWQFqrVqDhTHMhzBJRiSD6rX+T68aURWYGgELEPFOzhCQffv3L0RHA8588SQCVlWB0ZhGdh+euXbQcAAqTNzIPIT46UAUNQBRkoMhMwsA6ly8BEcAVNYchgf62wjBD+ZcmqVLFZ/EnckuDee/Up27+VNDo0FsALMnACAVHMoKvarsHKPJX6uBeKmB0wANsLsglw3lC/HTPvo93AIcHAYyvEkXTyqtvKI7UQhTEwbe3dn48Y8LEKRfhyoqVWHW0H8ndBz/6e3n97Fnjzj/i/hc2Jetn1sed8kqsAgBQoLezs7PknsWVyNPFGVQUBu7EG787cd9f4nA9wxVTS6C2tknve2FG1QP3xkL1Z6A3q6GlxQv/mvm2pSXzTduC2PLhEKMj0JsHf1RT1PfKbcGi3/NaT6L6oWOBvRSAmHy0btyhJ0L6RXnrgQuu+fmZwhBtSTdW/2fvqtJweAAw7le9R2o6CEDn/San51AIABhcfGLjVITzQIcue2XHD6teLPWxXc4ag7BrSkP31FQxLNX3TJ7S6/dBDm8yM8VLJe0+HpftqyletpW05efMZVUBaD7Y0VnreRccorV0R+u8r929a3W+7zJHtHnSiTu6d9cCKuM7P5KAND0g5JTdb92b9LRnEwHaLQnANC+Nj+2/oeKdGAArECcPjfvnBVOPAJBeH6AABKStHwFLaxujY9rStcLPw9PEzn6lwTGv3F+3I6PCRie1SrkLSbIn5ucz/p7jkCI3lPblqoEN465iNIerWhm4dGlJqZROmiRHSJKP1Saz+DSl3ZNvdYMgAKG+M6cJ7jSWfyw6IucynQUAekXdQk+FBgAKSA2CONcMCPP1Mj4TgJWrOhNZa0g8P7Qy9UbeKYSQbYAxxCO3JIzSen1VmCmHLbBNmCuEuF00UL4h9VLPfV1vQbdhfPbVaw0id5bsI3XwWrDFtarvZ7tKet2mztQm+D66JAD0n5p66VgAwOD8P8QBETWW5iHi+rW3HXea2jatGM2NdSDJJh5u1IqKvHl1gG6ujsLctdExv0lWzNfmA90KoEsrkHwWQKMmqV+7biQYTJGOVRWJgA44HW83naTmdrEVXSwCj54i2vcIAJ8tu/UXCJgPhRYAsMO1+0qfbwngxp/8awwE8MGpOv2D33bUFaH/e9uBIwCAVbePAwL60BGn4ZsAKOknIAHgyjNPrgCAzXMgPzxQSTwMdPMuoJHsKzkZbFNqapItLdrzxpeGSo6R5NwunqkpTRCkplKaSnGREytViNEREFdJKntc6ualZLsxDNOG01DJJ4GtuK2FQPQ07LWdZ6Zd/f1L/CcoTadvoqUcxs1/ylNKsZ5Y1xw01QvcKaSQYqaIECEILFuTzIX4x3m+KSgzS/x5bjfVlpooaQcBVM54IxfiS4v8GQUkcPbs5LO/uWlSaDhD/O66HIh7PqkPYAOAbfV4fvzo5oiIYm5vfzbiSw+4zeZhI4Ajj4qmSjo2Dk3WwhezEdu+DfiHGwGgo4t3VwtARJxbFryehbh/JJ772xSReP9UHaYXR8tWEQBuGDgGANCAtIfgjoYgTi0EtswBHsaDiDJ/CoAomr4dMOPYWVltC/AbY42O2QDmlUczKSGAmzptdNeq79Q71fkZ28Wb1wshNs1hpDSgAIB6d7ls73T61SRPdR7GW3Xha5Gvv/9pzOyXbB0PXx3MRAh3WETPdE06qA2ajbiv2o7hPqFcAPawiJYWM1R1UJrWbcS+eKjZgB7siBQ/iDQd9zujMWjygAq358pG3JuOMDQ+LKdVWN4Z5ccBgC538qJCWolCY5MAIAwildIXFtCIRgQLF39mPxQBEFInLg7LadaKb68pmj3d4wchEN1lAEmqkajp8jgwNRrHyZi9tJMAIDBKKQUqDSqlASql4N7cJ3MdUVSjSzFK6YiBQHqu+MoXsCCEBC2LhJaW0HBuALS0oO2yhXPWU5dP+aWMFAgSjm/acXXM52O1JEAqgICA0KC5wSTqrFR5FG/qkoKgCJ+ySzrpdHt+HJ0QxsTCsqwc3uAxn/LuNMIrmbjQdmwJqTVRnDDJI0ENUECbtIB229SANmULf7OE/HGGHIH0+UV2F0pAkPKKDyFM1KNSApJKSzg3pYWkUpKm/MiSk/xsWxNUpPXV4GX2gzEk4322BMKyLOfq3CxpngQsYWHZ7oGLceHTbckiy4rgOQfNBKxRZHIsVXvCmEhAov3XXVqAALWMkuvde5etodQQAOJ9KgS3BvRzSyZLAXEEQkY6nzl0ld3vUgLQqO7J5aGZJKHVgVsEANUxrxiI4qv7r3K+toNQ2b7gQKU1eRhdJLkZ3aSzX/ZnMredVyn7ydGsITM1mUWEEEB5TR+Asw81TgbAELs6AUADnTOdVKuDWL8dQIjJZ/Tta4CjYxqeQ4QzAglsn+mWbF33loU9JZ0LGMuGJk2OFA856Tp3mioP0ZGKVNQj2mknPL0bd7ODrofOfzXINhqSkBD2uI9yHoxX70sNBRtbdVeEFDrln1qlnaD70EjJUffZgZaTL3knnMDC7JZozkXCrTrerK1wn6XDwkUvh0NMwbobs0B6ebGn4CirhmND4cwanfpKEqmCK6QsXfx0BCUj0RNN3vP0FPgHoRKBBdBQLE+WbMIdT2VJd15o9eKYt+hAa7IvQiowAn1ckuYgaeP4p4m1/wcVF1y7Iq3shU+U7Tr/Km6tPJ1WTl/+O5n5SDHTl9QX8YxjN+8Q1lhw6ZPm8KrgP1oyST5+zZyMV+kCfFAefBAYidoqMg+lUogmLu8sDTFrhaaR90p6MrsoXUdFrq8cPk/9qDwnZZ4GU4jOyqd5VohznXB0eupKZiFm+4i6tab1PLnN/YlNOdZCXiMYGq5qDTnR+pEmH6s9RerMtrK348o+uS6wL9321cav5jm5zkHtsdb/XcnVsc6c73OnHHqqmkaoWZiimiRPL6rNqWGuf5AIoHbX4VmnBArLwAkAx6cnd1bmqc8j6EhTVU8B+tn0bvnyvKdt+RM568sKDnhtZT5/y2QhuoLp98oeLwhP/6zCzzz5dFQkB26evDM6YGf8jmHS7P2iIBraUNaY+38ET2vp42hoYcVmf4n8l7jzDl1y9crjOnuP5/z4AkB6qo89es3EA98K8OX8whg9Bhpjy/IundN/cBloijUPkVS+4SNE0nFoafHC9rSm7Wip6D1y3rAgtnw4RKgKk+ZUw2uvK1/uN1Pr3ocun/H7k0aIgDgVvKIx883+FzYlGxrqcx2n9Xbu2G7/TQogcL/lj+j5I01g8O2tnR99Y8LEG4txZQWA/qNIvndk4B/lM2el/zGrpR+sPyJFipVCS53w/BU8YSJGTZtQfX1xCMU89F+3/MVeY+S3GAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, the radius of circle O is 10.0, AB is the chord, OC perpendicular AB, and the foot of perpendicular is E. If CE = 4.0, then the length of AB is ()
16.0
744
[ "8", "12", "16", "20" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIgAAABdCAAAAABbInESAAALF0lEQVR4nK1abXBU5RV+3pswWKCTtiSFOoEU1AJiKUotnUFNlYzCIC0OzmCgUmSw1DJQWItKSYNfU7GgoKJSw0jwE0VRUELFptONVPlQwYiuGBqDG2oSKSQsMWR33/fpj/ux9+7ee3fvwvmRzd4973mfe85zzvspCLtQ4JyJArTctQudX88dDgUNzK5miQMzAzXNigNC5QOEgAjgEXp+AaCUphl4ggMRLgZ9xA+yMsxSy92gk07BKTJTCE0M6XHAMN0BgQKVKxQbkIZIYBjAC5URxbkjum04oEH3LYHcnZwCklyYT8okEyOBe66qTuHQ3SEACDD3BDbRA38pGxIcB98dCgAXfWq8uFKOngWg5chXDYAAiU0/OSaCkFVXFfUVADHMguHigdyQ6A2FaD09bnC/IGTVkyz55lWAQPPFAqlkceshRyDEowswMnA5E2j7RT8ArfdWeLkDuQbH8MimVWJIPtlbP1wAvGPSZCjh/eq5vKDeurWbDA8PXuCTD08EWrWTO5XShGefWi5DRyEAtN66E/gi8NDLd8oxCkDd5BQ7XE1oKgeiKLIaiLASCDEPUVRSZlPKrkFx9uPt6X5Z35fMqhJg6uIu6tC2z+PZ8kJkz5zCbArZcODLVcNunvC9gmzvpDT/+Z8ZmrOZmi0qOHXTlX3gDyUbXwUBUCAvriho2D//wBf9Hj/e/4bxYIGnJkU2JGfBEaU07avfTK6AKvnjHaeeXt3o53gAyr+yGdkD39zySMme+4pCJ3ajg5Qd+6fN3XDYO0sV6Z/CeQORklvOn95M+S9ESFK21JXPfaPFrzdfJAGzxuS9gvbO0sTmKwH0w7cAQCsbWnZg7bB5w4q9o+1Lk7w8ImV0+qCNusN3o8l6vOfRqaHmLq839y3B+QCRMra8aHnM+NKqh4Y6rLdXzHygp9urw3MGRJGkTG4cNPsry3YYHbaeknLLotueknHp+vY+LgnsESnfHj1hn+17BAcdv585UzN72StuPSo/JEGByM+nnL/FNEuS8t9oSVOJHVs59a/1mV0q+gQnYGhOhAbe1+Ps9jPsS1eTJw8uK6/Zl9apHlepzgGQ+CMDF3SkPZMHcCxTU7btCl221a3A5QEkvYXcfsHEjzMNf+rkiPW85blF5Q3HMqF4BCd3jzROvOBNtw6P4HP3BvLwQwtnHOqUio6X8uBrrkDaFwx8OOHa3V5kusn87cBdi5Y0xY2eTTDuSHIbfXsfuLhv0xL34aAEcfeSDWhj766MPfHQf6UCUlMe9y79xhprQvXqokv3XOil1elhWQBA359f0Liua8SUgdAsa3Qdc/yAGC3fX9L5zNXenhsquv2mgCUTyw6uOzruim8LU0kIuiHJxpH2OYNrlE9FlI3okO4F3WCFjO976tKH34vZG2XqZgESqyquipGklBnpbNhsxm4PjMr8kGd2rbqm5nCqErrg9gdSO/jGL82S6NGbPIxPPH6ya8VerJq+tSPujcSaxbtMJ99dhLVXmF/c9xwAdWTEP6/2pkhKr+v55tiMK/toeg5ksMQbSDS0d810uyV3JCr6w70/ywEI0Nv5+PGiX443zKQj8cqGrqU/Hts0HbaJt5em9KgjplgG+g5aeufJpx9qVAoAMzaSMjmiSK4rntOWPtpImTn+kPIMGjx47CLte6fesvGwlMwgnStZ60eX73ex4j7p8hj0UqJsMBVbdpTfsv1LKdORuACJXH+R2+hG98yR7Xg7d4+Q5KFN187b2yGlcpjLAPL1gqLVyczWxqzGBUgTPggCgyT3rJ0aaul0vlcaBeXqC3HkdhdeCgDQhMpcNRah1ZesLuwd/4eF/avW9/ba98cFASqgkADQMar/1BJ/IxkSWzN/kP5bgB0FikgLfjvXtmzXAIgCYTz4/pSeHVFrtHMx7FL3ChHzVPcUgRHXDnrp9x8CaBVC3E4jfWWKIzWl1x/yCa9Kp4k8gYagHCHJblk1ceZrZ1hd2s3EmBBNICVJSZVUpOx+pHhWi0xKkjQ+rP9kUkpKSZmU5m+yGXXBYXQ2PDNuTsPBOKsnkWS49LTlEUlS6YugUytKF7YpPdMND0hSKUpSJSSl1BNIkmQyhjcDpa8i5Y7qqhlbe3vIsL5eDZd2WwmiJwSVlByw4oOCS1Z0gVbgCUAIAhCacfZhbax2QlMKM4UQQkzOhR6tzfNrS0Y/+avC84D1i0cAwBewcURSmQ5QktFbS1f2WJVYpf5KygTJBK36hi0kWRkhw6Hsvml6ffXo6k+iSUkqJsboYa0MEaSSVARVUlUCJQhRUSqqT6eVrFdWaBSpKKVSkowbIHSORLE3Lpm4kfENiQ1pMUgTmZQb5lcvPmDN6KKIkIphRAhSJSUJUpLVdar3sidpcHN/xeiXpY5CJU2ykjIet7FVnsBmkuF1rM1CWhlreuPS257dbavQUdSRTIwOOUq8Imd2k9WLU23/MW7s391M2v9vxy6StRDWPomHvPtg1eXP/++ktHAosnoSGUWI9q0rCrSe6Ac2TUgRa+L7ry8efP+E9KLp2OQXaAPwVmTkrKF2HWcTJdsfjw0s21GSdtp29ywB1E0GrPlISVIp1q4jq0u7nS9SM2RKRoWzjX7yFLbFZXQS+TdPX8