images
listlengths
1
1
problem
stringlengths
13
714
answer
stringlengths
1
169
id
stringlengths
1
4
choices
listlengths
4
4
ground_truth
stringclasses
4 values
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAABkCAAAAABh8AuUAAAKEUlEQVR4nLVbcUxURxr/zaKP3rknNV3CNq61FnHxMNf1sFcvkuzS2kIPDzHYk7tixGhRownbSCPmmgMTL5I7LmDsNuppxKhXW/DQnr2y9tQlwZ4GG+gVEBQEgp7LYU4J61UesN/98XaX996+3X3vQX8JPGbmm+8338w38+bNfDCCAoiBmCwj9CSGkbauBx6g9x4ASzJmr7Is+alRLhsbTJE8Gu5d+dLzIGNB8itGvLgQwMAA+Vp6B5stjjdWJ8maG6MdKsjFGrqOn/fZM+2pCmKdVz2exPyiZFUWBFXL4PeH5QT/GD6cbim9JS8Wo91pzjj6WFwnKsLIyU9EuQCQOCrJ9zqNhRclUooM9RsSyoZVUSuRExFRbiv5d4vZB7fNLfUGWUUNUMDgzrlObwyZiOR+Iv4XROTPLQ5mjZaZyoclElHhLTOVP40hQ0RkCPMBMODKfAAs5XYg73zKo86K50ReKqshTyUdaO+1NupwOCIi2l1HRORy+ImIBlfbrqswQwZP6prhWD0UZjkAjDdmA8DdJQBw8xVH66sqrJDB3m5L79RjeV8xEVEf6oio1tSocuKEod5UT0RRXESR3HWAiCjXQTSxc3G7PmbyE7VYyqKKKJHz1lY/9cFBdD8747FObiIi8qavH41SrEAecNM6oo641InpcBM9LUzr0UQuasUPK4jUrpURUJngiVg2K7Irdmx4I54A+bTWAmLYY11/PdLLRnGqAQAe5pV9a9NNK4AByHOu9UUqjvRKncy2mp7MQcU06QFgo69BuUDBcqE5pag+vmsGmAEc8+4Ta56CwpgzADh58atPVy6cGfL4upUv54U0i6HghH7yXzfdonQPlZdPy9NDaDEpLlVKDsdwf/3p1BuTdqXG6sKKwzkPgbB+V/R22rwrC9VOCh8lvcjfuAMIM0WR/NP/lmKwqYDNlOEAPvjWHW6JErmv9Egcjm6NnyliAIh3OceYvCcVdjLYl7MCY8dmaJ4F8frLVZD3ZNhUY+it7QFO2ZPkJdPEwbStcpUK3b5/ZwJQ894McyNpY6U8K5x86KITaPqRjp1TdFDZ6ZGY5JVbnwVqZnjEAbCk/Gq5w8tXneEEL1G/RdhElJfPyAIXQI9Jtq0Js/zMuiTg0Pa4GbccSM44J80II68tAnxnir8HbmDTiejkbY/swF+yE2dqXQ2BAPyycyAiOQE4WQSgumTm1tUgGIC4d6SmT5ETGAH1BYDbZNOmWHU3FXwSgZwBDF0TqUCNUxu3+m5acW9ImRwgoMkO9N7KU6vsEmNsu1phAHEZnkjkDLiSCVTviFPZkaWFozTu2Qb1He+4KklKp725ix6bpr6Qoi8yu18jInInRvsikuF6qjglfasNTFhRm5+gzopLf2oFSNtZ2qt9I4J2YpDP8540+D90qlTketcGMPRqIcfSO8KTQUQutL8rBV+8mKpuCMe73wAAuNcZY0iKsbhblAh2uzBbeqzCPFMzd+53pxAD3J+1auBG6h0gdK4onWpdSzv6c1SqmW+9wwC+pNimibwDCBknWeHgnX9I9Yt89pqPgP54+xFo2WFbhkUJyQoHHz4vUquGquYytqj1CIjA1NATAMzxAcBaxhirhyGQ6W4DAb5za1XOM4DhApHfJmp6zAoAjE8AwoXcOmp8uy1g+XiJAQwYOa5t33j5x8uvgWl5Axp9AMN4fzaswCyhRb994SUA+G7BKYmoJ9r3OTG4HqJgC1Se2jMC8HQYAF1ZaURJsU2w/KPl/xYE8jUYITJYlcMJRyxjAFjvUcb2HRHW9r7KPgcREUG2TMfaQP7DEndG/cJORDRoISLKbSUXWoUNZNUeLAEAmJ9osBwARj//jbYKPiOAfp8N71rdMAA45GKLhCJjpKMbZVzLP5OlVpaEH98cAH9/E7jXnQwD0P+/MWp8SSAfVc9MuJZzXO1yKHgIA54YQXBnYfytxGwY0L95D9AjSJjvqydHW85xLf4p4F4iLrHPljPu+f8YMev9Kvwrdd153D3E8bD2gAcHgAc4AH7wnFBJyAj85nhwfKfjoHZu3ElDVmhuGP5I9BM0EB2aDQ4p7WMcxwM8JzwMBo4XuDkOweyn4Dnwd988uEk7NzpSRAnx2s5zqbcZz0eoxgX/eAYccDdz7yYApPXjoscqqhHaRnE8R1jcOcURFQOZZTtIz5nNrRRRFQMQMpWwcFa3KC2FKJsGsnfp+6i5sUj84jIAJDgVxz8D2L/ieQ7geOHh9/MBNxNl8+izF74fsZERQQA8dnGOAYjnpoozr3JCS4SHwcBBGG1RNvco59f7OHCcxmM6BsCTGVhsguQBjHFgsF+JrWTIkX1ApE81CJhsdjBRtSA5zzMASI3viqVjJHt1tRbOEBhw0yI5kAqSB/oZ68/G4nbYDuniBoCzGyRJ+eHAptro1X1v2U5A75ns5OnNUclt85qic88/Bi2RCRL8LU16gi/eOgMAimqj1B5bYz4bB93nwSelhsu2zgDeaRhCJIzl/eDsNI6pepvzYxz8mjbXRKo8mYfzcYDuU/g/7DRGOPgNDePu5WXKe/fJgu/cwjG4vl4f+mRAlhOyPKTQsqYaULiSnyzwXoyfztVD5eYwo8I3mD1TRxO/C+1e/VS0UsMJhBR+IiKvySu/GVU48k4u2hPqFwrazYraGrV8h0vACECJM0k+YErXHOUXbga7RRBmwK5vPKq/4hTYgctfl4ZlK5Eba7ZPyrLeu9yom5sAYGzXh+EOo3i7tGFeldTj9jZ6kkJ6tIIBwP5lWeGzRPkK+8TPbVmiOLCKj5uTpvRoBjGcO3UzpE1couic15/rJKLAdeb+hf16/TyACNeZkSIHahcPU+BDscasi1s0qwYtDYoiSmNOADat2TAhpA5WenTdJk91MP/2ljxFEeWLXABVBicA4OT+q1Y93CJsMVcoF0QMW4j7+AsXgNqSL5Ui77Tg962nIhVFHqz2ZxsrfpXQqjdYJFitwRQxWCVqqErC1oRmfcxTqExoUh+eJEi6AAdf0sDydQfpCHqeFi2LEqQTNuYMQD/7hugE93xe5+jr8itItWAA8HCV75/JUZZFhQbx1mIiIShOFpilbfj9egKzXJZRIiJXKxH5a82NmhhFqDfXRxdQIOetB8TJFvN+LSaHJCc+WNgeo6LCPL/fvVicXNHiWX5DWK5IxWstuLA1LWv7Oi3Wqyi8PUIEoNiIBvM2taGswT1T4QsqRkvB8vnWXgDorw+1Ou/OvKUVD2MaHTJ9aO+y5NtqTugUGuRCHfndr0nyBrcllHoVZBUwuDPBqU5UcYVzg7Ft8kyv01jojq3wr0K4sSoPjba8yjF8ON1SJgm0llO0O80Zfx5RrVBjfLskxFy6J+rweDym9ZpCzPUE119qepCxIPlncwLB9f1stKV3sNmSuVoIrv/+IvsFzaJ/K2CWRWz2KktKulEioQr/B1+EvnL5z4MnAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, AB is the diameter of circle O, C and D are two points on circle O, CD perpendicular AB, if angle DAB = 70.0, then angle BOC = ()
140.0
549
[ "70^\\circ", "130^\\circ", "140^\\circ", "160^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIwAAACNCAAAAABA981HAAAMyklEQVR4nM1cf2xbxR3/OmEJK+nMVqO+DkM2cFWXdMUlUFzh4XRkIxudFkRF6RaJIAVSFk3yurJlW2iGVtZMqtZMZKMsTBiRSukIuGJpcUVKndZs1oIURF2crumaykUKc7WapZXs1nmf/fH87Pee7/20E/b5Iznfu3f3ed/73t337r53NpAVwAabELp4Kj57gohOXSQibhURNa1w33kjbERikuJLOrnaLJAp8Dh6bCp6nXflzRuJyL2ciP6dgC134vy5aPWGNRub7YXUujTMk5FmmY2MjSU2Nnk9dmZBF09FI8c832xuqjaevXnJCEWPHjjo2+i/VxYvIZUPvheJTDzc9oCZ3E3jZBfXHJyTx/EqadMv+5w7EkZzNk0m1Ojek9RmIHnKAzO7XN6wkRdMkxl2+yOMjHmA1ygq7PUcNJK7YTI8gGB9U8RIOhad1UN6cjElmWiDX5eKOsLexgkxrEbLMJlUBzdinQoABB2BtHaKKoON7uWvOc48YqKRMvD4WXIfqEDTnvU3T5UnFgGTvpaUxmNDZEa5fug3TB3wAHg8z2nonT4ZPhNwTpTPRUR0WU9O7Zm+zpz2nonfTUQ2sjbAy5WC7ps64Zshlbz0vmTixr7KiEQULY8eLs5OoUmGB8YcwxXiIsGgI2aeDDDiGKs8FyDkCJsnE3R+kA9VSH1FxJg9qCoZYSyariwHiF/Fx50j+fHVCBkAI86ZinMpIMGFS6StQWbMMQlA7K0qCh5AdFmJFquTiS2M7hYRcpw0Smb6C2UO0voY5M7JI9TIZNZVqq/TQLdPPjKozQ62nX+7/M5fG7DNN/l2y2Y6LMY8QvVaQ30lwANAkotImwa7mpLOyQXmkkdU9tFsMr59i0CEB4DdmyQxTBPipbrOCpgLerARiLovSi1RBuXUigRf5L6gsuExcUtxcspqTU9wuxdeLgVs+/xeDclEnZkFlogMaW5SDFLJxDTXsOBdrxyDXjFURaRYXxlylDk/MouOzEExqFTSnKuMOaw1hDyiZAS54PiUwA1DN/sXVzBErSSKRuB0ba24orP4ggHebMxLRqD0m/pbhcDBxRcM0cPz4xLJBN+654pAbu1nIBgeb/qLkvn48rplS0BE9H6VQjCLMCyQjR6eOUtEVEVE9PsuukNo4fvbSxIuCtpfIyIiAEEi2g4AyHHJxa8lAPioPl9NFy4D47cREVHY41wcSSixesV7IKqiC092EZ0jIhA94/z0syFDj71mI6KdRAl8X6inuTqi1uBCG5xy5EeAlCOnMCGO9OeanAff+tYjrcsWSXGL2NC/3iYzITr7Jrk05oY2V/v3zS6qfMB3dytsYHcMnV0AkBneUusbsNSyeNk/4wh75WRm63JIOfKrSpmRtjpvv/GZP1/4Y43MXO2cjMyBFgADzYXfudfb7Z5+xaqIgd0La/CGi7MDEL3bRETbLhwSo6o3v5Lu/cC75rdnJYpmI60xogy9bxqT2cCeKACEXQoTONzhcPfq7xmVO5UI+2XVVCss7W+ST/l5AJFObnW3yhKlLOE4EQUsEeNnOCmZGU74P+2YzWcuzTP6Q6drx6ROjjudV/hrDdvNUwGAmrSEzJg/H/hJBzt1LFBfH5gQeDLR+x0AGHdesUTGMyEh09+VD6S5ws6QstjJgMvZxV7EBY5TwjoZHm1ByVz7zMp8wP7rH6k1D8/eM+GlbSueHme1hxe3u4mEQde8UWaj26clZP7lFkMd1/az3wARNew+c2z5thVPHlE+zH0o7BofeXSJWSZERLR6SlJNvmihTmJcRqdJJPoaHB0hiZCBZL6WyPDWsRyjD0nIeCaL4S09zPQyftN71tnbQ8VVuatrDwG4ttZiY0LELyFTP1MsLmk3NCrN9DfWtY2IfHa2gE/SdmjvK6ti0iMh45BaDbs2G8wiOeCtfXRY6LS3ElmtI4BPuCRk6qQuBZl6AxOo/OfPvuiv3bx/1H1X1CoRAEDSKSEjX6oZ9qju3jHwyWALEXn1E2ogbVclY3qRcSXR+rKGy7Rd0s8svSxr9i/0fmqq53rRfeOasmyIy0uL4uAdimlBZ8Dcd/JJ+znrcgGmXUXJ2G64Imf63NCUqe+0OX/+tHW5EM3VSarpi5fkD5d3/9hQJsXK3JHUcS/QzOW/Up1RSoYCM4fIAIob3tV/DliekdpobqlSgaU6W90fmDekw4XaXP+9X1olQ3TlegmZ20+TojU86Oo3t89v2/XG+5bJfOSuIqKrV68SEa38Z8nzvX2fmHM7cPRtm7dK5qyriohqqIaIyB0vee5+oofM9R2P1w1YJRN3EwBkARQNcmnXIVlLN4iEYxbWOuLatEgmm82CUlkgmwWEnwCy2T/6hIyFiPxfZLP5D5DwFsvv2WKBCABxqiKUAE9E4FWIyAK5u4YBeXQ2y2QjIlN/xBKZsF+2+bU+RkSCMhfaePXvdmSEUI2YrIZqJL9KUPvSU1krKhO5hwpkaq6SP0JENTVCOaLWbvA9bzLXBzf8yhKZZiIgL/EsknU5ZBTVhGzSniytvSxUqwmYdRTMPeOKnF8SyeazzcAdA69Q4CzQsxUyvRZ1RoUNDwz4zbensJeXWlRZdDJ3+TNOs+bkfGPQ5BuAfBktC4RbmOmG7zRhgfIAMMGZXjL1xopkstksMOeYYyTj8fVBs1kHOgrEjCHlyCkN38fY4v0Hp+OUWYI5LmZOafo7oSQzyq4ndOwwSQbDDWYmF4A3WkJGbSND0lj1IAqkxZTLS+JWQOl+UP3YG8wOaXn3M0b7LrGz3Lf7vIke78ATRKTcZJ/wsHgDGdcRsz1HX6tk9NQGD8HtTbnj71GZ1Y66zekAkHOHDKcN+SEjw8uiiyjowB7pLyOIOFkdBRN5ESgkw8N1jJWaR0I5x9NHe8BgwlB+K7nEMSPoV3mjq9MsmZRRM9ETUiGj6n5g3gJF0NiyxJtiqyl1WXnFr/LOPp9ZMvAaWskQBcMgk7sjVBInPPAUfFmM6nHcobeHxgNBr5gdy5mnXsWZZ0ztgTq6H9Vlfqno+cbyuWp/VuW9zbuE/0rXWRXwQOZW3dW4rmKbYzqAcWfZ783YDZ3fkWLUrSPNSUlvxPTT28ccvHlLc6LWXg3uPOCV+Kiz3SnV1vMynNomBrMgAEhqD/h9UqdBk+6UQ42GyYjob9EQjb47JQ+EvqLS+XtNWKAChVyj+mGBJBeBhKqaP3BnqdrkTe10sRxjiHGXwG6BOV+37Leqc7JHxVJr72bHa6BTOqrxEl5K52R1t20723dw1mHa/T+tovaDnGK3RMuh/Sgzvu+7ZslguJFlmRl0aBeEKLr6K6IzLubRDk209MvzAICoI6bUIrOHIHgg1JAzaw8nbiqZdSS40m/SkAzwCvt4SPMfzFEBsLNVERF3jkhL0iBToBRkdn5x8xZoxi0/ZGry4Izw3huOMUaNmLdAEZGZH5aOFKkctko79PwiSrHlZ8XwYOkxFR0yeYlM2MXeTzIjkzjZGMVs8QN6uDi7BWhLhgeQ8GxKK6LMelPzQNGETvm9ajvDBs5RZgI3K70x+HdEFTDRxr1BAIg6enIWz94Kr40uLznU2fpb4yzyiHMpYFd5hzoBYNb/gKLHmda1+0sRaD/pa0lpyNIAGR4ABrln5TPn7jaTO5hI/aX6S8OSLC2REZB60hmSspvjYoY1Zu7YQMBPtTV3/kk7nYnbD9576qbn/FS422D/3tJ9Lii3g3LR6bN/P53yrXRVDdNLd4vvqt0TYVQywlFG6Vn2u4bER0wBRYd6/fXkbeuNzABhr3uIlUgOw2QEFC8cAGKcyvrL+yM7W9zkeaT3r/mJQfHCgSBRy7VflE9GXE1qdO+5IATbupWuKfHR3lYPrdrUOzJZiJNcxZCk7UCSBsonUyg3Ll5SIbVAp8d6t3ipvrl3SDbspF++r3hJRd7PZ+dhtRKsXGxCdGj4oK+p6d7nP3id6OPp6PS5cW6V76suhWe+cH3HNwrK+mrP6SVE9Oq9bmLDAhnYiCgbeedowj+x7urE9Z51rjXeWnmai6ei4+/KLzbBfONTXdoXrliTjMDp4tHhkzPzfvHKF9jokymi3Inz56LXbWjY2GyXF33hlsPfln5PJcnks/1PPD47XqW4DMdjZySVkFHNzSJ4tZ+qvfK1tS8A4JOHyx8OSslsJSI6zMiXV/wXEaTDwHGVvZKyyADYetikh+A45Y9+qEjmOuvqkjvtp9v0lECmqfeLCqrSoozeJcLA35qW0E+3u8UtcGZLMOmCZb2WgmTARVBDpUphSTKCEI5MIbh6SicpQzTq0rJExkYgunBpFf1g7VEr71eUDJGN6OgmotkP9TR4McgQ4e0HKPeQ8/7/BzLHqw6srvrcl5M3VJLM/wAn6aq9+ckY/QAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, A, B, and C are all points on circle O, if angle ABC = 110.0, then the degree of angle AOC is ()
140.0
550
[ "70^\\circ", "110^\\circ", "135^\\circ", "140^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABsCAAAAACj5qhrAAALmUlEQVR4nLVaf2xbxR3/vJeRoi6QaZjWMBfTNh0uQV0SEArMIrAFCNBB0MICKBqp1C1bC8NkQfJYmqpbK/JHp7WigmhlW9jK6EZamCitEWlxSiuFIFQEaVyVUNI6at0wTe5cmB387rM/3m/7Pful6r6R4nt337vP3X2/973vfe8kwp0omelzHx47PQJ8Og0gsBSX3Lpo2Y1VpavYSCoFpNP0gbfjZ8LXLL65CtcGAXHqJM6PnTh1OHBHc/NCgJDKoLgDWaoc++M/M7ff3hRy4Doaj8d9bZ1LPfQVoDMJQZKcGWgI9CRceEiS4xF/+A9pRf1Q3PkcgYT2m4pUdbxRCkVteai9OjrDfElGZyAKkkryZ9U9Z8qikCSTay+PpOYMpI4nE/Wtnylq13VuzkR9fdkSM+c4IkFyt79rxpYlTDRnSnUEY3MEIk8117+nIpbqZCHFl680OldUzxHoff9GTe+EU7EzCTLfGxx3K3YCGvTFSIq5DEanV31DnoHya2uOXgCERmOBqEegdEs4rQv/QsaUamjLOE24XGhVbgrGqwGJEoDCQi+08PClt3xW3gTFqrfpyTnogUqKXqO/Ol5cagcarzaWwtynzVxpr/kmSwAp5MyybUUMF0SbbsiYH4NASy5qBco3r70oMILsaNWnJIluwVN4zjp1keYyFtg7ZW9Zr2LOrugmyb69JpAYrJlxrDQ30iSVXLRbbTSQIcnBBIzCUV/JDc4r6Uo05jtKcnbFNs3sGyNKXl3K9nonY1UMBWbIU9irZRprctUv7vbip5Qlw9n4Yecaw2uRzAX7SsNFUwR98rKhGGdrnyPJ5F59HWUCY1aei0Nv12Y5iL3kwRZjwfZ0XVQIlZT2jWQckLqFogF94kv/H4CY+qbmsSgUMgiBTWuqL4Yi2EgAU7lnAICQNWVIXaEOaM4GuxQJfrf6VV9alzuokJHoxdYDUvA4drCrzwQiZ6pTF3UsKp1acA056ctoG5VMBX97cGGJY8AFUuquukcFloZ3AzIIgoJ1cW8zJ9R/wosw0/XP1g2T3NWkZYA8EuQcRaSUhcqEo6mqPJnP+6ZUR0cGXnpMePdDOCJJ0tPluHIPfefZ4XAFUFHR8SdJtXhkYC7bw7pAhtpm5k75tg7B9gGSVEZDah6Y8M8Bp6+FJOOBL0oxiVWteSp+tf/5KtU6yBhp8jprwMhvfg+qauRO4onkKxX4YF4IAFERjgMAZB74nkcgCXihOwQJPIFSy2H9B69dChxo0eo0vaP10+9dRLMr3iRJPlRKRptr0yR5m+rtC2pCwpRP/fZCSUyQZFz9cabtoZQgmZlneHbz0iSJ/U2eMEgKbUSzK7rd+7UreIIkuadR/VbIujGSlCeWgaqky8voktbnwOnK5t+5hkHefDK2GADwRquaIQvUHAeAr30aAiWUlK5JGx6WgIkQJRf2kdX7tMDHwVValozQcUoAWvZ4nTqSQrhOmiCVMf+I9jV5penr7GgjhSKnvuVpLAAAkpLQkoVlEnD8/sHbICAADN9RYZQEPgckWT5/mRf5qC1Lsiz0ZGG54NSdz98FyEIGEGtW+QTA+RkAgL9MxKNgehySGqWCO4x0vuqsuR8kQqRCVGWKqrigqDX3hGoPWbP1c97MddvMrebQcgvHdIAkXcNbbjQfaHTIztRt0oCpkL+yHs3T1WTxYbkcncwC/ypWhmxL8zNqSoYMvHO7XbgCQNX5OQ0o+uNQjT9bmJtvWW39TFVZOZLq1HlWBkGS+eAU2bqlsKyt3aYeO1ushYnrSFKuOu9x0iSAiC0PQmzaeM4yMwJYlX0ZkNQZAoDYndaKma8DgFyV8SoeUMKLqwH5+taNRpuQZEY+G6rQ5KMB3WsV0ZeXATBMkDcvKOnPk2SqOmnJ7GsoWCFH7c7BjjaSlEOT+sR4oJc7KgBg4RPrtBEJiK3/OFAQ/37jAZtSHr8eALBtNXO5nKfxkEFtN/63/4ieNViTstsJhS07bZXadpAkhptIrzjxW9VfwS26Xu0KThVyZebZD1vqxocpH0XO41bePqin8suGSZIxzSm0ivgtm+UQ+lZOf4I5MpfLqVOoTmPO9qOl0v5zuRyp5JjLDTWQ5CHfEb05g5RIr63bmnMii6YRAKjU/mYrK2eB2UrrD4DZykpg8P7LKytnkcfsJfgB/gp82Pp6HQp1SY6ttGlWXPMbOdDOHMmcKqqcOixLhjogksoNh43sHONLsomAHgNRLGNIXmYPJGiqAU74mSMV5graLQIarVO/FbWktS84pDiEeAfabZ+6SwwykFDlYWneCSjXNaAKSCsZll4oxCBJzbkvFBFBRtbR6LWjMqhTmvGldXXJMZdL1zb+0gknX5W0KqES6dOBlCNBK1AhCXUrI7c/Zs3O3NhnN0TGCL5tx/Wd1IAUsi7ujkPq/Wu0RmSzTU+Sv+4s4hLsjeg9VEhyd5P2CQpu6WR5M/RxyNrP+zopmDYNkQnWaAn/CrJVX+Pa8d8dQFfcSL8ls72NFOSWu4vY0/P+Y129kz7dsoMkI9Gyu0TWb4mDdt2jLpV8zbCFRSHJnXbsrvV6CiSZLBlzUqiQO9vMjJ5wVosBDNXZGcmuftJyd1dtNAxSITv7tFLXkTXHjLKN9eZG17CjgM9vXKAoJJ+KGAWqWzdZLox2MmDYlW2hGbPL8aDdI0ostH6lfKbw9cDgT90g1CajfXrTO4Ip621f6xaL6Rbc3GmpqLRvNNuBdnXoHys1oLyxve0O6CkVadw+F7bNdX+N5XrRGrx1j7zs0TfUmP+YvUSs7rFUylZZFko2ZA1wG6739/vNbhaQwtZdah8O+d8XBUU2QxSzbq69bVZeaPxMBvY5j4bktOpl8YjfGgfTEus6NSNAwajFuR8K2m4gzMPE6BUJtyH195AkEwGnY6jVEIXe1VNizGe/wLScWtwvQYITJDkV3OVQppgeEVNVeV3MycBuO5/ltoWR5ryDMgjGwySZCm136oQwPCJy+4P6lPy3cX2BZlnPYS4XVeJHgyTTdZudCknDECmWzbWjVe2EMxA/r3G6ekv7s2SmsdcNxzBEed+k2rTYWFt06nK9TDRpSxeZLXkrFw9mSYWjy7Uh7C55mUjSdj1qUO0Y862dJZ3Z1q0k2d9FClLo16M2DS48K4/XrM3bVfy9OrKjbbak06waosY9pMJsZ23xeCxAekPnWprslrxrgGtbik6tNhJc/bSiRc5mGtoydLBlDpfya2o+tnxmfOlouGws4uw3khxqIjl2dVQ4zrJTmOHP/pjp427v7K9PuwTVhfnT28mufnKXf8hl73SMZ4z5tY1EIRufCnk5t6cXHgmO5XuDri8UnAMnyeb6UTU1flVwqtwBV6Egt4b98dDKGdfnFkVA+lLQHrc8cPmkt7ca+SuuKvm4xTVoeX7Ti2sev/JIw+FbjSz70yxOnTTSU599OfrBzW/Nc2kLKPlIbPq3f/9J3YZHAJ60NGkmg9cayQVTH9WH528ogVMMRMvp7Wz/i8H6JcBis8ng4uI2Xn/lrZ93X2mOV6jBwcKGXSVMUswM3BiIlojAKxyPXBXenrbJ1/JeyST3cJ3Omuip8bcPJOwtqanxbW2+UK9ucNoBYK++rxeSq4wIaWTBciGDEk8PD4+cDi9aoj3kw8kpZN4/kTykPeSDpicPP3bPwaaJ5R5lZNJXN+20VDr34bEzceCT0wACS1F5S9HTxK8a350/vSgR0uTkVUbkhpWOJs5pXgRJxrvJR7rdWNyB/vJawxdFdUot3UEACdcHX64x1elzNy2YXxT1srILexH2TXBw+TE3cbgCbX0c19vnWGvcaF+2g02fC+HRFfsBCLAYyg3opc3SInuOpLHbasggteDc/nslnP1oKQBZcrgkKVYOAALTGfLgErD8dYIkQb2v2NeMr+4L3ObK6CjXZAvJQW/PnlTRxyEBaHHXFkegPuAo24Ey1612uDIhv/8B0UO9IM6Qt+kAAAAASUVORK5CYII=" } ]
<image>Point B is on circle O, point C is a point different from A and B on circle O, if angle AOB = 50.0, then the degree of angle ACB is ()
25.0
551
[ "25^\\circ", "65^\\circ", "30^\\circ", "25^\\circ、155^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGkAAAB2CAAAAADuaeKoAAAKPUlEQVR4nL1af2wUxxX+ZteVI3HkgnrUF+HUgA9xgFMZ4ZYgUFwLiNOCUwgNBtUUU5GACmodCRNQIplUVDU/JApNVAxUGIGFKaYgfjRGPoJp2gCyKagYMOUumOIoZzlSMDYVJN59/WN373b3ZvbmwPQDeW9nZveb9968NzNvBySCbvypA8qoWthKHgpEYADwGYsSbWMhYasM4N0RrCEiqm7Rn6ZMALALWwAgNIY9bZlQR0MgjYRMMYwdAllMeGsP5sB4qkwEIB+fAUAsMiRUnrqtQwtRS9mQ2CrNKG8BYHfbJ+BkJCl735XOL1qBWDfARuXjW9Nzx03xZaK8dEzEAHSfibTGp78w9gfDaXQegDtdGGiL3f17bsmsWTmpzR+PCV0P/3RsoLikOJz6Orreeu5s4KeV+WleYT3mid5iFlhzQ1SrE9HVquCM3V9J2EnMpBPFq3zfK/E3Wy8V4Ui5f11vWiaPWN69cnxWdP7LhxaehrcDv97Y0R96u8dQkbCVkGlg/eRgdEsOUPrn8tM2ZXMb535wM7tgwyPvHvG0RkRHgyt6iUivqSE67W+2tOehxHhFXjN5tOLb6e6swgvGr5oaImr2N3ObudA6YW6vuCtc7V36/g8vT7Xdlx6yK1CI4quFRdcz0B5RfaA5oYWaGiIyFJgeOjUFmswHU5DKNLhqXEeybU2N8VNSgdSWu05Qk6K9vrn/apvkGEPMW4HO0VjU1vLGALedm+l6Ud5ZP+81Iip3pAv+45mXovwuOdD87AfOAtNOKQr0ihm1/lZOqZOpI8UaNib7sPCep46OjKZh6g194K63M0kPC9o4qT+lP3Y7aYtLV3E1nM5WKXh38hLAFZrsTGuww+txcsdAj4Z74u+nFidQP44T+m3a03VZBepEd3OPugqTTBcCN5yN3UwGpF040CFgupvbbDNg4qeTSVoqImrKc6pIsTS7bHUpS3qqYJphcA8L8cy34Oe/dFaajI1TBrk9S9EeSfvVw7BDeJPpfm4b/ykek6wCI+GHtjtTe7+ZU2RoTGqhKelXMwu3pmgvGrhHOhHpKYJxZNJJdr764ttxm0wEABtX+cEAMKlNDAGvSEkVXFLrkikeuGd11g2unYgkbWW+2JAJAGqX+4FMNmUkYysCchZsc8jU648LeyWUSW6+igb6zTBGCoCG13OEHXN00Ql7uBXsMSh/xhGAMcCI5fVLJYgs3doIbcNCGFOW7iXzCQW48tXLEkS8OCVhq7Jr/2EJpn2VMkMhtY3EfEVMrdiLBNORRRJEqSwyfsUIiw4lmDq/CUsGIQARprC1MCRkqZE9lQpF3T0W07liSLtS9WzSacs7ifv0fkXq9FaL6WyJHAsR1t4kAC2bbV1ON18xlJw1iyko3Ma6PbcFUSKdWtxree/56kLYKFTuDIYhiR1r8gFmZHjs8ParqbfvAyAo0UmyRDhRCgA4We2u8LbVhFsAGJTOcbJEMYwBgMiJFc7ydH4V6iQAUKJhq3k65OM2AMyudmc60vhV2Nh6KJ0Gk8wwr94BxNjaza7idH4VvmZE2PgoyDruZjAWim7i1Hj6VW4vAEAZGA5pxz1OpDtVZ3bR06+GDZhMGaXOwAAQOW4tiOYr3wOTaVhGTIiMn/ypQAUCv/KZ+17mFSGcMUInIgoDLwlbc5cx9/xGjMhAHAYAXwP/XH+HV53Gr5Rh/D09HwTM8Bc2Zs+Y3aBxa3l+1T/cuAbjNDjIX/27tUdERN9tJiI6VR5YxY/MqQq8ETa05xuAClVKHAC4qM8CgB83doTKpu1+kNoo1a/MMaf4+tOzAInRtHeR2aucqlu1n45+sz054kngVw8MP1Ke/xwAoGkaNE0DNM26BaBp1ojRNA0E7etTPwM0aBo0oHhvtOjNiXW9Nhq4qIgB3SMNpvFG/FPNf5qqaoCmWhfdoNJUFcQ09a+BF6FBU6EpGgD/issH2ycuOSdcnDEAt4x5SQldhWUETYUlEwcqADSUG52Car26cHf3zPdGb+oxBCOLqjn54DVjXlLCUYNaNRlUVTQ8GNDXXJFanl35yZl4wfxjZhsCUHpoUdJW0fEGf1dgkAaJiIzLoPXfvNS8T5Qs/mOx9UunQeeqofHV3HVd3MGebexslLysf2sqAKiaCkDVNBVQNeui6ICWKD7yC02FBg3QAc1hnPKPztsdOmErujjGzOJR+U6Tm+u+Ds/tyu7nemsCJ20ObUlVu4KISCfFWI/BHA/eODAvzRQzp7FjXNm0PQOmVM0A0FpiGfBGkIh0UURKyqQThU96i2SgtTKwvC0h1aDP3AaC6AWvpaVde20BTYaJ6N7OwvDOXoPqQtgsVIAFjWnVZqChQnKO8a+4fLB9wpJzpYfKTzeWW/GK6HKeR07GJtNgoE1OJAMP62fk1TY+N8Ia+gpQOOJvUj2NBIokhQcAZC/95OP46tEv5r3GGGMRKAAq90k9urfCc7lG1iXZZuy23meW0fHXWqhldkw+S3Df1yVsRaI0QTTQTwSiKKIKgMCy30uI9JcpeV7VvPUSYcsqHyLVwNvV+SAiupsum6MTUfFOTnUaxP19RHUAoubaKHfuNlG3Eh3uvrRIfjtsoXbZs4STUaoLxcws9nsf9hkbRPG7Gmb5M/7c33NgHVgM+XgLZ2Bk3fIr3zGzbkI0SiVinPh1VQ5wZi4QQ76Vh+0PemZHdbr8nHilJkIk9JCI5kaJAMNOBPJtX6l5CMTQUC6xUnPi0eo/ZCPCToYYKyMjQ8XAaOGIrYDY5NrBZZkSYWPBq8AsIiI6DiDL6vTeaYWvJJOj7ixaa9ZUZIgj+9sd94nonNtUcTNZ7P7wf6AyU6L2lacCzpKkAT2+oPT7OJ+uxOB+QbHNOEvnLNYFHTxVIHkyweg8w6M3ls9zldrntq34leDZfZxlnhgMWB6scZfamdSDpz/kPtrzcXkmTMBvL+8HXCM5y34TODY9VMp5sPFHAU6pGMe2n/cBHl/vgEmHFvKkqs8sq7mp8jDHrFnO29LzP7mxXU26EwFA5+154tem5K8frWy7xBs/7tXOxPbYzL6k2AwA9s3PFjO5Pe/L6QMXuAM1ZV3lP1lQdM1ZdLBSTOSO/+2TZx8WLHQ5jlf/vOPUQmuevM82BZtEVVkc8qWTyla/m+zugcVeItmhbdgfESYmuavSorbWyRetm0eHpeZAArUWXGn3yIByo5b9xExToZzibCdmuIsfjkwMAObdGjFhw5dgsmG8Z31B/k2e1ycgXNP7fnclHlrbg/9+JGGm7tXjH3ZsyIYj4SfLBIzaefObcTGt5Dv2hF4qCMcWFQyPbssRUSQaeqJ355TgOs8TaB1VwRm774la2JD+pODNPZ6n6kYukDxV581EDJEx+fT5/+OkIClRo8tP/fTj2s7jDuLHPx6bhmnX2NmZrvpF8N4jxzCmLPMdxuMw1b2F8JNoTI6JgF1bWGjITi7zZg0DDDEQWm4PDY8XE2JVJ4AuPNGAs0MYPaqBKJU5jy0/Cf4HDuZLj+DHhogAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, given that points A, B, and C are on circle O, angle AOB = 100.0, then the degree of angle ACB is ()
50.0
552
[ "50^\\circ", "80^\\circ", "100^\\circ", "200^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGkAAABqCAAAAACafSBIAAAKDklEQVR4nK1aXWwcVxX+1q1I05qWIDndqInGjtpm1YdkkkIzQYIxEmo3IrgbFNU1oGoBiSVIKFscFOeBjQgSRmrZIHjYJA+ZAFFNedggpLqRkFjHUrrmJWN4qEPcrGkTMk4FkzYuGdde5uNhdmbnf8YRn2zt7p1z73fOuef+nTugFyZJ3n2VsTDjH4ejBw4IABkCqy/eQSwyXfn06DIxY7ei/PFJL394m5l7ZXIqvvPekIsls/Y2k5hsLH//0I0Bi+f/wmDj/kDJsV9/8J/HAY8ls9rMewsfzwAA1kkQs5IwsFamjL8PTpeArc2NLpbGdGMg+8xA/wMSAMD4C9T3m+/yi/IXtnItVvsi9+pPyGlpyY7j1pgglut6SNC2lKKQq2npoxzen/Ofv0OekpasX2ck4WetmMpzpexww1LSTBxkPib0XVoZArbeIpcVodhM1HRCluokzeTh7GYy3R81oRhnThfNgjiZRs7fT3Z1qaSFFIdD3VtI0V8+71ktL+78bNNfFou6MJ4o4x+5GQALX752feo2PWXx2H/lg/2300Z5F01Rvbzrh8KRNUQwyfruhG4NMtVknaxU9HGhFF/X59Q5sbE2pnLJIGlIszRqQlFdw1qky7XUTCZ1uWp9VSWDpCIWfIrGEpdKRjomk9oOp+FKhSRZl+V6Oh6TZK0QTeUZT0a+0f0uqdaDRkE8k2YOIEnWSslMJFlyO9ryH0mqRaFqpOyvcjUNU7XseVSpOK23ysKPwiZ0H0yS+ckInVxMk/muPEmTkmui0CpCOdUA06W5cKou09uSX+s50d2/ejV2zu3aL4ZbD1tKF4PNjB/xtGQowrAazWWjsTc0AB2bnpv0aGbB8Z9dPiG6wjMK42PhTFadieGwp47/ug2/YS19NsIYDUkNedCxSc+Fd3eYes1CTgkV7kpIIUp0mEpRU5YUtsDPFYWqEedBqznvc8t7qhhVxxt/TuVWWajogcYcaEIwKHqQAXCyFLV85V466l8oAWDgxAzElxejFsns/lr4ShimggO5EfEgZoCZnRbdJoOMm6xItnKRahhK/7Aa7sJgx4OkkY2d02LmZ5rOAHMXkmzuDmMKH0tdyI24OJv0DjAbubkQpnzCzjDGfyTJZkFQAppYK6mrGAnxQJKsfTdBoFXMVn2NtASfDEilGN+MGRN/tgC1cta3gomqV6oHuCjH7wgzgHJwOV4A2RNvZ556edFVOtgIjKf+FDv9JLtJkkY1aw8wk6wXbHstgOqOFI0kRo2tkVBQbd5PeXsOPBkzXLrQckn7iI72ddHuVGtyHgUywAiJ+AnCpW0a/5kk2ZDFOkkWFZLkqLTEu7ukpR5cySFNvqS4+GaijDXhDjaU3/SfBbb9HQBW55/txfrXr70C5ubS7RqT/WcbRZOtYrb6+wJJzm++RHJlaATGOqZjSuE/dzPaoQ29pH08Xxka6VnMIvYsRse1RS3JfxlXP2SP9a4CWH3j2V4A/73xOAKzRrS6if5z29SSNoO28zjd91bPu/3JHd1R99FjB2NCh45rCGD2q9/4DABom7cDMMpf2oMpOZVNFravb6Sxx2Rd0kU1q3FlqELyNCokrN14ypPEp7EvWcgkawWjXqDQ6uSVpCWSaMgBlQJYGQJQWSIbO78SR2DjaIncofIRT7f2rPvY6YconP7EC+T08TowePnB3zldEdKTAIDlFx8+iZn1Ij7c4BFMjr1TfZdI8gfSEklNTDrb6PkJkoU6jXUei5OZ5vusE++olSFL2nS0pClaW9UFwSYhSYLrEtb20a23SHJlSLpDkhyeiJNWpSskWajbu3OHDKaottvt6KrGrhGS5Hxf5zB6U7wZLT25WyM7u2+f9T2Z/tZ9uC86HG5cfwIAcPKT37P6fNNPvxUpfPKXU1mgs/v+q+gJiB7mrsaEHfDYFgDA9M+PP9op2ZtVImSPzr75AAAsXigCuLLNG9KcGGabbLfbbLfbpOXJdvfjVN8lchTn2k7xv3I32gw63Bi2U2/W4ipe9gxSsCWwTdr/zp/zYZ4C8DVXcbs9mW8HqazoJsmbgkGaWtb7HDRF1d2wZRjdhKS5Srq1KZ6ln6klNeyv5RMkTaVI/x62XLU81W04wOQv1rdrbiaTVCVnH248YtB0thFupvMFL1OITYHiC3mvTZOy5uhfLZskKSwEmJY26269/RFhe9X53W6vcvXbinsQKs91J1ND0Ex6xm2HqWtnzPANwpMoGXPvMDrZp8BRDSSthWNNRHYlkjSK7sSyIdy0PvwzMUhSaDF2RgqB6Sj977zSiTGTdHZQ1q48wORLt6WDkWuRZMt34ukcZgp1OuQupqCpadCQSapWatNpsWNLSILDyrEcq6TcSDgwSX6nxknZp6PXpCDTzcQDaBiMba/s9e0Az3tM8s17JO+xp/hS1l/S6bSw02rnXqM8NQus8Yp2+Zv9z5/0Fs1+OAgAZwcGQ+Q7jNE5qijoBYWG2E26mrS7RwtdlZ2c5ZHke51uiyRb8iS7c47pVtc/t3aZLLF8WHo0EuqgSpIccyloWiZF9Hk3t6xL/vxLDCblzrRniN1a1wTSToYHNbaZTJpR6ecQKAVH1DVnl6sk5yQ9IV9uko18yjuFStE1/MbGOxZogmHyttiKuHH13GtY+bUINqe+Uay4yx3/lasmjfxUlHrem65D1WgmG3pB8RY0JdLsJLoiM8d+JqNQiZAjSZqmHd0eWPE3Nk5jOKa6//auEnNXRZKqrAbKDEklDUHTJGsflnSD0kFdiktYNeSwp6pksFpuimqc64N3n6r4VqS0kg9PklcqhlDzLyCJTDF3mONFI5SIhnR453DCwuNiclowSsMh6pksjkU4p6k8j+N+6RgmFyZy425hk6Sp55Ugu9aoDIt4+qlNvyI5CnTO6WEIZTKpj+Xq3hLNH93NM2Pyw1m5MjFTzXWG4akR3rUOdiG2B5js/dRcQXDbMCvN+gzZUxxv6KQ+7lwgrgydI0dH1mKThVZRGLdj2o5udaIiZ7NyZUK1yq+UhDHNVnB+2y37oJ+KyWV4a0zIKzpJJa/rjfGihB3DlYZmy7RquVzNNf+fAhA9SQTeAvLhwuvnBwYv395w1RD3bMtJTvnCxYt/zuTLOZfo6oEXvv7O5w7+GOHvBiUxAZi98OpHePrJLQ9KAMDlGfxtcUYYHJR9Lze9s296Iw6fb268ZyYAWJ75x8JKEwCw/hmIm6QQmdNTr2H1wPt/6o1oIzoiSE4DODf921gZGytD58jDOJd6hvXU3XqL5mhkNPlaAoAY2RimlSFpiTTvSrdSMSUh+K6bA6X5h14gc/++jdEy7m7I2B/hr+NFR8TqgYdeS0URxelD8E1BG+0bT6ydA0BUVjKSif+8vmai2MxnJFPmsS3zAMATH6VjSRqY0d5b/4uJY8BqYeNDadpJ8U5XTFzO98UOkDXif/i34MDkY2IjAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, AB is the diameter of circle O, CD is the chord of circle O, angle ABD = 59.0, then angle C is equal to ()
31.0
553
[ "29^\\circ", "31^\\circ", "59^\\circ", "62^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIAAAABpCAAAAADXHnRdAAAHY0lEQVR4nO2aT2gb2R3Hv0/x9iQylAgqqItooqWC5CDIRaUB9eDd9cEyXjD1lqbUpSE+7KFesBYfAjpsDoambLakYDWFzcEFH7I1JCmYSAsqG6iWHLyFLMrS0cYhPbioB4H2YI3G79vDm/+SN441M770B/LM7/cGfz/ze783780fQQAA6mfPAhSI3igAzN4HAFIgYYXfIAABfO45MhoAAQD3SjpZFgIASZLlkiTJiDT9RpIskWSpTKoMVN+8b2WfH2SmmnRMMnQDANRzAJB7CtUFbfHDkoX3/MbM3NzbX/ryFa4JAHj4JgBkASQAonoVOas589WTW/d+8tN3noevbBkB4HdTAKDnAJCsCmDFyg/Jm8m13nVt6UX42SdJCZLtMknqqFEmgDYka6+7iL9tbs786vl3L7z3nygSIACgngWA90pTEOC/SqSsVt0MkPsr2l+4t6ytdhW0h3/8FIAkdFJHiSRRBnSWgLIHgGykF7p8ceX09W+82RtfnSRYU7mokdJV9OCRJLvzkw1yd+HMzf1QZEdIqDOyXSmDrXe01QPyydwP1s2oALyuHMbbvZRvkWxOZTZiABjpXk/eIslGIbcVBYD0uNLJgK/SHuem9khyO39xO6zLMlxx25XBVtd6S6m/kiTv5oqNcBBepQtI8n7qSo8keWdy+vFJALAznVXTo3krPdc6AQDKda1CUkrur525vDtuR7w6ANm6WNDVXq9y5uqYs9RxAGheS94mSUp2VrXljtqNEYB8lHm7Y+3uvatd6x5T/fgA7P4yXad13v9ePL3WixuAvHt62ZmY9IX0h8ecIo4PwL3i+R3H2ZmZXPc3Sx6pMMYAIG9oa67TLGY2He2jl+Q4AJI754ueUVgvnN86snAYACT3l7VNj7uVL9TjBSDr6cveQbiZLX4WLwC78xmf5O3J6Z1YAcg7yWtqDKrSM2+m548+S4UBwN1CvqXUFUJvLbV41CkiFACyolZrzsjvVrR39+IEYDM73fEFOiunVzqHHBwFAHu/ST3wR/aWtMrLZ6nxAZyL3oPUUmBK2l1Mre2PODJcANc607lmQKU1n7717bNUGACu5h+TFRVwQzvT378dNYDHWvnCbjD2qJjdHHVsuAD2KZuryTtDDdsX83+LGsC1RmZ+uPa3zv+4MfrJAvyRsQEk2b2cbgw3bGaKzeFo+ABKTFvpu//TtvXJmR2vL6XvgcBIxWMC8IV3tebY/kepBd2LFR0AuZb8/Yhob0274pmlvAD+2/PxACQluZMrjpqNute0ZV/cLyFDywC5v6zd9ULZ1lnWVj2zlCOhAyiH1wUkWU8vjrxfebGkVXo2ly1RBkmUQwVgZy7zyNJxTJLks5+lbuz7JMolkqwhXADytr1a85kkW3Np9bhNSdSgRwEgSb1wsTV6Hn48PfmxIzGrHoxWQ88AaVaSzj1bAKRxKfeJJYEaSXIm5BpQ1szOjF6bSW7n8yBJXVg9oIcG4D3Z3pXUNofOX7lNBaAyEPYwdG1raLUWkCiXSB1l5Zr9fv8gRABJcm8q99j1vI2WxKx6Xq4UpWEfFVYGSN5MXlf60g+hJKSue9xIAPgkf8lerQ0D1NQbipIDYPQNmv0DSKNvktLo9+ls1J5h+0ZfGv2BNPqDlxCYq9rGkL5S1MusAoDuAEiD5IAwSEPSkBwMaG+oYgeWL40+pWFQGt+uL8nG5MLQag02kPprv7oVCRNMADQMkhA4RVgbABQCryUc/zUAE3jZy10BFJ8g9/dgnNbbSAGCsDJA0pADEgOSlH1SGvaGzl8rbEjn93Lb0Mr+lz6eMpMqA6YJAEgMEgAoAQpxAAhYGwCAJ/xq9ot//qPw5SFtAkACEHIwAeCUSACYMA1DYEIa5gTszUAKb9jkwPkdwTKfvVP46PBm4fbjwSmfG5ZR4IufT258z1GU3iw6RQgcJBCJCSL/xY8ufOIGvL0o7JIY9M1AhYRr2yl7tQZ/6dqnPfGdU9EkwLK3Wv+98Dmtk/aZHzSyDEhyPVkxXQk7D4Gqi6AIXXv6a2ycC0pEVHkjLfforfyfh6JRd4H0bZqZEkiWgOD7+sgAAiC9RXRIlmskqiQZWxdYtZ/8GCkAT6eAFR2ItwZcawPAV1lAzaoxmedDsU9ngPfv3wNOKgMPloR4qoZjjBlwViJoe5YyMWZAOLPQs5xNwNi7gADwhyU7FyJ4YYz0UmxJ6FlAP3eIYhwAhHdExD4KlLQ7ImMHCC5q478OBDr5ZC5E/wc4SYDgOE9E9v3wITZiFDghxouizDsbxvFh95AFaiAuBjfZPgDG1Au07w8ZABAxpMD6iN4RTACcFUKIetTKriaAPwkxi/cBNQrulWqsvdGOiQDA10InPxRZAOrOCGRbPb+P7sbEMUGqm6LyQ1uxVlaf+scDAFaVStU55SoA74PTqAFQ9bgJAA90Vl+PrwTaOGvtEUACaOMcrvJTFRORmwdFAJhQ90kWVSzXIeJrAGg/m1IuS20y+JwgUqvioWStZJVEDRBAKUZ9sgZhPZ6Q/B9XxvnqBafB7wAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the square ABCD, AB = 8.0, Q is the midpoint of CD, set angle DAQ = α, take a point P on CD, make angle BAP = 2.0 α, then the length of CP is ()
2.0
554
[ "1", "2", "3", "\\sqrt{3}" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIMAAABJCAAAAAA7hcpoAAAGEUlEQVR4nL1aX2hbVRz+EgRR6+7ApGYs0tm1WhjObvMhk0qRdbNgF/YwiYWhfVD2UHXF9KEPs9vDwMgG7cPAhD1sYoRNCoM5IeiYXbUsY2BfJmWkc93SsXZFjab2xDa7nw/3T26Sm+Tm7/dw7znnnnu+7/zOued3ficBFayelEmSMhsCmaQfANBP2gEAWH83aQMAKNe6wwbglN+T5Ort3SuqhrOXXmoMuQHrsX1NeOrCnZOKhrn73obSEwDv/foWgJbdMTsAiI+PLLzYSA02ALaf3NuVnJ0Ajn/1979tDaKndlm/vK8JQHqhHSRDAFoXG/NBZBBzT5PklHPaDsw9IqeanwFuNM4QN4CH7lcAiKGe18HYG0mZIU+Si/VktuUkEmveUZIhjJIgnNNrXqB1kQi39FzPXUlqj1+62yYUawCeJEkYyEB+6e6bqQuxjpk+9xmNViWGoa8gmRpz+Wbrp2DO5xpPM6OBlI0ZLb0SkAYWDCpriPgHUiCpU+mtGzOansQx6XAdPtXlIWkkkUOVl8mkl/3S8HJtFSSOSkOZjqlUsjGTnZbJxUHpaII1QzIgfRg3pTWdDxriA9rgkbL1uWFWLz3meudOVomFsVBam/M5xlNFmraKcy/0zuQ0Yk2DTJIzB9zBx1Wwk+RER/cveYUW7aCIjva0hKtREOncFTGxotWxUDHZ1TFRPrfC+rP+rsys/WqZGshIZ2eEFUyJmV73OQNvIVpLGsiLHZ7JchXMHnSdXi/0sAINZHhLT9QyvUzeH5AC/xkLDLdKNZBBo0uVWXRsHg5JnxVd4SrUwNS4yzebS20mJDHiGCqx0lemQSaZDEgD8aI1SCZPSIcLV6pKg4IiLlWWSTI97vDNlW6nQjuo3Vwe3qC6VDMncsbiPqzysVBQ2KWeb+u2+PFUMxYKjC41g8uv7rpitYXKNWRsYXSpCia7Oi5mVS26rFZvB1JxqWk9d7O3PNdWGw1Glzp7YJOqx6pPqZUGzaXGDzkCqdKV66SBjHRu2y8dS5BlutUsKnt1YeSu3rvTW9+UAFZxilSVhpXjbX/9/sen7++9ARuraKfysRDjDt89knqUWsZo5M0HIUQFGoKbD/ympdUo1bqI/DkpTB6YQ2e50NITJbnmBWyjzHapcmkt1WhQcXmb54pMMoQwOYVvyIxLtWQMUw1CCEIIUhkXkXXTU8r1B8/2bylIhpzTJOn3KM5jeXij1SjV3A6ChFDk6AXqjaSgrOWjPa1hCkHBmHOUioZ/1P4vDm60FqUW1qD01FyDer3ldQU1Qf7WJZJc86p2kEnZ3KVa1EChaNApzTTMH3J8kdKMsrqznyR1c6iY8znGhZ4rMDty18lUzoqRm9eLl468tvXuJ08CsIHAg3g7ACD47KCx3tbzP062hx6rOUurpzYLSaHYJH9OKrNxeVgaWRDq9BWC4s/toyQ5hXBef6N7SrjyQj5L5H+bmZaTuZtZWf0s/DBl06JUOVPdeC+gQZisD9qbqVOOQ/P5RCEA/WYKSDLSuSOS1Yg5rSEjhJkGBemg64DZeWGp1ahIlFru/iHcsvdmEUqTYr0o3NITtW6HvAfamxe3lQ65ixgk6O6bMXlejh2ueDq/q5RegRKl5lazriHa3Xa++rPaZGBjXpRqVcOtPnewnFPBwsiPUq1pmPc9N17ubrkAZHJ5OPvg14qG+GHphAXXUwaWjFGqXFqDcrpd01N7mYwPSJ9r/SqlIXFsw2DNj+1l0hil5mrQz5ZAkqmAo8hZS7XQDn5N7SBTJsj0adfB2YzyOvygFd2zJcysn48I9fd3T5IEw+7em7WnJWnszmRXx0SeHUL9FDv7SXR0XSvwXk3IdUR2IEGS12BDeCoMcs0bJv39cjXRWtkgueZtXSL9zmmQsZeXGHJON+jfFzrUrfCqZ8kOXL39vO3Bo93Kzq9xxjh7fawJwBP7m8E179e5W+PGmEHfgdlx7/Y+tL0XftQwAwAAmJ5v19J2XN3ZjPVY89PKo0ZpsD14qLPZ179/Gxi59FGT8qj+7Crx5k0x2ACMrajlDf0qVKopjKrrAozFjb3HnIBzmuT/b25yKAqTrIMAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the intersection of the two diagonals of the rectangle is 60.0, AC + BD = 20.0, then the length of AB is ()
5.0
555
[ "10cm", "8cm", "6cm", "5cm" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKkAAABiCAAAAAAOkayEAAAH+klEQVR4nL2bbWgcxxnHn3UCsVyBP3TlXuCKgmtVVy6kTlTIJXERAeEYIlRB3DovCnEgQQ1uiIKcctDEplQiIRXFAbX45UOvRHY/VEElialplCBsi8p1iENy1JC7EqfnkpOvULWX3p115/33w+yddm9ndmdm9/xDL7Pztv+Z2Z2ZZ2bWAKkCg4iIar+eVE6qgX03ok3qaVnS+r7/Ricn8G6kpZSRefvbRETqTaIBiPSV5r8YAZGjyJ3EICJoKq0+/8LV7ZGqEfGSYRiG8TgZBC1+uprrL+olVcSaTJVRuStV1qvT469/o69+UxqeGrnd3dT11t9/qaU0fw04t21L1KK4fPHRQ0TUe1/uVuWkMPL7zxD9rXUZqTAPH8TvYg71OjWo77NP6j8YX/nuNeq80PXTu7uJqHG1T/ONumnk4n8BLJztWVZvfSfLiyAigmF0YgQwEvvoy/idREZ1Yuh+7TGKiOg/j5ZYlh0Zqmo/N6k+s7ub6PiW4VMUqjKe/urTjzd37FGd/vgP9hCYeq+bSOM5tZqOxW+W973k8omSYk/edU+tN4opK8cXUepZcXpFyVjafccQ7/74MwB+n6zZOUXMSqzs9tBXuhRfAyyMHg6nSIA18Gabj7bSWu87AICCeSmEICGZFOBuKnWlduqJJ5t5DjRCquJQjq20e+nW6flYqekcek1bkJD0mMdLU2ktsdByXzEva+oRkjeLYK230f7KSlnSg3sdXkd2Rf3uD3OaSa9O/7rR9gCw64hWLkLe33HddjlqQEtpLTnnur5sXtEVxaORnOf4as1QfrHjCdd14uAzzBFyosKS4+jtj3BD1blktht7jYETGvkIKJlZ3nOvobSxM+Pxy5oFDU18xg9wvTWUTu1xXbLiHx5Vz8iNZf/NmiVuuLrST80CZ0bS/pLpMzTL91dWWhc8khdj/KpQwgLmk4LBWVnpzKCdZTsH9wFWuCHAAmq9i4JAVaXirrO2Y0ExLx5ToxAUWFWpz3C0FF9jjhD1WjTzoiBpi4/ZdW/MnxNH+cn/fqvW03vv8WT8VXGoCle2CosM4Ku46BmTwYLDJAnd+oMzvrc601tudYtaDGQAwOKmVhr3j12f8Ak16KEH07aFrrcE8Dt6iojI4KdWKHHBzFoWv8AMay12PsQLVb7dY5I4UFE6NBUYZSFR05fKMUkcKCiVMu32prWV5j1TNBeBSltviJy5XIxd3Eglw0bM4SnfhLJ1GrgE0TTP5kTjdhCLvVXfcOnWP8mWdYIZPiybZQsLQCP5ln+kYKWsPYqxDyHXqAX+lD2I2aGACLJ1ujcdHMfmxEBD/a0qmdmAGJJK5xO2XSujwHckEzA+HhRDTmnJu0zkg//sgEvWvBYURUqpNTahdN8ju5oJZVOITBIHUkoXdvh3IG1YSAXf2MX8ncFdW3DPb2EtvqT4hlxWM6prvWeCI8nMpJ/+2qzqrGj6/J9UYq+8IxELQKVSERfFwmK8LA7mxAeAxt3e1QshRTMv0WQEAD5C2RaJCuym3hUhMWNSfbUBIqp2+VT6j2+cUGjI1p7vK9kFyQQXRnPdUhkDqLAnoFKpAOxJqLT+2RYn87D/olLxbwcAtQRvaZGH5Opbq/Xt39aP/a8Wfxdwe7NCBUpdkVxUyQxIRXMptWvNpXTiMTRjcErjg4UJ3yl8E84uSYBSVFpV65B0PlbQVLqxY+WHhfSYxRwSSittSh11WksstDRWVJViya97s6Xlt8r2EQaoSuzVZz0Au6oSdRHRi/+Y62IBDu8qUVeVuprJfHiWjgfZ0yP3/oxI7pDIhmhvJYVdaSzHlwJivNcraUk4x32vULZ6G2ad8d0AIfxdEj7NNZRq1Vvd031PULiTew9/P+0bftTk7pLwERfiklkMvXfnPwUvqexji5XytkgUsMs477eoEmySOBArbdsi0WX0ZWGQaJeEj1Bp9uvhdpia9bjKFlV4SJgkDkRKI9q1s4DMzhv8sPlEXSUrkdKZQVgRHYTZw18ilDJJHAiURrm7XOCfVJgaVstGoDTSHfvZFMfyLJp5tSbjr56/QS+odPD+HTYduG3Wu6F+cP+3FAcVnvyoT5bkt37e7nUhtqaYCVepzsKSLzODjoa2AOB7yl0LT+nR+wT9ijaN1FG3h6xJ4oCjtBC4QKhO20kFaZPEAeeNenYiGfnB1+SB55yX04P3EqkeW/Foz+zswOk33EietF0WkN9a2LiQxaO0QycKcTFWBGxpw8EbW17cSi106pQmkH6k6Xr/DmmTxEF7nc4lax05SwzU+heYQ8UkceBQagEoiedooWker5zdFRCRT9v66Q/veL1zHz28+O8MEf3rO3++Wyu56/DkfELnCZKl3HvGYiaJzgPWbH0LFlCKXYhSmRsLWIyXFU0SBwRMEhGlygAUt0jU2X8AQ7pzCgNEx5dO1R7oP0Wnh9O3RfhYtj9mm0DXf7Pnk+wteuk3EdVPP0ybHySiLw93UCgZIGPzeCJzC9FZwzBOnjupmAGQ61/FsZ7lSJvZj/WR7avAJC2rWWoEHCOiQ+jQ1yNe1kdSZQCVlOIXi4T1kTeR6znUEVU8jrHKXJ9WrBlCrn8VmNy+etOq9DG9O22iD+7ZRvXcti035aNMUONqn96HX7fWT/+IKP32nNSWUAjYqrNB/ywQkaH9qWLPclQLJoFU7mG7Mb9S2eIEQn0fpYd1lg4B6yNzqlXTkY8a/ck9UKKeP96vmuz/aH5ZR1HSkesAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the diamond ABCD, angle BAD = 120.0, the length of the diagonal AC is 3.0, then the perimeter of the diamond ABCD is ()
12.0
556
[ "3", "6", "9", "12" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAI8AAACSCAAAAABZQMYKAAAN3ElEQVR4nM2cfVRUdRrHv7/LgJRsyjHSUivfFjazM57tRVOX8YVlMBxE0VLxbVXAstSVU67rCe2kx3aT7UWMZFRYNDEwAUmGRCG1jrvZgTZbtSToZKab5Qu66syd++wfd2aYYe6d+zIXzz6Hc5h77+/lc5/f83t7nnsvSKsIRERCAWBxLtWcWVE4aBUGoI37gmh71L2aMyuKdh4ALmvWu8CDKwYbTaOTp+iXjQAwcJCxLADASHse17D5LxlPIooe/fxwehB03IYq0dVeXUajj6dv/LdgQFuF4TQA9AwSBSgncliMHnuIiEQeByxE1AqorKMWQFZX4Hh4yBnfREStXVOHFvHZTx2A04tVWSpJ/DJKPDwNpaXXgK/MqvIwiV8G85x4zOogV4SaGrqur4s8BMAVgaR6drCvmhweYgJOTb7eBTwMwA99kfzjFw1WDRkZTlgaR940WltiezmshGRH7xgtOZtHZ/d8fPItgxuQIwD4bwyjiSvv15LxmCX/eo79ngyXwUZNRAXABiKa0u5Z/KmRw3eW3uj9I7mfnuo0dPwJnC/y8lRm239nubv0aSKitJmG8uib32vTyzK4dxYCwAeX5hrZXLp4KqbufQonL0wAAKr6YVnX8ajqK2ULalI4FOQAACIiqz5f0WU8avpK8bM1FkG4WeFtpzuqP8nrKh4VUrjKMQocV2aJ8yiTi63atwEwZiAyac3wtzdrhwFA4QZRmcSAuL0Tuy03ZnbVyvPq3x1DwAHNlyziCQaAe6DK+quFBtBo5snb43gQAFCYE3B+YLXVNO/28yw77LgPHIBrlScDLrCHqp+KybjdPEuOO+4Wf+0Y3zOQB4/sTY1IF83p9vAQm9tW24MiAABFBZ3r5R7fkx6dErZNq+/v/KzzdT089X12a4T/JbGjj3p/en3YfV4Fj1iFc8aV2ihw4npya3ZAChGSG7c77cht0A8DgJtT3DUcx4mHlyozJVNad1g/63oeALg5OWaPIHh1tTu1p3Rh6duSmsU0ettNnT1fSx5YCsDbMoWFwc0idqzprglHEzoSdhHPpdQEu+BVJbFjESOC04gALPOWpTEB1KU8l8aO3tRRAcM7i2QSEgPmu6wNA/RbtQqe89Zxrwt+hnbpwwKZlAwAl3Nj7NF+Xchz/ndTNgSc2JkRE3IcXuoa/3GfLuNpTZq51s182iGGTaWhpwXuRWfisZ46m0yJp3XcgtXg/D0IR3o+ptR9VjnHNugEUhh/To1cvEoQAoouXKg4unCvWFN0bu1leQgAvkxc9SLHceRH8NPBZ1SMLuufTL5mLA8D0Dxm7RJBAJgfQUlGjIrRl8sfPu2moTwgHLNszBHnLD8pyoGq0fetvpNdhvKwI+M3zSehkyoaYh9WWbD9nhk6gOR56pO3ZXLM17U8XFuWqC662DTbQJ7a1J3TBKHjWOT66UCGH5xC0WW3tG/tg3kIAKFi+gfpQbYDbM2M7oBTlD0/L/EVqYEnjTHG+Zz/DACrWFhldQvBye05msqv/nq5ehRRiIhs5eRAs5//Z1vsYbdbyu2TSKTBaUV0ffTLmv0/5GqxIp6xjtsu+pNjFKQUsTUHarc0Ytbo6rp12haLRORYRGTLIq9+hPz+TYJbSgk/9r6hRTlERPSf4flakpuIoaWoCE1mH+FrdkeCd4HXsdAjBthnRWte+PWqtt6Ro5zMXz+2JirAFx79CC8P/UbSdoicD3yjUTlERNQyZLv6xBzQdtWMRfG1Hr7cmtqBMuj1g3UFlB+sXlMBeAcSBTEB+61iSBQAsOxQfS+5QbJAn0uFS6iaiAzPQKLUGTigLhkua5wYK2DmK7/I5TjbNFUPDgHDKl/wql/R/MSEYlxQyMujoiEtgrT9vPySHusR5XCvA+oSggTqGOHy8ojyh34vyeO8r0U/j/tg7BFVCcX4jr8Wl2em/QwheK6oGzZQ/zaYG7czWdXW3t90PR1gZaqtXaKd386Gnm2w9w6SdyU1a+EhTwcAYe2TaU4SOq3EWk+nQo9+vHfA2ewTTmng8dsPY6PZhs662JoZGXROm0x503JSMZHUUEN4416buPbxjWGu7VoGfemqZq1LafXWoIWHASU90gXPzkLUSdXwfuG73+evHHsWhFBqDuLx1Fockck4v/uw5xjgfudyVow/H7oYufVz5K6r8/xM+syXyWHTAMBzixJ/0cbjxY8sv5DN+TRkz4kk/aOPX3W5c8dd0mo/otxR+dUSgcScruL5AZvUMGSlLeWaFvvpkOiPmnJFRwvtGaHfw+QnBIB7xRJqax/KvxFTc2il2MsKs0MkUy+iWtY/kSG/tQ/pb4ltqFnDccCpthRDeDxV5g9Ol91Jh/b/xB7YvU4QhKKwx8JAeavfM3JACv6oew/b8znnznnG8nBFMbMh3ctMAPgQbrveB8d1i7Xodk/KCG3PnFsi2cs4AKZQXsSB9evWGBOK9BPGvXdV2lGiHL8YvK3tO0FifaZfCAD2tC0LxcPzPHieATzvPRT/Efa/sOI9TuB532kePA9eP4/YTtX/zpMwIS+PCSaYQOBNJh7gTb5/7lt7VjVmlXOc4D3NgzeBN4UBBAAcV/3xq8Em5G85vMe4vSLClyXefXfd1G62KF8W3qQjbh8sUVXW7qI7hjq2ZT778d6vyeSryhNcWgyM2T291lgbAsD1qN5R6KnIpycOQZYQePyvy4kAjdk7vYHjDJjgA6RX1abiTjbEwdNOYjPAxPMmwMTzvIlg4nl+Sw54MFNSydQjbs7F8ybw4OH5C1O4vtXrK8CQxhhj94izbMdWzNX5+ShBIGrvc9lzVB73D/37QTkRTg4oJ4FsTUQr4trJ//koPshEGQN2JvXwHGX8xdYsSPkU9QuBenVvBnM5zcDrI/+Ijn4ip/yiAp/pz+Mn18YbiQOGc7Ypa4FD9wPAkM/hN/6YJHvw8ZtP+EyfFi5Na5PaSesW4UzK7LUADiQBwEAg5HxBAOyLO44Zlv/Bds6wxw0JOGXNXg7A5bACwLe/BhD6eb/LPmv2Jhh+wS3jzdNkxkQCuZv6FxMRUesiIqJWvE8Kz/tRWepdgWfWjLVdMUA3DGA4PnG9GE/YPwgAllqmKerHfCzo1paOvm6Ehkg4HFcu/nLGNxG1elxiIXmO/VaioDlJBvAIdLDXPtEP5hBVVi76xEK2V2Fw4J9QEpcWHGfRKlSbVpoqzpDJImGG5yEZ+Sy4UjMr6CwjFHdLD3turcrYL71lCREfxI6pEg9EM0Tucs0MR0MEYfd8xxjpi6HGn02S62ZCZMXlOWFoiOG97EYZnFA8n/Z8VLo4RFe2ZOnUEAHC1txGs9z1EKUWLpArk6LrTi7RpyEGbPlzo1l2ISXPc7H+GbkyGWJqjubq05Dw1oajCfKTjnyZJVLW7JPYho9W6tLQ6/kNoaIy8utye0XISGBsfWLUK5rXr8L60mMhN7uyPI09hsprlRjQ5+MRUavI83ykWlnzweHeIRPI8hQ+HyIXA4A+DWOjXtREI6xyHIkNnUSO5+LBEsXiB9SPjlwqmqC6GG/upw0KOLI8WzO7QbGewY2JGmKjwvPN9YpvwMjx2PeBQnowiQFIqLNEzve+BBQqIQBkna1TfiFHhqeuX4gxAoCX1Nw4qpv0s6OdEkKYf6EyWhFHjseeA/9gt7yYHdbIaWDKCWfy+yJVWJn0eHjh6GRATS3AmA/nVnGKCYV0lEWq2QpI89gzuykNdb7rlr0z9guCOySNYLurTJ1HRJLHXaQcPem4nrIro4GLCGD0iDfE4LT2Ux49QvDUD5F7JEBS0kumHvFFp/xF7KDCJetDhWrLktTipoXaNn3Trqc5HmVyg9VF24RXVT/nL8VztrlSEw4wj7c5HpHsjkTnbJPWqg/FSPHYMzVNksSAhe02R4LUcM5abQu0PCMlwePeelQLjnjry2/ZHAOFIDUIX9uWPqelMAmeuocf0MQjysobttr+QWe/TFuj7Rk7if71tr7g0tqU9IudvDHCPye9Ok9b1wjm+e7kJF082Pi7zr6GTyblB+8otfLYZ2tb8nXIG/FpN/00JBxK35qh1VsUxOMu1h8LLOmf5uf3q0srTdVcRBBPpTmMUGlxj8neXZBQLbdF18RD9nBigZG7OK+vYe8cxxiQZg96Z55vT2h5ybuzUGTFjZkcBwg7FjSOATHN3sbOPPZsvdYMAAzRlefnCIJ7W26jWVe8vvP7sMXzwsABgG41LVnYsrrBDOh5oEF83xx1jLFsAGfCDvyzmLrjlteO/kY8CJmUJH6K35PJ3X0yxjUs8d215IwKzqdJiOHm3pSeapKukTjHAUBu0/cxiHxz7zUgXBwwIHqGChwG6eYkIgeaiIgcce3huk39/Kc6M3AANmeZAaDFwE8haO5ZfvFK1+kkAoC69O5GxSbqmpWTsLHeHwGvT5HQ6mkuNGlXs7SIX4NREI95OOPL/c9yYH3jzwBwLc0yGxW7WX2/igeTW80AgIy+Aa8Zc0DkpAKgLSrxXWNggM3mc8qJ6ET3MwA29/99wGkOwF/vYmxAU7g4vr7Q1j4yTtmRwQ8ZdAZoa4/u9JEuYyzGX55V9R0hR1PBBnJanUPbA6zWb/4yqLNv3swGqEj2lZmA1eUNo2L8vlATMJ8aY8xt14gcyh9Kc0VgcMvmx2I+SvKxeN5oMFZaLURUsEFFc1ErNpBzaDuR/3BuMM8KsCayKX/sygY0tWZRARB3NeCCnu/FdaWEHekzWP7feP4HULtyqJnhdEAAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, angle MON = 90.0, moving points A and B are respectively located on the radials OM and ON, the edge AB of the rectangle ABCD = 6.0, BC = 4.0, then the maximum length of the line segment OC is ()
8.0
557
[ "10", "8", "6", "5" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ4AAABmCAAAAAAfL3fTAAAI0UlEQVR4nMVbf0wcxxX+ZrcNRkWif0Bo1asazKIe8lUFgSpssIx02LKDz7KMLVM1kkPkulRgNRE5WgdoqlBqGUppFVPhxBXBf1REgIIKxInurqKNaZ2aFFs9wkXec1UZy6WhUmloGqTuvv6xd3t73HG3Pwbnk2BvZ2fffPvm27dvZmcZgSOIAcHiEn4GBX6mADAABxlHgzzpEQjo8BVzNMn4dS4xgF4tPsRTLhy9xwDcw24fP4u8tYcr5+DmaY8vvVf7mcTV4Gd4GosSIXiPp0We9O49Ow1wZQcQN3QAMvkAPz+TxDGwJF00p9jM49YwXOFMCCB+7HiGZWDp2YcPC97k+MjlGVjW2uqOh9u+Uu1f52eTGz1lQMqVW8H2LX8kDfEyyo3em+635vvzAULB8PUxT4iTWS6BRQ3XS7PazxdfJCKacB2ViVTnlp16jwCsna85HHnSWNooV1f6/8Xh9nVKjwEDEuR2Mbk4p/ODtdJfObQNDtoLed6av1yQWl40cv21qnmn1h1qTz4qzSQ0psa1F8OE6+T9WLlNHTry3npHdV2kAbrGtsb4Rrm8omuDwACbOnRCb0j6+P1k0bGkJxyQ0xl+UHrNQRP26YU8U3OXC1OeiZqb9OKikemrTiRoW3Su2XTlSdojIlKJxooa7xt2rcCe99Y7KqvlJ01lEww4HS3z/HBDc+nW7s8CW/SGpA8/6MwxL/fP9YSXS0fj9a3cJTboBT1j10eKrJ3jGp94uepd622Z1l48dt0/6prIoKEU7SUE99oXnv67NeVZ0B4DGGijq6JaboTFOKZVPnPX5endtCQ9i517rfRBuDPH0ikaCADyehZvS5OWLswKvfmqq9NWRRdDjJNrfOzi/gUL55mlR1g51XTh91VWeW1Fza2zvuZV0x2cmR7pm/90V3xdbuSQwbEzd12en2wazWdAZnp6pBotjYS77IguDfJ6Fm5KkwbzmWAmotyorLxhMhKkDSypCO6pvWWmXnbtsZVTJ88v1Dh2WhK84aYjzavZ62WhR9jo9rjvnjEUcEKrXOgZULLVykKPTZZGlnry4rtkN61MQL++/L6bc+7ZrNUz4VZt5bxh10Q2ZEZ7qr4N7qlfylhViF9Tml5bbfadXdhnKOA0scP0rTd8/EDbPzNUFeI1U5re7PW4DKLbIbTKue4MEtxWe5PS7cWE6HYO+f0ZJZhWFOqt2nKzkS4ZJuNecptBtzec/qjuvVimDQBYfeZI0yLnSLcdGABv+EhN21q6owKAY0xgLDGntNnrLpRbYzs7M7e7FWK7DMkowWOMMcYAEKnkC1AAcszT2uySXZju3JQg9Zd6d5BUNVbuixL5QSAiApEMjdOfa/cE7ZOzor3UIDojaY5RichHROTzCwAF/cBz/hIAa+cPnQ57H0l/pgmiDZG6vR3rAAOCbgBwRwQCu9fP2GAfoAyU7ZLb8KgElwqx/f2PtZnftw+BAAkCA2ZkuiJFMeueu9mXD3B7OthAweW5Nzwh4Kf1YIDsFoAoSnAOvwWATxhAn5bvYmAAon4AiPYfEoDQUSCKYjRE6ura1sA+Pd8B6/66w3e8CEkA8JyvXgBmvICEekBol3eVZc/BdhBD0n+X20XgO14gyvAbIACgsPBE/OaWj0pvPJrAkooblVqGHwAAsACRFvfU/xkqBUwOA3jTu3/SNZESC1MzlvrwWZ+ZYQBfbPZWuJdTB6pxeoqighSAFIXO3HVVXfwEAClKTImkKGp8X1GgKESKwvEWn9omfRP0rQAmACSKKvJ+9If3vnoNUEUhNputiqL2nxEEKKKgkiiovMgtHewaGXelOxKnxwQCMRApCkDsyxO/HvnGDQbGVAKIBEAAMYCpAERweRkX8/76+brj4XqkHVHorTDNF4IoigCB9gV/8M2nVhCfOTPa4wVNaUMSLbcSAEozohAAVRseCkrcOWAgBuFE1LPXvy4kiDEQ55UlhN95puYuF4Ah/aNUAJiqCvpRQVEUQFAVYnjswp8++tovAQXMWKxC0f8c4sGpp14K7MlQQQCYKMZ/AkwURYCJogCAfXH4+pQnJCYXi6Ko/zkAYbO7olw+kbFSoq/SL0/wBC591xeGQXdph8RWmQFgk1Jk8YUss15xeuq2HdWwfKC2bS1BPo2ArbJjAG7vvzg27spmSo974jY1CeLzf8st+xnHTIEBa20Hm8zMemW9ERliQ+Up57x0/KIsVx8LZoTJOFEyPdyVNGftRH8hz8yctiwiqx1z9Ajwhr9lzBTs6E+jsuJruaQFk+2CnRV6pJNp0V6bGJuyBgZgo7uiOpxYFpHNjCntxZDXs3j7idGUYit4vXRlqfMx8ydbe0a5xieGHbw8XtjfPzHyuPHSzAYWs6j544WmUyvGIG0aa9/2nbU6hW79Cd8ol1f4/x3fM91PykDZ5yOWZzNtJCA5neE1bSxvwXUh99y7/fmW27KVHxWNBKY8IQuui/pafj5tZzW4zfStPHCpxbdksvJGd/JyFwswT4+SfzVEDmwzo7kVo6UrS/pyF4vx0jw9tuWX+Lz8WRNzCgt7r06PPK4Ts+hCJ7l5waAhU6AtWw2rz/ha3qmyQ0yDs6FDyfRw1/73kqbNjSyUAc+XnL0acUSPAG+46XDzP9IfnnXP3XzJ2asR2/R0j7X+1eX58WZqheiR7w9PlzjMrG3TS7Sb17N454lRJMtv3V9df8freFjioHMTTbvGJ16umjfIj0bd2kQdg7PM1cEXB8Z+q1l4/fTewfg0yfz3cqer0tazCi6DfgJwOlpeoa33Xm1uuvCO4xUlGrjQYwCQ0xn+UBqC0utxLTfysArwXNJPDLTwwsPN8sG0U2H2wI1ebJw+u4vrS6Ud+ZyEGK8vNjh/CPYKY8eow/5C4K3gSi/KZKJBQeLXI1zpSf4+oMRfzO+9Ek96r6APAKTd/EzyvDXYlXMAx++YwNV7UexOyvx4gPOdq1Pj1Ckc6ZVoHyBGgwA/F9p/u5eCKwgQBXwcLRJPehQA4OfxBZOO/wMLd8GYCOnagwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the diamond ABCD, angle BAD = 120.0, BC = 10.0, then the length of the diagonal AC is equal to ()
10.0
558
[ "5", "10", "15", "20" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAI8AAABeCAAAAAA/ahjFAAAHwklEQVR4nM1aXWwbVRb+rsOqJjxYERvJrNSUIqQ62lVr56F1DCiOGionEiJerdQ8dMN2BSTtQ9cpQiQvTSwkKCBqkKhkdmGBaoOyWqkuLzFPG3e1jV2h1m4fsIX6k0SiyW6qpH2o4mDPHB7mjjNOYntm7i3wSbZmztw58805Z849c+6AJGACAHoeyFDlgASMT75Ka2sjMlRJ4VNKhuB8XoYmQNjCKtHc3mWabL2i7fzc/mLApeut7Pv/d2g7YpDhr1IyQXPx9wAAJKhLBp8715+lXYOf3pWgCo9I0HHJ/2uUbuxsBsQdJoFPKfl74K1/nG8WVwUwUYdzk7R+7ROOZUAKHx0kg5CUfKhBin0k8pECKXzk+VwOH1bYv68gQ5EEPgSsjoUf/114bOUXwYchHnDl9z+ddz0T1yRC3hPkQ8h05GbeAAFvzOR8GY2hAATz8/8i83/3cg7ueO7Yrg/cYgoF7EMojvv7017uHwZ40/3+8SJEXCbAhyU8rDDA/cM0EgMF+BIAs83IPp9s8FxmwqnbgvjU44xOnwvm7AeRzfihe2OXP+gCYLyytrU7kToaPNVik49l+2jm+LDDm+2qNSSYbfPFfio+jIBk+/zV4RrHCQBGsgvtqU0yczDtr0o1wW4fR8JTc5w2rCU2NNxyZneVzBRM20fXuTrWdyJZm04FntRg31gRAEAWLGTeX5rKzwOubG/jYQAhnHV5pgCAWbCQeT4MQKbz4syo0+xw52jmQmfG9AUAWHneiS1F5mN+facOjw24p9Ij+yasTCHm7VM83d2f9m931WpUh0pn2tt9uvgQ+CQ67s8OmBm4merw7P3Or80TatAq4Mh39d+q1y04daqeknwolCdzzYaafIwnr0Q8M/XV1OFDRETTntGVzVq3RU1/VcxOiHW05YPmLb6dE3rzrkCca62bixrHz0XfwpWIWBFKDBjVy8f6uajR83775Opn3kZKGoEBZsvHmvYhAlAc6xtMeUWoGFEpH+3wYQyYandlw7LYAMBAAZ5E3QiqEz+Zzgvp6smBRN9EyRnNfBHM1XF+jfghtjRxTZ8cKmCiPQMGuC+kjh54u2b5yO2z/rdq8frpbm96Mx1JCGa9xvKRqrYcAAill1erjiZ992drFYASMJxdaE/qO5vqbyIimsR5Q47Mh0K3LHaSG+XnLciH+m/VzM/z3x/ZYLk6Ev5Lcrec7lJteJKDfWOrG/t0mTGWuJxwACi+/uf5Nv1APND2bejhctEQzroCUzx4qDT40jLR9Rd2gYjeXJ7bu0xEpNKMd2iRbLT9LfjLoHvxsD+tEhGVjvQ8IKK1nrsgmgSwZ5mIaO1wV9beCoTl+OGY9Q8Rkbb4odIPZ8mBuWWijNbMdgZvzuj+/ClchuLFe0EA5WS4A2D41XFyzB97BbjJjw9fX/htUnsZf9hUCFpaGQBQvv00lzKg9cr6S62te5a5o6oeRNPOM+8vtaIzHwrd1rbmnnpXF2r5RzFe/bzZWs4WHx0rkfZpfXvtmVeJiOiTB1X1Ie/ahLOuwBQepssI+DjQ9m2v5jWC8/2/vgeU/vh4M3T7KGWF1DKRqpRVojtHgmkiIqWs8FvQtpSyQqQopJRVUsoGA1q0D08rRLoX5p4CWq+QwV8KEamkqnwn/dyRRVJU3d0KkXZEVYkUhf9s8lk83JU1cKlCxV+MAAamKgoBgP8/LwTfKTJ9vaXyCs70Sdh2Y6047u/nNec2EWHkQwAcTU1NmuAP6XvPJXSHE3e7APjZCQ8Kdd4rHQARGACmGF5GCGAtb//ry96C3q0Ej3erUV65CQYAua5z6WjdhgSRyoNW+y9vBC6RMr03skIKF6s8nstK5WctfhaHvDMNhjgA1uTQTQWgqckBwKHJHL3X2nwxBxczTexoclR+lswU6/Zmgw3GbajcEh2aYCS74EuZv24tMCTbF0zUnHo9T+qWm+WR0hLLRVrOPCmYHXnTseGaps6CNdUe6U0N9k1Y6OFsRaXp2LBxXzsEDCdSOAvPP+3T+TzgyvVypQ0MVJsPM246o5lEZ9oem0zg4szoji1Kt4fp/qF7KhPZF3XrAWB6cdvQdDQDC4/sgYyv+511jY3ZtFjVdJTKh8AwPLvaOQ2YTtKU8JlsOhrOsQbeCtyMqvys8onbUGqaru2sTtOe5Inw2L36Y7S2w+pI+ETC8gqG9bKhN+/qjDceFu9oy9ddWJDAh6ek0X/nGk0hKV/uqq3v7SytD+pWfyKei7jrtAKXjmlNRxuwWeZ5U1tbgXpCL4777TcdbZedAwW0J6ok3HpTHhTsNx1t8OF22BFNnwvmDAIAQC54IRN12i9tra8v6zMFgzuROnpgwg1GjIuXJi7HgtpBm7Bun41LEYJXvd0xTcRgrgCUzqeKGRuerbQCzRWAjXSKN1YKIzj7Bf50HDEPhL9qk/J9XfIktd49YyMbb4Wc7/2KJ0sf7QCICX/0J/H7QymQ/L2f8N2J84kyxphjSNsR7hlJ8Ff0v181F3se/UrK97Ti9indONQM5+StsxLYyOBz55uDAH4TuCFOBjL4XNqpvXjKgTCfUvJQM4wtZDEI87nzzUEC6Np3ByH8uBOJ81nauYcB66+FOwASfFoZE+ZT+ujQY8CXj774MSSsr5Jw/tEI9MhJPgB+BCTu5IltvZF1AAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, the perimeter of the diamond ABCD is 16.0, angle A = 60.0, then the length of the diagonal BD is ()
4.0
559
[ "2", "2\\sqrt{3}", "4", "4\\sqrt{3}" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIwAAABbCAAAAACEkDJ1AAAGUElEQVR4nM1aTWwbRRT+NkIiF9ReuMb9CcpWSGDfChzcSi1NJYzsC8mp+NSEmyPk0pNLL1C1KCmn1L00t/RkJISMhCPcU9ITm1uMZFs51blgFIRwDpP5OOyuvXa83tmdTdUn29qf8Tffvnnz5s17axCxyNb5i/ogU/oQAIDrcYDEROZOxlGMlqKNWIapfPF6HDixaKZlnM9AUytALGSI8m2YAIw3gIzx9AdjNpbRfksfogWJrbY+ThxkWis/02jH466oKUWgyQxQ1AUiGc/UjknimNr0OQ4t+mQ4NKW1prc2GWp7l4FokzEANnLv5BqAtg+OwWYOvsrd+vdWbvlA3weHnn9y+LRXMtdJkOtmqefbSk3Ca2bYGTwxsb0MAFjehvlk0Or1aMYrv5pLHZKkDdNZmqvq6EaHjJW+sTcCszeftiJziUZGkmRnIVnvnw5g6smFjrfZqZMh2b2b2PSB2Ux8043EJYIBA8DRWupMY9G2uRM3FxtnU2tHtgd6DQZcmSv8bR+5Tw/7xD3tFsyfIugmApn65Ww7EKadvVwPjRyaTDub3lGC2Umf5BwDGY+2O4VERRmmkih0xl33FRUD7nvTo2+vzuznlM0xtz9z9d5RCPsNM5s2TLm94hyrzZOVbZgbIXpQHqRqMu+vdH+YTj5Z9b2pjDIs1vy8FR5GKvw1NJlOPlmd6DQmw0xUajgysltKPNODkc8Spa5zOKGZggH/+DEa+RBWeNIqYeQb+GgVQECgE6QXNWehoOBXPi5KGUWqulEl0xvvvINQ3HFVX2ACnsk9GLesqaF0C2aQXhXJeKRiFrq+N30N+OhBasZSd/2qkrNmUg/8lgg/Ms/NQ2tlOl4iBIDpFevQfO7XYpw4gax6cBQuEuksfFgPRrF735tP/xEKPHxYZKXn3Y3F4IklSGYAoOZe6iyZyitbZDJk1d1yuQTgoGRqrKFJkuyVEuuhgaNtMtYTpf9cNk2yaNgoIJs2mfVEqUf5WkJp74NnSDJTnCKwVQRWiheBF5d2X96fpuFZQWLPsnkAp++/3L20C2DLBADzzykDaD8yjLWHAA5w7uzwUhZnKsgWw0vo7Dl0APz2KQDMcgrAL02WZ1sAFncOh6PE+Ln0CQHAxqXD7ZsAHl0jgKYJspkVQqBsj14n7+6gT9NmJEnWk/mOJMlmkZRsoQbJclmK5mBqW2nVKDE6GZLWTTdfwXKZJD/LEGSmKUXfE0tSVlNqUaIGmaEwHS3KJjIkagDw7udCCEohKYWQ5LO5+3+RlEIIh6MQwv0VQgoh7YbhyPS34t44tmbbT81FkUJKYTcWpJAUvdL7j0kheWwDCOl8jiWlEM43omZWneyf9FKUHjKU9kcIYTN79fVcRUinRyntZqR0FWh/I5CpmL5xLNxeKOQxHUXYve5lr+24ZMTgsh6ZnXR2j442Trh5kO4YCUlSSEr7V5K/f5JtOewk6V7WIOPEsX6LDUjXFJ2nH1gqpah8UOjStmuPAYv+dyKZ0T4D41gPysh/7dPeauK7HgNlkmakg/T9zGoA0iDsHF0SbZ89vWL9k/KLEhWdvwEAz1OHu4FxrEPqWIwfSEmy9UV/iZgw2mP+OJB6ckFh/zVRv/0jy54D0WDIvWzf9WugDKTiiRJDwnSWVPdf6t5qPVHytz9/mN69xPqIs/WVoCzEwKyXG96qiao8MdlY7kcwQeGRsmY4vHGQnl9fzThbANWIOuTaP6iaeKn4wHg2R6dChqynxk3SMTDthdAxY4Q9xqZ590Qi4QRM9665GbqsEqGqsmidST2enGs+WkudsRbDR/OhqHuqJsOuYxjGTcJ4VKOkpbDD5JPU8sLY6anh3tVGLCqZkXTfAKadTb880VzRenQKppVE4WAEplNIVKSyXxkVnYp/bn/mylDV5Oje1Zn9nBG58K/3+sFw1WTDRMiqy6hoDJM9MPlklQRZTX4Zdus3KjpkHNOw5m9YUC+dnBKZvlSTb6sXlSZITO9cvbgSB4omGTuBE1caR/NlHruqH1dKSf/NIgPAU2MqgztvABmgZTQpHxuz+kgxTAIUKcliLbhlgMSgmad4CAN477w2UgxT2yjf1sawRf+lwRYuAPFkr/VfGlTcEqmIvs1cQBsEWlsxaEd/MpVRI2sZfaBYFsqaEc+7yfwf6uZdcLVaXr8AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the diamond ABCD, AB = 5.0, angle B = 60.0, then the diagonal AC is equal to ()
5.0
560
[ "20", "15", "10", "5" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKQAAAB1CAAAAADlvBUXAAAJ4ElEQVR4nM2ce1BTVx7HvyeJgw+qdcX1uVIJKtiquLo+CigCifIIgorSFqtFq7t1dpzuCLM7nd2Zzu5fMN3tPnSVVl1tdVbWBy8JjwSsLx6KGwUHKgTFx4qLS6RSSkpyz/5xkxAwJPfenBS/M2Fyk3t+95Nzzu/cc3/ndyAULJVUBACUEqZWZSyNURRqWinNJGwZ2UISgCqBbE0WS6uMIQFdKACENLO1yhiyXA0AwWyNgrB1HN5cFrKZWmVbk8YsADDmqMH0t7OF1CsB4ENNLJj6NztICordMYCRoJCZUV4s+6ROBQCoiGVnkhdjx7HpZb7jOPQy33F8JZaOAwA9v9/W7DhgJQUrQ7ZueOpj66TfTmTc3mwdp/lYdfiY9smapaNYWmUK2XvqzPyPJqD/85uL1wWCoY8zhLz6z+4t8QAAwxlL5Cp/gBUnM8iuk7defyfAdsB9aZgat4CRZXaQZXqoVzv1xMayByuSR7OxzQCSEqCjoGFB4vRBTcsV12BzmLfGebGoSe5iOWJWjQIoce6D7aX/XvKWv/fmmUB2nrs1J3W6iy+sdUW9yVFe22cAyV0s+04dP+gjSux/OrX6Rb/0fsyUDsm3bPfJmvkZk4c/y5D36IPlQwuJlVc1SUnlsYlJ0W4v3lN6auXbU724CLyE/OYPLevSJgy0rmu1f9qzKXKsF5eRBmkjKswN3iFoxD5dFqKZy5eT1N7SIZuOtqRvdBy5V/vJzqjVEyRciZfU5jbl60K3zxR8OqetnBK1RC7tWlIhr+V3J0e7nTAPbdr2okeh0cJ/1SBJgaRPzjcGJszxdJbT7YeCAJcu0jcjJQ2aUiCvVvaGr5Hgrl3a5oCk2eLLSYDs0DfOiAmVcCkAdZeeRCSI75kiISm9pusNj5I86pkuXR6dah+2qNBHIZGQHeX10zbO8WbCfafCEPmuyDLiIOvyn6lSRF5hqMxX862ZgaKKiIHsPVIdmuFqTiZSphP5O9MAUBBhTSICsi5n7LZoqWDOoqThN1P2LhQ+JxIM2f+7qh2bpd/ZhuqTqpQNE4We7BmS/7klfw7ZG+QN1VDVHfN7+6cCgzzCarJtf8vuBG+QXMj8j+urwoMEtbkQyO7S4rnvezlvdSVDnnxl+AQ2kLXFJk34ONYxRwAw59fPWB0GeKpOj5Cd2vpZasfUlmUIlxKgUf/09bUeHcgTZJ3eFBkh2A3Fq09XNyZmmYeT3EN2VV35cQJfjbY6ZBwNB2C88LVyg5vnTbiFpKSh8L8xXsz6PYsSAP01F3vWRrk7zQHpVEW2t6ZynXIz07FxOHV+dXnq9mGHD0peqEkH7PUzT9cn+g5ssBoL7m15YfnHgTIcZPfh6kU7fTA2DqeeitOBHwz3CDRMn7xw0G9npPBZKQt1/rU5Pcn1V4QO1KrjTWdurfqdiT7wZPcqOzn7XZc+4MJxOG3elK3sYski1Hn068SoQYNy7m5oCrPskLrZQTbKprMPVLG+HHfciFb+a8bapY65kTE4MxvG4EN2SFmLEpQA3RVXAlJtcZuRUO/fjYvXzrIdkMxsAFlqG2RWM79Gfa3q8Qq1D++CAnShVBbNj0a5uykAHIrlIXODVBTofVZbM3Fd2MjxAQDo0+KmQP8V8wDZwV38RwoAMGK2Bug48Hj8z2Lc30V/AJHJ79XtPx59YqqR2l1dBgCHdiEEuJF9OCRtxBkBwPoM/s4rszIAuTkkGEBYasqj8+YR4nLS4+Pnos/8MQBK3AUAow4KwIh+VN0Dpn/RX1zRELdoZBG56xXP34zzA4BDu4JioPtLIQjX9mEhLEfA99Gm0ntLtvhhxEYgmIoMMzX2qKJOBezLAZAJtNJkIJNSSintK838dS0dMdVk7i343n7A2d/wQ5BFzlEoqFVOYHlUXh/6CxmgoAQWm/tTwr+zAApYqZyjRG4BkRpeHiSnqYP5i0sLN7kIE9khiUUBcDJY5fjecO7b9xZzVA6rjHBUbjvBKiO2YwsU/ItZbgSv2gNke5SrLxyQlJODrzvITeUlSzLG8BQ8iVVGAPuxRU4cL3bqOKxP3uk68GmDVABWGZUBVjlAiaXtQNf2KNkA5MBf30BSmp83ft9c+9EQu4SCo3KLAqBWOeGrjIIjsuMVi5MDiQxWe3ODEit/7API5pPtMY7Q6gsjC6GgVsgJYMexe8j9z7+Nj/CDggcf5DhQ2F9sEPvyrk7Z5ObJ2enxwWlFgwCUWAv1Qeo32GC4leHc8/CEQakQQ+pyANLFA01bfsfy8Kk+Htm/0dbOVL/h9hJ2SI6TuQgWcqXV41ZEDgyH7Gm5W1pThKcAhKdYUEfRvdfU/Pjqi/rs1N6cnLDAk3GPUTV6+UrvinU+Sg5sOvOfNRs92xYQn+y4dG3SBq/WboZR39ny19JC4LmNPEFSAsBQdW9lGis0h1qyv09MFXSmB0h70OVa0dgMT8uyYkQJPtHGbBW4tCx0ieRhgS5F7Grb8KKk7uNx+zzFTh0SvI7D3ch+5SNGgUD65LPyjPRRgnMyRKyIWXPK38qQA/ZOINmTzCV5U/aKWfcWtQBqyJn88xAAEgFthZpOPYhPEJUQKG6Vtv+zapVqmpgSL6hbWxuQECaujNjMAcPR8WuW+UNyYxtKu5avChBZVnR6g/nL20GrpQYGu6rqJ0UKdmqHJCSK3Cw2L5IWG2yo6FgeLSEcJiWbpafs5qsRouuDPr1Y86rY3shLNCQlAJov3J8XLzJs1FDwZJVmtJMR4ZKYYWWurv4uOkpEgd4C3fStcyX6m+TUxI5Kw6xN7tdQ7ECUoPlvz5NSJM/3pOdPcjd0D+PjPFQMz2neX7Jmm8Q8NcC7JM+uqtIZu6Z5br/qg9gjftxxkneJx20nbm8ZNk/Idoe/f/qrhIxRXq1bSYN0dH+u6ohyR6Abf+CK88fv8XYm6nUKt2l/U5rKb7h6ajx/JzbxFS8vIQGSjxw4fVB5VJm80KXnmvOvBqQwCC+w2FbQfeDuyrhBoxH/Iwz6u8vULFZ62ewiqSwcr4p0ytQHgL5K/bikpSyss9rq0p13OyRukAPd0bZEeM5TESZmm4bqynojYv3sR+aykh+lz2dkmuH2K5O+3n+9zUsMZ++q0tlFPVhuZGvSPgxLlwE4WjZrD7+T7SXbIwYAPVf0ig2Lb3zavz0eeDl32wFAe8mJOz9JfX+Sp00b4sQ4XBa4bV5n2J5J/G9nFuFivnW6738zmMfffLO/m7EYN/d6QgjRsbXJEJICFCjQVNAKVSsrozaxbm5C0TqnVcnWKMuaBKDLBH6VyZiRdU3m7gZY1yNzxylupYeCjWxtMoWkQBuU2EX07GzyYghJAF0ixUA6DzvLTPtk0p+UIIz/dQPY9kkdKQomRMP+HvZ/Lco21s5mDcUAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the diamond ABCD, AB = 15.0, angle ADC = 120.0, then the distance between the two points B and D is ()
15.0
561
[ "15", "\\frac{15}{2}\\sqrt{3}", "7.5", "15\\sqrt{3}" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABhCAAAAADe//EZAAAGPklEQVR4nMVaUWgcRRj+N/Wh5kUQIwqGahWyT3XVB1ciRCHaUxBSX1rlSq9Kmz5WQTgFQ4rg1aDtk0QFOcHGPJSmPl31qRVsrhXTSh96AW1NwOZqU7eCTTcks/P5MHu7d5u93dmZSzPkcrt78833zz/z/zP/P2uA9Mryt/uIYKiBuzTJV/f9S0SK5Nrsx489oYFWZhcjNn8tr0Guzm4QES2/9/b8oxvBTkREn47/t9RLGhMXGmWCiPpuajSg3nfQ/CJwrvde9Z7TPcpIY/7ACaIrXN3aSUfz1DOzkifqW1RvwtD0dRr9Jn1vo0Wu6200i5632TB2IqLlw7N67DqzbvYNb9PwAS16dXMpWTVyh3N19RagzF7PFV0QULEq4OB3l33KrPjohdywGzzOKIUau1MYckL0uDWt1Ioie9Uui2766NpASU31Kuwjdi2Cdou20uTLzn7ZHmlBi15X+8p3g71sV8MbI7x0Cnuc9WZ3Xik44MHcbkGXzSrAM00AWXbRaMWsJKDrdtFFpiLfdw73YNSxRdElu7YufQdw0TqKiD9Zg/7NOrI+7CW7tsaXtaA5ALgHty90nn1hIG5M49DRudEB9knztDTayRVkJ58Uu1PY6SDOmtqgy1Y1/ods7MKyq1Y5I7pmlzrADgAo2lczoXkASrW+VPZZ+2O0bScBPd1WYRnYk4cwCe0UdqU6/mT2tOmbjG42lHjlJeB5k+lm1zwA1AMnkR0vsV9tg+bB/1KwEcnIXrXGQ5HV+g7ggpVke23xpYFae1Z5drjFhgZj2qL4x5JLtZSnrJhTUvhAjLJZlVqn5VYJZ6jgtLafhHcKBcktmuwKWbbPRR/xCL4hWdUsSzYqvzuoNW2EW/GjRESDt30Blv2teec0L6K8kedqAMRkGiUiov0CP7Efbv9+UfXyQMmHyMSGWXaFQQAEYHRwCW7/4FIX0eqpHG1+ScTTX7x5uEhERAaR0Zn8BBERyCC78tPrt0SLq3+83E2bJ65+TsDctkVM9MwAeD5zsxLyGc1fFgBgrm8GwEp+fxfR2Us9xrUbTxPRR2Y11JRMIYlqPPxyhl4gIqKzvaavEr6Sn8Lc1jEAQM3+kMtzy4571JhW8mMA4PaPEea23WDsUN+iqDOSvCxEipFeJShuYExzfTMcwC89v3bRz3bPJu/33m4xMKNH935D0tm4DCmn2Rfvqz4kJsD1XtMgWn5nxzO0kp8CDtHJQEankHNkVS9vcUesi41LofhjNAYuBHtkhjEGzjyAMa9iVhhjAOB/BVeMMYAxzpgHxjyQpJj13MFw0RKUg7cD6T3OPQCe+OPXX33X5R7gcXDPrwDPa9wLEQBPtu9t90gNdnAP3ANnjDGPsyPWBQ+cCYngy9C493jjk87OAbeQa7do+eyi/000tf5PwBkHPIALXiV2YPqpctvfCOAePECMOpgHcDAPdz4YqDOvofngMc/KnrizI4AzxhsKAA+n12lz0r/xmh+DMdb4pLJftYtJvitmfQ+unF1pu4zUWOTJ5HAyxMfle8opWciUWGRn4RYg03cx6q2F+5prj09kP21OJgoXh48Spc2adsUtDqSnL9NnbRi9r9VAe7RcBC8TD+xN8RaN0rSSl0K3rskOVMxTkjGoqFbPSaYN5Tx1fftwbHPx6CnprJXkOsHH/SxCqw7iY5Eh6XSxfDwwEDONYtBVuxxcd2RHLhq5E3MCQGsq+juzju9O4kKsKLr2bHPAlC5Cpvy8syfi+CPolpMDmZLxdKDcF04+HkEHgfK6sUfSCk37Ol4xT2RsS+FchouUShQdJkjWlR2YtsbXoGuJyaEOsIcz2B3OLbSgecmajdTpNHsoBUfFqgRoLu/WO8AOAKjnhl1wgZ4M3Xq28zCNE/Bx6xxAwD/i5ECtqJ/+1+wSKOHkQKbovPnw/pm/8me+e0y9AY03HzhQ3aJkZ53pe0N+9eSSzjtmftHIbKmzN0h1lKfzts95wzBOnv9+Q9hXd++5CVx6bctGvNm4kh9cAuAOarxeB+V3C4//+EM3EW3a8YB6z5Xfs1p9q/vL4EbZ5lTH3fvz8fBG2eZU2f+uqzJqs4PowYevEIjo6zt3nd0guvezr8YMWt19f7cvjlpRtpa5rUQ9MxrmBuB/b2BIvw86wzEAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the diamond ABCD, two diagonal lines AC = 12.0, BD = 16.0, then the edge length of this diamond is ()
