images
listlengths 1
1
| problem
stringlengths 13
714
| answer
stringlengths 1
169
| id
stringlengths 1
4
| choices
listlengths 4
4
| ground_truth
stringclasses 4
values |
|---|---|---|---|---|---|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH8AAABdCAAAAACpsubyAAAOu0lEQVR4nL2ae5DU1ZXHT3fT08Mwwg4PEReZQkMWwwI+ltJiqVAaH/gq2WztUqCxVHApJbEQQ3apUlx1g26MeahVxkeplGJYTXDNBlZZSJZRtyLWDm6MzKJxgsAsL6dt5jf9+93f7XvuZ//4dTMPpmeGJuX5p/vXfX/ne+8555577vfeFFKjkBIRkbcmTK9Vg4hIuuY3E3j3zaQz0vvjC8FPZF3zlJ7OVD6+OPz1szsqX0vHalFwavgHui88vaH8PSt84fZ/bIV85fhDJvUF25/1j6TO6nnM+Rp0nAp+RzfsOLvy1J2tZSqPqB3+wG2vifxBpJwKcpIRkVJ3VxC15Xw88qw/HTVe1GfFhyMzpEREM1LS+j8W/n0PyN7Jf/dTaX80cXtWutv2/GbXvnwoqcQS2ZlnXvjVmePSjeIlpT6biSWXlVjqeoVJqub8JyIm67PHH9751x2t0jjxnCkT6i+LvR5t/8x/+OFBaZqzYO5fZERKaSnVu3R/f58Svkh3o3TrGJM5+tSOHTLv0qkzzhmTEQlTubSIiJFjra+/sS99/V9dN0ZEfNqniEeK790JTkGsjQKguOcKkUsebKUbwFgAtaoWW3QUt69rHnH2Q/sxYZcFZwF8RUXN+IkGH3r7zg0it28DIjCRxWPBxqAWIgN6ZNNl0vxUCBhw3b3VnNL4fRCxd+U4keXWYUNQBVxRk7/VKAoUscHbC+XCjXlMAYI/Gr4h+JcpdVdu/LML2rEWLFAqkRg5MTRqFSwE6+fKXYcxYKDHAcPH9wCKtyUooFij0ZPzpf4R2Cj3e43Qqm86NPB7b5eLWwLUg6JoEX+S4y+W1AFFl4xh+6IGua7VWorzm9oBV+09m4eCpatlUmqzh8A61KrCydrfWShasBbde8UYqbs3j2LYOmK1per4wYIGoJ9cIss0CRObxMZJ2h8L5AtwcEXzWDlnowJWC6xobNdB8NVY0NDCqtyNgDWgmJPCL4NHIdj83ZmcZBu3O/LJ4FoavtsnrPpKBIEDDCVelcUWzYM5yfH39KDjxUZZ+PIF41qxEASAMbeP3FXd/wCYIlDU6PGGpUe8Qniy+B6LdsErM2X21uhq2agFikcgxMKu3C3lCTdQrwsBoPiICG4cc98xIMKdHD4Qwo5rxk19uptvyZOAA+OIYvKskver+x8IDRjy0M0dsjkyDCv+HDgFnHpQp3uuz9WtCGzpR7KSYk8zdRqOvsVoBEo85DAumfTftjxdB8VXZxXQECwYCrc0Ndx6BMtuWXg0SQLlgLPwcMPPcPiIqm44Lrsb5xUjsEPlHwe2aNU6C8rnz54ltx62HCSY17iTuCfeHBaihnkRECW5aXB5Sb5dzsOD4lsqSUUJHmuWq34NnwFPyBt0ae92Ti2Pyi8I8URDwltWZV5L1A/ufxsBNqTL/Po8uewVQwGU90Z/HbA9+UZxYOLZcztgGPBA+5i/jA4zJL5HnYLZvzR15sZCaMEGgbtJWq2t4B9Pi6E+J+vBmiHyAGDoelqeNUOuP8lQwt0rM3LfQbWKx4TslNsKEPSBUSDo/Oq8tnJeHzgP9jS3NH+ZAoPje7ABwXdzsrzNYx0UDJiVuX0QQrH3fDcGeE2esyTzcvAOOI5skp/QF1+LzuFCIhSn4KxadT+fIgvfL4CFKCSC/SMXVu3wjOZAFR1i9BiMK845Gx1w/BavUAg86LZ5Mr/FdiW1HKhDHxq9qZre0lZZy3DmH1gertvuMP3wXWSxWFwIls2XyZwNRwGvkQWlCw6de1FVpU6vb9rdt74dWAyG9uxysNKvqTcAVmPDrqVjxq4NsEmthTqLwW/Lrqui1EPwft0dTgddBwA0wiqXzejE9hq/r3TFONR9snJs47I9KBSTGhL1xitrGn83iIG7ljR+EgzlftR6VF/KvkGxn/0LSugVE7w8Sa77Zbm1Ju8kJctFs1ypml5P9G5uyVDoJMWYOSIPgMBiEZFVx/2gaPTOlTJ7Cyhd+XI8OaseiPeMXjmI3gCWyUdD4zsDuJlXJPG/dgulWU+U/yo6dl9eN3W9EuCKEBps2eAOeE1eG0RviN31pUWDQntA1UcGc1vDoUiAJUVYuwqALvhg2ejcP3dEyfLQJzo9EWsa2nsv/H1FFXUP5XZiwdjBJoFFiTdkNpEW2V9oEPk44TFOO/jUJc/euPc7Z9aLeJG+jFpK6vzRM3LVOYN0IOnob898pORFTFZS1QhB51OiUtc8IhCBF56AtZO78cBz58t1rRAWHNgBCong0isLA9fZHiBADaulhSjZhVZxgVUwjgO5e6zgF4vIguSf1xvlrgLdgEbuxHVM6ZhyxyDljYUIt3fcFUSe/CBpQMEYTPONYVo6Pgf+XUREPrvm3nEbN+soEUmnMpLpb7eUmIPjM6WqbIQXn5LOKd/e+qv6VGlkWqoSsoiMyPrszM9HpKW9h8Ebn/nOloYbVucljko58Xria9aNrMKYISI5rzk53d785fs/l2y9SEsqnbp7oKZOfCat6aa9sbC4rSdOXRft35AZ+wC1AxQy2ibrtCdRniAmWSQelxWbgbWTi5RmrerfyKM2qWeXNOZFRNrKf0SgqvxgXNPzjiSifF8k+1HmwUHc6vAGi2kZJ3Nh7QKAHZO7B2pqlJClI+M0UCHw60VE03LrW83fXPapximJJFXq7W2frVcrUjUAMpJCs6XcHzozZ0jLAz9Mfj2RlFWRdFrqpJTqSouItbbyezoj0njGzrtfuOp/c0dlpHTXZSXq9WIsOZHsCQorEkh9SWL/0/H/+GP5yarpImWCsp+kyrxrdkKdAMd3LAY0mXRbpsnDEAU9ZAOAN7sb1g1aXSqaZ01qPZRmbQFg8Qn+TzwFqovm2T74tkzXOMveW+Vr7bhI6cMr7Jv8D776Pt9ineF9WQTB/iSsdqTaBmjoLVjc+Qup4Mdx7OMoRqNIbZHuKPr+hKafxfGhMl8