howxODljccSmtKktGI4RvH6FsJYJKlY5Ktd23xzWlbILbgyE48R9auI8mlHkA2379k/nun4zJz/A7rZyIzux1AohaINMLHVhQtaHM+txnEy+SMz0hWrnMB8U1Hw/QFq7ZL2zxCWYZaQ6yFACJOj4S9D2y+XlxS1WlHaQGRx7D1UYMsmWyVB7cvH/rkIX1TxXJHemIrOoFU+tE+Oq9o5Rl7F+bnaWx0K2OKpOxYeefie9sNVf/TIwuIigL+CRiZNtjOR9N8B16xAbFBOtFcM2rZix8a0VCuU28XIH4QTNlfUbY5BcRY2fbgMTsIc52Z3PHEgknhZjMFsx6m+a30XKT+TvnAJKNG6PVAxb6z7bo+zmWPkuqj587re9Fss5xYizOfWVwQj5Dk1pHl5qJbH2tiIiNZmvbdVfLYrhZrDp7D2WKgQwEKADfcsOGmsQ+OSvmkD4ulsHvk+K6jzQP2D7SOHL1WzU6xdLKGhqZb5x2pKJ99FMbBsojheIFmnsarrsRLN37W++s1ZQMcOHIIfNDQkIo8bVQ4ScoEalIbNXtfnnf5q5HOVMnKJSokU+uaALecBNDv7iN9LvlzF6CAM+iRRvOPVrz12rg9U35UJEyDuYUFgHVZLPezRf2uTPGaA21lDyYBbQCSBVBQ7UfvvbX/hdW/0/pafXteoHATFTg0lkSm/WC9THbi2W+k7NxaM232x/9xRCLnsNgB5A5E2T72V5S90INVcbljTtXibZKOYTEIjMAFLUPq70h8fM+1TzXNGfrTImdRC3iSe7ZAgPqKisLxy775ruOhAjQGWoRaBS33RjpmG/KpV49GkU2BQr8xGeiYX/Cs746eTDnDHFnyOGA/B/dH0jcISZHHmwW41ughtN00IwFFLR8PawKYJYQQOwNfdbIufKTGEiEC1TCnOZKVdWzItjzylk1AWeJPRnUJVjxsooFIHC43L/kFl1bxEflin/MBQPldRsvBI+EQWRmiCrZLqUtiTIgkr6lj4FrqFJCsBfRVeR5SW9qtSNa+d3YwrGVEbZ4USYwx5onOo6M83kkDWk+OxMwx9XkFtq1xuJ4wmiNZ8qkjQP31QHvj8LyAiLw69QDy1kQkp5SWB25KAIPGNANA686zRxKGgH0PIFcxaFCLOjIcvHmG5DMzc0gYQCjPlLPL/wHQ27ZoWD/vNwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, the edge length of the square ABCD is 3.0, and the equilateral triangle PCD and equilateral triangle QCD are made on both sides of CD with CD as one edge, then the length of PQ is ()
3\sqrt{3}
745
[ "\\frac{3\\sqrt{3}}{2}", "\\frac{2\\sqrt{3}}{3}", "3\\sqrt{3}", "6\\sqrt{3}" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAABmCAAAAAAGiFswAAAGj0lEQVR4nL1aQWgcVRj+3sxiQVJ76EpXiYQ2WxqIQiAeogg9uJVIM2nBaHpYoWpIDwUN0kRv66EHaSv2kEO3vRSaQAqVWIlQulvowYMllXqIVuhsSUmr1RRamwjBnX2fh9mZnZnMzCYzs/6wO2/+9+//vf+ff7557+0IAgAFUN7ZiZaKAgAQAPaJ1iJBAUAQmNB2xnAzKBQhBACGGJGSpCxeBSOKJEntDjke7kIxs3cXu7SoEZmJ7wROaBNhdua1QnEUXVGhAKDcJQDu+a051LmTIhsHCVffAiB2h9ooAFAhWYqFdTIHgHpoZlIA9E+/A+9GhqFAZRwA7p4shRtyHNCpAeNmLUWRM0WS1LRQD2jUawxBhdShNTGKCUKS9bSVmpgJmwNbLg0ObLmkXEAijMKCxf5Z6M9TTS02A7naFtKrJIRiyrthwxaMnDYfZ1vup4N7k4uKAPZNhxgkByUA5C/aqD4GiSZw5YWfgycoyZZF29CF4MJIFgqHpoP5IGGo