10.0
562
[ "10", "8", "6", "5" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKsAAAB1CAAAAAAUt06aAAALi0lEQVR4nL1cbVBc1Rl+DlHXtpnBH5vJpqFGDSlUMnaVOGJlhh3FZjtJcVvT0qmMIa1KphChJk43IwppyQRHbLCFFMe0aqVtZoINtkldJlFJhQ6OsYsdHBJdDE7UbgrTBHGaXT7u2x/3Y++9ez/PXvIM7N77nvec85z3vOfznruMwIN7/gJgxYfLuSLzIo8v2itVcaL7b/gcfEXlAyfX+bkg0HH7TjBP2ViDk+vr1wLAuve9pGILTq7H7waAG7xkYoUDjN0138THdT4WBoAPv+opIzNMsneJfnvVKhAPztYREZ3FYa7YLpEueoiIaOdhPrv+7XoAaAxt8dR+Jjj436cBwg2FHHYVaK4oTsJZhIgEr42YjbmidumKxwdiYnkviwMQTTI5oys4KmUjgS5Xv0qMlOGGs89iAC7LmMWwumgCACb7wNUPXAYvVaELh4lidxIxfuMMH/fMeib49K5qABgIgz34LMDJlRgWbtyU7ykzPS4cm3ilSi3gaFvEAAY8i//t94qWAdJtf7xzdZVWxutFs4GXipfQcY8UbPmkcFAr4+bact/8stlcGemgFD1RWXKCnq3QBfNyTfoTVBbjZmWJ2eb8jgVKBeI6uev+lcRutb1mLUJD3rimDi+v++DMzmXoKQtm5c2FhD9JdCi8BA47Xrl+iIgoFYjrE+fkWt1CRMnlC16TnY36O8Srlmoi0g47PFwFGg1cIiJaM5YjNT0OBbYlxauL/kRWKM/chaGx9WoAKBsqydU51XivfqbvG9L1/s1rsydIPMU/UbhAREQ9Nfwm1EAgopld/k5FMOWfyNbi4vr1PvF7pJgntgi9o/cGHpzK3DXVG0Th4dpbKoiZLSxPckTPhkBj5aUjKvrJfKOEObimMmNfuTejwcWm/C71vdDUZKTGMdfuKa4AxJl2+WAubUlqMHix8FKiHnKaACZ6o/K1Zhro3giqse9ohevoWXi7vPRt1a1ARLUtht22e67NtZnr5PIF1/G1uFjv79ERExL+i4a6rrkm8z9W3RWNuI2vxXP+n6h5iaxrWzS3ClyPBS3bVqvubh29jdNNAdA7O+jVDfINg7TkHI2dlmQ5jgUfrNDUT0/2qG0HRXeqzv+CUXBkv0mKbrlG2jW3Y2t0BJyjx99k6JbxQMokhjuuwog4aSGS6HGPBiOl5XHjkHCnsdy1XSsytSaaMnzIXQJivKkHAr0mwYOFphNNd2NB/3SNci06/oa42xbFgO7Ca07fpywxtHji8WWmG/tuTLJQckRQbCMidrubBIhIoKFgufm892ThvGmYK67PV2SJZnwuR4Op2oCp2whEpWa+Qe64pgqGs4XFjkcDgYiow7/LYqUuHAlaJOCcq0AdEQNx3VOOUyAaKqm0XvYEj1gEuuB60T9uIO75vuMUkjWBPmuNPiuzuvGBXQ8YSccDDqMvdPh3z1qMGQLRfKHlfNg513OGc3Wi/HOOog+WVKpWpgacBaIXKiyTcM61ttlYHj7kYIhNVhcckRmZYkG/2aaD47HgvaO7jANCb2ZPiHRYfHL9uvGIPBKY4uDqCut07CwiI2I2TMfK7KKeKA5bV7+I7M02HZxyHVyTMs5JmPWJHaYgbuwy/aOkc1sKjtokLibaadQlquGAq0BEVPa8aXhwSNKKxInmSrRd/UKbvzlFTiaNqVVxGz1bfyUwAP2pWlONMmlrc34uiF9eGVLOahCA14pHTv3CZ+OnIvbdEbTTsy0vEdGCVcfXK9VdrJ3OPqQJORe5zq76FRhttulg3w8QgIOrNyrXWSgdEb8noux69YmC9N71G8Y32aYvYf/mtbaPhJyU2aaFrhLH3qo4dR8mkn0uVrj5nHht6auC+DFlb1Zn69iO8qBVcOm/igFMfhbE2pWA6HMfNZzu2ihdW/ogEz/2Vq+15+HArFMrrMvcXkdE1K1aNaZa/G2u5rXJ/KR9X+GEq+EGowpDtxARVb2rCI6uiTibJGSyMNxs08EB14Q/aV3iWd8sxQBIZBPhdSdcrsET+f92oOWAa02LnYb6QVeq2d++6CBjDZRdIUvYc40HbB8P1mdc9UjBFvc7BmabbTpYchWIiCq7rFSIiOhQWM60suSEk1x1cGZWAhGlUma7MiTuLZBNGz2XT0TSs0mO3aJ44IKjTSYQEVlQpaCTjZVV4wJRX0E134ZR5BlnenZc/ySu1syLLRARlWym8cqSIb3YGcw323RgBCDtQxrwpQEf0vABSEP8Wrjpd+JcXRRIn740fGmfakBpnaOD0Uc4zxZ9K9zoUJNItKv0r/yJX51hscxqcSqVolRKqQyBiLZ8qTbpzpgZvLHO2fxW5QMylVQqw/XShUBc4WpUHhFjFYEfcZAURH6qrUcbKHMXuVLVVcs6w8E0zA6OSeKZtheaL6juHUNUP/lJjdOoeUBaJ8rc/6e7mZRE9WqS+A/F0+ONkNcP7rHzsWVOS3kFANGiomF9afjkZoYnf1gw5yOW9mnEaaR90h/e236p/zYVc9foX6x1rpxxh6yeI+Gf0ou0UJ5NPtHi1Oe0EATLzTYdMmsYTScEAIg2+a0KiRcLU9KzSd6TkOzPiDjXlttWljcC7wz3WrWqd3dcipW6JafDYrTLhbZsV59PMmvmke3On/u0VJW1GwNmGu6uOVVKOR7VfElaczpD1jpWOS167Py27CCZ28FCStQBLKdjsLS4d48bfeO1IQPQvG+ZJmHVMu/UDojPJnM7sstsN9u0MF3H/v7qiDZh5Wq6+eWOrXohD9Ktf3Wlb7aXkX5in0lIz9e+mNgKL04V95RtsFdSwcyuPTeHDOVv1X/heBBArjYFkG5/1V0EE64zbYNG4undR9ul6s/9ePk+6x2SbJj4QPtmo1Ni3YXXnJap5mzXme52lzGM7Xr+N2eyZPSPhuXD3pxzIwZg/7cd7AppYMw1un2lXjT9aKyzmoOXERiA6e4Rt9EMuZ4+mlDfEgP9qq32A0/f2Nt7r1uzGnPdHdWccGcYrls16OkxR5x/PtvL7GDEdfjUIc198tETXfcC8KDtK2jfluVltjDiGm3zqUgtdrb/WK5+T6gSAyY4zGrEtf/zGhWpk/Wr3izOgVk2GIC2He7NquYq2XJx91OZScv5xuFfR+Bl5QMAJrSN1yFUY4E0G+xduVmWLD5ZJD2b9PgVqLZ6ntdTMnYVTcfS0X5Z8lrDde+47licYJTLrBmuci13lkmn7s43jPQ4fuLjDnuaud76UXxAojrzVAcAYHHv+qKETNXjl8pGR7ZzxdP3A61b1gLAa9uLT62RZc4aFjGnqo9Hs5bMjqB7f+ujm95fCXy8I969KUPAHiGExIvBUKut8smtZ67iaqu6OWHrT1civXf9rWeWyFMBoGWPj3G5ldYHRmOnMdBQPFYgCxyWP4RW8aLVXvfkJzXOE9ZAw5Uej16sEZ9NLh0eaV5mr2QI2QcIAP4+Pr2hbOyb3nAyQb+wFZxbILJdGQA8PDMWL7BQzg1iO93TQrw7IOp+oP8H93/ZC1JWuSXfcn0IVYHaX9NRACCWwzuzFiAGEAI9/CksDa+lQZ7UrAZGZQkveXfxeHKR+oH5Rv3EwDUcxruHMcb6uHLJEzN57FpPfqfDgbVeqTpMse+N8qQumvPAzZ/yRM6C9ekqEID5iTCK+FLPA4DJ2dtXcC/+CVLFsrusDcvAALx+x3I01gX5siKiev0hMNeoihPFbNIQHxN2A/gnXyZ5AA50s+u5yqlgfi44/8ydN9rZFQAG4tR9yyhXLnnA5CxRLLem9XoIzxVc+bCD6e7kZ0E8WDTAlcsVmNz2BpBATuvqiWgUcWK2PRGxY2Hg4zOcK85dQJwiQC4OK1SN0ndnVU5pjqo4zRWt4PsxAO7fH1DjbIjoaRsdgUigGBiAEGc2nswHDsz+DEBD1xL/6gvn77toMbARwHe+4mbg5DGRB3YdCIvf8WDOSVnj/4s5daITEm8eAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in the diamond ABCD, angle BAD = 80.0, the perpendicular bisector of AB intersects the diagonal AC at point F, E is the foot of perpendicular. Connect DF, then angle CDF is equal to ()
60.0
563
[ "60^\\circ", "65^\\circ", "70^\\circ", "80^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJYAAABjCAAAAABcNaaUAAALBUlEQVR4nMWbbWgcxxnHn3XsJA1plLbr9lIESmoFlKhQUaVUNE5VitwqjS5VqVp/Ma2gJoY40BR8RgYVBeIPaquUBBSiiyl1qQqmUWsITnBzKlWITQT+cCmIqMQnR0F1OVuNfdb5pNvV7vz6YXfvdk/3sqe7On/s252ZZ2f+88zLM8/MSEOaitkH9viDaNvLZkczuPiwz3tBKYWgtpdNk2kdjbrKarARtKY2YnzPPi8/ENE0tc16N1VbS9oDUWlYUyJNpYXEn5IOEdlmN/ejibS0Vye09oKmGuO2s2E2BSyJktlLXqixlmweraVfvC7yoRtAo7HRRJMQEy1FVCQGCkDZtq1Q9vZya+4E4autfPITBCIYIln57z/W8ypHTm2uN5ZjU2hpItquzfVPv7v720c3bt6l3al23uVGb3NANrER3x65/KVd2Y9OftcJKo0datu1brSrK/eZ7G/7fSS5qP+17acZFNjZLGxY28y14UZ0WmnpR48PLC33d3UMv75wd8dfRGTH3XeL3Hmb/QlpCyB9qOV4lvQ9y7AWmedcx9Bqgzlug5YKPCBzrOXIqoKDRwCmuy2MY/qpcp/8P2mVFJEfv+fgCsCingFg7xQw39l/xS9aL69GG3EqMrjovA1OOM9kZBWwxvST2+HTKC0FMNPed8Etee7+vJty+JBDr6tv2Sd6i2iBmu3uni2Eek56b5lIEgBrXJ+85driQl/7TDE001V8n+pxXxZ7elO3iJZb/fcHI1O+WKt91hfqnkY5ouOfG781tABYOdgynsfXayb3+ZPnIxnvdbm3Z9GfpMJ1tbpouRmuHmkZyQQSvO7kSTlTmMNhUh+zUAEyqia1+rWVPd5yKF1S57HhoExaX1CQxVoDVvq7kkXxcGMgNC3l5GdNRoZSpfmnW5ZLpCf7/KGT+lg+mN5kbZ1q609uzfPgEf+ErgCrc8YvkB7oeLeucuqidbarZ65MPT2z44Oaa817i3oAZvQRv8I2mkdrvrfjdLl49YOJMrH7R4Ph1aH2ucIXYDaJ1sJg64lSPs5jri1fKqxgRS+dSc9EDt8MW1o5WootfXLlgD5RrnCAnj+UzXl8oDQmM9zmn3SrzROhtLX6bMvolu7jwW92/Mh3nKG0emdbhyvmUx8tRXas5XC6YnrQ7Pi/O9u+Rb9kD0fONkKrUEvrRX1/6azklwnOUAEMlLOHc237Q6yoa2lrunUgWS09YHZKsNyyEgg7Vc2O7J7xJueSpGq0LOzC+D3T+di5iv1SwVazE8DofgB/b1IA8w8N+TpFFkzI1qBlcS3vznbn9n75TJVCUT6zU5Z7vm0WVGmRkB/RT/qC5vqWTli2EW2A5EDrH/0llitYuUuFSkZu5mELTK5sYZbs6i8qTGEatWjl2CADH/5Yf7G2S1zG7ARY0z8BYFKqDmWN6ZNewMaySiomCiAqokmiGJs+3DK2RfVlMPibGgKL+hVAbaGFYqGn1+0A5lXYDCa72oomSMhFNy4z2vJs5UHsq9VcW369Bq8jwyiwytrAcf1F79Uusd1SeKTEMWL5id0HggO7lFVhYdBzsrKci2xkHkpXDF7NFve6K+prpZ85tBIxiMZQoE60Di7ULMxBJbMTwHS3BZR2aQ+T+jiYZFgPdi6HVlxEUoD9kfTOhySF1f53d9BWxWNxqqyvlnu7kyZ5LEyLNTBtlc+hHFrRFHFZgtyavFf4ovyYN4veTl+18gpwnP/KA+iEPmY5k77N+oC7iyQAqScBicOG9Z/IQW/M11hvO2YnxE6y6/xXRLq/6wKQ5xrkohcvExOHVjwOFyUBltrIHo6crl0UNcyOH9XMpmPmTurH8oB5zeTxqzY8GROAaApEAEPZcL5jKO1XVXmr6pqd2o3oc/4rYnWoY95824ZEbBOIRUWREBGRKICVtU2T9V8WTFZl965gdkKg+081RWY+I3KdbCwBEI8Gjc/H2ORzkOz2ZmBAla5CoGh2cmFozUdu1JCwnm8RueoZnVhMDDAMA9wl/E0sG2BcH/fiymKwnLdTEZ5qK2SnZtujKySzvB8DSElCDAKTXWFkLfd+PenLKTjAlefthNy+SuvVpuj0UNsbkN+wiccBolElN1WAlq+cE7sdF71c0SHMTgCTfYAqu9ywJnaPXgYT1pEUpCQKYl0FA2UYhtOYToMahqFID3ae9xg7De3+8uevVjQn5WF3vgZla3iusy8F9mWTDWfsSQKUbOYcbbn/C/8wUMZM5PDHDitftGFstL9l1MlrrjUg71n71QOR08BlILAW2cEdhZMD83YRMU3fAcUP/5X72t/c0O3e6dDt8rv7e28PexyxeV1ERL756PP+WM35eemhyMVBEfniDZFPBT6zTZTTbhR7f1F1zLYdWC1GKwy4Gkkaqk5tlTj/jqvRvXcByOdMixtrvgQQZbjtYQTbsfDIjuingtFjw14gBPJZyynN5/wrgNVD+jQU16UBeyGmbbgFuBrxujyQdR7nv9Kf9kWv7L6IYWDUqS7H+XdpKU7oz15hHbjJNVgrEZaiJ1m+GIXC7w/UZ3aKsAPOf3JvzwVlq4AB2boMrMzKFV/s2bvovjtmZzvHAE+Mu/ldP6JPoZQqtWvFgEfLqNAmxUWfftxx0AYntnkyUXD+T913cBWUg/KiNXdsTM8c/fvxrguU3WQLjdH9wGJv1zyAbTdCS5kWtqmUBdP6SL5us1PIB8hLMjtS9MKqoOatEW2XyI4dZO5F+87iMw9fuu/D58LOpCJSct9N+/U7jy58IcRXYU/2bW3zDpEb7/5k9VjoCT4INMm8mXmt1wlt7qohHUr9znaARG+uPR1yqb8V+TF9/JpSplJKbdYYyyF3mhXRf8LpmLJ4p2Oo9GwlFM62Da5koo4uitsdm+WFQ2+AR8m9rF5SQH5UD9ft/fsYK4Ptb8I1ohetTVuadriSiBN/UxncXAPmH/lWhe3UIgJ7Ida4PrYKYH9vzX6FWM3iwjZiXBNZXFfO9su66S71Q9Kae6h/mRzmVRKvbH5Qm1RIWgoVTTHAprLtDcwrcPWD3p5kmE+BK/tbzwAYNtaUiMRDfFPlMktx6tDkkuyRqOw0NE3E/vzG5mcfnPvZvueMMBPDC50Pvv+ECGLsEPVGiviXwnxVWUP+96k4CmKo67CRJQ9Z0oMd89Qak+e6er1DYWWuL0YViTCn6lUbsVhiNAVE4wA5+JgNZWAyE3m6+lbm6sFI4VZLFkzH4Qoxu1TXlmumXZdESuupMsOtlc9KFFP3HskEaESXnJSavKpoy7Ztah7Fz7UdqLTNeqF7b/CMOlGmZvXSsgs/VaAgO1Jy+8hF5ud66fljHWjC/a35rv70Fo1O64cy273JQlVa1npIJ8IuLvVdIguPdl8IRDSNlhVqA9IRXfeW+g6ysaJHUmujqd7VaaiNK/D21Cd3H/fOYmYiw+Hv4FUYlNVG4kaN43dHijUbM8dKf9cuE3Kpvs5ztpsC+VrnRnbdtMIhj4KcCda0fiyfH215waqjP1WawRq/DutcW87ftlNdf+a8/Y2Xg0v1Gn+6QoV79c29av2e9Uhd8lS67t9UWkXVhPv7HqQSrZq3dKH4WwOv7tC+L0dFKhZWLufyqEnLucMd4ib3kpaC32rtIQh5OWtaxXwbHYngzonaUYBYorpoSDTrvry8yq9ERNofaEaGjXd5r3Nr8acaJlNEky6my5KEWqKHRbP/4k7EGfcNNkKzaO2RSyIiS7PiKLDRP9hqysAB4pKAt6JNyq1ptEiISBiHuTYU/A8GdSF+RIEWAQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the diamond ABCD, angle B = 60.0, AB = 2.0, E and F are the midpoints of BC and CD respectively, connect AE, EF, and AF, then the perimeter of triangle AEF is ()
3\sqrt{3}cm
564
[ "2\\sqrt{3}cm", "3\\sqrt{3}cm", "4\\sqrt{3}cm", "3cm" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG4AAABUCAAAAABG0V3sAAAEuElEQVR4nM3aT4gbVRwH8G/SMrSnbi4aMQsR6joahHgozaWw6KELBbsgsumtF9nQPbh7WNiDhwqFKgoVdN3dg3U9bSqyrQcVD9VAhK4XU2w1CwoBDcQKWtpLnGHj10Mm/2be+72ZSSi+XbKTN5P55veZ914SsgniUbbkI03TxnVKiUQikZi+M+E86truMnmwiHXtAZFa7UuS5GHxuRzaPH751PMTKKqz2Zo9CvO1Kx6rTiANrYc//IoQcY89/ssk4j5dPXM1TNxkmvvwhdOf3QkR9+e9pycQ98VJnJmpApCHClDGufHT3A++AXDvXMpQXae0+k5q/LifXyFZ+2kPSGgWsc7SFgDkqimUt8ZIOrIzBffV7RTQWfqumtLFDbVnn7lgxU37Y6WFztJWrprCu6vIVfWrSq/V7Y1S7MXE/1DzRCgvlPYrcau7tuDrMD5Bu86G3Y5XXCvt6zBWtw8b2ddX4hV3Y97XYYwrLwCIyxmwNGLadZIxOQOWRsx92ABicgYsjZhljyMWZ9DShNm1JFnPR+YMWpow96Zsb8teeDNqcdvnA12GuM/P9jfXKnsR44Ye3G+yR7Yx2I7K2cgG++Tq9tLZwZ2onOVisE+OG+WIyKmylDGHLaNyqixlzBFLRORUWcrVrV329+Rroasr3FJ0inE+S5K1QlhOpaWI6bcEkD/91liWUpxqaK19fTtcnHJcitcuaBmeU20pYSosEZpTbSlhajjCcWoeLGAqLUNyaiwFTLUlwnFqLIXqgnO819r5um5XrynnOKVprrMkeatgSNNZ6jG1lgAKswZOraW2uuUrwrM3cWqXVm1cuiWdT+as27o9OsyKnZa0ZM5y8A2fAbO0IT19A6et3QeSjuME+mVLipx6SyYBWAh8OjVYAigU3othCZIMFmeyJNm2G5o9ekv24hzH6aJ2YTO/OeQwc3fLu6Xj0OG3s+pTCpb9kWl5P65lucDN49OWC7iWZbkAANey0LvvwrXgWu6svRnZso/peH8cxyEXNwYd5MitM/jVcAqWHFw7Z+jsmVaYODWnZMkk4PrqdVGZUYxL/2EAlJyiJXqDo1+BQ5Y2vDHSGxq9g7zB1B0rjnp0SpbDa+ZgOhjneL8FOUXLoTXT7c918xwfcGa3I1n2qhteyELM8X67b/skREvlC1B4S5JfzY3clS1VL0ARLAHMpUc4DZaK6qJY0s8pW6owI1lylNNgqcCMZunjNFkGqzv/cbTiRjiFd4skFZjt9P2ocbw+720Y34AGMCv5qWiWAOaPlLsbug8ieszoliRb+S6nyTKAGceS5E6RDGEZwIxjCaCIcihLf3WxLOlxGi39mDEtSe4UQ1h2Md2XEokPmx/Ft+xyhrA8DKA5d+Emrk+vA7iGizHj8OTKv98bD0oQnaWjVwA0338buHE7bhrQPPma+SCylvkx5vWK3pJAI35Bw837pv1sWzooCeBYZhJxhzZ3l8mDJ4pSXhJ46kFzEnFe6Bt//SPHPTdzFQDci5OI61w6IX57SrKGddJ5+e9xx8EuAMM/LYAkf88BubHTuLtMOi+KJ0oCQOYueXcC3yADsD7BjrD7f/L/KnFb59KDU9L+sa9Yrx0sAgDkJeo/Dtgn9kZo5pQAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, BC = BD, angle C = 65.0, then the degree of angle ADB is ()
50.0
565
[ "25^\\circ", "35^\\circ", "50^\\circ", "60^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAALYAAACCCAAAAADOcG1jAAAKdElEQVR4nM1cf2xVVx3/nMLsRLRLfNA3KOBocQ9QfDKMmLE9zJpYMhL6BwkUMZbIFOkWS0VXFsYPQe20jhpKJIOER2STJczWiAgJZC0QxEBsZR0P4mNgWpNHmK4Vpq/r4378474ffe/dH+fcc1v8pH3v3vPjez7n88459/y6RxAaoFjzGwDAiWU6ZtRRohVb4I26GDmy8Gmf6MhChzYBpEZCeG1i9Sf84iMJHdoCwIWlGLiOV/yiIwu9QgLcfF7MmO0LEyXo0j4VY/QB0J6oF33ggxAem+oPFRVo0j7zLMV4tyKAdiE5VS0AmI3KeELoJHg2AsRCAMVbgYhvlGSgRTuL1NzpXeYVhR/2XKFZSNKZjlbcvmxejQ9rDbWzulJ8NOv37/7utz4xkoJ3tUXuYu/iRd94p9cPOtKJ+1C2h6rOhbDv8iF9S9Lwg/aWxCFgeM7blfqmZOFD2b79+PVyAL/sOzBOzQg01aYABTZ8fA8ADIV6y30i5Q4N2mltbyyOlwEAdgzt8YWSDPTL9urQDvNiqCrNfxygTbt32a3S9OWmR7br0pGFNu1lNd8DzBJzO3xtvOTWHSZ0x58HQAgA5SsO+sBICrpqf2XDN3M3N776t1L7oH5CU+3O4VGsUfnMr/TMyYM6SIWO5933VaW07ElDT+0j5c/m3c//3JGMGuYHkf7zGzp5TlacL3DpmVMYxtBJwBZas1L7Fz1Z4BSe1lngIvD/pvZgsKfIrSusYVAeOmrvqfnC6PwDACIP/wHjMZD3ml+DiUDcwr0jkivOdQAgarwm4QDPagu0rLUaF9QOdWd73W/Uxcjuef6pn7PjOcPxKQlL9yM5dUdWcuTgyEHPSdjB0CjbuzdOtRRxdbw3c3lhKV6fNvFbnpOwg1BRO78F7gkO2oSL1mavAMS8yOlKQbWQGJmP2ja7IMlgpqrWxbjmQ2VuLomTVKqSZ68hPTsigO6eDXbhSpt3mxf9H4QQmaRRGAoxaoQtndWRBaN/70jU/rmdfDROGmS0nTT4A47BE15e7Z/Mmpm76Xx/rf1838e+3Q4I4NQzgFgzCz7ODK4RQogZ99zVNkiDBhntXPhhTrdwh1OcwfIE2Z1OKeaL1BkjdTFyW8U9V7UFICDQf++JqZOyuh1+uNYpTtm6VuDpdEIhP+d8RkZCwM6ntskVEmJvA+Zlb4d3tziHbzwypEPOAum8/2kmAMy5KkdbHP65mJG73R9yWTsoX/0qAH8e6nk2zlQDwGzJJaeBe8TZdzJ3L+39+g63GK3GBDV2zvjPzwBQpI6/CADvzZNSe+C5BuBm9vbC7KBjcAGUffZynpOG7ALA/dd6AQgklk4CMPCjapl2+2UgxjqBJvP2TiDu2hIb8RlJj22GFVpqzQSje0lyVY3yw50GGxtkwq04kBdJC5me/ciCGNmPGuU+iUH2l1l3WAvQ4+Pcw/rNJMl0R/4EvXSl6rfKhVweVTRti0u5zmbmZ1MuJLGAXYe1AP4NhpcUDzSUhwlbmiVnVSNlHaq2rfHmvfpiR8WcXwxKtxAnn1C0bY3krK58B4Pqar/YIj2n+rX73e6B3NH6pYItFIJQVNs4qdI+dESUjFvDelpDsZA4d1gLkKq6qGbdCmubi90MJdoGj6q1DrnBsGdcCt5Np50HJbVTVW8rpZma1aP7gFx8wNJZqUoenL5UqTZNaGrRHI+9mVxv3QtTyHnSYobVJUaFVX1SiX/O2kNF7danwopilb6Qnnvw2HH96ZNLbCLLZ30wEFcuqYM2E4Vy6C/7u42PtNrE7tpKpZJKAGUbXUadjga2vDDT1k8WiUcUhTNI8o5cN9cSF4P/tvOSL9tb15dDqZAKAAis875U2dD6SVs/2azHA0OeJEvYzsw6wiB/7dAVk1GbINDc+Cl4aRHKa9pVoxCAwPAP9zmkJpn7HvkOawHiFUlPg8mtqxw8QTKZdKdUvU894TTWttED75tl/Q6+IEl31l2ZDqu6bEZvRcqD2Ku3OflK0g4fVU84i1oPg+HzFUk6iJShnUwmzcJiFpjkqC+D7Pii6ZD+ZDIpkdUsLnqYe1h4xNE7q3b6P/s36oupyuOj7s0cqvCOHFMtXdHFzv6jaaf1LKYdjZgci7ImCeW5h7tBl3FRtt0uHU5/lxaNcYebNV9QiUzozDbIUvhx9ZddQpDp3zuZL+aor7YVRc5qaisNhg3ylmtHBplKmOFRXCWHpvTlOWfKtgrvcJd7mBxW7nILMeopaUdj+zqVJK0RrVYIbDZ+jsjRtguaKLtF7ane+1U90mFTEg+JTJUcHrYr/LvX+bCyWNK8Uzrsocmr3AO55SseuCOtkx0MMhmU2zNgcDB4yf23dem4EjsaAtI62UEQpc2vQKYFFGipWSTx2zpJRLIneNfI3XmGwbuWc3nFiAduSyRmr7aZ45ebJ4vcnRcQAAQnN7S5BiOA72+eKpOYc666qnxb8BoMygyGT8/6r4wxW9oGaZBLfFuAIRsb3cOkwseyyTvBWe2OsC/LXSaHxBT3wfD+JXIWnWgbqfkdclbk0LDdLcRg8C9yphzVjkbkjEgi7rrItvk5SVNOtIsWe3RRb7stzEQ8IDuF5US7rdbnPU4xl1mL5S2ylhxoW20Y1kRtu5PvafnW1oH2jnp5PpJwXIhPzT8mbcietvXKmiaqD9v7tT8jb8eedmMj/d/A1xWy8zGGHu2Rt2NL23085wlLO+x8Gr+jYMaWdv12BSvy6LCbe7j66YTCb2tH237DsCbCp63da1pVrNjRtt8wrIljEZL5lcYgebLqvooVG9rnp/u5Q2s0UlVWj97C16XcYEM74mOHtQCHalncQrVXk5nOsgysaR8Pjd27YamKniK3oSl9akasaBsMd4zRS1Uk2bayyHaDSuNH2qh9xJ/tQjYoXojvU57UsKJtXWv8w+7Czk6NcrNlRbtdZcLOAwYD5mpSpqwcf1y5JlnQVt9/oQSD3Jo3GFZt/EjS4l3gnbGjHqZDVJA+PiGNX5w5oWyhmPZQ5Z/H+AwJik2Td5lnElDgn6FzIWUTxbQ3Jcf+PeT+hbkDCDZMbPdw9E1hqUmMTYd1FAya/UuzRvbJ7pnNQxHteot9d/4jtxBf3e7lwVZI+4anzKtjZbqp7pjvqRuBgrzWSo/5vcNgdsdEsuqkJxMguQYw96Dr7L9QhbkQ37qcngasIMm6EzxrvtgY2U96M6SKrsoUmQh4fJ2yBETqegSPAQTO/GM9gHE51CpScRTYWq/eZJsg2d1E1jWRZPgtH/V0wekwez0PWCcCuLnnVcRCADpjf70Cv85Rs4EghLkwEuts2+H1GJYSAKeuMjr3GoDhZjFGJ0XkQIJmAs0976/XMNNfQ360wHFScYxwh4wCNSMvKccsAc4sB25feQAHViIwIK7QOPDQNPWoZF2MIwsq/HxDWhYjC5pIctsJ5ZglZ8XRueKhaf1+viEti9f/tQsAZn9GOeaYthouSIW/u1FQwMOZjSUY//M1M0i8O1vA2xpzSV6kcc6A94dx/pr7uB2MBwAIfv49ABj4o4e4vjcPCojiBNnt5diVB0qb3QCaVLubBsn/Adwm0dvtAby+AAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in parallelogram ABCD, AB = 6.0, BC = 8.0, the bisector of angle C intersects AD at E, and intersects the extended line of BA at F, then the value of AE + AF is equal to ()
4.0
566
[ "2", "3", "4", "6" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAARsAAABgCAAAAAAI1IlLAAAKw0lEQVR4nM1cf0xV1x3/nKfpnSkrJLJSM50/HsaHkiBKpp214IBiV55lkU0z3Wo64D1qOzUTlQiRRpaBEMXYRR5i1k6badZFJzKj75lglIqRRpphwfCebTO6xZYltbCtdyl898e9774fvMe7Pw98TLz3nHfO/Xz53u/5nu/53nMvI/AEMd9iOzGunJoRlM/GlRQMhcAMV40iH1fdMKDKaefJqAubGLMxxlc3BLQVdXAk1IlLTv8EVTHM5sjJEMBiZ2g8z1zYgSOD+7iOKXgq4Jj5/sbnAICMQa66aWti6Tz5dOLaCwBg5+pvAiDypvMNGvSgqQAA/A6O/iaw5xKxhzN+RCFQBQCBJh8/3exrQsC+qQP+I9wo9eF6OgDsceazmW/ivMH8dgTSnZcwTbqZudO4rxAA4C0AT90Qm8k6iQGO8xQDwP7Fj88weMbFAJqOuGdN1zhOiKBcWx2RZS4Ydj+YnZbHm1UdZJE+a7d78iOreGC8oalKHDtz04EZ6XeIAePNzTurhWANL39DuJF5q++g7am6V4EZuaRiwPtZvp46RTXcdPP51u3NVxYB2EltnCi1YqR8c603PLvEQTcE4Hjm4oGXpOLpg4+s59SB9oykwS0RNRzmKYaeyuSbjmBxedmuc9aTqobs+e67/3slR6mTxjwHu3nsLt7b5QiV63quWU+qGgwAxqrzSntzQnWSvqzXzan0OYFt4RWCp0K0nFU9COjM+Lh/l1JSYPWY+sgVZqsyXlh/4JjFtBrAhisHf1+glMLiC9PtJiJeGqv6wfbeaNUALed6Y7XmCQoyjzdmr+4vCP9JiS9Mt5vwyOViZWFgbowmcxvcd2ZNas0VQeJu17w7S+K0sdDfBApr3vvDJNUQALyS9JZyPp34ory01rskniSW6UasW1vw4brJ9dINa63/DNMfHZ9anjQghTQxl05W+eKrruz7T8deNhEDHDtfv2ARsxoQA/BRxdehaSKWoNbYzaMfuzwXno5jGAwAqofOW8KsCsSA0ercn9zNmXJcW6Gb8cbMrAdFQBhxtAQknN792AJqdWBA5/KP+3cxTDmuLRhT3a55PXZFiKgTpbzm5f2t5nOrADFguHLw7XylFA9m2Y1iGCM/L633qtkr0fiXOyZxawOTQpr8YCk+zNJNkMOT/sxQiaoeyS2/HDeJXBu6I7M08WGuv+nNOdvdlKSy8ZYFzaaSq8NIeWmtKrs2VzeP97zovrlCffvW5kET2RODCDg9KUsTHyb64nd3b/Yna+mwsMbdZR59YrDILE1CmGA3khse2NDc2ZocXpO43+tj7xinV4+oLE1CmKAbBmCs+vmSe98Pr1HTz9Z6YMQ4v1rIWRr1izhz/E1Ycgga2FnO1ipT+FVg2Ln77XNpAJhq+YzqhgB8+uLes+fSQnUalpCHfTcMCpAQBADjjdmr+pVncip7GtUNw/hvsp7rz9XZPelEmZX5UYK0xO7O6up9U01IEwFjuiHguqOn/+As3VcoWV1nSIKpwQCAjZRvrr+yEIDGjJFBu3m0dUdLx3x9fSU5j7fftzjF1Z6R4i+RzzVljIzp5uiypf6X9HaW8klp9WWWprjurz/tUx2qR0K3bgi4k93Rc1jQn9mUdOKCR+8FpgQBwFh13vbbWRFV6qFbN2ykvORAlwMGM5sEtNd8buQK8cAAdGYMD7hCVBol1a2bdoe8MDHmLRiwwu2yJq0+7Nx79kxqOJU2aNFNmPx9z7b7jiXro5yEmsGLhq8BQoSAhPHGVWt1xxYANOkmlCIbq9qwo2elEdoICK1v/NuwhkP5TQIA1p3VdddAbAFo0o3CfH7pl0OukBjGkVtQY86FAEhyjpSXBkMa/bABEEUNsSkLFB5+71SqfHcMsgfRpDwENgftjhSV2cepYAMgQF04TQDE2tUb+9dBVotZHjS1oXIcYQ+pjcFASBMBLb6YAVeX9T/4dUSNOXjlyRYo+14Mgcaq87bfXmn8QqG8nwgIIiBAhCAXQwfp7Ak2XDnkKQJEQYQgal66TYl3skqNugcJf3XnDUjztuG9qEG7EeR/oiCIgCiEHwCIgoCJxlWrPywSIUIUIArmrp8XVrvNuEx4SGPYCMPHlCgAiOuXezK7uusEyO7JXKsBsPfveh8Ch5zU+JHsNf3PmyMPwnLpwUEy6Y+WTHNkj+9kiZWpllmnS4pSdPWUZgUGdLsW3F1k4q5uGxD9F4eXSc4h/i5jfn+JtbmENS/vh46ZT+7ApJBmkZn7VmZDHkuy4QgihKBbDh7+9zf3HG+GACaIoG8F/Q1M9sZodPxinf673l69Y0iet80yndnRoyg4skgpPN7/55ZtYT9KPsd8j5N8sqxP+0WD24O/8a6MrDKOkC+OMgMlHf9uOvzbuOw/K3H8Vl/HsQNmhTQRCItvosGAsP3aPPafncje6kjcahI6lZDGXCjxjRDLnCOfBFpuOvNrdAQ5kVkaM2WMuWYI5kIuLB0eCD2S42A62h8CjzdmR2RpzJQx5l4BKRfyqfuTP+by3co5q9W5MS1Ro/BpqNu1oNectUYMxF1rinU5ef15vHe55uzYlXBUhGQaKS+tv/I9ywZ7PN1cz/zg3n5jaTNd0PCSDLVnpAyVgFk22GOMKWJ45L7nKbKGMAEEj+uBuiAnIqSx5AXQGHbDcHRZ5oPpUQ1QtLZOTbPoLI0VphPDbrpd8z6Yxo9iHc/clpmgCbFO9wZLQpoITNLNSPXllp+yoI1Ow7vKafUVN6d0dMSGX/OfzVVKlkmijCnZ13vSU4a2hOjMI2aM2Rh7U0VL1xNvKecUdQSAicZVz4ZCGgtvnmI3DAD6XqOulRZREgBSlZ5uXb85uDWDRR1hcUgTCSIiogkioi/3pJ4iqyAR4ZCatodK4v70RdkzF8wQRw1skBNYwHnH6ECZZfdAiyFWD8Z6gYgASCENL0zIShrIXdkjnU3EVaQRaLEb6vruaKzq/ufW3qNWwElVpsk1BWzS/RRr1zrvrZG0NQM+MpJbWCufDYcqx6rztt/+NgtM0DE+n8KTfPHVsn+WjdZZyyQPqsQsxIDvnBybT8B/uu6+ukCu/MeVvIFUpFcdAexV8V4/NRWMAPRdDMoUXjuNINv9rkpGPTdWpPVVAAC+6hw58yOgzUUA0JbPJTiVhpY1PiYmVFJtbOiwF9yiiYJTRPRNQ+qhr4mI4OEoKYjICQBefpyq8MlTthNERLfSRunWio1+IiLycxUTREROL3nh58DmBAA4VbVtmF9BRETlvwqGNBPkZ9x1AyI/F92Q00/kVTcBjzvmvE9E9DNUfqVUwkNE5OejIZAkrLOKrPc6E+Qk8pBHXeu7T+YSnU2Z00ohyTzwEnk3WSRfFEBEHoCP1ZDXQ55rqlu/kXQ0G1uirgCAS+BHRJggKg6QR1aOxZaj7S6MzkVGgIoBsOi5gstsBSK/k2gCbTzYnH5S54gl+P4kdwouOXjGGkQ24Hox8BCLOcRSAdhRrKF9fikAwI427JVquKbabMDlfCAdBYnbGsb1YqAC+7R18hUj4EeTNRJNCZuPdaQz5uSxSKDL+QA2qV8nEgA8dLH06fnKOseVk/xlYPi1rYU2HbO3LeFh1ZPA7Tu0xApIOmrr54cdS3g4w8mY7hV3QrSx8umi5vhtZwr7Xz0u/9B8SVSCr91InwXXMKx8L5BW/2Qe/g8VxXESDGezWgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in parallelogram ABCD, AE perpendicular BC is at E, AF perpendicular DC and it intersects the extended line of DC at point F, and angle EAF = 60.0, then angle B is equal to ()
60.0
567
[ "60^\\circ", "50^\\circ", "70^\\circ", "65^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKUAAABZCAAAAAB6ELtkAAAG+0lEQVR4nM1bT2xURRj/ZkNs6QVJbKiassU0sie6eHFjYqopEDworQdJTNUiAYIXthgFY6T0YkOjLTGBFqLWRCoGYqsXmniwHsQWEZf0IMTU0prQLakgROm+tjg/D+/Pvrfv3/fevl38pd3OzPs685vffDPzzeyuAPEAQcrnu5jG0QBCT8W4/yJoedftkpBxb7JTiJgQuwOwJDp7qp4rfEToOLzpHyz8unmBz3LmeiuJ8tJcntxSRSsHp46xWAJEyls7Z+Ik/I0jxOzFJiJ65KlJFkshiD44/vedtSVmZQGIztcm1DR3xAffq65bpHIOuKDlkS1VRHTvWj2T5cyfwHht1f0YcEz81rTC3xiCZt44S/R7yWkVYK42QUSLbzY/QfCDBCRVX1pqJVo/72sdIZZauwGcom6gzGtLEKjutembKir3ChgSAfYe6C/l71gwLYcuiApTEFBSCBBEejURBdKSKPPuzUESojxqgkj0fa9neJAAkBpD83DJ5rQd57ZqCS5LQKJvD5BJSo1yqSCN6pXElJbyHXFjcMXcicNEybqvSzPARnt5r3//pTqjlI22AQkgk4xYO1dcSeZ0Wfl++V2jmmoeKgUlBzSOGmPP1jKXyqiJTNLkOiXE6e35NHslOvpMkohAlKwbFmWIhv/qPEpkTAtmz6YSOQCALJdn7ukzZbgszd5YDs+0SsFiKTHU7FpDaZDMmHO+LCUA5OJZc1npxexNW7K8EU/3WLKZhqjYOEIiG89ZSlgsMynrP5VczO2nrXkWy9SYaX2UADIbI6RkhQSkEWXo4KyX/Q0p0/ooiCjZ8FnU66Op+sX9xwtL/XuXTWbtZWtzDpYR4dAhLWGEXwyWbQMOhQXzKUpcSeoKSGa0IYGxVOGuLQHbLIwQW8/Zinz8UpDS3le4awsiqmnpK9HB4stVz9kLPTolAciug84PSyXmrYR9FvjeGsylrlY6P2mv3U8lOE+2r213KPXpmvv6HbWYqvNrMULBTPDxy2FqKeyVnqhp6SteORPUUd0xoGYKW/VCLp61ReVGQSk8sydd0IgKb798Z9VBe6Hhi84uVAzmnv1xteMDr57ZogwrohezMMrQ4emXe3td5reKqD2TRu5sd3ni0bOBNp+uRyxmruGqyxMPLec+6vLpe01Lv9rTUMrZ0LVtvdsj9645RhlWZBO3QqnmiHyUYYM7y/EUo2Z15YjkDkE6RBk6XFkadxleFSMXnwtFyQHmu4xCCBAtElXYPKH3j16OLx2dYZn5Q0mM17g/BQDFzp4xfZ3OwOHhGVa7sWSfEnv2BSZkgebTmaSXc+ssFUWBoiiAogDAmWYFUEtVqCntFYoCJVoxrXcZbiz1XwVQJG4npqBAKpCazor+A0XrkEGzJ+1WNx+yb4/nczNLTS1F4u0unW+epbUnakZCFbOopUga665rNcbeU7Go/a2oEJfPp9WMXyQuCFS570hx15kClO5Y7d0coKhKKZpUUkHjt6poObOKioOWAKLwzNFGn52B9Pli8FEw0KZPG3226Eba/FL90qBZrGfmGq74WJj2HkXrj9Ndhncr8WxRu6Rxl+GKPEtDGstdMQeyODH1y3AP6CzzK+MYJ8qwQvfMgHpqFyweUYYOfY5XVGhbudLeH2yKgqhy3xHynqPOk5sEudxl2BqxdA7oScuAskhAem8dXmCtEIWRW8hDguXdAS4kALR/yLA0s5TIRxlBp2xYMXnvdxRoabsr5iKsmE+OcQytLHOJayEaAxBWTJ8oQ4eV5YGu0ItzKDFnmac7C0uPU5wvQk1zxjEVQAHLxtHgDRkIIeZoI9PQxFIO7AjcjhlBxZS5jX5Rhg4Ty1vri4vAAovpdhluh4ll4CijEAHFZEQZOvIsQ0QZBQgoJiPK0KGxlOF3DxMCVaH3ibP2GVpGcRQcegEAJGvNzcVn+RULEBEEZde1PxAs7nLCyW1ruG+u/LQlwHW3fq9+eTgEKVtNN2iNlvbl+mBas+D0ilHf/wCBPtl43xAj0SmEEE0LxdcV+OL6goiJ4QsMX4sRdQzuQm6xPVQ7ZnTGhBBCDHHtl195bV5i4vm4v+kKonsjL1Ll5utEgY9XFqCDrp+k5Z11TPvl1+d+qSI68APnew/A9IZ5DFZfDLdEmrDU+hU+vnuG+5n2weqfAcilYwxbgvyCiLr1fBFXFNMb5qf3sq2XXt7NbzFG984NYbq/W5O2iDE/P1Fdt45t/e9MPb/FGM1OPE3xVz+9Wex7S8sj3RisZ5vfyObTvi3H6HzqIVqefHRlsZ+pnL3YRI8z5quGNQ9PgojwyQJHzqXWIeAwFf2RMDm46S6AcXZF49QtsdTKsiciIlF9KTQ7Hdo3SNhfW5GYfoyI2XBk3/bQRm33iYjqs+A/pT+O8EQWl5QAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, AE bisects angle BAD, if CE = 3.0, AB = 4.0, then the perimeter of parallelogram ABCD is ()
22.0
568
[ "20cm", "21cm", "22cm", "23cm" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKcAAABOCAAAAABgNll6AAAKa0lEQVR4nMVae4xcVR3+zrlzZ2gLmGBaVEpIK09Ll3ahUkqAAKUlgFURkGoDJGgIiqHlJcSI4aEYykOFKGxIEChE/AOBUCJFKxbLywiFkpCygH1SukFSu929955zfr/PP+7M7nR3Z+bu7mz8djM7O3Me3/m9zznXEIVAAyD57bXFWrcftnUTAoAh4C/eM9F0GqI1TxoAgAEefvbIiaYzZOrBt615mtqbD7YumRA2zaa+zhhj7MUAWBTJ2T2d6wu3bheund/L/s75vQXss4qfPbK77/CJk90wEAB896L9MenJD1cW5tl158FH+oljNRwGALa8uRjAYSd1t+RZteXuHnLdtMkFo1jbsHZ6BwgWiksA8MHly4H38kVOPNfqDKRfvWgKDGT7EQX9CFjvlgAzd02s19Sg1b/vT19PkuumvloqukKaZyZOgENRi4WfTO8AkCxfeGJxf/8/wN+1aH+ga/J5TxjT2NoIAxoaGkKNAVyFGy44JJJIrAKFbXvUsGKst+XkvJsAQ8x/cX+ghd4NDIwwsmIQRcQ1k849SavcTfOuY4bEoqVwwCfLT6r5E/L6ogGqTAgYhYFKWe/buux7r0UALHSCWOacrMpD790d17Np7HSav6oIKarUtzv65Po7VRv3aQuEpPugI6n/rBVPVWUQDQwaZN4G7ds9a4fSkW7iaKqQ6cn/Eg4GKBbwBW+NicTA3rq4I0w68LJfqo+ZxjJRare0gtvOmAvUFWst47wqGTw9+drJTlNR/erboiFp1W88cHytM1f/AArkI8lIkv+dudOriuoLZ3hRzZQTZKdC9s3+SPYdvoneSRIAbASB4qc3HBRlYhRnHbQm0Jd1ogKTTXDD92fYIQGl8bpUa569m86tXqiqwaumsnmqV01ITpREnz9TyMD6GVryVE1V+/Szo3YHp140aOBPfq591XEmAG5756cMKbWOZhOeWuOp4tQt/aNXeqVTZeZn7tR9zbyt+PZjDEpX0D4NaYyIMYYxH93vWyWDkkEMw1LpjuVQqwoPZG2zS4UoMujv42UwBtG+5t9kXUFIDUHots39rD6wO5n1DvtJMg9P2h5LFQZR2dzZK0GGqqtVXBJhSjl1nRvs50hu6CCdS/MG7YGKkEy58M8iZKDf59smcUkBr9aiIvfPOiUeqFcYQTF7ziM+jmOF+nZVdwZWPSq3H7PQWvVG8kpucNrmwqQ4buykS3RQ75KSm2e6QLpcP+1QupJUF96d7+l2k6PRe0YyKPfMe10ogzRTkuTKH9EFso0FiVCYznsrETIdNmqT+hM+RlaKsl9EN2exha9Vg4TJKh6znz7ax9rOot5H9jZ/K9QmkyCRK+/zZZMFOkpg+sYCR4a6BQY6OrpnLgrKYX45HnkKX+3MtUg3NI00jUskpXfWjn4yDDMY8pznAttCVB1FSMfkyI8ahY8mPANFGK74XaJkqLlKncu8cTxTR8p43ShhoCgTuiu79lFcPRqaF2FgrF+z9fL9DHQgN9QliXmn3lGJ/fgNtKJRZo2v+L9sWYaI8cgnLk0W6ig75n7mpJEudnT2SDvKESd0pNs1dwddowGbSsPba26cHFtYQHX4BnPqJXegDUWoxBZWJV5+9ZcQNzoSbJaPYjxcuaCSqc03x8NbXL32HW/HfSwWAT6yUVd8KVKpIBr5oK2ZPjbP7RNHkZE17xieX8ze8etdhEG65+4JDGQ6spE15KmkO/3v4ijMY1IY5tfiec5T46cZSFIW/k3ombkGcW4YTyVDyBvfvYLSLC0KuWn2blJqHcYGJQPv/mHzRiPIM8lrteT94/voSGkUHoPQccVvUpJ040jzIo7vHZ81DxwgmWXZ4AdKCil0nPe6kNKku5Dcc/S2VMSPMy3tnbehxUItgDLqUr4BrDqL+MYlJ1jJbNTw3CO1ECnfdEvF2mCFwFiPxBUrzz4uiZs3IqupfxCpqNN1pwWmI2T1ejiSyXH5pdLY473jP05m2iL51nhmWZbrP8so5N69szYL2Z/trXp5bhvVV2YZMzpKyn5uXJC6ak06VqIzPwrU5gutxfly9ceVy86id8pNV3zRiJskU1IDAK5czl/LDg6uDFd2sdiKTJIvf+G5GBXBmM/FdMWPZ0QZo2J6z6p/siwh9764iFlgPyn5jjLjvu0yMhNKYELuPCzN94djrJteWCS1GN0Yg/aZ8T+kZoGkfDh75wDxhjxrQ8jK6yljcXgRMuXOzk+kdR0LMqvylIwpM3Jv4KWPk8kQnlkjnkwP26xjip8hBHLp43QSWm2vLYB8J1JOyijBpMmU6BH7zTTdDyg758qAA8rOlWv/OzhUf3PEK29g2iKsjIiIkXZNvhDGRpYtDvwHKWdJniXD5jm7yOIuLOSpaznkXKCQNMn+j07soVClkH3mNBnIQEl55kus7nkLwVH+uaB2XjIaXxI6nvoSHSnN0h7JwbjkHCQCIpXK/TNO84gjLZpcYrHHnvCABQaucopBLKJfH3sKYnjYlv0GGCvpUopunO1ypxqFXLjjmJ5RCrN20qIhP8No4Uh19pkHwd0L3mJ1m1oQgXT81TX5PIWpigp7529IqXTaMm3W7Y9oDAjcc9YcwFpgNA6suPLldxR9oCOb3PCRBKgqpATIPed8JQZQIstsVcPUcU6EXN85hqySUtxT3yCZOlWvDW9CVFWpQZV9TkXWdYpXEaqItjoFqOOpnklyzLax5BUVyoVPSqAPg7cPI/NUJQOdJllfx3YJkgaqiAzf1TTk6Rn0B/cNFGjF5ZoyJfnWvJRVcTZgWeUZcsZyxd0iXjRTFZFW8sz3vCCAkppntl+lEUliFBtzraCiijnzH/CxQ5SZRqZW/TgSTyBZs3OFwhpXAmFaT1YnveTT+e8rRbXhlmhEMUnu8aH/0F15kqldNQ9tWFV7oKpqT+e/VftVnaiqFrHPawFgfq8GWfYHphStDVgQwiAUUX3oyrR6Ljxi3+qoqho0hO+sEs1Ipz43iAL2+eBSJp1LqQ8vU88az+IyFXq6QFHp2Eg2LkRr69cgmTx+vmrgXwGsWrcqv6hqOkkJ8Ksvwn6nf4y+Gw49pWJ7DwhD7KkYaCWaPPuU2A887jC0u6ke/pSSio/2rAHk/Hc/mcbrV/zJEGxhoiVgy6az0PXo09j0dAYjpTE/RxX5UIqDtd4YKO0QR6yNahjK1ujMzztc2PPmgYLbXzmi2dMfgzzXbjoYN/cAx4+R30hgc+nQAOWuV5/+HErg16YVCS50Sx5j99Sbi1pjIRSxbbdk6ShaW2zZtAiHX7KqB+N8cu46Y6wx5nGgWOwN24+ovjMFZi5hbec0+O5pkwsO3xB34eMn4C+a0ULlA9ixbeBtKycCYP3qc4Ebn71q/2qXMQvVd5+De7OvH15EOgBwyKHdAIB79xaXz9T147/66z5qV/ey0XRYh5tJt2RVocbFn09uhQcBjM4bu6cCU18p1rZ15CoIf8GcW7qmfLdNow1D264nt7y5GLNmtGu0fcGWzysWx9rpHTgZL28dg0RbRgjTPnn61YumAF2XnTWGvgWSUYHMWnguQ2DpE+0Zbhj+BxpeS+wr3Q11AAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in parallelogram ABCD, AE bisects angle BAD, and it is known that angle AEB = 63.0, then the degree of angle D is ()
54.0
569
[ "63^\\circ", "72^\\circ", "54^\\circ", "60^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKkAAABNCAAAAAD4axtnAAAIiElEQVR4nL2afWgb5x3Hf2d38T/azJjMFHaLOvsya/MCavyPSzTsDZdoxUtd5lYdeMMBJxr1Xgw2iwcG/5M/BNVGGI7n1YM5JDBBTNNtZpGZaTzqUlOXKARtJovraNWyuhOsJhpMsXX33R93ujfdy3OylC9+uef1Ps/vnntefvdwIE964Q8cqG3H561UPdTkMf/vz9wGvt/+34bAOMor6cF+mCj57EQjWJzllfStY0REx//eABRbXea4bxyMeyX983NERO0N4LEUQDnuLvDbI0c9kh6ko0REO19uBJaFOG4/eu7XRE9PCB5JH57yEVHu5881hMssEOE3//kFEVF7B+dtlJorXiCiFx7dagRYlcChfOLsBTngzaYHvzxNlOOeBCiIiCPu4b0OJcIT6cqRe89wXPv1xoLKT5nTgnLEU17qOF3pKuCUKjmH3LVKqxMcfaFzhzii3PtDnkhlwneWWivBhpASEQeixztfoaPxT/14rP0lWknc8mRT2ZIfv1iIhbQK6yn5BsQBdD97tx3XN4he7YgSnb9FRGCUVLmIJrL8JdZStWlrMiBczBWOL+kjmUkrSkSB3fBY/bDMKsx3tY5uAKXIjCGenVQCAOmdQAFA8fnBYj3pNP1uiAZSZQAYHjameLRpgb8JACjHu/99WChJ61GKNuP+0OyufD0TKRkTPZIOTVWuXju2VQOdg/LJUGAsWwmlhAKMLfFG+quIqF6nPr9utkntKl0daI4taWjvBqrs4Ik0w+d1ofVA6hBseq2P+rrnC7qIXGC1KpMX0qJgRNsSEqjqa56Vmwnyk9vGG3UuVOfzQCqNxE0xhe7Rsnc0vYoLkZbhVcDQ4nJ00iKrB9JUuGSOKg1GldGqJtMuD7f0XtENd0olYwNW1bGTbgfuWyCNh/NWmd0l/W2CFy7mLBIuhS3HambSUngRVqab5bPm6BUiOu9cW2E+3Dq6bpUiLQet285EKgGIx2wSb5jf04m2Ih53nnfoEEsxGrhm08OzgU3rBFabpgXb6XMzsKgPTnwTANJtan4DsYTsD/yh5K5dZbv8DZsURtI8n7FP3A7NqCBSmjKAgdQAkgz541mrFFml7qRdEhtpOTILm/dbArD39WF17joj99DLMqmhyOOrAxRbMpU16sVRWwZXUgmQ8LOoTc1KbCnW+4kc2O9c0gPrtD7aKk9EDgPaVL/9+Mxk0zW+AACSrVGBqS55wHmgPHz5n6p/XAzyk1vmQmYtCnv2ECykhaDleGLUAn8bAPY7rwPY79RMKqG42NsynHavYi2w7ZDKQCp9K+GeCdJyYBkAJvqAB9pwKmF1uCWywLLu3g78xSmZgTQRYbgNgAw/DwBniLiMevcJPjiTY5ps94RFx2zub9S7gQ/dbwMAyHcZVxaF+ZM+64nIdAtAwkHvtHMue1KlfUWBoYcp2ut/WVvELMWaB66VmFcuI0O6m1rJxaYSYlPOOfR5UR7pkd/ev475Q8m8luCqxLNVCzWT3J7+fE/Z04Jupv0+dmdD/nhGi7Me3Qx6g7edXytyIc34nQYOgxScK20RGjJvW5xQJQCbfocZVpEzaanL41ZpY7SV/8xVb2WAPL/snsmZNG7ejzjqwUUhMLmF7BdVZ5DbY5fTi10s3iMCIIqidWIq/D82RgDFxf6W78mm2Q3/kLWUBKA88CpLVgIAG9Btf8blJqpWR1oiC+qkXRwYLLoaVE0ejzJtGx1Iy+F5lhqA7Sk+OJ3T370c7y44FDBo9mtFptGlQiqKotwLRBGQIIoipl7R9Qv5SvkLUVRbt7fQ7Tv7tq5G+bbJIKMzKM1b7PqcSCu/6g/SQrESr48WlUbJCTdizf3XdGO2Zp1UgGEeBbL+DTZQA6liNREQIeX5TRhIq1uTHQsIlhORBDA6gwpB5mFQ66eiHkwqR16DI+lHc13+eGUbadnRto67rhZLPTMOFVSRiiZSERCRiIomUlFHWk4N0ndTbq+srTNI5Xpl2DLdllR5ORQmEQDe7vxYDqhd+EANi+/FW0/OFUQRbrYoDUYfmdgg6UIzp9jXWvo5SjdWVe1HtArzCSEwzuzkdXQGXRWYhzLoSfWDanTK1FYlWFrsb44tg6VfKTlmedu1x3q1N9dJFVLDjHopclD1KgNYHfH1aBMRo3uvyhlU0bZdgo2sVihG13Ol4ulgcNq8BGSB3Txq6XrbCzHOgBVVk0oW+5G9hR7fiN4EkuGftSqJOmeQpnL/OCuiIgubxsZMDMux5v4rhs0D04NXM+1Fhsvm2NFve/UNV5POG13PW+NHhUT+cN780st9n8DwIJJhz77sKtJtvSOjMPvV1nObh//qoDqDFN2wehNcpCOVAKAUVificmqIBlPlOnACWJDdmnJdt+28uU4y2lSS4hW34Htxf9es64aRXX8MqHulvOrN9WIE09NPya7nfFLQfRn0WKWNFGcQUNS8ubWT5gMZoHStvzn2pi62Th8dK86gwRGlTonBEaDJQFo+NY+1Ed9J3URUP0nY64+VgMne2r62GU53TH/2n0+LI3c6LA5eHP7gBket6dG+9PU332/WneRgl/4oyRvfaT5xorFH9tbuNm90eKck0k4hgSP66CXhSD2xDJLp+j635qvx7JJiU7WVNTXXiz48VmNB5Qwat3KHGnZUy6AfcRzHLVEN55fkkWK/M1PP99xSypB0Zgk3TV9WmNTEcUSg6WNCLc30JPlxHXxwGqFaijeBiLi58L8advLNpLdO+bifnA97N8tTHBHlis+3fZqInsALRR+8/jplwjWYpYmIKHmBlOPEjbfrSgaXn7lTQ8EmIpq7zH2p4b1UUe5RmM51rtRQsokoVwRutj+ZXkp/ioIe3uuowTBNlDv7U6KdBkBZCSunuYNoW7SWbjZBlMEZ5eBI/Q6VWStNHBH1sXz3qdL/ARX/TswMw35hAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in parallelogram ABCD, the diagonal AC and BD intersect at point O, AC = 10.0, BD = 6.0, AD = 4.0, then the area of ​​parallelogram ABCD is ()
24.0
570
[ "12", "12\\sqrt{3}", "24", "30" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABTCAAAAADSYDh4AAAHsklEQVR4nM2aT2xURRzHf69BPUioyjYuYWGhVBetyhI8QFojIU2shhSMVQ40dom1JNbEVYoSQ9ILBw4QqwECVmIPJILUVEwhW0FoYjlxWEyIDdLCJpWksVG3vCY+6DpfD+/fvP8zS5f4DXR335uZ3+f9vjOzb2afAvqfassPRFRzc2GVZL3hq0REoMpf2JmWPPB27awiF2ru+VNrKkTkCdVyTiHaskQyh3uTqyrD49XF5QoRPXVDjvBI+nZlcHx0vomIqJZJERbUDTULK8Pj0dz5VwlEN1MShKADn9DTRA9glBDR7Q0LSaHCwSYJQuXIYWUlEZHk6CpP51YSEX2wqVWCsKACuVoiIqUyULzmvmgmuqXc+YkWCNcp7LhENFFBKF1QiIiGmylNRKdbSZyw+yBdTb/+Pd08dvn8nUWV4rPU326+k+9TM881fbN9WZmVI6QnkG490TvaYB6TD7Lj0UPfvXO2Ibpgmfqz//M1jy/+zKQlgowYMFSrAgPVo1L1xJu/1hF7f3yoTrMPyhECxcQIAAxU5+cPDADAAOBkY91RFTMJ/vplCdu79Nf+RXmj1fkSm96X2JwDgEyWPy5JOJRUjfb6nVm8b9j8jli2oMfgPZYlNDwGANiI85DKE+vr+lQzhrOPyxFmurgPffGx++QyNLUv3nrBjpF1npUitD0GAPTOC+KVtnh3gYvh9FiO0PbY8NVGlDPaLl06sa6+j0eaSbjnMRlC02PGzBC98XEpNF4MmNob3zbiPNqedZeTIBxKqp5U7U8W/IpGiwE/t8X2TBrvrRhuj2UIDY9dkD3Ly0Jkpf70mn4PjXscAzKEjnFsqyc6i8z1CkzuibWNOg/pMTweSxBa49gdvic5JdqGodFtS/ZOehvy9Vic0N9jAED3ahlEra9+XX8pIIbf/YgoYYDHAICsiRg950zujrdd0Ut6C/t5LEwY5LEuHdGfjz96oTXeE5xvX49FCYuJEeaJxyPWF4NPGlK/XL3+RGiMUd8mxAjDPNYLpItBfPrxQjbWfiW8CV+PBQmHkrOOcD4ImXQxpIHc1mX7pn1q8TH8PRYhZI57rkA5Efn46tG6xjB7ARY0joFwQjNMpMcAgLYG38E03hXPXAvpo8aJII+FXA4fx5ZKrY3eckObEwemBWahQI9FCIuJS5FlAOiIDpbiobqXBwQqshCPQwitL9NMl+jtX6m1kcvE+M5Yx69C9XiPvZEicyjoMQCgtLnZRBxsSh4IG9282Nlgj0MJGQCxcWxJa27WABR7k02D4rXCPI7OYeY90TgM0BHHOmIdUrfemWxYP4ogdK2d3EDez9raxclDovYaMcI8jiIU8JiBG1XTB5a+9uwbJamFVbjHUYRic7Wpax2Lu8ahvtTqf/sXFCNwrtYVShjssUsMwMmG2qOzAJja2PqvSCUjRrjHOqGm+RfyrI+Dpe8K5Yiok0FtbBOrhWiPjRwGXIV3fRygfCaWLQC7alTcS3UCxXRGFDHK41BCv/Wxn8xdoV0bASBXo9qIEWLRHtuEmqbpbuuOa5pWTIxA0zRzFtE0+y80zbwqe1coR3mA6YSiiMVl0Xu5Vg6N/9Y/tHdZx/nDmnEx0GDuCukX0dIJADhcowLA3/WR9kHEYyehkSX93VCt6iR0lPsH0Eon1tX33TUbupc6zQAwAxRTqazdRwJuzQU85vuh5gAqJn4ENLAAQg1Tn8bf4pfQE5QHDK91xNVcgnw7dPQ4Ngg1F6EGaMh0Wa4CXOaMdxfbYh87tw3upk4D+lC2ELvDY4t4rBMaqTZYNAAYrJ3WP1hd1BxAYNrs8fQLxz2T6K5NwC3q5NI1lewBEDjpCHns+E7hygesjxmg7wpd9muqhciyWFfBQPRV0Po4mJC/oODv49FtcXtXiDlefBSGKOaxTegwLWh9bO4K+SAZtzjMVaeQ3B8QWNBjvzsHx/qYjzbZre8KSWki3us9GLo+dosndK2PnZkK3xXyFQOAMRdi5Po4jNCQz9pJ7XsmdFcoTGNLer3dQthjP0Ln+pgBKGRjGWl7bY3F+6ymjDfiHnOEgevj3NaEvSskfnvPzVb56n7XybD1cSChKafH6tG6hnLttWUimrNT6PrYLY7Quz42doW8k0i5iLpkPPbm0F4fM31X6D7EXVO+mtvACV8fu+Xqh5bH5q7QfP3IPWojSoxjwJ1D0+PxnbGOefpp1pSFKOexe8bW5+rB5hXCu0LiGq0eBCAzV+ty5HAoOYsZuV0hAZkjeKR6GNIeOwmLiRHpXSEZ5apz0h4D/BNBOx66dWN3W3XFnvWh4W2nTj72mWQljvDs5u4/VgadLF+oMlqBQhOnn/ztEcn6HMRXv1stcS/zq5ntL8pW4dNUESa3oEjGqSKiLYqiKAMP4sHHI4qyaS4r13mqiOhMywByb16tDBSngvIL8PXDS+RSsYCI5iZeoVTFM4hSc+cxohUfST7RXUVEFxsW0oedlX5WXen76yAR0ao6yYoADpO50J3Xh+FcupcKWvaFq4qIhvM4vPYqESrq9O3rnL0SY6WKqHAnTe+mcg/kIWZTEqGqiM41E25fl+0d0lqamiAiKgzIVgRa8riXqhH/9a5cHaFvgdxG2WqUIyIi6XrlKEdEndHFXPoPamr4L0xOKw8AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the diagonal of the parallelogram ABCD intersects at the point O, and AB = 6.0, the perimeter of triangle OCD is 19.0, then the sum of the two diagonals of parallelogram ABCD is ()
26.0
571
[ "13", "25", "26", "38" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGsAAABOCAAAAAACtbdVAAAE1ElEQVR4nLWZUWgcRRjH/3PJWrEHeQmlQpOQUjRpIQZUEFo9sRFKiij0Dr3GJ9GnUtB7UPFBwQffahTS9yuedc9czEPPC0jFXB+0RfJmc4rYCndoQ4o+JJW6c9nPh7nZu9udmUtmzy/HbW5nd/7z/eabnW9nGEFr1w5M6AstLKEvap4HDC3ZvclKDFofjY6C9UNLVqLXuvTYH33xqm0aLUJj+/ED+/ujcZYxxkb+0WkxfHoOR/sjhcvZGtFrj94DqS0PIEfka4r3ZDxNRJTNafxqbBNdO4z+xMYPowDwyLpaq/7GOeBWIGQbI637rj4HAOMYVF3zwYf4eeLsF/h1HsDqKgBmKffkLAMvvwMAt472ruTp8cN2OgAufjIHNOYvAKiPlpWx4Xccfk9uWYaET3eSW+RTfoGIKDtLyv5iHQd3NmnZYQyLM0kw/vFJoMH+/ho6v4Jgn162D/xUgagqhCtEpBtfUvOnoaatEt0J4Tc8ewEGuJkBwBJiaSbZuk8ezDa2au0WpQrdv3toXR/pH0IzQ8A9M2BDTyIMnTE2rXnwR2u3KFUIBbBZ6+oReykxkDvNzLAwZ00QpZlkeJowNe3+UI2ILGexcBT2YPjVtI2IMBGFXa00Mrz8ajyE4bnW0LStffW9+yM9iSI0Msyn9i4lLTKQyczQzdojXIoMZCPDzX2b8aaTsCnzDWHFmWHrPGpjrRw9aWDovmIpBKB0UoFQz9A+0RAI/e753ciweFrVtN3ZxloZDK1PYAqGJOZRS4QEkGI6EWUai5NoKKPQwLCVaFiZMgoNcfhZ7GfhrrVu7Jyw11pMK08r83lieAvzANkN5Y0jfyr9UvYXw457BdZvXxqECoYEAKvJJ+x0AC1ChV8MIBYn0dBEodDigNNxihj7d/m6vZYOIRIAnJAUUBmPsTq0mNZk/0qGsRKNjbUyUwewjA3OOTjnAOfA9pU05/Jsuzz4BufgqtoAZV4Y0nJaf9xxOJaOjzkOB7jjOKJO7jiQvzm4A+7oxHRR2M2QOwA4ADejgBD0qcOd7mDqMhGFSojB+JLtdBzn7ncv2q+hqPLCtlYYBi8+P6y4UttBwmTs6RECRJ4nphdx8Dw6USBPnBQHj+RFnueJL/FRmCovlNYxV8p7YyUaF1/Sl7Wfh1x2txsj0cCXBoTSL6+NZHrZ3i0TwiAHaMfwzdsvWM9cmrywZdE5xc0M2K8bLmZaaZjykRjxdKz6PyGMvqfc2Dlu5ZEpL2xZRMtN2y0KMYAZBzIiDOWKhtXLkBlhhKFMNKyCw4wwwjBOotELYYjh/aGa/ZJ8D4ThfH4lTqLRAyESAOYYY2wFAPB5jEQDpTM9LiAiylb8KmpkuaIRINwvEWq6IQGg+UuKiTX4pacOxXArQKgJ4gSA7599CG/nJgAqxljRQCnT8UP5LPDFnlCNfKLNBzdjIExuEeWBU957misGGfDN+uSlydoEUBxesHfr5kyyMZIj1B/QVZIAGn9NYm7qWwAHX7eXwrF3m6ffvACMvK/dfyHKLxDVUTEE0C4tf+geEVF+XVMOopdrxKfEZbGMH1uQ/6rbDLHfcSq2EvktNnobfKZfG7u9d9IS/dkaB4CHp34jAI0VTbnMRf1+bLnmUSGq6rsjmFP6sLvrVwHk9BX9B9Q2QPJNpBELAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in the parallelogram ABCD, if angle B = 60.0, then angle D is equal to ()
60.0
572
[ "30^\\circ", "45^\\circ", "60^\\circ", "90^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAACZCAAAAADI/AFTAAAKOUlEQVR4nMWcf1BU1xXHvxfWkmk3TWbCJKZsdOrakcRKSULHNv7AFhOwygwpmGURGtLBAoMOBmmwE1A6YoONRGlxhLo2MK6CBadmVJRpmBEbYpjRyhgT6MQfad3OSEvb6XRNwX3s6R9vf8m+H/fdt66HGfa9++69n733nvvr3POWEUwJsfOPp4omTjDHBpM2E0QLYBaOX8yfDxZ3uFzcrrS/CedgAs4AwOPNePzLDwAOAPh1FT0jntocvOuXbJ6J5KbgHi/R0NfF01vMsDeeAW4ykKi2g4RlOzBGTqDGL5oDEx0gSLh3h0W4zVmAffoDcbhwyQMyvjJpzPqA4JPLG67e7BFNbaqr0UxB7mdf+kvHA4Gz6offRoK7/uM4wwkA9g92A2Rv+9F0fOEMwFDTKSsAODKq4wsHcKOwxy5f7R08Fme4d219ZuDS2lvriRdc7p3OrKrQfXq9cyZOcAYAP/W2RtyXW9+MExwA3Cd6EyPvD/d8GCc4YeT1k8kAIbRwTT5S9M/4wJknrzMVAEN4alvmLI4HnDCdV7s2KrjJu99oTgIrGYbiJVujgxO7v7ss3VhOItW+y9OuEEq2feu99xEua9eJ9hNJCg8Z8rM2R0SLNZwBwOjGk0+ofLfW0WOhaDGHA6DJvPZ0lWcsyb3pupHFiUE4+V8uzVd/vLipwG+AbhDOKpIbtZ6Xp9YbWNQa7GqtF/+oHeHg06uyuXMzVvLB5pM6S1VrTyn/7GoIfr34uC1wqdqyy7ZsvC9wb07zC8FrxZYlAKiTdt8H+Mz6ta9qx2AAQO/uG449vBYtwUut7sRsnaWcwyw/vOtUePmg3Z2y88piBQ+UcnjbWe49WdOf+TYx+nC5lJ4Ct52XjaS++uuxgQMAvLn1WdxswN5WMM0xzHJVO6Eko0o3YqQ4FlVzDLNc1c4a/620fFAVAlyD7+nP61xj+/F3LyXqxwoLA6y/y30+RS8eT5uPVvQ/FigF/3z57Gan3zycJnI7FwctMAbmyzpro3n43byK6HUyjxx26w2zenBCxUKRbRhAya7CSXNw1vKxS4gNhqziktA3MQwnAAP7TiQJnyQ0eYPDrLKuaHU1BowXn7EZUrN7JNGdsTRd47l2tU/m7ssQBAMA5rVpbmI04TPOwg1m2GCOrFoAIm2O6od2mmIDaB3S2MRotXnH0AWzbCR1v5ihOhdrlPx84ylhk25Y0ptKVG1F6vDPHX3zzbOB8pR6tb6qCveu27ksFmzggHtApa+qwp0vcq4CdSW5p1RlmFWDN0ztiREbeGFTifIDFfiRnj5DywdNYdu8ypsY5a52cctHj5g4sZotid3fzvyOQrhiyT35brv4iK4gts4SpWFWAU7TeTX8e2w+yc5SUt9IeKA3srIlgsZ7DWlV2sREtnmgnnd9/n7M2UjqW776nmGWWLjkYd+D0+2/VzKzmRV7Y0HoJKaIMZbw1BchOAOT6/1q2clkGFkj8wgBVL6oOpjvUeen5P/xoi/uUTgG/GPdgfTAZQyFAYDr/YHAleR7mtjPVzQkQK4FdgYAMJNfmhdTbATfeiRoK/pwHhjwjfEEAEeL+mnoB+MAUPFEI0dGUW3C10hLtwROYgZXA8ACfwIA6bNMLAAA7L/o5sklqk04G6nO2gwA0qlMALjxDCPg/HstKHqyBRgsXf9VfTIBjEKD7zms4iMDjO64+5YBnr0tADxP9VsA3HznHYylApASE8IR1bIgMKJQYY30CsKMNAVgcAEAvJGzBkTk/JQ6MeYnoublEr/TgeytsGOHAT+FzC1E5EsbI7qFHCIQ3coh8qW1EfmJHOWRGfN8g+0G4M3PTvlpSK6GfiJKAAbXAbevLAAY4Log78z0NOg8Y2wrEPZe4JHRt36bxLBS/iJrAAKR86rvf2m2O3LYNdtHHEXYbrtDvrQaP/kNVPtU6r5ZIZBrIScUcHb+hG42DTnkJxqy3SEjbV6eMzvEspIAKWJuy67MP6ezgjq/cyyk7Lq1LscghoHjl2fHD/YtSZIgSRIgbU2pkm8R+ghdyf87ahZKkHATPKMLC/yfLD5om/1dg3BL4E+yWNpHXJLFYpGAwAcAyWJB8H5q/PsWkizSwCtGnNFKfpgX9V0jFxOSBYAEa9+qbyos90IxJ/9kB7NguHvMwBKz41pvdGBoSAsUERaLxX5ow22NfOY+dxOAVFOTys8er+1W2PclANKsIAkvla+fHRgRzZL7K8AzZ1VLVBRVmXHWZwDRg7GffHdlxffJ/31EREWVPvnGF3jgC9/7fEUAxuQQvq62TXnYjnBJ80UE/zf9IEeeHHA/kZ8+eOSW4sOwwkV2dlj7Vi1Zyl+t6sIA9p/CDpviw3A/D4cRQHZX4UQs4ACofJVD+Yll1icQ8EbIrig4l2huuxZIffTCJyoRlHepBEJdSpVJhzWZ/deqo2rWFWU4AwNcIy5zK2gCATMbNqtaOBS3yHJ9WfsyzSkdAwOapUbVCIolD5TXfsiE0gUabORtt/ocqWkEzK4oEHF5AhAsgLd4j8aJmLbttS7F2KFSlLyermVW0rG3u0ZcwntGAo6fPaAVQ+d0ycxIx+Cp6EnWiqFn7Le7HOJK91ppVjgng3AGANmVYkpHQOtkU+CaKeP1T5cElY5hdIc7KXitPFpxnKsdHBE64pl6bdfiUB7KUTiOMx/u/V5I6fhmGmIAfjY3XGNGDb8RCReGlY5vrGcABtyduvF04QSQUaUjYLLMreK+ZQTOAMNKx4CNazmMmDynyIHp1Yi0j7fqR+I6Pycmj3T865rrDX9ICqTUEs6Sw+5yTHCzZxy16aGUJuEAjI10b1rruOLxO+nco3SaM91wF5dBzZB7UqTSadWnt3Cv8jI9Sgw442lPr2HdKltdyJmjEU9Au8sxojpyhNjHLl3mzdCQM56e0hEAz6ZO7kNQY26Ib2iOdMQAOKv4DyKNwAlMc6RjAHajnj9DI23O9Nd0o29dMpCjUY9fu8vxd/Wn06+08juuCXh5Z1fmqytd9XM6XpIm4VrT6+nTbYayEvBvV1W6iVK35jI9SgQ8+1WVrrQsUylYXUQ8++2HHEp2uraJJoMZCb3N8VKlgp3uk/peo0fuYi/R1KVsmh00XbzbSC8zAVdQunpbueFcBF+KjVK6QbfA63qCb23da6cjTL7a+Vh84EE73UzouB+VL2cLGK7E2ny2na5rfA+RzsouZvBZdrrrtYeTmNo+WEOEFC7STkcMM6XbviVkKBV7ZUz+sB8qnAADdj601cjZnkl4ULIr1kvAcEenYHqT7yIXPjr3bm+zxjs99w9OzLuianjOb0TTm30F/NoK6+WviNqmzcIx8Ki4Zdos3NRZhOkfNjGT2AScgC7G1khiTuAm4czDrhAdnPM18Sw4z+4UxJdWQ36ihn7hHEyU/Mi/dgKAXfz3PcS1XXr+JyaPIUy0+e0rskuTib5q9pd0THU2cfiTaTcAwHNGHG5C2zvRTzQU5X9iQEzAaQhAjYn09H96LU/XTRAeAwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the parallelogram ABCD, it is known that angle AOB = 90.0, AC = 8.0, AD = 5.0, then the length of BD is ()
6.0
573
[ "3cm", "4cm", "6cm", "8cm" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABUCAAAAADPZQjAAAAG5klEQVR4nMWbX2gURxzHfxuKQrmSlxNPepqaRBNQmhNfIl5JChZOkGiLeA9NwYJ4D3kwtELSYkmhgkerkIdEY33QhzxcG8Eq0m5QrG2uYAn1Ikhj20SPHpbolZJ6ebhebufbh92927v9N7u3q1+Sy+7cb2c+M/Ob+c3ObgSQrSAoB9PrI/bWXquJw0YFXD3mJ0mdoP7hIVR1YlO7LzCGEmRGwZ4Qlc9zkb/8haqTwmhLKKif2We71gV8htJqvyA0CRtXHPTyF0O01Ucgna72zQGHWle4Cc+eFTb7CaTTaqmL6MyuD3gJswVAbPUVqU63NhERbfnjJT7z7PvfEy0SkWZ29FMQ6MZbREStv/ARHj9Dc5H912jxSyLhpxu+whERhY/QqvgpEdHDrQJHTKkIAhE9iRxe6wtWRY8v/rCbsqfOE1F28xTBqWKnHF/iTKU3kgDGkwDQ1wtHhIwByRiYL2BK/sBwDECpIwM8ol44IwSQDucB+AcJiOE8ME1EJNAUwPgIK0D5jaJvaHJJufBsbYotYR8REfUqZweGfaDSiEnRibokixlbHuVX+zKAqMS783+f9HUUk/BxOKHjsFEphtJoaRQAkAnnfGg3RQwAvmsv1KfbEopJjE3JhyvtVzymqlcunNGlWRIyAONEdFc+jSd8gNKqHJ3QTxL2IyWDdwoAGD6LFP3A0mgwDqB+KrOLy9lnXRQNEJEw88l7vgyOqr66niGi6n2RIosqMQBjSQAYAIqR8z3bMj41HgCwhaBh9na93JcB0JcEEv3A6ebTXnNVVdxRPxPKsiYUlYa+i1T7CoDMtu6lGgMPo18ibpzOGfVy4TkAwMO1gcv+xOSUfiaUxUf4UI1F0UExeNgkK7diAGDihOAkzL7cLR8kI0Xk97Xc0ebtgRiKEWMnhAWhtnQx9NowAMwG7gPARPOI1z0tO6FhrjxtuBRKL+85WEChXano/M7urGdwAJDaVjDtER7CWBIoD0RyR2JqSvlE4BLUNXHjWggtmH/JQZiUwcaCobyaxJAOH1xumEzRf5GURWXtCWfCCtjtmuX1v/HQ7QbJVCUsVyS2hPmw2bp/svn4qiuiOqWsVyS2hBbr/mw0Mq8eu/dISyeEPeG5aNnkGwbgZGDMDZRWhfaUtYENod26f7Yzlrc0MBVTPmyXxdaEhbZvavPTWxwJXndMp9FEV9Esa0XWhJYVVHK9Eky4D9SZoLUTwoZwsnaUmVT0yZ7OOSdUmgxtnRDWhIs2o6yi0UCyrmjbS2QLnnszC8JixL6Ciu7v6PmT11ajCZ57MwvCRD9/WcXjzZrqMMtWZGqEy6zj6SNzwtQW3gHAAODmhv7lCpdlLytfcjkhLAhz4YxNW9Qp/3bLDJehmmV8gMucAEiSpEsv6/ag7Iu8EBgxC0AGmjCNVrUiANADYjgO58F2obubc/Q72KUyImRgYthpMGMAUB4JXOCxAwptvFulKqEkSXJvSxKApda0BGj7Xz5SPiFJunZXSr7TcoCrbnHurdJKGyq/8s++U+qRQiJpzuXKGLkGACz3h27aF3ua0wnrCJVWkpDcBz1hfS2MCBkApJoH7SbimfX8W6VVP5QqQDPhpy4JZeV6IvdlWpOhlg+L/KOQVLQq4dONorZRVTbJlrBaaPKV0bqUGsWGePEUQqUshUU6MFQZIurIUI2UsST7oUkjMgbgbueeJeOvASR3l6349YSqlBJ5Z1IzyeUWE8ErJgZpB04ILaEC2OB+f7VdrgePGAZ285tHY6mESreygmf7/Swfa5s1SI8NA07CVaUNlUs83e8fC5zUpSWdOlHd2mbS2/3++Ui0ugXFACAdcupEtYR2d9fOxBjKw82T1XONE7roZUCz7vdwe/B26NByddUaS1pbG6jmyeOx7XEyeqLRiHoesO0/qu8ffU5DznNQUZnFZneDuhQ4IY+OdIuLDQpNL9c89vOgn6tZZLt3zgNYakm7yKZK6GTd71gjzRMoR507IYDq2ywfPUp55306/dzf2fZAtLfTq0I4HRsIekikU+nar7+7en2xQjie9xDHUO3vupoiHL2z9ELk5C3TF6PnTOiix54zoQtPbCKi/YIgCJc9pzGUi0YEwPq+hkgZb+doEzmPVU1EVF7cSx1+9/dZQXhzddBFNzcR0a3dATp29HXvqarKCveAi2s2uLkW8ks/97zv0IoYSh1HAeDDKRdXN4Hoxj2Md81522haCXThnzNERK2uwh7wqBcodbhad3CIoSZ3VyPl2xjR49/avG23igSqyd3VSJneS6uxcMxLrBo1GPmbpoVrXcKaDTn//ilBoFc7FomIsu6igpc+Z6pxmgLEXntDA8mEXM9BGpFIREfdXfo/yHKJSkOIFYgAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, CE perpendicular AB, the foot of perpendicular is E, if angle A = 115.0, then angle BCE is equal to ()
25.0
574
[ "65^\\circ", "25^\\circ", "30^\\circ", "15^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAMwAAABVCAAAAAAgIFSlAAAHY0lEQVR4nM1bW2wUVRj+zlpR0QQfGl3NUhRrXMQgpi+YqEsiD0UhNvEGqOGi+GAxFryREC2oMRpNvIREDF5KxFs04aWARJpQgogxCkq1GgFR16SxXraKtaczez4fZvYy3dnZOTtn2n7JtjvnnP+f/5vzzbn8OyOI0KAA9p+XBihAEd7Oz9OydwGgdXcUL+VxAQASGkYCsO8HCAFE4gKBd5b2k/svj+SlLC4AAHXIAHh6RlNEHgAIwLbS9utXmyGDZUIIMX1Y6JHZduWvBs4tABycj7cvbLjbgDfA6eZVlw1rkcmeajlvqpnz/3i/WHGxGVeAZaWBTdc+pkXm5XYYEgb2fMtlTYZ88dMmALj0Wx0y254T0w2dP/tXGhlDnQzRswAAZuqMZtlTZO9MM+fvuZG4F4+acWZ3ZwDgxOXhyWRXtwM/mjk99iwQwJIoOiubHwfmTwWQfWIBGBKPA/1cCqwLaxCAXjeKfgO+SHZtViSXtlJorADMobCEiLaOcGG3vJ9GdnrrbtRFJmIM5ngAwP6MIIBdC1EPmU8+Rl12MUAQFy8vHWouZwAMLfkXnvuvjhgADEdxUACHNl1U7jdsVEVZrDx7s4Ewetd9YcALVideLT/UHDlUd9M/kYYe5f6b1xXJjYN9KU8wGmQUSeam7zMQBMkDqZHIPkaauj3HujdyQWTRB6O2qyMvANb+/pa3QO9adM+IJrIy/NA4ENHDoeSgt0CPTC5lSGQk2dEezX5k9ntjSvRkZmYkc/H7rEOXRLHf+NWOsUU618KgyEjymbYo1n2Nv4wt0iFjVGSK/C91oH57q2UriwO9C50VQMdNmUJ3RpGHAwGc+dRD9du/dM49qEgShb8WhkVGknM/rNfy2LSTlYXhyQyZFJmLvc0jqnarsVAkMy/6VISVGfFAW6Z2s/AgAFyf3lKHqQBelWvgo/awlyMGkSmyrzHnftPCz419fjYh5xn+fcX2jLkNVQmrz32uDqvFLRvdb96QQl6LFRGn62oYmHZS/67ZPtf2LQ9JJgaRuei8U9tk8ILP/StqknEW/jGMZC7+SR7WtFC3ry9+9daE65nlMYmMpHolo9GYJHekq+2EQvVM90VxiYykPXsHdcazXPVFUJieiVFkpGJ32v92roJ7qqskDJm4RrICrtsSqpkiVcW234MQZOIbyVwcToY9geLIjI+qV9eeNIeu2J4xmID0w13NnWGbrh16o3plbTKrphrcXfqAAj9d+f354Rp/dsvhxiBfNRC7yEjywbvDtRuZ/UFQdQAZs3myQOSSXxZu8EB0Bm+0a8nMXJ4sEC99FObxhm/mH00GNgi+FOMiMkXazR/Xbme3dAX3XTCZWKdLB250H86t3e75BTXaBJOJe7osIUQi/Vijz7bfA5C0pZR5v8rxEFlBN7UT6b7bfg9Akkr6SnEcRFaGtmeC67fMq+lCEACt0/0Gq1IyNuaxDABwfF5f0MyZverAZbVcuGQabGBKPt+QoIVEA2gBU3a2Hz0DmAIAToH7dxQNNhKnWUg0GOIBABQddtBSY/G8DSGckFRSqVGSFjlKSkWpaP+R2icVbYskKRVH83SOlZTOZzSytDwYbDxWvbLatt+D4j1jW1R5KimlzCtJpZavUZJuxMpympFqlEqq4scoqibSFX9LVtn2e+CQGSUplVUedXfq7zIysvA3TjIjvntIRZK3rfepqQBI21KjJG2ZJynzpKK0cqm9pLSK7NxiKis+MuyqNmBV3/Z7ANKWTlRuH0hJKrn8vuIBZb5YLCUppSx+DKNKIj2X+sT9Fnz5ylYAVlnxuKzJKrG3+T+/4oBtvwclMrbDOu48WTAW+c3yQdt+DwpkbFneMTHmyYLhJtI9GJmxJ6R1xX6GAti55ug5USbACCgk0p01BwWAtbk3w1r7EJwwkZEccH8RK93ph1KD1RqPhd9O0+gP5LrYeNz71IVs2XRzaONKfhM0krkYm0jvvCm8bSUZR2Sm58Pw8CbS+5IaD6VUklk5USOZCyeRXjho0XmSq4LMxIqMJLtnlRbIz7fqaKSMzDjmyYKgmCkm0o9VPlIShLGj2TjlyQJxZOEP7jQ3/9Z2LUsvt4kXGUne2en833KNnp2XzEROlyWok9MGSPKXRs1H0r0ym9DpsgwP57YCWHyN7oOP5cwmh8hI5pJHyLdarNotPSgnMzlERpJ8sZWD2r+pe2Q2vnmyQOTTHzzb/KSulWAx9J2LHjrbeFT1Yni458gZukZOElAAwGvZyfG2AiCUANrmQlcipfgZ/QXMGKDFJgFgiRBC7BaTjMs2IRbaG7SCSgB4b9ku9t7wXUxB1YesOEJuPf1CLaMEAPu7DAy95WcK9o3rXgBSj+uFlQBw8Lqz8EhHOp6w6sPbfz4JADM1X7Il2QVjL+ZFhyJJa87memwTAPb0s2vWZLllBAAOfF2X7BPOq7l3zOkxHFQU1DuuJoCeRXVfihhAAkjOOQEA2Z3axkv7ac1JnTIr/ShQZBd2kb2tmoboBQChlTcYD/QC6NA1+h/kaOHBZLt9XAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the parallelogram ABCD, CE bisects angle BCD and it intersects the AD edge at point E, and DE = 3.0, then the length of AB is ()
3.0
575
[ "1", "2", "3", "6" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKYAAABQCAAAAAC2KFGvAAAIE0lEQVR4nL2aX2hb1x3Hf/KylzLQoOqidvKUGI2IFVzTvOTBSwYrTCzZMMwsuPPI7TAEqg2Ea0Y2spiysAWWMTM8KHgPCmQjD2N5mOp6I9nsTe1CCxWEUvnBbcVkiKjpej0lnXbP1fnu4V7dfzr33nNkyd8XX13dc34fn+/5nXvPTzcBUtDfP5dXuXx4GlO52PzBqDDipIT5s+wXRsURIZAa5o1nWqNCiVKClDB3H558/LGRwYgEej6RSIyNf6KC+esiHXICJej3c9vg3zvxiTzmjV8kxpVm8jDE/neC6OUv/0Q68O5DYGtilEj9Av3zGBHRF989Itli9+KrRB9Yx2/8xTmdUFp2RUqACIleR0j0zh+/QJSgu88REU28KTmay+OvbdPz2vdfIqL98w8OyuYRiChBBOeIiOiD/ZdzRERm5QwR0ftfIsiIew+1ueSGVCvVrm3tXcuc/W4JANBcBIAmrcthelXJtjeSfzwgnF8cLu49LVVqVHIdAEB5FQDmClDG1Mc3gc3kH4bGCM+IdspTT691oGeqAAA2WQeaVIAcJvccXSgCQDVZHian1XfjpdR8FQA0y/Ita6KuQxLTo0q2DQCoDZ1zYya93AIAXsl1gjNWMYX0zKZ9XEuuCqb/oNJXc9M3nRjVYFj50eQAB7Sic6KeXjkYmgtRX0gv1J2TtuU+qZleyf7HDVLPLA+EF9StM7lV3YXuZblPSph6ZtP9wNHIXhate/LiQOtqZsa3CuvjVcGVSpgeywEAjXypF05RdovqfGqpEYghsFwNs5flbrBWvii+VEadtaenykGDhZYrYfosBwBwtKY0NTa7HXijlJq/J4ghslwJM2i51e/UvCnfBWD7XTmXudoSxSiJZ5A8Zp/llvTpWUVO6CvZ5275T9lsf8p1IJzq0jfLfstttadnhNPJ34Mb+p2F1MUd8VVhlktg9vp/ITRZ2oVCJ3BxeFc3p3OvtMOuFGc5IG96iOUAgE7hTPiXXjUvp2fvRMQQZzkgjbkfZjkAwJydjuS0hu5v305dakZcFW65NKaT5f1mcQDm+Sk9uoP2Wv5kOTrXwi2Xxaxk2zHzTovk3CmmtLcARM3eCMslMUOz3BVfyD8I++52IXttLz5GuOWSmFoR8TfuUl448fauH/vabcC3JgljRFguhxmV5R5dygaeIsBR09LFkEUyEMO2POR/kcCUsNzScnbbF8Usn8qvhS6SgRhVRF0ogXlB+inoerruxmpeSp2X/P8cyw+AKWk5AGDlaM0Odmc2fdmZq7GjGZnlQCwmj1nYg1pL1gC0X8mdumnKPS1bzwtRWQ5IjKbw8S1c5c9Wdy6mXqgpNbpgZ3n4/xWHqWI5APClT6VX9u1jX+kpIkac5dGYHNA/vxkXxKu9a5lzP1IthMVbHoHZty+PFAeAe9rjpQawocgZvbBbijbdsy+PEAecKhUAbFiFMEkLJCyPwYxf2HsojSWrSmV9riZvhbboiyHclwdFALqGYYifpiUt35g5uuxuwDhwT74QJmN5bzSZkDIyy93ql6dK5aj2xJpMdEnLIzGl7uX1hfTCtmcabhHRIoC307+SCb8vZbmLyQyGrsEBZnQBMINBK4IZzL7OOmIGA5jBmWGCGSZunc6t6g4jB65kHoJNLgLYTv9cInzYvjwMEwyACZjWBw6zkm0zDtN0LrBOmwBjAGN4EKxSAVcKALCVeQRgJ7scG70Sti8Pxeya4BzcMAyDmwz4eGKTMwAGAHATADgDwKwpwv4x/0SwSoUtqluYDzmARnYpJrjMwu7DBMC4CXCT2zxa0cGyAT2YnbXJZ8v/7ZvRc4sAgHLmETiAVj4mi+Wy3MY0TZiANTPBOMDBupUJHWBdexyd0+Am8F4pNf867088NlnhPVoOAK38QlRsySy3Mbv2qmmNmGEwAB9N/BVwEof3TjODofLNiastZhie/LLVpHcBx3oA0KMKdvKW++5CXc/pvn25/VdQpXLFJtcBO9F7KCfDC2Hylnsxux4LQ/bl7yykLu5w6xseuIDDSvQmLTqfAbSnvxXCqWC5i2kansEUL+y9KpWPzK85Iqr7v2ifKQhxVCwPefQI7ss58C9flYqHcQrUKRTagktVLBdjVrJt789/ADbPR1epItWZERTCYvblQQkwg5s0iSpVtMzZU8ECU9y+PCgBpv/xbaeY0t4cgM0RB8y+Qljcvjyofkzf49vtwrFreyr9hUib8v0goJTlQB+mb1++dz1buD0wmbdToHii5X5Qy3JAMJqO5VaVahg/8nIAKOXcB5X4fXlQQUzbcqdKpdhdhJadgp2y5X5MZ1/eq1L58HjwhKL4cmYbwCCWezCtm5/2InBn9snLAy+SUVp5ss6hurBbIli3OHoVACrZD60q1Wi0mqz1fknrSWV5n1vHFm1zrqe/kdJqw3s1ok/l5FuDWG5hsmcfoUl16OnPrHw4bDK/bia/Xhpkih8hojdOP0Y/XMxTtbWk/2aI75X5ZL8EN71+3XnFTLH1DY2onif67a77Jt3B39ETx6KpmYHaApiro+xuDA5BZaIC+7FKizHQ7sd5+s7k3WGOm3hA7L+7ifsca59+SqXtWILuniNq3T/u6Wg0sieUeXbxlwnKXFF6ZXWM6M9fJXY28xXqvUc5Yv3u3z8lIpo4rtTKel+uMKpp2Cc2uQoor0lHToPoMAaxp9b9CfK+nCsn+6Vdu9Wh0aqunM67xRik9QA6Ovk+EdHua2rNRjH/IlWmdWBLMRkOH9MpKKvo/2Wqwad62NWOAAAAAElFTkSuQmCC" } ]
<image>In parallelogram ABCD, the diagonal AC and BD intersect at the point O, angle DAC = 42.0, angle CBD = 23.0, then angle COD is ()
65.0
576