Vx7GH+PCcJUo3cTzgLk8deL146h7yvjRrM1CaNfBy6XARYeMyc3z8MRCrMxA7YqzGv5gx4a6jRBb1xBBDF+avLzZxGFfrgHWOFfIqkIT/fhnQ+orFGT7JPtwHPwaN4ziGKLLEemjJyAW7Y0uIjz1AN3b15EPEYDgR36OEZqfcHCYc6OJkag+QKxyRx/Nm7hXt8X8yothZhWPguvDxk6MnbkB9BSzGPiJ7wrjS2/4dKBIzt/lDnPOa7AOqJaoAcM9mtiIV4Ar+cd0xxLTMlzs6iIgNMUSYnfKMjfH98JMNOkb5nrxYBbK3GIpgljZ1GoG4rKk8xqQzcQw+iuOOVdK8jcjG3QBxuH/Cou448X+vDigaQYTfJmvyQ27/UFBsdN6V2nv/MVBAFS3bvyrPtOPVWmewXDnpxPKnTOk57bqg+dNhbEAsoLpbHsT14A8AbwDDb++UNfusAgGW76XePkG/KXeCFdKiA9QNA3XB8JBsJ6rgx/FAww+UIES/3zBtBzZJO+823nlC/lEcGsBv5Bbrhtx9AAZ1zJgd9Nl/nCjlbae6d8+XeyKUyPng0q8MML4Ihf3nnv87JTHv4HuQAGiVe+kZfxWJChBB9D83ZW7qgG4Hz/zJv/Vv5YiAcI3scOAG978nyZNm+cRWq8Hg+BEUlSIGHpMp/6Fg2J+7pn8zxWJokZsNdjj8ixJyaPylMGz+UbHvLJL78oplrbxlUSj0MnIXFKdNC41LGg+pzfB4avuw8Q1YaH2g4fK3leLeMQstBdvbzF1Yc+eYTSaJ0SHwPZaA5hlD8i+9JFbArJ8iP7ZwT93PQQ/7ng4E8KYsx7lelNQg4iiuGbMhwPth4psQAoP+fkZmdZ5PGq93BY4zbR66ODL/nINKUkAOKb7QLtfo0PxrRaxHLZQ4Et0v095zL8lzTin06h93ycZyUTMM/JCbR2yGcFj4vkxBAwRaerxJng+uOutg31m2IXOjHTruKqL/Kauhi2HhA4QRBEUCQs/v52aWbs1dcagX06n7z56xd5jEE8DHk2dZMMPl/72CGrylgMWYNTL23NQD2gNXvEeex+B7DDB4CC6U/0rQazx/3Hy+SOZHRSxJlbFZVrpwkMTjTQgkE9NZlst6QpIFpQZ8D+3LJ0pDS9EW9DCYjrPnvFcuAQZuXgJQawnoJvz7hnv3w3D496oSsaFJRu9UFI6yXDZC5LBV7O4tldWTgBcabi14lJOYf/0lj/MfzZwgLYS2kx2yylGwyiBuNxGUUDU8WjcPbFhZQ2s8f+7CRrfXn/4M0NF8wREI+p1r9xXnwQUGiptkTlTEODyYkz3/rYgGBJ7gl+Ob1h1mkbQkZwED43uA5MgW674hqwq2XKwN4/yjGj5dOI9tnZu5do2sjZLtBNXtH0Mejrx1cePyAnmsVljNWvHJg4PO+0XOyVPeElZnhkIIyP9AvvRynBxQqS/3uDb/W7zFo8r2i0+7dhfGYctldaWFSy5bOMCiFt6eK4tacaZvmq4NX/GasI1x57qxjcs+KtdAycmLtw5QCCM8XRERtFwt015Prkj0qd9P6f4FQOjbbsqNXrwTFwJaUnXGWq1w5gUDcbR9kTSs/SBAO4N+B2Q14Vso09ZbAIrvfL1h0sIXD1st8weAdagJAGzLP52Xkr/ZfMzS2fP2KeEnK8/iLeyQNiCCbQsaM1MXPt1SAC2Vjrqyk83R3U9f3iiTvvVRpSyw9F0na7r/FOeElLvorYYDZ7VNl/xYEZEDr7/6QX7k5Gmzzh2fmj4xd/jTzmPdu/Z+fMCecfWCq7K5UmmEa5BYM9m+V+5qwvdpEWl5/VFZMulREZFSODoVjEr/3/utb7ZGo0px3YhRI8JjkmL2nOl/ft5E8ZoVEVMvPi0S1fXmVWu//7X+ZpG2CnVXciOllC1lJTrWua9j1IH4jLGhP21efUNGxIukpbtRPm+SUiZdGpEqZenh5Grxv/fA4jZekDaOZ7LapKb7jyBy4PPpcsOsX4lIOn0Kd+hqwk+lRbZfK3Lot1NFRIKTv3Z6avhWRN78mrhrJs8XETmtlovPFanNbTtE5PipRU1SXir/H9UxXIQuzW9YAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the tangents PA and PB of a circle drawn from a point P outside circle O, the tangent points are A and B respectively, if angle APB = 70.0, then the degree of the minor arc AB sandwiched by these two tangents is ()
|
110.0
|
749
|
[
"110^\\circ",
"70^\\circ",
"55^\\circ",
"35^\\circ"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAOsAAACeCAAAAAD2jqJ7AAAUMUlEQVR4nOVdf3BUVZb+rsGBLaJBp6m0RUujNENrgjYTXDJDnAQNRbsGCEucaAllqImELawC11QJJVuBXSxjFe7gTqKhcHfiijVxwYG1QDoLSDKEIQiYdgiTIIk0m6gdE4eEhDEhr9/ZP/rXe93vvX4/AWu/qqS737vv3Pvde+595/46lxF0gFj4LwG93ae/OwlioRYAyAfAcu0ed6bwMeGnpBDrwHRxFSKc3D/+z/lgS4bHbV8IYsgHgGYA7JNgx+dD+fY5hfMBECMGMcEbSdYoV2KA/+iRY9kLs2fkTpQOM9Z66fOmroLCwixjcRmF4XL9cM/RzEX5CzNShRtoPnZ0MP+pFeKCvMV1WJi8M+98mPv0YptyoDj6fLv9K8rnaY3RLOgo1yiPy7vrM54vzlQom3hbFAvTu79ubPWzTs2RmgLSifZSx+aL4ku84L8COirtZV16ozUC7Vx54nk6Veys44h44on48H8NIkZ3TCtt0xyxYegq16ZCV73uGHkiIq7OWdSqW4RO6OAa8LobTIi53lX8TfyXFrXQi9u01u/Qq7nejlIYNkHwXGeu543Yrxvx7tHK9ai7078epqQt7eUzLdknjMtRD01a0F/qbjJVrXzO8kFTBSpBU7k2z5nbnm+C+oYzGQAWX5iWfcoceWqiVI/NDiuaziZ7tQVSpaDebup9+o6GmNVrzI4VPz2wfNLvJMxM86FKh4mAg3OXHIob