3OoNs+ETWsJQ6qEZs+ETWpJlQYX4qf+hGsDeSUYlAPSmy0FXK+EEAsNTgSNJ9L4icO/lPwI4N/GoOl6+HNCTOBTyQRlMPIF41P5gu29v8lGl9wWElTwU8jP++uQTiNUXb+3yu7NaEFXbOxdazhaWHPJ/FrcCKvfPjf8LSh32LYwWlAVw8+0/fUJoRVR4Ne230GoJlD+9J55ACgTQe+JRCSCA3luTQIveXelqSQUCj15aSntXiC2KKp2bhneO0SIom94dCWtNBQKr62fvSUVlj7aetLahC16TBKA4KIRQxKBbu57eY0MRuKzpZGmPQwPH7D05KAEh0IlizrNtZs/eHaOKvyNTKrJYou1ISkmS89sNtxlIolqt1mJAFQHoDShLuq64zRQAUKHGSeScTs1b2QTe89B7KgZEXSqiEwNepQA+fMW9Y2JFYxg10JCgYUiAhmHAPpitmnVuGDSMmqkBgGv7gVFMrFsodnS76d2CUqFCKApkKiWJmppSarAOAGpqCrJ+rqKWUilTat333JsABrMQ3mWpd/ZOErIqKQ3KGmW1Wq3WpEHKKusHktKwvmWVsirtj70ZCN1bFpLLW5bXlQUgIMwTkUqlFGt03pT4cWWu7mjdfoVA2r05owDSJC61BkBQAhSmTlhdgFMdKq7RuGfvguCO31UBwEgBYA1IgTUIFdbBUBSn2gBS1scTiCdsN707HiJRd1Xt3z1oX+xwd33Q8YXTsMEnMQiDnP+8uw07Zt3KK1mzQMg6DEjWNk9NjaE9uZhPZ8fKxEL7pMvEyPzYOIlPtwun3kD/ZJ0D7/eMuYYyNsZ1UUUTY+5IR/vIpTXTswS5khtacxjMp6t2e9NQjbQtnjmo9h6/5dCDpPFR32OHuYPeo0b1w7Hu54bPL7uw644K2UpDVcjHgvprKr+t69h180Q6sGAiT2VuWn1c3LoSGWrhyz51YPKeBWDhSMsZJVnOzNrKvimr1RRKOr7XZkfa24/MrgX9NWQ7+qVR9JP9zl5/KK+3xUlN7Tu1EDashqOlnk/qreUty3VXQVDS3b4+1rUtP7XsY+gPxad20Q+cdvQ2uVbL54fbuo/Zt30IfzkdGSOvPSFJzvSFQ9n+bh3vVQ8Wl8IH4wdFFrI6Sa5s1UOhSJIrl0YyHaNzRkB3MyhOZeZJysOFJlD6ZD/2fnV7U3Rfv69sKWdmpUXvQVBXxrLp/Mxjh2ZDkPDaLrRPNugdJks65OG5obaez+Y34joAyiFLPWN1ereisscxX+jZMnRug1UQClV3uZIbWptPGw0oUztzOJM9OhcRxgtliTHS98Skdwvq19N7kTt92zWizYkMumsKuz/O21BzR7OZw5eexv7XO4B2pp5/doWk4Or73/Yc0HqDpkGbEVHw1//9zeszgCCm86ZdAuv8ACj8+0xBJLeR4E3E+rQoyUGJkDMQTCSqjV1Y78I0EnI40gEhhBCiDJIa0PxtiRiimWsvkORAiSXo0fxI824sAhrHA6DIsxw3l3Lf5xD5LTABCFSETn4tsr7pL+9H5Q5OACRL41JqASPamGCcJCf8L0IRQJEml9hbHFGlaDJS0deJ1HRzswYkNZ1F6NFZljhrtXykopElnaQCVNCJUVyLSE0CqJhXOqDkywNArhOAAlwbACpiV7DxBtDq4jfWuZzZQZhlj1jLORRJUverihIgrMlZGQAQ/gpXMymiRJaavJzleJrJGE/GEoCAu6WxvPgPg6r8oMKo+OoAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the square ABCD, E is a point on DC, F is a point on the extended line of BC, angle BEC = 70.0, and triangle BCE congruent triangle DCF. Connect EF, then the degree of angle EFD is ()
25.0
746