[ "61^\\circ", "63^\\circ", "65^\\circ", "67^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKQAAABOCAAAAACLAeJ5AAAIjUlEQVR4nL2bfWhb1xnG3+sWspqB/qjMlHE9ZZ5K1AWGm6xgFneBze3MSLoUvAU6ZRFN7GTVBoJmUJiHHAgjdQPzwHQdXsGlslcW12GgLC7LqMfc4ZEaQ5cshTiNvLSpFqVUQfGscyWdZ3/cK93ve8+1rT0gW/frnJ/e5573nvfIlkCigkSVNwaFT99CtYmfKlF18F7rSDwUAJLoXPYrreJwkO5xEMjVjw9vPYqbQBIRVNIAkJWfHc1HW8Vkk0R0SmqT2qTjgSDPvlK+96XWUdmVGelbw/rVJ9fEIad/0bGDtRDJrurKUw/R56Y+fEUYcrUILHa2txLKLNDHl78tEX3xGysPCl6yeuItohutZJLMv0miv3fG1S3RSO5Y+qB6+IeXdt8l+vfWExKRZPlNVL34VLtEVL/5iOT3xIFk2fzg8YOty5bN3r58hFa/M72biP5xYM43kpJlE9sfOqfaDuuxLZDW4j9PxYgKnXEiqrzwzG6CsLj6SqbmQnPiVwURBwAUz8jyTwElMQpgShoFAkCqykXLuBg6b2h0K8X5cjKSmohVwNW49q3x4JAleR7AfGhmy/kAANme2ES5JC+Y9waFTKY4ACy0grKQiQxcApBMWw4EhMxFy+qbBmXD8c07v5iInMyDA7lYxXIoGKRqNgBgITS5aS5dtde7d01WtD4WrEeDQSZTaAZtOfT6Vg2cWy+GE00ym9kBIZtmAwCWNxnLxkecH4gMF/Q+bGYHgeRGswFsnhIAyhPxnmwNTWQHs4NFMpkybHAAy+GxjeMBQD4dTl4292E3OxBkLlrWPm7zXrwW2Qzl3P7OM0VLHw5mB4HUzdaej8BmKEvjsX1v2vtwMDsIpMnsJuW/ImMbSZI3jocHrzj04WR2AEjzyNZ1Tc7oG960zaMzfdGxksNRZ7PFITWzHSjy0YwDhyMcAKB4Ntp/3vFEF7PFIS1mG9WkFHH9SjKcWnHrw9lsYUg3swEA+eiw+sY3jtne2Kv3XftwMVsUsiTPc2uPhnSUj7vFwKjC6e0HL5muNbVXkhfczBCDdDTb0GAhnvYz+71E+GTe7XrAw2xByFy04ZEbScE7lrXJPbsmGmY6t+Futgik/ZntpEL8uH6BRbd+Hj7kMm6bV7iObMAbstGbx8jWVexOOh/466HI8C3fTjzMFrLbc2TrKjlRViZ27ZmsCfThYbYIZEl+x78TACh1J7l59N+0TXIcxb3NFoDkyZTow7nUfcgYtLmD8ulPhC40mO3Yky+koNkAgPu9A1Xtbfk3sScakxy/j8gveJrtCckBCIxsI0K5d6AGACtD4WMOkxwX+ZjtH8nk8z4nmMNU7h2o4Xx/9GzR5XTHPtI+0fZZVbuQuvJ5dXVKcHHq/pM3lIcfjwdZpLo+d3sbnRqRCESzzzid4b2Ieu9EVmX0XUCDRJCIrv7q+qfRZx8w7vYTm35uG1GGbv+WqkddvjgAUGOM1Z2N8E/jRp/e7I2Nlyv9/etCLpvSuJKYxe/W/uB8l6j3pAtjc2SLpKDiafngHABU+vu9B6veJgdyXRUOIP+1Yv7Hbqe6Q3JL6eWty8lwujHJqex/oix4WXNkTxHRqB8kYww1VgcYqwJgjAHJFGMMAOdc3aH+ZKzOmALGlEYjtTf2xCcM0at9v1c0uWppXEm8hOlZP0gwAFVAUTfqqCo5+dM6qkrjBEXbDaikAFOb+Gg4csiUTDlqA0KUHLlH1M+W37mEy0u+kDUFvA7OGGN1zgDckd9h0Ei4AgBc22Z1/YWFRPjFxiRHOdwwrTbQWxKwu9SppfGpvjUAiy6x1CABsHrVRHMkxXVI/acJsjLxVcMkZ4reAhZpFgBqie7PtGh5SDObM3V9fKfLI4CAqgIGqHckWB2og1WRk8tgVY1a380VHfL6C5HEot7UVMcSAIz0qdP4ZLettDbJUGdzLRcPuZxKQE3Lklq01BFyR54HwCpqjMEZq6A5cBgYY39+umPEOMnJd70MFXINAAf3ozQ8s3nz5TcLqhr3u6TxRolYfjXWmzXvH1HNUhJ9a402ur2f4J6zcWfImjFX2idoxg+5kookly3H1/cOAgDPd+np7kS84HFTes/GnSCrzBhIpzpbb7xftkxyOIB81yjnAEZ23tUPpOMFl0Y862w3SLPcn9mlsWjfjFNtv753FNAGt747HXedmwub7QLpWmdfOxo+tqLvNh2d6lgCRsiS6tJx84qA3oew2U6Q5jrbNMnZFxv/zK0hjixJZE8iw9G8rSW/OtsL0rPOLp6R9+fE29WVieYNbQvV2VY52G0Z2RwAlg2TnKDKRPO2+yaI2U6Q9jq7lu2JT7iu2PkrI18zbfvW2VbZIG11duNrSbX5DenXETOlX51tlQ1SN1v9OtYwyRFt0yIOjG03UvrW2VYZIC11Ngcqk92PTQZrz0VjxlgGNNseSUOd/dHJsHGSsxlxjIeW9T786myrLJC62ZcGIpmC7fSNa7JJmesKao4ZsmF2eSLWk3U6fROaDC3raTzYvW2GTKbAgfxPwsllvsGR7C4tloHSuCoCMkREfWvQzL5wQD5TNH5/uGWaDC0ETeNNSEwNYX3vEFCS50vj0X0t+kMVADOhhZL8NwCLRDTrVnY5QiqJWWBkCEg+eywy2EwVrYjlTOi7aUBJ7CxyjHS4lrBWSaDVp/8Snk7P7T73A+rv3qatM4muogXUe3+6+mj1ucIf2yFVDvw+LHjVg0Tvvt9BL90hundkBxFJIJL8V9E2IIlL9PVjj9K5t+faIdED3xNlJIKSmIWxMGm1lMQQAt5IbXT7/W9S9Eev3d360DmrfjNGAZ1qo3d7Hqbqyv/vD2H/84n4Pwloaqte7Cf6Zfb5djL++XkL9YXtK0RE9Np/A17YsRT0NtmEFullLe+JqrGw36KU46jVb31IHW8/JtorpP8BqiLjdqXbjdwAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the diagonals AC and BD of the parallelogram ABCD intersect at point O, point E is the midpoint of CD, and the perimeter of triangle ABD is 16.0, then the perimeter of triangle DOE is ()
8.0
577
[ "8cm", "10cm", "12cm", "16cm" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAMAAAABlCAAAAAA+ZrOGAAAJpElEQVR4nM1cf2wUxxX+ZgGFpJQEYuLjRwrNXWIQUnyhaQNSWruKI0xCwShEQWrUOG2FIxEoIVSxVBSImjRGpQ5pi3HVSIAKalUIUdoUmwTFuFIlFFSOtjSAMDYRUrCr1hgcCft8O1//2Nu7tW9vd2Z3D/PJvtudnbf73pt5b2bemz1QDysAYMag1CSz0I5q+6Ap0A1Iyty3SUoSujdYcYrcNGMw2NPbLcJ0xcFg9CRp2iLsAqqH1xtQBwGk0w+Bv1iyWYPMgZ4kCGD1zNXB6AFACADgJfFPyT23zdIRQADomAsIJM4He/iZ27sE0HJvLYPRA4AgAIzUNrQKzns5oSMAAHxYAxL3BXv2yP33dwGXBifHRbAbALD0iHf6dxAC9yU0bWB44SBJbmoI0Hkl21MtTUzXph8MaEIOPirezNqzcgtIAMDnj04h0N1cE0h3/04S2HLw48VTApFbIABcOR8HBEAoC2CAAI/MgwBeqg5ihGJkAuLdLQ9P+ejxANT52wAAs4IAWl1IpitOkT22N9dFe4o9aGJ6YegexOGKn0lJ9hzUGwfaLZkDOvEVQOrSWu4Cgg4jDuzCQbKtWlIoOzRmPQcRxoWEhsx2+vZlQEOr7VU1QSF13W8pQJGXRwUSAAiCAkaIkSgkmONFgDCUW8DuQZAG/vZhKThThAAFReUqCgpA3Y3a/NPAcP21EAyMWKoLDBJE03QIaxxQ9kIy/9m0nIGm05IkP6rK3y0wDlflDrWn02RvWZcZgoGFn4Rln6xqzx2qG7FE1oC2Phs3hAzcBTa/EdoPd15bmj9RltqktQw6U3Y1lPbS8VQoepJVh/PH6i1gABA0sHHbXaHUN6nx56Hogc5rqxxnutL/eX4mpP5uzL4Q7gY1h63+QFLPiE2SmfkfhHs6yebvhSJPJUbM/JlWC5hkc214H3Kj/HIIalm313mqIYAkOVB2ho72C4hXN4QgTiVG9WHNydyLmdaQFggAVxecjgGO6YkG5FN1zznP9QQ4981PZ+g/cwwosCXTlDvWIgS6qy5NcBaqCyAN4DvVm8IOQhQAepNnpwWkf75yw2jXr975pDyWGArReZ3Y+GoAIkmya/aN0YU6Xiiz8FCAx7riyt03/Cu5oX6n9Z1zhTorq3fKngrY7gWIPblbk8Lq6hePvWCd5nqyhhEPLGh7MLKVZNe3uicHIHtp6msAII3cUlJDgB8P/DbAI11AAaB+8Qv6dH3Jc3cWlPpAMjtwdZX1hh7BHEjF0/pELravbsSrf2qaUUqwYo82SW9soKBMWYDjc4dCrwRHIfWA9v0aGwvLFAQwKWky+Qe9h/nDuSxRwkCst7AHKLkVAWPf5Gd0bc4P214DtMITzWvKXdhVE34wdiLS/kOSrDqiVX1gZq9LqVILENtrHok+JPqj7Tq12fzMPXCJJSgJf3nqZSuvGR2kJCs/1iAYirmuRNWG1s0b5kCoR/FUIASw9Q2FiraV/KY24X5dASdiUc1CRyMdTym4UqvC0JwuulVW0urGptsU9aqHSVu2wde0smue1po4XCsrKGr/1zQ1q4x0/F/ZI792yJSfJd1W4wotMNz4dvBAojcmrbODXN7tQOxfMl8CbnkJfzW9vlpBQwEgSd6Y5R/kMkmaReOR/gL0lXXpsKWJ5h/4VLAmkPvqst2nQJH+AtS7zKCigMXK/8p7HWfFkEmcLHbJ1wZS7Y1Berc/rF4/veFNx1kxHJr9cNFrfop6tFVLr9roL/+Pbx0zebzoNc8WkMC7X/xQV7V6mPbdX3tXIPD+nVUe1z0xlDjG8LFQT1wp7/erkuwofs3HBnbOf8yKyZVqJABia3Z5XSbwnlHtVYGUpumWtTNN9loutASDgAPds7yCXJKses+DBQOAMGC4eAFDYOuzccB/uhIGxFdrdnuszIjOa3VeLJB07+SSPHP3ADP2SelwYZZnhMV77WzbgJQEJa0DQEopgI2vf1lasWyRKwakhJTMVoyiDRJLDnhc7vzvKo+r+RawsqiU9omU/GDRCKW0K0iZ/aRpWrs3I3NOnkGumr3Fr9GeSlicSUlpmqYppSSZGVn4F9ozEJn7zMpq/0eDlb+zHuByaUxGqQB5GzApc5yaJM2dT+S4dBaXQoC/VhYU2VHAOu8GICzdk5SmpNU1JE1J2V92xpS5LpQrlqUQoIihZvwbgIJgdu8iBQASMAAJsT7TCmmdCJEvFpCAYf9HY8bA8Y2nC8qkQYFVNet8SPOyjO6BZ8v8J1kRYlFHQZEkeSE2RG8nnhdgTK3lO1wKSwfHDiAn6t+2vovv77EFkLkqlpVGl89TRGUHaXuLHC7O8eWiYDZqWWaE+TxF7F/pUli/w5euyHR6dxUtt1nSmbQTbkGunrLChMZYuAswEEuFZ0kTe1bKsQKoZJPdk3zZfF6QvQyBMTKv0xn8lAbcUnoFcBXg4uIz5ZExpoy3Tu8bXZDNqXrDVYCnkz+JhCU9DMVHNQH6KrrK/KkKx1KJzpMvA5D2383C5BdHLe+583kF/l0W9ZKVv4/ILjXRX37FZsEkr8bcMkoFKGwBse/2NRHpVAcEpjVkdxEJGMBba9TscKxEcjB2IlrFqqPfjrCY5IDixoCCFhDbax6JVLUauGvNTsunGEDz8nK1ya5TGpPk5TvDbCkMiXyQa+hexZh4gZCb18/RSz9HiVjdXuuALY/FFWkcwkjm8nk3bRo9Bl0zremnldJTgbMFBHL5vPF6zyf+eAsAoHWx8tuOJC2FS5I8sKgUetXAp3PTJDPqk0mrBUT2f+iVX5ZCrxpYkDwAYP+SpDKF890SK583npBMxdPMJE4pUyAb7iFJOxg9rpBLD3Lvk+r1kR3uTLJ0+TwtdFRmEsUzSgWwp9NH76kU/1h2buq4vmYIAMS3v/HJcQ0Ck5KS6Yq/lz6f5wN77Dlyh0YDcKIBQYEtX3kA756s3loqveqgD3dovCJpvdrT8lAf8MUrE7I/GTAeELnBs7zt6xqL8YkA8Nn1J6Z/Cc8BenupI4f1eAqdiYABADsaZQUAQIzvW7YivxnFVKUxALTsEnEIjt8kFED24WKlEIY4BEzwq27DAHuuk23zIMZvCmeDwPt1f2Tb0yl1mon47PsdQHfpuFKFpcCRC8swX4tuE5BiHRDkpy5KgLa1ZF0DTeWYrCAoZM593tRg4hhIIYCWdcCppJ4XEjByifrx45/WboGjp/irRac16G6FXycAYHvAS9eTWFtxVIPulhHAYuTIUoHPz7tv0fWiuyVAgEeXYrh2Rq0G1S0kAHDU+NMiMXlmn86P3/wfdrtYIDIGRsoAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, BM is the bisector of angle ABC and it intersects CD at point M, and MC = 2.0, the perimeter of parallelogram ABCD is 14.0, then DM is equal to ()
3.0
578
[ "1", "2", "3", "4" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKUAAABSCAAAAAAQ10unAAAJLElEQVR4nL1ba2wU1xX+zniN8RoTqHAJiaFA3GLXRg3ISAinqlJM4qpNDIWqqDhFeRRvmyAbUdr8qAqW2tSNIoFaqBJFERDWFFQgiqLFtE3ilu4m0MRpihcwwVD8A0MLK1hj12vWzOmPO7OP2Xncu7b7yVrPzj333m/OOffcc2Zmwf937ACAsm6VLsSQBZO0qDvaTr7jbwu/7ZefVZMfXJBMvJ4HrywkP2vwo+GfvdKzsgpLAODkD24r07JgoLseuPS5edIdSJUl/SFYAUDeTWwQmbsIpzc8O8tLLmMSn9oM/VebCKbx80Oy870SmtW91FMwYxI1XSa2Pdsvbyl7DHz0Mev/8SbJQBsRETWrsnzld4Px8bKMzK2UkiNg+476YU6cXfVfBZaMgz8vWzBqHOcJTnbWy4UgAMnPHvNzUcflPQp+Sf03dJz+mR8Yh2NSEUPbJiHIBAx0bwXhgRV9Ciz7A0eBS3q+/AzI9icAkQcrAZCu4pfzu3uTT214f+nNPLgpgFP/kp0NfgBj/RWYrN16AnBlUTcz86mybsV4CQCI/Hlcyhp4wL2dwAAWbMT1uZUAElvXLFXcewBGfP3wOKL6jZ2vj8ItSDAzEG+rQHL3Kj9wsLjxNSjkRCaeLmnKm2PlL/d9af0yb7lXZ+4EEQOof9uvvEMCCHVFo7qmKxsBuqb3PLG298fTvUVjkWi++7jILwcDwSir+wkB2r2W4s5a3CvwlK6qOVSUdUIlqgMAWhqLQHmEdZr/Qnj3WgB3pnnKtq6ryz6hqpVQV7uYVK0bLXm3pvLiWgCcKPYSjoXbLatL0S/jgWAPqRcXHKt4+B/lAMA0MtVDuKrmUJFFC4osWxuLoE6ytPXavpXikDA6lQHnxcfUuq7OOoOaxQ17q5GsOlz3rejK1NdEkRtJUCzcnjODki7jgWAUrnPYoPuJ7/ZlVg9DpQm4BLKc9Q2osGQy7O2p/xQFJtx7Ydq7X8lqTfoA21AmrNxiXd9qLAnHu6JRGckUBSrfcmrXWkvrrRnXQHaeTYARz51H9Ea8eX9UOj0EoC95b6mIPlYyuqNnVwX25dpbTpfGhbc2FsldlbA4X6tY/kl5bkCIn3cZJCeey7MU04S6es5KCMO4ktKW63vr071TcN0gY5Ee5xFlEA/slyQJABXBr62J1tu1DDlukIyqwF47eyuw3NJoP4AtuqvQ+7x9U2KK/XldJ2Fvtsk9Zdf48ffl1jega6PPz/pLtVNzohi2EVcDYuEoALJZWpIs483BqHs0TzXOs4k+GRjxw8GCtvFcQNLiXuuboYkYtSS0eEmfC0mMOiYbtvFcQE6Xoa4z51wF2Lh7d/U7y8/MdZV0XD328VxAiuVgc8c5981bA5hQGrh1yFEfBsYcIlHlYkd7S1q8ZXWhIeiw9egAqCL46PqoF0kbXYolvWVtXfqLFTK6DKX3b4eL0hh0uqGpb7p37pkshGWNE6BrN8NR80t+LOOBYFTM7cyAhlvmRKoBJq9MPj4DuRerfbn6sFs4lmDZ2lhkJDEOs+ta+eaPf7sapoSrNpM+o0/W2ZZ1K9yuzdsvQ13t0F3uRehYHFpS27facyCB4RKbeWPhdtdrc9GlY/0tGnQNTGDWrq555NMHJTkCY4W5u4NLPPdk6Vh/k64B0AACqHDLyBHPhZ2BOyW59nPI16RYAkiv7zRLI4DrGhPwUNvhHQ5phQNGZ+ScioWjHqFBA8DMTm4XD+zvQXYUI7MjoTbyxeI+NZJI5OyQVYF91vrbCh8Acr4S1/p7+OE5kWo4t9tiSKyejArOpv62Y+kMw962Q9y/uWfPN8WhSn0+Vgggs4KLhaOeI6QuiRnMxoH5eXvr/igA3TQ5iw8CUB1aWXfeIKl0C9S6QzrUY9kwdUlMIAaYYHwy4SePGfU3k/EHCKnLG+o++Lw5htKtjnS24VJ/O7EEWCTJpmKIcfyDU8bWSOlmAlCwNXFgRZ6Ppm7NNI9c6m9HlsSw7ILxzXttI0TF9iMvPTeup7rpxeMZzwU0wAxDKUIs1NT6jSmm3zKgiaqJaiPV0y8+Z19EySB+nzEtAIl4LuBL8RPPAYgBAjHjeFdP1MyEhJKJCcOLFp5clFpNeTyrSBYm0l+c6m8bltlTkfEZDwTPUsYZXQO4bEvvb1LRJ7/HKUPT7hhHTJL2zsxNLIqx1t8aUNNZu7xXkKS8n/iMThWpvWv9bYW5eqySNvX3hTUNF2bnSy6FkalCNa71txNL6y2n5mAWSSbf5uQRz53MA0yZ+7i0veH07OzpkibhiQarBS+eaN84HoKpkehD88yrM3fKdrbfx0NdZ84hHT2X7Xpy4wWJR15uMEgayQZk47mALcvB5o5zqavXtVhlxYcPjYdhBu75AF3TNff62wpbli2rCwHzFv3s1t5dYmFzHk96rBgqBWvQ0vW31Hh21Vmoq10z22qO1j7am5Ggjfddt7ECY/8O/zo1pjdsdJmuv4ELaxp6xx99MmAkG1U1rvW3FTYsM+rv5/FO7YSQM8FjBRD5uWv9bUUuS5GfE3jhi3/81fiiTy5ouFTXQLGT55R8J8cvzfvny/666P6LE00SGPNpQFXgTRV72+iytbGQAcQqK7snKvqYYAIGp0EyP8+Ez+Iewt5lgSu7H584egYIwN0itXguoGWTHPzhmz2oOrq8ofdxMxmeWCSK5eqxbGT4JYPR8uQUulBx8/zWAuT13oMzjARtqEQ2P89Ehl8SKNQV/bTF3zmx0ceAcK1kYeyk+y16+876DgCoH2bm2+XHmsr2TepbYb/YVv43ZtbVemmg7R2beGSkFcDm8k3zL4voM/EeKZD807pHAPydiN46/ZZsLx+Q7Pw2T101AHQcWPi9glcmiZ6B+HA7kHzmoxuz0NZ8QraXDxg4s5MO7jkBjGyaM5kEicF03++LkHzm+id+4KfhedIpFnMHgJez/UDRbRQRFD9PuLtHugf0u03H+MpCQdNkN6ks7zZtUp1Co4EzX8UXvv9GzDAK0jc7Jgn3/lUB8y1LSWiILJ+F5KW54r0uYgCUf7XtjDSnf18T/xUm0ZKdDcBLB35kvJ6dx/uYckhzmj2nDwDwxrBKd1L9tc14cQovM9996pisvK7y+56JQ//XL6PsxFL5Wu9/gwW8mvvoe2sAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, P is a point of parallelogram ABCD. Given that S~triangle ABP~ = 3.0, S~triangle PDC~ = 2.0, then the area of ​​the parallelogram ABCD is ()
10.0
579
[ "6", "8", "10", "无法确定" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKMAAABUCAAAAADLkNj9AAAGv0lEQVR4nM2bT2wUVRzHv68xYmgT8ECssthAF6uJhj0Se2iNHIrithpIPBhlSYSDB4qYyIEENJpwQKjCEjwJiQlISapmC1uJUhCit4WEg38KrAcE/yRsu5qUtszXw/zZ+fNm5r3Z2cRP0t3ZmTfv99vf9/3evN/OVBD/Vzj0NYBlNzratE+duJK6N3LEV/kK+fpT/wiNOFIAmH/mZK5VXvmYz58FMNipE0cBALsfz7bGoyDfdQHA6l/0tCaO5H5viT8yzj0PAKvaNMdjtb52WUcr/AnC+fJ6ALiR1fNR7H9XPNESjyS2bvV2AKh+tE7LRx4pipUtcinI+EoA2N6/ScvH3+pkeVVrPAowf+gFoCpmzuMBjbOqhfPAVMuc8jIxgDUARjcCoCrGTqDCPLBV+ZSU0JnDQQgK4PK5FsXObWrVG8621ngUAgKYfvXfudR98jH9vutKoRVHk0L7y+9dTNEfqY2lB12fVAeFYW+UuursqbRk4DmUsrMuy+o5Y1HLTJLHhtL0SGLje/dHba0L7YeB+93lJ9OU1g2FT2mNuceUu9RVJw2ObE43ch5Kq2c9nzW1rmUmSZKzmam0PApwN3OpMfpJba0LHYcoAODDvw/GtdXG7DmgtJbWltIkadQ675gb6cTObSM769uj5aOtNEnu3pWGQzIbl/y7tLQutB92wv9n7qclKegbtBFQWkvrUlfdpe3wB+nrTI5nZwMDSMNHt9Ikqxn/uEmBu0GllbWmAAodh7yqrBlOQ1xvnxKlNbR2ctpmqmuhyah5MAxZTpMaWtcyk/6BMnSsWb/8NpZLlFbQmgIUFNiy+LD/0JVNv6ajsE1h6QEh9UENS2lvINeNNRW2gA2p0spa+3LaYjKX3CGZjYbSnlgo1grDg32SvX0PfduEsgEbG3udba/kSl8xkNMWY33SL56IUnfYfKvko1xpksxdMp1r3kXf2tuNyhzOLe2BnLY4/uVYE+q6KTx8INyBeEpdM2GHFrKVJEGT2AjJaVJJ69ryMKVJHn0tgUMSG7LrtI2C1pLZ2xFB3MtOdicT14P8Ou2YiSMspy0+3qYdNImNCKUVtA7PaZKkUeu8TTaZ2LUVEUoraF1YXIxusHe6uepLUk8HmkTEiLFKk6x11rQD58VfT/uJ0TpGaZLkjr06DgUJ1NN+YrT2r71l/JGrLtJS15EwrJ4ONIyi1FVXSIbNI1px89uIzGnS1NowDLknjtLRjk5l7um71rARmdOkuTYzf56V4KzI5Idtutee0FTZbcO1IgsjIk52PR0rdyWbuPqS1dN+bB8Nw6BhkDSc11pmsjEIGrtp2K0bXW84mXAOl9bTfsy8prCTzNwiBLGl4xMBmjpbu83Pzp8zBC4MV5IpHZ/Tbq0Nw3x1AnomM+MIbTReDTr6u2LXV9IOYXg97acxHi0f7dNrPabSaj6W+mzLOm6G1NN+2gBa0zgFIECAgsTbA30CgHlMWK+EbMon8OL0BbhaKjK86VmldnQGvxUrM1pneuokjft26Dw5E0want6gE0ATNaVDr9cq12kPC90VvRMi6mk/jes13TIVQqusMI6Pf6Gls2pOA8712ns5jF+RBVjQvdMQXk/7kWqtrTRJ3Vs2EfW0H9naLKKejtDj3oprj2i0j6qnA30Hiaino9gzrDE7quY0KdU6sp4Ox6h1/qXcWGFF1kCidUQ9Hc2OJXtVm6rnNCDROkFOW9xRrr50lJZonSinSZIGt+1XaxlTT/txa00BhXo6guv9U/HVl0I9HTjFFQc696cTsvmoSqu4etqPW2ujGaVJKhYNsfW0H/fv4cKpspI+AJt7+vMoycy3HRt79ZZw3pxJntMWP8bfadDLadKX17XMpLWK1OylQd9YTAOt2dvEM4frr8gCqlzc9QOFb6HnQTen4X1OanzDO+3BvZp8+tJjYYcogOnStUUR30BKG4BBIYQ4Ddze0273lsA565xCqIsQgFhyYpFVNel0TRr5UzyLSpLhp4M5yItA/9x2rRPbACxcX480HnvioBBCiOcAqRICQFVcJT978FHNjsnyVjKfypOX+Qr5TURPcz1bSXLnKa1eQbII4GoaD3DMDXBuZG6EDJu9isvqJFmsaHULkkNXWUSl+Xt+Rnkfi6MRDeZ69iXpF+TN/sRn+ygCkal3E1HfIJQ24MwAcOvnNO5WTVT4Sth/MzTxPzBtwMR6zA9kBpL3YVOdyaG3I8QbAWB5z3UAqI5qdlwGAPQnE9dLcR9JvhXVAqNkWdeY9rOuoRjMV0jmIwd2GcCbuj07v+PC/Z6EiQEAEKzkIholMvAfmaFs4O3Ud3QAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, AE bisects angle BAD and it intersects BC at point E. If AD = 8.0, EC = 2.0, then the length of AB is ()
6.0
580
[ "10", "8", "6", "4" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAO8AAABlCAAAAACAMOvbAAAJeklEQVR4nM2cXWwcVxXH/+N1FQGRUlRLXZRFpvZWMg0lLo5EWrtK1bjUlN0QCYdQGglHpDHIEgRqR0UKNBJGpIkfUuEKO+bBVd3Wwi4WsVWZeF2ZyAVLK9VBdeUIdkMVF0i6fnCwRVfq7P3zMLvrsffDc2fP2P5Jq/m859wz994z537MGoQEh0YBIHwZNETkeUaZjJjL4Rg5UQNsc3Ol7AWqcakxKCXMO4TsnQzhUhVOygjzEiF7461G630yorxFyN6xOMPVMqK8RcbeGKoQEpHkNTL2vh0CT+K0iCxvEbCXwNhBGDgUBIDJzn+WLtI7DIF4I/KEJeof1UC87s5n/1KTvbTtwg+J+txIkqSqBpYe/d9r5Q9dy17abubKxRsAALPxoze/+/eqfRMyUaoXUJKjvtdJml83XhUVK4iMvcra/ML3G+vgFLpE5MojU5+tZvrnl8oftA72VLz4pohgeQSembLKNx6YHtpxmVQcvGd+LtgpIFkeufa7XNNPvrXjdXLs07NkouFYkirzLDI1fssRa79mUzupeHXXpas7r1KRyZa6hIhwUcTK91TI2s7es/Ot9KlzgTkp6WJI2dv3wHJ6b/4P2ZMj/jFun6pMUsReRXLK/0HGLrt5s4Ht9l6SiJ+B+GOD9Wl3vzaCXGx68Hc+CQ1SiLx/V0KdaXPXB8wV73z82KKECikk+oOpI6HvZfbt5wFgx+DBh+dK1yGHu2YwEbMdtDcVvXfYP+5OiTjKtb+Czd7+muXCN5JkNNDtTosHuLO3I7y6Px2IFb6RpCIXan9gutIjg/2N4co/91Y/kU1286uDBzZMsHJ8aXiXC0XyuPFXceO+cMYzrTz1y43Nxc6hffvjLjTJccgwDMOAK3/VwVhHppKETjmsTP3+KReq5AjHyA64ab+9AE6n99ubTDqMGKf9ffq65AiTZLijXLtmxEFEblj7r4xFfXA4Klc/E7rWra1NBBqI1ABAzXVte2M/vQykzf3+cEuXRtLQ8P1H7tqsEUsaoEEDgLH7BHjlawAQvO7cP1uR8ekLiFUfGkXHefDml5orNTIAA3+KP7NLZszbOf969e1HMjpPu/BX2ca6vFe/Qfb5p7XTlEbyoR6SsQ6SjGFC117FrMWH21z0baf8/bpJSqP1GEn29pJU4VAJ/d8zjdoxkyIZ++LzrlW6oKc2SVrxbwxhF/FkpkQHqpfc6Fdcajy8vAljHpaGaCBG8or1Bpmg+/GNGX/xqLkI5snaBbdpNUkE1nTN3PePFgKRErLRHYhuwqCWotn0wvqT7vzzcm1pPbxx/2BJ6R3yfG7H3F35Hm4rMSdzwbOrBx6UtSLJkWCui3H17v/5zHipg3B3Qrtf2eHtdHh8f2RvzkkX/UG+Njjs3tz089019an6255Ohy9/8+Je5Jamfl2JunfNa+gKzJLeTS8dbc13Vt/ehUqp4bcx/7CQpPUosqvBzPcUte1N1l2UyBFJci5wjh7Nt0z787/jtf3Vkbv7ZJbd0AAWn/xyj7jXogF8+Mgb9dkDO7r+6myihzLLbgwAFX81GxelvZYBpJ7+Uf2qljXoVZPhoPScbmflnHyVbj1a6IqevdGKeeGsKQ5XiE4/KCoOFp4B0LI365pFjY4G5DwgSXK2ovALU8deSddsZ6HuhOT0w1JwpPBFgwAVUObAaRy5u0/Oq9gd58rxxB/lph+e2vvrwhfLABg++ByYezbRgzwBmksMm6idQ4/uuw5ARPyvPuksdpkk6aQ6jVQmvBuWUAP+SRlJ44Gib5CMvSkzRWUq0jQVSdM0ubohab5bNZc+Tll3m2ZKJocWM/7f2g/1n6xSJBkLRIumzpZvel5EkSkyRarVDclP/h0YU0wpqhRpmqSZclYrnLPwQFtaYAm1KFnbU/wGK55M+UCWEQYVgDKwDEj5aG0AMPl483PIHKd8yP7EoLHytDm4q8TgsuWuPhQNd7PxpGH9DJ/Pl3Ulq97jhzXPQdBZ5cHAztGa+nhpwWXv37otWYUhVYop0mq9TCkyW3HTG7Lz8Y9tp02u/mTpryhh+kFxeveGA58gVdoppUhSWS4q7YysTWqk8iPTNEllmikyZZrZnyCKJKcr+pXr5rtu9DUvtviqoJ5Z/+atg4zVtLtNmjrw4sY3rfZ/Czby2/t6vlFKo3IMDQB3vlM++BlXqX/2/qhNTsHbLKzWuxbrTHJ/16au+TTb9izQhcbB4AbLokhu2F9QZEuLruZS6fbPpJU7M9oKNPzv0sFT2rB/1LU/6UipJBH/gG6SlaCzGYuN7B0L3NJVXTpqPnhGM0nzj53dV8xeRc75ZzUVy7DU0OykNaZRPNfg8N1YvHwTlSPOtYpinqjTmDSdqnR6c2F7FZls6LQdbTIXd0edqr3pn6bDMKWovcePOZIhSzbfjqcfkvu76fTR5LU3nXQrXLOducpOR2YUHn3NpUj73RLXvIbFh48lN6iniuyv1XBtBexV5Htb5JrtJFu+kmChMk6fna2IaXiXguWbKDaquUko8tzn3yt+S+IL4+lbHZFrr5XSPPCCTs68Y+jesYLXFMkmveVcOfamH9SJZvvRVhIt+s3WmeLfiuRQoD5frNta12znP3UtBYOn8UrN+bv89o47jlc8w1azks0NifwVLVYxqyk2r73zFVFNMR5zJph3hCVZq71CN5+9iaBX6ypcM5j3m61v512SUpQ89m4b12wn6s9d0feyi/jPtn4jM+zz7NKQm/Ejj/mwqeHlteP77zRHA9pi1q3fIPDS7EAp+fIGIjBzu+lO9gjA7WcG9M3NXb+xDVxzXhTZXmObtzcbzrkRs97e2OdmuC3CjHzYv9k61exKhN1eRS4FB7aprSTt32y94Wj0NReQDAPABBVpNuqOk20ysT3WSuQ5/7w7ASDJ8AQnECPZdlgqY16x1NS0TC47HH3NBSQVyBhiZHftfyXzJo3V9W/b8wFDrr9xMQhErpzHoZrzmHzy+G6pF4h38PeL33p/yodLrQiNnj6vmbocwI0LFxCrAubOeJE/IQwoKx4yjt4auuaL399OxI1ebTkkwzH2QmYNt9dYL49bJDpIsmNCV0AZEEc1TmJSukA8wSrie3EJ5wEgWKUroBycDAFxaKfcUlqtivys9mqPMhhjB4EgGsXz5CGZ4tH/uqYsYowGDSO8ff9QsABWhvXL1/rzyMvi+fGUatwwCMQj2ill/39y0+htjRiI/ES/EW7ut+VyRJ4AOnSCjfRoxv8BOifojHdWmuwAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the parallelogram ABCD, the straight line CE perpendicular AB passing through the point C, the foot of perpendicular is E, if angle EAD = 54.0, then the degree of angle BCE is ()
36.0
581
[ "54^\\circ", "36^\\circ", "46^\\circ", "126^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIMAAABvCAAAAADqcCxDAAAH+ElEQVR4nMVbbWhkVxl+bpJCavrDqUy7zY5GIlJ2TWuDJLQGnf1hpjDC7kqEjT/clqSL8SOtCcIawaAGNa3O7BKEWWiTLAsyCmZp+sNtg2klKpFOzYJZIqJphZ0S8ccMa36szdx7H3/c+czcc8975gb2gZm593y897nve8573/OeOxZxz9F2rwmgnsM7799zDu6Xjlbw05ZlWQ+VjDh89+GHjpTDG4k8+dXjEhIVDlfjxSOlAPfucSD16Qk5h2Lxsx+570g5bH0SAB7fkXO4OIXHjpQCfjkKAI85gqYdAICrL7+MMeD6H8Ne2SLw3EkA7msvAcC25M7aAKBYJHN9wL8ufRCSg4sP/v5NALhz6j4AxfSopBfJwgDJ5TR5B4ivMBx6fgOWxZGJAUkXkNNAnglgjBz8zlwnzmyG4QCOzJNOLE8WIKJANJxlI+TeODB+u1UKc0PcjjDn6XhN1geHTvdIcusMOuf2W+IQXSEju2Z9DnFITpYPVuLoWTCnUADJ+XOhOGzWnS/2Y+iaIYeZYR+hhhyIhgGZiiJ5w0Rc1w2SHMyG4jAx0nhemGrHyI5U2m1P3I2+UBxuN+txdxTtkwWRtMkzZal3w3BgZNWn1XoSkZRAWtuG9zsxFYrD/KB/w+wQHl3UCNupSNszGpVNje+qu2d6NK58fLRy1G3ia5uv2BfkFoJdObYqR5lkKA6LPYEdAlz5Vp0wE2P4tIXOS2+d9nflo+O146SBk/XhEBcM6pU4PvqLJll1fmSzOxSH9U5RzyZXvtHeIHgvDAfilrBzKork69Wz0y/U1818LRSH8+fF3etdOfL1Nf+Tj0q/ljtGHuYf5zxXfqOrsbzPz+GKObDT6Fn51qn1JCKpoRkyAQDlCC6rcLhCDjNxEw4TGZLZpxAjmciTubEA0WIO+0bGOLZHkisPrpDO5+hcca545aNzYTiwV/d0qsNbp0iSQ3Mkc5e4XA1kd2VzXMVhoVfOYSJTE7QMoObHI9thOJi4e88U13pIMpFn4qBaM//lUBwGpbasmKI/RbI4QNZ7cOGdKJqtRqQcGkxxmSQvVOvisrBcRRXSdUr0wk2SmROkNzOZSFfr1mXDSsVhZELI4b1LT3z82zdPZFhZ4NW7bG0YEMhhy2BUvnfpCUVrWWyrvBRMIsLUZ/zLZbGtstGUSUTYoxp8veuC3pYqV/zvRwyyyEopS9d+L+iuZNctXzTODSmrJMZQt5nvF3OIqlcdkthWqcUABR9G8UF1yz+f/o+2f0Devu9FIYefPa2ue3L/Xb0AtYqy0vC86/WAyll9cBqkcGvvmEQN78cCjaY3adAeSvIlCQW8eDqwuu+6VkKAjjZk/rp9I7A6q03KBGrK2urXq+FvJzXK1hojcD9r/Md6CkjpUtLPfl8nIkhJuyIvt6VpoI1tA/XQG3lNq4a/QGev3s6bIfTAWfWDoIJz49omKc0jWDNg9JPb2jmha6KT0gbAtW1bUd17RSP+D+16CogvBdeTpFtSqWlRF5WemdQ0IMn1Hr0t6HSoKFr7DwTegnU7pteDxuuX5wVt24FrA7Rtlk8B2vYXfl6rL3/bNm3bpW27wBsPSChg8oeB1WVbuDZJh7TJElkibYcskb+NkvQKKsVuyfY+Njk8IzAF+d/A6VcdD45Dl3RLpZJHyPUu4mKXpOuQrBaXWP1AlksPjm09W1hAmwsCaOvoaBwbz/4IABST63o0IjEF8L3ZYFvYjmeIEkl6M6Tk0nW8n7+C1YnjFdfpYUi8NA4yhkW4rrfb67QDoAOrvfzt/XSsfb6jodiG1V7+dIjj/7NPXQzSQwWuP8upYeUNeEkHEbYDFvI1DgoKQcmpfsm+Shmd6g2pygXskooDu1/RdZZgdkRZJRBzWRWMeUkHKdRXCrMWO5Ex4dCvXDtKOAz+pPW+NawqY1uJnJUP+xan5QtS71KqpIwsSeG7d6RMOihwXpWUES1szz6S8SkVr4nLePcTqg6SO9j0axWQdFBAteEoG1d+yamApIMCC4rYVqbQr++9ergoKOmggupiojvwya/NqB8jSsQv+xYL53ikSfFdRns9Htb9MxpCDk078T7vKAjgv+EonWCH2z2f16cVmjF9Z7Hl8dC8E69JOijgHwdIOVxrNKXZ9mMNvX4bjvLNtwZvX3vTwQxLT/oUih3uFx9N1w8PSYbGD77Xk97Bev2O+s0WTUGOzIbQA6ztvurxV7peaU0NuDVwt1mymMMzB9laL0HSQYH7c31NZWIt1iWnGt90MINPbGsQBNz/60oy9OzHFlpVg6/mDe4gXjnyj6uEGGxaKhhwqDq5w286mGG1KbVjMskqO/HDF8NwaI5tTThkyncgTToocOFwbNvCi20r0VAUmgMio/9fDP0AANLPtz4pAOBY95stzwtyNUqavhzpg4V447mZ48c/jZIOSjGNp2b/hRn5KZB+IZwpAAxXHsFXLWvQ/ZZIDwnAe2F7G8YvDfth00vKFDBOFpGWSUz8jjnkSWIj86nwHLy3K5zYGElOr4k4OL0HLCJPcipplnRQYOo8yeXoAUku50UccmNkYowkC2YTSYV9kE6ssuJRJsvrcWtpCfnjABBpc6fDjkiLAH41eid/slwgmhfZPJdj3t+3/vSNchlb/iWA6Q/VyxdorjBAOrG0vqERyhILa6KZtpQmC9I/U8ixjDUyNyCb7Yk8nVj0QN/QEDkAY5TEcu8MAMDA25KB0xr+DzWTfHQRLPe6AAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in parallelogram ABCD, BD = CD, angle C = 70.0, AE perpendicular BD at point E, then the degree of angle BAE is ()
20.0
582
[ "20^\\circ", "30^\\circ", "40^\\circ", "50^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABVCAAAAAAEOdtlAAAJyUlEQVR4nLVab2gcxxV/47/QmF5azvRCzrlElmsFg3Ou+0Fp3Co1jnVu3bPqivpDRHMOQU5zba1UIQhqUAuB3AelloslnAiKCg2YSEHUvohT7caiqGBw6dnU7ZHGyl0RaUUEYeMz8Xl3Nb9+mN27Pe3u7cya/j7c7c682ffbefPnvTdLCAUuJTVIRMVXq+FU2FhHocAkZCrsDoBhbQsRwmkhIpAqQzT9tYKeyp0jojNtJPdC3mBECv3dQ0S0VdZog0+HMKkHVPpwJl0EftR2R0rYyKfuw7gOqDA09CTRyJODUsIff7CdGI0zxq6H4UVENM7Yt40BFYbvP0JEtONfCk1eKuxHUolWHRV2A/jtppg0QxAuPUNE1CYn//DORSKixYNh2BGRkep/k+ixwXZphozMQooI9NFXpeQ3nhmaJqK5QyEZTnz6BhFR23aFuVzuB4Aym5JbrlEmYrQ/xOwFB/SdOetmg/xbzbYREZ3s6pWUf7QxlaG2IDIx0QTkZ4r+m26iCrt9pbUYXBekvmKDeP1aug/nUrSHiKZ6afbyF4MUMKLPv0DEQAyWSkWS28REq/y1lymuqmCz6fV92wLl9LG+reR4uIIeBtLOLNzITv2A/fH1K0q7nkDmoR9HFgKlXskoP9ipYwAoEFE/AAWGYgrnE3+Ovb01iOLN6HJoesB77bXGjSpDLT6Pvl9MR661lu08F4aZBS2+4FjQVK2cyQJLkaXfR4qtpM51qvNquMWZAWepIsN8ogrgVB8mW1Fcid5Ue2yzDqeNVRlq8XkAqMauYTJS9I0FmjtBEVq8eZCrMcxkBauJfcBktOQjNR+vSm6MDtRbZF5urlBimE9UxZPMPdPAaKzkGVLd65iRjLQ8dbTfDc/QsjEAXG6vWRTdyB0ORc1eKxbWvJ0Kw0y2cX14BD4UK5GKOruGDtcQVmAo5rH1hv+MrgAYSZRdYqkcZOPpZnBY87i5sTzDzxo2BoBsFgCGE00dxoHzu8wQ7KzWWnzB9XayDDkyP2kqWBFTeTjx76bi6sPBe7Y/MgPu7pfuQ2FjB0bEhBhOLDkK+cn78Rjy7TWLoPqux7X4/JrXu9t+GQAw1LHcqLkWWwk3CAH3Wq3E0DGP6/qnk2LEDXQs16u+NhmSHeC3FUkydNqY23/7JsTVQL0Xw3kMtg57P1acy3Wfy118LVa1Ka4AAJbvx2PQfOaYXB8+l/Us7jsl/vmJpAYAx4ZCMKvr8HE3pPow/6h3wmspYs/jTFIDLidqYVdql8+lwBBeNrZxqs++ei6p1Tpm1Kg16/BbR2VisOMPnPWpubPj4tdtob8fLM0oRu5OHQ+e9qvyot1sK9da7RCb2Fe/617/YajeEzrqa7UL3lZOExGRSKIKG/s0N5+Ytmu6d+8Lm1Pn/jb2HYfpIlDoBwAc957HFrHLljPCz+/Se0NTzAwA4N694M1QT0Ef1UeB1jYGLEcR0GJXudl7wGc+BiDfXhNWoylZhoUcxt4Rmrf5zWMLpegnAHDiBIDaoZQ8xUaPafEFYTV9l0dveDM8S0TXATT2Y/+FLpsFcC2mAUAtpUCxjswAoKeAX8NrQPnMlCKOVgHub+MGVqIlmHstj6GWSimv2hfba0AhZ2VQ5RiW9wNvAIAWvxL0fI6Rwxjtsm/vHuiV97Ht2AnAGBHlPIU8GY69DgBZIPOShJ5a+58coXN1X68hTRGwfa6eIsY9pglElpivEm1w7gZzvyKiI9+gZy+98Mvg7QDff7HjPJGdI/zm20/0ym0tYES4VfgPEVVuJ6ntK55S64ho3UbmJDjHLuxhjF3o/iz/3U0Silj5w7v3iOy88MZn70zLpzP1fM9mIpo9SNSd9HkRADA8R7eHX+1p5cS72VjBUVDtlA9WhI15uugrYTM0dAOrOgcM3QRg6DryiduGrltyhm5YxdB1bug9RCJFCpw6BswnfrjSeKiWlKFYj49RIKIbQQxhADABU9xwmJ/G5w0O07AFTFFsAIYObgy+g8935gCUoksAakPRd70otup93sLn8mC4aoBzcF3Xdc4NcDz/U24AMACAN34NMSaMo1UYg/0Auk6LJ13dlVq2+XAt+UKgasil8SyGAAxu1qnoQL7tNtfXMNQbDG89DRg9OWByrwkAHDCHt07Un6t1SCi3/OrWSzwBpgETEKMQBgc4DEOLvw/opsXNLhb3OgfO5oCfx6vQYo6MdrGzq54kWe4YCFIuY2OAgFVd54DdW7quAzCezwL1+cHrxboBGLrOjaNEdEDnwmNoIBcdqVN8/GTA/ieXqnXsKauO4lb7MQdQtj4RuCo8hkbdrW912vvLckfr0M8zdnK/VIPhqiNj4h87WbC8W3PXeVfVWHRY7Mx8KTHc4hF2fOxQy71Ghc3Q1J0bvk983IC1wo4e8KhbTiVFLSoeFBv5asl0vMtzaBUf2ygTURHAkk+yfTI6VAuimN8h6Ul6+TaBNrbR49YvsNLbIUxYSYw4WDXpkM0zejHMBNnYQr7jnm/dTCxbBYBSbNSzPvOybBLPg2GwXy2GdS1R8K0EtIyodlHkQIsciAzDlvGxE0PHWtdfSmQ0AKXYaQ8dlo0l1LgZ+sTHLvwjuhygoZqNTQMoRV1pT5VjNRdDidhJ4Kk3vYNwZ9HVjt4VjmJkDUUFG7sZBsbHNiyPwR8cHKgNRSexlqL73EmKodUdwfGxqF5xegytUEymltZQVDs6XdOH+TZJGx+X1cLN16JnUXxwuqFDxcaCoTM/IWFjDuBqTGpFEih1dpUWIrYLLr9W2wydRyySazX38hhaYTSaW4hYvbj2/DgItpULRSjYOJdS04JK197JyAzgcX4cBBKdZ+wsKuzHlUhF+eTpd9FMpMAV5zFQ78NXn6lKx8dAz2syWtbILH8vvqUQ4hMIkckY/1LuL1veO/zKAwHZBZFLWLrw4nrppIIDpT+Y3ynd3KzYah0RUbn65Je30H+HAwja35dtOx6KID3+s0cuDm8+whhj0wrNACDbyN0Fms91uqqEWQDpKRTob9JN1hHR+Bh7zCbcImsFHGGsn80xxq6HODcBiOgQkbGYop0q3zAD5RxQ8M4urkV6CkAh/KfgHCIIS3unWz2xgSrHrxAtSr2NsZgioksp1a9G62BEtPjWW1RMKjQaZFRE2s5jtYaIQdP+n1PJIF3EmJXGlwIBDjcvQPMYEdlHVWFR3u/8UFgCG+zOp6YLb8zd2E00XlW1bRNmDxJ9/EG7fAOVr+4rd3YT0UfbAwU9YWWO57rJSG3tlm+nwnD2IBEZhZQKrwYYkZUj3/TQJ1vk2yl8MS6OCCaeUnh6E8CIuiFOAFTWAukRWyCiItLM52Dm/4b/Af70Y4v9sVfJAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, P is a point in the parallelogram ABCD, and cross point P to draw the parallel line of AB and AD to intersect the parallelogram at the four points of E, F, G, and H. If S~AHPE~ = 3.0, S~PFCG~ = 5.0 , Then S~triangle PBD~ is ()
1.0
583
[ "1.5", "1", "2.5", "3" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAK4AAABSCAAAAADoN7BQAAAHKElEQVR4nMWba2wUVRiG37PgJdjIDxdcyRZsE8NqSTUSY6NgJVapsYk1MdEipkTFNhFirTfijaJEMKkGw6oQY9wqYo1G+FF7CZB0QRTEKxYWEiyN02CxhKC0uGR3zuuPme3udi9zRmbGJ+3unu+cmXnnO9+5zDm7glBm98xQOkGhfqBz+NSLJlcC6Zv7X9Takfv67NnZIkkbVXPhEHbkdlx/YpI64a2HBZTlEsNj82de5qqcYldfIoTwlZ5TlSvw9hO4Lo/ZEwS2NhyhfGTuOdVg6GgXpchsat6SOD8XWLPwZUW5w2Pk7vJMd44Zb57oJ769GgCuOTxVqbz2eA/FIAgB7N0BAAzXlQHudr/GucsaIbCrBgDKv1Py7urZvUfEkmUrWgUw9uA4APxUUgbA3egVAhhfEwSQ7KoGgMHrQJu0LCPJeKDf7oH/jaZlJKm1kqSGbiW5Mv2+LzAqSa6vm5TlEvv8oyQZCZNkQy1tejdR0UmSkcAxI+2y2niokyQTlTFSQy3V5MoJXevvIsnPgzG3hRqsrpMko0Yod1NR7gTHpg+RfD8Yc0PbJCQ54NfMTynsya3eQPbPX+CFWpKs2jDZYktuZP6f2+rKu5zTU5xwVY5J2BiWTpTPGKuqf2wKAC+m58Pz9lbkGG3c7dKaAZKkhhjJKEQrSTaglpRsQHDcCZemqVuda7Mht3dOnCQZBWKUWis1hMlXwoy0kB91M/GCMzJNOkPxXKP6MBGf02smE5UxcgfJSC214DgTN44z4rTc0cCePFalOYMAgLaqxZm2GgBlwPF50zB1bhSNH4uyF52I2NQk79l7F+TJU5uRAfzhw19yjMfrMJias2/d+p+05UGAAtGdsXx5inIpm9+4crIx2fX5hQkrhMD5xo0l+XJUH37CJY05xtc7gKsPX5CwQrTdVJ8/Qy3wNX/GSJaojFGSkW6SWnCMmtNdGA/4R/JnKHp3eUso2yC4Z+xu7O4JPhLBrlXTLsiVOejN63Iiz0TpbjsrkumEJoBudgBAcJxsQKvTE8n26kI5SnLPBPY7pcQSSQ5NLziHUpozLJ+yyayKSRMFdyYOd9Y8X+jMKh1ZtO+wqUx4sfAY+eOZwpnW1RMPbcsXmm49TowGDhTOtAwGirZftjnqPQsenPVW4UzLYBCH3vnJSTVWfLXvaLFsy8qp2uT6A28GZ4O9xbIth4nNaPJyqfzlmsVFF94s7nbEP+Cg7ywxl0EKYuXd5uYKeLdOqj+64YqiBSya2vYjnYAnwUAB4LXZD1kVK8bZYD/pXUuLXTGU+ljgksX73afOfOic/6xZeP+TFiWKBsP+zl8dFGPJ5uQKyzJF6iZpLDd6habQCRXrGdpLH3DOddasbM5dtMmBpNR1PU9o/zZ9KNfoCpIkt4Xi0rJVI11+MtU5639uckZp+8DoGfLNYjs27vd5uIvajE0qxUiSklLXKXVJGnGh6ydnHCB1XTdvy/ik6zopdUpdz8hzgv7AGZViE96lSL0Zf8v87aCA2RgpQAgzLWH8O/hkcf6GdfUq50v3u9LQRQCCom/PAECROgMFROoVQji+294Wqlcb6s1gICUlSaOC9ficXmkkjFaoT7zKVGknx+YB/4ja6XwApeleABAESPFq1WKaCfOuAGamHUVvXHul4Vyrs08FzDgwK1oSPnzf+bX0pRIghE8SPjNN0pf6d0ZuuKQJAEDrEEs7Or03mZwfyTS4zZBfeSsp7Z+Jdimw0Vhu9KrXbW6Zq1zWlC0zhmFN/W6dYEtFktLcn7Ei34xs8VqnFRXjz8A+mvsz1uSRm7Xc6D4NLSTN/RlLcqfnf7Vsn+JkZFrQ/sVpG6UzuyKj03v63psd1VOc8++V7rRRPNO7AgCifXm3XNyAAlx1S/2b9XaOSWH0DPHQl24EaB4kSR4IjJ4tOUtObHhYkA4Go5ddF7rPWRcWRADQl6/3X7agK1tCMSYNo4fe2ei0rIIQaA80Qtz+IwBAVxqVsp1dtcmFai9IbPoQyS1LSf4OQOGLEtkd2WY0Oe3DYp5qWjMHgP8UgFK1md7UzCn8yZf63ZBViA/GVwDApf9MWCyfJzIXndo+m7nIDVkFGH/34QBAHBxUa91tyG5q2qnb3JCVH6LnxqsA+MTflxsWlaaWtaR3yu/hN+D3PvbzJbYP8gFYIoQQPQD89HBZ/9Y99tUaHVlDF6NK8zenkdnjmNqoljy6COVOO0+BDuGrSxjfiDFCUm1U++b2aXiuNWRZ1lE4LA5Sbr54FgAbz1kkIwA8+g5mmkRlK0m+0m3rEdYHoC/Gj6494vHPTD45/SoAlJfZe4QltVoyURE25Hvl40RlOCuteF0fsKsOGDlktjWvfDxyMLtxK17XB/TdgeQ9wWoXNDmPb7f49Fpx0SxtGjz9EUegchAAhnuMpPKVXYhLJSLoJqO1No/63+QyKoBWOwdIkv8CWk4ElD8Tq6gAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, angle A = 120.0, then angle 1 = ()
60.0
584
[ "80^\\circ", "60^\\circ", "45^\\circ", "30^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABUCAAAAADPZQjAAAAHGUlEQVR4nMWbT2gUVxzHfxOKQtmSy4qRjqaaaAKWZsVLxJSkYGGVEq2IOTQFC8E9eDC0gmmxWKjg0irkkGisBz3ksG0Eq0i7QbHapGCRuhGksa3RpUGrbCmp62H7ZvZ9e5iZ3dnZ+fNmMqMfyOzM2zdvPvP+z9uJBPIEkr4zuTzhHTtsGgTiGILK/ihNLMD4EDE0OLSqNRIZWyTNUfI2RGV7MvEoWikLuqOnoWRs8083LYtFLGVmuyQ1SCuf+SjlLw/SugiF6rjQOwPsXvNM2PDECWl1lEJ1KKyD6PimD0UN80UguyZSJQtXVxERrf3jJbHo+Q9+IJojIlPvGCWQ6PLbRERrfhEzPHCcZhLbL9LcV0TST5cjlSMikgdIyX5GRHR/nSQwplSARERPEnuWRqJV4eGZ65spf/QUEeVXTxD8kjzq+xR/sDfTAEbTANDbA1+GnAPpJHgkYnr6wFASAGvLAQ+oB/4MAUzLBQDRSQJZuQBMEhFJNAFwMcOKUGFlNjI17Urz8s3aEE/DXiIi6tGPdgxFYGWCl7vGLEEuPbbWyi/05oCsPt6d+vtIpK2YpE/kVJ2HBywJNsyGAQA5eT6CfNPhAPB9a9Ea7mmYTWNkQtt91no+ZCsr83KuLszVkAMYJaJb2mFfKgIpM2rXWH0n4d1ScthZBMDxeaIUhZaJwT4A1q7Ma1zOP+2grhgRSVOfvh9J46jy9aUcEVWfi3RcbokDGEkDwD6glDjVvT4XUeYBAL8Xt03eq5R7cwB600CqHzjWeCxsryqlDdaeUMPdMKtn9C1kWp8ByK3vfFwTIcTRL9VnHy446s3LMwCA+0tj56IZkzP1PaGGmOF9YyzqGszG9zgkFRQOAA6VEIKG+Zc7tZ10ooTCO803zGmHAEcpYV8J4WJovnq26bUhALgZuwMAY42Hwy5prRLapiqSh4+bphe27Cqi2Krf6OzGznxocgCQWV90LBERw2QaUPcl5geSRoh6KHYWxpx48dxruuf8pYBhWhMbiTcVjCCOaXnXwqLNdP5LZFxu1ttwStbFrtVMr//ta7q2SDODlOuMxNOwIDvN+8cbDyiBjCxk3GcknoYu8/58V2LW2A9eI10rIbwNT3apDt9wAEdiI0GkzBRbM+4RPAy95v0325MF1wiOcH3jOS12Nyy2fFubXn2Mgfgl33YmxjpKTknruBu63qCe6vl4KvhAnYu7V0J4GI7XtjKHG32ypX3Gj5UpQc9KCHfDOY9WVmE4lrZc2vMULYbIs5mLYSnhfYM6dzZ0/yka18SYyLOZi2GqX/xapQONptvhrrnIjREut0ykjJwNM2tFGwAHgCsr+hcqXq6lrH8pVAnhYjgv5zzywkLh3eYpoYhGkn37hKITgDJjrGwJV+vWoLwveTp22GkAsmHMcbSqhQCAK3VZNdQH/4Ptvc5OwdbvY5XKzpCDZ2W/gxkHAPVw7LRIPKDYIrpUahgqjKHMyuCMqcBf8nUGgDPG9HQZY8ZWYVxhCmesZu6lX/lG8w6he+sTXio1DLkCQAUUQOHYdhSqtqdqGgqHUtaPOWPan+3scKG/6Yr3ZY8JVkKTIcoKeBmcMcbK6W0AV8AZdA19qx1zhVf+LHAAyDQOenXEU8vFl0qpIqBwVd+bkh9ZDZmYocZ8d+KOZusQoSBnxVshAarCFQBlVgaglFGQs4oKrgD6B8BZGeD6saNh9TD9yrAlpIbkQVE9zbDMGAcA3YXtPGg0Ef1DKVtaCqv82cA5gFvtWx7bfan5b1bd/OsNDfROW7QndUK7bikVP+8QYdpHJYTZsKwlvcj1/mq+XIoP2A7szg+P9hiGKlMBgBdDW+/nhWTLTZvw5BDgZ7iq5KF+Sqjr/SOxI3Vhab+VyDK3GQ93vX820VVdguIAMN3ktxLVGno9XfuDc6hDjePVY1MlDFDKgGneH+Ly4LWm3QvVWWsy7R7bhppfHve/3kd2v2gshu67/PUfjfePvqCD/lMwVLnLYvciORs7pLWO6eYACxSmUq752S+Ecq4mke/cOAvgcfN0gGSqhn7m/b453DgGtct/JQRQfZvl4weZ8GpfHT/3t7fczXrHq6diOJncFw/RqA528dffA72+WDEcLYSoY0vre4G6CF/vLL0Q/Lxl+mJ4zoYBSuw5GwaoiQ1EtF2SJOlc6Da2BMhEALz3G2QpF24f7YD/saqBiNS5rdQWdXmfkKS3lMEAxdxARFc3x2j/3jfCt6qSl24DZ5asCHIutJd+bodfoBU4WNteAPhoIsDZDSC6fBujHTPhZpoZiU7/c5yIaE2gYQ940AOwtkDzDgE4alIP1FK+SxI9/K0l3HyrIFFN6oFayuRWUpJyMkytGhY58jdMShc7pCUr5qP7pwSJXm2bIyLKBxsVwqxzjozSBJDt8Y5og2Yo9DvIYsgS0d5gp/4PpnyHlkil9JMAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, CE perpendicular AB, point E is the foot of perpendicular, if angle D = 55.0, then angle BCE = ()
35.0
585
[ "55^\\circ", "35^\\circ", "25^\\circ", "30^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIkAAABYCAAAAADkLYufAAAIbklEQVR4nMWaf2gb5xnHv6+SUeoIxJi7me0StcYjWk2D2rU0sHT2Fo86rUMCy8jchsUbKyFzN3teWAMLGVm9ErY1GGpYS/qH0mQlsEApKHbCamIVNynkD6VZWmUsjUPlUoOzRUY2+E6n97s/TiefpLvTvbJgD+h89/7y532e933e533vQDWRTGUUq9SRfgDQlhmCmgjzlwQVK/nK2/03yZ9tXl6vWvGVaBSimSRmYTNw7N9Hg+vEUsSpLZ83EwPA5U0A8M1PgpMIAJhbevyrLc0lmeohgHYojpPXBvlwc0HMZJcAcPthNZJTfxKbmguC+e4WgHN/2K5EMrdEph5qLslUOwDxUu8zKiRzLwwSs6rz3l/MP28H50RuEgjugo5CZNgPjDTRraUsngmSQsFLsal+pLpFFV2XqjXRwzq71oDVm6QZVt0pe3t88A+Ri6wdpDwsxIP7AajphACw+OPl3JuzaydhSbnzx7QqtKDy0w2LXfGdf929dhRBAWDnN163E9QkGc13XuU/tdNNmsYnO/KUlCQVSRa16ZX7VihvRcetBLk2kDuRGbsdRZKBQaY7SXI+NrpWCpLsOlS+VSNJRvNM7CMlmYsfql++nox1rjRGktMukUN/sR7yXQNrBcmE06v2VfJsw7u6gY/i1kP44t0fFdfkb4v7DscdjlKhC8lonmRkwX429/bm16KS0SdNx5MCSU6bJnlHcyQdeCrXOEg6XLFfUSAZGCTJd/pIlq37UnzB+agiK51jFc/B153zl25QUFyzhokAQIjjX/7uZLSxeOFI61BlQj10u7eWbcjdZyvzTkYb2xPOROYqEwJbx7INZfQTG67056yWbgAk35FwNqJAYs0bMhe2x3u5jWTbjCqH5IG+6rEVkCSnTVsVp7fWZs60XVBFee+BL6qTApKUbEOOHXDJTbedUwPJabUVgpEkH7Rd2MDrbvkZLaFEsm9fbVogkpx2yb6Nf+haYrZjjKRcHT1uDkba13Oai0MMRDLwon1nhj38+3znkSAtkSQXWiddUoOQ2POG5Mcxr0K5rb8ISrLbbawFIbF9Gkme2etRSDLfM2B6ZFoF7GuiI+9muwBRwfCurvL9tUddChCAQDiZ26N7b8uEfZ0bSoRdF4e6KklucgyNHjcL2702B3oCRAk9HrFeXZLcxmnHU+t8rWIdKYNb/aIESZLjjoBRjWR13pDMtvn/Gx7pnPdv7tNw2iOnHolj3pBM/qBOcY513PHLNp8c9cqqQ7KoOW3D0frxfEJzRAk1pjy+1XN+1SEprzeW7DlTl4Tn2tKeKOmIdzDjT1JpG7LjRn0SXvCMElbiY95xpi+JY70hKZm/z893lWXma8lShSo50uVTy5ekyjac+XYQEMq0dtYt/cNI1if09iOpsI0k5fjPA5GQmejJGjyudPiGDiBp6rperM2y15vVbhwY926oorPyTux4Tf5gnx+IpRNpuCmt2jbk1uAB60L8cFXKdKu/0/MkkdXzhjQ3KGw+c9vstV9Kksy7BIyuJIZu0NSLlLpeIKWh39WmKQ3dKLVm6AYz7YZukIYuDb0gDb3g17DM9+51zrSB5+vsE20SaZA0SYM0JA3J/QdJQ9K0/p0haRTP7pE0C5SGUfr5N23u6Vtd7N5xCxgrxI5PRMgEBUjDIAlxfuqPIARCBAAKgS+F0lsEQ4R1dLoe9c6I1/299emlUgBz9+CbkXIs4yGWTkga0iRlwXq+p01bnbY6bl173yWlQWnI8q+O/Ca+aN3scQ0YKwSkWbBMoxdJGkVS0hgYlAVKo1BGK5LygVsFyoIKCUdj8yR5uqP+WAdp6rokSav3um6Qyfb/GOUHGkVKXTe+iMjSiDXKv7oyvukWmW39oH5Jh49dHemV640tF7oaOWw8o91gb5DDwdXzk+JqcD28u9tlRF17TIBq7w8o8PyGnpHsuxT1D1lshTi8Q61PI0nuVdtxluX9SDqFXpJZoNe7mMsKmKuM08oSS6sySJKS20bJwpaMJLN+r8tc9jvO/Y1DlmYfUTEMYL2eEK+ahwFgSgC3XwhgnVWp2N845GpcVSUkyRuRDMnU9ceWyTf8CtboZPHgW2FX5NJRX2CxvGlx37EYgJuP7EzBXOdXvobEwzbqJNZMeTkyBKCwDt9/D1e+7luh2jbu84bkNvdx7C9XI1mS/GyC7M8cW/YrWkWy6DFvSIbVj6PlSixBUvLMMpkYf8PXM1adDA952QaffkX9NaQ43LEfgMByC7B944S/a6vg8rYNz+1WVglnrIAxAbxGyeeWfU/VK0jc1xtLjvxeGSQfVTmSrJg7w7u6PXV3zfJrgV/oEPj1Uz+sSglqHR/bkNotNYVIJjfmpK89KsVBUru/cchCWA2EXNDUTq4d1rF9musIvx5Xe9FGvPjs00o1Vt+hn+87tMG73JV7zwREKHXk7sW0+6rhSSJtFZxs3udhggD6Hm+gkkPW/rVLoy1Ur4D/N5BGvoTxl4a7EgLwnBBCTMLD97wf2lG6EePB2z0lQjvM3ymhkGR/kil4nsWltCWSLHROBPYNWYyQWfgct7j7E/Nf30O7N2v2UQEAP9m4I1DPAJjPjrwKaEd9Gq2VEIDL3S347UjMq8hH4c8AnNL6Ajf6t/++DADtSp8Drgcwe+IEMjGvQV/YfP9sDJ8v3R+shwIsnjjcAgD7VUAQAnAxw7e+dbMGxDqvwJXvtN+G+asDSa8YqoZl/np7A99ghIC5ezH0d045/n2pRetyMwbgldOXu1W+i21gLoeAqT5g/uN2jyYK6/DQ7dNPtEz1BG6zbcttAJibVEMh+zMsbNG84u5UhlmMs/DEUvAJmcAEmfLZA7sJrK8xrVpVkYkk2Q9ksiNMQFheJVjgkwIwrAbC/wEV/xX6o+MBhAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in parallelogram ABCD, angle ABC = 60.0, AB = BC = 4.0, points M and N are on edges BC and CD respectively, and angle MAN = 60.0, then the area of ​​the quadrilateral AMCN is ()
4\sqrt{3}cm²
586
[ "4\\sqrt{3}cm²", "2\\sqrt{3}cm²", "8\\sqrt{3}cm²", "8cm²" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAK8AAABcCAAAAAA9/7oeAAAJt0lEQVR4nMVbW2wU1xn+h7rFpFYRiUz8QHFwoF4pUhnoJWsaZRNVCdtWdYwUgZ2HsqhRTB+imlIJqqpLaR4cqcEPVVRTR8qCRDB9KESoNpVaYUKULu1DTF+yIINJgLI4VTZJnTKOz/p8fZjLzuWcM2fGXD7J9syZc/nmnP//zzf/jAl64Jr11J3sJiIiOpK+vybSg6FZT93JK3TjKLGta1L3hyVxFXy/Fw829QM68PkzaxP36FY34vgaRNaB2zO7RPTBxaemzrcUViaeX4PIJh3Hl4j1/jcNNSFOX3ywsyN1a4N0+JZOfi31CCGwsSIOpurt54ZhGMZzGnwvXe1OM4AQH7y7mR5ZQ0RI6hCv/Cw7i1sXuz5T8AUR0dyLP72+Jj3DYH+nV32dvrPp7TfISOoQ7NLTLbTsj5d/q+BrEBHtO/zp/9YugqS/Pza2uYVopPAUJYoPIHtliNq7pkgdnv9ARB0zKWN7GM74fSl2i5HsLID57j61/U59CJxdeV+6+YxOlI2jCaMZiNifn24hooXr65R8L+0YIKqEG99tGK450D+vbVbag9Fanu8m6phBtZLGAKIop2tyNjsL4NbGPhh6E7bu0mNfWOw0gejG1FeTbhfVqT2D7FlzP9FIf3E/6ekdND1Qe+n+5Bz9XRhE9PurT+7wnergr69+m75EJ39DlJ1tIVLag+fGNx6yypnjydcyhMns4W1J22wbDYSTmHjmoFgEaj0FK+lgQVhmxVqesI9qe7CBHt+2KgBeMlO4iw/9w8DW0QQNODA04Bw40OJ7vMf+W8kNJhjNG9PBeN79lQCZUGDS4cu3uKZr7c3dTDZeA1WzCuBWWy1Jo1Ph29PhO93uHHBgIjOeZDy3GYAe+6YLpSTtesJOrsN3j98Kavn+ZC7jGMRwv/13IgdwXQFhe5u/sgZfq70aGH7YPK83mh8V073LtqqyYgCDe8MlGnxdb2uMnR3SH9KGlfNCS/+wfrP26XBJ/PMQjbwQ2rMzE1e/d9Pbt7R2qZdzWfew95i2aDqxIfqoEHuPlUzwnAPAuDmWRMSWH/W1j06aDBFv07GHgSEgqrBv5gcsbd39sXnZd7ZXN4hX26JlsXyt9mrEnTnAMWS+pzluKIaVs5rNisVoWSzfUZFC4QBQMXU8h0e7WK1nENZDgkii5suBrFwzWP15nc2qmgnW4qJ5E+B4j8Dg4uZ30gTkdjqusdvxxydCJWEPliB/SlAYx3dAHWqr+T1xu93gnkhRWMQI4amAAGL4Wq48kUaCwZxscA5wYDIbvSEtg9gzKBo15vnC3fUVdcpmyWEHwQCWWYmWXmmP6zWsAjzEzK85qdFzoUfkdjZJsT0pnNjFMfGTk5rv5PrYfgHgeOdpyRVbjUUQ1TER5CaExWq+njaJ2ciqOREB7mh0QX3BzhUcqdIpvqzgy1Fr05a6g1mR2/WckDCSzF6jhiwuKefXftjTkwnlbCkybKkgqx3nxxJvi+Frvqv9JADUtm8Lud3ZtcLl4VAaBAAO6Z2q+GoLEwej7vO+fY9Wywika5OXbYx2fWkAUfHdliRXAADTWf9G8Oh9Ek4ckE8gAFVcUvANp1Y0wPdlPe31Wkst339LVrPWppLPchWg4Ot6WyKUzZLNYmbpWWBYvt9IDQI+FRCFgq+WKvGDA0CtUPgIANb+GBA/mtr3I9TVzvXhndIx5Hwnclokoyhly8DuVfbY1q5viOdKlflTqAA5X8HDniYq2cF/LH3fOfnTdyW1JN7M1SpAyjeptwV8Z6+xy+3GrIYvOoikNTyoMhRSvhqSRAaOodzSF+1juVtZbTVxfFDmiAnAAmMs0lQ/SxBFxbTeX732JoDXFWFWlvk7oIpL9vyG6XLFasXDMisAnl/2Gi53KqYqkit1oNTcYr6L8TZgYIgDHH/7ymZ7W+ViA54Ta5q/K1WAy5exOhYYB+bZAoBrHQzgYIw59RirA/Y5s2vbJQJ4gdB6ZKkyk7nzoKhUnSD25pcBqAN1+2RfsV4HZxz1uluhzuGcMwawOsCEPdYyjYjwaqvqeV8Y4T9Sa26P70IdnIMzxhjnn62qgoHX4ZDide83s63H/YkiEFfV2W1RKjhGBTj5VIOWANwgMpqamgz6yzfbRLlSnTzooWW9aNReccrsOi+t2zsaLRvpV48C1OuoA7b1gnGAIz8OXgfYgjOzTrFzLp1fDkxnwvNpSwgucrqAwLavxqkAAhac6GuvPGMM06scZ3K8zLYT95wx5v1EIBDa1kBeGAi4KPMXp7l9+9uCdxSThFKg+CsRr3Fz3D4II5AK5tBQAQ2+C1530oe9WJSfsITEqvkBIQ87m+hDrApw+dZZY3rl0jQGVsZZXx9h53DIFKrpsMZuvxIzhEjvqJMDCnihXhDoKuaw4D6KxUBh/NtaAd9JUzxiLKbl4oYDc/35WqhbHk4Fx6sAAd/03hagEj0TZbe7fPGEV9tj3+FEv4eZW/PeCo19IQ1mtm/Y1xwsevnTwcbJPtof20fkDtSZgUUilN3mwSy6xqvaIF8OrdxsSnAATna7UZYtexago7l972NBZBBNzmXli7E4GESULb+15WN/2fZDZDjK5PCPNBRK6P4TvY5OAQ4cz0z4ChqZvxvKHKCDsP1ay63b8229BBzh7LYX7bXe04bfzx/qbSbNb+hSwSCitjPLuy6AHCvoPWZfmRst6HQQ4q/zgiUdAqvWyG5zN4mv94Qbmt9zzebtm8sgnA/67LXLjp/p/cQuXmFOEBHRyAuNywoE56Dw+uInUhNedtsO+OLXmREE+SZ4wbJ4uNlta7kFcE0VELSHw73NkmW4A1hTpq4rRNScf5Po8xN9eq0C7BOnfFPA73fnzBLsV5mjvXqtA3xTp3xTgqNWKNRgLbe0NXfDHkB0cOcdWfjIkroHBlaUct8/17zl2IWZJ/Ta+veGm9kLd818ne+VYdCFHc+s/11m9S7dhthNRJSdBZ5Pn/JdFPZ+q/UBnQ9rAFuvj5w5aj3WefTgT1Y9fEf3YhmMT85/cV6zbhMRG9tKy568Qeb67RvuKC85ftlBRPT240RHVl97TvlxOzDVOYOR1neA2/Rfjykx390xA+xuLUvSxTaWEJ2++KBxfWYT0W36r8d0YM9++K+VRC893GGoeCwhNnYEU8O/vnvMxCiVD7QQUdMPW9X1MNU5w7G7I/V33ouEs/Tz3X2eFaiscgmd3rjSYFMrv3xXZjEKZ+nr19d5VqCyyiY2tpXoFyePtNxpYmr8+1rjOP5/X+zocC9xa2MfAGBoVl2PgHsbxly8RUWO+e43FFU4RPmoe4VLm/5DrW9uiqn1f7RLF4TFN1vwAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in the parallelogram ABCD, AB = 4.0, BC = 6.0, and the perpendicular bisector of AC intersects AD at point E, then the perimeter of triangle CDE is ()
10.0
587
[ "7", "10", "11", "12" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAM0AAABmCAAAAABNDEqYAAALSUlEQVR4nM1cf2wT1x3/voTC/rBqVTXDDBe31Cte20lG/AFtzZIOOtyVplFnGqqyDTZEtEGVaGWCSXRsWqqmEpNAAhrEprKtVWFJR3+gzRGFssmdguhq2jKlm5JhGrYmczqiOVLt8+V99sfd2Wf77nzv7tLsI9m+9+v73ue973vve993Zwb6P8MjrxMRtb7lpGyTt03xAK+1ZYDUHUJltCHxgs0jjDH2+WkPJBERleRY6eBX7xQoAWIqIS/YvNaWAb71pWmCF2p77it07As3dAmUYOUvgntICQBo2+6BKACHiSjjpFSr1OXF2JxbSkT0xb97IIqIBjN4NGI/O4hAWfYexwvzg16wObOOiGiZB5KIKPvfGN3ns5+fEbFSYvtRRrc+FfGATSn1IBHRP8SWITP8PkH0A9opVObYf35OIFoW8WDeXNkOAFeo370oAG3vAmjrtZ2fA9JyNTv3gM2RXgBoawW4O0EcSKmLU0akXKUj3Wta6eB6oiybfktbJR2DEa1XuyTmTIJrNoPz/7aCsdv6z7oVVIHorrVk+SgR4cqAF/sN1yuYS2VTRXAxMUeoH0i1AvPcdyUjorfPEIEREXNtDly/SbB23PK9ZQ+Ctp/zonYiotHWjTe6FKE1ZPiVeKtQwWu/TN9XDrjXDCB/5zOhYS8EAQP+lhNCBeR4L8oK7gmb9m4MhMcAOJ03XPs67k/HzwsV3ZPQBdyy4QB+/IAMHLpzyqUoAC/4M4gOi3TJH0I5XciDsTkVyQHA0/GC2wXtmD8D+CYFSuRCaX3QPZtM8LJysa1ddifpQDADFBfYGxolU6K3Srmds1GF5MK/U7cHuX2bK1kHgsMAsiGBcr2J6rDbsZFb9pWvC/E94gK4+kFPcBgAhlbaL5sO56oj3LLZ0a4LTN19yLGgfeErAIDTG2wXyYXTNVrpks2xu/L64FhYbLOoYG/4qnLRZ19dE9p9A3e73yhTJR0aqY7+MPSmiJDyV3c0q0b12NbW3kTd9uZqbMZuqWv7UPCigy20OzoOKOV22FXWukkDR2y4ZuEWVh7Qxaq/qdrhsoFt0fFy+aRNXc2F0/Wd5oSNdvHEFqPkF8MfCwnj2BLTmRHx842HlgNI7DNIcMFm/+qCYfr+WN4w3gRyFRlEG5ivau29caOt2vm8SYXHTVJ2tRjTrIWy5yZXT+mC8OV0AVOkg2NG0Y7ZjAQvmqZtTtoQoLRXTsarRrKwwE7luVDKMF6Yjdpp+eUvmueRN3TalPbphgoZDqiGjdXAcABImCzjwl4O1S/z+MNPmOdpfvm9Z2wJKz4qv+nTvBqMQDQeJGvfDyOi56Z7jBMd+gWelp+1SvalVgc6G0uZ3kivLlD8CRo+CTYu9ucDF5tNkmyqRDUGIlMNFCK79FRDKdPx9kKNFG7DsMmFUmZVOxqbSzvP3UgEBnOVCA/ef1MLkUUOmv568ESzmkPLxyYDFvUqub65eb2pLjbsCoPOWXq6YR6O9KIPzJIAAFMrkzP1iY0Nm2cNdxoFDtjILT228p0OZS1Sr8cMLYnky7BW4UzIcKdR4IDNDju7CQAci9bbhRpyOjL6xjfy2OQjxjuNAnE2fbG8XRu5d6WZjTMerd2R1HvQ6IfWIjftsapcmE06aKU/enBgR0LW93z58uNol0khn/lwAkBfXPaKDQcwFrTpvFMq7egwSstGuk3yNzBsMqExS70QHJtCTOjOnxfWldtdsVGz4X0m2XHV0mNjPWkgzGaTqJMpv1K9ec+G/gRlBEbMyKCRx6ZDMc/Mh0eMTe8ae7a+DuOR4wBQiP3Ur3TscLDXvEGWHps+i51GgRCbVGjCfmbtfjsbOg1gUydS/hSA4eABi0JWhk0m0HD9EWEzEnDiwUAmMIT98QKQ8qfw7s1WZNDzI9OkfKSxx0CATT7yknbJhUidD55eOgYAKf+pG49rEgxhYdh02LhnEmCT2GU/bzUGQhnl4g3/ceuc5h6bvpiNKWuTDa859hHE89EpAEj7LW5YOWBh2GQCdhxbtsfmRETIE1ODvasLQNo/0CifgceGA+B2Jg3ss8kERm3mNATv3CCnLMkoXlwDw4aD25s0sM3GzEliG3L7A/7GIswMG1uTBvbYcPXg1xXeb35MkWWFbMgwXTdprMs3EdGMJEnc4gaW0Y4luy3SbeHLl/96sGGm8UVGt8jTGw/dXmmLFeYRUXOTPM8y19ELQw0b0hDRs6uCHQ1aM7nYKPbJtR026zD3clQcFG//5OICm+KssOhsPLDWOss1I//TyUsX7FaheQdLUolmJE4oSTIRSlKJKT9E15IDIeVK+S5JKEmyklEIt7+x+R3LDJhcqAuov6PdA/NtVwEAXOJcAiADEiBxSBxySf3Jx/qUuBklDC5J6kdwIQDeDFrvgQaGTSF20r58bWxYk0xgBEgSAGLUBKb8fGdVJ4ExuqFJCZOinvNI/EEyWntg7YRV+kS1Nw1E1LXqMfv1qPOGUXMJvJmoqbaVveMvk4N2m6BjfO2Q8QO1YKR6oStgRCcvDIk8kwjIJUXNijMApBmAQyqBlzikEt4I5QBwXTS4xMsfUXDssTrcqTNsRhqoZg0IkItFDgASAPBiUQK4VJQAcOmDhRlAmqmKlopS+SMOvtXiAZZaw6YQU8xUu92mswUMKpmKnPDg0cZqWBzu1Bk2nYYuH3NU2GiOKl3zZbNTHxfgKNyz1ySt9hkbYbtdYyMXS1ptFfzQxS2NBaaiffWRHMCFlVVtGAm8KyhZswWatfMd3frx0qmM/dXKPuA/c0/gG7WxjIhyi/VtKCZ7VgiKNrVswN7pNllMXYJR6Mz9gRaDFM2wUYyqruU2jueqYXruySaSL91ulugSiL6avGQQrx1FMSKik2d/ISzYlE0x+eTXvNs1q8Fo1fGHr9bHj99SuR7d2S+uGaZsdt76FLl+M8AcD/Wsq7dxxm8u914x2RMTl2o2bw5n3hYXJoJvjz90Xt/5YETjwXLvOZg0RGbnnudDH3nyToAVutcVa2Iqhk15pxFrgwEbDmSrH8ydJdQd7pQNm5FAxpFEo7Hh+dixWR4XAICc+H5V+FPNsJFXG2yvdmC0CrAt923z5m0JazT3X3hOH55YqFa6N6xOGtFGGK0Cz3xychZXMx18qTWB71aCmsdmcMCxDVI/XKfDk5+FngEAskt0D1KoR1HXNB88F3ypyGjeXA5mHDXMGS4HK+uNchQlx/sET1QqqJs3k+2HYvqhczrmNnHXieSHWk2TARDR3iWdxBy+5aRnAwLNPL6pyryd9enT8nziqlrTxyFGNPjiL5xXrF8FGDHa9bmfuW6gGNonEkN+IiKaWEN0bcuAC8O9Zk37Veqii4Y5Q+dk4oyPwGgiSDOPd9/rRlbVLBoKjvBZt2jq0blBBoDosKsDPNSsaWPh1BxwAZDcDID7cinlvS3hlVmDnk1h9f7y9WfLqdCyCyguGAu6NA/1K+FW+Tdu54BTTK954qmP7l22weUxkW4VOPhB2vpBzFmEL7VqcYT7drusvjI2Z9dvXeLVu7kOcP343X+5ZvWIqh1orR9c9MfrrlvkCv/6dcugWxmqppW6Tor858qs4Gb3ItSx2X3pFd8cTRkvodhpR2L//GzuaMwB5S+L+l0JaSIiyubvWTgrbk0BMHqtrR+pxy65EdJEBNq/m+4gmn3z3xrSaALL3YloImJHDrPbiGiude183Me6tsfciJhHlM2DBi8pwblcCUaOHqVMzJWIJspu3U00qgbncnQGMzi84n03EkC7iN5DO9F2YG7sZw1XWnX/GuQQc2bJ1ADsSH43ZW/77UY3Usp+gTlmxWhwPZUSCx90JaXMZu5mDIiIBtnrK9j8xf92t+39D1yqIUrT2t6/AAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in parallelogram ABCD, AD = 3.0, DC = 5.0, and the perpendicular bisector of BD intersects BD at point E, then the perimeter of triangle BCE is ()
8.0
588
[ "6", "8", "9", "10" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKgAAABbCAAAAADCJpHfAAAKW0lEQVR4nMVbXWgc1xU+I6dRSwXbhzUe8LaLHLUoXVNEFMeiXntcqjQyVaiCVdxStV63KobqRbS7rkoEfnFBbReqBxWLKtSrdAMqVWsCSqOACuuVAjIOWajlqBR5JWcN3rIvamTSTTNzvz7MzO783Tuzq3X8oZ+ZO+fe75tz5p65986MBBIAkuhowzh9g4hIyTVTt014tLU6KacUgdXnmqrLFSr0dNPopPl4rKnWpQBVWnYBrBbPzx852Vxdcej1M2/ZBVC8ICUiTdb1ESqtbrfwGrh2F0pnk3WFQkF0qnX+xDZ10g+brS0UKtGlpj3g0Vr+AtEP6FJztcWhf/XFG7Xt/V8C1xQi+lqsucpPcI9Aom0WUWr7+70EVhV0EhH9QWzGSzF8j0pEVxP0HLUqpZ5kAABdLb9Ju84bNUNRHp1PECV/Q0R08819aTRxhx2VfDjrkIB/rB2++cINIiKIrtFtAvJHiYjo5xv7V0n0n7+9JxERQTy+MH4/ujn9r49/1Z5TikBKIgIPRQVAJgOAbR4OjVe5hoGhDLfvBbWtTMqjW5tRAAoDoKS4QlNERShEKQDJqbISK+xXZzpWjWeDmZbGwskykJwC8ikASCl8jwLG1Y+q/ABId6SZwNYfhVAB0y85mvbExog8tQugKpeBVB4AMkKhJrLDAFDofr68D53VWBooecTeqTk3GJ2r1nl1gSl+6C2I/12nGgv/1aPhgBg7BYD5xv56X89CjXcFKKYAoEj5AEI3u0xxSwd/FLg3OLAcLgHA9JD7EKv9UzNd/StWXqM3Q1EQQOj4VG2zMtB9qymdlc8vMMA79ib20pFha+vjUwCoCBRJQQChVbli2ZvpuNKwSgYMJYxtbuwrL4dHd+oVGKpyBat66s8jiNDMORvpRk+81KBKYDZqOtIr9gDuXZQnypYKBq+5zQIIZcdz9oJqMrTQYIfaCq2Zm/e9Ym/mIxv67Ly+Qje67fsMyB0acTUrgto3Wd/RY28909yZ6JxqL2TA7aftjfgKHUs7ChhQGYquAyyoXyf71PqOPfYMi729C84KXrx+Qj+QPZ0313FZtRW4RTOzbC20ZSkuPWmJvZrp6l/xPF8Xr5/QuRHvFL/V27flUeyBveisbT+eNVt8mJbPFQB4Mbh4/YT2vc05oE52ZAIJTQzZleixZyhPyqM73KvHxesj9FY3wLtrrkWHA/SphUjFXqDn/J16PgrGyxWqG12cERzcPSfnPA9bZYWXnVXjWRTOyek9oyHmPO7NK/boXtjTZ7W2s6EJ1cugbqSMucIx/dUzXXNao7xioVfNO59XpwaAe/GeTVGWSsdcM4PFr9BrQlJvXrHQ3nW/JnG5Y5Z/sBB6116gznUNrMRf8xssevAKha7HhM0ZRl2DFc6hasyetXfT8kiBe78X8wqnIqMCZ9WxNxpe9nbRmGItL0/IF3cA8ViPyysSuut9V3LjL8Yk1SHWGCzr2BmVJ818FM8KI+/JKxI6OxpEJQCUlaMFl85KpH4Tv/UdIx8B8I29J69IaKyB0Xy6I+0QymqDZaz0fzFjTWPvi2PvySsQuv5MIImGJwvd/WXbgGo2+lDfW3i2b9FRQzjH8+YVCE0E6kq1iFfHwtctpcZgWZ2LDuRcttPfErTnzcsXunuw0RnnUni0VkXrm2TA7pT8vQ2rQgOl9oeN8vLv9TMXG9QJVAa63zFETR5X8SBp5COXUEHsebx8j3YXGlMJoD5JXQtt7YyGJz3uBLpiQb/n8HKFrh1vQF8d+iR1L/qLs5HpD7hWjJ/zebyeQhmAkVcalGjgv8nQAl442JXhDat0l3rGXsTL8+iu3OziDXKhjk+96mfEiz2Xl7fi/MrZjkbX7nXzj35//njPoS/5GZ9982GDvJwz7t4I6D+HQ6YOjWwAcx2XayNjzm3dPb8X8xIApqqqo0auL4Aq5twrJ8Nj+jhkq7dviwlk8mLP59U9atXJAOBcsBmmDVujsp6P8kSUrE1SOVJd/d6H1y0UACrhhp8t3BqOTOvUKQJAKZ9JquearoDXFKqpKpjKAFXVgKmfqSoAqKqZZPQtVVUBTbfWS4wzXFa65w3LSwoDkCe/SapX7KfGueY1j6oANP2HIfYeNBXQGDRdqcbMHxVQzV+zkWxP/Lq5naciGJAnMGRDE/zZplfO79r0F8pUfXVaVVVt5TQAQ4mupv5X1S8U8xeozkYH11DzrZICAGQIAHbiPXzq+tqOAbYS5xqbQgFoTINB/u1sEKFMZcDuFTlhyyiUt+plgkmqc10PGBYMUwnQVKiAzguNAQ8OfqgBKqBpNYkMqO3XPVpKymP29eciFQEgLxWNAv4ktfRpR+zLsqALtxFJpLURkSRJRNTGNG3+/GegaQeI2vR/DHSAaZq5z4iBEQO7++NnPnt7xv6SSKd0n4joVNJ8IeF4QX76LfvNy0Ck93X7PSgz0i64l9mdDwCI8q8rC9bPRmY8hr8pBShSylq0qE9SmTOlOvu9kLcutDbfWX7eRyIDsKR0e+dmphBR0WbNykrs3XrVGhz9XsxrCtXUWiIZ8lyqtiEbiy+5iQVId6Q9rO05X8zrHpSUZO4CnY7qTHSIt7zLRaG7370caou9D69b6JUJni0DgN1fhhObtpJgcExSdW3WOR6fF4CHUDXqvTavayqNy+OlAPq8LKyTVAOW2PN4TbgGzstffsozO0hE9M8Lxz53+7cRkpyZxtPaiW9ulo69Y0k3RDS86MvLTU+DzlWNGtaHIjP7fGHjd44nqZZ+z+fVYUlPetXIx96GS/HYH5uUZ4HzSWot9lxeE85rdNL7kq7lo/2imgwtoH4N1/o9h7cOh0fVL+xYDpqrSjORofX9vVBSb5DlZMuTVDP2WnSHV8clFABwfcDVcuWynAj4kM4XjMF8kmrAiL2T1w27UDZw3XFcz0cthmWSasTexeuCXehO1HJ3YMBmInyloSfefNimj/UnqXrs70V97oaWPAoiotnvH7DkwrdfGnj2/sshcXoLCsm6+dTN/p55IiI6fOx1Irpq5fXNo4AasUR5KR4L+N5XUzAnqdNDDl4ObEIXB/X/DMh0K8te9q2DPkll77c/xJ8H/c1tQgeMXLk3Exn2f2a3b2RDEyrYiSzOBMjRVqF3Ixpgy0ctSZ587Jzo2cT00FbEuQDiAavQiSsASmNysuX5yAO6tMsds6X2nwZ5lcoiVJVL2EjIrcpHwXCza/BYKIhjLK/x/in5jbV/n+zxTxQtxf/euvP1NwJ85WF5a/zDtjdOfJcktPrjIDGefLH3J4FeSbd4N/fIew8HGSIFxtIKz6aNiE5LbZK0SqS0/AOmQNiW7gDXJL8PCQBAybM8FUXn8yihr1borwjzBTxBRHTjJOkLM4/DofP0ayKiWITEX05BfzFbSXHP5RGDgq3CE4AM1RdhPvHgFykfiLONiK4VkTmyrTv4cQQ/EGcb0TZ10nkpT/SovggUopOKRETbqz52bUT5C0TbOEL0WPyJTGKVaPWC7zeDgFIEBN+MPHLkici/K0v5U0TNfv36SeL/Gb279iN7aWAAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the perimeter of parallelogram ABCD is 10.0, AC and BD intersect at point O, and OE perpendicular AC and it intersects AD at E, then the perimeter of triangle DCE is ()
5.0
589
[ "4cm", "6cm", "8cm", "5cm" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAM0AAABECAAAAAAHaO6lAAAFdElEQVR4nN2aX2hTVxzHv+dW9lTYSzo7Ku1Wo2n3FIcbFcdqcbIMtFNW2dugTDuZg1Z8cDBBxyoMVNgGOrTKngaD+uJoJVGZPmxs3Qax0IIbrYuKe6mMzQxsveec7x5ubnLrmjT35uSU7QNJc//ke/o753d/v19+9wqiZigKHzKrk7Wrheb1rwE03WoE4BiQ841xBw2Ihedib5Z8q/1vmLHG53Br3KBa1biPksCJTQdhwBoW3z9P/l6rWCSutQLAul9hwBrhv+cebGpqrFUtCpe3AUA7YNLTjh/CemNiIXDTKQC4tR5mrCEAnD4tnjWgFZ57mxsB5E6+AnMxLZcn0+0GxEJzaS0ADG7ZDWOelus/BMya0QqH+9k2ICceXAMA0AQHgSx7gQEjasugg3/Snk2j3j5hoBZYxPhPxdLACv1tgQ2T2ZPEnR1DqLMxgem/P/xlT9uiPSZ9YP5IbFiaFKzMSOz9+cV7VtU+V8W1GN+/IbumZr1qmd0zf3nD4/+CsZnKbY9fJbU2JlgRORw7UfgYGNGANZq07mQ/JFN3i2OXqNEaX22sbdfd2pTCkB+KfbXkASOe5jmZNdIt/X8ufcSANZadbK4vfr3csdrzzXhiMvtBQ80y1XKuMz7VXe5grRH69ns3z29FMEjWldm3F64kyx+OvDYEgIWjG7tubgUA4xXSUqhjXTu+T1Y4IfLaCADj7z6fbRGl7Tozsa95uewc/XK0HMnyg6WwXC5FR/a0kpPVDSJQUWY6/5p5098o6wghZic4I2NtOy2ky+KIc7vLh+UAIT2tIG/ZyTgSOzy//FnRsufDI7Fjfrqsc5GpSXKmuytb3ekRrLHoZFqTcjj2abVfCh2hbaVLAQqIqsJygHDTZbkmY/5A7EKI08NEaIHxxOQNizUZMp35mTfCfCGE5bYj2Vxf/Hq4KFNxbRbVXhbSpT+mN+65zo6p7nBXZ8Uo4El517utFoYovJaplstQ3RLadjI5HPskQjIr72ml20xYOLpxkwUnKzGx8dvsYJS6nKR2XVdVsDiQLq30l/JDocJyAJCklmWM0SR/277uKjUtWUIyvWZPmSbGslS0ZgXSJe/3rfWr5fDT5183SipQalBJDVBKCQBq7DmvhUElFUAlJaCkVlJ5e4xzrqNj2m9iRKidSFJLpSVJRUpSKkpFLclb2+NXvIXx9nm7tXSppaQ2tGaBJfCr5ahO7a+NcBQIkFIShANg4cOX/XRJOGhw6PdEnMLE6drWwR/a/6COde3ymhhRK9pC9nQgoOEAogEACSC978XvWheXA/Xty/z4TvPUan+giPaQWmpJUruKpFSkplS53sRV3+EKYUIXPU0VX+bIH2gOhuVovuYAoBIAhHAAOEpKAfnRSy9MbYVDqR1AaeFoKQUcSt0ATV18GSPTmb8ZrJYjr41PaabHWnfetZVdSJJzfR3VNDGWpWSN9q2xXZNRj8QOPzSi5Fuj/drGerrkTHfXtCGpxTW0ttTCCOBVy4ZYBQQ6FncKLQx7TOxrnn7KnFzRLs35I03DlvpkBfJDzRGr5aUJ3KkY3397T4vdBzHOv3b8SZN6JWt+HqOAtdtKHj1l75JFQ7Dw0Opon1nhFcEhcLF3lOndN1Zg9NPC6XGHzOk5AnBnU0iYk6yanJik/uKJp80pOgC+2dyIwYGkOdHqcFMDZ4BnDq41J7kKwOzZs8gmvW2LQWDkj5MA0B4HhalxSfZmeQpZa12MAo8SH5c2DI3tALkHSexNZGzcVQ5y75eAixka2wEupR6T/u/iAJlX4aaaUnX+nfwvWhKzAJC7YPIXuvfQ6hYzfhuKUxgl00ZHtvJESRkyKWDgjEnFlbTGPCafIF55/l/W/APvTUCV+dSETwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the parallelogram ABCD, it is known that AB = 6.0, BC = 9.0, angle B = 30.0, then the area of ​​the parallelogram ABCD is ()
27.0
590
[ "12", "18", "27", "54" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABWCAAAAACCranLAAAG0ElEQVR4nM1bXWgcVRQ+EyqifUiFVUO6GlpWGhqNSvqixkZoCikNWDDSpg10owWFrbKWiCKxpRDEh9QWLNR/VqxSMNAHN6mljSQhVaGC0Fa30KDiphKI4KZbbXS39/NhZnd+dn7Omd0VPxIyO3Punm/ud8+598zcEP5TbCcioh62vVJoICag/5m5bB7LACKiE/0ZYGY9x36npmnavTeIzVAjIqLiCyCCFoakRkRULLQWP3yExfCz/gzwzLq/VsjcvNHSovvSxAyJiOjrJ+jT5hXPckwLhVaig1deZ/chEYg+fvBqOGYl/LxXi6/hmX4TJSKKXRYwJMpe77jrdjktC05nMHAPz3RyMxHRfUrAUKO3E8QaQp6Y/6OVHl/JMi2mNxIRza0nQapIEdE+eYax5I7UUQB4mWOb3QcAWZoQ9OH8dWB6bYieKwHa6U1EtLOFYzy5hojolZ4t/D7M9gDQOyEkpg3nGYZtof1HIEs9CmyG+4ky6K9SZgCKZTWj38sEAI2behEyA1YNNkODIrRzZ0BaOMIg7bdmlss1u8uH/EgxKC3t+FPTQs4pWu6Tk38jkCCWDsasH4WIJ6Qtysi/2jhaDDZTiCeN4aoAfqQYSLfkxcwMHG+KL/B8xJb1AwVA8RkqAMhFp8TMdHzf2THLcoFc9Jz1pLAPRRpbEsti4k52Jo0nbR9lDMNqfDSyN8f2UdLYgIihoTEv6ZahZjs6L1qGvq8tclHHYBAxDBXHCwNNJyQ+krDfiITheEse/B5UAKCKo6uG85YTQU3SsRuOkwKGwjhWANRkbMucpFGFxiKGco2zW2NpWQtHHAMShml/jSsuqOXhyMiym6mPj1hlAzZDgcY62bFoX5bbouzDJamzGQo1vtjdNgVpYoq/5HKSy1CWq3NDkVFx3nTVmM0wF50SOExF9iyyjS0+zrmdZq5gB1ceZa8Cz79YeGcDyVflg3e85Xo+6M4UYGqsgjtycU8kJRcYXhozVRbE8ZHGIWONICTpGscAh6EC4gmmu6m27h8ErIyvBwDsrszVOjh9OM6M44WnVo+xDB1Q8NaYxXCJp/HySGRYOIWU4LLmMuHH0BCAl6vTsd5fOJHkDpf5uITgPky3XAv2MNcbOythZEIBwBeeGjMYcuI4P9z4JqPM9PHhU2QFMownApUbaxrglZmePvR1tbufIIbBcXyp86HAMtMf3nEM+DH0r49L95tLRMI/sHOtj53wfm6jEREln+yqmCbNq0TvxiiTkE2/TheU7HvU18r3JgPWXLMdnedDzcE2H74aB4xDv/pYYSHedDw0r/K3+MYx4KcylTV2XUWpQ/dHruwKp64JjZJ9jwW84fJh71cfn23tnoPnVSZc62MnCIBSrn58cnV2WzRd7fgzfARmKgK8OsJzPl4+0DiyrLwbCuAzH5fgzdBWH1st0tFt0jLTC0FxDJgMlVK62rriSuWiU1b99SOlVKa77Suo0IsYGxgaW/rQ+C3/xJPmefN0fih66B+lakTRtT72Y2j0kgKUvuayMQSgUk3x3y13USU4GlvHobISykWnlPXETQXg/KaOb239XB0C5mMLQ+VgqAClr7lsfbiYiHxkGKiaMGRprDO0xetNBSC97prSP9w0LqhjjclcKZb0cVjn+djCsATTY2Wunn24S1pmBoAVx4CVoTL/Ouvjhe1Nn9eIWHB97ESJoXXmc6yriyOR4dAvotzgXx874bJyKNXHBucvY72iR9EMMNZcJqwM3erjuV7po2gWGPNxCZV9aK2P88ORkWrKTBcE1sdOVDC0xvFYtK+6MtMDAo1dGJr18aWutirLTC/41sdOOBmW4zg31HikprRM8OMYqGBY1vi9yHMhHkUHgFUfO+F4jm08r/7u+dsOb6i2SvLC4KrDInsbX31dvRhvStWs3yog09ihsq7xaKT0KLr2EOVqHTaG8QRwtm0zZ9dTaFS8Pw6CleF4S/7Xp1eftF6uRTVi+7bg+tgJC8Nc9MxI5IA5SGpULtkg1tgSy9AGGyYfOLa6vtu7pHFM+r4v/fXWeO/QUnPtOdmwlL50q7SNBjIofnA11DZrGXrlWdaWseu+gy+MgwYi2qFpmnaKQm+y5kMLsx0eAHZOYJq197NKpIh6Cq8JGzUQUfFyF62tfwfOaxeA929pJpJt2gcwnVTo5y/LQ6LQvg8A9k8I2xH0fda6xjXP0BakotcBICUdTQSgP4MUZepKDyi0m+9dRJ4a9K3wu9on6zwQFy6Ym81FnhqIJnvt7f9naCA6vYmKW6Mb6+zo7vafiIjmT4lbThMRaT11HoUAUjQBzPD/RaoE8W7n8JimUHv2/wXs2OJH65kdWQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in parallelogram ABCD, angle AEB = 36.0, BE bisectes angle ABC, then angle C is equal to ()