+MaaJvHTtuO5DzQjotQmVRBpqCl8nqja0WKhdh2x1VkoPQqVOvziYZ8DsK4P1u19dos1kgVQxTVU1uXLAKzsbvYtzq2zSnYUaurriHfkWLiqWmfdZLZ0Lx+zTHoYKrgOFczcN8niVgNI96UvHrE2itRcRx4vqgMst1gp7b25RdaWbMr6GvLOrokmxzK6EcmrRvZZFQOgguvTY5bGL0LI63rbQvGpdPjFYIOFsScgbd+ZLRaKn6B8+3Vfq8ygryVIPzD/ngrrxCtaGj5Hzw2wZ+LgqctmnX2myLXHbqVhKA2fo98q0QptE/EFRS/HftywAfqNnx+ySLJSO7zJb1Ws8iAWyl/ycupw+oTLa9O9lmmTNCJjib32FmuGFeXKlVifZ+8Ci/JXCcTQWN5mSd89iWusYpY+9IoVEarBpit1CYkxBbJcG1/6k+axY7MwNvuDv7WgLUziE4lj7IWdt1net5HDxNq1vAVi5crutbwFuDGj8VJ4ckYNCGbndXLbRAxAd54/M/7rRoPY5XntmanDaYRMO/xEsYVmqRq83mZ+n0Nah5uD5abHpA0bPvObLlO6XAs2FJsek0a8u9/0frNkuTb3FZsdj2asPOM3W6Qk1+0bzY5GO9Iq30gdSBukdNj/VGea2fFox5iraaa5EiXKlbZuvgWoYmLlNpMlSpRrp7f7VuCKMdcf7zVVoES5vl92S1DFxJL/MlegRLnOaJ5+s2xDMfyr20yVl1yuzfdMN77Q1hR4vvebKi+Z6+4ydtNsfiEIWP2+qRKTinDM0XFDJvTV4HJeIKHpMNQVSSrX/Xm3DFVMn3k0oWtnSOGSuDasNCLOXLDV74HBtG60WIeJhe7+erLMzoWbgD7PNyZKE5crw5kHJ5uZlQaROaUTwDLGGGMLDUtL1OGmAsMizUR+M4D/XtpG5PsJAGOjMtJcTXi/mvOKXngMwPh1z/ibjz0IQE7fSOJbFMsYYyw8yiIeGh9OHzZxoJ03PHwfnMLx5Kum2j2a4hX9emkPXZ/9GiWtvTyRnW5w/ZjwQeOVPtN+hqF7I1vn0vKUON5LXty+5BKEOkwAoaUgElJ3MpnsD60gAPjFcaCxjf5egWvSaL74S+Av6cAX90PIlQEM7R4jqRPG18gYW2NIBgOAn57H5aseLEhPES5KkAQZHP7ysReoPLkOSW1T12xDyYvHX7lqmMb+YHzg1d2Fg17gH/FCiggTPseam9/f8uoQgMaNjJ39Nh2i9RIEFurQVC/kUXn2W+BHb656Q6E8VGHmOTRuBbDs52pCn+Cu+NHdg7MjyEfrHfszgMDVmE4LuDIg4DCatjAa3zCr5zltiOEjANgqG+T8APsEA+24EERO+t/MR/4sZNkQWjey3wHgwk9iAcXrYDpnmZPCt9Z4AKDbkBBiAFjOmwuSrwKXAzhzdawVX3XBNQ0/v/2+pzBDuHNtYLm9KZ0Y8FY8k8RcL5pSXSl0YRUAoHF5SjWR3gsruOrujnMdOI/Ob/DpX0fOwj4b2bZJ/0y2xH2m4UfPFz+7BWAI3IeP2h6OSEso1znq2CiD9V5wAUDjRyJNluxOCK+xWKdD8Nqb+Xkzgh04349mNvmnbMYMrLlrgsKEPwOAg+U1KwAAM4QvJDHXoFcVGSUQA6bN7vIA4+vDmixKhSIEnY5ToyOncfkSzo7g07S7HkaxA7kT1W7+fr3mkCchFDFxO8xw7Y6U6VGT3tuLaksQuG/NTqk0EYteTLxHf/6OWsaH2tDdC8+dP1qA3DJkPL5wr1h44rckUWPlXW228DVx+DhXAjBiTjOM7csY0OZJThMiNosgvb1dzH8ldBx9nXBNwyOT7VvZtPiA/5bCq3EuEoUZuSS40ffknKaJCdci8YksrOwPrNtSLkrokB8Xe3Hq+7FW2LLgtuPRCRkeqaec/7rjD5oszbPFletlbol12JxyJQZgZHJCEhlCLRg4h84gWkITc3HvTFTcTfnKoo7ef/81TVQ/2FC/WC5NUa6NmR4GDE6BUrWX3lcv/ozWkqJXF4R/nbk2ehJffwH/EPLS7sihJ2YgR3WW7iq7+y9qwwLApr1HH5S8wRDT4fE5DR4AE8Z0Tm8k1qd3N327etq10whcRpaN5WNqNsQuNdSNZw25L44+0K86FSOrRvYqOESIlOvm6S4ACKWiKpdEBgB9nWjvRxMGzuP2cRxcM2UrMmdL8FI1nkUMQMOy9NC4UrwiXH6y4E0lAhMAEHvLcxAAkBZKU5ablHK69hkFLuHs8FgrMjyYNQ2bJk2eh9lfMOcWiUZSPRgA7KrF+O3KIuLJOVFStVZR5AQALDD8d1PTASB9eEoinyTmDACaMXAO3T1oHUvLg93NymzsF8JAK37j2i5MoXYPGsQA/7X5uDZZOVxM1Dv/lGr95ARiwPaaQLg3MOXqFLEA0Vf/EHccwU6cH0DupMnzkD8LHpnqcXz/4/IUVBU0A/BuOXDlLhWBgdD6ppaZUM7GCQx4q7YW4SGE9OGkAN29aP3+2ml81QV3Jh5Ne+AZzHTEky39rTP4mDjSmKGkQZ+JbzgHXFPVZg89PaE1HSCmJH8CEBgmNPoBAHdEdj71daLzG5zgBv1wzMTcjClbEetQxJbhCgywGLHI587nJePUVnHZ3lwbMKLGbO1cUvJa6ggmILD6WKyn+f1bhz6/EmpBhgf3ObEhfdJ8qQRL2n1CjL3XqSKBKVFfAWBkMlJW8May7c+qEfgS0EZLgTVERMsqi5BVxxkd1a1/2qgEIqIeJ0dE9WUpA75pP61KIIiI48Yjw8cVNRTc7s6qM7L4nSfKNcVZQfVGIqJtlUpx8USjz+Wo3FhzG4C0mKX4wEVkvvTn+jbXM/t1ax7D+cEUVq46vP0cAHRly90PD48OFI6ecKgTGB0zDVeIWecBsHl13xX9+z0vduod/X/blIWbzfe4AeCc7MgmA8D8c4saVO8MIyLiiOc4jsa5L5zEcUREHHd5u8tTF+SidZfjuPh/4jiSrdT8sN2U/R9l9TxPRBmKwvba96qXCCKicZ4oTCXtGhEX+UGfVthKD4Q5jQsuc5wy2V0r1Ucvj0H7CBFRMEMhDL/N2a5BJHiKciCOKOuzcY6LXxjd7b2/siMSQhiOI3mu803ZmFZXRkTEN+XJBxkuydOkQbdF31xpIYAw64sJaYKuwsRnDx2zLZm3c0hDPfMPmbKtp74cAFinC3LNRm9BepOmdSy3AaHYD4bsPwGcSPa0ly/