[ "10^\\circ", "15^\\circ", "20^\\circ", "25^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAABmCAAAAAActLu+AAAF/ElEQVR4nL2aT2gcVRzHv29ntRJjV0nXmMIGQT20ShJhKzZ/Skg9iARBowhbJNtKTS8VsoJQLzmJBwuCObhqaQ9tCNSKEa2BxuaymrS9pIKJXauXBDaIaXVrQt3s7H49zJ+dnZ3dfTs70x/szpv35/eZ3/u9eTPv/UYQ90IC94SCYAN1V1Lp00AWABDCA7Gn9++VbSprzXS/EL1n8d3CAkmSCwsXcKZXiINfyrVnfcnFgWgy51S0OdkNHK+voj4mCcQdESYqhpZTTWJi6EvVvRLORjHWBGYY8foMTUYQq1FaawgcE0/xjOQQwQU+JBIuhsAchmUtMaQPV6uUVMW0Y7VRCrmMJ5wLqnTaujjCiGx/lWQvXxJb8p12rqr1deUiZh1yHTEj2HRLITNOY1s4zNCdt5wNlxXRfd2eVembLdHdHAVsFZV5NrmKT9x3mCETWC7PsGM23TvfKpdteu0YL2whyRPlim1D4LH+C835xZT+2ytVfRNr98YWkgyOW07KMOdkHnLSgrlS2tppa525+z3qMgBY3735oJG23jedV72koGO2tXRSMqx9wssuI8nj3WYHmnlfe+oYXfuinij5RmQ6vOwyAMD1Z3X1pm8OD3tPQU/0fS1hWuM0VXsgulrDmoPjvlAQO2Sl+WWMoVi35tCYTxQMJ0ow/4zRVWvWnBzyjYI904A+C9gfdl7KXMi4PW/t8nNpKKh32js+jWZNYgndQcLTB4Bd1joJQWB7h7/LaUEEAJyJ+kpB5BsEAHx+1F/M4VMQ9Ns1wFonBX2dAjQRDADXQz5TgPUAkNrvN6X7xwBwZcBvzIHFAJA64DdmYF4QYqPNZ8xKbwCAW0paCBGXqfhIFjLbNs6SAMnwqETNHFxgloDfSCa6SPKGVGs3GABB8gayDWDcbUKqwNH4TgBYkmzRuDVvAjfJsPZ6PDgq1wEkCvl8Xp4yAZLMGX2WlWiiD4FiA5S4brxmTVhqvy0DkNhoANMX0hOJLjKHUalGy6EgEPm1DyxAKMViECxAEdopjAOMFAs9Lf9AhVKAOPnCo/gru1PK/8uPB4CBK4BQhIKAAIrBYAEoBIMoHaClgMJ9kcUCFBSDCouX/1ynHAWLQwHg+csAhCiACkhVBSiAgHmAllLA3WOzAQBQtJ/003B+P8ilUFElmadKFlVS+y+qxoHGPz7UsvM0f3KCDEg1XFRJFvIkqTXNF1lUzYOmcQPntXMXGAYBgbstAAIEAEWFUKBovtcPalAo6h8DqX5tIBRQUIyfVJ+tASAZTZIki7UuKIWbstdeIRMvEyST0bqU89hwTWFkhiB5F6Sar4X5oKk9A2PeRM1QAznWFGXVwMTGa9Z7saUZCmPjUsuons3fZe9DRzGXUW1YqV7r4dbmKD+EAH3t+dFQVZMlJ+HqsucczUdnVR9jokmKPsi0dMw5mJRDvWhWXRl+14JxNmcVF5ul6IoN9UMOY3rRg+2CWKwM42DOTDMTjE2tqT1uD3El680NMhI9YcMQmbIK415sff5c6fqZMr3DigcUmnGNKhvE0YgXFKcNYgubkagXlFmLRyzZq4bTgw1HPJ0kY4nQOYUiUPu5ICu4ZEmXlcTayf+Q9IRSPbBCto9sYMYTSt8e65l9I6UyxudWyhRbVmvpOwDeQK8XtszZ33xLReEs6X9A8r0nteMmRpqlHNS0DgLQQysmZno+bCQjoeYo6NYTg4vGqtHA5CZzXWa9V/Cve4gl9B0216gG5ghzo6WqZ93HcmdLgfz0KDmoLU51zBRQ9gqTwQl3lOOWGWYKMBba2oDevk2mrfu3HTwt1hq/V1bE9zSDkPgiy+nQndKAznWRnJ4sv65LjX8y0lvW17kukmFNK0gmgCwHUPHiN9bYHGqvPj1J5uwD2lEa+JzntYrPeQayZFjXX3tr6Fuqou9afZ/M7xNtnCrLSotUSIgOY86pe5lJ4O2mP7Wqv9E1xtz2DrHvs22nwq3JHtHaxq236iiR3VGf+vQnhJ557tVdRe0LuxX8/dW1X7IYOva6TPNGNu5XUumPQ+4+6vsfeij9PPFY2M8AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, it is known that the radius of circle O is 5.0 and the chord AB = 8.0, then the distance from the center O to AB is ()