108.0
591
[ "36^\\circ", "72^\\circ", "108^\\circ", "144^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABMCAAAAAC0BiHEAAAH9klEQVR4nLWab2gb5x3HfzJ5MdJRwZDXK6gRJM64zuBp84v6hYsDNZ0ywqaCQLikVC2mhoVSRQ3FLYm1dmExndnE8AuD9+JcSutSURfaOi5NwM7MJmg3QQm5wEwRk8cEhkagpJJr5fnuxf3RnXTPPY8U+Ufi5+6558/nfs9z33t+9ygAchkCdKj27PtEFL79kLDgABE52Q6Zi96b0oEX1e+EBQdMmBu3D5nItOaBSvTmk5eEBQfM8i8fMpBlfz9GRHTylrDggDGSf4gcIyL3qB6KXZ8kEB0XFxwgChCt/Oy/xulhT7HmpxMUIPpGlQEj2r07+uOjh4xERCCqnDpKRLtvPS0sfISI6C9v7/6UiD7QD1EuonEKEF0/TkT0Wuy0sPwAEa38MfAYEdEPrlAgQI6J1o8ZZ7bxz4RORM0/PUW0G7hzVaYiyosMW4sAqkd/8hEAxtBnY9gOqhrYltHlukwdQjkG4J1FAFiLnIquWm3104rB/D8GG25WEdgckY4pogwATKxsx1Str0wAoAc1IJHtqg65zjZPNvHlM5HlZl9dpiuLAHYGK4xBumE3GGI5ADeT4VzDs3RPVoosAADS00DPYMXBfQDYST0yX+vi9vysMpQ1Du6EbnZRrQ0McePuUJpRstUHpwKq6ivWYS7WRT0bzPTNrZCFU0krs3sPzvXzafu4MXStBzDLUln7cG9WSVfaLnc1tgy18eeMKgwA8tFm72A7IQdLNRuaKXeD0maNyYQLZWyldzCk086z2nwoVeqVq3km5n66C4r0094JVgm6h28/pyT1HqgYmonxhnloJfIq2wKzZ89syn2O5lIkXuwBLTVWa89yTRRJMJukGtrpKKadiG13y3Uu6qE356c780RgAAAGhrlk68y21eGJL7rimlXdzjEWLVVZle2cY0BDKXqQYW107BNHP4KGs5H/eObLqqwXGMvFHeLjsI3xaF5SyHLhkndJWZX1AGNohHkTajOmvivT7PKj3Ac5H23KyLSXxwDtlJG2N8CAQjyiCfX7/eC/+BfHNBmve4M1/fxdTIYX/XUy/3DB56qcynqDIR/1q6SnlAVTorxufiPoLy1SKssBQ/Qj32qlaeUyb1W0HdwA4PPcSqksD2xtmD+RGADsppWLnquiL4N5UadpCZXlgWFCuBCozCoXOm+9GBQ/ttVQUViGC7Y51BQ+PHtZxbkqYgB0ZVnYp5TKcsGMuERk1SuKa1VUCucgsZpsDG30DlaUWzvVcspZW0wrkazcGle8luWD2XGJyBpL4UQRYEBFfVWuCvCEaMR9wPQQTxA6TIucKQDV6DnxMJrXhSrrA4bns+IOLFtVT10dS3Xmc02ksn5gO6H/SfYCAB/+8EefAdJkO0F/lQ34fQM7T3+W/gz2fZxe/n0jG5etQOfvLvu3CNTrdW/q9rjEx+4nJhvA5qS66sr2cZ9AZQkAvLmYHZcIjAE4O2681QtnIlrbJZ75q6wPGFpxiXDezLQCj2IivLQvxhKprAVWr9eNITWG1Rzd7y5acYmRYf5Fve6+mbS6BwBbRJQB088quY7AzcN8Vdb2mPnf/mck+0oBAHNlG/fgJMsOVQBgLnwPByMZAKWUMn9HTDbmo7JOMNMnTjDkfg2rhAe8YQvHSgAwF2MAtsL3AKD8WyW7J5oBfirbmmN123EOArZvxCV+YEuP6ADDDdLRAgMqF5RZ0UPto7JkEbXAXB7DXyfgke0A04JGCJvMGKcWGLB3STlXBvzWsnw9Imu6215xTv56vd4culZ3Z1tzzCifDxYBAAcj62AApjKO1quXlWnfb0XpaR6345XEEQ1eXGI0txH8m3FYJp0B2CJ3QFlbUFJ6Ry3b+CrbAuOKWXSNdwXYDG6YfR2MrAPmQ2kCGNF8YzGc5PXuo7IWGPe1BHzMj0u2g2v28VwMKJM9kA7XNLVIvNCWZ51wVdZvdWHZBG+vpOgKiKaI2saxZe+qk5veV3gqKwZj2BzyrquH5Hd3WD467u0bjsrKeIx5xyUlxTObqw2fjo2ueWQXFM/XlwyYZ1zCSpHLMnUdNXBtYni1M99bZSXAGJgjLrE+nFXUi91xAQAKsRMdw++tslIegx6qukeIVYfTnLI8MxsoxiNLbVM2nfIYfzkw534JA4DaqNQS0tP0pJLbd2ZUB4s9g+2EKs67qo0neuYCUEqF5muA7cXcZGcZSTDm2i9pxOLGaPS8a1ieCTk297xUVhLMFZc04zGprwft5rqNSvrR1uZevvPlIusxZ1ySHJdZOAtt73UlXYaxtdCpslJgDEB10NwvYaloX7gAVLPKjLEq6lRZKeUHAGTNuCQ93JedX8Nq88rzOwCQmOsabIqIaN3eL7modvPdQGyNXDh506WyGlHs4A0Jjz37GbboFpD7DYD5SM+7lzxrLkfiXyFt7vmVKQOUaVEMdvCLeyiTDjTC28gpnTtzD2YMADT19OfGWtZcaV5aF4NtZYCpDAOgTWihXrZUZWw1OvQUAGjhuwCg6b5fe4iIaCVFpKtERPfD376gSH/NkTLHr8L+/d7GL3F/9KVzxumAsO7nOt55/DYR0e27Z/vM1fpVGAInf1elQOVr61eCR4zEIm9PiXbvqDS1cF0lomE9bOXyyj9o2jLTY1a+KwUR0fUzRNZ92Fze5fuQKiPfEBHtXiXh5J/ScTBiR9d9/81bu2m0DmzGmCGwVnftqfFhiehXnpFX31Nm9ZgB8H+w62g16TsHHAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, the diagonal of the parallelogram ABCD intersects at the point O, and AB = 5.0, the perimeter of triangle OCD is 23.0, then the sum of the two diagonals of the parallelogram ABCD is ()
36.0
592
[ "18", "28", "36", "46" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAK0AAABJCAAAAABqEfkLAAAIV0lEQVR4nL2abWhb1xnHH9lhXowzrUwGUZSppFqjTJCYeB8MdXBZlZGB19lUw2yVG31IljLB5jAX8sFgDzxwW8M6pjGn3pjH7GCYa5Mt7TJQN284TMEzhsTUgymLMq+piFOi1fO1bKvnvw/3nqt7r+6VzlGk/fHLfXnOc373nHvennsIEhohIqJvyySprVwgCY3cuHpwN3zwarNMohqqQcZ4/85XmunTM//8ab1oKkmK9v7y8+SiJzvS9aIpJxDRARn7pcNBgkvuCWujmx1E80/el8m5cP10M7nwyd1A3ajstdd/dhO49TU/SbTIe0dXACDVulKnJu+gveiXtwHshDdl3oQPDweJKP/93pP1KkR7/eYP15uJqLH3cxJlu9f/BoAZer1eZcjFLPlGz/NDibL9FNGrROHtZriI3r5NRERy3XUlqd7gMlx64nv0yd0X+JkELbgnF1Ey8s1n+LXaSfVWhN1dXP0z0YMPXfptyRpSaykXeNU9V4M6d8gEAFCY62tsmgew86w61v98GzK0uqtCeAhL9cJVtXTOHRp9egIAkKLXgb3oAiRpoQLHewAsuX+FkhZRG6WH/L7B9XzXEGMMADJHiFpXUAUtgETbFgC26p6sB2s20d4SSwLoiWlXirlUQZv0bagHq943H5vNJIb8dDdFpvNgwMCZQomBPO0/vCl+uO4dK2ZULaBBybMt7T/bVI/H2rdKraVpc4Hp4knaPyybXhezHN/+js8/lOZXZv1ZqxHkaQvhIeNpJjAghFNJG+NBz4VU8Tzpu2NnJksb7zGfZ4PxcuZCxLmp0419c0b7NU/KNq0kbeLExxaIbFvMnkm0aN/ua+yafGRKmfEv2KeXo036Nkq8PDrRb2y8DAD2okRCs5+/XfAExzdgZssFJxzMpWjT3pTN1VxnxNLXzNA8kKL5Su6GA974mvkaA/Jdl5xSyNCaugODtjq788bzGXW6PhLeLuNsc6K9JXbNAKkf9sSY5ZIuIVo1oaU7MNzMf/WMoXPMHHkNFWgLsxHqnt61vTcQLjiwSpWttTswKN/TWcQdProJAHtRe1qGZOxQKJF1cGU7KnCJ06qzAwcVIh057ZBP8DJHbJvZ+qBxECiRNio4SJj2PT47sFchdkLD1V+Eow9LrDYSIfe5JfCpcml1J73rABy7P1HatPdmhQ40FsoCYNh59jVA7xL0RIxtTYUbI7N692Hnbs2TKgcrSpsLTFfs7QeCaiXOtK4AIzRvzvWdaFPnZM4+JVfGt1DeoDItg2N3YNGg/x4A4AqRSw9EMgBYjnsDo5lK6XPByxUsxMo23utYOcbrw/51G4vMaMAbX3ZKU1SZUYGrIi1Dhe7AqHGvFTc32dkUvWZrbFVPtKKJyJuQLN8dGE3f9KwaSq4wG6HTU4JPqo4K5SXwJtjPDhw05V4F1BpZOudWB4Hy7VNb94+J1F9ZWgYAucCvhTg1TbmXGID1Ib9v0O4tdtCsPyswySxHywCgEB4SXgQwAJhzL2YTIXcsKZoKKI4KFVSGVoWM98rkCiB/sZEis/t2vhy15lkS8l2JVrg70HQt2tL+3c9IhnEyvgWxtQYBUBTF6bZwdwAAWIt7Az9MQzbqlDuaELQkAHCETXtvirlhYBvjQc8r2iCw5J4SzB9CowJXWdrc0zP2aCVnuclOvmwF1KiTKAF6+oRNOa2iKOobob4VirINFMKXtvmDqG+L9heKYnrCub7GsGUQWPX+WCR7BlwUGBWstPxXARQGBQwK4i+Al7vCf6BoD6bjpviy1SxD1KmsxkJb4nESI61Wevwo0fbASGt+Iu1Sesjvsy5bNYlFnWY/X7rmF6CFohcxmAKwd30b+gV72ocT7S2xZDEvS66ZLzhHnbgERwUDrWKhVX/SrSmYaBUzbf6XPdQ9nbf3qnJnj5WNOgFY8yxKBSeJtyudSwEDlOyRaRRbVbHxaQ3y3f5DJ3/ivN7TELJtMUcTAMj4FuQiqYaxzNjK9cWC1RuDtmy1jQFalWuLlmnwuaBstLpIa+p0zbEDI/LGeFBdtgop1/miLS4DkH/ukmyQmtOaR99E239trbemwsZBQEDWqBMAPqWVGBW4bGc1Sd9G8dtYUXPRps63KixbzUgA8mfO2M+LBsIOTbSM7GgNiwWm/1u+4AmOGZetzGhQRqaoU1FjIbnJHQBb2v+UhhIzowFv/La8dwCmqBPAn29WanLHVUpriB2ojjcnOgzL1io+3hRibdb3R3JU4Cql1boD/pF0NkLd01tFSmb4J0yuRp2KWvMsyoICsKE1LRb0Zevj6mLQ6CXjq/IbsYGWAabFwvuDPt/g+8VbjyGGQX+G8bDio+CPqvRjKVu9O8gmQu5zNx4DkIt3HcN+HrTd7Rqs1pmZVvuy8PFUN+mxS1ajT89jXrWeqhkVuEy0heeHAFyLNp2a0L62gtUOV4s6DXQVRwW7gHM5abQ7bwFAvAdrxthljT/oT312FRgLCY+GpTpABBftnz9ORIk/RY49fPF3X9L3tRi349RAZ+m5d/6d+Ku7eg/qNqErL8330m+/3hg6FiSy7BqynFUl7mL96qHFL7roByNEFK5ip+kBIqJ7H0SJ6G7kmQOqVzNeDUrYpRXLMe+3QkQ0HPjL5Xz44mX5cgCw842PTi1XfGdqqL3+eYaRKnYdE4DRzcxxrQ+oy6aeEmWOb/LPq3JqILoy1PrUbu1qXaA6b9xqdX3woIrdkA24twmWOvz/2FvNN+YVfj+PzMQbVXho+Ncr54nuMIvDuohX3P1bp8j/8i8eyntoeGrl7/svv/THkx+ZHNZVNzo82E8fPlhF0tq3oUrai87zb5Wyqu2WVCG5iIhar1ez5fh/eswtLVrAUp4AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, the diagonal AC and BD intersect at point O, if AC = 12.0, BD = 8.0, AB = 7.0, then the perimeter of triangle OAB is ()
17.0
593
[ "15", "17", "21", "27" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJsAAABfCAAAAADac+ryAAAOGUlEQVR4nLWbe7BdVX3H1977nHMTKTJ5DCGvSwiJUcAWUKpiQCClYgcKOkJRII8RsAIBgWRgLFSp1dFp5dFqoc6ghEfV6ghFHgYFEnIDDbSdgU5EaAIkPAIx5HEf5+y91u/3+/SPfW5yc+8+5+4Dh+/ce2fu2Xvt/d2/9Xt9114nwnUAi6Xish6nCVH+T5cRKlGoOuc0cRLFHQ6uuNBjkrjIyXtBrRpJNTh1MaGSRB3ZzUksNeccoeY0jjTpNjnTqsUWO+d8TTuzm1Wi06MoSqo1kzhyXafWiCPnXIRruJoLnXGLQ/TwKZupXxXFCc6k29wmSsVwLnITM8eEDv0tckmYS8+3TlsR4eLuT2nFRYmuqkYn11aa74xbWuGJj7hIqkc9ZYlZ1G1uMRptnvD7QW6dcGRS64zbBKJ7v6hScQsmxELsu83NokTnrfx6j37wyx9waWfciOzm45KKuv89zmmitW5zi53d4749UePwkdk2wdER9OXr6sCmZA1YZ0PLwMOEHxlgKI1O0+eawydKHF/80U85F7muJ9+qbU0PjyQiimLfYZwSLzvBVV6Jwn+qa+C6Xhc0lglJqCRJIq5GZ9z6ogPmRZXD+54ITidGTrvNLdF56ebEIVuf1kCH/kZqAAYiaPcdzvxP3RrYcLyCdcZNATUNggSod53aIMaamnNXG4rvsNY7TRzEjsiFqgvVbk9qqETOWayJk0ppd8ZFzjmLE7dmdZLQk1JN0pq9SypEUQTORZqEWtSY6NQStJa9fNoFQDm74VyzPmVh/vaLpkdp9X39XYjSnFjk4jjUGklFI3WuZ/C/Nww9fKpzrhw3i5rUQnXJ5IXLHj4+cr7mXDf6NyLnnFQgdppY7J77p/vPGJj1rYnOJx3Eghno6lk7+cnkDYJY8Ni7hBpmpoKiGghy158u+MHAo/MyFNUO47R/xjqEe//o2X4w0s6icCyEZulTj9n2b84583HPnpnrCKaUzm+WV89zr0A92aqDfp/ShfymoJpzzJ65ePLKzVrHzrscxax0fjM1sHDfvJ0YoLdP+R/Uv2tu5GbzsOrjH/7hAAr1h+cH0EAHdgN8vXctgqCw6v3PdsFuBgaNHV+f/MW1KYiiO3v7xMzjS3PL8IYuvVwREDBum/k7g6BY7jYluSgEIKiCz/1t/fkHXfOmeAggfOmyvWeXtVsD09/07iAzQNHAjZM2pSiZz8oyAzLMQxaA0AC0/56PHr0KPKQYygNzFQmdcRPYdfBaPARrmuqWGS+YhfyOJeGHbRw84HljxayzNmimKRIUJAxN79sX/eW4eVB/4eWYkilgARrcOOUFqEsglOVGpiBeAiA88vlp33i1eaCRs168UmVvAigbpymre/dkgEeN5ox8b96LGB2kudTwggfz6W3zTr6TFBqCzyAIIfyqt47svV45bgpvzVibkXkgzSM8Y8huOPQlUukkB6eQomy6btLSZzPyLJSBCSgDc57Mn7wTboYsvRLxgAp4TMwEX//O7JfL84JAhsGDZ0/65q4gGJBlAKYIQ0svzWPNOuGGrJ6zA0UMsIzAsFdcf9gbnvJJWJH6v8z71N3NWDQFTAVQC48eJjrSR8bjJpgAO2au0wLHMuTKP34NNfyI591vNBhqeRExYdNXZizZOOYuBoH+aX37fzoOt6E8d+uSqxswOPa4h0uO2oYGQmHpb2ApKAqWCqv/bO533ipI1YpgS68Y9Wl7boaIofZAbyMECnKFKvz1B7aBIWHsTQ3FD0EwPAPfn37yz0GL64j9Yv7oy49jtwyos33GugZ4G1NAG5jA8g/t8iZYwT29CblnbvzyIRdsgSzkeXcU6uyat3b08PbcFFIhu/ASwQgFtV2BIZYcNzBcHcccD2AW7ls4/+Y9TZ1WcFoGi68c8+l4sRAC4cFZDVrEoieYwTnH9FteyMeeYfaHG3tPexDzpIhCUbK2R2aO/bA9t6DA271rJaDN6+4HVQioZ9lRe6BRcAF4/vyZl2wKKBgqqgWXwdenPkM22p/Hs1uKLlkOoFZUNjXPG2ZfOHFXwWjhnk/M+2G/5X2z5QSLFqAuuLJgmaAVt7wHV9AH5g6Mwx8C4bML9xiEZpoTMML2v5v/6fWZtu4FNO+ow/0LBsFGky7mZk15oLBr9rqCuRqNIezsRbtVEIGAEAL/teTglS/gwbfsPfMn8XumP0UYmz+Lue0tuMEuWC5lFgEz7IxT+skVjkL2b8ceeesAphT56T5yQcGWXU1akD3b+JsZ+Edn97eK0ZEIqMkZpzdQQeGNvzns9D5AxbB24z348MjcNKCE0R43Tn7Lpj7VXNZqfx4Q2P2ZUzMksO78qdduJR1mpG1az0Bgz+QnAzBWt7WPBc69IlBmoW0AxaNnLRrydx/74Tub05h3722oZdTJLrwGZaggPbbg1tSjqw9JrdnJtEUAPGT9p86ccvYzBBBD0ryTbDfeG7+ZU8/NPrKtbMetqUcPWV9OhOb12/r+asphZ1k6nM2GibeWiAq7p/cBqRXYtwW30Xq09QOYQjAC6W1HfOwOdp382QYBo61qVQKaovvr0ZLcRuvR0dduml8wwYzAS1dNWvoMQP+is+vkSqx1DFnAINj+erSIm8jYRxytR8cgZGC5K4k9/pkZ/7jlqZpz1zKw+6QvQJrrxpbkkIx0iDA0o6+1EnJNIvtjtB4dc1wENCXAkPbfOv/4n8E1zhtuBbrrmKV53mgdoAaoMcDilSYtn6GY21g9OhYCkPHSZb1LNgr+qk+CsSYS/MCffB4L1iZ3aIZA4P799GgrbiKSz60IoCLbZqzNqDck15PNeW/+ZVBoQICHT5n7rW0o9EWv0EDXOYXw9sfOgxb93DAyVHfMeWqv67bhNvyb/wRk6QqkQV6o/b4j5I9QF1LevGn2ol+Ch8DHr9UA/KhimcLOIy8n5Mt+xfCGh2WX5kspLdiN5Na0jIDI6jnbURFDsGx41veel0ngxfN7v7RZkJxcz2OA2Ikrc2tt+9BlbauwojQemhtatMGjuCEIkGECsmPmOg9Dw8eaEeGDmUBA5ed/vuD7u/bZ5YX4pYDwmHvdlBQa24+8LFdZOZNRKNajBdxkBLehPGP5JVc3hMHhuSZvzEyATNVv/96sv7xPRrZ1vrpOLaO2MqgJYsjrR12OCGS+SDoW6tEibs0wFTAkC6g9sGAwDRCGfd8sBBVFZDf87iuzvvpihozo6wIrFqLb3FUNwATxytYPXmc0oFklxphurB4t4DaMfEqL9Wie5YPA3Z+cc3PqgaERS4IKJ7nIvQzIsG/4LdP+fu8jj0ahHm3NrSlyC/WogKgZf/jb2Z97DNO83u67pwh1EMRjqk03s1d7ryfd+wphJIr1aCtuw3WrhR5NwdiwePrVWzSkeZaxbOQ5Q02HV8jyxbC68vKh3wa0IA4L9Wgrbjla61Hp//ejj7x9yAzIIGVoZPiloMgQGggZaNOH5ZXJ383ZjkKxHm3PrZUeDduvn3XmerXmTIs03zzvu1n+AHn3CzRX1fzmaTdJaT3ailuzB0d4oHdAUUVSzPJytf7c6de8VrBMND7C8wffhDY7JhlHjxZzG9ajBgO9a0HBgwUyqN917DF3iWXlV+r3QWHj7H/GwCzL8q6htR4t5qZ7rZZdvLwRIIWgHuX1ldPOezIoAWsULXi0h4ds40H/ikmWX76tHi3mBuTTGn49cye5sAD0t+dMuWGXGGZknbxG2IuAZc9Nu4OMLGRhHD3ahhvA7t7HEDJE4O3bjzjxbiE1rLnO0fmsqkL65EE/xnIqbfVoK265w/nzVwTMA7r1ihmLn5ahfOHlnb6NzHJ2z039mccCvr0ebcGtqUcfmr/DYJCBx/+i94a3MFBRSAmi0Oj8paQFzFNf+/7/kFxEtNOjLbg19eiMxwGp3zb/pJ8G1PJ+QTy+xbLZuNSGV2rWT/ylBaS9Hm3FTQ1l8aUKzy+fetH/DUAY3+ilEVh/4L0AyrLlpS/rmmNFPQ/OafDQosO/+6aF4iXjdw4JT0x6JIjy0OHByrpv024BrD77/n+Yu+i+3NRi+2pFd/DrSQ/BzplP+9KB1cy9SODTC6ZdtMULAVEpfAX0LqCWrZ7yKy68GCu9xyrfVxOqDH5i4yknRC5O3j6oVk+cw6I47tYGN6n5CVH20i8+98zzFU3Kbsdp7vmx2H11WpbV1A6I0iRUHRpV6HDXdGvEsa8OHGg7pp55tCa+7BbSnBtacRYTOaKskmiiUeQi1739lFhisZOKxZpYTMl9wbllqKCxRi5EWU8iiU/iKDKla/spI3GxucjF+ZcLSo7KuUUuMrduq1Zdj3MVV3POuTjp4rbnqrOTapWo53EXdbB7Pw+JFHCbuxiX+2MQMk78LWvdFt9usbEoTp0Lydf6+rq/R3EvfI1ayN6Y+8qhzmU9ndgtKHc84d6DfafD8MiaK+DkFQQKBUQRcnev6FY7ZFFcOro7RagSvXrLD+SVma4SKumEcqPyWNDkliUHHOHeK2quqhr/eNOen8x5TVw1KkltOE5X3XjgzInvdtdpa1hUedHmvu8c11fxLmuUHJXP6RsZPPGqK5sUO0bs3IbFlmxxc6hZT9k9pBWJY//m4jUu2tLhd0A6gsW33xm7eW6hxDGlv3gV6P+Gc1tY6JKvdazxSofpBueccyfA+J34PkQaO+droZrvwn6v4GtmFefEappoXNJ1IkyTWBPnhPeOmgtVRyQVlz9/SSPEzlVjF5nzlap2/bs5e1FNXSQVo1Fx4nxJI0Q4dVHsJKZ0z9c5LHaDEypScc4NHhCV9Z0I5/KN3BrFZRP2O4NQ0SRyLusp2Rf+PxD+7Va7lRDJAAAAAElFTkSuQmCC" } ]
<image>The perimeter of the parallelogram ABCD is 28.0, AC and BD intersect at point O, the perimeter of triangle AOB is 4.0 larger than the perimeter of triangle OBC, then AB is equal to ()
9.0
594
[ "8cm", "9cm", "10cm", "11cm" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKQAAABOCAAAAACLAeJ5AAAJcElEQVR4nL1aa2gc1xU+Mw5p7Bb2R9btullnjZCrNYai2C1xsYzBqK1onWCMUoMi6iG24tRL8bq4kFJXcpoUHMUUBdw0VAnIZOWYWnIprByncahKlOJnVYqwSqO4I0RqZe2adVeOVqO99+uPec/O4669yod2tHtf55tz7jn3njsjgUTBJan8Vpdw87oAEhGRLN5elha77iwZHX9IICKIk5SITucalo5PFbghlSRxkkTTn3QuDR1/yEScOAi1mLv802f+nVpCUh5xREekZdIy+VmpFnMfe22u9PmRJKIjPdvuYv7atz8TJ3nyFyvXLJB4MLhPSESLH7U9RA8NXn9NmOT0TY4Lq5dLS0nMBU6fXN0mE31100cPCDSHBGn6uWGJPibJLqs3J9n9n2T8dXVa/yWiSQlEa65OLj799PkNt4imiYjqrlGZiExP1udUZeQ7X5QJbPprUtQk0+8FJisu//ObO5YqWjrM07Cbpr87uJEgXdr+TqQmjQZmd5mvWn76OrkL6wWJDC1O/LIRmF2dJpLKP9mxgRANrv9j+kfJnIudc9fUCwwAUDiaTP4YWOjoBTBIvUAkSW5euH7Jp0o4GzvjGLSuNNm4ktjf31gG05XbepcJkLS0xTkHUEyOAnw0NlR3fgAHct9a218qJsfcRhIwN3f04EqGARxjS8FytjvR/j4A5aBHrMicdCCfKukD6Cw5Ny1+/7PzQmfikAoO5BvLnqraSBaToyajsdjAffOyUTnRvH6gbMgY89bWRlLJAKjo38djJ+rlODM/i3dazJRsVb0wSc6BfGrOUfK3+9SlOUNG2xOHZ63SamPXQpKZxrbGH6+DxUv96U25Cqxw5mPs2sytZABXaB+P95l19+Y4ajauXHZ19zF2TSTzj5aYTRAAMJnoC2otgHPbVx8teGT4GLsWkraxjfURAL93lsXjjVvfdpXwAGPXQlI3tgWmD3st0Re+PPrOA/7xvvjeiepKX2PXQNII41WYTHbbP8JjkkVpqDX1atFby4ARX2OLkyw+YoVxj2Q1FcXSXVg4lmo749swwNjiJD3GNsABwGIpEtsnlHhmKkjGgYAKQZJBxgYArqYO698i9ZhraXxdXw98pqq/ZwOiJIvJUe6V6AhHajrrL9eF2ZdW7Tjv6uvqU0yOBRlDjKSvsZktYbbpYKCxjVaXO+OHVNd9cPddBXi2MEl7zfZxHJ1l+kDYAJWBDev7F5w9qgbKN5YDjRFN0rlmB2M2vc+UzUxZpsiZn8d3Bfit3qgS4tlRJE0D+nu2B4Vmxb/iL7sSh2cihSjZkEktYO4wz3ag6Mey/Mb6DQOV8I4cYZ4NRJPkKD7y54g2BorNCnN7//WDceVSpACwcGMLaJIpGdHctdi8y6m0czuSL92wmIRCyTp3gFWIJDmyRsjYAIC5lqc042vpt40tpxAi2AF2NtTYoSQZAAHPdmqp1NJeAYCprvieiYh+9gARxg4lycEBZX+UCNevUkt7BWfaUscKwpt1DiXriFt+iDhVG8lMfImIHMeGfoBE+ikm0Vzrde3hjeuEjqcM0VPvzTxIL7xARETDO/1ahh+i3nkup3MMP8eUiLgscZno2q+n/pvqsBuHnbWCCBLJ8yef+QJRD/3nd6TtDTiTB6BpWoCeBcK4vYJznGppOF4qt7XNcy5gbWNvr6/ZCx1/wBt3f3/TtyUBgB9HV54tkh8UXkzueBcAFtrawp3VHpMB+YYyA6B+/aa6X3eDWkg61mweHScvKfGsCg7OgfL3t/zP4hEInY55gjZIRL2hGwxNN7mmaYBuek3TACWjTwTGGNe/GVdomnVjHEDlrQ3p/rItuvLUllLQbscDY4O20PkyTg67tn8+JM2P9Qct/+htZmiZO4qN+7HVP3M4scsKphwA45WdLXOIBkN+rb5BU5uu4vKVoDtykjR0ZXy7lRzVAOgK0uBup1lzZKzz4efNTY7WaRptsX1LUWA1tcL4YOscgIvDESShWQrVr0rGU6Bfy06S5X7nJidHw8BFGgaASmfzbQDgoVHaMDYzzseb/J0bZLKzSep/+YaSm6RWpUn1UKLzgj4MB0du5RUA6G7VLa00V6XWLjjybKbHWuoKaEqmq1h0dMa3kqMAtAVrumoMgKZpHJqmYUHDn3YmXpx1jKQ2vAIA6Gm9C4BxpjTfCWXp2KAx6xO1C3IFooAwbqaIpdcbW3Lu8p6mAgBoHa13AQAcSnPB29+FwDw7mKSLY/VunDtuciqTUMY99fObuwCAqQ291pn8vvRsiPfou3Hr4YYASffS6JdnWyPl25LH3CpiANSGXsYA9DTdtOVl07PVg1gy9Dybu5gGx8kqBK3ZHMW+VOuQJdUhfn5zLwBcoGFncTZ9w38k3zw7NE56EZhnT+6J752yl0kHR8O5e2jY3TGbVv0Fh+XZ0SSda7bxGMzAqa2Nv7kdNBBDjkh6tqr8cEo1GxhjRufZYSRD8+zC0eT2vPi4NrpTqmNsoTzbCx9zezybAcD47nhWFR7Uje6UanmI6fjheXYUSb88u5J7PN0vlDP6+jHvTk46BUTn2V5UadLOsw3FzXYn2s+HkbClB+HVxKS7ICLPjiRp59kMAMY64887TnLu5UEdA/pWOVlG5tleOEh68mwGLJxofmxAeLywKdvn0GV0nu2Fg6Q3z545FDc3OZEkYPuFHxiOx8atdpF5ti9JZg1ve/b59q90fyo+TiQGLJb5hnnA/aw/AgQ4GuvG5ij1N27KBfa5NwzExo2nXh8E5TJBIJMjAwAlAw6ombgyzu7FR0JxIvZ3wFyzmZkOCZLsJiJqnYNh7JEnkkcLYLCevtcNA7ExPYzzGpcFAjDYhfnNXeDF5GjxeGrrUryoAgAcQ7GxYvIDABeJaDgo7fIjybWOM8CRLkDp2JvYY4UK+1ls/TAU+94BQOtousnQo6dEIpBA00++Hz+ZPfuN0z+gtuYHPSdFdX7T6+rItXWLSuGPK7hcfuLtuGCvBwgf/mMlvVwA3dm9BkQytw/liKTIF+7EIYGwcc86Ov3eOyu4TMuejAurAAsdZ6A29NbZsMHQOrqETpcckOnGxBZK/fDNW3XTWATY9FoiSSIi4XdvZfrw8Tgt/mv1ck4gfA7v7H56A2S81ShqbVkbaSP61ckfrZAhcanub8FW48urpoiI8OZnNXZceQVL8aKhHzgu0iuA1iEcJfWDfUhcDj24rzOmt12nle8+RhGPC0xA+j/RqQ3g2RjucwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the parallelogram ABCD, the diagonal AC and BD intersect at point O, and cross O point to draw OE parallel BC and it intersects DC at point E. If OE = 2.5, then the length of AD is ()
5.0
595
[ "2.5", "5", "10", "15" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGUAAABgCAAAAAAh2uOgAAAI00lEQVR4nK2abWxT1xnH/zelisSiuUihXE2GdJAOU6cQ6iAizchBpcLtMokPqbK0VMs2Jj5E3RhLJVQhoBPrMg2paKJTplSqu9KNjXSZ1DQELVucLBGpTJd0JHUmAoSZiqAgkdRhguXe+9+H+/5mO04eKco5z3n5nfPc5zznnnMtEKAADD4eUhPLFc8+SgAIgPQqQKwAxLuPEvXfmxUbVoLBlwRBENb/15vy3rYvlo8AIPy+KU1+f/N9L8qthcjjq1cEIy2GiDd2HfOi/LoFTy0bQAC8tAEC8OTnHpT3fiWsXzYEAgChbw8AbHSWlQC3FsgBV0FRInXHAOC60zKrcOuHF4AbXm2W7tozdasBZH7W4yw4BqTZBBymJorC4kQhE2dIhU1xZxH8m+QpcNZQyMVwmszABXFRlNwMD4Ji5JKqdXrcrQXmMPNKxDUAgEq52LMGWFOtK8PlKwxbBYDC8NvP7eR0FwR1bqNfaqVlEb3elnVa4tGornqiouChqHP5+BeC+E7AXTo/prcfu6erRvXCsXk9FdN7Wr8JwPM7fSg3o9NH/nK+Osdocsn8Z9R6GrtHYfAb7e4qqhOUzbFLTHj60BLlw7KNbqVGqU6R17Y1Pyi+d00SgcFHsq5hartY1QSw8ZNVkWtFGk2Xt3+c3LVj2LVjapTQOIDSjteiHy4L8suTI9Wou+QuUKfUVa/+Hw+1SMWb62jFVZLnfCPMVIUWJbMNtf8hi3v+h0LTCsmZMtdANYpUmtU1Z8TeIggkvxu+rSaCaR8Kq1OGKhU8WgRD2l99T0s2tjsLtaePqgmoWzdQM3657i5yRVHnowXw8DvTyce0/K7Lzho6ZdOkqQtciG8fXkKEFICH++YvGBGqZsg1Rm1OnftsU0yKp5Zirmy03rKgpbJZR7lOuVJp189E980VDJmLNNjcqtbpP7rFnso8tE1xXTJU82mBFrtT9/SfHrEqYkkfizE86lwj3WJHQTPJhFocmj8716VBaTirQRTjbyrSnGVema44YrTTenCtS91iCE8Khsdof5uGSmsnkUcmo81vGu0AgBDWiVd8LOZwMk3OiudseVfgGRVPO1WKe10alH+GPEPXeDhn+EwFOrzg7ft9KA9KvXvLNtZkfCHDgbNays5JhXworBy3FZjN/MNnb+C8hxEVUiq77UPZ16n4xPuU5kVO6Qz0+u0Qe7ptWcPHUHVF8HnHr/lsfNddt/qDH3y816MFASAy5O1jPNtAm9PbbNAmDjmHmwik/De7izFb1qSMhn1akCSHxDa74nS5K1hYRFuXegWT4udkmsxG663h86To2hBtEhqx5sznUrr+aq41Xj5Yte2yvtHh9Y6RUK7aqB2zBUwTWN+Vc3Rkr9iuRbiWzb5rSDNSe6PVnBZK68k8FN6M7M+SZPO2Gf9Kau9XKq2uYVoMVfkiIzcMB2onIL94ZWCdfy3Vt7fM3LF6uTmIVHUuE2hyTkzUR7N5XtcUkvFOi8JCyZZKuVsrJDlatuFLNZWbdNQaLywWKxOncx/wBQALr9Z9c/dNwTSNn0T7bcY2Ja+TkXPVjRLbxY/yVuScdb+0UlrbXHWtopAz4WaSSqrySP539tAlM10CQFEUAMTm3E4m4Gbdc+8CEGouT9Z5hE+7xD4x0yUASrR7xS3O3doh12INb6mpQFf908N5KNutxxiSlDVTfiWnCdJiG833HFf4dFVfb6Z1iizLlDfeIGWZVLPmP5KyNBo4o+YHALxGeTYWz/32GTADhDEXmWS8W5FVJq3/SMocWZtQ88eCWel/z/yUMo8GU66uLRI/Z6woK0U+dIqyLHtSko+dUyiTfCNOmRwM3pfJXvFMDsrJVvdcKCtyR7MxdAflYqBLTQ8gbVKY2dHo//bZW2ulyBqF8lCE3hbrXHtByze1kjL5fnBBJkmpJTTuASCpRiwLRXvCMmcDnk9fTnx1SMs/fKaHsizzlVatotJpufJwSNjYLy1rX6ZS7rk5tQdG9WQGaVK1my5T4YPaCckZPg8avm5SZJKxPg/IadE0yuLWHpKL4cOW8mxzZMprcEw0OimqbVrectc9bjtYH4uTGfUq1Rx6h9jldaf6ueh+hyHJMwdcVVsrpi1dKmwCkHYaZ/TJVskDI+oPwEJRyGTU2f5gKMcWb8pcQ1SvZ+kgrh9L7HOZDdifodRc7Tzu+skpsd+la9OPgo6bXruTSQ21hR+Uh4POdyClT1+XDko0ack8iMe0lV3Q3c/snrhj4ln9dsey7xPAlnEzv7AXF8vUZEEXGeV/3bndfjdSFp5QExaKACCcNrLzz6/tLs3ft/6iSgIn3vn2b0wlgR1JFwUAqoy5zNc98UdHoafo0xQEAHtT77+4oCsFYPeIMQarZMq1xEzowJIu4vTK0iH15Kjmp0RVC0fNgPoApysPLYVhFVv4FKdcFFJ3snTF8eLvlKfCBx7ojfep69Jp+tA4gIm6H50o/vPlpk+l2utaurbf67nw9CFyNKBdPRQ9nYSovYtfilChw2IK+dEeDgXeXRZEITle+ROJNNalcy43gn2B8/YWS2eQzDZEMyRZm/SicHWgm5ZAX5woJE+LfSRb2jwpkU6nplgZCR7XL8pd38W+l60CsNvIx2yl9i9GXt+PLLq7r0h/eLDjNvSvPBYZ6AfwxVW9yR3zHGDy6owed6s9CGDM0FlQP2+/XN0f8qD4fuG6O6HXvjem1zI/Xy2YV6kxo4+YcG/NByde9qTkhuWVhyMABBCQ/gEAu551UIrruIBWZoR5SRBKhAv+fcHz6p+FbXGm5zX1cBCTVpd3LAL3IvJeT1bt74AXFl835kLp3zF83Ryve4SCqrIayHsapjYjjCn87aNfM+cycJhsOuweWZGikFzcepgkj/WYlASA3HdeS6YkgvdJMpE2KU1pJlYSQy5u1Y9qxnPJzIfw8ta/FeAvBcvMv/RfcxiUv79gVa+wGJSLz0L6VjCWq+5SRdx6HQBu9ejrZQAAPH4wsTxJoIcciPv/umNlZADqj1P+Dza26ux3m2xJAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, the diagonal AC and BD of the parallelogram ABCD intersect at the point O, AB = 7.0, AC = 10.0, the perimeter of triangle ABO is 16.0, then the length of the diagonal BD is equal to ()
8.0
596
[ "4", "5", "6", "8" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAALMAAABWCAAAAACh9vgeAAAa5klEQVR4nNWbf3RUVZbvd92bSpHqMtWExFC9IJmQhCHmIRhXhiw6C1oFVCBtRpE8aMmgppsn9Kj0Iq0+hV4tivKzERnlRy+FpQLPhnSLpJ8KGSSDSugHmYVCBggxTZlJcukqL3Wpe0+dnH2/748k/A6J3U73e3sla92q3HPO536zzz77/LgeUD8GD5HweKCRDpdcIiLywdNfsW/D4PZc6Je+czXy9MtMRKRAGlEvJy6v47/Uepm1K77Vrr3xOqbtb/XoutZj+l8LuVdPT+81QET96+xqROQmnc7t/Uw00Cf9FuxKH+z51G/rGpGLp6fn9Dybe+O7v227stt43F6kfk3bPPn93v7Q7R3fNtrA7Ice3ePxDIz5DOWUXQk6oI77LZjbY92fdpc1A9WeATFv/Iln1JU1/VUiHRHhKnVyXVpR9vMBMG9a6ckjIuLeL1hz+7Aul3p0SfS4vusSXOLuK3KJyGXuq/hF62mnS9e6gxUJIqa9o0hzadR/JPWLfIZA+1pc7dITu+jrST1w4dGIiHzkskaupnGX15PwugSP1u2JGtHV8eBKczVKkOYl0nUilwiKSCfSae9kIo3ymvqLde6XP3uPaBNVkeZqPS0lfKqPJnWXSdfI7fJq5MKjuewlVyPWySWNyCW4pHmIcOMY69GIyIWHlIe8RERdutalIwlEhKeI0JcxAKCaqBll5KkGALjdf3L6LAQALKUUACAkTBtsCaWEkMKJ2wDzDcv2tKIATnA3ghJ23IEUfLIaAJpp78DG7p6hpfea9T50Snh0vUsl+cjWkKw7KS67mpvUqzJ7pQvyeG7oGURE1FOESXc1godcjQib6SdEVObZPWDmriSdXO2zYFOO+nJoVx/MHkU6e2767pAT5Em9Kf69P31PtN2U5RW6dAdRl+tN8mjELmn9Df7SqxMRJXykoJNGdD5IXcmncunLvLLd7sCYuzSwpiv7jZ9r6d6zIajrSgWP1+ZBSZ5B/iH/x+fza+dzZdbZMzenuf7BUcvjdbs8ypuMRJemaf00i0E+b8ogcT4Yt4OZQ6ir2Phh8zQiIvpocj/5xkWwc4OSk/Qu8/x/K27CW8UZHdcFJiIVdwPfkS5u+kMgGZHWv8+lf29LPRcryPmyE0nkKE7xuXYXvP05BzTX6eoy/nPal6dMj/NVu05b79d85zJ6/zwgY5xlNp5IfyuNhteCJQTDRmJghQdqDFeYDqQDiAQMwICJ6AdVQ4jmxwER77mvf+buWCHkV2gqyKCVHWW+zZCIoA2I91P0G1uMAXYsCZaMTouZ658L0uapObVQcSUHzAwAChYMLCZay/HnyXv7fo7BcK1vlZcBOIB0JBAVNqQDa+f0Ib47mz6mJwWkA9Fz10CYXXZYMf9vCr0IsT7t45eHhjZakPa3DA2AE0IIhjTRLoH6R8ibUinNcVnHXFMCvc0NTGcpWRi301rE11ANMIGCiyx02rL/kt/QTAF24mZLPIKGskDWRKpSatWQ5QjbEsr+BswuwIrfol/B3JS8n/muiTX306NHYA5gTBu4MRgcY1g2gEh0WQq98EnJbG6tC04AWuBYoodlgDqDZfOUOxFbmfau4odzTqImwzflC45+m8wAAMEiCoQPzBsXKuMzReUsjmQM2i7jFoQlu59soMwsxFbawMuGvg1ZltUuzxSXLQ1mf/GtI6sEuhyEVwcDI05xW/aD7DT6aDycONovu+vGzErGAAkRgVFSijW+PZZbPvUwWgqm2V0vUXaDirCKodutmXtTqG9oDDCU40jATChEayYQlZ+VZ/LnOF0nssm3X6krC9yYWXaHSyljL9189KXAAbYqQk1oHTVZ2CeHlpfo6yFhRS0eSLbWDzZcth0wVhTqeqAcdkvBZDgHR4d8j0hc1ddvzOwAktkBnPRpi0butEVZgYlo/gxwg3cG2kv1BWHDFYBSDAD85wkNxGwrajE4+i/D/I9U0TPmuai/MooPMl+flH8SxlV334iZWQqWQJStRZlFqW8C92f90bZG330Kv0n+Gaw3h95KVW1triHcbqX/fLUZLGDWlaaOP9RcUGXgRObCr1BPL50MvsrG1en6DZkBIZQ6H0VDiAbvs+LlBafR4vtRJ/Zk/AJYQkux3ev5xAQD7l/kHrFoBPh4KhVsw4l/WCZxfMwU5sVpW3B3oelAxK9U44a+wY4UsE2o2XpaLTB+5HG0Zi2QLb8fPovlsuAOVpW+Iv96jjOD1V9A7cbQ+rAeKjfwaf4Tllubvwzh3fmvy3W0HybMq4Tuk5kBwEIMQqKWxu5ha/qYFjQOrZTRP/hXd2Kl71MT5aF9KPVXCysBKKn+HHd2AYY8fj8F9Ongd0PPSWyjHY69jF5T0R8UGehou7rIjfugQLsUHC3L3YPonYWdfKxormXXBZdIXj94l8uzC446kTtIr+qwABZ/9lDO64LZpfo/CflhYAn4mfRtimsyNrFZTScsIXF1WtNffGbnQtdOfTPUvfmG3ZY127TrUpYwlt28B5GKtLZ2eevIj7cHx33IEYkOMKA4IQZACY7GAcCGaltfqM/fdUeFJT9KfR5YOKTua/wy7wBiq7RVHYgwrq6vn3FQdrqw78jl6LQRp9E4Zo6F2uRViKynOqvz6VGvtmJ24QnYd1DhcldKhhV3JOCKXrAy8hDRNHV1tQLCAoQQFlBXnF5cd2RcuS3qAssNLBq2PIbK1I0WVtLo44CAa19Vum/mbue0O7GT3m6feKvJx/JnOMZv0peZsfWBvWE8TrVAaHCT5Km3LQgNeV04iEIyJxji4ohY1gzsrb5u5eejjCiOPECFH6C59B7Xrs14ycF273rYy2gruHqQbyEAhrra526sM8fhtt48yZiaE3PMzEfPosE7N8aH01c58a20E/bjOZ/LjgnFYbxH9AQUc5whrJ4BBgDKgE3YeE29YRinGSaa5o5MHhsWp0bdYzifUFVMvkTrYO0MbkDsGZ2yDRWzrhP1+2FWEbw4ZGfZxFNOOL0C2Jq0AmotvWnLpaH1JqoD+w11b2lYHRpbuYDmxYRlWGBHXGxm70Zs3IuLT3DpyhaQ6vAi8tCEMKKZFRbepUWQi/2LEd9N6zlSnV2aUhfpSZnFldg3YHYBZtk0YtyMktPcNGwBt24JLYW1ll5kMZO22nh65Mc4W1TSJE+PrBC41zehHWDB0rmIuJHI04xrpRJC4dSikF5Ek8+oRv9cyB0pK9D2SubRDrE8bT3anhl6Kr/MAQOQwDfLkQz5ik6jIjg9ulJYDf5X0b4y+S1EKny1EPNC+6PRwlsM1Zr/AFRN3tzUKTVxxIS6NLUta0bZ9epVDnZ+lxYeHVn6FZqK7mNjK21QcjHtcZznaZMSz+aby6mxQzKr6+RffTK7AGBjv983xrFP5fyoDbW0vhNL6TMRn526T5wsfugru/PuMWfROGa2g1rfZv6M9HeUDViqR9nmMmCje6m6i3UbW8fT9Gi0fGIbN46dyk4NbYjiue98ymJuxu8gFo86ES2YLRDpTlQd98ri1zK7AODAUTDA8cqhFWEcGz6TeU/aGmBx6l7pPBR6zzLyUhoRu6XcxKlh9ym5JbiWrV/k53sqISNSQliWADZsdAFUA1ELsKSKCMUmpHgzy1+yC+F/LDaNptzZgrf7liPyC18dY9rog4wFIxqwInDINPuQsw+du2zXYhj8Co2X2BWcJ7Dpey8IY6F/H+N+v4FwaGIYTZOLmkVD3qMRbMleDV6SU4PZwVlH4gAkXCsqpzcDKNsIwGyzYVmAisDaUeKnMin3FGRbOD5yjpC/Dq4T8hfBeoEJOYdxbE6oCUcy7vsaqo8E5vrMzA4uKLaMYHEbh4unIf52zhILy3wHIO4obIq1Fozdx8boKa1oya5gbAstg7VqyLuwHx/uLTwZZ5gJZXzQs1LVDISBiIBjGQIfzA6k6hOa3K9SJ5o4nFkBVePfBF6cXCcxJbeRnREUNltmpR3ENbl+n8zdniNhSfscamgPakNTYdT6NgNPpGzm2L35J+PGbVlxtJdPPY16ehjmM/4V6vzC4KdOe/mtHceyxn7EKuaApXuZF0oJSIlDVb78pVR0xg4XTWrFF6EnuuLbM5dIVKUel/zgiMNofTCrOY45tB6G1dc6dx++IWAihsYhhWjMq+DIjqGvM6r9DW50xqjjMMcGG8yjJbfB3pE1CyfeDGxEx8vZ7xuYWhhFNI8ylzJiFtTFaTkrG5BAZ/XgjKcOzr3zD1JMKuFYQ26VdOr0l113Ud4BM/aD0e04PibYCPMuPdt0w9cn65OZlc1dF/BQ0q4NNN/FWv0tmDNGHBdGaZFlNd/y4Cm8l1mNjg3BZ0wsDP7abH0k+wCsssKw+KSwMr7IX3UY9iWRXEAyu8ba4d/bFg8XVfxRflQwz5Gv3TEvjq2p25Ws8jcKMbPIkK233O/G6st99DYL8Nc3YL42BDpwXCV3D539cnC968ws+dzEvKH1IlI66XT0TN48BzXJK4Vc498KMaNoQyxeOapJnMya2oRjU57scKuJHjoKJyIvDiYWuGVtFhU1inDhAyZ+n7EKcknmu0otyj8Yj+RmH+OWvKLonzqG3cfY9g+TaLqMAdzX0hoBVw5TDAAOw3RRHKpOrkX73BHNHC6cdohPZI1rFWJIpcDu777K+KXvA0eWjTkGM3dSWB5MXWC4SzN+LfDE8H87mp5Sw9Fz8YtVGs+GvDTdwqHMhyHqaCl46bBagQdGNqBz+PC94kDoZcaW3Pkw96SvWhKqRQeEfVmuNQBmjiUgDwRp+PuQD+TUo23iD2zr0/zZFrbk/wjWb9OfYTydvk3a991+CuExd3ZyY8aTkGuStwKVIz+DyAnoLysJR1oMxNTOW7Mqkye04WioEk7NoHWOeF2vQ+dDeWdwsuSOs6p+yFPABvqZiR1pmw16oQ+Br2Jm5m4f6fYTwXwyP/nvPzrPs0cZ3FAwuovrQ8+32+9SpYEfj1vLXB06APXopEbnXN5Edmv9zyH+Wmi74in5x5yOcSXiuWBlwnXRruItS8bcVNkwY1Kb/XnhAxBv3/WsiV9RrdNZkf9Ho72oBNilr5HxF9NqLPzTLS9E52S3Doy597f7p1OgfYsn9DFa7ilpjbXkT2KuyVhs8UupOxmP3XrEse8sPGIfLM6CiBaWo/XDoTOAxYM3g6sKj8Tt8ZOk0Uh02+G4BWwZPqZqt1X+sCVqUjc72FX0MeznQnVovP+2I2gbMcsy69OWCrxB64DHg59iP22K33hieTkzAz3TZ7ZixoiRR/lU/vizYsst5Xx+B62UnavTN+H89MwvlFVUeoI/yp0eFu/kTOrAJ0OeAZbctgd4aPBxNnNvs/iVwjUfTh7+2dltQXrAEpGhs+PO6oLfCswrOMZYVN6qznz/gRY05jwp8crQf5bydapB24PFh2Vkwi1GPxP4S/7MF+UGuBOVGQ3yUHb51/xmZqnAv/ofY96c8Tv37GMj2qNizJSjqE+tEthJZTHsClbHeXGojnlmRjNaxz5loiZUbWGBTvnkn3QCR/wrgE3+zVAVOceEPXmWg2NF41l9ULwQTq2/CrzMv4+j87MbE/YU2oy+Eo1LzHwFswsFdPBB2iwbMkYK7PPMgPgwYw3+tDLwW9uqGtZqxguzmyMnqAiiLnk6jF2+xQLP0noYpaE2hEdMjeKo7zn57r0+Gk7+1CbsD86LyM2BeoWtoZNASXYYpyb+3Uk7EpzNTk3G8zA3BvbJrgezmyXfT7Mc0c8kmC5t5/ZIzAAsribsyS5oP/9x+gOwdqU/1WW/6KsFP3RrI+ySolPW2XHf/6PZmFEZw6HgszBfTquBOXXMF1ZTcSVQ76OcjLxbFv4qXFOck/dkUVkHdmRXx61NRa9bqBy6G5GyIU34LHOWMmtDyziy0vfbNpSPOQ3jbspsguhn4e+ycfAyL1L70177NGt8q6oJVVji/YyVDlYM3duBipwv0FwwowONND4c6yxe2IldtAqR125qQGT2xJg0Sku2Pj3Jr099cWtUdsIUeLecaIPaMGKHg4rAHlj3TGnEwbHzLdSFZklZm/FLW60a/H4c40afEW23Ey2B2edgcg0zAxAiLhGGwMPBXZnlirfQTET3DF2DjtX+vbBnZ4WdcHFh7MInGSWn7eaR99v4KO2XkKuT99piflHL2dqJFByV/8D2cERCCQWlGPG6WfojtBrWgsxamD8ogWjOKwEa8uZGsZtWSqxJ2eNi5rAvhDnqwVtvOw02r1lbuD4zKwZcMMcMWNhJ025+Gs5vQk8DTwbXmNby4Ecq+niwraMl5+7TOJhadQx7Rq0Camk9ImuzPlRtc9JmP5s9+I5ndzZJyJgElFQAKyBxbHtKoKz2lZJjiM6cGO40xs0zzXemrIf8H6nruOOnKQeY782xEc6Y835gmRM3+1tfvTJHkszSUvGO2wO584HXaYmDJ327HbyQvUXgrtAZFulTbVETXAL1jmcTW9tLGyLyodQ9xjO3EY27Z96HneC4kp0AWEkFpWwzDijekqfr9dxZXNKGlpFVwHsZP2/Bq/SbC+rRtN1Czs5u/vpU6fS24lFhANx/H7zMLIZE2F3v0xfCfi39UYHVtIHFvMxaiDtCJ3G84D4DhzKqWb01eAmcvRmvsPnGzaklqYHxm5uautuLxRhgKVV3xJe2kJKd6Dr/2HXlY846VulTRuR0+qMxbMzZifirwd9a4h9HhdnIn+bsog8hxNVLA/0wA4mIutA2liZBva4vgjjgX2WJ6sHvR6MVhU1oKJ5syYPeqVDH8l8GtmYvqXk0l/wTZtRGYwwg0t0a2yy6kUWP30mYXJ/hp/3y88KFSrQNWyWdHSMbIZfTAQcT8xsQyS5DuOhhEVMxF7jxzsxFZgYAKRGLYDnNgNg35CGIw/Qs8MvgQWB6hoEzRVPC/DHNCstdQ150zr2XTkMDWffXHwIAacmeZYhLK/5KSimlZAXEEQtjeVZKxT2lERwfWorwnpR1wnkx4wA6i4tPwMi6W1r19J4RM9HfOZyrdDaVhPXFrRPR+eXYOeBtyRtgP53+udM5rfg/0DS0xEYdTTLRFJi0uCyNCh9aXccCzHGWABCXLBLAhZ7Nx+60vHsiauM0HEdWj6LHrJbs+bBqAssUnvHtjpg/LgmjLb+cY/WZd1lAG/e7x3Els42vWM3z7cah0AIT7wZWwn45eChqP5h30m0bUx7hj/3fP930QtYgyip/sSGqZBwMkXAVBKAge/JCwQArxZBS9igfx1kgji9+nBYKTke8Vn8FvCBUi/gjo9utllEzLftAJu1kIwzY1yze3pDZUo5sp7mop2fbsZu2OFic9h5aZ400hJkzCZ21Gb7b02lI4eJtp+SAjkNdZQnFjf+dblnz9shXHbyQuhutD080omZoClCTRpVd6MeTr8eMTthVwRObhyxirMvYzrxW/wDOzOGm2To6cLi6Kkgj7lvwzilY3QHhm+C6AKCEBH9a6QtOAVfr/4rYrNxGaWRVmKd3h3z+M5GBVXUlc6tjHc2Y81LwDVssyVjyNT9NR9icUSKdT0pS/DqNe74BDFgRKR1HyG+usw02HJzd8XeDbr0362Q0Wp4fR9voexWOUOnQedzP+HcF82X/D1FF1Xo15KN5K1y3clgj2mbevmzJOPKPf67mIAzAOC8d2I5QYPWNhAYYhmCWAKM2M5S+H1NGneN/L5wh5DZ67XHd6t6F7985CEAZEdFeAIiJtylIqxz1CtUo4/GRBz7fNCPgGTJs5tY44ox2acddgOMAWAo5QF0uMycq2baU044Nt1N+sbKMgqks9g9e3UhL7d412/4iBwFA2UfYS80ARHTqYKpnPOvbAswfNHbMsMAt/7ztMMBw2DIY0mHLQsy0hBD9DVfXGCNiSkAKxZDCWEXfmbenYIbEgZRqlI49LtG7ceIOYG5FQDM1A8Abg/UlLObp4zfPT6EhBVNebjLYAs7DkECMBSQcEzHJcMHym/mGCwAiGmOwsCAljP8ZDBQAbwU24h2qhZTWBqIyXGf75VrmfdVAWTUAiBLfCpxelEwBSq9Y19jOghGDcmKuzaZ02URUwZIAC0d+09MELhAVYMlgtAvELIjDj6fPmJf+SsIYd6dpoZ6qgWbaiAGM3RuJ6HPLFoy65BHPzw5QzpyNpyUA1Vu4O+sBANnd+RhgybAYvesLdpzRuyjvsuIrDEJCOFII2f1ZOWxDsIpjq4+8vzF2+DchCqoGgOp96OcorAdEP/xV9q8fO57j8WjjGn1KGxaLT8sMCpu7j2mDPMS6Bpd8STrI5/cn0ddpoTSfkkhh8sgE+ZJUUoqWgFcDweNe+/5KLJBke7OS2yjZq5SEluHxnetK5GcKkXr0f63OoMR3TuGmf/mpM4iINt2VSze2JHK/pFz6yWMHconcitvjiSCM7K86/lO6Xo/bc6Ib5NHhaklJzIp0hkpJ9vsgmVNMlSxjWurX5+m7zh9jyX4iVgT36nc0xGDt6+S8pGZOGeTGE6R9x3dzzIrk5iaYYt5g1Bece2Eo/XTjICKin/RDTJREWt004jM0wkuk/dzTdSHgnsvUPASdKJFERIBG5CEo6Hr3gWKXveR2gZI1YuXtEnogEUsOUoc9CB4XLrnkvQQNDxE8CSI3hSyfN5m6pEf7mtKhfxW4KRaIthUE/u1cWsW2WS00wtWuPLTclwFlzZBEigHEJJQDSEBalhA9sac7KWbF3Dv49e4aSOaEZIZlOXxp/n6lM7oMwBKQF+TFe9wLwkFMSMQgz0FYsGAepZ2X9dYbWdK+yfS+B2W/I42Ibjrv97rnBiV5PJq/+zA7wUPkdlH3ux6DiIjcLk0nFy4rDNIoCRq5AaKEm0wimTRyPR5KXHXeV/N5iZOTQKw8ug7lS/IJ8vqoM5m8AeKA66fgbRRJ+IjOfDmJ+jvS3SONC3D3GqMAhGIA7Fycs/cqZ9ndQrPsVpyZwSLBtpRxm9EdFa6RiiEBYSnE0RNmIjHElSVNAT4lEYPLcfAG2gvsve5+4jVxAx4X3S+quOztIq/bpXkp4b3Gr1y4ukbkkkYukeay4kCCfGRrg3pvuJ5A0FyPltB09lIX67rmMmm66zFTPZqTdCGgawlfQtc0yxP4/TSi6hX9u7PH9fSct3ZJG1AH+Ntbt9/1ave3phmYdWN2gaD91d6i+ktNcwlE7Lqei6+6/b9urqZRL+3/NzJrRCDSkjSigb3k9rc3/F+3L/lk3FnGUAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, E is any point in parallelogram ABCD, if S~quadrilateral ABCD~ = 6.0, then the area of ​​the shaded part in the figure is ()
3.0
597
[ "2", "3", "4", "5" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAP4AAACOCAAAAAA03+pMAAAM9ElEQVR4nOVdf3AU1R3/PMSxRabB9kZjOUjUdDiRgVQ6NVZtaEvHU5kSWxwMMpPEisFChwDWolUTNCPY8suKJYrW4IDQqRpmGn7NQEkENdQZgzb2QgdM0lw7YYgSTJjJmWQ//WP37vb29vZ2794mXPIZuGPfvvfd99nv5333u+/2LYIYg6BYtBsA/ONGuicjAoE3iwNk4/SxSJ8ABgd8g6/9YEzSFwDe/xF2ZY//5VikDwBty0TpDcBYpX8owEVTxyz94HkfCieMWfpH7gEexmNjgz7VaK/DoZ8CWJQDMRbTnncL1e+Ab+zRr5+n2xgT4tdh74yiE7qRMH4EuzIsoNBt7H2G45fegmjRWBL/3rWo7Kg5eYW+jGMFB2fn1/GjiR/FFI56+or6dbDAt5vsz18fu3e0ij9myONQVU/VQgC/aTpmrDf6cbDAt4ck2TCx07BrNNNXdd9QmKeSZ493p7HKaBR/RPgUaKxsX1uibd6PPfF1RzMaCnNqIxt7vOfiKoxG+oom+yY9eXZmHY6vOhrpkySVD/ze7fqC2x81qTXqcn4tlp24+76i9od05c/3Vet2R6uPDigxWyf8k2sGY4qbs5rNmo0C+oqxoHmeVyUfRf9NG0zbZr74Y/M74OS9d81tL79MXwN43LMa8crHqBE/qcqguejaLf1xew5/w5juaRhN9Mnmoux48grPeffEDxGSoyvra6068uTSK0x23HdZfLqnIvPHfhit99/x3bYVZux3NG1P2Mp1QboMTdT/WuhZ32u+q33icWNRBBnnfeNgFQBwpviHN7f9dqLZLgwtXn6boSiKjKNvJACgo2z2TW2PGcmHsaGvKrG1DJ/ppeB/quoq2iclrNFc3WQWDzRknPd1ICA6HpyV21E1Kf76pZWEFlXfZGEiU+kTgGBw6aycjsossyEh1ForcldYmclU8QsAweo9j3RkWdY69HYz4vPiKDLV+0Bw6YyrTq+zZI/u0hovTMOlhoykT6Bz6YyrTq/zGEoNl0Uu8f/c2lLmiZ8C4uz6nQ+d+ZZhh4DRz681tyR2PIBM9L7g2YppaFlnZG8EcebRXYmSgTAyj/7ZVdPEqc3XJK0nhkp+dVuySplAXz+ou1cmJ6/Vffbis0lNZ8LYjwxqfr5p2wOnkjpeHe8nNp68LEnFzPB+2J3dT+R98c+tyWUPALi4eMMNyWtlBH0BAN2P551vqfHabbM6r9zGTE4miJ8CuLDhxfs/nWy+zwz7326xyHYisO99Sp4Ws29P4MuqnGBLjQn7RBS7S7bbGiT26QsbJ9MJLOwZTsyFqqntn7xuW/YAUFZUZKueY/Envn1IHUabMZsXNm+59+McZwZfad1tr6Iz+hR2BpQje0ACBav7+l7aMM8peZxZfTBZuqfBUeTXeistCJjao/YpAPQ9f13zsdedsh9auDppuqfBkfdFzFf6MLUXFUTfSxt/fMwX3WN33FVd/pTtLjiYUy4GAO9Fp1PR1vaA/fF7FJL96z0LA/oCuzieddp2XSf0leIA+bQ8/kpxgBy4Od6eQvZvyV4Q0JUo6imwcRp682rsd8HJ2B8a8AFr73gKkDP+hwZ8eGX8TyYYbBHiqxdyGw781Rc9jhBm9/OmWOkrB+32z8nYf38qBfCdf8BeP5Lbm4PgKfzeaEuEXl5XcCBf23BgjwLA3r0BQNgNEw6yPhyZKwBc76BD1mhbLqbE35YMvZR79EBdfgr2BIDgkp0e2D9rDrK+wfpCgPhsego9MwFxqJW1uTElwODLufV/S4m8iiW/uDNsyg4ciL9rzgRABJ/Zn0KvTCCC56fhuqv1JRh6tXrGW7dES5ymmPzT6b2aKbstbKN2K0kW++23sGNPh8Ear7/JySUuBgrJwMQPnTWyT39gZoAMQhp7FqsXtgjfWq+/KT2Lg/nVDlvYpt+oisUkR0kNjQB0F3bW5hY2pmtzze3qA12K7TzJ+eMNKavTCrU5hQ1pG3GS7mlwSt8V8jtzJZBnr3e7QvINwD/whM02Tuf6RLe8Gz4Nf5les6OhEGlnko/c+pBAUJwkt1/+bZttnDzZRQE0LikWTttZ4tOGr825IWo/dXTW/duDwdlzNwKoLLjLXiMnSa8AMKvjw+8D0u75Pz36dX8k8UuDPcWFP7/jAXZ98SwAXH+d7YbOUHpfdshhkwRQyLobCw7KMUaWVpAcmGnMJZLAIf36nN6FlZLCX11+fr0cSyTr8/pJdjq9MNumr5Bkj7eB7Vldzg5hjrr8/Lo4+6lBIXsmHyeVCH3bxpx5v2QZyTWlTg5gDiP5dFFaoZDkwMwXSbLTtgYceb8+t5dkT3azw85FDGg4ODv/HcrMIVTpk6zFfrLRfmIOkqGQvWjW41WTk61z0+r6wQJfogesU0SPN/LYaiOAVfa7B5K0GctLl6nfg77UQ5YSWVIpEaUVqbZ0QL8+J/zMcL1v0LJmYhxWydu/J7GDiPRJOjQcph8KhdRBoA6EUMwXyVDonLeBoVA/yRDnbLOrmBgcLczbnUKzJNBJ3zEi3tf+Rv7ovtTP0mXadigUavaec84/ZkmlRISlr6SgKj39EMmQKgHG0a/P6dUVl6xxSt8t8gbpq3B23VeFHuvsKH2FZKhnSoO+uDOr3RH9JrfIpyV9chzwleEuwLgtAKDiZ7eqtwhq2dUVT+o3k+DEXQsWt5ckr5cKKhbY/TnTFOFgF3F8fOgLkfXXf65tK2qU/Dz7A7vub/LHrSqUBzPpO4Au67OgE054GB1W22+3d4Amv7dmKIWO2UN60tfTt3JmOOHRYTD/raQBRmHzPd5tkelHF5B6wqMiTN8y8Y0mPDoczkuq6MiqQle4K2lL394tj076evi3WDf7qCj7hX7JCV4sItJP+Qh26EelH3OYFk+PRaPm+abrSaUiXenbom8qfZIsjzm6ov9nYKHHZCWxZKQtfTv0L5hLn1S6PAl+VgiYLKmUj3SjPpmcvsLS5Ql3Vi8w6lnhcJGXIX0b3k8ofZL98edfaY+QdzPokYoE6Selr/R4GyxY7Jwdqah+tZdmVfdG3hzjHhQp0k/6I5eomF9o8fvDA9gVrggAHWWzcjp+NxGSn/0061e6uX4Y1mfHSvok2ZDTr/d8Zdyl0C0ZSJG+hfgj8/rWuHe9xrCz3EjetQGgkD2T35Ni3tr7JfG5vgGnPV0k2VmetcYqCZINGVGfTOJ9dV4/MRSFXFFOdj48aU3868BchCTpW3s/ufRJpcfTWJ6lknc73EcgJ+qTpNUP3BXzC61ipvo7f/+NhWtOe7Rw7M5qh/iOyYn6gFXkt4766gPGXRVZv85pVreHzfnSpG8lflX6lpy6KrIqujiso54ypW+V9qycXwjLJy66V07Dqc3XwIMqIUTrMxdlCTIJJEo/8cMt+/7eYtmwe+O2xep60uCUVQQWXXultE5ZYt9x6445Q7wg1IRnimXUP7cmq1x7C5j2QEmnw8dKUoVM6Sce++EZHsPYVzd15Mmn7zat6RZkJTwqEtA3j/oqw55KHXnnTxOlB4lRn0xE3yThCTu3pzKrtFNX1In9VFgLoHUY/C9X+okiv0nCo14CLlTldHysridl9KogUNLo57RhyHhkRn0gQeTfd9QsuFJ8uUm3nlQjmz3zMwBom2fSQi4oJEd9wDTrS5Dr9633lLbHFzdiPyMP57uL9Of1jTCjbzqv3xtZVagY9nUCgH84Qr/cqE+a0o9G/Sih3vWeha2xRcMPyVGfNKNvMq8fs550xCA76pPxryqlKJv4YmxRqGb9rc/5MOIom7RZvlHj+TAmPP1bsotOSj/rziFnXt8IA33jvH7/luyiZvlHdQxZ8/pGGMVfduXW6IayrbqgMl++4lKBK9I3il8v/cEarz+8KnAY53LM4Yr0deI3zusP1kzWrypUdJ/DDYnz+kbEiJ8PhqU/9Gr1jKpbTOUyInBJ+rHij0i/Nifd9aRy4ZL0YyN/WPpSllTKhDtRn4wVf9mVWwG+UZm7VrvdHZZJexsom7TJrZ5Ez8S+nD5y56Xmeboofb34e7wN3OMriCU/wpc7kpr0XepIdLqjYn7X9Kwtd+LS0byGigW3SXxVUiwiY3/fvG9OUBfTxl4LR/xUXKhvucK1XghSABRn88fPsfFyx5HAvO+5Zzvi6vfkziFmCC79/5rE1eEXnug+1gpIfBWdRAg3u6XRH1wePtSlhkVCjBt3wC3rGv3npk516whp4s3i/Urj3a0uWVfp75j1P5fsp43B04USXxNmxDgACPbNvnqCa4dID+/fMQGPrXJrpnU8APzx90FJ7yGTj7ZNmxDwuRX+xwHY8QcxxR3r6YLAoYBSe6NbQx/jiGAf2eje8EoHAv897xMPzDzi1iVpvAguOQC0uWQ+bRyeB3R94p5zngYCLAak/3ooB8UBDsyU+HZYAy7tpPfdQgDwu5b14P9VsbNRugcgCAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in the parallelogram ABCD, AB = 4.0, the bisector of angle BAD and the extended line of BC intersect at point E, and DC at point F, and point F is the midpoint of DC, DG perpendicular AE, foot of perpendicular is G, if DG = 1.0, then the edge length of AE is ()
4\sqrt{3}
598
[ "2\\sqrt{3}", "4\\sqrt{3}", "4", "8" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIIAAABtCAAAAABIeuZ2AAAKpUlEQVR4nLVba2wc1RX+7niCK7FhhbKpF2Xp0q4hLgZpaRIRips4ELChTuqQVAbVFLs8TJRIcWERRqQklbBIVCPTEiexoCIWSjHEYPH2NknjqI7kNkZ2q7h2ZFsYOWk2XRcCa6QYj+f0x8zszuzOztw7uN+P3Tv3cea755z7vsMIjiAGYsQsj9bkHMSLos4ysyC5pDOAgVkfrcnZmNshRMCdQhYo/ZMXO79X/H+lwACyq7rGiwDsj/7bCHJCdkzVTU2M2JdDo4kTxMbPAwhFcMWPry1e4bOSAwMmU/cuXQxbC3mjoAs6f/xY74WyayNP+XBdGMBnk5g53ft6X2jd+vVFVsot+yZv4H+7XsoNI7HrgzUHR+ySzuzbEijZOW6KaQPwmKtIK1woJNtXhGIjRGqedJXONAbLXrmkP366h6hnz0JSSPza94sP3WV01fibkkREn5YTUdu3ppCp71SDP5bgkzK13d+YoCeBQdoINFB+tfFQMJBqCuxK8stJNAWeu2x6XgAK3cEGAQJERIna8FukCr08DwWViGhqfbQ/8+QoVSXVSD66aFUyE82NnN6RARhYtW7wVlPH4NTPMDCm94V94aHlw9YexWu/cCjQY1UKHyb9TzwRKXyDv4CO3N5xfke8txRG58xZG2JALKZgeMsv+/YJKMBWC5cqyy7ZcXVFT/jyrl1ELxSsTYkVzPaF4ZXhk34IjXQa1Ma2QgBoOtp/w4RQySwK8dsbD0qAmDsBAFqv+6kWWDfGbjxmxHLVxKKTM/6ePNpygZpYMkL03C4iIvXyHQWntFhxQ/y3urlCtPYaWOzREoARALDC4/esOQ4ATFgLyvpt3nRA1B9MEdGuXUbV7y7cx13WrIUYfm/wElTC/OMvpWdQDADeK21+cIazsIlCxwdvFJjFCOBVX401ovBd9vlq3oaRdpn+wAh5GGSIiJLBQSLDEDpOL2ku+phLHohIJZVoKuSxMRBRg+5DZgrUFT4e2stTWoa2VqH67RWwXx25YujdUZvYzUMHBjedfs1nk2SF7gv01hcxkIceCQC27vbbRf9m+JPeIh6H0KyVCp32bIbDK4yQxRBEx0ou06Ggq331fiHW4JlBKthvOF0WBap5nuh0yG06q1EYC3gbHYmIYnXpYDaFRCBBlCzb8pWjAM0Xmrfp1hQeIDF6aE/etKLaPcCS3qLbnB1CY+tdCZUtmXC2FgzBh4JdblrY84itS7uCgLenGo2gnRo2twLAQ8eannHWQtLPuWLJxeXwMdNTjhZoPJAiIlIvVVbmVbQEwuFNRQ4cHfHCqjsd0yNlb4MA5v8ounI4XyYiivZ6qL9KRDTpnzLH5WqButcaoa5ch2gDyr/ZIQFDX6z1UH8GAE89FXLJtmH4Mz10X7ZDTLJ/EL12xTUS0PGQBwYAgPjfY25ZCmpf00OsdGDoni8zKXOVDe1A+MliCeh6AF46BGBenzQ74v4309L9H5sd4pXPWwBiPygGjQQ9eAIREbVUZkXY+AIpvot6SCU17RAqzS43Om4JJ714AgBc3NvKkaug7AQAbaOOYbPuEAwXzkb0HBJOrBN6MQGk6TX2cAlPgXKNgj4NKB0485NpXU6agqAWGMAYAeg/+ixXgfKTlkf/+1U/GgCwbPkEAEx2AZMBb46gRDtz4ux8gagw3S/qY3pP8BARteEIUU85EY6t8UbhYFlunD2FaM5saLx0m0LUA22DUBoV3qkEAZje/TI4m3Lx2XRG/S/SnyifRgURtQOQxrl8ygIGws7NUXBONUvG0hmN/L6uquiAkS6Nlpj58ZIYereZu1CJ3fj09B83dOgSpMQyCz9OaJNmvkKhpF1sRd/vts+DAZBmFou9HABweK4B3Jq70n5xGem/WD4NANKM+1rDCgJmYm0At+Z8X+eJP1J1y0USp0BgwG8rb00fgXBQsNcCAU/3FjFAnrlSiAKLV2Ip/pk+AuHA4pTtOpERQwRwOxLJRbwSSMInuPa0y50WIS3m3ImIM4k1AEcBAD0iDFL2Ds8MQ0pX5nGWLMQeTKnfnGzQn4R6kfzeplVE8s1AUZT8AvSB+ZP/+CD/vnvmLgBYeo8AB3LzNsmXgoyC/BkYAMRfbNWDFT0A/uQTMAT72qXNScHzcHZtArD/0SgAmigEKoi6t87yMwDOfdeFQsk4AGBOUTSDaEZRMn8MmDt795yiAPEN31EAVK1+dg4OtsvC2I0uFIrPAAAWQYYMGYosK4Aim/9w/mxkkQz8+b3HZFmBgpbD/YrMzWH4ehcKJWNp11JkGFqwYtnyCUCe27E1CgAyig5sneclAIwvd6FQPKw1UKNWspzbWy2qagcmr1j7ByOiemUTP4VRNy2E5X9luaONGlp8jH1/sD0TsbfzFC+Dv13nsnMgYU2fIgOArMgAZEWRAVkx/ylA99wcRfVnBQqW7K+b5XSGE24zdAl3/MWiec0OsvlPzkQXyFqkvGn1TvfhhQDgpNs6RcJafZ6vOIgko5fMWKyVwxQMwHxfuSuFEnkU9g3BIiu79wocqHPsoIw580DIbf9EArZ0kn1DcEb1asdWYcyZO2uccgEAiAbDJLwDrxJRMtjnvpRRApNuoiUgevVJJ4rZ65B0Hd1MAQB4vzTsNqRJBNR1OAxULGcdkoZhCqeRu6PeleW32vRLBv9qsWCuIcYC7uemEoBA/UvkaacncKB+Np/6NHkt2zgm6EREU/oGsPipUG2jXky11ULCzyFYAoBQlbZlI34g0tp5ymk+v7fezyGYiIjGve6Dq93FpusjVi2o2mGAq3K1w4BI3dPCCtCq59BBMexoLAKMQ1wXLVAqeJqDrx2Swb50seyDIbOG3LQAX+vj8/B0OhY4UJfVKow6z25/2X1nFJnT2vuvbhF/PQCgenXWWYNB6PmbKvkkGOo4t8zrUWlmrMg6KuW8lSQBmuqWvV1rd+DJAetYYZhhoOHDAF/5zJWNW1s2THvjYGkVuhnObXq1lHPtaTq5f6jqAYGpuRm5M6jZnz9cDU73zlAgtED05qxeMHfYfiS4W08ToQAUvBFv80CB5c6gmgdfT6e5w+Kcpus0Yr2U1iqMFtEdGHfKbNci0ih9s8bQg1gvZTYF7a3rijhlzkLWvaaKUy9t9+ST1bcZppj91esDQucL2be7Sgcm7kyfYYlMY17s7AMATN8+0y92FzvnsqH/g5tWerkxuPRA/WUAA7fcdURwMzV3ICXW0dRxN2C5js+DBwNXsZu377tPeKyz89GB4PNC7UFfV1xTvyZ8RrAg5bn7qqYvngq1zeZF9wrel81PgczXb60k8lNK1IbvaPTAIPfuq47qsat/uHsaMN2VIzhcOrr4zM2R0c5OT4NtfnZTDf7YBSf6plvb2/yNCSLyYgeXC+mNvlrniYxKROo791+lXUinjQBwZCEpECUPrgg12X4VYMByLZ82vqXG2eCCUiCikVhxsObgqO3r2/SPEwyTfFOaok8hSMFtjg9iwDn9E41V5k80JqZyP9GIv9OOnwXb84jKA1cKBr4cGr3QC0ycJyAUwaLbQ9ebPlTRW8r+bcBgVIwBx1ci3FCJNg5Sm6gd8vYLHsAw+VUUjy6PC5ZbQArAR5XA+bMi05UFp3C0AnOVSznXUDpoIX2hBwBYuXC5/wEXQ5iUbRNY9gAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB is the chord of circle O, passing point A to draw the tangent AC of circle O. If angle BAC = 55.0, then angle AOB is equal to ()
110.0
599
[ "55^\\circ", "90^\\circ", "110^\\circ", "120^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAL4AAABwCAAAAACF/ZWFAAALbElEQVR4nL1ca2wc1RX+xnhLpSyNU5Z6005YHK/FJgvUyAEiYVhDtqoFQYqEqyDVadYiKG3ND1fNRq4SyakUiQBB4YcRkaI269aoUeUqUQnFLqGsH7QhTkVaresg2+tEdpulTotTm9bxLnP6Y/YxM3tn5s5j8/3YnbmPc7975syZM/cxAsEq/vCk5SoVQ5XlGjd6Gk7c1M8mkPx3S2Cd/trRM38U4/N62QIEAC1VgiAITojxwTp9IHwy9eWHdn3EzpTVnoykieJC5S8C2UMuEW7qN8iPEBG1xG1K54Yd7QPAbd9LvTwgvnYdYNr56MMA8NAF21rlhF36ELDt9Iezm16YAdQ2TgDw9jMAIeyQHAcLZ9Z5I3Hs/u8/rSd2P15xJJ0Dls1N0pwPPBo8saLJSceJiNIYsW/VfHCofQDAxTcGY52iMqUPuwG0IOlcuAms91irfiLKHLyzfVxxjjTRDCJ2dcoPu45T24uVRHjrW/njYVkxFbccsm08Ny5dvpYkYWYegFiP6maxoemj1y91PV9TvKq4BQ9dO55n/v1zyWvNG+of8uKeAICrV7A8PjM3Jj7xQOp327vrQQXiVPEeWKV/+WdnliNPREKMrIkPhpPrAqktXdtcYcYHK5a2cLxpw75JopLha2/jVJc/1PD1EyvMG7wC4KcvZbq87WfZWUq2v6hD6KsHM46ZcYE7aJj/4b3V079kPGABCMXAgTC0/6mpbbmhzbsuumIcZuDr5VK3r2eBo9xiLJAkokz3nc80NJ9yolc+8Gn/TMNnk4d8JnoAMBRak4oAqH1poia7vX/Dazccq9cERn3LG/RctPFPZmWIiBZjgQ/yKRJRMrR9fI+/c9q5ig3AYTzj/sNcogbXdy4pz3MHAxOLR8Xt52wR44MZfYkSvkEeQXmrV2HAN0DU3xzOR6QVgAl9KdcZTKkSykrIf4P+zqWyTGlc7Cai8XbfgQo5UmP60mLro4tk/gxiqZ6IiDJNbUsS0Vy3P3bBHkFjGNOfCO7NmcuQhvxqq1dgpT08TUS0ciLYPGCVnDkM6Q+u7VU/UZlYjAWG2TkSEdGRryTlo8HtgaOLpXRXYEQ/tZbnph3ydy7JfFisJKLTvoLznN7j67xikaAxDOgvBN8wr78YCyT1lSnnHA4XTWvhqLjDTUeqTz8X7TSvPliyegOLaN9ROpb6mzYnOG4oPujT79pm2ojC4eiRl4iIVh7pUaaNt/vcikh16SeCpiHaoL7DkVHs05x4WpUx92NfLKUtbQd69M/7LjPplLS8GLub7etZGPcp2UqyI/2NOskOdOjPicZORzJXvRoDAeXFlIiIzrYGehe1Yi1Ch370iHE13cesLg62EalfMiUXHCmb/qkm/dtWokKEw6krudhKaLAYSxd/aeGw2JYsK8sPJv0lcbwsrTyutwBJIjoXYsed/U1h+46USX/fXqMq2rieFzt1XhuksXZ/j01HyqI/7VtkpOZRsPqSHfAi48vkqxTrFQ7m9tl0pGX0JaJYj0a64pgZ13Oiq0s/b+l4MGojImVoP+P7TK+0dYejFmxwVYneid7Ta9UqGSMNR/bUsGcE6ff5gQSbqG07ZpT91HvvXmp48ao1mWUdWqi5xu6pflzPi2mfvnZlN7xw2N82VkozlVhO//UYu6RxXM+HHQnTIrn+pkZ+R1pOv5Fp3cZxPS9OR3hKjbX5D/MM6RGD/scBVjG+uN4UOR9fjDC37y4+R1pGv6unvBBHXM8JlnQmlnoDUfZwtgpl9MXJsjIWg0sjnN/EX/ZsNGDqSLX0J2u1JSzF9WbIeeXogO8ipmLr9+lYW15Aye/Lrn64RXkGwlBozYQDX6920ritOQlAu45AD+GTf63Z+p0PWVnF6TM1dh7XBpeuqV4iInrZMBpkIJdo3NKf0wuxtPT9f1O2Zimu58L5kPU6siNlstDQv3KX4sR6XM+B23nGTIvIF7zS5d+TUqXkoYl5pjeXjoc2rUm1WLRuc2yaIl7TR7Fg4NhU49PfegflU8Xq3vbuKRzZj+uN0dZvV+BAtOG41pFqtV+Ybx4KrUlFKN9/NyfHQ1N2BT773unzdfE51eotDf3LIQKAGx17T/V6K7IqITRhv274ZKrmkec+VNCqUkf2mW8IKE0QVmIhoLjgpHbtgbnWvVveKiUoDEkiCk676+vLcaHJoQCJks+KckQqURWAbDYLABCAZW9J9dy6t3SN7vjcSmkGBEQGxq4V1gASEa0SjaSJiMj7d2tx/blQ45h5KSXmRHLkyvJVl3oD0Zv55UhZD4R0HYBDP/Vuin4pr1PjG1fOfuM6xOctKe/msW47OmdQmu0DquXD/U+KWU8WAr67HgQU/KlQtAz5KP9LAqjK9m1tf/WfWqF1AEAS0WpiBKtEtErefxOtEsknhb/iiXy+urpKq6tyhk3jcQD1OFc1BOAqxAiArAfe/3r1uu4pHmQ9xbNtk1Y1uKzbAB+E4g+Qf2yd2I2HPVkA8H7u8XjY9XRhzRaW1wDoE4QW7LfYjgotgiAIo6gCsn2vCBvzqd5lIMuuoEkmAKOCIOy3+Gz+3ItZYYLopBC291QkAIRkZIRGHp+tBq6CaCwt24T/WhYewJOF4i/rgUeRnEXWg2w1sgdeJUCwuE55/mvYGH8FqItvtBWUkABAIGH4MYhAFWb37IaQzmeGpmXb8Sj/PAAU5x6PBx4PPAcuEIDRV601P7W5T+5wWDQryoTcZWE0DnTE6xAH0vQ4EL9JElHvC9wuYARp+c+a52jrR0LlPOwhASBNhLyg1VXZEUa4BUTiRERSn0X6jb/FqLUa7NbTlECaqvKXw+OpBoAgfzg7/AwACD+PW7v4k3e7sbVoFnXYjRFFvC8AQKD6MrcAkQCMjvzAEpOP6r6JNABcGQVAdjsx0gHMop45UMIHeYU4rOyukYiO7KUERoiGI46sP5ImAsoHSt7cWWjIDPsiRGlL7ImIWk8RjQCW66kwAgCIEGOQ0M8tJALIzscCct6MSjdOBwG0k0MhXuMnJImojvInnPizWKsKHK0/uNRNlc1ttZ3iEyMo/zhZEH61k6+kQbvEPMu/CtBfdlxx2oI+vvBfDMD0TcgCtNoXGtcNuyW7HG+HA4DyYjkdyijSL4qM9TkUaYC+Dk2C08tQ9uZG/wp+UutQqB5mts46fFnRouzWFXwdr7vbRAmvdrrMnvXePP/g9FqXW5Hx6b1X3RbMWBQgbjecu7ePIx2uq4U1ajGzdarG7XYAZO5PuX5TMQdd4kvH3W4HwM4HDrgvlBVJLPkvOoxFGDhXX4FNCMZL8dybVpFWQlybMCyCtXOIsHPdUQBuTqsIh+/7tmvCFGD3ymwZqmWol6G6BgZ9iUii877ytQ32IakXAbsHtvYlokS9W+qSypdgu4Zyx1mIZrsmBm9zyUBvtrT2uCRKA/3B9i9a7+11qZFdS2dcklQG1rWWsRDsdcdz5jd/VGIHr/4YmcS59Ua3euGgtPXGfZhtfHKusiNrKzjNajxCmQp2Onz8rsTCldwzarxfN3xxJnoDsP/4vd68fL7eZl0emGw3Xns2vMXBIoTxB6O/dvsFSw3T65Pw276BB/wV2KaogovbjbX44mCgMpGCAmZ71QnYMv7BgzofojLCcPjSeOW/L8TVydP+vaYRkNo5ZdoD79pTqCXwfSlgx9S6TYeuG08mCIrsT39yX/0nrc70ygXOz0x4X/r40+D+fxqWKX6Hbf7F0P9Sh263P3fCD+6vZIhvfpJr2DWkSSVQYaK4gDPP3XfH1LFaKPpTQVgwNGnheJPYbfQaI038aH3zicVb9YEV658XMvrATTKZ9D3bUXzIVv7rPLyLa0hQkJl//1zyH4+xPi8UjdZqalW6D9zaV/Aggf5zaTKTBGbmAWzYCM+jYkOTV1PsVuD/H6ynlv2IxqMAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the line segment AB crosses the center O, intersects circle O at points A and C, angle B = 30.0, and the straight line BD and circle O tangent to point D, then the degree of angle ADB is ()
120.0
600
[ "150^\\circ", "135^\\circ", "120^\\circ", "100^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAABhCAAAAADt6CxVAAATuUlEQVR4nL1be3xUxfX/ztx79+5udjdZ8iAkQERAwPAMiA/QUBQrvgpWUVGpVBDtp0WQ6k+LRa0t2ocgvkorIgi0FH6Ajx+oPORVKyVCqBQtzxAIeUCS3Wz2dffeO9M/7r6z2d208DufTzZ7Z+ac850zM+eeOTNLOLpEX5VbOOkay39CUR20i4xXAZcYHgcHyDhCCCFdxvdkpeWSgIojAgJg1zgP53MISJfGd0X56C7Oh/+YbtgDYFxFl+znxeDKSwQngThQdRU4UFHVJXwLHkbFpcIUTwRYMwUEGCZ0Bd/KxcT6/7B2AQBLrgbA/1EhZs8S4Bz7/2l8v9Q+xjcXAIKLD2SPLzBxF3A4/HCpzfjnIQAwsbICPEuaA7j59cCc1NUsowBmfKRvGKmFl3M/Kjnvmn+J0CUY3niR+64FAFSN4qQL+DqAiivICnDaRkYlJ8mtsh1fzjl/McuepCOS8C8NXmOouzK+XruvYkl3RzulnOkQiQ7KuMCoEDQF1P5Dj9mzsOOQa1xK8iuScwCU0ebSUHthTqsvtBWTpHVGXdbrlxOM32Y9NPCX1wKUU84JkQCRg1BLUMxt816oG5TZLA9NfDinNQEfAedhG5laC/Xa7g2vbX1xQdRsXbBfW2EIaBv1qtNqEqAzgXAOEA7C3YWSq20zFmUUMalwluDN05K08nC3ZNZYHJhz6Fdz8NHKDeG6Lrw/bvsbgNyDz+k6o5IkUYkD4ABTzUyVzRPWZ5TwmH1eD9rdKssmOUxmWZZls9l4yNFcj4++0zcH2rvRmZ69f65uGAUA9t0j3wNlugZdJwBAuFn0MmvZ53Wd8xrTcnHr/NY2uZ0aOlnUNCTc4K/vfvuzvQCALwd3CR8nAGb/3nhwnsrZKvkdckCVIuI15rhgGWBlnQ4GAYBlu39s8ZXinJ2BMkCA/YLilL26GYwGiW3PksNr7zXU/eB/opxZjS8BcOH0zZHHuocv5Ad8VAB4uJJC1KXLP08rZNeGR/sT3XVBt1AwEHCcKezjrbc4FT2gOA/fsHAxvzesbsO8ruEDgPuXROe0c/dPau26mmNg4wAjhIZMo9ak5jT4/jF13hUhn83MuaqHO92ttTGnB3GH1Ly9Y37+zskbIwxPz44xZ16/xtxpHH0mrqzupqXFAbuPRmRotjZZ3v78hc7dX92oLflujylfCCiQCAc4QcgheD1irm3TS8VrhsSp69Ya48s8/wyV01fFsHLSc+/YNy/zSOH+6VRUBcYGNHfu/uoG7eG+HCYFQyaHH9wwi9Prkvv4V/2x7LMR8eqWPBCvPRv/x0ljmZJYVF+55DI9/F0zMUYBdlN1z04EnB2/gvU65xDEgM9hbpfCHQ0Fe0hLF1f89ppY1wFAPlcQ48xyfczYlFRUsvNHfgIQcIALQogIQWlwqgXCAbiuXyrbg/nuoEbt1GdIBIi525qKHQf3XhNdZgCA3RPj4GU5/9p6+DuUuy/fHWYO5qkeB23JfdXZyRtk4Ct9/aXnJDMUblK5LWTYir69qXjZiA6Ne+8ti3vKbD8C4KEPO5bntd7WrDg1TTObgnqOpjr4DX9K3dkBz5a1F7i1IvhlW0DOdXuYDASWl3t3HOgI77gvHl52/rnmwIRUxftufetfV9ZJSrgTvF9TyvjljseusnAdJKBbFSWnvbXIftarrv3Drak7M397wmNW82/mCymLS3beZzlZiBA1ZhkttJ5IAW/8kPEWRVOoRWGSJJqL8xrOWDbcHQhtNqp59AMAoK4fkYA7G3zHa2d2LOQAnF/ODAVyWVgK18Zs79hu0uhHhFavpFGLSptU5ZsGi2PZ0DPNK6UwKoKEqHHeokQnlQ2+769LUUgAoOe6BfVBB4n0f8TuDr2YdPmDHkpsDqoA6Nc9v9z7XIXA/xexqArRtcsBvDE3UUAW+DYVdZzFERr8xs/rJR7WJVRsTa6fz36qh2AWmc4htwSObVs8XeRL40HFEQFeeSq5LKN/UYZ/WpamunruQns4VmIYniTt9Y3v+UShzcpUyFC6H1lUNeOVtMrsniTY6exnKDvVvQxpOjFiyXSAGn5a7lGdwPvOx4u0APcJEnSbJdh676Qxzenhrbsx2aqZ7Ve+YWC6ak5qbt6oaU6Pls8b3u//dFzVB6/9zukqrCsMCKYLtmMvVy9/UMqgi/isSSWd2i+C+4tuaeGBoM+6+/2iq7ikldH+8Qtk7/PPSS75eImbudziD6f8ik3PBO+D7yfDy7z/zT+WeV/890HVRw6e2ne4arMQK9wzbL9739FTX5+sOrV9CP6czf56yMEO2Y9M6/ej0f0ztAAwet0PffxMARV66VHDK9NeZQ0t1rqQ/eDYO1/k92WWgmPiiA6LOtP8y6txZiEZ259eJkhEN127LZLAJH8dcI51b/FfeFTcOCobEcCdD9/VoSyD/f5vlBNIt3wBABw3vTODuThVJ4QDCe3KlVKNw3ak+v6H15/JEp5rT0d4mebfoBOd1TAezYYxzjmvGrHnyJEjSyo455wFe6xqaq36bPl1ZVXZzDuD5s5PkXtLj2/djdmLPzDm68NHNxoLZMjqb7btf3lQ/p5UDTvLAKaEkg4f493Pp4XE4tWxVRXHtzWAc84Hrv5y/297jfJ2ioilKF41I1XyMq39dnbBfJzzdcNaD5Zv5fw7Cw78ylZ5JHtG1jmStPFph11H4sxNdgb3SN9ZPWDnhCk3ekfe83WfrNZETMb6W1LKTIevKndImtoUAcgkffZ399y2a/2MU31SpwKPtxCzBIVeOOqSWVswh7bXN3pCctEhGbX3pJSZzv/l1eamw5dM/G848Nf1AB4pym9xqu+154qMUKootVEtxfnMr8MctPeyhASHJRCy5hfIYKKzsefsZ5NDq0z41ryxLzOo9tO1LU3u2pNnGgAMwrdWP6blV/XMrcWU3PM6Z0QUcB1AqA7oElQvM1t0JpuIrguKqnFBkoCgVWsbmxpIGny9q/NTFbPael/j2dN1Te0nAKCgR65NvvwKp7PATr/9cG35V7Mfa+iptBe4bG12XQOoZPKFOa1BRbTSgF+yqxdQKHmCDhu8imAS2i054xdM7yK+LxbsiH6v8WqHDpuOBM4eA1Bis+U7nd3y7YOobJYJEFJyNJfN1rJkR/Psyeu3DF+oyS6rxWX3Q6BMp5IWlkLBdAZRgCLZ4VMt8AW52UR1T6F2eJqSEkQafKULWXvj2VNnmlTAZsktLZZ75BYXdzNx3RxmsrgFqHlSPRvgdpWeWPP+1BMTJ0r7X64M/DTHGzA5fdwEMJ0SIw0czg4yGlFp/GcUTFCfGtPJ2QDhgA4IiaUcZNNdxQOszu4lhd0s1jxTu2aSWEAURCqAK4SDE6CpjHhFwcscoQtX/ujDJQ+u+fhNt8RH8l9+uaBIVk7kC9TIEzBGwhgBRjkBSTw2EFR9ZGdmEgEIehI8EOCu7y2kYCAc8LIQREkM5am6oguEi5wTAqCvS8vnTab+p227JvyIke0fv92QL58uO/7c+vnPOkL9vISpgkCNQxdwolMAAifhI/zY0Cnm39ze2Sh25v/W4ycsBA5QTmTKQImqBgUqyYyziG9zBZyKy2E5sOPXPwiYcWLq6pbS9rZ+ti/73x16+XmHy6YSwihYOMtPkkKlmAnVwIpOZ1mESdd16LoO6DoA6FMevaLNZDKZTJIkSaASZQxm2WySBDAOalxiKNFaetjemXiCrzAjcNOmUaZWR+6Jmw+BPPDkz71BmROBMl3XDOXhzyiS2P7X8da0TkM4wgHoQvRPp0QXoD+27HhjnsIFUEIRAmASAcaZBl3gonHqAc+V/pqtLw8+BADoP2f8qWHulr6N3/xQA7Bl1md+QRSgMlCaqM74i563AVpF504u3ui6AIDpALBstlUkeQ6bRSJcd9gssu5vbwcgiJYcByEEHCC5J56tPOoy4I15fILWh7ZJFH11cODWv49t9GugFFSImI+BhY9MosYzEvuVnUfA0fkXWSQCADxSdHtTn3qFCQARqIdQKnCz6CMChx6CQDgomPDJrydoxNBz3/A7vQK+HdXwr74By/kiACX1PdfKVNAgyMEwEopESxLOCCGa8DbvPDFMAT2pSAdWPpGfc9oumURJpIBJpJwLukIVTdI1SQK0gCBvq9y+b63hQfCK8FRTrlvsViPbfd7vGukac/MdjT5CdbRCsRJoTVbEv/91QAgKtkCz9Xff6wycgc8Y17ABBV0XcPPVN0AXGAhnOgEYAeEcCJWaWy350EL+3Ms+unLLP7caWzuOv//pmbrSU71BuUYh9d8Zlh2Y8e25lhJRkHW/T3N0UxC/k6GAp4BfsBQp769Kj09I8H6CAGybOtgUtPkAQgSEJzQBepwMlrrPiKKjYEnxp0d3loQ5SM34zU05ok3VJK6YIFV8GoHR+LO6btWtTsEkmzg1d0gRS4pmUkxvVdjT4It5oZiTfujUkoKgu2ejmUWGw3g3tfRrc/WSzmLLKzduNMdEKNe9Yu7jYWaPJAWozBJeBn1mT/IEZTWPeiCpYkJISLjksdjOh24IyuntZ6CLm4Wrn5HOMdnr4NGVRsEY0K3RWtpy/qu7v6jZEoXHgaGzTL0UN+VEY5JOWSg3tzY6kDXbN7p7gbt1UdXlxFXAoUrUV7i8Xzp4UXxCbJRvqhyg20y2cxKhBIjcUCCA3eRyf3r98h3bS2L8BP2njy1sb85jtd25IgoaZez6DbGFsPmDD485S1SPVWJqsm5BCKj+FVvSwUuxP1d3/ExxUIGbvTo4ATMWPyWAK7B75ic7DlwRtpuBe+IjD+otVmfQNbTOpAlMkSRtXPxB3N6cNw6aHIzKhp9gcVUi4znLbenzJx3xDXq2j8rPwtcnAIATGlt0O3+y6oW9o43vJGyiN+xjatTB9V5H4RlZVMFVkWpDDsbL+8XIP9ZSVWOiNaKPgjMCgjZznva6sQXr1D93iP9ODt2SRwlnoMSTa4LeruYpohzU5R1LCl7qcMywY9an1B2XNmMUgFCeKHTtq+9am/oc7KtTkQZD1KyFoxfit+x8IkPuJGq/SLvJs3ojfC2wVG9vbe1xhVcKuMSq8X/4y74O8AL3f8IOFOtRCZwCBKysOqHVffff3yTWDwxw1duq262ByJGC6tCeWJ0BX/T9Fs7znzi8xQMuMAKgBcRJagP5vOTzRaYNY2JMUT8x/FXuHV1vjp4UGOfB/OoPRiQ0fnLovNd1ku+RKAPRVRGMglFmw2bEn1Wmouj4hnUOeOSOdpkS6KDEX+JvyrGF6MFnLMsqU+xnee9Fw+pLbI1JaVEmfL70m6Sm/7pl2cAas9nEFZ1IYYfABGXsa49mi8+gDx6oO1AaogQ6Bcmpy7e4u+1/KrRyQsrt9q2DH7WddZ4vDBKeIEeon5A0apw099nQE0GY9KAprz0iav1LGbPfSfHz5LUnexpBECO0oYdHOTY3tOl6cBJ1aGGcnODpwhmhujzBVwROODeieKOykCRdlSAoqO/71rUIcolRhUTCwJcWZIKXhO/5665q1zhhAggI711zZNWp309KtF30/tRfvlzOW4rPF5V6pEhFeA6r0qgPJycrsp8vWlTWHSGZeY0XBsfHeDHjfajE8SVf5IRMkkoJ0Qghh9acmj/NkJX4ZiIAtv14Q3OR41xRXVmLCHAakcMoVNNrjlQnwcOn3UbdNtErGvs3feTUdJGLQQnjsGhsd4QcqiVoFrzWhnmzHjg6DQBPTtsQAN/Me4vm6y6rN88j8fhuCoAzULExla7qj1aq8AVFNScY1EhoL88ML04wJyB75EK1WdILTxdI0w68/XisJoE4AUreL1EojbAnjgKDN0U2hRPgxqsfbssLCW25YnvZyQd77MqML+afCZ6+Y7DiEvKEAldgXvks/jgil82T+wRc9huzhdLodownVPocVqG5gyYCYEf1u3Zvq1Z0htmO7D/2ZmZ4MXwEdW8t/OdA6ShKmn967518Zrg0ZQLkpinX2OstYFH+WHTGAXNAq9yczGKI+eTQ21r/8+gd8OZ/aBqc3CYdPuDW53XHPzyjjky+dqpvdkxmihX2TK+ZDaESL2KxQ3wIzm1NBeUdToLDYj5r/cPh678VpPZT25ZnAS8O31c1t5/NH44ZU+bziFPvZPH/ftcCxVTsMifeC4khCdhwdcoFAgCrr3hhT/kZYl2Q8dWWiI9PXoh+X08d+xC/LQPLJ++/2YBe7TpAWcrISHG2XNnWKfvTs37h661VV7+dDbwYvv3+B06/cPtkfk+mO5q1s3/Hy/0nLcwIVzoSsbnlUKGrUwHT5t3ilpbi8U4bpMT34KyZk69lWTANfjXXctbq9OUwEJAUBAh5fOQbnUu4c/ukLUeezwpedHm+/kThk89kw3BZbd9AlDXV64lwiapomLE0jZDDQwkDsro2HT4HmQ1c/Fv1aeR9kOXRTSSRhKwvrXOS9e32jrfB42qy0/ef3b9HRukX64Y+BR9HCCFfRONo452WEXYG/dFBSa7gAF9MyDg8mVkHAAqya1wVrxobDHMT4wdUF2sqdjywQoCe5XwLGZadDmMO+tGe/XHjf0WMGz8hmVuVzY9GOAWq5oDfMteWlbn/eyIrsBgAhpVnN0icryCA/1KbLUZYkelHNPFEgfe8fIU1cInNFqUAyglI+DQr85BRBGDFD7Auq9YXjWSk2DekIop104EAynHxXx8pyYIjABD4CiQri/CxAc4zX3O6eLQCf+N8X2WWrQ2Q2ba+CMR4FYC52Tb/Nz4V+7W+Czd1AAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in the parallelogram ABCD, AC and BD are diagonals, BC = 6.0, and the height on BC is 4.0, then the area of ​​the shaded part in the figure is ()