WnnGuPoiQ0oSuAHXKnQ11oM5IjrVlQ8ocIuDUI6v/Q2Nvmyja/nBE5MvlxomijVC0LeJHd3vvr+yK/A43Y7HHEhXLZorjnsrqsIczd2vE05kIPFF9pk+rTMG8OkdEwxPl5tV7trly3hlKLbAutZ2jApy9h4gnCqbLNAuVLu3u6eJcw0K9Pvl5/5ayjJUpMzPHFF9A+4rCnw2lUnf5Qa93MLm0UyFqS4QitbagiUUrBMRfgAW/7SvcPn2T4ozUmdH5ZMK6kHd/Ff5sWkiRGX8hvlww81CGDt+OCdxbc1NkTmCbM3eXfJUsr9GY2ZLosUdU190hcbfJps+LXyJXLkOyworUpaXMtvKIdJBBuyktU/WG8Oc3dglF/Y3eneVJe32L1Rhdw/X5js1SjUNdub5kiMDHirN+peBiGFxFll5/AUlcf1csEi2dFiIKVDnzdo0Iw/JE5DGlZYpVpPykprA/r0T3CqwkrqPq349NZXeWiXW51aM3HSKUhT1X8T2O+BsnnKHtro36xSbvVy/T4CJruD7PuTmg71l5XI1md/WLgqs8ER2w7RX80opkrs0K1nYieKLAZmdefUStBm2mrPCrXxWhktUmvlHtUDfYIgMJPwTOQPI1RRxZOXV1E/FENRVGkhJDXmQIp01cI0ZX5gRVO/6VggTXjVUaZfA0vCvPWRWgLEPZHkWHk8JkNogcJwZzVo8aEyzBtcOpZyCxa7NjrtMEFeZjeT0qckZz2mHYZaSUL41igVmiRVkKc21lLZqfEoAn4mncGaG4o0wgqsF2QJ9MAaS4trl0jRAP2ocHd+U6twWkqKpnf8Ab/hx1xIwVnja6zhl3JSK1//Vh92495nv9svQ7y08eHclb9J8JftNIy/TGO6vDn3UFsRUi15a3nMnWNbOZkA4JNLn1ZJu7LfLFtzKjPMFkVV8o/bZwC8Q5/NFLgawKzgwHMdK+bwp+r11SU9Sw44kGd+W4tukzW3dsCGdMfXFU3Al7rO9kjHEyV56Imjzaa2xpPRFfCxRcX09E1F3pKHxPx0sioh2jrrbIhV226IyJ0bKV8Wnk1Wzs9dtH6RLWEF1C9OVw4Je257X0BXiKW9TVkQEJbl1Wt+C2IchwvWgPahS0fR1dn72GiOil+J6Lobp5rmpNulwR1teALRz/kNd7RWNC5CHnq6oqPESmPi9ntVPt1GEioto24fWOSrt3N6dW0qh9kIh4Kt7B80TU4VKapdMKOa6jLtWdf56I6EgeXZ8tY9kc+KWtXKX1WB9W3QMejicin13/kQkSSOIazX9flqbmqXQ3XYLshqH+Oo9rew+lKl2eCnxERKPOViKiX9vM9U8u72+tdJsGMf22USWuRNSxwV60OyR/PzzYETbFN1YQ0WiZ2jlktZDiGs78oJYhrOoNFNXhSzKMedpXmrH2tGLRbq4iirhI7M8ruao+flWQ56rJK+OMDiKqxR4iX4FCsG/rstzbg4I4xNFyjgBFPFB+5qhSHblaKPm93LhYrRRfPhER70NkjYkCOl6wFzXINAWN+UTE5b2ucQ5ZLZS4cnlqu4wlCgevxEswum1yb4ltbZtU0NIGInrZS7TNIXnfIOS58kQ99uOqhATtGo3B/pos9w6RtcJT2PQin6N/uCTXEi+UpvipVVyXI4P2dbbiBG3YUUHUZWvpySkzONgiA2WufLU79Wgxzzn1HV/VUGKrEK538LRS0FnXOnWHLmmpkerchg35qfPYV6g39mCN210T1eU2Dw3nVNXbfVadkqTANRxhabF8iAgSdVET2tf+uCTc5lbs4ArXVLq0rGzRBrV+4BVWP/Y+8pUxb6AfNLSU/kPWmKPjxSshbu+dJgy2SCP1fO1wwdIqxQBV11/TEbEo8/oa6tLyvp55cnih4oJ9o0hd9IM5isP5oXu1zhNIoq3iR1N/XMcTWXemmZp5+JHl6Qpr/g7WmOJ9emR5eskMix0eq8kQbuWj4VePlBVbpN+a44miRxb2PxRWnqUAFPtLBqDuvCt+Q5Zc7zPg0DVwnoAuV1Xk29K95EObCSKTofZsr2pHi3Q12vyKCamInIvEE13PGqZLN5krHbBJdgTGIzOY2tsTweTi5tiwKPnWEC1N1VfSCfVntvXkeSXsxX2q+32y6M8r7I/lVS1gUalqOYvP0TQv+1RSq71zLQw6j2me4z1si833NPqpdq5fr7xU0akFT9Rkfz2hITLWMvFEo1WiA/4uFZD8eKRRqC9XBuSf+yy7WXSx7ldq7RypsmdonP1V+3zBrY+9wFcXTPbZGk+DNhyeuVLQx+aMncPSU5yVMH63tI2uz55qpg8pATSfdTu6zR7vX+4tMmDPcdX27eIa4AMAFJBFZqIWrpEECM71LTQwsV/vKtY6Z2QQes9rfpeIqEvXKhKiH855zURErcXOunHa+C/6nh79teMHcA53vB61lzpeselqmToq70lxvrpFnTqNIwrxDnZWQ8v//nXZzgGNzX5fbfaSjJO/Fb9VEt9HFo1M6HI1HB1TGOnc9fvcUq/8JpmEkZs+327/ivJ5N8uDqB6uyz4CMPXL8ObqD/cczVyU/9idSMFgoPnYJ1fyn1qhJ5EmQVe5LtvqQeUHHdGd5P6jRw57FmY7fxYdvEggPdYa8Dd1FC4qtM7ZjCro4Tq+9BCAZfadgmsnDp8PtmR43PaFAAt7eWliAI4FO/1D+faHHpfYDX6jkeLcQUl8Mh0AzTorvLZgAYDe7jMDVSDGHweAfEbAzx54xp18OszNqa/auRI7vAgAuz/ZVZ7DIbGhOeb9hRgo4rHgplBVdw63CIzzeQHgy9iGY+VqwEAx/2ns5hRoBDpG7Hvz0gEE3lgUvSCZfkEGJHshuTk+9bVzpY/vA4D1BSWKwRQL8Ieiw9y/LQYC7OoxC1JjLTS/c3xPAAD2KJfqLYlb5DiKG4KbdrbgTcD/J67/B6heuDDCLiBHAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, PB is tangent to circle O at point B, PO intersects circle O at point E, extends PO and intersects circle O at point A, connects AB, the radius of circle O OD perpendicular AB at point C, BP = 6.0, angle P = 30.0 , then the length of CD is ()