3.0
747
[ "1mm", "2mm", "3mm", "4mm" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGIAAABnCAAAAADeA8hhAAAK5ElEQVR4nK2af3BU1RXHz93s3U2WhU1IIoFJiIkQQiJBsKmhBuIIQsA40JbihCpVEssAxR8RZFIdKopoQVPFVKVaDSNFBwVnUJCIjBBoVDrFiGBChUBZIRAwP9gk+/Pdb//Yfbtvd9/ue4GeyeS9d++553POve/dn8tA6gJGYOpZ36X2Wn295huTwrRjCouFUJOBcz/tuMLoPSKzwZlYODphWPmkVKvSL1JBDQLRdmD74eR+g/uW3IobLjo8Z1uuDDnjHeCzSqdMiVsuJiI89O7d+w7bR2RS9tSZthtCyc6Te5vb/5tw06IpPycicpvVTWmL1N4wy2Sd+06rUM1uemgMN83cG7O4FkIAF2pT+cTXWuMoDTRWctvyr68RAdfaDPPsb7rCoIgO5+wLxbzsh2tACGwv4UWbFMbj+LIuM7Xu7GARwnEvn7XZEd90SHvP/Txv5yAR38xJuusSoOV/SOoLh61uHwxiWxbfBgBOnQAA7fcZi07rRQg8Zs3dHnzQLZv41A91Iux/5BNaAcCj3zwAYMcE3tivC1HF5/UoHnXEIat0lvHX3DoQy/kKnZaj5XyJeV08hAAAVx3/1bUYD8ipm9MV71V0FAICa3jZdRCAnXmFoQ5HtaL2p/OO60LgVV54NR7ibIH1Q5XkwUh/Lb8TgVpXQyzjG6+TIIByXh9gRCM8WzPmXycBgGTPL2j230YjOseaorqZa5GN5ntiIZbx96/HspAvUgFvUke0ZywYuB5ECLWNl1xWRaw0xxogB81YzOsAoUQIADiVsmxQZuLJpcIxHik6isrh8eYBg5SNfDeiEMd4LaT/G6Jzwq8hwRA+q3rbsoQMqvOta5H0Xx4+YYiwd+GvM7MHZyX+fPVW5z8oAtFNlYMjqE2TFTL1xkMUUVFHcm7Wa/sQY+xxjSAoZe65UyysuV233at3pH4ys194C2u01Pby58PfqH+a/qaTsKYcAA5m9mvoeUaXw6iM6wsUadcQGFHTM636FPm0vVfC2qLJlqVdkhHRGzX5BKIzmoo0qzcM0d1yyyhtBBH5TswgYkSNCyxaqjn0kaKivN3dJl0Eungsh4io6T3t6pqUo4yCX7U9qA+RUXSGiHwravI1VS0Ooayo472J+hDGeZuIfuQzXtKhO32nEnFUH4CI1qYwlvW9HgLN7lAiLljS9DK2ARivT5UrEd7sIq0eYfDSFdYNGoZZNLo1hUCnN0MlJcKkq1BAien0hoW9USafrjLk3ner1kChELMS4dDX2qefvvs7U6HeGnV6FQgYv7uiXaRl3ZiXbqxJ7vcGCmnp25IVCDa5q1WriPutqc9kPbVrZRJ4oFBM1YAld7+yMy8lZ8wi/o2d3c8f4U9UlBD1jNBwPgg/6VYiRri74hY4/cYrtOh3U4nI6RSaiIA0jlKOep3mJXEGsMv1v+C5gf0Hx/CROodHFCwJG1hLblObQfrTPi7juU9clpfhJRk6CWdSVoYNrHnn1JqCEVHXc6/S0qX5RORv5tEXdNZTs3scAZCkwBzzYeNJ1Ymw47VJPP8DZUpxtqb/fkvreKeBiIJzwjL2g1oYr097pGf1/vmhBNDtXNN/RkTU9zFPIADBibIjtyrMBQDwHF7ILY/+O8LF9emaUQAAutIWBCc5gsggLLc1dtvIQEQAEogEkXPV3/GzmvkQRAa/FgEG4bUKPbNrcXignIJRSACkjaa9kKTAgyQkPDeRCt7tACT5D5KQJAkzxulbI6wqcUKJkHDcslgKIoDeap6+4VKoKoN6A4UZkoS4qyQBAJ3ZCxBCQIIEzMrsADx+WwN1Rbz6Ysi4AiGqCnRF8bJlK0AB24HLZnpFrpHPJvPM/QrjkjKKlVbJp2VfAHeN96/15K9CEhAoK5YEAKn5oST+lMP/xfhbBgh8QZIkYUahS9IO4wDfF76clACIDbZmB9DzZjqfeySOe/eM17QPgWXD/wMlwh/4pdTfAi+O5Lm7Ea+252RrI7DDWgUFQpIkQEDC+/z+PD765fOxXhcBAP0V6ZL2nl6xuVWJCEpXsYlP11qZYOnoWDkh8m7+MABELoqJUo64yXnAG/ejBdliDqhMHlEvLx9fS0TKFetCxhj7lIjI/K95q4/HQzAyumIP8n66c+P5xzMCHgWlcg+aWCuAsUMmmPkDJ2NXk8CzmkPSkfTqwF0I4Z3cDzu1AXjHuvqL+Zy/fjl2da/SGlg7kork2xDiYA1Q6V/lvmX+88DX9/Lxm7qiy/pl6bD4b5Rn4Ygd0YgGIpJ3cSqsJyA15icVbvPIfodLTYzxQlZ8NPPNYFoIUdmKBpnhuCXrFND5pxRefU7V1NqceDGg1qbY0Q4i7OWAt6hefswuOAbg/N08/8WriJbazHCvFeICPjIvUiQEEQ31gJ32yI9N5pHfAsBnE3nB2uBmYdCijFATz1NpDyrPlIKIhW3wFmX2QQDwCIg3J2cfBYBTdaXmO486Ihx+OjvKspBjqObz+pRpAcRBIiKao8xxFJvX+3vCv6TyRRHdbu3IWH2kcwX/jTyUCEDEPehpr+LP++9P3MN5dU8oB1jFjyl9998JAF+W8toIerzjquNr+LLAl9FYwPNeV7xcz01QL7LLbFKehMbclg/JniE8UMJel2YseTfo35IMKRRDMJKji03TehAp8RGu03cZS97x33uezeMl2wIWq1Ij20KC41luelXFSAQi6j0X2/NsVd/7kxsf5LyiBQCw9KYo7fdH85kdwU05RZb2YXTPI9xadcgJF4AD1ZyvckIStbkepRXPyQ35vHS3uoEgIk6v1r6QmyxLvgAAHKo0Z9QB6woVm4inP188nJftV7OkekQiwrUCdzvnGHna8r1OAFvH89EbyrJlhZ8+WJTDTU/2+JXVHFX+MKDPZ5QSPSZvv425EvuTPQPJLgYiYrDQQMuOj89SWuL0cSPHLOjgPtZcaG7dZfqqpbuH8u54LG2ox53AhY/DQ0bm9Q4lR6LVnkJWUv72oHfKFbdzqMvLUt0ugzutx8cNbnkV4SVzkugTiS6y9VKW3SCSzD1ERq/FSUYhrBmnbIlOJxkkJoEoIcHAr3KD2wqY9k1UIi6UJl7MMvYkdw94Rjo4Q6q5M/lyIC+tz2tOcHtEUqbtexcSzG7TENOYb7tsVxPNQhJel3UI73dKRl9i981zDZ+0Db9j19hZX/0wrGjyA4oowMhtJtclQcNtjqFEgrVd9d0u491gZiIwr5EJA5FybeElHv+XJkTAQSr3t8sBqu+M8XIJlVsRQyFSiyDQ5N809hbtCbyJIm5pRb7Qc9BrIEb2SUREtGhUubyxERZ38CHYbOxQWzCLheWoiYGIWqzniGhLZkVkjSK8eDDbtwLhWuEFm9hsAtkZm01EBAORb9zYM0Q/9iXlRvKZ/x/CYyBan50dqaVUmOa90MYoy/7op0REzEDUfHvuafI99vtPy2JEypSWQLRl4vlIFVB4KPuJqH2J/95A1JZPjNZv+XKqJdybyKvM+7Hv1hssEfksTK9569sDoLZ8GeFLoJz2LcWW/TMiAo+8ygY3LacCZQNE67VNqDjIfAkkI5pLKbfOMdv3SZlmDCAi2rKRZSl6hSg9kDeBpn9OzYFTBBgWluW3Uc0ftvCj4wb8voDUrrKc74M4mIvYeowujaJpF9sOlMnPsT7iGGIvB9BQH1fz3X6goX6zbJH02vbLGqJWVBLFPafaDMBOwTGQBkXQIw1E9QDuC64X/wejF1EWBbz2zQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, MN is tangent to circle O at point A, angle AOB = 60.0, then angle BAM is equal to ()
30.0
748
[ "120^\\circ", "90^\\circ", "60^\\circ", "30^\\circ" ]
D