12.0
601
[ "3", "6", "12", "24" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJgAAABYCAAAAAAsQWFJAAAH0ElEQVR4nLVbYWwcxRl9YzZK5URKEBG1qktcjCtS0jqQoDYVBEfCBRtSkkqRWrut7FhEqRSQjFX408gurdRGFU2AuhUQVb1QFPqjKlV7PlTA4s4EWlEQKAq1pagB5EOyCJQzzqUOO9nXH7t3t7u3Ozuzxz357uZ2Z+Z7O2++mW/mxoIwAsXs1ZvNiqRDm2F+Ie8zfBRDDAkhxMaLxsTw887OVvCp4eTgHDl6XUWfmNtQJ7a+3ypKrgVpbwYe2jmhT0wAQOnC9qvbW8TLtfDqJgD40r8Npfz1IV7/2TPyY6YPALoM+9iJX4pNLaFTg8z1AsC5642IlS6QxWuq3a0lWNzVDqD00z7LoFDpwHPAO/A6Q2sw0wUAD/YPgNqYAOY4CIwnZXT06wzD7pkjF9BPis9eFqZv0NleAEB+gMKUGEVzprVhPCW5b62dlgBjYh6hVvSAEFpvQR+BHmIyXAB45YWkHiZ4sd2869ZBgWuGYSYlsfTdStIoxktPnPf3QcJk3CPE0kPdgKmU+9dM+WuJNBjME5st3sb6Y24xA+Q6P1ENng5JvphZTj++ksx1r5AOaUKsnCkk5lnOvJieFMly5pSbMJGyQaQQKCjurfy+8bKBmlUhTaTMdTaI5IS/FDLlphos173ipfSJ+YWcAOai8qx0/zniahaY0rVxqprUHy7G9vRWk6XXWDgelefw9m8D4XitdJr2k/N6NvbdXEsnPoUn17QnpENyIVMpNrSBQ/6z43xEBQuZCifyOg1WF1JXSifkkdlqUBboZCtbnokpb2+raBjxCanfx4YP+Wpg8YnGPubw8N640kMavMjhMd8XTWI5n5DkwjiL/Q153tywGFN6MNJTanDcl19IPWKukD7VCv1c6A9kIHn5hmxM+afUvDwEhCR1oguBsT23+mfi3hmBuUAGAL/oGI4sTfG/pF0YipBHankl6x7ph8NA13fObFjQqSoWQSG1pHTKmZeqVPyfgTxyx+Nx5QfHExZODhuE1JsrR9vVcyQAHv1bIbkiBfavPxYKkJJbLGKObMDZde8mV6SyERJSR8ryxuRgh7c8ko6QC+fjsJA6UiYFOwDw2z/8oxkdfcFOHepHIXOdy46q7zoO+e5VWiNVvA0vavUjSUqdqJV9R1LTIsklT8gAtSQpb1x1Z6IQb712oKk9g7+ujugICfHY9Dt9idthn7xwd1O8zr7XF2VC2chaQu6dTC0inYih1YWa2Mgh5W2S5NNbwkOQGUbGnKiZQUlMZ2j9oONf6Qi5XJzGodWFipiWkPseSEHKbyNSSDWxYbWQDkk+e90KE+ZoJUbGYm7EEnO0hDzfEfPAmsh1r8Q8VHyLlTcWkyseuT8lI89G5pW4WyBp23aUTQ2P1GlUFfa7QkY1GkgywCu0jgxf92PZjSBrtyP9XoE4j4wm5lrR8sgD95jQaDAS65GkN1dKCxKwJGBBwgIgD659FICs7YW6Ke/dkrCkheL35tdGTDG+OFS9yzNyZWOwE5yS7PrL+8t1LtukTYeTyJMcQt6u5rFtm7ZN+1JnLmVTMWIdGYafmE3Stm3b4UeZAj/1LkzkyWyOQ5Uw+bHvp+PlQSmkb7fHkt6nZQk8UF9HUgB4fiduL4aa+vU/RgoxKQYADInnVCoBjevIENoAGbokkS8cqXUOQUB+2g6cA+gLgS7dM7Uhor73d/Br8zjxAz5diTcqAEyfOqLihTYA0gIAS1oALCmvWDr4u89JaRGWlNLr8lIAWCXlZQsSEpA/+crdUfWtDODcJjzfi9tnY20SwNIPs6uTiFmBbQLLEmN7dlmWBQFYlgXAwrmLFrvgfbcsC9Zb2UdXRdV37azY0V5t4RgIAPfvu1kdgdZJyWpy+qUz4Uy7i9987GX/lcsjD38+usJbOYSDCoOejZfPIOGHCc8J6tNSaGjNAtO0exDcEpzcHfYip/ZRnLK3VZxsnpHzgKPhkWRgEvdqSZojHdUOikMym3cm8uo9xNhgJ5KYi1znhcRCctvxmDtOFphirYVjZs6odWQSsXKmEFemfvVIn7pS+pVtRDlqHRlGaF3JUY0Ngfmdr3vne1L8Bk2B/euPapQLPqZWgPUNzZ8TYqCeI6sISqkIdurt/sgtqTkp1pFhBKXU2dl5b+sb1xoL6Lex/qjWr15+llpC9j6curGoWEeG4SemFbUe3y7rZsyhKWRQypG1yUKWbixsaU5IVdTqR5WhpkfunqxmT4X4dWQYdSm11pHZG2Q6Rp6N+HVkGHUpNTySH2zN3ZRaRQCj644BmuNylaGWkHsPG0voL6DrkWRdyrJv7RqLP21uaitM2yPJupQ6Q+uHX/3L15vQkaPaHonaSZXct360JjHvs+13pKBT609LuTOr9Wd9b/m2OLkGgFAGuwul28x5uTUSANY9s9rglI/JgZAPo9ZrrUIbvHPXqgWqhw3NnDU7IcSA/LF+/jYAJ7+TZ/FOjZMR6bfzS+I0eXzVF8yIybO96EptUwf2XeO/AjITBlbaALy6qx0Pjrfy3wdO/vdnANBt8vgkswDmmjlWmwS75zfVpLaVNgB/n+NTX55v4dnWxdNfrCZNxrHSx5sxuGXG/d6iQ57mT90GzOwGFt/uSluDBjp6/gMAJY0hqQ5ycI52T0br9E1aZDFNzjaeulEA7kahW6Z1/b8IjVPtAfwfCj7nL8sa67IAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the parallelogram ABCD is divided into 4.0 parallelograms. It is known that the three areas are 8.0, 10.0, and 30.0, then the area of ​​the fourth parallelogram is ()
24.0
602
[ "28", "26", "24", "22" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKUAAABMCAAAAAApCyhMAAAHrUlEQVR4nMWaUWgcxxnHvw1pH5IS5eGSnuGUJeHSiAoUxWqJHy6kDw5ciENVKpLKFeQcnBR6ebgeegiNK6VJKA5JiVqECRwh11YthghM4OwIqhDJlonBBUFrciGI+pqT6VGV5OyT3dvcMf8+zO7d7N7M7oykc/5Ip93VzHy/nf9+szN7a4FMdO6uIaPyOxUs3+YtRpXbLxCR2XntTJa4CUPK39j3+Fq4ObLMKP80eqVfJOEyody8tv/u2/pGItNhy7KswRtGlL/P0nf7BiTVXw6XgWcfuGFA+Yc3rEEiujnpw4O0vhoi+vUjv7pVu9aVbdDZfxARWef/eu2OftG5unzvvc8QfXwPEdH9f9PoS951m89liS4TEdHVn/zrRHVvofz23Dj/1rlXkkT48CAR0X2MoKcZojImifIAMlksDqxpVjTX+pF92Y1MDgyt/dcBYCavSymoZDeAxTv7gsmwcCBZaKCUbAKo5gGgSmf0KJmwXU+sAMDiHet7jQjUXo5PLAOoJ9YAsOI8AEymYd6XmSz/WxxY3zs8AMCFqX3TFR4jBwCt4TLwOaVhSMmAkn3N3Xp3DzEZ2sWHhosO3+N+r/JUOg1Tyo7fAPauNxlQfTE21bnQud+ioimZb++ZrLBTiJd3Q9fRykT8WK27y/0WZdiXJbvBNzj7XAeTycur1anQKAwdWGiLMZLNYGEzStFvAMDvdtublVwsc9F3ir1+m1JmssEjc/ENADvoSwDA0qHE8a1gjB6/DSkDfgMAjtsV7AyyPp/8wcneGL1+m1AywW8RataumNHx+hs/ix291Ht2Mr/N+tLzmzFf4zvBXHzMnqtLY0j8NqIs2Q25sbN2TXpcpa037fSp7i4TtqR+m1C6fstAp4cMMC9lYi9sqGIMyucw+pS9+d1VzsOMzKKFVPLthjqG1G8Dyk5+S5UL6c0uee21+PhySDGF3/qUSr/dI7lhSTL4S1+cik2H5pk8vwF9yjC/eYHRL4OHRMh2cWy48L/wS0LltzZluN88xmhdiVB9KfZ05Nxe6bcuZT2xwglCu+Khur+AV2XlqfixakRl129FET3KSL8BAFMpSYc3C8NjxTbAotJf7bcmZcnedrcUofjh1kQPZiUXy1wUCylZQ/zWmwX3zNdUak+ktrtAwNJ44jWd8Z6F5TcQTumdt57fDEB7ItX0Kjbevj/VO+VRBQnzW8txjfzuRGwfSnPj+JRHW6F+61DWEx/pR0MznW4Cp9L2m8HZrVoswm/AinqAhmdvnxcfc0eUtpo/ah888Z3sOCzSr3bkzrc6DcjbjZC+31yXjnzD/syoBtjpcL9DHWeAZD0WrpOp5PwXqYl28HjoYBnld/R1mfl5FFhXW68Oji8BaKR+3A5iRd2/w8f8CErZekyhi5lYroJVIso3JL0ZEiPKb07pOI7ivyF++7HbC/uHCk1gJnEdrZF845Ep7WVltN9uX6ogI8dzl6R6LP70CsAwkwaA1cT1+oMZsUCYwsdzDUo9v9emYi9+DgZglcouJeqjmejggJbfXUrHcbjz3H3HcRjqiWX3WmDuVeF+wnG8M2sWhseKLbexw3kAQDFxHbj6oBamjt9CX7q/nR843G8HYIyJh/kJwQFQmY5PXeh0dGvkDABgMg8A9eFfaMTX8dtP6faWt1Wy/8u8q6H7KZzJ8njcN+WpUhlgbJU+ZQBQG4oiUK6/lZRwOl3KP/+TWHEANBWUjRPJ1AJ8l2xr5DSA1kje3Y/GVK2/JZROgNLty0zWPcC8w8zdd4BPsvHMek9jM2mgSvnOfu2B6fDoen5zSjcR3P5ys+d9u9HNFiGpAMd5P514Y0s2yE4SUfeBJkPNnlVGDlt/Syg9+aL2rr+9zfqcfXAxrElx2Kp4mLKxTC+//ZT+rukdz3mc8nOxoxthA2jgP5WQ3tT1u0sZuEsq5msnH03OSx/oifJzVuzXFeek7bdqtiGsvzsR2NbxxKGSXqsi1kZ8ThFDvf7Wo5Tcv9czsVxFQJC1z3o2AKAsx9T3W0HZs/5uLRwYKpjN2QVJMQ38DlJyqOB8rTbLv8PcqVg5XgiG0c9vACCJcx2/GcCnPNUd8nlaHyh6m1rr76Cod0gUn5833x0dLRpYo5KAyWOY+M0dZ77LXfC7Oh2burA7PK9pETN6/R0UAWySiOg0b491/V6eiM+affkQpvUB4YbV9VtvKCIAmDyDs9791x3PG4XkgT8L5Xb2DZ6ocx3M6PV3UASg9f1tPjeE5/flbEwy5dml1jxMU7855Wrem18DmSxY6Un3O8zdd6BP5wdO8RiR6++gCECxO98q2Vfm7Uff21u6jlYGlgLzNYM75GQZRSoDDPW7nogf3Zv3ByRi+GBgidUT541rElBNA62ReQD1fd+Sf4e5J2IAlgaWeH7/kSj91S91q95K9OEhotrf7yOitX9PfznX33ftnvzhtz8j2hzMgza/Oa9bywIdnhlqj33x6e2Edzb7Cch19affo/bYwd8S0csPP65bi7+1k+6bzzIVE9sAUNTOAAve81ftB7e7Vnvs+axZjVvIex35ZkDya54nARm8bmr2jvVuZYXuqnVzKbniI/8kItr8QL9K/3JErSKdAVYNMvZrocRZi4QHNdH6P91EMPxGv47BAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, the diagonal AC and BD of parallelogram ABCD intersect at point O, if AC + BD = 10.0, BC = 4.0, then the perimeter of triangle BOC is ()
9.0
603
[ "8", "9", "10", "14" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAL8AAABkCAAAAADyeL42AAANFklEQVR4nNVca2xcRxX+7oU/BVRLZKPcgIWJvYDBoLpRoUYEL1JdSMFujYiwAKuswaqLXMAVXhSJxCAIUqRGYIQlkhiRrTAQBHVRm4Ibp2gTIpoWIfdHWv/IrmsRUDdGogYjuu3uzMePua/dvY+5fiDxKXXvY+6Z7545c+bMnLlrEHGgEVvkIxcBIFOILbgdkKbvxAwt5sIAJAAg+FUJotBbIi/etg3kYqFISOdUgz8Aw/e3+Z4BoF3me9+7RWqaVEwApqPLeP4SgCGlexx0/9IIHm5HNqSFthkEPF3G8zftv0+VQDPgBUwAKyPGF1oR1kLbDANJ7UfCBO6kNIKLE2dK7G3fJnpaMCEh1EEMpGKPr/enw8oaK2jHCILNa0dAwFTUY/mbMEHw9EcfDy9zaQTIIqfpDLaOu03DMExD0dOAwRW0D4T3zjO9ADJd28QuHr8ZKApOKurUQo6lybB7F22pJUo9YVtBjSQ5QEEO5EjqNfnph4yOUN/Sa4tul8bOd4DXQUpceBdMoHMZWvZDlEAupmMLmj5pOzYS0DRx/mMgkDagwZ8wSg/eB6wkcy87NhIYAB7qgwFc6wR07D8Ho8gBIFcLLyOcA8l3Ps2d6AhuDUIUcyRZxCJJQ6eh3Yjvmd82B6M0AJp0w9SH//MlnZA1OWgAeM8QcBr3QZp34zFo+k+30P3FZmIGAINejPe+v3NnrMcwIL+9G8BYH7Bi4DEAuv5TYb7LmmKcdWzgCQqvubcInxxRPtayq8JF9TaL6mIi/t3za/0HrnvnMvBd3ja4GaIh8ORfHrYm2gqN97WHfAKP4pO7Hz/0/kddR2QE+pnT5W0cBgwJCeDfP+564M7VW96eaealj+55klzqHKvQadggU9poKSdScRwEi+O7732WrKULqmKfUSUIuebxSQDo/lOt+zmnTwd11Dd9sLAto5fTio9+/I59zz/8fnDurRmAJmCCbhPr60GpnyTnremogjNDiXUcAEFJsny89aBdb62j4N1zoM9/vtt79vqB/jWGOqLlPREjXSJcGU5NrDps8xlSVeqzH33+H/o16TwqOGU1uQI64tl5JTHTALwy29Wdr7hSK20FX59zXkGbf6Gj5n+Ol1oPv0aSFM2ufvybiQKIpsKC5LWv7spe8ZeYHiQpGls2lr8yQ8HMGdY1HNeH9hedyhoYLPRo8Y7A/MHW42suA5J8xVoKKqilf0EW0s02PWvNqYNGBW7CgwqfkLXjrXfNS6dmG98bDKpJ034ke/MBVb7QPbzRKFGS5MGzWmJdQd7/JZ8e3jVRbCpTCVa/Fn9JFjoarVyQZGUifaXeqhSJBB60/uFKvvvW2UqAnqcHyRqbwyrN/tubb3pUVfGk9Z1GQoJc3pMwfhMkKVcnUsNXAp4UoerXtH/H+v3RoH1yoy9TbryTxIN6Dz5y8C3Hw/rNdFhMqKf/TJ5salTn9IR1roGQ5PiUllxP0I3jbXf9uuG692qvWs8FuGlS0/6XWiPN4co7JioOD7vaGA/aIE48M5Iab+6zdu0kjw6FDSha+h+MDHfIjWzX1Xp6GzffCJkdULWQ9I5fyXd3zVai5K+nSmG3NPiLpb2vRNwlSZ61TrJOrcqDxs7DhFidsIYvkyJqxJ7Kht7S0f/gdNSUUXnt1Z7Bdf/VmU9HSRRO2PFI/1uPlQPHcB/Wd4XZlgZ/KZasyMa1UTvSetl3umyFx6CCqmXWTrT1+fqsDGuso+Hq19H/4HTAuNFEhyxYR3xe9t1/jJznCz6btcaLoX3Ehwjr14nflvbGqN8JqfnyYM+qezXag1by+ztnN/weq/7Ajyj1a/Af/EFcEQ8nLTfwWegJV+zqZGrYMzYZ4tptrKfCrT+OvySXtazfwdWuUTui22i54ZPit5JzA63HtOJT9cyRrBoSgxHFX5Bkdko/lBFkZazzGXVy8Bf0+oaLtem2Pu3gVJAst/wlqkgUf0mymFonRXQL11f4hHWCJDkz5PNAtoClbGpsRU+Uo/SJichSMfYv7p0KnCEGwJmWinKmb43ksvWad50UrKk+65DTQ/nmaFOL5C+U+rUgHTckKI9Zi3RiUMdwV3O7h0Om/FGIUX+c/rNTm1qJvdI2WeEDyoNKUnBhsHVqM6ty5ZaX6ueWjYjmr9S/ibnI+nD3shuDrk+3ZX7p3ErkDZT6ZcQzEfwFOTLlCNKCP2SYs2bULH4pmxpbblh10kW5pRzzXKT+9a0/6OH9e3/CWv72zpMbmxUh4qw/hv/4kc1WTJLijpvu3T10cZMiSPJFbwwMQxT/cstLCStUvO3ettCHN4QmvbWQjZ+FRvGf+Gqi2lSYoF6B69PpzFznk3XpmqTQMd8I/uWWG1E9PwhqGYRcGk2NLpPjU/yBNe/dSYgRjUUAkKxWq0G34jtPIxTJ2lxP+kcblGoWv9R5f5IA0IeSjvcASQbSL28uDXT9sDV0wT7eaLlBbox2Lm1GELNTIj50Cec/MZG4zSUXDu054lm8uOsXFLHpmhAUd+k4b4d/tVpVdlStkoLV6t9uLkufZakj+y+rVf87OxHa+kz6wJwaZC8AyLmZpL+odI0zEYjJztiBlIbz8fF3/qtSVskqOfk177p9hw559QJO2wrF6KrqsyTJHEgix2Wrpgp90yokbE3NsdPP39ZwVYgq199cauBfV84u7cZVtbkD6ZmXnbPJAZI8DycGFeTl1sPJkmKHjlFjbu+z/6pLV7DKqaxqiWj+Nq5/wzp0wTtdxDVKikWQ4278+o+h/UXHdCKbwp7p7KlQo/sSDnGP/6uS1fVUsRpmP/a/V5UAyQuHrKPXfcsQHMiRkjwF8snbvapOO+mamghd6nFeoaYWbeJtDqrH0mNaJclvfVG9U9XtGt65Y/9VSXJ9Jn1grlYX4wp7b0V/jrIuk7Tc/TmdUE6S1FszY9346zMIe80i1vxeGN31RXvl1sttFnGNJBdRIvmxsz45lQfTGnkBSUq1YqzR5T3+/kEgYsHUV8vPDqRn/ll3UbU4zpMkciT5wyG60xYhuLD3WIxcQUp6a2Za4xcbYojIJSOVTuX1o9anfhfcQrkBwWuKvljeU2ON3hixdkdGY1iPW7D3EBC/yQD1+1KEQpJ8asg6HL4uMwDAWbPsfLrh5gnrXJxan9NfMwuKPyuB6vdm0Rsn0z1zr4WQ8K9YCeGugwrPmTyTnoigJ0j26y9ZNvGXNRGaLFMLiqOp0SU94ZLkQo9Q0wLpXOG/sl3Pu/cDUEjrR6wB+q/sbaDn1/NPMx3fW49Yq3fmYM6ZDMzFq3RNWANmmnPloQjg//3Bply1feH6lDW4oCtZ2P8Cc/GrPYMvhw1QQVsVQtHMvyFVLN2w8eJQ6vBf/fSi8xMOZoYYUNRO1zQHCCJoq0I4mvlPD9ZVZuti42TnB/I1j1tj5qGOgfD5K+HsZmrM0LnpmgYUOgKnIyFo4m+rv96Kl8dSI0sJpNbBWVBvxD/vcdI1dW+WyYdnXptRx1+SYnrQ420LOZtpm97CQlZYJknIk9ZZpy5XVYWOWpKZQqP+K9YSpbJLJaY8Zd2zwK1syV7oCSMkrnaNblBIN50tyEzzTpEoePwV4/zBuqcLw6nJF13yclNvEbGbSbrpGqfWhbSoO49Dg/5r6UvqcSHJjdnO/Q/XIpevtRC5m+ncnhO+4ITd88nmmQ38z2RcrsWxVHbJOdnM8pOLHwbtZhJqSVrQTtcozHcnrMnjL6m2iCrv+Mvetuk1X7mtvMALVvjTkuQxy518Ontktaur17+9RfSl77Z+ojFItNNbmzKlwN1MPulX2iZVxDPfnbSCOv61dEGQl4dTD66GlU8MKSjHj0aXEeuf7V4mfVuUZRL/7/rKfIYbs5235je5YBmKL++KLTK3Z9bbopzAWkHBAQBYJGvpn4/tzYaMllvBnxGRSLA1Xdw/tJ7Y+u3vd+7+St+FO4sd+dE39txyk9oXv13fb6kveb7b++HQAjQMADT41HP7rgKcHcPAY7mHNOW/HgAefwz7YOCmz7jfwG7z52e3hH9mYDjf/Rh9t30WcrUjR5SMU9pfMJG8MGl/TJis6RLgV1E367qqmvbnzutKBslTMODNeLf7DSQpNZat1FucAgXJU1FbZuoAQfYXearuBbYYL/jQC8AAIpOQ9sRYkpI4pShoMzBNlIx2jOL3cL44Mbfp8zMCKPSWKIneqHIGABjSAIwSVA80tfufKfFUv4EXsQ+Aua2fgBsADLQjj0kdIs4j3pkOTBPn+oA0+pjsQT1cGsHKC9B1hmjHCgCULujXsAgYwMCWrDwcZwCcIbWnP6ewSC7261eQ6PvBhJBkpsj8RW2fJinOA8glcIKv9zWFeJ1+s+nAwIrswL5WwETZiitNAwbMOxOasSENuSM/eyBNAHnj88meogEaSb4eNg2AdrywrV/fm4D9wwpIEI4YAGUS971tgVoA/tALlHb4Z0V2kv//Ajv4kx//k19D+X/X/38Bu3kjFVi5StsAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in parallelogram ABCD, AC and BD intersect at point O, points E and F are on edges AD and BC respectively, and EF passes through point O. If AB = 3.0, BC = 5.0, EF = AB, then the perimeter of the quadrilateral CDEF is ()
11.0
604
[ "8", "9", "10", "11" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAALMAAABVCAAAAAAnYoqwAAAJgUlEQVR4nL1bb2wcRxV/G7n9UCQC6gatyyWnJka5BJReU6QcYOUiJVLdKEJGWHJtIjhBij+4lUwUkROEukgWMm0RLljEIh84I5G6UoorFTkXkVA7OMhSJC70Q88oB7V0hp5ipJyxsznwZn582D+3tze7M7sb8VN8uZl98+a3b2bevHm7p4D+f4BC9PxbREQ091x0NdtkuqKHdGMKEc0MlIGtg9kYamQ4K/TH5RhdmID1Z2yl6JcdRx+LoUqGMxkvxejBgmL93ThCq3+lV+OokuAM+tGuXXH6aMHKS8rOPfFUSHBWptP/jNdJE6DLH6DwZDwlEpxXNw9+Ks70cwCQsrqeoidjcu4Qi/zs1er+eJ1YUIjo2gnC4Zh6xHaefm2bezbHdHtXjpISpR2IaFBRFGWnLua8ugm2sLtZVpo6wuO68ua+aG5TIaKLA2Xgm3t10dxYfeEy0Yd8HeFx2L5VRGlvbKWIfnj7BwI7j+4slmkw9+J3iIjoLxE64iPSLd/YRUT0mQ8U+UHGnf17jj0apTM3lju6QpnZJrivn0YPHSei6RmpfdBqrX7i3i/+Fo5hG/797i0iUuQNDSIQPRhTaet3R0BEf08R5HEhi6vJXD1ECw8YkB1N1MFCt5zoAaqnAaBKcwGcmesTABraTWDjRa0Yuscmxr9kDE2Fa8IA3NVKQGESAAZ6ILazQ3q8lwHAvGPq8OZa0qpYyoRvmc8BWwfKQJWOQ4KzCYa6WgHAgI1h7VLIPi1sdM0ASJXCtqtur2GBiBSiOYThnM85haVU31rYfgHg5BAA/HgkbLvcOTDX0Eivwdr2WrPQyKsRTD3T1QCAqmaEa1fSWte9NOdTZ1omYQRTV9SS+aVnNkwzhmOT5v/2pxRnBlRUj49r5NVCmK5hdE9Y32Z6QzUsdhkWCQuydu4ba6sqpXtqHEk/5Hvsb/fVMENkpGddJWk7AyWtwdE2qk5Ld72YaBIdmggQ9KLQ7SowQJpzlr8RlNLPVZu6gnAnUbQEGbD0lFyvANDQlrzq5TjPd/ksdWNMnZTS0HfGXUqXpHeVsa+2VclxTs/wahkAlDPZFbGCqXQDLnNNSLvo2uO32+qkOL+dDro6LjZ1Ra24SgxrmmFNExGGOXcnw9nouupzhQFgKGey5faQyoVG2rscemebCvzAAFQsF9MiJ8P5QlYk8YY6HnR55Hkvm1lJF93L0yvBuaHdFMqsZDNl34vFRFvMbWhSLnoxwXGxMpzHpWwyqY6DP9YfaTcA77WRN2SUZrhbrZhzvWX9+GMl+0yJe6Hn+5zKUkpC5SX+2g/kzAC4Y1ABCuoox42/3s317ekloT6j6yp34IR2bolBRbLPPn3LW1dSq1zZiSGhup/28OuFnE+dEUm44Zjato95NOFgTeUtLzfqWol/QcS5oq6HOrzVTuw1B50BYAxDp/wke98S7Cm+k1LEmROD+sFicEnNNy0407XhJz3rM/I2Vn0npYBzSbsfLMDBnb7UEgAwoNo+vMy+OaOTP9Ft5PJ+V3w5m4p9YlABLqn5DQAwujnbmBNmjATunSXvwaiJIDszvOcXgwqwdjI5D2AscPiXA130Mf9zQfDc4MegMih2Dm8sasGjnwlw0cUAawVy9tmHpFD/RrKzGOwZzvu5aAbj6YBcRBBn/xhUBiz72FBzSvLI13mHTBOFTEBsG5TL/dWnj8bI2v56faUjdcUuteVuQbQ9+45P2//kX7dacHO+AHRd591ro1Mcg/qjopaB+WRu3c9aAIo+a5SNBYaSBABcypIxqA+MZ6YAYHM4KPVrJPmLtKZWXI68Db6cmWwM2t4SAPL2Dc8n+//lK5rnu+jh4cAObM66rptzRNcBBl3X8zngnjNrzPljfULXfcbGpn21mYFx5yO9hisnWxKeFiqPB4eSjp2tP+dfbUfNqXdVQ7duL4A0w1pi0VXm5iNNql+Y59T3CmIcN2fLkjqDDpwaQStnzn354oQrVmBBqd/znNht0d8FejhDb6FYUWtgUTgzAFPdDzy1S/v5+ci66or7zMyDzyHQhW1E9z1+8z4RUX7k49T67LBVzBcK4da5gtftH3r/0OemOdLbj77tbkqk0G8bJ0VPps1V57KlDgBLO+6aBWeq607Zns9+hm54oxRz6paeetZragYUsx5Bo0v4XMy1d7s5HJ6K8ljKxFA/v94YVS+0VDAARsKT7Zs45lzzQ5Ozm/J8lxGZcrH9aGKrKnHykWdfaRGrqyWhtWzO7v2bxYhBUe0MSgKMqz/31Kwk3SWWz4mNxY3rosegDMcCTx8oZ7IrraSy77maV7cHh9wA+JwjxaAWkfGsSHBcfa2lXHC76NzZVnVc8DhfOCzqlwsGoCQ4mgBAJZspu0htahtO8z/7HwJd4HCWyYP6YGPPrPXNz04MzM5H2sg195CAQ6ALHM4xYtCcfVpqp9xS4079svkj9tegQ6AL7ZzXo8agYDOfbVj8ONGadcXCpPqywy9pOUAjfaldkIN2zvJ5UC+q9sPhINhkaj1pW3o0b1YWMnJ7AsFzT2HyoK0wusMlcJx85ErCAICGthgo74AAhzQDgBfOwFUVBucECbg2OKbOFgEg+BDogntumA+K7obs2cbirtDvdLCCmY8s9KN5CHSo+IIA9BOZL6AgVB60FfVElPeU1vpSS8CGWhceAl0gABicwwKVAdez+HBzgwH9+dCtAFip39x5VHZIryMCsHXwHqom52h5UAZMpaNlI4G1vtTifAZfkR9gArAwwjAwAtjP4qUe6jpgAFDRojp1ALPa8K6LnaJHFU0QgAKRaeXIMWgjHe6dGQemceq5T2qmggJRz9b3EDzLOojoSjk1va+cInpnufyK3KnPgz9sfRitoYXkF38/SET/SJwGrT4yScEvwW4jWr2boq8duEZE/z0bvjsQ0UfLX45EtYnPH7xJZBw//ROixMu7RdLmO41V29dFQ9Sts4kNAIXEPQAolAXriYCBMrYOJDaj9jZARERh90AOtg4474EEc952XXlzn/LoE9WP2QMdFhf7y8BCKkLL1vGm2vu77V8LBb9p3HHYzTPSG+sPUsb0129HaGkD9m+EmPNroUB4Ej4RDP2nI/SbJx75VviGDiyS2oEVIqLVy0IisadhgWzvHhOsQHPAgnhlxOc8sIzBe7G1AADmiWhEvAlL/A4oGKt391L2ofy0iSgLovDzOTyunSD6Nn03rpowiM358lEiGkw+BCrSCPH7FB6uW78RLcf2zyHwPyjq6h1lhUqvAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, the perpendicular bisector of the diagonal AC of the parallelogram ABCD and the edges BC and DA intersect at E and F, respectively, and connect CF. If the perimeter of the parallelogram ABCD is equal to 18.0, then the perimeter of triangle CDF is equal to ()
9.0
605
[ "6cm", "8cm", "9cm", "10cm" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGUAAAByCAAAAABvxEAwAAAHyElEQVR4nNWaf2wb5RnHv5dmA0YhwBx2m0xTNWbNFE0yKgiLUsKkUCJR1CKVGqpIKyJdJLJpRpu0/hHJgDpgWqZGUyqysQkjWSOVKoVpldY/ipJMhgSYyD8ZQY0rZcvYTFMUN2aKHd683/1xP3xn353vbEfaHiW27/y+7+f9vs/zPvfe61OIOmxWiQUq3xKYQLD4s4B1glMA5ZWbO7ebouDNXSLgONehZenaQ1+7abspm7//AcK3bDflD7+49dsiYJ3AlKXPyczugJVaA5Wmkv1pGsgGhAAMZMNK+2ypHzgZrJpS19wPar79Uu7N1jZSFPPT+XcCU4KOGBUc+GI+KCXoiCl4f41vWwfQjwX2Pp/uDb34kVK7oL1WAJMkV9Qio5MyWCQHmvsKgLODNyD50nZqIVlUcyRjKUOaP1FBKWMnSHImIgKNWVBKZJ4k2ZMKVCsg5UKP9j7d+SVJvwMWlNI7qX8IJsY/RZJciBhHmXAxAMV/JCsARhLG0f57x7crknNqwfw8rxZ9uyXYrHyt/2bzczQ2bk3UzdNSDC9bjuZV/54JomVif4flKBo7679qAC3ROdthNrTWfC2cufF+22Wi89DoNmh5bKLiRDaU91nVPyUbFvYTkieSloPGKEb9oZGqxq6E8v7mjOsVmRVz4XrXJ21V3//wK2ea5xdJcmTI4YtcW85Pfd9ry63d0073X8/DnxhffSEnHnM87VOMK6XUDwB7r+qHsWnnYs8n/HjfXUvp+7PksI6Zi5JcriojmftmtiHKxvF1stSv3UPEU+SYmnPod/JEQ5TMSZIcPrhOcjm8IYa6V+gwO/KhbO05457HLvYCRAQAcPbZUu+nc2E4XFHahk77uM644Td6r5Lk8EmS6+0ze065Fcy3L9UU40q5/BxJeXnvWyTH+tQUXZs6HfdGeFFSL5Ms9R9cJxlqm/VooqjO10vZODBLXt57cJ3kIzeteLYxeqROSkZz9DmSHNjZPunZxkZNMZ4ZRlKSie/uWQiPeTYyeqRe7+sYJqPHx/nPaMKrWE3P1MqWv/rOolokC71HvdZFqZ6GKOORz5KnSFIMxPKkWzSLiEsy9UVJdywXVT3AkpGs++SrIcaTcj6c5etxo+20+qFrSRGZ9goAV4ok50Mfk93lpi+pk67t6GJcUB5aCpEJ8tKDljML4bNOvSFJEb3g3pIXZWCQ5KHz1g6uuEf0ZLQuykS0KLnYYV/qFR5xjejoZB2UbGhRkoMjFaeNiK42LzFulGJ0nJRranWTyYjLld5DDEgKYR8WSXIoTpKvOrkhrX7g2NSfu4XjeZ3C6m8vRgokRceVMrdsbhHtfnfuTClG5kgy/YQThPybQ46W5HREuEwYgyKE0EZOCJKjTwtBct+UOZbaqOqv/Md9CafRcRVjatH/BaVgfk+WFMzcZ+oUxh+1zuT7jv6nurGpiItnrCulrR0AtiRw5lAnAY7+yLrY2VH+sAM7L9zWd71qPfTw7jc8VkpCezEk5UL/IimWwyVSmloq9PJFI6ItrnC7O4fRfJkiBpOCpEicNrD2ETP+nHL0kTN0SpnQ/V1uT2TDBQoh8uqq6W2jkB4fgkJQiHfKEW007CLGMvcNzx3VwnR0wFG81apXHfLIqDfFgCzv0rodWbB20tlW7tGTg1nMWYwRY1vm7v0bx1sA4E+Rbjqtvm0W/svCkyWUixHRvld8rcb3LpKSsueipwrdpCVHa3qyobyj92215JyWwD/o8ncnL6tytGWrwY1CJkZJUvaP+0BollY/tPbIad/EpBjXbzVHSeZCRdYWo39fkaNPJKuqVmqZ7CNJDg+zqqi72SN65Rv/rqxYSYmnSGOf3RdGkpWrjsSPKwuVKZKkLIQKJPlaf+3mbWZbR1dvNVi0SJLTvSTJLvdVpIvZVh2Jygu5bcSkHDlFkhcfZHB7oRzRVWIqYiw+QZJ9k3VQrOvoU8+5UDRS1yLJRbdLXg0rR3Q+ZL8/sMdYYSdJDjjmVR9WjuiKfRO796d7SK46LPV8mpmj8yFb2rFc9xXgr/cA+M1TbU5p1Y+ZObpt6LR7To6nSRH2sxflbJJiILZGknnV2oqd0rVApo/WDSFJJiNLpL7VYESAndKWJ6OZxih6jrbdndspIKf3NQihvKS+TUrrvomNUtxJHk77z8VuthAes2812Cird1Xvs9dlK9EEeeaw2VsbZbmLiVcbRkhqOVp0mh62URb25dXrDVNISX45EMuneoyxt+1bfnF76vCt9c5IiylA6+uP3vvApzPGQsvah0uHOxabIEUPn7T66x79uBWbz6YBnDsGoLBemmiCFMOeupqZ6QEAtOKrv8Pjx959YlcMgBxsIgRtHF6DToHMfQ933qkAaL/hhWZSYD6e0QJ8tKd986UH7gfw9c+bDEHZ+ymg/T2S5Gq4Kb4vB4BhLdicmpW/PDYHAKHV5ip5U1EeXf0JgBb8fa1biXdMAQBuv9Y0goKlrnfJsQMhAC14L3YLVq5pP0fd0TwKis889Fvg7ic7AbRsTvWg+AweBgB867PyUzuNvp+79nMAuHuXye1b17wUr/x5tX7b2P9y+aDV9htfqHkjZjgBQOUTd2NNg9itxfL4VFMfi7srdAUAlv6oNb1dlsJbZEbzuE6pfORINuE9A/Mpw/+xpwf/Dyj/BYzvH4xcV0XzAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in triangle ABC, AB = AC, angle A = 40.0, draw an arc with C as the center and the length of CB as the radius, intersect AB at point D, connect CD, then angle ACD is equal to ()
30.0
606
[ "20^\\circ", "30^\\circ", "40^\\circ", "50^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABmCAAAAADZxiEvAAAI50lEQVR4nLVaf2wT5xl+zgRSFYOZaoQRtwU1RjFKtaUK1eiw6oRlW6Yhlo5I7I9szaSQTEulZsPSMilSmBZN0coGq5IuE52aSXTtgCmjjVZH5YepUg0trYymsBCRkIBBuDNrw5xKl2Du2R93du7su/PdkT1Kzvf9eO/53ve77/vue99PIOzh/pVrd+PA7B0CYiXW7hF31Hptyuog2GG8feG9+N3w5yuf8WJ7BcBb81icmE2Oi/UNDVtWn/HaH85mIvWRkEHR1UsX4/7m1kpnlLREeqhWjE5Z1ZjsCoRPLMhKQrZ+GknSkjHV5W0ZtRSXSfLMwU3daVts1oxyssMXvVuSjiSZ7NzYlXpUxky3vzddRGCqSKrb3yvZUtOMcSTQoeWTi26KOVsqYu4ZbzU8fbkUQzHiO/flW2kuZ8g4EehzQLSCbE/FZMlKRozD/hjpTL0cTvvPOGfMdgZLN9QUE2K3U8aFxvBC7t6Nlqna5oylnKdw4tpVEfflp0Bn0xcAYMv4Y7tvOJjlYr4BF3opyGvW74tbVNMzTvryQ8qNRXOCf/XP2GGUyXTQvYY69FVnTMtWVisKDxurBlz0nBG+tziiPrSoaOXNERDFb1eJEK+ljqgPLcaKusPBtKkpHCMpjtD4ZQBzBZf9liuvXeRIJp4wmUfyOia32Zr57eNMhbHJ8owN/atLSPY0WzK+WZtdLaacXaXQuxaMGXFCW3l1cC4kGeSqo+Pn39pl9jK7x1e/dFQdD8WjY8a/YNCaR0bKnyILLecBQPR1+oqb+OjY0tIPFFmOJFNPKCqubjeSTPmLH+wBgf5DPrC4Maug5IFjKNKSZNpn9+vWMWb8RYuIB8QbzzveINlFZfgvRXkka+L/hy5UMRIpzAGZqKATRjl/sYOsf76grgf4YyudvDQCnFRf0/J6YV1SdLJKxQC02zYFKV8OFRSAUwEHhIc3Z7hcZYtSRdZbMBA8uBSxbVBEP/r3eqx9ZSRjX2RNOK7P8ODCXtvSY78+BgGgo6kicrGQ8f3nbAu/2l4DALMO+ID6SwWMN7NGXgxDPJj+Gghg7Hkv7LqBgC/P3dely2aqbcvemQ5CAMbeTtgWAYCd13dpk55rOwAULprG2FZ1ncCDl9prHAxIIjity/DMhOwuG1y771UBN9dFhuyyAYCA0HU947WQ/fYe3SgI2xO/d7ioha5Ca8Oy1Da7kgJw1hmXAjENrQ09ixvcPMUJ1i/qkp5FNy5L+2MDgPcznYBncb0zsvM7n/5AWT/s8nsXiz87nCAEPJnQZpRcKhd8umSZMw0BCPyk6T+799SH16hpGzKajSs93s+cEb7y2NbRuakf3j9ctusnf76tPsVSIrNBbRUBQCjzOuzIC5F3AVE8gIfjF4fbNu15do8yhxnsv1XkCdQaQQu3hAFiom5XODnUGlwT6T1n7mggJ2p1SdQkKElGeyBDJAPjRXnpkWgYNR0nzZoej+gZG0dJye7HWTZstq+N9+/zB5qOFreHPKnuXPcDEE4RXcdJ2yp2N1qVTg23VaOuZ/RTfXZvr3qz/zTHkMBAGymRkiQp1lUsLOl+cncx8bZEUqIkmbVyYbQnglDbCc33YfNJkpS5XJ3hHBI4F1F0VP/zf5qfXCIpjlOW1MZZGeby0eaAb1+f6p2rmVB+Yx1kUzsx7yclynkCRVEDRmbDvyxslQXmT75Yg3B0JMXyTxUdBwEkSDAwpQhLBQQaRpkSye7GIjuUQOZcb6R860bVp9F0hYNIEPLBwQJGEx3fEdOlGA1eeDm57hnlbq6OXK7qp0eof3+pHADKl8oBlC8tlQPlS9qfJaBcutH+ll9JL2EJ6p8GRZ8uJAgIh7YcVtJ/awTuTFcS/FdAbZ6VmWRlJDrd88kcqnz8Y+V+f4LLVZszXNnpWPeL9Ug0xYzvtRApU44BgLCXpED82HdEsZzp7E1hrC3htznVa/Gwrm7Rd6TwaXJiu7VhaDyd2kF/zbJ/nvregKzsyi3x0HQ6tUZi/dWR5wozQfJ4awlJl50oVR9l07CayKsJkulN1t6VgjXRNqJhjXdFx8iubqvXPhn4wBXhuHeeHb1F2SDJpJUj0HxNtEamYpgp30LeIZC7gJTJ1lxTdLoqCaUTHXpfSLY1kV1dxeUlvZ1uO3HUn855O40YGe0wEXQ7Eu/5R8iDfQamyXmtAxNGcrKbkSiT5LdfkHk+aDRz5jYBb9Vmjfqq+5t05bMbFjOUQmOmERYyF30oqBIT7Z8syEOWmdwQl62jDzKZFIsjLO46USYjUTXCYt6PzEWRtFXcrYkkj1dL/Id/kobSVpGyn7qbTjnlTaiRMiNot49dDbq4Tkw0NkspPKj5BaXdvWbFWsZsQ6d6J9P9SGTP7ixbmkyLdVvke5qortvplH/3zrCv+r/2GLWRa5drIqUdAxyxF7kmqYnOj4lpuurFzsZ8dN5YutDxMLmj8wHJZGBcdkV4zn+jtXrGStDglEVkQdOJDkkXxBO1zVYbZoVR/9RsZ3Cyu5GaldQB68Gvr5wkMRHTngfI3X0n5vnR4+rBNgqw8iroIdx60/u7AyUqFZ4kAYAvtvAj5Jwh+YsllXKRZ9ZeLEUIyHkLxBJ5MyYbai7rLCPbsWw8tM/wbJYeK2/OclVCU6vgZJcN6E52DQB1yy8Z1luxas8Xghr7NV3/3M4j90paKI+Pf/ZU5fQ31MS88E/y9XVbjZ1ZOerBPxWeN0l2+KI2A5PJF32aE3rLVYdI8vApSx3nM89uVj2tuYaJQ9PZYMuYPtMIZ7/7lHfm2EoM88QnvwGAJ3cYV1eZOzlnFI1KD9WK3VOk2Xsgc7Jra/iE7ttzuSr/AWPxnTMIoN34qVPRYODgkGH8bnKg2R/qKZy153DasHUqylSbEmNXjMdd6OVf3Tn/Xp/mxCxuziPz4WxyXKxvGlCMaXeOAFAGAPM/uGgcjVIeJIjffwH3r1xLvQzM3gYgVmLdV+qC+VPBFLSE26pmAWD+w2bTfjwMXOF+o0imkZllizIFgzglM7bXZNZw6Ca3N6nHAJhtK/g/3VaE3ZfxPMsAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in circle O, it is known that angle AOB = 110.0, C is a point on the circle, then angle ACB is ()
125.0
607
[ "130^\\circ", "125^\\circ", "80^\\circ", "50^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAB9CAAAAACJsGIsAAAL9klEQVR4nL1bf2ybxRl+Ppc6CMxMhVm94dZtE8AhVRWWICoWlHYNqlFbNVCz0DVbA0KqtrCRdmHrttIUDW2Z1o0wZVIYbJgJEBWukj8YNFMQydZOnYIWxlKc0rR1m0h1CYMwp8x23O/ZH98Pf7/9uR191CR3993dc/fevffjfa+gO4hxIDr/Y5e57eGBK0x73iOfW/hld7md4KpV86t2keTeN65I/4iXP/4pAFQtvwL9E8n5mt7L7pjr/gnA+WMrLr9jElzOF4BXkG/xqlMQgOk3/w+ErqT+R7xBjkSl0bQbZVdwNV/IEQC7LoNGhXBJ40KhVIId3M0XY6ME4ye3dC75HKoTLBtkn91FTgoAPh07fm5YuHh6GsCSFVj41SVVdT63LOXxYfqtoeFzDcfvetiHZWEKOJPC3OjJqcOhtU1Ni8skLDmj3u+sCrb0JTmLx4zzcbw3FojsOVHO/HTiE8kP++pCnUmSZPz2Zqv5P94RbPjd7GXxicqv9E5f6+sKSfPeGps6Ei3+H85cBp+MqR3+zrQay/jOVthnbfd3pG2/OvKJ8k9md6BL2+hEI4Mp+3rSuwNd2WIN5fFRZH9wx4wusaWXjcNONaVbw4ecvtvwkSSnmmqP6luR9U2x7VmnmkRxOLJxpthma1iuL+/csWbszqLGABCGVoYQOeGsWo3jtfXHAOfVzaIN8YBZMG37yUSzU/9IkolAwjmDma/QXjWuSxBJFgKTIsfsFKKYj6Oh3eXxzUYbLLR3qJZkxl4hikjXxTLuxo8AcKw+POyHacEf2AzQd/0Z5wEEgMVHrl59SlOh8/gd8htPflJbg+MkSyiEim6/fT493/gXrFXocBVJsq3PUZnVb/2BSUOKiqu0ff2o+WfrLYU0EAMARCYdp7oAea9sPrb5qE9JsZdnoand2FIZ4VGSrhRCRutmmw9avo6mgjmDSHIsJIVLKISmTHZ1V0m+eJXdprKnQyJ2pRBS1rOhfns+kSSPBpJ25WuU+fYlhx3CgNHAuFWy0j9xKmS7uieDF+WQS4UgSfFg2Epcir4LDz1qPTUBHNyo5Fo+4TA99dNQuP9b37ZIV2o68Emnbdn+mBKKTLrlE4CfjA9aNYQkORcatRVMyq9OW/cKQZJD1VmTZsn927ehXmK3aOnApgVKuLLEDqjHulX7zRpPkuKJgMOJrqFfDbpQCG2H0gHTIUria+uyryDtzxQjTkcmC96ODhOfSDIdmLVfh/timipkhXB17RPJtEluHgFA9yN++3U40Yzi0MoK4erWIQCLtzxtMX4zfouzqnIOna3QiJPdnW57J2EykNEneAC8fJ/FJUeQfwbu8Wk6UzXptncSVjQc1Cd4AMS3O5QY2Kyd05JCuL7NQtj+gkHHKI6FHQSS8SmroEi63yFUFG5M6cTvgfBim1XL5FYN1gXksAAAvkUujkxaLNj2gk4aHiDxoKUkpD+vPaBvQySlbY0LPHhAl9mDiULEOicBZP+0ucgNAVg2oW2NC9RPn9dm9mC40SanAOCtlSF9ovsdQsaChmFt1MPhtZb5JCEkYoROelXl8nHN2/p40PYYQV5UDpIq/uHyyKRCPBrRRpEKOGQeqi2Wk/5kKljWAkOKFZ9qYp7JGoe51r9ZDcqD7lt0ppzZAkCo/kAT80zc4lD6oFYbpGG8NVUOGQBUHdfynbzFPucRX402KgDA8olyLYq6a7EnWW2fcyBmTotMKvJwyxs5psnrSd9kX/a1LeY0WSHofhRDM5q8nrnrAJuy716sNyfKRybhL4IgfN8V37Vzmohnzt6oKCm7AXL/9m27wPyQC0LCd0Eb983Zak6N1el9aEH1YXJvlCRHQhdcKOBUSBMBaKe/yaDF9YwRYDVHkHTPN+vXRDyA3QHh4MYFFqnzANC3KwIAp8FylcPjm4P1vVdzbdCkDp5bdOP+wrEmAMDg1691MUkz12ljwTRzuZyFGFL+eXPikP9QoplTsjjhsNQXkYyQ5FYAQNTjm4MXXotmDWzS2RIIAEfuf3l95QkEV50GMP/dXTY7taF/1wLAK1uT5MhtHl/GlEHa8hJ6ZRcAHN3wwgbcPImrmn8DTHubfuWGDp/5QKAwH5n//V23Ifo6mSNzuZwkV0m2udyUP0ONpHO5HMf8B3I5MniCua2AO2GSfClGihzpZfwNEh09ZI7qT47MUcyRfQ8U06Xkd/1/IJnjmqGcmMvRaswt0bGXJONSCz1V42rH814A+bwku8Qmg1hORZ/ZBgBY9oFXsBxxawz+9joA+HOSrUsBj7JbePPyX6+XAD796wZ9sYm1u7dLkyZyUklzo32DLUsaAUx/HMHd1wBIBWTR5IoiFXOMb8zp5JkK/1qJJ5oVybvAYf+hilmS8V6SfJye8FUf5L1SB70AvPm8F4I3P7DJC3jz+bwXyAPnvvbITiUePpUHpH8lcWRD/PrlfgCD6wBsCwNs6ZObom1w8dpAkuL5yi4lWM4dQjzsT7B7h+SuBIAkwb4WqRqdfBKN2lg6ojMSu71Ui2OBBLn+VU0KwWSQpH5NE9nSWwxztmanrh63VqYx/0tkAbrLLMglZsXN+qbUTUr8pLZdpRZJcnufqYAFxH/54yT1x116gC2v6mY2AQ6tDKl7xoWm2l4pJMgbSbWrM/3xe57ZDuBAiz5ZpMV9s22/Gsw0tBm/JiwdcwZMBHtIshDQDzZI1hrHo1C8NmQbY6Zd3o3ZNRXqIUn2N+rTQbLH2IOh21W6qJmOmasdiKSOp8ISHZtfNPOZ7CHtXXKgEI1mLeoMnnYglOjkGkz2EJBkh8EHE5RNsxe33GtF56wQIpmOyHTc0WX4CpKcukFndpK9DWSsIafWoUUJhSjSpf2zhrIeAAht0pidqF4bHkq/6VU1QQtnhfhoTXSfHOx+yG8sS5Kc1NnVwqOkSLbVGWSvdvXgfQ69m61VjYLpG84bv8r23c4dxSTZ29BR+4mORAMnhZjVrEYtT5k+y3yZYNGevKeDJDtqbEywzjtEpq6oXENVWdOyoPgDXq1T9azmbZL7Ik7+bVs/RKahTaXIRiw8DKp/palbDiSDBbLLkc5WITINrSRl+e+J0bzuqXzTir/jqUfI/eEzTnRss1AIUVqNFLspE+EZi0UWantkf45YN8iecIkdtbvTKvW/2sWvhD+Hir8q5S88FzRaeYyw9EMUos0FVX5TN/XTahcx+eN6vhmXLE5OO46VQszHolm1WHZ1V3F/tuMrNLWTDS3+ZMntzUIhCjHt0t5q54hR+USSMyt60wv8Y85cJK2OTC2N2WIzn6r5jxs+jvu/57N1JKkw+CFEkmxr0Cx+/SYzn5lPwqGFO63zadnEokIoHdLRufWHi2Thlap2KyuBEQY/xGOapT3bVjNpP/66/o0kydn1jS5eI0kKIdcqdtQqRUTO1MWsthUrvvlVSVFk4TtV4yVPXzqF6KwttrCc9xpPbrpAUmQ86PRQx+SH6IoU7xqJoPv3KPH+r8jmm9GgeeMyoKgQmqW9sCdsuYhp4FFNg9Nz9V+8RgrWjw7f/nfzQYHqL43Z9RcHhhXv08jKd9+pMZUyVqLgcU5pXngq76XU5V4Lkepbpp7wlJzo7r2U+v7lxV8KSzXNaD6xqPrJfxfdZDoIQLV0DX/m6RHJQXH+Rysrj9t61ItQ+KbnyJEVRbHB9/Oxc5WPn7e7oVdOAsDzT48sBYDpR2/Nju+rKE2nyPNslBTjvQbZpXf6Wt/UiVH9M1ZDMi5tXP0t/t0zmgxOACmSTwhIcqvFE92ZvrrQ7gmLcpkK8qXg++T4Y8GG51T9K8lo+35QLZnsrAo+2JfUTRyRYjCVCL3euyUQeaLU5qxDGe9Nl1Te4cOyMMCzKV5orzgthtauu6fM96aufbGz/5w4NwycnAYQqsTCD997vuXzek9rhWfvrHX9CPpy+SSiS6Fz/15fCwH4hiB4hCWfXRk+yObah28tm/AS+AgAhfkI8OTdT1wBPgEA/rYUAG5+//Pk07pyh9YBQPn/7aMcPs1eUTi0BgBO3vZ58mmQvvsaANM/bbpCfG+tAIAfRO8tu2Q5i62K/KokOYVo+SUviU8215b1v63kveV/Xdv7yf1zztYAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, CD is the diameter of circle O, chord DE parallel OA, if the degree of angle D is 50.0, then the degree of angle C is ()
25.0
608
[ "25^\\circ", "30^\\circ", "40^\\circ", "50^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHYAAACDCAAAAAB9k7BnAAAJU0lEQVR4nO2ba2wU1xXH/9d7E6MIsALFllKa4hizCWBMEQFsaFo5TnF5rgPEUAlUkIBUMYGggFMMWeNCUh5KqoQvJpKpqJQQ7MRLjAKhiCbFgHiIxvZCAQdTHhLdJebhdSMjj336YV8zO/fOaxfSSjkfvHfO2bu/Ofc19545ZoTvQ9K+F2oy2FLGGMtUHja2wRMgevkJR9wksNSdCVRPfv0hY/1uABjT+pCx9XMBYLSjus6x9MkkAPCPclKZO8Z2FXMAoeqjTio79/bgSABYVDTFUW1yKH3uAFEnipzVZg4Xx9YxAICjznyFU2yS8v+3Jicj9idQ89mrPmL+XgCu0Xh0Wk7eWPtYW33bW1/n680fProoA0+nb7zQdOkiu3fE/01zeum8F21yLY/5jtUDMbO2I3bt9Y6qjRQDNSUYVBmyMYGsYmuHuVZ3aDRe73V15UA5Ru1OMbYcc75K1Hm9VLZWozkwA2sTvyURCyO5dwl7hOqfE1j2bL2vvixpVO6yFZa61hxbwZ+kdyS2zaXaa1cNPca8KcAeZreoSmpdd+h8omoLnet33BRrPG97C25eyjX6Qt30KzpdfXNR3pcmWENvr3DPdUMqSh/9WK/M75jSL2jCNRhue3DcwOr1EhFdEv/AARxwOpKXLw0WmNwzkDtzvUhd0j6jwqiavG8n3+s0hQJo4BtdAnW2kt36ubyWzNvgQLffChWuyjKx4cpjWV3yauK2P44aw76J9S0RoV3yja34WlZZ3MjBwuPm3RqV3SUXxYY148aG+otN4kYeXmOdioXfNUosz2/OkViE2IkLllmnAvvnySzrfv6CdWw51dihIr/oLZmp/lqV2KDv7j0DzEaTdkgRheSLjuI6JFLrvW2b/y9bvgLo/9oimcnV9ivROqnD9j5zfJBdLN75yw2ZKfvAk1awBW/bGMQxqZ0uNZW8Ps0c23hrjQMqFv/7sNS26eQJnS5xuShtc0IFfFPlK/gXUzsSVQnerl6U7QxbMO5PUtv4yboJpt2edw2wvluvQpX68vZgg6q6Q4DW26VWtl9iGbRsidxYnrif1N6HnaNJgrcAC2RKv5z4wxpvV6y1TtXLjlK5bUmVwW3YOofpvMXgBtEeHoB+0Ki93THfBlUgDXJ3+xdrd5hq7JY3ksM+l7NTaqt4W4a9cSs/OSw+XS41FTdrjksq7NYknQWGLpYfvMo17qpGEQ/aevTohxQAJts8oW2SeoWMe3u71/4DTydbZ8gsubfVV3HsvpnJU7Hm7BmZqVC90YtjDYa/Ddkr/RVPgxDb6EkFtiRjlwzrE2Hv4/FUYHFQ9kTIvSPCtiY7aSMydL7sqDdUdQKPYc+OSQ0WH2njKHHJ+4cA2/qzFGF1cZSojGsRYM+Od4ppYYy9qrped+icGHtKgL06zCHVW9xDfYdWqTR7xWtGzk0BttPhQPY2BTlY3Yc9cdWLojgKMPBuvBzbsEoXU2NprQ6EC0yl3D9CdMLPUG9po4chu+8qTgPnicizkoiI6ob0qI2zKoWnsHjZKTYAwE3U5z5KFKfHCFAEdSAo2sMuBIARRJ0IEBG1hD/iUjnnAWA3YxWdBs5Fve1zr9Qh9HGUJBv5QNovQkRU5SUi2lBE1AkdlXaP0Km+HaTF9vT0EA25aw3aPirzNFEMSx4gsYWJiGjoZ7qaw+LlNAAcHEi/Z2nCLHiqIhBez/rCigYiEp0GGnVxlM6MeDm2XPz0qgXoWywnPJqgnagCGauLo1x+Qo9VxvuhKAqgKADCxdhHpPRJ5snuKgAKFAWKGXdvZYKiZYIey0edAgeHwrkCKFz9AUDh/MLTa/+2L50rUKBwKNzs5KKLo5xSPVpjjTy2BQpH1Fud9E7L23jZHb5DcEtvyxLjKOpHaww75nr4k3PRL1bzcSSJpMqlVvskuqEKFKQBYffSEd0+6939mF1SNtnPr1h8Ux1HaVNvwzkQblwUNP4WAFfAAa4g/nGuDO3ZihK7jvQtRNFrrWjiKL7ZKksaEGnV2fvC98HDf6Mf96flb/dnq9Wcc3AO6jXFauIoPs1eJ7ZwBIXL42vYLFmuVDFHqXSIVv/oKgUAivK461vd7e5kN2mdqVNyUcVRNF0bn7ec/25HQqUzWe+1f5QEFEDNrluR0nvaM2jc8evpmgYK/TLd8F2OlUYm2lEYbeNuUSMDGDqkWXU7qwfM7i5JzlUAeOWffwcAHM5PV6vVsYs3/hgr7mT/oVXJQwH4PACALb/XqtWuRy++GjBB9Ah10shEz9aQPr6uDYdVAEBwwsz9J+UBNbvy6XIAryZGFdX30AMiWoZ3LXlh1VtaXK7fMmm85fMZY0hRp8akdkfXivJEpeoWWgKXUgvUYfYCRX0VWm9pHnLnPjAugBA7RuRLeyp+G0RE1UU9RLhssces9y2dDkMiu+k3j2q8rZscAPDZ86n3cmo4RaD+9nYAGD0CquUidOfZLA7MHLIt1dQNEwsAgDZs4gAwLxOqPVH1tq48ADiRPsXJiyC5HNzWDQDoujgyrox6W7edDQAAuC4U3kYK5cqvrwm0EWzoDlFLOGNx+J7BKaT25v41suD1d58HgFBTHBvyLAPORza+Za9MENR3KCPXF0dK7A/Lm4BWTzhpj4joTSBAHsQObuOXpmoCzSlWXbQghhCfLweaJgRYw27OlBjEu/u2rLxUDOfDlSGJRZwSkHmi8IPkqdte+FoW/pGcZSYFhp+x94JeLwuOyINOsiyTzE5/kiHX7HsBeahLnspzbNJAs+wjA2nnLxmk1BjlS9V8kKV/zWxRDubs32JkN0rTKmsvlCZUGMt6T8B4s2uYHZat+H7i4KV584+auk22gMYpeK5Tu0YYvA0Wy9yJjV+afccs86+YhrAqO9AKNrrbfKkxz3Pcolxjqy0ylZfZdwb5iXawcNVSD5trYVAfnvVIBr1vAWo1Lfp9mv4bXmH4+A+uYKvmkeGssY0FFl8JKsPYrD8L0cGd09gzGSH/QpFRKE7Tot39qpj3/gXcO+L/prmfx25atP1M++azV32AKgl8jIPF+4cE//9dbCljjB1Lgmu+DxOKp0n/OsSGOPSW2iZiWBLOOsT6izkWrXQe4HA4gepeAgzylEzFobcfBmhvVhJbLWfYUGcm5rp9Dxt7sCzhvGpbnE2fAPW5te9OH/wEamW+LJb246Dzf8b74VHwMOS/qYvBXpfkCOcAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, BD is the diameter of circle O, points A and C are on circle O, and BD perpendicular AC, if the degree of arc AB is 60.0, then the degree of angle BDC is ()
30.0
609
[ "60^\\circ", "30^\\circ", "35^\\circ", "45^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAAByCAAAAACezxu9AAALEElEQVR4nL1afWxb1RX/vZeWIAgYhAuuakjautQsUxZI0Soa5nYtUwrV1mkZIaiIdGKqtA4R2sDCFuoWKhGNolUiEpE6gYeABq1TKlG6TEtVR5StEEYqkeJWTYgjZ8MsbEvUdDOKfX/74773/J79vtKpO1Xqd8/9+N177rkf59wDXia1QgHClxZQQ8UCidrfW62fCv5o9b/911wwlKL95eejCvbd++wVhJJjAv50GwDc/ukVhVJAACc2AcDyBdS7DChAAfLHYgDw2deuMBSA7PprAEw9t+nKQ51YAQBP3795AXUub1XN16XIDJpIksJfnQVAmVpMAlCA4wvoHKnwMiW4cLrcufp/Q83KH5+C8Q9l0+Cv5Y/ir4FFvqEUYPbMuc+T4EQGQHglvrwxsKqhyn8DftVi6sRg8vPGW1feXYXqGgCT6cK2hhsyp8IbNm0M+WvCRbeL2p3qiIRaXklZl9BBDJAc7WkORrvGRMl6sFlrPtbVdG9DuCNl7gNJciZUqTNH20ONh2a82vGEyrZXbTtmlxHfdnWumDryYKBz+rKhBMnMjkDHF7aZ2cDpkFZIkKTI7Ay0Z+myTbkou4K5Z+4MXXjx5pLJlZnx7bkaTa0UAFDCPeev/vrer1xU32VUR0M7HGXyaXAm0UJBYRlEdlv1gGN7zlCZTfUfSEi73K3djHfa8JOrt3y5UKjhpfvNSQ1PH8SpUI5tvdYaMivfVT26MKhE0EkSgiQbE2TMocSR4BFz75yhhCCZ3xlx6Jqk/toCWZ1yyP0wbCda+1HNNDXOuB2u+TveIfMVOYdskW1ovljOtlP2s2uqkwFCgdP58NrNW4Cpmysd9k/llvevXjsua5uLWLpDkhwI9DiOhySZCw2TTK6l7cglqzuQLM0oF+BoYMDUhp0U480kmWhx7U9/cMwDSkyv8hgTs7KReJd7sf21JfNVMlcUrd/ZadmByreX7paVAJCOOG1Akn5x5yOlNa3Ufl/evpPG8TUWyJIkY0nJdiKRW7uX5o2rBCoR8TgJyJa4/K1OuyKRzIT7aeqOFep00GlZGhVGQjkKkvlKh+GbaDj4iSllgcosc96XdbhYr/xIV3sikUeqTUKyQG3q9qx8LJKXUMmYDyh2NdtDHW7Ie1318/X9migTbX6gcquLcjJBXQwPFxMOkIm1+lc87geKg3cYO6VpXe17YI2xAhyO7a+6DujrbdLLNpXFNta9WL6uxoJe1yvBA1v1EYvGsj3OnrI3ZbWvIlRb3LPajGkthNL+oNjeXgqV9RwU2fEYSTmqXIX3spKFjYYNqHbbk9NUhUwHskYqVa2DetKOuBVqutiMI7V1Fdse+JbeAU8aWyK3eF0D3/z+LR4ahTPHOoqKObGCgD/TauW63wEomnKJNs8qnV2BYmKy2qcBR+DR16TmSymMVHvKIRkxK8JDCR+i0ygfTOsCVIDfuA1KLsb2/eZjNF3jb1AAULHtNWijIhl2PDz0a21fPc1asDRtzvWg01FS18BUyKt0LmLZHXKLDGn6QMtXZalr4FDMSwi9kRhYvG5MRCp04fpQj4rGJHQNPLnBw/qe3f8CoGiuQACTNQCA9xRV2e1ekwCw/qQBNRRz7xsPbKmXtbRy6WoAiD88x/lBdywFAGJDgFSLdNBD2NlAxsro7Ca5p4kkh/y4pStntLkaq3UXArp+HIZxMSSAiRrgved+ZRWTC91xQfPGnL/dveC5/nFDFoACcLIGeGVXFAAmTFl2RAVA5PwaOVcXVrtDPfNMwMpQ0jWYPyudqX948BrXygogRwWSbLJ1TBh0KlxiSYlcJZlBiiSH4Hx1LNIbzdpcZZe59qtjf2VJRyeWA6G6zwDkH98Vhfdchaelsot5V/fX0dy2Ula6Bli09WVgavG3XzKk5ELXzkm1UGavcylVeKqnopR3/jYA+x5WgFTUA0RS1SXIuVpiY7ka1BsrYw3euPSIjwkyUSasbbcgC4UCC4UCWSiQMil/cqGRIkP7PwosfssniNyNZwKkqr0Sqdo/oaoCEKrx88tYPQChqtDZAlcB9Xv2+pKceRZJKcACqfVb/yILZDY8Rplgkf1Hpe7UzKZmJ2eCgwBVAKicA1QhoVVV7sCa+j7fsqK8p3df9fG6wLs3rPu7v4ERmKsCVEAgMGfOEaaBj7+9W3dfiGKJieUKsOjQIw1nTK05kwLMXQuoBMTiOQCqUAGoQqiAKrSfZ3cvBQQUM1sgXQNBiCd6Nx8ttuZKl6oAVYGqhv5aZEr5aWL8+OSTkMvcYBOqOlmtqoqq4oHBx1/ywNBoaol2NEbHAQgbH1DH85WlLAVgejmkV6d25PD2vDuIFO2FWg1q1ScQwqbYu19st9bQ0NIrJaaCm97/z4ZZ16mSoj0b0aBWXzAUz0yFrhcqrDU0Skf0tpXKvo1rznlfZcaicD3wE40OqyTwL3OqLzToua4qZ/R7YMjuzMmF3rfhCrnLmGn4ll6bgmb6c5T6PTA2VCZt4uDae+xlP1FiBq/56OWfOoqOgHbPlFAbTpZJW5k9cMBhvsvu6+HTk5vn7EpCm+TkBgNK3tOstPcHKx2W5mQpFKreia6ddMACUDi1HnA2D9LXO5qR7QdtmIdCH9DpAi/NA03Fm/tKexJ/0tGMlFfbEnqs73tvOj2H9bVAG1WJKSdIcmSps8FfP2LLHovY+j2FbsrpZnd9icdjk52QNLrWoRczsR/aHmH9MZqhDhreKUGSgxFnt0T2Bqec/GMNds9KWxMWqOlA1lyi3uWacrreOe9geKSMNxa8aIGyukjeaHBujW9vdck8FuovZZW6SJjR/TNCt0adLM/udnu+LD8aPmBlZwPao4exny/bopkwCtAbjcH5ZJ2osefL8rUjh7dbDqTu7QEtz0AvOulm5NXP1FULNZWJyEq5lkaTimaDWa0Vk5ezY4f20enuK42OuGaTjEeKm0+L8eJmdqiGpEM16+HZqvT25vWFTmhfgxFjqUkoKaa+u/Ik2fYz12ayAU8kweGQPMJy0d8b3HLn96iHD9JtWRVpqvYnpHR+60/HVpd+eIDc6rIlkWTfQ/RwwQiSvLil6SJ/6+jS5+lgKlntcRXvdneHFqMM2mvfCZpfLPVd/70lUQB8ff+lb37DYT0ViYq02z3ouqdebQOAhw8DOL5ZlYd6Xl4OlEfr/1HnhaNdAT2pcOSJNgDAW63HOXT/OU2A+76ruVTysZ3u8vNP2/S9cv6uS8wgJaESR++6RFKQYjrS4/7S6NcJWHwAHNpFtu4iBMlMT6bJaEY+azpQAmia/7kfJNOzZgJAStPApzm1q9jlget7HDqewS4yA693T9L6WNua4utIERqqAUXB0chOWx/mfN1uktzzrjuKIHNttWPyS5CZJnK+tocqMDVHDhXNUAW1H41vnDVSRXrzn88BwAobk9VMCr5cN3faMFZwYguQPbsCYKaJZMIqFBkuIKxynK8rKoyrZgxbwwVaU5yvC18i9gAptpolSJJMhMqUI2NEzglXpCMhcxCEvDc30X9ohwnKFkd4h3Y4huGs+TB55wcWjnSVYWrAfoLktA7VnvmLk8/UWRBlYTgJ5Tg51OQYjXDZYTgkL3YG4yYwMYSyOTVTtjMYdzkWvEOmdsu7qGs4Gf2ETPkKBCsTSnlz/f9TIJhO070N4U5XB+1oe+he7/A25/hAKvrxR+Xcq/1zsQ2xqEzBfDCePTmUDDa3rYSeZ61rVtKFhCJm1922ohiKiLnh8cyp8Pr7fIYiLigYdvbMub8NAeNTAJat4uJ7bl1AgCX/C6Vk3aT6HRm2AAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, it is known that AB and AD are the chords of circle O, angle B = 20.0, point C is on chord AB, connect CO and extend CO to intersect circle O at point D, angle D = 15.0, then the degree of angle BAD is ()
35.0
610
[ "30^\\circ", "45^\\circ", "20^\\circ", "35^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAABwCAAAAADqYAvtAAALDElEQVR4nL1af2wcxRV+6wBuhemBeq43yiZO8QVfMFEvXCiGGM5pjeQ/gmuJ0KitpV4qFKeKUA5Ci6nSOpX4w6iVSNW4TZUijBSJlEQ9EJFwWkMuxQi3Z3RGsbGjnLHTM+Rcp4rRHZK9Pu/XP/bX7O7s3g9TPkXO7cyb+d68mfd2dt4IoDXgfF2okmZVa+FcOVRZuzWRHtkU+NJJ/7D908oaroF0NtdcW/Mlk+K3z9JdlTWtnPSP/cI3Udnar5h0NgcMNggVtb2p3AZQeWb3XSCaroiSiFAiFMvTYaIUOoj2l9rcAqHYrEAwh/dFoSjp/wPlzelnY1PXEiSk54hIaqCbH9wUCFfgqqWPdO6dv1281rKx4b4a2lxPdG7ZT/nkdGZY2tXWVkdUzhyUSDr10uv5yK5I0Og8v35d2k9ERBOJRMK/J9pQKiNRSav3+omw9MykdSHH7n60bdVY0uOx9S0nF20r3B0cUoX5CyAbq+k6Z5dJit0vtvewLc7uvb1noXJSC3mm+2vPZB0VhfBAdOBG4JzFfTMHfTG7aNmkAHI9/l6O+sqxCKIDSPnT1vJsj/9XS5WRmsrHxe4FKM6pyvgnER0ATobsFNmu+sGKSI2u20IjNi00dPYCe84C6O4CFKtAIri76NS6kybF511q4sElKJ1xAEuhE47awpH68UpJB2oHFZiDYAaTky4C6IwDwKw0Ym2mADjrP1sRaeFgYFwlcvpeLAoAbUMAgEHJYkxVOin12Bu5kxprZrG9ZZFLCCApXlcARBLqY287R+ZaeE/OI1RYdg4CqeFzYkd9wkdEvGC6eqDv62z5UXrOKSS+95UHpj1CMUeRQd9xxlasIQAci6i/w0mtdEHiOkmf76LrUDmk4z4PV8v4tSAcSulFKTHNk4zbQweH1FBrIXBcf+ao2tmrVZqkOOGIEQCA55tyxUh1FNoOuikI4K9Bvf9A2tQq+gRXuKuzGKk+qlhbwUVUAXJSQhesnzVrLDHCNM9yc28RUg0DAa8gprooAGATQ4q0mOKJZ6R4KaQj/o/UHy4uampUN2/8VBwxwmjgH+f1ZjVvhr/8NYlC+BXzybdoqezhxAgFOFvPU8Y60rY+d07DRbmkhfZebpsjjxUjPR1e9eA0XBQAlGqbmyxIb/EaLQU5tmNJc1LSa2uluqjR0C46vGEWHAwFnU7Mkv6s2/jJIY9bWztDGSdGKAD2Ol/LTNu0f5EVtiEnJdjHpWqn0N5uW4ECQMn6s3ZJhjTa68IHwHRR/eXncwrnQie5LWP2EnNqsv5FeyUDxkUVk9SGtD/FKXV2bPppzOttXwgP2HoSeWLxwALHVt29bqQLPq+NssVFAWB2k8J74WoxwlqR9tteN6QLvBgFF2qkYl1UJa3nShdaeOGl02YmY6ShhF2Uwfd6dRX0MaQDfElujIhH+KSpeg/OuNPBUyGeoAK8K2YcxSt+a9zQN2avRMn1SzX/5Ilq1y2W5UkgaunpXLYL3dT1MndjJtknjUGMM93JMGeUKhwxAhgJWh410kmuB6hdJescrycFiYirjrngKdgWcKHG4hpVqoEuRjiGAxEJtHrgBb+9zvN0oeZcbIxIYE2/riUBZi6q1A4u7HK01Xfev6/5sUMdopVb3Fkbjj+eJwJ78NF6QWB1VS0huk6p00UBAHG3nR4A4Bn7PsI6qVUgEuhqIeiiNZ48yK3yPr/py/cZNiEC0f0znzHVVQIRId3k1vyNKeenCohIWedFuu7V/reJdHsKRLT1CuNcVUREwpTbWbyri+ZvI7uTspBOd82ZGhJR4DJjGjU4pLe6NP5lm3NZk0DaoZeHiXfGfrBsCBNR8ApTqZJOuUzp6OnfuPfrfdb27IZDYGSCEw7S7AZuw8KBPoeLarhxu2WcHAX+/PZrzJN0nXlQT0Hzt3F77ne4KMvDknIMXfN6W2PIKL81x1RVEdHKyhKXdO75E+6cgkBEdF4QhG4i7lCbjn0/b6rwuUVhAHIN90vSutHVoADAUFD8iQLgcG0OcqPrmXp3p9Eis5EJxyqpY+cMcN+iOm2QSAJwuBUABmu5KiuWfcQNH0NBUACZIMsyZFkGZBkAZFnOSQm1BFqB+RdNRHcCg5TyIAWAjDis/bLsHg3zqr2Z//B0VC9jayBDlpeHmu4blpUO9cXZ706KhJhRB52RHKRi1uhTHS6UpLRgJQVsismNrwEAOvfDfY/e16J+2E+yEV8lDVwBZAtHITyAIqQfa9ZV/3PDbvUIw7LTqCKsENXkmfW8QkR0vOaHNg9YsbuE1JgmopVD+0PujkX06vm/EBF9bklqAMsy2s+Zo5EBYFaaUB/0wRrrC9qaU2T56VZgxisJpQBAyj8J4NQeu3kRO2aQquC6qAMdRN62BQCcasgBvWqH/USt8iE19gbGiVZuNofPe4ty8AYAV9saMepHbU8QjW8holnhQ+DlW9arIx2KmB4J/US3ZLisXKN4ubkPoST02HX4jEo667eI8za6a8Dsqerh6kXDoftTWgZqfaLRMIsw+ugltzea04iC1/N72UsTcyNi4/bqNyZpZdu+Z9ViLcH3sEEKYfWnrm9RJxgOMLvM+amx7PvTc+H14c6NDxPRCxGiTy7rqbGbVOnvXOg2ejl+q8db1H1UGt/ofHI6M/zVe7eu/3WduR9J7LNIquad2nVNL5nb/q7bftQT+Q+mriXmp4J1kY1b7PnN1dunv0Er2/b9XCC6mtxDWl5F+4BSoBRxUfMc2Fidk0O9T0Rq1kW6et9MgbuY1b12P72mYLBVTU9DIHrKd1Q12OvPjbl+F9qxOjx35Z/ZMenOB8VQsE4r5G3D1d7pfDvR/j+Z+dOxzlnVSFtPRdyaMvj3zEhmfOJ6s9S0TdxpFru0WhVH69lnPT0dukP9cNM3uq6cw/OXJj553990z8bHN9fbSQQ+65tNFk4zJx59OUJEo6cvubHNT41lR6YzIfHbuze3aB8VDgq+rq/ss0npIfK/Wy/V0er9T2ruwqo8Ov+vjzPD6x7YsuEh0fWjxwPTzTPW1SxAZ3iquo9+F0+wlZoXBDY8JAVDvgroVBwQj1oLzET83PZ0znDRy3P/+PTKB/mIGAxJO3gdlXHdYr7xqk1hgxRCdPOH3zqqeYHYeJ+4o0GqnInBU/SivQgKOoiIziBN1Oyn8O7e017nWGUj63ec/xEAdJzBII3h4XDCNVOlodRLBQx4h8wKsNyUwwylkKvVk3ZF+y6dfCjAP04f3A907AdwOuyWfaoYS42DTg0JQD8J2v7KO0VSCY7s4RQSgI4U+lVWz2RQJdCSQc4M1EwrIDf2KQAwUuuV9iobetrLBgL6+4AZUr9LiiT4yoRHgq8jBbnR+PJyT2WWjaXmo+oPR4pkkIiIWo0C76RtWSietDXU0dLTa0cZ6Wlg3PeWa0q8DJSSiGegXzlYE/p87hGce41kPHCwsLaBLkWbPMI49y5o0+j0dz/jVZSK6zvzIx433TikIPKd27ZjovJbkaPbHznjeZ3QMXbNqgNixRHxrHiG7cmJSi5BeWN1DZegmOteZWFt170AxMXu/7jXcqynZLvqufl4KzxvMndeuePuo9fNA05HjsuG+V/c03C5vYSVVkSpTLdPvazIjMtlgVguK3o6efG7oNdiNV3mQnYNj/G9vi/sWiYALJwISz0eCUBgPCa2nPRKqVvhcdWW3VqzV21t+OhCIlH7WFlXbUu536uyz73z9wRzqZiuXoV6qbj1kbY6m3CRT4EipLCenqjXp2lavz69U7rr3gquT/8PZETLgwNFCZwAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, and it is known that angle C = 60.0, then the degree of angle BAO is ()
30.0
611
[ "15^\\circ", "30^\\circ", "60^\\circ", "120^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAALQAAABtCAAAAAAtlxQJAAALh0lEQVR4nNVcf3AU1R3/7CYz/NFoqp5wOFcjepTYWD0CFqqRpDVWpgqkY1rtkLahZUjHdITSpDLTEH92Jh1oTRUcOnTKzZSOjEQYhJGgsQYLGkG82KENOElIRW0AxQvBNrD33qd/7O7d3t3eEXJvD/uZyWT3vbff93nf/b7P2/fu7YKKIAXJ9UDVuYdIUqqy6wYdiqDpHNTepdw0aSpAaKrsukEZacD49rI/QLtuZRDeUlZK+o+n1wLADTcAgFRnNx0aFRmicXP9Ktou5v9HeGgfHZ3uOFNl1hUKw8PZ/aSqG+gKdaSvmTEAAEMdoNfqAXXquR4dlLu/SVJSMINUK9FvZaQFuRtAQ9YSNnKkrkw9kiH1VP2QOqSmKGgKc7YgU7rFwNG3gBNHCRw6C1QUYGYxb5yKCpVKpUynoWHvka7DR0punENt6gwNmFUE7I9pB8/gH6fkvlBo9uw5VuEcfa6ItPxoR9fR9yqu3T7zn1dU3lU12YXTwcg7bx+67WuhWTflXFvupKnhyI4tw4sWlN4wMvvRxXx3b1d3SVX1N4pTy1EH9r/d2/vp9380I8fgzq0fk4ysKi1p7CEpY9Utlji82XZnYXlT539dL+hvDZa1H8+lygmQlg7tOtxYElwVsU4aa5zFXmupQEVLt6uJSKN/3sYo6SZ+ciEAXD1K92xygjpts+6519/aFze9LjTqrJvk2J6m8oLqtrfcqu+qv6q2x938wnckf3H1KIVS0qatzsqSDWMJqy8HPnArGt3eWDbpnrWRpEtJQcY2l87vsRzgJHduPkkubEjLyJE0yW0zZ4SdNvv9PRkrGd6yNFhcu67PphvHltL5B9JKdzaQ5MoqSrWeZri0vMNhUIhocLOQ2YbqoXBdwF+3cSieYxZ9bnpNRDjbIblyK0mur8pc+4RIdwfndSZuM0mKu1qSfZiUa6NvQ62vZOnmE47ryHBJTcRZ8nzZKEmubMj8gDIB0tGl/pcoScqE2WThcCK5asHIU/cWlT74QtTRnnBJfTRxdqyBJI9hq0rSL01pHE2998nCkRH2VT1t1QWhpp1jdnqsdcor8TLr20hyYRXVqcfJ+pJuR/2mv7oCFz9WvNZSgbktXZatnhkPjprGzs2IkMeQJaLHQTp+GyVJdvhWjaWkk/1TetLDeRwY62wqR+Wv95HkaGOwh6TYbY7Tz2e98KI8fbK2zBoPnCSjwc0XxTUJ0W2NZZPuXnuA7PI/bIzzonGTluQBf2ssJVVQiuqWHGciw1uWBotrnnmzbmZExCvLhovwdIev0zxwullkEY5xQpDkUPgHAf9tV240z5SRbgscNutIcJa0hWNCrk66SAj2PfKV0ja3vFSMl3SsvnzYbfiYiHC4QlCSoednNTjlPwPGSTpaVZOkxJIkhbCfOCaMFH6bKkfvvn/MvagDWUnHTfaXrnAtkJNwuCAW7I7VVcbdk0lIx+XpHt8G9zqqf3XxxDJBkpSbqiibQsMX6CNZSMdj64Bvl3uJnIUjDbHpEbK9pD97qXF4emjKtrT7JEnymdCZCTFzh1lHew3JLYHsrLORFiQFTwbXpd4t81SZcDgx5o+QDJdGKTKG9IU9PVr+sHuA5Soc7hDttSTZUp069jpxIdKxBXWUKf1YkhSqhcPGmL+fJGuXZumM2UlL1rs3WcTXOBTCDMdH6klybO7azAUv4OmW8tGEQSfUC4eNqK+fFBwObMtYJDvpjSXD7hnrQqMe/bwp2dpICsHD/vSJuoXMpAXZX9znntcVOO7db7JRn+mpXSWZ1Cmbp2MV7dZRSnA4hGNCU5ZsEOSKFWZnb58bu/g54ppK60AmU/t0+l/Uk3VguNgKyuoMnTEL6cM+6/YIIZwtNjwQDickl7eaR0M+95ExM+lYedhhx4HGRXE3e+Tv474R86C9wjU/M+nWGnMUSU1fFxr1jC2tCustV7NinVuRjKQj/lNu1ERX4LinezlM2fJZw0Ofz01BXEhLkhwrc9N26dETRwoE623daqt2yXf1tCSfrHc159UTRyr6/NakK1YeTp/lZgiPqN91KPTiicMdNbarIy4BkuHXrUfOPOWW/LMPtyd+0/II1KQO9NYMFJjnzbF0KmnNECSj/n+7NX+ci6NKULPJOjCHmqQIcQ+P1ebkOyWWugLHpadDoQ1Bcl/QfiZesSo1P420JHmi2G1hJi/CkUBl2Np/0e+LpmS5eFpwRcoqhyTzJxw2ukP20ZLWlCyQNIzkNdb4A4sTsTtb8hIaCVTZI0WfL2XRCSSZsi6c6miSXk5VMmFn3NU1v092lwvpk2mOFjktjk4YIXuNKOJPnqjapA3DMMPEMNrr4hETD5yu64cMkucMg6RBw0i9O15ge6V9dFc4KSPuaevPELyjUxqUNBLpHAj0JM7N9nnOWggZsrcDvBJKynKSNkgaxkAgxvOJhPNMCEci2UjrCF4gXGnz9yfNBuL7igpj1v/nFhU4d9VpgKh94H77OK+o+/AgAEDX79uSlEFad9qwHF76hu16aUjSIBtrHM7No6clwzVW1++a5cwAaXc2Q5LkoetJIQ3DECSNcwa57tZRu5DVVc2YzkN8xIIRk37MN2S1wyJt4zxJsqlVOrJlxn0cnkOS5sqvlCSXrk2QSpAWluMCfY5rmH0fh5cQ5t4ca6Va7prrYGGTthW5O1lceDptH0d+0f5Dk2is2DEXsNWjsNDcC9lp6gSkuddcfO+BxTrV7lgeNwjgpy8PAgAKFryA+P73VDbdd5iFdaEDwPIvPHGJGMNU2EnL1phM7+uQCSZxn0uSjBWNOhPyOVXJgKh/mJTkWMHZeJqe1C4c+nIRAPM+aHi1bWdRPl3rhuKGNkADJn21N56WIE0AOHirTCQPLO64Jp/83LF88wkAQKg3/kaH09ME/vb1RMLI/N/OuVTh7MAVdc8AAEK9Dgc7IBm0VFrJPg5FGPaPkOT+8nhK0rqHPBUcsZoj9cQaxyWF1LSfX/4YgLO+zwrsRJu9JMld8+PHl2KqkgHHfVFSMHjYTojHiQYA+2bbx5Zw5Pth1BWBe8OAjlCvHRVJPU32zgUAKTFQ1xHIN7fMWL3mHIDZvbYLk0jrpyYDgK6PzF87J/XKS4jr79wAMBSJJ9hxIkjyS+YzldJ9HLlCkjwciEkev9pOintaB4BP/QCA5UVP5tuZmaEBKJu9WUPxmXias1Fjkyioeh+HEkSCMbLAXv1IiulTV0IHXv3Nzsvy7c5sIIDQTZuBorNWShLpj68EPmfCAUt2m9YAX4xaKUmkP5kKfM6Ew3S0xO1XbUdR1EpykpYfX0VR+8Di/BPLBg0SOvD44/IKOzwKYf5+Qg1SP1WsLS964lIydIUOAJXFO4rOQurAnsm69ZamBugYmbx+/5+Vvev3uqbqVT4A4ENPF30GHTi/HIXQsOhFAFtrJc6ffvrHa1TV8n4YgNaqyhxwZO4nALD62uk6gB0Lt3L3d/+u6/Atu9wqkbO/tfcAAO/naieBJdf9B+CzoY9QCOD8wN0oBYHH0l+JnDg+ewMAlsxTZc/E4Jl7phTpAP96+2VY3nAzAJXPogsAAIo546lVDAKCXA8gQpqvHZmbjFUMvXuh8l1pcwPtswCWUdeJPRE+OzMCaIBmulpJjMwjVb51rIH41wi5exp0aENnbsFPZuxRaN8jaENLVkEOaigEXvqWhg+PBgFQ8/jLCzlBNv8OkZnfeRHHNKktevSW2M2nB4ugUjs8QOKTFvoe7cXygklTTxYBqpYarVB+XdO0ZiUGTWigOX5ooBfrBJJkM0iiWbltmpMALffxL90pvzxAAK+vVWwZgP1ZAQ2q98rsW2MuhnvyqYWUpV5lWN08DSAG1Vl0NN8rudi7AICGsLqe6HBq7l+dcMUxBABwX/efvLDukaen4QMA2rzmaZ6Y90KSSDZXkoPeCJ5nX1IBqvYCg974Gf8DAmXuUSlno3QAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of the semicircle, angle ABC = 50.0, point D is the midpoint of arc AC, then angle DAB is equal to ()
65.0
612
[ "40^\\circ", "50^\\circ", "65^\\circ", "70^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGwAAABnCAAAAADAyvjSAAALIklEQVR4nJ1af3BU1RX+7gM2bQ3uYBezDqspZDFLwSFOaLEl0wQTx8wU41rCoG0sOBMDGmaImg5xJmNiidN1BizUREOlBUaU0IQGpzpdZCmL0E6YaDeOYYg1acCEsjSpggtj9iW80z/e75/71m//2Hfvu+9+55x33r3n3nMZQQ9iMMOy0h7EjuUVWdRzhmZg0r8OTL3vBmx6q2X9bOtezZpcGxi6HAdGxgG2oABzVgUWF+da9UgMaL4raCmEXtbX6lH2/q92GRqNn4jFk6vuXPTDufS9fAAXL+B6/8jYmcDqioo8i05fm/dSn7UgGoyijmgUEbksEBGdbwz613ee1zQT5P/B9mpfqHmYDBiNjJYZ64iISEvGF9YJRPRst9rhRGdxoPG8xXMK6ycN/pI3vtRVP02jdRnIBKFjfoqIqCMhVyUbcmve1ahigyPrvU0TarEDQEYyvvBlnczjm7yNycxURERj9d6GpPTgaIQoGrF8SGPGUXSrBSHV5GuZMLe3Q7LJ1zJFRDRaRkQdL1s2siPr9W/KgoqIKFmzKEr0HJCgKhs7KmQC8YURIqLRbqKxiqK+7KiIiOKhNc4Car2xA90CRcuI+v0vZc0kENFMc/6gWzKKAqyOaP+8qLaLbNAzv8fhLjONdje37hVW/8g8uLjD5be3/Mb2pqnHq4/dIOHzb6/NYQQwynK8x7W9Cwv/ONfurkHTweCmmZYXqDng1kH0hp4q2jNVs9Q0gEkwkEVvbSdqeYEodscOl2w61NQSUcQbd0M26I0SUUsLESVL1lzNlkpoL54iIur1WeumI5sIthMJIhkppnTrkQKd8Y+Jl21LU1ZPaslmKuqJiGQyivkVU7oiHAso5qsJWzXQhgWN+B1A6txfPnD0oWuS07pwxPRjjaWizwF7ky9atNCQHXjvEAcwTc95p4uWnXVBI6JhwVZRTkbI6d571KKJomOfT54kZTOSIJtScGHGN4qmtMV+n3nkUsjGAlG5R5lMIHLvlf0Bgwf25JtGZU628hNbHmSGUI0ppsw8cE0+8ocCfau1v3za9JhE2lU8rQigmFGCxivtMFNqni6nQlFDjUT2VaBfrTOSuTBlY9ji84iFpvQVkhl//dMVkA1qRkavPNz7psXnUb58h5UZh31XSSAigQQrzYjouJMpE37r4enyd5N6zQgA2uq9YACY7ddboX7gJkyue73A8ob/8YhZs6TvKpFqdCvNiOynncomO5WljhXNACBS6wUyjUm0fX94p9WN52E9NxOQt/a3Rs0mvHrT2mhGdNnKK3uDDiHVsC+lGX84AG/9zGopYiGp//TyZWdJ77AjT3b77J8pKDkCMHV5R1RkmFitNRPFM37gqWCXvV5E1FuqGVc5YODLn7hRTBRPnHZU5R5fs97RGg+d+1x1BQ44sDGbCCrvdNGys0pM9vKk8bvVc7FZNfu0ZbrTuP6ydRAJsikFigYyLAgE6gupJQ5D0yGXC3PjDM5Gant8cHyYYcWlK0qJw6lSuJv2lUYkjZXp6uaV2npLAWf9OK4hO7naDZEB2/eHd2LDyk0uBFx9ErLykmZZo3zg6LKLu920LDtFsvLcxZlQtkTiDB65eHEAQMb3vXL0K7kRN7w0Wy4R49XRN8WxkmUgXPKZLCA3tPgbcaXXNa9yGVcGh2RRuGHRiu7XYmLLhmA9kHd6uYu4MjQsX3FDoYyi6cEAYE/fXgCSVwLkJGvonNw5l1yAbPQScbbtaI7ILJqSOckamJCvuOtzkY1eAIDJ9Xvz5evMceUt11Uyy+0zR9x85KkHNcXt+8OvODXPvaGS3eKehQCcWHLvev82bY12tWNJpmp2IwvNGIAtQx+/u89Q7xxXzk0pZO6pRBCj7+eCIK7k5Je9fZ91MKQHp74+d4jMXvQqSUGmxrEc4sqUslPB5d4Az/OuuW7u2Tayih1jjBlGfHtTqi7I5V6HBx7XZM3YDjQ+niL+lIHNNq5UXZDLTVk1sMORni6g8aP/5mLO7l79C2AoT2hMqX56qgtyd1wCAPA8L5pTNCmv+1OuBp865MX7O3fzPHiTa+njSvV1js9XyArFYdIj/XiPhwd4j/YPAO/xAPjikVdX8Hj9ydAc8J5PjVwMQNv+8CvG4egzZRLjgp8oOvMeyJpZwANsCK8Hps+Xexg8OBHWf6EWcaX4d06ZxLjQsNhQUgEej423EF6aigC49GkBABw7+rRlM21cKfIPFyrv74IvTWkiIvEvTZRuaZGvxD+pEA38h4jSfGEXUZovtN5N18SVghSx5yiLEZD/E7E/uds0tbRQOi0KkJb50ulhf0IsP1eWpn+hLp02R6QStGtwQROlcij9u85uohU92j8PAA9fHSkSyztuzWF3J/aYzW2MKwGAWLxUeX0cVsfFat75y65duUG+fIeIihyaMmUGBxji9yuCcCiNAw5OKAm481KHYwMjyj+WPvCbZ0pJjho4hOYMwcEJRXzw6tuzXNJIHd8umfLDQB6TowYOWNuVsYPxR9+60yWXyiea8rB2/UaUyDfszZiWTFPFndlu8BORQMmSNf/zXVBrOKBo3gcZJN1yz6YsQyIAYMg7vXzRvHy1ZjaAjQec1xa//7BPNIJbRqnh+In4ia9vu6m+bA7AL/58xeYpAMA/Wv6S45JFAgMmj2xevORo0Z5bYxrH4gD4ntjl8OT4zw8GjLOGM9LvPXOvv3PhoVTv1nfqcwE8zBhjt18Xt5PGHLaTZkoiZA1rn4k134eVzXHJQ7zisFWVIOG5+SlxfH4iv1UjWSs0pc1fHrZRwPgKiZ2Nx07eU1FW4WHSvWdoFwBMV/0VwMN+MSnefN8zXmIAMWMPB8702VlL3/ZcLB4LlG4+JG73MIAYrhwcBAD87S4AWPzRbGIACjZu65SiMz0GGq2z23KPIkZOxk58qyLcvkCrMwO2Noj7VMcfAIBFH0nbtim/5bbtRMC4zWtC8uDGfF91p9XuZiwobtvyYrLk2TqQOMsdttqQnilvdeIRrvbUh3LW7EpofUW9/FrekBZT5KPoFjUTBKqIKE0VsqZKcxcypqKNK1DR5pBma66Wnu2IEAlCVZljEqErmLLp50xLCe5ris04JYSUJAJfOCDQKMq0WSZTemTwjvNWavXvqJy1tKHXTg6lmZweiYpO0026lNb+xRNaslSwx8R0vj3sDdZ2TchC2CgmEI0Fes2VmsMnGwYeO6YJc9etWwvSbIdfPH4qhvLwLnUUt9srJ4b0utqwqVKXYJ2pqCcSJM1aKmfUO8mu2qC3ut3qUIg1rJN15jSkSBZVckSp3q1Lcyp39BufdIKLNKQmwTrsSxARTceailHSeiYbIjImWAWF1ip13NqaWnqQqK+tFMWN0RldAzfhgW3q2JiBPxd+cPd2DOEH8eMLyytWe20HRt2L1yK9uf8d62yJMd1P7NqjXxe/OZH/QJnluaPMmKxcuM927DbpOr3Fi29wGERCf8A2MWN6Z0REFP5OxrHeDj1+pyMampMuKvr9bcYqV8jq8EkVAHSTQGP3Z32sRiA6mc2xGqKqbooiQSR8owND+Zmsr1vzT49U4m4AYAh/dtuS1kn3Tnjl+WUFn6p7dTZ7glrmaB1RVZ0gWUU+5OUC2kNeDtCRdQBIaC3TkFvjwjF79cfXXJAJRFSVoA78U3t7orN4QZPjwbzBBn/JGy6PqWg1Gy0j+aSXpkPzkUPl1mB7tW+J+cihrWja4eq11DZcWPindab3anmYcnjc9jClHbRkD79YNH3PF/+2HtnEY6JseBxAoABzShbYHBN1gqKlGJhYH7nUmCL7Oyr+D8CEjg4A0CrgAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, AB is the diameter of circle O, the chord CD and AB intersect, and angle ABC = 32.0, then the degree of angle CDB is ()
58.0
613