|
\sqrt{3}
|
750
|
[
"\\frac{\\sqrt{3}}{3}",
"\\frac{\\sqrt{3}}{2}",
"\\sqrt{3}",
"2\\sqrt{3}"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAMAAAABvCAAAAACf/ZDgAAALsElEQVR4nNVcb2wbZxn/nVf3z9bOqyCpJ8q8TC1xQWxuP1BvE712GiUSKHNGVacbLO4+YNAQc5VJy4Tm/flAGGKuxAfc5MPcQpkzJNKuUrMPleo0XZaC0BwQmhO5c7ICczIJhxGWa33jHj6cfb6zfb73/rgTP0Xy/Xnf58/7PO9zz73vc+EIdiH8atA2Detw2aYg9v/bATksw4YCFdulznU7I4o12FCAAwDkr/Xa90IbsOVCBAg/fvrvXZ+lBnbnwIunPv5kB+eIKNZgSwEOoz/ftlOk/18LXP2IaKrzts/SAusMW5C+eFefnABy+EwnMUgHkt4NFdAxXe4F7lk2bMlCzRo4C8OXeCgAApvfXN4HnL7r2uPmuTDC2IUAYOGDK8tZ+ZDb+LXFZPnRgftY+omH/rrciWeOnbUqnjGMLTCZuXTJd/f9nbsr58KVpfms5Hb1/8hv1FU89NGFzYDw0JudLWaSTbT2sHQYfHyy8Xox/djnb/FEc617j3RMExGVf2rVwRnQSoFs1BNO698uxr3r73y5oN+g3HukjbO3An0FsqFAsmTQOxe53fOVxKLOXWFP3LJczNBTIBcKjBt0lYiIhMSdu+/ik0Xlggr5jpugQN2TuDKlS8/1DWT7DGYPBwAbjxW+x+2Z3b3/xEpDYP3CF/MAgOP/cWCu6qKZVuldwyzKV0e89IPgO5moJ5Qq1d2cQpyo3Hva5iC3RDMFooeLbJ0Vn5nhU0TjEU8ovaZpkO8AOt62IZ4xGhUo8cnqoWEIURpcj8SIiMbDnnBaYOnpGBoUyAUzZvorkiZ6SkREQvqwJzx+8+RXKSAzzQQNHk66eKvaU0iHPJHxm2UERQGZX5I3Cv36yAUzUkXqUirkifbYk4wRWheKRW2Qkkr7U7WzUhLeaEZ11wblVlApINGrMXvEhJ6MQosIxSTvi2WV8/ZAbYEJ20YvBZTUSCIQUSERqOrQJqjmQG6vdf+vIhes0aiQLiQC/vh7bTNCzQKq0bMEWcDxUBPSuXi3P15o0toBKFxq/msPw0MNpImIcnFfIGFvhJpD4RJNOjQqyitE/TMyG/Pdl2RMUthR5ZK0E0A1uB7IqUhrByUb9fLJD53iVONCVPI7NzQZXkO6/m7Uy6fsRwsFFS6xhHMkq06k+7KXiXhCJ53SQeYyG3CIHBERFf2lGunmGI94wmOCcmpj9slcQkavj+aQiNVI6yJ9WE69K8JLFpUAEVHWUQMQCb4iGSpAJKTD3gG7QwcijQGcCaWJGDEoQHLaGrGlA0hjAIcekIKvqKeAVM+klAqp0lbTAoCIIinL3fUQS7BZQEYxyXujM9Y4gei6RzBuZxIzQTMKEFExGVSlrSYGEkTpsBlOjPDnzClAcur9nOkXWhdwasDppSYAA6dMd+s6ls3c3rfrhbm6BXMCWmwCcbTS9S/TvFqDOGD2aJYjK2vq86//DgPhLvau6gzeSXhKZl2Iqr6fGzKRerswtc/8MDHgwKQ8PoYDqD6Wh90/vJi6duD+E0ss/V2Y3G9FPkOB9k2xtVdvEcnyEwGB44vHZ3fzJ4rGniRsMG9pFmQDrC6kHzMzUe8jrxmkrZgNtOd9W9igVsASB4nkFeOWOrgKd4NxxxQMHlnDxi71mZUtPuIA9KVWnpj6cv+Y0FwWgmveb0IqM7vKFQWe4TiO47jfsndUmMlCcn2vLYTOevvHlBskXwcBHFyz95kYHTOBvbIJ+4vBI0TlUFfrxq3YEbexf2w5dPaOo2fky1zFoBwAuJa8zPRufMP1nTXm1lvkHzH/LRy/8cgO5n4qyDaQt7L6xxb2/fqOo5OoOM8gx3Fc5zvA/gzrjBKjANhXT1PyJM53L+e/y9ypkasGpRSvpN6DwVUaDK66lraxjsZ/5wFcWwNMTeaL89t23mNm2Ou4kprf1sjkbOD5Ox4EIOYPbkbv+39xCRtZid3SDeCuTTJdY8gDI56P08iXTAmtBVfH793JfE8UwAfvfhOY27IDPvb1vusP49FPmFtnQESU3z5Nb08zd2oCtRfNxbw9r8tvLyPBVZpCnNiqVQAAtOGCmaFbAQBc3H4vHsRli/U2xKlGfyk9iu9nKzFHPH9lCzrefhDrNt2ACLgZqGn8xjigfizzObgZGH1lxpTcTRjdOHPyz/1navUxH7w7/YB8xGeIynZMrIckSKkGPGKNhOI9mYg3PKG5NRJclQ/WmXs6mWhbBJTwYbGqTma2MJq+O5LYqrkjWxYAXP45DgBEUYQoioAoVk9rP9Ujsc/FcS9AhChChAHUFdWWq51o5cT9BzyZyYhWfqw/9/ILlWH52RDRDSKpTERl1Z/qp3oygtMSTeI35TKVy4Z+12Phjawe6X6PZrlFalyBxHhIK2+5rKMAjXZcJqLyYHBFudkKXrsKGNRbVbBu15xsFLcoRyLdeHT1Jz/ca8L411dM+Uo9Ft44tTE6vNV40q3zL6xu0V4Sm+swsuEpAPRp3pA5cQDmds2yCNq098qbJxePyDHTcPa4EPyTLLFsArcougG3qP4RAbe4evHrnW5R/PQfMwdvE0Ei9KcxBwIy+y3OXO6to7suvbg4bFgTWVWAn9SMuFvWRv3jBuBe/ttOwO12n9jylNuN9e5KQ10Vpva1XpDSoNZs7pj3l/xian/lMkN/ZUvLYFKuyRV8U2Csv/L80/wkLib8/sSH5t6fIQkegYjKZaOoMtIxTTTIIL9ERJQNmF0bFV7v88ZyKhJsgGpj1wCjMJETDA0zKyARycmCpY0OSO1ZW/QVTFig8KzP8tYriNZ8jm+fU4Y33h+oFkclg75h60UILmBTz1m2WGEioJyK6N+rggOAsf6u2eOLQ5YWLSpEnd+kJFryCY0WkBqOs1Ev6wTURf0upTOIJcjQhQrD/oADtR9t2Scu+gRqrkDVCkKK9w1ZrY/UoC079XLlhb4FJiKeSKZ2amttWeZS8Du5UVmhpqNALubtOSkQObQoDplO3MlC+Z6JKukGFJN+f6KZ41tWpsJF8L9vlUIDfh/SkK5BSD/ijb4nHzteMzfR4