[ "58^\\circ", "32^\\circ", "80^\\circ", "64^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHgAAABGCAAAAAAifw/TAAAJhUlEQVR4nJ2ZbWxb1RnHn+shVUNQI9VR3crIiGSLp2hrapDI2k6pUCZldAtGdMuXrqQiw4NMo7SZFmk01aZozTQzVVOiBkXTMi2oZck6xAIJImKRKGqIpgRNHV5FCgYPMEFjXo1W38z3/Pbhvvhev4e/2tx7z33O+Z/nOed58T1CDSjzYtSSMdwShktWqXGRg/oPMVCqvJ9PakBDRERMGVwvKP71iYhoVrvPfARE3vX9DX67bbf4RNOkHDV16RERabrusYJHf1WULYHeGlfAiRkwjArva2jsE3muZxW+25xzW8HnVr6oqihBVFHuN58kNBFpbhbxWYaoZM2KQNt84AVBe2DnRKXXrxnq6gcisv1ukTvCIiKIJqJ8aCKbX+kbQhMRNOtfCW6qziuavHK7iMidb4jyTPn1pUu5ZT16q0R2isj7fxa5+u+OvS3t+03l0YQPrrY4fFrRMo0Ri7zcJaJJ86ppKuUT4c3nlv6yp/PIzr1+j+Snf/17amb5611dbSI+k0hD07D3VbnKtTaX3pYDOBm3m5JPtkSGFvNeuaLT5ecGIk3H1xWgt54BSP3BvQXdqE6slHonDvCOzACQn4iEBq9Un6iJ9HCoc3oTxmUGY/6go0TjxMD4GYCegwAfj+yILdUJJhZe6vUPZ5kXkUdscVXWrxax3roK78i9wMbj/r71hlgBVDoeOJXlY8fGFWxdg3je3AQz8L+EfyDTIKmF9EP+/j21BGqa2sIvWrvqLq0DBaAUvHWvnPqsxAZA9kGtddk9aiPkCm7c+Zj8IPvZiBWwHP7ytkSw563GKF1zO/0g998dWq422Zp+rFDDTedD3zqkj/rjjS+yAahUU5r1pguBsSpC5cTuGea6DqSHH8o1n+OTIf+Ps86w9aG+PQI8MZCO9uW3uqsh3dZfyPhTXL45Ce/1+xNOzKrBbr56KawDG4Fk/lh7xjJCw8RroVH43iBwZs8NFMlYaNLLWHWzFSJzACRicLYlhWu31ye+FLgAbwaygL7vJADLX4tcLGpbqaKxkOg2r/nwEsZkKFkuUZ14bcdLQCwBwHu3vWi2zrUduFR/lTOBpMIAjOkoMB1YaYzYAJLBOWApbC3r+d0bln7PhL5ZN5wcGXJuo9PATHC9IWIgFboA0DFlNxw95EwrETiSrsn7+q6cPX9r6k83b9QjNu2Ya5kEmG23WhW55nOOSPbUjsHSgVwotJ93biH2lMJgqCOPwuUOVTSOnQQotCwW98/lm5PFmWUGdozkqhFPHHA/JQMboOi93+sElYlHDxQAxrrcjaZP2Vg/HLSCkjL/K1udjV1rHj8fOA6QjyY8FBWJF8IZgE+Ca+4BNvedsIkMgJWuL/yx+NZJ9So+4B3twx3rAOuBtXrEG7suATB8zNue9r/oflQsRqOLHuUUsLarNCWNHFYAz0Tydda4bwgwyPhTnmbF+d0brieAC+GutZL42TFROl4+aKbV78RdjRWIl8J5AwP6T5a9OnpfaUvh18Fez/x+Hy3rZUx1AIpc6LVaxPnWBcNAkQxkgYLnnelT3kiZG3HXRbngMuU5pH1WYYexqsQjveY1lqgQGm2fKkLBxnH/cM6azhN9lVLHYoupQMdkZWIFZINmVHKCpRdn9tyo0Jo+suNsASAZyFApaXafBWAl6Gy8Uo3V6ePmzT1TlEIp06cqJaUr3aFpA7p/WWm2cCVgMvb/pBKxAWSD5nrZwdIhscIE//T6VBFLHe3zs22FKkm6fxADWA/YKpdqPPw4UBIsvXD7lBsGF7+4rVqFZfmmQe9ZS7iEOGcqbHiDpRfFPOWBguG7grH1MpXNx+FeDGAtZPlJiakn+gDIBteq1zXXi3mK4kZSkNqezo9uN8vRsv2lB1cAReeUObAAuq7br6NWsKzoFHZTuU+ZODwCKjvkH8qWVkUKmOwEYOEus0UAHN6VCGCQ2Z6q+ZuhzKcMgIWwGYvT/f6E7mhs2HeFtosAhYAZ6IrEBhAfBVD9g7V/rGzuO+mxiAFQiMzZHMlYaLK811ykAIrHRj3Euq6j/7cpg66TDGQt6xcXwbyz/nKt6UW9dNxEN8pZ2uX9kYtlzF1jgLrU7tVYB17tQAc9lrAa7Hb7wXzWdV1Nhz4uYc40WQuvzApnru3AJcsadrxfC2ZBEV5HeYn10SF0XV+8I1+J2CWHyh89VELsFJbOEkzvtspRZ737ngT40ahHY6Wjdy6hQ8fvqEeMnmseV26e5aBTgjnMhafsctRqSvvTwGy3Raybw+rqX/4COrNRKhLrHmIui9unCu3PutU3rN/I2Se95eipPiDjBwwBewPpi93Ap62LOLvK3ky2kK7b+1BXP4+6fOqcp7B0GfijgYBdjhpWYCLyD5PYhn52EKuybOSn6OZ+s/YzDNjYueZm82D98M5iBB/rAuITuEOmTt+UPaeG4Kr9SgtLL1a6WmYxF7oQmTOY6jOUQ6zrOtEVGD4KRoOfOpzfU2vF/F4ZL++NLpp3F9sKLHXiSRKFbTnjQ7OybJDZzlP3PF1X9EK4axUUdE6SCnvT4noYHh5sjNJE7s5zANPlhaUXCiiM7epNgVoJ5gufy7s1Npa/alWWDWts5qlccLmGSHGo3MhtAxnoHSac9Jj6hW5iT1k1TiPMCjNPDT7U6Dw3jm8//WnKn+la8BBPH6lSWdaAvu9EMvBhTRHDcjIFkD4SOPvEw7GLHuKxxzqmGv1MWhzJv69KYelmduFK965bvnEeNMT+7n/6+fcfLf+QXg3mYYZGcunR4mNDeO9P/zk0Z3ZAQxOR0zc+33DvIvsWO2mC/OzAq+aZBJq2sHOv/BTRGlfZPmagwklHHXz0JREx10pvXd3C6rpXb15E4nUlXbBcwKdEUyKnbm8RcZ9XNQRNGDyaU/rS97fQKaZpmjZrncKMP9N2vcYkq8/9xEEw1ELTVnrHZpiXtZtEhHev39d06xa1FRGR+V+tiviodKBVFZtvdauImGeLiSFaRURtydRKRCbie0VErm1llV7Zf4v2+CN7BRgTkTiuEsouU+td9VbzRKon3pg8AOMisoryiaRysHCHZS3zMNA6ZK13/eBqi4iohecfbUReCaKQl99gPPqG5pPUsSGRa7Yh7CPpRq5qd+u6IIXj8T1O7xrymmji097O7pH+1gWREyKrKmb5om0ZGrqiThyEa/LIVvqNn1G8LTOIO/cqw8mIqt7V7NEjIuaHrrry1k3PqtJbm3JmdlL2jIqTqD/7omzpt72q8so6vTsI/B/2l2fArKpCWwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, arc AB is a semicircle. Connect AB, point O is the midpoint of AB, points C and D are on arc AB, connecting AD, CO, BC, BD, OD. If angle COD = 62.0 and AD parallel OC, then the size of angle ABD is ()
28.0
614
[ "26^\\circ", "28^\\circ", "30^\\circ", "32^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIIAAAB0CAAAAABso7UlAAANk0lEQVR4nK1bf2xb1RU+DzNcgZmH+rI8wMPtMMRdKtUlQXVXgzPWqWaE4oqwMNGJMKKmWqQRqWHLtrIwjYkgOi1sKUvXf7IpsIyUpYyAXBGBUdNhCOAgUhKGu2SkgJkzzcyZ+hzc9+2P98PP77fNvj+Sc9+9797P95573rn3nsuAagEYrWCSlh6eqA+Z1nVBTQyI0QkmafHhp/dZ1FUDBeN+0z6F/AdEdPCqgHl9FzpvWf6BjJQ8e2Z25STRJ7NEFPIStdRtDtYrxRn5D0P0eOg5i4qdU2DUNF6eSk5zDddv+BmYkJdEHrOZ8dMrkVjLDu2bS4Vv1nksakbVWB7c6Qr3JXhdhgDwk73N62JD2Yrn38PiPov6qqWQPxpluxI8BIP2JRQmO727RgpK+jAR/f8opNtdbWMl+3L8aKv7rnlRXhwAEgM6yjVQEIBUvH4g57R8tp9tTwNYbAFweMCipPNeeC3mG9KPvwUKh3zx2QNEaey2HAlHFAQg18WNVNM+AKA0zPbmodebSjgyTQwd2XTpe3ebGCVzuLoyhWv+YGwxq5iUAiBkwk0zVXcBACAbX39F5P3P2AsM0Z/D8debq+wAEY9tbnBv33ndic/WC+C7AzOwHVAjpMOR+Z5WD3/S12c1kW0pLDW1F+zKGKLQt/4oZrhceBL51kjWvKAdhfkrh2sigMRV7SsoXTeCgU4AjwSWaqXwOnesJgLZNv8UgMEoMM99CmDEN1cbhSluqgYdAIbZgzyAZXYeQHAaACa4VC0UEly6FgJz4fCcIAhAvB8A+noBAZhmp6unkOJqsQZ833pJfSaCPACkAmIyyb1dLYV5bgpAtdNxyt8uaX/BlxQFTlKDCZ+hTppTWPLVoIm5b/kTstzTIQldD0nC0cBH1VDgQ0OK7LAfBAyzfYoRSXM50bwj0SQ/G7jBwEaZUuhqd9auCvORcLqcCisGpeRZlsVYn3MKY4FqbeK5g+yQKjkcLsvtSkbOl4AWJhQybLpKBlOBeFY1ZFlWZYrGdiriNLcMDYwplJqsPC0D5PZqft6dfRIdAUDBnYec6Is6o6DuRSc4qlJDAEDCX+HjxUYVsdQ45oRCrrphmI82qcoLAHh/omIaDbeV5WmuIAjqTEMKnT1VEOD7vYPaZ30V00lA1qvqlI7eysJGFFK+KmZDMhjX+QJzbFZqW0ZkEoKczHGVH00jClHnvnKuo35S0xrUJkHGoU5VYjBuRyEZKDk1iCNsr0GHGShzhpPqFADwlR9gAwqtTv2kTNTQsa4wCTIak6rEwF5rCmnunKM+KPWzjxpmtBsYYRzsUfVsns1YUmjT6bchksFWnZ0DoDMJEmb8iigA/WrV0FHIefL27Qv5Tm6i8oks8P6EYR/60qqiy16VCumWMk/f4rVfojwZ8LwXr3iiLNoeDO/Sr1WI6LbjqqK+7eqdHy3bHRPaJzpkvhEyc0Vxms0aK9JUSN1ZI63lHC2FpfUlG10sPcRafMP0JkF+7fNqr63gLW9UaAdi9Dsu04UwQESntkzP/tAkn+gIdZm87Nr9jCrl2fMEKRuFGrLbE5YzMt9lubYxNAkSjkXLsoCxmJLQUCi4LT8PY2y35XwxNAly1R71JlHWUxK56CgkwjJNHQQsxczVUHzb0CTIaFU+PQKAoFKVRheSLeKgGuiD8MiWlje2yYNuhGLXEbeJJhDJ0xIkzuBosqxDFQjrvUsJqcaYrNJmynKwXckzKpJV2yOM3SxLlRRKLhNVyHdzWn9Lh3l2WbCc0NGJCkKyVDkQS77yXrG6t58OlhbajQYAqoL7D/oYy52tPeppWc+sGA7EZCu0EIClWKPJoliNkWa7bdklVl0iItdZ2QuZoAH5R5ojb+3Q9osmCVrp+63LqguIyH/ltOqNYEaSVIcBYOidr+oOdl7bz77uF0WLXmbo/m/bb8rFj0fLb2xeUBpWI/aKpu/yPeyoqN6y12WCpK9g7+e86VclErJjXzkQ+XWVtI8H/5u5ixiCcsCigzgcxf2/8dhtshJtpdlyYt2qJFRSKFymTi3f+uNjv/OScds4wTBMl5z1cDDuZHt4z/Gy7JUpVA6ET23GD7H9igbrO/lAXQFrDdIG+zy7bFqwYrhCZTnTKAlU8ZrKfs2EomofU8egBQASdQVgalNoqzN/EyWV37rsV1GQNkPElMin0MuOwgIJSisUgkQXOzipAQCh45Ai571SYxeQ9FWSD/UYIqLnrvnX/F1Wg/r4vhAR0Rnps7TRziRIYGQPEqIDxECnC54iAGRvCSZhibWGpwAAu/cBmPLWTTvdjlr1KgvQrE8S5K4Xq/DlADzG9tsdAC1K40BpAMlqVsHx38lShTruJmKorgAguIR0U3TeshIBQLFhHMBawz4B4IMTVexNjtwqS2l55UkAsDstTjKEX+tljzqp6UALsCieefXH7QqrkfPIXTYte48ECGsxQBzXr9XtdXgKuJuI3gIkk1DFBm1Udn8TbdI8vJCIefFLREX68myRrmE6/3apm4iKRKp/iiT9dRfpmaKUsf8Bn+UHTIs7jt8uCgsBaf5dSEQv3ETkLl4z6y5e+/qDudN1X9no28yFyE3FixgSmyq6qUhUlNovuotFt5jx+9Vuw6gJU9z2k/MuIiLMRaQnFxJ9mvgRgaG/X1t0b7pinKGzZxfOjv07VQx7wl9oZpXAA9kzhbvoVlK5vmcdmgQZvkDy60REzEJHmcIHOzzE4MNfjhMF32bcdPXVUX4dUTG1mlp89oOMf0Pw8i2X3OiWf6zqN4P5wZ3NZBI9YoY9E18nIqK3G6QHDOjX5+5bR3Tbf14qus+7sywV3VKPi/8WP57Np/ik6wZP02WhDX7xsZR56s55q8AEQ5yOLRMRfdyQV37JWsNrwCK1gAcQTvDnAAE8z0MAeJ4HwAPgc8ljP+1s8VEw+v2Dk9M8D5432MZ0gsAMAHlFJwBMIkZERONtVHQT/Ygetv4NeOuT1Llk4U1PU13jxlOZF6vtAwJz/7qfE9H+jfLimFEcjaKbiE48+Io8sOL/imFWZa2cPvvem89fUtji3e6JXHx9NSROdc0R0aaRbRoKkgVYZVc8ztQLDN3c8kN6lX/pvzP/mmMbN/o3Xb7FZIOmsr7zvpMB+jiQd0kZsgctTTLP1lO7nFkahv603Eu0DVEiorNnFj4SJ/KOS5vZRk3sVWV9rlufOUDJiItkD0Hj8f1i5Vdksq7V4JPg8W26X/jy6szK3AcZ/4ZN9aHLwiaL3OcGTtI9ISXaSkvhH81Zh7ZmPw2b5i18PJtPnXvZFbm0qW7zxqs0uUVu4ZIrz7BEYAiMjgLdcCDuiMGr8QVp5M00B8zqG7m5D957Nxus3+rd7inHO92x63NP/0VJ6SgceWnMCYPzWx5oN8/VsHornzqXXH3D01TXuHFDsJ6eGKUO1dsqmyEAEBxtfQIDMfkN9dsWEIBccrS/PeqlUMQluupDRC1r95GmGND2KwcMlrxLNs1aZKUmLr4JksuzSA8bbYM7CB2KOT8+03LJDkfpoichr4MOPGV0GGDvuo01Ols4CFoCy0MRio88tBfAYdHrPZw2OxKxRN40FsGSz9JQ2HX7E3nxSGStQQ46q+lgaF9X9QSWBkPuttECIB0MLTLjMKdgdzyW4hxNGhUyh0Lu9jFJx3LcaQCLjOzHmhwSWs2wKrwEAQAyA42X7B0rKorZ0StAwFrDAAAsjtdyVPpwzCJTi/n+oGfvsfMoz4xpTuzjwzQOJFqMe0HA8DbzSiWT4ADCXH/Q2zFR+bDchydIDACs/tj8ZocmYa4vwGrbB9AX1U5U0+CBWZOanZmEdE+A7TTaTHYcPGAQQiFRz9fbm4R0j5/r0rcvQKgmhMI0kKSn0+Z7lOr2cV0m2xOCHEhSUYWjcJoyZjjLZW+y2+frVrpJz3UgUk04jWFQUem6EdNvoJDs4q7qthymowGjgD+L0Kp3pNAqFQajZoUTnZy/J23Vfg2hVUCqXnMqLobN6TF57/pAb7l93fdRRJIzPjszpSBAG2YnSGFzGkzc7Q30mR/MKZhmTxpn2AYbqhsLap2Z0rEOb7Dfem9Kftl0NptTEABgpr6sk0rYnNL+Xk+jo/YFYMQ3Z3ZqZBt46huW3+y5RzXG/Fi7u3HgjIP2AQADtQeeyuG3AjDD/VN+Vvhjuzs0WLFFbWmv8q3hmsNvBQB8V2AGQKlJ8qUKo22u0KDTryUEYNrX+5mCkAGMeQdkk5AfiV8QHloux47Zo9TvnVTY1EoBmXDT8+w88iNxigwt66uz4jLdGDEOOKmOAnDkoq1DMYr+Vg7m0zdqTCPfxVkeKlRBYYLoou/qVcou2kK8nGAD27D82xiGYcYSR3N//bD5SFGTabkLsfqYL/HCo177IytbkrvH5TOYVJyr/qIKYNdZthTWGgvy8UPFdR3LavnRVvdeR3bbCYUT+6TDFxHipaWi1RuF5+71xuRLSw4mri2Fw0SUrqjp/cGdrm1GV7cA8JO9TW7t1S0b6HZZtNjTH3q8Ox3SPJUvsG0Wr8+JF9iW0voLbA72D+0oLN3zEpU232MURqS5xsfc+EX1NT7nsLvG93yM6Oy7Vxtl+XxR7aOa7ofa2YUTu+jTWF3MYW1VHY4osNSUBBERtdR0TcMx/gfJcbXs45ZQ1wAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB is the diameter of circle O, point C and point D are on circle O. Connect AC, BC, AD, CD, if angle BAC = 50.0, then the degree of angle ADC is equal to ()
40.0
615
[ "30^\\circ", "35^\\circ", "40^\\circ", "45^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG0AAABkCAAAAACpnOFCAAAISElEQVR4nL1af2wbVx3/+PyjluhWAys1aFtuCKilVvSoimSJablOSPV+qDoQalMJSAoSdf/Ylk6IFokpjTQtdDDS/JWU/REmkJIhjXgSXdI/2DmiVaJ2Ii4gxQW1vlAkZ1ojm6Zgn+3zlz/OZ/t+3zlRP3/47n3fu/u8z7v3vu+973OA8BDBPEwye7bmzwOBQODpB9tLR3ZQfikRzXxj07ZAD7BvSUX5PHDsxV9vpzR7truhCMCwa7WHwnb9GQB4Yhu5gJBdRj37IgDc7Yvo7dXl5bX8crWVYtl+luO2znb/azsBbLx9odu4sJjNJZMHjiejLYMkZRcnJL4/lfDEFrAb3dc+EYDmm8VftLXlLmW4fj5pLlrOLi5ETwlxD3Q2fbU2JBHde/ZlWTPMJbjJon3fXknHhwquI8COTa3KDS25xAurbq+aTgyXemTToSAkRQ/FKuPsWGWrbMVhds5LnYiodI6d3hrbe+Fxj1xERMUhvrQFtkkWDp3DAmLS/gu7zThnlogte+jaHfDTJ7N2ec5s5cN9nxlm132xITE/etEuz6lRVpNihS0OzPhqSSKi4bR133TSljs5zU8J8VjZnzYA4wdOVC0z7CtYTBaowhZpZMS3NqLJtD9t1RPjLKaEOOIf+9YGpKMXfWlLTxJV2CLRzEAP2qiSEn1ouxhNA1NCHIj77JMqojNnJM/a5lPUkkariV60Ea0mS0aTDZtaUm3DYrw3NrXGXtiEOSIibsWpjDvUt7iyqbWaE9RU3J+j7KCQMAxyazZVVEsaJVwnUjsMj+vTln0yw3LtX/TaKQHg7ITBpVjUSO2KbWnUg6PUMD7sqm1KiHdLQw+OUkM6o2sXC7bypbMA8Fq/ZtjTc0si+opuPWrBNsvHAeSYd3MtQ+w/PbMhPVt2ZntnEABGR2dOZ1psZXMhr4gKs91J04ctsEREKxzRqsCPiOIY9x2+515CJHY/bF6Zn8d5AN8aFABks4tIHsfJld7F4SmRddDGiy1pBrW9Ymi6c29iq8QqZPRwPTtKIqLpIYcXiTwZpBHFSltg624ZU5/M9kPrlm1Ydso7gUDgVx6+GwupfW9iu8kB65m0/gHJWAqY/f4m1T7yQsfl7NnyCeDCK1GdzULb7NKHOxF+/Q8e4imJfPvWuBOuSgmsZ1b1RjPbndcvR4w2Oxx4v31r1GYlDX2SoVTz9z/oA4CiF7YubQy0INNHAIByzPTVLByl8tdnAKD552/vdGfrapkQAOYn+OahO0cv9wFYj5ulIXbTYLi/uRsApN9ddifrTMZraksqUgK7ngIAVKPV2SFjeVOffPSRTwDUf6a2pwuirfm7fl5lu/uVnc23D7eenBqIGcubekn46G9r2EgdetUDWRvv7/ksiIiuAvuklp/5HmteYZkdpTLWecQVqr+6eu3UJgOguSzRpRfW1BrcsoiymEc3c47o716asY2NB3s/FwER3XtNptqJOSIi2uvnDV5BRMqsfG+KGAD5gxHc//hxAMDzj1u1BVswmYwLM3sUWABLAzse+y8YoLm8v/a/l2Q1Lvb8F6wqZ7GiVBdmZYlzVVaNAhsPiG5/EQwQ/PGXd3xq94fqOD30D6sHzK6rOnEWADKCKxnyCWxMHAaKQAggoBbSPFgsum4RizNrW+DiANYvzXhie2zfD59486d4S+2dslKTa6TIDaLUH+tEJMsydS50bkyWa1q6Jis1+eBfZLlmuf80oWuprWkKIwyGCaKR+Cc1UQ9FgnVoF2BXORQJKK10GI3wB0/uj0RuPnecd5eGfFektKWNlBo1G9SU3xPkRrNGRDK1LqStLbS0rNDBG8rSqYN/8qCMSrHOfUsbAwZNJQgEns1Ggmgt+9qrv9bavJ3O3P168Ay35EUZsl2lQoDSDDMAgo0gEMAjbO6rTKARogAC6gXApzeVIJpMOz16ZV+IgbfY/WJ/554BAlRjADCBIICQcuQDBuFmrRGGdqkr8aJSq2nmOjLsfjRQR8ML20KqK9Fp1IZ6WUqa274S1SU9OJA2dBGJzkqhGVCvyXIeRkTRvcfs7Ow8QL9Y1ITJda0CY+fMNdQ5Sj/S9CECTVsw0l59Dc2a42/dzsSXtExS55osqmOMBBBRar5HafrCVvvus++Y3GKXNl/SfqM/5LFiiw9eMJk6bIY9giOqo2O6tGW8xBAJALCj/SlzkuCdbcq47LBsbVNIsrMJM8WuHFBMlPQG6/jkQD6nN7SnU1/SLpyKGSzWtRJ5m7QfaaucMXJut8k1hIy0FaVh0+qIElcwmmy31OlJ3ZOtScqHNKuJ3ZatIsyby/mR1h1LcGWjku70R3WUPqRZeVun4ESBK3US3Ar5kqbFbT2zkdh1lMaL5EeamLQ8yHEMvIhcuzGHpv1Im7Q58nM8EePnTi50De/REY+j+vRN0TisVTifv7HzExfVu11lrOdSjoU1lA8fmLTJcjlbjM2vna4CALtmsR+3RP65EWOUoAMP30AkojmhyDqfLquojDscm3oJzy3xwiqJvMWMbsaM8wm7p2DgXCJ9PeZBmsgNFBwLeAw9Tj6JN9zKrKT4FZciXgOdFa4vLTrkl6ZT3LxDvgrbf3yYUJ59VxKO8Fb9UspeyaaOexgf3tkASJkrWY7fy/Id03p++VYW/BHB0+jwxHbtabz8xtx3AQDL2VtSlmVbOdl4IrmXZ+0eNML2nzodbBx7gbBx9CU1lUwCkKRWnuiVR4W7tvrgoVcBzH7pkL83W8H9f3jX//UjAGB3b53MXVt98JiwDTwqXLVpIamHw7atcGV7dM+/AWDjb9tC5+ptruIG0e3OH7u2Ag9+8jaAt7aDi+j/C8Ia2ro6L4sAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of circle O, angle AOC = 140.0, then angle D is ()
20.0
616
[ "40^\\circ", "30^\\circ", "20^\\circ", "70^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHQAAACECAAAAABkY1DiAAAN2klEQVR4nL1bbWxb13l+DvVh2R1ie4gRpq1Fye0mGsXqq3aY6QYZJcdJ7QKbyQatP+DYVNcq8lIkdIHUCTpR0n5kjTJY8dBNzraUShBVNQZT6Z8oaNFI7pqaRWaR8Y+ITmN9tKipxJ3kFFFIkdJ99uN+8F7y8vKSyvL+0D08X8/7vuec97znPUeCqJYogNUXv1V1uwK5amqV/+byBjBrARXAf730Zx8zKLDw+xMbwawJdPXxbyx4Pm7QZ/7tg/ebNwIKVk2jANpuVd+uQNVLuvAe5fintmxE0PqqMXsuQdzQeKWoCdWRPuRCEjuu5k6U6ldmFSScWaQaJSpDDsdUwTQySHOiKmvqUFKUCrsB4R2AlvS+eJlf3l4zojNQHSuVWEheXwTcf1xveh9we9t3tnvd/3+gi1NTl2+3tTcrIP/wg5QbSF9P/G76+jZ/p79aYCegiy+fv+3v6GjT1dz3691DWjo1NXV5W/exu6oaYZslSZLMjB12PzxTKJZJRs66M8a6M2F3YKyK5VpB0uzwv+w9EizO7cMfPeEC2wLA+MVfPB7ark66ihPbjqOliDuctsiP9KU9mWKp0mHPEzcdCWpr8Ifa8daQ22rd0x0cRpE47qHEtn3fryCiQuVB4/t+lxjYDhR3rtCpF4usEIHtZ1Pv7447QS2jgUzYF1eTpZOjL0IGYpalM77QUq3qTe1rvrJXTZskpfan7x/VUrP2vVf8X0lWXIalfMjksDRTml+gSIQFUUvoLd9wNZIqHIrs0eSvvBXH5eSLZQp2v5Y8mrVtagJVFHm7M3Bhc0VMBOeTZUqaLgQ67Z1xo1ZJkrO+RAXtKOplLFC+RsI360i96nxJHo9KTvZkIpiasS4AIEWPl9MDStdpMjzuRZm1aSIBdP97mQIA3vEzb5ZvbBZ81m+nFrN6mfFY2UhDV3KZDcA8e5ePX2itKKNOTY8+bVPaeuH47XIaM3KQ8V9xIKcuKTNbM3bV4n7TBlhG0tMhn3M5ATZ1DduUYm/XacBqfhhBRxCqBhMCZ8+XtwICOMURyyIDaOq8Dd/WdFdwGLBZYMPnU/ag2Z7hpmpBxaPnAZsFtnnsWJalPBVABw5WNaAKtbaP25Z7Tz4pLHjSZtSMZDsTLWcvyYRkX1WWEiyZwrqkPc9WrVwAkFpeti0Xw6eVrzFTAx1p9Vd5ClKp+zn7cp93pDRTETjjcejIFauXVPVXltKeknFTJR0O3l2DlACAyIB9ufurpSuRpMyMJ13NWdooqVxBVFkuFdUFQGDkoBsCNQ2qwMkX7JoJ4Q5qog4IIYQQ48qYKsw6ltU0phV2OBpGVe7vJnMPXXUBwNRWqXoRddoUttvhALjbJ5TE2jsH8Xzub5pdAPBCSNVUTSQeHn/XvsbJF5UBuHnt3oWrn/janS4A2fGjtcGptDn4I90Ht6RD0wpXr1/b0dIKwEXgx8GajFGBzp5fBW001XToZQBYmxjk6GcBuARw8esbw4Q7eMF+bLpeAIDfv3Ef/twDABWdjoqzl2TabVddJrcukRw9sEIyHqMLuCJtULuE2zcOWGycCgng0wNAfuL+LcDYqXtRD1z2bwwTAujrCtooOPXdt11AI3AWQPedcAFTnbXtL0aSWsZRbibNdgVXeusAxfbIzwEuIO77COKNZwfLFMx17fefbe6dW1ZZEgBcSLU2QWxYVF8maaWvxZ4O/7x3ZBi7rxtyXZjxagxYklNu+gZKO1kM+6SF0PLpaBP2JA29uXC9zWG39lyUHFe5eMbnSfUAx59qBVoWAGhsuZCUbDGEDrX2kBDimbI6eew8jVwt93c2p840AX1/dQhAW8rIMKVpZxZhFJfIuIhZGQdS3+GUOfq/EU9kSSbJV75MyuSM11AV9Dg5HJKjO66SZP+BlTKgPBfW8SOeiBrYmZWUxA2PoabTK5KF3se/UKHK6fFFAMDqkBdK2AvIdg0riV0LhpouLDpyyUYaugAg/075Kk3HRgBkh9p+Gx/YpjFiPgfqYwrZgaOSuaebJDm/a5Dk8YcsK6WbM4x6jCHMaEhP3mEIpCGzqRJgAYxyf9stMoFNCUOZdsiX+dgxT8gwm3jFX9i/jFMHdHAdJDNzzyBJxhEjmcbmdHEFkozu/JMZAySXJAOQCVR2dgf10o6r5IBQQnPfOWtRIyadmj3yI2OOEshTR2+TYdOGsr/akkwqd4nd6m+LJROTAtNFZzhzLZjSntn11dXVtUrIRioBnZQCCZKmKOVkh7GGaerUA3A15uqdrFfjBmhMT/UjKinJvq6gWjJ35jVj27TxGqUed7/nNHQkLNNT/ejv0FiRNFOe7bqw3cjd+8Yrq3rsSewFkKdokNfq6pCDqx7IAY3QPwByEA3q7zzBnGhQcpJPZgqQQqBvYJwQQPjoXhN3KeNe5kLbdQBoQANcrjqsNTZSRr6+sS4P7QMgX98o1tXfDaBoZL6xkUgGux6d6tAuFgWAwHxSCGBktcespSJQrxJ1qc+DApRzOZJwoY5QPwAIF+rrCr8B1AFvB7tOJg7p0giA6nE1+VzRmZSp3aafaTe5SjK3niflHEnKqyRXtQ+LsrnaG+Hq+mzoc5dIkwmVqexwS9KN4glvOsS64F6/BReAujUBCKwDshBroID6ASBoyAYALPxdp386YBg0Tdamx57GNyK7dJmUT3beGJ+vB/Zd/tt6AC5RB6A+v45GNORyogHaJ++qazBk54EPen72vWiea40oIgqc9ro+H9BXlPqN7zE59IXN16l9kNO+rcNFijXSN5tL81RzImvqxf4pAIDs0Pdd/I7vjkd6ihRroLlpalHKgg/3i05Fbs0bxJ75ZWA9JztyIpb7OptTPpvXEdmuHzyoTV2dq2zCZ8xxEQz8BKhrdPLMYrmvHa+fabI7Fz55eF9pQHai0zSkLgHx9YsO8ABk+9qRGPhT2HngI7fPwN3546Lci0fMv0nSXSE8QpLMnNNdPGtvkCTfkrIsjVIuuc0nYBcAhEYqnh6yQ97fxgcqPTRYPh7bBKpnOE0q4OLhohMwWeQJW9KI54xBG2Ul1bbTIlF9RfcRLgDweu1DxSMtU/Fzld4VEHh6t3p9Lm2dNJQks8Xha5L212aMekKzVBa2TJJyOUkn/XrS1GHJpafqurQn1N+6ldESMSlkPnfIZKTXVEmtOutLF5pJCb2n0uC3Cho7bMk7Y5rzY6LeviIOSTLrv2LIiAV0H770dldz0opD7TJp8LeKyFK94XOmDtxp9ZdFlF8DveIrLpEn/X7LU6TMRx6cnJycnPxPo/MaDanPPVTSz3C+X5UF5cPDNHE66fdPahlGNcokpTv8fr/fL2KFFsWXHXLGk5Z1ZsqBLnmNZmn6oAJpTZEIKZtOCks+/eZeQzgXJmW12yJU6DWjp/TMxOH2V8pD6mPquaE3tngKoNi+h61eAqj7mSBCYkRJzwS6Tk0fqmAKlFbaZ6il5FENth8dBsbf7dFNh9E46FNbOWTNhryxSgdWTVJNvQarQF14ppsz2uG/iGDo/spfZ+ZCnqgtngFU1kDT0qJFJZnhZ/xxi4Ki90j/3F/fsQfW74lEwZ9hDA8CwPePtgDA+ksHPmm5q7/7w95egKKkP6OPwm/f4dtTnKkXUkAdRaEet/5S2el+7v2Uxb0hgLm7vq00KSmWScYFMB6PkTwyVlm5RRZp7EiRVo0Fyg5hsU5zJ9pukQM7rpLMBGzXitLLihG07BXoK4EMKfcD0E/TBdDcif0rJDMHbpFkxl8OtR9AjAMAYpFe3VIt+2ZKLVYBU4l2Ze45sGIGHd1xVSaZ+1clI3MwWgZVCcGP7l8xqjdgvb7k6EFFAbkTgyTndz1tLHXlJ4JfEAQa/l6ZAE0Tl/sKc8EwLfCbBzYD+YlHthiKhlqClk53/+UJxS26+cZ9AD75pRum2bs29xntlAdlrkVFVxYoPhkh+/P7BHDzjRbDkpr66VOlgED2KKJq8vWdFi+bXO+lFUkKEOz370uVeodv/vcXhRAtO70FzMUzUdPDJSo3Fql9Ae1ONT/xwBYA63OfNYHedfcNQADPf1gQKzR27IUS0FcHSeZOPLBF5y/b9azZWxMQEBg7NqZfoynaxZtv32eqyDgGydUTMdPcy4QCaVMGM/deJTnf9j+yvk4VX6GI0keO6GtIZvzACskP7zGvGZDzuwAlmGtEiXn+ybQA421/IBnfv0Lbl1dPeY3mJffQIMlRDJorlQ/SZZ6QYtTDjasnFO0OUouYzUjZkjaT3ieM24qsKNO8SC1BC/7JTEDS92YA32IcwCAVSTOSKfhIkjG/3/zyr9wGaR+OTAT2lLoEZCRCOXDJ3Lc8Jh2etO3MGahMMhFwh0seLkYihoA9SXIm7D6ScAipxAbLkQAgjS+OBRnuMC1xiqmfxkChLtjrkxdWu6ereCjh6M126tnLt/0dBeC+D16bUFdoampqaru/R3KO6BQUykvxlNT6F7vdgPs/xr/3GWBx5tp80uvv6HAD1T3LdwpKAYrkXPL6IvBuCtI2wt0mtUqF4iqoinf4RgassJwD1wJangmHVNu/mJmp6hvfqkE/As1UDyqUtzb3f1i56kcHCvSNdjOTCX+8oPmJg2y6X/VwatO2Y4Op0/znbykXUjVTDZL+8toOcfO9SrepdlQ9aO7VGOcvPLMBzBpA09fuhefk83/YwNqpHvR1353Iv7NzywYegVT9H3z5ia8CT710ycFL/bJUte0VALDj1faNvHb5Pwo0nTEbprojAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in circle O, the diameter AB perpendicular chord CD at point H, E is the point on circle O, if angle BEC = 25.0, then the degree of angle BAD is ()
25.0
617
[ "65^\\circ", "50^\\circ", "25^\\circ", "12.5^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHsAAABtCAAAAACkI0ElAAALY0lEQVR4nMVbf2yU9Rn/vHcoizacjENPeLsDe+hhXS0iUgG94qqt02VdwlYxNes2M0zIZmnQsA17aFhkmS4Y6yRhi51hG3/UFBfCSizziiUUi7Fqa4tcoXhHOFcNRYrp0rvvZ3+873v3vu+97937QqNPuL7fn8/n+zzf5/v7AXRC6wFAnnRU1jl5UIQIAH9vGCZ/Hv6qWGF3VBRbAoDMdBh49p5nvmZsAMDR7xDAko+/CezuByQAN80stDPs9P4IAJy69RvATlVfAyD5XM03gH1oMQA8Xffg14+d/lMNkJTO/xvqkMsRLSs4JKl47cMRAMABndQXBkbOxcBTSQByGa5aLS9ZXpJXkdIVY5soeejQ2+fWlJatKMGiIIAzY9LF/tFEr7y2puYGV5zcYFPCyF/enIysjYQtcodisZh/3c8WFxHWwNA5je9aLm8eLlRisDmwZvcESVLo/tqQc+xUc0njfhM7C9YdDb4t40VhXWEnHix5KlUAUpeY2OhrTjkBd4AtyItb5n17Tm9xSVS81G/8rVPFwR3J3RnY0Bbp8vc66kUFvTHYZW7R5WAnair7pgJ97PL3OmmoSrHww+NFihTH7r9xO7mznsIleHprcLCwmopit/u7yAn/IEk9uIO+Z4f/jYL5hbAFmd4YGiTZ2qSkdM3rdYhLUrBf3pLl5BKbnKhbM0Ey5Y+rPJyoXQeUumPdRfuCBbEHQxvSJLlpUzbJXZ9zqrE8flnYXXPaSJJxv26qcCm52OGLXQb2Rz51iDZFDS1yZ3DsnGcnuT32eOhlJTDonzBkuFQ7t5drfW5qqzW2INM1G9VI/Uum3C7/O67AG+td2vmTNWkl0BeYMrfLpdqnqqKusNtD6owoIu35CAq4w3FOJuROF9h9fm2P0B1KW+S77PN+ZV50hJ2Qs6tQZUd+tnABriinIziuhPS6ssQWNTuylW634elS8q3r8tMssfcu1/ScCb1lx82FwQlyKtyVV9IK+0v5uBZsj9hzdCG5ILvDU+bUPGxBbt6gRaYCfQU4uhjngmzYrgbsscm4P7vL3VlfkJ0jtWv7h5Q/ZcqxwM5N3xOWQ0NHrsb5k81FsVO56TvaVIyfG2tPmdYFC+xmda9Bkd0y2JHTca4qZkO0CPa4L9stzWYlWZFzyUXcb9zE5GHvbNK6L+7/zJZN9ivcjPP6dltsQZKVMS1s3DLYkzPJBcnOiC02Sb4fFGrzB/3nHTF0Mc7T/rFC2M1RLVS/05ZHDySpRVsanK/nQsed7Bk2Y8va2mneMuioVb7E6YoWXYqjcS7IvnA2PF1hxh4OaBwi7Xa8WutIske+pENzaO3pkuwgevYHl0y29uojFIKC7C5L20D3YCSLnatYFFzhVrdXjbbvWzGpu+OiBMSqIUmQgM1/8ErWV1i7Wm4BgNO6JAmo3VN/pODdinINU/22EktOLp93LYwNC3ysRDoq7do/XXGAJLm+xZSRJ3me3pQOFyT5FBMtJjsf8yvfdKjbDjuBYUGyB/pLH2EGNx5+c61IXL2DJNsBNHOWQTHxcuW7R/6ene4CFafDYOZXiub1Cq3d88N/rVLv8/R/le/I2XfOnO697uoPACQnicMfme642h4nWWTL0FpHkUCLlSVaG1x/Z3RdFYL3bt0Vm+S6PWSijmT7K0a5GQ8DlLCraqW90Tz7iAQMh63MsHZP/b7VuqvMnuTJdxOD5aUr6+WImhQ+iehzOHHLo//EqEFuUbefdLBl0FcxhlXJL8Z2/S4SRNW6aGe/sfwe3X7VILeUWghQ2vlQub3YRjpcTXnk2ly31rY91HjV+0Pn1ywOPrMwbHGbK3+u17OeQnHqbhmK02EAUCeZeCz6eGS2r2L2hrcT9jX677CSmxIwWUIJzzeWORW7GxJx9rVF/SNnexeG7q5srPThYONjso6liUr071wkmU6rE2jJRe2WwUyCVmtFk6LHmmh7LO1gbhdkQs5FFZ2rFQVot2Uw4U7FdrdWh3CLqnNjru16LsgJXy6q3J9nPOpkQAxVx+cUugL/fOiDRP+JVLVcVlVajsMRyCeuMRSghION+1bbqP3CovPZsIZNwiNlbjx17U/u3egBMoCXEjKAVymXAZJjR85+8sF49a3y3YtKJU8GkmkhypECbvVmkbw7kQ1rtubJeAGP99Jgzx5QEh6JwgP1g6Hku58kh2aH7rr5x+XzJCkDLzIZLzI6npIBSZlkrNQ3qX9WIbke84EDGVKE4g/8LZ0WTAsyTabZ98Zz9csRum/b7tgUmSZFWrEO7WdpEQXW8/7lufAsAP9A4/cPRz4OAyX/OfOoFwCkzJEzo0dTH1bKdzWUrgYyXiireb4sqrz6j6RJnk+XdHLPAjh94h7cJEF4pMCOP3ovDAwljp86Vb1gya8X3O6B8ABUNCpJwpMPLll9jODZ7qCUmJ9LmAVIR+8rwdOblgoJ3jO/fwK3L16wdcFN8ALIZOAFhARvBvDCk8nACwHh1X4WklmAZxskIX5rLsEDYOwFj9T6IiTg+vki8+W0kODxegHA6/UC8EhayOv1Ah6PFx6vVytTCLw3L3HoZlUDgGJrw3wdwxRkd4Sciu3eGgmi6pHo/veVU4/l7FKUrPftlbp1DcpSPl3x5wzJsXnZjCN7o3XlKK+L7rUwWKftyN+3z9adg2cBhx4GUh8u8gAIXjUSVg1jFQBg4Gx/55m+4KJ75HDV7JzmnL79GcY5JeDY4jm6bHL9MKcr1IWwYZdV8+Ox6OMRrz/S/ELMap2xpfxxvmODLoIeAECdGt3VkK2Vp9lU7MXmyPzZ1b+Ixk46xzeCZ88GpLaWZGlk7TkUfjyefG8k+c7Ymarg0jsXVhZ9Zgalg41vrtJimetGr8/lmd+BS98KF+UHAD3Jk8cSQ+WlK5fKedOXicHBxuwG8ljTsC7DjL3Jt624MFkaGBsYShpM0VhXieWW1JY52wpgD9SPOcCkpP+OjvWOne6dW75MvjNs+fp+8LF9qwAgEzgetMKmpPyW7YzkV7ZHz4U+Gzl+enBgqmrJwrWyecOnSr5vZ0yvl7x3/5cGXjPydkeT742MHR1NVgXDKxZWmsHrf/RTfdkctor2RdkJd14Lesq2uCd58tjYSHlpVVg1xYON+1eOVp02OGTk+zts+tbzVwSrCx9PDgydfk8xxVhT16uBbYYq+djJZXHf5YDbknICnTvrK5E0Mc6fiZzeqzkjbXL8NLZqxQRJvg7UTf+W6o7cVDZuvnOdGUrNT5FMoIVMoI20fjfY/MRM4wqSDdsFtaux1gN22BcD/RapVwjdHfofyXZlvWwftsPWvdXMGClvNdMVbbq0PD8uAmiY+8KMWjqA7bfVAkh9qPn+afu1fNK9zc0MdQTHSTKBA7rEom+SM0L9fsXlY7riZZJMHCiEnXuLvVzSb3pyb7HtOED2qLsk2zfo5poZsjdheIPukYAWtWX5c6o6GWdql758xRZGSAAem+y0ybaj8VCbbZ5TiUnqfQ70qSzoazHomxFj77S9trL1dyDZ5WtzexDKp5yPidD+FcZWaXDJxswVAYupJtW3xiiEErP3TyVQ3j963wXX5qWjL1Zf7LO6rMudga1JAuDbf9udQ7acbatpdHzZ/R0l+ck5bgV1RrYHulwff1XquMHCV0JHDnznAtuzDXFD6a3B7HX05fiQKdeQNZWFXv9tyOAzeHnYJMnOwIZxd3Kf0/tKCmFd1ZEPeP3JuUu3fe78tPDZlu+GTtTmzE+yqepMDpH8pW+zw3N/UvWNVWvaF3TnE9xlYGbJdl+Db8t/nXF06wu9xXJPobVC9YV2aBku/c9H/rqviA+4i/+M4QJbXdiTh7pj59bIIaPv+6dH5Or7Vd93p2dY9373gObzj1MJAHIZrl4l33xHietz8/8B12DIv34u43oAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of circle O, CD is the chord of circle O, angle ABD = 53.0, then angle BCD is ()
37.0
618
[ "37^\\circ", "47^\\circ", "45^\\circ", "53^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABtCAAAAACzAdHsAAAKhElEQVR4nL1ab2xbVxU/droVaWGeqKNaqyd3xFU8GYRHOlFYVKejSEFUXQqp8oEMuaKtRY00V2TISJUMUj54UtkyKR2FgBqmDioa8Dal4GjZ6kI/RDLIG8uaVHNJNrfUYIHcOZN8Y+f++PD++P31e05Tfl/eu/fde3/nnHvfufeeex2g/zO22C96552l21miG7dA5O2m+5707urtbJ/RYU/Hm2+/mb3d90j3E52000dEH67Qau5G8ap33/792zefcelXr1fD+8IBg0/vX7mcdQ9FutuhhAXKZ3u9o4utSizEPX2TFS4kuFV7sGAsxTtHZlqW4AAwPfxQomyDzZKxGHWN3rakE4rGHoyX7paxmnAnyzoCU0VKCXeyZkNNc8a0J6rk47oXPeeIL7Nxxo/2Pz5vxaBH9rEDspRm9UwYc56xNoiaaJzyLVgUMWaccmeA9tSTcNE93T5jI+a3ErQFct5Eu4yVgb6K8MY3pGWpd6jaop5T77h2+7Iu0QWSox33JWL71U/t+UcbXi7jmtiAXgJkzVKurGkhLeOCS/6lNmJRqeJr7oIdRg6U/RvXUIWxYNXki3K2gmN9oGdiAz1nhGdW02Kjmg/KkeOgUXppkwjpl6Ufi41qoVR4yl82McUGUPSmYTQYREYOAPPuljNvu8htM/QjCh1v7rDh+dvBtM/IZArG/anNJQRODbVk/G1vY7OYpM6rBf7UgrHqzSkLbw7mAjVdnvx3/OQbu40H893gq184Lf4R+r+j4K5sqnYiSu4SoLacUxRhLObaVO1EbB9JEWksJ8qyTVBxc7sRQMmtbdgpGDl1zEXQCrMpSn7rRdJoCQAou+ytbjeAglsziQj9+OqhNjdI9tHd93tNDgCOUPYedKGIdFidJgDI+3DvGBvuFVXTTiKiX0dwDwaNiI6Rc+qmAcC7qbOUBGlHOR9QZTuJaKlhtP29a4iaOXbf/Jcy20lEV8L3gpCIBH/a0ZfVMr791D1jdBARhS9rGf+8954xEhHRviuqJLDibm9EZIjoeFs1tirnJSdRIWhbWhDR6DNVrF2JthPreuwDRcJJtLRLbs0KDqLRv/27k+57Kf1JG2L6ryuSW4gKAYLDrgeY/WmeiIi22iYkBwW0Ogba8DcvHw8REd1g9hmJAu9T04ZOotIO+3Xr1/cTgWj2UDsxQG+ZmjbcQrT6aft1b13fReSg2TfybRDSA6uKhJNotQ1xd/QUiKj+bDTUDmPnJ4qB6SRafcBmRRDdd+AM0cr94bPtEKJzlchB9LLDsa8eJ8tgoAYHiShvMZdqP1dcAJYpCixTygG7QV0lqi27XrNJhWP5c59Q/fN7f0FEz33JKVi5PbzyzZaf1YSrrxz67Dqjyf++QET0qJ8AT5vrOD72sC9vryRqF4Y7+l7oepSv9aREezuJOlcNJTXDfway755K2SmJ17/jTn155S9/f+ozjpvXuyX1gZA9gUXMe5NAzWsaPJH1mzvqCowVAMz4Mv1YpovigCJgYEY0gR2Md80BwOlYCy4A81GPL3ENAEfFmz0/BNGqy78DAfEXGWPrtvgqQ31F4cVz21zKhbjP+/28lDoSQzIJvEwXgUw/QMDEUc5sKMiBvH9U2kcnkiZhwsWk3x1VxMhmfFUMnQcwS8JETsBc2CbjlCctp0oeo5jUyungg0dUZwcVbxYI5RQ5BKy4OeOsxtBg6+CM1QHOGIP8EN4+joQ+YIwBrMYZqx99gdVlYTgAlCZ6tw5PS0YQdYicgGbVQQA81xjnDEAdWAMYB+Oo1yE9ADBeCH63xjjqa+CMgbNr3jpTtFOeDNPQq7pd/yVfFVAvkQngwz9jHI06+Do4Y4ytcwZwBukB8Pq0Z0pOMw7O+OA5uS+qU4M0MFUBuGYwVbxZAKmohhFnhxkAxusArws2VDICWPteYAEaxlyPwMguDHf0nS0ZjCOOSAwABi5oGOvvdTEADbYOgK0D62B18DqkB4pfPFwRsxt1iRH9FzmQ/nbn4+NFNY+MGV+VA40HlG6UE9Bg3msAwAT1GNOOnJmuCWU2Y2ydMYZLT2Ykt2IMwaaabhQmx5NJAKhra4hI+HJGv958tMOTMNqUyWUFmyKe1DHy/E4ADeN/shweUI5tsdBC3Oc98fygiYwCZnxVAFh3r2gZORDK1pmxilc9+vjgYtLvPn4ZaLQ8FhFtarwrx3jEpFrKc1WTs3I66IqIbmXiSAtG0aYYnDJiLD9kOCtXDvSVVbZWuxXUvEV9JRGCTbk+uiIuq+IJg17M+VTnQeXJMA2dl90KB5CMmxFKNsXxpOaLyFg0CAROeBQxZdmtqNs1jR9KNi25tCVIFDeShNpDVYd7JZPxmuhW9NCMfLE8MLNTtGVcZwXjaCfHQjAmTdLpkc7QuEmHFT013b/KFTYVo51GjBiNKqu+6hF94dwxV8/YDWM6AIiMG+bGhMb4sP7gtBm19jSnTRYNLgLAfNSzM7FkTgdgwa/0HOLRtvjvA2/59WfZzS3ABTkyX+iNfCy4lVi+JR0ADJ7XZd15RLRpLWBwnmFw+pD2TDZXK5Y7jKshrkqjOU5bnz5woOjNAGiM+v+ocCvW6NfqIdvU8oQF89sWUXwiFFK6FVlwfUp8Se9Vf5PHac5tcYrEgSn/j0h2K5oBYY5gTpU8ckJ4CidlrRiReRexri4aSGbX26KcUk1akk1re5LGxZuMaz15NPbHProQ30298Qs3W5Go0FBuQmSbjphNnpKXA374tSpQ7pkAeCObHOj0DU/koFHPWNfxiGLePyGUMj/VlXU885tgFc2Ta4782ZHureHknP7kSYtqcwd6SbRp2urkmmM5tdwPQDqdF2UupUf3UCh2fgUt+zI5Kr5INpVO543qSDrGsCzGExf8sea/wQFkxw485Bkanzdl5bc9FaFwJAaA1yLBgrl8IuMZakYwKwNh+ZaFhMXJSKBj76mM4XTIERfclbA+LfcOmfVhk3E5BcymJIZGzP+eglBa2pdnEmEKRqcMeqjgrQFcsGluh42bJMv9AM4oFm3nPBmTO0dXU4Pb3IPPa9dbI5MAj8QATHumWzsMAvADojwOqgLDLW8EFc5Fg9SfmFF4zby/gRlftc0bQSrRitKtJxOBK5lT/R2ByKS0KP96+o43i8uBA5aX2BRzh6b9P6hvdgndqW5tfnzI4zowlgWQDUVipZGdd3GzC0a314ywcj4Woj2j6V3bT25LWnsLnY5qFKOuUdOAFm9Wq72Z3NNBgVs2+MSTMvmcDKSK0HvPXm/4R2ZJ/qaLvgnVtq4uLT73VuJhZbyqRSjLAuWf93oNN22yqgvPevomK2jpBxWwd5v0tVWz26TZbHbbYfE2qe4qjiHs3ph9a+7KP9U3Zqt/VdyYhePpN4jo4pA1qxWjooU77yyVLsNRuEVE3m66/yuP+OVbwXDQ0yOHZwfyIWvpbdle23UGOWvBKpYpb92Z+vtyVhISOYzG7eUnO+nk8ZCNw5oN6Gio7BkiytupZK0jdEk5xyF/Bs3mcebxdyxbU98lM4ZDl3ToPzs+/DhEx3pmN4XRGiCiSwNEt67buuV9N/2owME81nq6Wq02AKHjN4cxQ0RE/bbK/g+28FilXCBGVgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, circle O is the circumscribed circle of triangle ABC, angle AOB = 60.0, then the degree of angle C is ()
30.0
619
[ "25^\\circ", "30^\\circ", "35^\\circ", "40^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGoAAABxCAAAAAAYW2kTAAAKcUlEQVR4nL1ab2hb1xU/cpP2w1xU2mf6xjS8xipWZ5aKet1C404u84jLTFCZhzcwqwNp/MGDqks2XDBRP+SDWTPqD3ZxCQWXeVtovaqMdlWpu6rggMEdSsGpk1aZ1blrlDks6pQx5b2n+9uH+97T+3Pv05/ADv4jnfvnd+65595z7rmX0DodJiJ6reVm1AYUO/wq3qZ8q806qHUyLj9OMWq5ZTtQfznYSU8f299yuzYUuEBEH7XerJ1RvfsRFh4833KzNqCK5f30VO87/w+oPw8T/eNST+sNm1Q0q388nIfW21URFDIEURNQ7g6yREQ02JyALgqh4bBDTSmnca3Gc2X1ARAROSWDqxZ8vJah7M5CdeBrLiE4QsjL83XQUIEu+vL8xSs5orUaEUXu69h7MHJ/f2ezsjYP9fl7q7krj0Z6Hu7M/un2PNFnRbqxUfj83NceGxq6l4gaTliT9vfxiag6trgFAKiq6/FMvXxzflSJzVxuaIFNravdxf7IiS0Lls0l8WbMcNW4kFIHzpRvGaqU6hx/0/G9rOaBxJK32spYeHrX1oJgNTeE2pkMnyi5OOknAeR6qv6qU+FUycdtFqoyraR37W8MAHaVAgMwMse/MmdpaVpJ35RtT8FQGfXYrpeXmgIA5FXHsOq9l8a7s21A7QzF1wHmVnzpLlNHY2ln3fqOm4uN+MRrBLWhnhJwJ6bNDwVFYnHGTPdma2axpLg0YbYt3HPdC+rvdUVZEXQogzKmopsi/mh9pKVwSWYBG5FpP1MCVR4e8KqHAR5jSKWkvrDUP/pv73jFUJvRyZpwGf5wDnV+SSkIWzMA1fG+gqe9ECobnreauCkXdS3c9IQQitNsONcY6kJYtjQ821FZ2ZSokAHIeAYtgNqNzkuQMt90bbIMc0lJTQDAqT5nrCOAMoamZKFPPOPZiKrqh946zqbjLkn8UKkhw8fjtNzvY51JSOoCAKrfTQdBLUWF2woDjOj7PrYRzfnr1mknkpFCsXVlSwQDAC99T9CZYKRO2nAYjhuK7URkxoeqmhcJEM8ExrQr3f8UQ2FoVtaGzT0h5GfiRmAEPTMqhjrbLzMJlBXhnggMvCLHAVCNWXpyQVUiG9Im0p0h1yMVDwCwGqsKoE5MgnnduEklpSBT09C8qAHsbsZO+aGkzg5AKiUtyt/rj2jcUpZ8UBNpafXiXQGhUNKyJcnQTDEdUKUu+aCOyKXg2giwQWZ27IBKCTynWXkrQLUIVAcAYDLthtoNS3TEgOTpwK6K4ZIdZYvKC/dUXFBzR6Rdudy8iFLPBJcnl1xQ8felq35I5sAsKoWLQcUsk3BC5bsBa1V5KuaiwYsUYOkngYD9yVCKDqhUWtrRAYebl/RWVoLPV6m0AyqyJZPpjTgAxuQ4AMNsoOvHeqwOtaWabXxUq58Q5Ug+F+Mho7Nkp7M+SPCjsf8E+9vOpOM4Kz5QE90x88ugY/BtAzkicyBjizJ5fC49S0THnCOS1HPR7KStwHtlfn5+yMM+3lWB1nvMV31pIAhqPWZBFRXeuW+ufHNwfBAA3umquCeWwYhnxIuF0x3XTajVhKSG17KyPD2cdWXOOGXiMhgAiG9ws8DF+8XT+eXp025TeHEyDiK67DcRJG/7XUCKKXqpg4gIoUJMXOH0SI/DKkH6pSEKEdE7T3R6rTVEv3muFpKCxT4lrujhN/1DZkApvOPmFU390XmRkhJn7JY+Wh4lzo7nhQr2uXmt9zWAG6CnPwZgI8AD5BIEgGla7yei4oLic2G/GAS2+bISyJ6ck0Jt9HML1CNCtyjyroeJZHcUDJtyb70VM6G6bghKAxq+tC++1qxwnHYiJhTpmgam1QBdMwDomgYkX9A1zazJP+maBujaFz/uIjqo6f4OBSo3qRzuMI1zT2gvhTo6yNizF4yMjr0d+ofnjnbs7TCIiMjo2BvibIP2vPydnruJPqkKTLpnfFa6sviotK4K04EaoGmaVoMGQE+c0QDoABj4ADQA+seDB/+K1b4Hf9R3oeaPXaTJDFuBXSXoNcPuWQPw3j7dguIggAboJ5U5vQboNSxHRNdl05JoaCtGgKFD31fgMwW9BjDoBvDQWeiGBaXXwGrQjbW+4RJMKHy07xl/0FGWJDM2HiKAaVotnrflN+f/j/thG0PNZF+firzKmfz3X6MDfitIjwmh+BIGMPwWUHOW1GL1rcrKkWbUSW/E/Lzqs3nudnwTtjxqQqXmwFxQSwlvJrA0Elvz+ihgTT3t7fWFEf+YgHTahJp/SnOpvdqT85yz5sPpm3CyzP9XBkY9rqsqdP2jyybUuwm3tHMeyTYPPOqPCDiakerZdAnFlhL+qohvuBx+XTC3m6/OKLIoBwxYUZddLCMmcEl3lMmsr7qEdltRLpoMOMgB2OqbMixcgLt+xwwyAOsP2BETD87MctfaKB9VBUK6iN0Y+/aOoz3ijoQq5zmCs0XnOE4crdc7q6T8EYsbCADm1VUHa5UfKOrbFjt01htIm27e1lfxUN96gyGZtB5xZle89xjGnSXn8cDmT9pu/nnlVKPzjk27AyN197YW+S+ccaXzeOA49Ng5hXx/Qryfuag+/9PRvP3Z4/pdh558t/XJ9KSV6fArje5fPZRRbb3lVacHdx/lEOdrnJmVVrvHdlsDAlDoO2rFTC7X/3oCrmO3mURKzgHYld+iBFJ1or/IBfzUGZh4jt1mMmEtUgVbUqYrrY4IXNuLqilj3bhQUKxkgmn+PEWSWEIxEZdn0BrSh5EZAK4lY6VI7HW2o5SBbFSbVaT5xwCqK6F8aLgMAKlJk1EKuxI/2TwwcRKI/zo+HJiDaIZmIhsArlvbm5XO4tLovXmwglLOdnUtS9o3SwxAVl2Ena0sKVc5FC//1Q8qAE78LPJT8Y1a0yAmbfdPVHGdu6KfuFKPC7/fXwFYRf1D+0BuzOrRvgK/x1i1rmwIAP42u80fUASkiVvFwpKaqUbOodrrShNPYds8sX+/HeOTYOWj00sJK/nNONQC2YmIgJR+Kyj8b3nkkftOd1+zAi8CtmeBrDUa0UVF+6iz99y9CWCBaFB7mrA9CGDBVpzk+qU92lEz5iGzSLN0PER5HHakcuSXSk2TZfXVAycBrXcSAI6v8BO+c2s1hn5+q1AWjScBLHRVwICF88EXgG3s7g461VcBbvZacyO61twMv30rCMz8eV0pANi2Hy0GXdbeGpmXtQ2gsBk1w9W2VVg90sf3dVOB26/5oXjf5ccTgfcFwcSw22+fT16kV4HsYOvPBZoj87kAF9vKisqggCU1247+GICVr644v5okgLJKxU87GpMx0y1UiHxU1oMVtDg2/mClpVckAJBRJ1vcEa/IA8jgl3TJwl0PPHctsIqLrj77rZ5LhwITPwHkfzIlJIZbfTIFAFdTneNNOMzMWPjZQG1LoZw5g93F/sh0oMvcNJ+3BRlQwPtA+7UfQkQXX37jRuKxRIwQIoQQIuL/EKILuVxOGZ1o+Dq2taeIH3wx8PXow1+hb3QT0WdF+s9G4e/nIvZTRI94bUMhRPYDy8ufh0CRHrr9kcj9D93ZZAf/A9dCcOwFVPjgAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, points A, B, and C are three points on circle O, angle AOC = 110.0, then angle ABC is equal to ()
55.0
620
[ "70^\\circ", "65^\\circ", "55^\\circ", "50^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAB9CAAAAABxUJnbAAAMxUlEQVR4nLVae3BU1Rn/nbNZ49jFjG1ooi4GJJhY7ZCg1BclBLHgYCEK9YFRgjAND6cEZAYcbcBpGelIEVt5dAw1tFO1glifJIqQKEwVLEEnQJAEo0EIoVPARCTZvefXP869u3d3772ba8s3k+y95/U9z/c49wiiv0BK86kup7jfswBAph9i4RDmWPZVof+k+UMiYg/VVwwTXiO/OxIV+79u+DH4Y6XfSCQAUBLtX980MHSekAAABQSeWowCn/N8DRYA1qwVQ/zM8YuEBNq7ya15/owLGWn6FaSyCBFE+8z3lGwTMeNS/SOSPkAtBPayDKgkSaPf84QH5xTJrxS23/6DF7vC3ByxVwgASvQgGUcaHaXTCUABJZU89emhrxohWo8CCA9F8OZBw64L2fB7gZe4YnD0vW2Nx34avvKG73FI3jLjuTfOomf3kY6d4dJx43IsSv4nJC0bXusuKS0ptNapFmd/sEQ/7m9oaMieWjE0LZXedtH1pxHhRQdjlqQUWV19MC/Wb7C56tJRz532XsUTSeeC0LQ3zeVjjdXVLKmLvSmSm+/JWtJlm2YkW3eKdcUN6ujsgkDr3yaaYrWPmVMTk4MAMOWl5u5hC07EumWyzaYgsRq+ebQ45/BTOQ4CFijbeSL2DAAIP3so89qlvW4qcdsnr+afOrBsoFMPgczy51ViC3JW7D9SUO+GJVkPhiLZMa7oQ5JUhilkG1RXk3bVKyNqPjUUTuxSTs4mVVwC2D2ytOkGADDDevIgVTi4Pj5eBvSOlyXNxSMPOIrGAXFtdl3MoFIIU9XVJF+ammBfMdicvdmBlVQk0Xn5zbblVXJ/dTXJc7mdiZOsh92XLUmZEReXtfPP3LHv42tsMnL2F5nltQmzAlbHyL3v3t2TogLrwVxs//V572chfTYycz0B5UBCzq4Lb2xzQ6Kh/paq9dKG0xUK895xsf/Mvz5wXSMA+75OEF5zVl2KQB11kqD6RFDkluxWZ50AwL/Llo9Pw0EM4rs+CQRQVjU5QS92JMZ94+dZ7KVFYqneEc9jxeVAXLF2JIvwjNncnxg+c51HZ82JZbZVbEg2vvlCQKSidgPbrk+FzE0bXo0bj1QWTx898sZAJKYO3hB3+A4Q3vLL/QrKXI5mkOkIb01rWHbrokre9UmwOS8WyCR0kGHFwxPgixHhpXoAUx6Yaz2a0lcvn1oElX4PJsAsL9UDjzdbSpOa+LOL1gcgfSIp8FI9kPlsVa+FRALAsokj/SxvwpznPLtvHb7SfCJJHs5Ok9Q4KJ7kt96qZ2e27pcEgOVzs/T+9KF4ABd6q17llK+Ic9LpgxE7J8oW6x3huF5YAsCKWVm+OLBAFA6u9+Q+d8oqKM1JV5a3aF05If/u5vBNaM3uJilBvHCnUw7XL5i8q8szig4d9QoACYHaiu+yPgEgeP/zZmnkMurB53Vhue/U6O+CRACAnLlWv7n57Un7v4CUwMbp/irABCgcUu/KBQEEyv8MSGDzffC7QWwwpwYSynG+IIh7XwYkWqKF8AhTTJMe6VjvHK8FBK4/2gWJxhJPSoWFgwCYSnBmeS0gRSClw4TAqB2Q2FHqiQQwzx8ElJWAJ4BnrAcwZgck3vfmxIQ6IcRcx57CIfWKHjod0wj5RbQwPQouerCbvQ2Vjp2za6TwSD1u+PyMbL06PQ4s+lfXRbzgj692O3W6pnkmXP2ZbLkqLQrWr1oFCRjOgTNNrEf+Z7I1vbTE2spiQOCIS38a1Rd+Jls0ElfFEeg7NA4KYP1dIcchhYPr7MNTug/IzssBeGxGARw9lA8J1L9e6bIt52ywOpzy2/BJ2TPAbfn4qILDCuirqiwG6aSXsp1dcZJS4KJu2eMsgjhQXTBxrUR75ph1EBAqWbAEMstrPXzfgLMI9aSJhMogJwHYq0vVbZfk7kwZ4xnrO8JpDyEN+5Miw8CNTCqKDVVS777C6ay0RYK0ZKITzG1HATChIlWQIk2aF+pOw0oC7Bq4PDv3g9R2rwy/I5wR+iYEpK+tdPK0a+KGKb0Yldqd+WDtYpdl2BOSoR6oSCSSrkgUEmDTxA1TXPpnuNX1YPdFMtQNGWRGfwq4T0qfccPhUdfLswNk7jGkqxjMJLnltmemu4di9+Luqx/KwsMAgUgkChVRQCRiAIhEIoj9CABGZP/ox6dHIlGAEUYiUUQiUYsEwsvhH7pa5jcDAggiA1JKRINBEtGMoIzC+gEQzTg24dH5+l0gGgwyGgxqroQ+93V3+AeukoWHtUcIREEBMhIhCYEAYf4AIL4cPXtB7D0D+lwoJjsBD4ffWiDz90uAAhJUEhDBYFDaExRTrqMqHnNMVuLgWtcfHCbzMg5EIQHIqAAEFUABAxQKMJQ2/BMT738CFKDXfnJQPUF8NCRLcvQHjAQASCEBZBiRiEBQRYwMiKAyjAAQOVF622/izUQUEfPPvqCD6gUEdpRAirE7gkGdPANaXACCwQwlgWAwQ4Bnx9/6dMBqBkQwiKD5Z1/QRfWNpQAP5lqu1MnxRMnTRRX2loQiKAFa8pwWCHVSojCjBYARcZa2QM+Eoudd9ZAACXW9aSPq43AOJDD1RQUEgo7ZLGXP7ZfXpLGrGNgdvjTjw0t3AyCb8uhw/ms2nBs9NZrY4S4up7o+mt2uKMGiSxodqJKAAnrLLnrJNWFPAYe6/vVr8gSkEqjYmOhALdFIRsrwaqD/BRJTd/1fHgIoJThtS6KBxxCqad/+48L+frCEU13fuvMuHYtEdsVqx3rMuLfzzUwfOADMrbFo1OutnKvjLskO89hDmQo3lV5xY7eVo0R1WgSM9VI8ee7SE/FMRrEzK37sEb5jlWZXy0rpHTNjX13IzFEYAF6b9AlZl+/KRGpdL/C7GVm0OGFr0gmOIjl3+GnrC5giyb4J7Fvdt9qbEx68wraEeRRlaAEOrVicQJUAFmyvv9g8cTMEAGwfw5rLg/PTKCVW1wsA86tyAECaCWR37m7SviWXFCbvqzUAmui5GUnzDF+LYFv+Od1mfvsNPT17d8BUiACw9MUPcszP1ZZPq28qmpIPQDQsFQTQiB1O3q6s6kSOVm3vw3/I1G2Wfd77ffO8UAoAyzc2Dop9ttbQ/nURbgkBKn564F7cSQD87bW3x8oWEzrC8a8aq3PbU3zZmhUkOS8urupqx9hgZvgq+fAZBBDeXN6i0apnVuzIk8kJVv14AJMHWaS5cmLGeu6pfCv+mTJOQm2+Rl2bfSCFPKsobNKcKC8DeHEKqTrCWxgzpLjP4PQ7phkANs5/N7W0H28uUGRRZucoCe7c1Ym+Xzx0J2IajyMRWIlfAa/MbyhKnJ66EGPCdJJYZvlGzMp9AoDlwWzXFxh44eY1uTPfGm6frqT5ZL9+4XXKAYqZE6JNH+rRepyIK19QNN/UWz4I5n0Dl0sHjXA/8RH69si6M/vzAQpCU2YRCrFOyNKrxsouk2y3szThZlUmHwD+eXJaPiZLKWROjz6+MzX6OSrJz/Hkp/nzoonFaDK4uxWDNMhzFde0KZKT9pILB3bbrKtvQuV6YvAj+T/+uO3WMyCgoKCcZC/glrxIQOLkzT0fXimAvr4i4Pc3LQIJCYJQNf9ZCQBXDmXWm9def1Dobx7On70BxxM8DXtG/GxTCAC25wkAww5DCHMz9hY8qYxYYKzN3UrlelfI0wu/krvZdDYLN5GKa8aY4lJQxw7lCwFBnZNNf33GcuHz6hcA0Pj1wvfMqrKvfgIg2Fag5UgtFsbMRmDknobij/yiUHj/2n17fgQBEjg2KgSgfdU4gpBKALisoBUE2zfpDxEIv7u0bPZJTZ4CdKFhLuUGJx+YvvqNgSaZeHsIAFSNmQpYOuFavEzWjSVpJRvdS7KXdiVcYTDzGK0Tu5tXJI8vya4+F9Oi6i1oUmzDGP1q7ZOtACqVfZrRMTtr0XEvxccto2NuVpU9XG/VzG0iSUaJJCNSdjI7q0LlKR/oE6zLoKKx5Z6LF3c5GGOMZiQuGx+gW7rWjwgvOeiOhGyuyo1fWDKY7C2UomKGNqlkT2s53IGVlS0bft5TUlpiHbraNa+vXu0cGk/RYVkqTU8tQAFBUFhL0sX5HX1vW8PxUVcM+UkIg/OWimVftKNn95Evd8UvkSGBNAol7AsJIn7RMLmis7+f2ddyrBFo09fhRIb9OhxFLCvXUyy6KWBycv7Bt+8w5X/+LsDqGcpVd/83JJNFQMjNPielbKF0MGkTt6LJ1xTfnPS1jUdhfy622MA3ku23DMD8Sn+30X2L61kAe33O8XHlXf+8s1etGbHXHyP+rrwT7V8Xi1kF75wvJBrR2+OJY4fca2Bn8CddY1IT+woG+jrfT3M3NQV0xBvr52o1Sf4XpL3GfFfefsQAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of circle O, CD is the chord, and AB perpendicular CD, the foot of perpendicular is the point E, it is known that angle COB = 60.0, then the degree of angle DAB is ()
30.0
621
[ "60^\\circ", "30^\\circ", "25^\\circ", "35^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGQAAABuCAAAAAD0EunuAAAJ6ElEQVR4nK1afWwcRxV/e0m4qLmykXrEC1y4NjmLjQzBiQMEYmobGWEkSlwScnHxH66E5D8CkhsZyaBQB4hUSxQRwBIXRZCL1FJLMbWD8mGIqe+CQRaO6ii1e6a5VC52lItcIad3gV182R9/zO7efszerT9+UU7jNzvzm/fezuy8NyOASoBAnnhwc/ZeiujOXRBFdtKmA5HqupD34zYIWpmODSy8cS11r377zs+G6MkoEb03R4XJO/Pjkabm5io/JIYm17fJfEVmf3sx39DUIHOqZtJjqfDhjp0VWcCwXJMBB4uJukg3t8bAdJdUf3ZJY39o/GdIr/zxMw/dlbmuUPulcgys18H41p5FLwJGogFAcnjvQ+dA5jvF7nsVGdijxz7clfN+MEACES0U6rY9Zjdj4Qd7pOzPJKth9f8lf5qlSP87mz91UrXVunzyfcwft5MPSZ2LvEF7GyXXHh3xqCIASBJRl1X6r+Y9E5U6dSO16+vmwGztAkS0kAfSsZJN6MbnGt/8vNMkldHwVu2+GZcpmbnmWwAk+0vEyfDISpUwcCE8yJESXiTKoI3IcErxWGx6Fd3rmIz08EgM6ANfaqlfMgSr0SVXdzjvbBcwXztmxZl90ZRoCFbiEANV45v3v+sU2iizI2I/Vgtz/H1iyl5jJ/kmma/6akxlNBwOZ22ijVat3v/rBrO8GlMZDQ9OH5ywfWsshMXm50i8uloNbGhvNdWC3VxdzUXptOi1NqwIyv5ey18WkmRsEfHEyPqwzEeGYDqWYJQnwhkgEceI+If1YJl8ojSlTU3mIyMAMhIwLvKWhhVjMGquliZJcx8AQMqsG8uJw06S1/YVAQDxBNbKYswwRTbeVJ0kH5lkhUQcAMbFV9bAYmBUVmwk3Z16RUYCAEyKydXPeRPxU1aSbHgJYIpKbAM0JZ5fMwdy4RwAaARAQ0dvif0MdJbk2lm62EedACD3xJIpZ05ZJ5YcsxBBA7osXzPdKQCmwqfXzNLZy0iARdG6MZPMXWlGWjNLNpwH2628+qx1a95w3SjJY32/XO2Cr2Nn/etERNBQm7J+o0ynQFsHXYYaABAwFYWVpOQUABmpb20kxfCchgDR+Q5YP4QyzZbUlcd/c9JtBJg/FbGh/ZxABETs8YcWT1j/nIv2rmrqGxHLhAyQ3TyA1SkANMxFe109XKfSZrACiqEcyN4nABerm+XFSAHLuyuzaADQMgDCkTPOOskRv83FXrBztABAOsKJzTh4qRPk7FLTvylW5GRrYJGijEniw10TMmgu7BIn4s7WOdnQRQPamJ2SPjVBcCmQrXG9dg1p596uKn31BVYSsDzTDCKiPx15zNWSi123N85Ws1ff0qtMs86ofVuqsXCWsdy/9ZRARNdfy/iigBD7ZyArE8gx8oa069mqiRvPs5K0+w4RFb93XCY/M1Ig+XZgVnZve5vG3I3F1E3GsrG1H1jY9OWfk3NsHpBnqHbK7SrX/AQALNV2sEIbEZXNUtiRaggUHudwW5cvqy4dj4iIfg+Al2rxwJZCoMDLJ1mcYjGcmJo9+sh/5wZCDwOFLRx505hZtFpdHM0dvbZrz99WSFJwxHMupzimdL4+RLTfvz8AYEkMcMllMiaBVREQha6uwl4UCD3kiUsfegsEIgr9jkJ9K6PIPx4IFXgVTW/wpCCiwjP1ff9bEUkh5EHC1YQEIlw8NIyD6opItgRCeV6FTLP8JeODa63Bi9S6EpaHoYB0l4jci1Bjmr9kDH9FpOAwtXL152PhIwE5S0TuRagxxW8x/A0iCg5v/ppvFtyuCcSmOXJQA5+kMPosEVFwUPLNIsxUB+TbpKoOEwuCx/JFf9wfJgLRhgH/LNlPBmIzFKSg28lPu78pRDR0iJhpdRYfOzxkqglSBgpnMXDtlAAgb9n/Fw/XLXEecWFCRgBsxVVVlZmNmU5Vv5DWpQysdGnPViJSSVVJ3XDh040f+LBWqpECAltxg/o/NRhUidRgcPejWVKDwSBjUYNBEKmXW4MqqaQGSQ2qdK624YEvEsLbEhRAUwAFgKIoeimeYALA/F0KLUABFPPpjj0VLVYM5bQA7do4S0SCPmQKBoOs8PSYa1B/rv0487Qxq859pvF+BUVuRKqEANGhAbtYZ/tS2iW+3OqctOcOlGcBBuJEBO0fO2AxiaKwXwVSBopiWExRgKL4jqKwOkXBf9nzXXKZkwCgGJ4DSANqUxYSE5prS3ypjtdNeZahBkALCEQdSSIiNWjXVGhyOmX4WzyL/OKrHhYDgej880QCAVjcmtMNY4Nz91V05EgBQNMAdEfnvBTJhgvQMxJdPdwQwBFUjNZ6dXUy+p5HTWcvNJ1kPux+3V1xitb5Uy8S9HrokhP1tAc0lBI4No3scUpRKnNO0PvkHKcDWwLHSEU5YHdKqoYfVzFhb5SzO9ZTUa6kmg0Wp2joOlE2eHvZGWkCmj2phrw0yWmoO4X1HXmzDAWA01LGYa2/xBR7hnugrugeaCJeEo1Xe3avmSy2HhTZSGM7UrZ2HqtTujknPA44WJwpW81IPjtgsXOUZ08TrPN+caok4iWfWRrdoUo8YYgmo+U4DCRLLJNhThqdHQg4UPrQ93T7IUFSnGLDZAcCbhJ0NRcdbTKSoVtsnEk832JWoem6eB5toNh8zNlUeps1n4qUGb4NSXECQHurdTS2QOv9mPPYzFi+el30nhgQx3GqJm8V2aO5aecJTeIIAECrGQP8HqYNii85PgqOkNF5BKjPlGnJ6a1yaKd+FuzTZS4JpmPHitYBs5lyiru08aF01PxazAJtV5DWcwqu4PdBS8OSheXoGQCoHQV8WUvDYt2hPLLA8t4C5r1IUDwWewtmn4k4gGzYt7Umt+vLT/o48JyeQeSF8eekEXPQGQlA33f8cgxKxqlbkkoJGG6uYFI6ZZalDFBX/soHgwY8OhE115K2DJIGC5cE8+b1BcQTmBP9WSsll64vzLcAy7v7y5EArxsXMRJxvNzhhyL3bctFDC3Zr2GerpQnQb4n3LsIICOhfsgHRU+4V9+5aQDQlsFyjZEK9SRhl2PuA1I6xIvE7I9+V9Qvx2gaNIDt1VuMam8SjV3zGTka5wV2VgzHxR7uJZfKJACAxcTeyCd+VW6Bn+76aP3ZCqGQUDF+/fuBHf/xunqVSvm6elWZ5Mzohbujo85LZPkbq7lExkcpJ/3g5mxuDEL2LhFFdtKHvrg95vs6XFmfJAVqWf6hyw0rBj89SEREC8ItDWc3fcw2JCLB50GTL030U5gfXfF6wL9K3pq8+u+fEIGqn3JoYruy41Mpb0VKH+K1Hpp7apK7tcMsr/qijI4yjl8/eJJU7X6XiGjh6nqweBoySVeAdItn/QpQZjKmyfeJZVlo+D+mOEtZCPEUdQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, it is known that AB is the diameter of circle O, if the degree of angle BOC is 50.0, then the degree of angle A is ()
25.0
622
[ "50^\\circ", "40^\\circ", "30^\\circ", "25^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABzCAAAAACQ4VKJAAAKjElEQVR4nL1bf3AU5Rl+duGIQvCMps05HB6WMDkIxYPQEkb0Uj1rGONMbHEQqzNxpINtxylF2/IHwxFHLW2h/pj8kSl/eGlBY3FIrBSDE+ulSTVp0dARm1CjBO9sL00siRfGS+6yT//Yvbu9u929vR/hmUxuv2/3/Z7vfd/v1+73fgJhAArpOXN9wY/eCwP9M0BpDVh28+ob3LrybQ+z/nXvUxmlxLHQiDwNA37/mUjN8pVN5UBNKTB1FggNdYb6yzbWuTemVZkCgsv3SAhaWnTJAZrD6KH6Ra4nuiKklHkzcnL3mtKG5wKpudF1e0hy/yn9Uk2xh3+7pbSpfVyVI6n+ywgdfbDE44uocnz2yyTpGyqIvf+hkm1HIxnZmTYItzWUNg3GU9F1LVmLzsru99hbxjWsrY3QIVvDu/JlAAYmz84ukeza4vDFzFKTJCOtdo+/COzkiKeqPSdqGT5HQyBh+YBRHWT2HQCSVVXsHNlXfkhPzNgVsafKn5qjD6fInnqjBxXdd5xiD1SNUyK7HNtDhhxG1Qg0VPnZA2CPobTMHt1wmQE1O2O7Hd3ZudPZVamT9n3ZpUUAwDt1i/GzPc7kEHRxU/Afd+gMTykpQSc1ULr3uGvMcBgHIEgCgLaHiaEkOTp+eGBXFkGAAoW0ieDzc+iLDYWmzsKx4uoVnXMv62gQx0IBAE7/s+p3q5P0B4694cpKDgGCouyZy8GP5nrx4QRuE50Vm13YdBUA9D/wyGOPG7MDQPCSE9/7TbdT1ij2g3NnrNnJMfEh+qIfB6bfw403Lf7mgt1lFfHqKxbxNg/UB581VEASgLbpHyG4/NRWAMD0jtjxUgOJs1OhIfgxPAY3nLYyl7CpBBQyZ2MKWO+tu2dZW4kBOyngAW9VrOZ/w0sAYOqOymMLMp+bOov+Ly9emOmHY8XVm+Aq++pqtZqa4GvNgzPfnT6pr4tA9N4GAPVvAACm677+our2hxMT5/jX6PkQ3HBWXOdCbYkxYyo27G+cu3/8tK72QmqnmGu86jgw/R7OhD/7SOqNK1rh1BHPgs7mQcw1WNv1Kiyzx29O3xZ2xD4OKh5FrarS5hVWY723ETOejc/qiacMU/vWWHf5UwfcLEN6FnS4KHGy+lD6SKggZY57uXLqnL01F8asD7pOkAzZ39C+G2eXSI58ZZAMVO81T5KVXOpwkWSfLaD5qEr3iKtVIjnpftBoPSHRnEPi910nSPLglpiWgIp913alFts9k+ll5A9Zedbv1SoNCZKuynD88onqQPpz+cPVQZLj9t4EUzo7yS8d/qRJW+3nisauKN9RreHPBPve7SkiNn/R6F0dlEjWH9RnH7KlLqP6be2F+1yGovxoeaY74+zuxNJfIR1y6C4pc4XseT7dqMfe4crwyviGXUViV5SPVGZ4U2GvkatHSWXu8N2Nme9PecHVSUrkix5tdn+lllBsZ+2kVn7OUJSP2d5PZEkKu0TS7dMWO+AcTT5aABTPP5fueZCkf5Xe2HrE9vdCmUlZeYmM2M5qsG9v1ZXrtp0sBr2rg5TIgzsz2SdL9dwrkYP2I0Uwvex5KWCNpBQFkq2ZHVGFUae3UG4mPO9OfScGydoOAzGJk7U7NafHnKAo79uazj5knTGWjGzzhAvjlkhXh0RysvRTtR9F8LX7FhkvDUuOr711LJ81ZQIC4G0WAFjr/6h+1xQp+OvTX0wz8GzTpqGC6IFGdALAXb0puYxZs5pVkthu6y/M+IrnQzbFEyRJsL/WlLDf9qpaLg/Izd6p/kYhwl9nynLu7sefR/rXgpzgbQYAd48qyxQ7AaB6wPeT/KlBxfPf+nNKrvULs6ab9mwvaMrtcJEMOdSWn1i61Gz1l3RZ7poqVPmKyZlkDxPPrzRfwILfb77l03zZBcXzN40kG484tCqXIp7ZfcvZfOmVPr9qOJkhnq/MRV7Y2br1rfzpvc3AyuHk4CaOVOVWwN2vP3Qsb/ZGdMI5LPdbAhA/L8uxhI29B36ZN723GdZJ+VLAX4bFsJmPYwkQwMp3//D9uTzZG9FZFlYMH3sM4qWcdBcAoPydicbpPOm9B6xTSpt/xnGjeHkJgKyTXCpKOpbVTeTDTTQKA0rF227+DFiQ29ZDHAdv+JqrL68Br7qcJBloCdRzoaTxadC4/gIA/Pz5T3D/I/noPyJ/Fn/hV8E1EMVYjtJ9giA+DuTUWNX48QIAbPu1uBxE+X/NWSw+se+3X2Z03R52O9fnZXmOVJIMtJA9LYRjlLOzs2ZFpf31JNljz3+ZOegiA/UkfS1cWHbJYYlazJqt90llfSfma3hMWeF9EsPOB17GJ2JpTnNmq7x9ciHHLqrGpaVoJp14iTwsll8CAESjUUSjUSAajSeTP/Erfnn+dhCzeHPb4lwbawJT1ySvF648DwCwRC2wRC1I/Kl+ICeA2Ofvr4xaosLbL30QzcFdqRhek7wWnR8nrqMWxHXXgIVAxboLgCW2e09VntQAR6qSThNX/UspXGG1WPQKFgBL4wtAcLHncP5uF0YqVevicfssZ0lS/pmN/6l+1Nk7AHyQuJkPrKqVqcBrL5TK2ioehgVAFKqfqCUlOwpYolwk5+SMsU2jyYSIzX+zAExYUja8Rf1jAWCxMJ5eaLHQsgi6HjKGv1aVEFHnBygIyNaGBdVFAW80b9dlsAv6TV0Tebc5oKcuaWcInLs+aLT5V2SMuf6tMpyIBZtPXzlyvu5We00E6rquHLvw5q0pSWK4dsxgq7S4mLIP2VVJEXCuvmLKs3OLHapGKwJo8l0RZoCCrwkghXgFBIJf2APX5rfRmSO/EFyb6mSREKx3v1LI+GEaAo7dl9bCSNJfGSvCzlt2RGyDqRkiALiXHY0rX8Aolh2tta60HMrKz7veEhlLV12Jt3FbO+dTZwAQgKNr01VXdoVOZO5JFR0ae1Ki7Oh7ra3zrTwOrc0M/yRJShyy/WeeVR+9PnMvUva7AGfT7nlW/dGfLkNGn4pXI+Lwz1ufl6Rse9Dy/vu8jTnjdq03XlW8zaOT7fNn962uX2hlJysScelvyxWKg1s0e7Q64mWkfJDkfJi/z6YdSpFkl8j2ysl5cXzI3qV9IzWidV9teB7o47FGmUiL8no4dFIs9lQfuXOjXohfeozZvSXH5W9ixVnsUEDsnmte0budxi7H1xVzmZVLfF1GbGGhFZnZFjaILcz49mT1X24Iq2pXCDUx5Vly2uA9LfPLV2mn/dv57/2kQBir29huuMmr1RG8lYNF6Wr9Kw4bP5DOLnf3E7ZiDLqHbdlCsXXi50drthUa7DJevyUePKU7gul88bxxwH7zWxrLa/ML7j+t/0ZvhSKg33R1aiWxa4WZ+PlUmQQCDU4zQWp6X3sF3DW8qvqwaVVVKhJzT6+vPad/giiL7nElRjzO9jSlzEA+N2EGWU6sdNXKZ0bM80dal7lNRwaaOy9jmjt0yNbQb76qZs4KPViy7VjWjXeJDPvUZ4WKxE6Gj6Sfk8pE5jkpE8iY43Rw8dXut1d7PHUl0Jj3ZrrfevNi3Z3fsWtJGsEsO5A4H1e5thzYsDR+Pm44/XycOVDIkR1InA3kwAyEJTXAdetW20z1bE38HxZH0l9mhG+ZAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, points A, B, and C are on circle O, angle AOB = 140.0, and the degree of angle ACB is ()
110.0
623
[ "140^\\circ", "110^\\circ", "70^\\circ", "120" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHwAAABzCAAAAAB/Izm3AAAMQklEQVR4nLVbe2xUVRr/nRa8CtWGMFkmOrVAWzrQCkOoAmulZdvVyiMU07XoQqwKyoYqtY5IYnWKVleyEGVlk25YI0QRjF1bAoJd2zDFBxDqgm7rFBmgbIdQbKMgZTN3mc63f9zH3Pe9U5bvj7n3nsf3O9/jfufcc74BJU9x+SZxlygkInoEADxDdoxSkDwx+SZxlygEgJ2VIaInvP+xYTQScDVR4o6k++FrXmDDfS/fIPAEJJNvE4o4fCcByPn+hoCTUstMX992PwMw2Y7NyMAN8JTlsX1FAOjMtBsCbkP9xWMAnH+11KbdqBFxv3yip/8gsdMRAJ7JbPS9d0yZlQYAIAagfRIArCt70IZNwl3MiVRajrS3BS8UZmQV3IrMiQDO9WLo2Om+Lz3zS0snAABiviYvIhllB+w5J0Uhf5a7sjFkVNW9tcLlrQsTdQiM99tzswdPhK6BxgKP3xBYoq4ad+G2S1LHOKnj3gjAJeqvGbt8n/GolE9NlenrB3S11wfe9/Rt/n67RgJgX2V6zUX96EYMfmW9K+BUnP7y7GcLXYGog6b27zkBLTk/hepdMA0uivCOzXfN6BpX0nU6t9WWsxNv7yv1HVULHdfNoRId8RWFiQIBomDuooHrlZzQeXfx8bvVQjPdHCrIfvm5Rf5gllBS1OUr6L5eyd9zfWavHEELu91PCa9ZIEAUJ2pyNVl3swmvw2tbg3nQBjkdMQDnVl7Yc4+q6KHMpZ1vWHW0VvvlRd91TpO4W4/y9YLSb+9Rl7GCzs8fHrKI35bg3QWZB9NtcQGgI//I8RdTdcUTvrp57hmLbhYm+Sx9q725iYgGqtzNSuMHAom6N9ODpv0swLvSZVezDi7bXM9fURUowOPU4gqbdTR3uMGlrz8g3Vupvnt17HMfYOKUDEu6lhwda9zV1ObDy+5fY1ZHclAj/uWiisM+yxG+NHO5SY0puJ9tMUVmMtI/ck91rTVjIdHfLtRDGYNlMlP7jn2H9c4LQCXgxdXH3y2xgwa4prm+ciPFmEh+1L/XBcPRKgq35N910gE24GlZ1S10UzM0lvx8xQdeO46dq9O+kBrZBEDMalzY6QK0fmEseVW14OhGPAWgoecefCYoD9A2ED204g8GpYbgH/3sNw+KjAC05AyFHjMxi54IrK7baH43ePeveI5ZBhXqLcv70qpeGeEkavNG49pYZSA5vbqwQDlqLQ1vnFH47b3OZE5QyYxNTGcd/RjDrktW8fSL/LJea8UYSk79Lt0C1EDyhjXp5h40uOp3DQcykxUbAE1YvlFbpge/uO85cxY7p47tWTICaIDR+vcva8r07/mbK9MNexNDz+qhAwWGlU7QJzz0Vr2Wp4YG0s2+DaJ16W8Jd3bLd0ObE4Vd6plXb/MPlk4wHnl7ftfJGlGIkcmeVfh3dYEOfEeVYey4uOyJd5pNhuWYHnvPGvzEz0UAlFM2AOAvd036oQzkNKSZ0OLuc+bgJAgOKKdsACd+vfvgHzndl4Id6UaaukItugqcAU3LoLXp0AvFT3yRlwyqgKyZQwlA5Ufm4EBPTDeVfprTH16pYuGIGP0+lTGWIu/LMAAFkYukYKIGp+A8DY/IYv/u910Knk7BwT5cFiLqUG2HpRYGmYKJGpwFf6N6Ht44c1ZXkWM8NcWueWPvzlXvxRUfhEJ7Gsk7VEhHC9oO16cCSWhbQV8XY+fto59U9S4+BKX2VCGnd7zi4dJq925NPHOyMyFHuO0AdNtH3CUFG7Xk4Xx5TNiZTT2VUA3UqcUFSVtD9Oid2qqppxRsRgHE5PVfT47U6MzqwX2zYb80lOBUzRgARH72omiMtlH2ScXMlKIS51SucOXr55Qdny3zsSeDZu2LgKewTtmICN5T0kgApJCy68mpAICOvG/++bwDJyOrJq0lANR6Z4ymSlslDKAUAZgO9QBA/x0ABlcs37I3w4nQFi0OsV1TGWO7NBvP7I5BAHiUMcYOMNHhhp8BAAzdCvw12xNaaItrhz5PdGhtwBx7BQA+fGQ/dSzoEVcyb2TeKYB3r0TQ5wzZoS+qKe0qAMROFmGyFGR2zOwHAPyycX7VYYfYYED7lJlfJQd+bQgAvi4eg3W1XkYAzrcsWXUAwAub8haMse4sC8xAwNuX4XlS3ySIYpPOw+8M/8KEiTvkFSTfsgbTAGAsKmyxwYTTHSIAN9m2Vo4awKHbUxmA1hBtn9oDiHGwNk5EhCvacGhFcWq7/Raj7yaTBSRR2HXMEyfqW0B0bfrWeAoQGSLqmMwAwH01GVEYSs7n/pjMnFPtT0tjQPsCoP+7ySwFkVUref6sUJk25FCBhxhjzwNAYEMSPt/S6x8aC6C1BLGFnvuAV4BQ9FFR777jzhT+iucqXZteS0TkazZUu9H8F81so2CReAZTRuI+nLwxX7bPoI8BdhkRUYfnKhE1+wzqA4bd6iqJPqhQFEhTKs/z4PkpYfC89Ji4yHfCb/urG6OIihYoR4tOvcaWON24CTiVJxoOSKxkOHDgMOVf/E0cD/Acp7gA4DlO+OWi4Letnc74m/mzwplqYIPDhU613wN05yiGp1xM8Jw3jP/yMGbGSVKlhH4LcEDrw2MYgHK0OJp4W3r9IIRzNYfegs2jFKVel2D+aJwoKpSLBfJvlPoQoihRm7RG0lvd6D2PTmwjEpdRCpvzidFljvpBeDYQRW7mnn4WQKy2VpyxjKyup4bZJQCOTrpNUZYCgOcAgOM5oOgrnucAjldeeIBTPA8v/jNwZvT8NyQFBjZYgIo6Pt24CQCC85hQSCI4xyWazg8KT5zywkFqxHEcgWsYx27OCr3NSQqyFF3UYbXfAwDyd4G4hpGNQkTU4zZ8Q21Ia3W9zZu9MSKiWJpq5yHxngMAckeFVNpyQmRvdb5mawoAfONRfeLL77mo/IqPVNpyQszG6gAa5pYwANhVqS7X6Od45kj0TjOaiRJfIlq1h119REQUc/WqYr7mWw2+cR0j+C6j+g2iDow6k+ht2JuXqdKo5isVqNo+gnUhWyJZXb/DCezp9Qv3Ox7XVmrIfCvMkpp9CoWq1c5ntknat9sKcz3+dlJCi3ouxx4zc702RzyO+NOaNBvJ6d+uS7oya4oTETXPMJFc8jbqT9cy1u+9Zix6K0mXYwBQzlqMayVvw5uP6/ZV9YKElaI73A4gIczF9ZKLsU3c8lazM9jyzqp6USOVIzKe1/mareIR2dqaCTp2ehHiV9zHFCl+SYmukTxOdZUk5Di0ZetTOIzAafesmHPMBMkL2YTaw+MFb4tHvQYJCAZqZ6gct8mxthVkEOGr1wnexhryH9BVmpyf93kcJEqYiy5LLntbU6aQOqK2osn5+ZHxPSMAl6wuJmxQVIptx1zdRt5jeKhHmL150WCyWlfP6wxAw5wSAITI0m3TDGcdMylqSkfgdKLootql2BadEzBubnp+vgm25+J6KidJdAJQ/YIHBGClu95MWWb0Y7bDdA0FxQXRAwEiikve1pBn9tXvLGHDcayJ+5qJKBCIC94Wt07YsEpVaXWaqqKgZh+JktdVEpGcqmI4esvcqK7sNTHHMotXX7MALnhbtCrPVG6brLC8ztMlvyQcyJKkN0kKc9V+DzBYOHQkS3mwoSbr3Kj0vfn2eWVKfHFeJ7Sc8wOdM0s/ToPyYENDdurc7j6g0qu5GcSaZh8FAtHMNqKP3TYpafZJt52Lq1/Sjdhqmp8ZOIHh8K7h+vc/tTsQs5OcKFLqOyLJJslt5YafzAg86+oLeu3TEB1lf37ifnrADlJR7avMrlue+Zl9dHCYevqiKzDgeFHzSfot48XU0+vM+BVV3fd0un3SrUB9a1KXOGtqm/cqHt56Gk/GslY4yGVtWZZ/66kW6UvYxp3txyerbqCxwLP+e02hirqVidb25CS/XUE977ZcnTe/SD68ULxz3cFg0FVRlZXEAUSS4AAibe3BC4UZWXenYWImgHNnmZxc/ysReEcVFuwJvG43juTBAeDyiZ4LQeBMHxh5sjD6Xk/OrMRHYCSjdjMiGVtNMwllcmwgx5O6uB39in1qfzL/5pCVaLj9IN/t/Ok1AJg8yZ7hdaRgKExKTH6KzXrKXt8CJf8/FpJ+le6kyO/o/24iqdv+P8BJxlGj6XnKNTbengS4w/fXPf0MAET2O2ibhLc7pO3YT9RR5qDlDQCnDgC1Thr+D1NgeS5Wk0KJAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, AB is the diameter of circle O, CD is a chord of circle O, and CD perpendicular AB at E, respectively connect AD and BC, it is known that angle D = 65.0, then angle OCD = ()
40.0
624
[ "30^\\circ", "35^\\circ", "40^\\circ", "45^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABmCAAAAADZxiEvAAAHq0lEQVR4nL1aQWwcVxn+NoqqTQ5lIYq6LaAMbqlHqlBHPZSRotZDMOreOhWXjVAaR4LGwMWIIrmgah1xMBVIywHkwAGnoGg5eR1x2JQDtiWqtamc2aiqvFELsz7AGuFqzSHMRnbn5zA7s29m3pt5M6n8XXb+fe/N9/73/ve///1vCoRjxonjJszHePRqoVAoqB8fH+PJ313eJrp4PhdlvlH9ZKgCP3n+x8fHePczp4GTT/7jf8fG2KoAwJdztc3F+OCvLwLAhxOnj4tx7+kzAHZ/X8nTOBfju18CcPTmxEvHxfjg+gVgd7J/K8+gopDDyxUAACuv5OEDTuZo43XyIB9hLsZut3O31/ElXZnUtbJ866yjure6sV5Sn9UezFSXvX82e92tTsmYqpQkX0EZ4DQq5dlGn4gso9JgS3aWqqVqU+olGRgHtXK15T3aul0eRMsbZrnufJqMdbXmk9iGvWZwqvTn1Abn73yMTWWu7z8PNJvm6txqdlVb+1QY13TTDoSBYREptqCqZVSsh2ecNdpjwTHaRDuquHZLW3xIxoGxxEiO2SKixfmkFvPVBAtKZ7TCM2M2iYiMNU7NMRp6X1iWytg0bFacWSYiGpRSWllaW1SUxrhoDlhx1hvg5ZmUZtQ3lgUlKbvVlf82Wee18NgsAOCd1J2x3NpYyOPlIgYSiKVBrGocVb43SGRsmiExGEuuw4nBMbhzmcS4ow9YsVH1n+YTF1wAm2uxCYwDzWbFlhksMnVHipHaBmddihmdypqA0FbkCNlhkWEM+2rLGATP9TlZRp7DFzK2dRFhmsNh4ai2NKNmMYLNOp5BWWLf9REx9wTGUM0QIXdyxAj1PIHR0RhzHBihVp5rlUVs7QoYWeOIEMo5nDG8zSaN0VHGa9fbEMeQczhjWFpY5nvya1eDkHd48Wr4CLU+lebFw9D06+me3GFCw5g/jplCGiIRClfHVaPkP155qRou6x1o2XSEWtpkRS7j25f9pzcmZyJlt7MfUy+/HRI5w9Av+0+1Wqyw0or9lYawy+DpGKhx/d8L0bLhppFZx5LKDiuPcWNkjTe2luK9MYqZGTG1zkqcURjF23GXSFkdzgihJcxhHG1/zIbIoCwORMVwSsyrOKO6qQPA5lsNzvhtKhlOwwGKamcscBjvPgug80aTN2G3cyVUoCUzdlWgdyUUpwa4ZeZinLyXxigizO5wPKhdRojPM6iv23wTSI/++WBda6Dj9p2gEwcXlxR+X2+9nEtFFIdxHYcvbAc66pagqyErJ1qrCYYiBjbeBBG5rkvXLuz7paeEnrNVYaX2o/is7OoE0eElAFjxPIBLN/8w7TPq+QYuEQaI6PDSCm2d3fbmcXf/hUdOjUobT2iinobTDVbp0Sck48hWEcAn/Rfx2Oe81XH022/jqVMgIoDO/UtZ9R7h/4yeOqVzRAAIRCBoO7/5QNKt75UB3J04c/Tm1HMgImoA+C4RuUQuESzNDQRyiXyh9lMicsl1XXLdUYEcbIWIbgJnt73VsbtPtPUUQAUARGdV5U+cfhbwzjdGDwU/xyqLYRE4+vM2/bJyByeA3e9dAT5yR+NXKHy+W1vkDk3v+Uw0DLoq8M//qPjm03/BCUB5797Rq9/60ff94q90tS+uxltRjgiHZXz3a6ex138SIHJHMzKaMXdxnizd+9N1/al0XTKbnuzPY4aJrDbo8PI2Dc9P7rM7sv+Gpkmkx4/wEYdDRFsAXpNi1CxvzqbvszFA0GVb4UYcseh/YXKfhudlKEOd9RldZpAUmxd5R4+7C9P3iWhrcj9aMY5QZ/29o1AY27uxDtSuRWd/1QyJf/v1W9LXHaGjCi96nNoAzHGyf2RuRYUVj371ynMA8JEM44bBSpxBGJSd+ExG0lfD8ytERIeXJOZxHOOzo8qiZKzGlYyk4vb2zwHAndtX01W8MRMSeZ1qmhRVMprf9HSUM9WwFfLPj0qfIpmpWISzMH2fehMyhJFDMv9UXp+jSKIodnA9vORtBemIJAIS8gChZED8QkUW0TyAINfRNCmkZNZ0A4OoLxFlkDQrpKTgQkUCMX8pYmxViFVSNr8ZgxMLRYV5ObPJKCmf34winqcUMloaUz9DfjMM1vrSGGlxftwgQ34zDE52Xnz7MN/7I4rVGwBw0M0ZNv9Mqcb/FPfP0S3qKw5lzW+OET41jJB0F2DrfW9Z5Eo3xO4SJBipbTh9xcmc3xwhcpcgxUjLMzRXz+twBOaWclNWq/YUR/JCJYyB6Kos7W6uoX+nnsfh7Ajvk1PvH61nzuRwOE1RJkHmjrX/hZczE9bDt5YhpH8tU37/kR9kW/fDi7v85EyaB2C6rDQzKLikJH6GIPc9gG3qa5J8TXU2OR2RyHgTmP74h0RE1E77sMDDmm6mGXYCY2/iNaLexM9HYkubSXtZ2+Rfq0oyjmLRhZXgn2VVXxoI6/frqt5M5UtivOmdmhpshNieLVcWOWo4rXm9PCfnKITfID34uvk6z/LXN9Y7unLOgKIAQOdguHmv1zGmDNktVMi4e+EXoo/Fhpu93gZ6PQDQSsWvqkqWDTvPl11FI0ejAEKfU3787wCw23qYt3MhthysEG1N35cyhwxIWI/yqYxM+D+0JfQW6DizDwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB is the diameter of circle O, CD is the chord of circle O, angle ACD = 42.0, then angle BAD = ().
48.0
625
[ "42", "48", "60", "45" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJMAAACFCAAAAAB6AZVPAAAOW0lEQVR4nL1cfXAUx5X/tSRWfKy8IrUOS1i8MShmiV1EPpGyXJa9Ug7HssOVdWXqMASXIaEiV9ncYVs5cMwZ20VSJJbPcNHdyR93CFuArgpKuKxgcRGnD0NMSlTkSoFXjgWIk6gswRdEEGG1Ws3v/pjZ3ZnZmdmZWZEHpe3pz1+/fv36dfebEYQNWnsAQHBwjp28GaKgoHBWBgAKbOXatzpKfi/8Z12bul/o+icg4AKSTUxTk2Hglfv/Sd+m9jcVsMX6vDF9fBsBfO1Te3W64Y2a7GHq+rYAsMhmnfnyqchOpmTHFgA893WjxDOjH58dAYYvAChbANweun9B+OZjilXPBnDx1SO6+LPdvQNnKuZXrPgqsHARgMFLwOejjbFPyu+K1Cx2i0nYYfTea88AWHvlQ1XcpQ/6ur2RmsqQ4Ww/e7K7JxGJ1PldgWJumlwWJUdQSykVE29decvGtph1sZHWjd5VbUkbDejIBqZeGfyRdETXupKVuduSSMZba31PHr8JmHTUeW9od4ZDkkVOkuRIYzDSYyNfHpjay8MtDosk3w5VdjpBlROTpK7s+JLyg7pUW9Qaruy3DckOn9LtXl7n22C/Zi21+uvH7Oa1oceFopibls4vuc3l3MZ3h2aV7bWp4G2tLQLA2Xvf/2jm6ERWc9ZglPIC8L3xy3dqRqcPE4FDVev+e8a/N8T1SdbrrSqVKP+o9ptHbbHKljTF64P95Mqdb290K08yHfc32NChOfkkAJytvHB6OX4xtHlG0k43jfsOAPdFT1blHj9rTDKnP6lc9aEPE0/vLi4dc41JHkb/R1WVgzmNmdys7PG1kuSOVWRnbX5jR5LNvlyqygqTrJgOBrookcO3DJM9kfwxsX1+p3tMJMmW4GmSZN0Okv0V+cGRe9kfOGiZKxemg8FhkmRnWVwiT9+ZHyaFogFLTuXA1OWXuRQPd5DkcGhaMPGk/yTNF0trTP3+Ljmw829IkrHA9GBi+61R80RLTEOBNjkwUiqP4JhvmjCxOTTiBpMUL9+hBFdvk3+Tzk1As8obqpIkJaPxs8JU/5AS6grFlVChC/PamJJVW82STDFJbAtdVoqH21OxPttGUE76X9PJZ86nIf+AHJAaFe0tkYEcexUndDxgIlKmmKYqmpVQzJ+ZI6Hh6cPEnRHjeNM1+N9urVdCf78xnLbO5l5xvQjr11lgy8Q+R2twbJ7CHOl4MJ6JrnBg6uem/uBYSnGq558Znxo2hGXWSPWNxZmuea9PF58AYPl3tqVMUY29atyD3oUKc6RdK9TxKzumk08cm2fEdxNM6W3cJb9mEahrn1ZMbKkyiDQeu8N4TBHqLes1Z0mlV6dx6Aisi/UZJRiyKcWOk4FrmoT65qy8+dGeSHacIZ8Oo07ux9RTu7yqbhGzsjZTedITF3uz4gwxvfI8AUDwHe/qTKyAgHd8mjEVbt5uC9PR8TXy1PzjtmZ9Fe43Uya08bMT+t20EaY9zxTKgRfW3ZmJJQDMHZtuTMX172WOJFJNZdE1r2IP9AeyrIDm+mmWcXLYp7d/DPh0aIUfAMGndvo0CQRmZh1i5E2h8g7dHtQA054n5d+3ZjypTRCYfhkHsKFFfxCiZ6U0EkiSksSxwEA2oztWTvvY8ZpfJyJZfBJHHi0EhcCWR8uz+3QT+ETvik5tTPbY/U8NIMhT7//UoIKZuXQm4fS+RaC6R1+JbugYiEkkWfm2EZ8Hyqd/7DgYth47MVg6TwDYO7nRqFNfMrUz87iMWjJ2SfOswiTX2hsBgKtb3jRspGDKbHDyubSL9JhhkmvtrgGAF+sqDBspuSbM2+8VQjzrBlNNt/ZZP7ihEZKn/ZeNhz5eTNOzh5eC1zm57DkXAhX9huZRjynuJ8kqxUzKbt18P/hSLSmxL3jdOaakT/Oov1OMhgDsu/F9Mzb7rvoAoyu7vlej8lrqQtgLb71wm6pK/bz7bCk43vCvCtTstj0JXXRK5pufCwPAebiZguFB9ZW7HlN0McQrtfeYVjtL52MAReYnz6wAABz9uzkupmDZoKo2FOnGYfBvcabltHm1JfoNHgUogEu/vR0A+g5EHQMCED6lfirQtR4LYPMr80z4T2BGQhcn5M4F7jwPMLlpc9iN8pz3hQaTrs1r3v/6fT1MVJAAfFeN8RY99i/AxRkr3nClPL2q5aFvUINJEH8qbniz0KL0rDiNW315rhALo68DbmR8bkYikptQAGCtEEJ8CAAC429V32dVeuYNYdym2E8y7A4S5oynSvEnodsKAOxf08HeR2TRv7q/0bK0d9xsaTkWvvuEjM7h6BHwjiuV8t1vXEQBgORnNbIvCoEbL8wDTftKzJwyq/qZzz5pcAZGIQGUXJNbx8Xxii/PLgLwq+rZ+MfNYUCgF3962bKC06PnTVK+AEZTZZ15YglOxGVs3P2zi19HAYDz/yzES28AAB4omrQuX2S66XzkS4FvAwASDg0XQUwoR1zvNhYsBEByTZTvQjnSyXWIun27aVKlfF+RLOtyvAhHZUtzpInsa2IBMHoljDV3HpORmm4CFAkruQ5jaeOJ+D0ABFq9f+2ESwCI8TkAMFr/NHAOKAKOPZzAH84oDlfeK7JvXjaH5Z+ZN0wqFo2yhE/teM0hJAhcnQNg+6sYDK89gHMg10QnJpelzJ5IjzWXW9abJHwekrfYTS52EVJ7nfqxoE8cWFo84ysjs2XMgZh1n2aZ8alxUyEBHP7xfqdsAsQljZ9U0QMEEh4kZNPIE/404QGQAFQ/6VAChRNAwpOAJ+FRV8P/e38QAuj9wZGlkFcfJ/pg8C71U2q98yj/7jjnSQAJj0f1AyDh8ch//eNIIOFBwqMxEETTOh+AfasOLAdlRe5EHwxpDk3Vtm/CA9yxS2+MpMgDgKJoQmZRmksyOyb+42Pg7FNfdNwj6z6Hy8ugBlPaLlD6fcfvPB6YksAcvU0nAIAt1cGjz1asOKUYqA4hTcU0vjkFgIYxM0tHTRglR99ieAAlXouVvOjr2vo5BDAqBgFgrXhY/lmoN5c1RABDZRpXwwLIYwZFaj2VfR7Ak0gkMj8JwJNIeEBPIiGNI4EElP+pWg8H158/9a1vAgB6F4IAtt/Hx58H9j7B8z+xwiQA9NxjdrcxQVI+HbTw/hrz6ZMlkpFOUvFPTLkpBq9z8q+us+UIJ3+USz+tbtM8ZuxMZXJHek3EQbZgCqf0yQL49RcP6XOfv2s2ipZ048n3xO0vWvEJAHprNI8pTInUSIR1hxzqts0ODxt/qBIHOSj74RYA+5lSx6Y0WPplQ0ye9HTTHXLoyQDU2Y8fl2efRg3QppNs6ignG1OG9IccOiqUsqKaNsnmjwDTA3v7pwKkPVDdNbqILIEbDVje12ffCF8NXJEDiWVRSuTksqjE0eB1jtg7z8h9xooFSz4AaL45zzI0f/54aeYhNXILvrcHx7bmkiQAwKEqny4mG3dLnZUyKB/QJcaDQ3JgBMCR9A/XwOZR1APtugiruw1DqtK7FLestte0GV2wc7fh/Y7JFTsAoDgJrfH7WgNgYg7bGTn85+P6fbfRvdSGpinzOkuuICM1BH7hXw4Yq1lbK/HEm0/oo4wwPeRtg2paa6lYvQgL4LXNdlo2p3eWZJ8FGA1x+93pYJa0r9e6ag+U5SdNybKerFYM717reDjtqqtPm3NN8/j6lvzY1LoggiyFb4BdYrv55qOhUf00HIwb+1U5YpOOjPgkUIdDZh3L8IkAdn2/2PE5ioZN8yPpuiz5REo9ascZDe3coso2FrBSZZYkkeRYoN9AZI39MESk+mWTnqnnnXjnMXcvsEDeSWDLY8uNprdJN2IBE2fFlpS7tkQmQ0Nu2URS9jUyIDNfo3nbnjVWw0VxIKW9Wu928f6RqtpNO/WrLwALX+2nLr9lqMjnjAMpfu9yczCXGaqfFn/XOIspY9M+flo6lnpFSZK6jByF7JNzHz9mfCE11FMt/0qUatvzgTTiwheSrK810Ia/KVcgcaAsHwfSyaqtNNm1Wfn+744Z7BZnTaakYvdmq8P9XPQCdpieK+hBqpEPzW/TJ6fdtaWY30yt5iKJrn2QSfb7u/VRl/1KYOvLrsDI1OH/VB9lF1PKp11VMuWuPebSzVYiUz7tZpTb9/+CcYldDl+/kVQ9y8/3P/OORJqKkyQ5GbJwlM9BpwIHLV+Sy+2kfjCgNXFkd+22OsPMOUgiyQ5rLtl6/65LfucmRcERiWRFjjNrc2ouVcmSIbssMSmLyIB/hyqybJhkt+sXXRqCqkE3HkFbLxgMlddmjIryAZIr21wYvBJ5uapy1AoOSVvvKYKLT4buSt9sz5wABgdXuTB4BU4srTz+ldSDRYP26GCgSQlFusmNu5xzieTOQKedt1JtvxwydO+DsiDUdTCm8wK2RwNV1ebriZrsfSsAwOJfPXr/C+MACuNo2uDNmV9PV599cGN3UB6aHFltYwKejo5+7RBQMj7R/A+O4BDAvrIbQynXylyiaPPIUTErTjyDbb+8O3lqjyNMwL4dpT9fbj+7M5mQ2svnrik746hM8u1Q5VEnBRxhkkiyMzxrV8z+2+PKO/A3DRNJUmLHOq/RtwKk7FC8tda34S/wrQCJZPy9R3x2vqlQsqot6Vzh25ZxRfqEYkPzDx/09ngjNZUhw3xnT/b0xKtdfnvCGSYK7F2P2g+2/1huWflGx1cXUSxYjNQ3On79l/hGR4YuBp97HaMLm57ORH1ySfMtEy4K3R9QueeDju89nWFKVjzYSIHtlQ/bye3m+0GAIz0O4MAfX4UAFi2Cna8EuD0rc8SnZMUP0oOWzQTFfcMtdzJkn08EYr9NuUkZMUH5sFLekBxgEgahm0OO5Cmw7BwAjH6YK2Oe5EjDtuAI2TcNHwywJIdrSy8gnr85SDL0/z+Gx9pqQJTgAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, AB is the diameter of circle O, angle AOC = 110.0, then angle D = ()
35.0
626
[ "24^\\circ", "22^\\circ", "20^\\circ", "35^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH0AAABvCAAAAADk9ZBpAAAJa0lEQVR4nL1bbWxbVxl+bre6SHUx0zzhqR5pGlc1pLBU2cQEZm5Z0CKtSJ0UkSEFmo6KAPmBheqRiUrZj/4IWxGbFFC0Cs1FnQhaUEBUIkip5rqpyEghE0qbTk2dsGRqioOUzgFiLzsPP+719b2+H74ndvr8iM8599z3Oe/HOffec96AckgBcSYlb3LENshgXrlOvqE0S93kBqmxIkmSycw9150AzuFlAGgO10t1hTKdU99W6kUMAJDRfR57FdUI95xd562n9jIx34gsAMxfrh+9TIimkCEzcXOjMPwKykFuxmUA1G2pISkV8yVzKayT8+XZqQC4++6N22ng1hKAcBO2fzm877Gd94IdH4yPp2/HHml63I89DQDen8fa1K3FifDhtrZPby37jV+9WWj76qH9WtXogmvpdDrY0d0kI04mSHJDreGeYGjA4bIgZxKh2OurnoNfgn35h/6uCxuxgVy8PefSbaQz8ONcvdkXewInl8n+dpL94SuuXXsDiWXSYAGnwXhkz78Y7F8heWVPjiTTodNuvcVyX7D/f8aGmthHQz05ksw1TKgNubY2N+uTy10NYxTV/O+FfbGtZVIttZcD7nQo7X5XOnpEH2ANuk/pZh5oN4iZCPe737dxqmGmiujq7KngmDb2iQZNGbWaaz/kbn0xEhypjX2jNzKjMa6UnK5jIDTuys6pcF8t7KvtsbulcrtV0mT4lPv9d1o78tpIZNjV3jORno1Sy0BswyRFkOTqkdiy8QaLkPWu5jnnwbnqPhYY1MsToUXbPmdCY84CBMmBgPPkcGOf+WRZcC485mC9yT19G7YXSvSjQUft7dg1llzTYLnlaefwWT0aszOL0P+ebs5LsKv4qK23XBmMOetHvhq84HKV7Doqwa4ukIm2Dd3U07vtna72JqciJ91Gt/5Ev3d2kmQqsqKX8xFrZJmDYLXjiwv2AyNJLoVHvbFrd0wGZ8ttnX12jMLUNviwPYHa46/Ba57YVSyGdW0Fh1ydXsJ0JOHSbaRhxabVhl0Iss3w9jQdft8DOUX+G60uC8upDlqXJHvdh1tVNQTJfMQ9oA0YCtk+VQRJrkf/bL1iG/P58FT5y6izxxu1IDkT7S04XR+Prnti50kD4VCLozwb5Lta7KwvSLLT+jZmxz4XXNXL087LpD3OBocdriwHl72wd/eTLDndSZYtBMmZ5h6riUmSiYSHqLtjUL3Lo9ON4fxhd/OsbZdlg2B7dkEmyg+U37Q4qOGO1MPnbUYl2NNf0WxgLz3aArp75kKSTi+JmW0+YTfsuWDFw668c1L6IHzz2dKHaKHj1Sb5T1wFQPRvaL1u/FRUC3tjv6v2FdmSLpmhx7PTbXA+lDLZQwiSo3FzJwv73xtKpeHNOb2EuUe71wzsJMmNoPlJaNmz+nW3VriVGNkhbfaySdH0ziceu2bwBgDc15Vyt3x4Vh3sesvZWjQnSQ6HKmVMRk1VnV0zzvWQVu95rmZycq61K28Sv+E3rXe65TXjZA6pdvvtxbObN7uOpiuBg+8axW+Lpd0s3zmkDjo4TevjWBqCHAkNGVsGTPOogl2EZlWnD9VOrWGhtdOwwJodX8G+ECRJJjrVsdSFfiMRmSqVBXcY1/oK9vE4SY5F8nrvWiFIjobKX2QtU4aLFfP9xj4ASydG/OZYrAEKgKNT55+9q9Uj7xkumtiJuSjw8TdPPVozqRnhicgXrqrF6E0ndgU3osCp3T3l4dQHvO+VX379NZV9xnTB5N6WaYPT64vF2JFVUqTjFr/r7l3btXTiLT/kUd1K4fSBA+9A2blWoXuhoL+2hj6IOe3C1gFjoTOcLU14QW3GFchMlhSk/0ftUvLGoy2VW0kOECS5HGv/R9jQqBBA0Qcl26i64AcPeTa2Agz+G+HvyHjoF9vzeVA5dAlA5itazL9waHcRxWIR/Q8KAhAUACCE0O5SS9pfCAEBBYaA8bgwsPfYRytQkI5nmHlyHqRgIZVBgWSB/hXBAqlWSj96Ra0XCgUWCuoF75YvYVG1PMgssvcDChYQjgMo+uD/7y6nYfv0QtGn156aNZ9PVFd+zQ9QuZwEnk82bgOA14/hcV8BAPxr230+9/vLgrRfudV4bSegIPuKorzxU2wDiud+puxVVCH+NQVF+9lbrGwosUotiMp//ACQyjLVuIBtwIIgM59TDRr6V7HoA3YUikUf4CsWiz6gCPgM9SKKQJEo4rKiKC9I6r70EIB5NuIYMrgf899NA1lNRHTuGQCA9jbr0/+WS1qVPiTPEFDUM3kvoALgZjMVZI4D89gLJIEs40CyQJKDJ7zGrmAyTpKX5c5S2XGeZDxLAuW3C221HY97FpNBVv3xfIegIFummAEAxEnC/P6ivVl5QTxJkuKcpO5ub1YMXS+NsxqQMQyiOkr7gFFjS+WXVDyjzqCqgTyPMAFcznzf25RTBTIdN7ZUsh9+24soAI1YUgA8ebJRZsop6cOmeoV1ZkP0iGSczErkAgiS3PDfNrY5fEV6QRxQw14Ck1FTQFm+oDuGvdmQSJNspFbxiOFOs5sqRzfdIKmODDaC86a6RfeWBy55VUQOBPDH5j2mNmu+TXdqa9gVAOeOG8cCm12jlYBlQ7MeEHTdMSvhwedf2yrVX+6t+FSwyfpYOjgX2Ap+3Nn/zwrBNnlW4SM/3xJyDBy3aGXjojnLbm5dcNu6Q26bb5PMD22B6s99/ieWNusYBfOhKWtzrbgY8XQyIsqnQnXEevRP1kabqFOIzgfO1NfqxOkD7XbttjCcBtYHb3k9DSRZcRJaO6aCtuknLqfAOdZrx46LXk+BdSTa6hZ560+8ZK+Hc37dx+37B+sUc99aG1VjzPIG6DziXGTQ+aIMTjfnHXzomvURqEvgjwbnZPNtSGHOePEKC81mM17ImUjvpkNPHUah2y3bxz2Tufnqrac+VMNDOtQUAFj50tqkS5pnlTzqwIUDrdd0WdK4evBr7jufzoYT6vn/ObdUJneM2OcilCGV3SeHWrL7DLG72NbyF3lyY2ajNLsJo6HvVZVkxnJXgweHecveP3rzU599aUUPFfsAMpTvvHig6b2nq84UuWze2zbtNouYns1bFTKZzAl/V5VMPpL8fWegz6ubpLO4+1zfOmYSodhZ7+/j8hnsf8jHD8ejFhcquJa+9LY5g53VFqlNZO8vXdSy93ex8TO4p9n7Goz/ufDIXmyP7d7XuonDpP8DrZ3469D06wcAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of circle O, point C is on circle O, if angle ABC = 30.0, then angle CAB is ()
60.0
627
[ "30^\\circ", "45^\\circ", "60^\\circ", "75^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGcAAAClCAAAAABkCryaAAAOOUlEQVR4nL1cf2xcV5X+rh2vy2bCUDrZTGGoSe2sJ+tsM2YclKountCUuEoIZglrVliQiioWuFKtTdh1RVC8S0QtWmiBJDLqSk0FSNk2rBelah1tQsa7Lliy23HAbFziYFd2NhNciNNxVXdm8j7+uO/N+3Vn3ryRvEeR59737rvfPeeed+6559wX0A/tBYADvh7RCX4aazz4ArONAxXgVMEHCcw+hJo9vwfo5zEA8IWDuT8FgMt3+wUBsKbslhTAyw8Bh371U0D4BvIl5b0AEiQ13/NTPj8A5t7W50XQL0O+5ud3f22UfMvNF87xr/rtvkCifA2d2wikYquPA6lz/x84eOiD6wYrwvExPwS00c9erAjGD44Axj/8YOqWAbpaOACSiWB42gBdVRx8fMInQgU4y6M7ER9ffZxXt4QQq0wRfOEkE0Bs8pbvxacSnA0fuFzJy+oHZzl1H1ih4PzgjDQHKBCvSOH84JzpgAC2VaRwZeMQGEkAwNbJVcURuL7QAhCR911ZTRwg2VoNCCA2ubp+1S8S8rd5YjXXbeLlXbIUn/QL4gdHTOdjstRSiWKXL7eRhF64K7ewiji8YOCIbRUwVL7cRtqMYstrq4ZDTK6JGpXYpH+L7Y1DABA4uxvUu9864d9ie+PofSZ3QOjF6PL1VcCRdGs0YVaaJ1cNZyKyoVBmfGK17A6TbYBh1kSL/wnyxNG7/vmngcJcxVJ+Ycr1r5dDbwXM2q0PzIZ84pQpt1ebTRiieotvH6FMnGTCLAtgq2/LUwYOAVpxALT4nqAycATwx9/cZ8fxbeHKk9v5+wO2+t/OLq8CDlFYEyAVvTr2+irgCKcaVPAGlSW361dbHFd8L3Vl2YNzrdWOq7EJAIWFoiIcx8MCwJkOZ6Ots8sAhAA+I4QQf+WtFuUEgcKXXJeaxgqxpRR5cH3Gowu13IgTQuzI9craNKOuFoUJymVjwFP3HvRgR43zprhIPld7pxThSMLdouDE/eIuANg0UwlOrv3Aj4CP/mO9AAhc2OFuEpvUC//1IADcrXngKOfnuBT38RRJMh+cczfJ1K6QJLNNGZI86BUEVuBojojuWFT1YNM4SXL2AEnO4kUPHJXcrr5Rb61eaDPLptJveQ0E8PLdAPDYJ/d5iE2BIwCA5hZnZAcKGx4hjNK2FASQ+8EuYE68fd4DRjk/OSm330tZ5ANplSCScZLDsg8vobFIPP44XiSHE7Iyqpwe3qjNF+K+ZYR/3TiaPk5Dg/r6lA/+oSHl3btJ3v7Ovf36Pg43J6evJYErCwA+dOO2Oz8f2fSxdUBZ4UxPHN2junruXPJa60fqt60VH60D8O0XPn4tfmVhNLxz584NHl0A8LajZ7eT04cawp2DVmO6cmdqeDtJTh3bF4oenvGUmydO32OD8cghp8E+0snFQF6vTPWG7392qbQ6eOGkb39f10uuq4uhGWoRC/jpzmDfYql+SuPMd6+ruaq43ttDsuMntqY9wV75omkqvoqt2wSw/Hhz+LsPfMgZ/CDefO6bcO7vI8feuG1L/3sAhEq3iq1zAvj5phuX+l9LuIIfAv29G1DweQqdbnhi6krjWdmifH1b2BkbIxkdc99KhW+SZDogxWS9lYzuUU9TMZzx8FGSnAvecqvR7mfkb9ipzhqZP1w35QPnZGiYJDn4Bfe9ZINc4rjrlOrR06HTdOu4HUdXlXxPw5Rs2jno7mj7Sb2Xw33KN2Y8Ii2i7aaKn6X21iW9aPWo9OeGYkZ56AH1u5mO78uU5ocayamGbuNNvxR2dZJrGDaKcyEFCEmudDU5p87Nz3DwWKE82Om6/WybWb5D4aBIGnh/0gNnKjhs8tz+E+ftlfC4Wdk55BabId2QnSOHHnCx4Zj5gGLJHuiwVPoOu2AKdLTJ5gpbcDSS+Z09lptuj2ppvXWYp9pVCJrkqcs6Iqt9EwC+ju9bTEmyzWk9+v/O4nKxZVJltIS0O/+W7i9idzSebLBZjXbnizgftAtS7Qrpvc1HhkjjnbTNz1jItp5lAk5btd82IRrb3EuThcZDpgmy4sxHhs2KplGuzBaaCi3ZL/QeLYXD03WFgVrXhYcf/ZRFyvbdLwDg8OGgTeRoKR0g+9yXzES1iX4qnrebke3DtFGybsUx4P+NlOSHK1HZhUaQzGazJN+OjNvNVaZ22f5U60mHPdPyrhl00Lnou7JQBaAGNQD+dXeLfSVMNq+1SWloucuxVIrqLR4BmAe2ftcityzJGeccs/sJ2+DzfzNku62R1Hq8zr6kQ+kCPwCY+3ZPMJfLAbkcAORyOYzsEDlZA5DN/Xh9B2Q9h1wOOQEjNF9KFzZ0Ddj4Sa9fIrOWf1wI3MrKexq1LFciv6KsZ7NZZrPMkuTrDR78MC3lZOj1wFeCyNXA4Afgf7ca9wQEcKxluz70GtQANfLWPfM39eZFGfrc0yY/2mIwndWHa0zYVweYpSYvaNml0CVqegOTZzKeVPBgo5lQRvKTA8RPP2s6/TpDZ3YBEHJHKjCwp17plnkng+pbfyb5yWbJWLLASlb+nQrTeLOy5LX1CzTqxvxkSeWK66ShNlKT9iBVVxCZQfYO9qtdG3Jcvau0Uj40Z+jB8/shtcAkawgR0y/1CfVklxHBrO56jrp9i1ySErJQeFovaCQ7nio62tgovTbCY1F9XVC4TymrhRwLOw2oSfuPFb1lUH5tWqsCgBHX+oyzuy1i+ueB2qJSKSP7WH1/UlQByoBUcodpM//zra7inbR4ptWJxAU5P+54odWjyseGSgjFCFyVorFGgkr/dSxqzu3JVuVOUCdNtUNyUu1SFYCZJjpVdqStILX3jhwVJeIQYtukl+CAzZerAExvEk6bMvTpQghssNmtJVaKey0NABreWANgJuqMnGReL/Bz82iydFwl9mO6humk6OUqENNRZ7tffqyQt3hqT1PpXuKTnrFRNP52DQSufdh6jcKaVrr+wymPOFFg429iXpGkjyxWAXhnnfWagBXnyMMRxT7dNh1x73MPf7lcBWB5rWMa35oy0kpXftaves7aLZu9LcK6d6oALAccwznfakzPoYNB5zPA+c3Nr1owW7yTgoFlULGn6za8pfHwu673koxCWD1vM3BVlJaCyrjLSMJg51u3Oe/p0WALhe6Y9jz/QpAMOJIdaWOAww2WkZq251zjPaPW9h2uXayT5iNrAKx7x57lK6SV+p402aUoKO8D03Y1bpn4ogc7y4EqAGvtSy/PdEgxPF/bYfYnDC07K4Swn4ttmfCS2/JakIyl7Fzqy8RKg8o3O7g+w1yjLW1xLeAlt2SiCkD4qg18GjKtNBh1GVDi4Gt/CGDN94esIggHpkuzg4XQGgDRGZtp0VfxmwOv2DEEIM5+LwW4Xv+Wi+6El40uN1UBqJ+yPXnhkwCAp9tjNgUWAHHiQAwAZuwTUkg6FaPfbgLJc21WWebf/yZJplXZpWzjiyQ17j1gW2GHdnrMT2zcuW5rRhCkp1fRfhYpkhyWPwWaD3rg1N5w+yED3SQ5E1LtPLONL5DMNjqzZKGigSuSGsc2S7/3EyMAQLlSJ3cAwDd6VCczanYPAnN/kfiReYmAhxMnkPyE9Kukz67HLNemSb5ezAPdC+Ciy//pK+bmS2o/JW31dNjEkWmlNkVc1CEMK51WBq4MygfSUm6Na6ZhqPZLHQDOX32khCAI5xtUWrHHIxtkPJ77ThXeh2QCwKEnqmlK3y1wJ9W/W+ro3b93Qt+XpO4yBJGpzZCnYh5Sc1GpwJW5z2LsgyP6IF9tDuDWN54pJQYVlToke6apTs9jCOw/qV9MJoDBjaU9UAWVUuznHwaMeNVbRqBw8/8wE075FRsvFQ9cyX294YP09mka5ZJ9pMs3TLFkLkl2H6EFZ16GR061Mx3yzuq5qfWVIjfSQVvcJbLnaQC4kMBAV31RURene36tuEiAAw8Hofs7pGbExaJjM6G0/6+IyJP7irBzhxSo6SMe6qY2F8x/8YhfCI0kp+osFcudThmp1Qo4WiY8zsHOVNiVUikLK1/rDBOSJM81rEhsA0cjT8XznYPtz1Tw8RVJbfs5d7hCM+KwZjxRAJ23Pzmy9vKjFXxLBkBsnXBvgsTRLbsME6njDafI+fW3xz1dWCUzJJ9VBK5O1y3qPGqQa1a2MUWyr9o7+lSMFIGr8dBUQZSQ4/mnBzMkeXLjIiv5Oo5kvirjeHI+YklDVRGAOBH7PwDAlzv+4VaFH2FV33PRvjK99/mv6O45AVQJAHOZe9fLLcOTeKwyPXCb7EfC/bCsvSTZox/3IS15M780aDe/irzZcVg+Xp0KWpMzPnDGmqw1RR5wdoB8xYzfn7XkNf0AZWotDAwEXXnN2QTJ45Y8wVRDj+fGVkFa0xj1LNnKl9152oNAinttX/3eaG9TGisP6jJ8vsX4PtfxPmW+Pv+1BiOz5kNwzzwim49HHnc/VuxcQNhIRJVN2qj0xk6HTyvuFj/n8K3yISRlqvNkznLOQbOMs+i5jXl5bsNNmuWv/Vp0wv+5DZJD4W73M5q7WLjU+Z2uOkfqsEAlzsN2XL59c/8fLRcc/rtw/F7f+J2GNz4Fqr3y4vyQnO8OHko7xq2QmEZy/tFgb1ruj4Ti3J3nuafeQNewq3cX/cffB/sWqVHj3hdd29cycDRycTAeefyS/Zqdph4Ltz6rv9nZpoyxWy4bp6CXl+S5NFW43Hkubbib3Ks4TFru98EL5/VzdgFurAMw9yaWx6/Mj0Z22M/ZnegBUoq4rJ/vkK3nBiP1qLkvsikecLT5zL/ETvSovr4uITdfJE9rzCao/g8S/H23W+IEuYzJv9zuOk7rn58yTot2pJhtVB369i23UijyeGxC1f7PHp67FKf7sX4AAAAASUVORK5CYII=" } ]
<image>As shown in the figure, P is a point outside circle O, PA and PB intersect circle O at two points C and D respectively. It is known that the central angles of arc AB and arc CD are 90.0 and 50.0 respectively, then angle P = ()
20.0
628
[ "45^\\circ", "40^\\circ", "25^\\circ", "20^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAG8AAABqCAAAAACXY1APAAAKYElEQVR4nLVab2xbVxU/rxUr0qw8Aa/UEh4exO1cGUZqd6yoltwNS/MgY0WzFKEV5mkeQWRDlsi0jFV4SJnohwyiNEiRyrRUdCyIVN6HTnO1lHmiSBGGZRMpL1tTLZ0r6i2V5s5Fc4Xf/fHhvvf8/vs5S88X+9537/3dc+69555z7hFAvRAEIrr61srlCtGFS0QU6qfP7A/tTAQsbdxI6A2Pan9ZqNT339J/R0D48q1EdHGNrlUv1M6G7kqnvyh4QvnHA/FxVp5/+VrqrlTUocm5SqUiZXP93cfyS1dm4qFR2avFciGYPNbwHsUvXr0QOHRK/c+MH5ipPD8kjn1obrARvNqwOFr3N7HaiFj44FPgMYbmk18orvtDA4D6mPRMa8N4QCk4vM4l5CEn09f6oXB5o3i19MBi9zlZqRIddJZIN7xqcLwbX2ZSJdE+HF621PnBm5Ve7QHLRPPSvBWsG157JLLs9d2bql8aU//55K+RSXY5vS6kjl9PZD+2ftrirnnO7Q1X+nxoOzsJBCKiHX/77L4LvvVZWZzeEHOmBTsiVswfXfH+JZZ72pcuVJJWfeGtRzbInZXGY01j0eU+at+763cbWjo7/fBayXgFO8+qkG5vDntA686ioeSMNxtZ34zF41QLlbrgLUrypqEB+LvU0RoOeKwWctPuG6T5sK68nfhL/3pz4YDDWVc8hrlEG73dCV3pelSTmJ2/Zqi6qVgAgIWoeuPb9eevBveq+m9TiI/07W9MmM9fWduRq9LG7oQuVJfqJv4yqklL4yMibSJ7Gu04dMTIXz6uz+OGsAfUpas6fziafVPl6Uhe3HTeOIMP/EbnT56S4/wAfCj6NGt7JAasbm9q/D33uBDn6/fH7++4IdwJRP37TxKIABwlojyfx0DFa5afjkopzt8KgPLtRET01kepG8IeERHdd+4i0RZaefAxond51fHcjYOjrYdeIKI8kYw4UR4MCHn6d47ETD+etBhlZv0pB333BRjKRPRID1NrB+pm/flG6rEzvsUjPJoBw/OP9iDQZIX4eVf11+t37Unfd4G6Ov1ERPTomyCByr/3j0cHXjfbS0G5sbUgHm66CcRIr5LMf3oQ6GLUJM+L7aj4vcg7l3Yet80Mtv9P56NEROd7YI/ufO+qcXoLKWAuCSzuTSzCHhYwE5UBgCXyPfCHgaoRbzoPNANrAF4I5jx8fgD4NxdnmVb8ozFkTxjluRolChycI6Lc+dCuZ6973YK76SIRUeaR2/h283NjChR918Afy5wCcGqAl84PRk65zBIAvzFloRdpMoYTWaM8B5YAtHXjdCGWdvduGRJE1Ks6qqSM8rzWR0Rbh04QEYHo7rcz+5+46iqbfwBwiqR50c3XTHg3ExH94CU+Hglbf776SWSz3CQiIgr81yjPQBNgQPgsOvv/XDLmeiWeuaX/LG/o12CthXQ8ptu+YyOm7vOhbM259y6ir/kEUqkhGvlT/y9JZt+vNS4etsUZwIDPE239a0+2uBkvwBUni1ndo1o2NG/vvNy3c2BcXOoFzyBPAEHVNhvP2RqeTSSr1rrkDIBZ8a0e8OSoES+ihhLWAsYbQhXYtJQ3R+Bm9/EfqYdDWE3YzjsA7JtzaNt4Qppod3bielBVBpNBGX53aCVlxMu8AgBgmD7o0Jax1XSkrI+b04JjmAyu+QIDVH2mKAoAoDCpzX2bixPxSmRQlXkl3Anhjof9Av6yuIWItnCrgiLLqhqQDvyZiByU/ndWDiSeuEpE138yuU2vfTqXuuRPv8g7CQA4e1hIAXwljqccp8cA1HPBWeCIWeJjUX9uh3rfKlym74UUBkUB0Nz+vgJ0JK39UxQFqN6dOBmqKQCYqs0YCipglwj3tobOnwIgJEPh6NnnoABtnXcFTNHaKe2XbrrjP1BMoxdiPvxGi73E9r9BxBgR0YN/ICKTYSjoLbcIQuzerz97XS3yy/23dxxwu7o6VEmhs34KlJkhjZ2WKCsdvqEyo5Y/Ci4qtcGvlswCzMW72pGZOUaAouPJQU2eyBUt8kQHf+THUIAz1us/m+wC2A7UQYC2JxS+gAoDoFRiAJi6S6A24uVq6CMoChRlum/EqOLa2f38TDKXbbMYNcV7FKBQ1DuHqi692gld262PmGLO7cGM6zsOwEfv4CkAlsKdjwU4b+/JjKFwLh070ym1MvdoHDpNVFrr4KknreNPV0POEdeatLqHBNIdj1JosHP9t9JZ9zhtKQUjfwwMmHxYL0cWHOd5sAjEZSBPaq/WuNTxcJpJd8CDx2GN17H1TjykmHOSSin6CRAHgHhec23rQ8ETWttmcsgFbnX7xxY8BqDwpFZa6btu79QKV4ByHjCEpKBf/wxAc+BhezcAGC4CzBaPfL8Tzxp42d5p7CEA+TIATMWNH2aDD9U5j40BRyO/LjYAh/jnQ8+A8Y4TWeMCMgBYltb1PnnzsI1RcYIvXSNacMAr8EobXiceWQvY9MW+GTDIeQCQyWrFrWoeTj1asG01LR5pd4dHhzWGUrOWTzP7AGDqKADE47BROZJeBRjqkWKnkgMPjcMFrxnULL9jaesclwGAZEAmBziG9oQ02gCwdmtRg+JwC5EW13IO7j6PlwNobDPf2rkxgJX51eL2YrCel6YBrIUnOrwBLY94OZA+wtuyg5PGas1EMqyM0wmtJhNnATlo7OvxHgBAf++Y22eobd1WcmhrIQaoHo4c1FU5O+n93oFF1WbmwQOViiYTydVQYQCah8Xxlixq26263es9h4G/VwHAoXG9WpZqnjjmIWrZ0PySCtjlvYoB+nvcqahenZ60tfSkSix5UpwH0PpW0VDtEo5qp0cAoC0tqRVziXavbzzT0gN988Ah0zp4vacyYGSUFxvBDSQ1NEYDN70yHrvWBY9zsSyWAZwN8brh4Q29YC3voYC/92KgLB5lQLgCAIvBDb6CHNkWMLuHHuHE5f6RNsaGAbRjf+oRhyuvVi62anGdvPMZUo0l6X/ARMajlTutJ7JN6yJ452v8NHIuVkLN8mbvRpaxq6ExewMPPAZgNvijIdxf9AVnoZPBeYct5h0OZqhuv0l7m+xpf7YPh5c7SUhTRHHku+MBuNT3ldO9APFpvRH9bsfUlykPyDTlCw/NUnD4inGs7mTJl+JvKdzK8sh/USlw//nPRZ+5QlaH0JU+eCrW/849nfJROkYC0e1h7i76IZ7v5ou72ohYMJsFNGXo2Us+n4+sg9KQ+JQlEcxgyHmfB8Q1Q4UBwPpMIjRmzKtg1iQ4PV/RJIgVk63jyV/8NMrGGLU8GgkOzTjGy5ans1L0aUe9wDemzNOFPPM/BdDKbtkUpL50ZqFyOXlL/zdvplvDRHRxTWhq+aY71LQaS9bp0Z+V76HTv/inNqQrnZ4/Ron4MVv91bflyxUIbvm09nEyRHltGA9xTpEW8e9BtXRsXEfyOH+YlTG1e4WISLDF0qxi0csCeR5TD7x3KEqP02uGcQwDW4f092YIL7zXckQrtHMzsykEr/2SeDFKm5mZQkQe8jwtvLlbEOKbCgei/wM6oeM2+596DwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, given that the three points A, B and C are on circle O, AC perpendicular BO at D, angle B = 50.0, then the degree of angle BOC is ()
80.0
629
[ "80^\\circ", "60^\\circ", "50^\\circ", "40^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGgAAABkCAAAAABPtSoGAAAHbElEQVR4nLVaX2wcxRn/zfa2QuSSa8QFW2XDBc4hlxq5oSEqf6xeLU6NW0ACYRGFumqMKuXBQjEmUl0pxLGUB0s0oqKWQKraXqqWRpGJeYCQiES5I0ENNRKoOJwj20C0hpzjPOD6DKn2sl8fZndvd293b/Z897N1OzM73/zm+2bmm9mZYQRfELM/ACx9PH01B8zNA1Da6LsPKZu3R6uFKgI2sAAiB+bPnj13tXNjcsda2pQAsStfoDQ5p15QujKZFgAEr+KFiGwVm/7LiZV0V3qLR1mXcrlcvGdPsmZNqSYWX9uu7C8E5ZgaaO3809fBpdQkWhiI9r7l806vBMd3xYYWvV+JEOnq3tj+BbdQVSFERKT2xwaK/kUFEenLQ/HhxYAMLt7iUPzgjXqIJlr3Omn0qoArVuxNnPLKEUikZrb9K6AWPsilHvO2gQcRr8xk6+HwNERUPpCYEiQiIqLshlN18RDReHxcmEjrb7vk07mCYEhMKkNWxCrEi0j/uruzxvALRnF7z7I7TfJwFp/en8itq+lSvP0MAKDl/VsemKvtgk7FxlajDsdoLOdMqCaaitXdDTh4s0zEZx2tXEW02NYAfYiIDrf/16DViYjc08TN7i1j9TVPFX5Vmghoo4FMuTEKEd14YNgWcxFl2641iodIVSb8xtHF+HTjeIgm45Y30h1EqnKayG++qQfjmywP6yDKjDaMwsCBHi+iY9sb1hFM3EiZ85ONaFmZbDQP0bupb3nA5utGHr2/QSPIhswPj7jH0Wx8VR7bD8V4kUjnGhEIwOH+Oj12MG7vHQUYALMzF5ujkFWwZC6ZR38Ta4ZCQMtTLwOw2mgxFrD4Wx1m48tU6XWvP9nSHIWAZOcbNo3uywVVirhf0s1AOEykyfIMH90ZWlwc5fgXlumO9tU2gegnWxWk3r9aplMKJGyUPIDBUCpdTHHT6VRoFZcaVlZI6wjFVI4WSQKBIZ8WtsyhD9RbEfnj8RWARIW+05kDH7DnulDjW9fE+RE+/MDMfxGkz4F3hnxaTAB4dTAFAFeAML2jK8+JrpRTgkLlSxkAwDtP3yqsDoAff74UAYDZdlGh4n/uAkDn/1kQJgEAbJ2RAKCwWVSgteNzADef4wYUR9tliQj4TFgs8uQrwLycOVI7qwOpGYkxoCBERATg0HrGNhaOhHMThNSUBADFO0SyMwaAXieiVJiOAIBBuS4BQGltCJm6sKbEidx7YQ1HdIUTrWkyD0VLEggUVqNh9kI4AbZumRFC7A5yzG8U7agWlhISAERLoaTq6BLLaznRSigp5SDtCOkZStEIAC22FG4JNCKFndZLayQA8rpvQsgQ4L0PHISVqAQAG74MIVPXkJ3fEAGA1Cw0QNYAGRpkABrsDytk/MogaHIIHppplwDg7inIxp8myxqgyfYHAE2WYcY1aIBmvBADu7RZAoB7ZozSAGh+BciVgGyLiWF2S8TQiGTDFiFLEAMVNkuAhjvlaVsT+6gUxlRu/PuumARAk9N5gKska5oMyJr9oTmTeRuFYs6lIQGyjK5zVpos81/bQ3Ym8x8jRZCoC/wb9id5hOuv4XDzwk8hAWDYGvl0NU1QCx8qLcZKFT3Hw1giLI49DZPo19nm0aD892cBiS+jtn0vj1V8agXjrfYEIBnLqL4sQs+0ojjaB8t0+OXEAupeTAVj7kKPjSje94dmkACgl/rXAIiYk9gL9w01Z+vk2rErAGBt0SiPvtwUHoz2xQAgYsbpxQefb4ZKC//4BECljcCSe34rLm6YoWYvJdq3r8UMmlhuFd7qhFvWD/qZtv8ZIrZUsc1bnYgw7Jb1gbV56zg/2rX+92JWq3UuXsHhe3ea9rXzq3cInuiIajSe8N5gp4vxwDNxIgplusnbKgeYVYcgiyJbT0yISFVO2ETIucB9fuqhGvZnOsMIDw4H5iuf2XnIFjWa6r3b+feBvnPpF4IN7ctAxACwE8kTQEUNrpjWYW7YXWvc0ZvjiBS8+JHHV8yUVR8mckzEZx1xrlH2zR9ZRA0+Ht0NMLxtEKljajdVDp2n2vpFXYTPixt72i19dp+kPArcM7zSjx/A9JSM2j+ce2QpsL2PMvbz8gHvdwR2/eHSB0keRvlyGncbnSEL126sXu5v+8RfFRWDRCq8Daybh/KGzvlBomcGiUCkjumUd0tlW0/52UbrGCSd6MWTPvUYbzWvGeiGFgUiAqndRPQ3J5EedHEiq6yQTpT19lbuixO7C5RFgQgHgQLtBgbsLEREambbRW+Fxqxz6Wq4r4LMd3OJcJdbeAXgbTOdiIq9idPO1OyYziU87jNY8/MTM+u3Hrru+9rtebDwu3uTl3/mTD39CCt3K2nUmo7VvbH9roMlrWOMiEh16+W4gGQYNg8A6CYSmFOKA9Fep0/K4iRRvtuZbWJXbCjwmF3wkthQwVbPnHvcTe2rfUlMbF0//ec3S+mutNdOk+i1N9EPCPry7Jn8V50bkzui2JQAYFzkO//9TCbTIrA5FOJLhdjSx9NXc4z41cQk5Ic9rib64f8RAU4EeR2FYgAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in circle O, the length of chord AB is 2.0, OC perpendicular AB at C, OC = 1.0, if two tangents of circle O are drawn from a point P outside circle O, the tangent points are A and B respectively, then angle APB The degree is ()
90.0
630
[ "120^\\circ", "90^\\circ", "60^\\circ", "45^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAANIAAACSCAAAAAAVqsvyAAAOSElEQVR4nN1cfVBU1xX/PUhmNxFLnayF1s0Q3SWugSRaSDEBsxhJo0UjqVCdxlRI0soUZqImizpiIUHHD7QxLZ1xEg0wJhM6GqUDKbFqxUUjKTjqFIKUZdGAESoZTSXD2uie/rFv3779fm/fXWD7G9i37767955zz7nn3nfuuZcjCMg8BcA8DxGOKNH35qfNZH66b9xoYQSO3G/6ZlinjxsxbCCWUosJKDBFOkduUqrNByJeRm5SomorVc+I+K4kZukypiOfMwMAyE/2SIDAEsFcAPTRDAAAN24EKYeoL2VWTwcX0fJxQJBSS9SpGRxnpMhWOsBjXPr/QFTwLJEGXyxFuOA8WWqnyDZ38GLJtPCnneNDCDt4sDTpt4szfz00PqSwgqfiRb1m+f7MrSOOG1GniqD+5W0eYis7LiTWAnDrVBHUv3xZPO3B+n1zTow5Kazge1z6ibn0lSWRaid8s8Rxy3oz04uHEVGdiIff2UP0Ost9+q23I6kT8fA/IeI0lecu6GvGjhRWCDjH0x2sq0o1jxUprBBk2prevvHFJb1AJPWpoDPxZZbMucXDiKCXw6Asker1LszacTtyRtugLHGApqr1tP7jsaCGCaS9AuoaPtiWesZ5N8E1UBpLBGP72hV5vQ52JrgGSmOJA/CiZXaKaTgCfBUyfA+qTZbRxN32Cc+TLHeKpup0s+5wuEhhBZkeoqSGfVvmfY4JbSJkO72yzr+akzcwkU1ECH68VT2zk03/YU8KK4TimozZ1H1L/85d5rQwggyWRN0nbu/JRkM9c2LYQDpL5NZ9ko7tLZ3XzpwcFpDOkodBoGc6Vi5ZMcCYHBaQ05dIfOU4rO5JnLP5G/Y0KYQcljiPK2IqOgb0f2JLkHLItXgeQ2xc9bH6xE+YUcMEclniJUQAObibfWzPG89OKDsR4pIZB3BO/cvuWrqoYAItDYRiHrxQ3KeduXmEATVMcI+MvBwA3LzY/VUz0DsAQKvDvenTHk6JiXlr9Ub95qKwUCgbHq905Sj3n5eunjjefC3jQd0TMXgoAcCVyxj5h/XLM9r5Wc/+oH3tjd3PeQzI4wLpUrq0v37EOH+TQZSUkABkA+hsrn9tam7NpeKH9iS5no4XdxJZGj787tCKBoMfKpOSitC5L0Nf8k1mzpY4Jy/jJa9A5kHQyaF101ve7K80BKIy6e1ra05seUmVXD7CYVxfEQOxxDMwUPhwtOVAdqBSHAwsq+v47oOcc/pajKtz1j9LBIBAIxvnxPdWxgUuxSk97R+7NZ8//27yCYyjayzAYgwA4C+JN7rKNdLLi9v2z9GrL6xeNI5LiH7NA3EArhYM16d5JgZB3IFThYa09JWbg0g2bPArJQ5Ae2rm+TTPRA+Q6JOHsWPO/qP3zdx6mwWB8uFkieBBFxFqF9VuClqAL4MdXbF78dyLF/S142P5yA1lZcLXO0X6DgoJdiJq066n03NTjrsljg1EgaAARBOkm4svtif5aAKJSG0/lvf42Y35i3sx1msDAkvOFyH++sUTCc3fC7FMDgDiPlPP7V1meSaleBjOsXdstNDTPHAAQDj61Jq90coaVnXgpZRTqnWWe2ftuI0xHabc9fB3ZURE1BH7qRJttvP/RzQWIrIsfrBOSWlywUupj4viSoS2HM7Z+pySZuL4/5w1S0cAXcNHla4lxDEAERGZQEQo4S3enawiVi22Msdx/UCbY2FVZjBEAUBJGwEw7wQAAt7AOyzaCgD2DZYDBLxoSZ27blj0IIyIAtBS+b44qbbxo2gGJXMAoDq4vx4cANWmrv/qd98VHoQTRGQ0ERFRNcheVkatmi6WatCmEQbsruxph/iv4Rx4QUQwE5GDs7Kyfq0iY+cGOxHRoYTrwu3xlIzTzEr3B5DdCivZicywEpWVZW1n3YSluaKbmvhlV8I8OYoiDhgABzxdMh3A6RtvsHkjda0JlHYcdSWv6pvzWLiXEInIlElkhYmI6DUsGGTTVnbX9YTBJk4bXK2pvMOmEp8AEZER4PvTUz8u1WxnWJ+d7ES0fIt7asdC/RF2dXgCRERWK39nuX8DWRYajjuocadNAQY1nqI/npTRFq4eBSIyAyYiMhLlZ5YRUaM215MEhdWvWeNVyL743H5GpXsARFYT1QCAlQanbigjIrKx1T6iQc1Nr7RbpZoN3qkM4OYTX6tW8T7x3uLLVQsYGqHC+HLvxKENjeXhWBogso+OjhIR0fXYwbIypxo0aPMY2T4iIovmFhF5qVhnlr6RXSU8ogBODTUA4MMX4gDnHGyxZWbyDgbhGg4t0GUcBrydZo8c27M+k/USovittjrfRQOgqmhtTla+84J/Sf/V+84bd2R35C16mW2ogZMlm8124es0G2C7zd8CuqZt+XlDwnPXJ2w22GRUwgHPd14Rbt3nJkV905KYLiE6WVJDXfsK1NxdtdoG2NSOS47F8OiOuwBsajWcyTbY1LCp5fAERK+sFr67y4pi3uocmM4w1ECkeId+rgbB5kaqquJk86MO7VM509RQg+99MrDiz34ecOC01U0Hk9mFGhARjRIRXYwfJSorJWfCqPPSqM0dHPVI5h/KwJ2YwAa0UZ8VoifUE1Fw9ooWI8+kp0Zl9xiSf3+XTw55jh6d0RyoYZHdk2NkE2oQBcCmBoCWeWoA0TabGlDbxBdUtLYkNTnub6thgw38nxxkngzwkANQ1BufzMROCPKKv0huPnEPvfCe98lEqyF4nv7c+PeU1UIin/iXdx8LxHm2xaBw5E3rCx4Upj3YUKt4LBTGpU4D4KOrCAnKR95ZPRIypbZsKVS4hCiMS30GwMfwLkrQNe3K/4WCDqzrhhTzknMpK7PQUU1otkhQvJ6ZwTP/TNG8b1YPpDjxKPp1y2THEmJoHj+BpW5DoGwOcKqKs6Frn0GaPnFAbOXFCw85diuDZMtKYOnaNEn59U27Q9U+7XWpOQkJBw/tSz0BAJxsh5XA0sjk4BUBUKB9kySPORyA9JaN+Uu6+ThaWfWIWArWFs6CQ7V9Md/Ky7/sSmZa8dfy63GxdL/ktiBd0y7hrUM6YuTODKJet9w3S36ogYulGMm/4UIbeSfLdLISoNnZ2q7/UN7P3A7AgoyRwKV97j8JVIDMfs4B4HRH6t6WuYQosBQzwpGsUFen9rnpa6CInFuTQwo6TG83rXDsVpYIgYfJI+Bkjtc+tC8QzSMxcivgsdySMXftsOTsAkuTZNojQK7tG5mEECcEqvVffKff7WYnAjSNS/FuBcnpBQKga6qUPPJ+K90AedQCTK061+zYreyMovH/C4Gl+KtBcnpBrr9vYKqMwj1qAXQNNduePCOFQoElg0VmXbL9fT2hhyQRACxoL1yRd8Wtbp8QWNJ3yKzG1VwSR97OxFAdF05Lucoy+3HTNwgiKpeUeoCQvSWSRl7LzFDDA4TfqTZ1jybsDlKRwFJip9uPZUJVcdbp7/PbKl2JIRYuRlzVmeOGIKcaCF6I+C4K4E6RgCAeFynuFGk4npTRFuCxa7pgPKWwAbN7RNrnLatmo1dSiFjQ8eqSPP9LAy6W5gfys0mCuqLVqX0+NLh5vtLyXVjVkzTH5NfhJMirK56UKR4RBdC+YA5kuRh8dWqV78VXl5QM91xi0H5+bV+7VmHcuNt+UULceyfrDT6XBkRT79w6BVFYQf19dctDLZqvwG2/KAcg6W9V6+e1+coq4HwCA8UjIqJG73XeO5rLLEr2RFX8yn7RrZ1IrHiYPUWpzXPCh8elISmBUeFuKOqZLl4a4AD3d778GkYVefr7CKh9mf/CGDFvdl/1XEIUiY0PEmCET8TaZ3nAZ5CAYtjJTtSWZWh0JYgVD5qCPSwazpe/r7LY8bLEOgiUAwekHtu15tkLzgT3OPH+BxwBN6zgjLCia7FhCa0hEuRepcl36kQUANRyXCZKAO2Ssyyb0OHv+zeAHQWxCFPoMS/3IotWsBNEVpjsZEUNEfXev4FxI9pKNdvvDD3AdubgG/3L4/YSEXEEzrQTQMmSeQDS+34DsD2/+sZfb0794bwxORP7q6Ojr2xDFNViJwFI0gLA0VtfAUxUhJyXKb9MG0oPYU1FLjjgRwVLVQAINWLp1aUwDzu1GdiFaUtBVB9miHldPmUX6+bbkuzYkzJWB8q7dmzy88LqJ2cr2hXjhY8P8NFp3FhtYuIVz2p2yo39BgU7GQFwJpbF+oKdiMhsBdXATGQ2uqYqNfrr7GYu/dojREQmM3l02jDBDiuIzHBEIBPxnKzJ+o5F4UREtrllRERkJCJT2MVERCVGgo9kJluyHGLmt2T1GonIWKu81GCoMcMnS3RdX8WgeDvRliTHBLymht/JFmZYa6y+paR4eyMP+xGNxSEuIwDjGGwXNpHV5JslO30ay0BO22ObichOdqtReWFSUAPARD5PEuDw3GdLv/hDlKJh5HZh2zkdAI64gbSguVmgD4QWq/fiLD/AP9JuXRDiNiPHMVLD6d+26gAAHDYXhkikLPQVrAKs8NwqLEKo2+4dHaZNK7ymWAHHPrbwwgRYyQgENEM18SEbiUPxh7zS7MJH2GAnIj8Wj0db3JZAj12luFFqpzulCYyiiUOB30AHApDa3jzn8yAa7OMIi1PJF5Scq6AYARm205H41dcDZvHC4MqEJgVtrByBD+0BlvZMmVUuPYwCQxuTdd0LlbazIgQ+tIcDF7Pt/KDOFGRx2flqN1BssHWUq8b3OGEJB2Bp9/7rrv6lowEy8l2pfkVyTM/bcRirVz1/xEhr0OHD7w6tXBUo/LVzX51+VV4sG6oUQbIrirr3148Y5xt9sdXZ3Hxyam6+jiVhoUOWd23g78e8jvxr6+0/rZ2flTVeZ0N5Q7bD0OtgRm1iSswEOLtQAP0P+42pe8OA1oYAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, AB = 10.0, AC = 8.0, BC = 6.0, the moving circle passing through point C and tangent to edge AB intersects CA and CB at points P and Q respectively, then the minimum value of the length of the line segment PQ is ()
4.8
631
[ "4.75", "4.8", "5", "4\\sqrt{2}" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAAB9CAAAAACjAJODAAAKmklEQVR4nL1bfVAU5xn/vbgJncrk4mQN53jxEjnDUbDF0RQyQQ8bLGSSmmQkMdMhFSaMtr20JRM7msZEMmEqmZrJFzim0RZm2g4pWDSxzdkkesZ2ggNTsDkCNkc8ikYMmYgFZxDWffrH3t7t7u3u7cEtv3Hk/eL9Pc/zPu/HPu8LRIqhGax0+hekKLETGQwAAcAwO0Niy41LwDA/kEWYzt1KRPR0O82T0hmyBAe+fhkAlnswT0ozkn7OrKzZMS+EMcg6XzibM7/EMWZE/Wz+mZfmDjEAw+3zRy27WjP+TBQonafJTEQxZgoA2DpvvERsnkc3DoWHtZ6Metn8CKNgPlf65CQDzFeS9EmlYEbd1bxj5q0pjeubktnx+wM/rrli1jqd66p6JSn/ZKHXQO0HGctgt07awswAZDW1bdNX+8jGXpF+tDx91BnaAl/om96/qkokp5qZLgT23v20fczIam6re+QrRYE0uMdvA4AVYRuZAV/Ik3dIW/j+9wFguWgjMwGZe47uUqkNzAQqAODzO21kZgBQ1OfJe1sSQxrmCyVZACIvb7CRWULmnndfvO8SmDzMf7uDADxVWmk7M1D876KCVjkz83o5Q4SNn0gbcXx/Jtq9W7uR9RZWjBKRtIMCaNff72a3p3NmUhX2vFiwpxZAOZFi4bzSN3gxCPr8PADXcnZDydIVq7NSVlmxP9ejPrG+r/rmltsV+fMffBi8uNaVc1cWbncDGI5gsnto5B+u9WVl2alRm1mbiEhs5Jvk9MB2j/PR/QN6zUJNlbd4d4WJiERr1k/KTDRQ7IsQ0dj+1a7tn5r1Fapzlrw1bok2CXNM9kb+1dE6VB1NqBe17tWx2bFzbO7M8e5PLsYTo0n7EomIzvsddcmbkuK7ytAFwSaf2fTT54+0mLsLomvO0qazmQX115I7mCFz3OcPr7g88NTv/vTe3WcBkMFJLDbpCNmNoaHcJMcqILlvj5QVdhFt20bUxDeS1WUj6H0g2XAnY+52NpBIJ1zjRBRZV9hriZeIhGfdISllJGoS5hY+QERT3k4p+xa/e8YqdwffYVpvyiz4PSEikXZWyqKPViRXW1ayx7VTXWCdebyiZJyIqJdXTJMWvl5Ixh3FpdWVE8a1JrOqf4076ABwvXavYkXeEuoqOJ3ccQHg1n9+o3hoFr4dcETX68ayWJlktzZ+55Q1rcVGR9CozpA55AhIibAjov2lsUpvlzVq6uTDKTJ/6ZF3KN+rOr92yLLaDfkGY60zzgTC9R+W+6XcgckntcMD4OGBcO5JS4P97KrHUxrnunujDjzChwyU6XT6J2LzxWRlmyrerVut79utR9sWSKmf+fMNJH5o8GrBR3LO5CMzs/3gYd1qPZ27ePnc0eGd0tdJJCIKLPGbTNgYuvl+nVI95pGlUbemcWeXgSWlwvFqZ0CvVtO0w62zfegxlzXKfVf71UyJCLirLZx/dlVaYm5bLRARiSIFXcmNOeFXqa0v4ZQ30TSJzBOubrm9+6iV3Tjorh43byfS+96E6R/3bfms8cL9a6KpnWvvtxIY8X2y0PsX42oCGMq+vdfct0WiMD8elbPbaeUUKRIRBXMqx0gkE28c5bXHQvV8ZkCD3yElr1fv5S1ozADA1+/JO8RgMK8ZgOyqPaY6E43ysqs2VFjQOI4ub6WpieId6+jMADTWSirT4Ku/taBxHEV9nrxWkxhh9qZXoK5W6zzmkIejuIlSRVd+hckZP8yrp6gmHvbHh7MlyZrhT0llACg6U7SyVVWiVDGnRBP1UetceFJKj9yi+8VoBlEkxbe+Djp9RjoT0Hd5nZT+id+bKLU5GANQ2FNU0GzQ4Af9w8qs0toMrdVS8u1zz0M6IqQaY11Q//cDpQoGheQLqlpUTVXWdkk2HnNaPWbpQvGtr0KX18DaDIOCZOOnHivSCmwBsdY7Tv2hNKJTveb8JUVeNc5BHwDQsVONKVFGER8Y78f33fWSJAopqheUBPWYCUDwewBwtfZgpravVLHj1OG7BxOW01JlOC3GzACcXAcAz5XdO2vGGLwfV619SVtYqjquEtHMzAwR0e46noioK9tioCMZIr5i7aKQqVi7MwBw4ACAXc4HcG1Ls5UtygLcwaq1DaqoNOV9Fs8oPWxsBUB78jalh5hA/p4PVvcpipjnbCKzIAi4kifg04Ovydn4j1gq+j8EAQKSgIHBHfRvqFeo7dXRmQOHS7nc9W27lgmAwHFc/AcAgeMg5wUIHAQuKTUAoDZ0WqG2tz+RGQCmlqIp8wmjHrl4glPkkiH7vboNz8lBKteYDjMnADcNN7zBcZY7tYgtoZ7vnJYWjIWKS6cMyCNGuLawdvudMBpBa9bVQ/Z7LzzwzDUGIEvNDIEDCDewK0cub+cEgQM4QflDAJTFAgRE/1nF5oFw4WkAWVcRX1ClaS0SUT2yu8kOiEREHfz2CRp3qFcSAOxYnyCiZo2BzHMDA4BNA5EC9be+dDafzv3XTA2+tkXl2Pm/01m9JJ7lGABiu5at4Jbd8OuFtugMSLcW7LF99NE6PPgOgPbKDALA9hV+Aay/edo2Ymmvdmzhjw/jyMYOCjzSByKic43nSonIejx1VsYmohM+IprOn6AIejMAYO8O3AnAecEefeOngwuLARwvycLPtxZmANjXzO4A1Ou5Pfgsn4ChNxl74U1kAJEJosByAJ5+ex90EPpXMOBYL+1bdQYZiNTsAIYAwPuZvU/DGMK5QOR/hajNDQBPA720EdhKFOHt8TDZ0UTKHCdqbiQ6h3ZlnITImfLHVGrUXV4i2thL07mLJ9QxA5+1UOasrR304Rh7ZxW7ccmXWeqT/vp0Xi/rILge5UREdAKKu1hiwNnSiyD7nOz6zWHF5YDqpJ/LDdpGC6DHpbwnVseGKtvsnFdtm1VZlff1um10bYGPKONlap0LF9no3e/mu5UW1UTWq1vsY26tUa/NaouMOS7a9a7XJCoFAHzNa5Kbp3/r+I1fc+JRiiES/VcbJEwXRh0m0Ucw4LYHXkm7tgCAxhqHpkQrW/iWy7aonBBl1r40JfbLif02qPzYyme1RQnSTTi70+/eH3quEZGq30Rm+QYlndC7QUm4oyNsXpR45zBHNBSUS33rWVthhxFX8usvyxCJkt6UxRG/HUwLunVvVXWZqcWTppgYEdGIq1OvOJFZJFLcAs8dU8W7dcsNXo5fr8htmvO5SOrg8clOg2p9jHneSI/Khrf9RszxFw5zg6UXDhoEHHPVWiSy9qpDi5DHP0c3m6rOD5PRUmzyhuZbPUP3mr5gT4av7pnsyoFRgN6EmTmOFqyJBipnc0TpWbWh3ewZqLm9Wiy8I9AiatyOJZZfaemi29kgD1MKO6dIwi630UMUi8zR13ipkBKl+hrPqJfO7G0pruKjVe7kg2TiYfLV4EPhRXn1Xxm30+LSrwpy/lOevJ0lJUa23bTd0vNRohHFS1NTz7DGTDRal1UlW1CnQ7mo89HZvK5NgrH9q107B0z0EEN1zpK3rljtL6W/rxo8eHjSt97n1YwXA9AfDAb5yuocKW9lg02BmRiA8x9+EPxi7W3Lv5uF25cxYPgcm+XL8dn8TdmVvsGLJwlD5wG4chh3j0v5Wt7qgeL/nbDbu3FQd9MAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, AB = 2.0, AC = 1.0, the circle with AB as the diameter is tangent to AC and intersects the edge BC at point D, then the length of AD is ()
\frac{2}{5}\sqrt{5}
632
[ "\\frac{2}{5}\\sqrt{5}", "\\frac{4}{5}\\sqrt{5}", "\\frac{2}{5}\\sqrt{3}", "\\frac{4}{5}\\sqrt{3}" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKEAAABkCAAAAADLHw9tAAALuklEQVR4nL1bbXBU1Rl+zoUtTItEZZksbdqlJpjF+LFAGcPAGFBsM0qBfqCO4kBbYJky00HEGqdUxgGHdKRAR6J0mI501HYK+MMKJtZUQl3bCE5AG0wqCQTj6JJQDVk7Dbu55+mPe+/uvbt7PzZ36zOZ3LvnvOc9z33P13u+BFFqSIUCWPZnAFPPTfKtTikqbwBEwW+S5h8CwMtLO6g+eF1y7NR0FMVQASAgrIHSiNKZS0UCQHp0FpRfz3vki2WoIceKCo1gQ6MCAG9UAEDVWR/cDH1Fgci3ogAgT0phDf3LnQDkdZbSHxPGFycugDOX4oOngbgKoSwA5gZryyMYXDHr6QpNhAKgSL32BCiUc9VfLEPZ1drWOmX63GnfA26dCKbagXhia2/yzoWvvFLz880TAEBQQODj+ZMg0LfrkG+Gwntvc+bZw9fetmhheX7MR8fb2j5f1nu26W5AMyKakg1SiGXDx3wzBB2hGi8DT8+serLPQbJnS7gytPic/utKdQfZi4XO2j3BhaGOREModsJFRjIemzRhY1KSbNa+/pD0zc+ZoaZfZWJjsGHAk7aLaybgOXOAaiNYBJxtqJLkzmk6PzuLSCNOsuf2yZjRWTp6rgxJ/q2m3qn6WZDcUtY4+v7141YOlYYcSVeGsqHiqLsS3biHK+5NkOT+iV8+4JdXFs4Mk0vqP7OUlkPV71xcE9dfB6JT5p6gdJL2DgeGKvtu2DDqQYckObQ5uCcb8t9V06+NDZCyBBydbBgP7ffAjST5Ymj1oCVmz7QHy/aSVH0b0oHhgdBbHpWcWjCn3Roi2RLatTAap3+O9gw31vR6UzG0IbjPzE1HZ9Xjh0MrE/Tb6xTyvggAD3W3XwcvvtNvq9AVyybM+GAz3zn+3tnp1bvUjAdZ2nF5f03S0xeenLPgZI7xMhiYcZg99ZHWMRpPhw3DtpDWTbsU0OCakG3PJ8mu4AnyaHh5v5+SLsyw7+tG1+ZYy/eUbR4isx1fnnBLOEGObC/bNjJmgoUZJmvcuhmSjEfrOvNDZeYfSbmzdoRk//LwkTHyMzE0lKok797oXiiJlaGXnOJ1fatXkiRbI/U9Wf1jY2gqos3fcR1JRneWbXFtSirJkQVPSkotwXA2iyK6yAKl3Ba2yzujtzWyuMc9F5WkOlihub4ysTJ02BThg+FojUudkf0/rDhKVzsY0S/UGiHxaF2nWvQAk89w53JnJSPbg1s9Nk3NVrdlm93ess1DxY6DeQwTwfOOCY5ULdE9Wq/ZdIayU4iBWPBAkY0lj+HGx21lJdm3ZEZLUfozKg1aJ2prTxaVOpdhInSZti15ZEtweybSzYRq5pkIDZkjDkyJeZuXaTB7DgSwY91kjLMZwl+u7O78RSZS2EgZUDLP8vt2myNW9V41o8n02809yTHhtKHCX0L23FEzVh8gEdKmVlK3q9pZF42TpnJwKJAcho0P5UgbY26yIfhrLzOCwlhjOJCZRnIotDLhrbHlMIyctrDL4E+hVQkfrnJbbV5QckvZTu2TVTr24VaGb0dzqZEkOxdE4/SFcJdFqyTJnvpIq7Gs4QArw3WNBUQ+e6Rsrz9+ZENDodAj05f3u5a0heFosN94zX7WgWBMm8b5mRB1VhQMHtlWtt1tfMp6X6rK9og5SpLkydo5xXWwNgi9rylUs6pJSX6ou472BW2xYWNMpcn9JAfXB734sh5w7z67mNZIfa9TY7HM9Y4tUkxdsUDTzIk9a1z6U49YZLcYK+/oXDx76+cOa/4mtqOTEmby8TkLCnj5Y4Eku0LS3kyJBzKuYyZBBmaGp6tMPwZXh14oDT8N+uSxUHOTKuO3mOc8FqGsbSXOzczu2+yaGTz7QNbQfgpYSzyjD0DB0ZxCwfzTK+Y/ctkIsQgpprcPKo3I4zc2v/lUdtOQwg9HTWVlN210aPEbepJVvy8Uba6f3TMBELi4YuX21yNWHW6ejCsi3TYbI0ZocN+r++addGZ4vhqAUH91Y6RrubVkS7DFW91j01qz5TP3H+vvWj9YiKFh/kuTAb4RibdvmwSr1XxbELhmyDYqq31Vj+46mk2itxuVkuEL7L/Lx+qAI04VdkpM0Poi3XXMdkzQ0qik5NT+re7D5FjRE3YhmMHh0INav6yNNKAkJdncQSnCy/udE5vxeiT6ZhEMB4JGpo5QSSa3lD2VFRSqAgCpm/84C2LtNG3b0NN+5DOXUPFj7/UwtftRb4IUgkOvDq3Zof8er1CkKX75jRnAuGlGrSXd2wZ1fR4Zqnbzswwx/UWAuPr+jwOZIFWSqaY/1AyTkz8tZkmlNRKNFyHeFy7CvzSvSowXguLD4bumXgVcM3yN1vt4ssuiLhRzCOGzawWks3g2X8XogQihCAj8pgHV6TQmXUoD6TQEkE6ngcwj85ZOpymRRjqNdJEnJC5/xfV7BABIowkQzwhxe/pnCoBnnhbfBAIIXg4gHQikgXTA/ACQDgSg/1ZSTI9HOpAunI0dPr0awDIhhDjkOEQpQq/iF8R75HMTvqaAfcMpvjodQOVZgGm7nAPGh35JBAQCaBVCxDzSI/BBFYCXlx5myz2n3MQFgFR97Flg+qZKBRd+8ihwHoEUru8GRCAQ8JTpw6uSvHJ8vRd2lALojgBI9X4b1YBwH+n5u093CgCVldgEdKSWA7GUfGkJmTL+TA/mBaupjQtTJJunett1ITn/GMnmGLk0RpexRZK8Ur1DFwKZ0kgwdaqKxq+U+ZGyBKupVIrN6EilVLZ4YyhJhvoo2QTglBHiiPOZQxIKGAhoRudNiYuAVsgB8yMAc7ASCIzDs7FbAgEFvZ4qBCDRjTCB1zq4d5ZrNTQKWqsJij7MAenAuAVt3pIqqX/doQDA69/3dHpPKDheByH6hmdxbfVrAITTkhwBfLW6RxHAhUOZuV4qlaLauNZLmZHynFZWzejwloC8dx8lmxqlPI+DnhI04RDZvDBnRt8e8VBDpCSvVB+k5JXqmHtO+rhY3kWVS0/xSvXUJL14YWozgJi0X7exJ6iSlJtuJ8/DA0EdnRVkCwAUd4xJUloYSsYaqWaXSp2SLgXwrpfNEZUqs2tfRXkPGkwMJdX2qHtK8z6otF+VtyLcZclbujtFmSUK02AuoNw68i5cl76pS0MCtqvyVvm2aebJrQLh7hQJUgFlnrux+gDcXBD9rCa1nDw44wJ4cbX2KvXv8zK7FQIQSq6/z4Fodxnc/DigCN8aAC5Gu8usKbwk12WsXET5fbsgvUyPi5pBN64ry0nhJbkukztnuhjtLismc0focxN/OnP3pMrv21WyU+7Um1HjOl8fndvKE1M8H+Zz7y9IanujPg4F5bWJ8sc2+vngLFQBAhLYsG0qFB/nsvM4j95QwpUblXy+tuTnvtrCw75UmqCSAxXv+NuKyS1lAnUr7lF9lW8GUsHID9bP9re6V3CF5rtVuwuEjgFS+dHo88X17vkoZNhkzf6SnBCV1M4s+YLNua8K6yrjWNESTrgLucDm7NzxUF8JCHYF3/Z/XjefoUpK7+cP7aFyoErfafLFMa+lSEXzKjZ1HfJ5C+vysronzFrHiLyUCiAFJHZF5vW6n+NwwJlvZQmO5bJTBnlWNU75ywOhYlYwc9Fi3kz0U8yO57HL92cZGlsGTsgSUfdUuN0W8QpbhpJkX42nM+35GFk9+5OxMsqFbQURAMPtfUsu2wk4YHDxf94K+ah5FtgylIDApCPRG49aAx2hxR+8uf7gRG8JvMDNyHH9fop0qe+ZKtpVN/tECa+neLkntTPk8Q4SSX6yObSvRJd7dHjoqB4+PXLDY3mbqoVKQ1586KZx78VKe53XhSEBoHz3P3Hz+nfgXK2k+PtPo5Pf3zEVQoHhYJaCrEdbD+yNVG7rc+gRe7aEo/tsjwb6QFF3Hl+6uk6785gzzH7Udrzt8/vXRgqn84kiGAI489djrVOmz50yD6idAFxpB+KXTvUm71x4x/+HXtEMAeDMpfi/OyjiKjAuc/cW8OW/OOF/A8VB38S0kiwAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of circle O, point C is on the extended line of AB, CD is tangent to circle O, and the tangent point is D. If angle A = 35.0, then angle C is equal to ()
20.0
633
[ "20^\\circ", "30^\\circ", "35^\\circ", "55^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAIYAAAB/CAAAAAAPj+WcAAAL0UlEQVR4nM1be4xU1R3+zuxFUEa3xKE7ytBRdpShS8gqKKRCF8oasGhcI4oo6mIwmK7WBWnUyGNV2piglSpJMdh2iKIkrl0TFDBZ4oxius3SYM2uu5ThUXesQ9YHsLN16V7u1z/uzOydua9zZ7aPj7DnzDm/c+93f7/zPr8jiFLw0cRoSeXs4CuplPrwqJIolcavwj/4P6DxWu0Xo8uiJBqps9d+/6L/PY2XmvDD0WVRCo2dW8TkUWbhnQZTGTIxZZRpKK6vFYW/v3hwH3DCVcwr6AUaNwI9XA6szSWMDkRpvehoK0O2btiy1TPKZCFNQ2TfxwFTxgiZ0iFlFArgzCdH/hEXPJYCEKrmBTdMjsz0l/lyjzRSB9rjqbrJU67348rfv9IZ+vwEBzuP9R0MLaivr/ov0ej93TuZugV1uYG9ZZe/Y2w23h2PxwNL74/8Z2lQoP+PO04tWxU1tIQWpL9+K5cNoPvV3ZH77qwsl4dl75D9k17jX/FuUebWZrWupTCpdVnl4/3l9RtWLUXof1IPTa1IvrbElF3R+vrb+Y8AgNt3d2Uia06VowwTDWb/Z568JpjcUmXVFAN7HvpLYX8R2nZk3PSWcwZqXmFjkbbg6v6iRB2vriK5P5Q26TW9Iry/ZKNYjyl99bUdNgVijSS15+cMFWdoWjx6s07d+0hj2Yseum7+4dlGKxVDPBZdZc6r66qd1W0wVTlGIRkLFGi38Ntal5LUODRvs9VXtQZaPWuCtDKK2hTpcijQdpse9k8qbsoaSXaGnhgVGqcXzz3tVKCtIRs5HBxha1BYeubSgbLqBgGge1Y4XmlTIwAAFw5lI7W/XfJVvq6MiFd9PG7OccMDS6ob+yu3ufCO1+Wjm+eamgtJ8rnKuFdtFNLousS16RtocNmqgqy8LdoCyaIUTzT6I266IDtmj8SHrt1anK2/eHPNgCwBMw21vqngYZY4XGv40WfXca64tXQazfWqe4ECGuwMfKZHCohrHJqzqVQasYjMaN0TpWZ46ZsRi+atkZ+H2jzT0EiyI9AjU+BkuPD3ehsVdgacOkFLGiS1vpDc+FhMgw1NljVJezvsYSqUN0r9c3IF+kLM1wSNJAdqrZqXRm5Y6p3G7pkS1ZMkT1fmCeSIBdstJYei8vOPLI1MqFOygE6jAAcnJy1F26cNyXZgWRrrVuuhe6kBvzktFrXurZZZTgZsaWhHA46janEJE9l1i8/nosa8dMA8V7SGIAA+EG6RHgsFKUwL+FsiLxat6ikArMGLkk/VSKYDp+WnCEVjskZS0waiMZOgRqZltQySbPYyY6q0fHIydJAW1lq9SZ5Gf6WsCe1pMB48STORZEBuqPUB2HVbectyAkDds0syME3Kp8x926KA1TPI2g88KIPhkzYZTQ0WiW11Ul0HqB0Oe2FhT0OtX2+ROPGkDA0fxM7GskySswsrWnfvMmVU3PMHqcUTGZIa4POosR/Ak0HzkrMjKmMVH3pVbyc0Y4bt9IHq2LJULp7DrNQpCXX4EK/zxCK/J2hKBrBoza3nUNhcKubGJR7qY3yBNxrjBwUslkIEAfz82hVFWZz/gQwNkfCoDUUFLBbtAgKA2N7fUpQ1PyFD4+8eq4bjkpCoaI0Vdlji+hNnJWgkazxuEvkz9nkCCLz3yF8L06b9TYJG79UeN0VsWkoeNTtuLtyNixyRoHHsam8s3LGkuSG7GacbMHpUgkbPNI9vGXvOTeKxyKosBQEA0W73PQZfehLgLsaRSH6Dw1741eQLhrYU6nffDVMyFwPuYsIUcRIe+86s6Mi27niHOp2DLyNxGlGgq7Gu2gCq9jzYnS/rH3QvAH/G08DG9gmXH3RaSGRzWkeWjn0h96cC9LadGgXmOEvoT9tUl1sGWiywTPABUmc7HwohHpNQLnLVp2XiQ3LiWaO4zFn1b9sYGuRwzVqS7YHgQfevIzk08zd6xGgUzUbxCMrMyjcuJslEaJDkpk1SLDTmtip6oiTJ5QAQGrSW9vkzUFXVxSLPGBZfY85LmibUuuI4CGTb4hvLe8gHpv7TUtrnH4DidkS+fW0UyB2J+zOy+66zty46I4DB8QCA4eEo8PS8DdBnrkU0gu4eIWr3QgDA+3dmvTZsJmAm3HPX0vNAaiIA4E8hAIh8BkCYukFfNKm/SlV14+gGUo1B+tMpUFX1wzdXqaoKZViFeh4udtTxzLhHgaO6s8eBGwHgKmtBX6QLAKBk/6mKogKqYgyCM06oinL+kbVXKUqF6v8OqgJVkeEh3oy/gu6rAUB998cAkLR2QPEZhmFVQU4bBhBKw0tAalz9CwAEoEGRcLjQ4X+vJXFsKgCk5/sBpJ6ptxY8GSCHSXKYw8xGczE90KgtB9Cj6b9jjcPkv3KSrvg4dMG3JBl7mSTvXmzTYMNKTxGxYnUIiDeGyUi2Vn3vNLwcY/1oJRQQ6q/rgZT4Zp+1lA91H6oKACiqAkBRVQVQVGOgFiTTRxVQzXRtMH7qHRAfjfl0mhCT99qwgA8LPlCMzVjRORkDxZBcAWhjFChKNsUd8SfxC8zTdX+TrRR7gszXB5tuuQDGAxUXaCRVpPUdKcdh3IfomF5YNJARGOuBt8WEAHAoWuV/d/3H+g/b4j7g9t0AK+R07PmElbuXgdWxO1IuxTV63GbpnOlBWFMDJ0ny5RnO8wmfQO0EmVVmHorcCAuAgNhTEwaBh+fd6yjqA9AY80JDHgLAzpV6+FJmg6MsvW5IJiNehPMbkv2R152MAiCwcquHb1Rc1rAF2NKUW38E9jQfgn1bIcm+S+V37s3HSw5IG/dy94f7HLWB0C2yO+wAxsusfqB/+HMrR3yPuGhNg/3ylySZ9HCQcfoSeWUUHWQ02h576a4C1Y2PS2tDiOynumvj0UcLd8G3p3/pqA0OBGUPuTg0VlayPTJUNJD0h9usRT0f+dm5AxVBsz7y6woedn6m7AGo8QTZGeuXWsi1WfhIGWmkJI+DybHnpMRaw/1WXK2dPnQaGqUPx23PdYpgezh+7/22NEjKugrI0NDIvklttDbd0JznHWnIOU6QAQm2383ZRGomfwqSZF+o2EfKzo3EEbbnOgassDppyqHTbH7PTjVSNDbXnHXKbjWZP09DI8muyv10a4xaxPpE3oC8i5EdRnakimnocHe4ImsPuwhIOFw1FPpImbrErkiTWz11oTHUWJN0VqhGnq0t9JEq9pCsOXRs4RnpYc4CX92Q6ah2nsEL4OI9Ww5YDG0GqD9zdE0k65xULu2a2BE01h+rcWpn8P1SabRWuTpq5uz1mtFHysL/gOwMOvl/2NNQ14fd3Zvyndq6ejXPyWcyG4BZnfFr/my2aXaqM+EbG5snpn9yqMa18uQ3vrZcuG6kDtlwzrk0azT1I7e15fVW4Lri2aV5oGZHLmp3I6Ph6IRpT3+tEy+q9gbX7pGcU09Orz6yyFUVBfC/tyGRe5yl8UiSfasr16UtOoDGmEm2r6my2cuSK1c0HkzqEQtt5D4xtP3I+ch9+4vVYJZ9567pFydfrPLoLisA1D17a0Z/hjPl/u0zQ0/0FmvDqKKu5uDcHfmm59mLuPlmkg7z2/wDe9ZFgndt7xmpq035Yadr29JAdL3rSOf0huHF60jJK1SpA+3xL+dOrr7OjyvCWHNFw0n9msyknyy8sarM61NnrnvqfsnbOgBw5pPeLxPk8RSAiRehYvIll152QTnvz+HYW4nZ8jRGkJBxQZCCIASBy1aXQiOPci+zGeDxziPzjZJlXmYr/HyPNATETp+4SX2q7MuBhd/g9QZoSnyqcceYy8UoGeRuIYTY5/HqJYdnrCXJjXtL7CvMWL6XCdEjrw0SxK5vngWAKVeWfb0wC/VIHabQozaGZ7w8andPdSTWksvXal5oaOwTo2cNHTEAvfkR1tAM7UNhHkOlyjmEeL+HsWgvfIVvcAgBIDjjOAGk9hUzKyEEAKS+jeKeGQe8tpQY9pIJmwOzUmyyjezDXrmNLJK5UT6B/D3p0cCyHg7PCA3maOSqv1toza3UMAFA4Kck/w0w7LeoCHygfwAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, in Rttriangle ABC, angle ACB = 90.0, AC = 4.0, BC = 3.0, the circle with AC as the diameter intersects AB at D, then the length of AD is ()
\frac{16}{5}
634
[ "\\frac{9}{5}", "\\frac{12}{5}", "\\frac{16}{5}", "4" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH4AAABtCAAAAABCCophAAAN2klEQVR4nLWaa5RVxZXH65z76oZGHgOJGleyQkiMQc2AogjJdILQoEGWgqMEjYOuZZQkJsZRF87EccSJjixAjTGjiUlMIiuzQAlrlEVGDTiKbw0JvggvERuBfty+955nVe29//OhX9C3T997u5v/h/vl1qlf7V27HruqFKqVBILWB8eNmLVrRTvaKbmcCABIG5FwCAAC1lxWDCyI0qpKwW9w/nL5N97NfPCPTQpj2HUqlB/hiHUzh1Mh1ac/kUVSsWqNL6H1S5ftA0pXb7V+p4UDWC8+I7bSce0pE6dOnLwFUV/zO62vFi9a7IqJuxFx6ZktPktl5wtBIntw4dOHD3xn8m7u295a8Wj/wvKwYCz7WuK4kvUQLcwtxfYlh4GOCxe2lhUDCyK3yq53MnZ/8TOZUcZ1RmadbLaKD9DC4+r/OsGFypxhOvovVS1eKXdEbmTsjHDDWEhRlBRLPSJngmO8F88SR6U/bUYOFY9x416A48jebUapdLZC4CuknZSuSz/35QlKOftPqh8i3kmNW/rMY4f2//Ffv5gVMZXoSkQJ48i5J7tKvff76Q1JraxWRpv1kyaefuOH4tsOaxJjryv0rBgRvnuVBt6/dNpH6D/yq5920iY7f1omY08ORqoxnPxdl1/SijNB67bLWjI7v3vS+hNspv/CFUOoi26yyuSUMtxRV3dkQtiQ6H10tkCQUq8uy4/LhJnlC+oyUUOfboYjjhNXi1eClHXDup+0TlBOrCjDFT5MZ6zEZlk2TqU+kS6e4PQNsk58tc6HkbqUk/nI5qLS6LFHTCpVoTyl4myaxjcopYwazZzr113V4p2sCnOZt1bc+DUwRaMcVyq1N8XOM/9y8blKYjuKVNJArTLuRVtmBGsu+htCAaLkSbcnsrF22pMBYKwwgYY250MEBjiwcvYB+OCOxCVHNDNFFLN9dOqjhLJ1fpB4YyEMfPTDK5shEQVJ5lsqWOE84sdP30AoJDezNjxHDB0Dexbe4kGXrZ+91cY2Yg7DB6atK0Kb4cIj1hBNgr0XPBiVzWFHNZMtcxyumPKsRVSSsj4fLN52zqUsf571W4ZOrDbWbMP7znvKg/iU2PW14gmQUCAS8pMzNyWaLyGxDtZMW8/ih8SlYXO+CPtaCLagH2rckWg9Fzj8j79/mSKPJfJM4hCpue9jEREtISH68QV7+6mvS+FdX9kIZmEWDm2iNTVb3/kr2uDIPRcdBIF1b2SJMWwZBH/FrE3C3KdNQ8Z3fRWCfcHby5d9DGkLpWfdFy4x+czerV96RcBhctAdja9+s9U19+eg6h31xas+Whs5I3Oc7pnLJee6ygnueHXdZCibq7LiGq0HjIYYktcafxdDit1GSsRgD8UfzHnJkp88K/Wxvma8YTGxwOKlf1gvxvSMANZcRPv1c96OWFPyVmyoeMsQgZBg47mbUerpYg4Zh66f/grAZCOxlRowSDxHsYi1EN/8Ys723sAPCC3fbtyNDpu3wmUp3XDhLUsUCBiE4I6Lm7uHljC1XD33XRAZ65MExwvPVrMWAD7Q9p0lhyGGwWTRvHTRq5AYgAw03o/F1zrwEMDjrBMdai3E6u/uHLUyb6GlqNIHrwnuPkd5GaWU07PbHv6BZ0WXUHj2zM9N+n4+CPY33eX7xEx7rli0Cx4PkPn2a33NeBGRYPmZW5vfn3xdifFS02MEDy1zF7+LIBRUjPih4sl4/9b0BoBfnrLPY2yYsg3Yd8nlu9BhJZCKITdEfOzL86esF/b5uVNe4wj066YXdi9e1AyQ8ADbi/7xVed43Upng1XnzXFUPd7MjgnrkPrmgdtT4+//lIpTNut6fXOpCqo18pXrRAfm1Cnrhm/N/OTIFKvcon077jxFqVwqG+mRNdZXM15JPv/ZrM6qp9+6YpTDabXz9jnnP9KqoIzKubVWVzMeNP6kd5ycan5gxhlB7Ko3bqxf+dPX1oakcpRyuVLuVVZdbRIt4ZJ5+9pePvOf9hIBO2bd2AK8O/URYyBWqo+9QQ88bl028XNnrvfQEuHN6Tc0gzW2fP3JAGi3yUnVMOGZCmj58MO9PsTn57/6ozzsYR2GGy561kgYJGYVw4UXojgCAM9iy9QHPmJh0x5BPzhjT0h8OHFnO0x4yltisRAff5264gCkwxcWbvPuuWR/gSj5sHV48LAsoc+RxQtn/qgEgMWK8S2OXP+tQzj+c36RJCRh2XbW8kJnoAtEoNG25OYidGxgbRXNGCyeWbMP+Z9THwzA+R5nU4zdC+7Jg9tt7JOu2AmDTDMCDkSADdNXRZC4x0gJSWPH2T+3sHnm/ADHjkPCgwPmomw6e2XA2krvub6ALbZO+YMg0mIq77QHG3pMAW08bXVgPZKjl3cSLeH6uc8Aeapi9hssPo7NU6et1YFlPuaEicAl6DsXbgdzYCtudQc77mHXnfE7D/YQWeaezZ3EIsRcar/h2r/BWP+4hJ4IYB+e+agGRVbIoDeR1ewLOoxpuep7rTDM6E7JK+GFq8gIAbGGohD2F2etNSLCEBHp/VLAAIPl40W3+8LQglhLcrJVJb7bueKJ3WdgfjZpszEiJF0q+4B2XPBz7bNYK6KT0/za8JAiGQN937SN4luykoSXArZOX8dgEUCSc90+eElQZ9OEhYuE8NfT13Jg2wuEBLxoo7Fh5vMQIIoFQ8cLIEIes+iHpvy3ZQoslXr4favlPME+3vg6YFniAe5cqsSzAMJMEcLV5zxFHvEhgil288vqjUUjWrPwbQLYJqcdfVLMpGJQClAKqi5a/cS981MZVuNdaa9zE24zbNYEUnfFpx5/W6k45eiB954OFKAcRyUVg9NZKBWtfP36ixRLijMEh7rvB/rmshBOu3Fd69VnX38iIwXHUUqhPOXtvExR5c4+RhSxRAaAf8d52xiGmYmZBxh40pne75+9MoIlrQUCXZ75dvV9BTxTFLIwB3dOfocj3+ZtV4lEfFft/E7jb6xmIdE+99fK/vF9BbYconTDeW+Glqhky/5P4tPmxieYjYBDQdJlSsUUUyhl6wur3rvjLHL8ExJugvuRzTYdfPikGURpt84BpxLOOyoYz77Oo/TdWa9Lq4ljjrlvgSTrSWy85sIdAGuGqbrvy6rpQPHKpt2QqEDi9U6iFZ0Pi2D5gr1ArMHlN19VHi2lxhS/17JqEiTToJGr9GCkR9BIeSOWjf6vAyqbVm7aJkwTA1jfOYIKS5vegdcZQ9x7i1DRegvycHDe3fshRspP2ipsNxjiC0VoXXrxTuQNBEA/tSRLAGbsnn1PFBHKU89Kux2OSAsOXrXkNYCqTx2PogNk5eV5v4/7GXeV8OIRgJYrLn4LMKaf2KkgFgBCFptnPQv4NVovhhjYNf/yXQIvquKMtq+ok89Ej817A1K28laynhj7Fn5rFwIS4VLN+O4tlHjhmrl7ys2v1PeCDxYs/hiRDYR9W7Pze8pH8JYt+bif/wcc98zNt46795M642SLhVzi/XuiusvbLBpuya7OJ80PSe3ev+iS/QjJiCGKTY22d9UkgFCesHfef4b9Wl+GF4lENPD+vMua0WZFIBUShkptMML4v6ZHTMxWevswCR+TjoDts2/ZCRB31Bxz5XwJgSdmbwmOCeH+8WKoaIEdC65tRtGX6g/KkmQZYIF54MI3QomiXlD/1nNoithz9rdbAY7MULzejREBLIK75u2ko64bkpzvQV5uvKkNHsOKhEPmwwYCAoo/vORD9KYdSXjobTNuOQxDiKMB9unVSotEFiQe2q655mDvkVNC32u8Mm1FEe0EEbGFqo8JE/GhCEtADBz65k2FnmOP/vACyHPn31YAiIyAjkqgByv2GCyxwMTY13hf3A3qi2cDCSB/OuPfizFTlbdxVairEmKJ8fKM3xIsk3iEY/FcYlhrXpx5tweW2peYiq0IrAAbZz/VIQJt2+0xeLEk7NO6xnt8eIao5iWmIp5FhwXzswV/RomMpT7OFykZ+d+v3uuxR5znIYdcXzGkwxoEt3/jAGIbyLHOl4Ct3frlhwKYiBEPPeT6SkKxImLbr1zaBs0xH2u9BW34ykMlzUIdGibxYczg+SKtLSw4NOc2j4X7Rn746IxfFgA/BDC49bWCOtDZpXuuuK/5qBwPjoKjeOdjiy/LWsqgY4QbARVeI9YsRr32R5F20xNvum78panOpM8Bx/WqY4zSaw58Jt1QclMQx0Gte5tq5EBcpbIs3nu7Gu9uAKdVIa1Sufy40bbOH/FZp0Q6zXBQ9fvVmhugVDzWMec0jA5cFuQyjs4YqvNGKfGQjp2sczzsPkpgU4+UdKzZpJy6285POyaTjUfh+RNPzajRxxfdLXHN6JvfP7/pL3ed6FIqRip18CdH0gKlpe+OcLilgFiJo+plydTTbZTOFRtMXfSrj092HFEpN1frJWyNAmdycdgg209sH7tp5hfSboOTo40yfqxiUa5KHZ+gO4oP5NLpqPWdBeOWfb8hHdfBHGmfvz2tXBfCUvuNek1y0mG9E452//iD89beP2VqOhuM9J+YK5/PQDmOU/aUetjxyCo1Ms4f/trEf978h8+neYSsW/0wzc84GllX4TjzEdbFmYzz4tdHqbaWSSadoQ/Un9ytQWlEllwlx2nC6ZGTc+uF2rfOzeQvVU3j0vzm/WtOps0yQjn+2BqeGw1W/mgn9dLNe59t0LlnPk3p6zbFextufTpuWXxaNi7J6OPt/FRL2j31p/XGVWNONkf+H0NFw0E4M5dwAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, it is known that AD and BC intersect at point O, AB parallel CD, if angle B = 40.0, angle D = 30.0, then the size of angle AOC is ()
70.0
635
[ "60^\\circ", "70^\\circ", "80^\\circ", "120^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKcAAABeCAAAAABj4FvhAAAMpUlEQVR4nM1bf7BdVXX+1tp7n3Pvyw9gEKGIWCDFVsU2aScgJIS8EBJDQITEQXRiKRbBIj/CONQ6JmakTtspRCnT1KFW1NYwCRYKJpBfBALBxFQKYztAHSkqMwqYNpEk95yz91qrf9z3kpCX+N4999hm/fXeOfes/Z1v7bX22mvtQ4aGpcwAbHnrbwMgGKgZrdyMmgNSZQmICxuCt198w/rgKKC4Y8aJIDRpqsb5dBFYNWlbCwAB1BSvjeOMIf5k96xJLcLRzWfQsPyGzploFmbzOIW/+iU+NcCOcj7dK6XoE+/UhtU25u9FC0ZI/qcf2Ux4qSmtB8SakhjVov0p6Pk0D1isptKYbjNqahKV3qHynLwyLPkqb24tAoDGcMLUPJIH/iUfDEYEWIM4G/Qjx6re9NuXvX8LFECTdDbHZ2IGAL3/hnmy7p6L4Qh2NOYhnpHQwb03rDrztIf+eCXDjtI4X4m39jdvWntBB2c/dOs3mjV7E/HTSJw4MAErljz1bjijcx6du/um5NWcuP4HABrAqebgQFa2gDv/6ol3QVnVpqybt3sJGGgIZv84GZXTwGiV+WdWbj0NEEsMTP7eYPFFKQaOGj9SzShUJZDfvvKxSRESgsJKeesTD97oxg3nn307Vd84jRNLlkfc+pWnTkcLjCrAchdO3rT+uqIxr+8bp1MPFgk3r/n+SRoBQnJgdLg6/tltN8oQ0L6t339cIjOCu2bd02/xFCwpMouGNnyWb3xhITUEtIH4SWR09TPbJzAE5FkrBIpQBr3l0Z1z/9/tnoAIg5JBrtm+ZWIYCh7sYAhmgMrAJprdMQXUFAC0dvpcHycnCQlgULHoP5+ecOhtA9Qlt+r4S/YAYCJoAtcervaDyt5VnpJYteiHG4+tDr3vK/XwxYRvnXjBXkR0CEwA6hJa/wX3oQyWvKsu6TwVkI34QQYUaO9zK3932quEtgIOsLrj1bf7QMqJfNH5IO7LuYqH3o4ghIgBxj2D03dWQirWRzStvW4mzygylrkTv8NKI+kMMHOu9Cl3y8dP/teTQWJUP9utzae3hJb999yTHgyOqBw574Q5IXf5L4EvXHf28yUc9ZGW1/cjyiKq6WesJig0H6FHXQSpmUykEks+fcErHZDUrzf1bndlKAspi9tz7tSvwYMPt9owAhwAg+XJf2LC72+eDIgzKnN0s8GepGc+C46RoyNn9No57/v7UX/vUcFLftVds54GXCTklqz3QNozny0EpJC8uJ3vH7zTpdEUiAuAWL6oNffBQQsdtOGRfK/275nPlER88nAvTj33rjG8J4ErZKyyYPUVa0jabajC91wj6xmnJ3biIT+58A/vho9p1AEEQcDsaM59H35IRCuHqvd1qXd/dxWi4IfTrvkcpRhG5dMMBNOiJJnz8KIHiAnsRXvdN/U8P8XlaOGFwVs+jaIF6GgvSt4SE+VUZTJj/bzyqhDZSe9m7PUBl4jp2cElNytaJn7UAZUtIJFLGRymbp77y4+3FOpi+DXhTL7KoCxOcvmPwb/+IzBAY3iawYAHPJAc/daWwd2fNXgJMIoBGDVe9IrTIxPH5spcdsxe8dGxPrZfxMEbWqc8fl7n9mQeoOSR3FjHHzNOo8ohWcixY/7XLh99Xh4qThlKnJ/2bzPf+DJQWe6RmMZq/zEPR2AXfYCtm3f3PO4ZJgADm1l1/Oanrk2a5VDxPObxxzyewkcGio0LvnnlQOJR4+ZIIZAjy/wJ67dfzVokroA41vg0ZpwsMTjFk5c8fHGB0ZfLEaIECMAF7PgnX51vLULbZMxeP3b7uYDIqxesm64e6nvOIxkABGgpY9wqm7vPddBDz27sOC0hrLxuzXTHXlyNuoEKnAOgBDt21bgP7G1XyclYn+bhNzIApjj43676CCgiQA73fvKRaWwAWY19oxuaih7wGHjgmLl7Mh+dmkAhI7ZXh8FpkKFRicyGbEHDNTYOKBkuAbTilu+eZSCAqf86yv2nT/sFQnTEMHNhNKAMmIgOFYCIDLD9ZBqACpojsY/2d0u3nN5uqKtOKL4+9aKfg1EBjqpR67kMIjpo18IwEJkB6F7OYAneJCz/7BNnZanbxDjoXeoCbVUrZs94ySEjE2SjJiYeBBDD1MGU95dVuyDNwOIAFO0l/7DjN5WHHUhdv12slOEv2zO3/YaYx/5xfwVOAwFGKsSqYNKhVpoSQ83ArtLWvoFl/7jpdCBR8k40SCLUrBUOv54H9v3ZxCkb321wcfTtkseQw5gZiJBIiWFEBoOBqcwypIHb/mnb24rW7olk4lTNrD6dQw+KKwew2M/5zntBfvQeY3dDRSAmYpApG5S6k9NADK+uzG/a8Mxx1JKJJD6BQU55zJHvCEAdciO7/pjZ66YkD4yW4PuhvTTDEjkYeTMCEbjIeN+AsmSWL9rx+HEeYIWDghREYIGv0xakg/+k8LH23H8+r3tZnFFyR1DoYWYAgdVgBFIDwYzQgngIpaz85EtbxwVhACbcrWyaNtVtW+g+eP90AsSRsh4xbfDDUb1bUiE2EIHMqvbeca6TFwPx2me3tkJkYxBMuBtkGzvxo1e0Ll47HYw3JqD0R8xvGMTOdVcfIhARM8BMQccltDmUV/54WwjJEQPMzA7kiR2Dmjme5HTe+ovvN1QTUOXuiLPUdyfMkPExnJgQsagXF/mq1x7J3bA9aJh411yblcv3rbtMP5TtHce/Qmk3fsIUB1YlAwExKGB6WVwzXsFqDkNvMuw7TXXuU0bnrruw+NiA+n25O1J8Gir00PCKQEM/tAA217ly74ZgrMMsAzjQ/W+GUPHArslbLty5uMrbdMT4NLQQEB+0yBMBSFDaO9M2E8yY4/DlLqlvTlX6EmeKY3Hmk3cvzYVQHmmCjvAvAsQpkzfeNf/UleTBAMKB2wwQ7Sezf1KJAIRJmy9Ifw7NlQgw0IGNog0tOIeKwUWSCNk96+2rXNPnuo4o73juwVvBypRKJIr77TR0/m0ETiEgGAVUg7+3ctf/FUogDmx67BMFx47PYwAfbH/CYXC6hAiu0qvv+YO/tWNr93t6luBP2vT9P9kT2iKhwIH0fshtRtb/PUy0tWvw0q/khBFttl+bVMBxm1+8tlIQWtI6OM05rN25QObiy5Mv+pJqhR6ran1IZkYTHt07Xx2rcjrIP41wmP2Ytgroa7OuvlOYszrlmbpSETD+voE5bwgxvWm+GewwfHZa8vLZH1lGzlS5dt+0d8kVCdkDEy/tkLzJjgQQ2CwC2GMARBEhbTx//m3LCOhmJD2Pp4FSreNqDA9HD7z9vD1dZxcFBIaKLIEFXqONUxVjroI6PDfzM9f1sXhzGQOl2um+fmPGuT8FECvHCU6oyAr2YEeRg0GJgU6mXD13/vKP5/XXQwU5U1/7fBXHOy6Z/zNFyMrokznLEcwqRgofIsfZGoW0AfnBjLs+GhC57sFXVgvGqH2WVgN//vKpP9eEnOHUSCuO8EiqeukjxRa8oGqF7cBq21d3DDMzsaVfULFYW0FHrbjjlBejiEUR1XuBC9Jtng14Zmb2DkRD6bdOW72gbCOGWP9Am+0jiqHuxKEWqnzxMdMef5cpA6+c+qk97Z/5LyNpteV60cs+pR2xDSesNVEryz4IrW7/vFlRm89oVpmVXx//jKYo5Qk3m6bqc2s9w/9oxQo8/87U0vVzpn9vO6hqQXvvRA2z6TZHxFB7f89JBopQtc+a8t2zBfe9vgzJuTNOJoV8eNmkb139779jna/uQur3ICThcZltJi4F7uRSOzE0Hn8j84lLr2eBM0Dlv85RrU74m6hSSP3pPyxaqe7TUpOIqZrW11Sq/ggPqahpYV756StQ/eL1MxiWGfVVPyAAFMS1ATjTMiPUPk8rPigPwNOeCVWWA5Yu/4HZKdiVxLTom05LFs2iatUxM+2Dzk6KqTpleWlqP37Y8CQAYIqJqaiYaV9iapcCAP5HK5NoqbY+s9JU78EaqzacbwYTUzVLycTMpA8CuqLFwmfNluB10ShmtdelaLFS1ccIuMWkoOSqzBICkgP1fzrbjC7/NqksnPTFjFRc7YZD8kDUHMqAmmPWDOq9moOi/jm9A0C3nAoQv2c7m/azbfYC9XkFQgK7yNRNMokIjDr9qyFRCIBE2HCRwuxMBrhG2+6AODAhA8EDCDxc0ugWv+vjZHOI5iWtnMVQfuG9ULhGvzckNFLdUBgT3KsLOCG8/BcfYICs2e8i95dp+xB1lpyV2Pi2zFNcfM504gZm+34ZroNRv6UiBjxSpkunK7+U7dyaa7cJ2ZA0991ZjuRt40UAgLVzjGMAKTf1Hcr/AlD+3/Sk5NsBAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, in triangle ABC, AB = AC, D is the midpoint of BC, angle B = 40.0, then angle BAD = ()