xRNpXaqTgHLyUJrKFxqxXo2wWeIJJK0ChTi1pOF1qhxCY3bNKzc+elE9VAhXUoGfXHryUJrQGEuBLMO0EtFlEGokB47LK8stL3wlQrBoh0mEhFJM3wtHoP0kwXntFE7qpq7NRQDqppK6CcLDlpDEypSEXvEBH5GEW0tBd+z1WRBJbDTnqSNdfGwupKQkVe1mVTk36pem4h4IttsC8eCumCdNj0Pas1nApVVwFzM25MStOlz2z4gaChwDlgs/aI0XyQiKiYDzZOFNqHheV/krb1ixMICkZAOeaNZuzKZQmPGJYRjKsdgNH2JTxDN1CUL8r9csbi5wQqtAhIRkZTgzb5qTPgzhbgvmCpp5/5gcJXW9lT3UtqDpkl7xj+0Vq0IZqBR7Hn4laAvvlC7ImtR7o2T/E1rG78p03nrGPalWJmWnu/gPU2rPvPb3yH5s+g2Qu+9rxjxpfT6qFUrRbH52zrTfiS4ShKVex+7WZ9haVGIqNabdAQ4v3f9Nt2YKXtQdVW4XWi19lEYapnEZw/duuHgH/S757dPExFd7rC1UW8Eg8WbTMQTiI1XlFCZIZfkN93y1dGWfaeCq0S0tqe9cdS4Bms2M5X5mPd24wAAYGUWf1ya/Zyw48lo6zIR8VDgJWA0Gn/J+rIhAxoUaL6rNrmUwyUAwNZ7V8sXXE8clWsWnnkVQPDC5maUAYDb2/Sek2iwSeMSphp1yYI0ckTHSZiTWZtorFbhVDaoHlUvXTn5Jv/EGVXjT88fxqYDHzYxW7WwzVQlgxWw61qI+4L1/yoj371Mo+0NMwZgrRdaeeNUcSDTsIx/cX4b4h85PKamwKrAyfnjwcar4vnTj199AC+13U9awNhIDZ/t1JDvXiYaZPgPT+0Dwz8J4/Q3/C/u6YSY77zV0SE1B/aauSZeIp4/DDx37nS7Q30rMFRD6/s3BwAdZx9wUB7T+B9cY8a50i4wMgAAAABJRU5ErkJggg=="
}
] |
<image>As shown in the figure, PA and PB are tangent to circle O to A and B respectively. Point C and point D are the moving points on line segments PA and PB, and CD always remains tangent to circle O. If PA = 8.0, then perimeter of triangle PCD is ()
|
16.0
|
751
|
[
"8",
"12",
"16",
"不能确定"
] |
C
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAHMAAABvCAAAAAD6PKDaAAAKHUlEQVR4nN1aX2wcRxn/rZvLH0SwDXJ8oa3PTgW5CKk++pAsUHIxgsbhwTlT1GuERN0H6iIeuCoV5KE6iaIShBoHXnokDzWqTBwkckkj6tS06jlG6ZlK6AIS+CqHi+OovbuUrhuleI/dsB8Pu7O7dzuzu+fkiV+i9d58M99vvvmz8803IxHaQblWqJcv3wQASATIXbsH+uXNbemAJOIkycM3N1vY3pvcHh/ssmULq8XrVxd27XtkqB1e8oNhvxWfiMbH8wo/W+n4/k1yTmkpIoQ/p4VKNiZPVv3zFMc709NhlIXiLKZi2UqY+k+neyfUu8FZSMr55hSD82q9VDOxrEJBDSzkNIsVk8lCUK2aGKrZ2M+CSMV2GmQoGbngTggF5Ui84J/Dr22n48fC0bRgMZn2HXBiTiXlX9IP0/EL6+EsJs6sl5GIlOEj7XNOJCvrY2O9flSuikYAh9MgUscyYSaaL3ExXhJIuXaqqck7YbSgJGf4hno4DSJFFmRuA4ZBpAiqzrGzkizdKSOR2UVPcEnhymJCSZbCTv9g2jEeqcdONVm8O4QmUnmT3I9TTc2EURWqIQyBvlZObmPcCRTv6GjhnMjcZUqiSqLVu2jmLCbv6FPggUFElE+JOQ36MFEJO2KVYnBOliMz0Zze5PeNfnc00Gdbnf1zCZdvdu5aQLx3y+4Dsti7k6xHYyiXcAskspxKknD2lbMBhFdnXy0O7/kiBrsBYLHeKP5xeXjkQJCfefnJklMLAE4TqTHRemmYj4IcG59pldQmR7vGgxba8Zy7J1z9mZnwnXelpOhroeb6sgLP10I14a4VGI1RksVj1qBKerDQkuSqoJqNt4yTFrw03sTJkMp7s9rqp+MB/nI1I/uamijZuhzOUsKnRDYdPG+LgyW+wJykB50Em1NsJjXS2TDTtpIUqyBy1Yhx+phZlaedvuOSW4lKyqdTc06PwiqTyosUKl8Kv56OiUldM9GysxolaiY12HM41OJm5fbJfNT2PuEk8I0JmLUt+FBeFIkss8hu2/gi8VXnxjmJAhjEW7lsJN9yc1IpIbClMNzu4lZIimo0OdbEKWxANpXbgNDTUDtVN2eMs1EwiC23Rlt+YDUmahr2CegAQBUMeBcgCdR4JkcAJHhiKD6IjuYEkr3z5t8OEKT5IW4eKTcabYcNAED48Ss1vmhojuUxu4DXeko8eAPKKyd05LrMMQ0ion7+vu/lMZ+pqY1IQJYrUjoFZQ6aHdoBQq0xAF447PwIhD15cuNjBs0//1uerDsx51VHAOR3WNsaRZlTJ8MZ2xyc6LlERHRYvsWTihrX8jo7AOmvg5zKSrggjuFdee77XxbJAKTO8ZqNMLAMAOgAUN7JLfnqQaHSX2/9AQDoS7w+IQxsfpdTSEJ80eZc7ucqnh0WxTzVwp5tAHCt+MhWnm6kznHLbRooM87yLl6Gxqpwcr53/XMAbHO9iC1zk6XeGgBsAKBu8gZrgWpUwAjcez8A4E/HprbxxCT11vkFu1cB007+jFjpF3JueTr3NujZvVPf4YolbBd8ibpuAqad17jaq1Ge9Sa+R18BDonD6v3LQhEsO7m6q9uFcXPgKSI6JdYaFdgZrRHj5OKjT7W1nDQjdpWbvFGVbE7izLP1EwKobfcRsjHkZehfMWvDx3++IT36b66cAKxu5n/CVgYYZ+cqr6w5lwTW3v7hm8g/J5JTnWOmw9ABoOsjXlnr48jHf/8JYGWNJ5IAqdbLTYe6mXHec1vnlO2tiggJuOcBAH2fEOVY5vg6AFCLMs6eGxGOvLvREGiUgA2/+jq+9YKI0tLdWlHgZhfjTPyNW1BegHgMbXqDzmwRcl7c660oAViMM86