50.0
636
[ "100^\\circ", "80^\\circ", "50^\\circ", "40^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAJ0AAABWCAAAAADwYst9AAALWklEQVR4nM1be5BcVZn/vnPuozuTCRCJGMYICQEJSGKGZYfEgOGxIuvKUmLJLriFtSUq6AYoxSJoWYBiTGpBlGVATa370EURUZdSEINETQBTEgVCgpHwiMBM5pF5d997z/m+3/7RmTxmumfSfXsLf1VT0z197+nf/c73Pt8wKB9QLhixsmXO3BYSwzlXOwhiODF5F9FiWYW6rx0tNIPSBORmxxRRNPqVmUdZImbKuxWHIjc776xmG9p7mAhMf2nsQuuClwZWvDVsBpuJyM0uHYn7bm8fPCaqiK2JZkFEQd4F4lg6f/mov6BARAT+C2PHtOPEjXj2ZQNibS63/DuL4c3XLG9rfb53cARwhOZaRV7Z+TX3hv1v++wvsoEvcRJTFjWF1Tg458NiqGSOLL9wdGzn+IDLsW0OLarEirzsiHww1hH+cAEJC1kJmqZ6TYlk4vWhOZf84w7KiIJmxlkiIkJOqO5ctCX914teQSrw4jTvguPwinJum3XJfYuPiz5y1Kd6ohSstqnSa5gdKjGVw9d+vGoO3nRreGtP0XHz1I6IGmeHDEgAoXR9x2Im33bb1u+5iMg5EJH4JtFrWN98pjImbvupvwdShexY8QN1qgKfKjS/+uXTu8R6LrJbd+6JAJM3J32x8+eBkCHLRCRNCRqNxwqmzJrsuWfuL5aLIdQHK3vWzVoOF3BIkNzxm4hyWAUXuJhKcvM/zDMRIw0Auvh9n9/BRlIlaQq3PDZrlAt2y54PsgYgEDGFH++4dpcNyFOzTLdhdkom4YHOK481qaYISYDSzE8dedceigMibo70GmZnSQv+od73xy42hgOOHIpZ2+3b7+sj42FyR8gKGjd5kd5l/60Y9x0KqGLXef+WQiDyBnsUZ/DN+efxeCUBJmLogjUP/BCG8EbLzmP3aY8dcLqqAFRENyzbCCRvsDcWm3We8s4DmXrFbpn1nFU3P0Vxc7xxDr37XfvTerDsKq81S7/27p0o5RZePr0rdS47QXDAc+wrFpmif150TVexKR6vcXZbX7wqOiibG38lFjM/H68ZzEdrHxpmN/qfy04ISA65HyCymqJtzbPfSKgJTZW62QEOgNCm7VcWnNpDCDATkQ1ZT/7Kwz/KgFRzGkfd7JgNObLD37q8jUKQTvp6Zjjq+Oy/byYOOGcWWv/OOkPK9PP+v4+ILU9qnHgYDkEXXHrTc7Cas0irf2cFHFFP50fnEhLIpOraMsiwmA+/+7pdzDk7F/XvbMRk/H/Rew0RVfl2JklBTIXPvOPq3SbK22qo10kCwJ87HhRkTv1kn+uATCBaRv8HL+97I7xxct9x7/IKW9VlpAgZDjHN/mqydiSf6OqWnQrw0tJfQZ3TcpVwpSWFqFNVxe6V61IAaCiqeUXZjL853KdR0tK9894BCgKOq1gkF5gMB6zEmHfnDx4CkWbwDeqf7sNhyy7DttP/MDxtdqlO4fH95Q8qxryTamKeXnZ1V3Ycpve886SCTNchFsvOhR9IO9uWMjuOGnJ8DVjFtsc/U5w+hFpGFgfBpWdds7vorW0sntd/1+gtFy2kZPqaMKGCYQmuXnTD7ihssPiun93vuj8coJo9HAo1bEbHmI/44uu3DjWartTNbs/a1W3E2fQ7GzpqCSXT2et7v9ZdJVv4f2G3uXxmgRDqdNchs5kLA6t24U2P/Npbxv6eXx0AKv5EAKgoIKkizfQAAEDVic/Uo++shxXwmN4LHdQm+82yDUBJdEhw+J7l0EiGSm6rYwFpaJOJD2nLJkit/48FS1iAinudUhC8r9JwihVf/vTjVBhDi9fpFfZg7GcHAogAbWGWTAqTVgkIkXZ9/5JjSIkx7c6OL5tYQ+Wzr7ppK7eQD0qHe98EdgQARJrRoAZhOImcRiUxbv2CpaxKzJMvqA6OiciaK05b/bLxoSnUd9qynx0TwExUkFbhbNRNvNBSEOhrP7mmjYSJD9+amFKyKHzu2NV9Ead1HgUdxI6YmQlWA/fiyq0TIxUk4vLXOxazsuU6orpnS5lg9trSmmE2ktZltAfYMREzMdTylg+8PEk/1IJ2PnldUcky1VEuWGddbMr65jt/fVcS1hlvD9ohZiImyyZtv3fWpC1QQnn9WccbQwzUQ08pVC4Ab1v/yL2Vw5b94hsamqRAE7DfPY17N9UMQ0ueABSVzFy9B5B53XTGrgYSSd2ffT56+kbAQwe8imgmjy+d/4n+Kf3dJHZaSqHdpzySAd6rClRVMgf1ey+8w1XKikagI8D9y7dCXeKSIUGqT6/6w+bjb8vqY+dUSl2Ln1aoqku8lksCABk2vetV3/ApiZYF8PesfBbwZZFUnXvyNeD2M16fit1Ez4DEsi8MF7odsfc2slwoGtnbN5q8uvbSt9iGOw8cGinbK869YTdJZEyAAKcc6+m01ikXnJh4cYGQRW8aPiKChshsQMlg33ObX3Yzt++9x8I1PE9kynGs9pNP3fj12fAGhoLQB/7Fs1vqYUeUxjO0Z8Q5tqBY0uEHv1Na8bezygOr3t9KVNCGj9aZfWBb77jq7uuowJ7TQkzUvePaWVPeNEHvpCTqXl/a+vbHBANjGL67/V+e2L030XTtFX9WTRrUOgDe6Zikgu1LvuuRKFQVA9/cMcUNVa1Cy5K88upLox6CZ24899EeAEDXsg2AE2240y/qBJoJfnXeTwQQGYQ+8GOgSjuhCrsD0P2/nn/P9S9UXqWrP9aFVJDmaAfrvp/H2p9wCbwM/nb1nwYf3zIMADLZU9Vgt3+t3ed8qQuqiQLPLN2kSBVp/lMS4Kdnrnqyd8j96NS5b1948jMCL9XOc72iXGviA1nce+VxNx9BakEJruXbZnqNyOc+91cWc8+6E7paP704DMRHbw3gA8bkZcVwUlt2pTtXvgrn1APp7zueh3PqmzAxkaliz9WnP7Hxor/68nDlL66q9k25s3hlyWY4BbSE4YtvSVSAJG3cKsahWlb0XnbDQM+zl6x4ymeiToGsTnbJdy8eVBkRaKo/a39FFNBMkVt6or4E7Dr7Zoe+77V/2wNQeDf5winZDXRsEVQa7P3ndwKV3lgT4ASq2Pk3nUPAL89/oGYWoEAa1OqK94wdLVIuklf+48j7vGcLUtHcp9ZCozMkoOM/d92y0+js5JYTT67YyqR1hTnldVXXMNmmZPExsScq+vIwzbCtlZS7im3VCS/FzAZDrf5P82bNfE3722rMxEnLUOiD4aqfsZ44K/CpMPcUC3FLLyX7xjrzHt/wjDQN+aWF3XTm3p1vNrOjNKnxFF7imIdqLGOIvCcbkDFp5NUfbok4DeADdgVX9FnXXHBAUwxjsoxMKwxXMmastdgUahV+TFROCsUs8maawjOt+bETQJVGP3HG4iXnbPSTOhcNk8uodPdfn3nZ9u90GabaladPQBTUGs0IiEGEGddv/eTybTcUVjZrAsbGf/xQx/8Ew//0d0cYl86ouaw1TBTUEh5DYJh5TnTBvLHuuI7qf2rI6MdaV8+n8oXzLQWGa4+xGrEU1N4xC2Lyzy3SvXeuXOSbNOds6NsvPDifyJ7QHhH5KKz1/UxqtXYW4KGJoHTHwgWLHupvwsTaPgy2f7zsS6rD5UyhteOPlgTlWrLTsZmeIyTplq+edP8X7lrU0pzpf6bePRcqx+VCK0HU2to+IzakhqvDthhrFFFv/7KTPrLnYZNqjQvrAxFxd+gxQ4YcB9ZUWkvVLkzZU+15JWQ+hc1+e/5MGsnm+rhJRkGzj9xWiqy+vmcUZBm1elIcM6boagccFjz1/eIM7b9ML5rVtGnT2dc/8tNkcMON8VFMoKpHbRV6FFLINcIcRmdYyh69ddvRrPS/p8I3bRq2/zdfKPHll88PyCFk1PqPDBDT0P8BqbcIWaR/qDkAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, angle A = 70.0, angle 2 = 130.0, then angle 1 = ()
120.0
637
[ "130^\\circ", "120^\\circ", "140^\\circ", "110^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHoAAAChCAAAAAAty/TUAAAJCElEQVR4nO2bbUwcxxnH/xddsVF1JorqmKbn1kfc0BZobAiNEalkJU6JLwq2L26hEolTLIyi6GwJQWTigFNwY8sEqY5pUoybmuIPhLrGFzcGpy1ClbBdCTA24JgSOEdsGsCFhLuGl4N2+mH3XnZ3dm922TuU6P4f7JuZ5/bH7D278zy7z5gIVkr3rBg5ho6hY+gYOoaOoWPorybak2HK960MuqMXA/PM1hdMJpPJ1GMI2lP91M6Zz5nNBwAAj1DY2tEdvUcyuLus1j639WNCWlEj/4k0ozlnXloqRljN5/sS7gXshZSfSDP6DFcWZ8N1VnN3b+pqAKD8RGaNZK4ejwBw++IY0bDF+ecukdZZn+G02Q9gN4CO3mfWyMeIJvUhb4GQhcKUGTb7hULey6wfy8c0ogvRTQgh1bRD0TRm5Sf4LmXMFNmc68YmALB2fZsyFmG0mrR6eECTnzEYrb1PZVDvrL3F/6P4bIjuTj2ARcsZFQu9s/7tR5tOqRpc7fwZpl9Ws9C5XnN/3bKhU99XA9I56+NPxj+f/2j8CqB7Vt2z0bL/7RIVk6/33sV/vlA9irZbCq9F+1TBCCGOMTWjO8PD136sZqAL7aojmbOEjDnC2E1tUxvV42bek8XeuHjA+vh7Or4dkB50Q6n5rg0ACuu90UVzXTkY3gwA8a/WRBddXgN8tBEAkDU+FE10T2ISMGTjG9WvLEUPvXSwEkDvBr61zt4aPXRrvgWY81mE5p4z09FCe0/tAfBpsr9trjoaLXRNlRnAhC3QkQFaUhMBNDeYBQC30oJdlQd1eppG9IETAIDbScEui7M+GujODD7CvGUN6bRf0xib+6Vl2Vjc5uH/Txd1jxREfvlo3MdfU+MbRN1J3+/UM2ktaG/zLv7DWIp4wHlSzzKiBV11TIhpRh4SD1j2NUQWPTSTIXz654OSoZzrozrY7E4WjIfkkRE9YDHKzS5nB66oO4nSQV0BC+uc/RcWIWTcrjps+Kzrnf7FCtwP5MPmKs0BCyt6osMe+Dz6PYpB1uf9EUK/8UowWRiWOjgA4NBrGpcRRnT/Qkaw8SEtUce6Xc2RQC8dD80Zh75JNcpvnYgA+tKWkKXKG0dP88yv/cp4tLfx+ZDWnXQFs7R7rxqO/sMeS0jLnaxkV1apxdNY0Nw1e2hTCP8p0hawsKCPvyzKwq9/V9Eyt0NDwMKA7lmVJmq71yrb1pQbiV56vVTUDob/FCVtvmwg+tLj60TtTxW9DACKTjEHLGHR3vpCcQef3yrJ4jxpGLphv+QGouzgAICtH7IGLOHQXFeOpGfIRjUM6Ohhxos7HLrqdWmPP79VknXLJUPQPQlSp1qaU3FwAEAxY2isjubzeJEk4T9F5mNVBqBb82VTlIb/FDHmvapoPo8X61YaxVCicqZlRBV98pD8EWpofquk+15oXCaa69kq7xTlt0radYklYFEJlGmPXyX5rZJuFy0rDr+aQplgeAcHACQnMgQsin8UNZ8g3aVMsyYe+6z+WTfvod07qOE/RZbid8KZKKK9jfm07n5K0kNV+IBFER3I48UaXM+IxokDOtGj4xnUfnl+qyRrthCwHDG1ADdMLazoMvrzx4lE9vc0L77pBQCfG+d9cEOWqCmgQ/J4kWj5rZLiy94GgPm+nQPzGLDKgkk6eumNIvrhPtnAjsbWT+YAeCYdM8M+d7bsl6Kj33IqLMphoiOxJr71HQDdePQn5+b7bLIKAyp6unFIYbVXCf8lmrv8XOGD/wIwkJD4jNsHeTBJRVcf2ljcSl33FPJbmfornxz85fvPmgGfO3W1revGpPxxgB/N1+vwtUX9nz38w8M3zlOOqJTfijXxu8catneW8KvrfJ8tznZ/HeQpi/9a4et13rUdBZZKXgXw78coB1XMb4Oa+/vZ6Rfagq7imdyMNbsq8uT3A2HWfL3OmNXtA5ByZBD/+NEDlOMq57eC+BP90xAn7eYApELuZf5Z8zUrU5wtDjD/euKw6wvqU88x1dvoxJ9/n/7zSsk9Zyfx/yMTv4D18Y28BWFBa9t6epayzjlvKi6Bs+0F9hbJMqu+aApo4W1VsNxkscV+RW6dTVvCCSHkZkV27YislwldjW5CSGto6YqnokB6sNlM6jHGT2c7ryxSBtTR/C/jc1vXwu/mgixVo4dtZaK7Gi2/lXq0BhFCgvU60vqeK/aW0Nm010r/cvqJZps1jxa8TF7UNHva3h1s1blEg+N1CidaC1rt66XOcf/nUAefbXfYXUpeZwyakJv2OuFCswf+iO6KzFrVIglj0IS4trkICYb/43XZpZQrLyJoMlvnuC284GA50WxotlAr/qUdVQnlYynocbXnn2DJuhjEXnnVU2n5mjvLkaXh4NN5f1EbZjt1hBCyWJDZzm4d/oRreMVmbvpb13N6XqUtf9aEEDJSUMvoYobOGgCSmlLy/6i/HkQkBvQFE5+5mMoBIOecJ0/rayXd6AHgOnARQjwbv/ethv3aXrDoRfvc2VaAq98ZyJrWvVlU+Ju5KKAnP9h4P9CdsDYlGP6nvb9+N/uDb93oKS4T8FQ/8V++2lpQbvPgs8sofWJDu/HwJrgncz8Qx7OWkhO1lcspN2NAD6QkAxcLvsFJsybrqe2Os8u40MKiPa2pq3GsYvdF6xbZWFYbtmt6q6YRPWlbBeQ95KbUtcNccL5tn86CmPB1pFPcZgAO0ifysoAsVUMHsot0BaS6ijklare76APGF3NKlXNu7Gkd91ZDthfFv/ROw37t1XYGnHBCCCE37fIEMfInHACQ5lqj8d5q3H4u81NPnIWWIEb3XgC5LCWjkCaIajJ0F1sSmrY7mIMYozfQZbV5djCWWBq+d8+8t6mZ8d5q1MUVqtsOPkGM0sUVquQ/rc8NXwQWoc2Sue+NPR0uiIncHp+JioTiF9VyrkhuL+o5aG5bITSWmn6xUmh1fbn25H5Z0L69JiFPlCsSd7OghMeQgSfOEb+bBeTZwR0kZCa9azzqs+6jzzcas76IMuUNtBFFC8+6VwIt6IKCi0f0t25F3gLpo+7I1bmLjVnCtUXbkRtpNJlJl79a8Cu2fMTQMfRXD/1/Ei/C8Js6yJQAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in the quadrilateral ABCD, angle BAD = 120.0, angle B = angle D = 90.0, if you find a point M on BC and CD respectively, so that the perimeter of triangle AMN is the smallest, then the degree of angle AMN + angle ANM is ()
120.0
638
[ "110^\\circ", "120^\\circ", "140^\\circ", "150^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKwAAABhCAAAAABuLBVuAAAOFklEQVR4nO1be3BU53X/nfN992oltEI8xENIPMRDvMUzNuAHFNvYjlsTpyTTUGPHTqd2g2t7ppnxDKnttJkmE09tmrg2jptJmrhJx3WcuE1t8AB2IRTCw+Yp3k8JECBeQlrt3nu/7/SPFUWrvRJ3dyFtZvKb2ZVm97vn/Pbc853vnPN9lwS/O+D/awK54PdkbxZCyYr12tFWqGgRsRaXvjF9xtfaALGFyuuGLBnt+lSwbIuAzz1F27Ye+SFAVPhUDncD7SspMgWKFgLb5b2fN5h0tEBRHQh3A5ijQVIVKJrY6uOfPAIJdowsUFQHwi1LR18PigsVLcK4ZMd6+r8uPQAICvcrnaWCxKq2dxJxKxAG8vc0Ay3x4Myoo9/40lCIgCAAKP1GAkoLJwgJCeHqCBBECCE/ritZG2hPY1ufdrJEIkJ5syWiQKrufbb27OOPWBKwBUiEBRBliQTS8YGw0TBKSCyRCBEshMy/7PNHPFbSE1lfBS5v2ljtGvFdJflZNm0jAXtFT824WDshRa71i2BIceA7lilgwHcogGLraxJliBCQI5a0BClNSpiSOx77j+Rf9USWrebk2iNbHlTtRQBRAZ7GVor92DxIUsSFSyQC6ECUpbQeEATMVltAlCgFIgEpqy0EwYAvLlqTSS+LrO8lvn/PjLcveKWBBKKDfNa4q5a1Vjwky5xEiafQ6ipOisMmqRRMQCpBLgVJrdFOjogV7XnFJAnWzsXeAHBgw/oFC2xn9V3Jkk78w4Yvrf9h5X2Df9DQN6UkyJ1rWpBYx2m3qoTl0ZbvDFuif3zqySG/2nrP/MMrRj2ZWE4PV3+0duHtO/9t/MPe8ran+/9k9+dmHf7nsY82v+k+PGjdfUUKLc3Pr/7wvowbm2VZKnuBUf2+8MmdU2qCfPzAgiyTVZyMKQpWb7gwv2rmINeOG9YL49whKJ87gGKzbDmq5lSi+rb+UDNNCU0qr0LZLUPQ+xYpxsC1k6qwr//M+JIz8UwDhOkTAhpf+8tBufLsitO/Xl858xezFud4Wfuye+9p/Ltbp35t8A8ynDArznZACJKAkORmWIEYYggxcGr9nvO1fzY6drjZcE5SjD9zCNY0f7RywouZE6Y7snmDNAwrJHataq6cdVsckKr1ieKc1Ej8T2AeeQSAMRlr/g0mKyypmE7trN8ut9eNAozn0Nh3EqU5CdG2SVX4yhLbnkNXgWBQ7OwH+9uHPzGGYAkUC+zQ4MLA3KS0vTZ/rhKhVs0ZDnQjyAoMGOnV/Pz+jw5NmntHDIBlgMQBKhvH5SaPuViIoJyY9Bi68uEaQIthq4FN2w7aOx7vCCIMAGSYRhy6OyeBgbMMRkEh1iVu3gjLKrZGExrX/UaN/MpEwFInHSJU+26O8oxjKSylvDFuwHx+y+bGSYsm9YanyahOehiovuS5Ocnz3pgzNXCyv7gBZEnh049PuJ/5ah+GtYqN6hQdhYA+pUdrcxEo3t7a0IXzBpA99fG64ro/qAPEMjEsZyyKQoj3O1Sbph0NOv7V/hJGLCJZEaPqj3ju3Pi5hjptwSJgAeH85u2HxjxW2xsCAoMIXVJ8gjhD6j+LwDpR2Voaj4BDsr2olrWevvDXs1o2/s3Pt60AiRFFIPvp6lPFE5fGEQhZFXrnyICoogFgFbkKE7Nq1JhkLF+y4jslZvyir6//pqUvagTETLJ/74e9Jtw/EfCIId3VwlYLqtdc7i0kUTNjSaz8ozFhbhPVDXytD2z8nv+cvnWSkANcXl3f3O/JEXFAjLboNlURJsM15lRvstELJDV3iHXzJ6uDZMmOacealmCKEBJH/vPokMmzK0R8TcKAMIJwSUKG0T/WNC6HvJhKH4Kf/wQjUm7i5F9Uzn/nCQmOr/tUZi0aQTBGKwKJ1d3fY4angL5NIERON5U50bcs7MdF9CMBbSmtWH9gBoi3fj/+6uIaApTLDBBrEKhbQa4CJh5GLjV9+6s7QouCiG7AsvXbbbuPPz+tJU5/XPWzcxU2pzpy1NqUE/0Ci4FKUiEdoYhkKRj73bIg1i/oFYg7+Sf7KnIrIEZcbOlvI9fJftGzMGHRJZoA8RAb0XtQv4BswKasZnOOZWS8/BhFb9Bq5SiEZRPRyJIKjOeRgCSAyMLNV6Iq7rh+9D5Q5N/HbSs+VSak4xrx1pDDbpxIEZdqJbXFmyBWcpgyw/eCOOpwoj0txCF+EJEsa0cTgUiTBXDXRzAiNrovDLyI6B0I33m6LggLB3k1hzC7oUkx5dAaH+iejX4fmEf1JRvi4rmTZREZXrWKhJRE1l/BB3NQYX51RNn83aATRInPU/b4LJGdEIj3ORJdlW3/90MIix25k6WASeY1noC1kb1QqOJkqPpQ6OLPDisgdHW5RmFA9ToQmeh7W9UXvehO6z5Ya8IG50FWgwn3bRC2KurVhJGXL0VueFlT38R+yBf5bodOv7IPFH2C2Zr2M5EtK8kf7Q0NNfmSjU9dFbaf0h1sUVlj5OFkKnvByX8Fy8Ydu1pt5BsrjAlHIouW0qen+2EuljfZqWaLDp0FYbCEsYcji9Y6CA+LWWQlbOnoMsBaK8XjNkXfd1LA8NPRF7zEy9tVWN4TblnpqEDCphAxM7PIwr3NkaOBFZT3PRGVK0zzZXghn3enTiAiEEDSwP/+lwb7tbEt0SOn2Hi/XVEHp5ylU3ONs52tmmZrryHQmPdh5PnNMKo88j6+LhrWV0J6HN26gVx9pWEFEEtE1OFLAWF2U/RjBKJR0xR1MCU+OMiRsy7p9N75U7oGNwiqhm1A1GWBCAOuRD3IwuaXxzhKKW4l/coaZi1xJ58lS2r6J56NxlaUxVDdmL5l10XgfG5UaIunK9lrd/rany5gZmZyLe48e0ghknEFxg72moBo4UvfO0Js5BWMKL2dQWHRjoiIhNgMqN4GQ34EsmzEqj6NiJZUstQ36zBm3VmWQOl922zLpseJEixYE2gvUufBKMb4RsuR7oNJvLETYaefurNs+k26r5+tsMz0dpNwhKRWFATjTnrgIAJZpYeXRkq+AxFYkCfoyOyzhXfMMEB63bIa2o+yjCki1DS3RGvWU+mzMyBGgq7FfrYmAgMgGFgYiJWuuDqMCNPr20gF2UOyLhEiKS86DrgRTGtMi58UGFxOZi5kXcmy2fT2W281uB4YqsfuIACZTJtZQvaAwjHpEGAiWFYnvrtdQxFKkVkvZLkB7X/l4I6lBykAXbeVJmUT/ltM5L5Q5Q5IoKP4QTKhAxhDscxMMeskh5r86J/jm9/7VolPset1UQiLll0uj5whTFxvlTXXjx6GnyhNxo7/aM/oKSOn9UQW2NkXmLlCSF/Y2hRo07NxVcvb0yLMGRKwUkdOX+wXpceqiqss71uy9Jndf/v3GV9kHejxtj8DUF9C/xHrSiz33M/Syqx4sJuCXCyDSIQpgBTFUscvHLI/fTy28sT8kftWj72r5T13QfnKY/fU7Pl4ypzL7xY9VPTBqTtH71w/+fbz795bbb1v378E4xb365GsOlk5CHhzVi8/9sz1J67vNrywuKIb41tYQItR4hY1bN7TPuHZvb5h71IbpLUNbRfigtZzSXPlYivQnoK5cCVA6lyrTZ5Kid5U/6JBr4cy299ZzbpXnKUNL118uSJ0iy8bsmzMo91+aaA8F8DhVbv6jvvD3oCnGRARJkNgAyYxGjAkyhBYDDMCZiP63dffK0k5VjLmY1fLfvCz2K/bpr/Qz5duDiZlgmnq1mRR+ECB8owrJz5Zy+O+Mh0Gh/+xoerWmTUQJgOrAcuG2dcEKCtWQwQWKrBipOby/qlFm8oyN6i7kp2zUlJufwTKUmhbPxPk6dnvHxvbzQ+BdVMf/ubMgM9PK4PPasuyJ26/9FJVDRnRAoZNb6IoIbEMEMGALIMpWUTj73/x7mTx4sxEsav5JHAAYxwjpK5vWvFcfq72y5IliYSA9qZfHBhUO38AIL5jW7780BKgWZXDsggLhCFkGZaFkD5OSgKBMmAB//Lw4EWO36MbEAlBKais7e1Qsg5jwU//1BGQFREthlmsggjh4M6NbdOeGuMAQqSN3tDyAE7vc4f2ARNBCEQAKUChI2kCiIQBJUTAQgBQGRSywl7HBxEDfWCc6a/V10HIWheGlAkUA9T+8cZLpZ+fGrsqK3DlnBvHlVdOL6/GNTtQJ2XU9V+g6wJb2OEIJpayOSvrYERLoCFgKLQd3LqrZPqtVYChDnXc2qss2dpnzBf6zSlAXWEH8i1ZJdtfWlHmaSKBWHFwcnX95bp5Q0sgABkoAAiMY5PL98xPbXmlLLejfhkozLLCAWN4+bZ5DoyGVXRl09rmPnfd6cKKEKTd7ZCvmJyvv31QvtAnUvrbDQp81MFnn4peTj1Hlghm+7at/T9TNwISKDZEQoavHprwlREXXY5R5YrCLJtU5Fgs+E5zBePM+wevjHmu2gFADqAA6iTdueq8hagriKwQE5GdEN8y+9DPL46+7W5HLNLn+m4KCrOspsAqRsU/bTi/cEI1YDi99hf+/ES4ukIuJjIOYFH1r8/cAQtLCgCogPl+HX0FPku0vXUi9Ck1VPnsFcNEKVryR95kDRHozJsNqKoc/+rrZSIdJdDNcgEg/9lpPRjfPN244g1HTs6JQ66eJ7iZps3XZ40LVj8+9xZhQbE/haLvjBaC/CeYVbLqAd3uTkUgORw0LAT5uoEiENocOOIZTdZN/Tae382XrBBZnrImpXe/l/KB61TsNwj5RgMBQGe/dWDQyIW1whyom+QGGcGlsDjrbY0NHnwzg1UmbsADpr89/O4/0fz/Fb8ne7PwPzpwa20rPCTaAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, fold the rectangle ABCD along the line segment OG to the position of OB'C'G, angle OGC' is equal to 100.0, then the degree of angle DGC' is ()
20.0
639
[ "20^\\circ", "25^\\circ", "30^\\circ", "40^\\circ" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHEAAABsCAAAAAB4XQJJAAAK5UlEQVR4nL2af0wb5x3Gn4OoURMSJ8uhuosTZ+AsbklVGlqNLTAShW6sdStGWEk7thGVhWZIC1EThW5pqTQ2mIaWH0q6qFkkomVapFLR0TR4KhVEoxqdaWk0EtLhbKTQ1am9zhTonMW5Z3/c+Xy2z3dnivr8dfe+772f933v/fF9v+8LmqkNKH3/e6bJLCsLxhrO95G/3rLKJFkGMiF+2lD4MnB/+frPg0gAOBo+CgD5axaOKNAo9tPSrx9aOJYs41a9HF4PKNX9fIgKTfj8iHevGBcADJ9cQOIiw9gljzWv/xF627rl1+mR9z4cAK5OAXC4eNvXHOuLcpI+oQAatolxzwF6HwKqjjiAqTf6Bj4sWZP/wDKuc4LCtQnM+q5ODjq2lpffoaAsyYwICri0+Tfv/HGmbGuZWyf+0sDAgFhdl2+ZCPNpKdi4BI+PGaUYbbKXnAxbnOVMiYGmZU+sfNE2qBcnxR+7amzNQf2oJJmMjqmnNiwa//2uj049/JamWdRfEg/bfnZ0xrX3OnSiMmnVmQNiS5Ckf030rG0kXSq1OoFm8bmIUX4kjVu1296gNFTFq+zUIhPbLP4WqHV69VJYI06WF/4l9vySh0ZIjQbcnmC6uLREOTefvTUeFHVOJCHTKnrQOZopkSTZKXq1rwcPkjxpNxwjMXWJXZkTbza6LiW03IQzSvKwCVL5wudoVl9Sm1+PKIUrSpLHs+clkjx8h6VaBjZVz6SN1COOuhqiatkkuZznKkiSh6w1bKS2wJ8B0Ws7lhoYdchZHHJMWEGy3TZgmThq8+qkY2uzXO2WdWZIOV236NcfQynEoEunhiQn7TflhxanipTSj3OyteAT9TnyKAC8oEuMljemyaHyrExhi3PCYEqJq7Yy/hzxHOf53B49YlN5NE0G3rLYU4srYAHISHGL+jxXPEXfBj1ipyv9HOVUu2nThutWkJOObqXhpfNVjHiqmEocEq+kz6D9afWxyR2gyW8kSZ8Ym/DaALlNpUTipMMrh+oqKCpLkRRDmqprXZASKUUe7WFbbg8pJdWxvN3w+5oz8ecmtyUr42A1SdJXHuLcpiaSicSzRel6jay+Es1LfeG0BWLE7SXJtiaJvrzjJClpiDMOn8n37lFNk9cV/kc/lXaCZJ87QkYe7eHcprwpkgl13NdgVuKOhLFaV2jWsBLJmlaeBwCUhphE9IumfyZonyFJSemkdYWzZl+Qr+UG5G9iASApUSJZ12LY2SVKlGpfjBee5GMlaRclJcVgccHupsQYxOIC5lUkB4sT8otWp0eS5KjHcYb7blczlkgyK2ZZttfbzA34zeFhrTWafdb+rdm024ipH27Z4v8u1uWpm15Ba68GbZaG9LGk3hWtLpnR/xnhZltzmCTPeMSEhogRj9RZATIc+zqGiVZW6BnFNzpsDUoVvOWVndppLEa8L92SnaT6E0kBkQodZKej8nKsZL6i7jJtnEIcWWsNyKHC5JBU5LmCUs3GyO+MilqzQSE2tVgksnBID6lptaEy9zltdDgnMXeF6Bij0V5BoxP1KUGR8mp1QvZX208mRWdHh9xJ/1HimN0KjCT5ic64nS1RkIGG5e1yE2sQ9kA0RzMQskAIuFBmPhYVLdt+JimEWNob2HELmH5247KrBxZrRywBrAhllwzEk8szQP9Wy0TUH0OiT0kAlvZe33HziGti5FdiQhwFkGIYW/q1JSRJa5a2LKlYb4c+8+UlFQl7qnizero55Na2KoBrUbd1R5jw5InUwL6SpV+0F8QqodRckRjCV/45rb5mAYC/IBNH2I6+kCZnABh+cPez7wxf3BkrU2Kri/8G7h5PJI5l4j5lzvZO+UEp5bUdj1Re2Q5b/7s71UTaCohhIP+9OJEE/qHnGkonAbtPaXIN7b33nvHGbAC2gXefipcr/sGKEODW1FEQgLFMiECB+EYsy9mfu+D/qeKbs71+YW+8XCpbDAPuS3EiAARWZ0REw0lAAIHj6/928ZCohosD3r0piYUVQWB1MB5Akq6020udwUEyIgZJsit/my9pagy4m1K+GC0gfUXqK0jSbmk11mhfOzlQXNiXGhNwNydP0JN2cuyuRGKOobWiSJNNX95tv6tY8wfdZJPOliTijcXkpENDlBLMZEtyA9mH09nvE86WpJDFMwzbNERacEAmKrgSKEoXKXHCmWSHOiYZXq6+ZQFAzmwGHfXGL12b8wuPposWsPZC5y8SgmwBzC5X3xYBQM5csrc7vX77k81v5xv6iwXnheKcPZokd05jJg7IsI6v3XX61e58CL2CIGxPm8rZ335EU6YVIcwtVd/kOs5Y4735zMcdDwNAQ9/U6k9Lt7+crq7u/q34sRq3KozZZWpcFgDYP7DCu/LtHd8flYFjf12NJa3vfqALJAB3f/tRdW5dGcJUfGLKAgC335x3/amvlvjrAQC93fuNTgcFAHD3t56OlUcM4+8FanQWALhGDWEEpp/dsHLi6cUAgRsvlD4CgBcND7Tcr+85HSMGcDm+Hsp1HE/9QpOZcKvDFRhtsykViP5rGwD8783C1UZd9t6BPaflTMQw/Bs0OZOcWGVoq55xeLQmjOIJOie7Sww0sryTJDlYzMVxk9PcsvIWJplSc5uOk5zbVGUCJEdsXSQ55n5LY1nJxJrk/YssiZKvzNWdHLyrNERfnjmQHFzeRUoBsV2zCZSJJ2r0v/BX25PLIpERD5DbY2nTMGjrkhjNrjibSJR4WXcXEGgUW62sYyZISrYlmgVYu9NJ1EzLiiaTowtLyFwvHXmMr69Juzm1pW4dE2ve/+w8kl6bN1e7H4vtWJ0JPHatLR9ZEB5Jry37tOJFzpuiBMW5c+8FJV4i2VdUpGPCzFvPCftlTxl35U2py//huOdhpMJpeCiTmSSysvD2y5x9KERGPFUqUfWuTNauOmbsgsxU4+InE+T5KpLcVRqKnXiKOw8DQGj/xvyJxmydyXX+6mhc5gRe2QYA6wDVSzYphhlpFRszNV1NFbCFKXGueIokd1VJi2I7BIfn0J3PlwzlL0StEtS+0wYBV5yrAQz37RPihuOQUGLm0Z1XFcUASbbtIRnxlIbUntPbwydMPbqZS5JqfkaScw/0kG/nlYbUGWDugR7O2Be+jlKfK0IqXmQcJ1Xi7tIpSmae+Xko4vbGzhNjkkdHu/0mINR8oWOhu03rxm9CSLodQJK+/b7yENUTloVTlzP1HgRI/rcu+La8JA+JGTh2zBU/RdIIJNsAKDaE0UlZxpp0dOuEZgHDH5Pn18pt/APP47cW6h/e+M6TlTrBWXjnwAHgYuy9A3sWCMh6+/O6EbuQ+2rEA1QpPTjdqW7Gai3Qt5H0Tq7/tBDAbtGvb+zFiFJ8lOqezluWkk27bSCNU1r/BkLjZ5p8JEbqCvzpvOBZOqtuwfDVbdM6v9xij4EQ2jz7Vn66e0hZeuHLz91zv/EGzwAoYPi+B19aapBCX512r7WzgVR12edxW0ZKuhGUgeZzIyhm+JSnHqaYa163nlTFb3ZZkUQyUOs0Hcw69+XUzls5vvKu50NWu4yAwDMb89/7hnnfMtRkg21fIFYDk6SNtibV9DRIbn4LcU9OrYV1ujvpFuJnIJIfnShyPDOWvtiSetPS0nAyvU0KALhy6pXZsq1lG4QUtxgvx26TWv7fVrcW6o3ZHH7JCeDaNc76rk79Wb0xu5BEtWLhi2OBC9TeCnbdb91Pquj/85vsfPITAjEAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, AB is the diameter of circle O, if angle BDC = 40.0, then the degree of angle BOC is ()
80.0
640
[ "40^\\circ", "80^\\circ", "14^\\circ", "无法确定" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGkAAABcCAAAAABIXsT4AAAGFklEQVR4nO2aX2hbVRzHv9k6MmllgQUXadRsqyaDUSOIBClSa9fW2YdMy8xDkcLmmGxiB0UGU5jgwwoV+7C1nZsQocI2MuhDYblznRWKTNhDosNluq53ELRK0dQ0cLPc+fPh3iT33tx7z1n+DAb+2Nqzc773fM7v3HPO/Z1z5iA8JFv3sED/kxg26XC8Jh9pPEl0JIi+3PCkpYDqZAX/ASKikZiVoG4+ncl9BgDbnm20TwX/KENRL5/St7YzFI/eKPf6FwFAvGgtqdN7ognEiIQua0FdSFeuEJEA4ICNqB6kay0RDlUdSCnPrCfDltU+Iu52T70RnuYQ1urRsm+a6FqQLayVlAmMExEFEkxljb2X6458AABD0Qb3ntQ9rCTSHrmhPt2PeD9XUq3BWZa4JtJQ09lSMsoSO2qIwt5PzTqL6bw3tdleXYNPH1+fKYHgHGBOqapHw/hO3cLAnFJVk6Jty/qMIGNKVUuK+URDzvjhhpDinpQxa8UtNYC04LlemRk+V3/SDc+8Se5MX/UkAV3FhDbGuu2dNVPLnnTVJBK8WSKigl8bmaZ9Ft00fKJ60tSuLBFRWBuIrAROWqgTAbu67NeIn5rvAJhs7S1n5boHD1mon9/4g01dtiT5ubZfATH7WDk+zfd3H7PU2y+zdg4LyYlRKuwutGeLOXL/fhu97ZSy9elGO4Bj56+GWoo5gxvP2Og3d8xYF9qR5CZsX5x8qeWbnmLOe5lzdi3DUOl7tcfhcDieWtMW2nYeLWGUyp13tGPNrrOJZHdpNQwniUa82XKZDSkMJJcO0ASgPjAWZAaQw8fVRGE3EVFYEz4/wGp0NrDM1KR8akJQ9qKaicj/zb34aXwLU+T3fKcklHe7TVPETRIOx5/hkKlTSr7cCwB32solTZygfefesR92qv0+m2sGkA61ABDHYuUSTp+SFyIeHt3PX4ViAHBpOwAc6XpLU8Y1GFLeOJdu2rUQ7ySigj9JtATdDpGLJPoszzN0FnVdJ9krkqA4oX+Ih5QLTHGBTroSRHT0uHkpiEiS7GMN4tjxEdG4EsWkvOabARARMUB8dtyrhksh83fKJP37/S0+UCkAnDLfXxdJkiQpvaj0pFT6NaA8p2SoP0mSjK0bbiutrRmXaW+XfFL/lv6ov/b3yUT6bKVRetRh7ZoYMR1AWpLaai1ppGOVigqT1hRtKKhdfOMhWxJJJdfKVWbm7pUzLEnyoP5zIhfHhs7WAXnDiqL596auDWbZersfEec3aTPWD0ZNZA5CHsqGK+9UKnQq1TqRa84DTqVAk50HnHk4S48NZOLN+krvdojrK1Fl94xjfda7atbfBpP6+ionSafJlCqTjPp5D/s0g2it0wREUZMpVSRVrEgJzwIPqGPAbO1Zc61Ykoz2N9d3IhOMmC9yQ+PcJMpxgFaCQxYl85X761pOc5YDBy3LfBUv2fTrvvryX1aTRzuWO/smLQtNNgMm7VkLfcThkeizU4lu4ws0IUl9jP0+ERGlfBbfVtU6Z5gkeWCQB+QZsxdEw0zSt/3MozqihLtyGOutYkpVku7xgFxRpsY4pYwkrpBigQNUMaUMpJPnOUDzLq7wz3eNiMKAGvjpSdM+9saF4i7jsDK3EweJiMIxEpA0kma8t9kVpFx8kTOl3RJRoT1LS0gSkfZ0dK6/fyeAQ25g5RTwyqvIPo7fzgB7d+Dmhb07cPMCAGRcHAsIAEyNv43LF09jzxOnodtr3E8c3QkAp1YAdz+gbC5WKyrgBeHgRmDxC4fjk9NWq1E9LZykCSSJ6nj3aW7iP+141x8HGn5PeKm3fFmp8VRIsntDOfJbAmzu6fSdV/ArhwwaUsHPQVJVS3b3dJpmAaU2aXbUx57eZtYBFRZvB36xOnnTWY/2gqH8niZf+IPn6avTX6+pZ1cPZiWSmA25W+yUqt14sUeAzHu4YEYa+xBtdkLV5CbsuoyrrdWTJk85tvLo063o+fPHuV620oIkZokE1h09AAi9QE98C08/G0zpcHHfHLDIo8+1AK9vjbGFlUZENAIkKWx/mU1ERBPAKBG9mWUJTayWO7UHs0fv/0ew7T/KHLX94VcIyQAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, fold triangle ABC so that point A coincides with point D at BC, and the crease is MN. If AB = 9.0, BC = 6.0, then the perimeter of triangle DNB is ()
12.0
641
[ "12", "13", "14", "15" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAKQAAABWCAAAAABkhGKPAAAIY0lEQVR4nM2bX2hb1x3Hf9d068uYtiE1t0y1lkSeDd6oil+yxZu9klENMjkMbxnFYzJxHJhYp2FDAstmCnnQgwsuRF2CC/ODH7Laax6mrdc0Kx5ToJBuKlvW0K7GGqbDzKVVcgtTfMX57uH+/6tzbN+mXxyhe+/587nne3/nnnN0IoHEtHYoJ5hj/+oRTK/9LBaMaAlC4pe9R4mIRNt/fxKE/PXj/5GIiKQ4WEIlBtlUv5b6TEwkERKDnD9PfUT0ibb7hap0WDf6k2t3UwWUI7GhhEsAsjl5nmgjPhS3QERjkiRJj3xEBF7NEDVQIDoLAGDc+fYko/hCA2wmpUofbwjwCcYjrxVeIaIxWShwAKKPI7Ilo5LXeomI+t55iDsnJDIj++arFL8Dh39Mr34bEtGRv/K3pN3r3P3hdhxULv3j2SxpSl4ioo0v8weOreLTVD/QMPFqp5JO/xTYnAaATVrZA2Qto66mYqRsFOXSi9k2UK0AYIVRiEO20uvAaiIuyuVj2UW1la4Du/1vMmzSKPghrY6xWAKA1URjvzjMf7A9J4/fAGPFMqDoD+cKBCBN1TIqAGBpv5T+18HrE/JsEwBq2bYrnShkK71ufNs3pYuTdZaeGFxqG3XU3WlEIXWzAQBLib/tnc+s39DWheSERVYsexIKQppmAwAW5TsH8w5fH5cvbutfmcdsAKKQttkAgAX5zn7YdKmLA8eWO846bupfGMzGFoMsltxN97z81r4AgWY5WXzDccxQLPvs4YdkQO1LqufkwqF3xcFsBuVkurLjvmiY7eIU6Sc9ZgMAKpmmGKFdfevy0ZFr3qutdN3fO4nY7TUbYMCvhCl1bZxLTv0TzEvki2yAD9J4gl2RbWtuL5SrJzILrYDz/sgGRFry7mMes80mmOvb5i4EALAzn8lfD7zi6sZtcUEywNWNey79vH9boL+8XUyW/mUX61Kg2QItGWI2AKA8wNOWDACWh7NXQgsKNpv/mQyKbPsyHyW2Lz166gZCp5qtdD34Em9LTvoi2xIDUMq1wis3LtyaSM5GxliI2dyQtYwaCYliLihYbXWWhgYXg8206si2Q+6TDzLCbFNBlFaNWxeTp7sN5UMiG+CFLP6EI03OHxA65fpp+eJWVFbdizCzOSH/YER2dD9zevijgLPtxcGhpU7ABY9q2XZo8TyQHGYDQGd82NeWzXKyeMsec0XVEfE4dIdkjm48MnbQGR++5zqtnEpf4nwb6WaHlM/RkrWMyvk+6YyP3LcO1Ct9w9d4X0S1vqjI7w7JaTYAoJPPG5W9ey559jZ3vkizIyBd82zeBmFtnfJ6PjO/0zW1rYjIBjha8vcR72y/WDuf/+985sR185grVy3bRkEiIhoNvN5tCe/uV5ZHuiyAwbXM3/jm/x4//gUiCdZaaKQk0P3la8eJxp7N0drLV4PSdFv6K4+NdFs2lRw3+ttv/OC43P48EUFfLOy6jAkiZfw4QdvNac8/ORiSKNqIjMptGt6/lD6lAOrwOEfn7TKbAUoF1ZWQFARA07SQqyKRfauYLOuDnHvD49bZ7vf3oR7ZVSJqREAijNHoxjkasrM8NGAPctShYvcsVh16ZBca+F5YiIZDBs6zg7V1UT7tavJWjpvSGKA1R4HnwtKYkJqm6bbr1mvaLtBKv2Y9CPojYXxC0xw3Vp9IXTAHOQoRTQOslZvkYzS78WoFAAKnUY6WNP5Zf9BQfAbMgHGe1rRdm9Ie5DAAMymV7fZPA2jlznFBmt14oQGgUOkOabSVxqCBQatlPgRsyKAb2ZyVJ163C5sZBYBXUvcA7AxEv0V0GVMvhYhICo0c+5nUrAbVPz94bN19wgHJNEDDjVOyMcjRQ0vRK1FSKgBsc1CaZncJTTLpbEidAWdKbmrLbp1QvZodXnaXVZgGGFDVIXkou7yznZBGDBg4RuDUMqodKPZpI8beeUY+413n3e1fYSarQfmL6MrD5tkBkKaseO0yzwZq+fT8js+kTcNt+8lqZuai6jbm2axrR2xDujtL/zzbLKu10HtiNaio3f4VAHpwm5S9cwh/4jjNtiE9r0bvPNv6/tZUaips3XR2FNikaT25nmOz91IoY/g8OwzSrSCzGQOujWQvRywCFEjy9iJNeSEkcZfRuFPBkIHz7J1K+mSNt1xLdwIou82zvQqEDJpnN6xBDoeck9ggSkTPs70KgvSbrS0fG1jknTN6defQlaA6BH5B9UP659n6z5LiMm/qdmLJdy1ynu1VQEt65tn1HyUvRK7keJmcR/pnw0cZPc/2ygvJ3Ga3l57ILYmUFywvpZDZQS3pWBvfmk06Bzn7UCPh6v8FIhswIJ1G2WvjfxqX5wR/VwgQYwDA6olVu5raUTFzvC1pmq0uZo8t+5PvXfXPrcJoDkGz/ZCTJYChWUpONgBwxx+HblqOC5oNEBgKRPpeB7BaRgVqJ9OV9y3CA8OsJxQA/AM0JySAwgoUehNAK/3n1uXMyO8OisspBiWhgJnzbBERA+4PqsZgsPj0GXnK8UP7Ae/tUxLKHszWF6zWXr5KY/JVotXvf/bruYcJPXFtRNtYmfpU7fbDxgIP93ZWCUQvlCQ0ckT04l8OxwNn6W6Cvjskng1AoYGqPQ6Mdfvm3grvIWrey9HZ/jWTWiKKZ48kPA7z19FD9Mc80XtvuzcUx7H7WXKstlYl6VudMm/OHqK1p0jLp74T/w5TC/Hf0t+B33z6Ue4q9X1rrrXqmDcVmxPKmZd4Mzz0lP9u4tnpbj+Pix88R0R0pI836wPYHa19dfI86dCcXaXo/8c5AL339lEi3S9Ozx4ApLgeAOQX+zeIiJqr/FniC+JQVeklBuVJtq95d+xSiIhvtRoAGP4Pt5CqieqFraUAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, the perimeter of parallelogram ABCD is 36.0, the diagonal AC and BD intersect at point O, point E is the midpoint of CD, BD = 12.0, then the perimeter of triangle DOE is ()
15.0
642
[ "15", "18", "21", "24" ]
A
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAHkAAAB0CAAAAACED8JLAAALqUlEQVR4nNVbbVBc1Rl+bsAlbUjRcUnWcXUbWcoqVokkYyxEQqXJ2qBuKynaYkIqES1Oix1sY6GFahJxTMdkBqfUxAkZ4wgVBQ1OlpEMRCHgQE1iiSRhU0mXjhDI5IN1wt1s7tsfe3f3fpx79+7S1unzY7nnnnPe57wf93zDEeaIAayIq968OXASAMz+Js7ac2HmAODFBWn/e2YQsPfmQJyV58TMwTN97zfnfw3M8O9+AtaFXwfzWy99K+NKnHXnxDw6TfTxEohRHiMSjRYkTpYCB/JUvQnyAGKUK8tElRg3apB6mC8BNsVXnZtzHxa7skEY97NeE0PWjsXhxpmZak0qisSgu+EIk+Di0RNf9oDzjANY7MA1Odb07OSYpcTgZ+IAjB/s6vky96a05cn4tu3MHYXbxjAzdNp7yLZq9X2L/1vMwInX2315+XkOMXkxZ0l2nfh8vKenx1xUGsPoEZ05FLfT7+yafORxRySDX7WGozpJyeO7m9PXr0sxGukGv76JyuSfdRCRQKGfgKuc6moVxVqLUzZPGZNoKLZp/MmMRM++tRAjnAOAikCD+iN6uHl4xv7MpKiTrtBozATA97ulFs/LivjZeqw1kSXa2nBy/u11PABO35P6zAQOaEs/P1JnVui3d9/+JCi6chGLXxw+ndEJaHQBkQpR4C3IGlC/7bCOERHVSvwsSPN7HIXR3B3N2kPLV316t0qzobL9NrmiMgUJecNZy45HEa3fsCazO6iPTCOP5WAwLdVZiVZzq9ISMrCZhWCFQIV9mJE7YW8Wn/SYadC6OSiMnc22NscBwMXCY0OZ6kzf2rLiKIYEACwb+nCdjzTjTMPPBOD4MltPijrr6rrc3xqb/yzum7/iH5q5Gswc0JlT2ZjAyCpL3oFoH4yIpDceu+uQZq6Wl4ZT3EwHbc6bjSR0/CxWbjN7NAqwx2fipl1b17By/rK/L8mIuiGjuI4/NMAeuxnWJoC7+uiaClbx9i1uhuvZCM6Nqpc+xs5mMHMAnsVOMMKo76kPrUaJQ3Oj3RN1zGyWtYnbu78/AeowOlHU7GCU14fp7XuyXHLx4l8GBswjrNdeW5vijW5PEsagOdwf8SUA0ELE7sO8Vrc0GQrxmcwGZUljzNRqmwpJ4UtaqDe1n9h92ManV0uTonH4wgeYQWcAD69/KiRFmFiFRYsAZoS1nK9SjOkEABtuejFOYqB6uFN8+tuSRf7nv7cCYPj5knWQ1ctXFgTUZjRobaIuh9j/NAGp/URMaz+/dpk0qkXt//TxuwlzWILdd+d2AIC/u59efrAfLJ095guMNjfbJliqGNaZJswTRESnHrxEl3O2MXQmbKlgdFIHqw7GtoAQhUWw2PVzADi8YiG802mAqifhJjs8yvocfV7SHs/WU2Q9f7T9vaOm89fB3/0kZjciH1DHdn2ZUmUO/3TuvhuxQBYQ/LtlN7imt9DGnehL2nsP940Fg6nBUlIIUylqf15w7NLyXlQ/jzUWJuRuHyEi8phnZFlya3Nv/kjlT95ZXBaTxmEMtRwYdz6yxxxMpeW+s0G24pK3MatH2eqAq1xbJW2dfc2lZnulTFpbnqyEnPmITSWivJDRg0Rh9jQU4L4dHkV3FDCPSZNya+8tVVps67Ee1mRMB4fa3VP3l7WpJyIJJXvqpGlZs6zK0bHJob1IEYj+oND5wr6SlMyqfmJPsgcypCkZ84hFUVZcPmkyy6w9sj0XhQ1j2quKwALphyOz9qE8qTE4DJUdsGmblYOkf+/c3+krrOxKgs7mWMLKHskSQcbcnS8TfPqBfXdqEwebBwDTH3S47YVvLRPbqz0VX9UtXZxIzWGRuTmyfNJEbS0N12cnuHZ5tW0swYBDkpAyj5mlxXzZL2nLEFd8P822WsvbAoZoiYiSJOOglLkrT7JaDTgr9WQI5N3lSrrh+8M661Q1sgYjz9IR40S6xEllya9ozwTo6B+X3trpOvPEysxYNhxhPxl5lkaYxyHGJXF47gu3UmYoZvmOA52Ja18ojIExBIdkCI4wE3eiQCTj0Li/T3UwwgHAGXeH+56HqoIT/pinR452FjOHL28MPb+3tZ+1fJIPPgaXslJYp1jMwFehU5i+J7tVyyffB+6OawtfzVO+jwkLfGxm34KgK8Xlk6QvOn3gva6Cwpo4T+MiSP5KzuwHTADgS+YAYPz+P+eBxL0SgD5qd087WYNP7Fio0NnkNyHIDAA+Z5Ur7MKLHZ3vW51N4jQsnuMKTWYQEfGSXmU2bzOJfdTnwcFH0YMQUS/EE5suq8GNXREXUiLPIWae5yn1HE/0aAkREc93VNgtZX+9JDaKeJ4P/QrVGf/iL+dsIiLavFpvs00Fr1XNTDyRZVygyh8EeJraU5ScVTMYei+2LVSu2nmOeP7jjLNEFFjZGIvOI5IhA0QkiAyZHmH78nPH6rMTfrzLG2Ei2S/fm9pLxFNvxlkiEkbNR2JgHrwr8pwYGlBNflPSTPNLP7wTa2seuGrSDJIrja7lxAEeEADO3rDuyALDgfeV5Nw2kYM/RGPe8Nl305/N9JtwlVFLLHb1i18CgL8rbxEAoLi7rNkoMcZTI8/z4H+cS+I4x5TJf9sdf/+sOt1vAkx+v+SPHzCF05MXbsQVoL9zvT8oYefJRsPMo9JtVCJ+Qz9RTcZZvsHI2eblnBYiEkObiIg8xlwtEFHRvkh6HiBcyQR+v7zG5Bg1MPrMz399BqNZt70WfpP26jqfToUQOACeDJnOfZuIiK92XpLPhrTgL+E4ccMhhPLi8Det/3EnnZfpfKAAgCkdsCWeMND2a94QhLPyyys7T4YtoBvmn9xybSQxD7MD+QDguWkh8rS3hHWR1Fod7dACANBzryQxD97vpAI49XYBkN8dHzNuebWEN8Isnc+DmrYREV+y+hJjdWMc5Tpr3RACydLVDS6v6ic6lbH6EhFjRWcYM/ZmEkg/wvqlE/3QV9QSrPJMbbzMdERz8z6MSpl05crd2JDHKtWYdVlf5YB5TJov2xuirOs+MhRRrG+nPKNSctWBgfczbdDeJ9lRakhnJmbszRrmCMLVJEsqmKdTJmJaKMnwqdkjaFN7zDOyLMVO3PUbdwQtEs/u6tIt63jtXuzlimROJlfRMi9zw9UoisPrT5XmEykKwaq93tJadk1DmLG7Wa8FIqGyUiEXyiIe84W4HU10xOplZ4i7zBKo9/SryuVtiw2NKxkbdwJR8RblSzXzjGVwDsxUuJn1tss+q5TJODVqztbZb4yKKaublN+WMOtwq5RhnVcV1IdqxKN7r0Xt6poitSQ1s6A8KYsV9blKm0VOyiT0WqeDoSLx+NupcPWgmbWDxD75brLHtkaUY8oqOzT3WttY7dc4c2eeixlGr03S8NkVteJT1NgmIgoUVMRPLAj1zkiqxKVm1WGmKbvq4DUWOEOfB23JnGEX0bvhEEnEHGdTtr7gg/YNB+3bO50pEq1joA4WFV1dn9KjJUDn3tCwvWIOYVbjJJotvc2j2Wq9G0vnnXnxDdYCEQVy66ezi0QfCwx23btSgV+EbyzF3qN4r7eEe5QYvucQmizuOImpNfVt3fxod+IGLS/ETkpEgRrbMBHtAVaf/TWzRLQ7ccsGDy39hJlDkl/5O4AO3X50KBOjjsNEDSvNYCJ689ss5epeXFA/CuE/kyU3uym8pVHTEpfOAFyj191ad06hmWRuy8n/cpPPZaadWgOgZXorAKTfHK/OROQtT6maUOumtIFARN6nUyqDk73gfQLN2DR2f9vaeDJgX98Z1Dekm6yEePe1rfj2ZM8rwTPs4H0CDgT2wsGQziQQTTVmW58bkb+TY/hXltxdkb7nVIbuSZsR5vB0bKTKbiluHGH1SMMNRWZHjWx0EG9vnGpnS431PwQiN8dpiQ3A2Bn4Bk97e635BQXKiwJ7S1t+gr7nW9n/pBLP/yYEb8vj9DgAa5rObfnDOcCm11g5cTL/ZzC3/7v5/2T+N0Q/MoAtwPQIAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, points A, B, C, D are on circle O, angle AOC = 140.0, point B is the midpoint of arc AC, then the degree of angle D is ()
35.0
643
[ "70^\\circ", "55^\\circ", "35.5^\\circ", "35^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAH8AAAByCAAAAABfSFERAAAU40lEQVR4nL2beZidVZH/633fu/TeITshJDFAgkASCIRdwB8KzOCAKAOIDriLMCgMKM4wuDw4OojKpgMoA+ijzuBIGEFBWRQEBwgoELYAScza3enu23d717N95o8my/TNzb3h4fnVf/d96z3fqjp16tSpU9dzsmvCF+0HkgZ5sQEm76yXk5GX16xaN6qH35Ccm7nXpN45By9cVMgLLhAhCYqi82mHtXmJeqT+3+fJux676PsTB3aByYnJtYAXmwbFrNbT4SR2PZ6IHXn6vx6oLzr0oEOndM+Ym5NkZKBc2fjID5/f+4iTjp1D1KG7xMWFuNPVJokN5IWDT0Ne8L/cbHzXggAgKzEKA9mGv997v7++aRPURiCOYACrAFcZeemHfz19ybVrnbPVGliX1pxzLl34CTY7rr21YWCDBt0SP7amVtYQoTf8x7LZV2wMQddTMAaA1JKMjWXjYj712dlL/z0EHacWXKjddVKuMma+8+pbxQcLZGNUL+l+3wNbyNJUAxBXrSlVeZMUKgpTCw98aPbFQxhqGda5ofm3JzhAv1X8IYjrMHB+8GEIx6XBar0NOIkNkL7507L+pSunnT+qnUtT59bJzWQ1GOOt669g01WzvjlIaQy2mDQx4JJkfAYiwESRBZyxDgYccXT5/CsHLMrV35BfUCVz6q3jV+G2Az8yWAeHUgBOKcAaa63FWAfjgoKzhkpMwiufWPxzMufM7O+MkY2M3WV3F1+TUYUyDJ+4z1ON4jeVN4sdaP27+R95w2XuevkR8QMnlHdb/5AxsjKOJ7v+hfXE7eKnjqRUV6mrX3bgi0POPTxNpv1tfSfyt8CnhFJWcf2+96QhlbYNQC0BLCn8+7J766xFjwL13cVPIKvAhw9YSYjVpl1856gO1qwtUzWz5XuaGMUYzezvN4uLY1IrdMaH8vA+0q1dLmwVp7eSl0Z9M3t9v79yz+Gb5v/gjMFOydcmNd1lmuLPom/s9WOWfX3PvJYgVP3t4ktHt0iSyq0Lfv4lmX7lnh9YYSt9nh83Y29qxQ082nsjjChKhmrb8192roK9bf5pj+vHl952IF9Z9oAhTXbb/8v8z6THq2RgMDGqXXwU8TXzT/l96vT3PsvSO/nxtNUoGv2nCX5KHWMi2LDgB7CzhTMBz6aAVi7WgKul2dVT3v8nIDWfuYaV0zK+sXQjEQYyR7Z9vCb4VAkpU61/8OrXyUhb4Q8k2GQ8EA/XHHxz9ll/SQxbiFmyIqt94mpqnzlvlC3WAqjtcbAZPhBT54JT0xRcy3UH4DApYQYbLpOzXyYhq6NcWETxx/0G2PyeqyLIHDiSVvgWRiC6/agVGNWG/eNQYasKynrkkumfLmGqYEqkPDEHrH3/1+sMdzwELkXr1vgpJSi9MPcZatQxreffKYCwWr+851ObTJlhGIay5fpzIeOl2RHRn+ffD9pkKVkrfNZCsmnR7RiDMztZNxMogsqoVls+NenjESEOkhBqEH38+yTApZ8rw81HPA/OxTvkIU3wFWHCwddTNoSQNO6bE+VNNLz4ieKlFSpQYUSBTrOYdNGTZGi1ccYaTXj550aAcAd1mq1/Rfqjw8igjk6IWuEb+PN5cy5NqSsiSx1UmgEZ3rAj0nDRlSohnflkCjXXcv0p7OjeTzSPN8oB1hGDBQuvnj3jaymliXz22XemxApNubjJhfxhvgKVTMRviP95a68955Dm+0LeI60nTjpTI1pk5fuPf+fQFVWZPJGPVxd5UggQMbdcZLuTZe/+hoT5jqhV/Me8MHeQXeivAUzVYOHBU2d811GG0eEGxo/9m84gy2Bkv2csPDdnfY3W/p9y4YXEO8mXt+KnUT1UQMr/HDf3JqAeQuP+zsIVNsNpDYO3fNA4x3mfw4y1nH/3l/2qddKm6w4AncT89rAZP4ASZRiDNQ16TBoYz52pu8r853XK4J71WsP8N9r/wovAuKb2pzoUw+YnFi+7HTZEQJaRlhrkfXlB3aEUJobqncdAzKcuobX/rz5oTQ3VfN+xwLrbzpj7C01ioYRRVhuTTeS742zjiJ1TEbrCOx6BsYE5tR2mtYn/PzZnfu/mfFps5v9Wqree96O/WfdBk3X4yGTr5/1cEAQT+VYtDABP57tKuf7BH14Wiuw5/+6c18z/qWMNioV/0lDb7k+AsjgAo8MUrtvnhOWmuX0yHMbAgc+GWKtdyBia+qF3WcLfnL5DGj/B/iTYFP6wbCOYZHu+oo0yOGVDSwK164tnPgTYpv6pxvHD2a8bDLgYQ2r46REkbJ61vnn8KYgYkZ++d5rIjtbMVfOBivN+l3Md8VXH/mblj9+jKolrmk8GIiKerJcZAZ4T6yMimZzT8+0ONevU2xv4t4sDIfHC1wgzMr1NzgEowZCB4X+Zf8bTruyw0Nz+OOes5a7jARIy4lhjYp6YReRWz50Yf7bpb8VKIK+bBWKsBNvz9T3rY51KZgSlbx35+C+WL/G6PHHl0aSpf4rzEOTPR0kqgi1IsdNJoMwxx32tS+8ZjjTTPyPDcMNZFcj0DuFMORhg8xemnfEkZKS4mJ3Fu236ZxinzXt/SRVshgLl0KQv7Fl1LPtlM/19ceLLw6cgknMibH1uvJKZ+aWjoj8vP1JnVhUxBRFjmqovTjzP6VUHSbdo34kR8TOdE3/xsd+2ctKvm+nviCGb9wJKWXaIv5bBz085bw0oZYDYgMnULvSPsaRhMQYqhApSbEoEz+1Trj6/aIL+Ml41UdoRwdq9xusY4GrgIGbgY3tduMo2X28N+BFVkuWnTHyewWUfhc66roZARkJIBV+c1tbL5TwpimycJSIqsyKqNxQ2y+DfzZm84vsLfVdrbvAJ9sxJIPmX9p/4vBDKx/8Yjyx8I9fXnUShF3YQSJ/44nte4HnjHvDiYklVsSvvbLHSI35w1nGLat+eUYkkl28Xn7zkdfCHYxpeFLMDTvjCtDkvxEp0d0++IArxRn0nuZwIyqJFXj7EdhRMJfGDaBLPfXDBQas/nE+CSd2R6Wwb35OclZVLJz7X+UC+dHdl0eYuJd2ZVPOmSCRT/QwxqXZ+4IG/boGWSE/qzLLuB087/fDal+1euU6bpHlVbhffc/j5QbPXxOf5OMe8z3/0iOfEc8GI9HsbpMtzsRhI31zRcNjzSQoG7j1zyQ2DkGRUAL2L9d5A2sCvj27MhxzGRlN/dBAw9jkRmX4jaOTN4SslwC1YhR3VLD/+qK9WLNQgJIsgq4Zt+79yhn/6QgO+RRv411OPsjUYPuVelk+5PwNJrbUwvOJVY1w653Usvz1y4S0pEIVgSRgvNLaPT+bOuKOBX6WQkvYsqEDZzR/OBmUlEZKiDK489eUYU9+bsf86YdFPoYptRuAAlQL1xw9c/DCZocw2fgOE+7ywk89wjtp3i1Tgvot1ctrHRqhmHkk+V+2/+uFfF3K+BNfd98iyI6ZZ7XsNico2/7IulxNnZ/+lX27eJLPP9/1itTcsvPnedQzNqn/nqnjigs2Pzl03NXAjN/7sQ7W+Gy7pl/uOypV6Czkhl3XdMWVtwfcF8vst3qMY2+5ANatY5bTkPSTID/urDshExHZqk/dNx5vvje0vvDqpw0yU385ePydy8X929Lji0NOrZt1w0nNTp4oIVvPS1cPvShyEMzeCiUFFphk5Y3FKOZsC980+8HHIsoRs63sbwTcvHWPid4yBM588ey6M2GkWplwDW2IpA/9snvw7yHQ4fx3heB29ab1VaaMtYKAUgolwjh32I7TWp/+ksd6bEjL8vSOfPGDQcO134U9d3wEQiL7aO8O/DBTpwmc0JKUYGuTfSsqpGBh9UEQuogTZ+F3I1vchaTZrpGonfpdC/OC+r64+xmKPfTHU83KYLNZ+SUYnr37jt0Eiecn15XNad0zurITiN6Gcl8+JrPzJB1zCw38zORZXFILAbn3vpDiaTg3cxO+KEpcu/+m81zz/58Ebi3q6J5XEZp1aWLEMwz/dCgqOf6KEqadgG84TWykGRfm6fWMXcqdgjcbUdjivUuaRpXon58GqPu0rY9z5kRRSR0yCUhr/0sPXPJOd+41/+HySl3TpA5PxuwvgNd3vOsXlkz9dep/vedk+Ir4f4PfA9nu8fnnqiFx920+MZ7WnPd17pftqdzIw34kpGrHkxcvnjH8NpcXBz9h0aWfqCktLDefziVQf9qvFf/vCO3JjXeZl0ZUGBi0rD5LCtp9+TqWFsLAlf+99PxbpfHpepyDINnktoLLxK6zqoye0rndVLcj9gzFJctpFUaOdE+Y+x/aykSUEO8JD81bG4N65ApuRorflX2HZYBIVKai+NLONepepPC8vAfXfyUOmoU6AK3UnO+SPNaCKGzr4dkc8QnEUpVHYrfgabKpxmsSSTnu5pf6QMP9a0gj54k62Jc0f3skO9XILWRVOvKoKNX55kCG1GGe25t9aiV8k83KCkuKyx1vNf6hMR+243ySFxDv/mmq1YZtAnnqX3eG3L7rQJxf2Xd4nG3qz1csCE/g7VpfADoxCFjuDVred3Up/yxhwoi+dq7VWNKxTy1k/Tth+flPOkD564DoIQ8pnLicF7diefys7vtXXFYl7bXpL+1eByMGQwZA11KcJj/hj7LbXj4D66/s8BmUgK2whhdjBxPN3jNMGDlgFmd1B/t0lW+mqQY0MIIuAOD74DuqgSV/Zf7u8E85fBbF+4OSkO0REpNrKDZqSHppdFNNLQYyTQoc4Z/7+mNOkR8Zykvvu+RPrJNvwgwxfnHzo7szl/R3ix27TswcXnJJMrBYB0f5ta74yWawEgr373Inc2z3R5ZAch019wvdktLdVW0ZTKj58pEhOcmLzvtXo3PPfumtaXULVr91TC2ZPPLhux897YkX5H7tJRNo+beyEnl5q/EKYQ3Kicrl87YjfF7Mu029FBTdc4NuJ7Nv8ZrxckZWmD8dQe8v+V5+1OYYaKFwEA+/91xQbA86s3XOQpv4nYsRIgcnvv9mIFBrkbJdWzpwmkvYaQby8rL8zuKJY9o0zou0t50yRhjrdNnkIqRowG6ZFu3PfPZHuOJ2MESrEgLtrrqlCDYdipDeJd1F/p4teH4JZ7/tmbbY4J5441zQNbyCwnsZzvz9tS0G6pT/ujKxZffYzgYgUxEhevn6J6uhoOv/bzFB/ZUElTY11YI1p+97boLEac+xvI7TGEeLWHXJ3nFEFbYg2z3oDZf7vBzupv0Y9807+WtE5nMMPpO11iOB8K9kbC7pE5USJF3oXHP0B35dOCXPBcNeVZ+0rNmhaf92mf8iWPVYlWK3MrupcE0mhNTFrphuIIVOoK96XoqgSK0LuPwCVOCbOfyN+zXDj0cl4g8lu4GuMJmL5u0nQGJekz03dyEaAAaoVFv0MvWNdq2n/Qe96uZjrjIjvO21peN+EAhd44svjJ4qRAPH86mHPTlKztRPXLX39n118johkxYbxdmJ/4qGDfxlqMGnb1+6OBIfi8Ee1xlhcNPfezWjq1CFm+dKNCVEaNsSfndz/YCL70MwNFXCq9f3rjnJbzeT1MaQWdc6n9XimVcWxovCKJXTgWt4/ZaBg4/1za85kUG0XPyGkxivzxvPN0W8fTgoliwa9qffBtvuP1PilUelry4Awa1v/mBiT/fpERjGMrNi3NJhGhipQi47/MiPt4lswFhg+7+wauvX961ZKUIr4H/85g1Kcdt+Lg8TAGJz5AbuT+7Rm+BbIMsfgvJvMzvrWmpCGFA69nwEYeNc1lFEjwBh8+ZC4HraNbzIDOLRa27GcnfStNSESTEbHBhjhyr8CaoxABDfM3Fwharv/D6uMc0AtXTH5Ft3y/n3bdzUIx6ZkGG7fl6xOBrWU4S8e90gItm3/A1SSaV1hiNc6Ltgd/V16z8luCy92bslSDGPAposXvT5MfWd9HM32H5F8oZDL9asZtQUbh49sN/65DjGFZw5m+vrT756cFaOgvEeWDp6/9on9ptV70u6mcXRX9qwy8o8HrAI7viZJs13cO+Ac/+/eGsfdWBsGTYh5+KBPNrdfq/67GEZh4w17P1StQajLpQR20sf0Jlmr0Ps8zWc+ugVLRJnaA++4i7G3jJ+CUqBe3Ot7mPp4VWxkY3P9FawOuHlJVh6kooFv5Z/ZRR9BS3ytQFdjsk1L9ltBxoCiDBub8se4Bw9fuejJFFeB+L7930stbaxPtI1PEoKCEtwz/ZOD4BKXxc31N1Vu/ujR39eEMLru0wt+xQg052/Vf5hKR8G4vISTt8jJ6/ZecumIl3oFTzfjj4Ju/dgjh1xo693pyB0n9z3/VzK1bDqb8rfy/9gB473O66G29oJpn6nrsPm9awKbZxydAK9/ds+PDIEdRbmdxN3/q39z+yfReLNzWsYZYMvFk895ahf2r8erZTM8ePLkKzdDpjSwq/yhzf7jbeOHcemWxftfsHp0vJKPSiDO3qz7G0OcPbb/axdPP/G6mKid89s4vtdugm3yIuKeevTWngXvOWUfiekWIzmJbL7oi4jEq1be8vq+R31xSkeS7lHuC1omjuP/P2gbP+6WxHWLKgw89ovfZ0sO2X/alL4Zewciw2uGK5tf/ctT+y85t+vdggvEhX1S73mb8b3EdUs916mV3ynVFSvXjpTqWzYiMnO/PQozFu+/pD/qCJTtlKHpvvMrk95u/T1xvohUJomIch0i1uXFBiKiXD4QEQl78JyJ9ij3eb5rfW7cTfysQ9Kk0C1WRMDhukRTsPVcZyDWFLxan8iBr/WP5QyqkJqeNvVvGn8mUkeWduzRrbIgQHL5YtET8X0Jcj1SV0GR0b4wVS+f/Cv0lZ5JO3rqrUcUEZG29XeBWAJPdOCP9xhkrlOyXGBy4rQUxSXdwnGPiwxdoX822ld4u/X3wQ8Ech7geUKhAwo+AXiFAvjdVv/uiCp2Zv+QnlRoWcffOmy7+K2oXg/MPfv2ewwcM2Ryaff/b/zeXjG/OlNGcrPuOqlTl9r97G3Dl5FEnTg16t8wes/ppfxe7RZQW/7/qm2aZm7aWwr5OacsPjZf6+tv8+D+tulvVO4n52b5Z73kj3lp2/3ePnzu61qzcKF36k8e66lIh2r3s7bXf8uBslwgaUfSKTpvdKe83fH/7aa0U2zSo7y2CzxvN2VZn8iW/wWKwo43vnmYIAAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, AB is the diameter of circle O, and points C and D are on circle O. If angle ABD = 50.0, then the degree of angle BCD is ()
40.0
644
[ "30^\\circ", "35^\\circ", "40^\\circ", "45^\\circ" ]
C
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGUAAAA3CAAAAAAwUdvvAAAIrklEQVR4nK2YeXDV1RXHv+fe+3svhCRgws5AJVIIa5F9UbHjCLhLi0tHwLXFWi1qxRU7aqvjjNVRh5QiiEqtRWbQWqdaSjFKABVxAWS1IVRkiQJZCXnv97vn2z9eJC/J07D0/Pd+v/e7n/M995xzFyFO1lQZlL5UPvr0a5wNMrwn1f317h4d7z23xpw0BBIFr/72rlV9K9vFM4+SVJx164dT/sF27uQpjH+99PYinVKRjGUMiJhkrGzD4ugaU38KFMh6neB9z570ktELiWNP0fq803FKWmDUWHsg7zsGkQBV++9umFp+mpwCxXBo1nNX7j40IXQttBBCMMvrO7UHF3Tog4ScfI4xkVX2TGJYp12h2Oaj0HgrQQUueL2moPbWvi55ChSNxJrka0/MGq6JliEJTe724unXxiRhVY0/ldk3Yg69VDbi4h6ZXu4svfPySEIHWnWnQrHy2csDLtnRzUexVkm2YvnlF6qpt+osXQRS6UNSeYLmyZWz/s7H3qX3kTYz8pWbN1BVQzJKeq1ynojEeJUodvx9gAiN8y+sv2XYlm+GAZAmLfRwfPHj3/T1YuAAayAxFwVJkELj/PFTNDTu8Dw/tzdWDeoAk/6lF3t03sG53SJvmtiOJgtIMobwBLKNEtu6uPdN2Tz89dXwNn1WxNY8nntPfhiYpLHHKFlbtx0pnMCtHbqfAMW5lcsumCqR+ywYBDXCJo7dPa/PLNfgvHe26f8of2Zsyd7znrihp29TASQlBLpk3ezBUMGakUJGTU4DW58dO9MkALVpbIczpt7x+/KqsUMjb1sP3AzixXijInK4OPlQDxB2T+UoiIMAFA8YwdoXp01GMjBqkCbQoexfB7r8NP+yDok2IKCICkC7bWHhjA5ejDerzugCGABQY723eOu1meeEzgIGSJstF+6+umrT9LxcL21RjIbGqUPJyxdPRWRBW1d+QeqVwoKM8S+rbx8cWW0VFVen15YtP9hVrNe2MBogGU8uW33LCNAKaTaHZzaGReitY/GWub0jy9Ztyy3cuWLJgD7cm5/dBgOghPFv5tc/2CtiQDWC94fEU24bqEjN0/q7TolAEShblJ5L9l037rpsbHzlook9AZCGFDWi0qw3ESAQ276ocGaOt1ClQUX5VTBQdRSl3V/c+cacRGAoQEsxbi4AqPRv2Ly5YPiY9iKMDAFv0iEkwlhDlqx6beKVoAEgSint3Q2MrKG3tJv/OPIGYUwgQKvQN1K1z6T4tJUlK3tP6mMCeNAgalbS6sIgennD9aNAAIRVSWydaJNGoMaqXb/wwqlQ2vT8bbLUKuajeFnxPV3DTR/t7DRsVGcohExTQ6rGKotr7uiuqQRVI9i49L68pDHewmDVkpnnkRRBKwghR1MUTQTuyfzrARz+eE1t/7MK2wGImqLrKbbsmcKbs8JG8RTBAnejNxQ1gmX//vmoyMcEvnW0CDkKkqRqyC/mVDAKSW5eeNfDbxxIPaYqPb33XPOLZSSj0KuqRl5ZfWeZTzao94wWzf6CjEKN1PtW65Aq60VTAaCJFnS8JoJYANWflR7ud3a/ABENRKUhW5aW3Dg6JQIA6K289cm9ICOTVf903eyuaHqZKWKaComB2TJ/bld8uypsX7sja8SQQnjVgLZ6QeVNZxzNahokDPxjwy9SIIpVPJs7u12G0dMpjWGGUQ7qtWaaCkQpwqKi2k2la7v+eGAW1O5amH9vh2Q8zVOLbUfGMnSM7f5Tz1+6jCLSrFELSIOtzz+QTxGoobdC4Z412/2ZE7p/+tL4aYbU9FrjsopfM2GDTfPOmY6k+55lNi1iROTIxwf+xNPBi5Cg8QFqt71fc+jADZNADx9v+lKqH5kxLHSyesm0KZ7pC1ZGihEQQkog4iavqzSGBCkiVk0yyh09q2pXnw+WlolzxitIalJJbM4aoJQ3Fl83BbTfBwHwbe2LAJBo5FurLxPCgDCgpQd2PP+Dh9tvefvTLiOG58ETChWh8L0hccQWr717IOBa10hmSsrUTH79/GOtWSIGbv3zZ08HBg/e81Hp2wNHDwBIsVC3u3IcGhbtfqhXW/PeOBZJSTUASdA+On4SkSptRA6vvDfjLCSScQlQ92XJ7k7DxnQEQjFm+Y77659smNNRadrCpDrMMQpV7OoVD2QzRaHUPVV3Wy8fQgLQ0KBq7edfF40ZZIH6R6f1frzbrJykOnuclG9bJiJDPHT+RIUagWDXcwWz8kjAhFagYoDwq3e3Zw8fX7Dt1asWDZ1h6I22udFu6papnxS175Q8GKhXE8OHL4ybKQSNUkTgYSAAog2fl/f7b200/oqoTRnHKOmuiCAaV/LRBFgJ8Oo7145HGHgVikFqZYpM/cFDR0zdi1vG3DdeT+B4na4FpJgVH9wfeJso3nNbIXlsU1VXXVNdeWj/Vz4nJze7oHbVnCGRipPvaJDfp4XCMOC5724YZ8sXnvZILkQArTywt6IyTNRG8aweP5qcnR3ktMOuo/1DwgpwnLveNIoJbUx9/OxV4zYvHX5p3X/qqvZVHqh2ubnt8/MLunZp3+hL5PnGIQk8wQwrY2ZLP1eqCIjaP/h/DhlXW9uQyOvRuVOXnJzcZmmk6j55M3sOPeWkZx/wef3nX9G9/Q87d8nPdLkCum2ru7WDF7RZj03WjAIAyp9NKUh5DUB9i7M8LT7cVn8pzAkdrpsXFcFY5fLPi4q6rbjk9CgGbbH3A2Tfn4c+Nf9gIq5tbnjTrFnSEzT7flV9a/Bm+f72xoJiWg21fmOXXTsrDmpojjfB0KJeoAYPHn7WfbmxkxtJZCw7NYycUMUcZ1k27ZQaz9aRZ9mU9xk1JI7UR4nkiZ7NM5sq69P9ERXUIR80mhX3PJULhxbWTLUDerhSVP6tSpjxkvBkLW1elIYG64rbdT73POONZJ6XE7YWnb/xDLx3X4d+INX8nygAkpJs8UQcEJ38dVYrYyhB7f8Au+oPtp9SQ6UAAAAASUVORK5CYII=" } ]
<image>As shown in the figure, in triangle ABC, angle CAB = 30.0, rotate triangle ABC anticlockwise in the plane around point A to the position of triangle AB'C', and CC' parallel AB, then the degree of rotation angle is ()
120.0
645
[ "100^\\circ", "120^\\circ", "110^\\circ", "130^\\circ" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGYAAAA7CAAAAACspKCXAAAEwElEQVR4nLVYa1BVVRT+7uFeIEIULBElp5GXIhYOxMuABEMEskJiiF4zWuakZeQPpkZnoqnpMU7NUFFYE+lo4uOOQFiGKPUDeYs20RBiZIiJgbzhch98/YCMxz337AO39evO2t+6317fXnvvtQ9oH2uJYvmGatlhLeZueW5P4+xKxHtt+WG+DESyA82hZUBFLBDo0igHsQNNpWskRn9fBwx3yGpjB5rD63QoW+wFVI2s+v9ohi+mApdWOGAod5+7HGjuJXDOLQA3Cne0dh5/Kl0WpCEAcg5JbQ3KQuWv7gxyX2wDRd7MLzK/+uVsN0xnaJsASkLb9pAUhw39s03mm6B7RWCm5HySxq5ZJjOW9L0IDC3BplkykCRbI0dEYJJeN6di09/nLAKTPOZCApRlCsGkJ8x1ZHsTLs2KpcEULoTTun99zIkGP7xn1M+CJj/NSQxI0mIhOfBC6h+qC6A3rFUMKAGQJACu+6NjZc9xOau420cQOYnyeEyxymye/VQQOJmGzatzVLH0RHUIIqecmQFnirPUaHbUb4kgcurR7FnVG9clTlOaLIqcdgM4FsTEt4rG/tz3iPCMZsioj9ILCp7zmvAqzqRh/aJ9QqGmdeeFaaxcmyGVNTtHRTQzhQprZu129j12M25YOfToQzphGiuikWRO8kUlHfpD2oU1s7Y2JMkj3qUKkQc3i7PI0vDHNfttR2YU2IOGNxJftBXYE6qmfZBv0DxLutP65Nf0hL+ae9dGH6g7HhbZJDtaulmjgkZeNJLMX1QnM1IbY1ShmUJXu+3E3jzrIycjVGwapWzIq/67rbkN0fVqklHs0ZdV3cjonum+6BCiKhnFp4DHId+EKzO8hQmqWBRFI8kDoaeneQbDVXZBIjSs8ZzWWpSkTvyoLrlmF5rOrHdJNvvuneJNmLiRyh6L8vrFHjT93k+SZM8zG0b/c3asvn/HLZLGchMjnhehUSqBed46AFhw8Hr09dvOktDyO5MaAYd4LeKXilSAYqWNjZ8p1fPSE8v+9ZVuuuv93OwqSMBQz0siNIolEPYcSXaF1/O7wMJxV9PaPpLVvh2kJa9GRLPbop0y2JzMhw+EYGPpVzsBAAei3QCEp+0Bzq0NI8Wz0WdaZOYRkEpyMK6GJEeSMgzkUORvJMmWWNMn/o+nZMtFTrbxF2HXO4lyi5TuCeDKYBgAOJ96JaFgefUCfwCAj0tD+Gej8FNY3trLOudNWgAY/DNG9jX0FgCs8mwZ/+vcQxuLT28aH5GcnYIF5HLcXdSdpAWA8nA3I279ZFVkrYWAi3bLG0ZoqNHcExsx9lGxBYCu+/KFdrNksUVBn2D8tTICj2oINJYuzM/ObM4as4bUEIDGZWjirtTMZ7dh6YAF0IxpSWpsF0DKy3j9jswvXEFePWU2BIkdTSR5rvbwt8JgkpEVR5b3ShjM9XYYcG4SKktgMMuyJrPiTTEwALQ5BWc8/LYE4zYfaPSBglHbHddrsb7Iqr5W7azrAlz21MLDA1i4UDCo7vwFAMMOwl2N+eSKS2f8dyks4XTbaj4AIG35B6IBY9eczb2Bar8ONj0IoKHhY+EAaRmwRPW3zs2twN+79nipi5rYFuJm+LxTG+yyUS0L/gGI6VOw9wEa0wAAAABJRU5ErkJggg==" } ]
<image>As shown in the figure, O is a point on the straight line AB, angle 1 = 40.0, OD bisects angle BOC, then the degree of angle 2 is ()
70.0
646
[ "20^\\circ", "30^\\circ", "50^\\circ", "70^\\circ" ]
D
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAAGEAAABeCAAAAAAWQSUHAAAGS0lEQVR4nO2ZfVBUVRTAz9t9uyy7IIugCZrfmA7pgMogpYwgGgzoCuaImjMp6VR+gYClY1KKraAY0piiNqlhajZCKioGAUmjmY5l8pEg4gco6Bjysbvs1+0Pdve9fe/dtywLM8Vw/uHec+47P+6755x7310CQS+LoLcBfYJAsjTab/UES+kT0m0CwVrp8iWzNAyV4IX2h24T2HNAvmHtTELj7W4DOAiEXsWag8aBmO6bsUSHG3uVYOgwEi76XiQIDF9rpNMCdA4TsOtgdB2+YNzvJDv57BX8HNofNYnn6xwvvdg5COtdwhs7HJ8CnkBWvD6oiaNC2S24t0SW3/AqDR7PzO4eJOiHJRoIeYfjAPxKOxEA2p7YYrEE1FMbeN+sfDKRlPmChBIHopYEgKsauoOamkJGjCLBS7FDhIq4aRpquxbXefsyB0lQycPhDhC0fovaKILkqlccc1DHtoqkE8LuEwhdmwoAAAhAAPoO5jkA8lMXF61RbsG5uFNh2qjIcBduQqcQiEBartetj7+9JwjSI0PexBCyGocYxQJkFP4iD+MwW6IVgXPx3yL2gNJwoigIwGP3VjWG4BYcpfB8YvAOn8xppvJBXFsiYWdHanLilyIAgOmBGzAEpDEcKZjZdlGn44xpi0/yZd14ETMRqhSV5yJM7c+r8zAIp8pbcUOnzATuOmMmEJKym81ujDHZSyKPv2LppSkbOF0QgtujBrZ7TTTyEgjdj84LBdZR9PSdvNOraP0pC5M5XSCQtJCS6n8wBcikJuvrRj6TPKNbzigmXRxjNTZJk83pQzeNOHyyxgVTjE3Rqh29RgcBOq1lrVq2/JExnTl4f3TIOK5/0ntNFekrEAslPATCoAbQA2HO7bKkgEJ2cgxeu/oiu1Tqq5tBZLyJZI/K3aloQpLRNAI1P1Nrx/lPw7n+n9ifd7JSOzcnUm4AcAZwO1RMHeDIyrMjLARSRnvAyUl2d93gggFcAIC0ucHBVoqmREio/aizffpKBBUrsiNqyxyIvy7TyjVZ99NlxQfc/gHcU1LypbT+8ezwzbA8fSMAALRq22l5bzAHEcD4JPqxCPmnLX8fBwCYXbo509J5tqk+ewJARlQkVfAFUgRaLc0hCSB+19qJ/8eL3fCI1IjcaFPz+6zwwwAAAxOTz5oDQNh8BhkDfVQUgiNN/N9YjwcApCnrAQCgafXBXaZlXzAsw2w1yh96jjz6kFZCuRIxpSGHhzBpyUYAgHOKAQVBZp0y/4apRaiGBrzlcYWWGZyp/kVWLQ8i3ngQWlfuzVRSu57Hxq16AEAIRPdFco2rjPbxxEnwXZbAQ4Bj+ftjBhcG0lVRY5UAQBBAvhjnXl45WWuDAGslu3kI9dXrt+1g6DJ/vQYAIKwsqD11UjGc9nWGKYgHcm9hAenLP1vUzFQKNmwHMQBCEXLBqmD6dog5t7onJVzirGNQs5k4McRvmZ8XQz+nKGsYAcaxEwC0akTLB9ypMnpCCqf++NI5p4aAz1L2yeOTP/PkMqkIAMRSqVQqM2+Y7JsTAHgudIe22StXaFs8rQ2qtQ1KPwAAmKt4j/lUceis16gPDqeSPB88AVRSgJyMQvCwVl/YE2he4fsLc1+1Nl7KnDrRQKve4hjT+0EIITVii0a9Pc5ar9s0s4zq7YuxMqqTQws4vCCEACGE6o0svQq1NM/br6Nprs9O6KCPiD5A65SEJbVyAzoJGKmaXE11dgV9Z229N/WuuaneFHoB64WPgL6KNLdqYxc/ZVqz55saZaEftuOd8BJQrLLz77EZhzisi/YihBDaOQuzAl0h1Pn/hhBqXDHvHpe1NuAOQtejVvNMwCYBnQ1BqCQsFWM9ueD5nhnn+T0g7nygJN4w8HBKlIb7nskQ/3hukieniRJbBF3YkxgPFcYoqBiTasM/7y0cAACIlNdwp3oAKH1gE2D7e9qF75asTctj7CpB7+jtQ1+4degn9BN6SmxVDYYUNSBivqtdj9g5h6p8l5wK+x6xcw4eIcZDg3qVcKXR+237nrCT8MB1390Gb/sIdq1DW9bja0e/sQ9g3xxaR4y6Lo/tTYLXOju9A/SNnO4n9BNMgpx4jM5dOEzZzDjhVdaPBZQUd+E3A1snY9Ad5TlWCiJsI2wSHJb/wEr/Dwj/AoeiKujuuhYQAAAAAElFTkSuQmCC" } ]
<image>As shown in the picture, it is a beautiful Pythagorean tree, in which all quadrilaterals are squares, and all triangles are right triangles. The areas of square A, B, C, and D are 2.0, 5.0, 1.0, 2.0, respectively. Then the area of ​​the largest square E is ().
10.0
647
[ ".9", "10", "11", "12" ]
B
[ { "bytes": "iVBORw0KGgoAAAANSUhEUgAAADwAAABPCAAAAACSIfnBAAAEm0lEQVR4nJ2Xe1BUVRzHv3uBePkgpkSIqYkGFjElnoo1gMZoZQIFlIOPEcdMGDAmC0txehBRjUZpTWThg0BnSBhTcIyUUFIwlKeSGjjMgCDLoiAsLOzu/fXHwi673Ms9t+8/e8/3dz5zfud3fnPmLMissh5ikyYz4FDaL0QwW5VLdYwwZe2iB25dxGFSA78524JR1atR7jMXpvnappAeVra3W727++QsmFauCRp1YYUrvcKj1WqY4Pq62nMerHDVMpcl/HET/LArdZmzOyvcEot77Ssxsee+7B1O2tvPGGxY0LEzQ71t5R+GAQoCgJbGmDl9F+eFsZX7np1W72mDSRjo1NnN1mloZopzGAGgsFPAWeOuMME9O3huZhAAxtt9FQCgcDyV/gEHQLqdzLryysTH92u0RETMTQUAQwrjb0VepT3AvrK2uoHoVpSBiOiWst5oMsKGpqdyiPSRzUSkCS2ecBnKBADc4gAANhu3G4D1KxMmXOY98woASU2R22sdsiY9WQUDvjmX7HLZnI88GJ6PFduZBjJX7ok78LR5xLzy8BgA/dq0FVM8Vrjb55FBYKv/NguXsUl0RHr6chVvYcrp7XL/fktDBnzTp9nKYYcHA05YW+znnBgXZ20pJC4Pk95TFUzzWJskv+ZPAZdtw9ULOgVcNrjLr1rIZoK1L/wo6DMVbJ3b14I+S8E+HyoSiUgnXRowKBKRhpuUrWIhSXgw8LRoTBJ+ea94TKq399TYiwcl4IN1Vw91ARhokV/tKr9OSvmKqDE9KnZA5p47fC8T/RFNfMMoLT4pD9YuLSCi7qhRIqKcrukTZtrzltUbALjoewFVquoJWQXbV2J83+h4wDb44PS7YAb4RElTyyYABgdHwHXT+2dlwI2ZR7yP4bUR3OXmAYBTEDvcvzHXBzji89JA16Mctmaft90mMEu40PyLucaPA5Fv5hPdLq4TmiUCJ789+VXiWCZ6lsLw/uUG03dV4ClZ8O/PqqaMWhYelQHfWXDNYtwdnM0MD4cWWjnqVSms8Ou7p1n6hES9ADz9nHfZfDbNsymeveYBwzkXLhkRTDEr+K5k2rXKdkGWKN/vhgSsWnRegDN8t7aIqNTfOmYJ8yu+FWD5HzI+mZtLdElZOhO8OVko4dGLRPsXEVFbUJ44bP1UmqKCJCKi+Cc/EoPPPHdfjKW3GokoO2kwZoswfFPZIMoeLyKigaA7RInx5qM0ww8DfxVlr18g0tHpN4iI3o1QT9rmDtsQGy9yq6Assy0vR4VeJwDYF7u80/oaynDaI8bqG10vVY96IORfAED6zpg6y/Y8GsHwtz3lnXEiIjrrX0FEpjfJjVe93XViK09KYbgQ6gwAs5o7j0XA9AKk+9pxKRawcdLwAABnW7ga4eG/x3QKpY80a5ZuaHRkjhs41GfYPx9WeE0OC23Cz6qKTw3oDmklosYO6XJNER/+D9HObCR9LAszqj7cQNTqZVtWKytho6oWcoBzHzfH83/Af0UAuO7LabUAwHBOUzTUEwHgpzRu/RfA2BWVLPjq/Pmgw4+vU9Dhfk8PL1m5d6RqNqt572j8Bwf0SX8WP+uXAAAAAElFTkSuQmCC" } ]
<image>As shown in the figure, the straight lines AB and CD are cut by BC. If AB parallel CD, angle 1 = 45.0, angle 2 = 35.0, then angle 3 = ()
80.0
648
[ "80^\\circ", "70^\\circ", "60^\\circ", "90^\\circ" ]
A