dVwBd16HrOqDrgPnz8dPQ9dtWEV3XnSd0nXTOiRpDo8hx6iSg1m33Z/8yELH+6ZGIDuiRSETf/7oeiUTMrtYjEfMZ0aBBj+B2RBNP4HPD3qlCAEoJMM5d1gqrR8DsBICB7qY2j7DqbkQEiAi/GQTMDnPNRDluc8b/3gAsgxCJ2ANq5LzQEh9IwFmBh3Gtj3Hq+NqCW2IbeugMNzkQZ4e6+f7QRaubiTQtmyUi0oiISNPMp0ZEqd9rGhmkNSdrmkbmfwFEGyvm94KIqJQwbE43qjF1HWFyTxyTgW0GzX1Zp8KjZBHJ9mjVBHerbTi7RJMzldc8TWWQta9r09KJjKCAwXac5t5+Oi1UYPOHhHhjZW8XTDvXoqIogDiGI8B+YeRkPNfE6fy2weJM8j+aEzxoTs+0HpnaYrWX2WXFb7nbJCIiqgz6h0mbIewkMqbTjJ7F3sTBikLSrGyYBvY7Q3DCVYyTRSs4mEyuhqAjIsonRW1iuAOKdlwzvthC6rwWrBkXZOmxlNJa1IFrMNqcfqc5ldYrChwYatrvPMgdN2WcBucEwKmukgoIuBMV5enmMs1wh4ed2Dh/yDEd2Zj4WodBVEnJJb8alQZdP1znDv43LpQMC8m7wsdWwFXJ9AU0ftO0cHGW5DXfcpV0PFtqSTOI1PxYzPfQwXBWlCZO9UXynmt5sJhNtJzqVCdTnanJoL5u+Qab+z3924mfAIg/sBkADPFmDR//6/oHQM+mTuAGPgDuu2/bBn+vwejAla0vPYhnjwGQ3/ikuecFJs8/BgDPnPzFxhC+h/QX3Hgf+MLGz/SFyA1cUp7vA178/Nwp9eGnTgEbSAKurIwAAMbX/nA8jJKHXe9iL5fh6u/e6gagv5bGlqH3AcAgWhu+8dAls6l9TlnWC3Yov7SzboXPQAb9qL60s05ERIbyYNhrJvMApuangjOykXkCLCYJopMAdtStHBW5GmYB0UZ21IkO9wTfK2BHHNrIFC31ZE3OpZ8SzTuxwpJwbWiilG8R0ZpcD8ppz8ylnXWiwzvqRISlr94iOmFzGjSTCj5qsMKa2gtBGR1lJw7ZVQV6LmkjrsYlmrbPN0StrI0cCqyWRdmw1GgjU0SHMUXEv8vzWlDzrj3ED1C34mXndAYAYLYO8T4i3/z06GlxsA/Ae9fDzGL8vHzBmcbsr2TFalp3NPIvRxcgAAG49/53QQCOfyzchwONp2/+xiuWAP4dUYMqSd9rdvPIWl0kxKLsnNW3jAv+fTAiNZNSvEPITlnqsXvHKySDaNpnDRff78snZuwzUI5eIQwiUsbSPsOQx2kprgynaiKZP3KxST+xoD9N5GNHVT93mp/+dmJc8a0ev21ZdvWIx/UKMrSU2lMKcPtF/cmKVDOxo21sWArJBFsNxcQ+91KtAtUjsXHhIXUT1Mk9/r5jMKcNJbcrPuHdybYYMfNk51i4K3M+MXc3yidO9+/be0Akvjo7dzGRfjzkffWQnAAW5i6+ntz72Xiiqyn5cq24UsDwvn0+xxTr5gSAuUK9fLkhA4j34h0VqJcT0d0DSUG49q5wAgAaCwDKVchbgGjcLQlp6To47xg+Lvv/Fef/AB0D5StYGJ3XAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, in the two concentric circles, the chord AB of the great circle is tangent to the small circle at point C. If AB = 6.0, the area of the ring is ()
|
9\pi
|
752
|
[
"9\\pi",
"6\\pi",
"3\\pi",
"\\pi"
] |
A
|
[
{
"bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAACFCAAAAAC4HROOAAAMA0lEQVR4nMVbfXAV1RX/3X2kERIaESnByZhCnhhLbflQgrZCnLwkoHkJra1OHcvYVsABWhR5KR2r4KhFPjpaP0aDtqjF1lpaKYkCb0NB/EL5CDM4TWbYF7DWAaGF1KAgH/vrH7tv9+6+fe/tbgI9f7y9976993fPuefec+65dwURlhpbASB8fQBQwlddH9fIhAhR0+5yeHgCFcDyeHPwqsLqRHh40V4JAJVdAeuZrK8SSiOa+yD8ZB1AVAStJgAgJTTyUREFQ5NRNZEIVTdBkgk1PLyWIEkNavCqeosB26KJ0BNnFWYBbML6oBUpoDwzy0h7jb2/Hs2uAVIK1wepAwAQSHEUssP7mcrtAlEhomqr/zpSD623B/iA8qIYAdBXTzMwUcFuAEjtj/VB80OoXDrRApVU4+nZc95JBZAgGV7z+4Uyxp7GEC3JUaevXZbazoD3rcK9an2R0Rm2lo33gSpM2MWOtoKTTrL33oE1t6YLxm73Vc/AwmLq1E0t9G9ybIkL4Pnox53t72038l/sHeO7FbMBkRZyCO65bfzkzSTXVBnZl6f4q2Zx7y7ySYbEDs4oe9bI160hScZeCAS/MCw8SZ54cNCik2b6neG91Lmj5CRJDZpP+LukoqDuxp8r9u5cWmhmrpn+CMTZO5cVAu3RfGaHgBBCuGZWINZ3XDuhTc4fuqibKyeZvOXlnqROPjM7QyD+6PDcix43mrBW7+U3rR2hBYAn+fztUsa/8E+vvKyg+6cwFiZhijqxd5Ya2NuThsk3fNsV27Y8WiIVGIP4cOnogNADTktLq0/4D2KLlq4f5/HHTaN/GxC+6DMpkxPelBGPLaiq/eD7nq+Ixb881oedVk54U0ZPXXZ838+zvTN2xkOSMAP3I6+mqmNib2b7Tyf56fBOkhrg0+XeOkXK5IHX9904KuuSas6+J2/0BesJn0f1xMLPUzNcUiVSQohmS+RzD28IKnIfwjd42zfwQMY/CTBtOXRS52ujTwXgvmOsL+4N3qI/W+L+o7mLANSV5ksCN4x7MjjX+bg36ejwzbaDTJKqsbpau0Od7Cw57HynH7g3achDDzj9v98kKkCgO82AACrn3Od/wzH4uEMKeWn8s46sOb/iCYt58tTIDr/M80C5Vc2XxdtWdlISrZaWvcPA/a5GtoM+4E3KKnxaj+u+tcQh2v0AUJtwGLofnVlr7PjyL3sXfOFL+DYrHxX+QypPxEkN7pjG1vITflgn2VMiZfy4G/r9N8vZOOz11e7jj5eeK3ieuKRNGlbN0635sOSgP/jeoqDw/OMEO60KJEjG3ZoWu5X0pX3Iks5B1z5uPHVqCbYAsBXfAFwTvekjf00RUi99wr9/UY+U011PvlM3fptP8FDc8467vMt1kodmD1/tG5wskTjxC39w0G4npp1eXnxvbwD0UPB8JO5dvvYbN+4LAh4S/kTFK1IuzX/H9DGBo5plko763+X8dUxG0ad3D33C2R0/VC45MP53OdNLl7lKnhol9s0zkmEOFXKv+Rm0d9DHMp+vXV2zNwDPNlV22ukgW8y5M82ErrPz5oq2nC9np7Ed4eAPl7xlpk794ssrgriXWeGDhBeGPbTEMOiro0e1hQVAuN1V5IydDhTdmH3wRQi8Uf1cfekwo8Q+FPJP8h4zEHzBigfw0U9unff25Z85ECW999ETeZbk3uG6G5t2Rc2VI1PfQ0mPc6Y5Yn75OlEgCT9nPD9jNu+v2txVCgBnACv8a75I6e2cy0Bxr53OJ3yJjw13XV69q7cUAFLlALqVFACsEqIRQGOkEQCa3KGr3JQP3mxs/zPTL1g54uUP1/3zEADsGQu0m66uRq4Hmhv0hmZg1Twy0LGmj4n6+vzRl858xbBTt60myVKN1I1YlqqRpAaSIFtUMpHbAui3P29ncsDrJNn9dFPhlId3WIUv3UJyc/SMBR9HA42DEcZVMp6fIRk+h+oJbNi48fO6H6weIhXWzjldgEcXRszNLbAezUKr6K40//9bMOMzAE6dtWj/po2bJtb+fqKreNjXdl7TtX1teuAEgOXRluVSn/NSkbTHHABAZHRgQ/L13vpbnrvYo3LduokzF33JAVbThlFt+WHNLgvXvKdwbuE2bdx4Vf2LVVkWj2lzlOJ7XGWVGNlKkWr1c54qnM061eK1+aNLZ6w5kktzho5I/5329RMamWhhS0s+pSNJ6osesTMSfPfTTYXXLn43X/UZjxlPI5Rm/OpkPGPXmY0WL7bTAwBQB5LJ14/Vf/fZYekBAiE8VRK1bfMBABW0fikQ/CAbgKF6B1R17aS6FybJA5SeV5k0dd7pAldResn37q+bCqQN/gA8t+JYbeMTpb47fPGVu+yOOq2Ovzlf/G8ZvveKddChUyjUFQGdQoH5m35YKZ1C4dTWKlIoOoUSysOVNV/BtA4AQhEKhBDQlQgIXUSEjvQDgC6sYlH7BpUIdCUSAhpwuxuVBR0AIHTjjOLsWQIwlwJ7RRBQhJmfePATU+rh4ugX9sjwqEkCgsJYQkUkEskn0es39WFf4SQFmP53AAKmmA2OjHT64SqOJfsH24D/dsdRAcA4YlP0szqg4KyuWA+djmK99s1TOgk9wxX0R8WSyVGAweM3mwMNAJGIAkCJKLAeinAUK0NH7VYiSvqdwOT28+uTgH89IlC3LhSuBykApyUBns2xZLmd+jq1L5ADT9pNKoCoLNgJkUuS7nPXqw8f6gN84Qm7SQUEYslASiRQt7EP8M5lRwBNyYDTuE/wF5yUMiTZW3jU2zNwPS06WvKFT+PuQfJxhgIARdXeC4lwPS0aMnZ3H9iXSAEAUe8N3yiME7NMql8XHrLgtJQhSXaWecspoZJo0TN3LTsmeLztkw6U28NpTLfKwvc9db8rBiS0jF0jcdWRQ0YiBBkW1SBztsdUL91PAUBXNKNcpHU/lN3zCC80Jb042dwANLfO8uKxbiP6w96bjnZvYaZvrzMOIEsot6ckdGTrvyV22uS+uFrNYEWkQBp3MTPZLJmwKxTrcPt6BtVnLnzcn962eowxw1u94uPycbhBnSMypdSQ6yrM7ioyWCjZIngkK9yX3jQg51Wccp8nVx7wdqctM5vhwFWQzHUlp649rPQLT1lJC74pqP9Y73tL7ybJ5Fn3Lo9f/C+vaEJ26h150L3X80kXfmhdP7K4L75+U7BGBo8LO/Ukm2PBs+68SV+KKVvwYlow/5GIhdQ9r2UHqBz0XpBGBL556JNQ8N4RbcY2BLMhYlxIf3vIMQ940aTmNaDWdRcceemHX9kX9nq7TVILk3cdGeav0nsb1D031C8t6zO6DF9UvWFGxv/OvY8A/7MpmRxa/3C15//5iQIY7KH5AGKusZS9IuNk4/0HJ5e/et2OD+ZcrwHAKiGaADQGiOELOPeYkinoHJbLUBz9w+0jxtyzhSRV0xgZkTwjiO6TdJJTtlpZWXsqB717jWeXjxfvSCZ3Tpv6oDnaMQoBoH12UNEb3A88aQ+a3LXZ93uyPbeybMyCLY4yM5RveGI+YvgO9qe/arcjS6V1kuw/6CS541eTB9UPc1/L0KGR1Jnwezk3jWaQBzxJ9kYOydmeV+649OsLtpCVXa7+E5pxxb4l2CdRIHUSL1sFjl19ccy2enuW1Vzyp6q39/66Gpiy1T18gHHFvibQ92jpqWTbe2dQwYTv/cusr952+L7P1t5h6NpV27O2eHkQ+ExFda6bDcuAPWry3alT75eXtIKsy0vLnUHg02Tbeyd8ZdF3Oorr7612vd5zobPjqSiiaiwVBcJc0IawVz1hfSciCGA3ol/OYFS8dbLGWRBmdyUIPGAkH5ufLrS5JwCMF+nvrCQIno44u8QwPSDS38RIXp2jGY8BtlanfgjiMvPI7P/8UVQfPgXtf/j21HkWhgxP1PVXnD4HNSpCCMtJlpfkRJZYQv9Sg0oVKSMtq96qUbXnQ/aCSEU1Y72ShJ/CyPh5QG9PAHdbt3wl0Ztf9p5jaoEUN7C5X7VCZIbQzgG1aWyJpsyMBZ8C2X6O8QkghQrMxGazJL3mawvWm2HEc0gCRqywG+mvkGG4dAsBjXH4PgQPT3GNtDXuPH+HqwoAIk6anuz/AN25O6KOugCkAAAAAElFTkSuQmCC"
}
] |
<image>As shown in the figure, the squares P and Q are sandwiched in the ABCD frame, the angle between the lower edge of the square P and AB is 15.0, and the angle between the two adjacent edges of the square P and Q is 150.0, then angle 1 is ()
|
15.0
|
753
|
[
"55^\\circ",
"15^\\circ",
"50^\\circ",
"70^\\circ"
] |
B
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.